1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/systm.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/time.h> 45 #include <sys/conf.h> 46 #include <sys/fcntl.h> 47 #include <sys/proc.h> 48 #include <sys/sbuf.h> 49 #include <sys/smp.h> 50 #include <sys/taskqueue.h> 51 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/sysctl.h> 55 #include <sys/kthread.h> 56 57 #include <cam/cam.h> 58 #include <cam/cam_ccb.h> 59 #include <cam/cam_iosched.h> 60 #include <cam/cam_periph.h> 61 #include <cam/cam_queue.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt.h> 64 #include <cam/cam_xpt_sim.h> 65 #include <cam/cam_xpt_periph.h> 66 #include <cam/cam_xpt_internal.h> 67 #include <cam/cam_debug.h> 68 #include <cam/cam_compat.h> 69 70 #include <cam/scsi/scsi_all.h> 71 #include <cam/scsi/scsi_message.h> 72 #include <cam/scsi/scsi_pass.h> 73 74 #include <machine/stdarg.h> /* for xpt_print below */ 75 76 #include "opt_cam.h" 77 78 /* Wild guess based on not wanting to grow the stack too much */ 79 #define XPT_PRINT_MAXLEN 512 80 #ifdef PRINTF_BUFR_SIZE 81 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 82 #else 83 #define XPT_PRINT_LEN 128 84 #endif 85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 86 87 /* 88 * This is the maximum number of high powered commands (e.g. start unit) 89 * that can be outstanding at a particular time. 90 */ 91 #ifndef CAM_MAX_HIGHPOWER 92 #define CAM_MAX_HIGHPOWER 4 93 #endif 94 95 /* Datastructures internal to the xpt layer */ 96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 100 101 struct xpt_softc { 102 uint32_t xpt_generation; 103 104 /* number of high powered commands that can go through right now */ 105 struct mtx xpt_highpower_lock; 106 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 107 int num_highpower; 108 109 /* queue for handling async rescan requests. */ 110 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 111 int buses_to_config; 112 int buses_config_done; 113 int announce_nosbuf; 114 115 /* 116 * Registered buses 117 * 118 * N.B., "busses" is an archaic spelling of "buses". In new code 119 * "buses" is preferred. 120 */ 121 TAILQ_HEAD(,cam_eb) xpt_busses; 122 u_int bus_generation; 123 124 int boot_delay; 125 struct callout boot_callout; 126 struct task boot_task; 127 struct root_hold_token xpt_rootmount; 128 129 struct mtx xpt_topo_lock; 130 struct taskqueue *xpt_taskq; 131 }; 132 133 typedef enum { 134 DM_RET_COPY = 0x01, 135 DM_RET_FLAG_MASK = 0x0f, 136 DM_RET_NONE = 0x00, 137 DM_RET_STOP = 0x10, 138 DM_RET_DESCEND = 0x20, 139 DM_RET_ERROR = 0x30, 140 DM_RET_ACTION_MASK = 0xf0 141 } dev_match_ret; 142 143 typedef enum { 144 XPT_DEPTH_BUS, 145 XPT_DEPTH_TARGET, 146 XPT_DEPTH_DEVICE, 147 XPT_DEPTH_PERIPH 148 } xpt_traverse_depth; 149 150 struct xpt_traverse_config { 151 xpt_traverse_depth depth; 152 void *tr_func; 153 void *tr_arg; 154 }; 155 156 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 157 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 158 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 159 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 160 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 161 162 /* Transport layer configuration information */ 163 static struct xpt_softc xsoftc; 164 165 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 166 167 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 168 &xsoftc.boot_delay, 0, "Bus registration wait time"); 169 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 170 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 171 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 172 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 173 174 struct cam_doneq { 175 struct mtx_padalign cam_doneq_mtx; 176 STAILQ_HEAD(, ccb_hdr) cam_doneq; 177 int cam_doneq_sleep; 178 }; 179 180 static struct cam_doneq cam_doneqs[MAXCPU]; 181 static u_int __read_mostly cam_num_doneqs; 182 static struct proc *cam_proc; 183 static struct cam_doneq cam_async; 184 185 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 186 &cam_num_doneqs, 0, "Number of completion queues/threads"); 187 188 struct cam_periph *xpt_periph; 189 190 static periph_init_t xpt_periph_init; 191 192 static struct periph_driver xpt_driver = 193 { 194 xpt_periph_init, "xpt", 195 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 196 CAM_PERIPH_DRV_EARLY 197 }; 198 199 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 200 201 static d_open_t xptopen; 202 static d_close_t xptclose; 203 static d_ioctl_t xptioctl; 204 static d_ioctl_t xptdoioctl; 205 206 static struct cdevsw xpt_cdevsw = { 207 .d_version = D_VERSION, 208 .d_flags = 0, 209 .d_open = xptopen, 210 .d_close = xptclose, 211 .d_ioctl = xptioctl, 212 .d_name = "xpt", 213 }; 214 215 /* Storage for debugging datastructures */ 216 struct cam_path *cam_dpath; 217 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS; 218 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 219 &cam_dflags, 0, "Enabled debug flags"); 220 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 221 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 222 &cam_debug_delay, 0, "Delay in us after each debug message"); 223 224 /* Our boot-time initialization hook */ 225 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 226 227 static moduledata_t cam_moduledata = { 228 "cam", 229 cam_module_event_handler, 230 NULL 231 }; 232 233 static int xpt_init(void *); 234 235 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 236 MODULE_VERSION(cam, 1); 237 238 static void xpt_async_bcast(struct async_list *async_head, 239 u_int32_t async_code, 240 struct cam_path *path, 241 void *async_arg); 242 static path_id_t xptnextfreepathid(void); 243 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 244 static union ccb *xpt_get_ccb(struct cam_periph *periph); 245 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 246 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 247 static void xpt_run_allocq_task(void *context, int pending); 248 static void xpt_run_devq(struct cam_devq *devq); 249 static callout_func_t xpt_release_devq_timeout; 250 static void xpt_acquire_bus(struct cam_eb *bus); 251 static void xpt_release_bus(struct cam_eb *bus); 252 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 253 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 254 int run_queue); 255 static struct cam_et* 256 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 257 static void xpt_acquire_target(struct cam_et *target); 258 static void xpt_release_target(struct cam_et *target); 259 static struct cam_eb* 260 xpt_find_bus(path_id_t path_id); 261 static struct cam_et* 262 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 263 static struct cam_ed* 264 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 265 static void xpt_config(void *arg); 266 static void xpt_hold_boot_locked(void); 267 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 268 u_int32_t new_priority); 269 static xpt_devicefunc_t xptpassannouncefunc; 270 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 271 static void xptpoll(struct cam_sim *sim); 272 static void camisr_runqueue(void); 273 static void xpt_done_process(struct ccb_hdr *ccb_h); 274 static void xpt_done_td(void *); 275 static void xpt_async_td(void *); 276 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 277 u_int num_patterns, struct cam_eb *bus); 278 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 279 u_int num_patterns, 280 struct cam_ed *device); 281 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 282 u_int num_patterns, 283 struct cam_periph *periph); 284 static xpt_busfunc_t xptedtbusfunc; 285 static xpt_targetfunc_t xptedttargetfunc; 286 static xpt_devicefunc_t xptedtdevicefunc; 287 static xpt_periphfunc_t xptedtperiphfunc; 288 static xpt_pdrvfunc_t xptplistpdrvfunc; 289 static xpt_periphfunc_t xptplistperiphfunc; 290 static int xptedtmatch(struct ccb_dev_match *cdm); 291 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 292 static int xptbustraverse(struct cam_eb *start_bus, 293 xpt_busfunc_t *tr_func, void *arg); 294 static int xpttargettraverse(struct cam_eb *bus, 295 struct cam_et *start_target, 296 xpt_targetfunc_t *tr_func, void *arg); 297 static int xptdevicetraverse(struct cam_et *target, 298 struct cam_ed *start_device, 299 xpt_devicefunc_t *tr_func, void *arg); 300 static int xptperiphtraverse(struct cam_ed *device, 301 struct cam_periph *start_periph, 302 xpt_periphfunc_t *tr_func, void *arg); 303 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 304 xpt_pdrvfunc_t *tr_func, void *arg); 305 static int xptpdperiphtraverse(struct periph_driver **pdrv, 306 struct cam_periph *start_periph, 307 xpt_periphfunc_t *tr_func, 308 void *arg); 309 static xpt_busfunc_t xptdefbusfunc; 310 static xpt_targetfunc_t xptdeftargetfunc; 311 static xpt_devicefunc_t xptdefdevicefunc; 312 static xpt_periphfunc_t xptdefperiphfunc; 313 static void xpt_finishconfig_task(void *context, int pending); 314 static void xpt_dev_async_default(u_int32_t async_code, 315 struct cam_eb *bus, 316 struct cam_et *target, 317 struct cam_ed *device, 318 void *async_arg); 319 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 320 struct cam_et *target, 321 lun_id_t lun_id); 322 static xpt_devicefunc_t xptsetasyncfunc; 323 static xpt_busfunc_t xptsetasyncbusfunc; 324 static cam_status xptregister(struct cam_periph *periph, 325 void *arg); 326 327 static __inline int 328 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 329 { 330 int retval; 331 332 mtx_assert(&devq->send_mtx, MA_OWNED); 333 if ((dev->ccbq.queue.entries > 0) && 334 (dev->ccbq.dev_openings > 0) && 335 (dev->ccbq.queue.qfrozen_cnt == 0)) { 336 /* 337 * The priority of a device waiting for controller 338 * resources is that of the highest priority CCB 339 * enqueued. 340 */ 341 retval = 342 xpt_schedule_dev(&devq->send_queue, 343 &dev->devq_entry, 344 CAMQ_GET_PRIO(&dev->ccbq.queue)); 345 } else { 346 retval = 0; 347 } 348 return (retval); 349 } 350 351 static __inline int 352 device_is_queued(struct cam_ed *device) 353 { 354 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 355 } 356 357 static void 358 xpt_periph_init(void) 359 { 360 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 361 } 362 363 static int 364 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 365 { 366 367 /* 368 * Only allow read-write access. 369 */ 370 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 371 return(EPERM); 372 373 /* 374 * We don't allow nonblocking access. 375 */ 376 if ((flags & O_NONBLOCK) != 0) { 377 printf("%s: can't do nonblocking access\n", devtoname(dev)); 378 return(ENODEV); 379 } 380 381 return(0); 382 } 383 384 static int 385 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 386 { 387 388 return(0); 389 } 390 391 /* 392 * Don't automatically grab the xpt softc lock here even though this is going 393 * through the xpt device. The xpt device is really just a back door for 394 * accessing other devices and SIMs, so the right thing to do is to grab 395 * the appropriate SIM lock once the bus/SIM is located. 396 */ 397 static int 398 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 399 { 400 int error; 401 402 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 403 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 404 } 405 return (error); 406 } 407 408 static int 409 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 410 { 411 int error; 412 413 error = 0; 414 415 switch(cmd) { 416 /* 417 * For the transport layer CAMIOCOMMAND ioctl, we really only want 418 * to accept CCB types that don't quite make sense to send through a 419 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 420 * in the CAM spec. 421 */ 422 case CAMIOCOMMAND: { 423 union ccb *ccb; 424 union ccb *inccb; 425 struct cam_eb *bus; 426 427 inccb = (union ccb *)addr; 428 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 429 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 430 inccb->csio.bio = NULL; 431 #endif 432 433 if (inccb->ccb_h.flags & CAM_UNLOCKED) 434 return (EINVAL); 435 436 bus = xpt_find_bus(inccb->ccb_h.path_id); 437 if (bus == NULL) 438 return (EINVAL); 439 440 switch (inccb->ccb_h.func_code) { 441 case XPT_SCAN_BUS: 442 case XPT_RESET_BUS: 443 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 444 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 445 xpt_release_bus(bus); 446 return (EINVAL); 447 } 448 break; 449 case XPT_SCAN_TGT: 450 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 451 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 452 xpt_release_bus(bus); 453 return (EINVAL); 454 } 455 break; 456 default: 457 break; 458 } 459 460 switch(inccb->ccb_h.func_code) { 461 case XPT_SCAN_BUS: 462 case XPT_RESET_BUS: 463 case XPT_PATH_INQ: 464 case XPT_ENG_INQ: 465 case XPT_SCAN_LUN: 466 case XPT_SCAN_TGT: 467 468 ccb = xpt_alloc_ccb(); 469 470 /* 471 * Create a path using the bus, target, and lun the 472 * user passed in. 473 */ 474 if (xpt_create_path(&ccb->ccb_h.path, NULL, 475 inccb->ccb_h.path_id, 476 inccb->ccb_h.target_id, 477 inccb->ccb_h.target_lun) != 478 CAM_REQ_CMP){ 479 error = EINVAL; 480 xpt_free_ccb(ccb); 481 break; 482 } 483 /* Ensure all of our fields are correct */ 484 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 485 inccb->ccb_h.pinfo.priority); 486 xpt_merge_ccb(ccb, inccb); 487 xpt_path_lock(ccb->ccb_h.path); 488 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 489 xpt_path_unlock(ccb->ccb_h.path); 490 bcopy(ccb, inccb, sizeof(union ccb)); 491 xpt_free_path(ccb->ccb_h.path); 492 xpt_free_ccb(ccb); 493 break; 494 495 case XPT_DEBUG: { 496 union ccb ccb; 497 498 /* 499 * This is an immediate CCB, so it's okay to 500 * allocate it on the stack. 501 */ 502 memset(&ccb, 0, sizeof(ccb)); 503 504 /* 505 * Create a path using the bus, target, and lun the 506 * user passed in. 507 */ 508 if (xpt_create_path(&ccb.ccb_h.path, NULL, 509 inccb->ccb_h.path_id, 510 inccb->ccb_h.target_id, 511 inccb->ccb_h.target_lun) != 512 CAM_REQ_CMP){ 513 error = EINVAL; 514 break; 515 } 516 /* Ensure all of our fields are correct */ 517 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 518 inccb->ccb_h.pinfo.priority); 519 xpt_merge_ccb(&ccb, inccb); 520 xpt_action(&ccb); 521 bcopy(&ccb, inccb, sizeof(union ccb)); 522 xpt_free_path(ccb.ccb_h.path); 523 break; 524 } 525 case XPT_DEV_MATCH: { 526 struct cam_periph_map_info mapinfo; 527 struct cam_path *old_path; 528 529 /* 530 * We can't deal with physical addresses for this 531 * type of transaction. 532 */ 533 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 534 CAM_DATA_VADDR) { 535 error = EINVAL; 536 break; 537 } 538 539 /* 540 * Save this in case the caller had it set to 541 * something in particular. 542 */ 543 old_path = inccb->ccb_h.path; 544 545 /* 546 * We really don't need a path for the matching 547 * code. The path is needed because of the 548 * debugging statements in xpt_action(). They 549 * assume that the CCB has a valid path. 550 */ 551 inccb->ccb_h.path = xpt_periph->path; 552 553 bzero(&mapinfo, sizeof(mapinfo)); 554 555 /* 556 * Map the pattern and match buffers into kernel 557 * virtual address space. 558 */ 559 error = cam_periph_mapmem(inccb, &mapinfo, maxphys); 560 561 if (error) { 562 inccb->ccb_h.path = old_path; 563 break; 564 } 565 566 /* 567 * This is an immediate CCB, we can send it on directly. 568 */ 569 xpt_action(inccb); 570 571 /* 572 * Map the buffers back into user space. 573 */ 574 cam_periph_unmapmem(inccb, &mapinfo); 575 576 inccb->ccb_h.path = old_path; 577 578 error = 0; 579 break; 580 } 581 default: 582 error = ENOTSUP; 583 break; 584 } 585 xpt_release_bus(bus); 586 break; 587 } 588 /* 589 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 590 * with the periphal driver name and unit name filled in. The other 591 * fields don't really matter as input. The passthrough driver name 592 * ("pass"), and unit number are passed back in the ccb. The current 593 * device generation number, and the index into the device peripheral 594 * driver list, and the status are also passed back. Note that 595 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 596 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 597 * (or rather should be) impossible for the device peripheral driver 598 * list to change since we look at the whole thing in one pass, and 599 * we do it with lock protection. 600 * 601 */ 602 case CAMGETPASSTHRU: { 603 union ccb *ccb; 604 struct cam_periph *periph; 605 struct periph_driver **p_drv; 606 char *name; 607 u_int unit; 608 bool base_periph_found; 609 610 ccb = (union ccb *)addr; 611 unit = ccb->cgdl.unit_number; 612 name = ccb->cgdl.periph_name; 613 base_periph_found = false; 614 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 615 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 616 ccb->csio.bio = NULL; 617 #endif 618 619 /* 620 * Sanity check -- make sure we don't get a null peripheral 621 * driver name. 622 */ 623 if (*ccb->cgdl.periph_name == '\0') { 624 error = EINVAL; 625 break; 626 } 627 628 /* Keep the list from changing while we traverse it */ 629 xpt_lock_buses(); 630 631 /* first find our driver in the list of drivers */ 632 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 633 if (strcmp((*p_drv)->driver_name, name) == 0) 634 break; 635 636 if (*p_drv == NULL) { 637 xpt_unlock_buses(); 638 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 639 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 640 *ccb->cgdl.periph_name = '\0'; 641 ccb->cgdl.unit_number = 0; 642 error = ENOENT; 643 break; 644 } 645 646 /* 647 * Run through every peripheral instance of this driver 648 * and check to see whether it matches the unit passed 649 * in by the user. If it does, get out of the loops and 650 * find the passthrough driver associated with that 651 * peripheral driver. 652 */ 653 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 654 periph = TAILQ_NEXT(periph, unit_links)) { 655 if (periph->unit_number == unit) 656 break; 657 } 658 /* 659 * If we found the peripheral driver that the user passed 660 * in, go through all of the peripheral drivers for that 661 * particular device and look for a passthrough driver. 662 */ 663 if (periph != NULL) { 664 struct cam_ed *device; 665 int i; 666 667 base_periph_found = true; 668 device = periph->path->device; 669 for (i = 0, periph = SLIST_FIRST(&device->periphs); 670 periph != NULL; 671 periph = SLIST_NEXT(periph, periph_links), i++) { 672 /* 673 * Check to see whether we have a 674 * passthrough device or not. 675 */ 676 if (strcmp(periph->periph_name, "pass") == 0) { 677 /* 678 * Fill in the getdevlist fields. 679 */ 680 strlcpy(ccb->cgdl.periph_name, 681 periph->periph_name, 682 sizeof(ccb->cgdl.periph_name)); 683 ccb->cgdl.unit_number = 684 periph->unit_number; 685 if (SLIST_NEXT(periph, periph_links)) 686 ccb->cgdl.status = 687 CAM_GDEVLIST_MORE_DEVS; 688 else 689 ccb->cgdl.status = 690 CAM_GDEVLIST_LAST_DEVICE; 691 ccb->cgdl.generation = 692 device->generation; 693 ccb->cgdl.index = i; 694 /* 695 * Fill in some CCB header fields 696 * that the user may want. 697 */ 698 ccb->ccb_h.path_id = 699 periph->path->bus->path_id; 700 ccb->ccb_h.target_id = 701 periph->path->target->target_id; 702 ccb->ccb_h.target_lun = 703 periph->path->device->lun_id; 704 ccb->ccb_h.status = CAM_REQ_CMP; 705 break; 706 } 707 } 708 } 709 710 /* 711 * If the periph is null here, one of two things has 712 * happened. The first possibility is that we couldn't 713 * find the unit number of the particular peripheral driver 714 * that the user is asking about. e.g. the user asks for 715 * the passthrough driver for "da11". We find the list of 716 * "da" peripherals all right, but there is no unit 11. 717 * The other possibility is that we went through the list 718 * of peripheral drivers attached to the device structure, 719 * but didn't find one with the name "pass". Either way, 720 * we return ENOENT, since we couldn't find something. 721 */ 722 if (periph == NULL) { 723 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 724 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 725 *ccb->cgdl.periph_name = '\0'; 726 ccb->cgdl.unit_number = 0; 727 error = ENOENT; 728 /* 729 * It is unfortunate that this is even necessary, 730 * but there are many, many clueless users out there. 731 * If this is true, the user is looking for the 732 * passthrough driver, but doesn't have one in his 733 * kernel. 