1 /* 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 46 #ifdef PC98 47 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 48 #endif 49 50 #include <cam/cam.h> 51 #include <cam/cam_ccb.h> 52 #include <cam/cam_periph.h> 53 #include <cam/cam_sim.h> 54 #include <cam/cam_xpt.h> 55 #include <cam/cam_xpt_sim.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_debug.h> 58 59 #include <cam/scsi/scsi_all.h> 60 #include <cam/scsi/scsi_message.h> 61 #include <cam/scsi/scsi_pass.h> 62 #include "opt_cam.h" 63 64 /* Datastructures internal to the xpt layer */ 65 66 /* 67 * Definition of an async handler callback block. These are used to add 68 * SIMs and peripherals to the async callback lists. 69 */ 70 struct async_node { 71 SLIST_ENTRY(async_node) links; 72 u_int32_t event_enable; /* Async Event enables */ 73 void (*callback)(void *arg, u_int32_t code, 74 struct cam_path *path, void *args); 75 void *callback_arg; 76 }; 77 78 SLIST_HEAD(async_list, async_node); 79 SLIST_HEAD(periph_list, cam_periph); 80 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 81 82 /* 83 * This is the maximum number of high powered commands (e.g. start unit) 84 * that can be outstanding at a particular time. 85 */ 86 #ifndef CAM_MAX_HIGHPOWER 87 #define CAM_MAX_HIGHPOWER 4 88 #endif 89 90 /* number of high powered commands that can go through right now */ 91 static int num_highpower = CAM_MAX_HIGHPOWER; 92 93 /* 94 * Structure for queueing a device in a run queue. 95 * There is one run queue for allocating new ccbs, 96 * and another for sending ccbs to the controller. 97 */ 98 struct cam_ed_qinfo { 99 cam_pinfo pinfo; 100 struct cam_ed *device; 101 }; 102 103 /* 104 * The CAM EDT (Existing Device Table) contains the device information for 105 * all devices for all busses in the system. The table contains a 106 * cam_ed structure for each device on the bus. 107 */ 108 struct cam_ed { 109 TAILQ_ENTRY(cam_ed) links; 110 struct cam_ed_qinfo alloc_ccb_entry; 111 struct cam_ed_qinfo send_ccb_entry; 112 struct cam_et *target; 113 lun_id_t lun_id; 114 struct camq drvq; /* 115 * Queue of type drivers wanting to do 116 * work on this device. 117 */ 118 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 119 struct async_list asyncs; /* Async callback info for this B/T/L */ 120 struct periph_list periphs; /* All attached devices */ 121 u_int generation; /* Generation number */ 122 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 123 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 124 /* Storage for the inquiry data */ 125 #ifdef CAM_NEW_TRAN_CODE 126 cam_proto protocol; 127 u_int protocol_version; 128 cam_xport transport; 129 u_int transport_version; 130 #endif /* CAM_NEW_TRAN_CODE */ 131 struct scsi_inquiry_data inq_data; 132 u_int8_t inq_flags; /* 133 * Current settings for inquiry flags. 134 * This allows us to override settings 135 * like disconnection and tagged 136 * queuing for a device. 137 */ 138 u_int8_t queue_flags; /* Queue flags from the control page */ 139 u_int8_t serial_num_len; 140 u_int8_t *serial_num; 141 u_int32_t qfrozen_cnt; 142 u_int32_t flags; 143 #define CAM_DEV_UNCONFIGURED 0x01 144 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 145 #define CAM_DEV_REL_ON_COMPLETE 0x04 146 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 147 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 148 #define CAM_DEV_TAG_AFTER_COUNT 0x20 149 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 150 u_int32_t tag_delay_count; 151 #define CAM_TAG_DELAY_COUNT 5 152 u_int32_t refcount; 153 struct callout_handle c_handle; 154 }; 155 156 /* 157 * Each target is represented by an ET (Existing Target). These 158 * entries are created when a target is successfully probed with an 159 * identify, and removed when a device fails to respond after a number 160 * of retries, or a bus rescan finds the device missing. 161 */ 162 struct cam_et { 163 TAILQ_HEAD(, cam_ed) ed_entries; 164 TAILQ_ENTRY(cam_et) links; 165 struct cam_eb *bus; 166 target_id_t target_id; 167 u_int32_t refcount; 168 u_int generation; 169 struct timeval last_reset; 170 }; 171 172 /* 173 * Each bus is represented by an EB (Existing Bus). These entries 174 * are created by calls to xpt_bus_register and deleted by calls to 175 * xpt_bus_deregister. 176 */ 177 struct cam_eb { 178 TAILQ_HEAD(, cam_et) et_entries; 179 TAILQ_ENTRY(cam_eb) links; 180 path_id_t path_id; 181 struct cam_sim *sim; 182 struct timeval last_reset; 183 u_int32_t flags; 184 #define CAM_EB_RUNQ_SCHEDULED 0x01 185 u_int32_t refcount; 186 u_int generation; 187 }; 188 189 struct cam_path { 190 struct cam_periph *periph; 191 struct cam_eb *bus; 192 struct cam_et *target; 193 struct cam_ed *device; 194 }; 195 196 struct xpt_quirk_entry { 197 struct scsi_inquiry_pattern inq_pat; 198 u_int8_t quirks; 199 #define CAM_QUIRK_NOLUNS 0x01 200 #define CAM_QUIRK_NOSERIAL 0x02 201 #define CAM_QUIRK_HILUNS 0x04 202 u_int mintags; 203 u_int maxtags; 204 }; 205 #define CAM_SCSI2_MAXLUN 8 206 207 typedef enum { 208 XPT_FLAG_OPEN = 0x01 209 } xpt_flags; 210 211 struct xpt_softc { 212 xpt_flags flags; 213 u_int32_t generation; 214 }; 215 216 static const char quantum[] = "QUANTUM"; 217 static const char sony[] = "SONY"; 218 static const char west_digital[] = "WDIGTL"; 219 static const char samsung[] = "SAMSUNG"; 220 static const char seagate[] = "SEAGATE"; 221 static const char microp[] = "MICROP"; 222 223 static struct xpt_quirk_entry xpt_quirk_table[] = 224 { 225 { 226 /* Reports QUEUE FULL for temporary resource shortages */ 227 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 228 /*quirks*/0, /*mintags*/24, /*maxtags*/32 229 }, 230 { 231 /* Reports QUEUE FULL for temporary resource shortages */ 232 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 233 /*quirks*/0, /*mintags*/24, /*maxtags*/32 234 }, 235 { 236 /* Reports QUEUE FULL for temporary resource shortages */ 237 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 238 /*quirks*/0, /*mintags*/24, /*maxtags*/32 239 }, 240 { 241 /* Broken tagged queuing drive */ 242 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 243 /*quirks*/0, /*mintags*/0, /*maxtags*/0 244 }, 245 { 246 /* Broken tagged queuing drive */ 247 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 248 /*quirks*/0, /*mintags*/0, /*maxtags*/0 249 }, 250 { 251 /* Broken tagged queuing drive */ 252 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 253 /*quirks*/0, /*mintags*/0, /*maxtags*/0 254 }, 255 { 256 /* 257 * Unfortunately, the Quantum Atlas III has the same 258 * problem as the Atlas II drives above. 259 * Reported by: "Johan Granlund" <johan@granlund.nu> 260 * 261 * For future reference, the drive with the problem was: 262 * QUANTUM QM39100TD-SW N1B0 263 * 264 * It's possible that Quantum will fix the problem in later 265 * firmware revisions. If that happens, the quirk entry 266 * will need to be made specific to the firmware revisions 267 * with the problem. 268 * 269 */ 270 /* Reports QUEUE FULL for temporary resource shortages */ 271 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 272 /*quirks*/0, /*mintags*/24, /*maxtags*/32 273 }, 274 { 275 /* 276 * 18 Gig Atlas III, same problem as the 9G version. 277 * Reported by: Andre Albsmeier 278 * <andre.albsmeier@mchp.siemens.de> 279 * 280 * For future reference, the drive with the problem was: 281 * QUANTUM QM318000TD-S N491 282 */ 283 /* Reports QUEUE FULL for temporary resource shortages */ 284 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 285 /*quirks*/0, /*mintags*/24, /*maxtags*/32 286 }, 287 { 288 /* 289 * Broken tagged queuing drive 290 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 291 * and: Martin Renters <martin@tdc.on.ca> 292 */ 293 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 294 /*quirks*/0, /*mintags*/0, /*maxtags*/0 295 }, 296 /* 297 * The Seagate Medalist Pro drives have very poor write 298 * performance with anything more than 2 tags. 299 * 300 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 301 * Drive: <SEAGATE ST36530N 1444> 302 * 303 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 304 * Drive: <SEAGATE ST34520W 1281> 305 * 306 * No one has actually reported that the 9G version 307 * (ST39140*) of the Medalist Pro has the same problem, but 308 * we're assuming that it does because the 4G and 6.5G 309 * versions of the drive are broken. 310 */ 311 { 312 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 313 /*quirks*/0, /*mintags*/2, /*maxtags*/2 314 }, 315 { 316 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 317 /*quirks*/0, /*mintags*/2, /*maxtags*/2 318 }, 319 { 320 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 321 /*quirks*/0, /*mintags*/2, /*maxtags*/2 322 }, 323 { 324 /* 325 * Slow when tagged queueing is enabled. Write performance 326 * steadily drops off with more and more concurrent 327 * transactions. Best sequential write performance with 328 * tagged queueing turned off and write caching turned on. 329 * 330 * PR: kern/10398 331 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 332 * Drive: DCAS-34330 w/ "S65A" firmware. 333 * 334 * The drive with the problem had the "S65A" firmware 335 * revision, and has also been reported (by Stephen J. 336 * Roznowski <sjr@home.net>) for a drive with the "S61A" 337 * firmware revision. 338 * 339 * Although no one has reported problems with the 2 gig 340 * version of the DCAS drive, the assumption is that it 341 * has the same problems as the 4 gig version. Therefore 342 * this quirk entries disables tagged queueing for all 343 * DCAS drives. 344 */ 345 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 346 /*quirks*/0, /*mintags*/0, /*maxtags*/0 347 }, 348 { 349 /* Broken tagged queuing drive */ 350 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 351 /*quirks*/0, /*mintags*/0, /*maxtags*/0 352 }, 353 { 354 /* Broken tagged queuing drive */ 355 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 356 /*quirks*/0, /*mintags*/0, /*maxtags*/0 357 }, 358 { 359 /* 360 * Broken tagged queuing drive. 361 * Submitted by: 362 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 363 * in PR kern/9535 364 */ 365 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 366 /*quirks*/0, /*mintags*/0, /*maxtags*/0 367 }, 368 { 369 /* 370 * Slow when tagged queueing is enabled. (1.5MB/sec versus 371 * 8MB/sec.) 372 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 373 * Best performance with these drives is achieved with 374 * tagged queueing turned off, and write caching turned on. 375 */ 376 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 377 /*quirks*/0, /*mintags*/0, /*maxtags*/0 378 }, 379 { 380 /* 381 * Slow when tagged queueing is enabled. (1.5MB/sec versus 382 * 8MB/sec.) 383 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 384 * Best performance with these drives is achieved with 385 * tagged queueing turned off, and write caching turned on. 386 */ 387 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 388 /*quirks*/0, /*mintags*/0, /*maxtags*/0 389 }, 390 { 391 /* 392 * Doesn't handle queue full condition correctly, 393 * so we need to limit maxtags to what the device 394 * can handle instead of determining this automatically. 395 */ 396 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 397 /*quirks*/0, /*mintags*/2, /*maxtags*/32 398 }, 399 { 400 /* Really only one LUN */ 401 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 402 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 403 }, 404 { 405 /* I can't believe we need a quirk for DPT volumes. */ 406 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 407 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 408 /*mintags*/0, /*maxtags*/255 409 }, 410 { 411 /* 412 * Many Sony CDROM drives don't like multi-LUN probing. 413 */ 414 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 415 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 416 }, 417 { 418 /* 419 * This drive doesn't like multiple LUN probing. 420 * Submitted by: Parag Patel <parag@cgt.com> 421 */ 422 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 423 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 424 }, 425 { 426 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 427 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 428 }, 429 { 430 /* 431 * The 8200 doesn't like multi-lun probing, and probably 432 * don't like serial number requests either. 433 */ 434 { 435 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 436 "EXB-8200*", "*" 437 }, 438 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 439 }, 440 { 441 /* 442 * Let's try the same as above, but for a drive that says 443 * it's an IPL-6860 but is actually an EXB 8200. 444 */ 445 { 446 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 447 "IPL-6860*", "*" 448 }, 449 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 450 }, 451 { 452 /* 453 * These Hitachi drives don't like multi-lun probing. 454 * The PR submitter has a DK319H, but says that the Linux 455 * kernel has a similar work-around for the DK312 and DK314, 456 * so all DK31* drives are quirked here. 457 * PR: misc/18793 458 * Submitted by: Paul Haddad <paul@pth.com> 459 */ 460 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 461 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 462 }, 463 { 464 /* 465 * The Hitachi CJ series with J8A8 firmware apparantly has 466 * problems with tagged commands. 467 * PR: 23536 468 * Reported by: amagai@nue.org 469 */ 470 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 471 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 472 }, 473 { 474 /* 475 * These are the large storage arrays. 476 * Submitted by: William Carrel <william.carrel@infospace.com> 477 */ 478 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 479 CAM_QUIRK_HILUNS, 2, 1024 480 }, 481 { 482 /* 483 * This old revision of the TDC3600 is also SCSI-1, and 484 * hangs upon serial number probing. 485 */ 486 { 487 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 488 " TDC 3600", "U07:" 489 }, 490 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 491 }, 492 { 493 /* 494 * Maxtor Personal Storage 3000XT (Firewire) 495 * hangs upon serial number probing. 496 */ 497 { 498 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 499 "1394 storage", "*" 500 }, 501 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 502 }, 503 { 504 /* 505 * Would repond to all LUNs if asked for. 506 */ 507 { 508 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 509 "CP150", "*" 510 }, 511 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 512 }, 513 { 514 /* 515 * Would repond to all LUNs if asked for. 516 */ 517 { 518 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 519 "96X2*", "*" 520 }, 521 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 522 }, 523 { 524 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 525 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 526 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 527 }, 528 { 529 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 530 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 531 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 532 }, 533 { 534 /* TeraSolutions special settings for TRC-22 RAID */ 535 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 536 /*quirks*/0, /*mintags*/55, /*maxtags*/255 537 }, 538 { 539 /* Veritas Storage Appliance */ 540 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 541 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 542 }, 543 { 544 /* 545 * Would respond to all LUNs. Device type and removable 546 * flag are jumper-selectable. 547 */ 548 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 549 "Tahiti 1", "*" 550 }, 551 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 552 }, 553 { 554 /* Default tagged queuing parameters for all devices */ 555 { 556 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 557 /*vendor*/"*", /*product*/"*", /*revision*/"*" 558 }, 559 /*quirks*/0, /*mintags*/2, /*maxtags*/255 560 }, 561 }; 562 563 static const int xpt_quirk_table_size = 564 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 565 566 typedef enum { 567 DM_RET_COPY = 0x01, 568 DM_RET_FLAG_MASK = 0x0f, 569 DM_RET_NONE = 0x00, 570 DM_RET_STOP = 0x10, 571 DM_RET_DESCEND = 0x20, 572 DM_RET_ERROR = 0x30, 573 DM_RET_ACTION_MASK = 0xf0 574 } dev_match_ret; 575 576 typedef enum { 577 XPT_DEPTH_BUS, 578 XPT_DEPTH_TARGET, 579 XPT_DEPTH_DEVICE, 580 XPT_DEPTH_PERIPH 581 } xpt_traverse_depth; 582 583 struct xpt_traverse_config { 584 xpt_traverse_depth depth; 585 void *tr_func; 586 void *tr_arg; 587 }; 588 589 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 590 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 591 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 592 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 593 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 594 595 /* Transport layer configuration information */ 596 static struct xpt_softc xsoftc; 597 598 /* Queues for our software interrupt handler */ 599 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 600 static cam_isrq_t cam_bioq; 601 static cam_isrq_t cam_netq; 602 603 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 604 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 605 static u_int xpt_max_ccbs; /* 606 * Maximum size of ccb pool. Modified as 607 * devices are added/removed or have their 608 * opening counts changed. 609 */ 610 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 611 612 struct cam_periph *xpt_periph; 613 614 static periph_init_t xpt_periph_init; 615 616 static periph_init_t probe_periph_init; 617 618 static struct periph_driver xpt_driver = 619 { 620 xpt_periph_init, "xpt", 621 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 622 }; 623 624 static struct periph_driver probe_driver = 625 { 626 probe_periph_init, "probe", 627 TAILQ_HEAD_INITIALIZER(probe_driver.units) 628 }; 629 630 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 631 PERIPHDRIVER_DECLARE(probe, probe_driver); 632 633 634 static d_open_t xptopen; 635 static d_close_t xptclose; 636 static d_ioctl_t xptioctl; 637 638 static struct cdevsw xpt_cdevsw = { 639 .d_version = D_VERSION, 640 .d_flags = D_NEEDGIANT, 641 .d_open = xptopen, 642 .d_close = xptclose, 643 .d_ioctl = xptioctl, 644 .d_name = "xpt", 645 }; 646 647 static struct intr_config_hook *xpt_config_hook; 648 649 /* Registered busses */ 650 static TAILQ_HEAD(,cam_eb) xpt_busses; 651 static u_int bus_generation; 652 653 /* Storage for debugging datastructures */ 654 #ifdef CAMDEBUG 655 struct cam_path *cam_dpath; 656 u_int32_t cam_dflags; 657 u_int32_t cam_debug_delay; 658 #endif 659 660 /* Pointers to software interrupt handlers */ 661 static void *camnet_ih; 662 static void *cambio_ih; 663 664 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 665 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 666 #endif 667 668 /* 669 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 670 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 671 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 672 */ 673 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 674 || defined(CAM_DEBUG_LUN) 675 #ifdef CAMDEBUG 676 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 677 || !defined(CAM_DEBUG_LUN) 678 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 679 and CAM_DEBUG_LUN" 680 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 681 #else /* !CAMDEBUG */ 682 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 683 #endif /* CAMDEBUG */ 684 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 685 686 /* Our boot-time initialization hook */ 687 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 688 689 static moduledata_t cam_moduledata = { 690 "cam", 691 cam_module_event_handler, 692 NULL 693 }; 694 695 static void xpt_init(void *); 696 697 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 698 MODULE_VERSION(cam, 1); 699 700 701 static cam_status xpt_compile_path(struct cam_path *new_path, 702 struct cam_periph *perph, 703 path_id_t path_id, 704 target_id_t target_id, 705 lun_id_t lun_id); 706 707 static void xpt_release_path(struct cam_path *path); 708 709 static void xpt_async_bcast(struct async_list *async_head, 710 u_int32_t async_code, 711 struct cam_path *path, 712 void *async_arg); 713 static void xpt_dev_async(u_int32_t async_code, 714 struct cam_eb *bus, 715 struct cam_et *target, 716 struct cam_ed *device, 717 void *async_arg); 718 static path_id_t xptnextfreepathid(void); 719 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 720 static union ccb *xpt_get_ccb(struct cam_ed *device); 721 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 722 u_int32_t new_priority); 723 static void xpt_run_dev_allocq(struct cam_eb *bus); 724 static void xpt_run_dev_sendq(struct cam_eb *bus); 725 static timeout_t xpt_release_devq_timeout; 726 static timeout_t xpt_release_simq_timeout; 727 static void xpt_release_bus(struct cam_eb *bus); 728 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 729 int run_queue); 730 static struct cam_et* 731 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 732 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 733 static struct cam_ed* 734 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 735 lun_id_t lun_id); 736 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 737 struct cam_ed *device); 738 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 739 static struct cam_eb* 740 xpt_find_bus(path_id_t path_id); 741 static struct cam_et* 742 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 743 static struct cam_ed* 744 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 745 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 746 static void xpt_scan_lun(struct cam_periph *periph, 747 struct cam_path *path, cam_flags flags, 748 union ccb *ccb); 749 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 750 static xpt_busfunc_t xptconfigbuscountfunc; 751 static xpt_busfunc_t xptconfigfunc; 752 static void xpt_config(void *arg); 753 static xpt_devicefunc_t xptpassannouncefunc; 754 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 755 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 756 static void xptpoll(struct cam_sim *sim); 757 static void camisr(void *); 758 #if 0 759 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 760 static void xptasync(struct cam_periph *periph, 761 u_int32_t code, cam_path *path); 762 #endif 763 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 764 u_int num_patterns, struct cam_eb *bus); 765 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 766 u_int num_patterns, 767 struct cam_ed *device); 768 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 769 u_int num_patterns, 770 struct cam_periph *periph); 771 static xpt_busfunc_t xptedtbusfunc; 772 static xpt_targetfunc_t xptedttargetfunc; 773 static xpt_devicefunc_t xptedtdevicefunc; 774 static xpt_periphfunc_t xptedtperiphfunc; 775 static xpt_pdrvfunc_t xptplistpdrvfunc; 776 static xpt_periphfunc_t xptplistperiphfunc; 777 static int xptedtmatch(struct ccb_dev_match *cdm); 778 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 779 static int xptbustraverse(struct cam_eb *start_bus, 780 xpt_busfunc_t *tr_func, void *arg); 781 static int xpttargettraverse(struct cam_eb *bus, 782 struct cam_et *start_target, 783 xpt_targetfunc_t *tr_func, void *arg); 784 static int xptdevicetraverse(struct cam_et *target, 785 struct cam_ed *start_device, 786 xpt_devicefunc_t *tr_func, void *arg); 787 static int xptperiphtraverse(struct cam_ed *device, 788 struct cam_periph *start_periph, 789 xpt_periphfunc_t *tr_func, void *arg); 790 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 791 xpt_pdrvfunc_t *tr_func, void *arg); 792 static int xptpdperiphtraverse(struct periph_driver **pdrv, 793 struct cam_periph *start_periph, 794 xpt_periphfunc_t *tr_func, 795 void *arg); 796 static xpt_busfunc_t xptdefbusfunc; 797 static xpt_targetfunc_t xptdeftargetfunc; 798 static xpt_devicefunc_t xptdefdevicefunc; 799 static xpt_periphfunc_t xptdefperiphfunc; 800 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 801 #ifdef notusedyet 802 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 803 void *arg); 804 #endif 805 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 806 void *arg); 807 #ifdef notusedyet 808 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 809 void *arg); 810 #endif 811 static xpt_devicefunc_t xptsetasyncfunc; 812 static xpt_busfunc_t xptsetasyncbusfunc; 813 static cam_status xptregister(struct cam_periph *periph, 814 void *arg); 815 static cam_status proberegister(struct cam_periph *periph, 816 void *arg); 817 static void probeschedule(struct cam_periph *probe_periph); 818 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 819 static void proberequestdefaultnegotiation(struct cam_periph *periph); 820 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 821 static void probecleanup(struct cam_periph *periph); 822 static void xpt_find_quirk(struct cam_ed *device); 823 #ifdef CAM_NEW_TRAN_CODE 824 static void xpt_devise_transport(struct cam_path *path); 825 #endif /* CAM_NEW_TRAN_CODE */ 826 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 827 struct cam_ed *device, 828 int async_update); 829 static void xpt_toggle_tags(struct cam_path *path); 830 static void xpt_start_tags(struct cam_path *path); 831 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 832 struct cam_ed *dev); 833 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 834 struct cam_ed *dev); 835 static __inline int periph_is_queued(struct cam_periph *periph); 836 static __inline int device_is_alloc_queued(struct cam_ed *device); 837 static __inline int device_is_send_queued(struct cam_ed *device); 838 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 839 840 static __inline int 841 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 842 { 843 int retval; 844 845 if (dev->ccbq.devq_openings > 0) { 846 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 847 cam_ccbq_resize(&dev->ccbq, 848 dev->ccbq.dev_openings 849 + dev->ccbq.dev_active); 850 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 851 } 852 /* 853 * The priority of a device waiting for CCB resources 854 * is that of the the highest priority peripheral driver 855 * enqueued. 