1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_printf.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bio.h> 37 #include <sys/bus.h> 38 #include <sys/systm.h> 39 #include <sys/types.h> 40 #include <sys/malloc.h> 41 #include <sys/kernel.h> 42 #include <sys/time.h> 43 #include <sys/conf.h> 44 #include <sys/fcntl.h> 45 #include <sys/interrupt.h> 46 #include <sys/proc.h> 47 #include <sys/sbuf.h> 48 #include <sys/smp.h> 49 #include <sys/taskqueue.h> 50 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 #include <sys/sysctl.h> 54 #include <sys/kthread.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_iosched.h> 59 #include <cam/cam_periph.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_sim.h> 62 #include <cam/cam_xpt.h> 63 #include <cam/cam_xpt_sim.h> 64 #include <cam/cam_xpt_periph.h> 65 #include <cam/cam_xpt_internal.h> 66 #include <cam/cam_debug.h> 67 #include <cam/cam_compat.h> 68 69 #include <cam/scsi/scsi_all.h> 70 #include <cam/scsi/scsi_message.h> 71 #include <cam/scsi/scsi_pass.h> 72 73 #include <machine/md_var.h> /* geometry translation */ 74 #include <machine/stdarg.h> /* for xpt_print below */ 75 76 #include "opt_cam.h" 77 78 /* Wild guess based on not wanting to grow the stack too much */ 79 #define XPT_PRINT_MAXLEN 512 80 #ifdef PRINTF_BUFR_SIZE 81 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 82 #else 83 #define XPT_PRINT_LEN 128 84 #endif 85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 86 87 /* 88 * This is the maximum number of high powered commands (e.g. start unit) 89 * that can be outstanding at a particular time. 90 */ 91 #ifndef CAM_MAX_HIGHPOWER 92 #define CAM_MAX_HIGHPOWER 4 93 #endif 94 95 /* Datastructures internal to the xpt layer */ 96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 100 101 /* Object for defering XPT actions to a taskqueue */ 102 struct xpt_task { 103 struct task task; 104 void *data1; 105 uintptr_t data2; 106 }; 107 108 struct xpt_softc { 109 uint32_t xpt_generation; 110 111 /* number of high powered commands that can go through right now */ 112 struct mtx xpt_highpower_lock; 113 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 114 int num_highpower; 115 116 /* queue for handling async rescan requests. */ 117 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 118 int buses_to_config; 119 int buses_config_done; 120 int announce_nosbuf; 121 122 /* 123 * Registered buses 124 * 125 * N.B., "busses" is an archaic spelling of "buses". In new code 126 * "buses" is preferred. 127 */ 128 TAILQ_HEAD(,cam_eb) xpt_busses; 129 u_int bus_generation; 130 131 struct intr_config_hook *xpt_config_hook; 132 133 int boot_delay; 134 struct callout boot_callout; 135 136 struct mtx xpt_topo_lock; 137 struct mtx xpt_lock; 138 struct taskqueue *xpt_taskq; 139 }; 140 141 typedef enum { 142 DM_RET_COPY = 0x01, 143 DM_RET_FLAG_MASK = 0x0f, 144 DM_RET_NONE = 0x00, 145 DM_RET_STOP = 0x10, 146 DM_RET_DESCEND = 0x20, 147 DM_RET_ERROR = 0x30, 148 DM_RET_ACTION_MASK = 0xf0 149 } dev_match_ret; 150 151 typedef enum { 152 XPT_DEPTH_BUS, 153 XPT_DEPTH_TARGET, 154 XPT_DEPTH_DEVICE, 155 XPT_DEPTH_PERIPH 156 } xpt_traverse_depth; 157 158 struct xpt_traverse_config { 159 xpt_traverse_depth depth; 160 void *tr_func; 161 void *tr_arg; 162 }; 163 164 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 165 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 166 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 167 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 168 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 169 170 /* Transport layer configuration information */ 171 static struct xpt_softc xsoftc; 172 173 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 174 175 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 176 &xsoftc.boot_delay, 0, "Bus registration wait time"); 177 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 178 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 179 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 180 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 181 182 struct cam_doneq { 183 struct mtx_padalign cam_doneq_mtx; 184 STAILQ_HEAD(, ccb_hdr) cam_doneq; 185 int cam_doneq_sleep; 186 }; 187 188 static struct cam_doneq cam_doneqs[MAXCPU]; 189 static int cam_num_doneqs; 190 static struct proc *cam_proc; 191 192 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 193 &cam_num_doneqs, 0, "Number of completion queues/threads"); 194 195 struct cam_periph *xpt_periph; 196 197 static periph_init_t xpt_periph_init; 198 199 static struct periph_driver xpt_driver = 200 { 201 xpt_periph_init, "xpt", 202 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 203 CAM_PERIPH_DRV_EARLY 204 }; 205 206 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 207 208 static d_open_t xptopen; 209 static d_close_t xptclose; 210 static d_ioctl_t xptioctl; 211 static d_ioctl_t xptdoioctl; 212 213 static struct cdevsw xpt_cdevsw = { 214 .d_version = D_VERSION, 215 .d_flags = 0, 216 .d_open = xptopen, 217 .d_close = xptclose, 218 .d_ioctl = xptioctl, 219 .d_name = "xpt", 220 }; 221 222 /* Storage for debugging datastructures */ 223 struct cam_path *cam_dpath; 224 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 225 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 226 &cam_dflags, 0, "Enabled debug flags"); 227 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 228 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 229 &cam_debug_delay, 0, "Delay in us after each debug message"); 230 231 /* Our boot-time initialization hook */ 232 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 233 234 static moduledata_t cam_moduledata = { 235 "cam", 236 cam_module_event_handler, 237 NULL 238 }; 239 240 static int xpt_init(void *); 241 242 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 243 MODULE_VERSION(cam, 1); 244 245 246 static void xpt_async_bcast(struct async_list *async_head, 247 u_int32_t async_code, 248 struct cam_path *path, 249 void *async_arg); 250 static path_id_t xptnextfreepathid(void); 251 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 252 static union ccb *xpt_get_ccb(struct cam_periph *periph); 253 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 254 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 255 static void xpt_run_allocq_task(void *context, int pending); 256 static void xpt_run_devq(struct cam_devq *devq); 257 static timeout_t xpt_release_devq_timeout; 258 static void xpt_release_simq_timeout(void *arg) __unused; 259 static void xpt_acquire_bus(struct cam_eb *bus); 260 static void xpt_release_bus(struct cam_eb *bus); 261 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 262 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 263 int run_queue); 264 static struct cam_et* 265 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 266 static void xpt_acquire_target(struct cam_et *target); 267 static void xpt_release_target(struct cam_et *target); 268 static struct cam_eb* 269 xpt_find_bus(path_id_t path_id); 270 static struct cam_et* 271 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 272 static struct cam_ed* 273 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 274 static void xpt_config(void *arg); 275 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 276 u_int32_t new_priority); 277 static xpt_devicefunc_t xptpassannouncefunc; 278 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 279 static void xptpoll(struct cam_sim *sim); 280 static void camisr_runqueue(void); 281 static void xpt_done_process(struct ccb_hdr *ccb_h); 282 static void xpt_done_td(void *); 283 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 284 u_int num_patterns, struct cam_eb *bus); 285 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 286 u_int num_patterns, 287 struct cam_ed *device); 288 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 289 u_int num_patterns, 290 struct cam_periph *periph); 291 static xpt_busfunc_t xptedtbusfunc; 292 static xpt_targetfunc_t xptedttargetfunc; 293 static xpt_devicefunc_t xptedtdevicefunc; 294 static xpt_periphfunc_t xptedtperiphfunc; 295 static xpt_pdrvfunc_t xptplistpdrvfunc; 296 static xpt_periphfunc_t xptplistperiphfunc; 297 static int xptedtmatch(struct ccb_dev_match *cdm); 298 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 299 static int xptbustraverse(struct cam_eb *start_bus, 300 xpt_busfunc_t *tr_func, void *arg); 301 static int xpttargettraverse(struct cam_eb *bus, 302 struct cam_et *start_target, 303 xpt_targetfunc_t *tr_func, void *arg); 304 static int xptdevicetraverse(struct cam_et *target, 305 struct cam_ed *start_device, 306 xpt_devicefunc_t *tr_func, void *arg); 307 static int xptperiphtraverse(struct cam_ed *device, 308 struct cam_periph *start_periph, 309 xpt_periphfunc_t *tr_func, void *arg); 310 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 311 xpt_pdrvfunc_t *tr_func, void *arg); 312 static int xptpdperiphtraverse(struct periph_driver **pdrv, 313 struct cam_periph *start_periph, 314 xpt_periphfunc_t *tr_func, 315 void *arg); 316 static xpt_busfunc_t xptdefbusfunc; 317 static xpt_targetfunc_t xptdeftargetfunc; 318 static xpt_devicefunc_t xptdefdevicefunc; 319 static xpt_periphfunc_t xptdefperiphfunc; 320 static void xpt_finishconfig_task(void *context, int pending); 321 static void xpt_dev_async_default(u_int32_t async_code, 322 struct cam_eb *bus, 323 struct cam_et *target, 324 struct cam_ed *device, 325 void *async_arg); 326 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 327 struct cam_et *target, 328 lun_id_t lun_id); 329 static xpt_devicefunc_t xptsetasyncfunc; 330 static xpt_busfunc_t xptsetasyncbusfunc; 331 static cam_status xptregister(struct cam_periph *periph, 332 void *arg); 333 static __inline int device_is_queued(struct cam_ed *device); 334 335 static __inline int 336 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 337 { 338 int retval; 339 340 mtx_assert(&devq->send_mtx, MA_OWNED); 341 if ((dev->ccbq.queue.entries > 0) && 342 (dev->ccbq.dev_openings > 0) && 343 (dev->ccbq.queue.qfrozen_cnt == 0)) { 344 /* 345 * The priority of a device waiting for controller 346 * resources is that of the highest priority CCB 347 * enqueued. 348 */ 349 retval = 350 xpt_schedule_dev(&devq->send_queue, 351 &dev->devq_entry, 352 CAMQ_GET_PRIO(&dev->ccbq.queue)); 353 } else { 354 retval = 0; 355 } 356 return (retval); 357 } 358 359 static __inline int 360 device_is_queued(struct cam_ed *device) 361 { 362 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 363 } 364 365 static void 366 xpt_periph_init() 367 { 368 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 369 } 370 371 static int 372 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 373 { 374 375 /* 376 * Only allow read-write access. 377 */ 378 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 379 return(EPERM); 380 381 /* 382 * We don't allow nonblocking access. 383 */ 384 if ((flags & O_NONBLOCK) != 0) { 385 printf("%s: can't do nonblocking access\n", devtoname(dev)); 386 return(ENODEV); 387 } 388 389 return(0); 390 } 391 392 static int 393 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 394 { 395 396 return(0); 397 } 398 399 /* 400 * Don't automatically grab the xpt softc lock here even though this is going 401 * through the xpt device. The xpt device is really just a back door for 402 * accessing other devices and SIMs, so the right thing to do is to grab 403 * the appropriate SIM lock once the bus/SIM is located. 404 */ 405 static int 406 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 407 { 408 int error; 409 410 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 411 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 412 } 413 return (error); 414 } 415 416 static int 417 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 418 { 419 int error; 420 421 error = 0; 422 423 switch(cmd) { 424 /* 425 * For the transport layer CAMIOCOMMAND ioctl, we really only want 426 * to accept CCB types that don't quite make sense to send through a 427 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 428 * in the CAM spec. 429 */ 430 case CAMIOCOMMAND: { 431 union ccb *ccb; 432 union ccb *inccb; 433 struct cam_eb *bus; 434 435 inccb = (union ccb *)addr; 436 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 437 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 438 inccb->csio.bio = NULL; 439 #endif 440 441 if (inccb->ccb_h.flags & CAM_UNLOCKED) 442 return (EINVAL); 443 444 bus = xpt_find_bus(inccb->ccb_h.path_id); 445 if (bus == NULL) 446 return (EINVAL); 447 448 switch (inccb->ccb_h.func_code) { 449 case XPT_SCAN_BUS: 450 case XPT_RESET_BUS: 451 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 452 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 453 xpt_release_bus(bus); 454 return (EINVAL); 455 } 456 break; 457 case XPT_SCAN_TGT: 458 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 459 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 460 xpt_release_bus(bus); 461 return (EINVAL); 462 } 463 break; 464 default: 465 break; 466 } 467 468 switch(inccb->ccb_h.func_code) { 469 case XPT_SCAN_BUS: 470 case XPT_RESET_BUS: 471 case XPT_PATH_INQ: 472 case XPT_ENG_INQ: 473 case XPT_SCAN_LUN: 474 case XPT_SCAN_TGT: 475 476 ccb = xpt_alloc_ccb(); 477 478 /* 479 * Create a path using the bus, target, and lun the 480 * user passed in. 481 */ 482 if (xpt_create_path(&ccb->ccb_h.path, NULL, 483 inccb->ccb_h.path_id, 484 inccb->ccb_h.target_id, 485 inccb->ccb_h.target_lun) != 486 CAM_REQ_CMP){ 487 error = EINVAL; 488 xpt_free_ccb(ccb); 489 break; 490 } 491 /* Ensure all of our fields are correct */ 492 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 493 inccb->ccb_h.pinfo.priority); 494 xpt_merge_ccb(ccb, inccb); 495 xpt_path_lock(ccb->ccb_h.path); 496 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 497 xpt_path_unlock(ccb->ccb_h.path); 498 bcopy(ccb, inccb, sizeof(union ccb)); 499 xpt_free_path(ccb->ccb_h.path); 500 xpt_free_ccb(ccb); 501 break; 502 503 case XPT_DEBUG: { 504 union ccb ccb; 505 506 /* 507 * This is an immediate CCB, so it's okay to 508 * allocate it on the stack. 509 */ 510 511 /* 512 * Create a path using the bus, target, and lun the 513 * user passed in. 514 */ 515 if (xpt_create_path(&ccb.ccb_h.path, NULL, 516 inccb->ccb_h.path_id, 517 inccb->ccb_h.target_id, 518 inccb->ccb_h.target_lun) != 519 CAM_REQ_CMP){ 520 error = EINVAL; 521 break; 522 } 523 /* Ensure all of our fields are correct */ 524 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 525 inccb->ccb_h.pinfo.priority); 526 xpt_merge_ccb(&ccb, inccb); 527 xpt_action(&ccb); 528 bcopy(&ccb, inccb, sizeof(union ccb)); 529 xpt_free_path(ccb.ccb_h.path); 530 break; 531 532 } 533 case XPT_DEV_MATCH: { 534 struct cam_periph_map_info mapinfo; 535 struct cam_path *old_path; 536 537 /* 538 * We can't deal with physical addresses for this 539 * type of transaction. 540 */ 541 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 542 CAM_DATA_VADDR) { 543 error = EINVAL; 544 break; 545 } 546 547 /* 548 * Save this in case the caller had it set to 549 * something in particular. 550 */ 551 old_path = inccb->ccb_h.path; 552 553 /* 554 * We really don't need a path for the matching 555 * code. The path is needed because of the 556 * debugging statements in xpt_action(). They 557 * assume that the CCB has a valid path. 558 */ 559 inccb->ccb_h.path = xpt_periph->path; 560 561 bzero(&mapinfo, sizeof(mapinfo)); 562 563 /* 564 * Map the pattern and match buffers into kernel 565 * virtual address space. 566 */ 567 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 568 569 if (error) { 570 inccb->ccb_h.path = old_path; 571 break; 572 } 573 574 /* 575 * This is an immediate CCB, we can send it on directly. 576 */ 577 xpt_action(inccb); 578 579 /* 580 * Map the buffers back into user space. 581 */ 582 cam_periph_unmapmem(inccb, &mapinfo); 583 584 inccb->ccb_h.path = old_path; 585 586 error = 0; 587 break; 588 } 589 default: 590 error = ENOTSUP; 591 break; 592 } 593 xpt_release_bus(bus); 594 break; 595 } 596 /* 597 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 598 * with the periphal driver name and unit name filled in. The other 599 * fields don't really matter as input. The passthrough driver name 600 * ("pass"), and unit number are passed back in the ccb. The current 601 * device generation number, and the index into the device peripheral 602 * driver list, and the status are also passed back. Note that 603 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 604 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 605 * (or rather should be) impossible for the device peripheral driver 606 * list to change since we look at the whole thing in one pass, and 607 * we do it with lock protection. 608 * 609 */ 610 case CAMGETPASSTHRU: { 611 union ccb *ccb; 612 struct cam_periph *periph; 613 struct periph_driver **p_drv; 614 char *name; 615 u_int unit; 616 int base_periph_found; 617 618 ccb = (union ccb *)addr; 619 unit = ccb->cgdl.unit_number; 620 name = ccb->cgdl.periph_name; 621 base_periph_found = 0; 622 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 623 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 624 ccb->csio.bio = NULL; 625 #endif 626 627 /* 628 * Sanity check -- make sure we don't get a null peripheral 629 * driver name. 630 */ 631 if (*ccb->cgdl.periph_name == '\0') { 632 error = EINVAL; 633 break; 634 } 635 636 /* Keep the list from changing while we traverse it */ 637 xpt_lock_buses(); 638 639 /* first find our driver in the list of drivers */ 640 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 641 if (strcmp((*p_drv)->driver_name, name) == 0) 642 break; 643 644 if (*p_drv == NULL) { 645 xpt_unlock_buses(); 646 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 647 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 648 *ccb->cgdl.periph_name = '\0'; 649 ccb->cgdl.unit_number = 0; 650 error = ENOENT; 651 break; 652 } 653 654 /* 655 * Run through every peripheral instance of this driver 656 * and check to see whether it matches the unit passed 657 * in by the user. If it does, get out of the loops and 658 * find the passthrough driver associated with that 659 * peripheral driver. 660 */ 661 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 662 periph = TAILQ_NEXT(periph, unit_links)) { 663 664 if (periph->unit_number == unit) 665 break; 666 } 667 /* 668 * If we found the peripheral driver that the user passed 669 * in, go through all of the peripheral drivers for that 670 * particular device and look for a passthrough driver. 671 */ 672 if (periph != NULL) { 673 struct cam_ed *device; 674 int i; 675 676 base_periph_found = 1; 677 device = periph->path->device; 678 for (i = 0, periph = SLIST_FIRST(&device->periphs); 679 periph != NULL; 680 periph = SLIST_NEXT(periph, periph_links), i++) { 681 /* 682 * Check to see whether we have a 683 * passthrough device or not. 684 */ 685 if (strcmp(periph->periph_name, "pass") == 0) { 686 /* 687 * Fill in the getdevlist fields. 688 */ 689 strcpy(ccb->cgdl.periph_name, 690 periph->periph_name); 691 ccb->cgdl.unit_number = 692 periph->unit_number; 693 if (SLIST_NEXT(periph, periph_links)) 694 ccb->cgdl.status = 695 CAM_GDEVLIST_MORE_DEVS; 696 else 697 ccb->cgdl.status = 698 CAM_GDEVLIST_LAST_DEVICE; 699 ccb->cgdl.generation = 700 device->generation; 701 ccb->cgdl.index = i; 702 /* 703 * Fill in some CCB header fields 704 * that the user may want. 705 */ 706 ccb->ccb_h.path_id = 707 periph->path->bus->path_id; 708 ccb->ccb_h.target_id = 709 periph->path->target->target_id; 710 ccb->ccb_h.target_lun = 711 periph->path->device->lun_id; 712 ccb->ccb_h.status = CAM_REQ_CMP; 713 break; 714 } 715 } 716 } 717 718 /* 719 * If the periph is null here, one of two things has 720 * happened. The first possibility is that we couldn't 721 * find the unit number of the particular peripheral driver 722 * that the user is asking about. e.g. the user asks for 723 * the passthrough driver for "da11". We find the list of 724 * "da" peripherals all right, but there is no unit 11. 