1 /* 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/systm.h> 34 #include <sys/types.h> 35 #include <sys/malloc.h> 36 #include <sys/kernel.h> 37 #include <sys/time.h> 38 #include <sys/conf.h> 39 #include <sys/fcntl.h> 40 #include <sys/md5.h> 41 #include <sys/devicestat.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 45 #ifdef PC98 46 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 47 #endif 48 49 #include <sys/ipl.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_sim.h> 55 #include <cam/cam_xpt.h> 56 #include <cam/cam_xpt_sim.h> 57 #include <cam/cam_xpt_periph.h> 58 #include <cam/cam_debug.h> 59 60 #include <cam/scsi/scsi_all.h> 61 #include <cam/scsi/scsi_message.h> 62 #include <cam/scsi/scsi_pass.h> 63 #include "opt_cam.h" 64 65 /* Datastructures internal to the xpt layer */ 66 67 /* 68 * Definition of an async handler callback block. These are used to add 69 * SIMs and peripherals to the async callback lists. 70 */ 71 struct async_node { 72 SLIST_ENTRY(async_node) links; 73 u_int32_t event_enable; /* Async Event enables */ 74 void (*callback)(void *arg, u_int32_t code, 75 struct cam_path *path, void *args); 76 void *callback_arg; 77 }; 78 79 SLIST_HEAD(async_list, async_node); 80 SLIST_HEAD(periph_list, cam_periph); 81 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 82 83 /* 84 * This is the maximum number of high powered commands (e.g. start unit) 85 * that can be outstanding at a particular time. 86 */ 87 #ifndef CAM_MAX_HIGHPOWER 88 #define CAM_MAX_HIGHPOWER 4 89 #endif 90 91 /* number of high powered commands that can go through right now */ 92 static int num_highpower = CAM_MAX_HIGHPOWER; 93 94 /* 95 * Structure for queueing a device in a run queue. 96 * There is one run queue for allocating new ccbs, 97 * and another for sending ccbs to the controller. 98 */ 99 struct cam_ed_qinfo { 100 cam_pinfo pinfo; 101 struct cam_ed *device; 102 }; 103 104 /* 105 * The CAM EDT (Existing Device Table) contains the device information for 106 * all devices for all busses in the system. The table contains a 107 * cam_ed structure for each device on the bus. 108 */ 109 struct cam_ed { 110 TAILQ_ENTRY(cam_ed) links; 111 struct cam_ed_qinfo alloc_ccb_entry; 112 struct cam_ed_qinfo send_ccb_entry; 113 struct cam_et *target; 114 lun_id_t lun_id; 115 struct camq drvq; /* 116 * Queue of type drivers wanting to do 117 * work on this device. 118 */ 119 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 120 struct async_list asyncs; /* Async callback info for this B/T/L */ 121 struct periph_list periphs; /* All attached devices */ 122 u_int generation; /* Generation number */ 123 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 124 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 125 /* Storage for the inquiry data */ 126 #ifdef CAM_NEW_TRAN_CODE 127 cam_proto protocol; 128 u_int protocol_version; 129 cam_xport transport; 130 u_int transport_version; 131 #endif /* CAM_NEW_TRAN_CODE */ 132 struct scsi_inquiry_data inq_data; 133 u_int8_t inq_flags; /* 134 * Current settings for inquiry flags. 135 * This allows us to override settings 136 * like disconnection and tagged 137 * queuing for a device. 138 */ 139 u_int8_t queue_flags; /* Queue flags from the control page */ 140 u_int8_t serial_num_len; 141 u_int8_t *serial_num; 142 u_int32_t qfrozen_cnt; 143 u_int32_t flags; 144 #define CAM_DEV_UNCONFIGURED 0x01 145 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 146 #define CAM_DEV_REL_ON_COMPLETE 0x04 147 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 148 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 149 #define CAM_DEV_TAG_AFTER_COUNT 0x20 150 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 151 u_int32_t tag_delay_count; 152 #define CAM_TAG_DELAY_COUNT 5 153 u_int32_t refcount; 154 struct callout_handle c_handle; 155 }; 156 157 /* 158 * Each target is represented by an ET (Existing Target). These 159 * entries are created when a target is successfully probed with an 160 * identify, and removed when a device fails to respond after a number 161 * of retries, or a bus rescan finds the device missing. 162 */ 163 struct cam_et { 164 TAILQ_HEAD(, cam_ed) ed_entries; 165 TAILQ_ENTRY(cam_et) links; 166 struct cam_eb *bus; 167 target_id_t target_id; 168 u_int32_t refcount; 169 u_int generation; 170 struct timeval last_reset; 171 }; 172 173 /* 174 * Each bus is represented by an EB (Existing Bus). These entries 175 * are created by calls to xpt_bus_register and deleted by calls to 176 * xpt_bus_deregister. 177 */ 178 struct cam_eb { 179 TAILQ_HEAD(, cam_et) et_entries; 180 TAILQ_ENTRY(cam_eb) links; 181 path_id_t path_id; 182 struct cam_sim *sim; 183 struct timeval last_reset; 184 u_int32_t flags; 185 #define CAM_EB_RUNQ_SCHEDULED 0x01 186 u_int32_t refcount; 187 u_int generation; 188 }; 189 190 struct cam_path { 191 struct cam_periph *periph; 192 struct cam_eb *bus; 193 struct cam_et *target; 194 struct cam_ed *device; 195 }; 196 197 struct xpt_quirk_entry { 198 struct scsi_inquiry_pattern inq_pat; 199 u_int8_t quirks; 200 #define CAM_QUIRK_NOLUNS 0x01 201 #define CAM_QUIRK_NOSERIAL 0x02 202 #define CAM_QUIRK_HILUNS 0x04 203 u_int mintags; 204 u_int maxtags; 205 }; 206 #define CAM_SCSI2_MAXLUN 8 207 208 typedef enum { 209 XPT_FLAG_OPEN = 0x01 210 } xpt_flags; 211 212 struct xpt_softc { 213 xpt_flags flags; 214 u_int32_t generation; 215 }; 216 217 static const char quantum[] = "QUANTUM"; 218 static const char sony[] = "SONY"; 219 static const char west_digital[] = "WDIGTL"; 220 static const char samsung[] = "SAMSUNG"; 221 static const char seagate[] = "SEAGATE"; 222 static const char microp[] = "MICROP"; 223 224 static struct xpt_quirk_entry xpt_quirk_table[] = 225 { 226 { 227 /* Reports QUEUE FULL for temporary resource shortages */ 228 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 229 /*quirks*/0, /*mintags*/24, /*maxtags*/32 230 }, 231 { 232 /* Reports QUEUE FULL for temporary resource shortages */ 233 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 234 /*quirks*/0, /*mintags*/24, /*maxtags*/32 235 }, 236 { 237 /* Reports QUEUE FULL for temporary resource shortages */ 238 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 239 /*quirks*/0, /*mintags*/24, /*maxtags*/32 240 }, 241 { 242 /* Broken tagged queuing drive */ 243 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 244 /*quirks*/0, /*mintags*/0, /*maxtags*/0 245 }, 246 { 247 /* Broken tagged queuing drive */ 248 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 249 /*quirks*/0, /*mintags*/0, /*maxtags*/0 250 }, 251 { 252 /* Broken tagged queuing drive */ 253 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 254 /*quirks*/0, /*mintags*/0, /*maxtags*/0 255 }, 256 { 257 /* 258 * Unfortunately, the Quantum Atlas III has the same 259 * problem as the Atlas II drives above. 260 * Reported by: "Johan Granlund" <johan@granlund.nu> 261 * 262 * For future reference, the drive with the problem was: 263 * QUANTUM QM39100TD-SW N1B0 264 * 265 * It's possible that Quantum will fix the problem in later 266 * firmware revisions. If that happens, the quirk entry 267 * will need to be made specific to the firmware revisions 268 * with the problem. 269 * 270 */ 271 /* Reports QUEUE FULL for temporary resource shortages */ 272 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 273 /*quirks*/0, /*mintags*/24, /*maxtags*/32 274 }, 275 { 276 /* 277 * 18 Gig Atlas III, same problem as the 9G version. 278 * Reported by: Andre Albsmeier 279 * <andre.albsmeier@mchp.siemens.de> 280 * 281 * For future reference, the drive with the problem was: 282 * QUANTUM QM318000TD-S N491 283 */ 284 /* Reports QUEUE FULL for temporary resource shortages */ 285 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 286 /*quirks*/0, /*mintags*/24, /*maxtags*/32 287 }, 288 { 289 /* 290 * Broken tagged queuing drive 291 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 292 * and: Martin Renters <martin@tdc.on.ca> 293 */ 294 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 295 /*quirks*/0, /*mintags*/0, /*maxtags*/0 296 }, 297 /* 298 * The Seagate Medalist Pro drives have very poor write 299 * performance with anything more than 2 tags. 300 * 301 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 302 * Drive: <SEAGATE ST36530N 1444> 303 * 304 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 305 * Drive: <SEAGATE ST34520W 1281> 306 * 307 * No one has actually reported that the 9G version 308 * (ST39140*) of the Medalist Pro has the same problem, but 309 * we're assuming that it does because the 4G and 6.5G 310 * versions of the drive are broken. 311 */ 312 { 313 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 314 /*quirks*/0, /*mintags*/2, /*maxtags*/2 315 }, 316 { 317 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 318 /*quirks*/0, /*mintags*/2, /*maxtags*/2 319 }, 320 { 321 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 322 /*quirks*/0, /*mintags*/2, /*maxtags*/2 323 }, 324 { 325 /* 326 * Slow when tagged queueing is enabled. Write performance 327 * steadily drops off with more and more concurrent 328 * transactions. Best sequential write performance with 329 * tagged queueing turned off and write caching turned on. 330 * 331 * PR: kern/10398 332 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 333 * Drive: DCAS-34330 w/ "S65A" firmware. 334 * 335 * The drive with the problem had the "S65A" firmware 336 * revision, and has also been reported (by Stephen J. 337 * Roznowski <sjr@home.net>) for a drive with the "S61A" 338 * firmware revision. 339 * 340 * Although no one has reported problems with the 2 gig 341 * version of the DCAS drive, the assumption is that it 342 * has the same problems as the 4 gig version. Therefore 343 * this quirk entries disables tagged queueing for all 344 * DCAS drives. 345 */ 346 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 347 /*quirks*/0, /*mintags*/0, /*maxtags*/0 348 }, 349 { 350 /* Broken tagged queuing drive */ 351 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 352 /*quirks*/0, /*mintags*/0, /*maxtags*/0 353 }, 354 { 355 /* Broken tagged queuing drive */ 356 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 357 /*quirks*/0, /*mintags*/0, /*maxtags*/0 358 }, 359 { 360 /* 361 * Broken tagged queuing drive. 362 * Submitted by: 363 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 364 * in PR kern/9535 365 */ 366 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 367 /*quirks*/0, /*mintags*/0, /*maxtags*/0 368 }, 369 { 370 /* 371 * Slow when tagged queueing is enabled. (1.5MB/sec versus 372 * 8MB/sec.) 373 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 374 * Best performance with these drives is achieved with 375 * tagged queueing turned off, and write caching turned on. 376 */ 377 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 378 /*quirks*/0, /*mintags*/0, /*maxtags*/0 379 }, 380 { 381 /* 382 * Slow when tagged queueing is enabled. (1.5MB/sec versus 383 * 8MB/sec.) 384 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 385 * Best performance with these drives is achieved with 386 * tagged queueing turned off, and write caching turned on. 387 */ 388 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 389 /*quirks*/0, /*mintags*/0, /*maxtags*/0 390 }, 391 { 392 /* 393 * Doesn't handle queue full condition correctly, 394 * so we need to limit maxtags to what the device 395 * can handle instead of determining this automatically. 396 */ 397 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 398 /*quirks*/0, /*mintags*/2, /*maxtags*/32 399 }, 400 { 401 /* Really only one LUN */ 402 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" }, 403 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 404 }, 405 { 406 /* I can't believe we need a quirk for DPT volumes. */ 407 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 408 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 409 /*mintags*/0, /*maxtags*/255 410 }, 411 { 412 /* 413 * Many Sony CDROM drives don't like multi-LUN probing. 414 */ 415 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 416 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 417 }, 418 { 419 /* 420 * This drive doesn't like multiple LUN probing. 421 * Submitted by: Parag Patel <parag@cgt.com> 422 */ 423 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 424 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 425 }, 426 { 427 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 428 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 429 }, 430 { 431 /* 432 * The 8200 doesn't like multi-lun probing, and probably 433 * don't like serial number requests either. 434 */ 435 { 436 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 437 "EXB-8200*", "*" 438 }, 439 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 440 }, 441 { 442 /* 443 * These Hitachi drives don't like multi-lun probing. 444 * The PR submitter has a DK319H, but says that the Linux 445 * kernel has a similar work-around for the DK312 and DK314, 446 * so all DK31* drives are quirked here. 447 * PR: misc/18793 448 * Submitted by: Paul Haddad <paul@pth.com> 449 */ 450 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 451 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 452 }, 453 { 454 /* 455 * This old revision of the TDC3600 is also SCSI-1, and 456 * hangs upon serial number probing. 457 */ 458 { 459 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 460 " TDC 3600", "U07:" 461 }, 462 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 463 }, 464 { 465 /* 466 * Would repond to all LUNs if asked for. 467 */ 468 { 469 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 470 "CP150", "*" 471 }, 472 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 473 }, 474 { 475 /* 476 * Would repond to all LUNs if asked for. 477 */ 478 { 479 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 480 "96X2*", "*" 481 }, 482 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 483 }, 484 { 485 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 486 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 487 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 488 }, 489 { 490 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 491 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 492 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 493 }, 494 { 495 /* TeraSolutions special settings for TRC-22 RAID */ 496 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 497 /*quirks*/0, /*mintags*/55, /*maxtags*/255 498 }, 499 { 500 /* 501 * Would respond to all LUNs. Device type and removable 502 * flag are jumper-selectable. 503 */ 504 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 505 "Tahiti 1", "*" 506 }, 507 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 508 }, 509 { 510 /* Default tagged queuing parameters for all devices */ 511 { 512 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 513 /*vendor*/"*", /*product*/"*", /*revision*/"*" 514 }, 515 /*quirks*/0, /*mintags*/2, /*maxtags*/255 516 }, 517 }; 518 519 static const int xpt_quirk_table_size = 520 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 521 522 typedef enum { 523 DM_RET_COPY = 0x01, 524 DM_RET_FLAG_MASK = 0x0f, 525 DM_RET_NONE = 0x00, 526 DM_RET_STOP = 0x10, 527 DM_RET_DESCEND = 0x20, 528 DM_RET_ERROR = 0x30, 529 DM_RET_ACTION_MASK = 0xf0 530 } dev_match_ret; 531 532 typedef enum { 533 XPT_DEPTH_BUS, 534 XPT_DEPTH_TARGET, 535 XPT_DEPTH_DEVICE, 536 XPT_DEPTH_PERIPH 537 } xpt_traverse_depth; 538 539 struct xpt_traverse_config { 540 xpt_traverse_depth depth; 541 void *tr_func; 542 void *tr_arg; 543 }; 544 545 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 546 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 547 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 548 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 549 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 550 551 /* Transport layer configuration information */ 552 static struct xpt_softc xsoftc; 553 554 /* Queues for our software interrupt handler */ 555 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 556 static cam_isrq_t cam_bioq; 557 static cam_isrq_t cam_netq; 558 559 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 560 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 561 static u_int xpt_max_ccbs; /* 562 * Maximum size of ccb pool. Modified as 563 * devices are added/removed or have their 564 * opening counts changed. 565 */ 566 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 567 568 struct cam_periph *xpt_periph; 569 570 static periph_init_t xpt_periph_init; 571 572 static periph_init_t probe_periph_init; 573 574 static struct periph_driver xpt_driver = 575 { 576 xpt_periph_init, "xpt", 577 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 578 }; 579 580 static struct periph_driver probe_driver = 581 { 582 probe_periph_init, "probe", 583 TAILQ_HEAD_INITIALIZER(probe_driver.units) 584 }; 585 586 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 587 PERIPHDRIVER_DECLARE(probe, probe_driver); 588 589 #define XPT_CDEV_MAJOR 104 590 591 static d_open_t xptopen; 592 static d_close_t xptclose; 593 static d_ioctl_t xptioctl; 594 595 static struct cdevsw xpt_cdevsw = { 596 /* open */ xptopen, 597 /* close */ xptclose, 598 /* read */ noread, 599 /* write */ nowrite, 600 /* ioctl */ xptioctl, 601 /* poll */ nopoll, 602 /* mmap */ nommap, 603 /* strategy */ nostrategy, 604 /* name */ "xpt", 605 /* maj */ XPT_CDEV_MAJOR, 606 /* dump */ nodump, 607 /* psize */ nopsize, 608 /* flags */ 0, 609 }; 610 611 static struct intr_config_hook *xpt_config_hook; 612 613 /* Registered busses */ 614 static TAILQ_HEAD(,cam_eb) xpt_busses; 615 static u_int bus_generation; 616 617 /* Storage for debugging datastructures */ 618 #ifdef CAMDEBUG 619 struct cam_path *cam_dpath; 620 u_int32_t cam_dflags; 621 u_int32_t cam_debug_delay; 622 #endif 623 624 /* Pointers to software interrupt handlers */ 625 void *camnet_ih; 626 void *cambio_ih; 627 628 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 629 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 630 #endif 631 632 /* 633 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 634 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 635 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 636 */ 637 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 638 || defined(CAM_DEBUG_LUN) 639 #ifdef CAMDEBUG 640 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 641 || !defined(CAM_DEBUG_LUN) 642 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 643 and CAM_DEBUG_LUN" 644 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 645 #else /* !CAMDEBUG */ 646 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 647 #endif /* CAMDEBUG */ 648 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 649 650 /* Our boot-time initialization hook */ 651 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 652 653 static moduledata_t cam_moduledata = { 654 "cam", 655 cam_module_event_handler, 656 NULL 657 }; 658 659 static void xpt_init(void *); 660 661 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 662 MODULE_VERSION(cam, 1); 663 664 665 static cam_status xpt_compile_path(struct cam_path *new_path, 666 struct cam_periph *perph, 667 path_id_t path_id, 668 target_id_t target_id, 669 lun_id_t lun_id); 670 671 static void xpt_release_path(struct cam_path *path); 672 673 static void xpt_async_bcast(struct async_list *async_head, 674 u_int32_t async_code, 675 struct cam_path *path, 676 void *async_arg); 677 static void xpt_dev_async(u_int32_t async_code, 678 struct cam_eb *bus, 679 struct cam_et *target, 680 struct cam_ed *device, 681 void *async_arg); 682 static path_id_t xptnextfreepathid(void); 683 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 684 static union ccb *xpt_get_ccb(struct cam_ed *device); 685 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 686 u_int32_t new_priority); 687 static void xpt_run_dev_allocq(struct cam_eb *bus); 688 static void xpt_run_dev_sendq(struct cam_eb *bus); 689 static timeout_t xpt_release_devq_timeout; 690 static timeout_t xpt_release_simq_timeout; 691 static void xpt_release_bus(struct cam_eb *bus); 692 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 693 int run_queue); 694 static struct cam_et* 695 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 696 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 697 static struct cam_ed* 698 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 699 lun_id_t lun_id); 700 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 701 struct cam_ed *device); 702 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 703 static struct cam_eb* 704 xpt_find_bus(path_id_t path_id); 705 static struct cam_et* 706 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 707 static struct cam_ed* 708 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 709 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 710 static void xpt_scan_lun(struct cam_periph *periph, 711 struct cam_path *path, cam_flags flags, 712 union ccb *ccb); 713 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 714 static xpt_busfunc_t xptconfigbuscountfunc; 715 static xpt_busfunc_t xptconfigfunc; 716 static void xpt_config(void *arg); 717 static xpt_devicefunc_t xptpassannouncefunc; 718 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 719 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 720 static void xptpoll(struct cam_sim *sim); 721 static void camisr(void *); 722 #if 0 723 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 724 static void xptasync(struct cam_periph *periph, 725 u_int32_t code, cam_path *path); 726 #endif 727 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 728 u_int num_patterns, struct cam_eb *bus); 729 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 730 u_int num_patterns, 731 struct cam_ed *device); 732 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 733 u_int num_patterns, 734 struct cam_periph *periph); 735 static xpt_busfunc_t xptedtbusfunc; 736 static xpt_targetfunc_t xptedttargetfunc; 737 static xpt_devicefunc_t xptedtdevicefunc; 738 static xpt_periphfunc_t xptedtperiphfunc; 739 static xpt_pdrvfunc_t xptplistpdrvfunc; 740 static xpt_periphfunc_t xptplistperiphfunc; 741 static int xptedtmatch(struct ccb_dev_match *cdm); 742 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 743 static int xptbustraverse(struct cam_eb *start_bus, 744 xpt_busfunc_t *tr_func, void *arg); 745 static int xpttargettraverse(struct cam_eb *bus, 746 struct cam_et *start_target, 747 xpt_targetfunc_t *tr_func, void *arg); 748 static int xptdevicetraverse(struct cam_et *target, 749 struct cam_ed *start_device, 750 xpt_devicefunc_t *tr_func, void *arg); 751 static int xptperiphtraverse(struct cam_ed *device, 752 struct cam_periph *start_periph, 753 xpt_periphfunc_t *tr_func, void *arg); 754 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 755 xpt_pdrvfunc_t *tr_func, void *arg); 756 static int xptpdperiphtraverse(struct periph_driver **pdrv, 757 struct cam_periph *start_periph, 758 xpt_periphfunc_t *tr_func, 759 void *arg); 760 static xpt_busfunc_t xptdefbusfunc; 761 static xpt_targetfunc_t xptdeftargetfunc; 762 static xpt_devicefunc_t xptdefdevicefunc; 763 static xpt_periphfunc_t xptdefperiphfunc; 764 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 765 #ifdef notusedyet 766 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 767 void *arg); 768 #endif 769 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 770 void *arg); 771 #ifdef notusedyet 772 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 773 void *arg); 774 #endif 775 static xpt_devicefunc_t xptsetasyncfunc; 776 static xpt_busfunc_t xptsetasyncbusfunc; 777 static cam_status xptregister(struct cam_periph *periph, 778 void *arg); 779 static cam_status proberegister(struct cam_periph *periph, 780 void *arg); 781 static void probeschedule(struct cam_periph *probe_periph); 782 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 783 static void proberequestdefaultnegotiation(struct cam_periph *periph); 784 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 785 static void probecleanup(struct cam_periph *periph); 786 static void xpt_find_quirk(struct cam_ed *device); 787 #ifdef CAM_NEW_TRAN_CODE 788 static void xpt_devise_transport(struct cam_path *path); 789 #endif /* CAM_NEW_TRAN_CODE */ 790 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 791 struct cam_ed *device, 792 int async_update); 793 static void xpt_toggle_tags(struct cam_path *path); 794 static void xpt_start_tags(struct cam_path *path); 795 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 796 struct cam_ed *dev); 797 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 798 struct cam_ed *dev); 799 static __inline int periph_is_queued(struct cam_periph *periph); 800 static __inline int device_is_alloc_queued(struct cam_ed *device); 801 static __inline int device_is_send_queued(struct cam_ed *device); 802 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 803 804 static __inline int 805 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 806 { 807 int retval; 808 809 if (dev->ccbq.devq_openings > 0) { 810 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 811 cam_ccbq_resize(&dev->ccbq, 812 dev->ccbq.dev_openings 813 + dev->ccbq.dev_active); 814 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 815 } 816 /* 817 * The priority of a device waiting for CCB resources 818 * is that of the the highest priority peripheral driver 819 * enqueued. 