xref: /freebsd/sys/cam/cam_xpt.c (revision dadef94c7a762d05890e2891bc4a7d1dfe0cf758)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/reboot.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 
52 #ifdef PC98
53 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 
67 #include <cam/scsi/scsi_all.h>
68 #include <cam/scsi/scsi_message.h>
69 #include <cam/scsi/scsi_pass.h>
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 #include "opt_cam.h"
72 
73 /*
74  * This is the maximum number of high powered commands (e.g. start unit)
75  * that can be outstanding at a particular time.
76  */
77 #ifndef CAM_MAX_HIGHPOWER
78 #define CAM_MAX_HIGHPOWER  4
79 #endif
80 
81 /* Datastructures internal to the xpt layer */
82 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
83 
84 /* Object for defering XPT actions to a taskqueue */
85 struct xpt_task {
86 	struct task	task;
87 	void		*data1;
88 	uintptr_t	data2;
89 };
90 
91 typedef enum {
92 	XPT_FLAG_OPEN		= 0x01
93 } xpt_flags;
94 
95 struct xpt_softc {
96 	xpt_flags		flags;
97 	u_int32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
101 	int			num_highpower;
102 
103 	/* queue for handling async rescan requests. */
104 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 	int buses_to_config;
106 	int buses_config_done;
107 
108 	/* Registered busses */
109 	TAILQ_HEAD(,cam_eb)	xpt_busses;
110 	u_int			bus_generation;
111 
112 	struct intr_config_hook	*xpt_config_hook;
113 
114 	int			boot_delay;
115 	struct callout 		boot_callout;
116 
117 	struct mtx		xpt_topo_lock;
118 	struct mtx		xpt_lock;
119 };
120 
121 typedef enum {
122 	DM_RET_COPY		= 0x01,
123 	DM_RET_FLAG_MASK	= 0x0f,
124 	DM_RET_NONE		= 0x00,
125 	DM_RET_STOP		= 0x10,
126 	DM_RET_DESCEND		= 0x20,
127 	DM_RET_ERROR		= 0x30,
128 	DM_RET_ACTION_MASK	= 0xf0
129 } dev_match_ret;
130 
131 typedef enum {
132 	XPT_DEPTH_BUS,
133 	XPT_DEPTH_TARGET,
134 	XPT_DEPTH_DEVICE,
135 	XPT_DEPTH_PERIPH
136 } xpt_traverse_depth;
137 
138 struct xpt_traverse_config {
139 	xpt_traverse_depth	depth;
140 	void			*tr_func;
141 	void			*tr_arg;
142 };
143 
144 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
145 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
146 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
147 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
148 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
149 
150 /* Transport layer configuration information */
151 static struct xpt_softc xsoftc;
152 
153 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
154 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
155            &xsoftc.boot_delay, 0, "Bus registration wait time");
156 static int	xpt_power_down = 0;
157 TUNABLE_INT("kern.cam.power_down", &xpt_power_down);
158 SYSCTL_INT(_kern_cam, OID_AUTO, power_down, CTLFLAG_RW,
159            &xpt_power_down, 0, "Power down devices on shutdown");
160 
161 /* Queues for our software interrupt handler */
162 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
163 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
164 static cam_simq_t cam_simq;
165 static struct mtx cam_simq_lock;
166 
167 /* Pointers to software interrupt handlers */
168 static void *cambio_ih;
169 
170 struct cam_periph *xpt_periph;
171 
172 static periph_init_t xpt_periph_init;
173 
174 static struct periph_driver xpt_driver =
175 {
176 	xpt_periph_init, "xpt",
177 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
178 	CAM_PERIPH_DRV_EARLY
179 };
180 
181 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
182 
183 static d_open_t xptopen;
184 static d_close_t xptclose;
185 static d_ioctl_t xptioctl;
186 
187 static struct cdevsw xpt_cdevsw = {
188 	.d_version =	D_VERSION,
189 	.d_flags =	0,
190 	.d_open =	xptopen,
191 	.d_close =	xptclose,
192 	.d_ioctl =	xptioctl,
193 	.d_name =	"xpt",
194 };
195 
196 /* Storage for debugging datastructures */
197 #ifdef	CAMDEBUG
198 struct cam_path *cam_dpath;
199 #ifdef	CAM_DEBUG_FLAGS
200 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
201 #else
202 u_int32_t cam_dflags = CAM_DEBUG_NONE;
203 #endif
204 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
205 SYSCTL_INT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
206 	&cam_dflags, 0, "Cam Debug Flags");
207 u_int32_t cam_debug_delay;
208 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
209 SYSCTL_INT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
210 	&cam_debug_delay, 0, "Cam Debug Flags");
211 #endif
212 
213 /* Our boot-time initialization hook */
214 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
215 
216 static moduledata_t cam_moduledata = {
217 	"cam",
218 	cam_module_event_handler,
219 	NULL
220 };
221 
222 static int	xpt_init(void *);
223 
224 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
225 MODULE_VERSION(cam, 1);
226 
227 
228 static void		xpt_async_bcast(struct async_list *async_head,
229 					u_int32_t async_code,
230 					struct cam_path *path,
231 					void *async_arg);
232 static path_id_t xptnextfreepathid(void);
233 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
234 static union ccb *xpt_get_ccb(struct cam_ed *device);
235 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
236 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
237 static timeout_t xpt_release_devq_timeout;
238 static void	 xpt_release_simq_timeout(void *arg) __unused;
239 static void	 xpt_release_bus(struct cam_eb *bus);
240 static void	 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
241 		    u_int count, int run_queue);
242 static struct cam_et*
243 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
244 static void	 xpt_release_target(struct cam_et *target);
245 static struct cam_eb*
246 		 xpt_find_bus(path_id_t path_id);
247 static struct cam_et*
248 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
249 static struct cam_ed*
250 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
251 static void	 xpt_config(void *arg);
252 static xpt_devicefunc_t xptpassannouncefunc;
253 static void	 xpt_shutdown(void *arg, int howto);
254 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
255 static void	 xptpoll(struct cam_sim *sim);
256 static void	 camisr(void *);
257 static void	 camisr_runqueue(void *);
258 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
259 				    u_int num_patterns, struct cam_eb *bus);
260 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
261 				       u_int num_patterns,
262 				       struct cam_ed *device);
263 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
264 				       u_int num_patterns,
265 				       struct cam_periph *periph);
266 static xpt_busfunc_t	xptedtbusfunc;
267 static xpt_targetfunc_t	xptedttargetfunc;
268 static xpt_devicefunc_t	xptedtdevicefunc;
269 static xpt_periphfunc_t	xptedtperiphfunc;
270 static xpt_pdrvfunc_t	xptplistpdrvfunc;
271 static xpt_periphfunc_t	xptplistperiphfunc;
272 static int		xptedtmatch(struct ccb_dev_match *cdm);
273 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
274 static int		xptbustraverse(struct cam_eb *start_bus,
275 				       xpt_busfunc_t *tr_func, void *arg);
276 static int		xpttargettraverse(struct cam_eb *bus,
277 					  struct cam_et *start_target,
278 					  xpt_targetfunc_t *tr_func, void *arg);
279 static int		xptdevicetraverse(struct cam_et *target,
280 					  struct cam_ed *start_device,
281 					  xpt_devicefunc_t *tr_func, void *arg);
282 static int		xptperiphtraverse(struct cam_ed *device,
283 					  struct cam_periph *start_periph,
284 					  xpt_periphfunc_t *tr_func, void *arg);
285 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
286 					xpt_pdrvfunc_t *tr_func, void *arg);
287 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
288 					    struct cam_periph *start_periph,
289 					    xpt_periphfunc_t *tr_func,
290 					    void *arg);
291 static xpt_busfunc_t	xptdefbusfunc;
292 static xpt_targetfunc_t	xptdeftargetfunc;
293 static xpt_devicefunc_t	xptdefdevicefunc;
294 static xpt_periphfunc_t	xptdefperiphfunc;
295 static void		xpt_finishconfig_task(void *context, int pending);
296 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
297 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
298 					    void *arg);
299 static void		xpt_dev_async_default(u_int32_t async_code,
300 					      struct cam_eb *bus,
301 					      struct cam_et *target,
302 					      struct cam_ed *device,
303 					      void *async_arg);
304 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
305 						 struct cam_et *target,
306 						 lun_id_t lun_id);
307 static xpt_devicefunc_t	xptsetasyncfunc;
308 static xpt_busfunc_t	xptsetasyncbusfunc;
309 static cam_status	xptregister(struct cam_periph *periph,
310 				    void *arg);
311 static __inline int periph_is_queued(struct cam_periph *periph);
312 static __inline int device_is_alloc_queued(struct cam_ed *device);
313 static __inline int device_is_send_queued(struct cam_ed *device);
314 
315 static __inline int
316 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
317 {
318 	int retval;
319 
320 	if ((dev->drvq.entries > 0) &&
321 	    (dev->ccbq.devq_openings > 0) &&
322 	    (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
323 		CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
324 		/*
325 		 * The priority of a device waiting for CCB resources
326 		 * is that of the the highest priority peripheral driver
327 		 * enqueued.
328 		 */
329 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
330 					  &dev->alloc_ccb_entry.pinfo,
331 					  CAMQ_GET_PRIO(&dev->drvq));
332 	} else {
333 		retval = 0;
334 	}
335 
336 	return (retval);
337 }
338 
339 static __inline int
340 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
341 {
342 	int	retval;
343 
344 	if ((dev->ccbq.queue.entries > 0) &&
345 	    (dev->ccbq.dev_openings > 0) &&
346 	    (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
347 		/*
348 		 * The priority of a device waiting for controller
349 		 * resources is that of the the highest priority CCB
350 		 * enqueued.
351 		 */
352 		retval =
353 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
354 				     &dev->send_ccb_entry.pinfo,
355 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
356 	} else {
357 		retval = 0;
358 	}
359 	return (retval);
360 }
361 
362 static __inline int
363 periph_is_queued(struct cam_periph *periph)
364 {
365 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
366 }
367 
368 static __inline int
369 device_is_alloc_queued(struct cam_ed *device)
370 {
371 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
372 }
373 
374 static __inline int
375 device_is_send_queued(struct cam_ed *device)
376 {
377 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
378 }
379 
380 static void
381 xpt_periph_init()
382 {
383 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
384 }
385 
386 static void
387 xptdone(struct cam_periph *periph, union ccb *done_ccb)
388 {
389 	/* Caller will release the CCB */
390 	wakeup(&done_ccb->ccb_h.cbfcnp);
391 }
392 
393 static int
394 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
395 {
396 
397 	/*
398 	 * Only allow read-write access.
399 	 */
400 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
401 		return(EPERM);
402 
403 	/*
404 	 * We don't allow nonblocking access.
405 	 */
406 	if ((flags & O_NONBLOCK) != 0) {
407 		printf("%s: can't do nonblocking access\n", devtoname(dev));
408 		return(ENODEV);
409 	}
410 
411 	/* Mark ourselves open */
412 	mtx_lock(&xsoftc.xpt_lock);
413 	xsoftc.flags |= XPT_FLAG_OPEN;
414 	mtx_unlock(&xsoftc.xpt_lock);
415 
416 	return(0);
417 }
418 
419 static int
420 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
421 {
422 
423 	/* Mark ourselves closed */
424 	mtx_lock(&xsoftc.xpt_lock);
425 	xsoftc.flags &= ~XPT_FLAG_OPEN;
426 	mtx_unlock(&xsoftc.xpt_lock);
427 
428 	return(0);
429 }
430 
431 /*
432  * Don't automatically grab the xpt softc lock here even though this is going
433  * through the xpt device.  The xpt device is really just a back door for
434  * accessing other devices and SIMs, so the right thing to do is to grab
435  * the appropriate SIM lock once the bus/SIM is located.
436  */
437 static int
438 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
439 {
440 	int error;
441 
442 	error = 0;
443 
444 	switch(cmd) {
445 	/*
446 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
447 	 * to accept CCB types that don't quite make sense to send through a
448 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
449 	 * in the CAM spec.
450 	 */
451 	case CAMIOCOMMAND: {
452 		union ccb *ccb;
453 		union ccb *inccb;
454 		struct cam_eb *bus;
455 
456 		inccb = (union ccb *)addr;
457 
458 		bus = xpt_find_bus(inccb->ccb_h.path_id);
459 		if (bus == NULL)
460 			return (EINVAL);
461 
462 		switch (inccb->ccb_h.func_code) {
463 		case XPT_SCAN_BUS:
464 		case XPT_RESET_BUS:
465 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
466 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
467 				xpt_release_bus(bus);
468 				return (EINVAL);
469 			}
470 			break;
471 		case XPT_SCAN_TGT:
472 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
473 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
474 				xpt_release_bus(bus);
475 				return (EINVAL);
476 			}
477 			break;
478 		default:
479 			break;
480 		}
481 
482 		switch(inccb->ccb_h.func_code) {
483 		case XPT_SCAN_BUS:
484 		case XPT_RESET_BUS:
485 		case XPT_PATH_INQ:
486 		case XPT_ENG_INQ:
487 		case XPT_SCAN_LUN:
488 		case XPT_SCAN_TGT:
489 
490 			ccb = xpt_alloc_ccb();
491 
492 			CAM_SIM_LOCK(bus->sim);
493 
494 			/*
495 			 * Create a path using the bus, target, and lun the
496 			 * user passed in.
497 			 */
498 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
499 					    inccb->ccb_h.path_id,
500 					    inccb->ccb_h.target_id,
501 					    inccb->ccb_h.target_lun) !=
502 					    CAM_REQ_CMP){
503 				error = EINVAL;
504 				CAM_SIM_UNLOCK(bus->sim);
505 				xpt_free_ccb(ccb);
506 				break;
507 			}
508 			/* Ensure all of our fields are correct */
509 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
510 				      inccb->ccb_h.pinfo.priority);
511 			xpt_merge_ccb(ccb, inccb);
512 			ccb->ccb_h.cbfcnp = xptdone;
513 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
514 			bcopy(ccb, inccb, sizeof(union ccb));
515 			xpt_free_path(ccb->ccb_h.path);
516 			xpt_free_ccb(ccb);
517 			CAM_SIM_UNLOCK(bus->sim);
518 			break;
519 
520 		case XPT_DEBUG: {
521 			union ccb ccb;
522 
523 			/*
524 			 * This is an immediate CCB, so it's okay to
525 			 * allocate it on the stack.
526 			 */
527 
528 			CAM_SIM_LOCK(bus->sim);
529 
530 			/*
531 			 * Create a path using the bus, target, and lun the
532 			 * user passed in.
533 			 */
534 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
535 					    inccb->ccb_h.path_id,
536 					    inccb->ccb_h.target_id,
537 					    inccb->ccb_h.target_lun) !=
538 					    CAM_REQ_CMP){
539 				error = EINVAL;
540 				CAM_SIM_UNLOCK(bus->sim);
541 				break;
542 			}
543 			/* Ensure all of our fields are correct */
544 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
545 				      inccb->ccb_h.pinfo.priority);
546 			xpt_merge_ccb(&ccb, inccb);
547 			ccb.ccb_h.cbfcnp = xptdone;
548 			xpt_action(&ccb);
549 			CAM_SIM_UNLOCK(bus->sim);
550 			bcopy(&ccb, inccb, sizeof(union ccb));
551 			xpt_free_path(ccb.ccb_h.path);
552 			break;
553 
554 		}
555 		case XPT_DEV_MATCH: {
556 			struct cam_periph_map_info mapinfo;
557 			struct cam_path *old_path;
558 
559 			/*
560 			 * We can't deal with physical addresses for this
561 			 * type of transaction.
562 			 */
563 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
564 				error = EINVAL;
565 				break;
566 			}
567 
568 			/*
569 			 * Save this in case the caller had it set to
570 			 * something in particular.
571 			 */
572 			old_path = inccb->ccb_h.path;
573 
574 			/*
575 			 * We really don't need a path for the matching
576 			 * code.  The path is needed because of the
577 			 * debugging statements in xpt_action().  They
578 			 * assume that the CCB has a valid path.
579 			 */
580 			inccb->ccb_h.path = xpt_periph->path;
581 
582 			bzero(&mapinfo, sizeof(mapinfo));
583 
584 			/*
585 			 * Map the pattern and match buffers into kernel
586 			 * virtual address space.
587 			 */
588 			error = cam_periph_mapmem(inccb, &mapinfo);
589 
590 			if (error) {
591 				inccb->ccb_h.path = old_path;
592 				break;
593 			}
594 
595 			/*
596 			 * This is an immediate CCB, we can send it on directly.
597 			 */
598 			xpt_action(inccb);
599 
600 			/*
601 			 * Map the buffers back into user space.
602 			 */
603 			cam_periph_unmapmem(inccb, &mapinfo);
604 
605 			inccb->ccb_h.path = old_path;
606 
607 			error = 0;
608 			break;
609 		}
610 		default:
611 			error = ENOTSUP;
612 			break;
613 		}
614 		xpt_release_bus(bus);
615 		break;
616 	}
617 	/*
618 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
619 	 * with the periphal driver name and unit name filled in.  The other
620 	 * fields don't really matter as input.  The passthrough driver name
621 	 * ("pass"), and unit number are passed back in the ccb.  The current
622 	 * device generation number, and the index into the device peripheral
623 	 * driver list, and the status are also passed back.  Note that
624 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
625 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
626 	 * (or rather should be) impossible for the device peripheral driver
627 	 * list to change since we look at the whole thing in one pass, and
628 	 * we do it with lock protection.
629 	 *
630 	 */
631 	case CAMGETPASSTHRU: {
632 		union ccb *ccb;
633 		struct cam_periph *periph;
634 		struct periph_driver **p_drv;
635 		char   *name;
636 		u_int unit;
637 		u_int cur_generation;
638 		int base_periph_found;
639 		int splbreaknum;
640 
641 		ccb = (union ccb *)addr;
642 		unit = ccb->cgdl.unit_number;
643 		name = ccb->cgdl.periph_name;
644 		/*
645 		 * Every 100 devices, we want to drop our lock protection to
646 		 * give the software interrupt handler a chance to run.
647 		 * Most systems won't run into this check, but this should
648 		 * avoid starvation in the software interrupt handler in
649 		 * large systems.
650 		 */
651 		splbreaknum = 100;
652 
653 		ccb = (union ccb *)addr;
654 
655 		base_periph_found = 0;
656 
657 		/*
658 		 * Sanity check -- make sure we don't get a null peripheral
659 		 * driver name.