725 * The other possibility is that we went through the list 726 * of peripheral drivers attached to the device structure, 727 * but didn't find one with the name "pass". Either way, 728 * we return ENOENT, since we couldn't find something. 729 */ 730 if (periph == NULL) { 731 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 732 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 733 *ccb->cgdl.periph_name = '\0'; 734 ccb->cgdl.unit_number = 0; 735 error = ENOENT; 736 /* 737 * It is unfortunate that this is even necessary, 738 * but there are many, many clueless users out there. 739 * If this is true, the user is looking for the 740 * passthrough driver, but doesn't have one in his 741 * kernel. 742 */ 743 if (base_periph_found == 1) { 744 printf("xptioctl: pass driver is not in the " 745 "kernel\n"); 746 printf("xptioctl: put \"device pass\" in " 747 "your kernel config file\n"); 748 } 749 } 750 xpt_unlock_buses(); 751 break; 752 } 753 default: 754 error = ENOTTY; 755 break; 756 } 757 758 return(error); 759 } 760 761 static int 762 cam_module_event_handler(module_t mod, int what, void *arg) 763 { 764 int error; 765 766 switch (what) { 767 case MOD_LOAD: 768 if ((error = xpt_init(NULL)) != 0) 769 return (error); 770 break; 771 case MOD_UNLOAD: 772 return EBUSY; 773 default: 774 return EOPNOTSUPP; 775 } 776 777 return 0; 778 } 779 780 static struct xpt_proto * 781 xpt_proto_find(cam_proto proto) 782 { 783 struct xpt_proto **pp; 784 785 SET_FOREACH(pp, cam_xpt_proto_set) { 786 if ((*pp)->proto == proto) 787 return *pp; 788 } 789 790 return NULL; 791 } 792 793 static void 794 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 795 { 796 797 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 798 xpt_free_path(done_ccb->ccb_h.path); 799 xpt_free_ccb(done_ccb); 800 } else { 801 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 802 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 803 } 804 xpt_release_boot(); 805 } 806 807 /* thread to handle bus rescans */ 808 static void 809 xpt_scanner_thread(void *dummy) 810 { 811 union ccb *ccb; 812 struct cam_path path; 813 814 xpt_lock_buses(); 815 for (;;) { 816 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 817 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 818 "-", 0); 819 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 820 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 821 xpt_unlock_buses(); 822 823 /* 824 * Since lock can be dropped inside and path freed 825 * by completion callback even before return here, 826 * take our own path copy for reference. 827 */ 828 xpt_copy_path(&path, ccb->ccb_h.path); 829 xpt_path_lock(&path); 830 xpt_action(ccb); 831 xpt_path_unlock(&path); 832 xpt_release_path(&path); 833 834 xpt_lock_buses(); 835 } 836 } 837 } 838 839 void 840 xpt_rescan(union ccb *ccb) 841 { 842 struct ccb_hdr *hdr; 843 844 /* Prepare request */ 845 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 846 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 847 ccb->ccb_h.func_code = XPT_SCAN_BUS; 848 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_TGT; 851 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 852 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 853 ccb->ccb_h.func_code = XPT_SCAN_LUN; 854 else { 855 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 856 xpt_free_path(ccb->ccb_h.path); 857 xpt_free_ccb(ccb); 858 return; 859 } 860 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 861 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 862 xpt_action_name(ccb->ccb_h.func_code))); 863 864 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 865 ccb->ccb_h.cbfcnp = xpt_rescan_done; 866 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 867 /* Don't make duplicate entries for the same paths. */ 868 xpt_lock_buses(); 869 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 870 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 871 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 872 wakeup(&xsoftc.ccb_scanq); 873 xpt_unlock_buses(); 874 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 875 xpt_free_path(ccb->ccb_h.path); 876 xpt_free_ccb(ccb); 877 return; 878 } 879 } 880 } 881 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 882 xsoftc.buses_to_config++; 883 wakeup(&xsoftc.ccb_scanq); 884 xpt_unlock_buses(); 885 } 886 887 /* Functions accessed by the peripheral drivers */ 888 static int 889 xpt_init(void *dummy) 890 { 891 struct cam_sim *xpt_sim; 892 struct cam_path *path; 893 struct cam_devq *devq; 894 cam_status status; 895 int error, i; 896 897 TAILQ_INIT(&xsoftc.xpt_busses); 898 TAILQ_INIT(&xsoftc.ccb_scanq); 899 STAILQ_INIT(&xsoftc.highpowerq); 900 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 901 902 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 903 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 904 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 905 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 906 907 #ifdef CAM_BOOT_DELAY 908 /* 909 * Override this value at compile time to assist our users 910 * who don't use loader to boot a kernel. 911 */ 912 xsoftc.boot_delay = CAM_BOOT_DELAY; 913 #endif 914 /* 915 * The xpt layer is, itself, the equivalent of a SIM. 916 * Allow 16 ccbs in the ccb pool for it. This should 917 * give decent parallelism when we probe buses and 918 * perform other XPT functions. 919 */ 920 devq = cam_simq_alloc(16); 921 xpt_sim = cam_sim_alloc(xptaction, 922 xptpoll, 923 "xpt", 924 /*softc*/NULL, 925 /*unit*/0, 926 /*mtx*/&xsoftc.xpt_lock, 927 /*max_dev_transactions*/0, 928 /*max_tagged_dev_transactions*/0, 929 devq); 930 if (xpt_sim == NULL) 931 return (ENOMEM); 932 933 mtx_lock(&xsoftc.xpt_lock); 934 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 935 mtx_unlock(&xsoftc.xpt_lock); 936 printf("xpt_init: xpt_bus_register failed with status %#x," 937 " failing attach\n", status); 938 return (EINVAL); 939 } 940 mtx_unlock(&xsoftc.xpt_lock); 941 942 /* 943 * Looking at the XPT from the SIM layer, the XPT is 944 * the equivalent of a peripheral driver. Allocate 945 * a peripheral driver entry for us. 946 */ 947 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 948 CAM_TARGET_WILDCARD, 949 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 950 printf("xpt_init: xpt_create_path failed with status %#x," 951 " failing attach\n", status); 952 return (EINVAL); 953 } 954 xpt_path_lock(path); 955 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 956 path, NULL, 0, xpt_sim); 957 xpt_path_unlock(path); 958 xpt_free_path(path); 959 960 if (cam_num_doneqs < 1) 961 cam_num_doneqs = 1 + mp_ncpus / 6; 962 else if (cam_num_doneqs > MAXCPU) 963 cam_num_doneqs = MAXCPU; 964 for (i = 0; i < cam_num_doneqs; i++) { 965 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 966 MTX_DEF); 967 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 968 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 969 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 970 if (error != 0) { 971 cam_num_doneqs = i; 972 break; 973 } 974 } 975 if (cam_num_doneqs < 1) { 976 printf("xpt_init: Cannot init completion queues " 977 "- failing attach\n"); 978 return (ENOMEM); 979 } 980 /* 981 * Register a callback for when interrupts are enabled. 982 */ 983 xsoftc.xpt_config_hook = 984 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 985 M_CAMXPT, M_NOWAIT | M_ZERO); 986 if (xsoftc.xpt_config_hook == NULL) { 987 printf("xpt_init: Cannot malloc config hook " 988 "- failing attach\n"); 989 return (ENOMEM); 990 } 991 xsoftc.xpt_config_hook->ich_func = xpt_config; 992 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 993 free (xsoftc.xpt_config_hook, M_CAMXPT); 994 printf("xpt_init: config_intrhook_establish failed " 995 "- failing attach\n"); 996 } 997 998 return (0); 999 } 1000 1001 static cam_status 1002 xptregister(struct cam_periph *periph, void *arg) 1003 { 1004 struct cam_sim *xpt_sim; 1005 1006 if (periph == NULL) { 1007 printf("xptregister: periph was NULL!!\n"); 1008 return(CAM_REQ_CMP_ERR); 1009 } 1010 1011 xpt_sim = (struct cam_sim *)arg; 1012 xpt_sim->softc = periph; 1013 xpt_periph = periph; 1014 periph->softc = NULL; 1015 1016 return(CAM_REQ_CMP); 1017 } 1018 1019 int32_t 1020 xpt_add_periph(struct cam_periph *periph) 1021 { 1022 struct cam_ed *device; 1023 int32_t status; 1024 1025 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1026 device = periph->path->device; 1027 status = CAM_REQ_CMP; 1028 if (device != NULL) { 1029 mtx_lock(&device->target->bus->eb_mtx); 1030 device->generation++; 1031 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1032 mtx_unlock(&device->target->bus->eb_mtx); 1033 atomic_add_32(&xsoftc.xpt_generation, 1); 1034 } 1035 1036 return (status); 1037 } 1038 1039 void 1040 xpt_remove_periph(struct cam_periph *periph) 1041 { 1042 struct cam_ed *device; 1043 1044 device = periph->path->device; 1045 if (device != NULL) { 1046 mtx_lock(&device->target->bus->eb_mtx); 1047 device->generation++; 1048 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1049 mtx_unlock(&device->target->bus->eb_mtx); 1050 atomic_add_32(&xsoftc.xpt_generation, 1); 1051 } 1052 } 1053 1054 1055 void 1056 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1057 { 1058 struct cam_path *path = periph->path; 1059 struct xpt_proto *proto; 1060 1061 cam_periph_assert(periph, MA_OWNED); 1062 periph->flags |= CAM_PERIPH_ANNOUNCED; 1063 1064 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1065 periph->periph_name, periph->unit_number, 1066 path->bus->sim->sim_name, 1067 path->bus->sim->unit_number, 1068 path->bus->sim->bus_id, 1069 path->bus->path_id, 1070 path->target->target_id, 1071 (uintmax_t)path->device->lun_id); 1072 printf("%s%d: ", periph->periph_name, periph->unit_number); 1073 proto = xpt_proto_find(path->device->protocol); 1074 if (proto) 1075 proto->ops->announce(path->device); 1076 else 1077 printf("%s%d: Unknown protocol device %d\n", 1078 periph->periph_name, periph->unit_number, 1079 path->device->protocol); 1080 if (path->device->serial_num_len > 0) { 1081 /* Don't wrap the screen - print only the first 60 chars */ 1082 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1083 periph->unit_number, path->device->serial_num); 1084 } 1085 /* Announce transport details. */ 1086 path->bus->xport->ops->announce(periph); 1087 /* Announce command queueing. */ 1088 if (path->device->inq_flags & SID_CmdQue 1089 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1090 printf("%s%d: Command Queueing enabled\n", 1091 periph->periph_name, periph->unit_number); 1092 } 1093 /* Announce caller's details if they've passed in. */ 1094 if (announce_string != NULL) 1095 printf("%s%d: %s\n", periph->periph_name, 1096 periph->unit_number, announce_string); 1097 } 1098 1099 void 1100 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1101 char *announce_string) 1102 { 1103 struct cam_path *path = periph->path; 1104 struct xpt_proto *proto; 1105 1106 cam_periph_assert(periph, MA_OWNED); 1107 periph->flags |= CAM_PERIPH_ANNOUNCED; 1108 1109 /* Fall back to the non-sbuf method if necessary */ 1110 if (xsoftc.announce_nosbuf != 0) { 1111 xpt_announce_periph(periph, announce_string); 1112 return; 1113 } 1114 proto = xpt_proto_find(path->device->protocol); 1115 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1116 (path->bus->xport->ops->announce_sbuf == NULL)) { 1117 xpt_announce_periph(periph, announce_string); 1118 return; 1119 } 1120 1121 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1122 periph->periph_name, periph->unit_number, 1123 path->bus->sim->sim_name, 1124 path->bus->sim->unit_number, 1125 path->bus->sim->bus_id, 1126 path->bus->path_id, 1127 path->target->target_id, 1128 (uintmax_t)path->device->lun_id); 1129 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1130 1131 if (proto) 1132 proto->ops->announce_sbuf(path->device, sb); 1133 else 1134 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1135 periph->periph_name, periph->unit_number, 1136 path->device->protocol); 1137 if (path->device->serial_num_len > 0) { 1138 /* Don't wrap the screen - print only the first 60 chars */ 1139 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1140 periph->periph_name, periph->unit_number, 1141 path->device->serial_num); 1142 } 1143 /* Announce transport details. */ 1144 path->bus->xport->ops->announce_sbuf(periph, sb); 1145 /* Announce command queueing. */ 1146 if (path->device->inq_flags & SID_CmdQue 1147 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1148 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1149 periph->periph_name, periph->unit_number); 1150 } 1151 /* Announce caller's details if they've passed in. */ 1152 if (announce_string != NULL) 1153 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1154 periph->unit_number, announce_string); 1155 } 1156 1157 void 1158 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1159 { 1160 if (quirks != 0) { 1161 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1162 periph->unit_number, quirks, bit_string); 1163 } 1164 } 1165 1166 void 1167 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1168 int quirks, char *bit_string) 1169 { 1170 if (xsoftc.announce_nosbuf != 0) { 1171 xpt_announce_quirks(periph, quirks, bit_string); 1172 return; 1173 } 1174 1175 if (quirks != 0) { 1176 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1177 periph->unit_number, quirks, bit_string); 1178 } 1179 } 1180 1181 void 1182 xpt_denounce_periph(struct cam_periph *periph) 1183 { 1184 struct cam_path *path = periph->path; 1185 struct xpt_proto *proto; 1186 1187 cam_periph_assert(periph, MA_OWNED); 1188 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1189 periph->periph_name, periph->unit_number, 1190 path->bus->sim->sim_name, 1191 path->bus->sim->unit_number, 1192 path->bus->sim->bus_id, 1193 path->bus->path_id, 1194 path->target->target_id, 1195 (uintmax_t)path->device->lun_id); 1196 printf("%s%d: ", periph->periph_name, periph->unit_number); 1197 proto = xpt_proto_find(path->device->protocol); 1198 if (proto) 1199 proto->ops->denounce(path->device); 1200 else 1201 printf("%s%d: Unknown protocol device %d\n", 1202 periph->periph_name, periph->unit_number, 1203 path->device->protocol); 1204 if (path->device->serial_num_len > 0) 1205 printf(" s/n %.60s", path->device->serial_num); 1206 printf(" detached\n"); 1207 } 1208 1209 void 1210 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1211 { 1212 struct cam_path *path = periph->path; 1213 struct xpt_proto *proto; 1214 1215 cam_periph_assert(periph, MA_OWNED); 1216 1217 /* Fall back to the non-sbuf method if necessary */ 1218 if (xsoftc.announce_nosbuf != 0) { 1219 xpt_denounce_periph(periph); 1220 return; 1221 } 1222 proto = xpt_proto_find(path->device->protocol); 1223 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1224 xpt_denounce_periph(periph); 1225 return; 1226 } 1227 1228 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1229 periph->periph_name, periph->unit_number, 1230 path->bus->sim->sim_name, 1231 path->bus->sim->unit_number, 1232 path->bus->sim->bus_id, 1233 path->bus->path_id, 1234 path->target->target_id, 1235 (uintmax_t)path->device->lun_id); 1236 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1237 1238 if (proto) 1239 proto->ops->denounce_sbuf(path->device, sb); 1240 else 1241 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1242 periph->periph_name, periph->unit_number, 1243 path->device->protocol); 1244 if (path->device->serial_num_len > 0) 1245 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1246 sbuf_printf(sb, " detached\n"); 1247 } 1248 1249 int 1250 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1251 { 1252 int ret = -1, l, o; 1253 struct ccb_dev_advinfo cdai; 1254 struct scsi_vpd_id_descriptor *idd; 1255 1256 xpt_path_assert(path, MA_OWNED); 1257 1258 memset(&cdai, 0, sizeof(cdai)); 1259 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1260 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1261 cdai.flags = CDAI_FLAG_NONE; 1262 cdai.bufsiz = len; 1263 1264 if (!strcmp(attr, "GEOM::ident")) 1265 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1266 else if (!strcmp(attr, "GEOM::physpath")) 1267 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1268 else if (strcmp(attr, "GEOM::lunid") == 0 || 1269 strcmp(attr, "GEOM::lunname") == 0) { 1270 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1271 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1272 } else 1273 goto out; 1274 1275 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1276 if (cdai.buf == NULL) { 1277 ret = ENOMEM; 1278 goto out; 1279 } 1280 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1281 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1282 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1283 if (cdai.provsiz == 0) 1284 goto out; 1285 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1286 if (strcmp(attr, "GEOM::lunid") == 0) { 1287 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1288 cdai.provsiz, scsi_devid_is_lun_naa); 1289 if (idd == NULL) 1290 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1291 cdai.provsiz, scsi_devid_is_lun_eui64); 1292 if (idd == NULL) 1293 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1294 cdai.provsiz, scsi_devid_is_lun_uuid); 1295 if (idd == NULL) 1296 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1297 cdai.provsiz, scsi_devid_is_lun_md5); 1298 } else 1299 idd = NULL; 1300 if (idd == NULL) 1301 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1302 cdai.provsiz, scsi_devid_is_lun_t10); 1303 if (idd == NULL) 1304 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1305 cdai.provsiz, scsi_devid_is_lun_name); 1306 if (idd == NULL) 1307 goto out; 1308 ret = 0; 1309 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1310 if (idd->length < len) { 1311 for (l = 0; l < idd->length; l++) 1312 buf[l] = idd->identifier[l] ? 1313 idd->identifier[l] : ' '; 1314 buf[l] = 0; 1315 } else 1316 ret = EFAULT; 1317 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1318 l = strnlen(idd->identifier, idd->length); 1319 if (l < len) { 1320 bcopy(idd->identifier, buf, l); 1321 buf[l] = 0; 1322 } else 1323 ret = EFAULT; 1324 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1325 && idd->identifier[0] == 0x10) { 1326 if ((idd->length - 2) * 2 + 4 < len) { 1327 for (l = 2, o = 0; l < idd->length; l++) { 1328 if (l == 6 || l == 8 || l == 10 || l == 12) 1329 o += sprintf(buf + o, "-"); 1330 o += sprintf(buf + o, "%02x", 1331 idd->identifier[l]); 1332 } 1333 } else 1334 ret = EFAULT; 1335 } else { 1336 if (idd->length * 2 < len) { 1337 for (l = 0; l < idd->length; l++) 1338 sprintf(buf + l * 2, "%02x", 1339 idd->identifier[l]); 1340 } else 1341 ret = EFAULT; 1342 } 1343 } else { 1344 ret = 0; 1345 if (strlcpy(buf, cdai.buf, len) >= len) 1346 ret = EFAULT; 1347 } 1348 1349 out: 1350 if (cdai.buf != NULL) 1351 free(cdai.buf, M_CAMXPT); 1352 return ret; 1353 } 1354 1355 static dev_match_ret 1356 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1357 struct cam_eb *bus) 1358 { 1359 dev_match_ret retval; 1360 u_int i; 1361 1362 retval = DM_RET_NONE; 1363 1364 /* 1365 * If we aren't given something to match against, that's an error. 1366 */ 1367 if (bus == NULL) 1368 return(DM_RET_ERROR); 1369 1370 /* 1371 * If there are no match entries, then this bus matches no 1372 * matter what. 1373 */ 1374 if ((patterns == NULL) || (num_patterns == 0)) 1375 return(DM_RET_DESCEND | DM_RET_COPY); 1376 1377 for (i = 0; i < num_patterns; i++) { 1378 struct bus_match_pattern *cur_pattern; 1379 1380 /* 1381 * If the pattern in question isn't for a bus node, we 1382 * aren't interested. However, we do indicate to the 1383 * calling routine that we should continue descending the 1384 * tree, since the user wants to match against lower-level 1385 * EDT elements. 1386 */ 1387 if (patterns[i].type != DEV_MATCH_BUS) { 1388 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1389 retval |= DM_RET_DESCEND; 1390 continue; 1391 } 1392 1393 cur_pattern = &patterns[i].pattern.bus_pattern; 1394 1395 /* 1396 * If they want to match any bus node, we give them any 1397 * device node. 1398 */ 1399 if (cur_pattern->flags == BUS_MATCH_ANY) { 1400 /* set the copy flag */ 1401 retval |= DM_RET_COPY; 1402 1403 /* 1404 * If we've already decided on an action, go ahead 1405 * and return. 