xref: /freebsd/sys/cam/cam_xpt.c (revision aca5021d5f7dcab1e11692923266373e35322d9a)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_queue.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_xpt_internal.h>
60 #include <cam/cam_debug.h>
61 #include <cam/cam_compat.h>
62 
63 #include <cam/scsi/scsi_all.h>
64 #include <cam/scsi/scsi_message.h>
65 #include <cam/scsi/scsi_pass.h>
66 
67 #include <machine/md_var.h>	/* geometry translation */
68 #include <machine/stdarg.h>	/* for xpt_print below */
69 
70 #include "opt_cam.h"
71 
72 /*
73  * This is the maximum number of high powered commands (e.g. start unit)
74  * that can be outstanding at a particular time.
75  */
76 #ifndef CAM_MAX_HIGHPOWER
77 #define CAM_MAX_HIGHPOWER  4
78 #endif
79 
80 /* Datastructures internal to the xpt layer */
81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
83 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
84 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
85 
86 /* Object for defering XPT actions to a taskqueue */
87 struct xpt_task {
88 	struct task	task;
89 	void		*data1;
90 	uintptr_t	data2;
91 };
92 
93 typedef enum {
94 	XPT_FLAG_OPEN		= 0x01
95 } xpt_flags;
96 
97 struct xpt_softc {
98 	xpt_flags		flags;
99 
100 	/* number of high powered commands that can go through right now */
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/* Registered busses */
110 	TAILQ_HEAD(,cam_eb)	xpt_busses;
111 	u_int			bus_generation;
112 
113 	struct intr_config_hook	*xpt_config_hook;
114 
115 	int			boot_delay;
116 	struct callout 		boot_callout;
117 
118 	struct mtx		xpt_topo_lock;
119 	struct mtx		xpt_lock;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156            &xsoftc.boot_delay, 0, "Bus registration wait time");
157 
158 /* Queues for our software interrupt handler */
159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161 static cam_simq_t cam_simq;
162 static struct mtx cam_simq_lock;
163 
164 /* Pointers to software interrupt handlers */
165 static void *cambio_ih;
166 
167 struct cam_periph *xpt_periph;
168 
169 static periph_init_t xpt_periph_init;
170 
171 static struct periph_driver xpt_driver =
172 {
173 	xpt_periph_init, "xpt",
174 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175 	CAM_PERIPH_DRV_EARLY
176 };
177 
178 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179 
180 static d_open_t xptopen;
181 static d_close_t xptclose;
182 static d_ioctl_t xptioctl;
183 static d_ioctl_t xptdoioctl;
184 
185 static struct cdevsw xpt_cdevsw = {
186 	.d_version =	D_VERSION,
187 	.d_flags =	0,
188 	.d_open =	xptopen,
189 	.d_close =	xptclose,
190 	.d_ioctl =	xptioctl,
191 	.d_name =	"xpt",
192 };
193 
194 /* Storage for debugging datastructures */
195 struct cam_path *cam_dpath;
196 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
197 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
199 	&cam_dflags, 0, "Enabled debug flags");
200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
201 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
202 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
203 	&cam_debug_delay, 0, "Delay in us after each debug message");
204 
205 /* Our boot-time initialization hook */
206 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
207 
208 static moduledata_t cam_moduledata = {
209 	"cam",
210 	cam_module_event_handler,
211 	NULL
212 };
213 
214 static int	xpt_init(void *);
215 
216 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
217 MODULE_VERSION(cam, 1);
218 
219 
220 static void		xpt_async_bcast(struct async_list *async_head,
221 					u_int32_t async_code,
222 					struct cam_path *path,
223 					void *async_arg);
224 static path_id_t xptnextfreepathid(void);
225 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
226 static union ccb *xpt_get_ccb(struct cam_ed *device);
227 static void	 xpt_run_dev_allocq(struct cam_ed *device);
228 static void	 xpt_run_devq(struct cam_devq *devq);
229 static timeout_t xpt_release_devq_timeout;
230 static void	 xpt_release_simq_timeout(void *arg) __unused;
231 static void	 xpt_release_bus(struct cam_eb *bus);
232 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
233 		    int run_queue);
234 static struct cam_et*
235 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
236 static void	 xpt_release_target(struct cam_et *target);
237 static struct cam_eb*
238 		 xpt_find_bus(path_id_t path_id);
239 static struct cam_et*
240 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
241 static struct cam_ed*
242 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
243 static void	 xpt_config(void *arg);
244 static xpt_devicefunc_t xptpassannouncefunc;
245 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
246 static void	 xptpoll(struct cam_sim *sim);
247 static void	 camisr(void *);
248 static void	 camisr_runqueue(struct cam_sim *);
249 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
250 				    u_int num_patterns, struct cam_eb *bus);
251 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
252 				       u_int num_patterns,
253 				       struct cam_ed *device);
254 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
255 				       u_int num_patterns,
256 				       struct cam_periph *periph);
257 static xpt_busfunc_t	xptedtbusfunc;
258 static xpt_targetfunc_t	xptedttargetfunc;
259 static xpt_devicefunc_t	xptedtdevicefunc;
260 static xpt_periphfunc_t	xptedtperiphfunc;
261 static xpt_pdrvfunc_t	xptplistpdrvfunc;
262 static xpt_periphfunc_t	xptplistperiphfunc;
263 static int		xptedtmatch(struct ccb_dev_match *cdm);
264 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
265 static int		xptbustraverse(struct cam_eb *start_bus,
266 				       xpt_busfunc_t *tr_func, void *arg);
267 static int		xpttargettraverse(struct cam_eb *bus,
268 					  struct cam_et *start_target,
269 					  xpt_targetfunc_t *tr_func, void *arg);
270 static int		xptdevicetraverse(struct cam_et *target,
271 					  struct cam_ed *start_device,
272 					  xpt_devicefunc_t *tr_func, void *arg);
273 static int		xptperiphtraverse(struct cam_ed *device,
274 					  struct cam_periph *start_periph,
275 					  xpt_periphfunc_t *tr_func, void *arg);
276 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
277 					xpt_pdrvfunc_t *tr_func, void *arg);
278 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
279 					    struct cam_periph *start_periph,
280 					    xpt_periphfunc_t *tr_func,
281 					    void *arg);
282 static xpt_busfunc_t	xptdefbusfunc;
283 static xpt_targetfunc_t	xptdeftargetfunc;
284 static xpt_devicefunc_t	xptdefdevicefunc;
285 static xpt_periphfunc_t	xptdefperiphfunc;
286 static void		xpt_finishconfig_task(void *context, int pending);
287 static void		xpt_dev_async_default(u_int32_t async_code,
288 					      struct cam_eb *bus,
289 					      struct cam_et *target,
290 					      struct cam_ed *device,
291 					      void *async_arg);
292 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
293 						 struct cam_et *target,
294 						 lun_id_t lun_id);
295 static xpt_devicefunc_t	xptsetasyncfunc;
296 static xpt_busfunc_t	xptsetasyncbusfunc;
297 static cam_status	xptregister(struct cam_periph *periph,
298 				    void *arg);
299 static __inline int periph_is_queued(struct cam_periph *periph);
300 static __inline int device_is_queued(struct cam_ed *device);
301 
302 static __inline int
303 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
304 {
305 	int	retval;
306 
307 	if ((dev->ccbq.queue.entries > 0) &&
308 	    (dev->ccbq.dev_openings > 0) &&
309 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
310 		/*
311 		 * The priority of a device waiting for controller
312 		 * resources is that of the highest priority CCB
313 		 * enqueued.
314 		 */
315 		retval =
316 		    xpt_schedule_dev(&devq->send_queue,
317 				     &dev->devq_entry.pinfo,
318 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
319 	} else {
320 		retval = 0;
321 	}
322 	return (retval);
323 }
324 
325 static __inline int
326 periph_is_queued(struct cam_periph *periph)
327 {
328 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
329 }
330 
331 static __inline int
332 device_is_queued(struct cam_ed *device)
333 {
334 	return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
335 }
336 
337 static void
338 xpt_periph_init()
339 {
340 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
341 }
342 
343 static void
344 xptdone(struct cam_periph *periph, union ccb *done_ccb)
345 {
346 	/* Caller will release the CCB */
347 	wakeup(&done_ccb->ccb_h.cbfcnp);
348 }
349 
350 static int
351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
352 {
353 
354 	/*
355 	 * Only allow read-write access.
356 	 */
357 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
358 		return(EPERM);
359 
360 	/*
361 	 * We don't allow nonblocking access.
362 	 */
363 	if ((flags & O_NONBLOCK) != 0) {
364 		printf("%s: can't do nonblocking access\n", devtoname(dev));
365 		return(ENODEV);
366 	}
367 
368 	/* Mark ourselves open */
369 	mtx_lock(&xsoftc.xpt_lock);
370 	xsoftc.flags |= XPT_FLAG_OPEN;
371 	mtx_unlock(&xsoftc.xpt_lock);
372 
373 	return(0);
374 }
375 
376 static int
377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379 
380 	/* Mark ourselves closed */
381 	mtx_lock(&xsoftc.xpt_lock);
382 	xsoftc.flags &= ~XPT_FLAG_OPEN;
383 	mtx_unlock(&xsoftc.xpt_lock);
384 
385 	return(0);
386 }
387 
388 /*
389  * Don't automatically grab the xpt softc lock here even though this is going
390  * through the xpt device.  The xpt device is really just a back door for
391  * accessing other devices and SIMs, so the right thing to do is to grab
392  * the appropriate SIM lock once the bus/SIM is located.
393  */
394 static int
395 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
396 {
397 	int error;
398 
399 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
400 		error = cam_compat_ioctl(dev, &cmd, &addr, &flag, td);
401 		if (error == EAGAIN)
402 			return (xptdoioctl(dev, cmd, addr, flag, td));
403 	}
404 	return (error);
405 }
406 
407 static int
408 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
409 {
410 	int error;
411 
412 	error = 0;
413 
414 	switch(cmd) {
415 	/*
416 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
417 	 * to accept CCB types that don't quite make sense to send through a
418 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
419 	 * in the CAM spec.
420 	 */
421 	case CAMIOCOMMAND: {
422 		union ccb *ccb;
423 		union ccb *inccb;
424 		struct cam_eb *bus;
425 
426 		inccb = (union ccb *)addr;
427 
428 		bus = xpt_find_bus(inccb->ccb_h.path_id);
429 		if (bus == NULL)
430 			return (EINVAL);
431 
432 		switch (inccb->ccb_h.func_code) {
433 		case XPT_SCAN_BUS:
434 		case XPT_RESET_BUS:
435 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 				xpt_release_bus(bus);
438 				return (EINVAL);
439 			}
440 			break;
441 		case XPT_SCAN_TGT:
442 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 				xpt_release_bus(bus);
445 				return (EINVAL);
446 			}
447 			break;
448 		default:
449 			break;
450 		}
451 
452 		switch(inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 		case XPT_PATH_INQ:
456 		case XPT_ENG_INQ:
457 		case XPT_SCAN_LUN:
458 		case XPT_SCAN_TGT:
459 
460 			ccb = xpt_alloc_ccb();
461 
462 			CAM_SIM_LOCK(bus->sim);
463 
464 			/*
465 			 * Create a path using the bus, target, and lun the
466 			 * user passed in.
467 			 */
468 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
469 					    inccb->ccb_h.path_id,
470 					    inccb->ccb_h.target_id,
471 					    inccb->ccb_h.target_lun) !=
472 					    CAM_REQ_CMP){
473 				error = EINVAL;
474 				CAM_SIM_UNLOCK(bus->sim);
475 				xpt_free_ccb(ccb);
476 				break;
477 			}
478 			/* Ensure all of our fields are correct */
479 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
480 				      inccb->ccb_h.pinfo.priority);
481 			xpt_merge_ccb(ccb, inccb);
482 			ccb->ccb_h.cbfcnp = xptdone;
483 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
484 			bcopy(ccb, inccb, sizeof(union ccb));
485 			xpt_free_path(ccb->ccb_h.path);
486 			xpt_free_ccb(ccb);
487 			CAM_SIM_UNLOCK(bus->sim);
488 			break;
489 
490 		case XPT_DEBUG: {
491 			union ccb ccb;
492 
493 			/*
494 			 * This is an immediate CCB, so it's okay to
495 			 * allocate it on the stack.
496 			 */
497 
498 			CAM_SIM_LOCK(bus->sim);
499 
500 			/*
501 			 * Create a path using the bus, target, and lun the
502 			 * user passed in.
503 			 */
504 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
505 					    inccb->ccb_h.path_id,
506 					    inccb->ccb_h.target_id,
507 					    inccb->ccb_h.target_lun) !=
508 					    CAM_REQ_CMP){
509 				error = EINVAL;
510 				CAM_SIM_UNLOCK(bus->sim);
511 				break;
512 			}
513 			/* Ensure all of our fields are correct */
514 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
515 				      inccb->ccb_h.pinfo.priority);
516 			xpt_merge_ccb(&ccb, inccb);
517 			ccb.ccb_h.cbfcnp = xptdone;
518 			xpt_action(&ccb);
519 			bcopy(&ccb, inccb, sizeof(union ccb));
520 			xpt_free_path(ccb.ccb_h.path);
521 			CAM_SIM_UNLOCK(bus->sim);
522 			break;
523 
524 		}
525 		case XPT_DEV_MATCH: {
526 			struct cam_periph_map_info mapinfo;
527 			struct cam_path *old_path;
528 
529 			/*
530 			 * We can't deal with physical addresses for this
531 			 * type of transaction.
532 			 */
533 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
534 			    CAM_DATA_VADDR) {
535 				error = EINVAL;
536 				break;
537 			}
538 
539 			/*
540 			 * Save this in case the caller had it set to
541 			 * something in particular.
542 			 */
543 			old_path = inccb->ccb_h.path;
544 
545 			/*
546 			 * We really don't need a path for the matching
547 			 * code.  The path is needed because of the
548 			 * debugging statements in xpt_action().  They
549 			 * assume that the CCB has a valid path.
550 			 */
551 			inccb->ccb_h.path = xpt_periph->path;
552 
553 			bzero(&mapinfo, sizeof(mapinfo));
554 
555 			/*
556 			 * Map the pattern and match buffers into kernel
557 			 * virtual address space.
558 			 */
559 			error = cam_periph_mapmem(inccb, &mapinfo);
560 
561 			if (error) {
562 				inccb->ccb_h.path = old_path;
563 				break;
564 			}
565 
566 			/*
567 			 * This is an immediate CCB, we can send it on directly.
568 			 */
569 			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
570 			xpt_action(inccb);
571 			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
572 
573 			/*
574 			 * Map the buffers back into user space.
575 			 */
576 			cam_periph_unmapmem(inccb, &mapinfo);
577 
578 			inccb->ccb_h.path = old_path;
579 
580 			error = 0;
581 			break;
582 		}
583 		default:
584 			error = ENOTSUP;
585 			break;
586 		}
587 		xpt_release_bus(bus);
588 		break;
589 	}
590 	/*
591 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
592 	 * with the periphal driver name and unit name filled in.  The other
593 	 * fields don't really matter as input.  The passthrough driver name
594 	 * ("pass"), and unit number are passed back in the ccb.  The current
595 	 * device generation number, and the index into the device peripheral
596 	 * driver list, and the status are also passed back.  Note that
597 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
598 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
599 	 * (or rather should be) impossible for the device peripheral driver
600 	 * list to change since we look at the whole thing in one pass, and
601 	 * we do it with lock protection.
602 	 *
603 	 */
604 	case CAMGETPASSTHRU: {
605 		union ccb *ccb;
606 		struct cam_periph *periph;
607 		struct periph_driver **p_drv;
608 		char   *name;
609 		u_int unit;
610 		int base_periph_found;
611 
612 		ccb = (union ccb *)addr;
613 		unit = ccb->cgdl.unit_number;
614 		name = ccb->cgdl.periph_name;
615 		base_periph_found = 0;
616 
617 		/*
618 		 * Sanity check -- make sure we don't get a null peripheral
619 		 * driver name.
620 		 */
621 		if (*ccb->cgdl.periph_name == '\0') {
622 			error = EINVAL;
623 			break;
624 		}
625 
626 		/* Keep the list from changing while we traverse it */
627 		xpt_lock_buses();
628 
629 		/* first find our driver in the list of drivers */
630 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
631 			if (strcmp((*p_drv)->driver_name, name) == 0)
632 				break;
633 
634 		if (*p_drv == NULL) {
635 			xpt_unlock_buses();
636 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
637 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
638 			*ccb->cgdl.periph_name = '\0';
639 			ccb->cgdl.unit_number = 0;
640 			error = ENOENT;
641 			break;
642 		}
643 
644 		/*
645 		 * Run through every peripheral instance of this driver
646 		 * and check to see whether it matches the unit passed
647 		 * in by the user.  If it does, get out of the loops and
648 		 * find the passthrough driver associated with that
649 		 * peripheral driver.
650 		 */
651 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
652 		     periph = TAILQ_NEXT(periph, unit_links)) {
653 
654 			if (periph->unit_number == unit)
655 				break;
656 		}
657 		/*
658 		 * If we found the peripheral driver that the user passed
659 		 * in, go through all of the peripheral drivers for that
660 		 * particular device and look for a passthrough driver.
661 		 */
662 		if (periph != NULL) {
663 			struct cam_ed *device;
664 			int i;
665 
666 			base_periph_found = 1;
667 			device = periph->path->device;
668 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
669 			     periph != NULL;
670 			     periph = SLIST_NEXT(periph, periph_links), i++) {
671 				/*
672 				 * Check to see whether we have a
673 				 * passthrough device or not.
674 				 */
675 				if (strcmp(periph->periph_name, "pass") == 0) {
676 					/*
677 					 * Fill in the getdevlist fields.
678 					 */
679 					strcpy(ccb->cgdl.periph_name,
680 					       periph->periph_name);
681 					ccb->cgdl.unit_number =
682 						periph->unit_number;
683 					if (SLIST_NEXT(periph, periph_links))
684 						ccb->cgdl.status =
685 							CAM_GDEVLIST_MORE_DEVS;
686 					else
687 						ccb->cgdl.status =
688 						       CAM_GDEVLIST_LAST_DEVICE;
689 					ccb->cgdl.generation =
690 						device->generation;
691 					ccb->cgdl.index = i;
692 					/*
693 					 * Fill in some CCB header fields
694 					 * that the user may want.
