xref: /freebsd/sys/cam/cam_xpt.c (revision a79b71281cd63ad7a6cc43a6d5673a2510b51630)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/kernel.h>
36 #include <sys/time.h>
37 #include <sys/conf.h>
38 #include <sys/fcntl.h>
39 #include <sys/md5.h>
40 #include <sys/devicestat.h>
41 #include <sys/interrupt.h>
42 #include <sys/bus.h>
43 
44 #ifdef PC98
45 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
46 #endif
47 
48 #include <machine/clock.h>
49 #include <machine/ipl.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_sim.h>
55 #include <cam/cam_xpt.h>
56 #include <cam/cam_xpt_sim.h>
57 #include <cam/cam_xpt_periph.h>
58 #include <cam/cam_debug.h>
59 
60 #include <cam/scsi/scsi_all.h>
61 #include <cam/scsi/scsi_message.h>
62 #include <cam/scsi/scsi_pass.h>
63 #include "opt_cam.h"
64 
65 /* Datastructures internal to the xpt layer */
66 
67 /*
68  * Definition of an async handler callback block.  These are used to add
69  * SIMs and peripherals to the async callback lists.
70  */
71 struct async_node {
72 	SLIST_ENTRY(async_node)	links;
73 	u_int32_t	event_enable;	/* Async Event enables */
74 	void		(*callback)(void *arg, u_int32_t code,
75 				    struct cam_path *path, void *args);
76 	void		*callback_arg;
77 };
78 
79 SLIST_HEAD(async_list, async_node);
80 SLIST_HEAD(periph_list, cam_periph);
81 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
82 
83 /*
84  * This is the maximum number of high powered commands (e.g. start unit)
85  * that can be outstanding at a particular time.
86  */
87 #ifndef CAM_MAX_HIGHPOWER
88 #define CAM_MAX_HIGHPOWER  4
89 #endif
90 
91 /* number of high powered commands that can go through right now */
92 static int num_highpower = CAM_MAX_HIGHPOWER;
93 
94 /*
95  * Structure for queueing a device in a run queue.
96  * There is one run queue for allocating new ccbs,
97  * and another for sending ccbs to the controller.
98  */
99 struct cam_ed_qinfo {
100 	cam_pinfo pinfo;
101 	struct	  cam_ed *device;
102 };
103 
104 /*
105  * The CAM EDT (Existing Device Table) contains the device information for
106  * all devices for all busses in the system.  The table contains a
107  * cam_ed structure for each device on the bus.
108  */
109 struct cam_ed {
110 	TAILQ_ENTRY(cam_ed) links;
111 	struct	cam_ed_qinfo alloc_ccb_entry;
112 	struct	cam_ed_qinfo send_ccb_entry;
113 	struct	cam_et	 *target;
114 	lun_id_t	 lun_id;
115 	struct	camq drvq;		/*
116 					 * Queue of type drivers wanting to do
117 					 * work on this device.
118 					 */
119 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
120 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
121 	struct	periph_list periphs;	/* All attached devices */
122 	u_int	generation;		/* Generation number */
123 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
124 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
125 					/* Storage for the inquiry data */
126 	struct	scsi_inquiry_data inq_data;
127 	u_int8_t	 inq_flags;	/*
128 					 * Current settings for inquiry flags.
129 					 * This allows us to override settings
130 					 * like disconnection and tagged
131 					 * queuing for a device.
132 					 */
133 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
134 	u_int8_t	 serial_num_len;
135 	u_int8_t	 *serial_num;
136 	u_int32_t	 qfrozen_cnt;
137 	u_int32_t	 flags;
138 #define CAM_DEV_UNCONFIGURED	 	0x01
139 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
140 #define CAM_DEV_REL_ON_COMPLETE		0x04
141 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
142 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
143 #define CAM_DEV_TAG_AFTER_COUNT		0x20
144 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
145 	u_int32_t	 tag_delay_count;
146 #define	CAM_TAG_DELAY_COUNT		5
147 	u_int32_t	 refcount;
148 	struct		 callout_handle c_handle;
149 };
150 
151 /*
152  * Each target is represented by an ET (Existing Target).  These
153  * entries are created when a target is successfully probed with an
154  * identify, and removed when a device fails to respond after a number
155  * of retries, or a bus rescan finds the device missing.
156  */
157 struct cam_et {
158 	TAILQ_HEAD(, cam_ed) ed_entries;
159 	TAILQ_ENTRY(cam_et) links;
160 	struct	cam_eb	*bus;
161 	target_id_t	target_id;
162 	u_int32_t	refcount;
163 	u_int		generation;
164 	struct		timeval last_reset;
165 };
166 
167 /*
168  * Each bus is represented by an EB (Existing Bus).  These entries
169  * are created by calls to xpt_bus_register and deleted by calls to
170  * xpt_bus_deregister.
171  */
172 struct cam_eb {
173 	TAILQ_HEAD(, cam_et) et_entries;
174 	TAILQ_ENTRY(cam_eb)  links;
175 	path_id_t	     path_id;
176 	struct cam_sim	     *sim;
177 	struct timeval	     last_reset;
178 	u_int32_t	     flags;
179 #define	CAM_EB_RUNQ_SCHEDULED	0x01
180 	u_int32_t	     refcount;
181 	u_int		     generation;
182 };
183 
184 struct cam_path {
185 	struct cam_periph *periph;
186 	struct cam_eb	  *bus;
187 	struct cam_et	  *target;
188 	struct cam_ed	  *device;
189 };
190 
191 struct xpt_quirk_entry {
192 	struct scsi_inquiry_pattern inq_pat;
193 	u_int8_t quirks;
194 #define	CAM_QUIRK_NOLUNS	0x01
195 #define	CAM_QUIRK_NOSERIAL	0x02
196 #define	CAM_QUIRK_HILUNS	0x04
197 	u_int mintags;
198 	u_int maxtags;
199 };
200 #define	CAM_SCSI2_MAXLUN	8
201 
202 typedef enum {
203 	XPT_FLAG_OPEN		= 0x01
204 } xpt_flags;
205 
206 struct xpt_softc {
207 	xpt_flags	flags;
208 	u_int32_t	generation;
209 };
210 
211 static const char quantum[] = "QUANTUM";
212 static const char sony[] = "SONY";
213 static const char west_digital[] = "WDIGTL";
214 static const char samsung[] = "SAMSUNG";
215 static const char seagate[] = "SEAGATE";
216 static const char microp[] = "MICROP";
217 
218 static struct xpt_quirk_entry xpt_quirk_table[] =
219 {
220 	{
221 		/* Reports QUEUE FULL for temporary resource shortages */
222 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
223 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
224 	},
225 	{
226 		/* Reports QUEUE FULL for temporary resource shortages */
227 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
228 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
229 	},
230 	{
231 		/* Reports QUEUE FULL for temporary resource shortages */
232 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
233 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
234 	},
235 	{
236 		/* Broken tagged queuing drive */
237 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
238 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
239 	},
240 	{
241 		/* Broken tagged queuing drive */
242 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
243 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
244 	},
245 	{
246 		/* Broken tagged queuing drive */
247 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
248 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
249 	},
250 	{
251 		/*
252 		 * Unfortunately, the Quantum Atlas III has the same
253 		 * problem as the Atlas II drives above.
254 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
255 		 *
256 		 * For future reference, the drive with the problem was:
257 		 * QUANTUM QM39100TD-SW N1B0
258 		 *
259 		 * It's possible that Quantum will fix the problem in later
260 		 * firmware revisions.  If that happens, the quirk entry
261 		 * will need to be made specific to the firmware revisions
262 		 * with the problem.
263 		 *
264 		 */
265 		/* Reports QUEUE FULL for temporary resource shortages */
266 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
267 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
268 	},
269 	{
270 		/*
271 		 * 18 Gig Atlas III, same problem as the 9G version.
272 		 * Reported by: Andre Albsmeier
273 		 *		<andre.albsmeier@mchp.siemens.de>
274 		 *
275 		 * For future reference, the drive with the problem was:
276 		 * QUANTUM QM318000TD-S N491
277 		 */
278 		/* Reports QUEUE FULL for temporary resource shortages */
279 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
280 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
281 	},
282 	{
283 		/*
284 		 * Broken tagged queuing drive
285 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
286 		 *         and: Martin Renters <martin@tdc.on.ca>
287 		 */
288 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
289 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
290 	},
291 		/*
292 		 * The Seagate Medalist Pro drives have very poor write
293 		 * performance with anything more than 2 tags.
294 		 *
295 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
296 		 * Drive:  <SEAGATE ST36530N 1444>
297 		 *
298 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
299 		 * Drive:  <SEAGATE ST34520W 1281>
300 		 *
301 		 * No one has actually reported that the 9G version
302 		 * (ST39140*) of the Medalist Pro has the same problem, but
303 		 * we're assuming that it does because the 4G and 6.5G
304 		 * versions of the drive are broken.
305 		 */
306 	{
307 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
308 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
309 	},
310 	{
311 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
312 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
313 	},
314 	{
315 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
316 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
317 	},
318 	{
319 		/*
320 		 * Slow when tagged queueing is enabled.  Write performance
321 		 * steadily drops off with more and more concurrent
322 		 * transactions.  Best sequential write performance with
323 		 * tagged queueing turned off and write caching turned on.
324 		 *
325 		 * PR:  kern/10398
326 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
327 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
328 		 *
329 		 * The drive with the problem had the "S65A" firmware
330 		 * revision, and has also been reported (by Stephen J.
331 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
332 		 * firmware revision.
333 		 *
334 		 * Although no one has reported problems with the 2 gig
335 		 * version of the DCAS drive, the assumption is that it
336 		 * has the same problems as the 4 gig version.  Therefore
337 		 * this quirk entries disables tagged queueing for all
338 		 * DCAS drives.
339 		 */
340 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
341 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
342 	},
343 	{
344 		/* Broken tagged queuing drive */
345 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
346 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
347 	},
348 	{
349 		/* Broken tagged queuing drive */
350 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
351 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
352 	},
353 	{
354 		/*
355 		 * Broken tagged queuing drive.
356 		 * Submitted by:
357 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
358 		 * in PR kern/9535
359 		 */
360 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
361 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
362 	},
363         {
364 		/*
365 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
366 		 * 8MB/sec.)
367 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
368 		 * Best performance with these drives is achieved with
369 		 * tagged queueing turned off, and write caching turned on.
370 		 */
371 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
372 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
373         },
374         {
375 		/*
376 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
377 		 * 8MB/sec.)
378 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
379 		 * Best performance with these drives is achieved with
380 		 * tagged queueing turned off, and write caching turned on.
381 		 */
382 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
383 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
384         },
385 	{
386 		/*
387 		 * Doesn't handle queue full condition correctly,
388 		 * so we need to limit maxtags to what the device
389 		 * can handle instead of determining this automatically.
390 		 */
391 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
392 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
393 	},
394 	{
395 		/* Really only one LUN */
396 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" },
397 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
398 	},
399 	{
400 		/* I can't believe we need a quirk for DPT volumes. */
401 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
402 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
403 		/*mintags*/0, /*maxtags*/255
404 	},
405 	{
406 		/*
407 		 * Many Sony CDROM drives don't like multi-LUN probing.
408 		 */
409 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
410 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
411 	},
412 	{
413 		/*
414 		 * This drive doesn't like multiple LUN probing.
415 		 * Submitted by:  Parag Patel <parag@cgt.com>
416 		 */
417 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
418 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
419 	},
420 	{
421 		/*
422 		 * The 8200 doesn't like multi-lun probing, and probably
423 		 * don't like serial number requests either.
424 		 */
425 		{
426 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
427 			"EXB-8200*", "*"
428 		},
429 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
430 	},
431 	{
432 		/*
433 		 * These Hitachi drives don't like multi-lun probing.
434 		 * The PR submitter has a DK319H, but says that the Linux
435 		 * kernel has a similar work-around for the DK312 and DK314,
436 		 * so all DK31* drives are quirked here.
437 		 * PR:            misc/18793
438 		 * Submitted by:  Paul Haddad <paul@pth.com>
439 		 */
440 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
441 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
442 	},
443 	{
444 		/*
445 		 * This old revision of the TDC3600 is also SCSI-1, and
446 		 * hangs upon serial number probing.
447 		 */
448 		{
449 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
450 			" TDC 3600", "U07:"
451 		},
452 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
453 	},
454 	{
455 		/*
456 		 * Would repond to all LUNs if asked for.
457 		 */
458 		{
459 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
460 			"CP150", "*"
461 		},
462 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
463 	},
464 	{
465 		/*
466 		 * Would repond to all LUNs if asked for.
467 		 */
468 		{
469 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
470 			"96X2*", "*"
471 		},
472 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
473 	},
474 	{
475 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
476 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
477 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
478 	},
479 	{
480 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
481 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
482 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
483 	},
484 	{
485 		/* Default tagged queuing parameters for all devices */
486 		{
487 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
488 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
489 		},
490 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
491 	},
492 };
493 
494 static const int xpt_quirk_table_size =
495 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
496 
497 typedef enum {
498 	DM_RET_COPY		= 0x01,
499 	DM_RET_FLAG_MASK	= 0x0f,
500 	DM_RET_NONE		= 0x00,
501 	DM_RET_STOP		= 0x10,
502 	DM_RET_DESCEND		= 0x20,
503 	DM_RET_ERROR		= 0x30,
504 	DM_RET_ACTION_MASK	= 0xf0
505 } dev_match_ret;
506 
507 typedef enum {
508 	XPT_DEPTH_BUS,
509 	XPT_DEPTH_TARGET,
510 	XPT_DEPTH_DEVICE,
511 	XPT_DEPTH_PERIPH
512 } xpt_traverse_depth;
513 
514 struct xpt_traverse_config {
515 	xpt_traverse_depth	depth;
516 	void			*tr_func;
517 	void			*tr_arg;
518 };
519 
520 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
521 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
522 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
523 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
524 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
525 
526 /* Transport layer configuration information */
527 static struct xpt_softc xsoftc;
528 
529 /* Queues for our software interrupt handler */
530 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
531 static cam_isrq_t cam_bioq;
532 static cam_isrq_t cam_netq;
533 
534 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
535 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
536 static u_int xpt_max_ccbs;	/*
537 				 * Maximum size of ccb pool.  Modified as
538 				 * devices are added/removed or have their
539 				 * opening counts changed.
540 				 */
541 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
542 
543 struct cam_periph *xpt_periph;
544 
545 static periph_init_t xpt_periph_init;
546 
547 static periph_init_t probe_periph_init;
548 
549 static struct periph_driver xpt_driver =
550 {
551 	xpt_periph_init, "xpt",
552 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
553 };
554 
555 static struct periph_driver probe_driver =
556 {
557 	probe_periph_init, "probe",
558 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
559 };
560 
561 DATA_SET(periphdriver_set, xpt_driver);
562 DATA_SET(periphdriver_set, probe_driver);
563 
564 #define XPT_CDEV_MAJOR 104
565 
566 static d_open_t xptopen;
567 static d_close_t xptclose;
568 static d_ioctl_t xptioctl;
569 
570 static struct cdevsw xpt_cdevsw = {
571 	/* open */	xptopen,
572 	/* close */	xptclose,
573 	/* read */	noread,
574 	/* write */	nowrite,
575 	/* ioctl */	xptioctl,
576 	/* poll */	nopoll,
577 	/* mmap */	nommap,
578 	/* strategy */	nostrategy,
579 	/* name */	"xpt",
580 	/* maj */	XPT_CDEV_MAJOR,
581 	/* dump */	nodump,
582 	/* psize */	nopsize,
583 	/* flags */	0,
584 	/* bmaj */	-1
585 };
586 
587 static struct intr_config_hook *xpt_config_hook;
588 
589 /* Registered busses */
590 static TAILQ_HEAD(,cam_eb) xpt_busses;
591 static u_int bus_generation;
592 
593 /* Storage for debugging datastructures */
594 #ifdef	CAMDEBUG
595 struct cam_path *cam_dpath;
596 u_int32_t cam_dflags;
597 u_int32_t cam_debug_delay;
598 #endif
599 
600 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
601 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
602 #endif
603 
604 /*
605  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
606  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
607  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
608  */
609 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
610     || defined(CAM_DEBUG_LUN)
611 #ifdef CAMDEBUG
612 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
613     || !defined(CAM_DEBUG_LUN)
614 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
615         and CAM_DEBUG_LUN"
616 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
617 #else /* !CAMDEBUG */
618 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
619 #endif /* CAMDEBUG */
620 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
621 
622 /* Our boot-time initialization hook */
623 static void	xpt_init(void *);
624 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
625 
626 static cam_status	xpt_compile_path(struct cam_path *new_path,
627 					 struct cam_periph *perph,
628 					 path_id_t path_id,
629 					 target_id_t target_id,
630 					 lun_id_t lun_id);
631 
632 static void		xpt_release_path(struct cam_path *path);
633 
634 static void		xpt_async_bcast(struct async_list *async_head,
635 					u_int32_t async_code,
636 					struct cam_path *path,
637 					void *async_arg);
638 static path_id_t xptnextfreepathid(void);
639 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
640 static union ccb *xpt_get_ccb(struct cam_ed *device);
641 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
642 				  u_int32_t new_priority);
643 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
644 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
645 static timeout_t xpt_release_devq_timeout;
646 static timeout_t xpt_release_simq_timeout;
647 static void	 xpt_release_bus(struct cam_eb *bus);
648 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
649 					 int run_queue);
650 static struct cam_et*
651 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
652 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
653 static struct cam_ed*
654 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
655 				  lun_id_t lun_id);
656 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
657 				    struct cam_ed *device);
658 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
659 static struct cam_eb*
660 		 xpt_find_bus(path_id_t path_id);
661 static struct cam_et*
662 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
663 static struct cam_ed*
664 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
665 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
666 static void	 xpt_scan_lun(struct cam_periph *periph,
667 			      struct cam_path *path, cam_flags flags,
668 			      union ccb *ccb);
669 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
670 static xpt_busfunc_t	xptconfigbuscountfunc;
671 static xpt_busfunc_t	xptconfigfunc;
672 static void	 xpt_config(void *arg);
673 static xpt_devicefunc_t xptpassannouncefunc;
674 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
675 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
676 static void	 xptpoll(struct cam_sim *sim);
677 static swihand_t swi_camnet;
678 static swihand_t swi_cambio;
679 static void	 camisr(cam_isrq_t *queue);
680 #if 0
681 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
682 static void	 xptasync(struct cam_periph *periph,
683 			  u_int32_t code, cam_path *path);
684 #endif
685 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
686 				    int num_patterns, struct cam_eb *bus);
687 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
688 				       int num_patterns, struct cam_ed *device);
689 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
690 				       int num_patterns,
691 				       struct cam_periph *periph);
692 static xpt_busfunc_t	xptedtbusfunc;
693 static xpt_targetfunc_t	xptedttargetfunc;
694 static xpt_devicefunc_t	xptedtdevicefunc;
695 static xpt_periphfunc_t	xptedtperiphfunc;
696 static xpt_pdrvfunc_t	xptplistpdrvfunc;
697 static xpt_periphfunc_t	xptplistperiphfunc;
698 static int		xptedtmatch(struct ccb_dev_match *cdm);
699 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
700 static int		xptbustraverse(struct cam_eb *start_bus,
701 				       xpt_busfunc_t *tr_func, void *arg);
702 static int		xpttargettraverse(struct cam_eb *bus,
703 					  struct cam_et *start_target,
704 					  xpt_targetfunc_t *tr_func, void *arg);
705 static int		xptdevicetraverse(struct cam_et *target,
706 					  struct cam_ed *start_device,
707 					  xpt_devicefunc_t *tr_func, void *arg);
708 static int		xptperiphtraverse(struct cam_ed *device,
709 					  struct cam_periph *start_periph,
710 					  xpt_periphfunc_t *tr_func, void *arg);
711 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
712 					xpt_pdrvfunc_t *tr_func, void *arg);
713 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
714 					    struct cam_periph *start_periph,
715 					    xpt_periphfunc_t *tr_func,
716 					    void *arg);
717 static xpt_busfunc_t	xptdefbusfunc;
718 static xpt_targetfunc_t	xptdeftargetfunc;
719 static xpt_devicefunc_t	xptdefdevicefunc;
720 static xpt_periphfunc_t	xptdefperiphfunc;
721 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
722 #ifdef notusedyet
723 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
724 					    void *arg);
725 #endif
726 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
727 					    void *arg);
728 #ifdef notusedyet
729 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
730 					    void *arg);
731 #endif
732 static xpt_devicefunc_t	xptsetasyncfunc;
733 static xpt_busfunc_t	xptsetasyncbusfunc;
734 static cam_status	xptregister(struct cam_periph *periph,
735 				    void *arg);
736 static cam_status	proberegister(struct cam_periph *periph,
737 				      void *arg);
738 static void	 probeschedule(struct cam_periph *probe_periph);
739 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
740 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
741 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
742 static void	 probecleanup(struct cam_periph *periph);
743 static void	 xpt_find_quirk(struct cam_ed *device);
744 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
745 					   struct cam_ed *device,
746 					   int async_update);
747 static void	 xpt_toggle_tags(struct cam_path *path);
748 static void	 xpt_start_tags(struct cam_path *path);
749 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
750 					    struct cam_ed *dev);
751 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
752 					   struct cam_ed *dev);
753 static __inline int periph_is_queued(struct cam_periph *periph);
754 static __inline int device_is_alloc_queued(struct cam_ed *device);
755 static __inline int device_is_send_queued(struct cam_ed *device);
756 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
757 
758 static __inline int
759 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
760 {
761 	int retval;
762 
763 	if (dev->ccbq.devq_openings > 0) {
764 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
765 			cam_ccbq_resize(&dev->ccbq,
766 					dev->ccbq.dev_openings
767 					+ dev->ccbq.dev_active);
768 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
769 		}
770 		/*
771 		 * The priority of a device waiting for CCB resources
772 		 * is that of the the highest priority peripheral driver
773 		 * enqueued.
774 		 */
775 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
776 					  &dev->alloc_ccb_entry.pinfo,
777 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
778 	} else {
779 		retval = 0;
780 	}
781 
782 	return (retval);
783 }
784 
785 static __inline int
786 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
787 {
788 	int	retval;
789 
790 	if (dev->ccbq.dev_openings > 0) {
791 		/*
792 		 * The priority of a device waiting for controller
793 		 * resources is that of the the highest priority CCB
794 		 * enqueued.
795 		 */
796 		retval =
797 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
798 				     &dev->send_ccb_entry.pinfo,
799 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
800 	} else {
801 		retval = 0;
802 	}
803 	return (retval);
804 }
805 
806 static __inline int
807 periph_is_queued(struct cam_periph *periph)
808 {
809 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
810 }
811 
812 static __inline int
813 device_is_alloc_queued(struct cam_ed *device)
814 {
815 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
816 }
817 
818 static __inline int
819 device_is_send_queued(struct cam_ed *device)
820 {
821 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
822 }
823 
824 static __inline int
825 dev_allocq_is_runnable(struct cam_devq *devq)
826 {
827 	/*
828 	 * Have work to do.
829 	 * Have space to do more work.
830 	 * Allowed to do work.
831 	 */
832 	return ((devq->alloc_queue.qfrozen_cnt == 0)
833 	     && (devq->alloc_queue.entries > 0)
834 	     && (devq->alloc_openings > 0));
835 }
836 
837 static void
838 xpt_periph_init()
839 {
840 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
841 }
842 
843 static void
844 probe_periph_init()
845 {
846 }
847 
848 
849 static void
850 xptdone(struct cam_periph *periph, union ccb *done_ccb)
851 {
852 	/* Caller will release the CCB */
853 	wakeup(&done_ccb->ccb_h.cbfcnp);
854 }
855 
856 static int
857 xptopen(dev_t dev, int flags, int fmt, struct proc *p)
858 {
859 	int unit;
860 
861 	unit = minor(dev) & 0xff;
862 
863 	/*
864 	 * Only allow read-write access.
