1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_sim.h> 56 #include <cam/cam_xpt.h> 57 #include <cam/cam_xpt_sim.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_xpt_internal.h> 60 #include <cam/cam_debug.h> 61 #include <cam/cam_compat.h> 62 63 #include <cam/scsi/scsi_all.h> 64 #include <cam/scsi/scsi_message.h> 65 #include <cam/scsi/scsi_pass.h> 66 67 #include <machine/md_var.h> /* geometry translation */ 68 #include <machine/stdarg.h> /* for xpt_print below */ 69 70 #include "opt_cam.h" 71 72 /* 73 * This is the maximum number of high powered commands (e.g. start unit) 74 * that can be outstanding at a particular time. 75 */ 76 #ifndef CAM_MAX_HIGHPOWER 77 #define CAM_MAX_HIGHPOWER 4 78 #endif 79 80 /* Datastructures internal to the xpt layer */ 81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 82 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 83 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 84 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 85 86 /* Object for defering XPT actions to a taskqueue */ 87 struct xpt_task { 88 struct task task; 89 void *data1; 90 uintptr_t data2; 91 }; 92 93 typedef enum { 94 XPT_FLAG_OPEN = 0x01 95 } xpt_flags; 96 97 struct xpt_softc { 98 xpt_flags flags; 99 100 /* number of high powered commands that can go through right now */ 101 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* Registered busses */ 110 TAILQ_HEAD(,cam_eb) xpt_busses; 111 u_int bus_generation; 112 113 struct intr_config_hook *xpt_config_hook; 114 115 int boot_delay; 116 struct callout boot_callout; 117 118 struct mtx xpt_topo_lock; 119 struct mtx xpt_lock; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 156 &xsoftc.boot_delay, 0, "Bus registration wait time"); 157 158 /* Queues for our software interrupt handler */ 159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 161 static cam_simq_t cam_simq; 162 static struct mtx cam_simq_lock; 163 164 /* Pointers to software interrupt handlers */ 165 static void *cambio_ih; 166 167 struct cam_periph *xpt_periph; 168 169 static periph_init_t xpt_periph_init; 170 171 static struct periph_driver xpt_driver = 172 { 173 xpt_periph_init, "xpt", 174 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 175 CAM_PERIPH_DRV_EARLY 176 }; 177 178 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 179 180 static d_open_t xptopen; 181 static d_close_t xptclose; 182 static d_ioctl_t xptioctl; 183 static d_ioctl_t xptdoioctl; 184 185 static struct cdevsw xpt_cdevsw = { 186 .d_version = D_VERSION, 187 .d_flags = 0, 188 .d_open = xptopen, 189 .d_close = xptclose, 190 .d_ioctl = xptioctl, 191 .d_name = "xpt", 192 }; 193 194 /* Storage for debugging datastructures */ 195 struct cam_path *cam_dpath; 196 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 197 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 199 &cam_dflags, 0, "Enabled debug flags"); 200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 201 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 202 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 203 &cam_debug_delay, 0, "Delay in us after each debug message"); 204 205 /* Our boot-time initialization hook */ 206 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 207 208 static moduledata_t cam_moduledata = { 209 "cam", 210 cam_module_event_handler, 211 NULL 212 }; 213 214 static int xpt_init(void *); 215 216 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 217 MODULE_VERSION(cam, 1); 218 219 220 static void xpt_async_bcast(struct async_list *async_head, 221 u_int32_t async_code, 222 struct cam_path *path, 223 void *async_arg); 224 static path_id_t xptnextfreepathid(void); 225 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 226 static union ccb *xpt_get_ccb(struct cam_ed *device); 227 static void xpt_run_dev_allocq(struct cam_ed *device); 228 static void xpt_run_devq(struct cam_devq *devq); 229 static timeout_t xpt_release_devq_timeout; 230 static void xpt_release_simq_timeout(void *arg) __unused; 231 static void xpt_release_bus(struct cam_eb *bus); 232 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 233 int run_queue); 234 static struct cam_et* 235 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 236 static void xpt_release_target(struct cam_et *target); 237 static struct cam_eb* 238 xpt_find_bus(path_id_t path_id); 239 static struct cam_et* 240 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 241 static struct cam_ed* 242 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 243 static void xpt_config(void *arg); 244 static xpt_devicefunc_t xptpassannouncefunc; 245 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 246 static void xptpoll(struct cam_sim *sim); 247 static void camisr(void *); 248 static void camisr_runqueue(struct cam_sim *); 249 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 250 u_int num_patterns, struct cam_eb *bus); 251 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 252 u_int num_patterns, 253 struct cam_ed *device); 254 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 255 u_int num_patterns, 256 struct cam_periph *periph); 257 static xpt_busfunc_t xptedtbusfunc; 258 static xpt_targetfunc_t xptedttargetfunc; 259 static xpt_devicefunc_t xptedtdevicefunc; 260 static xpt_periphfunc_t xptedtperiphfunc; 261 static xpt_pdrvfunc_t xptplistpdrvfunc; 262 static xpt_periphfunc_t xptplistperiphfunc; 263 static int xptedtmatch(struct ccb_dev_match *cdm); 264 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 265 static int xptbustraverse(struct cam_eb *start_bus, 266 xpt_busfunc_t *tr_func, void *arg); 267 static int xpttargettraverse(struct cam_eb *bus, 268 struct cam_et *start_target, 269 xpt_targetfunc_t *tr_func, void *arg); 270 static int xptdevicetraverse(struct cam_et *target, 271 struct cam_ed *start_device, 272 xpt_devicefunc_t *tr_func, void *arg); 273 static int xptperiphtraverse(struct cam_ed *device, 274 struct cam_periph *start_periph, 275 xpt_periphfunc_t *tr_func, void *arg); 276 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 277 xpt_pdrvfunc_t *tr_func, void *arg); 278 static int xptpdperiphtraverse(struct periph_driver **pdrv, 279 struct cam_periph *start_periph, 280 xpt_periphfunc_t *tr_func, 281 void *arg); 282 static xpt_busfunc_t xptdefbusfunc; 283 static xpt_targetfunc_t xptdeftargetfunc; 284 static xpt_devicefunc_t xptdefdevicefunc; 285 static xpt_periphfunc_t xptdefperiphfunc; 286 static void xpt_finishconfig_task(void *context, int pending); 287 static void xpt_dev_async_default(u_int32_t async_code, 288 struct cam_eb *bus, 289 struct cam_et *target, 290 struct cam_ed *device, 291 void *async_arg); 292 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 293 struct cam_et *target, 294 lun_id_t lun_id); 295 static xpt_devicefunc_t xptsetasyncfunc; 296 static xpt_busfunc_t xptsetasyncbusfunc; 297 static cam_status xptregister(struct cam_periph *periph, 298 void *arg); 299 static __inline int periph_is_queued(struct cam_periph *periph); 300 static __inline int device_is_queued(struct cam_ed *device); 301 302 static __inline int 303 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 304 { 305 int retval; 306 307 if ((dev->ccbq.queue.entries > 0) && 308 (dev->ccbq.dev_openings > 0) && 309 (dev->ccbq.queue.qfrozen_cnt == 0)) { 310 /* 311 * The priority of a device waiting for controller 312 * resources is that of the highest priority CCB 313 * enqueued. 314 */ 315 retval = 316 xpt_schedule_dev(&devq->send_queue, 317 &dev->devq_entry.pinfo, 318 CAMQ_GET_PRIO(&dev->ccbq.queue)); 319 } else { 320 retval = 0; 321 } 322 return (retval); 323 } 324 325 static __inline int 326 periph_is_queued(struct cam_periph *periph) 327 { 328 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 329 } 330 331 static __inline int 332 device_is_queued(struct cam_ed *device) 333 { 334 return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX); 335 } 336 337 static void 338 xpt_periph_init() 339 { 340 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 341 } 342 343 static void 344 xptdone(struct cam_periph *periph, union ccb *done_ccb) 345 { 346 /* Caller will release the CCB */ 347 wakeup(&done_ccb->ccb_h.cbfcnp); 348 } 349 350 static int 351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 352 { 353 354 /* 355 * Only allow read-write access. 356 */ 357 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 358 return(EPERM); 359 360 /* 361 * We don't allow nonblocking access. 362 */ 363 if ((flags & O_NONBLOCK) != 0) { 364 printf("%s: can't do nonblocking access\n", devtoname(dev)); 365 return(ENODEV); 366 } 367 368 /* Mark ourselves open */ 369 mtx_lock(&xsoftc.xpt_lock); 370 xsoftc.flags |= XPT_FLAG_OPEN; 371 mtx_unlock(&xsoftc.xpt_lock); 372 373 return(0); 374 } 375 376 static int 377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 378 { 379 380 /* Mark ourselves closed */ 381 mtx_lock(&xsoftc.xpt_lock); 382 xsoftc.flags &= ~XPT_FLAG_OPEN; 383 mtx_unlock(&xsoftc.xpt_lock); 384 385 return(0); 386 } 387 388 /* 389 * Don't automatically grab the xpt softc lock here even though this is going 390 * through the xpt device. The xpt device is really just a back door for 391 * accessing other devices and SIMs, so the right thing to do is to grab 392 * the appropriate SIM lock once the bus/SIM is located. 393 */ 394 static int 395 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 396 { 397 int error; 398 399 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 400 error = cam_compat_ioctl(dev, &cmd, &addr, &flag, td); 401 if (error == EAGAIN) 402 return (xptdoioctl(dev, cmd, addr, flag, td)); 403 } 404 return (error); 405 } 406 407 static int 408 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 409 { 410 int error; 411 412 error = 0; 413 414 switch(cmd) { 415 /* 416 * For the transport layer CAMIOCOMMAND ioctl, we really only want 417 * to accept CCB types that don't quite make sense to send through a 418 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 419 * in the CAM spec. 420 */ 421 case CAMIOCOMMAND: { 422 union ccb *ccb; 423 union ccb *inccb; 424 struct cam_eb *bus; 425 426 inccb = (union ccb *)addr; 427 428 bus = xpt_find_bus(inccb->ccb_h.path_id); 429 if (bus == NULL) 430 return (EINVAL); 431 432 switch (inccb->ccb_h.func_code) { 433 case XPT_SCAN_BUS: 434 case XPT_RESET_BUS: 435 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 436 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 437 xpt_release_bus(bus); 438 return (EINVAL); 439 } 440 break; 441 case XPT_SCAN_TGT: 442 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 443 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 444 xpt_release_bus(bus); 445 return (EINVAL); 446 } 447 break; 448 default: 449 break; 450 } 451 452 switch(inccb->ccb_h.func_code) { 453 case XPT_SCAN_BUS: 454 case XPT_RESET_BUS: 455 case XPT_PATH_INQ: 456 case XPT_ENG_INQ: 457 case XPT_SCAN_LUN: 458 case XPT_SCAN_TGT: 459 460 ccb = xpt_alloc_ccb(); 461 462 CAM_SIM_LOCK(bus->sim); 463 464 /* 465 * Create a path using the bus, target, and lun the 466 * user passed in. 467 */ 468 if (xpt_create_path(&ccb->ccb_h.path, NULL, 469 inccb->ccb_h.path_id, 470 inccb->ccb_h.target_id, 471 inccb->ccb_h.target_lun) != 472 CAM_REQ_CMP){ 473 error = EINVAL; 474 CAM_SIM_UNLOCK(bus->sim); 475 xpt_free_ccb(ccb); 476 break; 477 } 478 /* Ensure all of our fields are correct */ 479 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 480 inccb->ccb_h.pinfo.priority); 481 xpt_merge_ccb(ccb, inccb); 482 ccb->ccb_h.cbfcnp = xptdone; 483 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 484 bcopy(ccb, inccb, sizeof(union ccb)); 485 xpt_free_path(ccb->ccb_h.path); 486 xpt_free_ccb(ccb); 487 CAM_SIM_UNLOCK(bus->sim); 488 break; 489 490 case XPT_DEBUG: { 491 union ccb ccb; 492 493 /* 494 * This is an immediate CCB, so it's okay to 495 * allocate it on the stack. 496 */ 497 498 CAM_SIM_LOCK(bus->sim); 499 500 /* 501 * Create a path using the bus, target, and lun the 502 * user passed in. 503 */ 504 if (xpt_create_path(&ccb.ccb_h.path, NULL, 505 inccb->ccb_h.path_id, 506 inccb->ccb_h.target_id, 507 inccb->ccb_h.target_lun) != 508 CAM_REQ_CMP){ 509 error = EINVAL; 510 CAM_SIM_UNLOCK(bus->sim); 511 break; 512 } 513 /* Ensure all of our fields are correct */ 514 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 515 inccb->ccb_h.pinfo.priority); 516 xpt_merge_ccb(&ccb, inccb); 517 ccb.ccb_h.cbfcnp = xptdone; 518 xpt_action(&ccb); 519 bcopy(&ccb, inccb, sizeof(union ccb)); 520 xpt_free_path(ccb.ccb_h.path); 521 CAM_SIM_UNLOCK(bus->sim); 522 break; 523 524 } 525 case XPT_DEV_MATCH: { 526 struct cam_periph_map_info mapinfo; 527 struct cam_path *old_path; 528 529 /* 530 * We can't deal with physical addresses for this 531 * type of transaction. 532 */ 533 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 534 CAM_DATA_VADDR) { 535 error = EINVAL; 536 break; 537 } 538 539 /* 540 * Save this in case the caller had it set to 541 * something in particular. 542 */ 543 old_path = inccb->ccb_h.path; 544 545 /* 546 * We really don't need a path for the matching 547 * code. The path is needed because of the 548 * debugging statements in xpt_action(). They 549 * assume that the CCB has a valid path. 550 */ 551 inccb->ccb_h.path = xpt_periph->path; 552 553 bzero(&mapinfo, sizeof(mapinfo)); 554 555 /* 556 * Map the pattern and match buffers into kernel 557 * virtual address space. 558 */ 559 error = cam_periph_mapmem(inccb, &mapinfo); 560 561 if (error) { 562 inccb->ccb_h.path = old_path; 563 break; 564 } 565 566 /* 567 * This is an immediate CCB, we can send it on directly. 568 */ 569 CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path)); 570 xpt_action(inccb); 571 CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path)); 572 573 /* 574 * Map the buffers back into user space. 575 */ 576 cam_periph_unmapmem(inccb, &mapinfo); 577 578 inccb->ccb_h.path = old_path; 579 580 error = 0; 581 break; 582 } 583 default: 584 error = ENOTSUP; 585 break; 586 } 587 xpt_release_bus(bus); 588 break; 589 } 590 /* 591 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 592 * with the periphal driver name and unit name filled in. The other 593 * fields don't really matter as input. The passthrough driver name 594 * ("pass"), and unit number are passed back in the ccb. The current 595 * device generation number, and the index into the device peripheral 596 * driver list, and the status are also passed back. Note that 597 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 598 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 599 * (or rather should be) impossible for the device peripheral driver 600 * list to change since we look at the whole thing in one pass, and 601 * we do it with lock protection. 602 * 603 */ 604 case CAMGETPASSTHRU: { 605 union ccb *ccb; 606 struct cam_periph *periph; 607 struct periph_driver **p_drv; 608 char *name; 609 u_int unit; 610 int base_periph_found; 611 612 ccb = (union ccb *)addr; 613 unit = ccb->cgdl.unit_number; 614 name = ccb->cgdl.periph_name; 615 base_periph_found = 0; 616 617 /* 618 * Sanity check -- make sure we don't get a null peripheral 619 * driver name. 620 */ 621 if (*ccb->cgdl.periph_name == '\0') { 622 error = EINVAL; 623 break; 624 } 625 626 /* Keep the list from changing while we traverse it */ 627 xpt_lock_buses(); 628 629 /* first find our driver in the list of drivers */ 630 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 631 if (strcmp((*p_drv)->driver_name, name) == 0) 632 break; 633 634 if (*p_drv == NULL) { 635 xpt_unlock_buses(); 636 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 637 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 638 *ccb->cgdl.periph_name = '\0'; 639 ccb->cgdl.unit_number = 0; 640 error = ENOENT; 641 break; 642 } 643 644 /* 645 * Run through every peripheral instance of this driver 646 * and check to see whether it matches the unit passed 647 * in by the user. If it does, get out of the loops and 648 * find the passthrough driver associated with that 649 * peripheral driver. 650 */ 651 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 652 periph = TAILQ_NEXT(periph, unit_links)) { 653 654 if (periph->unit_number == unit) 655 break; 656 } 657 /* 658 * If we found the peripheral driver that the user passed 659 * in, go through all of the peripheral drivers for that 660 * particular device and look for a passthrough driver. 661 */ 662 if (periph != NULL) { 663 struct cam_ed *device; 664 int i; 665 666 base_periph_found = 1; 667 device = periph->path->device; 668 for (i = 0, periph = SLIST_FIRST(&device->periphs); 669 periph != NULL; 670 periph = SLIST_NEXT(periph, periph_links), i++) { 671 /* 672 * Check to see whether we have a 673 * passthrough device or not. 674 */ 675 if (strcmp(periph->periph_name, "pass") == 0) { 676 /* 677 * Fill in the getdevlist fields. 678 */ 679 strcpy(ccb->cgdl.periph_name, 680 periph->periph_name); 681 ccb->cgdl.unit_number = 682 periph->unit_number; 683 if (SLIST_NEXT(periph, periph_links)) 684 ccb->cgdl.status = 685 CAM_GDEVLIST_MORE_DEVS; 686 else 687 ccb->cgdl.status = 688 CAM_GDEVLIST_LAST_DEVICE; 689 ccb->cgdl.generation = 690 device->generation; 691 ccb->cgdl.index = i; 692 /* 693 * Fill in some CCB header fields 694 * that the user may want. 695 */ 696 ccb->ccb_h.path_id = 697 periph->path->bus->path_id; 698 ccb->ccb_h.target_id = 699 periph->path->target->target_id; 700 ccb->ccb_h.target_lun = 701 periph->path->device->lun_id; 702 ccb->ccb_h.status = CAM_REQ_CMP; 703 break; 704 } 705 } 706 } 707 708 /* 709 * If the periph is null here, one of two things has 710 * happened. The first possibility is that we couldn't 711 * find the unit number of the particular peripheral driver 712 * that the user is asking about. e.g. the user asks for 713 * the passthrough driver for "da11". We find the list of 714 * "da" peripherals all right, but there is no unit 11. 