820 */ 821 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 822 &dev->alloc_ccb_entry.pinfo, 823 CAMQ_GET_HEAD(&dev->drvq)->priority); 824 } else { 825 retval = 0; 826 } 827 828 return (retval); 829 } 830 831 static __inline int 832 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 833 { 834 int retval; 835 836 if (dev->ccbq.dev_openings > 0) { 837 /* 838 * The priority of a device waiting for controller 839 * resources is that of the the highest priority CCB 840 * enqueued. 841 */ 842 retval = 843 xpt_schedule_dev(&bus->sim->devq->send_queue, 844 &dev->send_ccb_entry.pinfo, 845 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 846 } else { 847 retval = 0; 848 } 849 return (retval); 850 } 851 852 static __inline int 853 periph_is_queued(struct cam_periph *periph) 854 { 855 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 856 } 857 858 static __inline int 859 device_is_alloc_queued(struct cam_ed *device) 860 { 861 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 862 } 863 864 static __inline int 865 device_is_send_queued(struct cam_ed *device) 866 { 867 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 868 } 869 870 static __inline int 871 dev_allocq_is_runnable(struct cam_devq *devq) 872 { 873 /* 874 * Have work to do. 875 * Have space to do more work. 876 * Allowed to do work. 877 */ 878 return ((devq->alloc_queue.qfrozen_cnt == 0) 879 && (devq->alloc_queue.entries > 0) 880 && (devq->alloc_openings > 0)); 881 } 882 883 static void 884 xpt_periph_init() 885 { 886 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 887 } 888 889 static void 890 probe_periph_init() 891 { 892 } 893 894 895 static void 896 xptdone(struct cam_periph *periph, union ccb *done_ccb) 897 { 898 /* Caller will release the CCB */ 899 wakeup(&done_ccb->ccb_h.cbfcnp); 900 } 901 902 static int 903 xptopen(dev_t dev, int flags, int fmt, struct proc *p) 904 { 905 int unit; 906 907 unit = minor(dev) & 0xff; 908 909 /* 910 * Only allow read-write access. 911 */ 912 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 913 return(EPERM); 914 915 /* 916 * We don't allow nonblocking access. 917 */ 918 if ((flags & O_NONBLOCK) != 0) { 919 printf("xpt%d: can't do nonblocking accesss\n", unit); 920 return(ENODEV); 921 } 922 923 /* 924 * We only have one transport layer right now. If someone accesses 925 * us via something other than minor number 1, point out their 926 * mistake. 927 */ 928 if (unit != 0) { 929 printf("xptopen: got invalid xpt unit %d\n", unit); 930 return(ENXIO); 931 } 932 933 /* Mark ourselves open */ 934 xsoftc.flags |= XPT_FLAG_OPEN; 935 936 return(0); 937 } 938 939 static int 940 xptclose(dev_t dev, int flag, int fmt, struct proc *p) 941 { 942 int unit; 943 944 unit = minor(dev) & 0xff; 945 946 /* 947 * We only have one transport layer right now. If someone accesses 948 * us via something other than minor number 1, point out their 949 * mistake. 950 */ 951 if (unit != 0) { 952 printf("xptclose: got invalid xpt unit %d\n", unit); 953 return(ENXIO); 954 } 955 956 /* Mark ourselves closed */ 957 xsoftc.flags &= ~XPT_FLAG_OPEN; 958 959 return(0); 960 } 961 962 static int 963 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p) 964 { 965 int unit, error; 966 967 error = 0; 968 unit = minor(dev) & 0xff; 969 970 /* 971 * We only have one transport layer right now. If someone accesses 972 * us via something other than minor number 1, point out their 973 * mistake. 974 */ 975 if (unit != 0) { 976 printf("xptioctl: got invalid xpt unit %d\n", unit); 977 return(ENXIO); 978 } 979 980 switch(cmd) { 981 /* 982 * For the transport layer CAMIOCOMMAND ioctl, we really only want 983 * to accept CCB types that don't quite make sense to send through a 984 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 985 * in the CAM spec. 986 */ 987 case CAMIOCOMMAND: { 988 union ccb *ccb; 989 union ccb *inccb; 990 991 inccb = (union ccb *)addr; 992 993 switch(inccb->ccb_h.func_code) { 994 case XPT_SCAN_BUS: 995 case XPT_RESET_BUS: 996 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 997 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 998 error = EINVAL; 999 break; 1000 } 1001 /* FALLTHROUGH */ 1002 case XPT_PATH_INQ: 1003 case XPT_ENG_INQ: 1004 case XPT_SCAN_LUN: 1005 1006 ccb = xpt_alloc_ccb(); 1007 1008 /* 1009 * Create a path using the bus, target, and lun the 1010 * user passed in. 1011 */ 1012 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1013 inccb->ccb_h.path_id, 1014 inccb->ccb_h.target_id, 1015 inccb->ccb_h.target_lun) != 1016 CAM_REQ_CMP){ 1017 error = EINVAL; 1018 xpt_free_ccb(ccb); 1019 break; 1020 } 1021 /* Ensure all of our fields are correct */ 1022 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1023 inccb->ccb_h.pinfo.priority); 1024 xpt_merge_ccb(ccb, inccb); 1025 ccb->ccb_h.cbfcnp = xptdone; 1026 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1027 bcopy(ccb, inccb, sizeof(union ccb)); 1028 xpt_free_path(ccb->ccb_h.path); 1029 xpt_free_ccb(ccb); 1030 break; 1031 1032 case XPT_DEBUG: { 1033 union ccb ccb; 1034 1035 /* 1036 * This is an immediate CCB, so it's okay to 1037 * allocate it on the stack. 1038 */ 1039 1040 /* 1041 * Create a path using the bus, target, and lun the 1042 * user passed in. 1043 */ 1044 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1045 inccb->ccb_h.path_id, 1046 inccb->ccb_h.target_id, 1047 inccb->ccb_h.target_lun) != 1048 CAM_REQ_CMP){ 1049 error = EINVAL; 1050 break; 1051 } 1052 /* Ensure all of our fields are correct */ 1053 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1054 inccb->ccb_h.pinfo.priority); 1055 xpt_merge_ccb(&ccb, inccb); 1056 ccb.ccb_h.cbfcnp = xptdone; 1057 xpt_action(&ccb); 1058 bcopy(&ccb, inccb, sizeof(union ccb)); 1059 xpt_free_path(ccb.ccb_h.path); 1060 break; 1061 1062 } 1063 case XPT_DEV_MATCH: { 1064 struct cam_periph_map_info mapinfo; 1065 struct cam_path *old_path; 1066 1067 /* 1068 * We can't deal with physical addresses for this 1069 * type of transaction. 1070 */ 1071 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1072 error = EINVAL; 1073 break; 1074 } 1075 1076 /* 1077 * Save this in case the caller had it set to 1078 * something in particular. 1079 */ 1080 old_path = inccb->ccb_h.path; 1081 1082 /* 1083 * We really don't need a path for the matching 1084 * code. The path is needed because of the 1085 * debugging statements in xpt_action(). They 1086 * assume that the CCB has a valid path. 1087 */ 1088 inccb->ccb_h.path = xpt_periph->path; 1089 1090 bzero(&mapinfo, sizeof(mapinfo)); 1091 1092 /* 1093 * Map the pattern and match buffers into kernel 1094 * virtual address space. 1095 */ 1096 error = cam_periph_mapmem(inccb, &mapinfo); 1097 1098 if (error) { 1099 inccb->ccb_h.path = old_path; 1100 break; 1101 } 1102 1103 /* 1104 * This is an immediate CCB, we can send it on directly. 1105 */ 1106 xpt_action(inccb); 1107 1108 /* 1109 * Map the buffers back into user space. 1110 */ 1111 cam_periph_unmapmem(inccb, &mapinfo); 1112 1113 inccb->ccb_h.path = old_path; 1114 1115 error = 0; 1116 break; 1117 } 1118 default: 1119 error = ENOTSUP; 1120 break; 1121 } 1122 break; 1123 } 1124 /* 1125 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1126 * with the periphal driver name and unit name filled in. The other 1127 * fields don't really matter as input. The passthrough driver name 1128 * ("pass"), and unit number are passed back in the ccb. The current 1129 * device generation number, and the index into the device peripheral 1130 * driver list, and the status are also passed back. Note that 1131 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1132 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1133 * (or rather should be) impossible for the device peripheral driver 1134 * list to change since we look at the whole thing in one pass, and 1135 * we do it with splcam protection. 1136 * 1137 */ 1138 case CAMGETPASSTHRU: { 1139 union ccb *ccb; 1140 struct cam_periph *periph; 1141 struct periph_driver **p_drv; 1142 char *name; 1143 u_int unit; 1144 u_int cur_generation; 1145 int base_periph_found; 1146 int splbreaknum; 1147 int s; 1148 1149 ccb = (union ccb *)addr; 1150 unit = ccb->cgdl.unit_number; 1151 name = ccb->cgdl.periph_name; 1152 /* 1153 * Every 100 devices, we want to drop our spl protection to 1154 * give the software interrupt handler a chance to run. 1155 * Most systems won't run into this check, but this should 1156 * avoid starvation in the software interrupt handler in 1157 * large systems. 1158 */ 1159 splbreaknum = 100; 1160 1161 ccb = (union ccb *)addr; 1162 1163 base_periph_found = 0; 1164 1165 /* 1166 * Sanity check -- make sure we don't get a null peripheral 1167 * driver name. 1168 */ 1169 if (*ccb->cgdl.periph_name == '\0') { 1170 error = EINVAL; 1171 break; 1172 } 1173 1174 /* Keep the list from changing while we traverse it */ 1175 s = splcam(); 1176 ptstartover: 1177 cur_generation = xsoftc.generation; 1178 1179 /* first find our driver in the list of drivers */ 1180 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1181 if (strcmp((*p_drv)->driver_name, name) == 0) 1182 break; 1183 1184 if (*p_drv == NULL) { 1185 splx(s); 1186 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1187 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1188 *ccb->cgdl.periph_name = '\0'; 1189 ccb->cgdl.unit_number = 0; 1190 error = ENOENT; 1191 break; 1192 } 1193 1194 /* 1195 * Run through every peripheral instance of this driver 1196 * and check to see whether it matches the unit passed 1197 * in by the user. If it does, get out of the loops and 1198 * find the passthrough driver associated with that 1199 * peripheral driver. 1200 */ 1201 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1202 periph = TAILQ_NEXT(periph, unit_links)) { 1203 1204 if (periph->unit_number == unit) { 1205 break; 1206 } else if (--splbreaknum == 0) { 1207 splx(s); 1208 s = splcam(); 1209 splbreaknum = 100; 1210 if (cur_generation != xsoftc.generation) 1211 goto ptstartover; 1212 } 1213 } 1214 /* 1215 * If we found the peripheral driver that the user passed 1216 * in, go through all of the peripheral drivers for that 1217 * particular device and look for a passthrough driver. 1218 */ 1219 if (periph != NULL) { 1220 struct cam_ed *device; 1221 int i; 1222 1223 base_periph_found = 1; 1224 device = periph->path->device; 1225 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1226 periph != NULL; 1227 periph = SLIST_NEXT(periph, periph_links), i++) { 1228 /* 1229 * Check to see whether we have a 1230 * passthrough device or not. 1231 */ 1232 if (strcmp(periph->periph_name, "pass") == 0) { 1233 /* 1234 * Fill in the getdevlist fields. 1235 */ 1236 strcpy(ccb->cgdl.periph_name, 1237 periph->periph_name); 1238 ccb->cgdl.unit_number = 1239 periph->unit_number; 1240 if (SLIST_NEXT(periph, periph_links)) 1241 ccb->cgdl.status = 1242 CAM_GDEVLIST_MORE_DEVS; 1243 else 1244 ccb->cgdl.status = 1245 CAM_GDEVLIST_LAST_DEVICE; 1246 ccb->cgdl.generation = 1247 device->generation; 1248 ccb->cgdl.index = i; 1249 /* 1250 * Fill in some CCB header fields 1251 * that the user may want. 1252 */ 1253 ccb->ccb_h.path_id = 1254 periph->path->bus->path_id; 1255 ccb->ccb_h.target_id = 1256 periph->path->target->target_id; 1257 ccb->ccb_h.target_lun = 1258 periph->path->device->lun_id; 1259 ccb->ccb_h.status = CAM_REQ_CMP; 1260 break; 1261 } 1262 } 1263 } 1264 1265 /* 1266 * If the periph is null here, one of two things has 1267 * happened. The first possibility is that we couldn't 1268 * find the unit number of the particular peripheral driver 1269 * that the user is asking about. e.g. the user asks for 1270 * the passthrough driver for "da11". We find the list of 1271 * "da" peripherals all right, but there is no unit 11. 1272 * The other possibility is that we went through the list 1273 * of peripheral drivers attached to the device structure, 1274 * but didn't find one with the name "pass". Either way, 1275 * we return ENOENT, since we couldn't find something. 1276 */ 1277 if (periph == NULL) { 1278 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1279 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1280 *ccb->cgdl.periph_name = '\0'; 1281 ccb->cgdl.unit_number = 0; 1282 error = ENOENT; 1283 /* 1284 * It is unfortunate that this is even necessary, 1285 * but there are many, many clueless users out there. 1286 * If this is true, the user is looking for the 1287 * passthrough driver, but doesn't have one in his 1288 * kernel. 1289 */ 1290 if (base_periph_found == 1) { 1291 printf("xptioctl: pass driver is not in the " 1292 "kernel\n"); 1293 printf("xptioctl: put \"device pass0\" in " 1294 "your kernel config file\n"); 1295 } 1296 } 1297 splx(s); 1298 break; 1299 } 1300 default: 1301 error = ENOTTY; 1302 break; 1303 } 1304 1305 return(error); 1306 } 1307 1308 static int 1309 cam_module_event_handler(module_t mod, int what, void *arg) 1310 { 1311 if (what == MOD_LOAD) { 1312 xpt_init(NULL); 1313 } else if (what == MOD_UNLOAD) { 1314 return EBUSY; 1315 } 1316 1317 return 0; 1318 } 1319 1320 /* Functions accessed by the peripheral drivers */ 1321 static void 1322 xpt_init(dummy) 1323 void *dummy; 1324 { 1325 struct cam_sim *xpt_sim; 1326 struct cam_path *path; 1327 struct cam_devq *devq; 1328 cam_status status; 1329 1330 TAILQ_INIT(&xpt_busses); 1331 TAILQ_INIT(&cam_bioq); 1332 TAILQ_INIT(&cam_netq); 1333 SLIST_INIT(&ccb_freeq); 1334 STAILQ_INIT(&highpowerq); 1335 1336 /* 1337 * The xpt layer is, itself, the equivelent of a SIM. 1338 * Allow 16 ccbs in the ccb pool for it. This should 1339 * give decent parallelism when we probe busses and 1340 * perform other XPT functions. 1341 */ 1342 devq = cam_simq_alloc(16); 1343 xpt_sim = cam_sim_alloc(xptaction, 1344 xptpoll, 1345 "xpt", 1346 /*softc*/NULL, 1347 /*unit*/0, 1348 /*max_dev_transactions*/0, 1349 /*max_tagged_dev_transactions*/0, 1350 devq); 1351 xpt_max_ccbs = 16; 1352 1353 xpt_bus_register(xpt_sim, /*bus #*/0); 1354 1355 /* 1356 * Looking at the XPT from the SIM layer, the XPT is 1357 * the equivelent of a peripheral driver. Allocate 1358 * a peripheral driver entry for us. 1359 */ 1360 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1361 CAM_TARGET_WILDCARD, 1362 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1363 printf("xpt_init: xpt_create_path failed with status %#x," 1364 " failing attach\n", status); 1365 return; 1366 } 1367 1368 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1369 path, NULL, 0, NULL); 1370 xpt_free_path(path); 1371 1372 xpt_sim->softc = xpt_periph; 1373 1374 /* 1375 * Register a callback for when interrupts are enabled. 1376 */ 1377 xpt_config_hook = 1378 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1379 M_TEMP, M_NOWAIT | M_ZERO); 1380 if (xpt_config_hook == NULL) { 1381 printf("xpt_init: Cannot malloc config hook " 1382 "- failing attach\n"); 1383 return; 1384 } 1385 1386 xpt_config_hook->ich_func = xpt_config; 1387 if (config_intrhook_establish(xpt_config_hook) != 0) { 1388 free (xpt_config_hook, M_TEMP); 1389 printf("xpt_init: config_intrhook_establish failed " 1390 "- failing attach\n"); 1391 } 1392 1393 /* Install our software interrupt handlers */ 1394 swi_add(NULL, "camnet", camisr, &cam_netq, SWI_CAMNET, 0, &camnet_ih); 1395 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1396 } 1397 1398 static cam_status 1399 xptregister(struct cam_periph *periph, void *arg) 1400 { 1401 if (periph == NULL) { 1402 printf("xptregister: periph was NULL!!\n"); 1403 return(CAM_REQ_CMP_ERR); 1404 } 1405 1406 periph->softc = NULL; 1407 1408 xpt_periph = periph; 1409 1410 return(CAM_REQ_CMP); 1411 } 1412 1413 int32_t 1414 xpt_add_periph(struct cam_periph *periph) 1415 { 1416 struct cam_ed *device; 1417 int32_t status; 1418 struct periph_list *periph_head; 1419 1420 device = periph->path->device; 1421 1422 periph_head = &device->periphs; 1423 1424 status = CAM_REQ_CMP; 1425 1426 if (device != NULL) { 1427 int s; 1428 1429 /* 1430 * Make room for this peripheral 1431 * so it will fit in the queue 1432 * when it's scheduled to run 1433 */ 1434 s = splsoftcam(); 1435 status = camq_resize(&device->drvq, 1436 device->drvq.array_size + 1); 1437 1438 device->generation++; 1439 1440 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1441 1442 splx(s); 1443 } 1444 1445 xsoftc.generation++; 1446 1447 return (status); 1448 } 1449 1450 void 1451 xpt_remove_periph(struct cam_periph *periph) 1452 { 1453 struct cam_ed *device; 1454 1455 device = periph->path->device; 1456 1457 if (device != NULL) { 1458 int s; 1459 struct periph_list *periph_head; 1460 1461 periph_head = &device->periphs; 1462 1463 /* Release the slot for this peripheral */ 1464 s = splsoftcam(); 1465 camq_resize(&device->drvq, device->drvq.array_size - 1); 1466 1467 device->generation++; 1468 1469 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1470 1471 splx(s); 1472 } 1473 1474 xsoftc.generation++; 1475 1476 } 1477 1478 #ifdef CAM_NEW_TRAN_CODE 1479 1480 void 1481 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1482 { 1483 struct ccb_pathinq cpi; 1484 struct ccb_trans_settings cts; 1485 struct cam_path *path; 1486 u_int speed; 1487 u_int freq; 1488 u_int mb; 1489 int s; 1490 1491 path = periph->path; 1492 /* 1493 * To ensure that this is printed in one piece, 1494 * mask out CAM interrupts. 1495 */ 1496 s = splsoftcam(); 1497 printf("%s%d at %s%d bus %d target %d lun %d\n", 1498 periph->periph_name, periph->unit_number, 1499 path->bus->sim->sim_name, 1500 path->bus->sim->unit_number, 1501 path->bus->sim->bus_id, 1502 path->target->target_id, 1503 path->device->lun_id); 1504 printf("%s%d: ", periph->periph_name, periph->unit_number); 1505 scsi_print_inquiry(&path->device->inq_data); 1506 if ((bootverbose) 1507 && (path->device->serial_num_len > 0)) { 1508 /* Don't wrap the screen - print only the first 60 chars */ 1509 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1510 periph->unit_number, path->device->serial_num); 1511 } 1512 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1513 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1514 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1515 xpt_action((union ccb*)&cts); 1516 1517 /* Ask the SIM for its base transfer speed */ 1518 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1519 cpi.ccb_h.func_code = XPT_PATH_INQ; 1520 xpt_action((union ccb *)&cpi); 1521 1522 speed = cpi.base_transfer_speed; 1523 freq = 0; 1524 if (cts.ccb_h.status == CAM_REQ_CMP 1525 && cts.transport == XPORT_SPI) { 1526 struct ccb_trans_settings_spi *spi; 1527 1528 spi = &cts.xport_specific.spi; 1529 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1530 && spi->sync_offset != 0) { 1531 freq = scsi_calc_syncsrate(spi->sync_period); 1532 speed = freq; 1533 } 1534 1535 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1536 speed *= (0x01 << spi->bus_width); 1537 } 1538 1539 mb = speed / 1000; 1540 if (mb > 0) 1541 printf("%s%d: %d.%03dMB/s transfers", 1542 periph->periph_name, periph->unit_number, 1543 mb, speed % 1000); 1544 else 1545 printf("%s%d: %dKB/s transfers", periph->periph_name, 1546 periph->unit_number, speed); 1547 /* Report additional information about SPI connections */ 1548 if (cts.ccb_h.status == CAM_REQ_CMP 1549 && cts.transport == XPORT_SPI) { 1550 struct ccb_trans_settings_spi *spi; 1551 1552 spi = &cts.xport_specific.spi; 1553 if (freq != 0) { 1554 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1555 freq % 1000, 1556 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1557 ? " DT" : "", 1558 spi->sync_offset); 1559 } 1560 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1561 && spi->bus_width > 0) { 1562 if (freq != 0) { 1563 printf(", "); 1564 } else { 1565 printf(" ("); 1566 } 1567 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1568 } else if (freq != 0) { 1569 printf(")"); 1570 } 1571 } 1572 1573 if (path->device->inq_flags & SID_CmdQue 1574 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1575 printf("\n%s%d: Tagged Queueing Enabled", 1576 periph->periph_name, periph->unit_number); 1577 } 1578 printf("\n"); 1579 1580 /* 1581 * We only want to print the caller's announce string if they've 1582 * passed one in.. 1583 */ 1584 if (announce_string != NULL) 1585 printf("%s%d: %s\n", periph->periph_name, 1586 periph->unit_number, announce_string); 1587 splx(s); 1588 } 1589 #else /* CAM_NEW_TRAN_CODE */ 1590 void 1591 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1592 { 1593 int s; 1594 u_int mb; 1595 struct cam_path *path; 1596 struct ccb_trans_settings cts; 1597 1598 path = periph->path; 1599 /* 1600 * To ensure that this is printed in one piece, 1601 * mask out CAM interrupts. 1602 */ 1603 s = splsoftcam(); 1604 printf("%s%d at %s%d bus %d target %d lun %d\n", 1605 periph->periph_name, periph->unit_number, 1606 path->bus->sim->sim_name, 1607 path->bus->sim->unit_number, 1608 path->bus->sim->bus_id, 1609 path->target->target_id, 1610 path->device->lun_id); 1611 printf("%s%d: ", periph->periph_name, periph->unit_number); 1612 scsi_print_inquiry(&path->device->inq_data); 1613 if ((bootverbose) 1614 && (path->device->serial_num_len > 0)) { 1615 /* Don't wrap the screen - print only the first 60 chars */ 1616 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1617 periph->unit_number, path->device->serial_num); 1618 } 1619 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1620 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1621 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1622 xpt_action((union ccb*)&cts); 1623 if (cts.ccb_h.status == CAM_REQ_CMP) { 1624 u_int speed; 1625 u_int freq; 1626 1627 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1628 && cts.sync_offset != 0) { 1629 freq = scsi_calc_syncsrate(cts.sync_period); 1630 speed = freq; 1631 } else { 1632 struct ccb_pathinq cpi; 1633 1634 /* Ask the SIM for its base transfer speed */ 1635 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1636 cpi.ccb_h.func_code = XPT_PATH_INQ; 1637 xpt_action((union ccb *)&cpi); 1638 1639 speed = cpi.base_transfer_speed; 1640 freq = 0; 1641 } 1642 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1643 speed *= (0x01 << cts.bus_width); 1644 mb = speed / 1000; 1645 if (mb > 0) 1646 printf("%s%d: %d.%03dMB/s transfers", 1647 periph->periph_name, periph->unit_number, 1648 mb, speed % 1000); 1649 else 1650 printf("%s%d: %dKB/s transfers", periph->periph_name, 1651 periph->unit_number, speed); 1652 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1653 && cts.sync_offset != 0) { 1654 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1655 freq % 1000, cts.sync_offset); 1656 } 1657 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1658 && cts.bus_width > 0) { 1659 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1660 && cts.sync_offset != 0) { 1661 printf(", "); 1662 } else { 1663 printf(" ("); 1664 } 1665 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1666 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1667 && cts.sync_offset != 0) { 1668 printf(")"); 1669 } 1670 1671 if (path->device->inq_flags & SID_CmdQue 1672 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1673 printf(", Tagged Queueing Enabled"); 1674 } 1675 1676 printf("\n"); 1677 } else if (path->device->inq_flags & SID_CmdQue 1678 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1679 printf("%s%d: Tagged Queueing Enabled\n", 1680 periph->periph_name, periph->unit_number); 1681 } 1682 1683 /* 1684 * We only want to print the caller's announce string if they've 1685 * passed one in.. 1686 */ 1687 if (announce_string != NULL) 1688 printf("%s%d: %s\n", periph->periph_name, 1689 periph->unit_number, announce_string); 1690 splx(s); 1691 } 1692 1693 #endif /* CAM_NEW_TRAN_CODE */ 1694 1695 static dev_match_ret 1696 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1697 struct cam_eb *bus) 1698 { 1699 dev_match_ret retval; 1700 int i; 1701 1702 retval = DM_RET_NONE; 1703 1704 /* 1705 * If we aren't given something to match against, that's an error. 1706 */ 1707 if (bus == NULL) 1708 return(DM_RET_ERROR); 1709 1710 /* 1711 * If there are no match entries, then this bus matches no 1712 * matter what. 1713 */ 1714 if ((patterns == NULL) || (num_patterns == 0)) 1715 return(DM_RET_DESCEND | DM_RET_COPY); 1716 1717 for (i = 0; i < num_patterns; i++) { 1718 struct bus_match_pattern *cur_pattern; 1719 1720 /* 1721 * If the pattern in question isn't for a bus node, we 1722 * aren't interested. However, we do indicate to the 1723 * calling routine that we should continue descending the 1724 * tree, since the user wants to match against lower-level 1725 * EDT elements. 1726 */ 1727 if (patterns[i].type != DEV_MATCH_BUS) { 1728 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1729 retval |= DM_RET_DESCEND; 1730 continue; 1731 } 1732 1733 cur_pattern = &patterns[i].pattern.bus_pattern; 1734 1735 /* 1736 * If they want to match any bus node, we give them any 1737 * device node. 1738 */ 1739 if (cur_pattern->flags == BUS_MATCH_ANY) { 1740 /* set the copy flag */ 1741 retval |= DM_RET_COPY; 1742 1743 /* 1744 * If we've already decided on an action, go ahead 1745 * and return. 