xref: /freebsd/sys/cam/cam_xpt.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/fcntl.h>
39 #include <sys/md5.h>
40 #include <sys/devicestat.h>
41 #include <sys/interrupt.h>
42 #include <sys/bus.h>
43 
44 #ifdef PC98
45 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
46 #endif
47 
48 #include <machine/clock.h>
49 #include <machine/ipl.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_sim.h>
55 #include <cam/cam_xpt.h>
56 #include <cam/cam_xpt_sim.h>
57 #include <cam/cam_xpt_periph.h>
58 #include <cam/cam_debug.h>
59 
60 #include <cam/scsi/scsi_all.h>
61 #include <cam/scsi/scsi_message.h>
62 #include <cam/scsi/scsi_pass.h>
63 #include "opt_cam.h"
64 
65 /* Datastructures internal to the xpt layer */
66 
67 /*
68  * Definition of an async handler callback block.  These are used to add
69  * SIMs and peripherals to the async callback lists.
70  */
71 struct async_node {
72 	SLIST_ENTRY(async_node)	links;
73 	u_int32_t	event_enable;	/* Async Event enables */
74 	void		(*callback)(void *arg, u_int32_t code,
75 				    struct cam_path *path, void *args);
76 	void		*callback_arg;
77 };
78 
79 SLIST_HEAD(async_list, async_node);
80 SLIST_HEAD(periph_list, cam_periph);
81 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
82 
83 /*
84  * This is the maximum number of high powered commands (e.g. start unit)
85  * that can be outstanding at a particular time.
86  */
87 #ifndef CAM_MAX_HIGHPOWER
88 #define CAM_MAX_HIGHPOWER  4
89 #endif
90 
91 /* number of high powered commands that can go through right now */
92 static int num_highpower = CAM_MAX_HIGHPOWER;
93 
94 /*
95  * Structure for queueing a device in a run queue.
96  * There is one run queue for allocating new ccbs,
97  * and another for sending ccbs to the controller.
98  */
99 struct cam_ed_qinfo {
100 	cam_pinfo pinfo;
101 	struct	  cam_ed *device;
102 };
103 
104 /*
105  * The CAM EDT (Existing Device Table) contains the device information for
106  * all devices for all busses in the system.  The table contains a
107  * cam_ed structure for each device on the bus.
108  */
109 struct cam_ed {
110 	TAILQ_ENTRY(cam_ed) links;
111 	struct	cam_ed_qinfo alloc_ccb_entry;
112 	struct	cam_ed_qinfo send_ccb_entry;
113 	struct	cam_et	 *target;
114 	lun_id_t	 lun_id;
115 	struct	camq drvq;		/*
116 					 * Queue of type drivers wanting to do
117 					 * work on this device.
118 					 */
119 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
120 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
121 	struct	periph_list periphs;	/* All attached devices */
122 	u_int	generation;		/* Generation number */
123 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
124 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
125 					/* Storage for the inquiry data */
126 	struct	scsi_inquiry_data inq_data;
127 	u_int8_t	 inq_flags;	/*
128 					 * Current settings for inquiry flags.
129 					 * This allows us to override settings
130 					 * like disconnection and tagged
131 					 * queuing for a device.
132 					 */
133 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
134 	u_int8_t	 serial_num_len;
135 	u_int8_t	 *serial_num;
136 	u_int32_t	 qfrozen_cnt;
137 	u_int32_t	 flags;
138 #define CAM_DEV_UNCONFIGURED	 	0x01
139 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
140 #define CAM_DEV_REL_ON_COMPLETE		0x04
141 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
142 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
143 #define CAM_DEV_TAG_AFTER_COUNT		0x20
144 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
145 	u_int32_t	 tag_delay_count;
146 #define	CAM_TAG_DELAY_COUNT		5
147 	u_int32_t	 refcount;
148 	struct		 callout_handle c_handle;
149 };
150 
151 /*
152  * Each target is represented by an ET (Existing Target).  These
153  * entries are created when a target is successfully probed with an
154  * identify, and removed when a device fails to respond after a number
155  * of retries, or a bus rescan finds the device missing.
156  */
157 struct cam_et {
158 	TAILQ_HEAD(, cam_ed) ed_entries;
159 	TAILQ_ENTRY(cam_et) links;
160 	struct	cam_eb	*bus;
161 	target_id_t	target_id;
162 	u_int32_t	refcount;
163 	u_int		generation;
164 	struct		timeval last_reset;
165 };
166 
167 /*
168  * Each bus is represented by an EB (Existing Bus).  These entries
169  * are created by calls to xpt_bus_register and deleted by calls to
170  * xpt_bus_deregister.
171  */
172 struct cam_eb {
173 	TAILQ_HEAD(, cam_et) et_entries;
174 	TAILQ_ENTRY(cam_eb)  links;
175 	path_id_t	     path_id;
176 	struct cam_sim	     *sim;
177 	struct timeval	     last_reset;
178 	u_int32_t	     flags;
179 #define	CAM_EB_RUNQ_SCHEDULED	0x01
180 	u_int32_t	     refcount;
181 	u_int		     generation;
182 };
183 
184 struct cam_path {
185 	struct cam_periph *periph;
186 	struct cam_eb	  *bus;
187 	struct cam_et	  *target;
188 	struct cam_ed	  *device;
189 };
190 
191 struct xpt_quirk_entry {
192 	struct scsi_inquiry_pattern inq_pat;
193 	u_int8_t quirks;
194 #define	CAM_QUIRK_NOLUNS	0x01
195 #define	CAM_QUIRK_NOSERIAL	0x02
196 #define	CAM_QUIRK_HILUNS	0x04
197 	u_int mintags;
198 	u_int maxtags;
199 };
200 #define	CAM_SCSI2_MAXLUN	8
201 
202 typedef enum {
203 	XPT_FLAG_OPEN		= 0x01
204 } xpt_flags;
205 
206 struct xpt_softc {
207 	xpt_flags	flags;
208 	u_int32_t	generation;
209 };
210 
211 static const char quantum[] = "QUANTUM";
212 static const char sony[] = "SONY";
213 static const char west_digital[] = "WDIGTL";
214 static const char samsung[] = "SAMSUNG";
215 static const char seagate[] = "SEAGATE";
216 static const char microp[] = "MICROP";
217 
218 static struct xpt_quirk_entry xpt_quirk_table[] =
219 {
220 	{
221 		/* Reports QUEUE FULL for temporary resource shortages */
222 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
223 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
224 	},
225 	{
226 		/* Reports QUEUE FULL for temporary resource shortages */
227 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
228 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
229 	},
230 	{
231 		/* Reports QUEUE FULL for temporary resource shortages */
232 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
233 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
234 	},
235 	{
236 		/* Broken tagged queuing drive */
237 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
238 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
239 	},
240 	{
241 		/* Broken tagged queuing drive */
242 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
243 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
244 	},
245 	{
246 		/* Broken tagged queuing drive */
247 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
248 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
249 	},
250 	{
251 		/*
252 		 * Unfortunately, the Quantum Atlas III has the same
253 		 * problem as the Atlas II drives above.
254 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
255 		 *
256 		 * For future reference, the drive with the problem was:
257 		 * QUANTUM QM39100TD-SW N1B0
258 		 *
259 		 * It's possible that Quantum will fix the problem in later
260 		 * firmware revisions.  If that happens, the quirk entry
261 		 * will need to be made specific to the firmware revisions
262 		 * with the problem.
263 		 *
264 		 */
265 		/* Reports QUEUE FULL for temporary resource shortages */
266 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
267 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
268 	},
269 	{
270 		/*
271 		 * 18 Gig Atlas III, same problem as the 9G version.
272 		 * Reported by: Andre Albsmeier
273 		 *		<andre.albsmeier@mchp.siemens.de>
274 		 *
275 		 * For future reference, the drive with the problem was:
276 		 * QUANTUM QM318000TD-S N491
277 		 */
278 		/* Reports QUEUE FULL for temporary resource shortages */
279 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
280 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
281 	},
282 	{
283 		/*
284 		 * Broken tagged queuing drive
285 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
286 		 *         and: Martin Renters <martin@tdc.on.ca>
287 		 */
288 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
289 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
290 	},
291 		/*
292 		 * The Seagate Medalist Pro drives have very poor write
293 		 * performance with anything more than 2 tags.
294 		 *
295 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
296 		 * Drive:  <SEAGATE ST36530N 1444>
297 		 *
298 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
299 		 * Drive:  <SEAGATE ST34520W 1281>
300 		 *
301 		 * No one has actually reported that the 9G version
302 		 * (ST39140*) of the Medalist Pro has the same problem, but
303 		 * we're assuming that it does because the 4G and 6.5G
304 		 * versions of the drive are broken.
305 		 */
306 	{
307 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
308 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
309 	},
310 	{
311 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
312 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
313 	},
314 	{
315 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
316 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
317 	},
318 	{
319 		/*
320 		 * Slow when tagged queueing is enabled.  Write performance
321 		 * steadily drops off with more and more concurrent
322 		 * transactions.  Best sequential write performance with
323 		 * tagged queueing turned off and write caching turned on.
324 		 *
325 		 * PR:  kern/10398
326 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
327 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
328 		 *
329 		 * The drive with the problem had the "S65A" firmware
330 		 * revision, and has also been reported (by Stephen J.
331 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
332 		 * firmware revision.
333 		 *
334 		 * Although no one has reported problems with the 2 gig
335 		 * version of the DCAS drive, the assumption is that it
336 		 * has the same problems as the 4 gig version.  Therefore
337 		 * this quirk entries disables tagged queueing for all
338 		 * DCAS drives.
339 		 */
340 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
341 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
342 	},
343 	{
344 		/* Broken tagged queuing drive */
345 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
346 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
347 	},
348 	{
349 		/* Broken tagged queuing drive */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 	{
354 		/*
355 		 * Broken tagged queuing drive.
356 		 * Submitted by:
357 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
358 		 * in PR kern/9535
359 		 */
360 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
361 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
362 	},
363         {
364 		/*
365 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
366 		 * 8MB/sec.)
367 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
368 		 * Best performance with these drives is achieved with
369 		 * tagged queueing turned off, and write caching turned on.
370 		 */
371 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
372 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
373         },
374         {
375 		/*
376 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
377 		 * 8MB/sec.)
378 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
379 		 * Best performance with these drives is achieved with
380 		 * tagged queueing turned off, and write caching turned on.
381 		 */
382 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
383 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
384         },
385 	{
386 		/*
387 		 * Doesn't handle queue full condition correctly,
388 		 * so we need to limit maxtags to what the device
389 		 * can handle instead of determining this automatically.
390 		 */
391 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
392 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
393 	},
394 	{
395 		/* Really only one LUN */
396 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" },
397 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
398 	},
399 	{
400 		/* I can't believe we need a quirk for DPT volumes. */
401 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
402 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
403 		/*mintags*/0, /*maxtags*/255
404 	},
405 	{
406 		/*
407 		 * Many Sony CDROM drives don't like multi-LUN probing.
408 		 */
409 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
410 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
411 	},
412 	{
413 		/*
414 		 * This drive doesn't like multiple LUN probing.
415 		 * Submitted by:  Parag Patel <parag@cgt.com>
416 		 */
417 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
419 	},
420 	{
421 		/*
422 		 * The 8200 doesn't like multi-lun probing, and probably
423 		 * don't like serial number requests either.
424 		 */
425 		{
426 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
427 			"EXB-8200*", "*"
428 		},
429 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
430 	},
431 	{
432 		/*
433 		 * This old revision of the TDC3600 is also SCSI-1, and
434 		 * hangs upon serial number probing.
435 		 */
436 		{
437 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
438 			" TDC 3600", "U07:"
439 		},
440 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
441 	},
442 	{
443 		/*
444 		 * Would repond to all LUNs if asked for.
445 		 */
446 		{
447 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
448 			"CP150", "*"
449 		},
450 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
451 	},
452 	{
453 		/*
454 		 * Would repond to all LUNs if asked for.
455 		 */
456 		{
457 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
458 			"96X2*", "*"
459 		},
460 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
461 	},
462 	{
463 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
464 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
465 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
466 	},
467 	{
468 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
469 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
470 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
471 	},
472 	{
473 		/* Default tagged queuing parameters for all devices */
474 		{
475 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
476 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
477 		},
478 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
479 	},
480 };
481 
482 static const int xpt_quirk_table_size =
483 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
484 
485 typedef enum {
486 	DM_RET_COPY		= 0x01,
487 	DM_RET_FLAG_MASK	= 0x0f,
488 	DM_RET_NONE		= 0x00,
489 	DM_RET_STOP		= 0x10,
490 	DM_RET_DESCEND		= 0x20,
491 	DM_RET_ERROR		= 0x30,
492 	DM_RET_ACTION_MASK	= 0xf0
493 } dev_match_ret;
494 
495 typedef enum {
496 	XPT_DEPTH_BUS,
497 	XPT_DEPTH_TARGET,
498 	XPT_DEPTH_DEVICE,
499 	XPT_DEPTH_PERIPH
500 } xpt_traverse_depth;
501 
502 struct xpt_traverse_config {
503 	xpt_traverse_depth	depth;
504 	void			*tr_func;
505 	void			*tr_arg;
506 };
507 
508 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
509 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
510 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
511 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
512 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
513 
514 /* Transport layer configuration information */
515 static struct xpt_softc xsoftc;
516 
517 /* Queues for our software interrupt handler */
518 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
519 static cam_isrq_t cam_bioq;
520 static cam_isrq_t cam_netq;
521 
522 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
523 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
524 static u_int xpt_max_ccbs;	/*
525 				 * Maximum size of ccb pool.  Modified as
526 				 * devices are added/removed or have their
527 				 * opening counts changed.
528 				 */
529 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
530 
531 static struct cam_periph *xpt_periph;
532 
533 static periph_init_t xpt_periph_init;
534 
535 static periph_init_t probe_periph_init;
536 
537 static struct periph_driver xpt_driver =
538 {
539 	xpt_periph_init, "xpt",
540 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
541 };
542 
543 static struct periph_driver probe_driver =
544 {
545 	probe_periph_init, "probe",
546 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
547 };
548 
549 DATA_SET(periphdriver_set, xpt_driver);
550 DATA_SET(periphdriver_set, probe_driver);
551 
552 #define XPT_CDEV_MAJOR 104
553 
554 static d_open_t xptopen;
555 static d_close_t xptclose;
556 static d_ioctl_t xptioctl;
557 
558 static struct cdevsw xpt_cdevsw = {
559 	/* open */	xptopen,
560 	/* close */	xptclose,
561 	/* read */	noread,
562 	/* write */	nowrite,
563 	/* ioctl */	xptioctl,
564 	/* poll */	nopoll,
565 	/* mmap */	nommap,
566 	/* strategy */	nostrategy,
567 	/* name */	"xpt",
568 	/* maj */	XPT_CDEV_MAJOR,
569 	/* dump */	nodump,
570 	/* psize */	nopsize,
571 	/* flags */	0,
572 	/* bmaj */	-1
573 };
574 
575 static struct intr_config_hook *xpt_config_hook;
576 
577 /* Registered busses */
578 static TAILQ_HEAD(,cam_eb) xpt_busses;
579 static u_int bus_generation;
580 
581 /* Storage for debugging datastructures */
582 #ifdef	CAMDEBUG
583 struct cam_path *cam_dpath;
584 u_int32_t cam_dflags;
585 u_int32_t cam_debug_delay;
586 #endif
587 
588 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
589 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
590 #endif
591 
592 /*
593  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
594  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
595  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
596  */
597 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
598     || defined(CAM_DEBUG_LUN)
599 #ifdef CAMDEBUG
600 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
601     || !defined(CAM_DEBUG_LUN)
602 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
603         and CAM_DEBUG_LUN"
604 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
605 #else /* !CAMDEBUG */
606 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
607 #endif /* CAMDEBUG */
608 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
609 
610 /* Our boot-time initialization hook */
611 static void	xpt_init(void *);
612 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
613 
614 static cam_status	xpt_compile_path(struct cam_path *new_path,
615 					 struct cam_periph *perph,
616 					 path_id_t path_id,
617 					 target_id_t target_id,
618 					 lun_id_t lun_id);
619 
620 static void		xpt_release_path(struct cam_path *path);
621 
622 static void		xpt_async_bcast(struct async_list *async_head,
623 					u_int32_t async_code,
624 					struct cam_path *path,
625 					void *async_arg);
626 static path_id_t xptnextfreepathid(void);
627 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
628 static union ccb *xpt_get_ccb(struct cam_ed *device);
629 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
630 				  u_int32_t new_priority);
631 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
632 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
633 static timeout_t xpt_release_devq_timeout;
634 static timeout_t xpt_release_simq_timeout;
635 static void	 xpt_release_bus(struct cam_eb *bus);
636 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
637 					 int run_queue);
638 static struct cam_et*
639 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
640 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
641 static struct cam_ed*
642 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
643 				  lun_id_t lun_id);
644 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
645 				    struct cam_ed *device);
646 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
647 static struct cam_eb*
648 		 xpt_find_bus(path_id_t path_id);
649 static struct cam_et*
650 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
651 static struct cam_ed*
652 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
653 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
654 static void	 xpt_scan_lun(struct cam_periph *periph,
655 			      struct cam_path *path, cam_flags flags,
656 			      union ccb *ccb);
657 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
658 static xpt_busfunc_t	xptconfigbuscountfunc;
659 static xpt_busfunc_t	xptconfigfunc;
660 static void	 xpt_config(void *arg);
661 static xpt_devicefunc_t xptpassannouncefunc;
662 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
663 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
664 static void	 xptpoll(struct cam_sim *sim);
665 static swihand_t swi_camnet;
666 static swihand_t swi_cambio;
667 static void	 camisr(cam_isrq_t *queue);
668 #if 0
669 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
670 static void	 xptasync(struct cam_periph *periph,
671 			  u_int32_t code, cam_path *path);
672 #endif
673 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
674 				    int num_patterns, struct cam_eb *bus);
675 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
676 				       int num_patterns, struct cam_ed *device);
677 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
678 				       int num_patterns,
679 				       struct cam_periph *periph);
680 static xpt_busfunc_t	xptedtbusfunc;
681 static xpt_targetfunc_t	xptedttargetfunc;
682 static xpt_devicefunc_t	xptedtdevicefunc;
683 static xpt_periphfunc_t	xptedtperiphfunc;
684 static xpt_pdrvfunc_t	xptplistpdrvfunc;
685 static xpt_periphfunc_t	xptplistperiphfunc;
686 static int		xptedtmatch(struct ccb_dev_match *cdm);
687 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
688 static int		xptbustraverse(struct cam_eb *start_bus,
689 				       xpt_busfunc_t *tr_func, void *arg);
690 static int		xpttargettraverse(struct cam_eb *bus,
691 					  struct cam_et *start_target,
692 					  xpt_targetfunc_t *tr_func, void *arg);
693 static int		xptdevicetraverse(struct cam_et *target,
694 					  struct cam_ed *start_device,
695 					  xpt_devicefunc_t *tr_func, void *arg);
696 static int		xptperiphtraverse(struct cam_ed *device,
697 					  struct cam_periph *start_periph,
698 					  xpt_periphfunc_t *tr_func, void *arg);
699 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
700 					xpt_pdrvfunc_t *tr_func, void *arg);
701 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
702 					    struct cam_periph *start_periph,
703 					    xpt_periphfunc_t *tr_func,
704 					    void *arg);
705 static xpt_busfunc_t	xptdefbusfunc;
706 static xpt_targetfunc_t	xptdeftargetfunc;
707 static xpt_devicefunc_t	xptdefdevicefunc;
708 static xpt_periphfunc_t	xptdefperiphfunc;
709 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
710 #ifdef notusedyet
711 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
712 					    void *arg);
713 #endif
714 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
715 					    void *arg);
716 #ifdef notusedyet
717 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
718 					    void *arg);
719 #endif
720 static xpt_devicefunc_t	xptsetasyncfunc;
721 static xpt_busfunc_t	xptsetasyncbusfunc;
722 static cam_status	xptregister(struct cam_periph *periph,
723 				    void *arg);
724 static cam_status	proberegister(struct cam_periph *periph,
725 				      void *arg);
726 static void	 probeschedule(struct cam_periph *probe_periph);
727 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
728 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
729 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
730 static void	 probecleanup(struct cam_periph *periph);
731 static void	 xpt_find_quirk(struct cam_ed *device);
732 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
733 					   struct cam_ed *device,
734 					   int async_update);
735 static void	 xpt_toggle_tags(struct cam_path *path);
736 static void	 xpt_start_tags(struct cam_path *path);
737 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
738 					    struct cam_ed *dev);
739 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
740 					   struct cam_ed *dev);
741 static __inline int periph_is_queued(struct cam_periph *periph);
742 static __inline int device_is_alloc_queued(struct cam_ed *device);
743 static __inline int device_is_send_queued(struct cam_ed *device);
744 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
745 
746 static __inline int
747 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
748 {
749 	int retval;
750 
751 	if (dev->ccbq.devq_openings > 0) {
752 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
753 			cam_ccbq_resize(&dev->ccbq,
754 					dev->ccbq.dev_openings
755 					+ dev->ccbq.dev_active);
756 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
757 		}
758 		/*
759 		 * The priority of a device waiting for CCB resources
760 		 * is that of the the highest priority peripheral driver
761 		 * enqueued.
762 		 */
763 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
764 					  &dev->alloc_ccb_entry.pinfo,
765 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
766 	} else {
767 		retval = 0;
768 	}
769 
770 	return (retval);
771 }
772 
773 static __inline int
774 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
775 {
776 	int	retval;
777 
778 	if (dev->ccbq.dev_openings > 0) {
779 		/*
780 		 * The priority of a device waiting for controller
781 		 * resources is that of the the highest priority CCB
782 		 * enqueued.
783 		 */
784 		retval =
785 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
786 				     &dev->send_ccb_entry.pinfo,
787 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
788 	} else {
789 		retval = 0;
790 	}
791 	return (retval);
792 }
793 
794 static __inline int
795 periph_is_queued(struct cam_periph *periph)
796 {
797 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
798 }
799 
800 static __inline int
801 device_is_alloc_queued(struct cam_ed *device)
802 {
803 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
804 }
805 
806 static __inline int
807 device_is_send_queued(struct cam_ed *device)
808 {
809 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
810 }
811 
812 static __inline int
813 dev_allocq_is_runnable(struct cam_devq *devq)
814 {
815 	/*
816 	 * Have work to do.
817 	 * Have space to do more work.
818 	 * Allowed to do work.
819 	 */
820 	return ((devq->alloc_queue.qfrozen_cnt == 0)
821 	     && (devq->alloc_queue.entries > 0)
822 	     && (devq->alloc_openings > 0));
823 }
824 
825 static void
826 xpt_periph_init()
827 {
828 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
829 }
830 
831 static void
832 probe_periph_init()
833 {
834 }
835 
836 
837 static void
838 xptdone(struct cam_periph *periph, union ccb *done_ccb)
839 {
840 	/* Caller will release the CCB */
841 	wakeup(&done_ccb->ccb_h.cbfcnp);
842 }
843 
844 static int
845 xptopen(dev_t dev, int flags, int fmt, struct proc *p)
846 {
847 	int unit;
848 
849 	unit = minor(dev) & 0xff;
850 
851 	/*
852 	 * Only allow read-write access.
853 	 */
854 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
855 		return(EPERM);
856 
857 	/*
858 	 * We don't allow nonblocking access.
859 	 */
860 	if ((flags & O_NONBLOCK) != 0) {
861 		printf("xpt%d: can't do nonblocking accesss\n", unit);
862 		return(ENODEV);
863 	}
864 
865 	/*
866 	 * We only have one transport layer right now.  If someone accesses
867 	 * us via something other than minor number 1, point out their
868 	 * mistake.
