1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_sim.h> 56 #include <cam/cam_xpt.h> 57 #include <cam/cam_xpt_sim.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_xpt_internal.h> 60 #include <cam/cam_debug.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 #include <machine/md_var.h> /* geometry translation */ 67 #include <machine/stdarg.h> /* for xpt_print below */ 68 69 #include "opt_cam.h" 70 71 /* 72 * This is the maximum number of high powered commands (e.g. start unit) 73 * that can be outstanding at a particular time. 74 */ 75 #ifndef CAM_MAX_HIGHPOWER 76 #define CAM_MAX_HIGHPOWER 4 77 #endif 78 79 /* Datastructures internal to the xpt layer */ 80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 81 82 /* Object for defering XPT actions to a taskqueue */ 83 struct xpt_task { 84 struct task task; 85 void *data1; 86 uintptr_t data2; 87 }; 88 89 typedef enum { 90 XPT_FLAG_OPEN = 0x01 91 } xpt_flags; 92 93 struct xpt_softc { 94 xpt_flags flags; 95 u_int32_t xpt_generation; 96 97 /* number of high powered commands that can go through right now */ 98 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 99 int num_highpower; 100 101 /* queue for handling async rescan requests. */ 102 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 103 int buses_to_config; 104 int buses_config_done; 105 106 /* Registered busses */ 107 TAILQ_HEAD(,cam_eb) xpt_busses; 108 u_int bus_generation; 109 110 struct intr_config_hook *xpt_config_hook; 111 112 int boot_delay; 113 struct callout boot_callout; 114 115 struct mtx xpt_topo_lock; 116 struct mtx xpt_lock; 117 }; 118 119 typedef enum { 120 DM_RET_COPY = 0x01, 121 DM_RET_FLAG_MASK = 0x0f, 122 DM_RET_NONE = 0x00, 123 DM_RET_STOP = 0x10, 124 DM_RET_DESCEND = 0x20, 125 DM_RET_ERROR = 0x30, 126 DM_RET_ACTION_MASK = 0xf0 127 } dev_match_ret; 128 129 typedef enum { 130 XPT_DEPTH_BUS, 131 XPT_DEPTH_TARGET, 132 XPT_DEPTH_DEVICE, 133 XPT_DEPTH_PERIPH 134 } xpt_traverse_depth; 135 136 struct xpt_traverse_config { 137 xpt_traverse_depth depth; 138 void *tr_func; 139 void *tr_arg; 140 }; 141 142 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 143 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 144 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 145 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 146 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 147 148 /* Transport layer configuration information */ 149 static struct xpt_softc xsoftc; 150 151 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 152 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 153 &xsoftc.boot_delay, 0, "Bus registration wait time"); 154 155 /* Queues for our software interrupt handler */ 156 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 157 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 158 static cam_simq_t cam_simq; 159 static struct mtx cam_simq_lock; 160 161 /* Pointers to software interrupt handlers */ 162 static void *cambio_ih; 163 164 struct cam_periph *xpt_periph; 165 166 static periph_init_t xpt_periph_init; 167 168 static struct periph_driver xpt_driver = 169 { 170 xpt_periph_init, "xpt", 171 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 172 CAM_PERIPH_DRV_EARLY 173 }; 174 175 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 176 177 static d_open_t xptopen; 178 static d_close_t xptclose; 179 static d_ioctl_t xptioctl; 180 181 static struct cdevsw xpt_cdevsw = { 182 .d_version = D_VERSION, 183 .d_flags = 0, 184 .d_open = xptopen, 185 .d_close = xptclose, 186 .d_ioctl = xptioctl, 187 .d_name = "xpt", 188 }; 189 190 /* Storage for debugging datastructures */ 191 struct cam_path *cam_dpath; 192 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 193 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 194 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 195 &cam_dflags, 0, "Enabled debug flags"); 196 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 197 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 198 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 199 &cam_debug_delay, 0, "Delay in us after each debug message"); 200 201 /* Our boot-time initialization hook */ 202 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 203 204 static moduledata_t cam_moduledata = { 205 "cam", 206 cam_module_event_handler, 207 NULL 208 }; 209 210 static int xpt_init(void *); 211 212 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 213 MODULE_VERSION(cam, 1); 214 215 216 static void xpt_async_bcast(struct async_list *async_head, 217 u_int32_t async_code, 218 struct cam_path *path, 219 void *async_arg); 220 static path_id_t xptnextfreepathid(void); 221 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 222 static union ccb *xpt_get_ccb(struct cam_ed *device); 223 static void xpt_run_dev_allocq(struct cam_eb *bus); 224 static void xpt_run_dev_sendq(struct cam_eb *bus); 225 static timeout_t xpt_release_devq_timeout; 226 static void xpt_release_simq_timeout(void *arg) __unused; 227 static void xpt_release_bus(struct cam_eb *bus); 228 static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, 229 u_int count, int run_queue); 230 static struct cam_et* 231 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 232 static void xpt_release_target(struct cam_et *target); 233 static struct cam_eb* 234 xpt_find_bus(path_id_t path_id); 235 static struct cam_et* 236 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 237 static struct cam_ed* 238 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 239 static void xpt_config(void *arg); 240 static xpt_devicefunc_t xptpassannouncefunc; 241 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 242 static void xptpoll(struct cam_sim *sim); 243 static void camisr(void *); 244 static void camisr_runqueue(void *); 245 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 246 u_int num_patterns, struct cam_eb *bus); 247 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 248 u_int num_patterns, 249 struct cam_ed *device); 250 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 251 u_int num_patterns, 252 struct cam_periph *periph); 253 static xpt_busfunc_t xptedtbusfunc; 254 static xpt_targetfunc_t xptedttargetfunc; 255 static xpt_devicefunc_t xptedtdevicefunc; 256 static xpt_periphfunc_t xptedtperiphfunc; 257 static xpt_pdrvfunc_t xptplistpdrvfunc; 258 static xpt_periphfunc_t xptplistperiphfunc; 259 static int xptedtmatch(struct ccb_dev_match *cdm); 260 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 261 static int xptbustraverse(struct cam_eb *start_bus, 262 xpt_busfunc_t *tr_func, void *arg); 263 static int xpttargettraverse(struct cam_eb *bus, 264 struct cam_et *start_target, 265 xpt_targetfunc_t *tr_func, void *arg); 266 static int xptdevicetraverse(struct cam_et *target, 267 struct cam_ed *start_device, 268 xpt_devicefunc_t *tr_func, void *arg); 269 static int xptperiphtraverse(struct cam_ed *device, 270 struct cam_periph *start_periph, 271 xpt_periphfunc_t *tr_func, void *arg); 272 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 273 xpt_pdrvfunc_t *tr_func, void *arg); 274 static int xptpdperiphtraverse(struct periph_driver **pdrv, 275 struct cam_periph *start_periph, 276 xpt_periphfunc_t *tr_func, 277 void *arg); 278 static xpt_busfunc_t xptdefbusfunc; 279 static xpt_targetfunc_t xptdeftargetfunc; 280 static xpt_devicefunc_t xptdefdevicefunc; 281 static xpt_periphfunc_t xptdefperiphfunc; 282 static void xpt_finishconfig_task(void *context, int pending); 283 static void xpt_dev_async_default(u_int32_t async_code, 284 struct cam_eb *bus, 285 struct cam_et *target, 286 struct cam_ed *device, 287 void *async_arg); 288 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 289 struct cam_et *target, 290 lun_id_t lun_id); 291 static xpt_devicefunc_t xptsetasyncfunc; 292 static xpt_busfunc_t xptsetasyncbusfunc; 293 static cam_status xptregister(struct cam_periph *periph, 294 void *arg); 295 static __inline int periph_is_queued(struct cam_periph *periph); 296 static __inline int device_is_alloc_queued(struct cam_ed *device); 297 static __inline int device_is_send_queued(struct cam_ed *device); 298 299 static __inline int 300 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 301 { 302 int retval; 303 304 if ((dev->drvq.entries > 0) && 305 (dev->ccbq.devq_openings > 0) && 306 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 307 CAMQ_GET_PRIO(&dev->drvq))) == 0)) { 308 /* 309 * The priority of a device waiting for CCB resources 310 * is that of the highest priority peripheral driver 311 * enqueued. 312 */ 313 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 314 &dev->alloc_ccb_entry.pinfo, 315 CAMQ_GET_PRIO(&dev->drvq)); 316 } else { 317 retval = 0; 318 } 319 320 return (retval); 321 } 322 323 static __inline int 324 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 325 { 326 int retval; 327 328 if ((dev->ccbq.queue.entries > 0) && 329 (dev->ccbq.dev_openings > 0) && 330 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) { 331 /* 332 * The priority of a device waiting for controller 333 * resources is that of the highest priority CCB 334 * enqueued. 335 */ 336 retval = 337 xpt_schedule_dev(&bus->sim->devq->send_queue, 338 &dev->send_ccb_entry.pinfo, 339 CAMQ_GET_PRIO(&dev->ccbq.queue)); 340 } else { 341 retval = 0; 342 } 343 return (retval); 344 } 345 346 static __inline int 347 periph_is_queued(struct cam_periph *periph) 348 { 349 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 350 } 351 352 static __inline int 353 device_is_alloc_queued(struct cam_ed *device) 354 { 355 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 356 } 357 358 static __inline int 359 device_is_send_queued(struct cam_ed *device) 360 { 361 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 362 } 363 364 static void 365 xpt_periph_init() 366 { 367 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 368 } 369 370 static void 371 xptdone(struct cam_periph *periph, union ccb *done_ccb) 372 { 373 /* Caller will release the CCB */ 374 wakeup(&done_ccb->ccb_h.cbfcnp); 375 } 376 377 static int 378 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 379 { 380 381 /* 382 * Only allow read-write access. 383 */ 384 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 385 return(EPERM); 386 387 /* 388 * We don't allow nonblocking access. 389 */ 390 if ((flags & O_NONBLOCK) != 0) { 391 printf("%s: can't do nonblocking access\n", devtoname(dev)); 392 return(ENODEV); 393 } 394 395 /* Mark ourselves open */ 396 mtx_lock(&xsoftc.xpt_lock); 397 xsoftc.flags |= XPT_FLAG_OPEN; 398 mtx_unlock(&xsoftc.xpt_lock); 399 400 return(0); 401 } 402 403 static int 404 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 405 { 406 407 /* Mark ourselves closed */ 408 mtx_lock(&xsoftc.xpt_lock); 409 xsoftc.flags &= ~XPT_FLAG_OPEN; 410 mtx_unlock(&xsoftc.xpt_lock); 411 412 return(0); 413 } 414 415 /* 416 * Don't automatically grab the xpt softc lock here even though this is going 417 * through the xpt device. The xpt device is really just a back door for 418 * accessing other devices and SIMs, so the right thing to do is to grab 419 * the appropriate SIM lock once the bus/SIM is located. 420 */ 421 static int 422 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 423 { 424 int error; 425 426 error = 0; 427 428 switch(cmd) { 429 /* 430 * For the transport layer CAMIOCOMMAND ioctl, we really only want 431 * to accept CCB types that don't quite make sense to send through a 432 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 433 * in the CAM spec. 434 */ 435 case CAMIOCOMMAND: { 436 union ccb *ccb; 437 union ccb *inccb; 438 struct cam_eb *bus; 439 440 inccb = (union ccb *)addr; 441 442 bus = xpt_find_bus(inccb->ccb_h.path_id); 443 if (bus == NULL) 444 return (EINVAL); 445 446 switch (inccb->ccb_h.func_code) { 447 case XPT_SCAN_BUS: 448 case XPT_RESET_BUS: 449 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 450 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 451 xpt_release_bus(bus); 452 return (EINVAL); 453 } 454 break; 455 case XPT_SCAN_TGT: 456 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 457 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 458 xpt_release_bus(bus); 459 return (EINVAL); 460 } 461 break; 462 default: 463 break; 464 } 465 466 switch(inccb->ccb_h.func_code) { 467 case XPT_SCAN_BUS: 468 case XPT_RESET_BUS: 469 case XPT_PATH_INQ: 470 case XPT_ENG_INQ: 471 case XPT_SCAN_LUN: 472 case XPT_SCAN_TGT: 473 474 ccb = xpt_alloc_ccb(); 475 476 CAM_SIM_LOCK(bus->sim); 477 478 /* 479 * Create a path using the bus, target, and lun the 480 * user passed in. 481 */ 482 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 483 inccb->ccb_h.path_id, 484 inccb->ccb_h.target_id, 485 inccb->ccb_h.target_lun) != 486 CAM_REQ_CMP){ 487 error = EINVAL; 488 CAM_SIM_UNLOCK(bus->sim); 489 xpt_free_ccb(ccb); 490 break; 491 } 492 /* Ensure all of our fields are correct */ 493 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 494 inccb->ccb_h.pinfo.priority); 495 xpt_merge_ccb(ccb, inccb); 496 ccb->ccb_h.cbfcnp = xptdone; 497 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 498 bcopy(ccb, inccb, sizeof(union ccb)); 499 xpt_free_path(ccb->ccb_h.path); 500 xpt_free_ccb(ccb); 501 CAM_SIM_UNLOCK(bus->sim); 502 break; 503 504 case XPT_DEBUG: { 505 union ccb ccb; 506 507 /* 508 * This is an immediate CCB, so it's okay to 509 * allocate it on the stack. 510 */ 511 512 CAM_SIM_LOCK(bus->sim); 513 514 /* 515 * Create a path using the bus, target, and lun the 516 * user passed in. 517 */ 518 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 519 inccb->ccb_h.path_id, 520 inccb->ccb_h.target_id, 521 inccb->ccb_h.target_lun) != 522 CAM_REQ_CMP){ 523 error = EINVAL; 524 CAM_SIM_UNLOCK(bus->sim); 525 break; 526 } 527 /* Ensure all of our fields are correct */ 528 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 529 inccb->ccb_h.pinfo.priority); 530 xpt_merge_ccb(&ccb, inccb); 531 ccb.ccb_h.cbfcnp = xptdone; 532 xpt_action(&ccb); 533 CAM_SIM_UNLOCK(bus->sim); 534 bcopy(&ccb, inccb, sizeof(union ccb)); 535 xpt_free_path(ccb.ccb_h.path); 536 break; 537 538 } 539 case XPT_DEV_MATCH: { 540 struct cam_periph_map_info mapinfo; 541 struct cam_path *old_path; 542 543 /* 544 * We can't deal with physical addresses for this 545 * type of transaction. 546 */ 547 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 548 error = EINVAL; 549 break; 550 } 551 552 /* 553 * Save this in case the caller had it set to 554 * something in particular. 555 */ 556 old_path = inccb->ccb_h.path; 557 558 /* 559 * We really don't need a path for the matching 560 * code. The path is needed because of the 561 * debugging statements in xpt_action(). They 562 * assume that the CCB has a valid path. 563 */ 564 inccb->ccb_h.path = xpt_periph->path; 565 566 bzero(&mapinfo, sizeof(mapinfo)); 567 568 /* 569 * Map the pattern and match buffers into kernel 570 * virtual address space. 571 */ 572 error = cam_periph_mapmem(inccb, &mapinfo); 573 574 if (error) { 575 inccb->ccb_h.path = old_path; 576 break; 577 } 578 579 /* 580 * This is an immediate CCB, we can send it on directly. 581 */ 582 xpt_action(inccb); 583 584 /* 585 * Map the buffers back into user space. 586 */ 587 cam_periph_unmapmem(inccb, &mapinfo); 588 589 inccb->ccb_h.path = old_path; 590 591 error = 0; 592 break; 593 } 594 default: 595 error = ENOTSUP; 596 break; 597 } 598 xpt_release_bus(bus); 599 break; 600 } 601 /* 602 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 603 * with the periphal driver name and unit name filled in. The other 604 * fields don't really matter as input. The passthrough driver name 605 * ("pass"), and unit number are passed back in the ccb. The current 606 * device generation number, and the index into the device peripheral 607 * driver list, and the status are also passed back. Note that 608 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 609 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 610 * (or rather should be) impossible for the device peripheral driver 611 * list to change since we look at the whole thing in one pass, and 612 * we do it with lock protection. 613 * 614 */ 615 case CAMGETPASSTHRU: { 616 union ccb *ccb; 617 struct cam_periph *periph; 618 struct periph_driver **p_drv; 619 char *name; 620 u_int unit; 621 u_int cur_generation; 622 int base_periph_found; 623 int splbreaknum; 624 625 ccb = (union ccb *)addr; 626 unit = ccb->cgdl.unit_number; 627 name = ccb->cgdl.periph_name; 628 /* 629 * Every 100 devices, we want to drop our lock protection to 630 * give the software interrupt handler a chance to run. 631 * Most systems won't run into this check, but this should 632 * avoid starvation in the software interrupt handler in 633 * large systems. 634 */ 635 splbreaknum = 100; 636 637 ccb = (union ccb *)addr; 638 639 base_periph_found = 0; 640 641 /* 642 * Sanity check -- make sure we don't get a null peripheral 643 * driver name. 644 */ 645 if (*ccb->cgdl.periph_name == '\0') { 646 error = EINVAL; 647 break; 648 } 649 650 /* Keep the list from changing while we traverse it */ 651 mtx_lock(&xsoftc.xpt_topo_lock); 652 ptstartover: 653 cur_generation = xsoftc.xpt_generation; 654 655 /* first find our driver in the list of drivers */ 656 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 657 if (strcmp((*p_drv)->driver_name, name) == 0) 658 break; 659 660 if (*p_drv == NULL) { 661 mtx_unlock(&xsoftc.xpt_topo_lock); 662 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 663 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 664 *ccb->cgdl.periph_name = '\0'; 665 ccb->cgdl.unit_number = 0; 666 error = ENOENT; 667 break; 668 } 669 670 /* 671 * Run through every peripheral instance of this driver 672 * and check to see whether it matches the unit passed 673 * in by the user. If it does, get out of the loops and 674 * find the passthrough driver associated with that 675 * peripheral driver. 676 */ 677 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 678 periph = TAILQ_NEXT(periph, unit_links)) { 679 680 if (periph->unit_number == unit) { 681 break; 682 } else if (--splbreaknum == 0) { 683 mtx_unlock(&xsoftc.xpt_topo_lock); 684 mtx_lock(&xsoftc.xpt_topo_lock); 685 splbreaknum = 100; 686 if (cur_generation != xsoftc.xpt_generation) 687 goto ptstartover; 688 } 689 } 690 /* 691 * If we found the peripheral driver that the user passed 692 * in, go through all of the peripheral drivers for that 693 * particular device and look for a passthrough driver. 