715 * The other possibility is that we went through the list 716 * of peripheral drivers attached to the device structure, 717 * but didn't find one with the name "pass". Either way, 718 * we return ENOENT, since we couldn't find something. 719 */ 720 if (periph == NULL) { 721 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 722 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 723 *ccb->cgdl.periph_name = '\0'; 724 ccb->cgdl.unit_number = 0; 725 error = ENOENT; 726 /* 727 * It is unfortunate that this is even necessary, 728 * but there are many, many clueless users out there. 729 * If this is true, the user is looking for the 730 * passthrough driver, but doesn't have one in his 731 * kernel. 732 */ 733 if (base_periph_found == 1) { 734 printf("xptioctl: pass driver is not in the " 735 "kernel\n"); 736 printf("xptioctl: put \"device pass\" in " 737 "your kernel config file\n"); 738 } 739 } 740 xpt_unlock_buses(); 741 break; 742 } 743 default: 744 error = ENOTTY; 745 break; 746 } 747 748 return(error); 749 } 750 751 static int 752 cam_module_event_handler(module_t mod, int what, void *arg) 753 { 754 int error; 755 756 switch (what) { 757 case MOD_LOAD: 758 if ((error = xpt_init(NULL)) != 0) 759 return (error); 760 break; 761 case MOD_UNLOAD: 762 return EBUSY; 763 default: 764 return EOPNOTSUPP; 765 } 766 767 return 0; 768 } 769 770 static void 771 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 772 { 773 774 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 775 xpt_free_path(done_ccb->ccb_h.path); 776 xpt_free_ccb(done_ccb); 777 } else { 778 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 779 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 780 } 781 xpt_release_boot(); 782 } 783 784 /* thread to handle bus rescans */ 785 static void 786 xpt_scanner_thread(void *dummy) 787 { 788 union ccb *ccb; 789 struct cam_sim *sim; 790 791 xpt_lock_buses(); 792 for (;;) { 793 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 794 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 795 "ccb_scanq", 0); 796 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 797 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 798 xpt_unlock_buses(); 799 800 sim = ccb->ccb_h.path->bus->sim; 801 CAM_SIM_LOCK(sim); 802 xpt_action(ccb); 803 CAM_SIM_UNLOCK(sim); 804 805 xpt_lock_buses(); 806 } 807 } 808 } 809 810 void 811 xpt_rescan(union ccb *ccb) 812 { 813 struct ccb_hdr *hdr; 814 815 /* Prepare request */ 816 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 817 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 818 ccb->ccb_h.func_code = XPT_SCAN_BUS; 819 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 820 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 821 ccb->ccb_h.func_code = XPT_SCAN_TGT; 822 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 823 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 824 ccb->ccb_h.func_code = XPT_SCAN_LUN; 825 else { 826 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 827 xpt_free_path(ccb->ccb_h.path); 828 xpt_free_ccb(ccb); 829 return; 830 } 831 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 832 ccb->ccb_h.cbfcnp = xpt_rescan_done; 833 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 834 /* Don't make duplicate entries for the same paths. */ 835 xpt_lock_buses(); 836 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 837 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 838 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 839 wakeup(&xsoftc.ccb_scanq); 840 xpt_unlock_buses(); 841 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 842 xpt_free_path(ccb->ccb_h.path); 843 xpt_free_ccb(ccb); 844 return; 845 } 846 } 847 } 848 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 849 xsoftc.buses_to_config++; 850 wakeup(&xsoftc.ccb_scanq); 851 xpt_unlock_buses(); 852 } 853 854 /* Functions accessed by the peripheral drivers */ 855 static int 856 xpt_init(void *dummy) 857 { 858 struct cam_sim *xpt_sim; 859 struct cam_path *path; 860 struct cam_devq *devq; 861 cam_status status; 862 863 TAILQ_INIT(&xsoftc.xpt_busses); 864 TAILQ_INIT(&cam_simq); 865 TAILQ_INIT(&xsoftc.ccb_scanq); 866 STAILQ_INIT(&xsoftc.highpowerq); 867 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 868 869 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 870 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 871 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 872 873 #ifdef CAM_BOOT_DELAY 874 /* 875 * Override this value at compile time to assist our users 876 * who don't use loader to boot a kernel. 877 */ 878 xsoftc.boot_delay = CAM_BOOT_DELAY; 879 #endif 880 /* 881 * The xpt layer is, itself, the equivelent of a SIM. 882 * Allow 16 ccbs in the ccb pool for it. This should 883 * give decent parallelism when we probe busses and 884 * perform other XPT functions. 885 */ 886 devq = cam_simq_alloc(16); 887 xpt_sim = cam_sim_alloc(xptaction, 888 xptpoll, 889 "xpt", 890 /*softc*/NULL, 891 /*unit*/0, 892 /*mtx*/&xsoftc.xpt_lock, 893 /*max_dev_transactions*/0, 894 /*max_tagged_dev_transactions*/0, 895 devq); 896 if (xpt_sim == NULL) 897 return (ENOMEM); 898 899 mtx_lock(&xsoftc.xpt_lock); 900 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 901 mtx_unlock(&xsoftc.xpt_lock); 902 printf("xpt_init: xpt_bus_register failed with status %#x," 903 " failing attach\n", status); 904 return (EINVAL); 905 } 906 907 /* 908 * Looking at the XPT from the SIM layer, the XPT is 909 * the equivelent of a peripheral driver. Allocate 910 * a peripheral driver entry for us. 911 */ 912 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 913 CAM_TARGET_WILDCARD, 914 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 915 mtx_unlock(&xsoftc.xpt_lock); 916 printf("xpt_init: xpt_create_path failed with status %#x," 917 " failing attach\n", status); 918 return (EINVAL); 919 } 920 921 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 922 path, NULL, 0, xpt_sim); 923 xpt_free_path(path); 924 mtx_unlock(&xsoftc.xpt_lock); 925 /* Install our software interrupt handlers */ 926 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 927 /* 928 * Register a callback for when interrupts are enabled. 929 */ 930 xsoftc.xpt_config_hook = 931 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 932 M_CAMXPT, M_NOWAIT | M_ZERO); 933 if (xsoftc.xpt_config_hook == NULL) { 934 printf("xpt_init: Cannot malloc config hook " 935 "- failing attach\n"); 936 return (ENOMEM); 937 } 938 xsoftc.xpt_config_hook->ich_func = xpt_config; 939 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 940 free (xsoftc.xpt_config_hook, M_CAMXPT); 941 printf("xpt_init: config_intrhook_establish failed " 942 "- failing attach\n"); 943 } 944 945 return (0); 946 } 947 948 static cam_status 949 xptregister(struct cam_periph *periph, void *arg) 950 { 951 struct cam_sim *xpt_sim; 952 953 if (periph == NULL) { 954 printf("xptregister: periph was NULL!!\n"); 955 return(CAM_REQ_CMP_ERR); 956 } 957 958 xpt_sim = (struct cam_sim *)arg; 959 xpt_sim->softc = periph; 960 xpt_periph = periph; 961 periph->softc = NULL; 962 963 return(CAM_REQ_CMP); 964 } 965 966 int32_t 967 xpt_add_periph(struct cam_periph *periph) 968 { 969 struct cam_ed *device; 970 int32_t status; 971 struct periph_list *periph_head; 972 973 mtx_assert(periph->sim->mtx, MA_OWNED); 974 975 device = periph->path->device; 976 977 periph_head = &device->periphs; 978 979 status = CAM_REQ_CMP; 980 981 if (device != NULL) { 982 /* 983 * Make room for this peripheral 984 * so it will fit in the queue 985 * when it's scheduled to run 986 */ 987 status = camq_resize(&device->drvq, 988 device->drvq.array_size + 1); 989 990 device->generation++; 991 992 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 993 } 994 995 return (status); 996 } 997 998 void 999 xpt_remove_periph(struct cam_periph *periph) 1000 { 1001 struct cam_ed *device; 1002 1003 mtx_assert(periph->sim->mtx, MA_OWNED); 1004 1005 device = periph->path->device; 1006 1007 if (device != NULL) { 1008 struct periph_list *periph_head; 1009 1010 periph_head = &device->periphs; 1011 1012 /* Release the slot for this peripheral */ 1013 camq_resize(&device->drvq, device->drvq.array_size - 1); 1014 1015 device->generation++; 1016 1017 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1018 } 1019 } 1020 1021 1022 void 1023 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1024 { 1025 struct cam_path *path = periph->path; 1026 1027 mtx_assert(periph->sim->mtx, MA_OWNED); 1028 1029 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1030 periph->periph_name, periph->unit_number, 1031 path->bus->sim->sim_name, 1032 path->bus->sim->unit_number, 1033 path->bus->sim->bus_id, 1034 path->bus->path_id, 1035 path->target->target_id, 1036 path->device->lun_id); 1037 printf("%s%d: ", periph->periph_name, periph->unit_number); 1038 if (path->device->protocol == PROTO_SCSI) 1039 scsi_print_inquiry(&path->device->inq_data); 1040 else if (path->device->protocol == PROTO_ATA || 1041 path->device->protocol == PROTO_SATAPM) 1042 ata_print_ident(&path->device->ident_data); 1043 else if (path->device->protocol == PROTO_SEMB) 1044 semb_print_ident( 1045 (struct sep_identify_data *)&path->device->ident_data); 1046 else 1047 printf("Unknown protocol device\n"); 1048 if (bootverbose && path->device->serial_num_len > 0) { 1049 /* Don't wrap the screen - print only the first 60 chars */ 1050 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1051 periph->unit_number, path->device->serial_num); 1052 } 1053 /* Announce transport details. */ 1054 (*(path->bus->xport->announce))(periph); 1055 /* Announce command queueing. */ 1056 if (path->device->inq_flags & SID_CmdQue 1057 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1058 printf("%s%d: Command Queueing enabled\n", 1059 periph->periph_name, periph->unit_number); 1060 } 1061 /* Announce caller's details if they've passed in. */ 1062 if (announce_string != NULL) 1063 printf("%s%d: %s\n", periph->periph_name, 1064 periph->unit_number, announce_string); 1065 } 1066 1067 void 1068 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1069 { 1070 if (quirks != 0) { 1071 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1072 periph->unit_number, quirks, bit_string); 1073 } 1074 } 1075 1076 int 1077 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1078 { 1079 int ret = -1, l; 1080 struct ccb_dev_advinfo cdai; 1081 struct scsi_vpd_id_descriptor *idd; 1082 1083 mtx_assert(path->bus->sim->mtx, MA_OWNED); 1084 1085 memset(&cdai, 0, sizeof(cdai)); 1086 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1087 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1088 cdai.bufsiz = len; 1089 1090 if (!strcmp(attr, "GEOM::ident")) 1091 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1092 else if (!strcmp(attr, "GEOM::physpath")) 1093 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1094 else if (strcmp(attr, "GEOM::lunid") == 0 || 1095 strcmp(attr, "GEOM::lunname") == 0) { 1096 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1097 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1098 } else 1099 goto out; 1100 1101 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1102 if (cdai.buf == NULL) { 1103 ret = ENOMEM; 1104 goto out; 1105 } 1106 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1107 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1108 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1109 if (cdai.provsiz == 0) 1110 goto out; 1111 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1112 if (strcmp(attr, "GEOM::lunid") == 0) { 1113 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1114 cdai.provsiz, scsi_devid_is_lun_naa); 1115 if (idd == NULL) 1116 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1117 cdai.provsiz, scsi_devid_is_lun_eui64); 1118 } else 1119 idd = NULL; 1120 if (idd == NULL) 1121 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1122 cdai.provsiz, scsi_devid_is_lun_t10); 1123 if (idd == NULL) 1124 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1125 cdai.provsiz, scsi_devid_is_lun_name); 1126 if (idd == NULL) 1127 goto out; 1128 ret = 0; 1129 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII || 1130 (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1131 l = strnlen(idd->identifier, idd->length); 1132 if (l < len) { 1133 bcopy(idd->identifier, buf, l); 1134 buf[l] = 0; 1135 } else 1136 ret = EFAULT; 1137 } else { 1138 if (idd->length * 2 < len) { 1139 for (l = 0; l < idd->length; l++) 1140 sprintf(buf + l * 2, "%02x", 1141 idd->identifier[l]); 1142 } else 1143 ret = EFAULT; 1144 } 1145 } else { 1146 ret = 0; 1147 if (strlcpy(buf, cdai.buf, len) >= len) 1148 ret = EFAULT; 1149 } 1150 1151 out: 1152 if (cdai.buf != NULL) 1153 free(cdai.buf, M_CAMXPT); 1154 return ret; 1155 } 1156 1157 static dev_match_ret 1158 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1159 struct cam_eb *bus) 1160 { 1161 dev_match_ret retval; 1162 int i; 1163 1164 retval = DM_RET_NONE; 1165 1166 /* 1167 * If we aren't given something to match against, that's an error. 1168 */ 1169 if (bus == NULL) 1170 return(DM_RET_ERROR); 1171 1172 /* 1173 * If there are no match entries, then this bus matches no 1174 * matter what. 1175 */ 1176 if ((patterns == NULL) || (num_patterns == 0)) 1177 return(DM_RET_DESCEND | DM_RET_COPY); 1178 1179 for (i = 0; i < num_patterns; i++) { 1180 struct bus_match_pattern *cur_pattern; 1181 1182 /* 1183 * If the pattern in question isn't for a bus node, we 1184 * aren't interested. However, we do indicate to the 1185 * calling routine that we should continue descending the 1186 * tree, since the user wants to match against lower-level 1187 * EDT elements. 1188 */ 1189 if (patterns[i].type != DEV_MATCH_BUS) { 1190 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1191 retval |= DM_RET_DESCEND; 1192 continue; 1193 } 1194 1195 cur_pattern = &patterns[i].pattern.bus_pattern; 1196 1197 /* 1198 * If they want to match any bus node, we give them any 1199 * device node. 1200 */ 1201 if (cur_pattern->flags == BUS_MATCH_ANY) { 1202 /* set the copy flag */ 1203 retval |= DM_RET_COPY; 1204 1205 /* 1206 * If we've already decided on an action, go ahead 1207 * and return. 1208 */ 1209 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1210 return(retval); 1211 } 1212 1213 /* 1214 * Not sure why someone would do this... 1215 */ 1216 if (cur_pattern->flags == BUS_MATCH_NONE) 1217 continue; 1218 1219 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1220 && (cur_pattern->path_id != bus->path_id)) 1221 continue; 1222 1223 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1224 && (cur_pattern->bus_id != bus->sim->bus_id)) 1225 continue; 1226 1227 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1228 && (cur_pattern->unit_number != bus->sim->unit_number)) 1229 continue; 1230 1231 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1232 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1233 DEV_IDLEN) != 0)) 1234 continue; 1235 1236 /* 1237 * If we get to this point, the user definitely wants 1238 * information on this bus. So tell the caller to copy the 1239 * data out. 1240 */ 1241 retval |= DM_RET_COPY; 1242 1243 /* 1244 * If the return action has been set to descend, then we 1245 * know that we've already seen a non-bus matching 1246 * expression, therefore we need to further descend the tree. 1247 * This won't change by continuing around the loop, so we 1248 * go ahead and return. If we haven't seen a non-bus 1249 * matching expression, we keep going around the loop until 1250 * we exhaust the matching expressions. We'll set the stop 1251 * flag once we fall out of the loop. 1252 */ 1253 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1254 return(retval); 1255 } 1256 1257 /* 1258 * If the return action hasn't been set to descend yet, that means 1259 * we haven't seen anything other than bus matching patterns. So 1260 * tell the caller to stop descending the tree -- the user doesn't 1261 * want to match against lower level tree elements. 1262 */ 1263 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1264 retval |= DM_RET_STOP; 1265 1266 return(retval); 1267 } 1268 1269 static dev_match_ret 1270 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1271 struct cam_ed *device) 1272 { 1273 dev_match_ret retval; 1274 int i; 1275 1276 retval = DM_RET_NONE; 1277 1278 /* 1279 * If we aren't given something to match against, that's an error. 1280 */ 1281 if (device == NULL) 1282 return(DM_RET_ERROR); 1283 1284 /* 1285 * If there are no match entries, then this device matches no 1286 * matter what. 1287 */ 1288 if ((patterns == NULL) || (num_patterns == 0)) 1289 return(DM_RET_DESCEND | DM_RET_COPY); 1290 1291 for (i = 0; i < num_patterns; i++) { 1292 struct device_match_pattern *cur_pattern; 1293 struct scsi_vpd_device_id *device_id_page; 1294 1295 /* 1296 * If the pattern in question isn't for a device node, we 1297 * aren't interested. 