1 /* 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/types.h> 34 #include <sys/malloc.h> 35 #include <sys/kernel.h> 36 #include <sys/time.h> 37 #include <sys/conf.h> 38 #include <sys/fcntl.h> 39 #include <sys/md5.h> 40 #include <sys/devicestat.h> 41 #include <sys/interrupt.h> 42 #include <sys/bus.h> 43 44 #ifdef PC98 45 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 46 #endif 47 48 #include <machine/clock.h> 49 #include <machine/ipl.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_sim.h> 55 #include <cam/cam_xpt.h> 56 #include <cam/cam_xpt_sim.h> 57 #include <cam/cam_xpt_periph.h> 58 #include <cam/cam_debug.h> 59 60 #include <cam/scsi/scsi_all.h> 61 #include <cam/scsi/scsi_message.h> 62 #include <cam/scsi/scsi_pass.h> 63 #include "opt_cam.h" 64 65 /* Datastructures internal to the xpt layer */ 66 67 /* 68 * Definition of an async handler callback block. These are used to add 69 * SIMs and peripherals to the async callback lists. 70 */ 71 struct async_node { 72 SLIST_ENTRY(async_node) links; 73 u_int32_t event_enable; /* Async Event enables */ 74 void (*callback)(void *arg, u_int32_t code, 75 struct cam_path *path, void *args); 76 void *callback_arg; 77 }; 78 79 SLIST_HEAD(async_list, async_node); 80 SLIST_HEAD(periph_list, cam_periph); 81 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 82 83 /* 84 * This is the maximum number of high powered commands (e.g. start unit) 85 * that can be outstanding at a particular time. 86 */ 87 #ifndef CAM_MAX_HIGHPOWER 88 #define CAM_MAX_HIGHPOWER 4 89 #endif 90 91 /* number of high powered commands that can go through right now */ 92 static int num_highpower = CAM_MAX_HIGHPOWER; 93 94 /* 95 * Structure for queueing a device in a run queue. 96 * There is one run queue for allocating new ccbs, 97 * and another for sending ccbs to the controller. 98 */ 99 struct cam_ed_qinfo { 100 cam_pinfo pinfo; 101 struct cam_ed *device; 102 }; 103 104 /* 105 * The CAM EDT (Existing Device Table) contains the device information for 106 * all devices for all busses in the system. The table contains a 107 * cam_ed structure for each device on the bus. 108 */ 109 struct cam_ed { 110 TAILQ_ENTRY(cam_ed) links; 111 struct cam_ed_qinfo alloc_ccb_entry; 112 struct cam_ed_qinfo send_ccb_entry; 113 struct cam_et *target; 114 lun_id_t lun_id; 115 struct camq drvq; /* 116 * Queue of type drivers wanting to do 117 * work on this device. 118 */ 119 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 120 struct async_list asyncs; /* Async callback info for this B/T/L */ 121 struct periph_list periphs; /* All attached devices */ 122 u_int generation; /* Generation number */ 123 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 124 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 125 /* Storage for the inquiry data */ 126 struct scsi_inquiry_data inq_data; 127 u_int8_t inq_flags; /* 128 * Current settings for inquiry flags. 129 * This allows us to override settings 130 * like disconnection and tagged 131 * queuing for a device. 132 */ 133 u_int8_t queue_flags; /* Queue flags from the control page */ 134 u_int8_t serial_num_len; 135 u_int8_t *serial_num; 136 u_int32_t qfrozen_cnt; 137 u_int32_t flags; 138 #define CAM_DEV_UNCONFIGURED 0x01 139 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 140 #define CAM_DEV_REL_ON_COMPLETE 0x04 141 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 142 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 143 #define CAM_DEV_TAG_AFTER_COUNT 0x20 144 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 145 u_int32_t tag_delay_count; 146 #define CAM_TAG_DELAY_COUNT 5 147 u_int32_t refcount; 148 struct callout_handle c_handle; 149 }; 150 151 /* 152 * Each target is represented by an ET (Existing Target). These 153 * entries are created when a target is successfully probed with an 154 * identify, and removed when a device fails to respond after a number 155 * of retries, or a bus rescan finds the device missing. 156 */ 157 struct cam_et { 158 TAILQ_HEAD(, cam_ed) ed_entries; 159 TAILQ_ENTRY(cam_et) links; 160 struct cam_eb *bus; 161 target_id_t target_id; 162 u_int32_t refcount; 163 u_int generation; 164 struct timeval last_reset; 165 }; 166 167 /* 168 * Each bus is represented by an EB (Existing Bus). These entries 169 * are created by calls to xpt_bus_register and deleted by calls to 170 * xpt_bus_deregister. 171 */ 172 struct cam_eb { 173 TAILQ_HEAD(, cam_et) et_entries; 174 TAILQ_ENTRY(cam_eb) links; 175 path_id_t path_id; 176 struct cam_sim *sim; 177 struct timeval last_reset; 178 u_int32_t flags; 179 #define CAM_EB_RUNQ_SCHEDULED 0x01 180 u_int32_t refcount; 181 u_int generation; 182 }; 183 184 struct cam_path { 185 struct cam_periph *periph; 186 struct cam_eb *bus; 187 struct cam_et *target; 188 struct cam_ed *device; 189 }; 190 191 struct xpt_quirk_entry { 192 struct scsi_inquiry_pattern inq_pat; 193 u_int8_t quirks; 194 #define CAM_QUIRK_NOLUNS 0x01 195 #define CAM_QUIRK_NOSERIAL 0x02 196 #define CAM_QUIRK_HILUNS 0x04 197 u_int mintags; 198 u_int maxtags; 199 }; 200 #define CAM_SCSI2_MAXLUN 8 201 202 typedef enum { 203 XPT_FLAG_OPEN = 0x01 204 } xpt_flags; 205 206 struct xpt_softc { 207 xpt_flags flags; 208 u_int32_t generation; 209 }; 210 211 static const char quantum[] = "QUANTUM"; 212 static const char sony[] = "SONY"; 213 static const char west_digital[] = "WDIGTL"; 214 static const char samsung[] = "SAMSUNG"; 215 static const char seagate[] = "SEAGATE"; 216 static const char microp[] = "MICROP"; 217 218 static struct xpt_quirk_entry xpt_quirk_table[] = 219 { 220 { 221 /* Reports QUEUE FULL for temporary resource shortages */ 222 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 223 /*quirks*/0, /*mintags*/24, /*maxtags*/32 224 }, 225 { 226 /* Reports QUEUE FULL for temporary resource shortages */ 227 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 228 /*quirks*/0, /*mintags*/24, /*maxtags*/32 229 }, 230 { 231 /* Reports QUEUE FULL for temporary resource shortages */ 232 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 233 /*quirks*/0, /*mintags*/24, /*maxtags*/32 234 }, 235 { 236 /* Broken tagged queuing drive */ 237 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 238 /*quirks*/0, /*mintags*/0, /*maxtags*/0 239 }, 240 { 241 /* Broken tagged queuing drive */ 242 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 243 /*quirks*/0, /*mintags*/0, /*maxtags*/0 244 }, 245 { 246 /* Broken tagged queuing drive */ 247 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 248 /*quirks*/0, /*mintags*/0, /*maxtags*/0 249 }, 250 { 251 /* 252 * Unfortunately, the Quantum Atlas III has the same 253 * problem as the Atlas II drives above. 254 * Reported by: "Johan Granlund" <johan@granlund.nu> 255 * 256 * For future reference, the drive with the problem was: 257 * QUANTUM QM39100TD-SW N1B0 258 * 259 * It's possible that Quantum will fix the problem in later 260 * firmware revisions. If that happens, the quirk entry 261 * will need to be made specific to the firmware revisions 262 * with the problem. 263 * 264 */ 265 /* Reports QUEUE FULL for temporary resource shortages */ 266 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 267 /*quirks*/0, /*mintags*/24, /*maxtags*/32 268 }, 269 { 270 /* 271 * 18 Gig Atlas III, same problem as the 9G version. 272 * Reported by: Andre Albsmeier 273 * <andre.albsmeier@mchp.siemens.de> 274 * 275 * For future reference, the drive with the problem was: 276 * QUANTUM QM318000TD-S N491 277 */ 278 /* Reports QUEUE FULL for temporary resource shortages */ 279 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 280 /*quirks*/0, /*mintags*/24, /*maxtags*/32 281 }, 282 { 283 /* 284 * Broken tagged queuing drive 285 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 286 * and: Martin Renters <martin@tdc.on.ca> 287 */ 288 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 289 /*quirks*/0, /*mintags*/0, /*maxtags*/0 290 }, 291 /* 292 * The Seagate Medalist Pro drives have very poor write 293 * performance with anything more than 2 tags. 294 * 295 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 296 * Drive: <SEAGATE ST36530N 1444> 297 * 298 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 299 * Drive: <SEAGATE ST34520W 1281> 300 * 301 * No one has actually reported that the 9G version 302 * (ST39140*) of the Medalist Pro has the same problem, but 303 * we're assuming that it does because the 4G and 6.5G 304 * versions of the drive are broken. 305 */ 306 { 307 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 308 /*quirks*/0, /*mintags*/2, /*maxtags*/2 309 }, 310 { 311 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 312 /*quirks*/0, /*mintags*/2, /*maxtags*/2 313 }, 314 { 315 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 316 /*quirks*/0, /*mintags*/2, /*maxtags*/2 317 }, 318 { 319 /* 320 * Slow when tagged queueing is enabled. Write performance 321 * steadily drops off with more and more concurrent 322 * transactions. Best sequential write performance with 323 * tagged queueing turned off and write caching turned on. 324 * 325 * PR: kern/10398 326 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 327 * Drive: DCAS-34330 w/ "S65A" firmware. 328 * 329 * The drive with the problem had the "S65A" firmware 330 * revision, and has also been reported (by Stephen J. 331 * Roznowski <sjr@home.net>) for a drive with the "S61A" 332 * firmware revision. 333 * 334 * Although no one has reported problems with the 2 gig 335 * version of the DCAS drive, the assumption is that it 336 * has the same problems as the 4 gig version. Therefore 337 * this quirk entries disables tagged queueing for all 338 * DCAS drives. 339 */ 340 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 341 /*quirks*/0, /*mintags*/0, /*maxtags*/0 342 }, 343 { 344 /* Broken tagged queuing drive */ 345 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 346 /*quirks*/0, /*mintags*/0, /*maxtags*/0 347 }, 348 { 349 /* Broken tagged queuing drive */ 350 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 351 /*quirks*/0, /*mintags*/0, /*maxtags*/0 352 }, 353 { 354 /* 355 * Broken tagged queuing drive. 356 * Submitted by: 357 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 358 * in PR kern/9535 359 */ 360 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 361 /*quirks*/0, /*mintags*/0, /*maxtags*/0 362 }, 363 { 364 /* 365 * Slow when tagged queueing is enabled. (1.5MB/sec versus 366 * 8MB/sec.) 367 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 368 * Best performance with these drives is achieved with 369 * tagged queueing turned off, and write caching turned on. 370 */ 371 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 372 /*quirks*/0, /*mintags*/0, /*maxtags*/0 373 }, 374 { 375 /* 376 * Slow when tagged queueing is enabled. (1.5MB/sec versus 377 * 8MB/sec.) 378 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 379 * Best performance with these drives is achieved with 380 * tagged queueing turned off, and write caching turned on. 381 */ 382 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 383 /*quirks*/0, /*mintags*/0, /*maxtags*/0 384 }, 385 { 386 /* 387 * Doesn't handle queue full condition correctly, 388 * so we need to limit maxtags to what the device 389 * can handle instead of determining this automatically. 390 */ 391 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 392 /*quirks*/0, /*mintags*/2, /*maxtags*/32 393 }, 394 { 395 /* Really only one LUN */ 396 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" }, 397 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 398 }, 399 { 400 /* I can't believe we need a quirk for DPT volumes. */ 401 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 402 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 403 /*mintags*/0, /*maxtags*/255 404 }, 405 { 406 /* 407 * Many Sony CDROM drives don't like multi-LUN probing. 408 */ 409 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 410 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 411 }, 412 { 413 /* 414 * This drive doesn't like multiple LUN probing. 415 * Submitted by: Parag Patel <parag@cgt.com> 416 */ 417 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 418 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 419 }, 420 { 421 /* 422 * The 8200 doesn't like multi-lun probing, and probably 423 * don't like serial number requests either. 424 */ 425 { 426 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 427 "EXB-8200*", "*" 428 }, 429 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 430 }, 431 { 432 /* 433 * These Hitachi drives don't like multi-lun probing. 434 * The PR submitter has a DK319H, but says that the Linux 435 * kernel has a similar work-around for the DK312 and DK314, 436 * so all DK31* drives are quirked here. 437 * PR: misc/18793 438 * Submitted by: Paul Haddad <paul@pth.com> 439 */ 440 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 441 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 442 }, 443 { 444 /* 445 * This old revision of the TDC3600 is also SCSI-1, and 446 * hangs upon serial number probing. 447 */ 448 { 449 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 450 " TDC 3600", "U07:" 451 }, 452 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 453 }, 454 { 455 /* 456 * Would repond to all LUNs if asked for. 457 */ 458 { 459 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 460 "CP150", "*" 461 }, 462 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 463 }, 464 { 465 /* 466 * Would repond to all LUNs if asked for. 467 */ 468 { 469 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 470 "96X2*", "*" 471 }, 472 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 473 }, 474 { 475 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 476 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 477 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 478 }, 479 { 480 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 481 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 482 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 483 }, 484 { 485 /* TeraSolutions special settings for TRC-22 RAID */ 486 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 487 /*quirks*/0, /*mintags*/55, /*maxtags*/255 488 }, 489 { 490 /* Default tagged queuing parameters for all devices */ 491 { 492 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 493 /*vendor*/"*", /*product*/"*", /*revision*/"*" 494 }, 495 /*quirks*/0, /*mintags*/2, /*maxtags*/255 496 }, 497 }; 498 499 static const int xpt_quirk_table_size = 500 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 501 502 typedef enum { 503 DM_RET_COPY = 0x01, 504 DM_RET_FLAG_MASK = 0x0f, 505 DM_RET_NONE = 0x00, 506 DM_RET_STOP = 0x10, 507 DM_RET_DESCEND = 0x20, 508 DM_RET_ERROR = 0x30, 509 DM_RET_ACTION_MASK = 0xf0 510 } dev_match_ret; 511 512 typedef enum { 513 XPT_DEPTH_BUS, 514 XPT_DEPTH_TARGET, 515 XPT_DEPTH_DEVICE, 516 XPT_DEPTH_PERIPH 517 } xpt_traverse_depth; 518 519 struct xpt_traverse_config { 520 xpt_traverse_depth depth; 521 void *tr_func; 522 void *tr_arg; 523 }; 524 525 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 526 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 527 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 528 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 529 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 530 531 /* Transport layer configuration information */ 532 static struct xpt_softc xsoftc; 533 534 /* Queues for our software interrupt handler */ 535 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 536 static cam_isrq_t cam_bioq; 537 static cam_isrq_t cam_netq; 538 539 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 540 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 541 static u_int xpt_max_ccbs; /* 542 * Maximum size of ccb pool. Modified as 543 * devices are added/removed or have their 544 * opening counts changed. 545 */ 546 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 547 548 struct cam_periph *xpt_periph; 549 550 static periph_init_t xpt_periph_init; 551 552 static periph_init_t probe_periph_init; 553 554 static struct periph_driver xpt_driver = 555 { 556 xpt_periph_init, "xpt", 557 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 558 }; 559 560 static struct periph_driver probe_driver = 561 { 562 probe_periph_init, "probe", 563 TAILQ_HEAD_INITIALIZER(probe_driver.units) 564 }; 565 566 DATA_SET(periphdriver_set, xpt_driver); 567 DATA_SET(periphdriver_set, probe_driver); 568 569 #define XPT_CDEV_MAJOR 104 570 571 static d_open_t xptopen; 572 static d_close_t xptclose; 573 static d_ioctl_t xptioctl; 574 575 static struct cdevsw xpt_cdevsw = { 576 /* open */ xptopen, 577 /* close */ xptclose, 578 /* read */ noread, 579 /* write */ nowrite, 580 /* ioctl */ xptioctl, 581 /* poll */ nopoll, 582 /* mmap */ nommap, 583 /* strategy */ nostrategy, 584 /* name */ "xpt", 585 /* maj */ XPT_CDEV_MAJOR, 586 /* dump */ nodump, 587 /* psize */ nopsize, 588 /* flags */ 0, 589 /* bmaj */ -1 590 }; 591 592 static struct intr_config_hook *xpt_config_hook; 593 594 /* Registered busses */ 595 static TAILQ_HEAD(,cam_eb) xpt_busses; 596 static u_int bus_generation; 597 598 /* Storage for debugging datastructures */ 599 #ifdef CAMDEBUG 600 struct cam_path *cam_dpath; 601 u_int32_t cam_dflags; 602 u_int32_t cam_debug_delay; 603 #endif 604 605 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 606 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 607 #endif 608 609 /* 610 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 611 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 612 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 613 */ 614 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 615 || defined(CAM_DEBUG_LUN) 616 #ifdef CAMDEBUG 617 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 618 || !defined(CAM_DEBUG_LUN) 619 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 620 and CAM_DEBUG_LUN" 621 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 622 #else /* !CAMDEBUG */ 623 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 624 #endif /* CAMDEBUG */ 625 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 626 627 /* Our boot-time initialization hook */ 628 static void xpt_init(void *); 629 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL); 630 631 static cam_status xpt_compile_path(struct cam_path *new_path, 632 struct cam_periph *perph, 633 path_id_t path_id, 634 target_id_t target_id, 635 lun_id_t lun_id); 636 637 static void xpt_release_path(struct cam_path *path); 638 639 static void xpt_async_bcast(struct async_list *async_head, 640 u_int32_t async_code, 641 struct cam_path *path, 642 void *async_arg); 643 static path_id_t xptnextfreepathid(void); 644 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 645 static union ccb *xpt_get_ccb(struct cam_ed *device); 646 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 647 u_int32_t new_priority); 648 static void xpt_run_dev_allocq(struct cam_eb *bus); 649 static void xpt_run_dev_sendq(struct cam_eb *bus); 650 static timeout_t xpt_release_devq_timeout; 651 static timeout_t xpt_release_simq_timeout; 652 static void xpt_release_bus(struct cam_eb *bus); 653 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 654 int run_queue); 655 static struct cam_et* 656 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 657 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 658 static struct cam_ed* 659 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 660 lun_id_t lun_id); 661 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 662 struct cam_ed *device); 663 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 664 static struct cam_eb* 665 xpt_find_bus(path_id_t path_id); 666 static struct cam_et* 667 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 668 static struct cam_ed* 669 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 670 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 671 static void xpt_scan_lun(struct cam_periph *periph, 672 struct cam_path *path, cam_flags flags, 673 union ccb *ccb); 674 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 675 static xpt_busfunc_t xptconfigbuscountfunc; 676 static xpt_busfunc_t xptconfigfunc; 677 static void xpt_config(void *arg); 678 static xpt_devicefunc_t xptpassannouncefunc; 679 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 680 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 681 static void xptpoll(struct cam_sim *sim); 682 static swihand_t swi_camnet; 683 static swihand_t swi_cambio; 684 static void camisr(cam_isrq_t *queue); 685 #if 0 686 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 687 static void xptasync(struct cam_periph *periph, 688 u_int32_t code, cam_path *path); 689 #endif 690 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 691 int num_patterns, struct cam_eb *bus); 692 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 693 int num_patterns, struct cam_ed *device); 694 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 695 int num_patterns, 696 struct cam_periph *periph); 697 static xpt_busfunc_t xptedtbusfunc; 698 static xpt_targetfunc_t xptedttargetfunc; 699 static xpt_devicefunc_t xptedtdevicefunc; 700 static xpt_periphfunc_t xptedtperiphfunc; 701 static xpt_pdrvfunc_t xptplistpdrvfunc; 702 static xpt_periphfunc_t xptplistperiphfunc; 703 static int xptedtmatch(struct ccb_dev_match *cdm); 704 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 705 static int xptbustraverse(struct cam_eb *start_bus, 706 xpt_busfunc_t *tr_func, void *arg); 707 static int xpttargettraverse(struct cam_eb *bus, 708 struct cam_et *start_target, 709 xpt_targetfunc_t *tr_func, void *arg); 710 static int xptdevicetraverse(struct cam_et *target, 711 struct cam_ed *start_device, 712 xpt_devicefunc_t *tr_func, void *arg); 713 static int xptperiphtraverse(struct cam_ed *device, 714 struct cam_periph *start_periph, 715 xpt_periphfunc_t *tr_func, void *arg); 716 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 717 xpt_pdrvfunc_t *tr_func, void *arg); 718 static int xptpdperiphtraverse(struct periph_driver **pdrv, 719 struct cam_periph *start_periph, 720 xpt_periphfunc_t *tr_func, 721 void *arg); 722 static xpt_busfunc_t xptdefbusfunc; 723 static xpt_targetfunc_t xptdeftargetfunc; 724 static xpt_devicefunc_t xptdefdevicefunc; 725 static xpt_periphfunc_t xptdefperiphfunc; 726 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 727 #ifdef notusedyet 728 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 729 void *arg); 730 #endif 731 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 732 void *arg); 733 #ifdef notusedyet 734 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 735 void *arg); 736 #endif 737 static xpt_devicefunc_t xptsetasyncfunc; 738 static xpt_busfunc_t xptsetasyncbusfunc; 739 static cam_status xptregister(struct cam_periph *periph, 740 void *arg); 741 static cam_status proberegister(struct cam_periph *periph, 742 void *arg); 743 static void probeschedule(struct cam_periph *probe_periph); 744 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 745 static void proberequestdefaultnegotiation(struct cam_periph *periph); 746 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 747 static void probecleanup(struct cam_periph *periph); 748 static void xpt_find_quirk(struct cam_ed *device); 749 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 750 struct cam_ed *device, 751 int async_update); 752 static void xpt_toggle_tags(struct cam_path *path); 753 static void xpt_start_tags(struct cam_path *path); 754 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 755 struct cam_ed *dev); 756 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 757 struct cam_ed *dev); 758 static __inline int periph_is_queued(struct cam_periph *periph); 759 static __inline int device_is_alloc_queued(struct cam_ed *device); 760 static __inline int device_is_send_queued(struct cam_ed *device); 761 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 762 763 static __inline int 764 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 765 { 766 int retval; 767 768 if (dev->ccbq.devq_openings > 0) { 769 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 770 cam_ccbq_resize(&dev->ccbq, 771 dev->ccbq.dev_openings 772 + dev->ccbq.dev_active); 773 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 774 } 775 /* 776 * The priority of a device waiting for CCB resources 777 * is that of the the highest priority peripheral driver 778 * enqueued. 