734 */ 735 if (base_periph_found) { 736 printf("xptioctl: pass driver is not in the " 737 "kernel\n"); 738 printf("xptioctl: put \"device pass\" in " 739 "your kernel config file\n"); 740 } 741 } 742 xpt_unlock_buses(); 743 break; 744 } 745 default: 746 error = ENOTTY; 747 break; 748 } 749 750 return(error); 751 } 752 753 static int 754 cam_module_event_handler(module_t mod, int what, void *arg) 755 { 756 int error; 757 758 switch (what) { 759 case MOD_LOAD: 760 if ((error = xpt_init(NULL)) != 0) 761 return (error); 762 break; 763 case MOD_UNLOAD: 764 return EBUSY; 765 default: 766 return EOPNOTSUPP; 767 } 768 769 return 0; 770 } 771 772 static struct xpt_proto * 773 xpt_proto_find(cam_proto proto) 774 { 775 struct xpt_proto **pp; 776 777 SET_FOREACH(pp, cam_xpt_proto_set) { 778 if ((*pp)->proto == proto) 779 return *pp; 780 } 781 782 return NULL; 783 } 784 785 static void 786 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 787 { 788 789 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 790 xpt_free_path(done_ccb->ccb_h.path); 791 xpt_free_ccb(done_ccb); 792 } else { 793 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 794 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 795 } 796 xpt_release_boot(); 797 } 798 799 /* thread to handle bus rescans */ 800 static void 801 xpt_scanner_thread(void *dummy) 802 { 803 union ccb *ccb; 804 struct mtx *mtx; 805 struct cam_ed *device; 806 807 xpt_lock_buses(); 808 for (;;) { 809 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 810 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 811 "-", 0); 812 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 813 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 814 xpt_unlock_buses(); 815 816 /* 817 * We need to lock the device's mutex which we use as 818 * the path mutex. We can't do it directly because the 819 * cam_path in the ccb may wind up going away because 820 * the path lock may be dropped and the path retired in 821 * the completion callback. We do this directly to keep 822 * the reference counts in cam_path sane. We also have 823 * to copy the device pointer because ccb_h.path may 824 * be freed in the callback. 825 */ 826 mtx = xpt_path_mtx(ccb->ccb_h.path); 827 device = ccb->ccb_h.path->device; 828 xpt_acquire_device(device); 829 mtx_lock(mtx); 830 xpt_action(ccb); 831 mtx_unlock(mtx); 832 xpt_release_device(device); 833 834 xpt_lock_buses(); 835 } 836 } 837 } 838 839 void 840 xpt_rescan(union ccb *ccb) 841 { 842 struct ccb_hdr *hdr; 843 844 /* Prepare request */ 845 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 846 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 847 ccb->ccb_h.func_code = XPT_SCAN_BUS; 848 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_TGT; 851 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 852 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 853 ccb->ccb_h.func_code = XPT_SCAN_LUN; 854 else { 855 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 856 xpt_free_path(ccb->ccb_h.path); 857 xpt_free_ccb(ccb); 858 return; 859 } 860 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 861 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 862 xpt_action_name(ccb->ccb_h.func_code))); 863 864 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 865 ccb->ccb_h.cbfcnp = xpt_rescan_done; 866 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 867 /* Don't make duplicate entries for the same paths. */ 868 xpt_lock_buses(); 869 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 870 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 871 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 872 wakeup(&xsoftc.ccb_scanq); 873 xpt_unlock_buses(); 874 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 875 xpt_free_path(ccb->ccb_h.path); 876 xpt_free_ccb(ccb); 877 return; 878 } 879 } 880 } 881 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 882 xpt_hold_boot_locked(); 883 wakeup(&xsoftc.ccb_scanq); 884 xpt_unlock_buses(); 885 } 886 887 /* Functions accessed by the peripheral drivers */ 888 static int 889 xpt_init(void *dummy) 890 { 891 struct cam_sim *xpt_sim; 892 struct cam_path *path; 893 struct cam_devq *devq; 894 cam_status status; 895 int error, i; 896 897 TAILQ_INIT(&xsoftc.xpt_busses); 898 TAILQ_INIT(&xsoftc.ccb_scanq); 899 STAILQ_INIT(&xsoftc.highpowerq); 900 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 901 902 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 903 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 904 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 905 906 #ifdef CAM_BOOT_DELAY 907 /* 908 * Override this value at compile time to assist our users 909 * who don't use loader to boot a kernel. 910 */ 911 xsoftc.boot_delay = CAM_BOOT_DELAY; 912 #endif 913 914 /* 915 * The xpt layer is, itself, the equivalent of a SIM. 916 * Allow 16 ccbs in the ccb pool for it. This should 917 * give decent parallelism when we probe buses and 918 * perform other XPT functions. 919 */ 920 devq = cam_simq_alloc(16); 921 xpt_sim = cam_sim_alloc(xptaction, 922 xptpoll, 923 "xpt", 924 /*softc*/NULL, 925 /*unit*/0, 926 /*mtx*/NULL, 927 /*max_dev_transactions*/0, 928 /*max_tagged_dev_transactions*/0, 929 devq); 930 if (xpt_sim == NULL) 931 return (ENOMEM); 932 933 if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 934 printf("xpt_init: xpt_bus_register failed with errno %d," 935 " failing attach\n", error); 936 return (EINVAL); 937 } 938 939 /* 940 * Looking at the XPT from the SIM layer, the XPT is 941 * the equivalent of a peripheral driver. Allocate 942 * a peripheral driver entry for us. 943 */ 944 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 945 CAM_TARGET_WILDCARD, 946 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 947 printf("xpt_init: xpt_create_path failed with status %#x," 948 " failing attach\n", status); 949 return (EINVAL); 950 } 951 xpt_path_lock(path); 952 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 953 path, NULL, 0, xpt_sim); 954 xpt_path_unlock(path); 955 xpt_free_path(path); 956 957 if (cam_num_doneqs < 1) 958 cam_num_doneqs = 1 + mp_ncpus / 6; 959 else if (cam_num_doneqs > MAXCPU) 960 cam_num_doneqs = MAXCPU; 961 for (i = 0; i < cam_num_doneqs; i++) { 962 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 963 MTX_DEF); 964 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 965 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 966 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 967 if (error != 0) { 968 cam_num_doneqs = i; 969 break; 970 } 971 } 972 if (cam_num_doneqs < 1) { 973 printf("xpt_init: Cannot init completion queues " 974 "- failing attach\n"); 975 return (ENOMEM); 976 } 977 978 mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF); 979 STAILQ_INIT(&cam_async.cam_doneq); 980 if (kproc_kthread_add(xpt_async_td, &cam_async, 981 &cam_proc, NULL, 0, 0, "cam", "async") != 0) { 982 printf("xpt_init: Cannot init async thread " 983 "- failing attach\n"); 984 return (ENOMEM); 985 } 986 987 /* 988 * Register a callback for when interrupts are enabled. 989 */ 990 config_intrhook_oneshot(xpt_config, NULL); 991 992 return (0); 993 } 994 995 static cam_status 996 xptregister(struct cam_periph *periph, void *arg) 997 { 998 struct cam_sim *xpt_sim; 999 1000 if (periph == NULL) { 1001 printf("xptregister: periph was NULL!!\n"); 1002 return(CAM_REQ_CMP_ERR); 1003 } 1004 1005 xpt_sim = (struct cam_sim *)arg; 1006 xpt_sim->softc = periph; 1007 xpt_periph = periph; 1008 periph->softc = NULL; 1009 1010 return(CAM_REQ_CMP); 1011 } 1012 1013 int32_t 1014 xpt_add_periph(struct cam_periph *periph) 1015 { 1016 struct cam_ed *device; 1017 int32_t status; 1018 1019 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1020 device = periph->path->device; 1021 status = CAM_REQ_CMP; 1022 if (device != NULL) { 1023 mtx_lock(&device->target->bus->eb_mtx); 1024 device->generation++; 1025 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1026 mtx_unlock(&device->target->bus->eb_mtx); 1027 atomic_add_32(&xsoftc.xpt_generation, 1); 1028 } 1029 1030 return (status); 1031 } 1032 1033 void 1034 xpt_remove_periph(struct cam_periph *periph) 1035 { 1036 struct cam_ed *device; 1037 1038 device = periph->path->device; 1039 if (device != NULL) { 1040 mtx_lock(&device->target->bus->eb_mtx); 1041 device->generation++; 1042 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1043 mtx_unlock(&device->target->bus->eb_mtx); 1044 atomic_add_32(&xsoftc.xpt_generation, 1); 1045 } 1046 } 1047 1048 void 1049 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1050 { 1051 struct cam_path *path = periph->path; 1052 struct xpt_proto *proto; 1053 1054 cam_periph_assert(periph, MA_OWNED); 1055 periph->flags |= CAM_PERIPH_ANNOUNCED; 1056 1057 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1058 periph->periph_name, periph->unit_number, 1059 path->bus->sim->sim_name, 1060 path->bus->sim->unit_number, 1061 path->bus->sim->bus_id, 1062 path->bus->path_id, 1063 path->target->target_id, 1064 (uintmax_t)path->device->lun_id); 1065 printf("%s%d: ", periph->periph_name, periph->unit_number); 1066 proto = xpt_proto_find(path->device->protocol); 1067 if (proto) 1068 proto->ops->announce(path->device); 1069 else 1070 printf("%s%d: Unknown protocol device %d\n", 1071 periph->periph_name, periph->unit_number, 1072 path->device->protocol); 1073 if (path->device->serial_num_len > 0) { 1074 /* Don't wrap the screen - print only the first 60 chars */ 1075 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1076 periph->unit_number, path->device->serial_num); 1077 } 1078 /* Announce transport details. */ 1079 path->bus->xport->ops->announce(periph); 1080 /* Announce command queueing. */ 1081 if (path->device->inq_flags & SID_CmdQue 1082 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1083 printf("%s%d: Command Queueing enabled\n", 1084 periph->periph_name, periph->unit_number); 1085 } 1086 /* Announce caller's details if they've passed in. */ 1087 if (announce_string != NULL) 1088 printf("%s%d: %s\n", periph->periph_name, 1089 periph->unit_number, announce_string); 1090 } 1091 1092 void 1093 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1094 char *announce_string) 1095 { 1096 struct cam_path *path = periph->path; 1097 struct xpt_proto *proto; 1098 1099 cam_periph_assert(periph, MA_OWNED); 1100 periph->flags |= CAM_PERIPH_ANNOUNCED; 1101 1102 /* Fall back to the non-sbuf method if necessary */ 1103 if (xsoftc.announce_nosbuf != 0) { 1104 xpt_announce_periph(periph, announce_string); 1105 return; 1106 } 1107 proto = xpt_proto_find(path->device->protocol); 1108 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1109 (path->bus->xport->ops->announce_sbuf == NULL)) { 1110 xpt_announce_periph(periph, announce_string); 1111 return; 1112 } 1113 1114 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1115 periph->periph_name, periph->unit_number, 1116 path->bus->sim->sim_name, 1117 path->bus->sim->unit_number, 1118 path->bus->sim->bus_id, 1119 path->bus->path_id, 1120 path->target->target_id, 1121 (uintmax_t)path->device->lun_id); 1122 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1123 1124 if (proto) 1125 proto->ops->announce_sbuf(path->device, sb); 1126 else 1127 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1128 periph->periph_name, periph->unit_number, 1129 path->device->protocol); 1130 if (path->device->serial_num_len > 0) { 1131 /* Don't wrap the screen - print only the first 60 chars */ 1132 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1133 periph->periph_name, periph->unit_number, 1134 path->device->serial_num); 1135 } 1136 /* Announce transport details. */ 1137 path->bus->xport->ops->announce_sbuf(periph, sb); 1138 /* Announce command queueing. */ 1139 if (path->device->inq_flags & SID_CmdQue 1140 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1141 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1142 periph->periph_name, periph->unit_number); 1143 } 1144 /* Announce caller's details if they've passed in. */ 1145 if (announce_string != NULL) 1146 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1147 periph->unit_number, announce_string); 1148 } 1149 1150 void 1151 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1152 { 1153 if (quirks != 0) { 1154 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1155 periph->unit_number, quirks, bit_string); 1156 } 1157 } 1158 1159 void 1160 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1161 int quirks, char *bit_string) 1162 { 1163 if (xsoftc.announce_nosbuf != 0) { 1164 xpt_announce_quirks(periph, quirks, bit_string); 1165 return; 1166 } 1167 1168 if (quirks != 0) { 1169 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1170 periph->unit_number, quirks, bit_string); 1171 } 1172 } 1173 1174 void 1175 xpt_denounce_periph(struct cam_periph *periph) 1176 { 1177 struct cam_path *path = periph->path; 1178 struct xpt_proto *proto; 1179 1180 cam_periph_assert(periph, MA_OWNED); 1181 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1182 periph->periph_name, periph->unit_number, 1183 path->bus->sim->sim_name, 1184 path->bus->sim->unit_number, 1185 path->bus->sim->bus_id, 1186 path->bus->path_id, 1187 path->target->target_id, 1188 (uintmax_t)path->device->lun_id); 1189 printf("%s%d: ", periph->periph_name, periph->unit_number); 1190 proto = xpt_proto_find(path->device->protocol); 1191 if (proto) 1192 proto->ops->denounce(path->device); 1193 else 1194 printf("%s%d: Unknown protocol device %d\n", 1195 periph->periph_name, periph->unit_number, 1196 path->device->protocol); 1197 if (path->device->serial_num_len > 0) 1198 printf(" s/n %.60s", path->device->serial_num); 1199 printf(" detached\n"); 1200 } 1201 1202 void 1203 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1204 { 1205 struct cam_path *path = periph->path; 1206 struct xpt_proto *proto; 1207 1208 cam_periph_assert(periph, MA_OWNED); 1209 1210 /* Fall back to the non-sbuf method if necessary */ 1211 if (xsoftc.announce_nosbuf != 0) { 1212 xpt_denounce_periph(periph); 1213 return; 1214 } 1215 proto = xpt_proto_find(path->device->protocol); 1216 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1217 xpt_denounce_periph(periph); 1218 return; 1219 } 1220 1221 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1222 periph->periph_name, periph->unit_number, 1223 path->bus->sim->sim_name, 1224 path->bus->sim->unit_number, 1225 path->bus->sim->bus_id, 1226 path->bus->path_id, 1227 path->target->target_id, 1228 (uintmax_t)path->device->lun_id); 1229 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1230 1231 if (proto) 1232 proto->ops->denounce_sbuf(path->device, sb); 1233 else 1234 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1235 periph->periph_name, periph->unit_number, 1236 path->device->protocol); 1237 if (path->device->serial_num_len > 0) 1238 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1239 sbuf_printf(sb, " detached\n"); 1240 } 1241 1242 int 1243 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1244 { 1245 int ret = -1, l, o; 1246 struct ccb_dev_advinfo cdai; 1247 struct scsi_vpd_device_id *did; 1248 struct scsi_vpd_id_descriptor *idd; 1249 1250 xpt_path_assert(path, MA_OWNED); 1251 1252 memset(&cdai, 0, sizeof(cdai)); 1253 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1254 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1255 cdai.flags = CDAI_FLAG_NONE; 1256 cdai.bufsiz = len; 1257 cdai.buf = buf; 1258 1259 if (!strcmp(attr, "GEOM::ident")) 1260 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1261 else if (!strcmp(attr, "GEOM::physpath")) 1262 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1263 else if (strcmp(attr, "GEOM::lunid") == 0 || 1264 strcmp(attr, "GEOM::lunname") == 0) { 1265 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1266 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1267 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT); 1268 if (cdai.buf == NULL) { 1269 ret = ENOMEM; 1270 goto out; 1271 } 1272 } else 1273 goto out; 1274 1275 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1276 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1277 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1278 if (cdai.provsiz == 0) 1279 goto out; 1280 switch(cdai.buftype) { 1281 case CDAI_TYPE_SCSI_DEVID: 1282 did = (struct scsi_vpd_device_id *)cdai.buf; 1283 if (strcmp(attr, "GEOM::lunid") == 0) { 1284 idd = scsi_get_devid(did, cdai.provsiz, 1285 scsi_devid_is_lun_naa); 1286 if (idd == NULL) 1287 idd = scsi_get_devid(did, cdai.provsiz, 1288 scsi_devid_is_lun_eui64); 1289 if (idd == NULL) 1290 idd = scsi_get_devid(did, cdai.provsiz, 1291 scsi_devid_is_lun_uuid); 1292 if (idd == NULL) 1293 idd = scsi_get_devid(did, cdai.provsiz, 1294 scsi_devid_is_lun_md5); 1295 } else 1296 idd = NULL; 1297 1298 if (idd == NULL) 1299 idd = scsi_get_devid(did, cdai.provsiz, 1300 scsi_devid_is_lun_t10); 1301 if (idd == NULL) 1302 idd = scsi_get_devid(did, cdai.provsiz, 1303 scsi_devid_is_lun_name); 1304 if (idd == NULL) 1305 break; 1306 1307 ret = 0; 1308 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1309 SVPD_ID_CODESET_ASCII) { 1310 if (idd->length < len) { 1311 for (l = 0; l < idd->length; l++) 1312 buf[l] = idd->identifier[l] ? 1313 idd->identifier[l] : ' '; 1314 buf[l] = 0; 1315 } else 1316 ret = EFAULT; 1317 break; 1318 } 1319 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1320 SVPD_ID_CODESET_UTF8) { 1321 l = strnlen(idd->identifier, idd->length); 1322 if (l < len) { 1323 bcopy(idd->identifier, buf, l); 1324 buf[l] = 0; 1325 } else 1326 ret = EFAULT; 1327 break; 1328 } 1329 if ((idd->id_type & SVPD_ID_TYPE_MASK) == 1330 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) { 1331 if ((idd->length - 2) * 2 + 4 >= len) { 1332 ret = EFAULT; 1333 break; 1334 } 1335 for (l = 2, o = 0; l < idd->length; l++) { 1336 if (l == 6 || l == 8 || l == 10 || l == 12) 1337 o += sprintf(buf + o, "-"); 1338 o += sprintf(buf + o, "%02x", 1339 idd->identifier[l]); 1340 } 1341 break; 1342 } 1343 if (idd->length * 2 < len) { 1344 for (l = 0; l < idd->length; l++) 1345 sprintf(buf + l * 2, "%02x", 1346 idd->identifier[l]); 1347 } else 1348 ret = EFAULT; 1349 break; 1350 default: 1351 if (cdai.provsiz < len) { 1352 cdai.buf[cdai.provsiz] = 0; 1353 ret = 0; 1354 } else 1355 ret = EFAULT; 1356 break; 1357 } 1358 1359 out: 1360 if ((char *)cdai.buf != buf) 1361 free(cdai.buf, M_CAMXPT); 1362 return ret; 1363 } 1364 1365 static dev_match_ret 1366 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1367 struct cam_eb *bus) 1368 { 1369 dev_match_ret retval; 1370 u_int i; 1371 1372 retval = DM_RET_NONE; 1373 1374 /* 1375 * If we aren't given something to match against, that's an error. 1376 */ 1377 if (bus == NULL) 1378 return(DM_RET_ERROR); 1379 1380 /* 1381 * If there are no match entries, then this bus matches no 1382 * matter what. 1383 */ 1384 if ((patterns == NULL) || (num_patterns == 0)) 1385 return(DM_RET_DESCEND | DM_RET_COPY); 1386 1387 for (i = 0; i < num_patterns; i++) { 1388 struct bus_match_pattern *cur_pattern; 1389 struct device_match_pattern *dp = &patterns[i].pattern.device_pattern; 1390 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern; 1391 1392 /* 1393 * If the pattern in question isn't for a bus node, we 1394 * aren't interested. However, we do indicate to the 1395 * calling routine that we should continue descending the 1396 * tree, since the user wants to match against lower-level 1397 * EDT elements. 