856 */ 857 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 858 &dev->alloc_ccb_entry.pinfo, 859 CAMQ_GET_HEAD(&dev->drvq)->priority); 860 } else { 861 retval = 0; 862 } 863 864 return (retval); 865 } 866 867 static __inline int 868 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 869 { 870 int retval; 871 872 if (dev->ccbq.dev_openings > 0) { 873 /* 874 * The priority of a device waiting for controller 875 * resources is that of the the highest priority CCB 876 * enqueued. 877 */ 878 retval = 879 xpt_schedule_dev(&bus->sim->devq->send_queue, 880 &dev->send_ccb_entry.pinfo, 881 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 882 } else { 883 retval = 0; 884 } 885 return (retval); 886 } 887 888 static __inline int 889 periph_is_queued(struct cam_periph *periph) 890 { 891 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 892 } 893 894 static __inline int 895 device_is_alloc_queued(struct cam_ed *device) 896 { 897 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 898 } 899 900 static __inline int 901 device_is_send_queued(struct cam_ed *device) 902 { 903 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 904 } 905 906 static __inline int 907 dev_allocq_is_runnable(struct cam_devq *devq) 908 { 909 /* 910 * Have work to do. 911 * Have space to do more work. 912 * Allowed to do work. 913 */ 914 return ((devq->alloc_queue.qfrozen_cnt == 0) 915 && (devq->alloc_queue.entries > 0) 916 && (devq->alloc_openings > 0)); 917 } 918 919 static void 920 xpt_periph_init() 921 { 922 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 923 } 924 925 static void 926 probe_periph_init() 927 { 928 } 929 930 931 static void 932 xptdone(struct cam_periph *periph, union ccb *done_ccb) 933 { 934 /* Caller will release the CCB */ 935 wakeup(&done_ccb->ccb_h.cbfcnp); 936 } 937 938 static int 939 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 940 { 941 int unit; 942 943 unit = minor(dev) & 0xff; 944 945 /* 946 * Only allow read-write access. 947 */ 948 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 949 return(EPERM); 950 951 /* 952 * We don't allow nonblocking access. 953 */ 954 if ((flags & O_NONBLOCK) != 0) { 955 printf("xpt%d: can't do nonblocking access\n", unit); 956 return(ENODEV); 957 } 958 959 /* 960 * We only have one transport layer right now. If someone accesses 961 * us via something other than minor number 1, point out their 962 * mistake. 963 */ 964 if (unit != 0) { 965 printf("xptopen: got invalid xpt unit %d\n", unit); 966 return(ENXIO); 967 } 968 969 /* Mark ourselves open */ 970 xsoftc.flags |= XPT_FLAG_OPEN; 971 972 return(0); 973 } 974 975 static int 976 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 977 { 978 int unit; 979 980 unit = minor(dev) & 0xff; 981 982 /* 983 * We only have one transport layer right now. If someone accesses 984 * us via something other than minor number 1, point out their 985 * mistake. 986 */ 987 if (unit != 0) { 988 printf("xptclose: got invalid xpt unit %d\n", unit); 989 return(ENXIO); 990 } 991 992 /* Mark ourselves closed */ 993 xsoftc.flags &= ~XPT_FLAG_OPEN; 994 995 return(0); 996 } 997 998 static int 999 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1000 { 1001 int unit, error; 1002 1003 error = 0; 1004 unit = minor(dev) & 0xff; 1005 1006 /* 1007 * We only have one transport layer right now. If someone accesses 1008 * us via something other than minor number 1, point out their 1009 * mistake. 1010 */ 1011 if (unit != 0) { 1012 printf("xptioctl: got invalid xpt unit %d\n", unit); 1013 return(ENXIO); 1014 } 1015 1016 switch(cmd) { 1017 /* 1018 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1019 * to accept CCB types that don't quite make sense to send through a 1020 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1021 * in the CAM spec. 1022 */ 1023 case CAMIOCOMMAND: { 1024 union ccb *ccb; 1025 union ccb *inccb; 1026 1027 inccb = (union ccb *)addr; 1028 1029 switch(inccb->ccb_h.func_code) { 1030 case XPT_SCAN_BUS: 1031 case XPT_RESET_BUS: 1032 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1033 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1034 error = EINVAL; 1035 break; 1036 } 1037 /* FALLTHROUGH */ 1038 case XPT_PATH_INQ: 1039 case XPT_ENG_INQ: 1040 case XPT_SCAN_LUN: 1041 1042 ccb = xpt_alloc_ccb(); 1043 1044 /* 1045 * Create a path using the bus, target, and lun the 1046 * user passed in. 1047 */ 1048 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1049 inccb->ccb_h.path_id, 1050 inccb->ccb_h.target_id, 1051 inccb->ccb_h.target_lun) != 1052 CAM_REQ_CMP){ 1053 error = EINVAL; 1054 xpt_free_ccb(ccb); 1055 break; 1056 } 1057 /* Ensure all of our fields are correct */ 1058 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1059 inccb->ccb_h.pinfo.priority); 1060 xpt_merge_ccb(ccb, inccb); 1061 ccb->ccb_h.cbfcnp = xptdone; 1062 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1063 bcopy(ccb, inccb, sizeof(union ccb)); 1064 xpt_free_path(ccb->ccb_h.path); 1065 xpt_free_ccb(ccb); 1066 break; 1067 1068 case XPT_DEBUG: { 1069 union ccb ccb; 1070 1071 /* 1072 * This is an immediate CCB, so it's okay to 1073 * allocate it on the stack. 1074 */ 1075 1076 /* 1077 * Create a path using the bus, target, and lun the 1078 * user passed in. 1079 */ 1080 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1081 inccb->ccb_h.path_id, 1082 inccb->ccb_h.target_id, 1083 inccb->ccb_h.target_lun) != 1084 CAM_REQ_CMP){ 1085 error = EINVAL; 1086 break; 1087 } 1088 /* Ensure all of our fields are correct */ 1089 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1090 inccb->ccb_h.pinfo.priority); 1091 xpt_merge_ccb(&ccb, inccb); 1092 ccb.ccb_h.cbfcnp = xptdone; 1093 xpt_action(&ccb); 1094 bcopy(&ccb, inccb, sizeof(union ccb)); 1095 xpt_free_path(ccb.ccb_h.path); 1096 break; 1097 1098 } 1099 case XPT_DEV_MATCH: { 1100 struct cam_periph_map_info mapinfo; 1101 struct cam_path *old_path; 1102 1103 /* 1104 * We can't deal with physical addresses for this 1105 * type of transaction. 1106 */ 1107 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1108 error = EINVAL; 1109 break; 1110 } 1111 1112 /* 1113 * Save this in case the caller had it set to 1114 * something in particular. 1115 */ 1116 old_path = inccb->ccb_h.path; 1117 1118 /* 1119 * We really don't need a path for the matching 1120 * code. The path is needed because of the 1121 * debugging statements in xpt_action(). They 1122 * assume that the CCB has a valid path. 1123 */ 1124 inccb->ccb_h.path = xpt_periph->path; 1125 1126 bzero(&mapinfo, sizeof(mapinfo)); 1127 1128 /* 1129 * Map the pattern and match buffers into kernel 1130 * virtual address space. 1131 */ 1132 error = cam_periph_mapmem(inccb, &mapinfo); 1133 1134 if (error) { 1135 inccb->ccb_h.path = old_path; 1136 break; 1137 } 1138 1139 /* 1140 * This is an immediate CCB, we can send it on directly. 1141 */ 1142 xpt_action(inccb); 1143 1144 /* 1145 * Map the buffers back into user space. 1146 */ 1147 cam_periph_unmapmem(inccb, &mapinfo); 1148 1149 inccb->ccb_h.path = old_path; 1150 1151 error = 0; 1152 break; 1153 } 1154 default: 1155 error = ENOTSUP; 1156 break; 1157 } 1158 break; 1159 } 1160 /* 1161 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1162 * with the periphal driver name and unit name filled in. The other 1163 * fields don't really matter as input. The passthrough driver name 1164 * ("pass"), and unit number are passed back in the ccb. The current 1165 * device generation number, and the index into the device peripheral 1166 * driver list, and the status are also passed back. Note that 1167 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1168 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1169 * (or rather should be) impossible for the device peripheral driver 1170 * list to change since we look at the whole thing in one pass, and 1171 * we do it with splcam protection. 1172 * 1173 */ 1174 case CAMGETPASSTHRU: { 1175 union ccb *ccb; 1176 struct cam_periph *periph; 1177 struct periph_driver **p_drv; 1178 char *name; 1179 u_int unit; 1180 u_int cur_generation; 1181 int base_periph_found; 1182 int splbreaknum; 1183 int s; 1184 1185 ccb = (union ccb *)addr; 1186 unit = ccb->cgdl.unit_number; 1187 name = ccb->cgdl.periph_name; 1188 /* 1189 * Every 100 devices, we want to drop our spl protection to 1190 * give the software interrupt handler a chance to run. 1191 * Most systems won't run into this check, but this should 1192 * avoid starvation in the software interrupt handler in 1193 * large systems. 1194 */ 1195 splbreaknum = 100; 1196 1197 ccb = (union ccb *)addr; 1198 1199 base_periph_found = 0; 1200 1201 /* 1202 * Sanity check -- make sure we don't get a null peripheral 1203 * driver name. 1204 */ 1205 if (*ccb->cgdl.periph_name == '\0') { 1206 error = EINVAL; 1207 break; 1208 } 1209 1210 /* Keep the list from changing while we traverse it */ 1211 s = splcam(); 1212 ptstartover: 1213 cur_generation = xsoftc.generation; 1214 1215 /* first find our driver in the list of drivers */ 1216 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1217 if (strcmp((*p_drv)->driver_name, name) == 0) 1218 break; 1219 1220 if (*p_drv == NULL) { 1221 splx(s); 1222 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1223 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1224 *ccb->cgdl.periph_name = '\0'; 1225 ccb->cgdl.unit_number = 0; 1226 error = ENOENT; 1227 break; 1228 } 1229 1230 /* 1231 * Run through every peripheral instance of this driver 1232 * and check to see whether it matches the unit passed 1233 * in by the user. If it does, get out of the loops and 1234 * find the passthrough driver associated with that 1235 * peripheral driver. 1236 */ 1237 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1238 periph = TAILQ_NEXT(periph, unit_links)) { 1239 1240 if (periph->unit_number == unit) { 1241 break; 1242 } else if (--splbreaknum == 0) { 1243 splx(s); 1244 s = splcam(); 1245 splbreaknum = 100; 1246 if (cur_generation != xsoftc.generation) 1247 goto ptstartover; 1248 } 1249 } 1250 /* 1251 * If we found the peripheral driver that the user passed 1252 * in, go through all of the peripheral drivers for that 1253 * particular device and look for a passthrough driver. 1254 */ 1255 if (periph != NULL) { 1256 struct cam_ed *device; 1257 int i; 1258 1259 base_periph_found = 1; 1260 device = periph->path->device; 1261 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1262 periph != NULL; 1263 periph = SLIST_NEXT(periph, periph_links), i++) { 1264 /* 1265 * Check to see whether we have a 1266 * passthrough device or not. 1267 */ 1268 if (strcmp(periph->periph_name, "pass") == 0) { 1269 /* 1270 * Fill in the getdevlist fields. 1271 */ 1272 strcpy(ccb->cgdl.periph_name, 1273 periph->periph_name); 1274 ccb->cgdl.unit_number = 1275 periph->unit_number; 1276 if (SLIST_NEXT(periph, periph_links)) 1277 ccb->cgdl.status = 1278 CAM_GDEVLIST_MORE_DEVS; 1279 else 1280 ccb->cgdl.status = 1281 CAM_GDEVLIST_LAST_DEVICE; 1282 ccb->cgdl.generation = 1283 device->generation; 1284 ccb->cgdl.index = i; 1285 /* 1286 * Fill in some CCB header fields 1287 * that the user may want. 1288 */ 1289 ccb->ccb_h.path_id = 1290 periph->path->bus->path_id; 1291 ccb->ccb_h.target_id = 1292 periph->path->target->target_id; 1293 ccb->ccb_h.target_lun = 1294 periph->path->device->lun_id; 1295 ccb->ccb_h.status = CAM_REQ_CMP; 1296 break; 1297 } 1298 } 1299 } 1300 1301 /* 1302 * If the periph is null here, one of two things has 1303 * happened. The first possibility is that we couldn't 1304 * find the unit number of the particular peripheral driver 1305 * that the user is asking about. e.g. the user asks for 1306 * the passthrough driver for "da11". We find the list of 1307 * "da" peripherals all right, but there is no unit 11. 1308 * The other possibility is that we went through the list 1309 * of peripheral drivers attached to the device structure, 1310 * but didn't find one with the name "pass". Either way, 1311 * we return ENOENT, since we couldn't find something. 1312 */ 1313 if (periph == NULL) { 1314 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1315 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1316 *ccb->cgdl.periph_name = '\0'; 1317 ccb->cgdl.unit_number = 0; 1318 error = ENOENT; 1319 /* 1320 * It is unfortunate that this is even necessary, 1321 * but there are many, many clueless users out there. 1322 * If this is true, the user is looking for the 1323 * passthrough driver, but doesn't have one in his 1324 * kernel. 1325 */ 1326 if (base_periph_found == 1) { 1327 printf("xptioctl: pass driver is not in the " 1328 "kernel\n"); 1329 printf("xptioctl: put \"device pass0\" in " 1330 "your kernel config file\n"); 1331 } 1332 } 1333 splx(s); 1334 break; 1335 } 1336 default: 1337 error = ENOTTY; 1338 break; 1339 } 1340 1341 return(error); 1342 } 1343 1344 static int 1345 cam_module_event_handler(module_t mod, int what, void *arg) 1346 { 1347 if (what == MOD_LOAD) { 1348 xpt_init(NULL); 1349 } else if (what == MOD_UNLOAD) { 1350 return EBUSY; 1351 } 1352 1353 return 0; 1354 } 1355 1356 /* Functions accessed by the peripheral drivers */ 1357 static void 1358 xpt_init(dummy) 1359 void *dummy; 1360 { 1361 struct cam_sim *xpt_sim; 1362 struct cam_path *path; 1363 struct cam_devq *devq; 1364 cam_status status; 1365 1366 TAILQ_INIT(&xpt_busses); 1367 TAILQ_INIT(&cam_bioq); 1368 TAILQ_INIT(&cam_netq); 1369 SLIST_INIT(&ccb_freeq); 1370 STAILQ_INIT(&highpowerq); 1371 1372 /* 1373 * The xpt layer is, itself, the equivelent of a SIM. 1374 * Allow 16 ccbs in the ccb pool for it. This should 1375 * give decent parallelism when we probe busses and 1376 * perform other XPT functions. 1377 */ 1378 devq = cam_simq_alloc(16); 1379 xpt_sim = cam_sim_alloc(xptaction, 1380 xptpoll, 1381 "xpt", 1382 /*softc*/NULL, 1383 /*unit*/0, 1384 /*max_dev_transactions*/0, 1385 /*max_tagged_dev_transactions*/0, 1386 devq); 1387 xpt_max_ccbs = 16; 1388 1389 xpt_bus_register(xpt_sim, /*bus #*/0); 1390 1391 /* 1392 * Looking at the XPT from the SIM layer, the XPT is 1393 * the equivelent of a peripheral driver. Allocate 1394 * a peripheral driver entry for us. 1395 */ 1396 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1397 CAM_TARGET_WILDCARD, 1398 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1399 printf("xpt_init: xpt_create_path failed with status %#x," 1400 " failing attach\n", status); 1401 return; 1402 } 1403 1404 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1405 path, NULL, 0, NULL); 1406 xpt_free_path(path); 1407 1408 xpt_sim->softc = xpt_periph; 1409 1410 /* 1411 * Register a callback for when interrupts are enabled. 1412 */ 1413 xpt_config_hook = 1414 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1415 M_TEMP, M_NOWAIT | M_ZERO); 1416 if (xpt_config_hook == NULL) { 1417 printf("xpt_init: Cannot malloc config hook " 1418 "- failing attach\n"); 1419 return; 1420 } 1421 1422 xpt_config_hook->ich_func = xpt_config; 1423 if (config_intrhook_establish(xpt_config_hook) != 0) { 1424 free (xpt_config_hook, M_TEMP); 1425 printf("xpt_init: config_intrhook_establish failed " 1426 "- failing attach\n"); 1427 } 1428 1429 /* Install our software interrupt handlers */ 1430 swi_add(NULL, "camnet", camisr, &cam_netq, SWI_CAMNET, 0, &camnet_ih); 1431 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1432 } 1433 1434 static cam_status 1435 xptregister(struct cam_periph *periph, void *arg) 1436 { 1437 if (periph == NULL) { 1438 printf("xptregister: periph was NULL!!\n"); 1439 return(CAM_REQ_CMP_ERR); 1440 } 1441 1442 periph->softc = NULL; 1443 1444 xpt_periph = periph; 1445 1446 return(CAM_REQ_CMP); 1447 } 1448 1449 int32_t 1450 xpt_add_periph(struct cam_periph *periph) 1451 { 1452 struct cam_ed *device; 1453 int32_t status; 1454 struct periph_list *periph_head; 1455 1456 GIANT_REQUIRED; 1457 1458 device = periph->path->device; 1459 1460 periph_head = &device->periphs; 1461 1462 status = CAM_REQ_CMP; 1463 1464 if (device != NULL) { 1465 int s; 1466 1467 /* 1468 * Make room for this peripheral 1469 * so it will fit in the queue 1470 * when it's scheduled to run 1471 */ 1472 s = splsoftcam(); 1473 status = camq_resize(&device->drvq, 1474 device->drvq.array_size + 1); 1475 1476 device->generation++; 1477 1478 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1479 1480 splx(s); 1481 } 1482 1483 xsoftc.generation++; 1484 1485 return (status); 1486 } 1487 1488 void 1489 xpt_remove_periph(struct cam_periph *periph) 1490 { 1491 struct cam_ed *device; 1492 1493 GIANT_REQUIRED; 1494 1495 device = periph->path->device; 1496 1497 if (device != NULL) { 1498 int s; 1499 struct periph_list *periph_head; 1500 1501 periph_head = &device->periphs; 1502 1503 /* Release the slot for this peripheral */ 1504 s = splsoftcam(); 1505 camq_resize(&device->drvq, device->drvq.array_size - 1); 1506 1507 device->generation++; 1508 1509 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1510 1511 splx(s); 1512 } 1513 1514 xsoftc.generation++; 1515 1516 } 1517 1518 #ifdef CAM_NEW_TRAN_CODE 1519 1520 void 1521 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1522 { 1523 struct ccb_pathinq cpi; 1524 struct ccb_trans_settings cts; 1525 struct cam_path *path; 1526 u_int speed; 1527 u_int freq; 1528 u_int mb; 1529 int s; 1530 1531 GIANT_REQUIRED; 1532 1533 path = periph->path; 1534 /* 1535 * To ensure that this is printed in one piece, 1536 * mask out CAM interrupts. 1537 */ 1538 s = splsoftcam(); 1539 printf("%s%d at %s%d bus %d target %d lun %d\n", 1540 periph->periph_name, periph->unit_number, 1541 path->bus->sim->sim_name, 1542 path->bus->sim->unit_number, 1543 path->bus->sim->bus_id, 1544 path->target->target_id, 1545 path->device->lun_id); 1546 printf("%s%d: ", periph->periph_name, periph->unit_number); 1547 scsi_print_inquiry(&path->device->inq_data); 1548 if (bootverbose && path->device->serial_num_len > 0) { 1549 /* Don't wrap the screen - print only the first 60 chars */ 1550 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1551 periph->unit_number, path->device->serial_num); 1552 } 1553 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1554 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1555 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1556 xpt_action((union ccb*)&cts); 1557 1558 /* Ask the SIM for its base transfer speed */ 1559 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1560 cpi.ccb_h.func_code = XPT_PATH_INQ; 1561 xpt_action((union ccb *)&cpi); 1562 1563 speed = cpi.base_transfer_speed; 1564 freq = 0; 1565 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1566 struct ccb_trans_settings_spi *spi; 1567 1568 spi = &cts.xport_specific.spi; 1569 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1570 && spi->sync_offset != 0) { 1571 freq = scsi_calc_syncsrate(spi->sync_period); 1572 speed = freq; 1573 } 1574 1575 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1576 speed *= (0x01 << spi->bus_width); 1577 } 1578 1579 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1580 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1581 if (fc->valid & CTS_FC_VALID_SPEED) { 1582 speed = fc->bitrate; 1583 } 1584 } 1585 1586 mb = speed / 1000; 1587 if (mb > 0) 1588 printf("%s%d: %d.%03dMB/s transfers", 1589 periph->periph_name, periph->unit_number, 1590 mb, speed % 1000); 1591 else 1592 printf("%s%d: %dKB/s transfers", periph->periph_name, 1593 periph->unit_number, speed); 1594 /* Report additional information about SPI connections */ 1595 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1596 struct ccb_trans_settings_spi *spi; 1597 1598 spi = &cts.xport_specific.spi; 1599 if (freq != 0) { 1600 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1601 freq % 1000, 1602 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1603 ? " DT" : "", 1604 spi->sync_offset); 1605 } 1606 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1607 && spi->bus_width > 0) { 1608 if (freq != 0) { 1609 printf(", "); 1610 } else { 1611 printf(" ("); 1612 } 1613 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1614 } else if (freq != 0) { 1615 printf(")"); 1616 } 1617 } 1618 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1619 struct ccb_trans_settings_fc *fc; 1620 1621 fc = &cts.xport_specific.fc; 1622 if (fc->valid & CTS_FC_VALID_WWNN) 1623 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1624 if (fc->valid & CTS_FC_VALID_WWPN) 1625 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1626 if (fc->valid & CTS_FC_VALID_PORT) 1627 printf(" PortID 0x%x", fc->port); 1628 } 1629 1630 if (path->device->inq_flags & SID_CmdQue 1631 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1632 printf("\n%s%d: Tagged Queueing Enabled", 1633 periph->periph_name, periph->unit_number); 1634 } 1635 printf("\n"); 1636 1637 /* 1638 * We only want to print the caller's announce string if they've 1639 * passed one in.. 1640 */ 1641 if (announce_string != NULL) 1642 printf("%s%d: %s\n", periph->periph_name, 1643 periph->unit_number, announce_string); 1644 splx(s); 1645 } 1646 #else /* CAM_NEW_TRAN_CODE */ 1647 void 1648 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1649 { 1650 int s; 1651 u_int mb; 1652 struct cam_path *path; 1653 struct ccb_trans_settings cts; 1654 1655 GIANT_REQUIRED; 1656 1657 path = periph->path; 1658 /* 1659 * To ensure that this is printed in one piece, 1660 * mask out CAM interrupts. 1661 */ 1662 s = splsoftcam(); 1663 printf("%s%d at %s%d bus %d target %d lun %d\n", 1664 periph->periph_name, periph->unit_number, 1665 path->bus->sim->sim_name, 1666 path->bus->sim->unit_number, 1667 path->bus->sim->bus_id, 1668 path->target->target_id, 1669 path->device->lun_id); 1670 printf("%s%d: ", periph->periph_name, periph->unit_number); 1671 scsi_print_inquiry(&path->device->inq_data); 1672 if ((bootverbose) 1673 && (path->device->serial_num_len > 0)) { 1674 /* Don't wrap the screen - print only the first 60 chars */ 1675 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1676 periph->unit_number, path->device->serial_num); 1677 } 1678 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1679 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1680 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1681 xpt_action((union ccb*)&cts); 1682 if (cts.ccb_h.status == CAM_REQ_CMP) { 1683 u_int speed; 1684 u_int freq; 1685 1686 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1687 && cts.sync_offset != 0) { 1688 freq = scsi_calc_syncsrate(cts.sync_period); 1689 speed = freq; 1690 } else { 1691 struct ccb_pathinq cpi; 1692 1693 /* Ask the SIM for its base transfer speed */ 1694 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1695 cpi.ccb_h.func_code = XPT_PATH_INQ; 1696 xpt_action((union ccb *)&cpi); 1697 1698 speed = cpi.base_transfer_speed; 1699 freq = 0; 1700 } 1701 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1702 speed *= (0x01 << cts.bus_width); 1703 mb = speed / 1000; 1704 if (mb > 0) 1705 printf("%s%d: %d.%03dMB/s transfers", 1706 periph->periph_name, periph->unit_number, 1707 mb, speed % 1000); 1708 else 1709 printf("%s%d: %dKB/s transfers", periph->periph_name, 1710 periph->unit_number, speed); 1711 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1712 && cts.sync_offset != 0) { 1713 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1714 freq % 1000, cts.sync_offset); 1715 } 1716 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1717 && cts.bus_width > 0) { 1718 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1719 && cts.sync_offset != 0) { 1720 printf(", "); 1721 } else { 1722 printf(" ("); 1723 } 1724 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1725 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1726 && cts.sync_offset != 0) { 1727 printf(")"); 1728 } 1729 1730 if (path->device->inq_flags & SID_CmdQue 1731 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1732 printf(", Tagged Queueing Enabled"); 1733 } 1734 1735 printf("\n"); 1736 } else if (path->device->inq_flags & SID_CmdQue 1737 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1738 printf("%s%d: Tagged Queueing Enabled\n", 1739 periph->periph_name, periph->unit_number); 1740 } 1741 1742 /* 1743 * We only want to print the caller's announce string if they've 1744 * passed one in.. 1745 */ 1746 if (announce_string != NULL) 1747 printf("%s%d: %s\n", periph->periph_name, 1748 periph->unit_number, announce_string); 1749 splx(s); 1750 } 1751 1752 #endif /* CAM_NEW_TRAN_CODE */ 1753 1754 static dev_match_ret 1755 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1756 struct cam_eb *bus) 1757 { 1758 dev_match_ret retval; 1759 int i; 1760 1761 retval = DM_RET_NONE; 1762 1763 /* 1764 * If we aren't given something to match against, that's an error. 