xref: /freebsd/sys/cam/cam_xpt.c (revision afc571b1a6fb341b0e3f603d4f3a2538093e91f5)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/md_var.h>	/* geometry translation */
75 #include <machine/stdarg.h>	/* for xpt_print below */
76 
77 #include "opt_cam.h"
78 
79 /* Wild guess based on not wanting to grow the stack too much */
80 #define XPT_PRINT_MAXLEN	512
81 #ifdef PRINTF_BUFR_SIZE
82 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
83 #else
84 #define XPT_PRINT_LEN	128
85 #endif
86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
87 
88 /*
89  * This is the maximum number of high powered commands (e.g. start unit)
90  * that can be outstanding at a particular time.
91  */
92 #ifndef CAM_MAX_HIGHPOWER
93 #define CAM_MAX_HIGHPOWER  4
94 #endif
95 
96 /* Datastructures internal to the xpt layer */
97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
101 
102 struct xpt_softc {
103 	uint32_t		xpt_generation;
104 
105 	/* number of high powered commands that can go through right now */
106 	struct mtx		xpt_highpower_lock;
107 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
108 	int			num_highpower;
109 
110 	/* queue for handling async rescan requests. */
111 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
112 	int buses_to_config;
113 	int buses_config_done;
114 	int announce_nosbuf;
115 
116 	/*
117 	 * Registered buses
118 	 *
119 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
120 	 * "buses" is preferred.
121 	 */
122 	TAILQ_HEAD(,cam_eb)	xpt_busses;
123 	u_int			bus_generation;
124 
125 	int			boot_delay;
126 	struct callout 		boot_callout;
127 	struct task		boot_task;
128 	struct root_hold_token	xpt_rootmount;
129 
130 	struct mtx		xpt_topo_lock;
131 	struct taskqueue	*xpt_taskq;
132 };
133 
134 typedef enum {
135 	DM_RET_COPY		= 0x01,
136 	DM_RET_FLAG_MASK	= 0x0f,
137 	DM_RET_NONE		= 0x00,
138 	DM_RET_STOP		= 0x10,
139 	DM_RET_DESCEND		= 0x20,
140 	DM_RET_ERROR		= 0x30,
141 	DM_RET_ACTION_MASK	= 0xf0
142 } dev_match_ret;
143 
144 typedef enum {
145 	XPT_DEPTH_BUS,
146 	XPT_DEPTH_TARGET,
147 	XPT_DEPTH_DEVICE,
148 	XPT_DEPTH_PERIPH
149 } xpt_traverse_depth;
150 
151 struct xpt_traverse_config {
152 	xpt_traverse_depth	depth;
153 	void			*tr_func;
154 	void			*tr_arg;
155 };
156 
157 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
158 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
159 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
160 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
161 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
162 
163 /* Transport layer configuration information */
164 static struct xpt_softc xsoftc;
165 
166 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
167 
168 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
169            &xsoftc.boot_delay, 0, "Bus registration wait time");
170 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
171 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
172 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
173 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
174 
175 struct cam_doneq {
176 	struct mtx_padalign	cam_doneq_mtx;
177 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
178 	int			cam_doneq_sleep;
179 };
180 
181 static struct cam_doneq cam_doneqs[MAXCPU];
182 static int cam_num_doneqs;
183 static struct proc *cam_proc;
184 
185 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
186            &cam_num_doneqs, 0, "Number of completion queues/threads");
187 
188 struct cam_periph *xpt_periph;
189 
190 static periph_init_t xpt_periph_init;
191 
192 static struct periph_driver xpt_driver =
193 {
194 	xpt_periph_init, "xpt",
195 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
196 	CAM_PERIPH_DRV_EARLY
197 };
198 
199 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
200 
201 static d_open_t xptopen;
202 static d_close_t xptclose;
203 static d_ioctl_t xptioctl;
204 static d_ioctl_t xptdoioctl;
205 
206 static struct cdevsw xpt_cdevsw = {
207 	.d_version =	D_VERSION,
208 	.d_flags =	0,
209 	.d_open =	xptopen,
210 	.d_close =	xptclose,
211 	.d_ioctl =	xptioctl,
212 	.d_name =	"xpt",
213 };
214 
215 /* Storage for debugging datastructures */
216 struct cam_path *cam_dpath;
217 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
218 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
219 	&cam_dflags, 0, "Enabled debug flags");
220 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
221 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
222 	&cam_debug_delay, 0, "Delay in us after each debug message");
223 
224 /* Our boot-time initialization hook */
225 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
226 
227 static moduledata_t cam_moduledata = {
228 	"cam",
229 	cam_module_event_handler,
230 	NULL
231 };
232 
233 static int	xpt_init(void *);
234 
235 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
236 MODULE_VERSION(cam, 1);
237 
238 
239 static void		xpt_async_bcast(struct async_list *async_head,
240 					u_int32_t async_code,
241 					struct cam_path *path,
242 					void *async_arg);
243 static path_id_t xptnextfreepathid(void);
244 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
245 static union ccb *xpt_get_ccb(struct cam_periph *periph);
246 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
247 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
248 static void	 xpt_run_allocq_task(void *context, int pending);
249 static void	 xpt_run_devq(struct cam_devq *devq);
250 static callout_func_t xpt_release_devq_timeout;
251 static void	 xpt_acquire_bus(struct cam_eb *bus);
252 static void	 xpt_release_bus(struct cam_eb *bus);
253 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
254 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
255 		    int run_queue);
256 static struct cam_et*
257 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
258 static void	 xpt_acquire_target(struct cam_et *target);
259 static void	 xpt_release_target(struct cam_et *target);
260 static struct cam_eb*
261 		 xpt_find_bus(path_id_t path_id);
262 static struct cam_et*
263 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
264 static struct cam_ed*
265 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
266 static void	 xpt_config(void *arg);
267 static void	 xpt_hold_boot_locked(void);
268 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
269 				 u_int32_t new_priority);
270 static xpt_devicefunc_t xptpassannouncefunc;
271 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
272 static void	 xptpoll(struct cam_sim *sim);
273 static void	 camisr_runqueue(void);
274 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
275 static void	 xpt_done_td(void *);
276 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
277 				    u_int num_patterns, struct cam_eb *bus);
278 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
279 				       u_int num_patterns,
280 				       struct cam_ed *device);
281 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
282 				       u_int num_patterns,
283 				       struct cam_periph *periph);
284 static xpt_busfunc_t	xptedtbusfunc;
285 static xpt_targetfunc_t	xptedttargetfunc;
286 static xpt_devicefunc_t	xptedtdevicefunc;
287 static xpt_periphfunc_t	xptedtperiphfunc;
288 static xpt_pdrvfunc_t	xptplistpdrvfunc;
289 static xpt_periphfunc_t	xptplistperiphfunc;
290 static int		xptedtmatch(struct ccb_dev_match *cdm);
291 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
292 static int		xptbustraverse(struct cam_eb *start_bus,
293 				       xpt_busfunc_t *tr_func, void *arg);
294 static int		xpttargettraverse(struct cam_eb *bus,
295 					  struct cam_et *start_target,
296 					  xpt_targetfunc_t *tr_func, void *arg);
297 static int		xptdevicetraverse(struct cam_et *target,
298 					  struct cam_ed *start_device,
299 					  xpt_devicefunc_t *tr_func, void *arg);
300 static int		xptperiphtraverse(struct cam_ed *device,
301 					  struct cam_periph *start_periph,
302 					  xpt_periphfunc_t *tr_func, void *arg);
303 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
304 					xpt_pdrvfunc_t *tr_func, void *arg);
305 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
306 					    struct cam_periph *start_periph,
307 					    xpt_periphfunc_t *tr_func,
308 					    void *arg);
309 static xpt_busfunc_t	xptdefbusfunc;
310 static xpt_targetfunc_t	xptdeftargetfunc;
311 static xpt_devicefunc_t	xptdefdevicefunc;
312 static xpt_periphfunc_t	xptdefperiphfunc;
313 static void		xpt_finishconfig_task(void *context, int pending);
314 static void		xpt_dev_async_default(u_int32_t async_code,
315 					      struct cam_eb *bus,
316 					      struct cam_et *target,
317 					      struct cam_ed *device,
318 					      void *async_arg);
319 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
320 						 struct cam_et *target,
321 						 lun_id_t lun_id);
322 static xpt_devicefunc_t	xptsetasyncfunc;
323 static xpt_busfunc_t	xptsetasyncbusfunc;
324 static cam_status	xptregister(struct cam_periph *periph,
325 				    void *arg);
326 static __inline int device_is_queued(struct cam_ed *device);
327 
328 static __inline int
329 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
330 {
331 	int	retval;
332 
333 	mtx_assert(&devq->send_mtx, MA_OWNED);
334 	if ((dev->ccbq.queue.entries > 0) &&
335 	    (dev->ccbq.dev_openings > 0) &&
336 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
337 		/*
338 		 * The priority of a device waiting for controller
339 		 * resources is that of the highest priority CCB
340 		 * enqueued.
341 		 */
342 		retval =
343 		    xpt_schedule_dev(&devq->send_queue,
344 				     &dev->devq_entry,
345 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
346 	} else {
347 		retval = 0;
348 	}
349 	return (retval);
350 }
351 
352 static __inline int
353 device_is_queued(struct cam_ed *device)
354 {
355 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
356 }
357 
358 static void
359 xpt_periph_init()
360 {
361 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
362 }
363 
364 static int
365 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
366 {
367 
368 	/*
369 	 * Only allow read-write access.
370 	 */
371 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
372 		return(EPERM);
373 
374 	/*
375 	 * We don't allow nonblocking access.
376 	 */
377 	if ((flags & O_NONBLOCK) != 0) {
378 		printf("%s: can't do nonblocking access\n", devtoname(dev));
379 		return(ENODEV);
380 	}
381 
382 	return(0);
383 }
384 
385 static int
386 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
387 {
388 
389 	return(0);
390 }
391 
392 /*
393  * Don't automatically grab the xpt softc lock here even though this is going
394  * through the xpt device.  The xpt device is really just a back door for
395  * accessing other devices and SIMs, so the right thing to do is to grab
396  * the appropriate SIM lock once the bus/SIM is located.
397  */
398 static int
399 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
400 {
401 	int error;
402 
403 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
404 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
405 	}
406 	return (error);
407 }
408 
409 static int
410 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
411 {
412 	int error;
413 
414 	error = 0;
415 
416 	switch(cmd) {
417 	/*
418 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
419 	 * to accept CCB types that don't quite make sense to send through a
420 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
421 	 * in the CAM spec.
422 	 */
423 	case CAMIOCOMMAND: {
424 		union ccb *ccb;
425 		union ccb *inccb;
426 		struct cam_eb *bus;
427 
428 		inccb = (union ccb *)addr;
429 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
430 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
431 			inccb->csio.bio = NULL;
432 #endif
433 
434 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
435 			return (EINVAL);
436 
437 		bus = xpt_find_bus(inccb->ccb_h.path_id);
438 		if (bus == NULL)
439 			return (EINVAL);
440 
441 		switch (inccb->ccb_h.func_code) {
442 		case XPT_SCAN_BUS:
443 		case XPT_RESET_BUS:
444 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
445 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
446 				xpt_release_bus(bus);
447 				return (EINVAL);
448 			}
449 			break;
450 		case XPT_SCAN_TGT:
451 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
452 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
453 				xpt_release_bus(bus);
454 				return (EINVAL);
455 			}
456 			break;
457 		default:
458 			break;
459 		}
460 
461 		switch(inccb->ccb_h.func_code) {
462 		case XPT_SCAN_BUS:
463 		case XPT_RESET_BUS:
464 		case XPT_PATH_INQ:
465 		case XPT_ENG_INQ:
466 		case XPT_SCAN_LUN:
467 		case XPT_SCAN_TGT:
468 
469 			ccb = xpt_alloc_ccb();
470 
471 			/*
472 			 * Create a path using the bus, target, and lun the
473 			 * user passed in.
474 			 */
475 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
476 					    inccb->ccb_h.path_id,
477 					    inccb->ccb_h.target_id,
478 					    inccb->ccb_h.target_lun) !=
479 					    CAM_REQ_CMP){
480 				error = EINVAL;
481 				xpt_free_ccb(ccb);
482 				break;
483 			}
484 			/* Ensure all of our fields are correct */
485 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
486 				      inccb->ccb_h.pinfo.priority);
487 			xpt_merge_ccb(ccb, inccb);
488 			xpt_path_lock(ccb->ccb_h.path);
489 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
490 			xpt_path_unlock(ccb->ccb_h.path);
491 			bcopy(ccb, inccb, sizeof(union ccb));
492 			xpt_free_path(ccb->ccb_h.path);
493 			xpt_free_ccb(ccb);
494 			break;
495 
496 		case XPT_DEBUG: {
497 			union ccb ccb;
498 
499 			/*
500 			 * This is an immediate CCB, so it's okay to
501 			 * allocate it on the stack.
502 			 */
503 
504 			/*
505 			 * Create a path using the bus, target, and lun the
506 			 * user passed in.
507 			 */
508 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
509 					    inccb->ccb_h.path_id,
510 					    inccb->ccb_h.target_id,
511 					    inccb->ccb_h.target_lun) !=
512 					    CAM_REQ_CMP){
513 				error = EINVAL;
514 				break;
515 			}
516 			/* Ensure all of our fields are correct */
517 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
518 				      inccb->ccb_h.pinfo.priority);
519 			xpt_merge_ccb(&ccb, inccb);
520 			xpt_action(&ccb);
521 			bcopy(&ccb, inccb, sizeof(union ccb));
522 			xpt_free_path(ccb.ccb_h.path);
523 			break;
524 
525 		}
526 		case XPT_DEV_MATCH: {
527 			struct cam_periph_map_info mapinfo;
528 			struct cam_path *old_path;
529 
530 			/*
531 			 * We can't deal with physical addresses for this
532 			 * type of transaction.
533 			 */
534 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
535 			    CAM_DATA_VADDR) {
536 				error = EINVAL;
537 				break;
538 			}
539 
540 			/*
541 			 * Save this in case the caller had it set to
542 			 * something in particular.
543 			 */
544 			old_path = inccb->ccb_h.path;
545 
546 			/*
547 			 * We really don't need a path for the matching
548 			 * code.  The path is needed because of the
549 			 * debugging statements in xpt_action().  They
550 			 * assume that the CCB has a valid path.
551 			 */
552 			inccb->ccb_h.path = xpt_periph->path;
553 
554 			bzero(&mapinfo, sizeof(mapinfo));
555 
556 			/*
557 			 * Map the pattern and match buffers into kernel
558 			 * virtual address space.
559 			 */
560 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
561 
562 			if (error) {
563 				inccb->ccb_h.path = old_path;
564 				break;
565 			}
566 
567 			/*
568 			 * This is an immediate CCB, we can send it on directly.
569 			 */
570 			xpt_action(inccb);
571 
572 			/*
573 			 * Map the buffers back into user space.
574 			 */
575 			cam_periph_unmapmem(inccb, &mapinfo);
576 
577 			inccb->ccb_h.path = old_path;
578 
579 			error = 0;
580 			break;
581 		}
582 		default:
583 			error = ENOTSUP;
584 			break;
585 		}
586 		xpt_release_bus(bus);
587 		break;
588 	}
589 	/*
590 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
591 	 * with the periphal driver name and unit name filled in.  The other
592 	 * fields don't really matter as input.  The passthrough driver name
593 	 * ("pass"), and unit number are passed back in the ccb.  The current
594 	 * device generation number, and the index into the device peripheral
595 	 * driver list, and the status are also passed back.  Note that
596 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
597 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
598 	 * (or rather should be) impossible for the device peripheral driver
599 	 * list to change since we look at the whole thing in one pass, and
600 	 * we do it with lock protection.
601 	 *
602 	 */
603 	case CAMGETPASSTHRU: {
604 		union ccb *ccb;
605 		struct cam_periph *periph;
606 		struct periph_driver **p_drv;
607 		char   *name;
608 		u_int unit;
609 		int base_periph_found;
610 
611 		ccb = (union ccb *)addr;
612 		unit = ccb->cgdl.unit_number;
613 		name = ccb->cgdl.periph_name;
614 		base_periph_found = 0;
615 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
616 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
617 			ccb->csio.bio = NULL;
618 #endif
619 
620 		/*
621 		 * Sanity check -- make sure we don't get a null peripheral
622 		 * driver name.
623 		 */
624 		if (*ccb->cgdl.periph_name == '\0') {
625 			error = EINVAL;
626 			break;
627 		}
628 
629 		/* Keep the list from changing while we traverse it */
630 		xpt_lock_buses();
631 
632 		/* first find our driver in the list of drivers */
633 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
634 			if (strcmp((*p_drv)->driver_name, name) == 0)
635 				break;
636 
637 		if (*p_drv == NULL) {
638 			xpt_unlock_buses();
639 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
640 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
641 			*ccb->cgdl.periph_name = '\0';
642 			ccb->cgdl.unit_number = 0;
643 			error = ENOENT;
644 			break;
645 		}
646 
647 		/*
648 		 * Run through every peripheral instance of this driver
649 		 * and check to see whether it matches the unit passed
650 		 * in by the user.  If it does, get out of the loops and
651 		 * find the passthrough driver associated with that
652 		 * peripheral driver.
653 		 */
654 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
655 		     periph = TAILQ_NEXT(periph, unit_links)) {
656 
657 			if (periph->unit_number == unit)
658 				break;
659 		}
660 		/*
661 		 * If we found the peripheral driver that the user passed
662 		 * in, go through all of the peripheral drivers for that
663 		 * particular device and look for a passthrough driver.
664 		 */
665 		if (periph != NULL) {
666 			struct cam_ed *device;
667 			int i;
668 
669 			base_periph_found = 1;
670 			device = periph->path->device;
671 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
672 			     periph != NULL;
673 			     periph = SLIST_NEXT(periph, periph_links), i++) {
674 				/*
675 				 * Check to see whether we have a
676 				 * passthrough device or not.
677 				 */
678 				if (strcmp(periph->periph_name, "pass") == 0) {
679 					/*
680 					 * Fill in the getdevlist fields.
681 					 */
682 					strlcpy(ccb->cgdl.periph_name,
683 					       periph->periph_name,
684 					       sizeof(ccb->cgdl.periph_name));
685 					ccb->cgdl.unit_number =
686 						periph->unit_number;
687 					if (SLIST_NEXT(periph, periph_links))
688 						ccb->cgdl.status =
689 							CAM_GDEVLIST_MORE_DEVS;
690 					else
691 						ccb->cgdl.status =
692 						       CAM_GDEVLIST_LAST_DEVICE;
693 					ccb->cgdl.generation =
694 						device->generation;
695 					ccb->cgdl.index = i;
696 					/*
697 					 * Fill in some CCB header fields
698 					 * that the user may want.
699 					 */
700 					ccb->ccb_h.path_id =
701 						periph->path->bus->path_id;
702 					ccb->ccb_h.target_id =
703 						periph->path->target->target_id;
704 					ccb->ccb_h.target_lun =
705 						periph->path->device->lun_id;
706 					ccb->ccb_h.status = CAM_REQ_CMP;
707 					break;
708 				}
709 			}
710 		}
711 
712 		/*
713 		 * If the periph is null here, one of two things has
714 		 * happened.  The first possibility is that we couldn't
715 		 * find the unit number of the particular peripheral driver
716 		 * that the user is asking about.  e.g. the user asks for
717 		 * the passthrough driver for "da11".  We find the list of
718 		 * "da" peripherals all right, but there is no unit 11.
719 		 * The other possibility is that we went through the list
720 		 * of peripheral drivers attached to the device structure,
721 		 * but didn't find one with the name "pass".  Either way,
722 		 * we return ENOENT, since we couldn't find something.
723 		 */
724 		if (periph == NULL) {
725 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
726 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
727 			*ccb->cgdl.periph_name = '\0';
728 			ccb->cgdl.unit_number = 0;
729 			error = ENOENT;
730 			/*
731 			 * It is unfortunate that this is even necessary,
732 			 * but there are many, many clueless users out there.
733 			 * If this is true, the user is looking for the
734 			 * passthrough driver, but doesn't have one in his
735 			 * kernel.