1398 */ 1399 if (patterns[i].type == DEV_MATCH_DEVICE && 1400 (dp->flags & DEV_MATCH_PATH) != 0 && 1401 dp->path_id != bus->path_id) 1402 continue; 1403 if (patterns[i].type == DEV_MATCH_PERIPH && 1404 (pp->flags & PERIPH_MATCH_PATH) != 0 && 1405 pp->path_id != bus->path_id) 1406 continue; 1407 if (patterns[i].type != DEV_MATCH_BUS) { 1408 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1409 retval |= DM_RET_DESCEND; 1410 continue; 1411 } 1412 1413 cur_pattern = &patterns[i].pattern.bus_pattern; 1414 1415 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1416 && (cur_pattern->path_id != bus->path_id)) 1417 continue; 1418 1419 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1420 && (cur_pattern->bus_id != bus->sim->bus_id)) 1421 continue; 1422 1423 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1424 && (cur_pattern->unit_number != bus->sim->unit_number)) 1425 continue; 1426 1427 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1428 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1429 DEV_IDLEN) != 0)) 1430 continue; 1431 1432 /* 1433 * If we get to this point, the user definitely wants 1434 * information on this bus. So tell the caller to copy the 1435 * data out. 1436 */ 1437 retval |= DM_RET_COPY; 1438 1439 /* 1440 * If the return action has been set to descend, then we 1441 * know that we've already seen a non-bus matching 1442 * expression, therefore we need to further descend the tree. 1443 * This won't change by continuing around the loop, so we 1444 * go ahead and return. If we haven't seen a non-bus 1445 * matching expression, we keep going around the loop until 1446 * we exhaust the matching expressions. We'll set the stop 1447 * flag once we fall out of the loop. 1448 */ 1449 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1450 return(retval); 1451 } 1452 1453 /* 1454 * If the return action hasn't been set to descend yet, that means 1455 * we haven't seen anything other than bus matching patterns. So 1456 * tell the caller to stop descending the tree -- the user doesn't 1457 * want to match against lower level tree elements. 1458 */ 1459 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1460 retval |= DM_RET_STOP; 1461 1462 return(retval); 1463 } 1464 1465 static dev_match_ret 1466 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1467 struct cam_ed *device) 1468 { 1469 dev_match_ret retval; 1470 u_int i; 1471 1472 retval = DM_RET_NONE; 1473 1474 /* 1475 * If we aren't given something to match against, that's an error. 1476 */ 1477 if (device == NULL) 1478 return(DM_RET_ERROR); 1479 1480 /* 1481 * If there are no match entries, then this device matches no 1482 * matter what. 1483 */ 1484 if ((patterns == NULL) || (num_patterns == 0)) 1485 return(DM_RET_DESCEND | DM_RET_COPY); 1486 1487 for (i = 0; i < num_patterns; i++) { 1488 struct device_match_pattern *cur_pattern; 1489 struct scsi_vpd_device_id *device_id_page; 1490 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern; 1491 1492 /* 1493 * If the pattern in question isn't for a device node, we 1494 * aren't interested. 1495 */ 1496 if (patterns[i].type == DEV_MATCH_PERIPH && 1497 (pp->flags & PERIPH_MATCH_TARGET) != 0 && 1498 pp->target_id != device->target->target_id) 1499 continue; 1500 if (patterns[i].type == DEV_MATCH_PERIPH && 1501 (pp->flags & PERIPH_MATCH_LUN) != 0 && 1502 pp->target_lun != device->lun_id) 1503 continue; 1504 if (patterns[i].type != DEV_MATCH_DEVICE) { 1505 if ((patterns[i].type == DEV_MATCH_PERIPH) 1506 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1507 retval |= DM_RET_DESCEND; 1508 continue; 1509 } 1510 1511 cur_pattern = &patterns[i].pattern.device_pattern; 1512 1513 /* Error out if mutually exclusive options are specified. */ 1514 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1515 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1516 return(DM_RET_ERROR); 1517 1518 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1519 && (cur_pattern->path_id != device->target->bus->path_id)) 1520 continue; 1521 1522 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1523 && (cur_pattern->target_id != device->target->target_id)) 1524 continue; 1525 1526 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1527 && (cur_pattern->target_lun != device->lun_id)) 1528 continue; 1529 1530 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1531 && (cam_quirkmatch((caddr_t)&device->inq_data, 1532 (caddr_t)&cur_pattern->data.inq_pat, 1533 1, sizeof(cur_pattern->data.inq_pat), 1534 scsi_static_inquiry_match) == NULL)) 1535 continue; 1536 1537 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1538 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1539 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1540 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1541 device->device_id_len 1542 - SVPD_DEVICE_ID_HDR_LEN, 1543 cur_pattern->data.devid_pat.id, 1544 cur_pattern->data.devid_pat.id_len) != 0)) 1545 continue; 1546 1547 /* 1548 * If we get to this point, the user definitely wants 1549 * information on this device. So tell the caller to copy 1550 * the data out. 1551 */ 1552 retval |= DM_RET_COPY; 1553 1554 /* 1555 * If the return action has been set to descend, then we 1556 * know that we've already seen a peripheral matching 1557 * expression, therefore we need to further descend the tree. 1558 * This won't change by continuing around the loop, so we 1559 * go ahead and return. If we haven't seen a peripheral 1560 * matching expression, we keep going around the loop until 1561 * we exhaust the matching expressions. We'll set the stop 1562 * flag once we fall out of the loop. 1563 */ 1564 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1565 return(retval); 1566 } 1567 1568 /* 1569 * If the return action hasn't been set to descend yet, that means 1570 * we haven't seen any peripheral matching patterns. So tell the 1571 * caller to stop descending the tree -- the user doesn't want to 1572 * match against lower level tree elements. 1573 */ 1574 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1575 retval |= DM_RET_STOP; 1576 1577 return(retval); 1578 } 1579 1580 /* 1581 * Match a single peripheral against any number of match patterns. 1582 */ 1583 static dev_match_ret 1584 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1585 struct cam_periph *periph) 1586 { 1587 dev_match_ret retval; 1588 u_int i; 1589 1590 /* 1591 * If we aren't given something to match against, that's an error. 1592 */ 1593 if (periph == NULL) 1594 return(DM_RET_ERROR); 1595 1596 /* 1597 * If there are no match entries, then this peripheral matches no 1598 * matter what. 1599 */ 1600 if ((patterns == NULL) || (num_patterns == 0)) 1601 return(DM_RET_STOP | DM_RET_COPY); 1602 1603 /* 1604 * There aren't any nodes below a peripheral node, so there's no 1605 * reason to descend the tree any further. 1606 */ 1607 retval = DM_RET_STOP; 1608 1609 for (i = 0; i < num_patterns; i++) { 1610 struct periph_match_pattern *cur_pattern; 1611 1612 /* 1613 * If the pattern in question isn't for a peripheral, we 1614 * aren't interested. 1615 */ 1616 if (patterns[i].type != DEV_MATCH_PERIPH) 1617 continue; 1618 1619 cur_pattern = &patterns[i].pattern.periph_pattern; 1620 1621 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1622 && (cur_pattern->path_id != periph->path->bus->path_id)) 1623 continue; 1624 1625 /* 1626 * For the target and lun id's, we have to make sure the 1627 * target and lun pointers aren't NULL. The xpt peripheral 1628 * has a wildcard target and device. 1629 */ 1630 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1631 && ((periph->path->target == NULL) 1632 ||(cur_pattern->target_id != periph->path->target->target_id))) 1633 continue; 1634 1635 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1636 && ((periph->path->device == NULL) 1637 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1638 continue; 1639 1640 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1641 && (cur_pattern->unit_number != periph->unit_number)) 1642 continue; 1643 1644 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1645 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1646 DEV_IDLEN) != 0)) 1647 continue; 1648 1649 /* 1650 * If we get to this point, the user definitely wants 1651 * information on this peripheral. So tell the caller to 1652 * copy the data out. 1653 */ 1654 retval |= DM_RET_COPY; 1655 1656 /* 1657 * The return action has already been set to stop, since 1658 * peripherals don't have any nodes below them in the EDT. 1659 */ 1660 return(retval); 1661 } 1662 1663 /* 1664 * If we get to this point, the peripheral that was passed in 1665 * doesn't match any of the patterns. 1666 */ 1667 return(retval); 1668 } 1669 1670 static int 1671 xptedtbusfunc(struct cam_eb *bus, void *arg) 1672 { 1673 struct ccb_dev_match *cdm; 1674 struct cam_et *target; 1675 dev_match_ret retval; 1676 1677 cdm = (struct ccb_dev_match *)arg; 1678 1679 /* 1680 * If our position is for something deeper in the tree, that means 1681 * that we've already seen this node. So, we keep going down. 1682 */ 1683 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1684 && (cdm->pos.cookie.bus == bus) 1685 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1686 && (cdm->pos.cookie.target != NULL)) 1687 retval = DM_RET_DESCEND; 1688 else 1689 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1690 1691 /* 1692 * If we got an error, bail out of the search. 1693 */ 1694 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1695 cdm->status = CAM_DEV_MATCH_ERROR; 1696 return(0); 1697 } 1698 1699 /* 1700 * If the copy flag is set, copy this bus out. 1701 */ 1702 if (retval & DM_RET_COPY) { 1703 int spaceleft, j; 1704 1705 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1706 sizeof(struct dev_match_result)); 1707 1708 /* 1709 * If we don't have enough space to put in another 1710 * match result, save our position and tell the 1711 * user there are more devices to check. 1712 */ 1713 if (spaceleft < sizeof(struct dev_match_result)) { 1714 bzero(&cdm->pos, sizeof(cdm->pos)); 1715 cdm->pos.position_type = 1716 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1717 1718 cdm->pos.cookie.bus = bus; 1719 cdm->pos.generations[CAM_BUS_GENERATION]= 1720 xsoftc.bus_generation; 1721 cdm->status = CAM_DEV_MATCH_MORE; 1722 return(0); 1723 } 1724 j = cdm->num_matches; 1725 cdm->num_matches++; 1726 cdm->matches[j].type = DEV_MATCH_BUS; 1727 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1728 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1729 cdm->matches[j].result.bus_result.unit_number = 1730 bus->sim->unit_number; 1731 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1732 bus->sim->sim_name, 1733 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1734 } 1735 1736 /* 1737 * If the user is only interested in buses, there's no 1738 * reason to descend to the next level in the tree. 1739 */ 1740 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1741 return(1); 1742 1743 /* 1744 * If there is a target generation recorded, check it to 1745 * make sure the target list hasn't changed. 1746 */ 1747 mtx_lock(&bus->eb_mtx); 1748 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1749 && (cdm->pos.cookie.bus == bus) 1750 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1751 && (cdm->pos.cookie.target != NULL)) { 1752 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1753 bus->generation)) { 1754 mtx_unlock(&bus->eb_mtx); 1755 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1756 return (0); 1757 } 1758 target = (struct cam_et *)cdm->pos.cookie.target; 1759 target->refcount++; 1760 } else 1761 target = NULL; 1762 mtx_unlock(&bus->eb_mtx); 1763 1764 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1765 } 1766 1767 static int 1768 xptedttargetfunc(struct cam_et *target, void *arg) 1769 { 1770 struct ccb_dev_match *cdm; 1771 struct cam_eb *bus; 1772 struct cam_ed *device; 1773 1774 cdm = (struct ccb_dev_match *)arg; 1775 bus = target->bus; 1776 1777 /* 1778 * If there is a device list generation recorded, check it to 1779 * make sure the device list hasn't changed. 1780 */ 1781 mtx_lock(&bus->eb_mtx); 1782 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1783 && (cdm->pos.cookie.bus == bus) 1784 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1785 && (cdm->pos.cookie.target == target) 1786 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1787 && (cdm->pos.cookie.device != NULL)) { 1788 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1789 target->generation) { 1790 mtx_unlock(&bus->eb_mtx); 1791 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1792 return(0); 1793 } 1794 device = (struct cam_ed *)cdm->pos.cookie.device; 1795 device->refcount++; 1796 } else 1797 device = NULL; 1798 mtx_unlock(&bus->eb_mtx); 1799 1800 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1801 } 1802 1803 static int 1804 xptedtdevicefunc(struct cam_ed *device, void *arg) 1805 { 1806 struct cam_eb *bus; 1807 struct cam_periph *periph; 1808 struct ccb_dev_match *cdm; 1809 dev_match_ret retval; 1810 1811 cdm = (struct ccb_dev_match *)arg; 1812 bus = device->target->bus; 1813 1814 /* 1815 * If our position is for something deeper in the tree, that means 1816 * that we've already seen this node. So, we keep going down. 1817 */ 1818 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1819 && (cdm->pos.cookie.device == device) 1820 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1821 && (cdm->pos.cookie.periph != NULL)) 1822 retval = DM_RET_DESCEND; 1823 else 1824 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1825 device); 1826 1827 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1828 cdm->status = CAM_DEV_MATCH_ERROR; 1829 return(0); 1830 } 1831 1832 /* 1833 * If the copy flag is set, copy this device out. 1834 */ 1835 if (retval & DM_RET_COPY) { 1836 int spaceleft, j; 1837 1838 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1839 sizeof(struct dev_match_result)); 1840 1841 /* 1842 * If we don't have enough space to put in another 1843 * match result, save our position and tell the 1844 * user there are more devices to check. 1845 */ 1846 if (spaceleft < sizeof(struct dev_match_result)) { 1847 bzero(&cdm->pos, sizeof(cdm->pos)); 1848 cdm->pos.position_type = 1849 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1850 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1851 1852 cdm->pos.cookie.bus = device->target->bus; 1853 cdm->pos.generations[CAM_BUS_GENERATION]= 1854 xsoftc.bus_generation; 1855 cdm->pos.cookie.target = device->target; 1856 cdm->pos.generations[CAM_TARGET_GENERATION] = 1857 device->target->bus->generation; 1858 cdm->pos.cookie.device = device; 1859 cdm->pos.generations[CAM_DEV_GENERATION] = 1860 device->target->generation; 1861 cdm->status = CAM_DEV_MATCH_MORE; 1862 return(0); 1863 } 1864 j = cdm->num_matches; 1865 cdm->num_matches++; 1866 cdm->matches[j].type = DEV_MATCH_DEVICE; 1867 cdm->matches[j].result.device_result.path_id = 1868 device->target->bus->path_id; 1869 cdm->matches[j].result.device_result.target_id = 1870 device->target->target_id; 1871 cdm->matches[j].result.device_result.target_lun = 1872 device->lun_id; 1873 cdm->matches[j].result.device_result.protocol = 1874 device->protocol; 1875 bcopy(&device->inq_data, 1876 &cdm->matches[j].result.device_result.inq_data, 1877 sizeof(struct scsi_inquiry_data)); 1878 bcopy(&device->ident_data, 1879 &cdm->matches[j].result.device_result.ident_data, 1880 sizeof(struct ata_params)); 1881 1882 /* Let the user know whether this device is unconfigured */ 1883 if (device->flags & CAM_DEV_UNCONFIGURED) 1884 cdm->matches[j].result.device_result.flags = 1885 DEV_RESULT_UNCONFIGURED; 1886 else 1887 cdm->matches[j].result.device_result.flags = 1888 DEV_RESULT_NOFLAG; 1889 } 1890 1891 /* 1892 * If the user isn't interested in peripherals, don't descend 1893 * the tree any further. 1894 */ 1895 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1896 return(1); 1897 1898 /* 1899 * If there is a peripheral list generation recorded, make sure 1900 * it hasn't changed. 1901 */ 1902 xpt_lock_buses(); 1903 mtx_lock(&bus->eb_mtx); 1904 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1905 && (cdm->pos.cookie.bus == bus) 1906 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1907 && (cdm->pos.cookie.target == device->target) 1908 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1909 && (cdm->pos.cookie.device == device) 1910 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1911 && (cdm->pos.cookie.periph != NULL)) { 1912 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1913 device->generation) { 1914 mtx_unlock(&bus->eb_mtx); 1915 xpt_unlock_buses(); 1916 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1917 return(0); 1918 } 1919 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1920 periph->refcount++; 1921 } else 1922 periph = NULL; 1923 mtx_unlock(&bus->eb_mtx); 1924 xpt_unlock_buses(); 1925 1926 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1927 } 1928 1929 static int 1930 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1931 { 1932 struct ccb_dev_match *cdm; 1933 dev_match_ret retval; 1934 1935 cdm = (struct ccb_dev_match *)arg; 1936 1937 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1938 1939 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1940 cdm->status = CAM_DEV_MATCH_ERROR; 1941 return(0); 1942 } 1943 1944 /* 1945 * If the copy flag is set, copy this peripheral out. 1946 */ 1947 if (retval & DM_RET_COPY) { 1948 int spaceleft, j; 1949 size_t l; 1950 1951 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1952 sizeof(struct dev_match_result)); 1953 1954 /* 1955 * If we don't have enough space to put in another 1956 * match result, save our position and tell the 1957 * user there are more devices to check. 1958 */ 1959 if (spaceleft < sizeof(struct dev_match_result)) { 1960 bzero(&cdm->pos, sizeof(cdm->pos)); 1961 cdm->pos.position_type = 1962 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1963 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1964 CAM_DEV_POS_PERIPH; 1965 1966 cdm->pos.cookie.bus = periph->path->bus; 1967 cdm->pos.generations[CAM_BUS_GENERATION]= 1968 xsoftc.bus_generation; 1969 cdm->pos.cookie.target = periph->path->target; 1970 cdm->pos.generations[CAM_TARGET_GENERATION] = 1971 periph->path->bus->generation; 1972 cdm->pos.cookie.device = periph->path->device; 1973 cdm->pos.generations[CAM_DEV_GENERATION] = 1974 periph->path->target->generation; 1975 cdm->pos.cookie.periph = periph; 1976 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1977 periph->path->device->generation; 1978 cdm->status = CAM_DEV_MATCH_MORE; 1979 return(0); 1980 } 1981 1982 j = cdm->num_matches; 1983 cdm->num_matches++; 1984 cdm->matches[j].type = DEV_MATCH_PERIPH; 1985 cdm->matches[j].result.periph_result.path_id = 1986 periph->path->bus->path_id; 1987 cdm->matches[j].result.periph_result.target_id = 1988 periph->path->target->target_id; 1989 cdm->matches[j].result.periph_result.target_lun = 1990 periph->path->device->lun_id; 1991 cdm->matches[j].result.periph_result.unit_number = 1992 periph->unit_number; 1993 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 1994 strlcpy(cdm->matches[j].result.periph_result.periph_name, 1995 periph->periph_name, l); 1996 } 1997 1998 return(1); 1999 } 2000 2001 static int 2002 xptedtmatch(struct ccb_dev_match *cdm) 2003 { 2004 struct cam_eb *bus; 2005 int ret; 2006 2007 cdm->num_matches = 0; 2008 2009 /* 2010 * Check the bus list generation. If it has changed, the user 2011 * needs to reset everything and start over. 2012 */ 2013 xpt_lock_buses(); 2014 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2015 && (cdm->pos.cookie.bus != NULL)) { 2016 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2017 xsoftc.bus_generation) { 2018 xpt_unlock_buses(); 2019 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2020 return(0); 2021 } 2022 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2023 bus->refcount++; 2024 } else 2025 bus = NULL; 2026 xpt_unlock_buses(); 2027 2028 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2029 2030 /* 2031 * If we get back 0, that means that we had to stop before fully 2032 * traversing the EDT. It also means that one of the subroutines 2033 * has set the status field to the proper value. If we get back 1, 2034 * we've fully traversed the EDT and copied out any matching entries. 2035 */ 2036 if (ret == 1) 2037 cdm->status = CAM_DEV_MATCH_LAST; 2038 2039 return(ret); 2040 } 2041 2042 static int 2043 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2044 { 2045 struct cam_periph *periph; 2046 struct ccb_dev_match *cdm; 2047 2048 cdm = (struct ccb_dev_match *)arg; 2049 2050 xpt_lock_buses(); 2051 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2052 && (cdm->pos.cookie.pdrv == pdrv) 2053 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2054 && (cdm->pos.cookie.periph != NULL)) { 2055 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2056 (*pdrv)->generation) { 2057 xpt_unlock_buses(); 2058 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2059 return(0); 2060 } 2061 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2062 periph->refcount++; 2063 } else 2064 periph = NULL; 2065 xpt_unlock_buses(); 2066 2067 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2068 } 2069 2070 static int 2071 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2072 { 2073 struct ccb_dev_match *cdm; 2074 dev_match_ret retval; 2075 2076 cdm = (struct ccb_dev_match *)arg; 2077 2078 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2079 2080 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2081 cdm->status = CAM_DEV_MATCH_ERROR; 2082 return(0); 2083 } 2084 2085 /* 2086 * If the copy flag is set, copy this peripheral out. 2087 */ 2088 if (retval & DM_RET_COPY) { 2089 int spaceleft, j; 2090 size_t l; 2091 2092 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2093 sizeof(struct dev_match_result)); 2094 2095 /* 2096 * If we don't have enough space to put in another 2097 * match result, save our position and tell the 2098 * user there are more devices to check. 