865 	 */
866 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
867 		return(EPERM);
868 
869 	/*
870 	 * We don't allow nonblocking access.
871 	 */
872 	if ((flags & O_NONBLOCK) != 0) {
873 		printf("xpt%d: can't do nonblocking accesss\n", unit);
874 		return(ENODEV);
875 	}
876 
877 	/*
878 	 * We only have one transport layer right now.  If someone accesses
879 	 * us via something other than minor number 1, point out their
880 	 * mistake.
881 	 */
882 	if (unit != 0) {
883 		printf("xptopen: got invalid xpt unit %d\n", unit);
884 		return(ENXIO);
885 	}
886 
887 	/* Mark ourselves open */
888 	xsoftc.flags |= XPT_FLAG_OPEN;
889 
890 	return(0);
891 }
892 
893 static int
894 xptclose(dev_t dev, int flag, int fmt, struct proc *p)
895 {
896 	int unit;
897 
898 	unit = minor(dev) & 0xff;
899 
900 	/*
901 	 * We only have one transport layer right now.  If someone accesses
902 	 * us via something other than minor number 1, point out their
903 	 * mistake.
904 	 */
905 	if (unit != 0) {
906 		printf("xptclose: got invalid xpt unit %d\n", unit);
907 		return(ENXIO);
908 	}
909 
910 	/* Mark ourselves closed */
911 	xsoftc.flags &= ~XPT_FLAG_OPEN;
912 
913 	return(0);
914 }
915 
916 static int
917 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
918 {
919 	int unit, error;
920 
921 	error = 0;
922 	unit = minor(dev) & 0xff;
923 
924 	/*
925 	 * We only have one transport layer right now.  If someone accesses
926 	 * us via something other than minor number 1, point out their
927 	 * mistake.
928 	 */
929 	if (unit != 0) {
930 		printf("xptioctl: got invalid xpt unit %d\n", unit);
931 		return(ENXIO);
932 	}
933 
934 	switch(cmd) {
935 	/*
936 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
937 	 * to accept CCB types that don't quite make sense to send through a
938 	 * passthrough driver.
939 	 */
940 	case CAMIOCOMMAND: {
941 		union ccb *ccb;
942 		union ccb *inccb;
943 
944 		inccb = (union ccb *)addr;
945 
946 		switch(inccb->ccb_h.func_code) {
947 		case XPT_SCAN_BUS:
948 		case XPT_RESET_BUS:
949 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
950 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
951 				error = EINVAL;
952 				break;
953 			}
954 			/* FALLTHROUGH */
955 		case XPT_SCAN_LUN:
956 
957 			ccb = xpt_alloc_ccb();
958 
959 			/*
960 			 * Create a path using the bus, target, and lun the
961 			 * user passed in.
962 			 */
963 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
964 					    inccb->ccb_h.path_id,
965 					    inccb->ccb_h.target_id,
966 					    inccb->ccb_h.target_lun) !=
967 					    CAM_REQ_CMP){
968 				error = EINVAL;
969 				xpt_free_ccb(ccb);
970 				break;
971 			}
972 			/* Ensure all of our fields are correct */
973 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
974 				      inccb->ccb_h.pinfo.priority);
975 			xpt_merge_ccb(ccb, inccb);
976 			ccb->ccb_h.cbfcnp = xptdone;
977 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
978 			bcopy(ccb, inccb, sizeof(union ccb));
979 			xpt_free_path(ccb->ccb_h.path);
980 			xpt_free_ccb(ccb);
981 			break;
982 
983 		case XPT_DEBUG: {
984 			union ccb ccb;
985 
986 			/*
987 			 * This is an immediate CCB, so it's okay to
988 			 * allocate it on the stack.
989 			 */
990 
991 			/*
992 			 * Create a path using the bus, target, and lun the
993 			 * user passed in.
994 			 */
995 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
996 					    inccb->ccb_h.path_id,
997 					    inccb->ccb_h.target_id,
998 					    inccb->ccb_h.target_lun) !=
999 					    CAM_REQ_CMP){
1000 				error = EINVAL;
1001 				break;
1002 			}
1003 			/* Ensure all of our fields are correct */
1004 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1005 				      inccb->ccb_h.pinfo.priority);
1006 			xpt_merge_ccb(&ccb, inccb);
1007 			ccb.ccb_h.cbfcnp = xptdone;
1008 			xpt_action(&ccb);
1009 			bcopy(&ccb, inccb, sizeof(union ccb));
1010 			xpt_free_path(ccb.ccb_h.path);
1011 			break;
1012 
1013 		}
1014 		case XPT_DEV_MATCH: {
1015 			struct cam_periph_map_info mapinfo;
1016 			struct cam_path *old_path;
1017 
1018 			/*
1019 			 * We can't deal with physical addresses for this
1020 			 * type of transaction.
1021 			 */
1022 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1023 				error = EINVAL;
1024 				break;
1025 			}
1026 
1027 			/*
1028 			 * Save this in case the caller had it set to
1029 			 * something in particular.
1030 			 */
1031 			old_path = inccb->ccb_h.path;
1032 
1033 			/*
1034 			 * We really don't need a path for the matching
1035 			 * code.  The path is needed because of the
1036 			 * debugging statements in xpt_action().  They
1037 			 * assume that the CCB has a valid path.
1038 			 */
1039 			inccb->ccb_h.path = xpt_periph->path;
1040 
1041 			bzero(&mapinfo, sizeof(mapinfo));
1042 
1043 			/*
1044 			 * Map the pattern and match buffers into kernel
1045 			 * virtual address space.
1046 			 */
1047 			error = cam_periph_mapmem(inccb, &mapinfo);
1048 
1049 			if (error) {
1050 				inccb->ccb_h.path = old_path;
1051 				break;
1052 			}
1053 
1054 			/*
1055 			 * This is an immediate CCB, we can send it on directly.
1056 			 */
1057 			xpt_action(inccb);
1058 
1059 			/*
1060 			 * Map the buffers back into user space.
1061 			 */
1062 			cam_periph_unmapmem(inccb, &mapinfo);
1063 
1064 			inccb->ccb_h.path = old_path;
1065 
1066 			error = 0;
1067 			break;
1068 		}
1069 		default:
1070 			error = EINVAL;
1071 			break;
1072 		}
1073 		break;
1074 	}
1075 	/*
1076 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1077 	 * with the periphal driver name and unit name filled in.  The other
1078 	 * fields don't really matter as input.  The passthrough driver name
1079 	 * ("pass"), and unit number are passed back in the ccb.  The current
1080 	 * device generation number, and the index into the device peripheral
1081 	 * driver list, and the status are also passed back.  Note that
1082 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1083 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1084 	 * (or rather should be) impossible for the device peripheral driver
1085 	 * list to change since we look at the whole thing in one pass, and
1086 	 * we do it with splcam protection.
1087 	 *
1088 	 */
1089 	case CAMGETPASSTHRU: {
1090 		union ccb *ccb;
1091 		struct cam_periph *periph;
1092 		struct periph_driver **p_drv;
1093 		char   *name;
1094 		int unit;
1095 		int cur_generation;
1096 		int base_periph_found;
1097 		int splbreaknum;
1098 		int s;
1099 
1100 		ccb = (union ccb *)addr;
1101 		unit = ccb->cgdl.unit_number;
1102 		name = ccb->cgdl.periph_name;
1103 		/*
1104 		 * Every 100 devices, we want to drop our spl protection to
1105 		 * give the software interrupt handler a chance to run.
1106 		 * Most systems won't run into this check, but this should
1107 		 * avoid starvation in the software interrupt handler in
1108 		 * large systems.
1109 		 */
1110 		splbreaknum = 100;
1111 
1112 		ccb = (union ccb *)addr;
1113 
1114 		base_periph_found = 0;
1115 
1116 		/*
1117 		 * Sanity check -- make sure we don't get a null peripheral
1118 		 * driver name.
1119 		 */
1120 		if (*ccb->cgdl.periph_name == '\0') {
1121 			error = EINVAL;
1122 			break;
1123 		}
1124 
1125 		/* Keep the list from changing while we traverse it */
1126 		s = splcam();
1127 ptstartover:
1128 		cur_generation = xsoftc.generation;
1129 
1130 		/* first find our driver in the list of drivers */
1131 		for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
1132 		     *p_drv != NULL; p_drv++)
1133 			if (strcmp((*p_drv)->driver_name, name) == 0)
1134 				break;
1135 
1136 		if (*p_drv == NULL) {
1137 			splx(s);
1138 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1139 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1140 			*ccb->cgdl.periph_name = '\0';
1141 			ccb->cgdl.unit_number = 0;
1142 			error = ENOENT;
1143 			break;
1144 		}
1145 
1146 		/*
1147 		 * Run through every peripheral instance of this driver
1148 		 * and check to see whether it matches the unit passed
1149 		 * in by the user.  If it does, get out of the loops and
1150 		 * find the passthrough driver associated with that
1151 		 * peripheral driver.
1152 		 */
1153 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1154 		     periph = TAILQ_NEXT(periph, unit_links)) {
1155 
1156 			if (periph->unit_number == unit) {
1157 				break;
1158 			} else if (--splbreaknum == 0) {
1159 				splx(s);
1160 				s = splcam();
1161 				splbreaknum = 100;
1162 				if (cur_generation != xsoftc.generation)
1163 				       goto ptstartover;
1164 			}
1165 		}
1166 		/*
1167 		 * If we found the peripheral driver that the user passed
1168 		 * in, go through all of the peripheral drivers for that
1169 		 * particular device and look for a passthrough driver.
1170 		 */
1171 		if (periph != NULL) {
1172 			struct cam_ed *device;
1173 			int i;
1174 
1175 			base_periph_found = 1;
1176 			device = periph->path->device;
1177 			for (i = 0, periph = device->periphs.slh_first;
1178 			     periph != NULL;
1179 			     periph = periph->periph_links.sle_next, i++) {
1180 				/*
1181 				 * Check to see whether we have a
1182 				 * passthrough device or not.
1183 				 */
1184 				if (strcmp(periph->periph_name, "pass") == 0) {
1185 					/*
1186 					 * Fill in the getdevlist fields.
1187 					 */
1188 					strcpy(ccb->cgdl.periph_name,
1189 					       periph->periph_name);
1190 					ccb->cgdl.unit_number =
1191 						periph->unit_number;
1192 					if (periph->periph_links.sle_next)
1193 						ccb->cgdl.status =
1194 							CAM_GDEVLIST_MORE_DEVS;
1195 					else
1196 						ccb->cgdl.status =
1197 						       CAM_GDEVLIST_LAST_DEVICE;
1198 					ccb->cgdl.generation =
1199 						device->generation;
1200 					ccb->cgdl.index = i;
1201 					/*
1202 					 * Fill in some CCB header fields
1203 					 * that the user may want.
1204 					 */
1205 					ccb->ccb_h.path_id =
1206 						periph->path->bus->path_id;
1207 					ccb->ccb_h.target_id =
1208 						periph->path->target->target_id;
1209 					ccb->ccb_h.target_lun =
1210 						periph->path->device->lun_id;
1211 					ccb->ccb_h.status = CAM_REQ_CMP;
1212 					break;
1213 				}
1214 			}
1215 		}
1216 
1217 		/*
1218 		 * If the periph is null here, one of two things has
1219 		 * happened.  The first possibility is that we couldn't
1220 		 * find the unit number of the particular peripheral driver
1221 		 * that the user is asking about.  e.g. the user asks for
1222 		 * the passthrough driver for "da11".  We find the list of
1223 		 * "da" peripherals all right, but there is no unit 11.
1224 		 * The other possibility is that we went through the list
1225 		 * of peripheral drivers attached to the device structure,
1226 		 * but didn't find one with the name "pass".  Either way,
1227 		 * we return ENOENT, since we couldn't find something.
1228 		 */
1229 		if (periph == NULL) {
1230 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1231 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1232 			*ccb->cgdl.periph_name = '\0';
1233 			ccb->cgdl.unit_number = 0;
1234 			error = ENOENT;
1235 			/*
1236 			 * It is unfortunate that this is even necessary,
1237 			 * but there are many, many clueless users out there.
1238 			 * If this is true, the user is looking for the
1239 			 * passthrough driver, but doesn't have one in his
1240 			 * kernel.
1241 			 */
1242 			if (base_periph_found == 1) {
1243 				printf("xptioctl: pass driver is not in the "
1244 				       "kernel\n");
1245 				printf("xptioctl: put \"device pass0\" in "
1246 				       "your kernel config file\n");
1247 			}
1248 		}
1249 		splx(s);
1250 		break;
1251 		}
1252 	default:
1253 		error = ENOTTY;
1254 		break;
1255 	}
1256 
1257 	return(error);
1258 }
1259 
1260 /* Functions accessed by the peripheral drivers */
1261 static void
1262 xpt_init(dummy)
1263 	void *dummy;
1264 {
1265 	struct cam_sim *xpt_sim;
1266 	struct cam_path *path;
1267 	struct cam_devq *devq;
1268 	cam_status status;
1269 
1270 	TAILQ_INIT(&xpt_busses);
1271 	TAILQ_INIT(&cam_bioq);
1272 	TAILQ_INIT(&cam_netq);
1273 	SLIST_INIT(&ccb_freeq);
1274 	STAILQ_INIT(&highpowerq);
1275 
1276 	/*
1277 	 * The xpt layer is, itself, the equivelent of a SIM.
1278 	 * Allow 16 ccbs in the ccb pool for it.  This should
1279 	 * give decent parallelism when we probe busses and
1280 	 * perform other XPT functions.
1281 	 */
1282 	devq = cam_simq_alloc(16);
1283 	xpt_sim = cam_sim_alloc(xptaction,
1284 				xptpoll,
1285 				"xpt",
1286 				/*softc*/NULL,
1287 				/*unit*/0,
1288 				/*max_dev_transactions*/0,
1289 				/*max_tagged_dev_transactions*/0,
1290 				devq);
1291 	xpt_max_ccbs = 16;
1292 
1293 	xpt_bus_register(xpt_sim, /*bus #*/0);
1294 
1295 	/*
1296 	 * Looking at the XPT from the SIM layer, the XPT is
1297 	 * the equivelent of a peripheral driver.  Allocate
1298 	 * a peripheral driver entry for us.
1299 	 */
1300 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1301 				      CAM_TARGET_WILDCARD,
1302 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1303 		printf("xpt_init: xpt_create_path failed with status %#x,"
1304 		       " failing attach\n", status);
1305 		return;
1306 	}
1307 
1308 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1309 			 path, NULL, 0, NULL);
1310 	xpt_free_path(path);
1311 
1312 	xpt_sim->softc = xpt_periph;
1313 
1314 	/*
1315 	 * Register a callback for when interrupts are enabled.
1316 	 */
1317 	xpt_config_hook =
1318 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1319 					      M_TEMP, M_NOWAIT);
1320 	if (xpt_config_hook == NULL) {
1321 		printf("xpt_init: Cannot malloc config hook "
1322 		       "- failing attach\n");
1323 		return;
1324 	}
1325 	bzero(xpt_config_hook, sizeof(*xpt_config_hook));
1326 
1327 	xpt_config_hook->ich_func = xpt_config;
1328 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1329 		free (xpt_config_hook, M_TEMP);
1330 		printf("xpt_init: config_intrhook_establish failed "
1331 		       "- failing attach\n");
1332 	}
1333 
1334 	/* Install our software interrupt handlers */
1335 	register_swi(SWI_CAMNET, swi_camnet);
1336 	register_swi(SWI_CAMBIO, swi_cambio);
1337 }
1338 
1339 static cam_status
1340 xptregister(struct cam_periph *periph, void *arg)
1341 {
1342 	if (periph == NULL) {
1343 		printf("xptregister: periph was NULL!!\n");
1344 		return(CAM_REQ_CMP_ERR);
1345 	}
1346 
1347 	periph->softc = NULL;
1348 
1349 	xpt_periph = periph;
1350 
1351 	return(CAM_REQ_CMP);
1352 }
1353 
1354 int32_t
1355 xpt_add_periph(struct cam_periph *periph)
1356 {
1357 	struct cam_ed *device;
1358 	int32_t	 status;
1359 	struct periph_list *periph_head;
1360 
1361 	device = periph->path->device;
1362 
1363 	periph_head = &device->periphs;
1364 
1365 	status = CAM_REQ_CMP;
1366 
1367 	if (device != NULL) {
1368 		int s;
1369 
1370 		/*
1371 		 * Make room for this peripheral
1372 		 * so it will fit in the queue
1373 		 * when it's scheduled to run
1374 		 */
1375 		s = splsoftcam();
1376 		status = camq_resize(&device->drvq,
1377 				     device->drvq.array_size + 1);
1378 
1379 		device->generation++;
1380 
1381 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1382 
1383 		splx(s);
1384 	}
1385 
1386 	xsoftc.generation++;
1387 
1388 	return (status);
1389 }
1390 
1391 void
1392 xpt_remove_periph(struct cam_periph *periph)
1393 {
1394 	struct cam_ed *device;
1395 
1396 	device = periph->path->device;
1397 
1398 	if (device != NULL) {
1399 		int s;
1400 		struct periph_list *periph_head;
1401 
1402 		periph_head = &device->periphs;
1403 
1404 		/* Release the slot for this peripheral */
1405 		s = splsoftcam();
1406 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1407 
1408 		device->generation++;
1409 
1410 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1411 
1412 		splx(s);
1413 	}
1414 
1415 	xsoftc.generation++;
1416 
1417 }
1418 
1419 void
1420 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1421 {
1422 	int s;
1423 	u_int mb;
1424 	struct cam_path *path;
1425 	struct ccb_trans_settings cts;
1426 
1427 	path = periph->path;
1428 	/*
1429 	 * To ensure that this is printed in one piece,
1430 	 * mask out CAM interrupts.
1431 	 */
1432 	s = splsoftcam();
1433 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1434 	       periph->periph_name, periph->unit_number,
1435 	       path->bus->sim->sim_name,
1436 	       path->bus->sim->unit_number,
1437 	       path->bus->sim->bus_id,
1438 	       path->target->target_id,
1439 	       path->device->lun_id);
1440 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1441 	scsi_print_inquiry(&path->device->inq_data);
1442 	if ((bootverbose)
1443 	 && (path->device->serial_num_len > 0)) {
1444 		/* Don't wrap the screen  - print only the first 60 chars */
1445 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1446 		       periph->unit_number, path->device->serial_num);
1447 	}
1448 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1449 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1450 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1451 	xpt_action((union ccb*)&cts);
1452 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1453 		u_int speed;
1454 		u_int freq;
1455 
1456 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1457 		  && cts.sync_offset != 0) {
1458 			freq = scsi_calc_syncsrate(cts.sync_period);
1459 			speed = freq;
1460 		} else {
1461 			struct ccb_pathinq cpi;
1462 
1463 			/* Ask the SIM for its base transfer speed */
1464 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1465 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1466 			xpt_action((union ccb *)&cpi);
1467 
1468 			speed = cpi.base_transfer_speed;
1469 			freq = 0;
1470 		}
1471 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1472 			speed *= (0x01 << cts.bus_width);
1473 		mb = speed / 1000;
1474 		if (mb > 0)
1475 			printf("%s%d: %d.%03dMB/s transfers",
1476 			       periph->periph_name, periph->unit_number,
1477 			       mb, speed % 1000);
1478 		else
1479 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1480 			       periph->unit_number, speed);
1481 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1482 		 && cts.sync_offset != 0) {
1483 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1484 			       freq % 1000, cts.sync_offset);
1485 		}
1486 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1487 		 && cts.bus_width > 0) {
1488 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1489 			 && cts.sync_offset != 0) {
1490 				printf(", ");
1491 			} else {
1492 				printf(" (");
1493 			}
1494 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1495 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1496 			&& cts.sync_offset != 0) {
1497 			printf(")");
1498 		}
1499 
1500 		if (path->device->inq_flags & SID_CmdQue
1501 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1502 			printf(", Tagged Queueing Enabled");
1503 		}
1504 
1505 		printf("\n");
1506 	} else if (path->device->inq_flags & SID_CmdQue
1507    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1508 		printf("%s%d: Tagged Queueing Enabled\n",
1509 		       periph->periph_name, periph->unit_number);
1510 	}
1511 
1512 	/*
1513 	 * We only want to print the caller's announce string if they've
1514 	 * passed one in..
1515 	 */
1516 	if (announce_string != NULL)
1517 		printf("%s%d: %s\n", periph->periph_name,
1518 		       periph->unit_number, announce_string);
1519 	splx(s);
1520 }
1521 
1522 
1523 static dev_match_ret
1524 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1525 	    struct cam_eb *bus)
1526 {
1527 	dev_match_ret retval;
1528 	int i;
1529 
1530 	retval = DM_RET_NONE;
1531 
1532 	/*
1533 	 * If we aren't given something to match against, that's an error.
1534 	 */
1535 	if (bus == NULL)
1536 		return(DM_RET_ERROR);
1537 
1538 	/*
1539 	 * If there are no match entries, then this bus matches no
1540 	 * matter what.
1541 	 */
1542 	if ((patterns == NULL) || (num_patterns == 0))
1543 		return(DM_RET_DESCEND | DM_RET_COPY);
1544 
1545 	for (i = 0; i < num_patterns; i++) {
1546 		struct bus_match_pattern *cur_pattern;
1547 
1548 		/*
1549 		 * If the pattern in question isn't for a bus node, we
1550 		 * aren't interested.  However, we do indicate to the
1551 		 * calling routine that we should continue descending the
1552 		 * tree, since the user wants to match against lower-level
1553 		 * EDT elements.
1554 		 */
1555 		if (patterns[i].type != DEV_MATCH_BUS) {
1556 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1557 				retval |= DM_RET_DESCEND;
1558 			continue;
1559 		}
1560 
1561 		cur_pattern = &patterns[i].pattern.bus_pattern;
1562 
1563 		/*
1564 		 * If they want to match any bus node, we give them any
1565 		 * device node.
1566 		 */
1567 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1568 			/* set the copy flag */
1569 			retval |= DM_RET_COPY;
1570 
1571 			/*
1572 			 * If we've already decided on an action, go ahead
1573 			 * and return.
1574 			 */
1575 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1576 				return(retval);
1577 		}
1578 
1579 		/*
1580 		 * Not sure why someone would do this...
1581 		 */
1582 		if (cur_pattern->flags == BUS_MATCH_NONE)
1583 			continue;
1584 
1585 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1586 		 && (cur_pattern->path_id != bus->path_id))
1587 			continue;
1588 
1589 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1590 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1591 			continue;
1592 
1593 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1594 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1595 			continue;
1596 
1597 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1598 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1599 			     DEV_IDLEN) != 0))
1600 			continue;
1601 
1602 		/*
1603 		 * If we get to this point, the user definitely wants
1604 		 * information on this bus.  So tell the caller to copy the
1605 		 * data out.
1606 		 */
1607 		retval |= DM_RET_COPY;
1608 
1609 		/*
1610 		 * If the return action has been set to descend, then we
1611 		 * know that we've already seen a non-bus matching
1612 		 * expression, therefore we need to further descend the tree.
1613 		 * This won't change by continuing around the loop, so we
1614 		 * go ahead and return.  If we haven't seen a non-bus
1615 		 * matching expression, we keep going around the loop until
1616 		 * we exhaust the matching expressions.  We'll set the stop
1617 		 * flag once we fall out of the loop.
1618 		 */
1619 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1620 			return(retval);
1621 	}
1622 
1623 	/*
1624 	 * If the return action hasn't been set to descend yet, that means
1625 	 * we haven't seen anything other than bus matching patterns.  So
1626 	 * tell the caller to stop descending the tree -- the user doesn't
1627 	 * want to match against lower level tree elements.
