1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 /* number of high powered commands that can go through right now */ 97 struct mtx xpt_highpower_lock; 98 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 99 int num_highpower; 100 101 /* queue for handling async rescan requests. */ 102 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 103 int buses_to_config; 104 int buses_config_done; 105 106 /* Registered busses */ 107 TAILQ_HEAD(,cam_eb) xpt_busses; 108 u_int bus_generation; 109 110 struct intr_config_hook *xpt_config_hook; 111 112 int boot_delay; 113 struct callout boot_callout; 114 115 struct mtx xpt_topo_lock; 116 struct mtx xpt_lock; 117 struct taskqueue *xpt_taskq; 118 }; 119 120 typedef enum { 121 DM_RET_COPY = 0x01, 122 DM_RET_FLAG_MASK = 0x0f, 123 DM_RET_NONE = 0x00, 124 DM_RET_STOP = 0x10, 125 DM_RET_DESCEND = 0x20, 126 DM_RET_ERROR = 0x30, 127 DM_RET_ACTION_MASK = 0xf0 128 } dev_match_ret; 129 130 typedef enum { 131 XPT_DEPTH_BUS, 132 XPT_DEPTH_TARGET, 133 XPT_DEPTH_DEVICE, 134 XPT_DEPTH_PERIPH 135 } xpt_traverse_depth; 136 137 struct xpt_traverse_config { 138 xpt_traverse_depth depth; 139 void *tr_func; 140 void *tr_arg; 141 }; 142 143 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 144 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 145 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 146 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 147 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 148 149 /* Transport layer configuration information */ 150 static struct xpt_softc xsoftc; 151 152 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 153 &xsoftc.boot_delay, 0, "Bus registration wait time"); 154 155 struct cam_doneq { 156 struct mtx_padalign cam_doneq_mtx; 157 STAILQ_HEAD(, ccb_hdr) cam_doneq; 158 int cam_doneq_sleep; 159 }; 160 161 static struct cam_doneq cam_doneqs[MAXCPU]; 162 static int cam_num_doneqs; 163 static struct proc *cam_proc; 164 165 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 166 &cam_num_doneqs, 0, "Number of completion queues/threads"); 167 168 struct cam_periph *xpt_periph; 169 170 static periph_init_t xpt_periph_init; 171 172 static struct periph_driver xpt_driver = 173 { 174 xpt_periph_init, "xpt", 175 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 176 CAM_PERIPH_DRV_EARLY 177 }; 178 179 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 180 181 static d_open_t xptopen; 182 static d_close_t xptclose; 183 static d_ioctl_t xptioctl; 184 static d_ioctl_t xptdoioctl; 185 186 static struct cdevsw xpt_cdevsw = { 187 .d_version = D_VERSION, 188 .d_flags = 0, 189 .d_open = xptopen, 190 .d_close = xptclose, 191 .d_ioctl = xptioctl, 192 .d_name = "xpt", 193 }; 194 195 /* Storage for debugging datastructures */ 196 struct cam_path *cam_dpath; 197 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 199 &cam_dflags, 0, "Enabled debug flags"); 200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 202 &cam_debug_delay, 0, "Delay in us after each debug message"); 203 204 /* Our boot-time initialization hook */ 205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 206 207 static moduledata_t cam_moduledata = { 208 "cam", 209 cam_module_event_handler, 210 NULL 211 }; 212 213 static int xpt_init(void *); 214 215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 216 MODULE_VERSION(cam, 1); 217 218 219 static void xpt_async_bcast(struct async_list *async_head, 220 u_int32_t async_code, 221 struct cam_path *path, 222 void *async_arg); 223 static path_id_t xptnextfreepathid(void); 224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 225 static union ccb *xpt_get_ccb(struct cam_periph *periph); 226 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 227 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 228 static void xpt_run_allocq_task(void *context, int pending); 229 static void xpt_run_devq(struct cam_devq *devq); 230 static timeout_t xpt_release_devq_timeout; 231 static void xpt_release_simq_timeout(void *arg) __unused; 232 static void xpt_acquire_bus(struct cam_eb *bus); 233 static void xpt_release_bus(struct cam_eb *bus); 234 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 235 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 236 int run_queue); 237 static struct cam_et* 238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 239 static void xpt_acquire_target(struct cam_et *target); 240 static void xpt_release_target(struct cam_et *target); 241 static struct cam_eb* 242 xpt_find_bus(path_id_t path_id); 243 static struct cam_et* 244 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 245 static struct cam_ed* 246 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 247 static void xpt_config(void *arg); 248 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 249 u_int32_t new_priority); 250 static xpt_devicefunc_t xptpassannouncefunc; 251 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 252 static void xptpoll(struct cam_sim *sim); 253 static void camisr_runqueue(void); 254 static void xpt_done_process(struct ccb_hdr *ccb_h); 255 static void xpt_done_td(void *); 256 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 257 u_int num_patterns, struct cam_eb *bus); 258 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 259 u_int num_patterns, 260 struct cam_ed *device); 261 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 262 u_int num_patterns, 263 struct cam_periph *periph); 264 static xpt_busfunc_t xptedtbusfunc; 265 static xpt_targetfunc_t xptedttargetfunc; 266 static xpt_devicefunc_t xptedtdevicefunc; 267 static xpt_periphfunc_t xptedtperiphfunc; 268 static xpt_pdrvfunc_t xptplistpdrvfunc; 269 static xpt_periphfunc_t xptplistperiphfunc; 270 static int xptedtmatch(struct ccb_dev_match *cdm); 271 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 272 static int xptbustraverse(struct cam_eb *start_bus, 273 xpt_busfunc_t *tr_func, void *arg); 274 static int xpttargettraverse(struct cam_eb *bus, 275 struct cam_et *start_target, 276 xpt_targetfunc_t *tr_func, void *arg); 277 static int xptdevicetraverse(struct cam_et *target, 278 struct cam_ed *start_device, 279 xpt_devicefunc_t *tr_func, void *arg); 280 static int xptperiphtraverse(struct cam_ed *device, 281 struct cam_periph *start_periph, 282 xpt_periphfunc_t *tr_func, void *arg); 283 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 284 xpt_pdrvfunc_t *tr_func, void *arg); 285 static int xptpdperiphtraverse(struct periph_driver **pdrv, 286 struct cam_periph *start_periph, 287 xpt_periphfunc_t *tr_func, 288 void *arg); 289 static xpt_busfunc_t xptdefbusfunc; 290 static xpt_targetfunc_t xptdeftargetfunc; 291 static xpt_devicefunc_t xptdefdevicefunc; 292 static xpt_periphfunc_t xptdefperiphfunc; 293 static void xpt_finishconfig_task(void *context, int pending); 294 static void xpt_dev_async_default(u_int32_t async_code, 295 struct cam_eb *bus, 296 struct cam_et *target, 297 struct cam_ed *device, 298 void *async_arg); 299 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 300 struct cam_et *target, 301 lun_id_t lun_id); 302 static xpt_devicefunc_t xptsetasyncfunc; 303 static xpt_busfunc_t xptsetasyncbusfunc; 304 static cam_status xptregister(struct cam_periph *periph, 305 void *arg); 306 static __inline int device_is_queued(struct cam_ed *device); 307 308 static __inline int 309 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 310 { 311 int retval; 312 313 mtx_assert(&devq->send_mtx, MA_OWNED); 314 if ((dev->ccbq.queue.entries > 0) && 315 (dev->ccbq.dev_openings > 0) && 316 (dev->ccbq.queue.qfrozen_cnt == 0)) { 317 /* 318 * The priority of a device waiting for controller 319 * resources is that of the highest priority CCB 320 * enqueued. 321 */ 322 retval = 323 xpt_schedule_dev(&devq->send_queue, 324 &dev->devq_entry, 325 CAMQ_GET_PRIO(&dev->ccbq.queue)); 326 } else { 327 retval = 0; 328 } 329 return (retval); 330 } 331 332 static __inline int 333 device_is_queued(struct cam_ed *device) 334 { 335 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 336 } 337 338 static void 339 xpt_periph_init() 340 { 341 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 342 } 343 344 static int 345 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 346 { 347 348 /* 349 * Only allow read-write access. 350 */ 351 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 352 return(EPERM); 353 354 /* 355 * We don't allow nonblocking access. 356 */ 357 if ((flags & O_NONBLOCK) != 0) { 358 printf("%s: can't do nonblocking access\n", devtoname(dev)); 359 return(ENODEV); 360 } 361 362 return(0); 363 } 364 365 static int 366 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 367 { 368 369 return(0); 370 } 371 372 /* 373 * Don't automatically grab the xpt softc lock here even though this is going 374 * through the xpt device. The xpt device is really just a back door for 375 * accessing other devices and SIMs, so the right thing to do is to grab 376 * the appropriate SIM lock once the bus/SIM is located. 377 */ 378 static int 379 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 380 { 381 int error; 382 383 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 384 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 385 } 386 return (error); 387 } 388 389 static int 390 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 391 { 392 int error; 393 394 error = 0; 395 396 switch(cmd) { 397 /* 398 * For the transport layer CAMIOCOMMAND ioctl, we really only want 399 * to accept CCB types that don't quite make sense to send through a 400 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 401 * in the CAM spec. 402 */ 403 case CAMIOCOMMAND: { 404 union ccb *ccb; 405 union ccb *inccb; 406 struct cam_eb *bus; 407 408 inccb = (union ccb *)addr; 409 410 bus = xpt_find_bus(inccb->ccb_h.path_id); 411 if (bus == NULL) 412 return (EINVAL); 413 414 switch (inccb->ccb_h.func_code) { 415 case XPT_SCAN_BUS: 416 case XPT_RESET_BUS: 417 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 418 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 419 xpt_release_bus(bus); 420 return (EINVAL); 421 } 422 break; 423 case XPT_SCAN_TGT: 424 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 425 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 426 xpt_release_bus(bus); 427 return (EINVAL); 428 } 429 break; 430 default: 431 break; 432 } 433 434 switch(inccb->ccb_h.func_code) { 435 case XPT_SCAN_BUS: 436 case XPT_RESET_BUS: 437 case XPT_PATH_INQ: 438 case XPT_ENG_INQ: 439 case XPT_SCAN_LUN: 440 case XPT_SCAN_TGT: 441 442 ccb = xpt_alloc_ccb(); 443 444 /* 445 * Create a path using the bus, target, and lun the 446 * user passed in. 447 */ 448 if (xpt_create_path(&ccb->ccb_h.path, NULL, 449 inccb->ccb_h.path_id, 450 inccb->ccb_h.target_id, 451 inccb->ccb_h.target_lun) != 452 CAM_REQ_CMP){ 453 error = EINVAL; 454 xpt_free_ccb(ccb); 455 break; 456 } 457 /* Ensure all of our fields are correct */ 458 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 459 inccb->ccb_h.pinfo.priority); 460 xpt_merge_ccb(ccb, inccb); 461 xpt_path_lock(ccb->ccb_h.path); 462 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 463 xpt_path_unlock(ccb->ccb_h.path); 464 bcopy(ccb, inccb, sizeof(union ccb)); 465 xpt_free_path(ccb->ccb_h.path); 466 xpt_free_ccb(ccb); 467 break; 468 469 case XPT_DEBUG: { 470 union ccb ccb; 471 472 /* 473 * This is an immediate CCB, so it's okay to 474 * allocate it on the stack. 475 */ 476 477 /* 478 * Create a path using the bus, target, and lun the 479 * user passed in. 480 */ 481 if (xpt_create_path(&ccb.ccb_h.path, NULL, 482 inccb->ccb_h.path_id, 483 inccb->ccb_h.target_id, 484 inccb->ccb_h.target_lun) != 485 CAM_REQ_CMP){ 486 error = EINVAL; 487 break; 488 } 489 /* Ensure all of our fields are correct */ 490 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 491 inccb->ccb_h.pinfo.priority); 492 xpt_merge_ccb(&ccb, inccb); 493 xpt_action(&ccb); 494 bcopy(&ccb, inccb, sizeof(union ccb)); 495 xpt_free_path(ccb.ccb_h.path); 496 break; 497 498 } 499 case XPT_DEV_MATCH: { 500 struct cam_periph_map_info mapinfo; 501 struct cam_path *old_path; 502 503 /* 504 * We can't deal with physical addresses for this 505 * type of transaction. 506 */ 507 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 508 CAM_DATA_VADDR) { 509 error = EINVAL; 510 break; 511 } 512 513 /* 514 * Save this in case the caller had it set to 515 * something in particular. 516 */ 517 old_path = inccb->ccb_h.path; 518 519 /* 520 * We really don't need a path for the matching 521 * code. The path is needed because of the 522 * debugging statements in xpt_action(). They 523 * assume that the CCB has a valid path. 524 */ 525 inccb->ccb_h.path = xpt_periph->path; 526 527 bzero(&mapinfo, sizeof(mapinfo)); 528 529 /* 530 * Map the pattern and match buffers into kernel 531 * virtual address space. 532 */ 533 error = cam_periph_mapmem(inccb, &mapinfo); 534 535 if (error) { 536 inccb->ccb_h.path = old_path; 537 break; 538 } 539 540 /* 541 * This is an immediate CCB, we can send it on directly. 542 */ 543 xpt_action(inccb); 544 545 /* 546 * Map the buffers back into user space. 547 */ 548 cam_periph_unmapmem(inccb, &mapinfo); 549 550 inccb->ccb_h.path = old_path; 551 552 error = 0; 553 break; 554 } 555 default: 556 error = ENOTSUP; 557 break; 558 } 559 xpt_release_bus(bus); 560 break; 561 } 562 /* 563 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 564 * with the periphal driver name and unit name filled in. The other 565 * fields don't really matter as input. The passthrough driver name 566 * ("pass"), and unit number are passed back in the ccb. The current 567 * device generation number, and the index into the device peripheral 568 * driver list, and the status are also passed back. Note that 569 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 570 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 571 * (or rather should be) impossible for the device peripheral driver 572 * list to change since we look at the whole thing in one pass, and 573 * we do it with lock protection. 574 * 575 */ 576 case CAMGETPASSTHRU: { 577 union ccb *ccb; 578 struct cam_periph *periph; 579 struct periph_driver **p_drv; 580 char *name; 581 u_int unit; 582 int base_periph_found; 583 584 ccb = (union ccb *)addr; 585 unit = ccb->cgdl.unit_number; 586 name = ccb->cgdl.periph_name; 587 base_periph_found = 0; 588 589 /* 590 * Sanity check -- make sure we don't get a null peripheral 591 * driver name. 592 */ 593 if (*ccb->cgdl.periph_name == '\0') { 594 error = EINVAL; 595 break; 596 } 597 598 /* Keep the list from changing while we traverse it */ 599 xpt_lock_buses(); 600 601 /* first find our driver in the list of drivers */ 602 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 603 if (strcmp((*p_drv)->driver_name, name) == 0) 604 break; 605 606 if (*p_drv == NULL) { 607 xpt_unlock_buses(); 608 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 609 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 610 *ccb->cgdl.periph_name = '\0'; 611 ccb->cgdl.unit_number = 0; 612 error = ENOENT; 613 break; 614 } 615 616 /* 617 * Run through every peripheral instance of this driver 618 * and check to see whether it matches the unit passed 619 * in by the user. If it does, get out of the loops and 620 * find the passthrough driver associated with that 621 * peripheral driver. 622 */ 623 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 624 periph = TAILQ_NEXT(periph, unit_links)) { 625 626 if (periph->unit_number == unit) 627 break; 628 } 629 /* 630 * If we found the peripheral driver that the user passed 631 * in, go through all of the peripheral drivers for that 632 * particular device and look for a passthrough driver. 633 */ 634 if (periph != NULL) { 635 struct cam_ed *device; 636 int i; 637 638 base_periph_found = 1; 639 device = periph->path->device; 640 for (i = 0, periph = SLIST_FIRST(&device->periphs); 641 periph != NULL; 642 periph = SLIST_NEXT(periph, periph_links), i++) { 643 /* 644 * Check to see whether we have a 645 * passthrough device or not. 646 */ 647 if (strcmp(periph->periph_name, "pass") == 0) { 648 /* 649 * Fill in the getdevlist fields. 650 */ 651 strcpy(ccb->cgdl.periph_name, 652 periph->periph_name); 653 ccb->cgdl.unit_number = 654 periph->unit_number; 655 if (SLIST_NEXT(periph, periph_links)) 656 ccb->cgdl.status = 657 CAM_GDEVLIST_MORE_DEVS; 658 else 659 ccb->cgdl.status = 660 CAM_GDEVLIST_LAST_DEVICE; 661 ccb->cgdl.generation = 662 device->generation; 663 ccb->cgdl.index = i; 664 /* 665 * Fill in some CCB header fields 666 * that the user may want. 667 */ 668 ccb->ccb_h.path_id = 669 periph->path->bus->path_id; 670 ccb->ccb_h.target_id = 671 periph->path->target->target_id; 672 ccb->ccb_h.target_lun = 673 periph->path->device->lun_id; 674 ccb->ccb_h.status = CAM_REQ_CMP; 675 break; 676 } 677 } 678 } 679 680 /* 681 * If the periph is null here, one of two things has 682 * happened. The first possibility is that we couldn't 683 * find the unit number of the particular peripheral driver 684 * that the user is asking about. e.g. the user asks for 685 * the passthrough driver for "da11". We find the list of 686 * "da" peripherals all right, but there is no unit 11. 687 * The other possibility is that we went through the list 688 * of peripheral drivers attached to the device structure, 689 * but didn't find one with the name "pass". Either way, 690 * we return ENOENT, since we couldn't find something. 691 */ 692 if (periph == NULL) { 693 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 694 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 695 *ccb->cgdl.periph_name = '\0'; 696 ccb->cgdl.unit_number = 0; 697 error = ENOENT; 698 /* 699 * It is unfortunate that this is even necessary, 700 * but there are many, many clueless users out there. 701 * If this is true, the user is looking for the 702 * passthrough driver, but doesn't have one in his 703 * kernel. 704 */ 705 if (base_periph_found == 1) { 706 printf("xptioctl: pass driver is not in the " 707 "kernel\n"); 708 printf("xptioctl: put \"device pass\" in " 709 "your kernel config file\n"); 710 } 711 } 712 xpt_unlock_buses(); 713 break; 714 } 715 default: 716 error = ENOTTY; 717 break; 718 } 719 720 return(error); 721 } 722 723 static int 724 cam_module_event_handler(module_t mod, int what, void *arg) 725 { 726 int error; 727 728 switch (what) { 729 case MOD_LOAD: 730 if ((error = xpt_init(NULL)) != 0) 731 return (error); 732 break; 733 case MOD_UNLOAD: 734 return EBUSY; 735 default: 736 return EOPNOTSUPP; 737 } 738 739 return 0; 740 } 741 742 static void 743 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 744 { 745 746 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 747 xpt_free_path(done_ccb->ccb_h.path); 748 xpt_free_ccb(done_ccb); 749 } else { 750 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 751 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 752 } 753 xpt_release_boot(); 754 } 755 756 /* thread to handle bus rescans */ 757 static void 758 xpt_scanner_thread(void *dummy) 759 { 760 union ccb *ccb; 761 struct cam_path path; 762 763 xpt_lock_buses(); 764 for (;;) { 765 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 766 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 767 "-", 0); 768 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 769 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 770 xpt_unlock_buses(); 771 772 /* 773 * Since lock can be dropped inside and path freed 774 * by completion callback even before return here, 775 * take our own path copy for reference. 