695 					 */
696 					ccb->ccb_h.path_id =
697 						periph->path->bus->path_id;
698 					ccb->ccb_h.target_id =
699 						periph->path->target->target_id;
700 					ccb->ccb_h.target_lun =
701 						periph->path->device->lun_id;
702 					ccb->ccb_h.status = CAM_REQ_CMP;
703 					break;
704 				}
705 			}
706 		}
707 
708 		/*
709 		 * If the periph is null here, one of two things has
710 		 * happened.  The first possibility is that we couldn't
711 		 * find the unit number of the particular peripheral driver
712 		 * that the user is asking about.  e.g. the user asks for
713 		 * the passthrough driver for "da11".  We find the list of
714 		 * "da" peripherals all right, but there is no unit 11.
715 		 * The other possibility is that we went through the list
716 		 * of peripheral drivers attached to the device structure,
717 		 * but didn't find one with the name "pass".  Either way,
718 		 * we return ENOENT, since we couldn't find something.
719 		 */
720 		if (periph == NULL) {
721 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
722 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
723 			*ccb->cgdl.periph_name = '\0';
724 			ccb->cgdl.unit_number = 0;
725 			error = ENOENT;
726 			/*
727 			 * It is unfortunate that this is even necessary,
728 			 * but there are many, many clueless users out there.
729 			 * If this is true, the user is looking for the
730 			 * passthrough driver, but doesn't have one in his
731 			 * kernel.
732 			 */
733 			if (base_periph_found == 1) {
734 				printf("xptioctl: pass driver is not in the "
735 				       "kernel\n");
736 				printf("xptioctl: put \"device pass\" in "
737 				       "your kernel config file\n");
738 			}
739 		}
740 		xpt_unlock_buses();
741 		break;
742 		}
743 	default:
744 		error = ENOTTY;
745 		break;
746 	}
747 
748 	return(error);
749 }
750 
751 static int
752 cam_module_event_handler(module_t mod, int what, void *arg)
753 {
754 	int error;
755 
756 	switch (what) {
757 	case MOD_LOAD:
758 		if ((error = xpt_init(NULL)) != 0)
759 			return (error);
760 		break;
761 	case MOD_UNLOAD:
762 		return EBUSY;
763 	default:
764 		return EOPNOTSUPP;
765 	}
766 
767 	return 0;
768 }
769 
770 static void
771 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
772 {
773 
774 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
775 		xpt_free_path(done_ccb->ccb_h.path);
776 		xpt_free_ccb(done_ccb);
777 	} else {
778 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
779 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
780 	}
781 	xpt_release_boot();
782 }
783 
784 /* thread to handle bus rescans */
785 static void
786 xpt_scanner_thread(void *dummy)
787 {
788 	union ccb	*ccb;
789 	struct cam_sim	*sim;
790 
791 	xpt_lock_buses();
792 	for (;;) {
793 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
794 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
795 			       "ccb_scanq", 0);
796 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
797 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
798 			xpt_unlock_buses();
799 
800 			sim = ccb->ccb_h.path->bus->sim;
801 			CAM_SIM_LOCK(sim);
802 			xpt_action(ccb);
803 			CAM_SIM_UNLOCK(sim);
804 
805 			xpt_lock_buses();
806 		}
807 	}
808 }
809 
810 void
811 xpt_rescan(union ccb *ccb)
812 {
813 	struct ccb_hdr *hdr;
814 
815 	/* Prepare request */
816 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
817 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
818 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
819 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
820 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
821 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
822 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
823 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
824 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
825 	else {
826 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
827 		xpt_free_path(ccb->ccb_h.path);
828 		xpt_free_ccb(ccb);
829 		return;
830 	}
831 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
832 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
833 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
834 	/* Don't make duplicate entries for the same paths. */
835 	xpt_lock_buses();
836 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
837 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
838 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
839 				wakeup(&xsoftc.ccb_scanq);
840 				xpt_unlock_buses();
841 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
842 				xpt_free_path(ccb->ccb_h.path);
843 				xpt_free_ccb(ccb);
844 				return;
845 			}
846 		}
847 	}
848 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
849 	xsoftc.buses_to_config++;
850 	wakeup(&xsoftc.ccb_scanq);
851 	xpt_unlock_buses();
852 }
853 
854 /* Functions accessed by the peripheral drivers */
855 static int
856 xpt_init(void *dummy)
857 {
858 	struct cam_sim *xpt_sim;
859 	struct cam_path *path;
860 	struct cam_devq *devq;
861 	cam_status status;
862 
863 	TAILQ_INIT(&xsoftc.xpt_busses);
864 	TAILQ_INIT(&cam_simq);
865 	TAILQ_INIT(&xsoftc.ccb_scanq);
866 	STAILQ_INIT(&xsoftc.highpowerq);
867 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
868 
869 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
870 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
871 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
872 
873 #ifdef CAM_BOOT_DELAY
874 	/*
875 	 * Override this value at compile time to assist our users
876 	 * who don't use loader to boot a kernel.
877 	 */
878 	xsoftc.boot_delay = CAM_BOOT_DELAY;
879 #endif
880 	/*
881 	 * The xpt layer is, itself, the equivelent of a SIM.
882 	 * Allow 16 ccbs in the ccb pool for it.  This should
883 	 * give decent parallelism when we probe busses and
884 	 * perform other XPT functions.
885 	 */
886 	devq = cam_simq_alloc(16);
887 	xpt_sim = cam_sim_alloc(xptaction,
888 				xptpoll,
889 				"xpt",
890 				/*softc*/NULL,
891 				/*unit*/0,
892 				/*mtx*/&xsoftc.xpt_lock,
893 				/*max_dev_transactions*/0,
894 				/*max_tagged_dev_transactions*/0,
895 				devq);
896 	if (xpt_sim == NULL)
897 		return (ENOMEM);
898 
899 	mtx_lock(&xsoftc.xpt_lock);
900 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
901 		mtx_unlock(&xsoftc.xpt_lock);
902 		printf("xpt_init: xpt_bus_register failed with status %#x,"
903 		       " failing attach\n", status);
904 		return (EINVAL);
905 	}
906 
907 	/*
908 	 * Looking at the XPT from the SIM layer, the XPT is
909 	 * the equivelent of a peripheral driver.  Allocate
910 	 * a peripheral driver entry for us.
911 	 */
912 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
913 				      CAM_TARGET_WILDCARD,
914 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
915 		mtx_unlock(&xsoftc.xpt_lock);
916 		printf("xpt_init: xpt_create_path failed with status %#x,"
917 		       " failing attach\n", status);
918 		return (EINVAL);
919 	}
920 
921 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
922 			 path, NULL, 0, xpt_sim);
923 	xpt_free_path(path);
924 	mtx_unlock(&xsoftc.xpt_lock);
925 	/* Install our software interrupt handlers */
926 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
927 	/*
928 	 * Register a callback for when interrupts are enabled.
929 	 */
930 	xsoftc.xpt_config_hook =
931 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
932 					      M_CAMXPT, M_NOWAIT | M_ZERO);
933 	if (xsoftc.xpt_config_hook == NULL) {
934 		printf("xpt_init: Cannot malloc config hook "
935 		       "- failing attach\n");
936 		return (ENOMEM);
937 	}
938 	xsoftc.xpt_config_hook->ich_func = xpt_config;
939 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
940 		free (xsoftc.xpt_config_hook, M_CAMXPT);
941 		printf("xpt_init: config_intrhook_establish failed "
942 		       "- failing attach\n");
943 	}
944 
945 	return (0);
946 }
947 
948 static cam_status
949 xptregister(struct cam_periph *periph, void *arg)
950 {
951 	struct cam_sim *xpt_sim;
952 
953 	if (periph == NULL) {
954 		printf("xptregister: periph was NULL!!\n");
955 		return(CAM_REQ_CMP_ERR);
956 	}
957 
958 	xpt_sim = (struct cam_sim *)arg;
959 	xpt_sim->softc = periph;
960 	xpt_periph = periph;
961 	periph->softc = NULL;
962 
963 	return(CAM_REQ_CMP);
964 }
965 
966 int32_t
967 xpt_add_periph(struct cam_periph *periph)
968 {
969 	struct cam_ed *device;
970 	int32_t	 status;
971 	struct periph_list *periph_head;
972 
973 	mtx_assert(periph->sim->mtx, MA_OWNED);
974 
975 	device = periph->path->device;
976 
977 	periph_head = &device->periphs;
978 
979 	status = CAM_REQ_CMP;
980 
981 	if (device != NULL) {
982 		/*
983 		 * Make room for this peripheral
984 		 * so it will fit in the queue
985 		 * when it's scheduled to run
986 		 */
987 		status = camq_resize(&device->drvq,
988 				     device->drvq.array_size + 1);
989 
990 		device->generation++;
991 
992 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
993 	}
994 
995 	return (status);
996 }
997 
998 void
999 xpt_remove_periph(struct cam_periph *periph)
1000 {
1001 	struct cam_ed *device;
1002 
1003 	mtx_assert(periph->sim->mtx, MA_OWNED);
1004 
1005 	device = periph->path->device;
1006 
1007 	if (device != NULL) {
1008 		struct periph_list *periph_head;
1009 
1010 		periph_head = &device->periphs;
1011 
1012 		/* Release the slot for this peripheral */
1013 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1014 
1015 		device->generation++;
1016 
1017 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1018 	}
1019 }
1020 
1021 
1022 void
1023 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1024 {
1025 	struct	cam_path *path = periph->path;
1026 
1027 	mtx_assert(periph->sim->mtx, MA_OWNED);
1028 
1029 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1030 	       periph->periph_name, periph->unit_number,
1031 	       path->bus->sim->sim_name,
1032 	       path->bus->sim->unit_number,
1033 	       path->bus->sim->bus_id,
1034 	       path->bus->path_id,
1035 	       path->target->target_id,
1036 	       path->device->lun_id);
1037 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1038 	if (path->device->protocol == PROTO_SCSI)
1039 		scsi_print_inquiry(&path->device->inq_data);
1040 	else if (path->device->protocol == PROTO_ATA ||
1041 	    path->device->protocol == PROTO_SATAPM)
1042 		ata_print_ident(&path->device->ident_data);
1043 	else if (path->device->protocol == PROTO_SEMB)
1044 		semb_print_ident(
1045 		    (struct sep_identify_data *)&path->device->ident_data);
1046 	else
1047 		printf("Unknown protocol device\n");
1048 	if (bootverbose && path->device->serial_num_len > 0) {
1049 		/* Don't wrap the screen  - print only the first 60 chars */
1050 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1051 		       periph->unit_number, path->device->serial_num);
1052 	}
1053 	/* Announce transport details. */
1054 	(*(path->bus->xport->announce))(periph);
1055 	/* Announce command queueing. */
1056 	if (path->device->inq_flags & SID_CmdQue
1057 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1058 		printf("%s%d: Command Queueing enabled\n",
1059 		       periph->periph_name, periph->unit_number);
1060 	}
1061 	/* Announce caller's details if they've passed in. */
1062 	if (announce_string != NULL)
1063 		printf("%s%d: %s\n", periph->periph_name,
1064 		       periph->unit_number, announce_string);
1065 }
1066 
1067 void
1068 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1069 {
1070 	if (quirks != 0) {
1071 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1072 		    periph->unit_number, quirks, bit_string);
1073 	}
1074 }
1075 
1076 int
1077 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1078 {
1079 	int ret = -1, l;
1080 	struct ccb_dev_advinfo cdai;
1081 	struct scsi_vpd_id_descriptor *idd;
1082 
1083 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1084 
1085 	memset(&cdai, 0, sizeof(cdai));
1086 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1087 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1088 	cdai.bufsiz = len;
1089 
1090 	if (!strcmp(attr, "GEOM::ident"))
1091 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1092 	else if (!strcmp(attr, "GEOM::physpath"))
1093 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1094 	else if (!strcmp(attr, "GEOM::lunid")) {
1095 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1096 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1097 	} else
1098 		goto out;
1099 
1100 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1101 	if (cdai.buf == NULL) {
1102 		ret = ENOMEM;
1103 		goto out;
1104 	}
1105 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1106 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1107 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1108 	if (cdai.provsiz == 0)
1109 		goto out;
1110 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1111 		idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1112 		    cdai.provsiz, scsi_devid_is_lun_naa);
1113 		if (idd == NULL)
1114 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1115 			    cdai.provsiz, scsi_devid_is_lun_eui64);
1116 		if (idd == NULL)
1117 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1118 			    cdai.provsiz, scsi_devid_is_lun_t10);
1119 		if (idd == NULL)
1120 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1121 			    cdai.provsiz, scsi_devid_is_lun_name);
1122 		if (idd == NULL)
1123 			goto out;
1124 		ret = 0;
1125 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII ||
1126 		    (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1127 			l = strnlen(idd->identifier, idd->length);
1128 			if (l < len) {
1129 				bcopy(idd->identifier, buf, l);
1130 				buf[l] = 0;
1131 			} else
1132 				ret = EFAULT;
1133 		} else {
1134 			if (idd->length * 2 < len) {
1135 				for (l = 0; l < idd->length; l++)
1136 					sprintf(buf + l * 2, "%02x",
1137 					    idd->identifier[l]);
1138 			} else
1139 				ret = EFAULT;
1140 		}
1141 	} else {
1142 		ret = 0;
1143 		if (strlcpy(buf, cdai.buf, len) >= len)
1144 			ret = EFAULT;
1145 	}
1146 
1147 out:
1148 	if (cdai.buf != NULL)
1149 		free(cdai.buf, M_CAMXPT);
1150 	return ret;
1151 }
1152 
1153 static dev_match_ret
1154 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1155 	    struct cam_eb *bus)
1156 {
1157 	dev_match_ret retval;
1158 	int i;
1159 
1160 	retval = DM_RET_NONE;
1161 
1162 	/*
1163 	 * If we aren't given something to match against, that's an error.
1164 	 */
1165 	if (bus == NULL)
1166 		return(DM_RET_ERROR);
1167 
1168 	/*
1169 	 * If there are no match entries, then this bus matches no
1170 	 * matter what.
1171 	 */
1172 	if ((patterns == NULL) || (num_patterns == 0))
1173 		return(DM_RET_DESCEND | DM_RET_COPY);
1174 
1175 	for (i = 0; i < num_patterns; i++) {
1176 		struct bus_match_pattern *cur_pattern;
1177 
1178 		/*
1179 		 * If the pattern in question isn't for a bus node, we
1180 		 * aren't interested.  However, we do indicate to the
1181 		 * calling routine that we should continue descending the
1182 		 * tree, since the user wants to match against lower-level
1183 		 * EDT elements.
1184 		 */
1185 		if (patterns[i].type != DEV_MATCH_BUS) {
1186 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1187 				retval |= DM_RET_DESCEND;
1188 			continue;
1189 		}
1190 
1191 		cur_pattern = &patterns[i].pattern.bus_pattern;
1192 
1193 		/*
1194 		 * If they want to match any bus node, we give them any
1195 		 * device node.
1196 		 */
1197 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1198 			/* set the copy flag */
1199 			retval |= DM_RET_COPY;
1200 
1201 			/*
1202 			 * If we've already decided on an action, go ahead
1203 			 * and return.
1204 			 */
1205 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1206 				return(retval);
1207 		}
1208 
1209 		/*
1210 		 * Not sure why someone would do this...
1211 		 */
1212 		if (cur_pattern->flags == BUS_MATCH_NONE)
1213 			continue;
1214 
1215 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1216 		 && (cur_pattern->path_id != bus->path_id))
1217 			continue;
1218 
1219 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1220 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1221 			continue;
1222 
1223 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1224 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1225 			continue;
1226 
1227 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1228 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1229 			     DEV_IDLEN) != 0))
1230 			continue;
1231 
1232 		/*
1233 		 * If we get to this point, the user definitely wants
1234 		 * information on this bus.  So tell the caller to copy the
1235 		 * data out.
1236 		 */
1237 		retval |= DM_RET_COPY;
1238 
1239 		/*
1240 		 * If the return action has been set to descend, then we
1241 		 * know that we've already seen a non-bus matching
1242 		 * expression, therefore we need to further descend the tree.
1243 		 * This won't change by continuing around the loop, so we
1244 		 * go ahead and return.  If we haven't seen a non-bus
1245 		 * matching expression, we keep going around the loop until
1246 		 * we exhaust the matching expressions.  We'll set the stop
1247 		 * flag once we fall out of the loop.
1248 		 */
1249 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1250 			return(retval);
1251 	}
1252 
1253 	/*
1254 	 * If the return action hasn't been set to descend yet, that means
1255 	 * we haven't seen anything other than bus matching patterns.  So
1256 	 * tell the caller to stop descending the tree -- the user doesn't
1257 	 * want to match against lower level tree elements.
1258 	 */
1259 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1260 		retval |= DM_RET_STOP;
1261 
1262 	return(retval);
1263 }
1264 
1265 static dev_match_ret
1266 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1267 	       struct cam_ed *device)
1268 {
1269 	dev_match_ret retval;
1270 	int i;
1271 
1272 	retval = DM_RET_NONE;
1273 
1274 	/*
1275 	 * If we aren't given something to match against, that's an error.
1276 	 */
1277 	if (device == NULL)
1278 		return(DM_RET_ERROR);
1279 
1280 	/*
1281 	 * If there are no match entries, then this device matches no
1282 	 * matter what.
1283 	 */
1284 	if ((patterns == NULL) || (num_patterns == 0))
1285 		return(DM_RET_DESCEND | DM_RET_COPY);
1286 
1287 	for (i = 0; i < num_patterns; i++) {
1288 		struct device_match_pattern *cur_pattern;
1289 		struct scsi_vpd_device_id *device_id_page;
1290 
1291 		/*
1292 		 * If the pattern in question isn't for a device node, we
1293 		 * aren't interested.
1294 		 */
1295 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1296 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1297 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1298 				retval |= DM_RET_DESCEND;
1299 			continue;
1300 		}
1301 
1302 		cur_pattern = &patterns[i].pattern.device_pattern;
1303 
1304 		/* Error out if mutually exclusive options are specified. */
1305 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1306 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1307 			return(DM_RET_ERROR);
1308 
1309 		/*
1310 		 * If they want to match any device node, we give them any
1311 		 * device node.
1312 		 */
1313 		if (cur_pattern->flags == DEV_MATCH_ANY)
1314 			goto copy_dev_node;
1315 
1316 		/*
1317 		 * Not sure why someone would do this...