1406 */ 1407 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1408 return(retval); 1409 } 1410 1411 /* 1412 * Not sure why someone would do this... 1413 */ 1414 if (cur_pattern->flags == BUS_MATCH_NONE) 1415 continue; 1416 1417 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1418 && (cur_pattern->path_id != bus->path_id)) 1419 continue; 1420 1421 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1422 && (cur_pattern->bus_id != bus->sim->bus_id)) 1423 continue; 1424 1425 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1426 && (cur_pattern->unit_number != bus->sim->unit_number)) 1427 continue; 1428 1429 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1430 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1431 DEV_IDLEN) != 0)) 1432 continue; 1433 1434 /* 1435 * If we get to this point, the user definitely wants 1436 * information on this bus. So tell the caller to copy the 1437 * data out. 1438 */ 1439 retval |= DM_RET_COPY; 1440 1441 /* 1442 * If the return action has been set to descend, then we 1443 * know that we've already seen a non-bus matching 1444 * expression, therefore we need to further descend the tree. 1445 * This won't change by continuing around the loop, so we 1446 * go ahead and return. If we haven't seen a non-bus 1447 * matching expression, we keep going around the loop until 1448 * we exhaust the matching expressions. We'll set the stop 1449 * flag once we fall out of the loop. 1450 */ 1451 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1452 return(retval); 1453 } 1454 1455 /* 1456 * If the return action hasn't been set to descend yet, that means 1457 * we haven't seen anything other than bus matching patterns. So 1458 * tell the caller to stop descending the tree -- the user doesn't 1459 * want to match against lower level tree elements. 1460 */ 1461 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1462 retval |= DM_RET_STOP; 1463 1464 return(retval); 1465 } 1466 1467 static dev_match_ret 1468 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1469 struct cam_ed *device) 1470 { 1471 dev_match_ret retval; 1472 u_int i; 1473 1474 retval = DM_RET_NONE; 1475 1476 /* 1477 * If we aren't given something to match against, that's an error. 1478 */ 1479 if (device == NULL) 1480 return(DM_RET_ERROR); 1481 1482 /* 1483 * If there are no match entries, then this device matches no 1484 * matter what. 1485 */ 1486 if ((patterns == NULL) || (num_patterns == 0)) 1487 return(DM_RET_DESCEND | DM_RET_COPY); 1488 1489 for (i = 0; i < num_patterns; i++) { 1490 struct device_match_pattern *cur_pattern; 1491 struct scsi_vpd_device_id *device_id_page; 1492 1493 /* 1494 * If the pattern in question isn't for a device node, we 1495 * aren't interested. 1496 */ 1497 if (patterns[i].type != DEV_MATCH_DEVICE) { 1498 if ((patterns[i].type == DEV_MATCH_PERIPH) 1499 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1500 retval |= DM_RET_DESCEND; 1501 continue; 1502 } 1503 1504 cur_pattern = &patterns[i].pattern.device_pattern; 1505 1506 /* Error out if mutually exclusive options are specified. */ 1507 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1508 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1509 return(DM_RET_ERROR); 1510 1511 /* 1512 * If they want to match any device node, we give them any 1513 * device node. 1514 */ 1515 if (cur_pattern->flags == DEV_MATCH_ANY) 1516 goto copy_dev_node; 1517 1518 /* 1519 * Not sure why someone would do this... 1520 */ 1521 if (cur_pattern->flags == DEV_MATCH_NONE) 1522 continue; 1523 1524 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1525 && (cur_pattern->path_id != device->target->bus->path_id)) 1526 continue; 1527 1528 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1529 && (cur_pattern->target_id != device->target->target_id)) 1530 continue; 1531 1532 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1533 && (cur_pattern->target_lun != device->lun_id)) 1534 continue; 1535 1536 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1537 && (cam_quirkmatch((caddr_t)&device->inq_data, 1538 (caddr_t)&cur_pattern->data.inq_pat, 1539 1, sizeof(cur_pattern->data.inq_pat), 1540 scsi_static_inquiry_match) == NULL)) 1541 continue; 1542 1543 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1544 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1545 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1546 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1547 device->device_id_len 1548 - SVPD_DEVICE_ID_HDR_LEN, 1549 cur_pattern->data.devid_pat.id, 1550 cur_pattern->data.devid_pat.id_len) != 0)) 1551 continue; 1552 1553 copy_dev_node: 1554 /* 1555 * If we get to this point, the user definitely wants 1556 * information on this device. So tell the caller to copy 1557 * the data out. 1558 */ 1559 retval |= DM_RET_COPY; 1560 1561 /* 1562 * If the return action has been set to descend, then we 1563 * know that we've already seen a peripheral matching 1564 * expression, therefore we need to further descend the tree. 1565 * This won't change by continuing around the loop, so we 1566 * go ahead and return. If we haven't seen a peripheral 1567 * matching expression, we keep going around the loop until 1568 * we exhaust the matching expressions. We'll set the stop 1569 * flag once we fall out of the loop. 1570 */ 1571 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1572 return(retval); 1573 } 1574 1575 /* 1576 * If the return action hasn't been set to descend yet, that means 1577 * we haven't seen any peripheral matching patterns. So tell the 1578 * caller to stop descending the tree -- the user doesn't want to 1579 * match against lower level tree elements. 1580 */ 1581 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1582 retval |= DM_RET_STOP; 1583 1584 return(retval); 1585 } 1586 1587 /* 1588 * Match a single peripheral against any number of match patterns. 1589 */ 1590 static dev_match_ret 1591 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1592 struct cam_periph *periph) 1593 { 1594 dev_match_ret retval; 1595 u_int i; 1596 1597 /* 1598 * If we aren't given something to match against, that's an error. 1599 */ 1600 if (periph == NULL) 1601 return(DM_RET_ERROR); 1602 1603 /* 1604 * If there are no match entries, then this peripheral matches no 1605 * matter what. 1606 */ 1607 if ((patterns == NULL) || (num_patterns == 0)) 1608 return(DM_RET_STOP | DM_RET_COPY); 1609 1610 /* 1611 * There aren't any nodes below a peripheral node, so there's no 1612 * reason to descend the tree any further. 1613 */ 1614 retval = DM_RET_STOP; 1615 1616 for (i = 0; i < num_patterns; i++) { 1617 struct periph_match_pattern *cur_pattern; 1618 1619 /* 1620 * If the pattern in question isn't for a peripheral, we 1621 * aren't interested. 1622 */ 1623 if (patterns[i].type != DEV_MATCH_PERIPH) 1624 continue; 1625 1626 cur_pattern = &patterns[i].pattern.periph_pattern; 1627 1628 /* 1629 * If they want to match on anything, then we will do so. 1630 */ 1631 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1632 /* set the copy flag */ 1633 retval |= DM_RET_COPY; 1634 1635 /* 1636 * We've already set the return action to stop, 1637 * since there are no nodes below peripherals in 1638 * the tree. 1639 */ 1640 return(retval); 1641 } 1642 1643 /* 1644 * Not sure why someone would do this... 1645 */ 1646 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1647 continue; 1648 1649 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1650 && (cur_pattern->path_id != periph->path->bus->path_id)) 1651 continue; 1652 1653 /* 1654 * For the target and lun id's, we have to make sure the 1655 * target and lun pointers aren't NULL. The xpt peripheral 1656 * has a wildcard target and device. 1657 */ 1658 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1659 && ((periph->path->target == NULL) 1660 ||(cur_pattern->target_id != periph->path->target->target_id))) 1661 continue; 1662 1663 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1664 && ((periph->path->device == NULL) 1665 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1666 continue; 1667 1668 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1669 && (cur_pattern->unit_number != periph->unit_number)) 1670 continue; 1671 1672 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1673 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1674 DEV_IDLEN) != 0)) 1675 continue; 1676 1677 /* 1678 * If we get to this point, the user definitely wants 1679 * information on this peripheral. So tell the caller to 1680 * copy the data out. 1681 */ 1682 retval |= DM_RET_COPY; 1683 1684 /* 1685 * The return action has already been set to stop, since 1686 * peripherals don't have any nodes below them in the EDT. 1687 */ 1688 return(retval); 1689 } 1690 1691 /* 1692 * If we get to this point, the peripheral that was passed in 1693 * doesn't match any of the patterns. 1694 */ 1695 return(retval); 1696 } 1697 1698 static int 1699 xptedtbusfunc(struct cam_eb *bus, void *arg) 1700 { 1701 struct ccb_dev_match *cdm; 1702 struct cam_et *target; 1703 dev_match_ret retval; 1704 1705 cdm = (struct ccb_dev_match *)arg; 1706 1707 /* 1708 * If our position is for something deeper in the tree, that means 1709 * that we've already seen this node. So, we keep going down. 1710 */ 1711 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1712 && (cdm->pos.cookie.bus == bus) 1713 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1714 && (cdm->pos.cookie.target != NULL)) 1715 retval = DM_RET_DESCEND; 1716 else 1717 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1718 1719 /* 1720 * If we got an error, bail out of the search. 1721 */ 1722 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1723 cdm->status = CAM_DEV_MATCH_ERROR; 1724 return(0); 1725 } 1726 1727 /* 1728 * If the copy flag is set, copy this bus out. 1729 */ 1730 if (retval & DM_RET_COPY) { 1731 int spaceleft, j; 1732 1733 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1734 sizeof(struct dev_match_result)); 1735 1736 /* 1737 * If we don't have enough space to put in another 1738 * match result, save our position and tell the 1739 * user there are more devices to check. 1740 */ 1741 if (spaceleft < sizeof(struct dev_match_result)) { 1742 bzero(&cdm->pos, sizeof(cdm->pos)); 1743 cdm->pos.position_type = 1744 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1745 1746 cdm->pos.cookie.bus = bus; 1747 cdm->pos.generations[CAM_BUS_GENERATION]= 1748 xsoftc.bus_generation; 1749 cdm->status = CAM_DEV_MATCH_MORE; 1750 return(0); 1751 } 1752 j = cdm->num_matches; 1753 cdm->num_matches++; 1754 cdm->matches[j].type = DEV_MATCH_BUS; 1755 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1756 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1757 cdm->matches[j].result.bus_result.unit_number = 1758 bus->sim->unit_number; 1759 strncpy(cdm->matches[j].result.bus_result.dev_name, 1760 bus->sim->sim_name, DEV_IDLEN); 1761 } 1762 1763 /* 1764 * If the user is only interested in buses, there's no 1765 * reason to descend to the next level in the tree. 1766 */ 1767 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1768 return(1); 1769 1770 /* 1771 * If there is a target generation recorded, check it to 1772 * make sure the target list hasn't changed. 1773 */ 1774 mtx_lock(&bus->eb_mtx); 1775 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1776 && (cdm->pos.cookie.bus == bus) 1777 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1778 && (cdm->pos.cookie.target != NULL)) { 1779 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1780 bus->generation)) { 1781 mtx_unlock(&bus->eb_mtx); 1782 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1783 return (0); 1784 } 1785 target = (struct cam_et *)cdm->pos.cookie.target; 1786 target->refcount++; 1787 } else 1788 target = NULL; 1789 mtx_unlock(&bus->eb_mtx); 1790 1791 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1792 } 1793 1794 static int 1795 xptedttargetfunc(struct cam_et *target, void *arg) 1796 { 1797 struct ccb_dev_match *cdm; 1798 struct cam_eb *bus; 1799 struct cam_ed *device; 1800 1801 cdm = (struct ccb_dev_match *)arg; 1802 bus = target->bus; 1803 1804 /* 1805 * If there is a device list generation recorded, check it to 1806 * make sure the device list hasn't changed. 1807 */ 1808 mtx_lock(&bus->eb_mtx); 1809 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1810 && (cdm->pos.cookie.bus == bus) 1811 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1812 && (cdm->pos.cookie.target == target) 1813 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1814 && (cdm->pos.cookie.device != NULL)) { 1815 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1816 target->generation) { 1817 mtx_unlock(&bus->eb_mtx); 1818 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1819 return(0); 1820 } 1821 device = (struct cam_ed *)cdm->pos.cookie.device; 1822 device->refcount++; 1823 } else 1824 device = NULL; 1825 mtx_unlock(&bus->eb_mtx); 1826 1827 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1828 } 1829 1830 static int 1831 xptedtdevicefunc(struct cam_ed *device, void *arg) 1832 { 1833 struct cam_eb *bus; 1834 struct cam_periph *periph; 1835 struct ccb_dev_match *cdm; 1836 dev_match_ret retval; 1837 1838 cdm = (struct ccb_dev_match *)arg; 1839 bus = device->target->bus; 1840 1841 /* 1842 * If our position is for something deeper in the tree, that means 1843 * that we've already seen this node. So, we keep going down. 1844 */ 1845 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1846 && (cdm->pos.cookie.device == device) 1847 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1848 && (cdm->pos.cookie.periph != NULL)) 1849 retval = DM_RET_DESCEND; 1850 else 1851 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1852 device); 1853 1854 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1855 cdm->status = CAM_DEV_MATCH_ERROR; 1856 return(0); 1857 } 1858 1859 /* 1860 * If the copy flag is set, copy this device out. 1861 */ 1862 if (retval & DM_RET_COPY) { 1863 int spaceleft, j; 1864 1865 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1866 sizeof(struct dev_match_result)); 1867 1868 /* 1869 * If we don't have enough space to put in another 1870 * match result, save our position and tell the 1871 * user there are more devices to check. 1872 */ 1873 if (spaceleft < sizeof(struct dev_match_result)) { 1874 bzero(&cdm->pos, sizeof(cdm->pos)); 1875 cdm->pos.position_type = 1876 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1877 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1878 1879 cdm->pos.cookie.bus = device->target->bus; 1880 cdm->pos.generations[CAM_BUS_GENERATION]= 1881 xsoftc.bus_generation; 1882 cdm->pos.cookie.target = device->target; 1883 cdm->pos.generations[CAM_TARGET_GENERATION] = 1884 device->target->bus->generation; 1885 cdm->pos.cookie.device = device; 1886 cdm->pos.generations[CAM_DEV_GENERATION] = 1887 device->target->generation; 1888 cdm->status = CAM_DEV_MATCH_MORE; 1889 return(0); 1890 } 1891 j = cdm->num_matches; 1892 cdm->num_matches++; 1893 cdm->matches[j].type = DEV_MATCH_DEVICE; 1894 cdm->matches[j].result.device_result.path_id = 1895 device->target->bus->path_id; 1896 cdm->matches[j].result.device_result.target_id = 1897 device->target->target_id; 1898 cdm->matches[j].result.device_result.target_lun = 1899 device->lun_id; 1900 cdm->matches[j].result.device_result.protocol = 1901 device->protocol; 1902 bcopy(&device->inq_data, 1903 &cdm->matches[j].result.device_result.inq_data, 1904 sizeof(struct scsi_inquiry_data)); 1905 bcopy(&device->ident_data, 1906 &cdm->matches[j].result.device_result.ident_data, 1907 sizeof(struct ata_params)); 1908 bcopy(&device->mmc_ident_data, 1909 &cdm->matches[j].result.device_result.mmc_ident_data, 1910 sizeof(struct mmc_params)); 1911 1912 /* Let the user know whether this device is unconfigured */ 1913 if (device->flags & CAM_DEV_UNCONFIGURED) 1914 cdm->matches[j].result.device_result.flags = 1915 DEV_RESULT_UNCONFIGURED; 1916 else 1917 cdm->matches[j].result.device_result.flags = 1918 DEV_RESULT_NOFLAG; 1919 } 1920 1921 /* 1922 * If the user isn't interested in peripherals, don't descend 1923 * the tree any further. 1924 */ 1925 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1926 return(1); 1927 1928 /* 1929 * If there is a peripheral list generation recorded, make sure 1930 * it hasn't changed. 1931 */ 1932 xpt_lock_buses(); 1933 mtx_lock(&bus->eb_mtx); 1934 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1935 && (cdm->pos.cookie.bus == bus) 1936 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1937 && (cdm->pos.cookie.target == device->target) 1938 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1939 && (cdm->pos.cookie.device == device) 1940 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1941 && (cdm->pos.cookie.periph != NULL)) { 1942 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1943 device->generation) { 1944 mtx_unlock(&bus->eb_mtx); 1945 xpt_unlock_buses(); 1946 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1947 return(0); 1948 } 1949 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1950 periph->refcount++; 1951 } else 1952 periph = NULL; 1953 mtx_unlock(&bus->eb_mtx); 1954 xpt_unlock_buses(); 1955 1956 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1957 } 1958 1959 static int 1960 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1961 { 1962 struct ccb_dev_match *cdm; 1963 dev_match_ret retval; 1964 1965 cdm = (struct ccb_dev_match *)arg; 1966 1967 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1968 1969 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1970 cdm->status = CAM_DEV_MATCH_ERROR; 1971 return(0); 1972 } 1973 1974 /* 1975 * If the copy flag is set, copy this peripheral out. 1976 */ 1977 if (retval & DM_RET_COPY) { 1978 int spaceleft, j; 1979 1980 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1981 sizeof(struct dev_match_result)); 1982 1983 /* 1984 * If we don't have enough space to put in another 1985 * match result, save our position and tell the 1986 * user there are more devices to check. 1987 */ 1988 if (spaceleft < sizeof(struct dev_match_result)) { 1989 bzero(&cdm->pos, sizeof(cdm->pos)); 1990 cdm->pos.position_type = 1991 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1992 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1993 CAM_DEV_POS_PERIPH; 1994 1995 cdm->pos.cookie.bus = periph->path->bus; 1996 cdm->pos.generations[CAM_BUS_GENERATION]= 1997 xsoftc.bus_generation; 1998 cdm->pos.cookie.target = periph->path->target; 1999 cdm->pos.generations[CAM_TARGET_GENERATION] = 2000 periph->path->bus->generation; 2001 cdm->pos.cookie.device = periph->path->device; 2002 cdm->pos.generations[CAM_DEV_GENERATION] = 2003 periph->path->target->generation; 2004 cdm->pos.cookie.periph = periph; 2005 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2006 periph->path->device->generation; 2007 cdm->status = CAM_DEV_MATCH_MORE; 2008 return(0); 2009 } 2010 2011 j = cdm->num_matches; 2012 cdm->num_matches++; 2013 cdm->matches[j].type = DEV_MATCH_PERIPH; 2014 cdm->matches[j].result.periph_result.path_id = 2015 periph->path->bus->path_id; 2016 cdm->matches[j].result.periph_result.target_id = 2017 periph->path->target->target_id; 2018 cdm->matches[j].result.periph_result.target_lun = 2019 periph->path->device->lun_id; 2020 cdm->matches[j].result.periph_result.unit_number = 2021 periph->unit_number; 2022 strncpy(cdm->matches[j].result.periph_result.periph_name, 2023 periph->periph_name, DEV_IDLEN); 2024 } 2025 2026 return(1); 2027 } 2028 2029 static int 2030 xptedtmatch(struct ccb_dev_match *cdm) 2031 { 2032 struct cam_eb *bus; 2033 int ret; 2034 2035 cdm->num_matches = 0; 2036 2037 /* 2038 * Check the bus list generation. If it has changed, the user 2039 * needs to reset everything and start over. 2040 */ 2041 xpt_lock_buses(); 2042 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2043 && (cdm->pos.cookie.bus != NULL)) { 2044 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2045 xsoftc.bus_generation) { 2046 xpt_unlock_buses(); 2047 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2048 return(0); 2049 } 2050 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2051 bus->refcount++; 2052 } else 2053 bus = NULL; 2054 xpt_unlock_buses(); 2055 2056 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2057 2058 /* 2059 * If we get back 0, that means that we had to stop before fully 2060 * traversing the EDT. It also means that one of the subroutines 2061 * has set the status field to the proper value. If we get back 1, 2062 * we've fully traversed the EDT and copied out any matching entries. 