1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_sim.h> 56 #include <cam/cam_xpt.h> 57 #include <cam/cam_xpt_sim.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_xpt_internal.h> 60 #include <cam/cam_debug.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 #include <machine/md_var.h> /* geometry translation */ 67 #include <machine/stdarg.h> /* for xpt_print below */ 68 69 #include "opt_cam.h" 70 71 /* 72 * This is the maximum number of high powered commands (e.g. start unit) 73 * that can be outstanding at a particular time. 74 */ 75 #ifndef CAM_MAX_HIGHPOWER 76 #define CAM_MAX_HIGHPOWER 4 77 #endif 78 79 /* Datastructures internal to the xpt layer */ 80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 81 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 82 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 83 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 84 85 /* Object for defering XPT actions to a taskqueue */ 86 struct xpt_task { 87 struct task task; 88 void *data1; 89 uintptr_t data2; 90 }; 91 92 typedef enum { 93 XPT_FLAG_OPEN = 0x01 94 } xpt_flags; 95 96 struct xpt_softc { 97 xpt_flags flags; 98 u_int32_t xpt_generation; 99 100 /* number of high powered commands that can go through right now */ 101 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* Registered busses */ 110 TAILQ_HEAD(,cam_eb) xpt_busses; 111 u_int bus_generation; 112 113 struct intr_config_hook *xpt_config_hook; 114 115 int boot_delay; 116 struct callout boot_callout; 117 118 struct mtx xpt_topo_lock; 119 struct mtx xpt_lock; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 156 &xsoftc.boot_delay, 0, "Bus registration wait time"); 157 158 /* Queues for our software interrupt handler */ 159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 161 static cam_simq_t cam_simq; 162 static struct mtx cam_simq_lock; 163 164 /* Pointers to software interrupt handlers */ 165 static void *cambio_ih; 166 167 struct cam_periph *xpt_periph; 168 169 static periph_init_t xpt_periph_init; 170 171 static struct periph_driver xpt_driver = 172 { 173 xpt_periph_init, "xpt", 174 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 175 CAM_PERIPH_DRV_EARLY 176 }; 177 178 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 179 180 static d_open_t xptopen; 181 static d_close_t xptclose; 182 static d_ioctl_t xptioctl; 183 184 static struct cdevsw xpt_cdevsw = { 185 .d_version = D_VERSION, 186 .d_flags = 0, 187 .d_open = xptopen, 188 .d_close = xptclose, 189 .d_ioctl = xptioctl, 190 .d_name = "xpt", 191 }; 192 193 /* Storage for debugging datastructures */ 194 struct cam_path *cam_dpath; 195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 196 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 197 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 198 &cam_dflags, 0, "Enabled debug flags"); 199 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 200 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 202 &cam_debug_delay, 0, "Delay in us after each debug message"); 203 204 /* Our boot-time initialization hook */ 205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 206 207 static moduledata_t cam_moduledata = { 208 "cam", 209 cam_module_event_handler, 210 NULL 211 }; 212 213 static int xpt_init(void *); 214 215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 216 MODULE_VERSION(cam, 1); 217 218 219 static void xpt_async_bcast(struct async_list *async_head, 220 u_int32_t async_code, 221 struct cam_path *path, 222 void *async_arg); 223 static path_id_t xptnextfreepathid(void); 224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 225 static union ccb *xpt_get_ccb(struct cam_ed *device); 226 static void xpt_run_dev_allocq(struct cam_eb *bus); 227 static void xpt_run_dev_sendq(struct cam_eb *bus); 228 static timeout_t xpt_release_devq_timeout; 229 static void xpt_release_simq_timeout(void *arg) __unused; 230 static void xpt_release_bus(struct cam_eb *bus); 231 static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, 232 u_int count, int run_queue); 233 static struct cam_et* 234 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 235 static void xpt_release_target(struct cam_et *target); 236 static struct cam_eb* 237 xpt_find_bus(path_id_t path_id); 238 static struct cam_et* 239 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 240 static struct cam_ed* 241 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 242 static void xpt_config(void *arg); 243 static xpt_devicefunc_t xptpassannouncefunc; 244 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 245 static void xptpoll(struct cam_sim *sim); 246 static void camisr(void *); 247 static void camisr_runqueue(void *); 248 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 249 u_int num_patterns, struct cam_eb *bus); 250 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 251 u_int num_patterns, 252 struct cam_ed *device); 253 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 254 u_int num_patterns, 255 struct cam_periph *periph); 256 static xpt_busfunc_t xptedtbusfunc; 257 static xpt_targetfunc_t xptedttargetfunc; 258 static xpt_devicefunc_t xptedtdevicefunc; 259 static xpt_periphfunc_t xptedtperiphfunc; 260 static xpt_pdrvfunc_t xptplistpdrvfunc; 261 static xpt_periphfunc_t xptplistperiphfunc; 262 static int xptedtmatch(struct ccb_dev_match *cdm); 263 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 264 static int xptbustraverse(struct cam_eb *start_bus, 265 xpt_busfunc_t *tr_func, void *arg); 266 static int xpttargettraverse(struct cam_eb *bus, 267 struct cam_et *start_target, 268 xpt_targetfunc_t *tr_func, void *arg); 269 static int xptdevicetraverse(struct cam_et *target, 270 struct cam_ed *start_device, 271 xpt_devicefunc_t *tr_func, void *arg); 272 static int xptperiphtraverse(struct cam_ed *device, 273 struct cam_periph *start_periph, 274 xpt_periphfunc_t *tr_func, void *arg); 275 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 276 xpt_pdrvfunc_t *tr_func, void *arg); 277 static int xptpdperiphtraverse(struct periph_driver **pdrv, 278 struct cam_periph *start_periph, 279 xpt_periphfunc_t *tr_func, 280 void *arg); 281 static xpt_busfunc_t xptdefbusfunc; 282 static xpt_targetfunc_t xptdeftargetfunc; 283 static xpt_devicefunc_t xptdefdevicefunc; 284 static xpt_periphfunc_t xptdefperiphfunc; 285 static void xpt_finishconfig_task(void *context, int pending); 286 static void xpt_dev_async_default(u_int32_t async_code, 287 struct cam_eb *bus, 288 struct cam_et *target, 289 struct cam_ed *device, 290 void *async_arg); 291 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 292 struct cam_et *target, 293 lun_id_t lun_id); 294 static xpt_devicefunc_t xptsetasyncfunc; 295 static xpt_busfunc_t xptsetasyncbusfunc; 296 static cam_status xptregister(struct cam_periph *periph, 297 void *arg); 298 static __inline int periph_is_queued(struct cam_periph *periph); 299 static __inline int device_is_alloc_queued(struct cam_ed *device); 300 static __inline int device_is_send_queued(struct cam_ed *device); 301 302 static __inline int 303 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 304 { 305 int retval; 306 307 if ((dev->drvq.entries > 0) && 308 (dev->ccbq.devq_openings > 0) && 309 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 310 CAMQ_GET_PRIO(&dev->drvq))) == 0)) { 311 /* 312 * The priority of a device waiting for CCB resources 313 * is that of the highest priority peripheral driver 314 * enqueued. 315 */ 316 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 317 &dev->alloc_ccb_entry.pinfo, 318 CAMQ_GET_PRIO(&dev->drvq)); 319 } else { 320 retval = 0; 321 } 322 323 return (retval); 324 } 325 326 static __inline int 327 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 328 { 329 int retval; 330 331 if ((dev->ccbq.queue.entries > 0) && 332 (dev->ccbq.dev_openings > 0) && 333 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) { 334 /* 335 * The priority of a device waiting for controller 336 * resources is that of the highest priority CCB 337 * enqueued. 338 */ 339 retval = 340 xpt_schedule_dev(&bus->sim->devq->send_queue, 341 &dev->send_ccb_entry.pinfo, 342 CAMQ_GET_PRIO(&dev->ccbq.queue)); 343 } else { 344 retval = 0; 345 } 346 return (retval); 347 } 348 349 static __inline int 350 periph_is_queued(struct cam_periph *periph) 351 { 352 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 353 } 354 355 static __inline int 356 device_is_alloc_queued(struct cam_ed *device) 357 { 358 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 359 } 360 361 static __inline int 362 device_is_send_queued(struct cam_ed *device) 363 { 364 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 365 } 366 367 static void 368 xpt_periph_init() 369 { 370 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 371 } 372 373 static void 374 xptdone(struct cam_periph *periph, union ccb *done_ccb) 375 { 376 /* Caller will release the CCB */ 377 wakeup(&done_ccb->ccb_h.cbfcnp); 378 } 379 380 static int 381 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 382 { 383 384 /* 385 * Only allow read-write access. 386 */ 387 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 388 return(EPERM); 389 390 /* 391 * We don't allow nonblocking access. 392 */ 393 if ((flags & O_NONBLOCK) != 0) { 394 printf("%s: can't do nonblocking access\n", devtoname(dev)); 395 return(ENODEV); 396 } 397 398 /* Mark ourselves open */ 399 mtx_lock(&xsoftc.xpt_lock); 400 xsoftc.flags |= XPT_FLAG_OPEN; 401 mtx_unlock(&xsoftc.xpt_lock); 402 403 return(0); 404 } 405 406 static int 407 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 408 { 409 410 /* Mark ourselves closed */ 411 mtx_lock(&xsoftc.xpt_lock); 412 xsoftc.flags &= ~XPT_FLAG_OPEN; 413 mtx_unlock(&xsoftc.xpt_lock); 414 415 return(0); 416 } 417 418 /* 419 * Don't automatically grab the xpt softc lock here even though this is going 420 * through the xpt device. The xpt device is really just a back door for 421 * accessing other devices and SIMs, so the right thing to do is to grab 422 * the appropriate SIM lock once the bus/SIM is located. 423 */ 424 static int 425 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 426 { 427 int error; 428 429 error = 0; 430 431 switch(cmd) { 432 /* 433 * For the transport layer CAMIOCOMMAND ioctl, we really only want 434 * to accept CCB types that don't quite make sense to send through a 435 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 436 * in the CAM spec. 437 */ 438 case CAMIOCOMMAND: { 439 union ccb *ccb; 440 union ccb *inccb; 441 struct cam_eb *bus; 442 443 inccb = (union ccb *)addr; 444 445 bus = xpt_find_bus(inccb->ccb_h.path_id); 446 if (bus == NULL) 447 return (EINVAL); 448 449 switch (inccb->ccb_h.func_code) { 450 case XPT_SCAN_BUS: 451 case XPT_RESET_BUS: 452 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 453 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 454 xpt_release_bus(bus); 455 return (EINVAL); 456 } 457 break; 458 case XPT_SCAN_TGT: 459 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 461 xpt_release_bus(bus); 462 return (EINVAL); 463 } 464 break; 465 default: 466 break; 467 } 468 469 switch(inccb->ccb_h.func_code) { 470 case XPT_SCAN_BUS: 471 case XPT_RESET_BUS: 472 case XPT_PATH_INQ: 473 case XPT_ENG_INQ: 474 case XPT_SCAN_LUN: 475 case XPT_SCAN_TGT: 476 477 ccb = xpt_alloc_ccb(); 478 479 CAM_SIM_LOCK(bus->sim); 480 481 /* 482 * Create a path using the bus, target, and lun the 483 * user passed in. 484 */ 485 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 486 inccb->ccb_h.path_id, 487 inccb->ccb_h.target_id, 488 inccb->ccb_h.target_lun) != 489 CAM_REQ_CMP){ 490 error = EINVAL; 491 CAM_SIM_UNLOCK(bus->sim); 492 xpt_free_ccb(ccb); 493 break; 494 } 495 /* Ensure all of our fields are correct */ 496 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 497 inccb->ccb_h.pinfo.priority); 498 xpt_merge_ccb(ccb, inccb); 499 ccb->ccb_h.cbfcnp = xptdone; 500 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 501 bcopy(ccb, inccb, sizeof(union ccb)); 502 xpt_free_path(ccb->ccb_h.path); 503 xpt_free_ccb(ccb); 504 CAM_SIM_UNLOCK(bus->sim); 505 break; 506 507 case XPT_DEBUG: { 508 union ccb ccb; 509 510 /* 511 * This is an immediate CCB, so it's okay to 512 * allocate it on the stack. 513 */ 514 515 CAM_SIM_LOCK(bus->sim); 516 517 /* 518 * Create a path using the bus, target, and lun the 519 * user passed in. 520 */ 521 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 522 inccb->ccb_h.path_id, 523 inccb->ccb_h.target_id, 524 inccb->ccb_h.target_lun) != 525 CAM_REQ_CMP){ 526 error = EINVAL; 527 CAM_SIM_UNLOCK(bus->sim); 528 break; 529 } 530 /* Ensure all of our fields are correct */ 531 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 532 inccb->ccb_h.pinfo.priority); 533 xpt_merge_ccb(&ccb, inccb); 534 ccb.ccb_h.cbfcnp = xptdone; 535 xpt_action(&ccb); 536 bcopy(&ccb, inccb, sizeof(union ccb)); 537 xpt_free_path(ccb.ccb_h.path); 538 CAM_SIM_UNLOCK(bus->sim); 539 break; 540 541 } 542 case XPT_DEV_MATCH: { 543 struct cam_periph_map_info mapinfo; 544 struct cam_path *old_path; 545 546 /* 547 * We can't deal with physical addresses for this 548 * type of transaction. 549 */ 550 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 551 error = EINVAL; 552 break; 553 } 554 555 /* 556 * Save this in case the caller had it set to 557 * something in particular. 558 */ 559 old_path = inccb->ccb_h.path; 560 561 /* 562 * We really don't need a path for the matching 563 * code. The path is needed because of the 564 * debugging statements in xpt_action(). They 565 * assume that the CCB has a valid path. 566 */ 567 inccb->ccb_h.path = xpt_periph->path; 568 569 bzero(&mapinfo, sizeof(mapinfo)); 570 571 /* 572 * Map the pattern and match buffers into kernel 573 * virtual address space. 574 */ 575 error = cam_periph_mapmem(inccb, &mapinfo); 576 577 if (error) { 578 inccb->ccb_h.path = old_path; 579 break; 580 } 581 582 /* 583 * This is an immediate CCB, we can send it on directly. 584 */ 585 CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path)); 586 xpt_action(inccb); 587 CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path)); 588 589 /* 590 * Map the buffers back into user space. 591 */ 592 cam_periph_unmapmem(inccb, &mapinfo); 593 594 inccb->ccb_h.path = old_path; 595 596 error = 0; 597 break; 598 } 599 default: 600 error = ENOTSUP; 601 break; 602 } 603 xpt_release_bus(bus); 604 break; 605 } 606 /* 607 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 608 * with the periphal driver name and unit name filled in. The other 609 * fields don't really matter as input. The passthrough driver name 610 * ("pass"), and unit number are passed back in the ccb. The current 611 * device generation number, and the index into the device peripheral 612 * driver list, and the status are also passed back. Note that 613 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 614 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 615 * (or rather should be) impossible for the device peripheral driver 616 * list to change since we look at the whole thing in one pass, and 617 * we do it with lock protection. 618 * 619 */ 620 case CAMGETPASSTHRU: { 621 union ccb *ccb; 622 struct cam_periph *periph; 623 struct periph_driver **p_drv; 624 char *name; 625 u_int unit; 626 u_int cur_generation; 627 int base_periph_found; 628 int splbreaknum; 629 630 ccb = (union ccb *)addr; 631 unit = ccb->cgdl.unit_number; 632 name = ccb->cgdl.periph_name; 633 /* 634 * Every 100 devices, we want to drop our lock protection to 635 * give the software interrupt handler a chance to run. 636 * Most systems won't run into this check, but this should 637 * avoid starvation in the software interrupt handler in 638 * large systems. 639 */ 640 splbreaknum = 100; 641 642 ccb = (union ccb *)addr; 643 644 base_periph_found = 0; 645 646 /* 647 * Sanity check -- make sure we don't get a null peripheral 648 * driver name. 649 */ 650 if (*ccb->cgdl.periph_name == '\0') { 651 error = EINVAL; 652 break; 653 } 654 655 /* Keep the list from changing while we traverse it */ 656 mtx_lock(&xsoftc.xpt_topo_lock); 657 ptstartover: 658 cur_generation = xsoftc.xpt_generation; 659 660 /* first find our driver in the list of drivers */ 661 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 662 if (strcmp((*p_drv)->driver_name, name) == 0) 663 break; 664 665 if (*p_drv == NULL) { 666 mtx_unlock(&xsoftc.xpt_topo_lock); 667 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 668 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 669 *ccb->cgdl.periph_name = '\0'; 670 ccb->cgdl.unit_number = 0; 671 error = ENOENT; 672 break; 673 } 674 675 /* 676 * Run through every peripheral instance of this driver 677 * and check to see whether it matches the unit passed 678 * in by the user. If it does, get out of the loops and 679 * find the passthrough driver associated with that 680 * peripheral driver. 681 */ 682 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 683 periph = TAILQ_NEXT(periph, unit_links)) { 684 685 if (periph->unit_number == unit) { 686 break; 687 } else if (--splbreaknum == 0) { 688 mtx_unlock(&xsoftc.xpt_topo_lock); 689 mtx_lock(&xsoftc.xpt_topo_lock); 690 splbreaknum = 100; 691 if (cur_generation != xsoftc.xpt_generation) 692 goto ptstartover; 693 } 694 } 695 /* 696 * If we found the peripheral driver that the user passed 697 * in, go through all of the peripheral drivers for that 698 * particular device and look for a passthrough driver. 699 */ 700 if (periph != NULL) { 701 struct cam_ed *device; 702 int i; 703 704 base_periph_found = 1; 705 device = periph->path->device; 706 for (i = 0, periph = SLIST_FIRST(&device->periphs); 707 periph != NULL; 708 periph = SLIST_NEXT(periph, periph_links), i++) { 709 /* 710 * Check to see whether we have a 711 * passthrough device or not. 712 */ 713 if (strcmp(periph->periph_name, "pass") == 0) { 714 /* 715 * Fill in the getdevlist fields. 