1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 uint32_t xpt_generation; 97 98 /* number of high powered commands that can go through right now */ 99 struct mtx xpt_highpower_lock; 100 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 101 int num_highpower; 102 103 /* queue for handling async rescan requests. */ 104 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 105 int buses_to_config; 106 int buses_config_done; 107 108 /* Registered busses */ 109 TAILQ_HEAD(,cam_eb) xpt_busses; 110 u_int bus_generation; 111 112 struct intr_config_hook *xpt_config_hook; 113 114 int boot_delay; 115 struct callout boot_callout; 116 117 struct mtx xpt_topo_lock; 118 struct mtx xpt_lock; 119 struct taskqueue *xpt_taskq; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 155 156 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 157 &xsoftc.boot_delay, 0, "Bus registration wait time"); 158 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 159 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 160 161 struct cam_doneq { 162 struct mtx_padalign cam_doneq_mtx; 163 STAILQ_HEAD(, ccb_hdr) cam_doneq; 164 int cam_doneq_sleep; 165 }; 166 167 static struct cam_doneq cam_doneqs[MAXCPU]; 168 static int cam_num_doneqs; 169 static struct proc *cam_proc; 170 171 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 172 &cam_num_doneqs, 0, "Number of completion queues/threads"); 173 174 struct cam_periph *xpt_periph; 175 176 static periph_init_t xpt_periph_init; 177 178 static struct periph_driver xpt_driver = 179 { 180 xpt_periph_init, "xpt", 181 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 182 CAM_PERIPH_DRV_EARLY 183 }; 184 185 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 186 187 static d_open_t xptopen; 188 static d_close_t xptclose; 189 static d_ioctl_t xptioctl; 190 static d_ioctl_t xptdoioctl; 191 192 static struct cdevsw xpt_cdevsw = { 193 .d_version = D_VERSION, 194 .d_flags = 0, 195 .d_open = xptopen, 196 .d_close = xptclose, 197 .d_ioctl = xptioctl, 198 .d_name = "xpt", 199 }; 200 201 /* Storage for debugging datastructures */ 202 struct cam_path *cam_dpath; 203 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 204 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 205 &cam_dflags, 0, "Enabled debug flags"); 206 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 207 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 208 &cam_debug_delay, 0, "Delay in us after each debug message"); 209 210 /* Our boot-time initialization hook */ 211 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 212 213 static moduledata_t cam_moduledata = { 214 "cam", 215 cam_module_event_handler, 216 NULL 217 }; 218 219 static int xpt_init(void *); 220 221 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 222 MODULE_VERSION(cam, 1); 223 224 225 static void xpt_async_bcast(struct async_list *async_head, 226 u_int32_t async_code, 227 struct cam_path *path, 228 void *async_arg); 229 static path_id_t xptnextfreepathid(void); 230 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 231 static union ccb *xpt_get_ccb(struct cam_periph *periph); 232 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 233 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 234 static void xpt_run_allocq_task(void *context, int pending); 235 static void xpt_run_devq(struct cam_devq *devq); 236 static timeout_t xpt_release_devq_timeout; 237 static void xpt_release_simq_timeout(void *arg) __unused; 238 static void xpt_acquire_bus(struct cam_eb *bus); 239 static void xpt_release_bus(struct cam_eb *bus); 240 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 241 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 242 int run_queue); 243 static struct cam_et* 244 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 245 static void xpt_acquire_target(struct cam_et *target); 246 static void xpt_release_target(struct cam_et *target); 247 static struct cam_eb* 248 xpt_find_bus(path_id_t path_id); 249 static struct cam_et* 250 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 251 static struct cam_ed* 252 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 253 static void xpt_config(void *arg); 254 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 255 u_int32_t new_priority); 256 static xpt_devicefunc_t xptpassannouncefunc; 257 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 258 static void xptpoll(struct cam_sim *sim); 259 static void camisr_runqueue(void); 260 static void xpt_done_process(struct ccb_hdr *ccb_h); 261 static void xpt_done_td(void *); 262 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 263 u_int num_patterns, struct cam_eb *bus); 264 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 265 u_int num_patterns, 266 struct cam_ed *device); 267 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 268 u_int num_patterns, 269 struct cam_periph *periph); 270 static xpt_busfunc_t xptedtbusfunc; 271 static xpt_targetfunc_t xptedttargetfunc; 272 static xpt_devicefunc_t xptedtdevicefunc; 273 static xpt_periphfunc_t xptedtperiphfunc; 274 static xpt_pdrvfunc_t xptplistpdrvfunc; 275 static xpt_periphfunc_t xptplistperiphfunc; 276 static int xptedtmatch(struct ccb_dev_match *cdm); 277 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 278 static int xptbustraverse(struct cam_eb *start_bus, 279 xpt_busfunc_t *tr_func, void *arg); 280 static int xpttargettraverse(struct cam_eb *bus, 281 struct cam_et *start_target, 282 xpt_targetfunc_t *tr_func, void *arg); 283 static int xptdevicetraverse(struct cam_et *target, 284 struct cam_ed *start_device, 285 xpt_devicefunc_t *tr_func, void *arg); 286 static int xptperiphtraverse(struct cam_ed *device, 287 struct cam_periph *start_periph, 288 xpt_periphfunc_t *tr_func, void *arg); 289 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 290 xpt_pdrvfunc_t *tr_func, void *arg); 291 static int xptpdperiphtraverse(struct periph_driver **pdrv, 292 struct cam_periph *start_periph, 293 xpt_periphfunc_t *tr_func, 294 void *arg); 295 static xpt_busfunc_t xptdefbusfunc; 296 static xpt_targetfunc_t xptdeftargetfunc; 297 static xpt_devicefunc_t xptdefdevicefunc; 298 static xpt_periphfunc_t xptdefperiphfunc; 299 static void xpt_finishconfig_task(void *context, int pending); 300 static void xpt_dev_async_default(u_int32_t async_code, 301 struct cam_eb *bus, 302 struct cam_et *target, 303 struct cam_ed *device, 304 void *async_arg); 305 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 306 struct cam_et *target, 307 lun_id_t lun_id); 308 static xpt_devicefunc_t xptsetasyncfunc; 309 static xpt_busfunc_t xptsetasyncbusfunc; 310 static cam_status xptregister(struct cam_periph *periph, 311 void *arg); 312 static const char * xpt_action_name(uint32_t action); 313 static __inline int device_is_queued(struct cam_ed *device); 314 315 static __inline int 316 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 317 { 318 int retval; 319 320 mtx_assert(&devq->send_mtx, MA_OWNED); 321 if ((dev->ccbq.queue.entries > 0) && 322 (dev->ccbq.dev_openings > 0) && 323 (dev->ccbq.queue.qfrozen_cnt == 0)) { 324 /* 325 * The priority of a device waiting for controller 326 * resources is that of the highest priority CCB 327 * enqueued. 328 */ 329 retval = 330 xpt_schedule_dev(&devq->send_queue, 331 &dev->devq_entry, 332 CAMQ_GET_PRIO(&dev->ccbq.queue)); 333 } else { 334 retval = 0; 335 } 336 return (retval); 337 } 338 339 static __inline int 340 device_is_queued(struct cam_ed *device) 341 { 342 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 343 } 344 345 static void 346 xpt_periph_init() 347 { 348 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 349 } 350 351 static int 352 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 353 { 354 355 /* 356 * Only allow read-write access. 357 */ 358 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 359 return(EPERM); 360 361 /* 362 * We don't allow nonblocking access. 363 */ 364 if ((flags & O_NONBLOCK) != 0) { 365 printf("%s: can't do nonblocking access\n", devtoname(dev)); 366 return(ENODEV); 367 } 368 369 return(0); 370 } 371 372 static int 373 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 374 { 375 376 return(0); 377 } 378 379 /* 380 * Don't automatically grab the xpt softc lock here even though this is going 381 * through the xpt device. The xpt device is really just a back door for 382 * accessing other devices and SIMs, so the right thing to do is to grab 383 * the appropriate SIM lock once the bus/SIM is located. 384 */ 385 static int 386 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 387 { 388 int error; 389 390 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 391 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 392 } 393 return (error); 394 } 395 396 static int 397 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 398 { 399 int error; 400 401 error = 0; 402 403 switch(cmd) { 404 /* 405 * For the transport layer CAMIOCOMMAND ioctl, we really only want 406 * to accept CCB types that don't quite make sense to send through a 407 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 408 * in the CAM spec. 409 */ 410 case CAMIOCOMMAND: { 411 union ccb *ccb; 412 union ccb *inccb; 413 struct cam_eb *bus; 414 415 inccb = (union ccb *)addr; 416 417 bus = xpt_find_bus(inccb->ccb_h.path_id); 418 if (bus == NULL) 419 return (EINVAL); 420 421 switch (inccb->ccb_h.func_code) { 422 case XPT_SCAN_BUS: 423 case XPT_RESET_BUS: 424 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 425 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 426 xpt_release_bus(bus); 427 return (EINVAL); 428 } 429 break; 430 case XPT_SCAN_TGT: 431 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 432 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 433 xpt_release_bus(bus); 434 return (EINVAL); 435 } 436 break; 437 default: 438 break; 439 } 440 441 switch(inccb->ccb_h.func_code) { 442 case XPT_SCAN_BUS: 443 case XPT_RESET_BUS: 444 case XPT_PATH_INQ: 445 case XPT_ENG_INQ: 446 case XPT_SCAN_LUN: 447 case XPT_SCAN_TGT: 448 449 ccb = xpt_alloc_ccb(); 450 451 /* 452 * Create a path using the bus, target, and lun the 453 * user passed in. 454 */ 455 if (xpt_create_path(&ccb->ccb_h.path, NULL, 456 inccb->ccb_h.path_id, 457 inccb->ccb_h.target_id, 458 inccb->ccb_h.target_lun) != 459 CAM_REQ_CMP){ 460 error = EINVAL; 461 xpt_free_ccb(ccb); 462 break; 463 } 464 /* Ensure all of our fields are correct */ 465 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 466 inccb->ccb_h.pinfo.priority); 467 xpt_merge_ccb(ccb, inccb); 468 xpt_path_lock(ccb->ccb_h.path); 469 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 470 xpt_path_unlock(ccb->ccb_h.path); 471 bcopy(ccb, inccb, sizeof(union ccb)); 472 xpt_free_path(ccb->ccb_h.path); 473 xpt_free_ccb(ccb); 474 break; 475 476 case XPT_DEBUG: { 477 union ccb ccb; 478 479 /* 480 * This is an immediate CCB, so it's okay to 481 * allocate it on the stack. 482 */ 483 484 /* 485 * Create a path using the bus, target, and lun the 486 * user passed in. 487 */ 488 if (xpt_create_path(&ccb.ccb_h.path, NULL, 489 inccb->ccb_h.path_id, 490 inccb->ccb_h.target_id, 491 inccb->ccb_h.target_lun) != 492 CAM_REQ_CMP){ 493 error = EINVAL; 494 break; 495 } 496 /* Ensure all of our fields are correct */ 497 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 498 inccb->ccb_h.pinfo.priority); 499 xpt_merge_ccb(&ccb, inccb); 500 xpt_action(&ccb); 501 bcopy(&ccb, inccb, sizeof(union ccb)); 502 xpt_free_path(ccb.ccb_h.path); 503 break; 504 505 } 506 case XPT_DEV_MATCH: { 507 struct cam_periph_map_info mapinfo; 508 struct cam_path *old_path; 509 510 /* 511 * We can't deal with physical addresses for this 512 * type of transaction. 513 */ 514 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 515 CAM_DATA_VADDR) { 516 error = EINVAL; 517 break; 518 } 519 520 /* 521 * Save this in case the caller had it set to 522 * something in particular. 523 */ 524 old_path = inccb->ccb_h.path; 525 526 /* 527 * We really don't need a path for the matching 528 * code. The path is needed because of the 529 * debugging statements in xpt_action(). They 530 * assume that the CCB has a valid path. 531 */ 532 inccb->ccb_h.path = xpt_periph->path; 533 534 bzero(&mapinfo, sizeof(mapinfo)); 535 536 /* 537 * Map the pattern and match buffers into kernel 538 * virtual address space. 539 */ 540 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 541 542 if (error) { 543 inccb->ccb_h.path = old_path; 544 break; 545 } 546 547 /* 548 * This is an immediate CCB, we can send it on directly. 549 */ 550 xpt_action(inccb); 551 552 /* 553 * Map the buffers back into user space. 554 */ 555 cam_periph_unmapmem(inccb, &mapinfo); 556 557 inccb->ccb_h.path = old_path; 558 559 error = 0; 560 break; 561 } 562 default: 563 error = ENOTSUP; 564 break; 565 } 566 xpt_release_bus(bus); 567 break; 568 } 569 /* 570 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 571 * with the periphal driver name and unit name filled in. The other 572 * fields don't really matter as input. The passthrough driver name 573 * ("pass"), and unit number are passed back in the ccb. The current 574 * device generation number, and the index into the device peripheral 575 * driver list, and the status are also passed back. Note that 576 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 577 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 578 * (or rather should be) impossible for the device peripheral driver 579 * list to change since we look at the whole thing in one pass, and 580 * we do it with lock protection. 581 * 582 */ 583 case CAMGETPASSTHRU: { 584 union ccb *ccb; 585 struct cam_periph *periph; 586 struct periph_driver **p_drv; 587 char *name; 588 u_int unit; 589 int base_periph_found; 590 591 ccb = (union ccb *)addr; 592 unit = ccb->cgdl.unit_number; 593 name = ccb->cgdl.periph_name; 594 base_periph_found = 0; 595 596 /* 597 * Sanity check -- make sure we don't get a null peripheral 598 * driver name. 599 */ 600 if (*ccb->cgdl.periph_name == '\0') { 601 error = EINVAL; 602 break; 603 } 604 605 /* Keep the list from changing while we traverse it */ 606 xpt_lock_buses(); 607 608 /* first find our driver in the list of drivers */ 609 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 610 if (strcmp((*p_drv)->driver_name, name) == 0) 611 break; 612 613 if (*p_drv == NULL) { 614 xpt_unlock_buses(); 615 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 616 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 617 *ccb->cgdl.periph_name = '\0'; 618 ccb->cgdl.unit_number = 0; 619 error = ENOENT; 620 break; 621 } 622 623 /* 624 * Run through every peripheral instance of this driver 625 * and check to see whether it matches the unit passed 626 * in by the user. If it does, get out of the loops and 627 * find the passthrough driver associated with that 628 * peripheral driver. 629 */ 630 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 631 periph = TAILQ_NEXT(periph, unit_links)) { 632 633 if (periph->unit_number == unit) 634 break; 635 } 636 /* 637 * If we found the peripheral driver that the user passed 638 * in, go through all of the peripheral drivers for that 639 * particular device and look for a passthrough driver. 640 */ 641 if (periph != NULL) { 642 struct cam_ed *device; 643 int i; 644 645 base_periph_found = 1; 646 device = periph->path->device; 647 for (i = 0, periph = SLIST_FIRST(&device->periphs); 648 periph != NULL; 649 periph = SLIST_NEXT(periph, periph_links), i++) { 650 /* 651 * Check to see whether we have a 652 * passthrough device or not. 653 */ 654 if (strcmp(periph->periph_name, "pass") == 0) { 655 /* 656 * Fill in the getdevlist fields. 657 */ 658 strcpy(ccb->cgdl.periph_name, 659 periph->periph_name); 660 ccb->cgdl.unit_number = 661 periph->unit_number; 662 if (SLIST_NEXT(periph, periph_links)) 663 ccb->cgdl.status = 664 CAM_GDEVLIST_MORE_DEVS; 665 else 666 ccb->cgdl.status = 667 CAM_GDEVLIST_LAST_DEVICE; 668 ccb->cgdl.generation = 669 device->generation; 670 ccb->cgdl.index = i; 671 /* 672 * Fill in some CCB header fields 673 * that the user may want. 674 */ 675 ccb->ccb_h.path_id = 676 periph->path->bus->path_id; 677 ccb->ccb_h.target_id = 678 periph->path->target->target_id; 679 ccb->ccb_h.target_lun = 680 periph->path->device->lun_id; 681 ccb->ccb_h.status = CAM_REQ_CMP; 682 break; 683 } 684 } 685 } 686 687 /* 688 * If the periph is null here, one of two things has 689 * happened. The first possibility is that we couldn't 690 * find the unit number of the particular peripheral driver 691 * that the user is asking about. e.g. the user asks for 692 * the passthrough driver for "da11". We find the list of 693 * "da" peripherals all right, but there is no unit 11. 694 * The other possibility is that we went through the list 695 * of peripheral drivers attached to the device structure, 696 * but didn't find one with the name "pass". Either way, 697 * we return ENOENT, since we couldn't find something. 698 */ 699 if (periph == NULL) { 700 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 701 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 702 *ccb->cgdl.periph_name = '\0'; 703 ccb->cgdl.unit_number = 0; 704 error = ENOENT; 705 /* 706 * It is unfortunate that this is even necessary, 707 * but there are many, many clueless users out there. 708 * If this is true, the user is looking for the 709 * passthrough driver, but doesn't have one in his 710 * kernel. 711 */ 712 if (base_periph_found == 1) { 713 printf("xptioctl: pass driver is not in the " 714 "kernel\n"); 715 printf("xptioctl: put \"device pass\" in " 716 "your kernel config file\n"); 717 } 718 } 719 xpt_unlock_buses(); 720 break; 721 } 722 default: 723 error = ENOTTY; 724 break; 725 } 726 727 return(error); 728 } 729 730 static int 731 cam_module_event_handler(module_t mod, int what, void *arg) 732 { 733 int error; 734 735 switch (what) { 736 case MOD_LOAD: 737 if ((error = xpt_init(NULL)) != 0) 738 return (error); 739 break; 740 case MOD_UNLOAD: 741 return EBUSY; 742 default: 743 return EOPNOTSUPP; 744 } 745 746 return 0; 747 } 748 749 static void 750 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 751 { 752 753 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 754 xpt_free_path(done_ccb->ccb_h.path); 755 xpt_free_ccb(done_ccb); 756 } else { 757 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 758 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 759 } 760 xpt_release_boot(); 761 } 762 763 /* thread to handle bus rescans */ 764 static void 765 xpt_scanner_thread(void *dummy) 766 { 767 union ccb *ccb; 768 struct cam_path path; 769 770 xpt_lock_buses(); 771 for (;;) { 772 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 773 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 774 "-", 0); 775 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 776 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 777 xpt_unlock_buses(); 778 779 /* 780 * Since lock can be dropped inside and path freed 781 * by completion callback even before return here, 782 * take our own path copy for reference. 