1746 */ 1747 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1748 return(retval); 1749 } 1750 1751 /* 1752 * Not sure why someone would do this... 1753 */ 1754 if (cur_pattern->flags == BUS_MATCH_NONE) 1755 continue; 1756 1757 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1758 && (cur_pattern->path_id != bus->path_id)) 1759 continue; 1760 1761 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1762 && (cur_pattern->bus_id != bus->sim->bus_id)) 1763 continue; 1764 1765 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1766 && (cur_pattern->unit_number != bus->sim->unit_number)) 1767 continue; 1768 1769 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1770 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1771 DEV_IDLEN) != 0)) 1772 continue; 1773 1774 /* 1775 * If we get to this point, the user definitely wants 1776 * information on this bus. So tell the caller to copy the 1777 * data out. 1778 */ 1779 retval |= DM_RET_COPY; 1780 1781 /* 1782 * If the return action has been set to descend, then we 1783 * know that we've already seen a non-bus matching 1784 * expression, therefore we need to further descend the tree. 1785 * This won't change by continuing around the loop, so we 1786 * go ahead and return. If we haven't seen a non-bus 1787 * matching expression, we keep going around the loop until 1788 * we exhaust the matching expressions. We'll set the stop 1789 * flag once we fall out of the loop. 1790 */ 1791 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1792 return(retval); 1793 } 1794 1795 /* 1796 * If the return action hasn't been set to descend yet, that means 1797 * we haven't seen anything other than bus matching patterns. So 1798 * tell the caller to stop descending the tree -- the user doesn't 1799 * want to match against lower level tree elements. 1800 */ 1801 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1802 retval |= DM_RET_STOP; 1803 1804 return(retval); 1805 } 1806 1807 static dev_match_ret 1808 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1809 struct cam_ed *device) 1810 { 1811 dev_match_ret retval; 1812 int i; 1813 1814 retval = DM_RET_NONE; 1815 1816 /* 1817 * If we aren't given something to match against, that's an error. 1818 */ 1819 if (device == NULL) 1820 return(DM_RET_ERROR); 1821 1822 /* 1823 * If there are no match entries, then this device matches no 1824 * matter what. 1825 */ 1826 if ((patterns == NULL) || (patterns == 0)) 1827 return(DM_RET_DESCEND | DM_RET_COPY); 1828 1829 for (i = 0; i < num_patterns; i++) { 1830 struct device_match_pattern *cur_pattern; 1831 1832 /* 1833 * If the pattern in question isn't for a device node, we 1834 * aren't interested. 1835 */ 1836 if (patterns[i].type != DEV_MATCH_DEVICE) { 1837 if ((patterns[i].type == DEV_MATCH_PERIPH) 1838 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1839 retval |= DM_RET_DESCEND; 1840 continue; 1841 } 1842 1843 cur_pattern = &patterns[i].pattern.device_pattern; 1844 1845 /* 1846 * If they want to match any device node, we give them any 1847 * device node. 1848 */ 1849 if (cur_pattern->flags == DEV_MATCH_ANY) { 1850 /* set the copy flag */ 1851 retval |= DM_RET_COPY; 1852 1853 1854 /* 1855 * If we've already decided on an action, go ahead 1856 * and return. 1857 */ 1858 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1859 return(retval); 1860 } 1861 1862 /* 1863 * Not sure why someone would do this... 1864 */ 1865 if (cur_pattern->flags == DEV_MATCH_NONE) 1866 continue; 1867 1868 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1869 && (cur_pattern->path_id != device->target->bus->path_id)) 1870 continue; 1871 1872 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1873 && (cur_pattern->target_id != device->target->target_id)) 1874 continue; 1875 1876 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1877 && (cur_pattern->target_lun != device->lun_id)) 1878 continue; 1879 1880 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1881 && (cam_quirkmatch((caddr_t)&device->inq_data, 1882 (caddr_t)&cur_pattern->inq_pat, 1883 1, sizeof(cur_pattern->inq_pat), 1884 scsi_static_inquiry_match) == NULL)) 1885 continue; 1886 1887 /* 1888 * If we get to this point, the user definitely wants 1889 * information on this device. So tell the caller to copy 1890 * the data out. 1891 */ 1892 retval |= DM_RET_COPY; 1893 1894 /* 1895 * If the return action has been set to descend, then we 1896 * know that we've already seen a peripheral matching 1897 * expression, therefore we need to further descend the tree. 1898 * This won't change by continuing around the loop, so we 1899 * go ahead and return. If we haven't seen a peripheral 1900 * matching expression, we keep going around the loop until 1901 * we exhaust the matching expressions. We'll set the stop 1902 * flag once we fall out of the loop. 1903 */ 1904 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1905 return(retval); 1906 } 1907 1908 /* 1909 * If the return action hasn't been set to descend yet, that means 1910 * we haven't seen any peripheral matching patterns. So tell the 1911 * caller to stop descending the tree -- the user doesn't want to 1912 * match against lower level tree elements. 1913 */ 1914 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1915 retval |= DM_RET_STOP; 1916 1917 return(retval); 1918 } 1919 1920 /* 1921 * Match a single peripheral against any number of match patterns. 1922 */ 1923 static dev_match_ret 1924 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1925 struct cam_periph *periph) 1926 { 1927 dev_match_ret retval; 1928 int i; 1929 1930 /* 1931 * If we aren't given something to match against, that's an error. 1932 */ 1933 if (periph == NULL) 1934 return(DM_RET_ERROR); 1935 1936 /* 1937 * If there are no match entries, then this peripheral matches no 1938 * matter what. 1939 */ 1940 if ((patterns == NULL) || (num_patterns == 0)) 1941 return(DM_RET_STOP | DM_RET_COPY); 1942 1943 /* 1944 * There aren't any nodes below a peripheral node, so there's no 1945 * reason to descend the tree any further. 1946 */ 1947 retval = DM_RET_STOP; 1948 1949 for (i = 0; i < num_patterns; i++) { 1950 struct periph_match_pattern *cur_pattern; 1951 1952 /* 1953 * If the pattern in question isn't for a peripheral, we 1954 * aren't interested. 1955 */ 1956 if (patterns[i].type != DEV_MATCH_PERIPH) 1957 continue; 1958 1959 cur_pattern = &patterns[i].pattern.periph_pattern; 1960 1961 /* 1962 * If they want to match on anything, then we will do so. 1963 */ 1964 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1965 /* set the copy flag */ 1966 retval |= DM_RET_COPY; 1967 1968 /* 1969 * We've already set the return action to stop, 1970 * since there are no nodes below peripherals in 1971 * the tree. 1972 */ 1973 return(retval); 1974 } 1975 1976 /* 1977 * Not sure why someone would do this... 1978 */ 1979 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1980 continue; 1981 1982 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1983 && (cur_pattern->path_id != periph->path->bus->path_id)) 1984 continue; 1985 1986 /* 1987 * For the target and lun id's, we have to make sure the 1988 * target and lun pointers aren't NULL. The xpt peripheral 1989 * has a wildcard target and device. 1990 */ 1991 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1992 && ((periph->path->target == NULL) 1993 ||(cur_pattern->target_id != periph->path->target->target_id))) 1994 continue; 1995 1996 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1997 && ((periph->path->device == NULL) 1998 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1999 continue; 2000 2001 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2002 && (cur_pattern->unit_number != periph->unit_number)) 2003 continue; 2004 2005 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2006 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2007 DEV_IDLEN) != 0)) 2008 continue; 2009 2010 /* 2011 * If we get to this point, the user definitely wants 2012 * information on this peripheral. So tell the caller to 2013 * copy the data out. 2014 */ 2015 retval |= DM_RET_COPY; 2016 2017 /* 2018 * The return action has already been set to stop, since 2019 * peripherals don't have any nodes below them in the EDT. 2020 */ 2021 return(retval); 2022 } 2023 2024 /* 2025 * If we get to this point, the peripheral that was passed in 2026 * doesn't match any of the patterns. 2027 */ 2028 return(retval); 2029 } 2030 2031 static int 2032 xptedtbusfunc(struct cam_eb *bus, void *arg) 2033 { 2034 struct ccb_dev_match *cdm; 2035 dev_match_ret retval; 2036 2037 cdm = (struct ccb_dev_match *)arg; 2038 2039 /* 2040 * If our position is for something deeper in the tree, that means 2041 * that we've already seen this node. So, we keep going down. 2042 */ 2043 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2044 && (cdm->pos.cookie.bus == bus) 2045 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2046 && (cdm->pos.cookie.target != NULL)) 2047 retval = DM_RET_DESCEND; 2048 else 2049 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2050 2051 /* 2052 * If we got an error, bail out of the search. 2053 */ 2054 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2055 cdm->status = CAM_DEV_MATCH_ERROR; 2056 return(0); 2057 } 2058 2059 /* 2060 * If the copy flag is set, copy this bus out. 2061 */ 2062 if (retval & DM_RET_COPY) { 2063 int spaceleft, j; 2064 2065 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2066 sizeof(struct dev_match_result)); 2067 2068 /* 2069 * If we don't have enough space to put in another 2070 * match result, save our position and tell the 2071 * user there are more devices to check. 2072 */ 2073 if (spaceleft < sizeof(struct dev_match_result)) { 2074 bzero(&cdm->pos, sizeof(cdm->pos)); 2075 cdm->pos.position_type = 2076 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2077 2078 cdm->pos.cookie.bus = bus; 2079 cdm->pos.generations[CAM_BUS_GENERATION]= 2080 bus_generation; 2081 cdm->status = CAM_DEV_MATCH_MORE; 2082 return(0); 2083 } 2084 j = cdm->num_matches; 2085 cdm->num_matches++; 2086 cdm->matches[j].type = DEV_MATCH_BUS; 2087 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2088 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2089 cdm->matches[j].result.bus_result.unit_number = 2090 bus->sim->unit_number; 2091 strncpy(cdm->matches[j].result.bus_result.dev_name, 2092 bus->sim->sim_name, DEV_IDLEN); 2093 } 2094 2095 /* 2096 * If the user is only interested in busses, there's no 2097 * reason to descend to the next level in the tree. 2098 */ 2099 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2100 return(1); 2101 2102 /* 2103 * If there is a target generation recorded, check it to 2104 * make sure the target list hasn't changed. 2105 */ 2106 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2107 && (bus == cdm->pos.cookie.bus) 2108 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2109 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2110 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2111 bus->generation)) { 2112 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2113 return(0); 2114 } 2115 2116 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2117 && (cdm->pos.cookie.bus == bus) 2118 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2119 && (cdm->pos.cookie.target != NULL)) 2120 return(xpttargettraverse(bus, 2121 (struct cam_et *)cdm->pos.cookie.target, 2122 xptedttargetfunc, arg)); 2123 else 2124 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2125 } 2126 2127 static int 2128 xptedttargetfunc(struct cam_et *target, void *arg) 2129 { 2130 struct ccb_dev_match *cdm; 2131 2132 cdm = (struct ccb_dev_match *)arg; 2133 2134 /* 2135 * If there is a device list generation recorded, check it to 2136 * make sure the device list hasn't changed. 2137 */ 2138 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2139 && (cdm->pos.cookie.bus == target->bus) 2140 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2141 && (cdm->pos.cookie.target == target) 2142 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2143 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2144 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2145 target->generation)) { 2146 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2147 return(0); 2148 } 2149 2150 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2151 && (cdm->pos.cookie.bus == target->bus) 2152 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2153 && (cdm->pos.cookie.target == target) 2154 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2155 && (cdm->pos.cookie.device != NULL)) 2156 return(xptdevicetraverse(target, 2157 (struct cam_ed *)cdm->pos.cookie.device, 2158 xptedtdevicefunc, arg)); 2159 else 2160 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2161 } 2162 2163 static int 2164 xptedtdevicefunc(struct cam_ed *device, void *arg) 2165 { 2166 2167 struct ccb_dev_match *cdm; 2168 dev_match_ret retval; 2169 2170 cdm = (struct ccb_dev_match *)arg; 2171 2172 /* 2173 * If our position is for something deeper in the tree, that means 2174 * that we've already seen this node. So, we keep going down. 2175 */ 2176 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2177 && (cdm->pos.cookie.device == device) 2178 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2179 && (cdm->pos.cookie.periph != NULL)) 2180 retval = DM_RET_DESCEND; 2181 else 2182 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2183 device); 2184 2185 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2186 cdm->status = CAM_DEV_MATCH_ERROR; 2187 return(0); 2188 } 2189 2190 /* 2191 * If the copy flag is set, copy this device out. 2192 */ 2193 if (retval & DM_RET_COPY) { 2194 int spaceleft, j; 2195 2196 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2197 sizeof(struct dev_match_result)); 2198 2199 /* 2200 * If we don't have enough space to put in another 2201 * match result, save our position and tell the 2202 * user there are more devices to check. 2203 */ 2204 if (spaceleft < sizeof(struct dev_match_result)) { 2205 bzero(&cdm->pos, sizeof(cdm->pos)); 2206 cdm->pos.position_type = 2207 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2208 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2209 2210 cdm->pos.cookie.bus = device->target->bus; 2211 cdm->pos.generations[CAM_BUS_GENERATION]= 2212 bus_generation; 2213 cdm->pos.cookie.target = device->target; 2214 cdm->pos.generations[CAM_TARGET_GENERATION] = 2215 device->target->bus->generation; 2216 cdm->pos.cookie.device = device; 2217 cdm->pos.generations[CAM_DEV_GENERATION] = 2218 device->target->generation; 2219 cdm->status = CAM_DEV_MATCH_MORE; 2220 return(0); 2221 } 2222 j = cdm->num_matches; 2223 cdm->num_matches++; 2224 cdm->matches[j].type = DEV_MATCH_DEVICE; 2225 cdm->matches[j].result.device_result.path_id = 2226 device->target->bus->path_id; 2227 cdm->matches[j].result.device_result.target_id = 2228 device->target->target_id; 2229 cdm->matches[j].result.device_result.target_lun = 2230 device->lun_id; 2231 bcopy(&device->inq_data, 2232 &cdm->matches[j].result.device_result.inq_data, 2233 sizeof(struct scsi_inquiry_data)); 2234 2235 /* Let the user know whether this device is unconfigured */ 2236 if (device->flags & CAM_DEV_UNCONFIGURED) 2237 cdm->matches[j].result.device_result.flags = 2238 DEV_RESULT_UNCONFIGURED; 2239 else 2240 cdm->matches[j].result.device_result.flags = 2241 DEV_RESULT_NOFLAG; 2242 } 2243 2244 /* 2245 * If the user isn't interested in peripherals, don't descend 2246 * the tree any further. 2247 */ 2248 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2249 return(1); 2250 2251 /* 2252 * If there is a peripheral list generation recorded, make sure 2253 * it hasn't changed. 2254 */ 2255 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2256 && (device->target->bus == cdm->pos.cookie.bus) 2257 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2258 && (device->target == cdm->pos.cookie.target) 2259 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2260 && (device == cdm->pos.cookie.device) 2261 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2262 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2263 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2264 device->generation)){ 2265 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2266 return(0); 2267 } 2268 2269 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2270 && (cdm->pos.cookie.bus == device->target->bus) 2271 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2272 && (cdm->pos.cookie.target == device->target) 2273 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2274 && (cdm->pos.cookie.device == device) 2275 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2276 && (cdm->pos.cookie.periph != NULL)) 2277 return(xptperiphtraverse(device, 2278 (struct cam_periph *)cdm->pos.cookie.periph, 2279 xptedtperiphfunc, arg)); 2280 else 2281 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2282 } 2283 2284 static int 2285 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2286 { 2287 struct ccb_dev_match *cdm; 2288 dev_match_ret retval; 2289 2290 cdm = (struct ccb_dev_match *)arg; 2291 2292 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2293 2294 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2295 cdm->status = CAM_DEV_MATCH_ERROR; 2296 return(0); 2297 } 2298 2299 /* 2300 * If the copy flag is set, copy this peripheral out. 2301 */ 2302 if (retval & DM_RET_COPY) { 2303 int spaceleft, j; 2304 2305 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2306 sizeof(struct dev_match_result)); 2307 2308 /* 2309 * If we don't have enough space to put in another 2310 * match result, save our position and tell the 2311 * user there are more devices to check. 2312 */ 2313 if (spaceleft < sizeof(struct dev_match_result)) { 2314 bzero(&cdm->pos, sizeof(cdm->pos)); 2315 cdm->pos.position_type = 2316 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2317 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2318 CAM_DEV_POS_PERIPH; 2319 2320 cdm->pos.cookie.bus = periph->path->bus; 2321 cdm->pos.generations[CAM_BUS_GENERATION]= 2322 bus_generation; 2323 cdm->pos.cookie.target = periph->path->target; 2324 cdm->pos.generations[CAM_TARGET_GENERATION] = 2325 periph->path->bus->generation; 2326 cdm->pos.cookie.device = periph->path->device; 2327 cdm->pos.generations[CAM_DEV_GENERATION] = 2328 periph->path->target->generation; 2329 cdm->pos.cookie.periph = periph; 2330 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2331 periph->path->device->generation; 2332 cdm->status = CAM_DEV_MATCH_MORE; 2333 return(0); 2334 } 2335 2336 j = cdm->num_matches; 2337 cdm->num_matches++; 2338 cdm->matches[j].type = DEV_MATCH_PERIPH; 2339 cdm->matches[j].result.periph_result.path_id = 2340 periph->path->bus->path_id; 2341 cdm->matches[j].result.periph_result.target_id = 2342 periph->path->target->target_id; 2343 cdm->matches[j].result.periph_result.target_lun = 2344 periph->path->device->lun_id; 2345 cdm->matches[j].result.periph_result.unit_number = 2346 periph->unit_number; 2347 strncpy(cdm->matches[j].result.periph_result.periph_name, 2348 periph->periph_name, DEV_IDLEN); 2349 } 2350 2351 return(1); 2352 } 2353 2354 static int 2355 xptedtmatch(struct ccb_dev_match *cdm) 2356 { 2357 int ret; 2358 2359 cdm->num_matches = 0; 2360 2361 /* 2362 * Check the bus list generation. If it has changed, the user 2363 * needs to reset everything and start over. 2364 */ 2365 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2366 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2367 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2368 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2369 return(0); 2370 } 2371 2372 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2373 && (cdm->pos.cookie.bus != NULL)) 2374 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2375 xptedtbusfunc, cdm); 2376 else 2377 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2378 2379 /* 2380 * If we get back 0, that means that we had to stop before fully 2381 * traversing the EDT. It also means that one of the subroutines 2382 * has set the status field to the proper value. If we get back 1, 2383 * we've fully traversed the EDT and copied out any matching entries. 2384 */ 2385 if (ret == 1) 2386 cdm->status = CAM_DEV_MATCH_LAST; 2387 2388 return(ret); 2389 } 2390 2391 static int 2392 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2393 { 2394 struct ccb_dev_match *cdm; 2395 2396 cdm = (struct ccb_dev_match *)arg; 2397 2398 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2399 && (cdm->pos.cookie.pdrv == pdrv) 2400 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2401 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2402 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2403 (*pdrv)->generation)) { 2404 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2405 return(0); 2406 } 2407 2408 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2409 && (cdm->pos.cookie.pdrv == pdrv) 2410 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2411 && (cdm->pos.cookie.periph != NULL)) 2412 return(xptpdperiphtraverse(pdrv, 2413 (struct cam_periph *)cdm->pos.cookie.periph, 2414 xptplistperiphfunc, arg)); 2415 else 2416 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2417 } 2418 2419 static int 2420 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2421 { 2422 struct ccb_dev_match *cdm; 2423 dev_match_ret retval; 2424 2425 cdm = (struct ccb_dev_match *)arg; 2426 2427 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2428 2429 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2430 cdm->status = CAM_DEV_MATCH_ERROR; 2431 return(0); 2432 } 2433 2434 /* 2435 * If the copy flag is set, copy this peripheral out. 2436 */ 2437 if (retval & DM_RET_COPY) { 2438 int spaceleft, j; 2439 2440 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2441 sizeof(struct dev_match_result)); 2442 2443 /* 2444 * If we don't have enough space to put in another 2445 * match result, save our position and tell the 2446 * user there are more devices to check. 2447 */ 2448 if (spaceleft < sizeof(struct dev_match_result)) { 2449 struct periph_driver **pdrv; 2450 2451 pdrv = NULL; 2452 bzero(&cdm->pos, sizeof(cdm->pos)); 2453 cdm->pos.position_type = 2454 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2455 CAM_DEV_POS_PERIPH; 2456 2457 /* 2458 * This may look a bit non-sensical, but it is 2459 * actually quite logical. There are very few 2460 * peripheral drivers, and bloating every peripheral 2461 * structure with a pointer back to its parent 2462 * peripheral driver linker set entry would cost 2463 * more in the long run than doing this quick lookup. 2464 */ 2465 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2466 if (strcmp((*pdrv)->driver_name, 2467 periph->periph_name) == 0) 2468 break; 2469 } 2470 2471 if (pdrv == NULL) { 2472 cdm->status = CAM_DEV_MATCH_ERROR; 2473 return(0); 2474 } 2475 2476 cdm->pos.cookie.pdrv = pdrv; 2477 /* 2478 * The periph generation slot does double duty, as 2479 * does the periph pointer slot. They are used for 2480 * both edt and pdrv lookups and positioning. 2481 */ 2482 cdm->pos.cookie.periph = periph; 2483 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2484 (*pdrv)->generation; 2485 cdm->status = CAM_DEV_MATCH_MORE; 2486 return(0); 2487 } 2488 2489 j = cdm->num_matches; 2490 cdm->num_matches++; 2491 cdm->matches[j].type = DEV_MATCH_PERIPH; 2492 cdm->matches[j].result.periph_result.path_id = 2493 periph->path->bus->path_id; 2494 2495 /* 2496 * The transport layer peripheral doesn't have a target or 2497 * lun. 2498 */ 2499 if (periph->path->target) 2500 cdm->matches[j].result.periph_result.target_id = 2501 periph->path->target->target_id; 2502 else 2503 cdm->matches[j].result.periph_result.target_id = -1; 2504 2505 if (periph->path->device) 2506 cdm->matches[j].result.periph_result.target_lun = 2507 periph->path->device->lun_id; 2508 else 2509 cdm->matches[j].result.periph_result.target_lun = -1; 2510 2511 cdm->matches[j].result.periph_result.unit_number = 2512 periph->unit_number; 2513 strncpy(cdm->matches[j].result.periph_result.periph_name, 2514 periph->periph_name, DEV_IDLEN); 2515 } 2516 2517 return(1); 2518 } 2519 2520 static int 2521 xptperiphlistmatch(struct ccb_dev_match *cdm) 2522 { 2523 int ret; 2524 2525 cdm->num_matches = 0; 2526 2527 /* 2528 * At this point in the edt traversal function, we check the bus 2529 * list generation to make sure that no busses have been added or 2530 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2531 * For the peripheral driver list traversal function, however, we 2532 * don't have to worry about new peripheral driver types coming or 2533 * going; they're in a linker set, and therefore can't change 2534 * without a recompile. 2535 */ 2536 2537 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2538 && (cdm->pos.cookie.pdrv != NULL)) 2539 ret = xptpdrvtraverse( 2540 (struct periph_driver **)cdm->pos.cookie.pdrv, 2541 xptplistpdrvfunc, cdm); 2542 else 2543 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2544 2545 /* 2546 * If we get back 0, that means that we had to stop before fully 2547 * traversing the peripheral driver tree. It also means that one of 2548 * the subroutines has set the status field to the proper value. If 2549 * we get back 1, we've fully traversed the EDT and copied out any 2550 * matching entries. 