1765 */ 1766 if (bus == NULL) 1767 return(DM_RET_ERROR); 1768 1769 /* 1770 * If there are no match entries, then this bus matches no 1771 * matter what. 1772 */ 1773 if ((patterns == NULL) || (num_patterns == 0)) 1774 return(DM_RET_DESCEND | DM_RET_COPY); 1775 1776 for (i = 0; i < num_patterns; i++) { 1777 struct bus_match_pattern *cur_pattern; 1778 1779 /* 1780 * If the pattern in question isn't for a bus node, we 1781 * aren't interested. However, we do indicate to the 1782 * calling routine that we should continue descending the 1783 * tree, since the user wants to match against lower-level 1784 * EDT elements. 1785 */ 1786 if (patterns[i].type != DEV_MATCH_BUS) { 1787 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1788 retval |= DM_RET_DESCEND; 1789 continue; 1790 } 1791 1792 cur_pattern = &patterns[i].pattern.bus_pattern; 1793 1794 /* 1795 * If they want to match any bus node, we give them any 1796 * device node. 1797 */ 1798 if (cur_pattern->flags == BUS_MATCH_ANY) { 1799 /* set the copy flag */ 1800 retval |= DM_RET_COPY; 1801 1802 /* 1803 * If we've already decided on an action, go ahead 1804 * and return. 1805 */ 1806 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1807 return(retval); 1808 } 1809 1810 /* 1811 * Not sure why someone would do this... 1812 */ 1813 if (cur_pattern->flags == BUS_MATCH_NONE) 1814 continue; 1815 1816 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1817 && (cur_pattern->path_id != bus->path_id)) 1818 continue; 1819 1820 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1821 && (cur_pattern->bus_id != bus->sim->bus_id)) 1822 continue; 1823 1824 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1825 && (cur_pattern->unit_number != bus->sim->unit_number)) 1826 continue; 1827 1828 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1829 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1830 DEV_IDLEN) != 0)) 1831 continue; 1832 1833 /* 1834 * If we get to this point, the user definitely wants 1835 * information on this bus. So tell the caller to copy the 1836 * data out. 1837 */ 1838 retval |= DM_RET_COPY; 1839 1840 /* 1841 * If the return action has been set to descend, then we 1842 * know that we've already seen a non-bus matching 1843 * expression, therefore we need to further descend the tree. 1844 * This won't change by continuing around the loop, so we 1845 * go ahead and return. If we haven't seen a non-bus 1846 * matching expression, we keep going around the loop until 1847 * we exhaust the matching expressions. We'll set the stop 1848 * flag once we fall out of the loop. 1849 */ 1850 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1851 return(retval); 1852 } 1853 1854 /* 1855 * If the return action hasn't been set to descend yet, that means 1856 * we haven't seen anything other than bus matching patterns. So 1857 * tell the caller to stop descending the tree -- the user doesn't 1858 * want to match against lower level tree elements. 1859 */ 1860 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1861 retval |= DM_RET_STOP; 1862 1863 return(retval); 1864 } 1865 1866 static dev_match_ret 1867 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1868 struct cam_ed *device) 1869 { 1870 dev_match_ret retval; 1871 int i; 1872 1873 retval = DM_RET_NONE; 1874 1875 /* 1876 * If we aren't given something to match against, that's an error. 1877 */ 1878 if (device == NULL) 1879 return(DM_RET_ERROR); 1880 1881 /* 1882 * If there are no match entries, then this device matches no 1883 * matter what. 1884 */ 1885 if ((patterns == NULL) || (num_patterns == 0)) 1886 return(DM_RET_DESCEND | DM_RET_COPY); 1887 1888 for (i = 0; i < num_patterns; i++) { 1889 struct device_match_pattern *cur_pattern; 1890 1891 /* 1892 * If the pattern in question isn't for a device node, we 1893 * aren't interested. 1894 */ 1895 if (patterns[i].type != DEV_MATCH_DEVICE) { 1896 if ((patterns[i].type == DEV_MATCH_PERIPH) 1897 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1898 retval |= DM_RET_DESCEND; 1899 continue; 1900 } 1901 1902 cur_pattern = &patterns[i].pattern.device_pattern; 1903 1904 /* 1905 * If they want to match any device node, we give them any 1906 * device node. 1907 */ 1908 if (cur_pattern->flags == DEV_MATCH_ANY) { 1909 /* set the copy flag */ 1910 retval |= DM_RET_COPY; 1911 1912 1913 /* 1914 * If we've already decided on an action, go ahead 1915 * and return. 1916 */ 1917 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1918 return(retval); 1919 } 1920 1921 /* 1922 * Not sure why someone would do this... 1923 */ 1924 if (cur_pattern->flags == DEV_MATCH_NONE) 1925 continue; 1926 1927 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1928 && (cur_pattern->path_id != device->target->bus->path_id)) 1929 continue; 1930 1931 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1932 && (cur_pattern->target_id != device->target->target_id)) 1933 continue; 1934 1935 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1936 && (cur_pattern->target_lun != device->lun_id)) 1937 continue; 1938 1939 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1940 && (cam_quirkmatch((caddr_t)&device->inq_data, 1941 (caddr_t)&cur_pattern->inq_pat, 1942 1, sizeof(cur_pattern->inq_pat), 1943 scsi_static_inquiry_match) == NULL)) 1944 continue; 1945 1946 /* 1947 * If we get to this point, the user definitely wants 1948 * information on this device. So tell the caller to copy 1949 * the data out. 1950 */ 1951 retval |= DM_RET_COPY; 1952 1953 /* 1954 * If the return action has been set to descend, then we 1955 * know that we've already seen a peripheral matching 1956 * expression, therefore we need to further descend the tree. 1957 * This won't change by continuing around the loop, so we 1958 * go ahead and return. If we haven't seen a peripheral 1959 * matching expression, we keep going around the loop until 1960 * we exhaust the matching expressions. We'll set the stop 1961 * flag once we fall out of the loop. 1962 */ 1963 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1964 return(retval); 1965 } 1966 1967 /* 1968 * If the return action hasn't been set to descend yet, that means 1969 * we haven't seen any peripheral matching patterns. So tell the 1970 * caller to stop descending the tree -- the user doesn't want to 1971 * match against lower level tree elements. 1972 */ 1973 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1974 retval |= DM_RET_STOP; 1975 1976 return(retval); 1977 } 1978 1979 /* 1980 * Match a single peripheral against any number of match patterns. 1981 */ 1982 static dev_match_ret 1983 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1984 struct cam_periph *periph) 1985 { 1986 dev_match_ret retval; 1987 int i; 1988 1989 /* 1990 * If we aren't given something to match against, that's an error. 1991 */ 1992 if (periph == NULL) 1993 return(DM_RET_ERROR); 1994 1995 /* 1996 * If there are no match entries, then this peripheral matches no 1997 * matter what. 1998 */ 1999 if ((patterns == NULL) || (num_patterns == 0)) 2000 return(DM_RET_STOP | DM_RET_COPY); 2001 2002 /* 2003 * There aren't any nodes below a peripheral node, so there's no 2004 * reason to descend the tree any further. 2005 */ 2006 retval = DM_RET_STOP; 2007 2008 for (i = 0; i < num_patterns; i++) { 2009 struct periph_match_pattern *cur_pattern; 2010 2011 /* 2012 * If the pattern in question isn't for a peripheral, we 2013 * aren't interested. 2014 */ 2015 if (patterns[i].type != DEV_MATCH_PERIPH) 2016 continue; 2017 2018 cur_pattern = &patterns[i].pattern.periph_pattern; 2019 2020 /* 2021 * If they want to match on anything, then we will do so. 2022 */ 2023 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2024 /* set the copy flag */ 2025 retval |= DM_RET_COPY; 2026 2027 /* 2028 * We've already set the return action to stop, 2029 * since there are no nodes below peripherals in 2030 * the tree. 2031 */ 2032 return(retval); 2033 } 2034 2035 /* 2036 * Not sure why someone would do this... 2037 */ 2038 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2039 continue; 2040 2041 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2042 && (cur_pattern->path_id != periph->path->bus->path_id)) 2043 continue; 2044 2045 /* 2046 * For the target and lun id's, we have to make sure the 2047 * target and lun pointers aren't NULL. The xpt peripheral 2048 * has a wildcard target and device. 2049 */ 2050 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2051 && ((periph->path->target == NULL) 2052 ||(cur_pattern->target_id != periph->path->target->target_id))) 2053 continue; 2054 2055 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2056 && ((periph->path->device == NULL) 2057 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2058 continue; 2059 2060 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2061 && (cur_pattern->unit_number != periph->unit_number)) 2062 continue; 2063 2064 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2065 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2066 DEV_IDLEN) != 0)) 2067 continue; 2068 2069 /* 2070 * If we get to this point, the user definitely wants 2071 * information on this peripheral. So tell the caller to 2072 * copy the data out. 2073 */ 2074 retval |= DM_RET_COPY; 2075 2076 /* 2077 * The return action has already been set to stop, since 2078 * peripherals don't have any nodes below them in the EDT. 2079 */ 2080 return(retval); 2081 } 2082 2083 /* 2084 * If we get to this point, the peripheral that was passed in 2085 * doesn't match any of the patterns. 2086 */ 2087 return(retval); 2088 } 2089 2090 static int 2091 xptedtbusfunc(struct cam_eb *bus, void *arg) 2092 { 2093 struct ccb_dev_match *cdm; 2094 dev_match_ret retval; 2095 2096 cdm = (struct ccb_dev_match *)arg; 2097 2098 /* 2099 * If our position is for something deeper in the tree, that means 2100 * that we've already seen this node. So, we keep going down. 2101 */ 2102 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2103 && (cdm->pos.cookie.bus == bus) 2104 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2105 && (cdm->pos.cookie.target != NULL)) 2106 retval = DM_RET_DESCEND; 2107 else 2108 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2109 2110 /* 2111 * If we got an error, bail out of the search. 2112 */ 2113 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2114 cdm->status = CAM_DEV_MATCH_ERROR; 2115 return(0); 2116 } 2117 2118 /* 2119 * If the copy flag is set, copy this bus out. 2120 */ 2121 if (retval & DM_RET_COPY) { 2122 int spaceleft, j; 2123 2124 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2125 sizeof(struct dev_match_result)); 2126 2127 /* 2128 * If we don't have enough space to put in another 2129 * match result, save our position and tell the 2130 * user there are more devices to check. 2131 */ 2132 if (spaceleft < sizeof(struct dev_match_result)) { 2133 bzero(&cdm->pos, sizeof(cdm->pos)); 2134 cdm->pos.position_type = 2135 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2136 2137 cdm->pos.cookie.bus = bus; 2138 cdm->pos.generations[CAM_BUS_GENERATION]= 2139 bus_generation; 2140 cdm->status = CAM_DEV_MATCH_MORE; 2141 return(0); 2142 } 2143 j = cdm->num_matches; 2144 cdm->num_matches++; 2145 cdm->matches[j].type = DEV_MATCH_BUS; 2146 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2147 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2148 cdm->matches[j].result.bus_result.unit_number = 2149 bus->sim->unit_number; 2150 strncpy(cdm->matches[j].result.bus_result.dev_name, 2151 bus->sim->sim_name, DEV_IDLEN); 2152 } 2153 2154 /* 2155 * If the user is only interested in busses, there's no 2156 * reason to descend to the next level in the tree. 2157 */ 2158 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2159 return(1); 2160 2161 /* 2162 * If there is a target generation recorded, check it to 2163 * make sure the target list hasn't changed. 2164 */ 2165 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2166 && (bus == cdm->pos.cookie.bus) 2167 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2168 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2169 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2170 bus->generation)) { 2171 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2172 return(0); 2173 } 2174 2175 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2176 && (cdm->pos.cookie.bus == bus) 2177 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2178 && (cdm->pos.cookie.target != NULL)) 2179 return(xpttargettraverse(bus, 2180 (struct cam_et *)cdm->pos.cookie.target, 2181 xptedttargetfunc, arg)); 2182 else 2183 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2184 } 2185 2186 static int 2187 xptedttargetfunc(struct cam_et *target, void *arg) 2188 { 2189 struct ccb_dev_match *cdm; 2190 2191 cdm = (struct ccb_dev_match *)arg; 2192 2193 /* 2194 * If there is a device list generation recorded, check it to 2195 * make sure the device list hasn't changed. 2196 */ 2197 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2198 && (cdm->pos.cookie.bus == target->bus) 2199 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2200 && (cdm->pos.cookie.target == target) 2201 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2202 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2203 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2204 target->generation)) { 2205 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2206 return(0); 2207 } 2208 2209 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2210 && (cdm->pos.cookie.bus == target->bus) 2211 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2212 && (cdm->pos.cookie.target == target) 2213 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2214 && (cdm->pos.cookie.device != NULL)) 2215 return(xptdevicetraverse(target, 2216 (struct cam_ed *)cdm->pos.cookie.device, 2217 xptedtdevicefunc, arg)); 2218 else 2219 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2220 } 2221 2222 static int 2223 xptedtdevicefunc(struct cam_ed *device, void *arg) 2224 { 2225 2226 struct ccb_dev_match *cdm; 2227 dev_match_ret retval; 2228 2229 cdm = (struct ccb_dev_match *)arg; 2230 2231 /* 2232 * If our position is for something deeper in the tree, that means 2233 * that we've already seen this node. So, we keep going down. 2234 */ 2235 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2236 && (cdm->pos.cookie.device == device) 2237 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2238 && (cdm->pos.cookie.periph != NULL)) 2239 retval = DM_RET_DESCEND; 2240 else 2241 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2242 device); 2243 2244 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2245 cdm->status = CAM_DEV_MATCH_ERROR; 2246 return(0); 2247 } 2248 2249 /* 2250 * If the copy flag is set, copy this device out. 2251 */ 2252 if (retval & DM_RET_COPY) { 2253 int spaceleft, j; 2254 2255 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2256 sizeof(struct dev_match_result)); 2257 2258 /* 2259 * If we don't have enough space to put in another 2260 * match result, save our position and tell the 2261 * user there are more devices to check. 2262 */ 2263 if (spaceleft < sizeof(struct dev_match_result)) { 2264 bzero(&cdm->pos, sizeof(cdm->pos)); 2265 cdm->pos.position_type = 2266 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2267 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2268 2269 cdm->pos.cookie.bus = device->target->bus; 2270 cdm->pos.generations[CAM_BUS_GENERATION]= 2271 bus_generation; 2272 cdm->pos.cookie.target = device->target; 2273 cdm->pos.generations[CAM_TARGET_GENERATION] = 2274 device->target->bus->generation; 2275 cdm->pos.cookie.device = device; 2276 cdm->pos.generations[CAM_DEV_GENERATION] = 2277 device->target->generation; 2278 cdm->status = CAM_DEV_MATCH_MORE; 2279 return(0); 2280 } 2281 j = cdm->num_matches; 2282 cdm->num_matches++; 2283 cdm->matches[j].type = DEV_MATCH_DEVICE; 2284 cdm->matches[j].result.device_result.path_id = 2285 device->target->bus->path_id; 2286 cdm->matches[j].result.device_result.target_id = 2287 device->target->target_id; 2288 cdm->matches[j].result.device_result.target_lun = 2289 device->lun_id; 2290 bcopy(&device->inq_data, 2291 &cdm->matches[j].result.device_result.inq_data, 2292 sizeof(struct scsi_inquiry_data)); 2293 2294 /* Let the user know whether this device is unconfigured */ 2295 if (device->flags & CAM_DEV_UNCONFIGURED) 2296 cdm->matches[j].result.device_result.flags = 2297 DEV_RESULT_UNCONFIGURED; 2298 else 2299 cdm->matches[j].result.device_result.flags = 2300 DEV_RESULT_NOFLAG; 2301 } 2302 2303 /* 2304 * If the user isn't interested in peripherals, don't descend 2305 * the tree any further. 2306 */ 2307 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2308 return(1); 2309 2310 /* 2311 * If there is a peripheral list generation recorded, make sure 2312 * it hasn't changed. 2313 */ 2314 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2315 && (device->target->bus == cdm->pos.cookie.bus) 2316 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2317 && (device->target == cdm->pos.cookie.target) 2318 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2319 && (device == cdm->pos.cookie.device) 2320 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2321 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2322 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2323 device->generation)){ 2324 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2325 return(0); 2326 } 2327 2328 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2329 && (cdm->pos.cookie.bus == device->target->bus) 2330 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2331 && (cdm->pos.cookie.target == device->target) 2332 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2333 && (cdm->pos.cookie.device == device) 2334 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2335 && (cdm->pos.cookie.periph != NULL)) 2336 return(xptperiphtraverse(device, 2337 (struct cam_periph *)cdm->pos.cookie.periph, 2338 xptedtperiphfunc, arg)); 2339 else 2340 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2341 } 2342 2343 static int 2344 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2345 { 2346 struct ccb_dev_match *cdm; 2347 dev_match_ret retval; 2348 2349 cdm = (struct ccb_dev_match *)arg; 2350 2351 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2352 2353 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2354 cdm->status = CAM_DEV_MATCH_ERROR; 2355 return(0); 2356 } 2357 2358 /* 2359 * If the copy flag is set, copy this peripheral out. 2360 */ 2361 if (retval & DM_RET_COPY) { 2362 int spaceleft, j; 2363 2364 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2365 sizeof(struct dev_match_result)); 2366 2367 /* 2368 * If we don't have enough space to put in another 2369 * match result, save our position and tell the 2370 * user there are more devices to check. 2371 */ 2372 if (spaceleft < sizeof(struct dev_match_result)) { 2373 bzero(&cdm->pos, sizeof(cdm->pos)); 2374 cdm->pos.position_type = 2375 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2376 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2377 CAM_DEV_POS_PERIPH; 2378 2379 cdm->pos.cookie.bus = periph->path->bus; 2380 cdm->pos.generations[CAM_BUS_GENERATION]= 2381 bus_generation; 2382 cdm->pos.cookie.target = periph->path->target; 2383 cdm->pos.generations[CAM_TARGET_GENERATION] = 2384 periph->path->bus->generation; 2385 cdm->pos.cookie.device = periph->path->device; 2386 cdm->pos.generations[CAM_DEV_GENERATION] = 2387 periph->path->target->generation; 2388 cdm->pos.cookie.periph = periph; 2389 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2390 periph->path->device->generation; 2391 cdm->status = CAM_DEV_MATCH_MORE; 2392 return(0); 2393 } 2394 2395 j = cdm->num_matches; 2396 cdm->num_matches++; 2397 cdm->matches[j].type = DEV_MATCH_PERIPH; 2398 cdm->matches[j].result.periph_result.path_id = 2399 periph->path->bus->path_id; 2400 cdm->matches[j].result.periph_result.target_id = 2401 periph->path->target->target_id; 2402 cdm->matches[j].result.periph_result.target_lun = 2403 periph->path->device->lun_id; 2404 cdm->matches[j].result.periph_result.unit_number = 2405 periph->unit_number; 2406 strncpy(cdm->matches[j].result.periph_result.periph_name, 2407 periph->periph_name, DEV_IDLEN); 2408 } 2409 2410 return(1); 2411 } 2412 2413 static int 2414 xptedtmatch(struct ccb_dev_match *cdm) 2415 { 2416 int ret; 2417 2418 cdm->num_matches = 0; 2419 2420 /* 2421 * Check the bus list generation. If it has changed, the user 2422 * needs to reset everything and start over. 2423 */ 2424 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2425 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2426 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2427 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2428 return(0); 2429 } 2430 2431 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2432 && (cdm->pos.cookie.bus != NULL)) 2433 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2434 xptedtbusfunc, cdm); 2435 else 2436 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2437 2438 /* 2439 * If we get back 0, that means that we had to stop before fully 2440 * traversing the EDT. It also means that one of the subroutines 2441 * has set the status field to the proper value. If we get back 1, 2442 * we've fully traversed the EDT and copied out any matching entries. 2443 */ 2444 if (ret == 1) 2445 cdm->status = CAM_DEV_MATCH_LAST; 2446 2447 return(ret); 2448 } 2449 2450 static int 2451 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2452 { 2453 struct ccb_dev_match *cdm; 2454 2455 cdm = (struct ccb_dev_match *)arg; 2456 2457 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2458 && (cdm->pos.cookie.pdrv == pdrv) 2459 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2460 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2461 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2462 (*pdrv)->generation)) { 2463 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2464 return(0); 2465 } 2466 2467 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2468 && (cdm->pos.cookie.pdrv == pdrv) 2469 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2470 && (cdm->pos.cookie.periph != NULL)) 2471 return(xptpdperiphtraverse(pdrv, 2472 (struct cam_periph *)cdm->pos.cookie.periph, 2473 xptplistperiphfunc, arg)); 2474 else 2475 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2476 } 2477 2478 static int 2479 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2480 { 2481 struct ccb_dev_match *cdm; 2482 dev_match_ret retval; 2483 2484 cdm = (struct ccb_dev_match *)arg; 2485 2486 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2487 2488 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2489 cdm->status = CAM_DEV_MATCH_ERROR; 2490 return(0); 2491 } 2492 2493 /* 2494 * If the copy flag is set, copy this peripheral out. 2495 */ 2496 if (retval & DM_RET_COPY) { 2497 int spaceleft, j; 2498 2499 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2500 sizeof(struct dev_match_result)); 2501 2502 /* 2503 * If we don't have enough space to put in another 2504 * match result, save our position and tell the 2505 * user there are more devices to check. 2506 */ 2507 if (spaceleft < sizeof(struct dev_match_result)) { 2508 struct periph_driver **pdrv; 2509 2510 pdrv = NULL; 2511 bzero(&cdm->pos, sizeof(cdm->pos)); 2512 cdm->pos.position_type = 2513 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2514 CAM_DEV_POS_PERIPH; 2515 2516 /* 2517 * This may look a bit non-sensical, but it is 2518 * actually quite logical. There are very few 2519 * peripheral drivers, and bloating every peripheral 2520 * structure with a pointer back to its parent 2521 * peripheral driver linker set entry would cost 2522 * more in the long run than doing this quick lookup. 2523 */ 2524 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2525 if (strcmp((*pdrv)->driver_name, 2526 periph->periph_name) == 0) 2527 break; 2528 } 2529 2530 if (pdrv == NULL) { 2531 cdm->status = CAM_DEV_MATCH_ERROR; 2532 return(0); 2533 } 2534 2535 cdm->pos.cookie.pdrv = pdrv; 2536 /* 2537 * The periph generation slot does double duty, as 2538 * does the periph pointer slot. They are used for 2539 * both edt and pdrv lookups and positioning. 2540 */ 2541 cdm->pos.cookie.periph = periph; 2542 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2543 (*pdrv)->generation; 2544 cdm->status = CAM_DEV_MATCH_MORE; 2545 return(0); 2546 } 2547 2548 j = cdm->num_matches; 2549 cdm->num_matches++; 2550 cdm->matches[j].type = DEV_MATCH_PERIPH; 2551 cdm->matches[j].result.periph_result.path_id = 2552 periph->path->bus->path_id; 2553 2554 /* 2555 * The transport layer peripheral doesn't have a target or 2556 * lun. 2557 */ 2558 if (periph->path->target) 2559 cdm->matches[j].result.periph_result.target_id = 2560 periph->path->target->target_id; 2561 else 2562 cdm->matches[j].result.periph_result.target_id = -1; 2563 2564 if (periph->path->device) 2565 cdm->matches[j].result.periph_result.target_lun = 2566 periph->path->device->lun_id; 2567 else 2568 cdm->matches[j].result.periph_result.target_lun = -1; 2569 2570 cdm->matches[j].result.periph_result.unit_number = 2571 periph->unit_number; 2572 strncpy(cdm->matches[j].result.periph_result.periph_name, 2573 periph->periph_name, DEV_IDLEN); 2574 } 2575 2576 return(1); 2577 } 2578 2579 static int 2580 xptperiphlistmatch(struct ccb_dev_match *cdm) 2581 { 2582 int ret; 2583 2584 cdm->num_matches = 0; 2585 2586 /* 2587 * At this point in the edt traversal function, we check the bus 2588 * list generation to make sure that no busses have been added or 2589 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2590 * For the peripheral driver list traversal function, however, we 2591 * don't have to worry about new peripheral driver types coming or 2592 * going; they're in a linker set, and therefore can't change 2593 * without a recompile. 