1628 	 */
1629 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1630 		retval |= DM_RET_STOP;
1631 
1632 	return(retval);
1633 }
1634 
1635 static dev_match_ret
1636 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1637 	       struct cam_ed *device)
1638 {
1639 	dev_match_ret retval;
1640 	int i;
1641 
1642 	retval = DM_RET_NONE;
1643 
1644 	/*
1645 	 * If we aren't given something to match against, that's an error.
1646 	 */
1647 	if (device == NULL)
1648 		return(DM_RET_ERROR);
1649 
1650 	/*
1651 	 * If there are no match entries, then this device matches no
1652 	 * matter what.
1653 	 */
1654 	if ((patterns == NULL) || (patterns == 0))
1655 		return(DM_RET_DESCEND | DM_RET_COPY);
1656 
1657 	for (i = 0; i < num_patterns; i++) {
1658 		struct device_match_pattern *cur_pattern;
1659 
1660 		/*
1661 		 * If the pattern in question isn't for a device node, we
1662 		 * aren't interested.
1663 		 */
1664 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1665 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1666 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1667 				retval |= DM_RET_DESCEND;
1668 			continue;
1669 		}
1670 
1671 		cur_pattern = &patterns[i].pattern.device_pattern;
1672 
1673 		/*
1674 		 * If they want to match any device node, we give them any
1675 		 * device node.
1676 		 */
1677 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1678 			/* set the copy flag */
1679 			retval |= DM_RET_COPY;
1680 
1681 
1682 			/*
1683 			 * If we've already decided on an action, go ahead
1684 			 * and return.
1685 			 */
1686 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1687 				return(retval);
1688 		}
1689 
1690 		/*
1691 		 * Not sure why someone would do this...
1692 		 */
1693 		if (cur_pattern->flags == DEV_MATCH_NONE)
1694 			continue;
1695 
1696 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1697 		 && (cur_pattern->path_id != device->target->bus->path_id))
1698 			continue;
1699 
1700 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1701 		 && (cur_pattern->target_id != device->target->target_id))
1702 			continue;
1703 
1704 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1705 		 && (cur_pattern->target_lun != device->lun_id))
1706 			continue;
1707 
1708 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1709 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1710 				    (caddr_t)&cur_pattern->inq_pat,
1711 				    1, sizeof(cur_pattern->inq_pat),
1712 				    scsi_static_inquiry_match) == NULL))
1713 			continue;
1714 
1715 		/*
1716 		 * If we get to this point, the user definitely wants
1717 		 * information on this device.  So tell the caller to copy
1718 		 * the data out.
1719 		 */
1720 		retval |= DM_RET_COPY;
1721 
1722 		/*
1723 		 * If the return action has been set to descend, then we
1724 		 * know that we've already seen a peripheral matching
1725 		 * expression, therefore we need to further descend the tree.
1726 		 * This won't change by continuing around the loop, so we
1727 		 * go ahead and return.  If we haven't seen a peripheral
1728 		 * matching expression, we keep going around the loop until
1729 		 * we exhaust the matching expressions.  We'll set the stop
1730 		 * flag once we fall out of the loop.
1731 		 */
1732 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1733 			return(retval);
1734 	}
1735 
1736 	/*
1737 	 * If the return action hasn't been set to descend yet, that means
1738 	 * we haven't seen any peripheral matching patterns.  So tell the
1739 	 * caller to stop descending the tree -- the user doesn't want to
1740 	 * match against lower level tree elements.
1741 	 */
1742 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1743 		retval |= DM_RET_STOP;
1744 
1745 	return(retval);
1746 }
1747 
1748 /*
1749  * Match a single peripheral against any number of match patterns.
1750  */
1751 static dev_match_ret
1752 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1753 	       struct cam_periph *periph)
1754 {
1755 	dev_match_ret retval;
1756 	int i;
1757 
1758 	/*
1759 	 * If we aren't given something to match against, that's an error.
1760 	 */
1761 	if (periph == NULL)
1762 		return(DM_RET_ERROR);
1763 
1764 	/*
1765 	 * If there are no match entries, then this peripheral matches no
1766 	 * matter what.
1767 	 */
1768 	if ((patterns == NULL) || (num_patterns == 0))
1769 		return(DM_RET_STOP | DM_RET_COPY);
1770 
1771 	/*
1772 	 * There aren't any nodes below a peripheral node, so there's no
1773 	 * reason to descend the tree any further.
1774 	 */
1775 	retval = DM_RET_STOP;
1776 
1777 	for (i = 0; i < num_patterns; i++) {
1778 		struct periph_match_pattern *cur_pattern;
1779 
1780 		/*
1781 		 * If the pattern in question isn't for a peripheral, we
1782 		 * aren't interested.
1783 		 */
1784 		if (patterns[i].type != DEV_MATCH_PERIPH)
1785 			continue;
1786 
1787 		cur_pattern = &patterns[i].pattern.periph_pattern;
1788 
1789 		/*
1790 		 * If they want to match on anything, then we will do so.
1791 		 */
1792 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1793 			/* set the copy flag */
1794 			retval |= DM_RET_COPY;
1795 
1796 			/*
1797 			 * We've already set the return action to stop,
1798 			 * since there are no nodes below peripherals in
1799 			 * the tree.
1800 			 */
1801 			return(retval);
1802 		}
1803 
1804 		/*
1805 		 * Not sure why someone would do this...
1806 		 */
1807 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1808 			continue;
1809 
1810 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1811 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1812 			continue;
1813 
1814 		/*
1815 		 * For the target and lun id's, we have to make sure the
1816 		 * target and lun pointers aren't NULL.  The xpt peripheral
1817 		 * has a wildcard target and device.
1818 		 */
1819 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1820 		 && ((periph->path->target == NULL)
1821 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1822 			continue;
1823 
1824 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1825 		 && ((periph->path->device == NULL)
1826 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1827 			continue;
1828 
1829 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1830 		 && (cur_pattern->unit_number != periph->unit_number))
1831 			continue;
1832 
1833 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1834 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1835 			     DEV_IDLEN) != 0))
1836 			continue;
1837 
1838 		/*
1839 		 * If we get to this point, the user definitely wants
1840 		 * information on this peripheral.  So tell the caller to
1841 		 * copy the data out.
1842 		 */
1843 		retval |= DM_RET_COPY;
1844 
1845 		/*
1846 		 * The return action has already been set to stop, since
1847 		 * peripherals don't have any nodes below them in the EDT.
1848 		 */
1849 		return(retval);
1850 	}
1851 
1852 	/*
1853 	 * If we get to this point, the peripheral that was passed in
1854 	 * doesn't match any of the patterns.
1855 	 */
1856 	return(retval);
1857 }
1858 
1859 static int
1860 xptedtbusfunc(struct cam_eb *bus, void *arg)
1861 {
1862 	struct ccb_dev_match *cdm;
1863 	dev_match_ret retval;
1864 
1865 	cdm = (struct ccb_dev_match *)arg;
1866 
1867 	/*
1868 	 * If our position is for something deeper in the tree, that means
1869 	 * that we've already seen this node.  So, we keep going down.
1870 	 */
1871 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1872 	 && (cdm->pos.cookie.bus == bus)
1873 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1874 	 && (cdm->pos.cookie.target != NULL))
1875 		retval = DM_RET_DESCEND;
1876 	else
1877 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1878 
1879 	/*
1880 	 * If we got an error, bail out of the search.
1881 	 */
1882 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1883 		cdm->status = CAM_DEV_MATCH_ERROR;
1884 		return(0);
1885 	}
1886 
1887 	/*
1888 	 * If the copy flag is set, copy this bus out.
1889 	 */
1890 	if (retval & DM_RET_COPY) {
1891 		int spaceleft, j;
1892 
1893 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1894 			sizeof(struct dev_match_result));
1895 
1896 		/*
1897 		 * If we don't have enough space to put in another
1898 		 * match result, save our position and tell the
1899 		 * user there are more devices to check.
1900 		 */
1901 		if (spaceleft < sizeof(struct dev_match_result)) {
1902 			bzero(&cdm->pos, sizeof(cdm->pos));
1903 			cdm->pos.position_type =
1904 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1905 
1906 			cdm->pos.cookie.bus = bus;
1907 			cdm->pos.generations[CAM_BUS_GENERATION]=
1908 				bus_generation;
1909 			cdm->status = CAM_DEV_MATCH_MORE;
1910 			return(0);
1911 		}
1912 		j = cdm->num_matches;
1913 		cdm->num_matches++;
1914 		cdm->matches[j].type = DEV_MATCH_BUS;
1915 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1916 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1917 		cdm->matches[j].result.bus_result.unit_number =
1918 			bus->sim->unit_number;
1919 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1920 			bus->sim->sim_name, DEV_IDLEN);
1921 	}
1922 
1923 	/*
1924 	 * If the user is only interested in busses, there's no
1925 	 * reason to descend to the next level in the tree.
1926 	 */
1927 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1928 		return(1);
1929 
1930 	/*
1931 	 * If there is a target generation recorded, check it to
1932 	 * make sure the target list hasn't changed.
1933 	 */
1934 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1935 	 && (bus == cdm->pos.cookie.bus)
1936 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1937 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1938 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1939 	     bus->generation)) {
1940 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1941 		return(0);
1942 	}
1943 
1944 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1945 	 && (cdm->pos.cookie.bus == bus)
1946 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1947 	 && (cdm->pos.cookie.target != NULL))
1948 		return(xpttargettraverse(bus,
1949 					(struct cam_et *)cdm->pos.cookie.target,
1950 					 xptedttargetfunc, arg));
1951 	else
1952 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1953 }
1954 
1955 static int
1956 xptedttargetfunc(struct cam_et *target, void *arg)
1957 {
1958 	struct ccb_dev_match *cdm;
1959 
1960 	cdm = (struct ccb_dev_match *)arg;
1961 
1962 	/*
1963 	 * If there is a device list generation recorded, check it to
1964 	 * make sure the device list hasn't changed.
1965 	 */
1966 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1967 	 && (cdm->pos.cookie.bus == target->bus)
1968 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1969 	 && (cdm->pos.cookie.target == target)
1970 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1971 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1972 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1973 	     target->generation)) {
1974 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1975 		return(0);
1976 	}
1977 
1978 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1979 	 && (cdm->pos.cookie.bus == target->bus)
1980 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1981 	 && (cdm->pos.cookie.target == target)
1982 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1983 	 && (cdm->pos.cookie.device != NULL))
1984 		return(xptdevicetraverse(target,
1985 					(struct cam_ed *)cdm->pos.cookie.device,
1986 					 xptedtdevicefunc, arg));
1987 	else
1988 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1989 }
1990 
1991 static int
1992 xptedtdevicefunc(struct cam_ed *device, void *arg)
1993 {
1994 
1995 	struct ccb_dev_match *cdm;
1996 	dev_match_ret retval;
1997 
1998 	cdm = (struct ccb_dev_match *)arg;
1999 
2000 	/*
2001 	 * If our position is for something deeper in the tree, that means
2002 	 * that we've already seen this node.  So, we keep going down.
2003 	 */
2004 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2005 	 && (cdm->pos.cookie.device == device)
2006 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2007 	 && (cdm->pos.cookie.periph != NULL))
2008 		retval = DM_RET_DESCEND;
2009 	else
2010 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2011 					device);
2012 
2013 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2014 		cdm->status = CAM_DEV_MATCH_ERROR;
2015 		return(0);
2016 	}
2017 
2018 	/*
2019 	 * If the copy flag is set, copy this device out.
2020 	 */
2021 	if (retval & DM_RET_COPY) {
2022 		int spaceleft, j;
2023 
2024 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2025 			sizeof(struct dev_match_result));
2026 
2027 		/*
2028 		 * If we don't have enough space to put in another
2029 		 * match result, save our position and tell the
2030 		 * user there are more devices to check.
2031 		 */
2032 		if (spaceleft < sizeof(struct dev_match_result)) {
2033 			bzero(&cdm->pos, sizeof(cdm->pos));
2034 			cdm->pos.position_type =
2035 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2036 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2037 
2038 			cdm->pos.cookie.bus = device->target->bus;
2039 			cdm->pos.generations[CAM_BUS_GENERATION]=
2040 				bus_generation;
2041 			cdm->pos.cookie.target = device->target;
2042 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2043 				device->target->bus->generation;
2044 			cdm->pos.cookie.device = device;
2045 			cdm->pos.generations[CAM_DEV_GENERATION] =
2046 				device->target->generation;
2047 			cdm->status = CAM_DEV_MATCH_MORE;
2048 			return(0);
2049 		}
2050 		j = cdm->num_matches;
2051 		cdm->num_matches++;
2052 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2053 		cdm->matches[j].result.device_result.path_id =
2054 			device->target->bus->path_id;
2055 		cdm->matches[j].result.device_result.target_id =
2056 			device->target->target_id;
2057 		cdm->matches[j].result.device_result.target_lun =
2058 			device->lun_id;
2059 		bcopy(&device->inq_data,
2060 		      &cdm->matches[j].result.device_result.inq_data,
2061 		      sizeof(struct scsi_inquiry_data));
2062 
2063 		/* Let the user know whether this device is unconfigured */
2064 		if (device->flags & CAM_DEV_UNCONFIGURED)
2065 			cdm->matches[j].result.device_result.flags =
2066 				DEV_RESULT_UNCONFIGURED;
2067 		else
2068 			cdm->matches[j].result.device_result.flags =
2069 				DEV_RESULT_NOFLAG;
2070 	}
2071 
2072 	/*
2073 	 * If the user isn't interested in peripherals, don't descend
2074 	 * the tree any further.
2075 	 */
2076 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2077 		return(1);
2078 
2079 	/*
2080 	 * If there is a peripheral list generation recorded, make sure
2081 	 * it hasn't changed.
2082 	 */
2083 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2084 	 && (device->target->bus == cdm->pos.cookie.bus)
2085 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2086 	 && (device->target == cdm->pos.cookie.target)
2087 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2088 	 && (device == cdm->pos.cookie.device)
2089 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2090 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2091 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2092 	     device->generation)){
2093 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2094 		return(0);
2095 	}
2096 
2097 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2098 	 && (cdm->pos.cookie.bus == device->target->bus)
2099 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2100 	 && (cdm->pos.cookie.target == device->target)
2101 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2102 	 && (cdm->pos.cookie.device == device)
2103 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2104 	 && (cdm->pos.cookie.periph != NULL))
2105 		return(xptperiphtraverse(device,
2106 				(struct cam_periph *)cdm->pos.cookie.periph,
2107 				xptedtperiphfunc, arg));
2108 	else
2109 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2110 }
2111 
2112 static int
2113 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2114 {
2115 	struct ccb_dev_match *cdm;
2116 	dev_match_ret retval;
2117 
2118 	cdm = (struct ccb_dev_match *)arg;
2119 
2120 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2121 
2122 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2123 		cdm->status = CAM_DEV_MATCH_ERROR;
2124 		return(0);
2125 	}
2126 
2127 	/*
2128 	 * If the copy flag is set, copy this peripheral out.
2129 	 */
2130 	if (retval & DM_RET_COPY) {
2131 		int spaceleft, j;
2132 
2133 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2134 			sizeof(struct dev_match_result));
2135 
2136 		/*
2137 		 * If we don't have enough space to put in another
2138 		 * match result, save our position and tell the
2139 		 * user there are more devices to check.
2140 		 */
2141 		if (spaceleft < sizeof(struct dev_match_result)) {
2142 			bzero(&cdm->pos, sizeof(cdm->pos));
2143 			cdm->pos.position_type =
2144 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2145 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2146 				CAM_DEV_POS_PERIPH;
2147 
2148 			cdm->pos.cookie.bus = periph->path->bus;
2149 			cdm->pos.generations[CAM_BUS_GENERATION]=
2150 				bus_generation;
2151 			cdm->pos.cookie.target = periph->path->target;
2152 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2153 				periph->path->bus->generation;
2154 			cdm->pos.cookie.device = periph->path->device;
2155 			cdm->pos.generations[CAM_DEV_GENERATION] =
2156 				periph->path->target->generation;
2157 			cdm->pos.cookie.periph = periph;
2158 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2159 				periph->path->device->generation;
2160 			cdm->status = CAM_DEV_MATCH_MORE;
2161 			return(0);
2162 		}
2163 
2164 		j = cdm->num_matches;
2165 		cdm->num_matches++;
2166 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2167 		cdm->matches[j].result.periph_result.path_id =
2168 			periph->path->bus->path_id;
2169 		cdm->matches[j].result.periph_result.target_id =
2170 			periph->path->target->target_id;
2171 		cdm->matches[j].result.periph_result.target_lun =
2172 			periph->path->device->lun_id;
2173 		cdm->matches[j].result.periph_result.unit_number =
2174 			periph->unit_number;
2175 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2176 			periph->periph_name, DEV_IDLEN);
2177 	}
2178 
2179 	return(1);
2180 }
2181 
2182 static int
2183 xptedtmatch(struct ccb_dev_match *cdm)
2184 {
2185 	int ret;
2186 
2187 	cdm->num_matches = 0;
2188 
2189 	/*
2190 	 * Check the bus list generation.  If it has changed, the user
2191 	 * needs to reset everything and start over.
2192 	 */
2193 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2194 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2195 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2196 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2197 		return(0);
2198 	}
2199 
2200 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2201 	 && (cdm->pos.cookie.bus != NULL))
2202 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2203 				     xptedtbusfunc, cdm);
2204 	else
2205 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2206 
2207 	/*
2208 	 * If we get back 0, that means that we had to stop before fully
2209 	 * traversing the EDT.  It also means that one of the subroutines
2210 	 * has set the status field to the proper value.  If we get back 1,
2211 	 * we've fully traversed the EDT and copied out any matching entries.
2212 	 */
2213 	if (ret == 1)
2214 		cdm->status = CAM_DEV_MATCH_LAST;
2215 
2216 	return(ret);
2217 }
2218 
2219 static int
2220 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2221 {
2222 	struct ccb_dev_match *cdm;
2223 
2224 	cdm = (struct ccb_dev_match *)arg;
2225 
2226 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2227 	 && (cdm->pos.cookie.pdrv == pdrv)
2228 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2229 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2230 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2231 	     (*pdrv)->generation)) {
2232 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2233 		return(0);
2234 	}
2235 
2236 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2237 	 && (cdm->pos.cookie.pdrv == pdrv)
2238 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2239 	 && (cdm->pos.cookie.periph != NULL))
2240 		return(xptpdperiphtraverse(pdrv,
2241 				(struct cam_periph *)cdm->pos.cookie.periph,
2242 				xptplistperiphfunc, arg));
2243 	else
2244 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2245 }
2246 
2247 static int
2248 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2249 {
2250 	struct ccb_dev_match *cdm;
2251 	dev_match_ret retval;
2252 
2253 	cdm = (struct ccb_dev_match *)arg;
2254 
2255 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2256 
2257 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2258 		cdm->status = CAM_DEV_MATCH_ERROR;
2259 		return(0);
2260 	}
2261 
2262 	/*
2263 	 * If the copy flag is set, copy this peripheral out.
2264 	 */
2265 	if (retval & DM_RET_COPY) {
2266 		int spaceleft, j;
2267 
2268 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2269 			sizeof(struct dev_match_result));
2270 
2271 		/*
2272 		 * If we don't have enough space to put in another
2273 		 * match result, save our position and tell the
2274 		 * user there are more devices to check.
2275 		 */
2276 		if (spaceleft < sizeof(struct dev_match_result)) {
2277 			struct periph_driver **pdrv;
2278 
2279 			pdrv = NULL;
2280 			bzero(&cdm->pos, sizeof(cdm->pos));
2281 			cdm->pos.position_type =
2282 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2283 				CAM_DEV_POS_PERIPH;
2284 
2285 			/*
2286 			 * This may look a bit non-sensical, but it is
2287 			 * actually quite logical.  There are very few
2288 			 * peripheral drivers, and bloating every peripheral
2289 			 * structure with a pointer back to its parent
2290 			 * peripheral driver linker set entry would cost
2291 			 * more in the long run than doing this quick lookup.
2292 			 */
2293 			for (pdrv =
2294 			     (struct periph_driver **)periphdriver_set.ls_items;
2295 			     *pdrv != NULL; pdrv++) {
2296 				if (strcmp((*pdrv)->driver_name,
2297 				    periph->periph_name) == 0)
2298 					break;
2299 			}
2300 
2301 			if (pdrv == NULL) {
2302 				cdm->status = CAM_DEV_MATCH_ERROR;
2303 				return(0);
2304 			}
2305 
2306 			cdm->pos.cookie.pdrv = pdrv;
2307 			/*
2308 			 * The periph generation slot does double duty, as
2309 			 * does the periph pointer slot.  They are used for
2310 			 * both edt and pdrv lookups and positioning.
2311 			 */
2312 			cdm->pos.cookie.periph = periph;
2313 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2314 				(*pdrv)->generation;
2315 			cdm->status = CAM_DEV_MATCH_MORE;
2316 			return(0);
2317 		}
2318 
2319 		j = cdm->num_matches;
2320 		cdm->num_matches++;
2321 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2322 		cdm->matches[j].result.periph_result.path_id =
2323 			periph->path->bus->path_id;
2324 
2325 		/*
2326 		 * The transport layer peripheral doesn't have a target or
2327 		 * lun.
2328 		 */
2329 		if (periph->path->target)
2330 			cdm->matches[j].result.periph_result.target_id =
2331 				periph->path->target->target_id;
2332 		else
2333 			cdm->matches[j].result.periph_result.target_id = -1;
2334 
2335 		if (periph->path->device)
2336 			cdm->matches[j].result.periph_result.target_lun =
2337 				periph->path->device->lun_id;
2338 		else
2339 			cdm->matches[j].result.periph_result.target_lun = -1;
2340 
2341 		cdm->matches[j].result.periph_result.unit_number =
2342 			periph->unit_number;
2343 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2344 			periph->periph_name, DEV_IDLEN);
2345 	}
2346 
2347 	return(1);
2348 }
2349 
2350 static int
2351 xptperiphlistmatch(struct ccb_dev_match *cdm)
2352 {
2353 	int ret;
2354 
2355 	cdm->num_matches = 0;
2356 
2357 	/*
2358 	 * At this point in the edt traversal function, we check the bus
2359 	 * list generation to make sure that no busses have been added or
2360 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2361 	 * For the peripheral driver list traversal function, however, we
2362 	 * don't have to worry about new peripheral driver types coming or
2363 	 * going; they're in a linker set, and therefore can't change
2364 	 * without a recompile.
2365 	 */
2366 
2367 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2368 	 && (cdm->pos.cookie.pdrv != NULL))
2369 		ret = xptpdrvtraverse(
2370 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2371 				xptplistpdrvfunc, cdm);
2372 	else
2373 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2374 
2375 	/*
2376 	 * If we get back 0, that means that we had to stop before fully
2377 	 * traversing the peripheral driver tree.  It also means that one of
2378 	 * the subroutines has set the status field to the proper value.  If
2379 	 * we get back 1, we've fully traversed the EDT and copied out any
2380 	 * matching entries.