716 */ 717 strcpy(ccb->cgdl.periph_name, 718 periph->periph_name); 719 ccb->cgdl.unit_number = 720 periph->unit_number; 721 if (SLIST_NEXT(periph, periph_links)) 722 ccb->cgdl.status = 723 CAM_GDEVLIST_MORE_DEVS; 724 else 725 ccb->cgdl.status = 726 CAM_GDEVLIST_LAST_DEVICE; 727 ccb->cgdl.generation = 728 device->generation; 729 ccb->cgdl.index = i; 730 /* 731 * Fill in some CCB header fields 732 * that the user may want. 733 */ 734 ccb->ccb_h.path_id = 735 periph->path->bus->path_id; 736 ccb->ccb_h.target_id = 737 periph->path->target->target_id; 738 ccb->ccb_h.target_lun = 739 periph->path->device->lun_id; 740 ccb->ccb_h.status = CAM_REQ_CMP; 741 break; 742 } 743 } 744 } 745 746 /* 747 * If the periph is null here, one of two things has 748 * happened. The first possibility is that we couldn't 749 * find the unit number of the particular peripheral driver 750 * that the user is asking about. e.g. the user asks for 751 * the passthrough driver for "da11". We find the list of 752 * "da" peripherals all right, but there is no unit 11. 753 * The other possibility is that we went through the list 754 * of peripheral drivers attached to the device structure, 755 * but didn't find one with the name "pass". Either way, 756 * we return ENOENT, since we couldn't find something. 757 */ 758 if (periph == NULL) { 759 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 760 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 761 *ccb->cgdl.periph_name = '\0'; 762 ccb->cgdl.unit_number = 0; 763 error = ENOENT; 764 /* 765 * It is unfortunate that this is even necessary, 766 * but there are many, many clueless users out there. 767 * If this is true, the user is looking for the 768 * passthrough driver, but doesn't have one in his 769 * kernel. 770 */ 771 if (base_periph_found == 1) { 772 printf("xptioctl: pass driver is not in the " 773 "kernel\n"); 774 printf("xptioctl: put \"device pass\" in " 775 "your kernel config file\n"); 776 } 777 } 778 mtx_unlock(&xsoftc.xpt_topo_lock); 779 break; 780 } 781 default: 782 error = ENOTTY; 783 break; 784 } 785 786 return(error); 787 } 788 789 static int 790 cam_module_event_handler(module_t mod, int what, void *arg) 791 { 792 int error; 793 794 switch (what) { 795 case MOD_LOAD: 796 if ((error = xpt_init(NULL)) != 0) 797 return (error); 798 break; 799 case MOD_UNLOAD: 800 return EBUSY; 801 default: 802 return EOPNOTSUPP; 803 } 804 805 return 0; 806 } 807 808 static void 809 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 810 { 811 812 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 813 xpt_free_path(done_ccb->ccb_h.path); 814 xpt_free_ccb(done_ccb); 815 } else { 816 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 817 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 818 } 819 xpt_release_boot(); 820 } 821 822 /* thread to handle bus rescans */ 823 static void 824 xpt_scanner_thread(void *dummy) 825 { 826 union ccb *ccb; 827 struct cam_sim *sim; 828 829 xpt_lock_buses(); 830 for (;;) { 831 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 832 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 833 "ccb_scanq", 0); 834 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 835 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 836 xpt_unlock_buses(); 837 838 sim = ccb->ccb_h.path->bus->sim; 839 CAM_SIM_LOCK(sim); 840 xpt_action(ccb); 841 CAM_SIM_UNLOCK(sim); 842 843 xpt_lock_buses(); 844 } 845 } 846 } 847 848 void 849 xpt_rescan(union ccb *ccb) 850 { 851 struct ccb_hdr *hdr; 852 853 /* Prepare request */ 854 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 855 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 856 ccb->ccb_h.func_code = XPT_SCAN_BUS; 857 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 858 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 859 ccb->ccb_h.func_code = XPT_SCAN_TGT; 860 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 861 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 862 ccb->ccb_h.func_code = XPT_SCAN_LUN; 863 else { 864 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 865 xpt_free_path(ccb->ccb_h.path); 866 xpt_free_ccb(ccb); 867 return; 868 } 869 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 870 ccb->ccb_h.cbfcnp = xpt_rescan_done; 871 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 872 /* Don't make duplicate entries for the same paths. */ 873 xpt_lock_buses(); 874 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 875 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 876 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 877 wakeup(&xsoftc.ccb_scanq); 878 xpt_unlock_buses(); 879 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 880 xpt_free_path(ccb->ccb_h.path); 881 xpt_free_ccb(ccb); 882 return; 883 } 884 } 885 } 886 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 887 xsoftc.buses_to_config++; 888 wakeup(&xsoftc.ccb_scanq); 889 xpt_unlock_buses(); 890 } 891 892 /* Functions accessed by the peripheral drivers */ 893 static int 894 xpt_init(void *dummy) 895 { 896 struct cam_sim *xpt_sim; 897 struct cam_path *path; 898 struct cam_devq *devq; 899 cam_status status; 900 901 TAILQ_INIT(&xsoftc.xpt_busses); 902 TAILQ_INIT(&cam_simq); 903 TAILQ_INIT(&xsoftc.ccb_scanq); 904 STAILQ_INIT(&xsoftc.highpowerq); 905 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 906 907 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 908 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 909 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 910 911 /* 912 * The xpt layer is, itself, the equivelent of a SIM. 913 * Allow 16 ccbs in the ccb pool for it. This should 914 * give decent parallelism when we probe busses and 915 * perform other XPT functions. 916 */ 917 devq = cam_simq_alloc(16); 918 xpt_sim = cam_sim_alloc(xptaction, 919 xptpoll, 920 "xpt", 921 /*softc*/NULL, 922 /*unit*/0, 923 /*mtx*/&xsoftc.xpt_lock, 924 /*max_dev_transactions*/0, 925 /*max_tagged_dev_transactions*/0, 926 devq); 927 if (xpt_sim == NULL) 928 return (ENOMEM); 929 930 mtx_lock(&xsoftc.xpt_lock); 931 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 932 mtx_unlock(&xsoftc.xpt_lock); 933 printf("xpt_init: xpt_bus_register failed with status %#x," 934 " failing attach\n", status); 935 return (EINVAL); 936 } 937 938 /* 939 * Looking at the XPT from the SIM layer, the XPT is 940 * the equivelent of a peripheral driver. Allocate 941 * a peripheral driver entry for us. 942 */ 943 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 944 CAM_TARGET_WILDCARD, 945 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 946 mtx_unlock(&xsoftc.xpt_lock); 947 printf("xpt_init: xpt_create_path failed with status %#x," 948 " failing attach\n", status); 949 return (EINVAL); 950 } 951 952 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 953 path, NULL, 0, xpt_sim); 954 xpt_free_path(path); 955 mtx_unlock(&xsoftc.xpt_lock); 956 /* Install our software interrupt handlers */ 957 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 958 /* 959 * Register a callback for when interrupts are enabled. 960 */ 961 xsoftc.xpt_config_hook = 962 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 963 M_CAMXPT, M_NOWAIT | M_ZERO); 964 if (xsoftc.xpt_config_hook == NULL) { 965 printf("xpt_init: Cannot malloc config hook " 966 "- failing attach\n"); 967 return (ENOMEM); 968 } 969 xsoftc.xpt_config_hook->ich_func = xpt_config; 970 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 971 free (xsoftc.xpt_config_hook, M_CAMXPT); 972 printf("xpt_init: config_intrhook_establish failed " 973 "- failing attach\n"); 974 } 975 976 return (0); 977 } 978 979 static cam_status 980 xptregister(struct cam_periph *periph, void *arg) 981 { 982 struct cam_sim *xpt_sim; 983 984 if (periph == NULL) { 985 printf("xptregister: periph was NULL!!\n"); 986 return(CAM_REQ_CMP_ERR); 987 } 988 989 xpt_sim = (struct cam_sim *)arg; 990 xpt_sim->softc = periph; 991 xpt_periph = periph; 992 periph->softc = NULL; 993 994 return(CAM_REQ_CMP); 995 } 996 997 int32_t 998 xpt_add_periph(struct cam_periph *periph) 999 { 1000 struct cam_ed *device; 1001 int32_t status; 1002 struct periph_list *periph_head; 1003 1004 mtx_assert(periph->sim->mtx, MA_OWNED); 1005 1006 device = periph->path->device; 1007 1008 periph_head = &device->periphs; 1009 1010 status = CAM_REQ_CMP; 1011 1012 if (device != NULL) { 1013 /* 1014 * Make room for this peripheral 1015 * so it will fit in the queue 1016 * when it's scheduled to run 1017 */ 1018 status = camq_resize(&device->drvq, 1019 device->drvq.array_size + 1); 1020 1021 device->generation++; 1022 1023 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1024 } 1025 1026 mtx_lock(&xsoftc.xpt_topo_lock); 1027 xsoftc.xpt_generation++; 1028 mtx_unlock(&xsoftc.xpt_topo_lock); 1029 1030 return (status); 1031 } 1032 1033 void 1034 xpt_remove_periph(struct cam_periph *periph, int topology_lock_held) 1035 { 1036 struct cam_ed *device; 1037 1038 mtx_assert(periph->sim->mtx, MA_OWNED); 1039 1040 device = periph->path->device; 1041 1042 if (device != NULL) { 1043 struct periph_list *periph_head; 1044 1045 periph_head = &device->periphs; 1046 1047 /* Release the slot for this peripheral */ 1048 camq_resize(&device->drvq, device->drvq.array_size - 1); 1049 1050 device->generation++; 1051 1052 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1053 } 1054 1055 if (topology_lock_held == 0) 1056 mtx_lock(&xsoftc.xpt_topo_lock); 1057 1058 xsoftc.xpt_generation++; 1059 1060 if (topology_lock_held == 0) 1061 mtx_unlock(&xsoftc.xpt_topo_lock); 1062 } 1063 1064 1065 void 1066 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1067 { 1068 struct cam_path *path = periph->path; 1069 1070 mtx_assert(periph->sim->mtx, MA_OWNED); 1071 1072 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1073 periph->periph_name, periph->unit_number, 1074 path->bus->sim->sim_name, 1075 path->bus->sim->unit_number, 1076 path->bus->sim->bus_id, 1077 path->bus->path_id, 1078 path->target->target_id, 1079 path->device->lun_id); 1080 printf("%s%d: ", periph->periph_name, periph->unit_number); 1081 if (path->device->protocol == PROTO_SCSI) 1082 scsi_print_inquiry(&path->device->inq_data); 1083 else if (path->device->protocol == PROTO_ATA || 1084 path->device->protocol == PROTO_SATAPM) 1085 ata_print_ident(&path->device->ident_data); 1086 else if (path->device->protocol == PROTO_SEMB) 1087 semb_print_ident( 1088 (struct sep_identify_data *)&path->device->ident_data); 1089 else 1090 printf("Unknown protocol device\n"); 1091 if (bootverbose && path->device->serial_num_len > 0) { 1092 /* Don't wrap the screen - print only the first 60 chars */ 1093 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1094 periph->unit_number, path->device->serial_num); 1095 } 1096 /* Announce transport details. */ 1097 (*(path->bus->xport->announce))(periph); 1098 /* Announce command queueing. */ 1099 if (path->device->inq_flags & SID_CmdQue 1100 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1101 printf("%s%d: Command Queueing enabled\n", 1102 periph->periph_name, periph->unit_number); 1103 } 1104 /* Announce caller's details if they've passed in. */ 1105 if (announce_string != NULL) 1106 printf("%s%d: %s\n", periph->periph_name, 1107 periph->unit_number, announce_string); 1108 } 1109 1110 int 1111 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1112 { 1113 int ret = -1; 1114 struct ccb_dev_advinfo cdai; 1115 1116 mtx_assert(path->bus->sim->mtx, MA_OWNED); 1117 1118 memset(&cdai, 0, sizeof(cdai)); 1119 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1120 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1121 cdai.bufsiz = len; 1122 1123 if (!strcmp(attr, "GEOM::ident")) 1124 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1125 else if (!strcmp(attr, "GEOM::physpath")) 1126 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1127 else 1128 goto out; 1129 1130 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1131 if (cdai.buf == NULL) { 1132 ret = ENOMEM; 1133 goto out; 1134 } 1135 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1136 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1137 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1138 if (cdai.provsiz == 0) 1139 goto out; 1140 ret = 0; 1141 if (strlcpy(buf, cdai.buf, len) >= len) 1142 ret = EFAULT; 1143 1144 out: 1145 if (cdai.buf != NULL) 1146 free(cdai.buf, M_CAMXPT); 1147 return ret; 1148 } 1149 1150 static dev_match_ret 1151 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1152 struct cam_eb *bus) 1153 { 1154 dev_match_ret retval; 1155 int i; 1156 1157 retval = DM_RET_NONE; 1158 1159 /* 1160 * If we aren't given something to match against, that's an error. 1161 */ 1162 if (bus == NULL) 1163 return(DM_RET_ERROR); 1164 1165 /* 1166 * If there are no match entries, then this bus matches no 1167 * matter what. 1168 */ 1169 if ((patterns == NULL) || (num_patterns == 0)) 1170 return(DM_RET_DESCEND | DM_RET_COPY); 1171 1172 for (i = 0; i < num_patterns; i++) { 1173 struct bus_match_pattern *cur_pattern; 1174 1175 /* 1176 * If the pattern in question isn't for a bus node, we 1177 * aren't interested. However, we do indicate to the 1178 * calling routine that we should continue descending the 1179 * tree, since the user wants to match against lower-level 1180 * EDT elements. 1181 */ 1182 if (patterns[i].type != DEV_MATCH_BUS) { 1183 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1184 retval |= DM_RET_DESCEND; 1185 continue; 1186 } 1187 1188 cur_pattern = &patterns[i].pattern.bus_pattern; 1189 1190 /* 1191 * If they want to match any bus node, we give them any 1192 * device node. 1193 */ 1194 if (cur_pattern->flags == BUS_MATCH_ANY) { 1195 /* set the copy flag */ 1196 retval |= DM_RET_COPY; 1197 1198 /* 1199 * If we've already decided on an action, go ahead 1200 * and return. 1201 */ 1202 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1203 return(retval); 1204 } 1205 1206 /* 1207 * Not sure why someone would do this... 1208 */ 1209 if (cur_pattern->flags == BUS_MATCH_NONE) 1210 continue; 1211 1212 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1213 && (cur_pattern->path_id != bus->path_id)) 1214 continue; 1215 1216 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1217 && (cur_pattern->bus_id != bus->sim->bus_id)) 1218 continue; 1219 1220 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1221 && (cur_pattern->unit_number != bus->sim->unit_number)) 1222 continue; 1223 1224 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1225 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1226 DEV_IDLEN) != 0)) 1227 continue; 1228 1229 /* 1230 * If we get to this point, the user definitely wants 1231 * information on this bus. So tell the caller to copy the 1232 * data out. 1233 */ 1234 retval |= DM_RET_COPY; 1235 1236 /* 1237 * If the return action has been set to descend, then we 1238 * know that we've already seen a non-bus matching 1239 * expression, therefore we need to further descend the tree. 1240 * This won't change by continuing around the loop, so we 1241 * go ahead and return. If we haven't seen a non-bus 1242 * matching expression, we keep going around the loop until 1243 * we exhaust the matching expressions. We'll set the stop 1244 * flag once we fall out of the loop. 1245 */ 1246 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1247 return(retval); 1248 } 1249 1250 /* 1251 * If the return action hasn't been set to descend yet, that means 1252 * we haven't seen anything other than bus matching patterns. So 1253 * tell the caller to stop descending the tree -- the user doesn't 1254 * want to match against lower level tree elements. 1255 */ 1256 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1257 retval |= DM_RET_STOP; 1258 1259 return(retval); 1260 } 1261 1262 static dev_match_ret 1263 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1264 struct cam_ed *device) 1265 { 1266 dev_match_ret retval; 1267 int i; 1268 1269 retval = DM_RET_NONE; 1270 1271 /* 1272 * If we aren't given something to match against, that's an error. 1273 */ 1274 if (device == NULL) 1275 return(DM_RET_ERROR); 1276 1277 /* 1278 * If there are no match entries, then this device matches no 1279 * matter what. 1280 */ 1281 if ((patterns == NULL) || (num_patterns == 0)) 1282 return(DM_RET_DESCEND | DM_RET_COPY); 1283 1284 for (i = 0; i < num_patterns; i++) { 1285 struct device_match_pattern *cur_pattern; 1286 struct scsi_vpd_device_id *device_id_page; 1287 1288 /* 1289 * If the pattern in question isn't for a device node, we 1290 * aren't interested. 1291 */ 1292 if (patterns[i].type != DEV_MATCH_DEVICE) { 1293 if ((patterns[i].type == DEV_MATCH_PERIPH) 1294 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1295 retval |= DM_RET_DESCEND; 1296 continue; 1297 } 1298 1299 cur_pattern = &patterns[i].pattern.device_pattern; 1300 1301 /* Error out if mutually exclusive options are specified. */ 1302 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1303 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1304 return(DM_RET_ERROR); 1305 1306 /* 1307 * If they want to match any device node, we give them any 1308 * device node. 1309 */ 1310 if (cur_pattern->flags == DEV_MATCH_ANY) 1311 goto copy_dev_node; 1312 1313 /* 1314 * Not sure why someone would do this... 1315 */ 1316 if (cur_pattern->flags == DEV_MATCH_NONE) 1317 continue; 1318 1319 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1320 && (cur_pattern->path_id != device->target->bus->path_id)) 1321 continue; 1322 1323 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1324 && (cur_pattern->target_id != device->target->target_id)) 1325 continue; 1326 1327 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1328 && (cur_pattern->target_lun != device->lun_id)) 1329 continue; 1330 1331 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1332 && (cam_quirkmatch((caddr_t)&device->inq_data, 1333 (caddr_t)&cur_pattern->data.inq_pat, 1334 1, sizeof(cur_pattern->data.inq_pat), 1335 scsi_static_inquiry_match) == NULL)) 1336 continue; 1337 1338 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1339 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1340 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1341 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1342 device->device_id_len 1343 - SVPD_DEVICE_ID_HDR_LEN, 1344 cur_pattern->data.devid_pat.id, 1345 cur_pattern->data.devid_pat.id_len) != 0)) 1346 continue; 1347 1348 copy_dev_node: 1349 /* 1350 * If we get to this point, the user definitely wants 1351 * information on this device. So tell the caller to copy 1352 * the data out. 1353 */ 1354 retval |= DM_RET_COPY; 1355 1356 /* 1357 * If the return action has been set to descend, then we 1358 * know that we've already seen a peripheral matching 1359 * expression, therefore we need to further descend the tree. 1360 * This won't change by continuing around the loop, so we 1361 * go ahead and return. If we haven't seen a peripheral 1362 * matching expression, we keep going around the loop until 1363 * we exhaust the matching expressions. We'll set the stop 1364 * flag once we fall out of the loop. 1365 */ 1366 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1367 return(retval); 1368 } 1369 1370 /* 1371 * If the return action hasn't been set to descend yet, that means 1372 * we haven't seen any peripheral matching patterns. So tell the 1373 * caller to stop descending the tree -- the user doesn't want to 1374 * match against lower level tree elements. 