1318 		 */
1319 		if (cur_pattern->flags == DEV_MATCH_NONE)
1320 			continue;
1321 
1322 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1323 		 && (cur_pattern->path_id != device->target->bus->path_id))
1324 			continue;
1325 
1326 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1327 		 && (cur_pattern->target_id != device->target->target_id))
1328 			continue;
1329 
1330 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1331 		 && (cur_pattern->target_lun != device->lun_id))
1332 			continue;
1333 
1334 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1335 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1336 				    (caddr_t)&cur_pattern->data.inq_pat,
1337 				    1, sizeof(cur_pattern->data.inq_pat),
1338 				    scsi_static_inquiry_match) == NULL))
1339 			continue;
1340 
1341 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1342 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1343 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1344 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1345 				      device->device_id_len
1346 				    - SVPD_DEVICE_ID_HDR_LEN,
1347 				      cur_pattern->data.devid_pat.id,
1348 				      cur_pattern->data.devid_pat.id_len) != 0))
1349 			continue;
1350 
1351 copy_dev_node:
1352 		/*
1353 		 * If we get to this point, the user definitely wants
1354 		 * information on this device.  So tell the caller to copy
1355 		 * the data out.
1356 		 */
1357 		retval |= DM_RET_COPY;
1358 
1359 		/*
1360 		 * If the return action has been set to descend, then we
1361 		 * know that we've already seen a peripheral matching
1362 		 * expression, therefore we need to further descend the tree.
1363 		 * This won't change by continuing around the loop, so we
1364 		 * go ahead and return.  If we haven't seen a peripheral
1365 		 * matching expression, we keep going around the loop until
1366 		 * we exhaust the matching expressions.  We'll set the stop
1367 		 * flag once we fall out of the loop.
1368 		 */
1369 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1370 			return(retval);
1371 	}
1372 
1373 	/*
1374 	 * If the return action hasn't been set to descend yet, that means
1375 	 * we haven't seen any peripheral matching patterns.  So tell the
1376 	 * caller to stop descending the tree -- the user doesn't want to
1377 	 * match against lower level tree elements.
1378 	 */
1379 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1380 		retval |= DM_RET_STOP;
1381 
1382 	return(retval);
1383 }
1384 
1385 /*
1386  * Match a single peripheral against any number of match patterns.
1387  */
1388 static dev_match_ret
1389 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1390 	       struct cam_periph *periph)
1391 {
1392 	dev_match_ret retval;
1393 	int i;
1394 
1395 	/*
1396 	 * If we aren't given something to match against, that's an error.
1397 	 */
1398 	if (periph == NULL)
1399 		return(DM_RET_ERROR);
1400 
1401 	/*
1402 	 * If there are no match entries, then this peripheral matches no
1403 	 * matter what.
1404 	 */
1405 	if ((patterns == NULL) || (num_patterns == 0))
1406 		return(DM_RET_STOP | DM_RET_COPY);
1407 
1408 	/*
1409 	 * There aren't any nodes below a peripheral node, so there's no
1410 	 * reason to descend the tree any further.
1411 	 */
1412 	retval = DM_RET_STOP;
1413 
1414 	for (i = 0; i < num_patterns; i++) {
1415 		struct periph_match_pattern *cur_pattern;
1416 
1417 		/*
1418 		 * If the pattern in question isn't for a peripheral, we
1419 		 * aren't interested.
1420 		 */
1421 		if (patterns[i].type != DEV_MATCH_PERIPH)
1422 			continue;
1423 
1424 		cur_pattern = &patterns[i].pattern.periph_pattern;
1425 
1426 		/*
1427 		 * If they want to match on anything, then we will do so.
1428 		 */
1429 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1430 			/* set the copy flag */
1431 			retval |= DM_RET_COPY;
1432 
1433 			/*
1434 			 * We've already set the return action to stop,
1435 			 * since there are no nodes below peripherals in
1436 			 * the tree.
1437 			 */
1438 			return(retval);
1439 		}
1440 
1441 		/*
1442 		 * Not sure why someone would do this...
1443 		 */
1444 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1445 			continue;
1446 
1447 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1448 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1449 			continue;
1450 
1451 		/*
1452 		 * For the target and lun id's, we have to make sure the
1453 		 * target and lun pointers aren't NULL.  The xpt peripheral
1454 		 * has a wildcard target and device.
1455 		 */
1456 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1457 		 && ((periph->path->target == NULL)
1458 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1459 			continue;
1460 
1461 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1462 		 && ((periph->path->device == NULL)
1463 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1464 			continue;
1465 
1466 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1467 		 && (cur_pattern->unit_number != periph->unit_number))
1468 			continue;
1469 
1470 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1471 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1472 			     DEV_IDLEN) != 0))
1473 			continue;
1474 
1475 		/*
1476 		 * If we get to this point, the user definitely wants
1477 		 * information on this peripheral.  So tell the caller to
1478 		 * copy the data out.
1479 		 */
1480 		retval |= DM_RET_COPY;
1481 
1482 		/*
1483 		 * The return action has already been set to stop, since
1484 		 * peripherals don't have any nodes below them in the EDT.
1485 		 */
1486 		return(retval);
1487 	}
1488 
1489 	/*
1490 	 * If we get to this point, the peripheral that was passed in
1491 	 * doesn't match any of the patterns.
1492 	 */
1493 	return(retval);
1494 }
1495 
1496 static int
1497 xptedtbusfunc(struct cam_eb *bus, void *arg)
1498 {
1499 	struct ccb_dev_match *cdm;
1500 	dev_match_ret retval;
1501 
1502 	cdm = (struct ccb_dev_match *)arg;
1503 
1504 	/*
1505 	 * If our position is for something deeper in the tree, that means
1506 	 * that we've already seen this node.  So, we keep going down.
1507 	 */
1508 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1509 	 && (cdm->pos.cookie.bus == bus)
1510 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1511 	 && (cdm->pos.cookie.target != NULL))
1512 		retval = DM_RET_DESCEND;
1513 	else
1514 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1515 
1516 	/*
1517 	 * If we got an error, bail out of the search.
1518 	 */
1519 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1520 		cdm->status = CAM_DEV_MATCH_ERROR;
1521 		return(0);
1522 	}
1523 
1524 	/*
1525 	 * If the copy flag is set, copy this bus out.
1526 	 */
1527 	if (retval & DM_RET_COPY) {
1528 		int spaceleft, j;
1529 
1530 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1531 			sizeof(struct dev_match_result));
1532 
1533 		/*
1534 		 * If we don't have enough space to put in another
1535 		 * match result, save our position and tell the
1536 		 * user there are more devices to check.
1537 		 */
1538 		if (spaceleft < sizeof(struct dev_match_result)) {
1539 			bzero(&cdm->pos, sizeof(cdm->pos));
1540 			cdm->pos.position_type =
1541 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1542 
1543 			cdm->pos.cookie.bus = bus;
1544 			cdm->pos.generations[CAM_BUS_GENERATION]=
1545 				xsoftc.bus_generation;
1546 			cdm->status = CAM_DEV_MATCH_MORE;
1547 			return(0);
1548 		}
1549 		j = cdm->num_matches;
1550 		cdm->num_matches++;
1551 		cdm->matches[j].type = DEV_MATCH_BUS;
1552 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1553 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1554 		cdm->matches[j].result.bus_result.unit_number =
1555 			bus->sim->unit_number;
1556 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1557 			bus->sim->sim_name, DEV_IDLEN);
1558 	}
1559 
1560 	/*
1561 	 * If the user is only interested in busses, there's no
1562 	 * reason to descend to the next level in the tree.
1563 	 */
1564 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1565 		return(1);
1566 
1567 	/*
1568 	 * If there is a target generation recorded, check it to
1569 	 * make sure the target list hasn't changed.
1570 	 */
1571 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1572 	 && (bus == cdm->pos.cookie.bus)
1573 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1574 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1575 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1576 	     bus->generation)) {
1577 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1578 		return(0);
1579 	}
1580 
1581 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1582 	 && (cdm->pos.cookie.bus == bus)
1583 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1584 	 && (cdm->pos.cookie.target != NULL))
1585 		return(xpttargettraverse(bus,
1586 					(struct cam_et *)cdm->pos.cookie.target,
1587 					 xptedttargetfunc, arg));
1588 	else
1589 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1590 }
1591 
1592 static int
1593 xptedttargetfunc(struct cam_et *target, void *arg)
1594 {
1595 	struct ccb_dev_match *cdm;
1596 
1597 	cdm = (struct ccb_dev_match *)arg;
1598 
1599 	/*
1600 	 * If there is a device list generation recorded, check it to
1601 	 * make sure the device list hasn't changed.
1602 	 */
1603 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1604 	 && (cdm->pos.cookie.bus == target->bus)
1605 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1606 	 && (cdm->pos.cookie.target == target)
1607 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1608 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1609 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1610 	     target->generation)) {
1611 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1612 		return(0);
1613 	}
1614 
1615 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1616 	 && (cdm->pos.cookie.bus == target->bus)
1617 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1618 	 && (cdm->pos.cookie.target == target)
1619 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1620 	 && (cdm->pos.cookie.device != NULL))
1621 		return(xptdevicetraverse(target,
1622 					(struct cam_ed *)cdm->pos.cookie.device,
1623 					 xptedtdevicefunc, arg));
1624 	else
1625 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1626 }
1627 
1628 static int
1629 xptedtdevicefunc(struct cam_ed *device, void *arg)
1630 {
1631 
1632 	struct ccb_dev_match *cdm;
1633 	dev_match_ret retval;
1634 
1635 	cdm = (struct ccb_dev_match *)arg;
1636 
1637 	/*
1638 	 * If our position is for something deeper in the tree, that means
1639 	 * that we've already seen this node.  So, we keep going down.
1640 	 */
1641 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1642 	 && (cdm->pos.cookie.device == device)
1643 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1644 	 && (cdm->pos.cookie.periph != NULL))
1645 		retval = DM_RET_DESCEND;
1646 	else
1647 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1648 					device);
1649 
1650 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1651 		cdm->status = CAM_DEV_MATCH_ERROR;
1652 		return(0);
1653 	}
1654 
1655 	/*
1656 	 * If the copy flag is set, copy this device out.
1657 	 */
1658 	if (retval & DM_RET_COPY) {
1659 		int spaceleft, j;
1660 
1661 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1662 			sizeof(struct dev_match_result));
1663 
1664 		/*
1665 		 * If we don't have enough space to put in another
1666 		 * match result, save our position and tell the
1667 		 * user there are more devices to check.
1668 		 */
1669 		if (spaceleft < sizeof(struct dev_match_result)) {
1670 			bzero(&cdm->pos, sizeof(cdm->pos));
1671 			cdm->pos.position_type =
1672 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1673 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1674 
1675 			cdm->pos.cookie.bus = device->target->bus;
1676 			cdm->pos.generations[CAM_BUS_GENERATION]=
1677 				xsoftc.bus_generation;
1678 			cdm->pos.cookie.target = device->target;
1679 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1680 				device->target->bus->generation;
1681 			cdm->pos.cookie.device = device;
1682 			cdm->pos.generations[CAM_DEV_GENERATION] =
1683 				device->target->generation;
1684 			cdm->status = CAM_DEV_MATCH_MORE;
1685 			return(0);
1686 		}
1687 		j = cdm->num_matches;
1688 		cdm->num_matches++;
1689 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1690 		cdm->matches[j].result.device_result.path_id =
1691 			device->target->bus->path_id;
1692 		cdm->matches[j].result.device_result.target_id =
1693 			device->target->target_id;
1694 		cdm->matches[j].result.device_result.target_lun =
1695 			device->lun_id;
1696 		cdm->matches[j].result.device_result.protocol =
1697 			device->protocol;
1698 		bcopy(&device->inq_data,
1699 		      &cdm->matches[j].result.device_result.inq_data,
1700 		      sizeof(struct scsi_inquiry_data));
1701 		bcopy(&device->ident_data,
1702 		      &cdm->matches[j].result.device_result.ident_data,
1703 		      sizeof(struct ata_params));
1704 
1705 		/* Let the user know whether this device is unconfigured */
1706 		if (device->flags & CAM_DEV_UNCONFIGURED)
1707 			cdm->matches[j].result.device_result.flags =
1708 				DEV_RESULT_UNCONFIGURED;
1709 		else
1710 			cdm->matches[j].result.device_result.flags =
1711 				DEV_RESULT_NOFLAG;
1712 	}
1713 
1714 	/*
1715 	 * If the user isn't interested in peripherals, don't descend
1716 	 * the tree any further.
1717 	 */
1718 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1719 		return(1);
1720 
1721 	/*
1722 	 * If there is a peripheral list generation recorded, make sure
1723 	 * it hasn't changed.
1724 	 */
1725 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1726 	 && (device->target->bus == cdm->pos.cookie.bus)
1727 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1728 	 && (device->target == cdm->pos.cookie.target)
1729 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1730 	 && (device == cdm->pos.cookie.device)
1731 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1732 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1733 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1734 	     device->generation)){
1735 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1736 		return(0);
1737 	}
1738 
1739 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1740 	 && (cdm->pos.cookie.bus == device->target->bus)
1741 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1742 	 && (cdm->pos.cookie.target == device->target)
1743 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1744 	 && (cdm->pos.cookie.device == device)
1745 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1746 	 && (cdm->pos.cookie.periph != NULL))
1747 		return(xptperiphtraverse(device,
1748 				(struct cam_periph *)cdm->pos.cookie.periph,
1749 				xptedtperiphfunc, arg));
1750 	else
1751 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1752 }
1753 
1754 static int
1755 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1756 {
1757 	struct ccb_dev_match *cdm;
1758 	dev_match_ret retval;
1759 
1760 	cdm = (struct ccb_dev_match *)arg;
1761 
1762 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1763 
1764 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1765 		cdm->status = CAM_DEV_MATCH_ERROR;
1766 		return(0);
1767 	}
1768 
1769 	/*
1770 	 * If the copy flag is set, copy this peripheral out.
1771 	 */
1772 	if (retval & DM_RET_COPY) {
1773 		int spaceleft, j;
1774 
1775 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1776 			sizeof(struct dev_match_result));
1777 
1778 		/*
1779 		 * If we don't have enough space to put in another
1780 		 * match result, save our position and tell the
1781 		 * user there are more devices to check.
1782 		 */
1783 		if (spaceleft < sizeof(struct dev_match_result)) {
1784 			bzero(&cdm->pos, sizeof(cdm->pos));
1785 			cdm->pos.position_type =
1786 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1787 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1788 				CAM_DEV_POS_PERIPH;
1789 
1790 			cdm->pos.cookie.bus = periph->path->bus;
1791 			cdm->pos.generations[CAM_BUS_GENERATION]=
1792 				xsoftc.bus_generation;
1793 			cdm->pos.cookie.target = periph->path->target;
1794 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1795 				periph->path->bus->generation;
1796 			cdm->pos.cookie.device = periph->path->device;
1797 			cdm->pos.generations[CAM_DEV_GENERATION] =
1798 				periph->path->target->generation;
1799 			cdm->pos.cookie.periph = periph;
1800 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1801 				periph->path->device->generation;
1802 			cdm->status = CAM_DEV_MATCH_MORE;
1803 			return(0);
1804 		}
1805 
1806 		j = cdm->num_matches;
1807 		cdm->num_matches++;
1808 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1809 		cdm->matches[j].result.periph_result.path_id =
1810 			periph->path->bus->path_id;
1811 		cdm->matches[j].result.periph_result.target_id =
1812 			periph->path->target->target_id;
1813 		cdm->matches[j].result.periph_result.target_lun =
1814 			periph->path->device->lun_id;
1815 		cdm->matches[j].result.periph_result.unit_number =
1816 			periph->unit_number;
1817 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1818 			periph->periph_name, DEV_IDLEN);
1819 	}
1820 
1821 	return(1);
1822 }
1823 
1824 static int
1825 xptedtmatch(struct ccb_dev_match *cdm)
1826 {
1827 	int ret;
1828 
1829 	cdm->num_matches = 0;
1830 
1831 	/*
1832 	 * Check the bus list generation.  If it has changed, the user
1833 	 * needs to reset everything and start over.
1834 	 */
1835 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1836 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1837 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1838 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1839 		return(0);
1840 	}
1841 
1842 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1843 	 && (cdm->pos.cookie.bus != NULL))
1844 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1845 				     xptedtbusfunc, cdm);
1846 	else
1847 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1848 
1849 	/*
1850 	 * If we get back 0, that means that we had to stop before fully
1851 	 * traversing the EDT.  It also means that one of the subroutines
1852 	 * has set the status field to the proper value.  If we get back 1,
1853 	 * we've fully traversed the EDT and copied out any matching entries.
1854 	 */
1855 	if (ret == 1)
1856 		cdm->status = CAM_DEV_MATCH_LAST;
1857 
1858 	return(ret);
1859 }
1860 
1861 static int
1862 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1863 {
1864 	struct ccb_dev_match *cdm;
1865 
1866 	cdm = (struct ccb_dev_match *)arg;
1867 
1868 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1869 	 && (cdm->pos.cookie.pdrv == pdrv)
1870 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1871 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1872 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1873 	     (*pdrv)->generation)) {
1874 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1875 		return(0);
1876 	}
1877 
1878 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1879 	 && (cdm->pos.cookie.pdrv == pdrv)
1880 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1881 	 && (cdm->pos.cookie.periph != NULL))
1882 		return(xptpdperiphtraverse(pdrv,
1883 				(struct cam_periph *)cdm->pos.cookie.periph,
1884 				xptplistperiphfunc, arg));
1885 	else
1886 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1887 }
1888 
1889 static int
1890 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1891 {
1892 	struct ccb_dev_match *cdm;
1893 	dev_match_ret retval;
1894 
1895 	cdm = (struct ccb_dev_match *)arg;
1896 
1897 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1898 
1899 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1900 		cdm->status = CAM_DEV_MATCH_ERROR;
1901 		return(0);
1902 	}
1903 
1904 	/*
1905 	 * If the copy flag is set, copy this peripheral out.
1906 	 */
1907 	if (retval & DM_RET_COPY) {
1908 		int spaceleft, j;
1909 
1910 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1911 			sizeof(struct dev_match_result));
1912 
1913 		/*
1914 		 * If we don't have enough space to put in another
1915 		 * match result, save our position and tell the
1916 		 * user there are more devices to check.