1298 */ 1299 if (patterns[i].type != DEV_MATCH_DEVICE) { 1300 if ((patterns[i].type == DEV_MATCH_PERIPH) 1301 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1302 retval |= DM_RET_DESCEND; 1303 continue; 1304 } 1305 1306 cur_pattern = &patterns[i].pattern.device_pattern; 1307 1308 /* Error out if mutually exclusive options are specified. */ 1309 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1310 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1311 return(DM_RET_ERROR); 1312 1313 /* 1314 * If they want to match any device node, we give them any 1315 * device node. 1316 */ 1317 if (cur_pattern->flags == DEV_MATCH_ANY) 1318 goto copy_dev_node; 1319 1320 /* 1321 * Not sure why someone would do this... 1322 */ 1323 if (cur_pattern->flags == DEV_MATCH_NONE) 1324 continue; 1325 1326 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1327 && (cur_pattern->path_id != device->target->bus->path_id)) 1328 continue; 1329 1330 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1331 && (cur_pattern->target_id != device->target->target_id)) 1332 continue; 1333 1334 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1335 && (cur_pattern->target_lun != device->lun_id)) 1336 continue; 1337 1338 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1339 && (cam_quirkmatch((caddr_t)&device->inq_data, 1340 (caddr_t)&cur_pattern->data.inq_pat, 1341 1, sizeof(cur_pattern->data.inq_pat), 1342 scsi_static_inquiry_match) == NULL)) 1343 continue; 1344 1345 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1346 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1347 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1348 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1349 device->device_id_len 1350 - SVPD_DEVICE_ID_HDR_LEN, 1351 cur_pattern->data.devid_pat.id, 1352 cur_pattern->data.devid_pat.id_len) != 0)) 1353 continue; 1354 1355 copy_dev_node: 1356 /* 1357 * If we get to this point, the user definitely wants 1358 * information on this device. So tell the caller to copy 1359 * the data out. 1360 */ 1361 retval |= DM_RET_COPY; 1362 1363 /* 1364 * If the return action has been set to descend, then we 1365 * know that we've already seen a peripheral matching 1366 * expression, therefore we need to further descend the tree. 1367 * This won't change by continuing around the loop, so we 1368 * go ahead and return. If we haven't seen a peripheral 1369 * matching expression, we keep going around the loop until 1370 * we exhaust the matching expressions. We'll set the stop 1371 * flag once we fall out of the loop. 1372 */ 1373 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1374 return(retval); 1375 } 1376 1377 /* 1378 * If the return action hasn't been set to descend yet, that means 1379 * we haven't seen any peripheral matching patterns. So tell the 1380 * caller to stop descending the tree -- the user doesn't want to 1381 * match against lower level tree elements. 1382 */ 1383 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1384 retval |= DM_RET_STOP; 1385 1386 return(retval); 1387 } 1388 1389 /* 1390 * Match a single peripheral against any number of match patterns. 1391 */ 1392 static dev_match_ret 1393 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1394 struct cam_periph *periph) 1395 { 1396 dev_match_ret retval; 1397 int i; 1398 1399 /* 1400 * If we aren't given something to match against, that's an error. 1401 */ 1402 if (periph == NULL) 1403 return(DM_RET_ERROR); 1404 1405 /* 1406 * If there are no match entries, then this peripheral matches no 1407 * matter what. 1408 */ 1409 if ((patterns == NULL) || (num_patterns == 0)) 1410 return(DM_RET_STOP | DM_RET_COPY); 1411 1412 /* 1413 * There aren't any nodes below a peripheral node, so there's no 1414 * reason to descend the tree any further. 1415 */ 1416 retval = DM_RET_STOP; 1417 1418 for (i = 0; i < num_patterns; i++) { 1419 struct periph_match_pattern *cur_pattern; 1420 1421 /* 1422 * If the pattern in question isn't for a peripheral, we 1423 * aren't interested. 1424 */ 1425 if (patterns[i].type != DEV_MATCH_PERIPH) 1426 continue; 1427 1428 cur_pattern = &patterns[i].pattern.periph_pattern; 1429 1430 /* 1431 * If they want to match on anything, then we will do so. 1432 */ 1433 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1434 /* set the copy flag */ 1435 retval |= DM_RET_COPY; 1436 1437 /* 1438 * We've already set the return action to stop, 1439 * since there are no nodes below peripherals in 1440 * the tree. 1441 */ 1442 return(retval); 1443 } 1444 1445 /* 1446 * Not sure why someone would do this... 1447 */ 1448 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1449 continue; 1450 1451 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1452 && (cur_pattern->path_id != periph->path->bus->path_id)) 1453 continue; 1454 1455 /* 1456 * For the target and lun id's, we have to make sure the 1457 * target and lun pointers aren't NULL. The xpt peripheral 1458 * has a wildcard target and device. 1459 */ 1460 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1461 && ((periph->path->target == NULL) 1462 ||(cur_pattern->target_id != periph->path->target->target_id))) 1463 continue; 1464 1465 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1466 && ((periph->path->device == NULL) 1467 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1468 continue; 1469 1470 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1471 && (cur_pattern->unit_number != periph->unit_number)) 1472 continue; 1473 1474 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1475 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1476 DEV_IDLEN) != 0)) 1477 continue; 1478 1479 /* 1480 * If we get to this point, the user definitely wants 1481 * information on this peripheral. So tell the caller to 1482 * copy the data out. 1483 */ 1484 retval |= DM_RET_COPY; 1485 1486 /* 1487 * The return action has already been set to stop, since 1488 * peripherals don't have any nodes below them in the EDT. 1489 */ 1490 return(retval); 1491 } 1492 1493 /* 1494 * If we get to this point, the peripheral that was passed in 1495 * doesn't match any of the patterns. 1496 */ 1497 return(retval); 1498 } 1499 1500 static int 1501 xptedtbusfunc(struct cam_eb *bus, void *arg) 1502 { 1503 struct ccb_dev_match *cdm; 1504 dev_match_ret retval; 1505 1506 cdm = (struct ccb_dev_match *)arg; 1507 1508 /* 1509 * If our position is for something deeper in the tree, that means 1510 * that we've already seen this node. So, we keep going down. 1511 */ 1512 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1513 && (cdm->pos.cookie.bus == bus) 1514 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1515 && (cdm->pos.cookie.target != NULL)) 1516 retval = DM_RET_DESCEND; 1517 else 1518 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1519 1520 /* 1521 * If we got an error, bail out of the search. 1522 */ 1523 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1524 cdm->status = CAM_DEV_MATCH_ERROR; 1525 return(0); 1526 } 1527 1528 /* 1529 * If the copy flag is set, copy this bus out. 1530 */ 1531 if (retval & DM_RET_COPY) { 1532 int spaceleft, j; 1533 1534 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1535 sizeof(struct dev_match_result)); 1536 1537 /* 1538 * If we don't have enough space to put in another 1539 * match result, save our position and tell the 1540 * user there are more devices to check. 1541 */ 1542 if (spaceleft < sizeof(struct dev_match_result)) { 1543 bzero(&cdm->pos, sizeof(cdm->pos)); 1544 cdm->pos.position_type = 1545 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1546 1547 cdm->pos.cookie.bus = bus; 1548 cdm->pos.generations[CAM_BUS_GENERATION]= 1549 xsoftc.bus_generation; 1550 cdm->status = CAM_DEV_MATCH_MORE; 1551 return(0); 1552 } 1553 j = cdm->num_matches; 1554 cdm->num_matches++; 1555 cdm->matches[j].type = DEV_MATCH_BUS; 1556 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1557 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1558 cdm->matches[j].result.bus_result.unit_number = 1559 bus->sim->unit_number; 1560 strncpy(cdm->matches[j].result.bus_result.dev_name, 1561 bus->sim->sim_name, DEV_IDLEN); 1562 } 1563 1564 /* 1565 * If the user is only interested in busses, there's no 1566 * reason to descend to the next level in the tree. 1567 */ 1568 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1569 return(1); 1570 1571 /* 1572 * If there is a target generation recorded, check it to 1573 * make sure the target list hasn't changed. 1574 */ 1575 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1576 && (bus == cdm->pos.cookie.bus) 1577 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1578 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1579 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1580 bus->generation)) { 1581 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1582 return(0); 1583 } 1584 1585 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1586 && (cdm->pos.cookie.bus == bus) 1587 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1588 && (cdm->pos.cookie.target != NULL)) 1589 return(xpttargettraverse(bus, 1590 (struct cam_et *)cdm->pos.cookie.target, 1591 xptedttargetfunc, arg)); 1592 else 1593 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1594 } 1595 1596 static int 1597 xptedttargetfunc(struct cam_et *target, void *arg) 1598 { 1599 struct ccb_dev_match *cdm; 1600 1601 cdm = (struct ccb_dev_match *)arg; 1602 1603 /* 1604 * If there is a device list generation recorded, check it to 1605 * make sure the device list hasn't changed. 1606 */ 1607 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1608 && (cdm->pos.cookie.bus == target->bus) 1609 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1610 && (cdm->pos.cookie.target == target) 1611 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1612 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1613 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1614 target->generation)) { 1615 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1616 return(0); 1617 } 1618 1619 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1620 && (cdm->pos.cookie.bus == target->bus) 1621 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1622 && (cdm->pos.cookie.target == target) 1623 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1624 && (cdm->pos.cookie.device != NULL)) 1625 return(xptdevicetraverse(target, 1626 (struct cam_ed *)cdm->pos.cookie.device, 1627 xptedtdevicefunc, arg)); 1628 else 1629 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1630 } 1631 1632 static int 1633 xptedtdevicefunc(struct cam_ed *device, void *arg) 1634 { 1635 1636 struct ccb_dev_match *cdm; 1637 dev_match_ret retval; 1638 1639 cdm = (struct ccb_dev_match *)arg; 1640 1641 /* 1642 * If our position is for something deeper in the tree, that means 1643 * that we've already seen this node. So, we keep going down. 1644 */ 1645 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1646 && (cdm->pos.cookie.device == device) 1647 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1648 && (cdm->pos.cookie.periph != NULL)) 1649 retval = DM_RET_DESCEND; 1650 else 1651 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1652 device); 1653 1654 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1655 cdm->status = CAM_DEV_MATCH_ERROR; 1656 return(0); 1657 } 1658 1659 /* 1660 * If the copy flag is set, copy this device out. 1661 */ 1662 if (retval & DM_RET_COPY) { 1663 int spaceleft, j; 1664 1665 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1666 sizeof(struct dev_match_result)); 1667 1668 /* 1669 * If we don't have enough space to put in another 1670 * match result, save our position and tell the 1671 * user there are more devices to check. 1672 */ 1673 if (spaceleft < sizeof(struct dev_match_result)) { 1674 bzero(&cdm->pos, sizeof(cdm->pos)); 1675 cdm->pos.position_type = 1676 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1677 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1678 1679 cdm->pos.cookie.bus = device->target->bus; 1680 cdm->pos.generations[CAM_BUS_GENERATION]= 1681 xsoftc.bus_generation; 1682 cdm->pos.cookie.target = device->target; 1683 cdm->pos.generations[CAM_TARGET_GENERATION] = 1684 device->target->bus->generation; 1685 cdm->pos.cookie.device = device; 1686 cdm->pos.generations[CAM_DEV_GENERATION] = 1687 device->target->generation; 1688 cdm->status = CAM_DEV_MATCH_MORE; 1689 return(0); 1690 } 1691 j = cdm->num_matches; 1692 cdm->num_matches++; 1693 cdm->matches[j].type = DEV_MATCH_DEVICE; 1694 cdm->matches[j].result.device_result.path_id = 1695 device->target->bus->path_id; 1696 cdm->matches[j].result.device_result.target_id = 1697 device->target->target_id; 1698 cdm->matches[j].result.device_result.target_lun = 1699 device->lun_id; 1700 cdm->matches[j].result.device_result.protocol = 1701 device->protocol; 1702 bcopy(&device->inq_data, 1703 &cdm->matches[j].result.device_result.inq_data, 1704 sizeof(struct scsi_inquiry_data)); 1705 bcopy(&device->ident_data, 1706 &cdm->matches[j].result.device_result.ident_data, 1707 sizeof(struct ata_params)); 1708 1709 /* Let the user know whether this device is unconfigured */ 1710 if (device->flags & CAM_DEV_UNCONFIGURED) 1711 cdm->matches[j].result.device_result.flags = 1712 DEV_RESULT_UNCONFIGURED; 1713 else 1714 cdm->matches[j].result.device_result.flags = 1715 DEV_RESULT_NOFLAG; 1716 } 1717 1718 /* 1719 * If the user isn't interested in peripherals, don't descend 1720 * the tree any further. 1721 */ 1722 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1723 return(1); 1724 1725 /* 1726 * If there is a peripheral list generation recorded, make sure 1727 * it hasn't changed. 1728 */ 1729 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1730 && (device->target->bus == cdm->pos.cookie.bus) 1731 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1732 && (device->target == cdm->pos.cookie.target) 1733 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1734 && (device == cdm->pos.cookie.device) 1735 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1736 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1737 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1738 device->generation)){ 1739 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1740 return(0); 1741 } 1742 1743 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1744 && (cdm->pos.cookie.bus == device->target->bus) 1745 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1746 && (cdm->pos.cookie.target == device->target) 1747 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1748 && (cdm->pos.cookie.device == device) 1749 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1750 && (cdm->pos.cookie.periph != NULL)) 1751 return(xptperiphtraverse(device, 1752 (struct cam_periph *)cdm->pos.cookie.periph, 1753 xptedtperiphfunc, arg)); 1754 else 1755 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1756 } 1757 1758 static int 1759 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1760 { 1761 struct ccb_dev_match *cdm; 1762 dev_match_ret retval; 1763 1764 cdm = (struct ccb_dev_match *)arg; 1765 1766 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1767 1768 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1769 cdm->status = CAM_DEV_MATCH_ERROR; 1770 return(0); 1771 } 1772 1773 /* 1774 * If the copy flag is set, copy this peripheral out. 1775 */ 1776 if (retval & DM_RET_COPY) { 1777 int spaceleft, j; 1778 1779 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1780 sizeof(struct dev_match_result)); 1781 1782 /* 1783 * If we don't have enough space to put in another 1784 * match result, save our position and tell the 1785 * user there are more devices to check. 1786 */ 1787 if (spaceleft < sizeof(struct dev_match_result)) { 1788 bzero(&cdm->pos, sizeof(cdm->pos)); 1789 cdm->pos.position_type = 1790 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1791 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1792 CAM_DEV_POS_PERIPH; 1793 1794 cdm->pos.cookie.bus = periph->path->bus; 1795 cdm->pos.generations[CAM_BUS_GENERATION]= 1796 xsoftc.bus_generation; 1797 cdm->pos.cookie.target = periph->path->target; 1798 cdm->pos.generations[CAM_TARGET_GENERATION] = 1799 periph->path->bus->generation; 1800 cdm->pos.cookie.device = periph->path->device; 1801 cdm->pos.generations[CAM_DEV_GENERATION] = 1802 periph->path->target->generation; 1803 cdm->pos.cookie.periph = periph; 1804 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1805 periph->path->device->generation; 1806 cdm->status = CAM_DEV_MATCH_MORE; 1807 return(0); 1808 } 1809 1810 j = cdm->num_matches; 1811 cdm->num_matches++; 1812 cdm->matches[j].type = DEV_MATCH_PERIPH; 1813 cdm->matches[j].result.periph_result.path_id = 1814 periph->path->bus->path_id; 1815 cdm->matches[j].result.periph_result.target_id = 1816 periph->path->target->target_id; 1817 cdm->matches[j].result.periph_result.target_lun = 1818 periph->path->device->lun_id; 1819 cdm->matches[j].result.periph_result.unit_number = 1820 periph->unit_number; 1821 strncpy(cdm->matches[j].result.periph_result.periph_name, 1822 periph->periph_name, DEV_IDLEN); 1823 } 1824 1825 return(1); 1826 } 1827 1828 static int 1829 xptedtmatch(struct ccb_dev_match *cdm) 1830 { 1831 int ret; 1832 1833 cdm->num_matches = 0; 1834 1835 /* 1836 * Check the bus list generation. If it has changed, the user 1837 * needs to reset everything and start over. 1838 */ 1839 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1840 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1841 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1842 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1843 return(0); 1844 } 1845 1846 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1847 && (cdm->pos.cookie.bus != NULL)) 1848 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1849 xptedtbusfunc, cdm); 1850 else 1851 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1852 1853 /* 1854 * If we get back 0, that means that we had to stop before fully 1855 * traversing the EDT. It also means that one of the subroutines 1856 * has set the status field to the proper value. If we get back 1, 1857 * we've fully traversed the EDT and copied out any matching entries. 