736 			 */
737 			if (base_periph_found == 1) {
738 				printf("xptioctl: pass driver is not in the "
739 				       "kernel\n");
740 				printf("xptioctl: put \"device pass\" in "
741 				       "your kernel config file\n");
742 			}
743 		}
744 		xpt_unlock_buses();
745 		break;
746 		}
747 	default:
748 		error = ENOTTY;
749 		break;
750 	}
751 
752 	return(error);
753 }
754 
755 static int
756 cam_module_event_handler(module_t mod, int what, void *arg)
757 {
758 	int error;
759 
760 	switch (what) {
761 	case MOD_LOAD:
762 		if ((error = xpt_init(NULL)) != 0)
763 			return (error);
764 		break;
765 	case MOD_UNLOAD:
766 		return EBUSY;
767 	default:
768 		return EOPNOTSUPP;
769 	}
770 
771 	return 0;
772 }
773 
774 static struct xpt_proto *
775 xpt_proto_find(cam_proto proto)
776 {
777 	struct xpt_proto **pp;
778 
779 	SET_FOREACH(pp, cam_xpt_proto_set) {
780 		if ((*pp)->proto == proto)
781 			return *pp;
782 	}
783 
784 	return NULL;
785 }
786 
787 static void
788 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
789 {
790 
791 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
792 		xpt_free_path(done_ccb->ccb_h.path);
793 		xpt_free_ccb(done_ccb);
794 	} else {
795 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
796 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
797 	}
798 	xpt_release_boot();
799 }
800 
801 /* thread to handle bus rescans */
802 static void
803 xpt_scanner_thread(void *dummy)
804 {
805 	union ccb	*ccb;
806 	struct cam_path	 path;
807 
808 	xpt_lock_buses();
809 	for (;;) {
810 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
811 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
812 			       "-", 0);
813 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
814 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
815 			xpt_unlock_buses();
816 
817 			/*
818 			 * Since lock can be dropped inside and path freed
819 			 * by completion callback even before return here,
820 			 * take our own path copy for reference.
821 			 */
822 			xpt_copy_path(&path, ccb->ccb_h.path);
823 			xpt_path_lock(&path);
824 			xpt_action(ccb);
825 			xpt_path_unlock(&path);
826 			xpt_release_path(&path);
827 
828 			xpt_lock_buses();
829 		}
830 	}
831 }
832 
833 void
834 xpt_rescan(union ccb *ccb)
835 {
836 	struct ccb_hdr *hdr;
837 
838 	/* Prepare request */
839 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
840 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
841 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
842 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
843 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
844 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
845 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
846 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
847 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
848 	else {
849 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
850 		xpt_free_path(ccb->ccb_h.path);
851 		xpt_free_ccb(ccb);
852 		return;
853 	}
854 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
855 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
856  		xpt_action_name(ccb->ccb_h.func_code)));
857 
858 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
859 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
860 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
861 	/* Don't make duplicate entries for the same paths. */
862 	xpt_lock_buses();
863 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
864 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
865 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
866 				wakeup(&xsoftc.ccb_scanq);
867 				xpt_unlock_buses();
868 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
869 				xpt_free_path(ccb->ccb_h.path);
870 				xpt_free_ccb(ccb);
871 				return;
872 			}
873 		}
874 	}
875 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
876 	xpt_hold_boot_locked();
877 	wakeup(&xsoftc.ccb_scanq);
878 	xpt_unlock_buses();
879 }
880 
881 /* Functions accessed by the peripheral drivers */
882 static int
883 xpt_init(void *dummy)
884 {
885 	struct cam_sim *xpt_sim;
886 	struct cam_path *path;
887 	struct cam_devq *devq;
888 	cam_status status;
889 	int error, i;
890 
891 	TAILQ_INIT(&xsoftc.xpt_busses);
892 	TAILQ_INIT(&xsoftc.ccb_scanq);
893 	STAILQ_INIT(&xsoftc.highpowerq);
894 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
895 
896 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
897 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
898 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
899 
900 #ifdef CAM_BOOT_DELAY
901 	/*
902 	 * Override this value at compile time to assist our users
903 	 * who don't use loader to boot a kernel.
904 	 */
905 	xsoftc.boot_delay = CAM_BOOT_DELAY;
906 #endif
907 
908 	/*
909 	 * The xpt layer is, itself, the equivalent of a SIM.
910 	 * Allow 16 ccbs in the ccb pool for it.  This should
911 	 * give decent parallelism when we probe buses and
912 	 * perform other XPT functions.
913 	 */
914 	devq = cam_simq_alloc(16);
915 	xpt_sim = cam_sim_alloc(xptaction,
916 				xptpoll,
917 				"xpt",
918 				/*softc*/NULL,
919 				/*unit*/0,
920 				/*mtx*/NULL,
921 				/*max_dev_transactions*/0,
922 				/*max_tagged_dev_transactions*/0,
923 				devq);
924 	if (xpt_sim == NULL)
925 		return (ENOMEM);
926 
927 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
928 		printf("xpt_init: xpt_bus_register failed with status %#x,"
929 		       " failing attach\n", status);
930 		return (EINVAL);
931 	}
932 
933 	/*
934 	 * Looking at the XPT from the SIM layer, the XPT is
935 	 * the equivalent of a peripheral driver.  Allocate
936 	 * a peripheral driver entry for us.
937 	 */
938 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
939 				      CAM_TARGET_WILDCARD,
940 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
941 		printf("xpt_init: xpt_create_path failed with status %#x,"
942 		       " failing attach\n", status);
943 		return (EINVAL);
944 	}
945 	xpt_path_lock(path);
946 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
947 			 path, NULL, 0, xpt_sim);
948 	xpt_path_unlock(path);
949 	xpt_free_path(path);
950 
951 	if (cam_num_doneqs < 1)
952 		cam_num_doneqs = 1 + mp_ncpus / 6;
953 	else if (cam_num_doneqs > MAXCPU)
954 		cam_num_doneqs = MAXCPU;
955 	for (i = 0; i < cam_num_doneqs; i++) {
956 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
957 		    MTX_DEF);
958 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
959 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
960 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
961 		if (error != 0) {
962 			cam_num_doneqs = i;
963 			break;
964 		}
965 	}
966 	if (cam_num_doneqs < 1) {
967 		printf("xpt_init: Cannot init completion queues "
968 		       "- failing attach\n");
969 		return (ENOMEM);
970 	}
971 
972 	/*
973 	 * Register a callback for when interrupts are enabled.
974 	 */
975 	config_intrhook_oneshot(xpt_config, NULL);
976 
977 	return (0);
978 }
979 
980 static cam_status
981 xptregister(struct cam_periph *periph, void *arg)
982 {
983 	struct cam_sim *xpt_sim;
984 
985 	if (periph == NULL) {
986 		printf("xptregister: periph was NULL!!\n");
987 		return(CAM_REQ_CMP_ERR);
988 	}
989 
990 	xpt_sim = (struct cam_sim *)arg;
991 	xpt_sim->softc = periph;
992 	xpt_periph = periph;
993 	periph->softc = NULL;
994 
995 	return(CAM_REQ_CMP);
996 }
997 
998 int32_t
999 xpt_add_periph(struct cam_periph *periph)
1000 {
1001 	struct cam_ed *device;
1002 	int32_t	 status;
1003 
1004 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1005 	device = periph->path->device;
1006 	status = CAM_REQ_CMP;
1007 	if (device != NULL) {
1008 		mtx_lock(&device->target->bus->eb_mtx);
1009 		device->generation++;
1010 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1011 		mtx_unlock(&device->target->bus->eb_mtx);
1012 		atomic_add_32(&xsoftc.xpt_generation, 1);
1013 	}
1014 
1015 	return (status);
1016 }
1017 
1018 void
1019 xpt_remove_periph(struct cam_periph *periph)
1020 {
1021 	struct cam_ed *device;
1022 
1023 	device = periph->path->device;
1024 	if (device != NULL) {
1025 		mtx_lock(&device->target->bus->eb_mtx);
1026 		device->generation++;
1027 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1028 		mtx_unlock(&device->target->bus->eb_mtx);
1029 		atomic_add_32(&xsoftc.xpt_generation, 1);
1030 	}
1031 }
1032 
1033 
1034 void
1035 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1036 {
1037 	struct	cam_path *path = periph->path;
1038 	struct  xpt_proto *proto;
1039 
1040 	cam_periph_assert(periph, MA_OWNED);
1041 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1042 
1043 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1044 	       periph->periph_name, periph->unit_number,
1045 	       path->bus->sim->sim_name,
1046 	       path->bus->sim->unit_number,
1047 	       path->bus->sim->bus_id,
1048 	       path->bus->path_id,
1049 	       path->target->target_id,
1050 	       (uintmax_t)path->device->lun_id);
1051 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1052 	proto = xpt_proto_find(path->device->protocol);
1053 	if (proto)
1054 		proto->ops->announce(path->device);
1055 	else
1056 		printf("%s%d: Unknown protocol device %d\n",
1057 		    periph->periph_name, periph->unit_number,
1058 		    path->device->protocol);
1059 	if (path->device->serial_num_len > 0) {
1060 		/* Don't wrap the screen  - print only the first 60 chars */
1061 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1062 		       periph->unit_number, path->device->serial_num);
1063 	}
1064 	/* Announce transport details. */
1065 	path->bus->xport->ops->announce(periph);
1066 	/* Announce command queueing. */
1067 	if (path->device->inq_flags & SID_CmdQue
1068 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1069 		printf("%s%d: Command Queueing enabled\n",
1070 		       periph->periph_name, periph->unit_number);
1071 	}
1072 	/* Announce caller's details if they've passed in. */
1073 	if (announce_string != NULL)
1074 		printf("%s%d: %s\n", periph->periph_name,
1075 		       periph->unit_number, announce_string);
1076 }
1077 
1078 void
1079 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1080     char *announce_string)
1081 {
1082 	struct	cam_path *path = periph->path;
1083 	struct  xpt_proto *proto;
1084 
1085 	cam_periph_assert(periph, MA_OWNED);
1086 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1087 
1088 	/* Fall back to the non-sbuf method if necessary */
1089 	if (xsoftc.announce_nosbuf != 0) {
1090 		xpt_announce_periph(periph, announce_string);
1091 		return;
1092 	}
1093 	proto = xpt_proto_find(path->device->protocol);
1094 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1095 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1096 		xpt_announce_periph(periph, announce_string);
1097 		return;
1098 	}
1099 
1100 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1101 	    periph->periph_name, periph->unit_number,
1102 	    path->bus->sim->sim_name,
1103 	    path->bus->sim->unit_number,
1104 	    path->bus->sim->bus_id,
1105 	    path->bus->path_id,
1106 	    path->target->target_id,
1107 	    (uintmax_t)path->device->lun_id);
1108 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1109 
1110 	if (proto)
1111 		proto->ops->announce_sbuf(path->device, sb);
1112 	else
1113 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1114 		    periph->periph_name, periph->unit_number,
1115 		    path->device->protocol);
1116 	if (path->device->serial_num_len > 0) {
1117 		/* Don't wrap the screen  - print only the first 60 chars */
1118 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1119 		    periph->periph_name, periph->unit_number,
1120 		    path->device->serial_num);
1121 	}
1122 	/* Announce transport details. */
1123 	path->bus->xport->ops->announce_sbuf(periph, sb);
1124 	/* Announce command queueing. */
1125 	if (path->device->inq_flags & SID_CmdQue
1126 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1127 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1128 		    periph->periph_name, periph->unit_number);
1129 	}
1130 	/* Announce caller's details if they've passed in. */
1131 	if (announce_string != NULL)
1132 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1133 		    periph->unit_number, announce_string);
1134 }
1135 
1136 void
1137 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1138 {
1139 	if (quirks != 0) {
1140 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1141 		    periph->unit_number, quirks, bit_string);
1142 	}
1143 }
1144 
1145 void
1146 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1147 			 int quirks, char *bit_string)
1148 {
1149 	if (xsoftc.announce_nosbuf != 0) {
1150 		xpt_announce_quirks(periph, quirks, bit_string);
1151 		return;
1152 	}
1153 
1154 	if (quirks != 0) {
1155 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1156 		    periph->unit_number, quirks, bit_string);
1157 	}
1158 }
1159 
1160 void
1161 xpt_denounce_periph(struct cam_periph *periph)
1162 {
1163 	struct	cam_path *path = periph->path;
1164 	struct  xpt_proto *proto;
1165 
1166 	cam_periph_assert(periph, MA_OWNED);
1167 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1168 	       periph->periph_name, periph->unit_number,
1169 	       path->bus->sim->sim_name,
1170 	       path->bus->sim->unit_number,
1171 	       path->bus->sim->bus_id,
1172 	       path->bus->path_id,
1173 	       path->target->target_id,
1174 	       (uintmax_t)path->device->lun_id);
1175 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1176 	proto = xpt_proto_find(path->device->protocol);
1177 	if (proto)
1178 		proto->ops->denounce(path->device);
1179 	else
1180 		printf("%s%d: Unknown protocol device %d\n",
1181 		    periph->periph_name, periph->unit_number,
1182 		    path->device->protocol);
1183 	if (path->device->serial_num_len > 0)
1184 		printf(" s/n %.60s", path->device->serial_num);
1185 	printf(" detached\n");
1186 }
1187 
1188 void
1189 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1190 {
1191 	struct cam_path *path = periph->path;
1192 	struct xpt_proto *proto;
1193 
1194 	cam_periph_assert(periph, MA_OWNED);
1195 
1196 	/* Fall back to the non-sbuf method if necessary */
1197 	if (xsoftc.announce_nosbuf != 0) {
1198 		xpt_denounce_periph(periph);
1199 		return;
1200 	}
1201 	proto = xpt_proto_find(path->device->protocol);
1202 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1203 		xpt_denounce_periph(periph);
1204 		return;
1205 	}
1206 
1207 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1208 	    periph->periph_name, periph->unit_number,
1209 	    path->bus->sim->sim_name,
1210 	    path->bus->sim->unit_number,
1211 	    path->bus->sim->bus_id,
1212 	    path->bus->path_id,
1213 	    path->target->target_id,
1214 	    (uintmax_t)path->device->lun_id);
1215 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1216 
1217 	if (proto)
1218 		proto->ops->denounce_sbuf(path->device, sb);
1219 	else
1220 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1221 		    periph->periph_name, periph->unit_number,
1222 		    path->device->protocol);
1223 	if (path->device->serial_num_len > 0)
1224 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1225 	sbuf_printf(sb, " detached\n");
1226 }
1227 
1228 int
1229 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1230 {
1231 	int ret = -1, l, o;
1232 	struct ccb_dev_advinfo cdai;
1233 	struct scsi_vpd_device_id *did;
1234 	struct scsi_vpd_id_descriptor *idd;
1235 
1236 	xpt_path_assert(path, MA_OWNED);
1237 
1238 	memset(&cdai, 0, sizeof(cdai));
1239 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1240 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1241 	cdai.flags = CDAI_FLAG_NONE;
1242 	cdai.bufsiz = len;
1243 	cdai.buf = buf;
1244 
1245 	if (!strcmp(attr, "GEOM::ident"))
1246 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1247 	else if (!strcmp(attr, "GEOM::physpath"))
1248 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1249 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1250 		 strcmp(attr, "GEOM::lunname") == 0) {
1251 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1252 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1253 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1254 		if (cdai.buf == NULL) {
1255 			ret = ENOMEM;
1256 			goto out;
1257 		}
1258 	} else
1259 		goto out;
1260 
1261 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1262 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1263 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1264 	if (cdai.provsiz == 0)
1265 		goto out;
1266 	switch(cdai.buftype) {
1267 	case CDAI_TYPE_SCSI_DEVID:
1268 		did = (struct scsi_vpd_device_id *)cdai.buf;
1269 		if (strcmp(attr, "GEOM::lunid") == 0) {
1270 			idd = scsi_get_devid(did, cdai.provsiz,
1271 			    scsi_devid_is_lun_naa);
1272 			if (idd == NULL)
1273 				idd = scsi_get_devid(did, cdai.provsiz,
1274 				    scsi_devid_is_lun_eui64);
1275 			if (idd == NULL)
1276 				idd = scsi_get_devid(did, cdai.provsiz,
1277 				    scsi_devid_is_lun_uuid);
1278 			if (idd == NULL)
1279 				idd = scsi_get_devid(did, cdai.provsiz,
1280 				    scsi_devid_is_lun_md5);
1281 		} else
1282 			idd = NULL;
1283 
1284 		if (idd == NULL)
1285 			idd = scsi_get_devid(did, cdai.provsiz,
1286 			    scsi_devid_is_lun_t10);
1287 		if (idd == NULL)
1288 			idd = scsi_get_devid(did, cdai.provsiz,
1289 			    scsi_devid_is_lun_name);
1290 		if (idd == NULL)
1291 			break;
1292 
1293 		ret = 0;
1294 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1295 		    SVPD_ID_CODESET_ASCII) {
1296 			if (idd->length < len) {
1297 				for (l = 0; l < idd->length; l++)
1298 					buf[l] = idd->identifier[l] ?
1299 					    idd->identifier[l] : ' ';
1300 				buf[l] = 0;
1301 			} else
1302 				ret = EFAULT;
1303 			break;
1304 		}
1305 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1306 		    SVPD_ID_CODESET_UTF8) {
1307 			l = strnlen(idd->identifier, idd->length);
1308 			if (l < len) {
1309 				bcopy(idd->identifier, buf, l);
1310 				buf[l] = 0;
1311 			} else
1312 				ret = EFAULT;
1313 			break;
1314 		}
1315 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1316 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1317 			if ((idd->length - 2) * 2 + 4 >= len) {
1318 				ret = EFAULT;
1319 				break;
1320 			}
1321 			for (l = 2, o = 0; l < idd->length; l++) {
1322 				if (l == 6 || l == 8 || l == 10 || l == 12)
1323 				    o += sprintf(buf + o, "-");
1324 				o += sprintf(buf + o, "%02x",
1325 				    idd->identifier[l]);
1326 			}
1327 			break;
1328 		}
1329 		if (idd->length * 2 < len) {
1330 			for (l = 0; l < idd->length; l++)
1331 				sprintf(buf + l * 2, "%02x",
1332 				    idd->identifier[l]);
1333 		} else
1334 				ret = EFAULT;
1335 		break;
1336 	default:
1337 		if (cdai.provsiz < len) {
1338 			cdai.buf[cdai.provsiz] = 0;
1339 			ret = 0;
1340 		} else
1341 			ret = EFAULT;
1342 		break;
1343 	}
1344 
1345 out:
1346 	if ((char *)cdai.buf != buf)
1347 		free(cdai.buf, M_CAMXPT);
1348 	return ret;
1349 }
1350 
1351 static dev_match_ret
1352 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1353 	    struct cam_eb *bus)
1354 {
1355 	dev_match_ret retval;
1356 	u_int i;
1357 
1358 	retval = DM_RET_NONE;
1359 
1360 	/*
1361 	 * If we aren't given something to match against, that's an error.
1362 	 */
1363 	if (bus == NULL)
1364 		return(DM_RET_ERROR);
1365 
1366 	/*
1367 	 * If there are no match entries, then this bus matches no
1368 	 * matter what.
1369 	 */
1370 	if ((patterns == NULL) || (num_patterns == 0))
1371 		return(DM_RET_DESCEND | DM_RET_COPY);
1372 
1373 	for (i = 0; i < num_patterns; i++) {
1374 		struct bus_match_pattern *cur_pattern;
1375 
1376 		/*
1377 		 * If the pattern in question isn't for a bus node, we
1378 		 * aren't interested.  However, we do indicate to the
1379 		 * calling routine that we should continue descending the
1380 		 * tree, since the user wants to match against lower-level
1381 		 * EDT elements.
1382 		 */
1383 		if (patterns[i].type != DEV_MATCH_BUS) {
1384 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1385 				retval |= DM_RET_DESCEND;
1386 			continue;
1387 		}
1388 
1389 		cur_pattern = &patterns[i].pattern.bus_pattern;
1390 
1391 		/*
1392 		 * If they want to match any bus node, we give them any
1393 		 * device node.
1394 		 */
1395 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1396 			/* set the copy flag */
1397 			retval |= DM_RET_COPY;
1398 
1399 			/*
1400 			 * If we've already decided on an action, go ahead
1401 			 * and return.
1402 			 */
1403 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1404 				return(retval);
1405 		}
1406 
1407 		/*
1408 		 * Not sure why someone would do this...
1409 		 */
1410 		if (cur_pattern->flags == BUS_MATCH_NONE)
1411 			continue;
1412 
1413 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1414 		 && (cur_pattern->path_id != bus->path_id))
1415 			continue;
1416 
1417 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1418 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1419 			continue;
1420 
1421 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1422 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1423 			continue;
1424 
1425 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1426 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1427 			     DEV_IDLEN) != 0))
1428 			continue;
1429 
1430 		/*
1431 		 * If we get to this point, the user definitely wants
1432 		 * information on this bus.  So tell the caller to copy the
1433 		 * data out.
1434 		 */
1435 		retval |= DM_RET_COPY;
1436 
1437 		/*
1438 		 * If the return action has been set to descend, then we
1439 		 * know that we've already seen a non-bus matching
1440 		 * expression, therefore we need to further descend the tree.
1441 		 * This won't change by continuing around the loop, so we
1442 		 * go ahead and return.  If we haven't seen a non-bus
1443 		 * matching expression, we keep going around the loop until
1444 		 * we exhaust the matching expressions.  We'll set the stop
1445 		 * flag once we fall out of the loop.
