1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_sim.h> 56 #include <cam/cam_xpt.h> 57 #include <cam/cam_xpt_sim.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_xpt_internal.h> 60 #include <cam/cam_debug.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 #include <machine/md_var.h> /* geometry translation */ 67 #include <machine/stdarg.h> /* for xpt_print below */ 68 69 #include "opt_cam.h" 70 71 /* 72 * This is the maximum number of high powered commands (e.g. start unit) 73 * that can be outstanding at a particular time. 74 */ 75 #ifndef CAM_MAX_HIGHPOWER 76 #define CAM_MAX_HIGHPOWER 4 77 #endif 78 79 /* Datastructures internal to the xpt layer */ 80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 81 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 82 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 83 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 84 85 /* Object for defering XPT actions to a taskqueue */ 86 struct xpt_task { 87 struct task task; 88 void *data1; 89 uintptr_t data2; 90 }; 91 92 typedef enum { 93 XPT_FLAG_OPEN = 0x01 94 } xpt_flags; 95 96 struct xpt_softc { 97 xpt_flags flags; 98 u_int32_t xpt_generation; 99 100 /* number of high powered commands that can go through right now */ 101 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* Registered busses */ 110 TAILQ_HEAD(,cam_eb) xpt_busses; 111 u_int bus_generation; 112 113 struct intr_config_hook *xpt_config_hook; 114 115 int boot_delay; 116 struct callout boot_callout; 117 118 struct mtx xpt_topo_lock; 119 struct mtx xpt_lock; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 156 &xsoftc.boot_delay, 0, "Bus registration wait time"); 157 158 /* Queues for our software interrupt handler */ 159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 161 static cam_simq_t cam_simq; 162 static struct mtx cam_simq_lock; 163 164 /* Pointers to software interrupt handlers */ 165 static void *cambio_ih; 166 167 struct cam_periph *xpt_periph; 168 169 static periph_init_t xpt_periph_init; 170 171 static struct periph_driver xpt_driver = 172 { 173 xpt_periph_init, "xpt", 174 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 175 CAM_PERIPH_DRV_EARLY 176 }; 177 178 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 179 180 static d_open_t xptopen; 181 static d_close_t xptclose; 182 static d_ioctl_t xptioctl; 183 184 static struct cdevsw xpt_cdevsw = { 185 .d_version = D_VERSION, 186 .d_flags = 0, 187 .d_open = xptopen, 188 .d_close = xptclose, 189 .d_ioctl = xptioctl, 190 .d_name = "xpt", 191 }; 192 193 /* Storage for debugging datastructures */ 194 struct cam_path *cam_dpath; 195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 196 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 197 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 198 &cam_dflags, 0, "Enabled debug flags"); 199 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 200 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 202 &cam_debug_delay, 0, "Delay in us after each debug message"); 203 204 /* Our boot-time initialization hook */ 205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 206 207 static moduledata_t cam_moduledata = { 208 "cam", 209 cam_module_event_handler, 210 NULL 211 }; 212 213 static int xpt_init(void *); 214 215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 216 MODULE_VERSION(cam, 1); 217 218 219 static void xpt_async_bcast(struct async_list *async_head, 220 u_int32_t async_code, 221 struct cam_path *path, 222 void *async_arg); 223 static path_id_t xptnextfreepathid(void); 224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 225 static union ccb *xpt_get_ccb(struct cam_ed *device); 226 static void xpt_run_dev_allocq(struct cam_eb *bus); 227 static void xpt_run_dev_sendq(struct cam_eb *bus); 228 static timeout_t xpt_release_devq_timeout; 229 static void xpt_release_simq_timeout(void *arg) __unused; 230 static void xpt_release_bus(struct cam_eb *bus); 231 static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, 232 u_int count, int run_queue); 233 static struct cam_et* 234 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 235 static void xpt_release_target(struct cam_et *target); 236 static struct cam_eb* 237 xpt_find_bus(path_id_t path_id); 238 static struct cam_et* 239 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 240 static struct cam_ed* 241 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 242 static void xpt_config(void *arg); 243 static xpt_devicefunc_t xptpassannouncefunc; 244 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 245 static void xptpoll(struct cam_sim *sim); 246 static void camisr(void *); 247 static void camisr_runqueue(void *); 248 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 249 u_int num_patterns, struct cam_eb *bus); 250 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 251 u_int num_patterns, 252 struct cam_ed *device); 253 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 254 u_int num_patterns, 255 struct cam_periph *periph); 256 static xpt_busfunc_t xptedtbusfunc; 257 static xpt_targetfunc_t xptedttargetfunc; 258 static xpt_devicefunc_t xptedtdevicefunc; 259 static xpt_periphfunc_t xptedtperiphfunc; 260 static xpt_pdrvfunc_t xptplistpdrvfunc; 261 static xpt_periphfunc_t xptplistperiphfunc; 262 static int xptedtmatch(struct ccb_dev_match *cdm); 263 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 264 static int xptbustraverse(struct cam_eb *start_bus, 265 xpt_busfunc_t *tr_func, void *arg); 266 static int xpttargettraverse(struct cam_eb *bus, 267 struct cam_et *start_target, 268 xpt_targetfunc_t *tr_func, void *arg); 269 static int xptdevicetraverse(struct cam_et *target, 270 struct cam_ed *start_device, 271 xpt_devicefunc_t *tr_func, void *arg); 272 static int xptperiphtraverse(struct cam_ed *device, 273 struct cam_periph *start_periph, 274 xpt_periphfunc_t *tr_func, void *arg); 275 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 276 xpt_pdrvfunc_t *tr_func, void *arg); 277 static int xptpdperiphtraverse(struct periph_driver **pdrv, 278 struct cam_periph *start_periph, 279 xpt_periphfunc_t *tr_func, 280 void *arg); 281 static xpt_busfunc_t xptdefbusfunc; 282 static xpt_targetfunc_t xptdeftargetfunc; 283 static xpt_devicefunc_t xptdefdevicefunc; 284 static xpt_periphfunc_t xptdefperiphfunc; 285 static void xpt_finishconfig_task(void *context, int pending); 286 static void xpt_dev_async_default(u_int32_t async_code, 287 struct cam_eb *bus, 288 struct cam_et *target, 289 struct cam_ed *device, 290 void *async_arg); 291 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 292 struct cam_et *target, 293 lun_id_t lun_id); 294 static xpt_devicefunc_t xptsetasyncfunc; 295 static xpt_busfunc_t xptsetasyncbusfunc; 296 static cam_status xptregister(struct cam_periph *periph, 297 void *arg); 298 static __inline int periph_is_queued(struct cam_periph *periph); 299 static __inline int device_is_alloc_queued(struct cam_ed *device); 300 static __inline int device_is_send_queued(struct cam_ed *device); 301 302 static __inline int 303 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 304 { 305 int retval; 306 307 if ((dev->drvq.entries > 0) && 308 (dev->ccbq.devq_openings > 0) && 309 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 310 CAMQ_GET_PRIO(&dev->drvq))) == 0)) { 311 /* 312 * The priority of a device waiting for CCB resources 313 * is that of the highest priority peripheral driver 314 * enqueued. 315 */ 316 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 317 &dev->alloc_ccb_entry.pinfo, 318 CAMQ_GET_PRIO(&dev->drvq)); 319 } else { 320 retval = 0; 321 } 322 323 return (retval); 324 } 325 326 static __inline int 327 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 328 { 329 int retval; 330 331 if ((dev->ccbq.queue.entries > 0) && 332 (dev->ccbq.dev_openings > 0) && 333 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) { 334 /* 335 * The priority of a device waiting for controller 336 * resources is that of the highest priority CCB 337 * enqueued. 338 */ 339 retval = 340 xpt_schedule_dev(&bus->sim->devq->send_queue, 341 &dev->send_ccb_entry.pinfo, 342 CAMQ_GET_PRIO(&dev->ccbq.queue)); 343 } else { 344 retval = 0; 345 } 346 return (retval); 347 } 348 349 static __inline int 350 periph_is_queued(struct cam_periph *periph) 351 { 352 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 353 } 354 355 static __inline int 356 device_is_alloc_queued(struct cam_ed *device) 357 { 358 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 359 } 360 361 static __inline int 362 device_is_send_queued(struct cam_ed *device) 363 { 364 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 365 } 366 367 static void 368 xpt_periph_init() 369 { 370 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 371 } 372 373 static void 374 xptdone(struct cam_periph *periph, union ccb *done_ccb) 375 { 376 /* Caller will release the CCB */ 377 wakeup(&done_ccb->ccb_h.cbfcnp); 378 } 379 380 static int 381 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 382 { 383 384 /* 385 * Only allow read-write access. 386 */ 387 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 388 return(EPERM); 389 390 /* 391 * We don't allow nonblocking access. 392 */ 393 if ((flags & O_NONBLOCK) != 0) { 394 printf("%s: can't do nonblocking access\n", devtoname(dev)); 395 return(ENODEV); 396 } 397 398 /* Mark ourselves open */ 399 mtx_lock(&xsoftc.xpt_lock); 400 xsoftc.flags |= XPT_FLAG_OPEN; 401 mtx_unlock(&xsoftc.xpt_lock); 402 403 return(0); 404 } 405 406 static int 407 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 408 { 409 410 /* Mark ourselves closed */ 411 mtx_lock(&xsoftc.xpt_lock); 412 xsoftc.flags &= ~XPT_FLAG_OPEN; 413 mtx_unlock(&xsoftc.xpt_lock); 414 415 return(0); 416 } 417 418 /* 419 * Don't automatically grab the xpt softc lock here even though this is going 420 * through the xpt device. The xpt device is really just a back door for 421 * accessing other devices and SIMs, so the right thing to do is to grab 422 * the appropriate SIM lock once the bus/SIM is located. 423 */ 424 static int 425 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 426 { 427 int error; 428 429 error = 0; 430 431 switch(cmd) { 432 /* 433 * For the transport layer CAMIOCOMMAND ioctl, we really only want 434 * to accept CCB types that don't quite make sense to send through a 435 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 436 * in the CAM spec. 437 */ 438 case CAMIOCOMMAND: { 439 union ccb *ccb; 440 union ccb *inccb; 441 struct cam_eb *bus; 442 443 inccb = (union ccb *)addr; 444 445 bus = xpt_find_bus(inccb->ccb_h.path_id); 446 if (bus == NULL) 447 return (EINVAL); 448 449 switch (inccb->ccb_h.func_code) { 450 case XPT_SCAN_BUS: 451 case XPT_RESET_BUS: 452 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 453 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 454 xpt_release_bus(bus); 455 return (EINVAL); 456 } 457 break; 458 case XPT_SCAN_TGT: 459 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 461 xpt_release_bus(bus); 462 return (EINVAL); 463 } 464 break; 465 default: 466 break; 467 } 468 469 switch(inccb->ccb_h.func_code) { 470 case XPT_SCAN_BUS: 471 case XPT_RESET_BUS: 472 case XPT_PATH_INQ: 473 case XPT_ENG_INQ: 474 case XPT_SCAN_LUN: 475 case XPT_SCAN_TGT: 476 477 ccb = xpt_alloc_ccb(); 478 479 CAM_SIM_LOCK(bus->sim); 480 481 /* 482 * Create a path using the bus, target, and lun the 483 * user passed in. 484 */ 485 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 486 inccb->ccb_h.path_id, 487 inccb->ccb_h.target_id, 488 inccb->ccb_h.target_lun) != 489 CAM_REQ_CMP){ 490 error = EINVAL; 491 CAM_SIM_UNLOCK(bus->sim); 492 xpt_free_ccb(ccb); 493 break; 494 } 495 /* Ensure all of our fields are correct */ 496 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 497 inccb->ccb_h.pinfo.priority); 498 xpt_merge_ccb(ccb, inccb); 499 ccb->ccb_h.cbfcnp = xptdone; 500 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 501 bcopy(ccb, inccb, sizeof(union ccb)); 502 xpt_free_path(ccb->ccb_h.path); 503 xpt_free_ccb(ccb); 504 CAM_SIM_UNLOCK(bus->sim); 505 break; 506 507 case XPT_DEBUG: { 508 union ccb ccb; 509 510 /* 511 * This is an immediate CCB, so it's okay to 512 * allocate it on the stack. 513 */ 514 515 CAM_SIM_LOCK(bus->sim); 516 517 /* 518 * Create a path using the bus, target, and lun the 519 * user passed in. 520 */ 521 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 522 inccb->ccb_h.path_id, 523 inccb->ccb_h.target_id, 524 inccb->ccb_h.target_lun) != 525 CAM_REQ_CMP){ 526 error = EINVAL; 527 CAM_SIM_UNLOCK(bus->sim); 528 break; 529 } 530 /* Ensure all of our fields are correct */ 531 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 532 inccb->ccb_h.pinfo.priority); 533 xpt_merge_ccb(&ccb, inccb); 534 ccb.ccb_h.cbfcnp = xptdone; 535 xpt_action(&ccb); 536 bcopy(&ccb, inccb, sizeof(union ccb)); 537 xpt_free_path(ccb.ccb_h.path); 538 CAM_SIM_UNLOCK(bus->sim); 539 break; 540 541 } 542 case XPT_DEV_MATCH: { 543 struct cam_periph_map_info mapinfo; 544 struct cam_path *old_path; 545 546 /* 547 * We can't deal with physical addresses for this 548 * type of transaction. 549 */ 550 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 551 CAM_DATA_VADDR) { 552 error = EINVAL; 553 break; 554 } 555 556 /* 557 * Save this in case the caller had it set to 558 * something in particular. 559 */ 560 old_path = inccb->ccb_h.path; 561 562 /* 563 * We really don't need a path for the matching 564 * code. The path is needed because of the 565 * debugging statements in xpt_action(). They 566 * assume that the CCB has a valid path. 567 */ 568 inccb->ccb_h.path = xpt_periph->path; 569 570 bzero(&mapinfo, sizeof(mapinfo)); 571 572 /* 573 * Map the pattern and match buffers into kernel 574 * virtual address space. 575 */ 576 error = cam_periph_mapmem(inccb, &mapinfo); 577 578 if (error) { 579 inccb->ccb_h.path = old_path; 580 break; 581 } 582 583 /* 584 * This is an immediate CCB, we can send it on directly. 585 */ 586 CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path)); 587 xpt_action(inccb); 588 CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path)); 589 590 /* 591 * Map the buffers back into user space. 592 */ 593 cam_periph_unmapmem(inccb, &mapinfo); 594 595 inccb->ccb_h.path = old_path; 596 597 error = 0; 598 break; 599 } 600 default: 601 error = ENOTSUP; 602 break; 603 } 604 xpt_release_bus(bus); 605 break; 606 } 607 /* 608 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 609 * with the periphal driver name and unit name filled in. The other 610 * fields don't really matter as input. The passthrough driver name 611 * ("pass"), and unit number are passed back in the ccb. The current 612 * device generation number, and the index into the device peripheral 613 * driver list, and the status are also passed back. Note that 614 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 615 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 616 * (or rather should be) impossible for the device peripheral driver 617 * list to change since we look at the whole thing in one pass, and 618 * we do it with lock protection. 619 * 620 */ 621 case CAMGETPASSTHRU: { 622 union ccb *ccb; 623 struct cam_periph *periph; 624 struct periph_driver **p_drv; 625 char *name; 626 u_int unit; 627 u_int cur_generation; 628 int base_periph_found; 629 int splbreaknum; 630 631 ccb = (union ccb *)addr; 632 unit = ccb->cgdl.unit_number; 633 name = ccb->cgdl.periph_name; 634 /* 635 * Every 100 devices, we want to drop our lock protection to 636 * give the software interrupt handler a chance to run. 637 * Most systems won't run into this check, but this should 638 * avoid starvation in the software interrupt handler in 639 * large systems. 640 */ 641 splbreaknum = 100; 642 643 ccb = (union ccb *)addr; 644 645 base_periph_found = 0; 646 647 /* 648 * Sanity check -- make sure we don't get a null peripheral 649 * driver name. 650 */ 651 if (*ccb->cgdl.periph_name == '\0') { 652 error = EINVAL; 653 break; 654 } 655 656 /* Keep the list from changing while we traverse it */ 657 xpt_lock_buses(); 658 ptstartover: 659 cur_generation = xsoftc.xpt_generation; 660 661 /* first find our driver in the list of drivers */ 662 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 663 if (strcmp((*p_drv)->driver_name, name) == 0) 664 break; 665 666 if (*p_drv == NULL) { 667 xpt_unlock_buses(); 668 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 669 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 670 *ccb->cgdl.periph_name = '\0'; 671 ccb->cgdl.unit_number = 0; 672 error = ENOENT; 673 break; 674 } 675 676 /* 677 * Run through every peripheral instance of this driver 678 * and check to see whether it matches the unit passed 679 * in by the user. If it does, get out of the loops and 680 * find the passthrough driver associated with that 681 * peripheral driver. 682 */ 683 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 684 periph = TAILQ_NEXT(periph, unit_links)) { 685 686 if (periph->unit_number == unit) { 687 break; 688 } else if (--splbreaknum == 0) { 689 xpt_unlock_buses(); 690 xpt_lock_buses(); 691 splbreaknum = 100; 692 if (cur_generation != xsoftc.xpt_generation) 693 goto ptstartover; 694 } 695 } 696 /* 697 * If we found the peripheral driver that the user passed 698 * in, go through all of the peripheral drivers for that 699 * particular device and look for a passthrough driver. 700 */ 701 if (periph != NULL) { 702 struct cam_ed *device; 703 int i; 704 705 base_periph_found = 1; 706 device = periph->path->device; 707 for (i = 0, periph = SLIST_FIRST(&device->periphs); 708 periph != NULL; 709 periph = SLIST_NEXT(periph, periph_links), i++) { 710 /* 711 * Check to see whether we have a 712 * passthrough device or not. 713 */ 714 if (strcmp(periph->periph_name, "pass") == 0) { 715 /* 716 * Fill in the getdevlist fields. 