2551 */ 2552 if (ret == 1) 2553 cdm->status = CAM_DEV_MATCH_LAST; 2554 2555 return(ret); 2556 } 2557 2558 static int 2559 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2560 { 2561 struct cam_eb *bus, *next_bus; 2562 int retval; 2563 2564 retval = 1; 2565 2566 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2567 bus != NULL; 2568 bus = next_bus) { 2569 next_bus = TAILQ_NEXT(bus, links); 2570 2571 retval = tr_func(bus, arg); 2572 if (retval == 0) 2573 return(retval); 2574 } 2575 2576 return(retval); 2577 } 2578 2579 static int 2580 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2581 xpt_targetfunc_t *tr_func, void *arg) 2582 { 2583 struct cam_et *target, *next_target; 2584 int retval; 2585 2586 retval = 1; 2587 for (target = (start_target ? start_target : 2588 TAILQ_FIRST(&bus->et_entries)); 2589 target != NULL; target = next_target) { 2590 2591 next_target = TAILQ_NEXT(target, links); 2592 2593 retval = tr_func(target, arg); 2594 2595 if (retval == 0) 2596 return(retval); 2597 } 2598 2599 return(retval); 2600 } 2601 2602 static int 2603 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2604 xpt_devicefunc_t *tr_func, void *arg) 2605 { 2606 struct cam_ed *device, *next_device; 2607 int retval; 2608 2609 retval = 1; 2610 for (device = (start_device ? start_device : 2611 TAILQ_FIRST(&target->ed_entries)); 2612 device != NULL; 2613 device = next_device) { 2614 2615 next_device = TAILQ_NEXT(device, links); 2616 2617 retval = tr_func(device, arg); 2618 2619 if (retval == 0) 2620 return(retval); 2621 } 2622 2623 return(retval); 2624 } 2625 2626 static int 2627 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2628 xpt_periphfunc_t *tr_func, void *arg) 2629 { 2630 struct cam_periph *periph, *next_periph; 2631 int retval; 2632 2633 retval = 1; 2634 2635 for (periph = (start_periph ? start_periph : 2636 SLIST_FIRST(&device->periphs)); 2637 periph != NULL; 2638 periph = next_periph) { 2639 2640 next_periph = SLIST_NEXT(periph, periph_links); 2641 2642 retval = tr_func(periph, arg); 2643 if (retval == 0) 2644 return(retval); 2645 } 2646 2647 return(retval); 2648 } 2649 2650 static int 2651 xptpdrvtraverse(struct periph_driver **start_pdrv, 2652 xpt_pdrvfunc_t *tr_func, void *arg) 2653 { 2654 struct periph_driver **pdrv; 2655 int retval; 2656 2657 retval = 1; 2658 2659 /* 2660 * We don't traverse the peripheral driver list like we do the 2661 * other lists, because it is a linker set, and therefore cannot be 2662 * changed during runtime. If the peripheral driver list is ever 2663 * re-done to be something other than a linker set (i.e. it can 2664 * change while the system is running), the list traversal should 2665 * be modified to work like the other traversal functions. 2666 */ 2667 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2668 *pdrv != NULL; pdrv++) { 2669 retval = tr_func(pdrv, arg); 2670 2671 if (retval == 0) 2672 return(retval); 2673 } 2674 2675 return(retval); 2676 } 2677 2678 static int 2679 xptpdperiphtraverse(struct periph_driver **pdrv, 2680 struct cam_periph *start_periph, 2681 xpt_periphfunc_t *tr_func, void *arg) 2682 { 2683 struct cam_periph *periph, *next_periph; 2684 int retval; 2685 2686 retval = 1; 2687 2688 for (periph = (start_periph ? start_periph : 2689 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2690 periph = next_periph) { 2691 2692 next_periph = TAILQ_NEXT(periph, unit_links); 2693 2694 retval = tr_func(periph, arg); 2695 if (retval == 0) 2696 return(retval); 2697 } 2698 return(retval); 2699 } 2700 2701 static int 2702 xptdefbusfunc(struct cam_eb *bus, void *arg) 2703 { 2704 struct xpt_traverse_config *tr_config; 2705 2706 tr_config = (struct xpt_traverse_config *)arg; 2707 2708 if (tr_config->depth == XPT_DEPTH_BUS) { 2709 xpt_busfunc_t *tr_func; 2710 2711 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2712 2713 return(tr_func(bus, tr_config->tr_arg)); 2714 } else 2715 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2716 } 2717 2718 static int 2719 xptdeftargetfunc(struct cam_et *target, void *arg) 2720 { 2721 struct xpt_traverse_config *tr_config; 2722 2723 tr_config = (struct xpt_traverse_config *)arg; 2724 2725 if (tr_config->depth == XPT_DEPTH_TARGET) { 2726 xpt_targetfunc_t *tr_func; 2727 2728 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2729 2730 return(tr_func(target, tr_config->tr_arg)); 2731 } else 2732 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2733 } 2734 2735 static int 2736 xptdefdevicefunc(struct cam_ed *device, void *arg) 2737 { 2738 struct xpt_traverse_config *tr_config; 2739 2740 tr_config = (struct xpt_traverse_config *)arg; 2741 2742 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2743 xpt_devicefunc_t *tr_func; 2744 2745 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2746 2747 return(tr_func(device, tr_config->tr_arg)); 2748 } else 2749 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2750 } 2751 2752 static int 2753 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2754 { 2755 struct xpt_traverse_config *tr_config; 2756 xpt_periphfunc_t *tr_func; 2757 2758 tr_config = (struct xpt_traverse_config *)arg; 2759 2760 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2761 2762 /* 2763 * Unlike the other default functions, we don't check for depth 2764 * here. The peripheral driver level is the last level in the EDT, 2765 * so if we're here, we should execute the function in question. 2766 */ 2767 return(tr_func(periph, tr_config->tr_arg)); 2768 } 2769 2770 /* 2771 * Execute the given function for every bus in the EDT. 2772 */ 2773 static int 2774 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2775 { 2776 struct xpt_traverse_config tr_config; 2777 2778 tr_config.depth = XPT_DEPTH_BUS; 2779 tr_config.tr_func = tr_func; 2780 tr_config.tr_arg = arg; 2781 2782 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2783 } 2784 2785 #ifdef notusedyet 2786 /* 2787 * Execute the given function for every target in the EDT. 2788 */ 2789 static int 2790 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2791 { 2792 struct xpt_traverse_config tr_config; 2793 2794 tr_config.depth = XPT_DEPTH_TARGET; 2795 tr_config.tr_func = tr_func; 2796 tr_config.tr_arg = arg; 2797 2798 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2799 } 2800 #endif /* notusedyet */ 2801 2802 /* 2803 * Execute the given function for every device in the EDT. 2804 */ 2805 static int 2806 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2807 { 2808 struct xpt_traverse_config tr_config; 2809 2810 tr_config.depth = XPT_DEPTH_DEVICE; 2811 tr_config.tr_func = tr_func; 2812 tr_config.tr_arg = arg; 2813 2814 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2815 } 2816 2817 #ifdef notusedyet 2818 /* 2819 * Execute the given function for every peripheral in the EDT. 2820 */ 2821 static int 2822 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2823 { 2824 struct xpt_traverse_config tr_config; 2825 2826 tr_config.depth = XPT_DEPTH_PERIPH; 2827 tr_config.tr_func = tr_func; 2828 tr_config.tr_arg = arg; 2829 2830 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2831 } 2832 #endif /* notusedyet */ 2833 2834 static int 2835 xptsetasyncfunc(struct cam_ed *device, void *arg) 2836 { 2837 struct cam_path path; 2838 struct ccb_getdev cgd; 2839 struct async_node *cur_entry; 2840 2841 cur_entry = (struct async_node *)arg; 2842 2843 /* 2844 * Don't report unconfigured devices (Wildcard devs, 2845 * devices only for target mode, device instances 2846 * that have been invalidated but are waiting for 2847 * their last reference count to be released). 2848 */ 2849 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2850 return (1); 2851 2852 xpt_compile_path(&path, 2853 NULL, 2854 device->target->bus->path_id, 2855 device->target->target_id, 2856 device->lun_id); 2857 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2858 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2859 xpt_action((union ccb *)&cgd); 2860 cur_entry->callback(cur_entry->callback_arg, 2861 AC_FOUND_DEVICE, 2862 &path, &cgd); 2863 xpt_release_path(&path); 2864 2865 return(1); 2866 } 2867 2868 static int 2869 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2870 { 2871 struct cam_path path; 2872 struct ccb_pathinq cpi; 2873 struct async_node *cur_entry; 2874 2875 cur_entry = (struct async_node *)arg; 2876 2877 xpt_compile_path(&path, /*periph*/NULL, 2878 bus->sim->path_id, 2879 CAM_TARGET_WILDCARD, 2880 CAM_LUN_WILDCARD); 2881 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2882 cpi.ccb_h.func_code = XPT_PATH_INQ; 2883 xpt_action((union ccb *)&cpi); 2884 cur_entry->callback(cur_entry->callback_arg, 2885 AC_PATH_REGISTERED, 2886 &path, &cpi); 2887 xpt_release_path(&path); 2888 2889 return(1); 2890 } 2891 2892 void 2893 xpt_action(union ccb *start_ccb) 2894 { 2895 int iopl; 2896 2897 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2898 2899 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2900 2901 iopl = splsoftcam(); 2902 switch (start_ccb->ccb_h.func_code) { 2903 case XPT_SCSI_IO: 2904 { 2905 #ifdef CAM_NEW_TRAN_CODE 2906 struct cam_ed *device; 2907 #endif /* CAM_NEW_TRAN_CODE */ 2908 #ifdef CAMDEBUG 2909 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2910 struct cam_path *path; 2911 2912 path = start_ccb->ccb_h.path; 2913 #endif 2914 2915 /* 2916 * For the sake of compatibility with SCSI-1 2917 * devices that may not understand the identify 2918 * message, we include lun information in the 2919 * second byte of all commands. SCSI-1 specifies 2920 * that luns are a 3 bit value and reserves only 3 2921 * bits for lun information in the CDB. Later 2922 * revisions of the SCSI spec allow for more than 8 2923 * luns, but have deprecated lun information in the 2924 * CDB. So, if the lun won't fit, we must omit. 2925 * 2926 * Also be aware that during initial probing for devices, 2927 * the inquiry information is unknown but initialized to 0. 2928 * This means that this code will be exercised while probing 2929 * devices with an ANSI revision greater than 2. 2930 */ 2931 #ifdef CAM_NEW_TRAN_CODE 2932 device = start_ccb->ccb_h.path->device; 2933 if (device->protocol_version <= SCSI_REV_2 2934 #else /* CAM_NEW_TRAN_CODE */ 2935 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 2936 #endif /* CAM_NEW_TRAN_CODE */ 2937 && start_ccb->ccb_h.target_lun < 8 2938 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2939 2940 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2941 start_ccb->ccb_h.target_lun << 5; 2942 } 2943 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2944 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2945 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2946 &path->device->inq_data), 2947 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2948 cdb_str, sizeof(cdb_str)))); 2949 /* FALLTHROUGH */ 2950 } 2951 case XPT_TARGET_IO: 2952 case XPT_CONT_TARGET_IO: 2953 start_ccb->csio.sense_resid = 0; 2954 start_ccb->csio.resid = 0; 2955 /* FALLTHROUGH */ 2956 case XPT_RESET_DEV: 2957 case XPT_ENG_EXEC: 2958 { 2959 struct cam_path *path; 2960 int s; 2961 int runq; 2962 2963 path = start_ccb->ccb_h.path; 2964 s = splsoftcam(); 2965 2966 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2967 if (path->device->qfrozen_cnt == 0) 2968 runq = xpt_schedule_dev_sendq(path->bus, path->device); 2969 else 2970 runq = 0; 2971 splx(s); 2972 if (runq != 0) 2973 xpt_run_dev_sendq(path->bus); 2974 break; 2975 } 2976 case XPT_SET_TRAN_SETTINGS: 2977 { 2978 xpt_set_transfer_settings(&start_ccb->cts, 2979 start_ccb->ccb_h.path->device, 2980 /*async_update*/FALSE); 2981 break; 2982 } 2983 case XPT_CALC_GEOMETRY: 2984 { 2985 struct cam_sim *sim; 2986 2987 /* Filter out garbage */ 2988 if (start_ccb->ccg.block_size == 0 2989 || start_ccb->ccg.volume_size == 0) { 2990 start_ccb->ccg.cylinders = 0; 2991 start_ccb->ccg.heads = 0; 2992 start_ccb->ccg.secs_per_track = 0; 2993 start_ccb->ccb_h.status = CAM_REQ_CMP; 2994 break; 2995 } 2996 #ifdef PC98 2997 /* 2998 * In a PC-98 system, geometry translation depens on 2999 * the "real" device geometry obtained from mode page 4. 3000 * SCSI geometry translation is performed in the 3001 * initialization routine of the SCSI BIOS and the result 3002 * stored in host memory. If the translation is available 3003 * in host memory, use it. If not, rely on the default 3004 * translation the device driver performs. 3005 */ 3006 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3007 start_ccb->ccb_h.status = CAM_REQ_CMP; 3008 break; 3009 } 3010 #endif 3011 sim = start_ccb->ccb_h.path->bus->sim; 3012 (*(sim->sim_action))(sim, start_ccb); 3013 break; 3014 } 3015 case XPT_ABORT: 3016 { 3017 union ccb* abort_ccb; 3018 int s; 3019 3020 abort_ccb = start_ccb->cab.abort_ccb; 3021 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3022 3023 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3024 struct cam_ccbq *ccbq; 3025 3026 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3027 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3028 abort_ccb->ccb_h.status = 3029 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3030 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3031 s = splcam(); 3032 xpt_done(abort_ccb); 3033 splx(s); 3034 start_ccb->ccb_h.status = CAM_REQ_CMP; 3035 break; 3036 } 3037 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3038 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3039 /* 3040 * We've caught this ccb en route to 3041 * the SIM. Flag it for abort and the 3042 * SIM will do so just before starting 3043 * real work on the CCB. 3044 */ 3045 abort_ccb->ccb_h.status = 3046 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3047 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3048 start_ccb->ccb_h.status = CAM_REQ_CMP; 3049 break; 3050 } 3051 } 3052 if (XPT_FC_IS_QUEUED(abort_ccb) 3053 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3054 /* 3055 * It's already completed but waiting 3056 * for our SWI to get to it. 3057 */ 3058 start_ccb->ccb_h.status = CAM_UA_ABORT; 3059 break; 3060 } 3061 /* 3062 * If we weren't able to take care of the abort request 3063 * in the XPT, pass the request down to the SIM for processing. 3064 */ 3065 /* FALLTHROUGH */ 3066 } 3067 case XPT_ACCEPT_TARGET_IO: 3068 case XPT_EN_LUN: 3069 case XPT_IMMED_NOTIFY: 3070 case XPT_NOTIFY_ACK: 3071 case XPT_GET_TRAN_SETTINGS: 3072 case XPT_RESET_BUS: 3073 { 3074 struct cam_sim *sim; 3075 3076 sim = start_ccb->ccb_h.path->bus->sim; 3077 (*(sim->sim_action))(sim, start_ccb); 3078 break; 3079 } 3080 case XPT_PATH_INQ: 3081 { 3082 struct cam_sim *sim; 3083 3084 sim = start_ccb->ccb_h.path->bus->sim; 3085 (*(sim->sim_action))(sim, start_ccb); 3086 break; 3087 } 3088 case XPT_PATH_STATS: 3089 start_ccb->cpis.last_reset = 3090 start_ccb->ccb_h.path->bus->last_reset; 3091 start_ccb->ccb_h.status = CAM_REQ_CMP; 3092 break; 3093 case XPT_GDEV_TYPE: 3094 { 3095 struct cam_ed *dev; 3096 int s; 3097 3098 dev = start_ccb->ccb_h.path->device; 3099 s = splcam(); 3100 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3101 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3102 } else { 3103 struct ccb_getdev *cgd; 3104 struct cam_eb *bus; 3105 struct cam_et *tar; 3106 3107 cgd = &start_ccb->cgd; 3108 bus = cgd->ccb_h.path->bus; 3109 tar = cgd->ccb_h.path->target; 3110 cgd->inq_data = dev->inq_data; 3111 cgd->ccb_h.status = CAM_REQ_CMP; 3112 cgd->serial_num_len = dev->serial_num_len; 3113 if ((dev->serial_num_len > 0) 3114 && (dev->serial_num != NULL)) 3115 bcopy(dev->serial_num, cgd->serial_num, 3116 dev->serial_num_len); 3117 } 3118 splx(s); 3119 break; 3120 } 3121 case XPT_GDEV_STATS: 3122 { 3123 struct cam_ed *dev; 3124 int s; 3125 3126 dev = start_ccb->ccb_h.path->device; 3127 s = splcam(); 3128 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3129 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3130 } else { 3131 struct ccb_getdevstats *cgds; 3132 struct cam_eb *bus; 3133 struct cam_et *tar; 3134 3135 cgds = &start_ccb->cgds; 3136 bus = cgds->ccb_h.path->bus; 3137 tar = cgds->ccb_h.path->target; 3138 cgds->dev_openings = dev->ccbq.dev_openings; 3139 cgds->dev_active = dev->ccbq.dev_active; 3140 cgds->devq_openings = dev->ccbq.devq_openings; 3141 cgds->devq_queued = dev->ccbq.queue.entries; 3142 cgds->held = dev->ccbq.held; 3143 cgds->last_reset = tar->last_reset; 3144 cgds->maxtags = dev->quirk->maxtags; 3145 cgds->mintags = dev->quirk->mintags; 3146 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3147 cgds->last_reset = bus->last_reset; 3148 cgds->ccb_h.status = CAM_REQ_CMP; 3149 } 3150 splx(s); 3151 break; 3152 } 3153 case XPT_GDEVLIST: 3154 { 3155 struct cam_periph *nperiph; 3156 struct periph_list *periph_head; 3157 struct ccb_getdevlist *cgdl; 3158 u_int i; 3159 int s; 3160 struct cam_ed *device; 3161 int found; 3162 3163 3164 found = 0; 3165 3166 /* 3167 * Don't want anyone mucking with our data. 3168 */ 3169 s = splcam(); 3170 device = start_ccb->ccb_h.path->device; 3171 periph_head = &device->periphs; 3172 cgdl = &start_ccb->cgdl; 3173 3174 /* 3175 * Check and see if the list has changed since the user 3176 * last requested a list member. If so, tell them that the 3177 * list has changed, and therefore they need to start over 3178 * from the beginning. 3179 */ 3180 if ((cgdl->index != 0) && 3181 (cgdl->generation != device->generation)) { 3182 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3183 splx(s); 3184 break; 3185 } 3186 3187 /* 3188 * Traverse the list of peripherals and attempt to find 3189 * the requested peripheral. 3190 */ 3191 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3192 (nperiph != NULL) && (i <= cgdl->index); 3193 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3194 if (i == cgdl->index) { 3195 strncpy(cgdl->periph_name, 3196 nperiph->periph_name, 3197 DEV_IDLEN); 3198 cgdl->unit_number = nperiph->unit_number; 3199 found = 1; 3200 } 3201 } 3202 if (found == 0) { 3203 cgdl->status = CAM_GDEVLIST_ERROR; 3204 splx(s); 3205 break; 3206 } 3207 3208 if (nperiph == NULL) 3209 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3210 else 3211 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3212 3213 cgdl->index++; 3214 cgdl->generation = device->generation; 3215 3216 splx(s); 3217 cgdl->ccb_h.status = CAM_REQ_CMP; 3218 break; 3219 } 3220 case XPT_DEV_MATCH: 3221 { 3222 int s; 3223 dev_pos_type position_type; 3224 struct ccb_dev_match *cdm; 3225 int ret; 3226 3227 cdm = &start_ccb->cdm; 3228 3229 /* 3230 * Prevent EDT changes while we traverse it. 3231 */ 3232 s = splcam(); 3233 /* 3234 * There are two ways of getting at information in the EDT. 3235 * The first way is via the primary EDT tree. It starts 3236 * with a list of busses, then a list of targets on a bus, 3237 * then devices/luns on a target, and then peripherals on a 3238 * device/lun. The "other" way is by the peripheral driver 3239 * lists. The peripheral driver lists are organized by 3240 * peripheral driver. (obviously) So it makes sense to 3241 * use the peripheral driver list if the user is looking 3242 * for something like "da1", or all "da" devices. If the 3243 * user is looking for something on a particular bus/target 3244 * or lun, it's generally better to go through the EDT tree. 3245 */ 3246 3247 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3248 position_type = cdm->pos.position_type; 3249 else { 3250 u_int i; 3251 3252 position_type = CAM_DEV_POS_NONE; 3253 3254 for (i = 0; i < cdm->num_patterns; i++) { 3255 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3256 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3257 position_type = CAM_DEV_POS_EDT; 3258 break; 3259 } 3260 } 3261 3262 if (cdm->num_patterns == 0) 3263 position_type = CAM_DEV_POS_EDT; 3264 else if (position_type == CAM_DEV_POS_NONE) 3265 position_type = CAM_DEV_POS_PDRV; 3266 } 3267 3268 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3269 case CAM_DEV_POS_EDT: 3270 ret = xptedtmatch(cdm); 3271 break; 3272 case CAM_DEV_POS_PDRV: 3273 ret = xptperiphlistmatch(cdm); 3274 break; 3275 default: 3276 cdm->status = CAM_DEV_MATCH_ERROR; 3277 break; 3278 } 3279 3280 splx(s); 3281 3282 if (cdm->status == CAM_DEV_MATCH_ERROR) 3283 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3284 else 3285 start_ccb->ccb_h.status = CAM_REQ_CMP; 3286 3287 break; 3288 } 3289 case XPT_SASYNC_CB: 3290 { 3291 struct ccb_setasync *csa; 3292 struct async_node *cur_entry; 3293 struct async_list *async_head; 3294 u_int32_t added; 3295 int s; 3296 3297 csa = &start_ccb->csa; 3298 added = csa->event_enable; 3299 async_head = &csa->ccb_h.path->device->asyncs; 3300 3301 /* 3302 * If there is already an entry for us, simply 3303 * update it. 3304 */ 3305 s = splcam(); 3306 cur_entry = SLIST_FIRST(async_head); 3307 while (cur_entry != NULL) { 3308 if ((cur_entry->callback_arg == csa->callback_arg) 3309 && (cur_entry->callback == csa->callback)) 3310 break; 3311 cur_entry = SLIST_NEXT(cur_entry, links); 3312 } 3313 3314 if (cur_entry != NULL) { 3315 /* 3316 * If the request has no flags set, 3317 * remove the entry. 3318 */ 3319 added &= ~cur_entry->event_enable; 3320 if (csa->event_enable == 0) { 3321 SLIST_REMOVE(async_head, cur_entry, 3322 async_node, links); 3323 csa->ccb_h.path->device->refcount--; 3324 free(cur_entry, M_DEVBUF); 3325 } else { 3326 cur_entry->event_enable = csa->event_enable; 3327 } 3328 } else { 3329 cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF, 3330 M_NOWAIT); 3331 if (cur_entry == NULL) { 3332 splx(s); 3333 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3334 break; 3335 } 3336 cur_entry->event_enable = csa->event_enable; 3337 cur_entry->callback_arg = csa->callback_arg; 3338 cur_entry->callback = csa->callback; 3339 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3340 csa->ccb_h.path->device->refcount++; 3341 } 3342 3343 if ((added & AC_FOUND_DEVICE) != 0) { 3344 /* 3345 * Get this peripheral up to date with all 3346 * the currently existing devices. 3347 */ 3348 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3349 } 3350 if ((added & AC_PATH_REGISTERED) != 0) { 3351 /* 3352 * Get this peripheral up to date with all 3353 * the currently existing busses. 3354 */ 3355 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3356 } 3357 splx(s); 3358 start_ccb->ccb_h.status = CAM_REQ_CMP; 3359 break; 3360 } 3361 case XPT_REL_SIMQ: 3362 { 3363 struct ccb_relsim *crs; 3364 struct cam_ed *dev; 3365 int s; 3366 3367 crs = &start_ccb->crs; 3368 dev = crs->ccb_h.path->device; 3369 if (dev == NULL) { 3370 3371 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3372 break; 3373 } 3374 3375 s = splcam(); 3376 3377 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3378 3379 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3380 3381 /* Don't ever go below one opening */ 3382 if (crs->openings > 0) { 3383 xpt_dev_ccbq_resize(crs->ccb_h.path, 3384 crs->openings); 3385 3386 if (bootverbose) { 3387 xpt_print_path(crs->ccb_h.path); 3388 printf("tagged openings " 3389 "now %d\n", 3390 crs->openings); 3391 } 3392 } 3393 } 3394 } 3395 3396 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3397 3398 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3399 3400 /* 3401 * Just extend the old timeout and decrement 3402 * the freeze count so that a single timeout 3403 * is sufficient for releasing the queue. 3404 */ 3405 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3406 untimeout(xpt_release_devq_timeout, 3407 dev, dev->c_handle); 3408 } else { 3409 3410 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3411 } 3412 3413 dev->c_handle = 3414 timeout(xpt_release_devq_timeout, 3415 dev, 3416 (crs->release_timeout * hz) / 1000); 3417 3418 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3419 3420 } 3421 3422 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3423 3424 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3425 /* 3426 * Decrement the freeze count so that a single 3427 * completion is still sufficient to unfreeze 3428 * the queue. 