xref: /freebsd/sys/cam/cam_xpt.c (revision c678bc4f13a340ad88debe321afd0097db2590cb)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 #include <sys/param.h>
32 #include <sys/bus.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 
45 #ifdef PC98
46 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
47 #endif
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_periph.h>
52 #include <cam/cam_sim.h>
53 #include <cam/cam_xpt.h>
54 #include <cam/cam_xpt_sim.h>
55 #include <cam/cam_xpt_periph.h>
56 #include <cam/cam_debug.h>
57 
58 #include <cam/scsi/scsi_all.h>
59 #include <cam/scsi/scsi_message.h>
60 #include <cam/scsi/scsi_pass.h>
61 #include "opt_cam.h"
62 
63 /* Datastructures internal to the xpt layer */
64 
65 /*
66  * Definition of an async handler callback block.  These are used to add
67  * SIMs and peripherals to the async callback lists.
68  */
69 struct async_node {
70 	SLIST_ENTRY(async_node)	links;
71 	u_int32_t	event_enable;	/* Async Event enables */
72 	void		(*callback)(void *arg, u_int32_t code,
73 				    struct cam_path *path, void *args);
74 	void		*callback_arg;
75 };
76 
77 SLIST_HEAD(async_list, async_node);
78 SLIST_HEAD(periph_list, cam_periph);
79 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
80 
81 /*
82  * This is the maximum number of high powered commands (e.g. start unit)
83  * that can be outstanding at a particular time.
84  */
85 #ifndef CAM_MAX_HIGHPOWER
86 #define CAM_MAX_HIGHPOWER  4
87 #endif
88 
89 /* number of high powered commands that can go through right now */
90 static int num_highpower = CAM_MAX_HIGHPOWER;
91 
92 /*
93  * Structure for queueing a device in a run queue.
94  * There is one run queue for allocating new ccbs,
95  * and another for sending ccbs to the controller.
96  */
97 struct cam_ed_qinfo {
98 	cam_pinfo pinfo;
99 	struct	  cam_ed *device;
100 };
101 
102 /*
103  * The CAM EDT (Existing Device Table) contains the device information for
104  * all devices for all busses in the system.  The table contains a
105  * cam_ed structure for each device on the bus.
106  */
107 struct cam_ed {
108 	TAILQ_ENTRY(cam_ed) links;
109 	struct	cam_ed_qinfo alloc_ccb_entry;
110 	struct	cam_ed_qinfo send_ccb_entry;
111 	struct	cam_et	 *target;
112 	lun_id_t	 lun_id;
113 	struct	camq drvq;		/*
114 					 * Queue of type drivers wanting to do
115 					 * work on this device.
116 					 */
117 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
118 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
119 	struct	periph_list periphs;	/* All attached devices */
120 	u_int	generation;		/* Generation number */
121 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
122 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
123 					/* Storage for the inquiry data */
124 #ifdef CAM_NEW_TRAN_CODE
125 	cam_proto	 protocol;
126 	u_int		 protocol_version;
127 	cam_xport	 transport;
128 	u_int		 transport_version;
129 #endif /* CAM_NEW_TRAN_CODE */
130 	struct		 scsi_inquiry_data inq_data;
131 	u_int8_t	 inq_flags;	/*
132 					 * Current settings for inquiry flags.
133 					 * This allows us to override settings
134 					 * like disconnection and tagged
135 					 * queuing for a device.
136 					 */
137 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
138 	u_int8_t	 serial_num_len;
139 	u_int8_t	*serial_num;
140 	u_int32_t	 qfrozen_cnt;
141 	u_int32_t	 flags;
142 #define CAM_DEV_UNCONFIGURED	 	0x01
143 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
144 #define CAM_DEV_REL_ON_COMPLETE		0x04
145 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
146 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
147 #define CAM_DEV_TAG_AFTER_COUNT		0x20
148 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
149 	u_int32_t	 tag_delay_count;
150 #define	CAM_TAG_DELAY_COUNT		5
151 	u_int32_t	 refcount;
152 	struct		 callout_handle c_handle;
153 };
154 
155 /*
156  * Each target is represented by an ET (Existing Target).  These
157  * entries are created when a target is successfully probed with an
158  * identify, and removed when a device fails to respond after a number
159  * of retries, or a bus rescan finds the device missing.
160  */
161 struct cam_et {
162 	TAILQ_HEAD(, cam_ed) ed_entries;
163 	TAILQ_ENTRY(cam_et) links;
164 	struct	cam_eb	*bus;
165 	target_id_t	target_id;
166 	u_int32_t	refcount;
167 	u_int		generation;
168 	struct		timeval last_reset;
169 };
170 
171 /*
172  * Each bus is represented by an EB (Existing Bus).  These entries
173  * are created by calls to xpt_bus_register and deleted by calls to
174  * xpt_bus_deregister.
175  */
176 struct cam_eb {
177 	TAILQ_HEAD(, cam_et) et_entries;
178 	TAILQ_ENTRY(cam_eb)  links;
179 	path_id_t	     path_id;
180 	struct cam_sim	     *sim;
181 	struct timeval	     last_reset;
182 	u_int32_t	     flags;
183 #define	CAM_EB_RUNQ_SCHEDULED	0x01
184 	u_int32_t	     refcount;
185 	u_int		     generation;
186 };
187 
188 struct cam_path {
189 	struct cam_periph *periph;
190 	struct cam_eb	  *bus;
191 	struct cam_et	  *target;
192 	struct cam_ed	  *device;
193 };
194 
195 struct xpt_quirk_entry {
196 	struct scsi_inquiry_pattern inq_pat;
197 	u_int8_t quirks;
198 #define	CAM_QUIRK_NOLUNS	0x01
199 #define	CAM_QUIRK_NOSERIAL	0x02
200 #define	CAM_QUIRK_HILUNS	0x04
201 	u_int mintags;
202 	u_int maxtags;
203 };
204 #define	CAM_SCSI2_MAXLUN	8
205 
206 typedef enum {
207 	XPT_FLAG_OPEN		= 0x01
208 } xpt_flags;
209 
210 struct xpt_softc {
211 	xpt_flags	flags;
212 	u_int32_t	generation;
213 };
214 
215 static const char quantum[] = "QUANTUM";
216 static const char sony[] = "SONY";
217 static const char west_digital[] = "WDIGTL";
218 static const char samsung[] = "SAMSUNG";
219 static const char seagate[] = "SEAGATE";
220 static const char microp[] = "MICROP";
221 
222 static struct xpt_quirk_entry xpt_quirk_table[] =
223 {
224 	{
225 		/* Reports QUEUE FULL for temporary resource shortages */
226 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
227 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
228 	},
229 	{
230 		/* Reports QUEUE FULL for temporary resource shortages */
231 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
232 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
233 	},
234 	{
235 		/* Reports QUEUE FULL for temporary resource shortages */
236 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
237 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
238 	},
239 	{
240 		/* Broken tagged queuing drive */
241 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
242 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
243 	},
244 	{
245 		/* Broken tagged queuing drive */
246 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
247 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
248 	},
249 	{
250 		/* Broken tagged queuing drive */
251 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
252 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
253 	},
254 	{
255 		/*
256 		 * Unfortunately, the Quantum Atlas III has the same
257 		 * problem as the Atlas II drives above.
258 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
259 		 *
260 		 * For future reference, the drive with the problem was:
261 		 * QUANTUM QM39100TD-SW N1B0
262 		 *
263 		 * It's possible that Quantum will fix the problem in later
264 		 * firmware revisions.  If that happens, the quirk entry
265 		 * will need to be made specific to the firmware revisions
266 		 * with the problem.
267 		 *
268 		 */
269 		/* Reports QUEUE FULL for temporary resource shortages */
270 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
271 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
272 	},
273 	{
274 		/*
275 		 * 18 Gig Atlas III, same problem as the 9G version.
276 		 * Reported by: Andre Albsmeier
277 		 *		<andre.albsmeier@mchp.siemens.de>
278 		 *
279 		 * For future reference, the drive with the problem was:
280 		 * QUANTUM QM318000TD-S N491
281 		 */
282 		/* Reports QUEUE FULL for temporary resource shortages */
283 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
284 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
285 	},
286 	{
287 		/*
288 		 * Broken tagged queuing drive
289 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
290 		 *         and: Martin Renters <martin@tdc.on.ca>
291 		 */
292 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
293 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
294 	},
295 		/*
296 		 * The Seagate Medalist Pro drives have very poor write
297 		 * performance with anything more than 2 tags.
298 		 *
299 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
300 		 * Drive:  <SEAGATE ST36530N 1444>
301 		 *
302 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
303 		 * Drive:  <SEAGATE ST34520W 1281>
304 		 *
305 		 * No one has actually reported that the 9G version
306 		 * (ST39140*) of the Medalist Pro has the same problem, but
307 		 * we're assuming that it does because the 4G and 6.5G
308 		 * versions of the drive are broken.
309 		 */
310 	{
311 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
312 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
313 	},
314 	{
315 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
316 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
317 	},
318 	{
319 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
320 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
321 	},
322 	{
323 		/*
324 		 * Slow when tagged queueing is enabled.  Write performance
325 		 * steadily drops off with more and more concurrent
326 		 * transactions.  Best sequential write performance with
327 		 * tagged queueing turned off and write caching turned on.
328 		 *
329 		 * PR:  kern/10398
330 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
331 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
332 		 *
333 		 * The drive with the problem had the "S65A" firmware
334 		 * revision, and has also been reported (by Stephen J.
335 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
336 		 * firmware revision.
337 		 *
338 		 * Although no one has reported problems with the 2 gig
339 		 * version of the DCAS drive, the assumption is that it
340 		 * has the same problems as the 4 gig version.  Therefore
341 		 * this quirk entries disables tagged queueing for all
342 		 * DCAS drives.
343 		 */
344 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
345 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
346 	},
347 	{
348 		/* Broken tagged queuing drive */
349 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
350 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
351 	},
352 	{
353 		/* Broken tagged queuing drive */
354 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
355 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
356 	},
357 	{
358 		/*
359 		 * Broken tagged queuing drive.
360 		 * Submitted by:
361 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
362 		 * in PR kern/9535
363 		 */
364 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
365 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
366 	},
367         {
368 		/*
369 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
370 		 * 8MB/sec.)
371 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
372 		 * Best performance with these drives is achieved with
373 		 * tagged queueing turned off, and write caching turned on.
374 		 */
375 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
376 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
377         },
378         {
379 		/*
380 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
381 		 * 8MB/sec.)
382 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
383 		 * Best performance with these drives is achieved with
384 		 * tagged queueing turned off, and write caching turned on.
385 		 */
386 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
387 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
388         },
389 	{
390 		/*
391 		 * Doesn't handle queue full condition correctly,
392 		 * so we need to limit maxtags to what the device
393 		 * can handle instead of determining this automatically.
394 		 */
395 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
396 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
397 	},
398 	{
399 		/* Really only one LUN */
400 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" },
401 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
402 	},
403 	{
404 		/* I can't believe we need a quirk for DPT volumes. */
405 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
406 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
407 		/*mintags*/0, /*maxtags*/255
408 	},
409 	{
410 		/*
411 		 * Many Sony CDROM drives don't like multi-LUN probing.
412 		 */
413 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
414 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
415 	},
416 	{
417 		/*
418 		 * This drive doesn't like multiple LUN probing.
419 		 * Submitted by:  Parag Patel <parag@cgt.com>
420 		 */
421 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
422 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
423 	},
424 	{
425 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
426 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
427 	},
428 	{
429 		/*
430 		 * The 8200 doesn't like multi-lun probing, and probably
431 		 * don't like serial number requests either.
432 		 */
433 		{
434 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
435 			"EXB-8200*", "*"
436 		},
437 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
438 	},
439 	{
440 		/*
441 		 * These Hitachi drives don't like multi-lun probing.
442 		 * The PR submitter has a DK319H, but says that the Linux
443 		 * kernel has a similar work-around for the DK312 and DK314,
444 		 * so all DK31* drives are quirked here.
445 		 * PR:            misc/18793
446 		 * Submitted by:  Paul Haddad <paul@pth.com>
447 		 */
448 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
449 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
450 	},
451 	{
452 		/*
453 		 * This old revision of the TDC3600 is also SCSI-1, and
454 		 * hangs upon serial number probing.
455 		 */
456 		{
457 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
458 			" TDC 3600", "U07:"
459 		},
460 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
461 	},
462 	{
463 		/*
464 		 * Would repond to all LUNs if asked for.
465 		 */
466 		{
467 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
468 			"CP150", "*"
469 		},
470 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
471 	},
472 	{
473 		/*
474 		 * Would repond to all LUNs if asked for.
475 		 */
476 		{
477 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
478 			"96X2*", "*"
479 		},
480 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
481 	},
482 	{
483 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
484 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
485 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
486 	},
487 	{
488 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
489 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
490 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
491 	},
492 	{
493 		/* TeraSolutions special settings for TRC-22 RAID */
494 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
495 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
496 	},
497 	{
498 		/*
499 		 * Would respond to all LUNs.  Device type and removable
500 		 * flag are jumper-selectable.
501 		 */
502 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
503 		  "Tahiti 1", "*"
504 		},
505 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
506 	},
507 	{
508 		/* Default tagged queuing parameters for all devices */
509 		{
510 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
511 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
512 		},
513 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
514 	},
515 };
516 
517 static const int xpt_quirk_table_size =
518 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
519 
520 typedef enum {
521 	DM_RET_COPY		= 0x01,
522 	DM_RET_FLAG_MASK	= 0x0f,
523 	DM_RET_NONE		= 0x00,
524 	DM_RET_STOP		= 0x10,
525 	DM_RET_DESCEND		= 0x20,
526 	DM_RET_ERROR		= 0x30,
527 	DM_RET_ACTION_MASK	= 0xf0
528 } dev_match_ret;
529 
530 typedef enum {
531 	XPT_DEPTH_BUS,
532 	XPT_DEPTH_TARGET,
533 	XPT_DEPTH_DEVICE,
534 	XPT_DEPTH_PERIPH
535 } xpt_traverse_depth;
536 
537 struct xpt_traverse_config {
538 	xpt_traverse_depth	depth;
539 	void			*tr_func;
540 	void			*tr_arg;
541 };
542 
543 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
544 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
545 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
546 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
547 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
548 
549 /* Transport layer configuration information */
550 static struct xpt_softc xsoftc;
551 
552 /* Queues for our software interrupt handler */
553 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
554 static cam_isrq_t cam_bioq;
555 static cam_isrq_t cam_netq;
556 
557 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
558 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
559 static u_int xpt_max_ccbs;	/*
560 				 * Maximum size of ccb pool.  Modified as
561 				 * devices are added/removed or have their
562 				 * opening counts changed.
563 				 */
564 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
565 
566 struct cam_periph *xpt_periph;
567 
568 static periph_init_t xpt_periph_init;
569 
570 static periph_init_t probe_periph_init;
571 
572 static struct periph_driver xpt_driver =
573 {
574 	xpt_periph_init, "xpt",
575 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
576 };
577 
578 static struct periph_driver probe_driver =
579 {
580 	probe_periph_init, "probe",
581 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
582 };
583 
584 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
585 PERIPHDRIVER_DECLARE(probe, probe_driver);
586 
587 #define XPT_CDEV_MAJOR 104
588 
589 static d_open_t xptopen;
590 static d_close_t xptclose;
591 static d_ioctl_t xptioctl;
592 
593 static struct cdevsw xpt_cdevsw = {
594 	/* open */	xptopen,
595 	/* close */	xptclose,
596 	/* read */	noread,
597 	/* write */	nowrite,
598 	/* ioctl */	xptioctl,
599 	/* poll */	nopoll,
600 	/* mmap */	nommap,
601 	/* strategy */	nostrategy,
602 	/* name */	"xpt",
603 	/* maj */	XPT_CDEV_MAJOR,
604 	/* dump */	nodump,
605 	/* psize */	nopsize,
606 	/* flags */	0,
607 };
608 
609 static struct intr_config_hook *xpt_config_hook;
610 
611 /* Registered busses */
612 static TAILQ_HEAD(,cam_eb) xpt_busses;
613 static u_int bus_generation;
614 
615 /* Storage for debugging datastructures */
616 #ifdef	CAMDEBUG
617 struct cam_path *cam_dpath;
618 u_int32_t cam_dflags;
619 u_int32_t cam_debug_delay;
620 #endif
621 
622 /* Pointers to software interrupt handlers */
623 void *camnet_ih;
624 void *cambio_ih;
625 
626 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
627 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
628 #endif
629 
630 /*
631  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
632  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
633  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
634  */
635 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
636     || defined(CAM_DEBUG_LUN)
637 #ifdef CAMDEBUG
638 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
639     || !defined(CAM_DEBUG_LUN)
640 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
641         and CAM_DEBUG_LUN"
642 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
643 #else /* !CAMDEBUG */
644 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
645 #endif /* CAMDEBUG */
646 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
647 
648 /* Our boot-time initialization hook */
649 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
650 
651 static moduledata_t cam_moduledata = {
652 	"cam",
653 	cam_module_event_handler,
654 	NULL
655 };
656 
657 static void	xpt_init(void *);
658 
659 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
660 MODULE_VERSION(cam, 1);
661 
662 
663 static cam_status	xpt_compile_path(struct cam_path *new_path,
664 					 struct cam_periph *perph,
665 					 path_id_t path_id,
666 					 target_id_t target_id,
667 					 lun_id_t lun_id);
668 
669 static void		xpt_release_path(struct cam_path *path);
670 
671 static void		xpt_async_bcast(struct async_list *async_head,
672 					u_int32_t async_code,
673 					struct cam_path *path,
674 					void *async_arg);
675 static void		xpt_dev_async(u_int32_t async_code,
676 				      struct cam_eb *bus,
677 				      struct cam_et *target,
678 				      struct cam_ed *device,
679 				      void *async_arg);
680 static path_id_t xptnextfreepathid(void);
681 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
682 static union ccb *xpt_get_ccb(struct cam_ed *device);
683 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
684 				  u_int32_t new_priority);
685 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
686 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
687 static timeout_t xpt_release_devq_timeout;
688 static timeout_t xpt_release_simq_timeout;
689 static void	 xpt_release_bus(struct cam_eb *bus);
690 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
691 					 int run_queue);
692 static struct cam_et*
693 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
694 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
695 static struct cam_ed*
696 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
697 				  lun_id_t lun_id);
698 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
699 				    struct cam_ed *device);
700 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
701 static struct cam_eb*
702 		 xpt_find_bus(path_id_t path_id);
703 static struct cam_et*
704 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
705 static struct cam_ed*
706 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
707 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
708 static void	 xpt_scan_lun(struct cam_periph *periph,
709 			      struct cam_path *path, cam_flags flags,
710 			      union ccb *ccb);
711 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
712 static xpt_busfunc_t	xptconfigbuscountfunc;
713 static xpt_busfunc_t	xptconfigfunc;
714 static void	 xpt_config(void *arg);
715 static xpt_devicefunc_t xptpassannouncefunc;
716 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
717 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
718 static void	 xptpoll(struct cam_sim *sim);
719 static void	 camisr(void *);
720 #if 0
721 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
722 static void	 xptasync(struct cam_periph *periph,
723 			  u_int32_t code, cam_path *path);
724 #endif
725 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
726 				    u_int num_patterns, struct cam_eb *bus);
727 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
728 				       u_int num_patterns,
729 				       struct cam_ed *device);
730 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
731 				       u_int num_patterns,
732 				       struct cam_periph *periph);
733 static xpt_busfunc_t	xptedtbusfunc;
734 static xpt_targetfunc_t	xptedttargetfunc;
735 static xpt_devicefunc_t	xptedtdevicefunc;
736 static xpt_periphfunc_t	xptedtperiphfunc;
737 static xpt_pdrvfunc_t	xptplistpdrvfunc;
738 static xpt_periphfunc_t	xptplistperiphfunc;
739 static int		xptedtmatch(struct ccb_dev_match *cdm);
740 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
741 static int		xptbustraverse(struct cam_eb *start_bus,
742 				       xpt_busfunc_t *tr_func, void *arg);
743 static int		xpttargettraverse(struct cam_eb *bus,
744 					  struct cam_et *start_target,
745 					  xpt_targetfunc_t *tr_func, void *arg);
746 static int		xptdevicetraverse(struct cam_et *target,
747 					  struct cam_ed *start_device,
748 					  xpt_devicefunc_t *tr_func, void *arg);
749 static int		xptperiphtraverse(struct cam_ed *device,
750 					  struct cam_periph *start_periph,
751 					  xpt_periphfunc_t *tr_func, void *arg);
752 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
753 					xpt_pdrvfunc_t *tr_func, void *arg);
754 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
755 					    struct cam_periph *start_periph,
756 					    xpt_periphfunc_t *tr_func,
757 					    void *arg);
758 static xpt_busfunc_t	xptdefbusfunc;
759 static xpt_targetfunc_t	xptdeftargetfunc;
760 static xpt_devicefunc_t	xptdefdevicefunc;
761 static xpt_periphfunc_t	xptdefperiphfunc;
762 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
763 #ifdef notusedyet
764 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
765 					    void *arg);
766 #endif
767 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
768 					    void *arg);
769 #ifdef notusedyet
770 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
771 					    void *arg);
772 #endif
773 static xpt_devicefunc_t	xptsetasyncfunc;
774 static xpt_busfunc_t	xptsetasyncbusfunc;
775 static cam_status	xptregister(struct cam_periph *periph,
776 				    void *arg);
777 static cam_status	proberegister(struct cam_periph *periph,
778 				      void *arg);
779 static void	 probeschedule(struct cam_periph *probe_periph);
780 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
781 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
782 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
783 static void	 probecleanup(struct cam_periph *periph);
784 static void	 xpt_find_quirk(struct cam_ed *device);
785 #ifdef CAM_NEW_TRAN_CODE
786 static void	 xpt_devise_transport(struct cam_path *path);
787 #endif /* CAM_NEW_TRAN_CODE */
788 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
789 					   struct cam_ed *device,
790 					   int async_update);
791 static void	 xpt_toggle_tags(struct cam_path *path);
792 static void	 xpt_start_tags(struct cam_path *path);
793 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
794 					    struct cam_ed *dev);
795 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
796 					   struct cam_ed *dev);
797 static __inline int periph_is_queued(struct cam_periph *periph);
798 static __inline int device_is_alloc_queued(struct cam_ed *device);
799 static __inline int device_is_send_queued(struct cam_ed *device);
800 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
801 
802 static __inline int
803 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
804 {
805 	int retval;
806 
807 	if (dev->ccbq.devq_openings > 0) {
808 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
809 			cam_ccbq_resize(&dev->ccbq,
810 					dev->ccbq.dev_openings
811 					+ dev->ccbq.dev_active);
812 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
813 		}
814 		/*
815 		 * The priority of a device waiting for CCB resources
816 		 * is that of the the highest priority peripheral driver
817 		 * enqueued.
818 		 */
819 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
820 					  &dev->alloc_ccb_entry.pinfo,
821 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
822 	} else {
823 		retval = 0;
824 	}
825 
826 	return (retval);
827 }
828 
829 static __inline int
830 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
831 {
832 	int	retval;
833 
834 	if (dev->ccbq.dev_openings > 0) {
835 		/*
836 		 * The priority of a device waiting for controller
837 		 * resources is that of the the highest priority CCB
838 		 * enqueued.
839 		 */
840 		retval =
841 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
842 				     &dev->send_ccb_entry.pinfo,
843 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
844 	} else {
845 		retval = 0;
846 	}
847 	return (retval);
848 }
849 
850 static __inline int
851 periph_is_queued(struct cam_periph *periph)
852 {
853 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
854 }
855 
856 static __inline int
857 device_is_alloc_queued(struct cam_ed *device)
858 {
859 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
860 }
861 
862 static __inline int
863 device_is_send_queued(struct cam_ed *device)
864 {
865 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
866 }
867 
868 static __inline int
869 dev_allocq_is_runnable(struct cam_devq *devq)
870 {
871 	/*
872 	 * Have work to do.
873 	 * Have space to do more work.
874 	 * Allowed to do work.
875 	 */
876 	return ((devq->alloc_queue.qfrozen_cnt == 0)
877 	     && (devq->alloc_queue.entries > 0)
878 	     && (devq->alloc_openings > 0));
879 }
880 
881 static void
882 xpt_periph_init()
883 {
884 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
885 }
886 
887 static void
888 probe_periph_init()
889 {
890 }
891 
892 
893 static void
894 xptdone(struct cam_periph *periph, union ccb *done_ccb)
895 {
896 	/* Caller will release the CCB */
897 	wakeup(&done_ccb->ccb_h.cbfcnp);
898 }
899 
900 static int
901 xptopen(dev_t dev, int flags, int fmt, struct proc *p)
902 {
903 	int unit;
904 
905 	unit = minor(dev) & 0xff;
906 
907 	/*
908 	 * Only allow read-write access.
909 	 */
910 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
911 		return(EPERM);
912 
913 	/*
914 	 * We don't allow nonblocking access.
915 	 */
916 	if ((flags & O_NONBLOCK) != 0) {
917 		printf("xpt%d: can't do nonblocking accesss\n", unit);
918 		return(ENODEV);
919 	}
920 
921 	/*
922 	 * We only have one transport layer right now.  If someone accesses
923 	 * us via something other than minor number 1, point out their
924 	 * mistake.
925 	 */
926 	if (unit != 0) {
927 		printf("xptopen: got invalid xpt unit %d\n", unit);
928 		return(ENXIO);
929 	}
930 
931 	/* Mark ourselves open */
932 	xsoftc.flags |= XPT_FLAG_OPEN;
933 
934 	return(0);
935 }
936 
937 static int
938 xptclose(dev_t dev, int flag, int fmt, struct proc *p)
939 {
940 	int unit;
941 
942 	unit = minor(dev) & 0xff;
943 
944 	/*
945 	 * We only have one transport layer right now.  If someone accesses
946 	 * us via something other than minor number 1, point out their
947 	 * mistake.
948 	 */
949 	if (unit != 0) {
950 		printf("xptclose: got invalid xpt unit %d\n", unit);
951 		return(ENXIO);
952 	}
953 
954 	/* Mark ourselves closed */
955 	xsoftc.flags &= ~XPT_FLAG_OPEN;
956 
957 	return(0);
958 }
959 
960 static int
961 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
962 {
963 	int unit, error;
964 
965 	error = 0;
966 	unit = minor(dev) & 0xff;
967 
968 	/*
969 	 * We only have one transport layer right now.  If someone accesses
970 	 * us via something other than minor number 1, point out their
971 	 * mistake.