717 */ 718 strcpy(ccb->cgdl.periph_name, 719 periph->periph_name); 720 ccb->cgdl.unit_number = 721 periph->unit_number; 722 if (SLIST_NEXT(periph, periph_links)) 723 ccb->cgdl.status = 724 CAM_GDEVLIST_MORE_DEVS; 725 else 726 ccb->cgdl.status = 727 CAM_GDEVLIST_LAST_DEVICE; 728 ccb->cgdl.generation = 729 device->generation; 730 ccb->cgdl.index = i; 731 /* 732 * Fill in some CCB header fields 733 * that the user may want. 734 */ 735 ccb->ccb_h.path_id = 736 periph->path->bus->path_id; 737 ccb->ccb_h.target_id = 738 periph->path->target->target_id; 739 ccb->ccb_h.target_lun = 740 periph->path->device->lun_id; 741 ccb->ccb_h.status = CAM_REQ_CMP; 742 break; 743 } 744 } 745 } 746 747 /* 748 * If the periph is null here, one of two things has 749 * happened. The first possibility is that we couldn't 750 * find the unit number of the particular peripheral driver 751 * that the user is asking about. e.g. the user asks for 752 * the passthrough driver for "da11". We find the list of 753 * "da" peripherals all right, but there is no unit 11. 754 * The other possibility is that we went through the list 755 * of peripheral drivers attached to the device structure, 756 * but didn't find one with the name "pass". Either way, 757 * we return ENOENT, since we couldn't find something. 758 */ 759 if (periph == NULL) { 760 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 761 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 762 *ccb->cgdl.periph_name = '\0'; 763 ccb->cgdl.unit_number = 0; 764 error = ENOENT; 765 /* 766 * It is unfortunate that this is even necessary, 767 * but there are many, many clueless users out there. 768 * If this is true, the user is looking for the 769 * passthrough driver, but doesn't have one in his 770 * kernel. 771 */ 772 if (base_periph_found == 1) { 773 printf("xptioctl: pass driver is not in the " 774 "kernel\n"); 775 printf("xptioctl: put \"device pass\" in " 776 "your kernel config file\n"); 777 } 778 } 779 xpt_unlock_buses(); 780 break; 781 } 782 default: 783 error = ENOTTY; 784 break; 785 } 786 787 return(error); 788 } 789 790 static int 791 cam_module_event_handler(module_t mod, int what, void *arg) 792 { 793 int error; 794 795 switch (what) { 796 case MOD_LOAD: 797 if ((error = xpt_init(NULL)) != 0) 798 return (error); 799 break; 800 case MOD_UNLOAD: 801 return EBUSY; 802 default: 803 return EOPNOTSUPP; 804 } 805 806 return 0; 807 } 808 809 static void 810 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 811 { 812 813 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 814 xpt_free_path(done_ccb->ccb_h.path); 815 xpt_free_ccb(done_ccb); 816 } else { 817 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 818 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 819 } 820 xpt_release_boot(); 821 } 822 823 /* thread to handle bus rescans */ 824 static void 825 xpt_scanner_thread(void *dummy) 826 { 827 union ccb *ccb; 828 struct cam_sim *sim; 829 830 xpt_lock_buses(); 831 for (;;) { 832 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 833 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 834 "ccb_scanq", 0); 835 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 836 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 837 xpt_unlock_buses(); 838 839 sim = ccb->ccb_h.path->bus->sim; 840 CAM_SIM_LOCK(sim); 841 xpt_action(ccb); 842 CAM_SIM_UNLOCK(sim); 843 844 xpt_lock_buses(); 845 } 846 } 847 } 848 849 void 850 xpt_rescan(union ccb *ccb) 851 { 852 struct ccb_hdr *hdr; 853 854 /* Prepare request */ 855 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 856 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 857 ccb->ccb_h.func_code = XPT_SCAN_BUS; 858 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 859 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 860 ccb->ccb_h.func_code = XPT_SCAN_TGT; 861 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 862 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 863 ccb->ccb_h.func_code = XPT_SCAN_LUN; 864 else { 865 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 866 xpt_free_path(ccb->ccb_h.path); 867 xpt_free_ccb(ccb); 868 return; 869 } 870 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 871 ccb->ccb_h.cbfcnp = xpt_rescan_done; 872 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 873 /* Don't make duplicate entries for the same paths. */ 874 xpt_lock_buses(); 875 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 876 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 877 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 878 wakeup(&xsoftc.ccb_scanq); 879 xpt_unlock_buses(); 880 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 881 xpt_free_path(ccb->ccb_h.path); 882 xpt_free_ccb(ccb); 883 return; 884 } 885 } 886 } 887 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 888 xsoftc.buses_to_config++; 889 wakeup(&xsoftc.ccb_scanq); 890 xpt_unlock_buses(); 891 } 892 893 /* Functions accessed by the peripheral drivers */ 894 static int 895 xpt_init(void *dummy) 896 { 897 struct cam_sim *xpt_sim; 898 struct cam_path *path; 899 struct cam_devq *devq; 900 cam_status status; 901 902 TAILQ_INIT(&xsoftc.xpt_busses); 903 TAILQ_INIT(&cam_simq); 904 TAILQ_INIT(&xsoftc.ccb_scanq); 905 STAILQ_INIT(&xsoftc.highpowerq); 906 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 907 908 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 909 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 910 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 911 912 /* 913 * The xpt layer is, itself, the equivelent of a SIM. 914 * Allow 16 ccbs in the ccb pool for it. This should 915 * give decent parallelism when we probe busses and 916 * perform other XPT functions. 917 */ 918 devq = cam_simq_alloc(16); 919 xpt_sim = cam_sim_alloc(xptaction, 920 xptpoll, 921 "xpt", 922 /*softc*/NULL, 923 /*unit*/0, 924 /*mtx*/&xsoftc.xpt_lock, 925 /*max_dev_transactions*/0, 926 /*max_tagged_dev_transactions*/0, 927 devq); 928 if (xpt_sim == NULL) 929 return (ENOMEM); 930 931 mtx_lock(&xsoftc.xpt_lock); 932 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 933 mtx_unlock(&xsoftc.xpt_lock); 934 printf("xpt_init: xpt_bus_register failed with status %#x," 935 " failing attach\n", status); 936 return (EINVAL); 937 } 938 939 /* 940 * Looking at the XPT from the SIM layer, the XPT is 941 * the equivelent of a peripheral driver. Allocate 942 * a peripheral driver entry for us. 943 */ 944 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 945 CAM_TARGET_WILDCARD, 946 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 947 mtx_unlock(&xsoftc.xpt_lock); 948 printf("xpt_init: xpt_create_path failed with status %#x," 949 " failing attach\n", status); 950 return (EINVAL); 951 } 952 953 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 954 path, NULL, 0, xpt_sim); 955 xpt_free_path(path); 956 mtx_unlock(&xsoftc.xpt_lock); 957 /* Install our software interrupt handlers */ 958 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 959 /* 960 * Register a callback for when interrupts are enabled. 961 */ 962 xsoftc.xpt_config_hook = 963 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 964 M_CAMXPT, M_NOWAIT | M_ZERO); 965 if (xsoftc.xpt_config_hook == NULL) { 966 printf("xpt_init: Cannot malloc config hook " 967 "- failing attach\n"); 968 return (ENOMEM); 969 } 970 xsoftc.xpt_config_hook->ich_func = xpt_config; 971 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 972 free (xsoftc.xpt_config_hook, M_CAMXPT); 973 printf("xpt_init: config_intrhook_establish failed " 974 "- failing attach\n"); 975 } 976 977 return (0); 978 } 979 980 static cam_status 981 xptregister(struct cam_periph *periph, void *arg) 982 { 983 struct cam_sim *xpt_sim; 984 985 if (periph == NULL) { 986 printf("xptregister: periph was NULL!!\n"); 987 return(CAM_REQ_CMP_ERR); 988 } 989 990 xpt_sim = (struct cam_sim *)arg; 991 xpt_sim->softc = periph; 992 xpt_periph = periph; 993 periph->softc = NULL; 994 995 return(CAM_REQ_CMP); 996 } 997 998 int32_t 999 xpt_add_periph(struct cam_periph *periph) 1000 { 1001 struct cam_ed *device; 1002 int32_t status; 1003 struct periph_list *periph_head; 1004 1005 mtx_assert(periph->sim->mtx, MA_OWNED); 1006 1007 device = periph->path->device; 1008 1009 periph_head = &device->periphs; 1010 1011 status = CAM_REQ_CMP; 1012 1013 if (device != NULL) { 1014 /* 1015 * Make room for this peripheral 1016 * so it will fit in the queue 1017 * when it's scheduled to run 1018 */ 1019 status = camq_resize(&device->drvq, 1020 device->drvq.array_size + 1); 1021 1022 device->generation++; 1023 1024 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1025 } 1026 1027 xpt_lock_buses(); 1028 xsoftc.xpt_generation++; 1029 xpt_unlock_buses(); 1030 1031 return (status); 1032 } 1033 1034 void 1035 xpt_remove_periph(struct cam_periph *periph, int topology_lock_held) 1036 { 1037 struct cam_ed *device; 1038 1039 mtx_assert(periph->sim->mtx, MA_OWNED); 1040 1041 device = periph->path->device; 1042 1043 if (device != NULL) { 1044 struct periph_list *periph_head; 1045 1046 periph_head = &device->periphs; 1047 1048 /* Release the slot for this peripheral */ 1049 camq_resize(&device->drvq, device->drvq.array_size - 1); 1050 1051 device->generation++; 1052 1053 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1054 } 1055 1056 if (topology_lock_held == 0) 1057 xpt_lock_buses(); 1058 1059 xsoftc.xpt_generation++; 1060 1061 if (topology_lock_held == 0) 1062 xpt_unlock_buses(); 1063 } 1064 1065 1066 void 1067 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1068 { 1069 struct cam_path *path = periph->path; 1070 1071 mtx_assert(periph->sim->mtx, MA_OWNED); 1072 1073 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1074 periph->periph_name, periph->unit_number, 1075 path->bus->sim->sim_name, 1076 path->bus->sim->unit_number, 1077 path->bus->sim->bus_id, 1078 path->bus->path_id, 1079 path->target->target_id, 1080 path->device->lun_id); 1081 printf("%s%d: ", periph->periph_name, periph->unit_number); 1082 if (path->device->protocol == PROTO_SCSI) 1083 scsi_print_inquiry(&path->device->inq_data); 1084 else if (path->device->protocol == PROTO_ATA || 1085 path->device->protocol == PROTO_SATAPM) 1086 ata_print_ident(&path->device->ident_data); 1087 else if (path->device->protocol == PROTO_SEMB) 1088 semb_print_ident( 1089 (struct sep_identify_data *)&path->device->ident_data); 1090 else 1091 printf("Unknown protocol device\n"); 1092 if (bootverbose && path->device->serial_num_len > 0) { 1093 /* Don't wrap the screen - print only the first 60 chars */ 1094 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1095 periph->unit_number, path->device->serial_num); 1096 } 1097 /* Announce transport details. */ 1098 (*(path->bus->xport->announce))(periph); 1099 /* Announce command queueing. */ 1100 if (path->device->inq_flags & SID_CmdQue 1101 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1102 printf("%s%d: Command Queueing enabled\n", 1103 periph->periph_name, periph->unit_number); 1104 } 1105 /* Announce caller's details if they've passed in. */ 1106 if (announce_string != NULL) 1107 printf("%s%d: %s\n", periph->periph_name, 1108 periph->unit_number, announce_string); 1109 } 1110 1111 int 1112 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1113 { 1114 int ret = -1; 1115 struct ccb_dev_advinfo cdai; 1116 1117 mtx_assert(path->bus->sim->mtx, MA_OWNED); 1118 1119 memset(&cdai, 0, sizeof(cdai)); 1120 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1121 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1122 cdai.bufsiz = len; 1123 1124 if (!strcmp(attr, "GEOM::ident")) 1125 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1126 else if (!strcmp(attr, "GEOM::physpath")) 1127 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1128 else 1129 goto out; 1130 1131 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1132 if (cdai.buf == NULL) { 1133 ret = ENOMEM; 1134 goto out; 1135 } 1136 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1137 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1138 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1139 if (cdai.provsiz == 0) 1140 goto out; 1141 ret = 0; 1142 if (strlcpy(buf, cdai.buf, len) >= len) 1143 ret = EFAULT; 1144 1145 out: 1146 if (cdai.buf != NULL) 1147 free(cdai.buf, M_CAMXPT); 1148 return ret; 1149 } 1150 1151 static dev_match_ret 1152 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1153 struct cam_eb *bus) 1154 { 1155 dev_match_ret retval; 1156 int i; 1157 1158 retval = DM_RET_NONE; 1159 1160 /* 1161 * If we aren't given something to match against, that's an error. 1162 */ 1163 if (bus == NULL) 1164 return(DM_RET_ERROR); 1165 1166 /* 1167 * If there are no match entries, then this bus matches no 1168 * matter what. 1169 */ 1170 if ((patterns == NULL) || (num_patterns == 0)) 1171 return(DM_RET_DESCEND | DM_RET_COPY); 1172 1173 for (i = 0; i < num_patterns; i++) { 1174 struct bus_match_pattern *cur_pattern; 1175 1176 /* 1177 * If the pattern in question isn't for a bus node, we 1178 * aren't interested. However, we do indicate to the 1179 * calling routine that we should continue descending the 1180 * tree, since the user wants to match against lower-level 1181 * EDT elements. 1182 */ 1183 if (patterns[i].type != DEV_MATCH_BUS) { 1184 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1185 retval |= DM_RET_DESCEND; 1186 continue; 1187 } 1188 1189 cur_pattern = &patterns[i].pattern.bus_pattern; 1190 1191 /* 1192 * If they want to match any bus node, we give them any 1193 * device node. 1194 */ 1195 if (cur_pattern->flags == BUS_MATCH_ANY) { 1196 /* set the copy flag */ 1197 retval |= DM_RET_COPY; 1198 1199 /* 1200 * If we've already decided on an action, go ahead 1201 * and return. 1202 */ 1203 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1204 return(retval); 1205 } 1206 1207 /* 1208 * Not sure why someone would do this... 1209 */ 1210 if (cur_pattern->flags == BUS_MATCH_NONE) 1211 continue; 1212 1213 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1214 && (cur_pattern->path_id != bus->path_id)) 1215 continue; 1216 1217 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1218 && (cur_pattern->bus_id != bus->sim->bus_id)) 1219 continue; 1220 1221 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1222 && (cur_pattern->unit_number != bus->sim->unit_number)) 1223 continue; 1224 1225 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1226 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1227 DEV_IDLEN) != 0)) 1228 continue; 1229 1230 /* 1231 * If we get to this point, the user definitely wants 1232 * information on this bus. So tell the caller to copy the 1233 * data out. 1234 */ 1235 retval |= DM_RET_COPY; 1236 1237 /* 1238 * If the return action has been set to descend, then we 1239 * know that we've already seen a non-bus matching 1240 * expression, therefore we need to further descend the tree. 1241 * This won't change by continuing around the loop, so we 1242 * go ahead and return. If we haven't seen a non-bus 1243 * matching expression, we keep going around the loop until 1244 * we exhaust the matching expressions. We'll set the stop 1245 * flag once we fall out of the loop. 1246 */ 1247 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1248 return(retval); 1249 } 1250 1251 /* 1252 * If the return action hasn't been set to descend yet, that means 1253 * we haven't seen anything other than bus matching patterns. So 1254 * tell the caller to stop descending the tree -- the user doesn't 1255 * want to match against lower level tree elements. 1256 */ 1257 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1258 retval |= DM_RET_STOP; 1259 1260 return(retval); 1261 } 1262 1263 static dev_match_ret 1264 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1265 struct cam_ed *device) 1266 { 1267 dev_match_ret retval; 1268 int i; 1269 1270 retval = DM_RET_NONE; 1271 1272 /* 1273 * If we aren't given something to match against, that's an error. 1274 */ 1275 if (device == NULL) 1276 return(DM_RET_ERROR); 1277 1278 /* 1279 * If there are no match entries, then this device matches no 1280 * matter what. 1281 */ 1282 if ((patterns == NULL) || (num_patterns == 0)) 1283 return(DM_RET_DESCEND | DM_RET_COPY); 1284 1285 for (i = 0; i < num_patterns; i++) { 1286 struct device_match_pattern *cur_pattern; 1287 struct scsi_vpd_device_id *device_id_page; 1288 1289 /* 1290 * If the pattern in question isn't for a device node, we 1291 * aren't interested. 1292 */ 1293 if (patterns[i].type != DEV_MATCH_DEVICE) { 1294 if ((patterns[i].type == DEV_MATCH_PERIPH) 1295 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1296 retval |= DM_RET_DESCEND; 1297 continue; 1298 } 1299 1300 cur_pattern = &patterns[i].pattern.device_pattern; 1301 1302 /* Error out if mutually exclusive options are specified. */ 1303 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1304 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1305 return(DM_RET_ERROR); 1306 1307 /* 1308 * If they want to match any device node, we give them any 1309 * device node. 1310 */ 1311 if (cur_pattern->flags == DEV_MATCH_ANY) 1312 goto copy_dev_node; 1313 1314 /* 1315 * Not sure why someone would do this... 1316 */ 1317 if (cur_pattern->flags == DEV_MATCH_NONE) 1318 continue; 1319 1320 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1321 && (cur_pattern->path_id != device->target->bus->path_id)) 1322 continue; 1323 1324 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1325 && (cur_pattern->target_id != device->target->target_id)) 1326 continue; 1327 1328 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1329 && (cur_pattern->target_lun != device->lun_id)) 1330 continue; 1331 1332 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1333 && (cam_quirkmatch((caddr_t)&device->inq_data, 1334 (caddr_t)&cur_pattern->data.inq_pat, 1335 1, sizeof(cur_pattern->data.inq_pat), 1336 scsi_static_inquiry_match) == NULL)) 1337 continue; 1338 1339 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1340 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1341 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1342 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1343 device->device_id_len 1344 - SVPD_DEVICE_ID_HDR_LEN, 1345 cur_pattern->data.devid_pat.id, 1346 cur_pattern->data.devid_pat.id_len) != 0)) 1347 continue; 1348 1349 copy_dev_node: 1350 /* 1351 * If we get to this point, the user definitely wants 1352 * information on this device. So tell the caller to copy 1353 * the data out. 1354 */ 1355 retval |= DM_RET_COPY; 1356 1357 /* 1358 * If the return action has been set to descend, then we 1359 * know that we've already seen a peripheral matching 1360 * expression, therefore we need to further descend the tree. 1361 * This won't change by continuing around the loop, so we 1362 * go ahead and return. If we haven't seen a peripheral 1363 * matching expression, we keep going around the loop until 1364 * we exhaust the matching expressions. We'll set the stop 1365 * flag once we fall out of the loop. 1366 */ 1367 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1368 return(retval); 1369 } 1370 1371 /* 1372 * If the return action hasn't been set to descend yet, that means 1373 * we haven't seen any peripheral matching patterns. So tell the 1374 * caller to stop descending the tree -- the user doesn't want to 1375 * match against lower level tree elements. 