779 */ 780 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 781 &dev->alloc_ccb_entry.pinfo, 782 CAMQ_GET_HEAD(&dev->drvq)->priority); 783 } else { 784 retval = 0; 785 } 786 787 return (retval); 788 } 789 790 static __inline int 791 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 792 { 793 int retval; 794 795 if (dev->ccbq.dev_openings > 0) { 796 /* 797 * The priority of a device waiting for controller 798 * resources is that of the the highest priority CCB 799 * enqueued. 800 */ 801 retval = 802 xpt_schedule_dev(&bus->sim->devq->send_queue, 803 &dev->send_ccb_entry.pinfo, 804 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 805 } else { 806 retval = 0; 807 } 808 return (retval); 809 } 810 811 static __inline int 812 periph_is_queued(struct cam_periph *periph) 813 { 814 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 815 } 816 817 static __inline int 818 device_is_alloc_queued(struct cam_ed *device) 819 { 820 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 821 } 822 823 static __inline int 824 device_is_send_queued(struct cam_ed *device) 825 { 826 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 827 } 828 829 static __inline int 830 dev_allocq_is_runnable(struct cam_devq *devq) 831 { 832 /* 833 * Have work to do. 834 * Have space to do more work. 835 * Allowed to do work. 836 */ 837 return ((devq->alloc_queue.qfrozen_cnt == 0) 838 && (devq->alloc_queue.entries > 0) 839 && (devq->alloc_openings > 0)); 840 } 841 842 static void 843 xpt_periph_init() 844 { 845 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 846 } 847 848 static void 849 probe_periph_init() 850 { 851 } 852 853 854 static void 855 xptdone(struct cam_periph *periph, union ccb *done_ccb) 856 { 857 /* Caller will release the CCB */ 858 wakeup(&done_ccb->ccb_h.cbfcnp); 859 } 860 861 static int 862 xptopen(dev_t dev, int flags, int fmt, struct proc *p) 863 { 864 int unit; 865 866 unit = minor(dev) & 0xff; 867 868 /* 869 * Only allow read-write access. 870 */ 871 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 872 return(EPERM); 873 874 /* 875 * We don't allow nonblocking access. 876 */ 877 if ((flags & O_NONBLOCK) != 0) { 878 printf("xpt%d: can't do nonblocking accesss\n", unit); 879 return(ENODEV); 880 } 881 882 /* 883 * We only have one transport layer right now. If someone accesses 884 * us via something other than minor number 1, point out their 885 * mistake. 886 */ 887 if (unit != 0) { 888 printf("xptopen: got invalid xpt unit %d\n", unit); 889 return(ENXIO); 890 } 891 892 /* Mark ourselves open */ 893 xsoftc.flags |= XPT_FLAG_OPEN; 894 895 return(0); 896 } 897 898 static int 899 xptclose(dev_t dev, int flag, int fmt, struct proc *p) 900 { 901 int unit; 902 903 unit = minor(dev) & 0xff; 904 905 /* 906 * We only have one transport layer right now. If someone accesses 907 * us via something other than minor number 1, point out their 908 * mistake. 909 */ 910 if (unit != 0) { 911 printf("xptclose: got invalid xpt unit %d\n", unit); 912 return(ENXIO); 913 } 914 915 /* Mark ourselves closed */ 916 xsoftc.flags &= ~XPT_FLAG_OPEN; 917 918 return(0); 919 } 920 921 static int 922 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p) 923 { 924 int unit, error; 925 926 error = 0; 927 unit = minor(dev) & 0xff; 928 929 /* 930 * We only have one transport layer right now. If someone accesses 931 * us via something other than minor number 1, point out their 932 * mistake. 933 */ 934 if (unit != 0) { 935 printf("xptioctl: got invalid xpt unit %d\n", unit); 936 return(ENXIO); 937 } 938 939 switch(cmd) { 940 /* 941 * For the transport layer CAMIOCOMMAND ioctl, we really only want 942 * to accept CCB types that don't quite make sense to send through a 943 * passthrough driver. 944 */ 945 case CAMIOCOMMAND: { 946 union ccb *ccb; 947 union ccb *inccb; 948 949 inccb = (union ccb *)addr; 950 951 switch(inccb->ccb_h.func_code) { 952 case XPT_SCAN_BUS: 953 case XPT_RESET_BUS: 954 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 955 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 956 error = EINVAL; 957 break; 958 } 959 /* FALLTHROUGH */ 960 case XPT_SCAN_LUN: 961 962 ccb = xpt_alloc_ccb(); 963 964 /* 965 * Create a path using the bus, target, and lun the 966 * user passed in. 967 */ 968 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 969 inccb->ccb_h.path_id, 970 inccb->ccb_h.target_id, 971 inccb->ccb_h.target_lun) != 972 CAM_REQ_CMP){ 973 error = EINVAL; 974 xpt_free_ccb(ccb); 975 break; 976 } 977 /* Ensure all of our fields are correct */ 978 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 979 inccb->ccb_h.pinfo.priority); 980 xpt_merge_ccb(ccb, inccb); 981 ccb->ccb_h.cbfcnp = xptdone; 982 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 983 bcopy(ccb, inccb, sizeof(union ccb)); 984 xpt_free_path(ccb->ccb_h.path); 985 xpt_free_ccb(ccb); 986 break; 987 988 case XPT_DEBUG: { 989 union ccb ccb; 990 991 /* 992 * This is an immediate CCB, so it's okay to 993 * allocate it on the stack. 994 */ 995 996 /* 997 * Create a path using the bus, target, and lun the 998 * user passed in. 999 */ 1000 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1001 inccb->ccb_h.path_id, 1002 inccb->ccb_h.target_id, 1003 inccb->ccb_h.target_lun) != 1004 CAM_REQ_CMP){ 1005 error = EINVAL; 1006 break; 1007 } 1008 /* Ensure all of our fields are correct */ 1009 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1010 inccb->ccb_h.pinfo.priority); 1011 xpt_merge_ccb(&ccb, inccb); 1012 ccb.ccb_h.cbfcnp = xptdone; 1013 xpt_action(&ccb); 1014 bcopy(&ccb, inccb, sizeof(union ccb)); 1015 xpt_free_path(ccb.ccb_h.path); 1016 break; 1017 1018 } 1019 case XPT_DEV_MATCH: { 1020 struct cam_periph_map_info mapinfo; 1021 struct cam_path *old_path; 1022 1023 /* 1024 * We can't deal with physical addresses for this 1025 * type of transaction. 1026 */ 1027 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1028 error = EINVAL; 1029 break; 1030 } 1031 1032 /* 1033 * Save this in case the caller had it set to 1034 * something in particular. 1035 */ 1036 old_path = inccb->ccb_h.path; 1037 1038 /* 1039 * We really don't need a path for the matching 1040 * code. The path is needed because of the 1041 * debugging statements in xpt_action(). They 1042 * assume that the CCB has a valid path. 1043 */ 1044 inccb->ccb_h.path = xpt_periph->path; 1045 1046 bzero(&mapinfo, sizeof(mapinfo)); 1047 1048 /* 1049 * Map the pattern and match buffers into kernel 1050 * virtual address space. 1051 */ 1052 error = cam_periph_mapmem(inccb, &mapinfo); 1053 1054 if (error) { 1055 inccb->ccb_h.path = old_path; 1056 break; 1057 } 1058 1059 /* 1060 * This is an immediate CCB, we can send it on directly. 1061 */ 1062 xpt_action(inccb); 1063 1064 /* 1065 * Map the buffers back into user space. 1066 */ 1067 cam_periph_unmapmem(inccb, &mapinfo); 1068 1069 inccb->ccb_h.path = old_path; 1070 1071 error = 0; 1072 break; 1073 } 1074 default: 1075 error = EINVAL; 1076 break; 1077 } 1078 break; 1079 } 1080 /* 1081 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1082 * with the periphal driver name and unit name filled in. The other 1083 * fields don't really matter as input. The passthrough driver name 1084 * ("pass"), and unit number are passed back in the ccb. The current 1085 * device generation number, and the index into the device peripheral 1086 * driver list, and the status are also passed back. Note that 1087 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1088 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1089 * (or rather should be) impossible for the device peripheral driver 1090 * list to change since we look at the whole thing in one pass, and 1091 * we do it with splcam protection. 1092 * 1093 */ 1094 case CAMGETPASSTHRU: { 1095 union ccb *ccb; 1096 struct cam_periph *periph; 1097 struct periph_driver **p_drv; 1098 char *name; 1099 int unit; 1100 int cur_generation; 1101 int base_periph_found; 1102 int splbreaknum; 1103 int s; 1104 1105 ccb = (union ccb *)addr; 1106 unit = ccb->cgdl.unit_number; 1107 name = ccb->cgdl.periph_name; 1108 /* 1109 * Every 100 devices, we want to drop our spl protection to 1110 * give the software interrupt handler a chance to run. 1111 * Most systems won't run into this check, but this should 1112 * avoid starvation in the software interrupt handler in 1113 * large systems. 1114 */ 1115 splbreaknum = 100; 1116 1117 ccb = (union ccb *)addr; 1118 1119 base_periph_found = 0; 1120 1121 /* 1122 * Sanity check -- make sure we don't get a null peripheral 1123 * driver name. 1124 */ 1125 if (*ccb->cgdl.periph_name == '\0') { 1126 error = EINVAL; 1127 break; 1128 } 1129 1130 /* Keep the list from changing while we traverse it */ 1131 s = splcam(); 1132 ptstartover: 1133 cur_generation = xsoftc.generation; 1134 1135 /* first find our driver in the list of drivers */ 1136 for (p_drv = (struct periph_driver **)periphdriver_set.ls_items; 1137 *p_drv != NULL; p_drv++) 1138 if (strcmp((*p_drv)->driver_name, name) == 0) 1139 break; 1140 1141 if (*p_drv == NULL) { 1142 splx(s); 1143 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1144 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1145 *ccb->cgdl.periph_name = '\0'; 1146 ccb->cgdl.unit_number = 0; 1147 error = ENOENT; 1148 break; 1149 } 1150 1151 /* 1152 * Run through every peripheral instance of this driver 1153 * and check to see whether it matches the unit passed 1154 * in by the user. If it does, get out of the loops and 1155 * find the passthrough driver associated with that 1156 * peripheral driver. 1157 */ 1158 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1159 periph = TAILQ_NEXT(periph, unit_links)) { 1160 1161 if (periph->unit_number == unit) { 1162 break; 1163 } else if (--splbreaknum == 0) { 1164 splx(s); 1165 s = splcam(); 1166 splbreaknum = 100; 1167 if (cur_generation != xsoftc.generation) 1168 goto ptstartover; 1169 } 1170 } 1171 /* 1172 * If we found the peripheral driver that the user passed 1173 * in, go through all of the peripheral drivers for that 1174 * particular device and look for a passthrough driver. 1175 */ 1176 if (periph != NULL) { 1177 struct cam_ed *device; 1178 int i; 1179 1180 base_periph_found = 1; 1181 device = periph->path->device; 1182 for (i = 0, periph = device->periphs.slh_first; 1183 periph != NULL; 1184 periph = periph->periph_links.sle_next, i++) { 1185 /* 1186 * Check to see whether we have a 1187 * passthrough device or not. 1188 */ 1189 if (strcmp(periph->periph_name, "pass") == 0) { 1190 /* 1191 * Fill in the getdevlist fields. 1192 */ 1193 strcpy(ccb->cgdl.periph_name, 1194 periph->periph_name); 1195 ccb->cgdl.unit_number = 1196 periph->unit_number; 1197 if (periph->periph_links.sle_next) 1198 ccb->cgdl.status = 1199 CAM_GDEVLIST_MORE_DEVS; 1200 else 1201 ccb->cgdl.status = 1202 CAM_GDEVLIST_LAST_DEVICE; 1203 ccb->cgdl.generation = 1204 device->generation; 1205 ccb->cgdl.index = i; 1206 /* 1207 * Fill in some CCB header fields 1208 * that the user may want. 1209 */ 1210 ccb->ccb_h.path_id = 1211 periph->path->bus->path_id; 1212 ccb->ccb_h.target_id = 1213 periph->path->target->target_id; 1214 ccb->ccb_h.target_lun = 1215 periph->path->device->lun_id; 1216 ccb->ccb_h.status = CAM_REQ_CMP; 1217 break; 1218 } 1219 } 1220 } 1221 1222 /* 1223 * If the periph is null here, one of two things has 1224 * happened. The first possibility is that we couldn't 1225 * find the unit number of the particular peripheral driver 1226 * that the user is asking about. e.g. the user asks for 1227 * the passthrough driver for "da11". We find the list of 1228 * "da" peripherals all right, but there is no unit 11. 1229 * The other possibility is that we went through the list 1230 * of peripheral drivers attached to the device structure, 1231 * but didn't find one with the name "pass". Either way, 1232 * we return ENOENT, since we couldn't find something. 1233 */ 1234 if (periph == NULL) { 1235 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1236 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1237 *ccb->cgdl.periph_name = '\0'; 1238 ccb->cgdl.unit_number = 0; 1239 error = ENOENT; 1240 /* 1241 * It is unfortunate that this is even necessary, 1242 * but there are many, many clueless users out there. 1243 * If this is true, the user is looking for the 1244 * passthrough driver, but doesn't have one in his 1245 * kernel. 1246 */ 1247 if (base_periph_found == 1) { 1248 printf("xptioctl: pass driver is not in the " 1249 "kernel\n"); 1250 printf("xptioctl: put \"device pass0\" in " 1251 "your kernel config file\n"); 1252 } 1253 } 1254 splx(s); 1255 break; 1256 } 1257 default: 1258 error = ENOTTY; 1259 break; 1260 } 1261 1262 return(error); 1263 } 1264 1265 /* Functions accessed by the peripheral drivers */ 1266 static void 1267 xpt_init(dummy) 1268 void *dummy; 1269 { 1270 struct cam_sim *xpt_sim; 1271 struct cam_path *path; 1272 struct cam_devq *devq; 1273 cam_status status; 1274 1275 TAILQ_INIT(&xpt_busses); 1276 TAILQ_INIT(&cam_bioq); 1277 TAILQ_INIT(&cam_netq); 1278 SLIST_INIT(&ccb_freeq); 1279 STAILQ_INIT(&highpowerq); 1280 1281 /* 1282 * The xpt layer is, itself, the equivelent of a SIM. 1283 * Allow 16 ccbs in the ccb pool for it. This should 1284 * give decent parallelism when we probe busses and 1285 * perform other XPT functions. 1286 */ 1287 devq = cam_simq_alloc(16); 1288 xpt_sim = cam_sim_alloc(xptaction, 1289 xptpoll, 1290 "xpt", 1291 /*softc*/NULL, 1292 /*unit*/0, 1293 /*max_dev_transactions*/0, 1294 /*max_tagged_dev_transactions*/0, 1295 devq); 1296 xpt_max_ccbs = 16; 1297 1298 xpt_bus_register(xpt_sim, /*bus #*/0); 1299 1300 /* 1301 * Looking at the XPT from the SIM layer, the XPT is 1302 * the equivelent of a peripheral driver. Allocate 1303 * a peripheral driver entry for us. 1304 */ 1305 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1306 CAM_TARGET_WILDCARD, 1307 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1308 printf("xpt_init: xpt_create_path failed with status %#x," 1309 " failing attach\n", status); 1310 return; 1311 } 1312 1313 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1314 path, NULL, 0, NULL); 1315 xpt_free_path(path); 1316 1317 xpt_sim->softc = xpt_periph; 1318 1319 /* 1320 * Register a callback for when interrupts are enabled. 1321 */ 1322 xpt_config_hook = 1323 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1324 M_TEMP, M_NOWAIT); 1325 if (xpt_config_hook == NULL) { 1326 printf("xpt_init: Cannot malloc config hook " 1327 "- failing attach\n"); 1328 return; 1329 } 1330 bzero(xpt_config_hook, sizeof(*xpt_config_hook)); 1331 1332 xpt_config_hook->ich_func = xpt_config; 1333 if (config_intrhook_establish(xpt_config_hook) != 0) { 1334 free (xpt_config_hook, M_TEMP); 1335 printf("xpt_init: config_intrhook_establish failed " 1336 "- failing attach\n"); 1337 } 1338 1339 /* Install our software interrupt handlers */ 1340 register_swi(SWI_CAMNET, swi_camnet); 1341 register_swi(SWI_CAMBIO, swi_cambio); 1342 } 1343 1344 static cam_status 1345 xptregister(struct cam_periph *periph, void *arg) 1346 { 1347 if (periph == NULL) { 1348 printf("xptregister: periph was NULL!!\n"); 1349 return(CAM_REQ_CMP_ERR); 1350 } 1351 1352 periph->softc = NULL; 1353 1354 xpt_periph = periph; 1355 1356 return(CAM_REQ_CMP); 1357 } 1358 1359 int32_t 1360 xpt_add_periph(struct cam_periph *periph) 1361 { 1362 struct cam_ed *device; 1363 int32_t status; 1364 struct periph_list *periph_head; 1365 1366 device = periph->path->device; 1367 1368 periph_head = &device->periphs; 1369 1370 status = CAM_REQ_CMP; 1371 1372 if (device != NULL) { 1373 int s; 1374 1375 /* 1376 * Make room for this peripheral 1377 * so it will fit in the queue 1378 * when it's scheduled to run 1379 */ 1380 s = splsoftcam(); 1381 status = camq_resize(&device->drvq, 1382 device->drvq.array_size + 1); 1383 1384 device->generation++; 1385 1386 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1387 1388 splx(s); 1389 } 1390 1391 xsoftc.generation++; 1392 1393 return (status); 1394 } 1395 1396 void 1397 xpt_remove_periph(struct cam_periph *periph) 1398 { 1399 struct cam_ed *device; 1400 1401 device = periph->path->device; 1402 1403 if (device != NULL) { 1404 int s; 1405 struct periph_list *periph_head; 1406 1407 periph_head = &device->periphs; 1408 1409 /* Release the slot for this peripheral */ 1410 s = splsoftcam(); 1411 camq_resize(&device->drvq, device->drvq.array_size - 1); 1412 1413 device->generation++; 1414 1415 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1416 1417 splx(s); 1418 } 1419 1420 xsoftc.generation++; 1421 1422 } 1423 1424 void 1425 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1426 { 1427 int s; 1428 u_int mb; 1429 struct cam_path *path; 1430 struct ccb_trans_settings cts; 1431 1432 path = periph->path; 1433 /* 1434 * To ensure that this is printed in one piece, 1435 * mask out CAM interrupts. 1436 */ 1437 s = splsoftcam(); 1438 printf("%s%d at %s%d bus %d target %d lun %d\n", 1439 periph->periph_name, periph->unit_number, 1440 path->bus->sim->sim_name, 1441 path->bus->sim->unit_number, 1442 path->bus->sim->bus_id, 1443 path->target->target_id, 1444 path->device->lun_id); 1445 printf("%s%d: ", periph->periph_name, periph->unit_number); 1446 scsi_print_inquiry(&path->device->inq_data); 1447 if ((bootverbose) 1448 && (path->device->serial_num_len > 0)) { 1449 /* Don't wrap the screen - print only the first 60 chars */ 1450 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1451 periph->unit_number, path->device->serial_num); 1452 } 1453 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1454 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1455 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1456 xpt_action((union ccb*)&cts); 1457 if (cts.ccb_h.status == CAM_REQ_CMP) { 1458 u_int speed; 1459 u_int freq; 1460 1461 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1462 && cts.sync_offset != 0) { 1463 freq = scsi_calc_syncsrate(cts.sync_period); 1464 speed = freq; 1465 } else { 1466 struct ccb_pathinq cpi; 1467 1468 /* Ask the SIM for its base transfer speed */ 1469 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1470 cpi.ccb_h.func_code = XPT_PATH_INQ; 1471 xpt_action((union ccb *)&cpi); 1472 1473 speed = cpi.base_transfer_speed; 1474 freq = 0; 1475 } 1476 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1477 speed *= (0x01 << cts.bus_width); 1478 mb = speed / 1000; 1479 if (mb > 0) 1480 printf("%s%d: %d.%03dMB/s transfers", 1481 periph->periph_name, periph->unit_number, 1482 mb, speed % 1000); 1483 else 1484 printf("%s%d: %dKB/s transfers", periph->periph_name, 1485 periph->unit_number, speed); 1486 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1487 && cts.sync_offset != 0) { 1488 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1489 freq % 1000, cts.sync_offset); 1490 } 1491 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1492 && cts.bus_width > 0) { 1493 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1494 && cts.sync_offset != 0) { 1495 printf(", "); 1496 } else { 1497 printf(" ("); 1498 } 1499 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1500 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1501 && cts.sync_offset != 0) { 1502 printf(")"); 1503 } 1504 1505 if (path->device->inq_flags & SID_CmdQue 1506 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1507 printf(", Tagged Queueing Enabled"); 1508 } 1509 1510 printf("\n"); 1511 } else if (path->device->inq_flags & SID_CmdQue 1512 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1513 printf("%s%d: Tagged Queueing Enabled\n", 1514 periph->periph_name, periph->unit_number); 1515 } 1516 1517 /* 1518 * We only want to print the caller's announce string if they've 1519 * passed one in.. 1520 */ 1521 if (announce_string != NULL) 1522 printf("%s%d: %s\n", periph->periph_name, 1523 periph->unit_number, announce_string); 1524 splx(s); 1525 } 1526 1527 1528 static dev_match_ret 1529 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns, 1530 struct cam_eb *bus) 1531 { 1532 dev_match_ret retval; 1533 int i; 1534 1535 retval = DM_RET_NONE; 1536 1537 /* 1538 * If we aren't given something to match against, that's an error. 1539 */ 1540 if (bus == NULL) 1541 return(DM_RET_ERROR); 1542 1543 /* 1544 * If there are no match entries, then this bus matches no 1545 * matter what. 1546 */ 1547 if ((patterns == NULL) || (num_patterns == 0)) 1548 return(DM_RET_DESCEND | DM_RET_COPY); 1549 1550 for (i = 0; i < num_patterns; i++) { 1551 struct bus_match_pattern *cur_pattern; 1552 1553 /* 1554 * If the pattern in question isn't for a bus node, we 1555 * aren't interested. However, we do indicate to the 1556 * calling routine that we should continue descending the 1557 * tree, since the user wants to match against lower-level 1558 * EDT elements. 1559 */ 1560 if (patterns[i].type != DEV_MATCH_BUS) { 1561 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1562 retval |= DM_RET_DESCEND; 1563 continue; 1564 } 1565 1566 cur_pattern = &patterns[i].pattern.bus_pattern; 1567 1568 /* 1569 * If they want to match any bus node, we give them any 1570 * device node. 1571 */ 1572 if (cur_pattern->flags == BUS_MATCH_ANY) { 1573 /* set the copy flag */ 1574 retval |= DM_RET_COPY; 1575 1576 /* 1577 * If we've already decided on an action, go ahead 1578 * and return. 