783 */ 784 xpt_copy_path(&path, ccb->ccb_h.path); 785 xpt_path_lock(&path); 786 xpt_action(ccb); 787 xpt_path_unlock(&path); 788 xpt_release_path(&path); 789 790 xpt_lock_buses(); 791 } 792 } 793 } 794 795 void 796 xpt_rescan(union ccb *ccb) 797 { 798 struct ccb_hdr *hdr; 799 800 /* Prepare request */ 801 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 802 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 803 ccb->ccb_h.func_code = XPT_SCAN_BUS; 804 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 805 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 806 ccb->ccb_h.func_code = XPT_SCAN_TGT; 807 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 808 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 809 ccb->ccb_h.func_code = XPT_SCAN_LUN; 810 else { 811 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 812 xpt_free_path(ccb->ccb_h.path); 813 xpt_free_ccb(ccb); 814 return; 815 } 816 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 817 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 818 xpt_action_name(ccb->ccb_h.func_code))); 819 820 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 821 ccb->ccb_h.cbfcnp = xpt_rescan_done; 822 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 823 /* Don't make duplicate entries for the same paths. */ 824 xpt_lock_buses(); 825 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 826 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 827 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 828 wakeup(&xsoftc.ccb_scanq); 829 xpt_unlock_buses(); 830 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 831 xpt_free_path(ccb->ccb_h.path); 832 xpt_free_ccb(ccb); 833 return; 834 } 835 } 836 } 837 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 838 xsoftc.buses_to_config++; 839 wakeup(&xsoftc.ccb_scanq); 840 xpt_unlock_buses(); 841 } 842 843 /* Functions accessed by the peripheral drivers */ 844 static int 845 xpt_init(void *dummy) 846 { 847 struct cam_sim *xpt_sim; 848 struct cam_path *path; 849 struct cam_devq *devq; 850 cam_status status; 851 int error, i; 852 853 TAILQ_INIT(&xsoftc.xpt_busses); 854 TAILQ_INIT(&xsoftc.ccb_scanq); 855 STAILQ_INIT(&xsoftc.highpowerq); 856 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 857 858 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 859 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 860 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 861 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 862 863 #ifdef CAM_BOOT_DELAY 864 /* 865 * Override this value at compile time to assist our users 866 * who don't use loader to boot a kernel. 867 */ 868 xsoftc.boot_delay = CAM_BOOT_DELAY; 869 #endif 870 /* 871 * The xpt layer is, itself, the equivalent of a SIM. 872 * Allow 16 ccbs in the ccb pool for it. This should 873 * give decent parallelism when we probe busses and 874 * perform other XPT functions. 875 */ 876 devq = cam_simq_alloc(16); 877 xpt_sim = cam_sim_alloc(xptaction, 878 xptpoll, 879 "xpt", 880 /*softc*/NULL, 881 /*unit*/0, 882 /*mtx*/&xsoftc.xpt_lock, 883 /*max_dev_transactions*/0, 884 /*max_tagged_dev_transactions*/0, 885 devq); 886 if (xpt_sim == NULL) 887 return (ENOMEM); 888 889 mtx_lock(&xsoftc.xpt_lock); 890 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 891 mtx_unlock(&xsoftc.xpt_lock); 892 printf("xpt_init: xpt_bus_register failed with status %#x," 893 " failing attach\n", status); 894 return (EINVAL); 895 } 896 mtx_unlock(&xsoftc.xpt_lock); 897 898 /* 899 * Looking at the XPT from the SIM layer, the XPT is 900 * the equivalent of a peripheral driver. Allocate 901 * a peripheral driver entry for us. 902 */ 903 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 904 CAM_TARGET_WILDCARD, 905 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 906 printf("xpt_init: xpt_create_path failed with status %#x," 907 " failing attach\n", status); 908 return (EINVAL); 909 } 910 xpt_path_lock(path); 911 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 912 path, NULL, 0, xpt_sim); 913 xpt_path_unlock(path); 914 xpt_free_path(path); 915 916 if (cam_num_doneqs < 1) 917 cam_num_doneqs = 1 + mp_ncpus / 6; 918 else if (cam_num_doneqs > MAXCPU) 919 cam_num_doneqs = MAXCPU; 920 for (i = 0; i < cam_num_doneqs; i++) { 921 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 922 MTX_DEF); 923 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 924 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 925 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 926 if (error != 0) { 927 cam_num_doneqs = i; 928 break; 929 } 930 } 931 if (cam_num_doneqs < 1) { 932 printf("xpt_init: Cannot init completion queues " 933 "- failing attach\n"); 934 return (ENOMEM); 935 } 936 /* 937 * Register a callback for when interrupts are enabled. 938 */ 939 xsoftc.xpt_config_hook = 940 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 941 M_CAMXPT, M_NOWAIT | M_ZERO); 942 if (xsoftc.xpt_config_hook == NULL) { 943 printf("xpt_init: Cannot malloc config hook " 944 "- failing attach\n"); 945 return (ENOMEM); 946 } 947 xsoftc.xpt_config_hook->ich_func = xpt_config; 948 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 949 free (xsoftc.xpt_config_hook, M_CAMXPT); 950 printf("xpt_init: config_intrhook_establish failed " 951 "- failing attach\n"); 952 } 953 954 return (0); 955 } 956 957 static cam_status 958 xptregister(struct cam_periph *periph, void *arg) 959 { 960 struct cam_sim *xpt_sim; 961 962 if (periph == NULL) { 963 printf("xptregister: periph was NULL!!\n"); 964 return(CAM_REQ_CMP_ERR); 965 } 966 967 xpt_sim = (struct cam_sim *)arg; 968 xpt_sim->softc = periph; 969 xpt_periph = periph; 970 periph->softc = NULL; 971 972 return(CAM_REQ_CMP); 973 } 974 975 int32_t 976 xpt_add_periph(struct cam_periph *periph) 977 { 978 struct cam_ed *device; 979 int32_t status; 980 981 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 982 device = periph->path->device; 983 status = CAM_REQ_CMP; 984 if (device != NULL) { 985 mtx_lock(&device->target->bus->eb_mtx); 986 device->generation++; 987 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 988 mtx_unlock(&device->target->bus->eb_mtx); 989 atomic_add_32(&xsoftc.xpt_generation, 1); 990 } 991 992 return (status); 993 } 994 995 void 996 xpt_remove_periph(struct cam_periph *periph) 997 { 998 struct cam_ed *device; 999 1000 device = periph->path->device; 1001 if (device != NULL) { 1002 mtx_lock(&device->target->bus->eb_mtx); 1003 device->generation++; 1004 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1005 mtx_unlock(&device->target->bus->eb_mtx); 1006 atomic_add_32(&xsoftc.xpt_generation, 1); 1007 } 1008 } 1009 1010 1011 void 1012 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1013 { 1014 struct cam_path *path = periph->path; 1015 1016 cam_periph_assert(periph, MA_OWNED); 1017 periph->flags |= CAM_PERIPH_ANNOUNCED; 1018 1019 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1020 periph->periph_name, periph->unit_number, 1021 path->bus->sim->sim_name, 1022 path->bus->sim->unit_number, 1023 path->bus->sim->bus_id, 1024 path->bus->path_id, 1025 path->target->target_id, 1026 (uintmax_t)path->device->lun_id); 1027 printf("%s%d: ", periph->periph_name, periph->unit_number); 1028 if (path->device->protocol == PROTO_SCSI) 1029 scsi_print_inquiry(&path->device->inq_data); 1030 else if (path->device->protocol == PROTO_ATA || 1031 path->device->protocol == PROTO_SATAPM) 1032 ata_print_ident(&path->device->ident_data); 1033 else if (path->device->protocol == PROTO_SEMB) 1034 semb_print_ident( 1035 (struct sep_identify_data *)&path->device->ident_data); 1036 else if (path->device->protocol == PROTO_NVME) 1037 nvme_print_ident(path->device->nvme_cdata, path->device->nvme_data); 1038 else 1039 printf("Unknown protocol device\n"); 1040 if (path->device->serial_num_len > 0) { 1041 /* Don't wrap the screen - print only the first 60 chars */ 1042 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1043 periph->unit_number, path->device->serial_num); 1044 } 1045 /* Announce transport details. */ 1046 (*(path->bus->xport->announce))(periph); 1047 /* Announce command queueing. */ 1048 if (path->device->inq_flags & SID_CmdQue 1049 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1050 printf("%s%d: Command Queueing enabled\n", 1051 periph->periph_name, periph->unit_number); 1052 } 1053 /* Announce caller's details if they've passed in. */ 1054 if (announce_string != NULL) 1055 printf("%s%d: %s\n", periph->periph_name, 1056 periph->unit_number, announce_string); 1057 } 1058 1059 void 1060 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1061 { 1062 if (quirks != 0) { 1063 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1064 periph->unit_number, quirks, bit_string); 1065 } 1066 } 1067 1068 void 1069 xpt_denounce_periph(struct cam_periph *periph) 1070 { 1071 struct cam_path *path = periph->path; 1072 1073 cam_periph_assert(periph, MA_OWNED); 1074 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1075 periph->periph_name, periph->unit_number, 1076 path->bus->sim->sim_name, 1077 path->bus->sim->unit_number, 1078 path->bus->sim->bus_id, 1079 path->bus->path_id, 1080 path->target->target_id, 1081 (uintmax_t)path->device->lun_id); 1082 printf("%s%d: ", periph->periph_name, periph->unit_number); 1083 if (path->device->protocol == PROTO_SCSI) 1084 scsi_print_inquiry_short(&path->device->inq_data); 1085 else if (path->device->protocol == PROTO_ATA || 1086 path->device->protocol == PROTO_SATAPM) 1087 ata_print_ident_short(&path->device->ident_data); 1088 else if (path->device->protocol == PROTO_SEMB) 1089 semb_print_ident_short( 1090 (struct sep_identify_data *)&path->device->ident_data); 1091 else if (path->device->protocol == PROTO_NVME) 1092 nvme_print_ident(path->device->nvme_cdata, path->device->nvme_data); 1093 else 1094 printf("Unknown protocol device"); 1095 if (path->device->serial_num_len > 0) 1096 printf(" s/n %.60s", path->device->serial_num); 1097 printf(" detached\n"); 1098 } 1099 1100 1101 int 1102 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1103 { 1104 int ret = -1, l; 1105 struct ccb_dev_advinfo cdai; 1106 struct scsi_vpd_id_descriptor *idd; 1107 1108 xpt_path_assert(path, MA_OWNED); 1109 1110 memset(&cdai, 0, sizeof(cdai)); 1111 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1112 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1113 cdai.bufsiz = len; 1114 1115 if (!strcmp(attr, "GEOM::ident")) 1116 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1117 else if (!strcmp(attr, "GEOM::physpath")) 1118 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1119 else if (strcmp(attr, "GEOM::lunid") == 0 || 1120 strcmp(attr, "GEOM::lunname") == 0) { 1121 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1122 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1123 } else 1124 goto out; 1125 1126 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1127 if (cdai.buf == NULL) { 1128 ret = ENOMEM; 1129 goto out; 1130 } 1131 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1132 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1133 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1134 if (cdai.provsiz == 0) 1135 goto out; 1136 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1137 if (strcmp(attr, "GEOM::lunid") == 0) { 1138 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1139 cdai.provsiz, scsi_devid_is_lun_naa); 1140 if (idd == NULL) 1141 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1142 cdai.provsiz, scsi_devid_is_lun_eui64); 1143 } else 1144 idd = NULL; 1145 if (idd == NULL) 1146 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1147 cdai.provsiz, scsi_devid_is_lun_t10); 1148 if (idd == NULL) 1149 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1150 cdai.provsiz, scsi_devid_is_lun_name); 1151 if (idd == NULL) 1152 goto out; 1153 ret = 0; 1154 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1155 if (idd->length < len) { 1156 for (l = 0; l < idd->length; l++) 1157 buf[l] = idd->identifier[l] ? 1158 idd->identifier[l] : ' '; 1159 buf[l] = 0; 1160 } else 1161 ret = EFAULT; 1162 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1163 l = strnlen(idd->identifier, idd->length); 1164 if (l < len) { 1165 bcopy(idd->identifier, buf, l); 1166 buf[l] = 0; 1167 } else 1168 ret = EFAULT; 1169 } else { 1170 if (idd->length * 2 < len) { 1171 for (l = 0; l < idd->length; l++) 1172 sprintf(buf + l * 2, "%02x", 1173 idd->identifier[l]); 1174 } else 1175 ret = EFAULT; 1176 } 1177 } else { 1178 ret = 0; 1179 if (strlcpy(buf, cdai.buf, len) >= len) 1180 ret = EFAULT; 1181 } 1182 1183 out: 1184 if (cdai.buf != NULL) 1185 free(cdai.buf, M_CAMXPT); 1186 return ret; 1187 } 1188 1189 static dev_match_ret 1190 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1191 struct cam_eb *bus) 1192 { 1193 dev_match_ret retval; 1194 u_int i; 1195 1196 retval = DM_RET_NONE; 1197 1198 /* 1199 * If we aren't given something to match against, that's an error. 1200 */ 1201 if (bus == NULL) 1202 return(DM_RET_ERROR); 1203 1204 /* 1205 * If there are no match entries, then this bus matches no 1206 * matter what. 1207 */ 1208 if ((patterns == NULL) || (num_patterns == 0)) 1209 return(DM_RET_DESCEND | DM_RET_COPY); 1210 1211 for (i = 0; i < num_patterns; i++) { 1212 struct bus_match_pattern *cur_pattern; 1213 1214 /* 1215 * If the pattern in question isn't for a bus node, we 1216 * aren't interested. However, we do indicate to the 1217 * calling routine that we should continue descending the 1218 * tree, since the user wants to match against lower-level 1219 * EDT elements. 1220 */ 1221 if (patterns[i].type != DEV_MATCH_BUS) { 1222 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1223 retval |= DM_RET_DESCEND; 1224 continue; 1225 } 1226 1227 cur_pattern = &patterns[i].pattern.bus_pattern; 1228 1229 /* 1230 * If they want to match any bus node, we give them any 1231 * device node. 1232 */ 1233 if (cur_pattern->flags == BUS_MATCH_ANY) { 1234 /* set the copy flag */ 1235 retval |= DM_RET_COPY; 1236 1237 /* 1238 * If we've already decided on an action, go ahead 1239 * and return. 1240 */ 1241 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1242 return(retval); 1243 } 1244 1245 /* 1246 * Not sure why someone would do this... 1247 */ 1248 if (cur_pattern->flags == BUS_MATCH_NONE) 1249 continue; 1250 1251 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1252 && (cur_pattern->path_id != bus->path_id)) 1253 continue; 1254 1255 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1256 && (cur_pattern->bus_id != bus->sim->bus_id)) 1257 continue; 1258 1259 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1260 && (cur_pattern->unit_number != bus->sim->unit_number)) 1261 continue; 1262 1263 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1264 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1265 DEV_IDLEN) != 0)) 1266 continue; 1267 1268 /* 1269 * If we get to this point, the user definitely wants 1270 * information on this bus. So tell the caller to copy the 1271 * data out. 1272 */ 1273 retval |= DM_RET_COPY; 1274 1275 /* 1276 * If the return action has been set to descend, then we 1277 * know that we've already seen a non-bus matching 1278 * expression, therefore we need to further descend the tree. 1279 * This won't change by continuing around the loop, so we 1280 * go ahead and return. If we haven't seen a non-bus 1281 * matching expression, we keep going around the loop until 1282 * we exhaust the matching expressions. We'll set the stop 1283 * flag once we fall out of the loop. 1284 */ 1285 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1286 return(retval); 1287 } 1288 1289 /* 1290 * If the return action hasn't been set to descend yet, that means 1291 * we haven't seen anything other than bus matching patterns. So 1292 * tell the caller to stop descending the tree -- the user doesn't 1293 * want to match against lower level tree elements. 1294 */ 1295 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1296 retval |= DM_RET_STOP; 1297 1298 return(retval); 1299 } 1300 1301 static dev_match_ret 1302 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1303 struct cam_ed *device) 1304 { 1305 dev_match_ret retval; 1306 u_int i; 1307 1308 retval = DM_RET_NONE; 1309 1310 /* 1311 * If we aren't given something to match against, that's an error. 1312 */ 1313 if (device == NULL) 1314 return(DM_RET_ERROR); 1315 1316 /* 1317 * If there are no match entries, then this device matches no 1318 * matter what. 1319 */ 1320 if ((patterns == NULL) || (num_patterns == 0)) 1321 return(DM_RET_DESCEND | DM_RET_COPY); 1322 1323 for (i = 0; i < num_patterns; i++) { 1324 struct device_match_pattern *cur_pattern; 1325 struct scsi_vpd_device_id *device_id_page; 1326 1327 /* 1328 * If the pattern in question isn't for a device node, we 1329 * aren't interested. 1330 */ 1331 if (patterns[i].type != DEV_MATCH_DEVICE) { 1332 if ((patterns[i].type == DEV_MATCH_PERIPH) 1333 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1334 retval |= DM_RET_DESCEND; 1335 continue; 1336 } 1337 1338 cur_pattern = &patterns[i].pattern.device_pattern; 1339 1340 /* Error out if mutually exclusive options are specified. */ 1341 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1342 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1343 return(DM_RET_ERROR); 1344 1345 /* 1346 * If they want to match any device node, we give them any 1347 * device node. 1348 */ 1349 if (cur_pattern->flags == DEV_MATCH_ANY) 1350 goto copy_dev_node; 1351 1352 /* 1353 * Not sure why someone would do this... 1354 */ 1355 if (cur_pattern->flags == DEV_MATCH_NONE) 1356 continue; 1357 1358 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1359 && (cur_pattern->path_id != device->target->bus->path_id)) 1360 continue; 1361 1362 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1363 && (cur_pattern->target_id != device->target->target_id)) 1364 continue; 1365 1366 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1367 && (cur_pattern->target_lun != device->lun_id)) 1368 continue; 1369 1370 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1371 && (cam_quirkmatch((caddr_t)&device->inq_data, 1372 (caddr_t)&cur_pattern->data.inq_pat, 1373 1, sizeof(cur_pattern->data.inq_pat), 1374 scsi_static_inquiry_match) == NULL)) 1375 continue; 1376 1377 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1378 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1379 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1380 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1381 device->device_id_len 1382 - SVPD_DEVICE_ID_HDR_LEN, 1383 cur_pattern->data.devid_pat.id, 1384 cur_pattern->data.devid_pat.id_len) != 0)) 1385 continue; 1386 1387 copy_dev_node: 1388 /* 1389 * If we get to this point, the user definitely wants 1390 * information on this device. So tell the caller to copy 1391 * the data out. 1392 */ 1393 retval |= DM_RET_COPY; 1394 1395 /* 1396 * If the return action has been set to descend, then we 1397 * know that we've already seen a peripheral matching 1398 * expression, therefore we need to further descend the tree. 1399 * This won't change by continuing around the loop, so we 1400 * go ahead and return. If we haven't seen a peripheral 1401 * matching expression, we keep going around the loop until 1402 * we exhaust the matching expressions. We'll set the stop 1403 * flag once we fall out of the loop. 1404 */ 1405 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1406 return(retval); 1407 } 1408 1409 /* 1410 * If the return action hasn't been set to descend yet, that means 1411 * we haven't seen any peripheral matching patterns. So tell the 1412 * caller to stop descending the tree -- the user doesn't want to 1413 * match against lower level tree elements. 