1376 */ 1377 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1378 retval |= DM_RET_STOP; 1379 1380 return(retval); 1381 } 1382 1383 /* 1384 * Match a single peripheral against any number of match patterns. 1385 */ 1386 static dev_match_ret 1387 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1388 struct cam_periph *periph) 1389 { 1390 dev_match_ret retval; 1391 int i; 1392 1393 /* 1394 * If we aren't given something to match against, that's an error. 1395 */ 1396 if (periph == NULL) 1397 return(DM_RET_ERROR); 1398 1399 /* 1400 * If there are no match entries, then this peripheral matches no 1401 * matter what. 1402 */ 1403 if ((patterns == NULL) || (num_patterns == 0)) 1404 return(DM_RET_STOP | DM_RET_COPY); 1405 1406 /* 1407 * There aren't any nodes below a peripheral node, so there's no 1408 * reason to descend the tree any further. 1409 */ 1410 retval = DM_RET_STOP; 1411 1412 for (i = 0; i < num_patterns; i++) { 1413 struct periph_match_pattern *cur_pattern; 1414 1415 /* 1416 * If the pattern in question isn't for a peripheral, we 1417 * aren't interested. 1418 */ 1419 if (patterns[i].type != DEV_MATCH_PERIPH) 1420 continue; 1421 1422 cur_pattern = &patterns[i].pattern.periph_pattern; 1423 1424 /* 1425 * If they want to match on anything, then we will do so. 1426 */ 1427 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1428 /* set the copy flag */ 1429 retval |= DM_RET_COPY; 1430 1431 /* 1432 * We've already set the return action to stop, 1433 * since there are no nodes below peripherals in 1434 * the tree. 1435 */ 1436 return(retval); 1437 } 1438 1439 /* 1440 * Not sure why someone would do this... 1441 */ 1442 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1443 continue; 1444 1445 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1446 && (cur_pattern->path_id != periph->path->bus->path_id)) 1447 continue; 1448 1449 /* 1450 * For the target and lun id's, we have to make sure the 1451 * target and lun pointers aren't NULL. The xpt peripheral 1452 * has a wildcard target and device. 1453 */ 1454 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1455 && ((periph->path->target == NULL) 1456 ||(cur_pattern->target_id != periph->path->target->target_id))) 1457 continue; 1458 1459 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1460 && ((periph->path->device == NULL) 1461 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1462 continue; 1463 1464 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1465 && (cur_pattern->unit_number != periph->unit_number)) 1466 continue; 1467 1468 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1469 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1470 DEV_IDLEN) != 0)) 1471 continue; 1472 1473 /* 1474 * If we get to this point, the user definitely wants 1475 * information on this peripheral. So tell the caller to 1476 * copy the data out. 1477 */ 1478 retval |= DM_RET_COPY; 1479 1480 /* 1481 * The return action has already been set to stop, since 1482 * peripherals don't have any nodes below them in the EDT. 1483 */ 1484 return(retval); 1485 } 1486 1487 /* 1488 * If we get to this point, the peripheral that was passed in 1489 * doesn't match any of the patterns. 1490 */ 1491 return(retval); 1492 } 1493 1494 static int 1495 xptedtbusfunc(struct cam_eb *bus, void *arg) 1496 { 1497 struct ccb_dev_match *cdm; 1498 dev_match_ret retval; 1499 1500 cdm = (struct ccb_dev_match *)arg; 1501 1502 /* 1503 * If our position is for something deeper in the tree, that means 1504 * that we've already seen this node. So, we keep going down. 1505 */ 1506 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1507 && (cdm->pos.cookie.bus == bus) 1508 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1509 && (cdm->pos.cookie.target != NULL)) 1510 retval = DM_RET_DESCEND; 1511 else 1512 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1513 1514 /* 1515 * If we got an error, bail out of the search. 1516 */ 1517 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1518 cdm->status = CAM_DEV_MATCH_ERROR; 1519 return(0); 1520 } 1521 1522 /* 1523 * If the copy flag is set, copy this bus out. 1524 */ 1525 if (retval & DM_RET_COPY) { 1526 int spaceleft, j; 1527 1528 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1529 sizeof(struct dev_match_result)); 1530 1531 /* 1532 * If we don't have enough space to put in another 1533 * match result, save our position and tell the 1534 * user there are more devices to check. 1535 */ 1536 if (spaceleft < sizeof(struct dev_match_result)) { 1537 bzero(&cdm->pos, sizeof(cdm->pos)); 1538 cdm->pos.position_type = 1539 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1540 1541 cdm->pos.cookie.bus = bus; 1542 cdm->pos.generations[CAM_BUS_GENERATION]= 1543 xsoftc.bus_generation; 1544 cdm->status = CAM_DEV_MATCH_MORE; 1545 return(0); 1546 } 1547 j = cdm->num_matches; 1548 cdm->num_matches++; 1549 cdm->matches[j].type = DEV_MATCH_BUS; 1550 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1551 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1552 cdm->matches[j].result.bus_result.unit_number = 1553 bus->sim->unit_number; 1554 strncpy(cdm->matches[j].result.bus_result.dev_name, 1555 bus->sim->sim_name, DEV_IDLEN); 1556 } 1557 1558 /* 1559 * If the user is only interested in busses, there's no 1560 * reason to descend to the next level in the tree. 1561 */ 1562 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1563 return(1); 1564 1565 /* 1566 * If there is a target generation recorded, check it to 1567 * make sure the target list hasn't changed. 1568 */ 1569 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1570 && (bus == cdm->pos.cookie.bus) 1571 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1572 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1573 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1574 bus->generation)) { 1575 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1576 return(0); 1577 } 1578 1579 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1580 && (cdm->pos.cookie.bus == bus) 1581 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1582 && (cdm->pos.cookie.target != NULL)) 1583 return(xpttargettraverse(bus, 1584 (struct cam_et *)cdm->pos.cookie.target, 1585 xptedttargetfunc, arg)); 1586 else 1587 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1588 } 1589 1590 static int 1591 xptedttargetfunc(struct cam_et *target, void *arg) 1592 { 1593 struct ccb_dev_match *cdm; 1594 1595 cdm = (struct ccb_dev_match *)arg; 1596 1597 /* 1598 * If there is a device list generation recorded, check it to 1599 * make sure the device list hasn't changed. 1600 */ 1601 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1602 && (cdm->pos.cookie.bus == target->bus) 1603 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1604 && (cdm->pos.cookie.target == target) 1605 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1606 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1607 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1608 target->generation)) { 1609 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1610 return(0); 1611 } 1612 1613 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1614 && (cdm->pos.cookie.bus == target->bus) 1615 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1616 && (cdm->pos.cookie.target == target) 1617 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1618 && (cdm->pos.cookie.device != NULL)) 1619 return(xptdevicetraverse(target, 1620 (struct cam_ed *)cdm->pos.cookie.device, 1621 xptedtdevicefunc, arg)); 1622 else 1623 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1624 } 1625 1626 static int 1627 xptedtdevicefunc(struct cam_ed *device, void *arg) 1628 { 1629 1630 struct ccb_dev_match *cdm; 1631 dev_match_ret retval; 1632 1633 cdm = (struct ccb_dev_match *)arg; 1634 1635 /* 1636 * If our position is for something deeper in the tree, that means 1637 * that we've already seen this node. So, we keep going down. 1638 */ 1639 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1640 && (cdm->pos.cookie.device == device) 1641 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1642 && (cdm->pos.cookie.periph != NULL)) 1643 retval = DM_RET_DESCEND; 1644 else 1645 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1646 device); 1647 1648 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1649 cdm->status = CAM_DEV_MATCH_ERROR; 1650 return(0); 1651 } 1652 1653 /* 1654 * If the copy flag is set, copy this device out. 1655 */ 1656 if (retval & DM_RET_COPY) { 1657 int spaceleft, j; 1658 1659 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1660 sizeof(struct dev_match_result)); 1661 1662 /* 1663 * If we don't have enough space to put in another 1664 * match result, save our position and tell the 1665 * user there are more devices to check. 1666 */ 1667 if (spaceleft < sizeof(struct dev_match_result)) { 1668 bzero(&cdm->pos, sizeof(cdm->pos)); 1669 cdm->pos.position_type = 1670 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1671 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1672 1673 cdm->pos.cookie.bus = device->target->bus; 1674 cdm->pos.generations[CAM_BUS_GENERATION]= 1675 xsoftc.bus_generation; 1676 cdm->pos.cookie.target = device->target; 1677 cdm->pos.generations[CAM_TARGET_GENERATION] = 1678 device->target->bus->generation; 1679 cdm->pos.cookie.device = device; 1680 cdm->pos.generations[CAM_DEV_GENERATION] = 1681 device->target->generation; 1682 cdm->status = CAM_DEV_MATCH_MORE; 1683 return(0); 1684 } 1685 j = cdm->num_matches; 1686 cdm->num_matches++; 1687 cdm->matches[j].type = DEV_MATCH_DEVICE; 1688 cdm->matches[j].result.device_result.path_id = 1689 device->target->bus->path_id; 1690 cdm->matches[j].result.device_result.target_id = 1691 device->target->target_id; 1692 cdm->matches[j].result.device_result.target_lun = 1693 device->lun_id; 1694 cdm->matches[j].result.device_result.protocol = 1695 device->protocol; 1696 bcopy(&device->inq_data, 1697 &cdm->matches[j].result.device_result.inq_data, 1698 sizeof(struct scsi_inquiry_data)); 1699 bcopy(&device->ident_data, 1700 &cdm->matches[j].result.device_result.ident_data, 1701 sizeof(struct ata_params)); 1702 1703 /* Let the user know whether this device is unconfigured */ 1704 if (device->flags & CAM_DEV_UNCONFIGURED) 1705 cdm->matches[j].result.device_result.flags = 1706 DEV_RESULT_UNCONFIGURED; 1707 else 1708 cdm->matches[j].result.device_result.flags = 1709 DEV_RESULT_NOFLAG; 1710 } 1711 1712 /* 1713 * If the user isn't interested in peripherals, don't descend 1714 * the tree any further. 1715 */ 1716 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1717 return(1); 1718 1719 /* 1720 * If there is a peripheral list generation recorded, make sure 1721 * it hasn't changed. 1722 */ 1723 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1724 && (device->target->bus == cdm->pos.cookie.bus) 1725 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1726 && (device->target == cdm->pos.cookie.target) 1727 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1728 && (device == cdm->pos.cookie.device) 1729 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1730 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1731 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1732 device->generation)){ 1733 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1734 return(0); 1735 } 1736 1737 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1738 && (cdm->pos.cookie.bus == device->target->bus) 1739 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1740 && (cdm->pos.cookie.target == device->target) 1741 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1742 && (cdm->pos.cookie.device == device) 1743 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1744 && (cdm->pos.cookie.periph != NULL)) 1745 return(xptperiphtraverse(device, 1746 (struct cam_periph *)cdm->pos.cookie.periph, 1747 xptedtperiphfunc, arg)); 1748 else 1749 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1750 } 1751 1752 static int 1753 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1754 { 1755 struct ccb_dev_match *cdm; 1756 dev_match_ret retval; 1757 1758 cdm = (struct ccb_dev_match *)arg; 1759 1760 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1761 1762 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1763 cdm->status = CAM_DEV_MATCH_ERROR; 1764 return(0); 1765 } 1766 1767 /* 1768 * If the copy flag is set, copy this peripheral out. 1769 */ 1770 if (retval & DM_RET_COPY) { 1771 int spaceleft, j; 1772 1773 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1774 sizeof(struct dev_match_result)); 1775 1776 /* 1777 * If we don't have enough space to put in another 1778 * match result, save our position and tell the 1779 * user there are more devices to check. 1780 */ 1781 if (spaceleft < sizeof(struct dev_match_result)) { 1782 bzero(&cdm->pos, sizeof(cdm->pos)); 1783 cdm->pos.position_type = 1784 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1785 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1786 CAM_DEV_POS_PERIPH; 1787 1788 cdm->pos.cookie.bus = periph->path->bus; 1789 cdm->pos.generations[CAM_BUS_GENERATION]= 1790 xsoftc.bus_generation; 1791 cdm->pos.cookie.target = periph->path->target; 1792 cdm->pos.generations[CAM_TARGET_GENERATION] = 1793 periph->path->bus->generation; 1794 cdm->pos.cookie.device = periph->path->device; 1795 cdm->pos.generations[CAM_DEV_GENERATION] = 1796 periph->path->target->generation; 1797 cdm->pos.cookie.periph = periph; 1798 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1799 periph->path->device->generation; 1800 cdm->status = CAM_DEV_MATCH_MORE; 1801 return(0); 1802 } 1803 1804 j = cdm->num_matches; 1805 cdm->num_matches++; 1806 cdm->matches[j].type = DEV_MATCH_PERIPH; 1807 cdm->matches[j].result.periph_result.path_id = 1808 periph->path->bus->path_id; 1809 cdm->matches[j].result.periph_result.target_id = 1810 periph->path->target->target_id; 1811 cdm->matches[j].result.periph_result.target_lun = 1812 periph->path->device->lun_id; 1813 cdm->matches[j].result.periph_result.unit_number = 1814 periph->unit_number; 1815 strncpy(cdm->matches[j].result.periph_result.periph_name, 1816 periph->periph_name, DEV_IDLEN); 1817 } 1818 1819 return(1); 1820 } 1821 1822 static int 1823 xptedtmatch(struct ccb_dev_match *cdm) 1824 { 1825 int ret; 1826 1827 cdm->num_matches = 0; 1828 1829 /* 1830 * Check the bus list generation. If it has changed, the user 1831 * needs to reset everything and start over. 1832 */ 1833 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1834 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1835 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1836 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1837 return(0); 1838 } 1839 1840 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1841 && (cdm->pos.cookie.bus != NULL)) 1842 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1843 xptedtbusfunc, cdm); 1844 else 1845 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1846 1847 /* 1848 * If we get back 0, that means that we had to stop before fully 1849 * traversing the EDT. It also means that one of the subroutines 1850 * has set the status field to the proper value. If we get back 1, 1851 * we've fully traversed the EDT and copied out any matching entries. 1852 */ 1853 if (ret == 1) 1854 cdm->status = CAM_DEV_MATCH_LAST; 1855 1856 return(ret); 1857 } 1858 1859 static int 1860 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1861 { 1862 struct ccb_dev_match *cdm; 1863 1864 cdm = (struct ccb_dev_match *)arg; 1865 1866 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1867 && (cdm->pos.cookie.pdrv == pdrv) 1868 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1869 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1870 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1871 (*pdrv)->generation)) { 1872 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1873 return(0); 1874 } 1875 1876 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1877 && (cdm->pos.cookie.pdrv == pdrv) 1878 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1879 && (cdm->pos.cookie.periph != NULL)) 1880 return(xptpdperiphtraverse(pdrv, 1881 (struct cam_periph *)cdm->pos.cookie.periph, 1882 xptplistperiphfunc, arg)); 1883 else 1884 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1885 } 1886 1887 static int 1888 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1889 { 1890 struct ccb_dev_match *cdm; 1891 dev_match_ret retval; 1892 1893 cdm = (struct ccb_dev_match *)arg; 1894 1895 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1896 1897 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1898 cdm->status = CAM_DEV_MATCH_ERROR; 1899 return(0); 1900 } 1901 1902 /* 1903 * If the copy flag is set, copy this peripheral out. 1904 */ 1905 if (retval & DM_RET_COPY) { 1906 int spaceleft, j; 1907 1908 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1909 sizeof(struct dev_match_result)); 1910 1911 /* 1912 * If we don't have enough space to put in another 1913 * match result, save our position and tell the 1914 * user there are more devices to check. 