2063 */ 2064 if (ret == 1) 2065 cdm->status = CAM_DEV_MATCH_LAST; 2066 2067 return(ret); 2068 } 2069 2070 static int 2071 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2072 { 2073 struct cam_periph *periph; 2074 struct ccb_dev_match *cdm; 2075 2076 cdm = (struct ccb_dev_match *)arg; 2077 2078 xpt_lock_buses(); 2079 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2080 && (cdm->pos.cookie.pdrv == pdrv) 2081 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2082 && (cdm->pos.cookie.periph != NULL)) { 2083 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2084 (*pdrv)->generation) { 2085 xpt_unlock_buses(); 2086 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2087 return(0); 2088 } 2089 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2090 periph->refcount++; 2091 } else 2092 periph = NULL; 2093 xpt_unlock_buses(); 2094 2095 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2096 } 2097 2098 static int 2099 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2100 { 2101 struct ccb_dev_match *cdm; 2102 dev_match_ret retval; 2103 2104 cdm = (struct ccb_dev_match *)arg; 2105 2106 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2107 2108 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2109 cdm->status = CAM_DEV_MATCH_ERROR; 2110 return(0); 2111 } 2112 2113 /* 2114 * If the copy flag is set, copy this peripheral out. 2115 */ 2116 if (retval & DM_RET_COPY) { 2117 int spaceleft, j; 2118 2119 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2120 sizeof(struct dev_match_result)); 2121 2122 /* 2123 * If we don't have enough space to put in another 2124 * match result, save our position and tell the 2125 * user there are more devices to check. 2126 */ 2127 if (spaceleft < sizeof(struct dev_match_result)) { 2128 struct periph_driver **pdrv; 2129 2130 pdrv = NULL; 2131 bzero(&cdm->pos, sizeof(cdm->pos)); 2132 cdm->pos.position_type = 2133 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2134 CAM_DEV_POS_PERIPH; 2135 2136 /* 2137 * This may look a bit non-sensical, but it is 2138 * actually quite logical. There are very few 2139 * peripheral drivers, and bloating every peripheral 2140 * structure with a pointer back to its parent 2141 * peripheral driver linker set entry would cost 2142 * more in the long run than doing this quick lookup. 2143 */ 2144 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2145 if (strcmp((*pdrv)->driver_name, 2146 periph->periph_name) == 0) 2147 break; 2148 } 2149 2150 if (*pdrv == NULL) { 2151 cdm->status = CAM_DEV_MATCH_ERROR; 2152 return(0); 2153 } 2154 2155 cdm->pos.cookie.pdrv = pdrv; 2156 /* 2157 * The periph generation slot does double duty, as 2158 * does the periph pointer slot. They are used for 2159 * both edt and pdrv lookups and positioning. 2160 */ 2161 cdm->pos.cookie.periph = periph; 2162 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2163 (*pdrv)->generation; 2164 cdm->status = CAM_DEV_MATCH_MORE; 2165 return(0); 2166 } 2167 2168 j = cdm->num_matches; 2169 cdm->num_matches++; 2170 cdm->matches[j].type = DEV_MATCH_PERIPH; 2171 cdm->matches[j].result.periph_result.path_id = 2172 periph->path->bus->path_id; 2173 2174 /* 2175 * The transport layer peripheral doesn't have a target or 2176 * lun. 2177 */ 2178 if (periph->path->target) 2179 cdm->matches[j].result.periph_result.target_id = 2180 periph->path->target->target_id; 2181 else 2182 cdm->matches[j].result.periph_result.target_id = 2183 CAM_TARGET_WILDCARD; 2184 2185 if (periph->path->device) 2186 cdm->matches[j].result.periph_result.target_lun = 2187 periph->path->device->lun_id; 2188 else 2189 cdm->matches[j].result.periph_result.target_lun = 2190 CAM_LUN_WILDCARD; 2191 2192 cdm->matches[j].result.periph_result.unit_number = 2193 periph->unit_number; 2194 strncpy(cdm->matches[j].result.periph_result.periph_name, 2195 periph->periph_name, DEV_IDLEN); 2196 } 2197 2198 return(1); 2199 } 2200 2201 static int 2202 xptperiphlistmatch(struct ccb_dev_match *cdm) 2203 { 2204 int ret; 2205 2206 cdm->num_matches = 0; 2207 2208 /* 2209 * At this point in the edt traversal function, we check the bus 2210 * list generation to make sure that no buses have been added or 2211 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2212 * For the peripheral driver list traversal function, however, we 2213 * don't have to worry about new peripheral driver types coming or 2214 * going; they're in a linker set, and therefore can't change 2215 * without a recompile. 2216 */ 2217 2218 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2219 && (cdm->pos.cookie.pdrv != NULL)) 2220 ret = xptpdrvtraverse( 2221 (struct periph_driver **)cdm->pos.cookie.pdrv, 2222 xptplistpdrvfunc, cdm); 2223 else 2224 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2225 2226 /* 2227 * If we get back 0, that means that we had to stop before fully 2228 * traversing the peripheral driver tree. It also means that one of 2229 * the subroutines has set the status field to the proper value. If 2230 * we get back 1, we've fully traversed the EDT and copied out any 2231 * matching entries. 2232 */ 2233 if (ret == 1) 2234 cdm->status = CAM_DEV_MATCH_LAST; 2235 2236 return(ret); 2237 } 2238 2239 static int 2240 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2241 { 2242 struct cam_eb *bus, *next_bus; 2243 int retval; 2244 2245 retval = 1; 2246 if (start_bus) 2247 bus = start_bus; 2248 else { 2249 xpt_lock_buses(); 2250 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2251 if (bus == NULL) { 2252 xpt_unlock_buses(); 2253 return (retval); 2254 } 2255 bus->refcount++; 2256 xpt_unlock_buses(); 2257 } 2258 for (; bus != NULL; bus = next_bus) { 2259 retval = tr_func(bus, arg); 2260 if (retval == 0) { 2261 xpt_release_bus(bus); 2262 break; 2263 } 2264 xpt_lock_buses(); 2265 next_bus = TAILQ_NEXT(bus, links); 2266 if (next_bus) 2267 next_bus->refcount++; 2268 xpt_unlock_buses(); 2269 xpt_release_bus(bus); 2270 } 2271 return(retval); 2272 } 2273 2274 static int 2275 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2276 xpt_targetfunc_t *tr_func, void *arg) 2277 { 2278 struct cam_et *target, *next_target; 2279 int retval; 2280 2281 retval = 1; 2282 if (start_target) 2283 target = start_target; 2284 else { 2285 mtx_lock(&bus->eb_mtx); 2286 target = TAILQ_FIRST(&bus->et_entries); 2287 if (target == NULL) { 2288 mtx_unlock(&bus->eb_mtx); 2289 return (retval); 2290 } 2291 target->refcount++; 2292 mtx_unlock(&bus->eb_mtx); 2293 } 2294 for (; target != NULL; target = next_target) { 2295 retval = tr_func(target, arg); 2296 if (retval == 0) { 2297 xpt_release_target(target); 2298 break; 2299 } 2300 mtx_lock(&bus->eb_mtx); 2301 next_target = TAILQ_NEXT(target, links); 2302 if (next_target) 2303 next_target->refcount++; 2304 mtx_unlock(&bus->eb_mtx); 2305 xpt_release_target(target); 2306 } 2307 return(retval); 2308 } 2309 2310 static int 2311 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2312 xpt_devicefunc_t *tr_func, void *arg) 2313 { 2314 struct cam_eb *bus; 2315 struct cam_ed *device, *next_device; 2316 int retval; 2317 2318 retval = 1; 2319 bus = target->bus; 2320 if (start_device) 2321 device = start_device; 2322 else { 2323 mtx_lock(&bus->eb_mtx); 2324 device = TAILQ_FIRST(&target->ed_entries); 2325 if (device == NULL) { 2326 mtx_unlock(&bus->eb_mtx); 2327 return (retval); 2328 } 2329 device->refcount++; 2330 mtx_unlock(&bus->eb_mtx); 2331 } 2332 for (; device != NULL; device = next_device) { 2333 mtx_lock(&device->device_mtx); 2334 retval = tr_func(device, arg); 2335 mtx_unlock(&device->device_mtx); 2336 if (retval == 0) { 2337 xpt_release_device(device); 2338 break; 2339 } 2340 mtx_lock(&bus->eb_mtx); 2341 next_device = TAILQ_NEXT(device, links); 2342 if (next_device) 2343 next_device->refcount++; 2344 mtx_unlock(&bus->eb_mtx); 2345 xpt_release_device(device); 2346 } 2347 return(retval); 2348 } 2349 2350 static int 2351 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2352 xpt_periphfunc_t *tr_func, void *arg) 2353 { 2354 struct cam_eb *bus; 2355 struct cam_periph *periph, *next_periph; 2356 int retval; 2357 2358 retval = 1; 2359 2360 bus = device->target->bus; 2361 if (start_periph) 2362 periph = start_periph; 2363 else { 2364 xpt_lock_buses(); 2365 mtx_lock(&bus->eb_mtx); 2366 periph = SLIST_FIRST(&device->periphs); 2367 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2368 periph = SLIST_NEXT(periph, periph_links); 2369 if (periph == NULL) { 2370 mtx_unlock(&bus->eb_mtx); 2371 xpt_unlock_buses(); 2372 return (retval); 2373 } 2374 periph->refcount++; 2375 mtx_unlock(&bus->eb_mtx); 2376 xpt_unlock_buses(); 2377 } 2378 for (; periph != NULL; periph = next_periph) { 2379 retval = tr_func(periph, arg); 2380 if (retval == 0) { 2381 cam_periph_release_locked(periph); 2382 break; 2383 } 2384 xpt_lock_buses(); 2385 mtx_lock(&bus->eb_mtx); 2386 next_periph = SLIST_NEXT(periph, periph_links); 2387 while (next_periph != NULL && 2388 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2389 next_periph = SLIST_NEXT(next_periph, periph_links); 2390 if (next_periph) 2391 next_periph->refcount++; 2392 mtx_unlock(&bus->eb_mtx); 2393 xpt_unlock_buses(); 2394 cam_periph_release_locked(periph); 2395 } 2396 return(retval); 2397 } 2398 2399 static int 2400 xptpdrvtraverse(struct periph_driver **start_pdrv, 2401 xpt_pdrvfunc_t *tr_func, void *arg) 2402 { 2403 struct periph_driver **pdrv; 2404 int retval; 2405 2406 retval = 1; 2407 2408 /* 2409 * We don't traverse the peripheral driver list like we do the 2410 * other lists, because it is a linker set, and therefore cannot be 2411 * changed during runtime. If the peripheral driver list is ever 2412 * re-done to be something other than a linker set (i.e. it can 2413 * change while the system is running), the list traversal should 2414 * be modified to work like the other traversal functions. 2415 */ 2416 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2417 *pdrv != NULL; pdrv++) { 2418 retval = tr_func(pdrv, arg); 2419 2420 if (retval == 0) 2421 return(retval); 2422 } 2423 2424 return(retval); 2425 } 2426 2427 static int 2428 xptpdperiphtraverse(struct periph_driver **pdrv, 2429 struct cam_periph *start_periph, 2430 xpt_periphfunc_t *tr_func, void *arg) 2431 { 2432 struct cam_periph *periph, *next_periph; 2433 int retval; 2434 2435 retval = 1; 2436 2437 if (start_periph) 2438 periph = start_periph; 2439 else { 2440 xpt_lock_buses(); 2441 periph = TAILQ_FIRST(&(*pdrv)->units); 2442 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2443 periph = TAILQ_NEXT(periph, unit_links); 2444 if (periph == NULL) { 2445 xpt_unlock_buses(); 2446 return (retval); 2447 } 2448 periph->refcount++; 2449 xpt_unlock_buses(); 2450 } 2451 for (; periph != NULL; periph = next_periph) { 2452 cam_periph_lock(periph); 2453 retval = tr_func(periph, arg); 2454 cam_periph_unlock(periph); 2455 if (retval == 0) { 2456 cam_periph_release(periph); 2457 break; 2458 } 2459 xpt_lock_buses(); 2460 next_periph = TAILQ_NEXT(periph, unit_links); 2461 while (next_periph != NULL && 2462 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2463 next_periph = TAILQ_NEXT(next_periph, unit_links); 2464 if (next_periph) 2465 next_periph->refcount++; 2466 xpt_unlock_buses(); 2467 cam_periph_release(periph); 2468 } 2469 return(retval); 2470 } 2471 2472 static int 2473 xptdefbusfunc(struct cam_eb *bus, void *arg) 2474 { 2475 struct xpt_traverse_config *tr_config; 2476 2477 tr_config = (struct xpt_traverse_config *)arg; 2478 2479 if (tr_config->depth == XPT_DEPTH_BUS) { 2480 xpt_busfunc_t *tr_func; 2481 2482 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2483 2484 return(tr_func(bus, tr_config->tr_arg)); 2485 } else 2486 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2487 } 2488 2489 static int 2490 xptdeftargetfunc(struct cam_et *target, void *arg) 2491 { 2492 struct xpt_traverse_config *tr_config; 2493 2494 tr_config = (struct xpt_traverse_config *)arg; 2495 2496 if (tr_config->depth == XPT_DEPTH_TARGET) { 2497 xpt_targetfunc_t *tr_func; 2498 2499 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2500 2501 return(tr_func(target, tr_config->tr_arg)); 2502 } else 2503 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2504 } 2505 2506 static int 2507 xptdefdevicefunc(struct cam_ed *device, void *arg) 2508 { 2509 struct xpt_traverse_config *tr_config; 2510 2511 tr_config = (struct xpt_traverse_config *)arg; 2512 2513 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2514 xpt_devicefunc_t *tr_func; 2515 2516 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2517 2518 return(tr_func(device, tr_config->tr_arg)); 2519 } else 2520 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2521 } 2522 2523 static int 2524 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2525 { 2526 struct xpt_traverse_config *tr_config; 2527 xpt_periphfunc_t *tr_func; 2528 2529 tr_config = (struct xpt_traverse_config *)arg; 2530 2531 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2532 2533 /* 2534 * Unlike the other default functions, we don't check for depth 2535 * here. The peripheral driver level is the last level in the EDT, 2536 * so if we're here, we should execute the function in question. 2537 */ 2538 return(tr_func(periph, tr_config->tr_arg)); 2539 } 2540 2541 /* 2542 * Execute the given function for every bus in the EDT. 2543 */ 2544 static int 2545 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2546 { 2547 struct xpt_traverse_config tr_config; 2548 2549 tr_config.depth = XPT_DEPTH_BUS; 2550 tr_config.tr_func = tr_func; 2551 tr_config.tr_arg = arg; 2552 2553 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2554 } 2555 2556 /* 2557 * Execute the given function for every device in the EDT. 2558 */ 2559 static int 2560 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2561 { 2562 struct xpt_traverse_config tr_config; 2563 2564 tr_config.depth = XPT_DEPTH_DEVICE; 2565 tr_config.tr_func = tr_func; 2566 tr_config.tr_arg = arg; 2567 2568 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2569 } 2570 2571 static int 2572 xptsetasyncfunc(struct cam_ed *device, void *arg) 2573 { 2574 struct cam_path path; 2575 struct ccb_getdev cgd; 2576 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2577 2578 /* 2579 * Don't report unconfigured devices (Wildcard devs, 2580 * devices only for target mode, device instances 2581 * that have been invalidated but are waiting for 2582 * their last reference count to be released). 2583 */ 2584 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2585 return (1); 2586 2587 xpt_compile_path(&path, 2588 NULL, 2589 device->target->bus->path_id, 2590 device->target->target_id, 2591 device->lun_id); 2592 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2593 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2594 xpt_action((union ccb *)&cgd); 2595 csa->callback(csa->callback_arg, 2596 AC_FOUND_DEVICE, 2597 &path, &cgd); 2598 xpt_release_path(&path); 2599 2600 return(1); 2601 } 2602 2603 static int 2604 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2605 { 2606 struct cam_path path; 2607 struct ccb_pathinq cpi; 2608 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2609 2610 xpt_compile_path(&path, /*periph*/NULL, 2611 bus->path_id, 2612 CAM_TARGET_WILDCARD, 2613 CAM_LUN_WILDCARD); 2614 xpt_path_lock(&path); 2615 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2616 cpi.ccb_h.func_code = XPT_PATH_INQ; 2617 xpt_action((union ccb *)&cpi); 2618 csa->callback(csa->callback_arg, 2619 AC_PATH_REGISTERED, 2620 &path, &cpi); 2621 xpt_path_unlock(&path); 2622 xpt_release_path(&path); 2623 2624 return(1); 2625 } 2626 2627 void 2628 xpt_action(union ccb *start_ccb) 2629 { 2630 2631 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2632 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2633 xpt_action_name(start_ccb->ccb_h.func_code))); 2634 2635 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2636 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2637 } 2638 2639 void 2640 xpt_action_default(union ccb *start_ccb) 2641 { 2642 struct cam_path *path; 2643 struct cam_sim *sim; 2644 struct mtx *mtx; 2645 2646 path = start_ccb->ccb_h.path; 2647 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2648 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2649 xpt_action_name(start_ccb->ccb_h.func_code))); 2650 2651 switch (start_ccb->ccb_h.func_code) { 2652 case XPT_SCSI_IO: 2653 { 2654 struct cam_ed *device; 2655 2656 /* 2657 * For the sake of compatibility with SCSI-1 2658 * devices that may not understand the identify 2659 * message, we include lun information in the 2660 * second byte of all commands. SCSI-1 specifies 2661 * that luns are a 3 bit value and reserves only 3 2662 * bits for lun information in the CDB. Later 2663 * revisions of the SCSI spec allow for more than 8 2664 * luns, but have deprecated lun information in the 2665 * CDB. So, if the lun won't fit, we must omit. 2666 * 2667 * Also be aware that during initial probing for devices, 2668 * the inquiry information is unknown but initialized to 0. 2669 * This means that this code will be exercised while probing 2670 * devices with an ANSI revision greater than 2. 2671 */ 2672 device = path->device; 2673 if (device->protocol_version <= SCSI_REV_2 2674 && start_ccb->ccb_h.target_lun < 8 2675 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2676 2677 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2678 start_ccb->ccb_h.target_lun << 5; 2679 } 2680 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2681 } 2682 /* FALLTHROUGH */ 2683 case XPT_TARGET_IO: 2684 case XPT_CONT_TARGET_IO: 2685 start_ccb->csio.sense_resid = 0; 2686 start_ccb->csio.resid = 0; 2687 /* FALLTHROUGH */ 2688 case XPT_ATA_IO: 2689 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2690 start_ccb->ataio.resid = 0; 2691 /* FALLTHROUGH */ 2692 case XPT_NVME_IO: 2693 /* FALLTHROUGH */ 2694 case XPT_NVME_ADMIN: 2695 /* FALLTHROUGH */ 2696 case XPT_MMC_IO: 2697 /* XXX just like nmve_io? */ 2698 case XPT_RESET_DEV: 2699 case XPT_ENG_EXEC: 2700 case XPT_SMP_IO: 2701 { 2702 struct cam_devq *devq; 2703 2704 devq = path->bus->sim->devq; 2705 mtx_lock(&devq->send_mtx); 2706 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2707 if (xpt_schedule_devq(devq, path->device) != 0) 2708 xpt_run_devq(devq); 2709 mtx_unlock(&devq->send_mtx); 2710 break; 2711 } 2712 case XPT_CALC_GEOMETRY: 2713 /* Filter out garbage */ 2714 if (start_ccb->ccg.block_size == 0 2715 || start_ccb->ccg.volume_size == 0) { 2716 start_ccb->ccg.cylinders = 0; 2717 start_ccb->ccg.heads = 0; 2718 start_ccb->ccg.secs_per_track = 0; 2719 start_ccb->ccb_h.status = CAM_REQ_CMP; 2720 break; 2721 } 2722 #if defined(__sparc64__) 2723 /* 2724 * For sparc64, we may need adjust the geometry of large 2725 * disks in order to fit the limitations of the 16-bit 2726 * fields of the VTOC8 disk label. 