3429 */ 3430 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3431 } else { 3432 3433 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3434 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3435 } 3436 } 3437 3438 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3439 3440 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3441 || (dev->ccbq.dev_active == 0)) { 3442 3443 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3444 } else { 3445 3446 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3447 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3448 } 3449 } 3450 splx(s); 3451 3452 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3453 3454 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3455 /*run_queue*/TRUE); 3456 } 3457 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3458 start_ccb->ccb_h.status = CAM_REQ_CMP; 3459 break; 3460 } 3461 case XPT_SCAN_BUS: 3462 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3463 break; 3464 case XPT_SCAN_LUN: 3465 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3466 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3467 start_ccb); 3468 break; 3469 case XPT_DEBUG: { 3470 #ifdef CAMDEBUG 3471 int s; 3472 3473 s = splcam(); 3474 #ifdef CAM_DEBUG_DELAY 3475 cam_debug_delay = CAM_DEBUG_DELAY; 3476 #endif 3477 cam_dflags = start_ccb->cdbg.flags; 3478 if (cam_dpath != NULL) { 3479 xpt_free_path(cam_dpath); 3480 cam_dpath = NULL; 3481 } 3482 3483 if (cam_dflags != CAM_DEBUG_NONE) { 3484 if (xpt_create_path(&cam_dpath, xpt_periph, 3485 start_ccb->ccb_h.path_id, 3486 start_ccb->ccb_h.target_id, 3487 start_ccb->ccb_h.target_lun) != 3488 CAM_REQ_CMP) { 3489 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3490 cam_dflags = CAM_DEBUG_NONE; 3491 } else { 3492 start_ccb->ccb_h.status = CAM_REQ_CMP; 3493 xpt_print_path(cam_dpath); 3494 printf("debugging flags now %x\n", cam_dflags); 3495 } 3496 } else { 3497 cam_dpath = NULL; 3498 start_ccb->ccb_h.status = CAM_REQ_CMP; 3499 } 3500 splx(s); 3501 #else /* !CAMDEBUG */ 3502 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3503 #endif /* CAMDEBUG */ 3504 break; 3505 } 3506 case XPT_NOOP: 3507 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3508 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3509 start_ccb->ccb_h.status = CAM_REQ_CMP; 3510 break; 3511 default: 3512 case XPT_SDEV_TYPE: 3513 case XPT_TERM_IO: 3514 case XPT_ENG_INQ: 3515 /* XXX Implement */ 3516 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3517 break; 3518 } 3519 splx(iopl); 3520 } 3521 3522 void 3523 xpt_polled_action(union ccb *start_ccb) 3524 { 3525 int s; 3526 u_int32_t timeout; 3527 struct cam_sim *sim; 3528 struct cam_devq *devq; 3529 struct cam_ed *dev; 3530 3531 timeout = start_ccb->ccb_h.timeout; 3532 sim = start_ccb->ccb_h.path->bus->sim; 3533 devq = sim->devq; 3534 dev = start_ccb->ccb_h.path->device; 3535 3536 s = splcam(); 3537 3538 /* 3539 * Steal an opening so that no other queued requests 3540 * can get it before us while we simulate interrupts. 3541 */ 3542 dev->ccbq.devq_openings--; 3543 dev->ccbq.dev_openings--; 3544 3545 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) 3546 && (--timeout > 0)) { 3547 DELAY(1000); 3548 (*(sim->sim_poll))(sim); 3549 camisr(&cam_netq); 3550 camisr(&cam_bioq); 3551 } 3552 3553 dev->ccbq.devq_openings++; 3554 dev->ccbq.dev_openings++; 3555 3556 if (timeout != 0) { 3557 xpt_action(start_ccb); 3558 while(--timeout > 0) { 3559 (*(sim->sim_poll))(sim); 3560 camisr(&cam_netq); 3561 camisr(&cam_bioq); 3562 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3563 != CAM_REQ_INPROG) 3564 break; 3565 DELAY(1000); 3566 } 3567 if (timeout == 0) { 3568 /* 3569 * XXX Is it worth adding a sim_timeout entry 3570 * point so we can attempt recovery? If 3571 * this is only used for dumps, I don't think 3572 * it is. 3573 */ 3574 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3575 } 3576 } else { 3577 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3578 } 3579 splx(s); 3580 } 3581 3582 /* 3583 * Schedule a peripheral driver to receive a ccb when it's 3584 * target device has space for more transactions. 3585 */ 3586 void 3587 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3588 { 3589 struct cam_ed *device; 3590 int s; 3591 int runq; 3592 3593 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3594 device = perph->path->device; 3595 s = splsoftcam(); 3596 if (periph_is_queued(perph)) { 3597 /* Simply reorder based on new priority */ 3598 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3599 (" change priority to %d\n", new_priority)); 3600 if (new_priority < perph->pinfo.priority) { 3601 camq_change_priority(&device->drvq, 3602 perph->pinfo.index, 3603 new_priority); 3604 } 3605 runq = 0; 3606 } else { 3607 /* New entry on the queue */ 3608 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3609 (" added periph to queue\n")); 3610 perph->pinfo.priority = new_priority; 3611 perph->pinfo.generation = ++device->drvq.generation; 3612 camq_insert(&device->drvq, &perph->pinfo); 3613 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3614 } 3615 splx(s); 3616 if (runq != 0) { 3617 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3618 (" calling xpt_run_devq\n")); 3619 xpt_run_dev_allocq(perph->path->bus); 3620 } 3621 } 3622 3623 3624 /* 3625 * Schedule a device to run on a given queue. 3626 * If the device was inserted as a new entry on the queue, 3627 * return 1 meaning the device queue should be run. If we 3628 * were already queued, implying someone else has already 3629 * started the queue, return 0 so the caller doesn't attempt 3630 * to run the queue. Must be run at either splsoftcam 3631 * (or splcam since that encompases splsoftcam). 3632 */ 3633 static int 3634 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3635 u_int32_t new_priority) 3636 { 3637 int retval; 3638 u_int32_t old_priority; 3639 3640 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3641 3642 old_priority = pinfo->priority; 3643 3644 /* 3645 * Are we already queued? 3646 */ 3647 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3648 /* Simply reorder based on new priority */ 3649 if (new_priority < old_priority) { 3650 camq_change_priority(queue, pinfo->index, 3651 new_priority); 3652 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3653 ("changed priority to %d\n", 3654 new_priority)); 3655 } 3656 retval = 0; 3657 } else { 3658 /* New entry on the queue */ 3659 if (new_priority < old_priority) 3660 pinfo->priority = new_priority; 3661 3662 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3663 ("Inserting onto queue\n")); 3664 pinfo->generation = ++queue->generation; 3665 camq_insert(queue, pinfo); 3666 retval = 1; 3667 } 3668 return (retval); 3669 } 3670 3671 static void 3672 xpt_run_dev_allocq(struct cam_eb *bus) 3673 { 3674 struct cam_devq *devq; 3675 int s; 3676 3677 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3678 devq = bus->sim->devq; 3679 3680 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3681 (" qfrozen_cnt == 0x%x, entries == %d, " 3682 "openings == %d, active == %d\n", 3683 devq->alloc_queue.qfrozen_cnt, 3684 devq->alloc_queue.entries, 3685 devq->alloc_openings, 3686 devq->alloc_active)); 3687 3688 s = splsoftcam(); 3689 devq->alloc_queue.qfrozen_cnt++; 3690 while ((devq->alloc_queue.entries > 0) 3691 && (devq->alloc_openings > 0) 3692 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3693 struct cam_ed_qinfo *qinfo; 3694 struct cam_ed *device; 3695 union ccb *work_ccb; 3696 struct cam_periph *drv; 3697 struct camq *drvq; 3698 3699 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3700 CAMQ_HEAD); 3701 device = qinfo->device; 3702 3703 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3704 ("running device %p\n", device)); 3705 3706 drvq = &device->drvq; 3707 3708 #ifdef CAMDEBUG 3709 if (drvq->entries <= 0) { 3710 panic("xpt_run_dev_allocq: " 3711 "Device on queue without any work to do"); 3712 } 3713 #endif 3714 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3715 devq->alloc_openings--; 3716 devq->alloc_active++; 3717 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3718 splx(s); 3719 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3720 drv->pinfo.priority); 3721 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3722 ("calling periph start\n")); 3723 drv->periph_start(drv, work_ccb); 3724 } else { 3725 /* 3726 * Malloc failure in alloc_ccb 3727 */ 3728 /* 3729 * XXX add us to a list to be run from free_ccb 3730 * if we don't have any ccbs active on this 3731 * device queue otherwise we may never get run 3732 * again. 3733 */ 3734 break; 3735 } 3736 3737 /* Raise IPL for possible insertion and test at top of loop */ 3738 s = splsoftcam(); 3739 3740 if (drvq->entries > 0) { 3741 /* We have more work. Attempt to reschedule */ 3742 xpt_schedule_dev_allocq(bus, device); 3743 } 3744 } 3745 devq->alloc_queue.qfrozen_cnt--; 3746 splx(s); 3747 } 3748 3749 static void 3750 xpt_run_dev_sendq(struct cam_eb *bus) 3751 { 3752 struct cam_devq *devq; 3753 int s; 3754 3755 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3756 3757 devq = bus->sim->devq; 3758 3759 s = splcam(); 3760 devq->send_queue.qfrozen_cnt++; 3761 splx(s); 3762 s = splsoftcam(); 3763 while ((devq->send_queue.entries > 0) 3764 && (devq->send_openings > 0)) { 3765 struct cam_ed_qinfo *qinfo; 3766 struct cam_ed *device; 3767 union ccb *work_ccb; 3768 struct cam_sim *sim; 3769 int ospl; 3770 3771 ospl = splcam(); 3772 if (devq->send_queue.qfrozen_cnt > 1) { 3773 splx(ospl); 3774 break; 3775 } 3776 3777 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3778 CAMQ_HEAD); 3779 device = qinfo->device; 3780 3781 /* 3782 * If the device has been "frozen", don't attempt 3783 * to run it. 3784 */ 3785 if (device->qfrozen_cnt > 0) { 3786 splx(ospl); 3787 continue; 3788 } 3789 3790 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3791 ("running device %p\n", device)); 3792 3793 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3794 if (work_ccb == NULL) { 3795 printf("device on run queue with no ccbs???"); 3796 splx(ospl); 3797 continue; 3798 } 3799 3800 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3801 3802 if (num_highpower <= 0) { 3803 /* 3804 * We got a high power command, but we 3805 * don't have any available slots. Freeze 3806 * the device queue until we have a slot 3807 * available. 3808 */ 3809 device->qfrozen_cnt++; 3810 STAILQ_INSERT_TAIL(&highpowerq, 3811 &work_ccb->ccb_h, 3812 xpt_links.stqe); 3813 3814 splx(ospl); 3815 continue; 3816 } else { 3817 /* 3818 * Consume a high power slot while 3819 * this ccb runs. 3820 */ 3821 num_highpower--; 3822 } 3823 } 3824 devq->active_dev = device; 3825 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3826 3827 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3828 splx(ospl); 3829 3830 devq->send_openings--; 3831 devq->send_active++; 3832 3833 if (device->ccbq.queue.entries > 0) 3834 xpt_schedule_dev_sendq(bus, device); 3835 3836 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3837 /* 3838 * The client wants to freeze the queue 3839 * after this CCB is sent. 3840 */ 3841 ospl = splcam(); 3842 device->qfrozen_cnt++; 3843 splx(ospl); 3844 } 3845 3846 splx(s); 3847 3848 /* In Target mode, the peripheral driver knows best... */ 3849 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3850 if ((device->inq_flags & SID_CmdQue) != 0 3851 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3852 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3853 else 3854 /* 3855 * Clear this in case of a retried CCB that 3856 * failed due to a rejected tag. 3857 */ 3858 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3859 } 3860 3861 /* 3862 * Device queues can be shared among multiple sim instances 3863 * that reside on different busses. Use the SIM in the queue 3864 * CCB's path, rather than the one in the bus that was passed 3865 * into this function. 3866 */ 3867 sim = work_ccb->ccb_h.path->bus->sim; 3868 (*(sim->sim_action))(sim, work_ccb); 3869 3870 ospl = splcam(); 3871 devq->active_dev = NULL; 3872 splx(ospl); 3873 /* Raise IPL for possible insertion and test at top of loop */ 3874 s = splsoftcam(); 3875 } 3876 splx(s); 3877 s = splcam(); 3878 devq->send_queue.qfrozen_cnt--; 3879 splx(s); 3880 } 3881 3882 /* 3883 * This function merges stuff from the slave ccb into the master ccb, while 3884 * keeping important fields in the master ccb constant. 3885 */ 3886 void 3887 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3888 { 3889 /* 3890 * Pull fields that are valid for peripheral drivers to set 3891 * into the master CCB along with the CCB "payload". 3892 */ 3893 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3894 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3895 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3896 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3897 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3898 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3899 } 3900 3901 void 3902 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3903 { 3904 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3905 ccb_h->pinfo.priority = priority; 3906 ccb_h->path = path; 3907 ccb_h->path_id = path->bus->path_id; 3908 if (path->target) 3909 ccb_h->target_id = path->target->target_id; 3910 else 3911 ccb_h->target_id = CAM_TARGET_WILDCARD; 3912 if (path->device) { 3913 ccb_h->target_lun = path->device->lun_id; 3914 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3915 } else { 3916 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3917 } 3918 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3919 ccb_h->flags = 0; 3920 } 3921 3922 /* Path manipulation functions */ 3923 cam_status 3924 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3925 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3926 { 3927 struct cam_path *path; 3928 cam_status status; 3929 3930 path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT); 3931 3932 if (path == NULL) { 3933 status = CAM_RESRC_UNAVAIL; 3934 return(status); 3935 } 3936 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3937 if (status != CAM_REQ_CMP) { 3938 free(path, M_DEVBUF); 3939 path = NULL; 3940 } 3941 *new_path_ptr = path; 3942 return (status); 3943 } 3944 3945 static cam_status 3946 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3947 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3948 { 3949 struct cam_eb *bus; 3950 struct cam_et *target; 3951 struct cam_ed *device; 3952 cam_status status; 3953 int s; 3954 3955 status = CAM_REQ_CMP; /* Completed without error */ 3956 target = NULL; /* Wildcarded */ 3957 device = NULL; /* Wildcarded */ 3958 3959 /* 3960 * We will potentially modify the EDT, so block interrupts 3961 * that may attempt to create cam paths. 3962 */ 3963 s = splcam(); 3964 bus = xpt_find_bus(path_id); 3965 if (bus == NULL) { 3966 status = CAM_PATH_INVALID; 3967 } else { 3968 target = xpt_find_target(bus, target_id); 3969 if (target == NULL) { 3970 /* Create one */ 3971 struct cam_et *new_target; 3972 3973 new_target = xpt_alloc_target(bus, target_id); 3974 if (new_target == NULL) { 3975 status = CAM_RESRC_UNAVAIL; 3976 } else { 3977 target = new_target; 3978 } 3979 } 3980 if (target != NULL) { 3981 device = xpt_find_device(target, lun_id); 3982 if (device == NULL) { 3983 /* Create one */ 3984 struct cam_ed *new_device; 3985 3986 new_device = xpt_alloc_device(bus, 3987 target, 3988 lun_id); 3989 if (new_device == NULL) { 3990 status = CAM_RESRC_UNAVAIL; 3991 } else { 3992 device = new_device; 3993 } 3994 } 3995 } 3996 } 3997 splx(s); 3998 3999 /* 4000 * Only touch the user's data if we are successful. 4001 */ 4002 if (status == CAM_REQ_CMP) { 4003 new_path->periph = perph; 4004 new_path->bus = bus; 4005 new_path->target = target; 4006 new_path->device = device; 4007 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4008 } else { 4009 if (device != NULL) 4010 xpt_release_device(bus, target, device); 4011 if (target != NULL) 4012 xpt_release_target(bus, target); 4013 if (bus != NULL) 4014 xpt_release_bus(bus); 4015 } 4016 return (status); 4017 } 4018 4019 static void 4020 xpt_release_path(struct cam_path *path) 4021 { 4022 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4023 if (path->device != NULL) { 4024 xpt_release_device(path->bus, path->target, path->device); 4025 path->device = NULL; 4026 } 4027 if (path->target != NULL) { 4028 xpt_release_target(path->bus, path->target); 4029 path->target = NULL; 4030 } 4031 if (path->bus != NULL) { 4032 xpt_release_bus(path->bus); 4033 path->bus = NULL; 4034 } 4035 } 4036 4037 void 4038 xpt_free_path(struct cam_path *path) 4039 { 4040 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4041 xpt_release_path(path); 4042 free(path, M_DEVBUF); 4043 } 4044 4045 4046 /* 4047 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4048 * in path1, 2 for match with wildcards in path2. 4049 */ 4050 int 4051 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4052 { 4053 int retval = 0; 4054 4055 if (path1->bus != path2->bus) { 4056 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4057 retval = 1; 4058 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4059 retval = 2; 4060 else 4061 return (-1); 4062 } 4063 if (path1->target != path2->target) { 4064 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4065 if (retval == 0) 4066 retval = 1; 4067 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4068 retval = 2; 4069 else 4070 return (-1); 4071 } 4072 if (path1->device != path2->device) { 4073 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4074 if (retval == 0) 4075 retval = 1; 4076 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4077 retval = 2; 4078 else 4079 return (-1); 4080 } 4081 return (retval); 4082 } 4083 4084 void 4085 xpt_print_path(struct cam_path *path) 4086 { 4087 if (path == NULL) 4088 printf("(nopath): "); 4089 else { 4090 if (path->periph != NULL) 4091 printf("(%s%d:", path->periph->periph_name, 4092 path->periph->unit_number); 4093 else 4094 printf("(noperiph:"); 4095 4096 if (path->bus != NULL) 4097 printf("%s%d:%d:", path->bus->sim->sim_name, 4098 path->bus->sim->unit_number, 4099 path->bus->sim->bus_id); 4100 else 4101 printf("nobus:"); 4102 4103 if (path->target != NULL) 4104 printf("%d:", path->target->target_id); 4105 else 4106 printf("X:"); 4107 4108 if (path->device != NULL) 4109 printf("%d): ", path->device->lun_id); 4110 else 4111 printf("X): "); 4112 } 4113 } 4114 4115 int 4116 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4117 { 4118 struct sbuf sb; 4119 4120 sbuf_new(&sb, str, str_len, 0); 4121 4122 if (path == NULL) 4123 sbuf_printf(&sb, "(nopath): "); 4124 else { 4125 if (path->periph != NULL) 4126 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4127 path->periph->unit_number); 4128 else 4129 sbuf_printf(&sb, "(noperiph:"); 4130 4131 if (path->bus != NULL) 4132 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4133 path->bus->sim->unit_number, 4134 path->bus->sim->bus_id); 4135 else 4136 sbuf_printf(&sb, "nobus:"); 4137 4138 if (path->target != NULL) 4139 sbuf_printf(&sb, "%d:", path->target->target_id); 4140 else 4141 sbuf_printf(&sb, "X:"); 4142 4143 if (path->device != NULL) 4144 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4145 else 4146 sbuf_printf(&sb, "X): "); 4147 } 4148 sbuf_finish(&sb); 4149 4150 return(sbuf_len(&sb)); 4151 } 4152 4153 path_id_t 4154 xpt_path_path_id(struct cam_path *path) 4155 { 4156 return(path->bus->path_id); 4157 } 4158 4159 target_id_t 4160 xpt_path_target_id(struct cam_path *path) 4161 { 4162 if (path->target != NULL) 4163 return (path->target->target_id); 4164 else 4165 return (CAM_TARGET_WILDCARD); 4166 } 4167 4168 lun_id_t 4169 xpt_path_lun_id(struct cam_path *path) 4170 { 4171 if (path->device != NULL) 4172 return (path->device->lun_id); 4173 else 4174 return (CAM_LUN_WILDCARD); 4175 } 4176 4177 struct cam_sim * 4178 xpt_path_sim(struct cam_path *path) 4179 { 4180 return (path->bus->sim); 4181 } 4182 4183 struct cam_periph* 4184 xpt_path_periph(struct cam_path *path) 4185 { 4186 return (path->periph); 4187 } 4188 4189 /* 4190 * Release a CAM control block for the caller. Remit the cost of the structure 4191 * to the device referenced by the path. If the this device had no 'credits' 4192 * and peripheral drivers have registered async callbacks for this notification 4193 * call them now. 4194 */ 4195 void 4196 xpt_release_ccb(union ccb *free_ccb) 4197 { 4198 int s; 4199 struct cam_path *path; 4200 struct cam_ed *device; 4201 struct cam_eb *bus; 4202 4203 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4204 path = free_ccb->ccb_h.path; 4205 device = path->device; 4206 bus = path->bus; 4207 s = splsoftcam(); 4208 cam_ccbq_release_opening(&device->ccbq); 4209 if (xpt_ccb_count > xpt_max_ccbs) { 4210 xpt_free_ccb(free_ccb); 4211 xpt_ccb_count--; 4212 } else { 4213 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4214 } 4215 bus->sim->devq->alloc_openings++; 4216 bus->sim->devq->alloc_active--; 4217 /* XXX Turn this into an inline function - xpt_run_device?? */ 4218 if ((device_is_alloc_queued(device) == 0) 4219 && (device->drvq.entries > 0)) { 4220 xpt_schedule_dev_allocq(bus, device); 4221 } 4222 splx(s); 4223 if (dev_allocq_is_runnable(bus->sim->devq)) 4224 xpt_run_dev_allocq(bus); 4225 } 4226 4227 /* Functions accessed by SIM drivers */ 4228 4229 /* 4230 * A sim structure, listing the SIM entry points and instance 4231 * identification info is passed to xpt_bus_register to hook the SIM 4232 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4233 * for this new bus and places it in the array of busses and assigns 4234 * it a path_id. The path_id may be influenced by "hard wiring" 4235 * information specified by the user. Once interrupt services are 4236 * availible, the bus will be probed. 4237 */ 4238 int32_t 4239 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4240 { 4241 struct cam_eb *new_bus; 4242 struct cam_eb *old_bus; 4243 struct ccb_pathinq cpi; 4244 int s; 4245 4246 sim->bus_id = bus; 4247 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4248 M_DEVBUF, M_NOWAIT); 4249 if (new_bus == NULL) { 4250 /* Couldn't satisfy request */ 4251 return (CAM_RESRC_UNAVAIL); 4252 } 4253 4254 if (strcmp(sim->sim_name, "xpt") != 0) { 4255 4256 sim->path_id = 4257 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4258 } 4259 4260 TAILQ_INIT(&new_bus->et_entries); 4261 new_bus->path_id = sim->path_id; 4262 new_bus->sim = sim; 4263 timevalclear(&new_bus->last_reset); 4264 new_bus->flags = 0; 4265 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4266 new_bus->generation = 0; 4267 s = splcam(); 4268 old_bus = TAILQ_FIRST(&xpt_busses); 4269 while (old_bus != NULL 4270 && old_bus->path_id < new_bus->path_id) 4271 old_bus = TAILQ_NEXT(old_bus, links); 4272 if (old_bus != NULL) 4273 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4274 else 4275 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4276 bus_generation++; 4277 splx(s); 4278 4279 /* Notify interested parties */ 4280 if (sim->path_id != CAM_XPT_PATH_ID) { 4281 struct cam_path path; 4282 4283 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4284 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4285 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4286 cpi.ccb_h.func_code = XPT_PATH_INQ; 4287 xpt_action((union ccb *)&cpi); 4288 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4289 xpt_release_path(&path); 4290 } 4291 return (CAM_SUCCESS); 4292 } 4293 4294 int32_t 4295 xpt_bus_deregister(path_id_t pathid) 4296 { 4297 struct cam_path bus_path; 4298 cam_status status; 4299 4300 status = xpt_compile_path(&bus_path, NULL, pathid, 4301 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4302 if (status != CAM_REQ_CMP) 4303 return (status); 4304 4305 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4306 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4307 4308 /* Release the reference count held while registered. */ 4309 xpt_release_bus(bus_path.bus); 4310 xpt_release_path(&bus_path); 4311 4312 return (CAM_REQ_CMP); 4313 } 4314 4315 static path_id_t 4316 xptnextfreepathid(void) 4317 { 4318 struct cam_eb *bus; 4319 path_id_t pathid; 4320 char *strval; 4321 4322 pathid = 0; 4323 bus = TAILQ_FIRST(&xpt_busses); 4324 retry: 4325 /* Find an unoccupied pathid */ 4326 while (bus != NULL 4327 && bus->path_id <= pathid) { 4328 if (bus->path_id == pathid) 4329 pathid++; 4330 bus = TAILQ_NEXT(bus, links); 4331 } 4332 4333 /* 4334 * Ensure that this pathid is not reserved for 4335 * a bus that may be registered in the future. 4336 */ 4337 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4338 ++pathid; 4339 /* Start the search over */ 4340 goto retry; 4341 } 4342 return (pathid); 4343 } 4344 4345 static path_id_t 4346 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4347 { 4348 path_id_t pathid; 4349 int i, dunit, val; 4350 char buf[32]; 4351 4352 pathid = CAM_XPT_PATH_ID; 4353 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4354 i = -1; 4355 while ((i = resource_query_string(i, "at", buf)) != -1) { 4356 if (strcmp(resource_query_name(i), "scbus")) { 4357 /* Avoid a bit of foot shooting. */ 4358 continue; 4359 } 4360 dunit = resource_query_unit(i); 4361 if (dunit < 0) /* unwired?! */ 4362 continue; 4363 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4364 if (sim_bus == val) { 4365 pathid = dunit; 4366 break; 4367 } 4368 } else if (sim_bus == 0) { 4369 /* Unspecified matches bus 0 */ 4370 pathid = dunit; 4371 break; 4372 } else { 4373 printf("Ambiguous scbus configuration for %s%d " 4374 "bus %d, cannot wire down. The kernel " 4375 "config entry for scbus%d should " 4376 "specify a controller bus.\n" 4377 "Scbus will be assigned dynamically.\n", 4378 sim_name, sim_unit, sim_bus, dunit); 4379 break; 4380 } 4381 } 4382 4383 if (pathid == CAM_XPT_PATH_ID) 4384 pathid = xptnextfreepathid(); 4385 return (pathid); 4386 } 4387 4388 void 4389 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4390 { 4391 struct cam_eb *bus; 4392 struct cam_et *target, *next_target; 4393 struct cam_ed *device, *next_device; 4394 int s; 4395 4396 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4397 4398 /* 4399 * Most async events come from a CAM interrupt context. In 4400 * a few cases, the error recovery code at the peripheral layer, 4401 * which may run from our SWI or a process context, may signal 4402 * deferred events with a call to xpt_async. Ensure async 4403 * notifications are serialized by blocking cam interrupts. 