1915 */ 1916 if (spaceleft < sizeof(struct dev_match_result)) { 1917 struct periph_driver **pdrv; 1918 1919 pdrv = NULL; 1920 bzero(&cdm->pos, sizeof(cdm->pos)); 1921 cdm->pos.position_type = 1922 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1923 CAM_DEV_POS_PERIPH; 1924 1925 /* 1926 * This may look a bit non-sensical, but it is 1927 * actually quite logical. There are very few 1928 * peripheral drivers, and bloating every peripheral 1929 * structure with a pointer back to its parent 1930 * peripheral driver linker set entry would cost 1931 * more in the long run than doing this quick lookup. 1932 */ 1933 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1934 if (strcmp((*pdrv)->driver_name, 1935 periph->periph_name) == 0) 1936 break; 1937 } 1938 1939 if (*pdrv == NULL) { 1940 cdm->status = CAM_DEV_MATCH_ERROR; 1941 return(0); 1942 } 1943 1944 cdm->pos.cookie.pdrv = pdrv; 1945 /* 1946 * The periph generation slot does double duty, as 1947 * does the periph pointer slot. They are used for 1948 * both edt and pdrv lookups and positioning. 1949 */ 1950 cdm->pos.cookie.periph = periph; 1951 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1952 (*pdrv)->generation; 1953 cdm->status = CAM_DEV_MATCH_MORE; 1954 return(0); 1955 } 1956 1957 j = cdm->num_matches; 1958 cdm->num_matches++; 1959 cdm->matches[j].type = DEV_MATCH_PERIPH; 1960 cdm->matches[j].result.periph_result.path_id = 1961 periph->path->bus->path_id; 1962 1963 /* 1964 * The transport layer peripheral doesn't have a target or 1965 * lun. 1966 */ 1967 if (periph->path->target) 1968 cdm->matches[j].result.periph_result.target_id = 1969 periph->path->target->target_id; 1970 else 1971 cdm->matches[j].result.periph_result.target_id = -1; 1972 1973 if (periph->path->device) 1974 cdm->matches[j].result.periph_result.target_lun = 1975 periph->path->device->lun_id; 1976 else 1977 cdm->matches[j].result.periph_result.target_lun = -1; 1978 1979 cdm->matches[j].result.periph_result.unit_number = 1980 periph->unit_number; 1981 strncpy(cdm->matches[j].result.periph_result.periph_name, 1982 periph->periph_name, DEV_IDLEN); 1983 } 1984 1985 return(1); 1986 } 1987 1988 static int 1989 xptperiphlistmatch(struct ccb_dev_match *cdm) 1990 { 1991 int ret; 1992 1993 cdm->num_matches = 0; 1994 1995 /* 1996 * At this point in the edt traversal function, we check the bus 1997 * list generation to make sure that no busses have been added or 1998 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1999 * For the peripheral driver list traversal function, however, we 2000 * don't have to worry about new peripheral driver types coming or 2001 * going; they're in a linker set, and therefore can't change 2002 * without a recompile. 2003 */ 2004 2005 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2006 && (cdm->pos.cookie.pdrv != NULL)) 2007 ret = xptpdrvtraverse( 2008 (struct periph_driver **)cdm->pos.cookie.pdrv, 2009 xptplistpdrvfunc, cdm); 2010 else 2011 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2012 2013 /* 2014 * If we get back 0, that means that we had to stop before fully 2015 * traversing the peripheral driver tree. It also means that one of 2016 * the subroutines has set the status field to the proper value. If 2017 * we get back 1, we've fully traversed the EDT and copied out any 2018 * matching entries. 2019 */ 2020 if (ret == 1) 2021 cdm->status = CAM_DEV_MATCH_LAST; 2022 2023 return(ret); 2024 } 2025 2026 static int 2027 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2028 { 2029 struct cam_eb *bus, *next_bus; 2030 int retval; 2031 2032 retval = 1; 2033 2034 xpt_lock_buses(); 2035 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2036 bus != NULL; 2037 bus = next_bus) { 2038 2039 bus->refcount++; 2040 2041 /* 2042 * XXX The locking here is obviously very complex. We 2043 * should work to simplify it. 2044 */ 2045 xpt_unlock_buses(); 2046 CAM_SIM_LOCK(bus->sim); 2047 retval = tr_func(bus, arg); 2048 CAM_SIM_UNLOCK(bus->sim); 2049 2050 xpt_lock_buses(); 2051 next_bus = TAILQ_NEXT(bus, links); 2052 xpt_unlock_buses(); 2053 2054 xpt_release_bus(bus); 2055 2056 if (retval == 0) 2057 return(retval); 2058 xpt_lock_buses(); 2059 } 2060 xpt_unlock_buses(); 2061 2062 return(retval); 2063 } 2064 2065 static int 2066 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2067 xpt_targetfunc_t *tr_func, void *arg) 2068 { 2069 struct cam_et *target, *next_target; 2070 int retval; 2071 2072 mtx_assert(bus->sim->mtx, MA_OWNED); 2073 retval = 1; 2074 for (target = (start_target ? start_target : 2075 TAILQ_FIRST(&bus->et_entries)); 2076 target != NULL; target = next_target) { 2077 2078 target->refcount++; 2079 2080 retval = tr_func(target, arg); 2081 2082 next_target = TAILQ_NEXT(target, links); 2083 2084 xpt_release_target(target); 2085 2086 if (retval == 0) 2087 return(retval); 2088 } 2089 2090 return(retval); 2091 } 2092 2093 static int 2094 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2095 xpt_devicefunc_t *tr_func, void *arg) 2096 { 2097 struct cam_ed *device, *next_device; 2098 int retval; 2099 2100 mtx_assert(target->bus->sim->mtx, MA_OWNED); 2101 retval = 1; 2102 for (device = (start_device ? start_device : 2103 TAILQ_FIRST(&target->ed_entries)); 2104 device != NULL; 2105 device = next_device) { 2106 2107 /* 2108 * Hold a reference so the current device does not go away 2109 * on us. 2110 */ 2111 device->refcount++; 2112 2113 retval = tr_func(device, arg); 2114 2115 /* 2116 * Grab our next pointer before we release the current 2117 * device. 2118 */ 2119 next_device = TAILQ_NEXT(device, links); 2120 2121 xpt_release_device(device); 2122 2123 if (retval == 0) 2124 return(retval); 2125 } 2126 2127 return(retval); 2128 } 2129 2130 static int 2131 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2132 xpt_periphfunc_t *tr_func, void *arg) 2133 { 2134 struct cam_periph *periph, *next_periph; 2135 int retval; 2136 2137 retval = 1; 2138 2139 mtx_assert(device->sim->mtx, MA_OWNED); 2140 xpt_lock_buses(); 2141 for (periph = (start_periph ? start_periph : 2142 SLIST_FIRST(&device->periphs)); 2143 periph != NULL; 2144 periph = next_periph) { 2145 2146 2147 /* 2148 * In this case, we want to show peripherals that have been 2149 * invalidated, but not peripherals that are scheduled to 2150 * be freed. So instead of calling cam_periph_acquire(), 2151 * which will fail if the periph has been invalidated, we 2152 * just check for the free flag here. If it is in the 2153 * process of being freed, we skip to the next periph. 2154 */ 2155 if (periph->flags & CAM_PERIPH_FREE) { 2156 next_periph = SLIST_NEXT(periph, periph_links); 2157 continue; 2158 } 2159 2160 /* 2161 * Acquire a reference to this periph while we call the 2162 * traversal function, so it can't go away. 2163 */ 2164 periph->refcount++; 2165 2166 retval = tr_func(periph, arg); 2167 2168 /* 2169 * Grab the next peripheral before we release this one, so 2170 * our next pointer is still valid. 2171 */ 2172 next_periph = SLIST_NEXT(periph, periph_links); 2173 2174 cam_periph_release_locked_buses(periph); 2175 2176 if (retval == 0) 2177 goto bailout_done; 2178 } 2179 2180 bailout_done: 2181 2182 xpt_unlock_buses(); 2183 2184 return(retval); 2185 } 2186 2187 static int 2188 xptpdrvtraverse(struct periph_driver **start_pdrv, 2189 xpt_pdrvfunc_t *tr_func, void *arg) 2190 { 2191 struct periph_driver **pdrv; 2192 int retval; 2193 2194 retval = 1; 2195 2196 /* 2197 * We don't traverse the peripheral driver list like we do the 2198 * other lists, because it is a linker set, and therefore cannot be 2199 * changed during runtime. If the peripheral driver list is ever 2200 * re-done to be something other than a linker set (i.e. it can 2201 * change while the system is running), the list traversal should 2202 * be modified to work like the other traversal functions. 2203 */ 2204 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2205 *pdrv != NULL; pdrv++) { 2206 retval = tr_func(pdrv, arg); 2207 2208 if (retval == 0) 2209 return(retval); 2210 } 2211 2212 return(retval); 2213 } 2214 2215 static int 2216 xptpdperiphtraverse(struct periph_driver **pdrv, 2217 struct cam_periph *start_periph, 2218 xpt_periphfunc_t *tr_func, void *arg) 2219 { 2220 struct cam_periph *periph, *next_periph; 2221 struct cam_sim *sim; 2222 int retval; 2223 2224 retval = 1; 2225 2226 xpt_lock_buses(); 2227 for (periph = (start_periph ? start_periph : 2228 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2229 periph = next_periph) { 2230 2231 2232 /* 2233 * In this case, we want to show peripherals that have been 2234 * invalidated, but not peripherals that are scheduled to 2235 * be freed. So instead of calling cam_periph_acquire(), 2236 * which will fail if the periph has been invalidated, we 2237 * just check for the free flag here. If it is free, we 2238 * skip to the next periph. 2239 */ 2240 if (periph->flags & CAM_PERIPH_FREE) { 2241 next_periph = TAILQ_NEXT(periph, unit_links); 2242 continue; 2243 } 2244 2245 /* 2246 * Acquire a reference to this periph while we call the 2247 * traversal function, so it can't go away. 2248 */ 2249 periph->refcount++; 2250 sim = periph->sim; 2251 xpt_unlock_buses(); 2252 CAM_SIM_LOCK(sim); 2253 xpt_lock_buses(); 2254 retval = tr_func(periph, arg); 2255 2256 /* 2257 * Grab the next peripheral before we release this one, so 2258 * our next pointer is still valid. 2259 */ 2260 next_periph = TAILQ_NEXT(periph, unit_links); 2261 2262 cam_periph_release_locked_buses(periph); 2263 CAM_SIM_UNLOCK(sim); 2264 2265 if (retval == 0) 2266 goto bailout_done; 2267 } 2268 bailout_done: 2269 2270 xpt_unlock_buses(); 2271 2272 return(retval); 2273 } 2274 2275 static int 2276 xptdefbusfunc(struct cam_eb *bus, void *arg) 2277 { 2278 struct xpt_traverse_config *tr_config; 2279 2280 tr_config = (struct xpt_traverse_config *)arg; 2281 2282 if (tr_config->depth == XPT_DEPTH_BUS) { 2283 xpt_busfunc_t *tr_func; 2284 2285 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2286 2287 return(tr_func(bus, tr_config->tr_arg)); 2288 } else 2289 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2290 } 2291 2292 static int 2293 xptdeftargetfunc(struct cam_et *target, void *arg) 2294 { 2295 struct xpt_traverse_config *tr_config; 2296 2297 tr_config = (struct xpt_traverse_config *)arg; 2298 2299 if (tr_config->depth == XPT_DEPTH_TARGET) { 2300 xpt_targetfunc_t *tr_func; 2301 2302 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2303 2304 return(tr_func(target, tr_config->tr_arg)); 2305 } else 2306 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2307 } 2308 2309 static int 2310 xptdefdevicefunc(struct cam_ed *device, void *arg) 2311 { 2312 struct xpt_traverse_config *tr_config; 2313 2314 tr_config = (struct xpt_traverse_config *)arg; 2315 2316 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2317 xpt_devicefunc_t *tr_func; 2318 2319 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2320 2321 return(tr_func(device, tr_config->tr_arg)); 2322 } else 2323 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2324 } 2325 2326 static int 2327 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2328 { 2329 struct xpt_traverse_config *tr_config; 2330 xpt_periphfunc_t *tr_func; 2331 2332 tr_config = (struct xpt_traverse_config *)arg; 2333 2334 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2335 2336 /* 2337 * Unlike the other default functions, we don't check for depth 2338 * here. The peripheral driver level is the last level in the EDT, 2339 * so if we're here, we should execute the function in question. 2340 */ 2341 return(tr_func(periph, tr_config->tr_arg)); 2342 } 2343 2344 /* 2345 * Execute the given function for every bus in the EDT. 2346 */ 2347 static int 2348 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2349 { 2350 struct xpt_traverse_config tr_config; 2351 2352 tr_config.depth = XPT_DEPTH_BUS; 2353 tr_config.tr_func = tr_func; 2354 tr_config.tr_arg = arg; 2355 2356 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2357 } 2358 2359 /* 2360 * Execute the given function for every device in the EDT. 2361 */ 2362 static int 2363 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2364 { 2365 struct xpt_traverse_config tr_config; 2366 2367 tr_config.depth = XPT_DEPTH_DEVICE; 2368 tr_config.tr_func = tr_func; 2369 tr_config.tr_arg = arg; 2370 2371 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2372 } 2373 2374 static int 2375 xptsetasyncfunc(struct cam_ed *device, void *arg) 2376 { 2377 struct cam_path path; 2378 struct ccb_getdev cgd; 2379 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2380 2381 /* 2382 * Don't report unconfigured devices (Wildcard devs, 2383 * devices only for target mode, device instances 2384 * that have been invalidated but are waiting for 2385 * their last reference count to be released). 2386 */ 2387 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2388 return (1); 2389 2390 xpt_compile_path(&path, 2391 NULL, 2392 device->target->bus->path_id, 2393 device->target->target_id, 2394 device->lun_id); 2395 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2396 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2397 xpt_action((union ccb *)&cgd); 2398 csa->callback(csa->callback_arg, 2399 AC_FOUND_DEVICE, 2400 &path, &cgd); 2401 xpt_release_path(&path); 2402 2403 return(1); 2404 } 2405 2406 static int 2407 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2408 { 2409 struct cam_path path; 2410 struct ccb_pathinq cpi; 2411 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2412 2413 xpt_compile_path(&path, /*periph*/NULL, 2414 bus->sim->path_id, 2415 CAM_TARGET_WILDCARD, 2416 CAM_LUN_WILDCARD); 2417 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2418 cpi.ccb_h.func_code = XPT_PATH_INQ; 2419 xpt_action((union ccb *)&cpi); 2420 csa->callback(csa->callback_arg, 2421 AC_PATH_REGISTERED, 2422 &path, &cpi); 2423 xpt_release_path(&path); 2424 2425 return(1); 2426 } 2427 2428 void 2429 xpt_action(union ccb *start_ccb) 2430 { 2431 2432 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2433 2434 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2435 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2436 } 2437 2438 void 2439 xpt_action_default(union ccb *start_ccb) 2440 { 2441 struct cam_path *path; 2442 2443 path = start_ccb->ccb_h.path; 2444 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2445 2446 switch (start_ccb->ccb_h.func_code) { 2447 case XPT_SCSI_IO: 2448 { 2449 struct cam_ed *device; 2450 2451 /* 2452 * For the sake of compatibility with SCSI-1 2453 * devices that may not understand the identify 2454 * message, we include lun information in the 2455 * second byte of all commands. SCSI-1 specifies 2456 * that luns are a 3 bit value and reserves only 3 2457 * bits for lun information in the CDB. Later 2458 * revisions of the SCSI spec allow for more than 8 2459 * luns, but have deprecated lun information in the 2460 * CDB. So, if the lun won't fit, we must omit. 2461 * 2462 * Also be aware that during initial probing for devices, 2463 * the inquiry information is unknown but initialized to 0. 2464 * This means that this code will be exercised while probing 2465 * devices with an ANSI revision greater than 2. 2466 */ 2467 device = path->device; 2468 if (device->protocol_version <= SCSI_REV_2 2469 && start_ccb->ccb_h.target_lun < 8 2470 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2471 2472 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2473 start_ccb->ccb_h.target_lun << 5; 2474 } 2475 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2476 } 2477 /* FALLTHROUGH */ 2478 case XPT_TARGET_IO: 2479 case XPT_CONT_TARGET_IO: 2480 start_ccb->csio.sense_resid = 0; 2481 start_ccb->csio.resid = 0; 2482 /* FALLTHROUGH */ 2483 case XPT_ATA_IO: 2484 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2485 start_ccb->ataio.resid = 0; 2486 /* FALLTHROUGH */ 2487 case XPT_RESET_DEV: 2488 case XPT_ENG_EXEC: 2489 case XPT_SMP_IO: 2490 { 2491 int frozen; 2492 2493 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2494 path->device->sim->devq->alloc_openings += frozen; 2495 if (frozen > 0) 2496 xpt_run_dev_allocq(path->bus); 2497 if (xpt_schedule_dev_sendq(path->bus, path->device)) 2498 xpt_run_dev_sendq(path->bus); 2499 break; 2500 } 2501 case XPT_CALC_GEOMETRY: 2502 { 2503 struct cam_sim *sim; 2504 2505 /* Filter out garbage */ 2506 if (start_ccb->ccg.block_size == 0 2507 || start_ccb->ccg.volume_size == 0) { 2508 start_ccb->ccg.cylinders = 0; 2509 start_ccb->ccg.heads = 0; 2510 start_ccb->ccg.secs_per_track = 0; 2511 start_ccb->ccb_h.status = CAM_REQ_CMP; 2512 break; 2513 } 2514 #if defined(PC98) || defined(__sparc64__) 2515 /* 2516 * In a PC-98 system, geometry translation depens on 2517 * the "real" device geometry obtained from mode page 4. 2518 * SCSI geometry translation is performed in the 2519 * initialization routine of the SCSI BIOS and the result 2520 * stored in host memory. If the translation is available 2521 * in host memory, use it. If not, rely on the default 2522 * translation the device driver performs. 2523 * For sparc64, we may need adjust the geometry of large 2524 * disks in order to fit the limitations of the 16-bit 2525 * fields of the VTOC8 disk label. 