2381 	 */
2382 	if (ret == 1)
2383 		cdm->status = CAM_DEV_MATCH_LAST;
2384 
2385 	return(ret);
2386 }
2387 
2388 static int
2389 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2390 {
2391 	struct cam_eb *bus, *next_bus;
2392 	int retval;
2393 
2394 	retval = 1;
2395 
2396 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2397 	     bus != NULL;
2398 	     bus = next_bus) {
2399 		next_bus = TAILQ_NEXT(bus, links);
2400 
2401 		retval = tr_func(bus, arg);
2402 		if (retval == 0)
2403 			return(retval);
2404 	}
2405 
2406 	return(retval);
2407 }
2408 
2409 static int
2410 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2411 		  xpt_targetfunc_t *tr_func, void *arg)
2412 {
2413 	struct cam_et *target, *next_target;
2414 	int retval;
2415 
2416 	retval = 1;
2417 	for (target = (start_target ? start_target :
2418 		       TAILQ_FIRST(&bus->et_entries));
2419 	     target != NULL; target = next_target) {
2420 
2421 		next_target = TAILQ_NEXT(target, links);
2422 
2423 		retval = tr_func(target, arg);
2424 
2425 		if (retval == 0)
2426 			return(retval);
2427 	}
2428 
2429 	return(retval);
2430 }
2431 
2432 static int
2433 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2434 		  xpt_devicefunc_t *tr_func, void *arg)
2435 {
2436 	struct cam_ed *device, *next_device;
2437 	int retval;
2438 
2439 	retval = 1;
2440 	for (device = (start_device ? start_device :
2441 		       TAILQ_FIRST(&target->ed_entries));
2442 	     device != NULL;
2443 	     device = next_device) {
2444 
2445 		next_device = TAILQ_NEXT(device, links);
2446 
2447 		retval = tr_func(device, arg);
2448 
2449 		if (retval == 0)
2450 			return(retval);
2451 	}
2452 
2453 	return(retval);
2454 }
2455 
2456 static int
2457 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2458 		  xpt_periphfunc_t *tr_func, void *arg)
2459 {
2460 	struct cam_periph *periph, *next_periph;
2461 	int retval;
2462 
2463 	retval = 1;
2464 
2465 	for (periph = (start_periph ? start_periph :
2466 		       SLIST_FIRST(&device->periphs));
2467 	     periph != NULL;
2468 	     periph = next_periph) {
2469 
2470 		next_periph = SLIST_NEXT(periph, periph_links);
2471 
2472 		retval = tr_func(periph, arg);
2473 		if (retval == 0)
2474 			return(retval);
2475 	}
2476 
2477 	return(retval);
2478 }
2479 
2480 static int
2481 xptpdrvtraverse(struct periph_driver **start_pdrv,
2482 		xpt_pdrvfunc_t *tr_func, void *arg)
2483 {
2484 	struct periph_driver **pdrv;
2485 	int retval;
2486 
2487 	retval = 1;
2488 
2489 	/*
2490 	 * We don't traverse the peripheral driver list like we do the
2491 	 * other lists, because it is a linker set, and therefore cannot be
2492 	 * changed during runtime.  If the peripheral driver list is ever
2493 	 * re-done to be something other than a linker set (i.e. it can
2494 	 * change while the system is running), the list traversal should
2495 	 * be modified to work like the other traversal functions.
2496 	 */
2497 	for (pdrv = (start_pdrv ? start_pdrv :
2498 	     (struct periph_driver **)periphdriver_set.ls_items);
2499 	     *pdrv != NULL; pdrv++) {
2500 		retval = tr_func(pdrv, arg);
2501 
2502 		if (retval == 0)
2503 			return(retval);
2504 	}
2505 
2506 	return(retval);
2507 }
2508 
2509 static int
2510 xptpdperiphtraverse(struct periph_driver **pdrv,
2511 		    struct cam_periph *start_periph,
2512 		    xpt_periphfunc_t *tr_func, void *arg)
2513 {
2514 	struct cam_periph *periph, *next_periph;
2515 	int retval;
2516 
2517 	retval = 1;
2518 
2519 	for (periph = (start_periph ? start_periph :
2520 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2521 	     periph = next_periph) {
2522 
2523 		next_periph = TAILQ_NEXT(periph, unit_links);
2524 
2525 		retval = tr_func(periph, arg);
2526 		if (retval == 0)
2527 			return(retval);
2528 	}
2529 	return(retval);
2530 }
2531 
2532 static int
2533 xptdefbusfunc(struct cam_eb *bus, void *arg)
2534 {
2535 	struct xpt_traverse_config *tr_config;
2536 
2537 	tr_config = (struct xpt_traverse_config *)arg;
2538 
2539 	if (tr_config->depth == XPT_DEPTH_BUS) {
2540 		xpt_busfunc_t *tr_func;
2541 
2542 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2543 
2544 		return(tr_func(bus, tr_config->tr_arg));
2545 	} else
2546 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2547 }
2548 
2549 static int
2550 xptdeftargetfunc(struct cam_et *target, void *arg)
2551 {
2552 	struct xpt_traverse_config *tr_config;
2553 
2554 	tr_config = (struct xpt_traverse_config *)arg;
2555 
2556 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2557 		xpt_targetfunc_t *tr_func;
2558 
2559 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2560 
2561 		return(tr_func(target, tr_config->tr_arg));
2562 	} else
2563 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2564 }
2565 
2566 static int
2567 xptdefdevicefunc(struct cam_ed *device, void *arg)
2568 {
2569 	struct xpt_traverse_config *tr_config;
2570 
2571 	tr_config = (struct xpt_traverse_config *)arg;
2572 
2573 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2574 		xpt_devicefunc_t *tr_func;
2575 
2576 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2577 
2578 		return(tr_func(device, tr_config->tr_arg));
2579 	} else
2580 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2581 }
2582 
2583 static int
2584 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2585 {
2586 	struct xpt_traverse_config *tr_config;
2587 	xpt_periphfunc_t *tr_func;
2588 
2589 	tr_config = (struct xpt_traverse_config *)arg;
2590 
2591 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2592 
2593 	/*
2594 	 * Unlike the other default functions, we don't check for depth
2595 	 * here.  The peripheral driver level is the last level in the EDT,
2596 	 * so if we're here, we should execute the function in question.
2597 	 */
2598 	return(tr_func(periph, tr_config->tr_arg));
2599 }
2600 
2601 /*
2602  * Execute the given function for every bus in the EDT.
2603  */
2604 static int
2605 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2606 {
2607 	struct xpt_traverse_config tr_config;
2608 
2609 	tr_config.depth = XPT_DEPTH_BUS;
2610 	tr_config.tr_func = tr_func;
2611 	tr_config.tr_arg = arg;
2612 
2613 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2614 }
2615 
2616 #ifdef notusedyet
2617 /*
2618  * Execute the given function for every target in the EDT.
2619  */
2620 static int
2621 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2622 {
2623 	struct xpt_traverse_config tr_config;
2624 
2625 	tr_config.depth = XPT_DEPTH_TARGET;
2626 	tr_config.tr_func = tr_func;
2627 	tr_config.tr_arg = arg;
2628 
2629 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2630 }
2631 #endif /* notusedyet */
2632 
2633 /*
2634  * Execute the given function for every device in the EDT.
2635  */
2636 static int
2637 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2638 {
2639 	struct xpt_traverse_config tr_config;
2640 
2641 	tr_config.depth = XPT_DEPTH_DEVICE;
2642 	tr_config.tr_func = tr_func;
2643 	tr_config.tr_arg = arg;
2644 
2645 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2646 }
2647 
2648 #ifdef notusedyet
2649 /*
2650  * Execute the given function for every peripheral in the EDT.
2651  */
2652 static int
2653 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2654 {
2655 	struct xpt_traverse_config tr_config;
2656 
2657 	tr_config.depth = XPT_DEPTH_PERIPH;
2658 	tr_config.tr_func = tr_func;
2659 	tr_config.tr_arg = arg;
2660 
2661 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2662 }
2663 #endif /* notusedyet */
2664 
2665 static int
2666 xptsetasyncfunc(struct cam_ed *device, void *arg)
2667 {
2668 	struct cam_path path;
2669 	struct ccb_getdev cgd;
2670 	struct async_node *cur_entry;
2671 
2672 	cur_entry = (struct async_node *)arg;
2673 
2674 	/*
2675 	 * Don't report unconfigured devices (Wildcard devs,
2676 	 * devices only for target mode, device instances
2677 	 * that have been invalidated but are waiting for
2678 	 * their last reference count to be released).
2679 	 */
2680 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2681 		return (1);
2682 
2683 	xpt_compile_path(&path,
2684 			 NULL,
2685 			 device->target->bus->path_id,
2686 			 device->target->target_id,
2687 			 device->lun_id);
2688 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2689 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2690 	xpt_action((union ccb *)&cgd);
2691 	cur_entry->callback(cur_entry->callback_arg,
2692 			    AC_FOUND_DEVICE,
2693 			    &path, &cgd);
2694 	xpt_release_path(&path);
2695 
2696 	return(1);
2697 }
2698 
2699 static int
2700 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2701 {
2702 	struct cam_path path;
2703 	struct ccb_pathinq cpi;
2704 	struct async_node *cur_entry;
2705 
2706 	cur_entry = (struct async_node *)arg;
2707 
2708 	xpt_compile_path(&path, /*periph*/NULL,
2709 			 bus->sim->path_id,
2710 			 CAM_TARGET_WILDCARD,
2711 			 CAM_LUN_WILDCARD);
2712 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2713 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2714 	xpt_action((union ccb *)&cpi);
2715 	cur_entry->callback(cur_entry->callback_arg,
2716 			    AC_PATH_REGISTERED,
2717 			    &path, &cpi);
2718 	xpt_release_path(&path);
2719 
2720 	return(1);
2721 }
2722 
2723 void
2724 xpt_action(union ccb *start_ccb)
2725 {
2726 	int iopl;
2727 
2728 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2729 
2730 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2731 
2732 	iopl = splsoftcam();
2733 	switch (start_ccb->ccb_h.func_code) {
2734 	case XPT_SCSI_IO:
2735 	{
2736 #ifdef CAMDEBUG
2737 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2738 		struct cam_path *path;
2739 
2740 		path = start_ccb->ccb_h.path;
2741 #endif
2742 
2743 		/*
2744 		 * For the sake of compatibility with SCSI-1
2745 		 * devices that may not understand the identify
2746 		 * message, we include lun information in the
2747 		 * second byte of all commands.  SCSI-1 specifies
2748 		 * that luns are a 3 bit value and reserves only 3
2749 		 * bits for lun information in the CDB.  Later
2750 		 * revisions of the SCSI spec allow for more than 8
2751 		 * luns, but have deprecated lun information in the
2752 		 * CDB.  So, if the lun won't fit, we must omit.
2753 		 *
2754 		 * Also be aware that during initial probing for devices,
2755 		 * the inquiry information is unknown but initialized to 0.
2756 		 * This means that this code will be exercised while probing
2757 		 * devices with an ANSI revision greater than 2.
2758 		 */
2759 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2760 		 && start_ccb->ccb_h.target_lun < 8
2761 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2762 
2763 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2764 			    start_ccb->ccb_h.target_lun << 5;
2765 		}
2766 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2767 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2768 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2769 			  	       &path->device->inq_data),
2770 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2771 					  cdb_str, sizeof(cdb_str))));
2772 		/* FALLTHROUGH */
2773 	}
2774 	case XPT_TARGET_IO:
2775 	case XPT_CONT_TARGET_IO:
2776 		start_ccb->csio.sense_resid = 0;
2777 		start_ccb->csio.resid = 0;
2778 		/* FALLTHROUGH */
2779 	case XPT_RESET_DEV:
2780 	case XPT_ENG_EXEC:
2781 	{
2782 		struct cam_path *path;
2783 		int s;
2784 		int runq;
2785 
2786 		path = start_ccb->ccb_h.path;
2787 		s = splsoftcam();
2788 
2789 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2790 		if (path->device->qfrozen_cnt == 0)
2791 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2792 		else
2793 			runq = 0;
2794 		splx(s);
2795 		if (runq != 0)
2796 			xpt_run_dev_sendq(path->bus);
2797 		break;
2798 	}
2799 	case XPT_SET_TRAN_SETTINGS:
2800 	{
2801 		xpt_set_transfer_settings(&start_ccb->cts,
2802 					  start_ccb->ccb_h.path->device,
2803 					  /*async_update*/FALSE);
2804 		break;
2805 	}
2806 	case XPT_CALC_GEOMETRY:
2807 	{
2808 		struct cam_sim *sim;
2809 
2810 		/* Filter out garbage */
2811 		if (start_ccb->ccg.block_size == 0
2812 		 || start_ccb->ccg.volume_size == 0) {
2813 			start_ccb->ccg.cylinders = 0;
2814 			start_ccb->ccg.heads = 0;
2815 			start_ccb->ccg.secs_per_track = 0;
2816 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2817 			break;
2818 		}
2819 #ifdef PC98
2820 		/*
2821 		 * In a PC-98 system, geometry translation depens on
2822 		 * the "real" device geometry obtained from mode page 4.
2823 		 * SCSI geometry translation is performed in the
2824 		 * initialization routine of the SCSI BIOS and the result
2825 		 * stored in host memory.  If the translation is available
2826 		 * in host memory, use it.  If not, rely on the default
2827 		 * translation the device driver performs.
2828 		 */
2829 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2830 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2831 			break;
2832 		}
2833 #endif
2834 		sim = start_ccb->ccb_h.path->bus->sim;
2835 		(*(sim->sim_action))(sim, start_ccb);
2836 		break;
2837 	}
2838 	case XPT_ABORT:
2839 	{
2840 		union ccb* abort_ccb;
2841 		int s;
2842 
2843 		abort_ccb = start_ccb->cab.abort_ccb;
2844 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2845 
2846 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2847 				struct cam_ccbq *ccbq;
2848 
2849 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2850 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2851 				abort_ccb->ccb_h.status =
2852 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2853 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2854 				s = splcam();
2855 				xpt_done(abort_ccb);
2856 				splx(s);
2857 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2858 				break;
2859 			}
2860 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2861 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2862 				/*
2863 				 * We've caught this ccb en route to
2864 				 * the SIM.  Flag it for abort and the
2865 				 * SIM will do so just before starting
2866 				 * real work on the CCB.
2867 				 */
2868 				abort_ccb->ccb_h.status =
2869 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2870 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2871 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2872 				break;
2873 			}
2874 		}
2875 		if (XPT_FC_IS_QUEUED(abort_ccb)
2876 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2877 			/*
2878 			 * It's already completed but waiting
2879 			 * for our SWI to get to it.
2880 			 */
2881 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2882 			break;
2883 		}
2884 		/*
2885 		 * If we weren't able to take care of the abort request
2886 		 * in the XPT, pass the request down to the SIM for processing.
2887 		 */
2888 		/* FALLTHROUGH */
2889 	}
2890 	case XPT_ACCEPT_TARGET_IO:
2891 	case XPT_EN_LUN:
2892 	case XPT_IMMED_NOTIFY:
2893 	case XPT_NOTIFY_ACK:
2894 	case XPT_GET_TRAN_SETTINGS:
2895 	case XPT_RESET_BUS:
2896 	{
2897 		struct cam_sim *sim;
2898 
2899 		sim = start_ccb->ccb_h.path->bus->sim;
2900 		(*(sim->sim_action))(sim, start_ccb);
2901 		break;
2902 	}
2903 	case XPT_PATH_INQ:
2904 	{
2905 		struct cam_sim *sim;
2906 
2907 		sim = start_ccb->ccb_h.path->bus->sim;
2908 		(*(sim->sim_action))(sim, start_ccb);
2909 		break;
2910 	}
2911 	case XPT_PATH_STATS:
2912 		start_ccb->cpis.last_reset =
2913 			start_ccb->ccb_h.path->bus->last_reset;
2914 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2915 		break;
2916 	case XPT_GDEV_TYPE:
2917 	{
2918 		struct cam_ed *dev;
2919 		int s;
2920 
2921 		dev = start_ccb->ccb_h.path->device;
2922 		s = splcam();
2923 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2924 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2925 		} else {
2926 			struct ccb_getdev *cgd;
2927 			struct cam_eb *bus;
2928 			struct cam_et *tar;
2929 
2930 			cgd = &start_ccb->cgd;
2931 			bus = cgd->ccb_h.path->bus;
2932 			tar = cgd->ccb_h.path->target;
2933 			cgd->inq_data = dev->inq_data;
2934 			cgd->ccb_h.status = CAM_REQ_CMP;
2935 			cgd->serial_num_len = dev->serial_num_len;
2936 			if ((dev->serial_num_len > 0)
2937 			 && (dev->serial_num != NULL))
2938 				bcopy(dev->serial_num, cgd->serial_num,
2939 				      dev->serial_num_len);
2940 		}
2941 		splx(s);
2942 		break;
2943 	}
2944 	case XPT_GDEV_STATS:
2945 	{
2946 		struct cam_ed *dev;
2947 		int s;
2948 
2949 		dev = start_ccb->ccb_h.path->device;
2950 		s = splcam();
2951 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2952 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2953 		} else {
2954 			struct ccb_getdevstats *cgds;
2955 			struct cam_eb *bus;
2956 			struct cam_et *tar;
2957 
2958 			cgds = &start_ccb->cgds;
2959 			bus = cgds->ccb_h.path->bus;
2960 			tar = cgds->ccb_h.path->target;
2961 			cgds->dev_openings = dev->ccbq.dev_openings;
2962 			cgds->dev_active = dev->ccbq.dev_active;
2963 			cgds->devq_openings = dev->ccbq.devq_openings;
2964 			cgds->devq_queued = dev->ccbq.queue.entries;
2965 			cgds->held = dev->ccbq.held;
2966 			cgds->last_reset = tar->last_reset;
2967 			cgds->maxtags = dev->quirk->maxtags;
2968 			cgds->mintags = dev->quirk->mintags;
2969 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2970 				cgds->last_reset = bus->last_reset;
2971 			cgds->ccb_h.status = CAM_REQ_CMP;
2972 		}
2973 		splx(s);
2974 		break;
2975 	}
2976 	case XPT_GDEVLIST:
2977 	{
2978 		struct cam_periph	*nperiph;
2979 		struct periph_list	*periph_head;
2980 		struct ccb_getdevlist	*cgdl;
2981 		int			i;
2982 		int			s;
2983 		struct cam_ed		*device;
2984 		int			found;
2985 
2986 
2987 		found = 0;
2988 
2989 		/*
2990 		 * Don't want anyone mucking with our data.
2991 		 */
2992 		s = splcam();
2993 		device = start_ccb->ccb_h.path->device;
2994 		periph_head = &device->periphs;
2995 		cgdl = &start_ccb->cgdl;
2996 
2997 		/*
2998 		 * Check and see if the list has changed since the user
2999 		 * last requested a list member.  If so, tell them that the
3000 		 * list has changed, and therefore they need to start over
3001 		 * from the beginning.
3002 		 */
3003 		if ((cgdl->index != 0) &&
3004 		    (cgdl->generation != device->generation)) {
3005 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3006 			splx(s);
3007 			break;
3008 		}
3009 
3010 		/*
3011 		 * Traverse the list of peripherals and attempt to find
3012 		 * the requested peripheral.
3013 		 */
3014 		for (nperiph = periph_head->slh_first, i = 0;
3015 		     (nperiph != NULL) && (i <= cgdl->index);
3016 		     nperiph = nperiph->periph_links.sle_next, i++) {
3017 			if (i == cgdl->index) {
3018 				strncpy(cgdl->periph_name,
3019 					nperiph->periph_name,
3020 					DEV_IDLEN);
3021 				cgdl->unit_number = nperiph->unit_number;
3022 				found = 1;
3023 			}
3024 		}
3025 		if (found == 0) {
3026 			cgdl->status = CAM_GDEVLIST_ERROR;
3027 			splx(s);
3028 			break;
3029 		}
3030 
3031 		if (nperiph == NULL)
3032 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3033 		else
3034 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3035 
3036 		cgdl->index++;
3037 		cgdl->generation = device->generation;
3038 
3039 		splx(s);
3040 		cgdl->ccb_h.status = CAM_REQ_CMP;
3041 		break;
3042 	}
3043 	case XPT_DEV_MATCH:
3044 	{
3045 		int s;
3046 		dev_pos_type position_type;
3047 		struct ccb_dev_match *cdm;
3048 		int ret;
3049 
3050 		cdm = &start_ccb->cdm;
3051 
3052 		/*
3053 		 * Prevent EDT changes while we traverse it.
3054 		 */
3055 		s = splcam();
3056 		/*
3057 		 * There are two ways of getting at information in the EDT.
3058 		 * The first way is via the primary EDT tree.  It starts
3059 		 * with a list of busses, then a list of targets on a bus,
3060 		 * then devices/luns on a target, and then peripherals on a
3061 		 * device/lun.  The "other" way is by the peripheral driver
3062 		 * lists.  The peripheral driver lists are organized by
3063 		 * peripheral driver.  (obviously)  So it makes sense to
3064 		 * use the peripheral driver list if the user is looking
3065 		 * for something like "da1", or all "da" devices.  If the
3066 		 * user is looking for something on a particular bus/target
3067 		 * or lun, it's generally better to go through the EDT tree.
3068 		 */
3069 
3070 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3071 			position_type = cdm->pos.position_type;
3072 		else {
3073 			int i;
3074 
3075 			position_type = CAM_DEV_POS_NONE;
3076 
3077 			for (i = 0; i < cdm->num_patterns; i++) {
3078 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3079 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3080 					position_type = CAM_DEV_POS_EDT;
3081 					break;
3082 				}
3083 			}
3084 
3085 			if (cdm->num_patterns == 0)
3086 				position_type = CAM_DEV_POS_EDT;
3087 			else if (position_type == CAM_DEV_POS_NONE)
3088 				position_type = CAM_DEV_POS_PDRV;
3089 		}
3090 
3091 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3092 		case CAM_DEV_POS_EDT:
3093 			ret = xptedtmatch(cdm);
3094 			break;
3095 		case CAM_DEV_POS_PDRV:
3096 			ret = xptperiphlistmatch(cdm);
3097 			break;
3098 		default:
3099 			cdm->status = CAM_DEV_MATCH_ERROR;
3100 			break;
3101 		}
3102 
3103 		splx(s);
3104 
3105 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3106 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3107 		else
3108 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3109 
3110 		break;
3111 	}
3112 	case XPT_SASYNC_CB:
3113 	{
3114 		struct ccb_setasync *csa;
3115 		struct async_node *cur_entry;
3116 		struct async_list *async_head;
3117 		u_int32_t added;
3118 		int s;
3119 
3120 		csa = &start_ccb->csa;
3121 		added = csa->event_enable;
3122 		async_head = &csa->ccb_h.path->device->asyncs;
3123 
3124 		/*
3125 		 * If there is already an entry for us, simply
3126 		 * update it.
3127 		 */
3128 		s = splcam();
3129 		cur_entry = SLIST_FIRST(async_head);
3130 		while (cur_entry != NULL) {
3131 			if ((cur_entry->callback_arg == csa->callback_arg)
3132 			 && (cur_entry->callback == csa->callback))
3133 				break;
3134 			cur_entry = SLIST_NEXT(cur_entry, links);
3135 		}
3136 
3137 		if (cur_entry != NULL) {
3138 		 	/*
3139 			 * If the request has no flags set,
3140 			 * remove the entry.
3141 			 */
3142 			added &= ~cur_entry->event_enable;
3143 			if (csa->event_enable == 0) {
3144 				SLIST_REMOVE(async_head, cur_entry,
3145 					     async_node, links);
3146 				csa->ccb_h.path->device->refcount--;
3147 				free(cur_entry, M_DEVBUF);
3148 			} else {
3149 				cur_entry->event_enable = csa->event_enable;
3150 			}
3151 		} else {
3152 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3153 					   M_NOWAIT);
3154 			if (cur_entry == NULL) {
3155 				splx(s);
3156 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3157 				break;
3158 			}
3159 			cur_entry->event_enable = csa->event_enable;
3160 			cur_entry->callback_arg = csa->callback_arg;
3161 			cur_entry->callback = csa->callback;
3162 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3163 			csa->ccb_h.path->device->refcount++;
3164 		}
3165 
3166 		if ((added & AC_FOUND_DEVICE) != 0) {
3167 			/*
3168 			 * Get this peripheral up to date with all
3169 			 * the currently existing devices.
3170 			 */
3171 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3172 		}
3173 		if ((added & AC_PATH_REGISTERED) != 0) {
3174 			/*
3175 			 * Get this peripheral up to date with all
3176 			 * the currently existing busses.