1579 */ 1580 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1581 return(retval); 1582 } 1583 1584 /* 1585 * Not sure why someone would do this... 1586 */ 1587 if (cur_pattern->flags == BUS_MATCH_NONE) 1588 continue; 1589 1590 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1591 && (cur_pattern->path_id != bus->path_id)) 1592 continue; 1593 1594 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1595 && (cur_pattern->bus_id != bus->sim->bus_id)) 1596 continue; 1597 1598 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1599 && (cur_pattern->unit_number != bus->sim->unit_number)) 1600 continue; 1601 1602 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1603 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1604 DEV_IDLEN) != 0)) 1605 continue; 1606 1607 /* 1608 * If we get to this point, the user definitely wants 1609 * information on this bus. So tell the caller to copy the 1610 * data out. 1611 */ 1612 retval |= DM_RET_COPY; 1613 1614 /* 1615 * If the return action has been set to descend, then we 1616 * know that we've already seen a non-bus matching 1617 * expression, therefore we need to further descend the tree. 1618 * This won't change by continuing around the loop, so we 1619 * go ahead and return. If we haven't seen a non-bus 1620 * matching expression, we keep going around the loop until 1621 * we exhaust the matching expressions. We'll set the stop 1622 * flag once we fall out of the loop. 1623 */ 1624 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1625 return(retval); 1626 } 1627 1628 /* 1629 * If the return action hasn't been set to descend yet, that means 1630 * we haven't seen anything other than bus matching patterns. So 1631 * tell the caller to stop descending the tree -- the user doesn't 1632 * want to match against lower level tree elements. 1633 */ 1634 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1635 retval |= DM_RET_STOP; 1636 1637 return(retval); 1638 } 1639 1640 static dev_match_ret 1641 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns, 1642 struct cam_ed *device) 1643 { 1644 dev_match_ret retval; 1645 int i; 1646 1647 retval = DM_RET_NONE; 1648 1649 /* 1650 * If we aren't given something to match against, that's an error. 1651 */ 1652 if (device == NULL) 1653 return(DM_RET_ERROR); 1654 1655 /* 1656 * If there are no match entries, then this device matches no 1657 * matter what. 1658 */ 1659 if ((patterns == NULL) || (patterns == 0)) 1660 return(DM_RET_DESCEND | DM_RET_COPY); 1661 1662 for (i = 0; i < num_patterns; i++) { 1663 struct device_match_pattern *cur_pattern; 1664 1665 /* 1666 * If the pattern in question isn't for a device node, we 1667 * aren't interested. 1668 */ 1669 if (patterns[i].type != DEV_MATCH_DEVICE) { 1670 if ((patterns[i].type == DEV_MATCH_PERIPH) 1671 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1672 retval |= DM_RET_DESCEND; 1673 continue; 1674 } 1675 1676 cur_pattern = &patterns[i].pattern.device_pattern; 1677 1678 /* 1679 * If they want to match any device node, we give them any 1680 * device node. 1681 */ 1682 if (cur_pattern->flags == DEV_MATCH_ANY) { 1683 /* set the copy flag */ 1684 retval |= DM_RET_COPY; 1685 1686 1687 /* 1688 * If we've already decided on an action, go ahead 1689 * and return. 1690 */ 1691 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1692 return(retval); 1693 } 1694 1695 /* 1696 * Not sure why someone would do this... 1697 */ 1698 if (cur_pattern->flags == DEV_MATCH_NONE) 1699 continue; 1700 1701 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1702 && (cur_pattern->path_id != device->target->bus->path_id)) 1703 continue; 1704 1705 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1706 && (cur_pattern->target_id != device->target->target_id)) 1707 continue; 1708 1709 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1710 && (cur_pattern->target_lun != device->lun_id)) 1711 continue; 1712 1713 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1714 && (cam_quirkmatch((caddr_t)&device->inq_data, 1715 (caddr_t)&cur_pattern->inq_pat, 1716 1, sizeof(cur_pattern->inq_pat), 1717 scsi_static_inquiry_match) == NULL)) 1718 continue; 1719 1720 /* 1721 * If we get to this point, the user definitely wants 1722 * information on this device. So tell the caller to copy 1723 * the data out. 1724 */ 1725 retval |= DM_RET_COPY; 1726 1727 /* 1728 * If the return action has been set to descend, then we 1729 * know that we've already seen a peripheral matching 1730 * expression, therefore we need to further descend the tree. 1731 * This won't change by continuing around the loop, so we 1732 * go ahead and return. If we haven't seen a peripheral 1733 * matching expression, we keep going around the loop until 1734 * we exhaust the matching expressions. We'll set the stop 1735 * flag once we fall out of the loop. 1736 */ 1737 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1738 return(retval); 1739 } 1740 1741 /* 1742 * If the return action hasn't been set to descend yet, that means 1743 * we haven't seen any peripheral matching patterns. So tell the 1744 * caller to stop descending the tree -- the user doesn't want to 1745 * match against lower level tree elements. 1746 */ 1747 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1748 retval |= DM_RET_STOP; 1749 1750 return(retval); 1751 } 1752 1753 /* 1754 * Match a single peripheral against any number of match patterns. 1755 */ 1756 static dev_match_ret 1757 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns, 1758 struct cam_periph *periph) 1759 { 1760 dev_match_ret retval; 1761 int i; 1762 1763 /* 1764 * If we aren't given something to match against, that's an error. 1765 */ 1766 if (periph == NULL) 1767 return(DM_RET_ERROR); 1768 1769 /* 1770 * If there are no match entries, then this peripheral matches no 1771 * matter what. 1772 */ 1773 if ((patterns == NULL) || (num_patterns == 0)) 1774 return(DM_RET_STOP | DM_RET_COPY); 1775 1776 /* 1777 * There aren't any nodes below a peripheral node, so there's no 1778 * reason to descend the tree any further. 1779 */ 1780 retval = DM_RET_STOP; 1781 1782 for (i = 0; i < num_patterns; i++) { 1783 struct periph_match_pattern *cur_pattern; 1784 1785 /* 1786 * If the pattern in question isn't for a peripheral, we 1787 * aren't interested. 1788 */ 1789 if (patterns[i].type != DEV_MATCH_PERIPH) 1790 continue; 1791 1792 cur_pattern = &patterns[i].pattern.periph_pattern; 1793 1794 /* 1795 * If they want to match on anything, then we will do so. 1796 */ 1797 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1798 /* set the copy flag */ 1799 retval |= DM_RET_COPY; 1800 1801 /* 1802 * We've already set the return action to stop, 1803 * since there are no nodes below peripherals in 1804 * the tree. 1805 */ 1806 return(retval); 1807 } 1808 1809 /* 1810 * Not sure why someone would do this... 1811 */ 1812 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1813 continue; 1814 1815 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1816 && (cur_pattern->path_id != periph->path->bus->path_id)) 1817 continue; 1818 1819 /* 1820 * For the target and lun id's, we have to make sure the 1821 * target and lun pointers aren't NULL. The xpt peripheral 1822 * has a wildcard target and device. 1823 */ 1824 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1825 && ((periph->path->target == NULL) 1826 ||(cur_pattern->target_id != periph->path->target->target_id))) 1827 continue; 1828 1829 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1830 && ((periph->path->device == NULL) 1831 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1832 continue; 1833 1834 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1835 && (cur_pattern->unit_number != periph->unit_number)) 1836 continue; 1837 1838 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1839 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1840 DEV_IDLEN) != 0)) 1841 continue; 1842 1843 /* 1844 * If we get to this point, the user definitely wants 1845 * information on this peripheral. So tell the caller to 1846 * copy the data out. 1847 */ 1848 retval |= DM_RET_COPY; 1849 1850 /* 1851 * The return action has already been set to stop, since 1852 * peripherals don't have any nodes below them in the EDT. 1853 */ 1854 return(retval); 1855 } 1856 1857 /* 1858 * If we get to this point, the peripheral that was passed in 1859 * doesn't match any of the patterns. 1860 */ 1861 return(retval); 1862 } 1863 1864 static int 1865 xptedtbusfunc(struct cam_eb *bus, void *arg) 1866 { 1867 struct ccb_dev_match *cdm; 1868 dev_match_ret retval; 1869 1870 cdm = (struct ccb_dev_match *)arg; 1871 1872 /* 1873 * If our position is for something deeper in the tree, that means 1874 * that we've already seen this node. So, we keep going down. 1875 */ 1876 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1877 && (cdm->pos.cookie.bus == bus) 1878 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1879 && (cdm->pos.cookie.target != NULL)) 1880 retval = DM_RET_DESCEND; 1881 else 1882 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1883 1884 /* 1885 * If we got an error, bail out of the search. 1886 */ 1887 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1888 cdm->status = CAM_DEV_MATCH_ERROR; 1889 return(0); 1890 } 1891 1892 /* 1893 * If the copy flag is set, copy this bus out. 1894 */ 1895 if (retval & DM_RET_COPY) { 1896 int spaceleft, j; 1897 1898 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1899 sizeof(struct dev_match_result)); 1900 1901 /* 1902 * If we don't have enough space to put in another 1903 * match result, save our position and tell the 1904 * user there are more devices to check. 1905 */ 1906 if (spaceleft < sizeof(struct dev_match_result)) { 1907 bzero(&cdm->pos, sizeof(cdm->pos)); 1908 cdm->pos.position_type = 1909 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1910 1911 cdm->pos.cookie.bus = bus; 1912 cdm->pos.generations[CAM_BUS_GENERATION]= 1913 bus_generation; 1914 cdm->status = CAM_DEV_MATCH_MORE; 1915 return(0); 1916 } 1917 j = cdm->num_matches; 1918 cdm->num_matches++; 1919 cdm->matches[j].type = DEV_MATCH_BUS; 1920 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1921 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1922 cdm->matches[j].result.bus_result.unit_number = 1923 bus->sim->unit_number; 1924 strncpy(cdm->matches[j].result.bus_result.dev_name, 1925 bus->sim->sim_name, DEV_IDLEN); 1926 } 1927 1928 /* 1929 * If the user is only interested in busses, there's no 1930 * reason to descend to the next level in the tree. 1931 */ 1932 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1933 return(1); 1934 1935 /* 1936 * If there is a target generation recorded, check it to 1937 * make sure the target list hasn't changed. 1938 */ 1939 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1940 && (bus == cdm->pos.cookie.bus) 1941 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1942 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1943 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1944 bus->generation)) { 1945 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1946 return(0); 1947 } 1948 1949 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1950 && (cdm->pos.cookie.bus == bus) 1951 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1952 && (cdm->pos.cookie.target != NULL)) 1953 return(xpttargettraverse(bus, 1954 (struct cam_et *)cdm->pos.cookie.target, 1955 xptedttargetfunc, arg)); 1956 else 1957 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1958 } 1959 1960 static int 1961 xptedttargetfunc(struct cam_et *target, void *arg) 1962 { 1963 struct ccb_dev_match *cdm; 1964 1965 cdm = (struct ccb_dev_match *)arg; 1966 1967 /* 1968 * If there is a device list generation recorded, check it to 1969 * make sure the device list hasn't changed. 1970 */ 1971 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1972 && (cdm->pos.cookie.bus == target->bus) 1973 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1974 && (cdm->pos.cookie.target == target) 1975 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1976 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1977 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1978 target->generation)) { 1979 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1980 return(0); 1981 } 1982 1983 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1984 && (cdm->pos.cookie.bus == target->bus) 1985 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1986 && (cdm->pos.cookie.target == target) 1987 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1988 && (cdm->pos.cookie.device != NULL)) 1989 return(xptdevicetraverse(target, 1990 (struct cam_ed *)cdm->pos.cookie.device, 1991 xptedtdevicefunc, arg)); 1992 else 1993 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1994 } 1995 1996 static int 1997 xptedtdevicefunc(struct cam_ed *device, void *arg) 1998 { 1999 2000 struct ccb_dev_match *cdm; 2001 dev_match_ret retval; 2002 2003 cdm = (struct ccb_dev_match *)arg; 2004 2005 /* 2006 * If our position is for something deeper in the tree, that means 2007 * that we've already seen this node. So, we keep going down. 2008 */ 2009 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2010 && (cdm->pos.cookie.device == device) 2011 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2012 && (cdm->pos.cookie.periph != NULL)) 2013 retval = DM_RET_DESCEND; 2014 else 2015 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2016 device); 2017 2018 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2019 cdm->status = CAM_DEV_MATCH_ERROR; 2020 return(0); 2021 } 2022 2023 /* 2024 * If the copy flag is set, copy this device out. 2025 */ 2026 if (retval & DM_RET_COPY) { 2027 int spaceleft, j; 2028 2029 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2030 sizeof(struct dev_match_result)); 2031 2032 /* 2033 * If we don't have enough space to put in another 2034 * match result, save our position and tell the 2035 * user there are more devices to check. 2036 */ 2037 if (spaceleft < sizeof(struct dev_match_result)) { 2038 bzero(&cdm->pos, sizeof(cdm->pos)); 2039 cdm->pos.position_type = 2040 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2041 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2042 2043 cdm->pos.cookie.bus = device->target->bus; 2044 cdm->pos.generations[CAM_BUS_GENERATION]= 2045 bus_generation; 2046 cdm->pos.cookie.target = device->target; 2047 cdm->pos.generations[CAM_TARGET_GENERATION] = 2048 device->target->bus->generation; 2049 cdm->pos.cookie.device = device; 2050 cdm->pos.generations[CAM_DEV_GENERATION] = 2051 device->target->generation; 2052 cdm->status = CAM_DEV_MATCH_MORE; 2053 return(0); 2054 } 2055 j = cdm->num_matches; 2056 cdm->num_matches++; 2057 cdm->matches[j].type = DEV_MATCH_DEVICE; 2058 cdm->matches[j].result.device_result.path_id = 2059 device->target->bus->path_id; 2060 cdm->matches[j].result.device_result.target_id = 2061 device->target->target_id; 2062 cdm->matches[j].result.device_result.target_lun = 2063 device->lun_id; 2064 bcopy(&device->inq_data, 2065 &cdm->matches[j].result.device_result.inq_data, 2066 sizeof(struct scsi_inquiry_data)); 2067 2068 /* Let the user know whether this device is unconfigured */ 2069 if (device->flags & CAM_DEV_UNCONFIGURED) 2070 cdm->matches[j].result.device_result.flags = 2071 DEV_RESULT_UNCONFIGURED; 2072 else 2073 cdm->matches[j].result.device_result.flags = 2074 DEV_RESULT_NOFLAG; 2075 } 2076 2077 /* 2078 * If the user isn't interested in peripherals, don't descend 2079 * the tree any further. 2080 */ 2081 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2082 return(1); 2083 2084 /* 2085 * If there is a peripheral list generation recorded, make sure 2086 * it hasn't changed. 2087 */ 2088 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2089 && (device->target->bus == cdm->pos.cookie.bus) 2090 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2091 && (device->target == cdm->pos.cookie.target) 2092 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2093 && (device == cdm->pos.cookie.device) 2094 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2095 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2096 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2097 device->generation)){ 2098 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2099 return(0); 2100 } 2101 2102 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2103 && (cdm->pos.cookie.bus == device->target->bus) 2104 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2105 && (cdm->pos.cookie.target == device->target) 2106 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2107 && (cdm->pos.cookie.device == device) 2108 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2109 && (cdm->pos.cookie.periph != NULL)) 2110 return(xptperiphtraverse(device, 2111 (struct cam_periph *)cdm->pos.cookie.periph, 2112 xptedtperiphfunc, arg)); 2113 else 2114 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2115 } 2116 2117 static int 2118 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2119 { 2120 struct ccb_dev_match *cdm; 2121 dev_match_ret retval; 2122 2123 cdm = (struct ccb_dev_match *)arg; 2124 2125 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2126 2127 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2128 cdm->status = CAM_DEV_MATCH_ERROR; 2129 return(0); 2130 } 2131 2132 /* 2133 * If the copy flag is set, copy this peripheral out. 2134 */ 2135 if (retval & DM_RET_COPY) { 2136 int spaceleft, j; 2137 2138 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2139 sizeof(struct dev_match_result)); 2140 2141 /* 2142 * If we don't have enough space to put in another 2143 * match result, save our position and tell the 2144 * user there are more devices to check. 2145 */ 2146 if (spaceleft < sizeof(struct dev_match_result)) { 2147 bzero(&cdm->pos, sizeof(cdm->pos)); 2148 cdm->pos.position_type = 2149 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2150 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2151 CAM_DEV_POS_PERIPH; 2152 2153 cdm->pos.cookie.bus = periph->path->bus; 2154 cdm->pos.generations[CAM_BUS_GENERATION]= 2155 bus_generation; 2156 cdm->pos.cookie.target = periph->path->target; 2157 cdm->pos.generations[CAM_TARGET_GENERATION] = 2158 periph->path->bus->generation; 2159 cdm->pos.cookie.device = periph->path->device; 2160 cdm->pos.generations[CAM_DEV_GENERATION] = 2161 periph->path->target->generation; 2162 cdm->pos.cookie.periph = periph; 2163 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2164 periph->path->device->generation; 2165 cdm->status = CAM_DEV_MATCH_MORE; 2166 return(0); 2167 } 2168 2169 j = cdm->num_matches; 2170 cdm->num_matches++; 2171 cdm->matches[j].type = DEV_MATCH_PERIPH; 2172 cdm->matches[j].result.periph_result.path_id = 2173 periph->path->bus->path_id; 2174 cdm->matches[j].result.periph_result.target_id = 2175 periph->path->target->target_id; 2176 cdm->matches[j].result.periph_result.target_lun = 2177 periph->path->device->lun_id; 2178 cdm->matches[j].result.periph_result.unit_number = 2179 periph->unit_number; 2180 strncpy(cdm->matches[j].result.periph_result.periph_name, 2181 periph->periph_name, DEV_IDLEN); 2182 } 2183 2184 return(1); 2185 } 2186 2187 static int 2188 xptedtmatch(struct ccb_dev_match *cdm) 2189 { 2190 int ret; 2191 2192 cdm->num_matches = 0; 2193 2194 /* 2195 * Check the bus list generation. If it has changed, the user 2196 * needs to reset everything and start over. 2197 */ 2198 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2199 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2200 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2201 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2202 return(0); 2203 } 2204 2205 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2206 && (cdm->pos.cookie.bus != NULL)) 2207 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2208 xptedtbusfunc, cdm); 2209 else 2210 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2211 2212 /* 2213 * If we get back 0, that means that we had to stop before fully 2214 * traversing the EDT. It also means that one of the subroutines 2215 * has set the status field to the proper value. If we get back 1, 2216 * we've fully traversed the EDT and copied out any matching entries. 2217 */ 2218 if (ret == 1) 2219 cdm->status = CAM_DEV_MATCH_LAST; 2220 2221 return(ret); 2222 } 2223 2224 static int 2225 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2226 { 2227 struct ccb_dev_match *cdm; 2228 2229 cdm = (struct ccb_dev_match *)arg; 2230 2231 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2232 && (cdm->pos.cookie.pdrv == pdrv) 2233 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2234 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2235 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2236 (*pdrv)->generation)) { 2237 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2238 return(0); 2239 } 2240 2241 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2242 && (cdm->pos.cookie.pdrv == pdrv) 2243 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2244 && (cdm->pos.cookie.periph != NULL)) 2245 return(xptpdperiphtraverse(pdrv, 2246 (struct cam_periph *)cdm->pos.cookie.periph, 2247 xptplistperiphfunc, arg)); 2248 else 2249 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2250 } 2251 2252 static int 2253 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2254 { 2255 struct ccb_dev_match *cdm; 2256 dev_match_ret retval; 2257 2258 cdm = (struct ccb_dev_match *)arg; 2259 2260 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2261 2262 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2263 cdm->status = CAM_DEV_MATCH_ERROR; 2264 return(0); 2265 } 2266 2267 /* 2268 * If the copy flag is set, copy this peripheral out. 2269 */ 2270 if (retval & DM_RET_COPY) { 2271 int spaceleft, j; 2272 2273 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2274 sizeof(struct dev_match_result)); 2275 2276 /* 2277 * If we don't have enough space to put in another 2278 * match result, save our position and tell the 2279 * user there are more devices to check. 2280 */ 2281 if (spaceleft < sizeof(struct dev_match_result)) { 2282 struct periph_driver **pdrv; 2283 2284 pdrv = NULL; 2285 bzero(&cdm->pos, sizeof(cdm->pos)); 2286 cdm->pos.position_type = 2287 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2288 CAM_DEV_POS_PERIPH; 2289 2290 /* 2291 * This may look a bit non-sensical, but it is 2292 * actually quite logical. There are very few 2293 * peripheral drivers, and bloating every peripheral 2294 * structure with a pointer back to its parent 2295 * peripheral driver linker set entry would cost 2296 * more in the long run than doing this quick lookup. 