1858 */ 1859 if (ret == 1) 1860 cdm->status = CAM_DEV_MATCH_LAST; 1861 1862 return(ret); 1863 } 1864 1865 static int 1866 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1867 { 1868 struct ccb_dev_match *cdm; 1869 1870 cdm = (struct ccb_dev_match *)arg; 1871 1872 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1873 && (cdm->pos.cookie.pdrv == pdrv) 1874 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1875 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1876 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1877 (*pdrv)->generation)) { 1878 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1879 return(0); 1880 } 1881 1882 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1883 && (cdm->pos.cookie.pdrv == pdrv) 1884 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1885 && (cdm->pos.cookie.periph != NULL)) 1886 return(xptpdperiphtraverse(pdrv, 1887 (struct cam_periph *)cdm->pos.cookie.periph, 1888 xptplistperiphfunc, arg)); 1889 else 1890 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1891 } 1892 1893 static int 1894 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1895 { 1896 struct ccb_dev_match *cdm; 1897 dev_match_ret retval; 1898 1899 cdm = (struct ccb_dev_match *)arg; 1900 1901 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1902 1903 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1904 cdm->status = CAM_DEV_MATCH_ERROR; 1905 return(0); 1906 } 1907 1908 /* 1909 * If the copy flag is set, copy this peripheral out. 1910 */ 1911 if (retval & DM_RET_COPY) { 1912 int spaceleft, j; 1913 1914 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1915 sizeof(struct dev_match_result)); 1916 1917 /* 1918 * If we don't have enough space to put in another 1919 * match result, save our position and tell the 1920 * user there are more devices to check. 1921 */ 1922 if (spaceleft < sizeof(struct dev_match_result)) { 1923 struct periph_driver **pdrv; 1924 1925 pdrv = NULL; 1926 bzero(&cdm->pos, sizeof(cdm->pos)); 1927 cdm->pos.position_type = 1928 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1929 CAM_DEV_POS_PERIPH; 1930 1931 /* 1932 * This may look a bit non-sensical, but it is 1933 * actually quite logical. There are very few 1934 * peripheral drivers, and bloating every peripheral 1935 * structure with a pointer back to its parent 1936 * peripheral driver linker set entry would cost 1937 * more in the long run than doing this quick lookup. 1938 */ 1939 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1940 if (strcmp((*pdrv)->driver_name, 1941 periph->periph_name) == 0) 1942 break; 1943 } 1944 1945 if (*pdrv == NULL) { 1946 cdm->status = CAM_DEV_MATCH_ERROR; 1947 return(0); 1948 } 1949 1950 cdm->pos.cookie.pdrv = pdrv; 1951 /* 1952 * The periph generation slot does double duty, as 1953 * does the periph pointer slot. They are used for 1954 * both edt and pdrv lookups and positioning. 1955 */ 1956 cdm->pos.cookie.periph = periph; 1957 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1958 (*pdrv)->generation; 1959 cdm->status = CAM_DEV_MATCH_MORE; 1960 return(0); 1961 } 1962 1963 j = cdm->num_matches; 1964 cdm->num_matches++; 1965 cdm->matches[j].type = DEV_MATCH_PERIPH; 1966 cdm->matches[j].result.periph_result.path_id = 1967 periph->path->bus->path_id; 1968 1969 /* 1970 * The transport layer peripheral doesn't have a target or 1971 * lun. 1972 */ 1973 if (periph->path->target) 1974 cdm->matches[j].result.periph_result.target_id = 1975 periph->path->target->target_id; 1976 else 1977 cdm->matches[j].result.periph_result.target_id = -1; 1978 1979 if (periph->path->device) 1980 cdm->matches[j].result.periph_result.target_lun = 1981 periph->path->device->lun_id; 1982 else 1983 cdm->matches[j].result.periph_result.target_lun = -1; 1984 1985 cdm->matches[j].result.periph_result.unit_number = 1986 periph->unit_number; 1987 strncpy(cdm->matches[j].result.periph_result.periph_name, 1988 periph->periph_name, DEV_IDLEN); 1989 } 1990 1991 return(1); 1992 } 1993 1994 static int 1995 xptperiphlistmatch(struct ccb_dev_match *cdm) 1996 { 1997 int ret; 1998 1999 cdm->num_matches = 0; 2000 2001 /* 2002 * At this point in the edt traversal function, we check the bus 2003 * list generation to make sure that no busses have been added or 2004 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2005 * For the peripheral driver list traversal function, however, we 2006 * don't have to worry about new peripheral driver types coming or 2007 * going; they're in a linker set, and therefore can't change 2008 * without a recompile. 2009 */ 2010 2011 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2012 && (cdm->pos.cookie.pdrv != NULL)) 2013 ret = xptpdrvtraverse( 2014 (struct periph_driver **)cdm->pos.cookie.pdrv, 2015 xptplistpdrvfunc, cdm); 2016 else 2017 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2018 2019 /* 2020 * If we get back 0, that means that we had to stop before fully 2021 * traversing the peripheral driver tree. It also means that one of 2022 * the subroutines has set the status field to the proper value. If 2023 * we get back 1, we've fully traversed the EDT and copied out any 2024 * matching entries. 2025 */ 2026 if (ret == 1) 2027 cdm->status = CAM_DEV_MATCH_LAST; 2028 2029 return(ret); 2030 } 2031 2032 static int 2033 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2034 { 2035 struct cam_eb *bus, *next_bus; 2036 int retval; 2037 2038 retval = 1; 2039 2040 xpt_lock_buses(); 2041 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2042 bus != NULL; 2043 bus = next_bus) { 2044 2045 bus->refcount++; 2046 2047 /* 2048 * XXX The locking here is obviously very complex. We 2049 * should work to simplify it. 2050 */ 2051 xpt_unlock_buses(); 2052 CAM_SIM_LOCK(bus->sim); 2053 retval = tr_func(bus, arg); 2054 CAM_SIM_UNLOCK(bus->sim); 2055 2056 xpt_lock_buses(); 2057 next_bus = TAILQ_NEXT(bus, links); 2058 xpt_unlock_buses(); 2059 2060 xpt_release_bus(bus); 2061 2062 if (retval == 0) 2063 return(retval); 2064 xpt_lock_buses(); 2065 } 2066 xpt_unlock_buses(); 2067 2068 return(retval); 2069 } 2070 2071 static int 2072 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2073 xpt_targetfunc_t *tr_func, void *arg) 2074 { 2075 struct cam_et *target, *next_target; 2076 int retval; 2077 2078 mtx_assert(bus->sim->mtx, MA_OWNED); 2079 retval = 1; 2080 for (target = (start_target ? start_target : 2081 TAILQ_FIRST(&bus->et_entries)); 2082 target != NULL; target = next_target) { 2083 2084 target->refcount++; 2085 2086 retval = tr_func(target, arg); 2087 2088 next_target = TAILQ_NEXT(target, links); 2089 2090 xpt_release_target(target); 2091 2092 if (retval == 0) 2093 return(retval); 2094 } 2095 2096 return(retval); 2097 } 2098 2099 static int 2100 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2101 xpt_devicefunc_t *tr_func, void *arg) 2102 { 2103 struct cam_ed *device, *next_device; 2104 int retval; 2105 2106 mtx_assert(target->bus->sim->mtx, MA_OWNED); 2107 retval = 1; 2108 for (device = (start_device ? start_device : 2109 TAILQ_FIRST(&target->ed_entries)); 2110 device != NULL; 2111 device = next_device) { 2112 2113 /* 2114 * Hold a reference so the current device does not go away 2115 * on us. 2116 */ 2117 device->refcount++; 2118 2119 retval = tr_func(device, arg); 2120 2121 /* 2122 * Grab our next pointer before we release the current 2123 * device. 2124 */ 2125 next_device = TAILQ_NEXT(device, links); 2126 2127 xpt_release_device(device); 2128 2129 if (retval == 0) 2130 return(retval); 2131 } 2132 2133 return(retval); 2134 } 2135 2136 static int 2137 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2138 xpt_periphfunc_t *tr_func, void *arg) 2139 { 2140 struct cam_periph *periph, *next_periph; 2141 int retval; 2142 2143 retval = 1; 2144 2145 mtx_assert(device->sim->mtx, MA_OWNED); 2146 xpt_lock_buses(); 2147 for (periph = (start_periph ? start_periph : 2148 SLIST_FIRST(&device->periphs)); 2149 periph != NULL; 2150 periph = next_periph) { 2151 2152 2153 /* 2154 * In this case, we want to show peripherals that have been 2155 * invalidated, but not peripherals that are scheduled to 2156 * be freed. So instead of calling cam_periph_acquire(), 2157 * which will fail if the periph has been invalidated, we 2158 * just check for the free flag here. If it is in the 2159 * process of being freed, we skip to the next periph. 2160 */ 2161 if (periph->flags & CAM_PERIPH_FREE) { 2162 next_periph = SLIST_NEXT(periph, periph_links); 2163 continue; 2164 } 2165 2166 /* 2167 * Acquire a reference to this periph while we call the 2168 * traversal function, so it can't go away. 2169 */ 2170 periph->refcount++; 2171 2172 retval = tr_func(periph, arg); 2173 2174 /* 2175 * Grab the next peripheral before we release this one, so 2176 * our next pointer is still valid. 2177 */ 2178 next_periph = SLIST_NEXT(periph, periph_links); 2179 2180 cam_periph_release_locked_buses(periph); 2181 2182 if (retval == 0) 2183 goto bailout_done; 2184 } 2185 2186 bailout_done: 2187 2188 xpt_unlock_buses(); 2189 2190 return(retval); 2191 } 2192 2193 static int 2194 xptpdrvtraverse(struct periph_driver **start_pdrv, 2195 xpt_pdrvfunc_t *tr_func, void *arg) 2196 { 2197 struct periph_driver **pdrv; 2198 int retval; 2199 2200 retval = 1; 2201 2202 /* 2203 * We don't traverse the peripheral driver list like we do the 2204 * other lists, because it is a linker set, and therefore cannot be 2205 * changed during runtime. If the peripheral driver list is ever 2206 * re-done to be something other than a linker set (i.e. it can 2207 * change while the system is running), the list traversal should 2208 * be modified to work like the other traversal functions. 2209 */ 2210 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2211 *pdrv != NULL; pdrv++) { 2212 retval = tr_func(pdrv, arg); 2213 2214 if (retval == 0) 2215 return(retval); 2216 } 2217 2218 return(retval); 2219 } 2220 2221 static int 2222 xptpdperiphtraverse(struct periph_driver **pdrv, 2223 struct cam_periph *start_periph, 2224 xpt_periphfunc_t *tr_func, void *arg) 2225 { 2226 struct cam_periph *periph, *next_periph; 2227 struct cam_sim *sim; 2228 int retval; 2229 2230 retval = 1; 2231 2232 xpt_lock_buses(); 2233 for (periph = (start_periph ? start_periph : 2234 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2235 periph = next_periph) { 2236 2237 2238 /* 2239 * In this case, we want to show peripherals that have been 2240 * invalidated, but not peripherals that are scheduled to 2241 * be freed. So instead of calling cam_periph_acquire(), 2242 * which will fail if the periph has been invalidated, we 2243 * just check for the free flag here. If it is free, we 2244 * skip to the next periph. 2245 */ 2246 if (periph->flags & CAM_PERIPH_FREE) { 2247 next_periph = TAILQ_NEXT(periph, unit_links); 2248 continue; 2249 } 2250 2251 /* 2252 * Acquire a reference to this periph while we call the 2253 * traversal function, so it can't go away. 2254 */ 2255 periph->refcount++; 2256 sim = periph->sim; 2257 xpt_unlock_buses(); 2258 CAM_SIM_LOCK(sim); 2259 xpt_lock_buses(); 2260 retval = tr_func(periph, arg); 2261 2262 /* 2263 * Grab the next peripheral before we release this one, so 2264 * our next pointer is still valid. 2265 */ 2266 next_periph = TAILQ_NEXT(periph, unit_links); 2267 2268 cam_periph_release_locked_buses(periph); 2269 CAM_SIM_UNLOCK(sim); 2270 2271 if (retval == 0) 2272 goto bailout_done; 2273 } 2274 bailout_done: 2275 2276 xpt_unlock_buses(); 2277 2278 return(retval); 2279 } 2280 2281 static int 2282 xptdefbusfunc(struct cam_eb *bus, void *arg) 2283 { 2284 struct xpt_traverse_config *tr_config; 2285 2286 tr_config = (struct xpt_traverse_config *)arg; 2287 2288 if (tr_config->depth == XPT_DEPTH_BUS) { 2289 xpt_busfunc_t *tr_func; 2290 2291 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2292 2293 return(tr_func(bus, tr_config->tr_arg)); 2294 } else 2295 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2296 } 2297 2298 static int 2299 xptdeftargetfunc(struct cam_et *target, void *arg) 2300 { 2301 struct xpt_traverse_config *tr_config; 2302 2303 tr_config = (struct xpt_traverse_config *)arg; 2304 2305 if (tr_config->depth == XPT_DEPTH_TARGET) { 2306 xpt_targetfunc_t *tr_func; 2307 2308 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2309 2310 return(tr_func(target, tr_config->tr_arg)); 2311 } else 2312 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2313 } 2314 2315 static int 2316 xptdefdevicefunc(struct cam_ed *device, void *arg) 2317 { 2318 struct xpt_traverse_config *tr_config; 2319 2320 tr_config = (struct xpt_traverse_config *)arg; 2321 2322 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2323 xpt_devicefunc_t *tr_func; 2324 2325 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2326 2327 return(tr_func(device, tr_config->tr_arg)); 2328 } else 2329 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2330 } 2331 2332 static int 2333 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2334 { 2335 struct xpt_traverse_config *tr_config; 2336 xpt_periphfunc_t *tr_func; 2337 2338 tr_config = (struct xpt_traverse_config *)arg; 2339 2340 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2341 2342 /* 2343 * Unlike the other default functions, we don't check for depth 2344 * here. The peripheral driver level is the last level in the EDT, 2345 * so if we're here, we should execute the function in question. 2346 */ 2347 return(tr_func(periph, tr_config->tr_arg)); 2348 } 2349 2350 /* 2351 * Execute the given function for every bus in the EDT. 2352 */ 2353 static int 2354 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2355 { 2356 struct xpt_traverse_config tr_config; 2357 2358 tr_config.depth = XPT_DEPTH_BUS; 2359 tr_config.tr_func = tr_func; 2360 tr_config.tr_arg = arg; 2361 2362 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2363 } 2364 2365 /* 2366 * Execute the given function for every device in the EDT. 2367 */ 2368 static int 2369 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2370 { 2371 struct xpt_traverse_config tr_config; 2372 2373 tr_config.depth = XPT_DEPTH_DEVICE; 2374 tr_config.tr_func = tr_func; 2375 tr_config.tr_arg = arg; 2376 2377 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2378 } 2379 2380 static int 2381 xptsetasyncfunc(struct cam_ed *device, void *arg) 2382 { 2383 struct cam_path path; 2384 struct ccb_getdev cgd; 2385 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2386 2387 /* 2388 * Don't report unconfigured devices (Wildcard devs, 2389 * devices only for target mode, device instances 2390 * that have been invalidated but are waiting for 2391 * their last reference count to be released). 2392 */ 2393 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2394 return (1); 2395 2396 xpt_compile_path(&path, 2397 NULL, 2398 device->target->bus->path_id, 2399 device->target->target_id, 2400 device->lun_id); 2401 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2402 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2403 xpt_action((union ccb *)&cgd); 2404 csa->callback(csa->callback_arg, 2405 AC_FOUND_DEVICE, 2406 &path, &cgd); 2407 xpt_release_path(&path); 2408 2409 return(1); 2410 } 2411 2412 static int 2413 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2414 { 2415 struct cam_path path; 2416 struct ccb_pathinq cpi; 2417 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2418 2419 xpt_compile_path(&path, /*periph*/NULL, 2420 bus->sim->path_id, 2421 CAM_TARGET_WILDCARD, 2422 CAM_LUN_WILDCARD); 2423 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2424 cpi.ccb_h.func_code = XPT_PATH_INQ; 2425 xpt_action((union ccb *)&cpi); 2426 csa->callback(csa->callback_arg, 2427 AC_PATH_REGISTERED, 2428 &path, &cpi); 2429 xpt_release_path(&path); 2430 2431 return(1); 2432 } 2433 2434 void 2435 xpt_action(union ccb *start_ccb) 2436 { 2437 2438 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2439 2440 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2441 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2442 } 2443 2444 void 2445 xpt_action_default(union ccb *start_ccb) 2446 { 2447 struct cam_path *path; 2448 2449 path = start_ccb->ccb_h.path; 2450 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2451 2452 switch (start_ccb->ccb_h.func_code) { 2453 case XPT_SCSI_IO: 2454 { 2455 struct cam_ed *device; 2456 2457 /* 2458 * For the sake of compatibility with SCSI-1 2459 * devices that may not understand the identify 2460 * message, we include lun information in the 2461 * second byte of all commands. SCSI-1 specifies 2462 * that luns are a 3 bit value and reserves only 3 2463 * bits for lun information in the CDB. Later 2464 * revisions of the SCSI spec allow for more than 8 2465 * luns, but have deprecated lun information in the 2466 * CDB. So, if the lun won't fit, we must omit. 2467 * 2468 * Also be aware that during initial probing for devices, 2469 * the inquiry information is unknown but initialized to 0. 2470 * This means that this code will be exercised while probing 2471 * devices with an ANSI revision greater than 2. 