869 	 */
870 	if (unit != 0) {
871 		printf("xptopen: got invalid xpt unit %d\n", unit);
872 		return(ENXIO);
873 	}
874 
875 	/* Mark ourselves open */
876 	xsoftc.flags |= XPT_FLAG_OPEN;
877 
878 	return(0);
879 }
880 
881 static int
882 xptclose(dev_t dev, int flag, int fmt, struct proc *p)
883 {
884 	int unit;
885 
886 	unit = minor(dev) & 0xff;
887 
888 	/*
889 	 * We only have one transport layer right now.  If someone accesses
890 	 * us via something other than minor number 1, point out their
891 	 * mistake.
892 	 */
893 	if (unit != 0) {
894 		printf("xptclose: got invalid xpt unit %d\n", unit);
895 		return(ENXIO);
896 	}
897 
898 	/* Mark ourselves closed */
899 	xsoftc.flags &= ~XPT_FLAG_OPEN;
900 
901 	return(0);
902 }
903 
904 static int
905 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
906 {
907 	int unit, error;
908 
909 	error = 0;
910 	unit = minor(dev) & 0xff;
911 
912 	/*
913 	 * We only have one transport layer right now.  If someone accesses
914 	 * us via something other than minor number 1, point out their
915 	 * mistake.
916 	 */
917 	if (unit != 0) {
918 		printf("xptioctl: got invalid xpt unit %d\n", unit);
919 		return(ENXIO);
920 	}
921 
922 	switch(cmd) {
923 	/*
924 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
925 	 * to accept CCB types that don't quite make sense to send through a
926 	 * passthrough driver.
927 	 */
928 	case CAMIOCOMMAND: {
929 		union ccb *ccb;
930 		union ccb *inccb;
931 
932 		inccb = (union ccb *)addr;
933 
934 		switch(inccb->ccb_h.func_code) {
935 		case XPT_SCAN_BUS:
936 		case XPT_RESET_BUS:
937 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
938 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
939 				error = EINVAL;
940 				break;
941 			}
942 			/* FALLTHROUGH */
943 		case XPT_SCAN_LUN:
944 
945 			ccb = xpt_alloc_ccb();
946 
947 			/*
948 			 * Create a path using the bus, target, and lun the
949 			 * user passed in.
950 			 */
951 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
952 					    inccb->ccb_h.path_id,
953 					    inccb->ccb_h.target_id,
954 					    inccb->ccb_h.target_lun) !=
955 					    CAM_REQ_CMP){
956 				error = EINVAL;
957 				xpt_free_ccb(ccb);
958 				break;
959 			}
960 			/* Ensure all of our fields are correct */
961 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
962 				      inccb->ccb_h.pinfo.priority);
963 			xpt_merge_ccb(ccb, inccb);
964 			ccb->ccb_h.cbfcnp = xptdone;
965 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
966 			bcopy(ccb, inccb, sizeof(union ccb));
967 			xpt_free_path(ccb->ccb_h.path);
968 			xpt_free_ccb(ccb);
969 			break;
970 
971 		case XPT_DEBUG: {
972 			union ccb ccb;
973 
974 			/*
975 			 * This is an immediate CCB, so it's okay to
976 			 * allocate it on the stack.
977 			 */
978 
979 			/*
980 			 * Create a path using the bus, target, and lun the
981 			 * user passed in.
982 			 */
983 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
984 					    inccb->ccb_h.path_id,
985 					    inccb->ccb_h.target_id,
986 					    inccb->ccb_h.target_lun) !=
987 					    CAM_REQ_CMP){
988 				error = EINVAL;
989 				break;
990 			}
991 			/* Ensure all of our fields are correct */
992 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
993 				      inccb->ccb_h.pinfo.priority);
994 			xpt_merge_ccb(&ccb, inccb);
995 			ccb.ccb_h.cbfcnp = xptdone;
996 			xpt_action(&ccb);
997 			bcopy(&ccb, inccb, sizeof(union ccb));
998 			xpt_free_path(ccb.ccb_h.path);
999 			break;
1000 
1001 		}
1002 		case XPT_DEV_MATCH: {
1003 			struct cam_periph_map_info mapinfo;
1004 			struct cam_path *old_path;
1005 
1006 			/*
1007 			 * We can't deal with physical addresses for this
1008 			 * type of transaction.
1009 			 */
1010 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1011 				error = EINVAL;
1012 				break;
1013 			}
1014 
1015 			/*
1016 			 * Save this in case the caller had it set to
1017 			 * something in particular.
1018 			 */
1019 			old_path = inccb->ccb_h.path;
1020 
1021 			/*
1022 			 * We really don't need a path for the matching
1023 			 * code.  The path is needed because of the
1024 			 * debugging statements in xpt_action().  They
1025 			 * assume that the CCB has a valid path.
1026 			 */
1027 			inccb->ccb_h.path = xpt_periph->path;
1028 
1029 			bzero(&mapinfo, sizeof(mapinfo));
1030 
1031 			/*
1032 			 * Map the pattern and match buffers into kernel
1033 			 * virtual address space.
1034 			 */
1035 			error = cam_periph_mapmem(inccb, &mapinfo);
1036 
1037 			if (error) {
1038 				inccb->ccb_h.path = old_path;
1039 				break;
1040 			}
1041 
1042 			/*
1043 			 * This is an immediate CCB, we can send it on directly.
1044 			 */
1045 			xpt_action(inccb);
1046 
1047 			/*
1048 			 * Map the buffers back into user space.
1049 			 */
1050 			cam_periph_unmapmem(inccb, &mapinfo);
1051 
1052 			inccb->ccb_h.path = old_path;
1053 
1054 			error = 0;
1055 			break;
1056 		}
1057 		default:
1058 			error = EINVAL;
1059 			break;
1060 		}
1061 		break;
1062 	}
1063 	/*
1064 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1065 	 * with the periphal driver name and unit name filled in.  The other
1066 	 * fields don't really matter as input.  The passthrough driver name
1067 	 * ("pass"), and unit number are passed back in the ccb.  The current
1068 	 * device generation number, and the index into the device peripheral
1069 	 * driver list, and the status are also passed back.  Note that
1070 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1071 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1072 	 * (or rather should be) impossible for the device peripheral driver
1073 	 * list to change since we look at the whole thing in one pass, and
1074 	 * we do it with splcam protection.
1075 	 *
1076 	 */
1077 	case CAMGETPASSTHRU: {
1078 		union ccb *ccb;
1079 		struct cam_periph *periph;
1080 		struct periph_driver **p_drv;
1081 		char   *name;
1082 		int unit;
1083 		int cur_generation;
1084 		int base_periph_found;
1085 		int splbreaknum;
1086 		int s;
1087 
1088 		ccb = (union ccb *)addr;
1089 		unit = ccb->cgdl.unit_number;
1090 		name = ccb->cgdl.periph_name;
1091 		/*
1092 		 * Every 100 devices, we want to drop our spl protection to
1093 		 * give the software interrupt handler a chance to run.
1094 		 * Most systems won't run into this check, but this should
1095 		 * avoid starvation in the software interrupt handler in
1096 		 * large systems.
1097 		 */
1098 		splbreaknum = 100;
1099 
1100 		ccb = (union ccb *)addr;
1101 
1102 		base_periph_found = 0;
1103 
1104 		/*
1105 		 * Sanity check -- make sure we don't get a null peripheral
1106 		 * driver name.
1107 		 */
1108 		if (*ccb->cgdl.periph_name == '\0') {
1109 			error = EINVAL;
1110 			break;
1111 		}
1112 
1113 		/* Keep the list from changing while we traverse it */
1114 		s = splcam();
1115 ptstartover:
1116 		cur_generation = xsoftc.generation;
1117 
1118 		/* first find our driver in the list of drivers */
1119 		for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
1120 		     *p_drv != NULL; p_drv++)
1121 			if (strcmp((*p_drv)->driver_name, name) == 0)
1122 				break;
1123 
1124 		if (*p_drv == NULL) {
1125 			splx(s);
1126 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1127 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1128 			*ccb->cgdl.periph_name = '\0';
1129 			ccb->cgdl.unit_number = 0;
1130 			error = ENOENT;
1131 			break;
1132 		}
1133 
1134 		/*
1135 		 * Run through every peripheral instance of this driver
1136 		 * and check to see whether it matches the unit passed
1137 		 * in by the user.  If it does, get out of the loops and
1138 		 * find the passthrough driver associated with that
1139 		 * peripheral driver.
1140 		 */
1141 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1142 		     periph = TAILQ_NEXT(periph, unit_links)) {
1143 
1144 			if (periph->unit_number == unit) {
1145 				break;
1146 			} else if (--splbreaknum == 0) {
1147 				splx(s);
1148 				s = splcam();
1149 				splbreaknum = 100;
1150 				if (cur_generation != xsoftc.generation)
1151 				       goto ptstartover;
1152 			}
1153 		}
1154 		/*
1155 		 * If we found the peripheral driver that the user passed
1156 		 * in, go through all of the peripheral drivers for that
1157 		 * particular device and look for a passthrough driver.
1158 		 */
1159 		if (periph != NULL) {
1160 			struct cam_ed *device;
1161 			int i;
1162 
1163 			base_periph_found = 1;
1164 			device = periph->path->device;
1165 			for (i = 0, periph = device->periphs.slh_first;
1166 			     periph != NULL;
1167 			     periph = periph->periph_links.sle_next, i++) {
1168 				/*
1169 				 * Check to see whether we have a
1170 				 * passthrough device or not.
1171 				 */
1172 				if (strcmp(periph->periph_name, "pass") == 0) {
1173 					/*
1174 					 * Fill in the getdevlist fields.
1175 					 */
1176 					strcpy(ccb->cgdl.periph_name,
1177 					       periph->periph_name);
1178 					ccb->cgdl.unit_number =
1179 						periph->unit_number;
1180 					if (periph->periph_links.sle_next)
1181 						ccb->cgdl.status =
1182 							CAM_GDEVLIST_MORE_DEVS;
1183 					else
1184 						ccb->cgdl.status =
1185 						       CAM_GDEVLIST_LAST_DEVICE;
1186 					ccb->cgdl.generation =
1187 						device->generation;
1188 					ccb->cgdl.index = i;
1189 					/*
1190 					 * Fill in some CCB header fields
1191 					 * that the user may want.
1192 					 */
1193 					ccb->ccb_h.path_id =
1194 						periph->path->bus->path_id;
1195 					ccb->ccb_h.target_id =
1196 						periph->path->target->target_id;
1197 					ccb->ccb_h.target_lun =
1198 						periph->path->device->lun_id;
1199 					ccb->ccb_h.status = CAM_REQ_CMP;
1200 					break;
1201 				}
1202 			}
1203 		}
1204 
1205 		/*
1206 		 * If the periph is null here, one of two things has
1207 		 * happened.  The first possibility is that we couldn't
1208 		 * find the unit number of the particular peripheral driver
1209 		 * that the user is asking about.  e.g. the user asks for
1210 		 * the passthrough driver for "da11".  We find the list of
1211 		 * "da" peripherals all right, but there is no unit 11.
1212 		 * The other possibility is that we went through the list
1213 		 * of peripheral drivers attached to the device structure,
1214 		 * but didn't find one with the name "pass".  Either way,
1215 		 * we return ENOENT, since we couldn't find something.
1216 		 */
1217 		if (periph == NULL) {
1218 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1219 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1220 			*ccb->cgdl.periph_name = '\0';
1221 			ccb->cgdl.unit_number = 0;
1222 			error = ENOENT;
1223 			/*
1224 			 * It is unfortunate that this is even necessary,
1225 			 * but there are many, many clueless users out there.
1226 			 * If this is true, the user is looking for the
1227 			 * passthrough driver, but doesn't have one in his
1228 			 * kernel.
1229 			 */
1230 			if (base_periph_found == 1) {
1231 				printf("xptioctl: pass driver is not in the "
1232 				       "kernel\n");
1233 				printf("xptioctl: put \"device pass0\" in "
1234 				       "your kernel config file\n");
1235 			}
1236 		}
1237 		splx(s);
1238 		break;
1239 		}
1240 	default:
1241 		error = ENOTTY;
1242 		break;
1243 	}
1244 
1245 	return(error);
1246 }
1247 
1248 /* Functions accessed by the peripheral drivers */
1249 static void
1250 xpt_init(dummy)
1251 	void *dummy;
1252 {
1253 	struct cam_sim *xpt_sim;
1254 	struct cam_path *path;
1255 	struct cam_devq *devq;
1256 	cam_status status;
1257 
1258 	TAILQ_INIT(&xpt_busses);
1259 	TAILQ_INIT(&cam_bioq);
1260 	TAILQ_INIT(&cam_netq);
1261 	SLIST_INIT(&ccb_freeq);
1262 	STAILQ_INIT(&highpowerq);
1263 
1264 	/*
1265 	 * The xpt layer is, itself, the equivelent of a SIM.
1266 	 * Allow 16 ccbs in the ccb pool for it.  This should
1267 	 * give decent parallelism when we probe busses and
1268 	 * perform other XPT functions.
1269 	 */
1270 	devq = cam_simq_alloc(16);
1271 	xpt_sim = cam_sim_alloc(xptaction,
1272 				xptpoll,
1273 				"xpt",
1274 				/*softc*/NULL,
1275 				/*unit*/0,
1276 				/*max_dev_transactions*/0,
1277 				/*max_tagged_dev_transactions*/0,
1278 				devq);
1279 	xpt_max_ccbs = 16;
1280 
1281 	xpt_bus_register(xpt_sim, /*bus #*/0);
1282 
1283 	/*
1284 	 * Looking at the XPT from the SIM layer, the XPT is
1285 	 * the equivelent of a peripheral driver.  Allocate
1286 	 * a peripheral driver entry for us.
1287 	 */
1288 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1289 				      CAM_TARGET_WILDCARD,
1290 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1291 		printf("xpt_init: xpt_create_path failed with status %#x,"
1292 		       " failing attach\n", status);
1293 		return;
1294 	}
1295 
1296 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1297 			 path, NULL, 0, NULL);
1298 	xpt_free_path(path);
1299 
1300 	xpt_sim->softc = xpt_periph;
1301 
1302 	/*
1303 	 * Register a callback for when interrupts are enabled.
1304 	 */
1305 	xpt_config_hook =
1306 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1307 					      M_TEMP, M_NOWAIT);
1308 	if (xpt_config_hook == NULL) {
1309 		printf("xpt_init: Cannot malloc config hook "
1310 		       "- failing attach\n");
1311 		return;
1312 	}
1313 	bzero(xpt_config_hook, sizeof(*xpt_config_hook));
1314 
1315 	xpt_config_hook->ich_func = xpt_config;
1316 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1317 		free (xpt_config_hook, M_TEMP);
1318 		printf("xpt_init: config_intrhook_establish failed "
1319 		       "- failing attach\n");
1320 	}
1321 
1322 	/* Install our software interrupt handlers */
1323 	register_swi(SWI_CAMNET, swi_camnet);
1324 	register_swi(SWI_CAMBIO, swi_cambio);
1325 }
1326 
1327 static cam_status
1328 xptregister(struct cam_periph *periph, void *arg)
1329 {
1330 	if (periph == NULL) {
1331 		printf("xptregister: periph was NULL!!\n");
1332 		return(CAM_REQ_CMP_ERR);
1333 	}
1334 
1335 	periph->softc = NULL;
1336 
1337 	xpt_periph = periph;
1338 
1339 	return(CAM_REQ_CMP);
1340 }
1341 
1342 int32_t
1343 xpt_add_periph(struct cam_periph *periph)
1344 {
1345 	struct cam_ed *device;
1346 	int32_t	 status;
1347 	struct periph_list *periph_head;
1348 
1349 	device = periph->path->device;
1350 
1351 	periph_head = &device->periphs;
1352 
1353 	status = CAM_REQ_CMP;
1354 
1355 	if (device != NULL) {
1356 		int s;
1357 
1358 		/*
1359 		 * Make room for this peripheral
1360 		 * so it will fit in the queue
1361 		 * when it's scheduled to run
1362 		 */
1363 		s = splsoftcam();
1364 		status = camq_resize(&device->drvq,
1365 				     device->drvq.array_size + 1);
1366 
1367 		device->generation++;
1368 
1369 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1370 
1371 		splx(s);
1372 	}
1373 
1374 	xsoftc.generation++;
1375 
1376 	return (status);
1377 }
1378 
1379 void
1380 xpt_remove_periph(struct cam_periph *periph)
1381 {
1382 	struct cam_ed *device;
1383 
1384 	device = periph->path->device;
1385 
1386 	if (device != NULL) {
1387 		int s;
1388 		struct periph_list *periph_head;
1389 
1390 		periph_head = &device->periphs;
1391 
1392 		/* Release the slot for this peripheral */
1393 		s = splsoftcam();
1394 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1395 
1396 		device->generation++;
1397 
1398 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1399 
1400 		splx(s);
1401 	}
1402 
1403 	xsoftc.generation++;
1404 
1405 }
1406 
1407 void
1408 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1409 {
1410 	int s;
1411 	u_int mb;
1412 	struct cam_path *path;
1413 	struct ccb_trans_settings cts;
1414 
1415 	path = periph->path;
1416 	/*
1417 	 * To ensure that this is printed in one piece,
1418 	 * mask out CAM interrupts.
1419 	 */
1420 	s = splsoftcam();
1421 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1422 	       periph->periph_name, periph->unit_number,
1423 	       path->bus->sim->sim_name,
1424 	       path->bus->sim->unit_number,
1425 	       path->bus->sim->bus_id,
1426 	       path->target->target_id,
1427 	       path->device->lun_id);
1428 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1429 	scsi_print_inquiry(&path->device->inq_data);
1430 	if ((bootverbose)
1431 	 && (path->device->serial_num_len > 0)) {
1432 		/* Don't wrap the screen  - print only the first 60 chars */
1433 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1434 		       periph->unit_number, path->device->serial_num);
1435 	}
1436 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1437 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1438 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1439 	xpt_action((union ccb*)&cts);
1440 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1441 		u_int speed;
1442 		u_int freq;
1443 
1444 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1445 		  && cts.sync_offset != 0) {
1446 			freq = scsi_calc_syncsrate(cts.sync_period);
1447 			speed = freq;
1448 		} else {
1449 			struct ccb_pathinq cpi;
1450 
1451 			/* Ask the SIM for its base transfer speed */
1452 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1453 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1454 			xpt_action((union ccb *)&cpi);
1455 
1456 			speed = cpi.base_transfer_speed;
1457 			freq = 0;
1458 		}
1459 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1460 			speed *= (0x01 << cts.bus_width);
1461 		mb = speed / 1000;
1462 		if (mb > 0)
1463 			printf("%s%d: %d.%03dMB/s transfers",
1464 			       periph->periph_name, periph->unit_number,
1465 			       mb, speed % 1000);
1466 		else
1467 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1468 			       periph->unit_number, (speed % 1000) * 1000);
1469 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1470 		 && cts.sync_offset != 0) {
1471 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1472 			       freq % 1000, cts.sync_offset);
1473 		}
1474 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1475 		 && cts.bus_width > 0) {
1476 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1477 			 && cts.sync_offset != 0) {
1478 				printf(", ");
1479 			} else {
1480 				printf(" (");
1481 			}
1482 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1483 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1484 			&& cts.sync_offset != 0) {
1485 			printf(")");
1486 		}
1487 
1488 		if (path->device->inq_flags & SID_CmdQue
1489 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1490 			printf(", Tagged Queueing Enabled");
1491 		}
1492 
1493 		printf("\n");
1494 	} else if (path->device->inq_flags & SID_CmdQue
1495    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1496 		printf("%s%d: Tagged Queueing Enabled\n",
1497 		       periph->periph_name, periph->unit_number);
1498 	}
1499 
1500 	/*
1501 	 * We only want to print the caller's announce string if they've
1502 	 * passed one in..
1503 	 */
1504 	if (announce_string != NULL)
1505 		printf("%s%d: %s\n", periph->periph_name,
1506 		       periph->unit_number, announce_string);
1507 	splx(s);
1508 }
1509 
1510 
1511 static dev_match_ret
1512 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1513 	    struct cam_eb *bus)
1514 {
1515 	dev_match_ret retval;
1516 	int i;
1517 
1518 	retval = DM_RET_NONE;
1519 
1520 	/*
1521 	 * If we aren't given something to match against, that's an error.
1522 	 */
1523 	if (bus == NULL)
1524 		return(DM_RET_ERROR);
1525 
1526 	/*
1527 	 * If there are no match entries, then this bus matches no
1528 	 * matter what.
1529 	 */
1530 	if ((patterns == NULL) || (num_patterns == 0))
1531 		return(DM_RET_DESCEND | DM_RET_COPY);
1532 
1533 	for (i = 0; i < num_patterns; i++) {
1534 		struct bus_match_pattern *cur_pattern;
1535 
1536 		/*
1537 		 * If the pattern in question isn't for a bus node, we
1538 		 * aren't interested.  However, we do indicate to the
1539 		 * calling routine that we should continue descending the
1540 		 * tree, since the user wants to match against lower-level
1541 		 * EDT elements.
1542 		 */
1543 		if (patterns[i].type != DEV_MATCH_BUS) {
1544 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1545 				retval |= DM_RET_DESCEND;
1546 			continue;
1547 		}
1548 
1549 		cur_pattern = &patterns[i].pattern.bus_pattern;
1550 
1551 		/*
1552 		 * If they want to match any bus node, we give them any
1553 		 * device node.
1554 		 */
1555 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1556 			/* set the copy flag */
1557 			retval |= DM_RET_COPY;
1558 
1559 			/*
1560 			 * If we've already decided on an action, go ahead
1561 			 * and return.
1562 			 */
1563 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1564 				return(retval);
1565 		}
1566 
1567 		/*
1568 		 * Not sure why someone would do this...
1569 		 */
1570 		if (cur_pattern->flags == BUS_MATCH_NONE)
1571 			continue;
1572 
1573 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1574 		 && (cur_pattern->path_id != bus->path_id))
1575 			continue;
1576 
1577 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1578 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1579 			continue;
1580 
1581 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1582 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1583 			continue;
1584 
1585 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1586 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1587 			     DEV_IDLEN) != 0))
1588 			continue;
1589 
1590 		/*
1591 		 * If we get to this point, the user definitely wants
1592 		 * information on this bus.  So tell the caller to copy the
1593 		 * data out.
1594 		 */
1595 		retval |= DM_RET_COPY;
1596 
1597 		/*
1598 		 * If the return action has been set to descend, then we
1599 		 * know that we've already seen a non-bus matching
1600 		 * expression, therefore we need to further descend the tree.
1601 		 * This won't change by continuing around the loop, so we
1602 		 * go ahead and return.  If we haven't seen a non-bus
1603 		 * matching expression, we keep going around the loop until
1604 		 * we exhaust the matching expressions.  We'll set the stop
1605 		 * flag once we fall out of the loop.
1606 		 */
1607 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1608 			return(retval);
1609 	}
1610 
1611 	/*
1612 	 * If the return action hasn't been set to descend yet, that means
1613 	 * we haven't seen anything other than bus matching patterns.  So
1614 	 * tell the caller to stop descending the tree -- the user doesn't
1615 	 * want to match against lower level tree elements.
1616 	 */
1617 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1618 		retval |= DM_RET_STOP;
1619 
1620 	return(retval);
1621 }
1622 
1623 static dev_match_ret
1624 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1625 	       struct cam_ed *device)
1626 {
1627 	dev_match_ret retval;
1628 	int i;
1629 
1630 	retval = DM_RET_NONE;
1631 
1632 	/*
1633 	 * If we aren't given something to match against, that's an error.
1634 	 */
1635 	if (device == NULL)
1636 		return(DM_RET_ERROR);
1637 
1638 	/*
1639 	 * If there are no match entries, then this device matches no
1640 	 * matter what.