776 */ 777 xpt_copy_path(&path, ccb->ccb_h.path); 778 xpt_path_lock(&path); 779 xpt_action(ccb); 780 xpt_path_unlock(&path); 781 xpt_release_path(&path); 782 783 xpt_lock_buses(); 784 } 785 } 786 } 787 788 void 789 xpt_rescan(union ccb *ccb) 790 { 791 struct ccb_hdr *hdr; 792 793 /* Prepare request */ 794 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 795 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 796 ccb->ccb_h.func_code = XPT_SCAN_BUS; 797 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 798 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 799 ccb->ccb_h.func_code = XPT_SCAN_TGT; 800 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 801 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 802 ccb->ccb_h.func_code = XPT_SCAN_LUN; 803 else { 804 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 805 xpt_free_path(ccb->ccb_h.path); 806 xpt_free_ccb(ccb); 807 return; 808 } 809 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 810 ccb->ccb_h.cbfcnp = xpt_rescan_done; 811 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 812 /* Don't make duplicate entries for the same paths. */ 813 xpt_lock_buses(); 814 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 815 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 816 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 817 wakeup(&xsoftc.ccb_scanq); 818 xpt_unlock_buses(); 819 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 820 xpt_free_path(ccb->ccb_h.path); 821 xpt_free_ccb(ccb); 822 return; 823 } 824 } 825 } 826 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 827 xsoftc.buses_to_config++; 828 wakeup(&xsoftc.ccb_scanq); 829 xpt_unlock_buses(); 830 } 831 832 /* Functions accessed by the peripheral drivers */ 833 static int 834 xpt_init(void *dummy) 835 { 836 struct cam_sim *xpt_sim; 837 struct cam_path *path; 838 struct cam_devq *devq; 839 cam_status status; 840 int error, i; 841 842 TAILQ_INIT(&xsoftc.xpt_busses); 843 TAILQ_INIT(&xsoftc.ccb_scanq); 844 STAILQ_INIT(&xsoftc.highpowerq); 845 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 846 847 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 848 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 849 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 850 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 851 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 852 853 #ifdef CAM_BOOT_DELAY 854 /* 855 * Override this value at compile time to assist our users 856 * who don't use loader to boot a kernel. 857 */ 858 xsoftc.boot_delay = CAM_BOOT_DELAY; 859 #endif 860 /* 861 * The xpt layer is, itself, the equivelent of a SIM. 862 * Allow 16 ccbs in the ccb pool for it. This should 863 * give decent parallelism when we probe busses and 864 * perform other XPT functions. 865 */ 866 devq = cam_simq_alloc(16); 867 xpt_sim = cam_sim_alloc(xptaction, 868 xptpoll, 869 "xpt", 870 /*softc*/NULL, 871 /*unit*/0, 872 /*mtx*/&xsoftc.xpt_lock, 873 /*max_dev_transactions*/0, 874 /*max_tagged_dev_transactions*/0, 875 devq); 876 if (xpt_sim == NULL) 877 return (ENOMEM); 878 879 mtx_lock(&xsoftc.xpt_lock); 880 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 881 mtx_unlock(&xsoftc.xpt_lock); 882 printf("xpt_init: xpt_bus_register failed with status %#x," 883 " failing attach\n", status); 884 return (EINVAL); 885 } 886 mtx_unlock(&xsoftc.xpt_lock); 887 888 /* 889 * Looking at the XPT from the SIM layer, the XPT is 890 * the equivelent of a peripheral driver. Allocate 891 * a peripheral driver entry for us. 892 */ 893 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 894 CAM_TARGET_WILDCARD, 895 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 896 mtx_unlock(&xsoftc.xpt_lock); 897 printf("xpt_init: xpt_create_path failed with status %#x," 898 " failing attach\n", status); 899 return (EINVAL); 900 } 901 xpt_path_lock(path); 902 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 903 path, NULL, 0, xpt_sim); 904 xpt_path_unlock(path); 905 xpt_free_path(path); 906 907 if (cam_num_doneqs < 1) 908 cam_num_doneqs = 1 + mp_ncpus / 6; 909 else if (cam_num_doneqs > MAXCPU) 910 cam_num_doneqs = MAXCPU; 911 for (i = 0; i < cam_num_doneqs; i++) { 912 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 913 MTX_DEF); 914 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 915 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 916 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 917 if (error != 0) { 918 cam_num_doneqs = i; 919 break; 920 } 921 } 922 if (cam_num_doneqs < 1) { 923 printf("xpt_init: Cannot init completion queues " 924 "- failing attach\n"); 925 return (ENOMEM); 926 } 927 /* 928 * Register a callback for when interrupts are enabled. 929 */ 930 xsoftc.xpt_config_hook = 931 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 932 M_CAMXPT, M_NOWAIT | M_ZERO); 933 if (xsoftc.xpt_config_hook == NULL) { 934 printf("xpt_init: Cannot malloc config hook " 935 "- failing attach\n"); 936 return (ENOMEM); 937 } 938 xsoftc.xpt_config_hook->ich_func = xpt_config; 939 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 940 free (xsoftc.xpt_config_hook, M_CAMXPT); 941 printf("xpt_init: config_intrhook_establish failed " 942 "- failing attach\n"); 943 } 944 945 return (0); 946 } 947 948 static cam_status 949 xptregister(struct cam_periph *periph, void *arg) 950 { 951 struct cam_sim *xpt_sim; 952 953 if (periph == NULL) { 954 printf("xptregister: periph was NULL!!\n"); 955 return(CAM_REQ_CMP_ERR); 956 } 957 958 xpt_sim = (struct cam_sim *)arg; 959 xpt_sim->softc = periph; 960 xpt_periph = periph; 961 periph->softc = NULL; 962 963 return(CAM_REQ_CMP); 964 } 965 966 int32_t 967 xpt_add_periph(struct cam_periph *periph) 968 { 969 struct cam_ed *device; 970 int32_t status; 971 972 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 973 device = periph->path->device; 974 status = CAM_REQ_CMP; 975 if (device != NULL) { 976 mtx_lock(&device->target->bus->eb_mtx); 977 device->generation++; 978 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 979 mtx_unlock(&device->target->bus->eb_mtx); 980 } 981 982 return (status); 983 } 984 985 void 986 xpt_remove_periph(struct cam_periph *periph) 987 { 988 struct cam_ed *device; 989 990 device = periph->path->device; 991 if (device != NULL) { 992 mtx_lock(&device->target->bus->eb_mtx); 993 device->generation++; 994 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 995 mtx_unlock(&device->target->bus->eb_mtx); 996 } 997 } 998 999 1000 void 1001 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1002 { 1003 struct cam_path *path = periph->path; 1004 1005 cam_periph_assert(periph, MA_OWNED); 1006 periph->flags |= CAM_PERIPH_ANNOUNCED; 1007 1008 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1009 periph->periph_name, periph->unit_number, 1010 path->bus->sim->sim_name, 1011 path->bus->sim->unit_number, 1012 path->bus->sim->bus_id, 1013 path->bus->path_id, 1014 path->target->target_id, 1015 (uintmax_t)path->device->lun_id); 1016 printf("%s%d: ", periph->periph_name, periph->unit_number); 1017 if (path->device->protocol == PROTO_SCSI) 1018 scsi_print_inquiry(&path->device->inq_data); 1019 else if (path->device->protocol == PROTO_ATA || 1020 path->device->protocol == PROTO_SATAPM) 1021 ata_print_ident(&path->device->ident_data); 1022 else if (path->device->protocol == PROTO_SEMB) 1023 semb_print_ident( 1024 (struct sep_identify_data *)&path->device->ident_data); 1025 else 1026 printf("Unknown protocol device\n"); 1027 if (path->device->serial_num_len > 0) { 1028 /* Don't wrap the screen - print only the first 60 chars */ 1029 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1030 periph->unit_number, path->device->serial_num); 1031 } 1032 /* Announce transport details. */ 1033 (*(path->bus->xport->announce))(periph); 1034 /* Announce command queueing. */ 1035 if (path->device->inq_flags & SID_CmdQue 1036 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1037 printf("%s%d: Command Queueing enabled\n", 1038 periph->periph_name, periph->unit_number); 1039 } 1040 /* Announce caller's details if they've passed in. */ 1041 if (announce_string != NULL) 1042 printf("%s%d: %s\n", periph->periph_name, 1043 periph->unit_number, announce_string); 1044 } 1045 1046 void 1047 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1048 { 1049 if (quirks != 0) { 1050 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1051 periph->unit_number, quirks, bit_string); 1052 } 1053 } 1054 1055 void 1056 xpt_denounce_periph(struct cam_periph *periph) 1057 { 1058 struct cam_path *path = periph->path; 1059 1060 cam_periph_assert(periph, MA_OWNED); 1061 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1062 periph->periph_name, periph->unit_number, 1063 path->bus->sim->sim_name, 1064 path->bus->sim->unit_number, 1065 path->bus->sim->bus_id, 1066 path->bus->path_id, 1067 path->target->target_id, 1068 (uintmax_t)path->device->lun_id); 1069 printf("%s%d: ", periph->periph_name, periph->unit_number); 1070 if (path->device->protocol == PROTO_SCSI) 1071 scsi_print_inquiry_short(&path->device->inq_data); 1072 else if (path->device->protocol == PROTO_ATA || 1073 path->device->protocol == PROTO_SATAPM) 1074 ata_print_ident_short(&path->device->ident_data); 1075 else if (path->device->protocol == PROTO_SEMB) 1076 semb_print_ident_short( 1077 (struct sep_identify_data *)&path->device->ident_data); 1078 else 1079 printf("Unknown protocol device"); 1080 if (path->device->serial_num_len > 0) 1081 printf(" s/n %.60s", path->device->serial_num); 1082 printf(" detached\n"); 1083 } 1084 1085 1086 int 1087 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1088 { 1089 int ret = -1, l; 1090 struct ccb_dev_advinfo cdai; 1091 struct scsi_vpd_id_descriptor *idd; 1092 1093 xpt_path_assert(path, MA_OWNED); 1094 1095 memset(&cdai, 0, sizeof(cdai)); 1096 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1097 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1098 cdai.bufsiz = len; 1099 1100 if (!strcmp(attr, "GEOM::ident")) 1101 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1102 else if (!strcmp(attr, "GEOM::physpath")) 1103 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1104 else if (strcmp(attr, "GEOM::lunid") == 0 || 1105 strcmp(attr, "GEOM::lunname") == 0) { 1106 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1107 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1108 } else 1109 goto out; 1110 1111 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1112 if (cdai.buf == NULL) { 1113 ret = ENOMEM; 1114 goto out; 1115 } 1116 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1117 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1118 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1119 if (cdai.provsiz == 0) 1120 goto out; 1121 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1122 if (strcmp(attr, "GEOM::lunid") == 0) { 1123 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1124 cdai.provsiz, scsi_devid_is_lun_naa); 1125 if (idd == NULL) 1126 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1127 cdai.provsiz, scsi_devid_is_lun_eui64); 1128 } else 1129 idd = NULL; 1130 if (idd == NULL) 1131 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1132 cdai.provsiz, scsi_devid_is_lun_t10); 1133 if (idd == NULL) 1134 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1135 cdai.provsiz, scsi_devid_is_lun_name); 1136 if (idd == NULL) 1137 goto out; 1138 ret = 0; 1139 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII || 1140 (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1141 l = strnlen(idd->identifier, idd->length); 1142 if (l < len) { 1143 bcopy(idd->identifier, buf, l); 1144 buf[l] = 0; 1145 } else 1146 ret = EFAULT; 1147 } else { 1148 if (idd->length * 2 < len) { 1149 for (l = 0; l < idd->length; l++) 1150 sprintf(buf + l * 2, "%02x", 1151 idd->identifier[l]); 1152 } else 1153 ret = EFAULT; 1154 } 1155 } else { 1156 ret = 0; 1157 if (strlcpy(buf, cdai.buf, len) >= len) 1158 ret = EFAULT; 1159 } 1160 1161 out: 1162 if (cdai.buf != NULL) 1163 free(cdai.buf, M_CAMXPT); 1164 return ret; 1165 } 1166 1167 static dev_match_ret 1168 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1169 struct cam_eb *bus) 1170 { 1171 dev_match_ret retval; 1172 int i; 1173 1174 retval = DM_RET_NONE; 1175 1176 /* 1177 * If we aren't given something to match against, that's an error. 1178 */ 1179 if (bus == NULL) 1180 return(DM_RET_ERROR); 1181 1182 /* 1183 * If there are no match entries, then this bus matches no 1184 * matter what. 1185 */ 1186 if ((patterns == NULL) || (num_patterns == 0)) 1187 return(DM_RET_DESCEND | DM_RET_COPY); 1188 1189 for (i = 0; i < num_patterns; i++) { 1190 struct bus_match_pattern *cur_pattern; 1191 1192 /* 1193 * If the pattern in question isn't for a bus node, we 1194 * aren't interested. However, we do indicate to the 1195 * calling routine that we should continue descending the 1196 * tree, since the user wants to match against lower-level 1197 * EDT elements. 1198 */ 1199 if (patterns[i].type != DEV_MATCH_BUS) { 1200 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1201 retval |= DM_RET_DESCEND; 1202 continue; 1203 } 1204 1205 cur_pattern = &patterns[i].pattern.bus_pattern; 1206 1207 /* 1208 * If they want to match any bus node, we give them any 1209 * device node. 1210 */ 1211 if (cur_pattern->flags == BUS_MATCH_ANY) { 1212 /* set the copy flag */ 1213 retval |= DM_RET_COPY; 1214 1215 /* 1216 * If we've already decided on an action, go ahead 1217 * and return. 1218 */ 1219 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1220 return(retval); 1221 } 1222 1223 /* 1224 * Not sure why someone would do this... 1225 */ 1226 if (cur_pattern->flags == BUS_MATCH_NONE) 1227 continue; 1228 1229 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1230 && (cur_pattern->path_id != bus->path_id)) 1231 continue; 1232 1233 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1234 && (cur_pattern->bus_id != bus->sim->bus_id)) 1235 continue; 1236 1237 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1238 && (cur_pattern->unit_number != bus->sim->unit_number)) 1239 continue; 1240 1241 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1242 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1243 DEV_IDLEN) != 0)) 1244 continue; 1245 1246 /* 1247 * If we get to this point, the user definitely wants 1248 * information on this bus. So tell the caller to copy the 1249 * data out. 1250 */ 1251 retval |= DM_RET_COPY; 1252 1253 /* 1254 * If the return action has been set to descend, then we 1255 * know that we've already seen a non-bus matching 1256 * expression, therefore we need to further descend the tree. 1257 * This won't change by continuing around the loop, so we 1258 * go ahead and return. If we haven't seen a non-bus 1259 * matching expression, we keep going around the loop until 1260 * we exhaust the matching expressions. We'll set the stop 1261 * flag once we fall out of the loop. 1262 */ 1263 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1264 return(retval); 1265 } 1266 1267 /* 1268 * If the return action hasn't been set to descend yet, that means 1269 * we haven't seen anything other than bus matching patterns. So 1270 * tell the caller to stop descending the tree -- the user doesn't 1271 * want to match against lower level tree elements. 1272 */ 1273 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1274 retval |= DM_RET_STOP; 1275 1276 return(retval); 1277 } 1278 1279 static dev_match_ret 1280 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1281 struct cam_ed *device) 1282 { 1283 dev_match_ret retval; 1284 int i; 1285 1286 retval = DM_RET_NONE; 1287 1288 /* 1289 * If we aren't given something to match against, that's an error. 1290 */ 1291 if (device == NULL) 1292 return(DM_RET_ERROR); 1293 1294 /* 1295 * If there are no match entries, then this device matches no 1296 * matter what. 1297 */ 1298 if ((patterns == NULL) || (num_patterns == 0)) 1299 return(DM_RET_DESCEND | DM_RET_COPY); 1300 1301 for (i = 0; i < num_patterns; i++) { 1302 struct device_match_pattern *cur_pattern; 1303 struct scsi_vpd_device_id *device_id_page; 1304 1305 /* 1306 * If the pattern in question isn't for a device node, we 1307 * aren't interested. 1308 */ 1309 if (patterns[i].type != DEV_MATCH_DEVICE) { 1310 if ((patterns[i].type == DEV_MATCH_PERIPH) 1311 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1312 retval |= DM_RET_DESCEND; 1313 continue; 1314 } 1315 1316 cur_pattern = &patterns[i].pattern.device_pattern; 1317 1318 /* Error out if mutually exclusive options are specified. */ 1319 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1320 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1321 return(DM_RET_ERROR); 1322 1323 /* 1324 * If they want to match any device node, we give them any 1325 * device node. 1326 */ 1327 if (cur_pattern->flags == DEV_MATCH_ANY) 1328 goto copy_dev_node; 1329 1330 /* 1331 * Not sure why someone would do this... 1332 */ 1333 if (cur_pattern->flags == DEV_MATCH_NONE) 1334 continue; 1335 1336 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1337 && (cur_pattern->path_id != device->target->bus->path_id)) 1338 continue; 1339 1340 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1341 && (cur_pattern->target_id != device->target->target_id)) 1342 continue; 1343 1344 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1345 && (cur_pattern->target_lun != device->lun_id)) 1346 continue; 1347 1348 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1349 && (cam_quirkmatch((caddr_t)&device->inq_data, 1350 (caddr_t)&cur_pattern->data.inq_pat, 1351 1, sizeof(cur_pattern->data.inq_pat), 1352 scsi_static_inquiry_match) == NULL)) 1353 continue; 1354 1355 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1356 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1357 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1358 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1359 device->device_id_len 1360 - SVPD_DEVICE_ID_HDR_LEN, 1361 cur_pattern->data.devid_pat.id, 1362 cur_pattern->data.devid_pat.id_len) != 0)) 1363 continue; 1364 1365 copy_dev_node: 1366 /* 1367 * If we get to this point, the user definitely wants 1368 * information on this device. So tell the caller to copy 1369 * the data out. 1370 */ 1371 retval |= DM_RET_COPY; 1372 1373 /* 1374 * If the return action has been set to descend, then we 1375 * know that we've already seen a peripheral matching 1376 * expression, therefore we need to further descend the tree. 1377 * This won't change by continuing around the loop, so we 1378 * go ahead and return. If we haven't seen a peripheral 1379 * matching expression, we keep going around the loop until 1380 * we exhaust the matching expressions. We'll set the stop 1381 * flag once we fall out of the loop. 1382 */ 1383 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1384 return(retval); 1385 } 1386 1387 /* 1388 * If the return action hasn't been set to descend yet, that means 1389 * we haven't seen any peripheral matching patterns. So tell the 1390 * caller to stop descending the tree -- the user doesn't want to 1391 * match against lower level tree elements. 