2472 */ 2473 device = path->device; 2474 if (device->protocol_version <= SCSI_REV_2 2475 && start_ccb->ccb_h.target_lun < 8 2476 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2477 2478 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2479 start_ccb->ccb_h.target_lun << 5; 2480 } 2481 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2482 } 2483 /* FALLTHROUGH */ 2484 case XPT_TARGET_IO: 2485 case XPT_CONT_TARGET_IO: 2486 start_ccb->csio.sense_resid = 0; 2487 start_ccb->csio.resid = 0; 2488 /* FALLTHROUGH */ 2489 case XPT_ATA_IO: 2490 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2491 start_ccb->ataio.resid = 0; 2492 /* FALLTHROUGH */ 2493 case XPT_RESET_DEV: 2494 case XPT_ENG_EXEC: 2495 case XPT_SMP_IO: 2496 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2497 if (xpt_schedule_devq(path->bus->sim->devq, path->device)) 2498 xpt_run_devq(path->bus->sim->devq); 2499 break; 2500 case XPT_CALC_GEOMETRY: 2501 { 2502 struct cam_sim *sim; 2503 2504 /* Filter out garbage */ 2505 if (start_ccb->ccg.block_size == 0 2506 || start_ccb->ccg.volume_size == 0) { 2507 start_ccb->ccg.cylinders = 0; 2508 start_ccb->ccg.heads = 0; 2509 start_ccb->ccg.secs_per_track = 0; 2510 start_ccb->ccb_h.status = CAM_REQ_CMP; 2511 break; 2512 } 2513 #if defined(PC98) || defined(__sparc64__) 2514 /* 2515 * In a PC-98 system, geometry translation depens on 2516 * the "real" device geometry obtained from mode page 4. 2517 * SCSI geometry translation is performed in the 2518 * initialization routine of the SCSI BIOS and the result 2519 * stored in host memory. If the translation is available 2520 * in host memory, use it. If not, rely on the default 2521 * translation the device driver performs. 2522 * For sparc64, we may need adjust the geometry of large 2523 * disks in order to fit the limitations of the 16-bit 2524 * fields of the VTOC8 disk label. 2525 */ 2526 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2527 start_ccb->ccb_h.status = CAM_REQ_CMP; 2528 break; 2529 } 2530 #endif 2531 sim = path->bus->sim; 2532 (*(sim->sim_action))(sim, start_ccb); 2533 break; 2534 } 2535 case XPT_ABORT: 2536 { 2537 union ccb* abort_ccb; 2538 2539 abort_ccb = start_ccb->cab.abort_ccb; 2540 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2541 2542 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2543 struct cam_ccbq *ccbq; 2544 struct cam_ed *device; 2545 2546 device = abort_ccb->ccb_h.path->device; 2547 ccbq = &device->ccbq; 2548 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2549 abort_ccb->ccb_h.status = 2550 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2551 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2552 xpt_done(abort_ccb); 2553 start_ccb->ccb_h.status = CAM_REQ_CMP; 2554 break; 2555 } 2556 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2557 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2558 /* 2559 * We've caught this ccb en route to 2560 * the SIM. Flag it for abort and the 2561 * SIM will do so just before starting 2562 * real work on the CCB. 2563 */ 2564 abort_ccb->ccb_h.status = 2565 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2566 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2567 start_ccb->ccb_h.status = CAM_REQ_CMP; 2568 break; 2569 } 2570 } 2571 if (XPT_FC_IS_QUEUED(abort_ccb) 2572 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2573 /* 2574 * It's already completed but waiting 2575 * for our SWI to get to it. 2576 */ 2577 start_ccb->ccb_h.status = CAM_UA_ABORT; 2578 break; 2579 } 2580 /* 2581 * If we weren't able to take care of the abort request 2582 * in the XPT, pass the request down to the SIM for processing. 2583 */ 2584 } 2585 /* FALLTHROUGH */ 2586 case XPT_ACCEPT_TARGET_IO: 2587 case XPT_EN_LUN: 2588 case XPT_IMMED_NOTIFY: 2589 case XPT_NOTIFY_ACK: 2590 case XPT_RESET_BUS: 2591 case XPT_IMMEDIATE_NOTIFY: 2592 case XPT_NOTIFY_ACKNOWLEDGE: 2593 case XPT_GET_SIM_KNOB: 2594 case XPT_SET_SIM_KNOB: 2595 { 2596 struct cam_sim *sim; 2597 2598 sim = path->bus->sim; 2599 (*(sim->sim_action))(sim, start_ccb); 2600 break; 2601 } 2602 case XPT_PATH_INQ: 2603 { 2604 struct cam_sim *sim; 2605 2606 sim = path->bus->sim; 2607 (*(sim->sim_action))(sim, start_ccb); 2608 break; 2609 } 2610 case XPT_PATH_STATS: 2611 start_ccb->cpis.last_reset = path->bus->last_reset; 2612 start_ccb->ccb_h.status = CAM_REQ_CMP; 2613 break; 2614 case XPT_GDEV_TYPE: 2615 { 2616 struct cam_ed *dev; 2617 2618 dev = path->device; 2619 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2620 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2621 } else { 2622 struct ccb_getdev *cgd; 2623 2624 cgd = &start_ccb->cgd; 2625 cgd->protocol = dev->protocol; 2626 cgd->inq_data = dev->inq_data; 2627 cgd->ident_data = dev->ident_data; 2628 cgd->inq_flags = dev->inq_flags; 2629 cgd->ccb_h.status = CAM_REQ_CMP; 2630 cgd->serial_num_len = dev->serial_num_len; 2631 if ((dev->serial_num_len > 0) 2632 && (dev->serial_num != NULL)) 2633 bcopy(dev->serial_num, cgd->serial_num, 2634 dev->serial_num_len); 2635 } 2636 break; 2637 } 2638 case XPT_GDEV_STATS: 2639 { 2640 struct cam_ed *dev; 2641 2642 dev = path->device; 2643 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2644 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2645 } else { 2646 struct ccb_getdevstats *cgds; 2647 struct cam_eb *bus; 2648 struct cam_et *tar; 2649 2650 cgds = &start_ccb->cgds; 2651 bus = path->bus; 2652 tar = path->target; 2653 cgds->dev_openings = dev->ccbq.dev_openings; 2654 cgds->dev_active = dev->ccbq.dev_active; 2655 cgds->devq_openings = dev->ccbq.devq_openings; 2656 cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2657 cgds->held = dev->ccbq.held; 2658 cgds->last_reset = tar->last_reset; 2659 cgds->maxtags = dev->maxtags; 2660 cgds->mintags = dev->mintags; 2661 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2662 cgds->last_reset = bus->last_reset; 2663 cgds->ccb_h.status = CAM_REQ_CMP; 2664 } 2665 break; 2666 } 2667 case XPT_GDEVLIST: 2668 { 2669 struct cam_periph *nperiph; 2670 struct periph_list *periph_head; 2671 struct ccb_getdevlist *cgdl; 2672 u_int i; 2673 struct cam_ed *device; 2674 int found; 2675 2676 2677 found = 0; 2678 2679 /* 2680 * Don't want anyone mucking with our data. 2681 */ 2682 device = path->device; 2683 periph_head = &device->periphs; 2684 cgdl = &start_ccb->cgdl; 2685 2686 /* 2687 * Check and see if the list has changed since the user 2688 * last requested a list member. If so, tell them that the 2689 * list has changed, and therefore they need to start over 2690 * from the beginning. 2691 */ 2692 if ((cgdl->index != 0) && 2693 (cgdl->generation != device->generation)) { 2694 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2695 break; 2696 } 2697 2698 /* 2699 * Traverse the list of peripherals and attempt to find 2700 * the requested peripheral. 2701 */ 2702 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2703 (nperiph != NULL) && (i <= cgdl->index); 2704 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2705 if (i == cgdl->index) { 2706 strncpy(cgdl->periph_name, 2707 nperiph->periph_name, 2708 DEV_IDLEN); 2709 cgdl->unit_number = nperiph->unit_number; 2710 found = 1; 2711 } 2712 } 2713 if (found == 0) { 2714 cgdl->status = CAM_GDEVLIST_ERROR; 2715 break; 2716 } 2717 2718 if (nperiph == NULL) 2719 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2720 else 2721 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2722 2723 cgdl->index++; 2724 cgdl->generation = device->generation; 2725 2726 cgdl->ccb_h.status = CAM_REQ_CMP; 2727 break; 2728 } 2729 case XPT_DEV_MATCH: 2730 { 2731 dev_pos_type position_type; 2732 struct ccb_dev_match *cdm; 2733 2734 cdm = &start_ccb->cdm; 2735 2736 /* 2737 * There are two ways of getting at information in the EDT. 2738 * The first way is via the primary EDT tree. It starts 2739 * with a list of busses, then a list of targets on a bus, 2740 * then devices/luns on a target, and then peripherals on a 2741 * device/lun. The "other" way is by the peripheral driver 2742 * lists. The peripheral driver lists are organized by 2743 * peripheral driver. (obviously) So it makes sense to 2744 * use the peripheral driver list if the user is looking 2745 * for something like "da1", or all "da" devices. If the 2746 * user is looking for something on a particular bus/target 2747 * or lun, it's generally better to go through the EDT tree. 2748 */ 2749 2750 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2751 position_type = cdm->pos.position_type; 2752 else { 2753 u_int i; 2754 2755 position_type = CAM_DEV_POS_NONE; 2756 2757 for (i = 0; i < cdm->num_patterns; i++) { 2758 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2759 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2760 position_type = CAM_DEV_POS_EDT; 2761 break; 2762 } 2763 } 2764 2765 if (cdm->num_patterns == 0) 2766 position_type = CAM_DEV_POS_EDT; 2767 else if (position_type == CAM_DEV_POS_NONE) 2768 position_type = CAM_DEV_POS_PDRV; 2769 } 2770 2771 /* 2772 * Note that we drop the SIM lock here, because the EDT 2773 * traversal code needs to do its own locking. 2774 */ 2775 CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path)); 2776 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2777 case CAM_DEV_POS_EDT: 2778 xptedtmatch(cdm); 2779 break; 2780 case CAM_DEV_POS_PDRV: 2781 xptperiphlistmatch(cdm); 2782 break; 2783 default: 2784 cdm->status = CAM_DEV_MATCH_ERROR; 2785 break; 2786 } 2787 CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path)); 2788 2789 if (cdm->status == CAM_DEV_MATCH_ERROR) 2790 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2791 else 2792 start_ccb->ccb_h.status = CAM_REQ_CMP; 2793 2794 break; 2795 } 2796 case XPT_SASYNC_CB: 2797 { 2798 struct ccb_setasync *csa; 2799 struct async_node *cur_entry; 2800 struct async_list *async_head; 2801 u_int32_t added; 2802 2803 csa = &start_ccb->csa; 2804 added = csa->event_enable; 2805 async_head = &path->device->asyncs; 2806 2807 /* 2808 * If there is already an entry for us, simply 2809 * update it. 2810 */ 2811 cur_entry = SLIST_FIRST(async_head); 2812 while (cur_entry != NULL) { 2813 if ((cur_entry->callback_arg == csa->callback_arg) 2814 && (cur_entry->callback == csa->callback)) 2815 break; 2816 cur_entry = SLIST_NEXT(cur_entry, links); 2817 } 2818 2819 if (cur_entry != NULL) { 2820 /* 2821 * If the request has no flags set, 2822 * remove the entry. 2823 */ 2824 added &= ~cur_entry->event_enable; 2825 if (csa->event_enable == 0) { 2826 SLIST_REMOVE(async_head, cur_entry, 2827 async_node, links); 2828 xpt_release_device(path->device); 2829 free(cur_entry, M_CAMXPT); 2830 } else { 2831 cur_entry->event_enable = csa->event_enable; 2832 } 2833 csa->event_enable = added; 2834 } else { 2835 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2836 M_NOWAIT); 2837 if (cur_entry == NULL) { 2838 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2839 break; 2840 } 2841 cur_entry->event_enable = csa->event_enable; 2842 cur_entry->callback_arg = csa->callback_arg; 2843 cur_entry->callback = csa->callback; 2844 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2845 xpt_acquire_device(path->device); 2846 } 2847 start_ccb->ccb_h.status = CAM_REQ_CMP; 2848 break; 2849 } 2850 case XPT_REL_SIMQ: 2851 { 2852 struct ccb_relsim *crs; 2853 struct cam_ed *dev; 2854 2855 crs = &start_ccb->crs; 2856 dev = path->device; 2857 if (dev == NULL) { 2858 2859 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2860 break; 2861 } 2862 2863 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2864 2865 /* Don't ever go below one opening */ 2866 if (crs->openings > 0) { 2867 xpt_dev_ccbq_resize(path, crs->openings); 2868 if (bootverbose) { 2869 xpt_print(path, 2870 "number of openings is now %d\n", 2871 crs->openings); 2872 } 2873 } 2874 } 2875 2876 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2877 2878 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2879 2880 /* 2881 * Just extend the old timeout and decrement 2882 * the freeze count so that a single timeout 2883 * is sufficient for releasing the queue. 2884 */ 2885 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2886 callout_stop(&dev->callout); 2887 } else { 2888 2889 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2890 } 2891 2892 callout_reset(&dev->callout, 2893 (crs->release_timeout * hz) / 1000, 2894 xpt_release_devq_timeout, dev); 2895 2896 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2897 2898 } 2899 2900 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2901 2902 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2903 /* 2904 * Decrement the freeze count so that a single 2905 * completion is still sufficient to unfreeze 2906 * the queue. 2907 */ 2908 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2909 } else { 2910 2911 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2912 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2913 } 2914 } 2915 2916 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2917 2918 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2919 || (dev->ccbq.dev_active == 0)) { 2920 2921 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2922 } else { 2923 2924 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2925 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2926 } 2927 } 2928 2929 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2930 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2931 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2932 start_ccb->ccb_h.status = CAM_REQ_CMP; 2933 break; 2934 } 2935 case XPT_DEBUG: { 2936 struct cam_path *oldpath; 2937 struct cam_sim *oldsim; 2938 2939 /* Check that all request bits are supported. */ 2940 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2941 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2942 break; 2943 } 2944 2945 cam_dflags = CAM_DEBUG_NONE; 2946 if (cam_dpath != NULL) { 2947 /* To release the old path we must hold proper lock. */ 2948 oldpath = cam_dpath; 2949 cam_dpath = NULL; 2950 oldsim = xpt_path_sim(oldpath); 2951 CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2952 CAM_SIM_LOCK(oldsim); 2953 xpt_free_path(oldpath); 2954 CAM_SIM_UNLOCK(oldsim); 2955 CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2956 } 2957 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2958 if (xpt_create_path(&cam_dpath, NULL, 2959 start_ccb->ccb_h.path_id, 2960 start_ccb->ccb_h.target_id, 2961 start_ccb->ccb_h.target_lun) != 2962 CAM_REQ_CMP) { 2963 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2964 } else { 2965 cam_dflags = start_ccb->cdbg.flags; 2966 start_ccb->ccb_h.status = CAM_REQ_CMP; 2967 xpt_print(cam_dpath, "debugging flags now %x\n", 2968 cam_dflags); 2969 } 2970 } else 2971 start_ccb->ccb_h.status = CAM_REQ_CMP; 2972 break; 2973 } 2974 case XPT_NOOP: 2975 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2976 xpt_freeze_devq(path, 1); 2977 start_ccb->ccb_h.status = CAM_REQ_CMP; 2978 break; 2979 default: 2980 case XPT_SDEV_TYPE: 2981 case XPT_TERM_IO: 2982 case XPT_ENG_INQ: 2983 /* XXX Implement */ 2984 printf("%s: CCB type %#x not supported\n", __func__, 2985 start_ccb->ccb_h.func_code); 2986 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2987 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2988 xpt_done(start_ccb); 2989 } 2990 break; 2991 } 2992 } 2993 2994 void 2995 xpt_polled_action(union ccb *start_ccb) 2996 { 2997 u_int32_t timeout; 2998 struct cam_sim *sim; 2999 struct cam_devq *devq; 3000 struct cam_ed *dev; 3001 3002 3003 timeout = start_ccb->ccb_h.timeout * 10; 3004 sim = start_ccb->ccb_h.path->bus->sim; 3005 devq = sim->devq; 3006 dev = start_ccb->ccb_h.path->device; 3007 3008 mtx_assert(sim->mtx, MA_OWNED); 3009 3010 /* Don't use ISR for this SIM while polling. */ 3011 sim->flags |= CAM_SIM_POLLED; 3012 3013 /* 3014 * Steal an opening so that no other queued requests 3015 * can get it before us while we simulate interrupts. 3016 */ 3017 dev->ccbq.devq_openings--; 3018 dev->ccbq.dev_openings--; 3019 3020 while(((devq != NULL && devq->send_openings <= 0) || 3021 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3022 DELAY(100); 3023 (*(sim->sim_poll))(sim); 3024 camisr_runqueue(sim); 3025 } 3026 3027 dev->ccbq.devq_openings++; 3028 dev->ccbq.dev_openings++; 3029 3030 if (timeout != 0) { 3031 xpt_action(start_ccb); 3032 while(--timeout > 0) { 3033 (*(sim->sim_poll))(sim); 3034 camisr_runqueue(sim); 3035 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3036 != CAM_REQ_INPROG) 3037 break; 3038 DELAY(100); 3039 } 3040 if (timeout == 0) { 3041 /* 3042 * XXX Is it worth adding a sim_timeout entry 3043 * point so we can attempt recovery? If 3044 * this is only used for dumps, I don't think 3045 * it is. 3046 */ 3047 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3048 } 3049 } else { 3050 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3051 } 3052 3053 /* We will use CAM ISR for this SIM again. */ 3054 sim->flags &= ~CAM_SIM_POLLED; 3055 } 3056 3057 /* 3058 * Schedule a peripheral driver to receive a ccb when it's 3059 * target device has space for more transactions. 3060 */ 3061 void 3062 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3063 { 3064 struct cam_ed *device; 3065 int runq = 0; 3066 3067 mtx_assert(perph->sim->mtx, MA_OWNED); 3068 3069 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3070 device = perph->path->device; 3071 if (periph_is_queued(perph)) { 3072 /* Simply reorder based on new priority */ 3073 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3074 (" change priority to %d\n", new_priority)); 3075 if (new_priority < perph->pinfo.priority) { 3076 camq_change_priority(&device->drvq, 3077 perph->pinfo.index, 3078 new_priority); 3079 runq = 1; 3080 } 3081 } else { 3082 /* New entry on the queue */ 3083 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3084 (" added periph to queue\n")); 3085 perph->pinfo.priority = new_priority; 3086 perph->pinfo.generation = ++device->drvq.generation; 3087 camq_insert(&device->drvq, &perph->pinfo); 3088 runq = 1; 3089 } 3090 if (runq != 0) { 3091 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3092 (" calling xpt_run_dev_allocq\n")); 3093 xpt_run_dev_allocq(device); 3094 } 3095 } 3096 3097 3098 /* 3099 * Schedule a device to run on a given queue. 