1375 */ 1376 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1377 retval |= DM_RET_STOP; 1378 1379 return(retval); 1380 } 1381 1382 /* 1383 * Match a single peripheral against any number of match patterns. 1384 */ 1385 static dev_match_ret 1386 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1387 struct cam_periph *periph) 1388 { 1389 dev_match_ret retval; 1390 int i; 1391 1392 /* 1393 * If we aren't given something to match against, that's an error. 1394 */ 1395 if (periph == NULL) 1396 return(DM_RET_ERROR); 1397 1398 /* 1399 * If there are no match entries, then this peripheral matches no 1400 * matter what. 1401 */ 1402 if ((patterns == NULL) || (num_patterns == 0)) 1403 return(DM_RET_STOP | DM_RET_COPY); 1404 1405 /* 1406 * There aren't any nodes below a peripheral node, so there's no 1407 * reason to descend the tree any further. 1408 */ 1409 retval = DM_RET_STOP; 1410 1411 for (i = 0; i < num_patterns; i++) { 1412 struct periph_match_pattern *cur_pattern; 1413 1414 /* 1415 * If the pattern in question isn't for a peripheral, we 1416 * aren't interested. 1417 */ 1418 if (patterns[i].type != DEV_MATCH_PERIPH) 1419 continue; 1420 1421 cur_pattern = &patterns[i].pattern.periph_pattern; 1422 1423 /* 1424 * If they want to match on anything, then we will do so. 1425 */ 1426 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1427 /* set the copy flag */ 1428 retval |= DM_RET_COPY; 1429 1430 /* 1431 * We've already set the return action to stop, 1432 * since there are no nodes below peripherals in 1433 * the tree. 1434 */ 1435 return(retval); 1436 } 1437 1438 /* 1439 * Not sure why someone would do this... 1440 */ 1441 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1442 continue; 1443 1444 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1445 && (cur_pattern->path_id != periph->path->bus->path_id)) 1446 continue; 1447 1448 /* 1449 * For the target and lun id's, we have to make sure the 1450 * target and lun pointers aren't NULL. The xpt peripheral 1451 * has a wildcard target and device. 1452 */ 1453 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1454 && ((periph->path->target == NULL) 1455 ||(cur_pattern->target_id != periph->path->target->target_id))) 1456 continue; 1457 1458 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1459 && ((periph->path->device == NULL) 1460 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1461 continue; 1462 1463 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1464 && (cur_pattern->unit_number != periph->unit_number)) 1465 continue; 1466 1467 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1468 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1469 DEV_IDLEN) != 0)) 1470 continue; 1471 1472 /* 1473 * If we get to this point, the user definitely wants 1474 * information on this peripheral. So tell the caller to 1475 * copy the data out. 1476 */ 1477 retval |= DM_RET_COPY; 1478 1479 /* 1480 * The return action has already been set to stop, since 1481 * peripherals don't have any nodes below them in the EDT. 1482 */ 1483 return(retval); 1484 } 1485 1486 /* 1487 * If we get to this point, the peripheral that was passed in 1488 * doesn't match any of the patterns. 1489 */ 1490 return(retval); 1491 } 1492 1493 static int 1494 xptedtbusfunc(struct cam_eb *bus, void *arg) 1495 { 1496 struct ccb_dev_match *cdm; 1497 dev_match_ret retval; 1498 1499 cdm = (struct ccb_dev_match *)arg; 1500 1501 /* 1502 * If our position is for something deeper in the tree, that means 1503 * that we've already seen this node. So, we keep going down. 1504 */ 1505 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1506 && (cdm->pos.cookie.bus == bus) 1507 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1508 && (cdm->pos.cookie.target != NULL)) 1509 retval = DM_RET_DESCEND; 1510 else 1511 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1512 1513 /* 1514 * If we got an error, bail out of the search. 1515 */ 1516 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1517 cdm->status = CAM_DEV_MATCH_ERROR; 1518 return(0); 1519 } 1520 1521 /* 1522 * If the copy flag is set, copy this bus out. 1523 */ 1524 if (retval & DM_RET_COPY) { 1525 int spaceleft, j; 1526 1527 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1528 sizeof(struct dev_match_result)); 1529 1530 /* 1531 * If we don't have enough space to put in another 1532 * match result, save our position and tell the 1533 * user there are more devices to check. 1534 */ 1535 if (spaceleft < sizeof(struct dev_match_result)) { 1536 bzero(&cdm->pos, sizeof(cdm->pos)); 1537 cdm->pos.position_type = 1538 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1539 1540 cdm->pos.cookie.bus = bus; 1541 cdm->pos.generations[CAM_BUS_GENERATION]= 1542 xsoftc.bus_generation; 1543 cdm->status = CAM_DEV_MATCH_MORE; 1544 return(0); 1545 } 1546 j = cdm->num_matches; 1547 cdm->num_matches++; 1548 cdm->matches[j].type = DEV_MATCH_BUS; 1549 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1550 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1551 cdm->matches[j].result.bus_result.unit_number = 1552 bus->sim->unit_number; 1553 strncpy(cdm->matches[j].result.bus_result.dev_name, 1554 bus->sim->sim_name, DEV_IDLEN); 1555 } 1556 1557 /* 1558 * If the user is only interested in busses, there's no 1559 * reason to descend to the next level in the tree. 1560 */ 1561 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1562 return(1); 1563 1564 /* 1565 * If there is a target generation recorded, check it to 1566 * make sure the target list hasn't changed. 1567 */ 1568 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1569 && (bus == cdm->pos.cookie.bus) 1570 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1571 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1572 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1573 bus->generation)) { 1574 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1575 return(0); 1576 } 1577 1578 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1579 && (cdm->pos.cookie.bus == bus) 1580 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1581 && (cdm->pos.cookie.target != NULL)) 1582 return(xpttargettraverse(bus, 1583 (struct cam_et *)cdm->pos.cookie.target, 1584 xptedttargetfunc, arg)); 1585 else 1586 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1587 } 1588 1589 static int 1590 xptedttargetfunc(struct cam_et *target, void *arg) 1591 { 1592 struct ccb_dev_match *cdm; 1593 1594 cdm = (struct ccb_dev_match *)arg; 1595 1596 /* 1597 * If there is a device list generation recorded, check it to 1598 * make sure the device list hasn't changed. 1599 */ 1600 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1601 && (cdm->pos.cookie.bus == target->bus) 1602 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1603 && (cdm->pos.cookie.target == target) 1604 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1605 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1606 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1607 target->generation)) { 1608 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1609 return(0); 1610 } 1611 1612 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1613 && (cdm->pos.cookie.bus == target->bus) 1614 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1615 && (cdm->pos.cookie.target == target) 1616 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1617 && (cdm->pos.cookie.device != NULL)) 1618 return(xptdevicetraverse(target, 1619 (struct cam_ed *)cdm->pos.cookie.device, 1620 xptedtdevicefunc, arg)); 1621 else 1622 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1623 } 1624 1625 static int 1626 xptedtdevicefunc(struct cam_ed *device, void *arg) 1627 { 1628 1629 struct ccb_dev_match *cdm; 1630 dev_match_ret retval; 1631 1632 cdm = (struct ccb_dev_match *)arg; 1633 1634 /* 1635 * If our position is for something deeper in the tree, that means 1636 * that we've already seen this node. So, we keep going down. 1637 */ 1638 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1639 && (cdm->pos.cookie.device == device) 1640 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1641 && (cdm->pos.cookie.periph != NULL)) 1642 retval = DM_RET_DESCEND; 1643 else 1644 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1645 device); 1646 1647 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1648 cdm->status = CAM_DEV_MATCH_ERROR; 1649 return(0); 1650 } 1651 1652 /* 1653 * If the copy flag is set, copy this device out. 1654 */ 1655 if (retval & DM_RET_COPY) { 1656 int spaceleft, j; 1657 1658 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1659 sizeof(struct dev_match_result)); 1660 1661 /* 1662 * If we don't have enough space to put in another 1663 * match result, save our position and tell the 1664 * user there are more devices to check. 1665 */ 1666 if (spaceleft < sizeof(struct dev_match_result)) { 1667 bzero(&cdm->pos, sizeof(cdm->pos)); 1668 cdm->pos.position_type = 1669 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1670 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1671 1672 cdm->pos.cookie.bus = device->target->bus; 1673 cdm->pos.generations[CAM_BUS_GENERATION]= 1674 xsoftc.bus_generation; 1675 cdm->pos.cookie.target = device->target; 1676 cdm->pos.generations[CAM_TARGET_GENERATION] = 1677 device->target->bus->generation; 1678 cdm->pos.cookie.device = device; 1679 cdm->pos.generations[CAM_DEV_GENERATION] = 1680 device->target->generation; 1681 cdm->status = CAM_DEV_MATCH_MORE; 1682 return(0); 1683 } 1684 j = cdm->num_matches; 1685 cdm->num_matches++; 1686 cdm->matches[j].type = DEV_MATCH_DEVICE; 1687 cdm->matches[j].result.device_result.path_id = 1688 device->target->bus->path_id; 1689 cdm->matches[j].result.device_result.target_id = 1690 device->target->target_id; 1691 cdm->matches[j].result.device_result.target_lun = 1692 device->lun_id; 1693 cdm->matches[j].result.device_result.protocol = 1694 device->protocol; 1695 bcopy(&device->inq_data, 1696 &cdm->matches[j].result.device_result.inq_data, 1697 sizeof(struct scsi_inquiry_data)); 1698 bcopy(&device->ident_data, 1699 &cdm->matches[j].result.device_result.ident_data, 1700 sizeof(struct ata_params)); 1701 1702 /* Let the user know whether this device is unconfigured */ 1703 if (device->flags & CAM_DEV_UNCONFIGURED) 1704 cdm->matches[j].result.device_result.flags = 1705 DEV_RESULT_UNCONFIGURED; 1706 else 1707 cdm->matches[j].result.device_result.flags = 1708 DEV_RESULT_NOFLAG; 1709 } 1710 1711 /* 1712 * If the user isn't interested in peripherals, don't descend 1713 * the tree any further. 1714 */ 1715 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1716 return(1); 1717 1718 /* 1719 * If there is a peripheral list generation recorded, make sure 1720 * it hasn't changed. 1721 */ 1722 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1723 && (device->target->bus == cdm->pos.cookie.bus) 1724 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1725 && (device->target == cdm->pos.cookie.target) 1726 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1727 && (device == cdm->pos.cookie.device) 1728 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1729 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1730 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1731 device->generation)){ 1732 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1733 return(0); 1734 } 1735 1736 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1737 && (cdm->pos.cookie.bus == device->target->bus) 1738 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1739 && (cdm->pos.cookie.target == device->target) 1740 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1741 && (cdm->pos.cookie.device == device) 1742 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1743 && (cdm->pos.cookie.periph != NULL)) 1744 return(xptperiphtraverse(device, 1745 (struct cam_periph *)cdm->pos.cookie.periph, 1746 xptedtperiphfunc, arg)); 1747 else 1748 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1749 } 1750 1751 static int 1752 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1753 { 1754 struct ccb_dev_match *cdm; 1755 dev_match_ret retval; 1756 1757 cdm = (struct ccb_dev_match *)arg; 1758 1759 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1760 1761 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1762 cdm->status = CAM_DEV_MATCH_ERROR; 1763 return(0); 1764 } 1765 1766 /* 1767 * If the copy flag is set, copy this peripheral out. 1768 */ 1769 if (retval & DM_RET_COPY) { 1770 int spaceleft, j; 1771 1772 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1773 sizeof(struct dev_match_result)); 1774 1775 /* 1776 * If we don't have enough space to put in another 1777 * match result, save our position and tell the 1778 * user there are more devices to check. 1779 */ 1780 if (spaceleft < sizeof(struct dev_match_result)) { 1781 bzero(&cdm->pos, sizeof(cdm->pos)); 1782 cdm->pos.position_type = 1783 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1784 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1785 CAM_DEV_POS_PERIPH; 1786 1787 cdm->pos.cookie.bus = periph->path->bus; 1788 cdm->pos.generations[CAM_BUS_GENERATION]= 1789 xsoftc.bus_generation; 1790 cdm->pos.cookie.target = periph->path->target; 1791 cdm->pos.generations[CAM_TARGET_GENERATION] = 1792 periph->path->bus->generation; 1793 cdm->pos.cookie.device = periph->path->device; 1794 cdm->pos.generations[CAM_DEV_GENERATION] = 1795 periph->path->target->generation; 1796 cdm->pos.cookie.periph = periph; 1797 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1798 periph->path->device->generation; 1799 cdm->status = CAM_DEV_MATCH_MORE; 1800 return(0); 1801 } 1802 1803 j = cdm->num_matches; 1804 cdm->num_matches++; 1805 cdm->matches[j].type = DEV_MATCH_PERIPH; 1806 cdm->matches[j].result.periph_result.path_id = 1807 periph->path->bus->path_id; 1808 cdm->matches[j].result.periph_result.target_id = 1809 periph->path->target->target_id; 1810 cdm->matches[j].result.periph_result.target_lun = 1811 periph->path->device->lun_id; 1812 cdm->matches[j].result.periph_result.unit_number = 1813 periph->unit_number; 1814 strncpy(cdm->matches[j].result.periph_result.periph_name, 1815 periph->periph_name, DEV_IDLEN); 1816 } 1817 1818 return(1); 1819 } 1820 1821 static int 1822 xptedtmatch(struct ccb_dev_match *cdm) 1823 { 1824 int ret; 1825 1826 cdm->num_matches = 0; 1827 1828 /* 1829 * Check the bus list generation. If it has changed, the user 1830 * needs to reset everything and start over. 1831 */ 1832 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1833 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1834 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1835 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1836 return(0); 1837 } 1838 1839 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1840 && (cdm->pos.cookie.bus != NULL)) 1841 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1842 xptedtbusfunc, cdm); 1843 else 1844 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1845 1846 /* 1847 * If we get back 0, that means that we had to stop before fully 1848 * traversing the EDT. It also means that one of the subroutines 1849 * has set the status field to the proper value. If we get back 1, 1850 * we've fully traversed the EDT and copied out any matching entries. 1851 */ 1852 if (ret == 1) 1853 cdm->status = CAM_DEV_MATCH_LAST; 1854 1855 return(ret); 1856 } 1857 1858 static int 1859 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1860 { 1861 struct ccb_dev_match *cdm; 1862 1863 cdm = (struct ccb_dev_match *)arg; 1864 1865 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1866 && (cdm->pos.cookie.pdrv == pdrv) 1867 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1868 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1869 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1870 (*pdrv)->generation)) { 1871 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1872 return(0); 1873 } 1874 1875 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1876 && (cdm->pos.cookie.pdrv == pdrv) 1877 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1878 && (cdm->pos.cookie.periph != NULL)) 1879 return(xptpdperiphtraverse(pdrv, 1880 (struct cam_periph *)cdm->pos.cookie.periph, 1881 xptplistperiphfunc, arg)); 1882 else 1883 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1884 } 1885 1886 static int 1887 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1888 { 1889 struct ccb_dev_match *cdm; 1890 dev_match_ret retval; 1891 1892 cdm = (struct ccb_dev_match *)arg; 1893 1894 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1895 1896 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1897 cdm->status = CAM_DEV_MATCH_ERROR; 1898 return(0); 1899 } 1900 1901 /* 1902 * If the copy flag is set, copy this peripheral out. 1903 */ 1904 if (retval & DM_RET_COPY) { 1905 int spaceleft, j; 1906 1907 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1908 sizeof(struct dev_match_result)); 1909 1910 /* 1911 * If we don't have enough space to put in another 1912 * match result, save our position and tell the 1913 * user there are more devices to check. 