2727 */ 2728 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2729 start_ccb->ccb_h.status = CAM_REQ_CMP; 2730 break; 2731 } 2732 #endif 2733 goto call_sim; 2734 case XPT_ABORT: 2735 { 2736 union ccb* abort_ccb; 2737 2738 abort_ccb = start_ccb->cab.abort_ccb; 2739 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2740 struct cam_ed *device; 2741 struct cam_devq *devq; 2742 2743 device = abort_ccb->ccb_h.path->device; 2744 devq = device->sim->devq; 2745 2746 mtx_lock(&devq->send_mtx); 2747 if (abort_ccb->ccb_h.pinfo.index > 0) { 2748 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2749 abort_ccb->ccb_h.status = 2750 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2751 xpt_freeze_devq_device(device, 1); 2752 mtx_unlock(&devq->send_mtx); 2753 xpt_done(abort_ccb); 2754 start_ccb->ccb_h.status = CAM_REQ_CMP; 2755 break; 2756 } 2757 mtx_unlock(&devq->send_mtx); 2758 2759 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2760 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2761 /* 2762 * We've caught this ccb en route to 2763 * the SIM. Flag it for abort and the 2764 * SIM will do so just before starting 2765 * real work on the CCB. 2766 */ 2767 abort_ccb->ccb_h.status = 2768 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2769 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2770 start_ccb->ccb_h.status = CAM_REQ_CMP; 2771 break; 2772 } 2773 } 2774 if (XPT_FC_IS_QUEUED(abort_ccb) 2775 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2776 /* 2777 * It's already completed but waiting 2778 * for our SWI to get to it. 2779 */ 2780 start_ccb->ccb_h.status = CAM_UA_ABORT; 2781 break; 2782 } 2783 /* 2784 * If we weren't able to take care of the abort request 2785 * in the XPT, pass the request down to the SIM for processing. 2786 */ 2787 } 2788 /* FALLTHROUGH */ 2789 case XPT_ACCEPT_TARGET_IO: 2790 case XPT_EN_LUN: 2791 case XPT_IMMED_NOTIFY: 2792 case XPT_NOTIFY_ACK: 2793 case XPT_RESET_BUS: 2794 case XPT_IMMEDIATE_NOTIFY: 2795 case XPT_NOTIFY_ACKNOWLEDGE: 2796 case XPT_GET_SIM_KNOB_OLD: 2797 case XPT_GET_SIM_KNOB: 2798 case XPT_SET_SIM_KNOB: 2799 case XPT_GET_TRAN_SETTINGS: 2800 case XPT_SET_TRAN_SETTINGS: 2801 case XPT_PATH_INQ: 2802 call_sim: 2803 sim = path->bus->sim; 2804 mtx = sim->mtx; 2805 if (mtx && !mtx_owned(mtx)) 2806 mtx_lock(mtx); 2807 else 2808 mtx = NULL; 2809 2810 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2811 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2812 (*(sim->sim_action))(sim, start_ccb); 2813 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2814 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2815 if (mtx) 2816 mtx_unlock(mtx); 2817 break; 2818 case XPT_PATH_STATS: 2819 start_ccb->cpis.last_reset = path->bus->last_reset; 2820 start_ccb->ccb_h.status = CAM_REQ_CMP; 2821 break; 2822 case XPT_GDEV_TYPE: 2823 { 2824 struct cam_ed *dev; 2825 2826 dev = path->device; 2827 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2828 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2829 } else { 2830 struct ccb_getdev *cgd; 2831 2832 cgd = &start_ccb->cgd; 2833 cgd->protocol = dev->protocol; 2834 cgd->inq_data = dev->inq_data; 2835 cgd->ident_data = dev->ident_data; 2836 cgd->inq_flags = dev->inq_flags; 2837 cgd->ccb_h.status = CAM_REQ_CMP; 2838 cgd->serial_num_len = dev->serial_num_len; 2839 if ((dev->serial_num_len > 0) 2840 && (dev->serial_num != NULL)) 2841 bcopy(dev->serial_num, cgd->serial_num, 2842 dev->serial_num_len); 2843 } 2844 break; 2845 } 2846 case XPT_GDEV_STATS: 2847 { 2848 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2849 struct cam_ed *dev = path->device; 2850 struct cam_eb *bus = path->bus; 2851 struct cam_et *tar = path->target; 2852 struct cam_devq *devq = bus->sim->devq; 2853 2854 mtx_lock(&devq->send_mtx); 2855 cgds->dev_openings = dev->ccbq.dev_openings; 2856 cgds->dev_active = dev->ccbq.dev_active; 2857 cgds->allocated = dev->ccbq.allocated; 2858 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2859 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2860 cgds->last_reset = tar->last_reset; 2861 cgds->maxtags = dev->maxtags; 2862 cgds->mintags = dev->mintags; 2863 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2864 cgds->last_reset = bus->last_reset; 2865 mtx_unlock(&devq->send_mtx); 2866 cgds->ccb_h.status = CAM_REQ_CMP; 2867 break; 2868 } 2869 case XPT_GDEVLIST: 2870 { 2871 struct cam_periph *nperiph; 2872 struct periph_list *periph_head; 2873 struct ccb_getdevlist *cgdl; 2874 u_int i; 2875 struct cam_ed *device; 2876 int found; 2877 2878 2879 found = 0; 2880 2881 /* 2882 * Don't want anyone mucking with our data. 2883 */ 2884 device = path->device; 2885 periph_head = &device->periphs; 2886 cgdl = &start_ccb->cgdl; 2887 2888 /* 2889 * Check and see if the list has changed since the user 2890 * last requested a list member. If so, tell them that the 2891 * list has changed, and therefore they need to start over 2892 * from the beginning. 2893 */ 2894 if ((cgdl->index != 0) && 2895 (cgdl->generation != device->generation)) { 2896 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2897 break; 2898 } 2899 2900 /* 2901 * Traverse the list of peripherals and attempt to find 2902 * the requested peripheral. 2903 */ 2904 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2905 (nperiph != NULL) && (i <= cgdl->index); 2906 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2907 if (i == cgdl->index) { 2908 strncpy(cgdl->periph_name, 2909 nperiph->periph_name, 2910 DEV_IDLEN); 2911 cgdl->unit_number = nperiph->unit_number; 2912 found = 1; 2913 } 2914 } 2915 if (found == 0) { 2916 cgdl->status = CAM_GDEVLIST_ERROR; 2917 break; 2918 } 2919 2920 if (nperiph == NULL) 2921 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2922 else 2923 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2924 2925 cgdl->index++; 2926 cgdl->generation = device->generation; 2927 2928 cgdl->ccb_h.status = CAM_REQ_CMP; 2929 break; 2930 } 2931 case XPT_DEV_MATCH: 2932 { 2933 dev_pos_type position_type; 2934 struct ccb_dev_match *cdm; 2935 2936 cdm = &start_ccb->cdm; 2937 2938 /* 2939 * There are two ways of getting at information in the EDT. 2940 * The first way is via the primary EDT tree. It starts 2941 * with a list of buses, then a list of targets on a bus, 2942 * then devices/luns on a target, and then peripherals on a 2943 * device/lun. The "other" way is by the peripheral driver 2944 * lists. The peripheral driver lists are organized by 2945 * peripheral driver. (obviously) So it makes sense to 2946 * use the peripheral driver list if the user is looking 2947 * for something like "da1", or all "da" devices. If the 2948 * user is looking for something on a particular bus/target 2949 * or lun, it's generally better to go through the EDT tree. 2950 */ 2951 2952 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2953 position_type = cdm->pos.position_type; 2954 else { 2955 u_int i; 2956 2957 position_type = CAM_DEV_POS_NONE; 2958 2959 for (i = 0; i < cdm->num_patterns; i++) { 2960 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2961 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2962 position_type = CAM_DEV_POS_EDT; 2963 break; 2964 } 2965 } 2966 2967 if (cdm->num_patterns == 0) 2968 position_type = CAM_DEV_POS_EDT; 2969 else if (position_type == CAM_DEV_POS_NONE) 2970 position_type = CAM_DEV_POS_PDRV; 2971 } 2972 2973 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2974 case CAM_DEV_POS_EDT: 2975 xptedtmatch(cdm); 2976 break; 2977 case CAM_DEV_POS_PDRV: 2978 xptperiphlistmatch(cdm); 2979 break; 2980 default: 2981 cdm->status = CAM_DEV_MATCH_ERROR; 2982 break; 2983 } 2984 2985 if (cdm->status == CAM_DEV_MATCH_ERROR) 2986 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2987 else 2988 start_ccb->ccb_h.status = CAM_REQ_CMP; 2989 2990 break; 2991 } 2992 case XPT_SASYNC_CB: 2993 { 2994 struct ccb_setasync *csa; 2995 struct async_node *cur_entry; 2996 struct async_list *async_head; 2997 u_int32_t added; 2998 2999 csa = &start_ccb->csa; 3000 added = csa->event_enable; 3001 async_head = &path->device->asyncs; 3002 3003 /* 3004 * If there is already an entry for us, simply 3005 * update it. 3006 */ 3007 cur_entry = SLIST_FIRST(async_head); 3008 while (cur_entry != NULL) { 3009 if ((cur_entry->callback_arg == csa->callback_arg) 3010 && (cur_entry->callback == csa->callback)) 3011 break; 3012 cur_entry = SLIST_NEXT(cur_entry, links); 3013 } 3014 3015 if (cur_entry != NULL) { 3016 /* 3017 * If the request has no flags set, 3018 * remove the entry. 3019 */ 3020 added &= ~cur_entry->event_enable; 3021 if (csa->event_enable == 0) { 3022 SLIST_REMOVE(async_head, cur_entry, 3023 async_node, links); 3024 xpt_release_device(path->device); 3025 free(cur_entry, M_CAMXPT); 3026 } else { 3027 cur_entry->event_enable = csa->event_enable; 3028 } 3029 csa->event_enable = added; 3030 } else { 3031 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3032 M_NOWAIT); 3033 if (cur_entry == NULL) { 3034 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3035 break; 3036 } 3037 cur_entry->event_enable = csa->event_enable; 3038 cur_entry->event_lock = (path->bus->sim->mtx && 3039 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3040 cur_entry->callback_arg = csa->callback_arg; 3041 cur_entry->callback = csa->callback; 3042 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3043 xpt_acquire_device(path->device); 3044 } 3045 start_ccb->ccb_h.status = CAM_REQ_CMP; 3046 break; 3047 } 3048 case XPT_REL_SIMQ: 3049 { 3050 struct ccb_relsim *crs; 3051 struct cam_ed *dev; 3052 3053 crs = &start_ccb->crs; 3054 dev = path->device; 3055 if (dev == NULL) { 3056 3057 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3058 break; 3059 } 3060 3061 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3062 3063 /* Don't ever go below one opening */ 3064 if (crs->openings > 0) { 3065 xpt_dev_ccbq_resize(path, crs->openings); 3066 if (bootverbose) { 3067 xpt_print(path, 3068 "number of openings is now %d\n", 3069 crs->openings); 3070 } 3071 } 3072 } 3073 3074 mtx_lock(&dev->sim->devq->send_mtx); 3075 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3076 3077 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3078 3079 /* 3080 * Just extend the old timeout and decrement 3081 * the freeze count so that a single timeout 3082 * is sufficient for releasing the queue. 3083 */ 3084 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3085 callout_stop(&dev->callout); 3086 } else { 3087 3088 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3089 } 3090 3091 callout_reset_sbt(&dev->callout, 3092 SBT_1MS * crs->release_timeout, 0, 3093 xpt_release_devq_timeout, dev, 0); 3094 3095 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3096 3097 } 3098 3099 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3100 3101 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3102 /* 3103 * Decrement the freeze count so that a single 3104 * completion is still sufficient to unfreeze 3105 * the queue. 3106 */ 3107 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3108 } else { 3109 3110 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3111 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3112 } 3113 } 3114 3115 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3116 3117 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3118 || (dev->ccbq.dev_active == 0)) { 3119 3120 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3121 } else { 3122 3123 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3124 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3125 } 3126 } 3127 mtx_unlock(&dev->sim->devq->send_mtx); 3128 3129 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3130 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3131 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3132 start_ccb->ccb_h.status = CAM_REQ_CMP; 3133 break; 3134 } 3135 case XPT_DEBUG: { 3136 struct cam_path *oldpath; 3137 3138 /* Check that all request bits are supported. */ 3139 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3140 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3141 break; 3142 } 3143 3144 cam_dflags = CAM_DEBUG_NONE; 3145 if (cam_dpath != NULL) { 3146 oldpath = cam_dpath; 3147 cam_dpath = NULL; 3148 xpt_free_path(oldpath); 3149 } 3150 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3151 if (xpt_create_path(&cam_dpath, NULL, 3152 start_ccb->ccb_h.path_id, 3153 start_ccb->ccb_h.target_id, 3154 start_ccb->ccb_h.target_lun) != 3155 CAM_REQ_CMP) { 3156 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3157 } else { 3158 cam_dflags = start_ccb->cdbg.flags; 3159 start_ccb->ccb_h.status = CAM_REQ_CMP; 3160 xpt_print(cam_dpath, "debugging flags now %x\n", 3161 cam_dflags); 3162 } 3163 } else 3164 start_ccb->ccb_h.status = CAM_REQ_CMP; 3165 break; 3166 } 3167 case XPT_NOOP: 3168 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3169 xpt_freeze_devq(path, 1); 3170 start_ccb->ccb_h.status = CAM_REQ_CMP; 3171 break; 3172 case XPT_REPROBE_LUN: 3173 xpt_async(AC_INQ_CHANGED, path, NULL); 3174 start_ccb->ccb_h.status = CAM_REQ_CMP; 3175 xpt_done(start_ccb); 3176 break; 3177 default: 3178 case XPT_SDEV_TYPE: 3179 case XPT_TERM_IO: 3180 case XPT_ENG_INQ: 3181 /* XXX Implement */ 3182 xpt_print(start_ccb->ccb_h.path, 3183 "%s: CCB type %#x %s not supported\n", __func__, 3184 start_ccb->ccb_h.func_code, 3185 xpt_action_name(start_ccb->ccb_h.func_code)); 3186 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3187 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3188 xpt_done(start_ccb); 3189 } 3190 break; 3191 } 3192 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3193 ("xpt_action_default: func= %#x %s status %#x\n", 3194 start_ccb->ccb_h.func_code, 3195 xpt_action_name(start_ccb->ccb_h.func_code), 3196 start_ccb->ccb_h.status)); 3197 } 3198 3199 void 3200 xpt_polled_action(union ccb *start_ccb) 3201 { 3202 u_int32_t timeout; 3203 struct cam_sim *sim; 3204 struct cam_devq *devq; 3205 struct cam_ed *dev; 3206 struct mtx *mtx; 3207 3208 timeout = start_ccb->ccb_h.timeout * 10; 3209 sim = start_ccb->ccb_h.path->bus->sim; 3210 devq = sim->devq; 3211 mtx = sim->mtx; 3212 dev = start_ccb->ccb_h.path->device; 3213 3214 mtx_unlock(&dev->device_mtx); 3215 3216 /* 3217 * Steal an opening so that no other queued requests 3218 * can get it before us while we simulate interrupts. 3219 */ 3220 mtx_lock(&devq->send_mtx); 3221 dev->ccbq.dev_openings--; 3222 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3223 (--timeout > 0)) { 3224 mtx_unlock(&devq->send_mtx); 3225 DELAY(100); 3226 if (mtx) 3227 mtx_lock(mtx); 3228 (*(sim->sim_poll))(sim); 3229 if (mtx) 3230 mtx_unlock(mtx); 3231 camisr_runqueue(); 3232 mtx_lock(&devq->send_mtx); 3233 } 3234 dev->ccbq.dev_openings++; 3235 mtx_unlock(&devq->send_mtx); 3236 3237 if (timeout != 0) { 3238 xpt_action(start_ccb); 3239 while(--timeout > 0) { 3240 if (mtx) 3241 mtx_lock(mtx); 3242 (*(sim->sim_poll))(sim); 3243 if (mtx) 3244 mtx_unlock(mtx); 3245 camisr_runqueue(); 3246 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3247 != CAM_REQ_INPROG) 3248 break; 3249 DELAY(100); 3250 } 3251 if (timeout == 0) { 3252 /* 3253 * XXX Is it worth adding a sim_timeout entry 3254 * point so we can attempt recovery? If 3255 * this is only used for dumps, I don't think 3256 * it is. 3257 */ 3258 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3259 } 3260 } else { 3261 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3262 } 3263 3264 mtx_lock(&dev->device_mtx); 3265 } 3266 3267 /* 3268 * Schedule a peripheral driver to receive a ccb when its 3269 * target device has space for more transactions. 3270 */ 3271 void 3272 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3273 { 3274 3275 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3276 cam_periph_assert(periph, MA_OWNED); 3277 if (new_priority < periph->scheduled_priority) { 3278 periph->scheduled_priority = new_priority; 3279 xpt_run_allocq(periph, 0); 3280 } 3281 } 3282 3283 3284 /* 3285 * Schedule a device to run on a given queue. 3286 * If the device was inserted as a new entry on the queue, 3287 * return 1 meaning the device queue should be run. If we 3288 * were already queued, implying someone else has already 3289 * started the queue, return 0 so the caller doesn't attempt 3290 * to run the queue. 3291 */ 3292 static int 3293 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3294 u_int32_t new_priority) 3295 { 3296 int retval; 3297 u_int32_t old_priority; 3298 3299 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3300 3301 old_priority = pinfo->priority; 3302 3303 /* 3304 * Are we already queued? 3305 */ 3306 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3307 /* Simply reorder based on new priority */ 3308 if (new_priority < old_priority) { 3309 camq_change_priority(queue, pinfo->index, 3310 new_priority); 3311 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3312 ("changed priority to %d\n", 3313 new_priority)); 3314 retval = 1; 3315 } else 3316 retval = 0; 3317 } else { 3318 /* New entry on the queue */ 3319 if (new_priority < old_priority) 3320 pinfo->priority = new_priority; 3321 3322 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3323 ("Inserting onto queue\n")); 3324 pinfo->generation = ++queue->generation; 3325 camq_insert(queue, pinfo); 3326 retval = 1; 3327 } 3328 return (retval); 3329 } 3330 3331 static void 3332 xpt_run_allocq_task(void *context, int pending) 3333 { 3334 struct cam_periph *periph = context; 3335 3336 cam_periph_lock(periph); 3337 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3338 xpt_run_allocq(periph, 1); 3339 cam_periph_unlock(periph); 3340 cam_periph_release(periph); 3341 } 3342 3343 static void 3344 xpt_run_allocq(struct cam_periph *periph, int sleep) 3345 { 3346 struct cam_ed *device; 3347 union ccb *ccb; 3348 uint32_t prio; 3349 3350 cam_periph_assert(periph, MA_OWNED); 3351 if (periph->periph_allocating) 3352 return; 3353 periph->periph_allocating = 1; 3354 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3355 device = periph->path->device; 3356 ccb = NULL; 3357 restart: 3358 while ((prio = min(periph->scheduled_priority, 3359 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3360 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3361 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3362 3363 if (ccb == NULL && 3364 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3365 if (sleep) { 3366 ccb = xpt_get_ccb(periph); 3367 goto restart; 3368 } 3369 if (periph->flags & CAM_PERIPH_RUN_TASK) 3370 break; 3371 cam_periph_doacquire(periph); 3372 periph->flags |= CAM_PERIPH_RUN_TASK; 3373 taskqueue_enqueue(xsoftc.xpt_taskq, 3374 &periph->periph_run_task); 3375 break; 3376 } 3377 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3378 if (prio == periph->immediate_priority) { 3379 periph->immediate_priority = CAM_PRIORITY_NONE; 3380 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3381 ("waking cam_periph_getccb()\n")); 3382 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3383 periph_links.sle); 3384 wakeup(&periph->ccb_list); 3385 } else { 3386 periph->scheduled_priority = CAM_PRIORITY_NONE; 3387 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3388 ("calling periph_start()\n")); 3389 periph->periph_start(periph, ccb); 3390 } 3391 ccb = NULL; 3392 } 3393 if (ccb != NULL) 3394 xpt_release_ccb(ccb); 3395 periph->periph_allocating = 0; 3396 } 3397 3398 static void 3399 xpt_run_devq(struct cam_devq *devq) 3400 { 3401 struct mtx *mtx; 3402 3403 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3404 3405 devq->send_queue.qfrozen_cnt++; 3406 while ((devq->send_queue.entries > 0) 3407 && (devq->send_openings > 0) 3408 && (devq->send_queue.qfrozen_cnt <= 1)) { 3409 struct cam_ed *device; 3410 union ccb *work_ccb; 3411 struct cam_sim *sim; 3412 struct xpt_proto *proto; 3413 3414 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3415 CAMQ_HEAD); 3416 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3417 ("running device %p\n", device)); 3418 3419 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3420 if (work_ccb == NULL) { 3421 printf("device on run queue with no ccbs???\n"); 3422 continue; 3423 } 3424 3425 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3426 3427 mtx_lock(&xsoftc.xpt_highpower_lock); 3428 if (xsoftc.num_highpower <= 0) { 3429 /* 3430 * We got a high power command, but we 3431 * don't have any available slots. Freeze 3432 * the device queue until we have a slot 3433 * available. 