2526 */ 2527 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2528 start_ccb->ccb_h.status = CAM_REQ_CMP; 2529 break; 2530 } 2531 #endif 2532 sim = path->bus->sim; 2533 (*(sim->sim_action))(sim, start_ccb); 2534 break; 2535 } 2536 case XPT_ABORT: 2537 { 2538 union ccb* abort_ccb; 2539 2540 abort_ccb = start_ccb->cab.abort_ccb; 2541 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2542 2543 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2544 struct cam_ccbq *ccbq; 2545 struct cam_ed *device; 2546 2547 device = abort_ccb->ccb_h.path->device; 2548 ccbq = &device->ccbq; 2549 device->sim->devq->alloc_openings -= 2550 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2551 abort_ccb->ccb_h.status = 2552 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2553 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2554 xpt_done(abort_ccb); 2555 start_ccb->ccb_h.status = CAM_REQ_CMP; 2556 break; 2557 } 2558 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2559 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2560 /* 2561 * We've caught this ccb en route to 2562 * the SIM. Flag it for abort and the 2563 * SIM will do so just before starting 2564 * real work on the CCB. 2565 */ 2566 abort_ccb->ccb_h.status = 2567 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2568 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2569 start_ccb->ccb_h.status = CAM_REQ_CMP; 2570 break; 2571 } 2572 } 2573 if (XPT_FC_IS_QUEUED(abort_ccb) 2574 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2575 /* 2576 * It's already completed but waiting 2577 * for our SWI to get to it. 2578 */ 2579 start_ccb->ccb_h.status = CAM_UA_ABORT; 2580 break; 2581 } 2582 /* 2583 * If we weren't able to take care of the abort request 2584 * in the XPT, pass the request down to the SIM for processing. 2585 */ 2586 } 2587 /* FALLTHROUGH */ 2588 case XPT_ACCEPT_TARGET_IO: 2589 case XPT_EN_LUN: 2590 case XPT_IMMED_NOTIFY: 2591 case XPT_NOTIFY_ACK: 2592 case XPT_RESET_BUS: 2593 case XPT_IMMEDIATE_NOTIFY: 2594 case XPT_NOTIFY_ACKNOWLEDGE: 2595 case XPT_GET_SIM_KNOB: 2596 case XPT_SET_SIM_KNOB: 2597 { 2598 struct cam_sim *sim; 2599 2600 sim = path->bus->sim; 2601 (*(sim->sim_action))(sim, start_ccb); 2602 break; 2603 } 2604 case XPT_PATH_INQ: 2605 { 2606 struct cam_sim *sim; 2607 2608 sim = path->bus->sim; 2609 (*(sim->sim_action))(sim, start_ccb); 2610 break; 2611 } 2612 case XPT_PATH_STATS: 2613 start_ccb->cpis.last_reset = path->bus->last_reset; 2614 start_ccb->ccb_h.status = CAM_REQ_CMP; 2615 break; 2616 case XPT_GDEV_TYPE: 2617 { 2618 struct cam_ed *dev; 2619 2620 dev = path->device; 2621 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2622 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2623 } else { 2624 struct ccb_getdev *cgd; 2625 2626 cgd = &start_ccb->cgd; 2627 cgd->protocol = dev->protocol; 2628 cgd->inq_data = dev->inq_data; 2629 cgd->ident_data = dev->ident_data; 2630 cgd->inq_flags = dev->inq_flags; 2631 cgd->ccb_h.status = CAM_REQ_CMP; 2632 cgd->serial_num_len = dev->serial_num_len; 2633 if ((dev->serial_num_len > 0) 2634 && (dev->serial_num != NULL)) 2635 bcopy(dev->serial_num, cgd->serial_num, 2636 dev->serial_num_len); 2637 } 2638 break; 2639 } 2640 case XPT_GDEV_STATS: 2641 { 2642 struct cam_ed *dev; 2643 2644 dev = path->device; 2645 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2646 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2647 } else { 2648 struct ccb_getdevstats *cgds; 2649 struct cam_eb *bus; 2650 struct cam_et *tar; 2651 2652 cgds = &start_ccb->cgds; 2653 bus = path->bus; 2654 tar = path->target; 2655 cgds->dev_openings = dev->ccbq.dev_openings; 2656 cgds->dev_active = dev->ccbq.dev_active; 2657 cgds->devq_openings = dev->ccbq.devq_openings; 2658 cgds->devq_queued = dev->ccbq.queue.entries; 2659 cgds->held = dev->ccbq.held; 2660 cgds->last_reset = tar->last_reset; 2661 cgds->maxtags = dev->maxtags; 2662 cgds->mintags = dev->mintags; 2663 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2664 cgds->last_reset = bus->last_reset; 2665 cgds->ccb_h.status = CAM_REQ_CMP; 2666 } 2667 break; 2668 } 2669 case XPT_GDEVLIST: 2670 { 2671 struct cam_periph *nperiph; 2672 struct periph_list *periph_head; 2673 struct ccb_getdevlist *cgdl; 2674 u_int i; 2675 struct cam_ed *device; 2676 int found; 2677 2678 2679 found = 0; 2680 2681 /* 2682 * Don't want anyone mucking with our data. 2683 */ 2684 device = path->device; 2685 periph_head = &device->periphs; 2686 cgdl = &start_ccb->cgdl; 2687 2688 /* 2689 * Check and see if the list has changed since the user 2690 * last requested a list member. If so, tell them that the 2691 * list has changed, and therefore they need to start over 2692 * from the beginning. 2693 */ 2694 if ((cgdl->index != 0) && 2695 (cgdl->generation != device->generation)) { 2696 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2697 break; 2698 } 2699 2700 /* 2701 * Traverse the list of peripherals and attempt to find 2702 * the requested peripheral. 2703 */ 2704 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2705 (nperiph != NULL) && (i <= cgdl->index); 2706 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2707 if (i == cgdl->index) { 2708 strncpy(cgdl->periph_name, 2709 nperiph->periph_name, 2710 DEV_IDLEN); 2711 cgdl->unit_number = nperiph->unit_number; 2712 found = 1; 2713 } 2714 } 2715 if (found == 0) { 2716 cgdl->status = CAM_GDEVLIST_ERROR; 2717 break; 2718 } 2719 2720 if (nperiph == NULL) 2721 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2722 else 2723 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2724 2725 cgdl->index++; 2726 cgdl->generation = device->generation; 2727 2728 cgdl->ccb_h.status = CAM_REQ_CMP; 2729 break; 2730 } 2731 case XPT_DEV_MATCH: 2732 { 2733 dev_pos_type position_type; 2734 struct ccb_dev_match *cdm; 2735 2736 cdm = &start_ccb->cdm; 2737 2738 /* 2739 * There are two ways of getting at information in the EDT. 2740 * The first way is via the primary EDT tree. It starts 2741 * with a list of busses, then a list of targets on a bus, 2742 * then devices/luns on a target, and then peripherals on a 2743 * device/lun. The "other" way is by the peripheral driver 2744 * lists. The peripheral driver lists are organized by 2745 * peripheral driver. (obviously) So it makes sense to 2746 * use the peripheral driver list if the user is looking 2747 * for something like "da1", or all "da" devices. If the 2748 * user is looking for something on a particular bus/target 2749 * or lun, it's generally better to go through the EDT tree. 2750 */ 2751 2752 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2753 position_type = cdm->pos.position_type; 2754 else { 2755 u_int i; 2756 2757 position_type = CAM_DEV_POS_NONE; 2758 2759 for (i = 0; i < cdm->num_patterns; i++) { 2760 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2761 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2762 position_type = CAM_DEV_POS_EDT; 2763 break; 2764 } 2765 } 2766 2767 if (cdm->num_patterns == 0) 2768 position_type = CAM_DEV_POS_EDT; 2769 else if (position_type == CAM_DEV_POS_NONE) 2770 position_type = CAM_DEV_POS_PDRV; 2771 } 2772 2773 /* 2774 * Note that we drop the SIM lock here, because the EDT 2775 * traversal code needs to do its own locking. 2776 */ 2777 CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path)); 2778 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2779 case CAM_DEV_POS_EDT: 2780 xptedtmatch(cdm); 2781 break; 2782 case CAM_DEV_POS_PDRV: 2783 xptperiphlistmatch(cdm); 2784 break; 2785 default: 2786 cdm->status = CAM_DEV_MATCH_ERROR; 2787 break; 2788 } 2789 CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path)); 2790 2791 if (cdm->status == CAM_DEV_MATCH_ERROR) 2792 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2793 else 2794 start_ccb->ccb_h.status = CAM_REQ_CMP; 2795 2796 break; 2797 } 2798 case XPT_SASYNC_CB: 2799 { 2800 struct ccb_setasync *csa; 2801 struct async_node *cur_entry; 2802 struct async_list *async_head; 2803 u_int32_t added; 2804 2805 csa = &start_ccb->csa; 2806 added = csa->event_enable; 2807 async_head = &path->device->asyncs; 2808 2809 /* 2810 * If there is already an entry for us, simply 2811 * update it. 2812 */ 2813 cur_entry = SLIST_FIRST(async_head); 2814 while (cur_entry != NULL) { 2815 if ((cur_entry->callback_arg == csa->callback_arg) 2816 && (cur_entry->callback == csa->callback)) 2817 break; 2818 cur_entry = SLIST_NEXT(cur_entry, links); 2819 } 2820 2821 if (cur_entry != NULL) { 2822 /* 2823 * If the request has no flags set, 2824 * remove the entry. 2825 */ 2826 added &= ~cur_entry->event_enable; 2827 if (csa->event_enable == 0) { 2828 SLIST_REMOVE(async_head, cur_entry, 2829 async_node, links); 2830 xpt_release_device(path->device); 2831 free(cur_entry, M_CAMXPT); 2832 } else { 2833 cur_entry->event_enable = csa->event_enable; 2834 } 2835 csa->event_enable = added; 2836 } else { 2837 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2838 M_NOWAIT); 2839 if (cur_entry == NULL) { 2840 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2841 break; 2842 } 2843 cur_entry->event_enable = csa->event_enable; 2844 cur_entry->callback_arg = csa->callback_arg; 2845 cur_entry->callback = csa->callback; 2846 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2847 xpt_acquire_device(path->device); 2848 } 2849 start_ccb->ccb_h.status = CAM_REQ_CMP; 2850 break; 2851 } 2852 case XPT_REL_SIMQ: 2853 { 2854 struct ccb_relsim *crs; 2855 struct cam_ed *dev; 2856 2857 crs = &start_ccb->crs; 2858 dev = path->device; 2859 if (dev == NULL) { 2860 2861 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2862 break; 2863 } 2864 2865 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2866 2867 /* Don't ever go below one opening */ 2868 if (crs->openings > 0) { 2869 xpt_dev_ccbq_resize(path, crs->openings); 2870 if (bootverbose) { 2871 xpt_print(path, 2872 "number of openings is now %d\n", 2873 crs->openings); 2874 } 2875 } 2876 } 2877 2878 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2879 2880 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2881 2882 /* 2883 * Just extend the old timeout and decrement 2884 * the freeze count so that a single timeout 2885 * is sufficient for releasing the queue. 2886 */ 2887 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2888 callout_stop(&dev->callout); 2889 } else { 2890 2891 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2892 } 2893 2894 callout_reset(&dev->callout, 2895 (crs->release_timeout * hz) / 1000, 2896 xpt_release_devq_timeout, dev); 2897 2898 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2899 2900 } 2901 2902 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2903 2904 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2905 /* 2906 * Decrement the freeze count so that a single 2907 * completion is still sufficient to unfreeze 2908 * the queue. 2909 */ 2910 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2911 } else { 2912 2913 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2914 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2915 } 2916 } 2917 2918 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2919 2920 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2921 || (dev->ccbq.dev_active == 0)) { 2922 2923 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2924 } else { 2925 2926 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2927 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2928 } 2929 } 2930 2931 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 2932 xpt_release_devq_rl(path, /*runlevel*/ 2933 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2934 crs->release_timeout : 0, 2935 /*count*/1, /*run_queue*/TRUE); 2936 } 2937 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0]; 2938 start_ccb->ccb_h.status = CAM_REQ_CMP; 2939 break; 2940 } 2941 case XPT_DEBUG: { 2942 struct cam_path *oldpath; 2943 struct cam_sim *oldsim; 2944 2945 /* Check that all request bits are supported. */ 2946 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2947 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2948 break; 2949 } 2950 2951 cam_dflags = CAM_DEBUG_NONE; 2952 if (cam_dpath != NULL) { 2953 /* To release the old path we must hold proper lock. */ 2954 oldpath = cam_dpath; 2955 cam_dpath = NULL; 2956 oldsim = xpt_path_sim(oldpath); 2957 CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2958 CAM_SIM_LOCK(oldsim); 2959 xpt_free_path(oldpath); 2960 CAM_SIM_UNLOCK(oldsim); 2961 CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2962 } 2963 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2964 if (xpt_create_path(&cam_dpath, xpt_periph, 2965 start_ccb->ccb_h.path_id, 2966 start_ccb->ccb_h.target_id, 2967 start_ccb->ccb_h.target_lun) != 2968 CAM_REQ_CMP) { 2969 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2970 } else { 2971 cam_dflags = start_ccb->cdbg.flags; 2972 start_ccb->ccb_h.status = CAM_REQ_CMP; 2973 xpt_print(cam_dpath, "debugging flags now %x\n", 2974 cam_dflags); 2975 } 2976 } else 2977 start_ccb->ccb_h.status = CAM_REQ_CMP; 2978 break; 2979 } 2980 case XPT_FREEZE_QUEUE: 2981 { 2982 struct ccb_relsim *crs = &start_ccb->crs; 2983 2984 xpt_freeze_devq_rl(path, /*runlevel*/ 2985 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2986 crs->release_timeout : 0, /*count*/1); 2987 start_ccb->ccb_h.status = CAM_REQ_CMP; 2988 break; 2989 } 2990 case XPT_NOOP: 2991 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2992 xpt_freeze_devq(path, 1); 2993 start_ccb->ccb_h.status = CAM_REQ_CMP; 2994 break; 2995 default: 2996 case XPT_SDEV_TYPE: 2997 case XPT_TERM_IO: 2998 case XPT_ENG_INQ: 2999 /* XXX Implement */ 3000 printf("%s: CCB type %#x not supported\n", __func__, 3001 start_ccb->ccb_h.func_code); 3002 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3003 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3004 xpt_done(start_ccb); 3005 } 3006 break; 3007 } 3008 } 3009 3010 void 3011 xpt_polled_action(union ccb *start_ccb) 3012 { 3013 u_int32_t timeout; 3014 struct cam_sim *sim; 3015 struct cam_devq *devq; 3016 struct cam_ed *dev; 3017 3018 3019 timeout = start_ccb->ccb_h.timeout * 10; 3020 sim = start_ccb->ccb_h.path->bus->sim; 3021 devq = sim->devq; 3022 dev = start_ccb->ccb_h.path->device; 3023 3024 mtx_assert(sim->mtx, MA_OWNED); 3025 3026 /* Don't use ISR for this SIM while polling. */ 3027 sim->flags |= CAM_SIM_POLLED; 3028 3029 /* 3030 * Steal an opening so that no other queued requests 3031 * can get it before us while we simulate interrupts. 3032 */ 3033 dev->ccbq.devq_openings--; 3034 dev->ccbq.dev_openings--; 3035 3036 while(((devq != NULL && devq->send_openings <= 0) || 3037 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3038 DELAY(100); 3039 (*(sim->sim_poll))(sim); 3040 camisr_runqueue(&sim->sim_doneq); 3041 } 3042 3043 dev->ccbq.devq_openings++; 3044 dev->ccbq.dev_openings++; 3045 3046 if (timeout != 0) { 3047 xpt_action(start_ccb); 3048 while(--timeout > 0) { 3049 (*(sim->sim_poll))(sim); 3050 camisr_runqueue(&sim->sim_doneq); 3051 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3052 != CAM_REQ_INPROG) 3053 break; 3054 DELAY(100); 3055 } 3056 if (timeout == 0) { 3057 /* 3058 * XXX Is it worth adding a sim_timeout entry 3059 * point so we can attempt recovery? If 3060 * this is only used for dumps, I don't think 3061 * it is. 3062 */ 3063 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3064 } 3065 } else { 3066 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3067 } 3068 3069 /* We will use CAM ISR for this SIM again. */ 3070 sim->flags &= ~CAM_SIM_POLLED; 3071 } 3072 3073 /* 3074 * Schedule a peripheral driver to receive a ccb when it's 3075 * target device has space for more transactions. 3076 */ 3077 void 3078 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3079 { 3080 struct cam_ed *device; 3081 int runq = 0; 3082 3083 mtx_assert(perph->sim->mtx, MA_OWNED); 3084 3085 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3086 device = perph->path->device; 3087 if (periph_is_queued(perph)) { 3088 /* Simply reorder based on new priority */ 3089 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3090 (" change priority to %d\n", new_priority)); 3091 if (new_priority < perph->pinfo.priority) { 3092 camq_change_priority(&device->drvq, 3093 perph->pinfo.index, 3094 new_priority); 3095 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3096 } 3097 } else { 3098 /* New entry on the queue */ 3099 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3100 (" added periph to queue\n")); 3101 perph->pinfo.priority = new_priority; 3102 perph->pinfo.generation = ++device->drvq.generation; 3103 camq_insert(&device->drvq, &perph->pinfo); 3104 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3105 } 3106 if (runq != 0) { 3107 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3108 (" calling xpt_run_devq\n")); 3109 xpt_run_dev_allocq(perph->path->bus); 3110 } 3111 } 3112 3113 3114 /* 3115 * Schedule a device to run on a given queue. 3116 * If the device was inserted as a new entry on the queue, 3117 * return 1 meaning the device queue should be run. If we 3118 * were already queued, implying someone else has already 3119 * started the queue, return 0 so the caller doesn't attempt 3120 * to run the queue. 3121 */ 3122 int 3123 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3124 u_int32_t new_priority) 3125 { 3126 int retval; 3127 u_int32_t old_priority; 3128 3129 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3130 3131 old_priority = pinfo->priority; 3132 3133 /* 3134 * Are we already queued? 