660 		 */
661 		if (*ccb->cgdl.periph_name == '\0') {
662 			error = EINVAL;
663 			break;
664 		}
665 
666 		/* Keep the list from changing while we traverse it */
667 		mtx_lock(&xsoftc.xpt_topo_lock);
668 ptstartover:
669 		cur_generation = xsoftc.xpt_generation;
670 
671 		/* first find our driver in the list of drivers */
672 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
673 			if (strcmp((*p_drv)->driver_name, name) == 0)
674 				break;
675 
676 		if (*p_drv == NULL) {
677 			mtx_unlock(&xsoftc.xpt_topo_lock);
678 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
679 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
680 			*ccb->cgdl.periph_name = '\0';
681 			ccb->cgdl.unit_number = 0;
682 			error = ENOENT;
683 			break;
684 		}
685 
686 		/*
687 		 * Run through every peripheral instance of this driver
688 		 * and check to see whether it matches the unit passed
689 		 * in by the user.  If it does, get out of the loops and
690 		 * find the passthrough driver associated with that
691 		 * peripheral driver.
692 		 */
693 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
694 		     periph = TAILQ_NEXT(periph, unit_links)) {
695 
696 			if (periph->unit_number == unit) {
697 				break;
698 			} else if (--splbreaknum == 0) {
699 				mtx_unlock(&xsoftc.xpt_topo_lock);
700 				mtx_lock(&xsoftc.xpt_topo_lock);
701 				splbreaknum = 100;
702 				if (cur_generation != xsoftc.xpt_generation)
703 				       goto ptstartover;
704 			}
705 		}
706 		/*
707 		 * If we found the peripheral driver that the user passed
708 		 * in, go through all of the peripheral drivers for that
709 		 * particular device and look for a passthrough driver.
710 		 */
711 		if (periph != NULL) {
712 			struct cam_ed *device;
713 			int i;
714 
715 			base_periph_found = 1;
716 			device = periph->path->device;
717 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
718 			     periph != NULL;
719 			     periph = SLIST_NEXT(periph, periph_links), i++) {
720 				/*
721 				 * Check to see whether we have a
722 				 * passthrough device or not.
723 				 */
724 				if (strcmp(periph->periph_name, "pass") == 0) {
725 					/*
726 					 * Fill in the getdevlist fields.
727 					 */
728 					strcpy(ccb->cgdl.periph_name,
729 					       periph->periph_name);
730 					ccb->cgdl.unit_number =
731 						periph->unit_number;
732 					if (SLIST_NEXT(periph, periph_links))
733 						ccb->cgdl.status =
734 							CAM_GDEVLIST_MORE_DEVS;
735 					else
736 						ccb->cgdl.status =
737 						       CAM_GDEVLIST_LAST_DEVICE;
738 					ccb->cgdl.generation =
739 						device->generation;
740 					ccb->cgdl.index = i;
741 					/*
742 					 * Fill in some CCB header fields
743 					 * that the user may want.
744 					 */
745 					ccb->ccb_h.path_id =
746 						periph->path->bus->path_id;
747 					ccb->ccb_h.target_id =
748 						periph->path->target->target_id;
749 					ccb->ccb_h.target_lun =
750 						periph->path->device->lun_id;
751 					ccb->ccb_h.status = CAM_REQ_CMP;
752 					break;
753 				}
754 			}
755 		}
756 
757 		/*
758 		 * If the periph is null here, one of two things has
759 		 * happened.  The first possibility is that we couldn't
760 		 * find the unit number of the particular peripheral driver
761 		 * that the user is asking about.  e.g. the user asks for
762 		 * the passthrough driver for "da11".  We find the list of
763 		 * "da" peripherals all right, but there is no unit 11.
764 		 * The other possibility is that we went through the list
765 		 * of peripheral drivers attached to the device structure,
766 		 * but didn't find one with the name "pass".  Either way,
767 		 * we return ENOENT, since we couldn't find something.
768 		 */
769 		if (periph == NULL) {
770 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
771 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
772 			*ccb->cgdl.periph_name = '\0';
773 			ccb->cgdl.unit_number = 0;
774 			error = ENOENT;
775 			/*
776 			 * It is unfortunate that this is even necessary,
777 			 * but there are many, many clueless users out there.
778 			 * If this is true, the user is looking for the
779 			 * passthrough driver, but doesn't have one in his
780 			 * kernel.
781 			 */
782 			if (base_periph_found == 1) {
783 				printf("xptioctl: pass driver is not in the "
784 				       "kernel\n");
785 				printf("xptioctl: put \"device pass\" in "
786 				       "your kernel config file\n");
787 			}
788 		}
789 		mtx_unlock(&xsoftc.xpt_topo_lock);
790 		break;
791 		}
792 	default:
793 		error = ENOTTY;
794 		break;
795 	}
796 
797 	return(error);
798 }
799 
800 static int
801 cam_module_event_handler(module_t mod, int what, void *arg)
802 {
803 	int error;
804 
805 	switch (what) {
806 	case MOD_LOAD:
807 		if ((error = xpt_init(NULL)) != 0)
808 			return (error);
809 		break;
810 	case MOD_UNLOAD:
811 		return EBUSY;
812 	default:
813 		return EOPNOTSUPP;
814 	}
815 
816 	return 0;
817 }
818 
819 static void
820 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
821 {
822 
823 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
824 		xpt_free_path(done_ccb->ccb_h.path);
825 		xpt_free_ccb(done_ccb);
826 	} else {
827 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
828 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
829 	}
830 	xpt_release_boot();
831 }
832 
833 /* thread to handle bus rescans */
834 static void
835 xpt_scanner_thread(void *dummy)
836 {
837 	union ccb	*ccb;
838 	struct cam_sim	*sim;
839 
840 	xpt_lock_buses();
841 	for (;;) {
842 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
843 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
844 			       "ccb_scanq", 0);
845 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
846 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
847 			xpt_unlock_buses();
848 
849 			sim = ccb->ccb_h.path->bus->sim;
850 			CAM_SIM_LOCK(sim);
851 			xpt_action(ccb);
852 			CAM_SIM_UNLOCK(sim);
853 
854 			xpt_lock_buses();
855 		}
856 	}
857 }
858 
859 void
860 xpt_rescan(union ccb *ccb)
861 {
862 	struct ccb_hdr *hdr;
863 
864 	/* Prepare request */
865 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
866 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
867 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
868 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
869 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
870 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
871 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
872 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
873 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
874 	else {
875 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
876 		xpt_free_path(ccb->ccb_h.path);
877 		xpt_free_ccb(ccb);
878 		return;
879 	}
880 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
881 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
882 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
883 	/* Don't make duplicate entries for the same paths. */
884 	xpt_lock_buses();
885 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
886 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
887 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
888 				wakeup(&xsoftc.ccb_scanq);
889 				xpt_unlock_buses();
890 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
891 				xpt_free_path(ccb->ccb_h.path);
892 				xpt_free_ccb(ccb);
893 				return;
894 			}
895 		}
896 	}
897 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
898 	xsoftc.buses_to_config++;
899 	wakeup(&xsoftc.ccb_scanq);
900 	xpt_unlock_buses();
901 }
902 
903 /* Functions accessed by the peripheral drivers */
904 static int
905 xpt_init(void *dummy)
906 {
907 	struct cam_sim *xpt_sim;
908 	struct cam_path *path;
909 	struct cam_devq *devq;
910 	cam_status status;
911 
912 	TAILQ_INIT(&xsoftc.xpt_busses);
913 	TAILQ_INIT(&cam_simq);
914 	TAILQ_INIT(&xsoftc.ccb_scanq);
915 	STAILQ_INIT(&xsoftc.highpowerq);
916 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
917 
918 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
919 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
920 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
921 
922 	/*
923 	 * The xpt layer is, itself, the equivelent of a SIM.
924 	 * Allow 16 ccbs in the ccb pool for it.  This should
925 	 * give decent parallelism when we probe busses and
926 	 * perform other XPT functions.
927 	 */
928 	devq = cam_simq_alloc(16);
929 	xpt_sim = cam_sim_alloc(xptaction,
930 				xptpoll,
931 				"xpt",
932 				/*softc*/NULL,
933 				/*unit*/0,
934 				/*mtx*/&xsoftc.xpt_lock,
935 				/*max_dev_transactions*/0,
936 				/*max_tagged_dev_transactions*/0,
937 				devq);
938 	if (xpt_sim == NULL)
939 		return (ENOMEM);
940 
941 	mtx_lock(&xsoftc.xpt_lock);
942 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
943 		mtx_unlock(&xsoftc.xpt_lock);
944 		printf("xpt_init: xpt_bus_register failed with status %#x,"
945 		       " failing attach\n", status);
946 		return (EINVAL);
947 	}
948 
949 	/*
950 	 * Looking at the XPT from the SIM layer, the XPT is
951 	 * the equivelent of a peripheral driver.  Allocate
952 	 * a peripheral driver entry for us.
953 	 */
954 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
955 				      CAM_TARGET_WILDCARD,
956 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
957 		mtx_unlock(&xsoftc.xpt_lock);
958 		printf("xpt_init: xpt_create_path failed with status %#x,"
959 		       " failing attach\n", status);
960 		return (EINVAL);
961 	}
962 
963 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
964 			 path, NULL, 0, xpt_sim);
965 	xpt_free_path(path);
966 	mtx_unlock(&xsoftc.xpt_lock);
967 	/* Install our software interrupt handlers */
968 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
969 	/*
970 	 * Register a callback for when interrupts are enabled.
971 	 */
972 	xsoftc.xpt_config_hook =
973 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
974 					      M_CAMXPT, M_NOWAIT | M_ZERO);
975 	if (xsoftc.xpt_config_hook == NULL) {
976 		printf("xpt_init: Cannot malloc config hook "
977 		       "- failing attach\n");
978 		return (ENOMEM);
979 	}
980 	xsoftc.xpt_config_hook->ich_func = xpt_config;
981 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
982 		free (xsoftc.xpt_config_hook, M_CAMXPT);
983 		printf("xpt_init: config_intrhook_establish failed "
984 		       "- failing attach\n");
985 	}
986 
987 	return (0);
988 }
989 
990 static cam_status
991 xptregister(struct cam_periph *periph, void *arg)
992 {
993 	struct cam_sim *xpt_sim;
994 
995 	if (periph == NULL) {
996 		printf("xptregister: periph was NULL!!\n");
997 		return(CAM_REQ_CMP_ERR);
998 	}
999 
1000 	xpt_sim = (struct cam_sim *)arg;
1001 	xpt_sim->softc = periph;
1002 	xpt_periph = periph;
1003 	periph->softc = NULL;
1004 
1005 	return(CAM_REQ_CMP);
1006 }
1007 
1008 int32_t
1009 xpt_add_periph(struct cam_periph *periph)
1010 {
1011 	struct cam_ed *device;
1012 	int32_t	 status;
1013 	struct periph_list *periph_head;
1014 
1015 	mtx_assert(periph->sim->mtx, MA_OWNED);
1016 
1017 	device = periph->path->device;
1018 
1019 	periph_head = &device->periphs;
1020 
1021 	status = CAM_REQ_CMP;
1022 
1023 	if (device != NULL) {
1024 		/*
1025 		 * Make room for this peripheral
1026 		 * so it will fit in the queue
1027 		 * when it's scheduled to run
1028 		 */
1029 		status = camq_resize(&device->drvq,
1030 				     device->drvq.array_size + 1);
1031 
1032 		device->generation++;
1033 
1034 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1035 	}
1036 
1037 	mtx_lock(&xsoftc.xpt_topo_lock);
1038 	xsoftc.xpt_generation++;
1039 	mtx_unlock(&xsoftc.xpt_topo_lock);
1040 
1041 	return (status);
1042 }
1043 
1044 void
1045 xpt_remove_periph(struct cam_periph *periph)
1046 {
1047 	struct cam_ed *device;
1048 
1049 	mtx_assert(periph->sim->mtx, MA_OWNED);
1050 
1051 	device = periph->path->device;
1052 
1053 	if (device != NULL) {
1054 		struct periph_list *periph_head;
1055 
1056 		periph_head = &device->periphs;
1057 
1058 		/* Release the slot for this peripheral */
1059 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1060 
1061 		device->generation++;
1062 
1063 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1064 	}
1065 
1066 	mtx_lock(&xsoftc.xpt_topo_lock);
1067 	xsoftc.xpt_generation++;
1068 	mtx_unlock(&xsoftc.xpt_topo_lock);
1069 }
1070 
1071 
1072 void
1073 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1074 {
1075 	struct	cam_path *path = periph->path;
1076 
1077 	mtx_assert(periph->sim->mtx, MA_OWNED);
1078 
1079 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1080 	       periph->periph_name, periph->unit_number,
1081 	       path->bus->sim->sim_name,
1082 	       path->bus->sim->unit_number,
1083 	       path->bus->sim->bus_id,
1084 	       path->bus->path_id,
1085 	       path->target->target_id,
1086 	       path->device->lun_id);
1087 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1088 	if (path->device->protocol == PROTO_SCSI)
1089 		scsi_print_inquiry(&path->device->inq_data);
1090 	else if (path->device->protocol == PROTO_ATA ||
1091 	    path->device->protocol == PROTO_SATAPM)
1092 		ata_print_ident(&path->device->ident_data);
1093 	else
1094 		printf("Unknown protocol device\n");
1095 	if (bootverbose && path->device->serial_num_len > 0) {
1096 		/* Don't wrap the screen  - print only the first 60 chars */
1097 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1098 		       periph->unit_number, path->device->serial_num);
1099 	}
1100 	/* Announce transport details. */
1101 	(*(path->bus->xport->announce))(periph);
1102 	/* Announce command queueing. */
1103 	if (path->device->inq_flags & SID_CmdQue
1104 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1105 		printf("%s%d: Command Queueing enabled\n",
1106 		       periph->periph_name, periph->unit_number);
1107 	}
1108 	/* Announce caller's details if they've passed in. */
1109 	if (announce_string != NULL)
1110 		printf("%s%d: %s\n", periph->periph_name,
1111 		       periph->unit_number, announce_string);
1112 }
1113 
1114 static dev_match_ret
1115 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1116 	    struct cam_eb *bus)
1117 {
1118 	dev_match_ret retval;
1119 	int i;
1120 
1121 	retval = DM_RET_NONE;
1122 
1123 	/*
1124 	 * If we aren't given something to match against, that's an error.
1125 	 */
1126 	if (bus == NULL)
1127 		return(DM_RET_ERROR);
1128 
1129 	/*
1130 	 * If there are no match entries, then this bus matches no
1131 	 * matter what.
1132 	 */
1133 	if ((patterns == NULL) || (num_patterns == 0))
1134 		return(DM_RET_DESCEND | DM_RET_COPY);
1135 
1136 	for (i = 0; i < num_patterns; i++) {
1137 		struct bus_match_pattern *cur_pattern;
1138 
1139 		/*
1140 		 * If the pattern in question isn't for a bus node, we
1141 		 * aren't interested.  However, we do indicate to the
1142 		 * calling routine that we should continue descending the
1143 		 * tree, since the user wants to match against lower-level
1144 		 * EDT elements.
1145 		 */
1146 		if (patterns[i].type != DEV_MATCH_BUS) {
1147 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1148 				retval |= DM_RET_DESCEND;
1149 			continue;
1150 		}
1151 
1152 		cur_pattern = &patterns[i].pattern.bus_pattern;
1153 
1154 		/*
1155 		 * If they want to match any bus node, we give them any
1156 		 * device node.
1157 		 */
1158 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1159 			/* set the copy flag */
1160 			retval |= DM_RET_COPY;
1161 
1162 			/*
1163 			 * If we've already decided on an action, go ahead
1164 			 * and return.
1165 			 */
1166 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1167 				return(retval);
1168 		}
1169 
1170 		/*
1171 		 * Not sure why someone would do this...
1172 		 */
1173 		if (cur_pattern->flags == BUS_MATCH_NONE)
1174 			continue;
1175 
1176 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1177 		 && (cur_pattern->path_id != bus->path_id))
1178 			continue;
1179 
1180 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1181 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1182 			continue;
1183 
1184 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1185 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1186 			continue;
1187 
1188 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1189 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1190 			     DEV_IDLEN) != 0))
1191 			continue;
1192 
1193 		/*
1194 		 * If we get to this point, the user definitely wants
1195 		 * information on this bus.  So tell the caller to copy the
1196 		 * data out.
1197 		 */
1198 		retval |= DM_RET_COPY;
1199 
1200 		/*
1201 		 * If the return action has been set to descend, then we
1202 		 * know that we've already seen a non-bus matching
1203 		 * expression, therefore we need to further descend the tree.
1204 		 * This won't change by continuing around the loop, so we
1205 		 * go ahead and return.  If we haven't seen a non-bus
1206 		 * matching expression, we keep going around the loop until
1207 		 * we exhaust the matching expressions.  We'll set the stop
1208 		 * flag once we fall out of the loop.
1209 		 */
1210 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1211 			return(retval);
1212 	}
1213 
1214 	/*
1215 	 * If the return action hasn't been set to descend yet, that means
1216 	 * we haven't seen anything other than bus matching patterns.  So
1217 	 * tell the caller to stop descending the tree -- the user doesn't
1218 	 * want to match against lower level tree elements.
1219 	 */
1220 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1221 		retval |= DM_RET_STOP;
1222 
1223 	return(retval);
1224 }
1225 
1226 static dev_match_ret
1227 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1228 	       struct cam_ed *device)
1229 {
1230 	dev_match_ret retval;
1231 	int i;
1232 
1233 	retval = DM_RET_NONE;
1234 
1235 	/*
1236 	 * If we aren't given something to match against, that's an error.
1237 	 */
1238 	if (device == NULL)
1239 		return(DM_RET_ERROR);
1240 
1241 	/*
1242 	 * If there are no match entries, then this device matches no
1243 	 * matter what.
1244 	 */
1245 	if ((patterns == NULL) || (num_patterns == 0))
1246 		return(DM_RET_DESCEND | DM_RET_COPY);
1247 
1248 	for (i = 0; i < num_patterns; i++) {
1249 		struct device_match_pattern *cur_pattern;
1250 
1251 		/*
1252 		 * If the pattern in question isn't for a device node, we
1253 		 * aren't interested.
1254 		 */
1255 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1256 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1257 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1258 				retval |= DM_RET_DESCEND;
1259 			continue;
1260 		}
1261 
1262 		cur_pattern = &patterns[i].pattern.device_pattern;
1263 
1264 		/*
1265 		 * If they want to match any device node, we give them any
1266 		 * device node.
1267 		 */
1268 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1269 			/* set the copy flag */
1270 			retval |= DM_RET_COPY;
1271 
1272 
1273 			/*
1274 			 * If we've already decided on an action, go ahead
1275 			 * and return.
1276 			 */
1277 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1278 				return(retval);
1279 		}
1280 
1281 		/*
1282 		 * Not sure why someone would do this...