1392 */ 1393 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1394 retval |= DM_RET_STOP; 1395 1396 return(retval); 1397 } 1398 1399 /* 1400 * Match a single peripheral against any number of match patterns. 1401 */ 1402 static dev_match_ret 1403 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1404 struct cam_periph *periph) 1405 { 1406 dev_match_ret retval; 1407 int i; 1408 1409 /* 1410 * If we aren't given something to match against, that's an error. 1411 */ 1412 if (periph == NULL) 1413 return(DM_RET_ERROR); 1414 1415 /* 1416 * If there are no match entries, then this peripheral matches no 1417 * matter what. 1418 */ 1419 if ((patterns == NULL) || (num_patterns == 0)) 1420 return(DM_RET_STOP | DM_RET_COPY); 1421 1422 /* 1423 * There aren't any nodes below a peripheral node, so there's no 1424 * reason to descend the tree any further. 1425 */ 1426 retval = DM_RET_STOP; 1427 1428 for (i = 0; i < num_patterns; i++) { 1429 struct periph_match_pattern *cur_pattern; 1430 1431 /* 1432 * If the pattern in question isn't for a peripheral, we 1433 * aren't interested. 1434 */ 1435 if (patterns[i].type != DEV_MATCH_PERIPH) 1436 continue; 1437 1438 cur_pattern = &patterns[i].pattern.periph_pattern; 1439 1440 /* 1441 * If they want to match on anything, then we will do so. 1442 */ 1443 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1444 /* set the copy flag */ 1445 retval |= DM_RET_COPY; 1446 1447 /* 1448 * We've already set the return action to stop, 1449 * since there are no nodes below peripherals in 1450 * the tree. 1451 */ 1452 return(retval); 1453 } 1454 1455 /* 1456 * Not sure why someone would do this... 1457 */ 1458 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1459 continue; 1460 1461 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1462 && (cur_pattern->path_id != periph->path->bus->path_id)) 1463 continue; 1464 1465 /* 1466 * For the target and lun id's, we have to make sure the 1467 * target and lun pointers aren't NULL. The xpt peripheral 1468 * has a wildcard target and device. 1469 */ 1470 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1471 && ((periph->path->target == NULL) 1472 ||(cur_pattern->target_id != periph->path->target->target_id))) 1473 continue; 1474 1475 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1476 && ((periph->path->device == NULL) 1477 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1478 continue; 1479 1480 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1481 && (cur_pattern->unit_number != periph->unit_number)) 1482 continue; 1483 1484 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1485 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1486 DEV_IDLEN) != 0)) 1487 continue; 1488 1489 /* 1490 * If we get to this point, the user definitely wants 1491 * information on this peripheral. So tell the caller to 1492 * copy the data out. 1493 */ 1494 retval |= DM_RET_COPY; 1495 1496 /* 1497 * The return action has already been set to stop, since 1498 * peripherals don't have any nodes below them in the EDT. 1499 */ 1500 return(retval); 1501 } 1502 1503 /* 1504 * If we get to this point, the peripheral that was passed in 1505 * doesn't match any of the patterns. 1506 */ 1507 return(retval); 1508 } 1509 1510 static int 1511 xptedtbusfunc(struct cam_eb *bus, void *arg) 1512 { 1513 struct ccb_dev_match *cdm; 1514 struct cam_et *target; 1515 dev_match_ret retval; 1516 1517 cdm = (struct ccb_dev_match *)arg; 1518 1519 /* 1520 * If our position is for something deeper in the tree, that means 1521 * that we've already seen this node. So, we keep going down. 1522 */ 1523 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1524 && (cdm->pos.cookie.bus == bus) 1525 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1526 && (cdm->pos.cookie.target != NULL)) 1527 retval = DM_RET_DESCEND; 1528 else 1529 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1530 1531 /* 1532 * If we got an error, bail out of the search. 1533 */ 1534 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1535 cdm->status = CAM_DEV_MATCH_ERROR; 1536 return(0); 1537 } 1538 1539 /* 1540 * If the copy flag is set, copy this bus out. 1541 */ 1542 if (retval & DM_RET_COPY) { 1543 int spaceleft, j; 1544 1545 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1546 sizeof(struct dev_match_result)); 1547 1548 /* 1549 * If we don't have enough space to put in another 1550 * match result, save our position and tell the 1551 * user there are more devices to check. 1552 */ 1553 if (spaceleft < sizeof(struct dev_match_result)) { 1554 bzero(&cdm->pos, sizeof(cdm->pos)); 1555 cdm->pos.position_type = 1556 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1557 1558 cdm->pos.cookie.bus = bus; 1559 cdm->pos.generations[CAM_BUS_GENERATION]= 1560 xsoftc.bus_generation; 1561 cdm->status = CAM_DEV_MATCH_MORE; 1562 return(0); 1563 } 1564 j = cdm->num_matches; 1565 cdm->num_matches++; 1566 cdm->matches[j].type = DEV_MATCH_BUS; 1567 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1568 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1569 cdm->matches[j].result.bus_result.unit_number = 1570 bus->sim->unit_number; 1571 strncpy(cdm->matches[j].result.bus_result.dev_name, 1572 bus->sim->sim_name, DEV_IDLEN); 1573 } 1574 1575 /* 1576 * If the user is only interested in busses, there's no 1577 * reason to descend to the next level in the tree. 1578 */ 1579 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1580 return(1); 1581 1582 /* 1583 * If there is a target generation recorded, check it to 1584 * make sure the target list hasn't changed. 1585 */ 1586 mtx_lock(&bus->eb_mtx); 1587 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1588 && (cdm->pos.cookie.bus == bus) 1589 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1590 && (cdm->pos.cookie.target != NULL)) { 1591 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1592 bus->generation)) { 1593 mtx_unlock(&bus->eb_mtx); 1594 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1595 return (0); 1596 } 1597 target = (struct cam_et *)cdm->pos.cookie.target; 1598 target->refcount++; 1599 } else 1600 target = NULL; 1601 mtx_unlock(&bus->eb_mtx); 1602 1603 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1604 } 1605 1606 static int 1607 xptedttargetfunc(struct cam_et *target, void *arg) 1608 { 1609 struct ccb_dev_match *cdm; 1610 struct cam_eb *bus; 1611 struct cam_ed *device; 1612 1613 cdm = (struct ccb_dev_match *)arg; 1614 bus = target->bus; 1615 1616 /* 1617 * If there is a device list generation recorded, check it to 1618 * make sure the device list hasn't changed. 1619 */ 1620 mtx_lock(&bus->eb_mtx); 1621 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1622 && (cdm->pos.cookie.bus == bus) 1623 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1624 && (cdm->pos.cookie.target == target) 1625 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1626 && (cdm->pos.cookie.device != NULL)) { 1627 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1628 target->generation) { 1629 mtx_unlock(&bus->eb_mtx); 1630 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1631 return(0); 1632 } 1633 device = (struct cam_ed *)cdm->pos.cookie.device; 1634 device->refcount++; 1635 } else 1636 device = NULL; 1637 mtx_unlock(&bus->eb_mtx); 1638 1639 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1640 } 1641 1642 static int 1643 xptedtdevicefunc(struct cam_ed *device, void *arg) 1644 { 1645 struct cam_eb *bus; 1646 struct cam_periph *periph; 1647 struct ccb_dev_match *cdm; 1648 dev_match_ret retval; 1649 1650 cdm = (struct ccb_dev_match *)arg; 1651 bus = device->target->bus; 1652 1653 /* 1654 * If our position is for something deeper in the tree, that means 1655 * that we've already seen this node. So, we keep going down. 1656 */ 1657 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1658 && (cdm->pos.cookie.device == device) 1659 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1660 && (cdm->pos.cookie.periph != NULL)) 1661 retval = DM_RET_DESCEND; 1662 else 1663 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1664 device); 1665 1666 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1667 cdm->status = CAM_DEV_MATCH_ERROR; 1668 return(0); 1669 } 1670 1671 /* 1672 * If the copy flag is set, copy this device out. 1673 */ 1674 if (retval & DM_RET_COPY) { 1675 int spaceleft, j; 1676 1677 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1678 sizeof(struct dev_match_result)); 1679 1680 /* 1681 * If we don't have enough space to put in another 1682 * match result, save our position and tell the 1683 * user there are more devices to check. 1684 */ 1685 if (spaceleft < sizeof(struct dev_match_result)) { 1686 bzero(&cdm->pos, sizeof(cdm->pos)); 1687 cdm->pos.position_type = 1688 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1689 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1690 1691 cdm->pos.cookie.bus = device->target->bus; 1692 cdm->pos.generations[CAM_BUS_GENERATION]= 1693 xsoftc.bus_generation; 1694 cdm->pos.cookie.target = device->target; 1695 cdm->pos.generations[CAM_TARGET_GENERATION] = 1696 device->target->bus->generation; 1697 cdm->pos.cookie.device = device; 1698 cdm->pos.generations[CAM_DEV_GENERATION] = 1699 device->target->generation; 1700 cdm->status = CAM_DEV_MATCH_MORE; 1701 return(0); 1702 } 1703 j = cdm->num_matches; 1704 cdm->num_matches++; 1705 cdm->matches[j].type = DEV_MATCH_DEVICE; 1706 cdm->matches[j].result.device_result.path_id = 1707 device->target->bus->path_id; 1708 cdm->matches[j].result.device_result.target_id = 1709 device->target->target_id; 1710 cdm->matches[j].result.device_result.target_lun = 1711 device->lun_id; 1712 cdm->matches[j].result.device_result.protocol = 1713 device->protocol; 1714 bcopy(&device->inq_data, 1715 &cdm->matches[j].result.device_result.inq_data, 1716 sizeof(struct scsi_inquiry_data)); 1717 bcopy(&device->ident_data, 1718 &cdm->matches[j].result.device_result.ident_data, 1719 sizeof(struct ata_params)); 1720 1721 /* Let the user know whether this device is unconfigured */ 1722 if (device->flags & CAM_DEV_UNCONFIGURED) 1723 cdm->matches[j].result.device_result.flags = 1724 DEV_RESULT_UNCONFIGURED; 1725 else 1726 cdm->matches[j].result.device_result.flags = 1727 DEV_RESULT_NOFLAG; 1728 } 1729 1730 /* 1731 * If the user isn't interested in peripherals, don't descend 1732 * the tree any further. 1733 */ 1734 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1735 return(1); 1736 1737 /* 1738 * If there is a peripheral list generation recorded, make sure 1739 * it hasn't changed. 1740 */ 1741 xpt_lock_buses(); 1742 mtx_lock(&bus->eb_mtx); 1743 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1744 && (cdm->pos.cookie.bus == bus) 1745 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1746 && (cdm->pos.cookie.target == device->target) 1747 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1748 && (cdm->pos.cookie.device == device) 1749 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1750 && (cdm->pos.cookie.periph != NULL)) { 1751 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1752 device->generation) { 1753 mtx_unlock(&bus->eb_mtx); 1754 xpt_unlock_buses(); 1755 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1756 return(0); 1757 } 1758 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1759 periph->refcount++; 1760 } else 1761 periph = NULL; 1762 mtx_unlock(&bus->eb_mtx); 1763 xpt_unlock_buses(); 1764 1765 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1766 } 1767 1768 static int 1769 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1770 { 1771 struct ccb_dev_match *cdm; 1772 dev_match_ret retval; 1773 1774 cdm = (struct ccb_dev_match *)arg; 1775 1776 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1777 1778 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1779 cdm->status = CAM_DEV_MATCH_ERROR; 1780 return(0); 1781 } 1782 1783 /* 1784 * If the copy flag is set, copy this peripheral out. 1785 */ 1786 if (retval & DM_RET_COPY) { 1787 int spaceleft, j; 1788 1789 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1790 sizeof(struct dev_match_result)); 1791 1792 /* 1793 * If we don't have enough space to put in another 1794 * match result, save our position and tell the 1795 * user there are more devices to check. 1796 */ 1797 if (spaceleft < sizeof(struct dev_match_result)) { 1798 bzero(&cdm->pos, sizeof(cdm->pos)); 1799 cdm->pos.position_type = 1800 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1801 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1802 CAM_DEV_POS_PERIPH; 1803 1804 cdm->pos.cookie.bus = periph->path->bus; 1805 cdm->pos.generations[CAM_BUS_GENERATION]= 1806 xsoftc.bus_generation; 1807 cdm->pos.cookie.target = periph->path->target; 1808 cdm->pos.generations[CAM_TARGET_GENERATION] = 1809 periph->path->bus->generation; 1810 cdm->pos.cookie.device = periph->path->device; 1811 cdm->pos.generations[CAM_DEV_GENERATION] = 1812 periph->path->target->generation; 1813 cdm->pos.cookie.periph = periph; 1814 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1815 periph->path->device->generation; 1816 cdm->status = CAM_DEV_MATCH_MORE; 1817 return(0); 1818 } 1819 1820 j = cdm->num_matches; 1821 cdm->num_matches++; 1822 cdm->matches[j].type = DEV_MATCH_PERIPH; 1823 cdm->matches[j].result.periph_result.path_id = 1824 periph->path->bus->path_id; 1825 cdm->matches[j].result.periph_result.target_id = 1826 periph->path->target->target_id; 1827 cdm->matches[j].result.periph_result.target_lun = 1828 periph->path->device->lun_id; 1829 cdm->matches[j].result.periph_result.unit_number = 1830 periph->unit_number; 1831 strncpy(cdm->matches[j].result.periph_result.periph_name, 1832 periph->periph_name, DEV_IDLEN); 1833 } 1834 1835 return(1); 1836 } 1837 1838 static int 1839 xptedtmatch(struct ccb_dev_match *cdm) 1840 { 1841 struct cam_eb *bus; 1842 int ret; 1843 1844 cdm->num_matches = 0; 1845 1846 /* 1847 * Check the bus list generation. If it has changed, the user 1848 * needs to reset everything and start over. 1849 */ 1850 xpt_lock_buses(); 1851 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1852 && (cdm->pos.cookie.bus != NULL)) { 1853 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1854 xsoftc.bus_generation) { 1855 xpt_unlock_buses(); 1856 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1857 return(0); 1858 } 1859 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1860 bus->refcount++; 1861 } else 1862 bus = NULL; 1863 xpt_unlock_buses(); 1864 1865 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1866 1867 /* 1868 * If we get back 0, that means that we had to stop before fully 1869 * traversing the EDT. It also means that one of the subroutines 1870 * has set the status field to the proper value. If we get back 1, 1871 * we've fully traversed the EDT and copied out any matching entries. 1872 */ 1873 if (ret == 1) 1874 cdm->status = CAM_DEV_MATCH_LAST; 1875 1876 return(ret); 1877 } 1878 1879 static int 1880 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1881 { 1882 struct cam_periph *periph; 1883 struct ccb_dev_match *cdm; 1884 1885 cdm = (struct ccb_dev_match *)arg; 1886 1887 xpt_lock_buses(); 1888 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1889 && (cdm->pos.cookie.pdrv == pdrv) 1890 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1891 && (cdm->pos.cookie.periph != NULL)) { 1892 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1893 (*pdrv)->generation) { 1894 xpt_unlock_buses(); 1895 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1896 return(0); 1897 } 1898 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1899 periph->refcount++; 1900 } else 1901 periph = NULL; 1902 xpt_unlock_buses(); 1903 1904 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1905 } 1906 1907 static int 1908 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1909 { 1910 struct ccb_dev_match *cdm; 1911 dev_match_ret retval; 1912 1913 cdm = (struct ccb_dev_match *)arg; 1914 1915 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1916 1917 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1918 cdm->status = CAM_DEV_MATCH_ERROR; 1919 return(0); 1920 } 1921 1922 /* 1923 * If the copy flag is set, copy this peripheral out. 1924 */ 1925 if (retval & DM_RET_COPY) { 1926 int spaceleft, j; 1927 1928 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1929 sizeof(struct dev_match_result)); 1930 1931 /* 1932 * If we don't have enough space to put in another 1933 * match result, save our position and tell the 1934 * user there are more devices to check. 1935 */ 1936 if (spaceleft < sizeof(struct dev_match_result)) { 1937 struct periph_driver **pdrv; 1938 1939 pdrv = NULL; 1940 bzero(&cdm->pos, sizeof(cdm->pos)); 1941 cdm->pos.position_type = 1942 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1943 CAM_DEV_POS_PERIPH; 1944 1945 /* 1946 * This may look a bit non-sensical, but it is 1947 * actually quite logical. There are very few 1948 * peripheral drivers, and bloating every peripheral 1949 * structure with a pointer back to its parent 1950 * peripheral driver linker set entry would cost 1951 * more in the long run than doing this quick lookup. 1952 */ 1953 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1954 if (strcmp((*pdrv)->driver_name, 1955 periph->periph_name) == 0) 1956 break; 1957 } 1958 1959 if (*pdrv == NULL) { 1960 cdm->status = CAM_DEV_MATCH_ERROR; 1961 return(0); 1962 } 1963 1964 cdm->pos.cookie.pdrv = pdrv; 1965 /* 1966 * The periph generation slot does double duty, as 1967 * does the periph pointer slot. They are used for 1968 * both edt and pdrv lookups and positioning. 