3434 */ 3435 xpt_freeze_devq_device(device, 1); 3436 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3437 highpowerq_entry); 3438 3439 mtx_unlock(&xsoftc.xpt_highpower_lock); 3440 continue; 3441 } else { 3442 /* 3443 * Consume a high power slot while 3444 * this ccb runs. 3445 */ 3446 xsoftc.num_highpower--; 3447 } 3448 mtx_unlock(&xsoftc.xpt_highpower_lock); 3449 } 3450 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3451 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3452 devq->send_openings--; 3453 devq->send_active++; 3454 xpt_schedule_devq(devq, device); 3455 mtx_unlock(&devq->send_mtx); 3456 3457 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3458 /* 3459 * The client wants to freeze the queue 3460 * after this CCB is sent. 3461 */ 3462 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3463 } 3464 3465 /* In Target mode, the peripheral driver knows best... */ 3466 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3467 if ((device->inq_flags & SID_CmdQue) != 0 3468 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3469 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3470 else 3471 /* 3472 * Clear this in case of a retried CCB that 3473 * failed due to a rejected tag. 3474 */ 3475 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3476 } 3477 3478 KASSERT(device == work_ccb->ccb_h.path->device, 3479 ("device (%p) / path->device (%p) mismatch", 3480 device, work_ccb->ccb_h.path->device)); 3481 proto = xpt_proto_find(device->protocol); 3482 if (proto && proto->ops->debug_out) 3483 proto->ops->debug_out(work_ccb); 3484 3485 /* 3486 * Device queues can be shared among multiple SIM instances 3487 * that reside on different buses. Use the SIM from the 3488 * queued device, rather than the one from the calling bus. 3489 */ 3490 sim = device->sim; 3491 mtx = sim->mtx; 3492 if (mtx && !mtx_owned(mtx)) 3493 mtx_lock(mtx); 3494 else 3495 mtx = NULL; 3496 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3497 (*(sim->sim_action))(sim, work_ccb); 3498 if (mtx) 3499 mtx_unlock(mtx); 3500 mtx_lock(&devq->send_mtx); 3501 } 3502 devq->send_queue.qfrozen_cnt--; 3503 } 3504 3505 /* 3506 * This function merges stuff from the slave ccb into the master ccb, while 3507 * keeping important fields in the master ccb constant. 3508 */ 3509 void 3510 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3511 { 3512 3513 /* 3514 * Pull fields that are valid for peripheral drivers to set 3515 * into the master CCB along with the CCB "payload". 3516 */ 3517 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3518 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3519 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3520 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3521 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3522 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3523 } 3524 3525 void 3526 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3527 u_int32_t priority, u_int32_t flags) 3528 { 3529 3530 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3531 ccb_h->pinfo.priority = priority; 3532 ccb_h->path = path; 3533 ccb_h->path_id = path->bus->path_id; 3534 if (path->target) 3535 ccb_h->target_id = path->target->target_id; 3536 else 3537 ccb_h->target_id = CAM_TARGET_WILDCARD; 3538 if (path->device) { 3539 ccb_h->target_lun = path->device->lun_id; 3540 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3541 } else { 3542 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3543 } 3544 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3545 ccb_h->flags = flags; 3546 ccb_h->xflags = 0; 3547 } 3548 3549 void 3550 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3551 { 3552 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3553 } 3554 3555 /* Path manipulation functions */ 3556 cam_status 3557 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3558 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3559 { 3560 struct cam_path *path; 3561 cam_status status; 3562 3563 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3564 3565 if (path == NULL) { 3566 status = CAM_RESRC_UNAVAIL; 3567 return(status); 3568 } 3569 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3570 if (status != CAM_REQ_CMP) { 3571 free(path, M_CAMPATH); 3572 path = NULL; 3573 } 3574 *new_path_ptr = path; 3575 return (status); 3576 } 3577 3578 cam_status 3579 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3580 struct cam_periph *periph, path_id_t path_id, 3581 target_id_t target_id, lun_id_t lun_id) 3582 { 3583 3584 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3585 lun_id)); 3586 } 3587 3588 cam_status 3589 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3590 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3591 { 3592 struct cam_eb *bus; 3593 struct cam_et *target; 3594 struct cam_ed *device; 3595 cam_status status; 3596 3597 status = CAM_REQ_CMP; /* Completed without error */ 3598 target = NULL; /* Wildcarded */ 3599 device = NULL; /* Wildcarded */ 3600 3601 /* 3602 * We will potentially modify the EDT, so block interrupts 3603 * that may attempt to create cam paths. 3604 */ 3605 bus = xpt_find_bus(path_id); 3606 if (bus == NULL) { 3607 status = CAM_PATH_INVALID; 3608 } else { 3609 xpt_lock_buses(); 3610 mtx_lock(&bus->eb_mtx); 3611 target = xpt_find_target(bus, target_id); 3612 if (target == NULL) { 3613 /* Create one */ 3614 struct cam_et *new_target; 3615 3616 new_target = xpt_alloc_target(bus, target_id); 3617 if (new_target == NULL) { 3618 status = CAM_RESRC_UNAVAIL; 3619 } else { 3620 target = new_target; 3621 } 3622 } 3623 xpt_unlock_buses(); 3624 if (target != NULL) { 3625 device = xpt_find_device(target, lun_id); 3626 if (device == NULL) { 3627 /* Create one */ 3628 struct cam_ed *new_device; 3629 3630 new_device = 3631 (*(bus->xport->ops->alloc_device))(bus, 3632 target, 3633 lun_id); 3634 if (new_device == NULL) { 3635 status = CAM_RESRC_UNAVAIL; 3636 } else { 3637 device = new_device; 3638 } 3639 } 3640 } 3641 mtx_unlock(&bus->eb_mtx); 3642 } 3643 3644 /* 3645 * Only touch the user's data if we are successful. 3646 */ 3647 if (status == CAM_REQ_CMP) { 3648 new_path->periph = perph; 3649 new_path->bus = bus; 3650 new_path->target = target; 3651 new_path->device = device; 3652 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3653 } else { 3654 if (device != NULL) 3655 xpt_release_device(device); 3656 if (target != NULL) 3657 xpt_release_target(target); 3658 if (bus != NULL) 3659 xpt_release_bus(bus); 3660 } 3661 return (status); 3662 } 3663 3664 cam_status 3665 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3666 { 3667 struct cam_path *new_path; 3668 3669 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3670 if (new_path == NULL) 3671 return(CAM_RESRC_UNAVAIL); 3672 xpt_copy_path(new_path, path); 3673 *new_path_ptr = new_path; 3674 return (CAM_REQ_CMP); 3675 } 3676 3677 void 3678 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3679 { 3680 3681 *new_path = *path; 3682 if (path->bus != NULL) 3683 xpt_acquire_bus(path->bus); 3684 if (path->target != NULL) 3685 xpt_acquire_target(path->target); 3686 if (path->device != NULL) 3687 xpt_acquire_device(path->device); 3688 } 3689 3690 void 3691 xpt_release_path(struct cam_path *path) 3692 { 3693 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3694 if (path->device != NULL) { 3695 xpt_release_device(path->device); 3696 path->device = NULL; 3697 } 3698 if (path->target != NULL) { 3699 xpt_release_target(path->target); 3700 path->target = NULL; 3701 } 3702 if (path->bus != NULL) { 3703 xpt_release_bus(path->bus); 3704 path->bus = NULL; 3705 } 3706 } 3707 3708 void 3709 xpt_free_path(struct cam_path *path) 3710 { 3711 3712 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3713 xpt_release_path(path); 3714 free(path, M_CAMPATH); 3715 } 3716 3717 void 3718 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3719 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3720 { 3721 3722 xpt_lock_buses(); 3723 if (bus_ref) { 3724 if (path->bus) 3725 *bus_ref = path->bus->refcount; 3726 else 3727 *bus_ref = 0; 3728 } 3729 if (periph_ref) { 3730 if (path->periph) 3731 *periph_ref = path->periph->refcount; 3732 else 3733 *periph_ref = 0; 3734 } 3735 xpt_unlock_buses(); 3736 if (target_ref) { 3737 if (path->target) 3738 *target_ref = path->target->refcount; 3739 else 3740 *target_ref = 0; 3741 } 3742 if (device_ref) { 3743 if (path->device) 3744 *device_ref = path->device->refcount; 3745 else 3746 *device_ref = 0; 3747 } 3748 } 3749 3750 /* 3751 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3752 * in path1, 2 for match with wildcards in path2. 3753 */ 3754 int 3755 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3756 { 3757 int retval = 0; 3758 3759 if (path1->bus != path2->bus) { 3760 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3761 retval = 1; 3762 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3763 retval = 2; 3764 else 3765 return (-1); 3766 } 3767 if (path1->target != path2->target) { 3768 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3769 if (retval == 0) 3770 retval = 1; 3771 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3772 retval = 2; 3773 else 3774 return (-1); 3775 } 3776 if (path1->device != path2->device) { 3777 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3778 if (retval == 0) 3779 retval = 1; 3780 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3781 retval = 2; 3782 else 3783 return (-1); 3784 } 3785 return (retval); 3786 } 3787 3788 int 3789 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3790 { 3791 int retval = 0; 3792 3793 if (path->bus != dev->target->bus) { 3794 if (path->bus->path_id == CAM_BUS_WILDCARD) 3795 retval = 1; 3796 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3797 retval = 2; 3798 else 3799 return (-1); 3800 } 3801 if (path->target != dev->target) { 3802 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3803 if (retval == 0) 3804 retval = 1; 3805 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3806 retval = 2; 3807 else 3808 return (-1); 3809 } 3810 if (path->device != dev) { 3811 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3812 if (retval == 0) 3813 retval = 1; 3814 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3815 retval = 2; 3816 else 3817 return (-1); 3818 } 3819 return (retval); 3820 } 3821 3822 void 3823 xpt_print_path(struct cam_path *path) 3824 { 3825 struct sbuf sb; 3826 char buffer[XPT_PRINT_LEN]; 3827 3828 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3829 xpt_path_sbuf(path, &sb); 3830 sbuf_finish(&sb); 3831 printf("%s", sbuf_data(&sb)); 3832 sbuf_delete(&sb); 3833 } 3834 3835 void 3836 xpt_print_device(struct cam_ed *device) 3837 { 3838 3839 if (device == NULL) 3840 printf("(nopath): "); 3841 else { 3842 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3843 device->sim->unit_number, 3844 device->sim->bus_id, 3845 device->target->target_id, 3846 (uintmax_t)device->lun_id); 3847 } 3848 } 3849 3850 void 3851 xpt_print(struct cam_path *path, const char *fmt, ...) 3852 { 3853 va_list ap; 3854 struct sbuf sb; 3855 char buffer[XPT_PRINT_LEN]; 3856 3857 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3858 3859 xpt_path_sbuf(path, &sb); 3860 va_start(ap, fmt); 3861 sbuf_vprintf(&sb, fmt, ap); 3862 va_end(ap); 3863 3864 sbuf_finish(&sb); 3865 printf("%s", sbuf_data(&sb)); 3866 sbuf_delete(&sb); 3867 } 3868 3869 int 3870 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3871 { 3872 struct sbuf sb; 3873 int len; 3874 3875 sbuf_new(&sb, str, str_len, 0); 3876 len = xpt_path_sbuf(path, &sb); 3877 sbuf_finish(&sb); 3878 return (len); 3879 } 3880 3881 int 3882 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3883 { 3884 3885 if (path == NULL) 3886 sbuf_printf(sb, "(nopath): "); 3887 else { 3888 if (path->periph != NULL) 3889 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3890 path->periph->unit_number); 3891 else 3892 sbuf_printf(sb, "(noperiph:"); 3893 3894 if (path->bus != NULL) 3895 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3896 path->bus->sim->unit_number, 3897 path->bus->sim->bus_id); 3898 else 3899 sbuf_printf(sb, "nobus:"); 3900 3901 if (path->target != NULL) 3902 sbuf_printf(sb, "%d:", path->target->target_id); 3903 else 3904 sbuf_printf(sb, "X:"); 3905 3906 if (path->device != NULL) 3907 sbuf_printf(sb, "%jx): ", 3908 (uintmax_t)path->device->lun_id); 3909 else 3910 sbuf_printf(sb, "X): "); 3911 } 3912 3913 return(sbuf_len(sb)); 3914 } 3915 3916 path_id_t 3917 xpt_path_path_id(struct cam_path *path) 3918 { 3919 return(path->bus->path_id); 3920 } 3921 3922 target_id_t 3923 xpt_path_target_id(struct cam_path *path) 3924 { 3925 if (path->target != NULL) 3926 return (path->target->target_id); 3927 else 3928 return (CAM_TARGET_WILDCARD); 3929 } 3930 3931 lun_id_t 3932 xpt_path_lun_id(struct cam_path *path) 3933 { 3934 if (path->device != NULL) 3935 return (path->device->lun_id); 3936 else 3937 return (CAM_LUN_WILDCARD); 3938 } 3939 3940 struct cam_sim * 3941 xpt_path_sim(struct cam_path *path) 3942 { 3943 3944 return (path->bus->sim); 3945 } 3946 3947 struct cam_periph* 3948 xpt_path_periph(struct cam_path *path) 3949 { 3950 3951 return (path->periph); 3952 } 3953 3954 /* 3955 * Release a CAM control block for the caller. Remit the cost of the structure 3956 * to the device referenced by the path. If the this device had no 'credits' 3957 * and peripheral drivers have registered async callbacks for this notification 3958 * call them now. 3959 */ 3960 void 3961 xpt_release_ccb(union ccb *free_ccb) 3962 { 3963 struct cam_ed *device; 3964 struct cam_periph *periph; 3965 3966 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3967 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3968 device = free_ccb->ccb_h.path->device; 3969 periph = free_ccb->ccb_h.path->periph; 3970 3971 xpt_free_ccb(free_ccb); 3972 periph->periph_allocated--; 3973 cam_ccbq_release_opening(&device->ccbq); 3974 xpt_run_allocq(periph, 0); 3975 } 3976 3977 /* Functions accessed by SIM drivers */ 3978 3979 static struct xpt_xport_ops xport_default_ops = { 3980 .alloc_device = xpt_alloc_device_default, 3981 .action = xpt_action_default, 3982 .async = xpt_dev_async_default, 3983 }; 3984 static struct xpt_xport xport_default = { 3985 .xport = XPORT_UNKNOWN, 3986 .name = "unknown", 3987 .ops = &xport_default_ops, 3988 }; 3989 3990 CAM_XPT_XPORT(xport_default); 3991 3992 /* 3993 * A sim structure, listing the SIM entry points and instance 3994 * identification info is passed to xpt_bus_register to hook the SIM 3995 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3996 * for this new bus and places it in the array of buses and assigns 3997 * it a path_id. The path_id may be influenced by "hard wiring" 3998 * information specified by the user. Once interrupt services are 3999 * available, the bus will be probed. 4000 */ 4001 int32_t 4002 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4003 { 4004 struct cam_eb *new_bus; 4005 struct cam_eb *old_bus; 4006 struct ccb_pathinq cpi; 4007 struct cam_path *path; 4008 cam_status status; 4009 4010 sim->bus_id = bus; 4011 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4012 M_CAMXPT, M_NOWAIT|M_ZERO); 4013 if (new_bus == NULL) { 4014 /* Couldn't satisfy request */ 4015 return (CAM_RESRC_UNAVAIL); 4016 } 4017 4018 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4019 TAILQ_INIT(&new_bus->et_entries); 4020 cam_sim_hold(sim); 4021 new_bus->sim = sim; 4022 timevalclear(&new_bus->last_reset); 4023 new_bus->flags = 0; 4024 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4025 new_bus->generation = 0; 4026 4027 xpt_lock_buses(); 4028 sim->path_id = new_bus->path_id = 4029 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4030 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4031 while (old_bus != NULL 4032 && old_bus->path_id < new_bus->path_id) 4033 old_bus = TAILQ_NEXT(old_bus, links); 4034 if (old_bus != NULL) 4035 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4036 else 4037 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4038 xsoftc.bus_generation++; 4039 xpt_unlock_buses(); 4040 4041 /* 4042 * Set a default transport so that a PATH_INQ can be issued to 4043 * the SIM. This will then allow for probing and attaching of 4044 * a more appropriate transport. 4045 */ 4046 new_bus->xport = &xport_default; 4047 4048 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4049 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4050 if (status != CAM_REQ_CMP) { 4051 xpt_release_bus(new_bus); 4052 free(path, M_CAMXPT); 4053 return (CAM_RESRC_UNAVAIL); 4054 } 4055 4056 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 4057 cpi.ccb_h.func_code = XPT_PATH_INQ; 4058 xpt_action((union ccb *)&cpi); 4059 4060 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4061 struct xpt_xport **xpt; 4062 4063 SET_FOREACH(xpt, cam_xpt_xport_set) { 4064 if ((*xpt)->xport == cpi.transport) { 4065 new_bus->xport = *xpt; 4066 break; 4067 } 4068 } 4069 if (new_bus->xport == NULL) { 4070 xpt_print(path, 4071 "No transport found for %d\n", cpi.transport); 4072 xpt_release_bus(new_bus); 4073 free(path, M_CAMXPT); 4074 return (CAM_RESRC_UNAVAIL); 4075 } 4076 } 4077 4078 /* Notify interested parties */ 4079 if (sim->path_id != CAM_XPT_PATH_ID) { 4080 4081 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4082 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4083 union ccb *scan_ccb; 4084 4085 /* Initiate bus rescan. */ 4086 scan_ccb = xpt_alloc_ccb_nowait(); 4087 if (scan_ccb != NULL) { 4088 scan_ccb->ccb_h.path = path; 4089 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4090 scan_ccb->crcn.flags = 0; 4091 xpt_rescan(scan_ccb); 4092 } else { 4093 xpt_print(path, 4094 "Can't allocate CCB to scan bus\n"); 4095 xpt_free_path(path); 4096 } 4097 } else 4098 xpt_free_path(path); 4099 } else 4100 xpt_free_path(path); 4101 return (CAM_SUCCESS); 4102 } 4103 4104 int32_t 4105 xpt_bus_deregister(path_id_t pathid) 4106 { 4107 struct cam_path bus_path; 4108 cam_status status; 4109 4110 status = xpt_compile_path(&bus_path, NULL, pathid, 4111 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4112 if (status != CAM_REQ_CMP) 4113 return (status); 4114 4115 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4116 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4117 4118 /* Release the reference count held while registered. */ 4119 xpt_release_bus(bus_path.bus); 4120 xpt_release_path(&bus_path); 4121 4122 return (CAM_REQ_CMP); 4123 } 4124 4125 static path_id_t 4126 xptnextfreepathid(void) 4127 { 4128 struct cam_eb *bus; 4129 path_id_t pathid; 4130 const char *strval; 4131 4132 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4133 pathid = 0; 4134 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4135 retry: 4136 /* Find an unoccupied pathid */ 4137 while (bus != NULL && bus->path_id <= pathid) { 4138 if (bus->path_id == pathid) 4139 pathid++; 4140 bus = TAILQ_NEXT(bus, links); 4141 } 4142 4143 /* 4144 * Ensure that this pathid is not reserved for 4145 * a bus that may be registered in the future. 4146 */ 4147 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4148 ++pathid; 4149 /* Start the search over */ 4150 goto retry; 4151 } 4152 return (pathid); 4153 } 4154 4155 static path_id_t 4156 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4157 { 4158 path_id_t pathid; 4159 int i, dunit, val; 4160 char buf[32]; 4161 const char *dname; 4162 4163 pathid = CAM_XPT_PATH_ID; 4164 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4165 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4166 return (pathid); 4167 i = 0; 4168 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4169 if (strcmp(dname, "scbus")) { 4170 /* Avoid a bit of foot shooting. */ 4171 continue; 4172 } 4173 if (dunit < 0) /* unwired?! */ 4174 continue; 4175 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4176 if (sim_bus == val) { 4177 pathid = dunit; 4178 break; 4179 } 4180 } else if (sim_bus == 0) { 4181 /* Unspecified matches bus 0 */ 4182 pathid = dunit; 4183 break; 4184 } else { 4185 printf("Ambiguous scbus configuration for %s%d " 4186 "bus %d, cannot wire down. The kernel " 4187 "config entry for scbus%d should " 4188 "specify a controller bus.\n" 4189 "Scbus will be assigned dynamically.