972 	 */
973 	if (unit != 0) {
974 		printf("xptioctl: got invalid xpt unit %d\n", unit);
975 		return(ENXIO);
976 	}
977 
978 	switch(cmd) {
979 	/*
980 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
981 	 * to accept CCB types that don't quite make sense to send through a
982 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
983 	 * in the CAM spec.
984 	 */
985 	case CAMIOCOMMAND: {
986 		union ccb *ccb;
987 		union ccb *inccb;
988 
989 		inccb = (union ccb *)addr;
990 
991 		switch(inccb->ccb_h.func_code) {
992 		case XPT_SCAN_BUS:
993 		case XPT_RESET_BUS:
994 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
995 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
996 				error = EINVAL;
997 				break;
998 			}
999 			/* FALLTHROUGH */
1000 		case XPT_PATH_INQ:
1001 		case XPT_ENG_INQ:
1002 		case XPT_SCAN_LUN:
1003 
1004 			ccb = xpt_alloc_ccb();
1005 
1006 			/*
1007 			 * Create a path using the bus, target, and lun the
1008 			 * user passed in.
1009 			 */
1010 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1011 					    inccb->ccb_h.path_id,
1012 					    inccb->ccb_h.target_id,
1013 					    inccb->ccb_h.target_lun) !=
1014 					    CAM_REQ_CMP){
1015 				error = EINVAL;
1016 				xpt_free_ccb(ccb);
1017 				break;
1018 			}
1019 			/* Ensure all of our fields are correct */
1020 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1021 				      inccb->ccb_h.pinfo.priority);
1022 			xpt_merge_ccb(ccb, inccb);
1023 			ccb->ccb_h.cbfcnp = xptdone;
1024 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1025 			bcopy(ccb, inccb, sizeof(union ccb));
1026 			xpt_free_path(ccb->ccb_h.path);
1027 			xpt_free_ccb(ccb);
1028 			break;
1029 
1030 		case XPT_DEBUG: {
1031 			union ccb ccb;
1032 
1033 			/*
1034 			 * This is an immediate CCB, so it's okay to
1035 			 * allocate it on the stack.
1036 			 */
1037 
1038 			/*
1039 			 * Create a path using the bus, target, and lun the
1040 			 * user passed in.
1041 			 */
1042 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1043 					    inccb->ccb_h.path_id,
1044 					    inccb->ccb_h.target_id,
1045 					    inccb->ccb_h.target_lun) !=
1046 					    CAM_REQ_CMP){
1047 				error = EINVAL;
1048 				break;
1049 			}
1050 			/* Ensure all of our fields are correct */
1051 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1052 				      inccb->ccb_h.pinfo.priority);
1053 			xpt_merge_ccb(&ccb, inccb);
1054 			ccb.ccb_h.cbfcnp = xptdone;
1055 			xpt_action(&ccb);
1056 			bcopy(&ccb, inccb, sizeof(union ccb));
1057 			xpt_free_path(ccb.ccb_h.path);
1058 			break;
1059 
1060 		}
1061 		case XPT_DEV_MATCH: {
1062 			struct cam_periph_map_info mapinfo;
1063 			struct cam_path *old_path;
1064 
1065 			/*
1066 			 * We can't deal with physical addresses for this
1067 			 * type of transaction.
1068 			 */
1069 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1070 				error = EINVAL;
1071 				break;
1072 			}
1073 
1074 			/*
1075 			 * Save this in case the caller had it set to
1076 			 * something in particular.
1077 			 */
1078 			old_path = inccb->ccb_h.path;
1079 
1080 			/*
1081 			 * We really don't need a path for the matching
1082 			 * code.  The path is needed because of the
1083 			 * debugging statements in xpt_action().  They
1084 			 * assume that the CCB has a valid path.
1085 			 */
1086 			inccb->ccb_h.path = xpt_periph->path;
1087 
1088 			bzero(&mapinfo, sizeof(mapinfo));
1089 
1090 			/*
1091 			 * Map the pattern and match buffers into kernel
1092 			 * virtual address space.
1093 			 */
1094 			error = cam_periph_mapmem(inccb, &mapinfo);
1095 
1096 			if (error) {
1097 				inccb->ccb_h.path = old_path;
1098 				break;
1099 			}
1100 
1101 			/*
1102 			 * This is an immediate CCB, we can send it on directly.
1103 			 */
1104 			xpt_action(inccb);
1105 
1106 			/*
1107 			 * Map the buffers back into user space.
1108 			 */
1109 			cam_periph_unmapmem(inccb, &mapinfo);
1110 
1111 			inccb->ccb_h.path = old_path;
1112 
1113 			error = 0;
1114 			break;
1115 		}
1116 		default:
1117 			error = ENOTSUP;
1118 			break;
1119 		}
1120 		break;
1121 	}
1122 	/*
1123 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1124 	 * with the periphal driver name and unit name filled in.  The other
1125 	 * fields don't really matter as input.  The passthrough driver name
1126 	 * ("pass"), and unit number are passed back in the ccb.  The current
1127 	 * device generation number, and the index into the device peripheral
1128 	 * driver list, and the status are also passed back.  Note that
1129 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1130 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1131 	 * (or rather should be) impossible for the device peripheral driver
1132 	 * list to change since we look at the whole thing in one pass, and
1133 	 * we do it with splcam protection.
1134 	 *
1135 	 */
1136 	case CAMGETPASSTHRU: {
1137 		union ccb *ccb;
1138 		struct cam_periph *periph;
1139 		struct periph_driver **p_drv;
1140 		char   *name;
1141 		u_int unit;
1142 		u_int cur_generation;
1143 		int base_periph_found;
1144 		int splbreaknum;
1145 		int s;
1146 
1147 		ccb = (union ccb *)addr;
1148 		unit = ccb->cgdl.unit_number;
1149 		name = ccb->cgdl.periph_name;
1150 		/*
1151 		 * Every 100 devices, we want to drop our spl protection to
1152 		 * give the software interrupt handler a chance to run.
1153 		 * Most systems won't run into this check, but this should
1154 		 * avoid starvation in the software interrupt handler in
1155 		 * large systems.
1156 		 */
1157 		splbreaknum = 100;
1158 
1159 		ccb = (union ccb *)addr;
1160 
1161 		base_periph_found = 0;
1162 
1163 		/*
1164 		 * Sanity check -- make sure we don't get a null peripheral
1165 		 * driver name.
1166 		 */
1167 		if (*ccb->cgdl.periph_name == '\0') {
1168 			error = EINVAL;
1169 			break;
1170 		}
1171 
1172 		/* Keep the list from changing while we traverse it */
1173 		s = splcam();
1174 ptstartover:
1175 		cur_generation = xsoftc.generation;
1176 
1177 		/* first find our driver in the list of drivers */
1178 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
1179 			if (strcmp((*p_drv)->driver_name, name) == 0)
1180 				break;
1181 
1182 		if (*p_drv == NULL) {
1183 			splx(s);
1184 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1185 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1186 			*ccb->cgdl.periph_name = '\0';
1187 			ccb->cgdl.unit_number = 0;
1188 			error = ENOENT;
1189 			break;
1190 		}
1191 
1192 		/*
1193 		 * Run through every peripheral instance of this driver
1194 		 * and check to see whether it matches the unit passed
1195 		 * in by the user.  If it does, get out of the loops and
1196 		 * find the passthrough driver associated with that
1197 		 * peripheral driver.
1198 		 */
1199 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1200 		     periph = TAILQ_NEXT(periph, unit_links)) {
1201 
1202 			if (periph->unit_number == unit) {
1203 				break;
1204 			} else if (--splbreaknum == 0) {
1205 				splx(s);
1206 				s = splcam();
1207 				splbreaknum = 100;
1208 				if (cur_generation != xsoftc.generation)
1209 				       goto ptstartover;
1210 			}
1211 		}
1212 		/*
1213 		 * If we found the peripheral driver that the user passed
1214 		 * in, go through all of the peripheral drivers for that
1215 		 * particular device and look for a passthrough driver.
1216 		 */
1217 		if (periph != NULL) {
1218 			struct cam_ed *device;
1219 			int i;
1220 
1221 			base_periph_found = 1;
1222 			device = periph->path->device;
1223 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1224 			     periph != NULL;
1225 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1226 				/*
1227 				 * Check to see whether we have a
1228 				 * passthrough device or not.
1229 				 */
1230 				if (strcmp(periph->periph_name, "pass") == 0) {
1231 					/*
1232 					 * Fill in the getdevlist fields.
1233 					 */
1234 					strcpy(ccb->cgdl.periph_name,
1235 					       periph->periph_name);
1236 					ccb->cgdl.unit_number =
1237 						periph->unit_number;
1238 					if (SLIST_NEXT(periph, periph_links))
1239 						ccb->cgdl.status =
1240 							CAM_GDEVLIST_MORE_DEVS;
1241 					else
1242 						ccb->cgdl.status =
1243 						       CAM_GDEVLIST_LAST_DEVICE;
1244 					ccb->cgdl.generation =
1245 						device->generation;
1246 					ccb->cgdl.index = i;
1247 					/*
1248 					 * Fill in some CCB header fields
1249 					 * that the user may want.
1250 					 */
1251 					ccb->ccb_h.path_id =
1252 						periph->path->bus->path_id;
1253 					ccb->ccb_h.target_id =
1254 						periph->path->target->target_id;
1255 					ccb->ccb_h.target_lun =
1256 						periph->path->device->lun_id;
1257 					ccb->ccb_h.status = CAM_REQ_CMP;
1258 					break;
1259 				}
1260 			}
1261 		}
1262 
1263 		/*
1264 		 * If the periph is null here, one of two things has
1265 		 * happened.  The first possibility is that we couldn't
1266 		 * find the unit number of the particular peripheral driver
1267 		 * that the user is asking about.  e.g. the user asks for
1268 		 * the passthrough driver for "da11".  We find the list of
1269 		 * "da" peripherals all right, but there is no unit 11.
1270 		 * The other possibility is that we went through the list
1271 		 * of peripheral drivers attached to the device structure,
1272 		 * but didn't find one with the name "pass".  Either way,
1273 		 * we return ENOENT, since we couldn't find something.
1274 		 */
1275 		if (periph == NULL) {
1276 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1277 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1278 			*ccb->cgdl.periph_name = '\0';
1279 			ccb->cgdl.unit_number = 0;
1280 			error = ENOENT;
1281 			/*
1282 			 * It is unfortunate that this is even necessary,
1283 			 * but there are many, many clueless users out there.
1284 			 * If this is true, the user is looking for the
1285 			 * passthrough driver, but doesn't have one in his
1286 			 * kernel.
1287 			 */
1288 			if (base_periph_found == 1) {
1289 				printf("xptioctl: pass driver is not in the "
1290 				       "kernel\n");
1291 				printf("xptioctl: put \"device pass0\" in "
1292 				       "your kernel config file\n");
1293 			}
1294 		}
1295 		splx(s);
1296 		break;
1297 		}
1298 	default:
1299 		error = ENOTTY;
1300 		break;
1301 	}
1302 
1303 	return(error);
1304 }
1305 
1306 static int
1307 cam_module_event_handler(module_t mod, int what, void *arg)
1308 {
1309 	if (what == MOD_LOAD) {
1310 		xpt_init(NULL);
1311 	} else if (what == MOD_UNLOAD) {
1312 		return EBUSY;
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 /* Functions accessed by the peripheral drivers */
1319 static void
1320 xpt_init(dummy)
1321 	void *dummy;
1322 {
1323 	struct cam_sim *xpt_sim;
1324 	struct cam_path *path;
1325 	struct cam_devq *devq;
1326 	cam_status status;
1327 
1328 	TAILQ_INIT(&xpt_busses);
1329 	TAILQ_INIT(&cam_bioq);
1330 	TAILQ_INIT(&cam_netq);
1331 	SLIST_INIT(&ccb_freeq);
1332 	STAILQ_INIT(&highpowerq);
1333 
1334 	/*
1335 	 * The xpt layer is, itself, the equivelent of a SIM.
1336 	 * Allow 16 ccbs in the ccb pool for it.  This should
1337 	 * give decent parallelism when we probe busses and
1338 	 * perform other XPT functions.
1339 	 */
1340 	devq = cam_simq_alloc(16);
1341 	xpt_sim = cam_sim_alloc(xptaction,
1342 				xptpoll,
1343 				"xpt",
1344 				/*softc*/NULL,
1345 				/*unit*/0,
1346 				/*max_dev_transactions*/0,
1347 				/*max_tagged_dev_transactions*/0,
1348 				devq);
1349 	xpt_max_ccbs = 16;
1350 
1351 	xpt_bus_register(xpt_sim, /*bus #*/0);
1352 
1353 	/*
1354 	 * Looking at the XPT from the SIM layer, the XPT is
1355 	 * the equivelent of a peripheral driver.  Allocate
1356 	 * a peripheral driver entry for us.
1357 	 */
1358 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1359 				      CAM_TARGET_WILDCARD,
1360 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1361 		printf("xpt_init: xpt_create_path failed with status %#x,"
1362 		       " failing attach\n", status);
1363 		return;
1364 	}
1365 
1366 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1367 			 path, NULL, 0, NULL);
1368 	xpt_free_path(path);
1369 
1370 	xpt_sim->softc = xpt_periph;
1371 
1372 	/*
1373 	 * Register a callback for when interrupts are enabled.
1374 	 */
1375 	xpt_config_hook =
1376 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1377 					      M_TEMP, M_NOWAIT | M_ZERO);
1378 	if (xpt_config_hook == NULL) {
1379 		printf("xpt_init: Cannot malloc config hook "
1380 		       "- failing attach\n");
1381 		return;
1382 	}
1383 
1384 	xpt_config_hook->ich_func = xpt_config;
1385 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1386 		free (xpt_config_hook, M_TEMP);
1387 		printf("xpt_init: config_intrhook_establish failed "
1388 		       "- failing attach\n");
1389 	}
1390 
1391 	/* Install our software interrupt handlers */
1392 	swi_add(NULL, "camnet", camisr, &cam_netq, SWI_CAMNET, 0, &camnet_ih);
1393 	swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih);
1394 }
1395 
1396 static cam_status
1397 xptregister(struct cam_periph *periph, void *arg)
1398 {
1399 	if (periph == NULL) {
1400 		printf("xptregister: periph was NULL!!\n");
1401 		return(CAM_REQ_CMP_ERR);
1402 	}
1403 
1404 	periph->softc = NULL;
1405 
1406 	xpt_periph = periph;
1407 
1408 	return(CAM_REQ_CMP);
1409 }
1410 
1411 int32_t
1412 xpt_add_periph(struct cam_periph *periph)
1413 {
1414 	struct cam_ed *device;
1415 	int32_t	 status;
1416 	struct periph_list *periph_head;
1417 
1418 	device = periph->path->device;
1419 
1420 	periph_head = &device->periphs;
1421 
1422 	status = CAM_REQ_CMP;
1423 
1424 	if (device != NULL) {
1425 		int s;
1426 
1427 		/*
1428 		 * Make room for this peripheral
1429 		 * so it will fit in the queue
1430 		 * when it's scheduled to run
1431 		 */
1432 		s = splsoftcam();
1433 		status = camq_resize(&device->drvq,
1434 				     device->drvq.array_size + 1);
1435 
1436 		device->generation++;
1437 
1438 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1439 
1440 		splx(s);
1441 	}
1442 
1443 	xsoftc.generation++;
1444 
1445 	return (status);
1446 }
1447 
1448 void
1449 xpt_remove_periph(struct cam_periph *periph)
1450 {
1451 	struct cam_ed *device;
1452 
1453 	device = periph->path->device;
1454 
1455 	if (device != NULL) {
1456 		int s;
1457 		struct periph_list *periph_head;
1458 
1459 		periph_head = &device->periphs;
1460 
1461 		/* Release the slot for this peripheral */
1462 		s = splsoftcam();
1463 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1464 
1465 		device->generation++;
1466 
1467 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1468 
1469 		splx(s);
1470 	}
1471 
1472 	xsoftc.generation++;
1473 
1474 }
1475 
1476 #ifdef CAM_NEW_TRAN_CODE
1477 
1478 void
1479 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1480 {
1481 	struct	ccb_pathinq cpi;
1482 	struct	ccb_trans_settings cts;
1483 	struct	cam_path *path;
1484 	u_int	speed;
1485 	u_int	freq;
1486 	u_int	mb;
1487 	int	s;
1488 
1489 	path = periph->path;
1490 	/*
1491 	 * To ensure that this is printed in one piece,
1492 	 * mask out CAM interrupts.
1493 	 */
1494 	s = splsoftcam();
1495 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1496 	       periph->periph_name, periph->unit_number,
1497 	       path->bus->sim->sim_name,
1498 	       path->bus->sim->unit_number,
1499 	       path->bus->sim->bus_id,
1500 	       path->target->target_id,
1501 	       path->device->lun_id);
1502 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1503 	scsi_print_inquiry(&path->device->inq_data);
1504 	if ((bootverbose)
1505 	 && (path->device->serial_num_len > 0)) {
1506 		/* Don't wrap the screen  - print only the first 60 chars */
1507 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1508 		       periph->unit_number, path->device->serial_num);
1509 	}
1510 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1511 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1512 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1513 	xpt_action((union ccb*)&cts);
1514 
1515 	/* Ask the SIM for its base transfer speed */
1516 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1517 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1518 	xpt_action((union ccb *)&cpi);
1519 
1520 	speed = cpi.base_transfer_speed;
1521 	freq = 0;
1522 	if (cts.ccb_h.status == CAM_REQ_CMP
1523 	 && cts.transport == XPORT_SPI) {
1524 		struct	ccb_trans_settings_spi *spi;
1525 
1526 		spi = &cts.xport_specific.spi;
1527 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1528 		  && spi->sync_offset != 0) {
1529 			freq = scsi_calc_syncsrate(spi->sync_period);
1530 			speed = freq;
1531 		}
1532 
1533 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1534 			speed *= (0x01 << spi->bus_width);
1535 	}
1536 
1537 	mb = speed / 1000;
1538 	if (mb > 0)
1539 		printf("%s%d: %d.%03dMB/s transfers",
1540 		       periph->periph_name, periph->unit_number,
1541 		       mb, speed % 1000);
1542 	else
1543 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1544 		       periph->unit_number, speed);
1545 	/* Report additional information about SPI connections */
1546 	if (cts.ccb_h.status == CAM_REQ_CMP
1547 	 && cts.transport == XPORT_SPI) {
1548 		struct	ccb_trans_settings_spi *spi;
1549 
1550 		spi = &cts.xport_specific.spi;
1551 		if (freq != 0) {
1552 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1553 			       freq % 1000,
1554 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1555 			     ? " DT" : "",
1556 			       spi->sync_offset);
1557 		}
1558 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1559 		 && spi->bus_width > 0) {
1560 			if (freq != 0) {
1561 				printf(", ");
1562 			} else {
1563 				printf(" (");
1564 			}
1565 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1566 		} else if (freq != 0) {
1567 			printf(")");
1568 		}
1569 	}
1570 
1571 	if (path->device->inq_flags & SID_CmdQue
1572 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1573 		printf("\n%s%d: Tagged Queueing Enabled",
1574 		       periph->periph_name, periph->unit_number);
1575 	}
1576 	printf("\n");
1577 
1578 	/*
1579 	 * We only want to print the caller's announce string if they've
1580 	 * passed one in..
1581 	 */
1582 	if (announce_string != NULL)
1583 		printf("%s%d: %s\n", periph->periph_name,
1584 		       periph->unit_number, announce_string);
1585 	splx(s);
1586 }
1587 #else /* CAM_NEW_TRAN_CODE */
1588 void
1589 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1590 {
1591 	int s;
1592 	u_int mb;
1593 	struct cam_path *path;
1594 	struct ccb_trans_settings cts;
1595 
1596 	path = periph->path;
1597 	/*
1598 	 * To ensure that this is printed in one piece,
1599 	 * mask out CAM interrupts.
1600 	 */
1601 	s = splsoftcam();
1602 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1603 	       periph->periph_name, periph->unit_number,
1604 	       path->bus->sim->sim_name,
1605 	       path->bus->sim->unit_number,
1606 	       path->bus->sim->bus_id,
1607 	       path->target->target_id,
1608 	       path->device->lun_id);
1609 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1610 	scsi_print_inquiry(&path->device->inq_data);
1611 	if ((bootverbose)
1612 	 && (path->device->serial_num_len > 0)) {
1613 		/* Don't wrap the screen  - print only the first 60 chars */
1614 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1615 		       periph->unit_number, path->device->serial_num);
1616 	}
1617 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1618 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1619 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1620 	xpt_action((union ccb*)&cts);
1621 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1622 		u_int speed;
1623 		u_int freq;
1624 
1625 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1626 		  && cts.sync_offset != 0) {
1627 			freq = scsi_calc_syncsrate(cts.sync_period);
1628 			speed = freq;
1629 		} else {
1630 			struct ccb_pathinq cpi;
1631 
1632 			/* Ask the SIM for its base transfer speed */
1633 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1634 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1635 			xpt_action((union ccb *)&cpi);
1636 
1637 			speed = cpi.base_transfer_speed;
1638 			freq = 0;
1639 		}
1640 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1641 			speed *= (0x01 << cts.bus_width);
1642 		mb = speed / 1000;
1643 		if (mb > 0)
1644 			printf("%s%d: %d.%03dMB/s transfers",
1645 			       periph->periph_name, periph->unit_number,
1646 			       mb, speed % 1000);
1647 		else
1648 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1649 			       periph->unit_number, speed);
1650 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1651 		 && cts.sync_offset != 0) {
1652 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1653 			       freq % 1000, cts.sync_offset);
1654 		}
1655 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1656 		 && cts.bus_width > 0) {
1657 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1658 			 && cts.sync_offset != 0) {
1659 				printf(", ");
1660 			} else {
1661 				printf(" (");
1662 			}
1663 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1664 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1665 			&& cts.sync_offset != 0) {
1666 			printf(")");
1667 		}
1668 
1669 		if (path->device->inq_flags & SID_CmdQue
1670 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1671 			printf(", Tagged Queueing Enabled");
1672 		}
1673 
1674 		printf("\n");
1675 	} else if (path->device->inq_flags & SID_CmdQue
1676    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1677 		printf("%s%d: Tagged Queueing Enabled\n",
1678 		       periph->periph_name, periph->unit_number);
1679 	}
1680 
1681 	/*
1682 	 * We only want to print the caller's announce string if they've
1683 	 * passed one in..
1684 	 */
1685 	if (announce_string != NULL)
1686 		printf("%s%d: %s\n", periph->periph_name,
1687 		       periph->unit_number, announce_string);
1688 	splx(s);
1689 }
1690 
1691 #endif /* CAM_NEW_TRAN_CODE */
1692 
1693 static dev_match_ret
1694 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1695 	    struct cam_eb *bus)
1696 {
1697 	dev_match_ret retval;
1698 	int i;
1699 
1700 	retval = DM_RET_NONE;
1701 
1702 	/*
1703 	 * If we aren't given something to match against, that's an error.
1704 	 */
1705 	if (bus == NULL)
1706 		return(DM_RET_ERROR);
1707 
1708 	/*
1709 	 * If there are no match entries, then this bus matches no
1710 	 * matter what.
1711 	 */
1712 	if ((patterns == NULL) || (num_patterns == 0))
1713 		return(DM_RET_DESCEND | DM_RET_COPY);
1714 
1715 	for (i = 0; i < num_patterns; i++) {
1716 		struct bus_match_pattern *cur_pattern;
1717 
1718 		/*
1719 		 * If the pattern in question isn't for a bus node, we
1720 		 * aren't interested.  However, we do indicate to the
1721 		 * calling routine that we should continue descending the
1722 		 * tree, since the user wants to match against lower-level
1723 		 * EDT elements.
1724 		 */
1725 		if (patterns[i].type != DEV_MATCH_BUS) {
1726 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1727 				retval |= DM_RET_DESCEND;
1728 			continue;
1729 		}
1730 
1731 		cur_pattern = &patterns[i].pattern.bus_pattern;
1732 
1733 		/*
1734 		 * If they want to match any bus node, we give them any
1735 		 * device node.
1736 		 */
1737 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1738 			/* set the copy flag */
1739 			retval |= DM_RET_COPY;
1740 
1741 			/*
1742 			 * If we've already decided on an action, go ahead
1743 			 * and return.
1744 			 */
1745 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1746 				return(retval);
1747 		}
1748 
1749 		/*
1750 		 * Not sure why someone would do this...
1751 		 */
1752 		if (cur_pattern->flags == BUS_MATCH_NONE)
1753 			continue;
1754 
1755 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1756 		 && (cur_pattern->path_id != bus->path_id))
1757 			continue;
1758 
1759 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1760 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1761 			continue;
1762 
1763 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1764 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1765 			continue;
1766 
1767 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1768 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1769 			     DEV_IDLEN) != 0))
1770 			continue;
1771 
1772 		/*
1773 		 * If we get to this point, the user definitely wants
1774 		 * information on this bus.  So tell the caller to copy the
1775 		 * data out.
1776 		 */
1777 		retval |= DM_RET_COPY;
1778 
1779 		/*
1780 		 * If the return action has been set to descend, then we
1781 		 * know that we've already seen a non-bus matching
1782 		 * expression, therefore we need to further descend the tree.
1783 		 * This won't change by continuing around the loop, so we
1784 		 * go ahead and return.  If we haven't seen a non-bus
1785 		 * matching expression, we keep going around the loop until
1786 		 * we exhaust the matching expressions.  We'll set the stop
1787 		 * flag once we fall out of the loop.
1788 		 */
1789 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1790 			return(retval);
1791 	}
1792 
1793 	/*
1794 	 * If the return action hasn't been set to descend yet, that means
1795 	 * we haven't seen anything other than bus matching patterns.  So
1796 	 * tell the caller to stop descending the tree -- the user doesn't
1797 	 * want to match against lower level tree elements.
1798 	 */
1799 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1800 		retval |= DM_RET_STOP;
1801 
1802 	return(retval);
1803 }
1804 
1805 static dev_match_ret
1806 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1807 	       struct cam_ed *device)
1808 {
1809 	dev_match_ret retval;
1810 	int i;
1811 
1812 	retval = DM_RET_NONE;
1813 
1814 	/*
1815 	 * If we aren't given something to match against, that's an error.