1969 */ 1970 cdm->pos.cookie.periph = periph; 1971 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1972 (*pdrv)->generation; 1973 cdm->status = CAM_DEV_MATCH_MORE; 1974 return(0); 1975 } 1976 1977 j = cdm->num_matches; 1978 cdm->num_matches++; 1979 cdm->matches[j].type = DEV_MATCH_PERIPH; 1980 cdm->matches[j].result.periph_result.path_id = 1981 periph->path->bus->path_id; 1982 1983 /* 1984 * The transport layer peripheral doesn't have a target or 1985 * lun. 1986 */ 1987 if (periph->path->target) 1988 cdm->matches[j].result.periph_result.target_id = 1989 periph->path->target->target_id; 1990 else 1991 cdm->matches[j].result.periph_result.target_id = 1992 CAM_TARGET_WILDCARD; 1993 1994 if (periph->path->device) 1995 cdm->matches[j].result.periph_result.target_lun = 1996 periph->path->device->lun_id; 1997 else 1998 cdm->matches[j].result.periph_result.target_lun = 1999 CAM_LUN_WILDCARD; 2000 2001 cdm->matches[j].result.periph_result.unit_number = 2002 periph->unit_number; 2003 strncpy(cdm->matches[j].result.periph_result.periph_name, 2004 periph->periph_name, DEV_IDLEN); 2005 } 2006 2007 return(1); 2008 } 2009 2010 static int 2011 xptperiphlistmatch(struct ccb_dev_match *cdm) 2012 { 2013 int ret; 2014 2015 cdm->num_matches = 0; 2016 2017 /* 2018 * At this point in the edt traversal function, we check the bus 2019 * list generation to make sure that no busses have been added or 2020 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2021 * For the peripheral driver list traversal function, however, we 2022 * don't have to worry about new peripheral driver types coming or 2023 * going; they're in a linker set, and therefore can't change 2024 * without a recompile. 2025 */ 2026 2027 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2028 && (cdm->pos.cookie.pdrv != NULL)) 2029 ret = xptpdrvtraverse( 2030 (struct periph_driver **)cdm->pos.cookie.pdrv, 2031 xptplistpdrvfunc, cdm); 2032 else 2033 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2034 2035 /* 2036 * If we get back 0, that means that we had to stop before fully 2037 * traversing the peripheral driver tree. It also means that one of 2038 * the subroutines has set the status field to the proper value. If 2039 * we get back 1, we've fully traversed the EDT and copied out any 2040 * matching entries. 2041 */ 2042 if (ret == 1) 2043 cdm->status = CAM_DEV_MATCH_LAST; 2044 2045 return(ret); 2046 } 2047 2048 static int 2049 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2050 { 2051 struct cam_eb *bus, *next_bus; 2052 int retval; 2053 2054 retval = 1; 2055 if (start_bus) 2056 bus = start_bus; 2057 else { 2058 xpt_lock_buses(); 2059 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2060 if (bus == NULL) { 2061 xpt_unlock_buses(); 2062 return (retval); 2063 } 2064 bus->refcount++; 2065 xpt_unlock_buses(); 2066 } 2067 for (; bus != NULL; bus = next_bus) { 2068 retval = tr_func(bus, arg); 2069 if (retval == 0) { 2070 xpt_release_bus(bus); 2071 break; 2072 } 2073 xpt_lock_buses(); 2074 next_bus = TAILQ_NEXT(bus, links); 2075 if (next_bus) 2076 next_bus->refcount++; 2077 xpt_unlock_buses(); 2078 xpt_release_bus(bus); 2079 } 2080 return(retval); 2081 } 2082 2083 static int 2084 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2085 xpt_targetfunc_t *tr_func, void *arg) 2086 { 2087 struct cam_et *target, *next_target; 2088 int retval; 2089 2090 retval = 1; 2091 if (start_target) 2092 target = start_target; 2093 else { 2094 mtx_lock(&bus->eb_mtx); 2095 target = TAILQ_FIRST(&bus->et_entries); 2096 if (target == NULL) { 2097 mtx_unlock(&bus->eb_mtx); 2098 return (retval); 2099 } 2100 target->refcount++; 2101 mtx_unlock(&bus->eb_mtx); 2102 } 2103 for (; target != NULL; target = next_target) { 2104 retval = tr_func(target, arg); 2105 if (retval == 0) { 2106 xpt_release_target(target); 2107 break; 2108 } 2109 mtx_lock(&bus->eb_mtx); 2110 next_target = TAILQ_NEXT(target, links); 2111 if (next_target) 2112 next_target->refcount++; 2113 mtx_unlock(&bus->eb_mtx); 2114 xpt_release_target(target); 2115 } 2116 return(retval); 2117 } 2118 2119 static int 2120 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2121 xpt_devicefunc_t *tr_func, void *arg) 2122 { 2123 struct cam_eb *bus; 2124 struct cam_ed *device, *next_device; 2125 int retval; 2126 2127 retval = 1; 2128 bus = target->bus; 2129 if (start_device) 2130 device = start_device; 2131 else { 2132 mtx_lock(&bus->eb_mtx); 2133 device = TAILQ_FIRST(&target->ed_entries); 2134 if (device == NULL) { 2135 mtx_unlock(&bus->eb_mtx); 2136 return (retval); 2137 } 2138 device->refcount++; 2139 mtx_unlock(&bus->eb_mtx); 2140 } 2141 for (; device != NULL; device = next_device) { 2142 mtx_lock(&device->device_mtx); 2143 retval = tr_func(device, arg); 2144 mtx_unlock(&device->device_mtx); 2145 if (retval == 0) { 2146 xpt_release_device(device); 2147 break; 2148 } 2149 mtx_lock(&bus->eb_mtx); 2150 next_device = TAILQ_NEXT(device, links); 2151 if (next_device) 2152 next_device->refcount++; 2153 mtx_unlock(&bus->eb_mtx); 2154 xpt_release_device(device); 2155 } 2156 return(retval); 2157 } 2158 2159 static int 2160 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2161 xpt_periphfunc_t *tr_func, void *arg) 2162 { 2163 struct cam_eb *bus; 2164 struct cam_periph *periph, *next_periph; 2165 int retval; 2166 2167 retval = 1; 2168 2169 bus = device->target->bus; 2170 if (start_periph) 2171 periph = start_periph; 2172 else { 2173 xpt_lock_buses(); 2174 mtx_lock(&bus->eb_mtx); 2175 periph = SLIST_FIRST(&device->periphs); 2176 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2177 periph = SLIST_NEXT(periph, periph_links); 2178 if (periph == NULL) { 2179 mtx_unlock(&bus->eb_mtx); 2180 xpt_unlock_buses(); 2181 return (retval); 2182 } 2183 periph->refcount++; 2184 mtx_unlock(&bus->eb_mtx); 2185 xpt_unlock_buses(); 2186 } 2187 for (; periph != NULL; periph = next_periph) { 2188 retval = tr_func(periph, arg); 2189 if (retval == 0) { 2190 cam_periph_release_locked(periph); 2191 break; 2192 } 2193 xpt_lock_buses(); 2194 mtx_lock(&bus->eb_mtx); 2195 next_periph = SLIST_NEXT(periph, periph_links); 2196 while (next_periph != NULL && 2197 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2198 next_periph = SLIST_NEXT(next_periph, periph_links); 2199 if (next_periph) 2200 next_periph->refcount++; 2201 mtx_unlock(&bus->eb_mtx); 2202 xpt_unlock_buses(); 2203 cam_periph_release_locked(periph); 2204 } 2205 return(retval); 2206 } 2207 2208 static int 2209 xptpdrvtraverse(struct periph_driver **start_pdrv, 2210 xpt_pdrvfunc_t *tr_func, void *arg) 2211 { 2212 struct periph_driver **pdrv; 2213 int retval; 2214 2215 retval = 1; 2216 2217 /* 2218 * We don't traverse the peripheral driver list like we do the 2219 * other lists, because it is a linker set, and therefore cannot be 2220 * changed during runtime. If the peripheral driver list is ever 2221 * re-done to be something other than a linker set (i.e. it can 2222 * change while the system is running), the list traversal should 2223 * be modified to work like the other traversal functions. 2224 */ 2225 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2226 *pdrv != NULL; pdrv++) { 2227 retval = tr_func(pdrv, arg); 2228 2229 if (retval == 0) 2230 return(retval); 2231 } 2232 2233 return(retval); 2234 } 2235 2236 static int 2237 xptpdperiphtraverse(struct periph_driver **pdrv, 2238 struct cam_periph *start_periph, 2239 xpt_periphfunc_t *tr_func, void *arg) 2240 { 2241 struct cam_periph *periph, *next_periph; 2242 int retval; 2243 2244 retval = 1; 2245 2246 if (start_periph) 2247 periph = start_periph; 2248 else { 2249 xpt_lock_buses(); 2250 periph = TAILQ_FIRST(&(*pdrv)->units); 2251 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2252 periph = TAILQ_NEXT(periph, unit_links); 2253 if (periph == NULL) { 2254 xpt_unlock_buses(); 2255 return (retval); 2256 } 2257 periph->refcount++; 2258 xpt_unlock_buses(); 2259 } 2260 for (; periph != NULL; periph = next_periph) { 2261 cam_periph_lock(periph); 2262 retval = tr_func(periph, arg); 2263 cam_periph_unlock(periph); 2264 if (retval == 0) { 2265 cam_periph_release(periph); 2266 break; 2267 } 2268 xpt_lock_buses(); 2269 next_periph = TAILQ_NEXT(periph, unit_links); 2270 while (next_periph != NULL && 2271 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2272 next_periph = TAILQ_NEXT(next_periph, unit_links); 2273 if (next_periph) 2274 next_periph->refcount++; 2275 xpt_unlock_buses(); 2276 cam_periph_release(periph); 2277 } 2278 return(retval); 2279 } 2280 2281 static int 2282 xptdefbusfunc(struct cam_eb *bus, void *arg) 2283 { 2284 struct xpt_traverse_config *tr_config; 2285 2286 tr_config = (struct xpt_traverse_config *)arg; 2287 2288 if (tr_config->depth == XPT_DEPTH_BUS) { 2289 xpt_busfunc_t *tr_func; 2290 2291 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2292 2293 return(tr_func(bus, tr_config->tr_arg)); 2294 } else 2295 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2296 } 2297 2298 static int 2299 xptdeftargetfunc(struct cam_et *target, void *arg) 2300 { 2301 struct xpt_traverse_config *tr_config; 2302 2303 tr_config = (struct xpt_traverse_config *)arg; 2304 2305 if (tr_config->depth == XPT_DEPTH_TARGET) { 2306 xpt_targetfunc_t *tr_func; 2307 2308 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2309 2310 return(tr_func(target, tr_config->tr_arg)); 2311 } else 2312 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2313 } 2314 2315 static int 2316 xptdefdevicefunc(struct cam_ed *device, void *arg) 2317 { 2318 struct xpt_traverse_config *tr_config; 2319 2320 tr_config = (struct xpt_traverse_config *)arg; 2321 2322 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2323 xpt_devicefunc_t *tr_func; 2324 2325 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2326 2327 return(tr_func(device, tr_config->tr_arg)); 2328 } else 2329 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2330 } 2331 2332 static int 2333 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2334 { 2335 struct xpt_traverse_config *tr_config; 2336 xpt_periphfunc_t *tr_func; 2337 2338 tr_config = (struct xpt_traverse_config *)arg; 2339 2340 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2341 2342 /* 2343 * Unlike the other default functions, we don't check for depth 2344 * here. The peripheral driver level is the last level in the EDT, 2345 * so if we're here, we should execute the function in question. 2346 */ 2347 return(tr_func(periph, tr_config->tr_arg)); 2348 } 2349 2350 /* 2351 * Execute the given function for every bus in the EDT. 2352 */ 2353 static int 2354 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2355 { 2356 struct xpt_traverse_config tr_config; 2357 2358 tr_config.depth = XPT_DEPTH_BUS; 2359 tr_config.tr_func = tr_func; 2360 tr_config.tr_arg = arg; 2361 2362 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2363 } 2364 2365 /* 2366 * Execute the given function for every device in the EDT. 2367 */ 2368 static int 2369 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2370 { 2371 struct xpt_traverse_config tr_config; 2372 2373 tr_config.depth = XPT_DEPTH_DEVICE; 2374 tr_config.tr_func = tr_func; 2375 tr_config.tr_arg = arg; 2376 2377 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2378 } 2379 2380 static int 2381 xptsetasyncfunc(struct cam_ed *device, void *arg) 2382 { 2383 struct cam_path path; 2384 struct ccb_getdev cgd; 2385 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2386 2387 /* 2388 * Don't report unconfigured devices (Wildcard devs, 2389 * devices only for target mode, device instances 2390 * that have been invalidated but are waiting for 2391 * their last reference count to be released). 2392 */ 2393 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2394 return (1); 2395 2396 xpt_compile_path(&path, 2397 NULL, 2398 device->target->bus->path_id, 2399 device->target->target_id, 2400 device->lun_id); 2401 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2402 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2403 xpt_action((union ccb *)&cgd); 2404 csa->callback(csa->callback_arg, 2405 AC_FOUND_DEVICE, 2406 &path, &cgd); 2407 xpt_release_path(&path); 2408 2409 return(1); 2410 } 2411 2412 static int 2413 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2414 { 2415 struct cam_path path; 2416 struct ccb_pathinq cpi; 2417 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2418 2419 xpt_compile_path(&path, /*periph*/NULL, 2420 bus->path_id, 2421 CAM_TARGET_WILDCARD, 2422 CAM_LUN_WILDCARD); 2423 xpt_path_lock(&path); 2424 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2425 cpi.ccb_h.func_code = XPT_PATH_INQ; 2426 xpt_action((union ccb *)&cpi); 2427 csa->callback(csa->callback_arg, 2428 AC_PATH_REGISTERED, 2429 &path, &cpi); 2430 xpt_path_unlock(&path); 2431 xpt_release_path(&path); 2432 2433 return(1); 2434 } 2435 2436 void 2437 xpt_action(union ccb *start_ccb) 2438 { 2439 2440 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2441 2442 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2443 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2444 } 2445 2446 void 2447 xpt_action_default(union ccb *start_ccb) 2448 { 2449 struct cam_path *path; 2450 struct cam_sim *sim; 2451 int lock; 2452 2453 path = start_ccb->ccb_h.path; 2454 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2455 2456 switch (start_ccb->ccb_h.func_code) { 2457 case XPT_SCSI_IO: 2458 { 2459 struct cam_ed *device; 2460 2461 /* 2462 * For the sake of compatibility with SCSI-1 2463 * devices that may not understand the identify 2464 * message, we include lun information in the 2465 * second byte of all commands. SCSI-1 specifies 2466 * that luns are a 3 bit value and reserves only 3 2467 * bits for lun information in the CDB. Later 2468 * revisions of the SCSI spec allow for more than 8 2469 * luns, but have deprecated lun information in the 2470 * CDB. So, if the lun won't fit, we must omit. 2471 * 2472 * Also be aware that during initial probing for devices, 2473 * the inquiry information is unknown but initialized to 0. 2474 * This means that this code will be exercised while probing 2475 * devices with an ANSI revision greater than 2. 2476 */ 2477 device = path->device; 2478 if (device->protocol_version <= SCSI_REV_2 2479 && start_ccb->ccb_h.target_lun < 8 2480 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2481 2482 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2483 start_ccb->ccb_h.target_lun << 5; 2484 } 2485 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2486 } 2487 /* FALLTHROUGH */ 2488 case XPT_TARGET_IO: 2489 case XPT_CONT_TARGET_IO: 2490 start_ccb->csio.sense_resid = 0; 2491 start_ccb->csio.resid = 0; 2492 /* FALLTHROUGH */ 2493 case XPT_ATA_IO: 2494 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2495 start_ccb->ataio.resid = 0; 2496 /* FALLTHROUGH */ 2497 case XPT_RESET_DEV: 2498 case XPT_ENG_EXEC: 2499 case XPT_SMP_IO: 2500 { 2501 struct cam_devq *devq; 2502 2503 devq = path->bus->sim->devq; 2504 mtx_lock(&devq->send_mtx); 2505 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2506 if (xpt_schedule_devq(devq, path->device) != 0) 2507 xpt_run_devq(devq); 2508 mtx_unlock(&devq->send_mtx); 2509 break; 2510 } 2511 case XPT_CALC_GEOMETRY: 2512 /* Filter out garbage */ 2513 if (start_ccb->ccg.block_size == 0 2514 || start_ccb->ccg.volume_size == 0) { 2515 start_ccb->ccg.cylinders = 0; 2516 start_ccb->ccg.heads = 0; 2517 start_ccb->ccg.secs_per_track = 0; 2518 start_ccb->ccb_h.status = CAM_REQ_CMP; 2519 break; 2520 } 2521 #if defined(PC98) || defined(__sparc64__) 2522 /* 2523 * In a PC-98 system, geometry translation depens on 2524 * the "real" device geometry obtained from mode page 4. 2525 * SCSI geometry translation is performed in the 2526 * initialization routine of the SCSI BIOS and the result 2527 * stored in host memory. If the translation is available 2528 * in host memory, use it. If not, rely on the default 2529 * translation the device driver performs. 2530 * For sparc64, we may need adjust the geometry of large 2531 * disks in order to fit the limitations of the 16-bit 2532 * fields of the VTOC8 disk label. 2533 */ 2534 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2535 start_ccb->ccb_h.status = CAM_REQ_CMP; 2536 break; 2537 } 2538 #endif 2539 goto call_sim; 2540 case XPT_ABORT: 2541 { 2542 union ccb* abort_ccb; 2543 2544 abort_ccb = start_ccb->cab.abort_ccb; 2545 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2546 2547 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2548 struct cam_ccbq *ccbq; 2549 struct cam_ed *device; 2550 2551 device = abort_ccb->ccb_h.path->device; 2552 ccbq = &device->ccbq; 2553 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2554 abort_ccb->ccb_h.status = 2555 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2556 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2557 xpt_done(abort_ccb); 2558 start_ccb->ccb_h.status = CAM_REQ_CMP; 2559 break; 2560 } 2561 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2562 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2563 /* 2564 * We've caught this ccb en route to 2565 * the SIM. Flag it for abort and the 2566 * SIM will do so just before starting 2567 * real work on the CCB. 2568 */ 2569 abort_ccb->ccb_h.status = 2570 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2571 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2572 start_ccb->ccb_h.status = CAM_REQ_CMP; 2573 break; 2574 } 2575 } 2576 if (XPT_FC_IS_QUEUED(abort_ccb) 2577 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2578 /* 2579 * It's already completed but waiting 2580 * for our SWI to get to it. 2581 */ 2582 start_ccb->ccb_h.status = CAM_UA_ABORT; 2583 break; 2584 } 2585 /* 2586 * If we weren't able to take care of the abort request 2587 * in the XPT, pass the request down to the SIM for processing. 