1914 */ 1915 if (spaceleft < sizeof(struct dev_match_result)) { 1916 struct periph_driver **pdrv; 1917 1918 pdrv = NULL; 1919 bzero(&cdm->pos, sizeof(cdm->pos)); 1920 cdm->pos.position_type = 1921 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1922 CAM_DEV_POS_PERIPH; 1923 1924 /* 1925 * This may look a bit non-sensical, but it is 1926 * actually quite logical. There are very few 1927 * peripheral drivers, and bloating every peripheral 1928 * structure with a pointer back to its parent 1929 * peripheral driver linker set entry would cost 1930 * more in the long run than doing this quick lookup. 1931 */ 1932 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1933 if (strcmp((*pdrv)->driver_name, 1934 periph->periph_name) == 0) 1935 break; 1936 } 1937 1938 if (*pdrv == NULL) { 1939 cdm->status = CAM_DEV_MATCH_ERROR; 1940 return(0); 1941 } 1942 1943 cdm->pos.cookie.pdrv = pdrv; 1944 /* 1945 * The periph generation slot does double duty, as 1946 * does the periph pointer slot. They are used for 1947 * both edt and pdrv lookups and positioning. 1948 */ 1949 cdm->pos.cookie.periph = periph; 1950 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1951 (*pdrv)->generation; 1952 cdm->status = CAM_DEV_MATCH_MORE; 1953 return(0); 1954 } 1955 1956 j = cdm->num_matches; 1957 cdm->num_matches++; 1958 cdm->matches[j].type = DEV_MATCH_PERIPH; 1959 cdm->matches[j].result.periph_result.path_id = 1960 periph->path->bus->path_id; 1961 1962 /* 1963 * The transport layer peripheral doesn't have a target or 1964 * lun. 1965 */ 1966 if (periph->path->target) 1967 cdm->matches[j].result.periph_result.target_id = 1968 periph->path->target->target_id; 1969 else 1970 cdm->matches[j].result.periph_result.target_id = -1; 1971 1972 if (periph->path->device) 1973 cdm->matches[j].result.periph_result.target_lun = 1974 periph->path->device->lun_id; 1975 else 1976 cdm->matches[j].result.periph_result.target_lun = -1; 1977 1978 cdm->matches[j].result.periph_result.unit_number = 1979 periph->unit_number; 1980 strncpy(cdm->matches[j].result.periph_result.periph_name, 1981 periph->periph_name, DEV_IDLEN); 1982 } 1983 1984 return(1); 1985 } 1986 1987 static int 1988 xptperiphlistmatch(struct ccb_dev_match *cdm) 1989 { 1990 int ret; 1991 1992 cdm->num_matches = 0; 1993 1994 /* 1995 * At this point in the edt traversal function, we check the bus 1996 * list generation to make sure that no busses have been added or 1997 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1998 * For the peripheral driver list traversal function, however, we 1999 * don't have to worry about new peripheral driver types coming or 2000 * going; they're in a linker set, and therefore can't change 2001 * without a recompile. 2002 */ 2003 2004 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2005 && (cdm->pos.cookie.pdrv != NULL)) 2006 ret = xptpdrvtraverse( 2007 (struct periph_driver **)cdm->pos.cookie.pdrv, 2008 xptplistpdrvfunc, cdm); 2009 else 2010 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2011 2012 /* 2013 * If we get back 0, that means that we had to stop before fully 2014 * traversing the peripheral driver tree. It also means that one of 2015 * the subroutines has set the status field to the proper value. If 2016 * we get back 1, we've fully traversed the EDT and copied out any 2017 * matching entries. 2018 */ 2019 if (ret == 1) 2020 cdm->status = CAM_DEV_MATCH_LAST; 2021 2022 return(ret); 2023 } 2024 2025 static int 2026 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2027 { 2028 struct cam_eb *bus, *next_bus; 2029 int retval; 2030 2031 retval = 1; 2032 2033 mtx_lock(&xsoftc.xpt_topo_lock); 2034 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2035 bus != NULL; 2036 bus = next_bus) { 2037 2038 bus->refcount++; 2039 2040 /* 2041 * XXX The locking here is obviously very complex. We 2042 * should work to simplify it. 2043 */ 2044 mtx_unlock(&xsoftc.xpt_topo_lock); 2045 CAM_SIM_LOCK(bus->sim); 2046 retval = tr_func(bus, arg); 2047 CAM_SIM_UNLOCK(bus->sim); 2048 2049 mtx_lock(&xsoftc.xpt_topo_lock); 2050 next_bus = TAILQ_NEXT(bus, links); 2051 mtx_unlock(&xsoftc.xpt_topo_lock); 2052 2053 xpt_release_bus(bus); 2054 2055 if (retval == 0) 2056 return(retval); 2057 mtx_lock(&xsoftc.xpt_topo_lock); 2058 } 2059 mtx_unlock(&xsoftc.xpt_topo_lock); 2060 2061 return(retval); 2062 } 2063 2064 int 2065 xpt_sim_opened(struct cam_sim *sim) 2066 { 2067 struct cam_eb *bus; 2068 struct cam_et *target; 2069 struct cam_ed *device; 2070 struct cam_periph *periph; 2071 2072 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1")); 2073 mtx_assert(sim->mtx, MA_OWNED); 2074 2075 mtx_lock(&xsoftc.xpt_topo_lock); 2076 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 2077 if (bus->sim != sim) 2078 continue; 2079 2080 TAILQ_FOREACH(target, &bus->et_entries, links) { 2081 TAILQ_FOREACH(device, &target->ed_entries, links) { 2082 SLIST_FOREACH(periph, &device->periphs, 2083 periph_links) { 2084 if (periph->refcount > 0) { 2085 mtx_unlock(&xsoftc.xpt_topo_lock); 2086 return (1); 2087 } 2088 } 2089 } 2090 } 2091 } 2092 2093 mtx_unlock(&xsoftc.xpt_topo_lock); 2094 return (0); 2095 } 2096 2097 static int 2098 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2099 xpt_targetfunc_t *tr_func, void *arg) 2100 { 2101 struct cam_et *target, *next_target; 2102 int retval; 2103 2104 retval = 1; 2105 for (target = (start_target ? start_target : 2106 TAILQ_FIRST(&bus->et_entries)); 2107 target != NULL; target = next_target) { 2108 2109 target->refcount++; 2110 2111 retval = tr_func(target, arg); 2112 2113 next_target = TAILQ_NEXT(target, links); 2114 2115 xpt_release_target(target); 2116 2117 if (retval == 0) 2118 return(retval); 2119 } 2120 2121 return(retval); 2122 } 2123 2124 static int 2125 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2126 xpt_devicefunc_t *tr_func, void *arg) 2127 { 2128 struct cam_ed *device, *next_device; 2129 int retval; 2130 2131 retval = 1; 2132 for (device = (start_device ? start_device : 2133 TAILQ_FIRST(&target->ed_entries)); 2134 device != NULL; 2135 device = next_device) { 2136 2137 /* 2138 * Hold a reference so the current device does not go away 2139 * on us. 2140 */ 2141 device->refcount++; 2142 2143 retval = tr_func(device, arg); 2144 2145 /* 2146 * Grab our next pointer before we release the current 2147 * device. 2148 */ 2149 next_device = TAILQ_NEXT(device, links); 2150 2151 xpt_release_device(device); 2152 2153 if (retval == 0) 2154 return(retval); 2155 } 2156 2157 return(retval); 2158 } 2159 2160 static int 2161 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2162 xpt_periphfunc_t *tr_func, void *arg) 2163 { 2164 struct cam_periph *periph, *next_periph; 2165 int retval; 2166 2167 retval = 1; 2168 2169 xpt_lock_buses(); 2170 for (periph = (start_periph ? start_periph : 2171 SLIST_FIRST(&device->periphs)); 2172 periph != NULL; 2173 periph = next_periph) { 2174 2175 2176 /* 2177 * In this case, we want to show peripherals that have been 2178 * invalidated, but not peripherals that are scheduled to 2179 * be freed. So instead of calling cam_periph_acquire(), 2180 * which will fail if the periph has been invalidated, we 2181 * just check for the free flag here. If it is free, we 2182 * skip to the next periph. 2183 */ 2184 if (periph->flags & CAM_PERIPH_FREE) { 2185 next_periph = SLIST_NEXT(periph, periph_links); 2186 continue; 2187 } 2188 2189 /* 2190 * Acquire a reference to this periph while we call the 2191 * traversal function, so it can't go away. 2192 */ 2193 periph->refcount++; 2194 2195 xpt_unlock_buses(); 2196 2197 retval = tr_func(periph, arg); 2198 2199 /* 2200 * We need the lock for list traversal. 2201 */ 2202 xpt_lock_buses(); 2203 2204 /* 2205 * Grab the next peripheral before we release this one, so 2206 * our next pointer is still valid. 2207 */ 2208 next_periph = SLIST_NEXT(periph, periph_links); 2209 2210 cam_periph_release_locked_buses(periph); 2211 2212 if (retval == 0) 2213 goto bailout_done; 2214 } 2215 2216 bailout_done: 2217 2218 xpt_unlock_buses(); 2219 2220 return(retval); 2221 } 2222 2223 static int 2224 xptpdrvtraverse(struct periph_driver **start_pdrv, 2225 xpt_pdrvfunc_t *tr_func, void *arg) 2226 { 2227 struct periph_driver **pdrv; 2228 int retval; 2229 2230 retval = 1; 2231 2232 /* 2233 * We don't traverse the peripheral driver list like we do the 2234 * other lists, because it is a linker set, and therefore cannot be 2235 * changed during runtime. If the peripheral driver list is ever 2236 * re-done to be something other than a linker set (i.e. it can 2237 * change while the system is running), the list traversal should 2238 * be modified to work like the other traversal functions. 2239 */ 2240 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2241 *pdrv != NULL; pdrv++) { 2242 retval = tr_func(pdrv, arg); 2243 2244 if (retval == 0) 2245 return(retval); 2246 } 2247 2248 return(retval); 2249 } 2250 2251 static int 2252 xptpdperiphtraverse(struct periph_driver **pdrv, 2253 struct cam_periph *start_periph, 2254 xpt_periphfunc_t *tr_func, void *arg) 2255 { 2256 struct cam_periph *periph, *next_periph; 2257 int retval; 2258 2259 retval = 1; 2260 2261 xpt_lock_buses(); 2262 for (periph = (start_periph ? start_periph : 2263 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2264 periph = next_periph) { 2265 2266 2267 /* 2268 * In this case, we want to show peripherals that have been 2269 * invalidated, but not peripherals that are scheduled to 2270 * be freed. So instead of calling cam_periph_acquire(), 2271 * which will fail if the periph has been invalidated, we 2272 * just check for the free flag here. If it is free, we 2273 * skip to the next periph. 2274 */ 2275 if (periph->flags & CAM_PERIPH_FREE) { 2276 next_periph = TAILQ_NEXT(periph, unit_links); 2277 continue; 2278 } 2279 2280 /* 2281 * Acquire a reference to this periph while we call the 2282 * traversal function, so it can't go away. 2283 */ 2284 periph->refcount++; 2285 2286 /* 2287 * XXX KDM we have the toplogy lock here, but in 2288 * xptperiphtraverse(), we drop it before calling the 2289 * traversal function. Which is correct? 2290 */ 2291 retval = tr_func(periph, arg); 2292 2293 /* 2294 * Grab the next peripheral before we release this one, so 2295 * our next pointer is still valid. 2296 */ 2297 next_periph = TAILQ_NEXT(periph, unit_links); 2298 2299 cam_periph_release_locked_buses(periph); 2300 2301 if (retval == 0) 2302 goto bailout_done; 2303 } 2304 bailout_done: 2305 2306 xpt_unlock_buses(); 2307 2308 return(retval); 2309 } 2310 2311 static int 2312 xptdefbusfunc(struct cam_eb *bus, void *arg) 2313 { 2314 struct xpt_traverse_config *tr_config; 2315 2316 tr_config = (struct xpt_traverse_config *)arg; 2317 2318 if (tr_config->depth == XPT_DEPTH_BUS) { 2319 xpt_busfunc_t *tr_func; 2320 2321 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2322 2323 return(tr_func(bus, tr_config->tr_arg)); 2324 } else 2325 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2326 } 2327 2328 static int 2329 xptdeftargetfunc(struct cam_et *target, void *arg) 2330 { 2331 struct xpt_traverse_config *tr_config; 2332 2333 tr_config = (struct xpt_traverse_config *)arg; 2334 2335 if (tr_config->depth == XPT_DEPTH_TARGET) { 2336 xpt_targetfunc_t *tr_func; 2337 2338 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2339 2340 return(tr_func(target, tr_config->tr_arg)); 2341 } else 2342 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2343 } 2344 2345 static int 2346 xptdefdevicefunc(struct cam_ed *device, void *arg) 2347 { 2348 struct xpt_traverse_config *tr_config; 2349 2350 tr_config = (struct xpt_traverse_config *)arg; 2351 2352 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2353 xpt_devicefunc_t *tr_func; 2354 2355 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2356 2357 return(tr_func(device, tr_config->tr_arg)); 2358 } else 2359 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2360 } 2361 2362 static int 2363 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2364 { 2365 struct xpt_traverse_config *tr_config; 2366 xpt_periphfunc_t *tr_func; 2367 2368 tr_config = (struct xpt_traverse_config *)arg; 2369 2370 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2371 2372 /* 2373 * Unlike the other default functions, we don't check for depth 2374 * here. The peripheral driver level is the last level in the EDT, 2375 * so if we're here, we should execute the function in question. 2376 */ 2377 return(tr_func(periph, tr_config->tr_arg)); 2378 } 2379 2380 /* 2381 * Execute the given function for every bus in the EDT. 2382 */ 2383 static int 2384 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2385 { 2386 struct xpt_traverse_config tr_config; 2387 2388 tr_config.depth = XPT_DEPTH_BUS; 2389 tr_config.tr_func = tr_func; 2390 tr_config.tr_arg = arg; 2391 2392 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2393 } 2394 2395 /* 2396 * Execute the given function for every device in the EDT. 2397 */ 2398 static int 2399 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2400 { 2401 struct xpt_traverse_config tr_config; 2402 2403 tr_config.depth = XPT_DEPTH_DEVICE; 2404 tr_config.tr_func = tr_func; 2405 tr_config.tr_arg = arg; 2406 2407 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2408 } 2409 2410 static int 2411 xptsetasyncfunc(struct cam_ed *device, void *arg) 2412 { 2413 struct cam_path path; 2414 struct ccb_getdev cgd; 2415 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2416 2417 /* 2418 * Don't report unconfigured devices (Wildcard devs, 2419 * devices only for target mode, device instances 2420 * that have been invalidated but are waiting for 2421 * their last reference count to be released). 2422 */ 2423 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2424 return (1); 2425 2426 xpt_compile_path(&path, 2427 NULL, 2428 device->target->bus->path_id, 2429 device->target->target_id, 2430 device->lun_id); 2431 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2432 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2433 xpt_action((union ccb *)&cgd); 2434 csa->callback(csa->callback_arg, 2435 AC_FOUND_DEVICE, 2436 &path, &cgd); 2437 xpt_release_path(&path); 2438 2439 return(1); 2440 } 2441 2442 static int 2443 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2444 { 2445 struct cam_path path; 2446 struct ccb_pathinq cpi; 2447 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2448 2449 xpt_compile_path(&path, /*periph*/NULL, 2450 bus->sim->path_id, 2451 CAM_TARGET_WILDCARD, 2452 CAM_LUN_WILDCARD); 2453 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2454 cpi.ccb_h.func_code = XPT_PATH_INQ; 2455 xpt_action((union ccb *)&cpi); 2456 csa->callback(csa->callback_arg, 2457 AC_PATH_REGISTERED, 2458 &path, &cpi); 2459 xpt_release_path(&path); 2460 2461 return(1); 2462 } 2463 2464 void 2465 xpt_action(union ccb *start_ccb) 2466 { 2467 2468 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2469 2470 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2471 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2472 } 2473 2474 void 2475 xpt_action_default(union ccb *start_ccb) 2476 { 2477 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2478 struct cam_path *path; 2479 2480 path = start_ccb->ccb_h.path; 2481 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2482 2483 switch (start_ccb->ccb_h.func_code) { 2484 case XPT_SCSI_IO: 2485 { 2486 struct cam_ed *device; 2487 2488 /* 2489 * For the sake of compatibility with SCSI-1 2490 * devices that may not understand the identify 2491 * message, we include lun information in the 2492 * second byte of all commands. SCSI-1 specifies 2493 * that luns are a 3 bit value and reserves only 3 2494 * bits for lun information in the CDB. Later 2495 * revisions of the SCSI spec allow for more than 8 2496 * luns, but have deprecated lun information in the 2497 * CDB. So, if the lun won't fit, we must omit. 2498 * 2499 * Also be aware that during initial probing for devices, 2500 * the inquiry information is unknown but initialized to 0. 2501 * This means that this code will be exercised while probing 2502 * devices with an ANSI revision greater than 2. 2503 */ 2504 device = path->device; 2505 if (device->protocol_version <= SCSI_REV_2 2506 && start_ccb->ccb_h.target_lun < 8 2507 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2508 2509 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2510 start_ccb->ccb_h.target_lun << 5; 2511 } 2512 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2513 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2514 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2515 &path->device->inq_data), 2516 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2517 cdb_str, sizeof(cdb_str)))); 2518 } 2519 /* FALLTHROUGH */ 2520 case XPT_TARGET_IO: 2521 case XPT_CONT_TARGET_IO: 2522 start_ccb->csio.sense_resid = 0; 2523 start_ccb->csio.resid = 0; 2524 /* FALLTHROUGH */ 2525 case XPT_ATA_IO: 2526 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) { 2527 start_ccb->ataio.resid = 0; 2528 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n", 2529 ata_op_string(&start_ccb->ataio.cmd), 2530 ata_cmd_string(&start_ccb->ataio.cmd, 2531 cdb_str, sizeof(cdb_str)))); 2532 } 2533 /* FALLTHROUGH */ 2534 case XPT_RESET_DEV: 2535 case XPT_ENG_EXEC: 2536 case XPT_SMP_IO: 2537 { 2538 int frozen; 2539 2540 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2541 path->device->sim->devq->alloc_openings += frozen; 2542 if (frozen > 0) 2543 xpt_run_dev_allocq(path->bus); 2544 if (xpt_schedule_dev_sendq(path->bus, path->device)) 2545 xpt_run_dev_sendq(path->bus); 2546 break; 2547 } 2548 case XPT_CALC_GEOMETRY: 2549 { 2550 struct cam_sim *sim; 2551 2552 /* Filter out garbage */ 2553 if (start_ccb->ccg.block_size == 0 2554 || start_ccb->ccg.volume_size == 0) { 2555 start_ccb->ccg.cylinders = 0; 2556 start_ccb->ccg.heads = 0; 2557 start_ccb->ccg.secs_per_track = 0; 2558 start_ccb->ccb_h.status = CAM_REQ_CMP; 2559 break; 2560 } 2561 #if defined(PC98) || defined(__sparc64__) 2562 /* 2563 * In a PC-98 system, geometry translation depens on 2564 * the "real" device geometry obtained from mode page 4. 