1283 		 */
1284 		if (cur_pattern->flags == DEV_MATCH_NONE)
1285 			continue;
1286 
1287 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1288 		 && (cur_pattern->path_id != device->target->bus->path_id))
1289 			continue;
1290 
1291 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1292 		 && (cur_pattern->target_id != device->target->target_id))
1293 			continue;
1294 
1295 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1296 		 && (cur_pattern->target_lun != device->lun_id))
1297 			continue;
1298 
1299 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1300 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1301 				    (caddr_t)&cur_pattern->inq_pat,
1302 				    1, sizeof(cur_pattern->inq_pat),
1303 				    scsi_static_inquiry_match) == NULL))
1304 			continue;
1305 
1306 		/*
1307 		 * If we get to this point, the user definitely wants
1308 		 * information on this device.  So tell the caller to copy
1309 		 * the data out.
1310 		 */
1311 		retval |= DM_RET_COPY;
1312 
1313 		/*
1314 		 * If the return action has been set to descend, then we
1315 		 * know that we've already seen a peripheral matching
1316 		 * expression, therefore we need to further descend the tree.
1317 		 * This won't change by continuing around the loop, so we
1318 		 * go ahead and return.  If we haven't seen a peripheral
1319 		 * matching expression, we keep going around the loop until
1320 		 * we exhaust the matching expressions.  We'll set the stop
1321 		 * flag once we fall out of the loop.
1322 		 */
1323 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1324 			return(retval);
1325 	}
1326 
1327 	/*
1328 	 * If the return action hasn't been set to descend yet, that means
1329 	 * we haven't seen any peripheral matching patterns.  So tell the
1330 	 * caller to stop descending the tree -- the user doesn't want to
1331 	 * match against lower level tree elements.
1332 	 */
1333 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1334 		retval |= DM_RET_STOP;
1335 
1336 	return(retval);
1337 }
1338 
1339 /*
1340  * Match a single peripheral against any number of match patterns.
1341  */
1342 static dev_match_ret
1343 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1344 	       struct cam_periph *periph)
1345 {
1346 	dev_match_ret retval;
1347 	int i;
1348 
1349 	/*
1350 	 * If we aren't given something to match against, that's an error.
1351 	 */
1352 	if (periph == NULL)
1353 		return(DM_RET_ERROR);
1354 
1355 	/*
1356 	 * If there are no match entries, then this peripheral matches no
1357 	 * matter what.
1358 	 */
1359 	if ((patterns == NULL) || (num_patterns == 0))
1360 		return(DM_RET_STOP | DM_RET_COPY);
1361 
1362 	/*
1363 	 * There aren't any nodes below a peripheral node, so there's no
1364 	 * reason to descend the tree any further.
1365 	 */
1366 	retval = DM_RET_STOP;
1367 
1368 	for (i = 0; i < num_patterns; i++) {
1369 		struct periph_match_pattern *cur_pattern;
1370 
1371 		/*
1372 		 * If the pattern in question isn't for a peripheral, we
1373 		 * aren't interested.
1374 		 */
1375 		if (patterns[i].type != DEV_MATCH_PERIPH)
1376 			continue;
1377 
1378 		cur_pattern = &patterns[i].pattern.periph_pattern;
1379 
1380 		/*
1381 		 * If they want to match on anything, then we will do so.
1382 		 */
1383 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1384 			/* set the copy flag */
1385 			retval |= DM_RET_COPY;
1386 
1387 			/*
1388 			 * We've already set the return action to stop,
1389 			 * since there are no nodes below peripherals in
1390 			 * the tree.
1391 			 */
1392 			return(retval);
1393 		}
1394 
1395 		/*
1396 		 * Not sure why someone would do this...
1397 		 */
1398 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1399 			continue;
1400 
1401 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1402 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1403 			continue;
1404 
1405 		/*
1406 		 * For the target and lun id's, we have to make sure the
1407 		 * target and lun pointers aren't NULL.  The xpt peripheral
1408 		 * has a wildcard target and device.
1409 		 */
1410 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1411 		 && ((periph->path->target == NULL)
1412 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1413 			continue;
1414 
1415 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1416 		 && ((periph->path->device == NULL)
1417 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1418 			continue;
1419 
1420 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1421 		 && (cur_pattern->unit_number != periph->unit_number))
1422 			continue;
1423 
1424 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1425 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1426 			     DEV_IDLEN) != 0))
1427 			continue;
1428 
1429 		/*
1430 		 * If we get to this point, the user definitely wants
1431 		 * information on this peripheral.  So tell the caller to
1432 		 * copy the data out.
1433 		 */
1434 		retval |= DM_RET_COPY;
1435 
1436 		/*
1437 		 * The return action has already been set to stop, since
1438 		 * peripherals don't have any nodes below them in the EDT.
1439 		 */
1440 		return(retval);
1441 	}
1442 
1443 	/*
1444 	 * If we get to this point, the peripheral that was passed in
1445 	 * doesn't match any of the patterns.
1446 	 */
1447 	return(retval);
1448 }
1449 
1450 static int
1451 xptedtbusfunc(struct cam_eb *bus, void *arg)
1452 {
1453 	struct ccb_dev_match *cdm;
1454 	dev_match_ret retval;
1455 
1456 	cdm = (struct ccb_dev_match *)arg;
1457 
1458 	/*
1459 	 * If our position is for something deeper in the tree, that means
1460 	 * that we've already seen this node.  So, we keep going down.
1461 	 */
1462 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1463 	 && (cdm->pos.cookie.bus == bus)
1464 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1465 	 && (cdm->pos.cookie.target != NULL))
1466 		retval = DM_RET_DESCEND;
1467 	else
1468 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1469 
1470 	/*
1471 	 * If we got an error, bail out of the search.
1472 	 */
1473 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1474 		cdm->status = CAM_DEV_MATCH_ERROR;
1475 		return(0);
1476 	}
1477 
1478 	/*
1479 	 * If the copy flag is set, copy this bus out.
1480 	 */
1481 	if (retval & DM_RET_COPY) {
1482 		int spaceleft, j;
1483 
1484 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1485 			sizeof(struct dev_match_result));
1486 
1487 		/*
1488 		 * If we don't have enough space to put in another
1489 		 * match result, save our position and tell the
1490 		 * user there are more devices to check.
1491 		 */
1492 		if (spaceleft < sizeof(struct dev_match_result)) {
1493 			bzero(&cdm->pos, sizeof(cdm->pos));
1494 			cdm->pos.position_type =
1495 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1496 
1497 			cdm->pos.cookie.bus = bus;
1498 			cdm->pos.generations[CAM_BUS_GENERATION]=
1499 				xsoftc.bus_generation;
1500 			cdm->status = CAM_DEV_MATCH_MORE;
1501 			return(0);
1502 		}
1503 		j = cdm->num_matches;
1504 		cdm->num_matches++;
1505 		cdm->matches[j].type = DEV_MATCH_BUS;
1506 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1507 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1508 		cdm->matches[j].result.bus_result.unit_number =
1509 			bus->sim->unit_number;
1510 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1511 			bus->sim->sim_name, DEV_IDLEN);
1512 	}
1513 
1514 	/*
1515 	 * If the user is only interested in busses, there's no
1516 	 * reason to descend to the next level in the tree.
1517 	 */
1518 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1519 		return(1);
1520 
1521 	/*
1522 	 * If there is a target generation recorded, check it to
1523 	 * make sure the target list hasn't changed.
1524 	 */
1525 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1526 	 && (bus == cdm->pos.cookie.bus)
1527 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1528 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1529 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1530 	     bus->generation)) {
1531 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1532 		return(0);
1533 	}
1534 
1535 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1536 	 && (cdm->pos.cookie.bus == bus)
1537 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1538 	 && (cdm->pos.cookie.target != NULL))
1539 		return(xpttargettraverse(bus,
1540 					(struct cam_et *)cdm->pos.cookie.target,
1541 					 xptedttargetfunc, arg));
1542 	else
1543 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1544 }
1545 
1546 static int
1547 xptedttargetfunc(struct cam_et *target, void *arg)
1548 {
1549 	struct ccb_dev_match *cdm;
1550 
1551 	cdm = (struct ccb_dev_match *)arg;
1552 
1553 	/*
1554 	 * If there is a device list generation recorded, check it to
1555 	 * make sure the device list hasn't changed.
1556 	 */
1557 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1558 	 && (cdm->pos.cookie.bus == target->bus)
1559 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1560 	 && (cdm->pos.cookie.target == target)
1561 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1562 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1563 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1564 	     target->generation)) {
1565 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1566 		return(0);
1567 	}
1568 
1569 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1570 	 && (cdm->pos.cookie.bus == target->bus)
1571 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1572 	 && (cdm->pos.cookie.target == target)
1573 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1574 	 && (cdm->pos.cookie.device != NULL))
1575 		return(xptdevicetraverse(target,
1576 					(struct cam_ed *)cdm->pos.cookie.device,
1577 					 xptedtdevicefunc, arg));
1578 	else
1579 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1580 }
1581 
1582 static int
1583 xptedtdevicefunc(struct cam_ed *device, void *arg)
1584 {
1585 
1586 	struct ccb_dev_match *cdm;
1587 	dev_match_ret retval;
1588 
1589 	cdm = (struct ccb_dev_match *)arg;
1590 
1591 	/*
1592 	 * If our position is for something deeper in the tree, that means
1593 	 * that we've already seen this node.  So, we keep going down.
1594 	 */
1595 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1596 	 && (cdm->pos.cookie.device == device)
1597 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1598 	 && (cdm->pos.cookie.periph != NULL))
1599 		retval = DM_RET_DESCEND;
1600 	else
1601 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1602 					device);
1603 
1604 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1605 		cdm->status = CAM_DEV_MATCH_ERROR;
1606 		return(0);
1607 	}
1608 
1609 	/*
1610 	 * If the copy flag is set, copy this device out.
1611 	 */
1612 	if (retval & DM_RET_COPY) {
1613 		int spaceleft, j;
1614 
1615 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1616 			sizeof(struct dev_match_result));
1617 
1618 		/*
1619 		 * If we don't have enough space to put in another
1620 		 * match result, save our position and tell the
1621 		 * user there are more devices to check.
1622 		 */
1623 		if (spaceleft < sizeof(struct dev_match_result)) {
1624 			bzero(&cdm->pos, sizeof(cdm->pos));
1625 			cdm->pos.position_type =
1626 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1627 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1628 
1629 			cdm->pos.cookie.bus = device->target->bus;
1630 			cdm->pos.generations[CAM_BUS_GENERATION]=
1631 				xsoftc.bus_generation;
1632 			cdm->pos.cookie.target = device->target;
1633 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1634 				device->target->bus->generation;
1635 			cdm->pos.cookie.device = device;
1636 			cdm->pos.generations[CAM_DEV_GENERATION] =
1637 				device->target->generation;
1638 			cdm->status = CAM_DEV_MATCH_MORE;
1639 			return(0);
1640 		}
1641 		j = cdm->num_matches;
1642 		cdm->num_matches++;
1643 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1644 		cdm->matches[j].result.device_result.path_id =
1645 			device->target->bus->path_id;
1646 		cdm->matches[j].result.device_result.target_id =
1647 			device->target->target_id;
1648 		cdm->matches[j].result.device_result.target_lun =
1649 			device->lun_id;
1650 		cdm->matches[j].result.device_result.protocol =
1651 			device->protocol;
1652 		bcopy(&device->inq_data,
1653 		      &cdm->matches[j].result.device_result.inq_data,
1654 		      sizeof(struct scsi_inquiry_data));
1655 		bcopy(&device->ident_data,
1656 		      &cdm->matches[j].result.device_result.ident_data,
1657 		      sizeof(struct ata_params));
1658 
1659 		/* Let the user know whether this device is unconfigured */
1660 		if (device->flags & CAM_DEV_UNCONFIGURED)
1661 			cdm->matches[j].result.device_result.flags =
1662 				DEV_RESULT_UNCONFIGURED;
1663 		else
1664 			cdm->matches[j].result.device_result.flags =
1665 				DEV_RESULT_NOFLAG;
1666 	}
1667 
1668 	/*
1669 	 * If the user isn't interested in peripherals, don't descend
1670 	 * the tree any further.
1671 	 */
1672 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1673 		return(1);
1674 
1675 	/*
1676 	 * If there is a peripheral list generation recorded, make sure
1677 	 * it hasn't changed.
1678 	 */
1679 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1680 	 && (device->target->bus == cdm->pos.cookie.bus)
1681 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1682 	 && (device->target == cdm->pos.cookie.target)
1683 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1684 	 && (device == cdm->pos.cookie.device)
1685 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1686 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1687 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1688 	     device->generation)){
1689 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1690 		return(0);
1691 	}
1692 
1693 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1694 	 && (cdm->pos.cookie.bus == device->target->bus)
1695 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1696 	 && (cdm->pos.cookie.target == device->target)
1697 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1698 	 && (cdm->pos.cookie.device == device)
1699 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1700 	 && (cdm->pos.cookie.periph != NULL))
1701 		return(xptperiphtraverse(device,
1702 				(struct cam_periph *)cdm->pos.cookie.periph,
1703 				xptedtperiphfunc, arg));
1704 	else
1705 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1706 }
1707 
1708 static int
1709 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1710 {
1711 	struct ccb_dev_match *cdm;
1712 	dev_match_ret retval;
1713 
1714 	cdm = (struct ccb_dev_match *)arg;
1715 
1716 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1717 
1718 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1719 		cdm->status = CAM_DEV_MATCH_ERROR;
1720 		return(0);
1721 	}
1722 
1723 	/*
1724 	 * If the copy flag is set, copy this peripheral out.
1725 	 */
1726 	if (retval & DM_RET_COPY) {
1727 		int spaceleft, j;
1728 
1729 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1730 			sizeof(struct dev_match_result));
1731 
1732 		/*
1733 		 * If we don't have enough space to put in another
1734 		 * match result, save our position and tell the
1735 		 * user there are more devices to check.
1736 		 */
1737 		if (spaceleft < sizeof(struct dev_match_result)) {
1738 			bzero(&cdm->pos, sizeof(cdm->pos));
1739 			cdm->pos.position_type =
1740 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1741 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1742 				CAM_DEV_POS_PERIPH;
1743 
1744 			cdm->pos.cookie.bus = periph->path->bus;
1745 			cdm->pos.generations[CAM_BUS_GENERATION]=
1746 				xsoftc.bus_generation;
1747 			cdm->pos.cookie.target = periph->path->target;
1748 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1749 				periph->path->bus->generation;
1750 			cdm->pos.cookie.device = periph->path->device;
1751 			cdm->pos.generations[CAM_DEV_GENERATION] =
1752 				periph->path->target->generation;
1753 			cdm->pos.cookie.periph = periph;
1754 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1755 				periph->path->device->generation;
1756 			cdm->status = CAM_DEV_MATCH_MORE;
1757 			return(0);
1758 		}
1759 
1760 		j = cdm->num_matches;
1761 		cdm->num_matches++;
1762 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1763 		cdm->matches[j].result.periph_result.path_id =
1764 			periph->path->bus->path_id;
1765 		cdm->matches[j].result.periph_result.target_id =
1766 			periph->path->target->target_id;
1767 		cdm->matches[j].result.periph_result.target_lun =
1768 			periph->path->device->lun_id;
1769 		cdm->matches[j].result.periph_result.unit_number =
1770 			periph->unit_number;
1771 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1772 			periph->periph_name, DEV_IDLEN);
1773 	}
1774 
1775 	return(1);
1776 }
1777 
1778 static int
1779 xptedtmatch(struct ccb_dev_match *cdm)
1780 {
1781 	int ret;
1782 
1783 	cdm->num_matches = 0;
1784 
1785 	/*
1786 	 * Check the bus list generation.  If it has changed, the user
1787 	 * needs to reset everything and start over.
1788 	 */
1789 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1790 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1791 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1792 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1793 		return(0);
1794 	}
1795 
1796 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1797 	 && (cdm->pos.cookie.bus != NULL))
1798 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1799 				     xptedtbusfunc, cdm);
1800 	else
1801 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1802 
1803 	/*
1804 	 * If we get back 0, that means that we had to stop before fully
1805 	 * traversing the EDT.  It also means that one of the subroutines
1806 	 * has set the status field to the proper value.  If we get back 1,
1807 	 * we've fully traversed the EDT and copied out any matching entries.
1808 	 */
1809 	if (ret == 1)
1810 		cdm->status = CAM_DEV_MATCH_LAST;
1811 
1812 	return(ret);
1813 }
1814 
1815 static int
1816 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1817 {
1818 	struct ccb_dev_match *cdm;
1819 
1820 	cdm = (struct ccb_dev_match *)arg;
1821 
1822 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1823 	 && (cdm->pos.cookie.pdrv == pdrv)
1824 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1825 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1826 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1827 	     (*pdrv)->generation)) {
1828 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1829 		return(0);
1830 	}
1831 
1832 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1833 	 && (cdm->pos.cookie.pdrv == pdrv)
1834 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1835 	 && (cdm->pos.cookie.periph != NULL))
1836 		return(xptpdperiphtraverse(pdrv,
1837 				(struct cam_periph *)cdm->pos.cookie.periph,
1838 				xptplistperiphfunc, arg));
1839 	else
1840 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1841 }
1842 
1843 static int
1844 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1845 {
1846 	struct ccb_dev_match *cdm;
1847 	dev_match_ret retval;
1848 
1849 	cdm = (struct ccb_dev_match *)arg;
1850 
1851 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1852 
1853 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1854 		cdm->status = CAM_DEV_MATCH_ERROR;
1855 		return(0);
1856 	}
1857 
1858 	/*
1859 	 * If the copy flag is set, copy this peripheral out.
1860 	 */
1861 	if (retval & DM_RET_COPY) {
1862 		int spaceleft, j;
1863 
1864 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1865 			sizeof(struct dev_match_result));
1866 
1867 		/*
1868 		 * If we don't have enough space to put in another
1869 		 * match result, save our position and tell the
1870 		 * user there are more devices to check.
1871 		 */
1872 		if (spaceleft < sizeof(struct dev_match_result)) {
1873 			struct periph_driver **pdrv;
1874 
1875 			pdrv = NULL;
1876 			bzero(&cdm->pos, sizeof(cdm->pos));
1877 			cdm->pos.position_type =
1878 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1879 				CAM_DEV_POS_PERIPH;
1880 
1881 			/*
1882 			 * This may look a bit non-sensical, but it is
1883 			 * actually quite logical.  There are very few
1884 			 * peripheral drivers, and bloating every peripheral
1885 			 * structure with a pointer back to its parent
1886 			 * peripheral driver linker set entry would cost
1887 			 * more in the long run than doing this quick lookup.