2588 */ 2589 } 2590 /* FALLTHROUGH */ 2591 case XPT_ACCEPT_TARGET_IO: 2592 case XPT_EN_LUN: 2593 case XPT_IMMED_NOTIFY: 2594 case XPT_NOTIFY_ACK: 2595 case XPT_RESET_BUS: 2596 case XPT_IMMEDIATE_NOTIFY: 2597 case XPT_NOTIFY_ACKNOWLEDGE: 2598 case XPT_GET_SIM_KNOB: 2599 case XPT_SET_SIM_KNOB: 2600 case XPT_GET_TRAN_SETTINGS: 2601 case XPT_SET_TRAN_SETTINGS: 2602 case XPT_PATH_INQ: 2603 call_sim: 2604 sim = path->bus->sim; 2605 lock = (mtx_owned(sim->mtx) == 0); 2606 if (lock) 2607 CAM_SIM_LOCK(sim); 2608 (*(sim->sim_action))(sim, start_ccb); 2609 if (lock) 2610 CAM_SIM_UNLOCK(sim); 2611 break; 2612 case XPT_PATH_STATS: 2613 start_ccb->cpis.last_reset = path->bus->last_reset; 2614 start_ccb->ccb_h.status = CAM_REQ_CMP; 2615 break; 2616 case XPT_GDEV_TYPE: 2617 { 2618 struct cam_ed *dev; 2619 2620 dev = path->device; 2621 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2622 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2623 } else { 2624 struct ccb_getdev *cgd; 2625 2626 cgd = &start_ccb->cgd; 2627 cgd->protocol = dev->protocol; 2628 cgd->inq_data = dev->inq_data; 2629 cgd->ident_data = dev->ident_data; 2630 cgd->inq_flags = dev->inq_flags; 2631 cgd->ccb_h.status = CAM_REQ_CMP; 2632 cgd->serial_num_len = dev->serial_num_len; 2633 if ((dev->serial_num_len > 0) 2634 && (dev->serial_num != NULL)) 2635 bcopy(dev->serial_num, cgd->serial_num, 2636 dev->serial_num_len); 2637 } 2638 break; 2639 } 2640 case XPT_GDEV_STATS: 2641 { 2642 struct cam_ed *dev; 2643 2644 dev = path->device; 2645 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2646 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2647 } else { 2648 struct ccb_getdevstats *cgds; 2649 struct cam_eb *bus; 2650 struct cam_et *tar; 2651 struct cam_devq *devq; 2652 2653 cgds = &start_ccb->cgds; 2654 bus = path->bus; 2655 tar = path->target; 2656 devq = bus->sim->devq; 2657 mtx_lock(&devq->send_mtx); 2658 cgds->dev_openings = dev->ccbq.dev_openings; 2659 cgds->dev_active = dev->ccbq.dev_active; 2660 cgds->allocated = dev->ccbq.allocated; 2661 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2662 cgds->held = cgds->allocated - cgds->dev_active - 2663 cgds->queued; 2664 cgds->last_reset = tar->last_reset; 2665 cgds->maxtags = dev->maxtags; 2666 cgds->mintags = dev->mintags; 2667 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2668 cgds->last_reset = bus->last_reset; 2669 mtx_unlock(&devq->send_mtx); 2670 cgds->ccb_h.status = CAM_REQ_CMP; 2671 } 2672 break; 2673 } 2674 case XPT_GDEVLIST: 2675 { 2676 struct cam_periph *nperiph; 2677 struct periph_list *periph_head; 2678 struct ccb_getdevlist *cgdl; 2679 u_int i; 2680 struct cam_ed *device; 2681 int found; 2682 2683 2684 found = 0; 2685 2686 /* 2687 * Don't want anyone mucking with our data. 2688 */ 2689 device = path->device; 2690 periph_head = &device->periphs; 2691 cgdl = &start_ccb->cgdl; 2692 2693 /* 2694 * Check and see if the list has changed since the user 2695 * last requested a list member. If so, tell them that the 2696 * list has changed, and therefore they need to start over 2697 * from the beginning. 2698 */ 2699 if ((cgdl->index != 0) && 2700 (cgdl->generation != device->generation)) { 2701 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2702 break; 2703 } 2704 2705 /* 2706 * Traverse the list of peripherals and attempt to find 2707 * the requested peripheral. 2708 */ 2709 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2710 (nperiph != NULL) && (i <= cgdl->index); 2711 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2712 if (i == cgdl->index) { 2713 strncpy(cgdl->periph_name, 2714 nperiph->periph_name, 2715 DEV_IDLEN); 2716 cgdl->unit_number = nperiph->unit_number; 2717 found = 1; 2718 } 2719 } 2720 if (found == 0) { 2721 cgdl->status = CAM_GDEVLIST_ERROR; 2722 break; 2723 } 2724 2725 if (nperiph == NULL) 2726 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2727 else 2728 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2729 2730 cgdl->index++; 2731 cgdl->generation = device->generation; 2732 2733 cgdl->ccb_h.status = CAM_REQ_CMP; 2734 break; 2735 } 2736 case XPT_DEV_MATCH: 2737 { 2738 dev_pos_type position_type; 2739 struct ccb_dev_match *cdm; 2740 2741 cdm = &start_ccb->cdm; 2742 2743 /* 2744 * There are two ways of getting at information in the EDT. 2745 * The first way is via the primary EDT tree. It starts 2746 * with a list of busses, then a list of targets on a bus, 2747 * then devices/luns on a target, and then peripherals on a 2748 * device/lun. The "other" way is by the peripheral driver 2749 * lists. The peripheral driver lists are organized by 2750 * peripheral driver. (obviously) So it makes sense to 2751 * use the peripheral driver list if the user is looking 2752 * for something like "da1", or all "da" devices. If the 2753 * user is looking for something on a particular bus/target 2754 * or lun, it's generally better to go through the EDT tree. 2755 */ 2756 2757 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2758 position_type = cdm->pos.position_type; 2759 else { 2760 u_int i; 2761 2762 position_type = CAM_DEV_POS_NONE; 2763 2764 for (i = 0; i < cdm->num_patterns; i++) { 2765 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2766 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2767 position_type = CAM_DEV_POS_EDT; 2768 break; 2769 } 2770 } 2771 2772 if (cdm->num_patterns == 0) 2773 position_type = CAM_DEV_POS_EDT; 2774 else if (position_type == CAM_DEV_POS_NONE) 2775 position_type = CAM_DEV_POS_PDRV; 2776 } 2777 2778 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2779 case CAM_DEV_POS_EDT: 2780 xptedtmatch(cdm); 2781 break; 2782 case CAM_DEV_POS_PDRV: 2783 xptperiphlistmatch(cdm); 2784 break; 2785 default: 2786 cdm->status = CAM_DEV_MATCH_ERROR; 2787 break; 2788 } 2789 2790 if (cdm->status == CAM_DEV_MATCH_ERROR) 2791 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2792 else 2793 start_ccb->ccb_h.status = CAM_REQ_CMP; 2794 2795 break; 2796 } 2797 case XPT_SASYNC_CB: 2798 { 2799 struct ccb_setasync *csa; 2800 struct async_node *cur_entry; 2801 struct async_list *async_head; 2802 u_int32_t added; 2803 2804 csa = &start_ccb->csa; 2805 added = csa->event_enable; 2806 async_head = &path->device->asyncs; 2807 2808 /* 2809 * If there is already an entry for us, simply 2810 * update it. 2811 */ 2812 cur_entry = SLIST_FIRST(async_head); 2813 while (cur_entry != NULL) { 2814 if ((cur_entry->callback_arg == csa->callback_arg) 2815 && (cur_entry->callback == csa->callback)) 2816 break; 2817 cur_entry = SLIST_NEXT(cur_entry, links); 2818 } 2819 2820 if (cur_entry != NULL) { 2821 /* 2822 * If the request has no flags set, 2823 * remove the entry. 2824 */ 2825 added &= ~cur_entry->event_enable; 2826 if (csa->event_enable == 0) { 2827 SLIST_REMOVE(async_head, cur_entry, 2828 async_node, links); 2829 xpt_release_device(path->device); 2830 free(cur_entry, M_CAMXPT); 2831 } else { 2832 cur_entry->event_enable = csa->event_enable; 2833 } 2834 csa->event_enable = added; 2835 } else { 2836 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2837 M_NOWAIT); 2838 if (cur_entry == NULL) { 2839 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2840 break; 2841 } 2842 cur_entry->event_enable = csa->event_enable; 2843 cur_entry->event_lock = 2844 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2845 cur_entry->callback_arg = csa->callback_arg; 2846 cur_entry->callback = csa->callback; 2847 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2848 xpt_acquire_device(path->device); 2849 } 2850 start_ccb->ccb_h.status = CAM_REQ_CMP; 2851 break; 2852 } 2853 case XPT_REL_SIMQ: 2854 { 2855 struct ccb_relsim *crs; 2856 struct cam_ed *dev; 2857 2858 crs = &start_ccb->crs; 2859 dev = path->device; 2860 if (dev == NULL) { 2861 2862 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2863 break; 2864 } 2865 2866 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2867 2868 /* Don't ever go below one opening */ 2869 if (crs->openings > 0) { 2870 xpt_dev_ccbq_resize(path, crs->openings); 2871 if (bootverbose) { 2872 xpt_print(path, 2873 "number of openings is now %d\n", 2874 crs->openings); 2875 } 2876 } 2877 } 2878 2879 mtx_lock(&dev->sim->devq->send_mtx); 2880 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2881 2882 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2883 2884 /* 2885 * Just extend the old timeout and decrement 2886 * the freeze count so that a single timeout 2887 * is sufficient for releasing the queue. 2888 */ 2889 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2890 callout_stop(&dev->callout); 2891 } else { 2892 2893 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2894 } 2895 2896 callout_reset_sbt(&dev->callout, 2897 SBT_1MS * crs->release_timeout, 0, 2898 xpt_release_devq_timeout, dev, 0); 2899 2900 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2901 2902 } 2903 2904 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2905 2906 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2907 /* 2908 * Decrement the freeze count so that a single 2909 * completion is still sufficient to unfreeze 2910 * the queue. 2911 */ 2912 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2913 } else { 2914 2915 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2916 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2917 } 2918 } 2919 2920 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2921 2922 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2923 || (dev->ccbq.dev_active == 0)) { 2924 2925 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2926 } else { 2927 2928 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2929 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2930 } 2931 } 2932 mtx_unlock(&dev->sim->devq->send_mtx); 2933 2934 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2935 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2936 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2937 start_ccb->ccb_h.status = CAM_REQ_CMP; 2938 break; 2939 } 2940 case XPT_DEBUG: { 2941 struct cam_path *oldpath; 2942 2943 /* Check that all request bits are supported. */ 2944 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2945 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2946 break; 2947 } 2948 2949 cam_dflags = CAM_DEBUG_NONE; 2950 if (cam_dpath != NULL) { 2951 oldpath = cam_dpath; 2952 cam_dpath = NULL; 2953 xpt_free_path(oldpath); 2954 } 2955 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2956 if (xpt_create_path(&cam_dpath, NULL, 2957 start_ccb->ccb_h.path_id, 2958 start_ccb->ccb_h.target_id, 2959 start_ccb->ccb_h.target_lun) != 2960 CAM_REQ_CMP) { 2961 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2962 } else { 2963 cam_dflags = start_ccb->cdbg.flags; 2964 start_ccb->ccb_h.status = CAM_REQ_CMP; 2965 xpt_print(cam_dpath, "debugging flags now %x\n", 2966 cam_dflags); 2967 } 2968 } else 2969 start_ccb->ccb_h.status = CAM_REQ_CMP; 2970 break; 2971 } 2972 case XPT_NOOP: 2973 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2974 xpt_freeze_devq(path, 1); 2975 start_ccb->ccb_h.status = CAM_REQ_CMP; 2976 break; 2977 default: 2978 case XPT_SDEV_TYPE: 2979 case XPT_TERM_IO: 2980 case XPT_ENG_INQ: 2981 /* XXX Implement */ 2982 printf("%s: CCB type %#x not supported\n", __func__, 2983 start_ccb->ccb_h.func_code); 2984 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2985 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2986 xpt_done(start_ccb); 2987 } 2988 break; 2989 } 2990 } 2991 2992 void 2993 xpt_polled_action(union ccb *start_ccb) 2994 { 2995 u_int32_t timeout; 2996 struct cam_sim *sim; 2997 struct cam_devq *devq; 2998 struct cam_ed *dev; 2999 3000 timeout = start_ccb->ccb_h.timeout * 10; 3001 sim = start_ccb->ccb_h.path->bus->sim; 3002 devq = sim->devq; 3003 dev = start_ccb->ccb_h.path->device; 3004 3005 mtx_unlock(&dev->device_mtx); 3006 3007 /* 3008 * Steal an opening so that no other queued requests 3009 * can get it before us while we simulate interrupts. 3010 */ 3011 mtx_lock(&devq->send_mtx); 3012 dev->ccbq.dev_openings--; 3013 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3014 (--timeout > 0)) { 3015 mtx_unlock(&devq->send_mtx); 3016 DELAY(100); 3017 CAM_SIM_LOCK(sim); 3018 (*(sim->sim_poll))(sim); 3019 CAM_SIM_UNLOCK(sim); 3020 camisr_runqueue(); 3021 mtx_lock(&devq->send_mtx); 3022 } 3023 dev->ccbq.dev_openings++; 3024 mtx_unlock(&devq->send_mtx); 3025 3026 if (timeout != 0) { 3027 xpt_action(start_ccb); 3028 while(--timeout > 0) { 3029 CAM_SIM_LOCK(sim); 3030 (*(sim->sim_poll))(sim); 3031 CAM_SIM_UNLOCK(sim); 3032 camisr_runqueue(); 3033 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3034 != CAM_REQ_INPROG) 3035 break; 3036 DELAY(100); 3037 } 3038 if (timeout == 0) { 3039 /* 3040 * XXX Is it worth adding a sim_timeout entry 3041 * point so we can attempt recovery? If 3042 * this is only used for dumps, I don't think 3043 * it is. 3044 */ 3045 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3046 } 3047 } else { 3048 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3049 } 3050 3051 mtx_lock(&dev->device_mtx); 3052 } 3053 3054 /* 3055 * Schedule a peripheral driver to receive a ccb when its 3056 * target device has space for more transactions. 3057 */ 3058 void 3059 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3060 { 3061 3062 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3063 cam_periph_assert(periph, MA_OWNED); 3064 if (new_priority < periph->scheduled_priority) { 3065 periph->scheduled_priority = new_priority; 3066 xpt_run_allocq(periph, 0); 3067 } 3068 } 3069 3070 3071 /* 3072 * Schedule a device to run on a given queue. 3073 * If the device was inserted as a new entry on the queue, 3074 * return 1 meaning the device queue should be run. If we 3075 * were already queued, implying someone else has already 3076 * started the queue, return 0 so the caller doesn't attempt 3077 * to run the queue. 3078 */ 3079 static int 3080 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3081 u_int32_t new_priority) 3082 { 3083 int retval; 3084 u_int32_t old_priority; 3085 3086 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3087 3088 old_priority = pinfo->priority; 3089 3090 /* 3091 * Are we already queued? 3092 */ 3093 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3094 /* Simply reorder based on new priority */ 3095 if (new_priority < old_priority) { 3096 camq_change_priority(queue, pinfo->index, 3097 new_priority); 3098 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3099 ("changed priority to %d\n", 3100 new_priority)); 3101 retval = 1; 3102 } else 3103 retval = 0; 3104 } else { 3105 /* New entry on the queue */ 3106 if (new_priority < old_priority) 3107 pinfo->priority = new_priority; 3108 3109 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3110 ("Inserting onto queue\n")); 3111 pinfo->generation = ++queue->generation; 3112 camq_insert(queue, pinfo); 3113 retval = 1; 3114 } 3115 return (retval); 3116 } 3117 3118 static void 3119 xpt_run_allocq_task(void *context, int pending) 3120 { 3121 struct cam_periph *periph = context; 3122 3123 cam_periph_lock(periph); 3124 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3125 xpt_run_allocq(periph, 1); 3126 cam_periph_unlock(periph); 3127 cam_periph_release(periph); 3128 } 3129 3130 static void 3131 xpt_run_allocq(struct cam_periph *periph, int sleep) 3132 { 3133 struct cam_ed *device; 3134 union ccb *ccb; 3135 uint32_t prio; 3136 3137 cam_periph_assert(periph, MA_OWNED); 3138 if (periph->periph_allocating) 3139 return; 3140 periph->periph_allocating = 1; 3141 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3142 device = periph->path->device; 3143 ccb = NULL; 3144 restart: 3145 while ((prio = min(periph->scheduled_priority, 3146 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3147 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3148 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3149 3150 if (ccb == NULL && 3151 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3152 if (sleep) { 3153 ccb = xpt_get_ccb(periph); 3154 goto restart; 3155 } 3156 if (periph->flags & CAM_PERIPH_RUN_TASK) 3157 break; 3158 cam_periph_doacquire(periph); 3159 periph->flags |= CAM_PERIPH_RUN_TASK; 3160 taskqueue_enqueue(xsoftc.xpt_taskq, 3161 &periph->periph_run_task); 3162 break; 3163 } 3164 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3165 if (prio == periph->immediate_priority) { 3166 periph->immediate_priority = CAM_PRIORITY_NONE; 3167 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3168 ("waking cam_periph_getccb()\n")); 3169 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3170 periph_links.sle); 3171 wakeup(&periph->ccb_list); 3172 } else { 3173 periph->scheduled_priority = CAM_PRIORITY_NONE; 3174 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3175 ("calling periph_start()\n")); 3176 periph->periph_start(periph, ccb); 3177 } 3178 ccb = NULL; 3179 } 3180 if (ccb != NULL) 3181 xpt_release_ccb(ccb); 3182 periph->periph_allocating = 0; 3183 } 3184 3185 static void 3186 xpt_run_devq(struct cam_devq *devq) 3187 { 3188 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3189 int lock; 3190 3191 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3192 3193 devq->send_queue.qfrozen_cnt++; 3194 while ((devq->send_queue.entries > 0) 3195 && (devq->send_openings > 0) 3196 && (devq->send_queue.qfrozen_cnt <= 1)) { 3197 struct cam_ed *device; 3198 union ccb *work_ccb; 3199 struct cam_sim *sim; 3200 3201 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3202 CAMQ_HEAD); 3203 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3204 ("running device %p\n", device)); 3205 3206 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3207 if (work_ccb == NULL) { 3208 printf("device on run queue with no ccbs???\n"); 3209 continue; 3210 } 3211 3212 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3213 3214 mtx_lock(&xsoftc.xpt_highpower_lock); 3215 if (xsoftc.num_highpower <= 0) { 3216 /* 3217 * We got a high power command, but we 3218 * don't have any available slots. Freeze 3219 * the device queue until we have a slot 3220 * available. 3221 */ 3222 xpt_freeze_devq_device(device, 1); 3223 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3224 highpowerq_entry); 3225 3226 mtx_unlock(&xsoftc.xpt_highpower_lock); 3227 continue; 3228 } else { 3229 /* 3230 * Consume a high power slot while 3231 * this ccb runs. 3232 */ 3233 xsoftc.num_highpower--; 3234 } 3235 mtx_unlock(&xsoftc.xpt_highpower_lock); 3236 } 3237 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3238 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3239 devq->send_openings--; 3240 devq->send_active++; 3241 xpt_schedule_devq(devq, device); 3242 mtx_unlock(&devq->send_mtx); 3243 3244 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3245 /* 3246 * The client wants to freeze the queue 3247 * after this CCB is sent. 3248 */ 3249 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3250 } 3251 3252 /* In Target mode, the peripheral driver knows best... */ 3253 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3254 if ((device->inq_flags & SID_CmdQue) != 0 3255 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3256 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3257 else 3258 /* 3259 * Clear this in case of a retried CCB that 3260 * failed due to a rejected tag. 3261 */ 3262 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3263 } 3264 3265 switch (work_ccb->ccb_h.func_code) { 3266 case XPT_SCSI_IO: 3267 CAM_DEBUG(work_ccb->ccb_h.path, 3268 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3269 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3270 &device->inq_data), 3271 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3272 cdb_str, sizeof(cdb_str)))); 3273 break; 3274 case XPT_ATA_IO: 3275 CAM_DEBUG(work_ccb->ccb_h.path, 3276 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3277 ata_op_string(&work_ccb->ataio.cmd), 3278 ata_cmd_string(&work_ccb->ataio.cmd, 3279 cdb_str, sizeof(cdb_str)))); 3280 break; 3281 default: 3282 break; 3283 } 3284 3285 /* 3286 * Device queues can be shared among multiple SIM instances 3287 * that reside on different busses. Use the SIM from the 3288 * queued device, rather than the one from the calling bus. 3289 */ 3290 sim = device->sim; 3291 lock = (mtx_owned(sim->mtx) == 0); 3292 if (lock) 3293 CAM_SIM_LOCK(sim); 3294 (*(sim->sim_action))(sim, work_ccb); 3295 if (lock) 3296 CAM_SIM_UNLOCK(sim); 3297 mtx_lock(&devq->send_mtx); 3298 } 3299 devq->send_queue.qfrozen_cnt--; 3300 } 3301 3302 /* 3303 * This function merges stuff from the slave ccb into the master ccb, while 3304 * keeping important fields in the master ccb constant. 