1816 	 */
1817 	if (device == NULL)
1818 		return(DM_RET_ERROR);
1819 
1820 	/*
1821 	 * If there are no match entries, then this device matches no
1822 	 * matter what.
1823 	 */
1824 	if ((patterns == NULL) || (patterns == 0))
1825 		return(DM_RET_DESCEND | DM_RET_COPY);
1826 
1827 	for (i = 0; i < num_patterns; i++) {
1828 		struct device_match_pattern *cur_pattern;
1829 
1830 		/*
1831 		 * If the pattern in question isn't for a device node, we
1832 		 * aren't interested.
1833 		 */
1834 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1835 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1836 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1837 				retval |= DM_RET_DESCEND;
1838 			continue;
1839 		}
1840 
1841 		cur_pattern = &patterns[i].pattern.device_pattern;
1842 
1843 		/*
1844 		 * If they want to match any device node, we give them any
1845 		 * device node.
1846 		 */
1847 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1848 			/* set the copy flag */
1849 			retval |= DM_RET_COPY;
1850 
1851 
1852 			/*
1853 			 * If we've already decided on an action, go ahead
1854 			 * and return.
1855 			 */
1856 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1857 				return(retval);
1858 		}
1859 
1860 		/*
1861 		 * Not sure why someone would do this...
1862 		 */
1863 		if (cur_pattern->flags == DEV_MATCH_NONE)
1864 			continue;
1865 
1866 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1867 		 && (cur_pattern->path_id != device->target->bus->path_id))
1868 			continue;
1869 
1870 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1871 		 && (cur_pattern->target_id != device->target->target_id))
1872 			continue;
1873 
1874 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1875 		 && (cur_pattern->target_lun != device->lun_id))
1876 			continue;
1877 
1878 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1879 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1880 				    (caddr_t)&cur_pattern->inq_pat,
1881 				    1, sizeof(cur_pattern->inq_pat),
1882 				    scsi_static_inquiry_match) == NULL))
1883 			continue;
1884 
1885 		/*
1886 		 * If we get to this point, the user definitely wants
1887 		 * information on this device.  So tell the caller to copy
1888 		 * the data out.
1889 		 */
1890 		retval |= DM_RET_COPY;
1891 
1892 		/*
1893 		 * If the return action has been set to descend, then we
1894 		 * know that we've already seen a peripheral matching
1895 		 * expression, therefore we need to further descend the tree.
1896 		 * This won't change by continuing around the loop, so we
1897 		 * go ahead and return.  If we haven't seen a peripheral
1898 		 * matching expression, we keep going around the loop until
1899 		 * we exhaust the matching expressions.  We'll set the stop
1900 		 * flag once we fall out of the loop.
1901 		 */
1902 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1903 			return(retval);
1904 	}
1905 
1906 	/*
1907 	 * If the return action hasn't been set to descend yet, that means
1908 	 * we haven't seen any peripheral matching patterns.  So tell the
1909 	 * caller to stop descending the tree -- the user doesn't want to
1910 	 * match against lower level tree elements.
1911 	 */
1912 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1913 		retval |= DM_RET_STOP;
1914 
1915 	return(retval);
1916 }
1917 
1918 /*
1919  * Match a single peripheral against any number of match patterns.
1920  */
1921 static dev_match_ret
1922 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1923 	       struct cam_periph *periph)
1924 {
1925 	dev_match_ret retval;
1926 	int i;
1927 
1928 	/*
1929 	 * If we aren't given something to match against, that's an error.
1930 	 */
1931 	if (periph == NULL)
1932 		return(DM_RET_ERROR);
1933 
1934 	/*
1935 	 * If there are no match entries, then this peripheral matches no
1936 	 * matter what.
1937 	 */
1938 	if ((patterns == NULL) || (num_patterns == 0))
1939 		return(DM_RET_STOP | DM_RET_COPY);
1940 
1941 	/*
1942 	 * There aren't any nodes below a peripheral node, so there's no
1943 	 * reason to descend the tree any further.
1944 	 */
1945 	retval = DM_RET_STOP;
1946 
1947 	for (i = 0; i < num_patterns; i++) {
1948 		struct periph_match_pattern *cur_pattern;
1949 
1950 		/*
1951 		 * If the pattern in question isn't for a peripheral, we
1952 		 * aren't interested.
1953 		 */
1954 		if (patterns[i].type != DEV_MATCH_PERIPH)
1955 			continue;
1956 
1957 		cur_pattern = &patterns[i].pattern.periph_pattern;
1958 
1959 		/*
1960 		 * If they want to match on anything, then we will do so.
1961 		 */
1962 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1963 			/* set the copy flag */
1964 			retval |= DM_RET_COPY;
1965 
1966 			/*
1967 			 * We've already set the return action to stop,
1968 			 * since there are no nodes below peripherals in
1969 			 * the tree.
1970 			 */
1971 			return(retval);
1972 		}
1973 
1974 		/*
1975 		 * Not sure why someone would do this...
1976 		 */
1977 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1978 			continue;
1979 
1980 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1981 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1982 			continue;
1983 
1984 		/*
1985 		 * For the target and lun id's, we have to make sure the
1986 		 * target and lun pointers aren't NULL.  The xpt peripheral
1987 		 * has a wildcard target and device.
1988 		 */
1989 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1990 		 && ((periph->path->target == NULL)
1991 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1992 			continue;
1993 
1994 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1995 		 && ((periph->path->device == NULL)
1996 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1997 			continue;
1998 
1999 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2000 		 && (cur_pattern->unit_number != periph->unit_number))
2001 			continue;
2002 
2003 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2004 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2005 			     DEV_IDLEN) != 0))
2006 			continue;
2007 
2008 		/*
2009 		 * If we get to this point, the user definitely wants
2010 		 * information on this peripheral.  So tell the caller to
2011 		 * copy the data out.
2012 		 */
2013 		retval |= DM_RET_COPY;
2014 
2015 		/*
2016 		 * The return action has already been set to stop, since
2017 		 * peripherals don't have any nodes below them in the EDT.
2018 		 */
2019 		return(retval);
2020 	}
2021 
2022 	/*
2023 	 * If we get to this point, the peripheral that was passed in
2024 	 * doesn't match any of the patterns.
2025 	 */
2026 	return(retval);
2027 }
2028 
2029 static int
2030 xptedtbusfunc(struct cam_eb *bus, void *arg)
2031 {
2032 	struct ccb_dev_match *cdm;
2033 	dev_match_ret retval;
2034 
2035 	cdm = (struct ccb_dev_match *)arg;
2036 
2037 	/*
2038 	 * If our position is for something deeper in the tree, that means
2039 	 * that we've already seen this node.  So, we keep going down.
2040 	 */
2041 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2042 	 && (cdm->pos.cookie.bus == bus)
2043 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2044 	 && (cdm->pos.cookie.target != NULL))
2045 		retval = DM_RET_DESCEND;
2046 	else
2047 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2048 
2049 	/*
2050 	 * If we got an error, bail out of the search.
2051 	 */
2052 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2053 		cdm->status = CAM_DEV_MATCH_ERROR;
2054 		return(0);
2055 	}
2056 
2057 	/*
2058 	 * If the copy flag is set, copy this bus out.
2059 	 */
2060 	if (retval & DM_RET_COPY) {
2061 		int spaceleft, j;
2062 
2063 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2064 			sizeof(struct dev_match_result));
2065 
2066 		/*
2067 		 * If we don't have enough space to put in another
2068 		 * match result, save our position and tell the
2069 		 * user there are more devices to check.
2070 		 */
2071 		if (spaceleft < sizeof(struct dev_match_result)) {
2072 			bzero(&cdm->pos, sizeof(cdm->pos));
2073 			cdm->pos.position_type =
2074 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2075 
2076 			cdm->pos.cookie.bus = bus;
2077 			cdm->pos.generations[CAM_BUS_GENERATION]=
2078 				bus_generation;
2079 			cdm->status = CAM_DEV_MATCH_MORE;
2080 			return(0);
2081 		}
2082 		j = cdm->num_matches;
2083 		cdm->num_matches++;
2084 		cdm->matches[j].type = DEV_MATCH_BUS;
2085 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2086 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2087 		cdm->matches[j].result.bus_result.unit_number =
2088 			bus->sim->unit_number;
2089 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2090 			bus->sim->sim_name, DEV_IDLEN);
2091 	}
2092 
2093 	/*
2094 	 * If the user is only interested in busses, there's no
2095 	 * reason to descend to the next level in the tree.
2096 	 */
2097 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2098 		return(1);
2099 
2100 	/*
2101 	 * If there is a target generation recorded, check it to
2102 	 * make sure the target list hasn't changed.
2103 	 */
2104 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2105 	 && (bus == cdm->pos.cookie.bus)
2106 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2107 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2108 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2109 	     bus->generation)) {
2110 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2111 		return(0);
2112 	}
2113 
2114 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2115 	 && (cdm->pos.cookie.bus == bus)
2116 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2117 	 && (cdm->pos.cookie.target != NULL))
2118 		return(xpttargettraverse(bus,
2119 					(struct cam_et *)cdm->pos.cookie.target,
2120 					 xptedttargetfunc, arg));
2121 	else
2122 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2123 }
2124 
2125 static int
2126 xptedttargetfunc(struct cam_et *target, void *arg)
2127 {
2128 	struct ccb_dev_match *cdm;
2129 
2130 	cdm = (struct ccb_dev_match *)arg;
2131 
2132 	/*
2133 	 * If there is a device list generation recorded, check it to
2134 	 * make sure the device list hasn't changed.
2135 	 */
2136 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2137 	 && (cdm->pos.cookie.bus == target->bus)
2138 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2139 	 && (cdm->pos.cookie.target == target)
2140 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2141 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2142 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2143 	     target->generation)) {
2144 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2145 		return(0);
2146 	}
2147 
2148 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2149 	 && (cdm->pos.cookie.bus == target->bus)
2150 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2151 	 && (cdm->pos.cookie.target == target)
2152 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2153 	 && (cdm->pos.cookie.device != NULL))
2154 		return(xptdevicetraverse(target,
2155 					(struct cam_ed *)cdm->pos.cookie.device,
2156 					 xptedtdevicefunc, arg));
2157 	else
2158 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2159 }
2160 
2161 static int
2162 xptedtdevicefunc(struct cam_ed *device, void *arg)
2163 {
2164 
2165 	struct ccb_dev_match *cdm;
2166 	dev_match_ret retval;
2167 
2168 	cdm = (struct ccb_dev_match *)arg;
2169 
2170 	/*
2171 	 * If our position is for something deeper in the tree, that means
2172 	 * that we've already seen this node.  So, we keep going down.
2173 	 */
2174 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2175 	 && (cdm->pos.cookie.device == device)
2176 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2177 	 && (cdm->pos.cookie.periph != NULL))
2178 		retval = DM_RET_DESCEND;
2179 	else
2180 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2181 					device);
2182 
2183 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2184 		cdm->status = CAM_DEV_MATCH_ERROR;
2185 		return(0);
2186 	}
2187 
2188 	/*
2189 	 * If the copy flag is set, copy this device out.
2190 	 */
2191 	if (retval & DM_RET_COPY) {
2192 		int spaceleft, j;
2193 
2194 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2195 			sizeof(struct dev_match_result));
2196 
2197 		/*
2198 		 * If we don't have enough space to put in another
2199 		 * match result, save our position and tell the
2200 		 * user there are more devices to check.
2201 		 */
2202 		if (spaceleft < sizeof(struct dev_match_result)) {
2203 			bzero(&cdm->pos, sizeof(cdm->pos));
2204 			cdm->pos.position_type =
2205 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2206 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2207 
2208 			cdm->pos.cookie.bus = device->target->bus;
2209 			cdm->pos.generations[CAM_BUS_GENERATION]=
2210 				bus_generation;
2211 			cdm->pos.cookie.target = device->target;
2212 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2213 				device->target->bus->generation;
2214 			cdm->pos.cookie.device = device;
2215 			cdm->pos.generations[CAM_DEV_GENERATION] =
2216 				device->target->generation;
2217 			cdm->status = CAM_DEV_MATCH_MORE;
2218 			return(0);
2219 		}
2220 		j = cdm->num_matches;
2221 		cdm->num_matches++;
2222 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2223 		cdm->matches[j].result.device_result.path_id =
2224 			device->target->bus->path_id;
2225 		cdm->matches[j].result.device_result.target_id =
2226 			device->target->target_id;
2227 		cdm->matches[j].result.device_result.target_lun =
2228 			device->lun_id;
2229 		bcopy(&device->inq_data,
2230 		      &cdm->matches[j].result.device_result.inq_data,
2231 		      sizeof(struct scsi_inquiry_data));
2232 
2233 		/* Let the user know whether this device is unconfigured */
2234 		if (device->flags & CAM_DEV_UNCONFIGURED)
2235 			cdm->matches[j].result.device_result.flags =
2236 				DEV_RESULT_UNCONFIGURED;
2237 		else
2238 			cdm->matches[j].result.device_result.flags =
2239 				DEV_RESULT_NOFLAG;
2240 	}
2241 
2242 	/*
2243 	 * If the user isn't interested in peripherals, don't descend
2244 	 * the tree any further.
2245 	 */
2246 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2247 		return(1);
2248 
2249 	/*
2250 	 * If there is a peripheral list generation recorded, make sure
2251 	 * it hasn't changed.
2252 	 */
2253 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2254 	 && (device->target->bus == cdm->pos.cookie.bus)
2255 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2256 	 && (device->target == cdm->pos.cookie.target)
2257 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2258 	 && (device == cdm->pos.cookie.device)
2259 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2260 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2261 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2262 	     device->generation)){
2263 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2264 		return(0);
2265 	}
2266 
2267 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2268 	 && (cdm->pos.cookie.bus == device->target->bus)
2269 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2270 	 && (cdm->pos.cookie.target == device->target)
2271 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2272 	 && (cdm->pos.cookie.device == device)
2273 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2274 	 && (cdm->pos.cookie.periph != NULL))
2275 		return(xptperiphtraverse(device,
2276 				(struct cam_periph *)cdm->pos.cookie.periph,
2277 				xptedtperiphfunc, arg));
2278 	else
2279 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2280 }
2281 
2282 static int
2283 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2284 {
2285 	struct ccb_dev_match *cdm;
2286 	dev_match_ret retval;
2287 
2288 	cdm = (struct ccb_dev_match *)arg;
2289 
2290 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2291 
2292 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2293 		cdm->status = CAM_DEV_MATCH_ERROR;
2294 		return(0);
2295 	}
2296 
2297 	/*
2298 	 * If the copy flag is set, copy this peripheral out.
2299 	 */
2300 	if (retval & DM_RET_COPY) {
2301 		int spaceleft, j;
2302 
2303 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2304 			sizeof(struct dev_match_result));
2305 
2306 		/*
2307 		 * If we don't have enough space to put in another
2308 		 * match result, save our position and tell the
2309 		 * user there are more devices to check.
2310 		 */
2311 		if (spaceleft < sizeof(struct dev_match_result)) {
2312 			bzero(&cdm->pos, sizeof(cdm->pos));
2313 			cdm->pos.position_type =
2314 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2315 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2316 				CAM_DEV_POS_PERIPH;
2317 
2318 			cdm->pos.cookie.bus = periph->path->bus;
2319 			cdm->pos.generations[CAM_BUS_GENERATION]=
2320 				bus_generation;
2321 			cdm->pos.cookie.target = periph->path->target;
2322 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2323 				periph->path->bus->generation;
2324 			cdm->pos.cookie.device = periph->path->device;
2325 			cdm->pos.generations[CAM_DEV_GENERATION] =
2326 				periph->path->target->generation;
2327 			cdm->pos.cookie.periph = periph;
2328 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2329 				periph->path->device->generation;
2330 			cdm->status = CAM_DEV_MATCH_MORE;
2331 			return(0);
2332 		}
2333 
2334 		j = cdm->num_matches;
2335 		cdm->num_matches++;
2336 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2337 		cdm->matches[j].result.periph_result.path_id =
2338 			periph->path->bus->path_id;
2339 		cdm->matches[j].result.periph_result.target_id =
2340 			periph->path->target->target_id;
2341 		cdm->matches[j].result.periph_result.target_lun =
2342 			periph->path->device->lun_id;
2343 		cdm->matches[j].result.periph_result.unit_number =
2344 			periph->unit_number;
2345 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2346 			periph->periph_name, DEV_IDLEN);
2347 	}
2348 
2349 	return(1);
2350 }
2351 
2352 static int
2353 xptedtmatch(struct ccb_dev_match *cdm)
2354 {
2355 	int ret;
2356 
2357 	cdm->num_matches = 0;
2358 
2359 	/*
2360 	 * Check the bus list generation.  If it has changed, the user
2361 	 * needs to reset everything and start over.
2362 	 */
2363 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2364 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2365 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2366 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2367 		return(0);
2368 	}
2369 
2370 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2371 	 && (cdm->pos.cookie.bus != NULL))
2372 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2373 				     xptedtbusfunc, cdm);
2374 	else
2375 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2376 
2377 	/*
2378 	 * If we get back 0, that means that we had to stop before fully
2379 	 * traversing the EDT.  It also means that one of the subroutines
2380 	 * has set the status field to the proper value.  If we get back 1,
2381 	 * we've fully traversed the EDT and copied out any matching entries.
2382 	 */
2383 	if (ret == 1)
2384 		cdm->status = CAM_DEV_MATCH_LAST;
2385 
2386 	return(ret);
2387 }
2388 
2389 static int
2390 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2391 {
2392 	struct ccb_dev_match *cdm;
2393 
2394 	cdm = (struct ccb_dev_match *)arg;
2395 
2396 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2397 	 && (cdm->pos.cookie.pdrv == pdrv)
2398 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2399 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2400 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2401 	     (*pdrv)->generation)) {
2402 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2403 		return(0);
2404 	}
2405 
2406 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2407 	 && (cdm->pos.cookie.pdrv == pdrv)
2408 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2409 	 && (cdm->pos.cookie.periph != NULL))
2410 		return(xptpdperiphtraverse(pdrv,
2411 				(struct cam_periph *)cdm->pos.cookie.periph,
2412 				xptplistperiphfunc, arg));
2413 	else
2414 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2415 }
2416 
2417 static int
2418 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2419 {
2420 	struct ccb_dev_match *cdm;
2421 	dev_match_ret retval;
2422 
2423 	cdm = (struct ccb_dev_match *)arg;
2424 
2425 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2426 
2427 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2428 		cdm->status = CAM_DEV_MATCH_ERROR;
2429 		return(0);
2430 	}
2431 
2432 	/*
2433 	 * If the copy flag is set, copy this peripheral out.
2434 	 */
2435 	if (retval & DM_RET_COPY) {
2436 		int spaceleft, j;
2437 
2438 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2439 			sizeof(struct dev_match_result));
2440 
2441 		/*
2442 		 * If we don't have enough space to put in another
2443 		 * match result, save our position and tell the
2444 		 * user there are more devices to check.
2445 		 */
2446 		if (spaceleft < sizeof(struct dev_match_result)) {
2447 			struct periph_driver **pdrv;
2448 
2449 			pdrv = NULL;
2450 			bzero(&cdm->pos, sizeof(cdm->pos));
2451 			cdm->pos.position_type =
2452 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2453 				CAM_DEV_POS_PERIPH;
2454 
2455 			/*
2456 			 * This may look a bit non-sensical, but it is
2457 			 * actually quite logical.  There are very few
2458 			 * peripheral drivers, and bloating every peripheral
2459 			 * structure with a pointer back to its parent
2460 			 * peripheral driver linker set entry would cost
2461 			 * more in the long run than doing this quick lookup.
2462 			 */
2463 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2464 				if (strcmp((*pdrv)->driver_name,
2465 				    periph->periph_name) == 0)
2466 					break;
2467 			}
2468 
2469 			if (pdrv == NULL) {
2470 				cdm->status = CAM_DEV_MATCH_ERROR;
2471 				return(0);
2472 			}
2473 
2474 			cdm->pos.cookie.pdrv = pdrv;
2475 			/*
2476 			 * The periph generation slot does double duty, as
2477 			 * does the periph pointer slot.  They are used for
2478 			 * both edt and pdrv lookups and positioning.
2479 			 */
2480 			cdm->pos.cookie.periph = periph;
2481 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2482 				(*pdrv)->generation;
2483 			cdm->status = CAM_DEV_MATCH_MORE;
2484 			return(0);
2485 		}
2486 
2487 		j = cdm->num_matches;
2488 		cdm->num_matches++;
2489 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2490 		cdm->matches[j].result.periph_result.path_id =
2491 			periph->path->bus->path_id;
2492 
2493 		/*
2494 		 * The transport layer peripheral doesn't have a target or
2495 		 * lun.
2496 		 */
2497 		if (periph->path->target)
2498 			cdm->matches[j].result.periph_result.target_id =
2499 				periph->path->target->target_id;
2500 		else
2501 			cdm->matches[j].result.periph_result.target_id = -1;
2502 
2503 		if (periph->path->device)
2504 			cdm->matches[j].result.periph_result.target_lun =
2505 				periph->path->device->lun_id;
2506 		else
2507 			cdm->matches[j].result.periph_result.target_lun = -1;
2508 
2509 		cdm->matches[j].result.periph_result.unit_number =
2510 			periph->unit_number;
2511 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2512 			periph->periph_name, DEV_IDLEN);
2513 	}
2514 
2515 	return(1);
2516 }
2517 
2518 static int
2519 xptperiphlistmatch(struct ccb_dev_match *cdm)
2520 {
2521 	int ret;
2522 
2523 	cdm->num_matches = 0;
2524 
2525 	/*
2526 	 * At this point in the edt traversal function, we check the bus
2527 	 * list generation to make sure that no busses have been added or
2528 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2529 	 * For the peripheral driver list traversal function, however, we
2530 	 * don't have to worry about new peripheral driver types coming or
2531 	 * going; they're in a linker set, and therefore can't change
2532 	 * without a recompile.
2533 	 */
2534 
2535 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2536 	 && (cdm->pos.cookie.pdrv != NULL))
2537 		ret = xptpdrvtraverse(
2538 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2539 				xptplistpdrvfunc, cdm);
2540 	else
2541 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2542 
2543 	/*
2544 	 * If we get back 0, that means that we had to stop before fully
2545 	 * traversing the peripheral driver tree.  It also means that one of
2546 	 * the subroutines has set the status field to the proper value.  If
2547 	 * we get back 1, we've fully traversed the EDT and copied out any
2548 	 * matching entries.
2549 	 */
2550 	if (ret == 1)
2551 		cdm->status = CAM_DEV_MATCH_LAST;
2552 
2553 	return(ret);
2554 }
2555 
2556 static int
2557 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2558 {
2559 	struct cam_eb *bus, *next_bus;
2560 	int retval;
2561 
2562 	retval = 1;
2563 
2564 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2565 	     bus != NULL;
2566 	     bus = next_bus) {
2567 		next_bus = TAILQ_NEXT(bus, links);
2568 
2569 		retval = tr_func(bus, arg);
2570 		if (retval == 0)
2571 			return(retval);
2572 	}
2573 
2574 	return(retval);
2575 }
2576 
2577 static int
2578 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2579 		  xpt_targetfunc_t *tr_func, void *arg)
2580 {
2581 	struct cam_et *target, *next_target;
2582 	int retval;
2583 
2584 	retval = 1;
2585 	for (target = (start_target ? start_target :
2586 		       TAILQ_FIRST(&bus->et_entries));
2587 	     target != NULL; target = next_target) {
2588 
2589 		next_target = TAILQ_NEXT(target, links);
2590 
2591 		retval = tr_func(target, arg);
2592 
2593 		if (retval == 0)
2594 			return(retval);
2595 	}
2596 
2597 	return(retval);
2598 }
2599 
2600 static int
2601 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2602 		  xpt_devicefunc_t *tr_func, void *arg)
2603 {
2604 	struct cam_ed *device, *next_device;
2605 	int retval;
2606 
2607 	retval = 1;
2608 	for (device = (start_device ? start_device :
2609 		       TAILQ_FIRST(&target->ed_entries));
2610 	     device != NULL;
2611 	     device = next_device) {
2612 
2613 		next_device = TAILQ_NEXT(device, links);
2614 
2615 		retval = tr_func(device, arg);
2616 
2617 		if (retval == 0)
2618 			return(retval);
2619 	}
2620 
2621 	return(retval);
2622 }
2623 
2624 static int
2625 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2626 		  xpt_periphfunc_t *tr_func, void *arg)
2627 {
2628 	struct cam_periph *periph, *next_periph;
2629 	int retval;
2630 
2631 	retval = 1;
2632 
2633 	for (periph = (start_periph ? start_periph :
2634 		       SLIST_FIRST(&device->periphs));
2635 	     periph != NULL;
2636 	     periph = next_periph) {
2637 
2638 		next_periph = SLIST_NEXT(periph, periph_links);
2639 
2640 		retval = tr_func(periph, arg);
2641 		if (retval == 0)
2642 			return(retval);
2643 	}
2644 
2645 	return(retval);
2646 }
2647 
2648 static int
2649 xptpdrvtraverse(struct periph_driver **start_pdrv,
2650 		xpt_pdrvfunc_t *tr_func, void *arg)
2651 {
2652 	struct periph_driver **pdrv;
2653 	int retval;
2654 
2655 	retval = 1;
2656 
2657 	/*
2658 	 * We don't traverse the peripheral driver list like we do the
2659 	 * other lists, because it is a linker set, and therefore cannot be
2660 	 * changed during runtime.  If the peripheral driver list is ever
2661 	 * re-done to be something other than a linker set (i.e. it can
2662 	 * change while the system is running), the list traversal should
2663 	 * be modified to work like the other traversal functions.