694 */ 695 if (periph != NULL) { 696 struct cam_ed *device; 697 int i; 698 699 base_periph_found = 1; 700 device = periph->path->device; 701 for (i = 0, periph = SLIST_FIRST(&device->periphs); 702 periph != NULL; 703 periph = SLIST_NEXT(periph, periph_links), i++) { 704 /* 705 * Check to see whether we have a 706 * passthrough device or not. 707 */ 708 if (strcmp(periph->periph_name, "pass") == 0) { 709 /* 710 * Fill in the getdevlist fields. 711 */ 712 strcpy(ccb->cgdl.periph_name, 713 periph->periph_name); 714 ccb->cgdl.unit_number = 715 periph->unit_number; 716 if (SLIST_NEXT(periph, periph_links)) 717 ccb->cgdl.status = 718 CAM_GDEVLIST_MORE_DEVS; 719 else 720 ccb->cgdl.status = 721 CAM_GDEVLIST_LAST_DEVICE; 722 ccb->cgdl.generation = 723 device->generation; 724 ccb->cgdl.index = i; 725 /* 726 * Fill in some CCB header fields 727 * that the user may want. 728 */ 729 ccb->ccb_h.path_id = 730 periph->path->bus->path_id; 731 ccb->ccb_h.target_id = 732 periph->path->target->target_id; 733 ccb->ccb_h.target_lun = 734 periph->path->device->lun_id; 735 ccb->ccb_h.status = CAM_REQ_CMP; 736 break; 737 } 738 } 739 } 740 741 /* 742 * If the periph is null here, one of two things has 743 * happened. The first possibility is that we couldn't 744 * find the unit number of the particular peripheral driver 745 * that the user is asking about. e.g. the user asks for 746 * the passthrough driver for "da11". We find the list of 747 * "da" peripherals all right, but there is no unit 11. 748 * The other possibility is that we went through the list 749 * of peripheral drivers attached to the device structure, 750 * but didn't find one with the name "pass". Either way, 751 * we return ENOENT, since we couldn't find something. 752 */ 753 if (periph == NULL) { 754 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 755 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 756 *ccb->cgdl.periph_name = '\0'; 757 ccb->cgdl.unit_number = 0; 758 error = ENOENT; 759 /* 760 * It is unfortunate that this is even necessary, 761 * but there are many, many clueless users out there. 762 * If this is true, the user is looking for the 763 * passthrough driver, but doesn't have one in his 764 * kernel. 765 */ 766 if (base_periph_found == 1) { 767 printf("xptioctl: pass driver is not in the " 768 "kernel\n"); 769 printf("xptioctl: put \"device pass\" in " 770 "your kernel config file\n"); 771 } 772 } 773 mtx_unlock(&xsoftc.xpt_topo_lock); 774 break; 775 } 776 default: 777 error = ENOTTY; 778 break; 779 } 780 781 return(error); 782 } 783 784 static int 785 cam_module_event_handler(module_t mod, int what, void *arg) 786 { 787 int error; 788 789 switch (what) { 790 case MOD_LOAD: 791 if ((error = xpt_init(NULL)) != 0) 792 return (error); 793 break; 794 case MOD_UNLOAD: 795 return EBUSY; 796 default: 797 return EOPNOTSUPP; 798 } 799 800 return 0; 801 } 802 803 static void 804 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 805 { 806 807 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 808 xpt_free_path(done_ccb->ccb_h.path); 809 xpt_free_ccb(done_ccb); 810 } else { 811 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 812 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 813 } 814 xpt_release_boot(); 815 } 816 817 /* thread to handle bus rescans */ 818 static void 819 xpt_scanner_thread(void *dummy) 820 { 821 union ccb *ccb; 822 struct cam_sim *sim; 823 824 xpt_lock_buses(); 825 for (;;) { 826 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 827 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 828 "ccb_scanq", 0); 829 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 830 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 831 xpt_unlock_buses(); 832 833 sim = ccb->ccb_h.path->bus->sim; 834 CAM_SIM_LOCK(sim); 835 xpt_action(ccb); 836 CAM_SIM_UNLOCK(sim); 837 838 xpt_lock_buses(); 839 } 840 } 841 } 842 843 void 844 xpt_rescan(union ccb *ccb) 845 { 846 struct ccb_hdr *hdr; 847 848 /* Prepare request */ 849 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 850 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 851 ccb->ccb_h.func_code = XPT_SCAN_BUS; 852 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 853 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 854 ccb->ccb_h.func_code = XPT_SCAN_TGT; 855 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 856 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 857 ccb->ccb_h.func_code = XPT_SCAN_LUN; 858 else { 859 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 860 xpt_free_path(ccb->ccb_h.path); 861 xpt_free_ccb(ccb); 862 return; 863 } 864 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 865 ccb->ccb_h.cbfcnp = xpt_rescan_done; 866 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 867 /* Don't make duplicate entries for the same paths. */ 868 xpt_lock_buses(); 869 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 870 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 871 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 872 wakeup(&xsoftc.ccb_scanq); 873 xpt_unlock_buses(); 874 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 875 xpt_free_path(ccb->ccb_h.path); 876 xpt_free_ccb(ccb); 877 return; 878 } 879 } 880 } 881 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 882 xsoftc.buses_to_config++; 883 wakeup(&xsoftc.ccb_scanq); 884 xpt_unlock_buses(); 885 } 886 887 /* Functions accessed by the peripheral drivers */ 888 static int 889 xpt_init(void *dummy) 890 { 891 struct cam_sim *xpt_sim; 892 struct cam_path *path; 893 struct cam_devq *devq; 894 cam_status status; 895 896 TAILQ_INIT(&xsoftc.xpt_busses); 897 TAILQ_INIT(&cam_simq); 898 TAILQ_INIT(&xsoftc.ccb_scanq); 899 STAILQ_INIT(&xsoftc.highpowerq); 900 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 901 902 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 903 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 904 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 905 906 /* 907 * The xpt layer is, itself, the equivelent of a SIM. 908 * Allow 16 ccbs in the ccb pool for it. This should 909 * give decent parallelism when we probe busses and 910 * perform other XPT functions. 911 */ 912 devq = cam_simq_alloc(16); 913 xpt_sim = cam_sim_alloc(xptaction, 914 xptpoll, 915 "xpt", 916 /*softc*/NULL, 917 /*unit*/0, 918 /*mtx*/&xsoftc.xpt_lock, 919 /*max_dev_transactions*/0, 920 /*max_tagged_dev_transactions*/0, 921 devq); 922 if (xpt_sim == NULL) 923 return (ENOMEM); 924 925 mtx_lock(&xsoftc.xpt_lock); 926 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 927 mtx_unlock(&xsoftc.xpt_lock); 928 printf("xpt_init: xpt_bus_register failed with status %#x," 929 " failing attach\n", status); 930 return (EINVAL); 931 } 932 933 /* 934 * Looking at the XPT from the SIM layer, the XPT is 935 * the equivelent of a peripheral driver. Allocate 936 * a peripheral driver entry for us. 937 */ 938 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 939 CAM_TARGET_WILDCARD, 940 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 941 mtx_unlock(&xsoftc.xpt_lock); 942 printf("xpt_init: xpt_create_path failed with status %#x," 943 " failing attach\n", status); 944 return (EINVAL); 945 } 946 947 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 948 path, NULL, 0, xpt_sim); 949 xpt_free_path(path); 950 mtx_unlock(&xsoftc.xpt_lock); 951 /* Install our software interrupt handlers */ 952 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 953 /* 954 * Register a callback for when interrupts are enabled. 955 */ 956 xsoftc.xpt_config_hook = 957 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 958 M_CAMXPT, M_NOWAIT | M_ZERO); 959 if (xsoftc.xpt_config_hook == NULL) { 960 printf("xpt_init: Cannot malloc config hook " 961 "- failing attach\n"); 962 return (ENOMEM); 963 } 964 xsoftc.xpt_config_hook->ich_func = xpt_config; 965 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 966 free (xsoftc.xpt_config_hook, M_CAMXPT); 967 printf("xpt_init: config_intrhook_establish failed " 968 "- failing attach\n"); 969 } 970 971 return (0); 972 } 973 974 static cam_status 975 xptregister(struct cam_periph *periph, void *arg) 976 { 977 struct cam_sim *xpt_sim; 978 979 if (periph == NULL) { 980 printf("xptregister: periph was NULL!!\n"); 981 return(CAM_REQ_CMP_ERR); 982 } 983 984 xpt_sim = (struct cam_sim *)arg; 985 xpt_sim->softc = periph; 986 xpt_periph = periph; 987 periph->softc = NULL; 988 989 return(CAM_REQ_CMP); 990 } 991 992 int32_t 993 xpt_add_periph(struct cam_periph *periph) 994 { 995 struct cam_ed *device; 996 int32_t status; 997 struct periph_list *periph_head; 998 999 mtx_assert(periph->sim->mtx, MA_OWNED); 1000 1001 device = periph->path->device; 1002 1003 periph_head = &device->periphs; 1004 1005 status = CAM_REQ_CMP; 1006 1007 if (device != NULL) { 1008 /* 1009 * Make room for this peripheral 1010 * so it will fit in the queue 1011 * when it's scheduled to run 1012 */ 1013 status = camq_resize(&device->drvq, 1014 device->drvq.array_size + 1); 1015 1016 device->generation++; 1017 1018 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1019 } 1020 1021 mtx_lock(&xsoftc.xpt_topo_lock); 1022 xsoftc.xpt_generation++; 1023 mtx_unlock(&xsoftc.xpt_topo_lock); 1024 1025 return (status); 1026 } 1027 1028 void 1029 xpt_remove_periph(struct cam_periph *periph, int topology_lock_held) 1030 { 1031 struct cam_ed *device; 1032 1033 mtx_assert(periph->sim->mtx, MA_OWNED); 1034 1035 device = periph->path->device; 1036 1037 if (device != NULL) { 1038 struct periph_list *periph_head; 1039 1040 periph_head = &device->periphs; 1041 1042 /* Release the slot for this peripheral */ 1043 camq_resize(&device->drvq, device->drvq.array_size - 1); 1044 1045 device->generation++; 1046 1047 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1048 } 1049 1050 if (topology_lock_held == 0) 1051 mtx_lock(&xsoftc.xpt_topo_lock); 1052 1053 xsoftc.xpt_generation++; 1054 1055 if (topology_lock_held == 0) 1056 mtx_unlock(&xsoftc.xpt_topo_lock); 1057 } 1058 1059 1060 void 1061 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1062 { 1063 struct cam_path *path = periph->path; 1064 1065 mtx_assert(periph->sim->mtx, MA_OWNED); 1066 1067 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1068 periph->periph_name, periph->unit_number, 1069 path->bus->sim->sim_name, 1070 path->bus->sim->unit_number, 1071 path->bus->sim->bus_id, 1072 path->bus->path_id, 1073 path->target->target_id, 1074 path->device->lun_id); 1075 printf("%s%d: ", periph->periph_name, periph->unit_number); 1076 if (path->device->protocol == PROTO_SCSI) 1077 scsi_print_inquiry(&path->device->inq_data); 1078 else if (path->device->protocol == PROTO_ATA || 1079 path->device->protocol == PROTO_SATAPM) 1080 ata_print_ident(&path->device->ident_data); 1081 else if (path->device->protocol == PROTO_SEMB) 1082 semb_print_ident( 1083 (struct sep_identify_data *)&path->device->ident_data); 1084 else 1085 printf("Unknown protocol device\n"); 1086 if (bootverbose && path->device->serial_num_len > 0) { 1087 /* Don't wrap the screen - print only the first 60 chars */ 1088 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1089 periph->unit_number, path->device->serial_num); 1090 } 1091 /* Announce transport details. */ 1092 (*(path->bus->xport->announce))(periph); 1093 /* Announce command queueing. */ 1094 if (path->device->inq_flags & SID_CmdQue 1095 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1096 printf("%s%d: Command Queueing enabled\n", 1097 periph->periph_name, periph->unit_number); 1098 } 1099 /* Announce caller's details if they've passed in. */ 1100 if (announce_string != NULL) 1101 printf("%s%d: %s\n", periph->periph_name, 1102 periph->unit_number, announce_string); 1103 } 1104 1105 int 1106 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1107 { 1108 int ret = -1; 1109 struct ccb_dev_advinfo cdai; 1110 1111 memset(&cdai, 0, sizeof(cdai)); 1112 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1113 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1114 cdai.bufsiz = len; 1115 1116 if (!strcmp(attr, "GEOM::ident")) 1117 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1118 else if (!strcmp(attr, "GEOM::physpath")) 1119 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1120 else 1121 goto out; 1122 1123 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1124 if (cdai.buf == NULL) { 1125 ret = ENOMEM; 1126 goto out; 1127 } 1128 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1129 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1130 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1131 if (cdai.provsiz == 0) 1132 goto out; 1133 ret = 0; 1134 if (strlcpy(buf, cdai.buf, len) >= len) 1135 ret = EFAULT; 1136 1137 out: 1138 if (cdai.buf != NULL) 1139 free(cdai.buf, M_CAMXPT); 1140 return ret; 1141 } 1142 1143 static dev_match_ret 1144 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1145 struct cam_eb *bus) 1146 { 1147 dev_match_ret retval; 1148 int i; 1149 1150 retval = DM_RET_NONE; 1151 1152 /* 1153 * If we aren't given something to match against, that's an error. 1154 */ 1155 if (bus == NULL) 1156 return(DM_RET_ERROR); 1157 1158 /* 1159 * If there are no match entries, then this bus matches no 1160 * matter what. 1161 */ 1162 if ((patterns == NULL) || (num_patterns == 0)) 1163 return(DM_RET_DESCEND | DM_RET_COPY); 1164 1165 for (i = 0; i < num_patterns; i++) { 1166 struct bus_match_pattern *cur_pattern; 1167 1168 /* 1169 * If the pattern in question isn't for a bus node, we 1170 * aren't interested. However, we do indicate to the 1171 * calling routine that we should continue descending the 1172 * tree, since the user wants to match against lower-level 1173 * EDT elements. 1174 */ 1175 if (patterns[i].type != DEV_MATCH_BUS) { 1176 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1177 retval |= DM_RET_DESCEND; 1178 continue; 1179 } 1180 1181 cur_pattern = &patterns[i].pattern.bus_pattern; 1182 1183 /* 1184 * If they want to match any bus node, we give them any 1185 * device node. 1186 */ 1187 if (cur_pattern->flags == BUS_MATCH_ANY) { 1188 /* set the copy flag */ 1189 retval |= DM_RET_COPY; 1190 1191 /* 1192 * If we've already decided on an action, go ahead 1193 * and return. 1194 */ 1195 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1196 return(retval); 1197 } 1198 1199 /* 1200 * Not sure why someone would do this... 1201 */ 1202 if (cur_pattern->flags == BUS_MATCH_NONE) 1203 continue; 1204 1205 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1206 && (cur_pattern->path_id != bus->path_id)) 1207 continue; 1208 1209 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1210 && (cur_pattern->bus_id != bus->sim->bus_id)) 1211 continue; 1212 1213 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1214 && (cur_pattern->unit_number != bus->sim->unit_number)) 1215 continue; 1216 1217 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1218 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1219 DEV_IDLEN) != 0)) 1220 continue; 1221 1222 /* 1223 * If we get to this point, the user definitely wants 1224 * information on this bus. So tell the caller to copy the 1225 * data out. 1226 */ 1227 retval |= DM_RET_COPY; 1228 1229 /* 1230 * If the return action has been set to descend, then we 1231 * know that we've already seen a non-bus matching 1232 * expression, therefore we need to further descend the tree. 1233 * This won't change by continuing around the loop, so we 1234 * go ahead and return. If we haven't seen a non-bus 1235 * matching expression, we keep going around the loop until 1236 * we exhaust the matching expressions. We'll set the stop 1237 * flag once we fall out of the loop. 1238 */ 1239 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1240 return(retval); 1241 } 1242 1243 /* 1244 * If the return action hasn't been set to descend yet, that means 1245 * we haven't seen anything other than bus matching patterns. So 1246 * tell the caller to stop descending the tree -- the user doesn't 1247 * want to match against lower level tree elements. 1248 */ 1249 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1250 retval |= DM_RET_STOP; 1251 1252 return(retval); 1253 } 1254 1255 static dev_match_ret 1256 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1257 struct cam_ed *device) 1258 { 1259 dev_match_ret retval; 1260 int i; 1261 1262 retval = DM_RET_NONE; 1263 1264 /* 1265 * If we aren't given something to match against, that's an error. 1266 */ 1267 if (device == NULL) 1268 return(DM_RET_ERROR); 1269 1270 /* 1271 * If there are no match entries, then this device matches no 1272 * matter what. 1273 */ 1274 if ((patterns == NULL) || (num_patterns == 0)) 1275 return(DM_RET_DESCEND | DM_RET_COPY); 1276 1277 for (i = 0; i < num_patterns; i++) { 1278 struct device_match_pattern *cur_pattern; 1279 struct scsi_vpd_device_id *device_id_page; 1280 1281 /* 1282 * If the pattern in question isn't for a device node, we 1283 * aren't interested. 