1446 		 */
1447 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1448 			return(retval);
1449 	}
1450 
1451 	/*
1452 	 * If the return action hasn't been set to descend yet, that means
1453 	 * we haven't seen anything other than bus matching patterns.  So
1454 	 * tell the caller to stop descending the tree -- the user doesn't
1455 	 * want to match against lower level tree elements.
1456 	 */
1457 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1458 		retval |= DM_RET_STOP;
1459 
1460 	return(retval);
1461 }
1462 
1463 static dev_match_ret
1464 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1465 	       struct cam_ed *device)
1466 {
1467 	dev_match_ret retval;
1468 	u_int i;
1469 
1470 	retval = DM_RET_NONE;
1471 
1472 	/*
1473 	 * If we aren't given something to match against, that's an error.
1474 	 */
1475 	if (device == NULL)
1476 		return(DM_RET_ERROR);
1477 
1478 	/*
1479 	 * If there are no match entries, then this device matches no
1480 	 * matter what.
1481 	 */
1482 	if ((patterns == NULL) || (num_patterns == 0))
1483 		return(DM_RET_DESCEND | DM_RET_COPY);
1484 
1485 	for (i = 0; i < num_patterns; i++) {
1486 		struct device_match_pattern *cur_pattern;
1487 		struct scsi_vpd_device_id *device_id_page;
1488 
1489 		/*
1490 		 * If the pattern in question isn't for a device node, we
1491 		 * aren't interested.
1492 		 */
1493 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1494 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1495 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1496 				retval |= DM_RET_DESCEND;
1497 			continue;
1498 		}
1499 
1500 		cur_pattern = &patterns[i].pattern.device_pattern;
1501 
1502 		/* Error out if mutually exclusive options are specified. */
1503 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1504 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1505 			return(DM_RET_ERROR);
1506 
1507 		/*
1508 		 * If they want to match any device node, we give them any
1509 		 * device node.
1510 		 */
1511 		if (cur_pattern->flags == DEV_MATCH_ANY)
1512 			goto copy_dev_node;
1513 
1514 		/*
1515 		 * Not sure why someone would do this...
1516 		 */
1517 		if (cur_pattern->flags == DEV_MATCH_NONE)
1518 			continue;
1519 
1520 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1521 		 && (cur_pattern->path_id != device->target->bus->path_id))
1522 			continue;
1523 
1524 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1525 		 && (cur_pattern->target_id != device->target->target_id))
1526 			continue;
1527 
1528 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1529 		 && (cur_pattern->target_lun != device->lun_id))
1530 			continue;
1531 
1532 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1533 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1534 				    (caddr_t)&cur_pattern->data.inq_pat,
1535 				    1, sizeof(cur_pattern->data.inq_pat),
1536 				    scsi_static_inquiry_match) == NULL))
1537 			continue;
1538 
1539 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1540 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1541 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1542 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1543 				      device->device_id_len
1544 				    - SVPD_DEVICE_ID_HDR_LEN,
1545 				      cur_pattern->data.devid_pat.id,
1546 				      cur_pattern->data.devid_pat.id_len) != 0))
1547 			continue;
1548 
1549 copy_dev_node:
1550 		/*
1551 		 * If we get to this point, the user definitely wants
1552 		 * information on this device.  So tell the caller to copy
1553 		 * the data out.
1554 		 */
1555 		retval |= DM_RET_COPY;
1556 
1557 		/*
1558 		 * If the return action has been set to descend, then we
1559 		 * know that we've already seen a peripheral matching
1560 		 * expression, therefore we need to further descend the tree.
1561 		 * This won't change by continuing around the loop, so we
1562 		 * go ahead and return.  If we haven't seen a peripheral
1563 		 * matching expression, we keep going around the loop until
1564 		 * we exhaust the matching expressions.  We'll set the stop
1565 		 * flag once we fall out of the loop.
1566 		 */
1567 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1568 			return(retval);
1569 	}
1570 
1571 	/*
1572 	 * If the return action hasn't been set to descend yet, that means
1573 	 * we haven't seen any peripheral matching patterns.  So tell the
1574 	 * caller to stop descending the tree -- the user doesn't want to
1575 	 * match against lower level tree elements.
1576 	 */
1577 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1578 		retval |= DM_RET_STOP;
1579 
1580 	return(retval);
1581 }
1582 
1583 /*
1584  * Match a single peripheral against any number of match patterns.
1585  */
1586 static dev_match_ret
1587 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1588 	       struct cam_periph *periph)
1589 {
1590 	dev_match_ret retval;
1591 	u_int i;
1592 
1593 	/*
1594 	 * If we aren't given something to match against, that's an error.
1595 	 */
1596 	if (periph == NULL)
1597 		return(DM_RET_ERROR);
1598 
1599 	/*
1600 	 * If there are no match entries, then this peripheral matches no
1601 	 * matter what.
1602 	 */
1603 	if ((patterns == NULL) || (num_patterns == 0))
1604 		return(DM_RET_STOP | DM_RET_COPY);
1605 
1606 	/*
1607 	 * There aren't any nodes below a peripheral node, so there's no
1608 	 * reason to descend the tree any further.
1609 	 */
1610 	retval = DM_RET_STOP;
1611 
1612 	for (i = 0; i < num_patterns; i++) {
1613 		struct periph_match_pattern *cur_pattern;
1614 
1615 		/*
1616 		 * If the pattern in question isn't for a peripheral, we
1617 		 * aren't interested.
1618 		 */
1619 		if (patterns[i].type != DEV_MATCH_PERIPH)
1620 			continue;
1621 
1622 		cur_pattern = &patterns[i].pattern.periph_pattern;
1623 
1624 		/*
1625 		 * If they want to match on anything, then we will do so.
1626 		 */
1627 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1628 			/* set the copy flag */
1629 			retval |= DM_RET_COPY;
1630 
1631 			/*
1632 			 * We've already set the return action to stop,
1633 			 * since there are no nodes below peripherals in
1634 			 * the tree.
1635 			 */
1636 			return(retval);
1637 		}
1638 
1639 		/*
1640 		 * Not sure why someone would do this...
1641 		 */
1642 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1643 			continue;
1644 
1645 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1646 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1647 			continue;
1648 
1649 		/*
1650 		 * For the target and lun id's, we have to make sure the
1651 		 * target and lun pointers aren't NULL.  The xpt peripheral
1652 		 * has a wildcard target and device.
1653 		 */
1654 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1655 		 && ((periph->path->target == NULL)
1656 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1657 			continue;
1658 
1659 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1660 		 && ((periph->path->device == NULL)
1661 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1662 			continue;
1663 
1664 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1665 		 && (cur_pattern->unit_number != periph->unit_number))
1666 			continue;
1667 
1668 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1669 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1670 			     DEV_IDLEN) != 0))
1671 			continue;
1672 
1673 		/*
1674 		 * If we get to this point, the user definitely wants
1675 		 * information on this peripheral.  So tell the caller to
1676 		 * copy the data out.
1677 		 */
1678 		retval |= DM_RET_COPY;
1679 
1680 		/*
1681 		 * The return action has already been set to stop, since
1682 		 * peripherals don't have any nodes below them in the EDT.
1683 		 */
1684 		return(retval);
1685 	}
1686 
1687 	/*
1688 	 * If we get to this point, the peripheral that was passed in
1689 	 * doesn't match any of the patterns.
1690 	 */
1691 	return(retval);
1692 }
1693 
1694 static int
1695 xptedtbusfunc(struct cam_eb *bus, void *arg)
1696 {
1697 	struct ccb_dev_match *cdm;
1698 	struct cam_et *target;
1699 	dev_match_ret retval;
1700 
1701 	cdm = (struct ccb_dev_match *)arg;
1702 
1703 	/*
1704 	 * If our position is for something deeper in the tree, that means
1705 	 * that we've already seen this node.  So, we keep going down.
1706 	 */
1707 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1708 	 && (cdm->pos.cookie.bus == bus)
1709 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1710 	 && (cdm->pos.cookie.target != NULL))
1711 		retval = DM_RET_DESCEND;
1712 	else
1713 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1714 
1715 	/*
1716 	 * If we got an error, bail out of the search.
1717 	 */
1718 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1719 		cdm->status = CAM_DEV_MATCH_ERROR;
1720 		return(0);
1721 	}
1722 
1723 	/*
1724 	 * If the copy flag is set, copy this bus out.
1725 	 */
1726 	if (retval & DM_RET_COPY) {
1727 		int spaceleft, j;
1728 
1729 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1730 			sizeof(struct dev_match_result));
1731 
1732 		/*
1733 		 * If we don't have enough space to put in another
1734 		 * match result, save our position and tell the
1735 		 * user there are more devices to check.
1736 		 */
1737 		if (spaceleft < sizeof(struct dev_match_result)) {
1738 			bzero(&cdm->pos, sizeof(cdm->pos));
1739 			cdm->pos.position_type =
1740 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1741 
1742 			cdm->pos.cookie.bus = bus;
1743 			cdm->pos.generations[CAM_BUS_GENERATION]=
1744 				xsoftc.bus_generation;
1745 			cdm->status = CAM_DEV_MATCH_MORE;
1746 			return(0);
1747 		}
1748 		j = cdm->num_matches;
1749 		cdm->num_matches++;
1750 		cdm->matches[j].type = DEV_MATCH_BUS;
1751 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1752 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1753 		cdm->matches[j].result.bus_result.unit_number =
1754 			bus->sim->unit_number;
1755 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1756 			bus->sim->sim_name,
1757 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1758 	}
1759 
1760 	/*
1761 	 * If the user is only interested in buses, there's no
1762 	 * reason to descend to the next level in the tree.
1763 	 */
1764 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1765 		return(1);
1766 
1767 	/*
1768 	 * If there is a target generation recorded, check it to
1769 	 * make sure the target list hasn't changed.
1770 	 */
1771 	mtx_lock(&bus->eb_mtx);
1772 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1773 	 && (cdm->pos.cookie.bus == bus)
1774 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1775 	 && (cdm->pos.cookie.target != NULL)) {
1776 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1777 		    bus->generation)) {
1778 			mtx_unlock(&bus->eb_mtx);
1779 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1780 			return (0);
1781 		}
1782 		target = (struct cam_et *)cdm->pos.cookie.target;
1783 		target->refcount++;
1784 	} else
1785 		target = NULL;
1786 	mtx_unlock(&bus->eb_mtx);
1787 
1788 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1789 }
1790 
1791 static int
1792 xptedttargetfunc(struct cam_et *target, void *arg)
1793 {
1794 	struct ccb_dev_match *cdm;
1795 	struct cam_eb *bus;
1796 	struct cam_ed *device;
1797 
1798 	cdm = (struct ccb_dev_match *)arg;
1799 	bus = target->bus;
1800 
1801 	/*
1802 	 * If there is a device list generation recorded, check it to
1803 	 * make sure the device list hasn't changed.
1804 	 */
1805 	mtx_lock(&bus->eb_mtx);
1806 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1807 	 && (cdm->pos.cookie.bus == bus)
1808 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1809 	 && (cdm->pos.cookie.target == target)
1810 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1811 	 && (cdm->pos.cookie.device != NULL)) {
1812 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1813 		    target->generation) {
1814 			mtx_unlock(&bus->eb_mtx);
1815 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1816 			return(0);
1817 		}
1818 		device = (struct cam_ed *)cdm->pos.cookie.device;
1819 		device->refcount++;
1820 	} else
1821 		device = NULL;
1822 	mtx_unlock(&bus->eb_mtx);
1823 
1824 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1825 }
1826 
1827 static int
1828 xptedtdevicefunc(struct cam_ed *device, void *arg)
1829 {
1830 	struct cam_eb *bus;
1831 	struct cam_periph *periph;
1832 	struct ccb_dev_match *cdm;
1833 	dev_match_ret retval;
1834 
1835 	cdm = (struct ccb_dev_match *)arg;
1836 	bus = device->target->bus;
1837 
1838 	/*
1839 	 * If our position is for something deeper in the tree, that means
1840 	 * that we've already seen this node.  So, we keep going down.
1841 	 */
1842 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1843 	 && (cdm->pos.cookie.device == device)
1844 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1845 	 && (cdm->pos.cookie.periph != NULL))
1846 		retval = DM_RET_DESCEND;
1847 	else
1848 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1849 					device);
1850 
1851 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1852 		cdm->status = CAM_DEV_MATCH_ERROR;
1853 		return(0);
1854 	}
1855 
1856 	/*
1857 	 * If the copy flag is set, copy this device out.
1858 	 */
1859 	if (retval & DM_RET_COPY) {
1860 		int spaceleft, j;
1861 
1862 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1863 			sizeof(struct dev_match_result));
1864 
1865 		/*
1866 		 * If we don't have enough space to put in another
1867 		 * match result, save our position and tell the
1868 		 * user there are more devices to check.
1869 		 */
1870 		if (spaceleft < sizeof(struct dev_match_result)) {
1871 			bzero(&cdm->pos, sizeof(cdm->pos));
1872 			cdm->pos.position_type =
1873 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1874 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1875 
1876 			cdm->pos.cookie.bus = device->target->bus;
1877 			cdm->pos.generations[CAM_BUS_GENERATION]=
1878 				xsoftc.bus_generation;
1879 			cdm->pos.cookie.target = device->target;
1880 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1881 				device->target->bus->generation;
1882 			cdm->pos.cookie.device = device;
1883 			cdm->pos.generations[CAM_DEV_GENERATION] =
1884 				device->target->generation;
1885 			cdm->status = CAM_DEV_MATCH_MORE;
1886 			return(0);
1887 		}
1888 		j = cdm->num_matches;
1889 		cdm->num_matches++;
1890 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1891 		cdm->matches[j].result.device_result.path_id =
1892 			device->target->bus->path_id;
1893 		cdm->matches[j].result.device_result.target_id =
1894 			device->target->target_id;
1895 		cdm->matches[j].result.device_result.target_lun =
1896 			device->lun_id;
1897 		cdm->matches[j].result.device_result.protocol =
1898 			device->protocol;
1899 		bcopy(&device->inq_data,
1900 		      &cdm->matches[j].result.device_result.inq_data,
1901 		      sizeof(struct scsi_inquiry_data));
1902 		bcopy(&device->ident_data,
1903 		      &cdm->matches[j].result.device_result.ident_data,
1904 		      sizeof(struct ata_params));
1905 
1906 		/* Let the user know whether this device is unconfigured */
1907 		if (device->flags & CAM_DEV_UNCONFIGURED)
1908 			cdm->matches[j].result.device_result.flags =
1909 				DEV_RESULT_UNCONFIGURED;
1910 		else
1911 			cdm->matches[j].result.device_result.flags =
1912 				DEV_RESULT_NOFLAG;
1913 	}
1914 
1915 	/*
1916 	 * If the user isn't interested in peripherals, don't descend
1917 	 * the tree any further.
1918 	 */
1919 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1920 		return(1);
1921 
1922 	/*
1923 	 * If there is a peripheral list generation recorded, make sure
1924 	 * it hasn't changed.
1925 	 */
1926 	xpt_lock_buses();
1927 	mtx_lock(&bus->eb_mtx);
1928 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1929 	 && (cdm->pos.cookie.bus == bus)
1930 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1931 	 && (cdm->pos.cookie.target == device->target)
1932 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1933 	 && (cdm->pos.cookie.device == device)
1934 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1935 	 && (cdm->pos.cookie.periph != NULL)) {
1936 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1937 		    device->generation) {
1938 			mtx_unlock(&bus->eb_mtx);
1939 			xpt_unlock_buses();
1940 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1941 			return(0);
1942 		}
1943 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1944 		periph->refcount++;
1945 	} else
1946 		periph = NULL;
1947 	mtx_unlock(&bus->eb_mtx);
1948 	xpt_unlock_buses();
1949 
1950 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1951 }
1952 
1953 static int
1954 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1955 {
1956 	struct ccb_dev_match *cdm;
1957 	dev_match_ret retval;
1958 
1959 	cdm = (struct ccb_dev_match *)arg;
1960 
1961 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1962 
1963 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1964 		cdm->status = CAM_DEV_MATCH_ERROR;
1965 		return(0);
1966 	}
1967 
1968 	/*
1969 	 * If the copy flag is set, copy this peripheral out.
1970 	 */
1971 	if (retval & DM_RET_COPY) {
1972 		int spaceleft, j;
1973 		size_t l;
1974 
1975 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1976 			sizeof(struct dev_match_result));
1977 
1978 		/*
1979 		 * If we don't have enough space to put in another
1980 		 * match result, save our position and tell the
1981 		 * user there are more devices to check.
1982 		 */
1983 		if (spaceleft < sizeof(struct dev_match_result)) {
1984 			bzero(&cdm->pos, sizeof(cdm->pos));
1985 			cdm->pos.position_type =
1986 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1987 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1988 				CAM_DEV_POS_PERIPH;
1989 
1990 			cdm->pos.cookie.bus = periph->path->bus;
1991 			cdm->pos.generations[CAM_BUS_GENERATION]=
1992 				xsoftc.bus_generation;
1993 			cdm->pos.cookie.target = periph->path->target;
1994 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1995 				periph->path->bus->generation;
1996 			cdm->pos.cookie.device = periph->path->device;
1997 			cdm->pos.generations[CAM_DEV_GENERATION] =
1998 				periph->path->target->generation;
1999 			cdm->pos.cookie.periph = periph;
2000 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2001 				periph->path->device->generation;
2002 			cdm->status = CAM_DEV_MATCH_MORE;
2003 			return(0);
2004 		}
2005 
2006 		j = cdm->num_matches;
2007 		cdm->num_matches++;
2008 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2009 		cdm->matches[j].result.periph_result.path_id =
2010 			periph->path->bus->path_id;
2011 		cdm->matches[j].result.periph_result.target_id =
2012 			periph->path->target->target_id;
2013 		cdm->matches[j].result.periph_result.target_lun =
2014 			periph->path->device->lun_id;
2015 		cdm->matches[j].result.periph_result.unit_number =
2016 			periph->unit_number;
2017 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2018 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2019 			periph->periph_name, l);
2020 	}
2021 
2022 	return(1);
2023 }
2024 
2025 static int
2026 xptedtmatch(struct ccb_dev_match *cdm)
2027 {
2028 	struct cam_eb *bus;
2029 	int ret;
2030 
2031 	cdm->num_matches = 0;
2032 
2033 	/*
2034 	 * Check the bus list generation.  If it has changed, the user
2035 	 * needs to reset everything and start over.
2036 	 */
2037 	xpt_lock_buses();
2038 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2039 	 && (cdm->pos.cookie.bus != NULL)) {
2040 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2041 		    xsoftc.bus_generation) {
2042 			xpt_unlock_buses();
2043 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2044 			return(0);
2045 		}
2046 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2047 		bus->refcount++;
2048 	} else
2049 		bus = NULL;
2050 	xpt_unlock_buses();
2051 
2052 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2053 
2054 	/*
2055 	 * If we get back 0, that means that we had to stop before fully
2056 	 * traversing the EDT.  It also means that one of the subroutines
2057 	 * has set the status field to the proper value.  If we get back 1,
2058 	 * we've fully traversed the EDT and copied out any matching entries.
2059 	 */
2060 	if (ret == 1)
2061 		cdm->status = CAM_DEV_MATCH_LAST;
2062 
2063 	return(ret);
2064 }
2065 
2066 static int
2067 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2068 {
2069 	struct cam_periph *periph;
2070 	struct ccb_dev_match *cdm;
2071 
2072 	cdm = (struct ccb_dev_match *)arg;
2073 
2074 	xpt_lock_buses();
2075 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2076 	 && (cdm->pos.cookie.pdrv == pdrv)
2077 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2078 	 && (cdm->pos.cookie.periph != NULL)) {
2079 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2080 		    (*pdrv)->generation) {
2081 			xpt_unlock_buses();
2082 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2083 			return(0);
2084 		}
2085 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2086 		periph->refcount++;
2087 	} else
2088 		periph = NULL;
2089 	xpt_unlock_buses();
2090 
2091 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2092 }
2093 
2094 static int
2095 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2096 {
2097 	struct ccb_dev_match *cdm;
2098 	dev_match_ret retval;
2099 
2100 	cdm = (struct ccb_dev_match *)arg;
2101 
2102 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2103 
2104 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2105 		cdm->status = CAM_DEV_MATCH_ERROR;
2106 		return(0);
2107 	}
2108 
2109 	/*
2110 	 * If the copy flag is set, copy this peripheral out.
2111 	 */
2112 	if (retval & DM_RET_COPY) {
2113 		int spaceleft, j;
2114 		size_t l;
2115 
2116 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2117 			sizeof(struct dev_match_result));
2118 
2119 		/*
2120 		 * If we don't have enough space to put in another
2121 		 * match result, save our position and tell the
2122 		 * user there are more devices to check.