3100 * If the device was inserted as a new entry on the queue, 3101 * return 1 meaning the device queue should be run. If we 3102 * were already queued, implying someone else has already 3103 * started the queue, return 0 so the caller doesn't attempt 3104 * to run the queue. 3105 */ 3106 int 3107 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3108 u_int32_t new_priority) 3109 { 3110 int retval; 3111 u_int32_t old_priority; 3112 3113 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3114 3115 old_priority = pinfo->priority; 3116 3117 /* 3118 * Are we already queued? 3119 */ 3120 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3121 /* Simply reorder based on new priority */ 3122 if (new_priority < old_priority) { 3123 camq_change_priority(queue, pinfo->index, 3124 new_priority); 3125 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3126 ("changed priority to %d\n", 3127 new_priority)); 3128 retval = 1; 3129 } else 3130 retval = 0; 3131 } else { 3132 /* New entry on the queue */ 3133 if (new_priority < old_priority) 3134 pinfo->priority = new_priority; 3135 3136 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3137 ("Inserting onto queue\n")); 3138 pinfo->generation = ++queue->generation; 3139 camq_insert(queue, pinfo); 3140 retval = 1; 3141 } 3142 return (retval); 3143 } 3144 3145 static void 3146 xpt_run_dev_allocq(struct cam_ed *device) 3147 { 3148 struct camq *drvq; 3149 3150 if (device->ccbq.devq_allocating) 3151 return; 3152 device->ccbq.devq_allocating = 1; 3153 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device)); 3154 drvq = &device->drvq; 3155 while ((drvq->entries > 0) && 3156 (device->ccbq.devq_openings > 0 || 3157 CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) && 3158 (device->ccbq.queue.qfrozen_cnt == 0)) { 3159 union ccb *work_ccb; 3160 struct cam_periph *drv; 3161 3162 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: " 3163 "Device on queue without any work to do")); 3164 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3165 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3166 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3167 drv->pinfo.priority); 3168 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3169 ("calling periph start\n")); 3170 drv->periph_start(drv, work_ccb); 3171 } else { 3172 /* 3173 * Malloc failure in alloc_ccb 3174 */ 3175 /* 3176 * XXX add us to a list to be run from free_ccb 3177 * if we don't have any ccbs active on this 3178 * device queue otherwise we may never get run 3179 * again. 3180 */ 3181 break; 3182 } 3183 } 3184 device->ccbq.devq_allocating = 0; 3185 } 3186 3187 static void 3188 xpt_run_devq(struct cam_devq *devq) 3189 { 3190 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3191 3192 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3193 3194 devq->send_queue.qfrozen_cnt++; 3195 while ((devq->send_queue.entries > 0) 3196 && (devq->send_openings > 0) 3197 && (devq->send_queue.qfrozen_cnt <= 1)) { 3198 struct cam_ed_qinfo *qinfo; 3199 struct cam_ed *device; 3200 union ccb *work_ccb; 3201 struct cam_sim *sim; 3202 3203 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3204 CAMQ_HEAD); 3205 device = qinfo->device; 3206 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3207 ("running device %p\n", device)); 3208 3209 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3210 if (work_ccb == NULL) { 3211 printf("device on run queue with no ccbs???\n"); 3212 continue; 3213 } 3214 3215 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3216 3217 mtx_lock(&xsoftc.xpt_lock); 3218 if (xsoftc.num_highpower <= 0) { 3219 /* 3220 * We got a high power command, but we 3221 * don't have any available slots. Freeze 3222 * the device queue until we have a slot 3223 * available. 3224 */ 3225 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3226 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3227 work_ccb->ccb_h.path->device, 3228 highpowerq_entry); 3229 3230 mtx_unlock(&xsoftc.xpt_lock); 3231 continue; 3232 } else { 3233 /* 3234 * Consume a high power slot while 3235 * this ccb runs. 3236 */ 3237 xsoftc.num_highpower--; 3238 } 3239 mtx_unlock(&xsoftc.xpt_lock); 3240 } 3241 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3242 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3243 3244 devq->send_openings--; 3245 devq->send_active++; 3246 3247 xpt_schedule_devq(devq, device); 3248 3249 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3250 /* 3251 * The client wants to freeze the queue 3252 * after this CCB is sent. 3253 */ 3254 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3255 } 3256 3257 /* In Target mode, the peripheral driver knows best... */ 3258 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3259 if ((device->inq_flags & SID_CmdQue) != 0 3260 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3261 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3262 else 3263 /* 3264 * Clear this in case of a retried CCB that 3265 * failed due to a rejected tag. 3266 */ 3267 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3268 } 3269 3270 switch (work_ccb->ccb_h.func_code) { 3271 case XPT_SCSI_IO: 3272 CAM_DEBUG(work_ccb->ccb_h.path, 3273 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3274 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3275 &device->inq_data), 3276 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3277 cdb_str, sizeof(cdb_str)))); 3278 break; 3279 case XPT_ATA_IO: 3280 CAM_DEBUG(work_ccb->ccb_h.path, 3281 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3282 ata_op_string(&work_ccb->ataio.cmd), 3283 ata_cmd_string(&work_ccb->ataio.cmd, 3284 cdb_str, sizeof(cdb_str)))); 3285 break; 3286 default: 3287 break; 3288 } 3289 3290 /* 3291 * Device queues can be shared among multiple sim instances 3292 * that reside on different busses. Use the SIM in the queue 3293 * CCB's path, rather than the one in the bus that was passed 3294 * into this function. 3295 */ 3296 sim = work_ccb->ccb_h.path->bus->sim; 3297 (*(sim->sim_action))(sim, work_ccb); 3298 } 3299 devq->send_queue.qfrozen_cnt--; 3300 } 3301 3302 /* 3303 * This function merges stuff from the slave ccb into the master ccb, while 3304 * keeping important fields in the master ccb constant. 3305 */ 3306 void 3307 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3308 { 3309 3310 /* 3311 * Pull fields that are valid for peripheral drivers to set 3312 * into the master CCB along with the CCB "payload". 3313 */ 3314 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3315 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3316 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3317 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3318 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3319 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3320 } 3321 3322 void 3323 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3324 { 3325 3326 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3327 ccb_h->pinfo.priority = priority; 3328 ccb_h->path = path; 3329 ccb_h->path_id = path->bus->path_id; 3330 if (path->target) 3331 ccb_h->target_id = path->target->target_id; 3332 else 3333 ccb_h->target_id = CAM_TARGET_WILDCARD; 3334 if (path->device) { 3335 ccb_h->target_lun = path->device->lun_id; 3336 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3337 } else { 3338 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3339 } 3340 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3341 ccb_h->flags = 0; 3342 } 3343 3344 /* Path manipulation functions */ 3345 cam_status 3346 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3347 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3348 { 3349 struct cam_path *path; 3350 cam_status status; 3351 3352 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3353 3354 if (path == NULL) { 3355 status = CAM_RESRC_UNAVAIL; 3356 return(status); 3357 } 3358 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3359 if (status != CAM_REQ_CMP) { 3360 free(path, M_CAMPATH); 3361 path = NULL; 3362 } 3363 *new_path_ptr = path; 3364 return (status); 3365 } 3366 3367 cam_status 3368 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3369 struct cam_periph *periph, path_id_t path_id, 3370 target_id_t target_id, lun_id_t lun_id) 3371 { 3372 struct cam_path *path; 3373 struct cam_eb *bus = NULL; 3374 cam_status status; 3375 3376 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK); 3377 3378 bus = xpt_find_bus(path_id); 3379 if (bus != NULL) 3380 CAM_SIM_LOCK(bus->sim); 3381 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3382 if (bus != NULL) { 3383 CAM_SIM_UNLOCK(bus->sim); 3384 xpt_release_bus(bus); 3385 } 3386 if (status != CAM_REQ_CMP) { 3387 free(path, M_CAMPATH); 3388 path = NULL; 3389 } 3390 *new_path_ptr = path; 3391 return (status); 3392 } 3393 3394 cam_status 3395 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3396 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3397 { 3398 struct cam_eb *bus; 3399 struct cam_et *target; 3400 struct cam_ed *device; 3401 cam_status status; 3402 3403 status = CAM_REQ_CMP; /* Completed without error */ 3404 target = NULL; /* Wildcarded */ 3405 device = NULL; /* Wildcarded */ 3406 3407 /* 3408 * We will potentially modify the EDT, so block interrupts 3409 * that may attempt to create cam paths. 3410 */ 3411 bus = xpt_find_bus(path_id); 3412 if (bus == NULL) { 3413 status = CAM_PATH_INVALID; 3414 } else { 3415 target = xpt_find_target(bus, target_id); 3416 if (target == NULL) { 3417 /* Create one */ 3418 struct cam_et *new_target; 3419 3420 new_target = xpt_alloc_target(bus, target_id); 3421 if (new_target == NULL) { 3422 status = CAM_RESRC_UNAVAIL; 3423 } else { 3424 target = new_target; 3425 } 3426 } 3427 if (target != NULL) { 3428 device = xpt_find_device(target, lun_id); 3429 if (device == NULL) { 3430 /* Create one */ 3431 struct cam_ed *new_device; 3432 3433 new_device = 3434 (*(bus->xport->alloc_device))(bus, 3435 target, 3436 lun_id); 3437 if (new_device == NULL) { 3438 status = CAM_RESRC_UNAVAIL; 3439 } else { 3440 device = new_device; 3441 } 3442 } 3443 } 3444 } 3445 3446 /* 3447 * Only touch the user's data if we are successful. 3448 */ 3449 if (status == CAM_REQ_CMP) { 3450 new_path->periph = perph; 3451 new_path->bus = bus; 3452 new_path->target = target; 3453 new_path->device = device; 3454 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3455 } else { 3456 if (device != NULL) 3457 xpt_release_device(device); 3458 if (target != NULL) 3459 xpt_release_target(target); 3460 if (bus != NULL) 3461 xpt_release_bus(bus); 3462 } 3463 return (status); 3464 } 3465 3466 void 3467 xpt_release_path(struct cam_path *path) 3468 { 3469 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3470 if (path->device != NULL) { 3471 xpt_release_device(path->device); 3472 path->device = NULL; 3473 } 3474 if (path->target != NULL) { 3475 xpt_release_target(path->target); 3476 path->target = NULL; 3477 } 3478 if (path->bus != NULL) { 3479 xpt_release_bus(path->bus); 3480 path->bus = NULL; 3481 } 3482 } 3483 3484 void 3485 xpt_free_path(struct cam_path *path) 3486 { 3487 3488 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3489 xpt_release_path(path); 3490 free(path, M_CAMPATH); 3491 } 3492 3493 void 3494 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3495 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3496 { 3497 3498 xpt_lock_buses(); 3499 if (bus_ref) { 3500 if (path->bus) 3501 *bus_ref = path->bus->refcount; 3502 else 3503 *bus_ref = 0; 3504 } 3505 if (periph_ref) { 3506 if (path->periph) 3507 *periph_ref = path->periph->refcount; 3508 else 3509 *periph_ref = 0; 3510 } 3511 xpt_unlock_buses(); 3512 if (target_ref) { 3513 if (path->target) 3514 *target_ref = path->target->refcount; 3515 else 3516 *target_ref = 0; 3517 } 3518 if (device_ref) { 3519 if (path->device) 3520 *device_ref = path->device->refcount; 3521 else 3522 *device_ref = 0; 3523 } 3524 } 3525 3526 /* 3527 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3528 * in path1, 2 for match with wildcards in path2. 3529 */ 3530 int 3531 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3532 { 3533 int retval = 0; 3534 3535 if (path1->bus != path2->bus) { 3536 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3537 retval = 1; 3538 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3539 retval = 2; 3540 else 3541 return (-1); 3542 } 3543 if (path1->target != path2->target) { 3544 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3545 if (retval == 0) 3546 retval = 1; 3547 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3548 retval = 2; 3549 else 3550 return (-1); 3551 } 3552 if (path1->device != path2->device) { 3553 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3554 if (retval == 0) 3555 retval = 1; 3556 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3557 retval = 2; 3558 else 3559 return (-1); 3560 } 3561 return (retval); 3562 } 3563 3564 void 3565 xpt_print_path(struct cam_path *path) 3566 { 3567 3568 if (path == NULL) 3569 printf("(nopath): "); 3570 else { 3571 if (path->periph != NULL) 3572 printf("(%s%d:", path->periph->periph_name, 3573 path->periph->unit_number); 3574 else 3575 printf("(noperiph:"); 3576 3577 if (path->bus != NULL) 3578 printf("%s%d:%d:", path->bus->sim->sim_name, 3579 path->bus->sim->unit_number, 3580 path->bus->sim->bus_id); 3581 else 3582 printf("nobus:"); 3583 3584 if (path->target != NULL) 3585 printf("%d:", path->target->target_id); 3586 else 3587 printf("X:"); 3588 3589 if (path->device != NULL) 3590 printf("%d): ", path->device->lun_id); 3591 else 3592 printf("X): "); 3593 } 3594 } 3595 3596 void 3597 xpt_print(struct cam_path *path, const char *fmt, ...) 3598 { 3599 va_list ap; 3600 xpt_print_path(path); 3601 va_start(ap, fmt); 3602 vprintf(fmt, ap); 3603 va_end(ap); 3604 } 3605 3606 int 3607 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3608 { 3609 struct sbuf sb; 3610 3611 #ifdef INVARIANTS 3612 if (path != NULL && path->bus != NULL) 3613 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3614 #endif 3615 3616 sbuf_new(&sb, str, str_len, 0); 3617 3618 if (path == NULL) 3619 sbuf_printf(&sb, "(nopath): "); 3620 else { 3621 if (path->periph != NULL) 3622 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3623 path->periph->unit_number); 3624 else 3625 sbuf_printf(&sb, "(noperiph:"); 3626 3627 if (path->bus != NULL) 3628 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3629 path->bus->sim->unit_number, 3630 path->bus->sim->bus_id); 3631 else 3632 sbuf_printf(&sb, "nobus:"); 3633 3634 if (path->target != NULL) 3635 sbuf_printf(&sb, "%d:", path->target->target_id); 3636 else 3637 sbuf_printf(&sb, "X:"); 3638 3639 if (path->device != NULL) 3640 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3641 else 3642 sbuf_printf(&sb, "X): "); 3643 } 3644 sbuf_finish(&sb); 3645 3646 return(sbuf_len(&sb)); 3647 } 3648 3649 path_id_t 3650 xpt_path_path_id(struct cam_path *path) 3651 { 3652 return(path->bus->path_id); 3653 } 3654 3655 target_id_t 3656 xpt_path_target_id(struct cam_path *path) 3657 { 3658 if (path->target != NULL) 3659 return (path->target->target_id); 3660 else 3661 return (CAM_TARGET_WILDCARD); 3662 } 3663 3664 lun_id_t 3665 xpt_path_lun_id(struct cam_path *path) 3666 { 3667 if (path->device != NULL) 3668 return (path->device->lun_id); 3669 else 3670 return (CAM_LUN_WILDCARD); 3671 } 3672 3673 struct cam_sim * 3674 xpt_path_sim(struct cam_path *path) 3675 { 3676 3677 return (path->bus->sim); 3678 } 3679 3680 struct cam_periph* 3681 xpt_path_periph(struct cam_path *path) 3682 { 3683 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3684 3685 return (path->periph); 3686 } 3687 3688 int 3689 xpt_path_legacy_ata_id(struct cam_path *path) 3690 { 3691 struct cam_eb *bus; 3692 int bus_id; 3693 3694 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3695 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3696 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3697 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3698 return (-1); 3699 3700 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3701 path->bus->sim->unit_number < 2) { 3702 bus_id = path->bus->sim->unit_number; 3703 } else { 3704 bus_id = 2; 3705 xpt_lock_buses(); 3706 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3707 if (bus == path->bus) 3708 break; 3709 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3710 bus->sim->unit_number >= 2) || 3711 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3712 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3713 strcmp(bus->sim->sim_name, "siisch") == 0) 3714 bus_id++; 3715 } 3716 xpt_unlock_buses(); 3717 } 3718 if (path->target != NULL) { 3719 if (path->target->target_id < 2) 3720 return (bus_id * 2 + path->target->target_id); 3721 else 3722 return (-1); 3723 } else 3724 return (bus_id * 2); 3725 } 3726 3727 /* 3728 * Release a CAM control block for the caller. Remit the cost of the structure 3729 * to the device referenced by the path. If the this device had no 'credits' 3730 * and peripheral drivers have registered async callbacks for this notification 3731 * call them now. 3732 */ 3733 void 3734 xpt_release_ccb(union ccb *free_ccb) 3735 { 3736 struct cam_path *path; 3737 struct cam_ed *device; 3738 struct cam_eb *bus; 3739 struct cam_sim *sim; 3740 3741 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3742 path = free_ccb->ccb_h.path; 3743 device = path->device; 3744 bus = path->bus; 3745 sim = bus->sim; 3746 3747 mtx_assert(sim->mtx, MA_OWNED); 3748 3749 cam_ccbq_release_opening(&device->ccbq); 3750 if (sim->ccb_count > sim->max_ccbs) { 3751 xpt_free_ccb(free_ccb); 3752 sim->ccb_count--; 3753 } else { 3754 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3755 xpt_links.sle); 3756 } 3757 xpt_run_dev_allocq(device); 3758 } 3759 3760 /* Functions accessed by SIM drivers */ 3761 3762 static struct xpt_xport xport_default = { 3763 .alloc_device = xpt_alloc_device_default, 3764 .action = xpt_action_default, 3765 .async = xpt_dev_async_default, 3766 }; 3767 3768 /* 3769 * A sim structure, listing the SIM entry points and instance 3770 * identification info is passed to xpt_bus_register to hook the SIM 3771 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3772 * for this new bus and places it in the array of busses and assigns 3773 * it a path_id. The path_id may be influenced by "hard wiring" 3774 * information specified by the user. Once interrupt services are 3775 * available, the bus will be probed. 