1888 			 */
1889 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1890 				if (strcmp((*pdrv)->driver_name,
1891 				    periph->periph_name) == 0)
1892 					break;
1893 			}
1894 
1895 			if (*pdrv == NULL) {
1896 				cdm->status = CAM_DEV_MATCH_ERROR;
1897 				return(0);
1898 			}
1899 
1900 			cdm->pos.cookie.pdrv = pdrv;
1901 			/*
1902 			 * The periph generation slot does double duty, as
1903 			 * does the periph pointer slot.  They are used for
1904 			 * both edt and pdrv lookups and positioning.
1905 			 */
1906 			cdm->pos.cookie.periph = periph;
1907 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1908 				(*pdrv)->generation;
1909 			cdm->status = CAM_DEV_MATCH_MORE;
1910 			return(0);
1911 		}
1912 
1913 		j = cdm->num_matches;
1914 		cdm->num_matches++;
1915 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1916 		cdm->matches[j].result.periph_result.path_id =
1917 			periph->path->bus->path_id;
1918 
1919 		/*
1920 		 * The transport layer peripheral doesn't have a target or
1921 		 * lun.
1922 		 */
1923 		if (periph->path->target)
1924 			cdm->matches[j].result.periph_result.target_id =
1925 				periph->path->target->target_id;
1926 		else
1927 			cdm->matches[j].result.periph_result.target_id = -1;
1928 
1929 		if (periph->path->device)
1930 			cdm->matches[j].result.periph_result.target_lun =
1931 				periph->path->device->lun_id;
1932 		else
1933 			cdm->matches[j].result.periph_result.target_lun = -1;
1934 
1935 		cdm->matches[j].result.periph_result.unit_number =
1936 			periph->unit_number;
1937 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1938 			periph->periph_name, DEV_IDLEN);
1939 	}
1940 
1941 	return(1);
1942 }
1943 
1944 static int
1945 xptperiphlistmatch(struct ccb_dev_match *cdm)
1946 {
1947 	int ret;
1948 
1949 	cdm->num_matches = 0;
1950 
1951 	/*
1952 	 * At this point in the edt traversal function, we check the bus
1953 	 * list generation to make sure that no busses have been added or
1954 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1955 	 * For the peripheral driver list traversal function, however, we
1956 	 * don't have to worry about new peripheral driver types coming or
1957 	 * going; they're in a linker set, and therefore can't change
1958 	 * without a recompile.
1959 	 */
1960 
1961 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1962 	 && (cdm->pos.cookie.pdrv != NULL))
1963 		ret = xptpdrvtraverse(
1964 				(struct periph_driver **)cdm->pos.cookie.pdrv,
1965 				xptplistpdrvfunc, cdm);
1966 	else
1967 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1968 
1969 	/*
1970 	 * If we get back 0, that means that we had to stop before fully
1971 	 * traversing the peripheral driver tree.  It also means that one of
1972 	 * the subroutines has set the status field to the proper value.  If
1973 	 * we get back 1, we've fully traversed the EDT and copied out any
1974 	 * matching entries.
1975 	 */
1976 	if (ret == 1)
1977 		cdm->status = CAM_DEV_MATCH_LAST;
1978 
1979 	return(ret);
1980 }
1981 
1982 static int
1983 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1984 {
1985 	struct cam_eb *bus, *next_bus;
1986 	int retval;
1987 
1988 	retval = 1;
1989 
1990 	mtx_lock(&xsoftc.xpt_topo_lock);
1991 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
1992 	     bus != NULL;
1993 	     bus = next_bus) {
1994 		next_bus = TAILQ_NEXT(bus, links);
1995 
1996 		mtx_unlock(&xsoftc.xpt_topo_lock);
1997 		CAM_SIM_LOCK(bus->sim);
1998 		retval = tr_func(bus, arg);
1999 		CAM_SIM_UNLOCK(bus->sim);
2000 		if (retval == 0)
2001 			return(retval);
2002 		mtx_lock(&xsoftc.xpt_topo_lock);
2003 	}
2004 	mtx_unlock(&xsoftc.xpt_topo_lock);
2005 
2006 	return(retval);
2007 }
2008 
2009 int
2010 xpt_sim_opened(struct cam_sim *sim)
2011 {
2012 	struct cam_eb *bus;
2013 	struct cam_et *target;
2014 	struct cam_ed *device;
2015 	struct cam_periph *periph;
2016 
2017 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2018 	mtx_assert(sim->mtx, MA_OWNED);
2019 
2020 	mtx_lock(&xsoftc.xpt_topo_lock);
2021 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2022 		if (bus->sim != sim)
2023 			continue;
2024 
2025 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2026 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2027 				SLIST_FOREACH(periph, &device->periphs,
2028 				    periph_links) {
2029 					if (periph->refcount > 0) {
2030 						mtx_unlock(&xsoftc.xpt_topo_lock);
2031 						return (1);
2032 					}
2033 				}
2034 			}
2035 		}
2036 	}
2037 
2038 	mtx_unlock(&xsoftc.xpt_topo_lock);
2039 	return (0);
2040 }
2041 
2042 static int
2043 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2044 		  xpt_targetfunc_t *tr_func, void *arg)
2045 {
2046 	struct cam_et *target, *next_target;
2047 	int retval;
2048 
2049 	retval = 1;
2050 	for (target = (start_target ? start_target :
2051 		       TAILQ_FIRST(&bus->et_entries));
2052 	     target != NULL; target = next_target) {
2053 
2054 		next_target = TAILQ_NEXT(target, links);
2055 
2056 		retval = tr_func(target, arg);
2057 
2058 		if (retval == 0)
2059 			return(retval);
2060 	}
2061 
2062 	return(retval);
2063 }
2064 
2065 static int
2066 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2067 		  xpt_devicefunc_t *tr_func, void *arg)
2068 {
2069 	struct cam_ed *device, *next_device;
2070 	int retval;
2071 
2072 	retval = 1;
2073 	for (device = (start_device ? start_device :
2074 		       TAILQ_FIRST(&target->ed_entries));
2075 	     device != NULL;
2076 	     device = next_device) {
2077 
2078 		next_device = TAILQ_NEXT(device, links);
2079 
2080 		retval = tr_func(device, arg);
2081 
2082 		if (retval == 0)
2083 			return(retval);
2084 	}
2085 
2086 	return(retval);
2087 }
2088 
2089 static int
2090 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2091 		  xpt_periphfunc_t *tr_func, void *arg)
2092 {
2093 	struct cam_periph *periph, *next_periph;
2094 	int retval;
2095 
2096 	retval = 1;
2097 
2098 	for (periph = (start_periph ? start_periph :
2099 		       SLIST_FIRST(&device->periphs));
2100 	     periph != NULL;
2101 	     periph = next_periph) {
2102 
2103 		next_periph = SLIST_NEXT(periph, periph_links);
2104 
2105 		retval = tr_func(periph, arg);
2106 		if (retval == 0)
2107 			return(retval);
2108 	}
2109 
2110 	return(retval);
2111 }
2112 
2113 static int
2114 xptpdrvtraverse(struct periph_driver **start_pdrv,
2115 		xpt_pdrvfunc_t *tr_func, void *arg)
2116 {
2117 	struct periph_driver **pdrv;
2118 	int retval;
2119 
2120 	retval = 1;
2121 
2122 	/*
2123 	 * We don't traverse the peripheral driver list like we do the
2124 	 * other lists, because it is a linker set, and therefore cannot be
2125 	 * changed during runtime.  If the peripheral driver list is ever
2126 	 * re-done to be something other than a linker set (i.e. it can
2127 	 * change while the system is running), the list traversal should
2128 	 * be modified to work like the other traversal functions.
2129 	 */
2130 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2131 	     *pdrv != NULL; pdrv++) {
2132 		retval = tr_func(pdrv, arg);
2133 
2134 		if (retval == 0)
2135 			return(retval);
2136 	}
2137 
2138 	return(retval);
2139 }
2140 
2141 static int
2142 xptpdperiphtraverse(struct periph_driver **pdrv,
2143 		    struct cam_periph *start_periph,
2144 		    xpt_periphfunc_t *tr_func, void *arg)
2145 {
2146 	struct cam_periph *periph, *next_periph;
2147 	int retval;
2148 
2149 	retval = 1;
2150 
2151 	xpt_lock_buses();
2152 	for (periph = (start_periph ? start_periph :
2153 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2154 	     periph = next_periph) {
2155 
2156 		next_periph = TAILQ_NEXT(periph, unit_links);
2157 
2158 		retval = tr_func(periph, arg);
2159 		if (retval == 0) {
2160 			xpt_unlock_buses();
2161 			return(retval);
2162 		}
2163 	}
2164 	xpt_unlock_buses();
2165 	return(retval);
2166 }
2167 
2168 static int
2169 xptdefbusfunc(struct cam_eb *bus, void *arg)
2170 {
2171 	struct xpt_traverse_config *tr_config;
2172 
2173 	tr_config = (struct xpt_traverse_config *)arg;
2174 
2175 	if (tr_config->depth == XPT_DEPTH_BUS) {
2176 		xpt_busfunc_t *tr_func;
2177 
2178 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2179 
2180 		return(tr_func(bus, tr_config->tr_arg));
2181 	} else
2182 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2183 }
2184 
2185 static int
2186 xptdeftargetfunc(struct cam_et *target, void *arg)
2187 {
2188 	struct xpt_traverse_config *tr_config;
2189 
2190 	tr_config = (struct xpt_traverse_config *)arg;
2191 
2192 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2193 		xpt_targetfunc_t *tr_func;
2194 
2195 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2196 
2197 		return(tr_func(target, tr_config->tr_arg));
2198 	} else
2199 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2200 }
2201 
2202 static int
2203 xptdefdevicefunc(struct cam_ed *device, void *arg)
2204 {
2205 	struct xpt_traverse_config *tr_config;
2206 
2207 	tr_config = (struct xpt_traverse_config *)arg;
2208 
2209 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2210 		xpt_devicefunc_t *tr_func;
2211 
2212 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2213 
2214 		return(tr_func(device, tr_config->tr_arg));
2215 	} else
2216 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2217 }
2218 
2219 static int
2220 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2221 {
2222 	struct xpt_traverse_config *tr_config;
2223 	xpt_periphfunc_t *tr_func;
2224 
2225 	tr_config = (struct xpt_traverse_config *)arg;
2226 
2227 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2228 
2229 	/*
2230 	 * Unlike the other default functions, we don't check for depth
2231 	 * here.  The peripheral driver level is the last level in the EDT,
2232 	 * so if we're here, we should execute the function in question.
2233 	 */
2234 	return(tr_func(periph, tr_config->tr_arg));
2235 }
2236 
2237 /*
2238  * Execute the given function for every bus in the EDT.
2239  */
2240 static int
2241 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2242 {
2243 	struct xpt_traverse_config tr_config;
2244 
2245 	tr_config.depth = XPT_DEPTH_BUS;
2246 	tr_config.tr_func = tr_func;
2247 	tr_config.tr_arg = arg;
2248 
2249 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2250 }
2251 
2252 /*
2253  * Execute the given function for every device in the EDT.
2254  */
2255 static int
2256 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2257 {
2258 	struct xpt_traverse_config tr_config;
2259 
2260 	tr_config.depth = XPT_DEPTH_DEVICE;
2261 	tr_config.tr_func = tr_func;
2262 	tr_config.tr_arg = arg;
2263 
2264 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2265 }
2266 
2267 static int
2268 xptsetasyncfunc(struct cam_ed *device, void *arg)
2269 {
2270 	struct cam_path path;
2271 	struct ccb_getdev cgd;
2272 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2273 
2274 	/*
2275 	 * Don't report unconfigured devices (Wildcard devs,
2276 	 * devices only for target mode, device instances
2277 	 * that have been invalidated but are waiting for
2278 	 * their last reference count to be released).
2279 	 */
2280 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2281 		return (1);
2282 
2283 	xpt_compile_path(&path,
2284 			 NULL,
2285 			 device->target->bus->path_id,
2286 			 device->target->target_id,
2287 			 device->lun_id);
2288 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2289 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2290 	xpt_action((union ccb *)&cgd);
2291 	csa->callback(csa->callback_arg,
2292 			    AC_FOUND_DEVICE,
2293 			    &path, &cgd);
2294 	xpt_release_path(&path);
2295 
2296 	return(1);
2297 }
2298 
2299 static int
2300 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2301 {
2302 	struct cam_path path;
2303 	struct ccb_pathinq cpi;
2304 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2305 
2306 	xpt_compile_path(&path, /*periph*/NULL,
2307 			 bus->sim->path_id,
2308 			 CAM_TARGET_WILDCARD,
2309 			 CAM_LUN_WILDCARD);
2310 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2311 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2312 	xpt_action((union ccb *)&cpi);
2313 	csa->callback(csa->callback_arg,
2314 			    AC_PATH_REGISTERED,
2315 			    &path, &cpi);
2316 	xpt_release_path(&path);
2317 
2318 	return(1);
2319 }
2320 
2321 void
2322 xpt_action(union ccb *start_ccb)
2323 {
2324 
2325 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2326 
2327 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2328 	/* Compatibility for RL-unaware code. */
2329 	if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2330 	    start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2331 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2332 }
2333 
2334 void
2335 xpt_action_default(union ccb *start_ccb)
2336 {
2337 
2338 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2339 
2340 	switch (start_ccb->ccb_h.func_code) {
2341 	case XPT_SCSI_IO:
2342 	{
2343 		struct cam_ed *device;
2344 #ifdef CAMDEBUG
2345 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2346 		struct cam_path *path;
2347 
2348 		path = start_ccb->ccb_h.path;
2349 #endif
2350 
2351 		/*
2352 		 * For the sake of compatibility with SCSI-1
2353 		 * devices that may not understand the identify
2354 		 * message, we include lun information in the
2355 		 * second byte of all commands.  SCSI-1 specifies
2356 		 * that luns are a 3 bit value and reserves only 3
2357 		 * bits for lun information in the CDB.  Later
2358 		 * revisions of the SCSI spec allow for more than 8
2359 		 * luns, but have deprecated lun information in the
2360 		 * CDB.  So, if the lun won't fit, we must omit.
2361 		 *
2362 		 * Also be aware that during initial probing for devices,
2363 		 * the inquiry information is unknown but initialized to 0.
2364 		 * This means that this code will be exercised while probing
2365 		 * devices with an ANSI revision greater than 2.
2366 		 */
2367 		device = start_ccb->ccb_h.path->device;
2368 		if (device->protocol_version <= SCSI_REV_2
2369 		 && start_ccb->ccb_h.target_lun < 8
2370 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2371 
2372 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2373 			    start_ccb->ccb_h.target_lun << 5;
2374 		}
2375 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2376 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2377 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2378 			  	       &path->device->inq_data),
2379 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2380 					  cdb_str, sizeof(cdb_str))));
2381 	}
2382 	/* FALLTHROUGH */
2383 	case XPT_TARGET_IO:
2384 	case XPT_CONT_TARGET_IO:
2385 		start_ccb->csio.sense_resid = 0;
2386 		start_ccb->csio.resid = 0;
2387 		/* FALLTHROUGH */
2388 	case XPT_ATA_IO:
2389 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2390 			start_ccb->ataio.resid = 0;
2391 		}
2392 		/* FALLTHROUGH */
2393 	case XPT_RESET_DEV:
2394 	case XPT_ENG_EXEC:
2395 	{
2396 		struct cam_path *path = start_ccb->ccb_h.path;
2397 		int frozen;
2398 
2399 		frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2400 		path->device->sim->devq->alloc_openings += frozen;
2401 		if (frozen > 0)
2402 			xpt_run_dev_allocq(path->bus);
2403 		if (xpt_schedule_dev_sendq(path->bus, path->device))
2404 			xpt_run_dev_sendq(path->bus);
2405 		break;
2406 	}
2407 	case XPT_CALC_GEOMETRY:
2408 	{
2409 		struct cam_sim *sim;
2410 
2411 		/* Filter out garbage */
2412 		if (start_ccb->ccg.block_size == 0
2413 		 || start_ccb->ccg.volume_size == 0) {
2414 			start_ccb->ccg.cylinders = 0;
2415 			start_ccb->ccg.heads = 0;
2416 			start_ccb->ccg.secs_per_track = 0;
2417 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2418 			break;
2419 		}
2420 #ifdef PC98
2421 		/*
2422 		 * In a PC-98 system, geometry translation depens on
2423 		 * the "real" device geometry obtained from mode page 4.
2424 		 * SCSI geometry translation is performed in the
2425 		 * initialization routine of the SCSI BIOS and the result
2426 		 * stored in host memory.  If the translation is available
2427 		 * in host memory, use it.  If not, rely on the default
2428 		 * translation the device driver performs.
2429 		 */
2430 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2431 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2432 			break;
2433 		}
2434 #endif
2435 		sim = start_ccb->ccb_h.path->bus->sim;
2436 		(*(sim->sim_action))(sim, start_ccb);
2437 		break;
2438 	}
2439 	case XPT_ABORT:
2440 	{
2441 		union ccb* abort_ccb;
2442 
2443 		abort_ccb = start_ccb->cab.abort_ccb;
2444 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2445 
2446 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2447 				struct cam_ccbq *ccbq;
2448 				struct cam_ed *device;
2449 
2450 				device = abort_ccb->ccb_h.path->device;
2451 				ccbq = &device->ccbq;
2452 				device->sim->devq->alloc_openings -=
2453 				    cam_ccbq_remove_ccb(ccbq, abort_ccb);
2454 				abort_ccb->ccb_h.status =
2455 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2456 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2457 				xpt_done(abort_ccb);
2458 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2459 				break;
2460 			}
2461 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2462 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2463 				/*
2464 				 * We've caught this ccb en route to
2465 				 * the SIM.  Flag it for abort and the
2466 				 * SIM will do so just before starting
2467 				 * real work on the CCB.
2468 				 */
2469 				abort_ccb->ccb_h.status =
2470 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2471 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2472 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2473 				break;
2474 			}
2475 		}
2476 		if (XPT_FC_IS_QUEUED(abort_ccb)
2477 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2478 			/*
2479 			 * It's already completed but waiting
2480 			 * for our SWI to get to it.
2481 			 */
2482 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2483 			break;
2484 		}
2485 		/*
2486 		 * If we weren't able to take care of the abort request
2487 		 * in the XPT, pass the request down to the SIM for processing.