2297 */ 2298 for (pdrv = 2299 (struct periph_driver **)periphdriver_set.ls_items; 2300 *pdrv != NULL; pdrv++) { 2301 if (strcmp((*pdrv)->driver_name, 2302 periph->periph_name) == 0) 2303 break; 2304 } 2305 2306 if (pdrv == NULL) { 2307 cdm->status = CAM_DEV_MATCH_ERROR; 2308 return(0); 2309 } 2310 2311 cdm->pos.cookie.pdrv = pdrv; 2312 /* 2313 * The periph generation slot does double duty, as 2314 * does the periph pointer slot. They are used for 2315 * both edt and pdrv lookups and positioning. 2316 */ 2317 cdm->pos.cookie.periph = periph; 2318 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2319 (*pdrv)->generation; 2320 cdm->status = CAM_DEV_MATCH_MORE; 2321 return(0); 2322 } 2323 2324 j = cdm->num_matches; 2325 cdm->num_matches++; 2326 cdm->matches[j].type = DEV_MATCH_PERIPH; 2327 cdm->matches[j].result.periph_result.path_id = 2328 periph->path->bus->path_id; 2329 2330 /* 2331 * The transport layer peripheral doesn't have a target or 2332 * lun. 2333 */ 2334 if (periph->path->target) 2335 cdm->matches[j].result.periph_result.target_id = 2336 periph->path->target->target_id; 2337 else 2338 cdm->matches[j].result.periph_result.target_id = -1; 2339 2340 if (periph->path->device) 2341 cdm->matches[j].result.periph_result.target_lun = 2342 periph->path->device->lun_id; 2343 else 2344 cdm->matches[j].result.periph_result.target_lun = -1; 2345 2346 cdm->matches[j].result.periph_result.unit_number = 2347 periph->unit_number; 2348 strncpy(cdm->matches[j].result.periph_result.periph_name, 2349 periph->periph_name, DEV_IDLEN); 2350 } 2351 2352 return(1); 2353 } 2354 2355 static int 2356 xptperiphlistmatch(struct ccb_dev_match *cdm) 2357 { 2358 int ret; 2359 2360 cdm->num_matches = 0; 2361 2362 /* 2363 * At this point in the edt traversal function, we check the bus 2364 * list generation to make sure that no busses have been added or 2365 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2366 * For the peripheral driver list traversal function, however, we 2367 * don't have to worry about new peripheral driver types coming or 2368 * going; they're in a linker set, and therefore can't change 2369 * without a recompile. 2370 */ 2371 2372 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2373 && (cdm->pos.cookie.pdrv != NULL)) 2374 ret = xptpdrvtraverse( 2375 (struct periph_driver **)cdm->pos.cookie.pdrv, 2376 xptplistpdrvfunc, cdm); 2377 else 2378 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2379 2380 /* 2381 * If we get back 0, that means that we had to stop before fully 2382 * traversing the peripheral driver tree. It also means that one of 2383 * the subroutines has set the status field to the proper value. If 2384 * we get back 1, we've fully traversed the EDT and copied out any 2385 * matching entries. 2386 */ 2387 if (ret == 1) 2388 cdm->status = CAM_DEV_MATCH_LAST; 2389 2390 return(ret); 2391 } 2392 2393 static int 2394 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2395 { 2396 struct cam_eb *bus, *next_bus; 2397 int retval; 2398 2399 retval = 1; 2400 2401 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2402 bus != NULL; 2403 bus = next_bus) { 2404 next_bus = TAILQ_NEXT(bus, links); 2405 2406 retval = tr_func(bus, arg); 2407 if (retval == 0) 2408 return(retval); 2409 } 2410 2411 return(retval); 2412 } 2413 2414 static int 2415 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2416 xpt_targetfunc_t *tr_func, void *arg) 2417 { 2418 struct cam_et *target, *next_target; 2419 int retval; 2420 2421 retval = 1; 2422 for (target = (start_target ? start_target : 2423 TAILQ_FIRST(&bus->et_entries)); 2424 target != NULL; target = next_target) { 2425 2426 next_target = TAILQ_NEXT(target, links); 2427 2428 retval = tr_func(target, arg); 2429 2430 if (retval == 0) 2431 return(retval); 2432 } 2433 2434 return(retval); 2435 } 2436 2437 static int 2438 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2439 xpt_devicefunc_t *tr_func, void *arg) 2440 { 2441 struct cam_ed *device, *next_device; 2442 int retval; 2443 2444 retval = 1; 2445 for (device = (start_device ? start_device : 2446 TAILQ_FIRST(&target->ed_entries)); 2447 device != NULL; 2448 device = next_device) { 2449 2450 next_device = TAILQ_NEXT(device, links); 2451 2452 retval = tr_func(device, arg); 2453 2454 if (retval == 0) 2455 return(retval); 2456 } 2457 2458 return(retval); 2459 } 2460 2461 static int 2462 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2463 xpt_periphfunc_t *tr_func, void *arg) 2464 { 2465 struct cam_periph *periph, *next_periph; 2466 int retval; 2467 2468 retval = 1; 2469 2470 for (periph = (start_periph ? start_periph : 2471 SLIST_FIRST(&device->periphs)); 2472 periph != NULL; 2473 periph = next_periph) { 2474 2475 next_periph = SLIST_NEXT(periph, periph_links); 2476 2477 retval = tr_func(periph, arg); 2478 if (retval == 0) 2479 return(retval); 2480 } 2481 2482 return(retval); 2483 } 2484 2485 static int 2486 xptpdrvtraverse(struct periph_driver **start_pdrv, 2487 xpt_pdrvfunc_t *tr_func, void *arg) 2488 { 2489 struct periph_driver **pdrv; 2490 int retval; 2491 2492 retval = 1; 2493 2494 /* 2495 * We don't traverse the peripheral driver list like we do the 2496 * other lists, because it is a linker set, and therefore cannot be 2497 * changed during runtime. If the peripheral driver list is ever 2498 * re-done to be something other than a linker set (i.e. it can 2499 * change while the system is running), the list traversal should 2500 * be modified to work like the other traversal functions. 2501 */ 2502 for (pdrv = (start_pdrv ? start_pdrv : 2503 (struct periph_driver **)periphdriver_set.ls_items); 2504 *pdrv != NULL; pdrv++) { 2505 retval = tr_func(pdrv, arg); 2506 2507 if (retval == 0) 2508 return(retval); 2509 } 2510 2511 return(retval); 2512 } 2513 2514 static int 2515 xptpdperiphtraverse(struct periph_driver **pdrv, 2516 struct cam_periph *start_periph, 2517 xpt_periphfunc_t *tr_func, void *arg) 2518 { 2519 struct cam_periph *periph, *next_periph; 2520 int retval; 2521 2522 retval = 1; 2523 2524 for (periph = (start_periph ? start_periph : 2525 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2526 periph = next_periph) { 2527 2528 next_periph = TAILQ_NEXT(periph, unit_links); 2529 2530 retval = tr_func(periph, arg); 2531 if (retval == 0) 2532 return(retval); 2533 } 2534 return(retval); 2535 } 2536 2537 static int 2538 xptdefbusfunc(struct cam_eb *bus, void *arg) 2539 { 2540 struct xpt_traverse_config *tr_config; 2541 2542 tr_config = (struct xpt_traverse_config *)arg; 2543 2544 if (tr_config->depth == XPT_DEPTH_BUS) { 2545 xpt_busfunc_t *tr_func; 2546 2547 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2548 2549 return(tr_func(bus, tr_config->tr_arg)); 2550 } else 2551 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2552 } 2553 2554 static int 2555 xptdeftargetfunc(struct cam_et *target, void *arg) 2556 { 2557 struct xpt_traverse_config *tr_config; 2558 2559 tr_config = (struct xpt_traverse_config *)arg; 2560 2561 if (tr_config->depth == XPT_DEPTH_TARGET) { 2562 xpt_targetfunc_t *tr_func; 2563 2564 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2565 2566 return(tr_func(target, tr_config->tr_arg)); 2567 } else 2568 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2569 } 2570 2571 static int 2572 xptdefdevicefunc(struct cam_ed *device, void *arg) 2573 { 2574 struct xpt_traverse_config *tr_config; 2575 2576 tr_config = (struct xpt_traverse_config *)arg; 2577 2578 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2579 xpt_devicefunc_t *tr_func; 2580 2581 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2582 2583 return(tr_func(device, tr_config->tr_arg)); 2584 } else 2585 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2586 } 2587 2588 static int 2589 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2590 { 2591 struct xpt_traverse_config *tr_config; 2592 xpt_periphfunc_t *tr_func; 2593 2594 tr_config = (struct xpt_traverse_config *)arg; 2595 2596 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2597 2598 /* 2599 * Unlike the other default functions, we don't check for depth 2600 * here. The peripheral driver level is the last level in the EDT, 2601 * so if we're here, we should execute the function in question. 2602 */ 2603 return(tr_func(periph, tr_config->tr_arg)); 2604 } 2605 2606 /* 2607 * Execute the given function for every bus in the EDT. 2608 */ 2609 static int 2610 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2611 { 2612 struct xpt_traverse_config tr_config; 2613 2614 tr_config.depth = XPT_DEPTH_BUS; 2615 tr_config.tr_func = tr_func; 2616 tr_config.tr_arg = arg; 2617 2618 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2619 } 2620 2621 #ifdef notusedyet 2622 /* 2623 * Execute the given function for every target in the EDT. 2624 */ 2625 static int 2626 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2627 { 2628 struct xpt_traverse_config tr_config; 2629 2630 tr_config.depth = XPT_DEPTH_TARGET; 2631 tr_config.tr_func = tr_func; 2632 tr_config.tr_arg = arg; 2633 2634 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2635 } 2636 #endif /* notusedyet */ 2637 2638 /* 2639 * Execute the given function for every device in the EDT. 2640 */ 2641 static int 2642 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2643 { 2644 struct xpt_traverse_config tr_config; 2645 2646 tr_config.depth = XPT_DEPTH_DEVICE; 2647 tr_config.tr_func = tr_func; 2648 tr_config.tr_arg = arg; 2649 2650 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2651 } 2652 2653 #ifdef notusedyet 2654 /* 2655 * Execute the given function for every peripheral in the EDT. 2656 */ 2657 static int 2658 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2659 { 2660 struct xpt_traverse_config tr_config; 2661 2662 tr_config.depth = XPT_DEPTH_PERIPH; 2663 tr_config.tr_func = tr_func; 2664 tr_config.tr_arg = arg; 2665 2666 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2667 } 2668 #endif /* notusedyet */ 2669 2670 static int 2671 xptsetasyncfunc(struct cam_ed *device, void *arg) 2672 { 2673 struct cam_path path; 2674 struct ccb_getdev cgd; 2675 struct async_node *cur_entry; 2676 2677 cur_entry = (struct async_node *)arg; 2678 2679 /* 2680 * Don't report unconfigured devices (Wildcard devs, 2681 * devices only for target mode, device instances 2682 * that have been invalidated but are waiting for 2683 * their last reference count to be released). 2684 */ 2685 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2686 return (1); 2687 2688 xpt_compile_path(&path, 2689 NULL, 2690 device->target->bus->path_id, 2691 device->target->target_id, 2692 device->lun_id); 2693 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2694 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2695 xpt_action((union ccb *)&cgd); 2696 cur_entry->callback(cur_entry->callback_arg, 2697 AC_FOUND_DEVICE, 2698 &path, &cgd); 2699 xpt_release_path(&path); 2700 2701 return(1); 2702 } 2703 2704 static int 2705 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2706 { 2707 struct cam_path path; 2708 struct ccb_pathinq cpi; 2709 struct async_node *cur_entry; 2710 2711 cur_entry = (struct async_node *)arg; 2712 2713 xpt_compile_path(&path, /*periph*/NULL, 2714 bus->sim->path_id, 2715 CAM_TARGET_WILDCARD, 2716 CAM_LUN_WILDCARD); 2717 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2718 cpi.ccb_h.func_code = XPT_PATH_INQ; 2719 xpt_action((union ccb *)&cpi); 2720 cur_entry->callback(cur_entry->callback_arg, 2721 AC_PATH_REGISTERED, 2722 &path, &cpi); 2723 xpt_release_path(&path); 2724 2725 return(1); 2726 } 2727 2728 void 2729 xpt_action(union ccb *start_ccb) 2730 { 2731 int iopl; 2732 2733 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2734 2735 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2736 2737 iopl = splsoftcam(); 2738 switch (start_ccb->ccb_h.func_code) { 2739 case XPT_SCSI_IO: 2740 { 2741 #ifdef CAMDEBUG 2742 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2743 struct cam_path *path; 2744 2745 path = start_ccb->ccb_h.path; 2746 #endif 2747 2748 /* 2749 * For the sake of compatibility with SCSI-1 2750 * devices that may not understand the identify 2751 * message, we include lun information in the 2752 * second byte of all commands. SCSI-1 specifies 2753 * that luns are a 3 bit value and reserves only 3 2754 * bits for lun information in the CDB. Later 2755 * revisions of the SCSI spec allow for more than 8 2756 * luns, but have deprecated lun information in the 2757 * CDB. So, if the lun won't fit, we must omit. 2758 * 2759 * Also be aware that during initial probing for devices, 2760 * the inquiry information is unknown but initialized to 0. 2761 * This means that this code will be exercised while probing 2762 * devices with an ANSI revision greater than 2. 2763 */ 2764 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 2765 && start_ccb->ccb_h.target_lun < 8 2766 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2767 2768 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2769 start_ccb->ccb_h.target_lun << 5; 2770 } 2771 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2772 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2773 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2774 &path->device->inq_data), 2775 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2776 cdb_str, sizeof(cdb_str)))); 2777 /* FALLTHROUGH */ 2778 } 2779 case XPT_TARGET_IO: 2780 case XPT_CONT_TARGET_IO: 2781 start_ccb->csio.sense_resid = 0; 2782 start_ccb->csio.resid = 0; 2783 /* FALLTHROUGH */ 2784 case XPT_RESET_DEV: 2785 case XPT_ENG_EXEC: 2786 { 2787 struct cam_path *path; 2788 int s; 2789 int runq; 2790 2791 path = start_ccb->ccb_h.path; 2792 s = splsoftcam(); 2793 2794 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2795 if (path->device->qfrozen_cnt == 0) 2796 runq = xpt_schedule_dev_sendq(path->bus, path->device); 2797 else 2798 runq = 0; 2799 splx(s); 2800 if (runq != 0) 2801 xpt_run_dev_sendq(path->bus); 2802 break; 2803 } 2804 case XPT_SET_TRAN_SETTINGS: 2805 { 2806 xpt_set_transfer_settings(&start_ccb->cts, 2807 start_ccb->ccb_h.path->device, 2808 /*async_update*/FALSE); 2809 break; 2810 } 2811 case XPT_CALC_GEOMETRY: 2812 { 2813 struct cam_sim *sim; 2814 2815 /* Filter out garbage */ 2816 if (start_ccb->ccg.block_size == 0 2817 || start_ccb->ccg.volume_size == 0) { 2818 start_ccb->ccg.cylinders = 0; 2819 start_ccb->ccg.heads = 0; 2820 start_ccb->ccg.secs_per_track = 0; 2821 start_ccb->ccb_h.status = CAM_REQ_CMP; 2822 break; 2823 } 2824 #ifdef PC98 2825 /* 2826 * In a PC-98 system, geometry translation depens on 2827 * the "real" device geometry obtained from mode page 4. 2828 * SCSI geometry translation is performed in the 2829 * initialization routine of the SCSI BIOS and the result 2830 * stored in host memory. If the translation is available 2831 * in host memory, use it. If not, rely on the default 2832 * translation the device driver performs. 2833 */ 2834 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2835 start_ccb->ccb_h.status = CAM_REQ_CMP; 2836 break; 2837 } 2838 #endif 2839 sim = start_ccb->ccb_h.path->bus->sim; 2840 (*(sim->sim_action))(sim, start_ccb); 2841 break; 2842 } 2843 case XPT_ABORT: 2844 { 2845 union ccb* abort_ccb; 2846 int s; 2847 2848 abort_ccb = start_ccb->cab.abort_ccb; 2849 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2850 2851 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2852 struct cam_ccbq *ccbq; 2853 2854 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 2855 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2856 abort_ccb->ccb_h.status = 2857 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2858 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2859 s = splcam(); 2860 xpt_done(abort_ccb); 2861 splx(s); 2862 start_ccb->ccb_h.status = CAM_REQ_CMP; 2863 break; 2864 } 2865 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2866 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2867 /* 2868 * We've caught this ccb en route to 2869 * the SIM. Flag it for abort and the 2870 * SIM will do so just before starting 2871 * real work on the CCB. 2872 */ 2873 abort_ccb->ccb_h.status = 2874 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2875 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2876 start_ccb->ccb_h.status = CAM_REQ_CMP; 2877 break; 2878 } 2879 } 2880 if (XPT_FC_IS_QUEUED(abort_ccb) 2881 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2882 /* 2883 * It's already completed but waiting 2884 * for our SWI to get to it. 2885 */ 2886 start_ccb->ccb_h.status = CAM_UA_ABORT; 2887 break; 2888 } 2889 /* 2890 * If we weren't able to take care of the abort request 2891 * in the XPT, pass the request down to the SIM for processing. 2892 */ 2893 /* FALLTHROUGH */ 2894 } 2895 case XPT_ACCEPT_TARGET_IO: 2896 case XPT_EN_LUN: 2897 case XPT_IMMED_NOTIFY: 2898 case XPT_NOTIFY_ACK: 2899 case XPT_GET_TRAN_SETTINGS: 2900 case XPT_RESET_BUS: 2901 { 2902 struct cam_sim *sim; 2903 2904 sim = start_ccb->ccb_h.path->bus->sim; 2905 (*(sim->sim_action))(sim, start_ccb); 2906 break; 2907 } 2908 case XPT_PATH_INQ: 2909 { 2910 struct cam_sim *sim; 2911 2912 sim = start_ccb->ccb_h.path->bus->sim; 2913 (*(sim->sim_action))(sim, start_ccb); 2914 break; 2915 } 2916 case XPT_PATH_STATS: 2917 start_ccb->cpis.last_reset = 2918 start_ccb->ccb_h.path->bus->last_reset; 2919 start_ccb->ccb_h.status = CAM_REQ_CMP; 2920 break; 2921 case XPT_GDEV_TYPE: 2922 { 2923 struct cam_ed *dev; 2924 int s; 2925 2926 dev = start_ccb->ccb_h.path->device; 2927 s = splcam(); 2928 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2929 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2930 } else { 2931 struct ccb_getdev *cgd; 2932 struct cam_eb *bus; 2933 struct cam_et *tar; 2934 2935 cgd = &start_ccb->cgd; 2936 bus = cgd->ccb_h.path->bus; 2937 tar = cgd->ccb_h.path->target; 2938 cgd->inq_data = dev->inq_data; 2939 cgd->ccb_h.status = CAM_REQ_CMP; 2940 cgd->serial_num_len = dev->serial_num_len; 2941 if ((dev->serial_num_len > 0) 2942 && (dev->serial_num != NULL)) 2943 bcopy(dev->serial_num, cgd->serial_num, 2944 dev->serial_num_len); 2945 } 2946 splx(s); 2947 break; 2948 } 2949 case XPT_GDEV_STATS: 2950 { 2951 struct cam_ed *dev; 2952 int s; 2953 2954 dev = start_ccb->ccb_h.path->device; 2955 s = splcam(); 2956 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2957 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2958 } else { 2959 struct ccb_getdevstats *cgds; 2960 struct cam_eb *bus; 2961 struct cam_et *tar; 2962 2963 cgds = &start_ccb->cgds; 2964 bus = cgds->ccb_h.path->bus; 2965 tar = cgds->ccb_h.path->target; 2966 cgds->dev_openings = dev->ccbq.dev_openings; 2967 cgds->dev_active = dev->ccbq.dev_active; 2968 cgds->devq_openings = dev->ccbq.devq_openings; 2969 cgds->devq_queued = dev->ccbq.queue.entries; 2970 cgds->held = dev->ccbq.held; 2971 cgds->last_reset = tar->last_reset; 2972 cgds->maxtags = dev->quirk->maxtags; 2973 cgds->mintags = dev->quirk->mintags; 2974 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2975 cgds->last_reset = bus->last_reset; 2976 cgds->ccb_h.status = CAM_REQ_CMP; 2977 } 2978 splx(s); 2979 break; 2980 } 2981 case XPT_GDEVLIST: 2982 { 2983 struct cam_periph *nperiph; 2984 struct periph_list *periph_head; 2985 struct ccb_getdevlist *cgdl; 2986 int i; 2987 int s; 2988 struct cam_ed *device; 2989 int found; 2990 2991 2992 found = 0; 2993 2994 /* 2995 * Don't want anyone mucking with our data. 2996 */ 2997 s = splcam(); 2998 device = start_ccb->ccb_h.path->device; 2999 periph_head = &device->periphs; 3000 cgdl = &start_ccb->cgdl; 3001 3002 /* 3003 * Check and see if the list has changed since the user 3004 * last requested a list member. If so, tell them that the 3005 * list has changed, and therefore they need to start over 3006 * from the beginning. 3007 */ 3008 if ((cgdl->index != 0) && 3009 (cgdl->generation != device->generation)) { 3010 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3011 splx(s); 3012 break; 3013 } 3014 3015 /* 3016 * Traverse the list of peripherals and attempt to find 3017 * the requested peripheral. 3018 */ 3019 for (nperiph = periph_head->slh_first, i = 0; 3020 (nperiph != NULL) && (i <= cgdl->index); 3021 nperiph = nperiph->periph_links.sle_next, i++) { 3022 if (i == cgdl->index) { 3023 strncpy(cgdl->periph_name, 3024 nperiph->periph_name, 3025 DEV_IDLEN); 3026 cgdl->unit_number = nperiph->unit_number; 3027 found = 1; 3028 } 3029 } 3030 if (found == 0) { 3031 cgdl->status = CAM_GDEVLIST_ERROR; 3032 splx(s); 3033 break; 3034 } 3035 3036 if (nperiph == NULL) 3037 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3038 else 3039 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3040 3041 cgdl->index++; 3042 cgdl->generation = device->generation; 3043 3044 splx(s); 3045 cgdl->ccb_h.status = CAM_REQ_CMP; 3046 break; 3047 } 3048 case XPT_DEV_MATCH: 3049 { 3050 int s; 3051 dev_pos_type position_type; 3052 struct ccb_dev_match *cdm; 3053 int ret; 3054 3055 cdm = &start_ccb->cdm; 3056 3057 /* 3058 * Prevent EDT changes while we traverse it. 3059 */ 3060 s = splcam(); 3061 /* 3062 * There are two ways of getting at information in the EDT. 3063 * The first way is via the primary EDT tree. It starts 3064 * with a list of busses, then a list of targets on a bus, 3065 * then devices/luns on a target, and then peripherals on a 3066 * device/lun. The "other" way is by the peripheral driver 3067 * lists. The peripheral driver lists are organized by 3068 * peripheral driver. (obviously) So it makes sense to 3069 * use the peripheral driver list if the user is looking 3070 * for something like "da1", or all "da" devices. If the 3071 * user is looking for something on a particular bus/target 3072 * or lun, it's generally better to go through the EDT tree. 3073 */ 3074 3075 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3076 position_type = cdm->pos.position_type; 3077 else { 3078 int i; 3079 3080 position_type = CAM_DEV_POS_NONE; 3081 3082 for (i = 0; i < cdm->num_patterns; i++) { 3083 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3084 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3085 position_type = CAM_DEV_POS_EDT; 3086 break; 3087 } 3088 } 3089 3090 if (cdm->num_patterns == 0) 3091 position_type = CAM_DEV_POS_EDT; 3092 else if (position_type == CAM_DEV_POS_NONE) 3093 position_type = CAM_DEV_POS_PDRV; 3094 } 3095 3096 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3097 case CAM_DEV_POS_EDT: 3098 ret = xptedtmatch(cdm); 3099 break; 3100 case CAM_DEV_POS_PDRV: 3101 ret = xptperiphlistmatch(cdm); 3102 break; 3103 default: 3104 cdm->status = CAM_DEV_MATCH_ERROR; 3105 break; 3106 } 3107 3108 splx(s); 3109 3110 if (cdm->status == CAM_DEV_MATCH_ERROR) 3111 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3112 else 3113 start_ccb->ccb_h.status = CAM_REQ_CMP; 3114 3115 break; 3116 } 3117 case XPT_SASYNC_CB: 3118 { 3119 struct ccb_setasync *csa; 3120 struct async_node *cur_entry; 3121 struct async_list *async_head; 3122 u_int32_t added; 3123 int s; 3124 3125 csa = &start_ccb->csa; 3126 added = csa->event_enable; 3127 async_head = &csa->ccb_h.path->device->asyncs; 3128 3129 /* 3130 * If there is already an entry for us, simply 3131 * update it. 3132 */ 3133 s = splcam(); 3134 cur_entry = SLIST_FIRST(async_head); 3135 while (cur_entry != NULL) { 3136 if ((cur_entry->callback_arg == csa->callback_arg) 3137 && (cur_entry->callback == csa->callback)) 3138 break; 3139 cur_entry = SLIST_NEXT(cur_entry, links); 3140 } 3141 3142 if (cur_entry != NULL) { 3143 /* 3144 * If the request has no flags set, 3145 * remove the entry. 