3135 */ 3136 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3137 /* Simply reorder based on new priority */ 3138 if (new_priority < old_priority) { 3139 camq_change_priority(queue, pinfo->index, 3140 new_priority); 3141 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3142 ("changed priority to %d\n", 3143 new_priority)); 3144 retval = 1; 3145 } else 3146 retval = 0; 3147 } else { 3148 /* New entry on the queue */ 3149 if (new_priority < old_priority) 3150 pinfo->priority = new_priority; 3151 3152 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3153 ("Inserting onto queue\n")); 3154 pinfo->generation = ++queue->generation; 3155 camq_insert(queue, pinfo); 3156 retval = 1; 3157 } 3158 return (retval); 3159 } 3160 3161 static void 3162 xpt_run_dev_allocq(struct cam_eb *bus) 3163 { 3164 struct cam_devq *devq; 3165 3166 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3167 devq = bus->sim->devq; 3168 3169 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3170 (" qfrozen_cnt == 0x%x, entries == %d, " 3171 "openings == %d, active == %d\n", 3172 devq->alloc_queue.qfrozen_cnt[0], 3173 devq->alloc_queue.entries, 3174 devq->alloc_openings, 3175 devq->alloc_active)); 3176 3177 devq->alloc_queue.qfrozen_cnt[0]++; 3178 while ((devq->alloc_queue.entries > 0) 3179 && (devq->alloc_openings > 0) 3180 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) { 3181 struct cam_ed_qinfo *qinfo; 3182 struct cam_ed *device; 3183 union ccb *work_ccb; 3184 struct cam_periph *drv; 3185 struct camq *drvq; 3186 3187 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3188 CAMQ_HEAD); 3189 device = qinfo->device; 3190 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3191 ("running device %p\n", device)); 3192 3193 drvq = &device->drvq; 3194 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: " 3195 "Device on queue without any work to do")); 3196 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3197 devq->alloc_openings--; 3198 devq->alloc_active++; 3199 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3200 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3201 drv->pinfo.priority); 3202 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3203 ("calling periph start\n")); 3204 drv->periph_start(drv, work_ccb); 3205 } else { 3206 /* 3207 * Malloc failure in alloc_ccb 3208 */ 3209 /* 3210 * XXX add us to a list to be run from free_ccb 3211 * if we don't have any ccbs active on this 3212 * device queue otherwise we may never get run 3213 * again. 3214 */ 3215 break; 3216 } 3217 3218 /* We may have more work. Attempt to reschedule. */ 3219 xpt_schedule_dev_allocq(bus, device); 3220 } 3221 devq->alloc_queue.qfrozen_cnt[0]--; 3222 } 3223 3224 static void 3225 xpt_run_dev_sendq(struct cam_eb *bus) 3226 { 3227 struct cam_devq *devq; 3228 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3229 3230 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3231 3232 devq = bus->sim->devq; 3233 3234 devq->send_queue.qfrozen_cnt[0]++; 3235 while ((devq->send_queue.entries > 0) 3236 && (devq->send_openings > 0) 3237 && (devq->send_queue.qfrozen_cnt[0] <= 1)) { 3238 struct cam_ed_qinfo *qinfo; 3239 struct cam_ed *device; 3240 union ccb *work_ccb; 3241 struct cam_sim *sim; 3242 3243 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3244 CAMQ_HEAD); 3245 device = qinfo->device; 3246 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3247 ("running device %p\n", device)); 3248 3249 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3250 if (work_ccb == NULL) { 3251 printf("device on run queue with no ccbs???\n"); 3252 continue; 3253 } 3254 3255 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3256 3257 mtx_lock(&xsoftc.xpt_lock); 3258 if (xsoftc.num_highpower <= 0) { 3259 /* 3260 * We got a high power command, but we 3261 * don't have any available slots. Freeze 3262 * the device queue until we have a slot 3263 * available. 3264 */ 3265 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3266 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3267 &work_ccb->ccb_h, 3268 xpt_links.stqe); 3269 3270 mtx_unlock(&xsoftc.xpt_lock); 3271 continue; 3272 } else { 3273 /* 3274 * Consume a high power slot while 3275 * this ccb runs. 3276 */ 3277 xsoftc.num_highpower--; 3278 } 3279 mtx_unlock(&xsoftc.xpt_lock); 3280 } 3281 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3282 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3283 3284 devq->send_openings--; 3285 devq->send_active++; 3286 3287 xpt_schedule_dev_sendq(bus, device); 3288 3289 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3290 /* 3291 * The client wants to freeze the queue 3292 * after this CCB is sent. 3293 */ 3294 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3295 } 3296 3297 /* In Target mode, the peripheral driver knows best... */ 3298 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3299 if ((device->inq_flags & SID_CmdQue) != 0 3300 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3301 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3302 else 3303 /* 3304 * Clear this in case of a retried CCB that 3305 * failed due to a rejected tag. 3306 */ 3307 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3308 } 3309 3310 switch (work_ccb->ccb_h.func_code) { 3311 case XPT_SCSI_IO: 3312 CAM_DEBUG(work_ccb->ccb_h.path, 3313 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3314 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3315 &device->inq_data), 3316 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3317 cdb_str, sizeof(cdb_str)))); 3318 break; 3319 case XPT_ATA_IO: 3320 CAM_DEBUG(work_ccb->ccb_h.path, 3321 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3322 ata_op_string(&work_ccb->ataio.cmd), 3323 ata_cmd_string(&work_ccb->ataio.cmd, 3324 cdb_str, sizeof(cdb_str)))); 3325 break; 3326 default: 3327 break; 3328 } 3329 3330 /* 3331 * Device queues can be shared among multiple sim instances 3332 * that reside on different busses. Use the SIM in the queue 3333 * CCB's path, rather than the one in the bus that was passed 3334 * into this function. 3335 */ 3336 sim = work_ccb->ccb_h.path->bus->sim; 3337 (*(sim->sim_action))(sim, work_ccb); 3338 } 3339 devq->send_queue.qfrozen_cnt[0]--; 3340 } 3341 3342 /* 3343 * This function merges stuff from the slave ccb into the master ccb, while 3344 * keeping important fields in the master ccb constant. 3345 */ 3346 void 3347 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3348 { 3349 3350 /* 3351 * Pull fields that are valid for peripheral drivers to set 3352 * into the master CCB along with the CCB "payload". 3353 */ 3354 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3355 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3356 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3357 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3358 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3359 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3360 } 3361 3362 void 3363 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3364 { 3365 3366 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3367 ccb_h->pinfo.priority = priority; 3368 ccb_h->path = path; 3369 ccb_h->path_id = path->bus->path_id; 3370 if (path->target) 3371 ccb_h->target_id = path->target->target_id; 3372 else 3373 ccb_h->target_id = CAM_TARGET_WILDCARD; 3374 if (path->device) { 3375 ccb_h->target_lun = path->device->lun_id; 3376 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3377 } else { 3378 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3379 } 3380 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3381 ccb_h->flags = 0; 3382 } 3383 3384 /* Path manipulation functions */ 3385 cam_status 3386 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3387 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3388 { 3389 struct cam_path *path; 3390 cam_status status; 3391 3392 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3393 3394 if (path == NULL) { 3395 status = CAM_RESRC_UNAVAIL; 3396 return(status); 3397 } 3398 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3399 if (status != CAM_REQ_CMP) { 3400 free(path, M_CAMPATH); 3401 path = NULL; 3402 } 3403 *new_path_ptr = path; 3404 return (status); 3405 } 3406 3407 cam_status 3408 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3409 struct cam_periph *periph, path_id_t path_id, 3410 target_id_t target_id, lun_id_t lun_id) 3411 { 3412 struct cam_path *path; 3413 struct cam_eb *bus = NULL; 3414 cam_status status; 3415 3416 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK); 3417 3418 bus = xpt_find_bus(path_id); 3419 if (bus != NULL) 3420 CAM_SIM_LOCK(bus->sim); 3421 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3422 if (bus != NULL) { 3423 CAM_SIM_UNLOCK(bus->sim); 3424 xpt_release_bus(bus); 3425 } 3426 if (status != CAM_REQ_CMP) { 3427 free(path, M_CAMPATH); 3428 path = NULL; 3429 } 3430 *new_path_ptr = path; 3431 return (status); 3432 } 3433 3434 cam_status 3435 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3436 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3437 { 3438 struct cam_eb *bus; 3439 struct cam_et *target; 3440 struct cam_ed *device; 3441 cam_status status; 3442 3443 status = CAM_REQ_CMP; /* Completed without error */ 3444 target = NULL; /* Wildcarded */ 3445 device = NULL; /* Wildcarded */ 3446 3447 /* 3448 * We will potentially modify the EDT, so block interrupts 3449 * that may attempt to create cam paths. 3450 */ 3451 bus = xpt_find_bus(path_id); 3452 if (bus == NULL) { 3453 status = CAM_PATH_INVALID; 3454 } else { 3455 target = xpt_find_target(bus, target_id); 3456 if (target == NULL) { 3457 /* Create one */ 3458 struct cam_et *new_target; 3459 3460 new_target = xpt_alloc_target(bus, target_id); 3461 if (new_target == NULL) { 3462 status = CAM_RESRC_UNAVAIL; 3463 } else { 3464 target = new_target; 3465 } 3466 } 3467 if (target != NULL) { 3468 device = xpt_find_device(target, lun_id); 3469 if (device == NULL) { 3470 /* Create one */ 3471 struct cam_ed *new_device; 3472 3473 new_device = 3474 (*(bus->xport->alloc_device))(bus, 3475 target, 3476 lun_id); 3477 if (new_device == NULL) { 3478 status = CAM_RESRC_UNAVAIL; 3479 } else { 3480 device = new_device; 3481 } 3482 } 3483 } 3484 } 3485 3486 /* 3487 * Only touch the user's data if we are successful. 3488 */ 3489 if (status == CAM_REQ_CMP) { 3490 new_path->periph = perph; 3491 new_path->bus = bus; 3492 new_path->target = target; 3493 new_path->device = device; 3494 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3495 } else { 3496 if (device != NULL) 3497 xpt_release_device(device); 3498 if (target != NULL) 3499 xpt_release_target(target); 3500 if (bus != NULL) 3501 xpt_release_bus(bus); 3502 } 3503 return (status); 3504 } 3505 3506 void 3507 xpt_release_path(struct cam_path *path) 3508 { 3509 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3510 if (path->device != NULL) { 3511 xpt_release_device(path->device); 3512 path->device = NULL; 3513 } 3514 if (path->target != NULL) { 3515 xpt_release_target(path->target); 3516 path->target = NULL; 3517 } 3518 if (path->bus != NULL) { 3519 xpt_release_bus(path->bus); 3520 path->bus = NULL; 3521 } 3522 } 3523 3524 void 3525 xpt_free_path(struct cam_path *path) 3526 { 3527 3528 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3529 xpt_release_path(path); 3530 free(path, M_CAMPATH); 3531 } 3532 3533 void 3534 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3535 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3536 { 3537 3538 xpt_lock_buses(); 3539 if (bus_ref) { 3540 if (path->bus) 3541 *bus_ref = path->bus->refcount; 3542 else 3543 *bus_ref = 0; 3544 } 3545 if (periph_ref) { 3546 if (path->periph) 3547 *periph_ref = path->periph->refcount; 3548 else 3549 *periph_ref = 0; 3550 } 3551 xpt_unlock_buses(); 3552 if (target_ref) { 3553 if (path->target) 3554 *target_ref = path->target->refcount; 3555 else 3556 *target_ref = 0; 3557 } 3558 if (device_ref) { 3559 if (path->device) 3560 *device_ref = path->device->refcount; 3561 else 3562 *device_ref = 0; 3563 } 3564 } 3565 3566 /* 3567 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3568 * in path1, 2 for match with wildcards in path2. 3569 */ 3570 int 3571 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3572 { 3573 int retval = 0; 3574 3575 if (path1->bus != path2->bus) { 3576 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3577 retval = 1; 3578 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3579 retval = 2; 3580 else 3581 return (-1); 3582 } 3583 if (path1->target != path2->target) { 3584 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3585 if (retval == 0) 3586 retval = 1; 3587 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3588 retval = 2; 3589 else 3590 return (-1); 3591 } 3592 if (path1->device != path2->device) { 3593 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3594 if (retval == 0) 3595 retval = 1; 3596 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3597 retval = 2; 3598 else 3599 return (-1); 3600 } 3601 return (retval); 3602 } 3603 3604 void 3605 xpt_print_path(struct cam_path *path) 3606 { 3607 3608 if (path == NULL) 3609 printf("(nopath): "); 3610 else { 3611 if (path->periph != NULL) 3612 printf("(%s%d:", path->periph->periph_name, 3613 path->periph->unit_number); 3614 else 3615 printf("(noperiph:"); 3616 3617 if (path->bus != NULL) 3618 printf("%s%d:%d:", path->bus->sim->sim_name, 3619 path->bus->sim->unit_number, 3620 path->bus->sim->bus_id); 3621 else 3622 printf("nobus:"); 3623 3624 if (path->target != NULL) 3625 printf("%d:", path->target->target_id); 3626 else 3627 printf("X:"); 3628 3629 if (path->device != NULL) 3630 printf("%d): ", path->device->lun_id); 3631 else 3632 printf("X): "); 3633 } 3634 } 3635 3636 void 3637 xpt_print(struct cam_path *path, const char *fmt, ...) 3638 { 3639 va_list ap; 3640 xpt_print_path(path); 3641 va_start(ap, fmt); 3642 vprintf(fmt, ap); 3643 va_end(ap); 3644 } 3645 3646 int 3647 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3648 { 3649 struct sbuf sb; 3650 3651 #ifdef INVARIANTS 3652 if (path != NULL && path->bus != NULL) 3653 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3654 #endif 3655 3656 sbuf_new(&sb, str, str_len, 0); 3657 3658 if (path == NULL) 3659 sbuf_printf(&sb, "(nopath): "); 3660 else { 3661 if (path->periph != NULL) 3662 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3663 path->periph->unit_number); 3664 else 3665 sbuf_printf(&sb, "(noperiph:"); 3666 3667 if (path->bus != NULL) 3668 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3669 path->bus->sim->unit_number, 3670 path->bus->sim->bus_id); 3671 else 3672 sbuf_printf(&sb, "nobus:"); 3673 3674 if (path->target != NULL) 3675 sbuf_printf(&sb, "%d:", path->target->target_id); 3676 else 3677 sbuf_printf(&sb, "X:"); 3678 3679 if (path->device != NULL) 3680 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3681 else 3682 sbuf_printf(&sb, "X): "); 3683 } 3684 sbuf_finish(&sb); 3685 3686 return(sbuf_len(&sb)); 3687 } 3688 3689 path_id_t 3690 xpt_path_path_id(struct cam_path *path) 3691 { 3692 return(path->bus->path_id); 3693 } 3694 3695 target_id_t 3696 xpt_path_target_id(struct cam_path *path) 3697 { 3698 if (path->target != NULL) 3699 return (path->target->target_id); 3700 else 3701 return (CAM_TARGET_WILDCARD); 3702 } 3703 3704 lun_id_t 3705 xpt_path_lun_id(struct cam_path *path) 3706 { 3707 if (path->device != NULL) 3708 return (path->device->lun_id); 3709 else 3710 return (CAM_LUN_WILDCARD); 3711 } 3712 3713 struct cam_sim * 3714 xpt_path_sim(struct cam_path *path) 3715 { 3716 3717 return (path->bus->sim); 3718 } 3719 3720 struct cam_periph* 3721 xpt_path_periph(struct cam_path *path) 3722 { 3723 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3724 3725 return (path->periph); 3726 } 3727 3728 int 3729 xpt_path_legacy_ata_id(struct cam_path *path) 3730 { 3731 struct cam_eb *bus; 3732 int bus_id; 3733 3734 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3735 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3736 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3737 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3738 return (-1); 3739 3740 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3741 path->bus->sim->unit_number < 2) { 3742 bus_id = path->bus->sim->unit_number; 3743 } else { 3744 bus_id = 2; 3745 xpt_lock_buses(); 3746 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3747 if (bus == path->bus) 3748 break; 3749 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3750 bus->sim->unit_number >= 2) || 3751 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3752 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3753 strcmp(bus->sim->sim_name, "siisch") == 0) 3754 bus_id++; 3755 } 3756 xpt_unlock_buses(); 3757 } 3758 if (path->target != NULL) { 3759 if (path->target->target_id < 2) 3760 return (bus_id * 2 + path->target->target_id); 3761 else 3762 return (-1); 3763 } else 3764 return (bus_id * 2); 3765 } 3766 3767 /* 3768 * Release a CAM control block for the caller. Remit the cost of the structure 3769 * to the device referenced by the path. If the this device had no 'credits' 3770 * and peripheral drivers have registered async callbacks for this notification 3771 * call them now. 3772 */ 3773 void 3774 xpt_release_ccb(union ccb *free_ccb) 3775 { 3776 struct cam_path *path; 3777 struct cam_ed *device; 3778 struct cam_eb *bus; 3779 struct cam_sim *sim; 3780 3781 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3782 path = free_ccb->ccb_h.path; 3783 device = path->device; 3784 bus = path->bus; 3785 sim = bus->sim; 3786 3787 mtx_assert(sim->mtx, MA_OWNED); 3788 3789 cam_ccbq_release_opening(&device->ccbq); 3790 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3791 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3792 cam_ccbq_resize(&device->ccbq, 3793 device->ccbq.dev_openings + device->ccbq.dev_active); 3794 } 3795 if (sim->ccb_count > sim->max_ccbs) { 3796 xpt_free_ccb(free_ccb); 3797 sim->ccb_count--; 3798 } else { 3799 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3800 xpt_links.sle); 3801 } 3802 if (sim->devq == NULL) { 3803 return; 3804 } 3805 sim->devq->alloc_openings++; 3806 sim->devq->alloc_active--; 3807 if (device_is_alloc_queued(device) == 0) 3808 xpt_schedule_dev_allocq(bus, device); 3809 xpt_run_dev_allocq(bus); 3810 } 3811 3812 /* Functions accessed by SIM drivers */ 3813 3814 static struct xpt_xport xport_default = { 3815 .alloc_device = xpt_alloc_device_default, 3816 .action = xpt_action_default, 3817 .async = xpt_dev_async_default, 3818 }; 3819 3820 /* 3821 * A sim structure, listing the SIM entry points and instance 3822 * identification info is passed to xpt_bus_register to hook the SIM 3823 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3824 * for this new bus and places it in the array of busses and assigns 3825 * it a path_id. The path_id may be influenced by "hard wiring" 3826 * information specified by the user. Once interrupt services are 3827 * available, the bus will be probed. 