1284 */ 1285 if (patterns[i].type != DEV_MATCH_DEVICE) { 1286 if ((patterns[i].type == DEV_MATCH_PERIPH) 1287 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1288 retval |= DM_RET_DESCEND; 1289 continue; 1290 } 1291 1292 cur_pattern = &patterns[i].pattern.device_pattern; 1293 1294 /* Error out if mutually exclusive options are specified. */ 1295 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1296 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1297 return(DM_RET_ERROR); 1298 1299 /* 1300 * If they want to match any device node, we give them any 1301 * device node. 1302 */ 1303 if (cur_pattern->flags == DEV_MATCH_ANY) 1304 goto copy_dev_node; 1305 1306 /* 1307 * Not sure why someone would do this... 1308 */ 1309 if (cur_pattern->flags == DEV_MATCH_NONE) 1310 continue; 1311 1312 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1313 && (cur_pattern->path_id != device->target->bus->path_id)) 1314 continue; 1315 1316 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1317 && (cur_pattern->target_id != device->target->target_id)) 1318 continue; 1319 1320 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1321 && (cur_pattern->target_lun != device->lun_id)) 1322 continue; 1323 1324 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1325 && (cam_quirkmatch((caddr_t)&device->inq_data, 1326 (caddr_t)&cur_pattern->data.inq_pat, 1327 1, sizeof(cur_pattern->data.inq_pat), 1328 scsi_static_inquiry_match) == NULL)) 1329 continue; 1330 1331 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1332 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1333 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1334 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1335 device->device_id_len 1336 - SVPD_DEVICE_ID_HDR_LEN, 1337 cur_pattern->data.devid_pat.id, 1338 cur_pattern->data.devid_pat.id_len) != 0)) 1339 continue; 1340 1341 copy_dev_node: 1342 /* 1343 * If we get to this point, the user definitely wants 1344 * information on this device. So tell the caller to copy 1345 * the data out. 1346 */ 1347 retval |= DM_RET_COPY; 1348 1349 /* 1350 * If the return action has been set to descend, then we 1351 * know that we've already seen a peripheral matching 1352 * expression, therefore we need to further descend the tree. 1353 * This won't change by continuing around the loop, so we 1354 * go ahead and return. If we haven't seen a peripheral 1355 * matching expression, we keep going around the loop until 1356 * we exhaust the matching expressions. We'll set the stop 1357 * flag once we fall out of the loop. 1358 */ 1359 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1360 return(retval); 1361 } 1362 1363 /* 1364 * If the return action hasn't been set to descend yet, that means 1365 * we haven't seen any peripheral matching patterns. So tell the 1366 * caller to stop descending the tree -- the user doesn't want to 1367 * match against lower level tree elements. 1368 */ 1369 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1370 retval |= DM_RET_STOP; 1371 1372 return(retval); 1373 } 1374 1375 /* 1376 * Match a single peripheral against any number of match patterns. 1377 */ 1378 static dev_match_ret 1379 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1380 struct cam_periph *periph) 1381 { 1382 dev_match_ret retval; 1383 int i; 1384 1385 /* 1386 * If we aren't given something to match against, that's an error. 1387 */ 1388 if (periph == NULL) 1389 return(DM_RET_ERROR); 1390 1391 /* 1392 * If there are no match entries, then this peripheral matches no 1393 * matter what. 1394 */ 1395 if ((patterns == NULL) || (num_patterns == 0)) 1396 return(DM_RET_STOP | DM_RET_COPY); 1397 1398 /* 1399 * There aren't any nodes below a peripheral node, so there's no 1400 * reason to descend the tree any further. 1401 */ 1402 retval = DM_RET_STOP; 1403 1404 for (i = 0; i < num_patterns; i++) { 1405 struct periph_match_pattern *cur_pattern; 1406 1407 /* 1408 * If the pattern in question isn't for a peripheral, we 1409 * aren't interested. 1410 */ 1411 if (patterns[i].type != DEV_MATCH_PERIPH) 1412 continue; 1413 1414 cur_pattern = &patterns[i].pattern.periph_pattern; 1415 1416 /* 1417 * If they want to match on anything, then we will do so. 1418 */ 1419 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1420 /* set the copy flag */ 1421 retval |= DM_RET_COPY; 1422 1423 /* 1424 * We've already set the return action to stop, 1425 * since there are no nodes below peripherals in 1426 * the tree. 1427 */ 1428 return(retval); 1429 } 1430 1431 /* 1432 * Not sure why someone would do this... 1433 */ 1434 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1435 continue; 1436 1437 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1438 && (cur_pattern->path_id != periph->path->bus->path_id)) 1439 continue; 1440 1441 /* 1442 * For the target and lun id's, we have to make sure the 1443 * target and lun pointers aren't NULL. The xpt peripheral 1444 * has a wildcard target and device. 1445 */ 1446 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1447 && ((periph->path->target == NULL) 1448 ||(cur_pattern->target_id != periph->path->target->target_id))) 1449 continue; 1450 1451 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1452 && ((periph->path->device == NULL) 1453 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1454 continue; 1455 1456 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1457 && (cur_pattern->unit_number != periph->unit_number)) 1458 continue; 1459 1460 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1461 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1462 DEV_IDLEN) != 0)) 1463 continue; 1464 1465 /* 1466 * If we get to this point, the user definitely wants 1467 * information on this peripheral. So tell the caller to 1468 * copy the data out. 1469 */ 1470 retval |= DM_RET_COPY; 1471 1472 /* 1473 * The return action has already been set to stop, since 1474 * peripherals don't have any nodes below them in the EDT. 1475 */ 1476 return(retval); 1477 } 1478 1479 /* 1480 * If we get to this point, the peripheral that was passed in 1481 * doesn't match any of the patterns. 1482 */ 1483 return(retval); 1484 } 1485 1486 static int 1487 xptedtbusfunc(struct cam_eb *bus, void *arg) 1488 { 1489 struct ccb_dev_match *cdm; 1490 dev_match_ret retval; 1491 1492 cdm = (struct ccb_dev_match *)arg; 1493 1494 /* 1495 * If our position is for something deeper in the tree, that means 1496 * that we've already seen this node. So, we keep going down. 1497 */ 1498 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1499 && (cdm->pos.cookie.bus == bus) 1500 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1501 && (cdm->pos.cookie.target != NULL)) 1502 retval = DM_RET_DESCEND; 1503 else 1504 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1505 1506 /* 1507 * If we got an error, bail out of the search. 1508 */ 1509 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1510 cdm->status = CAM_DEV_MATCH_ERROR; 1511 return(0); 1512 } 1513 1514 /* 1515 * If the copy flag is set, copy this bus out. 1516 */ 1517 if (retval & DM_RET_COPY) { 1518 int spaceleft, j; 1519 1520 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1521 sizeof(struct dev_match_result)); 1522 1523 /* 1524 * If we don't have enough space to put in another 1525 * match result, save our position and tell the 1526 * user there are more devices to check. 1527 */ 1528 if (spaceleft < sizeof(struct dev_match_result)) { 1529 bzero(&cdm->pos, sizeof(cdm->pos)); 1530 cdm->pos.position_type = 1531 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1532 1533 cdm->pos.cookie.bus = bus; 1534 cdm->pos.generations[CAM_BUS_GENERATION]= 1535 xsoftc.bus_generation; 1536 cdm->status = CAM_DEV_MATCH_MORE; 1537 return(0); 1538 } 1539 j = cdm->num_matches; 1540 cdm->num_matches++; 1541 cdm->matches[j].type = DEV_MATCH_BUS; 1542 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1543 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1544 cdm->matches[j].result.bus_result.unit_number = 1545 bus->sim->unit_number; 1546 strncpy(cdm->matches[j].result.bus_result.dev_name, 1547 bus->sim->sim_name, DEV_IDLEN); 1548 } 1549 1550 /* 1551 * If the user is only interested in busses, there's no 1552 * reason to descend to the next level in the tree. 1553 */ 1554 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1555 return(1); 1556 1557 /* 1558 * If there is a target generation recorded, check it to 1559 * make sure the target list hasn't changed. 1560 */ 1561 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1562 && (bus == cdm->pos.cookie.bus) 1563 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1564 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1565 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1566 bus->generation)) { 1567 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1568 return(0); 1569 } 1570 1571 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1572 && (cdm->pos.cookie.bus == bus) 1573 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1574 && (cdm->pos.cookie.target != NULL)) 1575 return(xpttargettraverse(bus, 1576 (struct cam_et *)cdm->pos.cookie.target, 1577 xptedttargetfunc, arg)); 1578 else 1579 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1580 } 1581 1582 static int 1583 xptedttargetfunc(struct cam_et *target, void *arg) 1584 { 1585 struct ccb_dev_match *cdm; 1586 1587 cdm = (struct ccb_dev_match *)arg; 1588 1589 /* 1590 * If there is a device list generation recorded, check it to 1591 * make sure the device list hasn't changed. 1592 */ 1593 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1594 && (cdm->pos.cookie.bus == target->bus) 1595 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1596 && (cdm->pos.cookie.target == target) 1597 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1598 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1599 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1600 target->generation)) { 1601 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1602 return(0); 1603 } 1604 1605 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1606 && (cdm->pos.cookie.bus == target->bus) 1607 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1608 && (cdm->pos.cookie.target == target) 1609 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1610 && (cdm->pos.cookie.device != NULL)) 1611 return(xptdevicetraverse(target, 1612 (struct cam_ed *)cdm->pos.cookie.device, 1613 xptedtdevicefunc, arg)); 1614 else 1615 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1616 } 1617 1618 static int 1619 xptedtdevicefunc(struct cam_ed *device, void *arg) 1620 { 1621 1622 struct ccb_dev_match *cdm; 1623 dev_match_ret retval; 1624 1625 cdm = (struct ccb_dev_match *)arg; 1626 1627 /* 1628 * If our position is for something deeper in the tree, that means 1629 * that we've already seen this node. So, we keep going down. 1630 */ 1631 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1632 && (cdm->pos.cookie.device == device) 1633 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1634 && (cdm->pos.cookie.periph != NULL)) 1635 retval = DM_RET_DESCEND; 1636 else 1637 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1638 device); 1639 1640 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1641 cdm->status = CAM_DEV_MATCH_ERROR; 1642 return(0); 1643 } 1644 1645 /* 1646 * If the copy flag is set, copy this device out. 1647 */ 1648 if (retval & DM_RET_COPY) { 1649 int spaceleft, j; 1650 1651 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1652 sizeof(struct dev_match_result)); 1653 1654 /* 1655 * If we don't have enough space to put in another 1656 * match result, save our position and tell the 1657 * user there are more devices to check. 1658 */ 1659 if (spaceleft < sizeof(struct dev_match_result)) { 1660 bzero(&cdm->pos, sizeof(cdm->pos)); 1661 cdm->pos.position_type = 1662 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1663 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1664 1665 cdm->pos.cookie.bus = device->target->bus; 1666 cdm->pos.generations[CAM_BUS_GENERATION]= 1667 xsoftc.bus_generation; 1668 cdm->pos.cookie.target = device->target; 1669 cdm->pos.generations[CAM_TARGET_GENERATION] = 1670 device->target->bus->generation; 1671 cdm->pos.cookie.device = device; 1672 cdm->pos.generations[CAM_DEV_GENERATION] = 1673 device->target->generation; 1674 cdm->status = CAM_DEV_MATCH_MORE; 1675 return(0); 1676 } 1677 j = cdm->num_matches; 1678 cdm->num_matches++; 1679 cdm->matches[j].type = DEV_MATCH_DEVICE; 1680 cdm->matches[j].result.device_result.path_id = 1681 device->target->bus->path_id; 1682 cdm->matches[j].result.device_result.target_id = 1683 device->target->target_id; 1684 cdm->matches[j].result.device_result.target_lun = 1685 device->lun_id; 1686 cdm->matches[j].result.device_result.protocol = 1687 device->protocol; 1688 bcopy(&device->inq_data, 1689 &cdm->matches[j].result.device_result.inq_data, 1690 sizeof(struct scsi_inquiry_data)); 1691 bcopy(&device->ident_data, 1692 &cdm->matches[j].result.device_result.ident_data, 1693 sizeof(struct ata_params)); 1694 1695 /* Let the user know whether this device is unconfigured */ 1696 if (device->flags & CAM_DEV_UNCONFIGURED) 1697 cdm->matches[j].result.device_result.flags = 1698 DEV_RESULT_UNCONFIGURED; 1699 else 1700 cdm->matches[j].result.device_result.flags = 1701 DEV_RESULT_NOFLAG; 1702 } 1703 1704 /* 1705 * If the user isn't interested in peripherals, don't descend 1706 * the tree any further. 1707 */ 1708 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1709 return(1); 1710 1711 /* 1712 * If there is a peripheral list generation recorded, make sure 1713 * it hasn't changed. 1714 */ 1715 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1716 && (device->target->bus == cdm->pos.cookie.bus) 1717 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1718 && (device->target == cdm->pos.cookie.target) 1719 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1720 && (device == cdm->pos.cookie.device) 1721 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1722 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1723 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1724 device->generation)){ 1725 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1726 return(0); 1727 } 1728 1729 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1730 && (cdm->pos.cookie.bus == device->target->bus) 1731 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1732 && (cdm->pos.cookie.target == device->target) 1733 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1734 && (cdm->pos.cookie.device == device) 1735 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1736 && (cdm->pos.cookie.periph != NULL)) 1737 return(xptperiphtraverse(device, 1738 (struct cam_periph *)cdm->pos.cookie.periph, 1739 xptedtperiphfunc, arg)); 1740 else 1741 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1742 } 1743 1744 static int 1745 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1746 { 1747 struct ccb_dev_match *cdm; 1748 dev_match_ret retval; 1749 1750 cdm = (struct ccb_dev_match *)arg; 1751 1752 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1753 1754 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1755 cdm->status = CAM_DEV_MATCH_ERROR; 1756 return(0); 1757 } 1758 1759 /* 1760 * If the copy flag is set, copy this peripheral out. 1761 */ 1762 if (retval & DM_RET_COPY) { 1763 int spaceleft, j; 1764 1765 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1766 sizeof(struct dev_match_result)); 1767 1768 /* 1769 * If we don't have enough space to put in another 1770 * match result, save our position and tell the 1771 * user there are more devices to check. 1772 */ 1773 if (spaceleft < sizeof(struct dev_match_result)) { 1774 bzero(&cdm->pos, sizeof(cdm->pos)); 1775 cdm->pos.position_type = 1776 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1777 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1778 CAM_DEV_POS_PERIPH; 1779 1780 cdm->pos.cookie.bus = periph->path->bus; 1781 cdm->pos.generations[CAM_BUS_GENERATION]= 1782 xsoftc.bus_generation; 1783 cdm->pos.cookie.target = periph->path->target; 1784 cdm->pos.generations[CAM_TARGET_GENERATION] = 1785 periph->path->bus->generation; 1786 cdm->pos.cookie.device = periph->path->device; 1787 cdm->pos.generations[CAM_DEV_GENERATION] = 1788 periph->path->target->generation; 1789 cdm->pos.cookie.periph = periph; 1790 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1791 periph->path->device->generation; 1792 cdm->status = CAM_DEV_MATCH_MORE; 1793 return(0); 1794 } 1795 1796 j = cdm->num_matches; 1797 cdm->num_matches++; 1798 cdm->matches[j].type = DEV_MATCH_PERIPH; 1799 cdm->matches[j].result.periph_result.path_id = 1800 periph->path->bus->path_id; 1801 cdm->matches[j].result.periph_result.target_id = 1802 periph->path->target->target_id; 1803 cdm->matches[j].result.periph_result.target_lun = 1804 periph->path->device->lun_id; 1805 cdm->matches[j].result.periph_result.unit_number = 1806 periph->unit_number; 1807 strncpy(cdm->matches[j].result.periph_result.periph_name, 1808 periph->periph_name, DEV_IDLEN); 1809 } 1810 1811 return(1); 1812 } 1813 1814 static int 1815 xptedtmatch(struct ccb_dev_match *cdm) 1816 { 1817 int ret; 1818 1819 cdm->num_matches = 0; 1820 1821 /* 1822 * Check the bus list generation. If it has changed, the user 1823 * needs to reset everything and start over. 1824 */ 1825 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1826 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1827 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1828 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1829 return(0); 1830 } 1831 1832 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1833 && (cdm->pos.cookie.bus != NULL)) 1834 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1835 xptedtbusfunc, cdm); 1836 else 1837 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1838 1839 /* 1840 * If we get back 0, that means that we had to stop before fully 1841 * traversing the EDT. It also means that one of the subroutines 1842 * has set the status field to the proper value. If we get back 1, 1843 * we've fully traversed the EDT and copied out any matching entries. 1844 */ 1845 if (ret == 1) 1846 cdm->status = CAM_DEV_MATCH_LAST; 1847 1848 return(ret); 1849 } 1850 1851 static int 1852 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1853 { 1854 struct ccb_dev_match *cdm; 1855 1856 cdm = (struct ccb_dev_match *)arg; 1857 1858 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1859 && (cdm->pos.cookie.pdrv == pdrv) 1860 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1861 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1862 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1863 (*pdrv)->generation)) { 1864 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1865 return(0); 1866 } 1867 1868 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1869 && (cdm->pos.cookie.pdrv == pdrv) 1870 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1871 && (cdm->pos.cookie.periph != NULL)) 1872 return(xptpdperiphtraverse(pdrv, 1873 (struct cam_periph *)cdm->pos.cookie.periph, 1874 xptplistperiphfunc, arg)); 1875 else 1876 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1877 } 1878 1879 static int 1880 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1881 { 1882 struct ccb_dev_match *cdm; 1883 dev_match_ret retval; 1884 1885 cdm = (struct ccb_dev_match *)arg; 1886 1887 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1888 1889 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1890 cdm->status = CAM_DEV_MATCH_ERROR; 1891 return(0); 1892 } 1893 1894 /* 1895 * If the copy flag is set, copy this peripheral out. 1896 */ 1897 if (retval & DM_RET_COPY) { 1898 int spaceleft, j; 1899 1900 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1901 sizeof(struct dev_match_result)); 1902 1903 /* 1904 * If we don't have enough space to put in another 1905 * match result, save our position and tell the 1906 * user there are more devices to check. 