1414 */ 1415 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1416 retval |= DM_RET_STOP; 1417 1418 return(retval); 1419 } 1420 1421 /* 1422 * Match a single peripheral against any number of match patterns. 1423 */ 1424 static dev_match_ret 1425 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1426 struct cam_periph *periph) 1427 { 1428 dev_match_ret retval; 1429 u_int i; 1430 1431 /* 1432 * If we aren't given something to match against, that's an error. 1433 */ 1434 if (periph == NULL) 1435 return(DM_RET_ERROR); 1436 1437 /* 1438 * If there are no match entries, then this peripheral matches no 1439 * matter what. 1440 */ 1441 if ((patterns == NULL) || (num_patterns == 0)) 1442 return(DM_RET_STOP | DM_RET_COPY); 1443 1444 /* 1445 * There aren't any nodes below a peripheral node, so there's no 1446 * reason to descend the tree any further. 1447 */ 1448 retval = DM_RET_STOP; 1449 1450 for (i = 0; i < num_patterns; i++) { 1451 struct periph_match_pattern *cur_pattern; 1452 1453 /* 1454 * If the pattern in question isn't for a peripheral, we 1455 * aren't interested. 1456 */ 1457 if (patterns[i].type != DEV_MATCH_PERIPH) 1458 continue; 1459 1460 cur_pattern = &patterns[i].pattern.periph_pattern; 1461 1462 /* 1463 * If they want to match on anything, then we will do so. 1464 */ 1465 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1466 /* set the copy flag */ 1467 retval |= DM_RET_COPY; 1468 1469 /* 1470 * We've already set the return action to stop, 1471 * since there are no nodes below peripherals in 1472 * the tree. 1473 */ 1474 return(retval); 1475 } 1476 1477 /* 1478 * Not sure why someone would do this... 1479 */ 1480 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1481 continue; 1482 1483 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1484 && (cur_pattern->path_id != periph->path->bus->path_id)) 1485 continue; 1486 1487 /* 1488 * For the target and lun id's, we have to make sure the 1489 * target and lun pointers aren't NULL. The xpt peripheral 1490 * has a wildcard target and device. 1491 */ 1492 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1493 && ((periph->path->target == NULL) 1494 ||(cur_pattern->target_id != periph->path->target->target_id))) 1495 continue; 1496 1497 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1498 && ((periph->path->device == NULL) 1499 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1500 continue; 1501 1502 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1503 && (cur_pattern->unit_number != periph->unit_number)) 1504 continue; 1505 1506 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1507 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1508 DEV_IDLEN) != 0)) 1509 continue; 1510 1511 /* 1512 * If we get to this point, the user definitely wants 1513 * information on this peripheral. So tell the caller to 1514 * copy the data out. 1515 */ 1516 retval |= DM_RET_COPY; 1517 1518 /* 1519 * The return action has already been set to stop, since 1520 * peripherals don't have any nodes below them in the EDT. 1521 */ 1522 return(retval); 1523 } 1524 1525 /* 1526 * If we get to this point, the peripheral that was passed in 1527 * doesn't match any of the patterns. 1528 */ 1529 return(retval); 1530 } 1531 1532 static int 1533 xptedtbusfunc(struct cam_eb *bus, void *arg) 1534 { 1535 struct ccb_dev_match *cdm; 1536 struct cam_et *target; 1537 dev_match_ret retval; 1538 1539 cdm = (struct ccb_dev_match *)arg; 1540 1541 /* 1542 * If our position is for something deeper in the tree, that means 1543 * that we've already seen this node. So, we keep going down. 1544 */ 1545 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1546 && (cdm->pos.cookie.bus == bus) 1547 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1548 && (cdm->pos.cookie.target != NULL)) 1549 retval = DM_RET_DESCEND; 1550 else 1551 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1552 1553 /* 1554 * If we got an error, bail out of the search. 1555 */ 1556 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1557 cdm->status = CAM_DEV_MATCH_ERROR; 1558 return(0); 1559 } 1560 1561 /* 1562 * If the copy flag is set, copy this bus out. 1563 */ 1564 if (retval & DM_RET_COPY) { 1565 int spaceleft, j; 1566 1567 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1568 sizeof(struct dev_match_result)); 1569 1570 /* 1571 * If we don't have enough space to put in another 1572 * match result, save our position and tell the 1573 * user there are more devices to check. 1574 */ 1575 if (spaceleft < sizeof(struct dev_match_result)) { 1576 bzero(&cdm->pos, sizeof(cdm->pos)); 1577 cdm->pos.position_type = 1578 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1579 1580 cdm->pos.cookie.bus = bus; 1581 cdm->pos.generations[CAM_BUS_GENERATION]= 1582 xsoftc.bus_generation; 1583 cdm->status = CAM_DEV_MATCH_MORE; 1584 return(0); 1585 } 1586 j = cdm->num_matches; 1587 cdm->num_matches++; 1588 cdm->matches[j].type = DEV_MATCH_BUS; 1589 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1590 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1591 cdm->matches[j].result.bus_result.unit_number = 1592 bus->sim->unit_number; 1593 strncpy(cdm->matches[j].result.bus_result.dev_name, 1594 bus->sim->sim_name, DEV_IDLEN); 1595 } 1596 1597 /* 1598 * If the user is only interested in busses, there's no 1599 * reason to descend to the next level in the tree. 1600 */ 1601 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1602 return(1); 1603 1604 /* 1605 * If there is a target generation recorded, check it to 1606 * make sure the target list hasn't changed. 1607 */ 1608 mtx_lock(&bus->eb_mtx); 1609 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1610 && (cdm->pos.cookie.bus == bus) 1611 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1612 && (cdm->pos.cookie.target != NULL)) { 1613 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1614 bus->generation)) { 1615 mtx_unlock(&bus->eb_mtx); 1616 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1617 return (0); 1618 } 1619 target = (struct cam_et *)cdm->pos.cookie.target; 1620 target->refcount++; 1621 } else 1622 target = NULL; 1623 mtx_unlock(&bus->eb_mtx); 1624 1625 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1626 } 1627 1628 static int 1629 xptedttargetfunc(struct cam_et *target, void *arg) 1630 { 1631 struct ccb_dev_match *cdm; 1632 struct cam_eb *bus; 1633 struct cam_ed *device; 1634 1635 cdm = (struct ccb_dev_match *)arg; 1636 bus = target->bus; 1637 1638 /* 1639 * If there is a device list generation recorded, check it to 1640 * make sure the device list hasn't changed. 1641 */ 1642 mtx_lock(&bus->eb_mtx); 1643 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1644 && (cdm->pos.cookie.bus == bus) 1645 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1646 && (cdm->pos.cookie.target == target) 1647 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1648 && (cdm->pos.cookie.device != NULL)) { 1649 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1650 target->generation) { 1651 mtx_unlock(&bus->eb_mtx); 1652 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1653 return(0); 1654 } 1655 device = (struct cam_ed *)cdm->pos.cookie.device; 1656 device->refcount++; 1657 } else 1658 device = NULL; 1659 mtx_unlock(&bus->eb_mtx); 1660 1661 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1662 } 1663 1664 static int 1665 xptedtdevicefunc(struct cam_ed *device, void *arg) 1666 { 1667 struct cam_eb *bus; 1668 struct cam_periph *periph; 1669 struct ccb_dev_match *cdm; 1670 dev_match_ret retval; 1671 1672 cdm = (struct ccb_dev_match *)arg; 1673 bus = device->target->bus; 1674 1675 /* 1676 * If our position is for something deeper in the tree, that means 1677 * that we've already seen this node. So, we keep going down. 1678 */ 1679 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1680 && (cdm->pos.cookie.device == device) 1681 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1682 && (cdm->pos.cookie.periph != NULL)) 1683 retval = DM_RET_DESCEND; 1684 else 1685 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1686 device); 1687 1688 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1689 cdm->status = CAM_DEV_MATCH_ERROR; 1690 return(0); 1691 } 1692 1693 /* 1694 * If the copy flag is set, copy this device out. 1695 */ 1696 if (retval & DM_RET_COPY) { 1697 int spaceleft, j; 1698 1699 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1700 sizeof(struct dev_match_result)); 1701 1702 /* 1703 * If we don't have enough space to put in another 1704 * match result, save our position and tell the 1705 * user there are more devices to check. 1706 */ 1707 if (spaceleft < sizeof(struct dev_match_result)) { 1708 bzero(&cdm->pos, sizeof(cdm->pos)); 1709 cdm->pos.position_type = 1710 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1711 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1712 1713 cdm->pos.cookie.bus = device->target->bus; 1714 cdm->pos.generations[CAM_BUS_GENERATION]= 1715 xsoftc.bus_generation; 1716 cdm->pos.cookie.target = device->target; 1717 cdm->pos.generations[CAM_TARGET_GENERATION] = 1718 device->target->bus->generation; 1719 cdm->pos.cookie.device = device; 1720 cdm->pos.generations[CAM_DEV_GENERATION] = 1721 device->target->generation; 1722 cdm->status = CAM_DEV_MATCH_MORE; 1723 return(0); 1724 } 1725 j = cdm->num_matches; 1726 cdm->num_matches++; 1727 cdm->matches[j].type = DEV_MATCH_DEVICE; 1728 cdm->matches[j].result.device_result.path_id = 1729 device->target->bus->path_id; 1730 cdm->matches[j].result.device_result.target_id = 1731 device->target->target_id; 1732 cdm->matches[j].result.device_result.target_lun = 1733 device->lun_id; 1734 cdm->matches[j].result.device_result.protocol = 1735 device->protocol; 1736 bcopy(&device->inq_data, 1737 &cdm->matches[j].result.device_result.inq_data, 1738 sizeof(struct scsi_inquiry_data)); 1739 bcopy(&device->ident_data, 1740 &cdm->matches[j].result.device_result.ident_data, 1741 sizeof(struct ata_params)); 1742 1743 /* Let the user know whether this device is unconfigured */ 1744 if (device->flags & CAM_DEV_UNCONFIGURED) 1745 cdm->matches[j].result.device_result.flags = 1746 DEV_RESULT_UNCONFIGURED; 1747 else 1748 cdm->matches[j].result.device_result.flags = 1749 DEV_RESULT_NOFLAG; 1750 } 1751 1752 /* 1753 * If the user isn't interested in peripherals, don't descend 1754 * the tree any further. 1755 */ 1756 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1757 return(1); 1758 1759 /* 1760 * If there is a peripheral list generation recorded, make sure 1761 * it hasn't changed. 1762 */ 1763 xpt_lock_buses(); 1764 mtx_lock(&bus->eb_mtx); 1765 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1766 && (cdm->pos.cookie.bus == bus) 1767 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1768 && (cdm->pos.cookie.target == device->target) 1769 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1770 && (cdm->pos.cookie.device == device) 1771 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1772 && (cdm->pos.cookie.periph != NULL)) { 1773 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1774 device->generation) { 1775 mtx_unlock(&bus->eb_mtx); 1776 xpt_unlock_buses(); 1777 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1778 return(0); 1779 } 1780 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1781 periph->refcount++; 1782 } else 1783 periph = NULL; 1784 mtx_unlock(&bus->eb_mtx); 1785 xpt_unlock_buses(); 1786 1787 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1788 } 1789 1790 static int 1791 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1792 { 1793 struct ccb_dev_match *cdm; 1794 dev_match_ret retval; 1795 1796 cdm = (struct ccb_dev_match *)arg; 1797 1798 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1799 1800 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1801 cdm->status = CAM_DEV_MATCH_ERROR; 1802 return(0); 1803 } 1804 1805 /* 1806 * If the copy flag is set, copy this peripheral out. 1807 */ 1808 if (retval & DM_RET_COPY) { 1809 int spaceleft, j; 1810 1811 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1812 sizeof(struct dev_match_result)); 1813 1814 /* 1815 * If we don't have enough space to put in another 1816 * match result, save our position and tell the 1817 * user there are more devices to check. 1818 */ 1819 if (spaceleft < sizeof(struct dev_match_result)) { 1820 bzero(&cdm->pos, sizeof(cdm->pos)); 1821 cdm->pos.position_type = 1822 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1823 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1824 CAM_DEV_POS_PERIPH; 1825 1826 cdm->pos.cookie.bus = periph->path->bus; 1827 cdm->pos.generations[CAM_BUS_GENERATION]= 1828 xsoftc.bus_generation; 1829 cdm->pos.cookie.target = periph->path->target; 1830 cdm->pos.generations[CAM_TARGET_GENERATION] = 1831 periph->path->bus->generation; 1832 cdm->pos.cookie.device = periph->path->device; 1833 cdm->pos.generations[CAM_DEV_GENERATION] = 1834 periph->path->target->generation; 1835 cdm->pos.cookie.periph = periph; 1836 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1837 periph->path->device->generation; 1838 cdm->status = CAM_DEV_MATCH_MORE; 1839 return(0); 1840 } 1841 1842 j = cdm->num_matches; 1843 cdm->num_matches++; 1844 cdm->matches[j].type = DEV_MATCH_PERIPH; 1845 cdm->matches[j].result.periph_result.path_id = 1846 periph->path->bus->path_id; 1847 cdm->matches[j].result.periph_result.target_id = 1848 periph->path->target->target_id; 1849 cdm->matches[j].result.periph_result.target_lun = 1850 periph->path->device->lun_id; 1851 cdm->matches[j].result.periph_result.unit_number = 1852 periph->unit_number; 1853 strncpy(cdm->matches[j].result.periph_result.periph_name, 1854 periph->periph_name, DEV_IDLEN); 1855 } 1856 1857 return(1); 1858 } 1859 1860 static int 1861 xptedtmatch(struct ccb_dev_match *cdm) 1862 { 1863 struct cam_eb *bus; 1864 int ret; 1865 1866 cdm->num_matches = 0; 1867 1868 /* 1869 * Check the bus list generation. If it has changed, the user 1870 * needs to reset everything and start over. 1871 */ 1872 xpt_lock_buses(); 1873 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1874 && (cdm->pos.cookie.bus != NULL)) { 1875 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1876 xsoftc.bus_generation) { 1877 xpt_unlock_buses(); 1878 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1879 return(0); 1880 } 1881 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1882 bus->refcount++; 1883 } else 1884 bus = NULL; 1885 xpt_unlock_buses(); 1886 1887 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1888 1889 /* 1890 * If we get back 0, that means that we had to stop before fully 1891 * traversing the EDT. It also means that one of the subroutines 1892 * has set the status field to the proper value. If we get back 1, 1893 * we've fully traversed the EDT and copied out any matching entries. 1894 */ 1895 if (ret == 1) 1896 cdm->status = CAM_DEV_MATCH_LAST; 1897 1898 return(ret); 1899 } 1900 1901 static int 1902 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1903 { 1904 struct cam_periph *periph; 1905 struct ccb_dev_match *cdm; 1906 1907 cdm = (struct ccb_dev_match *)arg; 1908 1909 xpt_lock_buses(); 1910 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1911 && (cdm->pos.cookie.pdrv == pdrv) 1912 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1913 && (cdm->pos.cookie.periph != NULL)) { 1914 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1915 (*pdrv)->generation) { 1916 xpt_unlock_buses(); 1917 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1918 return(0); 1919 } 1920 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1921 periph->refcount++; 1922 } else 1923 periph = NULL; 1924 xpt_unlock_buses(); 1925 1926 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1927 } 1928 1929 static int 1930 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1931 { 1932 struct ccb_dev_match *cdm; 1933 dev_match_ret retval; 1934 1935 cdm = (struct ccb_dev_match *)arg; 1936 1937 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1938 1939 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1940 cdm->status = CAM_DEV_MATCH_ERROR; 1941 return(0); 1942 } 1943 1944 /* 1945 * If the copy flag is set, copy this peripheral out. 1946 */ 1947 if (retval & DM_RET_COPY) { 1948 int spaceleft, j; 1949 1950 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1951 sizeof(struct dev_match_result)); 1952 1953 /* 1954 * If we don't have enough space to put in another 1955 * match result, save our position and tell the 1956 * user there are more devices to check. 1957 */ 1958 if (spaceleft < sizeof(struct dev_match_result)) { 1959 struct periph_driver **pdrv; 1960 1961 pdrv = NULL; 1962 bzero(&cdm->pos, sizeof(cdm->pos)); 1963 cdm->pos.position_type = 1964 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1965 CAM_DEV_POS_PERIPH; 1966 1967 /* 1968 * This may look a bit non-sensical, but it is 1969 * actually quite logical. There are very few 1970 * peripheral drivers, and bloating every peripheral 1971 * structure with a pointer back to its parent 1972 * peripheral driver linker set entry would cost 1973 * more in the long run than doing this quick lookup. 1974 */ 1975 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1976 if (strcmp((*pdrv)->driver_name, 1977 periph->periph_name) == 0) 1978 break; 1979 } 1980 1981 if (*pdrv == NULL) { 1982 cdm->status = CAM_DEV_MATCH_ERROR; 1983 return(0); 1984 } 1985 1986 cdm->pos.cookie.pdrv = pdrv; 1987 /* 1988 * The periph generation slot does double duty, as 1989 * does the periph pointer slot. They are used for 1990 * both edt and pdrv lookups and positioning. 1991 */ 1992 cdm->pos.cookie.periph = periph; 1993 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1994 (*pdrv)->generation; 1995 cdm->status = CAM_DEV_MATCH_MORE; 1996 return(0); 1997 } 1998 1999 j = cdm->num_matches; 2000 cdm->num_matches++; 2001 cdm->matches[j].type = DEV_MATCH_PERIPH; 2002 cdm->matches[j].result.periph_result.path_id = 2003 periph->path->bus->path_id; 2004 2005 /* 2006 * The transport layer peripheral doesn't have a target or 2007 * lun. 2008 */ 2009 if (periph->path->target) 2010 cdm->matches[j].result.periph_result.target_id = 2011 periph->path->target->target_id; 2012 else 2013 cdm->matches[j].result.periph_result.target_id = 2014 CAM_TARGET_WILDCARD; 2015 2016 if (periph->path->device) 2017 cdm->matches[j].result.periph_result.target_lun = 2018 periph->path->device->lun_id; 2019 else 2020 cdm->matches[j].result.periph_result.target_lun = 2021 CAM_LUN_WILDCARD; 2022 2023 cdm->matches[j].result.periph_result.unit_number = 2024 periph->unit_number; 2025 strncpy(cdm->matches[j].result.periph_result.periph_name, 2026 periph->periph_name, DEV_IDLEN); 2027 } 2028 2029 return(1); 2030 } 2031 2032 static int 2033 xptperiphlistmatch(struct ccb_dev_match *cdm) 2034 { 2035 int ret; 2036 2037 cdm->num_matches = 0; 2038 2039 /* 2040 * At this point in the edt traversal function, we check the bus 2041 * list generation to make sure that no busses have been added or 2042 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2043 * For the peripheral driver list traversal function, however, we 2044 * don't have to worry about new peripheral driver types coming or 2045 * going; they're in a linker set, and therefore can't change 2046 * without a recompile. 