1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bio.h> 35 #include <sys/bus.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/time.h> 41 #include <sys/conf.h> 42 #include <sys/fcntl.h> 43 #include <sys/interrupt.h> 44 #include <sys/proc.h> 45 #include <sys/sbuf.h> 46 #include <sys/smp.h> 47 #include <sys/taskqueue.h> 48 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/sysctl.h> 52 #include <sys/kthread.h> 53 54 #include <cam/cam.h> 55 #include <cam/cam_ccb.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_queue.h> 58 #include <cam/cam_sim.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/cam_xpt_sim.h> 61 #include <cam/cam_xpt_periph.h> 62 #include <cam/cam_xpt_internal.h> 63 #include <cam/cam_debug.h> 64 #include <cam/cam_compat.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/scsi/scsi_message.h> 68 #include <cam/scsi/scsi_pass.h> 69 70 #include <machine/md_var.h> /* geometry translation */ 71 #include <machine/stdarg.h> /* for xpt_print below */ 72 73 #include "opt_cam.h" 74 75 /* 76 * This is the maximum number of high powered commands (e.g. start unit) 77 * that can be outstanding at a particular time. 78 */ 79 #ifndef CAM_MAX_HIGHPOWER 80 #define CAM_MAX_HIGHPOWER 4 81 #endif 82 83 /* Datastructures internal to the xpt layer */ 84 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 85 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 86 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 87 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 88 89 /* Object for defering XPT actions to a taskqueue */ 90 struct xpt_task { 91 struct task task; 92 void *data1; 93 uintptr_t data2; 94 }; 95 96 struct xpt_softc { 97 uint32_t xpt_generation; 98 99 /* number of high powered commands that can go through right now */ 100 struct mtx xpt_highpower_lock; 101 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* Registered busses */ 110 TAILQ_HEAD(,cam_eb) xpt_busses; 111 u_int bus_generation; 112 113 struct intr_config_hook *xpt_config_hook; 114 115 int boot_delay; 116 struct callout boot_callout; 117 118 struct mtx xpt_topo_lock; 119 struct mtx xpt_lock; 120 struct taskqueue *xpt_taskq; 121 }; 122 123 typedef enum { 124 DM_RET_COPY = 0x01, 125 DM_RET_FLAG_MASK = 0x0f, 126 DM_RET_NONE = 0x00, 127 DM_RET_STOP = 0x10, 128 DM_RET_DESCEND = 0x20, 129 DM_RET_ERROR = 0x30, 130 DM_RET_ACTION_MASK = 0xf0 131 } dev_match_ret; 132 133 typedef enum { 134 XPT_DEPTH_BUS, 135 XPT_DEPTH_TARGET, 136 XPT_DEPTH_DEVICE, 137 XPT_DEPTH_PERIPH 138 } xpt_traverse_depth; 139 140 struct xpt_traverse_config { 141 xpt_traverse_depth depth; 142 void *tr_func; 143 void *tr_arg; 144 }; 145 146 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 147 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 148 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 149 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 150 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 151 152 /* Transport layer configuration information */ 153 static struct xpt_softc xsoftc; 154 155 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 156 157 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 158 &xsoftc.boot_delay, 0, "Bus registration wait time"); 159 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 160 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 161 162 struct cam_doneq { 163 struct mtx_padalign cam_doneq_mtx; 164 STAILQ_HEAD(, ccb_hdr) cam_doneq; 165 int cam_doneq_sleep; 166 }; 167 168 static struct cam_doneq cam_doneqs[MAXCPU]; 169 static int cam_num_doneqs; 170 static struct proc *cam_proc; 171 172 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 173 &cam_num_doneqs, 0, "Number of completion queues/threads"); 174 175 struct cam_periph *xpt_periph; 176 177 static periph_init_t xpt_periph_init; 178 179 static struct periph_driver xpt_driver = 180 { 181 xpt_periph_init, "xpt", 182 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 183 CAM_PERIPH_DRV_EARLY 184 }; 185 186 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 187 188 static d_open_t xptopen; 189 static d_close_t xptclose; 190 static d_ioctl_t xptioctl; 191 static d_ioctl_t xptdoioctl; 192 193 static struct cdevsw xpt_cdevsw = { 194 .d_version = D_VERSION, 195 .d_flags = 0, 196 .d_open = xptopen, 197 .d_close = xptclose, 198 .d_ioctl = xptioctl, 199 .d_name = "xpt", 200 }; 201 202 /* Storage for debugging datastructures */ 203 struct cam_path *cam_dpath; 204 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 