1907 */ 1908 if (spaceleft < sizeof(struct dev_match_result)) { 1909 struct periph_driver **pdrv; 1910 1911 pdrv = NULL; 1912 bzero(&cdm->pos, sizeof(cdm->pos)); 1913 cdm->pos.position_type = 1914 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1915 CAM_DEV_POS_PERIPH; 1916 1917 /* 1918 * This may look a bit non-sensical, but it is 1919 * actually quite logical. There are very few 1920 * peripheral drivers, and bloating every peripheral 1921 * structure with a pointer back to its parent 1922 * peripheral driver linker set entry would cost 1923 * more in the long run than doing this quick lookup. 1924 */ 1925 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1926 if (strcmp((*pdrv)->driver_name, 1927 periph->periph_name) == 0) 1928 break; 1929 } 1930 1931 if (*pdrv == NULL) { 1932 cdm->status = CAM_DEV_MATCH_ERROR; 1933 return(0); 1934 } 1935 1936 cdm->pos.cookie.pdrv = pdrv; 1937 /* 1938 * The periph generation slot does double duty, as 1939 * does the periph pointer slot. They are used for 1940 * both edt and pdrv lookups and positioning. 1941 */ 1942 cdm->pos.cookie.periph = periph; 1943 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1944 (*pdrv)->generation; 1945 cdm->status = CAM_DEV_MATCH_MORE; 1946 return(0); 1947 } 1948 1949 j = cdm->num_matches; 1950 cdm->num_matches++; 1951 cdm->matches[j].type = DEV_MATCH_PERIPH; 1952 cdm->matches[j].result.periph_result.path_id = 1953 periph->path->bus->path_id; 1954 1955 /* 1956 * The transport layer peripheral doesn't have a target or 1957 * lun. 1958 */ 1959 if (periph->path->target) 1960 cdm->matches[j].result.periph_result.target_id = 1961 periph->path->target->target_id; 1962 else 1963 cdm->matches[j].result.periph_result.target_id = -1; 1964 1965 if (periph->path->device) 1966 cdm->matches[j].result.periph_result.target_lun = 1967 periph->path->device->lun_id; 1968 else 1969 cdm->matches[j].result.periph_result.target_lun = -1; 1970 1971 cdm->matches[j].result.periph_result.unit_number = 1972 periph->unit_number; 1973 strncpy(cdm->matches[j].result.periph_result.periph_name, 1974 periph->periph_name, DEV_IDLEN); 1975 } 1976 1977 return(1); 1978 } 1979 1980 static int 1981 xptperiphlistmatch(struct ccb_dev_match *cdm) 1982 { 1983 int ret; 1984 1985 cdm->num_matches = 0; 1986 1987 /* 1988 * At this point in the edt traversal function, we check the bus 1989 * list generation to make sure that no busses have been added or 1990 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1991 * For the peripheral driver list traversal function, however, we 1992 * don't have to worry about new peripheral driver types coming or 1993 * going; they're in a linker set, and therefore can't change 1994 * without a recompile. 1995 */ 1996 1997 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1998 && (cdm->pos.cookie.pdrv != NULL)) 1999 ret = xptpdrvtraverse( 2000 (struct periph_driver **)cdm->pos.cookie.pdrv, 2001 xptplistpdrvfunc, cdm); 2002 else 2003 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2004 2005 /* 2006 * If we get back 0, that means that we had to stop before fully 2007 * traversing the peripheral driver tree. It also means that one of 2008 * the subroutines has set the status field to the proper value. If 2009 * we get back 1, we've fully traversed the EDT and copied out any 2010 * matching entries. 2011 */ 2012 if (ret == 1) 2013 cdm->status = CAM_DEV_MATCH_LAST; 2014 2015 return(ret); 2016 } 2017 2018 static int 2019 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2020 { 2021 struct cam_eb *bus, *next_bus; 2022 int retval; 2023 2024 retval = 1; 2025 2026 mtx_lock(&xsoftc.xpt_topo_lock); 2027 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2028 bus != NULL; 2029 bus = next_bus) { 2030 2031 bus->refcount++; 2032 2033 /* 2034 * XXX The locking here is obviously very complex. We 2035 * should work to simplify it. 2036 */ 2037 mtx_unlock(&xsoftc.xpt_topo_lock); 2038 CAM_SIM_LOCK(bus->sim); 2039 retval = tr_func(bus, arg); 2040 CAM_SIM_UNLOCK(bus->sim); 2041 2042 mtx_lock(&xsoftc.xpt_topo_lock); 2043 next_bus = TAILQ_NEXT(bus, links); 2044 mtx_unlock(&xsoftc.xpt_topo_lock); 2045 2046 xpt_release_bus(bus); 2047 2048 if (retval == 0) 2049 return(retval); 2050 mtx_lock(&xsoftc.xpt_topo_lock); 2051 } 2052 mtx_unlock(&xsoftc.xpt_topo_lock); 2053 2054 return(retval); 2055 } 2056 2057 int 2058 xpt_sim_opened(struct cam_sim *sim) 2059 { 2060 struct cam_eb *bus; 2061 struct cam_et *target; 2062 struct cam_ed *device; 2063 struct cam_periph *periph; 2064 2065 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1")); 2066 mtx_assert(sim->mtx, MA_OWNED); 2067 2068 mtx_lock(&xsoftc.xpt_topo_lock); 2069 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 2070 if (bus->sim != sim) 2071 continue; 2072 2073 TAILQ_FOREACH(target, &bus->et_entries, links) { 2074 TAILQ_FOREACH(device, &target->ed_entries, links) { 2075 SLIST_FOREACH(periph, &device->periphs, 2076 periph_links) { 2077 if (periph->refcount > 0) { 2078 mtx_unlock(&xsoftc.xpt_topo_lock); 2079 return (1); 2080 } 2081 } 2082 } 2083 } 2084 } 2085 2086 mtx_unlock(&xsoftc.xpt_topo_lock); 2087 return (0); 2088 } 2089 2090 static int 2091 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2092 xpt_targetfunc_t *tr_func, void *arg) 2093 { 2094 struct cam_et *target, *next_target; 2095 int retval; 2096 2097 retval = 1; 2098 for (target = (start_target ? start_target : 2099 TAILQ_FIRST(&bus->et_entries)); 2100 target != NULL; target = next_target) { 2101 2102 target->refcount++; 2103 2104 retval = tr_func(target, arg); 2105 2106 next_target = TAILQ_NEXT(target, links); 2107 2108 xpt_release_target(target); 2109 2110 if (retval == 0) 2111 return(retval); 2112 } 2113 2114 return(retval); 2115 } 2116 2117 static int 2118 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2119 xpt_devicefunc_t *tr_func, void *arg) 2120 { 2121 struct cam_ed *device, *next_device; 2122 int retval; 2123 2124 retval = 1; 2125 for (device = (start_device ? start_device : 2126 TAILQ_FIRST(&target->ed_entries)); 2127 device != NULL; 2128 device = next_device) { 2129 2130 /* 2131 * Hold a reference so the current device does not go away 2132 * on us. 2133 */ 2134 device->refcount++; 2135 2136 retval = tr_func(device, arg); 2137 2138 /* 2139 * Grab our next pointer before we release the current 2140 * device. 2141 */ 2142 next_device = TAILQ_NEXT(device, links); 2143 2144 xpt_release_device(device); 2145 2146 if (retval == 0) 2147 return(retval); 2148 } 2149 2150 return(retval); 2151 } 2152 2153 static int 2154 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2155 xpt_periphfunc_t *tr_func, void *arg) 2156 { 2157 struct cam_periph *periph, *next_periph; 2158 int retval; 2159 2160 retval = 1; 2161 2162 xpt_lock_buses(); 2163 for (periph = (start_periph ? start_periph : 2164 SLIST_FIRST(&device->periphs)); 2165 periph != NULL; 2166 periph = next_periph) { 2167 2168 2169 /* 2170 * In this case, we want to show peripherals that have been 2171 * invalidated, but not peripherals that are scheduled to 2172 * be freed. So instead of calling cam_periph_acquire(), 2173 * which will fail if the periph has been invalidated, we 2174 * just check for the free flag here. If it is free, we 2175 * skip to the next periph. 2176 */ 2177 if (periph->flags & CAM_PERIPH_FREE) { 2178 next_periph = SLIST_NEXT(periph, periph_links); 2179 continue; 2180 } 2181 2182 /* 2183 * Acquire a reference to this periph while we call the 2184 * traversal function, so it can't go away. 2185 */ 2186 periph->refcount++; 2187 2188 xpt_unlock_buses(); 2189 2190 retval = tr_func(periph, arg); 2191 2192 /* 2193 * We need the lock for list traversal. 2194 */ 2195 xpt_lock_buses(); 2196 2197 /* 2198 * Grab the next peripheral before we release this one, so 2199 * our next pointer is still valid. 2200 */ 2201 next_periph = SLIST_NEXT(periph, periph_links); 2202 2203 cam_periph_release_locked_buses(periph); 2204 2205 if (retval == 0) 2206 goto bailout_done; 2207 } 2208 2209 bailout_done: 2210 2211 xpt_unlock_buses(); 2212 2213 return(retval); 2214 } 2215 2216 static int 2217 xptpdrvtraverse(struct periph_driver **start_pdrv, 2218 xpt_pdrvfunc_t *tr_func, void *arg) 2219 { 2220 struct periph_driver **pdrv; 2221 int retval; 2222 2223 retval = 1; 2224 2225 /* 2226 * We don't traverse the peripheral driver list like we do the 2227 * other lists, because it is a linker set, and therefore cannot be 2228 * changed during runtime. If the peripheral driver list is ever 2229 * re-done to be something other than a linker set (i.e. it can 2230 * change while the system is running), the list traversal should 2231 * be modified to work like the other traversal functions. 2232 */ 2233 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2234 *pdrv != NULL; pdrv++) { 2235 retval = tr_func(pdrv, arg); 2236 2237 if (retval == 0) 2238 return(retval); 2239 } 2240 2241 return(retval); 2242 } 2243 2244 static int 2245 xptpdperiphtraverse(struct periph_driver **pdrv, 2246 struct cam_periph *start_periph, 2247 xpt_periphfunc_t *tr_func, void *arg) 2248 { 2249 struct cam_periph *periph, *next_periph; 2250 int retval; 2251 2252 retval = 1; 2253 2254 xpt_lock_buses(); 2255 for (periph = (start_periph ? start_periph : 2256 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2257 periph = next_periph) { 2258 2259 2260 /* 2261 * In this case, we want to show peripherals that have been 2262 * invalidated, but not peripherals that are scheduled to 2263 * be freed. So instead of calling cam_periph_acquire(), 2264 * which will fail if the periph has been invalidated, we 2265 * just check for the free flag here. If it is free, we 2266 * skip to the next periph. 2267 */ 2268 if (periph->flags & CAM_PERIPH_FREE) { 2269 next_periph = TAILQ_NEXT(periph, unit_links); 2270 continue; 2271 } 2272 2273 /* 2274 * Acquire a reference to this periph while we call the 2275 * traversal function, so it can't go away. 2276 */ 2277 periph->refcount++; 2278 2279 /* 2280 * XXX KDM we have the toplogy lock here, but in 2281 * xptperiphtraverse(), we drop it before calling the 2282 * traversal function. Which is correct? 2283 */ 2284 retval = tr_func(periph, arg); 2285 2286 /* 2287 * Grab the next peripheral before we release this one, so 2288 * our next pointer is still valid. 2289 */ 2290 next_periph = TAILQ_NEXT(periph, unit_links); 2291 2292 cam_periph_release_locked_buses(periph); 2293 2294 if (retval == 0) 2295 goto bailout_done; 2296 } 2297 bailout_done: 2298 2299 xpt_unlock_buses(); 2300 2301 return(retval); 2302 } 2303 2304 static int 2305 xptdefbusfunc(struct cam_eb *bus, void *arg) 2306 { 2307 struct xpt_traverse_config *tr_config; 2308 2309 tr_config = (struct xpt_traverse_config *)arg; 2310 2311 if (tr_config->depth == XPT_DEPTH_BUS) { 2312 xpt_busfunc_t *tr_func; 2313 2314 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2315 2316 return(tr_func(bus, tr_config->tr_arg)); 2317 } else 2318 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2319 } 2320 2321 static int 2322 xptdeftargetfunc(struct cam_et *target, void *arg) 2323 { 2324 struct xpt_traverse_config *tr_config; 2325 2326 tr_config = (struct xpt_traverse_config *)arg; 2327 2328 if (tr_config->depth == XPT_DEPTH_TARGET) { 2329 xpt_targetfunc_t *tr_func; 2330 2331 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2332 2333 return(tr_func(target, tr_config->tr_arg)); 2334 } else 2335 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2336 } 2337 2338 static int 2339 xptdefdevicefunc(struct cam_ed *device, void *arg) 2340 { 2341 struct xpt_traverse_config *tr_config; 2342 2343 tr_config = (struct xpt_traverse_config *)arg; 2344 2345 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2346 xpt_devicefunc_t *tr_func; 2347 2348 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2349 2350 return(tr_func(device, tr_config->tr_arg)); 2351 } else 2352 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2353 } 2354 2355 static int 2356 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2357 { 2358 struct xpt_traverse_config *tr_config; 2359 xpt_periphfunc_t *tr_func; 2360 2361 tr_config = (struct xpt_traverse_config *)arg; 2362 2363 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2364 2365 /* 2366 * Unlike the other default functions, we don't check for depth 2367 * here. The peripheral driver level is the last level in the EDT, 2368 * so if we're here, we should execute the function in question. 2369 */ 2370 return(tr_func(periph, tr_config->tr_arg)); 2371 } 2372 2373 /* 2374 * Execute the given function for every bus in the EDT. 2375 */ 2376 static int 2377 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2378 { 2379 struct xpt_traverse_config tr_config; 2380 2381 tr_config.depth = XPT_DEPTH_BUS; 2382 tr_config.tr_func = tr_func; 2383 tr_config.tr_arg = arg; 2384 2385 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2386 } 2387 2388 /* 2389 * Execute the given function for every device in the EDT. 2390 */ 2391 static int 2392 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2393 { 2394 struct xpt_traverse_config tr_config; 2395 2396 tr_config.depth = XPT_DEPTH_DEVICE; 2397 tr_config.tr_func = tr_func; 2398 tr_config.tr_arg = arg; 2399 2400 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2401 } 2402 2403 static int 2404 xptsetasyncfunc(struct cam_ed *device, void *arg) 2405 { 2406 struct cam_path path; 2407 struct ccb_getdev cgd; 2408 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2409 2410 /* 2411 * Don't report unconfigured devices (Wildcard devs, 2412 * devices only for target mode, device instances 2413 * that have been invalidated but are waiting for 2414 * their last reference count to be released). 2415 */ 2416 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2417 return (1); 2418 2419 xpt_compile_path(&path, 2420 NULL, 2421 device->target->bus->path_id, 2422 device->target->target_id, 2423 device->lun_id); 2424 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2425 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2426 xpt_action((union ccb *)&cgd); 2427 csa->callback(csa->callback_arg, 2428 AC_FOUND_DEVICE, 2429 &path, &cgd); 2430 xpt_release_path(&path); 2431 2432 return(1); 2433 } 2434 2435 static int 2436 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2437 { 2438 struct cam_path path; 2439 struct ccb_pathinq cpi; 2440 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2441 2442 xpt_compile_path(&path, /*periph*/NULL, 2443 bus->sim->path_id, 2444 CAM_TARGET_WILDCARD, 2445 CAM_LUN_WILDCARD); 2446 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2447 cpi.ccb_h.func_code = XPT_PATH_INQ; 2448 xpt_action((union ccb *)&cpi); 2449 csa->callback(csa->callback_arg, 2450 AC_PATH_REGISTERED, 2451 &path, &cpi); 2452 xpt_release_path(&path); 2453 2454 return(1); 2455 } 2456 2457 void 2458 xpt_action(union ccb *start_ccb) 2459 { 2460 2461 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2462 2463 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2464 /* Compatibility for RL-unaware code. */ 2465 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0) 2466 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1; 2467 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2468 } 2469 2470 void 2471 xpt_action_default(union ccb *start_ccb) 2472 { 2473 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2474 struct cam_path *path; 2475 2476 path = start_ccb->ccb_h.path; 2477 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2478 2479 switch (start_ccb->ccb_h.func_code) { 2480 case XPT_SCSI_IO: 2481 { 2482 struct cam_ed *device; 2483 2484 /* 2485 * For the sake of compatibility with SCSI-1 2486 * devices that may not understand the identify 2487 * message, we include lun information in the 2488 * second byte of all commands. SCSI-1 specifies 2489 * that luns are a 3 bit value and reserves only 3 2490 * bits for lun information in the CDB. Later 2491 * revisions of the SCSI spec allow for more than 8 2492 * luns, but have deprecated lun information in the 2493 * CDB. So, if the lun won't fit, we must omit. 2494 * 2495 * Also be aware that during initial probing for devices, 2496 * the inquiry information is unknown but initialized to 0. 2497 * This means that this code will be exercised while probing 2498 * devices with an ANSI revision greater than 2. 2499 */ 2500 device = path->device; 2501 if (device->protocol_version <= SCSI_REV_2 2502 && start_ccb->ccb_h.target_lun < 8 2503 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2504 2505 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2506 start_ccb->ccb_h.target_lun << 5; 2507 } 2508 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2509 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2510 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2511 &path->device->inq_data), 2512 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2513 cdb_str, sizeof(cdb_str)))); 2514 } 2515 /* FALLTHROUGH */ 2516 case XPT_TARGET_IO: 2517 case XPT_CONT_TARGET_IO: 2518 start_ccb->csio.sense_resid = 0; 2519 start_ccb->csio.resid = 0; 2520 /* FALLTHROUGH */ 2521 case XPT_ATA_IO: 2522 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) { 2523 start_ccb->ataio.resid = 0; 2524 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n", 2525 ata_op_string(&start_ccb->ataio.cmd), 2526 ata_cmd_string(&start_ccb->ataio.cmd, 2527 cdb_str, sizeof(cdb_str)))); 2528 } 2529 /* FALLTHROUGH */ 2530 case XPT_RESET_DEV: 2531 case XPT_ENG_EXEC: 2532 case XPT_SMP_IO: 2533 { 2534 int frozen; 2535 2536 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2537 path->device->sim->devq->alloc_openings += frozen; 2538 if (frozen > 0) 2539 xpt_run_dev_allocq(path->bus); 2540 if (xpt_schedule_dev_sendq(path->bus, path->device)) 2541 xpt_run_dev_sendq(path->bus); 2542 break; 2543 } 2544 case XPT_CALC_GEOMETRY: 2545 { 2546 struct cam_sim *sim; 2547 2548 /* Filter out garbage */ 2549 if (start_ccb->ccg.block_size == 0 2550 || start_ccb->ccg.volume_size == 0) { 2551 start_ccb->ccg.cylinders = 0; 2552 start_ccb->ccg.heads = 0; 2553 start_ccb->ccg.secs_per_track = 0; 2554 start_ccb->ccb_h.status = CAM_REQ_CMP; 2555 break; 2556 } 2557 #if defined(PC98) || defined(__sparc64__) 2558 /* 2559 * In a PC-98 system, geometry translation depens on 2560 * the "real" device geometry obtained from mode page 4. 