2047 */ 2048 2049 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2050 && (cdm->pos.cookie.pdrv != NULL)) 2051 ret = xptpdrvtraverse( 2052 (struct periph_driver **)cdm->pos.cookie.pdrv, 2053 xptplistpdrvfunc, cdm); 2054 else 2055 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2056 2057 /* 2058 * If we get back 0, that means that we had to stop before fully 2059 * traversing the peripheral driver tree. It also means that one of 2060 * the subroutines has set the status field to the proper value. If 2061 * we get back 1, we've fully traversed the EDT and copied out any 2062 * matching entries. 2063 */ 2064 if (ret == 1) 2065 cdm->status = CAM_DEV_MATCH_LAST; 2066 2067 return(ret); 2068 } 2069 2070 static int 2071 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2072 { 2073 struct cam_eb *bus, *next_bus; 2074 int retval; 2075 2076 retval = 1; 2077 if (start_bus) 2078 bus = start_bus; 2079 else { 2080 xpt_lock_buses(); 2081 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2082 if (bus == NULL) { 2083 xpt_unlock_buses(); 2084 return (retval); 2085 } 2086 bus->refcount++; 2087 xpt_unlock_buses(); 2088 } 2089 for (; bus != NULL; bus = next_bus) { 2090 retval = tr_func(bus, arg); 2091 if (retval == 0) { 2092 xpt_release_bus(bus); 2093 break; 2094 } 2095 xpt_lock_buses(); 2096 next_bus = TAILQ_NEXT(bus, links); 2097 if (next_bus) 2098 next_bus->refcount++; 2099 xpt_unlock_buses(); 2100 xpt_release_bus(bus); 2101 } 2102 return(retval); 2103 } 2104 2105 static int 2106 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2107 xpt_targetfunc_t *tr_func, void *arg) 2108 { 2109 struct cam_et *target, *next_target; 2110 int retval; 2111 2112 retval = 1; 2113 if (start_target) 2114 target = start_target; 2115 else { 2116 mtx_lock(&bus->eb_mtx); 2117 target = TAILQ_FIRST(&bus->et_entries); 2118 if (target == NULL) { 2119 mtx_unlock(&bus->eb_mtx); 2120 return (retval); 2121 } 2122 target->refcount++; 2123 mtx_unlock(&bus->eb_mtx); 2124 } 2125 for (; target != NULL; target = next_target) { 2126 retval = tr_func(target, arg); 2127 if (retval == 0) { 2128 xpt_release_target(target); 2129 break; 2130 } 2131 mtx_lock(&bus->eb_mtx); 2132 next_target = TAILQ_NEXT(target, links); 2133 if (next_target) 2134 next_target->refcount++; 2135 mtx_unlock(&bus->eb_mtx); 2136 xpt_release_target(target); 2137 } 2138 return(retval); 2139 } 2140 2141 static int 2142 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2143 xpt_devicefunc_t *tr_func, void *arg) 2144 { 2145 struct cam_eb *bus; 2146 struct cam_ed *device, *next_device; 2147 int retval; 2148 2149 retval = 1; 2150 bus = target->bus; 2151 if (start_device) 2152 device = start_device; 2153 else { 2154 mtx_lock(&bus->eb_mtx); 2155 device = TAILQ_FIRST(&target->ed_entries); 2156 if (device == NULL) { 2157 mtx_unlock(&bus->eb_mtx); 2158 return (retval); 2159 } 2160 device->refcount++; 2161 mtx_unlock(&bus->eb_mtx); 2162 } 2163 for (; device != NULL; device = next_device) { 2164 mtx_lock(&device->device_mtx); 2165 retval = tr_func(device, arg); 2166 mtx_unlock(&device->device_mtx); 2167 if (retval == 0) { 2168 xpt_release_device(device); 2169 break; 2170 } 2171 mtx_lock(&bus->eb_mtx); 2172 next_device = TAILQ_NEXT(device, links); 2173 if (next_device) 2174 next_device->refcount++; 2175 mtx_unlock(&bus->eb_mtx); 2176 xpt_release_device(device); 2177 } 2178 return(retval); 2179 } 2180 2181 static int 2182 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2183 xpt_periphfunc_t *tr_func, void *arg) 2184 { 2185 struct cam_eb *bus; 2186 struct cam_periph *periph, *next_periph; 2187 int retval; 2188 2189 retval = 1; 2190 2191 bus = device->target->bus; 2192 if (start_periph) 2193 periph = start_periph; 2194 else { 2195 xpt_lock_buses(); 2196 mtx_lock(&bus->eb_mtx); 2197 periph = SLIST_FIRST(&device->periphs); 2198 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2199 periph = SLIST_NEXT(periph, periph_links); 2200 if (periph == NULL) { 2201 mtx_unlock(&bus->eb_mtx); 2202 xpt_unlock_buses(); 2203 return (retval); 2204 } 2205 periph->refcount++; 2206 mtx_unlock(&bus->eb_mtx); 2207 xpt_unlock_buses(); 2208 } 2209 for (; periph != NULL; periph = next_periph) { 2210 retval = tr_func(periph, arg); 2211 if (retval == 0) { 2212 cam_periph_release_locked(periph); 2213 break; 2214 } 2215 xpt_lock_buses(); 2216 mtx_lock(&bus->eb_mtx); 2217 next_periph = SLIST_NEXT(periph, periph_links); 2218 while (next_periph != NULL && 2219 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2220 next_periph = SLIST_NEXT(next_periph, periph_links); 2221 if (next_periph) 2222 next_periph->refcount++; 2223 mtx_unlock(&bus->eb_mtx); 2224 xpt_unlock_buses(); 2225 cam_periph_release_locked(periph); 2226 } 2227 return(retval); 2228 } 2229 2230 static int 2231 xptpdrvtraverse(struct periph_driver **start_pdrv, 2232 xpt_pdrvfunc_t *tr_func, void *arg) 2233 { 2234 struct periph_driver **pdrv; 2235 int retval; 2236 2237 retval = 1; 2238 2239 /* 2240 * We don't traverse the peripheral driver list like we do the 2241 * other lists, because it is a linker set, and therefore cannot be 2242 * changed during runtime. If the peripheral driver list is ever 2243 * re-done to be something other than a linker set (i.e. it can 2244 * change while the system is running), the list traversal should 2245 * be modified to work like the other traversal functions. 2246 */ 2247 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2248 *pdrv != NULL; pdrv++) { 2249 retval = tr_func(pdrv, arg); 2250 2251 if (retval == 0) 2252 return(retval); 2253 } 2254 2255 return(retval); 2256 } 2257 2258 static int 2259 xptpdperiphtraverse(struct periph_driver **pdrv, 2260 struct cam_periph *start_periph, 2261 xpt_periphfunc_t *tr_func, void *arg) 2262 { 2263 struct cam_periph *periph, *next_periph; 2264 int retval; 2265 2266 retval = 1; 2267 2268 if (start_periph) 2269 periph = start_periph; 2270 else { 2271 xpt_lock_buses(); 2272 periph = TAILQ_FIRST(&(*pdrv)->units); 2273 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2274 periph = TAILQ_NEXT(periph, unit_links); 2275 if (periph == NULL) { 2276 xpt_unlock_buses(); 2277 return (retval); 2278 } 2279 periph->refcount++; 2280 xpt_unlock_buses(); 2281 } 2282 for (; periph != NULL; periph = next_periph) { 2283 cam_periph_lock(periph); 2284 retval = tr_func(periph, arg); 2285 cam_periph_unlock(periph); 2286 if (retval == 0) { 2287 cam_periph_release(periph); 2288 break; 2289 } 2290 xpt_lock_buses(); 2291 next_periph = TAILQ_NEXT(periph, unit_links); 2292 while (next_periph != NULL && 2293 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2294 next_periph = TAILQ_NEXT(next_periph, unit_links); 2295 if (next_periph) 2296 next_periph->refcount++; 2297 xpt_unlock_buses(); 2298 cam_periph_release(periph); 2299 } 2300 return(retval); 2301 } 2302 2303 static int 2304 xptdefbusfunc(struct cam_eb *bus, void *arg) 2305 { 2306 struct xpt_traverse_config *tr_config; 2307 2308 tr_config = (struct xpt_traverse_config *)arg; 2309 2310 if (tr_config->depth == XPT_DEPTH_BUS) { 2311 xpt_busfunc_t *tr_func; 2312 2313 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2314 2315 return(tr_func(bus, tr_config->tr_arg)); 2316 } else 2317 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2318 } 2319 2320 static int 2321 xptdeftargetfunc(struct cam_et *target, void *arg) 2322 { 2323 struct xpt_traverse_config *tr_config; 2324 2325 tr_config = (struct xpt_traverse_config *)arg; 2326 2327 if (tr_config->depth == XPT_DEPTH_TARGET) { 2328 xpt_targetfunc_t *tr_func; 2329 2330 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2331 2332 return(tr_func(target, tr_config->tr_arg)); 2333 } else 2334 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2335 } 2336 2337 static int 2338 xptdefdevicefunc(struct cam_ed *device, void *arg) 2339 { 2340 struct xpt_traverse_config *tr_config; 2341 2342 tr_config = (struct xpt_traverse_config *)arg; 2343 2344 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2345 xpt_devicefunc_t *tr_func; 2346 2347 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2348 2349 return(tr_func(device, tr_config->tr_arg)); 2350 } else 2351 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2352 } 2353 2354 static int 2355 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2356 { 2357 struct xpt_traverse_config *tr_config; 2358 xpt_periphfunc_t *tr_func; 2359 2360 tr_config = (struct xpt_traverse_config *)arg; 2361 2362 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2363 2364 /* 2365 * Unlike the other default functions, we don't check for depth 2366 * here. The peripheral driver level is the last level in the EDT, 2367 * so if we're here, we should execute the function in question. 2368 */ 2369 return(tr_func(periph, tr_config->tr_arg)); 2370 } 2371 2372 /* 2373 * Execute the given function for every bus in the EDT. 2374 */ 2375 static int 2376 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2377 { 2378 struct xpt_traverse_config tr_config; 2379 2380 tr_config.depth = XPT_DEPTH_BUS; 2381 tr_config.tr_func = tr_func; 2382 tr_config.tr_arg = arg; 2383 2384 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2385 } 2386 2387 /* 2388 * Execute the given function for every device in the EDT. 2389 */ 2390 static int 2391 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2392 { 2393 struct xpt_traverse_config tr_config; 2394 2395 tr_config.depth = XPT_DEPTH_DEVICE; 2396 tr_config.tr_func = tr_func; 2397 tr_config.tr_arg = arg; 2398 2399 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2400 } 2401 2402 static int 2403 xptsetasyncfunc(struct cam_ed *device, void *arg) 2404 { 2405 struct cam_path path; 2406 struct ccb_getdev cgd; 2407 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2408 2409 /* 2410 * Don't report unconfigured devices (Wildcard devs, 2411 * devices only for target mode, device instances 2412 * that have been invalidated but are waiting for 2413 * their last reference count to be released). 2414 */ 2415 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2416 return (1); 2417 2418 xpt_compile_path(&path, 2419 NULL, 2420 device->target->bus->path_id, 2421 device->target->target_id, 2422 device->lun_id); 2423 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2424 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2425 xpt_action((union ccb *)&cgd); 2426 csa->callback(csa->callback_arg, 2427 AC_FOUND_DEVICE, 2428 &path, &cgd); 2429 xpt_release_path(&path); 2430 2431 return(1); 2432 } 2433 2434 static int 2435 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2436 { 2437 struct cam_path path; 2438 struct ccb_pathinq cpi; 2439 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2440 2441 xpt_compile_path(&path, /*periph*/NULL, 2442 bus->path_id, 2443 CAM_TARGET_WILDCARD, 2444 CAM_LUN_WILDCARD); 2445 xpt_path_lock(&path); 2446 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2447 cpi.ccb_h.func_code = XPT_PATH_INQ; 2448 xpt_action((union ccb *)&cpi); 2449 csa->callback(csa->callback_arg, 2450 AC_PATH_REGISTERED, 2451 &path, &cpi); 2452 xpt_path_unlock(&path); 2453 xpt_release_path(&path); 2454 2455 return(1); 2456 } 2457 2458 void 2459 xpt_action(union ccb *start_ccb) 2460 { 2461 2462 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2463 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2464 xpt_action_name(start_ccb->ccb_h.func_code))); 2465 2466 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2467 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2468 } 2469 2470 void 2471 xpt_action_default(union ccb *start_ccb) 2472 { 2473 struct cam_path *path; 2474 struct cam_sim *sim; 2475 int lock; 2476 2477 path = start_ccb->ccb_h.path; 2478 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2479 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2480 xpt_action_name(start_ccb->ccb_h.func_code))); 2481 2482 switch (start_ccb->ccb_h.func_code) { 2483 case XPT_SCSI_IO: 2484 { 2485 struct cam_ed *device; 2486 2487 /* 2488 * For the sake of compatibility with SCSI-1 2489 * devices that may not understand the identify 2490 * message, we include lun information in the 2491 * second byte of all commands. SCSI-1 specifies 2492 * that luns are a 3 bit value and reserves only 3 2493 * bits for lun information in the CDB. Later 2494 * revisions of the SCSI spec allow for more than 8 2495 * luns, but have deprecated lun information in the 2496 * CDB. So, if the lun won't fit, we must omit. 2497 * 2498 * Also be aware that during initial probing for devices, 2499 * the inquiry information is unknown but initialized to 0. 2500 * This means that this code will be exercised while probing 2501 * devices with an ANSI revision greater than 2. 2502 */ 2503 device = path->device; 2504 if (device->protocol_version <= SCSI_REV_2 2505 && start_ccb->ccb_h.target_lun < 8 2506 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2507 2508 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2509 start_ccb->ccb_h.target_lun << 5; 2510 } 2511 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2512 } 2513 /* FALLTHROUGH */ 2514 case XPT_TARGET_IO: 2515 case XPT_CONT_TARGET_IO: 2516 start_ccb->csio.sense_resid = 0; 2517 start_ccb->csio.resid = 0; 2518 /* FALLTHROUGH */ 2519 case XPT_ATA_IO: 2520 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2521 start_ccb->ataio.resid = 0; 2522 /* FALLTHROUGH */ 2523 case XPT_NVME_IO: 2524 if (start_ccb->ccb_h.func_code == XPT_NVME_IO) 2525 start_ccb->nvmeio.resid = 0; 2526 /* FALLTHROUGH */ 2527 case XPT_RESET_DEV: 2528 case XPT_ENG_EXEC: 2529 case XPT_SMP_IO: 2530 { 2531 struct cam_devq *devq; 2532 2533 devq = path->bus->sim->devq; 2534 mtx_lock(&devq->send_mtx); 2535 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2536 if (xpt_schedule_devq(devq, path->device) != 0) 2537 xpt_run_devq(devq); 2538 mtx_unlock(&devq->send_mtx); 2539 break; 2540 } 2541 case XPT_CALC_GEOMETRY: 2542 /* Filter out garbage */ 2543 if (start_ccb->ccg.block_size == 0 2544 || start_ccb->ccg.volume_size == 0) { 2545 start_ccb->ccg.cylinders = 0; 2546 start_ccb->ccg.heads = 0; 2547 start_ccb->ccg.secs_per_track = 0; 2548 start_ccb->ccb_h.status = CAM_REQ_CMP; 2549 break; 2550 } 2551 #if defined(PC98) || defined(__sparc64__) 2552 /* 2553 * In a PC-98 system, geometry translation depens on 2554 * the "real" device geometry obtained from mode page 4. 2555 * SCSI geometry translation is performed in the 2556 * initialization routine of the SCSI BIOS and the result 2557 * stored in host memory. If the translation is available 2558 * in host memory, use it. If not, rely on the default 2559 * translation the device driver performs. 2560 * For sparc64, we may need adjust the geometry of large 2561 * disks in order to fit the limitations of the 16-bit 2562 * fields of the VTOC8 disk label. 2563 */ 2564 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2565 start_ccb->ccb_h.status = CAM_REQ_CMP; 2566 break; 2567 } 2568 #endif 2569 goto call_sim; 2570 case XPT_ABORT: 2571 { 2572 union ccb* abort_ccb; 2573 2574 abort_ccb = start_ccb->cab.abort_ccb; 2575 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2576 2577 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2578 struct cam_ccbq *ccbq; 2579 struct cam_ed *device; 2580 2581 device = abort_ccb->ccb_h.path->device; 2582 ccbq = &device->ccbq; 2583 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2584 abort_ccb->ccb_h.status = 2585 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2586 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2587 xpt_done(abort_ccb); 2588 start_ccb->ccb_h.status = CAM_REQ_CMP; 2589 break; 2590 } 2591 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2592 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2593 /* 2594 * We've caught this ccb en route to 2595 * the SIM. Flag it for abort and the 2596 * SIM will do so just before starting 2597 * real work on the CCB. 2598 */ 2599 abort_ccb->ccb_h.status = 2600 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2601 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2602 start_ccb->ccb_h.status = CAM_REQ_CMP; 2603 break; 2604 } 2605 } 2606 if (XPT_FC_IS_QUEUED(abort_ccb) 2607 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2608 /* 2609 * It's already completed but waiting 2610 * for our SWI to get to it. 2611 */ 2612 start_ccb->ccb_h.status = CAM_UA_ABORT; 2613 break; 2614 } 2615 /* 2616 * If we weren't able to take care of the abort request 2617 * in the XPT, pass the request down to the SIM for processing. 2618 */ 2619 } 2620 /* FALLTHROUGH */ 2621 case XPT_ACCEPT_TARGET_IO: 2622 case XPT_EN_LUN: 2623 case XPT_IMMED_NOTIFY: 2624 case XPT_NOTIFY_ACK: 2625 case XPT_RESET_BUS: 2626 case XPT_IMMEDIATE_NOTIFY: 2627 case XPT_NOTIFY_ACKNOWLEDGE: 2628 case XPT_GET_SIM_KNOB_OLD: 2629 case XPT_GET_SIM_KNOB: 2630 case XPT_SET_SIM_KNOB: 2631 case XPT_GET_TRAN_SETTINGS: 2632 case XPT_SET_TRAN_SETTINGS: 2633 case XPT_PATH_INQ: 2634 call_sim: 2635 sim = path->bus->sim; 2636 lock = (mtx_owned(sim->mtx) == 0); 2637 if (lock) 2638 CAM_SIM_LOCK(sim); 2639 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2640 ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code)); 2641 (*(sim->sim_action))(sim, start_ccb); 2642 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2643 ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status)); 2644 if (lock) 2645 CAM_SIM_UNLOCK(sim); 2646 break; 2647 case XPT_PATH_STATS: 2648 start_ccb->cpis.last_reset = path->bus->last_reset; 2649 start_ccb->ccb_h.status = CAM_REQ_CMP; 2650 break; 2651 case XPT_GDEV_TYPE: 2652 { 2653 struct cam_ed *dev; 2654 2655 dev = path->device; 2656 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2657 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2658 } else { 2659 struct ccb_getdev *cgd; 2660 2661 cgd = &start_ccb->cgd; 2662 cgd->protocol = dev->protocol; 2663 cgd->inq_data = dev->inq_data; 2664 cgd->ident_data = dev->ident_data; 2665 cgd->inq_flags = dev->inq_flags; 2666 cgd->nvme_data = dev->nvme_data; 2667 cgd->nvme_cdata = dev->nvme_cdata; 2668 cgd->ccb_h.status = CAM_REQ_CMP; 2669 cgd->serial_num_len = dev->serial_num_len; 2670 if ((dev->serial_num_len > 0) 2671 && (dev->serial_num != NULL)) 2672 bcopy(dev->serial_num, cgd->serial_num, 2673 dev->serial_num_len); 2674 } 2675 break; 2676 } 2677 case XPT_GDEV_STATS: 2678 { 2679 struct cam_ed *dev; 2680 2681 dev = path->device; 2682 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2683 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2684 } else { 2685 struct ccb_getdevstats *cgds; 2686 struct cam_eb *bus; 2687 struct cam_et *tar; 2688 struct cam_devq *devq; 2689 2690 cgds = &start_ccb->cgds; 2691 bus = path->bus; 2692 tar = path->target; 2693 devq = bus->sim->devq; 2694 mtx_lock(&devq->send_mtx); 2695 cgds->dev_openings = dev->ccbq.dev_openings; 2696 cgds->dev_active = dev->ccbq.dev_active; 2697 cgds->allocated = dev->ccbq.allocated; 2698 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2699 cgds->held = cgds->allocated - cgds->dev_active - 2700 cgds->queued; 2701 cgds->last_reset = tar->last_reset; 2702 cgds->maxtags = dev->maxtags; 2703 cgds->mintags = dev->mintags; 2704 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2705 cgds->last_reset = bus->last_reset; 2706 mtx_unlock(&devq->send_mtx); 2707 cgds->ccb_h.status = CAM_REQ_CMP; 2708 } 2709 break; 2710 } 2711 case XPT_GDEVLIST: 2712 { 2713 struct cam_periph *nperiph; 2714 struct periph_list *periph_head; 2715 struct ccb_getdevlist *cgdl; 2716 u_int i; 2717 struct cam_ed *device; 2718 int found; 2719 2720 2721 found = 0; 2722 2723 /* 2724 * Don't want anyone mucking with our data. 2725 */ 2726 device = path->device; 2727 periph_head = &device->periphs; 2728 cgdl = &start_ccb->cgdl; 2729 2730 /* 2731 * Check and see if the list has changed since the user 2732 * last requested a list member. If so, tell them that the 2733 * list has changed, and therefore they need to start over 2734 * from the beginning. 