2565 * SCSI geometry translation is performed in the 2566 * initialization routine of the SCSI BIOS and the result 2567 * stored in host memory. If the translation is available 2568 * in host memory, use it. If not, rely on the default 2569 * translation the device driver performs. 2570 * For sparc64, we may need adjust the geometry of large 2571 * disks in order to fit the limitations of the 16-bit 2572 * fields of the VTOC8 disk label. 2573 */ 2574 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2575 start_ccb->ccb_h.status = CAM_REQ_CMP; 2576 break; 2577 } 2578 #endif 2579 sim = path->bus->sim; 2580 (*(sim->sim_action))(sim, start_ccb); 2581 break; 2582 } 2583 case XPT_ABORT: 2584 { 2585 union ccb* abort_ccb; 2586 2587 abort_ccb = start_ccb->cab.abort_ccb; 2588 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2589 2590 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2591 struct cam_ccbq *ccbq; 2592 struct cam_ed *device; 2593 2594 device = abort_ccb->ccb_h.path->device; 2595 ccbq = &device->ccbq; 2596 device->sim->devq->alloc_openings -= 2597 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2598 abort_ccb->ccb_h.status = 2599 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2600 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2601 xpt_done(abort_ccb); 2602 start_ccb->ccb_h.status = CAM_REQ_CMP; 2603 break; 2604 } 2605 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2606 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2607 /* 2608 * We've caught this ccb en route to 2609 * the SIM. Flag it for abort and the 2610 * SIM will do so just before starting 2611 * real work on the CCB. 2612 */ 2613 abort_ccb->ccb_h.status = 2614 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2615 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2616 start_ccb->ccb_h.status = CAM_REQ_CMP; 2617 break; 2618 } 2619 } 2620 if (XPT_FC_IS_QUEUED(abort_ccb) 2621 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2622 /* 2623 * It's already completed but waiting 2624 * for our SWI to get to it. 2625 */ 2626 start_ccb->ccb_h.status = CAM_UA_ABORT; 2627 break; 2628 } 2629 /* 2630 * If we weren't able to take care of the abort request 2631 * in the XPT, pass the request down to the SIM for processing. 2632 */ 2633 } 2634 /* FALLTHROUGH */ 2635 case XPT_ACCEPT_TARGET_IO: 2636 case XPT_EN_LUN: 2637 case XPT_IMMED_NOTIFY: 2638 case XPT_NOTIFY_ACK: 2639 case XPT_RESET_BUS: 2640 case XPT_IMMEDIATE_NOTIFY: 2641 case XPT_NOTIFY_ACKNOWLEDGE: 2642 case XPT_GET_SIM_KNOB: 2643 case XPT_SET_SIM_KNOB: 2644 { 2645 struct cam_sim *sim; 2646 2647 sim = path->bus->sim; 2648 (*(sim->sim_action))(sim, start_ccb); 2649 break; 2650 } 2651 case XPT_PATH_INQ: 2652 { 2653 struct cam_sim *sim; 2654 2655 sim = path->bus->sim; 2656 (*(sim->sim_action))(sim, start_ccb); 2657 break; 2658 } 2659 case XPT_PATH_STATS: 2660 start_ccb->cpis.last_reset = path->bus->last_reset; 2661 start_ccb->ccb_h.status = CAM_REQ_CMP; 2662 break; 2663 case XPT_GDEV_TYPE: 2664 { 2665 struct cam_ed *dev; 2666 2667 dev = path->device; 2668 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2669 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2670 } else { 2671 struct ccb_getdev *cgd; 2672 2673 cgd = &start_ccb->cgd; 2674 cgd->protocol = dev->protocol; 2675 cgd->inq_data = dev->inq_data; 2676 cgd->ident_data = dev->ident_data; 2677 cgd->inq_flags = dev->inq_flags; 2678 cgd->ccb_h.status = CAM_REQ_CMP; 2679 cgd->serial_num_len = dev->serial_num_len; 2680 if ((dev->serial_num_len > 0) 2681 && (dev->serial_num != NULL)) 2682 bcopy(dev->serial_num, cgd->serial_num, 2683 dev->serial_num_len); 2684 } 2685 break; 2686 } 2687 case XPT_GDEV_STATS: 2688 { 2689 struct cam_ed *dev; 2690 2691 dev = path->device; 2692 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2693 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2694 } else { 2695 struct ccb_getdevstats *cgds; 2696 struct cam_eb *bus; 2697 struct cam_et *tar; 2698 2699 cgds = &start_ccb->cgds; 2700 bus = path->bus; 2701 tar = path->target; 2702 cgds->dev_openings = dev->ccbq.dev_openings; 2703 cgds->dev_active = dev->ccbq.dev_active; 2704 cgds->devq_openings = dev->ccbq.devq_openings; 2705 cgds->devq_queued = dev->ccbq.queue.entries; 2706 cgds->held = dev->ccbq.held; 2707 cgds->last_reset = tar->last_reset; 2708 cgds->maxtags = dev->maxtags; 2709 cgds->mintags = dev->mintags; 2710 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2711 cgds->last_reset = bus->last_reset; 2712 cgds->ccb_h.status = CAM_REQ_CMP; 2713 } 2714 break; 2715 } 2716 case XPT_GDEVLIST: 2717 { 2718 struct cam_periph *nperiph; 2719 struct periph_list *periph_head; 2720 struct ccb_getdevlist *cgdl; 2721 u_int i; 2722 struct cam_ed *device; 2723 int found; 2724 2725 2726 found = 0; 2727 2728 /* 2729 * Don't want anyone mucking with our data. 2730 */ 2731 device = path->device; 2732 periph_head = &device->periphs; 2733 cgdl = &start_ccb->cgdl; 2734 2735 /* 2736 * Check and see if the list has changed since the user 2737 * last requested a list member. If so, tell them that the 2738 * list has changed, and therefore they need to start over 2739 * from the beginning. 2740 */ 2741 if ((cgdl->index != 0) && 2742 (cgdl->generation != device->generation)) { 2743 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2744 break; 2745 } 2746 2747 /* 2748 * Traverse the list of peripherals and attempt to find 2749 * the requested peripheral. 2750 */ 2751 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2752 (nperiph != NULL) && (i <= cgdl->index); 2753 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2754 if (i == cgdl->index) { 2755 strncpy(cgdl->periph_name, 2756 nperiph->periph_name, 2757 DEV_IDLEN); 2758 cgdl->unit_number = nperiph->unit_number; 2759 found = 1; 2760 } 2761 } 2762 if (found == 0) { 2763 cgdl->status = CAM_GDEVLIST_ERROR; 2764 break; 2765 } 2766 2767 if (nperiph == NULL) 2768 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2769 else 2770 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2771 2772 cgdl->index++; 2773 cgdl->generation = device->generation; 2774 2775 cgdl->ccb_h.status = CAM_REQ_CMP; 2776 break; 2777 } 2778 case XPT_DEV_MATCH: 2779 { 2780 dev_pos_type position_type; 2781 struct ccb_dev_match *cdm; 2782 2783 cdm = &start_ccb->cdm; 2784 2785 /* 2786 * There are two ways of getting at information in the EDT. 2787 * The first way is via the primary EDT tree. It starts 2788 * with a list of busses, then a list of targets on a bus, 2789 * then devices/luns on a target, and then peripherals on a 2790 * device/lun. The "other" way is by the peripheral driver 2791 * lists. The peripheral driver lists are organized by 2792 * peripheral driver. (obviously) So it makes sense to 2793 * use the peripheral driver list if the user is looking 2794 * for something like "da1", or all "da" devices. If the 2795 * user is looking for something on a particular bus/target 2796 * or lun, it's generally better to go through the EDT tree. 2797 */ 2798 2799 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2800 position_type = cdm->pos.position_type; 2801 else { 2802 u_int i; 2803 2804 position_type = CAM_DEV_POS_NONE; 2805 2806 for (i = 0; i < cdm->num_patterns; i++) { 2807 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2808 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2809 position_type = CAM_DEV_POS_EDT; 2810 break; 2811 } 2812 } 2813 2814 if (cdm->num_patterns == 0) 2815 position_type = CAM_DEV_POS_EDT; 2816 else if (position_type == CAM_DEV_POS_NONE) 2817 position_type = CAM_DEV_POS_PDRV; 2818 } 2819 2820 /* 2821 * Note that we drop the SIM lock here, because the EDT 2822 * traversal code needs to do its own locking. 2823 */ 2824 CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path)); 2825 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2826 case CAM_DEV_POS_EDT: 2827 xptedtmatch(cdm); 2828 break; 2829 case CAM_DEV_POS_PDRV: 2830 xptperiphlistmatch(cdm); 2831 break; 2832 default: 2833 cdm->status = CAM_DEV_MATCH_ERROR; 2834 break; 2835 } 2836 CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path)); 2837 2838 if (cdm->status == CAM_DEV_MATCH_ERROR) 2839 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2840 else 2841 start_ccb->ccb_h.status = CAM_REQ_CMP; 2842 2843 break; 2844 } 2845 case XPT_SASYNC_CB: 2846 { 2847 struct ccb_setasync *csa; 2848 struct async_node *cur_entry; 2849 struct async_list *async_head; 2850 u_int32_t added; 2851 2852 csa = &start_ccb->csa; 2853 added = csa->event_enable; 2854 async_head = &path->device->asyncs; 2855 2856 /* 2857 * If there is already an entry for us, simply 2858 * update it. 2859 */ 2860 cur_entry = SLIST_FIRST(async_head); 2861 while (cur_entry != NULL) { 2862 if ((cur_entry->callback_arg == csa->callback_arg) 2863 && (cur_entry->callback == csa->callback)) 2864 break; 2865 cur_entry = SLIST_NEXT(cur_entry, links); 2866 } 2867 2868 if (cur_entry != NULL) { 2869 /* 2870 * If the request has no flags set, 2871 * remove the entry. 2872 */ 2873 added &= ~cur_entry->event_enable; 2874 if (csa->event_enable == 0) { 2875 SLIST_REMOVE(async_head, cur_entry, 2876 async_node, links); 2877 xpt_release_device(path->device); 2878 free(cur_entry, M_CAMXPT); 2879 } else { 2880 cur_entry->event_enable = csa->event_enable; 2881 } 2882 csa->event_enable = added; 2883 } else { 2884 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2885 M_NOWAIT); 2886 if (cur_entry == NULL) { 2887 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2888 break; 2889 } 2890 cur_entry->event_enable = csa->event_enable; 2891 cur_entry->callback_arg = csa->callback_arg; 2892 cur_entry->callback = csa->callback; 2893 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2894 xpt_acquire_device(path->device); 2895 } 2896 start_ccb->ccb_h.status = CAM_REQ_CMP; 2897 break; 2898 } 2899 case XPT_REL_SIMQ: 2900 { 2901 struct ccb_relsim *crs; 2902 struct cam_ed *dev; 2903 2904 crs = &start_ccb->crs; 2905 dev = path->device; 2906 if (dev == NULL) { 2907 2908 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2909 break; 2910 } 2911 2912 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2913 2914 /* Don't ever go below one opening */ 2915 if (crs->openings > 0) { 2916 xpt_dev_ccbq_resize(path, crs->openings); 2917 if (bootverbose) { 2918 xpt_print(path, 2919 "number of openings is now %d\n", 2920 crs->openings); 2921 } 2922 } 2923 } 2924 2925 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2926 2927 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2928 2929 /* 2930 * Just extend the old timeout and decrement 2931 * the freeze count so that a single timeout 2932 * is sufficient for releasing the queue. 2933 */ 2934 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2935 callout_stop(&dev->callout); 2936 } else { 2937 2938 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2939 } 2940 2941 callout_reset(&dev->callout, 2942 (crs->release_timeout * hz) / 1000, 2943 xpt_release_devq_timeout, dev); 2944 2945 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2946 2947 } 2948 2949 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2950 2951 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2952 /* 2953 * Decrement the freeze count so that a single 2954 * completion is still sufficient to unfreeze 2955 * the queue. 2956 */ 2957 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2958 } else { 2959 2960 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2961 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2962 } 2963 } 2964 2965 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2966 2967 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2968 || (dev->ccbq.dev_active == 0)) { 2969 2970 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2971 } else { 2972 2973 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2974 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2975 } 2976 } 2977 2978 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 2979 xpt_release_devq_rl(path, /*runlevel*/ 2980 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2981 crs->release_timeout : 0, 2982 /*count*/1, /*run_queue*/TRUE); 2983 } 2984 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0]; 2985 start_ccb->ccb_h.status = CAM_REQ_CMP; 2986 break; 2987 } 2988 case XPT_DEBUG: { 2989 struct cam_path *oldpath; 2990 struct cam_sim *oldsim; 2991 2992 /* Check that all request bits are supported. */ 2993 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2994 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2995 break; 2996 } 2997 2998 cam_dflags = CAM_DEBUG_NONE; 2999 if (cam_dpath != NULL) { 3000 /* To release the old path we must hold proper lock. */ 3001 oldpath = cam_dpath; 3002 cam_dpath = NULL; 3003 oldsim = xpt_path_sim(oldpath); 3004 CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path)); 3005 CAM_SIM_LOCK(oldsim); 3006 xpt_free_path(oldpath); 3007 CAM_SIM_UNLOCK(oldsim); 3008 CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path)); 3009 } 3010 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3011 if (xpt_create_path(&cam_dpath, xpt_periph, 3012 start_ccb->ccb_h.path_id, 3013 start_ccb->ccb_h.target_id, 3014 start_ccb->ccb_h.target_lun) != 3015 CAM_REQ_CMP) { 3016 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3017 } else { 3018 cam_dflags = start_ccb->cdbg.flags; 3019 start_ccb->ccb_h.status = CAM_REQ_CMP; 3020 xpt_print(cam_dpath, "debugging flags now %x\n", 3021 cam_dflags); 3022 } 3023 } else 3024 start_ccb->ccb_h.status = CAM_REQ_CMP; 3025 break; 3026 } 3027 case XPT_FREEZE_QUEUE: 3028 { 3029 struct ccb_relsim *crs = &start_ccb->crs; 3030 3031 xpt_freeze_devq_rl(path, /*runlevel*/ 3032 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 3033 crs->release_timeout : 0, /*count*/1); 3034 start_ccb->ccb_h.status = CAM_REQ_CMP; 3035 break; 3036 } 3037 case XPT_NOOP: 3038 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3039 xpt_freeze_devq(path, 1); 3040 start_ccb->ccb_h.status = CAM_REQ_CMP; 3041 break; 3042 default: 3043 case XPT_SDEV_TYPE: 3044 case XPT_TERM_IO: 3045 case XPT_ENG_INQ: 3046 /* XXX Implement */ 3047 printf("%s: CCB type %#x not supported\n", __func__, 3048 start_ccb->ccb_h.func_code); 3049 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3050 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3051 xpt_done(start_ccb); 3052 } 3053 break; 3054 } 3055 } 3056 3057 void 3058 xpt_polled_action(union ccb *start_ccb) 3059 { 3060 u_int32_t timeout; 3061 struct cam_sim *sim; 3062 struct cam_devq *devq; 3063 struct cam_ed *dev; 3064 3065 3066 timeout = start_ccb->ccb_h.timeout * 10; 3067 sim = start_ccb->ccb_h.path->bus->sim; 3068 devq = sim->devq; 3069 dev = start_ccb->ccb_h.path->device; 3070 3071 mtx_assert(sim->mtx, MA_OWNED); 3072 3073 /* Don't use ISR for this SIM while polling. */ 3074 sim->flags |= CAM_SIM_POLLED; 3075 3076 /* 3077 * Steal an opening so that no other queued requests 3078 * can get it before us while we simulate interrupts. 3079 */ 3080 dev->ccbq.devq_openings--; 3081 dev->ccbq.dev_openings--; 3082 3083 while(((devq != NULL && devq->send_openings <= 0) || 3084 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3085 DELAY(100); 3086 (*(sim->sim_poll))(sim); 3087 camisr_runqueue(&sim->sim_doneq); 3088 } 3089 3090 dev->ccbq.devq_openings++; 3091 dev->ccbq.dev_openings++; 3092 3093 if (timeout != 0) { 3094 xpt_action(start_ccb); 3095 while(--timeout > 0) { 3096 (*(sim->sim_poll))(sim); 3097 camisr_runqueue(&sim->sim_doneq); 3098 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3099 != CAM_REQ_INPROG) 3100 break; 3101 DELAY(100); 3102 } 3103 if (timeout == 0) { 3104 /* 3105 * XXX Is it worth adding a sim_timeout entry 3106 * point so we can attempt recovery? If 3107 * this is only used for dumps, I don't think 3108 * it is. 3109 */ 3110 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3111 } 3112 } else { 3113 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3114 } 3115 3116 /* We will use CAM ISR for this SIM again. */ 3117 sim->flags &= ~CAM_SIM_POLLED; 3118 } 3119 3120 /* 3121 * Schedule a peripheral driver to receive a ccb when it's 3122 * target device has space for more transactions. 3123 */ 3124 void 3125 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3126 { 3127 struct cam_ed *device; 3128 int runq = 0; 3129 3130 mtx_assert(perph->sim->mtx, MA_OWNED); 3131 3132 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3133 device = perph->path->device; 3134 if (periph_is_queued(perph)) { 3135 /* Simply reorder based on new priority */ 3136 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3137 (" change priority to %d\n", new_priority)); 3138 if (new_priority < perph->pinfo.priority) { 3139 camq_change_priority(&device->drvq, 3140 perph->pinfo.index, 3141 new_priority); 3142 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3143 } 3144 } else { 3145 /* New entry on the queue */ 3146 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3147 (" added periph to queue\n")); 3148 perph->pinfo.priority = new_priority; 3149 perph->pinfo.generation = ++device->drvq.generation; 3150 camq_insert(&device->drvq, &perph->pinfo); 3151 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3152 } 3153 if (runq != 0) { 3154 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3155 (" calling xpt_run_devq\n")); 3156 xpt_run_dev_allocq(perph->path->bus); 3157 } 3158 } 3159 3160 3161 /* 3162 * Schedule a device to run on a given queue. 3163 * If the device was inserted as a new entry on the queue, 3164 * return 1 meaning the device queue should be run. If we 3165 * were already queued, implying someone else has already 3166 * started the queue, return 0 so the caller doesn't attempt 3167 * to run the queue. 