2488 		 */
2489 	}
2490 	/* FALLTHROUGH */
2491 	case XPT_ACCEPT_TARGET_IO:
2492 	case XPT_EN_LUN:
2493 	case XPT_IMMED_NOTIFY:
2494 	case XPT_NOTIFY_ACK:
2495 	case XPT_RESET_BUS:
2496 	case XPT_IMMEDIATE_NOTIFY:
2497 	case XPT_NOTIFY_ACKNOWLEDGE:
2498 	case XPT_GET_SIM_KNOB:
2499 	case XPT_SET_SIM_KNOB:
2500 	{
2501 		struct cam_sim *sim;
2502 
2503 		sim = start_ccb->ccb_h.path->bus->sim;
2504 		(*(sim->sim_action))(sim, start_ccb);
2505 		break;
2506 	}
2507 	case XPT_PATH_INQ:
2508 	{
2509 		struct cam_sim *sim;
2510 
2511 		sim = start_ccb->ccb_h.path->bus->sim;
2512 		(*(sim->sim_action))(sim, start_ccb);
2513 		break;
2514 	}
2515 	case XPT_PATH_STATS:
2516 		start_ccb->cpis.last_reset =
2517 			start_ccb->ccb_h.path->bus->last_reset;
2518 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2519 		break;
2520 	case XPT_GDEV_TYPE:
2521 	{
2522 		struct cam_ed *dev;
2523 
2524 		dev = start_ccb->ccb_h.path->device;
2525 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2526 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2527 		} else {
2528 			struct ccb_getdev *cgd;
2529 			struct cam_eb *bus;
2530 			struct cam_et *tar;
2531 
2532 			cgd = &start_ccb->cgd;
2533 			bus = cgd->ccb_h.path->bus;
2534 			tar = cgd->ccb_h.path->target;
2535 			cgd->protocol = dev->protocol;
2536 			cgd->inq_data = dev->inq_data;
2537 			cgd->ident_data = dev->ident_data;
2538 			cgd->inq_flags = dev->inq_flags;
2539 			cgd->ccb_h.status = CAM_REQ_CMP;
2540 			cgd->serial_num_len = dev->serial_num_len;
2541 			if ((dev->serial_num_len > 0)
2542 			 && (dev->serial_num != NULL))
2543 				bcopy(dev->serial_num, cgd->serial_num,
2544 				      dev->serial_num_len);
2545 		}
2546 		break;
2547 	}
2548 	case XPT_GDEV_STATS:
2549 	{
2550 		struct cam_ed *dev;
2551 
2552 		dev = start_ccb->ccb_h.path->device;
2553 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2554 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2555 		} else {
2556 			struct ccb_getdevstats *cgds;
2557 			struct cam_eb *bus;
2558 			struct cam_et *tar;
2559 
2560 			cgds = &start_ccb->cgds;
2561 			bus = cgds->ccb_h.path->bus;
2562 			tar = cgds->ccb_h.path->target;
2563 			cgds->dev_openings = dev->ccbq.dev_openings;
2564 			cgds->dev_active = dev->ccbq.dev_active;
2565 			cgds->devq_openings = dev->ccbq.devq_openings;
2566 			cgds->devq_queued = dev->ccbq.queue.entries;
2567 			cgds->held = dev->ccbq.held;
2568 			cgds->last_reset = tar->last_reset;
2569 			cgds->maxtags = dev->maxtags;
2570 			cgds->mintags = dev->mintags;
2571 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2572 				cgds->last_reset = bus->last_reset;
2573 			cgds->ccb_h.status = CAM_REQ_CMP;
2574 		}
2575 		break;
2576 	}
2577 	case XPT_GDEVLIST:
2578 	{
2579 		struct cam_periph	*nperiph;
2580 		struct periph_list	*periph_head;
2581 		struct ccb_getdevlist	*cgdl;
2582 		u_int			i;
2583 		struct cam_ed		*device;
2584 		int			found;
2585 
2586 
2587 		found = 0;
2588 
2589 		/*
2590 		 * Don't want anyone mucking with our data.
2591 		 */
2592 		device = start_ccb->ccb_h.path->device;
2593 		periph_head = &device->periphs;
2594 		cgdl = &start_ccb->cgdl;
2595 
2596 		/*
2597 		 * Check and see if the list has changed since the user
2598 		 * last requested a list member.  If so, tell them that the
2599 		 * list has changed, and therefore they need to start over
2600 		 * from the beginning.
2601 		 */
2602 		if ((cgdl->index != 0) &&
2603 		    (cgdl->generation != device->generation)) {
2604 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2605 			break;
2606 		}
2607 
2608 		/*
2609 		 * Traverse the list of peripherals and attempt to find
2610 		 * the requested peripheral.
2611 		 */
2612 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2613 		     (nperiph != NULL) && (i <= cgdl->index);
2614 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2615 			if (i == cgdl->index) {
2616 				strncpy(cgdl->periph_name,
2617 					nperiph->periph_name,
2618 					DEV_IDLEN);
2619 				cgdl->unit_number = nperiph->unit_number;
2620 				found = 1;
2621 			}
2622 		}
2623 		if (found == 0) {
2624 			cgdl->status = CAM_GDEVLIST_ERROR;
2625 			break;
2626 		}
2627 
2628 		if (nperiph == NULL)
2629 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2630 		else
2631 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2632 
2633 		cgdl->index++;
2634 		cgdl->generation = device->generation;
2635 
2636 		cgdl->ccb_h.status = CAM_REQ_CMP;
2637 		break;
2638 	}
2639 	case XPT_DEV_MATCH:
2640 	{
2641 		dev_pos_type position_type;
2642 		struct ccb_dev_match *cdm;
2643 
2644 		cdm = &start_ccb->cdm;
2645 
2646 		/*
2647 		 * There are two ways of getting at information in the EDT.
2648 		 * The first way is via the primary EDT tree.  It starts
2649 		 * with a list of busses, then a list of targets on a bus,
2650 		 * then devices/luns on a target, and then peripherals on a
2651 		 * device/lun.  The "other" way is by the peripheral driver
2652 		 * lists.  The peripheral driver lists are organized by
2653 		 * peripheral driver.  (obviously)  So it makes sense to
2654 		 * use the peripheral driver list if the user is looking
2655 		 * for something like "da1", or all "da" devices.  If the
2656 		 * user is looking for something on a particular bus/target
2657 		 * or lun, it's generally better to go through the EDT tree.
2658 		 */
2659 
2660 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2661 			position_type = cdm->pos.position_type;
2662 		else {
2663 			u_int i;
2664 
2665 			position_type = CAM_DEV_POS_NONE;
2666 
2667 			for (i = 0; i < cdm->num_patterns; i++) {
2668 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2669 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2670 					position_type = CAM_DEV_POS_EDT;
2671 					break;
2672 				}
2673 			}
2674 
2675 			if (cdm->num_patterns == 0)
2676 				position_type = CAM_DEV_POS_EDT;
2677 			else if (position_type == CAM_DEV_POS_NONE)
2678 				position_type = CAM_DEV_POS_PDRV;
2679 		}
2680 
2681 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2682 		case CAM_DEV_POS_EDT:
2683 			xptedtmatch(cdm);
2684 			break;
2685 		case CAM_DEV_POS_PDRV:
2686 			xptperiphlistmatch(cdm);
2687 			break;
2688 		default:
2689 			cdm->status = CAM_DEV_MATCH_ERROR;
2690 			break;
2691 		}
2692 
2693 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2694 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2695 		else
2696 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2697 
2698 		break;
2699 	}
2700 	case XPT_SASYNC_CB:
2701 	{
2702 		struct ccb_setasync *csa;
2703 		struct async_node *cur_entry;
2704 		struct async_list *async_head;
2705 		u_int32_t added;
2706 
2707 		csa = &start_ccb->csa;
2708 		added = csa->event_enable;
2709 		async_head = &csa->ccb_h.path->device->asyncs;
2710 
2711 		/*
2712 		 * If there is already an entry for us, simply
2713 		 * update it.
2714 		 */
2715 		cur_entry = SLIST_FIRST(async_head);
2716 		while (cur_entry != NULL) {
2717 			if ((cur_entry->callback_arg == csa->callback_arg)
2718 			 && (cur_entry->callback == csa->callback))
2719 				break;
2720 			cur_entry = SLIST_NEXT(cur_entry, links);
2721 		}
2722 
2723 		if (cur_entry != NULL) {
2724 		 	/*
2725 			 * If the request has no flags set,
2726 			 * remove the entry.
2727 			 */
2728 			added &= ~cur_entry->event_enable;
2729 			if (csa->event_enable == 0) {
2730 				SLIST_REMOVE(async_head, cur_entry,
2731 					     async_node, links);
2732 				xpt_release_device(csa->ccb_h.path->device);
2733 				free(cur_entry, M_CAMXPT);
2734 			} else {
2735 				cur_entry->event_enable = csa->event_enable;
2736 			}
2737 			csa->event_enable = added;
2738 		} else {
2739 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2740 					   M_NOWAIT);
2741 			if (cur_entry == NULL) {
2742 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2743 				break;
2744 			}
2745 			cur_entry->event_enable = csa->event_enable;
2746 			cur_entry->callback_arg = csa->callback_arg;
2747 			cur_entry->callback = csa->callback;
2748 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2749 			xpt_acquire_device(csa->ccb_h.path->device);
2750 		}
2751 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2752 		break;
2753 	}
2754 	case XPT_REL_SIMQ:
2755 	{
2756 		struct ccb_relsim *crs;
2757 		struct cam_ed *dev;
2758 
2759 		crs = &start_ccb->crs;
2760 		dev = crs->ccb_h.path->device;
2761 		if (dev == NULL) {
2762 
2763 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2764 			break;
2765 		}
2766 
2767 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2768 
2769  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2770 				/* Don't ever go below one opening */
2771 				if (crs->openings > 0) {
2772 					xpt_dev_ccbq_resize(crs->ccb_h.path,
2773 							    crs->openings);
2774 
2775 					if (bootverbose) {
2776 						xpt_print(crs->ccb_h.path,
2777 						    "tagged openings now %d\n",
2778 						    crs->openings);
2779 					}
2780 				}
2781 			}
2782 		}
2783 
2784 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2785 
2786 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2787 
2788 				/*
2789 				 * Just extend the old timeout and decrement
2790 				 * the freeze count so that a single timeout
2791 				 * is sufficient for releasing the queue.
2792 				 */
2793 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2794 				callout_stop(&dev->callout);
2795 			} else {
2796 
2797 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2798 			}
2799 
2800 			callout_reset(&dev->callout,
2801 			    (crs->release_timeout * hz) / 1000,
2802 			    xpt_release_devq_timeout, dev);
2803 
2804 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2805 
2806 		}
2807 
2808 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2809 
2810 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2811 				/*
2812 				 * Decrement the freeze count so that a single
2813 				 * completion is still sufficient to unfreeze
2814 				 * the queue.
2815 				 */
2816 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2817 			} else {
2818 
2819 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2820 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2821 			}
2822 		}
2823 
2824 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2825 
2826 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2827 			 || (dev->ccbq.dev_active == 0)) {
2828 
2829 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2830 			} else {
2831 
2832 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2833 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2834 			}
2835 		}
2836 
2837 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2838 			xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/
2839 			    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2840 				crs->release_timeout : 0,
2841 			    /*count*/1, /*run_queue*/TRUE);
2842 		}
2843 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2844 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2845 		break;
2846 	}
2847 	case XPT_DEBUG: {
2848 #ifdef CAMDEBUG
2849 #ifdef CAM_DEBUG_DELAY
2850 		cam_debug_delay = CAM_DEBUG_DELAY;
2851 #endif
2852 		cam_dflags = start_ccb->cdbg.flags;
2853 		if (cam_dpath != NULL) {
2854 			xpt_free_path(cam_dpath);
2855 			cam_dpath = NULL;
2856 		}
2857 
2858 		if (cam_dflags != CAM_DEBUG_NONE) {
2859 			if (xpt_create_path(&cam_dpath, xpt_periph,
2860 					    start_ccb->ccb_h.path_id,
2861 					    start_ccb->ccb_h.target_id,
2862 					    start_ccb->ccb_h.target_lun) !=
2863 					    CAM_REQ_CMP) {
2864 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2865 				cam_dflags = CAM_DEBUG_NONE;
2866 			} else {
2867 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2868 				xpt_print(cam_dpath, "debugging flags now %x\n",
2869 				    cam_dflags);
2870 			}
2871 		} else {
2872 			cam_dpath = NULL;
2873 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2874 		}
2875 #else /* !CAMDEBUG */
2876 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2877 #endif /* CAMDEBUG */
2878 		break;
2879 	}
2880 	case XPT_FREEZE_QUEUE:
2881 	{
2882 		struct ccb_relsim *crs = &start_ccb->crs;
2883 
2884 		xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/
2885 		    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2886 		    crs->release_timeout : 0, /*count*/1);
2887 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2888 		break;
2889 	}
2890 	case XPT_NOOP:
2891 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2892 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
2893 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2894 		break;
2895 	default:
2896 	case XPT_SDEV_TYPE:
2897 	case XPT_TERM_IO:
2898 	case XPT_ENG_INQ:
2899 		/* XXX Implement */
2900 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2901 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2902 			xpt_done(start_ccb);
2903 		}
2904 		break;
2905 	}
2906 }
2907 
2908 void
2909 xpt_polled_action(union ccb *start_ccb)
2910 {
2911 	u_int32_t timeout;
2912 	struct	  cam_sim *sim;
2913 	struct	  cam_devq *devq;
2914 	struct	  cam_ed *dev;
2915 
2916 
2917 	timeout = start_ccb->ccb_h.timeout * 10;
2918 	sim = start_ccb->ccb_h.path->bus->sim;
2919 	devq = sim->devq;
2920 	dev = start_ccb->ccb_h.path->device;
2921 
2922 	mtx_assert(sim->mtx, MA_OWNED);
2923 
2924 	/*
2925 	 * Steal an opening so that no other queued requests
2926 	 * can get it before us while we simulate interrupts.
2927 	 */
2928 	dev->ccbq.devq_openings--;
2929 	dev->ccbq.dev_openings--;
2930 
2931 	while(((devq != NULL && devq->send_openings <= 0) ||
2932 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2933 		DELAY(100);
2934 		(*(sim->sim_poll))(sim);
2935 		camisr_runqueue(&sim->sim_doneq);
2936 	}
2937 
2938 	dev->ccbq.devq_openings++;
2939 	dev->ccbq.dev_openings++;
2940 
2941 	if (timeout != 0) {
2942 		xpt_action(start_ccb);
2943 		while(--timeout > 0) {
2944 			(*(sim->sim_poll))(sim);
2945 			camisr_runqueue(&sim->sim_doneq);
2946 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
2947 			    != CAM_REQ_INPROG)
2948 				break;
2949 			DELAY(100);
2950 		}
2951 		if (timeout == 0) {
2952 			/*
2953 			 * XXX Is it worth adding a sim_timeout entry
2954 			 * point so we can attempt recovery?  If
2955 			 * this is only used for dumps, I don't think
2956 			 * it is.
2957 			 */
2958 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2959 		}
2960 	} else {
2961 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2962 	}
2963 }
2964 
2965 /*
2966  * Schedule a peripheral driver to receive a ccb when it's
2967  * target device has space for more transactions.
2968  */
2969 void
2970 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
2971 {
2972 	struct cam_ed *device;
2973 	int runq = 0;
2974 
2975 	mtx_assert(perph->sim->mtx, MA_OWNED);
2976 
2977 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
2978 	device = perph->path->device;
2979 	if (periph_is_queued(perph)) {
2980 		/* Simply reorder based on new priority */
2981 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2982 			  ("   change priority to %d\n", new_priority));
2983 		if (new_priority < perph->pinfo.priority) {
2984 			camq_change_priority(&device->drvq,
2985 					     perph->pinfo.index,
2986 					     new_priority);
2987 			runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2988 		}
2989 	} else {
2990 		/* New entry on the queue */
2991 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2992 			  ("   added periph to queue\n"));
2993 		perph->pinfo.priority = new_priority;
2994 		perph->pinfo.generation = ++device->drvq.generation;
2995 		camq_insert(&device->drvq, &perph->pinfo);
2996 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2997 	}
2998 	if (runq != 0) {
2999 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3000 			  ("   calling xpt_run_devq\n"));
3001 		xpt_run_dev_allocq(perph->path->bus);
3002 	}
3003 }
3004 
3005 
3006 /*
3007  * Schedule a device to run on a given queue.
3008  * If the device was inserted as a new entry on the queue,
3009  * return 1 meaning the device queue should be run. If we
3010  * were already queued, implying someone else has already
3011  * started the queue, return 0 so the caller doesn't attempt
3012  * to run the queue.
3013  */
3014 int
3015 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3016 		 u_int32_t new_priority)
3017 {
3018 	int retval;
3019 	u_int32_t old_priority;
3020 
3021 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3022 
3023 	old_priority = pinfo->priority;
3024 
3025 	/*
3026 	 * Are we already queued?
3027 	 */
3028 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3029 		/* Simply reorder based on new priority */
3030 		if (new_priority < old_priority) {
3031 			camq_change_priority(queue, pinfo->index,
3032 					     new_priority);
3033 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3034 					("changed priority to %d\n",
3035 					 new_priority));
3036 			retval = 1;
3037 		} else
3038 			retval = 0;
3039 	} else {
3040 		/* New entry on the queue */
3041 		if (new_priority < old_priority)
3042 			pinfo->priority = new_priority;
3043 
3044 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3045 				("Inserting onto queue\n"));
3046 		pinfo->generation = ++queue->generation;
3047 		camq_insert(queue, pinfo);
3048 		retval = 1;
3049 	}
3050 	return (retval);
3051 }
3052 
3053 static void
3054 xpt_run_dev_allocq(struct cam_eb *bus)
3055 {
3056 	struct	cam_devq *devq;
3057 
3058 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3059 	devq = bus->sim->devq;
3060 
3061 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3062 			("   qfrozen_cnt == 0x%x, entries == %d, "
3063 			 "openings == %d, active == %d\n",
3064 			 devq->alloc_queue.qfrozen_cnt[0],
3065 			 devq->alloc_queue.entries,
3066 			 devq->alloc_openings,
3067 			 devq->alloc_active));
3068 
3069 	devq->alloc_queue.qfrozen_cnt[0]++;
3070 	while ((devq->alloc_queue.entries > 0)
3071 	    && (devq->alloc_openings > 0)
3072 	    && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3073 		struct	cam_ed_qinfo *qinfo;
3074 		struct	cam_ed *device;
3075 		union	ccb *work_ccb;
3076 		struct	cam_periph *drv;
3077 		struct	camq *drvq;
3078 
3079 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3080 							   CAMQ_HEAD);
3081 		device = qinfo->device;
3082 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3083 				("running device %p\n", device));
3084 
3085 		drvq = &device->drvq;
3086 
3087 #ifdef CAMDEBUG
3088 		if (drvq->entries <= 0) {
3089 			panic("xpt_run_dev_allocq: "
3090 			      "Device on queue without any work to do");
3091 		}
3092 #endif
3093 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3094 			devq->alloc_openings--;
3095 			devq->alloc_active++;
3096 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3097 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3098 				      drv->pinfo.priority);
3099 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3100 					("calling periph start\n"));
3101 			drv->periph_start(drv, work_ccb);
3102 		} else {
3103 			/*
3104 			 * Malloc failure in alloc_ccb
3105 			 */
3106 			/*
3107 			 * XXX add us to a list to be run from free_ccb
3108 			 * if we don't have any ccbs active on this
3109 			 * device queue otherwise we may never get run
3110 			 * again.