2735 */ 2736 if ((cgdl->index != 0) && 2737 (cgdl->generation != device->generation)) { 2738 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2739 break; 2740 } 2741 2742 /* 2743 * Traverse the list of peripherals and attempt to find 2744 * the requested peripheral. 2745 */ 2746 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2747 (nperiph != NULL) && (i <= cgdl->index); 2748 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2749 if (i == cgdl->index) { 2750 strncpy(cgdl->periph_name, 2751 nperiph->periph_name, 2752 DEV_IDLEN); 2753 cgdl->unit_number = nperiph->unit_number; 2754 found = 1; 2755 } 2756 } 2757 if (found == 0) { 2758 cgdl->status = CAM_GDEVLIST_ERROR; 2759 break; 2760 } 2761 2762 if (nperiph == NULL) 2763 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2764 else 2765 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2766 2767 cgdl->index++; 2768 cgdl->generation = device->generation; 2769 2770 cgdl->ccb_h.status = CAM_REQ_CMP; 2771 break; 2772 } 2773 case XPT_DEV_MATCH: 2774 { 2775 dev_pos_type position_type; 2776 struct ccb_dev_match *cdm; 2777 2778 cdm = &start_ccb->cdm; 2779 2780 /* 2781 * There are two ways of getting at information in the EDT. 2782 * The first way is via the primary EDT tree. It starts 2783 * with a list of busses, then a list of targets on a bus, 2784 * then devices/luns on a target, and then peripherals on a 2785 * device/lun. The "other" way is by the peripheral driver 2786 * lists. The peripheral driver lists are organized by 2787 * peripheral driver. (obviously) So it makes sense to 2788 * use the peripheral driver list if the user is looking 2789 * for something like "da1", or all "da" devices. If the 2790 * user is looking for something on a particular bus/target 2791 * or lun, it's generally better to go through the EDT tree. 2792 */ 2793 2794 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2795 position_type = cdm->pos.position_type; 2796 else { 2797 u_int i; 2798 2799 position_type = CAM_DEV_POS_NONE; 2800 2801 for (i = 0; i < cdm->num_patterns; i++) { 2802 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2803 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2804 position_type = CAM_DEV_POS_EDT; 2805 break; 2806 } 2807 } 2808 2809 if (cdm->num_patterns == 0) 2810 position_type = CAM_DEV_POS_EDT; 2811 else if (position_type == CAM_DEV_POS_NONE) 2812 position_type = CAM_DEV_POS_PDRV; 2813 } 2814 2815 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2816 case CAM_DEV_POS_EDT: 2817 xptedtmatch(cdm); 2818 break; 2819 case CAM_DEV_POS_PDRV: 2820 xptperiphlistmatch(cdm); 2821 break; 2822 default: 2823 cdm->status = CAM_DEV_MATCH_ERROR; 2824 break; 2825 } 2826 2827 if (cdm->status == CAM_DEV_MATCH_ERROR) 2828 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2829 else 2830 start_ccb->ccb_h.status = CAM_REQ_CMP; 2831 2832 break; 2833 } 2834 case XPT_SASYNC_CB: 2835 { 2836 struct ccb_setasync *csa; 2837 struct async_node *cur_entry; 2838 struct async_list *async_head; 2839 u_int32_t added; 2840 2841 csa = &start_ccb->csa; 2842 added = csa->event_enable; 2843 async_head = &path->device->asyncs; 2844 2845 /* 2846 * If there is already an entry for us, simply 2847 * update it. 2848 */ 2849 cur_entry = SLIST_FIRST(async_head); 2850 while (cur_entry != NULL) { 2851 if ((cur_entry->callback_arg == csa->callback_arg) 2852 && (cur_entry->callback == csa->callback)) 2853 break; 2854 cur_entry = SLIST_NEXT(cur_entry, links); 2855 } 2856 2857 if (cur_entry != NULL) { 2858 /* 2859 * If the request has no flags set, 2860 * remove the entry. 2861 */ 2862 added &= ~cur_entry->event_enable; 2863 if (csa->event_enable == 0) { 2864 SLIST_REMOVE(async_head, cur_entry, 2865 async_node, links); 2866 xpt_release_device(path->device); 2867 free(cur_entry, M_CAMXPT); 2868 } else { 2869 cur_entry->event_enable = csa->event_enable; 2870 } 2871 csa->event_enable = added; 2872 } else { 2873 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2874 M_NOWAIT); 2875 if (cur_entry == NULL) { 2876 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2877 break; 2878 } 2879 cur_entry->event_enable = csa->event_enable; 2880 cur_entry->event_lock = 2881 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2882 cur_entry->callback_arg = csa->callback_arg; 2883 cur_entry->callback = csa->callback; 2884 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2885 xpt_acquire_device(path->device); 2886 } 2887 start_ccb->ccb_h.status = CAM_REQ_CMP; 2888 break; 2889 } 2890 case XPT_REL_SIMQ: 2891 { 2892 struct ccb_relsim *crs; 2893 struct cam_ed *dev; 2894 2895 crs = &start_ccb->crs; 2896 dev = path->device; 2897 if (dev == NULL) { 2898 2899 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2900 break; 2901 } 2902 2903 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2904 2905 /* Don't ever go below one opening */ 2906 if (crs->openings > 0) { 2907 xpt_dev_ccbq_resize(path, crs->openings); 2908 if (bootverbose) { 2909 xpt_print(path, 2910 "number of openings is now %d\n", 2911 crs->openings); 2912 } 2913 } 2914 } 2915 2916 mtx_lock(&dev->sim->devq->send_mtx); 2917 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2918 2919 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2920 2921 /* 2922 * Just extend the old timeout and decrement 2923 * the freeze count so that a single timeout 2924 * is sufficient for releasing the queue. 2925 */ 2926 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2927 callout_stop(&dev->callout); 2928 } else { 2929 2930 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2931 } 2932 2933 callout_reset_sbt(&dev->callout, 2934 SBT_1MS * crs->release_timeout, 0, 2935 xpt_release_devq_timeout, dev, 0); 2936 2937 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2938 2939 } 2940 2941 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2942 2943 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2944 /* 2945 * Decrement the freeze count so that a single 2946 * completion is still sufficient to unfreeze 2947 * the queue. 2948 */ 2949 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2950 } else { 2951 2952 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2953 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2954 } 2955 } 2956 2957 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2958 2959 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2960 || (dev->ccbq.dev_active == 0)) { 2961 2962 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2963 } else { 2964 2965 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2966 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2967 } 2968 } 2969 mtx_unlock(&dev->sim->devq->send_mtx); 2970 2971 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2972 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2973 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2974 start_ccb->ccb_h.status = CAM_REQ_CMP; 2975 break; 2976 } 2977 case XPT_DEBUG: { 2978 struct cam_path *oldpath; 2979 2980 /* Check that all request bits are supported. */ 2981 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2982 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2983 break; 2984 } 2985 2986 cam_dflags = CAM_DEBUG_NONE; 2987 if (cam_dpath != NULL) { 2988 oldpath = cam_dpath; 2989 cam_dpath = NULL; 2990 xpt_free_path(oldpath); 2991 } 2992 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2993 if (xpt_create_path(&cam_dpath, NULL, 2994 start_ccb->ccb_h.path_id, 2995 start_ccb->ccb_h.target_id, 2996 start_ccb->ccb_h.target_lun) != 2997 CAM_REQ_CMP) { 2998 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2999 } else { 3000 cam_dflags = start_ccb->cdbg.flags; 3001 start_ccb->ccb_h.status = CAM_REQ_CMP; 3002 xpt_print(cam_dpath, "debugging flags now %x\n", 3003 cam_dflags); 3004 } 3005 } else 3006 start_ccb->ccb_h.status = CAM_REQ_CMP; 3007 break; 3008 } 3009 case XPT_NOOP: 3010 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3011 xpt_freeze_devq(path, 1); 3012 start_ccb->ccb_h.status = CAM_REQ_CMP; 3013 break; 3014 case XPT_REPROBE_LUN: 3015 xpt_async(AC_INQ_CHANGED, path, NULL); 3016 start_ccb->ccb_h.status = CAM_REQ_CMP; 3017 xpt_done(start_ccb); 3018 break; 3019 default: 3020 case XPT_SDEV_TYPE: 3021 case XPT_TERM_IO: 3022 case XPT_ENG_INQ: 3023 /* XXX Implement */ 3024 xpt_print_path(start_ccb->ccb_h.path); 3025 printf("%s: CCB type %#x %s not supported\n", __func__, 3026 start_ccb->ccb_h.func_code, 3027 xpt_action_name(start_ccb->ccb_h.func_code)); 3028 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3029 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3030 xpt_done(start_ccb); 3031 } 3032 break; 3033 } 3034 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3035 ("xpt_action_default: func= %#x %s status %#x\n", 3036 start_ccb->ccb_h.func_code, 3037 xpt_action_name(start_ccb->ccb_h.func_code), 3038 start_ccb->ccb_h.status)); 3039 } 3040 3041 void 3042 xpt_polled_action(union ccb *start_ccb) 3043 { 3044 u_int32_t timeout; 3045 struct cam_sim *sim; 3046 struct cam_devq *devq; 3047 struct cam_ed *dev; 3048 3049 timeout = start_ccb->ccb_h.timeout * 10; 3050 sim = start_ccb->ccb_h.path->bus->sim; 3051 devq = sim->devq; 3052 dev = start_ccb->ccb_h.path->device; 3053 3054 mtx_unlock(&dev->device_mtx); 3055 3056 /* 3057 * Steal an opening so that no other queued requests 3058 * can get it before us while we simulate interrupts. 3059 */ 3060 mtx_lock(&devq->send_mtx); 3061 dev->ccbq.dev_openings--; 3062 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3063 (--timeout > 0)) { 3064 mtx_unlock(&devq->send_mtx); 3065 DELAY(100); 3066 CAM_SIM_LOCK(sim); 3067 (*(sim->sim_poll))(sim); 3068 CAM_SIM_UNLOCK(sim); 3069 camisr_runqueue(); 3070 mtx_lock(&devq->send_mtx); 3071 } 3072 dev->ccbq.dev_openings++; 3073 mtx_unlock(&devq->send_mtx); 3074 3075 if (timeout != 0) { 3076 xpt_action(start_ccb); 3077 while(--timeout > 0) { 3078 CAM_SIM_LOCK(sim); 3079 (*(sim->sim_poll))(sim); 3080 CAM_SIM_UNLOCK(sim); 3081 camisr_runqueue(); 3082 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3083 != CAM_REQ_INPROG) 3084 break; 3085 DELAY(100); 3086 } 3087 if (timeout == 0) { 3088 /* 3089 * XXX Is it worth adding a sim_timeout entry 3090 * point so we can attempt recovery? If 3091 * this is only used for dumps, I don't think 3092 * it is. 3093 */ 3094 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3095 } 3096 } else { 3097 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3098 } 3099 3100 mtx_lock(&dev->device_mtx); 3101 } 3102 3103 /* 3104 * Schedule a peripheral driver to receive a ccb when its 3105 * target device has space for more transactions. 3106 */ 3107 void 3108 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3109 { 3110 3111 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3112 cam_periph_assert(periph, MA_OWNED); 3113 if (new_priority < periph->scheduled_priority) { 3114 periph->scheduled_priority = new_priority; 3115 xpt_run_allocq(periph, 0); 3116 } 3117 } 3118 3119 3120 /* 3121 * Schedule a device to run on a given queue. 3122 * If the device was inserted as a new entry on the queue, 3123 * return 1 meaning the device queue should be run. If we 3124 * were already queued, implying someone else has already 3125 * started the queue, return 0 so the caller doesn't attempt 3126 * to run the queue. 3127 */ 3128 static int 3129 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3130 u_int32_t new_priority) 3131 { 3132 int retval; 3133 u_int32_t old_priority; 3134 3135 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3136 3137 old_priority = pinfo->priority; 3138 3139 /* 3140 * Are we already queued? 3141 */ 3142 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3143 /* Simply reorder based on new priority */ 3144 if (new_priority < old_priority) { 3145 camq_change_priority(queue, pinfo->index, 3146 new_priority); 3147 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3148 ("changed priority to %d\n", 3149 new_priority)); 3150 retval = 1; 3151 } else 3152 retval = 0; 3153 } else { 3154 /* New entry on the queue */ 3155 if (new_priority < old_priority) 3156 pinfo->priority = new_priority; 3157 3158 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3159 ("Inserting onto queue\n")); 3160 pinfo->generation = ++queue->generation; 3161 camq_insert(queue, pinfo); 3162 retval = 1; 3163 } 3164 return (retval); 3165 } 3166 3167 static void 3168 xpt_run_allocq_task(void *context, int pending) 3169 { 3170 struct cam_periph *periph = context; 3171 3172 cam_periph_lock(periph); 3173 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3174 xpt_run_allocq(periph, 1); 3175 cam_periph_unlock(periph); 3176 cam_periph_release(periph); 3177 } 3178 3179 static void 3180 xpt_run_allocq(struct cam_periph *periph, int sleep) 3181 { 3182 struct cam_ed *device; 3183 union ccb *ccb; 3184 uint32_t prio; 3185 3186 cam_periph_assert(periph, MA_OWNED); 3187 if (periph->periph_allocating) 3188 return; 3189 periph->periph_allocating = 1; 3190 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3191 device = periph->path->device; 3192 ccb = NULL; 3193 restart: 3194 while ((prio = min(periph->scheduled_priority, 3195 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3196 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3197 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3198 3199 if (ccb == NULL && 3200 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3201 if (sleep) { 3202 ccb = xpt_get_ccb(periph); 3203 goto restart; 3204 } 3205 if (periph->flags & CAM_PERIPH_RUN_TASK) 3206 break; 3207 cam_periph_doacquire(periph); 3208 periph->flags |= CAM_PERIPH_RUN_TASK; 3209 taskqueue_enqueue(xsoftc.xpt_taskq, 3210 &periph->periph_run_task); 3211 break; 3212 } 3213 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3214 if (prio == periph->immediate_priority) { 3215 periph->immediate_priority = CAM_PRIORITY_NONE; 3216 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3217 ("waking cam_periph_getccb()\n")); 3218 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3219 periph_links.sle); 3220 wakeup(&periph->ccb_list); 3221 } else { 3222 periph->scheduled_priority = CAM_PRIORITY_NONE; 3223 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3224 ("calling periph_start()\n")); 3225 periph->periph_start(periph, ccb); 3226 } 3227 ccb = NULL; 3228 } 3229 if (ccb != NULL) 3230 xpt_release_ccb(ccb); 3231 periph->periph_allocating = 0; 3232 } 3233 3234 static void 3235 xpt_run_devq(struct cam_devq *devq) 3236 { 3237 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3238 int lock; 3239 3240 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3241 3242 devq->send_queue.qfrozen_cnt++; 3243 while ((devq->send_queue.entries > 0) 3244 && (devq->send_openings > 0) 3245 && (devq->send_queue.qfrozen_cnt <= 1)) { 3246 struct cam_ed *device; 3247 union ccb *work_ccb; 3248 struct cam_sim *sim; 3249 3250 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3251 CAMQ_HEAD); 3252 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3253 ("running device %p\n", device)); 3254 3255 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3256 if (work_ccb == NULL) { 3257 printf("device on run queue with no ccbs???\n"); 3258 continue; 3259 } 3260 3261 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3262 3263 mtx_lock(&xsoftc.xpt_highpower_lock); 3264 if (xsoftc.num_highpower <= 0) { 3265 /* 3266 * We got a high power command, but we 3267 * don't have any available slots. Freeze 3268 * the device queue until we have a slot 3269 * available. 3270 */ 3271 xpt_freeze_devq_device(device, 1); 3272 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3273 highpowerq_entry); 3274 3275 mtx_unlock(&xsoftc.xpt_highpower_lock); 3276 continue; 3277 } else { 3278 /* 3279 * Consume a high power slot while 3280 * this ccb runs. 3281 */ 3282 xsoftc.num_highpower--; 3283 } 3284 mtx_unlock(&xsoftc.xpt_highpower_lock); 3285 } 3286 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3287 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3288 devq->send_openings--; 3289 devq->send_active++; 3290 xpt_schedule_devq(devq, device); 3291 mtx_unlock(&devq->send_mtx); 3292 3293 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3294 /* 3295 * The client wants to freeze the queue 3296 * after this CCB is sent. 3297 */ 3298 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3299 } 3300 3301 /* In Target mode, the peripheral driver knows best... */ 3302 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3303 if ((device->inq_flags & SID_CmdQue) != 0 3304 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3305 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3306 else 3307 /* 3308 * Clear this in case of a retried CCB that 3309 * failed due to a rejected tag. 3310 */ 3311 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3312 } 3313 3314 switch (work_ccb->ccb_h.func_code) { 3315 case XPT_SCSI_IO: 3316 CAM_DEBUG(work_ccb->ccb_h.path, 3317 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3318 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3319 &device->inq_data), 3320 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3321 cdb_str, sizeof(cdb_str)))); 3322 break; 3323 case XPT_ATA_IO: 3324 CAM_DEBUG(work_ccb->ccb_h.path, 3325 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3326 ata_op_string(&work_ccb->ataio.cmd), 3327 ata_cmd_string(&work_ccb->ataio.cmd, 3328 cdb_str, sizeof(cdb_str)))); 3329 break; 3330 case XPT_NVME_IO: 3331 CAM_DEBUG(work_ccb->ccb_h.path, 3332 CAM_DEBUG_CDB,("%s. NCB: %s\n", 3333 nvme_op_string(&work_ccb->nvmeio.cmd), 3334 nvme_cmd_string(&work_ccb->nvmeio.cmd, 3335 cdb_str, sizeof(cdb_str)))); 3336 break; 3337 default: 3338 break; 3339 } 3340 3341 /* 3342 * Device queues can be shared among multiple SIM instances 3343 * that reside on different busses. Use the SIM from the 3344 * queued device, rather than the one from the calling bus. 3345 */ 3346 sim = device->sim; 3347 lock = (mtx_owned(sim->mtx) == 0); 3348 if (lock) 3349 CAM_SIM_LOCK(sim); 3350 work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms 3351 (*(sim->sim_action))(sim, work_ccb); 3352 if (lock) 3353 CAM_SIM_UNLOCK(sim); 3354 mtx_lock(&devq->send_mtx); 3355 } 3356 devq->send_queue.qfrozen_cnt--; 3357 } 3358 3359 /* 3360 * This function merges stuff from the slave ccb into the master ccb, while 3361 * keeping important fields in the master ccb constant. 