2123 		 */
2124 		if (spaceleft < sizeof(struct dev_match_result)) {
2125 			struct periph_driver **pdrv;
2126 
2127 			pdrv = NULL;
2128 			bzero(&cdm->pos, sizeof(cdm->pos));
2129 			cdm->pos.position_type =
2130 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2131 				CAM_DEV_POS_PERIPH;
2132 
2133 			/*
2134 			 * This may look a bit non-sensical, but it is
2135 			 * actually quite logical.  There are very few
2136 			 * peripheral drivers, and bloating every peripheral
2137 			 * structure with a pointer back to its parent
2138 			 * peripheral driver linker set entry would cost
2139 			 * more in the long run than doing this quick lookup.
2140 			 */
2141 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2142 				if (strcmp((*pdrv)->driver_name,
2143 				    periph->periph_name) == 0)
2144 					break;
2145 			}
2146 
2147 			if (*pdrv == NULL) {
2148 				cdm->status = CAM_DEV_MATCH_ERROR;
2149 				return(0);
2150 			}
2151 
2152 			cdm->pos.cookie.pdrv = pdrv;
2153 			/*
2154 			 * The periph generation slot does double duty, as
2155 			 * does the periph pointer slot.  They are used for
2156 			 * both edt and pdrv lookups and positioning.
2157 			 */
2158 			cdm->pos.cookie.periph = periph;
2159 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2160 				(*pdrv)->generation;
2161 			cdm->status = CAM_DEV_MATCH_MORE;
2162 			return(0);
2163 		}
2164 
2165 		j = cdm->num_matches;
2166 		cdm->num_matches++;
2167 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2168 		cdm->matches[j].result.periph_result.path_id =
2169 			periph->path->bus->path_id;
2170 
2171 		/*
2172 		 * The transport layer peripheral doesn't have a target or
2173 		 * lun.
2174 		 */
2175 		if (periph->path->target)
2176 			cdm->matches[j].result.periph_result.target_id =
2177 				periph->path->target->target_id;
2178 		else
2179 			cdm->matches[j].result.periph_result.target_id =
2180 				CAM_TARGET_WILDCARD;
2181 
2182 		if (periph->path->device)
2183 			cdm->matches[j].result.periph_result.target_lun =
2184 				periph->path->device->lun_id;
2185 		else
2186 			cdm->matches[j].result.periph_result.target_lun =
2187 				CAM_LUN_WILDCARD;
2188 
2189 		cdm->matches[j].result.periph_result.unit_number =
2190 			periph->unit_number;
2191 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2192 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2193 			periph->periph_name, l);
2194 	}
2195 
2196 	return(1);
2197 }
2198 
2199 static int
2200 xptperiphlistmatch(struct ccb_dev_match *cdm)
2201 {
2202 	int ret;
2203 
2204 	cdm->num_matches = 0;
2205 
2206 	/*
2207 	 * At this point in the edt traversal function, we check the bus
2208 	 * list generation to make sure that no buses have been added or
2209 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2210 	 * For the peripheral driver list traversal function, however, we
2211 	 * don't have to worry about new peripheral driver types coming or
2212 	 * going; they're in a linker set, and therefore can't change
2213 	 * without a recompile.
2214 	 */
2215 
2216 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2217 	 && (cdm->pos.cookie.pdrv != NULL))
2218 		ret = xptpdrvtraverse(
2219 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2220 				xptplistpdrvfunc, cdm);
2221 	else
2222 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2223 
2224 	/*
2225 	 * If we get back 0, that means that we had to stop before fully
2226 	 * traversing the peripheral driver tree.  It also means that one of
2227 	 * the subroutines has set the status field to the proper value.  If
2228 	 * we get back 1, we've fully traversed the EDT and copied out any
2229 	 * matching entries.
2230 	 */
2231 	if (ret == 1)
2232 		cdm->status = CAM_DEV_MATCH_LAST;
2233 
2234 	return(ret);
2235 }
2236 
2237 static int
2238 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2239 {
2240 	struct cam_eb *bus, *next_bus;
2241 	int retval;
2242 
2243 	retval = 1;
2244 	if (start_bus)
2245 		bus = start_bus;
2246 	else {
2247 		xpt_lock_buses();
2248 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2249 		if (bus == NULL) {
2250 			xpt_unlock_buses();
2251 			return (retval);
2252 		}
2253 		bus->refcount++;
2254 		xpt_unlock_buses();
2255 	}
2256 	for (; bus != NULL; bus = next_bus) {
2257 		retval = tr_func(bus, arg);
2258 		if (retval == 0) {
2259 			xpt_release_bus(bus);
2260 			break;
2261 		}
2262 		xpt_lock_buses();
2263 		next_bus = TAILQ_NEXT(bus, links);
2264 		if (next_bus)
2265 			next_bus->refcount++;
2266 		xpt_unlock_buses();
2267 		xpt_release_bus(bus);
2268 	}
2269 	return(retval);
2270 }
2271 
2272 static int
2273 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2274 		  xpt_targetfunc_t *tr_func, void *arg)
2275 {
2276 	struct cam_et *target, *next_target;
2277 	int retval;
2278 
2279 	retval = 1;
2280 	if (start_target)
2281 		target = start_target;
2282 	else {
2283 		mtx_lock(&bus->eb_mtx);
2284 		target = TAILQ_FIRST(&bus->et_entries);
2285 		if (target == NULL) {
2286 			mtx_unlock(&bus->eb_mtx);
2287 			return (retval);
2288 		}
2289 		target->refcount++;
2290 		mtx_unlock(&bus->eb_mtx);
2291 	}
2292 	for (; target != NULL; target = next_target) {
2293 		retval = tr_func(target, arg);
2294 		if (retval == 0) {
2295 			xpt_release_target(target);
2296 			break;
2297 		}
2298 		mtx_lock(&bus->eb_mtx);
2299 		next_target = TAILQ_NEXT(target, links);
2300 		if (next_target)
2301 			next_target->refcount++;
2302 		mtx_unlock(&bus->eb_mtx);
2303 		xpt_release_target(target);
2304 	}
2305 	return(retval);
2306 }
2307 
2308 static int
2309 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2310 		  xpt_devicefunc_t *tr_func, void *arg)
2311 {
2312 	struct cam_eb *bus;
2313 	struct cam_ed *device, *next_device;
2314 	int retval;
2315 
2316 	retval = 1;
2317 	bus = target->bus;
2318 	if (start_device)
2319 		device = start_device;
2320 	else {
2321 		mtx_lock(&bus->eb_mtx);
2322 		device = TAILQ_FIRST(&target->ed_entries);
2323 		if (device == NULL) {
2324 			mtx_unlock(&bus->eb_mtx);
2325 			return (retval);
2326 		}
2327 		device->refcount++;
2328 		mtx_unlock(&bus->eb_mtx);
2329 	}
2330 	for (; device != NULL; device = next_device) {
2331 		mtx_lock(&device->device_mtx);
2332 		retval = tr_func(device, arg);
2333 		mtx_unlock(&device->device_mtx);
2334 		if (retval == 0) {
2335 			xpt_release_device(device);
2336 			break;
2337 		}
2338 		mtx_lock(&bus->eb_mtx);
2339 		next_device = TAILQ_NEXT(device, links);
2340 		if (next_device)
2341 			next_device->refcount++;
2342 		mtx_unlock(&bus->eb_mtx);
2343 		xpt_release_device(device);
2344 	}
2345 	return(retval);
2346 }
2347 
2348 static int
2349 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2350 		  xpt_periphfunc_t *tr_func, void *arg)
2351 {
2352 	struct cam_eb *bus;
2353 	struct cam_periph *periph, *next_periph;
2354 	int retval;
2355 
2356 	retval = 1;
2357 
2358 	bus = device->target->bus;
2359 	if (start_periph)
2360 		periph = start_periph;
2361 	else {
2362 		xpt_lock_buses();
2363 		mtx_lock(&bus->eb_mtx);
2364 		periph = SLIST_FIRST(&device->periphs);
2365 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2366 			periph = SLIST_NEXT(periph, periph_links);
2367 		if (periph == NULL) {
2368 			mtx_unlock(&bus->eb_mtx);
2369 			xpt_unlock_buses();
2370 			return (retval);
2371 		}
2372 		periph->refcount++;
2373 		mtx_unlock(&bus->eb_mtx);
2374 		xpt_unlock_buses();
2375 	}
2376 	for (; periph != NULL; periph = next_periph) {
2377 		retval = tr_func(periph, arg);
2378 		if (retval == 0) {
2379 			cam_periph_release_locked(periph);
2380 			break;
2381 		}
2382 		xpt_lock_buses();
2383 		mtx_lock(&bus->eb_mtx);
2384 		next_periph = SLIST_NEXT(periph, periph_links);
2385 		while (next_periph != NULL &&
2386 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2387 			next_periph = SLIST_NEXT(next_periph, periph_links);
2388 		if (next_periph)
2389 			next_periph->refcount++;
2390 		mtx_unlock(&bus->eb_mtx);
2391 		xpt_unlock_buses();
2392 		cam_periph_release_locked(periph);
2393 	}
2394 	return(retval);
2395 }
2396 
2397 static int
2398 xptpdrvtraverse(struct periph_driver **start_pdrv,
2399 		xpt_pdrvfunc_t *tr_func, void *arg)
2400 {
2401 	struct periph_driver **pdrv;
2402 	int retval;
2403 
2404 	retval = 1;
2405 
2406 	/*
2407 	 * We don't traverse the peripheral driver list like we do the
2408 	 * other lists, because it is a linker set, and therefore cannot be
2409 	 * changed during runtime.  If the peripheral driver list is ever
2410 	 * re-done to be something other than a linker set (i.e. it can
2411 	 * change while the system is running), the list traversal should
2412 	 * be modified to work like the other traversal functions.
2413 	 */
2414 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2415 	     *pdrv != NULL; pdrv++) {
2416 		retval = tr_func(pdrv, arg);
2417 
2418 		if (retval == 0)
2419 			return(retval);
2420 	}
2421 
2422 	return(retval);
2423 }
2424 
2425 static int
2426 xptpdperiphtraverse(struct periph_driver **pdrv,
2427 		    struct cam_periph *start_periph,
2428 		    xpt_periphfunc_t *tr_func, void *arg)
2429 {
2430 	struct cam_periph *periph, *next_periph;
2431 	int retval;
2432 
2433 	retval = 1;
2434 
2435 	if (start_periph)
2436 		periph = start_periph;
2437 	else {
2438 		xpt_lock_buses();
2439 		periph = TAILQ_FIRST(&(*pdrv)->units);
2440 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2441 			periph = TAILQ_NEXT(periph, unit_links);
2442 		if (periph == NULL) {
2443 			xpt_unlock_buses();
2444 			return (retval);
2445 		}
2446 		periph->refcount++;
2447 		xpt_unlock_buses();
2448 	}
2449 	for (; periph != NULL; periph = next_periph) {
2450 		cam_periph_lock(periph);
2451 		retval = tr_func(periph, arg);
2452 		cam_periph_unlock(periph);
2453 		if (retval == 0) {
2454 			cam_periph_release(periph);
2455 			break;
2456 		}
2457 		xpt_lock_buses();
2458 		next_periph = TAILQ_NEXT(periph, unit_links);
2459 		while (next_periph != NULL &&
2460 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2461 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2462 		if (next_periph)
2463 			next_periph->refcount++;
2464 		xpt_unlock_buses();
2465 		cam_periph_release(periph);
2466 	}
2467 	return(retval);
2468 }
2469 
2470 static int
2471 xptdefbusfunc(struct cam_eb *bus, void *arg)
2472 {
2473 	struct xpt_traverse_config *tr_config;
2474 
2475 	tr_config = (struct xpt_traverse_config *)arg;
2476 
2477 	if (tr_config->depth == XPT_DEPTH_BUS) {
2478 		xpt_busfunc_t *tr_func;
2479 
2480 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2481 
2482 		return(tr_func(bus, tr_config->tr_arg));
2483 	} else
2484 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2485 }
2486 
2487 static int
2488 xptdeftargetfunc(struct cam_et *target, void *arg)
2489 {
2490 	struct xpt_traverse_config *tr_config;
2491 
2492 	tr_config = (struct xpt_traverse_config *)arg;
2493 
2494 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2495 		xpt_targetfunc_t *tr_func;
2496 
2497 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2498 
2499 		return(tr_func(target, tr_config->tr_arg));
2500 	} else
2501 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2502 }
2503 
2504 static int
2505 xptdefdevicefunc(struct cam_ed *device, void *arg)
2506 {
2507 	struct xpt_traverse_config *tr_config;
2508 
2509 	tr_config = (struct xpt_traverse_config *)arg;
2510 
2511 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2512 		xpt_devicefunc_t *tr_func;
2513 
2514 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2515 
2516 		return(tr_func(device, tr_config->tr_arg));
2517 	} else
2518 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2519 }
2520 
2521 static int
2522 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2523 {
2524 	struct xpt_traverse_config *tr_config;
2525 	xpt_periphfunc_t *tr_func;
2526 
2527 	tr_config = (struct xpt_traverse_config *)arg;
2528 
2529 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2530 
2531 	/*
2532 	 * Unlike the other default functions, we don't check for depth
2533 	 * here.  The peripheral driver level is the last level in the EDT,
2534 	 * so if we're here, we should execute the function in question.
2535 	 */
2536 	return(tr_func(periph, tr_config->tr_arg));
2537 }
2538 
2539 /*
2540  * Execute the given function for every bus in the EDT.
2541  */
2542 static int
2543 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2544 {
2545 	struct xpt_traverse_config tr_config;
2546 
2547 	tr_config.depth = XPT_DEPTH_BUS;
2548 	tr_config.tr_func = tr_func;
2549 	tr_config.tr_arg = arg;
2550 
2551 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2552 }
2553 
2554 /*
2555  * Execute the given function for every device in the EDT.
2556  */
2557 static int
2558 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2559 {
2560 	struct xpt_traverse_config tr_config;
2561 
2562 	tr_config.depth = XPT_DEPTH_DEVICE;
2563 	tr_config.tr_func = tr_func;
2564 	tr_config.tr_arg = arg;
2565 
2566 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2567 }
2568 
2569 static int
2570 xptsetasyncfunc(struct cam_ed *device, void *arg)
2571 {
2572 	struct cam_path path;
2573 	struct ccb_getdev cgd;
2574 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2575 
2576 	/*
2577 	 * Don't report unconfigured devices (Wildcard devs,
2578 	 * devices only for target mode, device instances
2579 	 * that have been invalidated but are waiting for
2580 	 * their last reference count to be released).
2581 	 */
2582 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2583 		return (1);
2584 
2585 	xpt_compile_path(&path,
2586 			 NULL,
2587 			 device->target->bus->path_id,
2588 			 device->target->target_id,
2589 			 device->lun_id);
2590 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2591 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2592 	xpt_action((union ccb *)&cgd);
2593 	csa->callback(csa->callback_arg,
2594 			    AC_FOUND_DEVICE,
2595 			    &path, &cgd);
2596 	xpt_release_path(&path);
2597 
2598 	return(1);
2599 }
2600 
2601 static int
2602 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2603 {
2604 	struct cam_path path;
2605 	struct ccb_pathinq cpi;
2606 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2607 
2608 	xpt_compile_path(&path, /*periph*/NULL,
2609 			 bus->path_id,
2610 			 CAM_TARGET_WILDCARD,
2611 			 CAM_LUN_WILDCARD);
2612 	xpt_path_lock(&path);
2613 	xpt_path_inq(&cpi, &path);
2614 	csa->callback(csa->callback_arg,
2615 			    AC_PATH_REGISTERED,
2616 			    &path, &cpi);
2617 	xpt_path_unlock(&path);
2618 	xpt_release_path(&path);
2619 
2620 	return(1);
2621 }
2622 
2623 void
2624 xpt_action(union ccb *start_ccb)
2625 {
2626 
2627 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2628 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2629 		xpt_action_name(start_ccb->ccb_h.func_code)));
2630 
2631 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2632 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2633 }
2634 
2635 void
2636 xpt_action_default(union ccb *start_ccb)
2637 {
2638 	struct cam_path *path;
2639 	struct cam_sim *sim;
2640 	struct mtx *mtx;
2641 
2642 	path = start_ccb->ccb_h.path;
2643 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2644 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2645 		xpt_action_name(start_ccb->ccb_h.func_code)));
2646 
2647 	switch (start_ccb->ccb_h.func_code) {
2648 	case XPT_SCSI_IO:
2649 	{
2650 		struct cam_ed *device;
2651 
2652 		/*
2653 		 * For the sake of compatibility with SCSI-1
2654 		 * devices that may not understand the identify
2655 		 * message, we include lun information in the
2656 		 * second byte of all commands.  SCSI-1 specifies
2657 		 * that luns are a 3 bit value and reserves only 3
2658 		 * bits for lun information in the CDB.  Later
2659 		 * revisions of the SCSI spec allow for more than 8
2660 		 * luns, but have deprecated lun information in the
2661 		 * CDB.  So, if the lun won't fit, we must omit.
2662 		 *
2663 		 * Also be aware that during initial probing for devices,
2664 		 * the inquiry information is unknown but initialized to 0.
2665 		 * This means that this code will be exercised while probing
2666 		 * devices with an ANSI revision greater than 2.
2667 		 */
2668 		device = path->device;
2669 		if (device->protocol_version <= SCSI_REV_2
2670 		 && start_ccb->ccb_h.target_lun < 8
2671 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2672 
2673 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2674 			    start_ccb->ccb_h.target_lun << 5;
2675 		}
2676 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2677 	}
2678 	/* FALLTHROUGH */
2679 	case XPT_TARGET_IO:
2680 	case XPT_CONT_TARGET_IO:
2681 		start_ccb->csio.sense_resid = 0;
2682 		start_ccb->csio.resid = 0;
2683 		/* FALLTHROUGH */
2684 	case XPT_ATA_IO:
2685 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2686 			start_ccb->ataio.resid = 0;
2687 		/* FALLTHROUGH */
2688 	case XPT_NVME_IO:
2689 	case XPT_NVME_ADMIN:
2690 	case XPT_MMC_IO:
2691 	case XPT_RESET_DEV:
2692 	case XPT_ENG_EXEC:
2693 	case XPT_SMP_IO:
2694 	{
2695 		struct cam_devq *devq;
2696 
2697 		devq = path->bus->sim->devq;
2698 		mtx_lock(&devq->send_mtx);
2699 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2700 		if (xpt_schedule_devq(devq, path->device) != 0)
2701 			xpt_run_devq(devq);
2702 		mtx_unlock(&devq->send_mtx);
2703 		break;
2704 	}
2705 	case XPT_CALC_GEOMETRY:
2706 		/* Filter out garbage */
2707 		if (start_ccb->ccg.block_size == 0
2708 		 || start_ccb->ccg.volume_size == 0) {
2709 			start_ccb->ccg.cylinders = 0;
2710 			start_ccb->ccg.heads = 0;
2711 			start_ccb->ccg.secs_per_track = 0;
2712 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2713 			break;
2714 		}
2715 		goto call_sim;
2716 	case XPT_ABORT:
2717 	{
2718 		union ccb* abort_ccb;
2719 
2720 		abort_ccb = start_ccb->cab.abort_ccb;
2721 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2722 			struct cam_ed *device;
2723 			struct cam_devq *devq;
2724 
2725 			device = abort_ccb->ccb_h.path->device;
2726 			devq = device->sim->devq;
2727 
2728 			mtx_lock(&devq->send_mtx);
2729 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2730 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2731 				abort_ccb->ccb_h.status =
2732 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2733 				xpt_freeze_devq_device(device, 1);
2734 				mtx_unlock(&devq->send_mtx);
2735 				xpt_done(abort_ccb);
2736 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2737 				break;
2738 			}
2739 			mtx_unlock(&devq->send_mtx);
2740 
2741 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2742 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2743 				/*
2744 				 * We've caught this ccb en route to
2745 				 * the SIM.  Flag it for abort and the
2746 				 * SIM will do so just before starting
2747 				 * real work on the CCB.
2748 				 */
2749 				abort_ccb->ccb_h.status =
2750 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2751 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2752 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2753 				break;
2754 			}
2755 		}
2756 		if (XPT_FC_IS_QUEUED(abort_ccb)
2757 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2758 			/*
2759 			 * It's already completed but waiting
2760 			 * for our SWI to get to it.
2761 			 */
2762 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2763 			break;
2764 		}
2765 		/*
2766 		 * If we weren't able to take care of the abort request
2767 		 * in the XPT, pass the request down to the SIM for processing.