2099 */ 2100 if (spaceleft < sizeof(struct dev_match_result)) { 2101 struct periph_driver **pdrv; 2102 2103 pdrv = NULL; 2104 bzero(&cdm->pos, sizeof(cdm->pos)); 2105 cdm->pos.position_type = 2106 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2107 CAM_DEV_POS_PERIPH; 2108 2109 /* 2110 * This may look a bit non-sensical, but it is 2111 * actually quite logical. There are very few 2112 * peripheral drivers, and bloating every peripheral 2113 * structure with a pointer back to its parent 2114 * peripheral driver linker set entry would cost 2115 * more in the long run than doing this quick lookup. 2116 */ 2117 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2118 if (strcmp((*pdrv)->driver_name, 2119 periph->periph_name) == 0) 2120 break; 2121 } 2122 2123 if (*pdrv == NULL) { 2124 cdm->status = CAM_DEV_MATCH_ERROR; 2125 return(0); 2126 } 2127 2128 cdm->pos.cookie.pdrv = pdrv; 2129 /* 2130 * The periph generation slot does double duty, as 2131 * does the periph pointer slot. They are used for 2132 * both edt and pdrv lookups and positioning. 2133 */ 2134 cdm->pos.cookie.periph = periph; 2135 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2136 (*pdrv)->generation; 2137 cdm->status = CAM_DEV_MATCH_MORE; 2138 return(0); 2139 } 2140 2141 j = cdm->num_matches; 2142 cdm->num_matches++; 2143 cdm->matches[j].type = DEV_MATCH_PERIPH; 2144 cdm->matches[j].result.periph_result.path_id = 2145 periph->path->bus->path_id; 2146 2147 /* 2148 * The transport layer peripheral doesn't have a target or 2149 * lun. 2150 */ 2151 if (periph->path->target) 2152 cdm->matches[j].result.periph_result.target_id = 2153 periph->path->target->target_id; 2154 else 2155 cdm->matches[j].result.periph_result.target_id = 2156 CAM_TARGET_WILDCARD; 2157 2158 if (periph->path->device) 2159 cdm->matches[j].result.periph_result.target_lun = 2160 periph->path->device->lun_id; 2161 else 2162 cdm->matches[j].result.periph_result.target_lun = 2163 CAM_LUN_WILDCARD; 2164 2165 cdm->matches[j].result.periph_result.unit_number = 2166 periph->unit_number; 2167 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2168 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2169 periph->periph_name, l); 2170 } 2171 2172 return(1); 2173 } 2174 2175 static int 2176 xptperiphlistmatch(struct ccb_dev_match *cdm) 2177 { 2178 int ret; 2179 2180 cdm->num_matches = 0; 2181 2182 /* 2183 * At this point in the edt traversal function, we check the bus 2184 * list generation to make sure that no buses have been added or 2185 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2186 * For the peripheral driver list traversal function, however, we 2187 * don't have to worry about new peripheral driver types coming or 2188 * going; they're in a linker set, and therefore can't change 2189 * without a recompile. 2190 */ 2191 2192 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2193 && (cdm->pos.cookie.pdrv != NULL)) 2194 ret = xptpdrvtraverse( 2195 (struct periph_driver **)cdm->pos.cookie.pdrv, 2196 xptplistpdrvfunc, cdm); 2197 else 2198 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2199 2200 /* 2201 * If we get back 0, that means that we had to stop before fully 2202 * traversing the peripheral driver tree. It also means that one of 2203 * the subroutines has set the status field to the proper value. If 2204 * we get back 1, we've fully traversed the EDT and copied out any 2205 * matching entries. 2206 */ 2207 if (ret == 1) 2208 cdm->status = CAM_DEV_MATCH_LAST; 2209 2210 return(ret); 2211 } 2212 2213 static int 2214 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2215 { 2216 struct cam_eb *bus, *next_bus; 2217 int retval; 2218 2219 retval = 1; 2220 if (start_bus) 2221 bus = start_bus; 2222 else { 2223 xpt_lock_buses(); 2224 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2225 if (bus == NULL) { 2226 xpt_unlock_buses(); 2227 return (retval); 2228 } 2229 bus->refcount++; 2230 xpt_unlock_buses(); 2231 } 2232 for (; bus != NULL; bus = next_bus) { 2233 retval = tr_func(bus, arg); 2234 if (retval == 0) { 2235 xpt_release_bus(bus); 2236 break; 2237 } 2238 xpt_lock_buses(); 2239 next_bus = TAILQ_NEXT(bus, links); 2240 if (next_bus) 2241 next_bus->refcount++; 2242 xpt_unlock_buses(); 2243 xpt_release_bus(bus); 2244 } 2245 return(retval); 2246 } 2247 2248 static int 2249 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2250 xpt_targetfunc_t *tr_func, void *arg) 2251 { 2252 struct cam_et *target, *next_target; 2253 int retval; 2254 2255 retval = 1; 2256 if (start_target) 2257 target = start_target; 2258 else { 2259 mtx_lock(&bus->eb_mtx); 2260 target = TAILQ_FIRST(&bus->et_entries); 2261 if (target == NULL) { 2262 mtx_unlock(&bus->eb_mtx); 2263 return (retval); 2264 } 2265 target->refcount++; 2266 mtx_unlock(&bus->eb_mtx); 2267 } 2268 for (; target != NULL; target = next_target) { 2269 retval = tr_func(target, arg); 2270 if (retval == 0) { 2271 xpt_release_target(target); 2272 break; 2273 } 2274 mtx_lock(&bus->eb_mtx); 2275 next_target = TAILQ_NEXT(target, links); 2276 if (next_target) 2277 next_target->refcount++; 2278 mtx_unlock(&bus->eb_mtx); 2279 xpt_release_target(target); 2280 } 2281 return(retval); 2282 } 2283 2284 static int 2285 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2286 xpt_devicefunc_t *tr_func, void *arg) 2287 { 2288 struct cam_eb *bus; 2289 struct cam_ed *device, *next_device; 2290 int retval; 2291 2292 retval = 1; 2293 bus = target->bus; 2294 if (start_device) 2295 device = start_device; 2296 else { 2297 mtx_lock(&bus->eb_mtx); 2298 device = TAILQ_FIRST(&target->ed_entries); 2299 if (device == NULL) { 2300 mtx_unlock(&bus->eb_mtx); 2301 return (retval); 2302 } 2303 device->refcount++; 2304 mtx_unlock(&bus->eb_mtx); 2305 } 2306 for (; device != NULL; device = next_device) { 2307 mtx_lock(&device->device_mtx); 2308 retval = tr_func(device, arg); 2309 mtx_unlock(&device->device_mtx); 2310 if (retval == 0) { 2311 xpt_release_device(device); 2312 break; 2313 } 2314 mtx_lock(&bus->eb_mtx); 2315 next_device = TAILQ_NEXT(device, links); 2316 if (next_device) 2317 next_device->refcount++; 2318 mtx_unlock(&bus->eb_mtx); 2319 xpt_release_device(device); 2320 } 2321 return(retval); 2322 } 2323 2324 static int 2325 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2326 xpt_periphfunc_t *tr_func, void *arg) 2327 { 2328 struct cam_eb *bus; 2329 struct cam_periph *periph, *next_periph; 2330 int retval; 2331 2332 retval = 1; 2333 2334 bus = device->target->bus; 2335 if (start_periph) 2336 periph = start_periph; 2337 else { 2338 xpt_lock_buses(); 2339 mtx_lock(&bus->eb_mtx); 2340 periph = SLIST_FIRST(&device->periphs); 2341 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2342 periph = SLIST_NEXT(periph, periph_links); 2343 if (periph == NULL) { 2344 mtx_unlock(&bus->eb_mtx); 2345 xpt_unlock_buses(); 2346 return (retval); 2347 } 2348 periph->refcount++; 2349 mtx_unlock(&bus->eb_mtx); 2350 xpt_unlock_buses(); 2351 } 2352 for (; periph != NULL; periph = next_periph) { 2353 retval = tr_func(periph, arg); 2354 if (retval == 0) { 2355 cam_periph_release_locked(periph); 2356 break; 2357 } 2358 xpt_lock_buses(); 2359 mtx_lock(&bus->eb_mtx); 2360 next_periph = SLIST_NEXT(periph, periph_links); 2361 while (next_periph != NULL && 2362 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2363 next_periph = SLIST_NEXT(next_periph, periph_links); 2364 if (next_periph) 2365 next_periph->refcount++; 2366 mtx_unlock(&bus->eb_mtx); 2367 xpt_unlock_buses(); 2368 cam_periph_release_locked(periph); 2369 } 2370 return(retval); 2371 } 2372 2373 static int 2374 xptpdrvtraverse(struct periph_driver **start_pdrv, 2375 xpt_pdrvfunc_t *tr_func, void *arg) 2376 { 2377 struct periph_driver **pdrv; 2378 int retval; 2379 2380 retval = 1; 2381 2382 /* 2383 * We don't traverse the peripheral driver list like we do the 2384 * other lists, because it is a linker set, and therefore cannot be 2385 * changed during runtime. If the peripheral driver list is ever 2386 * re-done to be something other than a linker set (i.e. it can 2387 * change while the system is running), the list traversal should 2388 * be modified to work like the other traversal functions. 2389 */ 2390 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2391 *pdrv != NULL; pdrv++) { 2392 retval = tr_func(pdrv, arg); 2393 2394 if (retval == 0) 2395 return(retval); 2396 } 2397 2398 return(retval); 2399 } 2400 2401 static int 2402 xptpdperiphtraverse(struct periph_driver **pdrv, 2403 struct cam_periph *start_periph, 2404 xpt_periphfunc_t *tr_func, void *arg) 2405 { 2406 struct cam_periph *periph, *next_periph; 2407 int retval; 2408 2409 retval = 1; 2410 2411 if (start_periph) 2412 periph = start_periph; 2413 else { 2414 xpt_lock_buses(); 2415 periph = TAILQ_FIRST(&(*pdrv)->units); 2416 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2417 periph = TAILQ_NEXT(periph, unit_links); 2418 if (periph == NULL) { 2419 xpt_unlock_buses(); 2420 return (retval); 2421 } 2422 periph->refcount++; 2423 xpt_unlock_buses(); 2424 } 2425 for (; periph != NULL; periph = next_periph) { 2426 cam_periph_lock(periph); 2427 retval = tr_func(periph, arg); 2428 cam_periph_unlock(periph); 2429 if (retval == 0) { 2430 cam_periph_release(periph); 2431 break; 2432 } 2433 xpt_lock_buses(); 2434 next_periph = TAILQ_NEXT(periph, unit_links); 2435 while (next_periph != NULL && 2436 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2437 next_periph = TAILQ_NEXT(next_periph, unit_links); 2438 if (next_periph) 2439 next_periph->refcount++; 2440 xpt_unlock_buses(); 2441 cam_periph_release(periph); 2442 } 2443 return(retval); 2444 } 2445 2446 static int 2447 xptdefbusfunc(struct cam_eb *bus, void *arg) 2448 { 2449 struct xpt_traverse_config *tr_config; 2450 2451 tr_config = (struct xpt_traverse_config *)arg; 2452 2453 if (tr_config->depth == XPT_DEPTH_BUS) { 2454 xpt_busfunc_t *tr_func; 2455 2456 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2457 2458 return(tr_func(bus, tr_config->tr_arg)); 2459 } else 2460 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2461 } 2462 2463 static int 2464 xptdeftargetfunc(struct cam_et *target, void *arg) 2465 { 2466 struct xpt_traverse_config *tr_config; 2467 2468 tr_config = (struct xpt_traverse_config *)arg; 2469 2470 if (tr_config->depth == XPT_DEPTH_TARGET) { 2471 xpt_targetfunc_t *tr_func; 2472 2473 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2474 2475 return(tr_func(target, tr_config->tr_arg)); 2476 } else 2477 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2478 } 2479 2480 static int 2481 xptdefdevicefunc(struct cam_ed *device, void *arg) 2482 { 2483 struct xpt_traverse_config *tr_config; 2484 2485 tr_config = (struct xpt_traverse_config *)arg; 2486 2487 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2488 xpt_devicefunc_t *tr_func; 2489 2490 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2491 2492 return(tr_func(device, tr_config->tr_arg)); 2493 } else 2494 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2495 } 2496 2497 static int 2498 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2499 { 2500 struct xpt_traverse_config *tr_config; 2501 xpt_periphfunc_t *tr_func; 2502 2503 tr_config = (struct xpt_traverse_config *)arg; 2504 2505 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2506 2507 /* 2508 * Unlike the other default functions, we don't check for depth 2509 * here. The peripheral driver level is the last level in the EDT, 2510 * so if we're here, we should execute the function in question. 2511 */ 2512 return(tr_func(periph, tr_config->tr_arg)); 2513 } 2514 2515 /* 2516 * Execute the given function for every bus in the EDT. 2517 */ 2518 static int 2519 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2520 { 2521 struct xpt_traverse_config tr_config; 2522 2523 tr_config.depth = XPT_DEPTH_BUS; 2524 tr_config.tr_func = tr_func; 2525 tr_config.tr_arg = arg; 2526 2527 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2528 } 2529 2530 /* 2531 * Execute the given function for every device in the EDT. 2532 */ 2533 static int 2534 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2535 { 2536 struct xpt_traverse_config tr_config; 2537 2538 tr_config.depth = XPT_DEPTH_DEVICE; 2539 tr_config.tr_func = tr_func; 2540 tr_config.tr_arg = arg; 2541 2542 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2543 } 2544 2545 static int 2546 xptsetasyncfunc(struct cam_ed *device, void *arg) 2547 { 2548 struct cam_path path; 2549 struct ccb_getdev cgd; 2550 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2551 2552 /* 2553 * Don't report unconfigured devices (Wildcard devs, 2554 * devices only for target mode, device instances 2555 * that have been invalidated but are waiting for 2556 * their last reference count to be released). 2557 */ 2558 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2559 return (1); 2560 2561 memset(&cgd, 0, sizeof(cgd)); 2562 xpt_compile_path(&path, 2563 NULL, 2564 device->target->bus->path_id, 2565 device->target->target_id, 2566 device->lun_id); 2567 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2568 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2569 xpt_action((union ccb *)&cgd); 2570 csa->callback(csa->callback_arg, 2571 AC_FOUND_DEVICE, 2572 &path, &cgd); 2573 xpt_release_path(&path); 2574 2575 return(1); 2576 } 2577 2578 static int 2579 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2580 { 2581 struct cam_path path; 2582 struct ccb_pathinq cpi; 2583 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2584 2585 xpt_compile_path(&path, /*periph*/NULL, 2586 bus->path_id, 2587 CAM_TARGET_WILDCARD, 2588 CAM_LUN_WILDCARD); 2589 xpt_path_lock(&path); 2590 xpt_path_inq(&cpi, &path); 2591 csa->callback(csa->callback_arg, 2592 AC_PATH_REGISTERED, 2593 &path, &cpi); 2594 xpt_path_unlock(&path); 2595 xpt_release_path(&path); 2596 2597 return(1); 2598 } 2599 2600 void 2601 xpt_action(union ccb *start_ccb) 2602 { 2603 2604 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2605 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2606 xpt_action_name(start_ccb->ccb_h.func_code))); 2607 2608 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2609 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2610 } 2611 2612 void 2613 xpt_action_default(union ccb *start_ccb) 2614 { 2615 struct cam_path *path; 2616 struct cam_sim *sim; 2617 struct mtx *mtx; 2618 2619 path = start_ccb->ccb_h.path; 2620 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2621 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2622 xpt_action_name(start_ccb->ccb_h.func_code))); 2623 2624 switch (start_ccb->ccb_h.func_code) { 2625 case XPT_SCSI_IO: 2626 { 2627 struct cam_ed *device; 2628 2629 /* 2630 * For the sake of compatibility with SCSI-1 2631 * devices that may not understand the identify 2632 * message, we include lun information in the 2633 * second byte of all commands. SCSI-1 specifies 2634 * that luns are a 3 bit value and reserves only 3 2635 * bits for lun information in the CDB. Later 2636 * revisions of the SCSI spec allow for more than 8 2637 * luns, but have deprecated lun information in the 2638 * CDB. So, if the lun won't fit, we must omit. 2639 * 2640 * Also be aware that during initial probing for devices, 2641 * the inquiry information is unknown but initialized to 0. 2642 * This means that this code will be exercised while probing 2643 * devices with an ANSI revision greater than 2. 2644 */ 2645 device = path->device; 2646 if (device->protocol_version <= SCSI_REV_2 2647 && start_ccb->ccb_h.target_lun < 8 2648 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2649 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2650 start_ccb->ccb_h.target_lun << 5; 2651 } 2652 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2653 } 2654 /* FALLTHROUGH */ 2655 case XPT_TARGET_IO: 2656 case XPT_CONT_TARGET_IO: 2657 start_ccb->csio.sense_resid = 0; 2658 start_ccb->csio.resid = 0; 2659 /* FALLTHROUGH */ 2660 case XPT_ATA_IO: 2661 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2662 start_ccb->ataio.resid = 0; 2663 /* FALLTHROUGH */ 2664 case XPT_NVME_IO: 2665 case XPT_NVME_ADMIN: 2666 case XPT_MMC_IO: 2667 case XPT_MMC_GET_TRAN_SETTINGS: 2668 case XPT_MMC_SET_TRAN_SETTINGS: 2669 case XPT_RESET_DEV: 2670 case XPT_ENG_EXEC: 2671 case XPT_SMP_IO: 2672 { 2673 struct cam_devq *devq; 2674 2675 devq = path->bus->sim->devq; 2676 mtx_lock(&devq->send_mtx); 2677 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2678 if (xpt_schedule_devq(devq, path->device) != 0) 2679 xpt_run_devq(devq); 2680 mtx_unlock(&devq->send_mtx); 2681 break; 2682 } 2683 case XPT_CALC_GEOMETRY: 2684 /* Filter out garbage */ 2685 if (start_ccb->ccg.block_size == 0 2686 || start_ccb->ccg.volume_size == 0) { 2687 start_ccb->ccg.cylinders = 0; 2688 start_ccb->ccg.heads = 0; 2689 start_ccb->ccg.secs_per_track = 0; 2690 start_ccb->ccb_h.status = CAM_REQ_CMP; 2691 break; 2692 } 2693 goto call_sim; 2694 case XPT_ABORT: 2695 { 2696 union ccb* abort_ccb; 2697 2698 abort_ccb = start_ccb->cab.abort_ccb; 2699 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2700 struct cam_ed *device; 2701 struct cam_devq *devq; 2702 2703 device = abort_ccb->ccb_h.path->device; 2704 devq = device->sim->devq; 2705 2706 mtx_lock(&devq->send_mtx); 2707 if (abort_ccb->ccb_h.pinfo.index > 0) { 2708 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2709 abort_ccb->ccb_h.status = 2710 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2711 xpt_freeze_devq_device(device, 1); 2712 mtx_unlock(&devq->send_mtx); 2713 xpt_done(abort_ccb); 2714 start_ccb->ccb_h.status = CAM_REQ_CMP; 2715 break; 2716 } 2717 mtx_unlock(&devq->send_mtx); 2718 2719 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2720 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2721 /* 2722 * We've caught this ccb en route to 2723 * the SIM. Flag it for abort and the 2724 * SIM will do so just before starting 2725 * real work on the CCB. 2726 */ 2727 abort_ccb->ccb_h.status = 2728 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2729 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2730 start_ccb->ccb_h.status = CAM_REQ_CMP; 2731 break; 2732 } 2733 } 2734 if (XPT_FC_IS_QUEUED(abort_ccb) 2735 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2736 /* 2737 * It's already completed but waiting 2738 * for our SWI to get to it. 2739 */ 2740 start_ccb->ccb_h.status = CAM_UA_ABORT; 2741 break; 2742 } 2743 /* 2744 * If we weren't able to take care of the abort request 2745 * in the XPT, pass the request down to the SIM for processing. 