2594 */ 2595 2596 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2597 && (cdm->pos.cookie.pdrv != NULL)) 2598 ret = xptpdrvtraverse( 2599 (struct periph_driver **)cdm->pos.cookie.pdrv, 2600 xptplistpdrvfunc, cdm); 2601 else 2602 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2603 2604 /* 2605 * If we get back 0, that means that we had to stop before fully 2606 * traversing the peripheral driver tree. It also means that one of 2607 * the subroutines has set the status field to the proper value. If 2608 * we get back 1, we've fully traversed the EDT and copied out any 2609 * matching entries. 2610 */ 2611 if (ret == 1) 2612 cdm->status = CAM_DEV_MATCH_LAST; 2613 2614 return(ret); 2615 } 2616 2617 static int 2618 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2619 { 2620 struct cam_eb *bus, *next_bus; 2621 int retval; 2622 2623 retval = 1; 2624 2625 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2626 bus != NULL; 2627 bus = next_bus) { 2628 next_bus = TAILQ_NEXT(bus, links); 2629 2630 retval = tr_func(bus, arg); 2631 if (retval == 0) 2632 return(retval); 2633 } 2634 2635 return(retval); 2636 } 2637 2638 static int 2639 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2640 xpt_targetfunc_t *tr_func, void *arg) 2641 { 2642 struct cam_et *target, *next_target; 2643 int retval; 2644 2645 retval = 1; 2646 for (target = (start_target ? start_target : 2647 TAILQ_FIRST(&bus->et_entries)); 2648 target != NULL; target = next_target) { 2649 2650 next_target = TAILQ_NEXT(target, links); 2651 2652 retval = tr_func(target, arg); 2653 2654 if (retval == 0) 2655 return(retval); 2656 } 2657 2658 return(retval); 2659 } 2660 2661 static int 2662 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2663 xpt_devicefunc_t *tr_func, void *arg) 2664 { 2665 struct cam_ed *device, *next_device; 2666 int retval; 2667 2668 retval = 1; 2669 for (device = (start_device ? start_device : 2670 TAILQ_FIRST(&target->ed_entries)); 2671 device != NULL; 2672 device = next_device) { 2673 2674 next_device = TAILQ_NEXT(device, links); 2675 2676 retval = tr_func(device, arg); 2677 2678 if (retval == 0) 2679 return(retval); 2680 } 2681 2682 return(retval); 2683 } 2684 2685 static int 2686 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2687 xpt_periphfunc_t *tr_func, void *arg) 2688 { 2689 struct cam_periph *periph, *next_periph; 2690 int retval; 2691 2692 retval = 1; 2693 2694 for (periph = (start_periph ? start_periph : 2695 SLIST_FIRST(&device->periphs)); 2696 periph != NULL; 2697 periph = next_periph) { 2698 2699 next_periph = SLIST_NEXT(periph, periph_links); 2700 2701 retval = tr_func(periph, arg); 2702 if (retval == 0) 2703 return(retval); 2704 } 2705 2706 return(retval); 2707 } 2708 2709 static int 2710 xptpdrvtraverse(struct periph_driver **start_pdrv, 2711 xpt_pdrvfunc_t *tr_func, void *arg) 2712 { 2713 struct periph_driver **pdrv; 2714 int retval; 2715 2716 retval = 1; 2717 2718 /* 2719 * We don't traverse the peripheral driver list like we do the 2720 * other lists, because it is a linker set, and therefore cannot be 2721 * changed during runtime. If the peripheral driver list is ever 2722 * re-done to be something other than a linker set (i.e. it can 2723 * change while the system is running), the list traversal should 2724 * be modified to work like the other traversal functions. 2725 */ 2726 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2727 *pdrv != NULL; pdrv++) { 2728 retval = tr_func(pdrv, arg); 2729 2730 if (retval == 0) 2731 return(retval); 2732 } 2733 2734 return(retval); 2735 } 2736 2737 static int 2738 xptpdperiphtraverse(struct periph_driver **pdrv, 2739 struct cam_periph *start_periph, 2740 xpt_periphfunc_t *tr_func, void *arg) 2741 { 2742 struct cam_periph *periph, *next_periph; 2743 int retval; 2744 2745 retval = 1; 2746 2747 for (periph = (start_periph ? start_periph : 2748 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2749 periph = next_periph) { 2750 2751 next_periph = TAILQ_NEXT(periph, unit_links); 2752 2753 retval = tr_func(periph, arg); 2754 if (retval == 0) 2755 return(retval); 2756 } 2757 return(retval); 2758 } 2759 2760 static int 2761 xptdefbusfunc(struct cam_eb *bus, void *arg) 2762 { 2763 struct xpt_traverse_config *tr_config; 2764 2765 tr_config = (struct xpt_traverse_config *)arg; 2766 2767 if (tr_config->depth == XPT_DEPTH_BUS) { 2768 xpt_busfunc_t *tr_func; 2769 2770 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2771 2772 return(tr_func(bus, tr_config->tr_arg)); 2773 } else 2774 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2775 } 2776 2777 static int 2778 xptdeftargetfunc(struct cam_et *target, void *arg) 2779 { 2780 struct xpt_traverse_config *tr_config; 2781 2782 tr_config = (struct xpt_traverse_config *)arg; 2783 2784 if (tr_config->depth == XPT_DEPTH_TARGET) { 2785 xpt_targetfunc_t *tr_func; 2786 2787 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2788 2789 return(tr_func(target, tr_config->tr_arg)); 2790 } else 2791 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2792 } 2793 2794 static int 2795 xptdefdevicefunc(struct cam_ed *device, void *arg) 2796 { 2797 struct xpt_traverse_config *tr_config; 2798 2799 tr_config = (struct xpt_traverse_config *)arg; 2800 2801 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2802 xpt_devicefunc_t *tr_func; 2803 2804 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2805 2806 return(tr_func(device, tr_config->tr_arg)); 2807 } else 2808 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2809 } 2810 2811 static int 2812 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2813 { 2814 struct xpt_traverse_config *tr_config; 2815 xpt_periphfunc_t *tr_func; 2816 2817 tr_config = (struct xpt_traverse_config *)arg; 2818 2819 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2820 2821 /* 2822 * Unlike the other default functions, we don't check for depth 2823 * here. The peripheral driver level is the last level in the EDT, 2824 * so if we're here, we should execute the function in question. 2825 */ 2826 return(tr_func(periph, tr_config->tr_arg)); 2827 } 2828 2829 /* 2830 * Execute the given function for every bus in the EDT. 2831 */ 2832 static int 2833 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2834 { 2835 struct xpt_traverse_config tr_config; 2836 2837 tr_config.depth = XPT_DEPTH_BUS; 2838 tr_config.tr_func = tr_func; 2839 tr_config.tr_arg = arg; 2840 2841 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2842 } 2843 2844 #ifdef notusedyet 2845 /* 2846 * Execute the given function for every target in the EDT. 2847 */ 2848 static int 2849 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2850 { 2851 struct xpt_traverse_config tr_config; 2852 2853 tr_config.depth = XPT_DEPTH_TARGET; 2854 tr_config.tr_func = tr_func; 2855 tr_config.tr_arg = arg; 2856 2857 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2858 } 2859 #endif /* notusedyet */ 2860 2861 /* 2862 * Execute the given function for every device in the EDT. 2863 */ 2864 static int 2865 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2866 { 2867 struct xpt_traverse_config tr_config; 2868 2869 tr_config.depth = XPT_DEPTH_DEVICE; 2870 tr_config.tr_func = tr_func; 2871 tr_config.tr_arg = arg; 2872 2873 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2874 } 2875 2876 #ifdef notusedyet 2877 /* 2878 * Execute the given function for every peripheral in the EDT. 2879 */ 2880 static int 2881 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2882 { 2883 struct xpt_traverse_config tr_config; 2884 2885 tr_config.depth = XPT_DEPTH_PERIPH; 2886 tr_config.tr_func = tr_func; 2887 tr_config.tr_arg = arg; 2888 2889 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2890 } 2891 #endif /* notusedyet */ 2892 2893 static int 2894 xptsetasyncfunc(struct cam_ed *device, void *arg) 2895 { 2896 struct cam_path path; 2897 struct ccb_getdev cgd; 2898 struct async_node *cur_entry; 2899 2900 cur_entry = (struct async_node *)arg; 2901 2902 /* 2903 * Don't report unconfigured devices (Wildcard devs, 2904 * devices only for target mode, device instances 2905 * that have been invalidated but are waiting for 2906 * their last reference count to be released). 2907 */ 2908 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2909 return (1); 2910 2911 xpt_compile_path(&path, 2912 NULL, 2913 device->target->bus->path_id, 2914 device->target->target_id, 2915 device->lun_id); 2916 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2917 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2918 xpt_action((union ccb *)&cgd); 2919 cur_entry->callback(cur_entry->callback_arg, 2920 AC_FOUND_DEVICE, 2921 &path, &cgd); 2922 xpt_release_path(&path); 2923 2924 return(1); 2925 } 2926 2927 static int 2928 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2929 { 2930 struct cam_path path; 2931 struct ccb_pathinq cpi; 2932 struct async_node *cur_entry; 2933 2934 cur_entry = (struct async_node *)arg; 2935 2936 xpt_compile_path(&path, /*periph*/NULL, 2937 bus->sim->path_id, 2938 CAM_TARGET_WILDCARD, 2939 CAM_LUN_WILDCARD); 2940 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2941 cpi.ccb_h.func_code = XPT_PATH_INQ; 2942 xpt_action((union ccb *)&cpi); 2943 cur_entry->callback(cur_entry->callback_arg, 2944 AC_PATH_REGISTERED, 2945 &path, &cpi); 2946 xpt_release_path(&path); 2947 2948 return(1); 2949 } 2950 2951 void 2952 xpt_action(union ccb *start_ccb) 2953 { 2954 int iopl; 2955 2956 GIANT_REQUIRED; 2957 2958 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2959 2960 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2961 2962 iopl = splsoftcam(); 2963 switch (start_ccb->ccb_h.func_code) { 2964 case XPT_SCSI_IO: 2965 { 2966 #ifdef CAM_NEW_TRAN_CODE 2967 struct cam_ed *device; 2968 #endif /* CAM_NEW_TRAN_CODE */ 2969 #ifdef CAMDEBUG 2970 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2971 struct cam_path *path; 2972 2973 path = start_ccb->ccb_h.path; 2974 #endif 2975 2976 /* 2977 * For the sake of compatibility with SCSI-1 2978 * devices that may not understand the identify 2979 * message, we include lun information in the 2980 * second byte of all commands. SCSI-1 specifies 2981 * that luns are a 3 bit value and reserves only 3 2982 * bits for lun information in the CDB. Later 2983 * revisions of the SCSI spec allow for more than 8 2984 * luns, but have deprecated lun information in the 2985 * CDB. So, if the lun won't fit, we must omit. 2986 * 2987 * Also be aware that during initial probing for devices, 2988 * the inquiry information is unknown but initialized to 0. 2989 * This means that this code will be exercised while probing 2990 * devices with an ANSI revision greater than 2. 2991 */ 2992 #ifdef CAM_NEW_TRAN_CODE 2993 device = start_ccb->ccb_h.path->device; 2994 if (device->protocol_version <= SCSI_REV_2 2995 #else /* CAM_NEW_TRAN_CODE */ 2996 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 2997 #endif /* CAM_NEW_TRAN_CODE */ 2998 && start_ccb->ccb_h.target_lun < 8 2999 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3000 3001 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3002 start_ccb->ccb_h.target_lun << 5; 3003 } 3004 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3005 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3006 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3007 &path->device->inq_data), 3008 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3009 cdb_str, sizeof(cdb_str)))); 3010 } 3011 /* FALLTHROUGH */ 3012 case XPT_TARGET_IO: 3013 case XPT_CONT_TARGET_IO: 3014 start_ccb->csio.sense_resid = 0; 3015 start_ccb->csio.resid = 0; 3016 /* FALLTHROUGH */ 3017 case XPT_RESET_DEV: 3018 case XPT_ENG_EXEC: 3019 { 3020 struct cam_path *path; 3021 int s; 3022 int runq; 3023 3024 path = start_ccb->ccb_h.path; 3025 s = splsoftcam(); 3026 3027 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3028 if (path->device->qfrozen_cnt == 0) 3029 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3030 else 3031 runq = 0; 3032 splx(s); 3033 if (runq != 0) 3034 xpt_run_dev_sendq(path->bus); 3035 break; 3036 } 3037 case XPT_SET_TRAN_SETTINGS: 3038 { 3039 xpt_set_transfer_settings(&start_ccb->cts, 3040 start_ccb->ccb_h.path->device, 3041 /*async_update*/FALSE); 3042 break; 3043 } 3044 case XPT_CALC_GEOMETRY: 3045 { 3046 struct cam_sim *sim; 3047 3048 /* Filter out garbage */ 3049 if (start_ccb->ccg.block_size == 0 3050 || start_ccb->ccg.volume_size == 0) { 3051 start_ccb->ccg.cylinders = 0; 3052 start_ccb->ccg.heads = 0; 3053 start_ccb->ccg.secs_per_track = 0; 3054 start_ccb->ccb_h.status = CAM_REQ_CMP; 3055 break; 3056 } 3057 #ifdef PC98 3058 /* 3059 * In a PC-98 system, geometry translation depens on 3060 * the "real" device geometry obtained from mode page 4. 3061 * SCSI geometry translation is performed in the 3062 * initialization routine of the SCSI BIOS and the result 3063 * stored in host memory. If the translation is available 3064 * in host memory, use it. If not, rely on the default 3065 * translation the device driver performs. 3066 */ 3067 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3068 start_ccb->ccb_h.status = CAM_REQ_CMP; 3069 break; 3070 } 3071 #endif 3072 sim = start_ccb->ccb_h.path->bus->sim; 3073 (*(sim->sim_action))(sim, start_ccb); 3074 break; 3075 } 3076 case XPT_ABORT: 3077 { 3078 union ccb* abort_ccb; 3079 int s; 3080 3081 abort_ccb = start_ccb->cab.abort_ccb; 3082 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3083 3084 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3085 struct cam_ccbq *ccbq; 3086 3087 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3088 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3089 abort_ccb->ccb_h.status = 3090 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3091 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3092 s = splcam(); 3093 xpt_done(abort_ccb); 3094 splx(s); 3095 start_ccb->ccb_h.status = CAM_REQ_CMP; 3096 break; 3097 } 3098 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3099 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3100 /* 3101 * We've caught this ccb en route to 3102 * the SIM. Flag it for abort and the 3103 * SIM will do so just before starting 3104 * real work on the CCB. 3105 */ 3106 abort_ccb->ccb_h.status = 3107 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3108 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3109 start_ccb->ccb_h.status = CAM_REQ_CMP; 3110 break; 3111 } 3112 } 3113 if (XPT_FC_IS_QUEUED(abort_ccb) 3114 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3115 /* 3116 * It's already completed but waiting 3117 * for our SWI to get to it. 3118 */ 3119 start_ccb->ccb_h.status = CAM_UA_ABORT; 3120 break; 3121 } 3122 /* 3123 * If we weren't able to take care of the abort request 3124 * in the XPT, pass the request down to the SIM for processing. 3125 */ 3126 } 3127 /* FALLTHROUGH */ 3128 case XPT_ACCEPT_TARGET_IO: 3129 case XPT_EN_LUN: 3130 case XPT_IMMED_NOTIFY: 3131 case XPT_NOTIFY_ACK: 3132 case XPT_GET_TRAN_SETTINGS: 3133 case XPT_RESET_BUS: 3134 { 3135 struct cam_sim *sim; 3136 3137 sim = start_ccb->ccb_h.path->bus->sim; 3138 (*(sim->sim_action))(sim, start_ccb); 3139 break; 3140 } 3141 case XPT_PATH_INQ: 3142 { 3143 struct cam_sim *sim; 3144 3145 sim = start_ccb->ccb_h.path->bus->sim; 3146 (*(sim->sim_action))(sim, start_ccb); 3147 break; 3148 } 3149 case XPT_PATH_STATS: 3150 start_ccb->cpis.last_reset = 3151 start_ccb->ccb_h.path->bus->last_reset; 3152 start_ccb->ccb_h.status = CAM_REQ_CMP; 3153 break; 3154 case XPT_GDEV_TYPE: 3155 { 3156 struct cam_ed *dev; 3157 int s; 3158 3159 dev = start_ccb->ccb_h.path->device; 3160 s = splcam(); 3161 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3162 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3163 } else { 3164 struct ccb_getdev *cgd; 3165 struct cam_eb *bus; 3166 struct cam_et *tar; 3167 3168 cgd = &start_ccb->cgd; 3169 bus = cgd->ccb_h.path->bus; 3170 tar = cgd->ccb_h.path->target; 3171 cgd->inq_data = dev->inq_data; 3172 cgd->ccb_h.status = CAM_REQ_CMP; 3173 cgd->serial_num_len = dev->serial_num_len; 3174 if ((dev->serial_num_len > 0) 3175 && (dev->serial_num != NULL)) 3176 bcopy(dev->serial_num, cgd->serial_num, 3177 dev->serial_num_len); 3178 } 3179 splx(s); 3180 break; 3181 } 3182 case XPT_GDEV_STATS: 3183 { 3184 struct cam_ed *dev; 3185 int s; 3186 3187 dev = start_ccb->ccb_h.path->device; 3188 s = splcam(); 3189 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3190 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3191 } else { 3192 struct ccb_getdevstats *cgds; 3193 struct cam_eb *bus; 3194 struct cam_et *tar; 3195 3196 cgds = &start_ccb->cgds; 3197 bus = cgds->ccb_h.path->bus; 3198 tar = cgds->ccb_h.path->target; 3199 cgds->dev_openings = dev->ccbq.dev_openings; 3200 cgds->dev_active = dev->ccbq.dev_active; 3201 cgds->devq_openings = dev->ccbq.devq_openings; 3202 cgds->devq_queued = dev->ccbq.queue.entries; 3203 cgds->held = dev->ccbq.held; 3204 cgds->last_reset = tar->last_reset; 3205 cgds->maxtags = dev->quirk->maxtags; 3206 cgds->mintags = dev->quirk->mintags; 3207 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3208 cgds->last_reset = bus->last_reset; 3209 cgds->ccb_h.status = CAM_REQ_CMP; 3210 } 3211 splx(s); 3212 break; 3213 } 3214 case XPT_GDEVLIST: 3215 { 3216 struct cam_periph *nperiph; 3217 struct periph_list *periph_head; 3218 struct ccb_getdevlist *cgdl; 3219 u_int i; 3220 int s; 3221 struct cam_ed *device; 3222 int found; 3223 3224 3225 found = 0; 3226 3227 /* 3228 * Don't want anyone mucking with our data. 3229 */ 3230 s = splcam(); 3231 device = start_ccb->ccb_h.path->device; 3232 periph_head = &device->periphs; 3233 cgdl = &start_ccb->cgdl; 3234 3235 /* 3236 * Check and see if the list has changed since the user 3237 * last requested a list member. If so, tell them that the 3238 * list has changed, and therefore they need to start over 3239 * from the beginning. 3240 */ 3241 if ((cgdl->index != 0) && 3242 (cgdl->generation != device->generation)) { 3243 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3244 splx(s); 3245 break; 3246 } 3247 3248 /* 3249 * Traverse the list of peripherals and attempt to find 3250 * the requested peripheral. 3251 */ 3252 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3253 (nperiph != NULL) && (i <= cgdl->index); 3254 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3255 if (i == cgdl->index) { 3256 strncpy(cgdl->periph_name, 3257 nperiph->periph_name, 3258 DEV_IDLEN); 3259 cgdl->unit_number = nperiph->unit_number; 3260 found = 1; 3261 } 3262 } 3263 if (found == 0) { 3264 cgdl->status = CAM_GDEVLIST_ERROR; 3265 splx(s); 3266 break; 3267 } 3268 3269 if (nperiph == NULL) 3270 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3271 else 3272 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3273 3274 cgdl->index++; 3275 cgdl->generation = device->generation; 3276 3277 splx(s); 3278 cgdl->ccb_h.status = CAM_REQ_CMP; 3279 break; 3280 } 3281 case XPT_DEV_MATCH: 3282 { 3283 int s; 3284 dev_pos_type position_type; 3285 struct ccb_dev_match *cdm; 3286 3287 cdm = &start_ccb->cdm; 3288 3289 /* 3290 * Prevent EDT changes while we traverse it. 3291 */ 3292 s = splcam(); 3293 /* 3294 * There are two ways of getting at information in the EDT. 3295 * The first way is via the primary EDT tree. It starts 3296 * with a list of busses, then a list of targets on a bus, 3297 * then devices/luns on a target, and then peripherals on a 3298 * device/lun. The "other" way is by the peripheral driver 3299 * lists. The peripheral driver lists are organized by 3300 * peripheral driver. (obviously) So it makes sense to 3301 * use the peripheral driver list if the user is looking 3302 * for something like "da1", or all "da" devices. If the 3303 * user is looking for something on a particular bus/target 3304 * or lun, it's generally better to go through the EDT tree. 3305 */ 3306 3307 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3308 position_type = cdm->pos.position_type; 3309 else { 3310 u_int i; 3311 3312 position_type = CAM_DEV_POS_NONE; 3313 3314 for (i = 0; i < cdm->num_patterns; i++) { 3315 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3316 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3317 position_type = CAM_DEV_POS_EDT; 3318 break; 3319 } 3320 } 3321 3322 if (cdm->num_patterns == 0) 3323 position_type = CAM_DEV_POS_EDT; 3324 else if (position_type == CAM_DEV_POS_NONE) 3325 position_type = CAM_DEV_POS_PDRV; 3326 } 3327 3328 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3329 case CAM_DEV_POS_EDT: 3330 xptedtmatch(cdm); 3331 break; 3332 case CAM_DEV_POS_PDRV: 3333 xptperiphlistmatch(cdm); 3334 break; 3335 default: 3336 cdm->status = CAM_DEV_MATCH_ERROR; 3337 break; 3338 } 3339 3340 splx(s); 3341 3342 if (cdm->status == CAM_DEV_MATCH_ERROR) 3343 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3344 else 3345 start_ccb->ccb_h.status = CAM_REQ_CMP; 3346 3347 break; 3348 } 3349 case XPT_SASYNC_CB: 3350 { 3351 struct ccb_setasync *csa; 3352 struct async_node *cur_entry; 3353 struct async_list *async_head; 3354 u_int32_t added; 3355 int s; 3356 3357 csa = &start_ccb->csa; 3358 added = csa->event_enable; 3359 async_head = &csa->ccb_h.path->device->asyncs; 3360 3361 /* 3362 * If there is already an entry for us, simply 3363 * update it. 3364 */ 3365 s = splcam(); 3366 cur_entry = SLIST_FIRST(async_head); 3367 while (cur_entry != NULL) { 3368 if ((cur_entry->callback_arg == csa->callback_arg) 3369 && (cur_entry->callback == csa->callback)) 3370 break; 3371 cur_entry = SLIST_NEXT(cur_entry, links); 3372 } 3373 3374 if (cur_entry != NULL) { 3375 /* 3376 * If the request has no flags set, 3377 * remove the entry. 3378 */ 3379 added &= ~cur_entry->event_enable; 3380 if (csa->event_enable == 0) { 3381 SLIST_REMOVE(async_head, cur_entry, 3382 async_node, links); 3383 csa->ccb_h.path->device->refcount--; 3384 free(cur_entry, M_DEVBUF); 3385 } else { 3386 cur_entry->event_enable = csa->event_enable; 3387 } 3388 } else { 3389 cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF, 3390 M_NOWAIT); 3391 if (cur_entry == NULL) { 3392 splx(s); 3393 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3394 break; 3395 } 3396 cur_entry->event_enable = csa->event_enable; 3397 cur_entry->callback_arg = csa->callback_arg; 3398 cur_entry->callback = csa->callback; 3399 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3400 csa->ccb_h.path->device->refcount++; 3401 } 3402 3403 if ((added & AC_FOUND_DEVICE) != 0) { 3404 /* 3405 * Get this peripheral up to date with all 3406 * the currently existing devices. 3407 */ 3408 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3409 } 3410 if ((added & AC_PATH_REGISTERED) != 0) { 3411 /* 3412 * Get this peripheral up to date with all 3413 * the currently existing busses. 3414 */ 3415 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3416 } 3417 splx(s); 3418 start_ccb->ccb_h.status = CAM_REQ_CMP; 3419 break; 3420 } 3421 case XPT_REL_SIMQ: 3422 { 3423 struct ccb_relsim *crs; 3424 struct cam_ed *dev; 3425 int s; 3426 3427 crs = &start_ccb->crs; 3428 dev = crs->ccb_h.path->device; 3429 if (dev == NULL) { 3430 3431 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3432 break; 3433 } 3434 3435 s = splcam(); 3436 3437 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3438 3439 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3440 3441 /* Don't ever go below one opening */ 3442 if (crs->openings > 0) { 3443 xpt_dev_ccbq_resize(crs->ccb_h.path, 3444 crs->openings); 3445 3446 if (bootverbose) { 3447 xpt_print_path(crs->ccb_h.path); 3448 printf("tagged openings " 3449 "now %d\n", 3450 crs->openings); 3451 } 3452 } 3453 } 3454 } 3455 3456 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3457 3458 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3459 3460 /* 3461 * Just extend the old timeout and decrement 3462 * the freeze count so that a single timeout 3463 * is sufficient for releasing the queue. 3464 */ 3465 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3466 untimeout(xpt_release_devq_timeout, 3467 dev, dev->c_handle); 3468 } else { 3469 3470 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3471 } 3472 3473 dev->c_handle = 3474 timeout(xpt_release_devq_timeout, 3475 dev, 3476 (crs->release_timeout * hz) / 1000); 3477 3478 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3479 3480 } 3481 3482 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3483 3484 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3485 /* 3486 * Decrement the freeze count so that a single 3487 * completion is still sufficient to unfreeze 3488 * the queue. 