3362 */ 3363 void 3364 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3365 { 3366 3367 /* 3368 * Pull fields that are valid for peripheral drivers to set 3369 * into the master CCB along with the CCB "payload". 3370 */ 3371 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3372 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3373 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3374 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3375 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3376 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3377 } 3378 3379 void 3380 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3381 u_int32_t priority, u_int32_t flags) 3382 { 3383 3384 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3385 ccb_h->pinfo.priority = priority; 3386 ccb_h->path = path; 3387 ccb_h->path_id = path->bus->path_id; 3388 if (path->target) 3389 ccb_h->target_id = path->target->target_id; 3390 else 3391 ccb_h->target_id = CAM_TARGET_WILDCARD; 3392 if (path->device) { 3393 ccb_h->target_lun = path->device->lun_id; 3394 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3395 } else { 3396 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3397 } 3398 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3399 ccb_h->flags = flags; 3400 ccb_h->xflags = 0; 3401 } 3402 3403 void 3404 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3405 { 3406 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3407 } 3408 3409 /* Path manipulation functions */ 3410 cam_status 3411 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3412 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3413 { 3414 struct cam_path *path; 3415 cam_status status; 3416 3417 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3418 3419 if (path == NULL) { 3420 status = CAM_RESRC_UNAVAIL; 3421 return(status); 3422 } 3423 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3424 if (status != CAM_REQ_CMP) { 3425 free(path, M_CAMPATH); 3426 path = NULL; 3427 } 3428 *new_path_ptr = path; 3429 return (status); 3430 } 3431 3432 cam_status 3433 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3434 struct cam_periph *periph, path_id_t path_id, 3435 target_id_t target_id, lun_id_t lun_id) 3436 { 3437 3438 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3439 lun_id)); 3440 } 3441 3442 cam_status 3443 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3444 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3445 { 3446 struct cam_eb *bus; 3447 struct cam_et *target; 3448 struct cam_ed *device; 3449 cam_status status; 3450 3451 status = CAM_REQ_CMP; /* Completed without error */ 3452 target = NULL; /* Wildcarded */ 3453 device = NULL; /* Wildcarded */ 3454 3455 /* 3456 * We will potentially modify the EDT, so block interrupts 3457 * that may attempt to create cam paths. 3458 */ 3459 bus = xpt_find_bus(path_id); 3460 if (bus == NULL) { 3461 status = CAM_PATH_INVALID; 3462 } else { 3463 xpt_lock_buses(); 3464 mtx_lock(&bus->eb_mtx); 3465 target = xpt_find_target(bus, target_id); 3466 if (target == NULL) { 3467 /* Create one */ 3468 struct cam_et *new_target; 3469 3470 new_target = xpt_alloc_target(bus, target_id); 3471 if (new_target == NULL) { 3472 status = CAM_RESRC_UNAVAIL; 3473 } else { 3474 target = new_target; 3475 } 3476 } 3477 xpt_unlock_buses(); 3478 if (target != NULL) { 3479 device = xpt_find_device(target, lun_id); 3480 if (device == NULL) { 3481 /* Create one */ 3482 struct cam_ed *new_device; 3483 3484 new_device = 3485 (*(bus->xport->alloc_device))(bus, 3486 target, 3487 lun_id); 3488 if (new_device == NULL) { 3489 status = CAM_RESRC_UNAVAIL; 3490 } else { 3491 device = new_device; 3492 } 3493 } 3494 } 3495 mtx_unlock(&bus->eb_mtx); 3496 } 3497 3498 /* 3499 * Only touch the user's data if we are successful. 3500 */ 3501 if (status == CAM_REQ_CMP) { 3502 new_path->periph = perph; 3503 new_path->bus = bus; 3504 new_path->target = target; 3505 new_path->device = device; 3506 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3507 } else { 3508 if (device != NULL) 3509 xpt_release_device(device); 3510 if (target != NULL) 3511 xpt_release_target(target); 3512 if (bus != NULL) 3513 xpt_release_bus(bus); 3514 } 3515 return (status); 3516 } 3517 3518 cam_status 3519 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3520 { 3521 struct cam_path *new_path; 3522 3523 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3524 if (new_path == NULL) 3525 return(CAM_RESRC_UNAVAIL); 3526 xpt_copy_path(new_path, path); 3527 *new_path_ptr = new_path; 3528 return (CAM_REQ_CMP); 3529 } 3530 3531 void 3532 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3533 { 3534 3535 *new_path = *path; 3536 if (path->bus != NULL) 3537 xpt_acquire_bus(path->bus); 3538 if (path->target != NULL) 3539 xpt_acquire_target(path->target); 3540 if (path->device != NULL) 3541 xpt_acquire_device(path->device); 3542 } 3543 3544 void 3545 xpt_release_path(struct cam_path *path) 3546 { 3547 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3548 if (path->device != NULL) { 3549 xpt_release_device(path->device); 3550 path->device = NULL; 3551 } 3552 if (path->target != NULL) { 3553 xpt_release_target(path->target); 3554 path->target = NULL; 3555 } 3556 if (path->bus != NULL) { 3557 xpt_release_bus(path->bus); 3558 path->bus = NULL; 3559 } 3560 } 3561 3562 void 3563 xpt_free_path(struct cam_path *path) 3564 { 3565 3566 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3567 xpt_release_path(path); 3568 free(path, M_CAMPATH); 3569 } 3570 3571 void 3572 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3573 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3574 { 3575 3576 xpt_lock_buses(); 3577 if (bus_ref) { 3578 if (path->bus) 3579 *bus_ref = path->bus->refcount; 3580 else 3581 *bus_ref = 0; 3582 } 3583 if (periph_ref) { 3584 if (path->periph) 3585 *periph_ref = path->periph->refcount; 3586 else 3587 *periph_ref = 0; 3588 } 3589 xpt_unlock_buses(); 3590 if (target_ref) { 3591 if (path->target) 3592 *target_ref = path->target->refcount; 3593 else 3594 *target_ref = 0; 3595 } 3596 if (device_ref) { 3597 if (path->device) 3598 *device_ref = path->device->refcount; 3599 else 3600 *device_ref = 0; 3601 } 3602 } 3603 3604 /* 3605 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3606 * in path1, 2 for match with wildcards in path2. 3607 */ 3608 int 3609 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3610 { 3611 int retval = 0; 3612 3613 if (path1->bus != path2->bus) { 3614 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3615 retval = 1; 3616 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3617 retval = 2; 3618 else 3619 return (-1); 3620 } 3621 if (path1->target != path2->target) { 3622 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3623 if (retval == 0) 3624 retval = 1; 3625 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3626 retval = 2; 3627 else 3628 return (-1); 3629 } 3630 if (path1->device != path2->device) { 3631 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3632 if (retval == 0) 3633 retval = 1; 3634 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3635 retval = 2; 3636 else 3637 return (-1); 3638 } 3639 return (retval); 3640 } 3641 3642 int 3643 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3644 { 3645 int retval = 0; 3646 3647 if (path->bus != dev->target->bus) { 3648 if (path->bus->path_id == CAM_BUS_WILDCARD) 3649 retval = 1; 3650 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3651 retval = 2; 3652 else 3653 return (-1); 3654 } 3655 if (path->target != dev->target) { 3656 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3657 if (retval == 0) 3658 retval = 1; 3659 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3660 retval = 2; 3661 else 3662 return (-1); 3663 } 3664 if (path->device != dev) { 3665 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3666 if (retval == 0) 3667 retval = 1; 3668 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3669 retval = 2; 3670 else 3671 return (-1); 3672 } 3673 return (retval); 3674 } 3675 3676 void 3677 xpt_print_path(struct cam_path *path) 3678 { 3679 3680 if (path == NULL) 3681 printf("(nopath): "); 3682 else { 3683 if (path->periph != NULL) 3684 printf("(%s%d:", path->periph->periph_name, 3685 path->periph->unit_number); 3686 else 3687 printf("(noperiph:"); 3688 3689 if (path->bus != NULL) 3690 printf("%s%d:%d:", path->bus->sim->sim_name, 3691 path->bus->sim->unit_number, 3692 path->bus->sim->bus_id); 3693 else 3694 printf("nobus:"); 3695 3696 if (path->target != NULL) 3697 printf("%d:", path->target->target_id); 3698 else 3699 printf("X:"); 3700 3701 if (path->device != NULL) 3702 printf("%jx): ", (uintmax_t)path->device->lun_id); 3703 else 3704 printf("X): "); 3705 } 3706 } 3707 3708 void 3709 xpt_print_device(struct cam_ed *device) 3710 { 3711 3712 if (device == NULL) 3713 printf("(nopath): "); 3714 else { 3715 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3716 device->sim->unit_number, 3717 device->sim->bus_id, 3718 device->target->target_id, 3719 (uintmax_t)device->lun_id); 3720 } 3721 } 3722 3723 void 3724 xpt_print(struct cam_path *path, const char *fmt, ...) 3725 { 3726 va_list ap; 3727 xpt_print_path(path); 3728 va_start(ap, fmt); 3729 vprintf(fmt, ap); 3730 va_end(ap); 3731 } 3732 3733 int 3734 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3735 { 3736 struct sbuf sb; 3737 3738 sbuf_new(&sb, str, str_len, 0); 3739 3740 if (path == NULL) 3741 sbuf_printf(&sb, "(nopath): "); 3742 else { 3743 if (path->periph != NULL) 3744 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3745 path->periph->unit_number); 3746 else 3747 sbuf_printf(&sb, "(noperiph:"); 3748 3749 if (path->bus != NULL) 3750 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3751 path->bus->sim->unit_number, 3752 path->bus->sim->bus_id); 3753 else 3754 sbuf_printf(&sb, "nobus:"); 3755 3756 if (path->target != NULL) 3757 sbuf_printf(&sb, "%d:", path->target->target_id); 3758 else 3759 sbuf_printf(&sb, "X:"); 3760 3761 if (path->device != NULL) 3762 sbuf_printf(&sb, "%jx): ", 3763 (uintmax_t)path->device->lun_id); 3764 else 3765 sbuf_printf(&sb, "X): "); 3766 } 3767 sbuf_finish(&sb); 3768 3769 return(sbuf_len(&sb)); 3770 } 3771 3772 path_id_t 3773 xpt_path_path_id(struct cam_path *path) 3774 { 3775 return(path->bus->path_id); 3776 } 3777 3778 target_id_t 3779 xpt_path_target_id(struct cam_path *path) 3780 { 3781 if (path->target != NULL) 3782 return (path->target->target_id); 3783 else 3784 return (CAM_TARGET_WILDCARD); 3785 } 3786 3787 lun_id_t 3788 xpt_path_lun_id(struct cam_path *path) 3789 { 3790 if (path->device != NULL) 3791 return (path->device->lun_id); 3792 else 3793 return (CAM_LUN_WILDCARD); 3794 } 3795 3796 struct cam_sim * 3797 xpt_path_sim(struct cam_path *path) 3798 { 3799 3800 return (path->bus->sim); 3801 } 3802 3803 struct cam_periph* 3804 xpt_path_periph(struct cam_path *path) 3805 { 3806 3807 return (path->periph); 3808 } 3809 3810 /* 3811 * Release a CAM control block for the caller. Remit the cost of the structure 3812 * to the device referenced by the path. If the this device had no 'credits' 3813 * and peripheral drivers have registered async callbacks for this notification 3814 * call them now. 3815 */ 3816 void 3817 xpt_release_ccb(union ccb *free_ccb) 3818 { 3819 struct cam_ed *device; 3820 struct cam_periph *periph; 3821 3822 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3823 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3824 device = free_ccb->ccb_h.path->device; 3825 periph = free_ccb->ccb_h.path->periph; 3826 3827 xpt_free_ccb(free_ccb); 3828 periph->periph_allocated--; 3829 cam_ccbq_release_opening(&device->ccbq); 3830 xpt_run_allocq(periph, 0); 3831 } 3832 3833 /* Functions accessed by SIM drivers */ 3834 3835 static struct xpt_xport xport_default = { 3836 .alloc_device = xpt_alloc_device_default, 3837 .action = xpt_action_default, 3838 .async = xpt_dev_async_default, 3839 }; 3840 3841 /* 3842 * A sim structure, listing the SIM entry points and instance 3843 * identification info is passed to xpt_bus_register to hook the SIM 3844 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3845 * for this new bus and places it in the array of busses and assigns 3846 * it a path_id. The path_id may be influenced by "hard wiring" 3847 * information specified by the user. Once interrupt services are 3848 * available, the bus will be probed. 3849 */ 3850 int32_t 3851 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3852 { 3853 struct cam_eb *new_bus; 3854 struct cam_eb *old_bus; 3855 struct ccb_pathinq cpi; 3856 struct cam_path *path; 3857 cam_status status; 3858 3859 mtx_assert(sim->mtx, MA_OWNED); 3860 3861 sim->bus_id = bus; 3862 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3863 M_CAMXPT, M_NOWAIT|M_ZERO); 3864 if (new_bus == NULL) { 3865 /* Couldn't satisfy request */ 3866 return (CAM_RESRC_UNAVAIL); 3867 } 3868 3869 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3870 TAILQ_INIT(&new_bus->et_entries); 3871 cam_sim_hold(sim); 3872 new_bus->sim = sim; 3873 timevalclear(&new_bus->last_reset); 3874 new_bus->flags = 0; 3875 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3876 new_bus->generation = 0; 3877 3878 xpt_lock_buses(); 3879 sim->path_id = new_bus->path_id = 3880 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3881 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3882 while (old_bus != NULL 3883 && old_bus->path_id < new_bus->path_id) 3884 old_bus = TAILQ_NEXT(old_bus, links); 3885 if (old_bus != NULL) 3886 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3887 else 3888 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3889 xsoftc.bus_generation++; 3890 xpt_unlock_buses(); 3891 3892 /* 3893 * Set a default transport so that a PATH_INQ can be issued to 3894 * the SIM. This will then allow for probing and attaching of 3895 * a more appropriate transport. 3896 */ 3897 new_bus->xport = &xport_default; 3898 3899 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3900 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3901 if (status != CAM_REQ_CMP) { 3902 xpt_release_bus(new_bus); 3903 free(path, M_CAMXPT); 3904 return (CAM_RESRC_UNAVAIL); 3905 } 3906 3907 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3908 cpi.ccb_h.func_code = XPT_PATH_INQ; 3909 xpt_action((union ccb *)&cpi); 3910 3911 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3912 switch (cpi.transport) { 3913 case XPORT_SPI: 3914 case XPORT_SAS: 3915 case XPORT_FC: 3916 case XPORT_USB: 3917 case XPORT_ISCSI: 3918 case XPORT_SRP: 3919 case XPORT_PPB: 3920 new_bus->xport = scsi_get_xport(); 3921 break; 3922 case XPORT_ATA: 3923 case XPORT_SATA: 3924 new_bus->xport = ata_get_xport(); 3925 break; 3926 case XPORT_NVME: 3927 new_bus->xport = nvme_get_xport(); 3928 break; 3929 default: 3930 new_bus->xport = &xport_default; 3931 break; 3932 } 3933 } 3934 3935 /* Notify interested parties */ 3936 if (sim->path_id != CAM_XPT_PATH_ID) { 3937 3938 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3939 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3940 union ccb *scan_ccb; 3941 3942 /* Initiate bus rescan. */ 3943 scan_ccb = xpt_alloc_ccb_nowait(); 3944 if (scan_ccb != NULL) { 3945 scan_ccb->ccb_h.path = path; 3946 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3947 scan_ccb->crcn.flags = 0; 3948 xpt_rescan(scan_ccb); 3949 } else { 3950 xpt_print(path, 3951 "Can't allocate CCB to scan bus\n"); 3952 xpt_free_path(path); 3953 } 3954 } else 3955 xpt_free_path(path); 3956 } else 3957 xpt_free_path(path); 3958 return (CAM_SUCCESS); 3959 } 3960 3961 int32_t 3962 xpt_bus_deregister(path_id_t pathid) 3963 { 3964 struct cam_path bus_path; 3965 cam_status status; 3966 3967 status = xpt_compile_path(&bus_path, NULL, pathid, 3968 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3969 if (status != CAM_REQ_CMP) 3970 return (status); 3971 3972 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3973 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3974 3975 /* Release the reference count held while registered. */ 3976 xpt_release_bus(bus_path.bus); 3977 xpt_release_path(&bus_path); 3978 3979 return (CAM_REQ_CMP); 3980 } 3981 3982 static path_id_t 3983 xptnextfreepathid(void) 3984 { 3985 struct cam_eb *bus; 3986 path_id_t pathid; 3987 const char *strval; 3988 3989 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3990 pathid = 0; 3991 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3992 retry: 3993 /* Find an unoccupied pathid */ 3994 while (bus != NULL && bus->path_id <= pathid) { 3995 if (bus->path_id == pathid) 3996 pathid++; 3997 bus = TAILQ_NEXT(bus, links); 3998 } 3999 4000 /* 4001 * Ensure that this pathid is not reserved for 4002 * a bus that may be registered in the future. 4003 */ 4004 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4005 ++pathid; 4006 /* Start the search over */ 4007 goto retry; 4008 } 4009 return (pathid); 4010 } 4011 4012 static path_id_t 4013 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4014 { 4015 path_id_t pathid; 4016 int i, dunit, val; 4017 char buf[32]; 4018 const char *dname; 4019 4020 pathid = CAM_XPT_PATH_ID; 4021 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4022 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4023 return (pathid); 4024 i = 0; 4025 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4026 if (strcmp(dname, "scbus")) { 4027 /* Avoid a bit of foot shooting. */ 4028 continue; 4029 } 4030 if (dunit < 0) /* unwired?! */ 4031 continue; 4032 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4033 if (sim_bus == val) { 4034 pathid = dunit; 4035 break; 4036 } 4037 } else if (sim_bus == 0) { 4038 /* Unspecified matches bus 0 */ 4039 pathid = dunit; 4040 break; 4041 } else { 4042 printf("Ambiguous scbus configuration for %s%d " 4043 "bus %d, cannot wire down. The kernel " 4044 "config entry for scbus%d should " 4045 "specify a controller bus.\n" 4046 "Scbus will be assigned dynamically.\n", 4047 sim_name, sim_unit, sim_bus, dunit); 4048 break; 4049 } 4050 } 4051 4052 if (pathid == CAM_XPT_PATH_ID) 4053 pathid = xptnextfreepathid(); 4054 return (pathid); 4055 } 4056 4057 static const char * 4058 xpt_async_string(u_int32_t async_code) 4059 { 4060 4061 switch (async_code) { 4062 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4063 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4064 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4065 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4066 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4067 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4068 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4069 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4070 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4071 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4072 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4073 case AC_CONTRACT: return ("AC_CONTRACT"); 4074 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4075 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4076 } 4077 return ("AC_UNKNOWN"); 4078 } 4079 4080 static int 4081 xpt_async_size(u_int32_t async_code) 4082 { 4083 4084 switch (async_code) { 4085 case AC_BUS_RESET: return (0); 4086 case AC_UNSOL_RESEL: return (0); 4087 case AC_SCSI_AEN: return (0); 4088 case AC_SENT_BDR: return (0); 4089 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4090 case AC_PATH_DEREGISTERED: return (0); 4091 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4092 case AC_LOST_DEVICE: return (0); 4093 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4094 case AC_INQ_CHANGED: return (0); 4095 case AC_GETDEV_CHANGED: return (0); 4096 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4097 case AC_ADVINFO_CHANGED: return (-1); 4098 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4099 } 4100 return (0); 4101 } 4102 4103 static int 4104 xpt_async_process_dev(struct cam_ed *device, void *arg) 4105 { 4106 union ccb *ccb = arg; 4107 struct cam_path *path = ccb->ccb_h.path; 4108 void *async_arg = ccb->casync.async_arg_ptr; 4109 u_int32_t async_code = ccb->casync.async_code; 4110 int relock; 4111 4112 if (path->device != device 4113 && path->device->lun_id != CAM_LUN_WILDCARD 4114 && device->lun_id != CAM_LUN_WILDCARD) 4115 return (1); 4116 4117 /* 4118 * The async callback could free the device. 