2746 */ 2747 } 2748 /* FALLTHROUGH */ 2749 case XPT_ACCEPT_TARGET_IO: 2750 case XPT_EN_LUN: 2751 case XPT_IMMED_NOTIFY: 2752 case XPT_NOTIFY_ACK: 2753 case XPT_RESET_BUS: 2754 case XPT_IMMEDIATE_NOTIFY: 2755 case XPT_NOTIFY_ACKNOWLEDGE: 2756 case XPT_GET_SIM_KNOB_OLD: 2757 case XPT_GET_SIM_KNOB: 2758 case XPT_SET_SIM_KNOB: 2759 case XPT_GET_TRAN_SETTINGS: 2760 case XPT_SET_TRAN_SETTINGS: 2761 case XPT_PATH_INQ: 2762 call_sim: 2763 sim = path->bus->sim; 2764 mtx = sim->mtx; 2765 if (mtx && !mtx_owned(mtx)) 2766 mtx_lock(mtx); 2767 else 2768 mtx = NULL; 2769 2770 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2771 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2772 (*(sim->sim_action))(sim, start_ccb); 2773 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2774 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2775 if (mtx) 2776 mtx_unlock(mtx); 2777 break; 2778 case XPT_PATH_STATS: 2779 start_ccb->cpis.last_reset = path->bus->last_reset; 2780 start_ccb->ccb_h.status = CAM_REQ_CMP; 2781 break; 2782 case XPT_GDEV_TYPE: 2783 { 2784 struct cam_ed *dev; 2785 2786 dev = path->device; 2787 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2788 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2789 } else { 2790 struct ccb_getdev *cgd; 2791 2792 cgd = &start_ccb->cgd; 2793 cgd->protocol = dev->protocol; 2794 cgd->inq_data = dev->inq_data; 2795 cgd->ident_data = dev->ident_data; 2796 cgd->inq_flags = dev->inq_flags; 2797 cgd->ccb_h.status = CAM_REQ_CMP; 2798 cgd->serial_num_len = dev->serial_num_len; 2799 if ((dev->serial_num_len > 0) 2800 && (dev->serial_num != NULL)) 2801 bcopy(dev->serial_num, cgd->serial_num, 2802 dev->serial_num_len); 2803 } 2804 break; 2805 } 2806 case XPT_GDEV_STATS: 2807 { 2808 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2809 struct cam_ed *dev = path->device; 2810 struct cam_eb *bus = path->bus; 2811 struct cam_et *tar = path->target; 2812 struct cam_devq *devq = bus->sim->devq; 2813 2814 mtx_lock(&devq->send_mtx); 2815 cgds->dev_openings = dev->ccbq.dev_openings; 2816 cgds->dev_active = dev->ccbq.dev_active; 2817 cgds->allocated = dev->ccbq.allocated; 2818 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2819 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2820 cgds->last_reset = tar->last_reset; 2821 cgds->maxtags = dev->maxtags; 2822 cgds->mintags = dev->mintags; 2823 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2824 cgds->last_reset = bus->last_reset; 2825 mtx_unlock(&devq->send_mtx); 2826 cgds->ccb_h.status = CAM_REQ_CMP; 2827 break; 2828 } 2829 case XPT_GDEVLIST: 2830 { 2831 struct cam_periph *nperiph; 2832 struct periph_list *periph_head; 2833 struct ccb_getdevlist *cgdl; 2834 u_int i; 2835 struct cam_ed *device; 2836 bool found; 2837 2838 found = false; 2839 2840 /* 2841 * Don't want anyone mucking with our data. 2842 */ 2843 device = path->device; 2844 periph_head = &device->periphs; 2845 cgdl = &start_ccb->cgdl; 2846 2847 /* 2848 * Check and see if the list has changed since the user 2849 * last requested a list member. If so, tell them that the 2850 * list has changed, and therefore they need to start over 2851 * from the beginning. 2852 */ 2853 if ((cgdl->index != 0) && 2854 (cgdl->generation != device->generation)) { 2855 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2856 break; 2857 } 2858 2859 /* 2860 * Traverse the list of peripherals and attempt to find 2861 * the requested peripheral. 2862 */ 2863 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2864 (nperiph != NULL) && (i <= cgdl->index); 2865 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2866 if (i == cgdl->index) { 2867 strlcpy(cgdl->periph_name, 2868 nperiph->periph_name, 2869 sizeof(cgdl->periph_name)); 2870 cgdl->unit_number = nperiph->unit_number; 2871 found = true; 2872 } 2873 } 2874 if (!found) { 2875 cgdl->status = CAM_GDEVLIST_ERROR; 2876 break; 2877 } 2878 2879 if (nperiph == NULL) 2880 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2881 else 2882 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2883 2884 cgdl->index++; 2885 cgdl->generation = device->generation; 2886 2887 cgdl->ccb_h.status = CAM_REQ_CMP; 2888 break; 2889 } 2890 case XPT_DEV_MATCH: 2891 { 2892 dev_pos_type position_type; 2893 struct ccb_dev_match *cdm; 2894 2895 cdm = &start_ccb->cdm; 2896 2897 /* 2898 * There are two ways of getting at information in the EDT. 2899 * The first way is via the primary EDT tree. It starts 2900 * with a list of buses, then a list of targets on a bus, 2901 * then devices/luns on a target, and then peripherals on a 2902 * device/lun. The "other" way is by the peripheral driver 2903 * lists. The peripheral driver lists are organized by 2904 * peripheral driver. (obviously) So it makes sense to 2905 * use the peripheral driver list if the user is looking 2906 * for something like "da1", or all "da" devices. If the 2907 * user is looking for something on a particular bus/target 2908 * or lun, it's generally better to go through the EDT tree. 2909 */ 2910 2911 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2912 position_type = cdm->pos.position_type; 2913 else { 2914 u_int i; 2915 2916 position_type = CAM_DEV_POS_NONE; 2917 2918 for (i = 0; i < cdm->num_patterns; i++) { 2919 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2920 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2921 position_type = CAM_DEV_POS_EDT; 2922 break; 2923 } 2924 } 2925 2926 if (cdm->num_patterns == 0) 2927 position_type = CAM_DEV_POS_EDT; 2928 else if (position_type == CAM_DEV_POS_NONE) 2929 position_type = CAM_DEV_POS_PDRV; 2930 } 2931 2932 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2933 case CAM_DEV_POS_EDT: 2934 xptedtmatch(cdm); 2935 break; 2936 case CAM_DEV_POS_PDRV: 2937 xptperiphlistmatch(cdm); 2938 break; 2939 default: 2940 cdm->status = CAM_DEV_MATCH_ERROR; 2941 break; 2942 } 2943 2944 if (cdm->status == CAM_DEV_MATCH_ERROR) 2945 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2946 else 2947 start_ccb->ccb_h.status = CAM_REQ_CMP; 2948 2949 break; 2950 } 2951 case XPT_SASYNC_CB: 2952 { 2953 struct ccb_setasync *csa; 2954 struct async_node *cur_entry; 2955 struct async_list *async_head; 2956 u_int32_t added; 2957 2958 csa = &start_ccb->csa; 2959 added = csa->event_enable; 2960 async_head = &path->device->asyncs; 2961 2962 /* 2963 * If there is already an entry for us, simply 2964 * update it. 2965 */ 2966 cur_entry = SLIST_FIRST(async_head); 2967 while (cur_entry != NULL) { 2968 if ((cur_entry->callback_arg == csa->callback_arg) 2969 && (cur_entry->callback == csa->callback)) 2970 break; 2971 cur_entry = SLIST_NEXT(cur_entry, links); 2972 } 2973 2974 if (cur_entry != NULL) { 2975 /* 2976 * If the request has no flags set, 2977 * remove the entry. 2978 */ 2979 added &= ~cur_entry->event_enable; 2980 if (csa->event_enable == 0) { 2981 SLIST_REMOVE(async_head, cur_entry, 2982 async_node, links); 2983 xpt_release_device(path->device); 2984 free(cur_entry, M_CAMXPT); 2985 } else { 2986 cur_entry->event_enable = csa->event_enable; 2987 } 2988 csa->event_enable = added; 2989 } else { 2990 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2991 M_NOWAIT); 2992 if (cur_entry == NULL) { 2993 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2994 break; 2995 } 2996 cur_entry->event_enable = csa->event_enable; 2997 cur_entry->event_lock = (path->bus->sim->mtx && 2998 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 2999 cur_entry->callback_arg = csa->callback_arg; 3000 cur_entry->callback = csa->callback; 3001 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3002 xpt_acquire_device(path->device); 3003 } 3004 start_ccb->ccb_h.status = CAM_REQ_CMP; 3005 break; 3006 } 3007 case XPT_REL_SIMQ: 3008 { 3009 struct ccb_relsim *crs; 3010 struct cam_ed *dev; 3011 3012 crs = &start_ccb->crs; 3013 dev = path->device; 3014 if (dev == NULL) { 3015 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3016 break; 3017 } 3018 3019 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3020 /* Don't ever go below one opening */ 3021 if (crs->openings > 0) { 3022 xpt_dev_ccbq_resize(path, crs->openings); 3023 if (bootverbose) { 3024 xpt_print(path, 3025 "number of openings is now %d\n", 3026 crs->openings); 3027 } 3028 } 3029 } 3030 3031 mtx_lock(&dev->sim->devq->send_mtx); 3032 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3033 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3034 /* 3035 * Just extend the old timeout and decrement 3036 * the freeze count so that a single timeout 3037 * is sufficient for releasing the queue. 3038 */ 3039 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3040 callout_stop(&dev->callout); 3041 } else { 3042 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3043 } 3044 3045 callout_reset_sbt(&dev->callout, 3046 SBT_1MS * crs->release_timeout, SBT_1MS, 3047 xpt_release_devq_timeout, dev, 0); 3048 3049 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3050 } 3051 3052 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3053 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3054 /* 3055 * Decrement the freeze count so that a single 3056 * completion is still sufficient to unfreeze 3057 * the queue. 3058 */ 3059 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3060 } else { 3061 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3062 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3063 } 3064 } 3065 3066 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3067 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3068 || (dev->ccbq.dev_active == 0)) { 3069 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3070 } else { 3071 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3072 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3073 } 3074 } 3075 mtx_unlock(&dev->sim->devq->send_mtx); 3076 3077 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3078 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3079 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3080 start_ccb->ccb_h.status = CAM_REQ_CMP; 3081 break; 3082 } 3083 case XPT_DEBUG: { 3084 struct cam_path *oldpath; 3085 3086 /* Check that all request bits are supported. */ 3087 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3088 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3089 break; 3090 } 3091 3092 cam_dflags = CAM_DEBUG_NONE; 3093 if (cam_dpath != NULL) { 3094 oldpath = cam_dpath; 3095 cam_dpath = NULL; 3096 xpt_free_path(oldpath); 3097 } 3098 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3099 if (xpt_create_path(&cam_dpath, NULL, 3100 start_ccb->ccb_h.path_id, 3101 start_ccb->ccb_h.target_id, 3102 start_ccb->ccb_h.target_lun) != 3103 CAM_REQ_CMP) { 3104 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3105 } else { 3106 cam_dflags = start_ccb->cdbg.flags; 3107 start_ccb->ccb_h.status = CAM_REQ_CMP; 3108 xpt_print(cam_dpath, "debugging flags now %x\n", 3109 cam_dflags); 3110 } 3111 } else 3112 start_ccb->ccb_h.status = CAM_REQ_CMP; 3113 break; 3114 } 3115 case XPT_NOOP: 3116 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3117 xpt_freeze_devq(path, 1); 3118 start_ccb->ccb_h.status = CAM_REQ_CMP; 3119 break; 3120 case XPT_REPROBE_LUN: 3121 xpt_async(AC_INQ_CHANGED, path, NULL); 3122 start_ccb->ccb_h.status = CAM_REQ_CMP; 3123 xpt_done(start_ccb); 3124 break; 3125 case XPT_ASYNC: 3126 /* 3127 * Queue the async operation so it can be run from a sleepable 3128 * context. 3129 */ 3130 start_ccb->ccb_h.status = CAM_REQ_CMP; 3131 mtx_lock(&cam_async.cam_doneq_mtx); 3132 STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe); 3133 start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX; 3134 mtx_unlock(&cam_async.cam_doneq_mtx); 3135 wakeup(&cam_async.cam_doneq); 3136 break; 3137 default: 3138 case XPT_SDEV_TYPE: 3139 case XPT_TERM_IO: 3140 case XPT_ENG_INQ: 3141 /* XXX Implement */ 3142 xpt_print(start_ccb->ccb_h.path, 3143 "%s: CCB type %#x %s not supported\n", __func__, 3144 start_ccb->ccb_h.func_code, 3145 xpt_action_name(start_ccb->ccb_h.func_code)); 3146 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3147 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3148 xpt_done(start_ccb); 3149 } 3150 break; 3151 } 3152 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3153 ("xpt_action_default: func= %#x %s status %#x\n", 3154 start_ccb->ccb_h.func_code, 3155 xpt_action_name(start_ccb->ccb_h.func_code), 3156 start_ccb->ccb_h.status)); 3157 } 3158 3159 /* 3160 * Call the sim poll routine to allow the sim to complete 3161 * any inflight requests, then call camisr_runqueue to 3162 * complete any CCB that the polling completed. 3163 */ 3164 void 3165 xpt_sim_poll(struct cam_sim *sim) 3166 { 3167 struct mtx *mtx; 3168 3169 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__)); 3170 mtx = sim->mtx; 3171 if (mtx) 3172 mtx_lock(mtx); 3173 (*(sim->sim_poll))(sim); 3174 if (mtx) 3175 mtx_unlock(mtx); 3176 camisr_runqueue(); 3177 } 3178 3179 uint32_t 3180 xpt_poll_setup(union ccb *start_ccb) 3181 { 3182 u_int32_t timeout; 3183 struct cam_sim *sim; 3184 struct cam_devq *devq; 3185 struct cam_ed *dev; 3186 3187 timeout = start_ccb->ccb_h.timeout * 10; 3188 sim = start_ccb->ccb_h.path->bus->sim; 3189 devq = sim->devq; 3190 dev = start_ccb->ccb_h.path->device; 3191 3192 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__)); 3193 3194 /* 3195 * Steal an opening so that no other queued requests 3196 * can get it before us while we simulate interrupts. 3197 */ 3198 mtx_lock(&devq->send_mtx); 3199 dev->ccbq.dev_openings--; 3200 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3201 (--timeout > 0)) { 3202 mtx_unlock(&devq->send_mtx); 3203 DELAY(100); 3204 xpt_sim_poll(sim); 3205 mtx_lock(&devq->send_mtx); 3206 } 3207 dev->ccbq.dev_openings++; 3208 mtx_unlock(&devq->send_mtx); 3209 3210 return (timeout); 3211 } 3212 3213 void 3214 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3215 { 3216 3217 KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim), 3218 ("%s: non-pollable sim", __func__)); 3219 while (--timeout > 0) { 3220 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); 3221 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3222 != CAM_REQ_INPROG) 3223 break; 3224 DELAY(100); 3225 } 3226 3227 if (timeout == 0) { 3228 /* 3229 * XXX Is it worth adding a sim_timeout entry 3230 * point so we can attempt recovery? If 3231 * this is only used for dumps, I don't think 3232 * it is. 3233 */ 3234 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3235 } 3236 } 3237 3238 /* 3239 * Schedule a peripheral driver to receive a ccb when its 3240 * target device has space for more transactions. 3241 */ 3242 void 3243 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3244 { 3245 3246 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3247 cam_periph_assert(periph, MA_OWNED); 3248 if (new_priority < periph->scheduled_priority) { 3249 periph->scheduled_priority = new_priority; 3250 xpt_run_allocq(periph, 0); 3251 } 3252 } 3253 3254 /* 3255 * Schedule a device to run on a given queue. 3256 * If the device was inserted as a new entry on the queue, 3257 * return 1 meaning the device queue should be run. If we 3258 * were already queued, implying someone else has already 3259 * started the queue, return 0 so the caller doesn't attempt 3260 * to run the queue. 3261 */ 3262 static int 3263 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3264 u_int32_t new_priority) 3265 { 3266 int retval; 3267 u_int32_t old_priority; 3268 3269 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3270 3271 old_priority = pinfo->priority; 3272 3273 /* 3274 * Are we already queued? 3275 */ 3276 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3277 /* Simply reorder based on new priority */ 3278 if (new_priority < old_priority) { 3279 camq_change_priority(queue, pinfo->index, 3280 new_priority); 3281 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3282 ("changed priority to %d\n", 3283 new_priority)); 3284 retval = 1; 3285 } else 3286 retval = 0; 3287 } else { 3288 /* New entry on the queue */ 3289 if (new_priority < old_priority) 3290 pinfo->priority = new_priority; 3291 3292 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3293 ("Inserting onto queue\n")); 3294 pinfo->generation = ++queue->generation; 3295 camq_insert(queue, pinfo); 3296 retval = 1; 3297 } 3298 return (retval); 3299 } 3300 3301 static void 3302 xpt_run_allocq_task(void *context, int pending) 3303 { 3304 struct cam_periph *periph = context; 3305 3306 cam_periph_lock(periph); 3307 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3308 xpt_run_allocq(periph, 1); 3309 cam_periph_unlock(periph); 3310 cam_periph_release(periph); 3311 } 3312 3313 static void 3314 xpt_run_allocq(struct cam_periph *periph, int sleep) 3315 { 3316 struct cam_ed *device; 3317 union ccb *ccb; 3318 uint32_t prio; 3319 3320 cam_periph_assert(periph, MA_OWNED); 3321 if (periph->periph_allocating) 3322 return; 3323 cam_periph_doacquire(periph); 3324 periph->periph_allocating = 1; 3325 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3326 device = periph->path->device; 3327 ccb = NULL; 3328 restart: 3329 while ((prio = min(periph->scheduled_priority, 3330 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3331 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3332 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3333 if (ccb == NULL && 3334 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3335 if (sleep) { 3336 ccb = xpt_get_ccb(periph); 3337 goto restart; 3338 } 3339 if (periph->flags & CAM_PERIPH_RUN_TASK) 3340 break; 3341 cam_periph_doacquire(periph); 3342 periph->flags |= CAM_PERIPH_RUN_TASK; 3343 taskqueue_enqueue(xsoftc.xpt_taskq, 3344 &periph->periph_run_task); 3345 break; 3346 } 3347 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3348 if (prio == periph->immediate_priority) { 3349 periph->immediate_priority = CAM_PRIORITY_NONE; 3350 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3351 ("waking cam_periph_getccb()\n")); 3352 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3353 periph_links.sle); 3354 wakeup(&periph->ccb_list); 3355 } else { 3356 periph->scheduled_priority = CAM_PRIORITY_NONE; 3357 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3358 ("calling periph_start()\n")); 3359 periph->periph_start(periph, ccb); 3360 } 3361 ccb = NULL; 3362 } 3363 if (ccb != NULL) 3364 xpt_release_ccb(ccb); 3365 periph->periph_allocating = 0; 3366 cam_periph_release_locked(periph); 3367 } 3368 3369 static void 3370 xpt_run_devq(struct cam_devq *devq) 3371 { 3372 struct mtx *mtx; 3373 3374 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3375 3376 devq->send_queue.qfrozen_cnt++; 3377 while ((devq->send_queue.entries > 0) 3378 && (devq->send_openings > 0) 3379 && (devq->send_queue.qfrozen_cnt <= 1)) { 3380 struct cam_ed *device; 3381 union ccb *work_ccb; 3382 struct cam_sim *sim; 3383 struct xpt_proto *proto; 3384 3385 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3386 CAMQ_HEAD); 3387 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3388 ("running device %p\n", device)); 3389 3390 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3391 if (work_ccb == NULL) { 3392 printf("device on run queue with no ccbs???\n"); 3393 continue; 3394 } 3395 3396 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3397 mtx_lock(&xsoftc.xpt_highpower_lock); 3398 if (xsoftc.num_highpower <= 0) { 3399 /* 3400 * We got a high power command, but we 3401 * don't have any available slots. Freeze 3402 * the device queue until we have a slot 3403 * available. 3404 */ 3405 xpt_freeze_devq_device(device, 1); 3406 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3407 highpowerq_entry); 3408 3409 mtx_unlock(&xsoftc.xpt_highpower_lock); 3410 continue; 3411 } else { 3412 /* 3413 * Consume a high power slot while 3414 * this ccb runs. 3415 */ 3416 xsoftc.num_highpower--; 3417 } 3418 mtx_unlock(&xsoftc.xpt_highpower_lock); 3419 } 3420 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3421 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3422 devq->send_openings--; 3423 devq->send_active++; 3424 xpt_schedule_devq(devq, device); 3425 mtx_unlock(&devq->send_mtx); 3426 3427 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3428 /* 3429 * The client wants to freeze the queue 3430 * after this CCB is sent. 3431 */ 3432 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3433 } 3434 3435 /* In Target mode, the peripheral driver knows best... */ 3436 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3437 if ((device->inq_flags & SID_CmdQue) != 0 3438 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3439 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3440 else 3441 /* 3442 * Clear this in case of a retried CCB that 3443 * failed due to a rejected tag. 3444 */ 3445 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3446 } 3447 3448 KASSERT(device == work_ccb->ccb_h.path->device, 3449 ("device (%p) / path->device (%p) mismatch", 3450 device, work_ccb->ccb_h.path->device)); 3451 proto = xpt_proto_find(device->protocol); 3452 if (proto && proto->ops->debug_out) 3453 proto->ops->debug_out(work_ccb); 3454 3455 /* 3456 * Device queues can be shared among multiple SIM instances 3457 * that reside on different buses. Use the SIM from the 3458 * queued device, rather than the one from the calling bus. 3459 */ 3460 sim = device->sim; 3461 mtx = sim->mtx; 3462 if (mtx && !mtx_owned(mtx)) 3463 mtx_lock(mtx); 3464 else 3465 mtx = NULL; 3466 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3467 (*(sim->sim_action))(sim, work_ccb); 3468 if (mtx) 3469 mtx_unlock(mtx); 3470 mtx_lock(&devq->send_mtx); 3471 } 3472 devq->send_queue.qfrozen_cnt--; 3473 } 3474 3475 /* 3476 * This function merges stuff from the src ccb into the dst ccb, while keeping 3477 * important fields in the dst ccb constant. 