1917 		 */
1918 		if (spaceleft < sizeof(struct dev_match_result)) {
1919 			struct periph_driver **pdrv;
1920 
1921 			pdrv = NULL;
1922 			bzero(&cdm->pos, sizeof(cdm->pos));
1923 			cdm->pos.position_type =
1924 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1925 				CAM_DEV_POS_PERIPH;
1926 
1927 			/*
1928 			 * This may look a bit non-sensical, but it is
1929 			 * actually quite logical.  There are very few
1930 			 * peripheral drivers, and bloating every peripheral
1931 			 * structure with a pointer back to its parent
1932 			 * peripheral driver linker set entry would cost
1933 			 * more in the long run than doing this quick lookup.
1934 			 */
1935 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1936 				if (strcmp((*pdrv)->driver_name,
1937 				    periph->periph_name) == 0)
1938 					break;
1939 			}
1940 
1941 			if (*pdrv == NULL) {
1942 				cdm->status = CAM_DEV_MATCH_ERROR;
1943 				return(0);
1944 			}
1945 
1946 			cdm->pos.cookie.pdrv = pdrv;
1947 			/*
1948 			 * The periph generation slot does double duty, as
1949 			 * does the periph pointer slot.  They are used for
1950 			 * both edt and pdrv lookups and positioning.
1951 			 */
1952 			cdm->pos.cookie.periph = periph;
1953 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1954 				(*pdrv)->generation;
1955 			cdm->status = CAM_DEV_MATCH_MORE;
1956 			return(0);
1957 		}
1958 
1959 		j = cdm->num_matches;
1960 		cdm->num_matches++;
1961 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1962 		cdm->matches[j].result.periph_result.path_id =
1963 			periph->path->bus->path_id;
1964 
1965 		/*
1966 		 * The transport layer peripheral doesn't have a target or
1967 		 * lun.
1968 		 */
1969 		if (periph->path->target)
1970 			cdm->matches[j].result.periph_result.target_id =
1971 				periph->path->target->target_id;
1972 		else
1973 			cdm->matches[j].result.periph_result.target_id = -1;
1974 
1975 		if (periph->path->device)
1976 			cdm->matches[j].result.periph_result.target_lun =
1977 				periph->path->device->lun_id;
1978 		else
1979 			cdm->matches[j].result.periph_result.target_lun = -1;
1980 
1981 		cdm->matches[j].result.periph_result.unit_number =
1982 			periph->unit_number;
1983 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1984 			periph->periph_name, DEV_IDLEN);
1985 	}
1986 
1987 	return(1);
1988 }
1989 
1990 static int
1991 xptperiphlistmatch(struct ccb_dev_match *cdm)
1992 {
1993 	int ret;
1994 
1995 	cdm->num_matches = 0;
1996 
1997 	/*
1998 	 * At this point in the edt traversal function, we check the bus
1999 	 * list generation to make sure that no busses have been added or
2000 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2001 	 * For the peripheral driver list traversal function, however, we
2002 	 * don't have to worry about new peripheral driver types coming or
2003 	 * going; they're in a linker set, and therefore can't change
2004 	 * without a recompile.
2005 	 */
2006 
2007 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2008 	 && (cdm->pos.cookie.pdrv != NULL))
2009 		ret = xptpdrvtraverse(
2010 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2011 				xptplistpdrvfunc, cdm);
2012 	else
2013 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2014 
2015 	/*
2016 	 * If we get back 0, that means that we had to stop before fully
2017 	 * traversing the peripheral driver tree.  It also means that one of
2018 	 * the subroutines has set the status field to the proper value.  If
2019 	 * we get back 1, we've fully traversed the EDT and copied out any
2020 	 * matching entries.
2021 	 */
2022 	if (ret == 1)
2023 		cdm->status = CAM_DEV_MATCH_LAST;
2024 
2025 	return(ret);
2026 }
2027 
2028 static int
2029 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2030 {
2031 	struct cam_eb *bus, *next_bus;
2032 	int retval;
2033 
2034 	retval = 1;
2035 
2036 	xpt_lock_buses();
2037 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2038 	     bus != NULL;
2039 	     bus = next_bus) {
2040 
2041 		bus->refcount++;
2042 
2043 		/*
2044 		 * XXX The locking here is obviously very complex.  We
2045 		 * should work to simplify it.
2046 		 */
2047 		xpt_unlock_buses();
2048 		CAM_SIM_LOCK(bus->sim);
2049 		retval = tr_func(bus, arg);
2050 		CAM_SIM_UNLOCK(bus->sim);
2051 
2052 		xpt_lock_buses();
2053 		next_bus = TAILQ_NEXT(bus, links);
2054 		xpt_unlock_buses();
2055 
2056 		xpt_release_bus(bus);
2057 
2058 		if (retval == 0)
2059 			return(retval);
2060 		xpt_lock_buses();
2061 	}
2062 	xpt_unlock_buses();
2063 
2064 	return(retval);
2065 }
2066 
2067 static int
2068 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2069 		  xpt_targetfunc_t *tr_func, void *arg)
2070 {
2071 	struct cam_et *target, *next_target;
2072 	int retval;
2073 
2074 	mtx_assert(bus->sim->mtx, MA_OWNED);
2075 	retval = 1;
2076 	for (target = (start_target ? start_target :
2077 		       TAILQ_FIRST(&bus->et_entries));
2078 	     target != NULL; target = next_target) {
2079 
2080 		target->refcount++;
2081 
2082 		retval = tr_func(target, arg);
2083 
2084 		next_target = TAILQ_NEXT(target, links);
2085 
2086 		xpt_release_target(target);
2087 
2088 		if (retval == 0)
2089 			return(retval);
2090 	}
2091 
2092 	return(retval);
2093 }
2094 
2095 static int
2096 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2097 		  xpt_devicefunc_t *tr_func, void *arg)
2098 {
2099 	struct cam_ed *device, *next_device;
2100 	int retval;
2101 
2102 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
2103 	retval = 1;
2104 	for (device = (start_device ? start_device :
2105 		       TAILQ_FIRST(&target->ed_entries));
2106 	     device != NULL;
2107 	     device = next_device) {
2108 
2109 		/*
2110 		 * Hold a reference so the current device does not go away
2111 		 * on us.
2112 		 */
2113 		device->refcount++;
2114 
2115 		retval = tr_func(device, arg);
2116 
2117 		/*
2118 		 * Grab our next pointer before we release the current
2119 		 * device.
2120 		 */
2121 		next_device = TAILQ_NEXT(device, links);
2122 
2123 		xpt_release_device(device);
2124 
2125 		if (retval == 0)
2126 			return(retval);
2127 	}
2128 
2129 	return(retval);
2130 }
2131 
2132 static int
2133 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2134 		  xpt_periphfunc_t *tr_func, void *arg)
2135 {
2136 	struct cam_periph *periph, *next_periph;
2137 	int retval;
2138 
2139 	retval = 1;
2140 
2141 	mtx_assert(device->sim->mtx, MA_OWNED);
2142 	xpt_lock_buses();
2143 	for (periph = (start_periph ? start_periph :
2144 		       SLIST_FIRST(&device->periphs));
2145 	     periph != NULL;
2146 	     periph = next_periph) {
2147 
2148 
2149 		/*
2150 		 * In this case, we want to show peripherals that have been
2151 		 * invalidated, but not peripherals that are scheduled to
2152 		 * be freed.  So instead of calling cam_periph_acquire(),
2153 		 * which will fail if the periph has been invalidated, we
2154 		 * just check for the free flag here.  If it is in the
2155 		 * process of being freed, we skip to the next periph.
2156 		 */
2157 		if (periph->flags & CAM_PERIPH_FREE) {
2158 			next_periph = SLIST_NEXT(periph, periph_links);
2159 			continue;
2160 		}
2161 
2162 		/*
2163 		 * Acquire a reference to this periph while we call the
2164 		 * traversal function, so it can't go away.
2165 		 */
2166 		periph->refcount++;
2167 
2168 		retval = tr_func(periph, arg);
2169 
2170 		/*
2171 		 * Grab the next peripheral before we release this one, so
2172 		 * our next pointer is still valid.
2173 		 */
2174 		next_periph = SLIST_NEXT(periph, periph_links);
2175 
2176 		cam_periph_release_locked_buses(periph);
2177 
2178 		if (retval == 0)
2179 			goto bailout_done;
2180 	}
2181 
2182 bailout_done:
2183 
2184 	xpt_unlock_buses();
2185 
2186 	return(retval);
2187 }
2188 
2189 static int
2190 xptpdrvtraverse(struct periph_driver **start_pdrv,
2191 		xpt_pdrvfunc_t *tr_func, void *arg)
2192 {
2193 	struct periph_driver **pdrv;
2194 	int retval;
2195 
2196 	retval = 1;
2197 
2198 	/*
2199 	 * We don't traverse the peripheral driver list like we do the
2200 	 * other lists, because it is a linker set, and therefore cannot be
2201 	 * changed during runtime.  If the peripheral driver list is ever
2202 	 * re-done to be something other than a linker set (i.e. it can
2203 	 * change while the system is running), the list traversal should
2204 	 * be modified to work like the other traversal functions.
2205 	 */
2206 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2207 	     *pdrv != NULL; pdrv++) {
2208 		retval = tr_func(pdrv, arg);
2209 
2210 		if (retval == 0)
2211 			return(retval);
2212 	}
2213 
2214 	return(retval);
2215 }
2216 
2217 static int
2218 xptpdperiphtraverse(struct periph_driver **pdrv,
2219 		    struct cam_periph *start_periph,
2220 		    xpt_periphfunc_t *tr_func, void *arg)
2221 {
2222 	struct cam_periph *periph, *next_periph;
2223 	struct cam_sim *sim;
2224 	int retval;
2225 
2226 	retval = 1;
2227 
2228 	xpt_lock_buses();
2229 	for (periph = (start_periph ? start_periph :
2230 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2231 	     periph = next_periph) {
2232 
2233 
2234 		/*
2235 		 * In this case, we want to show peripherals that have been
2236 		 * invalidated, but not peripherals that are scheduled to
2237 		 * be freed.  So instead of calling cam_periph_acquire(),
2238 		 * which will fail if the periph has been invalidated, we
2239 		 * just check for the free flag here.  If it is free, we
2240 		 * skip to the next periph.
2241 		 */
2242 		if (periph->flags & CAM_PERIPH_FREE) {
2243 			next_periph = TAILQ_NEXT(periph, unit_links);
2244 			continue;
2245 		}
2246 
2247 		/*
2248 		 * Acquire a reference to this periph while we call the
2249 		 * traversal function, so it can't go away.
2250 		 */
2251 		periph->refcount++;
2252 		sim = periph->sim;
2253 		xpt_unlock_buses();
2254 		CAM_SIM_LOCK(sim);
2255 		xpt_lock_buses();
2256 		retval = tr_func(periph, arg);
2257 
2258 		/*
2259 		 * Grab the next peripheral before we release this one, so
2260 		 * our next pointer is still valid.
2261 		 */
2262 		next_periph = TAILQ_NEXT(periph, unit_links);
2263 
2264 		cam_periph_release_locked_buses(periph);
2265 		CAM_SIM_UNLOCK(sim);
2266 
2267 		if (retval == 0)
2268 			goto bailout_done;
2269 	}
2270 bailout_done:
2271 
2272 	xpt_unlock_buses();
2273 
2274 	return(retval);
2275 }
2276 
2277 static int
2278 xptdefbusfunc(struct cam_eb *bus, void *arg)
2279 {
2280 	struct xpt_traverse_config *tr_config;
2281 
2282 	tr_config = (struct xpt_traverse_config *)arg;
2283 
2284 	if (tr_config->depth == XPT_DEPTH_BUS) {
2285 		xpt_busfunc_t *tr_func;
2286 
2287 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2288 
2289 		return(tr_func(bus, tr_config->tr_arg));
2290 	} else
2291 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2292 }
2293 
2294 static int
2295 xptdeftargetfunc(struct cam_et *target, void *arg)
2296 {
2297 	struct xpt_traverse_config *tr_config;
2298 
2299 	tr_config = (struct xpt_traverse_config *)arg;
2300 
2301 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2302 		xpt_targetfunc_t *tr_func;
2303 
2304 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2305 
2306 		return(tr_func(target, tr_config->tr_arg));
2307 	} else
2308 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2309 }
2310 
2311 static int
2312 xptdefdevicefunc(struct cam_ed *device, void *arg)
2313 {
2314 	struct xpt_traverse_config *tr_config;
2315 
2316 	tr_config = (struct xpt_traverse_config *)arg;
2317 
2318 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2319 		xpt_devicefunc_t *tr_func;
2320 
2321 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2322 
2323 		return(tr_func(device, tr_config->tr_arg));
2324 	} else
2325 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2326 }
2327 
2328 static int
2329 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2330 {
2331 	struct xpt_traverse_config *tr_config;
2332 	xpt_periphfunc_t *tr_func;
2333 
2334 	tr_config = (struct xpt_traverse_config *)arg;
2335 
2336 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2337 
2338 	/*
2339 	 * Unlike the other default functions, we don't check for depth
2340 	 * here.  The peripheral driver level is the last level in the EDT,
2341 	 * so if we're here, we should execute the function in question.
2342 	 */
2343 	return(tr_func(periph, tr_config->tr_arg));
2344 }
2345 
2346 /*
2347  * Execute the given function for every bus in the EDT.
2348  */
2349 static int
2350 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2351 {
2352 	struct xpt_traverse_config tr_config;
2353 
2354 	tr_config.depth = XPT_DEPTH_BUS;
2355 	tr_config.tr_func = tr_func;
2356 	tr_config.tr_arg = arg;
2357 
2358 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2359 }
2360 
2361 /*
2362  * Execute the given function for every device in the EDT.
2363  */
2364 static int
2365 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2366 {
2367 	struct xpt_traverse_config tr_config;
2368 
2369 	tr_config.depth = XPT_DEPTH_DEVICE;
2370 	tr_config.tr_func = tr_func;
2371 	tr_config.tr_arg = arg;
2372 
2373 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2374 }
2375 
2376 static int
2377 xptsetasyncfunc(struct cam_ed *device, void *arg)
2378 {
2379 	struct cam_path path;
2380 	struct ccb_getdev cgd;
2381 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2382 
2383 	/*
2384 	 * Don't report unconfigured devices (Wildcard devs,
2385 	 * devices only for target mode, device instances
2386 	 * that have been invalidated but are waiting for
2387 	 * their last reference count to be released).
2388 	 */
2389 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2390 		return (1);
2391 
2392 	xpt_compile_path(&path,
2393 			 NULL,
2394 			 device->target->bus->path_id,
2395 			 device->target->target_id,
2396 			 device->lun_id);
2397 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2398 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2399 	xpt_action((union ccb *)&cgd);
2400 	csa->callback(csa->callback_arg,
2401 			    AC_FOUND_DEVICE,
2402 			    &path, &cgd);
2403 	xpt_release_path(&path);
2404 
2405 	return(1);
2406 }
2407 
2408 static int
2409 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2410 {
2411 	struct cam_path path;
2412 	struct ccb_pathinq cpi;
2413 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2414 
2415 	xpt_compile_path(&path, /*periph*/NULL,
2416 			 bus->sim->path_id,
2417 			 CAM_TARGET_WILDCARD,
2418 			 CAM_LUN_WILDCARD);
2419 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2420 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2421 	xpt_action((union ccb *)&cpi);
2422 	csa->callback(csa->callback_arg,
2423 			    AC_PATH_REGISTERED,
2424 			    &path, &cpi);
2425 	xpt_release_path(&path);
2426 
2427 	return(1);
2428 }
2429 
2430 void
2431 xpt_action(union ccb *start_ccb)
2432 {
2433 
2434 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2435 
2436 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2437 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2438 }
2439 
2440 void
2441 xpt_action_default(union ccb *start_ccb)
2442 {
2443 	struct cam_path *path;
2444 
2445 	path = start_ccb->ccb_h.path;
2446 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2447 
2448 	switch (start_ccb->ccb_h.func_code) {
2449 	case XPT_SCSI_IO:
2450 	{
2451 		struct cam_ed *device;
2452 
2453 		/*
2454 		 * For the sake of compatibility with SCSI-1
2455 		 * devices that may not understand the identify
2456 		 * message, we include lun information in the
2457 		 * second byte of all commands.  SCSI-1 specifies
2458 		 * that luns are a 3 bit value and reserves only 3
2459 		 * bits for lun information in the CDB.  Later
2460 		 * revisions of the SCSI spec allow for more than 8
2461 		 * luns, but have deprecated lun information in the
2462 		 * CDB.  So, if the lun won't fit, we must omit.
2463 		 *
2464 		 * Also be aware that during initial probing for devices,
2465 		 * the inquiry information is unknown but initialized to 0.
2466 		 * This means that this code will be exercised while probing
2467 		 * devices with an ANSI revision greater than 2.
2468 		 */
2469 		device = path->device;
2470 		if (device->protocol_version <= SCSI_REV_2
2471 		 && start_ccb->ccb_h.target_lun < 8
2472 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2473 
2474 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2475 			    start_ccb->ccb_h.target_lun << 5;
2476 		}
2477 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2478 	}
2479 	/* FALLTHROUGH */
2480 	case XPT_TARGET_IO:
2481 	case XPT_CONT_TARGET_IO:
2482 		start_ccb->csio.sense_resid = 0;
2483 		start_ccb->csio.resid = 0;
2484 		/* FALLTHROUGH */
2485 	case XPT_ATA_IO:
2486 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2487 			start_ccb->ataio.resid = 0;
2488 		/* FALLTHROUGH */
2489 	case XPT_RESET_DEV:
2490 	case XPT_ENG_EXEC:
2491 	case XPT_SMP_IO:
2492 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2493 		if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2494 			xpt_run_devq(path->bus->sim->devq);
2495 		break;
2496 	case XPT_CALC_GEOMETRY:
2497 	{
2498 		struct cam_sim *sim;
2499 
2500 		/* Filter out garbage */
2501 		if (start_ccb->ccg.block_size == 0
2502 		 || start_ccb->ccg.volume_size == 0) {
2503 			start_ccb->ccg.cylinders = 0;
2504 			start_ccb->ccg.heads = 0;
2505 			start_ccb->ccg.secs_per_track = 0;
2506 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2507 			break;
2508 		}
2509 #if defined(PC98) || defined(__sparc64__)
2510 		/*
2511 		 * In a PC-98 system, geometry translation depens on
2512 		 * the "real" device geometry obtained from mode page 4.
2513 		 * SCSI geometry translation is performed in the
2514 		 * initialization routine of the SCSI BIOS and the result
2515 		 * stored in host memory.  If the translation is available
2516 		 * in host memory, use it.  If not, rely on the default
2517 		 * translation the device driver performs.