3177 			 */
3178 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3179 		}
3180 		splx(s);
3181 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3182 		break;
3183 	}
3184 	case XPT_REL_SIMQ:
3185 	{
3186 		struct ccb_relsim *crs;
3187 		struct cam_ed *dev;
3188 		int s;
3189 
3190 		crs = &start_ccb->crs;
3191 		dev = crs->ccb_h.path->device;
3192 		if (dev == NULL) {
3193 
3194 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3195 			break;
3196 		}
3197 
3198 		s = splcam();
3199 
3200 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3201 
3202  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3203 
3204 				/* Don't ever go below one opening */
3205 				if (crs->openings > 0) {
3206 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3207 							    crs->openings);
3208 
3209 					if (bootverbose) {
3210 						xpt_print_path(crs->ccb_h.path);
3211 						printf("tagged openings "
3212 						       "now %d\n",
3213 						       crs->openings);
3214 					}
3215 				}
3216 			}
3217 		}
3218 
3219 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3220 
3221 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3222 
3223 				/*
3224 				 * Just extend the old timeout and decrement
3225 				 * the freeze count so that a single timeout
3226 				 * is sufficient for releasing the queue.
3227 				 */
3228 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3229 				untimeout(xpt_release_devq_timeout,
3230 					  dev, dev->c_handle);
3231 			} else {
3232 
3233 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3234 			}
3235 
3236 			dev->c_handle =
3237 				timeout(xpt_release_devq_timeout,
3238 					dev,
3239 					(crs->release_timeout * hz) / 1000);
3240 
3241 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3242 
3243 		}
3244 
3245 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3246 
3247 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3248 				/*
3249 				 * Decrement the freeze count so that a single
3250 				 * completion is still sufficient to unfreeze
3251 				 * the queue.
3252 				 */
3253 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3254 			} else {
3255 
3256 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3257 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3258 			}
3259 		}
3260 
3261 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3262 
3263 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3264 			 || (dev->ccbq.dev_active == 0)) {
3265 
3266 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3267 			} else {
3268 
3269 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3270 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3271 			}
3272 		}
3273 		splx(s);
3274 
3275 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3276 
3277 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3278 					 /*run_queue*/TRUE);
3279 		}
3280 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3281 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3282 		break;
3283 	}
3284 	case XPT_SCAN_BUS:
3285 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3286 		break;
3287 	case XPT_SCAN_LUN:
3288 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3289 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3290 			     start_ccb);
3291 		break;
3292 	case XPT_DEBUG: {
3293 #ifdef CAMDEBUG
3294 		int s;
3295 
3296 		s = splcam();
3297 #ifdef CAM_DEBUG_DELAY
3298 		cam_debug_delay = CAM_DEBUG_DELAY;
3299 #endif
3300 		cam_dflags = start_ccb->cdbg.flags;
3301 		if (cam_dpath != NULL) {
3302 			xpt_free_path(cam_dpath);
3303 			cam_dpath = NULL;
3304 		}
3305 
3306 		if (cam_dflags != CAM_DEBUG_NONE) {
3307 			if (xpt_create_path(&cam_dpath, xpt_periph,
3308 					    start_ccb->ccb_h.path_id,
3309 					    start_ccb->ccb_h.target_id,
3310 					    start_ccb->ccb_h.target_lun) !=
3311 					    CAM_REQ_CMP) {
3312 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3313 				cam_dflags = CAM_DEBUG_NONE;
3314 			} else {
3315 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3316 				xpt_print_path(cam_dpath);
3317 				printf("debugging flags now %x\n", cam_dflags);
3318 			}
3319 		} else {
3320 			cam_dpath = NULL;
3321 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3322 		}
3323 		splx(s);
3324 #else /* !CAMDEBUG */
3325 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3326 #endif /* CAMDEBUG */
3327 		break;
3328 	}
3329 	case XPT_NOOP:
3330 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3331 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3332 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3333 		break;
3334 	default:
3335 	case XPT_SDEV_TYPE:
3336 	case XPT_TERM_IO:
3337 	case XPT_ENG_INQ:
3338 		/* XXX Implement */
3339 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3340 		break;
3341 	}
3342 	splx(iopl);
3343 }
3344 
3345 void
3346 xpt_polled_action(union ccb *start_ccb)
3347 {
3348 	int	  s;
3349 	u_int32_t timeout;
3350 	struct	  cam_sim *sim;
3351 	struct	  cam_devq *devq;
3352 	struct	  cam_ed *dev;
3353 
3354 	timeout = start_ccb->ccb_h.timeout;
3355 	sim = start_ccb->ccb_h.path->bus->sim;
3356 	devq = sim->devq;
3357 	dev = start_ccb->ccb_h.path->device;
3358 
3359 	s = splcam();
3360 
3361 	/*
3362 	 * Steal an opening so that no other queued requests
3363 	 * can get it before us while we simulate interrupts.
3364 	 */
3365 	dev->ccbq.devq_openings--;
3366 	dev->ccbq.dev_openings--;
3367 
3368 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3369 	   && (--timeout > 0)) {
3370 		DELAY(1000);
3371 		(*(sim->sim_poll))(sim);
3372 		swi_camnet();
3373 		swi_cambio();
3374 	}
3375 
3376 	dev->ccbq.devq_openings++;
3377 	dev->ccbq.dev_openings++;
3378 
3379 	if (timeout != 0) {
3380 		xpt_action(start_ccb);
3381 		while(--timeout > 0) {
3382 			(*(sim->sim_poll))(sim);
3383 			swi_camnet();
3384 			swi_cambio();
3385 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3386 			    != CAM_REQ_INPROG)
3387 				break;
3388 			DELAY(1000);
3389 		}
3390 		if (timeout == 0) {
3391 			/*
3392 			 * XXX Is it worth adding a sim_timeout entry
3393 			 * point so we can attempt recovery?  If
3394 			 * this is only used for dumps, I don't think
3395 			 * it is.
3396 			 */
3397 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3398 		}
3399 	} else {
3400 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3401 	}
3402 	splx(s);
3403 }
3404 
3405 /*
3406  * Schedule a peripheral driver to receive a ccb when it's
3407  * target device has space for more transactions.
3408  */
3409 void
3410 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3411 {
3412 	struct cam_ed *device;
3413 	int s;
3414 	int runq;
3415 
3416 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3417 	device = perph->path->device;
3418 	s = splsoftcam();
3419 	if (periph_is_queued(perph)) {
3420 		/* Simply reorder based on new priority */
3421 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3422 			  ("   change priority to %d\n", new_priority));
3423 		if (new_priority < perph->pinfo.priority) {
3424 			camq_change_priority(&device->drvq,
3425 					     perph->pinfo.index,
3426 					     new_priority);
3427 		}
3428 		runq = 0;
3429 	} else {
3430 		/* New entry on the queue */
3431 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3432 			  ("   added periph to queue\n"));
3433 		perph->pinfo.priority = new_priority;
3434 		perph->pinfo.generation = ++device->drvq.generation;
3435 		camq_insert(&device->drvq, &perph->pinfo);
3436 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3437 	}
3438 	splx(s);
3439 	if (runq != 0) {
3440 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3441 			  ("   calling xpt_run_devq\n"));
3442 		xpt_run_dev_allocq(perph->path->bus);
3443 	}
3444 }
3445 
3446 
3447 /*
3448  * Schedule a device to run on a given queue.
3449  * If the device was inserted as a new entry on the queue,
3450  * return 1 meaning the device queue should be run. If we
3451  * were already queued, implying someone else has already
3452  * started the queue, return 0 so the caller doesn't attempt
3453  * to run the queue.  Must be run at either splsoftcam
3454  * (or splcam since that encompases splsoftcam).
3455  */
3456 static int
3457 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3458 		 u_int32_t new_priority)
3459 {
3460 	int retval;
3461 	u_int32_t old_priority;
3462 
3463 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3464 
3465 	old_priority = pinfo->priority;
3466 
3467 	/*
3468 	 * Are we already queued?
3469 	 */
3470 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3471 		/* Simply reorder based on new priority */
3472 		if (new_priority < old_priority) {
3473 			camq_change_priority(queue, pinfo->index,
3474 					     new_priority);
3475 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3476 					("changed priority to %d\n",
3477 					 new_priority));
3478 		}
3479 		retval = 0;
3480 	} else {
3481 		/* New entry on the queue */
3482 		if (new_priority < old_priority)
3483 			pinfo->priority = new_priority;
3484 
3485 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3486 				("Inserting onto queue\n"));
3487 		pinfo->generation = ++queue->generation;
3488 		camq_insert(queue, pinfo);
3489 		retval = 1;
3490 	}
3491 	return (retval);
3492 }
3493 
3494 static void
3495 xpt_run_dev_allocq(struct cam_eb *bus)
3496 {
3497 	struct	cam_devq *devq;
3498 	int	s;
3499 
3500 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3501 	devq = bus->sim->devq;
3502 
3503 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3504 			("   qfrozen_cnt == 0x%x, entries == %d, "
3505 			 "openings == %d, active == %d\n",
3506 			 devq->alloc_queue.qfrozen_cnt,
3507 			 devq->alloc_queue.entries,
3508 			 devq->alloc_openings,
3509 			 devq->alloc_active));
3510 
3511 	s = splsoftcam();
3512 	devq->alloc_queue.qfrozen_cnt++;
3513 	while ((devq->alloc_queue.entries > 0)
3514 	    && (devq->alloc_openings > 0)
3515 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3516 		struct	cam_ed_qinfo *qinfo;
3517 		struct	cam_ed *device;
3518 		union	ccb *work_ccb;
3519 		struct	cam_periph *drv;
3520 		struct	camq *drvq;
3521 
3522 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3523 							   CAMQ_HEAD);
3524 		device = qinfo->device;
3525 
3526 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3527 				("running device %p\n", device));
3528 
3529 		drvq = &device->drvq;
3530 
3531 #ifdef CAMDEBUG
3532 		if (drvq->entries <= 0) {
3533 			panic("xpt_run_dev_allocq: "
3534 			      "Device on queue without any work to do");
3535 		}
3536 #endif
3537 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3538 			devq->alloc_openings--;
3539 			devq->alloc_active++;
3540 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3541 			splx(s);
3542 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3543 				      drv->pinfo.priority);
3544 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3545 					("calling periph start\n"));
3546 			drv->periph_start(drv, work_ccb);
3547 		} else {
3548 			/*
3549 			 * Malloc failure in alloc_ccb
3550 			 */
3551 			/*
3552 			 * XXX add us to a list to be run from free_ccb
3553 			 * if we don't have any ccbs active on this
3554 			 * device queue otherwise we may never get run
3555 			 * again.
3556 			 */
3557 			break;
3558 		}
3559 
3560 		/* Raise IPL for possible insertion and test at top of loop */
3561 		s = splsoftcam();
3562 
3563 		if (drvq->entries > 0) {
3564 			/* We have more work.  Attempt to reschedule */
3565 			xpt_schedule_dev_allocq(bus, device);
3566 		}
3567 	}
3568 	devq->alloc_queue.qfrozen_cnt--;
3569 	splx(s);
3570 }
3571 
3572 static void
3573 xpt_run_dev_sendq(struct cam_eb *bus)
3574 {
3575 	struct	cam_devq *devq;
3576 	int	s;
3577 
3578 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3579 
3580 	devq = bus->sim->devq;
3581 
3582 	s = splcam();
3583 	devq->send_queue.qfrozen_cnt++;
3584 	splx(s);
3585 	s = splsoftcam();
3586 	while ((devq->send_queue.entries > 0)
3587 	    && (devq->send_openings > 0)) {
3588 		struct	cam_ed_qinfo *qinfo;
3589 		struct	cam_ed *device;
3590 		union ccb *work_ccb;
3591 		struct	cam_sim *sim;
3592 		int	ospl;
3593 
3594 		ospl = splcam();
3595 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3596 			splx(ospl);
3597 			break;
3598 		}
3599 
3600 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3601 							   CAMQ_HEAD);
3602 		device = qinfo->device;
3603 
3604 		/*
3605 		 * If the device has been "frozen", don't attempt
3606 		 * to run it.
3607 		 */
3608 		if (device->qfrozen_cnt > 0) {
3609 			splx(ospl);
3610 			continue;
3611 		}
3612 
3613 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3614 				("running device %p\n", device));
3615 
3616 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3617 		if (work_ccb == NULL) {
3618 			printf("device on run queue with no ccbs???");
3619 			splx(ospl);
3620 			continue;
3621 		}
3622 
3623 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3624 
3625 		 	if (num_highpower <= 0) {
3626 				/*
3627 				 * We got a high power command, but we
3628 				 * don't have any available slots.  Freeze
3629 				 * the device queue until we have a slot
3630 				 * available.
3631 				 */
3632 				device->qfrozen_cnt++;
3633 				STAILQ_INSERT_TAIL(&highpowerq,
3634 						   &work_ccb->ccb_h,
3635 						   xpt_links.stqe);
3636 
3637 				splx(ospl);
3638 				continue;
3639 			} else {
3640 				/*
3641 				 * Consume a high power slot while
3642 				 * this ccb runs.
3643 				 */
3644 				num_highpower--;
3645 			}
3646 		}
3647 		devq->active_dev = device;
3648 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3649 
3650 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3651 		splx(ospl);
3652 
3653 		devq->send_openings--;
3654 		devq->send_active++;
3655 
3656 		if (device->ccbq.queue.entries > 0)
3657 			xpt_schedule_dev_sendq(bus, device);
3658 
3659 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3660 			/*
3661 			 * The client wants to freeze the queue
3662 			 * after this CCB is sent.
3663 			 */
3664 			ospl = splcam();
3665 			device->qfrozen_cnt++;
3666 			splx(ospl);
3667 		}
3668 
3669 		splx(s);
3670 
3671 		if ((device->inq_flags & SID_CmdQue) != 0)
3672 			work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3673 		else
3674 			/*
3675 			 * Clear this in case of a retried CCB that failed
3676 			 * due to a rejected tag.
3677 			 */
3678 			work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3679 
3680 		/*
3681 		 * Device queues can be shared among multiple sim instances
3682 		 * that reside on different busses.  Use the SIM in the queue
3683 		 * CCB's path, rather than the one in the bus that was passed
3684 		 * into this function.
3685 		 */
3686 		sim = work_ccb->ccb_h.path->bus->sim;
3687 		(*(sim->sim_action))(sim, work_ccb);
3688 
3689 		ospl = splcam();
3690 		devq->active_dev = NULL;
3691 		splx(ospl);
3692 		/* Raise IPL for possible insertion and test at top of loop */
3693 		s = splsoftcam();
3694 	}
3695 	splx(s);
3696 	s = splcam();
3697 	devq->send_queue.qfrozen_cnt--;
3698 	splx(s);
3699 }
3700 
3701 /*
3702  * This function merges stuff from the slave ccb into the master ccb, while
3703  * keeping important fields in the master ccb constant.
3704  */
3705 void
3706 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3707 {
3708 	/*
3709 	 * Pull fields that are valid for peripheral drivers to set
3710 	 * into the master CCB along with the CCB "payload".
3711 	 */
3712 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3713 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3714 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3715 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3716 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3717 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3718 }
3719 
3720 void
3721 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3722 {
3723 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3724 	ccb_h->pinfo.priority = priority;
3725 	ccb_h->path = path;
3726 	ccb_h->path_id = path->bus->path_id;
3727 	if (path->target)
3728 		ccb_h->target_id = path->target->target_id;
3729 	else
3730 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3731 	if (path->device) {
3732 		ccb_h->target_lun = path->device->lun_id;
3733 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3734 	} else {
3735 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3736 	}
3737 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3738 	ccb_h->flags = 0;
3739 }
3740 
3741 /* Path manipulation functions */
3742 cam_status
3743 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3744 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3745 {
3746 	struct	   cam_path *path;
3747 	cam_status status;
3748 
3749 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3750 
3751 	if (path == NULL) {
3752 		status = CAM_RESRC_UNAVAIL;
3753 		return(status);
3754 	}
3755 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3756 	if (status != CAM_REQ_CMP) {
3757 		free(path, M_DEVBUF);
3758 		path = NULL;
3759 	}
3760 	*new_path_ptr = path;
3761 	return (status);
3762 }
3763 
3764 static cam_status
3765 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3766 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3767 {
3768 	struct	     cam_eb *bus;
3769 	struct	     cam_et *target;
3770 	struct	     cam_ed *device;
3771 	cam_status   status;
3772 	int	     s;
3773 
3774 	status = CAM_REQ_CMP;	/* Completed without error */
3775 	target = NULL;		/* Wildcarded */
3776 	device = NULL;		/* Wildcarded */
3777 
3778 	/*
3779 	 * We will potentially modify the EDT, so block interrupts
3780 	 * that may attempt to create cam paths.
3781 	 */
3782 	s = splcam();
3783 	bus = xpt_find_bus(path_id);
3784 	if (bus == NULL) {
3785 		status = CAM_PATH_INVALID;
3786 	} else {
3787 		target = xpt_find_target(bus, target_id);
3788 		if (target == NULL) {
3789 			/* Create one */
3790 			struct cam_et *new_target;
3791 
3792 			new_target = xpt_alloc_target(bus, target_id);
3793 			if (new_target == NULL) {
3794 				status = CAM_RESRC_UNAVAIL;
3795 			} else {
3796 				target = new_target;
3797 			}
3798 		}
3799 		if (target != NULL) {
3800 			device = xpt_find_device(target, lun_id);
3801 			if (device == NULL) {
3802 				/* Create one */
3803 				struct cam_ed *new_device;
3804 
3805 				new_device = xpt_alloc_device(bus,
3806 							      target,
3807 							      lun_id);
3808 				if (new_device == NULL) {
3809 					status = CAM_RESRC_UNAVAIL;
3810 				} else {
3811 					device = new_device;
3812 				}
3813 			}
3814 		}
3815 	}
3816 	splx(s);
3817 
3818 	/*
3819 	 * Only touch the user's data if we are successful.
3820 	 */
3821 	if (status == CAM_REQ_CMP) {
3822 		new_path->periph = perph;
3823 		new_path->bus = bus;
3824 		new_path->target = target;
3825 		new_path->device = device;
3826 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3827 	} else {
3828 		if (device != NULL)
3829 			xpt_release_device(bus, target, device);
3830 		if (target != NULL)
3831 			xpt_release_target(bus, target);
3832 		if (bus != NULL)
3833 			xpt_release_bus(bus);
3834 	}
3835 	return (status);
3836 }
3837 
3838 static void
3839 xpt_release_path(struct cam_path *path)
3840 {
3841 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3842 	if (path->device != NULL) {
3843 		xpt_release_device(path->bus, path->target, path->device);
3844 		path->device = NULL;
3845 	}
3846 	if (path->target != NULL) {
3847 		xpt_release_target(path->bus, path->target);
3848 		path->target = NULL;
3849 	}
3850 	if (path->bus != NULL) {
3851 		xpt_release_bus(path->bus);
3852 		path->bus = NULL;
3853 	}
3854 }
3855 
3856 void
3857 xpt_free_path(struct cam_path *path)
3858 {
3859 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3860 	xpt_release_path(path);
3861 	free(path, M_DEVBUF);
3862 }
3863 
3864 
3865 /*
3866  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3867  * in path1, 2 for match with wildcards in path2.
3868  */
3869 int
3870 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3871 {
3872 	int retval = 0;
3873 
3874 	if (path1->bus != path2->bus) {
3875 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3876 			retval = 1;
3877 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3878 			retval = 2;
3879 		else
3880 			return (-1);
3881 	}
3882 	if (path1->target != path2->target) {
3883 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3884 			if (retval == 0)
3885 				retval = 1;
3886 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3887 			retval = 2;
3888 		else
3889 			return (-1);
3890 	}
3891 	if (path1->device != path2->device) {
3892 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3893 			if (retval == 0)
3894 				retval = 1;
3895 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3896 			retval = 2;
3897 		else
3898 			return (-1);
3899 	}
3900 	return (retval);
3901 }
3902 
3903 void
3904 xpt_print_path(struct cam_path *path)
3905 {
3906 	if (path == NULL)
3907 		printf("(nopath): ");
3908 	else {
3909 		if (path->periph != NULL)
3910 			printf("(%s%d:", path->periph->periph_name,
3911 			       path->periph->unit_number);
3912 		else
3913 			printf("(noperiph:");
3914 
3915 		if (path->bus != NULL)
3916 			printf("%s%d:%d:", path->bus->sim->sim_name,
3917 			       path->bus->sim->unit_number,
3918 			       path->bus->sim->bus_id);
3919 		else
3920 			printf("nobus:");
3921 
3922 		if (path->target != NULL)
3923 			printf("%d:", path->target->target_id);
3924 		else
3925 			printf("X:");
3926 
3927 		if (path->device != NULL)
3928 			printf("%d): ", path->device->lun_id);
3929 		else
3930 			printf("X): ");
3931 	}
3932 }
3933 
3934 path_id_t
3935 xpt_path_path_id(struct cam_path *path)
3936 {
3937 	return(path->bus->path_id);
3938 }
3939 
3940 target_id_t
3941 xpt_path_target_id(struct cam_path *path)
3942 {
3943 	if (path->target != NULL)
3944 		return (path->target->target_id);
3945 	else
3946 		return (CAM_TARGET_WILDCARD);
3947 }
3948 
3949 lun_id_t
3950 xpt_path_lun_id(struct cam_path *path)
3951 {
3952 	if (path->device != NULL)
3953 		return (path->device->lun_id);
3954 	else
3955 		return (CAM_LUN_WILDCARD);
3956 }
3957 
3958 struct cam_sim *
3959 xpt_path_sim(struct cam_path *path)
3960 {
3961 	return (path->bus->sim);
3962 }
3963 
3964 struct cam_periph*
3965 xpt_path_periph(struct cam_path *path)
3966 {
3967 	return (path->periph);
3968 }
3969 
3970 /*
3971  * Release a CAM control block for the caller.  Remit the cost of the structure
3972  * to the device referenced by the path.  If the this device had no 'credits'
3973  * and peripheral drivers have registered async callbacks for this notification
3974  * call them now.
3975  */
3976 void
3977 xpt_release_ccb(union ccb *free_ccb)
3978 {
3979 	int	 s;
3980 	struct	 cam_path *path;
3981 	struct	 cam_ed *device;
3982 	struct	 cam_eb *bus;
3983 
3984 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3985 	path = free_ccb->ccb_h.path;
3986 	device = path->device;
3987 	bus = path->bus;
3988 	s = splsoftcam();
3989 	cam_ccbq_release_opening(&device->ccbq);
3990 	if (xpt_ccb_count > xpt_max_ccbs) {
3991 		xpt_free_ccb(free_ccb);
3992 		xpt_ccb_count--;
3993 	} else {
3994 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
3995 	}
3996 	bus->sim->devq->alloc_openings++;
3997 	bus->sim->devq->alloc_active--;
3998 	/* XXX Turn this into an inline function - xpt_run_device?? */
3999 	if ((device_is_alloc_queued(device) == 0)
4000 	 && (device->drvq.entries > 0)) {
4001 		xpt_schedule_dev_allocq(bus, device);
4002 	}
4003 	splx(s);
4004 	if (dev_allocq_is_runnable(bus->sim->devq))
4005 		xpt_run_dev_allocq(bus);
4006 }
4007 
4008 /* Functions accessed by SIM drivers */
4009 
4010 /*
4011  * A sim structure, listing the SIM entry points and instance
4012  * identification info is passed to xpt_bus_register to hook the SIM
4013  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4014  * for this new bus and places it in the array of busses and assigns
4015  * it a path_id.  The path_id may be influenced by "hard wiring"
4016  * information specified by the user.  Once interrupt services are
4017  * availible, the bus will be probed.