3489 */ 3490 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3491 } else { 3492 3493 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3494 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3495 } 3496 } 3497 3498 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3499 3500 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3501 || (dev->ccbq.dev_active == 0)) { 3502 3503 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3504 } else { 3505 3506 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3507 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3508 } 3509 } 3510 splx(s); 3511 3512 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3513 3514 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3515 /*run_queue*/TRUE); 3516 } 3517 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3518 start_ccb->ccb_h.status = CAM_REQ_CMP; 3519 break; 3520 } 3521 case XPT_SCAN_BUS: 3522 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3523 break; 3524 case XPT_SCAN_LUN: 3525 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3526 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3527 start_ccb); 3528 break; 3529 case XPT_DEBUG: { 3530 #ifdef CAMDEBUG 3531 int s; 3532 3533 s = splcam(); 3534 #ifdef CAM_DEBUG_DELAY 3535 cam_debug_delay = CAM_DEBUG_DELAY; 3536 #endif 3537 cam_dflags = start_ccb->cdbg.flags; 3538 if (cam_dpath != NULL) { 3539 xpt_free_path(cam_dpath); 3540 cam_dpath = NULL; 3541 } 3542 3543 if (cam_dflags != CAM_DEBUG_NONE) { 3544 if (xpt_create_path(&cam_dpath, xpt_periph, 3545 start_ccb->ccb_h.path_id, 3546 start_ccb->ccb_h.target_id, 3547 start_ccb->ccb_h.target_lun) != 3548 CAM_REQ_CMP) { 3549 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3550 cam_dflags = CAM_DEBUG_NONE; 3551 } else { 3552 start_ccb->ccb_h.status = CAM_REQ_CMP; 3553 xpt_print_path(cam_dpath); 3554 printf("debugging flags now %x\n", cam_dflags); 3555 } 3556 } else { 3557 cam_dpath = NULL; 3558 start_ccb->ccb_h.status = CAM_REQ_CMP; 3559 } 3560 splx(s); 3561 #else /* !CAMDEBUG */ 3562 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3563 #endif /* CAMDEBUG */ 3564 break; 3565 } 3566 case XPT_NOOP: 3567 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3568 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3569 start_ccb->ccb_h.status = CAM_REQ_CMP; 3570 break; 3571 default: 3572 case XPT_SDEV_TYPE: 3573 case XPT_TERM_IO: 3574 case XPT_ENG_INQ: 3575 /* XXX Implement */ 3576 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3577 break; 3578 } 3579 splx(iopl); 3580 } 3581 3582 void 3583 xpt_polled_action(union ccb *start_ccb) 3584 { 3585 int s; 3586 u_int32_t timeout; 3587 struct cam_sim *sim; 3588 struct cam_devq *devq; 3589 struct cam_ed *dev; 3590 3591 GIANT_REQUIRED; 3592 3593 timeout = start_ccb->ccb_h.timeout; 3594 sim = start_ccb->ccb_h.path->bus->sim; 3595 devq = sim->devq; 3596 dev = start_ccb->ccb_h.path->device; 3597 3598 s = splcam(); 3599 3600 /* 3601 * Steal an opening so that no other queued requests 3602 * can get it before us while we simulate interrupts. 3603 */ 3604 dev->ccbq.devq_openings--; 3605 dev->ccbq.dev_openings--; 3606 3607 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) 3608 && (--timeout > 0)) { 3609 DELAY(1000); 3610 (*(sim->sim_poll))(sim); 3611 camisr(&cam_netq); 3612 camisr(&cam_bioq); 3613 } 3614 3615 dev->ccbq.devq_openings++; 3616 dev->ccbq.dev_openings++; 3617 3618 if (timeout != 0) { 3619 xpt_action(start_ccb); 3620 while(--timeout > 0) { 3621 (*(sim->sim_poll))(sim); 3622 camisr(&cam_netq); 3623 camisr(&cam_bioq); 3624 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3625 != CAM_REQ_INPROG) 3626 break; 3627 DELAY(1000); 3628 } 3629 if (timeout == 0) { 3630 /* 3631 * XXX Is it worth adding a sim_timeout entry 3632 * point so we can attempt recovery? If 3633 * this is only used for dumps, I don't think 3634 * it is. 3635 */ 3636 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3637 } 3638 } else { 3639 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3640 } 3641 splx(s); 3642 } 3643 3644 /* 3645 * Schedule a peripheral driver to receive a ccb when it's 3646 * target device has space for more transactions. 3647 */ 3648 void 3649 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3650 { 3651 struct cam_ed *device; 3652 int s; 3653 int runq; 3654 3655 GIANT_REQUIRED; 3656 3657 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3658 device = perph->path->device; 3659 s = splsoftcam(); 3660 if (periph_is_queued(perph)) { 3661 /* Simply reorder based on new priority */ 3662 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3663 (" change priority to %d\n", new_priority)); 3664 if (new_priority < perph->pinfo.priority) { 3665 camq_change_priority(&device->drvq, 3666 perph->pinfo.index, 3667 new_priority); 3668 } 3669 runq = 0; 3670 } else { 3671 /* New entry on the queue */ 3672 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3673 (" added periph to queue\n")); 3674 perph->pinfo.priority = new_priority; 3675 perph->pinfo.generation = ++device->drvq.generation; 3676 camq_insert(&device->drvq, &perph->pinfo); 3677 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3678 } 3679 splx(s); 3680 if (runq != 0) { 3681 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3682 (" calling xpt_run_devq\n")); 3683 xpt_run_dev_allocq(perph->path->bus); 3684 } 3685 } 3686 3687 3688 /* 3689 * Schedule a device to run on a given queue. 3690 * If the device was inserted as a new entry on the queue, 3691 * return 1 meaning the device queue should be run. If we 3692 * were already queued, implying someone else has already 3693 * started the queue, return 0 so the caller doesn't attempt 3694 * to run the queue. Must be run at either splsoftcam 3695 * (or splcam since that encompases splsoftcam). 3696 */ 3697 static int 3698 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3699 u_int32_t new_priority) 3700 { 3701 int retval; 3702 u_int32_t old_priority; 3703 3704 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3705 3706 old_priority = pinfo->priority; 3707 3708 /* 3709 * Are we already queued? 3710 */ 3711 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3712 /* Simply reorder based on new priority */ 3713 if (new_priority < old_priority) { 3714 camq_change_priority(queue, pinfo->index, 3715 new_priority); 3716 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3717 ("changed priority to %d\n", 3718 new_priority)); 3719 } 3720 retval = 0; 3721 } else { 3722 /* New entry on the queue */ 3723 if (new_priority < old_priority) 3724 pinfo->priority = new_priority; 3725 3726 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3727 ("Inserting onto queue\n")); 3728 pinfo->generation = ++queue->generation; 3729 camq_insert(queue, pinfo); 3730 retval = 1; 3731 } 3732 return (retval); 3733 } 3734 3735 static void 3736 xpt_run_dev_allocq(struct cam_eb *bus) 3737 { 3738 struct cam_devq *devq; 3739 int s; 3740 3741 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3742 devq = bus->sim->devq; 3743 3744 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3745 (" qfrozen_cnt == 0x%x, entries == %d, " 3746 "openings == %d, active == %d\n", 3747 devq->alloc_queue.qfrozen_cnt, 3748 devq->alloc_queue.entries, 3749 devq->alloc_openings, 3750 devq->alloc_active)); 3751 3752 s = splsoftcam(); 3753 devq->alloc_queue.qfrozen_cnt++; 3754 while ((devq->alloc_queue.entries > 0) 3755 && (devq->alloc_openings > 0) 3756 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3757 struct cam_ed_qinfo *qinfo; 3758 struct cam_ed *device; 3759 union ccb *work_ccb; 3760 struct cam_periph *drv; 3761 struct camq *drvq; 3762 3763 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3764 CAMQ_HEAD); 3765 device = qinfo->device; 3766 3767 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3768 ("running device %p\n", device)); 3769 3770 drvq = &device->drvq; 3771 3772 #ifdef CAMDEBUG 3773 if (drvq->entries <= 0) { 3774 panic("xpt_run_dev_allocq: " 3775 "Device on queue without any work to do"); 3776 } 3777 #endif 3778 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3779 devq->alloc_openings--; 3780 devq->alloc_active++; 3781 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3782 splx(s); 3783 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3784 drv->pinfo.priority); 3785 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3786 ("calling periph start\n")); 3787 drv->periph_start(drv, work_ccb); 3788 } else { 3789 /* 3790 * Malloc failure in alloc_ccb 3791 */ 3792 /* 3793 * XXX add us to a list to be run from free_ccb 3794 * if we don't have any ccbs active on this 3795 * device queue otherwise we may never get run 3796 * again. 3797 */ 3798 break; 3799 } 3800 3801 /* Raise IPL for possible insertion and test at top of loop */ 3802 s = splsoftcam(); 3803 3804 if (drvq->entries > 0) { 3805 /* We have more work. Attempt to reschedule */ 3806 xpt_schedule_dev_allocq(bus, device); 3807 } 3808 } 3809 devq->alloc_queue.qfrozen_cnt--; 3810 splx(s); 3811 } 3812 3813 static void 3814 xpt_run_dev_sendq(struct cam_eb *bus) 3815 { 3816 struct cam_devq *devq; 3817 int s; 3818 3819 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3820 3821 devq = bus->sim->devq; 3822 3823 s = splcam(); 3824 devq->send_queue.qfrozen_cnt++; 3825 splx(s); 3826 s = splsoftcam(); 3827 while ((devq->send_queue.entries > 0) 3828 && (devq->send_openings > 0)) { 3829 struct cam_ed_qinfo *qinfo; 3830 struct cam_ed *device; 3831 union ccb *work_ccb; 3832 struct cam_sim *sim; 3833 int ospl; 3834 3835 ospl = splcam(); 3836 if (devq->send_queue.qfrozen_cnt > 1) { 3837 splx(ospl); 3838 break; 3839 } 3840 3841 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3842 CAMQ_HEAD); 3843 device = qinfo->device; 3844 3845 /* 3846 * If the device has been "frozen", don't attempt 3847 * to run it. 3848 */ 3849 if (device->qfrozen_cnt > 0) { 3850 splx(ospl); 3851 continue; 3852 } 3853 3854 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3855 ("running device %p\n", device)); 3856 3857 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3858 if (work_ccb == NULL) { 3859 printf("device on run queue with no ccbs???\n"); 3860 splx(ospl); 3861 continue; 3862 } 3863 3864 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3865 3866 if (num_highpower <= 0) { 3867 /* 3868 * We got a high power command, but we 3869 * don't have any available slots. Freeze 3870 * the device queue until we have a slot 3871 * available. 3872 */ 3873 device->qfrozen_cnt++; 3874 STAILQ_INSERT_TAIL(&highpowerq, 3875 &work_ccb->ccb_h, 3876 xpt_links.stqe); 3877 3878 splx(ospl); 3879 continue; 3880 } else { 3881 /* 3882 * Consume a high power slot while 3883 * this ccb runs. 3884 */ 3885 num_highpower--; 3886 } 3887 } 3888 devq->active_dev = device; 3889 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3890 3891 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3892 splx(ospl); 3893 3894 devq->send_openings--; 3895 devq->send_active++; 3896 3897 if (device->ccbq.queue.entries > 0) 3898 xpt_schedule_dev_sendq(bus, device); 3899 3900 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3901 /* 3902 * The client wants to freeze the queue 3903 * after this CCB is sent. 3904 */ 3905 ospl = splcam(); 3906 device->qfrozen_cnt++; 3907 splx(ospl); 3908 } 3909 3910 splx(s); 3911 3912 /* In Target mode, the peripheral driver knows best... */ 3913 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3914 if ((device->inq_flags & SID_CmdQue) != 0 3915 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3916 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3917 else 3918 /* 3919 * Clear this in case of a retried CCB that 3920 * failed due to a rejected tag. 3921 */ 3922 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3923 } 3924 3925 /* 3926 * Device queues can be shared among multiple sim instances 3927 * that reside on different busses. Use the SIM in the queue 3928 * CCB's path, rather than the one in the bus that was passed 3929 * into this function. 3930 */ 3931 sim = work_ccb->ccb_h.path->bus->sim; 3932 (*(sim->sim_action))(sim, work_ccb); 3933 3934 ospl = splcam(); 3935 devq->active_dev = NULL; 3936 splx(ospl); 3937 /* Raise IPL for possible insertion and test at top of loop */ 3938 s = splsoftcam(); 3939 } 3940 splx(s); 3941 s = splcam(); 3942 devq->send_queue.qfrozen_cnt--; 3943 splx(s); 3944 } 3945 3946 /* 3947 * This function merges stuff from the slave ccb into the master ccb, while 3948 * keeping important fields in the master ccb constant. 3949 */ 3950 void 3951 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3952 { 3953 GIANT_REQUIRED; 3954 3955 /* 3956 * Pull fields that are valid for peripheral drivers to set 3957 * into the master CCB along with the CCB "payload". 3958 */ 3959 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3960 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3961 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3962 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3963 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3964 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3965 } 3966 3967 void 3968 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3969 { 3970 GIANT_REQUIRED; 3971 3972 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3973 ccb_h->pinfo.priority = priority; 3974 ccb_h->path = path; 3975 ccb_h->path_id = path->bus->path_id; 3976 if (path->target) 3977 ccb_h->target_id = path->target->target_id; 3978 else 3979 ccb_h->target_id = CAM_TARGET_WILDCARD; 3980 if (path->device) { 3981 ccb_h->target_lun = path->device->lun_id; 3982 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3983 } else { 3984 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3985 } 3986 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3987 ccb_h->flags = 0; 3988 } 3989 3990 /* Path manipulation functions */ 3991 cam_status 3992 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3993 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3994 { 3995 struct cam_path *path; 3996 cam_status status; 3997 3998 GIANT_REQUIRED; 3999 4000 path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT); 4001 4002 if (path == NULL) { 4003 status = CAM_RESRC_UNAVAIL; 4004 return(status); 4005 } 4006 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 4007 if (status != CAM_REQ_CMP) { 4008 free(path, M_DEVBUF); 4009 path = NULL; 4010 } 4011 *new_path_ptr = path; 4012 return (status); 4013 } 4014 4015 static cam_status 4016 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 4017 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4018 { 4019 struct cam_eb *bus; 4020 struct cam_et *target; 4021 struct cam_ed *device; 4022 cam_status status; 4023 int s; 4024 4025 status = CAM_REQ_CMP; /* Completed without error */ 4026 target = NULL; /* Wildcarded */ 4027 device = NULL; /* Wildcarded */ 4028 4029 /* 4030 * We will potentially modify the EDT, so block interrupts 4031 * that may attempt to create cam paths. 4032 */ 4033 s = splcam(); 4034 bus = xpt_find_bus(path_id); 4035 if (bus == NULL) { 4036 status = CAM_PATH_INVALID; 4037 } else { 4038 target = xpt_find_target(bus, target_id); 4039 if (target == NULL) { 4040 /* Create one */ 4041 struct cam_et *new_target; 4042 4043 new_target = xpt_alloc_target(bus, target_id); 4044 if (new_target == NULL) { 4045 status = CAM_RESRC_UNAVAIL; 4046 } else { 4047 target = new_target; 4048 } 4049 } 4050 if (target != NULL) { 4051 device = xpt_find_device(target, lun_id); 4052 if (device == NULL) { 4053 /* Create one */ 4054 struct cam_ed *new_device; 4055 4056 new_device = xpt_alloc_device(bus, 4057 target, 4058 lun_id); 4059 if (new_device == NULL) { 4060 status = CAM_RESRC_UNAVAIL; 4061 } else { 4062 device = new_device; 4063 } 4064 } 4065 } 4066 } 4067 splx(s); 4068 4069 /* 4070 * Only touch the user's data if we are successful. 4071 */ 4072 if (status == CAM_REQ_CMP) { 4073 new_path->periph = perph; 4074 new_path->bus = bus; 4075 new_path->target = target; 4076 new_path->device = device; 4077 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4078 } else { 4079 if (device != NULL) 4080 xpt_release_device(bus, target, device); 4081 if (target != NULL) 4082 xpt_release_target(bus, target); 4083 if (bus != NULL) 4084 xpt_release_bus(bus); 4085 } 4086 return (status); 4087 } 4088 4089 static void 4090 xpt_release_path(struct cam_path *path) 4091 { 4092 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4093 if (path->device != NULL) { 4094 xpt_release_device(path->bus, path->target, path->device); 4095 path->device = NULL; 4096 } 4097 if (path->target != NULL) { 4098 xpt_release_target(path->bus, path->target); 4099 path->target = NULL; 4100 } 4101 if (path->bus != NULL) { 4102 xpt_release_bus(path->bus); 4103 path->bus = NULL; 4104 } 4105 } 4106 4107 void 4108 xpt_free_path(struct cam_path *path) 4109 { 4110 GIANT_REQUIRED; 4111 4112 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4113 xpt_release_path(path); 4114 free(path, M_DEVBUF); 4115 } 4116 4117 4118 /* 4119 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4120 * in path1, 2 for match with wildcards in path2. 4121 */ 4122 int 4123 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4124 { 4125 GIANT_REQUIRED; 4126 4127 int retval = 0; 4128 4129 if (path1->bus != path2->bus) { 4130 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4131 retval = 1; 4132 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4133 retval = 2; 4134 else 4135 return (-1); 4136 } 4137 if (path1->target != path2->target) { 4138 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4139 if (retval == 0) 4140 retval = 1; 4141 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4142 retval = 2; 4143 else 4144 return (-1); 4145 } 4146 if (path1->device != path2->device) { 4147 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4148 if (retval == 0) 4149 retval = 1; 4150 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4151 retval = 2; 4152 else 4153 return (-1); 4154 } 4155 return (retval); 4156 } 4157 4158 void 4159 xpt_print_path(struct cam_path *path) 4160 { 4161 GIANT_REQUIRED; 4162 4163 if (path == NULL) 4164 printf("(nopath): "); 4165 else { 4166 if (path->periph != NULL) 4167 printf("(%s%d:", path->periph->periph_name, 4168 path->periph->unit_number); 4169 else 4170 printf("(noperiph:"); 4171 4172 if (path->bus != NULL) 4173 printf("%s%d:%d:", path->bus->sim->sim_name, 4174 path->bus->sim->unit_number, 4175 path->bus->sim->bus_id); 4176 else 4177 printf("nobus:"); 4178 4179 if (path->target != NULL) 4180 printf("%d:", path->target->target_id); 4181 else 4182 printf("X:"); 4183 4184 if (path->device != NULL) 4185 printf("%d): ", path->device->lun_id); 4186 else 4187 printf("X): "); 4188 } 4189 } 4190 4191 int 4192 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4193 { 4194 struct sbuf sb; 4195 4196 GIANT_REQUIRED; 4197 4198 sbuf_new(&sb, str, str_len, 0); 4199 4200 if (path == NULL) 4201 sbuf_printf(&sb, "(nopath): "); 4202 else { 4203 if (path->periph != NULL) 4204 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4205 path->periph->unit_number); 4206 else 4207 sbuf_printf(&sb, "(noperiph:"); 4208 4209 if (path->bus != NULL) 4210 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4211 path->bus->sim->unit_number, 4212 path->bus->sim->bus_id); 4213 else 4214 sbuf_printf(&sb, "nobus:"); 4215 4216 if (path->target != NULL) 4217 sbuf_printf(&sb, "%d:", path->target->target_id); 4218 else 4219 sbuf_printf(&sb, "X:"); 4220 4221 if (path->device != NULL) 4222 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4223 else 4224 sbuf_printf(&sb, "X): "); 4225 } 4226 sbuf_finish(&sb); 4227 4228 return(sbuf_len(&sb)); 4229 } 4230 4231 path_id_t 4232 xpt_path_path_id(struct cam_path *path) 4233 { 4234 GIANT_REQUIRED; 4235 4236 return(path->bus->path_id); 4237 } 4238 4239 target_id_t 4240 xpt_path_target_id(struct cam_path *path) 4241 { 4242 GIANT_REQUIRED; 4243 4244 if (path->target != NULL) 4245 return (path->target->target_id); 4246 else 4247 return (CAM_TARGET_WILDCARD); 4248 } 4249 4250 lun_id_t 4251 xpt_path_lun_id(struct cam_path *path) 4252 { 4253 GIANT_REQUIRED; 4254 4255 if (path->device != NULL) 4256 return (path->device->lun_id); 4257 else 4258 return (CAM_LUN_WILDCARD); 4259 } 4260 4261 struct cam_sim * 4262 xpt_path_sim(struct cam_path *path) 4263 { 4264 GIANT_REQUIRED; 4265 4266 return (path->bus->sim); 4267 } 4268 4269 struct cam_periph* 4270 xpt_path_periph(struct cam_path *path) 4271 { 4272 GIANT_REQUIRED; 4273 4274 return (path->periph); 4275 } 4276 4277 /* 4278 * Release a CAM control block for the caller. Remit the cost of the structure 4279 * to the device referenced by the path. If the this device had no 'credits' 4280 * and peripheral drivers have registered async callbacks for this notification 4281 * call them now. 4282 */ 4283 void 4284 xpt_release_ccb(union ccb *free_ccb) 4285 { 4286 int s; 4287 struct cam_path *path; 4288 struct cam_ed *device; 4289 struct cam_eb *bus; 4290 4291 GIANT_REQUIRED; 4292 4293 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4294 path = free_ccb->ccb_h.path; 4295 device = path->device; 4296 bus = path->bus; 4297 s = splsoftcam(); 4298 cam_ccbq_release_opening(&device->ccbq); 4299 if (xpt_ccb_count > xpt_max_ccbs) { 4300 xpt_free_ccb(free_ccb); 4301 xpt_ccb_count--; 4302 } else { 4303 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4304 } 4305 bus->sim->devq->alloc_openings++; 4306 bus->sim->devq->alloc_active--; 4307 /* XXX Turn this into an inline function - xpt_run_device?? */ 4308 if ((device_is_alloc_queued(device) == 0) 4309 && (device->drvq.entries > 0)) { 4310 xpt_schedule_dev_allocq(bus, device); 4311 } 4312 splx(s); 4313 if (dev_allocq_is_runnable(bus->sim->devq)) 4314 xpt_run_dev_allocq(bus); 4315 } 4316 4317 /* Functions accessed by SIM drivers */ 4318 4319 /* 4320 * A sim structure, listing the SIM entry points and instance 4321 * identification info is passed to xpt_bus_register to hook the SIM 4322 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4323 * for this new bus and places it in the array of busses and assigns 4324 * it a path_id. The path_id may be influenced by "hard wiring" 4325 * information specified by the user. Once interrupt services are 4326 * availible, the bus will be probed. 4327 */ 4328 int32_t 4329 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4330 { 4331 struct cam_eb *new_bus; 4332 struct cam_eb *old_bus; 4333 struct ccb_pathinq cpi; 4334 int s; 4335 4336 GIANT_REQUIRED; 4337 4338 sim->bus_id = bus; 4339 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4340 M_DEVBUF, M_NOWAIT); 4341 if (new_bus == NULL) { 4342 /* Couldn't satisfy request */ 4343 return (CAM_RESRC_UNAVAIL); 4344 } 4345 4346 if (strcmp(sim->sim_name, "xpt") != 0) { 4347 4348 sim->path_id = 4349 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4350 } 4351 4352 TAILQ_INIT(&new_bus->et_entries); 4353 new_bus->path_id = sim->path_id; 4354 new_bus->sim = sim; 4355 timevalclear(&new_bus->last_reset); 4356 new_bus->flags = 0; 4357 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4358 new_bus->generation = 0; 4359 s = splcam(); 4360 old_bus = TAILQ_FIRST(&xpt_busses); 4361 while (old_bus != NULL 4362 && old_bus->path_id < new_bus->path_id) 4363 old_bus = TAILQ_NEXT(old_bus, links); 4364 if (old_bus != NULL) 4365 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4366 else 4367 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4368 bus_generation++; 4369 splx(s); 4370 4371 /* Notify interested parties */ 4372 if (sim->path_id != CAM_XPT_PATH_ID) { 4373 struct cam_path path; 4374 4375 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4376 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4377 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4378 cpi.ccb_h.func_code = XPT_PATH_INQ; 4379 xpt_action((union ccb *)&cpi); 4380 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4381 xpt_release_path(&path); 4382 } 4383 return (CAM_SUCCESS); 4384 } 4385 4386 int32_t 4387 xpt_bus_deregister(path_id_t pathid) 4388 { 4389 struct cam_path bus_path; 4390 cam_status status; 4391 4392 GIANT_REQUIRED; 4393 4394 status = xpt_compile_path(&bus_path, NULL, pathid, 4395 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4396 if (status != CAM_REQ_CMP) 4397 return (status); 4398 4399 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4400 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4401 4402 /* Release the reference count held while registered. */ 4403 xpt_release_bus(bus_path.bus); 4404 xpt_release_path(&bus_path); 4405 4406 return (CAM_REQ_CMP); 4407 } 4408 4409 static path_id_t 4410 xptnextfreepathid(void) 4411 { 4412 struct cam_eb *bus; 4413 path_id_t pathid; 4414 const char *strval; 4415 4416 pathid = 0; 4417 bus = TAILQ_FIRST(&xpt_busses); 4418 retry: 4419 /* Find an unoccupied pathid */ 4420 while (bus != NULL 4421 && bus->path_id <= pathid) { 4422 if (bus->path_id == pathid) 4423 pathid++; 4424 bus = TAILQ_NEXT(bus, links); 4425 } 4426 4427 /* 4428 * Ensure that this pathid is not reserved for 4429 * a bus that may be registered in the future. 4430 */ 4431 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4432 ++pathid; 4433 /* Start the search over */ 4434 goto retry; 4435 } 4436 return (pathid); 4437 } 4438 4439 static path_id_t 4440 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4441 { 4442 path_id_t pathid; 4443 int i, dunit, val; 4444 char buf[32]; 4445 const char *dname; 4446 4447 pathid = CAM_XPT_PATH_ID; 4448 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4449 i = 0; 4450 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4451 if (strcmp(dname, "scbus")) { 4452 /* Avoid a bit of foot shooting. */ 4453 continue; 4454 } 4455 if (dunit < 0) /* unwired?! */ 4456 continue; 4457 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4458 if (sim_bus == val) { 4459 pathid = dunit; 4460 break; 4461 } 4462 } else if (sim_bus == 0) { 4463 /* Unspecified matches bus 0 */ 4464 pathid = dunit; 4465 break; 4466 } else { 4467 printf("Ambiguous scbus configuration for %s%d " 4468 "bus %d, cannot wire down. The kernel " 4469 "config entry for scbus%d should " 4470 "specify a controller bus.\n" 4471 "Scbus will be assigned dynamically.