2664 	 */
2665 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2666 	     *pdrv != NULL; pdrv++) {
2667 		retval = tr_func(pdrv, arg);
2668 
2669 		if (retval == 0)
2670 			return(retval);
2671 	}
2672 
2673 	return(retval);
2674 }
2675 
2676 static int
2677 xptpdperiphtraverse(struct periph_driver **pdrv,
2678 		    struct cam_periph *start_periph,
2679 		    xpt_periphfunc_t *tr_func, void *arg)
2680 {
2681 	struct cam_periph *periph, *next_periph;
2682 	int retval;
2683 
2684 	retval = 1;
2685 
2686 	for (periph = (start_periph ? start_periph :
2687 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2688 	     periph = next_periph) {
2689 
2690 		next_periph = TAILQ_NEXT(periph, unit_links);
2691 
2692 		retval = tr_func(periph, arg);
2693 		if (retval == 0)
2694 			return(retval);
2695 	}
2696 	return(retval);
2697 }
2698 
2699 static int
2700 xptdefbusfunc(struct cam_eb *bus, void *arg)
2701 {
2702 	struct xpt_traverse_config *tr_config;
2703 
2704 	tr_config = (struct xpt_traverse_config *)arg;
2705 
2706 	if (tr_config->depth == XPT_DEPTH_BUS) {
2707 		xpt_busfunc_t *tr_func;
2708 
2709 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2710 
2711 		return(tr_func(bus, tr_config->tr_arg));
2712 	} else
2713 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2714 }
2715 
2716 static int
2717 xptdeftargetfunc(struct cam_et *target, void *arg)
2718 {
2719 	struct xpt_traverse_config *tr_config;
2720 
2721 	tr_config = (struct xpt_traverse_config *)arg;
2722 
2723 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2724 		xpt_targetfunc_t *tr_func;
2725 
2726 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2727 
2728 		return(tr_func(target, tr_config->tr_arg));
2729 	} else
2730 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2731 }
2732 
2733 static int
2734 xptdefdevicefunc(struct cam_ed *device, void *arg)
2735 {
2736 	struct xpt_traverse_config *tr_config;
2737 
2738 	tr_config = (struct xpt_traverse_config *)arg;
2739 
2740 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2741 		xpt_devicefunc_t *tr_func;
2742 
2743 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2744 
2745 		return(tr_func(device, tr_config->tr_arg));
2746 	} else
2747 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2748 }
2749 
2750 static int
2751 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2752 {
2753 	struct xpt_traverse_config *tr_config;
2754 	xpt_periphfunc_t *tr_func;
2755 
2756 	tr_config = (struct xpt_traverse_config *)arg;
2757 
2758 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2759 
2760 	/*
2761 	 * Unlike the other default functions, we don't check for depth
2762 	 * here.  The peripheral driver level is the last level in the EDT,
2763 	 * so if we're here, we should execute the function in question.
2764 	 */
2765 	return(tr_func(periph, tr_config->tr_arg));
2766 }
2767 
2768 /*
2769  * Execute the given function for every bus in the EDT.
2770  */
2771 static int
2772 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2773 {
2774 	struct xpt_traverse_config tr_config;
2775 
2776 	tr_config.depth = XPT_DEPTH_BUS;
2777 	tr_config.tr_func = tr_func;
2778 	tr_config.tr_arg = arg;
2779 
2780 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2781 }
2782 
2783 #ifdef notusedyet
2784 /*
2785  * Execute the given function for every target in the EDT.
2786  */
2787 static int
2788 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2789 {
2790 	struct xpt_traverse_config tr_config;
2791 
2792 	tr_config.depth = XPT_DEPTH_TARGET;
2793 	tr_config.tr_func = tr_func;
2794 	tr_config.tr_arg = arg;
2795 
2796 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2797 }
2798 #endif /* notusedyet */
2799 
2800 /*
2801  * Execute the given function for every device in the EDT.
2802  */
2803 static int
2804 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2805 {
2806 	struct xpt_traverse_config tr_config;
2807 
2808 	tr_config.depth = XPT_DEPTH_DEVICE;
2809 	tr_config.tr_func = tr_func;
2810 	tr_config.tr_arg = arg;
2811 
2812 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2813 }
2814 
2815 #ifdef notusedyet
2816 /*
2817  * Execute the given function for every peripheral in the EDT.
2818  */
2819 static int
2820 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2821 {
2822 	struct xpt_traverse_config tr_config;
2823 
2824 	tr_config.depth = XPT_DEPTH_PERIPH;
2825 	tr_config.tr_func = tr_func;
2826 	tr_config.tr_arg = arg;
2827 
2828 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2829 }
2830 #endif /* notusedyet */
2831 
2832 static int
2833 xptsetasyncfunc(struct cam_ed *device, void *arg)
2834 {
2835 	struct cam_path path;
2836 	struct ccb_getdev cgd;
2837 	struct async_node *cur_entry;
2838 
2839 	cur_entry = (struct async_node *)arg;
2840 
2841 	/*
2842 	 * Don't report unconfigured devices (Wildcard devs,
2843 	 * devices only for target mode, device instances
2844 	 * that have been invalidated but are waiting for
2845 	 * their last reference count to be released).
2846 	 */
2847 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2848 		return (1);
2849 
2850 	xpt_compile_path(&path,
2851 			 NULL,
2852 			 device->target->bus->path_id,
2853 			 device->target->target_id,
2854 			 device->lun_id);
2855 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2856 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2857 	xpt_action((union ccb *)&cgd);
2858 	cur_entry->callback(cur_entry->callback_arg,
2859 			    AC_FOUND_DEVICE,
2860 			    &path, &cgd);
2861 	xpt_release_path(&path);
2862 
2863 	return(1);
2864 }
2865 
2866 static int
2867 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2868 {
2869 	struct cam_path path;
2870 	struct ccb_pathinq cpi;
2871 	struct async_node *cur_entry;
2872 
2873 	cur_entry = (struct async_node *)arg;
2874 
2875 	xpt_compile_path(&path, /*periph*/NULL,
2876 			 bus->sim->path_id,
2877 			 CAM_TARGET_WILDCARD,
2878 			 CAM_LUN_WILDCARD);
2879 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2880 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2881 	xpt_action((union ccb *)&cpi);
2882 	cur_entry->callback(cur_entry->callback_arg,
2883 			    AC_PATH_REGISTERED,
2884 			    &path, &cpi);
2885 	xpt_release_path(&path);
2886 
2887 	return(1);
2888 }
2889 
2890 void
2891 xpt_action(union ccb *start_ccb)
2892 {
2893 	int iopl;
2894 
2895 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2896 
2897 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2898 
2899 	iopl = splsoftcam();
2900 	switch (start_ccb->ccb_h.func_code) {
2901 	case XPT_SCSI_IO:
2902 	{
2903 #ifdef CAM_NEW_TRAN_CODE
2904 		struct cam_ed *device;
2905 #endif /* CAM_NEW_TRAN_CODE */
2906 #ifdef CAMDEBUG
2907 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2908 		struct cam_path *path;
2909 
2910 		path = start_ccb->ccb_h.path;
2911 #endif
2912 
2913 		/*
2914 		 * For the sake of compatibility with SCSI-1
2915 		 * devices that may not understand the identify
2916 		 * message, we include lun information in the
2917 		 * second byte of all commands.  SCSI-1 specifies
2918 		 * that luns are a 3 bit value and reserves only 3
2919 		 * bits for lun information in the CDB.  Later
2920 		 * revisions of the SCSI spec allow for more than 8
2921 		 * luns, but have deprecated lun information in the
2922 		 * CDB.  So, if the lun won't fit, we must omit.
2923 		 *
2924 		 * Also be aware that during initial probing for devices,
2925 		 * the inquiry information is unknown but initialized to 0.
2926 		 * This means that this code will be exercised while probing
2927 		 * devices with an ANSI revision greater than 2.
2928 		 */
2929 #ifdef CAM_NEW_TRAN_CODE
2930 		device = start_ccb->ccb_h.path->device;
2931 		if (device->protocol_version <= SCSI_REV_2
2932 #else /* CAM_NEW_TRAN_CODE */
2933 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2934 #endif /* CAM_NEW_TRAN_CODE */
2935 		 && start_ccb->ccb_h.target_lun < 8
2936 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2937 
2938 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2939 			    start_ccb->ccb_h.target_lun << 5;
2940 		}
2941 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2942 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2943 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2944 			  	       &path->device->inq_data),
2945 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2946 					  cdb_str, sizeof(cdb_str))));
2947 		/* FALLTHROUGH */
2948 	}
2949 	case XPT_TARGET_IO:
2950 	case XPT_CONT_TARGET_IO:
2951 		start_ccb->csio.sense_resid = 0;
2952 		start_ccb->csio.resid = 0;
2953 		/* FALLTHROUGH */
2954 	case XPT_RESET_DEV:
2955 	case XPT_ENG_EXEC:
2956 	{
2957 		struct cam_path *path;
2958 		int s;
2959 		int runq;
2960 
2961 		path = start_ccb->ccb_h.path;
2962 		s = splsoftcam();
2963 
2964 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2965 		if (path->device->qfrozen_cnt == 0)
2966 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2967 		else
2968 			runq = 0;
2969 		splx(s);
2970 		if (runq != 0)
2971 			xpt_run_dev_sendq(path->bus);
2972 		break;
2973 	}
2974 	case XPT_SET_TRAN_SETTINGS:
2975 	{
2976 		xpt_set_transfer_settings(&start_ccb->cts,
2977 					  start_ccb->ccb_h.path->device,
2978 					  /*async_update*/FALSE);
2979 		break;
2980 	}
2981 	case XPT_CALC_GEOMETRY:
2982 	{
2983 		struct cam_sim *sim;
2984 
2985 		/* Filter out garbage */
2986 		if (start_ccb->ccg.block_size == 0
2987 		 || start_ccb->ccg.volume_size == 0) {
2988 			start_ccb->ccg.cylinders = 0;
2989 			start_ccb->ccg.heads = 0;
2990 			start_ccb->ccg.secs_per_track = 0;
2991 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2992 			break;
2993 		}
2994 #ifdef PC98
2995 		/*
2996 		 * In a PC-98 system, geometry translation depens on
2997 		 * the "real" device geometry obtained from mode page 4.
2998 		 * SCSI geometry translation is performed in the
2999 		 * initialization routine of the SCSI BIOS and the result
3000 		 * stored in host memory.  If the translation is available
3001 		 * in host memory, use it.  If not, rely on the default
3002 		 * translation the device driver performs.
3003 		 */
3004 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
3005 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3006 			break;
3007 		}
3008 #endif
3009 		sim = start_ccb->ccb_h.path->bus->sim;
3010 		(*(sim->sim_action))(sim, start_ccb);
3011 		break;
3012 	}
3013 	case XPT_ABORT:
3014 	{
3015 		union ccb* abort_ccb;
3016 		int s;
3017 
3018 		abort_ccb = start_ccb->cab.abort_ccb;
3019 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3020 
3021 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3022 				struct cam_ccbq *ccbq;
3023 
3024 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3025 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3026 				abort_ccb->ccb_h.status =
3027 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3028 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3029 				s = splcam();
3030 				xpt_done(abort_ccb);
3031 				splx(s);
3032 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3033 				break;
3034 			}
3035 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3036 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3037 				/*
3038 				 * We've caught this ccb en route to
3039 				 * the SIM.  Flag it for abort and the
3040 				 * SIM will do so just before starting
3041 				 * real work on the CCB.
3042 				 */
3043 				abort_ccb->ccb_h.status =
3044 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3045 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3046 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3047 				break;
3048 			}
3049 		}
3050 		if (XPT_FC_IS_QUEUED(abort_ccb)
3051 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3052 			/*
3053 			 * It's already completed but waiting
3054 			 * for our SWI to get to it.
3055 			 */
3056 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3057 			break;
3058 		}
3059 		/*
3060 		 * If we weren't able to take care of the abort request
3061 		 * in the XPT, pass the request down to the SIM for processing.
3062 		 */
3063 		/* FALLTHROUGH */
3064 	}
3065 	case XPT_ACCEPT_TARGET_IO:
3066 	case XPT_EN_LUN:
3067 	case XPT_IMMED_NOTIFY:
3068 	case XPT_NOTIFY_ACK:
3069 	case XPT_GET_TRAN_SETTINGS:
3070 	case XPT_RESET_BUS:
3071 	{
3072 		struct cam_sim *sim;
3073 
3074 		sim = start_ccb->ccb_h.path->bus->sim;
3075 		(*(sim->sim_action))(sim, start_ccb);
3076 		break;
3077 	}
3078 	case XPT_PATH_INQ:
3079 	{
3080 		struct cam_sim *sim;
3081 
3082 		sim = start_ccb->ccb_h.path->bus->sim;
3083 		(*(sim->sim_action))(sim, start_ccb);
3084 		break;
3085 	}
3086 	case XPT_PATH_STATS:
3087 		start_ccb->cpis.last_reset =
3088 			start_ccb->ccb_h.path->bus->last_reset;
3089 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3090 		break;
3091 	case XPT_GDEV_TYPE:
3092 	{
3093 		struct cam_ed *dev;
3094 		int s;
3095 
3096 		dev = start_ccb->ccb_h.path->device;
3097 		s = splcam();
3098 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3099 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3100 		} else {
3101 			struct ccb_getdev *cgd;
3102 			struct cam_eb *bus;
3103 			struct cam_et *tar;
3104 
3105 			cgd = &start_ccb->cgd;
3106 			bus = cgd->ccb_h.path->bus;
3107 			tar = cgd->ccb_h.path->target;
3108 			cgd->inq_data = dev->inq_data;
3109 			cgd->ccb_h.status = CAM_REQ_CMP;
3110 			cgd->serial_num_len = dev->serial_num_len;
3111 			if ((dev->serial_num_len > 0)
3112 			 && (dev->serial_num != NULL))
3113 				bcopy(dev->serial_num, cgd->serial_num,
3114 				      dev->serial_num_len);
3115 		}
3116 		splx(s);
3117 		break;
3118 	}
3119 	case XPT_GDEV_STATS:
3120 	{
3121 		struct cam_ed *dev;
3122 		int s;
3123 
3124 		dev = start_ccb->ccb_h.path->device;
3125 		s = splcam();
3126 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3127 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3128 		} else {
3129 			struct ccb_getdevstats *cgds;
3130 			struct cam_eb *bus;
3131 			struct cam_et *tar;
3132 
3133 			cgds = &start_ccb->cgds;
3134 			bus = cgds->ccb_h.path->bus;
3135 			tar = cgds->ccb_h.path->target;
3136 			cgds->dev_openings = dev->ccbq.dev_openings;
3137 			cgds->dev_active = dev->ccbq.dev_active;
3138 			cgds->devq_openings = dev->ccbq.devq_openings;
3139 			cgds->devq_queued = dev->ccbq.queue.entries;
3140 			cgds->held = dev->ccbq.held;
3141 			cgds->last_reset = tar->last_reset;
3142 			cgds->maxtags = dev->quirk->maxtags;
3143 			cgds->mintags = dev->quirk->mintags;
3144 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3145 				cgds->last_reset = bus->last_reset;
3146 			cgds->ccb_h.status = CAM_REQ_CMP;
3147 		}
3148 		splx(s);
3149 		break;
3150 	}
3151 	case XPT_GDEVLIST:
3152 	{
3153 		struct cam_periph	*nperiph;
3154 		struct periph_list	*periph_head;
3155 		struct ccb_getdevlist	*cgdl;
3156 		u_int			i;
3157 		int			s;
3158 		struct cam_ed		*device;
3159 		int			found;
3160 
3161 
3162 		found = 0;
3163 
3164 		/*
3165 		 * Don't want anyone mucking with our data.
3166 		 */
3167 		s = splcam();
3168 		device = start_ccb->ccb_h.path->device;
3169 		periph_head = &device->periphs;
3170 		cgdl = &start_ccb->cgdl;
3171 
3172 		/*
3173 		 * Check and see if the list has changed since the user
3174 		 * last requested a list member.  If so, tell them that the
3175 		 * list has changed, and therefore they need to start over
3176 		 * from the beginning.
3177 		 */
3178 		if ((cgdl->index != 0) &&
3179 		    (cgdl->generation != device->generation)) {
3180 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3181 			splx(s);
3182 			break;
3183 		}
3184 
3185 		/*
3186 		 * Traverse the list of peripherals and attempt to find
3187 		 * the requested peripheral.
3188 		 */
3189 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3190 		     (nperiph != NULL) && (i <= cgdl->index);
3191 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3192 			if (i == cgdl->index) {
3193 				strncpy(cgdl->periph_name,
3194 					nperiph->periph_name,
3195 					DEV_IDLEN);
3196 				cgdl->unit_number = nperiph->unit_number;
3197 				found = 1;
3198 			}
3199 		}
3200 		if (found == 0) {
3201 			cgdl->status = CAM_GDEVLIST_ERROR;
3202 			splx(s);
3203 			break;
3204 		}
3205 
3206 		if (nperiph == NULL)
3207 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3208 		else
3209 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3210 
3211 		cgdl->index++;
3212 		cgdl->generation = device->generation;
3213 
3214 		splx(s);
3215 		cgdl->ccb_h.status = CAM_REQ_CMP;
3216 		break;
3217 	}
3218 	case XPT_DEV_MATCH:
3219 	{
3220 		int s;
3221 		dev_pos_type position_type;
3222 		struct ccb_dev_match *cdm;
3223 		int ret;
3224 
3225 		cdm = &start_ccb->cdm;
3226 
3227 		/*
3228 		 * Prevent EDT changes while we traverse it.
3229 		 */
3230 		s = splcam();
3231 		/*
3232 		 * There are two ways of getting at information in the EDT.
3233 		 * The first way is via the primary EDT tree.  It starts
3234 		 * with a list of busses, then a list of targets on a bus,
3235 		 * then devices/luns on a target, and then peripherals on a
3236 		 * device/lun.  The "other" way is by the peripheral driver
3237 		 * lists.  The peripheral driver lists are organized by
3238 		 * peripheral driver.  (obviously)  So it makes sense to
3239 		 * use the peripheral driver list if the user is looking
3240 		 * for something like "da1", or all "da" devices.  If the
3241 		 * user is looking for something on a particular bus/target
3242 		 * or lun, it's generally better to go through the EDT tree.
3243 		 */
3244 
3245 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3246 			position_type = cdm->pos.position_type;
3247 		else {
3248 			u_int i;
3249 
3250 			position_type = CAM_DEV_POS_NONE;
3251 
3252 			for (i = 0; i < cdm->num_patterns; i++) {
3253 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3254 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3255 					position_type = CAM_DEV_POS_EDT;
3256 					break;
3257 				}
3258 			}
3259 
3260 			if (cdm->num_patterns == 0)
3261 				position_type = CAM_DEV_POS_EDT;
3262 			else if (position_type == CAM_DEV_POS_NONE)
3263 				position_type = CAM_DEV_POS_PDRV;
3264 		}
3265 
3266 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3267 		case CAM_DEV_POS_EDT:
3268 			ret = xptedtmatch(cdm);
3269 			break;
3270 		case CAM_DEV_POS_PDRV:
3271 			ret = xptperiphlistmatch(cdm);
3272 			break;
3273 		default:
3274 			cdm->status = CAM_DEV_MATCH_ERROR;
3275 			break;
3276 		}
3277 
3278 		splx(s);
3279 
3280 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3281 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3282 		else
3283 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3284 
3285 		break;
3286 	}
3287 	case XPT_SASYNC_CB:
3288 	{
3289 		struct ccb_setasync *csa;
3290 		struct async_node *cur_entry;
3291 		struct async_list *async_head;
3292 		u_int32_t added;
3293 		int s;
3294 
3295 		csa = &start_ccb->csa;
3296 		added = csa->event_enable;
3297 		async_head = &csa->ccb_h.path->device->asyncs;
3298 
3299 		/*
3300 		 * If there is already an entry for us, simply
3301 		 * update it.
3302 		 */
3303 		s = splcam();
3304 		cur_entry = SLIST_FIRST(async_head);
3305 		while (cur_entry != NULL) {
3306 			if ((cur_entry->callback_arg == csa->callback_arg)
3307 			 && (cur_entry->callback == csa->callback))
3308 				break;
3309 			cur_entry = SLIST_NEXT(cur_entry, links);
3310 		}
3311 
3312 		if (cur_entry != NULL) {
3313 		 	/*
3314 			 * If the request has no flags set,
3315 			 * remove the entry.
3316 			 */
3317 			added &= ~cur_entry->event_enable;
3318 			if (csa->event_enable == 0) {
3319 				SLIST_REMOVE(async_head, cur_entry,
3320 					     async_node, links);
3321 				csa->ccb_h.path->device->refcount--;
3322 				free(cur_entry, M_DEVBUF);
3323 			} else {
3324 				cur_entry->event_enable = csa->event_enable;
3325 			}
3326 		} else {
3327 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3328 					   M_NOWAIT);
3329 			if (cur_entry == NULL) {
3330 				splx(s);
3331 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3332 				break;
3333 			}
3334 			cur_entry->event_enable = csa->event_enable;
3335 			cur_entry->callback_arg = csa->callback_arg;
3336 			cur_entry->callback = csa->callback;
3337 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3338 			csa->ccb_h.path->device->refcount++;
3339 		}
3340 
3341 		if ((added & AC_FOUND_DEVICE) != 0) {
3342 			/*
3343 			 * Get this peripheral up to date with all
3344 			 * the currently existing devices.
3345 			 */
3346 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3347 		}
3348 		if ((added & AC_PATH_REGISTERED) != 0) {
3349 			/*
3350 			 * Get this peripheral up to date with all
3351 			 * the currently existing busses.
3352 			 */
3353 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3354 		}
3355 		splx(s);
3356 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3357 		break;
3358 	}
3359 	case XPT_REL_SIMQ:
3360 	{
3361 		struct ccb_relsim *crs;
3362 		struct cam_ed *dev;
3363 		int s;
3364 
3365 		crs = &start_ccb->crs;
3366 		dev = crs->ccb_h.path->device;
3367 		if (dev == NULL) {
3368 
3369 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3370 			break;
3371 		}
3372 
3373 		s = splcam();
3374 
3375 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3376 
3377  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3378 
3379 				/* Don't ever go below one opening */
3380 				if (crs->openings > 0) {
3381 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3382 							    crs->openings);
3383 
3384 					if (bootverbose) {
3385 						xpt_print_path(crs->ccb_h.path);
3386 						printf("tagged openings "
3387 						       "now %d\n",
3388 						       crs->openings);
3389 					}
3390 				}
3391 			}
3392 		}
3393 
3394 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3395 
3396 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3397 
3398 				/*
3399 				 * Just extend the old timeout and decrement
3400 				 * the freeze count so that a single timeout
3401 				 * is sufficient for releasing the queue.
3402 				 */
3403 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3404 				untimeout(xpt_release_devq_timeout,
3405 					  dev, dev->c_handle);
3406 			} else {
3407 
3408 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3409 			}
3410 
3411 			dev->c_handle =
3412 				timeout(xpt_release_devq_timeout,
3413 					dev,
3414 					(crs->release_timeout * hz) / 1000);
3415 
3416 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3417 
3418 		}
3419 
3420 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3421 
3422 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3423 				/*
3424 				 * Decrement the freeze count so that a single
3425 				 * completion is still sufficient to unfreeze
3426 				 * the queue.
3427 				 */
3428 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3429 			} else {
3430 
3431 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3432 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3433 			}
3434 		}
3435 
3436 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3437 
3438 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3439 			 || (dev->ccbq.dev_active == 0)) {
3440 
3441 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3442 			} else {
3443 
3444 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3445 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3446 			}
3447 		}
3448 		splx(s);
3449 
3450 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3451 
3452 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3453 					 /*run_queue*/TRUE);
3454 		}
3455 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3456 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3457 		break;
3458 	}
3459 	case XPT_SCAN_BUS:
3460 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3461 		break;
3462 	case XPT_SCAN_LUN:
3463 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3464 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3465 			     start_ccb);
3466 		break;
3467 	case XPT_DEBUG: {
3468 #ifdef CAMDEBUG
3469 		int s;
3470 
3471 		s = splcam();
3472 #ifdef CAM_DEBUG_DELAY
3473 		cam_debug_delay = CAM_DEBUG_DELAY;
3474 #endif
3475 		cam_dflags = start_ccb->cdbg.flags;
3476 		if (cam_dpath != NULL) {
3477 			xpt_free_path(cam_dpath);
3478 			cam_dpath = NULL;
3479 		}
3480 
3481 		if (cam_dflags != CAM_DEBUG_NONE) {
3482 			if (xpt_create_path(&cam_dpath, xpt_periph,
3483 					    start_ccb->ccb_h.path_id,
3484 					    start_ccb->ccb_h.target_id,
3485 					    start_ccb->ccb_h.target_lun) !=
3486 					    CAM_REQ_CMP) {
3487 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3488 				cam_dflags = CAM_DEBUG_NONE;
3489 			} else {
3490 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3491 				xpt_print_path(cam_dpath);
3492 				printf("debugging flags now %x\n", cam_dflags);
3493 			}
3494 		} else {
3495 			cam_dpath = NULL;
3496 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3497 		}
3498 		splx(s);
3499 #else /* !CAMDEBUG */
3500 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3501 #endif /* CAMDEBUG */
3502 		break;
3503 	}
3504 	case XPT_NOOP:
3505 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3506 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3507 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3508 		break;
3509 	default:
3510 	case XPT_SDEV_TYPE:
3511 	case XPT_TERM_IO:
3512 	case XPT_ENG_INQ:
3513 		/* XXX Implement */
3514 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3515 		break;
3516 	}
3517 	splx(iopl);
3518 }
3519 
3520 void
3521 xpt_polled_action(union ccb *start_ccb)
3522 {
3523 	int	  s;
3524 	u_int32_t timeout;
3525 	struct	  cam_sim *sim;
3526 	struct	  cam_devq *devq;
3527 	struct	  cam_ed *dev;
3528 
3529 	timeout = start_ccb->ccb_h.timeout;
3530 	sim = start_ccb->ccb_h.path->bus->sim;
3531 	devq = sim->devq;
3532 	dev = start_ccb->ccb_h.path->device;
3533 
3534 	s = splcam();
3535 
3536 	/*
3537 	 * Steal an opening so that no other queued requests
3538 	 * can get it before us while we simulate interrupts.
3539 	 */
3540 	dev->ccbq.devq_openings--;
3541 	dev->ccbq.dev_openings--;
3542 
3543 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3544 	   && (--timeout > 0)) {
3545 		DELAY(1000);
3546 		(*(sim->sim_poll))(sim);
3547 		camisr(&cam_netq);
3548 		camisr(&cam_bioq);
3549 	}
3550 
3551 	dev->ccbq.devq_openings++;
3552 	dev->ccbq.dev_openings++;
3553 
3554 	if (timeout != 0) {
3555 		xpt_action(start_ccb);
3556 		while(--timeout > 0) {
3557 			(*(sim->sim_poll))(sim);
3558 			camisr(&cam_netq);
3559 			camisr(&cam_bioq);
3560 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3561 			    != CAM_REQ_INPROG)
3562 				break;
3563 			DELAY(1000);
3564 		}
3565 		if (timeout == 0) {
3566 			/*
3567 			 * XXX Is it worth adding a sim_timeout entry
3568 			 * point so we can attempt recovery?  If
3569 			 * this is only used for dumps, I don't think
3570 			 * it is.