3305 */ 3306 void 3307 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3308 { 3309 3310 /* 3311 * Pull fields that are valid for peripheral drivers to set 3312 * into the master CCB along with the CCB "payload". 3313 */ 3314 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3315 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3316 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3317 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3318 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3319 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3320 } 3321 3322 void 3323 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3324 { 3325 3326 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3327 ccb_h->pinfo.priority = priority; 3328 ccb_h->path = path; 3329 ccb_h->path_id = path->bus->path_id; 3330 if (path->target) 3331 ccb_h->target_id = path->target->target_id; 3332 else 3333 ccb_h->target_id = CAM_TARGET_WILDCARD; 3334 if (path->device) { 3335 ccb_h->target_lun = path->device->lun_id; 3336 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3337 } else { 3338 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3339 } 3340 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3341 ccb_h->flags = 0; 3342 ccb_h->xflags = 0; 3343 } 3344 3345 /* Path manipulation functions */ 3346 cam_status 3347 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3348 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3349 { 3350 struct cam_path *path; 3351 cam_status status; 3352 3353 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3354 3355 if (path == NULL) { 3356 status = CAM_RESRC_UNAVAIL; 3357 return(status); 3358 } 3359 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3360 if (status != CAM_REQ_CMP) { 3361 free(path, M_CAMPATH); 3362 path = NULL; 3363 } 3364 *new_path_ptr = path; 3365 return (status); 3366 } 3367 3368 cam_status 3369 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3370 struct cam_periph *periph, path_id_t path_id, 3371 target_id_t target_id, lun_id_t lun_id) 3372 { 3373 3374 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3375 lun_id)); 3376 } 3377 3378 cam_status 3379 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3380 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3381 { 3382 struct cam_eb *bus; 3383 struct cam_et *target; 3384 struct cam_ed *device; 3385 cam_status status; 3386 3387 status = CAM_REQ_CMP; /* Completed without error */ 3388 target = NULL; /* Wildcarded */ 3389 device = NULL; /* Wildcarded */ 3390 3391 /* 3392 * We will potentially modify the EDT, so block interrupts 3393 * that may attempt to create cam paths. 3394 */ 3395 bus = xpt_find_bus(path_id); 3396 if (bus == NULL) { 3397 status = CAM_PATH_INVALID; 3398 } else { 3399 xpt_lock_buses(); 3400 mtx_lock(&bus->eb_mtx); 3401 target = xpt_find_target(bus, target_id); 3402 if (target == NULL) { 3403 /* Create one */ 3404 struct cam_et *new_target; 3405 3406 new_target = xpt_alloc_target(bus, target_id); 3407 if (new_target == NULL) { 3408 status = CAM_RESRC_UNAVAIL; 3409 } else { 3410 target = new_target; 3411 } 3412 } 3413 xpt_unlock_buses(); 3414 if (target != NULL) { 3415 device = xpt_find_device(target, lun_id); 3416 if (device == NULL) { 3417 /* Create one */ 3418 struct cam_ed *new_device; 3419 3420 new_device = 3421 (*(bus->xport->alloc_device))(bus, 3422 target, 3423 lun_id); 3424 if (new_device == NULL) { 3425 status = CAM_RESRC_UNAVAIL; 3426 } else { 3427 device = new_device; 3428 } 3429 } 3430 } 3431 mtx_unlock(&bus->eb_mtx); 3432 } 3433 3434 /* 3435 * Only touch the user's data if we are successful. 3436 */ 3437 if (status == CAM_REQ_CMP) { 3438 new_path->periph = perph; 3439 new_path->bus = bus; 3440 new_path->target = target; 3441 new_path->device = device; 3442 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3443 } else { 3444 if (device != NULL) 3445 xpt_release_device(device); 3446 if (target != NULL) 3447 xpt_release_target(target); 3448 if (bus != NULL) 3449 xpt_release_bus(bus); 3450 } 3451 return (status); 3452 } 3453 3454 cam_status 3455 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3456 { 3457 struct cam_path *new_path; 3458 3459 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3460 if (new_path == NULL) 3461 return(CAM_RESRC_UNAVAIL); 3462 xpt_copy_path(new_path, path); 3463 *new_path_ptr = new_path; 3464 return (CAM_REQ_CMP); 3465 } 3466 3467 void 3468 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3469 { 3470 3471 *new_path = *path; 3472 if (path->bus != NULL) 3473 xpt_acquire_bus(path->bus); 3474 if (path->target != NULL) 3475 xpt_acquire_target(path->target); 3476 if (path->device != NULL) 3477 xpt_acquire_device(path->device); 3478 } 3479 3480 void 3481 xpt_release_path(struct cam_path *path) 3482 { 3483 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3484 if (path->device != NULL) { 3485 xpt_release_device(path->device); 3486 path->device = NULL; 3487 } 3488 if (path->target != NULL) { 3489 xpt_release_target(path->target); 3490 path->target = NULL; 3491 } 3492 if (path->bus != NULL) { 3493 xpt_release_bus(path->bus); 3494 path->bus = NULL; 3495 } 3496 } 3497 3498 void 3499 xpt_free_path(struct cam_path *path) 3500 { 3501 3502 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3503 xpt_release_path(path); 3504 free(path, M_CAMPATH); 3505 } 3506 3507 void 3508 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3509 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3510 { 3511 3512 xpt_lock_buses(); 3513 if (bus_ref) { 3514 if (path->bus) 3515 *bus_ref = path->bus->refcount; 3516 else 3517 *bus_ref = 0; 3518 } 3519 if (periph_ref) { 3520 if (path->periph) 3521 *periph_ref = path->periph->refcount; 3522 else 3523 *periph_ref = 0; 3524 } 3525 xpt_unlock_buses(); 3526 if (target_ref) { 3527 if (path->target) 3528 *target_ref = path->target->refcount; 3529 else 3530 *target_ref = 0; 3531 } 3532 if (device_ref) { 3533 if (path->device) 3534 *device_ref = path->device->refcount; 3535 else 3536 *device_ref = 0; 3537 } 3538 } 3539 3540 /* 3541 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3542 * in path1, 2 for match with wildcards in path2. 3543 */ 3544 int 3545 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3546 { 3547 int retval = 0; 3548 3549 if (path1->bus != path2->bus) { 3550 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3551 retval = 1; 3552 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3553 retval = 2; 3554 else 3555 return (-1); 3556 } 3557 if (path1->target != path2->target) { 3558 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3559 if (retval == 0) 3560 retval = 1; 3561 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3562 retval = 2; 3563 else 3564 return (-1); 3565 } 3566 if (path1->device != path2->device) { 3567 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3568 if (retval == 0) 3569 retval = 1; 3570 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3571 retval = 2; 3572 else 3573 return (-1); 3574 } 3575 return (retval); 3576 } 3577 3578 int 3579 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3580 { 3581 int retval = 0; 3582 3583 if (path->bus != dev->target->bus) { 3584 if (path->bus->path_id == CAM_BUS_WILDCARD) 3585 retval = 1; 3586 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3587 retval = 2; 3588 else 3589 return (-1); 3590 } 3591 if (path->target != dev->target) { 3592 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3593 if (retval == 0) 3594 retval = 1; 3595 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3596 retval = 2; 3597 else 3598 return (-1); 3599 } 3600 if (path->device != dev) { 3601 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3602 if (retval == 0) 3603 retval = 1; 3604 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3605 retval = 2; 3606 else 3607 return (-1); 3608 } 3609 return (retval); 3610 } 3611 3612 void 3613 xpt_print_path(struct cam_path *path) 3614 { 3615 3616 if (path == NULL) 3617 printf("(nopath): "); 3618 else { 3619 if (path->periph != NULL) 3620 printf("(%s%d:", path->periph->periph_name, 3621 path->periph->unit_number); 3622 else 3623 printf("(noperiph:"); 3624 3625 if (path->bus != NULL) 3626 printf("%s%d:%d:", path->bus->sim->sim_name, 3627 path->bus->sim->unit_number, 3628 path->bus->sim->bus_id); 3629 else 3630 printf("nobus:"); 3631 3632 if (path->target != NULL) 3633 printf("%d:", path->target->target_id); 3634 else 3635 printf("X:"); 3636 3637 if (path->device != NULL) 3638 printf("%jx): ", (uintmax_t)path->device->lun_id); 3639 else 3640 printf("X): "); 3641 } 3642 } 3643 3644 void 3645 xpt_print_device(struct cam_ed *device) 3646 { 3647 3648 if (device == NULL) 3649 printf("(nopath): "); 3650 else { 3651 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3652 device->sim->unit_number, 3653 device->sim->bus_id, 3654 device->target->target_id, 3655 (uintmax_t)device->lun_id); 3656 } 3657 } 3658 3659 void 3660 xpt_print(struct cam_path *path, const char *fmt, ...) 3661 { 3662 va_list ap; 3663 xpt_print_path(path); 3664 va_start(ap, fmt); 3665 vprintf(fmt, ap); 3666 va_end(ap); 3667 } 3668 3669 int 3670 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3671 { 3672 struct sbuf sb; 3673 3674 sbuf_new(&sb, str, str_len, 0); 3675 3676 if (path == NULL) 3677 sbuf_printf(&sb, "(nopath): "); 3678 else { 3679 if (path->periph != NULL) 3680 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3681 path->periph->unit_number); 3682 else 3683 sbuf_printf(&sb, "(noperiph:"); 3684 3685 if (path->bus != NULL) 3686 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3687 path->bus->sim->unit_number, 3688 path->bus->sim->bus_id); 3689 else 3690 sbuf_printf(&sb, "nobus:"); 3691 3692 if (path->target != NULL) 3693 sbuf_printf(&sb, "%d:", path->target->target_id); 3694 else 3695 sbuf_printf(&sb, "X:"); 3696 3697 if (path->device != NULL) 3698 sbuf_printf(&sb, "%jx): ", 3699 (uintmax_t)path->device->lun_id); 3700 else 3701 sbuf_printf(&sb, "X): "); 3702 } 3703 sbuf_finish(&sb); 3704 3705 return(sbuf_len(&sb)); 3706 } 3707 3708 path_id_t 3709 xpt_path_path_id(struct cam_path *path) 3710 { 3711 return(path->bus->path_id); 3712 } 3713 3714 target_id_t 3715 xpt_path_target_id(struct cam_path *path) 3716 { 3717 if (path->target != NULL) 3718 return (path->target->target_id); 3719 else 3720 return (CAM_TARGET_WILDCARD); 3721 } 3722 3723 lun_id_t 3724 xpt_path_lun_id(struct cam_path *path) 3725 { 3726 if (path->device != NULL) 3727 return (path->device->lun_id); 3728 else 3729 return (CAM_LUN_WILDCARD); 3730 } 3731 3732 struct cam_sim * 3733 xpt_path_sim(struct cam_path *path) 3734 { 3735 3736 return (path->bus->sim); 3737 } 3738 3739 struct cam_periph* 3740 xpt_path_periph(struct cam_path *path) 3741 { 3742 3743 return (path->periph); 3744 } 3745 3746 int 3747 xpt_path_legacy_ata_id(struct cam_path *path) 3748 { 3749 struct cam_eb *bus; 3750 int bus_id; 3751 3752 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3753 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3754 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3755 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3756 return (-1); 3757 3758 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3759 path->bus->sim->unit_number < 2) { 3760 bus_id = path->bus->sim->unit_number; 3761 } else { 3762 bus_id = 2; 3763 xpt_lock_buses(); 3764 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3765 if (bus == path->bus) 3766 break; 3767 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3768 bus->sim->unit_number >= 2) || 3769 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3770 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3771 strcmp(bus->sim->sim_name, "siisch") == 0) 3772 bus_id++; 3773 } 3774 xpt_unlock_buses(); 3775 } 3776 if (path->target != NULL) { 3777 if (path->target->target_id < 2) 3778 return (bus_id * 2 + path->target->target_id); 3779 else 3780 return (-1); 3781 } else 3782 return (bus_id * 2); 3783 } 3784 3785 /* 3786 * Release a CAM control block for the caller. Remit the cost of the structure 3787 * to the device referenced by the path. If the this device had no 'credits' 3788 * and peripheral drivers have registered async callbacks for this notification 3789 * call them now. 3790 */ 3791 void 3792 xpt_release_ccb(union ccb *free_ccb) 3793 { 3794 struct cam_ed *device; 3795 struct cam_periph *periph; 3796 3797 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3798 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3799 device = free_ccb->ccb_h.path->device; 3800 periph = free_ccb->ccb_h.path->periph; 3801 3802 xpt_free_ccb(free_ccb); 3803 periph->periph_allocated--; 3804 cam_ccbq_release_opening(&device->ccbq); 3805 xpt_run_allocq(periph, 0); 3806 } 3807 3808 /* Functions accessed by SIM drivers */ 3809 3810 static struct xpt_xport xport_default = { 3811 .alloc_device = xpt_alloc_device_default, 3812 .action = xpt_action_default, 3813 .async = xpt_dev_async_default, 3814 }; 3815 3816 /* 3817 * A sim structure, listing the SIM entry points and instance 3818 * identification info is passed to xpt_bus_register to hook the SIM 3819 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3820 * for this new bus and places it in the array of busses and assigns 3821 * it a path_id. The path_id may be influenced by "hard wiring" 3822 * information specified by the user. Once interrupt services are 3823 * available, the bus will be probed. 3824 */ 3825 int32_t 3826 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3827 { 3828 struct cam_eb *new_bus; 3829 struct cam_eb *old_bus; 3830 struct ccb_pathinq cpi; 3831 struct cam_path *path; 3832 cam_status status; 3833 3834 mtx_assert(sim->mtx, MA_OWNED); 3835 3836 sim->bus_id = bus; 3837 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3838 M_CAMXPT, M_NOWAIT|M_ZERO); 3839 if (new_bus == NULL) { 3840 /* Couldn't satisfy request */ 3841 return (CAM_RESRC_UNAVAIL); 3842 } 3843 3844 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3845 TAILQ_INIT(&new_bus->et_entries); 3846 cam_sim_hold(sim); 3847 new_bus->sim = sim; 3848 timevalclear(&new_bus->last_reset); 3849 new_bus->flags = 0; 3850 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3851 new_bus->generation = 0; 3852 3853 xpt_lock_buses(); 3854 sim->path_id = new_bus->path_id = 3855 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3856 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3857 while (old_bus != NULL 3858 && old_bus->path_id < new_bus->path_id) 3859 old_bus = TAILQ_NEXT(old_bus, links); 3860 if (old_bus != NULL) 3861 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3862 else 3863 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3864 xsoftc.bus_generation++; 3865 xpt_unlock_buses(); 3866 3867 /* 3868 * Set a default transport so that a PATH_INQ can be issued to 3869 * the SIM. This will then allow for probing and attaching of 3870 * a more appropriate transport. 3871 */ 3872 new_bus->xport = &xport_default; 3873 3874 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3875 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3876 if (status != CAM_REQ_CMP) { 3877 xpt_release_bus(new_bus); 3878 free(path, M_CAMXPT); 3879 return (CAM_RESRC_UNAVAIL); 3880 } 3881 3882 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3883 cpi.ccb_h.func_code = XPT_PATH_INQ; 3884 xpt_action((union ccb *)&cpi); 3885 3886 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3887 switch (cpi.transport) { 3888 case XPORT_SPI: 3889 case XPORT_SAS: 3890 case XPORT_FC: 3891 case XPORT_USB: 3892 case XPORT_ISCSI: 3893 case XPORT_SRP: 3894 case XPORT_PPB: 3895 new_bus->xport = scsi_get_xport(); 3896 break; 3897 case XPORT_ATA: 3898 case XPORT_SATA: 3899 new_bus->xport = ata_get_xport(); 3900 break; 3901 default: 3902 new_bus->xport = &xport_default; 3903 break; 3904 } 3905 } 3906 3907 /* Notify interested parties */ 3908 if (sim->path_id != CAM_XPT_PATH_ID) { 3909 3910 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3911 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3912 union ccb *scan_ccb; 3913 3914 /* Initiate bus rescan. */ 3915 scan_ccb = xpt_alloc_ccb_nowait(); 3916 if (scan_ccb != NULL) { 3917 scan_ccb->ccb_h.path = path; 3918 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3919 scan_ccb->crcn.flags = 0; 3920 xpt_rescan(scan_ccb); 3921 } else { 3922 xpt_print(path, 3923 "Can't allocate CCB to scan bus\n"); 3924 xpt_free_path(path); 3925 } 3926 } else 3927 xpt_free_path(path); 3928 } else 3929 xpt_free_path(path); 3930 return (CAM_SUCCESS); 3931 } 3932 3933 int32_t 3934 xpt_bus_deregister(path_id_t pathid) 3935 { 3936 struct cam_path bus_path; 3937 cam_status status; 3938 3939 status = xpt_compile_path(&bus_path, NULL, pathid, 3940 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3941 if (status != CAM_REQ_CMP) 3942 return (status); 3943 3944 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3945 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3946 3947 /* Release the reference count held while registered. */ 3948 xpt_release_bus(bus_path.bus); 3949 xpt_release_path(&bus_path); 3950 3951 return (CAM_REQ_CMP); 3952 } 3953 3954 static path_id_t 3955 xptnextfreepathid(void) 3956 { 3957 struct cam_eb *bus; 3958 path_id_t pathid; 3959 const char *strval; 3960 3961 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3962 pathid = 0; 3963 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3964 retry: 3965 /* Find an unoccupied pathid */ 3966 while (bus != NULL && bus->path_id <= pathid) { 3967 if (bus->path_id == pathid) 3968 pathid++; 3969 bus = TAILQ_NEXT(bus, links); 3970 } 3971 3972 /* 3973 * Ensure that this pathid is not reserved for 3974 * a bus that may be registered in the future. 