\n", 4472 sim_name, sim_unit, sim_bus, dunit); 4473 break; 4474 } 4475 } 4476 4477 if (pathid == CAM_XPT_PATH_ID) 4478 pathid = xptnextfreepathid(); 4479 return (pathid); 4480 } 4481 4482 void 4483 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4484 { 4485 struct cam_eb *bus; 4486 struct cam_et *target, *next_target; 4487 struct cam_ed *device, *next_device; 4488 int s; 4489 4490 GIANT_REQUIRED; 4491 4492 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4493 4494 /* 4495 * Most async events come from a CAM interrupt context. In 4496 * a few cases, the error recovery code at the peripheral layer, 4497 * which may run from our SWI or a process context, may signal 4498 * deferred events with a call to xpt_async. Ensure async 4499 * notifications are serialized by blocking cam interrupts. 4500 */ 4501 s = splcam(); 4502 4503 bus = path->bus; 4504 4505 if (async_code == AC_BUS_RESET) { 4506 int s; 4507 4508 s = splclock(); 4509 /* Update our notion of when the last reset occurred */ 4510 microtime(&bus->last_reset); 4511 splx(s); 4512 } 4513 4514 for (target = TAILQ_FIRST(&bus->et_entries); 4515 target != NULL; 4516 target = next_target) { 4517 4518 next_target = TAILQ_NEXT(target, links); 4519 4520 if (path->target != target 4521 && path->target->target_id != CAM_TARGET_WILDCARD 4522 && target->target_id != CAM_TARGET_WILDCARD) 4523 continue; 4524 4525 if (async_code == AC_SENT_BDR) { 4526 int s; 4527 4528 /* Update our notion of when the last reset occurred */ 4529 s = splclock(); 4530 microtime(&path->target->last_reset); 4531 splx(s); 4532 } 4533 4534 for (device = TAILQ_FIRST(&target->ed_entries); 4535 device != NULL; 4536 device = next_device) { 4537 4538 next_device = TAILQ_NEXT(device, links); 4539 4540 if (path->device != device 4541 && path->device->lun_id != CAM_LUN_WILDCARD 4542 && device->lun_id != CAM_LUN_WILDCARD) 4543 continue; 4544 4545 xpt_dev_async(async_code, bus, target, 4546 device, async_arg); 4547 4548 xpt_async_bcast(&device->asyncs, async_code, 4549 path, async_arg); 4550 } 4551 } 4552 4553 /* 4554 * If this wasn't a fully wildcarded async, tell all 4555 * clients that want all async events. 4556 */ 4557 if (bus != xpt_periph->path->bus) 4558 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4559 path, async_arg); 4560 splx(s); 4561 } 4562 4563 static void 4564 xpt_async_bcast(struct async_list *async_head, 4565 u_int32_t async_code, 4566 struct cam_path *path, void *async_arg) 4567 { 4568 struct async_node *cur_entry; 4569 4570 cur_entry = SLIST_FIRST(async_head); 4571 while (cur_entry != NULL) { 4572 struct async_node *next_entry; 4573 /* 4574 * Grab the next list entry before we call the current 4575 * entry's callback. This is because the callback function 4576 * can delete its async callback entry. 4577 */ 4578 next_entry = SLIST_NEXT(cur_entry, links); 4579 if ((cur_entry->event_enable & async_code) != 0) 4580 cur_entry->callback(cur_entry->callback_arg, 4581 async_code, path, 4582 async_arg); 4583 cur_entry = next_entry; 4584 } 4585 } 4586 4587 /* 4588 * Handle any per-device event notifications that require action by the XPT. 4589 */ 4590 static void 4591 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4592 struct cam_ed *device, void *async_arg) 4593 { 4594 cam_status status; 4595 struct cam_path newpath; 4596 4597 /* 4598 * We only need to handle events for real devices. 4599 */ 4600 if (target->target_id == CAM_TARGET_WILDCARD 4601 || device->lun_id == CAM_LUN_WILDCARD) 4602 return; 4603 4604 /* 4605 * We need our own path with wildcards expanded to 4606 * handle certain types of events. 4607 */ 4608 if ((async_code == AC_SENT_BDR) 4609 || (async_code == AC_BUS_RESET) 4610 || (async_code == AC_INQ_CHANGED)) 4611 status = xpt_compile_path(&newpath, NULL, 4612 bus->path_id, 4613 target->target_id, 4614 device->lun_id); 4615 else 4616 status = CAM_REQ_CMP_ERR; 4617 4618 if (status == CAM_REQ_CMP) { 4619 4620 /* 4621 * Allow transfer negotiation to occur in a 4622 * tag free environment. 4623 */ 4624 if (async_code == AC_SENT_BDR 4625 || async_code == AC_BUS_RESET) 4626 xpt_toggle_tags(&newpath); 4627 4628 if (async_code == AC_INQ_CHANGED) { 4629 /* 4630 * We've sent a start unit command, or 4631 * something similar to a device that 4632 * may have caused its inquiry data to 4633 * change. So we re-scan the device to 4634 * refresh the inquiry data for it. 4635 */ 4636 xpt_scan_lun(newpath.periph, &newpath, 4637 CAM_EXPECT_INQ_CHANGE, NULL); 4638 } 4639 xpt_release_path(&newpath); 4640 } else if (async_code == AC_LOST_DEVICE) { 4641 device->flags |= CAM_DEV_UNCONFIGURED; 4642 } else if (async_code == AC_TRANSFER_NEG) { 4643 struct ccb_trans_settings *settings; 4644 4645 settings = (struct ccb_trans_settings *)async_arg; 4646 xpt_set_transfer_settings(settings, device, 4647 /*async_update*/TRUE); 4648 } 4649 } 4650 4651 u_int32_t 4652 xpt_freeze_devq(struct cam_path *path, u_int count) 4653 { 4654 int s; 4655 struct ccb_hdr *ccbh; 4656 4657 GIANT_REQUIRED; 4658 4659 s = splcam(); 4660 path->device->qfrozen_cnt += count; 4661 4662 /* 4663 * Mark the last CCB in the queue as needing 4664 * to be requeued if the driver hasn't 4665 * changed it's state yet. This fixes a race 4666 * where a ccb is just about to be queued to 4667 * a controller driver when it's interrupt routine 4668 * freezes the queue. To completly close the 4669 * hole, controller drives must check to see 4670 * if a ccb's status is still CAM_REQ_INPROG 4671 * under spl protection just before they queue 4672 * the CCB. See ahc_action/ahc_freeze_devq for 4673 * an example. 4674 */ 4675 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4676 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4677 ccbh->status = CAM_REQUEUE_REQ; 4678 splx(s); 4679 return (path->device->qfrozen_cnt); 4680 } 4681 4682 u_int32_t 4683 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4684 { 4685 GIANT_REQUIRED; 4686 4687 sim->devq->send_queue.qfrozen_cnt += count; 4688 if (sim->devq->active_dev != NULL) { 4689 struct ccb_hdr *ccbh; 4690 4691 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4692 ccb_hdr_tailq); 4693 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4694 ccbh->status = CAM_REQUEUE_REQ; 4695 } 4696 return (sim->devq->send_queue.qfrozen_cnt); 4697 } 4698 4699 static void 4700 xpt_release_devq_timeout(void *arg) 4701 { 4702 struct cam_ed *device; 4703 4704 device = (struct cam_ed *)arg; 4705 4706 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4707 } 4708 4709 void 4710 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4711 { 4712 GIANT_REQUIRED; 4713 4714 xpt_release_devq_device(path->device, count, run_queue); 4715 } 4716 4717 static void 4718 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4719 { 4720 int rundevq; 4721 int s0, s1; 4722 4723 rundevq = 0; 4724 s0 = splsoftcam(); 4725 s1 = splcam(); 4726 if (dev->qfrozen_cnt > 0) { 4727 4728 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4729 dev->qfrozen_cnt -= count; 4730 if (dev->qfrozen_cnt == 0) { 4731 4732 /* 4733 * No longer need to wait for a successful 4734 * command completion. 4735 */ 4736 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4737 4738 /* 4739 * Remove any timeouts that might be scheduled 4740 * to release this queue. 4741 */ 4742 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4743 untimeout(xpt_release_devq_timeout, dev, 4744 dev->c_handle); 4745 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4746 } 4747 4748 /* 4749 * Now that we are unfrozen schedule the 4750 * device so any pending transactions are 4751 * run. 4752 */ 4753 if ((dev->ccbq.queue.entries > 0) 4754 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4755 && (run_queue != 0)) { 4756 rundevq = 1; 4757 } 4758 } 4759 } 4760 splx(s1); 4761 if (rundevq != 0) 4762 xpt_run_dev_sendq(dev->target->bus); 4763 splx(s0); 4764 } 4765 4766 void 4767 xpt_release_simq(struct cam_sim *sim, int run_queue) 4768 { 4769 int s; 4770 struct camq *sendq; 4771 4772 GIANT_REQUIRED; 4773 4774 sendq = &(sim->devq->send_queue); 4775 s = splcam(); 4776 if (sendq->qfrozen_cnt > 0) { 4777 4778 sendq->qfrozen_cnt--; 4779 if (sendq->qfrozen_cnt == 0) { 4780 struct cam_eb *bus; 4781 4782 /* 4783 * If there is a timeout scheduled to release this 4784 * sim queue, remove it. The queue frozen count is 4785 * already at 0. 4786 */ 4787 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4788 untimeout(xpt_release_simq_timeout, sim, 4789 sim->c_handle); 4790 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4791 } 4792 bus = xpt_find_bus(sim->path_id); 4793 splx(s); 4794 4795 if (run_queue) { 4796 /* 4797 * Now that we are unfrozen run the send queue. 4798 */ 4799 xpt_run_dev_sendq(bus); 4800 } 4801 xpt_release_bus(bus); 4802 } else 4803 splx(s); 4804 } else 4805 splx(s); 4806 } 4807 4808 static void 4809 xpt_release_simq_timeout(void *arg) 4810 { 4811 struct cam_sim *sim; 4812 4813 sim = (struct cam_sim *)arg; 4814 xpt_release_simq(sim, /* run_queue */ TRUE); 4815 } 4816 4817 void 4818 xpt_done(union ccb *done_ccb) 4819 { 4820 int s; 4821 4822 GIANT_REQUIRED; 4823 4824 s = splcam(); 4825 4826 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4827 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4828 /* 4829 * Queue up the request for handling by our SWI handler 4830 * any of the "non-immediate" type of ccbs. 4831 */ 4832 switch (done_ccb->ccb_h.path->periph->type) { 4833 case CAM_PERIPH_BIO: 4834 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4835 sim_links.tqe); 4836 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4837 swi_sched(cambio_ih, 0); 4838 break; 4839 case CAM_PERIPH_NET: 4840 TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h, 4841 sim_links.tqe); 4842 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4843 swi_sched(camnet_ih, 0); 4844 break; 4845 } 4846 } 4847 splx(s); 4848 } 4849 4850 union ccb * 4851 xpt_alloc_ccb() 4852 { 4853 union ccb *new_ccb; 4854 4855 GIANT_REQUIRED; 4856 4857 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK); 4858 return (new_ccb); 4859 } 4860 4861 void 4862 xpt_free_ccb(union ccb *free_ccb) 4863 { 4864 free(free_ccb, M_DEVBUF); 4865 } 4866 4867 4868 4869 /* Private XPT functions */ 4870 4871 /* 4872 * Get a CAM control block for the caller. Charge the structure to the device 4873 * referenced by the path. If the this device has no 'credits' then the 4874 * device already has the maximum number of outstanding operations under way 4875 * and we return NULL. If we don't have sufficient resources to allocate more 4876 * ccbs, we also return NULL. 4877 */ 4878 static union ccb * 4879 xpt_get_ccb(struct cam_ed *device) 4880 { 4881 union ccb *new_ccb; 4882 int s; 4883 4884 s = splsoftcam(); 4885 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 4886 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT); 4887 if (new_ccb == NULL) { 4888 splx(s); 4889 return (NULL); 4890 } 4891 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4892 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4893 xpt_links.sle); 4894 xpt_ccb_count++; 4895 } 4896 cam_ccbq_take_opening(&device->ccbq); 4897 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4898 splx(s); 4899 return (new_ccb); 4900 } 4901 4902 static void 4903 xpt_release_bus(struct cam_eb *bus) 4904 { 4905 int s; 4906 4907 s = splcam(); 4908 if ((--bus->refcount == 0) 4909 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4910 TAILQ_REMOVE(&xpt_busses, bus, links); 4911 bus_generation++; 4912 splx(s); 4913 free(bus, M_DEVBUF); 4914 } else 4915 splx(s); 4916 } 4917 4918 static struct cam_et * 4919 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4920 { 4921 struct cam_et *target; 4922 4923 target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT); 4924 if (target != NULL) { 4925 struct cam_et *cur_target; 4926 4927 TAILQ_INIT(&target->ed_entries); 4928 target->bus = bus; 4929 target->target_id = target_id; 4930 target->refcount = 1; 4931 target->generation = 0; 4932 timevalclear(&target->last_reset); 4933 /* 4934 * Hold a reference to our parent bus so it 4935 * will not go away before we do. 4936 */ 4937 bus->refcount++; 4938 4939 /* Insertion sort into our bus's target list */ 4940 cur_target = TAILQ_FIRST(&bus->et_entries); 4941 while (cur_target != NULL && cur_target->target_id < target_id) 4942 cur_target = TAILQ_NEXT(cur_target, links); 4943 4944 if (cur_target != NULL) { 4945 TAILQ_INSERT_BEFORE(cur_target, target, links); 4946 } else { 4947 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4948 } 4949 bus->generation++; 4950 } 4951 return (target); 4952 } 4953 4954 static void 4955 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4956 { 4957 int s; 4958 4959 s = splcam(); 4960 if ((--target->refcount == 0) 4961 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4962 TAILQ_REMOVE(&bus->et_entries, target, links); 4963 bus->generation++; 4964 splx(s); 4965 free(target, M_DEVBUF); 4966 xpt_release_bus(bus); 4967 } else 4968 splx(s); 4969 } 4970 4971 static struct cam_ed * 4972 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4973 { 4974 #ifdef CAM_NEW_TRAN_CODE 4975 struct cam_path path; 4976 #endif /* CAM_NEW_TRAN_CODE */ 4977 struct cam_ed *device; 4978 struct cam_devq *devq; 4979 cam_status status; 4980 4981 /* Make space for us in the device queue on our bus */ 4982 devq = bus->sim->devq; 4983 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4984 4985 if (status != CAM_REQ_CMP) { 4986 device = NULL; 4987 } else { 4988 device = (struct cam_ed *)malloc(sizeof(*device), 4989 M_DEVBUF, M_NOWAIT); 4990 } 4991 4992 if (device != NULL) { 4993 struct cam_ed *cur_device; 4994 4995 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4996 device->alloc_ccb_entry.device = device; 4997 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4998 device->send_ccb_entry.device = device; 4999 device->target = target; 5000 device->lun_id = lun_id; 5001 /* Initialize our queues */ 5002 if (camq_init(&device->drvq, 0) != 0) { 5003 free(device, M_DEVBUF); 5004 return (NULL); 5005 } 5006 if (cam_ccbq_init(&device->ccbq, 5007 bus->sim->max_dev_openings) != 0) { 5008 camq_fini(&device->drvq); 5009 free(device, M_DEVBUF); 5010 return (NULL); 5011 } 5012 SLIST_INIT(&device->asyncs); 5013 SLIST_INIT(&device->periphs); 5014 device->generation = 0; 5015 device->owner = NULL; 5016 /* 5017 * Take the default quirk entry until we have inquiry 5018 * data and can determine a better quirk to use. 5019 */ 5020 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5021 bzero(&device->inq_data, sizeof(device->inq_data)); 5022 device->inq_flags = 0; 5023 device->queue_flags = 0; 5024 device->serial_num = NULL; 5025 device->serial_num_len = 0; 5026 device->qfrozen_cnt = 0; 5027 device->flags = CAM_DEV_UNCONFIGURED; 5028 device->tag_delay_count = 0; 5029 device->refcount = 1; 5030 callout_handle_init(&device->c_handle); 5031 5032 /* 5033 * Hold a reference to our parent target so it 5034 * will not go away before we do. 5035 */ 5036 target->refcount++; 5037 5038 /* 5039 * XXX should be limited by number of CCBs this bus can 5040 * do. 5041 */ 5042 xpt_max_ccbs += device->ccbq.devq_openings; 5043 /* Insertion sort into our target's device list */ 5044 cur_device = TAILQ_FIRST(&target->ed_entries); 5045 while (cur_device != NULL && cur_device->lun_id < lun_id) 5046 cur_device = TAILQ_NEXT(cur_device, links); 5047 if (cur_device != NULL) { 5048 TAILQ_INSERT_BEFORE(cur_device, device, links); 5049 } else { 5050 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5051 } 5052 target->generation++; 5053 #ifdef CAM_NEW_TRAN_CODE 5054 if (lun_id != CAM_LUN_WILDCARD) { 5055 xpt_compile_path(&path, 5056 NULL, 5057 bus->path_id, 5058 target->target_id, 5059 lun_id); 5060 xpt_devise_transport(&path); 5061 xpt_release_path(&path); 5062 } 5063 #endif /* CAM_NEW_TRAN_CODE */ 5064 } 5065 return (device); 5066 } 5067 5068 static void 5069 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5070 struct cam_ed *device) 5071 { 5072 int s; 5073 5074 s = splcam(); 5075 if ((--device->refcount == 0) 5076 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5077 struct cam_devq *devq; 5078 5079 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5080 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5081 panic("Removing device while still queued for ccbs"); 5082 5083 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5084 untimeout(xpt_release_devq_timeout, device, 5085 device->c_handle); 5086 5087 TAILQ_REMOVE(&target->ed_entries, device,links); 5088 target->generation++; 5089 xpt_max_ccbs -= device->ccbq.devq_openings; 5090 /* Release our slot in the devq */ 5091 devq = bus->sim->devq; 5092 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5093 splx(s); 5094 free(device, M_DEVBUF); 5095 xpt_release_target(bus, target); 5096 } else 5097 splx(s); 5098 } 5099 5100 static u_int32_t 5101 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5102 { 5103 int s; 5104 int diff; 5105 int result; 5106 struct cam_ed *dev; 5107 5108 dev = path->device; 5109 s = splsoftcam(); 5110 5111 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5112 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5113 if (result == CAM_REQ_CMP && (diff < 0)) { 5114 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5115 } 5116 /* Adjust the global limit */ 5117 xpt_max_ccbs += diff; 5118 splx(s); 5119 return (result); 5120 } 5121 5122 static struct cam_eb * 5123 xpt_find_bus(path_id_t path_id) 5124 { 5125 struct cam_eb *bus; 5126 5127 for (bus = TAILQ_FIRST(&xpt_busses); 5128 bus != NULL; 5129 bus = TAILQ_NEXT(bus, links)) { 5130 if (bus->path_id == path_id) { 5131 bus->refcount++; 5132 break; 5133 } 5134 } 5135 return (bus); 5136 } 5137 5138 static struct cam_et * 5139 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5140 { 5141 struct cam_et *target; 5142 5143 for (target = TAILQ_FIRST(&bus->et_entries); 5144 target != NULL; 5145 target = TAILQ_NEXT(target, links)) { 5146 if (target->target_id == target_id) { 5147 target->refcount++; 5148 break; 5149 } 5150 } 5151 return (target); 5152 } 5153 5154 static struct cam_ed * 5155 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5156 { 5157 struct cam_ed *device; 5158 5159 for (device = TAILQ_FIRST(&target->ed_entries); 5160 device != NULL; 5161 device = TAILQ_NEXT(device, links)) { 5162 if (device->lun_id == lun_id) { 5163 device->refcount++; 5164 break; 5165 } 5166 } 5167 return (device); 5168 } 5169 5170 typedef struct { 5171 union ccb *request_ccb; 5172 struct ccb_pathinq *cpi; 5173 int pending_count; 5174 } xpt_scan_bus_info; 5175 5176 /* 5177 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5178 * As the scan progresses, xpt_scan_bus is used as the 5179 * callback on completion function. 5180 */ 5181 static void 5182 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5183 { 5184 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5185 ("xpt_scan_bus\n")); 5186 switch (request_ccb->ccb_h.func_code) { 5187 case XPT_SCAN_BUS: 5188 { 5189 xpt_scan_bus_info *scan_info; 5190 union ccb *work_ccb; 5191 struct cam_path *path; 5192 u_int i; 5193 u_int max_target; 5194 u_int initiator_id; 5195 5196 /* Find out the characteristics of the bus */ 5197 work_ccb = xpt_alloc_ccb(); 5198 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5199 request_ccb->ccb_h.pinfo.priority); 5200 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5201 xpt_action(work_ccb); 5202 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5203 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5204 xpt_free_ccb(work_ccb); 5205 xpt_done(request_ccb); 5206 return; 5207 } 5208 5209 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5210 /* 5211 * Can't scan the bus on an adapter that 5212 * cannot perform the initiator role. 5213 */ 5214 request_ccb->ccb_h.status = CAM_REQ_CMP; 5215 xpt_free_ccb(work_ccb); 5216 xpt_done(request_ccb); 5217 return; 5218 } 5219 5220 /* Save some state for use while we probe for devices */ 5221 scan_info = (xpt_scan_bus_info *) 5222 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5223 scan_info->request_ccb = request_ccb; 5224 scan_info->cpi = &work_ccb->cpi; 5225 5226 /* Cache on our stack so we can work asynchronously */ 5227 max_target = scan_info->cpi->max_target; 5228 initiator_id = scan_info->cpi->initiator_id; 5229 5230 /* 5231 * Don't count the initiator if the 5232 * initiator is addressable. 5233 */ 5234 scan_info->pending_count = max_target + 1; 5235 if (initiator_id <= max_target) 5236 scan_info->pending_count--; 5237 5238 for (i = 0; i <= max_target; i++) { 5239 cam_status status; 5240 if (i == initiator_id) 5241 continue; 5242 5243 status = xpt_create_path(&path, xpt_periph, 5244 request_ccb->ccb_h.path_id, 5245 i, 0); 5246 if (status != CAM_REQ_CMP) { 5247 printf("xpt_scan_bus: xpt_create_path failed" 5248 " with status %#x, bus scan halted\n", 5249 status); 5250 break; 5251 } 5252 work_ccb = xpt_alloc_ccb(); 5253 xpt_setup_ccb(&work_ccb->ccb_h, path, 5254 request_ccb->ccb_h.pinfo.priority); 5255 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5256 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5257 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5258 work_ccb->crcn.flags = request_ccb->crcn.flags; 5259 xpt_action(work_ccb); 5260 } 5261 break; 5262 } 5263 case XPT_SCAN_LUN: 5264 { 5265 xpt_scan_bus_info *scan_info; 5266 path_id_t path_id; 5267 target_id_t target_id; 5268 lun_id_t lun_id; 5269 5270 /* Reuse the same CCB to query if a device was really found */ 5271 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5272 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5273 request_ccb->ccb_h.pinfo.priority); 5274 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5275 5276 path_id = request_ccb->ccb_h.path_id; 5277 target_id = request_ccb->ccb_h.target_id; 5278 lun_id = request_ccb->ccb_h.target_lun; 5279 xpt_action(request_ccb); 5280 5281 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5282 struct cam_ed *device; 5283 struct cam_et *target; 5284 int s, phl; 5285 5286 /* 5287 * If we already probed lun 0 successfully, or 5288 * we have additional configured luns on this 5289 * target that might have "gone away", go onto 5290 * the next lun. 5291 */ 5292 target = request_ccb->ccb_h.path->target; 5293 /* 5294 * We may touch devices that we don't 5295 * hold references too, so ensure they 5296 * don't disappear out from under us. 5297 * The target above is referenced by the 5298 * path in the request ccb. 5299 */ 5300 phl = 0; 5301 s = splcam(); 5302 device = TAILQ_FIRST(&target->ed_entries); 5303 if (device != NULL) { 5304 phl = device->quirk->quirks & CAM_QUIRK_HILUNS; 5305 if (device->lun_id == 0) 5306 device = TAILQ_NEXT(device, links); 5307 } 5308 splx(s); 5309 if ((lun_id != 0) || (device != NULL)) { 5310 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5311 lun_id++; 5312 } 5313 } else { 5314 struct cam_ed *device; 5315 5316 device = request_ccb->ccb_h.path->device; 5317 5318 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5319 /* Try the next lun */ 5320 if (lun_id < (CAM_SCSI2_MAXLUN-1) || 5321 (device->quirk->quirks & CAM_QUIRK_HILUNS)) 5322 lun_id++; 5323 } 5324 } 5325 5326 xpt_free_path(request_ccb->ccb_h.path); 5327 5328 /* Check Bounds */ 5329 if ((lun_id == request_ccb->ccb_h.target_lun) 5330 || lun_id > scan_info->cpi->max_lun) { 5331 /* We're done */ 5332 5333 xpt_free_ccb(request_ccb); 5334 scan_info->pending_count--; 5335 if (scan_info->pending_count == 0) { 5336 xpt_free_ccb((union ccb *)scan_info->cpi); 5337 request_ccb = scan_info->request_ccb; 5338 free(scan_info, M_TEMP); 5339 request_ccb->ccb_h.status = CAM_REQ_CMP; 5340 xpt_done(request_ccb); 5341 } 5342 } else { 5343 /* Try the next device */ 5344 struct cam_path *path; 5345 cam_status status; 5346 5347 path = request_ccb->ccb_h.path; 5348 status = xpt_create_path(&path, xpt_periph, 5349 path_id, target_id, lun_id); 5350 if (status != CAM_REQ_CMP) { 5351 printf("xpt_scan_bus: xpt_create_path failed " 5352 "with status %#x, halting LUN scan\n", 5353 status); 5354 xpt_free_ccb(request_ccb); 5355 scan_info->pending_count--; 5356 if (scan_info->pending_count == 0) { 5357 xpt_free_ccb( 5358 (union ccb *)scan_info->cpi); 5359 request_ccb = scan_info->request_ccb; 5360 free(scan_info, M_TEMP); 5361 request_ccb->ccb_h.status = CAM_REQ_CMP; 5362 xpt_done(request_ccb); 5363 break; 5364 } 5365 } 5366 xpt_setup_ccb(&request_ccb->ccb_h, path, 5367 request_ccb->ccb_h.pinfo.priority); 5368 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5369 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5370 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5371 request_ccb->crcn.flags = 5372 scan_info->request_ccb->crcn.flags; 5373 xpt_action(request_ccb); 5374 } 5375 break; 5376 } 5377 default: 5378 break; 5379 } 5380 } 5381 5382 typedef enum { 5383 PROBE_TUR, 5384 PROBE_INQUIRY, 5385 PROBE_FULL_INQUIRY, 5386 PROBE_MODE_SENSE, 5387 PROBE_SERIAL_NUM, 5388 PROBE_TUR_FOR_NEGOTIATION 5389 } probe_action; 5390 5391 typedef enum { 5392 PROBE_INQUIRY_CKSUM = 0x01, 5393 PROBE_SERIAL_CKSUM = 0x02, 5394 PROBE_NO_ANNOUNCE = 0x04 5395 } probe_flags; 5396 5397 typedef struct { 5398 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5399 probe_action action; 5400 union ccb saved_ccb; 5401 probe_flags flags; 5402 MD5_CTX context; 5403 u_int8_t digest[16]; 5404 } probe_softc; 5405 5406 static void 5407 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5408 cam_flags flags, union ccb *request_ccb) 5409 { 5410 struct ccb_pathinq cpi; 5411 cam_status status; 5412 struct cam_path *new_path; 5413 struct cam_periph *old_periph; 5414 int s; 5415 5416 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5417 ("xpt_scan_lun\n")); 5418 5419 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5420 cpi.ccb_h.func_code = XPT_PATH_INQ; 5421 xpt_action((union ccb *)&cpi); 5422 5423 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5424 if (request_ccb != NULL) { 5425 request_ccb->ccb_h.status = cpi.ccb_h.status; 5426 xpt_done(request_ccb); 5427 } 5428 return; 5429 } 5430 5431 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5432 /* 5433 * Can't scan the bus on an adapter that 5434 * cannot perform the initiator role. 5435 */ 5436 if (request_ccb != NULL) { 5437 request_ccb->ccb_h.status = CAM_REQ_CMP; 5438 xpt_done(request_ccb); 5439 } 5440 return; 5441 } 5442 5443 if (request_ccb == NULL) { 5444 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5445 if (request_ccb == NULL) { 5446 xpt_print_path(path); 5447 printf("xpt_scan_lun: can't allocate CCB, can't " 5448 "continue\n"); 5449 return; 5450 } 5451 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5452 if (new_path == NULL) { 5453 xpt_print_path(path); 5454 printf("xpt_scan_lun: can't allocate path, can't " 5455 "continue\n"); 5456 free(request_ccb, M_TEMP); 5457 return; 5458 } 5459 status = xpt_compile_path(new_path, xpt_periph, 5460 path->bus->path_id, 5461 path->target->target_id, 5462 path->device->lun_id); 5463 5464 if (status != CAM_REQ_CMP) { 5465 xpt_print_path(path); 5466 printf("xpt_scan_lun: can't compile path, can't " 5467 "continue\n"); 5468 free(request_ccb, M_TEMP); 5469 free(new_path, M_TEMP); 5470 return; 5471 } 5472 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5473 request_ccb->ccb_h.cbfcnp = xptscandone; 5474 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5475 request_ccb->crcn.flags = flags; 5476 } 5477 5478 s = splsoftcam(); 5479 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5480 probe_softc *softc; 5481 5482 softc = (probe_softc *)old_periph->softc; 5483 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5484 periph_links.tqe); 5485 } else { 5486 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5487 probestart, "probe", 5488 CAM_PERIPH_BIO, 5489 request_ccb->ccb_h.path, NULL, 0, 5490 request_ccb); 5491 5492 if (status != CAM_REQ_CMP) { 5493 xpt_print_path(path); 5494 printf("xpt_scan_lun: cam_alloc_periph returned an " 5495 "error, can't continue probe\n"); 5496 request_ccb->ccb_h.status = status; 5497 xpt_done(request_ccb); 5498 } 5499 } 5500 splx(s); 5501 } 5502 5503 static void 5504 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5505 { 5506 xpt_release_path(done_ccb->ccb_h.path); 5507 free(done_ccb->ccb_h.path, M_TEMP); 5508 free(done_ccb, M_TEMP); 5509 } 5510 5511 static cam_status 5512 proberegister(struct cam_periph *periph, void *arg) 5513 { 5514 union ccb *request_ccb; /* CCB representing the probe request */ 5515 probe_softc *softc; 5516 5517 request_ccb = (union ccb *)arg; 5518 if (periph == NULL) { 5519 printf("proberegister: periph was NULL!!