4119 * If it is a broadcast async, it doesn't hold 4120 * device reference, so take our own reference. 4121 */ 4122 xpt_acquire_device(device); 4123 4124 /* 4125 * If async for specific device is to be delivered to 4126 * the wildcard client, take the specific device lock. 4127 * XXX: We may need a way for client to specify it. 4128 */ 4129 if ((device->lun_id == CAM_LUN_WILDCARD && 4130 path->device->lun_id != CAM_LUN_WILDCARD) || 4131 (device->target->target_id == CAM_TARGET_WILDCARD && 4132 path->target->target_id != CAM_TARGET_WILDCARD) || 4133 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4134 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4135 mtx_unlock(&device->device_mtx); 4136 xpt_path_lock(path); 4137 relock = 1; 4138 } else 4139 relock = 0; 4140 4141 (*(device->target->bus->xport->async))(async_code, 4142 device->target->bus, device->target, device, async_arg); 4143 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4144 4145 if (relock) { 4146 xpt_path_unlock(path); 4147 mtx_lock(&device->device_mtx); 4148 } 4149 xpt_release_device(device); 4150 return (1); 4151 } 4152 4153 static int 4154 xpt_async_process_tgt(struct cam_et *target, void *arg) 4155 { 4156 union ccb *ccb = arg; 4157 struct cam_path *path = ccb->ccb_h.path; 4158 4159 if (path->target != target 4160 && path->target->target_id != CAM_TARGET_WILDCARD 4161 && target->target_id != CAM_TARGET_WILDCARD) 4162 return (1); 4163 4164 if (ccb->casync.async_code == AC_SENT_BDR) { 4165 /* Update our notion of when the last reset occurred */ 4166 microtime(&target->last_reset); 4167 } 4168 4169 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4170 } 4171 4172 static void 4173 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4174 { 4175 struct cam_eb *bus; 4176 struct cam_path *path; 4177 void *async_arg; 4178 u_int32_t async_code; 4179 4180 path = ccb->ccb_h.path; 4181 async_code = ccb->casync.async_code; 4182 async_arg = ccb->casync.async_arg_ptr; 4183 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4184 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4185 bus = path->bus; 4186 4187 if (async_code == AC_BUS_RESET) { 4188 /* Update our notion of when the last reset occurred */ 4189 microtime(&bus->last_reset); 4190 } 4191 4192 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4193 4194 /* 4195 * If this wasn't a fully wildcarded async, tell all 4196 * clients that want all async events. 4197 */ 4198 if (bus != xpt_periph->path->bus) { 4199 xpt_path_lock(xpt_periph->path); 4200 xpt_async_process_dev(xpt_periph->path->device, ccb); 4201 xpt_path_unlock(xpt_periph->path); 4202 } 4203 4204 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4205 xpt_release_devq(path, 1, TRUE); 4206 else 4207 xpt_release_simq(path->bus->sim, TRUE); 4208 if (ccb->casync.async_arg_size > 0) 4209 free(async_arg, M_CAMXPT); 4210 xpt_free_path(path); 4211 xpt_free_ccb(ccb); 4212 } 4213 4214 static void 4215 xpt_async_bcast(struct async_list *async_head, 4216 u_int32_t async_code, 4217 struct cam_path *path, void *async_arg) 4218 { 4219 struct async_node *cur_entry; 4220 int lock; 4221 4222 cur_entry = SLIST_FIRST(async_head); 4223 while (cur_entry != NULL) { 4224 struct async_node *next_entry; 4225 /* 4226 * Grab the next list entry before we call the current 4227 * entry's callback. This is because the callback function 4228 * can delete its async callback entry. 4229 */ 4230 next_entry = SLIST_NEXT(cur_entry, links); 4231 if ((cur_entry->event_enable & async_code) != 0) { 4232 lock = cur_entry->event_lock; 4233 if (lock) 4234 CAM_SIM_LOCK(path->device->sim); 4235 cur_entry->callback(cur_entry->callback_arg, 4236 async_code, path, 4237 async_arg); 4238 if (lock) 4239 CAM_SIM_UNLOCK(path->device->sim); 4240 } 4241 cur_entry = next_entry; 4242 } 4243 } 4244 4245 void 4246 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4247 { 4248 union ccb *ccb; 4249 int size; 4250 4251 ccb = xpt_alloc_ccb_nowait(); 4252 if (ccb == NULL) { 4253 xpt_print(path, "Can't allocate CCB to send %s\n", 4254 xpt_async_string(async_code)); 4255 return; 4256 } 4257 4258 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4259 xpt_print(path, "Can't allocate path to send %s\n", 4260 xpt_async_string(async_code)); 4261 xpt_free_ccb(ccb); 4262 return; 4263 } 4264 ccb->ccb_h.path->periph = NULL; 4265 ccb->ccb_h.func_code = XPT_ASYNC; 4266 ccb->ccb_h.cbfcnp = xpt_async_process; 4267 ccb->ccb_h.flags |= CAM_UNLOCKED; 4268 ccb->casync.async_code = async_code; 4269 ccb->casync.async_arg_size = 0; 4270 size = xpt_async_size(async_code); 4271 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4272 ("xpt_async: func %#x %s aync_code %d %s\n", 4273 ccb->ccb_h.func_code, 4274 xpt_action_name(ccb->ccb_h.func_code), 4275 async_code, 4276 xpt_async_string(async_code))); 4277 if (size > 0 && async_arg != NULL) { 4278 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4279 if (ccb->casync.async_arg_ptr == NULL) { 4280 xpt_print(path, "Can't allocate argument to send %s\n", 4281 xpt_async_string(async_code)); 4282 xpt_free_path(ccb->ccb_h.path); 4283 xpt_free_ccb(ccb); 4284 return; 4285 } 4286 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4287 ccb->casync.async_arg_size = size; 4288 } else if (size < 0) { 4289 ccb->casync.async_arg_ptr = async_arg; 4290 ccb->casync.async_arg_size = size; 4291 } 4292 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4293 xpt_freeze_devq(path, 1); 4294 else 4295 xpt_freeze_simq(path->bus->sim, 1); 4296 xpt_done(ccb); 4297 } 4298 4299 static void 4300 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4301 struct cam_et *target, struct cam_ed *device, 4302 void *async_arg) 4303 { 4304 4305 /* 4306 * We only need to handle events for real devices. 4307 */ 4308 if (target->target_id == CAM_TARGET_WILDCARD 4309 || device->lun_id == CAM_LUN_WILDCARD) 4310 return; 4311 4312 printf("%s called\n", __func__); 4313 } 4314 4315 static uint32_t 4316 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4317 { 4318 struct cam_devq *devq; 4319 uint32_t freeze; 4320 4321 devq = dev->sim->devq; 4322 mtx_assert(&devq->send_mtx, MA_OWNED); 4323 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4324 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4325 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4326 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4327 /* Remove frozen device from sendq. */ 4328 if (device_is_queued(dev)) 4329 camq_remove(&devq->send_queue, dev->devq_entry.index); 4330 return (freeze); 4331 } 4332 4333 u_int32_t 4334 xpt_freeze_devq(struct cam_path *path, u_int count) 4335 { 4336 struct cam_ed *dev = path->device; 4337 struct cam_devq *devq; 4338 uint32_t freeze; 4339 4340 devq = dev->sim->devq; 4341 mtx_lock(&devq->send_mtx); 4342 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4343 freeze = xpt_freeze_devq_device(dev, count); 4344 mtx_unlock(&devq->send_mtx); 4345 return (freeze); 4346 } 4347 4348 u_int32_t 4349 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4350 { 4351 struct cam_devq *devq; 4352 uint32_t freeze; 4353 4354 devq = sim->devq; 4355 mtx_lock(&devq->send_mtx); 4356 freeze = (devq->send_queue.qfrozen_cnt += count); 4357 mtx_unlock(&devq->send_mtx); 4358 return (freeze); 4359 } 4360 4361 static void 4362 xpt_release_devq_timeout(void *arg) 4363 { 4364 struct cam_ed *dev; 4365 struct cam_devq *devq; 4366 4367 dev = (struct cam_ed *)arg; 4368 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4369 devq = dev->sim->devq; 4370 mtx_assert(&devq->send_mtx, MA_OWNED); 4371 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4372 xpt_run_devq(devq); 4373 } 4374 4375 void 4376 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4377 { 4378 struct cam_ed *dev; 4379 struct cam_devq *devq; 4380 4381 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4382 count, run_queue)); 4383 dev = path->device; 4384 devq = dev->sim->devq; 4385 mtx_lock(&devq->send_mtx); 4386 if (xpt_release_devq_device(dev, count, run_queue)) 4387 xpt_run_devq(dev->sim->devq); 4388 mtx_unlock(&devq->send_mtx); 4389 } 4390 4391 static int 4392 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4393 { 4394 4395 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4396 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4397 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4398 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4399 if (count > dev->ccbq.queue.qfrozen_cnt) { 4400 #ifdef INVARIANTS 4401 printf("xpt_release_devq(): requested %u > present %u\n", 4402 count, dev->ccbq.queue.qfrozen_cnt); 4403 #endif 4404 count = dev->ccbq.queue.qfrozen_cnt; 4405 } 4406 dev->ccbq.queue.qfrozen_cnt -= count; 4407 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4408 /* 4409 * No longer need to wait for a successful 4410 * command completion. 4411 */ 4412 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4413 /* 4414 * Remove any timeouts that might be scheduled 4415 * to release this queue. 4416 */ 4417 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4418 callout_stop(&dev->callout); 4419 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4420 } 4421 /* 4422 * Now that we are unfrozen schedule the 4423 * device so any pending transactions are 4424 * run. 4425 */ 4426 xpt_schedule_devq(dev->sim->devq, dev); 4427 } else 4428 run_queue = 0; 4429 return (run_queue); 4430 } 4431 4432 void 4433 xpt_release_simq(struct cam_sim *sim, int run_queue) 4434 { 4435 struct cam_devq *devq; 4436 4437 devq = sim->devq; 4438 mtx_lock(&devq->send_mtx); 4439 if (devq->send_queue.qfrozen_cnt <= 0) { 4440 #ifdef INVARIANTS 4441 printf("xpt_release_simq: requested 1 > present %u\n", 4442 devq->send_queue.qfrozen_cnt); 4443 #endif 4444 } else 4445 devq->send_queue.qfrozen_cnt--; 4446 if (devq->send_queue.qfrozen_cnt == 0) { 4447 /* 4448 * If there is a timeout scheduled to release this 4449 * sim queue, remove it. The queue frozen count is 4450 * already at 0. 4451 */ 4452 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4453 callout_stop(&sim->callout); 4454 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4455 } 4456 if (run_queue) { 4457 /* 4458 * Now that we are unfrozen run the send queue. 4459 */ 4460 xpt_run_devq(sim->devq); 4461 } 4462 } 4463 mtx_unlock(&devq->send_mtx); 4464 } 4465 4466 /* 4467 * XXX Appears to be unused. 4468 */ 4469 static void 4470 xpt_release_simq_timeout(void *arg) 4471 { 4472 struct cam_sim *sim; 4473 4474 sim = (struct cam_sim *)arg; 4475 xpt_release_simq(sim, /* run_queue */ TRUE); 4476 } 4477 4478 void 4479 xpt_done(union ccb *done_ccb) 4480 { 4481 struct cam_doneq *queue; 4482 int run, hash; 4483 4484 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4485 ("xpt_done: func= %#x %s status %#x\n", 4486 done_ccb->ccb_h.func_code, 4487 xpt_action_name(done_ccb->ccb_h.func_code), 4488 done_ccb->ccb_h.status)); 4489 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4490 return; 4491 4492 /* Store the time the ccb was in the sim */ 4493 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4494 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4495 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4496 queue = &cam_doneqs[hash]; 4497 mtx_lock(&queue->cam_doneq_mtx); 4498 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4499 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4500 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4501 mtx_unlock(&queue->cam_doneq_mtx); 4502 if (run) 4503 wakeup(&queue->cam_doneq); 4504 } 4505 4506 void 4507 xpt_done_direct(union ccb *done_ccb) 4508 { 4509 4510 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4511 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4512 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4513 return; 4514 4515 /* Store the time the ccb was in the sim */ 4516 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4517 xpt_done_process(&done_ccb->ccb_h); 4518 } 4519 4520 union ccb * 4521 xpt_alloc_ccb() 4522 { 4523 union ccb *new_ccb; 4524 4525 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4526 return (new_ccb); 4527 } 4528 4529 union ccb * 4530 xpt_alloc_ccb_nowait() 4531 { 4532 union ccb *new_ccb; 4533 4534 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4535 return (new_ccb); 4536 } 4537 4538 void 4539 xpt_free_ccb(union ccb *free_ccb) 4540 { 4541 free(free_ccb, M_CAMCCB); 4542 } 4543 4544 4545 4546 /* Private XPT functions */ 4547 4548 /* 4549 * Get a CAM control block for the caller. Charge the structure to the device 4550 * referenced by the path. If we don't have sufficient resources to allocate 4551 * more ccbs, we return NULL. 4552 */ 4553 static union ccb * 4554 xpt_get_ccb_nowait(struct cam_periph *periph) 4555 { 4556 union ccb *new_ccb; 4557 4558 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4559 if (new_ccb == NULL) 4560 return (NULL); 4561 periph->periph_allocated++; 4562 cam_ccbq_take_opening(&periph->path->device->ccbq); 4563 return (new_ccb); 4564 } 4565 4566 static union ccb * 4567 xpt_get_ccb(struct cam_periph *periph) 4568 { 4569 union ccb *new_ccb; 4570 4571 cam_periph_unlock(periph); 4572 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4573 cam_periph_lock(periph); 4574 periph->periph_allocated++; 4575 cam_ccbq_take_opening(&periph->path->device->ccbq); 4576 return (new_ccb); 4577 } 4578 4579 union ccb * 4580 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4581 { 4582 struct ccb_hdr *ccb_h; 4583 4584 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4585 cam_periph_assert(periph, MA_OWNED); 4586 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4587 ccb_h->pinfo.priority != priority) { 4588 if (priority < periph->immediate_priority) { 4589 periph->immediate_priority = priority; 4590 xpt_run_allocq(periph, 0); 4591 } else 4592 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4593 "cgticb", 0); 4594 } 4595 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4596 return ((union ccb *)ccb_h); 4597 } 4598 4599 static void 4600 xpt_acquire_bus(struct cam_eb *bus) 4601 { 4602 4603 xpt_lock_buses(); 4604 bus->refcount++; 4605 xpt_unlock_buses(); 4606 } 4607 4608 static void 4609 xpt_release_bus(struct cam_eb *bus) 4610 { 4611 4612 xpt_lock_buses(); 4613 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4614 if (--bus->refcount > 0) { 4615 xpt_unlock_buses(); 4616 return; 4617 } 4618 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4619 xsoftc.bus_generation++; 4620 xpt_unlock_buses(); 4621 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4622 ("destroying bus, but target list is not empty")); 4623 cam_sim_release(bus->sim); 4624 mtx_destroy(&bus->eb_mtx); 4625 free(bus, M_CAMXPT); 4626 } 4627 4628 static struct cam_et * 4629 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4630 { 4631 struct cam_et *cur_target, *target; 4632 4633 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4634 mtx_assert(&bus->eb_mtx, MA_OWNED); 4635 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4636 M_NOWAIT|M_ZERO); 4637 if (target == NULL) 4638 return (NULL); 4639 4640 TAILQ_INIT(&target->ed_entries); 4641 target->bus = bus; 4642 target->target_id = target_id; 4643 target->refcount = 1; 4644 target->generation = 0; 4645 target->luns = NULL; 4646 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4647 timevalclear(&target->last_reset); 4648 /* 4649 * Hold a reference to our parent bus so it 4650 * will not go away before we do. 4651 */ 4652 bus->refcount++; 4653 4654 /* Insertion sort into our bus's target list */ 4655 cur_target = TAILQ_FIRST(&bus->et_entries); 4656 while (cur_target != NULL && cur_target->target_id < target_id) 4657 cur_target = TAILQ_NEXT(cur_target, links); 4658 if (cur_target != NULL) { 4659 TAILQ_INSERT_BEFORE(cur_target, target, links); 4660 } else { 4661 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4662 } 4663 bus->generation++; 4664 return (target); 4665 } 4666 4667 static void 4668 xpt_acquire_target(struct cam_et *target) 4669 { 4670 struct cam_eb *bus = target->bus; 4671 4672 mtx_lock(&bus->eb_mtx); 4673 target->refcount++; 4674 mtx_unlock(&bus->eb_mtx); 4675 } 4676 4677 static void 4678 xpt_release_target(struct cam_et *target) 4679 { 4680 struct cam_eb *bus = target->bus; 4681 4682 mtx_lock(&bus->eb_mtx); 4683 if (--target->refcount > 0) { 4684 mtx_unlock(&bus->eb_mtx); 4685 return; 4686 } 4687 TAILQ_REMOVE(&bus->et_entries, target, links); 4688 bus->generation++; 4689 mtx_unlock(&bus->eb_mtx); 4690 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4691 ("destroying target, but device list is not empty")); 4692 xpt_release_bus(bus); 4693 mtx_destroy(&target->luns_mtx); 4694 if (target->luns) 4695 free(target->luns, M_CAMXPT); 4696 free(target, M_CAMXPT); 4697 } 4698 4699 static struct cam_ed * 4700 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4701 lun_id_t lun_id) 4702 { 4703 struct cam_ed *device; 4704 4705 device = xpt_alloc_device(bus, target, lun_id); 4706 if (device == NULL) 4707 return (NULL); 4708 4709 device->mintags = 1; 4710 device->maxtags = 1; 4711 return (device); 4712 } 4713 4714 static void 4715 xpt_destroy_device(void *context, int pending) 4716 { 4717 struct cam_ed *device = context; 4718 4719 mtx_lock(&device->device_mtx); 4720 mtx_destroy(&device->device_mtx); 4721 free(device, M_CAMDEV); 4722 } 4723 4724 struct cam_ed * 4725 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4726 { 4727 struct cam_ed *cur_device, *device; 4728 struct cam_devq *devq; 4729 cam_status status; 4730 4731 mtx_assert(&bus->eb_mtx, MA_OWNED); 4732 /* Make space for us in the device queue on our bus */ 4733 devq = bus->sim->devq; 4734 mtx_lock(&devq->send_mtx); 4735 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4736 mtx_unlock(&devq->send_mtx); 4737 if (status != CAM_REQ_CMP) 4738 return (NULL); 4739 4740 device = (struct cam_ed *)malloc(sizeof(*device), 4741 M_CAMDEV, M_NOWAIT|M_ZERO); 4742 if (device == NULL) 4743 return (NULL); 4744 4745 cam_init_pinfo(&device->devq_entry); 4746 device->target = target; 4747 device->lun_id = lun_id; 4748 device->sim = bus->sim; 4749 if (cam_ccbq_init(&device->ccbq, 4750 bus->sim->max_dev_openings) != 0) { 4751 free(device, M_CAMDEV); 4752 return (NULL); 4753 } 4754 SLIST_INIT(&device->asyncs); 4755 SLIST_INIT(&device->periphs); 4756 device->generation = 0; 4757 device->flags = CAM_DEV_UNCONFIGURED; 4758 device->tag_delay_count = 0; 4759 device->tag_saved_openings = 0; 4760 device->refcount = 1; 4761 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4762 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4763 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4764 /* 4765 * Hold a reference to our parent bus so it 4766 * will not go away before we do. 4767 */ 4768 target->refcount++; 4769 4770 cur_device = TAILQ_FIRST(&target->ed_entries); 4771 while (cur_device != NULL && cur_device->lun_id < lun_id) 4772 cur_device = TAILQ_NEXT(cur_device, links); 4773 if (cur_device != NULL) 4774 TAILQ_INSERT_BEFORE(cur_device, device, links); 4775 else 4776 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4777 target->generation++; 4778 return (device); 4779 } 4780 4781 void 4782 xpt_acquire_device(struct cam_ed *device) 4783 { 4784 struct cam_eb *bus = device->target->bus; 4785 4786 mtx_lock(&bus->eb_mtx); 4787 device->refcount++; 4788 mtx_unlock(&bus->eb_mtx); 4789 } 4790 4791 void 4792 xpt_release_device(struct cam_ed *device) 4793 { 4794 struct cam_eb *bus = device->target->bus; 4795 struct cam_devq *devq; 4796 4797 mtx_lock(&bus->eb_mtx); 4798 if (--device->refcount > 0) { 4799 mtx_unlock(&bus->eb_mtx); 4800 return; 4801 } 4802 4803 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4804 device->target->generation++; 4805 mtx_unlock(&bus->eb_mtx); 4806 4807 /* Release our slot in the devq */ 4808 devq = bus->sim->devq; 4809 mtx_lock(&devq->send_mtx); 4810 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4811 mtx_unlock(&devq->send_mtx); 4812 4813 KASSERT(SLIST_EMPTY(&device->periphs), 4814 ("destroying device, but periphs list is not empty")); 4815 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4816 ("destroying device while still queued for ccbs")); 4817 4818 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4819 callout_stop(&device->callout); 4820 4821 xpt_release_target(device->target); 4822 4823 cam_ccbq_fini(&device->ccbq); 4824 /* 4825 * Free allocated memory. free(9) does nothing if the 4826 * supplied pointer is NULL, so it is safe to call without 4827 * checking. 