3571 			 */
3572 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3573 		}
3574 	} else {
3575 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3576 	}
3577 	splx(s);
3578 }
3579 
3580 /*
3581  * Schedule a peripheral driver to receive a ccb when it's
3582  * target device has space for more transactions.
3583  */
3584 void
3585 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3586 {
3587 	struct cam_ed *device;
3588 	int s;
3589 	int runq;
3590 
3591 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3592 	device = perph->path->device;
3593 	s = splsoftcam();
3594 	if (periph_is_queued(perph)) {
3595 		/* Simply reorder based on new priority */
3596 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3597 			  ("   change priority to %d\n", new_priority));
3598 		if (new_priority < perph->pinfo.priority) {
3599 			camq_change_priority(&device->drvq,
3600 					     perph->pinfo.index,
3601 					     new_priority);
3602 		}
3603 		runq = 0;
3604 	} else {
3605 		/* New entry on the queue */
3606 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3607 			  ("   added periph to queue\n"));
3608 		perph->pinfo.priority = new_priority;
3609 		perph->pinfo.generation = ++device->drvq.generation;
3610 		camq_insert(&device->drvq, &perph->pinfo);
3611 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3612 	}
3613 	splx(s);
3614 	if (runq != 0) {
3615 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3616 			  ("   calling xpt_run_devq\n"));
3617 		xpt_run_dev_allocq(perph->path->bus);
3618 	}
3619 }
3620 
3621 
3622 /*
3623  * Schedule a device to run on a given queue.
3624  * If the device was inserted as a new entry on the queue,
3625  * return 1 meaning the device queue should be run. If we
3626  * were already queued, implying someone else has already
3627  * started the queue, return 0 so the caller doesn't attempt
3628  * to run the queue.  Must be run at either splsoftcam
3629  * (or splcam since that encompases splsoftcam).
3630  */
3631 static int
3632 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3633 		 u_int32_t new_priority)
3634 {
3635 	int retval;
3636 	u_int32_t old_priority;
3637 
3638 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3639 
3640 	old_priority = pinfo->priority;
3641 
3642 	/*
3643 	 * Are we already queued?
3644 	 */
3645 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3646 		/* Simply reorder based on new priority */
3647 		if (new_priority < old_priority) {
3648 			camq_change_priority(queue, pinfo->index,
3649 					     new_priority);
3650 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3651 					("changed priority to %d\n",
3652 					 new_priority));
3653 		}
3654 		retval = 0;
3655 	} else {
3656 		/* New entry on the queue */
3657 		if (new_priority < old_priority)
3658 			pinfo->priority = new_priority;
3659 
3660 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3661 				("Inserting onto queue\n"));
3662 		pinfo->generation = ++queue->generation;
3663 		camq_insert(queue, pinfo);
3664 		retval = 1;
3665 	}
3666 	return (retval);
3667 }
3668 
3669 static void
3670 xpt_run_dev_allocq(struct cam_eb *bus)
3671 {
3672 	struct	cam_devq *devq;
3673 	int	s;
3674 
3675 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3676 	devq = bus->sim->devq;
3677 
3678 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3679 			("   qfrozen_cnt == 0x%x, entries == %d, "
3680 			 "openings == %d, active == %d\n",
3681 			 devq->alloc_queue.qfrozen_cnt,
3682 			 devq->alloc_queue.entries,
3683 			 devq->alloc_openings,
3684 			 devq->alloc_active));
3685 
3686 	s = splsoftcam();
3687 	devq->alloc_queue.qfrozen_cnt++;
3688 	while ((devq->alloc_queue.entries > 0)
3689 	    && (devq->alloc_openings > 0)
3690 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3691 		struct	cam_ed_qinfo *qinfo;
3692 		struct	cam_ed *device;
3693 		union	ccb *work_ccb;
3694 		struct	cam_periph *drv;
3695 		struct	camq *drvq;
3696 
3697 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3698 							   CAMQ_HEAD);
3699 		device = qinfo->device;
3700 
3701 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3702 				("running device %p\n", device));
3703 
3704 		drvq = &device->drvq;
3705 
3706 #ifdef CAMDEBUG
3707 		if (drvq->entries <= 0) {
3708 			panic("xpt_run_dev_allocq: "
3709 			      "Device on queue without any work to do");
3710 		}
3711 #endif
3712 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3713 			devq->alloc_openings--;
3714 			devq->alloc_active++;
3715 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3716 			splx(s);
3717 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3718 				      drv->pinfo.priority);
3719 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3720 					("calling periph start\n"));
3721 			drv->periph_start(drv, work_ccb);
3722 		} else {
3723 			/*
3724 			 * Malloc failure in alloc_ccb
3725 			 */
3726 			/*
3727 			 * XXX add us to a list to be run from free_ccb
3728 			 * if we don't have any ccbs active on this
3729 			 * device queue otherwise we may never get run
3730 			 * again.
3731 			 */
3732 			break;
3733 		}
3734 
3735 		/* Raise IPL for possible insertion and test at top of loop */
3736 		s = splsoftcam();
3737 
3738 		if (drvq->entries > 0) {
3739 			/* We have more work.  Attempt to reschedule */
3740 			xpt_schedule_dev_allocq(bus, device);
3741 		}
3742 	}
3743 	devq->alloc_queue.qfrozen_cnt--;
3744 	splx(s);
3745 }
3746 
3747 static void
3748 xpt_run_dev_sendq(struct cam_eb *bus)
3749 {
3750 	struct	cam_devq *devq;
3751 	int	s;
3752 
3753 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3754 
3755 	devq = bus->sim->devq;
3756 
3757 	s = splcam();
3758 	devq->send_queue.qfrozen_cnt++;
3759 	splx(s);
3760 	s = splsoftcam();
3761 	while ((devq->send_queue.entries > 0)
3762 	    && (devq->send_openings > 0)) {
3763 		struct	cam_ed_qinfo *qinfo;
3764 		struct	cam_ed *device;
3765 		union ccb *work_ccb;
3766 		struct	cam_sim *sim;
3767 		int	ospl;
3768 
3769 		ospl = splcam();
3770 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3771 			splx(ospl);
3772 			break;
3773 		}
3774 
3775 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3776 							   CAMQ_HEAD);
3777 		device = qinfo->device;
3778 
3779 		/*
3780 		 * If the device has been "frozen", don't attempt
3781 		 * to run it.
3782 		 */
3783 		if (device->qfrozen_cnt > 0) {
3784 			splx(ospl);
3785 			continue;
3786 		}
3787 
3788 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3789 				("running device %p\n", device));
3790 
3791 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3792 		if (work_ccb == NULL) {
3793 			printf("device on run queue with no ccbs???");
3794 			splx(ospl);
3795 			continue;
3796 		}
3797 
3798 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3799 
3800 		 	if (num_highpower <= 0) {
3801 				/*
3802 				 * We got a high power command, but we
3803 				 * don't have any available slots.  Freeze
3804 				 * the device queue until we have a slot
3805 				 * available.
3806 				 */
3807 				device->qfrozen_cnt++;
3808 				STAILQ_INSERT_TAIL(&highpowerq,
3809 						   &work_ccb->ccb_h,
3810 						   xpt_links.stqe);
3811 
3812 				splx(ospl);
3813 				continue;
3814 			} else {
3815 				/*
3816 				 * Consume a high power slot while
3817 				 * this ccb runs.
3818 				 */
3819 				num_highpower--;
3820 			}
3821 		}
3822 		devq->active_dev = device;
3823 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3824 
3825 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3826 		splx(ospl);
3827 
3828 		devq->send_openings--;
3829 		devq->send_active++;
3830 
3831 		if (device->ccbq.queue.entries > 0)
3832 			xpt_schedule_dev_sendq(bus, device);
3833 
3834 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3835 			/*
3836 			 * The client wants to freeze the queue
3837 			 * after this CCB is sent.
3838 			 */
3839 			ospl = splcam();
3840 			device->qfrozen_cnt++;
3841 			splx(ospl);
3842 		}
3843 
3844 		splx(s);
3845 
3846 		/* In Target mode, the peripheral driver knows best... */
3847 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3848 			if ((device->inq_flags & SID_CmdQue) != 0
3849 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3850 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3851 			else
3852 				/*
3853 				 * Clear this in case of a retried CCB that
3854 				 * failed due to a rejected tag.
3855 				 */
3856 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3857 		}
3858 
3859 		/*
3860 		 * Device queues can be shared among multiple sim instances
3861 		 * that reside on different busses.  Use the SIM in the queue
3862 		 * CCB's path, rather than the one in the bus that was passed
3863 		 * into this function.
3864 		 */
3865 		sim = work_ccb->ccb_h.path->bus->sim;
3866 		(*(sim->sim_action))(sim, work_ccb);
3867 
3868 		ospl = splcam();
3869 		devq->active_dev = NULL;
3870 		splx(ospl);
3871 		/* Raise IPL for possible insertion and test at top of loop */
3872 		s = splsoftcam();
3873 	}
3874 	splx(s);
3875 	s = splcam();
3876 	devq->send_queue.qfrozen_cnt--;
3877 	splx(s);
3878 }
3879 
3880 /*
3881  * This function merges stuff from the slave ccb into the master ccb, while
3882  * keeping important fields in the master ccb constant.
3883  */
3884 void
3885 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3886 {
3887 	/*
3888 	 * Pull fields that are valid for peripheral drivers to set
3889 	 * into the master CCB along with the CCB "payload".
3890 	 */
3891 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3892 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3893 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3894 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3895 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3896 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3897 }
3898 
3899 void
3900 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3901 {
3902 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3903 	ccb_h->pinfo.priority = priority;
3904 	ccb_h->path = path;
3905 	ccb_h->path_id = path->bus->path_id;
3906 	if (path->target)
3907 		ccb_h->target_id = path->target->target_id;
3908 	else
3909 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3910 	if (path->device) {
3911 		ccb_h->target_lun = path->device->lun_id;
3912 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3913 	} else {
3914 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3915 	}
3916 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3917 	ccb_h->flags = 0;
3918 }
3919 
3920 /* Path manipulation functions */
3921 cam_status
3922 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3923 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3924 {
3925 	struct	   cam_path *path;
3926 	cam_status status;
3927 
3928 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3929 
3930 	if (path == NULL) {
3931 		status = CAM_RESRC_UNAVAIL;
3932 		return(status);
3933 	}
3934 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3935 	if (status != CAM_REQ_CMP) {
3936 		free(path, M_DEVBUF);
3937 		path = NULL;
3938 	}
3939 	*new_path_ptr = path;
3940 	return (status);
3941 }
3942 
3943 static cam_status
3944 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3945 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3946 {
3947 	struct	     cam_eb *bus;
3948 	struct	     cam_et *target;
3949 	struct	     cam_ed *device;
3950 	cam_status   status;
3951 	int	     s;
3952 
3953 	status = CAM_REQ_CMP;	/* Completed without error */
3954 	target = NULL;		/* Wildcarded */
3955 	device = NULL;		/* Wildcarded */
3956 
3957 	/*
3958 	 * We will potentially modify the EDT, so block interrupts
3959 	 * that may attempt to create cam paths.
3960 	 */
3961 	s = splcam();
3962 	bus = xpt_find_bus(path_id);
3963 	if (bus == NULL) {
3964 		status = CAM_PATH_INVALID;
3965 	} else {
3966 		target = xpt_find_target(bus, target_id);
3967 		if (target == NULL) {
3968 			/* Create one */
3969 			struct cam_et *new_target;
3970 
3971 			new_target = xpt_alloc_target(bus, target_id);
3972 			if (new_target == NULL) {
3973 				status = CAM_RESRC_UNAVAIL;
3974 			} else {
3975 				target = new_target;
3976 			}
3977 		}
3978 		if (target != NULL) {
3979 			device = xpt_find_device(target, lun_id);
3980 			if (device == NULL) {
3981 				/* Create one */
3982 				struct cam_ed *new_device;
3983 
3984 				new_device = xpt_alloc_device(bus,
3985 							      target,
3986 							      lun_id);
3987 				if (new_device == NULL) {
3988 					status = CAM_RESRC_UNAVAIL;
3989 				} else {
3990 					device = new_device;
3991 				}
3992 			}
3993 		}
3994 	}
3995 	splx(s);
3996 
3997 	/*
3998 	 * Only touch the user's data if we are successful.
3999 	 */
4000 	if (status == CAM_REQ_CMP) {
4001 		new_path->periph = perph;
4002 		new_path->bus = bus;
4003 		new_path->target = target;
4004 		new_path->device = device;
4005 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4006 	} else {
4007 		if (device != NULL)
4008 			xpt_release_device(bus, target, device);
4009 		if (target != NULL)
4010 			xpt_release_target(bus, target);
4011 		if (bus != NULL)
4012 			xpt_release_bus(bus);
4013 	}
4014 	return (status);
4015 }
4016 
4017 static void
4018 xpt_release_path(struct cam_path *path)
4019 {
4020 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4021 	if (path->device != NULL) {
4022 		xpt_release_device(path->bus, path->target, path->device);
4023 		path->device = NULL;
4024 	}
4025 	if (path->target != NULL) {
4026 		xpt_release_target(path->bus, path->target);
4027 		path->target = NULL;
4028 	}
4029 	if (path->bus != NULL) {
4030 		xpt_release_bus(path->bus);
4031 		path->bus = NULL;
4032 	}
4033 }
4034 
4035 void
4036 xpt_free_path(struct cam_path *path)
4037 {
4038 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4039 	xpt_release_path(path);
4040 	free(path, M_DEVBUF);
4041 }
4042 
4043 
4044 /*
4045  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4046  * in path1, 2 for match with wildcards in path2.
4047  */
4048 int
4049 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4050 {
4051 	int retval = 0;
4052 
4053 	if (path1->bus != path2->bus) {
4054 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4055 			retval = 1;
4056 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4057 			retval = 2;
4058 		else
4059 			return (-1);
4060 	}
4061 	if (path1->target != path2->target) {
4062 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4063 			if (retval == 0)
4064 				retval = 1;
4065 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4066 			retval = 2;
4067 		else
4068 			return (-1);
4069 	}
4070 	if (path1->device != path2->device) {
4071 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4072 			if (retval == 0)
4073 				retval = 1;
4074 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4075 			retval = 2;
4076 		else
4077 			return (-1);
4078 	}
4079 	return (retval);
4080 }
4081 
4082 void
4083 xpt_print_path(struct cam_path *path)
4084 {
4085 	if (path == NULL)
4086 		printf("(nopath): ");
4087 	else {
4088 		if (path->periph != NULL)
4089 			printf("(%s%d:", path->periph->periph_name,
4090 			       path->periph->unit_number);
4091 		else
4092 			printf("(noperiph:");
4093 
4094 		if (path->bus != NULL)
4095 			printf("%s%d:%d:", path->bus->sim->sim_name,
4096 			       path->bus->sim->unit_number,
4097 			       path->bus->sim->bus_id);
4098 		else
4099 			printf("nobus:");
4100 
4101 		if (path->target != NULL)
4102 			printf("%d:", path->target->target_id);
4103 		else
4104 			printf("X:");
4105 
4106 		if (path->device != NULL)
4107 			printf("%d): ", path->device->lun_id);
4108 		else
4109 			printf("X): ");
4110 	}
4111 }
4112 
4113 int
4114 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4115 {
4116 	struct sbuf sb;
4117 
4118 	sbuf_new(&sb, str, str_len, 0);
4119 
4120 	if (path == NULL)
4121 		sbuf_printf(&sb, "(nopath): ");
4122 	else {
4123 		if (path->periph != NULL)
4124 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4125 				    path->periph->unit_number);
4126 		else
4127 			sbuf_printf(&sb, "(noperiph:");
4128 
4129 		if (path->bus != NULL)
4130 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4131 				    path->bus->sim->unit_number,
4132 				    path->bus->sim->bus_id);
4133 		else
4134 			sbuf_printf(&sb, "nobus:");
4135 
4136 		if (path->target != NULL)
4137 			sbuf_printf(&sb, "%d:", path->target->target_id);
4138 		else
4139 			sbuf_printf(&sb, "X:");
4140 
4141 		if (path->device != NULL)
4142 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4143 		else
4144 			sbuf_printf(&sb, "X): ");
4145 	}
4146 	sbuf_finish(&sb);
4147 
4148 	return(sbuf_len(&sb));
4149 }
4150 
4151 path_id_t
4152 xpt_path_path_id(struct cam_path *path)
4153 {
4154 	return(path->bus->path_id);
4155 }
4156 
4157 target_id_t
4158 xpt_path_target_id(struct cam_path *path)
4159 {
4160 	if (path->target != NULL)
4161 		return (path->target->target_id);
4162 	else
4163 		return (CAM_TARGET_WILDCARD);
4164 }
4165 
4166 lun_id_t
4167 xpt_path_lun_id(struct cam_path *path)
4168 {
4169 	if (path->device != NULL)
4170 		return (path->device->lun_id);
4171 	else
4172 		return (CAM_LUN_WILDCARD);
4173 }
4174 
4175 struct cam_sim *
4176 xpt_path_sim(struct cam_path *path)
4177 {
4178 	return (path->bus->sim);
4179 }
4180 
4181 struct cam_periph*
4182 xpt_path_periph(struct cam_path *path)
4183 {
4184 	return (path->periph);
4185 }
4186 
4187 /*
4188  * Release a CAM control block for the caller.  Remit the cost of the structure
4189  * to the device referenced by the path.  If the this device had no 'credits'
4190  * and peripheral drivers have registered async callbacks for this notification
4191  * call them now.
4192  */
4193 void
4194 xpt_release_ccb(union ccb *free_ccb)
4195 {
4196 	int	 s;
4197 	struct	 cam_path *path;
4198 	struct	 cam_ed *device;
4199 	struct	 cam_eb *bus;
4200 
4201 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4202 	path = free_ccb->ccb_h.path;
4203 	device = path->device;
4204 	bus = path->bus;
4205 	s = splsoftcam();
4206 	cam_ccbq_release_opening(&device->ccbq);
4207 	if (xpt_ccb_count > xpt_max_ccbs) {
4208 		xpt_free_ccb(free_ccb);
4209 		xpt_ccb_count--;
4210 	} else {
4211 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4212 	}
4213 	bus->sim->devq->alloc_openings++;
4214 	bus->sim->devq->alloc_active--;
4215 	/* XXX Turn this into an inline function - xpt_run_device?? */
4216 	if ((device_is_alloc_queued(device) == 0)
4217 	 && (device->drvq.entries > 0)) {
4218 		xpt_schedule_dev_allocq(bus, device);
4219 	}
4220 	splx(s);
4221 	if (dev_allocq_is_runnable(bus->sim->devq))
4222 		xpt_run_dev_allocq(bus);
4223 }
4224 
4225 /* Functions accessed by SIM drivers */
4226 
4227 /*
4228  * A sim structure, listing the SIM entry points and instance
4229  * identification info is passed to xpt_bus_register to hook the SIM
4230  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4231  * for this new bus and places it in the array of busses and assigns
4232  * it a path_id.  The path_id may be influenced by "hard wiring"
4233  * information specified by the user.  Once interrupt services are
4234  * availible, the bus will be probed.
4235  */
4236 int32_t
4237 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4238 {
4239 	struct cam_eb *new_bus;
4240 	struct cam_eb *old_bus;
4241 	struct ccb_pathinq cpi;
4242 	int s;
4243 
4244 	sim->bus_id = bus;
4245 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4246 					  M_DEVBUF, M_NOWAIT);
4247 	if (new_bus == NULL) {
4248 		/* Couldn't satisfy request */
4249 		return (CAM_RESRC_UNAVAIL);
4250 	}
4251 
4252 	if (strcmp(sim->sim_name, "xpt") != 0) {
4253 
4254 		sim->path_id =
4255 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4256 	}
4257 
4258 	TAILQ_INIT(&new_bus->et_entries);
4259 	new_bus->path_id = sim->path_id;
4260 	new_bus->sim = sim;
4261 	timevalclear(&new_bus->last_reset);
4262 	new_bus->flags = 0;
4263 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4264 	new_bus->generation = 0;
4265 	s = splcam();
4266 	old_bus = TAILQ_FIRST(&xpt_busses);
4267 	while (old_bus != NULL
4268 	    && old_bus->path_id < new_bus->path_id)
4269 		old_bus = TAILQ_NEXT(old_bus, links);
4270 	if (old_bus != NULL)
4271 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4272 	else
4273 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4274 	bus_generation++;
4275 	splx(s);
4276 
4277 	/* Notify interested parties */
4278 	if (sim->path_id != CAM_XPT_PATH_ID) {
4279 		struct cam_path path;
4280 
4281 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4282 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4283 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4284 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4285 		xpt_action((union ccb *)&cpi);
4286 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4287 		xpt_release_path(&path);
4288 	}
4289 	return (CAM_SUCCESS);
4290 }
4291 
4292 int32_t
4293 xpt_bus_deregister(path_id_t pathid)
4294 {
4295 	struct cam_path bus_path;
4296 	cam_status status;
4297 
4298 	status = xpt_compile_path(&bus_path, NULL, pathid,
4299 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4300 	if (status != CAM_REQ_CMP)
4301 		return (status);
4302 
4303 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4304 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4305 
4306 	/* Release the reference count held while registered. */
4307 	xpt_release_bus(bus_path.bus);
4308 	xpt_release_path(&bus_path);
4309 
4310 	return (CAM_REQ_CMP);
4311 }
4312 
4313 static path_id_t
4314 xptnextfreepathid(void)
4315 {
4316 	struct cam_eb *bus;
4317 	path_id_t pathid;
4318 	char *strval;
4319 
4320 	pathid = 0;
4321 	bus = TAILQ_FIRST(&xpt_busses);
4322 retry:
4323 	/* Find an unoccupied pathid */
4324 	while (bus != NULL
4325 	    && bus->path_id <= pathid) {
4326 		if (bus->path_id == pathid)
4327 			pathid++;
4328 		bus = TAILQ_NEXT(bus, links);
4329 	}
4330 
4331 	/*
4332 	 * Ensure that this pathid is not reserved for
4333 	 * a bus that may be registered in the future.
4334 	 */
4335 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4336 		++pathid;
4337 		/* Start the search over */
4338 		goto retry;
4339 	}
4340 	return (pathid);
4341 }
4342 
4343 static path_id_t
4344 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4345 {
4346 	path_id_t pathid;
4347 	int i, dunit, val;
4348 	char buf[32];
4349 
4350 	pathid = CAM_XPT_PATH_ID;
4351 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4352 	i = -1;
4353 	while ((i = resource_query_string(i, "at", buf)) != -1) {
4354 		if (strcmp(resource_query_name(i), "scbus")) {
4355 			/* Avoid a bit of foot shooting. */
4356 			continue;
4357 		}
4358 		dunit = resource_query_unit(i);
4359 		if (dunit < 0)		/* unwired?! */
4360 			continue;
4361 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4362 			if (sim_bus == val) {
4363 				pathid = dunit;
4364 				break;
4365 			}
4366 		} else if (sim_bus == 0) {
4367 			/* Unspecified matches bus 0 */
4368 			pathid = dunit;
4369 			break;
4370 		} else {
4371 			printf("Ambiguous scbus configuration for %s%d "
4372 			       "bus %d, cannot wire down.  The kernel "
4373 			       "config entry for scbus%d should "
4374 			       "specify a controller bus.\n"
4375 			       "Scbus will be assigned dynamically.\n",
4376 			       sim_name, sim_unit, sim_bus, dunit);
4377 			break;
4378 		}
4379 	}
4380 
4381 	if (pathid == CAM_XPT_PATH_ID)
4382 		pathid = xptnextfreepathid();
4383 	return (pathid);
4384 }
4385 
4386 void
4387 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4388 {
4389 	struct cam_eb *bus;
4390 	struct cam_et *target, *next_target;
4391 	struct cam_ed *device, *next_device;
4392 	int s;
4393 
4394 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4395 
4396 	/*
4397 	 * Most async events come from a CAM interrupt context.  In
4398 	 * a few cases, the error recovery code at the peripheral layer,
4399 	 * which may run from our SWI or a process context, may signal
4400 	 * deferred events with a call to xpt_async. Ensure async
4401 	 * notifications are serialized by blocking cam interrupts.
4402 	 */
4403 	s = splcam();
4404 
4405 	bus = path->bus;
4406 
4407 	if (async_code == AC_BUS_RESET) {
4408 		int s;
4409 
4410 		s = splclock();
4411 		/* Update our notion of when the last reset occurred */
4412 		microtime(&bus->last_reset);
4413 		splx(s);
4414 	}
4415 
4416 	for (target = TAILQ_FIRST(&bus->et_entries);
4417 	     target != NULL;
4418 	     target = next_target) {
4419 
4420 		next_target = TAILQ_NEXT(target, links);
4421 
4422 		if (path->target != target
4423 		 && path->target->target_id != CAM_TARGET_WILDCARD
4424 		 && target->target_id != CAM_TARGET_WILDCARD)
4425 			continue;
4426 
4427 		if (async_code == AC_SENT_BDR) {
4428 			int s;
4429 
4430 			/* Update our notion of when the last reset occurred */
4431 			s = splclock();
4432 			microtime(&path->target->last_reset);
4433 			splx(s);
4434 		}
4435 
4436 		for (device = TAILQ_FIRST(&target->ed_entries);
4437 		     device != NULL;
4438 		     device = next_device) {
4439 
4440 			next_device = TAILQ_NEXT(device, links);
4441 
4442 			if (path->device != device
4443 			 && path->device->lun_id != CAM_LUN_WILDCARD
4444 			 && device->lun_id != CAM_LUN_WILDCARD)
4445 				continue;
4446 
4447 			xpt_dev_async(async_code, bus, target,
4448 				      device, async_arg);
4449 
4450 			xpt_async_bcast(&device->asyncs, async_code,
4451 					path, async_arg);
4452 		}
4453 	}
4454 
4455 	/*
4456 	 * If this wasn't a fully wildcarded async, tell all
4457 	 * clients that want all async events.