2768 		 */
2769 	}
2770 	/* FALLTHROUGH */
2771 	case XPT_ACCEPT_TARGET_IO:
2772 	case XPT_EN_LUN:
2773 	case XPT_IMMED_NOTIFY:
2774 	case XPT_NOTIFY_ACK:
2775 	case XPT_RESET_BUS:
2776 	case XPT_IMMEDIATE_NOTIFY:
2777 	case XPT_NOTIFY_ACKNOWLEDGE:
2778 	case XPT_GET_SIM_KNOB_OLD:
2779 	case XPT_GET_SIM_KNOB:
2780 	case XPT_SET_SIM_KNOB:
2781 	case XPT_GET_TRAN_SETTINGS:
2782 	case XPT_SET_TRAN_SETTINGS:
2783 	case XPT_PATH_INQ:
2784 call_sim:
2785 		sim = path->bus->sim;
2786 		mtx = sim->mtx;
2787 		if (mtx && !mtx_owned(mtx))
2788 			mtx_lock(mtx);
2789 		else
2790 			mtx = NULL;
2791 
2792 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2793 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2794 		(*(sim->sim_action))(sim, start_ccb);
2795 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2796 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2797 		if (mtx)
2798 			mtx_unlock(mtx);
2799 		break;
2800 	case XPT_PATH_STATS:
2801 		start_ccb->cpis.last_reset = path->bus->last_reset;
2802 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2803 		break;
2804 	case XPT_GDEV_TYPE:
2805 	{
2806 		struct cam_ed *dev;
2807 
2808 		dev = path->device;
2809 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2810 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2811 		} else {
2812 			struct ccb_getdev *cgd;
2813 
2814 			cgd = &start_ccb->cgd;
2815 			cgd->protocol = dev->protocol;
2816 			cgd->inq_data = dev->inq_data;
2817 			cgd->ident_data = dev->ident_data;
2818 			cgd->inq_flags = dev->inq_flags;
2819 			cgd->ccb_h.status = CAM_REQ_CMP;
2820 			cgd->serial_num_len = dev->serial_num_len;
2821 			if ((dev->serial_num_len > 0)
2822 			 && (dev->serial_num != NULL))
2823 				bcopy(dev->serial_num, cgd->serial_num,
2824 				      dev->serial_num_len);
2825 		}
2826 		break;
2827 	}
2828 	case XPT_GDEV_STATS:
2829 	{
2830 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2831 		struct cam_ed *dev = path->device;
2832 		struct cam_eb *bus = path->bus;
2833 		struct cam_et *tar = path->target;
2834 		struct cam_devq *devq = bus->sim->devq;
2835 
2836 		mtx_lock(&devq->send_mtx);
2837 		cgds->dev_openings = dev->ccbq.dev_openings;
2838 		cgds->dev_active = dev->ccbq.dev_active;
2839 		cgds->allocated = dev->ccbq.allocated;
2840 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2841 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2842 		cgds->last_reset = tar->last_reset;
2843 		cgds->maxtags = dev->maxtags;
2844 		cgds->mintags = dev->mintags;
2845 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2846 			cgds->last_reset = bus->last_reset;
2847 		mtx_unlock(&devq->send_mtx);
2848 		cgds->ccb_h.status = CAM_REQ_CMP;
2849 		break;
2850 	}
2851 	case XPT_GDEVLIST:
2852 	{
2853 		struct cam_periph	*nperiph;
2854 		struct periph_list	*periph_head;
2855 		struct ccb_getdevlist	*cgdl;
2856 		u_int			i;
2857 		struct cam_ed		*device;
2858 		int			found;
2859 
2860 
2861 		found = 0;
2862 
2863 		/*
2864 		 * Don't want anyone mucking with our data.
2865 		 */
2866 		device = path->device;
2867 		periph_head = &device->periphs;
2868 		cgdl = &start_ccb->cgdl;
2869 
2870 		/*
2871 		 * Check and see if the list has changed since the user
2872 		 * last requested a list member.  If so, tell them that the
2873 		 * list has changed, and therefore they need to start over
2874 		 * from the beginning.
2875 		 */
2876 		if ((cgdl->index != 0) &&
2877 		    (cgdl->generation != device->generation)) {
2878 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2879 			break;
2880 		}
2881 
2882 		/*
2883 		 * Traverse the list of peripherals and attempt to find
2884 		 * the requested peripheral.
2885 		 */
2886 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2887 		     (nperiph != NULL) && (i <= cgdl->index);
2888 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2889 			if (i == cgdl->index) {
2890 				strlcpy(cgdl->periph_name,
2891 					nperiph->periph_name,
2892 					sizeof(cgdl->periph_name));
2893 				cgdl->unit_number = nperiph->unit_number;
2894 				found = 1;
2895 			}
2896 		}
2897 		if (found == 0) {
2898 			cgdl->status = CAM_GDEVLIST_ERROR;
2899 			break;
2900 		}
2901 
2902 		if (nperiph == NULL)
2903 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2904 		else
2905 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2906 
2907 		cgdl->index++;
2908 		cgdl->generation = device->generation;
2909 
2910 		cgdl->ccb_h.status = CAM_REQ_CMP;
2911 		break;
2912 	}
2913 	case XPT_DEV_MATCH:
2914 	{
2915 		dev_pos_type position_type;
2916 		struct ccb_dev_match *cdm;
2917 
2918 		cdm = &start_ccb->cdm;
2919 
2920 		/*
2921 		 * There are two ways of getting at information in the EDT.
2922 		 * The first way is via the primary EDT tree.  It starts
2923 		 * with a list of buses, then a list of targets on a bus,
2924 		 * then devices/luns on a target, and then peripherals on a
2925 		 * device/lun.  The "other" way is by the peripheral driver
2926 		 * lists.  The peripheral driver lists are organized by
2927 		 * peripheral driver.  (obviously)  So it makes sense to
2928 		 * use the peripheral driver list if the user is looking
2929 		 * for something like "da1", or all "da" devices.  If the
2930 		 * user is looking for something on a particular bus/target
2931 		 * or lun, it's generally better to go through the EDT tree.
2932 		 */
2933 
2934 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2935 			position_type = cdm->pos.position_type;
2936 		else {
2937 			u_int i;
2938 
2939 			position_type = CAM_DEV_POS_NONE;
2940 
2941 			for (i = 0; i < cdm->num_patterns; i++) {
2942 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2943 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2944 					position_type = CAM_DEV_POS_EDT;
2945 					break;
2946 				}
2947 			}
2948 
2949 			if (cdm->num_patterns == 0)
2950 				position_type = CAM_DEV_POS_EDT;
2951 			else if (position_type == CAM_DEV_POS_NONE)
2952 				position_type = CAM_DEV_POS_PDRV;
2953 		}
2954 
2955 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2956 		case CAM_DEV_POS_EDT:
2957 			xptedtmatch(cdm);
2958 			break;
2959 		case CAM_DEV_POS_PDRV:
2960 			xptperiphlistmatch(cdm);
2961 			break;
2962 		default:
2963 			cdm->status = CAM_DEV_MATCH_ERROR;
2964 			break;
2965 		}
2966 
2967 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2968 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2969 		else
2970 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2971 
2972 		break;
2973 	}
2974 	case XPT_SASYNC_CB:
2975 	{
2976 		struct ccb_setasync *csa;
2977 		struct async_node *cur_entry;
2978 		struct async_list *async_head;
2979 		u_int32_t added;
2980 
2981 		csa = &start_ccb->csa;
2982 		added = csa->event_enable;
2983 		async_head = &path->device->asyncs;
2984 
2985 		/*
2986 		 * If there is already an entry for us, simply
2987 		 * update it.
2988 		 */
2989 		cur_entry = SLIST_FIRST(async_head);
2990 		while (cur_entry != NULL) {
2991 			if ((cur_entry->callback_arg == csa->callback_arg)
2992 			 && (cur_entry->callback == csa->callback))
2993 				break;
2994 			cur_entry = SLIST_NEXT(cur_entry, links);
2995 		}
2996 
2997 		if (cur_entry != NULL) {
2998 		 	/*
2999 			 * If the request has no flags set,
3000 			 * remove the entry.
3001 			 */
3002 			added &= ~cur_entry->event_enable;
3003 			if (csa->event_enable == 0) {
3004 				SLIST_REMOVE(async_head, cur_entry,
3005 					     async_node, links);
3006 				xpt_release_device(path->device);
3007 				free(cur_entry, M_CAMXPT);
3008 			} else {
3009 				cur_entry->event_enable = csa->event_enable;
3010 			}
3011 			csa->event_enable = added;
3012 		} else {
3013 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3014 					   M_NOWAIT);
3015 			if (cur_entry == NULL) {
3016 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3017 				break;
3018 			}
3019 			cur_entry->event_enable = csa->event_enable;
3020 			cur_entry->event_lock = (path->bus->sim->mtx &&
3021 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3022 			cur_entry->callback_arg = csa->callback_arg;
3023 			cur_entry->callback = csa->callback;
3024 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3025 			xpt_acquire_device(path->device);
3026 		}
3027 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3028 		break;
3029 	}
3030 	case XPT_REL_SIMQ:
3031 	{
3032 		struct ccb_relsim *crs;
3033 		struct cam_ed *dev;
3034 
3035 		crs = &start_ccb->crs;
3036 		dev = path->device;
3037 		if (dev == NULL) {
3038 
3039 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3040 			break;
3041 		}
3042 
3043 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3044 
3045 			/* Don't ever go below one opening */
3046 			if (crs->openings > 0) {
3047 				xpt_dev_ccbq_resize(path, crs->openings);
3048 				if (bootverbose) {
3049 					xpt_print(path,
3050 					    "number of openings is now %d\n",
3051 					    crs->openings);
3052 				}
3053 			}
3054 		}
3055 
3056 		mtx_lock(&dev->sim->devq->send_mtx);
3057 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3058 
3059 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3060 
3061 				/*
3062 				 * Just extend the old timeout and decrement
3063 				 * the freeze count so that a single timeout
3064 				 * is sufficient for releasing the queue.
3065 				 */
3066 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3067 				callout_stop(&dev->callout);
3068 			} else {
3069 
3070 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3071 			}
3072 
3073 			callout_reset_sbt(&dev->callout,
3074 			    SBT_1MS * crs->release_timeout, 0,
3075 			    xpt_release_devq_timeout, dev, 0);
3076 
3077 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3078 
3079 		}
3080 
3081 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3082 
3083 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3084 				/*
3085 				 * Decrement the freeze count so that a single
3086 				 * completion is still sufficient to unfreeze
3087 				 * the queue.
3088 				 */
3089 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3090 			} else {
3091 
3092 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3093 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3094 			}
3095 		}
3096 
3097 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3098 
3099 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3100 			 || (dev->ccbq.dev_active == 0)) {
3101 
3102 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3103 			} else {
3104 
3105 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3106 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3107 			}
3108 		}
3109 		mtx_unlock(&dev->sim->devq->send_mtx);
3110 
3111 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3112 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3113 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3114 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3115 		break;
3116 	}
3117 	case XPT_DEBUG: {
3118 		struct cam_path *oldpath;
3119 
3120 		/* Check that all request bits are supported. */
3121 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3122 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3123 			break;
3124 		}
3125 
3126 		cam_dflags = CAM_DEBUG_NONE;
3127 		if (cam_dpath != NULL) {
3128 			oldpath = cam_dpath;
3129 			cam_dpath = NULL;
3130 			xpt_free_path(oldpath);
3131 		}
3132 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3133 			if (xpt_create_path(&cam_dpath, NULL,
3134 					    start_ccb->ccb_h.path_id,
3135 					    start_ccb->ccb_h.target_id,
3136 					    start_ccb->ccb_h.target_lun) !=
3137 					    CAM_REQ_CMP) {
3138 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3139 			} else {
3140 				cam_dflags = start_ccb->cdbg.flags;
3141 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3142 				xpt_print(cam_dpath, "debugging flags now %x\n",
3143 				    cam_dflags);
3144 			}
3145 		} else
3146 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3147 		break;
3148 	}
3149 	case XPT_NOOP:
3150 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3151 			xpt_freeze_devq(path, 1);
3152 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3153 		break;
3154 	case XPT_REPROBE_LUN:
3155 		xpt_async(AC_INQ_CHANGED, path, NULL);
3156 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3157 		xpt_done(start_ccb);
3158 		break;
3159 	case XPT_ASYNC:
3160 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3161 		xpt_done(start_ccb);
3162 		break;
3163 	default:
3164 	case XPT_SDEV_TYPE:
3165 	case XPT_TERM_IO:
3166 	case XPT_ENG_INQ:
3167 		/* XXX Implement */
3168 		xpt_print(start_ccb->ccb_h.path,
3169 		    "%s: CCB type %#x %s not supported\n", __func__,
3170 		    start_ccb->ccb_h.func_code,
3171 		    xpt_action_name(start_ccb->ccb_h.func_code));
3172 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3173 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3174 			xpt_done(start_ccb);
3175 		}
3176 		break;
3177 	}
3178 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3179 	    ("xpt_action_default: func= %#x %s status %#x\n",
3180 		start_ccb->ccb_h.func_code,
3181  		xpt_action_name(start_ccb->ccb_h.func_code),
3182 		start_ccb->ccb_h.status));
3183 }
3184 
3185 /*
3186  * Call the sim poll routine to allow the sim to complete
3187  * any inflight requests, then call camisr_runqueue to
3188  * complete any CCB that the polling completed.
3189  */
3190 void
3191 xpt_sim_poll(struct cam_sim *sim)
3192 {
3193 	struct mtx *mtx;
3194 
3195 	mtx = sim->mtx;
3196 	if (mtx)
3197 		mtx_lock(mtx);
3198 	(*(sim->sim_poll))(sim);
3199 	if (mtx)
3200 		mtx_unlock(mtx);
3201 	camisr_runqueue();
3202 }
3203 
3204 uint32_t
3205 xpt_poll_setup(union ccb *start_ccb)
3206 {
3207 	u_int32_t timeout;
3208 	struct	  cam_sim *sim;
3209 	struct	  cam_devq *devq;
3210 	struct	  cam_ed *dev;
3211 
3212 	timeout = start_ccb->ccb_h.timeout * 10;
3213 	sim = start_ccb->ccb_h.path->bus->sim;
3214 	devq = sim->devq;
3215 	dev = start_ccb->ccb_h.path->device;
3216 
3217 	/*
3218 	 * Steal an opening so that no other queued requests
3219 	 * can get it before us while we simulate interrupts.
3220 	 */
3221 	mtx_lock(&devq->send_mtx);
3222 	dev->ccbq.dev_openings--;
3223 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3224 	    (--timeout > 0)) {
3225 		mtx_unlock(&devq->send_mtx);
3226 		DELAY(100);
3227 		xpt_sim_poll(sim);
3228 		mtx_lock(&devq->send_mtx);
3229 	}
3230 	dev->ccbq.dev_openings++;
3231 	mtx_unlock(&devq->send_mtx);
3232 
3233 	return (timeout);
3234 }
3235 
3236 void
3237 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3238 {
3239 
3240 	while (--timeout > 0) {
3241 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3242 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3243 		    != CAM_REQ_INPROG)
3244 			break;
3245 		DELAY(100);
3246 	}
3247 
3248 	if (timeout == 0) {
3249 		/*
3250 		 * XXX Is it worth adding a sim_timeout entry
3251 		 * point so we can attempt recovery?  If
3252 		 * this is only used for dumps, I don't think
3253 		 * it is.
3254 		 */
3255 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3256 	}
3257 }
3258 
3259 void
3260 xpt_polled_action(union ccb *start_ccb)
3261 {
3262 	uint32_t	timeout;
3263 	struct cam_ed	*dev;
3264 
3265 	timeout = start_ccb->ccb_h.timeout * 10;
3266 	dev = start_ccb->ccb_h.path->device;
3267 
3268 	mtx_unlock(&dev->device_mtx);
3269 
3270 	timeout = xpt_poll_setup(start_ccb);
3271 	if (timeout > 0) {
3272 		xpt_action(start_ccb);
3273 		xpt_pollwait(start_ccb, timeout);
3274 	} else {
3275 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3276 	}
3277 
3278 	mtx_lock(&dev->device_mtx);
3279 }
3280 
3281 /*
3282  * Schedule a peripheral driver to receive a ccb when its
3283  * target device has space for more transactions.
3284  */
3285 void
3286 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3287 {
3288 
3289 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3290 	cam_periph_assert(periph, MA_OWNED);
3291 	if (new_priority < periph->scheduled_priority) {
3292 		periph->scheduled_priority = new_priority;
3293 		xpt_run_allocq(periph, 0);
3294 	}
3295 }
3296 
3297 
3298 /*
3299  * Schedule a device to run on a given queue.
3300  * If the device was inserted as a new entry on the queue,
3301  * return 1 meaning the device queue should be run. If we
3302  * were already queued, implying someone else has already
3303  * started the queue, return 0 so the caller doesn't attempt
3304  * to run the queue.
3305  */
3306 static int
3307 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3308 		 u_int32_t new_priority)
3309 {
3310 	int retval;
3311 	u_int32_t old_priority;
3312 
3313 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3314 
3315 
3316 	old_priority = pinfo->priority;
3317 
3318 	/*
3319 	 * Are we already queued?
3320 	 */
3321 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3322 		/* Simply reorder based on new priority */
3323 		if (new_priority < old_priority) {
3324 			camq_change_priority(queue, pinfo->index,
3325 					     new_priority);
3326 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3327 					("changed priority to %d\n",
3328 					 new_priority));
3329 			retval = 1;
3330 		} else
3331 			retval = 0;
3332 	} else {
3333 		/* New entry on the queue */
3334 		if (new_priority < old_priority)
3335 			pinfo->priority = new_priority;
3336 
3337 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3338 				("Inserting onto queue\n"));
3339 		pinfo->generation = ++queue->generation;
3340 		camq_insert(queue, pinfo);
3341 		retval = 1;
3342 	}
3343 	return (retval);
3344 }
3345 
3346 static void
3347 xpt_run_allocq_task(void *context, int pending)
3348 {
3349 	struct cam_periph *periph = context;
3350 
3351 	cam_periph_lock(periph);
3352 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3353 	xpt_run_allocq(periph, 1);
3354 	cam_periph_unlock(periph);
3355 	cam_periph_release(periph);
3356 }
3357 
3358 static void
3359 xpt_run_allocq(struct cam_periph *periph, int sleep)
3360 {
3361 	struct cam_ed	*device;
3362 	union ccb	*ccb;
3363 	uint32_t	 prio;
3364 
3365 	cam_periph_assert(periph, MA_OWNED);
3366 	if (periph->periph_allocating)
3367 		return;
3368 	cam_periph_doacquire(periph);
3369 	periph->periph_allocating = 1;
3370 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3371 	device = periph->path->device;
3372 	ccb = NULL;
3373 restart:
3374 	while ((prio = min(periph->scheduled_priority,
3375 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3376 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3377 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3378 
3379 		if (ccb == NULL &&
3380 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3381 			if (sleep) {
3382 				ccb = xpt_get_ccb(periph);
3383 				goto restart;
3384 			}
3385 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3386 				break;
3387 			cam_periph_doacquire(periph);
3388 			periph->flags |= CAM_PERIPH_RUN_TASK;
3389 			taskqueue_enqueue(xsoftc.xpt_taskq,
3390 			    &periph->periph_run_task);
3391 			break;
3392 		}
3393 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3394 		if (prio == periph->immediate_priority) {
3395 			periph->immediate_priority = CAM_PRIORITY_NONE;
3396 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3397 					("waking cam_periph_getccb()\n"));
3398 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3399 					  periph_links.sle);
3400 			wakeup(&periph->ccb_list);
3401 		} else {
3402 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3403 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3404 					("calling periph_start()\n"));
3405 			periph->periph_start(periph, ccb);
3406 		}
3407 		ccb = NULL;
3408 	}
3409 	if (ccb != NULL)
3410 		xpt_release_ccb(ccb);
3411 	periph->periph_allocating = 0;
3412 	cam_periph_release_locked(periph);
3413 }
3414 
3415 static void
3416 xpt_run_devq(struct cam_devq *devq)
3417 {
3418 	struct mtx *mtx;
3419 
3420 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3421 
3422 	devq->send_queue.qfrozen_cnt++;
3423 	while ((devq->send_queue.entries > 0)
3424 	    && (devq->send_openings > 0)
3425 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3426 		struct	cam_ed *device;
3427 		union ccb *work_ccb;
3428 		struct	cam_sim *sim;
3429 		struct xpt_proto *proto;
3430 
3431 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3432 							   CAMQ_HEAD);
3433 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3434 				("running device %p\n", device));
3435 
3436 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3437 		if (work_ccb == NULL) {
3438 			printf("device on run queue with no ccbs???\n");
3439 			continue;
3440 		}
3441 
3442 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3443 
3444 			mtx_lock(&xsoftc.xpt_highpower_lock);
3445 		 	if (xsoftc.num_highpower <= 0) {
3446 				/*
3447 				 * We got a high power command, but we
3448 				 * don't have any available slots.  Freeze
3449 				 * the device queue until we have a slot
3450 				 * available.