3146 */ 3147 added &= ~cur_entry->event_enable; 3148 if (csa->event_enable == 0) { 3149 SLIST_REMOVE(async_head, cur_entry, 3150 async_node, links); 3151 csa->ccb_h.path->device->refcount--; 3152 free(cur_entry, M_DEVBUF); 3153 } else { 3154 cur_entry->event_enable = csa->event_enable; 3155 } 3156 } else { 3157 cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF, 3158 M_NOWAIT); 3159 if (cur_entry == NULL) { 3160 splx(s); 3161 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3162 break; 3163 } 3164 cur_entry->event_enable = csa->event_enable; 3165 cur_entry->callback_arg = csa->callback_arg; 3166 cur_entry->callback = csa->callback; 3167 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3168 csa->ccb_h.path->device->refcount++; 3169 } 3170 3171 if ((added & AC_FOUND_DEVICE) != 0) { 3172 /* 3173 * Get this peripheral up to date with all 3174 * the currently existing devices. 3175 */ 3176 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3177 } 3178 if ((added & AC_PATH_REGISTERED) != 0) { 3179 /* 3180 * Get this peripheral up to date with all 3181 * the currently existing busses. 3182 */ 3183 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3184 } 3185 splx(s); 3186 start_ccb->ccb_h.status = CAM_REQ_CMP; 3187 break; 3188 } 3189 case XPT_REL_SIMQ: 3190 { 3191 struct ccb_relsim *crs; 3192 struct cam_ed *dev; 3193 int s; 3194 3195 crs = &start_ccb->crs; 3196 dev = crs->ccb_h.path->device; 3197 if (dev == NULL) { 3198 3199 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3200 break; 3201 } 3202 3203 s = splcam(); 3204 3205 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3206 3207 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3208 3209 /* Don't ever go below one opening */ 3210 if (crs->openings > 0) { 3211 xpt_dev_ccbq_resize(crs->ccb_h.path, 3212 crs->openings); 3213 3214 if (bootverbose) { 3215 xpt_print_path(crs->ccb_h.path); 3216 printf("tagged openings " 3217 "now %d\n", 3218 crs->openings); 3219 } 3220 } 3221 } 3222 } 3223 3224 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3225 3226 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3227 3228 /* 3229 * Just extend the old timeout and decrement 3230 * the freeze count so that a single timeout 3231 * is sufficient for releasing the queue. 3232 */ 3233 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3234 untimeout(xpt_release_devq_timeout, 3235 dev, dev->c_handle); 3236 } else { 3237 3238 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3239 } 3240 3241 dev->c_handle = 3242 timeout(xpt_release_devq_timeout, 3243 dev, 3244 (crs->release_timeout * hz) / 1000); 3245 3246 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3247 3248 } 3249 3250 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3251 3252 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3253 /* 3254 * Decrement the freeze count so that a single 3255 * completion is still sufficient to unfreeze 3256 * the queue. 3257 */ 3258 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3259 } else { 3260 3261 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3262 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3263 } 3264 } 3265 3266 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3267 3268 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3269 || (dev->ccbq.dev_active == 0)) { 3270 3271 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3272 } else { 3273 3274 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3275 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3276 } 3277 } 3278 splx(s); 3279 3280 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3281 3282 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3283 /*run_queue*/TRUE); 3284 } 3285 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3286 start_ccb->ccb_h.status = CAM_REQ_CMP; 3287 break; 3288 } 3289 case XPT_SCAN_BUS: 3290 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3291 break; 3292 case XPT_SCAN_LUN: 3293 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3294 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3295 start_ccb); 3296 break; 3297 case XPT_DEBUG: { 3298 #ifdef CAMDEBUG 3299 int s; 3300 3301 s = splcam(); 3302 #ifdef CAM_DEBUG_DELAY 3303 cam_debug_delay = CAM_DEBUG_DELAY; 3304 #endif 3305 cam_dflags = start_ccb->cdbg.flags; 3306 if (cam_dpath != NULL) { 3307 xpt_free_path(cam_dpath); 3308 cam_dpath = NULL; 3309 } 3310 3311 if (cam_dflags != CAM_DEBUG_NONE) { 3312 if (xpt_create_path(&cam_dpath, xpt_periph, 3313 start_ccb->ccb_h.path_id, 3314 start_ccb->ccb_h.target_id, 3315 start_ccb->ccb_h.target_lun) != 3316 CAM_REQ_CMP) { 3317 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3318 cam_dflags = CAM_DEBUG_NONE; 3319 } else { 3320 start_ccb->ccb_h.status = CAM_REQ_CMP; 3321 xpt_print_path(cam_dpath); 3322 printf("debugging flags now %x\n", cam_dflags); 3323 } 3324 } else { 3325 cam_dpath = NULL; 3326 start_ccb->ccb_h.status = CAM_REQ_CMP; 3327 } 3328 splx(s); 3329 #else /* !CAMDEBUG */ 3330 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3331 #endif /* CAMDEBUG */ 3332 break; 3333 } 3334 case XPT_NOOP: 3335 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3336 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3337 start_ccb->ccb_h.status = CAM_REQ_CMP; 3338 break; 3339 default: 3340 case XPT_SDEV_TYPE: 3341 case XPT_TERM_IO: 3342 case XPT_ENG_INQ: 3343 /* XXX Implement */ 3344 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3345 break; 3346 } 3347 splx(iopl); 3348 } 3349 3350 void 3351 xpt_polled_action(union ccb *start_ccb) 3352 { 3353 int s; 3354 u_int32_t timeout; 3355 struct cam_sim *sim; 3356 struct cam_devq *devq; 3357 struct cam_ed *dev; 3358 3359 timeout = start_ccb->ccb_h.timeout; 3360 sim = start_ccb->ccb_h.path->bus->sim; 3361 devq = sim->devq; 3362 dev = start_ccb->ccb_h.path->device; 3363 3364 s = splcam(); 3365 3366 /* 3367 * Steal an opening so that no other queued requests 3368 * can get it before us while we simulate interrupts. 3369 */ 3370 dev->ccbq.devq_openings--; 3371 dev->ccbq.dev_openings--; 3372 3373 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) 3374 && (--timeout > 0)) { 3375 DELAY(1000); 3376 (*(sim->sim_poll))(sim); 3377 swi_camnet(); 3378 swi_cambio(); 3379 } 3380 3381 dev->ccbq.devq_openings++; 3382 dev->ccbq.dev_openings++; 3383 3384 if (timeout != 0) { 3385 xpt_action(start_ccb); 3386 while(--timeout > 0) { 3387 (*(sim->sim_poll))(sim); 3388 swi_camnet(); 3389 swi_cambio(); 3390 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3391 != CAM_REQ_INPROG) 3392 break; 3393 DELAY(1000); 3394 } 3395 if (timeout == 0) { 3396 /* 3397 * XXX Is it worth adding a sim_timeout entry 3398 * point so we can attempt recovery? If 3399 * this is only used for dumps, I don't think 3400 * it is. 3401 */ 3402 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3403 } 3404 } else { 3405 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3406 } 3407 splx(s); 3408 } 3409 3410 /* 3411 * Schedule a peripheral driver to receive a ccb when it's 3412 * target device has space for more transactions. 3413 */ 3414 void 3415 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3416 { 3417 struct cam_ed *device; 3418 int s; 3419 int runq; 3420 3421 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3422 device = perph->path->device; 3423 s = splsoftcam(); 3424 if (periph_is_queued(perph)) { 3425 /* Simply reorder based on new priority */ 3426 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3427 (" change priority to %d\n", new_priority)); 3428 if (new_priority < perph->pinfo.priority) { 3429 camq_change_priority(&device->drvq, 3430 perph->pinfo.index, 3431 new_priority); 3432 } 3433 runq = 0; 3434 } else { 3435 /* New entry on the queue */ 3436 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3437 (" added periph to queue\n")); 3438 perph->pinfo.priority = new_priority; 3439 perph->pinfo.generation = ++device->drvq.generation; 3440 camq_insert(&device->drvq, &perph->pinfo); 3441 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3442 } 3443 splx(s); 3444 if (runq != 0) { 3445 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3446 (" calling xpt_run_devq\n")); 3447 xpt_run_dev_allocq(perph->path->bus); 3448 } 3449 } 3450 3451 3452 /* 3453 * Schedule a device to run on a given queue. 3454 * If the device was inserted as a new entry on the queue, 3455 * return 1 meaning the device queue should be run. If we 3456 * were already queued, implying someone else has already 3457 * started the queue, return 0 so the caller doesn't attempt 3458 * to run the queue. Must be run at either splsoftcam 3459 * (or splcam since that encompases splsoftcam). 3460 */ 3461 static int 3462 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3463 u_int32_t new_priority) 3464 { 3465 int retval; 3466 u_int32_t old_priority; 3467 3468 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3469 3470 old_priority = pinfo->priority; 3471 3472 /* 3473 * Are we already queued? 3474 */ 3475 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3476 /* Simply reorder based on new priority */ 3477 if (new_priority < old_priority) { 3478 camq_change_priority(queue, pinfo->index, 3479 new_priority); 3480 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3481 ("changed priority to %d\n", 3482 new_priority)); 3483 } 3484 retval = 0; 3485 } else { 3486 /* New entry on the queue */ 3487 if (new_priority < old_priority) 3488 pinfo->priority = new_priority; 3489 3490 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3491 ("Inserting onto queue\n")); 3492 pinfo->generation = ++queue->generation; 3493 camq_insert(queue, pinfo); 3494 retval = 1; 3495 } 3496 return (retval); 3497 } 3498 3499 static void 3500 xpt_run_dev_allocq(struct cam_eb *bus) 3501 { 3502 struct cam_devq *devq; 3503 int s; 3504 3505 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3506 devq = bus->sim->devq; 3507 3508 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3509 (" qfrozen_cnt == 0x%x, entries == %d, " 3510 "openings == %d, active == %d\n", 3511 devq->alloc_queue.qfrozen_cnt, 3512 devq->alloc_queue.entries, 3513 devq->alloc_openings, 3514 devq->alloc_active)); 3515 3516 s = splsoftcam(); 3517 devq->alloc_queue.qfrozen_cnt++; 3518 while ((devq->alloc_queue.entries > 0) 3519 && (devq->alloc_openings > 0) 3520 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3521 struct cam_ed_qinfo *qinfo; 3522 struct cam_ed *device; 3523 union ccb *work_ccb; 3524 struct cam_periph *drv; 3525 struct camq *drvq; 3526 3527 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3528 CAMQ_HEAD); 3529 device = qinfo->device; 3530 3531 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3532 ("running device %p\n", device)); 3533 3534 drvq = &device->drvq; 3535 3536 #ifdef CAMDEBUG 3537 if (drvq->entries <= 0) { 3538 panic("xpt_run_dev_allocq: " 3539 "Device on queue without any work to do"); 3540 } 3541 #endif 3542 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3543 devq->alloc_openings--; 3544 devq->alloc_active++; 3545 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3546 splx(s); 3547 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3548 drv->pinfo.priority); 3549 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3550 ("calling periph start\n")); 3551 drv->periph_start(drv, work_ccb); 3552 } else { 3553 /* 3554 * Malloc failure in alloc_ccb 3555 */ 3556 /* 3557 * XXX add us to a list to be run from free_ccb 3558 * if we don't have any ccbs active on this 3559 * device queue otherwise we may never get run 3560 * again. 3561 */ 3562 break; 3563 } 3564 3565 /* Raise IPL for possible insertion and test at top of loop */ 3566 s = splsoftcam(); 3567 3568 if (drvq->entries > 0) { 3569 /* We have more work. Attempt to reschedule */ 3570 xpt_schedule_dev_allocq(bus, device); 3571 } 3572 } 3573 devq->alloc_queue.qfrozen_cnt--; 3574 splx(s); 3575 } 3576 3577 static void 3578 xpt_run_dev_sendq(struct cam_eb *bus) 3579 { 3580 struct cam_devq *devq; 3581 int s; 3582 3583 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3584 3585 devq = bus->sim->devq; 3586 3587 s = splcam(); 3588 devq->send_queue.qfrozen_cnt++; 3589 splx(s); 3590 s = splsoftcam(); 3591 while ((devq->send_queue.entries > 0) 3592 && (devq->send_openings > 0)) { 3593 struct cam_ed_qinfo *qinfo; 3594 struct cam_ed *device; 3595 union ccb *work_ccb; 3596 struct cam_sim *sim; 3597 int ospl; 3598 3599 ospl = splcam(); 3600 if (devq->send_queue.qfrozen_cnt > 1) { 3601 splx(ospl); 3602 break; 3603 } 3604 3605 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3606 CAMQ_HEAD); 3607 device = qinfo->device; 3608 3609 /* 3610 * If the device has been "frozen", don't attempt 3611 * to run it. 3612 */ 3613 if (device->qfrozen_cnt > 0) { 3614 splx(ospl); 3615 continue; 3616 } 3617 3618 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3619 ("running device %p\n", device)); 3620 3621 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3622 if (work_ccb == NULL) { 3623 printf("device on run queue with no ccbs???"); 3624 splx(ospl); 3625 continue; 3626 } 3627 3628 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3629 3630 if (num_highpower <= 0) { 3631 /* 3632 * We got a high power command, but we 3633 * don't have any available slots. Freeze 3634 * the device queue until we have a slot 3635 * available. 3636 */ 3637 device->qfrozen_cnt++; 3638 STAILQ_INSERT_TAIL(&highpowerq, 3639 &work_ccb->ccb_h, 3640 xpt_links.stqe); 3641 3642 splx(ospl); 3643 continue; 3644 } else { 3645 /* 3646 * Consume a high power slot while 3647 * this ccb runs. 3648 */ 3649 num_highpower--; 3650 } 3651 } 3652 devq->active_dev = device; 3653 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3654 3655 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3656 splx(ospl); 3657 3658 devq->send_openings--; 3659 devq->send_active++; 3660 3661 if (device->ccbq.queue.entries > 0) 3662 xpt_schedule_dev_sendq(bus, device); 3663 3664 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3665 /* 3666 * The client wants to freeze the queue 3667 * after this CCB is sent. 3668 */ 3669 ospl = splcam(); 3670 device->qfrozen_cnt++; 3671 splx(ospl); 3672 } 3673 3674 splx(s); 3675 3676 /* In Target mode, the peripheral driver knows best... */ 3677 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3678 if ((device->inq_flags & SID_CmdQue) != 0 3679 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3680 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3681 else 3682 /* 3683 * Clear this in case of a retried CCB that 3684 * failed due to a rejected tag. 3685 */ 3686 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3687 } 3688 3689 /* 3690 * Device queues can be shared among multiple sim instances 3691 * that reside on different busses. Use the SIM in the queue 3692 * CCB's path, rather than the one in the bus that was passed 3693 * into this function. 3694 */ 3695 sim = work_ccb->ccb_h.path->bus->sim; 3696 (*(sim->sim_action))(sim, work_ccb); 3697 3698 ospl = splcam(); 3699 devq->active_dev = NULL; 3700 splx(ospl); 3701 /* Raise IPL for possible insertion and test at top of loop */ 3702 s = splsoftcam(); 3703 } 3704 splx(s); 3705 s = splcam(); 3706 devq->send_queue.qfrozen_cnt--; 3707 splx(s); 3708 } 3709 3710 /* 3711 * This function merges stuff from the slave ccb into the master ccb, while 3712 * keeping important fields in the master ccb constant. 3713 */ 3714 void 3715 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3716 { 3717 /* 3718 * Pull fields that are valid for peripheral drivers to set 3719 * into the master CCB along with the CCB "payload". 3720 */ 3721 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3722 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3723 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3724 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3725 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3726 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3727 } 3728 3729 void 3730 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3731 { 3732 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3733 ccb_h->pinfo.priority = priority; 3734 ccb_h->path = path; 3735 ccb_h->path_id = path->bus->path_id; 3736 if (path->target) 3737 ccb_h->target_id = path->target->target_id; 3738 else 3739 ccb_h->target_id = CAM_TARGET_WILDCARD; 3740 if (path->device) { 3741 ccb_h->target_lun = path->device->lun_id; 3742 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3743 } else { 3744 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3745 } 3746 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3747 ccb_h->flags = 0; 3748 } 3749 3750 /* Path manipulation functions */ 3751 cam_status 3752 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3753 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3754 { 3755 struct cam_path *path; 3756 cam_status status; 3757 3758 path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT); 3759 3760 if (path == NULL) { 3761 status = CAM_RESRC_UNAVAIL; 3762 return(status); 3763 } 3764 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3765 if (status != CAM_REQ_CMP) { 3766 free(path, M_DEVBUF); 3767 path = NULL; 3768 } 3769 *new_path_ptr = path; 3770 return (status); 3771 } 3772 3773 static cam_status 3774 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3775 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3776 { 3777 struct cam_eb *bus; 3778 struct cam_et *target; 3779 struct cam_ed *device; 3780 cam_status status; 3781 int s; 3782 3783 status = CAM_REQ_CMP; /* Completed without error */ 3784 target = NULL; /* Wildcarded */ 3785 device = NULL; /* Wildcarded */ 3786 3787 /* 3788 * We will potentially modify the EDT, so block interrupts 3789 * that may attempt to create cam paths. 3790 */ 3791 s = splcam(); 3792 bus = xpt_find_bus(path_id); 3793 if (bus == NULL) { 3794 status = CAM_PATH_INVALID; 3795 } else { 3796 target = xpt_find_target(bus, target_id); 3797 if (target == NULL) { 3798 /* Create one */ 3799 struct cam_et *new_target; 3800 3801 new_target = xpt_alloc_target(bus, target_id); 3802 if (new_target == NULL) { 3803 status = CAM_RESRC_UNAVAIL; 3804 } else { 3805 target = new_target; 3806 } 3807 } 3808 if (target != NULL) { 3809 device = xpt_find_device(target, lun_id); 3810 if (device == NULL) { 3811 /* Create one */ 3812 struct cam_ed *new_device; 3813 3814 new_device = xpt_alloc_device(bus, 3815 target, 3816 lun_id); 3817 if (new_device == NULL) { 3818 status = CAM_RESRC_UNAVAIL; 3819 } else { 3820 device = new_device; 3821 } 3822 } 3823 } 3824 } 3825 splx(s); 3826 3827 /* 3828 * Only touch the user's data if we are successful. 3829 */ 3830 if (status == CAM_REQ_CMP) { 3831 new_path->periph = perph; 3832 new_path->bus = bus; 3833 new_path->target = target; 3834 new_path->device = device; 3835 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3836 } else { 3837 if (device != NULL) 3838 xpt_release_device(bus, target, device); 3839 if (target != NULL) 3840 xpt_release_target(bus, target); 3841 if (bus != NULL) 3842 xpt_release_bus(bus); 3843 } 3844 return (status); 3845 } 3846 3847 static void 3848 xpt_release_path(struct cam_path *path) 3849 { 3850 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3851 if (path->device != NULL) { 3852 xpt_release_device(path->bus, path->target, path->device); 3853 path->device = NULL; 3854 } 3855 if (path->target != NULL) { 3856 xpt_release_target(path->bus, path->target); 3857 path->target = NULL; 3858 } 3859 if (path->bus != NULL) { 3860 xpt_release_bus(path->bus); 3861 path->bus = NULL; 3862 } 3863 } 3864 3865 void 3866 xpt_free_path(struct cam_path *path) 3867 { 3868 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3869 xpt_release_path(path); 3870 free(path, M_DEVBUF); 3871 } 3872 3873 3874 /* 3875 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3876 * in path1, 2 for match with wildcards in path2. 3877 */ 3878 int 3879 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3880 { 3881 int retval = 0; 3882 3883 if (path1->bus != path2->bus) { 3884 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3885 retval = 1; 3886 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3887 retval = 2; 3888 else 3889 return (-1); 3890 } 3891 if (path1->target != path2->target) { 3892 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3893 if (retval == 0) 3894 retval = 1; 3895 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3896 retval = 2; 3897 else 3898 return (-1); 3899 } 3900 if (path1->device != path2->device) { 3901 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3902 if (retval == 0) 3903 retval = 1; 3904 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3905 retval = 2; 3906 else 3907 return (-1); 3908 } 3909 return (retval); 3910 } 3911 3912 void 3913 xpt_print_path(struct cam_path *path) 3914 { 3915 if (path == NULL) 3916 printf("(nopath): "); 3917 else { 3918 if (path->periph != NULL) 3919 printf("(%s%d:", path->periph->periph_name, 3920 path->periph->unit_number); 3921 else 3922 printf("(noperiph:"); 3923 3924 if (path->bus != NULL) 3925 printf("%s%d:%d:", path->bus->sim->sim_name, 3926 path->bus->sim->unit_number, 3927 path->bus->sim->bus_id); 3928 else 3929 printf("nobus:"); 3930 3931 if (path->target != NULL) 3932 printf("%d:", path->target->target_id); 3933 else 3934 printf("X:"); 3935 3936 if (path->device != NULL) 3937 printf("%d): ", path->device->lun_id); 3938 else 3939 printf("X): "); 3940 } 3941 } 3942 3943 path_id_t 3944 xpt_path_path_id(struct cam_path *path) 3945 { 3946 return(path->bus->path_id); 3947 } 3948 3949 target_id_t 3950 xpt_path_target_id(struct cam_path *path) 3951 { 3952 if (path->target != NULL) 3953 return (path->target->target_id); 3954 else 3955 return (CAM_TARGET_WILDCARD); 3956 } 3957 3958 lun_id_t 3959 xpt_path_lun_id(struct cam_path *path) 3960 { 3961 if (path->device != NULL) 3962 return (path->device->lun_id); 3963 else 3964 return (CAM_LUN_WILDCARD); 3965 } 3966 3967 struct cam_sim * 3968 xpt_path_sim(struct cam_path *path) 3969 { 3970 return (path->bus->sim); 3971 } 3972 3973 struct cam_periph* 3974 xpt_path_periph(struct cam_path *path) 3975 { 3976 return (path->periph); 3977 } 3978 3979 /* 3980 * Release a CAM control block for the caller. Remit the cost of the structure 3981 * to the device referenced by the path. If the this device had no 'credits' 3982 * and peripheral drivers have registered async callbacks for this notification 3983 * call them now. 3984 */ 3985 void 3986 xpt_release_ccb(union ccb *free_ccb) 3987 { 3988 int s; 3989 struct cam_path *path; 3990 struct cam_ed *device; 3991 struct cam_eb *bus; 3992 3993 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3994 path = free_ccb->ccb_h.path; 3995 device = path->device; 3996 bus = path->bus; 3997 s = splsoftcam(); 3998 cam_ccbq_release_opening(&device->ccbq); 3999 if (xpt_ccb_count > xpt_max_ccbs) { 4000 xpt_free_ccb(free_ccb); 4001 xpt_ccb_count--; 4002 } else { 4003 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4004 } 4005 bus->sim->devq->alloc_openings++; 4006 bus->sim->devq->alloc_active--; 4007 /* XXX Turn this into an inline function - xpt_run_device?? */ 4008 if ((device_is_alloc_queued(device) == 0) 4009 && (device->drvq.entries > 0)) { 4010 xpt_schedule_dev_allocq(bus, device); 4011 } 4012 splx(s); 4013 if (dev_allocq_is_runnable(bus->sim->devq)) 4014 xpt_run_dev_allocq(bus); 4015 } 4016 4017 /* Functions accessed by SIM drivers */ 4018 4019 /* 4020 * A sim structure, listing the SIM entry points and instance 4021 * identification info is passed to xpt_bus_register to hook the SIM 4022 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4023 * for this new bus and places it in the array of busses and assigns 4024 * it a path_id. The path_id may be influenced by "hard wiring" 4025 * information specified by the user. Once interrupt services are 4026 * availible, the bus will be probed. 