4458 	 */
4459 	if (bus != xpt_periph->path->bus)
4460 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4461 				path, async_arg);
4462 	splx(s);
4463 }
4464 
4465 static void
4466 xpt_async_bcast(struct async_list *async_head,
4467 		u_int32_t async_code,
4468 		struct cam_path *path, void *async_arg)
4469 {
4470 	struct async_node *cur_entry;
4471 
4472 	cur_entry = SLIST_FIRST(async_head);
4473 	while (cur_entry != NULL) {
4474 		struct async_node *next_entry;
4475 		/*
4476 		 * Grab the next list entry before we call the current
4477 		 * entry's callback.  This is because the callback function
4478 		 * can delete its async callback entry.
4479 		 */
4480 		next_entry = SLIST_NEXT(cur_entry, links);
4481 		if ((cur_entry->event_enable & async_code) != 0)
4482 			cur_entry->callback(cur_entry->callback_arg,
4483 					    async_code, path,
4484 					    async_arg);
4485 		cur_entry = next_entry;
4486 	}
4487 }
4488 
4489 /*
4490  * Handle any per-device event notifications that require action by the XPT.
4491  */
4492 static void
4493 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4494 	      struct cam_ed *device, void *async_arg)
4495 {
4496 	cam_status status;
4497 	struct cam_path newpath;
4498 
4499 	/*
4500 	 * We only need to handle events for real devices.
4501 	 */
4502 	if (target->target_id == CAM_TARGET_WILDCARD
4503 	 || device->lun_id == CAM_LUN_WILDCARD)
4504 		return;
4505 
4506 	/*
4507 	 * We need our own path with wildcards expanded to
4508 	 * handle certain types of events.
4509 	 */
4510 	if ((async_code == AC_SENT_BDR)
4511 	 || (async_code == AC_BUS_RESET)
4512 	 || (async_code == AC_INQ_CHANGED))
4513 		status = xpt_compile_path(&newpath, NULL,
4514 					  bus->path_id,
4515 					  target->target_id,
4516 					  device->lun_id);
4517 	else
4518 		status = CAM_REQ_CMP_ERR;
4519 
4520 	if (status == CAM_REQ_CMP) {
4521 
4522 		/*
4523 		 * Allow transfer negotiation to occur in a
4524 		 * tag free environment.
4525 		 */
4526 		if (async_code == AC_SENT_BDR
4527 		 || async_code == AC_BUS_RESET)
4528 			xpt_toggle_tags(&newpath);
4529 
4530 		if (async_code == AC_INQ_CHANGED) {
4531 			/*
4532 			 * We've sent a start unit command, or
4533 			 * something similar to a device that
4534 			 * may have caused its inquiry data to
4535 			 * change. So we re-scan the device to
4536 			 * refresh the inquiry data for it.
4537 			 */
4538 			xpt_scan_lun(newpath.periph, &newpath,
4539 				     CAM_EXPECT_INQ_CHANGE, NULL);
4540 		}
4541 		xpt_release_path(&newpath);
4542 	} else if (async_code == AC_LOST_DEVICE) {
4543 		device->flags |= CAM_DEV_UNCONFIGURED;
4544 	} else if (async_code == AC_TRANSFER_NEG) {
4545 		struct ccb_trans_settings *settings;
4546 
4547 		settings = (struct ccb_trans_settings *)async_arg;
4548 		xpt_set_transfer_settings(settings, device,
4549 					  /*async_update*/TRUE);
4550 	}
4551 }
4552 
4553 u_int32_t
4554 xpt_freeze_devq(struct cam_path *path, u_int count)
4555 {
4556 	int s;
4557 	struct ccb_hdr *ccbh;
4558 
4559 	s = splcam();
4560 	path->device->qfrozen_cnt += count;
4561 
4562 	/*
4563 	 * Mark the last CCB in the queue as needing
4564 	 * to be requeued if the driver hasn't
4565 	 * changed it's state yet.  This fixes a race
4566 	 * where a ccb is just about to be queued to
4567 	 * a controller driver when it's interrupt routine
4568 	 * freezes the queue.  To completly close the
4569 	 * hole, controller drives must check to see
4570 	 * if a ccb's status is still CAM_REQ_INPROG
4571 	 * under spl protection just before they queue
4572 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4573 	 * an example.
4574 	 */
4575 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4576 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4577 		ccbh->status = CAM_REQUEUE_REQ;
4578 	splx(s);
4579 	return (path->device->qfrozen_cnt);
4580 }
4581 
4582 u_int32_t
4583 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4584 {
4585 	sim->devq->send_queue.qfrozen_cnt += count;
4586 	if (sim->devq->active_dev != NULL) {
4587 		struct ccb_hdr *ccbh;
4588 
4589 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4590 				  ccb_hdr_tailq);
4591 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4592 			ccbh->status = CAM_REQUEUE_REQ;
4593 	}
4594 	return (sim->devq->send_queue.qfrozen_cnt);
4595 }
4596 
4597 static void
4598 xpt_release_devq_timeout(void *arg)
4599 {
4600 	struct cam_ed *device;
4601 
4602 	device = (struct cam_ed *)arg;
4603 
4604 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4605 }
4606 
4607 void
4608 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4609 {
4610 	xpt_release_devq_device(path->device, count, run_queue);
4611 }
4612 
4613 static void
4614 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4615 {
4616 	int	rundevq;
4617 	int	s0, s1;
4618 
4619 	rundevq = 0;
4620 	s0 = splsoftcam();
4621 	s1 = splcam();
4622 	if (dev->qfrozen_cnt > 0) {
4623 
4624 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4625 		dev->qfrozen_cnt -= count;
4626 		if (dev->qfrozen_cnt == 0) {
4627 
4628 			/*
4629 			 * No longer need to wait for a successful
4630 			 * command completion.
4631 			 */
4632 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4633 
4634 			/*
4635 			 * Remove any timeouts that might be scheduled
4636 			 * to release this queue.
4637 			 */
4638 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4639 				untimeout(xpt_release_devq_timeout, dev,
4640 					  dev->c_handle);
4641 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4642 			}
4643 
4644 			/*
4645 			 * Now that we are unfrozen schedule the
4646 			 * device so any pending transactions are
4647 			 * run.
4648 			 */
4649 			if ((dev->ccbq.queue.entries > 0)
4650 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4651 			 && (run_queue != 0)) {
4652 				rundevq = 1;
4653 			}
4654 		}
4655 	}
4656 	splx(s1);
4657 	if (rundevq != 0)
4658 		xpt_run_dev_sendq(dev->target->bus);
4659 	splx(s0);
4660 }
4661 
4662 void
4663 xpt_release_simq(struct cam_sim *sim, int run_queue)
4664 {
4665 	int	s;
4666 	struct	camq *sendq;
4667 
4668 	sendq = &(sim->devq->send_queue);
4669 	s = splcam();
4670 	if (sendq->qfrozen_cnt > 0) {
4671 
4672 		sendq->qfrozen_cnt--;
4673 		if (sendq->qfrozen_cnt == 0) {
4674 			struct cam_eb *bus;
4675 
4676 			/*
4677 			 * If there is a timeout scheduled to release this
4678 			 * sim queue, remove it.  The queue frozen count is
4679 			 * already at 0.
4680 			 */
4681 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4682 				untimeout(xpt_release_simq_timeout, sim,
4683 					  sim->c_handle);
4684 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4685 			}
4686 			bus = xpt_find_bus(sim->path_id);
4687 			splx(s);
4688 
4689 			if (run_queue) {
4690 				/*
4691 				 * Now that we are unfrozen run the send queue.
4692 				 */
4693 				xpt_run_dev_sendq(bus);
4694 			}
4695 			xpt_release_bus(bus);
4696 		} else
4697 			splx(s);
4698 	} else
4699 		splx(s);
4700 }
4701 
4702 static void
4703 xpt_release_simq_timeout(void *arg)
4704 {
4705 	struct cam_sim *sim;
4706 
4707 	sim = (struct cam_sim *)arg;
4708 	xpt_release_simq(sim, /* run_queue */ TRUE);
4709 }
4710 
4711 void
4712 xpt_done(union ccb *done_ccb)
4713 {
4714 	int s;
4715 
4716 	s = splcam();
4717 
4718 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4719 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4720 		/*
4721 		 * Queue up the request for handling by our SWI handler
4722 		 * any of the "non-immediate" type of ccbs.
4723 		 */
4724 		switch (done_ccb->ccb_h.path->periph->type) {
4725 		case CAM_PERIPH_BIO:
4726 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4727 					  sim_links.tqe);
4728 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4729 			swi_sched(cambio_ih, SWI_NOSWITCH);
4730 			break;
4731 		case CAM_PERIPH_NET:
4732 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4733 					  sim_links.tqe);
4734 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4735 			swi_sched(camnet_ih, SWI_NOSWITCH);
4736 			break;
4737 		}
4738 	}
4739 	splx(s);
4740 }
4741 
4742 union ccb *
4743 xpt_alloc_ccb()
4744 {
4745 	union ccb *new_ccb;
4746 
4747 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4748 	return (new_ccb);
4749 }
4750 
4751 void
4752 xpt_free_ccb(union ccb *free_ccb)
4753 {
4754 	free(free_ccb, M_DEVBUF);
4755 }
4756 
4757 
4758 
4759 /* Private XPT functions */
4760 
4761 /*
4762  * Get a CAM control block for the caller. Charge the structure to the device
4763  * referenced by the path.  If the this device has no 'credits' then the
4764  * device already has the maximum number of outstanding operations under way
4765  * and we return NULL. If we don't have sufficient resources to allocate more
4766  * ccbs, we also return NULL.
4767  */
4768 static union ccb *
4769 xpt_get_ccb(struct cam_ed *device)
4770 {
4771 	union ccb *new_ccb;
4772 	int s;
4773 
4774 	s = splsoftcam();
4775 	if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) {
4776 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4777                 if (new_ccb == NULL) {
4778 			splx(s);
4779 			return (NULL);
4780 		}
4781 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4782 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4783 				  xpt_links.sle);
4784 		xpt_ccb_count++;
4785 	}
4786 	cam_ccbq_take_opening(&device->ccbq);
4787 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4788 	splx(s);
4789 	return (new_ccb);
4790 }
4791 
4792 static void
4793 xpt_release_bus(struct cam_eb *bus)
4794 {
4795 	int s;
4796 
4797 	s = splcam();
4798 	if ((--bus->refcount == 0)
4799 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4800 		TAILQ_REMOVE(&xpt_busses, bus, links);
4801 		bus_generation++;
4802 		splx(s);
4803 		free(bus, M_DEVBUF);
4804 	} else
4805 		splx(s);
4806 }
4807 
4808 static struct cam_et *
4809 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4810 {
4811 	struct cam_et *target;
4812 
4813 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4814 	if (target != NULL) {
4815 		struct cam_et *cur_target;
4816 
4817 		TAILQ_INIT(&target->ed_entries);
4818 		target->bus = bus;
4819 		target->target_id = target_id;
4820 		target->refcount = 1;
4821 		target->generation = 0;
4822 		timevalclear(&target->last_reset);
4823 		/*
4824 		 * Hold a reference to our parent bus so it
4825 		 * will not go away before we do.
4826 		 */
4827 		bus->refcount++;
4828 
4829 		/* Insertion sort into our bus's target list */
4830 		cur_target = TAILQ_FIRST(&bus->et_entries);
4831 		while (cur_target != NULL && cur_target->target_id < target_id)
4832 			cur_target = TAILQ_NEXT(cur_target, links);
4833 
4834 		if (cur_target != NULL) {
4835 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4836 		} else {
4837 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4838 		}
4839 		bus->generation++;
4840 	}
4841 	return (target);
4842 }
4843 
4844 static void
4845 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4846 {
4847 	int s;
4848 
4849 	s = splcam();
4850 	if ((--target->refcount == 0)
4851 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4852 		TAILQ_REMOVE(&bus->et_entries, target, links);
4853 		bus->generation++;
4854 		splx(s);
4855 		free(target, M_DEVBUF);
4856 		xpt_release_bus(bus);
4857 	} else
4858 		splx(s);
4859 }
4860 
4861 static struct cam_ed *
4862 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4863 {
4864 #ifdef CAM_NEW_TRAN_CODE
4865 	struct	   cam_path path;
4866 #endif /* CAM_NEW_TRAN_CODE */
4867 	struct	   cam_ed *device;
4868 	struct	   cam_devq *devq;
4869 	cam_status status;
4870 
4871 	/* Make space for us in the device queue on our bus */
4872 	devq = bus->sim->devq;
4873 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4874 
4875 	if (status != CAM_REQ_CMP) {
4876 		device = NULL;
4877 	} else {
4878 		device = (struct cam_ed *)malloc(sizeof(*device),
4879 						 M_DEVBUF, M_NOWAIT);
4880 	}
4881 
4882 	if (device != NULL) {
4883 		struct cam_ed *cur_device;
4884 
4885 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4886 		device->alloc_ccb_entry.device = device;
4887 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4888 		device->send_ccb_entry.device = device;
4889 		device->target = target;
4890 		device->lun_id = lun_id;
4891 		/* Initialize our queues */
4892 		if (camq_init(&device->drvq, 0) != 0) {
4893 			free(device, M_DEVBUF);
4894 			return (NULL);
4895 		}
4896 		if (cam_ccbq_init(&device->ccbq,
4897 				  bus->sim->max_dev_openings) != 0) {
4898 			camq_fini(&device->drvq);
4899 			free(device, M_DEVBUF);
4900 			return (NULL);
4901 		}
4902 		SLIST_INIT(&device->asyncs);
4903 		SLIST_INIT(&device->periphs);
4904 		device->generation = 0;
4905 		device->owner = NULL;
4906 		/*
4907 		 * Take the default quirk entry until we have inquiry
4908 		 * data and can determine a better quirk to use.
4909 		 */
4910 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4911 		bzero(&device->inq_data, sizeof(device->inq_data));
4912 		device->inq_flags = 0;
4913 		device->queue_flags = 0;
4914 		device->serial_num = NULL;
4915 		device->serial_num_len = 0;
4916 		device->qfrozen_cnt = 0;
4917 		device->flags = CAM_DEV_UNCONFIGURED;
4918 		device->tag_delay_count = 0;
4919 		device->refcount = 1;
4920 		callout_handle_init(&device->c_handle);
4921 
4922 		/*
4923 		 * Hold a reference to our parent target so it
4924 		 * will not go away before we do.
4925 		 */
4926 		target->refcount++;
4927 
4928 		/*
4929 		 * XXX should be limited by number of CCBs this bus can
4930 		 * do.
4931 		 */
4932 		xpt_max_ccbs += device->ccbq.devq_openings;
4933 		/* Insertion sort into our target's device list */
4934 		cur_device = TAILQ_FIRST(&target->ed_entries);
4935 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4936 			cur_device = TAILQ_NEXT(cur_device, links);
4937 		if (cur_device != NULL) {
4938 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4939 		} else {
4940 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4941 		}
4942 		target->generation++;
4943 #ifdef CAM_NEW_TRAN_CODE
4944 		if (lun_id != CAM_LUN_WILDCARD) {
4945 			xpt_compile_path(&path,
4946 					 NULL,
4947 					 bus->path_id,
4948 					 target->target_id,
4949 					 lun_id);
4950 			xpt_devise_transport(&path);
4951 			xpt_release_path(&path);
4952 		}
4953 #endif /* CAM_NEW_TRAN_CODE */
4954 	}
4955 	return (device);
4956 }
4957 
4958 static void
4959 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4960 		   struct cam_ed *device)
4961 {
4962 	int s;
4963 
4964 	s = splcam();
4965 	if ((--device->refcount == 0)
4966 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4967 		struct cam_devq *devq;
4968 
4969 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4970 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4971 			panic("Removing device while still queued for ccbs");
4972 
4973 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4974 				untimeout(xpt_release_devq_timeout, device,
4975 					  device->c_handle);
4976 
4977 		TAILQ_REMOVE(&target->ed_entries, device,links);
4978 		target->generation++;
4979 		xpt_max_ccbs -= device->ccbq.devq_openings;
4980 		/* Release our slot in the devq */
4981 		devq = bus->sim->devq;
4982 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4983 		splx(s);
4984 		free(device, M_DEVBUF);
4985 		xpt_release_target(bus, target);
4986 	} else
4987 		splx(s);
4988 }
4989 
4990 static u_int32_t
4991 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4992 {
4993 	int	s;
4994 	int	diff;
4995 	int	result;
4996 	struct	cam_ed *dev;
4997 
4998 	dev = path->device;
4999 	s = splsoftcam();
5000 
5001 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5002 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5003 	if (result == CAM_REQ_CMP && (diff < 0)) {
5004 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5005 	}
5006 	/* Adjust the global limit */
5007 	xpt_max_ccbs += diff;
5008 	splx(s);
5009 	return (result);
5010 }
5011 
5012 static struct cam_eb *
5013 xpt_find_bus(path_id_t path_id)
5014 {
5015 	struct cam_eb *bus;
5016 
5017 	for (bus = TAILQ_FIRST(&xpt_busses);
5018 	     bus != NULL;
5019 	     bus = TAILQ_NEXT(bus, links)) {
5020 		if (bus->path_id == path_id) {
5021 			bus->refcount++;
5022 			break;
5023 		}
5024 	}
5025 	return (bus);
5026 }
5027 
5028 static struct cam_et *
5029 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5030 {
5031 	struct cam_et *target;
5032 
5033 	for (target = TAILQ_FIRST(&bus->et_entries);
5034 	     target != NULL;
5035 	     target = TAILQ_NEXT(target, links)) {
5036 		if (target->target_id == target_id) {
5037 			target->refcount++;
5038 			break;
5039 		}
5040 	}
5041 	return (target);
5042 }
5043 
5044 static struct cam_ed *
5045 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5046 {
5047 	struct cam_ed *device;
5048 
5049 	for (device = TAILQ_FIRST(&target->ed_entries);
5050 	     device != NULL;
5051 	     device = TAILQ_NEXT(device, links)) {
5052 		if (device->lun_id == lun_id) {
5053 			device->refcount++;
5054 			break;
5055 		}
5056 	}
5057 	return (device);
5058 }
5059 
5060 typedef struct {
5061 	union	ccb *request_ccb;
5062 	struct 	ccb_pathinq *cpi;
5063 	int	pending_count;
5064 } xpt_scan_bus_info;
5065 
5066 /*
5067  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5068  * As the scan progresses, xpt_scan_bus is used as the
5069  * callback on completion function.
5070  */
5071 static void
5072 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5073 {
5074 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5075 		  ("xpt_scan_bus\n"));
5076 	switch (request_ccb->ccb_h.func_code) {
5077 	case XPT_SCAN_BUS:
5078 	{
5079 		xpt_scan_bus_info *scan_info;
5080 		union	ccb *work_ccb;
5081 		struct	cam_path *path;
5082 		u_int	i;
5083 		u_int	max_target;
5084 		u_int	initiator_id;
5085 
5086 		/* Find out the characteristics of the bus */
5087 		work_ccb = xpt_alloc_ccb();
5088 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5089 			      request_ccb->ccb_h.pinfo.priority);
5090 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5091 		xpt_action(work_ccb);
5092 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5093 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5094 			xpt_free_ccb(work_ccb);
5095 			xpt_done(request_ccb);
5096 			return;
5097 		}
5098 
5099 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5100 			/*
5101 			 * Can't scan the bus on an adapter that
5102 			 * cannot perform the initiator role.
5103 			 */
5104 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5105 			xpt_free_ccb(work_ccb);
5106 			xpt_done(request_ccb);
5107 			return;
5108 		}
5109 
5110 		/* Save some state for use while we probe for devices */
5111 		scan_info = (xpt_scan_bus_info *)
5112 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
5113 		scan_info->request_ccb = request_ccb;
5114 		scan_info->cpi = &work_ccb->cpi;
5115 
5116 		/* Cache on our stack so we can work asynchronously */
5117 		max_target = scan_info->cpi->max_target;
5118 		initiator_id = scan_info->cpi->initiator_id;
5119 
5120 		/*
5121 		 * Don't count the initiator if the
5122 		 * initiator is addressable.
5123 		 */
5124 		scan_info->pending_count = max_target + 1;
5125 		if (initiator_id <= max_target)
5126 			scan_info->pending_count--;
5127 
5128 		for (i = 0; i <= max_target; i++) {
5129 			cam_status status;
5130 		 	if (i == initiator_id)
5131 				continue;
5132 
5133 			status = xpt_create_path(&path, xpt_periph,
5134 						 request_ccb->ccb_h.path_id,
5135 						 i, 0);
5136 			if (status != CAM_REQ_CMP) {
5137 				printf("xpt_scan_bus: xpt_create_path failed"
5138 				       " with status %#x, bus scan halted\n",
5139 				       status);
5140 				break;
5141 			}
5142 			work_ccb = xpt_alloc_ccb();
5143 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5144 				      request_ccb->ccb_h.pinfo.priority);
5145 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5146 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5147 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5148 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5149 			xpt_action(work_ccb);
5150 		}
5151 		break;
5152 	}
5153 	case XPT_SCAN_LUN:
5154 	{
5155 		xpt_scan_bus_info *scan_info;
5156 		path_id_t path_id;
5157 		target_id_t target_id;
5158 		lun_id_t lun_id;
5159 
5160 		/* Reuse the same CCB to query if a device was really found */
5161 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5162 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5163 			      request_ccb->ccb_h.pinfo.priority);
5164 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5165 
5166 		path_id = request_ccb->ccb_h.path_id;
5167 		target_id = request_ccb->ccb_h.target_id;
5168 		lun_id = request_ccb->ccb_h.target_lun;
5169 		xpt_action(request_ccb);
5170 
5171 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5172 			struct cam_ed *device;
5173 			struct cam_et *target;
5174 			int s, phl;
5175 
5176 			/*
5177 			 * If we already probed lun 0 successfully, or
5178 			 * we have additional configured luns on this
5179 			 * target that might have "gone away", go onto
5180 			 * the next lun.
5181 			 */
5182 			target = request_ccb->ccb_h.path->target;
5183 			/*
5184 			 * We may touch devices that we don't
5185 			 * hold references too, so ensure they
5186 			 * don't disappear out from under us.
5187 			 * The target above is referenced by the
5188 			 * path in the request ccb.
5189 			 */
5190 			phl = 0;
5191 			s = splcam();
5192 			device = TAILQ_FIRST(&target->ed_entries);
5193 			if (device != NULL) {
5194 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5195 				if (device->lun_id == 0)
5196 					device = TAILQ_NEXT(device, links);
5197 			}
5198 			splx(s);
5199 			if ((lun_id != 0) || (device != NULL)) {
5200 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5201 					lun_id++;
5202 			}
5203 		} else {
5204 			struct cam_ed *device;
5205 
5206 			device = request_ccb->ccb_h.path->device;
5207 
5208 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5209 				/* Try the next lun */
5210 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5211 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5212 					lun_id++;
5213 			}
5214 		}
5215 
5216 		xpt_free_path(request_ccb->ccb_h.path);
5217 
5218 		/* Check Bounds */
5219 		if ((lun_id == request_ccb->ccb_h.target_lun)
5220 		 || lun_id > scan_info->cpi->max_lun) {
5221 			/* We're done */
5222 
5223 			xpt_free_ccb(request_ccb);
5224 			scan_info->pending_count--;
5225 			if (scan_info->pending_count == 0) {
5226 				xpt_free_ccb((union ccb *)scan_info->cpi);
5227 				request_ccb = scan_info->request_ccb;
5228 				free(scan_info, M_TEMP);
5229 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5230 				xpt_done(request_ccb);
5231 			}
5232 		} else {
5233 			/* Try the next device */
5234 			struct cam_path *path;
5235 			cam_status status;
5236 
5237 			path = request_ccb->ccb_h.path;
5238 			status = xpt_create_path(&path, xpt_periph,
5239 						 path_id, target_id, lun_id);
5240 			if (status != CAM_REQ_CMP) {
5241 				printf("xpt_scan_bus: xpt_create_path failed "
5242 				       "with status %#x, halting LUN scan\n",
5243 			 	       status);
5244 				xpt_free_ccb(request_ccb);
5245 				scan_info->pending_count--;
5246 				if (scan_info->pending_count == 0) {
5247 					xpt_free_ccb(
5248 						(union ccb *)scan_info->cpi);
5249 					request_ccb = scan_info->request_ccb;
5250 					free(scan_info, M_TEMP);
5251 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5252 					xpt_done(request_ccb);
5253 					break;
5254 				}
5255 			}
5256 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5257 				      request_ccb->ccb_h.pinfo.priority);
5258 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5259 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5260 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5261 			request_ccb->crcn.flags =
5262 				scan_info->request_ccb->crcn.flags;
5263 			xpt_action(request_ccb);
5264 		}
5265 		break;
5266 	}
5267 	default:
5268 		break;
5269 	}
5270 }
5271 
5272 typedef enum {
5273 	PROBE_TUR,
5274 	PROBE_INQUIRY,
5275 	PROBE_FULL_INQUIRY,
5276 	PROBE_MODE_SENSE,
5277 	PROBE_SERIAL_NUM,
5278 	PROBE_TUR_FOR_NEGOTIATION
5279 } probe_action;
5280 
5281 typedef enum {
5282 	PROBE_INQUIRY_CKSUM	= 0x01,
5283 	PROBE_SERIAL_CKSUM	= 0x02,
5284 	PROBE_NO_ANNOUNCE	= 0x04
5285 } probe_flags;
5286 
5287 typedef struct {
5288 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5289 	probe_action	action;
5290 	union ccb	saved_ccb;
5291 	probe_flags	flags;
5292 	MD5_CTX		context;
5293 	u_int8_t	digest[16];
5294 } probe_softc;
5295 
5296 static void
5297 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5298 	     cam_flags flags, union ccb *request_ccb)
5299 {
5300 	struct ccb_pathinq cpi;
5301 	cam_status status;
5302 	struct cam_path *new_path;
5303 	struct cam_periph *old_periph;
5304 	int s;
5305 
5306 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5307 		  ("xpt_scan_lun\n"));
5308 
5309 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5310 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5311 	xpt_action((union ccb *)&cpi);
5312 
5313 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5314 		if (request_ccb != NULL) {
5315 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5316 			xpt_done(request_ccb);
5317 		}
5318 		return;
5319 	}
5320 
5321 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5322 		/*
5323 		 * Can't scan the bus on an adapter that
5324 		 * cannot perform the initiator role.