4404 */ 4405 s = splcam(); 4406 4407 bus = path->bus; 4408 4409 if (async_code == AC_BUS_RESET) { 4410 int s; 4411 4412 s = splclock(); 4413 /* Update our notion of when the last reset occurred */ 4414 microtime(&bus->last_reset); 4415 splx(s); 4416 } 4417 4418 for (target = TAILQ_FIRST(&bus->et_entries); 4419 target != NULL; 4420 target = next_target) { 4421 4422 next_target = TAILQ_NEXT(target, links); 4423 4424 if (path->target != target 4425 && path->target->target_id != CAM_TARGET_WILDCARD 4426 && target->target_id != CAM_TARGET_WILDCARD) 4427 continue; 4428 4429 if (async_code == AC_SENT_BDR) { 4430 int s; 4431 4432 /* Update our notion of when the last reset occurred */ 4433 s = splclock(); 4434 microtime(&path->target->last_reset); 4435 splx(s); 4436 } 4437 4438 for (device = TAILQ_FIRST(&target->ed_entries); 4439 device != NULL; 4440 device = next_device) { 4441 4442 next_device = TAILQ_NEXT(device, links); 4443 4444 if (path->device != device 4445 && path->device->lun_id != CAM_LUN_WILDCARD 4446 && device->lun_id != CAM_LUN_WILDCARD) 4447 continue; 4448 4449 xpt_dev_async(async_code, bus, target, 4450 device, async_arg); 4451 4452 xpt_async_bcast(&device->asyncs, async_code, 4453 path, async_arg); 4454 } 4455 } 4456 4457 /* 4458 * If this wasn't a fully wildcarded async, tell all 4459 * clients that want all async events. 4460 */ 4461 if (bus != xpt_periph->path->bus) 4462 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4463 path, async_arg); 4464 splx(s); 4465 } 4466 4467 static void 4468 xpt_async_bcast(struct async_list *async_head, 4469 u_int32_t async_code, 4470 struct cam_path *path, void *async_arg) 4471 { 4472 struct async_node *cur_entry; 4473 4474 cur_entry = SLIST_FIRST(async_head); 4475 while (cur_entry != NULL) { 4476 struct async_node *next_entry; 4477 /* 4478 * Grab the next list entry before we call the current 4479 * entry's callback. This is because the callback function 4480 * can delete its async callback entry. 4481 */ 4482 next_entry = SLIST_NEXT(cur_entry, links); 4483 if ((cur_entry->event_enable & async_code) != 0) 4484 cur_entry->callback(cur_entry->callback_arg, 4485 async_code, path, 4486 async_arg); 4487 cur_entry = next_entry; 4488 } 4489 } 4490 4491 /* 4492 * Handle any per-device event notifications that require action by the XPT. 4493 */ 4494 static void 4495 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4496 struct cam_ed *device, void *async_arg) 4497 { 4498 cam_status status; 4499 struct cam_path newpath; 4500 4501 /* 4502 * We only need to handle events for real devices. 4503 */ 4504 if (target->target_id == CAM_TARGET_WILDCARD 4505 || device->lun_id == CAM_LUN_WILDCARD) 4506 return; 4507 4508 /* 4509 * We need our own path with wildcards expanded to 4510 * handle certain types of events. 4511 */ 4512 if ((async_code == AC_SENT_BDR) 4513 || (async_code == AC_BUS_RESET) 4514 || (async_code == AC_INQ_CHANGED)) 4515 status = xpt_compile_path(&newpath, NULL, 4516 bus->path_id, 4517 target->target_id, 4518 device->lun_id); 4519 else 4520 status = CAM_REQ_CMP_ERR; 4521 4522 if (status == CAM_REQ_CMP) { 4523 4524 /* 4525 * Allow transfer negotiation to occur in a 4526 * tag free environment. 4527 */ 4528 if (async_code == AC_SENT_BDR 4529 || async_code == AC_BUS_RESET) 4530 xpt_toggle_tags(&newpath); 4531 4532 if (async_code == AC_INQ_CHANGED) { 4533 /* 4534 * We've sent a start unit command, or 4535 * something similar to a device that 4536 * may have caused its inquiry data to 4537 * change. So we re-scan the device to 4538 * refresh the inquiry data for it. 4539 */ 4540 xpt_scan_lun(newpath.periph, &newpath, 4541 CAM_EXPECT_INQ_CHANGE, NULL); 4542 } 4543 xpt_release_path(&newpath); 4544 } else if (async_code == AC_LOST_DEVICE) { 4545 device->flags |= CAM_DEV_UNCONFIGURED; 4546 } else if (async_code == AC_TRANSFER_NEG) { 4547 struct ccb_trans_settings *settings; 4548 4549 settings = (struct ccb_trans_settings *)async_arg; 4550 xpt_set_transfer_settings(settings, device, 4551 /*async_update*/TRUE); 4552 } 4553 } 4554 4555 u_int32_t 4556 xpt_freeze_devq(struct cam_path *path, u_int count) 4557 { 4558 int s; 4559 struct ccb_hdr *ccbh; 4560 4561 s = splcam(); 4562 path->device->qfrozen_cnt += count; 4563 4564 /* 4565 * Mark the last CCB in the queue as needing 4566 * to be requeued if the driver hasn't 4567 * changed it's state yet. This fixes a race 4568 * where a ccb is just about to be queued to 4569 * a controller driver when it's interrupt routine 4570 * freezes the queue. To completly close the 4571 * hole, controller drives must check to see 4572 * if a ccb's status is still CAM_REQ_INPROG 4573 * under spl protection just before they queue 4574 * the CCB. See ahc_action/ahc_freeze_devq for 4575 * an example. 4576 */ 4577 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4578 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4579 ccbh->status = CAM_REQUEUE_REQ; 4580 splx(s); 4581 return (path->device->qfrozen_cnt); 4582 } 4583 4584 u_int32_t 4585 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4586 { 4587 sim->devq->send_queue.qfrozen_cnt += count; 4588 if (sim->devq->active_dev != NULL) { 4589 struct ccb_hdr *ccbh; 4590 4591 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4592 ccb_hdr_tailq); 4593 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4594 ccbh->status = CAM_REQUEUE_REQ; 4595 } 4596 return (sim->devq->send_queue.qfrozen_cnt); 4597 } 4598 4599 static void 4600 xpt_release_devq_timeout(void *arg) 4601 { 4602 struct cam_ed *device; 4603 4604 device = (struct cam_ed *)arg; 4605 4606 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4607 } 4608 4609 void 4610 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4611 { 4612 xpt_release_devq_device(path->device, count, run_queue); 4613 } 4614 4615 static void 4616 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4617 { 4618 int rundevq; 4619 int s0, s1; 4620 4621 rundevq = 0; 4622 s0 = splsoftcam(); 4623 s1 = splcam(); 4624 if (dev->qfrozen_cnt > 0) { 4625 4626 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4627 dev->qfrozen_cnt -= count; 4628 if (dev->qfrozen_cnt == 0) { 4629 4630 /* 4631 * No longer need to wait for a successful 4632 * command completion. 4633 */ 4634 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4635 4636 /* 4637 * Remove any timeouts that might be scheduled 4638 * to release this queue. 4639 */ 4640 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4641 untimeout(xpt_release_devq_timeout, dev, 4642 dev->c_handle); 4643 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4644 } 4645 4646 /* 4647 * Now that we are unfrozen schedule the 4648 * device so any pending transactions are 4649 * run. 4650 */ 4651 if ((dev->ccbq.queue.entries > 0) 4652 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4653 && (run_queue != 0)) { 4654 rundevq = 1; 4655 } 4656 } 4657 } 4658 splx(s1); 4659 if (rundevq != 0) 4660 xpt_run_dev_sendq(dev->target->bus); 4661 splx(s0); 4662 } 4663 4664 void 4665 xpt_release_simq(struct cam_sim *sim, int run_queue) 4666 { 4667 int s; 4668 struct camq *sendq; 4669 4670 sendq = &(sim->devq->send_queue); 4671 s = splcam(); 4672 if (sendq->qfrozen_cnt > 0) { 4673 4674 sendq->qfrozen_cnt--; 4675 if (sendq->qfrozen_cnt == 0) { 4676 struct cam_eb *bus; 4677 4678 /* 4679 * If there is a timeout scheduled to release this 4680 * sim queue, remove it. The queue frozen count is 4681 * already at 0. 4682 */ 4683 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4684 untimeout(xpt_release_simq_timeout, sim, 4685 sim->c_handle); 4686 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4687 } 4688 bus = xpt_find_bus(sim->path_id); 4689 splx(s); 4690 4691 if (run_queue) { 4692 /* 4693 * Now that we are unfrozen run the send queue. 4694 */ 4695 xpt_run_dev_sendq(bus); 4696 } 4697 xpt_release_bus(bus); 4698 } else 4699 splx(s); 4700 } else 4701 splx(s); 4702 } 4703 4704 static void 4705 xpt_release_simq_timeout(void *arg) 4706 { 4707 struct cam_sim *sim; 4708 4709 sim = (struct cam_sim *)arg; 4710 xpt_release_simq(sim, /* run_queue */ TRUE); 4711 } 4712 4713 void 4714 xpt_done(union ccb *done_ccb) 4715 { 4716 int s; 4717 4718 s = splcam(); 4719 4720 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4721 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4722 /* 4723 * Queue up the request for handling by our SWI handler 4724 * any of the "non-immediate" type of ccbs. 4725 */ 4726 switch (done_ccb->ccb_h.path->periph->type) { 4727 case CAM_PERIPH_BIO: 4728 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4729 sim_links.tqe); 4730 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4731 swi_sched(cambio_ih, SWI_NOSWITCH); 4732 break; 4733 case CAM_PERIPH_NET: 4734 TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h, 4735 sim_links.tqe); 4736 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4737 swi_sched(camnet_ih, SWI_NOSWITCH); 4738 break; 4739 } 4740 } 4741 splx(s); 4742 } 4743 4744 union ccb * 4745 xpt_alloc_ccb() 4746 { 4747 union ccb *new_ccb; 4748 4749 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK); 4750 return (new_ccb); 4751 } 4752 4753 void 4754 xpt_free_ccb(union ccb *free_ccb) 4755 { 4756 free(free_ccb, M_DEVBUF); 4757 } 4758 4759 4760 4761 /* Private XPT functions */ 4762 4763 /* 4764 * Get a CAM control block for the caller. Charge the structure to the device 4765 * referenced by the path. If the this device has no 'credits' then the 4766 * device already has the maximum number of outstanding operations under way 4767 * and we return NULL. If we don't have sufficient resources to allocate more 4768 * ccbs, we also return NULL. 4769 */ 4770 static union ccb * 4771 xpt_get_ccb(struct cam_ed *device) 4772 { 4773 union ccb *new_ccb; 4774 int s; 4775 4776 s = splsoftcam(); 4777 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 4778 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT); 4779 if (new_ccb == NULL) { 4780 splx(s); 4781 return (NULL); 4782 } 4783 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4784 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4785 xpt_links.sle); 4786 xpt_ccb_count++; 4787 } 4788 cam_ccbq_take_opening(&device->ccbq); 4789 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4790 splx(s); 4791 return (new_ccb); 4792 } 4793 4794 static void 4795 xpt_release_bus(struct cam_eb *bus) 4796 { 4797 int s; 4798 4799 s = splcam(); 4800 if ((--bus->refcount == 0) 4801 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4802 TAILQ_REMOVE(&xpt_busses, bus, links); 4803 bus_generation++; 4804 splx(s); 4805 free(bus, M_DEVBUF); 4806 } else 4807 splx(s); 4808 } 4809 4810 static struct cam_et * 4811 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4812 { 4813 struct cam_et *target; 4814 4815 target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT); 4816 if (target != NULL) { 4817 struct cam_et *cur_target; 4818 4819 TAILQ_INIT(&target->ed_entries); 4820 target->bus = bus; 4821 target->target_id = target_id; 4822 target->refcount = 1; 4823 target->generation = 0; 4824 timevalclear(&target->last_reset); 4825 /* 4826 * Hold a reference to our parent bus so it 4827 * will not go away before we do. 4828 */ 4829 bus->refcount++; 4830 4831 /* Insertion sort into our bus's target list */ 4832 cur_target = TAILQ_FIRST(&bus->et_entries); 4833 while (cur_target != NULL && cur_target->target_id < target_id) 4834 cur_target = TAILQ_NEXT(cur_target, links); 4835 4836 if (cur_target != NULL) { 4837 TAILQ_INSERT_BEFORE(cur_target, target, links); 4838 } else { 4839 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4840 } 4841 bus->generation++; 4842 } 4843 return (target); 4844 } 4845 4846 static void 4847 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4848 { 4849 int s; 4850 4851 s = splcam(); 4852 if ((--target->refcount == 0) 4853 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4854 TAILQ_REMOVE(&bus->et_entries, target, links); 4855 bus->generation++; 4856 splx(s); 4857 free(target, M_DEVBUF); 4858 xpt_release_bus(bus); 4859 } else 4860 splx(s); 4861 } 4862 4863 static struct cam_ed * 4864 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4865 { 4866 #ifdef CAM_NEW_TRAN_CODE 4867 struct cam_path path; 4868 #endif /* CAM_NEW_TRAN_CODE */ 4869 struct cam_ed *device; 4870 struct cam_devq *devq; 4871 cam_status status; 4872 4873 /* Make space for us in the device queue on our bus */ 4874 devq = bus->sim->devq; 4875 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4876 4877 if (status != CAM_REQ_CMP) { 4878 device = NULL; 4879 } else { 4880 device = (struct cam_ed *)malloc(sizeof(*device), 4881 M_DEVBUF, M_NOWAIT); 4882 } 4883 4884 if (device != NULL) { 4885 struct cam_ed *cur_device; 4886 4887 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4888 device->alloc_ccb_entry.device = device; 4889 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4890 device->send_ccb_entry.device = device; 4891 device->target = target; 4892 device->lun_id = lun_id; 4893 /* Initialize our queues */ 4894 if (camq_init(&device->drvq, 0) != 0) { 4895 free(device, M_DEVBUF); 4896 return (NULL); 4897 } 4898 if (cam_ccbq_init(&device->ccbq, 4899 bus->sim->max_dev_openings) != 0) { 4900 camq_fini(&device->drvq); 4901 free(device, M_DEVBUF); 4902 return (NULL); 4903 } 4904 SLIST_INIT(&device->asyncs); 4905 SLIST_INIT(&device->periphs); 4906 device->generation = 0; 4907 device->owner = NULL; 4908 /* 4909 * Take the default quirk entry until we have inquiry 4910 * data and can determine a better quirk to use. 4911 */ 4912 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 4913 bzero(&device->inq_data, sizeof(device->inq_data)); 4914 device->inq_flags = 0; 4915 device->queue_flags = 0; 4916 device->serial_num = NULL; 4917 device->serial_num_len = 0; 4918 device->qfrozen_cnt = 0; 4919 device->flags = CAM_DEV_UNCONFIGURED; 4920 device->tag_delay_count = 0; 4921 device->refcount = 1; 4922 callout_handle_init(&device->c_handle); 4923 4924 /* 4925 * Hold a reference to our parent target so it 4926 * will not go away before we do. 4927 */ 4928 target->refcount++; 4929 4930 /* 4931 * XXX should be limited by number of CCBs this bus can 4932 * do. 4933 */ 4934 xpt_max_ccbs += device->ccbq.devq_openings; 4935 /* Insertion sort into our target's device list */ 4936 cur_device = TAILQ_FIRST(&target->ed_entries); 4937 while (cur_device != NULL && cur_device->lun_id < lun_id) 4938 cur_device = TAILQ_NEXT(cur_device, links); 4939 if (cur_device != NULL) { 4940 TAILQ_INSERT_BEFORE(cur_device, device, links); 4941 } else { 4942 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4943 } 4944 target->generation++; 4945 #ifdef CAM_NEW_TRAN_CODE 4946 if (lun_id != CAM_LUN_WILDCARD) { 4947 xpt_compile_path(&path, 4948 NULL, 4949 bus->path_id, 4950 target->target_id, 4951 lun_id); 4952 xpt_devise_transport(&path); 4953 xpt_release_path(&path); 4954 } 4955 #endif /* CAM_NEW_TRAN_CODE */ 4956 } 4957 return (device); 4958 } 4959 4960 static void 4961 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 4962 struct cam_ed *device) 4963 { 4964 int s; 4965 4966 s = splcam(); 4967 if ((--device->refcount == 0) 4968 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 4969 struct cam_devq *devq; 4970 4971 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4972 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4973 panic("Removing device while still queued for ccbs"); 4974 4975 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4976 untimeout(xpt_release_devq_timeout, device, 4977 device->c_handle); 4978 4979 TAILQ_REMOVE(&target->ed_entries, device,links); 4980 target->generation++; 4981 xpt_max_ccbs -= device->ccbq.devq_openings; 4982 /* Release our slot in the devq */ 4983 devq = bus->sim->devq; 4984 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4985 splx(s); 4986 free(device, M_DEVBUF); 4987 xpt_release_target(bus, target); 4988 } else 4989 splx(s); 4990 } 4991 4992 static u_int32_t 4993 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4994 { 4995 int s; 4996 int diff; 4997 int result; 4998 struct cam_ed *dev; 4999 5000 dev = path->device; 5001 s = splsoftcam(); 5002 5003 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5004 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5005 if (result == CAM_REQ_CMP && (diff < 0)) { 5006 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5007 } 5008 /* Adjust the global limit */ 5009 xpt_max_ccbs += diff; 5010 splx(s); 5011 return (result); 5012 } 5013 5014 static struct cam_eb * 5015 xpt_find_bus(path_id_t path_id) 5016 { 5017 struct cam_eb *bus; 5018 5019 for (bus = TAILQ_FIRST(&xpt_busses); 5020 bus != NULL; 5021 bus = TAILQ_NEXT(bus, links)) { 5022 if (bus->path_id == path_id) { 5023 bus->refcount++; 5024 break; 5025 } 5026 } 5027 return (bus); 5028 } 5029 5030 static struct cam_et * 5031 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5032 { 5033 struct cam_et *target; 5034 5035 for (target = TAILQ_FIRST(&bus->et_entries); 5036 target != NULL; 5037 target = TAILQ_NEXT(target, links)) { 5038 if (target->target_id == target_id) { 5039 target->refcount++; 5040 break; 5041 } 5042 } 5043 return (target); 5044 } 5045 5046 static struct cam_ed * 5047 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5048 { 5049 struct cam_ed *device; 5050 5051 for (device = TAILQ_FIRST(&target->ed_entries); 5052 device != NULL; 5053 device = TAILQ_NEXT(device, links)) { 5054 if (device->lun_id == lun_id) { 5055 device->refcount++; 5056 break; 5057 } 5058 } 5059 return (device); 5060 } 5061 5062 typedef struct { 5063 union ccb *request_ccb; 5064 struct ccb_pathinq *cpi; 5065 int pending_count; 5066 } xpt_scan_bus_info; 5067 5068 /* 5069 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5070 * As the scan progresses, xpt_scan_bus is used as the 5071 * callback on completion function. 5072 */ 5073 static void 5074 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5075 { 5076 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5077 ("xpt_scan_bus\n")); 5078 switch (request_ccb->ccb_h.func_code) { 5079 case XPT_SCAN_BUS: 5080 { 5081 xpt_scan_bus_info *scan_info; 5082 union ccb *work_ccb; 5083 struct cam_path *path; 5084 u_int i; 5085 u_int max_target; 5086 u_int initiator_id; 5087 5088 /* Find out the characteristics of the bus */ 5089 work_ccb = xpt_alloc_ccb(); 5090 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5091 request_ccb->ccb_h.pinfo.priority); 5092 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5093 xpt_action(work_ccb); 5094 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5095 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5096 xpt_free_ccb(work_ccb); 5097 xpt_done(request_ccb); 5098 return; 5099 } 5100 5101 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5102 /* 5103 * Can't scan the bus on an adapter that 5104 * cannot perform the initiator role. 5105 */ 5106 request_ccb->ccb_h.status = CAM_REQ_CMP; 5107 xpt_free_ccb(work_ccb); 5108 xpt_done(request_ccb); 5109 return; 5110 } 5111 5112 /* Save some state for use while we probe for devices */ 5113 scan_info = (xpt_scan_bus_info *) 5114 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5115 scan_info->request_ccb = request_ccb; 5116 scan_info->cpi = &work_ccb->cpi; 5117 5118 /* Cache on our stack so we can work asynchronously */ 5119 max_target = scan_info->cpi->max_target; 5120 initiator_id = scan_info->cpi->initiator_id; 5121 5122 /* 5123 * Don't count the initiator if the 5124 * initiator is addressable. 5125 */ 5126 scan_info->pending_count = max_target + 1; 5127 if (initiator_id <= max_target) 5128 scan_info->pending_count--; 5129 5130 for (i = 0; i <= max_target; i++) { 5131 cam_status status; 5132 if (i == initiator_id) 5133 continue; 5134 5135 status = xpt_create_path(&path, xpt_periph, 5136 request_ccb->ccb_h.path_id, 5137 i, 0); 5138 if (status != CAM_REQ_CMP) { 5139 printf("xpt_scan_bus: xpt_create_path failed" 5140 " with status %#x, bus scan halted\n", 5141 status); 5142 break; 5143 } 5144 work_ccb = xpt_alloc_ccb(); 5145 xpt_setup_ccb(&work_ccb->ccb_h, path, 5146 request_ccb->ccb_h.pinfo.priority); 5147 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5148 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5149 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5150 work_ccb->crcn.flags = request_ccb->crcn.flags; 5151 xpt_action(work_ccb); 5152 } 5153 break; 5154 } 5155 case XPT_SCAN_LUN: 5156 { 5157 xpt_scan_bus_info *scan_info; 5158 path_id_t path_id; 5159 target_id_t target_id; 5160 lun_id_t lun_id; 5161 5162 /* Reuse the same CCB to query if a device was really found */ 5163 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5164 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5165 request_ccb->ccb_h.pinfo.priority); 5166 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5167 5168 path_id = request_ccb->ccb_h.path_id; 5169 target_id = request_ccb->ccb_h.target_id; 5170 lun_id = request_ccb->ccb_h.target_lun; 5171 xpt_action(request_ccb); 5172 5173 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5174 struct cam_ed *device; 5175 struct cam_et *target; 5176 int s, phl; 5177 5178 /* 5179 * If we already probed lun 0 successfully, or 5180 * we have additional configured luns on this 5181 * target that might have "gone away", go onto 5182 * the next lun. 5183 */ 5184 target = request_ccb->ccb_h.path->target; 5185 /* 5186 * We may touch devices that we don't 5187 * hold references too, so ensure they 5188 * don't disappear out from under us. 5189 * The target above is referenced by the 5190 * path in the request ccb. 5191 */ 5192 phl = 0; 5193 s = splcam(); 5194 device = TAILQ_FIRST(&target->ed_entries); 5195 if (device != NULL) { 5196 phl = device->quirk->quirks & CAM_QUIRK_HILUNS; 5197 if (device->lun_id == 0) 5198 device = TAILQ_NEXT(device, links); 5199 } 5200 splx(s); 5201 if ((lun_id != 0) || (device != NULL)) { 5202 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5203 lun_id++; 5204 } 5205 } else { 5206 struct cam_ed *device; 5207 5208 device = request_ccb->ccb_h.path->device; 5209 5210 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5211 /* Try the next lun */ 5212 if (lun_id < (CAM_SCSI2_MAXLUN-1) || 5213 (device->quirk->quirks & CAM_QUIRK_HILUNS)) 5214 lun_id++; 5215 } 5216 } 5217 5218 xpt_free_path(request_ccb->ccb_h.path); 5219 5220 /* Check Bounds */ 5221 if ((lun_id == request_ccb->ccb_h.target_lun) 5222 || lun_id > scan_info->cpi->max_lun) { 5223 /* We're done */ 5224 5225 xpt_free_ccb(request_ccb); 5226 scan_info->pending_count--; 5227 if (scan_info->pending_count == 0) { 5228 xpt_free_ccb((union ccb *)scan_info->cpi); 5229 request_ccb = scan_info->request_ccb; 5230 free(scan_info, M_TEMP); 5231 request_ccb->ccb_h.status = CAM_REQ_CMP; 5232 xpt_done(request_ccb); 5233 } 5234 } else { 5235 /* Try the next device */ 5236 struct cam_path *path; 5237 cam_status status; 5238 5239 path = request_ccb->ccb_h.path; 5240 status = xpt_create_path(&path, xpt_periph, 5241 path_id, target_id, lun_id); 5242 if (status != CAM_REQ_CMP) { 5243 printf("xpt_scan_bus: xpt_create_path failed " 5244 "with status %#x, halting LUN scan\n", 5245 status); 5246 xpt_free_ccb(request_ccb); 5247 scan_info->pending_count--; 5248 if (scan_info->pending_count == 0) { 5249 xpt_free_ccb( 5250 (union ccb *)scan_info->cpi); 5251 request_ccb = scan_info->request_ccb; 5252 free(scan_info, M_TEMP); 5253 request_ccb->ccb_h.status = CAM_REQ_CMP; 5254 xpt_done(request_ccb); 5255 break; 5256 } 5257 } 5258 xpt_setup_ccb(&request_ccb->ccb_h, path, 5259 request_ccb->ccb_h.pinfo.priority); 5260 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5261 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5262 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5263 request_ccb->crcn.flags = 5264 scan_info->request_ccb->crcn.flags; 5265 xpt_action(request_ccb); 5266 } 5267 break; 5268 } 5269 default: 5270 break; 5271 } 5272 } 5273 5274 typedef enum { 5275 PROBE_TUR, 5276 PROBE_INQUIRY, 5277 PROBE_FULL_INQUIRY, 5278 PROBE_MODE_SENSE, 5279 PROBE_SERIAL_NUM, 5280 PROBE_TUR_FOR_NEGOTIATION 5281 } probe_action; 5282 5283 typedef enum { 5284 PROBE_INQUIRY_CKSUM = 0x01, 5285 PROBE_SERIAL_CKSUM = 0x02, 5286 PROBE_NO_ANNOUNCE = 0x04 5287 } probe_flags; 5288 5289 typedef struct { 5290 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5291 probe_action action; 5292 union ccb saved_ccb; 5293 probe_flags flags; 5294 MD5_CTX context; 5295 u_int8_t digest[16]; 5296 } probe_softc; 5297 5298 static void 5299 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5300 cam_flags flags, union ccb *request_ccb) 5301 { 5302 struct ccb_pathinq cpi; 5303 cam_status status; 5304 struct cam_path *new_path; 5305 struct cam_periph *old_periph; 5306 int s; 5307 5308 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5309 ("xpt_scan_lun\n")); 5310 5311 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5312 cpi.ccb_h.func_code = XPT_PATH_INQ; 5313 xpt_action((union ccb *)&cpi); 5314 5315 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5316 if (request_ccb != NULL) { 5317 request_ccb->ccb_h.status = cpi.ccb_h.status; 5318 xpt_done(request_ccb); 5319 } 5320 return; 5321 } 5322 5323 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5324 /* 5325 * Can't scan the bus on an adapter that 5326 * cannot perform the initiator role. 5327 */ 5328 if (request_ccb != NULL) { 5329 request_ccb->ccb_h.status = CAM_REQ_CMP; 5330 xpt_done(request_ccb); 5331 } 5332 return; 5333 } 5334 5335 if (request_ccb == NULL) { 5336 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5337 if (request_ccb == NULL) { 5338 xpt_print_path(path); 5339 printf("xpt_scan_lun: can't allocate CCB, can't " 5340 "continue\n"); 5341 return; 5342 } 5343 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5344 if (new_path == NULL) { 5345 xpt_print_path(path); 5346 printf("xpt_scan_lun: can't allocate path, can't " 5347 "continue\n"); 5348 free(request_ccb, M_TEMP); 5349 return; 5350 } 5351 status = xpt_compile_path(new_path, xpt_periph, 5352 path->bus->path_id, 5353 path->target->target_id, 5354 path->device->lun_id); 5355 5356 if (status != CAM_REQ_CMP) { 5357 xpt_print_path(path); 5358 printf("xpt_scan_lun: can't compile path, can't " 5359 "continue\n"); 5360 free(request_ccb, M_TEMP); 5361 free(new_path, M_TEMP); 5362 return; 5363 } 5364 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5365 request_ccb->ccb_h.cbfcnp = xptscandone; 5366 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5367 request_ccb->crcn.flags = flags; 5368 } 5369 5370 s = splsoftcam(); 5371 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5372 probe_softc *softc; 5373 5374 softc = (probe_softc *)old_periph->softc; 5375 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5376 periph_links.tqe); 5377 } else { 5378 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5379 probestart, "probe", 5380 CAM_PERIPH_BIO, 5381 request_ccb->ccb_h.path, NULL, 0, 5382 request_ccb); 5383 5384 if (status != CAM_REQ_CMP) { 5385 xpt_print_path(path); 5386 printf("xpt_scan_lun: cam_alloc_periph returned an " 5387 "error, can't continue probe\n"); 5388 request_ccb->ccb_h.status = status; 5389 xpt_done(request_ccb); 5390 } 5391 } 5392 splx(s); 5393 } 5394 5395 static void 5396 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5397 { 5398 xpt_release_path(done_ccb->ccb_h.path); 5399 free(done_ccb->ccb_h.path, M_TEMP); 5400 free(done_ccb, M_TEMP); 5401 } 5402 5403 static cam_status 5404 proberegister(struct cam_periph *periph, void *arg) 5405 { 5406 union ccb *request_ccb; /* CCB representing the probe request */ 5407 probe_softc *softc; 5408 5409 request_ccb = (union ccb *)arg; 5410 if (periph == NULL) { 5411 printf("proberegister: periph was NULL!!