3828 */ 3829 int32_t 3830 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3831 { 3832 struct cam_eb *new_bus; 3833 struct cam_eb *old_bus; 3834 struct ccb_pathinq cpi; 3835 struct cam_path *path; 3836 cam_status status; 3837 3838 mtx_assert(sim->mtx, MA_OWNED); 3839 3840 sim->bus_id = bus; 3841 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3842 M_CAMXPT, M_NOWAIT); 3843 if (new_bus == NULL) { 3844 /* Couldn't satisfy request */ 3845 return (CAM_RESRC_UNAVAIL); 3846 } 3847 if (strcmp(sim->sim_name, "xpt") != 0) { 3848 sim->path_id = 3849 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3850 } 3851 3852 TAILQ_INIT(&new_bus->et_entries); 3853 new_bus->path_id = sim->path_id; 3854 cam_sim_hold(sim); 3855 new_bus->sim = sim; 3856 timevalclear(&new_bus->last_reset); 3857 new_bus->flags = 0; 3858 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3859 new_bus->generation = 0; 3860 3861 xpt_lock_buses(); 3862 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3863 while (old_bus != NULL 3864 && old_bus->path_id < new_bus->path_id) 3865 old_bus = TAILQ_NEXT(old_bus, links); 3866 if (old_bus != NULL) 3867 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3868 else 3869 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3870 xsoftc.bus_generation++; 3871 xpt_unlock_buses(); 3872 3873 /* 3874 * Set a default transport so that a PATH_INQ can be issued to 3875 * the SIM. This will then allow for probing and attaching of 3876 * a more appropriate transport. 3877 */ 3878 new_bus->xport = &xport_default; 3879 3880 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3881 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3882 if (status != CAM_REQ_CMP) { 3883 xpt_release_bus(new_bus); 3884 free(path, M_CAMXPT); 3885 return (CAM_RESRC_UNAVAIL); 3886 } 3887 3888 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3889 cpi.ccb_h.func_code = XPT_PATH_INQ; 3890 xpt_action((union ccb *)&cpi); 3891 3892 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3893 switch (cpi.transport) { 3894 case XPORT_SPI: 3895 case XPORT_SAS: 3896 case XPORT_FC: 3897 case XPORT_USB: 3898 case XPORT_ISCSI: 3899 case XPORT_PPB: 3900 new_bus->xport = scsi_get_xport(); 3901 break; 3902 case XPORT_ATA: 3903 case XPORT_SATA: 3904 new_bus->xport = ata_get_xport(); 3905 break; 3906 default: 3907 new_bus->xport = &xport_default; 3908 break; 3909 } 3910 } 3911 3912 /* Notify interested parties */ 3913 if (sim->path_id != CAM_XPT_PATH_ID) { 3914 union ccb *scan_ccb; 3915 3916 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3917 /* Initiate bus rescan. */ 3918 scan_ccb = xpt_alloc_ccb_nowait(); 3919 scan_ccb->ccb_h.path = path; 3920 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3921 scan_ccb->crcn.flags = 0; 3922 xpt_rescan(scan_ccb); 3923 } else 3924 xpt_free_path(path); 3925 return (CAM_SUCCESS); 3926 } 3927 3928 int32_t 3929 xpt_bus_deregister(path_id_t pathid) 3930 { 3931 struct cam_path bus_path; 3932 cam_status status; 3933 3934 status = xpt_compile_path(&bus_path, NULL, pathid, 3935 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3936 if (status != CAM_REQ_CMP) 3937 return (status); 3938 3939 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3940 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3941 3942 /* Release the reference count held while registered. */ 3943 xpt_release_bus(bus_path.bus); 3944 xpt_release_path(&bus_path); 3945 3946 return (CAM_REQ_CMP); 3947 } 3948 3949 static path_id_t 3950 xptnextfreepathid(void) 3951 { 3952 struct cam_eb *bus; 3953 path_id_t pathid; 3954 const char *strval; 3955 3956 pathid = 0; 3957 xpt_lock_buses(); 3958 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3959 retry: 3960 /* Find an unoccupied pathid */ 3961 while (bus != NULL && bus->path_id <= pathid) { 3962 if (bus->path_id == pathid) 3963 pathid++; 3964 bus = TAILQ_NEXT(bus, links); 3965 } 3966 xpt_unlock_buses(); 3967 3968 /* 3969 * Ensure that this pathid is not reserved for 3970 * a bus that may be registered in the future. 3971 */ 3972 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3973 ++pathid; 3974 /* Start the search over */ 3975 xpt_lock_buses(); 3976 goto retry; 3977 } 3978 return (pathid); 3979 } 3980 3981 static path_id_t 3982 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3983 { 3984 path_id_t pathid; 3985 int i, dunit, val; 3986 char buf[32]; 3987 const char *dname; 3988 3989 pathid = CAM_XPT_PATH_ID; 3990 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3991 i = 0; 3992 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3993 if (strcmp(dname, "scbus")) { 3994 /* Avoid a bit of foot shooting. */ 3995 continue; 3996 } 3997 if (dunit < 0) /* unwired?! */ 3998 continue; 3999 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4000 if (sim_bus == val) { 4001 pathid = dunit; 4002 break; 4003 } 4004 } else if (sim_bus == 0) { 4005 /* Unspecified matches bus 0 */ 4006 pathid = dunit; 4007 break; 4008 } else { 4009 printf("Ambiguous scbus configuration for %s%d " 4010 "bus %d, cannot wire down. The kernel " 4011 "config entry for scbus%d should " 4012 "specify a controller bus.\n" 4013 "Scbus will be assigned dynamically.\n", 4014 sim_name, sim_unit, sim_bus, dunit); 4015 break; 4016 } 4017 } 4018 4019 if (pathid == CAM_XPT_PATH_ID) 4020 pathid = xptnextfreepathid(); 4021 return (pathid); 4022 } 4023 4024 static const char * 4025 xpt_async_string(u_int32_t async_code) 4026 { 4027 4028 switch (async_code) { 4029 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4030 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4031 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4032 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4033 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4034 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4035 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4036 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4037 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4038 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4039 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4040 case AC_CONTRACT: return ("AC_CONTRACT"); 4041 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4042 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4043 } 4044 return ("AC_UNKNOWN"); 4045 } 4046 4047 void 4048 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4049 { 4050 struct cam_eb *bus; 4051 struct cam_et *target, *next_target; 4052 struct cam_ed *device, *next_device; 4053 4054 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4055 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4056 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4057 4058 /* 4059 * Most async events come from a CAM interrupt context. In 4060 * a few cases, the error recovery code at the peripheral layer, 4061 * which may run from our SWI or a process context, may signal 4062 * deferred events with a call to xpt_async. 4063 */ 4064 4065 bus = path->bus; 4066 4067 if (async_code == AC_BUS_RESET) { 4068 /* Update our notion of when the last reset occurred */ 4069 microtime(&bus->last_reset); 4070 } 4071 4072 for (target = TAILQ_FIRST(&bus->et_entries); 4073 target != NULL; 4074 target = next_target) { 4075 4076 next_target = TAILQ_NEXT(target, links); 4077 4078 if (path->target != target 4079 && path->target->target_id != CAM_TARGET_WILDCARD 4080 && target->target_id != CAM_TARGET_WILDCARD) 4081 continue; 4082 4083 if (async_code == AC_SENT_BDR) { 4084 /* Update our notion of when the last reset occurred */ 4085 microtime(&path->target->last_reset); 4086 } 4087 4088 for (device = TAILQ_FIRST(&target->ed_entries); 4089 device != NULL; 4090 device = next_device) { 4091 4092 next_device = TAILQ_NEXT(device, links); 4093 4094 if (path->device != device 4095 && path->device->lun_id != CAM_LUN_WILDCARD 4096 && device->lun_id != CAM_LUN_WILDCARD) 4097 continue; 4098 /* 4099 * The async callback could free the device. 4100 * If it is a broadcast async, it doesn't hold 4101 * device reference, so take our own reference. 4102 */ 4103 xpt_acquire_device(device); 4104 (*(bus->xport->async))(async_code, bus, 4105 target, device, 4106 async_arg); 4107 4108 xpt_async_bcast(&device->asyncs, async_code, 4109 path, async_arg); 4110 xpt_release_device(device); 4111 } 4112 } 4113 4114 /* 4115 * If this wasn't a fully wildcarded async, tell all 4116 * clients that want all async events. 4117 */ 4118 if (bus != xpt_periph->path->bus) 4119 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4120 path, async_arg); 4121 } 4122 4123 static void 4124 xpt_async_bcast(struct async_list *async_head, 4125 u_int32_t async_code, 4126 struct cam_path *path, void *async_arg) 4127 { 4128 struct async_node *cur_entry; 4129 4130 cur_entry = SLIST_FIRST(async_head); 4131 while (cur_entry != NULL) { 4132 struct async_node *next_entry; 4133 /* 4134 * Grab the next list entry before we call the current 4135 * entry's callback. This is because the callback function 4136 * can delete its async callback entry. 4137 */ 4138 next_entry = SLIST_NEXT(cur_entry, links); 4139 if ((cur_entry->event_enable & async_code) != 0) 4140 cur_entry->callback(cur_entry->callback_arg, 4141 async_code, path, 4142 async_arg); 4143 cur_entry = next_entry; 4144 } 4145 } 4146 4147 static void 4148 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4149 struct cam_et *target, struct cam_ed *device, 4150 void *async_arg) 4151 { 4152 printf("%s called\n", __func__); 4153 } 4154 4155 u_int32_t 4156 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count) 4157 { 4158 struct cam_ed *dev = path->device; 4159 4160 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4161 dev->sim->devq->alloc_openings += 4162 cam_ccbq_freeze(&dev->ccbq, rl, count); 4163 /* Remove frozen device from allocq. */ 4164 if (device_is_alloc_queued(dev) && 4165 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4166 CAMQ_GET_PRIO(&dev->drvq)))) { 4167 camq_remove(&dev->sim->devq->alloc_queue, 4168 dev->alloc_ccb_entry.pinfo.index); 4169 } 4170 /* Remove frozen device from sendq. */ 4171 if (device_is_send_queued(dev) && 4172 cam_ccbq_frozen_top(&dev->ccbq)) { 4173 camq_remove(&dev->sim->devq->send_queue, 4174 dev->send_ccb_entry.pinfo.index); 4175 } 4176 return (dev->ccbq.queue.qfrozen_cnt[rl]); 4177 } 4178 4179 u_int32_t 4180 xpt_freeze_devq(struct cam_path *path, u_int count) 4181 { 4182 4183 return (xpt_freeze_devq_rl(path, 0, count)); 4184 } 4185 4186 u_int32_t 4187 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4188 { 4189 4190 mtx_assert(sim->mtx, MA_OWNED); 4191 sim->devq->send_queue.qfrozen_cnt[0] += count; 4192 return (sim->devq->send_queue.qfrozen_cnt[0]); 4193 } 4194 4195 static void 4196 xpt_release_devq_timeout(void *arg) 4197 { 4198 struct cam_ed *device; 4199 4200 device = (struct cam_ed *)arg; 4201 4202 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE); 4203 } 4204 4205 void 4206 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4207 { 4208 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4209 4210 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue); 4211 } 4212 4213 void 4214 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue) 4215 { 4216 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4217 4218 xpt_release_devq_device(path->device, rl, count, run_queue); 4219 } 4220 4221 static void 4222 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue) 4223 { 4224 4225 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) { 4226 #ifdef INVARIANTS 4227 printf("xpt_release_devq(%d): requested %u > present %u\n", 4228 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]); 4229 #endif 4230 count = dev->ccbq.queue.qfrozen_cnt[rl]; 4231 } 4232 dev->sim->devq->alloc_openings -= 4233 cam_ccbq_release(&dev->ccbq, rl, count); 4234 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4235 CAMQ_GET_PRIO(&dev->drvq))) == 0) { 4236 if (xpt_schedule_dev_allocq(dev->target->bus, dev)) 4237 xpt_run_dev_allocq(dev->target->bus); 4238 } 4239 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) { 4240 /* 4241 * No longer need to wait for a successful 4242 * command completion. 4243 */ 4244 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4245 /* 4246 * Remove any timeouts that might be scheduled 4247 * to release this queue. 4248 */ 4249 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4250 callout_stop(&dev->callout); 4251 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4252 } 4253 if (run_queue == 0) 4254 return; 4255 /* 4256 * Now that we are unfrozen schedule the 4257 * device so any pending transactions are 4258 * run. 4259 */ 4260 if (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4261 xpt_run_dev_sendq(dev->target->bus); 4262 } 4263 } 4264 4265 void 4266 xpt_release_simq(struct cam_sim *sim, int run_queue) 4267 { 4268 struct camq *sendq; 4269 4270 mtx_assert(sim->mtx, MA_OWNED); 4271 sendq = &(sim->devq->send_queue); 4272 if (sendq->qfrozen_cnt[0] <= 0) { 4273 #ifdef INVARIANTS 4274 printf("xpt_release_simq: requested 1 > present %u\n", 4275 sendq->qfrozen_cnt[0]); 4276 #endif 4277 } else 4278 sendq->qfrozen_cnt[0]--; 4279 if (sendq->qfrozen_cnt[0] == 0) { 4280 /* 4281 * If there is a timeout scheduled to release this 4282 * sim queue, remove it. The queue frozen count is 4283 * already at 0. 4284 */ 4285 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4286 callout_stop(&sim->callout); 4287 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4288 } 4289 if (run_queue) { 4290 struct cam_eb *bus; 4291 4292 /* 4293 * Now that we are unfrozen run the send queue. 4294 */ 4295 bus = xpt_find_bus(sim->path_id); 4296 xpt_run_dev_sendq(bus); 4297 xpt_release_bus(bus); 4298 } 4299 } 4300 } 4301 4302 /* 4303 * XXX Appears to be unused. 4304 */ 4305 static void 4306 xpt_release_simq_timeout(void *arg) 4307 { 4308 struct cam_sim *sim; 4309 4310 sim = (struct cam_sim *)arg; 4311 xpt_release_simq(sim, /* run_queue */ TRUE); 4312 } 4313 4314 void 4315 xpt_done(union ccb *done_ccb) 4316 { 4317 struct cam_sim *sim; 4318 int first; 4319 4320 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4321 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4322 /* 4323 * Queue up the request for handling by our SWI handler 4324 * any of the "non-immediate" type of ccbs. 4325 */ 4326 sim = done_ccb->ccb_h.path->bus->sim; 4327 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4328 sim_links.tqe); 4329 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4330 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED | 4331 CAM_SIM_BATCH)) == 0) { 4332 mtx_lock(&cam_simq_lock); 4333 first = TAILQ_EMPTY(&cam_simq); 4334 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4335 mtx_unlock(&cam_simq_lock); 4336 sim->flags |= CAM_SIM_ON_DONEQ; 4337 if (first) 4338 swi_sched(cambio_ih, 0); 4339 } 4340 } 4341 } 4342 4343 void 4344 xpt_batch_start(struct cam_sim *sim) 4345 { 4346 4347 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set")); 4348 sim->flags |= CAM_SIM_BATCH; 4349 } 4350 4351 void 4352 xpt_batch_done(struct cam_sim *sim) 4353 { 4354 4355 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set")); 4356 sim->flags &= ~CAM_SIM_BATCH; 4357 if (!TAILQ_EMPTY(&sim->sim_doneq) && 4358 (sim->flags & CAM_SIM_ON_DONEQ) == 0) 4359 camisr_runqueue(&sim->sim_doneq); 4360 } 4361 4362 union ccb * 4363 xpt_alloc_ccb() 4364 { 4365 union ccb *new_ccb; 4366 4367 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4368 return (new_ccb); 4369 } 4370 4371 union ccb * 4372 xpt_alloc_ccb_nowait() 4373 { 4374 union ccb *new_ccb; 4375 4376 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4377 return (new_ccb); 4378 } 4379 4380 void 4381 xpt_free_ccb(union ccb *free_ccb) 4382 { 4383 free(free_ccb, M_CAMCCB); 4384 } 4385 4386 4387 4388 /* Private XPT functions */ 4389 4390 /* 4391 * Get a CAM control block for the caller. Charge the structure to the device 4392 * referenced by the path. If the this device has no 'credits' then the 4393 * device already has the maximum number of outstanding operations under way 4394 * and we return NULL. If we don't have sufficient resources to allocate more 4395 * ccbs, we also return NULL. 4396 */ 4397 static union ccb * 4398 xpt_get_ccb(struct cam_ed *device) 4399 { 4400 union ccb *new_ccb; 4401 struct cam_sim *sim; 4402 4403 sim = device->sim; 4404 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4405 new_ccb = xpt_alloc_ccb_nowait(); 4406 if (new_ccb == NULL) { 4407 return (NULL); 4408 } 4409 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4410 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4411 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4412 xpt_links.sle); 4413 sim->ccb_count++; 4414 } 4415 cam_ccbq_take_opening(&device->ccbq); 4416 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4417 return (new_ccb); 4418 } 4419 4420 static void 4421 xpt_release_bus(struct cam_eb *bus) 4422 { 4423 4424 xpt_lock_buses(); 4425 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4426 if (--bus->refcount > 0) { 4427 xpt_unlock_buses(); 4428 return; 4429 } 4430 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4431 ("refcount is zero, but target list is not empty")); 4432 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4433 xsoftc.bus_generation++; 4434 xpt_unlock_buses(); 4435 cam_sim_release(bus->sim); 4436 free(bus, M_CAMXPT); 4437 } 4438 4439 static struct cam_et * 4440 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4441 { 4442 struct cam_et *cur_target, *target; 4443 4444 mtx_assert(bus->sim->mtx, MA_OWNED); 4445 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4446 M_NOWAIT|M_ZERO); 4447 if (target == NULL) 4448 return (NULL); 4449 4450 TAILQ_INIT(&target->ed_entries); 4451 target->bus = bus; 4452 target->target_id = target_id; 4453 target->refcount = 1; 4454 target->generation = 0; 4455 target->luns = NULL; 4456 timevalclear(&target->last_reset); 4457 /* 4458 * Hold a