3776 */ 3777 int32_t 3778 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3779 { 3780 struct cam_eb *new_bus; 3781 struct cam_eb *old_bus; 3782 struct ccb_pathinq cpi; 3783 struct cam_path *path; 3784 cam_status status; 3785 3786 mtx_assert(sim->mtx, MA_OWNED); 3787 3788 sim->bus_id = bus; 3789 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3790 M_CAMXPT, M_NOWAIT); 3791 if (new_bus == NULL) { 3792 /* Couldn't satisfy request */ 3793 return (CAM_RESRC_UNAVAIL); 3794 } 3795 if (strcmp(sim->sim_name, "xpt") != 0) { 3796 sim->path_id = 3797 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3798 } 3799 3800 TAILQ_INIT(&new_bus->et_entries); 3801 new_bus->path_id = sim->path_id; 3802 cam_sim_hold(sim); 3803 new_bus->sim = sim; 3804 timevalclear(&new_bus->last_reset); 3805 new_bus->flags = 0; 3806 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3807 new_bus->generation = 0; 3808 3809 xpt_lock_buses(); 3810 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3811 while (old_bus != NULL 3812 && old_bus->path_id < new_bus->path_id) 3813 old_bus = TAILQ_NEXT(old_bus, links); 3814 if (old_bus != NULL) 3815 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3816 else 3817 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3818 xsoftc.bus_generation++; 3819 xpt_unlock_buses(); 3820 3821 /* 3822 * Set a default transport so that a PATH_INQ can be issued to 3823 * the SIM. This will then allow for probing and attaching of 3824 * a more appropriate transport. 3825 */ 3826 new_bus->xport = &xport_default; 3827 3828 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3829 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3830 if (status != CAM_REQ_CMP) { 3831 xpt_release_bus(new_bus); 3832 free(path, M_CAMXPT); 3833 return (CAM_RESRC_UNAVAIL); 3834 } 3835 3836 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3837 cpi.ccb_h.func_code = XPT_PATH_INQ; 3838 xpt_action((union ccb *)&cpi); 3839 3840 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3841 switch (cpi.transport) { 3842 case XPORT_SPI: 3843 case XPORT_SAS: 3844 case XPORT_FC: 3845 case XPORT_USB: 3846 case XPORT_ISCSI: 3847 case XPORT_PPB: 3848 new_bus->xport = scsi_get_xport(); 3849 break; 3850 case XPORT_ATA: 3851 case XPORT_SATA: 3852 new_bus->xport = ata_get_xport(); 3853 break; 3854 default: 3855 new_bus->xport = &xport_default; 3856 break; 3857 } 3858 } 3859 3860 /* Notify interested parties */ 3861 if (sim->path_id != CAM_XPT_PATH_ID) { 3862 3863 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3864 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3865 union ccb *scan_ccb; 3866 3867 /* Initiate bus rescan. */ 3868 scan_ccb = xpt_alloc_ccb_nowait(); 3869 if (scan_ccb != NULL) { 3870 scan_ccb->ccb_h.path = path; 3871 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3872 scan_ccb->crcn.flags = 0; 3873 xpt_rescan(scan_ccb); 3874 } else 3875 xpt_print(path, 3876 "Can't allocate CCB to scan bus\n"); 3877 } else 3878 xpt_free_path(path); 3879 } else 3880 xpt_free_path(path); 3881 return (CAM_SUCCESS); 3882 } 3883 3884 int32_t 3885 xpt_bus_deregister(path_id_t pathid) 3886 { 3887 struct cam_path bus_path; 3888 cam_status status; 3889 3890 status = xpt_compile_path(&bus_path, NULL, pathid, 3891 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3892 if (status != CAM_REQ_CMP) 3893 return (status); 3894 3895 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3896 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3897 3898 /* Release the reference count held while registered. */ 3899 xpt_release_bus(bus_path.bus); 3900 xpt_release_path(&bus_path); 3901 3902 return (CAM_REQ_CMP); 3903 } 3904 3905 static path_id_t 3906 xptnextfreepathid(void) 3907 { 3908 struct cam_eb *bus; 3909 path_id_t pathid; 3910 const char *strval; 3911 3912 pathid = 0; 3913 xpt_lock_buses(); 3914 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3915 retry: 3916 /* Find an unoccupied pathid */ 3917 while (bus != NULL && bus->path_id <= pathid) { 3918 if (bus->path_id == pathid) 3919 pathid++; 3920 bus = TAILQ_NEXT(bus, links); 3921 } 3922 xpt_unlock_buses(); 3923 3924 /* 3925 * Ensure that this pathid is not reserved for 3926 * a bus that may be registered in the future. 3927 */ 3928 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3929 ++pathid; 3930 /* Start the search over */ 3931 xpt_lock_buses(); 3932 goto retry; 3933 } 3934 return (pathid); 3935 } 3936 3937 static path_id_t 3938 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3939 { 3940 path_id_t pathid; 3941 int i, dunit, val; 3942 char buf[32]; 3943 const char *dname; 3944 3945 pathid = CAM_XPT_PATH_ID; 3946 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3947 i = 0; 3948 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3949 if (strcmp(dname, "scbus")) { 3950 /* Avoid a bit of foot shooting. */ 3951 continue; 3952 } 3953 if (dunit < 0) /* unwired?! */ 3954 continue; 3955 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3956 if (sim_bus == val) { 3957 pathid = dunit; 3958 break; 3959 } 3960 } else if (sim_bus == 0) { 3961 /* Unspecified matches bus 0 */ 3962 pathid = dunit; 3963 break; 3964 } else { 3965 printf("Ambiguous scbus configuration for %s%d " 3966 "bus %d, cannot wire down. The kernel " 3967 "config entry for scbus%d should " 3968 "specify a controller bus.\n" 3969 "Scbus will be assigned dynamically.\n", 3970 sim_name, sim_unit, sim_bus, dunit); 3971 break; 3972 } 3973 } 3974 3975 if (pathid == CAM_XPT_PATH_ID) 3976 pathid = xptnextfreepathid(); 3977 return (pathid); 3978 } 3979 3980 static const char * 3981 xpt_async_string(u_int32_t async_code) 3982 { 3983 3984 switch (async_code) { 3985 case AC_BUS_RESET: return ("AC_BUS_RESET"); 3986 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 3987 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 3988 case AC_SENT_BDR: return ("AC_SENT_BDR"); 3989 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 3990 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 3991 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 3992 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 3993 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 3994 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 3995 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 3996 case AC_CONTRACT: return ("AC_CONTRACT"); 3997 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 3998 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 3999 } 4000 return ("AC_UNKNOWN"); 4001 } 4002 4003 void 4004 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4005 { 4006 struct cam_eb *bus; 4007 struct cam_et *target, *next_target; 4008 struct cam_ed *device, *next_device; 4009 4010 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4011 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4012 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4013 4014 /* 4015 * Most async events come from a CAM interrupt context. In 4016 * a few cases, the error recovery code at the peripheral layer, 4017 * which may run from our SWI or a process context, may signal 4018 * deferred events with a call to xpt_async. 4019 */ 4020 4021 bus = path->bus; 4022 4023 if (async_code == AC_BUS_RESET) { 4024 /* Update our notion of when the last reset occurred */ 4025 microtime(&bus->last_reset); 4026 } 4027 4028 for (target = TAILQ_FIRST(&bus->et_entries); 4029 target != NULL; 4030 target = next_target) { 4031 4032 next_target = TAILQ_NEXT(target, links); 4033 4034 if (path->target != target 4035 && path->target->target_id != CAM_TARGET_WILDCARD 4036 && target->target_id != CAM_TARGET_WILDCARD) 4037 continue; 4038 4039 if (async_code == AC_SENT_BDR) { 4040 /* Update our notion of when the last reset occurred */ 4041 microtime(&path->target->last_reset); 4042 } 4043 4044 for (device = TAILQ_FIRST(&target->ed_entries); 4045 device != NULL; 4046 device = next_device) { 4047 4048 next_device = TAILQ_NEXT(device, links); 4049 4050 if (path->device != device 4051 && path->device->lun_id != CAM_LUN_WILDCARD 4052 && device->lun_id != CAM_LUN_WILDCARD) 4053 continue; 4054 /* 4055 * The async callback could free the device. 4056 * If it is a broadcast async, it doesn't hold 4057 * device reference, so take our own reference. 4058 */ 4059 xpt_acquire_device(device); 4060 (*(bus->xport->async))(async_code, bus, 4061 target, device, 4062 async_arg); 4063 4064 xpt_async_bcast(&device->asyncs, async_code, 4065 path, async_arg); 4066 xpt_release_device(device); 4067 } 4068 } 4069 4070 /* 4071 * If this wasn't a fully wildcarded async, tell all 4072 * clients that want all async events. 4073 */ 4074 if (bus != xpt_periph->path->bus) 4075 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4076 path, async_arg); 4077 } 4078 4079 static void 4080 xpt_async_bcast(struct async_list *async_head, 4081 u_int32_t async_code, 4082 struct cam_path *path, void *async_arg) 4083 { 4084 struct async_node *cur_entry; 4085 4086 cur_entry = SLIST_FIRST(async_head); 4087 while (cur_entry != NULL) { 4088 struct async_node *next_entry; 4089 /* 4090 * Grab the next list entry before we call the current 4091 * entry's callback. This is because the callback function 4092 * can delete its async callback entry. 4093 */ 4094 next_entry = SLIST_NEXT(cur_entry, links); 4095 if ((cur_entry->event_enable & async_code) != 0) 4096 cur_entry->callback(cur_entry->callback_arg, 4097 async_code, path, 4098 async_arg); 4099 cur_entry = next_entry; 4100 } 4101 } 4102 4103 static void 4104 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4105 struct cam_et *target, struct cam_ed *device, 4106 void *async_arg) 4107 { 4108 printf("%s called\n", __func__); 4109 } 4110 4111 u_int32_t 4112 xpt_freeze_devq(struct cam_path *path, u_int count) 4113 { 4114 struct cam_ed *dev = path->device; 4115 4116 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4117 dev->ccbq.queue.qfrozen_cnt += count; 4118 /* Remove frozen device from sendq. */ 4119 if (device_is_queued(dev)) { 4120 camq_remove(&dev->sim->devq->send_queue, 4121 dev->devq_entry.pinfo.index); 4122 } 4123 return (dev->ccbq.queue.qfrozen_cnt); 4124 } 4125 4126 u_int32_t 4127 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4128 { 4129 4130 mtx_assert(sim->mtx, MA_OWNED); 4131 sim->devq->send_queue.qfrozen_cnt += count; 4132 return (sim->devq->send_queue.qfrozen_cnt); 4133 } 4134 4135 static void 4136 xpt_release_devq_timeout(void *arg) 4137 { 4138 struct cam_ed *device; 4139 4140 device = (struct cam_ed *)arg; 4141 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4142 } 4143 4144 void 4145 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4146 { 4147 4148 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4149 xpt_release_devq_device(path->device, count, run_queue); 4150 } 4151 4152 void 4153 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4154 { 4155 4156 if (count > dev->ccbq.queue.qfrozen_cnt) { 4157 #ifdef INVARIANTS 4158 printf("xpt_release_devq(): requested %u > present %u\n", 4159 count, dev->ccbq.queue.qfrozen_cnt); 4160 #endif 4161 count = dev->ccbq.queue.qfrozen_cnt; 4162 } 4163 dev->ccbq.queue.qfrozen_cnt -= count; 4164 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4165 /* 4166 * No longer need to wait for a successful 4167 * command completion. 4168 */ 4169 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4170 /* 4171 * Remove any timeouts that might be scheduled 4172 * to release this queue. 4173 */ 4174 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4175 callout_stop(&dev->callout); 4176 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4177 } 4178 xpt_run_dev_allocq(dev); 4179 if (run_queue == 0) 4180 return; 4181 /* 4182 * Now that we are unfrozen schedule the 4183 * device so any pending transactions are 4184 * run. 4185 */ 4186 if (xpt_schedule_devq(dev->sim->devq, dev)) 4187 xpt_run_devq(dev->sim->devq); 4188 } 4189 } 4190 4191 void 4192 xpt_release_simq(struct cam_sim *sim, int run_queue) 4193 { 4194 struct camq *sendq; 4195 4196 mtx_assert(sim->mtx, MA_OWNED); 4197 sendq = &(sim->devq->send_queue); 4198 if (sendq->qfrozen_cnt <= 0) { 4199 #ifdef INVARIANTS 4200 printf("xpt_release_simq: requested 1 > present %u\n", 4201 sendq->qfrozen_cnt); 4202 #endif 4203 } else 4204 sendq->qfrozen_cnt--; 4205 if (sendq->qfrozen_cnt == 0) { 4206 /* 4207 * If there is a timeout scheduled to release this 4208 * sim queue, remove it. The queue frozen count is 4209 * already at 0. 4210 */ 4211 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4212 callout_stop(&sim->callout); 4213 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4214 } 4215 if (run_queue) { 4216 /* 4217 * Now that we are unfrozen run the send queue. 4218 */ 4219 xpt_run_devq(sim->devq); 4220 } 4221 } 4222 } 4223 4224 /* 4225 * XXX Appears to be unused. 4226 */ 4227 static void 4228 xpt_release_simq_timeout(void *arg) 4229 { 4230 struct cam_sim *sim; 4231 4232 sim = (struct cam_sim *)arg; 4233 xpt_release_simq(sim, /* run_queue */ TRUE); 4234 } 4235 4236 void 4237 xpt_done(union ccb *done_ccb) 4238 { 4239 struct cam_sim *sim; 4240 int first; 4241 4242 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4243 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4244 /* 4245 * Queue up the request for handling by our SWI handler 4246 * any of the "non-immediate" type of ccbs. 4247 */ 4248 sim = done_ccb->ccb_h.path->bus->sim; 4249 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4250 sim_links.tqe); 4251 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4252 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED | 4253 CAM_SIM_BATCH)) == 0) { 4254 mtx_lock(&cam_simq_lock); 4255 first = TAILQ_EMPTY(&cam_simq); 4256 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4257 mtx_unlock(&cam_simq_lock); 4258 sim->flags |= CAM_SIM_ON_DONEQ; 4259 if (first) 4260 swi_sched(cambio_ih, 0); 4261 } 4262 } 4263 } 4264 4265 void 4266 xpt_batch_start(struct cam_sim *sim) 4267 { 4268 4269 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set")); 4270 sim->flags |= CAM_SIM_BATCH; 4271 } 4272 4273 void 4274 xpt_batch_done(struct cam_sim *sim) 4275 { 4276 4277 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set")); 4278 sim->flags &= ~CAM_SIM_BATCH; 4279 if (!TAILQ_EMPTY(&sim->sim_doneq) && 4280 (sim->flags & CAM_SIM_ON_DONEQ) == 0) 4281 camisr_runqueue(sim); 4282 } 4283 4284 union ccb * 4285 xpt_alloc_ccb() 4286 { 4287 union ccb *new_ccb; 4288 4289 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4290 return (new_ccb); 4291 } 4292 4293 union ccb * 4294 xpt_alloc_ccb_nowait() 4295 { 4296 union ccb *new_ccb; 4297 4298 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4299 return (new_ccb); 4300 } 4301 4302 void 4303 xpt_free_ccb(union ccb *free_ccb) 4304 { 4305 free(free_ccb, M_CAMCCB); 4306 } 4307 4308 4309 4310 /* Private XPT functions */ 4311 4312 /* 4313 * Get a CAM control block for the caller. Charge the structure to the device 4314 * referenced by the path. If the this device has no 'credits' then the 4315 * device already has the maximum number of outstanding operations under way 4316 * and we return NULL. If we don't have sufficient resources to allocate more 4317 * ccbs, we also return NULL. 4318 */ 4319 static union ccb * 4320 xpt_get_ccb(struct cam_ed *device) 4321 { 4322 union ccb *new_ccb; 4323 struct cam_sim *sim; 4324 4325 sim = device->sim; 4326 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4327 new_ccb = xpt_alloc_ccb_nowait(); 4328 if (new_ccb == NULL) { 4329 return (NULL); 4330 } 4331 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4332 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4333 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4334 xpt_links.sle); 4335 sim->ccb_count++; 4336 } 4337 cam_ccbq_take_opening(&device->ccbq); 4338 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4339 return (new_ccb); 4340 } 4341 4342 static void 4343 xpt_release_bus(struct cam_eb *bus) 4344 { 4345 4346 xpt_lock_buses(); 4347 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4348 if (--bus->refcount > 0) { 4349 xpt_unlock_buses(); 4350 return; 4351 } 4352 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4353 ("refcount is zero, but target list is not empty")); 4354 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4355 xsoftc.bus_generation++; 4356 xpt_unlock_buses(); 4357 cam_sim_release(bus->sim); 4358 free(bus, M_CAMXPT); 4359 } 4360 4361 static struct cam_et * 4362 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4363 { 4364 struct cam_et *cur_target, *target; 4365 4366 mtx_assert(bus->sim->mtx, MA_OWNED); 4367 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4368 M_NOWAIT|M_ZERO); 4369 if (target == NULL) 4370 return (NULL); 4371 4372 TAILQ_INIT(&target->ed_entries); 4373 target->bus = bus; 4374 target->target_id = target_id; 4375 