\n", 4190 sim_name, sim_unit, sim_bus, dunit); 4191 break; 4192 } 4193 } 4194 4195 if (pathid == CAM_XPT_PATH_ID) 4196 pathid = xptnextfreepathid(); 4197 return (pathid); 4198 } 4199 4200 static const char * 4201 xpt_async_string(u_int32_t async_code) 4202 { 4203 4204 switch (async_code) { 4205 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4206 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4207 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4208 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4209 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4210 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4211 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4212 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4213 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4214 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4215 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4216 case AC_CONTRACT: return ("AC_CONTRACT"); 4217 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4218 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4219 } 4220 return ("AC_UNKNOWN"); 4221 } 4222 4223 static int 4224 xpt_async_size(u_int32_t async_code) 4225 { 4226 4227 switch (async_code) { 4228 case AC_BUS_RESET: return (0); 4229 case AC_UNSOL_RESEL: return (0); 4230 case AC_SCSI_AEN: return (0); 4231 case AC_SENT_BDR: return (0); 4232 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4233 case AC_PATH_DEREGISTERED: return (0); 4234 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4235 case AC_LOST_DEVICE: return (0); 4236 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4237 case AC_INQ_CHANGED: return (0); 4238 case AC_GETDEV_CHANGED: return (0); 4239 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4240 case AC_ADVINFO_CHANGED: return (-1); 4241 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4242 } 4243 return (0); 4244 } 4245 4246 static int 4247 xpt_async_process_dev(struct cam_ed *device, void *arg) 4248 { 4249 union ccb *ccb = arg; 4250 struct cam_path *path = ccb->ccb_h.path; 4251 void *async_arg = ccb->casync.async_arg_ptr; 4252 u_int32_t async_code = ccb->casync.async_code; 4253 int relock; 4254 4255 if (path->device != device 4256 && path->device->lun_id != CAM_LUN_WILDCARD 4257 && device->lun_id != CAM_LUN_WILDCARD) 4258 return (1); 4259 4260 /* 4261 * The async callback could free the device. 4262 * If it is a broadcast async, it doesn't hold 4263 * device reference, so take our own reference. 4264 */ 4265 xpt_acquire_device(device); 4266 4267 /* 4268 * If async for specific device is to be delivered to 4269 * the wildcard client, take the specific device lock. 4270 * XXX: We may need a way for client to specify it. 4271 */ 4272 if ((device->lun_id == CAM_LUN_WILDCARD && 4273 path->device->lun_id != CAM_LUN_WILDCARD) || 4274 (device->target->target_id == CAM_TARGET_WILDCARD && 4275 path->target->target_id != CAM_TARGET_WILDCARD) || 4276 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4277 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4278 mtx_unlock(&device->device_mtx); 4279 xpt_path_lock(path); 4280 relock = 1; 4281 } else 4282 relock = 0; 4283 4284 (*(device->target->bus->xport->ops->async))(async_code, 4285 device->target->bus, device->target, device, async_arg); 4286 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4287 4288 if (relock) { 4289 xpt_path_unlock(path); 4290 mtx_lock(&device->device_mtx); 4291 } 4292 xpt_release_device(device); 4293 return (1); 4294 } 4295 4296 static int 4297 xpt_async_process_tgt(struct cam_et *target, void *arg) 4298 { 4299 union ccb *ccb = arg; 4300 struct cam_path *path = ccb->ccb_h.path; 4301 4302 if (path->target != target 4303 && path->target->target_id != CAM_TARGET_WILDCARD 4304 && target->target_id != CAM_TARGET_WILDCARD) 4305 return (1); 4306 4307 if (ccb->casync.async_code == AC_SENT_BDR) { 4308 /* Update our notion of when the last reset occurred */ 4309 microtime(&target->last_reset); 4310 } 4311 4312 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4313 } 4314 4315 static void 4316 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4317 { 4318 struct cam_eb *bus; 4319 struct cam_path *path; 4320 void *async_arg; 4321 u_int32_t async_code; 4322 4323 path = ccb->ccb_h.path; 4324 async_code = ccb->casync.async_code; 4325 async_arg = ccb->casync.async_arg_ptr; 4326 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4327 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4328 bus = path->bus; 4329 4330 if (async_code == AC_BUS_RESET) { 4331 /* Update our notion of when the last reset occurred */ 4332 microtime(&bus->last_reset); 4333 } 4334 4335 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4336 4337 /* 4338 * If this wasn't a fully wildcarded async, tell all 4339 * clients that want all async events. 4340 */ 4341 if (bus != xpt_periph->path->bus) { 4342 xpt_path_lock(xpt_periph->path); 4343 xpt_async_process_dev(xpt_periph->path->device, ccb); 4344 xpt_path_unlock(xpt_periph->path); 4345 } 4346 4347 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4348 xpt_release_devq(path, 1, TRUE); 4349 else 4350 xpt_release_simq(path->bus->sim, TRUE); 4351 if (ccb->casync.async_arg_size > 0) 4352 free(async_arg, M_CAMXPT); 4353 xpt_free_path(path); 4354 xpt_free_ccb(ccb); 4355 } 4356 4357 static void 4358 xpt_async_bcast(struct async_list *async_head, 4359 u_int32_t async_code, 4360 struct cam_path *path, void *async_arg) 4361 { 4362 struct async_node *cur_entry; 4363 struct mtx *mtx; 4364 4365 cur_entry = SLIST_FIRST(async_head); 4366 while (cur_entry != NULL) { 4367 struct async_node *next_entry; 4368 /* 4369 * Grab the next list entry before we call the current 4370 * entry's callback. This is because the callback function 4371 * can delete its async callback entry. 4372 */ 4373 next_entry = SLIST_NEXT(cur_entry, links); 4374 if ((cur_entry->event_enable & async_code) != 0) { 4375 mtx = cur_entry->event_lock ? 4376 path->device->sim->mtx : NULL; 4377 if (mtx) 4378 mtx_lock(mtx); 4379 cur_entry->callback(cur_entry->callback_arg, 4380 async_code, path, 4381 async_arg); 4382 if (mtx) 4383 mtx_unlock(mtx); 4384 } 4385 cur_entry = next_entry; 4386 } 4387 } 4388 4389 void 4390 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4391 { 4392 union ccb *ccb; 4393 int size; 4394 4395 ccb = xpt_alloc_ccb_nowait(); 4396 if (ccb == NULL) { 4397 xpt_print(path, "Can't allocate CCB to send %s\n", 4398 xpt_async_string(async_code)); 4399 return; 4400 } 4401 4402 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4403 xpt_print(path, "Can't allocate path to send %s\n", 4404 xpt_async_string(async_code)); 4405 xpt_free_ccb(ccb); 4406 return; 4407 } 4408 ccb->ccb_h.path->periph = NULL; 4409 ccb->ccb_h.func_code = XPT_ASYNC; 4410 ccb->ccb_h.cbfcnp = xpt_async_process; 4411 ccb->ccb_h.flags |= CAM_UNLOCKED; 4412 ccb->casync.async_code = async_code; 4413 ccb->casync.async_arg_size = 0; 4414 size = xpt_async_size(async_code); 4415 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4416 ("xpt_async: func %#x %s aync_code %d %s\n", 4417 ccb->ccb_h.func_code, 4418 xpt_action_name(ccb->ccb_h.func_code), 4419 async_code, 4420 xpt_async_string(async_code))); 4421 if (size > 0 && async_arg != NULL) { 4422 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4423 if (ccb->casync.async_arg_ptr == NULL) { 4424 xpt_print(path, "Can't allocate argument to send %s\n", 4425 xpt_async_string(async_code)); 4426 xpt_free_path(ccb->ccb_h.path); 4427 xpt_free_ccb(ccb); 4428 return; 4429 } 4430 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4431 ccb->casync.async_arg_size = size; 4432 } else if (size < 0) { 4433 ccb->casync.async_arg_ptr = async_arg; 4434 ccb->casync.async_arg_size = size; 4435 } 4436 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4437 xpt_freeze_devq(path, 1); 4438 else 4439 xpt_freeze_simq(path->bus->sim, 1); 4440 xpt_done(ccb); 4441 } 4442 4443 static void 4444 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4445 struct cam_et *target, struct cam_ed *device, 4446 void *async_arg) 4447 { 4448 4449 /* 4450 * We only need to handle events for real devices. 4451 */ 4452 if (target->target_id == CAM_TARGET_WILDCARD 4453 || device->lun_id == CAM_LUN_WILDCARD) 4454 return; 4455 4456 printf("%s called\n", __func__); 4457 } 4458 4459 static uint32_t 4460 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4461 { 4462 struct cam_devq *devq; 4463 uint32_t freeze; 4464 4465 devq = dev->sim->devq; 4466 mtx_assert(&devq->send_mtx, MA_OWNED); 4467 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4468 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4469 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4470 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4471 /* Remove frozen device from sendq. */ 4472 if (device_is_queued(dev)) 4473 camq_remove(&devq->send_queue, dev->devq_entry.index); 4474 return (freeze); 4475 } 4476 4477 u_int32_t 4478 xpt_freeze_devq(struct cam_path *path, u_int count) 4479 { 4480 struct cam_ed *dev = path->device; 4481 struct cam_devq *devq; 4482 uint32_t freeze; 4483 4484 devq = dev->sim->devq; 4485 mtx_lock(&devq->send_mtx); 4486 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4487 freeze = xpt_freeze_devq_device(dev, count); 4488 mtx_unlock(&devq->send_mtx); 4489 return (freeze); 4490 } 4491 4492 u_int32_t 4493 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4494 { 4495 struct cam_devq *devq; 4496 uint32_t freeze; 4497 4498 devq = sim->devq; 4499 mtx_lock(&devq->send_mtx); 4500 freeze = (devq->send_queue.qfrozen_cnt += count); 4501 mtx_unlock(&devq->send_mtx); 4502 return (freeze); 4503 } 4504 4505 static void 4506 xpt_release_devq_timeout(void *arg) 4507 { 4508 struct cam_ed *dev; 4509 struct cam_devq *devq; 4510 4511 dev = (struct cam_ed *)arg; 4512 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4513 devq = dev->sim->devq; 4514 mtx_assert(&devq->send_mtx, MA_OWNED); 4515 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4516 xpt_run_devq(devq); 4517 } 4518 4519 void 4520 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4521 { 4522 struct cam_ed *dev; 4523 struct cam_devq *devq; 4524 4525 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4526 count, run_queue)); 4527 dev = path->device; 4528 devq = dev->sim->devq; 4529 mtx_lock(&devq->send_mtx); 4530 if (xpt_release_devq_device(dev, count, run_queue)) 4531 xpt_run_devq(dev->sim->devq); 4532 mtx_unlock(&devq->send_mtx); 4533 } 4534 4535 static int 4536 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4537 { 4538 4539 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4540 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4541 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4542 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4543 if (count > dev->ccbq.queue.qfrozen_cnt) { 4544 #ifdef INVARIANTS 4545 printf("xpt_release_devq(): requested %u > present %u\n", 4546 count, dev->ccbq.queue.qfrozen_cnt); 4547 #endif 4548 count = dev->ccbq.queue.qfrozen_cnt; 4549 } 4550 dev->ccbq.queue.qfrozen_cnt -= count; 4551 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4552 /* 4553 * No longer need to wait for a successful 4554 * command completion. 4555 */ 4556 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4557 /* 4558 * Remove any timeouts that might be scheduled 4559 * to release this queue. 4560 */ 4561 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4562 callout_stop(&dev->callout); 4563 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4564 } 4565 /* 4566 * Now that we are unfrozen schedule the 4567 * device so any pending transactions are 4568 * run. 4569 */ 4570 xpt_schedule_devq(dev->sim->devq, dev); 4571 } else 4572 run_queue = 0; 4573 return (run_queue); 4574 } 4575 4576 void 4577 xpt_release_simq(struct cam_sim *sim, int run_queue) 4578 { 4579 struct cam_devq *devq; 4580 4581 devq = sim->devq; 4582 mtx_lock(&devq->send_mtx); 4583 if (devq->send_queue.qfrozen_cnt <= 0) { 4584 #ifdef INVARIANTS 4585 printf("xpt_release_simq: requested 1 > present %u\n", 4586 devq->send_queue.qfrozen_cnt); 4587 #endif 4588 } else 4589 devq->send_queue.qfrozen_cnt--; 4590 if (devq->send_queue.qfrozen_cnt == 0) { 4591 /* 4592 * If there is a timeout scheduled to release this 4593 * sim queue, remove it. The queue frozen count is 4594 * already at 0. 4595 */ 4596 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4597 callout_stop(&sim->callout); 4598 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4599 } 4600 if (run_queue) { 4601 /* 4602 * Now that we are unfrozen run the send queue. 4603 */ 4604 xpt_run_devq(sim->devq); 4605 } 4606 } 4607 mtx_unlock(&devq->send_mtx); 4608 } 4609 4610 /* 4611 * XXX Appears to be unused. 4612 */ 4613 static void 4614 xpt_release_simq_timeout(void *arg) 4615 { 4616 struct cam_sim *sim; 4617 4618 sim = (struct cam_sim *)arg; 4619 xpt_release_simq(sim, /* run_queue */ TRUE); 4620 } 4621 4622 void 4623 xpt_done(union ccb *done_ccb) 4624 { 4625 struct cam_doneq *queue; 4626 int run, hash; 4627 4628 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4629 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4630 done_ccb->csio.bio != NULL) 4631 biotrack(done_ccb->csio.bio, __func__); 4632 #endif 4633 4634 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4635 ("xpt_done: func= %#x %s status %#x\n", 4636 done_ccb->ccb_h.func_code, 4637 xpt_action_name(done_ccb->ccb_h.func_code), 4638 done_ccb->ccb_h.status)); 4639 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4640 return; 4641 4642 /* Store the time the ccb was in the sim */ 4643 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4644 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4645 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4646 queue = &cam_doneqs[hash]; 4647 mtx_lock(&queue->cam_doneq_mtx); 4648 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4649 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4650 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4651 mtx_unlock(&queue->cam_doneq_mtx); 4652 if (run) 4653 wakeup(&queue->cam_doneq); 4654 } 4655 4656 void 4657 xpt_done_direct(union ccb *done_ccb) 4658 { 4659 4660 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4661 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4662 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4663 return; 4664 4665 /* Store the time the ccb was in the sim */ 4666 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4667 xpt_done_process(&done_ccb->ccb_h); 4668 } 4669 4670 union ccb * 4671 xpt_alloc_ccb() 4672 { 4673 union ccb *new_ccb; 4674 4675 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4676 return (new_ccb); 4677 } 4678 4679 union ccb * 4680 xpt_alloc_ccb_nowait() 4681 { 4682 union ccb *new_ccb; 4683 4684 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4685 return (new_ccb); 4686 } 4687 4688 void 4689 xpt_free_ccb(union ccb *free_ccb) 4690 { 4691 free(free_ccb, M_CAMCCB); 4692 } 4693 4694 4695 4696 /* Private XPT functions */ 4697 4698 /* 4699 * Get a CAM control block for the caller. Charge the structure to the device 4700 * referenced by the path. If we don't have sufficient resources to allocate 4701 * more ccbs, we return NULL. 4702 */ 4703 static union ccb * 4704 xpt_get_ccb_nowait(struct cam_periph *periph) 4705 { 4706 union ccb *new_ccb; 4707 4708 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4709 if (new_ccb == NULL) 4710 return (NULL); 4711 periph->periph_allocated++; 4712 cam_ccbq_take_opening(&periph->path->device->ccbq); 4713 return (new_ccb); 4714 } 4715 4716 static union ccb * 4717 xpt_get_ccb(struct cam_periph *periph) 4718 { 4719 union ccb *new_ccb; 4720 4721 cam_periph_unlock(periph); 4722 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4723 cam_periph_lock(periph); 4724 periph->periph_allocated++; 4725 cam_ccbq_take_opening(&periph->path->device->ccbq); 4726 return (new_ccb); 4727 } 4728 4729 union ccb * 4730 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4731 { 4732 struct ccb_hdr *ccb_h; 4733 4734 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4735 cam_periph_assert(periph, MA_OWNED); 4736 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4737 ccb_h->pinfo.priority != priority) { 4738 if (priority < periph->immediate_priority) { 4739 periph->immediate_priority = priority; 4740 xpt_run_allocq(periph, 0); 4741 } else 4742 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4743 "cgticb", 0); 4744 } 4745 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4746 return ((union ccb *)ccb_h); 4747 } 4748 4749 static void 4750 xpt_acquire_bus(struct cam_eb *bus) 4751 { 4752 4753 xpt_lock_buses(); 4754 bus->refcount++; 4755 xpt_unlock_buses(); 4756 } 4757 4758 static void 4759 xpt_release_bus(struct cam_eb *bus) 4760 { 4761 4762 xpt_lock_buses(); 4763 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4764 if (--bus->refcount > 0) { 4765 xpt_unlock_buses(); 4766 return; 4767 } 4768 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4769 xsoftc.bus_generation++; 4770 xpt_unlock_buses(); 4771 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4772 ("destroying bus, but target list is not empty")); 4773 cam_sim_release(bus->sim); 4774 mtx_destroy(&bus->eb_mtx); 4775 free(bus, M_CAMXPT); 4776 } 4777 4778 static struct cam_et * 4779 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4780 { 4781 struct cam_et *cur_target, *target; 4782 4783 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4784 mtx_assert(&bus->eb_mtx, MA_OWNED); 4785 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4786 M_NOWAIT|M_ZERO); 4787 if (target == NULL) 4788 return (NULL); 4789 4790 TAILQ_INIT(&target->ed_entries); 4791 target->bus = bus; 4792 target->target_id = target_id; 4793 target->refcount = 1; 4794 target->generation = 0; 4795 target->luns = NULL; 4796 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4797 timevalclear(&target->last_reset); 4798 /* 4799 * Hold a reference to our parent bus so it 4800 * will not go away before we do. 4801 */ 4802 bus->refcount++; 4803 4804 /* Insertion sort into our bus's target list */ 4805 cur_target = TAILQ_FIRST(&bus->et_entries); 4806 while (cur_target != NULL && cur_target->target_id < target_id) 4807 cur_target = TAILQ_NEXT(cur_target, links); 4808 if (cur_target != NULL) { 4809 TAILQ_INSERT_BEFORE(cur_target, target, links); 4810 } else { 4811 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4812 } 4813 bus->generation++; 4814 return (target); 4815 } 4816 4817 static void 4818 xpt_acquire_target(struct cam_et *target) 4819 { 4820 struct cam_eb *bus = target->bus; 4821 4822 mtx_lock(&bus->eb_mtx); 4823 target->refcount++; 4824 mtx_unlock(&bus->eb_mtx); 4825 } 4826 4827 static void 4828 xpt_release_target(struct cam_et *target) 4829 { 4830 struct cam_eb *bus = target->bus; 4831 4832 mtx_lock(&bus->eb_mtx); 4833 if (--target->refcount > 0) { 4834 mtx_unlock(&bus->eb_mtx); 4835 return; 4836 } 4837 TAILQ_REMOVE(&bus->et_entries, target, links); 4838 bus->generation++; 4839 mtx_unlock(&bus->eb_mtx); 4840 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4841 ("destroying target, but device list is not empty")); 4842 xpt_release_bus(bus); 4843 mtx_destroy(&target->luns_mtx); 4844 if (target->luns) 4845 free(target->luns, M_CAMXPT); 4846 free(target, M_CAMXPT); 4847 } 4848 4849 static struct cam_ed * 4850 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4851 lun_id_t lun_id) 4852 { 4853 struct cam_ed *device; 4854 4855 device = xpt_alloc_device(bus, target, lun_id); 4856 if (device == NULL) 4857 return (NULL); 4858 4859 device->mintags = 1; 4860 device->maxtags = 1; 4861 return (device); 4862 } 4863 4864 static void 4865 xpt_destroy_device(void *context, int pending) 4866 { 4867 struct cam_ed *device = context; 4868 4869 mtx_lock(&device->device_mtx); 4870 mtx_destroy(&device->device_mtx); 4871 free(device, M_CAMDEV); 4872 } 4873 4874 struct cam_ed * 4875 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4876 { 4877 struct cam_ed *cur_device, *device; 4878 struct cam_devq *devq; 4879 cam_status status; 4880 4881 mtx_assert(&bus->eb_mtx, MA_OWNED); 4882 /* Make space for us in the device queue on our bus */ 4883 devq = bus->sim->devq; 4884 mtx_lock(&devq->send_mtx); 4885 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4886 mtx_unlock(&devq->send_mtx); 4887 if (status != CAM_REQ_CMP) 4888 return (NULL); 4889 4890 device = (struct cam_ed *)malloc(sizeof(*device), 4891 M_CAMDEV, M_NOWAIT|M_ZERO); 4892 if (device == NULL) 4893 return (NULL); 4894 4895 cam_init_pinfo(&device->devq_entry); 4896 device->target = target; 4897 device->lun_id = lun_id; 4898 device->sim = bus->sim; 4899 if (cam_ccbq_init(&device->ccbq, 4900 bus->sim->max_dev_openings) != 0) { 4901 free(device, M_CAMDEV); 4902 return (NULL); 4903 } 4904 SLIST_INIT(&device->asyncs); 4905 SLIST_INIT(&device->periphs); 4906 device->generation = 0; 4907 device->flags = CAM_DEV_UNCONFIGURED; 4908 device->tag_delay_count = 0; 4909 device->tag_saved_openings = 0; 4910 device->refcount = 1; 4911 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4912 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4913 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4914 /* 4915 * Hold a reference to our parent bus so it 4916 * will not go away before we do. 4917 */ 4918 target->refcount++; 4919 4920 cur_device = TAILQ_FIRST(&target->ed_entries); 4921 while (cur_device != NULL && cur_device->lun_id < lun_id) 4922 cur_device = TAILQ_NEXT(cur_device, links); 4923 if (cur_device != NULL) 4924 TAILQ_INSERT_BEFORE(cur_device, device, links); 4925 else 4926 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4927 target->generation++; 4928 return (device); 4929 } 4930 4931 void 4932 xpt_acquire_device(struct cam_ed *device) 4933 { 4934 struct cam_eb *bus = device->target->bus; 4935 4936 mtx_lock(&bus->eb_mtx); 4937 device->refcount++; 4938 mtx_unlock(&bus->eb_mtx); 4939 } 4940 4941 void 4942 xpt_release_device(struct cam_ed *device) 4943 { 4944 struct cam_eb *bus = device->target->bus; 4945 struct cam_devq *devq; 4946 4947 mtx_lock(&bus->eb_mtx); 4948 if (--device->refcount > 0) { 4949 mtx_unlock(&bus->eb_mtx); 4950 return; 4951 } 4952 4953 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4954 device->target->generation++; 4955 mtx_unlock(&bus->eb_mtx); 4956 4957 /* Release our slot in the devq */ 4958 devq = bus->sim->devq; 4959 mtx_lock(&devq->send_mtx); 4960 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4961 mtx_unlock(&devq->send_mtx); 4962 4963 KASSERT(SLIST_EMPTY(&device->periphs), 4964 ("destroying device, but periphs list is not empty")); 4965 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4966 ("destroying device while still queued for ccbs")); 4967 4968 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4969 callout_stop(&device->callout); 4970 4971 xpt_release_target(device->target); 4972 4973 cam_ccbq_fini(&device->ccbq); 4974 /* 4975 * Free allocated memory. free(9) does nothing if the 4976 * supplied pointer is NULL, so it is safe to call without 4977 * checking. 