3111 			 */
3112 			break;
3113 		}
3114 
3115 		/* We may have more work. Attempt to reschedule. */
3116 		xpt_schedule_dev_allocq(bus, device);
3117 	}
3118 	devq->alloc_queue.qfrozen_cnt[0]--;
3119 }
3120 
3121 static void
3122 xpt_run_dev_sendq(struct cam_eb *bus)
3123 {
3124 	struct	cam_devq *devq;
3125 
3126 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3127 
3128 	devq = bus->sim->devq;
3129 
3130 	devq->send_queue.qfrozen_cnt[0]++;
3131 	while ((devq->send_queue.entries > 0)
3132 	    && (devq->send_openings > 0)
3133 	    && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3134 		struct	cam_ed_qinfo *qinfo;
3135 		struct	cam_ed *device;
3136 		union ccb *work_ccb;
3137 		struct	cam_sim *sim;
3138 
3139 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3140 							   CAMQ_HEAD);
3141 		device = qinfo->device;
3142 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3143 				("running device %p\n", device));
3144 
3145 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3146 		if (work_ccb == NULL) {
3147 			printf("device on run queue with no ccbs???\n");
3148 			continue;
3149 		}
3150 
3151 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3152 
3153 			mtx_lock(&xsoftc.xpt_lock);
3154 		 	if (xsoftc.num_highpower <= 0) {
3155 				/*
3156 				 * We got a high power command, but we
3157 				 * don't have any available slots.  Freeze
3158 				 * the device queue until we have a slot
3159 				 * available.
3160 				 */
3161 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3162 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3163 						   &work_ccb->ccb_h,
3164 						   xpt_links.stqe);
3165 
3166 				mtx_unlock(&xsoftc.xpt_lock);
3167 				continue;
3168 			} else {
3169 				/*
3170 				 * Consume a high power slot while
3171 				 * this ccb runs.
3172 				 */
3173 				xsoftc.num_highpower--;
3174 			}
3175 			mtx_unlock(&xsoftc.xpt_lock);
3176 		}
3177 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3178 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3179 
3180 		devq->send_openings--;
3181 		devq->send_active++;
3182 
3183 		xpt_schedule_dev_sendq(bus, device);
3184 
3185 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3186 			/*
3187 			 * The client wants to freeze the queue
3188 			 * after this CCB is sent.
3189 			 */
3190 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3191 		}
3192 
3193 		/* In Target mode, the peripheral driver knows best... */
3194 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3195 			if ((device->inq_flags & SID_CmdQue) != 0
3196 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3197 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3198 			else
3199 				/*
3200 				 * Clear this in case of a retried CCB that
3201 				 * failed due to a rejected tag.
3202 				 */
3203 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3204 		}
3205 
3206 		/*
3207 		 * Device queues can be shared among multiple sim instances
3208 		 * that reside on different busses.  Use the SIM in the queue
3209 		 * CCB's path, rather than the one in the bus that was passed
3210 		 * into this function.
3211 		 */
3212 		sim = work_ccb->ccb_h.path->bus->sim;
3213 		(*(sim->sim_action))(sim, work_ccb);
3214 	}
3215 	devq->send_queue.qfrozen_cnt[0]--;
3216 }
3217 
3218 /*
3219  * This function merges stuff from the slave ccb into the master ccb, while
3220  * keeping important fields in the master ccb constant.
3221  */
3222 void
3223 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3224 {
3225 
3226 	/*
3227 	 * Pull fields that are valid for peripheral drivers to set
3228 	 * into the master CCB along with the CCB "payload".
3229 	 */
3230 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3231 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3232 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3233 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3234 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3235 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3236 }
3237 
3238 void
3239 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3240 {
3241 
3242 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3243 	ccb_h->pinfo.priority = priority;
3244 	ccb_h->path = path;
3245 	ccb_h->path_id = path->bus->path_id;
3246 	if (path->target)
3247 		ccb_h->target_id = path->target->target_id;
3248 	else
3249 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3250 	if (path->device) {
3251 		ccb_h->target_lun = path->device->lun_id;
3252 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3253 	} else {
3254 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3255 	}
3256 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3257 	ccb_h->flags = 0;
3258 }
3259 
3260 /* Path manipulation functions */
3261 cam_status
3262 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3263 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3264 {
3265 	struct	   cam_path *path;
3266 	cam_status status;
3267 
3268 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3269 
3270 	if (path == NULL) {
3271 		status = CAM_RESRC_UNAVAIL;
3272 		return(status);
3273 	}
3274 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3275 	if (status != CAM_REQ_CMP) {
3276 		free(path, M_CAMXPT);
3277 		path = NULL;
3278 	}
3279 	*new_path_ptr = path;
3280 	return (status);
3281 }
3282 
3283 cam_status
3284 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3285 			 struct cam_periph *periph, path_id_t path_id,
3286 			 target_id_t target_id, lun_id_t lun_id)
3287 {
3288 	struct	   cam_path *path;
3289 	struct	   cam_eb *bus = NULL;
3290 	cam_status status;
3291 	int	   need_unlock = 0;
3292 
3293 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3294 
3295 	if (path_id != CAM_BUS_WILDCARD) {
3296 		bus = xpt_find_bus(path_id);
3297 		if (bus != NULL) {
3298 			need_unlock = 1;
3299 			CAM_SIM_LOCK(bus->sim);
3300 		}
3301 	}
3302 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3303 	if (need_unlock)
3304 		CAM_SIM_UNLOCK(bus->sim);
3305 	if (status != CAM_REQ_CMP) {
3306 		free(path, M_CAMXPT);
3307 		path = NULL;
3308 	}
3309 	*new_path_ptr = path;
3310 	return (status);
3311 }
3312 
3313 cam_status
3314 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3315 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3316 {
3317 	struct	     cam_eb *bus;
3318 	struct	     cam_et *target;
3319 	struct	     cam_ed *device;
3320 	cam_status   status;
3321 
3322 	status = CAM_REQ_CMP;	/* Completed without error */
3323 	target = NULL;		/* Wildcarded */
3324 	device = NULL;		/* Wildcarded */
3325 
3326 	/*
3327 	 * We will potentially modify the EDT, so block interrupts
3328 	 * that may attempt to create cam paths.
3329 	 */
3330 	bus = xpt_find_bus(path_id);
3331 	if (bus == NULL) {
3332 		status = CAM_PATH_INVALID;
3333 	} else {
3334 		target = xpt_find_target(bus, target_id);
3335 		if (target == NULL) {
3336 			/* Create one */
3337 			struct cam_et *new_target;
3338 
3339 			new_target = xpt_alloc_target(bus, target_id);
3340 			if (new_target == NULL) {
3341 				status = CAM_RESRC_UNAVAIL;
3342 			} else {
3343 				target = new_target;
3344 			}
3345 		}
3346 		if (target != NULL) {
3347 			device = xpt_find_device(target, lun_id);
3348 			if (device == NULL) {
3349 				/* Create one */
3350 				struct cam_ed *new_device;
3351 
3352 				new_device =
3353 				    (*(bus->xport->alloc_device))(bus,
3354 								      target,
3355 								      lun_id);
3356 				if (new_device == NULL) {
3357 					status = CAM_RESRC_UNAVAIL;
3358 				} else {
3359 					device = new_device;
3360 				}
3361 			}
3362 		}
3363 	}
3364 
3365 	/*
3366 	 * Only touch the user's data if we are successful.
3367 	 */
3368 	if (status == CAM_REQ_CMP) {
3369 		new_path->periph = perph;
3370 		new_path->bus = bus;
3371 		new_path->target = target;
3372 		new_path->device = device;
3373 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3374 	} else {
3375 		if (device != NULL)
3376 			xpt_release_device(device);
3377 		if (target != NULL)
3378 			xpt_release_target(target);
3379 		if (bus != NULL)
3380 			xpt_release_bus(bus);
3381 	}
3382 	return (status);
3383 }
3384 
3385 void
3386 xpt_release_path(struct cam_path *path)
3387 {
3388 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3389 	if (path->device != NULL) {
3390 		xpt_release_device(path->device);
3391 		path->device = NULL;
3392 	}
3393 	if (path->target != NULL) {
3394 		xpt_release_target(path->target);
3395 		path->target = NULL;
3396 	}
3397 	if (path->bus != NULL) {
3398 		xpt_release_bus(path->bus);
3399 		path->bus = NULL;
3400 	}
3401 }
3402 
3403 void
3404 xpt_free_path(struct cam_path *path)
3405 {
3406 
3407 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3408 	xpt_release_path(path);
3409 	free(path, M_CAMXPT);
3410 }
3411 
3412 
3413 /*
3414  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3415  * in path1, 2 for match with wildcards in path2.
3416  */
3417 int
3418 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3419 {
3420 	int retval = 0;
3421 
3422 	if (path1->bus != path2->bus) {
3423 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3424 			retval = 1;
3425 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3426 			retval = 2;
3427 		else
3428 			return (-1);
3429 	}
3430 	if (path1->target != path2->target) {
3431 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3432 			if (retval == 0)
3433 				retval = 1;
3434 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3435 			retval = 2;
3436 		else
3437 			return (-1);
3438 	}
3439 	if (path1->device != path2->device) {
3440 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3441 			if (retval == 0)
3442 				retval = 1;
3443 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3444 			retval = 2;
3445 		else
3446 			return (-1);
3447 	}
3448 	return (retval);
3449 }
3450 
3451 void
3452 xpt_print_path(struct cam_path *path)
3453 {
3454 
3455 	if (path == NULL)
3456 		printf("(nopath): ");
3457 	else {
3458 		if (path->periph != NULL)
3459 			printf("(%s%d:", path->periph->periph_name,
3460 			       path->periph->unit_number);
3461 		else
3462 			printf("(noperiph:");
3463 
3464 		if (path->bus != NULL)
3465 			printf("%s%d:%d:", path->bus->sim->sim_name,
3466 			       path->bus->sim->unit_number,
3467 			       path->bus->sim->bus_id);
3468 		else
3469 			printf("nobus:");
3470 
3471 		if (path->target != NULL)
3472 			printf("%d:", path->target->target_id);
3473 		else
3474 			printf("X:");
3475 
3476 		if (path->device != NULL)
3477 			printf("%d): ", path->device->lun_id);
3478 		else
3479 			printf("X): ");
3480 	}
3481 }
3482 
3483 void
3484 xpt_print(struct cam_path *path, const char *fmt, ...)
3485 {
3486 	va_list ap;
3487 	xpt_print_path(path);
3488 	va_start(ap, fmt);
3489 	vprintf(fmt, ap);
3490 	va_end(ap);
3491 }
3492 
3493 int
3494 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3495 {
3496 	struct sbuf sb;
3497 
3498 #ifdef INVARIANTS
3499 	if (path != NULL && path->bus != NULL)
3500 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3501 #endif
3502 
3503 	sbuf_new(&sb, str, str_len, 0);
3504 
3505 	if (path == NULL)
3506 		sbuf_printf(&sb, "(nopath): ");
3507 	else {
3508 		if (path->periph != NULL)
3509 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3510 				    path->periph->unit_number);
3511 		else
3512 			sbuf_printf(&sb, "(noperiph:");
3513 
3514 		if (path->bus != NULL)
3515 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3516 				    path->bus->sim->unit_number,
3517 				    path->bus->sim->bus_id);
3518 		else
3519 			sbuf_printf(&sb, "nobus:");
3520 
3521 		if (path->target != NULL)
3522 			sbuf_printf(&sb, "%d:", path->target->target_id);
3523 		else
3524 			sbuf_printf(&sb, "X:");
3525 
3526 		if (path->device != NULL)
3527 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3528 		else
3529 			sbuf_printf(&sb, "X): ");
3530 	}
3531 	sbuf_finish(&sb);
3532 
3533 	return(sbuf_len(&sb));
3534 }
3535 
3536 path_id_t
3537 xpt_path_path_id(struct cam_path *path)
3538 {
3539 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3540 
3541 	return(path->bus->path_id);
3542 }
3543 
3544 target_id_t
3545 xpt_path_target_id(struct cam_path *path)
3546 {
3547 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3548 
3549 	if (path->target != NULL)
3550 		return (path->target->target_id);
3551 	else
3552 		return (CAM_TARGET_WILDCARD);
3553 }
3554 
3555 lun_id_t
3556 xpt_path_lun_id(struct cam_path *path)
3557 {
3558 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3559 
3560 	if (path->device != NULL)
3561 		return (path->device->lun_id);
3562 	else
3563 		return (CAM_LUN_WILDCARD);
3564 }
3565 
3566 struct cam_sim *
3567 xpt_path_sim(struct cam_path *path)
3568 {
3569 
3570 	return (path->bus->sim);
3571 }
3572 
3573 struct cam_periph*
3574 xpt_path_periph(struct cam_path *path)
3575 {
3576 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3577 
3578 	return (path->periph);
3579 }
3580 
3581 /*
3582  * Release a CAM control block for the caller.  Remit the cost of the structure
3583  * to the device referenced by the path.  If the this device had no 'credits'
3584  * and peripheral drivers have registered async callbacks for this notification
3585  * call them now.
3586  */
3587 void
3588 xpt_release_ccb(union ccb *free_ccb)
3589 {
3590 	struct	 cam_path *path;
3591 	struct	 cam_ed *device;
3592 	struct	 cam_eb *bus;
3593 	struct   cam_sim *sim;
3594 
3595 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3596 	path = free_ccb->ccb_h.path;
3597 	device = path->device;
3598 	bus = path->bus;
3599 	sim = bus->sim;
3600 
3601 	mtx_assert(sim->mtx, MA_OWNED);
3602 
3603 	cam_ccbq_release_opening(&device->ccbq);
3604 	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3605 		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3606 		cam_ccbq_resize(&device->ccbq,
3607 		    device->ccbq.dev_openings + device->ccbq.dev_active);
3608 	}
3609 	if (sim->ccb_count > sim->max_ccbs) {
3610 		xpt_free_ccb(free_ccb);
3611 		sim->ccb_count--;
3612 	} else {
3613 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3614 		    xpt_links.sle);
3615 	}
3616 	if (sim->devq == NULL) {
3617 		return;
3618 	}
3619 	sim->devq->alloc_openings++;
3620 	sim->devq->alloc_active--;
3621 	if (device_is_alloc_queued(device) == 0)
3622 		xpt_schedule_dev_allocq(bus, device);
3623 	xpt_run_dev_allocq(bus);
3624 }
3625 
3626 /* Functions accessed by SIM drivers */
3627 
3628 static struct xpt_xport xport_default = {
3629 	.alloc_device = xpt_alloc_device_default,
3630 	.action = xpt_action_default,
3631 	.async = xpt_dev_async_default,
3632 };
3633 
3634 /*
3635  * A sim structure, listing the SIM entry points and instance
3636  * identification info is passed to xpt_bus_register to hook the SIM
3637  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3638  * for this new bus and places it in the array of busses and assigns
3639  * it a path_id.  The path_id may be influenced by "hard wiring"
3640  * information specified by the user.  Once interrupt services are
3641  * available, the bus will be probed.
3642  */
3643 int32_t
3644 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3645 {
3646 	struct cam_eb *new_bus;
3647 	struct cam_eb *old_bus;
3648 	struct ccb_pathinq cpi;
3649 	struct cam_path *path;
3650 	cam_status status;
3651 
3652 	mtx_assert(sim->mtx, MA_OWNED);
3653 
3654 	sim->bus_id = bus;
3655 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3656 					  M_CAMXPT, M_NOWAIT);
3657 	if (new_bus == NULL) {
3658 		/* Couldn't satisfy request */
3659 		return (CAM_RESRC_UNAVAIL);
3660 	}
3661 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3662 	if (path == NULL) {
3663 		free(new_bus, M_CAMXPT);
3664 		return (CAM_RESRC_UNAVAIL);
3665 	}
3666 
3667 	if (strcmp(sim->sim_name, "xpt") != 0) {
3668 		sim->path_id =
3669 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3670 	}
3671 
3672 	TAILQ_INIT(&new_bus->et_entries);
3673 	new_bus->path_id = sim->path_id;
3674 	cam_sim_hold(sim);
3675 	new_bus->sim = sim;
3676 	timevalclear(&new_bus->last_reset);
3677 	new_bus->flags = 0;
3678 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3679 	new_bus->generation = 0;
3680 
3681 	mtx_lock(&xsoftc.xpt_topo_lock);
3682 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3683 	while (old_bus != NULL
3684 	    && old_bus->path_id < new_bus->path_id)
3685 		old_bus = TAILQ_NEXT(old_bus, links);
3686 	if (old_bus != NULL)
3687 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3688 	else
3689 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3690 	xsoftc.bus_generation++;
3691 	mtx_unlock(&xsoftc.xpt_topo_lock);
3692 
3693 	/*
3694 	 * Set a default transport so that a PATH_INQ can be issued to
3695 	 * the SIM.  This will then allow for probing and attaching of
3696 	 * a more appropriate transport.