2518 		 * For sparc64, we may need adjust the geometry of large
2519 		 * disks in order to fit the limitations of the 16-bit
2520 		 * fields of the VTOC8 disk label.
2521 		 */
2522 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2523 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2524 			break;
2525 		}
2526 #endif
2527 		sim = path->bus->sim;
2528 		(*(sim->sim_action))(sim, start_ccb);
2529 		break;
2530 	}
2531 	case XPT_ABORT:
2532 	{
2533 		union ccb* abort_ccb;
2534 
2535 		abort_ccb = start_ccb->cab.abort_ccb;
2536 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2537 
2538 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2539 				struct cam_ccbq *ccbq;
2540 				struct cam_ed *device;
2541 
2542 				device = abort_ccb->ccb_h.path->device;
2543 				ccbq = &device->ccbq;
2544 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2545 				abort_ccb->ccb_h.status =
2546 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2547 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2548 				xpt_done(abort_ccb);
2549 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2550 				break;
2551 			}
2552 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2553 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2554 				/*
2555 				 * We've caught this ccb en route to
2556 				 * the SIM.  Flag it for abort and the
2557 				 * SIM will do so just before starting
2558 				 * real work on the CCB.
2559 				 */
2560 				abort_ccb->ccb_h.status =
2561 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2562 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2563 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2564 				break;
2565 			}
2566 		}
2567 		if (XPT_FC_IS_QUEUED(abort_ccb)
2568 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2569 			/*
2570 			 * It's already completed but waiting
2571 			 * for our SWI to get to it.
2572 			 */
2573 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2574 			break;
2575 		}
2576 		/*
2577 		 * If we weren't able to take care of the abort request
2578 		 * in the XPT, pass the request down to the SIM for processing.
2579 		 */
2580 	}
2581 	/* FALLTHROUGH */
2582 	case XPT_ACCEPT_TARGET_IO:
2583 	case XPT_EN_LUN:
2584 	case XPT_IMMED_NOTIFY:
2585 	case XPT_NOTIFY_ACK:
2586 	case XPT_RESET_BUS:
2587 	case XPT_IMMEDIATE_NOTIFY:
2588 	case XPT_NOTIFY_ACKNOWLEDGE:
2589 	case XPT_GET_SIM_KNOB:
2590 	case XPT_SET_SIM_KNOB:
2591 	{
2592 		struct cam_sim *sim;
2593 
2594 		sim = path->bus->sim;
2595 		(*(sim->sim_action))(sim, start_ccb);
2596 		break;
2597 	}
2598 	case XPT_PATH_INQ:
2599 	{
2600 		struct cam_sim *sim;
2601 
2602 		sim = path->bus->sim;
2603 		(*(sim->sim_action))(sim, start_ccb);
2604 		break;
2605 	}
2606 	case XPT_PATH_STATS:
2607 		start_ccb->cpis.last_reset = path->bus->last_reset;
2608 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2609 		break;
2610 	case XPT_GDEV_TYPE:
2611 	{
2612 		struct cam_ed *dev;
2613 
2614 		dev = path->device;
2615 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2616 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2617 		} else {
2618 			struct ccb_getdev *cgd;
2619 
2620 			cgd = &start_ccb->cgd;
2621 			cgd->protocol = dev->protocol;
2622 			cgd->inq_data = dev->inq_data;
2623 			cgd->ident_data = dev->ident_data;
2624 			cgd->inq_flags = dev->inq_flags;
2625 			cgd->ccb_h.status = CAM_REQ_CMP;
2626 			cgd->serial_num_len = dev->serial_num_len;
2627 			if ((dev->serial_num_len > 0)
2628 			 && (dev->serial_num != NULL))
2629 				bcopy(dev->serial_num, cgd->serial_num,
2630 				      dev->serial_num_len);
2631 		}
2632 		break;
2633 	}
2634 	case XPT_GDEV_STATS:
2635 	{
2636 		struct cam_ed *dev;
2637 
2638 		dev = path->device;
2639 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2640 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2641 		} else {
2642 			struct ccb_getdevstats *cgds;
2643 			struct cam_eb *bus;
2644 			struct cam_et *tar;
2645 
2646 			cgds = &start_ccb->cgds;
2647 			bus = path->bus;
2648 			tar = path->target;
2649 			cgds->dev_openings = dev->ccbq.dev_openings;
2650 			cgds->dev_active = dev->ccbq.dev_active;
2651 			cgds->devq_openings = dev->ccbq.devq_openings;
2652 			cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2653 			cgds->held = dev->ccbq.held;
2654 			cgds->last_reset = tar->last_reset;
2655 			cgds->maxtags = dev->maxtags;
2656 			cgds->mintags = dev->mintags;
2657 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2658 				cgds->last_reset = bus->last_reset;
2659 			cgds->ccb_h.status = CAM_REQ_CMP;
2660 		}
2661 		break;
2662 	}
2663 	case XPT_GDEVLIST:
2664 	{
2665 		struct cam_periph	*nperiph;
2666 		struct periph_list	*periph_head;
2667 		struct ccb_getdevlist	*cgdl;
2668 		u_int			i;
2669 		struct cam_ed		*device;
2670 		int			found;
2671 
2672 
2673 		found = 0;
2674 
2675 		/*
2676 		 * Don't want anyone mucking with our data.
2677 		 */
2678 		device = path->device;
2679 		periph_head = &device->periphs;
2680 		cgdl = &start_ccb->cgdl;
2681 
2682 		/*
2683 		 * Check and see if the list has changed since the user
2684 		 * last requested a list member.  If so, tell them that the
2685 		 * list has changed, and therefore they need to start over
2686 		 * from the beginning.
2687 		 */
2688 		if ((cgdl->index != 0) &&
2689 		    (cgdl->generation != device->generation)) {
2690 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2691 			break;
2692 		}
2693 
2694 		/*
2695 		 * Traverse the list of peripherals and attempt to find
2696 		 * the requested peripheral.
2697 		 */
2698 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2699 		     (nperiph != NULL) && (i <= cgdl->index);
2700 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2701 			if (i == cgdl->index) {
2702 				strncpy(cgdl->periph_name,
2703 					nperiph->periph_name,
2704 					DEV_IDLEN);
2705 				cgdl->unit_number = nperiph->unit_number;
2706 				found = 1;
2707 			}
2708 		}
2709 		if (found == 0) {
2710 			cgdl->status = CAM_GDEVLIST_ERROR;
2711 			break;
2712 		}
2713 
2714 		if (nperiph == NULL)
2715 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2716 		else
2717 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2718 
2719 		cgdl->index++;
2720 		cgdl->generation = device->generation;
2721 
2722 		cgdl->ccb_h.status = CAM_REQ_CMP;
2723 		break;
2724 	}
2725 	case XPT_DEV_MATCH:
2726 	{
2727 		dev_pos_type position_type;
2728 		struct ccb_dev_match *cdm;
2729 
2730 		cdm = &start_ccb->cdm;
2731 
2732 		/*
2733 		 * There are two ways of getting at information in the EDT.
2734 		 * The first way is via the primary EDT tree.  It starts
2735 		 * with a list of busses, then a list of targets on a bus,
2736 		 * then devices/luns on a target, and then peripherals on a
2737 		 * device/lun.  The "other" way is by the peripheral driver
2738 		 * lists.  The peripheral driver lists are organized by
2739 		 * peripheral driver.  (obviously)  So it makes sense to
2740 		 * use the peripheral driver list if the user is looking
2741 		 * for something like "da1", or all "da" devices.  If the
2742 		 * user is looking for something on a particular bus/target
2743 		 * or lun, it's generally better to go through the EDT tree.
2744 		 */
2745 
2746 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2747 			position_type = cdm->pos.position_type;
2748 		else {
2749 			u_int i;
2750 
2751 			position_type = CAM_DEV_POS_NONE;
2752 
2753 			for (i = 0; i < cdm->num_patterns; i++) {
2754 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2755 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2756 					position_type = CAM_DEV_POS_EDT;
2757 					break;
2758 				}
2759 			}
2760 
2761 			if (cdm->num_patterns == 0)
2762 				position_type = CAM_DEV_POS_EDT;
2763 			else if (position_type == CAM_DEV_POS_NONE)
2764 				position_type = CAM_DEV_POS_PDRV;
2765 		}
2766 
2767 		/*
2768 		 * Note that we drop the SIM lock here, because the EDT
2769 		 * traversal code needs to do its own locking.
2770 		 */
2771 		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2772 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2773 		case CAM_DEV_POS_EDT:
2774 			xptedtmatch(cdm);
2775 			break;
2776 		case CAM_DEV_POS_PDRV:
2777 			xptperiphlistmatch(cdm);
2778 			break;
2779 		default:
2780 			cdm->status = CAM_DEV_MATCH_ERROR;
2781 			break;
2782 		}
2783 		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2784 
2785 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2786 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2787 		else
2788 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2789 
2790 		break;
2791 	}
2792 	case XPT_SASYNC_CB:
2793 	{
2794 		struct ccb_setasync *csa;
2795 		struct async_node *cur_entry;
2796 		struct async_list *async_head;
2797 		u_int32_t added;
2798 
2799 		csa = &start_ccb->csa;
2800 		added = csa->event_enable;
2801 		async_head = &path->device->asyncs;
2802 
2803 		/*
2804 		 * If there is already an entry for us, simply
2805 		 * update it.
2806 		 */
2807 		cur_entry = SLIST_FIRST(async_head);
2808 		while (cur_entry != NULL) {
2809 			if ((cur_entry->callback_arg == csa->callback_arg)
2810 			 && (cur_entry->callback == csa->callback))
2811 				break;
2812 			cur_entry = SLIST_NEXT(cur_entry, links);
2813 		}
2814 
2815 		if (cur_entry != NULL) {
2816 		 	/*
2817 			 * If the request has no flags set,
2818 			 * remove the entry.
2819 			 */
2820 			added &= ~cur_entry->event_enable;
2821 			if (csa->event_enable == 0) {
2822 				SLIST_REMOVE(async_head, cur_entry,
2823 					     async_node, links);
2824 				xpt_release_device(path->device);
2825 				free(cur_entry, M_CAMXPT);
2826 			} else {
2827 				cur_entry->event_enable = csa->event_enable;
2828 			}
2829 			csa->event_enable = added;
2830 		} else {
2831 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2832 					   M_NOWAIT);
2833 			if (cur_entry == NULL) {
2834 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2835 				break;
2836 			}
2837 			cur_entry->event_enable = csa->event_enable;
2838 			cur_entry->callback_arg = csa->callback_arg;
2839 			cur_entry->callback = csa->callback;
2840 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2841 			xpt_acquire_device(path->device);
2842 		}
2843 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2844 		break;
2845 	}
2846 	case XPT_REL_SIMQ:
2847 	{
2848 		struct ccb_relsim *crs;
2849 		struct cam_ed *dev;
2850 
2851 		crs = &start_ccb->crs;
2852 		dev = path->device;
2853 		if (dev == NULL) {
2854 
2855 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2856 			break;
2857 		}
2858 
2859 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2860 
2861 			/* Don't ever go below one opening */
2862 			if (crs->openings > 0) {
2863 				xpt_dev_ccbq_resize(path, crs->openings);
2864 				if (bootverbose) {
2865 					xpt_print(path,
2866 					    "number of openings is now %d\n",
2867 					    crs->openings);
2868 				}
2869 			}
2870 		}
2871 
2872 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2873 
2874 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2875 
2876 				/*
2877 				 * Just extend the old timeout and decrement
2878 				 * the freeze count so that a single timeout
2879 				 * is sufficient for releasing the queue.
2880 				 */
2881 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2882 				callout_stop(&dev->callout);
2883 			} else {
2884 
2885 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2886 			}
2887 
2888 			callout_reset(&dev->callout,
2889 			    (crs->release_timeout * hz) / 1000,
2890 			    xpt_release_devq_timeout, dev);
2891 
2892 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2893 
2894 		}
2895 
2896 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2897 
2898 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2899 				/*
2900 				 * Decrement the freeze count so that a single
2901 				 * completion is still sufficient to unfreeze
2902 				 * the queue.
2903 				 */
2904 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2905 			} else {
2906 
2907 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2908 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2909 			}
2910 		}
2911 
2912 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2913 
2914 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2915 			 || (dev->ccbq.dev_active == 0)) {
2916 
2917 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2918 			} else {
2919 
2920 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2921 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2922 			}
2923 		}
2924 
2925 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2926 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2927 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2928 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2929 		break;
2930 	}
2931 	case XPT_DEBUG: {
2932 		struct cam_path *oldpath;
2933 		struct cam_sim *oldsim;
2934 
2935 		/* Check that all request bits are supported. */
2936 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2937 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2938 			break;
2939 		}
2940 
2941 		cam_dflags = CAM_DEBUG_NONE;
2942 		if (cam_dpath != NULL) {
2943 			/* To release the old path we must hold proper lock. */
2944 			oldpath = cam_dpath;
2945 			cam_dpath = NULL;
2946 			oldsim = xpt_path_sim(oldpath);
2947 			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2948 			CAM_SIM_LOCK(oldsim);
2949 			xpt_free_path(oldpath);
2950 			CAM_SIM_UNLOCK(oldsim);
2951 			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2952 		}
2953 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2954 			if (xpt_create_path(&cam_dpath, NULL,
2955 					    start_ccb->ccb_h.path_id,
2956 					    start_ccb->ccb_h.target_id,
2957 					    start_ccb->ccb_h.target_lun) !=
2958 					    CAM_REQ_CMP) {
2959 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2960 			} else {
2961 				cam_dflags = start_ccb->cdbg.flags;
2962 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2963 				xpt_print(cam_dpath, "debugging flags now %x\n",
2964 				    cam_dflags);
2965 			}
2966 		} else
2967 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2968 		break;
2969 	}
2970 	case XPT_NOOP:
2971 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2972 			xpt_freeze_devq(path, 1);
2973 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2974 		break;
2975 	default:
2976 	case XPT_SDEV_TYPE:
2977 	case XPT_TERM_IO:
2978 	case XPT_ENG_INQ:
2979 		/* XXX Implement */
2980 		printf("%s: CCB type %#x not supported\n", __func__,
2981 		       start_ccb->ccb_h.func_code);
2982 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2983 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2984 			xpt_done(start_ccb);
2985 		}
2986 		break;
2987 	}
2988 }
2989 
2990 void
2991 xpt_polled_action(union ccb *start_ccb)
2992 {
2993 	u_int32_t timeout;
2994 	struct	  cam_sim *sim;
2995 	struct	  cam_devq *devq;
2996 	struct	  cam_ed *dev;
2997 
2998 
2999 	timeout = start_ccb->ccb_h.timeout * 10;
3000 	sim = start_ccb->ccb_h.path->bus->sim;
3001 	devq = sim->devq;
3002 	dev = start_ccb->ccb_h.path->device;
3003 
3004 	mtx_assert(sim->mtx, MA_OWNED);
3005 
3006 	/* Don't use ISR for this SIM while polling. */
3007 	sim->flags |= CAM_SIM_POLLED;
3008 
3009 	/*
3010 	 * Steal an opening so that no other queued requests
3011 	 * can get it before us while we simulate interrupts.
3012 	 */
3013 	dev->ccbq.devq_openings--;
3014 	dev->ccbq.dev_openings--;
3015 
3016 	while(((devq != NULL && devq->send_openings <= 0) ||
3017 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3018 		DELAY(100);
3019 		(*(sim->sim_poll))(sim);
3020 		camisr_runqueue(sim);
3021 	}
3022 
3023 	dev->ccbq.devq_openings++;
3024 	dev->ccbq.dev_openings++;
3025 
3026 	if (timeout != 0) {
3027 		xpt_action(start_ccb);
3028 		while(--timeout > 0) {
3029 			(*(sim->sim_poll))(sim);
3030 			camisr_runqueue(sim);
3031 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3032 			    != CAM_REQ_INPROG)
3033 				break;
3034 			DELAY(100);
3035 		}
3036 		if (timeout == 0) {
3037 			/*
3038 			 * XXX Is it worth adding a sim_timeout entry
3039 			 * point so we can attempt recovery?  If
3040 			 * this is only used for dumps, I don't think
3041 			 * it is.
3042 			 */
3043 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3044 		}
3045 	} else {
3046 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3047 	}
3048 
3049 	/* We will use CAM ISR for this SIM again. */
3050 	sim->flags &= ~CAM_SIM_POLLED;
3051 }
3052 
3053 /*
3054  * Schedule a peripheral driver to receive a ccb when it's
3055  * target device has space for more transactions.
3056  */
3057 void
3058 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3059 {
3060 	struct cam_ed *device;
3061 	int runq = 0;
3062 
3063 	mtx_assert(perph->sim->mtx, MA_OWNED);
3064 
3065 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3066 	device = perph->path->device;
3067 	if (periph_is_queued(perph)) {
3068 		/* Simply reorder based on new priority */
3069 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3070 			  ("   change priority to %d\n", new_priority));
3071 		if (new_priority < perph->pinfo.priority) {
3072 			camq_change_priority(&device->drvq,
3073 					     perph->pinfo.index,
3074 					     new_priority);
3075 			runq = 1;
3076 		}
3077 	} else {
3078 		/* New entry on the queue */
3079 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3080 			  ("   added periph to queue\n"));
3081 		perph->pinfo.priority = new_priority;
3082 		perph->pinfo.generation = ++device->drvq.generation;
3083 		camq_insert(&device->drvq, &perph->pinfo);
3084 		runq = 1;
3085 	}
3086 	if (runq != 0) {
3087 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3088 			  ("   calling xpt_run_dev_allocq\n"));
3089 		xpt_run_dev_allocq(device);
3090 	}
3091 }
3092 
3093 
3094 /*
3095  * Schedule a device to run on a given queue.
3096  * If the device was inserted as a new entry on the queue,
3097  * return 1 meaning the device queue should be run. If we
3098  * were already queued, implying someone else has already
3099  * started the queue, return 0 so the caller doesn't attempt
3100  * to run the queue.
3101  */
3102 int
3103 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3104 		 u_int32_t new_priority)
3105 {
3106 	int retval;
3107 	u_int32_t old_priority;
3108 
3109 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3110 
3111 	old_priority = pinfo->priority;
3112 
3113 	/*
3114 	 * Are we already queued?