4027 */ 4028 int32_t 4029 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4030 { 4031 struct cam_eb *new_bus; 4032 struct cam_eb *old_bus; 4033 struct ccb_pathinq cpi; 4034 int s; 4035 4036 sim->bus_id = bus; 4037 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4038 M_DEVBUF, M_NOWAIT); 4039 if (new_bus == NULL) { 4040 /* Couldn't satisfy request */ 4041 return (CAM_RESRC_UNAVAIL); 4042 } 4043 4044 if (strcmp(sim->sim_name, "xpt") != 0) { 4045 4046 sim->path_id = 4047 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4048 } 4049 4050 TAILQ_INIT(&new_bus->et_entries); 4051 new_bus->path_id = sim->path_id; 4052 new_bus->sim = sim; 4053 timevalclear(&new_bus->last_reset); 4054 new_bus->flags = 0; 4055 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4056 new_bus->generation = 0; 4057 s = splcam(); 4058 old_bus = TAILQ_FIRST(&xpt_busses); 4059 while (old_bus != NULL 4060 && old_bus->path_id < new_bus->path_id) 4061 old_bus = TAILQ_NEXT(old_bus, links); 4062 if (old_bus != NULL) 4063 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4064 else 4065 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4066 bus_generation++; 4067 splx(s); 4068 4069 /* Notify interested parties */ 4070 if (sim->path_id != CAM_XPT_PATH_ID) { 4071 struct cam_path path; 4072 4073 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4074 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4075 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4076 cpi.ccb_h.func_code = XPT_PATH_INQ; 4077 xpt_action((union ccb *)&cpi); 4078 xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi); 4079 xpt_release_path(&path); 4080 } 4081 return (CAM_SUCCESS); 4082 } 4083 4084 int32_t 4085 xpt_bus_deregister(path_id_t pathid) 4086 { 4087 struct cam_path bus_path; 4088 cam_status status; 4089 4090 status = xpt_compile_path(&bus_path, NULL, pathid, 4091 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4092 if (status != CAM_REQ_CMP) 4093 return (status); 4094 4095 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4096 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4097 4098 /* Release the reference count held while registered. */ 4099 xpt_release_bus(bus_path.bus); 4100 xpt_release_path(&bus_path); 4101 4102 return (CAM_REQ_CMP); 4103 } 4104 4105 static path_id_t 4106 xptnextfreepathid(void) 4107 { 4108 struct cam_eb *bus; 4109 path_id_t pathid; 4110 char *strval; 4111 4112 pathid = 0; 4113 bus = TAILQ_FIRST(&xpt_busses); 4114 retry: 4115 /* Find an unoccupied pathid */ 4116 while (bus != NULL 4117 && bus->path_id <= pathid) { 4118 if (bus->path_id == pathid) 4119 pathid++; 4120 bus = TAILQ_NEXT(bus, links); 4121 } 4122 4123 /* 4124 * Ensure that this pathid is not reserved for 4125 * a bus that may be registered in the future. 4126 */ 4127 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4128 ++pathid; 4129 /* Start the search over */ 4130 goto retry; 4131 } 4132 return (pathid); 4133 } 4134 4135 static path_id_t 4136 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4137 { 4138 path_id_t pathid; 4139 int i, dunit, val; 4140 char buf[32], *strval; 4141 4142 pathid = CAM_XPT_PATH_ID; 4143 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4144 i = -1; 4145 while ((i = resource_locate(i, "scbus")) != -1) { 4146 dunit = resource_query_unit(i); 4147 if (dunit < 0) /* unwired?! */ 4148 continue; 4149 if (resource_string_value("scbus", dunit, "at", &strval) != 0) 4150 continue; 4151 if (strcmp(buf, strval) != 0) 4152 continue; 4153 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4154 if (sim_bus == val) { 4155 pathid = dunit; 4156 break; 4157 } 4158 } else if (sim_bus == 0) { 4159 /* Unspecified matches bus 0 */ 4160 pathid = dunit; 4161 break; 4162 } else { 4163 printf("Ambiguous scbus configuration for %s%d " 4164 "bus %d, cannot wire down. The kernel " 4165 "config entry for scbus%d should " 4166 "specify a controller bus.\n" 4167 "Scbus will be assigned dynamically.\n", 4168 sim_name, sim_unit, sim_bus, dunit); 4169 break; 4170 } 4171 } 4172 4173 if (pathid == CAM_XPT_PATH_ID) 4174 pathid = xptnextfreepathid(); 4175 return (pathid); 4176 } 4177 4178 void 4179 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4180 { 4181 struct cam_eb *bus; 4182 struct cam_et *target, *next_target; 4183 struct cam_ed *device, *next_device; 4184 int s; 4185 4186 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4187 4188 /* 4189 * Most async events come from a CAM interrupt context. In 4190 * a few cases, the error recovery code at the peripheral layer, 4191 * which may run from our SWI or a process context, may signal 4192 * deferred events with a call to xpt_async. Ensure async 4193 * notifications are serialized by blocking cam interrupts. 4194 */ 4195 s = splcam(); 4196 4197 bus = path->bus; 4198 4199 if (async_code == AC_BUS_RESET) { 4200 int s; 4201 4202 s = splclock(); 4203 /* Update our notion of when the last reset occurred */ 4204 microtime(&bus->last_reset); 4205 splx(s); 4206 } 4207 4208 for (target = TAILQ_FIRST(&bus->et_entries); 4209 target != NULL; 4210 target = next_target) { 4211 4212 next_target = TAILQ_NEXT(target, links); 4213 4214 if (path->target != target 4215 && path->target->target_id != CAM_TARGET_WILDCARD) 4216 continue; 4217 4218 if (async_code == AC_SENT_BDR) { 4219 int s; 4220 4221 /* Update our notion of when the last reset occurred */ 4222 s = splclock(); 4223 microtime(&path->target->last_reset); 4224 splx(s); 4225 } 4226 4227 for (device = TAILQ_FIRST(&target->ed_entries); 4228 device != NULL; 4229 device = next_device) { 4230 cam_status status; 4231 struct cam_path newpath; 4232 4233 next_device = TAILQ_NEXT(device, links); 4234 4235 if (path->device != device 4236 && path->device->lun_id != CAM_LUN_WILDCARD) 4237 continue; 4238 4239 /* 4240 * We need our own path with wildcards expanded to 4241 * handle certain types of events. 4242 */ 4243 if ((async_code == AC_SENT_BDR) 4244 || (async_code == AC_BUS_RESET) 4245 || (async_code == AC_INQ_CHANGED)) 4246 status = xpt_compile_path(&newpath, NULL, 4247 bus->path_id, 4248 target->target_id, 4249 device->lun_id); 4250 else 4251 status = CAM_REQ_CMP_ERR; 4252 4253 if (status == CAM_REQ_CMP) { 4254 4255 /* 4256 * Allow transfer negotiation to occur in a 4257 * tag free environment. 4258 */ 4259 if (async_code == AC_SENT_BDR 4260 || async_code == AC_BUS_RESET) 4261 xpt_toggle_tags(&newpath); 4262 4263 if (async_code == AC_INQ_CHANGED) { 4264 /* 4265 * We've sent a start unit command, or 4266 * something similar to a device that 4267 * may have caused its inquiry data to 4268 * change. So we re-scan the device to 4269 * refresh the inquiry data for it. 4270 */ 4271 xpt_scan_lun(newpath.periph, &newpath, 4272 CAM_EXPECT_INQ_CHANGE, 4273 NULL); 4274 } 4275 xpt_release_path(&newpath); 4276 } else if (async_code == AC_LOST_DEVICE) { 4277 device->flags |= CAM_DEV_UNCONFIGURED; 4278 } else if (async_code == AC_TRANSFER_NEG) { 4279 struct ccb_trans_settings *settings; 4280 4281 settings = 4282 (struct ccb_trans_settings *)async_arg; 4283 xpt_set_transfer_settings(settings, device, 4284 /*async_update*/TRUE); 4285 } 4286 4287 xpt_async_bcast(&device->asyncs, 4288 async_code, 4289 path, 4290 async_arg); 4291 } 4292 } 4293 4294 /* 4295 * If this wasn't a fully wildcarded async, tell all 4296 * clients that want all async events. 4297 */ 4298 if (bus != xpt_periph->path->bus) 4299 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4300 path, async_arg); 4301 splx(s); 4302 } 4303 4304 static void 4305 xpt_async_bcast(struct async_list *async_head, 4306 u_int32_t async_code, 4307 struct cam_path *path, void *async_arg) 4308 { 4309 struct async_node *cur_entry; 4310 4311 cur_entry = SLIST_FIRST(async_head); 4312 while (cur_entry != NULL) { 4313 struct async_node *next_entry; 4314 /* 4315 * Grab the next list entry before we call the current 4316 * entry's callback. This is because the callback function 4317 * can delete its async callback entry. 4318 */ 4319 next_entry = SLIST_NEXT(cur_entry, links); 4320 if ((cur_entry->event_enable & async_code) != 0) 4321 cur_entry->callback(cur_entry->callback_arg, 4322 async_code, path, 4323 async_arg); 4324 cur_entry = next_entry; 4325 } 4326 } 4327 4328 u_int32_t 4329 xpt_freeze_devq(struct cam_path *path, u_int count) 4330 { 4331 int s; 4332 struct ccb_hdr *ccbh; 4333 4334 s = splcam(); 4335 path->device->qfrozen_cnt += count; 4336 4337 /* 4338 * Mark the last CCB in the queue as needing 4339 * to be requeued if the driver hasn't 4340 * changed it's state yet. This fixes a race 4341 * where a ccb is just about to be queued to 4342 * a controller driver when it's interrupt routine 4343 * freezes the queue. To completly close the 4344 * hole, controller drives must check to see 4345 * if a ccb's status is still CAM_REQ_INPROG 4346 * under spl protection just before they queue 4347 * the CCB. See ahc_action/ahc_freeze_devq for 4348 * an example. 4349 */ 4350 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4351 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4352 ccbh->status = CAM_REQUEUE_REQ; 4353 splx(s); 4354 return (path->device->qfrozen_cnt); 4355 } 4356 4357 u_int32_t 4358 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4359 { 4360 sim->devq->send_queue.qfrozen_cnt += count; 4361 if (sim->devq->active_dev != NULL) { 4362 struct ccb_hdr *ccbh; 4363 4364 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4365 ccb_hdr_tailq); 4366 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4367 ccbh->status = CAM_REQUEUE_REQ; 4368 } 4369 return (sim->devq->send_queue.qfrozen_cnt); 4370 } 4371 4372 static void 4373 xpt_release_devq_timeout(void *arg) 4374 { 4375 struct cam_ed *device; 4376 4377 device = (struct cam_ed *)arg; 4378 4379 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4380 } 4381 4382 void 4383 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4384 { 4385 xpt_release_devq_device(path->device, count, run_queue); 4386 } 4387 4388 static void 4389 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4390 { 4391 int rundevq; 4392 int s0, s1; 4393 4394 rundevq = 0; 4395 s0 = splsoftcam(); 4396 s1 = splcam(); 4397 if (dev->qfrozen_cnt > 0) { 4398 4399 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4400 dev->qfrozen_cnt -= count; 4401 if (dev->qfrozen_cnt == 0) { 4402 4403 /* 4404 * No longer need to wait for a successful 4405 * command completion. 4406 */ 4407 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4408 4409 /* 4410 * Remove any timeouts that might be scheduled 4411 * to release this queue. 4412 */ 4413 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4414 untimeout(xpt_release_devq_timeout, dev, 4415 dev->c_handle); 4416 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4417 } 4418 4419 /* 4420 * Now that we are unfrozen schedule the 4421 * device so any pending transactions are 4422 * run. 4423 */ 4424 if ((dev->ccbq.queue.entries > 0) 4425 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4426 && (run_queue != 0)) { 4427 rundevq = 1; 4428 } 4429 } 4430 } 4431 splx(s1); 4432 if (rundevq != 0) 4433 xpt_run_dev_sendq(dev->target->bus); 4434 splx(s0); 4435 } 4436 4437 void 4438 xpt_release_simq(struct cam_sim *sim, int run_queue) 4439 { 4440 int s; 4441 struct camq *sendq; 4442 4443 sendq = &(sim->devq->send_queue); 4444 s = splcam(); 4445 if (sendq->qfrozen_cnt > 0) { 4446 4447 sendq->qfrozen_cnt--; 4448 if (sendq->qfrozen_cnt == 0) { 4449 struct cam_eb *bus; 4450 4451 /* 4452 * If there is a timeout scheduled to release this 4453 * sim queue, remove it. The queue frozen count is 4454 * already at 0. 4455 */ 4456 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4457 untimeout(xpt_release_simq_timeout, sim, 4458 sim->c_handle); 4459 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4460 } 4461 bus = xpt_find_bus(sim->path_id); 4462 splx(s); 4463 4464 if (run_queue) { 4465 /* 4466 * Now that we are unfrozen run the send queue. 4467 */ 4468 xpt_run_dev_sendq(bus); 4469 } 4470 xpt_release_bus(bus); 4471 } else 4472 splx(s); 4473 } else 4474 splx(s); 4475 } 4476 4477 static void 4478 xpt_release_simq_timeout(void *arg) 4479 { 4480 struct cam_sim *sim; 4481 4482 sim = (struct cam_sim *)arg; 4483 xpt_release_simq(sim, /* run_queue */ TRUE); 4484 } 4485 4486 void 4487 xpt_done(union ccb *done_ccb) 4488 { 4489 int s; 4490 4491 s = splcam(); 4492 4493 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4494 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4495 /* 4496 * Queue up the request for handling by our SWI handler 4497 * any of the "non-immediate" type of ccbs. 4498 */ 4499 switch (done_ccb->ccb_h.path->periph->type) { 4500 case CAM_PERIPH_BIO: 4501 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4502 sim_links.tqe); 4503 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4504 setsoftcambio(); 4505 break; 4506 case CAM_PERIPH_NET: 4507 TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h, 4508 sim_links.tqe); 4509 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4510 setsoftcamnet(); 4511 break; 4512 } 4513 } 4514 splx(s); 4515 } 4516 4517 union ccb * 4518 xpt_alloc_ccb() 4519 { 4520 union ccb *new_ccb; 4521 4522 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK); 4523 return (new_ccb); 4524 } 4525 4526 void 4527 xpt_free_ccb(union ccb *free_ccb) 4528 { 4529 free(free_ccb, M_DEVBUF); 4530 } 4531 4532 4533 4534 /* Private XPT functions */ 4535 4536 /* 4537 * Get a CAM control block for the caller. Charge the structure to the device 4538 * referenced by the path. If the this device has no 'credits' then the 4539 * device already has the maximum number of outstanding operations under way 4540 * and we return NULL. If we don't have sufficient resources to allocate more 4541 * ccbs, we also return NULL. 4542 */ 4543 static union ccb * 4544 xpt_get_ccb(struct cam_ed *device) 4545 { 4546 union ccb *new_ccb; 4547 int s; 4548 4549 s = splsoftcam(); 4550 if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) { 4551 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT); 4552 if (new_ccb == NULL) { 4553 splx(s); 4554 return (NULL); 4555 } 4556 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4557 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4558 xpt_links.sle); 4559 xpt_ccb_count++; 4560 } 4561 cam_ccbq_take_opening(&device->ccbq); 4562 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4563 splx(s); 4564 return (new_ccb); 4565 } 4566 4567 static void 4568 xpt_release_bus(struct cam_eb *bus) 4569 { 4570 int s; 4571 4572 s = splcam(); 4573 if ((--bus->refcount == 0) 4574 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4575 TAILQ_REMOVE(&xpt_busses, bus, links); 4576 bus_generation++; 4577 splx(s); 4578 free(bus, M_DEVBUF); 4579 } else 4580 splx(s); 4581 } 4582 4583 static struct cam_et * 4584 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4585 { 4586 struct cam_et *target; 4587 4588 target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT); 4589 if (target != NULL) { 4590 struct cam_et *cur_target; 4591 4592 TAILQ_INIT(&target->ed_entries); 4593 target->bus = bus; 4594 target->target_id = target_id; 4595 target->refcount = 1; 4596 target->generation = 0; 4597 timevalclear(&target->last_reset); 4598 /* 4599 * Hold a reference to our parent bus so it 4600 * will not go away before we do. 4601 */ 4602 bus->refcount++; 4603 4604 /* Insertion sort into our bus's target list */ 4605 cur_target = TAILQ_FIRST(&bus->et_entries); 4606 while (cur_target != NULL && cur_target->target_id < target_id) 4607 cur_target = TAILQ_NEXT(cur_target, links); 4608 4609 if (cur_target != NULL) { 4610 TAILQ_INSERT_BEFORE(cur_target, target, links); 4611 } else { 4612 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4613 } 4614 bus->generation++; 4615 } 4616 return (target); 4617 } 4618 4619 static void 4620 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4621 { 4622 int s; 4623 4624 s = splcam(); 4625 if ((--target->refcount == 0) 4626 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4627 TAILQ_REMOVE(&bus->et_entries, target, links); 4628 bus->generation++; 4629 splx(s); 4630 free(target, M_DEVBUF); 4631 xpt_release_bus(bus); 4632 } else 4633 splx(s); 4634 } 4635 4636 static struct cam_ed * 4637 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4638 { 4639 struct cam_ed *device; 4640 struct cam_devq *devq; 4641 cam_status status; 4642 4643 /* Make space for us in the device queue on our bus */ 4644 devq = bus->sim->devq; 4645 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4646 4647 if (status != CAM_REQ_CMP) { 4648 device = NULL; 4649 } else { 4650 device = (struct cam_ed *)malloc(sizeof(*device), 4651 M_DEVBUF, M_NOWAIT); 4652 } 4653 4654 if (device != NULL) { 4655 struct cam_ed *cur_device; 4656 4657 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4658 device->alloc_ccb_entry.device = device; 4659 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4660 device->send_ccb_entry.device = device; 4661 device->target = target; 4662 device->lun_id = lun_id; 4663 /* Initialize our queues */ 4664 if (camq_init(&device->drvq, 0) != 0) { 4665 free(device, M_DEVBUF); 4666 return (NULL); 4667 } 4668 if (cam_ccbq_init(&device->ccbq, 4669 bus->sim->max_dev_openings) != 0) { 4670 camq_fini(&device->drvq); 4671 free(device, M_DEVBUF); 4672 return (NULL); 4673 } 4674 SLIST_INIT(&device->asyncs); 4675 SLIST_INIT(&device->periphs); 4676 device->generation = 0; 4677 device->owner = NULL; 4678 /* 4679 * Take the default quirk entry until we have inquiry 4680 * data and can determine a better quirk to use. 4681 */ 4682 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 4683 bzero(&device->inq_data, sizeof(device->inq_data)); 4684 device->inq_flags = 0; 4685 device->queue_flags = 0; 4686 device->serial_num = NULL; 4687 device->serial_num_len = 0; 4688 device->qfrozen_cnt = 0; 4689 device->flags = CAM_DEV_UNCONFIGURED; 4690 device->tag_delay_count = 0; 4691 device->refcount = 1; 4692 callout_handle_init(&device->c_handle); 4693 4694 /* 4695 * Hold a reference to our parent target so it 4696 * will not go away before we do. 4697 */ 4698 target->refcount++; 4699 4700 /* 4701 * XXX should be limited by number of CCBs this bus can 4702 * do. 4703 */ 4704 xpt_max_ccbs += device->ccbq.devq_openings; 4705 /* Insertion sort into our target's device list */ 4706 cur_device = TAILQ_FIRST(&target->ed_entries); 4707 while (cur_device != NULL && cur_device->lun_id < lun_id) 4708 cur_device = TAILQ_NEXT(cur_device, links); 4709 if (cur_device != NULL) { 4710 TAILQ_INSERT_BEFORE(cur_device, device, links); 4711 } else { 4712 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4713 } 4714 target->generation++; 4715 } 4716 return (device); 4717 } 4718 4719 static void 4720 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 4721 struct cam_ed *device) 4722 { 4723 int s; 4724 4725 s = splcam(); 4726 if ((--device->refcount == 0) 4727 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 4728 struct cam_devq *devq; 4729 4730 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4731 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4732 panic("Removing device while still queued for ccbs"); 4733 4734 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4735 untimeout(xpt_release_devq_timeout, device, 4736 device->c_handle); 4737 4738 TAILQ_REMOVE(&target->ed_entries, device,links); 4739 target->generation++; 4740 xpt_max_ccbs -= device->ccbq.devq_openings; 4741 /* Release our slot in the devq */ 4742 devq = bus->sim->devq; 4743 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4744 splx(s); 4745 free(device, M_DEVBUF); 4746 xpt_release_target(bus, target); 4747 } else 4748 splx(s); 4749 } 4750 4751 static u_int32_t 4752 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4753 { 4754 int s; 4755 int diff; 4756 int result; 4757 struct cam_ed *dev; 4758 4759 dev = path->device; 4760 s = splsoftcam(); 4761 4762 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4763 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4764 if (result == CAM_REQ_CMP && (diff < 0)) { 4765 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4766 } 4767 /* Adjust the global limit */ 4768 xpt_max_ccbs += diff; 4769 splx(s); 4770 return (result); 4771 } 4772 4773 static struct cam_eb * 4774 xpt_find_bus(path_id_t path_id) 4775 { 4776 struct cam_eb *bus; 4777 4778 for (bus = TAILQ_FIRST(&xpt_busses); 4779 bus != NULL; 4780 bus = TAILQ_NEXT(bus, links)) { 4781 if (bus->path_id == path_id) { 4782 bus->refcount++; 4783 break; 4784 } 4785 } 4786 return (bus); 4787 } 4788 4789 static struct cam_et * 4790 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4791 { 4792 struct cam_et *target; 4793 4794 for (target = TAILQ_FIRST(&bus->et_entries); 4795 target != NULL; 4796 target = TAILQ_NEXT(target, links)) { 4797 if (target->target_id == target_id) { 4798 target->refcount++; 4799 break; 4800 } 4801 } 4802 return (target); 4803 } 4804 4805 static struct cam_ed * 4806 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4807 { 4808 struct cam_ed *device; 4809 4810 for (device = TAILQ_FIRST(&target->ed_entries); 4811 device != NULL; 4812 device = TAILQ_NEXT(device, links)) { 4813 if (device->lun_id == lun_id) { 4814 device->refcount++; 4815 break; 4816 } 4817 } 4818 return (device); 4819 } 4820 4821 typedef struct { 4822 union ccb *request_ccb; 4823 struct ccb_pathinq *cpi; 4824 int pending_count; 4825 } xpt_scan_bus_info; 4826 4827 /* 4828 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 4829 * As the scan progresses, xpt_scan_bus is used as the 4830 * callback on completion function. 