3168 */ 3169 int 3170 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3171 u_int32_t new_priority) 3172 { 3173 int retval; 3174 u_int32_t old_priority; 3175 3176 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3177 3178 old_priority = pinfo->priority; 3179 3180 /* 3181 * Are we already queued? 3182 */ 3183 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3184 /* Simply reorder based on new priority */ 3185 if (new_priority < old_priority) { 3186 camq_change_priority(queue, pinfo->index, 3187 new_priority); 3188 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3189 ("changed priority to %d\n", 3190 new_priority)); 3191 retval = 1; 3192 } else 3193 retval = 0; 3194 } else { 3195 /* New entry on the queue */ 3196 if (new_priority < old_priority) 3197 pinfo->priority = new_priority; 3198 3199 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3200 ("Inserting onto queue\n")); 3201 pinfo->generation = ++queue->generation; 3202 camq_insert(queue, pinfo); 3203 retval = 1; 3204 } 3205 return (retval); 3206 } 3207 3208 static void 3209 xpt_run_dev_allocq(struct cam_eb *bus) 3210 { 3211 struct cam_devq *devq; 3212 3213 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3214 devq = bus->sim->devq; 3215 3216 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3217 (" qfrozen_cnt == 0x%x, entries == %d, " 3218 "openings == %d, active == %d\n", 3219 devq->alloc_queue.qfrozen_cnt[0], 3220 devq->alloc_queue.entries, 3221 devq->alloc_openings, 3222 devq->alloc_active)); 3223 3224 devq->alloc_queue.qfrozen_cnt[0]++; 3225 while ((devq->alloc_queue.entries > 0) 3226 && (devq->alloc_openings > 0) 3227 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) { 3228 struct cam_ed_qinfo *qinfo; 3229 struct cam_ed *device; 3230 union ccb *work_ccb; 3231 struct cam_periph *drv; 3232 struct camq *drvq; 3233 3234 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3235 CAMQ_HEAD); 3236 device = qinfo->device; 3237 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3238 ("running device %p\n", device)); 3239 3240 drvq = &device->drvq; 3241 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: " 3242 "Device on queue without any work to do")); 3243 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3244 devq->alloc_openings--; 3245 devq->alloc_active++; 3246 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3247 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3248 drv->pinfo.priority); 3249 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3250 ("calling periph start\n")); 3251 drv->periph_start(drv, work_ccb); 3252 } else { 3253 /* 3254 * Malloc failure in alloc_ccb 3255 */ 3256 /* 3257 * XXX add us to a list to be run from free_ccb 3258 * if we don't have any ccbs active on this 3259 * device queue otherwise we may never get run 3260 * again. 3261 */ 3262 break; 3263 } 3264 3265 /* We may have more work. Attempt to reschedule. */ 3266 xpt_schedule_dev_allocq(bus, device); 3267 } 3268 devq->alloc_queue.qfrozen_cnt[0]--; 3269 } 3270 3271 static void 3272 xpt_run_dev_sendq(struct cam_eb *bus) 3273 { 3274 struct cam_devq *devq; 3275 3276 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3277 3278 devq = bus->sim->devq; 3279 3280 devq->send_queue.qfrozen_cnt[0]++; 3281 while ((devq->send_queue.entries > 0) 3282 && (devq->send_openings > 0) 3283 && (devq->send_queue.qfrozen_cnt[0] <= 1)) { 3284 struct cam_ed_qinfo *qinfo; 3285 struct cam_ed *device; 3286 union ccb *work_ccb; 3287 struct cam_sim *sim; 3288 3289 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3290 CAMQ_HEAD); 3291 device = qinfo->device; 3292 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3293 ("running device %p\n", device)); 3294 3295 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3296 if (work_ccb == NULL) { 3297 printf("device on run queue with no ccbs???\n"); 3298 continue; 3299 } 3300 3301 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3302 3303 mtx_lock(&xsoftc.xpt_lock); 3304 if (xsoftc.num_highpower <= 0) { 3305 /* 3306 * We got a high power command, but we 3307 * don't have any available slots. Freeze 3308 * the device queue until we have a slot 3309 * available. 3310 */ 3311 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3312 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3313 &work_ccb->ccb_h, 3314 xpt_links.stqe); 3315 3316 mtx_unlock(&xsoftc.xpt_lock); 3317 continue; 3318 } else { 3319 /* 3320 * Consume a high power slot while 3321 * this ccb runs. 3322 */ 3323 xsoftc.num_highpower--; 3324 } 3325 mtx_unlock(&xsoftc.xpt_lock); 3326 } 3327 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3328 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3329 3330 devq->send_openings--; 3331 devq->send_active++; 3332 3333 xpt_schedule_dev_sendq(bus, device); 3334 3335 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3336 /* 3337 * The client wants to freeze the queue 3338 * after this CCB is sent. 3339 */ 3340 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3341 } 3342 3343 /* In Target mode, the peripheral driver knows best... */ 3344 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3345 if ((device->inq_flags & SID_CmdQue) != 0 3346 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3347 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3348 else 3349 /* 3350 * Clear this in case of a retried CCB that 3351 * failed due to a rejected tag. 3352 */ 3353 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3354 } 3355 3356 /* 3357 * Device queues can be shared among multiple sim instances 3358 * that reside on different busses. Use the SIM in the queue 3359 * CCB's path, rather than the one in the bus that was passed 3360 * into this function. 3361 */ 3362 sim = work_ccb->ccb_h.path->bus->sim; 3363 (*(sim->sim_action))(sim, work_ccb); 3364 } 3365 devq->send_queue.qfrozen_cnt[0]--; 3366 } 3367 3368 /* 3369 * This function merges stuff from the slave ccb into the master ccb, while 3370 * keeping important fields in the master ccb constant. 3371 */ 3372 void 3373 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3374 { 3375 3376 /* 3377 * Pull fields that are valid for peripheral drivers to set 3378 * into the master CCB along with the CCB "payload". 3379 */ 3380 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3381 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3382 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3383 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3384 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3385 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3386 } 3387 3388 void 3389 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3390 { 3391 3392 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3393 ccb_h->pinfo.priority = priority; 3394 ccb_h->path = path; 3395 ccb_h->path_id = path->bus->path_id; 3396 if (path->target) 3397 ccb_h->target_id = path->target->target_id; 3398 else 3399 ccb_h->target_id = CAM_TARGET_WILDCARD; 3400 if (path->device) { 3401 ccb_h->target_lun = path->device->lun_id; 3402 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3403 } else { 3404 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3405 } 3406 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3407 ccb_h->flags = 0; 3408 } 3409 3410 /* Path manipulation functions */ 3411 cam_status 3412 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3413 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3414 { 3415 struct cam_path *path; 3416 cam_status status; 3417 3418 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3419 3420 if (path == NULL) { 3421 status = CAM_RESRC_UNAVAIL; 3422 return(status); 3423 } 3424 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3425 if (status != CAM_REQ_CMP) { 3426 free(path, M_CAMPATH); 3427 path = NULL; 3428 } 3429 *new_path_ptr = path; 3430 return (status); 3431 } 3432 3433 cam_status 3434 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3435 struct cam_periph *periph, path_id_t path_id, 3436 target_id_t target_id, lun_id_t lun_id) 3437 { 3438 struct cam_path *path; 3439 struct cam_eb *bus = NULL; 3440 cam_status status; 3441 3442 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK); 3443 3444 bus = xpt_find_bus(path_id); 3445 if (bus != NULL) 3446 CAM_SIM_LOCK(bus->sim); 3447 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3448 if (bus != NULL) { 3449 CAM_SIM_UNLOCK(bus->sim); 3450 xpt_release_bus(bus); 3451 } 3452 if (status != CAM_REQ_CMP) { 3453 free(path, M_CAMPATH); 3454 path = NULL; 3455 } 3456 *new_path_ptr = path; 3457 return (status); 3458 } 3459 3460 cam_status 3461 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3462 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3463 { 3464 struct cam_eb *bus; 3465 struct cam_et *target; 3466 struct cam_ed *device; 3467 cam_status status; 3468 3469 status = CAM_REQ_CMP; /* Completed without error */ 3470 target = NULL; /* Wildcarded */ 3471 device = NULL; /* Wildcarded */ 3472 3473 /* 3474 * We will potentially modify the EDT, so block interrupts 3475 * that may attempt to create cam paths. 3476 */ 3477 bus = xpt_find_bus(path_id); 3478 if (bus == NULL) { 3479 status = CAM_PATH_INVALID; 3480 } else { 3481 target = xpt_find_target(bus, target_id); 3482 if (target == NULL) { 3483 /* Create one */ 3484 struct cam_et *new_target; 3485 3486 new_target = xpt_alloc_target(bus, target_id); 3487 if (new_target == NULL) { 3488 status = CAM_RESRC_UNAVAIL; 3489 } else { 3490 target = new_target; 3491 } 3492 } 3493 if (target != NULL) { 3494 device = xpt_find_device(target, lun_id); 3495 if (device == NULL) { 3496 /* Create one */ 3497 struct cam_ed *new_device; 3498 3499 new_device = 3500 (*(bus->xport->alloc_device))(bus, 3501 target, 3502 lun_id); 3503 if (new_device == NULL) { 3504 status = CAM_RESRC_UNAVAIL; 3505 } else { 3506 device = new_device; 3507 } 3508 } 3509 } 3510 } 3511 3512 /* 3513 * Only touch the user's data if we are successful. 3514 */ 3515 if (status == CAM_REQ_CMP) { 3516 new_path->periph = perph; 3517 new_path->bus = bus; 3518 new_path->target = target; 3519 new_path->device = device; 3520 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3521 } else { 3522 if (device != NULL) 3523 xpt_release_device(device); 3524 if (target != NULL) 3525 xpt_release_target(target); 3526 if (bus != NULL) 3527 xpt_release_bus(bus); 3528 } 3529 return (status); 3530 } 3531 3532 void 3533 xpt_release_path(struct cam_path *path) 3534 { 3535 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3536 if (path->device != NULL) { 3537 xpt_release_device(path->device); 3538 path->device = NULL; 3539 } 3540 if (path->target != NULL) { 3541 xpt_release_target(path->target); 3542 path->target = NULL; 3543 } 3544 if (path->bus != NULL) { 3545 xpt_release_bus(path->bus); 3546 path->bus = NULL; 3547 } 3548 } 3549 3550 void 3551 xpt_free_path(struct cam_path *path) 3552 { 3553 3554 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3555 xpt_release_path(path); 3556 free(path, M_CAMPATH); 3557 } 3558 3559 void 3560 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3561 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3562 { 3563 3564 mtx_lock(&xsoftc.xpt_topo_lock); 3565 if (bus_ref) { 3566 if (path->bus) 3567 *bus_ref = path->bus->refcount; 3568 else 3569 *bus_ref = 0; 3570 } 3571 mtx_unlock(&xsoftc.xpt_topo_lock); 3572 if (periph_ref) { 3573 if (path->periph) 3574 *periph_ref = path->periph->refcount; 3575 else 3576 *periph_ref = 0; 3577 } 3578 if (target_ref) { 3579 if (path->target) 3580 *target_ref = path->target->refcount; 3581 else 3582 *target_ref = 0; 3583 } 3584 if (device_ref) { 3585 if (path->device) 3586 *device_ref = path->device->refcount; 3587 else 3588 *device_ref = 0; 3589 } 3590 } 3591 3592 /* 3593 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3594 * in path1, 2 for match with wildcards in path2. 3595 */ 3596 int 3597 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3598 { 3599 int retval = 0; 3600 3601 if (path1->bus != path2->bus) { 3602 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3603 retval = 1; 3604 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3605 retval = 2; 3606 else 3607 return (-1); 3608 } 3609 if (path1->target != path2->target) { 3610 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3611 if (retval == 0) 3612 retval = 1; 3613 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3614 retval = 2; 3615 else 3616 return (-1); 3617 } 3618 if (path1->device != path2->device) { 3619 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3620 if (retval == 0) 3621 retval = 1; 3622 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3623 retval = 2; 3624 else 3625 return (-1); 3626 } 3627 return (retval); 3628 } 3629 3630 void 3631 xpt_print_path(struct cam_path *path) 3632 { 3633 3634 if (path == NULL) 3635 printf("(nopath): "); 3636 else { 3637 if (path->periph != NULL) 3638 printf("(%s%d:", path->periph->periph_name, 3639 path->periph->unit_number); 3640 else 3641 printf("(noperiph:"); 3642 3643 if (path->bus != NULL) 3644 printf("%s%d:%d:", path->bus->sim->sim_name, 3645 path->bus->sim->unit_number, 3646 path->bus->sim->bus_id); 3647 else 3648 printf("nobus:"); 3649 3650 if (path->target != NULL) 3651 printf("%d:", path->target->target_id); 3652 else 3653 printf("X:"); 3654 3655 if (path->device != NULL) 3656 printf("%d): ", path->device->lun_id); 3657 else 3658 printf("X): "); 3659 } 3660 } 3661 3662 void 3663 xpt_print(struct cam_path *path, const char *fmt, ...) 3664 { 3665 va_list ap; 3666 xpt_print_path(path); 3667 va_start(ap, fmt); 3668 vprintf(fmt, ap); 3669 va_end(ap); 3670 } 3671 3672 int 3673 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3674 { 3675 struct sbuf sb; 3676 3677 #ifdef INVARIANTS 3678 if (path != NULL && path->bus != NULL) 3679 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3680 #endif 3681 3682 sbuf_new(&sb, str, str_len, 0); 3683 3684 if (path == NULL) 3685 sbuf_printf(&sb, "(nopath): "); 3686 else { 3687 if (path->periph != NULL) 3688 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3689 path->periph->unit_number); 3690 else 3691 sbuf_printf(&sb, "(noperiph:"); 3692 3693 if (path->bus != NULL) 3694 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3695 path->bus->sim->unit_number, 3696 path->bus->sim->bus_id); 3697 else 3698 sbuf_printf(&sb, "nobus:"); 3699 3700 if (path->target != NULL) 3701 sbuf_printf(&sb, "%d:", path->target->target_id); 3702 else 3703 sbuf_printf(&sb, "X:"); 3704 3705 if (path->device != NULL) 3706 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3707 else 3708 sbuf_printf(&sb, "X): "); 3709 } 3710 sbuf_finish(&sb); 3711 3712 return(sbuf_len(&sb)); 3713 } 3714 3715 path_id_t 3716 xpt_path_path_id(struct cam_path *path) 3717 { 3718 return(path->bus->path_id); 3719 } 3720 3721 target_id_t 3722 xpt_path_target_id(struct cam_path *path) 3723 { 3724 if (path->target != NULL) 3725 return (path->target->target_id); 3726 else 3727 return (CAM_TARGET_WILDCARD); 3728 } 3729 3730 lun_id_t 3731 xpt_path_lun_id(struct cam_path *path) 3732 { 3733 if (path->device != NULL) 3734 return (path->device->lun_id); 3735 else 3736 return (CAM_LUN_WILDCARD); 3737 } 3738 3739 struct cam_sim * 3740 xpt_path_sim(struct cam_path *path) 3741 { 3742 3743 return (path->bus->sim); 3744 } 3745 3746 struct cam_periph* 3747 xpt_path_periph(struct cam_path *path) 3748 { 3749 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3750 3751 return (path->periph); 3752 } 3753 3754 int 3755 xpt_path_legacy_ata_id(struct cam_path *path) 3756 { 3757 struct cam_eb *bus; 3758 int bus_id; 3759 3760 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3761 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3762 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3763 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3764 return (-1); 3765 3766 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3767 path->bus->sim->unit_number < 2) { 3768 bus_id = path->bus->sim->unit_number; 3769 } else { 3770 bus_id = 2; 3771 xpt_lock_buses(); 3772 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3773 if (bus == path->bus) 3774 break; 3775 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3776 bus->sim->unit_number >= 2) || 3777 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3778 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3779 strcmp(bus->sim->sim_name, "siisch") == 0) 3780 bus_id++; 3781 } 3782 xpt_unlock_buses(); 3783 } 3784 if (path->target != NULL) { 3785 if (path->target->target_id < 2) 3786 return (bus_id * 2 + path->target->target_id); 3787 else 3788 return (-1); 3789 } else 3790 return (bus_id * 2); 3791 } 3792 3793 /* 3794 * Release a CAM control block for the caller. Remit the cost of the structure 3795 * to the device referenced by the path. If the this device had no 'credits' 3796 * and peripheral drivers have registered async callbacks for this notification 3797 * call them now. 3798 */ 3799 void 3800 xpt_release_ccb(union ccb *free_ccb) 3801 { 3802 struct cam_path *path; 3803 struct cam_ed *device; 3804 struct cam_eb *bus; 3805 struct cam_sim *sim; 3806 3807 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3808 path = free_ccb->ccb_h.path; 3809 device = path->device; 3810 bus = path->bus; 3811 sim = bus->sim; 3812 3813 mtx_assert(sim->mtx, MA_OWNED); 3814 3815 cam_ccbq_release_opening(&device->ccbq); 3816 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3817 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3818 cam_ccbq_resize(&device->ccbq, 3819 device->ccbq.dev_openings + device->ccbq.dev_active); 3820 } 3821 if (sim->ccb_count > sim->max_ccbs) { 3822 xpt_free_ccb(free_ccb); 3823 sim->ccb_count--; 3824 } else { 3825 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3826 xpt_links.sle); 3827 } 3828 if (sim->devq == NULL) { 3829 return; 3830 } 3831 sim->devq->alloc_openings++; 3832 sim->devq->alloc_active--; 3833 if (device_is_alloc_queued(device) == 0) 3834 xpt_schedule_dev_allocq(bus, device); 3835 xpt_run_dev_allocq(bus); 3836 } 3837 3838 /* Functions accessed by SIM drivers */ 3839 3840 static struct xpt_xport xport_default = { 3841 .alloc_device = xpt_alloc_device_default, 3842 .action = xpt_action_default, 3843 .async = xpt_dev_async_default, 3844 }; 3845 3846 /* 3847 * A sim structure, listing the SIM entry points and instance 3848 * identification info is passed to xpt_bus_register to hook the SIM 3849 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3850 * for this new bus and places it in the array of busses and assigns 3851 * it a path_id. The path_id may be influenced by "hard wiring" 3852 * information specified by the user. Once interrupt services are 3853 * available, the bus will be probed. 