1641 	 */
1642 	if ((patterns == NULL) || (patterns == 0))
1643 		return(DM_RET_DESCEND | DM_RET_COPY);
1644 
1645 	for (i = 0; i < num_patterns; i++) {
1646 		struct device_match_pattern *cur_pattern;
1647 
1648 		/*
1649 		 * If the pattern in question isn't for a device node, we
1650 		 * aren't interested.
1651 		 */
1652 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1653 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1654 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1655 				retval |= DM_RET_DESCEND;
1656 			continue;
1657 		}
1658 
1659 		cur_pattern = &patterns[i].pattern.device_pattern;
1660 
1661 		/*
1662 		 * If they want to match any device node, we give them any
1663 		 * device node.
1664 		 */
1665 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1666 			/* set the copy flag */
1667 			retval |= DM_RET_COPY;
1668 
1669 
1670 			/*
1671 			 * If we've already decided on an action, go ahead
1672 			 * and return.
1673 			 */
1674 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1675 				return(retval);
1676 		}
1677 
1678 		/*
1679 		 * Not sure why someone would do this...
1680 		 */
1681 		if (cur_pattern->flags == DEV_MATCH_NONE)
1682 			continue;
1683 
1684 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1685 		 && (cur_pattern->path_id != device->target->bus->path_id))
1686 			continue;
1687 
1688 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1689 		 && (cur_pattern->target_id != device->target->target_id))
1690 			continue;
1691 
1692 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1693 		 && (cur_pattern->target_lun != device->lun_id))
1694 			continue;
1695 
1696 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1697 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1698 				    (caddr_t)&cur_pattern->inq_pat,
1699 				    1, sizeof(cur_pattern->inq_pat),
1700 				    scsi_static_inquiry_match) == NULL))
1701 			continue;
1702 
1703 		/*
1704 		 * If we get to this point, the user definitely wants
1705 		 * information on this device.  So tell the caller to copy
1706 		 * the data out.
1707 		 */
1708 		retval |= DM_RET_COPY;
1709 
1710 		/*
1711 		 * If the return action has been set to descend, then we
1712 		 * know that we've already seen a peripheral matching
1713 		 * expression, therefore we need to further descend the tree.
1714 		 * This won't change by continuing around the loop, so we
1715 		 * go ahead and return.  If we haven't seen a peripheral
1716 		 * matching expression, we keep going around the loop until
1717 		 * we exhaust the matching expressions.  We'll set the stop
1718 		 * flag once we fall out of the loop.
1719 		 */
1720 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1721 			return(retval);
1722 	}
1723 
1724 	/*
1725 	 * If the return action hasn't been set to descend yet, that means
1726 	 * we haven't seen any peripheral matching patterns.  So tell the
1727 	 * caller to stop descending the tree -- the user doesn't want to
1728 	 * match against lower level tree elements.
1729 	 */
1730 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1731 		retval |= DM_RET_STOP;
1732 
1733 	return(retval);
1734 }
1735 
1736 /*
1737  * Match a single peripheral against any number of match patterns.
1738  */
1739 static dev_match_ret
1740 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1741 	       struct cam_periph *periph)
1742 {
1743 	dev_match_ret retval;
1744 	int i;
1745 
1746 	/*
1747 	 * If we aren't given something to match against, that's an error.
1748 	 */
1749 	if (periph == NULL)
1750 		return(DM_RET_ERROR);
1751 
1752 	/*
1753 	 * If there are no match entries, then this peripheral matches no
1754 	 * matter what.
1755 	 */
1756 	if ((patterns == NULL) || (num_patterns == 0))
1757 		return(DM_RET_STOP | DM_RET_COPY);
1758 
1759 	/*
1760 	 * There aren't any nodes below a peripheral node, so there's no
1761 	 * reason to descend the tree any further.
1762 	 */
1763 	retval = DM_RET_STOP;
1764 
1765 	for (i = 0; i < num_patterns; i++) {
1766 		struct periph_match_pattern *cur_pattern;
1767 
1768 		/*
1769 		 * If the pattern in question isn't for a peripheral, we
1770 		 * aren't interested.
1771 		 */
1772 		if (patterns[i].type != DEV_MATCH_PERIPH)
1773 			continue;
1774 
1775 		cur_pattern = &patterns[i].pattern.periph_pattern;
1776 
1777 		/*
1778 		 * If they want to match on anything, then we will do so.
1779 		 */
1780 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1781 			/* set the copy flag */
1782 			retval |= DM_RET_COPY;
1783 
1784 			/*
1785 			 * We've already set the return action to stop,
1786 			 * since there are no nodes below peripherals in
1787 			 * the tree.
1788 			 */
1789 			return(retval);
1790 		}
1791 
1792 		/*
1793 		 * Not sure why someone would do this...
1794 		 */
1795 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1796 			continue;
1797 
1798 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1799 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1800 			continue;
1801 
1802 		/*
1803 		 * For the target and lun id's, we have to make sure the
1804 		 * target and lun pointers aren't NULL.  The xpt peripheral
1805 		 * has a wildcard target and device.
1806 		 */
1807 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1808 		 && ((periph->path->target == NULL)
1809 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1810 			continue;
1811 
1812 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1813 		 && ((periph->path->device == NULL)
1814 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1815 			continue;
1816 
1817 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1818 		 && (cur_pattern->unit_number != periph->unit_number))
1819 			continue;
1820 
1821 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1822 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1823 			     DEV_IDLEN) != 0))
1824 			continue;
1825 
1826 		/*
1827 		 * If we get to this point, the user definitely wants
1828 		 * information on this peripheral.  So tell the caller to
1829 		 * copy the data out.
1830 		 */
1831 		retval |= DM_RET_COPY;
1832 
1833 		/*
1834 		 * The return action has already been set to stop, since
1835 		 * peripherals don't have any nodes below them in the EDT.
1836 		 */
1837 		return(retval);
1838 	}
1839 
1840 	/*
1841 	 * If we get to this point, the peripheral that was passed in
1842 	 * doesn't match any of the patterns.
1843 	 */
1844 	return(retval);
1845 }
1846 
1847 static int
1848 xptedtbusfunc(struct cam_eb *bus, void *arg)
1849 {
1850 	struct ccb_dev_match *cdm;
1851 	dev_match_ret retval;
1852 
1853 	cdm = (struct ccb_dev_match *)arg;
1854 
1855 	/*
1856 	 * If our position is for something deeper in the tree, that means
1857 	 * that we've already seen this node.  So, we keep going down.
1858 	 */
1859 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1860 	 && (cdm->pos.cookie.bus == bus)
1861 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1862 	 && (cdm->pos.cookie.target != NULL))
1863 		retval = DM_RET_DESCEND;
1864 	else
1865 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1866 
1867 	/*
1868 	 * If we got an error, bail out of the search.
1869 	 */
1870 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1871 		cdm->status = CAM_DEV_MATCH_ERROR;
1872 		return(0);
1873 	}
1874 
1875 	/*
1876 	 * If the copy flag is set, copy this bus out.
1877 	 */
1878 	if (retval & DM_RET_COPY) {
1879 		int spaceleft, j;
1880 
1881 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1882 			sizeof(struct dev_match_result));
1883 
1884 		/*
1885 		 * If we don't have enough space to put in another
1886 		 * match result, save our position and tell the
1887 		 * user there are more devices to check.
1888 		 */
1889 		if (spaceleft < sizeof(struct dev_match_result)) {
1890 			bzero(&cdm->pos, sizeof(cdm->pos));
1891 			cdm->pos.position_type =
1892 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1893 
1894 			cdm->pos.cookie.bus = bus;
1895 			cdm->pos.generations[CAM_BUS_GENERATION]=
1896 				bus_generation;
1897 			cdm->status = CAM_DEV_MATCH_MORE;
1898 			return(0);
1899 		}
1900 		j = cdm->num_matches;
1901 		cdm->num_matches++;
1902 		cdm->matches[j].type = DEV_MATCH_BUS;
1903 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1904 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1905 		cdm->matches[j].result.bus_result.unit_number =
1906 			bus->sim->unit_number;
1907 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1908 			bus->sim->sim_name, DEV_IDLEN);
1909 	}
1910 
1911 	/*
1912 	 * If the user is only interested in busses, there's no
1913 	 * reason to descend to the next level in the tree.
1914 	 */
1915 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1916 		return(1);
1917 
1918 	/*
1919 	 * If there is a target generation recorded, check it to
1920 	 * make sure the target list hasn't changed.
1921 	 */
1922 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1923 	 && (bus == cdm->pos.cookie.bus)
1924 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1925 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1926 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1927 	     bus->generation)) {
1928 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1929 		return(0);
1930 	}
1931 
1932 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1933 	 && (cdm->pos.cookie.bus == bus)
1934 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1935 	 && (cdm->pos.cookie.target != NULL))
1936 		return(xpttargettraverse(bus,
1937 					(struct cam_et *)cdm->pos.cookie.target,
1938 					 xptedttargetfunc, arg));
1939 	else
1940 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1941 }
1942 
1943 static int
1944 xptedttargetfunc(struct cam_et *target, void *arg)
1945 {
1946 	struct ccb_dev_match *cdm;
1947 
1948 	cdm = (struct ccb_dev_match *)arg;
1949 
1950 	/*
1951 	 * If there is a device list generation recorded, check it to
1952 	 * make sure the device list hasn't changed.
1953 	 */
1954 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1955 	 && (cdm->pos.cookie.bus == target->bus)
1956 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1957 	 && (cdm->pos.cookie.target == target)
1958 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1959 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1960 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1961 	     target->generation)) {
1962 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1963 		return(0);
1964 	}
1965 
1966 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1967 	 && (cdm->pos.cookie.bus == target->bus)
1968 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1969 	 && (cdm->pos.cookie.target == target)
1970 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1971 	 && (cdm->pos.cookie.device != NULL))
1972 		return(xptdevicetraverse(target,
1973 					(struct cam_ed *)cdm->pos.cookie.device,
1974 					 xptedtdevicefunc, arg));
1975 	else
1976 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1977 }
1978 
1979 static int
1980 xptedtdevicefunc(struct cam_ed *device, void *arg)
1981 {
1982 
1983 	struct ccb_dev_match *cdm;
1984 	dev_match_ret retval;
1985 
1986 	cdm = (struct ccb_dev_match *)arg;
1987 
1988 	/*
1989 	 * If our position is for something deeper in the tree, that means
1990 	 * that we've already seen this node.  So, we keep going down.
1991 	 */
1992 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1993 	 && (cdm->pos.cookie.device == device)
1994 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1995 	 && (cdm->pos.cookie.periph != NULL))
1996 		retval = DM_RET_DESCEND;
1997 	else
1998 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1999 					device);
2000 
2001 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2002 		cdm->status = CAM_DEV_MATCH_ERROR;
2003 		return(0);
2004 	}
2005 
2006 	/*
2007 	 * If the copy flag is set, copy this device out.
2008 	 */
2009 	if (retval & DM_RET_COPY) {
2010 		int spaceleft, j;
2011 
2012 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2013 			sizeof(struct dev_match_result));
2014 
2015 		/*
2016 		 * If we don't have enough space to put in another
2017 		 * match result, save our position and tell the
2018 		 * user there are more devices to check.
2019 		 */
2020 		if (spaceleft < sizeof(struct dev_match_result)) {
2021 			bzero(&cdm->pos, sizeof(cdm->pos));
2022 			cdm->pos.position_type =
2023 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2024 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2025 
2026 			cdm->pos.cookie.bus = device->target->bus;
2027 			cdm->pos.generations[CAM_BUS_GENERATION]=
2028 				bus_generation;
2029 			cdm->pos.cookie.target = device->target;
2030 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2031 				device->target->bus->generation;
2032 			cdm->pos.cookie.device = device;
2033 			cdm->pos.generations[CAM_DEV_GENERATION] =
2034 				device->target->generation;
2035 			cdm->status = CAM_DEV_MATCH_MORE;
2036 			return(0);
2037 		}
2038 		j = cdm->num_matches;
2039 		cdm->num_matches++;
2040 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2041 		cdm->matches[j].result.device_result.path_id =
2042 			device->target->bus->path_id;
2043 		cdm->matches[j].result.device_result.target_id =
2044 			device->target->target_id;
2045 		cdm->matches[j].result.device_result.target_lun =
2046 			device->lun_id;
2047 		bcopy(&device->inq_data,
2048 		      &cdm->matches[j].result.device_result.inq_data,
2049 		      sizeof(struct scsi_inquiry_data));
2050 
2051 		/* Let the user know whether this device is unconfigured */
2052 		if (device->flags & CAM_DEV_UNCONFIGURED)
2053 			cdm->matches[j].result.device_result.flags =
2054 				DEV_RESULT_UNCONFIGURED;
2055 		else
2056 			cdm->matches[j].result.device_result.flags =
2057 				DEV_RESULT_NOFLAG;
2058 	}
2059 
2060 	/*
2061 	 * If the user isn't interested in peripherals, don't descend
2062 	 * the tree any further.
2063 	 */
2064 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2065 		return(1);
2066 
2067 	/*
2068 	 * If there is a peripheral list generation recorded, make sure
2069 	 * it hasn't changed.
2070 	 */
2071 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2072 	 && (device->target->bus == cdm->pos.cookie.bus)
2073 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2074 	 && (device->target == cdm->pos.cookie.target)
2075 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2076 	 && (device == cdm->pos.cookie.device)
2077 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2078 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2079 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2080 	     device->generation)){
2081 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2082 		return(0);
2083 	}
2084 
2085 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2086 	 && (cdm->pos.cookie.bus == device->target->bus)
2087 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2088 	 && (cdm->pos.cookie.target == device->target)
2089 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2090 	 && (cdm->pos.cookie.device == device)
2091 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2092 	 && (cdm->pos.cookie.periph != NULL))
2093 		return(xptperiphtraverse(device,
2094 				(struct cam_periph *)cdm->pos.cookie.periph,
2095 				xptedtperiphfunc, arg));
2096 	else
2097 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2098 }
2099 
2100 static int
2101 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2102 {
2103 	struct ccb_dev_match *cdm;
2104 	dev_match_ret retval;
2105 
2106 	cdm = (struct ccb_dev_match *)arg;
2107 
2108 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2109 
2110 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2111 		cdm->status = CAM_DEV_MATCH_ERROR;
2112 		return(0);
2113 	}
2114 
2115 	/*
2116 	 * If the copy flag is set, copy this peripheral out.
2117 	 */
2118 	if (retval & DM_RET_COPY) {
2119 		int spaceleft, j;
2120 
2121 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2122 			sizeof(struct dev_match_result));
2123 
2124 		/*
2125 		 * If we don't have enough space to put in another
2126 		 * match result, save our position and tell the
2127 		 * user there are more devices to check.
2128 		 */
2129 		if (spaceleft < sizeof(struct dev_match_result)) {
2130 			bzero(&cdm->pos, sizeof(cdm->pos));
2131 			cdm->pos.position_type =
2132 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2133 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2134 				CAM_DEV_POS_PERIPH;
2135 
2136 			cdm->pos.cookie.bus = periph->path->bus;
2137 			cdm->pos.generations[CAM_BUS_GENERATION]=
2138 				bus_generation;
2139 			cdm->pos.cookie.target = periph->path->target;
2140 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2141 				periph->path->bus->generation;
2142 			cdm->pos.cookie.device = periph->path->device;
2143 			cdm->pos.generations[CAM_DEV_GENERATION] =
2144 				periph->path->target->generation;
2145 			cdm->pos.cookie.periph = periph;
2146 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2147 				periph->path->device->generation;
2148 			cdm->status = CAM_DEV_MATCH_MORE;
2149 			return(0);
2150 		}
2151 
2152 		j = cdm->num_matches;
2153 		cdm->num_matches++;
2154 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2155 		cdm->matches[j].result.periph_result.path_id =
2156 			periph->path->bus->path_id;
2157 		cdm->matches[j].result.periph_result.target_id =
2158 			periph->path->target->target_id;
2159 		cdm->matches[j].result.periph_result.target_lun =
2160 			periph->path->device->lun_id;
2161 		cdm->matches[j].result.periph_result.unit_number =
2162 			periph->unit_number;
2163 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2164 			periph->periph_name, DEV_IDLEN);
2165 	}
2166 
2167 	return(1);
2168 }
2169 
2170 static int
2171 xptedtmatch(struct ccb_dev_match *cdm)
2172 {
2173 	int ret;
2174 
2175 	cdm->num_matches = 0;
2176 
2177 	/*
2178 	 * Check the bus list generation.  If it has changed, the user
2179 	 * needs to reset everything and start over.
2180 	 */
2181 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2182 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2183 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2184 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2185 		return(0);
2186 	}
2187 
2188 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2189 	 && (cdm->pos.cookie.bus != NULL))
2190 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2191 				     xptedtbusfunc, cdm);
2192 	else
2193 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2194 
2195 	/*
2196 	 * If we get back 0, that means that we had to stop before fully
2197 	 * traversing the EDT.  It also means that one of the subroutines
2198 	 * has set the status field to the proper value.  If we get back 1,
2199 	 * we've fully traversed the EDT and copied out any matching entries.
2200 	 */
2201 	if (ret == 1)
2202 		cdm->status = CAM_DEV_MATCH_LAST;
2203 
2204 	return(ret);
2205 }
2206 
2207 static int
2208 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2209 {
2210 	struct ccb_dev_match *cdm;
2211 
2212 	cdm = (struct ccb_dev_match *)arg;
2213 
2214 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2215 	 && (cdm->pos.cookie.pdrv == pdrv)
2216 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2217 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2218 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2219 	     (*pdrv)->generation)) {
2220 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2221 		return(0);
2222 	}
2223 
2224 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2225 	 && (cdm->pos.cookie.pdrv == pdrv)
2226 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2227 	 && (cdm->pos.cookie.periph != NULL))
2228 		return(xptpdperiphtraverse(pdrv,
2229 				(struct cam_periph *)cdm->pos.cookie.periph,
2230 				xptplistperiphfunc, arg));
2231 	else
2232 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2233 }
2234 
2235 static int
2236 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2237 {
2238 	struct ccb_dev_match *cdm;
2239 	dev_match_ret retval;
2240 
2241 	cdm = (struct ccb_dev_match *)arg;
2242 
2243 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2244 
2245 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2246 		cdm->status = CAM_DEV_MATCH_ERROR;
2247 		return(0);
2248 	}
2249 
2250 	/*
2251 	 * If the copy flag is set, copy this peripheral out.
2252 	 */
2253 	if (retval & DM_RET_COPY) {
2254 		int spaceleft, j;
2255 
2256 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2257 			sizeof(struct dev_match_result));
2258 
2259 		/*
2260 		 * If we don't have enough space to put in another
2261 		 * match result, save our position and tell the
2262 		 * user there are more devices to check.
2263 		 */
2264 		if (spaceleft < sizeof(struct dev_match_result)) {
2265 			struct periph_driver **pdrv;
2266 
2267 			pdrv = NULL;
2268 			bzero(&cdm->pos, sizeof(cdm->pos));
2269 			cdm->pos.position_type =
2270 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2271 				CAM_DEV_POS_PERIPH;
2272 
2273 			/*
2274 			 * This may look a bit non-sensical, but it is
2275 			 * actually quite logical.  There are very few
2276 			 * peripheral drivers, and bloating every peripheral
2277 			 * structure with a pointer back to its parent
2278 			 * peripheral driver linker set entry would cost
2279 			 * more in the long run than doing this quick lookup.
2280 			 */
2281 			for (pdrv =
2282 			     (struct periph_driver **)periphdriver_set.ls_items;
2283 			     *pdrv != NULL; pdrv++) {
2284 				if (strcmp((*pdrv)->driver_name,
2285 				    periph->periph_name) == 0)
2286 					break;
2287 			}
2288 
2289 			if (pdrv == NULL) {
2290 				cdm->status = CAM_DEV_MATCH_ERROR;
2291 				return(0);
2292 			}
2293 
2294 			cdm->pos.cookie.pdrv = pdrv;
2295 			/*
2296 			 * The periph generation slot does double duty, as
2297 			 * does the periph pointer slot.  They are used for
2298 			 * both edt and pdrv lookups and positioning.
2299 			 */
2300 			cdm->pos.cookie.periph = periph;
2301 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2302 				(*pdrv)->generation;
2303 			cdm->status = CAM_DEV_MATCH_MORE;
2304 			return(0);
2305 		}
2306 
2307 		j = cdm->num_matches;
2308 		cdm->num_matches++;
2309 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2310 		cdm->matches[j].result.periph_result.path_id =
2311 			periph->path->bus->path_id;
2312 
2313 		/*
2314 		 * The transport layer peripheral doesn't have a target or
2315 		 * lun.
2316 		 */
2317 		if (periph->path->target)
2318 			cdm->matches[j].result.periph_result.target_id =
2319 				periph->path->target->target_id;
2320 		else
2321 			cdm->matches[j].result.periph_result.target_id = -1;
2322 
2323 		if (periph->path->device)
2324 			cdm->matches[j].result.periph_result.target_lun =
2325 				periph->path->device->lun_id;
2326 		else
2327 			cdm->matches[j].result.periph_result.target_lun = -1;
2328 
2329 		cdm->matches[j].result.periph_result.unit_number =
2330 			periph->unit_number;
2331 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2332 			periph->periph_name, DEV_IDLEN);
2333 	}
2334 
2335 	return(1);
2336 }
2337 
2338 static int
2339 xptperiphlistmatch(struct ccb_dev_match *cdm)
2340 {
2341 	int ret;
2342 
2343 	cdm->num_matches = 0;
2344 
2345 	/*
2346 	 * At this point in the edt traversal function, we check the bus
2347 	 * list generation to make sure that no busses have been added or
2348 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2349 	 * For the peripheral driver list traversal function, however, we
2350 	 * don't have to worry about new peripheral driver types coming or
2351 	 * going; they're in a linker set, and therefore can't change
2352 	 * without a recompile.
2353 	 */
2354 
2355 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2356 	 && (cdm->pos.cookie.pdrv != NULL))
2357 		ret = xptpdrvtraverse(
2358 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2359 				xptplistpdrvfunc, cdm);
2360 	else
2361 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2362 
2363 	/*
2364 	 * If we get back 0, that means that we had to stop before fully
2365 	 * traversing the peripheral driver tree.  It also means that one of
2366 	 * the subroutines has set the status field to the proper value.  If
2367 	 * we get back 1, we've fully traversed the EDT and copied out any
2368 	 * matching entries.