3451 				 */
3452 				xpt_freeze_devq_device(device, 1);
3453 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3454 						   highpowerq_entry);
3455 
3456 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3457 				continue;
3458 			} else {
3459 				/*
3460 				 * Consume a high power slot while
3461 				 * this ccb runs.
3462 				 */
3463 				xsoftc.num_highpower--;
3464 			}
3465 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3466 		}
3467 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3468 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3469 		devq->send_openings--;
3470 		devq->send_active++;
3471 		xpt_schedule_devq(devq, device);
3472 		mtx_unlock(&devq->send_mtx);
3473 
3474 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3475 			/*
3476 			 * The client wants to freeze the queue
3477 			 * after this CCB is sent.
3478 			 */
3479 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3480 		}
3481 
3482 		/* In Target mode, the peripheral driver knows best... */
3483 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3484 			if ((device->inq_flags & SID_CmdQue) != 0
3485 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3486 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3487 			else
3488 				/*
3489 				 * Clear this in case of a retried CCB that
3490 				 * failed due to a rejected tag.
3491 				 */
3492 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3493 		}
3494 
3495 		KASSERT(device == work_ccb->ccb_h.path->device,
3496 		    ("device (%p) / path->device (%p) mismatch",
3497 			device, work_ccb->ccb_h.path->device));
3498 		proto = xpt_proto_find(device->protocol);
3499 		if (proto && proto->ops->debug_out)
3500 			proto->ops->debug_out(work_ccb);
3501 
3502 		/*
3503 		 * Device queues can be shared among multiple SIM instances
3504 		 * that reside on different buses.  Use the SIM from the
3505 		 * queued device, rather than the one from the calling bus.
3506 		 */
3507 		sim = device->sim;
3508 		mtx = sim->mtx;
3509 		if (mtx && !mtx_owned(mtx))
3510 			mtx_lock(mtx);
3511 		else
3512 			mtx = NULL;
3513 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3514 		(*(sim->sim_action))(sim, work_ccb);
3515 		if (mtx)
3516 			mtx_unlock(mtx);
3517 		mtx_lock(&devq->send_mtx);
3518 	}
3519 	devq->send_queue.qfrozen_cnt--;
3520 }
3521 
3522 /*
3523  * This function merges stuff from the slave ccb into the master ccb, while
3524  * keeping important fields in the master ccb constant.
3525  */
3526 void
3527 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3528 {
3529 
3530 	/*
3531 	 * Pull fields that are valid for peripheral drivers to set
3532 	 * into the master CCB along with the CCB "payload".
3533 	 */
3534 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3535 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3536 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3537 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3538 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3539 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3540 }
3541 
3542 void
3543 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3544 		    u_int32_t priority, u_int32_t flags)
3545 {
3546 
3547 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3548 	ccb_h->pinfo.priority = priority;
3549 	ccb_h->path = path;
3550 	ccb_h->path_id = path->bus->path_id;
3551 	if (path->target)
3552 		ccb_h->target_id = path->target->target_id;
3553 	else
3554 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3555 	if (path->device) {
3556 		ccb_h->target_lun = path->device->lun_id;
3557 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3558 	} else {
3559 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3560 	}
3561 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3562 	ccb_h->flags = flags;
3563 	ccb_h->xflags = 0;
3564 }
3565 
3566 void
3567 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3568 {
3569 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3570 }
3571 
3572 /* Path manipulation functions */
3573 cam_status
3574 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3575 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3576 {
3577 	struct	   cam_path *path;
3578 	cam_status status;
3579 
3580 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3581 
3582 	if (path == NULL) {
3583 		status = CAM_RESRC_UNAVAIL;
3584 		return(status);
3585 	}
3586 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3587 	if (status != CAM_REQ_CMP) {
3588 		free(path, M_CAMPATH);
3589 		path = NULL;
3590 	}
3591 	*new_path_ptr = path;
3592 	return (status);
3593 }
3594 
3595 cam_status
3596 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3597 			 struct cam_periph *periph, path_id_t path_id,
3598 			 target_id_t target_id, lun_id_t lun_id)
3599 {
3600 
3601 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3602 	    lun_id));
3603 }
3604 
3605 cam_status
3606 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3607 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3608 {
3609 	struct	     cam_eb *bus;
3610 	struct	     cam_et *target;
3611 	struct	     cam_ed *device;
3612 	cam_status   status;
3613 
3614 	status = CAM_REQ_CMP;	/* Completed without error */
3615 	target = NULL;		/* Wildcarded */
3616 	device = NULL;		/* Wildcarded */
3617 
3618 	/*
3619 	 * We will potentially modify the EDT, so block interrupts
3620 	 * that may attempt to create cam paths.
3621 	 */
3622 	bus = xpt_find_bus(path_id);
3623 	if (bus == NULL) {
3624 		status = CAM_PATH_INVALID;
3625 	} else {
3626 		xpt_lock_buses();
3627 		mtx_lock(&bus->eb_mtx);
3628 		target = xpt_find_target(bus, target_id);
3629 		if (target == NULL) {
3630 			/* Create one */
3631 			struct cam_et *new_target;
3632 
3633 			new_target = xpt_alloc_target(bus, target_id);
3634 			if (new_target == NULL) {
3635 				status = CAM_RESRC_UNAVAIL;
3636 			} else {
3637 				target = new_target;
3638 			}
3639 		}
3640 		xpt_unlock_buses();
3641 		if (target != NULL) {
3642 			device = xpt_find_device(target, lun_id);
3643 			if (device == NULL) {
3644 				/* Create one */
3645 				struct cam_ed *new_device;
3646 
3647 				new_device =
3648 				    (*(bus->xport->ops->alloc_device))(bus,
3649 								       target,
3650 								       lun_id);
3651 				if (new_device == NULL) {
3652 					status = CAM_RESRC_UNAVAIL;
3653 				} else {
3654 					device = new_device;
3655 				}
3656 			}
3657 		}
3658 		mtx_unlock(&bus->eb_mtx);
3659 	}
3660 
3661 	/*
3662 	 * Only touch the user's data if we are successful.
3663 	 */
3664 	if (status == CAM_REQ_CMP) {
3665 		new_path->periph = perph;
3666 		new_path->bus = bus;
3667 		new_path->target = target;
3668 		new_path->device = device;
3669 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3670 	} else {
3671 		if (device != NULL)
3672 			xpt_release_device(device);
3673 		if (target != NULL)
3674 			xpt_release_target(target);
3675 		if (bus != NULL)
3676 			xpt_release_bus(bus);
3677 	}
3678 	return (status);
3679 }
3680 
3681 cam_status
3682 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3683 {
3684 	struct	   cam_path *new_path;
3685 
3686 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3687 	if (new_path == NULL)
3688 		return(CAM_RESRC_UNAVAIL);
3689 	xpt_copy_path(new_path, path);
3690 	*new_path_ptr = new_path;
3691 	return (CAM_REQ_CMP);
3692 }
3693 
3694 void
3695 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3696 {
3697 
3698 	*new_path = *path;
3699 	if (path->bus != NULL)
3700 		xpt_acquire_bus(path->bus);
3701 	if (path->target != NULL)
3702 		xpt_acquire_target(path->target);
3703 	if (path->device != NULL)
3704 		xpt_acquire_device(path->device);
3705 }
3706 
3707 void
3708 xpt_release_path(struct cam_path *path)
3709 {
3710 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3711 	if (path->device != NULL) {
3712 		xpt_release_device(path->device);
3713 		path->device = NULL;
3714 	}
3715 	if (path->target != NULL) {
3716 		xpt_release_target(path->target);
3717 		path->target = NULL;
3718 	}
3719 	if (path->bus != NULL) {
3720 		xpt_release_bus(path->bus);
3721 		path->bus = NULL;
3722 	}
3723 }
3724 
3725 void
3726 xpt_free_path(struct cam_path *path)
3727 {
3728 
3729 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3730 	xpt_release_path(path);
3731 	free(path, M_CAMPATH);
3732 }
3733 
3734 void
3735 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3736     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3737 {
3738 
3739 	xpt_lock_buses();
3740 	if (bus_ref) {
3741 		if (path->bus)
3742 			*bus_ref = path->bus->refcount;
3743 		else
3744 			*bus_ref = 0;
3745 	}
3746 	if (periph_ref) {
3747 		if (path->periph)
3748 			*periph_ref = path->periph->refcount;
3749 		else
3750 			*periph_ref = 0;
3751 	}
3752 	xpt_unlock_buses();
3753 	if (target_ref) {
3754 		if (path->target)
3755 			*target_ref = path->target->refcount;
3756 		else
3757 			*target_ref = 0;
3758 	}
3759 	if (device_ref) {
3760 		if (path->device)
3761 			*device_ref = path->device->refcount;
3762 		else
3763 			*device_ref = 0;
3764 	}
3765 }
3766 
3767 /*
3768  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3769  * in path1, 2 for match with wildcards in path2.
3770  */
3771 int
3772 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3773 {
3774 	int retval = 0;
3775 
3776 	if (path1->bus != path2->bus) {
3777 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3778 			retval = 1;
3779 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3780 			retval = 2;
3781 		else
3782 			return (-1);
3783 	}
3784 	if (path1->target != path2->target) {
3785 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3786 			if (retval == 0)
3787 				retval = 1;
3788 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3789 			retval = 2;
3790 		else
3791 			return (-1);
3792 	}
3793 	if (path1->device != path2->device) {
3794 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3795 			if (retval == 0)
3796 				retval = 1;
3797 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3798 			retval = 2;
3799 		else
3800 			return (-1);
3801 	}
3802 	return (retval);
3803 }
3804 
3805 int
3806 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3807 {
3808 	int retval = 0;
3809 
3810 	if (path->bus != dev->target->bus) {
3811 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3812 			retval = 1;
3813 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3814 			retval = 2;
3815 		else
3816 			return (-1);
3817 	}
3818 	if (path->target != dev->target) {
3819 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3820 			if (retval == 0)
3821 				retval = 1;
3822 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3823 			retval = 2;
3824 		else
3825 			return (-1);
3826 	}
3827 	if (path->device != dev) {
3828 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3829 			if (retval == 0)
3830 				retval = 1;
3831 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3832 			retval = 2;
3833 		else
3834 			return (-1);
3835 	}
3836 	return (retval);
3837 }
3838 
3839 void
3840 xpt_print_path(struct cam_path *path)
3841 {
3842 	struct sbuf sb;
3843 	char buffer[XPT_PRINT_LEN];
3844 
3845 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3846 	xpt_path_sbuf(path, &sb);
3847 	sbuf_finish(&sb);
3848 	printf("%s", sbuf_data(&sb));
3849 	sbuf_delete(&sb);
3850 }
3851 
3852 void
3853 xpt_print_device(struct cam_ed *device)
3854 {
3855 
3856 	if (device == NULL)
3857 		printf("(nopath): ");
3858 	else {
3859 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3860 		       device->sim->unit_number,
3861 		       device->sim->bus_id,
3862 		       device->target->target_id,
3863 		       (uintmax_t)device->lun_id);
3864 	}
3865 }
3866 
3867 void
3868 xpt_print(struct cam_path *path, const char *fmt, ...)
3869 {
3870 	va_list ap;
3871 	struct sbuf sb;
3872 	char buffer[XPT_PRINT_LEN];
3873 
3874 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3875 
3876 	xpt_path_sbuf(path, &sb);
3877 	va_start(ap, fmt);
3878 	sbuf_vprintf(&sb, fmt, ap);
3879 	va_end(ap);
3880 
3881 	sbuf_finish(&sb);
3882 	printf("%s", sbuf_data(&sb));
3883 	sbuf_delete(&sb);
3884 }
3885 
3886 int
3887 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3888 {
3889 	struct sbuf sb;
3890 	int len;
3891 
3892 	sbuf_new(&sb, str, str_len, 0);
3893 	len = xpt_path_sbuf(path, &sb);
3894 	sbuf_finish(&sb);
3895 	return (len);
3896 }
3897 
3898 int
3899 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3900 {
3901 
3902 	if (path == NULL)
3903 		sbuf_printf(sb, "(nopath): ");
3904 	else {
3905 		if (path->periph != NULL)
3906 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3907 				    path->periph->unit_number);
3908 		else
3909 			sbuf_printf(sb, "(noperiph:");
3910 
3911 		if (path->bus != NULL)
3912 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3913 				    path->bus->sim->unit_number,
3914 				    path->bus->sim->bus_id);
3915 		else
3916 			sbuf_printf(sb, "nobus:");
3917 
3918 		if (path->target != NULL)
3919 			sbuf_printf(sb, "%d:", path->target->target_id);
3920 		else
3921 			sbuf_printf(sb, "X:");
3922 
3923 		if (path->device != NULL)
3924 			sbuf_printf(sb, "%jx): ",
3925 			    (uintmax_t)path->device->lun_id);
3926 		else
3927 			sbuf_printf(sb, "X): ");
3928 	}
3929 
3930 	return(sbuf_len(sb));
3931 }
3932 
3933 path_id_t
3934 xpt_path_path_id(struct cam_path *path)
3935 {
3936 	return(path->bus->path_id);
3937 }
3938 
3939 target_id_t
3940 xpt_path_target_id(struct cam_path *path)
3941 {
3942 	if (path->target != NULL)
3943 		return (path->target->target_id);
3944 	else
3945 		return (CAM_TARGET_WILDCARD);
3946 }
3947 
3948 lun_id_t
3949 xpt_path_lun_id(struct cam_path *path)
3950 {
3951 	if (path->device != NULL)
3952 		return (path->device->lun_id);
3953 	else
3954 		return (CAM_LUN_WILDCARD);
3955 }
3956 
3957 struct cam_sim *
3958 xpt_path_sim(struct cam_path *path)
3959 {
3960 
3961 	return (path->bus->sim);
3962 }
3963 
3964 struct cam_periph*
3965 xpt_path_periph(struct cam_path *path)
3966 {
3967 
3968 	return (path->periph);
3969 }
3970 
3971 /*
3972  * Release a CAM control block for the caller.  Remit the cost of the structure
3973  * to the device referenced by the path.  If the this device had no 'credits'
3974  * and peripheral drivers have registered async callbacks for this notification
3975  * call them now.
3976  */
3977 void
3978 xpt_release_ccb(union ccb *free_ccb)
3979 {
3980 	struct	 cam_ed *device;
3981 	struct	 cam_periph *periph;
3982 
3983 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3984 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3985 	device = free_ccb->ccb_h.path->device;
3986 	periph = free_ccb->ccb_h.path->periph;
3987 
3988 	xpt_free_ccb(free_ccb);
3989 	periph->periph_allocated--;
3990 	cam_ccbq_release_opening(&device->ccbq);
3991 	xpt_run_allocq(periph, 0);
3992 }
3993 
3994 /* Functions accessed by SIM drivers */
3995 
3996 static struct xpt_xport_ops xport_default_ops = {
3997 	.alloc_device = xpt_alloc_device_default,
3998 	.action = xpt_action_default,
3999 	.async = xpt_dev_async_default,
4000 };
4001 static struct xpt_xport xport_default = {
4002 	.xport = XPORT_UNKNOWN,
4003 	.name = "unknown",
4004 	.ops = &xport_default_ops,
4005 };
4006 
4007 CAM_XPT_XPORT(xport_default);
4008 
4009 /*
4010  * A sim structure, listing the SIM entry points and instance
4011  * identification info is passed to xpt_bus_register to hook the SIM
4012  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4013  * for this new bus and places it in the array of buses and assigns
4014  * it a path_id.  The path_id may be influenced by "hard wiring"
4015  * information specified by the user.  Once interrupt services are
4016  * available, the bus will be probed.
4017  */
4018 int32_t
4019 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4020 {
4021 	struct cam_eb *new_bus;
4022 	struct cam_eb *old_bus;
4023 	struct ccb_pathinq cpi;
4024 	struct cam_path *path;
4025 	cam_status status;
4026 
4027 	sim->bus_id = bus;
4028 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4029 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4030 	if (new_bus == NULL) {
4031 		/* Couldn't satisfy request */
4032 		return (CAM_RESRC_UNAVAIL);
4033 	}
4034 
4035 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4036 	TAILQ_INIT(&new_bus->et_entries);
4037 	cam_sim_hold(sim);
4038 	new_bus->sim = sim;
4039 	timevalclear(&new_bus->last_reset);
4040 	new_bus->flags = 0;
4041 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4042 	new_bus->generation = 0;
4043 
4044 	xpt_lock_buses();
4045 	sim->path_id = new_bus->path_id =
4046 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4047 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4048 	while (old_bus != NULL
4049 	    && old_bus->path_id < new_bus->path_id)
4050 		old_bus = TAILQ_NEXT(old_bus, links);
4051 	if (old_bus != NULL)
4052 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4053 	else
4054 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4055 	xsoftc.bus_generation++;
4056 	xpt_unlock_buses();
4057 
4058 	/*
4059 	 * Set a default transport so that a PATH_INQ can be issued to
4060 	 * the SIM.  This will then allow for probing and attaching of
4061 	 * a more appropriate transport.
4062 	 */
4063 	new_bus->xport = &xport_default;
4064 
4065 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4066 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4067 	if (status != CAM_REQ_CMP) {
4068 		xpt_release_bus(new_bus);
4069 		return (CAM_RESRC_UNAVAIL);
4070 	}
4071 
4072 	xpt_path_inq(&cpi, path);
4073 
4074 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4075 		struct xpt_xport **xpt;
4076 
4077 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4078 			if ((*xpt)->xport == cpi.transport) {
4079 				new_bus->xport = *xpt;
4080 				break;
4081 			}
4082 		}
4083 		if (new_bus->xport == NULL) {
4084 			xpt_print(path,
4085 			    "No transport found for %d\n", cpi.transport);
4086 			xpt_release_bus(new_bus);
4087 			free(path, M_CAMXPT);
4088 			return (CAM_RESRC_UNAVAIL);
4089 		}
4090 	}
4091 
4092 	/* Notify interested parties */
4093 	if (sim->path_id != CAM_XPT_PATH_ID) {
4094 
4095 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4096 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4097 			union	ccb *scan_ccb;
4098 
4099 			/* Initiate bus rescan. */
4100 			scan_ccb = xpt_alloc_ccb_nowait();
4101 			if (scan_ccb != NULL) {
4102 				scan_ccb->ccb_h.path = path;
4103 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4104 				scan_ccb->crcn.flags = 0;
4105 				xpt_rescan(scan_ccb);
4106 			} else {
4107 				xpt_print(path,
4108 					  "Can't allocate CCB to scan bus\n");
4109 				xpt_free_path(path);
4110 			}
4111 		} else
4112 			xpt_free_path(path);
4113 	} else
4114 		xpt_free_path(path);
4115 	return (CAM_SUCCESS);
4116 }
4117 
4118 int32_t
4119 xpt_bus_deregister(path_id_t pathid)
4120 {
4121 	struct cam_path bus_path;
4122 	cam_status status;
4123 
4124 	status = xpt_compile_path(&bus_path, NULL, pathid,
4125 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4126 	if (status != CAM_REQ_CMP)
4127 		return (status);
4128 
4129 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4130 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4131 
4132 	/* Release the reference count held while registered. */
4133 	xpt_release_bus(bus_path.bus);
4134 	xpt_release_path(&bus_path);
4135 
4136 	return (CAM_REQ_CMP);
4137 }
4138 
4139 static path_id_t
4140 xptnextfreepathid(void)
4141 {
4142 	struct cam_eb *bus;
4143 	path_id_t pathid;
4144 	const char *strval;
4145 
4146 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4147 	pathid = 0;
4148 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4149 retry:
4150 	/* Find an unoccupied pathid */
4151 	while (bus != NULL && bus->path_id <= pathid) {
4152 		if (bus->path_id == pathid)
4153 			pathid++;
4154 		bus = TAILQ_NEXT(bus, links);
4155 	}
4156 
4157 	/*
4158 	 * Ensure that this pathid is not reserved for
4159 	 * a bus that may be registered in the future.