3854 */ 3855 int32_t 3856 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3857 { 3858 struct cam_eb *new_bus; 3859 struct cam_eb *old_bus; 3860 struct ccb_pathinq cpi; 3861 struct cam_path *path; 3862 cam_status status; 3863 3864 mtx_assert(sim->mtx, MA_OWNED); 3865 3866 sim->bus_id = bus; 3867 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3868 M_CAMXPT, M_NOWAIT); 3869 if (new_bus == NULL) { 3870 /* Couldn't satisfy request */ 3871 return (CAM_RESRC_UNAVAIL); 3872 } 3873 if (strcmp(sim->sim_name, "xpt") != 0) { 3874 sim->path_id = 3875 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3876 } 3877 3878 TAILQ_INIT(&new_bus->et_entries); 3879 new_bus->path_id = sim->path_id; 3880 cam_sim_hold(sim); 3881 new_bus->sim = sim; 3882 timevalclear(&new_bus->last_reset); 3883 new_bus->flags = 0; 3884 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3885 new_bus->generation = 0; 3886 3887 mtx_lock(&xsoftc.xpt_topo_lock); 3888 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3889 while (old_bus != NULL 3890 && old_bus->path_id < new_bus->path_id) 3891 old_bus = TAILQ_NEXT(old_bus, links); 3892 if (old_bus != NULL) 3893 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3894 else 3895 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3896 xsoftc.bus_generation++; 3897 mtx_unlock(&xsoftc.xpt_topo_lock); 3898 3899 /* 3900 * Set a default transport so that a PATH_INQ can be issued to 3901 * the SIM. This will then allow for probing and attaching of 3902 * a more appropriate transport. 3903 */ 3904 new_bus->xport = &xport_default; 3905 3906 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3907 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3908 if (status != CAM_REQ_CMP) { 3909 xpt_release_bus(new_bus); 3910 free(path, M_CAMXPT); 3911 return (CAM_RESRC_UNAVAIL); 3912 } 3913 3914 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3915 cpi.ccb_h.func_code = XPT_PATH_INQ; 3916 xpt_action((union ccb *)&cpi); 3917 3918 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3919 switch (cpi.transport) { 3920 case XPORT_SPI: 3921 case XPORT_SAS: 3922 case XPORT_FC: 3923 case XPORT_USB: 3924 case XPORT_ISCSI: 3925 case XPORT_PPB: 3926 new_bus->xport = scsi_get_xport(); 3927 break; 3928 case XPORT_ATA: 3929 case XPORT_SATA: 3930 new_bus->xport = ata_get_xport(); 3931 break; 3932 default: 3933 new_bus->xport = &xport_default; 3934 break; 3935 } 3936 } 3937 3938 /* Notify interested parties */ 3939 if (sim->path_id != CAM_XPT_PATH_ID) { 3940 union ccb *scan_ccb; 3941 3942 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3943 /* Initiate bus rescan. */ 3944 scan_ccb = xpt_alloc_ccb_nowait(); 3945 scan_ccb->ccb_h.path = path; 3946 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3947 scan_ccb->crcn.flags = 0; 3948 xpt_rescan(scan_ccb); 3949 } else 3950 xpt_free_path(path); 3951 return (CAM_SUCCESS); 3952 } 3953 3954 int32_t 3955 xpt_bus_deregister(path_id_t pathid) 3956 { 3957 struct cam_path bus_path; 3958 cam_status status; 3959 3960 status = xpt_compile_path(&bus_path, NULL, pathid, 3961 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3962 if (status != CAM_REQ_CMP) 3963 return (status); 3964 3965 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3966 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3967 3968 /* Release the reference count held while registered. */ 3969 xpt_release_bus(bus_path.bus); 3970 xpt_release_path(&bus_path); 3971 3972 return (CAM_REQ_CMP); 3973 } 3974 3975 static path_id_t 3976 xptnextfreepathid(void) 3977 { 3978 struct cam_eb *bus; 3979 path_id_t pathid; 3980 const char *strval; 3981 3982 pathid = 0; 3983 mtx_lock(&xsoftc.xpt_topo_lock); 3984 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3985 retry: 3986 /* Find an unoccupied pathid */ 3987 while (bus != NULL && bus->path_id <= pathid) { 3988 if (bus->path_id == pathid) 3989 pathid++; 3990 bus = TAILQ_NEXT(bus, links); 3991 } 3992 mtx_unlock(&xsoftc.xpt_topo_lock); 3993 3994 /* 3995 * Ensure that this pathid is not reserved for 3996 * a bus that may be registered in the future. 3997 */ 3998 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3999 ++pathid; 4000 /* Start the search over */ 4001 mtx_lock(&xsoftc.xpt_topo_lock); 4002 goto retry; 4003 } 4004 return (pathid); 4005 } 4006 4007 static path_id_t 4008 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4009 { 4010 path_id_t pathid; 4011 int i, dunit, val; 4012 char buf[32]; 4013 const char *dname; 4014 4015 pathid = CAM_XPT_PATH_ID; 4016 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4017 i = 0; 4018 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4019 if (strcmp(dname, "scbus")) { 4020 /* Avoid a bit of foot shooting. */ 4021 continue; 4022 } 4023 if (dunit < 0) /* unwired?! */ 4024 continue; 4025 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4026 if (sim_bus == val) { 4027 pathid = dunit; 4028 break; 4029 } 4030 } else if (sim_bus == 0) { 4031 /* Unspecified matches bus 0 */ 4032 pathid = dunit; 4033 break; 4034 } else { 4035 printf("Ambiguous scbus configuration for %s%d " 4036 "bus %d, cannot wire down. The kernel " 4037 "config entry for scbus%d should " 4038 "specify a controller bus.\n" 4039 "Scbus will be assigned dynamically.\n", 4040 sim_name, sim_unit, sim_bus, dunit); 4041 break; 4042 } 4043 } 4044 4045 if (pathid == CAM_XPT_PATH_ID) 4046 pathid = xptnextfreepathid(); 4047 return (pathid); 4048 } 4049 4050 static const char * 4051 xpt_async_string(u_int32_t async_code) 4052 { 4053 4054 switch (async_code) { 4055 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4056 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4057 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4058 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4059 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4060 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4061 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4062 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4063 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4064 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4065 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4066 case AC_CONTRACT: return ("AC_CONTRACT"); 4067 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4068 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4069 } 4070 return ("AC_UNKNOWN"); 4071 } 4072 4073 void 4074 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4075 { 4076 struct cam_eb *bus; 4077 struct cam_et *target, *next_target; 4078 struct cam_ed *device, *next_device; 4079 4080 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4081 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4082 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4083 4084 /* 4085 * Most async events come from a CAM interrupt context. In 4086 * a few cases, the error recovery code at the peripheral layer, 4087 * which may run from our SWI or a process context, may signal 4088 * deferred events with a call to xpt_async. 4089 */ 4090 4091 bus = path->bus; 4092 4093 if (async_code == AC_BUS_RESET) { 4094 /* Update our notion of when the last reset occurred */ 4095 microtime(&bus->last_reset); 4096 } 4097 4098 for (target = TAILQ_FIRST(&bus->et_entries); 4099 target != NULL; 4100 target = next_target) { 4101 4102 next_target = TAILQ_NEXT(target, links); 4103 4104 if (path->target != target 4105 && path->target->target_id != CAM_TARGET_WILDCARD 4106 && target->target_id != CAM_TARGET_WILDCARD) 4107 continue; 4108 4109 if (async_code == AC_SENT_BDR) { 4110 /* Update our notion of when the last reset occurred */ 4111 microtime(&path->target->last_reset); 4112 } 4113 4114 for (device = TAILQ_FIRST(&target->ed_entries); 4115 device != NULL; 4116 device = next_device) { 4117 4118 next_device = TAILQ_NEXT(device, links); 4119 4120 if (path->device != device 4121 && path->device->lun_id != CAM_LUN_WILDCARD 4122 && device->lun_id != CAM_LUN_WILDCARD) 4123 continue; 4124 /* 4125 * The async callback could free the device. 4126 * If it is a broadcast async, it doesn't hold 4127 * device reference, so take our own reference. 4128 */ 4129 xpt_acquire_device(device); 4130 (*(bus->xport->async))(async_code, bus, 4131 target, device, 4132 async_arg); 4133 4134 xpt_async_bcast(&device->asyncs, async_code, 4135 path, async_arg); 4136 xpt_release_device(device); 4137 } 4138 } 4139 4140 /* 4141 * If this wasn't a fully wildcarded async, tell all 4142 * clients that want all async events. 4143 */ 4144 if (bus != xpt_periph->path->bus) 4145 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4146 path, async_arg); 4147 } 4148 4149 static void 4150 xpt_async_bcast(struct async_list *async_head, 4151 u_int32_t async_code, 4152 struct cam_path *path, void *async_arg) 4153 { 4154 struct async_node *cur_entry; 4155 4156 cur_entry = SLIST_FIRST(async_head); 4157 while (cur_entry != NULL) { 4158 struct async_node *next_entry; 4159 /* 4160 * Grab the next list entry before we call the current 4161 * entry's callback. This is because the callback function 4162 * can delete its async callback entry. 4163 */ 4164 next_entry = SLIST_NEXT(cur_entry, links); 4165 if ((cur_entry->event_enable & async_code) != 0) 4166 cur_entry->callback(cur_entry->callback_arg, 4167 async_code, path, 4168 async_arg); 4169 cur_entry = next_entry; 4170 } 4171 } 4172 4173 static void 4174 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4175 struct cam_et *target, struct cam_ed *device, 4176 void *async_arg) 4177 { 4178 printf("%s called\n", __func__); 4179 } 4180 4181 u_int32_t 4182 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count) 4183 { 4184 struct cam_ed *dev = path->device; 4185 4186 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4187 dev->sim->devq->alloc_openings += 4188 cam_ccbq_freeze(&dev->ccbq, rl, count); 4189 /* Remove frozen device from allocq. */ 4190 if (device_is_alloc_queued(dev) && 4191 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4192 CAMQ_GET_PRIO(&dev->drvq)))) { 4193 camq_remove(&dev->sim->devq->alloc_queue, 4194 dev->alloc_ccb_entry.pinfo.index); 4195 } 4196 /* Remove frozen device from sendq. */ 4197 if (device_is_send_queued(dev) && 4198 cam_ccbq_frozen_top(&dev->ccbq)) { 4199 camq_remove(&dev->sim->devq->send_queue, 4200 dev->send_ccb_entry.pinfo.index); 4201 } 4202 return (dev->ccbq.queue.qfrozen_cnt[rl]); 4203 } 4204 4205 u_int32_t 4206 xpt_freeze_devq(struct cam_path *path, u_int count) 4207 { 4208 4209 return (xpt_freeze_devq_rl(path, 0, count)); 4210 } 4211 4212 u_int32_t 4213 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4214 { 4215 4216 mtx_assert(sim->mtx, MA_OWNED); 4217 sim->devq->send_queue.qfrozen_cnt[0] += count; 4218 return (sim->devq->send_queue.qfrozen_cnt[0]); 4219 } 4220 4221 static void 4222 xpt_release_devq_timeout(void *arg) 4223 { 4224 struct cam_ed *device; 4225 4226 device = (struct cam_ed *)arg; 4227 4228 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE); 4229 } 4230 4231 void 4232 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4233 { 4234 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4235 4236 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue); 4237 } 4238 4239 void 4240 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue) 4241 { 4242 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4243 4244 xpt_release_devq_device(path->device, rl, count, run_queue); 4245 } 4246 4247 static void 4248 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue) 4249 { 4250 4251 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) { 4252 #ifdef INVARIANTS 4253 printf("xpt_release_devq(%d): requested %u > present %u\n", 4254 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]); 4255 #endif 4256 count = dev->ccbq.queue.qfrozen_cnt[rl]; 4257 } 4258 dev->sim->devq->alloc_openings -= 4259 cam_ccbq_release(&dev->ccbq, rl, count); 4260 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4261 CAMQ_GET_PRIO(&dev->drvq))) == 0) { 4262 if (xpt_schedule_dev_allocq(dev->target->bus, dev)) 4263 xpt_run_dev_allocq(dev->target->bus); 4264 } 4265 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) { 4266 /* 4267 * No longer need to wait for a successful 4268 * command completion. 4269 */ 4270 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4271 /* 4272 * Remove any timeouts that might be scheduled 4273 * to release this queue. 4274 */ 4275 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4276 callout_stop(&dev->callout); 4277 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4278 } 4279 if (run_queue == 0) 4280 return; 4281 /* 4282 * Now that we are unfrozen schedule the 4283 * device so any pending transactions are 4284 * run. 4285 */ 4286 if (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4287 xpt_run_dev_sendq(dev->target->bus); 4288 } 4289 } 4290 4291 void 4292 xpt_release_simq(struct cam_sim *sim, int run_queue) 4293 { 4294 struct camq *sendq; 4295 4296 mtx_assert(sim->mtx, MA_OWNED); 4297 sendq = &(sim->devq->send_queue); 4298 if (sendq->qfrozen_cnt[0] <= 0) { 4299 #ifdef INVARIANTS 4300 printf("xpt_release_simq: requested 1 > present %u\n", 4301 sendq->qfrozen_cnt[0]); 4302 #endif 4303 } else 4304 sendq->qfrozen_cnt[0]--; 4305 if (sendq->qfrozen_cnt[0] == 0) { 4306 /* 4307 * If there is a timeout scheduled to release this 4308 * sim queue, remove it. The queue frozen count is 4309 * already at 0. 4310 */ 4311 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4312 callout_stop(&sim->callout); 4313 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4314 } 4315 if (run_queue) { 4316 struct cam_eb *bus; 4317 4318 /* 4319 * Now that we are unfrozen run the send queue. 4320 */ 4321 bus = xpt_find_bus(sim->path_id); 4322 xpt_run_dev_sendq(bus); 4323 xpt_release_bus(bus); 4324 } 4325 } 4326 } 4327 4328 /* 4329 * XXX Appears to be unused. 4330 */ 4331 static void 4332 xpt_release_simq_timeout(void *arg) 4333 { 4334 struct cam_sim *sim; 4335 4336 sim = (struct cam_sim *)arg; 4337 xpt_release_simq(sim, /* run_queue */ TRUE); 4338 } 4339 4340 void 4341 xpt_done(union ccb *done_ccb) 4342 { 4343 struct cam_sim *sim; 4344 int first; 4345 4346 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4347 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4348 /* 4349 * Queue up the request for handling by our SWI handler 4350 * any of the "non-immediate" type of ccbs. 4351 */ 4352 sim = done_ccb->ccb_h.path->bus->sim; 4353 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4354 sim_links.tqe); 4355 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4356 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED | 4357 CAM_SIM_BATCH)) == 0) { 4358 mtx_lock(&cam_simq_lock); 4359 first = TAILQ_EMPTY(&cam_simq); 4360 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4361 mtx_unlock(&cam_simq_lock); 4362 sim->flags |= CAM_SIM_ON_DONEQ; 4363 if (first) 4364 swi_sched(cambio_ih, 0); 4365 } 4366 } 4367 } 4368 4369 void 4370 xpt_batch_start(struct cam_sim *sim) 4371 { 4372 4373 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set")); 4374 sim->flags |= CAM_SIM_BATCH; 4375 } 4376 4377 void 4378 xpt_batch_done(struct cam_sim *sim) 4379 { 4380 4381 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set")); 4382 sim->flags &= ~CAM_SIM_BATCH; 4383 if (!TAILQ_EMPTY(&sim->sim_doneq) && 4384 (sim->flags & CAM_SIM_ON_DONEQ) == 0) 4385 camisr_runqueue(&sim->sim_doneq); 4386 } 4387 4388 union ccb * 4389 xpt_alloc_ccb() 4390 { 4391 union ccb *new_ccb; 4392 4393 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4394 return (new_ccb); 4395 } 4396 4397 union ccb * 4398 xpt_alloc_ccb_nowait() 4399 { 4400 union ccb *new_ccb; 4401 4402 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4403 return (new_ccb); 4404 } 4405 4406 void 4407 xpt_free_ccb(union ccb *free_ccb) 4408 { 4409 free(free_ccb, M_CAMCCB); 4410 } 4411 4412 4413 4414 /* Private XPT functions */ 4415 4416 /* 4417 * Get a CAM control block for the caller. Charge the structure to the device 4418 * referenced by the path. If the this device has no 'credits' then the 4419 * device already has the maximum number of outstanding operations under way 4420 * and we return NULL. If we don't have sufficient resources to allocate more 4421 * ccbs, we also return NULL. 4422 */ 4423 static union ccb * 4424 xpt_get_ccb(struct cam_ed *device) 4425 { 4426 union ccb *new_ccb; 4427 struct cam_sim *sim; 4428 4429 sim = device->sim; 4430 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4431 new_ccb = xpt_alloc_ccb_nowait(); 4432 if (new_ccb == NULL) { 4433 return (NULL); 4434 } 4435 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4436 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4437 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4438 xpt_links.sle); 4439 sim->ccb_count++; 4440 } 4441 cam_ccbq_take_opening(&device->ccbq); 4442 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4443 return (new_ccb); 4444 } 4445 4446 static void 4447 xpt_release_bus(struct cam_eb *bus) 4448 { 4449 4450 mtx_lock(&xsoftc.xpt_topo_lock); 4451 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4452 if ((--bus->refcount == 0) 4453 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4454 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4455 xsoftc.bus_generation++; 4456 mtx_unlock(&xsoftc.xpt_topo_lock); 4457 cam_sim_release(bus->sim); 4458 free(bus, M_CAMXPT); 4459 } else 4460 mtx_unlock(&xsoftc.xpt_topo_lock); 4461 } 4462 4463 static struct cam_et * 4464 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4465 { 4466 struct cam_et *target; 4467 4468 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4469 M_NOWAIT|M_ZERO); 4470 if (target != NULL) { 