5325 		 */
5326 		if (request_ccb != NULL) {
5327 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5328 			xpt_done(request_ccb);
5329 		}
5330 		return;
5331 	}
5332 
5333 	if (request_ccb == NULL) {
5334 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5335 		if (request_ccb == NULL) {
5336 			xpt_print_path(path);
5337 			printf("xpt_scan_lun: can't allocate CCB, can't "
5338 			       "continue\n");
5339 			return;
5340 		}
5341 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5342 		if (new_path == NULL) {
5343 			xpt_print_path(path);
5344 			printf("xpt_scan_lun: can't allocate path, can't "
5345 			       "continue\n");
5346 			free(request_ccb, M_TEMP);
5347 			return;
5348 		}
5349 		status = xpt_compile_path(new_path, xpt_periph,
5350 					  path->bus->path_id,
5351 					  path->target->target_id,
5352 					  path->device->lun_id);
5353 
5354 		if (status != CAM_REQ_CMP) {
5355 			xpt_print_path(path);
5356 			printf("xpt_scan_lun: can't compile path, can't "
5357 			       "continue\n");
5358 			free(request_ccb, M_TEMP);
5359 			free(new_path, M_TEMP);
5360 			return;
5361 		}
5362 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5363 		request_ccb->ccb_h.cbfcnp = xptscandone;
5364 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5365 		request_ccb->crcn.flags = flags;
5366 	}
5367 
5368 	s = splsoftcam();
5369 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5370 		probe_softc *softc;
5371 
5372 		softc = (probe_softc *)old_periph->softc;
5373 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5374 				  periph_links.tqe);
5375 	} else {
5376 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5377 					  probestart, "probe",
5378 					  CAM_PERIPH_BIO,
5379 					  request_ccb->ccb_h.path, NULL, 0,
5380 					  request_ccb);
5381 
5382 		if (status != CAM_REQ_CMP) {
5383 			xpt_print_path(path);
5384 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5385 			       "error, can't continue probe\n");
5386 			request_ccb->ccb_h.status = status;
5387 			xpt_done(request_ccb);
5388 		}
5389 	}
5390 	splx(s);
5391 }
5392 
5393 static void
5394 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5395 {
5396 	xpt_release_path(done_ccb->ccb_h.path);
5397 	free(done_ccb->ccb_h.path, M_TEMP);
5398 	free(done_ccb, M_TEMP);
5399 }
5400 
5401 static cam_status
5402 proberegister(struct cam_periph *periph, void *arg)
5403 {
5404 	union ccb *request_ccb;	/* CCB representing the probe request */
5405 	probe_softc *softc;
5406 
5407 	request_ccb = (union ccb *)arg;
5408 	if (periph == NULL) {
5409 		printf("proberegister: periph was NULL!!\n");
5410 		return(CAM_REQ_CMP_ERR);
5411 	}
5412 
5413 	if (request_ccb == NULL) {
5414 		printf("proberegister: no probe CCB, "
5415 		       "can't register device\n");
5416 		return(CAM_REQ_CMP_ERR);
5417 	}
5418 
5419 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5420 
5421 	if (softc == NULL) {
5422 		printf("proberegister: Unable to probe new device. "
5423 		       "Unable to allocate softc\n");
5424 		return(CAM_REQ_CMP_ERR);
5425 	}
5426 	TAILQ_INIT(&softc->request_ccbs);
5427 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5428 			  periph_links.tqe);
5429 	softc->flags = 0;
5430 	periph->softc = softc;
5431 	cam_periph_acquire(periph);
5432 	/*
5433 	 * Ensure we've waited at least a bus settle
5434 	 * delay before attempting to probe the device.
5435 	 * For HBAs that don't do bus resets, this won't make a difference.
5436 	 */
5437 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5438 				      SCSI_DELAY);
5439 	probeschedule(periph);
5440 	return(CAM_REQ_CMP);
5441 }
5442 
5443 static void
5444 probeschedule(struct cam_periph *periph)
5445 {
5446 	struct ccb_pathinq cpi;
5447 	union ccb *ccb;
5448 	probe_softc *softc;
5449 
5450 	softc = (probe_softc *)periph->softc;
5451 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5452 
5453 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5454 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5455 	xpt_action((union ccb *)&cpi);
5456 
5457 	/*
5458 	 * If a device has gone away and another device, or the same one,
5459 	 * is back in the same place, it should have a unit attention
5460 	 * condition pending.  It will not report the unit attention in
5461 	 * response to an inquiry, which may leave invalid transfer
5462 	 * negotiations in effect.  The TUR will reveal the unit attention
5463 	 * condition.  Only send the TUR for lun 0, since some devices
5464 	 * will get confused by commands other than inquiry to non-existent
5465 	 * luns.  If you think a device has gone away start your scan from
5466 	 * lun 0.  This will insure that any bogus transfer settings are
5467 	 * invalidated.
5468 	 *
5469 	 * If we haven't seen the device before and the controller supports
5470 	 * some kind of transfer negotiation, negotiate with the first
5471 	 * sent command if no bus reset was performed at startup.  This
5472 	 * ensures that the device is not confused by transfer negotiation
5473 	 * settings left over by loader or BIOS action.
5474 	 */
5475 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5476 	 && (ccb->ccb_h.target_lun == 0)) {
5477 		softc->action = PROBE_TUR;
5478 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5479 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5480 		proberequestdefaultnegotiation(periph);
5481 		softc->action = PROBE_INQUIRY;
5482 	} else {
5483 		softc->action = PROBE_INQUIRY;
5484 	}
5485 
5486 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5487 		softc->flags |= PROBE_NO_ANNOUNCE;
5488 	else
5489 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5490 
5491 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5492 }
5493 
5494 static void
5495 probestart(struct cam_periph *periph, union ccb *start_ccb)
5496 {
5497 	/* Probe the device that our peripheral driver points to */
5498 	struct ccb_scsiio *csio;
5499 	probe_softc *softc;
5500 
5501 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5502 
5503 	softc = (probe_softc *)periph->softc;
5504 	csio = &start_ccb->csio;
5505 
5506 	switch (softc->action) {
5507 	case PROBE_TUR:
5508 	case PROBE_TUR_FOR_NEGOTIATION:
5509 	{
5510 		scsi_test_unit_ready(csio,
5511 				     /*retries*/4,
5512 				     probedone,
5513 				     MSG_SIMPLE_Q_TAG,
5514 				     SSD_FULL_SIZE,
5515 				     /*timeout*/60000);
5516 		break;
5517 	}
5518 	case PROBE_INQUIRY:
5519 	case PROBE_FULL_INQUIRY:
5520 	{
5521 		u_int inquiry_len;
5522 		struct scsi_inquiry_data *inq_buf;
5523 
5524 		inq_buf = &periph->path->device->inq_data;
5525 		/*
5526 		 * If the device is currently configured, we calculate an
5527 		 * MD5 checksum of the inquiry data, and if the serial number
5528 		 * length is greater than 0, add the serial number data
5529 		 * into the checksum as well.  Once the inquiry and the
5530 		 * serial number check finish, we attempt to figure out
5531 		 * whether we still have the same device.
5532 		 */
5533 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5534 
5535 			MD5Init(&softc->context);
5536 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5537 				  sizeof(struct scsi_inquiry_data));
5538 			softc->flags |= PROBE_INQUIRY_CKSUM;
5539 			if (periph->path->device->serial_num_len > 0) {
5540 				MD5Update(&softc->context,
5541 					  periph->path->device->serial_num,
5542 					  periph->path->device->serial_num_len);
5543 				softc->flags |= PROBE_SERIAL_CKSUM;
5544 			}
5545 			MD5Final(softc->digest, &softc->context);
5546 		}
5547 
5548 		if (softc->action == PROBE_INQUIRY)
5549 			inquiry_len = SHORT_INQUIRY_LENGTH;
5550 		else
5551 			inquiry_len = inq_buf->additional_length + 4;
5552 
5553 		scsi_inquiry(csio,
5554 			     /*retries*/4,
5555 			     probedone,
5556 			     MSG_SIMPLE_Q_TAG,
5557 			     (u_int8_t *)inq_buf,
5558 			     inquiry_len,
5559 			     /*evpd*/FALSE,
5560 			     /*page_code*/0,
5561 			     SSD_MIN_SIZE,
5562 			     /*timeout*/60 * 1000);
5563 		break;
5564 	}
5565 	case PROBE_MODE_SENSE:
5566 	{
5567 		void  *mode_buf;
5568 		int    mode_buf_len;
5569 
5570 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5571 			     + sizeof(struct scsi_mode_blk_desc)
5572 			     + sizeof(struct scsi_control_page);
5573 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5574 		if (mode_buf != NULL) {
5575 	                scsi_mode_sense(csio,
5576 					/*retries*/4,
5577 					probedone,
5578 					MSG_SIMPLE_Q_TAG,
5579 					/*dbd*/FALSE,
5580 					SMS_PAGE_CTRL_CURRENT,
5581 					SMS_CONTROL_MODE_PAGE,
5582 					mode_buf,
5583 					mode_buf_len,
5584 					SSD_FULL_SIZE,
5585 					/*timeout*/60000);
5586 			break;
5587 		}
5588 		xpt_print_path(periph->path);
5589 		printf("Unable to mode sense control page - malloc failure\n");
5590 		softc->action = PROBE_SERIAL_NUM;
5591 		/* FALLTHROUGH */
5592 	}
5593 	case PROBE_SERIAL_NUM:
5594 	{
5595 		struct scsi_vpd_unit_serial_number *serial_buf;
5596 		struct cam_ed* device;
5597 
5598 		serial_buf = NULL;
5599 		device = periph->path->device;
5600 		device->serial_num = NULL;
5601 		device->serial_num_len = 0;
5602 
5603 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5604 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5605 				malloc(sizeof(*serial_buf), M_TEMP,
5606 					M_NOWAIT | M_ZERO);
5607 
5608 		if (serial_buf != NULL) {
5609 			scsi_inquiry(csio,
5610 				     /*retries*/4,
5611 				     probedone,
5612 				     MSG_SIMPLE_Q_TAG,
5613 				     (u_int8_t *)serial_buf,
5614 				     sizeof(*serial_buf),
5615 				     /*evpd*/TRUE,
5616 				     SVPD_UNIT_SERIAL_NUMBER,
5617 				     SSD_MIN_SIZE,
5618 				     /*timeout*/60 * 1000);
5619 			break;
5620 		}
5621 		/*
5622 		 * We'll have to do without, let our probedone
5623 		 * routine finish up for us.
5624 		 */
5625 		start_ccb->csio.data_ptr = NULL;
5626 		probedone(periph, start_ccb);
5627 		return;
5628 	}
5629 	}
5630 	xpt_action(start_ccb);
5631 }
5632 
5633 static void
5634 proberequestdefaultnegotiation(struct cam_periph *periph)
5635 {
5636 	struct ccb_trans_settings cts;
5637 
5638 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5639 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5640 #ifdef CAM_NEW_TRAN_CODE
5641 	cts.type = CTS_TYPE_USER_SETTINGS;
5642 #else /* CAM_NEW_TRAN_CODE */
5643 	cts.flags = CCB_TRANS_USER_SETTINGS;
5644 #endif /* CAM_NEW_TRAN_CODE */
5645 	xpt_action((union ccb *)&cts);
5646 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5647 #ifdef CAM_NEW_TRAN_CODE
5648 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5649 #else /* CAM_NEW_TRAN_CODE */
5650 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5651 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5652 #endif /* CAM_NEW_TRAN_CODE */
5653 	xpt_action((union ccb *)&cts);
5654 }
5655 
5656 static void
5657 probedone(struct cam_periph *periph, union ccb *done_ccb)
5658 {
5659 	probe_softc *softc;
5660 	struct cam_path *path;
5661 	u_int32_t  priority;
5662 
5663 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5664 
5665 	softc = (probe_softc *)periph->softc;
5666 	path = done_ccb->ccb_h.path;
5667 	priority = done_ccb->ccb_h.pinfo.priority;
5668 
5669 	switch (softc->action) {
5670 	case PROBE_TUR:
5671 	{
5672 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5673 
5674 			if (cam_periph_error(done_ccb, 0,
5675 					     SF_NO_PRINT, NULL) == ERESTART)
5676 				return;
5677 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5678 				/* Don't wedge the queue */
5679 				xpt_release_devq(done_ccb->ccb_h.path,
5680 						 /*count*/1,
5681 						 /*run_queue*/TRUE);
5682 		}
5683 		softc->action = PROBE_INQUIRY;
5684 		xpt_release_ccb(done_ccb);
5685 		xpt_schedule(periph, priority);
5686 		return;
5687 	}
5688 	case PROBE_INQUIRY:
5689 	case PROBE_FULL_INQUIRY:
5690 	{
5691 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5692 			struct scsi_inquiry_data *inq_buf;
5693 			u_int8_t periph_qual;
5694 			u_int8_t periph_dtype;
5695 
5696 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5697 			inq_buf = &path->device->inq_data;
5698 
5699 			periph_qual = SID_QUAL(inq_buf);
5700 			periph_dtype = SID_TYPE(inq_buf);
5701 
5702 			if (periph_dtype != T_NODEVICE) {
5703 				switch(periph_qual) {
5704 				case SID_QUAL_LU_CONNECTED:
5705 				{
5706 					u_int8_t alen;
5707 
5708 					/*
5709 					 * We conservatively request only
5710 					 * SHORT_INQUIRY_LEN bytes of inquiry
5711 					 * information during our first try
5712 					 * at sending an INQUIRY. If the device
5713 					 * has more information to give,
5714 					 * perform a second request specifying
5715 					 * the amount of information the device
5716 					 * is willing to give.
5717 					 */
5718 					alen = inq_buf->additional_length;
5719 					if (softc->action == PROBE_INQUIRY
5720 					 && alen > (SHORT_INQUIRY_LENGTH - 4)) {
5721 						softc->action =
5722 						    PROBE_FULL_INQUIRY;
5723 						xpt_release_ccb(done_ccb);
5724 						xpt_schedule(periph, priority);
5725 						return;
5726 					}
5727 
5728 					xpt_find_quirk(path->device);
5729 
5730 #ifdef CAM_NEW_TRAN_CODE
5731 					xpt_devise_transport(path);
5732 #endif /* CAM_NEW_TRAN_CODE */
5733 					if ((inq_buf->flags & SID_CmdQue) != 0)
5734 						softc->action =
5735 						    PROBE_MODE_SENSE;
5736 					else
5737 						softc->action =
5738 						    PROBE_SERIAL_NUM;
5739 
5740 					path->device->flags &=
5741 						~CAM_DEV_UNCONFIGURED;
5742 
5743 					xpt_release_ccb(done_ccb);
5744 					xpt_schedule(periph, priority);
5745 					return;
5746 				}
5747 				default:
5748 					break;
5749 				}
5750 			}
5751 		} else if (cam_periph_error(done_ccb, 0,
5752 					    done_ccb->ccb_h.target_lun > 0
5753 					    ? SF_RETRY_UA|SF_QUIET_IR
5754 					    : SF_RETRY_UA,
5755 					    &softc->saved_ccb) == ERESTART) {
5756 			return;
5757 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5758 			/* Don't wedge the queue */
5759 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5760 					 /*run_queue*/TRUE);
5761 		}
5762 		/*
5763 		 * If we get to this point, we got an error status back
5764 		 * from the inquiry and the error status doesn't require
5765 		 * automatically retrying the command.  Therefore, the
5766 		 * inquiry failed.  If we had inquiry information before
5767 		 * for this device, but this latest inquiry command failed,
5768 		 * the device has probably gone away.  If this device isn't
5769 		 * already marked unconfigured, notify the peripheral
5770 		 * drivers that this device is no more.
5771 		 */
5772 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5773 			/* Send the async notification. */
5774 			xpt_async(AC_LOST_DEVICE, path, NULL);
5775 
5776 		xpt_release_ccb(done_ccb);
5777 		break;
5778 	}
5779 	case PROBE_MODE_SENSE:
5780 	{
5781 		struct ccb_scsiio *csio;
5782 		struct scsi_mode_header_6 *mode_hdr;
5783 
5784 		csio = &done_ccb->csio;
5785 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5786 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5787 			struct scsi_control_page *page;
5788 			u_int8_t *offset;
5789 
5790 			offset = ((u_int8_t *)&mode_hdr[1])
5791 			    + mode_hdr->blk_desc_len;
5792 			page = (struct scsi_control_page *)offset;
5793 			path->device->queue_flags = page->queue_flags;
5794 		} else if (cam_periph_error(done_ccb, 0,
5795 					    SF_RETRY_UA|SF_NO_PRINT,
5796 					    &softc->saved_ccb) == ERESTART) {
5797 			return;
5798 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5799 			/* Don't wedge the queue */
5800 			xpt_release_devq(done_ccb->ccb_h.path,
5801 					 /*count*/1, /*run_queue*/TRUE);
5802 		}
5803 		xpt_release_ccb(done_ccb);
5804 		free(mode_hdr, M_TEMP);
5805 		softc->action = PROBE_SERIAL_NUM;
5806 		xpt_schedule(periph, priority);
5807 		return;
5808 	}
5809 	case PROBE_SERIAL_NUM:
5810 	{
5811 		struct ccb_scsiio *csio;
5812 		struct scsi_vpd_unit_serial_number *serial_buf;
5813 		u_int32_t  priority;
5814 		int changed;
5815 		int have_serialnum;
5816 
5817 		changed = 1;
5818 		have_serialnum = 0;
5819 		csio = &done_ccb->csio;
5820 		priority = done_ccb->ccb_h.pinfo.priority;
5821 		serial_buf =
5822 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5823 
5824 		/* Clean up from previous instance of this device */
5825 		if (path->device->serial_num != NULL) {
5826 			free(path->device->serial_num, M_DEVBUF);
5827 			path->device->serial_num = NULL;
5828 			path->device->serial_num_len = 0;
5829 		}
5830 
5831 		if (serial_buf == NULL) {
5832 			/*
5833 			 * Don't process the command as it was never sent
5834 			 */
5835 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5836 			&& (serial_buf->length > 0)) {
5837 
5838 			have_serialnum = 1;
5839 			path->device->serial_num =
5840 				(u_int8_t *)malloc((serial_buf->length + 1),
5841 						   M_DEVBUF, M_NOWAIT);
5842 			if (path->device->serial_num != NULL) {
5843 				bcopy(serial_buf->serial_num,
5844 				      path->device->serial_num,
5845 				      serial_buf->length);
5846 				path->device->serial_num_len =
5847 				    serial_buf->length;
5848 				path->device->serial_num[serial_buf->length]
5849 				    = '\0';
5850 			}
5851 		} else if (cam_periph_error(done_ccb, 0,
5852 					    SF_RETRY_UA|SF_NO_PRINT,
5853 					    &softc->saved_ccb) == ERESTART) {
5854 			return;
5855 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5856 			/* Don't wedge the queue */
5857 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5858 					 /*run_queue*/TRUE);
5859 		}
5860 
5861 		/*
5862 		 * Let's see if we have seen this device before.
5863 		 */
5864 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5865 			MD5_CTX context;
5866 			u_int8_t digest[16];
5867 
5868 			MD5Init(&context);
5869 
5870 			MD5Update(&context,
5871 				  (unsigned char *)&path->device->inq_data,
5872 				  sizeof(struct scsi_inquiry_data));
5873 
5874 			if (have_serialnum)
5875 				MD5Update(&context, serial_buf->serial_num,
5876 					  serial_buf->length);
5877 
5878 			MD5Final(digest, &context);
5879 			if (bcmp(softc->digest, digest, 16) == 0)
5880 				changed = 0;
5881 
5882 			/*
5883 			 * XXX Do we need to do a TUR in order to ensure
5884 			 *     that the device really hasn't changed???
5885 			 */
5886 			if ((changed != 0)
5887 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5888 				xpt_async(AC_LOST_DEVICE, path, NULL);
5889 		}
5890 		if (serial_buf != NULL)
5891 			free(serial_buf, M_TEMP);
5892 
5893 		if (changed != 0) {
5894 			/*
5895 			 * Now that we have all the necessary
5896 			 * information to safely perform transfer
5897 			 * negotiations... Controllers don't perform
5898 			 * any negotiation or tagged queuing until
5899 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5900 			 * received.  So, on a new device, just retreive
5901 			 * the user settings, and set them as the current
5902 			 * settings to set the device up.
5903 			 */
5904 			proberequestdefaultnegotiation(periph);
5905 			xpt_release_ccb(done_ccb);
5906 
5907 			/*
5908 			 * Perform a TUR to allow the controller to
5909 			 * perform any necessary transfer negotiation.
5910 			 */
5911 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5912 			xpt_schedule(periph, priority);
5913 			return;
5914 		}
5915 		xpt_release_ccb(done_ccb);
5916 		break;
5917 	}
5918 	case PROBE_TUR_FOR_NEGOTIATION:
5919 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5920 			/* Don't wedge the queue */
5921 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5922 					 /*run_queue*/TRUE);
5923 		}
5924 
5925 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5926 
5927 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5928 			/* Inform the XPT that a new device has been found */
5929 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5930 			xpt_action(done_ccb);
5931 
5932 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5933 		}
5934 		xpt_release_ccb(done_ccb);
5935 		break;
5936 	}
5937 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5938 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5939 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5940 	xpt_done(done_ccb);
5941 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5942 		cam_periph_invalidate(periph);
5943 		cam_periph_release(periph);
5944 	} else {
5945 		probeschedule(periph);
5946 	}
5947 }
5948 
5949 static void
5950 probecleanup(struct cam_periph *periph)
5951 {
5952 	free(periph->softc, M_TEMP);
5953 }
5954 
5955 static void
5956 xpt_find_quirk(struct cam_ed *device)
5957 {
5958 	caddr_t	match;
5959 
5960 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5961 			       (caddr_t)xpt_quirk_table,
5962 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5963 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5964 
5965 	if (match == NULL)
5966 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5967 
5968 	device->quirk = (struct xpt_quirk_entry *)match;
5969 }
5970 
5971 #ifdef CAM_NEW_TRAN_CODE
5972 
5973 static void
5974 xpt_devise_transport(struct cam_path *path)
5975 {
5976 	struct ccb_pathinq cpi;
5977 	struct ccb_trans_settings cts;
5978 	struct scsi_inquiry_data *inq_buf;
5979 
5980 	/* Get transport information from the SIM */
5981 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5982 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5983 	xpt_action((union ccb *)&cpi);
5984 
5985 	inq_buf = NULL;
5986 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
5987 		inq_buf = &path->device->inq_data;
5988 	path->device->protocol = PROTO_SCSI;
5989 	path->device->protocol_version =
5990 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
5991 	path->device->transport = cpi.transport;
5992 	path->device->transport_version = cpi.transport_version;
5993 
5994 	/*
5995 	 * Any device not using SPI3 features should
5996 	 * be considered SPI2 or lower.
5997 	 */
5998 	if (inq_buf != NULL) {
5999 		if (path->device->transport == XPORT_SPI
6000 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6001 		 && path->device->transport_version > 2)
6002 			path->device->transport_version = 2;
6003 	} else {
6004 		struct cam_ed* otherdev;
6005 
6006 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6007 		     otherdev != NULL;
6008 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6009 			if (otherdev != path->device)
6010 				break;
6011 		}
6012 
6013 		if (otherdev != NULL) {
6014 			/*
6015 			 * Initially assume the same versioning as
6016 			 * prior luns for this target.
6017 			 */
6018 			path->device->protocol_version =
6019 			    otherdev->protocol_version;
6020 			path->device->transport_version =
6021 			    otherdev->transport_version;
6022 		} else {
6023 			/* Until we know better, opt for safty */
6024 			path->device->protocol_version = 2;
6025 			if (path->device->transport == XPORT_SPI)
6026 				path->device->transport_version = 2;
6027 			else
6028 				path->device->transport_version = 0;
6029 		}
6030 	}
6031 
6032 	/*
6033 	 * XXX
6034 	 * For a device compliant with SPC-2 we should be able
6035 	 * to determine the transport version supported by
6036 	 * scrutinizing the version descriptors in the
6037 	 * inquiry buffer.
6038 	 */
6039 
6040 	/* Tell the controller what we think */
6041 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6042 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6043 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6044 	cts.transport = path->device->transport;
6045 	cts.transport_version = path->device->transport_version;
6046 	cts.protocol = path->device->protocol;
6047 	cts.protocol_version = path->device->protocol_version;
6048 	cts.proto_specific.valid = 0;
6049 	cts.xport_specific.valid = 0;
6050 	xpt_action((union ccb *)&cts);
6051 }
6052 
6053 static void
6054 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6055 			  int async_update)
6056 {
6057 	struct	ccb_pathinq cpi;
6058 	struct	ccb_trans_settings cur_cts;
6059 	struct	ccb_trans_settings_scsi *scsi;
6060 	struct	ccb_trans_settings_scsi *cur_scsi;
6061 	struct	cam_sim *sim;
6062 	struct	scsi_inquiry_data *inq_data;
6063 
6064 	if (device == NULL) {
6065 		cts->ccb_h.status = CAM_PATH_INVALID;
6066 		xpt_done((union ccb *)cts);
6067 		return;
6068 	}
6069 
6070 	if (cts->protocol == PROTO_UNKNOWN
6071 	 || cts->protocol == PROTO_UNSPECIFIED) {
6072 		cts->protocol = device->protocol;
6073 		cts->protocol_version = device->protocol_version;
6074 	}
6075 
6076 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6077 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6078 		cts->protocol_version = device->protocol_version;
6079 
6080 	if (cts->protocol != device->protocol) {
6081 		xpt_print_path(cts->ccb_h.path);
6082 		printf("Uninitialized Protocol %x:%x?\n",
6083 		       cts->protocol, device->protocol);
6084 		cts->protocol = device->protocol;
6085 	}
6086 
6087 	if (cts->protocol_version > device->protocol_version) {
6088 		if (bootverbose) {
6089 			xpt_print_path(cts->ccb_h.path);
6090 			printf("Down reving Protocol Version from %d to %d?\n",
6091 			       cts->protocol_version, device->protocol_version);
6092 		}
6093 		cts->protocol_version = device->protocol_version;
6094 	}
6095 
6096 	if (cts->transport == XPORT_UNKNOWN
6097 	 || cts->transport == XPORT_UNSPECIFIED) {
6098 		cts->transport = device->transport;
6099 		cts->transport_version = device->transport_version;
6100 	}
6101 
6102 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6103 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6104 		cts->transport_version = device->transport_version;
6105 
6106 	if (cts->transport != device->transport) {
6107 		xpt_print_path(cts->ccb_h.path);
6108 		printf("Uninitialized Transport %x:%x?\n",
6109 		       cts->transport, device->transport);
6110 		cts->transport = device->transport;
6111 	}
6112 
6113 	if (cts->transport_version > device->transport_version) {
6114 		if (bootverbose) {
6115 			xpt_print_path(cts->ccb_h.path);
6116 			printf("Down reving Transport Version from %d to %d?\n",
6117 			       cts->transport_version,
6118 			       device->transport_version);
6119 		}
6120 		cts->transport_version = device->transport_version;
6121 	}
6122 
6123 	sim = cts->ccb_h.path->bus->sim;
6124 
6125 	/*
6126 	 * Nothing more of interest to do unless
6127 	 * this is a device connected via the
6128 	 * SCSI protocol.