2369 	 */
2370 	if (ret == 1)
2371 		cdm->status = CAM_DEV_MATCH_LAST;
2372 
2373 	return(ret);
2374 }
2375 
2376 static int
2377 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2378 {
2379 	struct cam_eb *bus, *next_bus;
2380 	int retval;
2381 
2382 	retval = 1;
2383 
2384 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2385 	     bus != NULL;
2386 	     bus = next_bus) {
2387 		next_bus = TAILQ_NEXT(bus, links);
2388 
2389 		retval = tr_func(bus, arg);
2390 		if (retval == 0)
2391 			return(retval);
2392 	}
2393 
2394 	return(retval);
2395 }
2396 
2397 static int
2398 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2399 		  xpt_targetfunc_t *tr_func, void *arg)
2400 {
2401 	struct cam_et *target, *next_target;
2402 	int retval;
2403 
2404 	retval = 1;
2405 	for (target = (start_target ? start_target :
2406 		       TAILQ_FIRST(&bus->et_entries));
2407 	     target != NULL; target = next_target) {
2408 
2409 		next_target = TAILQ_NEXT(target, links);
2410 
2411 		retval = tr_func(target, arg);
2412 
2413 		if (retval == 0)
2414 			return(retval);
2415 	}
2416 
2417 	return(retval);
2418 }
2419 
2420 static int
2421 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2422 		  xpt_devicefunc_t *tr_func, void *arg)
2423 {
2424 	struct cam_ed *device, *next_device;
2425 	int retval;
2426 
2427 	retval = 1;
2428 	for (device = (start_device ? start_device :
2429 		       TAILQ_FIRST(&target->ed_entries));
2430 	     device != NULL;
2431 	     device = next_device) {
2432 
2433 		next_device = TAILQ_NEXT(device, links);
2434 
2435 		retval = tr_func(device, arg);
2436 
2437 		if (retval == 0)
2438 			return(retval);
2439 	}
2440 
2441 	return(retval);
2442 }
2443 
2444 static int
2445 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2446 		  xpt_periphfunc_t *tr_func, void *arg)
2447 {
2448 	struct cam_periph *periph, *next_periph;
2449 	int retval;
2450 
2451 	retval = 1;
2452 
2453 	for (periph = (start_periph ? start_periph :
2454 		       SLIST_FIRST(&device->periphs));
2455 	     periph != NULL;
2456 	     periph = next_periph) {
2457 
2458 		next_periph = SLIST_NEXT(periph, periph_links);
2459 
2460 		retval = tr_func(periph, arg);
2461 		if (retval == 0)
2462 			return(retval);
2463 	}
2464 
2465 	return(retval);
2466 }
2467 
2468 static int
2469 xptpdrvtraverse(struct periph_driver **start_pdrv,
2470 		xpt_pdrvfunc_t *tr_func, void *arg)
2471 {
2472 	struct periph_driver **pdrv;
2473 	int retval;
2474 
2475 	retval = 1;
2476 
2477 	/*
2478 	 * We don't traverse the peripheral driver list like we do the
2479 	 * other lists, because it is a linker set, and therefore cannot be
2480 	 * changed during runtime.  If the peripheral driver list is ever
2481 	 * re-done to be something other than a linker set (i.e. it can
2482 	 * change while the system is running), the list traversal should
2483 	 * be modified to work like the other traversal functions.
2484 	 */
2485 	for (pdrv = (start_pdrv ? start_pdrv :
2486 	     (struct periph_driver **)periphdriver_set.ls_items);
2487 	     *pdrv != NULL; pdrv++) {
2488 		retval = tr_func(pdrv, arg);
2489 
2490 		if (retval == 0)
2491 			return(retval);
2492 	}
2493 
2494 	return(retval);
2495 }
2496 
2497 static int
2498 xptpdperiphtraverse(struct periph_driver **pdrv,
2499 		    struct cam_periph *start_periph,
2500 		    xpt_periphfunc_t *tr_func, void *arg)
2501 {
2502 	struct cam_periph *periph, *next_periph;
2503 	int retval;
2504 
2505 	retval = 1;
2506 
2507 	for (periph = (start_periph ? start_periph :
2508 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2509 	     periph = next_periph) {
2510 
2511 		next_periph = TAILQ_NEXT(periph, unit_links);
2512 
2513 		retval = tr_func(periph, arg);
2514 		if (retval == 0)
2515 			return(retval);
2516 	}
2517 	return(retval);
2518 }
2519 
2520 static int
2521 xptdefbusfunc(struct cam_eb *bus, void *arg)
2522 {
2523 	struct xpt_traverse_config *tr_config;
2524 
2525 	tr_config = (struct xpt_traverse_config *)arg;
2526 
2527 	if (tr_config->depth == XPT_DEPTH_BUS) {
2528 		xpt_busfunc_t *tr_func;
2529 
2530 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2531 
2532 		return(tr_func(bus, tr_config->tr_arg));
2533 	} else
2534 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2535 }
2536 
2537 static int
2538 xptdeftargetfunc(struct cam_et *target, void *arg)
2539 {
2540 	struct xpt_traverse_config *tr_config;
2541 
2542 	tr_config = (struct xpt_traverse_config *)arg;
2543 
2544 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2545 		xpt_targetfunc_t *tr_func;
2546 
2547 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2548 
2549 		return(tr_func(target, tr_config->tr_arg));
2550 	} else
2551 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2552 }
2553 
2554 static int
2555 xptdefdevicefunc(struct cam_ed *device, void *arg)
2556 {
2557 	struct xpt_traverse_config *tr_config;
2558 
2559 	tr_config = (struct xpt_traverse_config *)arg;
2560 
2561 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2562 		xpt_devicefunc_t *tr_func;
2563 
2564 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2565 
2566 		return(tr_func(device, tr_config->tr_arg));
2567 	} else
2568 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2569 }
2570 
2571 static int
2572 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2573 {
2574 	struct xpt_traverse_config *tr_config;
2575 	xpt_periphfunc_t *tr_func;
2576 
2577 	tr_config = (struct xpt_traverse_config *)arg;
2578 
2579 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2580 
2581 	/*
2582 	 * Unlike the other default functions, we don't check for depth
2583 	 * here.  The peripheral driver level is the last level in the EDT,
2584 	 * so if we're here, we should execute the function in question.
2585 	 */
2586 	return(tr_func(periph, tr_config->tr_arg));
2587 }
2588 
2589 /*
2590  * Execute the given function for every bus in the EDT.
2591  */
2592 static int
2593 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2594 {
2595 	struct xpt_traverse_config tr_config;
2596 
2597 	tr_config.depth = XPT_DEPTH_BUS;
2598 	tr_config.tr_func = tr_func;
2599 	tr_config.tr_arg = arg;
2600 
2601 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2602 }
2603 
2604 #ifdef notusedyet
2605 /*
2606  * Execute the given function for every target in the EDT.
2607  */
2608 static int
2609 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2610 {
2611 	struct xpt_traverse_config tr_config;
2612 
2613 	tr_config.depth = XPT_DEPTH_TARGET;
2614 	tr_config.tr_func = tr_func;
2615 	tr_config.tr_arg = arg;
2616 
2617 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2618 }
2619 #endif /* notusedyet */
2620 
2621 /*
2622  * Execute the given function for every device in the EDT.
2623  */
2624 static int
2625 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2626 {
2627 	struct xpt_traverse_config tr_config;
2628 
2629 	tr_config.depth = XPT_DEPTH_DEVICE;
2630 	tr_config.tr_func = tr_func;
2631 	tr_config.tr_arg = arg;
2632 
2633 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2634 }
2635 
2636 #ifdef notusedyet
2637 /*
2638  * Execute the given function for every peripheral in the EDT.
2639  */
2640 static int
2641 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2642 {
2643 	struct xpt_traverse_config tr_config;
2644 
2645 	tr_config.depth = XPT_DEPTH_PERIPH;
2646 	tr_config.tr_func = tr_func;
2647 	tr_config.tr_arg = arg;
2648 
2649 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2650 }
2651 #endif /* notusedyet */
2652 
2653 static int
2654 xptsetasyncfunc(struct cam_ed *device, void *arg)
2655 {
2656 	struct cam_path path;
2657 	struct ccb_getdev cgd;
2658 	struct async_node *cur_entry;
2659 
2660 	cur_entry = (struct async_node *)arg;
2661 
2662 	/*
2663 	 * Don't report unconfigured devices (Wildcard devs,
2664 	 * devices only for target mode, device instances
2665 	 * that have been invalidated but are waiting for
2666 	 * their last reference count to be released).
2667 	 */
2668 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2669 		return (1);
2670 
2671 	xpt_compile_path(&path,
2672 			 NULL,
2673 			 device->target->bus->path_id,
2674 			 device->target->target_id,
2675 			 device->lun_id);
2676 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2677 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2678 	xpt_action((union ccb *)&cgd);
2679 	cur_entry->callback(cur_entry->callback_arg,
2680 			    AC_FOUND_DEVICE,
2681 			    &path, &cgd);
2682 	xpt_release_path(&path);
2683 
2684 	return(1);
2685 }
2686 
2687 static int
2688 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2689 {
2690 	struct cam_path path;
2691 	struct ccb_pathinq cpi;
2692 	struct async_node *cur_entry;
2693 
2694 	cur_entry = (struct async_node *)arg;
2695 
2696 	xpt_compile_path(&path, /*periph*/NULL,
2697 			 bus->sim->path_id,
2698 			 CAM_TARGET_WILDCARD,
2699 			 CAM_LUN_WILDCARD);
2700 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2701 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2702 	xpt_action((union ccb *)&cpi);
2703 	cur_entry->callback(cur_entry->callback_arg,
2704 			    AC_PATH_REGISTERED,
2705 			    &path, &cpi);
2706 	xpt_release_path(&path);
2707 
2708 	return(1);
2709 }
2710 
2711 void
2712 xpt_action(union ccb *start_ccb)
2713 {
2714 	int iopl;
2715 
2716 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2717 
2718 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2719 
2720 	iopl = splsoftcam();
2721 	switch (start_ccb->ccb_h.func_code) {
2722 	case XPT_SCSI_IO:
2723 	{
2724 #ifdef CAMDEBUG
2725 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2726 		struct cam_path *path;
2727 
2728 		path = start_ccb->ccb_h.path;
2729 #endif
2730 
2731 		/*
2732 		 * For the sake of compatibility with SCSI-1
2733 		 * devices that may not understand the identify
2734 		 * message, we include lun information in the
2735 		 * second byte of all commands.  SCSI-1 specifies
2736 		 * that luns are a 3 bit value and reserves only 3
2737 		 * bits for lun information in the CDB.  Later
2738 		 * revisions of the SCSI spec allow for more than 8
2739 		 * luns, but have deprecated lun information in the
2740 		 * CDB.  So, if the lun won't fit, we must omit.
2741 		 *
2742 		 * Also be aware that during initial probing for devices,
2743 		 * the inquiry information is unknown but initialized to 0.
2744 		 * This means that this code will be exercised while probing
2745 		 * devices with an ANSI revision greater than 2.
2746 		 */
2747 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2748 		 && start_ccb->ccb_h.target_lun < 8
2749 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2750 
2751 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2752 			    start_ccb->ccb_h.target_lun << 5;
2753 		}
2754 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2755 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2756 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2757 			  	       &path->device->inq_data),
2758 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2759 					  cdb_str, sizeof(cdb_str))));
2760 		/* FALLTHROUGH */
2761 	}
2762 	case XPT_TARGET_IO:
2763 	case XPT_CONT_TARGET_IO:
2764 		start_ccb->csio.sense_resid = 0;
2765 		start_ccb->csio.resid = 0;
2766 		/* FALLTHROUGH */
2767 	case XPT_RESET_DEV:
2768 	case XPT_ENG_EXEC:
2769 	{
2770 		struct cam_path *path;
2771 		int s;
2772 		int runq;
2773 
2774 		path = start_ccb->ccb_h.path;
2775 		s = splsoftcam();
2776 
2777 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2778 		if (path->device->qfrozen_cnt == 0)
2779 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2780 		else
2781 			runq = 0;
2782 		splx(s);
2783 		if (runq != 0)
2784 			xpt_run_dev_sendq(path->bus);
2785 		break;
2786 	}
2787 	case XPT_SET_TRAN_SETTINGS:
2788 	{
2789 		xpt_set_transfer_settings(&start_ccb->cts,
2790 					  start_ccb->ccb_h.path->device,
2791 					  /*async_update*/FALSE);
2792 		break;
2793 	}
2794 	case XPT_CALC_GEOMETRY:
2795 	{
2796 		struct cam_sim *sim;
2797 
2798 		/* Filter out garbage */
2799 		if (start_ccb->ccg.block_size == 0
2800 		 || start_ccb->ccg.volume_size == 0) {
2801 			start_ccb->ccg.cylinders = 0;
2802 			start_ccb->ccg.heads = 0;
2803 			start_ccb->ccg.secs_per_track = 0;
2804 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2805 			break;
2806 		}
2807 #ifdef PC98
2808 		/*
2809 		 * In a PC-98 system, geometry translation depens on
2810 		 * the "real" device geometry obtained from mode page 4.
2811 		 * SCSI geometry translation is performed in the
2812 		 * initialization routine of the SCSI BIOS and the result
2813 		 * stored in host memory.  If the translation is available
2814 		 * in host memory, use it.  If not, rely on the default
2815 		 * translation the device driver performs.
2816 		 */
2817 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2818 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2819 			break;
2820 		}
2821 #endif
2822 		sim = start_ccb->ccb_h.path->bus->sim;
2823 		(*(sim->sim_action))(sim, start_ccb);
2824 		break;
2825 	}
2826 	case XPT_ABORT:
2827 	{
2828 		union ccb* abort_ccb;
2829 		int s;
2830 
2831 		abort_ccb = start_ccb->cab.abort_ccb;
2832 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2833 
2834 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2835 				struct cam_ccbq *ccbq;
2836 
2837 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2838 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2839 				abort_ccb->ccb_h.status =
2840 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2841 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2842 				s = splcam();
2843 				xpt_done(abort_ccb);
2844 				splx(s);
2845 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2846 				break;
2847 			}
2848 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2849 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2850 				/*
2851 				 * We've caught this ccb en route to
2852 				 * the SIM.  Flag it for abort and the
2853 				 * SIM will do so just before starting
2854 				 * real work on the CCB.
2855 				 */
2856 				abort_ccb->ccb_h.status =
2857 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2858 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2859 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2860 				break;
2861 			}
2862 		}
2863 		if (XPT_FC_IS_QUEUED(abort_ccb)
2864 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2865 			/*
2866 			 * It's already completed but waiting
2867 			 * for our SWI to get to it.
2868 			 */
2869 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2870 			break;
2871 		}
2872 		/*
2873 		 * If we weren't able to take care of the abort request
2874 		 * in the XPT, pass the request down to the SIM for processing.
2875 		 */
2876 		/* FALLTHROUGH */
2877 	}
2878 	case XPT_ACCEPT_TARGET_IO:
2879 	case XPT_EN_LUN:
2880 	case XPT_IMMED_NOTIFY:
2881 	case XPT_NOTIFY_ACK:
2882 	case XPT_GET_TRAN_SETTINGS:
2883 	case XPT_RESET_BUS:
2884 	{
2885 		struct cam_sim *sim;
2886 
2887 		sim = start_ccb->ccb_h.path->bus->sim;
2888 		(*(sim->sim_action))(sim, start_ccb);
2889 		break;
2890 	}
2891 	case XPT_PATH_INQ:
2892 	{
2893 		struct cam_sim *sim;
2894 
2895 		sim = start_ccb->ccb_h.path->bus->sim;
2896 		(*(sim->sim_action))(sim, start_ccb);
2897 		break;
2898 	}
2899 	case XPT_PATH_STATS:
2900 		start_ccb->cpis.last_reset =
2901 			start_ccb->ccb_h.path->bus->last_reset;
2902 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2903 		break;
2904 	case XPT_GDEV_TYPE:
2905 	{
2906 		struct cam_ed *dev;
2907 		int s;
2908 
2909 		dev = start_ccb->ccb_h.path->device;
2910 		s = splcam();
2911 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2912 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2913 		} else {
2914 			struct ccb_getdev *cgd;
2915 			struct cam_eb *bus;
2916 			struct cam_et *tar;
2917 
2918 			cgd = &start_ccb->cgd;
2919 			bus = cgd->ccb_h.path->bus;
2920 			tar = cgd->ccb_h.path->target;
2921 			cgd->inq_data = dev->inq_data;
2922 			cgd->ccb_h.status = CAM_REQ_CMP;
2923 			cgd->serial_num_len = dev->serial_num_len;
2924 			if ((dev->serial_num_len > 0)
2925 			 && (dev->serial_num != NULL))
2926 				bcopy(dev->serial_num, cgd->serial_num,
2927 				      dev->serial_num_len);
2928 		}
2929 		splx(s);
2930 		break;
2931 	}
2932 	case XPT_GDEV_STATS:
2933 	{
2934 		struct cam_ed *dev;
2935 		int s;
2936 
2937 		dev = start_ccb->ccb_h.path->device;
2938 		s = splcam();
2939 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2940 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2941 		} else {
2942 			struct ccb_getdevstats *cgds;
2943 			struct cam_eb *bus;
2944 			struct cam_et *tar;
2945 
2946 			cgds = &start_ccb->cgds;
2947 			bus = cgds->ccb_h.path->bus;
2948 			tar = cgds->ccb_h.path->target;
2949 			cgds->dev_openings = dev->ccbq.dev_openings;
2950 			cgds->dev_active = dev->ccbq.dev_active;
2951 			cgds->devq_openings = dev->ccbq.devq_openings;
2952 			cgds->devq_queued = dev->ccbq.queue.entries;
2953 			cgds->held = dev->ccbq.held;
2954 			cgds->last_reset = tar->last_reset;
2955 			cgds->maxtags = dev->quirk->maxtags;
2956 			cgds->mintags = dev->quirk->mintags;
2957 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2958 				cgds->last_reset = bus->last_reset;
2959 			cgds->ccb_h.status = CAM_REQ_CMP;
2960 		}
2961 		splx(s);
2962 		break;
2963 	}
2964 	case XPT_GDEVLIST:
2965 	{
2966 		struct cam_periph	*nperiph;
2967 		struct periph_list	*periph_head;
2968 		struct ccb_getdevlist	*cgdl;
2969 		int			i;
2970 		int			s;
2971 		struct cam_ed		*device;
2972 		int			found;
2973 
2974 
2975 		found = 0;
2976 
2977 		/*
2978 		 * Don't want anyone mucking with our data.
2979 		 */
2980 		s = splcam();
2981 		device = start_ccb->ccb_h.path->device;
2982 		periph_head = &device->periphs;
2983 		cgdl = &start_ccb->cgdl;
2984 
2985 		/*
2986 		 * Check and see if the list has changed since the user
2987 		 * last requested a list member.  If so, tell them that the
2988 		 * list has changed, and therefore they need to start over
2989 		 * from the beginning.
2990 		 */
2991 		if ((cgdl->index != 0) &&
2992 		    (cgdl->generation != device->generation)) {
2993 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2994 			splx(s);
2995 			break;
2996 		}
2997 
2998 		/*
2999 		 * Traverse the list of peripherals and attempt to find
3000 		 * the requested peripheral.
3001 		 */
3002 		for (nperiph = periph_head->slh_first, i = 0;
3003 		     (nperiph != NULL) && (i <= cgdl->index);
3004 		     nperiph = nperiph->periph_links.sle_next, i++) {
3005 			if (i == cgdl->index) {
3006 				strncpy(cgdl->periph_name,
3007 					nperiph->periph_name,
3008 					DEV_IDLEN);
3009 				cgdl->unit_number = nperiph->unit_number;
3010 				found = 1;
3011 			}
3012 		}
3013 		if (found == 0) {
3014 			cgdl->status = CAM_GDEVLIST_ERROR;
3015 			splx(s);
3016 			break;
3017 		}
3018 
3019 		if (nperiph == NULL)
3020 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3021 		else
3022 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3023 
3024 		cgdl->index++;
3025 		cgdl->generation = device->generation;
3026 
3027 		splx(s);
3028 		cgdl->ccb_h.status = CAM_REQ_CMP;
3029 		break;
3030 	}
3031 	case XPT_DEV_MATCH:
3032 	{
3033 		int s;
3034 		dev_pos_type position_type;
3035 		struct ccb_dev_match *cdm;
3036 		int ret;
3037 
3038 		cdm = &start_ccb->cdm;
3039 
3040 		/*
3041 		 * Prevent EDT changes while we traverse it.
3042 		 */
3043 		s = splcam();
3044 		/*
3045 		 * There are two ways of getting at information in the EDT.
3046 		 * The first way is via the primary EDT tree.  It starts
3047 		 * with a list of busses, then a list of targets on a bus,
3048 		 * then devices/luns on a target, and then peripherals on a
3049 		 * device/lun.  The "other" way is by the peripheral driver
3050 		 * lists.  The peripheral driver lists are organized by
3051 		 * peripheral driver.  (obviously)  So it makes sense to
3052 		 * use the peripheral driver list if the user is looking
3053 		 * for something like "da1", or all "da" devices.  If the
3054 		 * user is looking for something on a particular bus/target
3055 		 * or lun, it's generally better to go through the EDT tree.
3056 		 */
3057 
3058 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3059 			position_type = cdm->pos.position_type;
3060 		else {
3061 			int i;
3062 
3063 			position_type = CAM_DEV_POS_NONE;
3064 
3065 			for (i = 0; i < cdm->num_patterns; i++) {
3066 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3067 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3068 					position_type = CAM_DEV_POS_EDT;
3069 					break;
3070 				}
3071 			}
3072 
3073 			if (cdm->num_patterns == 0)
3074 				position_type = CAM_DEV_POS_EDT;
3075 			else if (position_type == CAM_DEV_POS_NONE)
3076 				position_type = CAM_DEV_POS_PDRV;
3077 		}
3078 
3079 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3080 		case CAM_DEV_POS_EDT:
3081 			ret = xptedtmatch(cdm);
3082 			break;
3083 		case CAM_DEV_POS_PDRV:
3084 			ret = xptperiphlistmatch(cdm);
3085 			break;
3086 		default:
3087 			cdm->status = CAM_DEV_MATCH_ERROR;
3088 			break;
3089 		}
3090 
3091 		splx(s);
3092 
3093 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3094 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3095 		else
3096 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3097 
3098 		break;
3099 	}
3100 	case XPT_SASYNC_CB:
3101 	{
3102 		struct ccb_setasync *csa;
3103 		struct async_node *cur_entry;
3104 		struct async_list *async_head;
3105 		u_int32_t added;
3106 		int s;
3107 
3108 		csa = &start_ccb->csa;
3109 		added = csa->event_enable;
3110 		async_head = &csa->ccb_h.path->device->asyncs;
3111 
3112 		/*
3113 		 * If there is already an entry for us, simply
3114 		 * update it.
3115 		 */
3116 		s = splcam();
3117 		cur_entry = SLIST_FIRST(async_head);
3118 		while (cur_entry != NULL) {
3119 			if ((cur_entry->callback_arg == csa->callback_arg)
3120 			 && (cur_entry->callback == csa->callback))
3121 				break;
3122 			cur_entry = SLIST_NEXT(cur_entry, links);
3123 		}
3124 
3125 		if (cur_entry != NULL) {
3126 		 	/*
3127 			 * If the request has no flags set,
3128 			 * remove the entry.
3129 			 */
3130 			added &= ~cur_entry->event_enable;
3131 			if (csa->event_enable == 0) {
3132 				SLIST_REMOVE(async_head, cur_entry,
3133 					     async_node, links);
3134 				csa->ccb_h.path->device->refcount--;
3135 				free(cur_entry, M_DEVBUF);
3136 			} else {
3137 				cur_entry->event_enable = csa->event_enable;
3138 			}
3139 		} else {
3140 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3141 					   M_NOWAIT);
3142 			if (cur_entry == NULL) {
3143 				splx(s);
3144 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3145 				break;
3146 			}
3147 			cur_entry->event_enable = csa->event_enable;
3148 			cur_entry->callback_arg = csa->callback_arg;
3149 			cur_entry->callback = csa->callback;
3150 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3151 			csa->ccb_h.path->device->refcount++;
3152 		}
3153 
3154 		if ((added & AC_FOUND_DEVICE) != 0) {
3155 			/*
3156 			 * Get this peripheral up to date with all
3157 			 * the currently existing devices.
3158 			 */
3159 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3160 		}
3161 		if ((added & AC_PATH_REGISTERED) != 0) {
3162 			/*
3163 			 * Get this peripheral up to date with all
3164 			 * the currently existing busses.