3697 	 */
3698 	new_bus->xport = &xport_default;
3699 
3700 	status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3701 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3702 	if (status != CAM_REQ_CMP)
3703 		printf("xpt_compile_path returned %d\n", status);
3704 
3705 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3706 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3707 	xpt_action((union ccb *)&cpi);
3708 
3709 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3710 		switch (cpi.transport) {
3711 		case XPORT_SPI:
3712 		case XPORT_SAS:
3713 		case XPORT_FC:
3714 		case XPORT_USB:
3715 		case XPORT_ISCSI:
3716 		case XPORT_PPB:
3717 			new_bus->xport = scsi_get_xport();
3718 			break;
3719 		case XPORT_ATA:
3720 		case XPORT_SATA:
3721 			new_bus->xport = ata_get_xport();
3722 			break;
3723 		default:
3724 			new_bus->xport = &xport_default;
3725 			break;
3726 		}
3727 	}
3728 
3729 	/* Notify interested parties */
3730 	if (sim->path_id != CAM_XPT_PATH_ID) {
3731 		union	ccb *scan_ccb;
3732 
3733 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3734 		/* Initiate bus rescan. */
3735 		scan_ccb = xpt_alloc_ccb_nowait();
3736 		scan_ccb->ccb_h.path = path;
3737 		scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3738 		scan_ccb->crcn.flags = 0;
3739 		xpt_rescan(scan_ccb);
3740 	} else
3741 		xpt_free_path(path);
3742 	return (CAM_SUCCESS);
3743 }
3744 
3745 int32_t
3746 xpt_bus_deregister(path_id_t pathid)
3747 {
3748 	struct cam_path bus_path;
3749 	cam_status status;
3750 
3751 	status = xpt_compile_path(&bus_path, NULL, pathid,
3752 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3753 	if (status != CAM_REQ_CMP)
3754 		return (status);
3755 
3756 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3757 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3758 
3759 	/* Release the reference count held while registered. */
3760 	xpt_release_bus(bus_path.bus);
3761 	xpt_release_path(&bus_path);
3762 
3763 	return (CAM_REQ_CMP);
3764 }
3765 
3766 static path_id_t
3767 xptnextfreepathid(void)
3768 {
3769 	struct cam_eb *bus;
3770 	path_id_t pathid;
3771 	const char *strval;
3772 
3773 	pathid = 0;
3774 	mtx_lock(&xsoftc.xpt_topo_lock);
3775 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3776 retry:
3777 	/* Find an unoccupied pathid */
3778 	while (bus != NULL && bus->path_id <= pathid) {
3779 		if (bus->path_id == pathid)
3780 			pathid++;
3781 		bus = TAILQ_NEXT(bus, links);
3782 	}
3783 	mtx_unlock(&xsoftc.xpt_topo_lock);
3784 
3785 	/*
3786 	 * Ensure that this pathid is not reserved for
3787 	 * a bus that may be registered in the future.
3788 	 */
3789 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3790 		++pathid;
3791 		/* Start the search over */
3792 		mtx_lock(&xsoftc.xpt_topo_lock);
3793 		goto retry;
3794 	}
3795 	return (pathid);
3796 }
3797 
3798 static path_id_t
3799 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3800 {
3801 	path_id_t pathid;
3802 	int i, dunit, val;
3803 	char buf[32];
3804 	const char *dname;
3805 
3806 	pathid = CAM_XPT_PATH_ID;
3807 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3808 	i = 0;
3809 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3810 		if (strcmp(dname, "scbus")) {
3811 			/* Avoid a bit of foot shooting. */
3812 			continue;
3813 		}
3814 		if (dunit < 0)		/* unwired?! */
3815 			continue;
3816 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3817 			if (sim_bus == val) {
3818 				pathid = dunit;
3819 				break;
3820 			}
3821 		} else if (sim_bus == 0) {
3822 			/* Unspecified matches bus 0 */
3823 			pathid = dunit;
3824 			break;
3825 		} else {
3826 			printf("Ambiguous scbus configuration for %s%d "
3827 			       "bus %d, cannot wire down.  The kernel "
3828 			       "config entry for scbus%d should "
3829 			       "specify a controller bus.\n"
3830 			       "Scbus will be assigned dynamically.\n",
3831 			       sim_name, sim_unit, sim_bus, dunit);
3832 			break;
3833 		}
3834 	}
3835 
3836 	if (pathid == CAM_XPT_PATH_ID)
3837 		pathid = xptnextfreepathid();
3838 	return (pathid);
3839 }
3840 
3841 void
3842 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3843 {
3844 	struct cam_eb *bus;
3845 	struct cam_et *target, *next_target;
3846 	struct cam_ed *device, *next_device;
3847 
3848 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3849 
3850 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3851 
3852 	/*
3853 	 * Most async events come from a CAM interrupt context.  In
3854 	 * a few cases, the error recovery code at the peripheral layer,
3855 	 * which may run from our SWI or a process context, may signal
3856 	 * deferred events with a call to xpt_async.
3857 	 */
3858 
3859 	bus = path->bus;
3860 
3861 	if (async_code == AC_BUS_RESET) {
3862 		/* Update our notion of when the last reset occurred */
3863 		microtime(&bus->last_reset);
3864 	}
3865 
3866 	for (target = TAILQ_FIRST(&bus->et_entries);
3867 	     target != NULL;
3868 	     target = next_target) {
3869 
3870 		next_target = TAILQ_NEXT(target, links);
3871 
3872 		if (path->target != target
3873 		 && path->target->target_id != CAM_TARGET_WILDCARD
3874 		 && target->target_id != CAM_TARGET_WILDCARD)
3875 			continue;
3876 
3877 		if (async_code == AC_SENT_BDR) {
3878 			/* Update our notion of when the last reset occurred */
3879 			microtime(&path->target->last_reset);
3880 		}
3881 
3882 		for (device = TAILQ_FIRST(&target->ed_entries);
3883 		     device != NULL;
3884 		     device = next_device) {
3885 
3886 			next_device = TAILQ_NEXT(device, links);
3887 
3888 			if (path->device != device
3889 			 && path->device->lun_id != CAM_LUN_WILDCARD
3890 			 && device->lun_id != CAM_LUN_WILDCARD)
3891 				continue;
3892 			/*
3893 			 * The async callback could free the device.
3894 			 * If it is a broadcast async, it doesn't hold
3895 			 * device reference, so take our own reference.
3896 			 */
3897 			xpt_acquire_device(device);
3898 			(*(bus->xport->async))(async_code, bus,
3899 					       target, device,
3900 					       async_arg);
3901 
3902 			xpt_async_bcast(&device->asyncs, async_code,
3903 					path, async_arg);
3904 			xpt_release_device(device);
3905 		}
3906 	}
3907 
3908 	/*
3909 	 * If this wasn't a fully wildcarded async, tell all
3910 	 * clients that want all async events.
3911 	 */
3912 	if (bus != xpt_periph->path->bus)
3913 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
3914 				path, async_arg);
3915 }
3916 
3917 static void
3918 xpt_async_bcast(struct async_list *async_head,
3919 		u_int32_t async_code,
3920 		struct cam_path *path, void *async_arg)
3921 {
3922 	struct async_node *cur_entry;
3923 
3924 	cur_entry = SLIST_FIRST(async_head);
3925 	while (cur_entry != NULL) {
3926 		struct async_node *next_entry;
3927 		/*
3928 		 * Grab the next list entry before we call the current
3929 		 * entry's callback.  This is because the callback function
3930 		 * can delete its async callback entry.
3931 		 */
3932 		next_entry = SLIST_NEXT(cur_entry, links);
3933 		if ((cur_entry->event_enable & async_code) != 0)
3934 			cur_entry->callback(cur_entry->callback_arg,
3935 					    async_code, path,
3936 					    async_arg);
3937 		cur_entry = next_entry;
3938 	}
3939 }
3940 
3941 static void
3942 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
3943 		      struct cam_et *target, struct cam_ed *device,
3944 		      void *async_arg)
3945 {
3946 	printf("%s called\n", __func__);
3947 }
3948 
3949 u_int32_t
3950 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
3951 {
3952 	struct cam_ed *dev = path->device;
3953 
3954 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3955 	dev->sim->devq->alloc_openings +=
3956 	    cam_ccbq_freeze(&dev->ccbq, rl, count);
3957 	/* Remove frozen device from allocq. */
3958 	if (device_is_alloc_queued(dev) &&
3959 	    cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
3960 	     CAMQ_GET_PRIO(&dev->drvq)))) {
3961 		camq_remove(&dev->sim->devq->alloc_queue,
3962 		    dev->alloc_ccb_entry.pinfo.index);
3963 	}
3964 	/* Remove frozen device from sendq. */
3965 	if (device_is_send_queued(dev) &&
3966 	    cam_ccbq_frozen_top(&dev->ccbq)) {
3967 		camq_remove(&dev->sim->devq->send_queue,
3968 		    dev->send_ccb_entry.pinfo.index);
3969 	}
3970 	return (dev->ccbq.queue.qfrozen_cnt[rl]);
3971 }
3972 
3973 u_int32_t
3974 xpt_freeze_devq(struct cam_path *path, u_int count)
3975 {
3976 
3977 	return (xpt_freeze_devq_rl(path, 0, count));
3978 }
3979 
3980 u_int32_t
3981 xpt_freeze_simq(struct cam_sim *sim, u_int count)
3982 {
3983 
3984 	mtx_assert(sim->mtx, MA_OWNED);
3985 	sim->devq->send_queue.qfrozen_cnt[0] += count;
3986 	return (sim->devq->send_queue.qfrozen_cnt[0]);
3987 }
3988 
3989 static void
3990 xpt_release_devq_timeout(void *arg)
3991 {
3992 	struct cam_ed *device;
3993 
3994 	device = (struct cam_ed *)arg;
3995 
3996 	xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
3997 }
3998 
3999 void
4000 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4001 {
4002 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4003 
4004 	xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
4005 }
4006 
4007 void
4008 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4009 {
4010 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4011 
4012 	xpt_release_devq_device(path->device, rl, count, run_queue);
4013 }
4014 
4015 static void
4016 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4017 {
4018 
4019 	if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4020 #ifdef INVARIANTS
4021 		printf("xpt_release_devq(%d): requested %u > present %u\n",
4022 		    rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4023 #endif
4024 		count = dev->ccbq.queue.qfrozen_cnt[rl];
4025 	}
4026 	dev->sim->devq->alloc_openings -=
4027 	    cam_ccbq_release(&dev->ccbq, rl, count);
4028 	if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4029 	    CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4030 		if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4031 			xpt_run_dev_allocq(dev->target->bus);
4032 	}
4033 	if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4034 		/*
4035 		 * No longer need to wait for a successful
4036 		 * command completion.
4037 		 */
4038 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4039 		/*
4040 		 * Remove any timeouts that might be scheduled
4041 		 * to release this queue.
4042 		 */
4043 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4044 			callout_stop(&dev->callout);
4045 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4046 		}
4047 		if (run_queue == 0)
4048 			return;
4049 		/*
4050 		 * Now that we are unfrozen schedule the
4051 		 * device so any pending transactions are
4052 		 * run.
4053 		 */
4054 		if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4055 			xpt_run_dev_sendq(dev->target->bus);
4056 	}
4057 }
4058 
4059 void
4060 xpt_release_simq(struct cam_sim *sim, int run_queue)
4061 {
4062 	struct	camq *sendq;
4063 
4064 	mtx_assert(sim->mtx, MA_OWNED);
4065 	sendq = &(sim->devq->send_queue);
4066 	if (sendq->qfrozen_cnt[0] <= 0) {
4067 #ifdef INVARIANTS
4068 		printf("xpt_release_simq: requested 1 > present %u\n",
4069 		    sendq->qfrozen_cnt[0]);
4070 #endif
4071 	} else
4072 		sendq->qfrozen_cnt[0]--;
4073 	if (sendq->qfrozen_cnt[0] == 0) {
4074 		/*
4075 		 * If there is a timeout scheduled to release this
4076 		 * sim queue, remove it.  The queue frozen count is
4077 		 * already at 0.
4078 		 */
4079 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4080 			callout_stop(&sim->callout);
4081 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4082 		}
4083 		if (run_queue) {
4084 			struct cam_eb *bus;
4085 
4086 			/*
4087 			 * Now that we are unfrozen run the send queue.
4088 			 */
4089 			bus = xpt_find_bus(sim->path_id);
4090 			xpt_run_dev_sendq(bus);
4091 			xpt_release_bus(bus);
4092 		}
4093 	}
4094 }
4095 
4096 /*
4097  * XXX Appears to be unused.
4098  */
4099 static void
4100 xpt_release_simq_timeout(void *arg)
4101 {
4102 	struct cam_sim *sim;
4103 
4104 	sim = (struct cam_sim *)arg;
4105 	xpt_release_simq(sim, /* run_queue */ TRUE);
4106 }
4107 
4108 void
4109 xpt_done(union ccb *done_ccb)
4110 {
4111 	struct cam_sim *sim;
4112 	int	first;
4113 
4114 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4115 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4116 		/*
4117 		 * Queue up the request for handling by our SWI handler
4118 		 * any of the "non-immediate" type of ccbs.
4119 		 */
4120 		sim = done_ccb->ccb_h.path->bus->sim;
4121 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4122 		    sim_links.tqe);
4123 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4124 		if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4125 			mtx_lock(&cam_simq_lock);
4126 			first = TAILQ_EMPTY(&cam_simq);
4127 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4128 			mtx_unlock(&cam_simq_lock);
4129 			sim->flags |= CAM_SIM_ON_DONEQ;
4130 			if (first)
4131 				swi_sched(cambio_ih, 0);
4132 		}
4133 	}
4134 }
4135 
4136 union ccb *
4137 xpt_alloc_ccb()
4138 {
4139 	union ccb *new_ccb;
4140 
4141 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4142 	return (new_ccb);
4143 }
4144 
4145 union ccb *
4146 xpt_alloc_ccb_nowait()
4147 {
4148 	union ccb *new_ccb;
4149 
4150 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4151 	return (new_ccb);
4152 }
4153 
4154 void
4155 xpt_free_ccb(union ccb *free_ccb)
4156 {
4157 	free(free_ccb, M_CAMXPT);
4158 }
4159 
4160 
4161 
4162 /* Private XPT functions */
4163 
4164 /*
4165  * Get a CAM control block for the caller. Charge the structure to the device
4166  * referenced by the path.  If the this device has no 'credits' then the
4167  * device already has the maximum number of outstanding operations under way
4168  * and we return NULL. If we don't have sufficient resources to allocate more
4169  * ccbs, we also return NULL.
4170  */
4171 static union ccb *
4172 xpt_get_ccb(struct cam_ed *device)
4173 {
4174 	union ccb *new_ccb;
4175 	struct cam_sim *sim;
4176 
4177 	sim = device->sim;
4178 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4179 		new_ccb = xpt_alloc_ccb_nowait();
4180                 if (new_ccb == NULL) {
4181 			return (NULL);
4182 		}
4183 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4184 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4185 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4186 				  xpt_links.sle);
4187 		sim->ccb_count++;
4188 	}
4189 	cam_ccbq_take_opening(&device->ccbq);
4190 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4191 	return (new_ccb);
4192 }
4193 
4194 static void
4195 xpt_release_bus(struct cam_eb *bus)
4196 {
4197 
4198 	if ((--bus->refcount == 0)
4199 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4200 		mtx_lock(&xsoftc.xpt_topo_lock);
4201 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4202 		xsoftc.bus_generation++;
4203 		mtx_unlock(&xsoftc.xpt_topo_lock);
4204 		cam_sim_release(bus->sim);
4205 		free(bus, M_CAMXPT);
4206 	}
4207 }
4208 
4209 static struct cam_et *
4210 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4211 {
4212 	struct cam_et *target;
4213 
4214 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4215 	if (target != NULL) {
4216 		struct cam_et *cur_target;
4217 
4218 		TAILQ_INIT(&target->ed_entries);
4219 		target->bus = bus;
4220 		target->target_id = target_id;
4221 		target->refcount = 1;
4222 		target->generation = 0;
4223 		target->luns = NULL;
4224 		timevalclear(&target->last_reset);
4225 		/*
4226 		 * Hold a reference to our parent bus so it
4227 		 * will not go away before we do.
4228 		 */
4229 		bus->refcount++;
4230 
4231 		/* Insertion sort into our bus's target list */
4232 		cur_target = TAILQ_FIRST(&bus->et_entries);
4233 		while (cur_target != NULL && cur_target->target_id < target_id)
4234 			cur_target = TAILQ_NEXT(cur_target, links);
4235 
4236 		if (cur_target != NULL) {
4237 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4238 		} else {
4239 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4240 		}
4241 		bus->generation++;
4242 	}
4243 	return (target);
4244 }
4245 
4246 static void
4247 xpt_release_target(struct cam_et *target)
4248 {
4249 
4250 	if ((--target->refcount == 0)
4251 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4252 		TAILQ_REMOVE(&target->bus->et_entries, target, links);
4253 		target->bus->generation++;
4254 		xpt_release_bus(target->bus);
4255 		if (target->luns)
4256 			free(target->luns, M_CAMXPT);
4257 		free(target, M_CAMXPT);
4258 	}
4259 }
4260 
4261 static struct cam_ed *
4262 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4263 			 lun_id_t lun_id)
4264 {
4265 	struct cam_ed *device, *cur_device;
4266 
4267 	device = xpt_alloc_device(bus, target, lun_id);
4268 	if (device == NULL)
4269 		return (NULL);
4270 
4271 	device->mintags = 1;
4272 	device->maxtags = 1;
4273 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4274 	cur_device = TAILQ_FIRST(&target->ed_entries);
4275 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4276 		cur_device = TAILQ_NEXT(cur_device, links);
4277 	if (cur_device != NULL) {
4278 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4279 	} else {
4280 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4281 	}
4282 	target->generation++;
4283 
4284 	return (device);
4285 }
4286 
4287 struct cam_ed *
4288 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4289 {
4290 	struct	   cam_ed *device;
4291 	struct	   cam_devq *devq;
4292 	cam_status status;
4293 
4294 	/* Make space for us in the device queue on our bus */
4295 	devq = bus->sim->devq;
4296 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4297 
4298 	if (status != CAM_REQ_CMP) {
4299 		device = NULL;
4300 	} else {
4301 		device = (struct cam_ed *)malloc(sizeof(*device),
4302 						 M_CAMXPT, M_NOWAIT);
4303 	}
4304 
4305 	if (device != NULL) {
4306 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4307 		device->alloc_ccb_entry.device = device;
4308 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4309 		device->send_ccb_entry.device = device;
4310 		device->target = target;
4311 		device->lun_id = lun_id;
4312 		device->sim = bus->sim;
4313 		/* Initialize our queues */
4314 		if (camq_init(&device->drvq, 0) != 0) {
4315 			free(device, M_CAMXPT);
4316 			return (NULL);
4317 		}
4318 		if (cam_ccbq_init(&device->ccbq,
4319 				  bus->sim->max_dev_openings) != 0) {
4320 			camq_fini(&device->drvq);
4321 			free(device, M_CAMXPT);
4322 			return (NULL);
4323 		}
4324 		SLIST_INIT(&device->asyncs);
4325 		SLIST_INIT(&device->periphs);
4326 		device->generation = 0;
4327 		device->owner = NULL;
4328 		device->flags = CAM_DEV_UNCONFIGURED;
4329 		device->tag_delay_count = 0;
4330 		device->tag_saved_openings = 0;
4331 		device->refcount = 1;
4332 		callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4333 
4334 		/*
4335 		 * Hold a reference to our parent target so it
4336 		 * will not go away before we do.