3478 */ 3479 void 3480 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb) 3481 { 3482 3483 /* 3484 * Pull fields that are valid for peripheral drivers to set 3485 * into the dst CCB along with the CCB "payload". 3486 */ 3487 dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count; 3488 dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code; 3489 dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout; 3490 dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags; 3491 bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1], 3492 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3493 } 3494 3495 void 3496 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3497 u_int32_t priority, u_int32_t flags) 3498 { 3499 3500 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3501 ccb_h->pinfo.priority = priority; 3502 ccb_h->path = path; 3503 ccb_h->path_id = path->bus->path_id; 3504 if (path->target) 3505 ccb_h->target_id = path->target->target_id; 3506 else 3507 ccb_h->target_id = CAM_TARGET_WILDCARD; 3508 if (path->device) { 3509 ccb_h->target_lun = path->device->lun_id; 3510 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3511 } else { 3512 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3513 } 3514 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3515 ccb_h->flags = flags; 3516 ccb_h->xflags = 0; 3517 } 3518 3519 void 3520 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3521 { 3522 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3523 } 3524 3525 /* Path manipulation functions */ 3526 cam_status 3527 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3528 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3529 { 3530 struct cam_path *path; 3531 cam_status status; 3532 3533 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3534 3535 if (path == NULL) { 3536 status = CAM_RESRC_UNAVAIL; 3537 return(status); 3538 } 3539 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3540 if (status != CAM_REQ_CMP) { 3541 free(path, M_CAMPATH); 3542 path = NULL; 3543 } 3544 *new_path_ptr = path; 3545 return (status); 3546 } 3547 3548 cam_status 3549 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3550 struct cam_periph *periph, path_id_t path_id, 3551 target_id_t target_id, lun_id_t lun_id) 3552 { 3553 3554 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3555 lun_id)); 3556 } 3557 3558 cam_status 3559 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3560 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3561 { 3562 struct cam_eb *bus; 3563 struct cam_et *target; 3564 struct cam_ed *device; 3565 cam_status status; 3566 3567 status = CAM_REQ_CMP; /* Completed without error */ 3568 target = NULL; /* Wildcarded */ 3569 device = NULL; /* Wildcarded */ 3570 3571 /* 3572 * We will potentially modify the EDT, so block interrupts 3573 * that may attempt to create cam paths. 3574 */ 3575 bus = xpt_find_bus(path_id); 3576 if (bus == NULL) { 3577 status = CAM_PATH_INVALID; 3578 } else { 3579 xpt_lock_buses(); 3580 mtx_lock(&bus->eb_mtx); 3581 target = xpt_find_target(bus, target_id); 3582 if (target == NULL) { 3583 /* Create one */ 3584 struct cam_et *new_target; 3585 3586 new_target = xpt_alloc_target(bus, target_id); 3587 if (new_target == NULL) { 3588 status = CAM_RESRC_UNAVAIL; 3589 } else { 3590 target = new_target; 3591 } 3592 } 3593 xpt_unlock_buses(); 3594 if (target != NULL) { 3595 device = xpt_find_device(target, lun_id); 3596 if (device == NULL) { 3597 /* Create one */ 3598 struct cam_ed *new_device; 3599 3600 new_device = 3601 (*(bus->xport->ops->alloc_device))(bus, 3602 target, 3603 lun_id); 3604 if (new_device == NULL) { 3605 status = CAM_RESRC_UNAVAIL; 3606 } else { 3607 device = new_device; 3608 } 3609 } 3610 } 3611 mtx_unlock(&bus->eb_mtx); 3612 } 3613 3614 /* 3615 * Only touch the user's data if we are successful. 3616 */ 3617 if (status == CAM_REQ_CMP) { 3618 new_path->periph = perph; 3619 new_path->bus = bus; 3620 new_path->target = target; 3621 new_path->device = device; 3622 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3623 } else { 3624 if (device != NULL) 3625 xpt_release_device(device); 3626 if (target != NULL) 3627 xpt_release_target(target); 3628 if (bus != NULL) 3629 xpt_release_bus(bus); 3630 } 3631 return (status); 3632 } 3633 3634 int 3635 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3636 { 3637 struct cam_path *new_path; 3638 3639 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3640 if (new_path == NULL) 3641 return (ENOMEM); 3642 *new_path = *path; 3643 if (path->bus != NULL) 3644 xpt_acquire_bus(path->bus); 3645 if (path->target != NULL) 3646 xpt_acquire_target(path->target); 3647 if (path->device != NULL) 3648 xpt_acquire_device(path->device); 3649 *new_path_ptr = new_path; 3650 return (0); 3651 } 3652 3653 void 3654 xpt_release_path(struct cam_path *path) 3655 { 3656 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3657 if (path->device != NULL) { 3658 xpt_release_device(path->device); 3659 path->device = NULL; 3660 } 3661 if (path->target != NULL) { 3662 xpt_release_target(path->target); 3663 path->target = NULL; 3664 } 3665 if (path->bus != NULL) { 3666 xpt_release_bus(path->bus); 3667 path->bus = NULL; 3668 } 3669 } 3670 3671 void 3672 xpt_free_path(struct cam_path *path) 3673 { 3674 3675 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3676 xpt_release_path(path); 3677 free(path, M_CAMPATH); 3678 } 3679 3680 void 3681 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3682 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3683 { 3684 3685 xpt_lock_buses(); 3686 if (bus_ref) { 3687 if (path->bus) 3688 *bus_ref = path->bus->refcount; 3689 else 3690 *bus_ref = 0; 3691 } 3692 if (periph_ref) { 3693 if (path->periph) 3694 *periph_ref = path->periph->refcount; 3695 else 3696 *periph_ref = 0; 3697 } 3698 xpt_unlock_buses(); 3699 if (target_ref) { 3700 if (path->target) 3701 *target_ref = path->target->refcount; 3702 else 3703 *target_ref = 0; 3704 } 3705 if (device_ref) { 3706 if (path->device) 3707 *device_ref = path->device->refcount; 3708 else 3709 *device_ref = 0; 3710 } 3711 } 3712 3713 /* 3714 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3715 * in path1, 2 for match with wildcards in path2. 3716 */ 3717 int 3718 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3719 { 3720 int retval = 0; 3721 3722 if (path1->bus != path2->bus) { 3723 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3724 retval = 1; 3725 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3726 retval = 2; 3727 else 3728 return (-1); 3729 } 3730 if (path1->target != path2->target) { 3731 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3732 if (retval == 0) 3733 retval = 1; 3734 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3735 retval = 2; 3736 else 3737 return (-1); 3738 } 3739 if (path1->device != path2->device) { 3740 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3741 if (retval == 0) 3742 retval = 1; 3743 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3744 retval = 2; 3745 else 3746 return (-1); 3747 } 3748 return (retval); 3749 } 3750 3751 int 3752 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3753 { 3754 int retval = 0; 3755 3756 if (path->bus != dev->target->bus) { 3757 if (path->bus->path_id == CAM_BUS_WILDCARD) 3758 retval = 1; 3759 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3760 retval = 2; 3761 else 3762 return (-1); 3763 } 3764 if (path->target != dev->target) { 3765 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3766 if (retval == 0) 3767 retval = 1; 3768 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3769 retval = 2; 3770 else 3771 return (-1); 3772 } 3773 if (path->device != dev) { 3774 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3775 if (retval == 0) 3776 retval = 1; 3777 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3778 retval = 2; 3779 else 3780 return (-1); 3781 } 3782 return (retval); 3783 } 3784 3785 void 3786 xpt_print_path(struct cam_path *path) 3787 { 3788 struct sbuf sb; 3789 char buffer[XPT_PRINT_LEN]; 3790 3791 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3792 xpt_path_sbuf(path, &sb); 3793 sbuf_finish(&sb); 3794 printf("%s", sbuf_data(&sb)); 3795 sbuf_delete(&sb); 3796 } 3797 3798 void 3799 xpt_print_device(struct cam_ed *device) 3800 { 3801 3802 if (device == NULL) 3803 printf("(nopath): "); 3804 else { 3805 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3806 device->sim->unit_number, 3807 device->sim->bus_id, 3808 device->target->target_id, 3809 (uintmax_t)device->lun_id); 3810 } 3811 } 3812 3813 void 3814 xpt_print(struct cam_path *path, const char *fmt, ...) 3815 { 3816 va_list ap; 3817 struct sbuf sb; 3818 char buffer[XPT_PRINT_LEN]; 3819 3820 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3821 3822 xpt_path_sbuf(path, &sb); 3823 va_start(ap, fmt); 3824 sbuf_vprintf(&sb, fmt, ap); 3825 va_end(ap); 3826 3827 sbuf_finish(&sb); 3828 printf("%s", sbuf_data(&sb)); 3829 sbuf_delete(&sb); 3830 } 3831 3832 int 3833 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3834 { 3835 struct sbuf sb; 3836 int len; 3837 3838 sbuf_new(&sb, str, str_len, 0); 3839 len = xpt_path_sbuf(path, &sb); 3840 sbuf_finish(&sb); 3841 return (len); 3842 } 3843 3844 int 3845 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3846 { 3847 3848 if (path == NULL) 3849 sbuf_printf(sb, "(nopath): "); 3850 else { 3851 if (path->periph != NULL) 3852 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3853 path->periph->unit_number); 3854 else 3855 sbuf_printf(sb, "(noperiph:"); 3856 3857 if (path->bus != NULL) 3858 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3859 path->bus->sim->unit_number, 3860 path->bus->sim->bus_id); 3861 else 3862 sbuf_printf(sb, "nobus:"); 3863 3864 if (path->target != NULL) 3865 sbuf_printf(sb, "%d:", path->target->target_id); 3866 else 3867 sbuf_printf(sb, "X:"); 3868 3869 if (path->device != NULL) 3870 sbuf_printf(sb, "%jx): ", 3871 (uintmax_t)path->device->lun_id); 3872 else 3873 sbuf_printf(sb, "X): "); 3874 } 3875 3876 return(sbuf_len(sb)); 3877 } 3878 3879 path_id_t 3880 xpt_path_path_id(struct cam_path *path) 3881 { 3882 return(path->bus->path_id); 3883 } 3884 3885 target_id_t 3886 xpt_path_target_id(struct cam_path *path) 3887 { 3888 if (path->target != NULL) 3889 return (path->target->target_id); 3890 else 3891 return (CAM_TARGET_WILDCARD); 3892 } 3893 3894 lun_id_t 3895 xpt_path_lun_id(struct cam_path *path) 3896 { 3897 if (path->device != NULL) 3898 return (path->device->lun_id); 3899 else 3900 return (CAM_LUN_WILDCARD); 3901 } 3902 3903 struct cam_sim * 3904 xpt_path_sim(struct cam_path *path) 3905 { 3906 3907 return (path->bus->sim); 3908 } 3909 3910 struct cam_periph* 3911 xpt_path_periph(struct cam_path *path) 3912 { 3913 3914 return (path->periph); 3915 } 3916 3917 /* 3918 * Release a CAM control block for the caller. Remit the cost of the structure 3919 * to the device referenced by the path. If the this device had no 'credits' 3920 * and peripheral drivers have registered async callbacks for this notification 3921 * call them now. 3922 */ 3923 void 3924 xpt_release_ccb(union ccb *free_ccb) 3925 { 3926 struct cam_ed *device; 3927 struct cam_periph *periph; 3928 3929 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3930 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3931 device = free_ccb->ccb_h.path->device; 3932 periph = free_ccb->ccb_h.path->periph; 3933 3934 xpt_free_ccb(free_ccb); 3935 periph->periph_allocated--; 3936 cam_ccbq_release_opening(&device->ccbq); 3937 xpt_run_allocq(periph, 0); 3938 } 3939 3940 /* Functions accessed by SIM drivers */ 3941 3942 static struct xpt_xport_ops xport_default_ops = { 3943 .alloc_device = xpt_alloc_device_default, 3944 .action = xpt_action_default, 3945 .async = xpt_dev_async_default, 3946 }; 3947 static struct xpt_xport xport_default = { 3948 .xport = XPORT_UNKNOWN, 3949 .name = "unknown", 3950 .ops = &xport_default_ops, 3951 }; 3952 3953 CAM_XPT_XPORT(xport_default); 3954 3955 /* 3956 * A sim structure, listing the SIM entry points and instance 3957 * identification info is passed to xpt_bus_register to hook the SIM 3958 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3959 * for this new bus and places it in the array of buses and assigns 3960 * it a path_id. The path_id may be influenced by "hard wiring" 3961 * information specified by the user. Once interrupt services are 3962 * available, the bus will be probed. 3963 */ 3964 int 3965 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus) 3966 { 3967 struct cam_eb *new_bus; 3968 struct cam_eb *old_bus; 3969 struct ccb_pathinq cpi; 3970 struct cam_path *path; 3971 cam_status status; 3972 3973 sim->bus_id = bus; 3974 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3975 M_CAMXPT, M_NOWAIT|M_ZERO); 3976 if (new_bus == NULL) { 3977 /* Couldn't satisfy request */ 3978 return (ENOMEM); 3979 } 3980 3981 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3982 TAILQ_INIT(&new_bus->et_entries); 3983 cam_sim_hold(sim); 3984 new_bus->sim = sim; 3985 timevalclear(&new_bus->last_reset); 3986 new_bus->flags = 0; 3987 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3988 new_bus->generation = 0; 3989 new_bus->parent_dev = parent; 3990 3991 xpt_lock_buses(); 3992 sim->path_id = new_bus->path_id = 3993 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3994 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3995 while (old_bus != NULL 3996 && old_bus->path_id < new_bus->path_id) 3997 old_bus = TAILQ_NEXT(old_bus, links); 3998 if (old_bus != NULL) 3999 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4000 else 4001 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4002 xsoftc.bus_generation++; 4003 xpt_unlock_buses(); 4004 4005 /* 4006 * Set a default transport so that a PATH_INQ can be issued to 4007 * the SIM. This will then allow for probing and attaching of 4008 * a more appropriate transport. 4009 */ 4010 new_bus->xport = &xport_default; 4011 4012 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4013 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4014 if (status != CAM_REQ_CMP) { 4015 xpt_release_bus(new_bus); 4016 return (ENOMEM); 4017 } 4018 4019 xpt_path_inq(&cpi, path); 4020 4021 /* 4022 * Use the results of PATH_INQ to pick a transport. Note that 4023 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses 4024 * xport_default instead of a transport from 4025 * cam_xpt_port_set. 4026 */ 4027 if (cam_ccb_success((union ccb *)&cpi) && 4028 cpi.transport != XPORT_UNSPECIFIED) { 4029 struct xpt_xport **xpt; 4030 4031 SET_FOREACH(xpt, cam_xpt_xport_set) { 4032 if ((*xpt)->xport == cpi.transport) { 4033 new_bus->xport = *xpt; 4034 break; 4035 } 4036 } 4037 if (new_bus->xport == &xport_default) { 4038 xpt_print(path, 4039 "No transport found for %d\n", cpi.transport); 4040 xpt_release_bus(new_bus); 4041 xpt_free_path(path); 4042 return (EINVAL); 4043 } 4044 } 4045 4046 /* Notify interested parties */ 4047 if (sim->path_id != CAM_XPT_PATH_ID) { 4048 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4049 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4050 union ccb *scan_ccb; 4051 4052 /* Initiate bus rescan. */ 4053 scan_ccb = xpt_alloc_ccb_nowait(); 4054 if (scan_ccb != NULL) { 4055 scan_ccb->ccb_h.path = path; 4056 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4057 scan_ccb->crcn.flags = 0; 4058 xpt_rescan(scan_ccb); 4059 } else { 4060 xpt_print(path, 4061 "Can't allocate CCB to scan bus\n"); 4062 xpt_free_path(path); 4063 } 4064 } else 4065 xpt_free_path(path); 4066 } else 4067 xpt_free_path(path); 4068 return (CAM_SUCCESS); 4069 } 4070 4071 int 4072 xpt_bus_deregister(path_id_t pathid) 4073 { 4074 struct cam_path bus_path; 4075 cam_status status; 4076 4077 status = xpt_compile_path(&bus_path, NULL, pathid, 4078 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4079 if (status != CAM_REQ_CMP) 4080 return (ENOMEM); 4081 4082 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4083 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4084 4085 /* Release the reference count held while registered. */ 4086 xpt_release_bus(bus_path.bus); 4087 xpt_release_path(&bus_path); 4088 4089 return (CAM_SUCCESS); 4090 } 4091 4092 static path_id_t 4093 xptnextfreepathid(void) 4094 { 4095 struct cam_eb *bus; 4096 path_id_t pathid; 4097 const char *strval; 4098 4099 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4100 pathid = 0; 4101 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4102 retry: 4103 /* Find an unoccupied pathid */ 4104 while (bus != NULL && bus->path_id <= pathid) { 4105 if (bus->path_id == pathid) 4106 pathid++; 4107 bus = TAILQ_NEXT(bus, links); 4108 } 4109 4110 /* 4111 * Ensure that this pathid is not reserved for 4112 * a bus that may be registered in the future. 4113 */ 4114 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4115 ++pathid; 4116 /* Start the search over */ 4117 goto retry; 4118 } 4119 return (pathid); 4120 } 4121 4122 static path_id_t 4123 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4124 { 4125 path_id_t pathid; 4126 int i, dunit, val; 4127 char buf[32]; 4128 const char *dname; 4129 4130 pathid = CAM_XPT_PATH_ID; 4131 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4132 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4133 return (pathid); 4134 i = 0; 4135 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4136 if (strcmp(dname, "scbus")) { 4137 /* Avoid a bit of foot shooting. */ 4138 continue; 4139 } 4140 if (dunit < 0) /* unwired?! */ 4141 continue; 4142 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4143 if (sim_bus == val) { 4144 pathid = dunit; 4145 break; 4146 } 4147 } else if (sim_bus == 0) { 4148 /* Unspecified matches bus 0 */ 4149 pathid = dunit; 4150 break; 4151 } else { 4152 printf("Ambiguous scbus configuration for %s%d " 4153 "bus %d, cannot wire down. The kernel " 4154 "config entry for scbus%d should " 4155 "specify a controller bus.\n" 4156 "Scbus will be assigned dynamically.\n", 4157 sim_name, sim_unit, sim_bus, dunit); 4158 break; 4159 } 4160 } 4161 4162 if (pathid == CAM_XPT_PATH_ID) 4163 pathid = xptnextfreepathid(); 4164 return (pathid); 4165 } 4166 4167 static const char * 4168 xpt_async_string(u_int32_t async_code) 4169 { 4170 4171 switch (async_code) { 4172 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4173 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4174 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4175 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4176 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4177 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4178 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4179 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4180 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4181 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4182 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4183 case AC_CONTRACT: return ("AC_CONTRACT"); 4184 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4185 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4186 } 4187 return ("AC_UNKNOWN"); 4188 } 4189 4190 static int 4191 xpt_async_size(u_int32_t async_code) 4192 { 4193 4194 switch (async_code) { 4195 case AC_BUS_RESET: return (0); 4196 case AC_UNSOL_RESEL: return (0); 4197 case AC_SCSI_AEN: return (0); 4198 case AC_SENT_BDR: return (0); 4199 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4200 case AC_PATH_DEREGISTERED: return (0); 4201 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4202 case AC_LOST_DEVICE: return (0); 4203 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4204 case AC_INQ_CHANGED: return (0); 4205 case AC_GETDEV_CHANGED: return (0); 4206 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4207 case AC_ADVINFO_CHANGED: return (-1); 4208 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4209 } 4210 return (0); 4211 } 4212 4213 static int 4214 xpt_async_process_dev(struct cam_ed *device, void *arg) 4215 { 4216 union ccb *ccb = arg; 4217 struct cam_path *path = ccb->ccb_h.path; 4218 void *async_arg = ccb->casync.async_arg_ptr; 4219 u_int32_t async_code = ccb->casync.async_code; 4220 bool relock; 4221 4222 if (path->device != device 4223 && path->device->lun_id != CAM_LUN_WILDCARD 4224 && device->lun_id != CAM_LUN_WILDCARD) 4225 return (1); 4226 4227 /* 4228 * The async callback could free the device. 