4471 struct cam_et *cur_target; 4472 4473 TAILQ_INIT(&target->ed_entries); 4474 target->bus = bus; 4475 target->target_id = target_id; 4476 target->refcount = 1; 4477 target->generation = 0; 4478 target->luns = NULL; 4479 timevalclear(&target->last_reset); 4480 /* 4481 * Hold a reference to our parent bus so it 4482 * will not go away before we do. 4483 */ 4484 mtx_lock(&xsoftc.xpt_topo_lock); 4485 bus->refcount++; 4486 mtx_unlock(&xsoftc.xpt_topo_lock); 4487 4488 /* Insertion sort into our bus's target list */ 4489 cur_target = TAILQ_FIRST(&bus->et_entries); 4490 while (cur_target != NULL && cur_target->target_id < target_id) 4491 cur_target = TAILQ_NEXT(cur_target, links); 4492 4493 if (cur_target != NULL) { 4494 TAILQ_INSERT_BEFORE(cur_target, target, links); 4495 } else { 4496 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4497 } 4498 bus->generation++; 4499 } 4500 return (target); 4501 } 4502 4503 static void 4504 xpt_release_target(struct cam_et *target) 4505 { 4506 4507 if (target->refcount == 1) { 4508 if (TAILQ_FIRST(&target->ed_entries) == NULL) { 4509 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4510 target->bus->generation++; 4511 xpt_release_bus(target->bus); 4512 if (target->luns) 4513 free(target->luns, M_CAMXPT); 4514 free(target, M_CAMXPT); 4515 } 4516 } else 4517 target->refcount--; 4518 } 4519 4520 static struct cam_ed * 4521 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4522 lun_id_t lun_id) 4523 { 4524 struct cam_ed *device, *cur_device; 4525 4526 device = xpt_alloc_device(bus, target, lun_id); 4527 if (device == NULL) 4528 return (NULL); 4529 4530 device->mintags = 1; 4531 device->maxtags = 1; 4532 bus->sim->max_ccbs += device->ccbq.devq_openings; 4533 cur_device = TAILQ_FIRST(&target->ed_entries); 4534 while (cur_device != NULL && cur_device->lun_id < lun_id) 4535 cur_device = TAILQ_NEXT(cur_device, links); 4536 if (cur_device != NULL) { 4537 TAILQ_INSERT_BEFORE(cur_device, device, links); 4538 } else { 4539 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4540 } 4541 target->generation++; 4542 4543 return (device); 4544 } 4545 4546 struct cam_ed * 4547 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4548 { 4549 struct cam_ed *device; 4550 struct cam_devq *devq; 4551 cam_status status; 4552 4553 /* Make space for us in the device queue on our bus */ 4554 devq = bus->sim->devq; 4555 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4556 4557 if (status != CAM_REQ_CMP) { 4558 device = NULL; 4559 } else { 4560 device = (struct cam_ed *)malloc(sizeof(*device), 4561 M_CAMDEV, M_NOWAIT|M_ZERO); 4562 } 4563 4564 if (device != NULL) { 4565 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4566 device->alloc_ccb_entry.device = device; 4567 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4568 device->send_ccb_entry.device = device; 4569 device->target = target; 4570 device->lun_id = lun_id; 4571 device->sim = bus->sim; 4572 /* Initialize our queues */ 4573 if (camq_init(&device->drvq, 0) != 0) { 4574 free(device, M_CAMDEV); 4575 return (NULL); 4576 } 4577 if (cam_ccbq_init(&device->ccbq, 4578 bus->sim->max_dev_openings) != 0) { 4579 camq_fini(&device->drvq); 4580 free(device, M_CAMDEV); 4581 return (NULL); 4582 } 4583 SLIST_INIT(&device->asyncs); 4584 SLIST_INIT(&device->periphs); 4585 device->generation = 0; 4586 device->owner = NULL; 4587 device->flags = CAM_DEV_UNCONFIGURED; 4588 device->tag_delay_count = 0; 4589 device->tag_saved_openings = 0; 4590 device->refcount = 1; 4591 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4592 4593 /* 4594 * Hold a reference to our parent target so it 4595 * will not go away before we do. 4596 */ 4597 target->refcount++; 4598 4599 } 4600 return (device); 4601 } 4602 4603 void 4604 xpt_acquire_device(struct cam_ed *device) 4605 { 4606 4607 device->refcount++; 4608 } 4609 4610 void 4611 xpt_release_device(struct cam_ed *device) 4612 { 4613 4614 if (device->refcount == 1) { 4615 struct cam_devq *devq; 4616 4617 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4618 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4619 panic("Removing device while still queued for ccbs"); 4620 4621 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4622 callout_stop(&device->callout); 4623 4624 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4625 device->target->generation++; 4626 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4627 /* Release our slot in the devq */ 4628 devq = device->target->bus->sim->devq; 4629 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4630 camq_fini(&device->drvq); 4631 cam_ccbq_fini(&device->ccbq); 4632 /* 4633 * Free allocated memory. free(9) does nothing if the 4634 * supplied pointer is NULL, so it is safe to call without 4635 * checking. 4636 */ 4637 free(device->supported_vpds, M_CAMXPT); 4638 free(device->device_id, M_CAMXPT); 4639 free(device->physpath, M_CAMXPT); 4640 free(device->rcap_buf, M_CAMXPT); 4641 free(device->serial_num, M_CAMXPT); 4642 4643 xpt_release_target(device->target); 4644 free(device, M_CAMDEV); 4645 } else 4646 device->refcount--; 4647 } 4648 4649 u_int32_t 4650 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4651 { 4652 int diff; 4653 int result; 4654 struct cam_ed *dev; 4655 4656 dev = path->device; 4657 4658 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4659 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4660 if (result == CAM_REQ_CMP && (diff < 0)) { 4661 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4662 } 4663 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4664 || (dev->inq_flags & SID_CmdQue) != 0) 4665 dev->tag_saved_openings = newopenings; 4666 /* Adjust the global limit */ 4667 dev->sim->max_ccbs += diff; 4668 return (result); 4669 } 4670 4671 static struct cam_eb * 4672 xpt_find_bus(path_id_t path_id) 4673 { 4674 struct cam_eb *bus; 4675 4676 mtx_lock(&xsoftc.xpt_topo_lock); 4677 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4678 bus != NULL; 4679 bus = TAILQ_NEXT(bus, links)) { 4680 if (bus->path_id == path_id) { 4681 bus->refcount++; 4682 break; 4683 } 4684 } 4685 mtx_unlock(&xsoftc.xpt_topo_lock); 4686 return (bus); 4687 } 4688 4689 static struct cam_et * 4690 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4691 { 4692 struct cam_et *target; 4693 4694 for (target = TAILQ_FIRST(&bus->et_entries); 4695 target != NULL; 4696 target = TAILQ_NEXT(target, links)) { 4697 if (target->target_id == target_id) { 4698 target->refcount++; 4699 break; 4700 } 4701 } 4702 return (target); 4703 } 4704 4705 static struct cam_ed * 4706 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4707 { 4708 struct cam_ed *device; 4709 4710 for (device = TAILQ_FIRST(&target->ed_entries); 4711 device != NULL; 4712 device = TAILQ_NEXT(device, links)) { 4713 if (device->lun_id == lun_id) { 4714 device->refcount++; 4715 break; 4716 } 4717 } 4718 return (device); 4719 } 4720 4721 void 4722 xpt_start_tags(struct cam_path *path) 4723 { 4724 struct ccb_relsim crs; 4725 struct cam_ed *device; 4726 struct cam_sim *sim; 4727 int newopenings; 4728 4729 device = path->device; 4730 sim = path->bus->sim; 4731 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4732 xpt_freeze_devq(path, /*count*/1); 4733 device->inq_flags |= SID_CmdQue; 4734 if (device->tag_saved_openings != 0) 4735 newopenings = device->tag_saved_openings; 4736 else 4737 newopenings = min(device->maxtags, 4738 sim->max_tagged_dev_openings); 4739 xpt_dev_ccbq_resize(path, newopenings); 4740 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4741 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4742 crs.ccb_h.func_code = XPT_REL_SIMQ; 4743 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4744 crs.openings 4745 = crs.release_timeout 4746 = crs.qfrozen_cnt 4747 = 0; 4748 xpt_action((union ccb *)&crs); 4749 } 4750 4751 void 4752 xpt_stop_tags(struct cam_path *path) 4753 { 4754 struct ccb_relsim crs; 4755 struct cam_ed *device; 4756 struct cam_sim *sim; 4757 4758 device = path->device; 4759 sim = path->bus->sim; 4760 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4761 device->tag_delay_count = 0; 4762 xpt_freeze_devq(path, /*count*/1); 4763 device->inq_flags &= ~SID_CmdQue; 4764 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4765 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4766 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4767 crs.ccb_h.func_code = XPT_REL_SIMQ; 4768 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4769 crs.openings 4770 = crs.release_timeout 4771 = crs.qfrozen_cnt 4772 = 0; 4773 xpt_action((union ccb *)&crs); 4774 } 4775 4776 static void 4777 xpt_boot_delay(void *arg) 4778 { 4779 4780 xpt_release_boot(); 4781 } 4782 4783 static void 4784 xpt_config(void *arg) 4785 { 4786 /* 4787 * Now that interrupts are enabled, go find our devices 4788 */ 4789 4790 /* Setup debugging path */ 4791 if (cam_dflags != CAM_DEBUG_NONE) { 4792 if (xpt_create_path_unlocked(&cam_dpath, xpt_periph, 4793 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4794 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4795 printf("xpt_config: xpt_create_path() failed for debug" 4796 " target %d:%d:%d, debugging disabled\n", 4797 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4798 cam_dflags = CAM_DEBUG_NONE; 4799 } 4800 } else 4801 cam_dpath = NULL; 4802 4803 periphdriver_init(1); 4804 xpt_hold_boot(); 4805 callout_init(&xsoftc.boot_callout, 1); 4806 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4807 xpt_boot_delay, NULL); 4808 /* Fire up rescan thread. */ 4809 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4810 printf("xpt_config: failed to create rescan thread.\n"); 4811 } 4812 } 4813 4814 void 4815 xpt_hold_boot(void) 4816 { 4817 xpt_lock_buses(); 4818 xsoftc.buses_to_config++; 4819 xpt_unlock_buses(); 4820 } 4821 4822 void 4823 xpt_release_boot(void) 4824 { 4825 xpt_lock_buses(); 4826 xsoftc.buses_to_config--; 4827 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4828 struct xpt_task *task; 4829 4830 xsoftc.buses_config_done = 1; 4831 xpt_unlock_buses(); 4832 /* Call manually because we don't have any busses */ 4833 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4834 if (task != NULL) { 4835 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4836 taskqueue_enqueue(taskqueue_thread, &task->task); 4837 } 4838 } else 4839 xpt_unlock_buses(); 4840 } 4841 4842 /* 4843 * If the given device only has one peripheral attached to it, and if that 4844 * peripheral is the passthrough driver, announce it. This insures that the 4845 * user sees some sort of announcement for every peripheral in their system. 4846 */ 4847 static int 4848 xptpassannouncefunc(struct cam_ed *device, void *arg) 4849 { 4850 struct cam_periph *periph; 4851 int i; 4852 4853 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4854 periph = SLIST_NEXT(periph, periph_links), i++); 4855 4856 periph = SLIST_FIRST(&device->periphs); 4857 if ((i == 1) 4858 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4859 xpt_announce_periph(periph, NULL); 4860 4861 return(1); 4862 } 4863 4864 static void 4865 xpt_finishconfig_task(void *context, int pending) 4866 { 4867 4868 periphdriver_init(2); 4869 /* 4870 * Check for devices with no "standard" peripheral driver 4871 * attached. For any devices like that, announce the 4872 * passthrough driver so the user will see something. 4873 */ 4874 if (!bootverbose) 4875 xpt_for_all_devices(xptpassannouncefunc, NULL); 4876 4877 /* Release our hook so that the boot can continue. */ 4878 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4879 free(xsoftc.xpt_config_hook, M_CAMXPT); 4880 xsoftc.xpt_config_hook = NULL; 4881 4882 free(context, M_CAMXPT); 4883 } 4884 4885 cam_status 4886 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4887 struct cam_path *path) 4888 { 4889 struct ccb_setasync csa; 4890 cam_status status; 4891 int xptpath = 0; 4892 4893 if (path == NULL) { 4894 mtx_lock(&xsoftc.xpt_lock); 4895 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4896 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4897 if (status != CAM_REQ_CMP) { 4898 mtx_unlock(&xsoftc.xpt_lock); 4899 return (status); 4900 } 4901 xptpath = 1; 4902 } 4903 4904 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4905 csa.ccb_h.func_code = XPT_SASYNC_CB; 4906 csa.event_enable = event; 4907 csa.callback = cbfunc; 4908 csa.callback_arg = cbarg; 4909 xpt_action((union ccb *)&csa); 4910 status = csa.ccb_h.status; 4911 4912 if (xptpath) { 4913 xpt_free_path(path); 4914 mtx_unlock(&xsoftc.xpt_lock); 4915 } 4916 4917 if ((status == CAM_REQ_CMP) && 4918 (csa.event_enable & AC_FOUND_DEVICE)) { 4919 /* 4920 * Get this peripheral up to date with all 4921 * the currently existing devices. 4922 */ 4923 xpt_for_all_devices(xptsetasyncfunc, &csa); 4924 } 4925 if ((status == CAM_REQ_CMP) && 4926 (csa.event_enable & AC_PATH_REGISTERED)) { 4927 /* 4928 * Get this peripheral up to date with all 4929 * the currently existing busses. 4930 */ 4931 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4932 } 4933 4934 return (status); 4935 } 4936 4937 static void 4938 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4939 { 4940 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4941 4942 switch (work_ccb->ccb_h.func_code) { 4943 /* Common cases first */ 4944 case XPT_PATH_INQ: /* Path routing inquiry */ 4945 { 4946 struct ccb_pathinq *cpi; 4947 4948 cpi = &work_ccb->cpi; 4949 cpi->version_num = 1; /* XXX??? */ 4950 cpi->hba_inquiry = 0; 4951 cpi->target_sprt = 0; 4952 cpi->hba_misc = 0; 4953 cpi->hba_eng_cnt = 0; 4954 cpi->max_target = 0; 4955 cpi->max_lun = 0; 4956 cpi->initiator_id = 0; 4957 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4958 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4959 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4960 cpi->unit_number = sim->unit_number; 4961 cpi->bus_id = sim->bus_id; 4962 cpi->base_transfer_speed = 0; 4963 cpi->protocol = PROTO_UNSPECIFIED; 4964 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4965 cpi->transport = XPORT_UNSPECIFIED; 4966 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4967 cpi->ccb_h.status = CAM_REQ_CMP; 4968 xpt_done(work_ccb); 4969 break; 4970 } 4971 default: 4972 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4973 xpt_done(work_ccb); 4974 break; 4975 } 4976 } 4977 4978 /* 4979 * The xpt as a "controller" has no interrupt sources, so polling 4980 * is a no-op. 4981 */ 4982 static void 4983 xptpoll(struct cam_sim *sim) 4984 { 4985 } 4986 4987 void 4988 xpt_lock_buses(void) 4989 { 4990 mtx_lock(&xsoftc.xpt_topo_lock); 4991 } 4992 4993 void 4994 xpt_unlock_buses(void) 4995 { 4996 mtx_unlock(&xsoftc.xpt_topo_lock); 4997 } 4998 4999 static void 5000 camisr(void *dummy) 5001 { 5002 cam_simq_t queue; 5003 struct cam_sim *sim; 5004 5005 mtx_lock(&cam_simq_lock); 5006 TAILQ_INIT(&queue); 5007 while (!TAILQ_EMPTY(&cam_simq)) { 5008 TAILQ_CONCAT(&queue, &cam_simq, links); 5009 mtx_unlock(&cam_simq_lock); 5010 5011 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 5012 TAILQ_REMOVE(&queue, sim, links); 5013 CAM_SIM_LOCK(sim); 5014 camisr_runqueue(&sim->sim_doneq); 5015 sim->flags &= ~CAM_SIM_ON_DONEQ; 5016 CAM_SIM_UNLOCK(sim); 5017 } 5018 mtx_lock(&cam_simq_lock); 5019 } 5020 mtx_unlock(&cam_simq_lock); 5021 } 5022 5023 static void 5024 camisr_runqueue(void *V_queue) 5025 { 5026 cam_isrq_t *queue = V_queue; 5027 struct ccb_hdr *ccb_h; 5028 5029 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 5030 int runq; 5031 5032 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 5033 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5034 5035 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 5036 ("camisr\n")); 5037 5038 runq = FALSE; 5039 5040 if (ccb_h->flags & CAM_HIGH_POWER) { 5041 struct highpowerlist *hphead; 5042 union ccb *send_ccb; 5043 5044 mtx_lock(&xsoftc.xpt_lock); 5045 hphead = &xsoftc.highpowerq; 5046 5047 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 5048 5049 /* 5050 * Increment the count since this command is done. 5051 */ 5052 xsoftc.num_highpower++; 5053 5054 /* 5055 * Any high powered commands queued up? 5056 */ 5057 if (send_ccb != NULL) { 5058 5059 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 5060 mtx_unlock(&xsoftc.xpt_lock); 5061 5062 xpt_release_devq(send_ccb->ccb_h.path, 5063 /*count*/1, /*runqueue*/TRUE); 5064 } else 5065 mtx_unlock(&xsoftc.xpt_lock); 5066 } 5067 5068 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5069 struct cam_ed *dev; 5070 5071 dev = ccb_h->path->device; 5072 5073 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5074 ccb_h->path->bus->sim->devq->send_active--; 5075 ccb_h->path->bus->sim->devq->send_openings++; 5076 runq = TRUE; 5077 5078 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5079 && (dev->ccbq.dev_active == 0))) { 5080 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5081 xpt_release_devq(ccb_h->path, /*count*/1, 5082 /*run_queue*/FALSE); 5083 } 5084 5085 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5086 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5087 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5088 xpt_release_devq(ccb_h->path, /*count*/1, 5089 /*run_queue*/FALSE); 5090 } 5091 5092 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5093 && (--dev->tag_delay_count == 0)) 5094 xpt_start_tags(ccb_h->path); 5095 if (!device_is_send_queued(dev)) { 5096 (void)xpt_schedule_dev_sendq(ccb_h->path->bus, 5097 dev); 5098 } 5099 } 5100 5101 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5102 xpt_release_simq(ccb_h->path->bus->sim, 5103 /*run_queue*/TRUE); 5104 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5105 runq = FALSE; 5106 } 5107 5108 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5109 && (ccb_h->status & CAM_DEV_QFRZN)) { 5110 xpt_release_devq(ccb_h->path, /*count*/1, 5111 /*run_queue*/TRUE); 5112 ccb_h->status &= ~CAM_DEV_QFRZN; 5113 } else if (runq) { 5114 xpt_run_dev_sendq(ccb_h->path->bus); 5115 } 5116 5117 /* Call the peripheral driver's callback */ 5118 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5119 } 5120 } 5121