3165 			 */
3166 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3167 		}
3168 		splx(s);
3169 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3170 		break;
3171 	}
3172 	case XPT_REL_SIMQ:
3173 	{
3174 		struct ccb_relsim *crs;
3175 		struct cam_ed *dev;
3176 		int s;
3177 
3178 		crs = &start_ccb->crs;
3179 		dev = crs->ccb_h.path->device;
3180 		if (dev == NULL) {
3181 
3182 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3183 			break;
3184 		}
3185 
3186 		s = splcam();
3187 
3188 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3189 
3190  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3191 
3192 				/* Don't ever go below one opening */
3193 				if (crs->openings > 0) {
3194 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3195 							    crs->openings);
3196 
3197 					if (bootverbose) {
3198 						xpt_print_path(crs->ccb_h.path);
3199 						printf("tagged openings "
3200 						       "now %d\n",
3201 						       crs->openings);
3202 					}
3203 				}
3204 			}
3205 		}
3206 
3207 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3208 
3209 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3210 
3211 				/*
3212 				 * Just extend the old timeout and decrement
3213 				 * the freeze count so that a single timeout
3214 				 * is sufficient for releasing the queue.
3215 				 */
3216 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3217 				untimeout(xpt_release_devq_timeout,
3218 					  dev, dev->c_handle);
3219 			} else {
3220 
3221 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3222 			}
3223 
3224 			dev->c_handle =
3225 				timeout(xpt_release_devq_timeout,
3226 					dev,
3227 					(crs->release_timeout * hz) / 1000);
3228 
3229 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3230 
3231 		}
3232 
3233 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3234 
3235 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3236 				/*
3237 				 * Decrement the freeze count so that a single
3238 				 * completion is still sufficient to unfreeze
3239 				 * the queue.
3240 				 */
3241 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3242 			} else {
3243 
3244 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3245 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3246 			}
3247 		}
3248 
3249 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3250 
3251 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3252 			 || (dev->ccbq.dev_active == 0)) {
3253 
3254 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3255 			} else {
3256 
3257 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3258 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3259 			}
3260 		}
3261 		splx(s);
3262 
3263 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3264 
3265 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3266 					 /*run_queue*/TRUE);
3267 		}
3268 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3269 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3270 		break;
3271 	}
3272 	case XPT_SCAN_BUS:
3273 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3274 		break;
3275 	case XPT_SCAN_LUN:
3276 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3277 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3278 			     start_ccb);
3279 		break;
3280 	case XPT_DEBUG: {
3281 #ifdef CAMDEBUG
3282 		int s;
3283 
3284 		s = splcam();
3285 #ifdef CAM_DEBUG_DELAY
3286 		cam_debug_delay = CAM_DEBUG_DELAY;
3287 #endif
3288 		cam_dflags = start_ccb->cdbg.flags;
3289 		if (cam_dpath != NULL) {
3290 			xpt_free_path(cam_dpath);
3291 			cam_dpath = NULL;
3292 		}
3293 
3294 		if (cam_dflags != CAM_DEBUG_NONE) {
3295 			if (xpt_create_path(&cam_dpath, xpt_periph,
3296 					    start_ccb->ccb_h.path_id,
3297 					    start_ccb->ccb_h.target_id,
3298 					    start_ccb->ccb_h.target_lun) !=
3299 					    CAM_REQ_CMP) {
3300 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3301 				cam_dflags = CAM_DEBUG_NONE;
3302 			} else {
3303 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3304 				xpt_print_path(cam_dpath);
3305 				printf("debugging flags now %x\n", cam_dflags);
3306 			}
3307 		} else {
3308 			cam_dpath = NULL;
3309 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3310 		}
3311 		splx(s);
3312 #else /* !CAMDEBUG */
3313 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3314 #endif /* CAMDEBUG */
3315 		break;
3316 	}
3317 	case XPT_NOOP:
3318 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3319 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3320 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3321 		break;
3322 	default:
3323 	case XPT_SDEV_TYPE:
3324 	case XPT_TERM_IO:
3325 	case XPT_ENG_INQ:
3326 		/* XXX Implement */
3327 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3328 		break;
3329 	}
3330 	splx(iopl);
3331 }
3332 
3333 void
3334 xpt_polled_action(union ccb *start_ccb)
3335 {
3336 	int	  s;
3337 	u_int32_t timeout;
3338 	struct	  cam_sim *sim;
3339 	struct	  cam_devq *devq;
3340 	struct	  cam_ed *dev;
3341 
3342 	timeout = start_ccb->ccb_h.timeout;
3343 	sim = start_ccb->ccb_h.path->bus->sim;
3344 	devq = sim->devq;
3345 	dev = start_ccb->ccb_h.path->device;
3346 
3347 	s = splcam();
3348 
3349 	/*
3350 	 * Steal an opening so that no other queued requests
3351 	 * can get it before us while we simulate interrupts.
3352 	 */
3353 	dev->ccbq.devq_openings--;
3354 	dev->ccbq.dev_openings--;
3355 
3356 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3357 	   && (--timeout > 0)) {
3358 		DELAY(1000);
3359 		(*(sim->sim_poll))(sim);
3360 		swi_camnet();
3361 		swi_cambio();
3362 	}
3363 
3364 	dev->ccbq.devq_openings++;
3365 	dev->ccbq.dev_openings++;
3366 
3367 	if (timeout != 0) {
3368 		xpt_action(start_ccb);
3369 		while(--timeout > 0) {
3370 			(*(sim->sim_poll))(sim);
3371 			swi_camnet();
3372 			swi_cambio();
3373 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3374 			    != CAM_REQ_INPROG)
3375 				break;
3376 			DELAY(1000);
3377 		}
3378 		if (timeout == 0) {
3379 			/*
3380 			 * XXX Is it worth adding a sim_timeout entry
3381 			 * point so we can attempt recovery?  If
3382 			 * this is only used for dumps, I don't think
3383 			 * it is.
3384 			 */
3385 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3386 		}
3387 	} else {
3388 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3389 	}
3390 	splx(s);
3391 }
3392 
3393 /*
3394  * Schedule a peripheral driver to receive a ccb when it's
3395  * target device has space for more transactions.
3396  */
3397 void
3398 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3399 {
3400 	struct cam_ed *device;
3401 	int s;
3402 	int runq;
3403 
3404 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3405 	device = perph->path->device;
3406 	s = splsoftcam();
3407 	if (periph_is_queued(perph)) {
3408 		/* Simply reorder based on new priority */
3409 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3410 			  ("   change priority to %d\n", new_priority));
3411 		if (new_priority < perph->pinfo.priority) {
3412 			camq_change_priority(&device->drvq,
3413 					     perph->pinfo.index,
3414 					     new_priority);
3415 		}
3416 		runq = 0;
3417 	} else {
3418 		/* New entry on the queue */
3419 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3420 			  ("   added periph to queue\n"));
3421 		perph->pinfo.priority = new_priority;
3422 		perph->pinfo.generation = ++device->drvq.generation;
3423 		camq_insert(&device->drvq, &perph->pinfo);
3424 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3425 	}
3426 	splx(s);
3427 	if (runq != 0) {
3428 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3429 			  ("   calling xpt_run_devq\n"));
3430 		xpt_run_dev_allocq(perph->path->bus);
3431 	}
3432 }
3433 
3434 
3435 /*
3436  * Schedule a device to run on a given queue.
3437  * If the device was inserted as a new entry on the queue,
3438  * return 1 meaning the device queue should be run. If we
3439  * were already queued, implying someone else has already
3440  * started the queue, return 0 so the caller doesn't attempt
3441  * to run the queue.  Must be run at either splsoftcam
3442  * (or splcam since that encompases splsoftcam).
3443  */
3444 static int
3445 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3446 		 u_int32_t new_priority)
3447 {
3448 	int retval;
3449 	u_int32_t old_priority;
3450 
3451 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3452 
3453 	old_priority = pinfo->priority;
3454 
3455 	/*
3456 	 * Are we already queued?
3457 	 */
3458 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3459 		/* Simply reorder based on new priority */
3460 		if (new_priority < old_priority) {
3461 			camq_change_priority(queue, pinfo->index,
3462 					     new_priority);
3463 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3464 					("changed priority to %d\n",
3465 					 new_priority));
3466 		}
3467 		retval = 0;
3468 	} else {
3469 		/* New entry on the queue */
3470 		if (new_priority < old_priority)
3471 			pinfo->priority = new_priority;
3472 
3473 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3474 				("Inserting onto queue\n"));
3475 		pinfo->generation = ++queue->generation;
3476 		camq_insert(queue, pinfo);
3477 		retval = 1;
3478 	}
3479 	return (retval);
3480 }
3481 
3482 static void
3483 xpt_run_dev_allocq(struct cam_eb *bus)
3484 {
3485 	struct	cam_devq *devq;
3486 	int	s;
3487 
3488 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3489 	devq = bus->sim->devq;
3490 
3491 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3492 			("   qfrozen_cnt == 0x%x, entries == %d, "
3493 			 "openings == %d, active == %d\n",
3494 			 devq->alloc_queue.qfrozen_cnt,
3495 			 devq->alloc_queue.entries,
3496 			 devq->alloc_openings,
3497 			 devq->alloc_active));
3498 
3499 	s = splsoftcam();
3500 	devq->alloc_queue.qfrozen_cnt++;
3501 	while ((devq->alloc_queue.entries > 0)
3502 	    && (devq->alloc_openings > 0)
3503 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3504 		struct	cam_ed_qinfo *qinfo;
3505 		struct	cam_ed *device;
3506 		union	ccb *work_ccb;
3507 		struct	cam_periph *drv;
3508 		struct	camq *drvq;
3509 
3510 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3511 							   CAMQ_HEAD);
3512 		device = qinfo->device;
3513 
3514 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3515 				("running device %p\n", device));
3516 
3517 		drvq = &device->drvq;
3518 
3519 #ifdef CAMDEBUG
3520 		if (drvq->entries <= 0) {
3521 			panic("xpt_run_dev_allocq: "
3522 			      "Device on queue without any work to do");
3523 		}
3524 #endif
3525 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3526 			devq->alloc_openings--;
3527 			devq->alloc_active++;
3528 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3529 			splx(s);
3530 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3531 				      drv->pinfo.priority);
3532 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3533 					("calling periph start\n"));
3534 			drv->periph_start(drv, work_ccb);
3535 		} else {
3536 			/*
3537 			 * Malloc failure in alloc_ccb
3538 			 */
3539 			/*
3540 			 * XXX add us to a list to be run from free_ccb
3541 			 * if we don't have any ccbs active on this
3542 			 * device queue otherwise we may never get run
3543 			 * again.
3544 			 */
3545 			break;
3546 		}
3547 
3548 		/* Raise IPL for possible insertion and test at top of loop */
3549 		s = splsoftcam();
3550 
3551 		if (drvq->entries > 0) {
3552 			/* We have more work.  Attempt to reschedule */
3553 			xpt_schedule_dev_allocq(bus, device);
3554 		}
3555 	}
3556 	devq->alloc_queue.qfrozen_cnt--;
3557 	splx(s);
3558 }
3559 
3560 static void
3561 xpt_run_dev_sendq(struct cam_eb *bus)
3562 {
3563 	struct	cam_devq *devq;
3564 	int	s;
3565 
3566 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3567 
3568 	devq = bus->sim->devq;
3569 
3570 	s = splcam();
3571 	devq->send_queue.qfrozen_cnt++;
3572 	splx(s);
3573 	s = splsoftcam();
3574 	while ((devq->send_queue.entries > 0)
3575 	    && (devq->send_openings > 0)) {
3576 		struct	cam_ed_qinfo *qinfo;
3577 		struct	cam_ed *device;
3578 		union ccb *work_ccb;
3579 		struct	cam_sim *sim;
3580 		int	ospl;
3581 
3582 		ospl = splcam();
3583 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3584 			splx(ospl);
3585 			break;
3586 		}
3587 
3588 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3589 							   CAMQ_HEAD);
3590 		device = qinfo->device;
3591 
3592 		/*
3593 		 * If the device has been "frozen", don't attempt
3594 		 * to run it.
3595 		 */
3596 		if (device->qfrozen_cnt > 0) {
3597 			splx(ospl);
3598 			continue;
3599 		}
3600 
3601 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3602 				("running device %p\n", device));
3603 
3604 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3605 		if (work_ccb == NULL) {
3606 			printf("device on run queue with no ccbs???");
3607 			splx(ospl);
3608 			continue;
3609 		}
3610 
3611 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3612 
3613 		 	if (num_highpower <= 0) {
3614 				/*
3615 				 * We got a high power command, but we
3616 				 * don't have any available slots.  Freeze
3617 				 * the device queue until we have a slot
3618 				 * available.
3619 				 */
3620 				device->qfrozen_cnt++;
3621 				STAILQ_INSERT_TAIL(&highpowerq,
3622 						   &work_ccb->ccb_h,
3623 						   xpt_links.stqe);
3624 
3625 				splx(ospl);
3626 				continue;
3627 			} else {
3628 				/*
3629 				 * Consume a high power slot while
3630 				 * this ccb runs.
3631 				 */
3632 				num_highpower--;
3633 			}
3634 		}
3635 		devq->active_dev = device;
3636 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3637 
3638 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3639 		splx(ospl);
3640 
3641 		devq->send_openings--;
3642 		devq->send_active++;
3643 
3644 		if (device->ccbq.queue.entries > 0)
3645 			xpt_schedule_dev_sendq(bus, device);
3646 
3647 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3648 			/*
3649 			 * The client wants to freeze the queue
3650 			 * after this CCB is sent.
3651 			 */
3652 			ospl = splcam();
3653 			device->qfrozen_cnt++;
3654 			splx(ospl);
3655 		}
3656 
3657 		splx(s);
3658 
3659 		if ((device->inq_flags & SID_CmdQue) != 0)
3660 			work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3661 		else
3662 			/*
3663 			 * Clear this in case of a retried CCB that failed
3664 			 * due to a rejected tag.
3665 			 */
3666 			work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3667 
3668 		/*
3669 		 * Device queues can be shared among multiple sim instances
3670 		 * that reside on different busses.  Use the SIM in the queue
3671 		 * CCB's path, rather than the one in the bus that was passed
3672 		 * into this function.
3673 		 */
3674 		sim = work_ccb->ccb_h.path->bus->sim;
3675 		(*(sim->sim_action))(sim, work_ccb);
3676 
3677 		ospl = splcam();
3678 		devq->active_dev = NULL;
3679 		splx(ospl);
3680 		/* Raise IPL for possible insertion and test at top of loop */
3681 		s = splsoftcam();
3682 	}
3683 	splx(s);
3684 	s = splcam();
3685 	devq->send_queue.qfrozen_cnt--;
3686 	splx(s);
3687 }
3688 
3689 /*
3690  * This function merges stuff from the slave ccb into the master ccb, while
3691  * keeping important fields in the master ccb constant.
3692  */
3693 void
3694 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3695 {
3696 	/*
3697 	 * Pull fields that are valid for peripheral drivers to set
3698 	 * into the master CCB along with the CCB "payload".
3699 	 */
3700 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3701 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3702 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3703 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3704 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3705 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3706 }
3707 
3708 void
3709 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3710 {
3711 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3712 	ccb_h->pinfo.priority = priority;
3713 	ccb_h->path = path;
3714 	ccb_h->path_id = path->bus->path_id;
3715 	if (path->target)
3716 		ccb_h->target_id = path->target->target_id;
3717 	else
3718 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3719 	if (path->device) {
3720 		ccb_h->target_lun = path->device->lun_id;
3721 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3722 	} else {
3723 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3724 	}
3725 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3726 	ccb_h->flags = 0;
3727 }
3728 
3729 /* Path manipulation functions */
3730 cam_status
3731 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3732 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3733 {
3734 	struct	   cam_path *path;
3735 	cam_status status;
3736 
3737 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3738 
3739 	if (path == NULL) {
3740 		status = CAM_RESRC_UNAVAIL;
3741 		return(status);
3742 	}
3743 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3744 	if (status != CAM_REQ_CMP) {
3745 		free(path, M_DEVBUF);
3746 		path = NULL;
3747 	}
3748 	*new_path_ptr = path;
3749 	return (status);
3750 }
3751 
3752 static cam_status
3753 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3754 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3755 {
3756 	struct	     cam_eb *bus;
3757 	struct	     cam_et *target;
3758 	struct	     cam_ed *device;
3759 	cam_status   status;
3760 	int	     s;
3761 
3762 	status = CAM_REQ_CMP;	/* Completed without error */
3763 	target = NULL;		/* Wildcarded */
3764 	device = NULL;		/* Wildcarded */
3765 
3766 	/*
3767 	 * We will potentially modify the EDT, so block interrupts
3768 	 * that may attempt to create cam paths.
3769 	 */
3770 	s = splcam();
3771 	bus = xpt_find_bus(path_id);
3772 	if (bus == NULL) {
3773 		status = CAM_PATH_INVALID;
3774 	} else {
3775 		target = xpt_find_target(bus, target_id);
3776 		if (target == NULL) {
3777 			/* Create one */
3778 			struct cam_et *new_target;
3779 
3780 			new_target = xpt_alloc_target(bus, target_id);
3781 			if (new_target == NULL) {
3782 				status = CAM_RESRC_UNAVAIL;
3783 			} else {
3784 				target = new_target;
3785 			}
3786 		}
3787 		if (target != NULL) {
3788 			device = xpt_find_device(target, lun_id);
3789 			if (device == NULL) {
3790 				/* Create one */
3791 				struct cam_ed *new_device;
3792 
3793 				new_device = xpt_alloc_device(bus,
3794 							      target,
3795 							      lun_id);
3796 				if (new_device == NULL) {
3797 					status = CAM_RESRC_UNAVAIL;
3798 				} else {
3799 					device = new_device;
3800 				}
3801 			}
3802 		}
3803 	}
3804 	splx(s);
3805 
3806 	/*
3807 	 * Only touch the user's data if we are successful.
3808 	 */
3809 	if (status == CAM_REQ_CMP) {
3810 		new_path->periph = perph;
3811 		new_path->bus = bus;
3812 		new_path->target = target;
3813 		new_path->device = device;
3814 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3815 	} else {
3816 		if (device != NULL)
3817 			xpt_release_device(bus, target, device);
3818 		if (target != NULL)
3819 			xpt_release_target(bus, target);
3820 		if (bus != NULL)
3821 			xpt_release_bus(bus);
3822 	}
3823 	return (status);
3824 }
3825 
3826 static void
3827 xpt_release_path(struct cam_path *path)
3828 {
3829 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3830 	if (path->device != NULL) {
3831 		xpt_release_device(path->bus, path->target, path->device);
3832 		path->device = NULL;
3833 	}
3834 	if (path->target != NULL) {
3835 		xpt_release_target(path->bus, path->target);
3836 		path->target = NULL;
3837 	}
3838 	if (path->bus != NULL) {
3839 		xpt_release_bus(path->bus);
3840 		path->bus = NULL;
3841 	}
3842 }
3843 
3844 void
3845 xpt_free_path(struct cam_path *path)
3846 {
3847 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3848 	xpt_release_path(path);
3849 	free(path, M_DEVBUF);
3850 }
3851 
3852 
3853 /*
3854  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3855  * in path1, 2 for match with wildcards in path2.
3856  */
3857 int
3858 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3859 {
3860 	int retval = 0;
3861 
3862 	if (path1->bus != path2->bus) {
3863 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3864 			retval = 1;
3865 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3866 			retval = 2;
3867 		else
3868 			return (-1);
3869 	}
3870 	if (path1->target != path2->target) {
3871 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3872 			if (retval == 0)
3873 				retval = 1;
3874 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3875 			retval = 2;
3876 		else
3877 			return (-1);
3878 	}
3879 	if (path1->device != path2->device) {
3880 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3881 			if (retval == 0)
3882 				retval = 1;
3883 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3884 			retval = 2;
3885 		else
3886 			return (-1);
3887 	}
3888 	return (retval);
3889 }
3890 
3891 void
3892 xpt_print_path(struct cam_path *path)
3893 {
3894 	if (path == NULL)
3895 		printf("(nopath): ");
3896 	else {
3897 		if (path->periph != NULL)
3898 			printf("(%s%d:", path->periph->periph_name,
3899 			       path->periph->unit_number);
3900 		else
3901 			printf("(noperiph:");
3902 
3903 		if (path->bus != NULL)
3904 			printf("%s%d:%d:", path->bus->sim->sim_name,
3905 			       path->bus->sim->unit_number,
3906 			       path->bus->sim->bus_id);
3907 		else
3908 			printf("nobus:");
3909 
3910 		if (path->target != NULL)
3911 			printf("%d:", path->target->target_id);
3912 		else
3913 			printf("X:");
3914 
3915 		if (path->device != NULL)
3916 			printf("%d): ", path->device->lun_id);
3917 		else
3918 			printf("X): ");
3919 	}
3920 }
3921 
3922 path_id_t
3923 xpt_path_path_id(struct cam_path *path)
3924 {
3925 	return(path->bus->path_id);
3926 }
3927 
3928 target_id_t
3929 xpt_path_target_id(struct cam_path *path)
3930 {
3931 	if (path->target != NULL)
3932 		return (path->target->target_id);
3933 	else
3934 		return (CAM_TARGET_WILDCARD);
3935 }
3936 
3937 lun_id_t
3938 xpt_path_lun_id(struct cam_path *path)
3939 {
3940 	if (path->device != NULL)
3941 		return (path->device->lun_id);
3942 	else
3943 		return (CAM_LUN_WILDCARD);
3944 }
3945 
3946 struct cam_sim *
3947 xpt_path_sim(struct cam_path *path)
3948 {
3949 	return (path->bus->sim);
3950 }
3951 
3952 struct cam_periph*
3953 xpt_path_periph(struct cam_path *path)
3954 {
3955 	return (path->periph);
3956 }
3957 
3958 /*
3959  * Release a CAM control block for the caller.  Remit the cost of the structure
3960  * to the device referenced by the path.  If the this device had no 'credits'
3961  * and peripheral drivers have registered async callbacks for this notification
3962  * call them now.
3963  */
3964 void
3965 xpt_release_ccb(union ccb *free_ccb)
3966 {
3967 	int	 s;
3968 	struct	 cam_path *path;
3969 	struct	 cam_ed *device;
3970 	struct	 cam_eb *bus;
3971 
3972 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3973 	path = free_ccb->ccb_h.path;
3974 	device = path->device;
3975 	bus = path->bus;
3976 	s = splsoftcam();
3977 	cam_ccbq_release_opening(&device->ccbq);
3978 	if (xpt_ccb_count > xpt_max_ccbs) {
3979 		xpt_free_ccb(free_ccb);
3980 		xpt_ccb_count--;
3981 	} else {
3982 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
3983 	}
3984 	bus->sim->devq->alloc_openings++;
3985 	bus->sim->devq->alloc_active--;
3986 	/* XXX Turn this into an inline function - xpt_run_device?? */
3987 	if ((device_is_alloc_queued(device) == 0)
3988 	 && (device->drvq.entries > 0)) {
3989 		xpt_schedule_dev_allocq(bus, device);
3990 	}
3991 	splx(s);
3992 	if (dev_allocq_is_runnable(bus->sim->devq))
3993 		xpt_run_dev_allocq(bus);
3994 }
3995 
3996 /* Functions accessed by SIM drivers */
3997 
3998 /*
3999  * A sim structure, listing the SIM entry points and instance
4000  * identification info is passed to xpt_bus_register to hook the SIM
4001  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4002  * for this new bus and places it in the array of busses and assigns
4003  * it a path_id.  The path_id may be influenced by "hard wiring"
4004  * information specified by the user.  Once interrupt services are
4005  * availible, the bus will be probed.