4337 		 */
4338 		target->refcount++;
4339 
4340 	}
4341 	return (device);
4342 }
4343 
4344 void
4345 xpt_acquire_device(struct cam_ed *device)
4346 {
4347 
4348 	device->refcount++;
4349 }
4350 
4351 void
4352 xpt_release_device(struct cam_ed *device)
4353 {
4354 
4355 	if (--device->refcount == 0) {
4356 		struct cam_devq *devq;
4357 
4358 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4359 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4360 			panic("Removing device while still queued for ccbs");
4361 
4362 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4363 				callout_stop(&device->callout);
4364 
4365 		TAILQ_REMOVE(&device->target->ed_entries, device,links);
4366 		device->target->generation++;
4367 		device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4368 		/* Release our slot in the devq */
4369 		devq = device->target->bus->sim->devq;
4370 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4371 		camq_fini(&device->drvq);
4372 		cam_ccbq_fini(&device->ccbq);
4373 		xpt_release_target(device->target);
4374 		free(device, M_CAMXPT);
4375 	}
4376 }
4377 
4378 u_int32_t
4379 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4380 {
4381 	int	diff;
4382 	int	result;
4383 	struct	cam_ed *dev;
4384 
4385 	dev = path->device;
4386 
4387 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4388 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4389 	if (result == CAM_REQ_CMP && (diff < 0)) {
4390 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4391 	}
4392 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4393 	 || (dev->inq_flags & SID_CmdQue) != 0)
4394 		dev->tag_saved_openings = newopenings;
4395 	/* Adjust the global limit */
4396 	dev->sim->max_ccbs += diff;
4397 	return (result);
4398 }
4399 
4400 static struct cam_eb *
4401 xpt_find_bus(path_id_t path_id)
4402 {
4403 	struct cam_eb *bus;
4404 
4405 	mtx_lock(&xsoftc.xpt_topo_lock);
4406 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4407 	     bus != NULL;
4408 	     bus = TAILQ_NEXT(bus, links)) {
4409 		if (bus->path_id == path_id) {
4410 			bus->refcount++;
4411 			break;
4412 		}
4413 	}
4414 	mtx_unlock(&xsoftc.xpt_topo_lock);
4415 	return (bus);
4416 }
4417 
4418 static struct cam_et *
4419 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4420 {
4421 	struct cam_et *target;
4422 
4423 	for (target = TAILQ_FIRST(&bus->et_entries);
4424 	     target != NULL;
4425 	     target = TAILQ_NEXT(target, links)) {
4426 		if (target->target_id == target_id) {
4427 			target->refcount++;
4428 			break;
4429 		}
4430 	}
4431 	return (target);
4432 }
4433 
4434 static struct cam_ed *
4435 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4436 {
4437 	struct cam_ed *device;
4438 
4439 	for (device = TAILQ_FIRST(&target->ed_entries);
4440 	     device != NULL;
4441 	     device = TAILQ_NEXT(device, links)) {
4442 		if (device->lun_id == lun_id) {
4443 			device->refcount++;
4444 			break;
4445 		}
4446 	}
4447 	return (device);
4448 }
4449 
4450 void
4451 xpt_start_tags(struct cam_path *path)
4452 {
4453 	struct ccb_relsim crs;
4454 	struct cam_ed *device;
4455 	struct cam_sim *sim;
4456 	int    newopenings;
4457 
4458 	device = path->device;
4459 	sim = path->bus->sim;
4460 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4461 	xpt_freeze_devq(path, /*count*/1);
4462 	device->inq_flags |= SID_CmdQue;
4463 	if (device->tag_saved_openings != 0)
4464 		newopenings = device->tag_saved_openings;
4465 	else
4466 		newopenings = min(device->maxtags,
4467 				  sim->max_tagged_dev_openings);
4468 	xpt_dev_ccbq_resize(path, newopenings);
4469 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4470 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4471 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4472 	crs.openings
4473 	    = crs.release_timeout
4474 	    = crs.qfrozen_cnt
4475 	    = 0;
4476 	xpt_action((union ccb *)&crs);
4477 }
4478 
4479 void
4480 xpt_stop_tags(struct cam_path *path)
4481 {
4482 	struct ccb_relsim crs;
4483 	struct cam_ed *device;
4484 	struct cam_sim *sim;
4485 
4486 	device = path->device;
4487 	sim = path->bus->sim;
4488 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4489 	device->tag_delay_count = 0;
4490 	xpt_freeze_devq(path, /*count*/1);
4491 	device->inq_flags &= ~SID_CmdQue;
4492 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4493 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4494 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4495 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4496 	crs.openings
4497 	    = crs.release_timeout
4498 	    = crs.qfrozen_cnt
4499 	    = 0;
4500 	xpt_action((union ccb *)&crs);
4501 }
4502 
4503 static void
4504 xpt_boot_delay(void *arg)
4505 {
4506 
4507 	xpt_release_boot();
4508 }
4509 
4510 static void
4511 xpt_config(void *arg)
4512 {
4513 	/*
4514 	 * Now that interrupts are enabled, go find our devices
4515 	 */
4516 
4517 #ifdef CAMDEBUG
4518 	/* Setup debugging flags and path */
4519 #ifdef CAM_DEBUG_BUS
4520 	if (cam_dflags != CAM_DEBUG_NONE) {
4521 		/*
4522 		 * Locking is specifically omitted here.  No SIMs have
4523 		 * registered yet, so xpt_create_path will only be searching
4524 		 * empty lists of targets and devices.
4525 		 */
4526 		if (xpt_create_path(&cam_dpath, xpt_periph,
4527 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4528 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4529 			printf("xpt_config: xpt_create_path() failed for debug"
4530 			       " target %d:%d:%d, debugging disabled\n",
4531 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4532 			cam_dflags = CAM_DEBUG_NONE;
4533 		}
4534 	} else
4535 		cam_dpath = NULL;
4536 #else /* !CAM_DEBUG_BUS */
4537 	cam_dpath = NULL;
4538 #endif /* CAM_DEBUG_BUS */
4539 #endif /* CAMDEBUG */
4540 
4541 	/* Register our shutdown event handler */
4542 	if ((EVENTHANDLER_REGISTER(shutdown_final, xpt_shutdown,
4543 				   NULL, SHUTDOWN_PRI_FIRST)) == NULL) {
4544 		printf("xpt_config: failed to register shutdown event.\n");
4545 	}
4546 
4547 	periphdriver_init(1);
4548 	xpt_hold_boot();
4549 	callout_init(&xsoftc.boot_callout, 1);
4550 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4551 	    xpt_boot_delay, NULL);
4552 	/* Fire up rescan thread. */
4553 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4554 		printf("xpt_config: failed to create rescan thread.\n");
4555 	}
4556 }
4557 
4558 void
4559 xpt_hold_boot(void)
4560 {
4561 	xpt_lock_buses();
4562 	xsoftc.buses_to_config++;
4563 	xpt_unlock_buses();
4564 }
4565 
4566 void
4567 xpt_release_boot(void)
4568 {
4569 	xpt_lock_buses();
4570 	xsoftc.buses_to_config--;
4571 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4572 		struct	xpt_task *task;
4573 
4574 		xsoftc.buses_config_done = 1;
4575 		xpt_unlock_buses();
4576 		/* Call manually because we don't have any busses */
4577 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4578 		if (task != NULL) {
4579 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4580 			taskqueue_enqueue(taskqueue_thread, &task->task);
4581 		}
4582 	} else
4583 		xpt_unlock_buses();
4584 }
4585 
4586 /*
4587  * If the given device only has one peripheral attached to it, and if that
4588  * peripheral is the passthrough driver, announce it.  This insures that the
4589  * user sees some sort of announcement for every peripheral in their system.
4590  */
4591 static int
4592 xptpassannouncefunc(struct cam_ed *device, void *arg)
4593 {
4594 	struct cam_periph *periph;
4595 	int i;
4596 
4597 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4598 	     periph = SLIST_NEXT(periph, periph_links), i++);
4599 
4600 	periph = SLIST_FIRST(&device->periphs);
4601 	if ((i == 1)
4602 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4603 		xpt_announce_periph(periph, NULL);
4604 
4605 	return(1);
4606 }
4607 
4608 static void
4609 xpt_finishconfig_task(void *context, int pending)
4610 {
4611 
4612 	periphdriver_init(2);
4613 	/*
4614 	 * Check for devices with no "standard" peripheral driver
4615 	 * attached.  For any devices like that, announce the
4616 	 * passthrough driver so the user will see something.
4617 	 */
4618 	xpt_for_all_devices(xptpassannouncefunc, NULL);
4619 
4620 	/* Release our hook so that the boot can continue. */
4621 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4622 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4623 	xsoftc.xpt_config_hook = NULL;
4624 
4625 	free(context, M_CAMXPT);
4626 }
4627 
4628 /*
4629  * Power down all devices when we are going to power down the system.
4630  */
4631 static void
4632 xpt_shutdown_dev_done(struct cam_periph *periph, union ccb *done_ccb)
4633 {
4634 
4635 	/* No-op. We're polling. */
4636 	return;
4637 }
4638 
4639 static int
4640 xpt_shutdown_dev(struct cam_ed *device, void *arg)
4641 {
4642 	union ccb ccb;
4643 	struct cam_path path;
4644 
4645 	if (device->flags & CAM_DEV_UNCONFIGURED)
4646 		return (1);
4647 
4648 	if (device->protocol == PROTO_ATA) {
4649 		/* Only power down device if it supports power management. */
4650 		if ((device->ident_data.support.command1 &
4651 		    ATA_SUPPORT_POWERMGT) == 0)
4652 			return (1);
4653 	} else if (device->protocol != PROTO_SCSI)
4654 		return (1);
4655 
4656 	xpt_compile_path(&path,
4657 			 NULL,
4658 			 device->target->bus->path_id,
4659 			 device->target->target_id,
4660 			 device->lun_id);
4661 	xpt_setup_ccb(&ccb.ccb_h, &path, CAM_PRIORITY_NORMAL);
4662 	if (device->protocol == PROTO_ATA) {
4663 		cam_fill_ataio(&ccb.ataio,
4664 				    1,
4665 				    xpt_shutdown_dev_done,
4666 				    CAM_DIR_NONE,
4667 				    0,
4668 				    NULL,
4669 				    0,
4670 				    30*1000);
4671 		ata_28bit_cmd(&ccb.ataio, ATA_SLEEP, 0, 0, 0);
4672 	} else {
4673 		scsi_start_stop(&ccb.csio,
4674 				/*retries*/1,
4675 				xpt_shutdown_dev_done,
4676 				MSG_SIMPLE_Q_TAG,
4677 				/*start*/FALSE,
4678 				/*load/eject*/FALSE,
4679 				/*immediate*/TRUE,
4680 				SSD_FULL_SIZE,
4681 				/*timeout*/50*1000);
4682 	}
4683 	xpt_polled_action(&ccb);
4684 
4685 	if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)
4686 		xpt_print(&path, "Device power down failed\n");
4687 	if ((ccb.ccb_h.status & CAM_DEV_QFRZN) != 0)
4688 		cam_release_devq(ccb.ccb_h.path,
4689 				 /*relsim_flags*/0,
4690 				 /*reduction*/0,
4691 				 /*timeout*/0,
4692 				 /*getcount_only*/0);
4693 	xpt_release_path(&path);
4694 	return (1);
4695 }
4696 
4697 static void
4698 xpt_shutdown(void * arg, int howto)
4699 {
4700 
4701 	if (!xpt_power_down)
4702 		return;
4703 	if ((howto & RB_POWEROFF) == 0)
4704 		return;
4705 
4706 	xpt_for_all_devices(xpt_shutdown_dev, NULL);
4707 }
4708 
4709 cam_status
4710 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4711 		   struct cam_path *path)
4712 {
4713 	struct ccb_setasync csa;
4714 	cam_status status;
4715 	int xptpath = 0;
4716 
4717 	if (path == NULL) {
4718 		mtx_lock(&xsoftc.xpt_lock);
4719 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4720 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4721 		if (status != CAM_REQ_CMP) {
4722 			mtx_unlock(&xsoftc.xpt_lock);
4723 			return (status);
4724 		}
4725 		xptpath = 1;
4726 	}
4727 
4728 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4729 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4730 	csa.event_enable = event;
4731 	csa.callback = cbfunc;
4732 	csa.callback_arg = cbarg;
4733 	xpt_action((union ccb *)&csa);
4734 	status = csa.ccb_h.status;
4735 	if (xptpath) {
4736 		xpt_free_path(path);
4737 		mtx_unlock(&xsoftc.xpt_lock);
4738 
4739 		if ((status == CAM_REQ_CMP) &&
4740 		    (csa.event_enable & AC_FOUND_DEVICE)) {
4741 			/*
4742 			 * Get this peripheral up to date with all
4743 			 * the currently existing devices.
4744 			 */
4745 			xpt_for_all_devices(xptsetasyncfunc, &csa);
4746 		}
4747 		if ((status == CAM_REQ_CMP) &&
4748 		    (csa.event_enable & AC_PATH_REGISTERED)) {
4749 			/*
4750 			 * Get this peripheral up to date with all
4751 			 * the currently existing busses.
4752 			 */
4753 			xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4754 		}
4755 	}
4756 	return (status);
4757 }
4758 
4759 static void
4760 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4761 {
4762 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4763 
4764 	switch (work_ccb->ccb_h.func_code) {
4765 	/* Common cases first */
4766 	case XPT_PATH_INQ:		/* Path routing inquiry */
4767 	{
4768 		struct ccb_pathinq *cpi;
4769 
4770 		cpi = &work_ccb->cpi;
4771 		cpi->version_num = 1; /* XXX??? */
4772 		cpi->hba_inquiry = 0;
4773 		cpi->target_sprt = 0;
4774 		cpi->hba_misc = 0;
4775 		cpi->hba_eng_cnt = 0;
4776 		cpi->max_target = 0;
4777 		cpi->max_lun = 0;
4778 		cpi->initiator_id = 0;
4779 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4780 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4781 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4782 		cpi->unit_number = sim->unit_number;
4783 		cpi->bus_id = sim->bus_id;
4784 		cpi->base_transfer_speed = 0;
4785 		cpi->protocol = PROTO_UNSPECIFIED;
4786 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4787 		cpi->transport = XPORT_UNSPECIFIED;
4788 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4789 		cpi->ccb_h.status = CAM_REQ_CMP;
4790 		xpt_done(work_ccb);
4791 		break;
4792 	}
4793 	default:
4794 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4795 		xpt_done(work_ccb);
4796 		break;
4797 	}
4798 }
4799 
4800 /*
4801  * The xpt as a "controller" has no interrupt sources, so polling
4802  * is a no-op.
4803  */
4804 static void
4805 xptpoll(struct cam_sim *sim)
4806 {
4807 }
4808 
4809 void
4810 xpt_lock_buses(void)
4811 {
4812 	mtx_lock(&xsoftc.xpt_topo_lock);
4813 }
4814 
4815 void
4816 xpt_unlock_buses(void)
4817 {
4818 	mtx_unlock(&xsoftc.xpt_topo_lock);
4819 }
4820 
4821 static void
4822 camisr(void *dummy)
4823 {
4824 	cam_simq_t queue;
4825 	struct cam_sim *sim;
4826 
4827 	mtx_lock(&cam_simq_lock);
4828 	TAILQ_INIT(&queue);
4829 	while (!TAILQ_EMPTY(&cam_simq)) {
4830 		TAILQ_CONCAT(&queue, &cam_simq, links);
4831 		mtx_unlock(&cam_simq_lock);
4832 
4833 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4834 			TAILQ_REMOVE(&queue, sim, links);
4835 			CAM_SIM_LOCK(sim);
4836 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4837 			camisr_runqueue(&sim->sim_doneq);
4838 			CAM_SIM_UNLOCK(sim);
4839 		}
4840 		mtx_lock(&cam_simq_lock);
4841 	}
4842 	mtx_unlock(&cam_simq_lock);
4843 }
4844 
4845 static void
4846 camisr_runqueue(void *V_queue)
4847 {
4848 	cam_isrq_t *queue = V_queue;
4849 	struct	ccb_hdr *ccb_h;
4850 
4851 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4852 		int	runq;
4853 
4854 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4855 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4856 
4857 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4858 			  ("camisr\n"));
4859 
4860 		runq = FALSE;
4861 
4862 		if (ccb_h->flags & CAM_HIGH_POWER) {
4863 			struct highpowerlist	*hphead;
4864 			union ccb		*send_ccb;
4865 
4866 			mtx_lock(&xsoftc.xpt_lock);
4867 			hphead = &xsoftc.highpowerq;
4868 
4869 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4870 
4871 			/*
4872 			 * Increment the count since this command is done.
4873 			 */
4874 			xsoftc.num_highpower++;
4875 
4876 			/*
4877 			 * Any high powered commands queued up?
4878 			 */
4879 			if (send_ccb != NULL) {
4880 
4881 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4882 				mtx_unlock(&xsoftc.xpt_lock);
4883 
4884 				xpt_release_devq(send_ccb->ccb_h.path,
4885 						 /*count*/1, /*runqueue*/TRUE);
4886 			} else
4887 				mtx_unlock(&xsoftc.xpt_lock);
4888 		}
4889 
4890 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4891 			struct cam_ed *dev;
4892 
4893 			dev = ccb_h->path->device;
4894 
4895 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4896 			ccb_h->path->bus->sim->devq->send_active--;
4897 			ccb_h->path->bus->sim->devq->send_openings++;
4898 			runq = TRUE;
4899 
4900 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4901 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4902 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4903 			  && (dev->ccbq.dev_active == 0))) {
4904 				xpt_release_devq(ccb_h->path, /*count*/1,
4905 						 /*run_queue*/FALSE);
4906 			}
4907 
4908 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4909 			 && (--dev->tag_delay_count == 0))
4910 				xpt_start_tags(ccb_h->path);
4911 			if (!device_is_send_queued(dev))
4912 				xpt_schedule_dev_sendq(ccb_h->path->bus, dev);
4913 		}
4914 
4915 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
4916 			xpt_release_simq(ccb_h->path->bus->sim,
4917 					 /*run_queue*/TRUE);
4918 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
4919 			runq = FALSE;
4920 		}
4921 
4922 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4923 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
4924 			xpt_release_devq(ccb_h->path, /*count*/1,
4925 					 /*run_queue*/TRUE);
4926 			ccb_h->status &= ~CAM_DEV_QFRZN;
4927 		} else if (runq) {
4928 			xpt_run_dev_sendq(ccb_h->path->bus);
4929 		}
4930 
4931 		/* Call the peripheral driver's callback */
4932 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4933 	}
4934 }
4935