2561 * SCSI geometry translation is performed in the 2562 * initialization routine of the SCSI BIOS and the result 2563 * stored in host memory. If the translation is available 2564 * in host memory, use it. If not, rely on the default 2565 * translation the device driver performs. 2566 * For sparc64, we may need adjust the geometry of large 2567 * disks in order to fit the limitations of the 16-bit 2568 * fields of the VTOC8 disk label. 2569 */ 2570 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2571 start_ccb->ccb_h.status = CAM_REQ_CMP; 2572 break; 2573 } 2574 #endif 2575 sim = path->bus->sim; 2576 (*(sim->sim_action))(sim, start_ccb); 2577 break; 2578 } 2579 case XPT_ABORT: 2580 { 2581 union ccb* abort_ccb; 2582 2583 abort_ccb = start_ccb->cab.abort_ccb; 2584 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2585 2586 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2587 struct cam_ccbq *ccbq; 2588 struct cam_ed *device; 2589 2590 device = abort_ccb->ccb_h.path->device; 2591 ccbq = &device->ccbq; 2592 device->sim->devq->alloc_openings -= 2593 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2594 abort_ccb->ccb_h.status = 2595 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2596 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2597 xpt_done(abort_ccb); 2598 start_ccb->ccb_h.status = CAM_REQ_CMP; 2599 break; 2600 } 2601 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2602 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2603 /* 2604 * We've caught this ccb en route to 2605 * the SIM. Flag it for abort and the 2606 * SIM will do so just before starting 2607 * real work on the CCB. 2608 */ 2609 abort_ccb->ccb_h.status = 2610 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2611 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2612 start_ccb->ccb_h.status = CAM_REQ_CMP; 2613 break; 2614 } 2615 } 2616 if (XPT_FC_IS_QUEUED(abort_ccb) 2617 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2618 /* 2619 * It's already completed but waiting 2620 * for our SWI to get to it. 2621 */ 2622 start_ccb->ccb_h.status = CAM_UA_ABORT; 2623 break; 2624 } 2625 /* 2626 * If we weren't able to take care of the abort request 2627 * in the XPT, pass the request down to the SIM for processing. 2628 */ 2629 } 2630 /* FALLTHROUGH */ 2631 case XPT_ACCEPT_TARGET_IO: 2632 case XPT_EN_LUN: 2633 case XPT_IMMED_NOTIFY: 2634 case XPT_NOTIFY_ACK: 2635 case XPT_RESET_BUS: 2636 case XPT_IMMEDIATE_NOTIFY: 2637 case XPT_NOTIFY_ACKNOWLEDGE: 2638 case XPT_GET_SIM_KNOB: 2639 case XPT_SET_SIM_KNOB: 2640 { 2641 struct cam_sim *sim; 2642 2643 sim = path->bus->sim; 2644 (*(sim->sim_action))(sim, start_ccb); 2645 break; 2646 } 2647 case XPT_PATH_INQ: 2648 { 2649 struct cam_sim *sim; 2650 2651 sim = path->bus->sim; 2652 (*(sim->sim_action))(sim, start_ccb); 2653 break; 2654 } 2655 case XPT_PATH_STATS: 2656 start_ccb->cpis.last_reset = path->bus->last_reset; 2657 start_ccb->ccb_h.status = CAM_REQ_CMP; 2658 break; 2659 case XPT_GDEV_TYPE: 2660 { 2661 struct cam_ed *dev; 2662 2663 dev = path->device; 2664 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2665 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2666 } else { 2667 struct ccb_getdev *cgd; 2668 2669 cgd = &start_ccb->cgd; 2670 cgd->protocol = dev->protocol; 2671 cgd->inq_data = dev->inq_data; 2672 cgd->ident_data = dev->ident_data; 2673 cgd->inq_flags = dev->inq_flags; 2674 cgd->ccb_h.status = CAM_REQ_CMP; 2675 cgd->serial_num_len = dev->serial_num_len; 2676 if ((dev->serial_num_len > 0) 2677 && (dev->serial_num != NULL)) 2678 bcopy(dev->serial_num, cgd->serial_num, 2679 dev->serial_num_len); 2680 } 2681 break; 2682 } 2683 case XPT_GDEV_STATS: 2684 { 2685 struct cam_ed *dev; 2686 2687 dev = path->device; 2688 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2689 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2690 } else { 2691 struct ccb_getdevstats *cgds; 2692 struct cam_eb *bus; 2693 struct cam_et *tar; 2694 2695 cgds = &start_ccb->cgds; 2696 bus = path->bus; 2697 tar = path->target; 2698 cgds->dev_openings = dev->ccbq.dev_openings; 2699 cgds->dev_active = dev->ccbq.dev_active; 2700 cgds->devq_openings = dev->ccbq.devq_openings; 2701 cgds->devq_queued = dev->ccbq.queue.entries; 2702 cgds->held = dev->ccbq.held; 2703 cgds->last_reset = tar->last_reset; 2704 cgds->maxtags = dev->maxtags; 2705 cgds->mintags = dev->mintags; 2706 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2707 cgds->last_reset = bus->last_reset; 2708 cgds->ccb_h.status = CAM_REQ_CMP; 2709 } 2710 break; 2711 } 2712 case XPT_GDEVLIST: 2713 { 2714 struct cam_periph *nperiph; 2715 struct periph_list *periph_head; 2716 struct ccb_getdevlist *cgdl; 2717 u_int i; 2718 struct cam_ed *device; 2719 int found; 2720 2721 2722 found = 0; 2723 2724 /* 2725 * Don't want anyone mucking with our data. 2726 */ 2727 device = path->device; 2728 periph_head = &device->periphs; 2729 cgdl = &start_ccb->cgdl; 2730 2731 /* 2732 * Check and see if the list has changed since the user 2733 * last requested a list member. If so, tell them that the 2734 * list has changed, and therefore they need to start over 2735 * from the beginning. 2736 */ 2737 if ((cgdl->index != 0) && 2738 (cgdl->generation != device->generation)) { 2739 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2740 break; 2741 } 2742 2743 /* 2744 * Traverse the list of peripherals and attempt to find 2745 * the requested peripheral. 2746 */ 2747 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2748 (nperiph != NULL) && (i <= cgdl->index); 2749 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2750 if (i == cgdl->index) { 2751 strncpy(cgdl->periph_name, 2752 nperiph->periph_name, 2753 DEV_IDLEN); 2754 cgdl->unit_number = nperiph->unit_number; 2755 found = 1; 2756 } 2757 } 2758 if (found == 0) { 2759 cgdl->status = CAM_GDEVLIST_ERROR; 2760 break; 2761 } 2762 2763 if (nperiph == NULL) 2764 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2765 else 2766 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2767 2768 cgdl->index++; 2769 cgdl->generation = device->generation; 2770 2771 cgdl->ccb_h.status = CAM_REQ_CMP; 2772 break; 2773 } 2774 case XPT_DEV_MATCH: 2775 { 2776 dev_pos_type position_type; 2777 struct ccb_dev_match *cdm; 2778 2779 cdm = &start_ccb->cdm; 2780 2781 /* 2782 * There are two ways of getting at information in the EDT. 2783 * The first way is via the primary EDT tree. It starts 2784 * with a list of busses, then a list of targets on a bus, 2785 * then devices/luns on a target, and then peripherals on a 2786 * device/lun. The "other" way is by the peripheral driver 2787 * lists. The peripheral driver lists are organized by 2788 * peripheral driver. (obviously) So it makes sense to 2789 * use the peripheral driver list if the user is looking 2790 * for something like "da1", or all "da" devices. If the 2791 * user is looking for something on a particular bus/target 2792 * or lun, it's generally better to go through the EDT tree. 2793 */ 2794 2795 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2796 position_type = cdm->pos.position_type; 2797 else { 2798 u_int i; 2799 2800 position_type = CAM_DEV_POS_NONE; 2801 2802 for (i = 0; i < cdm->num_patterns; i++) { 2803 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2804 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2805 position_type = CAM_DEV_POS_EDT; 2806 break; 2807 } 2808 } 2809 2810 if (cdm->num_patterns == 0) 2811 position_type = CAM_DEV_POS_EDT; 2812 else if (position_type == CAM_DEV_POS_NONE) 2813 position_type = CAM_DEV_POS_PDRV; 2814 } 2815 2816 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2817 case CAM_DEV_POS_EDT: 2818 xptedtmatch(cdm); 2819 break; 2820 case CAM_DEV_POS_PDRV: 2821 xptperiphlistmatch(cdm); 2822 break; 2823 default: 2824 cdm->status = CAM_DEV_MATCH_ERROR; 2825 break; 2826 } 2827 2828 if (cdm->status == CAM_DEV_MATCH_ERROR) 2829 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2830 else 2831 start_ccb->ccb_h.status = CAM_REQ_CMP; 2832 2833 break; 2834 } 2835 case XPT_SASYNC_CB: 2836 { 2837 struct ccb_setasync *csa; 2838 struct async_node *cur_entry; 2839 struct async_list *async_head; 2840 u_int32_t added; 2841 2842 csa = &start_ccb->csa; 2843 added = csa->event_enable; 2844 async_head = &path->device->asyncs; 2845 2846 /* 2847 * If there is already an entry for us, simply 2848 * update it. 2849 */ 2850 cur_entry = SLIST_FIRST(async_head); 2851 while (cur_entry != NULL) { 2852 if ((cur_entry->callback_arg == csa->callback_arg) 2853 && (cur_entry->callback == csa->callback)) 2854 break; 2855 cur_entry = SLIST_NEXT(cur_entry, links); 2856 } 2857 2858 if (cur_entry != NULL) { 2859 /* 2860 * If the request has no flags set, 2861 * remove the entry. 2862 */ 2863 added &= ~cur_entry->event_enable; 2864 if (csa->event_enable == 0) { 2865 SLIST_REMOVE(async_head, cur_entry, 2866 async_node, links); 2867 xpt_release_device(path->device); 2868 free(cur_entry, M_CAMXPT); 2869 } else { 2870 cur_entry->event_enable = csa->event_enable; 2871 } 2872 csa->event_enable = added; 2873 } else { 2874 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2875 M_NOWAIT); 2876 if (cur_entry == NULL) { 2877 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2878 break; 2879 } 2880 cur_entry->event_enable = csa->event_enable; 2881 cur_entry->callback_arg = csa->callback_arg; 2882 cur_entry->callback = csa->callback; 2883 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2884 xpt_acquire_device(path->device); 2885 } 2886 start_ccb->ccb_h.status = CAM_REQ_CMP; 2887 break; 2888 } 2889 case XPT_REL_SIMQ: 2890 { 2891 struct ccb_relsim *crs; 2892 struct cam_ed *dev; 2893 2894 crs = &start_ccb->crs; 2895 dev = path->device; 2896 if (dev == NULL) { 2897 2898 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2899 break; 2900 } 2901 2902 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2903 2904 /* Don't ever go below one opening */ 2905 if (crs->openings > 0) { 2906 xpt_dev_ccbq_resize(path, crs->openings); 2907 if (bootverbose) { 2908 xpt_print(path, 2909 "number of openings is now %d\n", 2910 crs->openings); 2911 } 2912 } 2913 } 2914 2915 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2916 2917 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2918 2919 /* 2920 * Just extend the old timeout and decrement 2921 * the freeze count so that a single timeout 2922 * is sufficient for releasing the queue. 2923 */ 2924 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2925 callout_stop(&dev->callout); 2926 } else { 2927 2928 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2929 } 2930 2931 callout_reset(&dev->callout, 2932 (crs->release_timeout * hz) / 1000, 2933 xpt_release_devq_timeout, dev); 2934 2935 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2936 2937 } 2938 2939 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2940 2941 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2942 /* 2943 * Decrement the freeze count so that a single 2944 * completion is still sufficient to unfreeze 2945 * the queue. 2946 */ 2947 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2948 } else { 2949 2950 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2951 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2952 } 2953 } 2954 2955 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2956 2957 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2958 || (dev->ccbq.dev_active == 0)) { 2959 2960 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2961 } else { 2962 2963 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2964 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2965 } 2966 } 2967 2968 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 2969 xpt_release_devq_rl(path, /*runlevel*/ 2970 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2971 crs->release_timeout : 0, 2972 /*count*/1, /*run_queue*/TRUE); 2973 } 2974 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0]; 2975 start_ccb->ccb_h.status = CAM_REQ_CMP; 2976 break; 2977 } 2978 case XPT_DEBUG: { 2979 /* Check that all request bits are supported. */ 2980 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2981 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2982 break; 2983 } 2984 2985 cam_dflags = start_ccb->cdbg.flags; 2986 if (cam_dpath != NULL) { 2987 xpt_free_path(cam_dpath); 2988 cam_dpath = NULL; 2989 } 2990 if (cam_dflags != CAM_DEBUG_NONE) { 2991 if (xpt_create_path(&cam_dpath, xpt_periph, 2992 start_ccb->ccb_h.path_id, 2993 start_ccb->ccb_h.target_id, 2994 start_ccb->ccb_h.target_lun) != 2995 CAM_REQ_CMP) { 2996 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2997 cam_dflags = CAM_DEBUG_NONE; 2998 } else { 2999 start_ccb->ccb_h.status = CAM_REQ_CMP; 3000 xpt_print(cam_dpath, "debugging flags now %x\n", 3001 cam_dflags); 3002 } 3003 } else { 3004 cam_dpath = NULL; 3005 start_ccb->ccb_h.status = CAM_REQ_CMP; 3006 } 3007 break; 3008 } 3009 case XPT_FREEZE_QUEUE: 3010 { 3011 struct ccb_relsim *crs = &start_ccb->crs; 3012 3013 xpt_freeze_devq_rl(path, /*runlevel*/ 3014 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 3015 crs->release_timeout : 0, /*count*/1); 3016 start_ccb->ccb_h.status = CAM_REQ_CMP; 3017 break; 3018 } 3019 case XPT_NOOP: 3020 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3021 xpt_freeze_devq(path, 1); 3022 start_ccb->ccb_h.status = CAM_REQ_CMP; 3023 break; 3024 default: 3025 case XPT_SDEV_TYPE: 3026 case XPT_TERM_IO: 3027 case XPT_ENG_INQ: 3028 /* XXX Implement */ 3029 printf("%s: CCB type %#x not supported\n", __func__, 3030 start_ccb->ccb_h.func_code); 3031 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3032 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3033 xpt_done(start_ccb); 3034 } 3035 break; 3036 } 3037 } 3038 3039 void 3040 xpt_polled_action(union ccb *start_ccb) 3041 { 3042 u_int32_t timeout; 3043 struct cam_sim *sim; 3044 struct cam_devq *devq; 3045 struct cam_ed *dev; 3046 3047 3048 timeout = start_ccb->ccb_h.timeout * 10; 3049 sim = start_ccb->ccb_h.path->bus->sim; 3050 devq = sim->devq; 3051 dev = start_ccb->ccb_h.path->device; 3052 3053 mtx_assert(sim->mtx, MA_OWNED); 3054 3055 /* Don't use ISR for this SIM while polling. */ 3056 sim->flags |= CAM_SIM_POLLED; 3057 3058 /* 3059 * Steal an opening so that no other queued requests 3060 * can get it before us while we simulate interrupts. 3061 */ 3062 dev->ccbq.devq_openings--; 3063 dev->ccbq.dev_openings--; 3064 3065 while(((devq != NULL && devq->send_openings <= 0) || 3066 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3067 DELAY(100); 3068 (*(sim->sim_poll))(sim); 3069 camisr_runqueue(&sim->sim_doneq); 3070 } 3071 3072 dev->ccbq.devq_openings++; 3073 dev->ccbq.dev_openings++; 3074 3075 if (timeout != 0) { 3076 xpt_action(start_ccb); 3077 while(--timeout > 0) { 3078 (*(sim->sim_poll))(sim); 3079 camisr_runqueue(&sim->sim_doneq); 3080 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3081 != CAM_REQ_INPROG) 3082 break; 3083 DELAY(100); 3084 } 3085 if (timeout == 0) { 3086 /* 3087 * XXX Is it worth adding a sim_timeout entry 3088 * point so we can attempt recovery? If 3089 * this is only used for dumps, I don't think 3090 * it is. 3091 */ 3092 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3093 } 3094 } else { 3095 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3096 } 3097 3098 /* We will use CAM ISR for this SIM again. */ 3099 sim->flags &= ~CAM_SIM_POLLED; 3100 } 3101 3102 /* 3103 * Schedule a peripheral driver to receive a ccb when it's 3104 * target device has space for more transactions. 3105 */ 3106 void 3107 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3108 { 3109 struct cam_ed *device; 3110 int runq = 0; 3111 3112 mtx_assert(perph->sim->mtx, MA_OWNED); 3113 3114 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3115 device = perph->path->device; 3116 if (periph_is_queued(perph)) { 3117 /* Simply reorder based on new priority */ 3118 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3119 (" change priority to %d\n", new_priority)); 3120 if (new_priority < perph->pinfo.priority) { 3121 camq_change_priority(&device->drvq, 3122 perph->pinfo.index, 3123 new_priority); 3124 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3125 } 3126 } else { 3127 /* New entry on the queue */ 3128 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3129 (" added periph to queue\n")); 3130 perph->pinfo.priority = new_priority; 3131 perph->pinfo.generation = ++device->drvq.generation; 3132 camq_insert(&device->drvq, &perph->pinfo); 3133 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3134 } 3135 if (runq != 0) { 3136 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3137 (" calling xpt_run_devq\n")); 3138 xpt_run_dev_allocq(perph->path->bus); 3139 } 3140 } 3141 3142 3143 /* 3144 * Schedule a device to run on a given queue. 3145 * If the device was inserted as a new entry on the queue, 3146 * return 1 meaning the device queue should be run. If we 3147 * were already queued, implying someone else has already 3148 * started the queue, return 0 so the caller doesn't attempt 3149 * to run the queue. 3150 */ 3151 int 3152 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3153 u_int32_t new_priority) 3154 { 3155 int retval; 3156 u_int32_t old_priority; 3157 3158 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3159 3160 old_priority = pinfo->priority; 3161 3162 /* 3163 * Are we already queued? 