3115 	 */
3116 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3117 		/* Simply reorder based on new priority */
3118 		if (new_priority < old_priority) {
3119 			camq_change_priority(queue, pinfo->index,
3120 					     new_priority);
3121 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3122 					("changed priority to %d\n",
3123 					 new_priority));
3124 			retval = 1;
3125 		} else
3126 			retval = 0;
3127 	} else {
3128 		/* New entry on the queue */
3129 		if (new_priority < old_priority)
3130 			pinfo->priority = new_priority;
3131 
3132 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3133 				("Inserting onto queue\n"));
3134 		pinfo->generation = ++queue->generation;
3135 		camq_insert(queue, pinfo);
3136 		retval = 1;
3137 	}
3138 	return (retval);
3139 }
3140 
3141 static void
3142 xpt_run_dev_allocq(struct cam_ed *device)
3143 {
3144 	struct camq	*drvq;
3145 
3146 	if (device->ccbq.devq_allocating)
3147 		return;
3148 	device->ccbq.devq_allocating = 1;
3149 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3150 	drvq = &device->drvq;
3151 	while ((drvq->entries > 0) &&
3152 	    (device->ccbq.devq_openings > 0 ||
3153 	     CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3154 	    (device->ccbq.queue.qfrozen_cnt == 0)) {
3155 		union	ccb *work_ccb;
3156 		struct	cam_periph *drv;
3157 
3158 		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3159 		    "Device on queue without any work to do"));
3160 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3161 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3162 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3163 				      drv->pinfo.priority);
3164 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3165 					("calling periph start\n"));
3166 			drv->periph_start(drv, work_ccb);
3167 		} else {
3168 			/*
3169 			 * Malloc failure in alloc_ccb
3170 			 */
3171 			/*
3172 			 * XXX add us to a list to be run from free_ccb
3173 			 * if we don't have any ccbs active on this
3174 			 * device queue otherwise we may never get run
3175 			 * again.
3176 			 */
3177 			break;
3178 		}
3179 	}
3180 	device->ccbq.devq_allocating = 0;
3181 }
3182 
3183 static void
3184 xpt_run_devq(struct cam_devq *devq)
3185 {
3186 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3187 
3188 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3189 
3190 	devq->send_queue.qfrozen_cnt++;
3191 	while ((devq->send_queue.entries > 0)
3192 	    && (devq->send_openings > 0)
3193 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3194 		struct	cam_ed_qinfo *qinfo;
3195 		struct	cam_ed *device;
3196 		union ccb *work_ccb;
3197 		struct	cam_sim *sim;
3198 
3199 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3200 							   CAMQ_HEAD);
3201 		device = qinfo->device;
3202 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3203 				("running device %p\n", device));
3204 
3205 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3206 		if (work_ccb == NULL) {
3207 			printf("device on run queue with no ccbs???\n");
3208 			continue;
3209 		}
3210 
3211 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3212 
3213 			mtx_lock(&xsoftc.xpt_lock);
3214 		 	if (xsoftc.num_highpower <= 0) {
3215 				/*
3216 				 * We got a high power command, but we
3217 				 * don't have any available slots.  Freeze
3218 				 * the device queue until we have a slot
3219 				 * available.
3220 				 */
3221 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3222 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3223 						   work_ccb->ccb_h.path->device,
3224 						   highpowerq_entry);
3225 
3226 				mtx_unlock(&xsoftc.xpt_lock);
3227 				continue;
3228 			} else {
3229 				/*
3230 				 * Consume a high power slot while
3231 				 * this ccb runs.
3232 				 */
3233 				xsoftc.num_highpower--;
3234 			}
3235 			mtx_unlock(&xsoftc.xpt_lock);
3236 		}
3237 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3238 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3239 
3240 		devq->send_openings--;
3241 		devq->send_active++;
3242 
3243 		xpt_schedule_devq(devq, device);
3244 
3245 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3246 			/*
3247 			 * The client wants to freeze the queue
3248 			 * after this CCB is sent.
3249 			 */
3250 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3251 		}
3252 
3253 		/* In Target mode, the peripheral driver knows best... */
3254 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3255 			if ((device->inq_flags & SID_CmdQue) != 0
3256 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3257 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3258 			else
3259 				/*
3260 				 * Clear this in case of a retried CCB that
3261 				 * failed due to a rejected tag.
3262 				 */
3263 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3264 		}
3265 
3266 		switch (work_ccb->ccb_h.func_code) {
3267 		case XPT_SCSI_IO:
3268 			CAM_DEBUG(work_ccb->ccb_h.path,
3269 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3270 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3271 					  &device->inq_data),
3272 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3273 					     cdb_str, sizeof(cdb_str))));
3274 			break;
3275 		case XPT_ATA_IO:
3276 			CAM_DEBUG(work_ccb->ccb_h.path,
3277 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3278 			     ata_op_string(&work_ccb->ataio.cmd),
3279 			     ata_cmd_string(&work_ccb->ataio.cmd,
3280 					    cdb_str, sizeof(cdb_str))));
3281 			break;
3282 		default:
3283 			break;
3284 		}
3285 
3286 		/*
3287 		 * Device queues can be shared among multiple sim instances
3288 		 * that reside on different busses.  Use the SIM in the queue
3289 		 * CCB's path, rather than the one in the bus that was passed
3290 		 * into this function.
3291 		 */
3292 		sim = work_ccb->ccb_h.path->bus->sim;
3293 		(*(sim->sim_action))(sim, work_ccb);
3294 	}
3295 	devq->send_queue.qfrozen_cnt--;
3296 }
3297 
3298 /*
3299  * This function merges stuff from the slave ccb into the master ccb, while
3300  * keeping important fields in the master ccb constant.
3301  */
3302 void
3303 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3304 {
3305 
3306 	/*
3307 	 * Pull fields that are valid for peripheral drivers to set
3308 	 * into the master CCB along with the CCB "payload".
3309 	 */
3310 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3311 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3312 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3313 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3314 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3315 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3316 }
3317 
3318 void
3319 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3320 {
3321 
3322 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3323 	ccb_h->pinfo.priority = priority;
3324 	ccb_h->path = path;
3325 	ccb_h->path_id = path->bus->path_id;
3326 	if (path->target)
3327 		ccb_h->target_id = path->target->target_id;
3328 	else
3329 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3330 	if (path->device) {
3331 		ccb_h->target_lun = path->device->lun_id;
3332 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3333 	} else {
3334 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3335 	}
3336 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3337 	ccb_h->flags = 0;
3338 }
3339 
3340 /* Path manipulation functions */
3341 cam_status
3342 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3343 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3344 {
3345 	struct	   cam_path *path;
3346 	cam_status status;
3347 
3348 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3349 
3350 	if (path == NULL) {
3351 		status = CAM_RESRC_UNAVAIL;
3352 		return(status);
3353 	}
3354 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3355 	if (status != CAM_REQ_CMP) {
3356 		free(path, M_CAMPATH);
3357 		path = NULL;
3358 	}
3359 	*new_path_ptr = path;
3360 	return (status);
3361 }
3362 
3363 cam_status
3364 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3365 			 struct cam_periph *periph, path_id_t path_id,
3366 			 target_id_t target_id, lun_id_t lun_id)
3367 {
3368 	struct	   cam_path *path;
3369 	struct	   cam_eb *bus = NULL;
3370 	cam_status status;
3371 
3372 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3373 
3374 	bus = xpt_find_bus(path_id);
3375 	if (bus != NULL)
3376 		CAM_SIM_LOCK(bus->sim);
3377 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3378 	if (bus != NULL) {
3379 		CAM_SIM_UNLOCK(bus->sim);
3380 		xpt_release_bus(bus);
3381 	}
3382 	if (status != CAM_REQ_CMP) {
3383 		free(path, M_CAMPATH);
3384 		path = NULL;
3385 	}
3386 	*new_path_ptr = path;
3387 	return (status);
3388 }
3389 
3390 cam_status
3391 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3392 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3393 {
3394 	struct	     cam_eb *bus;
3395 	struct	     cam_et *target;
3396 	struct	     cam_ed *device;
3397 	cam_status   status;
3398 
3399 	status = CAM_REQ_CMP;	/* Completed without error */
3400 	target = NULL;		/* Wildcarded */
3401 	device = NULL;		/* Wildcarded */
3402 
3403 	/*
3404 	 * We will potentially modify the EDT, so block interrupts
3405 	 * that may attempt to create cam paths.
3406 	 */
3407 	bus = xpt_find_bus(path_id);
3408 	if (bus == NULL) {
3409 		status = CAM_PATH_INVALID;
3410 	} else {
3411 		target = xpt_find_target(bus, target_id);
3412 		if (target == NULL) {
3413 			/* Create one */
3414 			struct cam_et *new_target;
3415 
3416 			new_target = xpt_alloc_target(bus, target_id);
3417 			if (new_target == NULL) {
3418 				status = CAM_RESRC_UNAVAIL;
3419 			} else {
3420 				target = new_target;
3421 			}
3422 		}
3423 		if (target != NULL) {
3424 			device = xpt_find_device(target, lun_id);
3425 			if (device == NULL) {
3426 				/* Create one */
3427 				struct cam_ed *new_device;
3428 
3429 				new_device =
3430 				    (*(bus->xport->alloc_device))(bus,
3431 								      target,
3432 								      lun_id);
3433 				if (new_device == NULL) {
3434 					status = CAM_RESRC_UNAVAIL;
3435 				} else {
3436 					device = new_device;
3437 				}
3438 			}
3439 		}
3440 	}
3441 
3442 	/*
3443 	 * Only touch the user's data if we are successful.
3444 	 */
3445 	if (status == CAM_REQ_CMP) {
3446 		new_path->periph = perph;
3447 		new_path->bus = bus;
3448 		new_path->target = target;
3449 		new_path->device = device;
3450 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3451 	} else {
3452 		if (device != NULL)
3453 			xpt_release_device(device);
3454 		if (target != NULL)
3455 			xpt_release_target(target);
3456 		if (bus != NULL)
3457 			xpt_release_bus(bus);
3458 	}
3459 	return (status);
3460 }
3461 
3462 void
3463 xpt_release_path(struct cam_path *path)
3464 {
3465 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3466 	if (path->device != NULL) {
3467 		xpt_release_device(path->device);
3468 		path->device = NULL;
3469 	}
3470 	if (path->target != NULL) {
3471 		xpt_release_target(path->target);
3472 		path->target = NULL;
3473 	}
3474 	if (path->bus != NULL) {
3475 		xpt_release_bus(path->bus);
3476 		path->bus = NULL;
3477 	}
3478 }
3479 
3480 void
3481 xpt_free_path(struct cam_path *path)
3482 {
3483 
3484 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3485 	xpt_release_path(path);
3486 	free(path, M_CAMPATH);
3487 }
3488 
3489 void
3490 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3491     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3492 {
3493 
3494 	xpt_lock_buses();
3495 	if (bus_ref) {
3496 		if (path->bus)
3497 			*bus_ref = path->bus->refcount;
3498 		else
3499 			*bus_ref = 0;
3500 	}
3501 	if (periph_ref) {
3502 		if (path->periph)
3503 			*periph_ref = path->periph->refcount;
3504 		else
3505 			*periph_ref = 0;
3506 	}
3507 	xpt_unlock_buses();
3508 	if (target_ref) {
3509 		if (path->target)
3510 			*target_ref = path->target->refcount;
3511 		else
3512 			*target_ref = 0;
3513 	}
3514 	if (device_ref) {
3515 		if (path->device)
3516 			*device_ref = path->device->refcount;
3517 		else
3518 			*device_ref = 0;
3519 	}
3520 }
3521 
3522 /*
3523  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3524  * in path1, 2 for match with wildcards in path2.
3525  */
3526 int
3527 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3528 {
3529 	int retval = 0;
3530 
3531 	if (path1->bus != path2->bus) {
3532 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3533 			retval = 1;
3534 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3535 			retval = 2;
3536 		else
3537 			return (-1);
3538 	}
3539 	if (path1->target != path2->target) {
3540 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3541 			if (retval == 0)
3542 				retval = 1;
3543 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3544 			retval = 2;
3545 		else
3546 			return (-1);
3547 	}
3548 	if (path1->device != path2->device) {
3549 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3550 			if (retval == 0)
3551 				retval = 1;
3552 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3553 			retval = 2;
3554 		else
3555 			return (-1);
3556 	}
3557 	return (retval);
3558 }
3559 
3560 void
3561 xpt_print_path(struct cam_path *path)
3562 {
3563 
3564 	if (path == NULL)
3565 		printf("(nopath): ");
3566 	else {
3567 		if (path->periph != NULL)
3568 			printf("(%s%d:", path->periph->periph_name,
3569 			       path->periph->unit_number);
3570 		else
3571 			printf("(noperiph:");
3572 
3573 		if (path->bus != NULL)
3574 			printf("%s%d:%d:", path->bus->sim->sim_name,
3575 			       path->bus->sim->unit_number,
3576 			       path->bus->sim->bus_id);
3577 		else
3578 			printf("nobus:");
3579 
3580 		if (path->target != NULL)
3581 			printf("%d:", path->target->target_id);
3582 		else
3583 			printf("X:");
3584 
3585 		if (path->device != NULL)
3586 			printf("%d): ", path->device->lun_id);
3587 		else
3588 			printf("X): ");
3589 	}
3590 }
3591 
3592 void
3593 xpt_print(struct cam_path *path, const char *fmt, ...)
3594 {
3595 	va_list ap;
3596 	xpt_print_path(path);
3597 	va_start(ap, fmt);
3598 	vprintf(fmt, ap);
3599 	va_end(ap);
3600 }
3601 
3602 int
3603 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3604 {
3605 	struct sbuf sb;
3606 
3607 #ifdef INVARIANTS
3608 	if (path != NULL && path->bus != NULL)
3609 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3610 #endif
3611 
3612 	sbuf_new(&sb, str, str_len, 0);
3613 
3614 	if (path == NULL)
3615 		sbuf_printf(&sb, "(nopath): ");
3616 	else {
3617 		if (path->periph != NULL)
3618 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3619 				    path->periph->unit_number);
3620 		else
3621 			sbuf_printf(&sb, "(noperiph:");
3622 
3623 		if (path->bus != NULL)
3624 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3625 				    path->bus->sim->unit_number,
3626 				    path->bus->sim->bus_id);
3627 		else
3628 			sbuf_printf(&sb, "nobus:");
3629 
3630 		if (path->target != NULL)
3631 			sbuf_printf(&sb, "%d:", path->target->target_id);
3632 		else
3633 			sbuf_printf(&sb, "X:");
3634 
3635 		if (path->device != NULL)
3636 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3637 		else
3638 			sbuf_printf(&sb, "X): ");
3639 	}
3640 	sbuf_finish(&sb);
3641 
3642 	return(sbuf_len(&sb));
3643 }
3644 
3645 path_id_t
3646 xpt_path_path_id(struct cam_path *path)
3647 {
3648 	return(path->bus->path_id);
3649 }
3650 
3651 target_id_t
3652 xpt_path_target_id(struct cam_path *path)
3653 {
3654 	if (path->target != NULL)
3655 		return (path->target->target_id);
3656 	else
3657 		return (CAM_TARGET_WILDCARD);
3658 }
3659 
3660 lun_id_t
3661 xpt_path_lun_id(struct cam_path *path)
3662 {
3663 	if (path->device != NULL)
3664 		return (path->device->lun_id);
3665 	else
3666 		return (CAM_LUN_WILDCARD);
3667 }
3668 
3669 struct cam_sim *
3670 xpt_path_sim(struct cam_path *path)
3671 {
3672 
3673 	return (path->bus->sim);
3674 }
3675 
3676 struct cam_periph*
3677 xpt_path_periph(struct cam_path *path)
3678 {
3679 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3680 
3681 	return (path->periph);
3682 }
3683 
3684 int
3685 xpt_path_legacy_ata_id(struct cam_path *path)
3686 {
3687 	struct cam_eb *bus;
3688 	int bus_id;
3689 
3690 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3691 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3692 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3693 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3694 		return (-1);
3695 
3696 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3697 	    path->bus->sim->unit_number < 2) {
3698 		bus_id = path->bus->sim->unit_number;
3699 	} else {
3700 		bus_id = 2;
3701 		xpt_lock_buses();
3702 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3703 			if (bus == path->bus)
3704 				break;
3705 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3706 			     bus->sim->unit_number >= 2) ||
3707 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3708 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3709 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3710 				bus_id++;
3711 		}
3712 		xpt_unlock_buses();
3713 	}
3714 	if (path->target != NULL) {
3715 		if (path->target->target_id < 2)
3716 			return (bus_id * 2 + path->target->target_id);
3717 		else
3718 			return (-1);
3719 	} else
3720 		return (bus_id * 2);
3721 }
3722 
3723 /*
3724  * Release a CAM control block for the caller.  Remit the cost of the structure
3725  * to the device referenced by the path.  If the this device had no 'credits'
3726  * and peripheral drivers have registered async callbacks for this notification
3727  * call them now.
3728  */
3729 void
3730 xpt_release_ccb(union ccb *free_ccb)
3731 {
3732 	struct	 cam_path *path;
3733 	struct	 cam_ed *device;
3734 	struct	 cam_eb *bus;
3735 	struct   cam_sim *sim;
3736 
3737 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3738 	path = free_ccb->ccb_h.path;
3739 	device = path->device;
3740 	bus = path->bus;
3741 	sim = bus->sim;
3742 
3743 	mtx_assert(sim->mtx, MA_OWNED);
3744 
3745 	cam_ccbq_release_opening(&device->ccbq);
3746 	if (sim->ccb_count > sim->max_ccbs) {
3747 		xpt_free_ccb(free_ccb);
3748 		sim->ccb_count--;
3749 	} else {
3750 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3751 		    xpt_links.sle);
3752 	}
3753 	xpt_run_dev_allocq(device);
3754 }
3755 
3756 /* Functions accessed by SIM drivers */
3757 
3758 static struct xpt_xport xport_default = {
3759 	.alloc_device = xpt_alloc_device_default,
3760 	.action = xpt_action_default,
3761 	.async = xpt_dev_async_default,
3762 };
3763 
3764 /*
3765  * A sim structure, listing the SIM entry points and instance
3766  * identification info is passed to xpt_bus_register to hook the SIM
3767  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3768  * for this new bus and places it in the array of busses and assigns
3769  * it a path_id.  The path_id may be influenced by "hard wiring"
3770  * information specified by the user.  Once interrupt services are
3771  * available, the bus will be probed.