\n"); 5520 return(CAM_REQ_CMP_ERR); 5521 } 5522 5523 if (request_ccb == NULL) { 5524 printf("proberegister: no probe CCB, " 5525 "can't register device\n"); 5526 return(CAM_REQ_CMP_ERR); 5527 } 5528 5529 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5530 5531 if (softc == NULL) { 5532 printf("proberegister: Unable to probe new device. " 5533 "Unable to allocate softc\n"); 5534 return(CAM_REQ_CMP_ERR); 5535 } 5536 TAILQ_INIT(&softc->request_ccbs); 5537 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5538 periph_links.tqe); 5539 softc->flags = 0; 5540 periph->softc = softc; 5541 cam_periph_acquire(periph); 5542 /* 5543 * Ensure we've waited at least a bus settle 5544 * delay before attempting to probe the device. 5545 * For HBAs that don't do bus resets, this won't make a difference. 5546 */ 5547 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5548 scsi_delay); 5549 probeschedule(periph); 5550 return(CAM_REQ_CMP); 5551 } 5552 5553 static void 5554 probeschedule(struct cam_periph *periph) 5555 { 5556 struct ccb_pathinq cpi; 5557 union ccb *ccb; 5558 probe_softc *softc; 5559 5560 softc = (probe_softc *)periph->softc; 5561 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5562 5563 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5564 cpi.ccb_h.func_code = XPT_PATH_INQ; 5565 xpt_action((union ccb *)&cpi); 5566 5567 /* 5568 * If a device has gone away and another device, or the same one, 5569 * is back in the same place, it should have a unit attention 5570 * condition pending. It will not report the unit attention in 5571 * response to an inquiry, which may leave invalid transfer 5572 * negotiations in effect. The TUR will reveal the unit attention 5573 * condition. Only send the TUR for lun 0, since some devices 5574 * will get confused by commands other than inquiry to non-existent 5575 * luns. If you think a device has gone away start your scan from 5576 * lun 0. This will insure that any bogus transfer settings are 5577 * invalidated. 5578 * 5579 * If we haven't seen the device before and the controller supports 5580 * some kind of transfer negotiation, negotiate with the first 5581 * sent command if no bus reset was performed at startup. This 5582 * ensures that the device is not confused by transfer negotiation 5583 * settings left over by loader or BIOS action. 5584 */ 5585 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5586 && (ccb->ccb_h.target_lun == 0)) { 5587 softc->action = PROBE_TUR; 5588 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5589 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5590 proberequestdefaultnegotiation(periph); 5591 softc->action = PROBE_INQUIRY; 5592 } else { 5593 softc->action = PROBE_INQUIRY; 5594 } 5595 5596 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5597 softc->flags |= PROBE_NO_ANNOUNCE; 5598 else 5599 softc->flags &= ~PROBE_NO_ANNOUNCE; 5600 5601 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5602 } 5603 5604 static void 5605 probestart(struct cam_periph *periph, union ccb *start_ccb) 5606 { 5607 /* Probe the device that our peripheral driver points to */ 5608 struct ccb_scsiio *csio; 5609 probe_softc *softc; 5610 5611 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5612 5613 softc = (probe_softc *)periph->softc; 5614 csio = &start_ccb->csio; 5615 5616 switch (softc->action) { 5617 case PROBE_TUR: 5618 case PROBE_TUR_FOR_NEGOTIATION: 5619 { 5620 scsi_test_unit_ready(csio, 5621 /*retries*/4, 5622 probedone, 5623 MSG_SIMPLE_Q_TAG, 5624 SSD_FULL_SIZE, 5625 /*timeout*/60000); 5626 break; 5627 } 5628 case PROBE_INQUIRY: 5629 case PROBE_FULL_INQUIRY: 5630 { 5631 u_int inquiry_len; 5632 struct scsi_inquiry_data *inq_buf; 5633 5634 inq_buf = &periph->path->device->inq_data; 5635 /* 5636 * If the device is currently configured, we calculate an 5637 * MD5 checksum of the inquiry data, and if the serial number 5638 * length is greater than 0, add the serial number data 5639 * into the checksum as well. Once the inquiry and the 5640 * serial number check finish, we attempt to figure out 5641 * whether we still have the same device. 5642 */ 5643 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5644 5645 MD5Init(&softc->context); 5646 MD5Update(&softc->context, (unsigned char *)inq_buf, 5647 sizeof(struct scsi_inquiry_data)); 5648 softc->flags |= PROBE_INQUIRY_CKSUM; 5649 if (periph->path->device->serial_num_len > 0) { 5650 MD5Update(&softc->context, 5651 periph->path->device->serial_num, 5652 periph->path->device->serial_num_len); 5653 softc->flags |= PROBE_SERIAL_CKSUM; 5654 } 5655 MD5Final(softc->digest, &softc->context); 5656 } 5657 5658 if (softc->action == PROBE_INQUIRY) 5659 inquiry_len = SHORT_INQUIRY_LENGTH; 5660 else 5661 inquiry_len = inq_buf->additional_length + 4; 5662 5663 scsi_inquiry(csio, 5664 /*retries*/4, 5665 probedone, 5666 MSG_SIMPLE_Q_TAG, 5667 (u_int8_t *)inq_buf, 5668 inquiry_len, 5669 /*evpd*/FALSE, 5670 /*page_code*/0, 5671 SSD_MIN_SIZE, 5672 /*timeout*/60 * 1000); 5673 break; 5674 } 5675 case PROBE_MODE_SENSE: 5676 { 5677 void *mode_buf; 5678 int mode_buf_len; 5679 5680 mode_buf_len = sizeof(struct scsi_mode_header_6) 5681 + sizeof(struct scsi_mode_blk_desc) 5682 + sizeof(struct scsi_control_page); 5683 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5684 if (mode_buf != NULL) { 5685 scsi_mode_sense(csio, 5686 /*retries*/4, 5687 probedone, 5688 MSG_SIMPLE_Q_TAG, 5689 /*dbd*/FALSE, 5690 SMS_PAGE_CTRL_CURRENT, 5691 SMS_CONTROL_MODE_PAGE, 5692 mode_buf, 5693 mode_buf_len, 5694 SSD_FULL_SIZE, 5695 /*timeout*/60000); 5696 break; 5697 } 5698 xpt_print_path(periph->path); 5699 printf("Unable to mode sense control page - malloc failure\n"); 5700 softc->action = PROBE_SERIAL_NUM; 5701 } 5702 /* FALLTHROUGH */ 5703 case PROBE_SERIAL_NUM: 5704 { 5705 struct scsi_vpd_unit_serial_number *serial_buf; 5706 struct cam_ed* device; 5707 5708 serial_buf = NULL; 5709 device = periph->path->device; 5710 device->serial_num = NULL; 5711 device->serial_num_len = 0; 5712 5713 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5714 serial_buf = (struct scsi_vpd_unit_serial_number *) 5715 malloc(sizeof(*serial_buf), M_TEMP, 5716 M_NOWAIT | M_ZERO); 5717 5718 if (serial_buf != NULL) { 5719 scsi_inquiry(csio, 5720 /*retries*/4, 5721 probedone, 5722 MSG_SIMPLE_Q_TAG, 5723 (u_int8_t *)serial_buf, 5724 sizeof(*serial_buf), 5725 /*evpd*/TRUE, 5726 SVPD_UNIT_SERIAL_NUMBER, 5727 SSD_MIN_SIZE, 5728 /*timeout*/60 * 1000); 5729 break; 5730 } 5731 /* 5732 * We'll have to do without, let our probedone 5733 * routine finish up for us. 5734 */ 5735 start_ccb->csio.data_ptr = NULL; 5736 probedone(periph, start_ccb); 5737 return; 5738 } 5739 } 5740 xpt_action(start_ccb); 5741 } 5742 5743 static void 5744 proberequestdefaultnegotiation(struct cam_periph *periph) 5745 { 5746 struct ccb_trans_settings cts; 5747 5748 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5749 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5750 #ifdef CAM_NEW_TRAN_CODE 5751 cts.type = CTS_TYPE_USER_SETTINGS; 5752 #else /* CAM_NEW_TRAN_CODE */ 5753 cts.flags = CCB_TRANS_USER_SETTINGS; 5754 #endif /* CAM_NEW_TRAN_CODE */ 5755 xpt_action((union ccb *)&cts); 5756 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5757 #ifdef CAM_NEW_TRAN_CODE 5758 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5759 #else /* CAM_NEW_TRAN_CODE */ 5760 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5761 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5762 #endif /* CAM_NEW_TRAN_CODE */ 5763 xpt_action((union ccb *)&cts); 5764 } 5765 5766 static void 5767 probedone(struct cam_periph *periph, union ccb *done_ccb) 5768 { 5769 probe_softc *softc; 5770 struct cam_path *path; 5771 u_int32_t priority; 5772 5773 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5774 5775 softc = (probe_softc *)periph->softc; 5776 path = done_ccb->ccb_h.path; 5777 priority = done_ccb->ccb_h.pinfo.priority; 5778 5779 switch (softc->action) { 5780 case PROBE_TUR: 5781 { 5782 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5783 5784 if (cam_periph_error(done_ccb, 0, 5785 SF_NO_PRINT, NULL) == ERESTART) 5786 return; 5787 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5788 /* Don't wedge the queue */ 5789 xpt_release_devq(done_ccb->ccb_h.path, 5790 /*count*/1, 5791 /*run_queue*/TRUE); 5792 } 5793 softc->action = PROBE_INQUIRY; 5794 xpt_release_ccb(done_ccb); 5795 xpt_schedule(periph, priority); 5796 return; 5797 } 5798 case PROBE_INQUIRY: 5799 case PROBE_FULL_INQUIRY: 5800 { 5801 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5802 struct scsi_inquiry_data *inq_buf; 5803 u_int8_t periph_qual; 5804 5805 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5806 inq_buf = &path->device->inq_data; 5807 5808 periph_qual = SID_QUAL(inq_buf); 5809 5810 switch(periph_qual) { 5811 case SID_QUAL_LU_CONNECTED: 5812 { 5813 u_int8_t alen; 5814 5815 /* 5816 * We conservatively request only 5817 * SHORT_INQUIRY_LEN bytes of inquiry 5818 * information during our first try 5819 * at sending an INQUIRY. If the device 5820 * has more information to give, 5821 * perform a second request specifying 5822 * the amount of information the device 5823 * is willing to give. 5824 */ 5825 alen = inq_buf->additional_length; 5826 if (softc->action == PROBE_INQUIRY 5827 && alen > (SHORT_INQUIRY_LENGTH - 4)) { 5828 softc->action = PROBE_FULL_INQUIRY; 5829 xpt_release_ccb(done_ccb); 5830 xpt_schedule(periph, priority); 5831 return; 5832 } 5833 5834 xpt_find_quirk(path->device); 5835 5836 #ifdef CAM_NEW_TRAN_CODE 5837 xpt_devise_transport(path); 5838 #endif /* CAM_NEW_TRAN_CODE */ 5839 if ((inq_buf->flags & SID_CmdQue) != 0) 5840 softc->action = PROBE_MODE_SENSE; 5841 else 5842 softc->action = PROBE_SERIAL_NUM; 5843 5844 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5845 5846 xpt_release_ccb(done_ccb); 5847 xpt_schedule(periph, priority); 5848 return; 5849 } 5850 default: 5851 break; 5852 } 5853 } else if (cam_periph_error(done_ccb, 0, 5854 done_ccb->ccb_h.target_lun > 0 5855 ? SF_RETRY_UA|SF_QUIET_IR 5856 : SF_RETRY_UA, 5857 &softc->saved_ccb) == ERESTART) { 5858 return; 5859 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5860 /* Don't wedge the queue */ 5861 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5862 /*run_queue*/TRUE); 5863 } 5864 /* 5865 * If we get to this point, we got an error status back 5866 * from the inquiry and the error status doesn't require 5867 * automatically retrying the command. Therefore, the 5868 * inquiry failed. If we had inquiry information before 5869 * for this device, but this latest inquiry command failed, 5870 * the device has probably gone away. If this device isn't 5871 * already marked unconfigured, notify the peripheral 5872 * drivers that this device is no more. 5873 */ 5874 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5875 /* Send the async notification. */ 5876 xpt_async(AC_LOST_DEVICE, path, NULL); 5877 5878 xpt_release_ccb(done_ccb); 5879 break; 5880 } 5881 case PROBE_MODE_SENSE: 5882 { 5883 struct ccb_scsiio *csio; 5884 struct scsi_mode_header_6 *mode_hdr; 5885 5886 csio = &done_ccb->csio; 5887 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 5888 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5889 struct scsi_control_page *page; 5890 u_int8_t *offset; 5891 5892 offset = ((u_int8_t *)&mode_hdr[1]) 5893 + mode_hdr->blk_desc_len; 5894 page = (struct scsi_control_page *)offset; 5895 path->device->queue_flags = page->queue_flags; 5896 } else if (cam_periph_error(done_ccb, 0, 5897 SF_RETRY_UA|SF_NO_PRINT, 5898 &softc->saved_ccb) == ERESTART) { 5899 return; 5900 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5901 /* Don't wedge the queue */ 5902 xpt_release_devq(done_ccb->ccb_h.path, 5903 /*count*/1, /*run_queue*/TRUE); 5904 } 5905 xpt_release_ccb(done_ccb); 5906 free(mode_hdr, M_TEMP); 5907 softc->action = PROBE_SERIAL_NUM; 5908 xpt_schedule(periph, priority); 5909 return; 5910 } 5911 case PROBE_SERIAL_NUM: 5912 { 5913 struct ccb_scsiio *csio; 5914 struct scsi_vpd_unit_serial_number *serial_buf; 5915 u_int32_t priority; 5916 int changed; 5917 int have_serialnum; 5918 5919 changed = 1; 5920 have_serialnum = 0; 5921 csio = &done_ccb->csio; 5922 priority = done_ccb->ccb_h.pinfo.priority; 5923 serial_buf = 5924 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 5925 5926 /* Clean up from previous instance of this device */ 5927 if (path->device->serial_num != NULL) { 5928 free(path->device->serial_num, M_DEVBUF); 5929 path->device->serial_num = NULL; 5930 path->device->serial_num_len = 0; 5931 } 5932 5933 if (serial_buf == NULL) { 5934 /* 5935 * Don't process the command as it was never sent 5936 */ 5937 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 5938 && (serial_buf->length > 0)) { 5939 5940 have_serialnum = 1; 5941 path->device->serial_num = 5942 (u_int8_t *)malloc((serial_buf->length + 1), 5943 M_DEVBUF, M_NOWAIT); 5944 if (path->device->serial_num != NULL) { 5945 bcopy(serial_buf->serial_num, 5946 path->device->serial_num, 5947 serial_buf->length); 5948 path->device->serial_num_len = 5949 serial_buf->length; 5950 path->device->serial_num[serial_buf->length] 5951 = '\0'; 5952 } 5953 } else if (cam_periph_error(done_ccb, 0, 5954 SF_RETRY_UA|SF_NO_PRINT, 5955 &softc->saved_ccb) == ERESTART) { 5956 return; 5957 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5958 /* Don't wedge the queue */ 5959 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5960 /*run_queue*/TRUE); 5961 } 5962 5963 /* 5964 * Let's see if we have seen this device before. 5965 */ 5966 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 5967 MD5_CTX context; 5968 u_int8_t digest[16]; 5969 5970 MD5Init(&context); 5971 5972 MD5Update(&context, 5973 (unsigned char *)&path->device->inq_data, 5974 sizeof(struct scsi_inquiry_data)); 5975 5976 if (have_serialnum) 5977 MD5Update(&context, serial_buf->serial_num, 5978 serial_buf->length); 5979 5980 MD5Final(digest, &context); 5981 if (bcmp(softc->digest, digest, 16) == 0) 5982 changed = 0; 5983 5984 /* 5985 * XXX Do we need to do a TUR in order to ensure 5986 * that the device really hasn't changed??? 5987 */ 5988 if ((changed != 0) 5989 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 5990 xpt_async(AC_LOST_DEVICE, path, NULL); 5991 } 5992 if (serial_buf != NULL) 5993 free(serial_buf, M_TEMP); 5994 5995 if (changed != 0) { 5996 /* 5997 * Now that we have all the necessary 5998 * information to safely perform transfer 5999 * negotiations... Controllers don't perform 6000 * any negotiation or tagged queuing until 6001 * after the first XPT_SET_TRAN_SETTINGS ccb is 6002 * received. So, on a new device, just retreive 6003 * the user settings, and set them as the current 6004 * settings to set the device up. 6005 */ 6006 proberequestdefaultnegotiation(periph); 6007 xpt_release_ccb(done_ccb); 6008 6009 /* 6010 * Perform a TUR to allow the controller to 6011 * perform any necessary transfer negotiation. 6012 */ 6013 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6014 xpt_schedule(periph, priority); 6015 return; 6016 } 6017 xpt_release_ccb(done_ccb); 6018 break; 6019 } 6020 case PROBE_TUR_FOR_NEGOTIATION: 6021 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6022 /* Don't wedge the queue */ 6023 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6024 /*run_queue*/TRUE); 6025 } 6026 6027 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6028 6029 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6030 /* Inform the XPT that a new device has been found */ 6031 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6032 xpt_action(done_ccb); 6033 6034 xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb); 6035 } 6036 xpt_release_ccb(done_ccb); 6037 break; 6038 } 6039 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6040 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6041 done_ccb->ccb_h.status = CAM_REQ_CMP; 6042 xpt_done(done_ccb); 6043 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6044 cam_periph_invalidate(periph); 6045 cam_periph_release(periph); 6046 } else { 6047 probeschedule(periph); 6048 } 6049 } 6050 6051 static void 6052 probecleanup(struct cam_periph *periph) 6053 { 6054 free(periph->softc, M_TEMP); 6055 } 6056 6057 static void 6058 xpt_find_quirk(struct cam_ed *device) 6059 { 6060 caddr_t match; 6061 6062 match = cam_quirkmatch((caddr_t)&device->inq_data, 6063 (caddr_t)xpt_quirk_table, 6064 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6065 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6066 6067 if (match == NULL) 6068 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6069 6070 device->quirk = (struct xpt_quirk_entry *)match; 6071 } 6072 6073 #ifdef CAM_NEW_TRAN_CODE 6074 6075 static void 6076 xpt_devise_transport(struct cam_path *path) 6077 { 6078 struct ccb_pathinq cpi; 6079 struct ccb_trans_settings cts; 6080 struct scsi_inquiry_data *inq_buf; 6081 6082 /* Get transport information from the SIM */ 6083 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6084 cpi.ccb_h.func_code = XPT_PATH_INQ; 6085 xpt_action((union ccb *)&cpi); 6086 6087 inq_buf = NULL; 6088 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6089 inq_buf = &path->device->inq_data; 6090 path->device->protocol = PROTO_SCSI; 6091 path->device->protocol_version = 6092 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6093 path->device->transport = cpi.transport; 6094 path->device->transport_version = cpi.transport_version; 6095 6096 /* 6097 * Any device not using SPI3 features should 6098 * be considered SPI2 or lower. 6099 */ 6100 if (inq_buf != NULL) { 6101 if (path->device->transport == XPORT_SPI 6102 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6103 && path->device->transport_version > 2) 6104 path->device->transport_version = 2; 6105 } else { 6106 struct cam_ed* otherdev; 6107 6108 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6109 otherdev != NULL; 6110 otherdev = TAILQ_NEXT(otherdev, links)) { 6111 if (otherdev != path->device) 6112 break; 6113 } 6114 6115 if (otherdev != NULL) { 6116 /* 6117 * Initially assume the same versioning as 6118 * prior luns for this target. 6119 */ 6120 path->device->protocol_version = 6121 otherdev->protocol_version; 6122 path->device->transport_version = 6123 otherdev->transport_version; 6124 } else { 6125 /* Until we know better, opt for safty */ 6126 path->device->protocol_version = 2; 6127 if (path->device->transport == XPORT_SPI) 6128 path->device->transport_version = 2; 6129 else 6130 path->device->transport_version = 0; 6131 } 6132 } 6133 6134 /* 6135 * XXX 6136 * For a device compliant with SPC-2 we should be able 6137 * to determine the transport version supported by 6138 * scrutinizing the version descriptors in the 6139 * inquiry buffer. 6140 */ 6141 6142 /* Tell the controller what we think */ 6143 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6144 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6145 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6146 cts.transport = path->device->transport; 6147 cts.transport_version = path->device->transport_version; 6148 cts.protocol = path->device->protocol; 6149 cts.protocol_version = path->device->protocol_version; 6150 cts.proto_specific.valid = 0; 6151 cts.xport_specific.valid = 0; 6152 xpt_action((union ccb *)&cts); 6153 } 6154 6155 static void 6156 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6157 int async_update) 6158 { 6159 struct ccb_pathinq cpi; 6160 struct ccb_trans_settings cur_cts; 6161 struct ccb_trans_settings_scsi *scsi; 6162 struct ccb_trans_settings_scsi *cur_scsi; 6163 struct cam_sim *sim; 6164 struct scsi_inquiry_data *inq_data; 6165 6166 if (device == NULL) { 6167 cts->ccb_h.status = CAM_PATH_INVALID; 6168 xpt_done((union ccb *)cts); 6169 return; 6170 } 6171 6172 if (cts->protocol == PROTO_UNKNOWN 6173 || cts->protocol == PROTO_UNSPECIFIED) { 6174 cts->protocol = device->protocol; 6175 cts->protocol_version = device->protocol_version; 6176 } 6177 6178 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6179 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6180 cts->protocol_version = device->protocol_version; 6181 6182 if (cts->protocol != device->protocol) { 6183 xpt_print_path(cts->ccb_h.path); 6184 printf("Uninitialized Protocol %x:%x?\n", 6185 cts->protocol, device->protocol); 6186 cts->protocol = device->protocol; 6187 } 6188 6189 if (cts->protocol_version > device->protocol_version) { 6190 if (bootverbose) { 6191 xpt_print_path(cts->ccb_h.path); 6192 printf("Down reving Protocol Version from %d to %d?\n", 6193 cts->protocol_version, device->protocol_version); 6194 } 6195 cts->protocol_version = device->protocol_version; 6196 } 6197 6198 if (cts->transport == XPORT_UNKNOWN 6199 || cts->transport == XPORT_UNSPECIFIED) { 6200 cts->transport = device->transport; 6201 cts->transport_version = device->transport_version; 6202 } 6203 6204 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6205 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6206 cts->transport_version = device->transport_version; 6207 6208 if (cts->transport != device->transport) { 6209 xpt_print_path(cts->ccb_h.path); 6210 printf("Uninitialized Transport %x:%x?\n", 6211 cts->transport, device->transport); 6212 cts->transport = device->transport; 6213 } 6214 6215 if (cts->transport_version > device->transport_version) { 6216 if (bootverbose) { 6217 xpt_print_path(cts->ccb_h.path); 6218 printf("Down reving Transport Version from %d to %d?\n", 6219 cts->transport_version, 6220 device->transport_version); 6221 } 6222 cts->transport_version = device->transport_version; 6223 } 6224 6225 sim = cts->ccb_h.path->bus->sim; 6226 6227 /* 6228 * Nothing more of interest to do unless 6229 * this is a device connected via the 6230 * SCSI protocol. 6231 */ 6232 if (cts->protocol != PROTO_SCSI) { 6233 if (async_update == FALSE) 6234 (*(sim->sim_action))(sim, (union ccb *)cts); 6235 return; 6236 } 6237 6238 inq_data = &device->inq_data; 6239 scsi = &cts->proto_specific.scsi; 6240 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6241 cpi.ccb_h.func_code = XPT_PATH_INQ; 6242 xpt_action((union ccb *)&cpi); 6243 6244 /* SCSI specific sanity checking */ 6245 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6246 || (inq_data->flags & SID_CmdQue) == 0 6247 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6248 || (device->quirk->mintags == 0)) { 6249 /* 6250 * Can't tag on hardware that doesn't support tags, 6251 * doesn't have it enabled, or has broken tag support. 