4160 	 */
4161 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4162 		++pathid;
4163 		/* Start the search over */
4164 		goto retry;
4165 	}
4166 	return (pathid);
4167 }
4168 
4169 static path_id_t
4170 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4171 {
4172 	path_id_t pathid;
4173 	int i, dunit, val;
4174 	char buf[32];
4175 	const char *dname;
4176 
4177 	pathid = CAM_XPT_PATH_ID;
4178 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4179 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4180 		return (pathid);
4181 	i = 0;
4182 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4183 		if (strcmp(dname, "scbus")) {
4184 			/* Avoid a bit of foot shooting. */
4185 			continue;
4186 		}
4187 		if (dunit < 0)		/* unwired?! */
4188 			continue;
4189 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4190 			if (sim_bus == val) {
4191 				pathid = dunit;
4192 				break;
4193 			}
4194 		} else if (sim_bus == 0) {
4195 			/* Unspecified matches bus 0 */
4196 			pathid = dunit;
4197 			break;
4198 		} else {
4199 			printf("Ambiguous scbus configuration for %s%d "
4200 			       "bus %d, cannot wire down.  The kernel "
4201 			       "config entry for scbus%d should "
4202 			       "specify a controller bus.\n"
4203 			       "Scbus will be assigned dynamically.\n",
4204 			       sim_name, sim_unit, sim_bus, dunit);
4205 			break;
4206 		}
4207 	}
4208 
4209 	if (pathid == CAM_XPT_PATH_ID)
4210 		pathid = xptnextfreepathid();
4211 	return (pathid);
4212 }
4213 
4214 static const char *
4215 xpt_async_string(u_int32_t async_code)
4216 {
4217 
4218 	switch (async_code) {
4219 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4220 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4221 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4222 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4223 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4224 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4225 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4226 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4227 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4228 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4229 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4230 	case AC_CONTRACT: return ("AC_CONTRACT");
4231 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4232 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4233 	}
4234 	return ("AC_UNKNOWN");
4235 }
4236 
4237 static int
4238 xpt_async_size(u_int32_t async_code)
4239 {
4240 
4241 	switch (async_code) {
4242 	case AC_BUS_RESET: return (0);
4243 	case AC_UNSOL_RESEL: return (0);
4244 	case AC_SCSI_AEN: return (0);
4245 	case AC_SENT_BDR: return (0);
4246 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4247 	case AC_PATH_DEREGISTERED: return (0);
4248 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4249 	case AC_LOST_DEVICE: return (0);
4250 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4251 	case AC_INQ_CHANGED: return (0);
4252 	case AC_GETDEV_CHANGED: return (0);
4253 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4254 	case AC_ADVINFO_CHANGED: return (-1);
4255 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4256 	}
4257 	return (0);
4258 }
4259 
4260 static int
4261 xpt_async_process_dev(struct cam_ed *device, void *arg)
4262 {
4263 	union ccb *ccb = arg;
4264 	struct cam_path *path = ccb->ccb_h.path;
4265 	void *async_arg = ccb->casync.async_arg_ptr;
4266 	u_int32_t async_code = ccb->casync.async_code;
4267 	int relock;
4268 
4269 	if (path->device != device
4270 	 && path->device->lun_id != CAM_LUN_WILDCARD
4271 	 && device->lun_id != CAM_LUN_WILDCARD)
4272 		return (1);
4273 
4274 	/*
4275 	 * The async callback could free the device.
4276 	 * If it is a broadcast async, it doesn't hold
4277 	 * device reference, so take our own reference.
4278 	 */
4279 	xpt_acquire_device(device);
4280 
4281 	/*
4282 	 * If async for specific device is to be delivered to
4283 	 * the wildcard client, take the specific device lock.
4284 	 * XXX: We may need a way for client to specify it.
4285 	 */
4286 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4287 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4288 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4289 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4290 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4291 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4292 		mtx_unlock(&device->device_mtx);
4293 		xpt_path_lock(path);
4294 		relock = 1;
4295 	} else
4296 		relock = 0;
4297 
4298 	(*(device->target->bus->xport->ops->async))(async_code,
4299 	    device->target->bus, device->target, device, async_arg);
4300 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4301 
4302 	if (relock) {
4303 		xpt_path_unlock(path);
4304 		mtx_lock(&device->device_mtx);
4305 	}
4306 	xpt_release_device(device);
4307 	return (1);
4308 }
4309 
4310 static int
4311 xpt_async_process_tgt(struct cam_et *target, void *arg)
4312 {
4313 	union ccb *ccb = arg;
4314 	struct cam_path *path = ccb->ccb_h.path;
4315 
4316 	if (path->target != target
4317 	 && path->target->target_id != CAM_TARGET_WILDCARD
4318 	 && target->target_id != CAM_TARGET_WILDCARD)
4319 		return (1);
4320 
4321 	if (ccb->casync.async_code == AC_SENT_BDR) {
4322 		/* Update our notion of when the last reset occurred */
4323 		microtime(&target->last_reset);
4324 	}
4325 
4326 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4327 }
4328 
4329 static void
4330 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4331 {
4332 	struct cam_eb *bus;
4333 	struct cam_path *path;
4334 	void *async_arg;
4335 	u_int32_t async_code;
4336 
4337 	path = ccb->ccb_h.path;
4338 	async_code = ccb->casync.async_code;
4339 	async_arg = ccb->casync.async_arg_ptr;
4340 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4341 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4342 	bus = path->bus;
4343 
4344 	if (async_code == AC_BUS_RESET) {
4345 		/* Update our notion of when the last reset occurred */
4346 		microtime(&bus->last_reset);
4347 	}
4348 
4349 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4350 
4351 	/*
4352 	 * If this wasn't a fully wildcarded async, tell all
4353 	 * clients that want all async events.
4354 	 */
4355 	if (bus != xpt_periph->path->bus) {
4356 		xpt_path_lock(xpt_periph->path);
4357 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4358 		xpt_path_unlock(xpt_periph->path);
4359 	}
4360 
4361 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4362 		xpt_release_devq(path, 1, TRUE);
4363 	else
4364 		xpt_release_simq(path->bus->sim, TRUE);
4365 	if (ccb->casync.async_arg_size > 0)
4366 		free(async_arg, M_CAMXPT);
4367 	xpt_free_path(path);
4368 	xpt_free_ccb(ccb);
4369 }
4370 
4371 static void
4372 xpt_async_bcast(struct async_list *async_head,
4373 		u_int32_t async_code,
4374 		struct cam_path *path, void *async_arg)
4375 {
4376 	struct async_node *cur_entry;
4377 	struct mtx *mtx;
4378 
4379 	cur_entry = SLIST_FIRST(async_head);
4380 	while (cur_entry != NULL) {
4381 		struct async_node *next_entry;
4382 		/*
4383 		 * Grab the next list entry before we call the current
4384 		 * entry's callback.  This is because the callback function
4385 		 * can delete its async callback entry.
4386 		 */
4387 		next_entry = SLIST_NEXT(cur_entry, links);
4388 		if ((cur_entry->event_enable & async_code) != 0) {
4389 			mtx = cur_entry->event_lock ?
4390 			    path->device->sim->mtx : NULL;
4391 			if (mtx)
4392 				mtx_lock(mtx);
4393 			cur_entry->callback(cur_entry->callback_arg,
4394 					    async_code, path,
4395 					    async_arg);
4396 			if (mtx)
4397 				mtx_unlock(mtx);
4398 		}
4399 		cur_entry = next_entry;
4400 	}
4401 }
4402 
4403 void
4404 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4405 {
4406 	union ccb *ccb;
4407 	int size;
4408 
4409 	ccb = xpt_alloc_ccb_nowait();
4410 	if (ccb == NULL) {
4411 		xpt_print(path, "Can't allocate CCB to send %s\n",
4412 		    xpt_async_string(async_code));
4413 		return;
4414 	}
4415 
4416 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4417 		xpt_print(path, "Can't allocate path to send %s\n",
4418 		    xpt_async_string(async_code));
4419 		xpt_free_ccb(ccb);
4420 		return;
4421 	}
4422 	ccb->ccb_h.path->periph = NULL;
4423 	ccb->ccb_h.func_code = XPT_ASYNC;
4424 	ccb->ccb_h.cbfcnp = xpt_async_process;
4425 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4426 	ccb->casync.async_code = async_code;
4427 	ccb->casync.async_arg_size = 0;
4428 	size = xpt_async_size(async_code);
4429 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4430 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4431 		ccb->ccb_h.func_code,
4432 		xpt_action_name(ccb->ccb_h.func_code),
4433 		async_code,
4434 		xpt_async_string(async_code)));
4435 	if (size > 0 && async_arg != NULL) {
4436 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4437 		if (ccb->casync.async_arg_ptr == NULL) {
4438 			xpt_print(path, "Can't allocate argument to send %s\n",
4439 			    xpt_async_string(async_code));
4440 			xpt_free_path(ccb->ccb_h.path);
4441 			xpt_free_ccb(ccb);
4442 			return;
4443 		}
4444 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4445 		ccb->casync.async_arg_size = size;
4446 	} else if (size < 0) {
4447 		ccb->casync.async_arg_ptr = async_arg;
4448 		ccb->casync.async_arg_size = size;
4449 	}
4450 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4451 		xpt_freeze_devq(path, 1);
4452 	else
4453 		xpt_freeze_simq(path->bus->sim, 1);
4454 	xpt_action(ccb);
4455 }
4456 
4457 static void
4458 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4459 		      struct cam_et *target, struct cam_ed *device,
4460 		      void *async_arg)
4461 {
4462 
4463 	/*
4464 	 * We only need to handle events for real devices.
4465 	 */
4466 	if (target->target_id == CAM_TARGET_WILDCARD
4467 	 || device->lun_id == CAM_LUN_WILDCARD)
4468 		return;
4469 
4470 	printf("%s called\n", __func__);
4471 }
4472 
4473 static uint32_t
4474 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4475 {
4476 	struct cam_devq	*devq;
4477 	uint32_t freeze;
4478 
4479 	devq = dev->sim->devq;
4480 	mtx_assert(&devq->send_mtx, MA_OWNED);
4481 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4482 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4483 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4484 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4485 	/* Remove frozen device from sendq. */
4486 	if (device_is_queued(dev))
4487 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4488 	return (freeze);
4489 }
4490 
4491 u_int32_t
4492 xpt_freeze_devq(struct cam_path *path, u_int count)
4493 {
4494 	struct cam_ed	*dev = path->device;
4495 	struct cam_devq	*devq;
4496 	uint32_t	 freeze;
4497 
4498 	devq = dev->sim->devq;
4499 	mtx_lock(&devq->send_mtx);
4500 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4501 	freeze = xpt_freeze_devq_device(dev, count);
4502 	mtx_unlock(&devq->send_mtx);
4503 	return (freeze);
4504 }
4505 
4506 u_int32_t
4507 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4508 {
4509 	struct cam_devq	*devq;
4510 	uint32_t	 freeze;
4511 
4512 	devq = sim->devq;
4513 	mtx_lock(&devq->send_mtx);
4514 	freeze = (devq->send_queue.qfrozen_cnt += count);
4515 	mtx_unlock(&devq->send_mtx);
4516 	return (freeze);
4517 }
4518 
4519 static void
4520 xpt_release_devq_timeout(void *arg)
4521 {
4522 	struct cam_ed *dev;
4523 	struct cam_devq *devq;
4524 
4525 	dev = (struct cam_ed *)arg;
4526 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4527 	devq = dev->sim->devq;
4528 	mtx_assert(&devq->send_mtx, MA_OWNED);
4529 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4530 		xpt_run_devq(devq);
4531 }
4532 
4533 void
4534 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4535 {
4536 	struct cam_ed *dev;
4537 	struct cam_devq *devq;
4538 
4539 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4540 	    count, run_queue));
4541 	dev = path->device;
4542 	devq = dev->sim->devq;
4543 	mtx_lock(&devq->send_mtx);
4544 	if (xpt_release_devq_device(dev, count, run_queue))
4545 		xpt_run_devq(dev->sim->devq);
4546 	mtx_unlock(&devq->send_mtx);
4547 }
4548 
4549 static int
4550 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4551 {
4552 
4553 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4554 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4555 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4556 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4557 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4558 #ifdef INVARIANTS
4559 		printf("xpt_release_devq(): requested %u > present %u\n",
4560 		    count, dev->ccbq.queue.qfrozen_cnt);
4561 #endif
4562 		count = dev->ccbq.queue.qfrozen_cnt;
4563 	}
4564 	dev->ccbq.queue.qfrozen_cnt -= count;
4565 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4566 		/*
4567 		 * No longer need to wait for a successful
4568 		 * command completion.
4569 		 */
4570 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4571 		/*
4572 		 * Remove any timeouts that might be scheduled
4573 		 * to release this queue.
4574 		 */
4575 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4576 			callout_stop(&dev->callout);
4577 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4578 		}
4579 		/*
4580 		 * Now that we are unfrozen schedule the
4581 		 * device so any pending transactions are
4582 		 * run.
4583 		 */
4584 		xpt_schedule_devq(dev->sim->devq, dev);
4585 	} else
4586 		run_queue = 0;
4587 	return (run_queue);
4588 }
4589 
4590 void
4591 xpt_release_simq(struct cam_sim *sim, int run_queue)
4592 {
4593 	struct cam_devq	*devq;
4594 
4595 	devq = sim->devq;
4596 	mtx_lock(&devq->send_mtx);
4597 	if (devq->send_queue.qfrozen_cnt <= 0) {
4598 #ifdef INVARIANTS
4599 		printf("xpt_release_simq: requested 1 > present %u\n",
4600 		    devq->send_queue.qfrozen_cnt);
4601 #endif
4602 	} else
4603 		devq->send_queue.qfrozen_cnt--;
4604 	if (devq->send_queue.qfrozen_cnt == 0) {
4605 		/*
4606 		 * If there is a timeout scheduled to release this
4607 		 * sim queue, remove it.  The queue frozen count is
4608 		 * already at 0.
4609 		 */
4610 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4611 			callout_stop(&sim->callout);
4612 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4613 		}
4614 		if (run_queue) {
4615 			/*
4616 			 * Now that we are unfrozen run the send queue.
4617 			 */
4618 			xpt_run_devq(sim->devq);
4619 		}
4620 	}
4621 	mtx_unlock(&devq->send_mtx);
4622 }
4623 
4624 void
4625 xpt_done(union ccb *done_ccb)
4626 {
4627 	struct cam_doneq *queue;
4628 	int	run, hash;
4629 
4630 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4631 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4632 	    done_ccb->csio.bio != NULL)
4633 		biotrack(done_ccb->csio.bio, __func__);
4634 #endif
4635 
4636 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4637 	    ("xpt_done: func= %#x %s status %#x\n",
4638 		done_ccb->ccb_h.func_code,
4639 		xpt_action_name(done_ccb->ccb_h.func_code),
4640 		done_ccb->ccb_h.status));
4641 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4642 		return;
4643 
4644 	/* Store the time the ccb was in the sim */
4645 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4646 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4647 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4648 	queue = &cam_doneqs[hash];
4649 	mtx_lock(&queue->cam_doneq_mtx);
4650 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4651 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4652 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4653 	mtx_unlock(&queue->cam_doneq_mtx);
4654 	if (run)
4655 		wakeup(&queue->cam_doneq);
4656 }
4657 
4658 void
4659 xpt_done_direct(union ccb *done_ccb)
4660 {
4661 
4662 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4663 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4664 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4665 		return;
4666 
4667 	/* Store the time the ccb was in the sim */
4668 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4669 	xpt_done_process(&done_ccb->ccb_h);
4670 }
4671 
4672 union ccb *
4673 xpt_alloc_ccb()
4674 {
4675 	union ccb *new_ccb;
4676 
4677 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4678 	return (new_ccb);
4679 }
4680 
4681 union ccb *
4682 xpt_alloc_ccb_nowait()
4683 {
4684 	union ccb *new_ccb;
4685 
4686 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4687 	return (new_ccb);
4688 }
4689 
4690 void
4691 xpt_free_ccb(union ccb *free_ccb)
4692 {
4693 	free(free_ccb, M_CAMCCB);
4694 }
4695 
4696 
4697 
4698 /* Private XPT functions */
4699 
4700 /*
4701  * Get a CAM control block for the caller. Charge the structure to the device
4702  * referenced by the path.  If we don't have sufficient resources to allocate
4703  * more ccbs, we return NULL.
4704  */
4705 static union ccb *
4706 xpt_get_ccb_nowait(struct cam_periph *periph)
4707 {
4708 	union ccb *new_ccb;
4709 
4710 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4711 	if (new_ccb == NULL)
4712 		return (NULL);
4713 	periph->periph_allocated++;
4714 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4715 	return (new_ccb);
4716 }
4717 
4718 static union ccb *
4719 xpt_get_ccb(struct cam_periph *periph)
4720 {
4721 	union ccb *new_ccb;
4722 
4723 	cam_periph_unlock(periph);
4724 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4725 	cam_periph_lock(periph);
4726 	periph->periph_allocated++;
4727 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4728 	return (new_ccb);
4729 }
4730 
4731 union ccb *
4732 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4733 {
4734 	struct ccb_hdr *ccb_h;
4735 
4736 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4737 	cam_periph_assert(periph, MA_OWNED);
4738 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4739 	    ccb_h->pinfo.priority != priority) {
4740 		if (priority < periph->immediate_priority) {
4741 			periph->immediate_priority = priority;
4742 			xpt_run_allocq(periph, 0);
4743 		} else
4744 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4745 			    "cgticb", 0);
4746 	}
4747 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4748 	return ((union ccb *)ccb_h);
4749 }
4750 
4751 static void
4752 xpt_acquire_bus(struct cam_eb *bus)
4753 {
4754 
4755 	xpt_lock_buses();
4756 	bus->refcount++;
4757 	xpt_unlock_buses();
4758 }
4759 
4760 static void
4761 xpt_release_bus(struct cam_eb *bus)
4762 {
4763 
4764 	xpt_lock_buses();
4765 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4766 	if (--bus->refcount > 0) {
4767 		xpt_unlock_buses();
4768 		return;
4769 	}
4770 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4771 	xsoftc.bus_generation++;
4772 	xpt_unlock_buses();
4773 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4774 	    ("destroying bus, but target list is not empty"));
4775 	cam_sim_release(bus->sim);
4776 	mtx_destroy(&bus->eb_mtx);
4777 	free(bus, M_CAMXPT);
4778 }
4779 
4780 static struct cam_et *
4781 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4782 {
4783 	struct cam_et *cur_target, *target;
4784 
4785 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4786 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4787 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4788 					 M_NOWAIT|M_ZERO);
4789 	if (target == NULL)
4790 		return (NULL);
4791 
4792 	TAILQ_INIT(&target->ed_entries);
4793 	target->bus = bus;
4794 	target->target_id = target_id;
4795 	target->refcount = 1;
4796 	target->generation = 0;
4797 	target->luns = NULL;
4798 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4799 	timevalclear(&target->last_reset);
4800 	/*
4801 	 * Hold a reference to our parent bus so it
4802 	 * will not go away before we do.
4803 	 */
4804 	bus->refcount++;
4805 
4806 	/* Insertion sort into our bus's target list */
4807 	cur_target = TAILQ_FIRST(&bus->et_entries);
4808 	while (cur_target != NULL && cur_target->target_id < target_id)
4809 		cur_target = TAILQ_NEXT(cur_target, links);
4810 	if (cur_target != NULL) {
4811 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4812 	} else {
4813 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4814 	}
4815 	bus->generation++;
4816 	return (target);
4817 }
4818 
4819 static void
4820 xpt_acquire_target(struct cam_et *target)
4821 {
4822 	struct cam_eb *bus = target->bus;
4823 
4824 	mtx_lock(&bus->eb_mtx);
4825 	target->refcount++;
4826 	mtx_unlock(&bus->eb_mtx);
4827 }
4828 
4829 static void
4830 xpt_release_target(struct cam_et *target)
4831 {
4832 	struct cam_eb *bus = target->bus;
4833 
4834 	mtx_lock(&bus->eb_mtx);
4835 	if (--target->refcount > 0) {
4836 		mtx_unlock(&bus->eb_mtx);
4837 		return;
4838 	}
4839 	TAILQ_REMOVE(&bus->et_entries, target, links);
4840 	bus->generation++;
4841 	mtx_unlock(&bus->eb_mtx);
4842 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4843 	    ("destroying target, but device list is not empty"));
4844 	xpt_release_bus(bus);
4845 	mtx_destroy(&target->luns_mtx);
4846 	if (target->luns)
4847 		free(target->luns, M_CAMXPT);
4848 	free(target, M_CAMXPT);
4849 }
4850 
4851 static struct cam_ed *
4852 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4853 			 lun_id_t lun_id)
4854 {
4855 	struct cam_ed *device;
4856 
4857 	device = xpt_alloc_device(bus, target, lun_id);
4858 	if (device == NULL)
4859 		return (NULL);
4860 
4861 	device->mintags = 1;
4862 	device->maxtags = 1;
4863 	return (device);
4864 }
4865 
4866 static void
4867 xpt_destroy_device(void *context, int pending)
4868 {
4869 	struct cam_ed	*device = context;
4870 
4871 	mtx_lock(&device->device_mtx);
4872 	mtx_destroy(&device->device_mtx);
4873 	free(device, M_CAMDEV);
4874 }
4875 
4876 struct cam_ed *
4877 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4878 {
4879 	struct cam_ed	*cur_device, *device;
4880 	struct cam_devq	*devq;
4881 	cam_status status;
4882 
4883 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4884 	/* Make space for us in the device queue on our bus */
4885 	devq = bus->sim->devq;
4886 	mtx_lock(&devq->send_mtx);
4887 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4888 	mtx_unlock(&devq->send_mtx);
4889 	if (status != CAM_REQ_CMP)
4890 		return (NULL);
4891 
4892 	device = (struct cam_ed *)malloc(sizeof(*device),
4893 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4894 	if (device == NULL)
4895 		return (NULL);
4896 
4897 	cam_init_pinfo(&device->devq_entry);
4898 	device->target = target;
4899 	device->lun_id = lun_id;
4900 	device->sim = bus->sim;
4901 	if (cam_ccbq_init(&device->ccbq,
4902 			  bus->sim->max_dev_openings) != 0) {
4903 		free(device, M_CAMDEV);
4904 		return (NULL);
4905 	}
4906 	SLIST_INIT(&device->asyncs);
4907 	SLIST_INIT(&device->periphs);
4908 	device->generation = 0;
4909 	device->flags = CAM_DEV_UNCONFIGURED;
4910 	device->tag_delay_count = 0;
4911 	device->tag_saved_openings = 0;
4912 	device->refcount = 1;
4913 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4914 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4915 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4916 	/*
4917 	 * Hold a reference to our parent bus so it
4918 	 * will not go away before we do.