3164 */ 3165 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3166 /* Simply reorder based on new priority */ 3167 if (new_priority < old_priority) { 3168 camq_change_priority(queue, pinfo->index, 3169 new_priority); 3170 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3171 ("changed priority to %d\n", 3172 new_priority)); 3173 retval = 1; 3174 } else 3175 retval = 0; 3176 } else { 3177 /* New entry on the queue */ 3178 if (new_priority < old_priority) 3179 pinfo->priority = new_priority; 3180 3181 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3182 ("Inserting onto queue\n")); 3183 pinfo->generation = ++queue->generation; 3184 camq_insert(queue, pinfo); 3185 retval = 1; 3186 } 3187 return (retval); 3188 } 3189 3190 static void 3191 xpt_run_dev_allocq(struct cam_eb *bus) 3192 { 3193 struct cam_devq *devq; 3194 3195 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3196 devq = bus->sim->devq; 3197 3198 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3199 (" qfrozen_cnt == 0x%x, entries == %d, " 3200 "openings == %d, active == %d\n", 3201 devq->alloc_queue.qfrozen_cnt[0], 3202 devq->alloc_queue.entries, 3203 devq->alloc_openings, 3204 devq->alloc_active)); 3205 3206 devq->alloc_queue.qfrozen_cnt[0]++; 3207 while ((devq->alloc_queue.entries > 0) 3208 && (devq->alloc_openings > 0) 3209 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) { 3210 struct cam_ed_qinfo *qinfo; 3211 struct cam_ed *device; 3212 union ccb *work_ccb; 3213 struct cam_periph *drv; 3214 struct camq *drvq; 3215 3216 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3217 CAMQ_HEAD); 3218 device = qinfo->device; 3219 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3220 ("running device %p\n", device)); 3221 3222 drvq = &device->drvq; 3223 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: " 3224 "Device on queue without any work to do")); 3225 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3226 devq->alloc_openings--; 3227 devq->alloc_active++; 3228 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3229 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3230 drv->pinfo.priority); 3231 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3232 ("calling periph start\n")); 3233 drv->periph_start(drv, work_ccb); 3234 } else { 3235 /* 3236 * Malloc failure in alloc_ccb 3237 */ 3238 /* 3239 * XXX add us to a list to be run from free_ccb 3240 * if we don't have any ccbs active on this 3241 * device queue otherwise we may never get run 3242 * again. 3243 */ 3244 break; 3245 } 3246 3247 /* We may have more work. Attempt to reschedule. */ 3248 xpt_schedule_dev_allocq(bus, device); 3249 } 3250 devq->alloc_queue.qfrozen_cnt[0]--; 3251 } 3252 3253 static void 3254 xpt_run_dev_sendq(struct cam_eb *bus) 3255 { 3256 struct cam_devq *devq; 3257 3258 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3259 3260 devq = bus->sim->devq; 3261 3262 devq->send_queue.qfrozen_cnt[0]++; 3263 while ((devq->send_queue.entries > 0) 3264 && (devq->send_openings > 0) 3265 && (devq->send_queue.qfrozen_cnt[0] <= 1)) { 3266 struct cam_ed_qinfo *qinfo; 3267 struct cam_ed *device; 3268 union ccb *work_ccb; 3269 struct cam_sim *sim; 3270 3271 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3272 CAMQ_HEAD); 3273 device = qinfo->device; 3274 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3275 ("running device %p\n", device)); 3276 3277 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3278 if (work_ccb == NULL) { 3279 printf("device on run queue with no ccbs???\n"); 3280 continue; 3281 } 3282 3283 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3284 3285 mtx_lock(&xsoftc.xpt_lock); 3286 if (xsoftc.num_highpower <= 0) { 3287 /* 3288 * We got a high power command, but we 3289 * don't have any available slots. Freeze 3290 * the device queue until we have a slot 3291 * available. 3292 */ 3293 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3294 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3295 &work_ccb->ccb_h, 3296 xpt_links.stqe); 3297 3298 mtx_unlock(&xsoftc.xpt_lock); 3299 continue; 3300 } else { 3301 /* 3302 * Consume a high power slot while 3303 * this ccb runs. 3304 */ 3305 xsoftc.num_highpower--; 3306 } 3307 mtx_unlock(&xsoftc.xpt_lock); 3308 } 3309 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3310 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3311 3312 devq->send_openings--; 3313 devq->send_active++; 3314 3315 xpt_schedule_dev_sendq(bus, device); 3316 3317 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3318 /* 3319 * The client wants to freeze the queue 3320 * after this CCB is sent. 3321 */ 3322 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3323 } 3324 3325 /* In Target mode, the peripheral driver knows best... */ 3326 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3327 if ((device->inq_flags & SID_CmdQue) != 0 3328 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3329 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3330 else 3331 /* 3332 * Clear this in case of a retried CCB that 3333 * failed due to a rejected tag. 3334 */ 3335 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3336 } 3337 3338 /* 3339 * Device queues can be shared among multiple sim instances 3340 * that reside on different busses. Use the SIM in the queue 3341 * CCB's path, rather than the one in the bus that was passed 3342 * into this function. 3343 */ 3344 sim = work_ccb->ccb_h.path->bus->sim; 3345 (*(sim->sim_action))(sim, work_ccb); 3346 } 3347 devq->send_queue.qfrozen_cnt[0]--; 3348 } 3349 3350 /* 3351 * This function merges stuff from the slave ccb into the master ccb, while 3352 * keeping important fields in the master ccb constant. 3353 */ 3354 void 3355 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3356 { 3357 3358 /* 3359 * Pull fields that are valid for peripheral drivers to set 3360 * into the master CCB along with the CCB "payload". 3361 */ 3362 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3363 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3364 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3365 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3366 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3367 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3368 } 3369 3370 void 3371 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3372 { 3373 3374 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3375 ccb_h->pinfo.priority = priority; 3376 ccb_h->path = path; 3377 ccb_h->path_id = path->bus->path_id; 3378 if (path->target) 3379 ccb_h->target_id = path->target->target_id; 3380 else 3381 ccb_h->target_id = CAM_TARGET_WILDCARD; 3382 if (path->device) { 3383 ccb_h->target_lun = path->device->lun_id; 3384 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3385 } else { 3386 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3387 } 3388 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3389 ccb_h->flags = 0; 3390 } 3391 3392 /* Path manipulation functions */ 3393 cam_status 3394 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3395 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3396 { 3397 struct cam_path *path; 3398 cam_status status; 3399 3400 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3401 3402 if (path == NULL) { 3403 status = CAM_RESRC_UNAVAIL; 3404 return(status); 3405 } 3406 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3407 if (status != CAM_REQ_CMP) { 3408 free(path, M_CAMXPT); 3409 path = NULL; 3410 } 3411 *new_path_ptr = path; 3412 return (status); 3413 } 3414 3415 cam_status 3416 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3417 struct cam_periph *periph, path_id_t path_id, 3418 target_id_t target_id, lun_id_t lun_id) 3419 { 3420 struct cam_path *path; 3421 struct cam_eb *bus = NULL; 3422 cam_status status; 3423 int need_unlock = 0; 3424 3425 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3426 3427 if (path_id != CAM_BUS_WILDCARD) { 3428 bus = xpt_find_bus(path_id); 3429 if (bus != NULL) { 3430 need_unlock = 1; 3431 CAM_SIM_LOCK(bus->sim); 3432 } 3433 } 3434 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3435 if (need_unlock) { 3436 CAM_SIM_UNLOCK(bus->sim); 3437 xpt_release_bus(bus); 3438 } 3439 if (status != CAM_REQ_CMP) { 3440 free(path, M_CAMXPT); 3441 path = NULL; 3442 } 3443 *new_path_ptr = path; 3444 return (status); 3445 } 3446 3447 cam_status 3448 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3449 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3450 { 3451 struct cam_eb *bus; 3452 struct cam_et *target; 3453 struct cam_ed *device; 3454 cam_status status; 3455 3456 status = CAM_REQ_CMP; /* Completed without error */ 3457 target = NULL; /* Wildcarded */ 3458 device = NULL; /* Wildcarded */ 3459 3460 /* 3461 * We will potentially modify the EDT, so block interrupts 3462 * that may attempt to create cam paths. 3463 */ 3464 bus = xpt_find_bus(path_id); 3465 if (bus == NULL) { 3466 status = CAM_PATH_INVALID; 3467 } else { 3468 target = xpt_find_target(bus, target_id); 3469 if (target == NULL) { 3470 /* Create one */ 3471 struct cam_et *new_target; 3472 3473 new_target = xpt_alloc_target(bus, target_id); 3474 if (new_target == NULL) { 3475 status = CAM_RESRC_UNAVAIL; 3476 } else { 3477 target = new_target; 3478 } 3479 } 3480 if (target != NULL) { 3481 device = xpt_find_device(target, lun_id); 3482 if (device == NULL) { 3483 /* Create one */ 3484 struct cam_ed *new_device; 3485 3486 new_device = 3487 (*(bus->xport->alloc_device))(bus, 3488 target, 3489 lun_id); 3490 if (new_device == NULL) { 3491 status = CAM_RESRC_UNAVAIL; 3492 } else { 3493 device = new_device; 3494 } 3495 } 3496 } 3497 } 3498 3499 /* 3500 * Only touch the user's data if we are successful. 3501 */ 3502 if (status == CAM_REQ_CMP) { 3503 new_path->periph = perph; 3504 new_path->bus = bus; 3505 new_path->target = target; 3506 new_path->device = device; 3507 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3508 } else { 3509 if (device != NULL) 3510 xpt_release_device(device); 3511 if (target != NULL) 3512 xpt_release_target(target); 3513 if (bus != NULL) 3514 xpt_release_bus(bus); 3515 } 3516 return (status); 3517 } 3518 3519 void 3520 xpt_release_path(struct cam_path *path) 3521 { 3522 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3523 if (path->device != NULL) { 3524 xpt_release_device(path->device); 3525 path->device = NULL; 3526 } 3527 if (path->target != NULL) { 3528 xpt_release_target(path->target); 3529 path->target = NULL; 3530 } 3531 if (path->bus != NULL) { 3532 xpt_release_bus(path->bus); 3533 path->bus = NULL; 3534 } 3535 } 3536 3537 void 3538 xpt_free_path(struct cam_path *path) 3539 { 3540 3541 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3542 xpt_release_path(path); 3543 free(path, M_CAMXPT); 3544 } 3545 3546 void 3547 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3548 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3549 { 3550 3551 mtx_lock(&xsoftc.xpt_topo_lock); 3552 if (bus_ref) { 3553 if (path->bus) 3554 *bus_ref = path->bus->refcount; 3555 else 3556 *bus_ref = 0; 3557 } 3558 mtx_unlock(&xsoftc.xpt_topo_lock); 3559 if (periph_ref) { 3560 if (path->periph) 3561 *periph_ref = path->periph->refcount; 3562 else 3563 *periph_ref = 0; 3564 } 3565 if (target_ref) { 3566 if (path->target) 3567 *target_ref = path->target->refcount; 3568 else 3569 *target_ref = 0; 3570 } 3571 if (device_ref) { 3572 if (path->device) 3573 *device_ref = path->device->refcount; 3574 else 3575 *device_ref = 0; 3576 } 3577 } 3578 3579 /* 3580 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3581 * in path1, 2 for match with wildcards in path2. 3582 */ 3583 int 3584 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3585 { 3586 int retval = 0; 3587 3588 if (path1->bus != path2->bus) { 3589 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3590 retval = 1; 3591 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3592 retval = 2; 3593 else 3594 return (-1); 3595 } 3596 if (path1->target != path2->target) { 3597 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3598 if (retval == 0) 3599 retval = 1; 3600 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3601 retval = 2; 3602 else 3603 return (-1); 3604 } 3605 if (path1->device != path2->device) { 3606 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3607 if (retval == 0) 3608 retval = 1; 3609 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3610 retval = 2; 3611 else 3612 return (-1); 3613 } 3614 return (retval); 3615 } 3616 3617 void 3618 xpt_print_path(struct cam_path *path) 3619 { 3620 3621 if (path == NULL) 3622 printf("(nopath): "); 3623 else { 3624 if (path->periph != NULL) 3625 printf("(%s%d:", path->periph->periph_name, 3626 path->periph->unit_number); 3627 else 3628 printf("(noperiph:"); 3629 3630 if (path->bus != NULL) 3631 printf("%s%d:%d:", path->bus->sim->sim_name, 3632 path->bus->sim->unit_number, 3633 path->bus->sim->bus_id); 3634 else 3635 printf("nobus:"); 3636 3637 if (path->target != NULL) 3638 printf("%d:", path->target->target_id); 3639 else 3640 printf("X:"); 3641 3642 if (path->device != NULL) 3643 printf("%d): ", path->device->lun_id); 3644 else 3645 printf("X): "); 3646 } 3647 } 3648 3649 void 3650 xpt_print(struct cam_path *path, const char *fmt, ...) 3651 { 3652 va_list ap; 3653 xpt_print_path(path); 3654 va_start(ap, fmt); 3655 vprintf(fmt, ap); 3656 va_end(ap); 3657 } 3658 3659 int 3660 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3661 { 3662 struct sbuf sb; 3663 3664 #ifdef INVARIANTS 3665 if (path != NULL && path->bus != NULL) 3666 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3667 #endif 3668 3669 sbuf_new(&sb, str, str_len, 0); 3670 3671 if (path == NULL) 3672 sbuf_printf(&sb, "(nopath): "); 3673 else { 3674 if (path->periph != NULL) 3675 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3676 path->periph->unit_number); 3677 else 3678 sbuf_printf(&sb, "(noperiph:"); 3679 3680 if (path->bus != NULL) 3681 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3682 path->bus->sim->unit_number, 3683 path->bus->sim->bus_id); 3684 else 3685 sbuf_printf(&sb, "nobus:"); 3686 3687 if (path->target != NULL) 3688 sbuf_printf(&sb, "%d:", path->target->target_id); 3689 else 3690 sbuf_printf(&sb, "X:"); 3691 3692 if (path->device != NULL) 3693 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3694 else 3695 sbuf_printf(&sb, "X): "); 3696 } 3697 sbuf_finish(&sb); 3698 3699 return(sbuf_len(&sb)); 3700 } 3701 3702 path_id_t 3703 xpt_path_path_id(struct cam_path *path) 3704 { 3705 return(path->bus->path_id); 3706 } 3707 3708 target_id_t 3709 xpt_path_target_id(struct cam_path *path) 3710 { 3711 if (path->target != NULL) 3712 return (path->target->target_id); 3713 else 3714 return (CAM_TARGET_WILDCARD); 3715 } 3716 3717 lun_id_t 3718 xpt_path_lun_id(struct cam_path *path) 3719 { 3720 if (path->device != NULL) 3721 return (path->device->lun_id); 3722 else 3723 return (CAM_LUN_WILDCARD); 3724 } 3725 3726 struct cam_sim * 3727 xpt_path_sim(struct cam_path *path) 3728 { 3729 3730 return (path->bus->sim); 3731 } 3732 3733 struct cam_periph* 3734 xpt_path_periph(struct cam_path *path) 3735 { 3736 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3737 3738 return (path->periph); 3739 } 3740 3741 int 3742 xpt_path_legacy_ata_id(struct cam_path *path) 3743 { 3744 struct cam_eb *bus; 3745 int bus_id; 3746 3747 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3748 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3749 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3750 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3751 return (-1); 3752 3753 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3754 path->bus->sim->unit_number < 2) { 3755 bus_id = path->bus->sim->unit_number; 3756 } else { 3757 bus_id = 2; 3758 xpt_lock_buses(); 3759 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3760 if (bus == path->bus) 3761 break; 3762 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3763 bus->sim->unit_number >= 2) || 3764 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3765 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3766 strcmp(bus->sim->sim_name, "siisch") == 0) 3767 bus_id++; 3768 } 3769 xpt_unlock_buses(); 3770 } 3771 if (path->target != NULL) { 3772 if (path->target->target_id < 2) 3773 return (bus_id * 2 + path->target->target_id); 3774 else 3775 return (-1); 3776 } else 3777 return (bus_id * 2); 3778 } 3779 3780 /* 3781 * Release a CAM control block for the caller. Remit the cost of the structure 3782 * to the device referenced by the path. If the this device had no 'credits' 3783 * and peripheral drivers have registered async callbacks for this notification 3784 * call them now. 3785 */ 3786 void 3787 xpt_release_ccb(union ccb *free_ccb) 3788 { 3789 struct cam_path *path; 3790 struct cam_ed *device; 3791 struct cam_eb *bus; 3792 struct cam_sim *sim; 3793 3794 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3795 path = free_ccb->ccb_h.path; 3796 device = path->device; 3797 bus = path->bus; 3798 sim = bus->sim; 3799 3800 mtx_assert(sim->mtx, MA_OWNED); 3801 3802 cam_ccbq_release_opening(&device->ccbq); 3803 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3804 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3805 cam_ccbq_resize(&device->ccbq, 3806 device->ccbq.dev_openings + device->ccbq.dev_active); 3807 } 3808 if (sim->ccb_count > sim->max_ccbs) { 3809 xpt_free_ccb(free_ccb); 3810 sim->ccb_count--; 3811 } else { 3812 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3813 xpt_links.sle); 3814 } 3815 if (sim->devq == NULL) { 3816 return; 3817 } 3818 sim->devq->alloc_openings++; 3819 sim->devq->alloc_active--; 3820 if (device_is_alloc_queued(device) == 0) 3821 xpt_schedule_dev_allocq(bus, device); 3822 xpt_run_dev_allocq(bus); 3823 } 3824 3825 /* Functions accessed by SIM drivers */ 3826 3827 static struct xpt_xport xport_default = { 3828 .alloc_device = xpt_alloc_device_default, 3829 .action = xpt_action_default, 3830 .async = xpt_dev_async_default, 3831 }; 3832 3833 /* 3834 * A sim structure, listing the SIM entry points and instance 3835 * identification info is passed to xpt_bus_register to hook the SIM 3836 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3837 * for this new bus and places it in the array of busses and assigns 3838 * it a path_id. The path_id may be influenced by "hard wiring" 3839 * information specified by the user. Once interrupt services are 3840 * available, the bus will be probed. 