4018  */
4019 int32_t
4020 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4021 {
4022 	struct cam_eb *new_bus;
4023 	struct cam_eb *old_bus;
4024 	struct ccb_pathinq cpi;
4025 	int s;
4026 
4027 	sim->bus_id = bus;
4028 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4029 					  M_DEVBUF, M_NOWAIT);
4030 	if (new_bus == NULL) {
4031 		/* Couldn't satisfy request */
4032 		return (CAM_RESRC_UNAVAIL);
4033 	}
4034 
4035 	if (strcmp(sim->sim_name, "xpt") != 0) {
4036 
4037 		sim->path_id =
4038 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4039 	}
4040 
4041 	TAILQ_INIT(&new_bus->et_entries);
4042 	new_bus->path_id = sim->path_id;
4043 	new_bus->sim = sim;
4044 	timevalclear(&new_bus->last_reset);
4045 	new_bus->flags = 0;
4046 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4047 	new_bus->generation = 0;
4048 	s = splcam();
4049 	old_bus = TAILQ_FIRST(&xpt_busses);
4050 	while (old_bus != NULL
4051 	    && old_bus->path_id < new_bus->path_id)
4052 		old_bus = TAILQ_NEXT(old_bus, links);
4053 	if (old_bus != NULL)
4054 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4055 	else
4056 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4057 	bus_generation++;
4058 	splx(s);
4059 
4060 	/* Notify interested parties */
4061 	if (sim->path_id != CAM_XPT_PATH_ID) {
4062 		struct cam_path path;
4063 
4064 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4065 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4066 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4067 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4068 		xpt_action((union ccb *)&cpi);
4069 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4070 		xpt_release_path(&path);
4071 	}
4072 	return (CAM_SUCCESS);
4073 }
4074 
4075 int32_t
4076 xpt_bus_deregister(path_id_t pathid)
4077 {
4078 	struct cam_path bus_path;
4079 	cam_status status;
4080 
4081 	status = xpt_compile_path(&bus_path, NULL, pathid,
4082 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4083 	if (status != CAM_REQ_CMP)
4084 		return (status);
4085 
4086 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4087 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4088 
4089 	/* Release the reference count held while registered. */
4090 	xpt_release_bus(bus_path.bus);
4091 	xpt_release_path(&bus_path);
4092 
4093 	return (CAM_REQ_CMP);
4094 }
4095 
4096 static path_id_t
4097 xptnextfreepathid(void)
4098 {
4099 	struct cam_eb *bus;
4100 	path_id_t pathid;
4101 	char *strval;
4102 
4103 	pathid = 0;
4104 	bus = TAILQ_FIRST(&xpt_busses);
4105 retry:
4106 	/* Find an unoccupied pathid */
4107 	while (bus != NULL
4108 	    && bus->path_id <= pathid) {
4109 		if (bus->path_id == pathid)
4110 			pathid++;
4111 		bus = TAILQ_NEXT(bus, links);
4112 	}
4113 
4114 	/*
4115 	 * Ensure that this pathid is not reserved for
4116 	 * a bus that may be registered in the future.
4117 	 */
4118 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4119 		++pathid;
4120 		/* Start the search over */
4121 		goto retry;
4122 	}
4123 	return (pathid);
4124 }
4125 
4126 static path_id_t
4127 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4128 {
4129 	path_id_t pathid;
4130 	int i, dunit, val;
4131 	char buf[32], *strval;
4132 
4133 	pathid = CAM_XPT_PATH_ID;
4134 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4135 	i = -1;
4136 	while ((i = resource_locate(i, "scbus")) != -1) {
4137 		dunit = resource_query_unit(i);
4138 		if (dunit < 0)		/* unwired?! */
4139 			continue;
4140 		if (resource_string_value("scbus", dunit, "at", &strval) != 0)
4141 			continue;
4142 		if (strcmp(buf, strval) != 0)
4143 			continue;
4144 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4145 			if (sim_bus == val) {
4146 				pathid = dunit;
4147 				break;
4148 			}
4149 		} else if (sim_bus == 0) {
4150 			/* Unspecified matches bus 0 */
4151 			pathid = dunit;
4152 			break;
4153 		} else {
4154 			printf("Ambiguous scbus configuration for %s%d "
4155 			       "bus %d, cannot wire down.  The kernel "
4156 			       "config entry for scbus%d should "
4157 			       "specify a controller bus.\n"
4158 			       "Scbus will be assigned dynamically.\n",
4159 			       sim_name, sim_unit, sim_bus, dunit);
4160 			break;
4161 		}
4162 	}
4163 
4164 	if (pathid == CAM_XPT_PATH_ID)
4165 		pathid = xptnextfreepathid();
4166 	return (pathid);
4167 }
4168 
4169 void
4170 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4171 {
4172 	struct cam_eb *bus;
4173 	struct cam_et *target, *next_target;
4174 	struct cam_ed *device, *next_device;
4175 	int s;
4176 
4177 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4178 
4179 	/*
4180 	 * Most async events come from a CAM interrupt context.  In
4181 	 * a few cases, the error recovery code at the peripheral layer,
4182 	 * which may run from our SWI or a process context, may signal
4183 	 * deferred events with a call to xpt_async. Ensure async
4184 	 * notifications are serialized by blocking cam interrupts.
4185 	 */
4186 	s = splcam();
4187 
4188 	bus = path->bus;
4189 
4190 	if (async_code == AC_BUS_RESET) {
4191 		int s;
4192 
4193 		s = splclock();
4194 		/* Update our notion of when the last reset occurred */
4195 		microtime(&bus->last_reset);
4196 		splx(s);
4197 	}
4198 
4199 	for (target = TAILQ_FIRST(&bus->et_entries);
4200 	     target != NULL;
4201 	     target = next_target) {
4202 
4203 		next_target = TAILQ_NEXT(target, links);
4204 
4205 		if (path->target != target
4206 		 && path->target->target_id != CAM_TARGET_WILDCARD)
4207 			continue;
4208 
4209 		if (async_code == AC_SENT_BDR) {
4210 			int s;
4211 
4212 			/* Update our notion of when the last reset occurred */
4213 			s = splclock();
4214 			microtime(&path->target->last_reset);
4215 			splx(s);
4216 		}
4217 
4218 		for (device = TAILQ_FIRST(&target->ed_entries);
4219 		     device != NULL;
4220 		     device = next_device) {
4221 			cam_status status;
4222 			struct cam_path newpath;
4223 
4224 			next_device = TAILQ_NEXT(device, links);
4225 
4226 			if (path->device != device
4227 			 && path->device->lun_id != CAM_LUN_WILDCARD)
4228 				continue;
4229 
4230 			/*
4231 			 * We need our own path with wildcards expanded to
4232 			 * handle certain types of events.
4233 			 */
4234 			if ((async_code == AC_SENT_BDR)
4235 			 || (async_code == AC_BUS_RESET)
4236 			 || (async_code == AC_INQ_CHANGED))
4237 				status = xpt_compile_path(&newpath, NULL,
4238 							  bus->path_id,
4239 							  target->target_id,
4240 							  device->lun_id);
4241 			else
4242 				status = CAM_REQ_CMP_ERR;
4243 
4244 			if (status == CAM_REQ_CMP) {
4245 
4246 				/*
4247 				 * Allow transfer negotiation to occur in a
4248 				 * tag free environment.
4249 				 */
4250 				if (async_code == AC_SENT_BDR
4251 				  || async_code == AC_BUS_RESET)
4252 					xpt_toggle_tags(&newpath);
4253 
4254 				if (async_code == AC_INQ_CHANGED) {
4255 					/*
4256 					 * We've sent a start unit command, or
4257 					 * something similar to a device that
4258 					 * may have caused its inquiry data to
4259 					 * change. So we re-scan the device to
4260 					 * refresh the inquiry data for it.
4261 					 */
4262 					xpt_scan_lun(newpath.periph, &newpath,
4263 						     CAM_EXPECT_INQ_CHANGE,
4264 						     NULL);
4265 				}
4266 				xpt_release_path(&newpath);
4267 			} else if (async_code == AC_LOST_DEVICE) {
4268 				device->flags |= CAM_DEV_UNCONFIGURED;
4269 			} else if (async_code == AC_TRANSFER_NEG) {
4270 				struct ccb_trans_settings *settings;
4271 
4272 				settings =
4273 				    (struct ccb_trans_settings *)async_arg;
4274 				xpt_set_transfer_settings(settings, device,
4275 							  /*async_update*/TRUE);
4276 			}
4277 
4278 			xpt_async_bcast(&device->asyncs,
4279 					async_code,
4280 					path,
4281 					async_arg);
4282 		}
4283 	}
4284 
4285 	/*
4286 	 * If this wasn't a fully wildcarded async, tell all
4287 	 * clients that want all async events.
4288 	 */
4289 	if (bus != xpt_periph->path->bus)
4290 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4291 				path, async_arg);
4292 	splx(s);
4293 }
4294 
4295 static void
4296 xpt_async_bcast(struct async_list *async_head,
4297 		u_int32_t async_code,
4298 		struct cam_path *path, void *async_arg)
4299 {
4300 	struct async_node *cur_entry;
4301 
4302 	cur_entry = SLIST_FIRST(async_head);
4303 	while (cur_entry != NULL) {
4304 		struct async_node *next_entry;
4305 		/*
4306 		 * Grab the next list entry before we call the current
4307 		 * entry's callback.  This is because the callback function
4308 		 * can delete its async callback entry.
4309 		 */
4310 		next_entry = SLIST_NEXT(cur_entry, links);
4311 		if ((cur_entry->event_enable & async_code) != 0)
4312 			cur_entry->callback(cur_entry->callback_arg,
4313 					    async_code, path,
4314 					    async_arg);
4315 		cur_entry = next_entry;
4316 	}
4317 }
4318 
4319 u_int32_t
4320 xpt_freeze_devq(struct cam_path *path, u_int count)
4321 {
4322 	int s;
4323 	struct ccb_hdr *ccbh;
4324 
4325 	s = splcam();
4326 	path->device->qfrozen_cnt += count;
4327 
4328 	/*
4329 	 * Mark the last CCB in the queue as needing
4330 	 * to be requeued if the driver hasn't
4331 	 * changed it's state yet.  This fixes a race
4332 	 * where a ccb is just about to be queued to
4333 	 * a controller driver when it's interrupt routine
4334 	 * freezes the queue.  To completly close the
4335 	 * hole, controller drives must check to see
4336 	 * if a ccb's status is still CAM_REQ_INPROG
4337 	 * under spl protection just before they queue
4338 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4339 	 * an example.
4340 	 */
4341 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4342 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4343 		ccbh->status = CAM_REQUEUE_REQ;
4344 	splx(s);
4345 	return (path->device->qfrozen_cnt);
4346 }
4347 
4348 u_int32_t
4349 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4350 {
4351 	sim->devq->send_queue.qfrozen_cnt += count;
4352 	if (sim->devq->active_dev != NULL) {
4353 		struct ccb_hdr *ccbh;
4354 
4355 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4356 				  ccb_hdr_tailq);
4357 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4358 			ccbh->status = CAM_REQUEUE_REQ;
4359 	}
4360 	return (sim->devq->send_queue.qfrozen_cnt);
4361 }
4362 
4363 static void
4364 xpt_release_devq_timeout(void *arg)
4365 {
4366 	struct cam_ed *device;
4367 
4368 	device = (struct cam_ed *)arg;
4369 
4370 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4371 }
4372 
4373 void
4374 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4375 {
4376 	xpt_release_devq_device(path->device, count, run_queue);
4377 }
4378 
4379 static void
4380 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4381 {
4382 	int	rundevq;
4383 	int	s0, s1;
4384 
4385 	rundevq = 0;
4386 	s0 = splsoftcam();
4387 	s1 = splcam();
4388 	if (dev->qfrozen_cnt > 0) {
4389 
4390 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4391 		dev->qfrozen_cnt -= count;
4392 		if (dev->qfrozen_cnt == 0) {
4393 
4394 			/*
4395 			 * No longer need to wait for a successful
4396 			 * command completion.
4397 			 */
4398 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4399 
4400 			/*
4401 			 * Remove any timeouts that might be scheduled
4402 			 * to release this queue.
4403 			 */
4404 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4405 				untimeout(xpt_release_devq_timeout, dev,
4406 					  dev->c_handle);
4407 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4408 			}
4409 
4410 			/*
4411 			 * Now that we are unfrozen schedule the
4412 			 * device so any pending transactions are
4413 			 * run.
4414 			 */
4415 			if ((dev->ccbq.queue.entries > 0)
4416 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4417 			 && (run_queue != 0)) {
4418 				rundevq = 1;
4419 			}
4420 		}
4421 	}
4422 	splx(s1);
4423 	if (rundevq != 0)
4424 		xpt_run_dev_sendq(dev->target->bus);
4425 	splx(s0);
4426 }
4427 
4428 void
4429 xpt_release_simq(struct cam_sim *sim, int run_queue)
4430 {
4431 	int	s;
4432 	struct	camq *sendq;
4433 
4434 	sendq = &(sim->devq->send_queue);
4435 	s = splcam();
4436 	if (sendq->qfrozen_cnt > 0) {
4437 
4438 		sendq->qfrozen_cnt--;
4439 		if (sendq->qfrozen_cnt == 0) {
4440 			struct cam_eb *bus;
4441 
4442 			/*
4443 			 * If there is a timeout scheduled to release this
4444 			 * sim queue, remove it.  The queue frozen count is
4445 			 * already at 0.
4446 			 */
4447 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4448 				untimeout(xpt_release_simq_timeout, sim,
4449 					  sim->c_handle);
4450 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4451 			}
4452 			bus = xpt_find_bus(sim->path_id);
4453 			splx(s);
4454 
4455 			if (run_queue) {
4456 				/*
4457 				 * Now that we are unfrozen run the send queue.
4458 				 */
4459 				xpt_run_dev_sendq(bus);
4460 			}
4461 			xpt_release_bus(bus);
4462 		} else
4463 			splx(s);
4464 	} else
4465 		splx(s);
4466 }
4467 
4468 static void
4469 xpt_release_simq_timeout(void *arg)
4470 {
4471 	struct cam_sim *sim;
4472 
4473 	sim = (struct cam_sim *)arg;
4474 	xpt_release_simq(sim, /* run_queue */ TRUE);
4475 }
4476 
4477 void
4478 xpt_done(union ccb *done_ccb)
4479 {
4480 	int s;
4481 
4482 	s = splcam();
4483 
4484 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4485 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4486 		/*
4487 		 * Queue up the request for handling by our SWI handler
4488 		 * any of the "non-immediate" type of ccbs.
4489 		 */
4490 		switch (done_ccb->ccb_h.path->periph->type) {
4491 		case CAM_PERIPH_BIO:
4492 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4493 					  sim_links.tqe);
4494 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4495 			setsoftcambio();
4496 			break;
4497 		case CAM_PERIPH_NET:
4498 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4499 					  sim_links.tqe);
4500 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4501 			setsoftcamnet();
4502 			break;
4503 		}
4504 	}
4505 	splx(s);
4506 }
4507 
4508 union ccb *
4509 xpt_alloc_ccb()
4510 {
4511 	union ccb *new_ccb;
4512 
4513 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4514 	return (new_ccb);
4515 }
4516 
4517 void
4518 xpt_free_ccb(union ccb *free_ccb)
4519 {
4520 	free(free_ccb, M_DEVBUF);
4521 }
4522 
4523 
4524 
4525 /* Private XPT functions */
4526 
4527 /*
4528  * Get a CAM control block for the caller. Charge the structure to the device
4529  * referenced by the path.  If the this device has no 'credits' then the
4530  * device already has the maximum number of outstanding operations under way
4531  * and we return NULL. If we don't have sufficient resources to allocate more
4532  * ccbs, we also return NULL.
4533  */
4534 static union ccb *
4535 xpt_get_ccb(struct cam_ed *device)
4536 {
4537 	union ccb *new_ccb;
4538 	int s;
4539 
4540 	s = splsoftcam();
4541 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4542 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4543                 if (new_ccb == NULL) {
4544 			splx(s);
4545 			return (NULL);
4546 		}
4547 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4548 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4549 				  xpt_links.sle);
4550 		xpt_ccb_count++;
4551 	}
4552 	cam_ccbq_take_opening(&device->ccbq);
4553 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4554 	splx(s);
4555 	return (new_ccb);
4556 }
4557 
4558 static void
4559 xpt_release_bus(struct cam_eb *bus)
4560 {
4561 	int s;
4562 
4563 	s = splcam();
4564 	if ((--bus->refcount == 0)
4565 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4566 		TAILQ_REMOVE(&xpt_busses, bus, links);
4567 		bus_generation++;
4568 		splx(s);
4569 		free(bus, M_DEVBUF);
4570 	} else
4571 		splx(s);
4572 }
4573 
4574 static struct cam_et *
4575 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4576 {
4577 	struct cam_et *target;
4578 
4579 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4580 	if (target != NULL) {
4581 		struct cam_et *cur_target;
4582 
4583 		TAILQ_INIT(&target->ed_entries);
4584 		target->bus = bus;
4585 		target->target_id = target_id;
4586 		target->refcount = 1;
4587 		target->generation = 0;
4588 		timevalclear(&target->last_reset);
4589 		/*
4590 		 * Hold a reference to our parent bus so it
4591 		 * will not go away before we do.
4592 		 */
4593 		bus->refcount++;
4594 
4595 		/* Insertion sort into our bus's target list */
4596 		cur_target = TAILQ_FIRST(&bus->et_entries);
4597 		while (cur_target != NULL && cur_target->target_id < target_id)
4598 			cur_target = TAILQ_NEXT(cur_target, links);
4599 
4600 		if (cur_target != NULL) {
4601 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4602 		} else {
4603 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4604 		}
4605 		bus->generation++;
4606 	}
4607 	return (target);
4608 }
4609 
4610 static void
4611 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4612 {
4613 	int s;
4614 
4615 	s = splcam();
4616 	if ((--target->refcount == 0)
4617 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4618 		TAILQ_REMOVE(&bus->et_entries, target, links);
4619 		bus->generation++;
4620 		splx(s);
4621 		free(target, M_DEVBUF);
4622 		xpt_release_bus(bus);
4623 	} else
4624 		splx(s);
4625 }
4626 
4627 static struct cam_ed *
4628 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4629 {
4630 	struct	   cam_ed *device;
4631 	struct	   cam_devq *devq;
4632 	cam_status status;
4633 
4634 	/* Make space for us in the device queue on our bus */
4635 	devq = bus->sim->devq;
4636 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4637 
4638 	if (status != CAM_REQ_CMP) {
4639 		device = NULL;
4640 	} else {
4641 		device = (struct cam_ed *)malloc(sizeof(*device),
4642 						 M_DEVBUF, M_NOWAIT);
4643 	}
4644 
4645 	if (device != NULL) {
4646 		struct cam_ed *cur_device;
4647 
4648 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4649 		device->alloc_ccb_entry.device = device;
4650 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4651 		device->send_ccb_entry.device = device;
4652 		device->target = target;
4653 		device->lun_id = lun_id;
4654 		/* Initialize our queues */
4655 		if (camq_init(&device->drvq, 0) != 0) {
4656 			free(device, M_DEVBUF);
4657 			return (NULL);
4658 		}
4659 		if (cam_ccbq_init(&device->ccbq,
4660 				  bus->sim->max_dev_openings) != 0) {
4661 			camq_fini(&device->drvq);
4662 			free(device, M_DEVBUF);
4663 			return (NULL);
4664 		}
4665 		SLIST_INIT(&device->asyncs);
4666 		SLIST_INIT(&device->periphs);
4667 		device->generation = 0;
4668 		device->owner = NULL;
4669 		/*
4670 		 * Take the default quirk entry until we have inquiry
4671 		 * data and can determine a better quirk to use.
4672 		 */
4673 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4674 		bzero(&device->inq_data, sizeof(device->inq_data));
4675 		device->inq_flags = 0;
4676 		device->queue_flags = 0;
4677 		device->serial_num = NULL;
4678 		device->serial_num_len = 0;
4679 		device->qfrozen_cnt = 0;
4680 		device->flags = CAM_DEV_UNCONFIGURED;
4681 		device->tag_delay_count = 0;
4682 		device->refcount = 1;
4683 		callout_handle_init(&device->c_handle);
4684 
4685 		/*
4686 		 * Hold a reference to our parent target so it
4687 		 * will not go away before we do.
4688 		 */
4689 		target->refcount++;
4690 
4691 		/*
4692 		 * XXX should be limited by number of CCBs this bus can
4693 		 * do.
4694 		 */
4695 		xpt_max_ccbs += device->ccbq.devq_openings;
4696 		/* Insertion sort into our target's device list */
4697 		cur_device = TAILQ_FIRST(&target->ed_entries);
4698 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4699 			cur_device = TAILQ_NEXT(cur_device, links);
4700 		if (cur_device != NULL) {
4701 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4702 		} else {
4703 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4704 		}
4705 		target->generation++;
4706 	}
4707 	return (device);
4708 }
4709 
4710 static void
4711 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4712 		   struct cam_ed *device)
4713 {
4714 	int s;
4715 
4716 	s = splcam();
4717 	if ((--device->refcount == 0)
4718 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4719 		struct cam_devq *devq;
4720 
4721 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4722 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4723 			panic("Removing device while still queued for ccbs");
4724 
4725 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4726 				untimeout(xpt_release_devq_timeout, device,
4727 					  device->c_handle);
4728 
4729 		TAILQ_REMOVE(&target->ed_entries, device,links);
4730 		target->generation++;
4731 		xpt_max_ccbs -= device->ccbq.devq_openings;
4732 		/* Release our slot in the devq */
4733 		devq = bus->sim->devq;
4734 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4735 		splx(s);
4736 		free(device, M_DEVBUF);
4737 		xpt_release_target(bus, target);
4738 	} else
4739 		splx(s);
4740 }
4741 
4742 static u_int32_t
4743 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4744 {
4745 	int	s;
4746 	int	diff;
4747 	int	result;
4748 	struct	cam_ed *dev;
4749 
4750 	dev = path->device;
4751 	s = splsoftcam();
4752 
4753 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4754 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4755 	if (result == CAM_REQ_CMP && (diff < 0)) {
4756 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4757 	}
4758 	/* Adjust the global limit */
4759 	xpt_max_ccbs += diff;
4760 	splx(s);
4761 	return (result);
4762 }
4763 
4764 static struct cam_eb *
4765 xpt_find_bus(path_id_t path_id)
4766 {
4767 	struct cam_eb *bus;
4768 
4769 	for (bus = TAILQ_FIRST(&xpt_busses);
4770 	     bus != NULL;
4771 	     bus = TAILQ_NEXT(bus, links)) {
4772 		if (bus->path_id == path_id) {
4773 			bus->refcount++;
4774 			break;
4775 		}
4776 	}
4777 	return (bus);
4778 }
4779 
4780 static struct cam_et *
4781 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4782 {
4783 	struct cam_et *target;
4784 
4785 	for (target = TAILQ_FIRST(&bus->et_entries);
4786 	     target != NULL;
4787 	     target = TAILQ_NEXT(target, links)) {
4788 		if (target->target_id == target_id) {
4789 			target->refcount++;
4790 			break;
4791 		}
4792 	}
4793 	return (target);
4794 }
4795 
4796 static struct cam_ed *
4797 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4798 {
4799 	struct cam_ed *device;
4800 
4801 	for (device = TAILQ_FIRST(&target->ed_entries);
4802 	     device != NULL;
4803 	     device = TAILQ_NEXT(device, links)) {
4804 		if (device->lun_id == lun_id) {
4805 			device->refcount++;
4806 			break;
4807 		}
4808 	}
4809 	return (device);
4810 }
4811 
4812 typedef struct {
4813 	union	ccb *request_ccb;
4814 	struct 	ccb_pathinq *cpi;
4815 	int	pending_count;
4816 } xpt_scan_bus_info;
4817 
4818 /*
4819  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4820  * As the scan progresses, xpt_scan_bus is used as the
4821  * callback on completion function.