3975 */ 3976 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3977 ++pathid; 3978 /* Start the search over */ 3979 goto retry; 3980 } 3981 return (pathid); 3982 } 3983 3984 static path_id_t 3985 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3986 { 3987 path_id_t pathid; 3988 int i, dunit, val; 3989 char buf[32]; 3990 const char *dname; 3991 3992 pathid = CAM_XPT_PATH_ID; 3993 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3994 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 3995 return (pathid); 3996 i = 0; 3997 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3998 if (strcmp(dname, "scbus")) { 3999 /* Avoid a bit of foot shooting. */ 4000 continue; 4001 } 4002 if (dunit < 0) /* unwired?! */ 4003 continue; 4004 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4005 if (sim_bus == val) { 4006 pathid = dunit; 4007 break; 4008 } 4009 } else if (sim_bus == 0) { 4010 /* Unspecified matches bus 0 */ 4011 pathid = dunit; 4012 break; 4013 } else { 4014 printf("Ambiguous scbus configuration for %s%d " 4015 "bus %d, cannot wire down. The kernel " 4016 "config entry for scbus%d should " 4017 "specify a controller bus.\n" 4018 "Scbus will be assigned dynamically.\n", 4019 sim_name, sim_unit, sim_bus, dunit); 4020 break; 4021 } 4022 } 4023 4024 if (pathid == CAM_XPT_PATH_ID) 4025 pathid = xptnextfreepathid(); 4026 return (pathid); 4027 } 4028 4029 static const char * 4030 xpt_async_string(u_int32_t async_code) 4031 { 4032 4033 switch (async_code) { 4034 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4035 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4036 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4037 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4038 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4039 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4040 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4041 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4042 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4043 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4044 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4045 case AC_CONTRACT: return ("AC_CONTRACT"); 4046 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4047 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4048 } 4049 return ("AC_UNKNOWN"); 4050 } 4051 4052 static int 4053 xpt_async_size(u_int32_t async_code) 4054 { 4055 4056 switch (async_code) { 4057 case AC_BUS_RESET: return (0); 4058 case AC_UNSOL_RESEL: return (0); 4059 case AC_SCSI_AEN: return (0); 4060 case AC_SENT_BDR: return (0); 4061 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4062 case AC_PATH_DEREGISTERED: return (0); 4063 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4064 case AC_LOST_DEVICE: return (0); 4065 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4066 case AC_INQ_CHANGED: return (0); 4067 case AC_GETDEV_CHANGED: return (0); 4068 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4069 case AC_ADVINFO_CHANGED: return (-1); 4070 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4071 } 4072 return (0); 4073 } 4074 4075 static int 4076 xpt_async_process_dev(struct cam_ed *device, void *arg) 4077 { 4078 union ccb *ccb = arg; 4079 struct cam_path *path = ccb->ccb_h.path; 4080 void *async_arg = ccb->casync.async_arg_ptr; 4081 u_int32_t async_code = ccb->casync.async_code; 4082 int relock; 4083 4084 if (path->device != device 4085 && path->device->lun_id != CAM_LUN_WILDCARD 4086 && device->lun_id != CAM_LUN_WILDCARD) 4087 return (1); 4088 4089 /* 4090 * The async callback could free the device. 4091 * If it is a broadcast async, it doesn't hold 4092 * device reference, so take our own reference. 4093 */ 4094 xpt_acquire_device(device); 4095 4096 /* 4097 * If async for specific device is to be delivered to 4098 * the wildcard client, take the specific device lock. 4099 * XXX: We may need a way for client to specify it. 4100 */ 4101 if ((device->lun_id == CAM_LUN_WILDCARD && 4102 path->device->lun_id != CAM_LUN_WILDCARD) || 4103 (device->target->target_id == CAM_TARGET_WILDCARD && 4104 path->target->target_id != CAM_TARGET_WILDCARD) || 4105 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4106 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4107 mtx_unlock(&device->device_mtx); 4108 xpt_path_lock(path); 4109 relock = 1; 4110 } else 4111 relock = 0; 4112 4113 (*(device->target->bus->xport->async))(async_code, 4114 device->target->bus, device->target, device, async_arg); 4115 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4116 4117 if (relock) { 4118 xpt_path_unlock(path); 4119 mtx_lock(&device->device_mtx); 4120 } 4121 xpt_release_device(device); 4122 return (1); 4123 } 4124 4125 static int 4126 xpt_async_process_tgt(struct cam_et *target, void *arg) 4127 { 4128 union ccb *ccb = arg; 4129 struct cam_path *path = ccb->ccb_h.path; 4130 4131 if (path->target != target 4132 && path->target->target_id != CAM_TARGET_WILDCARD 4133 && target->target_id != CAM_TARGET_WILDCARD) 4134 return (1); 4135 4136 if (ccb->casync.async_code == AC_SENT_BDR) { 4137 /* Update our notion of when the last reset occurred */ 4138 microtime(&target->last_reset); 4139 } 4140 4141 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4142 } 4143 4144 static void 4145 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4146 { 4147 struct cam_eb *bus; 4148 struct cam_path *path; 4149 void *async_arg; 4150 u_int32_t async_code; 4151 4152 path = ccb->ccb_h.path; 4153 async_code = ccb->casync.async_code; 4154 async_arg = ccb->casync.async_arg_ptr; 4155 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4156 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4157 bus = path->bus; 4158 4159 if (async_code == AC_BUS_RESET) { 4160 /* Update our notion of when the last reset occurred */ 4161 microtime(&bus->last_reset); 4162 } 4163 4164 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4165 4166 /* 4167 * If this wasn't a fully wildcarded async, tell all 4168 * clients that want all async events. 4169 */ 4170 if (bus != xpt_periph->path->bus) { 4171 xpt_path_lock(xpt_periph->path); 4172 xpt_async_process_dev(xpt_periph->path->device, ccb); 4173 xpt_path_unlock(xpt_periph->path); 4174 } 4175 4176 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4177 xpt_release_devq(path, 1, TRUE); 4178 else 4179 xpt_release_simq(path->bus->sim, TRUE); 4180 if (ccb->casync.async_arg_size > 0) 4181 free(async_arg, M_CAMXPT); 4182 xpt_free_path(path); 4183 xpt_free_ccb(ccb); 4184 } 4185 4186 static void 4187 xpt_async_bcast(struct async_list *async_head, 4188 u_int32_t async_code, 4189 struct cam_path *path, void *async_arg) 4190 { 4191 struct async_node *cur_entry; 4192 int lock; 4193 4194 cur_entry = SLIST_FIRST(async_head); 4195 while (cur_entry != NULL) { 4196 struct async_node *next_entry; 4197 /* 4198 * Grab the next list entry before we call the current 4199 * entry's callback. This is because the callback function 4200 * can delete its async callback entry. 4201 */ 4202 next_entry = SLIST_NEXT(cur_entry, links); 4203 if ((cur_entry->event_enable & async_code) != 0) { 4204 lock = cur_entry->event_lock; 4205 if (lock) 4206 CAM_SIM_LOCK(path->device->sim); 4207 cur_entry->callback(cur_entry->callback_arg, 4208 async_code, path, 4209 async_arg); 4210 if (lock) 4211 CAM_SIM_UNLOCK(path->device->sim); 4212 } 4213 cur_entry = next_entry; 4214 } 4215 } 4216 4217 void 4218 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4219 { 4220 union ccb *ccb; 4221 int size; 4222 4223 ccb = xpt_alloc_ccb_nowait(); 4224 if (ccb == NULL) { 4225 xpt_print(path, "Can't allocate CCB to send %s\n", 4226 xpt_async_string(async_code)); 4227 return; 4228 } 4229 4230 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4231 xpt_print(path, "Can't allocate path to send %s\n", 4232 xpt_async_string(async_code)); 4233 xpt_free_ccb(ccb); 4234 return; 4235 } 4236 ccb->ccb_h.path->periph = NULL; 4237 ccb->ccb_h.func_code = XPT_ASYNC; 4238 ccb->ccb_h.cbfcnp = xpt_async_process; 4239 ccb->ccb_h.flags |= CAM_UNLOCKED; 4240 ccb->casync.async_code = async_code; 4241 ccb->casync.async_arg_size = 0; 4242 size = xpt_async_size(async_code); 4243 if (size > 0 && async_arg != NULL) { 4244 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4245 if (ccb->casync.async_arg_ptr == NULL) { 4246 xpt_print(path, "Can't allocate argument to send %s\n", 4247 xpt_async_string(async_code)); 4248 xpt_free_path(ccb->ccb_h.path); 4249 xpt_free_ccb(ccb); 4250 return; 4251 } 4252 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4253 ccb->casync.async_arg_size = size; 4254 } else if (size < 0) 4255 ccb->casync.async_arg_size = size; 4256 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4257 xpt_freeze_devq(path, 1); 4258 else 4259 xpt_freeze_simq(path->bus->sim, 1); 4260 xpt_done(ccb); 4261 } 4262 4263 static void 4264 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4265 struct cam_et *target, struct cam_ed *device, 4266 void *async_arg) 4267 { 4268 4269 /* 4270 * We only need to handle events for real devices. 4271 */ 4272 if (target->target_id == CAM_TARGET_WILDCARD 4273 || device->lun_id == CAM_LUN_WILDCARD) 4274 return; 4275 4276 printf("%s called\n", __func__); 4277 } 4278 4279 static uint32_t 4280 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4281 { 4282 struct cam_devq *devq; 4283 uint32_t freeze; 4284 4285 devq = dev->sim->devq; 4286 mtx_assert(&devq->send_mtx, MA_OWNED); 4287 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4288 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4289 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4290 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4291 /* Remove frozen device from sendq. */ 4292 if (device_is_queued(dev)) 4293 camq_remove(&devq->send_queue, dev->devq_entry.index); 4294 return (freeze); 4295 } 4296 4297 u_int32_t 4298 xpt_freeze_devq(struct cam_path *path, u_int count) 4299 { 4300 struct cam_ed *dev = path->device; 4301 struct cam_devq *devq; 4302 uint32_t freeze; 4303 4304 devq = dev->sim->devq; 4305 mtx_lock(&devq->send_mtx); 4306 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4307 freeze = xpt_freeze_devq_device(dev, count); 4308 mtx_unlock(&devq->send_mtx); 4309 return (freeze); 4310 } 4311 4312 u_int32_t 4313 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4314 { 4315 struct cam_devq *devq; 4316 uint32_t freeze; 4317 4318 devq = sim->devq; 4319 mtx_lock(&devq->send_mtx); 4320 freeze = (devq->send_queue.qfrozen_cnt += count); 4321 mtx_unlock(&devq->send_mtx); 4322 return (freeze); 4323 } 4324 4325 static void 4326 xpt_release_devq_timeout(void *arg) 4327 { 4328 struct cam_ed *dev; 4329 struct cam_devq *devq; 4330 4331 dev = (struct cam_ed *)arg; 4332 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4333 devq = dev->sim->devq; 4334 mtx_assert(&devq->send_mtx, MA_OWNED); 4335 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4336 xpt_run_devq(devq); 4337 } 4338 4339 void 4340 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4341 { 4342 struct cam_ed *dev; 4343 struct cam_devq *devq; 4344 4345 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4346 count, run_queue)); 4347 dev = path->device; 4348 devq = dev->sim->devq; 4349 mtx_lock(&devq->send_mtx); 4350 if (xpt_release_devq_device(dev, count, run_queue)) 4351 xpt_run_devq(dev->sim->devq); 4352 mtx_unlock(&devq->send_mtx); 4353 } 4354 4355 static int 4356 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4357 { 4358 4359 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4360 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4361 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4362 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4363 if (count > dev->ccbq.queue.qfrozen_cnt) { 4364 #ifdef INVARIANTS 4365 printf("xpt_release_devq(): requested %u > present %u\n", 4366 count, dev->ccbq.queue.qfrozen_cnt); 4367 #endif 4368 count = dev->ccbq.queue.qfrozen_cnt; 4369 } 4370 dev->ccbq.queue.qfrozen_cnt -= count; 4371 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4372 /* 4373 * No longer need to wait for a successful 4374 * command completion. 4375 */ 4376 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4377 /* 4378 * Remove any timeouts that might be scheduled 4379 * to release this queue. 4380 */ 4381 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4382 callout_stop(&dev->callout); 4383 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4384 } 4385 /* 4386 * Now that we are unfrozen schedule the 4387 * device so any pending transactions are 4388 * run. 4389 */ 4390 xpt_schedule_devq(dev->sim->devq, dev); 4391 } else 4392 run_queue = 0; 4393 return (run_queue); 4394 } 4395 4396 void 4397 xpt_release_simq(struct cam_sim *sim, int run_queue) 4398 { 4399 struct cam_devq *devq; 4400 4401 devq = sim->devq; 4402 mtx_lock(&devq->send_mtx); 4403 if (devq->send_queue.qfrozen_cnt <= 0) { 4404 #ifdef INVARIANTS 4405 printf("xpt_release_simq: requested 1 > present %u\n", 4406 devq->send_queue.qfrozen_cnt); 4407 #endif 4408 } else 4409 devq->send_queue.qfrozen_cnt--; 4410 if (devq->send_queue.qfrozen_cnt == 0) { 4411 /* 4412 * If there is a timeout scheduled to release this 4413 * sim queue, remove it. The queue frozen count is 4414 * already at 0. 4415 */ 4416 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4417 callout_stop(&sim->callout); 4418 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4419 } 4420 if (run_queue) { 4421 /* 4422 * Now that we are unfrozen run the send queue. 4423 */ 4424 xpt_run_devq(sim->devq); 4425 } 4426 } 4427 mtx_unlock(&devq->send_mtx); 4428 } 4429 4430 /* 4431 * XXX Appears to be unused. 4432 */ 4433 static void 4434 xpt_release_simq_timeout(void *arg) 4435 { 4436 struct cam_sim *sim; 4437 4438 sim = (struct cam_sim *)arg; 4439 xpt_release_simq(sim, /* run_queue */ TRUE); 4440 } 4441 4442 void 4443 xpt_done(union ccb *done_ccb) 4444 { 4445 struct cam_doneq *queue; 4446 int run, hash; 4447 4448 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4449 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4450 return; 4451 4452 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4453 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4454 queue = &cam_doneqs[hash]; 4455 mtx_lock(&queue->cam_doneq_mtx); 4456 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4457 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4458 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4459 mtx_unlock(&queue->cam_doneq_mtx); 4460 if (run) 4461 wakeup(&queue->cam_doneq); 4462 } 4463 4464 void 4465 xpt_done_direct(union ccb *done_ccb) 4466 { 4467 4468 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); 4469 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4470 return; 4471 4472 xpt_done_process(&done_ccb->ccb_h); 4473 } 4474 4475 union ccb * 4476 xpt_alloc_ccb() 4477 { 4478 union ccb *new_ccb; 4479 4480 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4481 return (new_ccb); 4482 } 4483 4484 union ccb * 4485 xpt_alloc_ccb_nowait() 4486 { 4487 union ccb *new_ccb; 4488 4489 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4490 return (new_ccb); 4491 } 4492 4493 void 4494 xpt_free_ccb(union ccb *free_ccb) 4495 { 4496 free(free_ccb, M_CAMCCB); 4497 } 4498 4499 4500 4501 /* Private XPT functions */ 4502 4503 /* 4504 * Get a CAM control block for the caller. Charge the structure to the device 4505 * referenced by the path. If we don't have sufficient resources to allocate 4506 * more ccbs, we return NULL. 4507 */ 4508 static union ccb * 4509 xpt_get_ccb_nowait(struct cam_periph *periph) 4510 { 4511 union ccb *new_ccb; 4512 4513 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_NOWAIT); 4514 if (new_ccb == NULL) 4515 return (NULL); 4516 periph->periph_allocated++; 4517 cam_ccbq_take_opening(&periph->path->device->ccbq); 4518 return (new_ccb); 4519 } 4520 4521 static union ccb * 4522 xpt_get_ccb(struct cam_periph *periph) 4523 { 4524 union ccb *new_ccb; 4525 4526 cam_periph_unlock(periph); 4527 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_WAITOK); 4528 cam_periph_lock(periph); 4529 periph->periph_allocated++; 4530 cam_ccbq_take_opening(&periph->path->device->ccbq); 4531 return (new_ccb); 4532 } 4533 4534 union ccb * 4535 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4536 { 4537 struct ccb_hdr *ccb_h; 4538 4539 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4540 cam_periph_assert(periph, MA_OWNED); 4541 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4542 ccb_h->pinfo.priority != priority) { 4543 if (priority < periph->immediate_priority) { 4544 periph->immediate_priority = priority; 4545 xpt_run_allocq(periph, 0); 4546 } else 4547 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4548 "cgticb", 0); 4549 } 4550 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4551 return ((union ccb *)ccb_h); 4552 } 4553 4554 static void 4555 xpt_acquire_bus(struct cam_eb *bus) 4556 { 4557 4558 xpt_lock_buses(); 4559 bus->refcount++; 4560 xpt_unlock_buses(); 4561 } 4562 4563 static void 4564 xpt_release_bus(struct cam_eb *bus) 4565 { 4566 4567 xpt_lock_buses(); 4568 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4569 if (--bus->refcount > 0) { 4570 xpt_unlock_buses(); 4571 return; 4572 } 4573 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4574 xsoftc.bus_generation++; 4575 xpt_unlock_buses(); 4576 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4577 ("destroying bus, but target list is not empty")); 4578 cam_sim_release(bus->sim); 4579 mtx_destroy(&bus->eb_mtx); 4580 free(bus, M_CAMXPT); 4581 } 4582 4583 static struct cam_et * 4584 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4585 { 4586 struct cam_et *cur_target, *target; 4587 4588 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4589 mtx_assert(&bus->eb_mtx, MA_OWNED); 4590 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4591 M_NOWAIT|M_ZERO); 4592 if (target == NULL) 4593 return (NULL); 4594 4595 TAILQ_INIT(&target->ed_entries); 4596 target->bus = bus; 4597 target->target_id = target_id; 4598 target->refcount = 1; 4599 target->generation = 0; 4600 target->luns = NULL; 4601 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4602 timevalclear(&target->last_reset); 4603 /* 4604 * Hold a reference to our parent bus so it 4605 * will not go away before we do. 4606 */ 4607 bus->refcount++; 4608 4609 /* Insertion sort into our bus's target list */ 4610 cur_target = TAILQ_FIRST(&bus->et_entries); 4611 while (cur_target != NULL && cur_target->target_id < target_id) 4612 cur_target = TAILQ_NEXT(cur_target, links); 4613 if (cur_target != NULL) { 4614 TAILQ_INSERT_BEFORE(cur_target, target, links); 4615 } else { 4616 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4617 } 4618 bus->generation++; 4619 return (target); 4620 } 4621 4622 static void 4623 xpt_acquire_target(struct cam_et *target) 4624 { 4625 struct cam_eb *bus = target->bus; 4626 4627 mtx_lock(&bus->eb_mtx); 4628 target->refcount++; 