3841 */ 3842 int32_t 3843 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3844 { 3845 struct cam_eb *new_bus; 3846 struct cam_eb *old_bus; 3847 struct ccb_pathinq cpi; 3848 struct cam_path *path; 3849 cam_status status; 3850 3851 mtx_assert(sim->mtx, MA_OWNED); 3852 3853 sim->bus_id = bus; 3854 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3855 M_CAMXPT, M_NOWAIT); 3856 if (new_bus == NULL) { 3857 /* Couldn't satisfy request */ 3858 return (CAM_RESRC_UNAVAIL); 3859 } 3860 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3861 if (path == NULL) { 3862 free(new_bus, M_CAMXPT); 3863 return (CAM_RESRC_UNAVAIL); 3864 } 3865 3866 if (strcmp(sim->sim_name, "xpt") != 0) { 3867 sim->path_id = 3868 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3869 } 3870 3871 TAILQ_INIT(&new_bus->et_entries); 3872 new_bus->path_id = sim->path_id; 3873 cam_sim_hold(sim); 3874 new_bus->sim = sim; 3875 timevalclear(&new_bus->last_reset); 3876 new_bus->flags = 0; 3877 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3878 new_bus->generation = 0; 3879 3880 mtx_lock(&xsoftc.xpt_topo_lock); 3881 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3882 while (old_bus != NULL 3883 && old_bus->path_id < new_bus->path_id) 3884 old_bus = TAILQ_NEXT(old_bus, links); 3885 if (old_bus != NULL) 3886 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3887 else 3888 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3889 xsoftc.bus_generation++; 3890 mtx_unlock(&xsoftc.xpt_topo_lock); 3891 3892 /* 3893 * Set a default transport so that a PATH_INQ can be issued to 3894 * the SIM. This will then allow for probing and attaching of 3895 * a more appropriate transport. 3896 */ 3897 new_bus->xport = &xport_default; 3898 3899 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id, 3900 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3901 if (status != CAM_REQ_CMP) 3902 printf("xpt_compile_path returned %d\n", status); 3903 3904 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3905 cpi.ccb_h.func_code = XPT_PATH_INQ; 3906 xpt_action((union ccb *)&cpi); 3907 3908 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3909 switch (cpi.transport) { 3910 case XPORT_SPI: 3911 case XPORT_SAS: 3912 case XPORT_FC: 3913 case XPORT_USB: 3914 case XPORT_ISCSI: 3915 case XPORT_PPB: 3916 new_bus->xport = scsi_get_xport(); 3917 break; 3918 case XPORT_ATA: 3919 case XPORT_SATA: 3920 new_bus->xport = ata_get_xport(); 3921 break; 3922 default: 3923 new_bus->xport = &xport_default; 3924 break; 3925 } 3926 } 3927 3928 /* Notify interested parties */ 3929 if (sim->path_id != CAM_XPT_PATH_ID) { 3930 union ccb *scan_ccb; 3931 3932 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3933 /* Initiate bus rescan. */ 3934 scan_ccb = xpt_alloc_ccb_nowait(); 3935 scan_ccb->ccb_h.path = path; 3936 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3937 scan_ccb->crcn.flags = 0; 3938 xpt_rescan(scan_ccb); 3939 } else 3940 xpt_free_path(path); 3941 return (CAM_SUCCESS); 3942 } 3943 3944 int32_t 3945 xpt_bus_deregister(path_id_t pathid) 3946 { 3947 struct cam_path bus_path; 3948 cam_status status; 3949 3950 status = xpt_compile_path(&bus_path, NULL, pathid, 3951 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3952 if (status != CAM_REQ_CMP) 3953 return (status); 3954 3955 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3956 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3957 3958 /* Release the reference count held while registered. */ 3959 xpt_release_bus(bus_path.bus); 3960 xpt_release_path(&bus_path); 3961 3962 return (CAM_REQ_CMP); 3963 } 3964 3965 static path_id_t 3966 xptnextfreepathid(void) 3967 { 3968 struct cam_eb *bus; 3969 path_id_t pathid; 3970 const char *strval; 3971 3972 pathid = 0; 3973 mtx_lock(&xsoftc.xpt_topo_lock); 3974 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3975 retry: 3976 /* Find an unoccupied pathid */ 3977 while (bus != NULL && bus->path_id <= pathid) { 3978 if (bus->path_id == pathid) 3979 pathid++; 3980 bus = TAILQ_NEXT(bus, links); 3981 } 3982 mtx_unlock(&xsoftc.xpt_topo_lock); 3983 3984 /* 3985 * Ensure that this pathid is not reserved for 3986 * a bus that may be registered in the future. 3987 */ 3988 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3989 ++pathid; 3990 /* Start the search over */ 3991 mtx_lock(&xsoftc.xpt_topo_lock); 3992 goto retry; 3993 } 3994 return (pathid); 3995 } 3996 3997 static path_id_t 3998 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3999 { 4000 path_id_t pathid; 4001 int i, dunit, val; 4002 char buf[32]; 4003 const char *dname; 4004 4005 pathid = CAM_XPT_PATH_ID; 4006 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4007 i = 0; 4008 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4009 if (strcmp(dname, "scbus")) { 4010 /* Avoid a bit of foot shooting. */ 4011 continue; 4012 } 4013 if (dunit < 0) /* unwired?! */ 4014 continue; 4015 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4016 if (sim_bus == val) { 4017 pathid = dunit; 4018 break; 4019 } 4020 } else if (sim_bus == 0) { 4021 /* Unspecified matches bus 0 */ 4022 pathid = dunit; 4023 break; 4024 } else { 4025 printf("Ambiguous scbus configuration for %s%d " 4026 "bus %d, cannot wire down. The kernel " 4027 "config entry for scbus%d should " 4028 "specify a controller bus.\n" 4029 "Scbus will be assigned dynamically.\n", 4030 sim_name, sim_unit, sim_bus, dunit); 4031 break; 4032 } 4033 } 4034 4035 if (pathid == CAM_XPT_PATH_ID) 4036 pathid = xptnextfreepathid(); 4037 return (pathid); 4038 } 4039 4040 static const char * 4041 xpt_async_string(u_int32_t async_code) 4042 { 4043 4044 switch (async_code) { 4045 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4046 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4047 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4048 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4049 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4050 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4051 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4052 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4053 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4054 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4055 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4056 case AC_CONTRACT: return ("AC_CONTRACT"); 4057 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4058 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4059 } 4060 return ("AC_UNKNOWN"); 4061 } 4062 4063 void 4064 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4065 { 4066 struct cam_eb *bus; 4067 struct cam_et *target, *next_target; 4068 struct cam_ed *device, *next_device; 4069 4070 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4071 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4072 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4073 4074 /* 4075 * Most async events come from a CAM interrupt context. In 4076 * a few cases, the error recovery code at the peripheral layer, 4077 * which may run from our SWI or a process context, may signal 4078 * deferred events with a call to xpt_async. 4079 */ 4080 4081 bus = path->bus; 4082 4083 if (async_code == AC_BUS_RESET) { 4084 /* Update our notion of when the last reset occurred */ 4085 microtime(&bus->last_reset); 4086 } 4087 4088 for (target = TAILQ_FIRST(&bus->et_entries); 4089 target != NULL; 4090 target = next_target) { 4091 4092 next_target = TAILQ_NEXT(target, links); 4093 4094 if (path->target != target 4095 && path->target->target_id != CAM_TARGET_WILDCARD 4096 && target->target_id != CAM_TARGET_WILDCARD) 4097 continue; 4098 4099 if (async_code == AC_SENT_BDR) { 4100 /* Update our notion of when the last reset occurred */ 4101 microtime(&path->target->last_reset); 4102 } 4103 4104 for (device = TAILQ_FIRST(&target->ed_entries); 4105 device != NULL; 4106 device = next_device) { 4107 4108 next_device = TAILQ_NEXT(device, links); 4109 4110 if (path->device != device 4111 && path->device->lun_id != CAM_LUN_WILDCARD 4112 && device->lun_id != CAM_LUN_WILDCARD) 4113 continue; 4114 /* 4115 * The async callback could free the device. 4116 * If it is a broadcast async, it doesn't hold 4117 * device reference, so take our own reference. 4118 */ 4119 xpt_acquire_device(device); 4120 (*(bus->xport->async))(async_code, bus, 4121 target, device, 4122 async_arg); 4123 4124 xpt_async_bcast(&device->asyncs, async_code, 4125 path, async_arg); 4126 xpt_release_device(device); 4127 } 4128 } 4129 4130 /* 4131 * If this wasn't a fully wildcarded async, tell all 4132 * clients that want all async events. 4133 */ 4134 if (bus != xpt_periph->path->bus) 4135 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4136 path, async_arg); 4137 } 4138 4139 static void 4140 xpt_async_bcast(struct async_list *async_head, 4141 u_int32_t async_code, 4142 struct cam_path *path, void *async_arg) 4143 { 4144 struct async_node *cur_entry; 4145 4146 cur_entry = SLIST_FIRST(async_head); 4147 while (cur_entry != NULL) { 4148 struct async_node *next_entry; 4149 /* 4150 * Grab the next list entry before we call the current 4151 * entry's callback. This is because the callback function 4152 * can delete its async callback entry. 4153 */ 4154 next_entry = SLIST_NEXT(cur_entry, links); 4155 if ((cur_entry->event_enable & async_code) != 0) 4156 cur_entry->callback(cur_entry->callback_arg, 4157 async_code, path, 4158 async_arg); 4159 cur_entry = next_entry; 4160 } 4161 } 4162 4163 static void 4164 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4165 struct cam_et *target, struct cam_ed *device, 4166 void *async_arg) 4167 { 4168 printf("%s called\n", __func__); 4169 } 4170 4171 u_int32_t 4172 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count) 4173 { 4174 struct cam_ed *dev = path->device; 4175 4176 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4177 dev->sim->devq->alloc_openings += 4178 cam_ccbq_freeze(&dev->ccbq, rl, count); 4179 /* Remove frozen device from allocq. */ 4180 if (device_is_alloc_queued(dev) && 4181 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4182 CAMQ_GET_PRIO(&dev->drvq)))) { 4183 camq_remove(&dev->sim->devq->alloc_queue, 4184 dev->alloc_ccb_entry.pinfo.index); 4185 } 4186 /* Remove frozen device from sendq. */ 4187 if (device_is_send_queued(dev) && 4188 cam_ccbq_frozen_top(&dev->ccbq)) { 4189 camq_remove(&dev->sim->devq->send_queue, 4190 dev->send_ccb_entry.pinfo.index); 4191 } 4192 return (dev->ccbq.queue.qfrozen_cnt[rl]); 4193 } 4194 4195 u_int32_t 4196 xpt_freeze_devq(struct cam_path *path, u_int count) 4197 { 4198 4199 return (xpt_freeze_devq_rl(path, 0, count)); 4200 } 4201 4202 u_int32_t 4203 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4204 { 4205 4206 mtx_assert(sim->mtx, MA_OWNED); 4207 sim->devq->send_queue.qfrozen_cnt[0] += count; 4208 return (sim->devq->send_queue.qfrozen_cnt[0]); 4209 } 4210 4211 static void 4212 xpt_release_devq_timeout(void *arg) 4213 { 4214 struct cam_ed *device; 4215 4216 device = (struct cam_ed *)arg; 4217 4218 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE); 4219 } 4220 4221 void 4222 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4223 { 4224 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4225 4226 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue); 4227 } 4228 4229 void 4230 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue) 4231 { 4232 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4233 4234 xpt_release_devq_device(path->device, rl, count, run_queue); 4235 } 4236 4237 static void 4238 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue) 4239 { 4240 4241 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) { 4242 #ifdef INVARIANTS 4243 printf("xpt_release_devq(%d): requested %u > present %u\n", 4244 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]); 4245 #endif 4246 count = dev->ccbq.queue.qfrozen_cnt[rl]; 4247 } 4248 dev->sim->devq->alloc_openings -= 4249 cam_ccbq_release(&dev->ccbq, rl, count); 4250 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4251 CAMQ_GET_PRIO(&dev->drvq))) == 0) { 4252 if (xpt_schedule_dev_allocq(dev->target->bus, dev)) 4253 xpt_run_dev_allocq(dev->target->bus); 4254 } 4255 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) { 4256 /* 4257 * No longer need to wait for a successful 4258 * command completion. 4259 */ 4260 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4261 /* 4262 * Remove any timeouts that might be scheduled 4263 * to release this queue. 4264 */ 4265 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4266 callout_stop(&dev->callout); 4267 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4268 } 4269 if (run_queue == 0) 4270 return; 4271 /* 4272 * Now that we are unfrozen schedule the 4273 * device so any pending transactions are 4274 * run. 4275 */ 4276 if (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4277 xpt_run_dev_sendq(dev->target->bus); 4278 } 4279 } 4280 4281 void 4282 xpt_release_simq(struct cam_sim *sim, int run_queue) 4283 { 4284 struct camq *sendq; 4285 4286 mtx_assert(sim->mtx, MA_OWNED); 4287 sendq = &(sim->devq->send_queue); 4288 if (sendq->qfrozen_cnt[0] <= 0) { 4289 #ifdef INVARIANTS 4290 printf("xpt_release_simq: requested 1 > present %u\n", 4291 sendq->qfrozen_cnt[0]); 4292 #endif 4293 } else 4294 sendq->qfrozen_cnt[0]--; 4295 if (sendq->qfrozen_cnt[0] == 0) { 4296 /* 4297 * If there is a timeout scheduled to release this 4298 * sim queue, remove it. The queue frozen count is 4299 * already at 0. 4300 */ 4301 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4302 callout_stop(&sim->callout); 4303 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4304 } 4305 if (run_queue) { 4306 struct cam_eb *bus; 4307 4308 /* 4309 * Now that we are unfrozen run the send queue. 4310 */ 4311 bus = xpt_find_bus(sim->path_id); 4312 xpt_run_dev_sendq(bus); 4313 xpt_release_bus(bus); 4314 } 4315 } 4316 } 4317 4318 /* 4319 * XXX Appears to be unused. 4320 */ 4321 static void 4322 xpt_release_simq_timeout(void *arg) 4323 { 4324 struct cam_sim *sim; 4325 4326 sim = (struct cam_sim *)arg; 4327 xpt_release_simq(sim, /* run_queue */ TRUE); 4328 } 4329 4330 void 4331 xpt_done(union ccb *done_ccb) 4332 { 4333 struct cam_sim *sim; 4334 int first; 4335 4336 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4337 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4338 /* 4339 * Queue up the request for handling by our SWI handler 4340 * any of the "non-immediate" type of ccbs. 4341 */ 4342 sim = done_ccb->ccb_h.path->bus->sim; 4343 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4344 sim_links.tqe); 4345 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4346 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED | 4347 CAM_SIM_BATCH)) == 0) { 4348 mtx_lock(&cam_simq_lock); 4349 first = TAILQ_EMPTY(&cam_simq); 4350 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4351 mtx_unlock(&cam_simq_lock); 4352 sim->flags |= CAM_SIM_ON_DONEQ; 4353 if (first) 4354 swi_sched(cambio_ih, 0); 4355 } 4356 } 4357 } 4358 4359 void 4360 xpt_batch_start(struct cam_sim *sim) 4361 { 4362 4363 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set")); 4364 sim->flags |= CAM_SIM_BATCH; 4365 } 4366 4367 void 4368 xpt_batch_done(struct cam_sim *sim) 4369 { 4370 4371 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set")); 4372 sim->flags &= ~CAM_SIM_BATCH; 4373 if (!TAILQ_EMPTY(&sim->sim_doneq) && 4374 (sim->flags & CAM_SIM_ON_DONEQ) == 0) 4375 camisr_runqueue(&sim->sim_doneq); 4376 } 4377 4378 union ccb * 4379 xpt_alloc_ccb() 4380 { 4381 union ccb *new_ccb; 4382 4383 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4384 return (new_ccb); 4385 } 4386 4387 union ccb * 4388 xpt_alloc_ccb_nowait() 4389 { 4390 union ccb *new_ccb; 4391 4392 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4393 return (new_ccb); 4394 } 4395 4396 void 4397 xpt_free_ccb(union ccb *free_ccb) 4398 { 4399 free(free_ccb, M_CAMXPT); 4400 } 4401 4402 4403 4404 /* Private XPT functions */ 4405 4406 /* 4407 * Get a CAM control block for the caller. Charge the structure to the device 4408 * referenced by the path. If the this device has no 'credits' then the 4409 * device already has the maximum number of outstanding operations under way 4410 * and we return NULL. If we don't have sufficient resources to allocate more 4411 * ccbs, we also return NULL. 4412 */ 4413 static union ccb * 4414 xpt_get_ccb(struct cam_ed *device) 4415 { 4416 union ccb *new_ccb; 4417 struct cam_sim *sim; 4418 4419 sim = device->sim; 4420 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4421 new_ccb = xpt_alloc_ccb_nowait(); 4422 if (new_ccb == NULL) { 4423 return (NULL); 4424 } 4425 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4426 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4427 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4428 xpt_links.sle); 4429 sim->ccb_count++; 4430 } 4431 cam_ccbq_take_opening(&device->ccbq); 4432 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4433 return (new_ccb); 4434 } 4435 4436 static void 4437 xpt_release_bus(struct cam_eb *bus) 4438 { 4439 4440 mtx_lock(&xsoftc.xpt_topo_lock); 4441 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4442 if ((--bus->refcount == 0) 4443 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4444 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4445 xsoftc.bus_generation++; 4446 mtx_unlock(&xsoftc.xpt_topo_lock); 4447 cam_sim_release(bus->sim); 4448 free(bus, M_CAMXPT); 4449 } else 4450 mtx_unlock(&xsoftc.xpt_topo_lock); 4451 } 4452 4453 static struct cam_et * 4454 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4455 { 4456 struct cam_et *target; 4457 4458 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4459 M_NOWAIT|M_ZERO); 4460 if (target != NULL) { 4461 struct cam_et *cur_target; 4462 4463 TAILQ_INIT(&target->ed_entries); 