4006  */
4007 int32_t
4008 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4009 {
4010 	struct cam_eb *new_bus;
4011 	struct cam_eb *old_bus;
4012 	struct ccb_pathinq cpi;
4013 	int s;
4014 
4015 	sim->bus_id = bus;
4016 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4017 					  M_DEVBUF, M_NOWAIT);
4018 	if (new_bus == NULL) {
4019 		/* Couldn't satisfy request */
4020 		return (CAM_RESRC_UNAVAIL);
4021 	}
4022 
4023 	if (strcmp(sim->sim_name, "xpt") != 0) {
4024 
4025 		sim->path_id =
4026 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4027 	}
4028 
4029 	TAILQ_INIT(&new_bus->et_entries);
4030 	new_bus->path_id = sim->path_id;
4031 	new_bus->sim = sim;
4032 	timevalclear(&new_bus->last_reset);
4033 	new_bus->flags = 0;
4034 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4035 	new_bus->generation = 0;
4036 	s = splcam();
4037 	old_bus = TAILQ_FIRST(&xpt_busses);
4038 	while (old_bus != NULL
4039 	    && old_bus->path_id < new_bus->path_id)
4040 		old_bus = TAILQ_NEXT(old_bus, links);
4041 	if (old_bus != NULL)
4042 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4043 	else
4044 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4045 	bus_generation++;
4046 	splx(s);
4047 
4048 	/* Notify interested parties */
4049 	if (sim->path_id != CAM_XPT_PATH_ID) {
4050 		struct cam_path path;
4051 
4052 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4053 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4054 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4055 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4056 		xpt_action((union ccb *)&cpi);
4057 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4058 		xpt_release_path(&path);
4059 	}
4060 	return (CAM_SUCCESS);
4061 }
4062 
4063 int32_t
4064 xpt_bus_deregister(path_id_t pathid)
4065 {
4066 	struct cam_path bus_path;
4067 	cam_status status;
4068 
4069 	status = xpt_compile_path(&bus_path, NULL, pathid,
4070 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4071 	if (status != CAM_REQ_CMP)
4072 		return (status);
4073 
4074 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4075 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4076 
4077 	/* Release the reference count held while registered. */
4078 	xpt_release_bus(bus_path.bus);
4079 	xpt_release_path(&bus_path);
4080 
4081 	return (CAM_REQ_CMP);
4082 }
4083 
4084 static path_id_t
4085 xptnextfreepathid(void)
4086 {
4087 	struct cam_eb *bus;
4088 	path_id_t pathid;
4089 	char *strval;
4090 
4091 	pathid = 0;
4092 	bus = TAILQ_FIRST(&xpt_busses);
4093 retry:
4094 	/* Find an unoccupied pathid */
4095 	while (bus != NULL
4096 	    && bus->path_id <= pathid) {
4097 		if (bus->path_id == pathid)
4098 			pathid++;
4099 		bus = TAILQ_NEXT(bus, links);
4100 	}
4101 
4102 	/*
4103 	 * Ensure that this pathid is not reserved for
4104 	 * a bus that may be registered in the future.
4105 	 */
4106 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4107 		++pathid;
4108 		/* Start the search over */
4109 		goto retry;
4110 	}
4111 	return (pathid);
4112 }
4113 
4114 static path_id_t
4115 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4116 {
4117 	path_id_t pathid;
4118 	int i, dunit, val;
4119 	char buf[32], *strval;
4120 
4121 	pathid = CAM_XPT_PATH_ID;
4122 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4123 	i = -1;
4124 	while ((i = resource_locate(i, "scbus")) != -1) {
4125 		dunit = resource_query_unit(i);
4126 		if (dunit < 0)		/* unwired?! */
4127 			continue;
4128 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4129 			continue;
4130 		if (strcmp(buf, strval) != 0)
4131 			continue;
4132 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4133 			if (sim_bus == val) {
4134 				pathid = dunit;
4135 				break;
4136 			}
4137 		} else if (sim_bus == 0) {
4138 			/* Unspecified matches bus 0 */
4139 			pathid = dunit;
4140 			break;
4141 		} else {
4142 			printf("Ambiguous scbus configuration for %s%d "
4143 			       "bus %d, cannot wire down.  The kernel "
4144 			       "config entry for scbus%d should "
4145 			       "specify a controller bus.\n"
4146 			       "Scbus will be assigned dynamically.\n",
4147 			       sim_name, sim_unit, sim_bus, dunit);
4148 			break;
4149 		}
4150 	}
4151 
4152 	if (pathid == CAM_XPT_PATH_ID)
4153 		pathid = xptnextfreepathid();
4154 	return (pathid);
4155 }
4156 
4157 void
4158 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4159 {
4160 	struct cam_eb *bus;
4161 	struct cam_et *target, *next_target;
4162 	struct cam_ed *device, *next_device;
4163 	int s;
4164 
4165 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4166 
4167 	/*
4168 	 * Most async events come from a CAM interrupt context.  In
4169 	 * a few cases, the error recovery code at the peripheral layer,
4170 	 * which may run from our SWI or a process context, may signal
4171 	 * deferred events with a call to xpt_async. Ensure async
4172 	 * notifications are serialized by blocking cam interrupts.
4173 	 */
4174 	s = splcam();
4175 
4176 	bus = path->bus;
4177 
4178 	if (async_code == AC_BUS_RESET) {
4179 		int s;
4180 
4181 		s = splclock();
4182 		/* Update our notion of when the last reset occurred */
4183 		microtime(&bus->last_reset);
4184 		splx(s);
4185 	}
4186 
4187 	for (target = TAILQ_FIRST(&bus->et_entries);
4188 	     target != NULL;
4189 	     target = next_target) {
4190 
4191 		next_target = TAILQ_NEXT(target, links);
4192 
4193 		if (path->target != target
4194 		 && path->target->target_id != CAM_TARGET_WILDCARD)
4195 			continue;
4196 
4197 		if (async_code == AC_SENT_BDR) {
4198 			int s;
4199 
4200 			/* Update our notion of when the last reset occurred */
4201 			s = splclock();
4202 			microtime(&path->target->last_reset);
4203 			splx(s);
4204 		}
4205 
4206 		for (device = TAILQ_FIRST(&target->ed_entries);
4207 		     device != NULL;
4208 		     device = next_device) {
4209 			cam_status status;
4210 			struct cam_path newpath;
4211 
4212 			next_device = TAILQ_NEXT(device, links);
4213 
4214 			if (path->device != device
4215 			 && path->device->lun_id != CAM_LUN_WILDCARD)
4216 				continue;
4217 
4218 			/*
4219 			 * We need our own path with wildcards expanded to
4220 			 * handle certain types of events.
4221 			 */
4222 			if ((async_code == AC_SENT_BDR)
4223 			 || (async_code == AC_BUS_RESET)
4224 			 || (async_code == AC_INQ_CHANGED))
4225 				status = xpt_compile_path(&newpath, NULL,
4226 							  bus->path_id,
4227 							  target->target_id,
4228 							  device->lun_id);
4229 			else
4230 				status = CAM_REQ_CMP_ERR;
4231 
4232 			if (status == CAM_REQ_CMP) {
4233 
4234 				/*
4235 				 * Allow transfer negotiation to occur in a
4236 				 * tag free environment.
4237 				 */
4238 				if (async_code == AC_SENT_BDR
4239 				  || async_code == AC_BUS_RESET)
4240 					xpt_toggle_tags(&newpath);
4241 
4242 				if (async_code == AC_INQ_CHANGED) {
4243 					/*
4244 					 * We've sent a start unit command, or
4245 					 * something similar to a device that
4246 					 * may have caused its inquiry data to
4247 					 * change. So we re-scan the device to
4248 					 * refresh the inquiry data for it.
4249 					 */
4250 					xpt_scan_lun(newpath.periph, &newpath,
4251 						     CAM_EXPECT_INQ_CHANGE,
4252 						     NULL);
4253 				}
4254 				xpt_release_path(&newpath);
4255 			} else if (async_code == AC_LOST_DEVICE) {
4256 				device->flags |= CAM_DEV_UNCONFIGURED;
4257 			} else if (async_code == AC_TRANSFER_NEG) {
4258 				struct ccb_trans_settings *settings;
4259 
4260 				settings =
4261 				    (struct ccb_trans_settings *)async_arg;
4262 				xpt_set_transfer_settings(settings, device,
4263 							  /*async_update*/TRUE);
4264 			}
4265 
4266 			xpt_async_bcast(&device->asyncs,
4267 					async_code,
4268 					path,
4269 					async_arg);
4270 		}
4271 	}
4272 
4273 	/*
4274 	 * If this wasn't a fully wildcarded async, tell all
4275 	 * clients that want all async events.
4276 	 */
4277 	if (bus != xpt_periph->path->bus)
4278 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4279 				path, async_arg);
4280 	splx(s);
4281 }
4282 
4283 static void
4284 xpt_async_bcast(struct async_list *async_head,
4285 		u_int32_t async_code,
4286 		struct cam_path *path, void *async_arg)
4287 {
4288 	struct async_node *cur_entry;
4289 
4290 	cur_entry = SLIST_FIRST(async_head);
4291 	while (cur_entry != NULL) {
4292 		struct async_node *next_entry;
4293 		/*
4294 		 * Grab the next list entry before we call the current
4295 		 * entry's callback.  This is because the callback function
4296 		 * can delete its async callback entry.
4297 		 */
4298 		next_entry = SLIST_NEXT(cur_entry, links);
4299 		if ((cur_entry->event_enable & async_code) != 0)
4300 			cur_entry->callback(cur_entry->callback_arg,
4301 					    async_code, path,
4302 					    async_arg);
4303 		cur_entry = next_entry;
4304 	}
4305 }
4306 
4307 u_int32_t
4308 xpt_freeze_devq(struct cam_path *path, u_int count)
4309 {
4310 	int s;
4311 	struct ccb_hdr *ccbh;
4312 
4313 	s = splcam();
4314 	path->device->qfrozen_cnt += count;
4315 
4316 	/*
4317 	 * Mark the last CCB in the queue as needing
4318 	 * to be requeued if the driver hasn't
4319 	 * changed it's state yet.  This fixes a race
4320 	 * where a ccb is just about to be queued to
4321 	 * a controller driver when it's interrupt routine
4322 	 * freezes the queue.  To completly close the
4323 	 * hole, controller drives must check to see
4324 	 * if a ccb's status is still CAM_REQ_INPROG
4325 	 * under spl protection just before they queue
4326 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4327 	 * an example.
4328 	 */
4329 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4330 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4331 		ccbh->status = CAM_REQUEUE_REQ;
4332 	splx(s);
4333 	return (path->device->qfrozen_cnt);
4334 }
4335 
4336 u_int32_t
4337 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4338 {
4339 	sim->devq->send_queue.qfrozen_cnt += count;
4340 	if (sim->devq->active_dev != NULL) {
4341 		struct ccb_hdr *ccbh;
4342 
4343 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4344 				  ccb_hdr_tailq);
4345 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4346 			ccbh->status = CAM_REQUEUE_REQ;
4347 	}
4348 	return (sim->devq->send_queue.qfrozen_cnt);
4349 }
4350 
4351 static void
4352 xpt_release_devq_timeout(void *arg)
4353 {
4354 	struct cam_ed *device;
4355 
4356 	device = (struct cam_ed *)arg;
4357 
4358 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4359 }
4360 
4361 void
4362 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4363 {
4364 	xpt_release_devq_device(path->device, count, run_queue);
4365 }
4366 
4367 static void
4368 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4369 {
4370 	int	rundevq;
4371 	int	s0, s1;
4372 
4373 	rundevq = 0;
4374 	s0 = splsoftcam();
4375 	s1 = splcam();
4376 	if (dev->qfrozen_cnt > 0) {
4377 
4378 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4379 		dev->qfrozen_cnt -= count;
4380 		if (dev->qfrozen_cnt == 0) {
4381 
4382 			/*
4383 			 * No longer need to wait for a successful
4384 			 * command completion.
4385 			 */
4386 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4387 
4388 			/*
4389 			 * Remove any timeouts that might be scheduled
4390 			 * to release this queue.
4391 			 */
4392 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4393 				untimeout(xpt_release_devq_timeout, dev,
4394 					  dev->c_handle);
4395 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4396 			}
4397 
4398 			/*
4399 			 * Now that we are unfrozen schedule the
4400 			 * device so any pending transactions are
4401 			 * run.
4402 			 */
4403 			if ((dev->ccbq.queue.entries > 0)
4404 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4405 			 && (run_queue != 0)) {
4406 				rundevq = 1;
4407 			}
4408 		}
4409 	}
4410 	splx(s1);
4411 	if (rundevq != 0)
4412 		xpt_run_dev_sendq(dev->target->bus);
4413 	splx(s0);
4414 }
4415 
4416 void
4417 xpt_release_simq(struct cam_sim *sim, int run_queue)
4418 {
4419 	int	s;
4420 	struct	camq *sendq;
4421 
4422 	sendq = &(sim->devq->send_queue);
4423 	s = splcam();
4424 	if (sendq->qfrozen_cnt > 0) {
4425 
4426 		sendq->qfrozen_cnt--;
4427 		if (sendq->qfrozen_cnt == 0) {
4428 			struct cam_eb *bus;
4429 
4430 			/*
4431 			 * If there is a timeout scheduled to release this
4432 			 * sim queue, remove it.  The queue frozen count is
4433 			 * already at 0.
4434 			 */
4435 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4436 				untimeout(xpt_release_simq_timeout, sim,
4437 					  sim->c_handle);
4438 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4439 			}
4440 			bus = xpt_find_bus(sim->path_id);
4441 			splx(s);
4442 
4443 			if (run_queue) {
4444 				/*
4445 				 * Now that we are unfrozen run the send queue.
4446 				 */
4447 				xpt_run_dev_sendq(bus);
4448 			}
4449 			xpt_release_bus(bus);
4450 		} else
4451 			splx(s);
4452 	} else
4453 		splx(s);
4454 }
4455 
4456 static void
4457 xpt_release_simq_timeout(void *arg)
4458 {
4459 	struct cam_sim *sim;
4460 
4461 	sim = (struct cam_sim *)arg;
4462 	xpt_release_simq(sim, /* run_queue */ TRUE);
4463 }
4464 
4465 void
4466 xpt_done(union ccb *done_ccb)
4467 {
4468 	int s;
4469 
4470 	s = splcam();
4471 
4472 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4473 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4474 		/*
4475 		 * Queue up the request for handling by our SWI handler
4476 		 * any of the "non-immediate" type of ccbs.
4477 		 */
4478 		switch (done_ccb->ccb_h.path->periph->type) {
4479 		case CAM_PERIPH_BIO:
4480 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4481 					  sim_links.tqe);
4482 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4483 			setsoftcambio();
4484 			break;
4485 		case CAM_PERIPH_NET:
4486 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4487 					  sim_links.tqe);
4488 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4489 			setsoftcamnet();
4490 			break;
4491 		}
4492 	}
4493 	splx(s);
4494 }
4495 
4496 union ccb *
4497 xpt_alloc_ccb()
4498 {
4499 	union ccb *new_ccb;
4500 
4501 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4502 	return (new_ccb);
4503 }
4504 
4505 void
4506 xpt_free_ccb(union ccb *free_ccb)
4507 {
4508 	free(free_ccb, M_DEVBUF);
4509 }
4510 
4511 
4512 
4513 /* Private XPT functions */
4514 
4515 /*
4516  * Get a CAM control block for the caller. Charge the structure to the device
4517  * referenced by the path.  If the this device has no 'credits' then the
4518  * device already has the maximum number of outstanding operations under way
4519  * and we return NULL. If we don't have sufficient resources to allocate more
4520  * ccbs, we also return NULL.
4521  */
4522 static union ccb *
4523 xpt_get_ccb(struct cam_ed *device)
4524 {
4525 	union ccb *new_ccb;
4526 	int s;
4527 
4528 	s = splsoftcam();
4529 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4530 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4531                 if (new_ccb == NULL) {
4532 			splx(s);
4533 			return (NULL);
4534 		}
4535 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4536 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4537 				  xpt_links.sle);
4538 		xpt_ccb_count++;
4539 	}
4540 	cam_ccbq_take_opening(&device->ccbq);
4541 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4542 	splx(s);
4543 	return (new_ccb);
4544 }
4545 
4546 static void
4547 xpt_release_bus(struct cam_eb *bus)
4548 {
4549 	int s;
4550 
4551 	s = splcam();
4552 	if ((--bus->refcount == 0)
4553 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4554 		TAILQ_REMOVE(&xpt_busses, bus, links);
4555 		bus_generation++;
4556 		splx(s);
4557 		free(bus, M_DEVBUF);
4558 	} else
4559 		splx(s);
4560 }
4561 
4562 static struct cam_et *
4563 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4564 {
4565 	struct cam_et *target;
4566 
4567 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4568 	if (target != NULL) {
4569 		struct cam_et *cur_target;
4570 
4571 		TAILQ_INIT(&target->ed_entries);
4572 		target->bus = bus;
4573 		target->target_id = target_id;
4574 		target->refcount = 1;
4575 		target->generation = 0;
4576 		timevalclear(&target->last_reset);
4577 		/*
4578 		 * Hold a reference to our parent bus so it
4579 		 * will not go away before we do.
4580 		 */
4581 		bus->refcount++;
4582 
4583 		/* Insertion sort into our bus's target list */
4584 		cur_target = TAILQ_FIRST(&bus->et_entries);
4585 		while (cur_target != NULL && cur_target->target_id < target_id)
4586 			cur_target = TAILQ_NEXT(cur_target, links);
4587 
4588 		if (cur_target != NULL) {
4589 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4590 		} else {
4591 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4592 		}
4593 		bus->generation++;
4594 	}
4595 	return (target);
4596 }
4597 
4598 static void
4599 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4600 {
4601 	int s;
4602 
4603 	s = splcam();
4604 	if ((--target->refcount == 0)
4605 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4606 		TAILQ_REMOVE(&bus->et_entries, target, links);
4607 		bus->generation++;
4608 		splx(s);
4609 		free(target, M_DEVBUF);
4610 		xpt_release_bus(bus);
4611 	} else
4612 		splx(s);
4613 }
4614 
4615 static struct cam_ed *
4616 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4617 {
4618 	struct	   cam_ed *device;
4619 	struct	   cam_devq *devq;
4620 	cam_status status;
4621 
4622 	/* Make space for us in the device queue on our bus */
4623 	devq = bus->sim->devq;
4624 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4625 
4626 	if (status != CAM_REQ_CMP) {
4627 		device = NULL;
4628 	} else {
4629 		device = (struct cam_ed *)malloc(sizeof(*device),
4630 						 M_DEVBUF, M_NOWAIT);
4631 	}
4632 
4633 	if (device != NULL) {
4634 		struct cam_ed *cur_device;
4635 
4636 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4637 		device->alloc_ccb_entry.device = device;
4638 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4639 		device->send_ccb_entry.device = device;
4640 		device->target = target;
4641 		device->lun_id = lun_id;
4642 		/* Initialize our queues */
4643 		if (camq_init(&device->drvq, 0) != 0) {
4644 			free(device, M_DEVBUF);
4645 			return (NULL);
4646 		}
4647 		if (cam_ccbq_init(&device->ccbq,
4648 				  bus->sim->max_dev_openings) != 0) {
4649 			camq_fini(&device->drvq);
4650 			free(device, M_DEVBUF);
4651 			return (NULL);
4652 		}
4653 		SLIST_INIT(&device->asyncs);
4654 		SLIST_INIT(&device->periphs);
4655 		device->generation = 0;
4656 		device->owner = NULL;
4657 		/*
4658 		 * Take the default quirk entry until we have inquiry
4659 		 * data and can determine a better quirk to use.
4660 		 */
4661 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4662 		bzero(&device->inq_data, sizeof(device->inq_data));
4663 		device->inq_flags = 0;
4664 		device->queue_flags = 0;
4665 		device->serial_num = NULL;
4666 		device->serial_num_len = 0;
4667 		device->qfrozen_cnt = 0;
4668 		device->flags = CAM_DEV_UNCONFIGURED;
4669 		device->tag_delay_count = 0;
4670 		device->refcount = 1;
4671 		callout_handle_init(&device->c_handle);
4672 
4673 		/*
4674 		 * Hold a reference to our parent target so it
4675 		 * will not go away before we do.
4676 		 */
4677 		target->refcount++;
4678 
4679 		/*
4680 		 * XXX should be limited by number of CCBs this bus can
4681 		 * do.
4682 		 */
4683 		xpt_max_ccbs += device->ccbq.devq_openings;
4684 		/* Insertion sort into our target's device list */
4685 		cur_device = TAILQ_FIRST(&target->ed_entries);
4686 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4687 			cur_device = TAILQ_NEXT(cur_device, links);
4688 		if (cur_device != NULL) {
4689 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4690 		} else {
4691 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4692 		}
4693 		target->generation++;
4694 	}
4695 	return (device);
4696 }
4697 
4698 static void
4699 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4700 		   struct cam_ed *device)
4701 {
4702 	int s;
4703 
4704 	s = splcam();
4705 	if ((--device->refcount == 0)
4706 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4707 		struct cam_devq *devq;
4708 
4709 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4710 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4711 			panic("Removing device while still queued for ccbs");
4712 
4713 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4714 				untimeout(xpt_release_devq_timeout, device,
4715 					  device->c_handle);
4716 
4717 		TAILQ_REMOVE(&target->ed_entries, device,links);
4718 		target->generation++;
4719 		xpt_max_ccbs -= device->ccbq.devq_openings;
4720 		/* Release our slot in the devq */
4721 		devq = bus->sim->devq;
4722 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4723 		splx(s);
4724 		free(device, M_DEVBUF);
4725 		xpt_release_target(bus, target);
4726 	} else
4727 		splx(s);
4728 }
4729 
4730 static u_int32_t
4731 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4732 {
4733 	int	s;
4734 	int	diff;
4735 	int	result;
4736 	struct	cam_ed *dev;
4737 
4738 	dev = path->device;
4739 	s = splsoftcam();
4740 
4741 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4742 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4743 	if (result == CAM_REQ_CMP && (diff < 0)) {
4744 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4745 	}
4746 	/* Adjust the global limit */
4747 	xpt_max_ccbs += diff;
4748 	splx(s);
4749 	return (result);
4750 }
4751 
4752 static struct cam_eb *
4753 xpt_find_bus(path_id_t path_id)
4754 {
4755 	struct cam_eb *bus;
4756 
4757 	for (bus = TAILQ_FIRST(&xpt_busses);
4758 	     bus != NULL;
4759 	     bus = TAILQ_NEXT(bus, links)) {
4760 		if (bus->path_id == path_id) {
4761 			bus->refcount++;
4762 			break;
4763 		}
4764 	}
4765 	return (bus);
4766 }
4767 
4768 static struct cam_et *
4769 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4770 {
4771 	struct cam_et *target;
4772 
4773 	for (target = TAILQ_FIRST(&bus->et_entries);
4774 	     target != NULL;
4775 	     target = TAILQ_NEXT(target, links)) {
4776 		if (target->target_id == target_id) {
4777 			target->refcount++;
4778 			break;
4779 		}
4780 	}
4781 	return (target);
4782 }
4783 
4784 static struct cam_ed *
4785 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4786 {
4787 	struct cam_ed *device;
4788 
4789 	for (device = TAILQ_FIRST(&target->ed_entries);
4790 	     device != NULL;
4791 	     device = TAILQ_NEXT(device, links)) {
4792 		if (device->lun_id == lun_id) {
4793 			device->refcount++;
4794 			break;
4795 		}
4796 	}
4797 	return (device);
4798 }
4799 
4800 typedef struct {
4801 	union	ccb *request_ccb;
4802 	struct 	ccb_pathinq *cpi;
4803 	int	pending_count;
4804 } xpt_scan_bus_info;
4805 
4806 /*
4807  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4808  * As the scan progresses, xpt_scan_bus is used as the
4809  * callback on completion function.