205 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 206 &cam_dflags, 0, "Enabled debug flags"); 207 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 208 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 209 &cam_debug_delay, 0, "Delay in us after each debug message"); 210 211 /* Our boot-time initialization hook */ 212 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 213 214 static moduledata_t cam_moduledata = { 215 "cam", 216 cam_module_event_handler, 217 NULL 218 }; 219 220 static int xpt_init(void *); 221 222 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 223 MODULE_VERSION(cam, 1); 224 225 226 static void xpt_async_bcast(struct async_list *async_head, 227 u_int32_t async_code, 228 struct cam_path *path, 229 void *async_arg); 230 static path_id_t xptnextfreepathid(void); 231 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 232 static union ccb *xpt_get_ccb(struct cam_periph *periph); 233 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 234 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 235 static void xpt_run_allocq_task(void *context, int pending); 236 static void xpt_run_devq(struct cam_devq *devq); 237 static timeout_t xpt_release_devq_timeout; 238 static void xpt_release_simq_timeout(void *arg) __unused; 239 static void xpt_acquire_bus(struct cam_eb *bus); 240 static void xpt_release_bus(struct cam_eb *bus); 241 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 242 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 243 int run_queue); 244 static struct cam_et* 245 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 246 static void xpt_acquire_target(struct cam_et *target); 247 static void xpt_release_target(struct cam_et *target); 248 static struct cam_eb* 249 xpt_find_bus(path_id_t path_id); 250 static struct cam_et* 251 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 252 static struct cam_ed* 253 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 254 static void xpt_config(void *arg); 255 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 256 u_int32_t new_priority); 257 static xpt_devicefunc_t xptpassannouncefunc; 258 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 259 static void xptpoll(struct cam_sim *sim); 260 static void camisr_runqueue(void); 261 static void xpt_done_process(struct ccb_hdr *ccb_h); 262 static void xpt_done_td(void *); 263 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 264 u_int num_patterns, struct cam_eb *bus); 265 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 266 u_int num_patterns, 267 struct cam_ed *device); 268 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 269 u_int num_patterns, 270 struct cam_periph *periph); 271 static xpt_busfunc_t xptedtbusfunc; 272 static xpt_targetfunc_t xptedttargetfunc; 273 static xpt_devicefunc_t xptedtdevicefunc; 274 static xpt_periphfunc_t xptedtperiphfunc; 275 static xpt_pdrvfunc_t xptplistpdrvfunc; 276 static xpt_periphfunc_t xptplistperiphfunc; 277 static int xptedtmatch(struct ccb_dev_match *cdm); 278 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 279 static int xptbustraverse(struct cam_eb *start_bus, 280 xpt_busfunc_t *tr_func, void *arg); 281 static int xpttargettraverse(struct cam_eb *bus, 282 struct cam_et *start_target, 283 xpt_targetfunc_t *tr_func, void *arg); 284 static int xptdevicetraverse(struct cam_et *target, 285 struct cam_ed *start_device, 286 xpt_devicefunc_t *tr_func, void *arg); 287 static int xptperiphtraverse(struct cam_ed *device, 288 struct cam_periph *start_periph, 289 xpt_periphfunc_t *tr_func, void *arg); 290 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 291 xpt_pdrvfunc_t *tr_func, void *arg); 292 static int xptpdperiphtraverse(struct periph_driver **pdrv, 293 struct cam_periph *start_periph, 294 xpt_periphfunc_t *tr_func, 295 void *arg); 296 static xpt_busfunc_t xptdefbusfunc; 297 static xpt_targetfunc_t xptdeftargetfunc; 298 static xpt_devicefunc_t xptdefdevicefunc; 299 static xpt_periphfunc_t xptdefperiphfunc; 300 static void xpt_finishconfig_task(void *context, int pending); 301 static void xpt_dev_async_default(u_int32_t async_code, 302 struct cam_eb *bus, 303 struct cam_et *target, 304 struct cam_ed *device, 305 void *async_arg); 306 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 307 struct cam_et *target, 308 lun_id_t lun_id); 309 static xpt_devicefunc_t xptsetasyncfunc; 310 static xpt_busfunc_t xptsetasyncbusfunc; 311 static cam_status xptregister(struct cam_periph *periph, 312 void *arg); 313 static const char * xpt_action_name(uint32_t action); 314 static __inline int device_is_queued(struct cam_ed *device); 315 316 static __inline int 317 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 318 { 319 int retval; 320 321 mtx_assert(&devq->send_mtx, MA_OWNED); 322 if ((dev->ccbq.queue.entries > 0) && 323 (dev->ccbq.dev_openings > 0) && 324 (dev->ccbq.queue.qfrozen_cnt == 0)) { 325 /* 326 * The priority of a device waiting for controller 327 * resources is that of the highest priority CCB 328 * enqueued. 