4831 */ 4832 static void 4833 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 4834 { 4835 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4836 ("xpt_scan_bus\n")); 4837 switch (request_ccb->ccb_h.func_code) { 4838 case XPT_SCAN_BUS: 4839 { 4840 xpt_scan_bus_info *scan_info; 4841 union ccb *work_ccb; 4842 struct cam_path *path; 4843 u_int i; 4844 u_int max_target; 4845 u_int initiator_id; 4846 4847 /* Find out the characteristics of the bus */ 4848 work_ccb = xpt_alloc_ccb(); 4849 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 4850 request_ccb->ccb_h.pinfo.priority); 4851 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 4852 xpt_action(work_ccb); 4853 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 4854 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 4855 xpt_free_ccb(work_ccb); 4856 xpt_done(request_ccb); 4857 return; 4858 } 4859 4860 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 4861 /* 4862 * Can't scan the bus on an adapter that 4863 * cannot perform the initiator role. 4864 */ 4865 request_ccb->ccb_h.status = CAM_REQ_CMP; 4866 xpt_free_ccb(work_ccb); 4867 xpt_done(request_ccb); 4868 return; 4869 } 4870 4871 /* Save some state for use while we probe for devices */ 4872 scan_info = (xpt_scan_bus_info *) 4873 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 4874 scan_info->request_ccb = request_ccb; 4875 scan_info->cpi = &work_ccb->cpi; 4876 4877 /* Cache on our stack so we can work asynchronously */ 4878 max_target = scan_info->cpi->max_target; 4879 initiator_id = scan_info->cpi->initiator_id; 4880 4881 /* 4882 * Don't count the initiator if the 4883 * initiator is addressable. 4884 */ 4885 scan_info->pending_count = max_target + 1; 4886 if (initiator_id <= max_target) 4887 scan_info->pending_count--; 4888 4889 for (i = 0; i <= max_target; i++) { 4890 cam_status status; 4891 if (i == initiator_id) 4892 continue; 4893 4894 status = xpt_create_path(&path, xpt_periph, 4895 request_ccb->ccb_h.path_id, 4896 i, 0); 4897 if (status != CAM_REQ_CMP) { 4898 printf("xpt_scan_bus: xpt_create_path failed" 4899 " with status %#x, bus scan halted\n", 4900 status); 4901 break; 4902 } 4903 work_ccb = xpt_alloc_ccb(); 4904 xpt_setup_ccb(&work_ccb->ccb_h, path, 4905 request_ccb->ccb_h.pinfo.priority); 4906 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 4907 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 4908 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 4909 work_ccb->crcn.flags = request_ccb->crcn.flags; 4910 #if 0 4911 printf("xpt_scan_bus: probing %d:%d:%d\n", 4912 request_ccb->ccb_h.path_id, i, 0); 4913 #endif 4914 xpt_action(work_ccb); 4915 } 4916 break; 4917 } 4918 case XPT_SCAN_LUN: 4919 { 4920 xpt_scan_bus_info *scan_info; 4921 path_id_t path_id; 4922 target_id_t target_id; 4923 lun_id_t lun_id; 4924 4925 /* Reuse the same CCB to query if a device was really found */ 4926 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 4927 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 4928 request_ccb->ccb_h.pinfo.priority); 4929 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 4930 4931 path_id = request_ccb->ccb_h.path_id; 4932 target_id = request_ccb->ccb_h.target_id; 4933 lun_id = request_ccb->ccb_h.target_lun; 4934 xpt_action(request_ccb); 4935 4936 #if 0 4937 printf("xpt_scan_bus: got back probe from %d:%d:%d\n", 4938 path_id, target_id, lun_id); 4939 #endif 4940 4941 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 4942 struct cam_ed *device; 4943 struct cam_et *target; 4944 int s, phl; 4945 4946 /* 4947 * If we already probed lun 0 successfully, or 4948 * we have additional configured luns on this 4949 * target that might have "gone away", go onto 4950 * the next lun. 4951 */ 4952 target = request_ccb->ccb_h.path->target; 4953 /* 4954 * We may touch devices that we don't 4955 * hold references too, so ensure they 4956 * don't disappear out from under us. 4957 * The target above is referenced by the 4958 * path in the request ccb. 4959 */ 4960 phl = 0; 4961 s = splcam(); 4962 device = TAILQ_FIRST(&target->ed_entries); 4963 if (device != NULL) { 4964 phl = device->quirk->quirks & CAM_QUIRK_HILUNS; 4965 if (device->lun_id == 0) 4966 device = TAILQ_NEXT(device, links); 4967 } 4968 splx(s); 4969 if ((lun_id != 0) || (device != NULL)) { 4970 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 4971 lun_id++; 4972 } 4973 } else { 4974 struct cam_ed *device; 4975 4976 device = request_ccb->ccb_h.path->device; 4977 4978 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 4979 /* Try the next lun */ 4980 if (lun_id < (CAM_SCSI2_MAXLUN-1) || 4981 (device->quirk->quirks & CAM_QUIRK_HILUNS)) 4982 lun_id++; 4983 } 4984 } 4985 4986 xpt_free_path(request_ccb->ccb_h.path); 4987 4988 /* Check Bounds */ 4989 if ((lun_id == request_ccb->ccb_h.target_lun) 4990 || lun_id > scan_info->cpi->max_lun) { 4991 /* We're done */ 4992 4993 xpt_free_ccb(request_ccb); 4994 scan_info->pending_count--; 4995 if (scan_info->pending_count == 0) { 4996 xpt_free_ccb((union ccb *)scan_info->cpi); 4997 request_ccb = scan_info->request_ccb; 4998 free(scan_info, M_TEMP); 4999 request_ccb->ccb_h.status = CAM_REQ_CMP; 5000 xpt_done(request_ccb); 5001 } 5002 } else { 5003 /* Try the next device */ 5004 struct cam_path *path; 5005 cam_status status; 5006 5007 path = request_ccb->ccb_h.path; 5008 status = xpt_create_path(&path, xpt_periph, 5009 path_id, target_id, lun_id); 5010 if (status != CAM_REQ_CMP) { 5011 printf("xpt_scan_bus: xpt_create_path failed " 5012 "with status %#x, halting LUN scan\n", 5013 status); 5014 xpt_free_ccb(request_ccb); 5015 scan_info->pending_count--; 5016 if (scan_info->pending_count == 0) { 5017 xpt_free_ccb( 5018 (union ccb *)scan_info->cpi); 5019 request_ccb = scan_info->request_ccb; 5020 free(scan_info, M_TEMP); 5021 request_ccb->ccb_h.status = CAM_REQ_CMP; 5022 xpt_done(request_ccb); 5023 break; 5024 } 5025 } 5026 xpt_setup_ccb(&request_ccb->ccb_h, path, 5027 request_ccb->ccb_h.pinfo.priority); 5028 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5029 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5030 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5031 request_ccb->crcn.flags = 5032 scan_info->request_ccb->crcn.flags; 5033 #if 0 5034 xpt_print_path(path); 5035 printf("xpt_scan bus probing\n"); 5036 #endif 5037 xpt_action(request_ccb); 5038 } 5039 break; 5040 } 5041 default: 5042 break; 5043 } 5044 } 5045 5046 typedef enum { 5047 PROBE_TUR, 5048 PROBE_INQUIRY, 5049 PROBE_FULL_INQUIRY, 5050 PROBE_MODE_SENSE, 5051 PROBE_SERIAL_NUM, 5052 PROBE_TUR_FOR_NEGOTIATION 5053 } probe_action; 5054 5055 typedef enum { 5056 PROBE_INQUIRY_CKSUM = 0x01, 5057 PROBE_SERIAL_CKSUM = 0x02, 5058 PROBE_NO_ANNOUNCE = 0x04 5059 } probe_flags; 5060 5061 typedef struct { 5062 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5063 probe_action action; 5064 union ccb saved_ccb; 5065 probe_flags flags; 5066 MD5_CTX context; 5067 u_int8_t digest[16]; 5068 } probe_softc; 5069 5070 static void 5071 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5072 cam_flags flags, union ccb *request_ccb) 5073 { 5074 struct ccb_pathinq cpi; 5075 cam_status status; 5076 struct cam_path *new_path; 5077 struct cam_periph *old_periph; 5078 int s; 5079 5080 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5081 ("xpt_scan_lun\n")); 5082 5083 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5084 cpi.ccb_h.func_code = XPT_PATH_INQ; 5085 xpt_action((union ccb *)&cpi); 5086 5087 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5088 if (request_ccb != NULL) { 5089 request_ccb->ccb_h.status = cpi.ccb_h.status; 5090 xpt_done(request_ccb); 5091 } 5092 return; 5093 } 5094 5095 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5096 /* 5097 * Can't scan the bus on an adapter that 5098 * cannot perform the initiator role. 5099 */ 5100 if (request_ccb != NULL) { 5101 request_ccb->ccb_h.status = CAM_REQ_CMP; 5102 xpt_done(request_ccb); 5103 } 5104 return; 5105 } 5106 5107 if (request_ccb == NULL) { 5108 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5109 if (request_ccb == NULL) { 5110 xpt_print_path(path); 5111 printf("xpt_scan_lun: can't allocate CCB, can't " 5112 "continue\n"); 5113 return; 5114 } 5115 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5116 if (new_path == NULL) { 5117 xpt_print_path(path); 5118 printf("xpt_scan_lun: can't allocate path, can't " 5119 "continue\n"); 5120 free(request_ccb, M_TEMP); 5121 return; 5122 } 5123 status = xpt_compile_path(new_path, xpt_periph, 5124 path->bus->path_id, 5125 path->target->target_id, 5126 path->device->lun_id); 5127 5128 if (status != CAM_REQ_CMP) { 5129 xpt_print_path(path); 5130 printf("xpt_scan_lun: can't compile path, can't " 5131 "continue\n"); 5132 free(request_ccb, M_TEMP); 5133 free(new_path, M_TEMP); 5134 return; 5135 } 5136 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5137 request_ccb->ccb_h.cbfcnp = xptscandone; 5138 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5139 request_ccb->crcn.flags = flags; 5140 } 5141 5142 s = splsoftcam(); 5143 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5144 probe_softc *softc; 5145 5146 softc = (probe_softc *)old_periph->softc; 5147 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5148 periph_links.tqe); 5149 } else { 5150 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5151 probestart, "probe", 5152 CAM_PERIPH_BIO, 5153 request_ccb->ccb_h.path, NULL, 0, 5154 request_ccb); 5155 5156 if (status != CAM_REQ_CMP) { 5157 xpt_print_path(path); 5158 printf("xpt_scan_lun: cam_alloc_periph returned an " 5159 "error, can't continue probe\n"); 5160 request_ccb->ccb_h.status = status; 5161 xpt_done(request_ccb); 5162 } 5163 } 5164 splx(s); 5165 } 5166 5167 static void 5168 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5169 { 5170 xpt_release_path(done_ccb->ccb_h.path); 5171 free(done_ccb->ccb_h.path, M_TEMP); 5172 free(done_ccb, M_TEMP); 5173 } 5174 5175 static cam_status 5176 proberegister(struct cam_periph *periph, void *arg) 5177 { 5178 union ccb *request_ccb; /* CCB representing the probe request */ 5179 probe_softc *softc; 5180 5181 request_ccb = (union ccb *)arg; 5182 if (periph == NULL) { 5183 printf("proberegister: periph was NULL!!\n"); 5184 return(CAM_REQ_CMP_ERR); 5185 } 5186 5187 if (request_ccb == NULL) { 5188 printf("proberegister: no probe CCB, " 5189 "can't register device\n"); 5190 return(CAM_REQ_CMP_ERR); 5191 } 5192 5193 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5194 5195 if (softc == NULL) { 5196 printf("proberegister: Unable to probe new device. " 5197 "Unable to allocate softc\n"); 5198 return(CAM_REQ_CMP_ERR); 5199 } 5200 TAILQ_INIT(&softc->request_ccbs); 5201 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5202 periph_links.tqe); 5203 softc->flags = 0; 5204 periph->softc = softc; 5205 cam_periph_acquire(periph); 5206 /* 5207 * Ensure we've waited at least a bus settle 5208 * delay before attempting to probe the device. 5209 * For HBAs that don't do bus resets, this won't make a difference. 5210 */ 5211 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5212 SCSI_DELAY); 5213 probeschedule(periph); 5214 return(CAM_REQ_CMP); 5215 } 5216 5217 static void 5218 probeschedule(struct cam_periph *periph) 5219 { 5220 struct ccb_pathinq cpi; 5221 union ccb *ccb; 5222 probe_softc *softc; 5223 5224 softc = (probe_softc *)periph->softc; 5225 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5226 5227 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5228 cpi.ccb_h.func_code = XPT_PATH_INQ; 5229 xpt_action((union ccb *)&cpi); 5230 5231 /* 5232 * If a device has gone away and another device, or the same one, 5233 * is back in the same place, it should have a unit attention 5234 * condition pending. It will not report the unit attention in 5235 * response to an inquiry, which may leave invalid transfer 5236 * negotiations in effect. The TUR will reveal the unit attention 5237 * condition. Only send the TUR for lun 0, since some devices 5238 * will get confused by commands other than inquiry to non-existent 5239 * luns. If you think a device has gone away start your scan from 5240 * lun 0. This will insure that any bogus transfer settings are 5241 * invalidated. 5242 * 5243 * If we haven't seen the device before and the controller supports 5244 * some kind of transfer negotiation, negotiate with the first 5245 * sent command if no bus reset was performed at startup. This 5246 * ensures that the device is not confused by transfer negotiation 5247 * settings left over by loader or BIOS action. 5248 */ 5249 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5250 && (ccb->ccb_h.target_lun == 0)) { 5251 softc->action = PROBE_TUR; 5252 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5253 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5254 proberequestdefaultnegotiation(periph); 5255 softc->action = PROBE_INQUIRY; 5256 } else { 5257 softc->action = PROBE_INQUIRY; 5258 } 5259 5260 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5261 softc->flags |= PROBE_NO_ANNOUNCE; 5262 else 5263 softc->flags &= ~PROBE_NO_ANNOUNCE; 5264 5265 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5266 } 5267 5268 static void 5269 probestart(struct cam_periph *periph, union ccb *start_ccb) 5270 { 5271 /* Probe the device that our peripheral driver points to */ 5272 struct ccb_scsiio *csio; 5273 probe_softc *softc; 5274 5275 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5276 5277 softc = (probe_softc *)periph->softc; 5278 csio = &start_ccb->csio; 5279 5280 switch (softc->action) { 5281 case PROBE_TUR: 5282 case PROBE_TUR_FOR_NEGOTIATION: 5283 { 5284 scsi_test_unit_ready(csio, 5285 /*retries*/4, 5286 probedone, 5287 MSG_SIMPLE_Q_TAG, 5288 SSD_FULL_SIZE, 5289 /*timeout*/60000); 5290 break; 5291 } 5292 case PROBE_INQUIRY: 5293 case PROBE_FULL_INQUIRY: 5294 { 5295 u_int inquiry_len; 5296 struct scsi_inquiry_data *inq_buf; 5297 5298 inq_buf = &periph->path->device->inq_data; 5299 /* 5300 * If the device is currently configured, we calculate an 5301 * MD5 checksum of the inquiry data, and if the serial number 5302 * length is greater than 0, add the serial number data 5303 * into the checksum as well. Once the inquiry and the 5304 * serial number check finish, we attempt to figure out 5305 * whether we still have the same device. 5306 */ 5307 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5308 5309 MD5Init(&softc->context); 5310 MD5Update(&softc->context, (unsigned char *)inq_buf, 5311 sizeof(struct scsi_inquiry_data)); 5312 softc->flags |= PROBE_INQUIRY_CKSUM; 5313 if (periph->path->device->serial_num_len > 0) { 5314 MD5Update(&softc->context, 5315 periph->path->device->serial_num, 5316 periph->path->device->serial_num_len); 5317 softc->flags |= PROBE_SERIAL_CKSUM; 5318 } 5319 MD5Final(softc->digest, &softc->context); 5320 } 5321 5322 if (softc->action == PROBE_INQUIRY) 5323 inquiry_len = SHORT_INQUIRY_LENGTH; 5324 else 5325 inquiry_len = inq_buf->additional_length + 4; 5326 5327 scsi_inquiry(csio, 5328 /*retries*/4, 5329 probedone, 5330 MSG_SIMPLE_Q_TAG, 5331 (u_int8_t *)inq_buf, 5332 inquiry_len, 5333 /*evpd*/FALSE, 5334 /*page_code*/0, 5335 SSD_MIN_SIZE, 5336 /*timeout*/60 * 1000); 5337 break; 5338 } 5339 case PROBE_MODE_SENSE: 5340 { 5341 void *mode_buf; 5342 int mode_buf_len; 5343 5344 mode_buf_len = sizeof(struct scsi_mode_header_6) 5345 + sizeof(struct scsi_mode_blk_desc) 5346 + sizeof(struct scsi_control_page); 5347 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5348 if (mode_buf != NULL) { 5349 scsi_mode_sense(csio, 5350 /*retries*/4, 5351 probedone, 5352 MSG_SIMPLE_Q_TAG, 5353 /*dbd*/FALSE, 5354 SMS_PAGE_CTRL_CURRENT, 5355 SMS_CONTROL_MODE_PAGE, 5356 mode_buf, 5357 mode_buf_len, 5358 SSD_FULL_SIZE, 5359 /*timeout*/60000); 5360 break; 5361 } 5362 xpt_print_path(periph->path); 5363 printf("Unable to mode sense control page - malloc failure\n"); 5364 softc->action = PROBE_SERIAL_NUM; 5365 /* FALLTHROUGH */ 5366 } 5367 case PROBE_SERIAL_NUM: 5368 { 5369 struct scsi_vpd_unit_serial_number *serial_buf; 5370 struct cam_ed* device; 5371 5372 serial_buf = NULL; 5373 device = periph->path->device; 5374 device->serial_num = NULL; 5375 device->serial_num_len = 0; 5376 5377 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5378 serial_buf = (struct scsi_vpd_unit_serial_number *) 5379 malloc(sizeof(*serial_buf), M_TEMP, M_NOWAIT); 5380 5381 if (serial_buf != NULL) { 5382 bzero(serial_buf, sizeof(*serial_buf)); 5383 scsi_inquiry(csio, 5384 /*retries*/4, 5385 probedone, 5386 MSG_SIMPLE_Q_TAG, 5387 (u_int8_t *)serial_buf, 5388 sizeof(*serial_buf), 5389 /*evpd*/TRUE, 5390 SVPD_UNIT_SERIAL_NUMBER, 5391 SSD_MIN_SIZE, 5392 /*timeout*/60 * 1000); 5393 break; 5394 } 5395 /* 5396 * We'll have to do without, let our probedone 5397 * routine finish up for us. 5398 */ 5399 start_ccb->csio.data_ptr = NULL; 5400 probedone(periph, start_ccb); 5401 return; 5402 } 5403 } 5404 xpt_action(start_ccb); 5405 } 5406 5407 static void 5408 proberequestdefaultnegotiation(struct cam_periph *periph) 5409 { 5410 struct ccb_trans_settings cts; 5411 5412 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5413 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5414 cts.flags = CCB_TRANS_USER_SETTINGS; 5415 xpt_action((union ccb *)&cts); 5416 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5417 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5418 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5419 xpt_action((union ccb *)&cts); 5420 } 5421 5422 static void 5423 probedone(struct cam_periph *periph, union ccb *done_ccb) 5424 { 5425 probe_softc *softc; 5426 struct cam_path *path; 5427 u_int32_t priority; 5428 5429 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5430 5431 softc = (probe_softc *)periph->softc; 5432 path = done_ccb->ccb_h.path; 5433 priority = done_ccb->ccb_h.pinfo.priority; 5434 5435 switch (softc->action) { 5436 case PROBE_TUR: 5437 { 5438 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5439 5440 if (cam_periph_error(done_ccb, 0, 5441 SF_NO_PRINT, NULL) == ERESTART) 5442 return; 5443 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5444 /* Don't wedge the queue */ 5445 xpt_release_devq(done_ccb->ccb_h.path, 5446 /*count*/1, 5447 /*run_queue*/TRUE); 5448 } 5449 softc->action = PROBE_INQUIRY; 5450 xpt_release_ccb(done_ccb); 5451 xpt_schedule(periph, priority); 5452 return; 5453 } 5454 case PROBE_INQUIRY: 5455 case PROBE_FULL_INQUIRY: 5456 { 5457 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5458 struct scsi_inquiry_data *inq_buf; 5459 u_int8_t periph_qual; 5460 u_int8_t periph_dtype; 5461 5462 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5463 inq_buf = &path->device->inq_data; 5464 5465 periph_qual = SID_QUAL(inq_buf); 5466 periph_dtype = SID_TYPE(inq_buf); 5467 5468 if (periph_dtype != T_NODEVICE) { 5469 switch(periph_qual) { 5470 case SID_QUAL_LU_CONNECTED: 5471 { 5472 u_int8_t alen; 5473 5474 /* 5475 * We conservatively request only 5476 * SHORT_INQUIRY_LEN bytes of inquiry 5477 * information during our first try 5478 * at sending an INQUIRY. If the device 5479 * has more information to give, 5480 * perform a second request specifying 5481 * the amount of information the device 5482 * is willing to give. 5483 */ 5484 alen = inq_buf->additional_length; 5485 if (softc->action == PROBE_INQUIRY 5486 && alen > (SHORT_INQUIRY_LENGTH - 4)) { 5487 softc->action = 5488 PROBE_FULL_INQUIRY; 5489 xpt_release_ccb(done_ccb); 5490 xpt_schedule(periph, priority); 5491 return; 5492 } 5493 5494 xpt_find_quirk(path->device); 5495 5496 if ((inq_buf->flags & SID_CmdQue) != 0) 5497 softc->action = 5498 PROBE_MODE_SENSE; 5499 else 5500 softc->action = 5501 PROBE_SERIAL_NUM; 5502 5503 path->device->flags &= 5504 ~CAM_DEV_UNCONFIGURED; 5505 5506 xpt_release_ccb(done_ccb); 5507 xpt_schedule(periph, priority); 5508 return; 5509 } 5510 default: 5511 break; 5512 } 5513 } 5514 } else if (cam_periph_error(done_ccb, 0, 5515 done_ccb->ccb_h.target_lun > 0 5516 ? SF_RETRY_UA|SF_QUIET_IR 5517 : SF_RETRY_UA, 5518 &softc->saved_ccb) == ERESTART) { 5519 return; 5520 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5521 /* Don't wedge the queue */ 5522 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5523 /*run_queue*/TRUE); 5524 } 5525 /* 5526 * If we get to this point, we got an error status back 5527 * from the inquiry and the error status doesn't require 5528 * automatically retrying the command. Therefore, the 5529 * inquiry failed. If we had inquiry information before 5530 * for this device, but this latest inquiry command failed, 5531 * the device has probably gone away. If this device isn't 5532 * already marked unconfigured, notify the peripheral 5533 * drivers that this device is no more. 5534 */ 5535 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5536 /* Send the async notification. */ 5537 xpt_async(AC_LOST_DEVICE, path, NULL); 5538 5539 xpt_release_ccb(done_ccb); 5540 break; 5541 } 5542 case PROBE_MODE_SENSE: 5543 { 5544 struct ccb_scsiio *csio; 5545 struct scsi_mode_header_6 *mode_hdr; 5546 5547 csio = &done_ccb->csio; 5548 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 5549 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5550 struct scsi_control_page *page; 5551 u_int8_t *offset; 5552 5553 offset = ((u_int8_t *)&mode_hdr[1]) 5554 + mode_hdr->blk_desc_len; 5555 page = (struct scsi_control_page *)offset; 5556 path->device->queue_flags = page->queue_flags; 5557 } else if (cam_periph_error(done_ccb, 0, 5558 SF_RETRY_UA|SF_NO_PRINT, 5559 &softc->saved_ccb) == ERESTART) { 5560 return; 5561 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5562 /* Don't wedge the queue */ 5563 xpt_release_devq(done_ccb->ccb_h.path, 5564 /*count*/1, /*run_queue*/TRUE); 5565 } 5566 xpt_release_ccb(done_ccb); 5567 free(mode_hdr, M_TEMP); 5568 softc->action = PROBE_SERIAL_NUM; 5569 xpt_schedule(periph, priority); 5570 return; 5571 } 5572 case PROBE_SERIAL_NUM: 5573 { 5574 struct ccb_scsiio *csio; 5575 struct scsi_vpd_unit_serial_number *serial_buf; 5576 u_int32_t priority; 5577 int changed; 5578 int have_serialnum; 5579 5580 changed = 1; 5581 have_serialnum = 0; 5582 csio = &done_ccb->csio; 5583 priority = done_ccb->ccb_h.pinfo.priority; 5584 serial_buf = 5585 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 5586 5587 /* Clean up from previous instance of this device */ 5588 if (path->device->serial_num != NULL) { 5589 free(path->device->serial_num, M_DEVBUF); 5590 path->device->serial_num = NULL; 5591 path->device->serial_num_len = 0; 5592 } 5593 5594 if (serial_buf == NULL) { 5595 /* 5596 * Don't process the command as it was never sent 5597 */ 5598 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 5599 && (serial_buf->length > 0)) { 5600 5601 have_serialnum = 1; 5602 path->device->serial_num = 5603 (u_int8_t *)malloc((serial_buf->length + 1), 5604 M_DEVBUF, M_NOWAIT); 5605 if (path->device->serial_num != NULL) { 5606 bcopy(serial_buf->serial_num, 5607 path->device->serial_num, 5608 serial_buf->length); 5609 path->device->serial_num_len = 5610 serial_buf->length; 5611 path->device->serial_num[serial_buf->length] 5612 = '\0'; 5613 } 5614 } else if (cam_periph_error(done_ccb, 0, 5615 SF_RETRY_UA|SF_NO_PRINT, 5616 &softc->saved_ccb) == ERESTART) { 5617 return; 5618 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5619 /* Don't wedge the queue */ 5620 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5621 /*run_queue*/TRUE); 5622 } 5623 5624 /* 5625 * Let's see if we have seen this device before. 