4978 */ 4979 free(device->supported_vpds, M_CAMXPT); 4980 free(device->device_id, M_CAMXPT); 4981 free(device->ext_inq, M_CAMXPT); 4982 free(device->physpath, M_CAMXPT); 4983 free(device->rcap_buf, M_CAMXPT); 4984 free(device->serial_num, M_CAMXPT); 4985 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4986 } 4987 4988 u_int32_t 4989 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4990 { 4991 int result; 4992 struct cam_ed *dev; 4993 4994 dev = path->device; 4995 mtx_lock(&dev->sim->devq->send_mtx); 4996 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4997 mtx_unlock(&dev->sim->devq->send_mtx); 4998 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4999 || (dev->inq_flags & SID_CmdQue) != 0) 5000 dev->tag_saved_openings = newopenings; 5001 return (result); 5002 } 5003 5004 static struct cam_eb * 5005 xpt_find_bus(path_id_t path_id) 5006 { 5007 struct cam_eb *bus; 5008 5009 xpt_lock_buses(); 5010 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5011 bus != NULL; 5012 bus = TAILQ_NEXT(bus, links)) { 5013 if (bus->path_id == path_id) { 5014 bus->refcount++; 5015 break; 5016 } 5017 } 5018 xpt_unlock_buses(); 5019 return (bus); 5020 } 5021 5022 static struct cam_et * 5023 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5024 { 5025 struct cam_et *target; 5026 5027 mtx_assert(&bus->eb_mtx, MA_OWNED); 5028 for (target = TAILQ_FIRST(&bus->et_entries); 5029 target != NULL; 5030 target = TAILQ_NEXT(target, links)) { 5031 if (target->target_id == target_id) { 5032 target->refcount++; 5033 break; 5034 } 5035 } 5036 return (target); 5037 } 5038 5039 static struct cam_ed * 5040 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5041 { 5042 struct cam_ed *device; 5043 5044 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5045 for (device = TAILQ_FIRST(&target->ed_entries); 5046 device != NULL; 5047 device = TAILQ_NEXT(device, links)) { 5048 if (device->lun_id == lun_id) { 5049 device->refcount++; 5050 break; 5051 } 5052 } 5053 return (device); 5054 } 5055 5056 void 5057 xpt_start_tags(struct cam_path *path) 5058 { 5059 struct ccb_relsim crs; 5060 struct cam_ed *device; 5061 struct cam_sim *sim; 5062 int newopenings; 5063 5064 device = path->device; 5065 sim = path->bus->sim; 5066 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5067 xpt_freeze_devq(path, /*count*/1); 5068 device->inq_flags |= SID_CmdQue; 5069 if (device->tag_saved_openings != 0) 5070 newopenings = device->tag_saved_openings; 5071 else 5072 newopenings = min(device->maxtags, 5073 sim->max_tagged_dev_openings); 5074 xpt_dev_ccbq_resize(path, newopenings); 5075 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5076 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5077 crs.ccb_h.func_code = XPT_REL_SIMQ; 5078 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5079 crs.openings 5080 = crs.release_timeout 5081 = crs.qfrozen_cnt 5082 = 0; 5083 xpt_action((union ccb *)&crs); 5084 } 5085 5086 void 5087 xpt_stop_tags(struct cam_path *path) 5088 { 5089 struct ccb_relsim crs; 5090 struct cam_ed *device; 5091 struct cam_sim *sim; 5092 5093 device = path->device; 5094 sim = path->bus->sim; 5095 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5096 device->tag_delay_count = 0; 5097 xpt_freeze_devq(path, /*count*/1); 5098 device->inq_flags &= ~SID_CmdQue; 5099 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5100 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5101 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5102 crs.ccb_h.func_code = XPT_REL_SIMQ; 5103 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5104 crs.openings 5105 = crs.release_timeout 5106 = crs.qfrozen_cnt 5107 = 0; 5108 xpt_action((union ccb *)&crs); 5109 } 5110 5111 static void 5112 xpt_boot_delay(void *arg) 5113 { 5114 5115 xpt_release_boot(); 5116 } 5117 5118 static void 5119 xpt_config(void *arg) 5120 { 5121 /* 5122 * Now that interrupts are enabled, go find our devices 5123 */ 5124 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5125 printf("xpt_config: failed to create taskqueue thread.\n"); 5126 5127 /* Setup debugging path */ 5128 if (cam_dflags != CAM_DEBUG_NONE) { 5129 if (xpt_create_path(&cam_dpath, NULL, 5130 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5131 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5132 printf("xpt_config: xpt_create_path() failed for debug" 5133 " target %d:%d:%d, debugging disabled\n", 5134 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5135 cam_dflags = CAM_DEBUG_NONE; 5136 } 5137 } else 5138 cam_dpath = NULL; 5139 5140 periphdriver_init(1); 5141 xpt_hold_boot(); 5142 callout_init(&xsoftc.boot_callout, 1); 5143 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5144 xpt_boot_delay, NULL, 0); 5145 /* Fire up rescan thread. */ 5146 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5147 "cam", "scanner")) { 5148 printf("xpt_config: failed to create rescan thread.\n"); 5149 } 5150 } 5151 5152 void 5153 xpt_hold_boot(void) 5154 { 5155 xpt_lock_buses(); 5156 xsoftc.buses_to_config++; 5157 xpt_unlock_buses(); 5158 } 5159 5160 void 5161 xpt_release_boot(void) 5162 { 5163 xpt_lock_buses(); 5164 xsoftc.buses_to_config--; 5165 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5166 struct xpt_task *task; 5167 5168 xsoftc.buses_config_done = 1; 5169 xpt_unlock_buses(); 5170 /* Call manually because we don't have any buses */ 5171 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5172 if (task != NULL) { 5173 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5174 taskqueue_enqueue(taskqueue_thread, &task->task); 5175 } 5176 } else 5177 xpt_unlock_buses(); 5178 } 5179 5180 /* 5181 * If the given device only has one peripheral attached to it, and if that 5182 * peripheral is the passthrough driver, announce it. This insures that the 5183 * user sees some sort of announcement for every peripheral in their system. 5184 */ 5185 static int 5186 xptpassannouncefunc(struct cam_ed *device, void *arg) 5187 { 5188 struct cam_periph *periph; 5189 int i; 5190 5191 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5192 periph = SLIST_NEXT(periph, periph_links), i++); 5193 5194 periph = SLIST_FIRST(&device->periphs); 5195 if ((i == 1) 5196 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5197 xpt_announce_periph(periph, NULL); 5198 5199 return(1); 5200 } 5201 5202 static void 5203 xpt_finishconfig_task(void *context, int pending) 5204 { 5205 5206 periphdriver_init(2); 5207 /* 5208 * Check for devices with no "standard" peripheral driver 5209 * attached. For any devices like that, announce the 5210 * passthrough driver so the user will see something. 5211 */ 5212 if (!bootverbose) 5213 xpt_for_all_devices(xptpassannouncefunc, NULL); 5214 5215 /* Release our hook so that the boot can continue. */ 5216 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5217 free(xsoftc.xpt_config_hook, M_CAMXPT); 5218 xsoftc.xpt_config_hook = NULL; 5219 5220 free(context, M_CAMXPT); 5221 } 5222 5223 cam_status 5224 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5225 struct cam_path *path) 5226 { 5227 struct ccb_setasync csa; 5228 cam_status status; 5229 int xptpath = 0; 5230 5231 if (path == NULL) { 5232 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5233 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5234 if (status != CAM_REQ_CMP) 5235 return (status); 5236 xpt_path_lock(path); 5237 xptpath = 1; 5238 } 5239 5240 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5241 csa.ccb_h.func_code = XPT_SASYNC_CB; 5242 csa.event_enable = event; 5243 csa.callback = cbfunc; 5244 csa.callback_arg = cbarg; 5245 xpt_action((union ccb *)&csa); 5246 status = csa.ccb_h.status; 5247 5248 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5249 ("xpt_register_async: func %p\n", cbfunc)); 5250 5251 if (xptpath) { 5252 xpt_path_unlock(path); 5253 xpt_free_path(path); 5254 } 5255 5256 if ((status == CAM_REQ_CMP) && 5257 (csa.event_enable & AC_FOUND_DEVICE)) { 5258 /* 5259 * Get this peripheral up to date with all 5260 * the currently existing devices. 5261 */ 5262 xpt_for_all_devices(xptsetasyncfunc, &csa); 5263 } 5264 if ((status == CAM_REQ_CMP) && 5265 (csa.event_enable & AC_PATH_REGISTERED)) { 5266 /* 5267 * Get this peripheral up to date with all 5268 * the currently existing buses. 5269 */ 5270 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5271 } 5272 5273 return (status); 5274 } 5275 5276 static void 5277 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5278 { 5279 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5280 5281 switch (work_ccb->ccb_h.func_code) { 5282 /* Common cases first */ 5283 case XPT_PATH_INQ: /* Path routing inquiry */ 5284 { 5285 struct ccb_pathinq *cpi; 5286 5287 cpi = &work_ccb->cpi; 5288 cpi->version_num = 1; /* XXX??? */ 5289 cpi->hba_inquiry = 0; 5290 cpi->target_sprt = 0; 5291 cpi->hba_misc = 0; 5292 cpi->hba_eng_cnt = 0; 5293 cpi->max_target = 0; 5294 cpi->max_lun = 0; 5295 cpi->initiator_id = 0; 5296 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5297 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5298 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5299 cpi->unit_number = sim->unit_number; 5300 cpi->bus_id = sim->bus_id; 5301 cpi->base_transfer_speed = 0; 5302 cpi->protocol = PROTO_UNSPECIFIED; 5303 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5304 cpi->transport = XPORT_UNSPECIFIED; 5305 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5306 cpi->ccb_h.status = CAM_REQ_CMP; 5307 xpt_done(work_ccb); 5308 break; 5309 } 5310 default: 5311 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5312 xpt_done(work_ccb); 5313 break; 5314 } 5315 } 5316 5317 /* 5318 * The xpt as a "controller" has no interrupt sources, so polling 5319 * is a no-op. 5320 */ 5321 static void 5322 xptpoll(struct cam_sim *sim) 5323 { 5324 } 5325 5326 void 5327 xpt_lock_buses(void) 5328 { 5329 mtx_lock(&xsoftc.xpt_topo_lock); 5330 } 5331 5332 void 5333 xpt_unlock_buses(void) 5334 { 5335 mtx_unlock(&xsoftc.xpt_topo_lock); 5336 } 5337 5338 struct mtx * 5339 xpt_path_mtx(struct cam_path *path) 5340 { 5341 5342 return (&path->device->device_mtx); 5343 } 5344 5345 static void 5346 xpt_done_process(struct ccb_hdr *ccb_h) 5347 { 5348 struct cam_sim *sim; 5349 struct cam_devq *devq; 5350 struct mtx *mtx = NULL; 5351 5352 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5353 struct ccb_scsiio *csio; 5354 5355 if (ccb_h->func_code == XPT_SCSI_IO) { 5356 csio = &((union ccb *)ccb_h)->csio; 5357 if (csio->bio != NULL) 5358 biotrack(csio->bio, __func__); 5359 } 5360 #endif 5361 5362 if (ccb_h->flags & CAM_HIGH_POWER) { 5363 struct highpowerlist *hphead; 5364 struct cam_ed *device; 5365 5366 mtx_lock(&xsoftc.xpt_highpower_lock); 5367 hphead = &xsoftc.highpowerq; 5368 5369 device = STAILQ_FIRST(hphead); 5370 5371 /* 5372 * Increment the count since this command is done. 5373 */ 5374 xsoftc.num_highpower++; 5375 5376 /* 5377 * Any high powered commands queued up? 5378 */ 5379 if (device != NULL) { 5380 5381 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5382 mtx_unlock(&xsoftc.xpt_highpower_lock); 5383 5384 mtx_lock(&device->sim->devq->send_mtx); 5385 xpt_release_devq_device(device, 5386 /*count*/1, /*runqueue*/TRUE); 5387 mtx_unlock(&device->sim->devq->send_mtx); 5388 } else 5389 mtx_unlock(&xsoftc.xpt_highpower_lock); 5390 } 5391 5392 sim = ccb_h->path->bus->sim; 5393 5394 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5395 xpt_release_simq(sim, /*run_queue*/FALSE); 5396 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5397 } 5398 5399 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5400 && (ccb_h->status & CAM_DEV_QFRZN)) { 5401 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5402 ccb_h->status &= ~CAM_DEV_QFRZN; 5403 } 5404 5405 devq = sim->devq; 5406 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5407 struct cam_ed *dev = ccb_h->path->device; 5408 5409 mtx_lock(&devq->send_mtx); 5410 devq->send_active--; 5411 devq->send_openings++; 5412 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5413 5414 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5415 && (dev->ccbq.dev_active == 0))) { 5416 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5417 xpt_release_devq_device(dev, /*count*/1, 5418 /*run_queue*/FALSE); 5419 } 5420 5421 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5422 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5423 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5424 xpt_release_devq_device(dev, /*count*/1, 5425 /*run_queue*/FALSE); 5426 } 5427 5428 if (!device_is_queued(dev)) 5429 (void)xpt_schedule_devq(devq, dev); 5430 xpt_run_devq(devq); 5431 mtx_unlock(&devq->send_mtx); 5432 5433 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5434 mtx = xpt_path_mtx(ccb_h->path); 5435 mtx_lock(mtx); 5436 5437 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5438 && (--dev->tag_delay_count == 0)) 5439 xpt_start_tags(ccb_h->path); 5440 } 5441 } 5442 5443 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5444 if (mtx == NULL) { 5445 mtx = xpt_path_mtx(ccb_h->path); 5446 mtx_lock(mtx); 5447 } 5448 } else { 5449 if (mtx != NULL) { 5450 mtx_unlock(mtx); 5451 mtx = NULL; 5452 } 5453 } 5454 5455 /* Call the peripheral driver's callback */ 5456 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5457 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5458 if (mtx != NULL) 5459 mtx_unlock(mtx); 5460 } 5461 5462 void 5463 xpt_done_td(void *arg) 5464 { 5465 struct cam_doneq *queue = arg; 5466 struct ccb_hdr *ccb_h; 5467 STAILQ_HEAD(, ccb_hdr) doneq; 5468 5469 STAILQ_INIT(&doneq); 5470 mtx_lock(&queue->cam_doneq_mtx); 5471 while (1) { 5472 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5473 queue->cam_doneq_sleep = 1; 5474 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5475 PRIBIO, "-", 0); 5476 queue->cam_doneq_sleep = 0; 5477 } 5478 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5479 mtx_unlock(&queue->cam_doneq_mtx); 5480 5481 THREAD_NO_SLEEPING(); 5482 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5483 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5484 xpt_done_process(ccb_h); 5485 } 5486 THREAD_SLEEPING_OK(); 5487 5488 mtx_lock(&queue->cam_doneq_mtx); 5489 } 5490 } 5491 5492 static void 5493 camisr_runqueue(void) 5494 { 5495 struct ccb_hdr *ccb_h; 5496 struct cam_doneq *queue; 5497 int i; 5498 5499 /* Process global queues. */ 5500 for (i = 0; i < cam_num_doneqs; i++) { 5501 queue = &cam_doneqs[i]; 5502 mtx_lock(&queue->cam_doneq_mtx); 5503 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5504 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5505 mtx_unlock(&queue->cam_doneq_mtx); 5506 xpt_done_process(ccb_h); 5507 mtx_lock(&queue->cam_doneq_mtx); 5508 } 5509 mtx_unlock(&queue->cam_doneq_mtx); 5510 } 5511 } 5512 5513 struct kv 5514 { 5515 uint32_t v; 5516 const char *name; 5517 }; 5518 5519 static struct kv map[] = { 5520 { XPT_NOOP, "XPT_NOOP" }, 5521 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5522 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5523 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5524 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5525 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5526 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5527 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5528 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5529 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5530 { XPT_DEBUG, "XPT_DEBUG" }, 5531 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5532 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5533 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5534 { XPT_ASYNC, "XPT_ASYNC" }, 5535 { XPT_ABORT, "XPT_ABORT" }, 5536 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5537 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5538 { XPT_TERM_IO, "XPT_TERM_IO" }, 5539 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5540 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5541 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5542 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5543 { XPT_ATA_IO, "XPT_ATA_IO" }, 5544 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5545 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5546 { XPT_NVME_IO, "XPT_NVME_IO" }, 5547 { XPT_MMC_IO, "XPT_MMC_IO" }, 5548 { XPT_SMP_IO, "XPT_SMP_IO" }, 5549 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5550 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5551 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5552 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5553 { XPT_EN_LUN, "XPT_EN_LUN" }, 5554 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5555 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5556 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5557 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5558 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5559 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5560 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5561 { 0, 0 } 5562 }; 5563 5564 const char * 5565 xpt_action_name(uint32_t action) 5566 { 5567 static char buffer[32]; /* Only for unknown messages -- racy */ 5568 struct kv *walker = map; 5569 5570 while (walker->name != NULL) { 5571 if (walker->v == action) 5572 return (walker->name); 5573 walker++; 5574 } 5575 5576 snprintf(buffer, sizeof(buffer), "%#x", action); 5577 return (buffer); 5578 } 5579