329 */ 330 retval = 331 xpt_schedule_dev(&devq->send_queue, 332 &dev->devq_entry, 333 CAMQ_GET_PRIO(&dev->ccbq.queue)); 334 } else { 335 retval = 0; 336 } 337 return (retval); 338 } 339 340 static __inline int 341 device_is_queued(struct cam_ed *device) 342 { 343 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 344 } 345 346 static void 347 xpt_periph_init() 348 { 349 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 350 } 351 352 static int 353 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 354 { 355 356 /* 357 * Only allow read-write access. 358 */ 359 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 360 return(EPERM); 361 362 /* 363 * We don't allow nonblocking access. 364 */ 365 if ((flags & O_NONBLOCK) != 0) { 366 printf("%s: can't do nonblocking access\n", devtoname(dev)); 367 return(ENODEV); 368 } 369 370 return(0); 371 } 372 373 static int 374 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 375 { 376 377 return(0); 378 } 379 380 /* 381 * Don't automatically grab the xpt softc lock here even though this is going 382 * through the xpt device. The xpt device is really just a back door for 383 * accessing other devices and SIMs, so the right thing to do is to grab 384 * the appropriate SIM lock once the bus/SIM is located. 385 */ 386 static int 387 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 388 { 389 int error; 390 391 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 392 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 393 } 394 return (error); 395 } 396 397 static int 398 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 399 { 400 int error; 401 402 error = 0; 403 404 switch(cmd) { 405 /* 406 * For the transport layer CAMIOCOMMAND ioctl, we really only want 407 * to accept CCB types that don't quite make sense to send through a 408 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 409 * in the CAM spec. 410 */ 411 case CAMIOCOMMAND: { 412 union ccb *ccb; 413 union ccb *inccb; 414 struct cam_eb *bus; 415 416 inccb = (union ccb *)addr; 417 418 bus = xpt_find_bus(inccb->ccb_h.path_id); 419 if (bus == NULL) 420 return (EINVAL); 421 422 switch (inccb->ccb_h.func_code) { 423 case XPT_SCAN_BUS: 424 case XPT_RESET_BUS: 425 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 426 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 427 xpt_release_bus(bus); 428 return (EINVAL); 429 } 430 break; 431 case XPT_SCAN_TGT: 432 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 433 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 434 xpt_release_bus(bus); 435 return (EINVAL); 436 } 437 break; 438 default: 439 break; 440 } 441 442 switch(inccb->ccb_h.func_code) { 443 case XPT_SCAN_BUS: 444 case XPT_RESET_BUS: 445 case XPT_PATH_INQ: 446 case XPT_ENG_INQ: 447 case XPT_SCAN_LUN: 448 case XPT_SCAN_TGT: 449 450 ccb = xpt_alloc_ccb(); 451 452 /* 453 * Create a path using the bus, target, and lun the 454 * user passed in. 455 */ 456 if (xpt_create_path(&ccb->ccb_h.path, NULL, 457 inccb->ccb_h.path_id, 458 inccb->ccb_h.target_id, 459 inccb->ccb_h.target_lun) != 460 CAM_REQ_CMP){ 461 error = EINVAL; 462 xpt_free_ccb(ccb); 463 break; 464 } 465 /* Ensure all of our fields are correct */ 466 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 467 inccb->ccb_h.pinfo.priority); 468 xpt_merge_ccb(ccb, inccb); 469 xpt_path_lock(ccb->ccb_h.path); 470 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 471 xpt_path_unlock(ccb->ccb_h.path); 472 bcopy(ccb, inccb, sizeof(union ccb)); 473 xpt_free_path(ccb->ccb_h.path); 474 xpt_free_ccb(ccb); 475 break; 476 477 case XPT_DEBUG: { 478 union ccb ccb; 479 480 /* 481 * This is an immediate CCB, so it's okay to 482 * allocate it on the stack. 