5626 */ 5627 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 5628 MD5_CTX context; 5629 u_int8_t digest[16]; 5630 5631 MD5Init(&context); 5632 5633 MD5Update(&context, 5634 (unsigned char *)&path->device->inq_data, 5635 sizeof(struct scsi_inquiry_data)); 5636 5637 if (have_serialnum) 5638 MD5Update(&context, serial_buf->serial_num, 5639 serial_buf->length); 5640 5641 MD5Final(digest, &context); 5642 if (bcmp(softc->digest, digest, 16) == 0) 5643 changed = 0; 5644 5645 /* 5646 * XXX Do we need to do a TUR in order to ensure 5647 * that the device really hasn't changed??? 5648 */ 5649 if ((changed != 0) 5650 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 5651 xpt_async(AC_LOST_DEVICE, path, NULL); 5652 } 5653 if (serial_buf != NULL) 5654 free(serial_buf, M_TEMP); 5655 5656 if (changed != 0) { 5657 /* 5658 * Now that we have all the necessary 5659 * information to safely perform transfer 5660 * negotiations... Controllers don't perform 5661 * any negotiation or tagged queuing until 5662 * after the first XPT_SET_TRAN_SETTINGS ccb is 5663 * received. So, on a new device, just retreive 5664 * the user settings, and set them as the current 5665 * settings to set the device up. 5666 */ 5667 proberequestdefaultnegotiation(periph); 5668 xpt_release_ccb(done_ccb); 5669 5670 /* 5671 * Perform a TUR to allow the controller to 5672 * perform any necessary transfer negotiation. 5673 */ 5674 softc->action = PROBE_TUR_FOR_NEGOTIATION; 5675 xpt_schedule(periph, priority); 5676 return; 5677 } 5678 xpt_release_ccb(done_ccb); 5679 break; 5680 } 5681 case PROBE_TUR_FOR_NEGOTIATION: 5682 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5683 /* Don't wedge the queue */ 5684 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5685 /*run_queue*/TRUE); 5686 } 5687 5688 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5689 5690 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 5691 /* Inform the XPT that a new device has been found */ 5692 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5693 xpt_action(done_ccb); 5694 5695 xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb); 5696 } 5697 xpt_release_ccb(done_ccb); 5698 break; 5699 } 5700 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5701 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 5702 done_ccb->ccb_h.status = CAM_REQ_CMP; 5703 xpt_done(done_ccb); 5704 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 5705 cam_periph_invalidate(periph); 5706 cam_periph_release(periph); 5707 } else { 5708 probeschedule(periph); 5709 } 5710 } 5711 5712 static void 5713 probecleanup(struct cam_periph *periph) 5714 { 5715 free(periph->softc, M_TEMP); 5716 } 5717 5718 static void 5719 xpt_find_quirk(struct cam_ed *device) 5720 { 5721 caddr_t match; 5722 5723 match = cam_quirkmatch((caddr_t)&device->inq_data, 5724 (caddr_t)xpt_quirk_table, 5725 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 5726 sizeof(*xpt_quirk_table), scsi_inquiry_match); 5727 5728 if (match == NULL) 5729 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 5730 5731 device->quirk = (struct xpt_quirk_entry *)match; 5732 } 5733 5734 static void 5735 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 5736 int async_update) 5737 { 5738 struct cam_sim *sim; 5739 int qfrozen; 5740 5741 sim = cts->ccb_h.path->bus->sim; 5742 if (async_update == FALSE) { 5743 struct scsi_inquiry_data *inq_data; 5744 struct ccb_pathinq cpi; 5745 struct ccb_trans_settings cur_cts; 5746 5747 if (device == NULL) { 5748 cts->ccb_h.status = CAM_PATH_INVALID; 5749 xpt_done((union ccb *)cts); 5750 return; 5751 } 5752 5753 /* 5754 * Perform sanity checking against what the 5755 * controller and device can do. 5756 */ 5757 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 5758 cpi.ccb_h.func_code = XPT_PATH_INQ; 5759 xpt_action((union ccb *)&cpi); 5760 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 5761 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5762 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 5763 xpt_action((union ccb *)&cur_cts); 5764 inq_data = &device->inq_data; 5765 5766 /* Fill in any gaps in what the user gave us */ 5767 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 5768 cts->sync_period = cur_cts.sync_period; 5769 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 5770 cts->sync_offset = cur_cts.sync_offset; 5771 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 5772 cts->bus_width = cur_cts.bus_width; 5773 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 5774 cts->flags &= ~CCB_TRANS_DISC_ENB; 5775 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 5776 } 5777 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 5778 cts->flags &= ~CCB_TRANS_TAG_ENB; 5779 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 5780 } 5781 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 5782 && (inq_data->flags & SID_Sync) == 0) 5783 || (cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { 5784 /* Force async */ 5785 cts->sync_period = 0; 5786 cts->sync_offset = 0; 5787 } 5788 5789 /* 5790 * Don't allow DT transmission rates if the 5791 * device does not support it. 5792 */ 5793 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 5794 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 5795 && cts->sync_period <= 0x9) 5796 cts->sync_period = 0xa; 5797 5798 switch (cts->bus_width) { 5799 case MSG_EXT_WDTR_BUS_32_BIT: 5800 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 5801 || (inq_data->flags & SID_WBus32) != 0) 5802 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 5803 break; 5804 /* Fall Through to 16-bit */ 5805 case MSG_EXT_WDTR_BUS_16_BIT: 5806 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 5807 || (inq_data->flags & SID_WBus16) != 0) 5808 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 5809 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 5810 break; 5811 } 5812 /* Fall Through to 8-bit */ 5813 default: /* New bus width?? */ 5814 case MSG_EXT_WDTR_BUS_8_BIT: 5815 /* All targets can do this */ 5816 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 5817 break; 5818 } 5819 5820 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 5821 /* 5822 * Can't tag queue without disconnection. 5823 */ 5824 cts->flags &= ~CCB_TRANS_TAG_ENB; 5825 cts->valid |= CCB_TRANS_TQ_VALID; 5826 } 5827 5828 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 5829 || (inq_data->flags & SID_CmdQue) == 0 5830 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 5831 || (device->quirk->mintags == 0)) { 5832 /* 5833 * Can't tag on hardware that doesn't support, 5834 * doesn't have it enabled, or has broken tag support. 5835 */ 5836 cts->flags &= ~CCB_TRANS_TAG_ENB; 5837 } 5838 } 5839 5840 qfrozen = FALSE; 5841 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0 5842 && (async_update == FALSE)) { 5843 int device_tagenb; 5844 5845 /* 5846 * If we are transitioning from tags to no-tags or 5847 * vice-versa, we need to carefully freeze and restart 5848 * the queue so that we don't overlap tagged and non-tagged 5849 * commands. We also temporarily stop tags if there is 5850 * a change in transfer negotiation settings to allow 5851 * "tag-less" negotiation. 5852 */ 5853 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5854 || (device->inq_flags & SID_CmdQue) != 0) 5855 device_tagenb = TRUE; 5856 else 5857 device_tagenb = FALSE; 5858 5859 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 5860 && device_tagenb == FALSE) 5861 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 5862 && device_tagenb == TRUE)) { 5863 5864 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 5865 /* 5866 * Delay change to use tags until after a 5867 * few commands have gone to this device so 5868 * the controller has time to perform transfer 5869 * negotiations without tagged messages getting 5870 * in the way. 5871 */ 5872 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 5873 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 5874 } else { 5875 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 5876 qfrozen = TRUE; 5877 device->inq_flags &= ~SID_CmdQue; 5878 xpt_dev_ccbq_resize(cts->ccb_h.path, 5879 sim->max_dev_openings); 5880 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5881 device->tag_delay_count = 0; 5882 } 5883 } 5884 } 5885 5886 if (async_update == FALSE) { 5887 /* 5888 * If we are currently performing tagged transactions to 5889 * this device and want to change its negotiation parameters, 5890 * go non-tagged for a bit to give the controller a chance to 5891 * negotiate unhampered by tag messages. 5892 */ 5893 if ((device->inq_flags & SID_CmdQue) != 0 5894 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 5895 CCB_TRANS_SYNC_OFFSET_VALID| 5896 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 5897 xpt_toggle_tags(cts->ccb_h.path); 5898 5899 (*(sim->sim_action))(sim, (union ccb *)cts); 5900 } 5901 5902 if (qfrozen) { 5903 struct ccb_relsim crs; 5904 5905 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 5906 /*priority*/1); 5907 crs.ccb_h.func_code = XPT_REL_SIMQ; 5908 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5909 crs.openings 5910 = crs.release_timeout 5911 = crs.qfrozen_cnt 5912 = 0; 5913 xpt_action((union ccb *)&crs); 5914 } 5915 } 5916 5917 static void 5918 xpt_toggle_tags(struct cam_path *path) 5919 { 5920 struct cam_ed *dev; 5921 5922 /* 5923 * Give controllers a chance to renegotiate 5924 * before starting tag operations. We 5925 * "toggle" tagged queuing off then on 5926 * which causes the tag enable command delay 5927 * counter to come into effect. 5928 */ 5929 dev = path->device; 5930 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5931 || ((dev->inq_flags & SID_CmdQue) != 0 5932 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 5933 struct ccb_trans_settings cts; 5934 5935 xpt_setup_ccb(&cts.ccb_h, path, 1); 5936 cts.flags = 0; 5937 cts.valid = CCB_TRANS_TQ_VALID; 5938 xpt_set_transfer_settings(&cts, path->device, 5939 /*async_update*/TRUE); 5940 cts.flags = CCB_TRANS_TAG_ENB; 5941 xpt_set_transfer_settings(&cts, path->device, 5942 /*async_update*/TRUE); 5943 } 5944 } 5945 5946 static void 5947 xpt_start_tags(struct cam_path *path) 5948 { 5949 struct ccb_relsim crs; 5950 struct cam_ed *device; 5951 struct cam_sim *sim; 5952 int newopenings; 5953 5954 device = path->device; 5955 sim = path->bus->sim; 5956 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5957 xpt_freeze_devq(path, /*count*/1); 5958 device->inq_flags |= SID_CmdQue; 5959 newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings); 5960 xpt_dev_ccbq_resize(path, newopenings); 5961 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 5962 crs.ccb_h.func_code = XPT_REL_SIMQ; 5963 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5964 crs.openings 5965 = crs.release_timeout 5966 = crs.qfrozen_cnt 5967 = 0; 5968 xpt_action((union ccb *)&crs); 5969 } 5970 5971 static int busses_to_config; 5972 static int busses_to_reset; 5973 5974 static int 5975 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 5976 { 5977 if (bus->path_id != CAM_XPT_PATH_ID) { 5978 struct cam_path path; 5979 struct ccb_pathinq cpi; 5980 int can_negotiate; 5981 5982 busses_to_config++; 5983 xpt_compile_path(&path, NULL, bus->path_id, 5984 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5985 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 5986 cpi.ccb_h.func_code = XPT_PATH_INQ; 5987 xpt_action((union ccb *)&cpi); 5988 can_negotiate = cpi.hba_inquiry; 5989 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 5990 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 5991 && can_negotiate) 5992 busses_to_reset++; 5993 xpt_release_path(&path); 5994 } 5995 5996 return(1); 5997 } 5998 5999 static int 6000 xptconfigfunc(struct cam_eb *bus, void *arg) 6001 { 6002 struct cam_path *path; 6003 union ccb *work_ccb; 6004 6005 if (bus->path_id != CAM_XPT_PATH_ID) { 6006 cam_status status; 6007 int can_negotiate; 6008 6009 work_ccb = xpt_alloc_ccb(); 6010 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6011 CAM_TARGET_WILDCARD, 6012 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6013 printf("xptconfigfunc: xpt_create_path failed with " 6014 "status %#x for bus %d\n", status, bus->path_id); 6015 printf("xptconfigfunc: halting bus configuration\n"); 6016 xpt_free_ccb(work_ccb); 6017 busses_to_config--; 6018 xpt_finishconfig(xpt_periph, NULL); 6019 return(0); 6020 } 6021 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6022 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6023 xpt_action(work_ccb); 6024 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6025 printf("xptconfigfunc: CPI failed on bus %d " 6026 "with status %d\n", bus->path_id, 6027 work_ccb->ccb_h.status); 6028 xpt_finishconfig(xpt_periph, work_ccb); 6029 return(1); 6030 } 6031 6032 can_negotiate = work_ccb->cpi.hba_inquiry; 6033 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6034 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6035 && (can_negotiate != 0)) { 6036 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6037 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6038 work_ccb->ccb_h.cbfcnp = NULL; 6039 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6040 ("Resetting Bus\n")); 6041 xpt_action(work_ccb); 6042 xpt_finishconfig(xpt_periph, work_ccb); 6043 } else { 6044 /* Act as though we performed a successful BUS RESET */ 6045 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6046 xpt_finishconfig(xpt_periph, work_ccb); 6047 } 6048 } 6049 6050 return(1); 6051 } 6052 6053 static void 6054 xpt_config(void *arg) 6055 { 6056 /* Now that interrupts are enabled, go find our devices */ 6057 6058 #ifdef CAMDEBUG 6059 /* Setup debugging flags and path */ 6060 #ifdef CAM_DEBUG_FLAGS 6061 cam_dflags = CAM_DEBUG_FLAGS; 6062 #else /* !CAM_DEBUG_FLAGS */ 6063 cam_dflags = CAM_DEBUG_NONE; 6064 #endif /* CAM_DEBUG_FLAGS */ 6065 #ifdef CAM_DEBUG_BUS 6066 if (cam_dflags != CAM_DEBUG_NONE) { 6067 if (xpt_create_path(&cam_dpath, xpt_periph, 6068 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6069 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6070 printf("xpt_config: xpt_create_path() failed for debug" 6071 " target %d:%d:%d, debugging disabled\n", 6072 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6073 cam_dflags = CAM_DEBUG_NONE; 6074 } 6075 } else 6076 cam_dpath = NULL; 6077 #else /* !CAM_DEBUG_BUS */ 6078 cam_dpath = NULL; 6079 #endif /* CAM_DEBUG_BUS */ 6080 #endif /* CAMDEBUG */ 6081 6082 /* 6083 * Scan all installed busses. 6084 */ 6085 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6086 6087 if (busses_to_config == 0) { 6088 /* Call manually because we don't have any busses */ 6089 xpt_finishconfig(xpt_periph, NULL); 6090 } else { 6091 if (busses_to_reset > 0 && SCSI_DELAY >= 2000) { 6092 printf("Waiting %d seconds for SCSI " 6093 "devices to settle\n", SCSI_DELAY/1000); 6094 } 6095 xpt_for_all_busses(xptconfigfunc, NULL); 6096 } 6097 } 6098 6099 /* 6100 * If the given device only has one peripheral attached to it, and if that 6101 * peripheral is the passthrough driver, announce it. This insures that the 6102 * user sees some sort of announcement for every peripheral in their system. 6103 */ 6104 static int 6105 xptpassannouncefunc(struct cam_ed *device, void *arg) 6106 { 6107 struct cam_periph *periph; 6108 int i; 6109 6110 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6111 periph = SLIST_NEXT(periph, periph_links), i++); 6112 6113 periph = SLIST_FIRST(&device->periphs); 6114 if ((i == 1) 6115 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6116 xpt_announce_periph(periph, NULL); 6117 6118 return(1); 6119 } 6120 6121 static void 6122 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6123 { 6124 struct periph_driver **p_drv; 6125 int i; 6126 6127 if (done_ccb != NULL) { 6128 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6129 ("xpt_finishconfig\n")); 6130 switch(done_ccb->ccb_h.func_code) { 6131 case XPT_RESET_BUS: 6132 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6133 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6134 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6135 xpt_action(done_ccb); 6136 return; 6137 } 6138 /* FALLTHROUGH */ 6139 case XPT_SCAN_BUS: 6140 default: 6141 xpt_free_path(done_ccb->ccb_h.path); 6142 busses_to_config--; 6143 break; 6144 } 6145 } 6146 6147 if (busses_to_config == 0) { 6148 /* Register all the peripheral drivers */ 6149 /* XXX This will have to change when we have loadable modules */ 6150 p_drv = (struct periph_driver **)periphdriver_set.ls_items; 6151 for (i = 0; p_drv[i] != NULL; i++) { 6152 (*p_drv[i]->init)(); 6153 } 6154 6155 /* 6156 * Check for devices with no "standard" peripheral driver 6157 * attached. For any devices like that, announce the 6158 * passthrough driver so the user will see something. 6159 */ 6160 xpt_for_all_devices(xptpassannouncefunc, NULL); 6161 6162 /* Release our hook so that the boot can continue. */ 6163 config_intrhook_disestablish(xpt_config_hook); 6164 free(xpt_config_hook, M_TEMP); 6165 xpt_config_hook = NULL; 6166 } 6167 if (done_ccb != NULL) 6168 xpt_free_ccb(done_ccb); 6169 } 6170 6171 static void 6172 xptaction(struct cam_sim *sim, union ccb *work_ccb) 6173 { 6174 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 6175 6176 switch (work_ccb->ccb_h.func_code) { 6177 /* Common cases first */ 6178 case XPT_PATH_INQ: /* Path routing inquiry */ 6179 { 6180 struct ccb_pathinq *cpi; 6181 6182 cpi = &work_ccb->cpi; 6183 cpi->version_num = 1; /* XXX??? */ 6184 cpi->hba_inquiry = 0; 6185 cpi->target_sprt = 0; 6186 cpi->hba_misc = 0; 6187 cpi->hba_eng_cnt = 0; 6188 cpi->max_target = 0; 6189 cpi->max_lun = 0; 6190 cpi->initiator_id = 0; 6191 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 6192 strncpy(cpi->hba_vid, "", HBA_IDLEN); 6193 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 6194 cpi->unit_number = sim->unit_number; 6195 cpi->bus_id = sim->bus_id; 6196 cpi->base_transfer_speed = 0; 6197 cpi->ccb_h.status = CAM_REQ_CMP; 6198 xpt_done(work_ccb); 6199 break; 6200 } 6201 default: 6202 work_ccb->ccb_h.status = CAM_REQ_INVALID; 6203 xpt_done(work_ccb); 6204 break; 6205 } 6206 } 6207 6208 /* 6209 * The xpt as a "controller" has no interrupt sources, so polling 6210 * is a no-op. 6211 */ 6212 static void 6213 xptpoll(struct cam_sim *sim) 6214 { 6215 } 6216 6217 /* 6218 * Should only be called by the machine interrupt dispatch routines, 6219 * so put these prototypes here instead of in the header. 6220 */ 6221 6222 static void 6223 swi_camnet(void) 6224 { 6225 camisr(&cam_netq); 6226 } 6227 6228 static void 6229 swi_cambio(void) 6230 { 6231 camisr(&cam_bioq); 6232 } 6233 6234 static void 6235 camisr(cam_isrq_t *queue) 6236 { 6237 int s; 6238 struct ccb_hdr *ccb_h; 6239 6240 s = splcam(); 6241 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 6242 int runq; 6243 6244 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 6245 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 6246 splx(s); 6247 6248 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 6249 ("camisr")); 6250 6251 runq = FALSE; 6252 6253 if (ccb_h->flags & CAM_HIGH_POWER) { 6254 struct highpowerlist *hphead; 6255 struct cam_ed *device; 6256 union ccb *send_ccb; 6257 6258 hphead = &highpowerq; 6259 6260 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 6261 6262 /* 6263 * Increment the count since this command is done. 6264 */ 6265 num_highpower++; 6266 6267 /* 6268 * Any high powered commands queued up? 6269 */ 6270 if (send_ccb != NULL) { 6271 device = send_ccb->ccb_h.path->device; 6272 6273 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 6274 6275 xpt_release_devq(send_ccb->ccb_h.path, 6276 /*count*/1, /*runqueue*/TRUE); 6277 } 6278 } 6279 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 6280 struct cam_ed *dev; 6281 6282 dev = ccb_h->path->device; 6283 6284 s = splcam(); 6285 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 6286 6287 ccb_h->path->bus->sim->devq->send_active--; 6288 ccb_h->path->bus->sim->devq->send_openings++; 6289 splx(s); 6290 6291 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 6292 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 6293 && (dev->ccbq.dev_active == 0))) { 6294 6295 xpt_release_devq(ccb_h->path, /*count*/1, 6296 /*run_queue*/TRUE); 6297 } 6298 6299 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6300 && (--dev->tag_delay_count == 0)) 6301 xpt_start_tags(ccb_h->path); 6302 6303 if ((dev->ccbq.queue.entries > 0) 6304 && (dev->qfrozen_cnt == 0) 6305 && (device_is_send_queued(dev) == 0)) { 6306 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 6307 dev); 6308 } 6309 } 6310 6311 if (ccb_h->status & CAM_RELEASE_SIMQ) { 6312 xpt_release_simq(ccb_h->path->bus->sim, 6313 /*run_queue*/TRUE); 6314 ccb_h->status &= ~CAM_RELEASE_SIMQ; 6315 runq = FALSE; 6316 } 6317 6318 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 6319 && (ccb_h->status & CAM_DEV_QFRZN)) { 6320 xpt_release_devq(ccb_h->path, /*count*/1, 6321 /*run_queue*/TRUE); 6322 ccb_h->status &= ~CAM_DEV_QFRZN; 6323 } else if (runq) { 6324 xpt_run_dev_sendq(ccb_h->path->bus); 6325 } 6326 6327 /* Call the peripheral driver's callback */ 6328 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 6329 6330 /* Raise IPL for while test */ 6331 s = splcam(); 6332 } 6333 splx(s); 6334 } 6335