6129 	 */
6130 	if (cts->protocol != PROTO_SCSI) {
6131 		if (async_update == FALSE)
6132 			(*(sim->sim_action))(sim, (union ccb *)cts);
6133 		return;
6134 	}
6135 
6136 	inq_data = &device->inq_data;
6137 	scsi = &cts->proto_specific.scsi;
6138 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6139 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6140 	xpt_action((union ccb *)&cpi);
6141 
6142 	/* SCSI specific sanity checking */
6143 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6144 	 || (inq_data->flags & SID_CmdQue) == 0
6145 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6146 	 || (device->quirk->mintags == 0)) {
6147 		/*
6148 		 * Can't tag on hardware that doesn't support tags,
6149 		 * doesn't have it enabled, or has broken tag support.
6150 		 */
6151 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6152 	}
6153 
6154 	if (async_update == FALSE) {
6155 		/*
6156 		 * Perform sanity checking against what the
6157 		 * controller and device can do.
6158 		 */
6159 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6160 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6161 		cur_cts.type = cts->type;
6162 		xpt_action((union ccb *)&cur_cts);
6163 
6164 		cur_scsi = &cur_cts.proto_specific.scsi;
6165 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6166 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6167 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6168 		}
6169 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6170 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6171 	}
6172 
6173 	/* SPI specific sanity checking */
6174 	if (cts->transport == XPORT_SPI
6175 	 && async_update == FALSE) {
6176 		u_int spi3caps;
6177 		struct ccb_trans_settings_spi *spi;
6178 		struct ccb_trans_settings_spi *cur_spi;
6179 
6180 		spi = &cts->xport_specific.spi;
6181 
6182 		cur_spi = &cur_cts.xport_specific.spi;
6183 
6184 		/* Fill in any gaps in what the user gave us */
6185 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6186 			spi->sync_period = cur_spi->sync_period;
6187 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6188 			spi->sync_period = 0;
6189 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6190 			spi->sync_offset = cur_spi->sync_offset;
6191 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6192 			spi->sync_offset = 0;
6193 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6194 			spi->ppr_options = cur_spi->ppr_options;
6195 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6196 			spi->ppr_options = 0;
6197 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6198 			spi->bus_width = cur_spi->bus_width;
6199 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6200 			spi->bus_width = 0;
6201 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6202 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6203 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6204 		}
6205 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6206 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6207 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6208 		  && (inq_data->flags & SID_Sync) == 0
6209 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6210 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6211 		 || (cts->sync_offset == 0)
6212 		 || (cts->sync_period == 0)) {
6213 			/* Force async */
6214 			spi->sync_period = 0;
6215 			spi->sync_offset = 0;
6216 		}
6217 
6218 		switch (spi->bus_width) {
6219 		case MSG_EXT_WDTR_BUS_32_BIT:
6220 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6221 			  || (inq_data->flags & SID_WBus32) != 0
6222 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6223 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6224 				break;
6225 			/* Fall Through to 16-bit */
6226 		case MSG_EXT_WDTR_BUS_16_BIT:
6227 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6228 			  || (inq_data->flags & SID_WBus16) != 0
6229 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6230 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6231 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6232 				break;
6233 			}
6234 			/* Fall Through to 8-bit */
6235 		default: /* New bus width?? */
6236 		case MSG_EXT_WDTR_BUS_8_BIT:
6237 			/* All targets can do this */
6238 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6239 			break;
6240 		}
6241 
6242 		spi3caps = cpi.xport_specific.spi.ppr_options;
6243 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6244 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6245 			spi3caps &= inq_data->spi3data;
6246 
6247 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6248 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6249 
6250 		if ((spi3caps & SID_SPI_IUS) == 0)
6251 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6252 
6253 		if ((spi3caps & SID_SPI_QAS) == 0)
6254 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6255 
6256 		/* No SPI Transfer settings are allowed unless we are wide */
6257 		if (spi->bus_width == 0)
6258 			spi->ppr_options = 0;
6259 
6260 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6261 			/*
6262 			 * Can't tag queue without disconnection.
6263 			 */
6264 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6265 			scsi->valid |= CTS_SCSI_VALID_TQ;
6266 		}
6267 
6268 		/*
6269 		 * If we are currently performing tagged transactions to
6270 		 * this device and want to change its negotiation parameters,
6271 		 * go non-tagged for a bit to give the controller a chance to
6272 		 * negotiate unhampered by tag messages.
6273 		 */
6274 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6275 		 && (device->inq_flags & SID_CmdQue) != 0
6276 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6277 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6278 				   CTS_SPI_VALID_SYNC_OFFSET|
6279 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6280 			xpt_toggle_tags(cts->ccb_h.path);
6281 	}
6282 
6283 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6284 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6285 		int device_tagenb;
6286 
6287 		/*
6288 		 * If we are transitioning from tags to no-tags or
6289 		 * vice-versa, we need to carefully freeze and restart
6290 		 * the queue so that we don't overlap tagged and non-tagged
6291 		 * commands.  We also temporarily stop tags if there is
6292 		 * a change in transfer negotiation settings to allow
6293 		 * "tag-less" negotiation.
6294 		 */
6295 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6296 		 || (device->inq_flags & SID_CmdQue) != 0)
6297 			device_tagenb = TRUE;
6298 		else
6299 			device_tagenb = FALSE;
6300 
6301 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6302 		  && device_tagenb == FALSE)
6303 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6304 		  && device_tagenb == TRUE)) {
6305 
6306 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6307 				/*
6308 				 * Delay change to use tags until after a
6309 				 * few commands have gone to this device so
6310 				 * the controller has time to perform transfer
6311 				 * negotiations without tagged messages getting
6312 				 * in the way.
6313 				 */
6314 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6315 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6316 			} else {
6317 				struct ccb_relsim crs;
6318 
6319 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6320 		  		device->inq_flags &= ~SID_CmdQue;
6321 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6322 						    sim->max_dev_openings);
6323 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6324 				device->tag_delay_count = 0;
6325 
6326 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6327 					      /*priority*/1);
6328 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6329 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6330 				crs.openings
6331 				    = crs.release_timeout
6332 				    = crs.qfrozen_cnt
6333 				    = 0;
6334 				xpt_action((union ccb *)&crs);
6335 			}
6336 		}
6337 	}
6338 	if (async_update == FALSE)
6339 		(*(sim->sim_action))(sim, (union ccb *)cts);
6340 }
6341 
6342 #else /* CAM_NEW_TRAN_CODE */
6343 
6344 static void
6345 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6346 			  int async_update)
6347 {
6348 	struct	cam_sim *sim;
6349 	int	qfrozen;
6350 
6351 	sim = cts->ccb_h.path->bus->sim;
6352 	if (async_update == FALSE) {
6353 		struct	scsi_inquiry_data *inq_data;
6354 		struct	ccb_pathinq cpi;
6355 		struct	ccb_trans_settings cur_cts;
6356 
6357 		if (device == NULL) {
6358 			cts->ccb_h.status = CAM_PATH_INVALID;
6359 			xpt_done((union ccb *)cts);
6360 			return;
6361 		}
6362 
6363 		/*
6364 		 * Perform sanity checking against what the
6365 		 * controller and device can do.
6366 		 */
6367 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6368 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6369 		xpt_action((union ccb *)&cpi);
6370 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6371 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6372 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
6373 		xpt_action((union ccb *)&cur_cts);
6374 		inq_data = &device->inq_data;
6375 
6376 		/* Fill in any gaps in what the user gave us */
6377 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
6378 			cts->sync_period = cur_cts.sync_period;
6379 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
6380 			cts->sync_offset = cur_cts.sync_offset;
6381 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
6382 			cts->bus_width = cur_cts.bus_width;
6383 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
6384 			cts->flags &= ~CCB_TRANS_DISC_ENB;
6385 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
6386 		}
6387 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
6388 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6389 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
6390 		}
6391 
6392 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6393 		  && (inq_data->flags & SID_Sync) == 0)
6394 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6395 		 || (cts->sync_offset == 0)
6396 		 || (cts->sync_period == 0)) {
6397 			/* Force async */
6398 			cts->sync_period = 0;
6399 			cts->sync_offset = 0;
6400 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6401 			&& (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
6402 			&& cts->sync_period <= 0x9) {
6403 			/*
6404 			 * Don't allow DT transmission rates if the
6405 			 * device does not support it.
6406 			 */
6407 			cts->sync_period = 0xa;
6408 		}
6409 
6410 		switch (cts->bus_width) {
6411 		case MSG_EXT_WDTR_BUS_32_BIT:
6412 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6413 			  || (inq_data->flags & SID_WBus32) != 0)
6414 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6415 				break;
6416 			/* Fall Through to 16-bit */
6417 		case MSG_EXT_WDTR_BUS_16_BIT:
6418 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6419 			  || (inq_data->flags & SID_WBus16) != 0)
6420 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6421 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6422 				break;
6423 			}
6424 			/* Fall Through to 8-bit */
6425 		default: /* New bus width?? */
6426 		case MSG_EXT_WDTR_BUS_8_BIT:
6427 			/* All targets can do this */
6428 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6429 			break;
6430 		}
6431 
6432 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
6433 			/*
6434 			 * Can't tag queue without disconnection.
6435 			 */
6436 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6437 			cts->valid |= CCB_TRANS_TQ_VALID;
6438 		}
6439 
6440 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6441 		 || (inq_data->flags & SID_CmdQue) == 0
6442 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6443 		 || (device->quirk->mintags == 0)) {
6444 			/*
6445 			 * Can't tag on hardware that doesn't support,
6446 			 * doesn't have it enabled, or has broken tag support.
6447 			 */
6448 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6449 		}
6450 	}
6451 
6452 	qfrozen = FALSE;
6453 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
6454 		int device_tagenb;
6455 
6456 		/*
6457 		 * If we are transitioning from tags to no-tags or
6458 		 * vice-versa, we need to carefully freeze and restart
6459 		 * the queue so that we don't overlap tagged and non-tagged
6460 		 * commands.  We also temporarily stop tags if there is
6461 		 * a change in transfer negotiation settings to allow
6462 		 * "tag-less" negotiation.
6463 		 */
6464 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6465 		 || (device->inq_flags & SID_CmdQue) != 0)
6466 			device_tagenb = TRUE;
6467 		else
6468 			device_tagenb = FALSE;
6469 
6470 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
6471 		  && device_tagenb == FALSE)
6472 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
6473 		  && device_tagenb == TRUE)) {
6474 
6475 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
6476 				/*
6477 				 * Delay change to use tags until after a
6478 				 * few commands have gone to this device so
6479 				 * the controller has time to perform transfer
6480 				 * negotiations without tagged messages getting
6481 				 * in the way.
6482 				 */
6483 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6484 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6485 			} else {
6486 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6487 				qfrozen = TRUE;
6488 		  		device->inq_flags &= ~SID_CmdQue;
6489 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6490 						    sim->max_dev_openings);
6491 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6492 				device->tag_delay_count = 0;
6493 			}
6494 		}
6495 	}
6496 
6497 	if (async_update == FALSE) {
6498 		/*
6499 		 * If we are currently performing tagged transactions to
6500 		 * this device and want to change its negotiation parameters,
6501 		 * go non-tagged for a bit to give the controller a chance to
6502 		 * negotiate unhampered by tag messages.
6503 		 */
6504 		if ((device->inq_flags & SID_CmdQue) != 0
6505 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
6506 				   CCB_TRANS_SYNC_OFFSET_VALID|
6507 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
6508 			xpt_toggle_tags(cts->ccb_h.path);
6509 
6510 		(*(sim->sim_action))(sim, (union ccb *)cts);
6511 	}
6512 
6513 	if (qfrozen) {
6514 		struct ccb_relsim crs;
6515 
6516 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6517 			      /*priority*/1);
6518 		crs.ccb_h.func_code = XPT_REL_SIMQ;
6519 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6520 		crs.openings
6521 		    = crs.release_timeout
6522 		    = crs.qfrozen_cnt
6523 		    = 0;
6524 		xpt_action((union ccb *)&crs);
6525 	}
6526 }
6527 
6528 
6529 #endif /* CAM_NEW_TRAN_CODE */
6530 
6531 static void
6532 xpt_toggle_tags(struct cam_path *path)
6533 {
6534 	struct cam_ed *dev;
6535 
6536 	/*
6537 	 * Give controllers a chance to renegotiate
6538 	 * before starting tag operations.  We
6539 	 * "toggle" tagged queuing off then on
6540 	 * which causes the tag enable command delay
6541 	 * counter to come into effect.
6542 	 */
6543 	dev = path->device;
6544 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6545 	 || ((dev->inq_flags & SID_CmdQue) != 0
6546  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6547 		struct ccb_trans_settings cts;
6548 
6549 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6550 #ifdef CAM_NEW_TRAN_CODE
6551 		cts.protocol = PROTO_SCSI;
6552 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6553 		cts.transport = XPORT_UNSPECIFIED;
6554 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6555 		cts.proto_specific.scsi.flags = 0;
6556 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6557 #else /* CAM_NEW_TRAN_CODE */
6558 		cts.flags = 0;
6559 		cts.valid = CCB_TRANS_TQ_VALID;
6560 #endif /* CAM_NEW_TRAN_CODE */
6561 		xpt_set_transfer_settings(&cts, path->device,
6562 					  /*async_update*/TRUE);
6563 #ifdef CAM_NEW_TRAN_CODE
6564 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6565 #else /* CAM_NEW_TRAN_CODE */
6566 		cts.flags = CCB_TRANS_TAG_ENB;
6567 #endif /* CAM_NEW_TRAN_CODE */
6568 		xpt_set_transfer_settings(&cts, path->device,
6569 					  /*async_update*/TRUE);
6570 	}
6571 }
6572 
6573 static void
6574 xpt_start_tags(struct cam_path *path)
6575 {
6576 	struct ccb_relsim crs;
6577 	struct cam_ed *device;
6578 	struct cam_sim *sim;
6579 	int    newopenings;
6580 
6581 	device = path->device;
6582 	sim = path->bus->sim;
6583 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6584 	xpt_freeze_devq(path, /*count*/1);
6585 	device->inq_flags |= SID_CmdQue;
6586 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6587 	xpt_dev_ccbq_resize(path, newopenings);
6588 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6589 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6590 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6591 	crs.openings
6592 	    = crs.release_timeout
6593 	    = crs.qfrozen_cnt
6594 	    = 0;
6595 	xpt_action((union ccb *)&crs);
6596 }
6597 
6598 static int busses_to_config;
6599 static int busses_to_reset;
6600 
6601 static int
6602 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6603 {
6604 	if (bus->path_id != CAM_XPT_PATH_ID) {
6605 		struct cam_path path;
6606 		struct ccb_pathinq cpi;
6607 		int can_negotiate;
6608 
6609 		busses_to_config++;
6610 		xpt_compile_path(&path, NULL, bus->path_id,
6611 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6612 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6613 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6614 		xpt_action((union ccb *)&cpi);
6615 		can_negotiate = cpi.hba_inquiry;
6616 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6617 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6618 		 && can_negotiate)
6619 			busses_to_reset++;
6620 		xpt_release_path(&path);
6621 	}
6622 
6623 	return(1);
6624 }
6625 
6626 static int
6627 xptconfigfunc(struct cam_eb *bus, void *arg)
6628 {
6629 	struct	cam_path *path;
6630 	union	ccb *work_ccb;
6631 
6632 	if (bus->path_id != CAM_XPT_PATH_ID) {
6633 		cam_status status;
6634 		int can_negotiate;
6635 
6636 		work_ccb = xpt_alloc_ccb();
6637 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6638 					      CAM_TARGET_WILDCARD,
6639 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6640 			printf("xptconfigfunc: xpt_create_path failed with "
6641 			       "status %#x for bus %d\n", status, bus->path_id);
6642 			printf("xptconfigfunc: halting bus configuration\n");
6643 			xpt_free_ccb(work_ccb);
6644 			busses_to_config--;
6645 			xpt_finishconfig(xpt_periph, NULL);
6646 			return(0);
6647 		}
6648 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6649 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6650 		xpt_action(work_ccb);
6651 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6652 			printf("xptconfigfunc: CPI failed on bus %d "
6653 			       "with status %d\n", bus->path_id,
6654 			       work_ccb->ccb_h.status);
6655 			xpt_finishconfig(xpt_periph, work_ccb);
6656 			return(1);
6657 		}
6658 
6659 		can_negotiate = work_ccb->cpi.hba_inquiry;
6660 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6661 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6662 		 && (can_negotiate != 0)) {
6663 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6664 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6665 			work_ccb->ccb_h.cbfcnp = NULL;
6666 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6667 				  ("Resetting Bus\n"));
6668 			xpt_action(work_ccb);
6669 			xpt_finishconfig(xpt_periph, work_ccb);
6670 		} else {
6671 			/* Act as though we performed a successful BUS RESET */
6672 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6673 			xpt_finishconfig(xpt_periph, work_ccb);
6674 		}
6675 	}
6676 
6677 	return(1);
6678 }
6679 
6680 static void
6681 xpt_config(void *arg)
6682 {
6683 	/*
6684 	 * Now that interrupts are enabled, go find our devices
6685 	 */
6686 
6687 #ifdef CAMDEBUG
6688 	/* Setup debugging flags and path */
6689 #ifdef CAM_DEBUG_FLAGS
6690 	cam_dflags = CAM_DEBUG_FLAGS;
6691 #else /* !CAM_DEBUG_FLAGS */
6692 	cam_dflags = CAM_DEBUG_NONE;
6693 #endif /* CAM_DEBUG_FLAGS */
6694 #ifdef CAM_DEBUG_BUS
6695 	if (cam_dflags != CAM_DEBUG_NONE) {
6696 		if (xpt_create_path(&cam_dpath, xpt_periph,
6697 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6698 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6699 			printf("xpt_config: xpt_create_path() failed for debug"
6700 			       " target %d:%d:%d, debugging disabled\n",
6701 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6702 			cam_dflags = CAM_DEBUG_NONE;
6703 		}
6704 	} else
6705 		cam_dpath = NULL;
6706 #else /* !CAM_DEBUG_BUS */
6707 	cam_dpath = NULL;
6708 #endif /* CAM_DEBUG_BUS */
6709 #endif /* CAMDEBUG */
6710 
6711 	/*
6712 	 * Scan all installed busses.
6713 	 */
6714 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6715 
6716 	if (busses_to_config == 0) {
6717 		/* Call manually because we don't have any busses */
6718 		xpt_finishconfig(xpt_periph, NULL);
6719 	} else  {
6720 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6721 			printf("Waiting %d seconds for SCSI "
6722 			       "devices to settle\n", SCSI_DELAY/1000);
6723 		}
6724 		xpt_for_all_busses(xptconfigfunc, NULL);
6725 	}
6726 }
6727 
6728 /*
6729  * If the given device only has one peripheral attached to it, and if that
6730  * peripheral is the passthrough driver, announce it.  This insures that the
6731  * user sees some sort of announcement for every peripheral in their system.
6732  */
6733 static int
6734 xptpassannouncefunc(struct cam_ed *device, void *arg)
6735 {
6736 	struct cam_periph *periph;
6737 	int i;
6738 
6739 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6740 	     periph = SLIST_NEXT(periph, periph_links), i++);
6741 
6742 	periph = SLIST_FIRST(&device->periphs);
6743 	if ((i == 1)
6744 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6745 		xpt_announce_periph(periph, NULL);
6746 
6747 	return(1);
6748 }
6749 
6750 static void
6751 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6752 {
6753 	struct	periph_driver **p_drv;
6754 	int	i;
6755 
6756 	if (done_ccb != NULL) {
6757 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6758 			  ("xpt_finishconfig\n"));
6759 		switch(done_ccb->ccb_h.func_code) {
6760 		case XPT_RESET_BUS:
6761 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6762 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6763 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6764 				xpt_action(done_ccb);
6765 				return;
6766 			}
6767 			/* FALLTHROUGH */
6768 		case XPT_SCAN_BUS:
6769 		default:
6770 			xpt_free_path(done_ccb->ccb_h.path);
6771 			busses_to_config--;
6772 			break;
6773 		}
6774 	}
6775 
6776 	if (busses_to_config == 0) {
6777 		/* Register all the peripheral drivers */
6778 		/* XXX This will have to change when we have loadable modules */
6779 		p_drv = periph_drivers;
6780 		for (i = 0; p_drv[i] != NULL; i++) {
6781 			(*p_drv[i]->init)();
6782 		}
6783 
6784 		/*
6785 		 * Check for devices with no "standard" peripheral driver
6786 		 * attached.  For any devices like that, announce the
6787 		 * passthrough driver so the user will see something.
6788 		 */
6789 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6790 
6791 		/* Release our hook so that the boot can continue. */
6792 		config_intrhook_disestablish(xpt_config_hook);
6793 		free(xpt_config_hook, M_TEMP);
6794 		xpt_config_hook = NULL;
6795 	}
6796 	if (done_ccb != NULL)
6797 		xpt_free_ccb(done_ccb);
6798 }
6799 
6800 static void
6801 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6802 {
6803 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6804 
6805 	switch (work_ccb->ccb_h.func_code) {
6806 	/* Common cases first */
6807 	case XPT_PATH_INQ:		/* Path routing inquiry */
6808 	{
6809 		struct ccb_pathinq *cpi;
6810 
6811 		cpi = &work_ccb->cpi;
6812 		cpi->version_num = 1; /* XXX??? */
6813 		cpi->hba_inquiry = 0;
6814 		cpi->target_sprt = 0;
6815 		cpi->hba_misc = 0;
6816 		cpi->hba_eng_cnt = 0;
6817 		cpi->max_target = 0;
6818 		cpi->max_lun = 0;
6819 		cpi->initiator_id = 0;
6820 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6821 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6822 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6823 		cpi->unit_number = sim->unit_number;
6824 		cpi->bus_id = sim->bus_id;
6825 		cpi->base_transfer_speed = 0;
6826 #ifdef CAM_NEW_TRAN_CODE
6827 		cpi->protocol = PROTO_UNSPECIFIED;
6828 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
6829 		cpi->transport = XPORT_UNSPECIFIED;
6830 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
6831 #endif /* CAM_NEW_TRAN_CODE */
6832 		cpi->ccb_h.status = CAM_REQ_CMP;
6833 		xpt_done(work_ccb);
6834 		break;
6835 	}
6836 	default:
6837 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6838 		xpt_done(work_ccb);
6839 		break;
6840 	}
6841 }
6842 
6843 /*
6844  * The xpt as a "controller" has no interrupt sources, so polling
6845  * is a no-op.
6846  */
6847 static void
6848 xptpoll(struct cam_sim *sim)
6849 {
6850 }
6851 
6852 static void
6853 camisr(void *V_queue)
6854 {
6855 	cam_isrq_t *queue = V_queue;
6856 	int	s;
6857 	struct	ccb_hdr *ccb_h;
6858 
6859 	s = splcam();
6860 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6861 		int	runq;
6862 
6863 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6864 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6865 		splx(s);
6866 
6867 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6868 			  ("camisr"));
6869 
6870 		runq = FALSE;
6871 
6872 		if (ccb_h->flags & CAM_HIGH_POWER) {
6873 			struct highpowerlist	*hphead;
6874 			struct cam_ed		*device;
6875 			union ccb		*send_ccb;
6876 
6877 			hphead = &highpowerq;
6878 
6879 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6880 
6881 			/*
6882 			 * Increment the count since this command is done.
6883 			 */
6884 			num_highpower++;
6885 
6886 			/*
6887 			 * Any high powered commands queued up?
6888 			 */
6889 			if (send_ccb != NULL) {
6890 				device = send_ccb->ccb_h.path->device;
6891 
6892 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6893 
6894 				xpt_release_devq(send_ccb->ccb_h.path,
6895 						 /*count*/1, /*runqueue*/TRUE);
6896 			}
6897 		}
6898 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6899 			struct cam_ed *dev;
6900 
6901 			dev = ccb_h->path->device;
6902 
6903 			s = splcam();
6904 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6905 
6906 			ccb_h->path->bus->sim->devq->send_active--;
6907 			ccb_h->path->bus->sim->devq->send_openings++;
6908 			splx(s);
6909 
6910 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6911 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
6912 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6913 			  && (dev->ccbq.dev_active == 0))) {
6914 
6915 				xpt_release_devq(ccb_h->path, /*count*/1,
6916 						 /*run_queue*/TRUE);
6917 			}
6918 
6919 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6920 			 && (--dev->tag_delay_count == 0))
6921 				xpt_start_tags(ccb_h->path);
6922 
6923 			if ((dev->ccbq.queue.entries > 0)
6924 			 && (dev->qfrozen_cnt == 0)
6925 			 && (device_is_send_queued(dev) == 0)) {
6926 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6927 							      dev);
6928 			}
6929 		}
6930 
6931 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6932 			xpt_release_simq(ccb_h->path->bus->sim,
6933 					 /*run_queue*/TRUE);
6934 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6935 			runq = FALSE;
6936 		}
6937 
6938 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6939 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6940 			xpt_release_devq(ccb_h->path, /*count*/1,
6941 					 /*run_queue*/TRUE);
6942 			ccb_h->status &= ~CAM_DEV_QFRZN;
6943 		} else if (runq) {
6944 			xpt_run_dev_sendq(ccb_h->path->bus);
6945 		}
6946 
6947 		/* Call the peripheral driver's callback */
6948 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6949 
6950 		/* Raise IPL for while test */
6951 		s = splcam();
6952 	}
6953 	splx(s);
6954 }
6955