4229 * If it is a broadcast async, it doesn't hold 4230 * device reference, so take our own reference. 4231 */ 4232 xpt_acquire_device(device); 4233 4234 /* 4235 * If async for specific device is to be delivered to 4236 * the wildcard client, take the specific device lock. 4237 * XXX: We may need a way for client to specify it. 4238 */ 4239 if ((device->lun_id == CAM_LUN_WILDCARD && 4240 path->device->lun_id != CAM_LUN_WILDCARD) || 4241 (device->target->target_id == CAM_TARGET_WILDCARD && 4242 path->target->target_id != CAM_TARGET_WILDCARD) || 4243 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4244 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4245 mtx_unlock(&device->device_mtx); 4246 xpt_path_lock(path); 4247 relock = true; 4248 } else 4249 relock = false; 4250 4251 (*(device->target->bus->xport->ops->async))(async_code, 4252 device->target->bus, device->target, device, async_arg); 4253 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4254 4255 if (relock) { 4256 xpt_path_unlock(path); 4257 mtx_lock(&device->device_mtx); 4258 } 4259 xpt_release_device(device); 4260 return (1); 4261 } 4262 4263 static int 4264 xpt_async_process_tgt(struct cam_et *target, void *arg) 4265 { 4266 union ccb *ccb = arg; 4267 struct cam_path *path = ccb->ccb_h.path; 4268 4269 if (path->target != target 4270 && path->target->target_id != CAM_TARGET_WILDCARD 4271 && target->target_id != CAM_TARGET_WILDCARD) 4272 return (1); 4273 4274 if (ccb->casync.async_code == AC_SENT_BDR) { 4275 /* Update our notion of when the last reset occurred */ 4276 microtime(&target->last_reset); 4277 } 4278 4279 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4280 } 4281 4282 static void 4283 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4284 { 4285 struct cam_eb *bus; 4286 struct cam_path *path; 4287 void *async_arg; 4288 u_int32_t async_code; 4289 4290 path = ccb->ccb_h.path; 4291 async_code = ccb->casync.async_code; 4292 async_arg = ccb->casync.async_arg_ptr; 4293 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4294 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4295 bus = path->bus; 4296 4297 if (async_code == AC_BUS_RESET) { 4298 /* Update our notion of when the last reset occurred */ 4299 microtime(&bus->last_reset); 4300 } 4301 4302 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4303 4304 /* 4305 * If this wasn't a fully wildcarded async, tell all 4306 * clients that want all async events. 4307 */ 4308 if (bus != xpt_periph->path->bus) { 4309 xpt_path_lock(xpt_periph->path); 4310 xpt_async_process_dev(xpt_periph->path->device, ccb); 4311 xpt_path_unlock(xpt_periph->path); 4312 } 4313 4314 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4315 xpt_release_devq(path, 1, TRUE); 4316 else 4317 xpt_release_simq(path->bus->sim, TRUE); 4318 if (ccb->casync.async_arg_size > 0) 4319 free(async_arg, M_CAMXPT); 4320 xpt_free_path(path); 4321 xpt_free_ccb(ccb); 4322 } 4323 4324 static void 4325 xpt_async_bcast(struct async_list *async_head, 4326 u_int32_t async_code, 4327 struct cam_path *path, void *async_arg) 4328 { 4329 struct async_node *cur_entry; 4330 struct mtx *mtx; 4331 4332 cur_entry = SLIST_FIRST(async_head); 4333 while (cur_entry != NULL) { 4334 struct async_node *next_entry; 4335 /* 4336 * Grab the next list entry before we call the current 4337 * entry's callback. This is because the callback function 4338 * can delete its async callback entry. 4339 */ 4340 next_entry = SLIST_NEXT(cur_entry, links); 4341 if ((cur_entry->event_enable & async_code) != 0) { 4342 mtx = cur_entry->event_lock ? 4343 path->device->sim->mtx : NULL; 4344 if (mtx) 4345 mtx_lock(mtx); 4346 cur_entry->callback(cur_entry->callback_arg, 4347 async_code, path, 4348 async_arg); 4349 if (mtx) 4350 mtx_unlock(mtx); 4351 } 4352 cur_entry = next_entry; 4353 } 4354 } 4355 4356 void 4357 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4358 { 4359 union ccb *ccb; 4360 int size; 4361 4362 ccb = xpt_alloc_ccb_nowait(); 4363 if (ccb == NULL) { 4364 xpt_print(path, "Can't allocate CCB to send %s\n", 4365 xpt_async_string(async_code)); 4366 return; 4367 } 4368 4369 if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) { 4370 xpt_print(path, "Can't allocate path to send %s\n", 4371 xpt_async_string(async_code)); 4372 xpt_free_ccb(ccb); 4373 return; 4374 } 4375 ccb->ccb_h.path->periph = NULL; 4376 ccb->ccb_h.func_code = XPT_ASYNC; 4377 ccb->ccb_h.cbfcnp = xpt_async_process; 4378 ccb->ccb_h.flags |= CAM_UNLOCKED; 4379 ccb->casync.async_code = async_code; 4380 ccb->casync.async_arg_size = 0; 4381 size = xpt_async_size(async_code); 4382 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4383 ("xpt_async: func %#x %s aync_code %d %s\n", 4384 ccb->ccb_h.func_code, 4385 xpt_action_name(ccb->ccb_h.func_code), 4386 async_code, 4387 xpt_async_string(async_code))); 4388 if (size > 0 && async_arg != NULL) { 4389 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4390 if (ccb->casync.async_arg_ptr == NULL) { 4391 xpt_print(path, "Can't allocate argument to send %s\n", 4392 xpt_async_string(async_code)); 4393 xpt_free_path(ccb->ccb_h.path); 4394 xpt_free_ccb(ccb); 4395 return; 4396 } 4397 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4398 ccb->casync.async_arg_size = size; 4399 } else if (size < 0) { 4400 ccb->casync.async_arg_ptr = async_arg; 4401 ccb->casync.async_arg_size = size; 4402 } 4403 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4404 xpt_freeze_devq(path, 1); 4405 else 4406 xpt_freeze_simq(path->bus->sim, 1); 4407 xpt_action(ccb); 4408 } 4409 4410 static void 4411 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4412 struct cam_et *target, struct cam_ed *device, 4413 void *async_arg) 4414 { 4415 4416 /* 4417 * We only need to handle events for real devices. 4418 */ 4419 if (target->target_id == CAM_TARGET_WILDCARD 4420 || device->lun_id == CAM_LUN_WILDCARD) 4421 return; 4422 4423 printf("%s called\n", __func__); 4424 } 4425 4426 static uint32_t 4427 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4428 { 4429 struct cam_devq *devq; 4430 uint32_t freeze; 4431 4432 devq = dev->sim->devq; 4433 mtx_assert(&devq->send_mtx, MA_OWNED); 4434 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4435 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4436 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4437 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4438 /* Remove frozen device from sendq. */ 4439 if (device_is_queued(dev)) 4440 camq_remove(&devq->send_queue, dev->devq_entry.index); 4441 return (freeze); 4442 } 4443 4444 u_int32_t 4445 xpt_freeze_devq(struct cam_path *path, u_int count) 4446 { 4447 struct cam_ed *dev = path->device; 4448 struct cam_devq *devq; 4449 uint32_t freeze; 4450 4451 devq = dev->sim->devq; 4452 mtx_lock(&devq->send_mtx); 4453 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4454 freeze = xpt_freeze_devq_device(dev, count); 4455 mtx_unlock(&devq->send_mtx); 4456 return (freeze); 4457 } 4458 4459 u_int32_t 4460 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4461 { 4462 struct cam_devq *devq; 4463 uint32_t freeze; 4464 4465 devq = sim->devq; 4466 mtx_lock(&devq->send_mtx); 4467 freeze = (devq->send_queue.qfrozen_cnt += count); 4468 mtx_unlock(&devq->send_mtx); 4469 return (freeze); 4470 } 4471 4472 static void 4473 xpt_release_devq_timeout(void *arg) 4474 { 4475 struct cam_ed *dev; 4476 struct cam_devq *devq; 4477 4478 dev = (struct cam_ed *)arg; 4479 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4480 devq = dev->sim->devq; 4481 mtx_assert(&devq->send_mtx, MA_OWNED); 4482 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4483 xpt_run_devq(devq); 4484 } 4485 4486 void 4487 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4488 { 4489 struct cam_ed *dev; 4490 struct cam_devq *devq; 4491 4492 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4493 count, run_queue)); 4494 dev = path->device; 4495 devq = dev->sim->devq; 4496 mtx_lock(&devq->send_mtx); 4497 if (xpt_release_devq_device(dev, count, run_queue)) 4498 xpt_run_devq(dev->sim->devq); 4499 mtx_unlock(&devq->send_mtx); 4500 } 4501 4502 static int 4503 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4504 { 4505 4506 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4507 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4508 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4509 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4510 if (count > dev->ccbq.queue.qfrozen_cnt) { 4511 #ifdef INVARIANTS 4512 printf("xpt_release_devq(): requested %u > present %u\n", 4513 count, dev->ccbq.queue.qfrozen_cnt); 4514 #endif 4515 count = dev->ccbq.queue.qfrozen_cnt; 4516 } 4517 dev->ccbq.queue.qfrozen_cnt -= count; 4518 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4519 /* 4520 * No longer need to wait for a successful 4521 * command completion. 4522 */ 4523 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4524 /* 4525 * Remove any timeouts that might be scheduled 4526 * to release this queue. 4527 */ 4528 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4529 callout_stop(&dev->callout); 4530 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4531 } 4532 /* 4533 * Now that we are unfrozen schedule the 4534 * device so any pending transactions are 4535 * run. 4536 */ 4537 xpt_schedule_devq(dev->sim->devq, dev); 4538 } else 4539 run_queue = 0; 4540 return (run_queue); 4541 } 4542 4543 void 4544 xpt_release_simq(struct cam_sim *sim, int run_queue) 4545 { 4546 struct cam_devq *devq; 4547 4548 devq = sim->devq; 4549 mtx_lock(&devq->send_mtx); 4550 if (devq->send_queue.qfrozen_cnt <= 0) { 4551 #ifdef INVARIANTS 4552 printf("xpt_release_simq: requested 1 > present %u\n", 4553 devq->send_queue.qfrozen_cnt); 4554 #endif 4555 } else 4556 devq->send_queue.qfrozen_cnt--; 4557 if (devq->send_queue.qfrozen_cnt == 0) { 4558 if (run_queue) { 4559 /* 4560 * Now that we are unfrozen run the send queue. 4561 */ 4562 xpt_run_devq(sim->devq); 4563 } 4564 } 4565 mtx_unlock(&devq->send_mtx); 4566 } 4567 4568 void 4569 xpt_done(union ccb *done_ccb) 4570 { 4571 struct cam_doneq *queue; 4572 int run, hash; 4573 4574 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4575 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4576 done_ccb->csio.bio != NULL) 4577 biotrack(done_ccb->csio.bio, __func__); 4578 #endif 4579 4580 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4581 ("xpt_done: func= %#x %s status %#x\n", 4582 done_ccb->ccb_h.func_code, 4583 xpt_action_name(done_ccb->ccb_h.func_code), 4584 done_ccb->ccb_h.status)); 4585 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4586 return; 4587 4588 /* Store the time the ccb was in the sim */ 4589 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4590 done_ccb->ccb_h.status |= CAM_QOS_VALID; 4591 hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4592 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4593 queue = &cam_doneqs[hash]; 4594 mtx_lock(&queue->cam_doneq_mtx); 4595 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4596 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4597 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4598 mtx_unlock(&queue->cam_doneq_mtx); 4599 if (run && !dumping) 4600 wakeup(&queue->cam_doneq); 4601 } 4602 4603 void 4604 xpt_done_direct(union ccb *done_ccb) 4605 { 4606 4607 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4608 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4609 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4610 return; 4611 4612 /* Store the time the ccb was in the sim */ 4613 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4614 done_ccb->ccb_h.status |= CAM_QOS_VALID; 4615 xpt_done_process(&done_ccb->ccb_h); 4616 } 4617 4618 union ccb * 4619 xpt_alloc_ccb(void) 4620 { 4621 union ccb *new_ccb; 4622 4623 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4624 return (new_ccb); 4625 } 4626 4627 union ccb * 4628 xpt_alloc_ccb_nowait(void) 4629 { 4630 union ccb *new_ccb; 4631 4632 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4633 return (new_ccb); 4634 } 4635 4636 void 4637 xpt_free_ccb(union ccb *free_ccb) 4638 { 4639 struct cam_periph *periph; 4640 4641 if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) { 4642 /* 4643 * Looks like a CCB allocated from a periph UMA zone. 4644 */ 4645 periph = free_ccb->ccb_h.path->periph; 4646 uma_zfree(periph->ccb_zone, free_ccb); 4647 } else { 4648 free(free_ccb, M_CAMCCB); 4649 } 4650 } 4651 4652 /* Private XPT functions */ 4653 4654 /* 4655 * Get a CAM control block for the caller. Charge the structure to the device 4656 * referenced by the path. If we don't have sufficient resources to allocate 4657 * more ccbs, we return NULL. 4658 */ 4659 static union ccb * 4660 xpt_get_ccb_nowait(struct cam_periph *periph) 4661 { 4662 union ccb *new_ccb; 4663 int alloc_flags; 4664 4665 if (periph->ccb_zone != NULL) { 4666 alloc_flags = CAM_CCB_FROM_UMA; 4667 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT); 4668 } else { 4669 alloc_flags = 0; 4670 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4671 } 4672 if (new_ccb == NULL) 4673 return (NULL); 4674 new_ccb->ccb_h.alloc_flags = alloc_flags; 4675 periph->periph_allocated++; 4676 cam_ccbq_take_opening(&periph->path->device->ccbq); 4677 return (new_ccb); 4678 } 4679 4680 static union ccb * 4681 xpt_get_ccb(struct cam_periph *periph) 4682 { 4683 union ccb *new_ccb; 4684 int alloc_flags; 4685 4686 cam_periph_unlock(periph); 4687 if (periph->ccb_zone != NULL) { 4688 alloc_flags = CAM_CCB_FROM_UMA; 4689 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK); 4690 } else { 4691 alloc_flags = 0; 4692 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4693 } 4694 new_ccb->ccb_h.alloc_flags = alloc_flags; 4695 cam_periph_lock(periph); 4696 periph->periph_allocated++; 4697 cam_ccbq_take_opening(&periph->path->device->ccbq); 4698 return (new_ccb); 4699 } 4700 4701 union ccb * 4702 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4703 { 4704 struct ccb_hdr *ccb_h; 4705 4706 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4707 cam_periph_assert(periph, MA_OWNED); 4708 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4709 ccb_h->pinfo.priority != priority) { 4710 if (priority < periph->immediate_priority) { 4711 periph->immediate_priority = priority; 4712 xpt_run_allocq(periph, 0); 4713 } else 4714 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4715 "cgticb", 0); 4716 } 4717 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4718 return ((union ccb *)ccb_h); 4719 } 4720 4721 static void 4722 xpt_acquire_bus(struct cam_eb *bus) 4723 { 4724 4725 xpt_lock_buses(); 4726 bus->refcount++; 4727 xpt_unlock_buses(); 4728 } 4729 4730 static void 4731 xpt_release_bus(struct cam_eb *bus) 4732 { 4733 4734 xpt_lock_buses(); 4735 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4736 if (--bus->refcount > 0) { 4737 xpt_unlock_buses(); 4738 return; 4739 } 4740 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4741 xsoftc.bus_generation++; 4742 xpt_unlock_buses(); 4743 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4744 ("destroying bus, but target list is not empty")); 4745 cam_sim_release(bus->sim); 4746 mtx_destroy(&bus->eb_mtx); 4747 free(bus, M_CAMXPT); 4748 } 4749 4750 static struct cam_et * 4751 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4752 { 4753 struct cam_et *cur_target, *target; 4754 4755 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4756 mtx_assert(&bus->eb_mtx, MA_OWNED); 4757 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4758 M_NOWAIT|M_ZERO); 4759 if (target == NULL) 4760 return (NULL); 4761 4762 TAILQ_INIT(&target->ed_entries); 4763 target->bus = bus; 4764 target->target_id = target_id; 4765 target->refcount = 1; 4766 target->generation = 0; 4767 target->luns = NULL; 4768 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4769 timevalclear(&target->last_reset); 4770 /* 4771 * Hold a reference to our parent bus so it 4772 * will not go away before we do. 4773 */ 4774 bus->refcount++; 4775 4776 /* Insertion sort into our bus's target list */ 4777 cur_target = TAILQ_FIRST(&bus->et_entries); 4778 while (cur_target != NULL && cur_target->target_id < target_id) 4779 cur_target = TAILQ_NEXT(cur_target, links); 4780 if (cur_target != NULL) { 4781 TAILQ_INSERT_BEFORE(cur_target, target, links); 4782 } else { 4783 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4784 } 4785 bus->generation++; 4786 return (target); 4787 } 4788 4789 static void 4790 xpt_acquire_target(struct cam_et *target) 4791 { 4792 struct cam_eb *bus = target->bus; 4793 4794 mtx_lock(&bus->eb_mtx); 4795 target->refcount++; 4796 mtx_unlock(&bus->eb_mtx); 4797 } 4798 4799 static void 4800 xpt_release_target(struct cam_et *target) 4801 { 4802 struct cam_eb *bus = target->bus; 4803 4804 mtx_lock(&bus->eb_mtx); 4805 if (--target->refcount > 0) { 4806 mtx_unlock(&bus->eb_mtx); 4807 return; 4808 } 4809 TAILQ_REMOVE(&bus->et_entries, target, links); 4810 bus->generation++; 4811 mtx_unlock(&bus->eb_mtx); 4812 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4813 ("destroying target, but device list is not empty")); 4814 xpt_release_bus(bus); 4815 mtx_destroy(&target->luns_mtx); 4816 if (target->luns) 4817 free(target->luns, M_CAMXPT); 4818 free(target, M_CAMXPT); 4819 } 4820 4821 static struct cam_ed * 4822 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4823 lun_id_t lun_id) 4824 { 4825 struct cam_ed *device; 4826 4827 device = xpt_alloc_device(bus, target, lun_id); 4828 if (device == NULL) 4829 return (NULL); 4830 4831 device->mintags = 1; 4832 device->maxtags = 1; 4833 return (device); 4834 } 4835 4836 static void 4837 xpt_destroy_device(void *context, int pending) 4838 { 4839 struct cam_ed *device = context; 4840 4841 mtx_lock(&device->device_mtx); 4842 mtx_destroy(&device->device_mtx); 4843 free(device, M_CAMDEV); 4844 } 4845 4846 struct cam_ed * 4847 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4848 { 4849 struct cam_ed *cur_device, *device; 4850 struct cam_devq *devq; 4851 cam_status status; 4852 4853 mtx_assert(&bus->eb_mtx, MA_OWNED); 4854 /* Make space for us in the device queue on our bus */ 4855 devq = bus->sim->devq; 4856 mtx_lock(&devq->send_mtx); 4857 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4858 mtx_unlock(&devq->send_mtx); 4859 if (status != CAM_REQ_CMP) 4860 return (NULL); 4861 4862 device = (struct cam_ed *)malloc(sizeof(*device), 4863 M_CAMDEV, M_NOWAIT|M_ZERO); 4864 if (device == NULL) 4865 return (NULL); 4866 4867 cam_init_pinfo(&device->devq_entry); 4868 device->target = target; 4869 device->lun_id = lun_id; 4870 device->sim = bus->sim; 4871 if (cam_ccbq_init(&device->ccbq, 4872 bus->sim->max_dev_openings) != 0) { 4873 free(device, M_CAMDEV); 4874 return (NULL); 4875 } 4876 SLIST_INIT(&device->asyncs); 4877 SLIST_INIT(&device->periphs); 4878 device->generation = 0; 4879 device->flags = CAM_DEV_UNCONFIGURED; 4880 device->tag_delay_count = 0; 4881 device->tag_saved_openings = 0; 4882 device->refcount = 1; 4883 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4884 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4885 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4886 /* 4887 * Hold a reference to our parent bus so it 4888 * will not go away before we do. 4889 */ 4890 target->refcount++; 4891 4892 cur_device = TAILQ_FIRST(&target->ed_entries); 4893 while (cur_device != NULL && cur_device->lun_id < lun_id) 4894 cur_device = TAILQ_NEXT(cur_device, links); 4895 if (cur_device != NULL) 4896 TAILQ_INSERT_BEFORE(cur_device, device, links); 4897 else 4898 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4899 target->generation++; 4900 return (device); 4901 } 4902 4903 void 4904 xpt_acquire_device(struct cam_ed *device) 4905 { 4906 struct cam_eb *bus = device->target->bus; 4907 4908 mtx_lock(&bus->eb_mtx); 4909 device->refcount++; 4910 mtx_unlock(&bus->eb_mtx); 4911 } 4912 4913 void 4914 xpt_release_device(struct cam_ed *device) 4915 { 4916 struct cam_eb *bus = device->target->bus; 4917 struct cam_devq *devq; 4918 4919 mtx_lock(&bus->eb_mtx); 4920 if (--device->refcount > 0) { 4921 mtx_unlock(&bus->eb_mtx); 4922 return; 4923 } 4924 4925 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4926 device->target->generation++; 4927 mtx_unlock(&bus->eb_mtx); 4928 4929 /* Release our slot in the devq */ 4930 devq = bus->sim->devq; 4931 mtx_lock(&devq->send_mtx); 4932 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4933 4934 KASSERT(SLIST_EMPTY(&device->periphs), 4935 ("destroying device, but periphs list is not empty")); 4936 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4937 ("destroying device while still queued for ccbs")); 4938 4939 /* The send_mtx must be held when accessing the callout */ 4940 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4941 callout_stop(&device->callout); 4942 4943 mtx_unlock(&devq->send_mtx); 4944 4945 xpt_release_target(device->target); 4946 4947 cam_ccbq_fini(&device->ccbq); 4948 /* 4949 * Free allocated memory. free(9) does nothing if the 4950 * supplied pointer is NULL, so it is safe to call without 4951 * checking. 