3772  */
3773 int32_t
3774 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3775 {
3776 	struct cam_eb *new_bus;
3777 	struct cam_eb *old_bus;
3778 	struct ccb_pathinq cpi;
3779 	struct cam_path *path;
3780 	cam_status status;
3781 
3782 	mtx_assert(sim->mtx, MA_OWNED);
3783 
3784 	sim->bus_id = bus;
3785 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3786 					  M_CAMXPT, M_NOWAIT);
3787 	if (new_bus == NULL) {
3788 		/* Couldn't satisfy request */
3789 		return (CAM_RESRC_UNAVAIL);
3790 	}
3791 	if (strcmp(sim->sim_name, "xpt") != 0) {
3792 		sim->path_id =
3793 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3794 	}
3795 
3796 	TAILQ_INIT(&new_bus->et_entries);
3797 	new_bus->path_id = sim->path_id;
3798 	cam_sim_hold(sim);
3799 	new_bus->sim = sim;
3800 	timevalclear(&new_bus->last_reset);
3801 	new_bus->flags = 0;
3802 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3803 	new_bus->generation = 0;
3804 
3805 	xpt_lock_buses();
3806 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3807 	while (old_bus != NULL
3808 	    && old_bus->path_id < new_bus->path_id)
3809 		old_bus = TAILQ_NEXT(old_bus, links);
3810 	if (old_bus != NULL)
3811 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3812 	else
3813 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3814 	xsoftc.bus_generation++;
3815 	xpt_unlock_buses();
3816 
3817 	/*
3818 	 * Set a default transport so that a PATH_INQ can be issued to
3819 	 * the SIM.  This will then allow for probing and attaching of
3820 	 * a more appropriate transport.
3821 	 */
3822 	new_bus->xport = &xport_default;
3823 
3824 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3825 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3826 	if (status != CAM_REQ_CMP) {
3827 		xpt_release_bus(new_bus);
3828 		free(path, M_CAMXPT);
3829 		return (CAM_RESRC_UNAVAIL);
3830 	}
3831 
3832 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3833 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3834 	xpt_action((union ccb *)&cpi);
3835 
3836 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3837 		switch (cpi.transport) {
3838 		case XPORT_SPI:
3839 		case XPORT_SAS:
3840 		case XPORT_FC:
3841 		case XPORT_USB:
3842 		case XPORT_ISCSI:
3843 		case XPORT_PPB:
3844 			new_bus->xport = scsi_get_xport();
3845 			break;
3846 		case XPORT_ATA:
3847 		case XPORT_SATA:
3848 			new_bus->xport = ata_get_xport();
3849 			break;
3850 		default:
3851 			new_bus->xport = &xport_default;
3852 			break;
3853 		}
3854 	}
3855 
3856 	/* Notify interested parties */
3857 	if (sim->path_id != CAM_XPT_PATH_ID) {
3858 
3859 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3860 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3861 			union	ccb *scan_ccb;
3862 
3863 			/* Initiate bus rescan. */
3864 			scan_ccb = xpt_alloc_ccb_nowait();
3865 			if (scan_ccb != NULL) {
3866 				scan_ccb->ccb_h.path = path;
3867 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3868 				scan_ccb->crcn.flags = 0;
3869 				xpt_rescan(scan_ccb);
3870 			} else
3871 				xpt_print(path,
3872 					  "Can't allocate CCB to scan bus\n");
3873 		} else
3874 			xpt_free_path(path);
3875 	} else
3876 		xpt_free_path(path);
3877 	return (CAM_SUCCESS);
3878 }
3879 
3880 int32_t
3881 xpt_bus_deregister(path_id_t pathid)
3882 {
3883 	struct cam_path bus_path;
3884 	cam_status status;
3885 
3886 	status = xpt_compile_path(&bus_path, NULL, pathid,
3887 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3888 	if (status != CAM_REQ_CMP)
3889 		return (status);
3890 
3891 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3892 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3893 
3894 	/* Release the reference count held while registered. */
3895 	xpt_release_bus(bus_path.bus);
3896 	xpt_release_path(&bus_path);
3897 
3898 	return (CAM_REQ_CMP);
3899 }
3900 
3901 static path_id_t
3902 xptnextfreepathid(void)
3903 {
3904 	struct cam_eb *bus;
3905 	path_id_t pathid;
3906 	const char *strval;
3907 
3908 	pathid = 0;
3909 	xpt_lock_buses();
3910 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3911 retry:
3912 	/* Find an unoccupied pathid */
3913 	while (bus != NULL && bus->path_id <= pathid) {
3914 		if (bus->path_id == pathid)
3915 			pathid++;
3916 		bus = TAILQ_NEXT(bus, links);
3917 	}
3918 	xpt_unlock_buses();
3919 
3920 	/*
3921 	 * Ensure that this pathid is not reserved for
3922 	 * a bus that may be registered in the future.
3923 	 */
3924 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3925 		++pathid;
3926 		/* Start the search over */
3927 		xpt_lock_buses();
3928 		goto retry;
3929 	}
3930 	return (pathid);
3931 }
3932 
3933 static path_id_t
3934 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3935 {
3936 	path_id_t pathid;
3937 	int i, dunit, val;
3938 	char buf[32];
3939 	const char *dname;
3940 
3941 	pathid = CAM_XPT_PATH_ID;
3942 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3943 	i = 0;
3944 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3945 		if (strcmp(dname, "scbus")) {
3946 			/* Avoid a bit of foot shooting. */
3947 			continue;
3948 		}
3949 		if (dunit < 0)		/* unwired?! */
3950 			continue;
3951 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3952 			if (sim_bus == val) {
3953 				pathid = dunit;
3954 				break;
3955 			}
3956 		} else if (sim_bus == 0) {
3957 			/* Unspecified matches bus 0 */
3958 			pathid = dunit;
3959 			break;
3960 		} else {
3961 			printf("Ambiguous scbus configuration for %s%d "
3962 			       "bus %d, cannot wire down.  The kernel "
3963 			       "config entry for scbus%d should "
3964 			       "specify a controller bus.\n"
3965 			       "Scbus will be assigned dynamically.\n",
3966 			       sim_name, sim_unit, sim_bus, dunit);
3967 			break;
3968 		}
3969 	}
3970 
3971 	if (pathid == CAM_XPT_PATH_ID)
3972 		pathid = xptnextfreepathid();
3973 	return (pathid);
3974 }
3975 
3976 static const char *
3977 xpt_async_string(u_int32_t async_code)
3978 {
3979 
3980 	switch (async_code) {
3981 	case AC_BUS_RESET: return ("AC_BUS_RESET");
3982 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
3983 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
3984 	case AC_SENT_BDR: return ("AC_SENT_BDR");
3985 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
3986 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
3987 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
3988 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
3989 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
3990 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
3991 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
3992 	case AC_CONTRACT: return ("AC_CONTRACT");
3993 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
3994 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
3995 	}
3996 	return ("AC_UNKNOWN");
3997 }
3998 
3999 void
4000 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4001 {
4002 	struct cam_eb *bus;
4003 	struct cam_et *target, *next_target;
4004 	struct cam_ed *device, *next_device;
4005 
4006 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4007 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4008 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4009 
4010 	/*
4011 	 * Most async events come from a CAM interrupt context.  In
4012 	 * a few cases, the error recovery code at the peripheral layer,
4013 	 * which may run from our SWI or a process context, may signal
4014 	 * deferred events with a call to xpt_async.
4015 	 */
4016 
4017 	bus = path->bus;
4018 
4019 	if (async_code == AC_BUS_RESET) {
4020 		/* Update our notion of when the last reset occurred */
4021 		microtime(&bus->last_reset);
4022 	}
4023 
4024 	for (target = TAILQ_FIRST(&bus->et_entries);
4025 	     target != NULL;
4026 	     target = next_target) {
4027 
4028 		next_target = TAILQ_NEXT(target, links);
4029 
4030 		if (path->target != target
4031 		 && path->target->target_id != CAM_TARGET_WILDCARD
4032 		 && target->target_id != CAM_TARGET_WILDCARD)
4033 			continue;
4034 
4035 		if (async_code == AC_SENT_BDR) {
4036 			/* Update our notion of when the last reset occurred */
4037 			microtime(&path->target->last_reset);
4038 		}
4039 
4040 		for (device = TAILQ_FIRST(&target->ed_entries);
4041 		     device != NULL;
4042 		     device = next_device) {
4043 
4044 			next_device = TAILQ_NEXT(device, links);
4045 
4046 			if (path->device != device
4047 			 && path->device->lun_id != CAM_LUN_WILDCARD
4048 			 && device->lun_id != CAM_LUN_WILDCARD)
4049 				continue;
4050 			/*
4051 			 * The async callback could free the device.
4052 			 * If it is a broadcast async, it doesn't hold
4053 			 * device reference, so take our own reference.
4054 			 */
4055 			xpt_acquire_device(device);
4056 			(*(bus->xport->async))(async_code, bus,
4057 					       target, device,
4058 					       async_arg);
4059 
4060 			xpt_async_bcast(&device->asyncs, async_code,
4061 					path, async_arg);
4062 			xpt_release_device(device);
4063 		}
4064 	}
4065 
4066 	/*
4067 	 * If this wasn't a fully wildcarded async, tell all
4068 	 * clients that want all async events.
4069 	 */
4070 	if (bus != xpt_periph->path->bus)
4071 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4072 				path, async_arg);
4073 }
4074 
4075 static void
4076 xpt_async_bcast(struct async_list *async_head,
4077 		u_int32_t async_code,
4078 		struct cam_path *path, void *async_arg)
4079 {
4080 	struct async_node *cur_entry;
4081 
4082 	cur_entry = SLIST_FIRST(async_head);
4083 	while (cur_entry != NULL) {
4084 		struct async_node *next_entry;
4085 		/*
4086 		 * Grab the next list entry before we call the current
4087 		 * entry's callback.  This is because the callback function
4088 		 * can delete its async callback entry.
4089 		 */
4090 		next_entry = SLIST_NEXT(cur_entry, links);
4091 		if ((cur_entry->event_enable & async_code) != 0)
4092 			cur_entry->callback(cur_entry->callback_arg,
4093 					    async_code, path,
4094 					    async_arg);
4095 		cur_entry = next_entry;
4096 	}
4097 }
4098 
4099 static void
4100 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4101 		      struct cam_et *target, struct cam_ed *device,
4102 		      void *async_arg)
4103 {
4104 	printf("%s called\n", __func__);
4105 }
4106 
4107 u_int32_t
4108 xpt_freeze_devq(struct cam_path *path, u_int count)
4109 {
4110 	struct cam_ed *dev = path->device;
4111 
4112 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4113 	dev->ccbq.queue.qfrozen_cnt += count;
4114 	/* Remove frozen device from sendq. */
4115 	if (device_is_queued(dev)) {
4116 		camq_remove(&dev->sim->devq->send_queue,
4117 		    dev->devq_entry.pinfo.index);
4118 	}
4119 	return (dev->ccbq.queue.qfrozen_cnt);
4120 }
4121 
4122 u_int32_t
4123 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4124 {
4125 
4126 	mtx_assert(sim->mtx, MA_OWNED);
4127 	sim->devq->send_queue.qfrozen_cnt += count;
4128 	return (sim->devq->send_queue.qfrozen_cnt);
4129 }
4130 
4131 static void
4132 xpt_release_devq_timeout(void *arg)
4133 {
4134 	struct cam_ed *device;
4135 
4136 	device = (struct cam_ed *)arg;
4137 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4138 }
4139 
4140 void
4141 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4142 {
4143 
4144 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4145 	xpt_release_devq_device(path->device, count, run_queue);
4146 }
4147 
4148 void
4149 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4150 {
4151 
4152 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4153 #ifdef INVARIANTS
4154 		printf("xpt_release_devq(): requested %u > present %u\n",
4155 		    count, dev->ccbq.queue.qfrozen_cnt);
4156 #endif
4157 		count = dev->ccbq.queue.qfrozen_cnt;
4158 	}
4159 	dev->ccbq.queue.qfrozen_cnt -= count;
4160 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4161 		/*
4162 		 * No longer need to wait for a successful
4163 		 * command completion.
4164 		 */
4165 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4166 		/*
4167 		 * Remove any timeouts that might be scheduled
4168 		 * to release this queue.
4169 		 */
4170 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4171 			callout_stop(&dev->callout);
4172 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4173 		}
4174 		xpt_run_dev_allocq(dev);
4175 		if (run_queue == 0)
4176 			return;
4177 		/*
4178 		 * Now that we are unfrozen schedule the
4179 		 * device so any pending transactions are
4180 		 * run.
4181 		 */
4182 		if (xpt_schedule_devq(dev->sim->devq, dev))
4183 			xpt_run_devq(dev->sim->devq);
4184 	}
4185 }
4186 
4187 void
4188 xpt_release_simq(struct cam_sim *sim, int run_queue)
4189 {
4190 	struct	camq *sendq;
4191 
4192 	mtx_assert(sim->mtx, MA_OWNED);
4193 	sendq = &(sim->devq->send_queue);
4194 	if (sendq->qfrozen_cnt <= 0) {
4195 #ifdef INVARIANTS
4196 		printf("xpt_release_simq: requested 1 > present %u\n",
4197 		    sendq->qfrozen_cnt);
4198 #endif
4199 	} else
4200 		sendq->qfrozen_cnt--;
4201 	if (sendq->qfrozen_cnt == 0) {
4202 		/*
4203 		 * If there is a timeout scheduled to release this
4204 		 * sim queue, remove it.  The queue frozen count is
4205 		 * already at 0.
4206 		 */
4207 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4208 			callout_stop(&sim->callout);
4209 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4210 		}
4211 		if (run_queue) {
4212 			/*
4213 			 * Now that we are unfrozen run the send queue.
4214 			 */
4215 			xpt_run_devq(sim->devq);
4216 		}
4217 	}
4218 }
4219 
4220 /*
4221  * XXX Appears to be unused.
4222  */
4223 static void
4224 xpt_release_simq_timeout(void *arg)
4225 {
4226 	struct cam_sim *sim;
4227 
4228 	sim = (struct cam_sim *)arg;
4229 	xpt_release_simq(sim, /* run_queue */ TRUE);
4230 }
4231 
4232 void
4233 xpt_done(union ccb *done_ccb)
4234 {
4235 	struct cam_sim *sim;
4236 	int	first;
4237 
4238 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4239 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4240 		/*
4241 		 * Queue up the request for handling by our SWI handler
4242 		 * any of the "non-immediate" type of ccbs.
4243 		 */
4244 		sim = done_ccb->ccb_h.path->bus->sim;
4245 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4246 		    sim_links.tqe);
4247 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4248 		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4249 		    CAM_SIM_BATCH)) == 0) {
4250 			mtx_lock(&cam_simq_lock);
4251 			first = TAILQ_EMPTY(&cam_simq);
4252 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4253 			mtx_unlock(&cam_simq_lock);
4254 			sim->flags |= CAM_SIM_ON_DONEQ;
4255 			if (first)
4256 				swi_sched(cambio_ih, 0);
4257 		}
4258 	}
4259 }
4260 
4261 void
4262 xpt_batch_start(struct cam_sim *sim)
4263 {
4264 
4265 	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4266 	sim->flags |= CAM_SIM_BATCH;
4267 }
4268 
4269 void
4270 xpt_batch_done(struct cam_sim *sim)
4271 {
4272 
4273 	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4274 	sim->flags &= ~CAM_SIM_BATCH;
4275 	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4276 	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4277 		camisr_runqueue(sim);
4278 }
4279 
4280 union ccb *
4281 xpt_alloc_ccb()
4282 {
4283 	union ccb *new_ccb;
4284 
4285 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4286 	return (new_ccb);
4287 }
4288 
4289 union ccb *
4290 xpt_alloc_ccb_nowait()
4291 {
4292 	union ccb *new_ccb;
4293 
4294 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4295 	return (new_ccb);
4296 }
4297 
4298 void
4299 xpt_free_ccb(union ccb *free_ccb)
4300 {
4301 	free(free_ccb, M_CAMCCB);
4302 }
4303 
4304 
4305 
4306 /* Private XPT functions */
4307 
4308 /*
4309  * Get a CAM control block for the caller. Charge the structure to the device
4310  * referenced by the path.  If the this device has no 'credits' then the
4311  * device already has the maximum number of outstanding operations under way
4312  * and we return NULL. If we don't have sufficient resources to allocate more
4313  * ccbs, we also return NULL.
4314  */
4315 static union ccb *
4316 xpt_get_ccb(struct cam_ed *device)
4317 {
4318 	union ccb *new_ccb;
4319 	struct cam_sim *sim;
4320 
4321 	sim = device->sim;
4322 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4323 		new_ccb = xpt_alloc_ccb_nowait();
4324                 if (new_ccb == NULL) {
4325 			return (NULL);
4326 		}
4327 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4328 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4329 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4330 				  xpt_links.sle);
4331 		sim->ccb_count++;
4332 	}
4333 	cam_ccbq_take_opening(&device->ccbq);
4334 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4335 	return (new_ccb);
4336 }
4337 
4338 static void
4339 xpt_release_bus(struct cam_eb *bus)
4340 {
4341 
4342 	xpt_lock_buses();
4343 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4344 	if (--bus->refcount > 0) {
4345 		xpt_unlock_buses();
4346 		return;
4347 	}
4348 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4349 	    ("refcount is zero, but target list is not empty"));
4350 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4351 	xsoftc.bus_generation++;
4352 	xpt_unlock_buses();
4353 	cam_sim_release(bus->sim);
4354 	free(bus, M_CAMXPT);
4355 }
4356 
4357 static struct cam_et *
4358 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4359 {
4360 	struct cam_et *cur_target, *target;
4361 
4362 	mtx_assert(bus->sim->mtx, MA_OWNED);
4363 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4364 					 M_NOWAIT|M_ZERO);
4365 	if (target == NULL)
4366 		return (NULL);
4367 
4368 	TAILQ_INIT(&target->ed_entries);
4369 	target->bus = bus;
4370 	target->target_id = target_id;
4371 	target->refcount = 1;
4372 	target->generation = 0;
4373 	target->luns = NULL;
4374 	timevalclear(&target->last_reset);
4375 	/*
4376 	 * Hold a reference to our parent bus so it
4377 	 * will not go away before we do.