4822  */
4823 static void
4824 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4825 {
4826 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4827 		  ("xpt_scan_bus\n"));
4828 	switch (request_ccb->ccb_h.func_code) {
4829 	case XPT_SCAN_BUS:
4830 	{
4831 		xpt_scan_bus_info *scan_info;
4832 		union	ccb *work_ccb;
4833 		struct	cam_path *path;
4834 		u_int	i;
4835 		u_int	max_target;
4836 		u_int	initiator_id;
4837 
4838 		/* Find out the characteristics of the bus */
4839 		work_ccb = xpt_alloc_ccb();
4840 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4841 			      request_ccb->ccb_h.pinfo.priority);
4842 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4843 		xpt_action(work_ccb);
4844 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4845 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4846 			xpt_free_ccb(work_ccb);
4847 			xpt_done(request_ccb);
4848 			return;
4849 		}
4850 
4851 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4852 			/*
4853 			 * Can't scan the bus on an adapter that
4854 			 * cannot perform the initiator role.
4855 			 */
4856 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4857 			xpt_free_ccb(work_ccb);
4858 			xpt_done(request_ccb);
4859 			return;
4860 		}
4861 
4862 		/* Save some state for use while we probe for devices */
4863 		scan_info = (xpt_scan_bus_info *)
4864 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
4865 		scan_info->request_ccb = request_ccb;
4866 		scan_info->cpi = &work_ccb->cpi;
4867 
4868 		/* Cache on our stack so we can work asynchronously */
4869 		max_target = scan_info->cpi->max_target;
4870 		initiator_id = scan_info->cpi->initiator_id;
4871 
4872 		/*
4873 		 * Don't count the initiator if the
4874 		 * initiator is addressable.
4875 		 */
4876 		scan_info->pending_count = max_target + 1;
4877 		if (initiator_id <= max_target)
4878 			scan_info->pending_count--;
4879 
4880 		for (i = 0; i <= max_target; i++) {
4881 			cam_status status;
4882 		 	if (i == initiator_id)
4883 				continue;
4884 
4885 			status = xpt_create_path(&path, xpt_periph,
4886 						 request_ccb->ccb_h.path_id,
4887 						 i, 0);
4888 			if (status != CAM_REQ_CMP) {
4889 				printf("xpt_scan_bus: xpt_create_path failed"
4890 				       " with status %#x, bus scan halted\n",
4891 				       status);
4892 				break;
4893 			}
4894 			work_ccb = xpt_alloc_ccb();
4895 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4896 				      request_ccb->ccb_h.pinfo.priority);
4897 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4898 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4899 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4900 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4901 #if 0
4902 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4903 				request_ccb->ccb_h.path_id, i, 0);
4904 #endif
4905 			xpt_action(work_ccb);
4906 		}
4907 		break;
4908 	}
4909 	case XPT_SCAN_LUN:
4910 	{
4911 		xpt_scan_bus_info *scan_info;
4912 		path_id_t path_id;
4913 		target_id_t target_id;
4914 		lun_id_t lun_id;
4915 
4916 		/* Reuse the same CCB to query if a device was really found */
4917 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4918 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4919 			      request_ccb->ccb_h.pinfo.priority);
4920 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4921 
4922 		path_id = request_ccb->ccb_h.path_id;
4923 		target_id = request_ccb->ccb_h.target_id;
4924 		lun_id = request_ccb->ccb_h.target_lun;
4925 		xpt_action(request_ccb);
4926 
4927 #if 0
4928 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4929 			path_id, target_id, lun_id);
4930 #endif
4931 
4932 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4933 			struct cam_ed *device;
4934 			struct cam_et *target;
4935 			int s, phl;
4936 
4937 			/*
4938 			 * If we already probed lun 0 successfully, or
4939 			 * we have additional configured luns on this
4940 			 * target that might have "gone away", go onto
4941 			 * the next lun.
4942 			 */
4943 			target = request_ccb->ccb_h.path->target;
4944 			/*
4945 			 * We may touch devices that we don't
4946 			 * hold references too, so ensure they
4947 			 * don't disappear out from under us.
4948 			 * The target above is referenced by the
4949 			 * path in the request ccb.
4950 			 */
4951 			phl = 0;
4952 			s = splcam();
4953 			device = TAILQ_FIRST(&target->ed_entries);
4954 			if (device != NULL) {
4955 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
4956 				if (device->lun_id == 0)
4957 					device = TAILQ_NEXT(device, links);
4958 			}
4959 			splx(s);
4960 			if ((lun_id != 0) || (device != NULL)) {
4961 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
4962 					lun_id++;
4963 			}
4964 		} else {
4965 			struct cam_ed *device;
4966 
4967 			device = request_ccb->ccb_h.path->device;
4968 
4969 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
4970 				/* Try the next lun */
4971 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
4972 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
4973 					lun_id++;
4974 			}
4975 		}
4976 
4977 		xpt_free_path(request_ccb->ccb_h.path);
4978 
4979 		/* Check Bounds */
4980 		if ((lun_id == request_ccb->ccb_h.target_lun)
4981 		 || lun_id > scan_info->cpi->max_lun) {
4982 			/* We're done */
4983 
4984 			xpt_free_ccb(request_ccb);
4985 			scan_info->pending_count--;
4986 			if (scan_info->pending_count == 0) {
4987 				xpt_free_ccb((union ccb *)scan_info->cpi);
4988 				request_ccb = scan_info->request_ccb;
4989 				free(scan_info, M_TEMP);
4990 				request_ccb->ccb_h.status = CAM_REQ_CMP;
4991 				xpt_done(request_ccb);
4992 			}
4993 		} else {
4994 			/* Try the next device */
4995 			struct cam_path *path;
4996 			cam_status status;
4997 
4998 			path = request_ccb->ccb_h.path;
4999 			status = xpt_create_path(&path, xpt_periph,
5000 						 path_id, target_id, lun_id);
5001 			if (status != CAM_REQ_CMP) {
5002 				printf("xpt_scan_bus: xpt_create_path failed "
5003 				       "with status %#x, halting LUN scan\n",
5004 			 	       status);
5005 				xpt_free_ccb(request_ccb);
5006 				scan_info->pending_count--;
5007 				if (scan_info->pending_count == 0) {
5008 					xpt_free_ccb(
5009 						(union ccb *)scan_info->cpi);
5010 					request_ccb = scan_info->request_ccb;
5011 					free(scan_info, M_TEMP);
5012 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5013 					xpt_done(request_ccb);
5014 					break;
5015 				}
5016 			}
5017 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5018 				      request_ccb->ccb_h.pinfo.priority);
5019 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5020 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5021 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5022 			request_ccb->crcn.flags =
5023 				scan_info->request_ccb->crcn.flags;
5024 #if 0
5025 			xpt_print_path(path);
5026 			printf("xpt_scan bus probing\n");
5027 #endif
5028 			xpt_action(request_ccb);
5029 		}
5030 		break;
5031 	}
5032 	default:
5033 		break;
5034 	}
5035 }
5036 
5037 typedef enum {
5038 	PROBE_TUR,
5039 	PROBE_INQUIRY,
5040 	PROBE_FULL_INQUIRY,
5041 	PROBE_MODE_SENSE,
5042 	PROBE_SERIAL_NUM,
5043 	PROBE_TUR_FOR_NEGOTIATION
5044 } probe_action;
5045 
5046 typedef enum {
5047 	PROBE_INQUIRY_CKSUM	= 0x01,
5048 	PROBE_SERIAL_CKSUM	= 0x02,
5049 	PROBE_NO_ANNOUNCE	= 0x04
5050 } probe_flags;
5051 
5052 typedef struct {
5053 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5054 	probe_action	action;
5055 	union ccb	saved_ccb;
5056 	probe_flags	flags;
5057 	MD5_CTX		context;
5058 	u_int8_t	digest[16];
5059 } probe_softc;
5060 
5061 static void
5062 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5063 	     cam_flags flags, union ccb *request_ccb)
5064 {
5065 	struct ccb_pathinq cpi;
5066 	cam_status status;
5067 	struct cam_path *new_path;
5068 	struct cam_periph *old_periph;
5069 	int s;
5070 
5071 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5072 		  ("xpt_scan_lun\n"));
5073 
5074 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5075 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5076 	xpt_action((union ccb *)&cpi);
5077 
5078 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5079 		if (request_ccb != NULL) {
5080 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5081 			xpt_done(request_ccb);
5082 		}
5083 		return;
5084 	}
5085 
5086 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5087 		/*
5088 		 * Can't scan the bus on an adapter that
5089 		 * cannot perform the initiator role.
5090 		 */
5091 		if (request_ccb != NULL) {
5092 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5093 			xpt_done(request_ccb);
5094 		}
5095 		return;
5096 	}
5097 
5098 	if (request_ccb == NULL) {
5099 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5100 		if (request_ccb == NULL) {
5101 			xpt_print_path(path);
5102 			printf("xpt_scan_lun: can't allocate CCB, can't "
5103 			       "continue\n");
5104 			return;
5105 		}
5106 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5107 		if (new_path == NULL) {
5108 			xpt_print_path(path);
5109 			printf("xpt_scan_lun: can't allocate path, can't "
5110 			       "continue\n");
5111 			free(request_ccb, M_TEMP);
5112 			return;
5113 		}
5114 		status = xpt_compile_path(new_path, xpt_periph,
5115 					  path->bus->path_id,
5116 					  path->target->target_id,
5117 					  path->device->lun_id);
5118 
5119 		if (status != CAM_REQ_CMP) {
5120 			xpt_print_path(path);
5121 			printf("xpt_scan_lun: can't compile path, can't "
5122 			       "continue\n");
5123 			free(request_ccb, M_TEMP);
5124 			free(new_path, M_TEMP);
5125 			return;
5126 		}
5127 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5128 		request_ccb->ccb_h.cbfcnp = xptscandone;
5129 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5130 		request_ccb->crcn.flags = flags;
5131 	}
5132 
5133 	s = splsoftcam();
5134 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5135 		probe_softc *softc;
5136 
5137 		softc = (probe_softc *)old_periph->softc;
5138 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5139 				  periph_links.tqe);
5140 	} else {
5141 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5142 					  probestart, "probe",
5143 					  CAM_PERIPH_BIO,
5144 					  request_ccb->ccb_h.path, NULL, 0,
5145 					  request_ccb);
5146 
5147 		if (status != CAM_REQ_CMP) {
5148 			xpt_print_path(path);
5149 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5150 			       "error, can't continue probe\n");
5151 			request_ccb->ccb_h.status = status;
5152 			xpt_done(request_ccb);
5153 		}
5154 	}
5155 	splx(s);
5156 }
5157 
5158 static void
5159 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5160 {
5161 	xpt_release_path(done_ccb->ccb_h.path);
5162 	free(done_ccb->ccb_h.path, M_TEMP);
5163 	free(done_ccb, M_TEMP);
5164 }
5165 
5166 static cam_status
5167 proberegister(struct cam_periph *periph, void *arg)
5168 {
5169 	union ccb *request_ccb;	/* CCB representing the probe request */
5170 	probe_softc *softc;
5171 
5172 	request_ccb = (union ccb *)arg;
5173 	if (periph == NULL) {
5174 		printf("proberegister: periph was NULL!!\n");
5175 		return(CAM_REQ_CMP_ERR);
5176 	}
5177 
5178 	if (request_ccb == NULL) {
5179 		printf("proberegister: no probe CCB, "
5180 		       "can't register device\n");
5181 		return(CAM_REQ_CMP_ERR);
5182 	}
5183 
5184 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5185 
5186 	if (softc == NULL) {
5187 		printf("proberegister: Unable to probe new device. "
5188 		       "Unable to allocate softc\n");
5189 		return(CAM_REQ_CMP_ERR);
5190 	}
5191 	TAILQ_INIT(&softc->request_ccbs);
5192 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5193 			  periph_links.tqe);
5194 	softc->flags = 0;
5195 	periph->softc = softc;
5196 	cam_periph_acquire(periph);
5197 	/*
5198 	 * Ensure we've waited at least a bus settle
5199 	 * delay before attempting to probe the device.
5200 	 * For HBAs that don't do bus resets, this won't make a difference.
5201 	 */
5202 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5203 				      SCSI_DELAY);
5204 	probeschedule(periph);
5205 	return(CAM_REQ_CMP);
5206 }
5207 
5208 static void
5209 probeschedule(struct cam_periph *periph)
5210 {
5211 	struct ccb_pathinq cpi;
5212 	union ccb *ccb;
5213 	probe_softc *softc;
5214 
5215 	softc = (probe_softc *)periph->softc;
5216 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5217 
5218 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5219 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5220 	xpt_action((union ccb *)&cpi);
5221 
5222 	/*
5223 	 * If a device has gone away and another device, or the same one,
5224 	 * is back in the same place, it should have a unit attention
5225 	 * condition pending.  It will not report the unit attention in
5226 	 * response to an inquiry, which may leave invalid transfer
5227 	 * negotiations in effect.  The TUR will reveal the unit attention
5228 	 * condition.  Only send the TUR for lun 0, since some devices
5229 	 * will get confused by commands other than inquiry to non-existent
5230 	 * luns.  If you think a device has gone away start your scan from
5231 	 * lun 0.  This will insure that any bogus transfer settings are
5232 	 * invalidated.
5233 	 *
5234 	 * If we haven't seen the device before and the controller supports
5235 	 * some kind of transfer negotiation, negotiate with the first
5236 	 * sent command if no bus reset was performed at startup.  This
5237 	 * ensures that the device is not confused by transfer negotiation
5238 	 * settings left over by loader or BIOS action.
5239 	 */
5240 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5241 	 && (ccb->ccb_h.target_lun == 0)) {
5242 		softc->action = PROBE_TUR;
5243 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5244 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5245 		proberequestdefaultnegotiation(periph);
5246 		softc->action = PROBE_INQUIRY;
5247 	} else {
5248 		softc->action = PROBE_INQUIRY;
5249 	}
5250 
5251 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5252 		softc->flags |= PROBE_NO_ANNOUNCE;
5253 	else
5254 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5255 
5256 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5257 }
5258 
5259 static void
5260 probestart(struct cam_periph *periph, union ccb *start_ccb)
5261 {
5262 	/* Probe the device that our peripheral driver points to */
5263 	struct ccb_scsiio *csio;
5264 	probe_softc *softc;
5265 
5266 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5267 
5268 	softc = (probe_softc *)periph->softc;
5269 	csio = &start_ccb->csio;
5270 
5271 	switch (softc->action) {
5272 	case PROBE_TUR:
5273 	case PROBE_TUR_FOR_NEGOTIATION:
5274 	{
5275 		scsi_test_unit_ready(csio,
5276 				     /*retries*/4,
5277 				     probedone,
5278 				     MSG_SIMPLE_Q_TAG,
5279 				     SSD_FULL_SIZE,
5280 				     /*timeout*/60000);
5281 		break;
5282 	}
5283 	case PROBE_INQUIRY:
5284 	case PROBE_FULL_INQUIRY:
5285 	{
5286 		u_int inquiry_len;
5287 		struct scsi_inquiry_data *inq_buf;
5288 
5289 		inq_buf = &periph->path->device->inq_data;
5290 		/*
5291 		 * If the device is currently configured, we calculate an
5292 		 * MD5 checksum of the inquiry data, and if the serial number
5293 		 * length is greater than 0, add the serial number data
5294 		 * into the checksum as well.  Once the inquiry and the
5295 		 * serial number check finish, we attempt to figure out
5296 		 * whether we still have the same device.
5297 		 */
5298 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5299 
5300 			MD5Init(&softc->context);
5301 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5302 				  sizeof(struct scsi_inquiry_data));
5303 			softc->flags |= PROBE_INQUIRY_CKSUM;
5304 			if (periph->path->device->serial_num_len > 0) {
5305 				MD5Update(&softc->context,
5306 					  periph->path->device->serial_num,
5307 					  periph->path->device->serial_num_len);
5308 				softc->flags |= PROBE_SERIAL_CKSUM;
5309 			}
5310 			MD5Final(softc->digest, &softc->context);
5311 		}
5312 
5313 		if (softc->action == PROBE_INQUIRY)
5314 			inquiry_len = SHORT_INQUIRY_LENGTH;
5315 		else
5316 			inquiry_len = inq_buf->additional_length + 4;
5317 
5318 		scsi_inquiry(csio,
5319 			     /*retries*/4,
5320 			     probedone,
5321 			     MSG_SIMPLE_Q_TAG,
5322 			     (u_int8_t *)inq_buf,
5323 			     inquiry_len,
5324 			     /*evpd*/FALSE,
5325 			     /*page_code*/0,
5326 			     SSD_MIN_SIZE,
5327 			     /*timeout*/60 * 1000);
5328 		break;
5329 	}
5330 	case PROBE_MODE_SENSE:
5331 	{
5332 		void  *mode_buf;
5333 		int    mode_buf_len;
5334 
5335 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5336 			     + sizeof(struct scsi_mode_blk_desc)
5337 			     + sizeof(struct scsi_control_page);
5338 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5339 		if (mode_buf != NULL) {
5340 	                scsi_mode_sense(csio,
5341 					/*retries*/4,
5342 					probedone,
5343 					MSG_SIMPLE_Q_TAG,
5344 					/*dbd*/FALSE,
5345 					SMS_PAGE_CTRL_CURRENT,
5346 					SMS_CONTROL_MODE_PAGE,
5347 					mode_buf,
5348 					mode_buf_len,
5349 					SSD_FULL_SIZE,
5350 					/*timeout*/60000);
5351 			break;
5352 		}
5353 		xpt_print_path(periph->path);
5354 		printf("Unable to mode sense control page - malloc failure\n");
5355 		softc->action = PROBE_SERIAL_NUM;
5356 		/* FALLTHROUGH */
5357 	}
5358 	case PROBE_SERIAL_NUM:
5359 	{
5360 		struct scsi_vpd_unit_serial_number *serial_buf;
5361 		struct cam_ed* device;
5362 
5363 		serial_buf = NULL;
5364 		device = periph->path->device;
5365 		device->serial_num = NULL;
5366 		device->serial_num_len = 0;
5367 
5368 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5369 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5370 				malloc(sizeof(*serial_buf), M_TEMP, M_NOWAIT);
5371 
5372 		if (serial_buf != NULL) {
5373 			bzero(serial_buf, sizeof(*serial_buf));
5374 			scsi_inquiry(csio,
5375 				     /*retries*/4,
5376 				     probedone,
5377 				     MSG_SIMPLE_Q_TAG,
5378 				     (u_int8_t *)serial_buf,
5379 				     sizeof(*serial_buf),
5380 				     /*evpd*/TRUE,
5381 				     SVPD_UNIT_SERIAL_NUMBER,
5382 				     SSD_MIN_SIZE,
5383 				     /*timeout*/60 * 1000);
5384 			break;
5385 		}
5386 		/*
5387 		 * We'll have to do without, let our probedone
5388 		 * routine finish up for us.
5389 		 */
5390 		start_ccb->csio.data_ptr = NULL;
5391 		probedone(periph, start_ccb);
5392 		return;
5393 	}
5394 	}
5395 	xpt_action(start_ccb);
5396 }
5397 
5398 static void
5399 proberequestdefaultnegotiation(struct cam_periph *periph)
5400 {
5401 	struct ccb_trans_settings cts;
5402 
5403 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5404 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5405 	cts.flags = CCB_TRANS_USER_SETTINGS;
5406 	xpt_action((union ccb *)&cts);
5407 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5408 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5409 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5410 	xpt_action((union ccb *)&cts);
5411 }
5412 
5413 static void
5414 probedone(struct cam_periph *periph, union ccb *done_ccb)
5415 {
5416 	probe_softc *softc;
5417 	struct cam_path *path;
5418 	u_int32_t  priority;
5419 
5420 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5421 
5422 	softc = (probe_softc *)periph->softc;
5423 	path = done_ccb->ccb_h.path;
5424 	priority = done_ccb->ccb_h.pinfo.priority;
5425 
5426 	switch (softc->action) {
5427 	case PROBE_TUR:
5428 	{
5429 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5430 
5431 			if (cam_periph_error(done_ccb, 0,
5432 					     SF_NO_PRINT, NULL) == ERESTART)
5433 				return;
5434 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5435 				/* Don't wedge the queue */
5436 				xpt_release_devq(done_ccb->ccb_h.path,
5437 						 /*count*/1,
5438 						 /*run_queue*/TRUE);
5439 		}
5440 		softc->action = PROBE_INQUIRY;
5441 		xpt_release_ccb(done_ccb);
5442 		xpt_schedule(periph, priority);
5443 		return;
5444 	}
5445 	case PROBE_INQUIRY:
5446 	case PROBE_FULL_INQUIRY:
5447 	{
5448 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5449 			struct scsi_inquiry_data *inq_buf;
5450 			u_int8_t periph_qual;
5451 			u_int8_t periph_dtype;
5452 
5453 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5454 			inq_buf = &path->device->inq_data;
5455 
5456 			periph_qual = SID_QUAL(inq_buf);
5457 			periph_dtype = SID_TYPE(inq_buf);
5458 
5459 			if (periph_dtype != T_NODEVICE) {
5460 				switch(periph_qual) {
5461 				case SID_QUAL_LU_CONNECTED:
5462 				{
5463 					u_int8_t alen;
5464 
5465 					/*
5466 					 * We conservatively request only
5467 					 * SHORT_INQUIRY_LEN bytes of inquiry
5468 					 * information during our first try
5469 					 * at sending an INQUIRY. If the device
5470 					 * has more information to give,
5471 					 * perform a second request specifying
5472 					 * the amount of information the device
5473 					 * is willing to give.
5474 					 */
5475 					alen = inq_buf->additional_length;
5476 					if (softc->action == PROBE_INQUIRY
5477 					 && alen > (SHORT_INQUIRY_LENGTH - 4)) {
5478 						softc->action =
5479 						    PROBE_FULL_INQUIRY;
5480 						xpt_release_ccb(done_ccb);
5481 						xpt_schedule(periph, priority);
5482 						return;
5483 					}
5484 
5485 					xpt_find_quirk(path->device);
5486 
5487 					if ((inq_buf->flags & SID_CmdQue) != 0)
5488 						softc->action =
5489 						    PROBE_MODE_SENSE;
5490 					else
5491 						softc->action =
5492 						    PROBE_SERIAL_NUM;
5493 
5494 					path->device->flags &=
5495 						~CAM_DEV_UNCONFIGURED;
5496 
5497 					xpt_release_ccb(done_ccb);
5498 					xpt_schedule(periph, priority);
5499 					return;
5500 				}
5501 				default:
5502 					break;
5503 				}
5504 			}
5505 		} else if (cam_periph_error(done_ccb, 0,
5506 					    done_ccb->ccb_h.target_lun > 0
5507 					    ? SF_RETRY_UA|SF_QUIET_IR
5508 					    : SF_RETRY_UA,
5509 					    &softc->saved_ccb) == ERESTART) {
5510 			return;
5511 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5512 			/* Don't wedge the queue */
5513 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5514 					 /*run_queue*/TRUE);
5515 		}
5516 		/*
5517 		 * If we get to this point, we got an error status back
5518 		 * from the inquiry and the error status doesn't require
5519 		 * automatically retrying the command.  Therefore, the
5520 		 * inquiry failed.  If we had inquiry information before
5521 		 * for this device, but this latest inquiry command failed,
5522 		 * the device has probably gone away.  If this device isn't
5523 		 * already marked unconfigured, notify the peripheral
5524 		 * drivers that this device is no more.