target->refcount = 1; 4376 target->generation = 0; 4377 target->luns = NULL; 4378 timevalclear(&target->last_reset); 4379 /* 4380 * Hold a reference to our parent bus so it 4381 * will not go away before we do. 4382 */ 4383 xpt_lock_buses(); 4384 bus->refcount++; 4385 xpt_unlock_buses(); 4386 4387 /* Insertion sort into our bus's target list */ 4388 cur_target = TAILQ_FIRST(&bus->et_entries); 4389 while (cur_target != NULL && cur_target->target_id < target_id) 4390 cur_target = TAILQ_NEXT(cur_target, links); 4391 if (cur_target != NULL) { 4392 TAILQ_INSERT_BEFORE(cur_target, target, links); 4393 } else { 4394 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4395 } 4396 bus->generation++; 4397 return (target); 4398 } 4399 4400 static void 4401 xpt_release_target(struct cam_et *target) 4402 { 4403 4404 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4405 if (--target->refcount > 0) 4406 return; 4407 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4408 ("refcount is zero, but device list is not empty")); 4409 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4410 target->bus->generation++; 4411 xpt_release_bus(target->bus); 4412 if (target->luns) 4413 free(target->luns, M_CAMXPT); 4414 free(target, M_CAMXPT); 4415 } 4416 4417 static struct cam_ed * 4418 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4419 lun_id_t lun_id) 4420 { 4421 struct cam_ed *device; 4422 4423 device = xpt_alloc_device(bus, target, lun_id); 4424 if (device == NULL) 4425 return (NULL); 4426 4427 device->mintags = 1; 4428 device->maxtags = 1; 4429 bus->sim->max_ccbs += device->ccbq.devq_openings; 4430 return (device); 4431 } 4432 4433 struct cam_ed * 4434 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4435 { 4436 struct cam_ed *cur_device, *device; 4437 struct cam_devq *devq; 4438 cam_status status; 4439 4440 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4441 /* Make space for us in the device queue on our bus */ 4442 devq = bus->sim->devq; 4443 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4444 if (status != CAM_REQ_CMP) 4445 return (NULL); 4446 4447 device = (struct cam_ed *)malloc(sizeof(*device), 4448 M_CAMDEV, M_NOWAIT|M_ZERO); 4449 if (device == NULL) 4450 return (NULL); 4451 4452 cam_init_pinfo(&device->devq_entry.pinfo); 4453 device->devq_entry.device = device; 4454 device->target = target; 4455 device->lun_id = lun_id; 4456 device->sim = bus->sim; 4457 /* Initialize our queues */ 4458 if (camq_init(&device->drvq, 0) != 0) { 4459 free(device, M_CAMDEV); 4460 return (NULL); 4461 } 4462 if (cam_ccbq_init(&device->ccbq, 4463 bus->sim->max_dev_openings) != 0) { 4464 camq_fini(&device->drvq); 4465 free(device, M_CAMDEV); 4466 return (NULL); 4467 } 4468 SLIST_INIT(&device->asyncs); 4469 SLIST_INIT(&device->periphs); 4470 device->generation = 0; 4471 device->flags = CAM_DEV_UNCONFIGURED; 4472 device->tag_delay_count = 0; 4473 device->tag_saved_openings = 0; 4474 device->refcount = 1; 4475 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4476 4477 cur_device = TAILQ_FIRST(&target->ed_entries); 4478 while (cur_device != NULL && cur_device->lun_id < lun_id) 4479 cur_device = TAILQ_NEXT(cur_device, links); 4480 if (cur_device != NULL) 4481 TAILQ_INSERT_BEFORE(cur_device, device, links); 4482 else 4483 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4484 target->refcount++; 4485 target->generation++; 4486 return (device); 4487 } 4488 4489 void 4490 xpt_acquire_device(struct cam_ed *device) 4491 { 4492 4493 mtx_assert(device->sim->mtx, MA_OWNED); 4494 device->refcount++; 4495 } 4496 4497 void 4498 xpt_release_device(struct cam_ed *device) 4499 { 4500 struct cam_devq *devq; 4501 4502 mtx_assert(device->sim->mtx, MA_OWNED); 4503 if (--device->refcount > 0) 4504 return; 4505 4506 KASSERT(SLIST_EMPTY(&device->periphs), 4507 ("refcount is zero, but periphs list is not empty")); 4508 if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4509 panic("Removing device while still queued for ccbs"); 4510 4511 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4512 callout_stop(&device->callout); 4513 4514 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4515 device->target->generation++; 4516 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4517 /* Release our slot in the devq */ 4518 devq = device->target->bus->sim->devq; 4519 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4520 camq_fini(&device->drvq); 4521 cam_ccbq_fini(&device->ccbq); 4522 /* 4523 * Free allocated memory. free(9) does nothing if the 4524 * supplied pointer is NULL, so it is safe to call without 4525 * checking. 4526 */ 4527 free(device->supported_vpds, M_CAMXPT); 4528 free(device->device_id, M_CAMXPT); 4529 free(device->physpath, M_CAMXPT); 4530 free(device->rcap_buf, M_CAMXPT); 4531 free(device->serial_num, M_CAMXPT); 4532 4533 xpt_release_target(device->target); 4534 free(device, M_CAMDEV); 4535 } 4536 4537 u_int32_t 4538 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4539 { 4540 int diff; 4541 int result; 4542 struct cam_ed *dev; 4543 4544 dev = path->device; 4545 4546 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4547 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4548 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4549 || (dev->inq_flags & SID_CmdQue) != 0) 4550 dev->tag_saved_openings = newopenings; 4551 /* Adjust the global limit */ 4552 dev->sim->max_ccbs += diff; 4553 return (result); 4554 } 4555 4556 static struct cam_eb * 4557 xpt_find_bus(path_id_t path_id) 4558 { 4559 struct cam_eb *bus; 4560 4561 xpt_lock_buses(); 4562 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4563 bus != NULL; 4564 bus = TAILQ_NEXT(bus, links)) { 4565 if (bus->path_id == path_id) { 4566 bus->refcount++; 4567 break; 4568 } 4569 } 4570 xpt_unlock_buses(); 4571 return (bus); 4572 } 4573 4574 static struct cam_et * 4575 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4576 { 4577 struct cam_et *target; 4578 4579 mtx_assert(bus->sim->mtx, MA_OWNED); 4580 for (target = TAILQ_FIRST(&bus->et_entries); 4581 target != NULL; 4582 target = TAILQ_NEXT(target, links)) { 4583 if (target->target_id == target_id) { 4584 target->refcount++; 4585 break; 4586 } 4587 } 4588 return (target); 4589 } 4590 4591 static struct cam_ed * 4592 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4593 { 4594 struct cam_ed *device; 4595 4596 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4597 for (device = TAILQ_FIRST(&target->ed_entries); 4598 device != NULL; 4599 device = TAILQ_NEXT(device, links)) { 4600 if (device->lun_id == lun_id) { 4601 device->refcount++; 4602 break; 4603 } 4604 } 4605 return (device); 4606 } 4607 4608 void 4609 xpt_start_tags(struct cam_path *path) 4610 { 4611 struct ccb_relsim crs; 4612 struct cam_ed *device; 4613 struct cam_sim *sim; 4614 int newopenings; 4615 4616 device = path->device; 4617 sim = path->bus->sim; 4618 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4619 xpt_freeze_devq(path, /*count*/1); 4620 device->inq_flags |= SID_CmdQue; 4621 if (device->tag_saved_openings != 0) 4622 newopenings = device->tag_saved_openings; 4623 else 4624 newopenings = min(device->maxtags, 4625 sim->max_tagged_dev_openings); 4626 xpt_dev_ccbq_resize(path, newopenings); 4627 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4628 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4629 crs.ccb_h.func_code = XPT_REL_SIMQ; 4630 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4631 crs.openings 4632 = crs.release_timeout 4633 = crs.qfrozen_cnt 4634 = 0; 4635 xpt_action((union ccb *)&crs); 4636 } 4637 4638 void 4639 xpt_stop_tags(struct cam_path *path) 4640 { 4641 struct ccb_relsim crs; 4642 struct cam_ed *device; 4643 struct cam_sim *sim; 4644 4645 device = path->device; 4646 sim = path->bus->sim; 4647 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4648 device->tag_delay_count = 0; 4649 xpt_freeze_devq(path, /*count*/1); 4650 device->inq_flags &= ~SID_CmdQue; 4651 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4652 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4653 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4654 crs.ccb_h.func_code = XPT_REL_SIMQ; 4655 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4656 crs.openings 4657 = crs.release_timeout 4658 = crs.qfrozen_cnt 4659 = 0; 4660 xpt_action((union ccb *)&crs); 4661 } 4662 4663 static void 4664 xpt_boot_delay(void *arg) 4665 { 4666 4667 xpt_release_boot(); 4668 } 4669 4670 static void 4671 xpt_config(void *arg) 4672 { 4673 /* 4674 * Now that interrupts are enabled, go find our devices 4675 */ 4676 4677 /* Setup debugging path */ 4678 if (cam_dflags != CAM_DEBUG_NONE) { 4679 if (xpt_create_path_unlocked(&cam_dpath, NULL, 4680 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4681 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4682 printf("xpt_config: xpt_create_path() failed for debug" 4683 " target %d:%d:%d, debugging disabled\n", 4684 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4685 cam_dflags = CAM_DEBUG_NONE; 4686 } 4687 } else 4688 cam_dpath = NULL; 4689 4690 periphdriver_init(1); 4691 xpt_hold_boot(); 4692 callout_init(&xsoftc.boot_callout, 1); 4693 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4694 xpt_boot_delay, NULL); 4695 /* Fire up rescan thread. */ 4696 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4697 printf("xpt_config: failed to create rescan thread.\n"); 4698 } 4699 } 4700 4701 void 4702 xpt_hold_boot(void) 4703 { 4704 xpt_lock_buses(); 4705 xsoftc.buses_to_config++; 4706 xpt_unlock_buses(); 4707 } 4708 4709 void 4710 xpt_release_boot(void) 4711 { 4712 xpt_lock_buses(); 4713 xsoftc.buses_to_config--; 4714 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4715 struct xpt_task *task; 4716 4717 xsoftc.buses_config_done = 1; 4718 xpt_unlock_buses(); 4719 /* Call manually because we don't have any busses */ 4720 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4721 if (task != NULL) { 4722 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4723 taskqueue_enqueue(taskqueue_thread, &task->task); 4724 } 4725 } else 4726 xpt_unlock_buses(); 4727 } 4728 4729 /* 4730 * If the given device only has one peripheral attached to it, and if that 4731 * peripheral is the passthrough driver, announce it. This insures that the 4732 * user sees some sort of announcement for every peripheral in their system. 4733 */ 4734 static int 4735 xptpassannouncefunc(struct cam_ed *device, void *arg) 4736 { 4737 struct cam_periph *periph; 4738 int i; 4739 4740 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4741 periph = SLIST_NEXT(periph, periph_links), i++); 4742 4743 periph = SLIST_FIRST(&device->periphs); 4744 if ((i == 1) 4745 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4746 xpt_announce_periph(periph, NULL); 4747 4748 return(1); 4749 } 4750 4751 static void 4752 xpt_finishconfig_task(void *context, int pending) 4753 { 4754 4755 periphdriver_init(2); 4756 /* 4757 * Check for devices with no "standard" peripheral driver 4758 * attached. For any devices like that, announce the 4759 * passthrough driver so the user will see something. 4760 */ 4761 if (!bootverbose) 4762 xpt_for_all_devices(xptpassannouncefunc, NULL); 4763 4764 /* Release our hook so that the boot can continue. */ 4765 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4766 free(xsoftc.xpt_config_hook, M_CAMXPT); 4767 xsoftc.xpt_config_hook = NULL; 4768 4769 free(context, M_CAMXPT); 4770 } 4771 4772 cam_status 4773 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4774 struct cam_path *path) 4775 { 4776 struct ccb_setasync csa; 4777 cam_status status; 4778 int xptpath = 0; 4779 4780 if (path == NULL) { 4781 mtx_lock(&xsoftc.xpt_lock); 4782 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4783 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4784 if (status != CAM_REQ_CMP) { 4785 mtx_unlock(&xsoftc.xpt_lock); 4786 return (status); 4787 } 4788 xptpath = 1; 4789 } 4790 4791 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4792 csa.ccb_h.func_code = XPT_SASYNC_CB; 4793 csa.event_enable = event; 4794 csa.callback = cbfunc; 4795 csa.callback_arg = cbarg; 4796 xpt_action((union ccb *)&csa); 4797 status = csa.ccb_h.status; 4798 4799 if (xptpath) { 4800 xpt_free_path(path); 4801 mtx_unlock(&xsoftc.xpt_lock); 4802 } 4803 4804 if ((status == CAM_REQ_CMP) && 4805 (csa.event_enable & AC_FOUND_DEVICE)) { 4806 /* 4807 * Get this peripheral up to date with all 4808 * the currently existing devices. 4809 */ 4810 xpt_for_all_devices(xptsetasyncfunc, &csa); 4811 } 4812 if ((status == CAM_REQ_CMP) && 4813 (csa.event_enable & AC_PATH_REGISTERED)) { 4814 /* 4815 * Get this peripheral up to date with all 4816 * the currently existing busses. 4817 */ 4818 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4819 } 4820 4821 return (status); 4822 } 4823 4824 static void 4825 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4826 { 4827 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4828 4829 switch (work_ccb->ccb_h.func_code) { 4830 /* Common cases first */ 4831 case XPT_PATH_INQ: /* Path routing inquiry */ 4832 { 4833 struct ccb_pathinq *cpi; 4834 4835 cpi = &work_ccb->cpi; 4836 cpi->version_num = 1; /* XXX??? */ 4837 cpi->hba_inquiry = 0; 4838 cpi->target_sprt = 0; 4839 cpi->hba_misc = 0; 4840 cpi->hba_eng_cnt = 0; 4841 cpi->max_target = 0; 4842 cpi->max_lun = 0; 4843 cpi->initiator_id = 0; 4844 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4845 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4846 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4847 cpi->unit_number = sim->unit_number; 4848 cpi->bus_id = sim->bus_id; 4849 cpi->base_transfer_speed = 0; 4850 cpi->protocol = PROTO_UNSPECIFIED; 4851 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4852 cpi->transport = XPORT_UNSPECIFIED; 4853 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4854 cpi->ccb_h.status = CAM_REQ_CMP; 4855 xpt_done(work_ccb); 4856 break; 4857 } 4858 default: 4859 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4860 xpt_done(work_ccb); 4861 break; 4862 } 4863 } 4864 4865 /* 4866 * The xpt as a "controller" has no interrupt sources, so polling 4867 * is a no-op. 4868 */ 4869 static void 4870 xptpoll(struct cam_sim *sim) 4871 { 4872 } 4873 4874 void 4875 xpt_lock_buses(void) 4876 { 4877 mtx_lock(&xsoftc.xpt_topo_lock); 4878 } 4879 4880 void 4881 xpt_unlock_buses(void) 4882 { 4883 mtx_unlock(&xsoftc.xpt_topo_lock); 4884 } 4885 4886 static void 4887 camisr(void *dummy) 4888 { 4889 cam_simq_t queue; 4890 struct cam_sim *sim; 4891 4892 mtx_lock(&cam_simq_lock); 4893 TAILQ_INIT(&queue); 4894 while (!TAILQ_EMPTY(&cam_simq)) { 4895 TAILQ_CONCAT(&queue, &cam_simq, links); 4896 mtx_unlock(&cam_simq_lock); 4897 4898 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4899 TAILQ_REMOVE(&queue, sim, links); 4900 CAM_SIM_LOCK(sim); 4901 camisr_runqueue(sim); 4902 sim->flags &= ~CAM_SIM_ON_DONEQ; 4903 CAM_SIM_UNLOCK(sim); 4904 } 4905 mtx_lock(&cam_simq_lock); 4906 } 4907 mtx_unlock(&cam_simq_lock); 4908 } 4909 4910 static void 4911 camisr_runqueue(struct cam_sim *sim) 4912 { 4913 struct ccb_hdr *ccb_h; 4914 4915 while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) { 4916 int runq; 4917 4918 TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe); 4919 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4920 4921 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 4922 ("camisr\n")); 4923 4924 runq = FALSE; 4925 4926 if (ccb_h->flags & CAM_HIGH_POWER) { 4927 struct highpowerlist *hphead; 4928 struct cam_ed *device; 4929 4930 mtx_lock(&xsoftc.xpt_lock); 4931 hphead = &xsoftc.highpowerq; 4932 4933 device = STAILQ_FIRST(hphead); 4934 4935 /* 4936 * Increment the count since this command is done. 4937 */ 4938 xsoftc.num_highpower++; 4939 4940 /* 4941 * Any high powered commands queued up? 4942 */ 4943 if (device != NULL) { 4944 4945 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 4946 mtx_unlock(&xsoftc.xpt_lock); 4947 4948 xpt_release_devq_device(device, 4949 /*count*/1, /*runqueue*/TRUE); 4950 } else 4951 mtx_unlock(&xsoftc.xpt_lock); 4952 } 4953 4954 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 4955 struct cam_ed *dev; 4956 4957 dev = ccb_h->path->device; 4958 4959 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 4960 sim->devq->send_active--; 4961 sim->devq->send_openings++; 4962 runq = TRUE; 4963 4964 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 4965 && (dev->ccbq.dev_active == 0))) { 4966 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 4967 xpt_release_devq(ccb_h->path, /*count*/1, 4968 /*run_queue*/FALSE); 4969 } 4970 4971 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 4972 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 4973 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4974 xpt_release_devq(ccb_h->path, /*count*/1, 4975 /*run_queue*/FALSE); 4976 } 4977 4978 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4979 && (--dev->tag_delay_count == 0)) 4980 xpt_start_tags(ccb_h->path); 4981 if (!device_is_queued(dev)) { 4982 (void)xpt_schedule_devq(sim->devq, dev); 4983 } 4984 } 4985 4986 if (ccb_h->status & CAM_RELEASE_SIMQ) { 4987 xpt_release_simq(sim, /*run_queue*/TRUE); 4988 ccb_h->status &= ~CAM_RELEASE_SIMQ; 4989 runq = FALSE; 4990 } 4991 4992 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 4993 && (ccb_h->status & CAM_DEV_QFRZN)) { 4994 xpt_release_devq(ccb_h->path, /*count*/1, 4995 /*run_queue*/TRUE); 4996 ccb_h->status &= ~CAM_DEV_QFRZN; 4997 } else if (runq) { 4998 xpt_run_devq(sim->devq); 4999 } 5000 5001 /* Call the peripheral driver's callback */ 5002 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5003 } 5004 } 5005