4378 	 */
4379 	xpt_lock_buses();
4380 	bus->refcount++;
4381 	xpt_unlock_buses();
4382 
4383 	/* Insertion sort into our bus's target list */
4384 	cur_target = TAILQ_FIRST(&bus->et_entries);
4385 	while (cur_target != NULL && cur_target->target_id < target_id)
4386 		cur_target = TAILQ_NEXT(cur_target, links);
4387 	if (cur_target != NULL) {
4388 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4389 	} else {
4390 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4391 	}
4392 	bus->generation++;
4393 	return (target);
4394 }
4395 
4396 static void
4397 xpt_release_target(struct cam_et *target)
4398 {
4399 
4400 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4401 	if (--target->refcount > 0)
4402 		return;
4403 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4404 	    ("refcount is zero, but device list is not empty"));
4405 	TAILQ_REMOVE(&target->bus->et_entries, target, links);
4406 	target->bus->generation++;
4407 	xpt_release_bus(target->bus);
4408 	if (target->luns)
4409 		free(target->luns, M_CAMXPT);
4410 	free(target, M_CAMXPT);
4411 }
4412 
4413 static struct cam_ed *
4414 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4415 			 lun_id_t lun_id)
4416 {
4417 	struct cam_ed *device;
4418 
4419 	device = xpt_alloc_device(bus, target, lun_id);
4420 	if (device == NULL)
4421 		return (NULL);
4422 
4423 	device->mintags = 1;
4424 	device->maxtags = 1;
4425 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4426 	return (device);
4427 }
4428 
4429 struct cam_ed *
4430 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4431 {
4432 	struct cam_ed	*cur_device, *device;
4433 	struct cam_devq	*devq;
4434 	cam_status status;
4435 
4436 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4437 	/* Make space for us in the device queue on our bus */
4438 	devq = bus->sim->devq;
4439 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4440 	if (status != CAM_REQ_CMP)
4441 		return (NULL);
4442 
4443 	device = (struct cam_ed *)malloc(sizeof(*device),
4444 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4445 	if (device == NULL)
4446 		return (NULL);
4447 
4448 	cam_init_pinfo(&device->devq_entry.pinfo);
4449 	device->devq_entry.device = device;
4450 	device->target = target;
4451 	device->lun_id = lun_id;
4452 	device->sim = bus->sim;
4453 	/* Initialize our queues */
4454 	if (camq_init(&device->drvq, 0) != 0) {
4455 		free(device, M_CAMDEV);
4456 		return (NULL);
4457 	}
4458 	if (cam_ccbq_init(&device->ccbq,
4459 			  bus->sim->max_dev_openings) != 0) {
4460 		camq_fini(&device->drvq);
4461 		free(device, M_CAMDEV);
4462 		return (NULL);
4463 	}
4464 	SLIST_INIT(&device->asyncs);
4465 	SLIST_INIT(&device->periphs);
4466 	device->generation = 0;
4467 	device->flags = CAM_DEV_UNCONFIGURED;
4468 	device->tag_delay_count = 0;
4469 	device->tag_saved_openings = 0;
4470 	device->refcount = 1;
4471 	callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4472 
4473 	cur_device = TAILQ_FIRST(&target->ed_entries);
4474 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4475 		cur_device = TAILQ_NEXT(cur_device, links);
4476 	if (cur_device != NULL)
4477 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4478 	else
4479 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4480 	target->refcount++;
4481 	target->generation++;
4482 	return (device);
4483 }
4484 
4485 void
4486 xpt_acquire_device(struct cam_ed *device)
4487 {
4488 
4489 	mtx_assert(device->sim->mtx, MA_OWNED);
4490 	device->refcount++;
4491 }
4492 
4493 void
4494 xpt_release_device(struct cam_ed *device)
4495 {
4496 	struct cam_devq *devq;
4497 
4498 	mtx_assert(device->sim->mtx, MA_OWNED);
4499 	if (--device->refcount > 0)
4500 		return;
4501 
4502 	KASSERT(SLIST_EMPTY(&device->periphs),
4503 	    ("refcount is zero, but periphs list is not empty"));
4504 	if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4505 		panic("Removing device while still queued for ccbs");
4506 
4507 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4508 		callout_stop(&device->callout);
4509 
4510 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4511 	device->target->generation++;
4512 	device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4513 	/* Release our slot in the devq */
4514 	devq = device->target->bus->sim->devq;
4515 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4516 	camq_fini(&device->drvq);
4517 	cam_ccbq_fini(&device->ccbq);
4518 	/*
4519 	 * Free allocated memory.  free(9) does nothing if the
4520 	 * supplied pointer is NULL, so it is safe to call without
4521 	 * checking.
4522 	 */
4523 	free(device->supported_vpds, M_CAMXPT);
4524 	free(device->device_id, M_CAMXPT);
4525 	free(device->physpath, M_CAMXPT);
4526 	free(device->rcap_buf, M_CAMXPT);
4527 	free(device->serial_num, M_CAMXPT);
4528 
4529 	xpt_release_target(device->target);
4530 	free(device, M_CAMDEV);
4531 }
4532 
4533 u_int32_t
4534 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4535 {
4536 	int	diff;
4537 	int	result;
4538 	struct	cam_ed *dev;
4539 
4540 	dev = path->device;
4541 
4542 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4543 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4544 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4545 	 || (dev->inq_flags & SID_CmdQue) != 0)
4546 		dev->tag_saved_openings = newopenings;
4547 	/* Adjust the global limit */
4548 	dev->sim->max_ccbs += diff;
4549 	return (result);
4550 }
4551 
4552 static struct cam_eb *
4553 xpt_find_bus(path_id_t path_id)
4554 {
4555 	struct cam_eb *bus;
4556 
4557 	xpt_lock_buses();
4558 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4559 	     bus != NULL;
4560 	     bus = TAILQ_NEXT(bus, links)) {
4561 		if (bus->path_id == path_id) {
4562 			bus->refcount++;
4563 			break;
4564 		}
4565 	}
4566 	xpt_unlock_buses();
4567 	return (bus);
4568 }
4569 
4570 static struct cam_et *
4571 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4572 {
4573 	struct cam_et *target;
4574 
4575 	mtx_assert(bus->sim->mtx, MA_OWNED);
4576 	for (target = TAILQ_FIRST(&bus->et_entries);
4577 	     target != NULL;
4578 	     target = TAILQ_NEXT(target, links)) {
4579 		if (target->target_id == target_id) {
4580 			target->refcount++;
4581 			break;
4582 		}
4583 	}
4584 	return (target);
4585 }
4586 
4587 static struct cam_ed *
4588 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4589 {
4590 	struct cam_ed *device;
4591 
4592 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4593 	for (device = TAILQ_FIRST(&target->ed_entries);
4594 	     device != NULL;
4595 	     device = TAILQ_NEXT(device, links)) {
4596 		if (device->lun_id == lun_id) {
4597 			device->refcount++;
4598 			break;
4599 		}
4600 	}
4601 	return (device);
4602 }
4603 
4604 void
4605 xpt_start_tags(struct cam_path *path)
4606 {
4607 	struct ccb_relsim crs;
4608 	struct cam_ed *device;
4609 	struct cam_sim *sim;
4610 	int    newopenings;
4611 
4612 	device = path->device;
4613 	sim = path->bus->sim;
4614 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4615 	xpt_freeze_devq(path, /*count*/1);
4616 	device->inq_flags |= SID_CmdQue;
4617 	if (device->tag_saved_openings != 0)
4618 		newopenings = device->tag_saved_openings;
4619 	else
4620 		newopenings = min(device->maxtags,
4621 				  sim->max_tagged_dev_openings);
4622 	xpt_dev_ccbq_resize(path, newopenings);
4623 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4624 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4625 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4626 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4627 	crs.openings
4628 	    = crs.release_timeout
4629 	    = crs.qfrozen_cnt
4630 	    = 0;
4631 	xpt_action((union ccb *)&crs);
4632 }
4633 
4634 void
4635 xpt_stop_tags(struct cam_path *path)
4636 {
4637 	struct ccb_relsim crs;
4638 	struct cam_ed *device;
4639 	struct cam_sim *sim;
4640 
4641 	device = path->device;
4642 	sim = path->bus->sim;
4643 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4644 	device->tag_delay_count = 0;
4645 	xpt_freeze_devq(path, /*count*/1);
4646 	device->inq_flags &= ~SID_CmdQue;
4647 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4648 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4649 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4650 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4651 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4652 	crs.openings
4653 	    = crs.release_timeout
4654 	    = crs.qfrozen_cnt
4655 	    = 0;
4656 	xpt_action((union ccb *)&crs);
4657 }
4658 
4659 static void
4660 xpt_boot_delay(void *arg)
4661 {
4662 
4663 	xpt_release_boot();
4664 }
4665 
4666 static void
4667 xpt_config(void *arg)
4668 {
4669 	/*
4670 	 * Now that interrupts are enabled, go find our devices
4671 	 */
4672 
4673 	/* Setup debugging path */
4674 	if (cam_dflags != CAM_DEBUG_NONE) {
4675 		if (xpt_create_path_unlocked(&cam_dpath, NULL,
4676 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4677 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4678 			printf("xpt_config: xpt_create_path() failed for debug"
4679 			       " target %d:%d:%d, debugging disabled\n",
4680 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4681 			cam_dflags = CAM_DEBUG_NONE;
4682 		}
4683 	} else
4684 		cam_dpath = NULL;
4685 
4686 	periphdriver_init(1);
4687 	xpt_hold_boot();
4688 	callout_init(&xsoftc.boot_callout, 1);
4689 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4690 	    xpt_boot_delay, NULL);
4691 	/* Fire up rescan thread. */
4692 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4693 		printf("xpt_config: failed to create rescan thread.\n");
4694 	}
4695 }
4696 
4697 void
4698 xpt_hold_boot(void)
4699 {
4700 	xpt_lock_buses();
4701 	xsoftc.buses_to_config++;
4702 	xpt_unlock_buses();
4703 }
4704 
4705 void
4706 xpt_release_boot(void)
4707 {
4708 	xpt_lock_buses();
4709 	xsoftc.buses_to_config--;
4710 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4711 		struct	xpt_task *task;
4712 
4713 		xsoftc.buses_config_done = 1;
4714 		xpt_unlock_buses();
4715 		/* Call manually because we don't have any busses */
4716 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4717 		if (task != NULL) {
4718 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4719 			taskqueue_enqueue(taskqueue_thread, &task->task);
4720 		}
4721 	} else
4722 		xpt_unlock_buses();
4723 }
4724 
4725 /*
4726  * If the given device only has one peripheral attached to it, and if that
4727  * peripheral is the passthrough driver, announce it.  This insures that the
4728  * user sees some sort of announcement for every peripheral in their system.
4729  */
4730 static int
4731 xptpassannouncefunc(struct cam_ed *device, void *arg)
4732 {
4733 	struct cam_periph *periph;
4734 	int i;
4735 
4736 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4737 	     periph = SLIST_NEXT(periph, periph_links), i++);
4738 
4739 	periph = SLIST_FIRST(&device->periphs);
4740 	if ((i == 1)
4741 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4742 		xpt_announce_periph(periph, NULL);
4743 
4744 	return(1);
4745 }
4746 
4747 static void
4748 xpt_finishconfig_task(void *context, int pending)
4749 {
4750 
4751 	periphdriver_init(2);
4752 	/*
4753 	 * Check for devices with no "standard" peripheral driver
4754 	 * attached.  For any devices like that, announce the
4755 	 * passthrough driver so the user will see something.
4756 	 */
4757 	if (!bootverbose)
4758 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4759 
4760 	/* Release our hook so that the boot can continue. */
4761 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4762 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4763 	xsoftc.xpt_config_hook = NULL;
4764 
4765 	free(context, M_CAMXPT);
4766 }
4767 
4768 cam_status
4769 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4770 		   struct cam_path *path)
4771 {
4772 	struct ccb_setasync csa;
4773 	cam_status status;
4774 	int xptpath = 0;
4775 
4776 	if (path == NULL) {
4777 		mtx_lock(&xsoftc.xpt_lock);
4778 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4779 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4780 		if (status != CAM_REQ_CMP) {
4781 			mtx_unlock(&xsoftc.xpt_lock);
4782 			return (status);
4783 		}
4784 		xptpath = 1;
4785 	}
4786 
4787 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4788 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4789 	csa.event_enable = event;
4790 	csa.callback = cbfunc;
4791 	csa.callback_arg = cbarg;
4792 	xpt_action((union ccb *)&csa);
4793 	status = csa.ccb_h.status;
4794 
4795 	if (xptpath) {
4796 		xpt_free_path(path);
4797 		mtx_unlock(&xsoftc.xpt_lock);
4798 	}
4799 
4800 	if ((status == CAM_REQ_CMP) &&
4801 	    (csa.event_enable & AC_FOUND_DEVICE)) {
4802 		/*
4803 		 * Get this peripheral up to date with all
4804 		 * the currently existing devices.
4805 		 */
4806 		xpt_for_all_devices(xptsetasyncfunc, &csa);
4807 	}
4808 	if ((status == CAM_REQ_CMP) &&
4809 	    (csa.event_enable & AC_PATH_REGISTERED)) {
4810 		/*
4811 		 * Get this peripheral up to date with all
4812 		 * the currently existing busses.
4813 		 */
4814 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4815 	}
4816 
4817 	return (status);
4818 }
4819 
4820 static void
4821 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4822 {
4823 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4824 
4825 	switch (work_ccb->ccb_h.func_code) {
4826 	/* Common cases first */
4827 	case XPT_PATH_INQ:		/* Path routing inquiry */
4828 	{
4829 		struct ccb_pathinq *cpi;
4830 
4831 		cpi = &work_ccb->cpi;
4832 		cpi->version_num = 1; /* XXX??? */
4833 		cpi->hba_inquiry = 0;
4834 		cpi->target_sprt = 0;
4835 		cpi->hba_misc = 0;
4836 		cpi->hba_eng_cnt = 0;
4837 		cpi->max_target = 0;
4838 		cpi->max_lun = 0;
4839 		cpi->initiator_id = 0;
4840 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4841 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4842 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4843 		cpi->unit_number = sim->unit_number;
4844 		cpi->bus_id = sim->bus_id;
4845 		cpi->base_transfer_speed = 0;
4846 		cpi->protocol = PROTO_UNSPECIFIED;
4847 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4848 		cpi->transport = XPORT_UNSPECIFIED;
4849 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4850 		cpi->ccb_h.status = CAM_REQ_CMP;
4851 		xpt_done(work_ccb);
4852 		break;
4853 	}
4854 	default:
4855 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4856 		xpt_done(work_ccb);
4857 		break;
4858 	}
4859 }
4860 
4861 /*
4862  * The xpt as a "controller" has no interrupt sources, so polling
4863  * is a no-op.
4864  */
4865 static void
4866 xptpoll(struct cam_sim *sim)
4867 {
4868 }
4869 
4870 void
4871 xpt_lock_buses(void)
4872 {
4873 	mtx_lock(&xsoftc.xpt_topo_lock);
4874 }
4875 
4876 void
4877 xpt_unlock_buses(void)
4878 {
4879 	mtx_unlock(&xsoftc.xpt_topo_lock);
4880 }
4881 
4882 static void
4883 camisr(void *dummy)
4884 {
4885 	cam_simq_t queue;
4886 	struct cam_sim *sim;
4887 
4888 	mtx_lock(&cam_simq_lock);
4889 	TAILQ_INIT(&queue);
4890 	while (!TAILQ_EMPTY(&cam_simq)) {
4891 		TAILQ_CONCAT(&queue, &cam_simq, links);
4892 		mtx_unlock(&cam_simq_lock);
4893 
4894 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4895 			TAILQ_REMOVE(&queue, sim, links);
4896 			CAM_SIM_LOCK(sim);
4897 			camisr_runqueue(sim);
4898 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4899 			CAM_SIM_UNLOCK(sim);
4900 		}
4901 		mtx_lock(&cam_simq_lock);
4902 	}
4903 	mtx_unlock(&cam_simq_lock);
4904 }
4905 
4906 static void
4907 camisr_runqueue(struct cam_sim *sim)
4908 {
4909 	struct	ccb_hdr *ccb_h;
4910 
4911 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
4912 		int	runq;
4913 
4914 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
4915 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4916 
4917 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4918 			  ("camisr\n"));
4919 
4920 		runq = FALSE;
4921 
4922 		if (ccb_h->flags & CAM_HIGH_POWER) {
4923 			struct highpowerlist	*hphead;
4924 			struct cam_ed		*device;
4925 
4926 			mtx_lock(&xsoftc.xpt_lock);
4927 			hphead = &xsoftc.highpowerq;
4928 
4929 			device = STAILQ_FIRST(hphead);
4930 
4931 			/*
4932 			 * Increment the count since this command is done.
4933 			 */
4934 			xsoftc.num_highpower++;
4935 
4936 			/*
4937 			 * Any high powered commands queued up?
4938 			 */
4939 			if (device != NULL) {
4940 
4941 				STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
4942 				mtx_unlock(&xsoftc.xpt_lock);
4943 
4944 				xpt_release_devq_device(device,
4945 						 /*count*/1, /*runqueue*/TRUE);
4946 			} else
4947 				mtx_unlock(&xsoftc.xpt_lock);
4948 		}
4949 
4950 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4951 			struct cam_ed *dev;
4952 
4953 			dev = ccb_h->path->device;
4954 
4955 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4956 			sim->devq->send_active--;
4957 			sim->devq->send_openings++;
4958 			runq = TRUE;
4959 
4960 			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4961 			  && (dev->ccbq.dev_active == 0))) {
4962 				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
4963 				xpt_release_devq(ccb_h->path, /*count*/1,
4964 						 /*run_queue*/FALSE);
4965 			}
4966 
4967 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4968 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
4969 				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4970 				xpt_release_devq(ccb_h->path, /*count*/1,
4971 						 /*run_queue*/FALSE);
4972 			}
4973 
4974 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4975 			 && (--dev->tag_delay_count == 0))
4976 				xpt_start_tags(ccb_h->path);
4977 			if (!device_is_queued(dev)) {
4978 				(void)xpt_schedule_devq(sim->devq, dev);
4979 			}
4980 		}
4981 
4982 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
4983 			xpt_release_simq(sim, /*run_queue*/TRUE);
4984 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
4985 			runq = FALSE;
4986 		}
4987 
4988 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4989 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
4990 			xpt_release_devq(ccb_h->path, /*count*/1,
4991 					 /*run_queue*/TRUE);
4992 			ccb_h->status &= ~CAM_DEV_QFRZN;
4993 		} else if (runq) {
4994 			xpt_run_devq(sim->devq);
4995 		}
4996 
4997 		/* Call the peripheral driver's callback */
4998 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4999 	}
5000 }
5001