6252 */ 6253 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6254 } 6255 6256 if (async_update == FALSE) { 6257 /* 6258 * Perform sanity checking against what the 6259 * controller and device can do. 6260 */ 6261 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6262 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6263 cur_cts.type = cts->type; 6264 xpt_action((union ccb *)&cur_cts); 6265 6266 cur_scsi = &cur_cts.proto_specific.scsi; 6267 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6268 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6269 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6270 } 6271 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6272 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6273 } 6274 6275 /* SPI specific sanity checking */ 6276 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6277 u_int spi3caps; 6278 struct ccb_trans_settings_spi *spi; 6279 struct ccb_trans_settings_spi *cur_spi; 6280 6281 spi = &cts->xport_specific.spi; 6282 6283 cur_spi = &cur_cts.xport_specific.spi; 6284 6285 /* Fill in any gaps in what the user gave us */ 6286 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6287 spi->sync_period = cur_spi->sync_period; 6288 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6289 spi->sync_period = 0; 6290 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6291 spi->sync_offset = cur_spi->sync_offset; 6292 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6293 spi->sync_offset = 0; 6294 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6295 spi->ppr_options = cur_spi->ppr_options; 6296 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6297 spi->ppr_options = 0; 6298 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6299 spi->bus_width = cur_spi->bus_width; 6300 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6301 spi->bus_width = 0; 6302 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6303 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6304 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6305 } 6306 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6307 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6308 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6309 && (inq_data->flags & SID_Sync) == 0 6310 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6311 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6312 || (cur_spi->sync_offset == 0) 6313 || (cur_spi->sync_period == 0)) { 6314 /* Force async */ 6315 spi->sync_period = 0; 6316 spi->sync_offset = 0; 6317 } 6318 6319 switch (spi->bus_width) { 6320 case MSG_EXT_WDTR_BUS_32_BIT: 6321 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6322 || (inq_data->flags & SID_WBus32) != 0 6323 || cts->type == CTS_TYPE_USER_SETTINGS) 6324 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6325 break; 6326 /* Fall Through to 16-bit */ 6327 case MSG_EXT_WDTR_BUS_16_BIT: 6328 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6329 || (inq_data->flags & SID_WBus16) != 0 6330 || cts->type == CTS_TYPE_USER_SETTINGS) 6331 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6332 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6333 break; 6334 } 6335 /* Fall Through to 8-bit */ 6336 default: /* New bus width?? */ 6337 case MSG_EXT_WDTR_BUS_8_BIT: 6338 /* All targets can do this */ 6339 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6340 break; 6341 } 6342 6343 spi3caps = cpi.xport_specific.spi.ppr_options; 6344 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6345 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6346 spi3caps &= inq_data->spi3data; 6347 6348 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6349 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6350 6351 if ((spi3caps & SID_SPI_IUS) == 0) 6352 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6353 6354 if ((spi3caps & SID_SPI_QAS) == 0) 6355 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6356 6357 /* No SPI Transfer settings are allowed unless we are wide */ 6358 if (spi->bus_width == 0) 6359 spi->ppr_options = 0; 6360 6361 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6362 /* 6363 * Can't tag queue without disconnection. 6364 */ 6365 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6366 scsi->valid |= CTS_SCSI_VALID_TQ; 6367 } 6368 6369 /* 6370 * If we are currently performing tagged transactions to 6371 * this device and want to change its negotiation parameters, 6372 * go non-tagged for a bit to give the controller a chance to 6373 * negotiate unhampered by tag messages. 6374 */ 6375 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6376 && (device->inq_flags & SID_CmdQue) != 0 6377 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6378 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6379 CTS_SPI_VALID_SYNC_OFFSET| 6380 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6381 xpt_toggle_tags(cts->ccb_h.path); 6382 } 6383 6384 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6385 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6386 int device_tagenb; 6387 6388 /* 6389 * If we are transitioning from tags to no-tags or 6390 * vice-versa, we need to carefully freeze and restart 6391 * the queue so that we don't overlap tagged and non-tagged 6392 * commands. We also temporarily stop tags if there is 6393 * a change in transfer negotiation settings to allow 6394 * "tag-less" negotiation. 6395 */ 6396 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6397 || (device->inq_flags & SID_CmdQue) != 0) 6398 device_tagenb = TRUE; 6399 else 6400 device_tagenb = FALSE; 6401 6402 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6403 && device_tagenb == FALSE) 6404 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6405 && device_tagenb == TRUE)) { 6406 6407 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6408 /* 6409 * Delay change to use tags until after a 6410 * few commands have gone to this device so 6411 * the controller has time to perform transfer 6412 * negotiations without tagged messages getting 6413 * in the way. 6414 */ 6415 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6416 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6417 } else { 6418 struct ccb_relsim crs; 6419 6420 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6421 device->inq_flags &= ~SID_CmdQue; 6422 xpt_dev_ccbq_resize(cts->ccb_h.path, 6423 sim->max_dev_openings); 6424 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6425 device->tag_delay_count = 0; 6426 6427 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6428 /*priority*/1); 6429 crs.ccb_h.func_code = XPT_REL_SIMQ; 6430 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6431 crs.openings 6432 = crs.release_timeout 6433 = crs.qfrozen_cnt 6434 = 0; 6435 xpt_action((union ccb *)&crs); 6436 } 6437 } 6438 } 6439 if (async_update == FALSE) 6440 (*(sim->sim_action))(sim, (union ccb *)cts); 6441 } 6442 6443 #else /* CAM_NEW_TRAN_CODE */ 6444 6445 static void 6446 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6447 int async_update) 6448 { 6449 struct cam_sim *sim; 6450 int qfrozen; 6451 6452 sim = cts->ccb_h.path->bus->sim; 6453 if (async_update == FALSE) { 6454 struct scsi_inquiry_data *inq_data; 6455 struct ccb_pathinq cpi; 6456 struct ccb_trans_settings cur_cts; 6457 6458 if (device == NULL) { 6459 cts->ccb_h.status = CAM_PATH_INVALID; 6460 xpt_done((union ccb *)cts); 6461 return; 6462 } 6463 6464 /* 6465 * Perform sanity checking against what the 6466 * controller and device can do. 6467 */ 6468 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6469 cpi.ccb_h.func_code = XPT_PATH_INQ; 6470 xpt_action((union ccb *)&cpi); 6471 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6472 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6473 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 6474 xpt_action((union ccb *)&cur_cts); 6475 inq_data = &device->inq_data; 6476 6477 /* Fill in any gaps in what the user gave us */ 6478 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 6479 cts->sync_period = cur_cts.sync_period; 6480 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 6481 cts->sync_offset = cur_cts.sync_offset; 6482 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 6483 cts->bus_width = cur_cts.bus_width; 6484 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 6485 cts->flags &= ~CCB_TRANS_DISC_ENB; 6486 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 6487 } 6488 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 6489 cts->flags &= ~CCB_TRANS_TAG_ENB; 6490 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 6491 } 6492 6493 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6494 && (inq_data->flags & SID_Sync) == 0) 6495 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6496 || (cts->sync_offset == 0) 6497 || (cts->sync_period == 0)) { 6498 /* Force async */ 6499 cts->sync_period = 0; 6500 cts->sync_offset = 0; 6501 } else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6502 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 6503 && cts->sync_period <= 0x9) { 6504 /* 6505 * Don't allow DT transmission rates if the 6506 * device does not support it. 6507 */ 6508 cts->sync_period = 0xa; 6509 } 6510 6511 switch (cts->bus_width) { 6512 case MSG_EXT_WDTR_BUS_32_BIT: 6513 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6514 || (inq_data->flags & SID_WBus32) != 0) 6515 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6516 break; 6517 /* FALLTHROUGH to 16-bit */ 6518 case MSG_EXT_WDTR_BUS_16_BIT: 6519 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6520 || (inq_data->flags & SID_WBus16) != 0) 6521 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6522 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6523 break; 6524 } 6525 /* FALLTHROUGH to 8-bit */ 6526 default: /* New bus width?? */ 6527 case MSG_EXT_WDTR_BUS_8_BIT: 6528 /* All targets can do this */ 6529 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6530 break; 6531 } 6532 6533 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 6534 /* 6535 * Can't tag queue without disconnection. 6536 */ 6537 cts->flags &= ~CCB_TRANS_TAG_ENB; 6538 cts->valid |= CCB_TRANS_TQ_VALID; 6539 } 6540 6541 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6542 || (inq_data->flags & SID_CmdQue) == 0 6543 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6544 || (device->quirk->mintags == 0)) { 6545 /* 6546 * Can't tag on hardware that doesn't support, 6547 * doesn't have it enabled, or has broken tag support. 6548 */ 6549 cts->flags &= ~CCB_TRANS_TAG_ENB; 6550 } 6551 } 6552 6553 qfrozen = FALSE; 6554 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 6555 int device_tagenb; 6556 6557 /* 6558 * If we are transitioning from tags to no-tags or 6559 * vice-versa, we need to carefully freeze and restart 6560 * the queue so that we don't overlap tagged and non-tagged 6561 * commands. We also temporarily stop tags if there is 6562 * a change in transfer negotiation settings to allow 6563 * "tag-less" negotiation. 6564 */ 6565 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6566 || (device->inq_flags & SID_CmdQue) != 0) 6567 device_tagenb = TRUE; 6568 else 6569 device_tagenb = FALSE; 6570 6571 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 6572 && device_tagenb == FALSE) 6573 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 6574 && device_tagenb == TRUE)) { 6575 6576 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 6577 /* 6578 * Delay change to use tags until after a 6579 * few commands have gone to this device so 6580 * the controller has time to perform transfer 6581 * negotiations without tagged messages getting 6582 * in the way. 6583 */ 6584 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6585 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6586 } else { 6587 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6588 qfrozen = TRUE; 6589 device->inq_flags &= ~SID_CmdQue; 6590 xpt_dev_ccbq_resize(cts->ccb_h.path, 6591 sim->max_dev_openings); 6592 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6593 device->tag_delay_count = 0; 6594 } 6595 } 6596 } 6597 6598 if (async_update == FALSE) { 6599 /* 6600 * If we are currently performing tagged transactions to 6601 * this device and want to change its negotiation parameters, 6602 * go non-tagged for a bit to give the controller a chance to 6603 * negotiate unhampered by tag messages. 6604 */ 6605 if ((device->inq_flags & SID_CmdQue) != 0 6606 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 6607 CCB_TRANS_SYNC_OFFSET_VALID| 6608 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 6609 xpt_toggle_tags(cts->ccb_h.path); 6610 6611 (*(sim->sim_action))(sim, (union ccb *)cts); 6612 } 6613 6614 if (qfrozen) { 6615 struct ccb_relsim crs; 6616 6617 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6618 /*priority*/1); 6619 crs.ccb_h.func_code = XPT_REL_SIMQ; 6620 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6621 crs.openings 6622 = crs.release_timeout 6623 = crs.qfrozen_cnt 6624 = 0; 6625 xpt_action((union ccb *)&crs); 6626 } 6627 } 6628 6629 6630 #endif /* CAM_NEW_TRAN_CODE */ 6631 6632 static void 6633 xpt_toggle_tags(struct cam_path *path) 6634 { 6635 struct cam_ed *dev; 6636 6637 /* 6638 * Give controllers a chance to renegotiate 6639 * before starting tag operations. We 6640 * "toggle" tagged queuing off then on 6641 * which causes the tag enable command delay 6642 * counter to come into effect. 6643 */ 6644 dev = path->device; 6645 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6646 || ((dev->inq_flags & SID_CmdQue) != 0 6647 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6648 struct ccb_trans_settings cts; 6649 6650 xpt_setup_ccb(&cts.ccb_h, path, 1); 6651 #ifdef CAM_NEW_TRAN_CODE 6652 cts.protocol = PROTO_SCSI; 6653 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6654 cts.transport = XPORT_UNSPECIFIED; 6655 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6656 cts.proto_specific.scsi.flags = 0; 6657 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6658 #else /* CAM_NEW_TRAN_CODE */ 6659 cts.flags = 0; 6660 cts.valid = CCB_TRANS_TQ_VALID; 6661 #endif /* CAM_NEW_TRAN_CODE */ 6662 xpt_set_transfer_settings(&cts, path->device, 6663 /*async_update*/TRUE); 6664 #ifdef CAM_NEW_TRAN_CODE 6665 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6666 #else /* CAM_NEW_TRAN_CODE */ 6667 cts.flags = CCB_TRANS_TAG_ENB; 6668 #endif /* CAM_NEW_TRAN_CODE */ 6669 xpt_set_transfer_settings(&cts, path->device, 6670 /*async_update*/TRUE); 6671 } 6672 } 6673 6674 static void 6675 xpt_start_tags(struct cam_path *path) 6676 { 6677 struct ccb_relsim crs; 6678 struct cam_ed *device; 6679 struct cam_sim *sim; 6680 int newopenings; 6681 6682 device = path->device; 6683 sim = path->bus->sim; 6684 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6685 xpt_freeze_devq(path, /*count*/1); 6686 device->inq_flags |= SID_CmdQue; 6687 newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings); 6688 xpt_dev_ccbq_resize(path, newopenings); 6689 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6690 crs.ccb_h.func_code = XPT_REL_SIMQ; 6691 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6692 crs.openings 6693 = crs.release_timeout 6694 = crs.qfrozen_cnt 6695 = 0; 6696 xpt_action((union ccb *)&crs); 6697 } 6698 6699 static int busses_to_config; 6700 static int busses_to_reset; 6701 6702 static int 6703 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6704 { 6705 if (bus->path_id != CAM_XPT_PATH_ID) { 6706 struct cam_path path; 6707 struct ccb_pathinq cpi; 6708 int can_negotiate; 6709 6710 busses_to_config++; 6711 xpt_compile_path(&path, NULL, bus->path_id, 6712 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6713 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6714 cpi.ccb_h.func_code = XPT_PATH_INQ; 6715 xpt_action((union ccb *)&cpi); 6716 can_negotiate = cpi.hba_inquiry; 6717 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6718 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6719 && can_negotiate) 6720 busses_to_reset++; 6721 xpt_release_path(&path); 6722 } 6723 6724 return(1); 6725 } 6726 6727 static int 6728 xptconfigfunc(struct cam_eb *bus, void *arg) 6729 { 6730 struct cam_path *path; 6731 union ccb *work_ccb; 6732 6733 if (bus->path_id != CAM_XPT_PATH_ID) { 6734 cam_status status; 6735 int can_negotiate; 6736 6737 work_ccb = xpt_alloc_ccb(); 6738 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6739 CAM_TARGET_WILDCARD, 6740 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6741 printf("xptconfigfunc: xpt_create_path failed with " 6742 "status %#x for bus %d\n", status, bus->path_id); 6743 printf("xptconfigfunc: halting bus configuration\n"); 6744 xpt_free_ccb(work_ccb); 6745 busses_to_config--; 6746 xpt_finishconfig(xpt_periph, NULL); 6747 return(0); 6748 } 6749 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6750 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6751 xpt_action(work_ccb); 6752 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6753 printf("xptconfigfunc: CPI failed on bus %d " 6754 "with status %d\n", bus->path_id, 6755 work_ccb->ccb_h.status); 6756 xpt_finishconfig(xpt_periph, work_ccb); 6757 return(1); 6758 } 6759 6760 can_negotiate = work_ccb->cpi.hba_inquiry; 6761 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6762 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6763 && (can_negotiate != 0)) { 6764 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6765 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6766 work_ccb->ccb_h.cbfcnp = NULL; 6767 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6768 ("Resetting Bus\n")); 6769 xpt_action(work_ccb); 6770 xpt_finishconfig(xpt_periph, work_ccb); 6771 } else { 6772 /* Act as though we performed a successful BUS RESET */ 6773 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6774 xpt_finishconfig(xpt_periph, work_ccb); 6775 } 6776 } 6777 6778 return(1); 6779 } 6780 6781 static void 6782 xpt_config(void *arg) 6783 { 6784 /* 6785 * Now that interrupts are enabled, go find our devices 6786 */ 6787 6788 #ifdef CAMDEBUG 6789 /* Setup debugging flags and path */ 6790 #ifdef CAM_DEBUG_FLAGS 6791 cam_dflags = CAM_DEBUG_FLAGS; 6792 #else /* !CAM_DEBUG_FLAGS */ 6793 cam_dflags = CAM_DEBUG_NONE; 6794 #endif /* CAM_DEBUG_FLAGS */ 6795 #ifdef CAM_DEBUG_BUS 6796 if (cam_dflags != CAM_DEBUG_NONE) { 6797 if (xpt_create_path(&cam_dpath, xpt_periph, 6798 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6799 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6800 printf("xpt_config: xpt_create_path() failed for debug" 6801 " target %d:%d:%d, debugging disabled\n", 6802 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6803 cam_dflags = CAM_DEBUG_NONE; 6804 } 6805 } else 6806 cam_dpath = NULL; 6807 #else /* !CAM_DEBUG_BUS */ 6808 cam_dpath = NULL; 6809 #endif /* CAM_DEBUG_BUS */ 6810 #endif /* CAMDEBUG */ 6811 6812 /* 6813 * Scan all installed busses. 6814 */ 6815 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6816 6817 if (busses_to_config == 0) { 6818 /* Call manually because we don't have any busses */ 6819 xpt_finishconfig(xpt_periph, NULL); 6820 } else { 6821 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6822 printf("Waiting %d seconds for SCSI " 6823 "devices to settle\n", scsi_delay/1000); 6824 } 6825 xpt_for_all_busses(xptconfigfunc, NULL); 6826 } 6827 } 6828 6829 /* 6830 * If the given device only has one peripheral attached to it, and if that 6831 * peripheral is the passthrough driver, announce it. This insures that the 6832 * user sees some sort of announcement for every peripheral in their system. 6833 */ 6834 static int 6835 xptpassannouncefunc(struct cam_ed *device, void *arg) 6836 { 6837 struct cam_periph *periph; 6838 int i; 6839 6840 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6841 periph = SLIST_NEXT(periph, periph_links), i++); 6842 6843 periph = SLIST_FIRST(&device->periphs); 6844 if ((i == 1) 6845 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6846 xpt_announce_periph(periph, NULL); 6847 6848 return(1); 6849 } 6850 6851 static void 6852 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6853 { 6854 struct periph_driver **p_drv; 6855 int i; 6856 6857 if (done_ccb != NULL) { 6858 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6859 ("xpt_finishconfig\n")); 6860 switch(done_ccb->ccb_h.func_code) { 6861 case XPT_RESET_BUS: 6862 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6863 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6864 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6865 xpt_action(done_ccb); 6866 return; 6867 } 6868 /* FALLTHROUGH */ 6869 case XPT_SCAN_BUS: 6870 default: 6871 xpt_free_path(done_ccb->ccb_h.path); 6872 busses_to_config--; 6873 break; 6874 } 6875 } 6876 6877 if (busses_to_config == 0) { 6878 /* Register all the peripheral drivers */ 6879 /* XXX This will have to change when we have loadable modules */ 6880 p_drv = periph_drivers; 6881 for (i = 0; p_drv[i] != NULL; i++) { 6882 (*p_drv[i]->init)(); 6883 } 6884 6885 /* 6886 * Check for devices with no "standard" peripheral driver 6887 * attached. For any devices like that, announce the 6888 * passthrough driver so the user will see something. 6889 */ 6890 xpt_for_all_devices(xptpassannouncefunc, NULL); 6891 6892 /* Release our hook so that the boot can continue. */ 6893 config_intrhook_disestablish(xpt_config_hook); 6894 free(xpt_config_hook, M_TEMP); 6895 xpt_config_hook = NULL; 6896 } 6897 if (done_ccb != NULL) 6898 xpt_free_ccb(done_ccb); 6899 } 6900 6901 static void 6902 xptaction(struct cam_sim *sim, union ccb *work_ccb) 6903 { 6904 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 6905 6906 switch (work_ccb->ccb_h.func_code) { 6907 /* Common cases first */ 6908 case XPT_PATH_INQ: /* Path routing inquiry */ 6909 { 6910 struct ccb_pathinq *cpi; 6911 6912 cpi = &work_ccb->cpi; 6913 cpi->version_num = 1; /* XXX??? */ 6914 cpi->hba_inquiry = 0; 6915 cpi->target_sprt = 0; 6916 cpi->hba_misc = 0; 6917 cpi->hba_eng_cnt = 0; 6918 cpi->max_target = 0; 6919 cpi->max_lun = 0; 6920 cpi->initiator_id = 0; 6921 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 6922 strncpy(cpi->hba_vid, "", HBA_IDLEN); 6923 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 6924 cpi->unit_number = sim->unit_number; 6925 cpi->bus_id = sim->bus_id; 6926 cpi->base_transfer_speed = 0; 6927 #ifdef CAM_NEW_TRAN_CODE 6928 cpi->protocol = PROTO_UNSPECIFIED; 6929 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 6930 cpi->transport = XPORT_UNSPECIFIED; 6931 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 6932 #endif /* CAM_NEW_TRAN_CODE */ 6933 cpi->ccb_h.status = CAM_REQ_CMP; 6934 xpt_done(work_ccb); 6935 break; 6936 } 6937 default: 6938 work_ccb->ccb_h.status = CAM_REQ_INVALID; 6939 xpt_done(work_ccb); 6940 break; 6941 } 6942 } 6943 6944 /* 6945 * The xpt as a "controller" has no interrupt sources, so polling 6946 * is a no-op. 6947 */ 6948 static void 6949 xptpoll(struct cam_sim *sim) 6950 { 6951 } 6952 6953 static void 6954 camisr(void *V_queue) 6955 { 6956 cam_isrq_t *queue = V_queue; 6957 int s; 6958 struct ccb_hdr *ccb_h; 6959 6960 s = splcam(); 6961 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 6962 int runq; 6963 6964 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 6965 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 6966 splx(s); 6967 6968 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 6969 ("camisr\n")); 6970 6971 runq = FALSE; 6972 6973 if (ccb_h->flags & CAM_HIGH_POWER) { 6974 struct highpowerlist *hphead; 6975 union ccb *send_ccb; 6976 6977 hphead = &highpowerq; 6978 6979 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 6980 6981 /* 6982 * Increment the count since this command is done. 6983 */ 6984 num_highpower++; 6985 6986 /* 6987 * Any high powered commands queued up? 6988 */ 6989 if (send_ccb != NULL) { 6990 6991 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 6992 6993 xpt_release_devq(send_ccb->ccb_h.path, 6994 /*count*/1, /*runqueue*/TRUE); 6995 } 6996 } 6997 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 6998 struct cam_ed *dev; 6999 7000 dev = ccb_h->path->device; 7001 7002 s = splcam(); 7003 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7004 7005 ccb_h->path->bus->sim->devq->send_active--; 7006 ccb_h->path->bus->sim->devq->send_openings++; 7007 splx(s); 7008 7009 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7010 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7011 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7012 && (dev->ccbq.dev_active == 0))) { 7013 7014 xpt_release_devq(ccb_h->path, /*count*/1, 7015 /*run_queue*/TRUE); 7016 } 7017 7018 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7019 && (--dev->tag_delay_count == 0)) 7020 xpt_start_tags(ccb_h->path); 7021 7022 if ((dev->ccbq.queue.entries > 0) 7023 && (dev->qfrozen_cnt == 0) 7024 && (device_is_send_queued(dev) == 0)) { 7025 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7026 dev); 7027 } 7028 } 7029 7030 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7031 xpt_release_simq(ccb_h->path->bus->sim, 7032 /*run_queue*/TRUE); 7033 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7034 runq = FALSE; 7035 } 7036 7037 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7038 && (ccb_h->status & CAM_DEV_QFRZN)) { 7039 xpt_release_devq(ccb_h->path, /*count*/1, 7040 /*run_queue*/TRUE); 7041 ccb_h->status &= ~CAM_DEV_QFRZN; 7042 } else if (runq) { 7043 xpt_run_dev_sendq(ccb_h->path->bus); 7044 } 7045 7046 /* Call the peripheral driver's callback */ 7047 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7048 7049 /* Raise IPL for while test */ 7050 s = splcam(); 7051 } 7052 splx(s); 7053 } 7054