4810  */
4811 static void
4812 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4813 {
4814 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4815 		  ("xpt_scan_bus\n"));
4816 	switch (request_ccb->ccb_h.func_code) {
4817 	case XPT_SCAN_BUS:
4818 	{
4819 		xpt_scan_bus_info *scan_info;
4820 		union	ccb *work_ccb;
4821 		struct	cam_path *path;
4822 		u_int	i;
4823 		u_int	max_target;
4824 		u_int	initiator_id;
4825 
4826 		/* Find out the characteristics of the bus */
4827 		work_ccb = xpt_alloc_ccb();
4828 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4829 			      request_ccb->ccb_h.pinfo.priority);
4830 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4831 		xpt_action(work_ccb);
4832 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4833 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4834 			xpt_free_ccb(work_ccb);
4835 			xpt_done(request_ccb);
4836 			return;
4837 		}
4838 
4839 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4840 			/*
4841 			 * Can't scan the bus on an adapter that
4842 			 * cannot perform the initiator role.
4843 			 */
4844 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4845 			xpt_free_ccb(work_ccb);
4846 			xpt_done(request_ccb);
4847 			return;
4848 		}
4849 
4850 		/* Save some state for use while we probe for devices */
4851 		scan_info = (xpt_scan_bus_info *)
4852 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
4853 		scan_info->request_ccb = request_ccb;
4854 		scan_info->cpi = &work_ccb->cpi;
4855 
4856 		/* Cache on our stack so we can work asynchronously */
4857 		max_target = scan_info->cpi->max_target;
4858 		initiator_id = scan_info->cpi->initiator_id;
4859 
4860 		/*
4861 		 * Don't count the initiator if the
4862 		 * initiator is addressable.
4863 		 */
4864 		scan_info->pending_count = max_target + 1;
4865 		if (initiator_id <= max_target)
4866 			scan_info->pending_count--;
4867 
4868 		for (i = 0; i <= max_target; i++) {
4869 			cam_status status;
4870 		 	if (i == initiator_id)
4871 				continue;
4872 
4873 			status = xpt_create_path(&path, xpt_periph,
4874 						 request_ccb->ccb_h.path_id,
4875 						 i, 0);
4876 			if (status != CAM_REQ_CMP) {
4877 				printf("xpt_scan_bus: xpt_create_path failed"
4878 				       " with status %#x, bus scan halted\n",
4879 				       status);
4880 				break;
4881 			}
4882 			work_ccb = xpt_alloc_ccb();
4883 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4884 				      request_ccb->ccb_h.pinfo.priority);
4885 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4886 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4887 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4888 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4889 #if 0
4890 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4891 				request_ccb->ccb_h.path_id, i, 0);
4892 #endif
4893 			xpt_action(work_ccb);
4894 		}
4895 		break;
4896 	}
4897 	case XPT_SCAN_LUN:
4898 	{
4899 		xpt_scan_bus_info *scan_info;
4900 		path_id_t path_id;
4901 		target_id_t target_id;
4902 		lun_id_t lun_id;
4903 
4904 		/* Reuse the same CCB to query if a device was really found */
4905 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4906 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4907 			      request_ccb->ccb_h.pinfo.priority);
4908 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4909 
4910 		path_id = request_ccb->ccb_h.path_id;
4911 		target_id = request_ccb->ccb_h.target_id;
4912 		lun_id = request_ccb->ccb_h.target_lun;
4913 		xpt_action(request_ccb);
4914 
4915 #if 0
4916 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4917 			path_id, target_id, lun_id);
4918 #endif
4919 
4920 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4921 			struct cam_ed *device;
4922 			struct cam_et *target;
4923 			int s, phl;
4924 
4925 			/*
4926 			 * If we already probed lun 0 successfully, or
4927 			 * we have additional configured luns on this
4928 			 * target that might have "gone away", go onto
4929 			 * the next lun.
4930 			 */
4931 			target = request_ccb->ccb_h.path->target;
4932 			/*
4933 			 * We may touch devices that we don't
4934 			 * hold references too, so ensure they
4935 			 * don't disappear out from under us.
4936 			 * The target above is referenced by the
4937 			 * path in the request ccb.
4938 			 */
4939 			phl = 0;
4940 			s = splcam();
4941 			device = TAILQ_FIRST(&target->ed_entries);
4942 			if (device != NULL) {
4943 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
4944 				if (device->lun_id == 0)
4945 					device = TAILQ_NEXT(device, links);
4946 			}
4947 			splx(s);
4948 			if ((lun_id != 0) || (device != NULL)) {
4949 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
4950 					lun_id++;
4951 			}
4952 		} else {
4953 			struct cam_ed *device;
4954 
4955 			device = request_ccb->ccb_h.path->device;
4956 
4957 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
4958 				/* Try the next lun */
4959 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
4960 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
4961 					lun_id++;
4962 			}
4963 		}
4964 
4965 		xpt_free_path(request_ccb->ccb_h.path);
4966 
4967 		/* Check Bounds */
4968 		if ((lun_id == request_ccb->ccb_h.target_lun)
4969 		 || lun_id > scan_info->cpi->max_lun) {
4970 			/* We're done */
4971 
4972 			xpt_free_ccb(request_ccb);
4973 			scan_info->pending_count--;
4974 			if (scan_info->pending_count == 0) {
4975 				xpt_free_ccb((union ccb *)scan_info->cpi);
4976 				request_ccb = scan_info->request_ccb;
4977 				free(scan_info, M_TEMP);
4978 				request_ccb->ccb_h.status = CAM_REQ_CMP;
4979 				xpt_done(request_ccb);
4980 			}
4981 		} else {
4982 			/* Try the next device */
4983 			struct cam_path *path;
4984 			cam_status status;
4985 
4986 			path = request_ccb->ccb_h.path;
4987 			status = xpt_create_path(&path, xpt_periph,
4988 						 path_id, target_id, lun_id);
4989 			if (status != CAM_REQ_CMP) {
4990 				printf("xpt_scan_bus: xpt_create_path failed "
4991 				       "with status %#x, halting LUN scan\n",
4992 			 	       status);
4993 				xpt_free_ccb(request_ccb);
4994 				scan_info->pending_count--;
4995 				if (scan_info->pending_count == 0) {
4996 					xpt_free_ccb(
4997 						(union ccb *)scan_info->cpi);
4998 					request_ccb = scan_info->request_ccb;
4999 					free(scan_info, M_TEMP);
5000 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5001 					xpt_done(request_ccb);
5002 					break;
5003 				}
5004 			}
5005 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5006 				      request_ccb->ccb_h.pinfo.priority);
5007 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5008 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5009 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5010 			request_ccb->crcn.flags =
5011 				scan_info->request_ccb->crcn.flags;
5012 #if 0
5013 			xpt_print_path(path);
5014 			printf("xpt_scan bus probing\n");
5015 #endif
5016 			xpt_action(request_ccb);
5017 		}
5018 		break;
5019 	}
5020 	default:
5021 		break;
5022 	}
5023 }
5024 
5025 typedef enum {
5026 	PROBE_TUR,
5027 	PROBE_INQUIRY,
5028 	PROBE_FULL_INQUIRY,
5029 	PROBE_MODE_SENSE,
5030 	PROBE_SERIAL_NUM,
5031 	PROBE_TUR_FOR_NEGOTIATION
5032 } probe_action;
5033 
5034 typedef enum {
5035 	PROBE_INQUIRY_CKSUM	= 0x01,
5036 	PROBE_SERIAL_CKSUM	= 0x02,
5037 	PROBE_NO_ANNOUNCE	= 0x04
5038 } probe_flags;
5039 
5040 typedef struct {
5041 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5042 	probe_action	action;
5043 	union ccb	saved_ccb;
5044 	probe_flags	flags;
5045 	MD5_CTX		context;
5046 	u_int8_t	digest[16];
5047 } probe_softc;
5048 
5049 static void
5050 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5051 	     cam_flags flags, union ccb *request_ccb)
5052 {
5053 	struct ccb_pathinq cpi;
5054 	cam_status status;
5055 	struct cam_path *new_path;
5056 	struct cam_periph *old_periph;
5057 	int s;
5058 
5059 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5060 		  ("xpt_scan_lun\n"));
5061 
5062 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5063 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5064 	xpt_action((union ccb *)&cpi);
5065 
5066 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5067 		if (request_ccb != NULL) {
5068 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5069 			xpt_done(request_ccb);
5070 		}
5071 		return;
5072 	}
5073 
5074 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5075 		/*
5076 		 * Can't scan the bus on an adapter that
5077 		 * cannot perform the initiator role.
5078 		 */
5079 		if (request_ccb != NULL) {
5080 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5081 			xpt_done(request_ccb);
5082 		}
5083 		return;
5084 	}
5085 
5086 	if (request_ccb == NULL) {
5087 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5088 		if (request_ccb == NULL) {
5089 			xpt_print_path(path);
5090 			printf("xpt_scan_lun: can't allocate CCB, can't "
5091 			       "continue\n");
5092 			return;
5093 		}
5094 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5095 		if (new_path == NULL) {
5096 			xpt_print_path(path);
5097 			printf("xpt_scan_lun: can't allocate path, can't "
5098 			       "continue\n");
5099 			free(request_ccb, M_TEMP);
5100 			return;
5101 		}
5102 		status = xpt_compile_path(new_path, xpt_periph,
5103 					  path->bus->path_id,
5104 					  path->target->target_id,
5105 					  path->device->lun_id);
5106 
5107 		if (status != CAM_REQ_CMP) {
5108 			xpt_print_path(path);
5109 			printf("xpt_scan_lun: can't compile path, can't "
5110 			       "continue\n");
5111 			free(request_ccb, M_TEMP);
5112 			free(new_path, M_TEMP);
5113 			return;
5114 		}
5115 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5116 		request_ccb->ccb_h.cbfcnp = xptscandone;
5117 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5118 		request_ccb->crcn.flags = flags;
5119 	}
5120 
5121 	s = splsoftcam();
5122 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5123 		probe_softc *softc;
5124 
5125 		softc = (probe_softc *)old_periph->softc;
5126 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5127 				  periph_links.tqe);
5128 	} else {
5129 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5130 					  probestart, "probe",
5131 					  CAM_PERIPH_BIO,
5132 					  request_ccb->ccb_h.path, NULL, 0,
5133 					  request_ccb);
5134 
5135 		if (status != CAM_REQ_CMP) {
5136 			xpt_print_path(path);
5137 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5138 			       "error, can't continue probe\n");
5139 			request_ccb->ccb_h.status = status;
5140 			xpt_done(request_ccb);
5141 		}
5142 	}
5143 	splx(s);
5144 }
5145 
5146 static void
5147 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5148 {
5149 	xpt_release_path(done_ccb->ccb_h.path);
5150 	free(done_ccb->ccb_h.path, M_TEMP);
5151 	free(done_ccb, M_TEMP);
5152 }
5153 
5154 static cam_status
5155 proberegister(struct cam_periph *periph, void *arg)
5156 {
5157 	union ccb *request_ccb;	/* CCB representing the probe request */
5158 	probe_softc *softc;
5159 
5160 	request_ccb = (union ccb *)arg;
5161 	if (periph == NULL) {
5162 		printf("proberegister: periph was NULL!!\n");
5163 		return(CAM_REQ_CMP_ERR);
5164 	}
5165 
5166 	if (request_ccb == NULL) {
5167 		printf("proberegister: no probe CCB, "
5168 		       "can't register device\n");
5169 		return(CAM_REQ_CMP_ERR);
5170 	}
5171 
5172 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5173 
5174 	if (softc == NULL) {
5175 		printf("proberegister: Unable to probe new device. "
5176 		       "Unable to allocate softc\n");
5177 		return(CAM_REQ_CMP_ERR);
5178 	}
5179 	TAILQ_INIT(&softc->request_ccbs);
5180 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5181 			  periph_links.tqe);
5182 	softc->flags = 0;
5183 	periph->softc = softc;
5184 	cam_periph_acquire(periph);
5185 	/*
5186 	 * Ensure we've waited at least a bus settle
5187 	 * delay before attempting to probe the device.
5188 	 * For HBAs that don't do bus resets, this won't make a difference.
5189 	 */
5190 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5191 				      SCSI_DELAY);
5192 	probeschedule(periph);
5193 	return(CAM_REQ_CMP);
5194 }
5195 
5196 static void
5197 probeschedule(struct cam_periph *periph)
5198 {
5199 	struct ccb_pathinq cpi;
5200 	union ccb *ccb;
5201 	probe_softc *softc;
5202 
5203 	softc = (probe_softc *)periph->softc;
5204 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5205 
5206 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5207 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5208 	xpt_action((union ccb *)&cpi);
5209 
5210 	/*
5211 	 * If a device has gone away and another device, or the same one,
5212 	 * is back in the same place, it should have a unit attention
5213 	 * condition pending.  It will not report the unit attention in
5214 	 * response to an inquiry, which may leave invalid transfer
5215 	 * negotiations in effect.  The TUR will reveal the unit attention
5216 	 * condition.  Only send the TUR for lun 0, since some devices
5217 	 * will get confused by commands other than inquiry to non-existent
5218 	 * luns.  If you think a device has gone away start your scan from
5219 	 * lun 0.  This will insure that any bogus transfer settings are
5220 	 * invalidated.
5221 	 *
5222 	 * If we haven't seen the device before and the controller supports
5223 	 * some kind of transfer negotiation, negotiate with the first
5224 	 * sent command if no bus reset was performed at startup.  This
5225 	 * ensures that the device is not confused by transfer negotiation
5226 	 * settings left over by loader or BIOS action.
5227 	 */
5228 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5229 	 && (ccb->ccb_h.target_lun == 0)) {
5230 		softc->action = PROBE_TUR;
5231 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5232 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5233 		proberequestdefaultnegotiation(periph);
5234 		softc->action = PROBE_INQUIRY;
5235 	} else {
5236 		softc->action = PROBE_INQUIRY;
5237 	}
5238 
5239 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5240 		softc->flags |= PROBE_NO_ANNOUNCE;
5241 	else
5242 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5243 
5244 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5245 }
5246 
5247 static void
5248 probestart(struct cam_periph *periph, union ccb *start_ccb)
5249 {
5250 	/* Probe the device that our peripheral driver points to */
5251 	struct ccb_scsiio *csio;
5252 	probe_softc *softc;
5253 
5254 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5255 
5256 	softc = (probe_softc *)periph->softc;
5257 	csio = &start_ccb->csio;
5258 
5259 	switch (softc->action) {
5260 	case PROBE_TUR:
5261 	case PROBE_TUR_FOR_NEGOTIATION:
5262 	{
5263 		scsi_test_unit_ready(csio,
5264 				     /*retries*/4,
5265 				     probedone,
5266 				     MSG_SIMPLE_Q_TAG,
5267 				     SSD_FULL_SIZE,
5268 				     /*timeout*/60000);
5269 		break;
5270 	}
5271 	case PROBE_INQUIRY:
5272 	case PROBE_FULL_INQUIRY:
5273 	{
5274 		u_int inquiry_len;
5275 		struct scsi_inquiry_data *inq_buf;
5276 
5277 		inq_buf = &periph->path->device->inq_data;
5278 		/*
5279 		 * If the device is currently configured, we calculate an
5280 		 * MD5 checksum of the inquiry data, and if the serial number
5281 		 * length is greater than 0, add the serial number data
5282 		 * into the checksum as well.  Once the inquiry and the
5283 		 * serial number check finish, we attempt to figure out
5284 		 * whether we still have the same device.
5285 		 */
5286 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5287 
5288 			MD5Init(&softc->context);
5289 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5290 				  sizeof(struct scsi_inquiry_data));
5291 			softc->flags |= PROBE_INQUIRY_CKSUM;
5292 			if (periph->path->device->serial_num_len > 0) {
5293 				MD5Update(&softc->context,
5294 					  periph->path->device->serial_num,
5295 					  periph->path->device->serial_num_len);
5296 				softc->flags |= PROBE_SERIAL_CKSUM;
5297 			}
5298 			MD5Final(softc->digest, &softc->context);
5299 		}
5300 
5301 		if (softc->action == PROBE_INQUIRY)
5302 			inquiry_len = SHORT_INQUIRY_LENGTH;
5303 		else
5304 			inquiry_len = inq_buf->additional_length + 4;
5305 
5306 		scsi_inquiry(csio,
5307 			     /*retries*/4,
5308 			     probedone,
5309 			     MSG_SIMPLE_Q_TAG,
5310 			     (u_int8_t *)inq_buf,
5311 			     inquiry_len,
5312 			     /*evpd*/FALSE,
5313 			     /*page_code*/0,
5314 			     SSD_MIN_SIZE,
5315 			     /*timeout*/60 * 1000);
5316 		break;
5317 	}
5318 	case PROBE_MODE_SENSE:
5319 	{
5320 		void  *mode_buf;
5321 		int    mode_buf_len;
5322 
5323 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5324 			     + sizeof(struct scsi_mode_blk_desc)
5325 			     + sizeof(struct scsi_control_page);
5326 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5327 		if (mode_buf != NULL) {
5328 	                scsi_mode_sense(csio,
5329 					/*retries*/4,
5330 					probedone,
5331 					MSG_SIMPLE_Q_TAG,
5332 					/*dbd*/FALSE,
5333 					SMS_PAGE_CTRL_CURRENT,
5334 					SMS_CONTROL_MODE_PAGE,
5335 					mode_buf,
5336 					mode_buf_len,
5337 					SSD_FULL_SIZE,
5338 					/*timeout*/60000);
5339 			break;
5340 		}
5341 		xpt_print_path(periph->path);
5342 		printf("Unable to mode sense control page - malloc failure\n");
5343 		softc->action = PROBE_SERIAL_NUM;
5344 		/* FALLTHROUGH */
5345 	}
5346 	case PROBE_SERIAL_NUM:
5347 	{
5348 		struct scsi_vpd_unit_serial_number *serial_buf;
5349 		struct cam_ed* device;
5350 
5351 		serial_buf = NULL;
5352 		device = periph->path->device;
5353 		device->serial_num = NULL;
5354 		device->serial_num_len = 0;
5355 
5356 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5357 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5358 				malloc(sizeof(*serial_buf), M_TEMP, M_NOWAIT);
5359 
5360 		if (serial_buf != NULL) {
5361 			bzero(serial_buf, sizeof(*serial_buf));
5362 			scsi_inquiry(csio,
5363 				     /*retries*/4,
5364 				     probedone,
5365 				     MSG_SIMPLE_Q_TAG,
5366 				     (u_int8_t *)serial_buf,
5367 				     sizeof(*serial_buf),
5368 				     /*evpd*/TRUE,
5369 				     SVPD_UNIT_SERIAL_NUMBER,
5370 				     SSD_MIN_SIZE,
5371 				     /*timeout*/60 * 1000);
5372 			break;
5373 		}
5374 		/*
5375 		 * We'll have to do without, let our probedone
5376 		 * routine finish up for us.
5377 		 */
5378 		start_ccb->csio.data_ptr = NULL;
5379 		probedone(periph, start_ccb);
5380 		return;
5381 	}
5382 	}
5383 	xpt_action(start_ccb);
5384 }
5385 
5386 static void
5387 proberequestdefaultnegotiation(struct cam_periph *periph)
5388 {
5389 	struct ccb_trans_settings cts;
5390 
5391 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5392 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5393 	cts.flags = CCB_TRANS_USER_SETTINGS;
5394 	xpt_action((union ccb *)&cts);
5395 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5396 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5397 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5398 	xpt_action((union ccb *)&cts);
5399 }
5400 
5401 static void
5402 probedone(struct cam_periph *periph, union ccb *done_ccb)
5403 {
5404 	probe_softc *softc;
5405 	struct cam_path *path;
5406 	u_int32_t  priority;
5407 
5408 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5409 
5410 	softc = (probe_softc *)periph->softc;
5411 	path = done_ccb->ccb_h.path;
5412 	priority = done_ccb->ccb_h.pinfo.priority;
5413 
5414 	switch (softc->action) {
5415 	case PROBE_TUR:
5416 	{
5417 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5418 
5419 			if (cam_periph_error(done_ccb, 0,
5420 					     SF_NO_PRINT, NULL) == ERESTART)
5421 				return;
5422 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5423 				/* Don't wedge the queue */
5424 				xpt_release_devq(done_ccb->ccb_h.path,
5425 						 /*count*/1,
5426 						 /*run_queue*/TRUE);
5427 		}
5428 		softc->action = PROBE_INQUIRY;
5429 		xpt_release_ccb(done_ccb);
5430 		xpt_schedule(periph, priority);
5431 		return;
5432 	}
5433 	case PROBE_INQUIRY:
5434 	case PROBE_FULL_INQUIRY:
5435 	{
5436 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5437 			struct scsi_inquiry_data *inq_buf;
5438 			u_int8_t periph_qual;
5439 			u_int8_t periph_dtype;
5440 
5441 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5442 			inq_buf = &path->device->inq_data;
5443 
5444 			periph_qual = SID_QUAL(inq_buf);
5445 			periph_dtype = SID_TYPE(inq_buf);
5446 
5447 			if (periph_dtype != T_NODEVICE) {
5448 				switch(periph_qual) {
5449 				case SID_QUAL_LU_CONNECTED:
5450 				{
5451 					u_int8_t alen;
5452 
5453 					/*
5454 					 * We conservatively request only
5455 					 * SHORT_INQUIRY_LEN bytes of inquiry
5456 					 * information during our first try
5457 					 * at sending an INQUIRY. If the device
5458 					 * has more information to give,
5459 					 * perform a second request specifying
5460 					 * the amount of information the device
5461 					 * is willing to give.
5462 					 */
5463 					alen = inq_buf->additional_length;
5464 					if (softc->action == PROBE_INQUIRY
5465 					 && alen > (SHORT_INQUIRY_LENGTH - 4)) {
5466 						softc->action =
5467 						    PROBE_FULL_INQUIRY;
5468 						xpt_release_ccb(done_ccb);
5469 						xpt_schedule(periph, priority);
5470 						return;
5471 					}
5472 
5473 					xpt_find_quirk(path->device);
5474 
5475 					if ((inq_buf->flags & SID_CmdQue) != 0)
5476 						softc->action =
5477 						    PROBE_MODE_SENSE;
5478 					else
5479 						softc->action =
5480 						    PROBE_SERIAL_NUM;
5481 
5482 					path->device->flags &=
5483 						~CAM_DEV_UNCONFIGURED;
5484 
5485 					xpt_release_ccb(done_ccb);
5486 					xpt_schedule(periph, priority);
5487 					return;
5488 				}
5489 				default:
5490 					break;
5491 				}
5492 			}
5493 		} else if (cam_periph_error(done_ccb, 0,
5494 					    done_ccb->ccb_h.target_lun > 0
5495 					    ? SF_RETRY_UA|SF_QUIET_IR
5496 					    : SF_RETRY_UA,
5497 					    &softc->saved_ccb) == ERESTART) {
5498 			return;
5499 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5500 			/* Don't wedge the queue */
5501 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5502 					 /*run_queue*/TRUE);
5503 		}
5504 		/*
5505 		 * If we get to this point, we got an error status back
5506 		 * from the inquiry and the error status doesn't require
5507 		 * automatically retrying the command.  Therefore, the
5508 		 * inquiry failed.  If we had inquiry information before
5509 		 * for this device, but this latest inquiry command failed,
5510 		 * the device has probably gone away.  If this device isn't
5511 		 * already marked unconfigured, notify the peripheral
5512 		 * drivers that this device is no more.