4919 	 */
4920 	target->refcount++;
4921 
4922 	cur_device = TAILQ_FIRST(&target->ed_entries);
4923 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4924 		cur_device = TAILQ_NEXT(cur_device, links);
4925 	if (cur_device != NULL)
4926 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4927 	else
4928 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4929 	target->generation++;
4930 	return (device);
4931 }
4932 
4933 void
4934 xpt_acquire_device(struct cam_ed *device)
4935 {
4936 	struct cam_eb *bus = device->target->bus;
4937 
4938 	mtx_lock(&bus->eb_mtx);
4939 	device->refcount++;
4940 	mtx_unlock(&bus->eb_mtx);
4941 }
4942 
4943 void
4944 xpt_release_device(struct cam_ed *device)
4945 {
4946 	struct cam_eb *bus = device->target->bus;
4947 	struct cam_devq *devq;
4948 
4949 	mtx_lock(&bus->eb_mtx);
4950 	if (--device->refcount > 0) {
4951 		mtx_unlock(&bus->eb_mtx);
4952 		return;
4953 	}
4954 
4955 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4956 	device->target->generation++;
4957 	mtx_unlock(&bus->eb_mtx);
4958 
4959 	/* Release our slot in the devq */
4960 	devq = bus->sim->devq;
4961 	mtx_lock(&devq->send_mtx);
4962 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4963 	mtx_unlock(&devq->send_mtx);
4964 
4965 	KASSERT(SLIST_EMPTY(&device->periphs),
4966 	    ("destroying device, but periphs list is not empty"));
4967 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4968 	    ("destroying device while still queued for ccbs"));
4969 
4970 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4971 		callout_stop(&device->callout);
4972 
4973 	xpt_release_target(device->target);
4974 
4975 	cam_ccbq_fini(&device->ccbq);
4976 	/*
4977 	 * Free allocated memory.  free(9) does nothing if the
4978 	 * supplied pointer is NULL, so it is safe to call without
4979 	 * checking.
4980 	 */
4981 	free(device->supported_vpds, M_CAMXPT);
4982 	free(device->device_id, M_CAMXPT);
4983 	free(device->ext_inq, M_CAMXPT);
4984 	free(device->physpath, M_CAMXPT);
4985 	free(device->rcap_buf, M_CAMXPT);
4986 	free(device->serial_num, M_CAMXPT);
4987 	free(device->nvme_data, M_CAMXPT);
4988 	free(device->nvme_cdata, M_CAMXPT);
4989 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4990 }
4991 
4992 u_int32_t
4993 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4994 {
4995 	int	result;
4996 	struct	cam_ed *dev;
4997 
4998 	dev = path->device;
4999 	mtx_lock(&dev->sim->devq->send_mtx);
5000 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5001 	mtx_unlock(&dev->sim->devq->send_mtx);
5002 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5003 	 || (dev->inq_flags & SID_CmdQue) != 0)
5004 		dev->tag_saved_openings = newopenings;
5005 	return (result);
5006 }
5007 
5008 static struct cam_eb *
5009 xpt_find_bus(path_id_t path_id)
5010 {
5011 	struct cam_eb *bus;
5012 
5013 	xpt_lock_buses();
5014 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5015 	     bus != NULL;
5016 	     bus = TAILQ_NEXT(bus, links)) {
5017 		if (bus->path_id == path_id) {
5018 			bus->refcount++;
5019 			break;
5020 		}
5021 	}
5022 	xpt_unlock_buses();
5023 	return (bus);
5024 }
5025 
5026 static struct cam_et *
5027 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5028 {
5029 	struct cam_et *target;
5030 
5031 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5032 	for (target = TAILQ_FIRST(&bus->et_entries);
5033 	     target != NULL;
5034 	     target = TAILQ_NEXT(target, links)) {
5035 		if (target->target_id == target_id) {
5036 			target->refcount++;
5037 			break;
5038 		}
5039 	}
5040 	return (target);
5041 }
5042 
5043 static struct cam_ed *
5044 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5045 {
5046 	struct cam_ed *device;
5047 
5048 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5049 	for (device = TAILQ_FIRST(&target->ed_entries);
5050 	     device != NULL;
5051 	     device = TAILQ_NEXT(device, links)) {
5052 		if (device->lun_id == lun_id) {
5053 			device->refcount++;
5054 			break;
5055 		}
5056 	}
5057 	return (device);
5058 }
5059 
5060 void
5061 xpt_start_tags(struct cam_path *path)
5062 {
5063 	struct ccb_relsim crs;
5064 	struct cam_ed *device;
5065 	struct cam_sim *sim;
5066 	int    newopenings;
5067 
5068 	device = path->device;
5069 	sim = path->bus->sim;
5070 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5071 	xpt_freeze_devq(path, /*count*/1);
5072 	device->inq_flags |= SID_CmdQue;
5073 	if (device->tag_saved_openings != 0)
5074 		newopenings = device->tag_saved_openings;
5075 	else
5076 		newopenings = min(device->maxtags,
5077 				  sim->max_tagged_dev_openings);
5078 	xpt_dev_ccbq_resize(path, newopenings);
5079 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5080 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5081 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5082 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5083 	crs.openings
5084 	    = crs.release_timeout
5085 	    = crs.qfrozen_cnt
5086 	    = 0;
5087 	xpt_action((union ccb *)&crs);
5088 }
5089 
5090 void
5091 xpt_stop_tags(struct cam_path *path)
5092 {
5093 	struct ccb_relsim crs;
5094 	struct cam_ed *device;
5095 	struct cam_sim *sim;
5096 
5097 	device = path->device;
5098 	sim = path->bus->sim;
5099 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5100 	device->tag_delay_count = 0;
5101 	xpt_freeze_devq(path, /*count*/1);
5102 	device->inq_flags &= ~SID_CmdQue;
5103 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5104 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5105 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5106 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5107 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5108 	crs.openings
5109 	    = crs.release_timeout
5110 	    = crs.qfrozen_cnt
5111 	    = 0;
5112 	xpt_action((union ccb *)&crs);
5113 }
5114 
5115 /*
5116  * Assume all possible buses are detected by this time, so allow boot
5117  * as soon as they all are scanned.
5118  */
5119 static void
5120 xpt_boot_delay(void *arg)
5121 {
5122 
5123 	xpt_release_boot();
5124 }
5125 
5126 /*
5127  * Now that all config hooks have completed, start boot_delay timer,
5128  * waiting for possibly still undetected buses (USB) to appear.
5129  */
5130 static void
5131 xpt_ch_done(void *arg)
5132 {
5133 
5134 	callout_init(&xsoftc.boot_callout, 1);
5135 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5136 	    xpt_boot_delay, NULL, 0);
5137 }
5138 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5139 
5140 /*
5141  * Now that interrupts are enabled, go find our devices
5142  */
5143 static void
5144 xpt_config(void *arg)
5145 {
5146 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5147 		printf("xpt_config: failed to create taskqueue thread.\n");
5148 
5149 	/* Setup debugging path */
5150 	if (cam_dflags != CAM_DEBUG_NONE) {
5151 		if (xpt_create_path(&cam_dpath, NULL,
5152 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5153 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5154 			printf("xpt_config: xpt_create_path() failed for debug"
5155 			       " target %d:%d:%d, debugging disabled\n",
5156 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5157 			cam_dflags = CAM_DEBUG_NONE;
5158 		}
5159 	} else
5160 		cam_dpath = NULL;
5161 
5162 	periphdriver_init(1);
5163 	xpt_hold_boot();
5164 
5165 	/* Fire up rescan thread. */
5166 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5167 	    "cam", "scanner")) {
5168 		printf("xpt_config: failed to create rescan thread.\n");
5169 	}
5170 }
5171 
5172 void
5173 xpt_hold_boot_locked(void)
5174 {
5175 
5176 	if (xsoftc.buses_to_config++ == 0)
5177 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5178 }
5179 
5180 void
5181 xpt_hold_boot(void)
5182 {
5183 
5184 	xpt_lock_buses();
5185 	xpt_hold_boot_locked();
5186 	xpt_unlock_buses();
5187 }
5188 
5189 void
5190 xpt_release_boot(void)
5191 {
5192 
5193 	xpt_lock_buses();
5194 	if (--xsoftc.buses_to_config == 0) {
5195 		if (xsoftc.buses_config_done == 0) {
5196 			xsoftc.buses_config_done = 1;
5197 			xsoftc.buses_to_config++;
5198 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5199 			    NULL);
5200 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5201 		} else
5202 			root_mount_rel(&xsoftc.xpt_rootmount);
5203 	}
5204 	xpt_unlock_buses();
5205 }
5206 
5207 /*
5208  * If the given device only has one peripheral attached to it, and if that
5209  * peripheral is the passthrough driver, announce it.  This insures that the
5210  * user sees some sort of announcement for every peripheral in their system.
5211  */
5212 static int
5213 xptpassannouncefunc(struct cam_ed *device, void *arg)
5214 {
5215 	struct cam_periph *periph;
5216 	int i;
5217 
5218 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5219 	     periph = SLIST_NEXT(periph, periph_links), i++);
5220 
5221 	periph = SLIST_FIRST(&device->periphs);
5222 	if ((i == 1)
5223 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5224 		xpt_announce_periph(periph, NULL);
5225 
5226 	return(1);
5227 }
5228 
5229 static void
5230 xpt_finishconfig_task(void *context, int pending)
5231 {
5232 
5233 	periphdriver_init(2);
5234 	/*
5235 	 * Check for devices with no "standard" peripheral driver
5236 	 * attached.  For any devices like that, announce the
5237 	 * passthrough driver so the user will see something.
5238 	 */
5239 	if (!bootverbose)
5240 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5241 
5242 	xpt_release_boot();
5243 }
5244 
5245 cam_status
5246 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5247 		   struct cam_path *path)
5248 {
5249 	struct ccb_setasync csa;
5250 	cam_status status;
5251 	int xptpath = 0;
5252 
5253 	if (path == NULL) {
5254 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5255 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5256 		if (status != CAM_REQ_CMP)
5257 			return (status);
5258 		xpt_path_lock(path);
5259 		xptpath = 1;
5260 	}
5261 
5262 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5263 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5264 	csa.event_enable = event;
5265 	csa.callback = cbfunc;
5266 	csa.callback_arg = cbarg;
5267 	xpt_action((union ccb *)&csa);
5268 	status = csa.ccb_h.status;
5269 
5270 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5271 	    ("xpt_register_async: func %p\n", cbfunc));
5272 
5273 	if (xptpath) {
5274 		xpt_path_unlock(path);
5275 		xpt_free_path(path);
5276 	}
5277 
5278 	if ((status == CAM_REQ_CMP) &&
5279 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5280 		/*
5281 		 * Get this peripheral up to date with all
5282 		 * the currently existing devices.
5283 		 */
5284 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5285 	}
5286 	if ((status == CAM_REQ_CMP) &&
5287 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5288 		/*
5289 		 * Get this peripheral up to date with all
5290 		 * the currently existing buses.
5291 		 */
5292 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5293 	}
5294 
5295 	return (status);
5296 }
5297 
5298 static void
5299 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5300 {
5301 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5302 
5303 	switch (work_ccb->ccb_h.func_code) {
5304 	/* Common cases first */
5305 	case XPT_PATH_INQ:		/* Path routing inquiry */
5306 	{
5307 		struct ccb_pathinq *cpi;
5308 
5309 		cpi = &work_ccb->cpi;
5310 		cpi->version_num = 1; /* XXX??? */
5311 		cpi->hba_inquiry = 0;
5312 		cpi->target_sprt = 0;
5313 		cpi->hba_misc = 0;
5314 		cpi->hba_eng_cnt = 0;
5315 		cpi->max_target = 0;
5316 		cpi->max_lun = 0;
5317 		cpi->initiator_id = 0;
5318 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5319 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5320 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5321 		cpi->unit_number = sim->unit_number;
5322 		cpi->bus_id = sim->bus_id;
5323 		cpi->base_transfer_speed = 0;
5324 		cpi->protocol = PROTO_UNSPECIFIED;
5325 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5326 		cpi->transport = XPORT_UNSPECIFIED;
5327 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5328 		cpi->ccb_h.status = CAM_REQ_CMP;
5329 		break;
5330 	}
5331 	default:
5332 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5333 		break;
5334 	}
5335 	xpt_done(work_ccb);
5336 }
5337 
5338 /*
5339  * The xpt as a "controller" has no interrupt sources, so polling
5340  * is a no-op.
5341  */
5342 static void
5343 xptpoll(struct cam_sim *sim)
5344 {
5345 }
5346 
5347 void
5348 xpt_lock_buses(void)
5349 {
5350 	mtx_lock(&xsoftc.xpt_topo_lock);
5351 }
5352 
5353 void
5354 xpt_unlock_buses(void)
5355 {
5356 	mtx_unlock(&xsoftc.xpt_topo_lock);
5357 }
5358 
5359 struct mtx *
5360 xpt_path_mtx(struct cam_path *path)
5361 {
5362 
5363 	return (&path->device->device_mtx);
5364 }
5365 
5366 static void
5367 xpt_done_process(struct ccb_hdr *ccb_h)
5368 {
5369 	struct cam_sim *sim = NULL;
5370 	struct cam_devq *devq = NULL;
5371 	struct mtx *mtx = NULL;
5372 
5373 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5374 	struct ccb_scsiio *csio;
5375 
5376 	if (ccb_h->func_code == XPT_SCSI_IO) {
5377 		csio = &((union ccb *)ccb_h)->csio;
5378 		if (csio->bio != NULL)
5379 			biotrack(csio->bio, __func__);
5380 	}
5381 #endif
5382 
5383 	if (ccb_h->flags & CAM_HIGH_POWER) {
5384 		struct highpowerlist	*hphead;
5385 		struct cam_ed		*device;
5386 
5387 		mtx_lock(&xsoftc.xpt_highpower_lock);
5388 		hphead = &xsoftc.highpowerq;
5389 
5390 		device = STAILQ_FIRST(hphead);
5391 
5392 		/*
5393 		 * Increment the count since this command is done.
5394 		 */
5395 		xsoftc.num_highpower++;
5396 
5397 		/*
5398 		 * Any high powered commands queued up?
5399 		 */
5400 		if (device != NULL) {
5401 
5402 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5403 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5404 
5405 			mtx_lock(&device->sim->devq->send_mtx);
5406 			xpt_release_devq_device(device,
5407 					 /*count*/1, /*runqueue*/TRUE);
5408 			mtx_unlock(&device->sim->devq->send_mtx);
5409 		} else
5410 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5411 	}
5412 
5413 	/*
5414 	 * Insulate against a race where the periph is destroyed but CCBs are
5415 	 * still not all processed. This shouldn't happen, but allows us better
5416 	 * bug diagnostic when it does.
5417 	 */
5418 	if (ccb_h->path->bus)
5419 		sim = ccb_h->path->bus->sim;
5420 
5421 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5422 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5423 		xpt_release_simq(sim, /*run_queue*/FALSE);
5424 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5425 	}
5426 
5427 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5428 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5429 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5430 		ccb_h->status &= ~CAM_DEV_QFRZN;
5431 	}
5432 
5433 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5434 		struct cam_ed *dev = ccb_h->path->device;
5435 
5436 		if (sim)
5437 			devq = sim->devq;
5438 		KASSERT(devq, ("Periph disappeared with request pending."));
5439 
5440 		mtx_lock(&devq->send_mtx);
5441 		devq->send_active--;
5442 		devq->send_openings++;
5443 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5444 
5445 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5446 		  && (dev->ccbq.dev_active == 0))) {
5447 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5448 			xpt_release_devq_device(dev, /*count*/1,
5449 					 /*run_queue*/FALSE);
5450 		}
5451 
5452 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5453 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5454 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5455 			xpt_release_devq_device(dev, /*count*/1,
5456 					 /*run_queue*/FALSE);
5457 		}
5458 
5459 		if (!device_is_queued(dev))
5460 			(void)xpt_schedule_devq(devq, dev);
5461 		xpt_run_devq(devq);
5462 		mtx_unlock(&devq->send_mtx);
5463 
5464 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5465 			mtx = xpt_path_mtx(ccb_h->path);
5466 			mtx_lock(mtx);
5467 
5468 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5469 			 && (--dev->tag_delay_count == 0))
5470 				xpt_start_tags(ccb_h->path);
5471 		}
5472 	}
5473 
5474 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5475 		if (mtx == NULL) {
5476 			mtx = xpt_path_mtx(ccb_h->path);
5477 			mtx_lock(mtx);
5478 		}
5479 	} else {
5480 		if (mtx != NULL) {
5481 			mtx_unlock(mtx);
5482 			mtx = NULL;
5483 		}
5484 	}
5485 
5486 	/* Call the peripheral driver's callback */
5487 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5488 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5489 	if (mtx != NULL)
5490 		mtx_unlock(mtx);
5491 }
5492 
5493 void
5494 xpt_done_td(void *arg)
5495 {
5496 	struct cam_doneq *queue = arg;
5497 	struct ccb_hdr *ccb_h;
5498 	STAILQ_HEAD(, ccb_hdr)	doneq;
5499 
5500 	STAILQ_INIT(&doneq);
5501 	mtx_lock(&queue->cam_doneq_mtx);
5502 	while (1) {
5503 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5504 			queue->cam_doneq_sleep = 1;
5505 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5506 			    PRIBIO, "-", 0);
5507 			queue->cam_doneq_sleep = 0;
5508 		}
5509 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5510 		mtx_unlock(&queue->cam_doneq_mtx);
5511 
5512 		THREAD_NO_SLEEPING();
5513 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5514 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5515 			xpt_done_process(ccb_h);
5516 		}
5517 		THREAD_SLEEPING_OK();
5518 
5519 		mtx_lock(&queue->cam_doneq_mtx);
5520 	}
5521 }
5522 
5523 static void
5524 camisr_runqueue(void)
5525 {
5526 	struct	ccb_hdr *ccb_h;
5527 	struct cam_doneq *queue;
5528 	int i;
5529 
5530 	/* Process global queues. */
5531 	for (i = 0; i < cam_num_doneqs; i++) {
5532 		queue = &cam_doneqs[i];
5533 		mtx_lock(&queue->cam_doneq_mtx);
5534 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5535 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5536 			mtx_unlock(&queue->cam_doneq_mtx);
5537 			xpt_done_process(ccb_h);
5538 			mtx_lock(&queue->cam_doneq_mtx);
5539 		}
5540 		mtx_unlock(&queue->cam_doneq_mtx);
5541 	}
5542 }
5543 
5544 struct kv
5545 {
5546 	uint32_t v;
5547 	const char *name;
5548 };
5549 
5550 static struct kv map[] = {
5551 	{ XPT_NOOP, "XPT_NOOP" },
5552 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5553 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5554 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5555 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5556 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5557 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5558 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5559 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5560 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5561 	{ XPT_DEBUG, "XPT_DEBUG" },
5562 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5563 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5564 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5565 	{ XPT_ASYNC, "XPT_ASYNC" },
5566 	{ XPT_ABORT, "XPT_ABORT" },
5567 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5568 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5569 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5570 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5571 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5572 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5573 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5574 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5575 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5576 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5577 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5578 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5579 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5580 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5581 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5582 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5583 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5584 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5585 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5586 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5587 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5588 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5589 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5590 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5591 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5592 	{ 0, 0 }
5593 };
5594 
5595 const char *
5596 xpt_action_name(uint32_t action)
5597 {
5598 	static char buffer[32];	/* Only for unknown messages -- racy */
5599 	struct kv *walker = map;
5600 
5601 	while (walker->name != NULL) {
5602 		if (walker->v == action)
5603 			return (walker->name);
5604 		walker++;
5605 	}
5606 
5607 	snprintf(buffer, sizeof(buffer), "%#x", action);
5608 	return (buffer);
5609 }
5610