4464 target->bus = bus; 4465 target->target_id = target_id; 4466 target->refcount = 1; 4467 target->generation = 0; 4468 target->luns = NULL; 4469 timevalclear(&target->last_reset); 4470 /* 4471 * Hold a reference to our parent bus so it 4472 * will not go away before we do. 4473 */ 4474 mtx_lock(&xsoftc.xpt_topo_lock); 4475 bus->refcount++; 4476 mtx_unlock(&xsoftc.xpt_topo_lock); 4477 4478 /* Insertion sort into our bus's target list */ 4479 cur_target = TAILQ_FIRST(&bus->et_entries); 4480 while (cur_target != NULL && cur_target->target_id < target_id) 4481 cur_target = TAILQ_NEXT(cur_target, links); 4482 4483 if (cur_target != NULL) { 4484 TAILQ_INSERT_BEFORE(cur_target, target, links); 4485 } else { 4486 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4487 } 4488 bus->generation++; 4489 } 4490 return (target); 4491 } 4492 4493 static void 4494 xpt_release_target(struct cam_et *target) 4495 { 4496 4497 if (target->refcount == 1) { 4498 if (TAILQ_FIRST(&target->ed_entries) == NULL) { 4499 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4500 target->bus->generation++; 4501 xpt_release_bus(target->bus); 4502 if (target->luns) 4503 free(target->luns, M_CAMXPT); 4504 free(target, M_CAMXPT); 4505 } 4506 } else 4507 target->refcount--; 4508 } 4509 4510 static struct cam_ed * 4511 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4512 lun_id_t lun_id) 4513 { 4514 struct cam_ed *device, *cur_device; 4515 4516 device = xpt_alloc_device(bus, target, lun_id); 4517 if (device == NULL) 4518 return (NULL); 4519 4520 device->mintags = 1; 4521 device->maxtags = 1; 4522 bus->sim->max_ccbs += device->ccbq.devq_openings; 4523 cur_device = TAILQ_FIRST(&target->ed_entries); 4524 while (cur_device != NULL && cur_device->lun_id < lun_id) 4525 cur_device = TAILQ_NEXT(cur_device, links); 4526 if (cur_device != NULL) { 4527 TAILQ_INSERT_BEFORE(cur_device, device, links); 4528 } else { 4529 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4530 } 4531 target->generation++; 4532 4533 return (device); 4534 } 4535 4536 struct cam_ed * 4537 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4538 { 4539 struct cam_ed *device; 4540 struct cam_devq *devq; 4541 cam_status status; 4542 4543 /* Make space for us in the device queue on our bus */ 4544 devq = bus->sim->devq; 4545 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4546 4547 if (status != CAM_REQ_CMP) { 4548 device = NULL; 4549 } else { 4550 device = (struct cam_ed *)malloc(sizeof(*device), 4551 M_CAMXPT, M_NOWAIT|M_ZERO); 4552 } 4553 4554 if (device != NULL) { 4555 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4556 device->alloc_ccb_entry.device = device; 4557 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4558 device->send_ccb_entry.device = device; 4559 device->target = target; 4560 device->lun_id = lun_id; 4561 device->sim = bus->sim; 4562 /* Initialize our queues */ 4563 if (camq_init(&device->drvq, 0) != 0) { 4564 free(device, M_CAMXPT); 4565 return (NULL); 4566 } 4567 if (cam_ccbq_init(&device->ccbq, 4568 bus->sim->max_dev_openings) != 0) { 4569 camq_fini(&device->drvq); 4570 free(device, M_CAMXPT); 4571 return (NULL); 4572 } 4573 SLIST_INIT(&device->asyncs); 4574 SLIST_INIT(&device->periphs); 4575 device->generation = 0; 4576 device->owner = NULL; 4577 device->flags = CAM_DEV_UNCONFIGURED; 4578 device->tag_delay_count = 0; 4579 device->tag_saved_openings = 0; 4580 device->refcount = 1; 4581 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4582 4583 /* 4584 * Hold a reference to our parent target so it 4585 * will not go away before we do. 4586 */ 4587 target->refcount++; 4588 4589 } 4590 return (device); 4591 } 4592 4593 void 4594 xpt_acquire_device(struct cam_ed *device) 4595 { 4596 4597 device->refcount++; 4598 } 4599 4600 void 4601 xpt_release_device(struct cam_ed *device) 4602 { 4603 4604 if (device->refcount == 1) { 4605 struct cam_devq *devq; 4606 4607 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4608 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4609 panic("Removing device while still queued for ccbs"); 4610 4611 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4612 callout_stop(&device->callout); 4613 4614 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4615 device->target->generation++; 4616 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4617 /* Release our slot in the devq */ 4618 devq = device->target->bus->sim->devq; 4619 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4620 camq_fini(&device->drvq); 4621 cam_ccbq_fini(&device->ccbq); 4622 /* 4623 * Free allocated memory. free(9) does nothing if the 4624 * supplied pointer is NULL, so it is safe to call without 4625 * checking. 4626 */ 4627 free(device->supported_vpds, M_CAMXPT); 4628 free(device->device_id, M_CAMXPT); 4629 free(device->physpath, M_CAMXPT); 4630 free(device->rcap_buf, M_CAMXPT); 4631 free(device->serial_num, M_CAMXPT); 4632 4633 xpt_release_target(device->target); 4634 free(device, M_CAMXPT); 4635 } else 4636 device->refcount--; 4637 } 4638 4639 u_int32_t 4640 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4641 { 4642 int diff; 4643 int result; 4644 struct cam_ed *dev; 4645 4646 dev = path->device; 4647 4648 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4649 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4650 if (result == CAM_REQ_CMP && (diff < 0)) { 4651 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4652 } 4653 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4654 || (dev->inq_flags & SID_CmdQue) != 0) 4655 dev->tag_saved_openings = newopenings; 4656 /* Adjust the global limit */ 4657 dev->sim->max_ccbs += diff; 4658 return (result); 4659 } 4660 4661 static struct cam_eb * 4662 xpt_find_bus(path_id_t path_id) 4663 { 4664 struct cam_eb *bus; 4665 4666 mtx_lock(&xsoftc.xpt_topo_lock); 4667 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4668 bus != NULL; 4669 bus = TAILQ_NEXT(bus, links)) { 4670 if (bus->path_id == path_id) { 4671 bus->refcount++; 4672 break; 4673 } 4674 } 4675 mtx_unlock(&xsoftc.xpt_topo_lock); 4676 return (bus); 4677 } 4678 4679 static struct cam_et * 4680 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4681 { 4682 struct cam_et *target; 4683 4684 for (target = TAILQ_FIRST(&bus->et_entries); 4685 target != NULL; 4686 target = TAILQ_NEXT(target, links)) { 4687 if (target->target_id == target_id) { 4688 target->refcount++; 4689 break; 4690 } 4691 } 4692 return (target); 4693 } 4694 4695 static struct cam_ed * 4696 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4697 { 4698 struct cam_ed *device; 4699 4700 for (device = TAILQ_FIRST(&target->ed_entries); 4701 device != NULL; 4702 device = TAILQ_NEXT(device, links)) { 4703 if (device->lun_id == lun_id) { 4704 device->refcount++; 4705 break; 4706 } 4707 } 4708 return (device); 4709 } 4710 4711 void 4712 xpt_start_tags(struct cam_path *path) 4713 { 4714 struct ccb_relsim crs; 4715 struct cam_ed *device; 4716 struct cam_sim *sim; 4717 int newopenings; 4718 4719 device = path->device; 4720 sim = path->bus->sim; 4721 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4722 xpt_freeze_devq(path, /*count*/1); 4723 device->inq_flags |= SID_CmdQue; 4724 if (device->tag_saved_openings != 0) 4725 newopenings = device->tag_saved_openings; 4726 else 4727 newopenings = min(device->maxtags, 4728 sim->max_tagged_dev_openings); 4729 xpt_dev_ccbq_resize(path, newopenings); 4730 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4731 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4732 crs.ccb_h.func_code = XPT_REL_SIMQ; 4733 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4734 crs.openings 4735 = crs.release_timeout 4736 = crs.qfrozen_cnt 4737 = 0; 4738 xpt_action((union ccb *)&crs); 4739 } 4740 4741 void 4742 xpt_stop_tags(struct cam_path *path) 4743 { 4744 struct ccb_relsim crs; 4745 struct cam_ed *device; 4746 struct cam_sim *sim; 4747 4748 device = path->device; 4749 sim = path->bus->sim; 4750 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4751 device->tag_delay_count = 0; 4752 xpt_freeze_devq(path, /*count*/1); 4753 device->inq_flags &= ~SID_CmdQue; 4754 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4755 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4756 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4757 crs.ccb_h.func_code = XPT_REL_SIMQ; 4758 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4759 crs.openings 4760 = crs.release_timeout 4761 = crs.qfrozen_cnt 4762 = 0; 4763 xpt_action((union ccb *)&crs); 4764 } 4765 4766 static void 4767 xpt_boot_delay(void *arg) 4768 { 4769 4770 xpt_release_boot(); 4771 } 4772 4773 static void 4774 xpt_config(void *arg) 4775 { 4776 /* 4777 * Now that interrupts are enabled, go find our devices 4778 */ 4779 4780 /* Setup debugging path */ 4781 if (cam_dflags != CAM_DEBUG_NONE) { 4782 /* 4783 * Locking is specifically omitted here. No SIMs have 4784 * registered yet, so xpt_create_path will only be searching 4785 * empty lists of targets and devices. 4786 */ 4787 if (xpt_create_path(&cam_dpath, xpt_periph, 4788 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4789 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4790 printf("xpt_config: xpt_create_path() failed for debug" 4791 " target %d:%d:%d, debugging disabled\n", 4792 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4793 cam_dflags = CAM_DEBUG_NONE; 4794 } 4795 } else 4796 cam_dpath = NULL; 4797 4798 periphdriver_init(1); 4799 xpt_hold_boot(); 4800 callout_init(&xsoftc.boot_callout, 1); 4801 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4802 xpt_boot_delay, NULL); 4803 /* Fire up rescan thread. */ 4804 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4805 printf("xpt_config: failed to create rescan thread.\n"); 4806 } 4807 } 4808 4809 void 4810 xpt_hold_boot(void) 4811 { 4812 xpt_lock_buses(); 4813 xsoftc.buses_to_config++; 4814 xpt_unlock_buses(); 4815 } 4816 4817 void 4818 xpt_release_boot(void) 4819 { 4820 xpt_lock_buses(); 4821 xsoftc.buses_to_config--; 4822 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4823 struct xpt_task *task; 4824 4825 xsoftc.buses_config_done = 1; 4826 xpt_unlock_buses(); 4827 /* Call manually because we don't have any busses */ 4828 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4829 if (task != NULL) { 4830 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4831 taskqueue_enqueue(taskqueue_thread, &task->task); 4832 } 4833 } else 4834 xpt_unlock_buses(); 4835 } 4836 4837 /* 4838 * If the given device only has one peripheral attached to it, and if that 4839 * peripheral is the passthrough driver, announce it. This insures that the 4840 * user sees some sort of announcement for every peripheral in their system. 4841 */ 4842 static int 4843 xptpassannouncefunc(struct cam_ed *device, void *arg) 4844 { 4845 struct cam_periph *periph; 4846 int i; 4847 4848 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4849 periph = SLIST_NEXT(periph, periph_links), i++); 4850 4851 periph = SLIST_FIRST(&device->periphs); 4852 if ((i == 1) 4853 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4854 xpt_announce_periph(periph, NULL); 4855 4856 return(1); 4857 } 4858 4859 static void 4860 xpt_finishconfig_task(void *context, int pending) 4861 { 4862 4863 periphdriver_init(2); 4864 /* 4865 * Check for devices with no "standard" peripheral driver 4866 * attached. For any devices like that, announce the 4867 * passthrough driver so the user will see something. 4868 */ 4869 if (!bootverbose) 4870 xpt_for_all_devices(xptpassannouncefunc, NULL); 4871 4872 /* Release our hook so that the boot can continue. */ 4873 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4874 free(xsoftc.xpt_config_hook, M_CAMXPT); 4875 xsoftc.xpt_config_hook = NULL; 4876 4877 free(context, M_CAMXPT); 4878 } 4879 4880 cam_status 4881 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4882 struct cam_path *path) 4883 { 4884 struct ccb_setasync csa; 4885 cam_status status; 4886 int xptpath = 0; 4887 4888 if (path == NULL) { 4889 mtx_lock(&xsoftc.xpt_lock); 4890 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4891 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4892 if (status != CAM_REQ_CMP) { 4893 mtx_unlock(&xsoftc.xpt_lock); 4894 return (status); 4895 } 4896 xptpath = 1; 4897 } 4898 4899 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4900 csa.ccb_h.func_code = XPT_SASYNC_CB; 4901 csa.event_enable = event; 4902 csa.callback = cbfunc; 4903 csa.callback_arg = cbarg; 4904 xpt_action((union ccb *)&csa); 4905 status = csa.ccb_h.status; 4906 4907 if (xptpath) { 4908 xpt_free_path(path); 4909 mtx_unlock(&xsoftc.xpt_lock); 4910 } 4911 4912 if ((status == CAM_REQ_CMP) && 4913 (csa.event_enable & AC_FOUND_DEVICE)) { 4914 /* 4915 * Get this peripheral up to date with all 4916 * the currently existing devices. 4917 */ 4918 xpt_for_all_devices(xptsetasyncfunc, &csa); 4919 } 4920 if ((status == CAM_REQ_CMP) && 4921 (csa.event_enable & AC_PATH_REGISTERED)) { 4922 /* 4923 * Get this peripheral up to date with all 4924 * the currently existing busses. 4925 */ 4926 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4927 } 4928 4929 return (status); 4930 } 4931 4932 static void 4933 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4934 { 4935 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4936 4937 switch (work_ccb->ccb_h.func_code) { 4938 /* Common cases first */ 4939 case XPT_PATH_INQ: /* Path routing inquiry */ 4940 { 4941 struct ccb_pathinq *cpi; 4942 4943 cpi = &work_ccb->cpi; 4944 cpi->version_num = 1; /* XXX??? */ 4945 cpi->hba_inquiry = 0; 4946 cpi->target_sprt = 0; 4947 cpi->hba_misc = 0; 4948 cpi->hba_eng_cnt = 0; 4949 cpi->max_target = 0; 4950 cpi->max_lun = 0; 4951 cpi->initiator_id = 0; 4952 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4953 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4954 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4955 cpi->unit_number = sim->unit_number; 4956 cpi->bus_id = sim->bus_id; 4957 cpi->base_transfer_speed = 0; 4958 cpi->protocol = PROTO_UNSPECIFIED; 4959 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4960 cpi->transport = XPORT_UNSPECIFIED; 4961 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4962 cpi->ccb_h.status = CAM_REQ_CMP; 4963 xpt_done(work_ccb); 4964 break; 4965 } 4966 default: 4967 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4968 xpt_done(work_ccb); 4969 break; 4970 } 4971 } 4972 4973 /* 4974 * The xpt as a "controller" has no interrupt sources, so polling 4975 * is a no-op. 4976 */ 4977 static void 4978 xptpoll(struct cam_sim *sim) 4979 { 4980 } 4981 4982 void 4983 xpt_lock_buses(void) 4984 { 4985 mtx_lock(&xsoftc.xpt_topo_lock); 4986 } 4987 4988 void 4989 xpt_unlock_buses(void) 4990 { 4991 mtx_unlock(&xsoftc.xpt_topo_lock); 4992 } 4993 4994 static void 4995 camisr(void *dummy) 4996 { 4997 cam_simq_t queue; 4998 struct cam_sim *sim; 4999 5000 mtx_lock(&cam_simq_lock); 5001 TAILQ_INIT(&queue); 5002 while (!TAILQ_EMPTY(&cam_simq)) { 5003 TAILQ_CONCAT(&queue, &cam_simq, links); 5004 mtx_unlock(&cam_simq_lock); 5005 5006 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 5007 TAILQ_REMOVE(&queue, sim, links); 5008 CAM_SIM_LOCK(sim); 5009 camisr_runqueue(&sim->sim_doneq); 5010 sim->flags &= ~CAM_SIM_ON_DONEQ; 5011 CAM_SIM_UNLOCK(sim); 5012 } 5013 mtx_lock(&cam_simq_lock); 5014 } 5015 mtx_unlock(&cam_simq_lock); 5016 } 5017 5018 static void 5019 camisr_runqueue(void *V_queue) 5020 { 5021 cam_isrq_t *queue = V_queue; 5022 struct ccb_hdr *ccb_h; 5023 5024 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 5025 int runq; 5026 5027 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 5028 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5029 5030 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 5031 ("camisr\n")); 5032 5033 runq = FALSE; 5034 5035 if (ccb_h->flags & CAM_HIGH_POWER) { 5036 struct highpowerlist *hphead; 5037 union ccb *send_ccb; 5038 5039 mtx_lock(&xsoftc.xpt_lock); 5040 hphead = &xsoftc.highpowerq; 5041 5042 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 5043 5044 /* 5045 * Increment the count since this command is done. 5046 */ 5047 xsoftc.num_highpower++; 5048 5049 /* 5050 * Any high powered commands queued up? 5051 */ 5052 if (send_ccb != NULL) { 5053 5054 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 5055 mtx_unlock(&xsoftc.xpt_lock); 5056 5057 xpt_release_devq(send_ccb->ccb_h.path, 5058 /*count*/1, /*runqueue*/TRUE); 5059 } else 5060 mtx_unlock(&xsoftc.xpt_lock); 5061 } 5062 5063 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5064 struct cam_ed *dev; 5065 5066 dev = ccb_h->path->device; 5067 5068 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5069 ccb_h->path->bus->sim->devq->send_active--; 5070 ccb_h->path->bus->sim->devq->send_openings++; 5071 runq = TRUE; 5072 5073 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5074 && (dev->ccbq.dev_active == 0))) { 5075 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5076 xpt_release_devq(ccb_h->path, /*count*/1, 5077 /*run_queue*/FALSE); 5078 } 5079 5080 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5081 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5082 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5083 xpt_release_devq(ccb_h->path, /*count*/1, 5084 /*run_queue*/FALSE); 5085 } 5086 5087 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5088 && (--dev->tag_delay_count == 0)) 5089 xpt_start_tags(ccb_h->path); 5090 if (!device_is_send_queued(dev)) { 5091 (void)xpt_schedule_dev_sendq(ccb_h->path->bus, 5092 dev); 5093 } 5094 } 5095 5096 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5097 xpt_release_simq(ccb_h->path->bus->sim, 5098 /*run_queue*/TRUE); 5099 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5100 runq = FALSE; 5101 } 5102 5103 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5104 && (ccb_h->status & CAM_DEV_QFRZN)) { 5105 xpt_release_devq(ccb_h->path, /*count*/1, 5106 /*run_queue*/TRUE); 5107 ccb_h->status &= ~CAM_DEV_QFRZN; 5108 } else if (runq) { 5109 xpt_run_dev_sendq(ccb_h->path->bus); 5110 } 5111 5112 /* Call the peripheral driver's callback */ 5113 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5114 } 5115 } 5116