5513 		 */
5514 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5515 			/* Send the async notification. */
5516 			xpt_async(AC_LOST_DEVICE, path, NULL);
5517 
5518 		xpt_release_ccb(done_ccb);
5519 		break;
5520 	}
5521 	case PROBE_MODE_SENSE:
5522 	{
5523 		struct ccb_scsiio *csio;
5524 		struct scsi_mode_header_6 *mode_hdr;
5525 
5526 		csio = &done_ccb->csio;
5527 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5528 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5529 			struct scsi_control_page *page;
5530 			u_int8_t *offset;
5531 
5532 			offset = ((u_int8_t *)&mode_hdr[1])
5533 			    + mode_hdr->blk_desc_len;
5534 			page = (struct scsi_control_page *)offset;
5535 			path->device->queue_flags = page->queue_flags;
5536 		} else if (cam_periph_error(done_ccb, 0,
5537 					    SF_RETRY_UA|SF_NO_PRINT,
5538 					    &softc->saved_ccb) == ERESTART) {
5539 			return;
5540 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5541 			/* Don't wedge the queue */
5542 			xpt_release_devq(done_ccb->ccb_h.path,
5543 					 /*count*/1, /*run_queue*/TRUE);
5544 		}
5545 		xpt_release_ccb(done_ccb);
5546 		free(mode_hdr, M_TEMP);
5547 		softc->action = PROBE_SERIAL_NUM;
5548 		xpt_schedule(periph, priority);
5549 		return;
5550 	}
5551 	case PROBE_SERIAL_NUM:
5552 	{
5553 		struct ccb_scsiio *csio;
5554 		struct scsi_vpd_unit_serial_number *serial_buf;
5555 		u_int32_t  priority;
5556 		int changed;
5557 		int have_serialnum;
5558 
5559 		changed = 1;
5560 		have_serialnum = 0;
5561 		csio = &done_ccb->csio;
5562 		priority = done_ccb->ccb_h.pinfo.priority;
5563 		serial_buf =
5564 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5565 
5566 		/* Clean up from previous instance of this device */
5567 		if (path->device->serial_num != NULL) {
5568 			free(path->device->serial_num, M_DEVBUF);
5569 			path->device->serial_num = NULL;
5570 			path->device->serial_num_len = 0;
5571 		}
5572 
5573 		if (serial_buf == NULL) {
5574 			/*
5575 			 * Don't process the command as it was never sent
5576 			 */
5577 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5578 			&& (serial_buf->length > 0)) {
5579 
5580 			have_serialnum = 1;
5581 			path->device->serial_num =
5582 				(u_int8_t *)malloc((serial_buf->length + 1),
5583 						   M_DEVBUF, M_NOWAIT);
5584 			if (path->device->serial_num != NULL) {
5585 				bcopy(serial_buf->serial_num,
5586 				      path->device->serial_num,
5587 				      serial_buf->length);
5588 				path->device->serial_num_len =
5589 				    serial_buf->length;
5590 				path->device->serial_num[serial_buf->length]
5591 				    = '\0';
5592 			}
5593 		} else if (cam_periph_error(done_ccb, 0,
5594 					    SF_RETRY_UA|SF_NO_PRINT,
5595 					    &softc->saved_ccb) == ERESTART) {
5596 			return;
5597 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5598 			/* Don't wedge the queue */
5599 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5600 					 /*run_queue*/TRUE);
5601 		}
5602 
5603 		/*
5604 		 * Let's see if we have seen this device before.
5605 		 */
5606 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5607 			MD5_CTX context;
5608 			u_int8_t digest[16];
5609 
5610 			MD5Init(&context);
5611 
5612 			MD5Update(&context,
5613 				  (unsigned char *)&path->device->inq_data,
5614 				  sizeof(struct scsi_inquiry_data));
5615 
5616 			if (have_serialnum)
5617 				MD5Update(&context, serial_buf->serial_num,
5618 					  serial_buf->length);
5619 
5620 			MD5Final(digest, &context);
5621 			if (bcmp(softc->digest, digest, 16) == 0)
5622 				changed = 0;
5623 
5624 			/*
5625 			 * XXX Do we need to do a TUR in order to ensure
5626 			 *     that the device really hasn't changed???
5627 			 */
5628 			if ((changed != 0)
5629 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5630 				xpt_async(AC_LOST_DEVICE, path, NULL);
5631 		}
5632 		if (serial_buf != NULL)
5633 			free(serial_buf, M_TEMP);
5634 
5635 		if (changed != 0) {
5636 			/*
5637 			 * Now that we have all the necessary
5638 			 * information to safely perform transfer
5639 			 * negotiations... Controllers don't perform
5640 			 * any negotiation or tagged queuing until
5641 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5642 			 * received.  So, on a new device, just retreive
5643 			 * the user settings, and set them as the current
5644 			 * settings to set the device up.
5645 			 */
5646 			proberequestdefaultnegotiation(periph);
5647 			xpt_release_ccb(done_ccb);
5648 
5649 			/*
5650 			 * Perform a TUR to allow the controller to
5651 			 * perform any necessary transfer negotiation.
5652 			 */
5653 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5654 			xpt_schedule(periph, priority);
5655 			return;
5656 		}
5657 		xpt_release_ccb(done_ccb);
5658 		break;
5659 	}
5660 	case PROBE_TUR_FOR_NEGOTIATION:
5661 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5662 			/* Don't wedge the queue */
5663 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5664 					 /*run_queue*/TRUE);
5665 		}
5666 
5667 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5668 
5669 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5670 			/* Inform the XPT that a new device has been found */
5671 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5672 			xpt_action(done_ccb);
5673 
5674 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5675 		}
5676 		xpt_release_ccb(done_ccb);
5677 		break;
5678 	}
5679 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5680 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5681 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5682 	xpt_done(done_ccb);
5683 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5684 		cam_periph_invalidate(periph);
5685 		cam_periph_release(periph);
5686 	} else {
5687 		probeschedule(periph);
5688 	}
5689 }
5690 
5691 static void
5692 probecleanup(struct cam_periph *periph)
5693 {
5694 	free(periph->softc, M_TEMP);
5695 }
5696 
5697 static void
5698 xpt_find_quirk(struct cam_ed *device)
5699 {
5700 	caddr_t	match;
5701 
5702 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5703 			       (caddr_t)xpt_quirk_table,
5704 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5705 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5706 
5707 	if (match == NULL)
5708 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5709 
5710 	device->quirk = (struct xpt_quirk_entry *)match;
5711 }
5712 
5713 static void
5714 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5715 			  int async_update)
5716 {
5717 	struct	cam_sim *sim;
5718 	int	qfrozen;
5719 
5720 	sim = cts->ccb_h.path->bus->sim;
5721 	if (async_update == FALSE) {
5722 		struct	scsi_inquiry_data *inq_data;
5723 		struct	ccb_pathinq cpi;
5724 		struct	ccb_trans_settings cur_cts;
5725 
5726 		if (device == NULL) {
5727 			cts->ccb_h.status = CAM_PATH_INVALID;
5728 			xpt_done((union ccb *)cts);
5729 			return;
5730 		}
5731 
5732 		/*
5733 		 * Perform sanity checking against what the
5734 		 * controller and device can do.
5735 		 */
5736 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5737 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5738 		xpt_action((union ccb *)&cpi);
5739 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5740 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5741 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5742 		xpt_action((union ccb *)&cur_cts);
5743 		inq_data = &device->inq_data;
5744 
5745 		/* Fill in any gaps in what the user gave us */
5746 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5747 			cts->sync_period = cur_cts.sync_period;
5748 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5749 			cts->sync_offset = cur_cts.sync_offset;
5750 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5751 			cts->bus_width = cur_cts.bus_width;
5752 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5753 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5754 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5755 		}
5756 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5757 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5758 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5759 		}
5760 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5761 		  && (inq_data->flags & SID_Sync) == 0)
5762 		 || (cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
5763 			/* Force async */
5764 			cts->sync_period = 0;
5765 			cts->sync_offset = 0;
5766 		}
5767 
5768 		switch (cts->bus_width) {
5769 		case MSG_EXT_WDTR_BUS_32_BIT:
5770 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5771 			  || (inq_data->flags & SID_WBus32) != 0)
5772 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5773 				break;
5774 			/* Fall Through to 16-bit */
5775 		case MSG_EXT_WDTR_BUS_16_BIT:
5776 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5777 			  || (inq_data->flags & SID_WBus16) != 0)
5778 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5779 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5780 				break;
5781 			}
5782 			/* Fall Through to 8-bit */
5783 		default: /* New bus width?? */
5784 		case MSG_EXT_WDTR_BUS_8_BIT:
5785 			/* All targets can do this */
5786 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5787 			break;
5788 		}
5789 
5790 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5791 			/*
5792 			 * Can't tag queue without disconnection.
5793 			 */
5794 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5795 			cts->valid |= CCB_TRANS_TQ_VALID;
5796 		}
5797 
5798 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5799 		 || (inq_data->flags & SID_CmdQue) == 0
5800 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5801 		 || (device->quirk->mintags == 0)) {
5802 			/*
5803 			 * Can't tag on hardware that doesn't support,
5804 			 * doesn't have it enabled, or has broken tag support.
5805 			 */
5806 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5807 		}
5808 	}
5809 
5810 	qfrozen = FALSE;
5811 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0
5812 	 && (async_update == FALSE)) {
5813 		int device_tagenb;
5814 
5815 		/*
5816 		 * If we are transitioning from tags to no-tags or
5817 		 * vice-versa, we need to carefully freeze and restart
5818 		 * the queue so that we don't overlap tagged and non-tagged
5819 		 * commands.  We also temporarily stop tags if there is
5820 		 * a change in transfer negotiation settings to allow
5821 		 * "tag-less" negotiation.
5822 		 */
5823 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5824 		 || (device->inq_flags & SID_CmdQue) != 0)
5825 			device_tagenb = TRUE;
5826 		else
5827 			device_tagenb = FALSE;
5828 
5829 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5830 		  && device_tagenb == FALSE)
5831 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5832 		  && device_tagenb == TRUE)) {
5833 
5834 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5835 				/*
5836 				 * Delay change to use tags until after a
5837 				 * few commands have gone to this device so
5838 				 * the controller has time to perform transfer
5839 				 * negotiations without tagged messages getting
5840 				 * in the way.
5841 				 */
5842 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5843 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5844 			} else {
5845 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5846 				qfrozen = TRUE;
5847 		  		device->inq_flags &= ~SID_CmdQue;
5848 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5849 						    sim->max_dev_openings);
5850 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5851 				device->tag_delay_count = 0;
5852 			}
5853 		}
5854 	}
5855 
5856 	if (async_update == FALSE) {
5857 		/*
5858 		 * If we are currently performing tagged transactions to
5859 		 * this device and want to change its negotiation parameters,
5860 		 * go non-tagged for a bit to give the controller a chance to
5861 		 * negotiate unhampered by tag messages.
5862 		 */
5863 		if ((device->inq_flags & SID_CmdQue) != 0
5864 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5865 				   CCB_TRANS_SYNC_OFFSET_VALID|
5866 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5867 			xpt_toggle_tags(cts->ccb_h.path);
5868 
5869 		(*(sim->sim_action))(sim, (union ccb *)cts);
5870 	}
5871 
5872 	if (qfrozen) {
5873 		struct ccb_relsim crs;
5874 
5875 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5876 			      /*priority*/1);
5877 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5878 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5879 		crs.openings
5880 		    = crs.release_timeout
5881 		    = crs.qfrozen_cnt
5882 		    = 0;
5883 		xpt_action((union ccb *)&crs);
5884 	}
5885 }
5886 
5887 static void
5888 xpt_toggle_tags(struct cam_path *path)
5889 {
5890 	struct cam_ed *dev;
5891 
5892 	/*
5893 	 * Give controllers a chance to renegotiate
5894 	 * before starting tag operations.  We
5895 	 * "toggle" tagged queuing off then on
5896 	 * which causes the tag enable command delay
5897 	 * counter to come into effect.
5898 	 */
5899 	dev = path->device;
5900 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5901 	 || ((dev->inq_flags & SID_CmdQue) != 0
5902  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5903 		struct ccb_trans_settings cts;
5904 
5905 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5906 		cts.flags = 0;
5907 		cts.valid = CCB_TRANS_TQ_VALID;
5908 		xpt_set_transfer_settings(&cts, path->device,
5909 					  /*async_update*/TRUE);
5910 		cts.flags = CCB_TRANS_TAG_ENB;
5911 		xpt_set_transfer_settings(&cts, path->device,
5912 					  /*async_update*/TRUE);
5913 	}
5914 }
5915 
5916 static void
5917 xpt_start_tags(struct cam_path *path)
5918 {
5919 	struct ccb_relsim crs;
5920 	struct cam_ed *device;
5921 	struct cam_sim *sim;
5922 	int    newopenings;
5923 
5924 	device = path->device;
5925 	sim = path->bus->sim;
5926 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5927 	xpt_freeze_devq(path, /*count*/1);
5928 	device->inq_flags |= SID_CmdQue;
5929 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
5930 	xpt_dev_ccbq_resize(path, newopenings);
5931 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
5932 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5933 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5934 	crs.openings
5935 	    = crs.release_timeout
5936 	    = crs.qfrozen_cnt
5937 	    = 0;
5938 	xpt_action((union ccb *)&crs);
5939 }
5940 
5941 static int busses_to_config;
5942 static int busses_to_reset;
5943 
5944 static int
5945 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
5946 {
5947 	if (bus->path_id != CAM_XPT_PATH_ID) {
5948 		struct cam_path path;
5949 		struct ccb_pathinq cpi;
5950 		int can_negotiate;
5951 
5952 		busses_to_config++;
5953 		xpt_compile_path(&path, NULL, bus->path_id,
5954 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5955 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
5956 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5957 		xpt_action((union ccb *)&cpi);
5958 		can_negotiate = cpi.hba_inquiry;
5959 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5960 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
5961 		 && can_negotiate)
5962 			busses_to_reset++;
5963 		xpt_release_path(&path);
5964 	}
5965 
5966 	return(1);
5967 }
5968 
5969 static int
5970 xptconfigfunc(struct cam_eb *bus, void *arg)
5971 {
5972 	struct	cam_path *path;
5973 	union	ccb *work_ccb;
5974 
5975 	if (bus->path_id != CAM_XPT_PATH_ID) {
5976 		cam_status status;
5977 		int can_negotiate;
5978 
5979 		work_ccb = xpt_alloc_ccb();
5980 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
5981 					      CAM_TARGET_WILDCARD,
5982 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
5983 			printf("xptconfigfunc: xpt_create_path failed with "
5984 			       "status %#x for bus %d\n", status, bus->path_id);
5985 			printf("xptconfigfunc: halting bus configuration\n");
5986 			xpt_free_ccb(work_ccb);
5987 			busses_to_config--;
5988 			xpt_finishconfig(xpt_periph, NULL);
5989 			return(0);
5990 		}
5991 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
5992 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5993 		xpt_action(work_ccb);
5994 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5995 			printf("xptconfigfunc: CPI failed on bus %d "
5996 			       "with status %d\n", bus->path_id,
5997 			       work_ccb->ccb_h.status);
5998 			xpt_finishconfig(xpt_periph, work_ccb);
5999 			return(1);
6000 		}
6001 
6002 		can_negotiate = work_ccb->cpi.hba_inquiry;
6003 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6004 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6005 		 && (can_negotiate != 0)) {
6006 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6007 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6008 			work_ccb->ccb_h.cbfcnp = NULL;
6009 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6010 				  ("Resetting Bus\n"));
6011 			xpt_action(work_ccb);
6012 			xpt_finishconfig(xpt_periph, work_ccb);
6013 		} else {
6014 			/* Act as though we performed a successful BUS RESET */
6015 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6016 			xpt_finishconfig(xpt_periph, work_ccb);
6017 		}
6018 	}
6019 
6020 	return(1);
6021 }
6022 
6023 static void
6024 xpt_config(void *arg)
6025 {
6026 	/* Now that interrupts are enabled, go find our devices */
6027 
6028 #ifdef CAMDEBUG
6029 	/* Setup debugging flags and path */
6030 #ifdef CAM_DEBUG_FLAGS
6031 	cam_dflags = CAM_DEBUG_FLAGS;
6032 #else /* !CAM_DEBUG_FLAGS */
6033 	cam_dflags = CAM_DEBUG_NONE;
6034 #endif /* CAM_DEBUG_FLAGS */
6035 #ifdef CAM_DEBUG_BUS
6036 	if (cam_dflags != CAM_DEBUG_NONE) {
6037 		if (xpt_create_path(&cam_dpath, xpt_periph,
6038 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6039 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6040 			printf("xpt_config: xpt_create_path() failed for debug"
6041 			       " target %d:%d:%d, debugging disabled\n",
6042 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6043 			cam_dflags = CAM_DEBUG_NONE;
6044 		}
6045 	} else
6046 		cam_dpath = NULL;
6047 #else /* !CAM_DEBUG_BUS */
6048 	cam_dpath = NULL;
6049 #endif /* CAM_DEBUG_BUS */
6050 #endif /* CAMDEBUG */
6051 
6052 	/*
6053 	 * Scan all installed busses.
6054 	 */
6055 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6056 
6057 	if (busses_to_config == 0) {
6058 		/* Call manually because we don't have any busses */
6059 		xpt_finishconfig(xpt_periph, NULL);
6060 	} else  {
6061 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6062 			printf("Waiting %d seconds for SCSI "
6063 			       "devices to settle\n", SCSI_DELAY/1000);
6064 		}
6065 		xpt_for_all_busses(xptconfigfunc, NULL);
6066 	}
6067 }
6068 
6069 /*
6070  * If the given device only has one peripheral attached to it, and if that
6071  * peripheral is the passthrough driver, announce it.  This insures that the
6072  * user sees some sort of announcement for every peripheral in their system.
6073  */
6074 static int
6075 xptpassannouncefunc(struct cam_ed *device, void *arg)
6076 {
6077 	struct cam_periph *periph;
6078 	int i;
6079 
6080 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6081 	     periph = SLIST_NEXT(periph, periph_links), i++);
6082 
6083 	periph = SLIST_FIRST(&device->periphs);
6084 	if ((i == 1)
6085 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6086 		xpt_announce_periph(periph, NULL);
6087 
6088 	return(1);
6089 }
6090 
6091 static void
6092 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6093 {
6094 	struct	periph_driver **p_drv;
6095 	int	i;
6096 
6097 	if (done_ccb != NULL) {
6098 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6099 			  ("xpt_finishconfig\n"));
6100 		switch(done_ccb->ccb_h.func_code) {
6101 		case XPT_RESET_BUS:
6102 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6103 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6104 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6105 				xpt_action(done_ccb);
6106 				return;
6107 			}
6108 			/* FALLTHROUGH */
6109 		case XPT_SCAN_BUS:
6110 		default:
6111 			xpt_free_path(done_ccb->ccb_h.path);
6112 			busses_to_config--;
6113 			break;
6114 		}
6115 	}
6116 
6117 	if (busses_to_config == 0) {
6118 		/* Register all the peripheral drivers */
6119 		/* XXX This will have to change when we have loadable modules */
6120 		p_drv = (struct periph_driver **)periphdriver_set.ls_items;
6121 		for (i = 0; p_drv[i] != NULL; i++) {
6122 			(*p_drv[i]->init)();
6123 		}
6124 
6125 		/*
6126 		 * Check for devices with no "standard" peripheral driver
6127 		 * attached.  For any devices like that, announce the
6128 		 * passthrough driver so the user will see something.
6129 		 */
6130 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6131 
6132 		/* Release our hook so that the boot can continue. */
6133 		config_intrhook_disestablish(xpt_config_hook);
6134 		free(xpt_config_hook, M_TEMP);
6135 		xpt_config_hook = NULL;
6136 	}
6137 	if (done_ccb != NULL)
6138 		xpt_free_ccb(done_ccb);
6139 }
6140 
6141 static void
6142 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6143 {
6144 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6145 
6146 	switch (work_ccb->ccb_h.func_code) {
6147 	/* Common cases first */
6148 	case XPT_PATH_INQ:		/* Path routing inquiry */
6149 	{
6150 		struct ccb_pathinq *cpi;
6151 
6152 		cpi = &work_ccb->cpi;
6153 		cpi->version_num = 1; /* XXX??? */
6154 		cpi->hba_inquiry = 0;
6155 		cpi->target_sprt = 0;
6156 		cpi->hba_misc = 0;
6157 		cpi->hba_eng_cnt = 0;
6158 		cpi->max_target = 0;
6159 		cpi->max_lun = 0;
6160 		cpi->initiator_id = 0;
6161 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6162 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6163 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6164 		cpi->unit_number = sim->unit_number;
6165 		cpi->bus_id = sim->bus_id;
6166 		cpi->base_transfer_speed = 0;
6167 		cpi->ccb_h.status = CAM_REQ_CMP;
6168 		xpt_done(work_ccb);
6169 		break;
6170 	}
6171 	default:
6172 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6173 		xpt_done(work_ccb);
6174 		break;
6175 	}
6176 }
6177 
6178 /*
6179  * The xpt as a "controller" has no interrupt sources, so polling
6180  * is a no-op.
6181  */
6182 static void
6183 xptpoll(struct cam_sim *sim)
6184 {
6185 }
6186 
6187 /*
6188  * Should only be called by the machine interrupt dispatch routines,
6189  * so put these prototypes here instead of in the header.
6190  */
6191 
6192 static void
6193 swi_camnet(void)
6194 {
6195 	camisr(&cam_netq);
6196 }
6197 
6198 static void
6199 swi_cambio(void)
6200 {
6201 	camisr(&cam_bioq);
6202 }
6203 
6204 static void
6205 camisr(cam_isrq_t *queue)
6206 {
6207 	int	s;
6208 	struct	ccb_hdr *ccb_h;
6209 
6210 	s = splcam();
6211 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6212 		int	runq;
6213 
6214 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6215 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6216 		splx(s);
6217 
6218 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6219 			  ("camisr"));
6220 
6221 		runq = FALSE;
6222 
6223 		if (ccb_h->flags & CAM_HIGH_POWER) {
6224 			struct highpowerlist	*hphead;
6225 			struct cam_ed		*device;
6226 			union ccb		*send_ccb;
6227 
6228 			hphead = &highpowerq;
6229 
6230 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6231 
6232 			/*
6233 			 * Increment the count since this command is done.
6234 			 */
6235 			num_highpower++;
6236 
6237 			/*
6238 			 * Any high powered commands queued up?
6239 			 */
6240 			if (send_ccb != NULL) {
6241 				device = send_ccb->ccb_h.path->device;
6242 
6243 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6244 
6245 				xpt_release_devq(send_ccb->ccb_h.path,
6246 						 /*count*/1, /*runqueue*/TRUE);
6247 			}
6248 		}
6249 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6250 			struct cam_ed *dev;
6251 
6252 			dev = ccb_h->path->device;
6253 
6254 			s = splcam();
6255 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6256 
6257 			ccb_h->path->bus->sim->devq->send_active--;
6258 			ccb_h->path->bus->sim->devq->send_openings++;
6259 			splx(s);
6260 
6261 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6262 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6263 			  && (dev->ccbq.dev_active == 0))) {
6264 
6265 				xpt_release_devq(ccb_h->path, /*count*/1,
6266 						 /*run_queue*/TRUE);
6267 			}
6268 
6269 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6270 			 && (--dev->tag_delay_count == 0))
6271 				xpt_start_tags(ccb_h->path);
6272 
6273 			if ((dev->ccbq.queue.entries > 0)
6274 			 && (dev->qfrozen_cnt == 0)
6275 			 && (device_is_send_queued(dev) == 0)) {
6276 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6277 							      dev);
6278 			}
6279 		}
6280 
6281 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6282 			xpt_release_simq(ccb_h->path->bus->sim,
6283 					 /*run_queue*/TRUE);
6284 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6285 			runq = FALSE;
6286 		}
6287 
6288 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6289 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6290 			xpt_release_devq(ccb_h->path, /*count*/1,
6291 					 /*run_queue*/TRUE);
6292 			ccb_h->status &= ~CAM_DEV_QFRZN;
6293 		} else if (runq) {
6294 			xpt_run_dev_sendq(ccb_h->path->bus);
6295 		}
6296 
6297 		/* Call the peripheral driver's callback */
6298 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6299 
6300 		/* Raise IPL for while test */
6301 		s = splcam();
6302 	}
6303 	splx(s);
6304 }
6305