5525 		 */
5526 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5527 			/* Send the async notification. */
5528 			xpt_async(AC_LOST_DEVICE, path, NULL);
5529 
5530 		xpt_release_ccb(done_ccb);
5531 		break;
5532 	}
5533 	case PROBE_MODE_SENSE:
5534 	{
5535 		struct ccb_scsiio *csio;
5536 		struct scsi_mode_header_6 *mode_hdr;
5537 
5538 		csio = &done_ccb->csio;
5539 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5540 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5541 			struct scsi_control_page *page;
5542 			u_int8_t *offset;
5543 
5544 			offset = ((u_int8_t *)&mode_hdr[1])
5545 			    + mode_hdr->blk_desc_len;
5546 			page = (struct scsi_control_page *)offset;
5547 			path->device->queue_flags = page->queue_flags;
5548 		} else if (cam_periph_error(done_ccb, 0,
5549 					    SF_RETRY_UA|SF_NO_PRINT,
5550 					    &softc->saved_ccb) == ERESTART) {
5551 			return;
5552 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5553 			/* Don't wedge the queue */
5554 			xpt_release_devq(done_ccb->ccb_h.path,
5555 					 /*count*/1, /*run_queue*/TRUE);
5556 		}
5557 		xpt_release_ccb(done_ccb);
5558 		free(mode_hdr, M_TEMP);
5559 		softc->action = PROBE_SERIAL_NUM;
5560 		xpt_schedule(periph, priority);
5561 		return;
5562 	}
5563 	case PROBE_SERIAL_NUM:
5564 	{
5565 		struct ccb_scsiio *csio;
5566 		struct scsi_vpd_unit_serial_number *serial_buf;
5567 		u_int32_t  priority;
5568 		int changed;
5569 		int have_serialnum;
5570 
5571 		changed = 1;
5572 		have_serialnum = 0;
5573 		csio = &done_ccb->csio;
5574 		priority = done_ccb->ccb_h.pinfo.priority;
5575 		serial_buf =
5576 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5577 
5578 		/* Clean up from previous instance of this device */
5579 		if (path->device->serial_num != NULL) {
5580 			free(path->device->serial_num, M_DEVBUF);
5581 			path->device->serial_num = NULL;
5582 			path->device->serial_num_len = 0;
5583 		}
5584 
5585 		if (serial_buf == NULL) {
5586 			/*
5587 			 * Don't process the command as it was never sent
5588 			 */
5589 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5590 			&& (serial_buf->length > 0)) {
5591 
5592 			have_serialnum = 1;
5593 			path->device->serial_num =
5594 				(u_int8_t *)malloc((serial_buf->length + 1),
5595 						   M_DEVBUF, M_NOWAIT);
5596 			if (path->device->serial_num != NULL) {
5597 				bcopy(serial_buf->serial_num,
5598 				      path->device->serial_num,
5599 				      serial_buf->length);
5600 				path->device->serial_num_len =
5601 				    serial_buf->length;
5602 				path->device->serial_num[serial_buf->length]
5603 				    = '\0';
5604 			}
5605 		} else if (cam_periph_error(done_ccb, 0,
5606 					    SF_RETRY_UA|SF_NO_PRINT,
5607 					    &softc->saved_ccb) == ERESTART) {
5608 			return;
5609 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5610 			/* Don't wedge the queue */
5611 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5612 					 /*run_queue*/TRUE);
5613 		}
5614 
5615 		/*
5616 		 * Let's see if we have seen this device before.
5617 		 */
5618 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5619 			MD5_CTX context;
5620 			u_int8_t digest[16];
5621 
5622 			MD5Init(&context);
5623 
5624 			MD5Update(&context,
5625 				  (unsigned char *)&path->device->inq_data,
5626 				  sizeof(struct scsi_inquiry_data));
5627 
5628 			if (have_serialnum)
5629 				MD5Update(&context, serial_buf->serial_num,
5630 					  serial_buf->length);
5631 
5632 			MD5Final(digest, &context);
5633 			if (bcmp(softc->digest, digest, 16) == 0)
5634 				changed = 0;
5635 
5636 			/*
5637 			 * XXX Do we need to do a TUR in order to ensure
5638 			 *     that the device really hasn't changed???
5639 			 */
5640 			if ((changed != 0)
5641 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5642 				xpt_async(AC_LOST_DEVICE, path, NULL);
5643 		}
5644 		if (serial_buf != NULL)
5645 			free(serial_buf, M_TEMP);
5646 
5647 		if (changed != 0) {
5648 			/*
5649 			 * Now that we have all the necessary
5650 			 * information to safely perform transfer
5651 			 * negotiations... Controllers don't perform
5652 			 * any negotiation or tagged queuing until
5653 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5654 			 * received.  So, on a new device, just retreive
5655 			 * the user settings, and set them as the current
5656 			 * settings to set the device up.
5657 			 */
5658 			proberequestdefaultnegotiation(periph);
5659 			xpt_release_ccb(done_ccb);
5660 
5661 			/*
5662 			 * Perform a TUR to allow the controller to
5663 			 * perform any necessary transfer negotiation.
5664 			 */
5665 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5666 			xpt_schedule(periph, priority);
5667 			return;
5668 		}
5669 		xpt_release_ccb(done_ccb);
5670 		break;
5671 	}
5672 	case PROBE_TUR_FOR_NEGOTIATION:
5673 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5674 			/* Don't wedge the queue */
5675 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5676 					 /*run_queue*/TRUE);
5677 		}
5678 
5679 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5680 
5681 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5682 			/* Inform the XPT that a new device has been found */
5683 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5684 			xpt_action(done_ccb);
5685 
5686 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5687 		}
5688 		xpt_release_ccb(done_ccb);
5689 		break;
5690 	}
5691 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5692 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5693 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5694 	xpt_done(done_ccb);
5695 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5696 		cam_periph_invalidate(periph);
5697 		cam_periph_release(periph);
5698 	} else {
5699 		probeschedule(periph);
5700 	}
5701 }
5702 
5703 static void
5704 probecleanup(struct cam_periph *periph)
5705 {
5706 	free(periph->softc, M_TEMP);
5707 }
5708 
5709 static void
5710 xpt_find_quirk(struct cam_ed *device)
5711 {
5712 	caddr_t	match;
5713 
5714 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5715 			       (caddr_t)xpt_quirk_table,
5716 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5717 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5718 
5719 	if (match == NULL)
5720 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5721 
5722 	device->quirk = (struct xpt_quirk_entry *)match;
5723 }
5724 
5725 static void
5726 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5727 			  int async_update)
5728 {
5729 	struct	cam_sim *sim;
5730 	int	qfrozen;
5731 
5732 	sim = cts->ccb_h.path->bus->sim;
5733 	if (async_update == FALSE) {
5734 		struct	scsi_inquiry_data *inq_data;
5735 		struct	ccb_pathinq cpi;
5736 		struct	ccb_trans_settings cur_cts;
5737 
5738 		if (device == NULL) {
5739 			cts->ccb_h.status = CAM_PATH_INVALID;
5740 			xpt_done((union ccb *)cts);
5741 			return;
5742 		}
5743 
5744 		/*
5745 		 * Perform sanity checking against what the
5746 		 * controller and device can do.
5747 		 */
5748 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5749 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5750 		xpt_action((union ccb *)&cpi);
5751 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5752 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5753 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5754 		xpt_action((union ccb *)&cur_cts);
5755 		inq_data = &device->inq_data;
5756 
5757 		/* Fill in any gaps in what the user gave us */
5758 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5759 			cts->sync_period = cur_cts.sync_period;
5760 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5761 			cts->sync_offset = cur_cts.sync_offset;
5762 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5763 			cts->bus_width = cur_cts.bus_width;
5764 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5765 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5766 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5767 		}
5768 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5769 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5770 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5771 		}
5772 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5773 		  && (inq_data->flags & SID_Sync) == 0)
5774 		 || (cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
5775 			/* Force async */
5776 			cts->sync_period = 0;
5777 			cts->sync_offset = 0;
5778 		}
5779 
5780 		switch (cts->bus_width) {
5781 		case MSG_EXT_WDTR_BUS_32_BIT:
5782 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5783 			  || (inq_data->flags & SID_WBus32) != 0)
5784 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5785 				break;
5786 			/* Fall Through to 16-bit */
5787 		case MSG_EXT_WDTR_BUS_16_BIT:
5788 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5789 			  || (inq_data->flags & SID_WBus16) != 0)
5790 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5791 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5792 				break;
5793 			}
5794 			/* Fall Through to 8-bit */
5795 		default: /* New bus width?? */
5796 		case MSG_EXT_WDTR_BUS_8_BIT:
5797 			/* All targets can do this */
5798 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5799 			break;
5800 		}
5801 
5802 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5803 			/*
5804 			 * Can't tag queue without disconnection.
5805 			 */
5806 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5807 			cts->valid |= CCB_TRANS_TQ_VALID;
5808 		}
5809 
5810 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5811 		 || (inq_data->flags & SID_CmdQue) == 0
5812 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5813 		 || (device->quirk->mintags == 0)) {
5814 			/*
5815 			 * Can't tag on hardware that doesn't support,
5816 			 * doesn't have it enabled, or has broken tag support.
5817 			 */
5818 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5819 		}
5820 	}
5821 
5822 	qfrozen = FALSE;
5823 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0
5824 	 && (async_update == FALSE)) {
5825 		int device_tagenb;
5826 
5827 		/*
5828 		 * If we are transitioning from tags to no-tags or
5829 		 * vice-versa, we need to carefully freeze and restart
5830 		 * the queue so that we don't overlap tagged and non-tagged
5831 		 * commands.  We also temporarily stop tags if there is
5832 		 * a change in transfer negotiation settings to allow
5833 		 * "tag-less" negotiation.
5834 		 */
5835 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5836 		 || (device->inq_flags & SID_CmdQue) != 0)
5837 			device_tagenb = TRUE;
5838 		else
5839 			device_tagenb = FALSE;
5840 
5841 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5842 		  && device_tagenb == FALSE)
5843 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5844 		  && device_tagenb == TRUE)) {
5845 
5846 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5847 				/*
5848 				 * Delay change to use tags until after a
5849 				 * few commands have gone to this device so
5850 				 * the controller has time to perform transfer
5851 				 * negotiations without tagged messages getting
5852 				 * in the way.
5853 				 */
5854 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5855 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5856 			} else {
5857 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5858 				qfrozen = TRUE;
5859 		  		device->inq_flags &= ~SID_CmdQue;
5860 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5861 						    sim->max_dev_openings);
5862 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5863 				device->tag_delay_count = 0;
5864 			}
5865 		}
5866 	}
5867 
5868 	if (async_update == FALSE) {
5869 		/*
5870 		 * If we are currently performing tagged transactions to
5871 		 * this device and want to change its negotiation parameters,
5872 		 * go non-tagged for a bit to give the controller a chance to
5873 		 * negotiate unhampered by tag messages.
5874 		 */
5875 		if ((device->inq_flags & SID_CmdQue) != 0
5876 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5877 				   CCB_TRANS_SYNC_OFFSET_VALID|
5878 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5879 			xpt_toggle_tags(cts->ccb_h.path);
5880 
5881 		(*(sim->sim_action))(sim, (union ccb *)cts);
5882 	}
5883 
5884 	if (qfrozen) {
5885 		struct ccb_relsim crs;
5886 
5887 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5888 			      /*priority*/1);
5889 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5890 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5891 		crs.openings
5892 		    = crs.release_timeout
5893 		    = crs.qfrozen_cnt
5894 		    = 0;
5895 		xpt_action((union ccb *)&crs);
5896 	}
5897 }
5898 
5899 static void
5900 xpt_toggle_tags(struct cam_path *path)
5901 {
5902 	struct cam_ed *dev;
5903 
5904 	/*
5905 	 * Give controllers a chance to renegotiate
5906 	 * before starting tag operations.  We
5907 	 * "toggle" tagged queuing off then on
5908 	 * which causes the tag enable command delay
5909 	 * counter to come into effect.
5910 	 */
5911 	dev = path->device;
5912 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5913 	 || ((dev->inq_flags & SID_CmdQue) != 0
5914  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5915 		struct ccb_trans_settings cts;
5916 
5917 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5918 		cts.flags = 0;
5919 		cts.valid = CCB_TRANS_TQ_VALID;
5920 		xpt_set_transfer_settings(&cts, path->device,
5921 					  /*async_update*/TRUE);
5922 		cts.flags = CCB_TRANS_TAG_ENB;
5923 		xpt_set_transfer_settings(&cts, path->device,
5924 					  /*async_update*/TRUE);
5925 	}
5926 }
5927 
5928 static void
5929 xpt_start_tags(struct cam_path *path)
5930 {
5931 	struct ccb_relsim crs;
5932 	struct cam_ed *device;
5933 	struct cam_sim *sim;
5934 	int    newopenings;
5935 
5936 	device = path->device;
5937 	sim = path->bus->sim;
5938 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5939 	xpt_freeze_devq(path, /*count*/1);
5940 	device->inq_flags |= SID_CmdQue;
5941 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
5942 	xpt_dev_ccbq_resize(path, newopenings);
5943 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
5944 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5945 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5946 	crs.openings
5947 	    = crs.release_timeout
5948 	    = crs.qfrozen_cnt
5949 	    = 0;
5950 	xpt_action((union ccb *)&crs);
5951 }
5952 
5953 static int busses_to_config;
5954 static int busses_to_reset;
5955 
5956 static int
5957 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
5958 {
5959 	if (bus->path_id != CAM_XPT_PATH_ID) {
5960 		struct cam_path path;
5961 		struct ccb_pathinq cpi;
5962 		int can_negotiate;
5963 
5964 		busses_to_config++;
5965 		xpt_compile_path(&path, NULL, bus->path_id,
5966 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5967 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
5968 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5969 		xpt_action((union ccb *)&cpi);
5970 		can_negotiate = cpi.hba_inquiry;
5971 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5972 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
5973 		 && can_negotiate)
5974 			busses_to_reset++;
5975 		xpt_release_path(&path);
5976 	}
5977 
5978 	return(1);
5979 }
5980 
5981 static int
5982 xptconfigfunc(struct cam_eb *bus, void *arg)
5983 {
5984 	struct	cam_path *path;
5985 	union	ccb *work_ccb;
5986 
5987 	if (bus->path_id != CAM_XPT_PATH_ID) {
5988 		cam_status status;
5989 		int can_negotiate;
5990 
5991 		work_ccb = xpt_alloc_ccb();
5992 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
5993 					      CAM_TARGET_WILDCARD,
5994 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
5995 			printf("xptconfigfunc: xpt_create_path failed with "
5996 			       "status %#x for bus %d\n", status, bus->path_id);
5997 			printf("xptconfigfunc: halting bus configuration\n");
5998 			xpt_free_ccb(work_ccb);
5999 			busses_to_config--;
6000 			xpt_finishconfig(xpt_periph, NULL);
6001 			return(0);
6002 		}
6003 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6004 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6005 		xpt_action(work_ccb);
6006 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6007 			printf("xptconfigfunc: CPI failed on bus %d "
6008 			       "with status %d\n", bus->path_id,
6009 			       work_ccb->ccb_h.status);
6010 			xpt_finishconfig(xpt_periph, work_ccb);
6011 			return(1);
6012 		}
6013 
6014 		can_negotiate = work_ccb->cpi.hba_inquiry;
6015 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6016 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6017 		 && (can_negotiate != 0)) {
6018 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6019 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6020 			work_ccb->ccb_h.cbfcnp = NULL;
6021 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6022 				  ("Resetting Bus\n"));
6023 			xpt_action(work_ccb);
6024 			xpt_finishconfig(xpt_periph, work_ccb);
6025 		} else {
6026 			/* Act as though we performed a successful BUS RESET */
6027 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6028 			xpt_finishconfig(xpt_periph, work_ccb);
6029 		}
6030 	}
6031 
6032 	return(1);
6033 }
6034 
6035 static void
6036 xpt_config(void *arg)
6037 {
6038 	/* Now that interrupts are enabled, go find our devices */
6039 
6040 #ifdef CAMDEBUG
6041 	/* Setup debugging flags and path */
6042 #ifdef CAM_DEBUG_FLAGS
6043 	cam_dflags = CAM_DEBUG_FLAGS;
6044 #else /* !CAM_DEBUG_FLAGS */
6045 	cam_dflags = CAM_DEBUG_NONE;
6046 #endif /* CAM_DEBUG_FLAGS */
6047 #ifdef CAM_DEBUG_BUS
6048 	if (cam_dflags != CAM_DEBUG_NONE) {
6049 		if (xpt_create_path(&cam_dpath, xpt_periph,
6050 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6051 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6052 			printf("xpt_config: xpt_create_path() failed for debug"
6053 			       " target %d:%d:%d, debugging disabled\n",
6054 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6055 			cam_dflags = CAM_DEBUG_NONE;
6056 		}
6057 	} else
6058 		cam_dpath = NULL;
6059 #else /* !CAM_DEBUG_BUS */
6060 	cam_dpath = NULL;
6061 #endif /* CAM_DEBUG_BUS */
6062 #endif /* CAMDEBUG */
6063 
6064 	/*
6065 	 * Scan all installed busses.
6066 	 */
6067 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6068 
6069 	if (busses_to_config == 0) {
6070 		/* Call manually because we don't have any busses */
6071 		xpt_finishconfig(xpt_periph, NULL);
6072 	} else  {
6073 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6074 			printf("Waiting %d seconds for SCSI "
6075 			       "devices to settle\n", SCSI_DELAY/1000);
6076 		}
6077 		xpt_for_all_busses(xptconfigfunc, NULL);
6078 	}
6079 }
6080 
6081 /*
6082  * If the given device only has one peripheral attached to it, and if that
6083  * peripheral is the passthrough driver, announce it.  This insures that the
6084  * user sees some sort of announcement for every peripheral in their system.
6085  */
6086 static int
6087 xptpassannouncefunc(struct cam_ed *device, void *arg)
6088 {
6089 	struct cam_periph *periph;
6090 	int i;
6091 
6092 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6093 	     periph = SLIST_NEXT(periph, periph_links), i++);
6094 
6095 	periph = SLIST_FIRST(&device->periphs);
6096 	if ((i == 1)
6097 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6098 		xpt_announce_periph(periph, NULL);
6099 
6100 	return(1);
6101 }
6102 
6103 static void
6104 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6105 {
6106 	struct	periph_driver **p_drv;
6107 	int	i;
6108 
6109 	if (done_ccb != NULL) {
6110 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6111 			  ("xpt_finishconfig\n"));
6112 		switch(done_ccb->ccb_h.func_code) {
6113 		case XPT_RESET_BUS:
6114 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6115 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6116 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6117 				xpt_action(done_ccb);
6118 				return;
6119 			}
6120 			/* FALLTHROUGH */
6121 		case XPT_SCAN_BUS:
6122 		default:
6123 			xpt_free_path(done_ccb->ccb_h.path);
6124 			busses_to_config--;
6125 			break;
6126 		}
6127 	}
6128 
6129 	if (busses_to_config == 0) {
6130 		/* Register all the peripheral drivers */
6131 		/* XXX This will have to change when we have loadable modules */
6132 		p_drv = (struct periph_driver **)periphdriver_set.ls_items;
6133 		for (i = 0; p_drv[i] != NULL; i++) {
6134 			(*p_drv[i]->init)();
6135 		}
6136 
6137 		/*
6138 		 * Check for devices with no "standard" peripheral driver
6139 		 * attached.  For any devices like that, announce the
6140 		 * passthrough driver so the user will see something.
6141 		 */
6142 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6143 
6144 		/* Release our hook so that the boot can continue. */
6145 		config_intrhook_disestablish(xpt_config_hook);
6146 		free(xpt_config_hook, M_TEMP);
6147 		xpt_config_hook = NULL;
6148 	}
6149 	if (done_ccb != NULL)
6150 		xpt_free_ccb(done_ccb);
6151 }
6152 
6153 static void
6154 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6155 {
6156 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6157 
6158 	switch (work_ccb->ccb_h.func_code) {
6159 	/* Common cases first */
6160 	case XPT_PATH_INQ:		/* Path routing inquiry */
6161 	{
6162 		struct ccb_pathinq *cpi;
6163 
6164 		cpi = &work_ccb->cpi;
6165 		cpi->version_num = 1; /* XXX??? */
6166 		cpi->hba_inquiry = 0;
6167 		cpi->target_sprt = 0;
6168 		cpi->hba_misc = 0;
6169 		cpi->hba_eng_cnt = 0;
6170 		cpi->max_target = 0;
6171 		cpi->max_lun = 0;
6172 		cpi->initiator_id = 0;
6173 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6174 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6175 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6176 		cpi->unit_number = sim->unit_number;
6177 		cpi->bus_id = sim->bus_id;
6178 		cpi->base_transfer_speed = 0;
6179 		cpi->ccb_h.status = CAM_REQ_CMP;
6180 		xpt_done(work_ccb);
6181 		break;
6182 	}
6183 	default:
6184 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6185 		xpt_done(work_ccb);
6186 		break;
6187 	}
6188 }
6189 
6190 /*
6191  * The xpt as a "controller" has no interrupt sources, so polling
6192  * is a no-op.
6193  */
6194 static void
6195 xptpoll(struct cam_sim *sim)
6196 {
6197 }
6198 
6199 /*
6200  * Should only be called by the machine interrupt dispatch routines,
6201  * so put these prototypes here instead of in the header.
6202  */
6203 
6204 static void
6205 swi_camnet(void)
6206 {
6207 	camisr(&cam_netq);
6208 }
6209 
6210 static void
6211 swi_cambio(void)
6212 {
6213 	camisr(&cam_bioq);
6214 }
6215 
6216 static void
6217 camisr(cam_isrq_t *queue)
6218 {
6219 	int	s;
6220 	struct	ccb_hdr *ccb_h;
6221 
6222 	s = splcam();
6223 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6224 		int	runq;
6225 
6226 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6227 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6228 		splx(s);
6229 
6230 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6231 			  ("camisr"));
6232 
6233 		runq = FALSE;
6234 
6235 		if (ccb_h->flags & CAM_HIGH_POWER) {
6236 			struct highpowerlist	*hphead;
6237 			struct cam_ed		*device;
6238 			union ccb		*send_ccb;
6239 
6240 			hphead = &highpowerq;
6241 
6242 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6243 
6244 			/*
6245 			 * Increment the count since this command is done.
6246 			 */
6247 			num_highpower++;
6248 
6249 			/*
6250 			 * Any high powered commands queued up?
6251 			 */
6252 			if (send_ccb != NULL) {
6253 				device = send_ccb->ccb_h.path->device;
6254 
6255 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6256 
6257 				xpt_release_devq(send_ccb->ccb_h.path,
6258 						 /*count*/1, /*runqueue*/TRUE);
6259 			}
6260 		}
6261 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6262 			struct cam_ed *dev;
6263 
6264 			dev = ccb_h->path->device;
6265 
6266 			s = splcam();
6267 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6268 
6269 			ccb_h->path->bus->sim->devq->send_active--;
6270 			ccb_h->path->bus->sim->devq->send_openings++;
6271 			splx(s);
6272 
6273 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6274 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6275 			  && (dev->ccbq.dev_active == 0))) {
6276 
6277 				xpt_release_devq(ccb_h->path, /*count*/1,
6278 						 /*run_queue*/TRUE);
6279 			}
6280 
6281 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6282 			 && (--dev->tag_delay_count == 0))
6283 				xpt_start_tags(ccb_h->path);
6284 
6285 			if ((dev->ccbq.queue.entries > 0)
6286 			 && (dev->qfrozen_cnt == 0)
6287 			 && (device_is_send_queued(dev) == 0)) {
6288 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6289 							      dev);
6290 			}
6291 		}
6292 
6293 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6294 			xpt_release_simq(ccb_h->path->bus->sim,
6295 					 /*run_queue*/TRUE);
6296 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6297 			runq = FALSE;
6298 		}
6299 
6300 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6301 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6302 			xpt_release_devq(ccb_h->path, /*count*/1,
6303 					 /*run_queue*/TRUE);
6304 			ccb_h->status &= ~CAM_DEV_QFRZN;
6305 		} else if (runq) {
6306 			xpt_run_dev_sendq(ccb_h->path->bus);
6307 		}
6308 
6309 		/* Call the peripheral driver's callback */
6310 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
6311 
6312 		/* Raise IPL for while test */
6313 		s = splcam();
6314 	}
6315 	splx(s);
6316 }
6317