\n"); 5412 return(CAM_REQ_CMP_ERR); 5413 } 5414 5415 if (request_ccb == NULL) { 5416 printf("proberegister: no probe CCB, " 5417 "can't register device\n"); 5418 return(CAM_REQ_CMP_ERR); 5419 } 5420 5421 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5422 5423 if (softc == NULL) { 5424 printf("proberegister: Unable to probe new device. " 5425 "Unable to allocate softc\n"); 5426 return(CAM_REQ_CMP_ERR); 5427 } 5428 TAILQ_INIT(&softc->request_ccbs); 5429 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5430 periph_links.tqe); 5431 softc->flags = 0; 5432 periph->softc = softc; 5433 cam_periph_acquire(periph); 5434 /* 5435 * Ensure we've waited at least a bus settle 5436 * delay before attempting to probe the device. 5437 * For HBAs that don't do bus resets, this won't make a difference. 5438 */ 5439 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5440 SCSI_DELAY); 5441 probeschedule(periph); 5442 return(CAM_REQ_CMP); 5443 } 5444 5445 static void 5446 probeschedule(struct cam_periph *periph) 5447 { 5448 struct ccb_pathinq cpi; 5449 union ccb *ccb; 5450 probe_softc *softc; 5451 5452 softc = (probe_softc *)periph->softc; 5453 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5454 5455 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5456 cpi.ccb_h.func_code = XPT_PATH_INQ; 5457 xpt_action((union ccb *)&cpi); 5458 5459 /* 5460 * If a device has gone away and another device, or the same one, 5461 * is back in the same place, it should have a unit attention 5462 * condition pending. It will not report the unit attention in 5463 * response to an inquiry, which may leave invalid transfer 5464 * negotiations in effect. The TUR will reveal the unit attention 5465 * condition. Only send the TUR for lun 0, since some devices 5466 * will get confused by commands other than inquiry to non-existent 5467 * luns. If you think a device has gone away start your scan from 5468 * lun 0. This will insure that any bogus transfer settings are 5469 * invalidated. 5470 * 5471 * If we haven't seen the device before and the controller supports 5472 * some kind of transfer negotiation, negotiate with the first 5473 * sent command if no bus reset was performed at startup. This 5474 * ensures that the device is not confused by transfer negotiation 5475 * settings left over by loader or BIOS action. 5476 */ 5477 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5478 && (ccb->ccb_h.target_lun == 0)) { 5479 softc->action = PROBE_TUR; 5480 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5481 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5482 proberequestdefaultnegotiation(periph); 5483 softc->action = PROBE_INQUIRY; 5484 } else { 5485 softc->action = PROBE_INQUIRY; 5486 } 5487 5488 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5489 softc->flags |= PROBE_NO_ANNOUNCE; 5490 else 5491 softc->flags &= ~PROBE_NO_ANNOUNCE; 5492 5493 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5494 } 5495 5496 static void 5497 probestart(struct cam_periph *periph, union ccb *start_ccb) 5498 { 5499 /* Probe the device that our peripheral driver points to */ 5500 struct ccb_scsiio *csio; 5501 probe_softc *softc; 5502 5503 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5504 5505 softc = (probe_softc *)periph->softc; 5506 csio = &start_ccb->csio; 5507 5508 switch (softc->action) { 5509 case PROBE_TUR: 5510 case PROBE_TUR_FOR_NEGOTIATION: 5511 { 5512 scsi_test_unit_ready(csio, 5513 /*retries*/4, 5514 probedone, 5515 MSG_SIMPLE_Q_TAG, 5516 SSD_FULL_SIZE, 5517 /*timeout*/60000); 5518 break; 5519 } 5520 case PROBE_INQUIRY: 5521 case PROBE_FULL_INQUIRY: 5522 { 5523 u_int inquiry_len; 5524 struct scsi_inquiry_data *inq_buf; 5525 5526 inq_buf = &periph->path->device->inq_data; 5527 /* 5528 * If the device is currently configured, we calculate an 5529 * MD5 checksum of the inquiry data, and if the serial number 5530 * length is greater than 0, add the serial number data 5531 * into the checksum as well. Once the inquiry and the 5532 * serial number check finish, we attempt to figure out 5533 * whether we still have the same device. 5534 */ 5535 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5536 5537 MD5Init(&softc->context); 5538 MD5Update(&softc->context, (unsigned char *)inq_buf, 5539 sizeof(struct scsi_inquiry_data)); 5540 softc->flags |= PROBE_INQUIRY_CKSUM; 5541 if (periph->path->device->serial_num_len > 0) { 5542 MD5Update(&softc->context, 5543 periph->path->device->serial_num, 5544 periph->path->device->serial_num_len); 5545 softc->flags |= PROBE_SERIAL_CKSUM; 5546 } 5547 MD5Final(softc->digest, &softc->context); 5548 } 5549 5550 if (softc->action == PROBE_INQUIRY) 5551 inquiry_len = SHORT_INQUIRY_LENGTH; 5552 else 5553 inquiry_len = inq_buf->additional_length + 4; 5554 5555 scsi_inquiry(csio, 5556 /*retries*/4, 5557 probedone, 5558 MSG_SIMPLE_Q_TAG, 5559 (u_int8_t *)inq_buf, 5560 inquiry_len, 5561 /*evpd*/FALSE, 5562 /*page_code*/0, 5563 SSD_MIN_SIZE, 5564 /*timeout*/60 * 1000); 5565 break; 5566 } 5567 case PROBE_MODE_SENSE: 5568 { 5569 void *mode_buf; 5570 int mode_buf_len; 5571 5572 mode_buf_len = sizeof(struct scsi_mode_header_6) 5573 + sizeof(struct scsi_mode_blk_desc) 5574 + sizeof(struct scsi_control_page); 5575 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5576 if (mode_buf != NULL) { 5577 scsi_mode_sense(csio, 5578 /*retries*/4, 5579 probedone, 5580 MSG_SIMPLE_Q_TAG, 5581 /*dbd*/FALSE, 5582 SMS_PAGE_CTRL_CURRENT, 5583 SMS_CONTROL_MODE_PAGE, 5584 mode_buf, 5585 mode_buf_len, 5586 SSD_FULL_SIZE, 5587 /*timeout*/60000); 5588 break; 5589 } 5590 xpt_print_path(periph->path); 5591 printf("Unable to mode sense control page - malloc failure\n"); 5592 softc->action = PROBE_SERIAL_NUM; 5593 /* FALLTHROUGH */ 5594 } 5595 case PROBE_SERIAL_NUM: 5596 { 5597 struct scsi_vpd_unit_serial_number *serial_buf; 5598 struct cam_ed* device; 5599 5600 serial_buf = NULL; 5601 device = periph->path->device; 5602 device->serial_num = NULL; 5603 device->serial_num_len = 0; 5604 5605 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5606 serial_buf = (struct scsi_vpd_unit_serial_number *) 5607 malloc(sizeof(*serial_buf), M_TEMP, 5608 M_NOWAIT | M_ZERO); 5609 5610 if (serial_buf != NULL) { 5611 scsi_inquiry(csio, 5612 /*retries*/4, 5613 probedone, 5614 MSG_SIMPLE_Q_TAG, 5615 (u_int8_t *)serial_buf, 5616 sizeof(*serial_buf), 5617 /*evpd*/TRUE, 5618 SVPD_UNIT_SERIAL_NUMBER, 5619 SSD_MIN_SIZE, 5620 /*timeout*/60 * 1000); 5621 break; 5622 } 5623 /* 5624 * We'll have to do without, let our probedone 5625 * routine finish up for us. 5626 */ 5627 start_ccb->csio.data_ptr = NULL; 5628 probedone(periph, start_ccb); 5629 return; 5630 } 5631 } 5632 xpt_action(start_ccb); 5633 } 5634 5635 static void 5636 proberequestdefaultnegotiation(struct cam_periph *periph) 5637 { 5638 struct ccb_trans_settings cts; 5639 5640 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5641 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5642 #ifdef CAM_NEW_TRAN_CODE 5643 cts.type = CTS_TYPE_USER_SETTINGS; 5644 #else /* CAM_NEW_TRAN_CODE */ 5645 cts.flags = CCB_TRANS_USER_SETTINGS; 5646 #endif /* CAM_NEW_TRAN_CODE */ 5647 xpt_action((union ccb *)&cts); 5648 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5649 #ifdef CAM_NEW_TRAN_CODE 5650 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5651 #else /* CAM_NEW_TRAN_CODE */ 5652 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5653 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5654 #endif /* CAM_NEW_TRAN_CODE */ 5655 xpt_action((union ccb *)&cts); 5656 } 5657 5658 static void 5659 probedone(struct cam_periph *periph, union ccb *done_ccb) 5660 { 5661 probe_softc *softc; 5662 struct cam_path *path; 5663 u_int32_t priority; 5664 5665 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5666 5667 softc = (probe_softc *)periph->softc; 5668 path = done_ccb->ccb_h.path; 5669 priority = done_ccb->ccb_h.pinfo.priority; 5670 5671 switch (softc->action) { 5672 case PROBE_TUR: 5673 { 5674 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5675 5676 if (cam_periph_error(done_ccb, 0, 5677 SF_NO_PRINT, NULL) == ERESTART) 5678 return; 5679 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5680 /* Don't wedge the queue */ 5681 xpt_release_devq(done_ccb->ccb_h.path, 5682 /*count*/1, 5683 /*run_queue*/TRUE); 5684 } 5685 softc->action = PROBE_INQUIRY; 5686 xpt_release_ccb(done_ccb); 5687 xpt_schedule(periph, priority); 5688 return; 5689 } 5690 case PROBE_INQUIRY: 5691 case PROBE_FULL_INQUIRY: 5692 { 5693 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5694 struct scsi_inquiry_data *inq_buf; 5695 u_int8_t periph_qual; 5696 u_int8_t periph_dtype; 5697 5698 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5699 inq_buf = &path->device->inq_data; 5700 5701 periph_qual = SID_QUAL(inq_buf); 5702 periph_dtype = SID_TYPE(inq_buf); 5703 5704 if (periph_dtype != T_NODEVICE) { 5705 switch(periph_qual) { 5706 case SID_QUAL_LU_CONNECTED: 5707 { 5708 u_int8_t alen; 5709 5710 /* 5711 * We conservatively request only 5712 * SHORT_INQUIRY_LEN bytes of inquiry 5713 * information during our first try 5714 * at sending an INQUIRY. If the device 5715 * has more information to give, 5716 * perform a second request specifying 5717 * the amount of information the device 5718 * is willing to give. 5719 */ 5720 alen = inq_buf->additional_length; 5721 if (softc->action == PROBE_INQUIRY 5722 && alen > (SHORT_INQUIRY_LENGTH - 4)) { 5723 softc->action = 5724 PROBE_FULL_INQUIRY; 5725 xpt_release_ccb(done_ccb); 5726 xpt_schedule(periph, priority); 5727 return; 5728 } 5729 5730 xpt_find_quirk(path->device); 5731 5732 #ifdef CAM_NEW_TRAN_CODE 5733 xpt_devise_transport(path); 5734 #endif /* CAM_NEW_TRAN_CODE */ 5735 if ((inq_buf->flags & SID_CmdQue) != 0) 5736 softc->action = 5737 PROBE_MODE_SENSE; 5738 else 5739 softc->action = 5740 PROBE_SERIAL_NUM; 5741 5742 path->device->flags &= 5743 ~CAM_DEV_UNCONFIGURED; 5744 5745 xpt_release_ccb(done_ccb); 5746 xpt_schedule(periph, priority); 5747 return; 5748 } 5749 default: 5750 break; 5751 } 5752 } 5753 } else if (cam_periph_error(done_ccb, 0, 5754 done_ccb->ccb_h.target_lun > 0 5755 ? SF_RETRY_UA|SF_QUIET_IR 5756 : SF_RETRY_UA, 5757 &softc->saved_ccb) == ERESTART) { 5758 return; 5759 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5760 /* Don't wedge the queue */ 5761 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5762 /*run_queue*/TRUE); 5763 } 5764 /* 5765 * If we get to this point, we got an error status back 5766 * from the inquiry and the error status doesn't require 5767 * automatically retrying the command. Therefore, the 5768 * inquiry failed. If we had inquiry information before 5769 * for this device, but this latest inquiry command failed, 5770 * the device has probably gone away. If this device isn't 5771 * already marked unconfigured, notify the peripheral 5772 * drivers that this device is no more. 5773 */ 5774 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5775 /* Send the async notification. */ 5776 xpt_async(AC_LOST_DEVICE, path, NULL); 5777 5778 xpt_release_ccb(done_ccb); 5779 break; 5780 } 5781 case PROBE_MODE_SENSE: 5782 { 5783 struct ccb_scsiio *csio; 5784 struct scsi_mode_header_6 *mode_hdr; 5785 5786 csio = &done_ccb->csio; 5787 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 5788 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5789 struct scsi_control_page *page; 5790 u_int8_t *offset; 5791 5792 offset = ((u_int8_t *)&mode_hdr[1]) 5793 + mode_hdr->blk_desc_len; 5794 page = (struct scsi_control_page *)offset; 5795 path->device->queue_flags = page->queue_flags; 5796 } else if (cam_periph_error(done_ccb, 0, 5797 SF_RETRY_UA|SF_NO_PRINT, 5798 &softc->saved_ccb) == ERESTART) { 5799 return; 5800 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5801 /* Don't wedge the queue */ 5802 xpt_release_devq(done_ccb->ccb_h.path, 5803 /*count*/1, /*run_queue*/TRUE); 5804 } 5805 xpt_release_ccb(done_ccb); 5806 free(mode_hdr, M_TEMP); 5807 softc->action = PROBE_SERIAL_NUM; 5808 xpt_schedule(periph, priority); 5809 return; 5810 } 5811 case PROBE_SERIAL_NUM: 5812 { 5813 struct ccb_scsiio *csio; 5814 struct scsi_vpd_unit_serial_number *serial_buf; 5815 u_int32_t priority; 5816 int changed; 5817 int have_serialnum; 5818 5819 changed = 1; 5820 have_serialnum = 0; 5821 csio = &done_ccb->csio; 5822 priority = done_ccb->ccb_h.pinfo.priority; 5823 serial_buf = 5824 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 5825 5826 /* Clean up from previous instance of this device */ 5827 if (path->device->serial_num != NULL) { 5828 free(path->device->serial_num, M_DEVBUF); 5829 path->device->serial_num = NULL; 5830 path->device->serial_num_len = 0; 5831 } 5832 5833 if (serial_buf == NULL) { 5834 /* 5835 * Don't process the command as it was never sent 5836 */ 5837 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 5838 && (serial_buf->length > 0)) { 5839 5840 have_serialnum = 1; 5841 path->device->serial_num = 5842 (u_int8_t *)malloc((serial_buf->length + 1), 5843 M_DEVBUF, M_NOWAIT); 5844 if (path->device->serial_num != NULL) { 5845 bcopy(serial_buf->serial_num, 5846 path->device->serial_num, 5847 serial_buf->length); 5848 path->device->serial_num_len = 5849 serial_buf->length; 5850 path->device->serial_num[serial_buf->length] 5851 = '\0'; 5852 } 5853 } else if (cam_periph_error(done_ccb, 0, 5854 SF_RETRY_UA|SF_NO_PRINT, 5855 &softc->saved_ccb) == ERESTART) { 5856 return; 5857 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5858 /* Don't wedge the queue */ 5859 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5860 /*run_queue*/TRUE); 5861 } 5862 5863 /* 5864 * Let's see if we have seen this device before. 5865 */ 5866 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 5867 MD5_CTX context; 5868 u_int8_t digest[16]; 5869 5870 MD5Init(&context); 5871 5872 MD5Update(&context, 5873 (unsigned char *)&path->device->inq_data, 5874 sizeof(struct scsi_inquiry_data)); 5875 5876 if (have_serialnum) 5877 MD5Update(&context, serial_buf->serial_num, 5878 serial_buf->length); 5879 5880 MD5Final(digest, &context); 5881 if (bcmp(softc->digest, digest, 16) == 0) 5882 changed = 0; 5883 5884 /* 5885 * XXX Do we need to do a TUR in order to ensure 5886 * that the device really hasn't changed??? 5887 */ 5888 if ((changed != 0) 5889 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 5890 xpt_async(AC_LOST_DEVICE, path, NULL); 5891 } 5892 if (serial_buf != NULL) 5893 free(serial_buf, M_TEMP); 5894 5895 if (changed != 0) { 5896 /* 5897 * Now that we have all the necessary 5898 * information to safely perform transfer 5899 * negotiations... Controllers don't perform 5900 * any negotiation or tagged queuing until 5901 * after the first XPT_SET_TRAN_SETTINGS ccb is 5902 * received. So, on a new device, just retreive 5903 * the user settings, and set them as the current 5904 * settings to set the device up. 5905 */ 5906 proberequestdefaultnegotiation(periph); 5907 xpt_release_ccb(done_ccb); 5908 5909 /* 5910 * Perform a TUR to allow the controller to 5911 * perform any necessary transfer negotiation. 5912 */ 5913 softc->action = PROBE_TUR_FOR_NEGOTIATION; 5914 xpt_schedule(periph, priority); 5915 return; 5916 } 5917 xpt_release_ccb(done_ccb); 5918 break; 5919 } 5920 case PROBE_TUR_FOR_NEGOTIATION: 5921 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5922 /* Don't wedge the queue */ 5923 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5924 /*run_queue*/TRUE); 5925 } 5926 5927 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5928 5929 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 5930 /* Inform the XPT that a new device has been found */ 5931 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5932 xpt_action(done_ccb); 5933 5934 xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb); 5935 } 5936 xpt_release_ccb(done_ccb); 5937 break; 5938 } 5939 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5940 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 5941 done_ccb->ccb_h.status = CAM_REQ_CMP; 5942 xpt_done(done_ccb); 5943 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 5944 cam_periph_invalidate(periph); 5945 cam_periph_release(periph); 5946 } else { 5947 probeschedule(periph); 5948 } 5949 } 5950 5951 static void 5952 probecleanup(struct cam_periph *periph) 5953 { 5954 free(periph->softc, M_TEMP); 5955 } 5956 5957 static void 5958 xpt_find_quirk(struct cam_ed *device) 5959 { 5960 caddr_t match; 5961 5962 match = cam_quirkmatch((caddr_t)&device->inq_data, 5963 (caddr_t)xpt_quirk_table, 5964 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 5965 sizeof(*xpt_quirk_table), scsi_inquiry_match); 5966 5967 if (match == NULL) 5968 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 5969 5970 device->quirk = (struct xpt_quirk_entry *)match; 5971 } 5972 5973 #ifdef CAM_NEW_TRAN_CODE 5974 5975 static void 5976 xpt_devise_transport(struct cam_path *path) 5977 { 5978 struct ccb_pathinq cpi; 5979 struct ccb_trans_settings cts; 5980 struct scsi_inquiry_data *inq_buf; 5981 5982 /* Get transport information from the SIM */ 5983 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5984 cpi.ccb_h.func_code = XPT_PATH_INQ; 5985 xpt_action((union ccb *)&cpi); 5986 5987 inq_buf = NULL; 5988 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 5989 inq_buf = &path->device->inq_data; 5990 path->device->protocol = PROTO_SCSI; 5991 path->device->protocol_version = 5992 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 5993 path->device->transport = cpi.transport; 5994 path->device->transport_version = cpi.transport_version; 5995 5996 /* 5997 * Any device not using SPI3 features should 5998 * be considered SPI2 or lower. 5999 */ 6000 if (inq_buf != NULL) { 6001 if (path->device->transport == XPORT_SPI 6002 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6003 && path->device->transport_version > 2) 6004 path->device->transport_version = 2; 6005 } else { 6006 struct cam_ed* otherdev; 6007 6008 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6009 otherdev != NULL; 6010 otherdev = TAILQ_NEXT(otherdev, links)) { 6011 if (otherdev != path->device) 6012 break; 6013 } 6014 6015 if (otherdev != NULL) { 6016 /* 6017 * Initially assume the same versioning as 6018 * prior luns for this target. 6019 */ 6020 path->device->protocol_version = 6021 otherdev->protocol_version; 6022 path->device->transport_version = 6023 otherdev->transport_version; 6024 } else { 6025 /* Until we know better, opt for safty */ 6026 path->device->protocol_version = 2; 6027 if (path->device->transport == XPORT_SPI) 6028 path->device->transport_version = 2; 6029 else 6030 path->device->transport_version = 0; 6031 } 6032 } 6033 6034 /* 6035 * XXX 6036 * For a device compliant with SPC-2 we should be able 6037 * to determine the transport version supported by 6038 * scrutinizing the version descriptors in the 6039 * inquiry buffer. 6040 */ 6041 6042 /* Tell the controller what we think */ 6043 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6044 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6045 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6046 cts.transport = path->device->transport; 6047 cts.transport_version = path->device->transport_version; 6048 cts.protocol = path->device->protocol; 6049 cts.protocol_version = path->device->protocol_version; 6050 cts.proto_specific.valid = 0; 6051 cts.xport_specific.valid = 0; 6052 xpt_action((union ccb *)&cts); 6053 } 6054 6055 static void 6056 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6057 int async_update) 6058 { 6059 struct ccb_pathinq cpi; 6060 struct ccb_trans_settings cur_cts; 6061 struct ccb_trans_settings_scsi *scsi; 6062 struct ccb_trans_settings_scsi *cur_scsi; 6063 struct cam_sim *sim; 6064 struct scsi_inquiry_data *inq_data; 6065 6066 if (device == NULL) { 6067 cts->ccb_h.status = CAM_PATH_INVALID; 6068 xpt_done((union ccb *)cts); 6069 return; 6070 } 6071 6072 if (cts->protocol == PROTO_UNKNOWN 6073 || cts->protocol == PROTO_UNSPECIFIED) { 6074 cts->protocol = device->protocol; 6075 cts->protocol_version = device->protocol_version; 6076 } 6077 6078 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6079 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6080 cts->protocol_version = device->protocol_version; 6081 6082 if (cts->protocol != device->protocol) { 6083 xpt_print_path(cts->ccb_h.path); 6084 printf("Uninitialized Protocol %x:%x?\n", 6085 cts->protocol, device->protocol); 6086 cts->protocol = device->protocol; 6087 } 6088 6089 if (cts->protocol_version > device->protocol_version) { 6090 if (bootverbose) { 6091 xpt_print_path(cts->ccb_h.path); 6092 printf("Down reving Protocol Version from %d to %d?\n", 6093 cts->protocol_version, device->protocol_version); 6094 } 6095 cts->protocol_version = device->protocol_version; 6096 } 6097 6098 if (cts->transport == XPORT_UNKNOWN 6099 || cts->transport == XPORT_UNSPECIFIED) { 6100 cts->transport = device->transport; 6101 cts->transport_version = device->transport_version; 6102 } 6103 6104 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6105 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6106 cts->transport_version = device->transport_version; 6107 6108 if (cts->transport != device->transport) { 6109 xpt_print_path(cts->ccb_h.path); 6110 printf("Uninitialized Transport %x:%x?\n", 6111 cts->transport, device->transport); 6112 cts->transport = device->transport; 6113 } 6114 6115 if (cts->transport_version > device->transport_version) { 6116 if (bootverbose) { 6117 xpt_print_path(cts->ccb_h.path); 6118 printf("Down reving Transport Version from %d to %d?\n", 6119 cts->transport_version, 6120 device->transport_version); 6121 } 6122 cts->transport_version = device->transport_version; 6123 } 6124 6125 sim = cts->ccb_h.path->bus->sim; 6126 6127 /* 6128 * Nothing more of interest to do unless 6129 * this is a device connected via the 6130 * SCSI protocol. 6131 */ 6132 if (cts->protocol != PROTO_SCSI) { 6133 if (async_update == FALSE) 6134 (*(sim->sim_action))(sim, (union ccb *)cts); 6135 return; 6136 } 6137 6138 inq_data = &device->inq_data; 6139 scsi = &cts->proto_specific.scsi; 6140 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6141 cpi.ccb_h.func_code = XPT_PATH_INQ; 6142 xpt_action((union ccb *)&cpi); 6143 6144 /* SCSI specific sanity checking */ 6145 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6146 || (inq_data->flags & SID_CmdQue) == 0 6147 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6148 || (device->quirk->mintags == 0)) { 6149 /* 6150 * Can't tag on hardware that doesn't support tags, 6151 * doesn't have it enabled, or has broken tag support. 