4828 */ 4829 free(device->supported_vpds, M_CAMXPT); 4830 free(device->device_id, M_CAMXPT); 4831 free(device->ext_inq, M_CAMXPT); 4832 free(device->physpath, M_CAMXPT); 4833 free(device->rcap_buf, M_CAMXPT); 4834 free(device->serial_num, M_CAMXPT); 4835 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4836 } 4837 4838 u_int32_t 4839 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4840 { 4841 int result; 4842 struct cam_ed *dev; 4843 4844 dev = path->device; 4845 mtx_lock(&dev->sim->devq->send_mtx); 4846 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4847 mtx_unlock(&dev->sim->devq->send_mtx); 4848 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4849 || (dev->inq_flags & SID_CmdQue) != 0) 4850 dev->tag_saved_openings = newopenings; 4851 return (result); 4852 } 4853 4854 static struct cam_eb * 4855 xpt_find_bus(path_id_t path_id) 4856 { 4857 struct cam_eb *bus; 4858 4859 xpt_lock_buses(); 4860 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4861 bus != NULL; 4862 bus = TAILQ_NEXT(bus, links)) { 4863 if (bus->path_id == path_id) { 4864 bus->refcount++; 4865 break; 4866 } 4867 } 4868 xpt_unlock_buses(); 4869 return (bus); 4870 } 4871 4872 static struct cam_et * 4873 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4874 { 4875 struct cam_et *target; 4876 4877 mtx_assert(&bus->eb_mtx, MA_OWNED); 4878 for (target = TAILQ_FIRST(&bus->et_entries); 4879 target != NULL; 4880 target = TAILQ_NEXT(target, links)) { 4881 if (target->target_id == target_id) { 4882 target->refcount++; 4883 break; 4884 } 4885 } 4886 return (target); 4887 } 4888 4889 static struct cam_ed * 4890 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4891 { 4892 struct cam_ed *device; 4893 4894 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4895 for (device = TAILQ_FIRST(&target->ed_entries); 4896 device != NULL; 4897 device = TAILQ_NEXT(device, links)) { 4898 if (device->lun_id == lun_id) { 4899 device->refcount++; 4900 break; 4901 } 4902 } 4903 return (device); 4904 } 4905 4906 void 4907 xpt_start_tags(struct cam_path *path) 4908 { 4909 struct ccb_relsim crs; 4910 struct cam_ed *device; 4911 struct cam_sim *sim; 4912 int newopenings; 4913 4914 device = path->device; 4915 sim = path->bus->sim; 4916 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4917 xpt_freeze_devq(path, /*count*/1); 4918 device->inq_flags |= SID_CmdQue; 4919 if (device->tag_saved_openings != 0) 4920 newopenings = device->tag_saved_openings; 4921 else 4922 newopenings = min(device->maxtags, 4923 sim->max_tagged_dev_openings); 4924 xpt_dev_ccbq_resize(path, newopenings); 4925 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4926 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4927 crs.ccb_h.func_code = XPT_REL_SIMQ; 4928 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4929 crs.openings 4930 = crs.release_timeout 4931 = crs.qfrozen_cnt 4932 = 0; 4933 xpt_action((union ccb *)&crs); 4934 } 4935 4936 void 4937 xpt_stop_tags(struct cam_path *path) 4938 { 4939 struct ccb_relsim crs; 4940 struct cam_ed *device; 4941 struct cam_sim *sim; 4942 4943 device = path->device; 4944 sim = path->bus->sim; 4945 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4946 device->tag_delay_count = 0; 4947 xpt_freeze_devq(path, /*count*/1); 4948 device->inq_flags &= ~SID_CmdQue; 4949 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4950 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4951 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4952 crs.ccb_h.func_code = XPT_REL_SIMQ; 4953 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4954 crs.openings 4955 = crs.release_timeout 4956 = crs.qfrozen_cnt 4957 = 0; 4958 xpt_action((union ccb *)&crs); 4959 } 4960 4961 static void 4962 xpt_boot_delay(void *arg) 4963 { 4964 4965 xpt_release_boot(); 4966 } 4967 4968 static void 4969 xpt_config(void *arg) 4970 { 4971 /* 4972 * Now that interrupts are enabled, go find our devices 4973 */ 4974 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4975 printf("xpt_config: failed to create taskqueue thread.\n"); 4976 4977 /* Setup debugging path */ 4978 if (cam_dflags != CAM_DEBUG_NONE) { 4979 if (xpt_create_path(&cam_dpath, NULL, 4980 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4981 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4982 printf("xpt_config: xpt_create_path() failed for debug" 4983 " target %d:%d:%d, debugging disabled\n", 4984 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4985 cam_dflags = CAM_DEBUG_NONE; 4986 } 4987 } else 4988 cam_dpath = NULL; 4989 4990 periphdriver_init(1); 4991 xpt_hold_boot(); 4992 callout_init(&xsoftc.boot_callout, 1); 4993 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 4994 xpt_boot_delay, NULL, 0); 4995 /* Fire up rescan thread. */ 4996 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4997 "cam", "scanner")) { 4998 printf("xpt_config: failed to create rescan thread.\n"); 4999 } 5000 } 5001 5002 void 5003 xpt_hold_boot(void) 5004 { 5005 xpt_lock_buses(); 5006 xsoftc.buses_to_config++; 5007 xpt_unlock_buses(); 5008 } 5009 5010 void 5011 xpt_release_boot(void) 5012 { 5013 xpt_lock_buses(); 5014 xsoftc.buses_to_config--; 5015 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5016 struct xpt_task *task; 5017 5018 xsoftc.buses_config_done = 1; 5019 xpt_unlock_buses(); 5020 /* Call manually because we don't have any busses */ 5021 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5022 if (task != NULL) { 5023 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5024 taskqueue_enqueue(taskqueue_thread, &task->task); 5025 } 5026 } else 5027 xpt_unlock_buses(); 5028 } 5029 5030 /* 5031 * If the given device only has one peripheral attached to it, and if that 5032 * peripheral is the passthrough driver, announce it. This insures that the 5033 * user sees some sort of announcement for every peripheral in their system. 5034 */ 5035 static int 5036 xptpassannouncefunc(struct cam_ed *device, void *arg) 5037 { 5038 struct cam_periph *periph; 5039 int i; 5040 5041 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5042 periph = SLIST_NEXT(periph, periph_links), i++); 5043 5044 periph = SLIST_FIRST(&device->periphs); 5045 if ((i == 1) 5046 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5047 xpt_announce_periph(periph, NULL); 5048 5049 return(1); 5050 } 5051 5052 static void 5053 xpt_finishconfig_task(void *context, int pending) 5054 { 5055 5056 periphdriver_init(2); 5057 /* 5058 * Check for devices with no "standard" peripheral driver 5059 * attached. For any devices like that, announce the 5060 * passthrough driver so the user will see something. 5061 */ 5062 if (!bootverbose) 5063 xpt_for_all_devices(xptpassannouncefunc, NULL); 5064 5065 /* Release our hook so that the boot can continue. */ 5066 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5067 free(xsoftc.xpt_config_hook, M_CAMXPT); 5068 xsoftc.xpt_config_hook = NULL; 5069 5070 free(context, M_CAMXPT); 5071 } 5072 5073 cam_status 5074 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5075 struct cam_path *path) 5076 { 5077 struct ccb_setasync csa; 5078 cam_status status; 5079 int xptpath = 0; 5080 5081 if (path == NULL) { 5082 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5083 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5084 if (status != CAM_REQ_CMP) 5085 return (status); 5086 xpt_path_lock(path); 5087 xptpath = 1; 5088 } 5089 5090 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5091 csa.ccb_h.func_code = XPT_SASYNC_CB; 5092 csa.event_enable = event; 5093 csa.callback = cbfunc; 5094 csa.callback_arg = cbarg; 5095 xpt_action((union ccb *)&csa); 5096 status = csa.ccb_h.status; 5097 5098 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5099 ("xpt_register_async: func %p\n", cbfunc)); 5100 5101 if (xptpath) { 5102 xpt_path_unlock(path); 5103 xpt_free_path(path); 5104 } 5105 5106 if ((status == CAM_REQ_CMP) && 5107 (csa.event_enable & AC_FOUND_DEVICE)) { 5108 /* 5109 * Get this peripheral up to date with all 5110 * the currently existing devices. 5111 */ 5112 xpt_for_all_devices(xptsetasyncfunc, &csa); 5113 } 5114 if ((status == CAM_REQ_CMP) && 5115 (csa.event_enable & AC_PATH_REGISTERED)) { 5116 /* 5117 * Get this peripheral up to date with all 5118 * the currently existing busses. 5119 */ 5120 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5121 } 5122 5123 return (status); 5124 } 5125 5126 static void 5127 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5128 { 5129 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5130 5131 switch (work_ccb->ccb_h.func_code) { 5132 /* Common cases first */ 5133 case XPT_PATH_INQ: /* Path routing inquiry */ 5134 { 5135 struct ccb_pathinq *cpi; 5136 5137 cpi = &work_ccb->cpi; 5138 cpi->version_num = 1; /* XXX??? */ 5139 cpi->hba_inquiry = 0; 5140 cpi->target_sprt = 0; 5141 cpi->hba_misc = 0; 5142 cpi->hba_eng_cnt = 0; 5143 cpi->max_target = 0; 5144 cpi->max_lun = 0; 5145 cpi->initiator_id = 0; 5146 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5147 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5148 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5149 cpi->unit_number = sim->unit_number; 5150 cpi->bus_id = sim->bus_id; 5151 cpi->base_transfer_speed = 0; 5152 cpi->protocol = PROTO_UNSPECIFIED; 5153 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5154 cpi->transport = XPORT_UNSPECIFIED; 5155 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5156 cpi->ccb_h.status = CAM_REQ_CMP; 5157 xpt_done(work_ccb); 5158 break; 5159 } 5160 default: 5161 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5162 xpt_done(work_ccb); 5163 break; 5164 } 5165 } 5166 5167 /* 5168 * The xpt as a "controller" has no interrupt sources, so polling 5169 * is a no-op. 5170 */ 5171 static void 5172 xptpoll(struct cam_sim *sim) 5173 { 5174 } 5175 5176 void 5177 xpt_lock_buses(void) 5178 { 5179 mtx_lock(&xsoftc.xpt_topo_lock); 5180 } 5181 5182 void 5183 xpt_unlock_buses(void) 5184 { 5185 mtx_unlock(&xsoftc.xpt_topo_lock); 5186 } 5187 5188 struct mtx * 5189 xpt_path_mtx(struct cam_path *path) 5190 { 5191 5192 return (&path->device->device_mtx); 5193 } 5194 5195 static void 5196 xpt_done_process(struct ccb_hdr *ccb_h) 5197 { 5198 struct cam_sim *sim; 5199 struct cam_devq *devq; 5200 struct mtx *mtx = NULL; 5201 5202 if (ccb_h->flags & CAM_HIGH_POWER) { 5203 struct highpowerlist *hphead; 5204 struct cam_ed *device; 5205 5206 mtx_lock(&xsoftc.xpt_highpower_lock); 5207 hphead = &xsoftc.highpowerq; 5208 5209 device = STAILQ_FIRST(hphead); 5210 5211 /* 5212 * Increment the count since this command is done. 5213 */ 5214 xsoftc.num_highpower++; 5215 5216 /* 5217 * Any high powered commands queued up? 5218 */ 5219 if (device != NULL) { 5220 5221 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5222 mtx_unlock(&xsoftc.xpt_highpower_lock); 5223 5224 mtx_lock(&device->sim->devq->send_mtx); 5225 xpt_release_devq_device(device, 5226 /*count*/1, /*runqueue*/TRUE); 5227 mtx_unlock(&device->sim->devq->send_mtx); 5228 } else 5229 mtx_unlock(&xsoftc.xpt_highpower_lock); 5230 } 5231 5232 sim = ccb_h->path->bus->sim; 5233 5234 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5235 xpt_release_simq(sim, /*run_queue*/FALSE); 5236 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5237 } 5238 5239 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5240 && (ccb_h->status & CAM_DEV_QFRZN)) { 5241 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5242 ccb_h->status &= ~CAM_DEV_QFRZN; 5243 } 5244 5245 devq = sim->devq; 5246 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5247 struct cam_ed *dev = ccb_h->path->device; 5248 5249 mtx_lock(&devq->send_mtx); 5250 devq->send_active--; 5251 devq->send_openings++; 5252 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5253 5254 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5255 && (dev->ccbq.dev_active == 0))) { 5256 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5257 xpt_release_devq_device(dev, /*count*/1, 5258 /*run_queue*/FALSE); 5259 } 5260 5261 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5262 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5263 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5264 xpt_release_devq_device(dev, /*count*/1, 5265 /*run_queue*/FALSE); 5266 } 5267 5268 if (!device_is_queued(dev)) 5269 (void)xpt_schedule_devq(devq, dev); 5270 xpt_run_devq(devq); 5271 mtx_unlock(&devq->send_mtx); 5272 5273 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5274 mtx = xpt_path_mtx(ccb_h->path); 5275 mtx_lock(mtx); 5276 5277 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5278 && (--dev->tag_delay_count == 0)) 5279 xpt_start_tags(ccb_h->path); 5280 } 5281 } 5282 5283 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5284 if (mtx == NULL) { 5285 mtx = xpt_path_mtx(ccb_h->path); 5286 mtx_lock(mtx); 5287 } 5288 } else { 5289 if (mtx != NULL) { 5290 mtx_unlock(mtx); 5291 mtx = NULL; 5292 } 5293 } 5294 5295 /* Call the peripheral driver's callback */ 5296 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5297 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5298 if (mtx != NULL) 5299 mtx_unlock(mtx); 5300 } 5301 5302 void 5303 xpt_done_td(void *arg) 5304 { 5305 struct cam_doneq *queue = arg; 5306 struct ccb_hdr *ccb_h; 5307 STAILQ_HEAD(, ccb_hdr) doneq; 5308 5309 STAILQ_INIT(&doneq); 5310 mtx_lock(&queue->cam_doneq_mtx); 5311 while (1) { 5312 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5313 queue->cam_doneq_sleep = 1; 5314 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5315 PRIBIO, "-", 0); 5316 queue->cam_doneq_sleep = 0; 5317 } 5318 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5319 mtx_unlock(&queue->cam_doneq_mtx); 5320 5321 THREAD_NO_SLEEPING(); 5322 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5323 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5324 xpt_done_process(ccb_h); 5325 } 5326 THREAD_SLEEPING_OK(); 5327 5328 mtx_lock(&queue->cam_doneq_mtx); 5329 } 5330 } 5331 5332 static void 5333 camisr_runqueue(void) 5334 { 5335 struct ccb_hdr *ccb_h; 5336 struct cam_doneq *queue; 5337 int i; 5338 5339 /* Process global queues. */ 5340 for (i = 0; i < cam_num_doneqs; i++) { 5341 queue = &cam_doneqs[i]; 5342 mtx_lock(&queue->cam_doneq_mtx); 5343 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5344 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5345 mtx_unlock(&queue->cam_doneq_mtx); 5346 xpt_done_process(ccb_h); 5347 mtx_lock(&queue->cam_doneq_mtx); 5348 } 5349 mtx_unlock(&queue->cam_doneq_mtx); 5350 } 5351 } 5352 5353 struct kv 5354 { 5355 uint32_t v; 5356 const char *name; 5357 }; 5358 5359 static struct kv map[] = { 5360 { XPT_NOOP, "XPT_NOOP" }, 5361 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5362 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5363 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5364 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5365 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5366 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5367 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5368 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5369 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5370 { XPT_DEBUG, "XPT_DEBUG" }, 5371 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5372 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5373 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5374 { XPT_ASYNC, "XPT_ASYNC" }, 5375 { XPT_ABORT, "XPT_ABORT" }, 5376 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5377 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5378 { XPT_TERM_IO, "XPT_TERM_IO" }, 5379 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5380 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5381 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5382 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5383 { XPT_ATA_IO, "XPT_ATA_IO" }, 5384 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5385 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5386 { XPT_NVME_IO, "XPT_NVME_IO" }, 5387 { XPT_MMCSD_IO, "XPT_MMCSD_IO" }, 5388 { XPT_SMP_IO, "XPT_SMP_IO" }, 5389 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5390 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5391 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5392 { XPT_EN_LUN, "XPT_EN_LUN" }, 5393 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5394 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5395 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5396 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5397 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5398 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5399 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5400 { 0, 0 } 5401 }; 5402 5403 static const char * 5404 xpt_action_name(uint32_t action) 5405 { 5406 static char buffer[32]; /* Only for unknown messages -- racy */ 5407 struct kv *walker = map; 5408 5409 while (walker->name != NULL) { 5410 if (walker->v == action) 5411 return (walker->name); 5412 walker++; 5413 } 5414 5415 snprintf(buffer, sizeof(buffer), "%#x", action); 5416 return (buffer); 5417 } 5418