4629 mtx_unlock(&bus->eb_mtx); 4630 } 4631 4632 static void 4633 xpt_release_target(struct cam_et *target) 4634 { 4635 struct cam_eb *bus = target->bus; 4636 4637 mtx_lock(&bus->eb_mtx); 4638 if (--target->refcount > 0) { 4639 mtx_unlock(&bus->eb_mtx); 4640 return; 4641 } 4642 TAILQ_REMOVE(&bus->et_entries, target, links); 4643 bus->generation++; 4644 mtx_unlock(&bus->eb_mtx); 4645 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4646 ("destroying target, but device list is not empty")); 4647 xpt_release_bus(bus); 4648 mtx_destroy(&target->luns_mtx); 4649 if (target->luns) 4650 free(target->luns, M_CAMXPT); 4651 free(target, M_CAMXPT); 4652 } 4653 4654 static struct cam_ed * 4655 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4656 lun_id_t lun_id) 4657 { 4658 struct cam_ed *device; 4659 4660 device = xpt_alloc_device(bus, target, lun_id); 4661 if (device == NULL) 4662 return (NULL); 4663 4664 device->mintags = 1; 4665 device->maxtags = 1; 4666 return (device); 4667 } 4668 4669 static void 4670 xpt_destroy_device(void *context, int pending) 4671 { 4672 struct cam_ed *device = context; 4673 4674 mtx_lock(&device->device_mtx); 4675 mtx_destroy(&device->device_mtx); 4676 free(device, M_CAMDEV); 4677 } 4678 4679 struct cam_ed * 4680 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4681 { 4682 struct cam_ed *cur_device, *device; 4683 struct cam_devq *devq; 4684 cam_status status; 4685 4686 mtx_assert(&bus->eb_mtx, MA_OWNED); 4687 /* Make space for us in the device queue on our bus */ 4688 devq = bus->sim->devq; 4689 mtx_lock(&devq->send_mtx); 4690 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4691 mtx_unlock(&devq->send_mtx); 4692 if (status != CAM_REQ_CMP) 4693 return (NULL); 4694 4695 device = (struct cam_ed *)malloc(sizeof(*device), 4696 M_CAMDEV, M_NOWAIT|M_ZERO); 4697 if (device == NULL) 4698 return (NULL); 4699 4700 cam_init_pinfo(&device->devq_entry); 4701 device->target = target; 4702 device->lun_id = lun_id; 4703 device->sim = bus->sim; 4704 if (cam_ccbq_init(&device->ccbq, 4705 bus->sim->max_dev_openings) != 0) { 4706 free(device, M_CAMDEV); 4707 return (NULL); 4708 } 4709 SLIST_INIT(&device->asyncs); 4710 SLIST_INIT(&device->periphs); 4711 device->generation = 0; 4712 device->flags = CAM_DEV_UNCONFIGURED; 4713 device->tag_delay_count = 0; 4714 device->tag_saved_openings = 0; 4715 device->refcount = 1; 4716 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4717 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4718 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4719 /* 4720 * Hold a reference to our parent bus so it 4721 * will not go away before we do. 4722 */ 4723 target->refcount++; 4724 4725 cur_device = TAILQ_FIRST(&target->ed_entries); 4726 while (cur_device != NULL && cur_device->lun_id < lun_id) 4727 cur_device = TAILQ_NEXT(cur_device, links); 4728 if (cur_device != NULL) 4729 TAILQ_INSERT_BEFORE(cur_device, device, links); 4730 else 4731 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4732 target->generation++; 4733 return (device); 4734 } 4735 4736 void 4737 xpt_acquire_device(struct cam_ed *device) 4738 { 4739 struct cam_eb *bus = device->target->bus; 4740 4741 mtx_lock(&bus->eb_mtx); 4742 device->refcount++; 4743 mtx_unlock(&bus->eb_mtx); 4744 } 4745 4746 void 4747 xpt_release_device(struct cam_ed *device) 4748 { 4749 struct cam_eb *bus = device->target->bus; 4750 struct cam_devq *devq; 4751 4752 mtx_lock(&bus->eb_mtx); 4753 if (--device->refcount > 0) { 4754 mtx_unlock(&bus->eb_mtx); 4755 return; 4756 } 4757 4758 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4759 device->target->generation++; 4760 mtx_unlock(&bus->eb_mtx); 4761 4762 /* Release our slot in the devq */ 4763 devq = bus->sim->devq; 4764 mtx_lock(&devq->send_mtx); 4765 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4766 mtx_unlock(&devq->send_mtx); 4767 4768 KASSERT(SLIST_EMPTY(&device->periphs), 4769 ("destroying device, but periphs list is not empty")); 4770 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4771 ("destroying device while still queued for ccbs")); 4772 4773 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4774 callout_stop(&device->callout); 4775 4776 xpt_release_target(device->target); 4777 4778 cam_ccbq_fini(&device->ccbq); 4779 /* 4780 * Free allocated memory. free(9) does nothing if the 4781 * supplied pointer is NULL, so it is safe to call without 4782 * checking. 4783 */ 4784 free(device->supported_vpds, M_CAMXPT); 4785 free(device->device_id, M_CAMXPT); 4786 free(device->physpath, M_CAMXPT); 4787 free(device->rcap_buf, M_CAMXPT); 4788 free(device->serial_num, M_CAMXPT); 4789 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4790 } 4791 4792 u_int32_t 4793 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4794 { 4795 int result; 4796 struct cam_ed *dev; 4797 4798 dev = path->device; 4799 mtx_lock(&dev->sim->devq->send_mtx); 4800 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4801 mtx_unlock(&dev->sim->devq->send_mtx); 4802 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4803 || (dev->inq_flags & SID_CmdQue) != 0) 4804 dev->tag_saved_openings = newopenings; 4805 return (result); 4806 } 4807 4808 static struct cam_eb * 4809 xpt_find_bus(path_id_t path_id) 4810 { 4811 struct cam_eb *bus; 4812 4813 xpt_lock_buses(); 4814 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4815 bus != NULL; 4816 bus = TAILQ_NEXT(bus, links)) { 4817 if (bus->path_id == path_id) { 4818 bus->refcount++; 4819 break; 4820 } 4821 } 4822 xpt_unlock_buses(); 4823 return (bus); 4824 } 4825 4826 static struct cam_et * 4827 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4828 { 4829 struct cam_et *target; 4830 4831 mtx_assert(&bus->eb_mtx, MA_OWNED); 4832 for (target = TAILQ_FIRST(&bus->et_entries); 4833 target != NULL; 4834 target = TAILQ_NEXT(target, links)) { 4835 if (target->target_id == target_id) { 4836 target->refcount++; 4837 break; 4838 } 4839 } 4840 return (target); 4841 } 4842 4843 static struct cam_ed * 4844 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4845 { 4846 struct cam_ed *device; 4847 4848 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4849 for (device = TAILQ_FIRST(&target->ed_entries); 4850 device != NULL; 4851 device = TAILQ_NEXT(device, links)) { 4852 if (device->lun_id == lun_id) { 4853 device->refcount++; 4854 break; 4855 } 4856 } 4857 return (device); 4858 } 4859 4860 void 4861 xpt_start_tags(struct cam_path *path) 4862 { 4863 struct ccb_relsim crs; 4864 struct cam_ed *device; 4865 struct cam_sim *sim; 4866 int newopenings; 4867 4868 device = path->device; 4869 sim = path->bus->sim; 4870 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4871 xpt_freeze_devq(path, /*count*/1); 4872 device->inq_flags |= SID_CmdQue; 4873 if (device->tag_saved_openings != 0) 4874 newopenings = device->tag_saved_openings; 4875 else 4876 newopenings = min(device->maxtags, 4877 sim->max_tagged_dev_openings); 4878 xpt_dev_ccbq_resize(path, newopenings); 4879 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4880 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4881 crs.ccb_h.func_code = XPT_REL_SIMQ; 4882 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4883 crs.openings 4884 = crs.release_timeout 4885 = crs.qfrozen_cnt 4886 = 0; 4887 xpt_action((union ccb *)&crs); 4888 } 4889 4890 void 4891 xpt_stop_tags(struct cam_path *path) 4892 { 4893 struct ccb_relsim crs; 4894 struct cam_ed *device; 4895 struct cam_sim *sim; 4896 4897 device = path->device; 4898 sim = path->bus->sim; 4899 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4900 device->tag_delay_count = 0; 4901 xpt_freeze_devq(path, /*count*/1); 4902 device->inq_flags &= ~SID_CmdQue; 4903 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4904 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4905 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4906 crs.ccb_h.func_code = XPT_REL_SIMQ; 4907 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4908 crs.openings 4909 = crs.release_timeout 4910 = crs.qfrozen_cnt 4911 = 0; 4912 xpt_action((union ccb *)&crs); 4913 } 4914 4915 static void 4916 xpt_boot_delay(void *arg) 4917 { 4918 4919 xpt_release_boot(); 4920 } 4921 4922 static void 4923 xpt_config(void *arg) 4924 { 4925 /* 4926 * Now that interrupts are enabled, go find our devices 4927 */ 4928 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4929 printf("xpt_config: failed to create taskqueue thread.\n"); 4930 4931 /* Setup debugging path */ 4932 if (cam_dflags != CAM_DEBUG_NONE) { 4933 if (xpt_create_path(&cam_dpath, NULL, 4934 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4935 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4936 printf("xpt_config: xpt_create_path() failed for debug" 4937 " target %d:%d:%d, debugging disabled\n", 4938 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4939 cam_dflags = CAM_DEBUG_NONE; 4940 } 4941 } else 4942 cam_dpath = NULL; 4943 4944 periphdriver_init(1); 4945 xpt_hold_boot(); 4946 callout_init(&xsoftc.boot_callout, 1); 4947 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 4948 xpt_boot_delay, NULL, 0); 4949 /* Fire up rescan thread. */ 4950 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4951 "cam", "scanner")) { 4952 printf("xpt_config: failed to create rescan thread.\n"); 4953 } 4954 } 4955 4956 void 4957 xpt_hold_boot(void) 4958 { 4959 xpt_lock_buses(); 4960 xsoftc.buses_to_config++; 4961 xpt_unlock_buses(); 4962 } 4963 4964 void 4965 xpt_release_boot(void) 4966 { 4967 xpt_lock_buses(); 4968 xsoftc.buses_to_config--; 4969 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4970 struct xpt_task *task; 4971 4972 xsoftc.buses_config_done = 1; 4973 xpt_unlock_buses(); 4974 /* Call manually because we don't have any busses */ 4975 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4976 if (task != NULL) { 4977 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4978 taskqueue_enqueue(taskqueue_thread, &task->task); 4979 } 4980 } else 4981 xpt_unlock_buses(); 4982 } 4983 4984 /* 4985 * If the given device only has one peripheral attached to it, and if that 4986 * peripheral is the passthrough driver, announce it. This insures that the 4987 * user sees some sort of announcement for every peripheral in their system. 4988 */ 4989 static int 4990 xptpassannouncefunc(struct cam_ed *device, void *arg) 4991 { 4992 struct cam_periph *periph; 4993 int i; 4994 4995 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4996 periph = SLIST_NEXT(periph, periph_links), i++); 4997 4998 periph = SLIST_FIRST(&device->periphs); 4999 if ((i == 1) 5000 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5001 xpt_announce_periph(periph, NULL); 5002 5003 return(1); 5004 } 5005 5006 static void 5007 xpt_finishconfig_task(void *context, int pending) 5008 { 5009 5010 periphdriver_init(2); 5011 /* 5012 * Check for devices with no "standard" peripheral driver 5013 * attached. For any devices like that, announce the 5014 * passthrough driver so the user will see something. 5015 */ 5016 if (!bootverbose) 5017 xpt_for_all_devices(xptpassannouncefunc, NULL); 5018 5019 /* Release our hook so that the boot can continue. */ 5020 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5021 free(xsoftc.xpt_config_hook, M_CAMXPT); 5022 xsoftc.xpt_config_hook = NULL; 5023 5024 free(context, M_CAMXPT); 5025 } 5026 5027 cam_status 5028 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5029 struct cam_path *path) 5030 { 5031 struct ccb_setasync csa; 5032 cam_status status; 5033 int xptpath = 0; 5034 5035 if (path == NULL) { 5036 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5037 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5038 if (status != CAM_REQ_CMP) 5039 return (status); 5040 xpt_path_lock(path); 5041 xptpath = 1; 5042 } 5043 5044 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5045 csa.ccb_h.func_code = XPT_SASYNC_CB; 5046 csa.event_enable = event; 5047 csa.callback = cbfunc; 5048 csa.callback_arg = cbarg; 5049 xpt_action((union ccb *)&csa); 5050 status = csa.ccb_h.status; 5051 5052 if (xptpath) { 5053 xpt_path_unlock(path); 5054 xpt_free_path(path); 5055 } 5056 5057 if ((status == CAM_REQ_CMP) && 5058 (csa.event_enable & AC_FOUND_DEVICE)) { 5059 /* 5060 * Get this peripheral up to date with all 5061 * the currently existing devices. 5062 */ 5063 xpt_for_all_devices(xptsetasyncfunc, &csa); 5064 } 5065 if ((status == CAM_REQ_CMP) && 5066 (csa.event_enable & AC_PATH_REGISTERED)) { 5067 /* 5068 * Get this peripheral up to date with all 5069 * the currently existing busses. 5070 */ 5071 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5072 } 5073 5074 return (status); 5075 } 5076 5077 static void 5078 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5079 { 5080 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5081 5082 switch (work_ccb->ccb_h.func_code) { 5083 /* Common cases first */ 5084 case XPT_PATH_INQ: /* Path routing inquiry */ 5085 { 5086 struct ccb_pathinq *cpi; 5087 5088 cpi = &work_ccb->cpi; 5089 cpi->version_num = 1; /* XXX??? */ 5090 cpi->hba_inquiry = 0; 5091 cpi->target_sprt = 0; 5092 cpi->hba_misc = 0; 5093 cpi->hba_eng_cnt = 0; 5094 cpi->max_target = 0; 5095 cpi->max_lun = 0; 5096 cpi->initiator_id = 0; 5097 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5098 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5099 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5100 cpi->unit_number = sim->unit_number; 5101 cpi->bus_id = sim->bus_id; 5102 cpi->base_transfer_speed = 0; 5103 cpi->protocol = PROTO_UNSPECIFIED; 5104 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5105 cpi->transport = XPORT_UNSPECIFIED; 5106 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5107 cpi->ccb_h.status = CAM_REQ_CMP; 5108 xpt_done(work_ccb); 5109 break; 5110 } 5111 default: 5112 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5113 xpt_done(work_ccb); 5114 break; 5115 } 5116 } 5117 5118 /* 5119 * The xpt as a "controller" has no interrupt sources, so polling 5120 * is a no-op. 5121 */ 5122 static void 5123 xptpoll(struct cam_sim *sim) 5124 { 5125 } 5126 5127 void 5128 xpt_lock_buses(void) 5129 { 5130 mtx_lock(&xsoftc.xpt_topo_lock); 5131 } 5132 5133 void 5134 xpt_unlock_buses(void) 5135 { 5136 mtx_unlock(&xsoftc.xpt_topo_lock); 5137 } 5138 5139 struct mtx * 5140 xpt_path_mtx(struct cam_path *path) 5141 { 5142 5143 return (&path->device->device_mtx); 5144 } 5145 5146 static void 5147 xpt_done_process(struct ccb_hdr *ccb_h) 5148 { 5149 struct cam_sim *sim; 5150 struct cam_devq *devq; 5151 struct mtx *mtx = NULL; 5152 5153 if (ccb_h->flags & CAM_HIGH_POWER) { 5154 struct highpowerlist *hphead; 5155 struct cam_ed *device; 5156 5157 mtx_lock(&xsoftc.xpt_highpower_lock); 5158 hphead = &xsoftc.highpowerq; 5159 5160 device = STAILQ_FIRST(hphead); 5161 5162 /* 5163 * Increment the count since this command is done. 5164 */ 5165 xsoftc.num_highpower++; 5166 5167 /* 5168 * Any high powered commands queued up? 5169 */ 5170 if (device != NULL) { 5171 5172 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5173 mtx_unlock(&xsoftc.xpt_highpower_lock); 5174 5175 mtx_lock(&device->sim->devq->send_mtx); 5176 xpt_release_devq_device(device, 5177 /*count*/1, /*runqueue*/TRUE); 5178 mtx_unlock(&device->sim->devq->send_mtx); 5179 } else 5180 mtx_unlock(&xsoftc.xpt_highpower_lock); 5181 } 5182 5183 sim = ccb_h->path->bus->sim; 5184 5185 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5186 xpt_release_simq(sim, /*run_queue*/FALSE); 5187 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5188 } 5189 5190 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5191 && (ccb_h->status & CAM_DEV_QFRZN)) { 5192 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5193 ccb_h->status &= ~CAM_DEV_QFRZN; 5194 } 5195 5196 devq = sim->devq; 5197 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5198 struct cam_ed *dev = ccb_h->path->device; 5199 5200 mtx_lock(&devq->send_mtx); 5201 devq->send_active--; 5202 devq->send_openings++; 5203 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5204 5205 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5206 && (dev->ccbq.dev_active == 0))) { 5207 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5208 xpt_release_devq_device(dev, /*count*/1, 5209 /*run_queue*/FALSE); 5210 } 5211 5212 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5213 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5214 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5215 xpt_release_devq_device(dev, /*count*/1, 5216 /*run_queue*/FALSE); 5217 } 5218 5219 if (!device_is_queued(dev)) 5220 (void)xpt_schedule_devq(devq, dev); 5221 xpt_run_devq(devq); 5222 mtx_unlock(&devq->send_mtx); 5223 5224 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5225 mtx = xpt_path_mtx(ccb_h->path); 5226 mtx_lock(mtx); 5227 5228 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5229 && (--dev->tag_delay_count == 0)) 5230 xpt_start_tags(ccb_h->path); 5231 } 5232 } 5233 5234 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5235 if (mtx == NULL) { 5236 mtx = xpt_path_mtx(ccb_h->path); 5237 mtx_lock(mtx); 5238 } 5239 } else { 5240 if (mtx != NULL) { 5241 mtx_unlock(mtx); 5242 mtx = NULL; 5243 } 5244 } 5245 5246 /* Call the peripheral driver's callback */ 5247 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5248 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5249 if (mtx != NULL) 5250 mtx_unlock(mtx); 5251 } 5252 5253 void 5254 xpt_done_td(void *arg) 5255 { 5256 struct cam_doneq *queue = arg; 5257 struct ccb_hdr *ccb_h; 5258 STAILQ_HEAD(, ccb_hdr) doneq; 5259 5260 STAILQ_INIT(&doneq); 5261 mtx_lock(&queue->cam_doneq_mtx); 5262 while (1) { 5263 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5264 queue->cam_doneq_sleep = 1; 5265 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5266 PRIBIO, "-", 0); 5267 queue->cam_doneq_sleep = 0; 5268 } 5269 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5270 mtx_unlock(&queue->cam_doneq_mtx); 5271 5272 THREAD_NO_SLEEPING(); 5273 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5274 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5275 xpt_done_process(ccb_h); 5276 } 5277 THREAD_SLEEPING_OK(); 5278 5279 mtx_lock(&queue->cam_doneq_mtx); 5280 } 5281 } 5282 5283 static void 5284 camisr_runqueue(void) 5285 { 5286 struct ccb_hdr *ccb_h; 5287 struct cam_doneq *queue; 5288 int i; 5289 5290 /* Process global queues. */ 5291 for (i = 0; i < cam_num_doneqs; i++) { 5292 queue = &cam_doneqs[i]; 5293 mtx_lock(&queue->cam_doneq_mtx); 5294 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5295 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5296 mtx_unlock(&queue->cam_doneq_mtx); 5297 xpt_done_process(ccb_h); 5298 mtx_lock(&queue->cam_doneq_mtx); 5299 } 5300 mtx_unlock(&queue->cam_doneq_mtx); 5301 } 5302 } 5303