6152 */ 6153 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6154 } 6155 6156 if (async_update == FALSE) { 6157 /* 6158 * Perform sanity checking against what the 6159 * controller and device can do. 6160 */ 6161 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6162 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6163 cur_cts.type = cts->type; 6164 xpt_action((union ccb *)&cur_cts); 6165 6166 cur_scsi = &cur_cts.proto_specific.scsi; 6167 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6168 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6169 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6170 } 6171 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6172 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6173 } 6174 6175 /* SPI specific sanity checking */ 6176 if (cts->transport == XPORT_SPI 6177 && async_update == FALSE) { 6178 u_int spi3caps; 6179 struct ccb_trans_settings_spi *spi; 6180 struct ccb_trans_settings_spi *cur_spi; 6181 6182 spi = &cts->xport_specific.spi; 6183 6184 cur_spi = &cur_cts.xport_specific.spi; 6185 6186 /* Fill in any gaps in what the user gave us */ 6187 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6188 spi->sync_period = cur_spi->sync_period; 6189 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6190 spi->sync_period = 0; 6191 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6192 spi->sync_offset = cur_spi->sync_offset; 6193 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6194 spi->sync_offset = 0; 6195 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6196 spi->ppr_options = cur_spi->ppr_options; 6197 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6198 spi->ppr_options = 0; 6199 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6200 spi->bus_width = cur_spi->bus_width; 6201 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6202 spi->bus_width = 0; 6203 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6204 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6205 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6206 } 6207 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6208 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6209 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6210 && (inq_data->flags & SID_Sync) == 0 6211 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6212 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6213 || (cts->sync_offset == 0) 6214 || (cts->sync_period == 0)) { 6215 /* Force async */ 6216 spi->sync_period = 0; 6217 spi->sync_offset = 0; 6218 } 6219 6220 switch (spi->bus_width) { 6221 case MSG_EXT_WDTR_BUS_32_BIT: 6222 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6223 || (inq_data->flags & SID_WBus32) != 0 6224 || cts->type == CTS_TYPE_USER_SETTINGS) 6225 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6226 break; 6227 /* Fall Through to 16-bit */ 6228 case MSG_EXT_WDTR_BUS_16_BIT: 6229 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6230 || (inq_data->flags & SID_WBus16) != 0 6231 || cts->type == CTS_TYPE_USER_SETTINGS) 6232 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6233 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6234 break; 6235 } 6236 /* Fall Through to 8-bit */ 6237 default: /* New bus width?? */ 6238 case MSG_EXT_WDTR_BUS_8_BIT: 6239 /* All targets can do this */ 6240 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6241 break; 6242 } 6243 6244 spi3caps = cpi.xport_specific.spi.ppr_options; 6245 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6246 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6247 spi3caps &= inq_data->spi3data; 6248 6249 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6250 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6251 6252 if ((spi3caps & SID_SPI_IUS) == 0) 6253 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6254 6255 if ((spi3caps & SID_SPI_QAS) == 0) 6256 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6257 6258 /* No SPI Transfer settings are allowed unless we are wide */ 6259 if (spi->bus_width == 0) 6260 spi->ppr_options = 0; 6261 6262 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6263 /* 6264 * Can't tag queue without disconnection. 6265 */ 6266 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6267 scsi->valid |= CTS_SCSI_VALID_TQ; 6268 } 6269 6270 /* 6271 * If we are currently performing tagged transactions to 6272 * this device and want to change its negotiation parameters, 6273 * go non-tagged for a bit to give the controller a chance to 6274 * negotiate unhampered by tag messages. 6275 */ 6276 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6277 && (device->inq_flags & SID_CmdQue) != 0 6278 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6279 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6280 CTS_SPI_VALID_SYNC_OFFSET| 6281 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6282 xpt_toggle_tags(cts->ccb_h.path); 6283 } 6284 6285 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6286 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6287 int device_tagenb; 6288 6289 /* 6290 * If we are transitioning from tags to no-tags or 6291 * vice-versa, we need to carefully freeze and restart 6292 * the queue so that we don't overlap tagged and non-tagged 6293 * commands. We also temporarily stop tags if there is 6294 * a change in transfer negotiation settings to allow 6295 * "tag-less" negotiation. 6296 */ 6297 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6298 || (device->inq_flags & SID_CmdQue) != 0) 6299 device_tagenb = TRUE; 6300 else 6301 device_tagenb = FALSE; 6302 6303 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6304 && device_tagenb == FALSE) 6305 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6306 && device_tagenb == TRUE)) { 6307 6308 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6309 /* 6310 * Delay change to use tags until after a 6311 * few commands have gone to this device so 6312 * the controller has time to perform transfer 6313 * negotiations without tagged messages getting 6314 * in the way. 6315 */ 6316 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6317 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6318 } else { 6319 struct ccb_relsim crs; 6320 6321 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6322 device->inq_flags &= ~SID_CmdQue; 6323 xpt_dev_ccbq_resize(cts->ccb_h.path, 6324 sim->max_dev_openings); 6325 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6326 device->tag_delay_count = 0; 6327 6328 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6329 /*priority*/1); 6330 crs.ccb_h.func_code = XPT_REL_SIMQ; 6331 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6332 crs.openings 6333 = crs.release_timeout 6334 = crs.qfrozen_cnt 6335 = 0; 6336 xpt_action((union ccb *)&crs); 6337 } 6338 } 6339 } 6340 if (async_update == FALSE) 6341 (*(sim->sim_action))(sim, (union ccb *)cts); 6342 } 6343 6344 #else /* CAM_NEW_TRAN_CODE */ 6345 6346 static void 6347 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6348 int async_update) 6349 { 6350 struct cam_sim *sim; 6351 int qfrozen; 6352 6353 sim = cts->ccb_h.path->bus->sim; 6354 if (async_update == FALSE) { 6355 struct scsi_inquiry_data *inq_data; 6356 struct ccb_pathinq cpi; 6357 struct ccb_trans_settings cur_cts; 6358 6359 if (device == NULL) { 6360 cts->ccb_h.status = CAM_PATH_INVALID; 6361 xpt_done((union ccb *)cts); 6362 return; 6363 } 6364 6365 /* 6366 * Perform sanity checking against what the 6367 * controller and device can do. 6368 */ 6369 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6370 cpi.ccb_h.func_code = XPT_PATH_INQ; 6371 xpt_action((union ccb *)&cpi); 6372 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6373 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6374 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 6375 xpt_action((union ccb *)&cur_cts); 6376 inq_data = &device->inq_data; 6377 6378 /* Fill in any gaps in what the user gave us */ 6379 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 6380 cts->sync_period = cur_cts.sync_period; 6381 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 6382 cts->sync_offset = cur_cts.sync_offset; 6383 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 6384 cts->bus_width = cur_cts.bus_width; 6385 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 6386 cts->flags &= ~CCB_TRANS_DISC_ENB; 6387 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 6388 } 6389 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 6390 cts->flags &= ~CCB_TRANS_TAG_ENB; 6391 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 6392 } 6393 6394 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6395 && (inq_data->flags & SID_Sync) == 0) 6396 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6397 || (cts->sync_offset == 0) 6398 || (cts->sync_period == 0)) { 6399 /* Force async */ 6400 cts->sync_period = 0; 6401 cts->sync_offset = 0; 6402 } else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6403 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 6404 && cts->sync_period <= 0x9) { 6405 /* 6406 * Don't allow DT transmission rates if the 6407 * device does not support it. 6408 */ 6409 cts->sync_period = 0xa; 6410 } 6411 6412 switch (cts->bus_width) { 6413 case MSG_EXT_WDTR_BUS_32_BIT: 6414 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6415 || (inq_data->flags & SID_WBus32) != 0) 6416 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6417 break; 6418 /* Fall Through to 16-bit */ 6419 case MSG_EXT_WDTR_BUS_16_BIT: 6420 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6421 || (inq_data->flags & SID_WBus16) != 0) 6422 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6423 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6424 break; 6425 } 6426 /* Fall Through to 8-bit */ 6427 default: /* New bus width?? */ 6428 case MSG_EXT_WDTR_BUS_8_BIT: 6429 /* All targets can do this */ 6430 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6431 break; 6432 } 6433 6434 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 6435 /* 6436 * Can't tag queue without disconnection. 6437 */ 6438 cts->flags &= ~CCB_TRANS_TAG_ENB; 6439 cts->valid |= CCB_TRANS_TQ_VALID; 6440 } 6441 6442 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6443 || (inq_data->flags & SID_CmdQue) == 0 6444 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6445 || (device->quirk->mintags == 0)) { 6446 /* 6447 * Can't tag on hardware that doesn't support, 6448 * doesn't have it enabled, or has broken tag support. 6449 */ 6450 cts->flags &= ~CCB_TRANS_TAG_ENB; 6451 } 6452 } 6453 6454 qfrozen = FALSE; 6455 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 6456 int device_tagenb; 6457 6458 /* 6459 * If we are transitioning from tags to no-tags or 6460 * vice-versa, we need to carefully freeze and restart 6461 * the queue so that we don't overlap tagged and non-tagged 6462 * commands. We also temporarily stop tags if there is 6463 * a change in transfer negotiation settings to allow 6464 * "tag-less" negotiation. 6465 */ 6466 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6467 || (device->inq_flags & SID_CmdQue) != 0) 6468 device_tagenb = TRUE; 6469 else 6470 device_tagenb = FALSE; 6471 6472 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 6473 && device_tagenb == FALSE) 6474 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 6475 && device_tagenb == TRUE)) { 6476 6477 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 6478 /* 6479 * Delay change to use tags until after a 6480 * few commands have gone to this device so 6481 * the controller has time to perform transfer 6482 * negotiations without tagged messages getting 6483 * in the way. 6484 */ 6485 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6486 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6487 } else { 6488 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6489 qfrozen = TRUE; 6490 device->inq_flags &= ~SID_CmdQue; 6491 xpt_dev_ccbq_resize(cts->ccb_h.path, 6492 sim->max_dev_openings); 6493 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6494 device->tag_delay_count = 0; 6495 } 6496 } 6497 } 6498 6499 if (async_update == FALSE) { 6500 /* 6501 * If we are currently performing tagged transactions to 6502 * this device and want to change its negotiation parameters, 6503 * go non-tagged for a bit to give the controller a chance to 6504 * negotiate unhampered by tag messages. 6505 */ 6506 if ((device->inq_flags & SID_CmdQue) != 0 6507 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 6508 CCB_TRANS_SYNC_OFFSET_VALID| 6509 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 6510 xpt_toggle_tags(cts->ccb_h.path); 6511 6512 (*(sim->sim_action))(sim, (union ccb *)cts); 6513 } 6514 6515 if (qfrozen) { 6516 struct ccb_relsim crs; 6517 6518 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6519 /*priority*/1); 6520 crs.ccb_h.func_code = XPT_REL_SIMQ; 6521 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6522 crs.openings 6523 = crs.release_timeout 6524 = crs.qfrozen_cnt 6525 = 0; 6526 xpt_action((union ccb *)&crs); 6527 } 6528 } 6529 6530 6531 #endif /* CAM_NEW_TRAN_CODE */ 6532 6533 static void 6534 xpt_toggle_tags(struct cam_path *path) 6535 { 6536 struct cam_ed *dev; 6537 6538 /* 6539 * Give controllers a chance to renegotiate 6540 * before starting tag operations. We 6541 * "toggle" tagged queuing off then on 6542 * which causes the tag enable command delay 6543 * counter to come into effect. 6544 */ 6545 dev = path->device; 6546 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6547 || ((dev->inq_flags & SID_CmdQue) != 0 6548 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6549 struct ccb_trans_settings cts; 6550 6551 xpt_setup_ccb(&cts.ccb_h, path, 1); 6552 #ifdef CAM_NEW_TRAN_CODE 6553 cts.protocol = PROTO_SCSI; 6554 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6555 cts.transport = XPORT_UNSPECIFIED; 6556 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6557 cts.proto_specific.scsi.flags = 0; 6558 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6559 #else /* CAM_NEW_TRAN_CODE */ 6560 cts.flags = 0; 6561 cts.valid = CCB_TRANS_TQ_VALID; 6562 #endif /* CAM_NEW_TRAN_CODE */ 6563 xpt_set_transfer_settings(&cts, path->device, 6564 /*async_update*/TRUE); 6565 #ifdef CAM_NEW_TRAN_CODE 6566 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6567 #else /* CAM_NEW_TRAN_CODE */ 6568 cts.flags = CCB_TRANS_TAG_ENB; 6569 #endif /* CAM_NEW_TRAN_CODE */ 6570 xpt_set_transfer_settings(&cts, path->device, 6571 /*async_update*/TRUE); 6572 } 6573 } 6574 6575 static void 6576 xpt_start_tags(struct cam_path *path) 6577 { 6578 struct ccb_relsim crs; 6579 struct cam_ed *device; 6580 struct cam_sim *sim; 6581 int newopenings; 6582 6583 device = path->device; 6584 sim = path->bus->sim; 6585 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6586 xpt_freeze_devq(path, /*count*/1); 6587 device->inq_flags |= SID_CmdQue; 6588 newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings); 6589 xpt_dev_ccbq_resize(path, newopenings); 6590 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6591 crs.ccb_h.func_code = XPT_REL_SIMQ; 6592 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6593 crs.openings 6594 = crs.release_timeout 6595 = crs.qfrozen_cnt 6596 = 0; 6597 xpt_action((union ccb *)&crs); 6598 } 6599 6600 static int busses_to_config; 6601 static int busses_to_reset; 6602 6603 static int 6604 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6605 { 6606 if (bus->path_id != CAM_XPT_PATH_ID) { 6607 struct cam_path path; 6608 struct ccb_pathinq cpi; 6609 int can_negotiate; 6610 6611 busses_to_config++; 6612 xpt_compile_path(&path, NULL, bus->path_id, 6613 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6614 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6615 cpi.ccb_h.func_code = XPT_PATH_INQ; 6616 xpt_action((union ccb *)&cpi); 6617 can_negotiate = cpi.hba_inquiry; 6618 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6619 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6620 && can_negotiate) 6621 busses_to_reset++; 6622 xpt_release_path(&path); 6623 } 6624 6625 return(1); 6626 } 6627 6628 static int 6629 xptconfigfunc(struct cam_eb *bus, void *arg) 6630 { 6631 struct cam_path *path; 6632 union ccb *work_ccb; 6633 6634 if (bus->path_id != CAM_XPT_PATH_ID) { 6635 cam_status status; 6636 int can_negotiate; 6637 6638 work_ccb = xpt_alloc_ccb(); 6639 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6640 CAM_TARGET_WILDCARD, 6641 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6642 printf("xptconfigfunc: xpt_create_path failed with " 6643 "status %#x for bus %d\n", status, bus->path_id); 6644 printf("xptconfigfunc: halting bus configuration\n"); 6645 xpt_free_ccb(work_ccb); 6646 busses_to_config--; 6647 xpt_finishconfig(xpt_periph, NULL); 6648 return(0); 6649 } 6650 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6651 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6652 xpt_action(work_ccb); 6653 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6654 printf("xptconfigfunc: CPI failed on bus %d " 6655 "with status %d\n", bus->path_id, 6656 work_ccb->ccb_h.status); 6657 xpt_finishconfig(xpt_periph, work_ccb); 6658 return(1); 6659 } 6660 6661 can_negotiate = work_ccb->cpi.hba_inquiry; 6662 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6663 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6664 && (can_negotiate != 0)) { 6665 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6666 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6667 work_ccb->ccb_h.cbfcnp = NULL; 6668 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6669 ("Resetting Bus\n")); 6670 xpt_action(work_ccb); 6671 xpt_finishconfig(xpt_periph, work_ccb); 6672 } else { 6673 /* Act as though we performed a successful BUS RESET */ 6674 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6675 xpt_finishconfig(xpt_periph, work_ccb); 6676 } 6677 } 6678 6679 return(1); 6680 } 6681 6682 static void 6683 xpt_config(void *arg) 6684 { 6685 /* 6686 * Now that interrupts are enabled, go find our devices 6687 */ 6688 6689 #ifdef CAMDEBUG 6690 /* Setup debugging flags and path */ 6691 #ifdef CAM_DEBUG_FLAGS 6692 cam_dflags = CAM_DEBUG_FLAGS; 6693 #else /* !CAM_DEBUG_FLAGS */ 6694 cam_dflags = CAM_DEBUG_NONE; 6695 #endif /* CAM_DEBUG_FLAGS */ 6696 #ifdef CAM_DEBUG_BUS 6697 if (cam_dflags != CAM_DEBUG_NONE) { 6698 if (xpt_create_path(&cam_dpath, xpt_periph, 6699 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6700 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6701 printf("xpt_config: xpt_create_path() failed for debug" 6702 " target %d:%d:%d, debugging disabled\n", 6703 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6704 cam_dflags = CAM_DEBUG_NONE; 6705 } 6706 } else 6707 cam_dpath = NULL; 6708 #else /* !CAM_DEBUG_BUS */ 6709 cam_dpath = NULL; 6710 #endif /* CAM_DEBUG_BUS */ 6711 #endif /* CAMDEBUG */ 6712 6713 /* 6714 * Scan all installed busses. 6715 */ 6716 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6717 6718 if (busses_to_config == 0) { 6719 /* Call manually because we don't have any busses */ 6720 xpt_finishconfig(xpt_periph, NULL); 6721 } else { 6722 if (busses_to_reset > 0 && SCSI_DELAY >= 2000) { 6723 printf("Waiting %d seconds for SCSI " 6724 "devices to settle\n", SCSI_DELAY/1000); 6725 } 6726 xpt_for_all_busses(xptconfigfunc, NULL); 6727 } 6728 } 6729 6730 /* 6731 * If the given device only has one peripheral attached to it, and if that 6732 * peripheral is the passthrough driver, announce it. This insures that the 6733 * user sees some sort of announcement for every peripheral in their system. 6734 */ 6735 static int 6736 xptpassannouncefunc(struct cam_ed *device, void *arg) 6737 { 6738 struct cam_periph *periph; 6739 int i; 6740 6741 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6742 periph = SLIST_NEXT(periph, periph_links), i++); 6743 6744 periph = SLIST_FIRST(&device->periphs); 6745 if ((i == 1) 6746 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6747 xpt_announce_periph(periph, NULL); 6748 6749 return(1); 6750 } 6751 6752 static void 6753 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6754 { 6755 struct periph_driver **p_drv; 6756 int i; 6757 6758 if (done_ccb != NULL) { 6759 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6760 ("xpt_finishconfig\n")); 6761 switch(done_ccb->ccb_h.func_code) { 6762 case XPT_RESET_BUS: 6763 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6764 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6765 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6766 xpt_action(done_ccb); 6767 return; 6768 } 6769 /* FALLTHROUGH */ 6770 case XPT_SCAN_BUS: 6771 default: 6772 xpt_free_path(done_ccb->ccb_h.path); 6773 busses_to_config--; 6774 break; 6775 } 6776 } 6777 6778 if (busses_to_config == 0) { 6779 /* Register all the peripheral drivers */ 6780 /* XXX This will have to change when we have loadable modules */ 6781 p_drv = periph_drivers; 6782 for (i = 0; p_drv[i] != NULL; i++) { 6783 (*p_drv[i]->init)(); 6784 } 6785 6786 /* 6787 * Check for devices with no "standard" peripheral driver 6788 * attached. For any devices like that, announce the 6789 * passthrough driver so the user will see something. 6790 */ 6791 xpt_for_all_devices(xptpassannouncefunc, NULL); 6792 6793 /* Release our hook so that the boot can continue. */ 6794 config_intrhook_disestablish(xpt_config_hook); 6795 free(xpt_config_hook, M_TEMP); 6796 xpt_config_hook = NULL; 6797 } 6798 if (done_ccb != NULL) 6799 xpt_free_ccb(done_ccb); 6800 } 6801 6802 static void 6803 xptaction(struct cam_sim *sim, union ccb *work_ccb) 6804 { 6805 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 6806 6807 switch (work_ccb->ccb_h.func_code) { 6808 /* Common cases first */ 6809 case XPT_PATH_INQ: /* Path routing inquiry */ 6810 { 6811 struct ccb_pathinq *cpi; 6812 6813 cpi = &work_ccb->cpi; 6814 cpi->version_num = 1; /* XXX??? */ 6815 cpi->hba_inquiry = 0; 6816 cpi->target_sprt = 0; 6817 cpi->hba_misc = 0; 6818 cpi->hba_eng_cnt = 0; 6819 cpi->max_target = 0; 6820 cpi->max_lun = 0; 6821 cpi->initiator_id = 0; 6822 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 6823 strncpy(cpi->hba_vid, "", HBA_IDLEN); 6824 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 6825 cpi->unit_number = sim->unit_number; 6826 cpi->bus_id = sim->bus_id; 6827 cpi->base_transfer_speed = 0; 6828 #ifdef CAM_NEW_TRAN_CODE 6829 cpi->protocol = PROTO_UNSPECIFIED; 6830 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 6831 cpi->transport = XPORT_UNSPECIFIED; 6832 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 6833 #endif /* CAM_NEW_TRAN_CODE */ 6834 cpi->ccb_h.status = CAM_REQ_CMP; 6835 xpt_done(work_ccb); 6836 break; 6837 } 6838 default: 6839 work_ccb->ccb_h.status = CAM_REQ_INVALID; 6840 xpt_done(work_ccb); 6841 break; 6842 } 6843 } 6844 6845 /* 6846 * The xpt as a "controller" has no interrupt sources, so polling 6847 * is a no-op. 6848 */ 6849 static void 6850 xptpoll(struct cam_sim *sim) 6851 { 6852 } 6853 6854 static void 6855 camisr(void *V_queue) 6856 { 6857 cam_isrq_t *queue = V_queue; 6858 int s; 6859 struct ccb_hdr *ccb_h; 6860 6861 s = splcam(); 6862 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 6863 int runq; 6864 6865 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 6866 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 6867 splx(s); 6868 6869 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 6870 ("camisr")); 6871 6872 runq = FALSE; 6873 6874 if (ccb_h->flags & CAM_HIGH_POWER) { 6875 struct highpowerlist *hphead; 6876 struct cam_ed *device; 6877 union ccb *send_ccb; 6878 6879 hphead = &highpowerq; 6880 6881 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 6882 6883 /* 6884 * Increment the count since this command is done. 6885 */ 6886 num_highpower++; 6887 6888 /* 6889 * Any high powered commands queued up? 6890 */ 6891 if (send_ccb != NULL) { 6892 device = send_ccb->ccb_h.path->device; 6893 6894 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 6895 6896 xpt_release_devq(send_ccb->ccb_h.path, 6897 /*count*/1, /*runqueue*/TRUE); 6898 } 6899 } 6900 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 6901 struct cam_ed *dev; 6902 6903 dev = ccb_h->path->device; 6904 6905 s = splcam(); 6906 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 6907 6908 ccb_h->path->bus->sim->devq->send_active--; 6909 ccb_h->path->bus->sim->devq->send_openings++; 6910 splx(s); 6911 6912 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 6913 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 6914 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 6915 && (dev->ccbq.dev_active == 0))) { 6916 6917 xpt_release_devq(ccb_h->path, /*count*/1, 6918 /*run_queue*/TRUE); 6919 } 6920 6921 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6922 && (--dev->tag_delay_count == 0)) 6923 xpt_start_tags(ccb_h->path); 6924 6925 if ((dev->ccbq.queue.entries > 0) 6926 && (dev->qfrozen_cnt == 0) 6927 && (device_is_send_queued(dev) == 0)) { 6928 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 6929 dev); 6930 } 6931 } 6932 6933 if (ccb_h->status & CAM_RELEASE_SIMQ) { 6934 xpt_release_simq(ccb_h->path->bus->sim, 6935 /*run_queue*/TRUE); 6936 ccb_h->status &= ~CAM_RELEASE_SIMQ; 6937 runq = FALSE; 6938 } 6939 6940 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 6941 && (ccb_h->status & CAM_DEV_QFRZN)) { 6942 xpt_release_devq(ccb_h->path, /*count*/1, 6943 /*run_queue*/TRUE); 6944 ccb_h->status &= ~CAM_DEV_QFRZN; 6945 } else if (runq) { 6946 xpt_run_dev_sendq(ccb_h->path->bus); 6947 } 6948 6949 /* Call the peripheral driver's callback */ 6950 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 6951 6952 /* Raise IPL for while test */ 6953 s = splcam(); 6954 } 6955 splx(s); 6956 } 6957