4952 */ 4953 free(device->supported_vpds, M_CAMXPT); 4954 free(device->device_id, M_CAMXPT); 4955 free(device->ext_inq, M_CAMXPT); 4956 free(device->physpath, M_CAMXPT); 4957 free(device->rcap_buf, M_CAMXPT); 4958 free(device->serial_num, M_CAMXPT); 4959 free(device->nvme_data, M_CAMXPT); 4960 free(device->nvme_cdata, M_CAMXPT); 4961 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4962 } 4963 4964 u_int32_t 4965 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4966 { 4967 int result; 4968 struct cam_ed *dev; 4969 4970 dev = path->device; 4971 mtx_lock(&dev->sim->devq->send_mtx); 4972 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4973 mtx_unlock(&dev->sim->devq->send_mtx); 4974 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4975 || (dev->inq_flags & SID_CmdQue) != 0) 4976 dev->tag_saved_openings = newopenings; 4977 return (result); 4978 } 4979 4980 static struct cam_eb * 4981 xpt_find_bus(path_id_t path_id) 4982 { 4983 struct cam_eb *bus; 4984 4985 xpt_lock_buses(); 4986 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4987 bus != NULL; 4988 bus = TAILQ_NEXT(bus, links)) { 4989 if (bus->path_id == path_id) { 4990 bus->refcount++; 4991 break; 4992 } 4993 } 4994 xpt_unlock_buses(); 4995 return (bus); 4996 } 4997 4998 static struct cam_et * 4999 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5000 { 5001 struct cam_et *target; 5002 5003 mtx_assert(&bus->eb_mtx, MA_OWNED); 5004 for (target = TAILQ_FIRST(&bus->et_entries); 5005 target != NULL; 5006 target = TAILQ_NEXT(target, links)) { 5007 if (target->target_id == target_id) { 5008 target->refcount++; 5009 break; 5010 } 5011 } 5012 return (target); 5013 } 5014 5015 static struct cam_ed * 5016 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5017 { 5018 struct cam_ed *device; 5019 5020 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5021 for (device = TAILQ_FIRST(&target->ed_entries); 5022 device != NULL; 5023 device = TAILQ_NEXT(device, links)) { 5024 if (device->lun_id == lun_id) { 5025 device->refcount++; 5026 break; 5027 } 5028 } 5029 return (device); 5030 } 5031 5032 void 5033 xpt_start_tags(struct cam_path *path) 5034 { 5035 struct ccb_relsim crs; 5036 struct cam_ed *device; 5037 struct cam_sim *sim; 5038 int newopenings; 5039 5040 device = path->device; 5041 sim = path->bus->sim; 5042 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5043 xpt_freeze_devq(path, /*count*/1); 5044 device->inq_flags |= SID_CmdQue; 5045 if (device->tag_saved_openings != 0) 5046 newopenings = device->tag_saved_openings; 5047 else 5048 newopenings = min(device->maxtags, 5049 sim->max_tagged_dev_openings); 5050 xpt_dev_ccbq_resize(path, newopenings); 5051 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5052 memset(&crs, 0, sizeof(crs)); 5053 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5054 crs.ccb_h.func_code = XPT_REL_SIMQ; 5055 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5056 crs.openings 5057 = crs.release_timeout 5058 = crs.qfrozen_cnt 5059 = 0; 5060 xpt_action((union ccb *)&crs); 5061 } 5062 5063 void 5064 xpt_stop_tags(struct cam_path *path) 5065 { 5066 struct ccb_relsim crs; 5067 struct cam_ed *device; 5068 struct cam_sim *sim; 5069 5070 device = path->device; 5071 sim = path->bus->sim; 5072 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5073 device->tag_delay_count = 0; 5074 xpt_freeze_devq(path, /*count*/1); 5075 device->inq_flags &= ~SID_CmdQue; 5076 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5077 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5078 memset(&crs, 0, sizeof(crs)); 5079 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5080 crs.ccb_h.func_code = XPT_REL_SIMQ; 5081 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5082 crs.openings 5083 = crs.release_timeout 5084 = crs.qfrozen_cnt 5085 = 0; 5086 xpt_action((union ccb *)&crs); 5087 } 5088 5089 /* 5090 * Assume all possible buses are detected by this time, so allow boot 5091 * as soon as they all are scanned. 5092 */ 5093 static void 5094 xpt_boot_delay(void *arg) 5095 { 5096 5097 xpt_release_boot(); 5098 } 5099 5100 /* 5101 * Now that all config hooks have completed, start boot_delay timer, 5102 * waiting for possibly still undetected buses (USB) to appear. 5103 */ 5104 static void 5105 xpt_ch_done(void *arg) 5106 { 5107 5108 callout_init(&xsoftc.boot_callout, 1); 5109 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 5110 SBT_1MS, xpt_boot_delay, NULL, 0); 5111 } 5112 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL); 5113 5114 /* 5115 * Now that interrupts are enabled, go find our devices 5116 */ 5117 static void 5118 xpt_config(void *arg) 5119 { 5120 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5121 printf("xpt_config: failed to create taskqueue thread.\n"); 5122 5123 /* Setup debugging path */ 5124 if (cam_dflags != CAM_DEBUG_NONE) { 5125 if (xpt_create_path(&cam_dpath, NULL, 5126 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5127 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5128 printf("xpt_config: xpt_create_path() failed for debug" 5129 " target %d:%d:%d, debugging disabled\n", 5130 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5131 cam_dflags = CAM_DEBUG_NONE; 5132 } 5133 } else 5134 cam_dpath = NULL; 5135 5136 periphdriver_init(1); 5137 xpt_hold_boot(); 5138 5139 /* Fire up rescan thread. */ 5140 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5141 "cam", "scanner")) { 5142 printf("xpt_config: failed to create rescan thread.\n"); 5143 } 5144 } 5145 5146 void 5147 xpt_hold_boot_locked(void) 5148 { 5149 5150 if (xsoftc.buses_to_config++ == 0) 5151 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount); 5152 } 5153 5154 void 5155 xpt_hold_boot(void) 5156 { 5157 5158 xpt_lock_buses(); 5159 xpt_hold_boot_locked(); 5160 xpt_unlock_buses(); 5161 } 5162 5163 void 5164 xpt_release_boot(void) 5165 { 5166 5167 xpt_lock_buses(); 5168 if (--xsoftc.buses_to_config == 0) { 5169 if (xsoftc.buses_config_done == 0) { 5170 xsoftc.buses_config_done = 1; 5171 xsoftc.buses_to_config++; 5172 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task, 5173 NULL); 5174 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task); 5175 } else 5176 root_mount_rel(&xsoftc.xpt_rootmount); 5177 } 5178 xpt_unlock_buses(); 5179 } 5180 5181 /* 5182 * If the given device only has one peripheral attached to it, and if that 5183 * peripheral is the passthrough driver, announce it. This insures that the 5184 * user sees some sort of announcement for every peripheral in their system. 5185 */ 5186 static int 5187 xptpassannouncefunc(struct cam_ed *device, void *arg) 5188 { 5189 struct cam_periph *periph; 5190 int i; 5191 5192 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5193 periph = SLIST_NEXT(periph, periph_links), i++); 5194 5195 periph = SLIST_FIRST(&device->periphs); 5196 if ((i == 1) 5197 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5198 xpt_announce_periph(periph, NULL); 5199 5200 return(1); 5201 } 5202 5203 static void 5204 xpt_finishconfig_task(void *context, int pending) 5205 { 5206 5207 periphdriver_init(2); 5208 /* 5209 * Check for devices with no "standard" peripheral driver 5210 * attached. For any devices like that, announce the 5211 * passthrough driver so the user will see something. 5212 */ 5213 if (!bootverbose) 5214 xpt_for_all_devices(xptpassannouncefunc, NULL); 5215 5216 xpt_release_boot(); 5217 } 5218 5219 cam_status 5220 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5221 struct cam_path *path) 5222 { 5223 struct ccb_setasync csa; 5224 cam_status status; 5225 bool xptpath = false; 5226 5227 if (path == NULL) { 5228 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5229 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5230 if (status != CAM_REQ_CMP) 5231 return (status); 5232 xpt_path_lock(path); 5233 xptpath = true; 5234 } 5235 5236 memset(&csa, 0, sizeof(csa)); 5237 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5238 csa.ccb_h.func_code = XPT_SASYNC_CB; 5239 csa.event_enable = event; 5240 csa.callback = cbfunc; 5241 csa.callback_arg = cbarg; 5242 xpt_action((union ccb *)&csa); 5243 status = csa.ccb_h.status; 5244 5245 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5246 ("xpt_register_async: func %p\n", cbfunc)); 5247 5248 if (xptpath) { 5249 xpt_path_unlock(path); 5250 xpt_free_path(path); 5251 } 5252 5253 if ((status == CAM_REQ_CMP) && 5254 (csa.event_enable & AC_FOUND_DEVICE)) { 5255 /* 5256 * Get this peripheral up to date with all 5257 * the currently existing devices. 5258 */ 5259 xpt_for_all_devices(xptsetasyncfunc, &csa); 5260 } 5261 if ((status == CAM_REQ_CMP) && 5262 (csa.event_enable & AC_PATH_REGISTERED)) { 5263 /* 5264 * Get this peripheral up to date with all 5265 * the currently existing buses. 5266 */ 5267 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5268 } 5269 5270 return (status); 5271 } 5272 5273 static void 5274 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5275 { 5276 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5277 5278 switch (work_ccb->ccb_h.func_code) { 5279 /* Common cases first */ 5280 case XPT_PATH_INQ: /* Path routing inquiry */ 5281 { 5282 struct ccb_pathinq *cpi; 5283 5284 cpi = &work_ccb->cpi; 5285 cpi->version_num = 1; /* XXX??? */ 5286 cpi->hba_inquiry = 0; 5287 cpi->target_sprt = 0; 5288 cpi->hba_misc = 0; 5289 cpi->hba_eng_cnt = 0; 5290 cpi->max_target = 0; 5291 cpi->max_lun = 0; 5292 cpi->initiator_id = 0; 5293 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5294 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5295 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5296 cpi->unit_number = sim->unit_number; 5297 cpi->bus_id = sim->bus_id; 5298 cpi->base_transfer_speed = 0; 5299 cpi->protocol = PROTO_UNSPECIFIED; 5300 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5301 cpi->transport = XPORT_UNSPECIFIED; 5302 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5303 cpi->ccb_h.status = CAM_REQ_CMP; 5304 break; 5305 } 5306 default: 5307 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5308 break; 5309 } 5310 xpt_done(work_ccb); 5311 } 5312 5313 /* 5314 * The xpt as a "controller" has no interrupt sources, so polling 5315 * is a no-op. 5316 */ 5317 static void 5318 xptpoll(struct cam_sim *sim) 5319 { 5320 } 5321 5322 void 5323 xpt_lock_buses(void) 5324 { 5325 mtx_lock(&xsoftc.xpt_topo_lock); 5326 } 5327 5328 void 5329 xpt_unlock_buses(void) 5330 { 5331 mtx_unlock(&xsoftc.xpt_topo_lock); 5332 } 5333 5334 struct mtx * 5335 xpt_path_mtx(struct cam_path *path) 5336 { 5337 5338 return (&path->device->device_mtx); 5339 } 5340 5341 static void 5342 xpt_done_process(struct ccb_hdr *ccb_h) 5343 { 5344 struct cam_sim *sim = NULL; 5345 struct cam_devq *devq = NULL; 5346 struct mtx *mtx = NULL; 5347 5348 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5349 struct ccb_scsiio *csio; 5350 5351 if (ccb_h->func_code == XPT_SCSI_IO) { 5352 csio = &((union ccb *)ccb_h)->csio; 5353 if (csio->bio != NULL) 5354 biotrack(csio->bio, __func__); 5355 } 5356 #endif 5357 5358 if (ccb_h->flags & CAM_HIGH_POWER) { 5359 struct highpowerlist *hphead; 5360 struct cam_ed *device; 5361 5362 mtx_lock(&xsoftc.xpt_highpower_lock); 5363 hphead = &xsoftc.highpowerq; 5364 5365 device = STAILQ_FIRST(hphead); 5366 5367 /* 5368 * Increment the count since this command is done. 5369 */ 5370 xsoftc.num_highpower++; 5371 5372 /* 5373 * Any high powered commands queued up? 5374 */ 5375 if (device != NULL) { 5376 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5377 mtx_unlock(&xsoftc.xpt_highpower_lock); 5378 5379 mtx_lock(&device->sim->devq->send_mtx); 5380 xpt_release_devq_device(device, 5381 /*count*/1, /*runqueue*/TRUE); 5382 mtx_unlock(&device->sim->devq->send_mtx); 5383 } else 5384 mtx_unlock(&xsoftc.xpt_highpower_lock); 5385 } 5386 5387 /* 5388 * Insulate against a race where the periph is destroyed but CCBs are 5389 * still not all processed. This shouldn't happen, but allows us better 5390 * bug diagnostic when it does. 5391 */ 5392 if (ccb_h->path->bus) 5393 sim = ccb_h->path->bus->sim; 5394 5395 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5396 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); 5397 xpt_release_simq(sim, /*run_queue*/FALSE); 5398 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5399 } 5400 5401 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5402 && (ccb_h->status & CAM_DEV_QFRZN)) { 5403 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5404 ccb_h->status &= ~CAM_DEV_QFRZN; 5405 } 5406 5407 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5408 struct cam_ed *dev = ccb_h->path->device; 5409 5410 if (sim) 5411 devq = sim->devq; 5412 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.", 5413 ccb_h, xpt_action_name(ccb_h->func_code))); 5414 5415 mtx_lock(&devq->send_mtx); 5416 devq->send_active--; 5417 devq->send_openings++; 5418 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5419 5420 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5421 && (dev->ccbq.dev_active == 0))) { 5422 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5423 xpt_release_devq_device(dev, /*count*/1, 5424 /*run_queue*/FALSE); 5425 } 5426 5427 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5428 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5429 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5430 xpt_release_devq_device(dev, /*count*/1, 5431 /*run_queue*/FALSE); 5432 } 5433 5434 if (!device_is_queued(dev)) 5435 (void)xpt_schedule_devq(devq, dev); 5436 xpt_run_devq(devq); 5437 mtx_unlock(&devq->send_mtx); 5438 5439 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5440 mtx = xpt_path_mtx(ccb_h->path); 5441 mtx_lock(mtx); 5442 5443 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5444 && (--dev->tag_delay_count == 0)) 5445 xpt_start_tags(ccb_h->path); 5446 } 5447 } 5448 5449 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5450 if (mtx == NULL) { 5451 mtx = xpt_path_mtx(ccb_h->path); 5452 mtx_lock(mtx); 5453 } 5454 } else { 5455 if (mtx != NULL) { 5456 mtx_unlock(mtx); 5457 mtx = NULL; 5458 } 5459 } 5460 5461 /* Call the peripheral driver's callback */ 5462 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5463 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5464 if (mtx != NULL) 5465 mtx_unlock(mtx); 5466 } 5467 5468 /* 5469 * Parameterize instead and use xpt_done_td? 5470 */ 5471 static void 5472 xpt_async_td(void *arg) 5473 { 5474 struct cam_doneq *queue = arg; 5475 struct ccb_hdr *ccb_h; 5476 STAILQ_HEAD(, ccb_hdr) doneq; 5477 5478 STAILQ_INIT(&doneq); 5479 mtx_lock(&queue->cam_doneq_mtx); 5480 while (1) { 5481 while (STAILQ_EMPTY(&queue->cam_doneq)) 5482 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5483 PRIBIO, "-", 0); 5484 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5485 mtx_unlock(&queue->cam_doneq_mtx); 5486 5487 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5488 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5489 xpt_done_process(ccb_h); 5490 } 5491 5492 mtx_lock(&queue->cam_doneq_mtx); 5493 } 5494 } 5495 5496 void 5497 xpt_done_td(void *arg) 5498 { 5499 struct cam_doneq *queue = arg; 5500 struct ccb_hdr *ccb_h; 5501 STAILQ_HEAD(, ccb_hdr) doneq; 5502 5503 STAILQ_INIT(&doneq); 5504 mtx_lock(&queue->cam_doneq_mtx); 5505 while (1) { 5506 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5507 queue->cam_doneq_sleep = 1; 5508 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5509 PRIBIO, "-", 0); 5510 queue->cam_doneq_sleep = 0; 5511 } 5512 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5513 mtx_unlock(&queue->cam_doneq_mtx); 5514 5515 THREAD_NO_SLEEPING(); 5516 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5517 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5518 xpt_done_process(ccb_h); 5519 } 5520 THREAD_SLEEPING_OK(); 5521 5522 mtx_lock(&queue->cam_doneq_mtx); 5523 } 5524 } 5525 5526 static void 5527 camisr_runqueue(void) 5528 { 5529 struct ccb_hdr *ccb_h; 5530 struct cam_doneq *queue; 5531 int i; 5532 5533 /* Process global queues. */ 5534 for (i = 0; i < cam_num_doneqs; i++) { 5535 queue = &cam_doneqs[i]; 5536 mtx_lock(&queue->cam_doneq_mtx); 5537 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5538 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5539 mtx_unlock(&queue->cam_doneq_mtx); 5540 xpt_done_process(ccb_h); 5541 mtx_lock(&queue->cam_doneq_mtx); 5542 } 5543 mtx_unlock(&queue->cam_doneq_mtx); 5544 } 5545 } 5546 5547 /** 5548 * @brief Return the device_t associated with the path 5549 * 5550 * When a SIM is created, it registers a bus with a NEWBUS device_t. This is 5551 * stored in the internal cam_eb bus structure. There is no guarnatee any given 5552 * path will have a @c device_t associated with it (it's legal to call @c 5553 * xpt_bus_register with a @c NULL @c device_t. 5554 * 5555 * @param path Path to return the device_t for. 5556 */ 5557 device_t 5558 xpt_path_sim_device(const struct cam_path *path) 5559 { 5560 return (path->bus->parent_dev); 5561 } 5562 5563 struct kv 5564 { 5565 uint32_t v; 5566 const char *name; 5567 }; 5568 5569 static struct kv map[] = { 5570 { XPT_NOOP, "XPT_NOOP" }, 5571 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5572 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5573 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5574 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5575 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5576 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5577 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5578 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5579 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5580 { XPT_DEBUG, "XPT_DEBUG" }, 5581 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5582 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5583 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5584 { XPT_ASYNC, "XPT_ASYNC" }, 5585 { XPT_ABORT, "XPT_ABORT" }, 5586 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5587 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5588 { XPT_TERM_IO, "XPT_TERM_IO" }, 5589 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5590 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5591 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5592 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5593 { XPT_ATA_IO, "XPT_ATA_IO" }, 5594 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5595 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5596 { XPT_NVME_IO, "XPT_NVME_IO" }, 5597 { XPT_MMC_IO, "XPT_MMC_IO" }, 5598 { XPT_SMP_IO, "XPT_SMP_IO" }, 5599 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5600 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5601 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5602 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5603 { XPT_EN_LUN, "XPT_EN_LUN" }, 5604 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5605 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5606 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5607 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5608 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5609 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5610 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5611 { 0, 0 } 5612 }; 5613 5614 const char * 5615 xpt_action_name(uint32_t action) 5616 { 5617 static char buffer[32]; /* Only for unknown messages -- racy */ 5618 struct kv *walker = map; 5619 5620 while (walker->name != NULL) { 5621 if (walker->v == action) 5622 return (walker->name); 5623 walker++; 5624 } 5625 5626 snprintf(buffer, sizeof(buffer), "%#x", action); 5627 return (buffer); 5628 } 5629