reference to our parent bus so it 4459 * will not go away before we do. 4460 */ 4461 xpt_lock_buses(); 4462 bus->refcount++; 4463 xpt_unlock_buses(); 4464 4465 /* Insertion sort into our bus's target list */ 4466 cur_target = TAILQ_FIRST(&bus->et_entries); 4467 while (cur_target != NULL && cur_target->target_id < target_id) 4468 cur_target = TAILQ_NEXT(cur_target, links); 4469 if (cur_target != NULL) { 4470 TAILQ_INSERT_BEFORE(cur_target, target, links); 4471 } else { 4472 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4473 } 4474 bus->generation++; 4475 return (target); 4476 } 4477 4478 static void 4479 xpt_release_target(struct cam_et *target) 4480 { 4481 4482 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4483 if (--target->refcount > 0) 4484 return; 4485 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4486 ("refcount is zero, but device list is not empty")); 4487 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4488 target->bus->generation++; 4489 xpt_release_bus(target->bus); 4490 if (target->luns) 4491 free(target->luns, M_CAMXPT); 4492 free(target, M_CAMXPT); 4493 } 4494 4495 static struct cam_ed * 4496 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4497 lun_id_t lun_id) 4498 { 4499 struct cam_ed *device; 4500 4501 device = xpt_alloc_device(bus, target, lun_id); 4502 if (device == NULL) 4503 return (NULL); 4504 4505 device->mintags = 1; 4506 device->maxtags = 1; 4507 bus->sim->max_ccbs += device->ccbq.devq_openings; 4508 return (device); 4509 } 4510 4511 struct cam_ed * 4512 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4513 { 4514 struct cam_ed *cur_device, *device; 4515 struct cam_devq *devq; 4516 cam_status status; 4517 4518 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4519 /* Make space for us in the device queue on our bus */ 4520 devq = bus->sim->devq; 4521 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4522 if (status != CAM_REQ_CMP) 4523 return (NULL); 4524 4525 device = (struct cam_ed *)malloc(sizeof(*device), 4526 M_CAMDEV, M_NOWAIT|M_ZERO); 4527 if (device == NULL) 4528 return (NULL); 4529 4530 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4531 device->alloc_ccb_entry.device = device; 4532 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4533 device->send_ccb_entry.device = device; 4534 device->target = target; 4535 device->lun_id = lun_id; 4536 device->sim = bus->sim; 4537 /* Initialize our queues */ 4538 if (camq_init(&device->drvq, 0) != 0) { 4539 free(device, M_CAMDEV); 4540 return (NULL); 4541 } 4542 if (cam_ccbq_init(&device->ccbq, 4543 bus->sim->max_dev_openings) != 0) { 4544 camq_fini(&device->drvq); 4545 free(device, M_CAMDEV); 4546 return (NULL); 4547 } 4548 SLIST_INIT(&device->asyncs); 4549 SLIST_INIT(&device->periphs); 4550 device->generation = 0; 4551 device->owner = NULL; 4552 device->flags = CAM_DEV_UNCONFIGURED; 4553 device->tag_delay_count = 0; 4554 device->tag_saved_openings = 0; 4555 device->refcount = 1; 4556 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4557 4558 cur_device = TAILQ_FIRST(&target->ed_entries); 4559 while (cur_device != NULL && cur_device->lun_id < lun_id) 4560 cur_device = TAILQ_NEXT(cur_device, links); 4561 if (cur_device != NULL) 4562 TAILQ_INSERT_BEFORE(cur_device, device, links); 4563 else 4564 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4565 target->refcount++; 4566 target->generation++; 4567 return (device); 4568 } 4569 4570 void 4571 xpt_acquire_device(struct cam_ed *device) 4572 { 4573 4574 mtx_assert(device->sim->mtx, MA_OWNED); 4575 device->refcount++; 4576 } 4577 4578 void 4579 xpt_release_device(struct cam_ed *device) 4580 { 4581 struct cam_devq *devq; 4582 4583 mtx_assert(device->sim->mtx, MA_OWNED); 4584 if (--device->refcount > 0) 4585 return; 4586 4587 KASSERT(SLIST_EMPTY(&device->periphs), 4588 ("refcount is zero, but periphs list is not empty")); 4589 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4590 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4591 panic("Removing device while still queued for ccbs"); 4592 4593 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4594 callout_stop(&device->callout); 4595 4596 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4597 device->target->generation++; 4598 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4599 /* Release our slot in the devq */ 4600 devq = device->target->bus->sim->devq; 4601 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4602 camq_fini(&device->drvq); 4603 cam_ccbq_fini(&device->ccbq); 4604 /* 4605 * Free allocated memory. free(9) does nothing if the 4606 * supplied pointer is NULL, so it is safe to call without 4607 * checking. 4608 */ 4609 free(device->supported_vpds, M_CAMXPT); 4610 free(device->device_id, M_CAMXPT); 4611 free(device->physpath, M_CAMXPT); 4612 free(device->rcap_buf, M_CAMXPT); 4613 free(device->serial_num, M_CAMXPT); 4614 4615 xpt_release_target(device->target); 4616 free(device, M_CAMDEV); 4617 } 4618 4619 u_int32_t 4620 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4621 { 4622 int diff; 4623 int result; 4624 struct cam_ed *dev; 4625 4626 dev = path->device; 4627 4628 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4629 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4630 if (result == CAM_REQ_CMP && (diff < 0)) { 4631 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4632 } 4633 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4634 || (dev->inq_flags & SID_CmdQue) != 0) 4635 dev->tag_saved_openings = newopenings; 4636 /* Adjust the global limit */ 4637 dev->sim->max_ccbs += diff; 4638 return (result); 4639 } 4640 4641 static struct cam_eb * 4642 xpt_find_bus(path_id_t path_id) 4643 { 4644 struct cam_eb *bus; 4645 4646 xpt_lock_buses(); 4647 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4648 bus != NULL; 4649 bus = TAILQ_NEXT(bus, links)) { 4650 if (bus->path_id == path_id) { 4651 bus->refcount++; 4652 break; 4653 } 4654 } 4655 xpt_unlock_buses(); 4656 return (bus); 4657 } 4658 4659 static struct cam_et * 4660 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4661 { 4662 struct cam_et *target; 4663 4664 mtx_assert(bus->sim->mtx, MA_OWNED); 4665 for (target = TAILQ_FIRST(&bus->et_entries); 4666 target != NULL; 4667 target = TAILQ_NEXT(target, links)) { 4668 if (target->target_id == target_id) { 4669 target->refcount++; 4670 break; 4671 } 4672 } 4673 return (target); 4674 } 4675 4676 static struct cam_ed * 4677 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4678 { 4679 struct cam_ed *device; 4680 4681 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4682 for (device = TAILQ_FIRST(&target->ed_entries); 4683 device != NULL; 4684 device = TAILQ_NEXT(device, links)) { 4685 if (device->lun_id == lun_id) { 4686 device->refcount++; 4687 break; 4688 } 4689 } 4690 return (device); 4691 } 4692 4693 void 4694 xpt_start_tags(struct cam_path *path) 4695 { 4696 struct ccb_relsim crs; 4697 struct cam_ed *device; 4698 struct cam_sim *sim; 4699 int newopenings; 4700 4701 device = path->device; 4702 sim = path->bus->sim; 4703 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4704 xpt_freeze_devq(path, /*count*/1); 4705 device->inq_flags |= SID_CmdQue; 4706 if (device->tag_saved_openings != 0) 4707 newopenings = device->tag_saved_openings; 4708 else 4709 newopenings = min(device->maxtags, 4710 sim->max_tagged_dev_openings); 4711 xpt_dev_ccbq_resize(path, newopenings); 4712 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4713 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4714 crs.ccb_h.func_code = XPT_REL_SIMQ; 4715 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4716 crs.openings 4717 = crs.release_timeout 4718 = crs.qfrozen_cnt 4719 = 0; 4720 xpt_action((union ccb *)&crs); 4721 } 4722 4723 void 4724 xpt_stop_tags(struct cam_path *path) 4725 { 4726 struct ccb_relsim crs; 4727 struct cam_ed *device; 4728 struct cam_sim *sim; 4729 4730 device = path->device; 4731 sim = path->bus->sim; 4732 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4733 device->tag_delay_count = 0; 4734 xpt_freeze_devq(path, /*count*/1); 4735 device->inq_flags &= ~SID_CmdQue; 4736 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4737 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4738 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4739 crs.ccb_h.func_code = XPT_REL_SIMQ; 4740 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4741 crs.openings 4742 = crs.release_timeout 4743 = crs.qfrozen_cnt 4744 = 0; 4745 xpt_action((union ccb *)&crs); 4746 } 4747 4748 static void 4749 xpt_boot_delay(void *arg) 4750 { 4751 4752 xpt_release_boot(); 4753 } 4754 4755 static void 4756 xpt_config(void *arg) 4757 { 4758 /* 4759 * Now that interrupts are enabled, go find our devices 4760 */ 4761 4762 /* Setup debugging path */ 4763 if (cam_dflags != CAM_DEBUG_NONE) { 4764 if (xpt_create_path_unlocked(&cam_dpath, xpt_periph, 4765 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4766 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4767 printf("xpt_config: xpt_create_path() failed for debug" 4768 " target %d:%d:%d, debugging disabled\n", 4769 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4770 cam_dflags = CAM_DEBUG_NONE; 4771 } 4772 } else 4773 cam_dpath = NULL; 4774 4775 periphdriver_init(1); 4776 xpt_hold_boot(); 4777 callout_init(&xsoftc.boot_callout, 1); 4778 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4779 xpt_boot_delay, NULL); 4780 /* Fire up rescan thread. */ 4781 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4782 printf("xpt_config: failed to create rescan thread.\n"); 4783 } 4784 } 4785 4786 void 4787 xpt_hold_boot(void) 4788 { 4789 xpt_lock_buses(); 4790 xsoftc.buses_to_config++; 4791 xpt_unlock_buses(); 4792 } 4793 4794 void 4795 xpt_release_boot(void) 4796 { 4797 xpt_lock_buses(); 4798 xsoftc.buses_to_config--; 4799 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4800 struct xpt_task *task; 4801 4802 xsoftc.buses_config_done = 1; 4803 xpt_unlock_buses(); 4804 /* Call manually because we don't have any busses */ 4805 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4806 if (task != NULL) { 4807 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4808 taskqueue_enqueue(taskqueue_thread, &task->task); 4809 } 4810 } else 4811 xpt_unlock_buses(); 4812 } 4813 4814 /* 4815 * If the given device only has one peripheral attached to it, and if that 4816 * peripheral is the passthrough driver, announce it. This insures that the 4817 * user sees some sort of announcement for every peripheral in their system. 4818 */ 4819 static int 4820 xptpassannouncefunc(struct cam_ed *device, void *arg) 4821 { 4822 struct cam_periph *periph; 4823 int i; 4824 4825 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4826 periph = SLIST_NEXT(periph, periph_links), i++); 4827 4828 periph = SLIST_FIRST(&device->periphs); 4829 if ((i == 1) 4830 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4831 xpt_announce_periph(periph, NULL); 4832 4833 return(1); 4834 } 4835 4836 static void 4837 xpt_finishconfig_task(void *context, int pending) 4838 { 4839 4840 periphdriver_init(2); 4841 /* 4842 * Check for devices with no "standard" peripheral driver 4843 * attached. For any devices like that, announce the 4844 * passthrough driver so the user will see something. 4845 */ 4846 if (!bootverbose) 4847 xpt_for_all_devices(xptpassannouncefunc, NULL); 4848 4849 /* Release our hook so that the boot can continue. */ 4850 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4851 free(xsoftc.xpt_config_hook, M_CAMXPT); 4852 xsoftc.xpt_config_hook = NULL; 4853 4854 free(context, M_CAMXPT); 4855 } 4856 4857 cam_status 4858 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4859 struct cam_path *path) 4860 { 4861 struct ccb_setasync csa; 4862 cam_status status; 4863 int xptpath = 0; 4864 4865 if (path == NULL) { 4866 mtx_lock(&xsoftc.xpt_lock); 4867 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4868 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4869 if (status != CAM_REQ_CMP) { 4870 mtx_unlock(&xsoftc.xpt_lock); 4871 return (status); 4872 } 4873 xptpath = 1; 4874 } 4875 4876 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4877 csa.ccb_h.func_code = XPT_SASYNC_CB; 4878 csa.event_enable = event; 4879 csa.callback = cbfunc; 4880 csa.callback_arg = cbarg; 4881 xpt_action((union ccb *)&csa); 4882 status = csa.ccb_h.status; 4883 4884 if (xptpath) { 4885 xpt_free_path(path); 4886 mtx_unlock(&xsoftc.xpt_lock); 4887 } 4888 4889 if ((status == CAM_REQ_CMP) && 4890 (csa.event_enable & AC_FOUND_DEVICE)) { 4891 /* 4892 * Get this peripheral up to date with all 4893 * the currently existing devices. 4894 */ 4895 xpt_for_all_devices(xptsetasyncfunc, &csa); 4896 } 4897 if ((status == CAM_REQ_CMP) && 4898 (csa.event_enable & AC_PATH_REGISTERED)) { 4899 /* 4900 * Get this peripheral up to date with all 4901 * the currently existing busses. 4902 */ 4903 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4904 } 4905 4906 return (status); 4907 } 4908 4909 static void 4910 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4911 { 4912 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4913 4914 switch (work_ccb->ccb_h.func_code) { 4915 /* Common cases first */ 4916 case XPT_PATH_INQ: /* Path routing inquiry */ 4917 { 4918 struct ccb_pathinq *cpi; 4919 4920 cpi = &work_ccb->cpi; 4921 cpi->version_num = 1; /* XXX??? */ 4922 cpi->hba_inquiry = 0; 4923 cpi->target_sprt = 0; 4924 cpi->hba_misc = 0; 4925 cpi->hba_eng_cnt = 0; 4926 cpi->max_target = 0; 4927 cpi->max_lun = 0; 4928 cpi->initiator_id = 0; 4929 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4930 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4931 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4932 cpi->unit_number = sim->unit_number; 4933 cpi->bus_id = sim->bus_id; 4934 cpi->base_transfer_speed = 0; 4935 cpi->protocol = PROTO_UNSPECIFIED; 4936 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4937 cpi->transport = XPORT_UNSPECIFIED; 4938 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4939 cpi->ccb_h.status = CAM_REQ_CMP; 4940 xpt_done(work_ccb); 4941 break; 4942 } 4943 default: 4944 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4945 xpt_done(work_ccb); 4946 break; 4947 } 4948 } 4949 4950 /* 4951 * The xpt as a "controller" has no interrupt sources, so polling 4952 * is a no-op. 4953 */ 4954 static void 4955 xptpoll(struct cam_sim *sim) 4956 { 4957 } 4958 4959 void 4960 xpt_lock_buses(void) 4961 { 4962 mtx_lock(&xsoftc.xpt_topo_lock); 4963 } 4964 4965 void 4966 xpt_unlock_buses(void) 4967 { 4968 mtx_unlock(&xsoftc.xpt_topo_lock); 4969 } 4970 4971 static void 4972 camisr(void *dummy) 4973 { 4974 cam_simq_t queue; 4975 struct cam_sim *sim; 4976 4977 mtx_lock(&cam_simq_lock); 4978 TAILQ_INIT(&queue); 4979 while (!TAILQ_EMPTY(&cam_simq)) { 4980 TAILQ_CONCAT(&queue, &cam_simq, links); 4981 mtx_unlock(&cam_simq_lock); 4982 4983 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4984 TAILQ_REMOVE(&queue, sim, links); 4985 CAM_SIM_LOCK(sim); 4986 camisr_runqueue(&sim->sim_doneq); 4987 sim->flags &= ~CAM_SIM_ON_DONEQ; 4988 CAM_SIM_UNLOCK(sim); 4989 } 4990 mtx_lock(&cam_simq_lock); 4991 } 4992 mtx_unlock(&cam_simq_lock); 4993 } 4994 4995 static void 4996 camisr_runqueue(void *V_queue) 4997 { 4998 cam_isrq_t *queue = V_queue; 4999 struct ccb_hdr *ccb_h; 5000 5001 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 5002 int runq; 5003 5004 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 5005 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5006 5007 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 5008 ("camisr\n")); 5009 5010 runq = FALSE; 5011 5012 if (ccb_h->flags & CAM_HIGH_POWER) { 5013 struct highpowerlist *hphead; 5014 union ccb *send_ccb; 5015 5016 mtx_lock(&xsoftc.xpt_lock); 5017 hphead = &xsoftc.highpowerq; 5018 5019 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 5020 5021 /* 5022 * Increment the count since this command is done. 5023 */ 5024 xsoftc.num_highpower++; 5025 5026 /* 5027 * Any high powered commands queued up? 5028 */ 5029 if (send_ccb != NULL) { 5030 5031 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 5032 mtx_unlock(&xsoftc.xpt_lock); 5033 5034 xpt_release_devq(send_ccb->ccb_h.path, 5035 /*count*/1, /*runqueue*/TRUE); 5036 } else 5037 mtx_unlock(&xsoftc.xpt_lock); 5038 } 5039 5040 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5041 struct cam_ed *dev; 5042 5043 dev = ccb_h->path->device; 5044 5045 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5046 ccb_h->path->bus->sim->devq->send_active--; 5047 ccb_h->path->bus->sim->devq->send_openings++; 5048 runq = TRUE; 5049 5050 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5051 && (dev->ccbq.dev_active == 0))) { 5052 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5053 xpt_release_devq(ccb_h->path, /*count*/1, 5054 /*run_queue*/FALSE); 5055 } 5056 5057 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5058 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5059 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5060 xpt_release_devq(ccb_h->path, /*count*/1, 5061 /*run_queue*/FALSE); 5062 } 5063 5064 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5065 && (--dev->tag_delay_count == 0)) 5066 xpt_start_tags(ccb_h->path); 5067 if (!device_is_send_queued(dev)) { 5068 (void)xpt_schedule_dev_sendq(ccb_h->path->bus, 5069 dev); 5070 } 5071 } 5072 5073 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5074 xpt_release_simq(ccb_h->path->bus->sim, 5075 /*run_queue*/TRUE); 5076 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5077 runq = FALSE; 5078 } 5079 5080 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5081 && (ccb_h->status & CAM_DEV_QFRZN)) { 5082 xpt_release_devq(ccb_h->path, /*count*/1, 5083 /*run_queue*/TRUE); 5084 ccb_h->status &= ~CAM_DEV_QFRZN; 5085 } else if (runq) { 5086 xpt_run_dev_sendq(ccb_h->path->bus); 5087 } 5088 5089 /* Call the peripheral driver's callback */ 5090 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5091 } 5092 } 5093