483 */ 484 485 /* 486 * Create a path using the bus, target, and lun the 487 * user passed in. 488 */ 489 if (xpt_create_path(&ccb.ccb_h.path, NULL, 490 inccb->ccb_h.path_id, 491 inccb->ccb_h.target_id, 492 inccb->ccb_h.target_lun) != 493 CAM_REQ_CMP){ 494 error = EINVAL; 495 break; 496 } 497 /* Ensure all of our fields are correct */ 498 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 499 inccb->ccb_h.pinfo.priority); 500 xpt_merge_ccb(&ccb, inccb); 501 xpt_action(&ccb); 502 bcopy(&ccb, inccb, sizeof(union ccb)); 503 xpt_free_path(ccb.ccb_h.path); 504 break; 505 506 } 507 case XPT_DEV_MATCH: { 508 struct cam_periph_map_info mapinfo; 509 struct cam_path *old_path; 510 511 /* 512 * We can't deal with physical addresses for this 513 * type of transaction. 514 */ 515 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 516 CAM_DATA_VADDR) { 517 error = EINVAL; 518 break; 519 } 520 521 /* 522 * Save this in case the caller had it set to 523 * something in particular. 524 */ 525 old_path = inccb->ccb_h.path; 526 527 /* 528 * We really don't need a path for the matching 529 * code. The path is needed because of the 530 * debugging statements in xpt_action(). They 531 * assume that the CCB has a valid path. 532 */ 533 inccb->ccb_h.path = xpt_periph->path; 534 535 bzero(&mapinfo, sizeof(mapinfo)); 536 537 /* 538 * Map the pattern and match buffers into kernel 539 * virtual address space. 540 */ 541 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 542 543 if (error) { 544 inccb->ccb_h.path = old_path; 545 break; 546 } 547 548 /* 549 * This is an immediate CCB, we can send it on directly. 550 */ 551 xpt_action(inccb); 552 553 /* 554 * Map the buffers back into user space. 555 */ 556 cam_periph_unmapmem(inccb, &mapinfo); 557 558 inccb->ccb_h.path = old_path; 559 560 error = 0; 561 break; 562 } 563 default: 564 error = ENOTSUP; 565 break; 566 } 567 xpt_release_bus(bus); 568 break; 569 } 570 /* 571 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 572 * with the periphal driver name and unit name filled in. The other 573 * fields don't really matter as input. The passthrough driver name 574 * ("pass"), and unit number are passed back in the ccb. The current 575 * device generation number, and the index into the device peripheral 576 * driver list, and the status are also passed back. Note that 577 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 578 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 579 * (or rather should be) impossible for the device peripheral driver 580 * list to change since we look at the whole thing in one pass, and 581 * we do it with lock protection. 582 * 583 */ 584 case CAMGETPASSTHRU: { 585 union ccb *ccb; 586 struct cam_periph *periph; 587 struct periph_driver **p_drv; 588 char *name; 589 u_int unit; 590 int base_periph_found; 591 592 ccb = (union ccb *)addr; 593 unit = ccb->cgdl.unit_number; 594 name = ccb->cgdl.periph_name; 595 base_periph_found = 0; 596 597 /* 598 * Sanity check -- make sure we don't get a null peripheral 599 * driver name. 600 */ 601 if (*ccb->cgdl.periph_name == '\0') { 602 error = EINVAL; 603 break; 604 } 605 606 /* Keep the list from changing while we traverse it */ 607 xpt_lock_buses(); 608 609 /* first find our driver in the list of drivers */ 610 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 611 if (strcmp((*p_drv)->driver_name, name) == 0) 612 break; 613 614 if (*p_drv == NULL) { 615 xpt_unlock_buses(); 616 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 617 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 618 *ccb->cgdl.periph_name = '\0'; 619 ccb->cgdl.unit_number = 0; 620 error = ENOENT; 621 break; 622 } 623 624 /* 625 * Run through every peripheral instance of this driver 626 * and check to see whether it matches the unit passed 627 * in by the user. If it does, get out of the loops and 628 * find the passthrough driver associated with that 629 * peripheral driver. 630 */ 631 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 632 periph = TAILQ_NEXT(periph, unit_links)) { 633 634 if (periph->unit_number == unit) 635 break; 636 } 637 /* 638 * If we found the peripheral driver that the user passed 639 * in, go through all of the peripheral drivers for that 640 * particular device and look for a passthrough driver. 641 */ 642 if (periph != NULL) { 643 struct cam_ed *device; 644 int i; 645 646 base_periph_found = 1; 647 device = periph->path->device; 648 for (i = 0, periph = SLIST_FIRST(&device->periphs); 649 periph != NULL; 650 periph = SLIST_NEXT(periph, periph_links), i++) { 651 /* 652 * Check to see whether we have a 653 * passthrough device or not. 654 */ 655 if (strcmp(periph->periph_name, "pass") == 0) { 656 /* 657 * Fill in the getdevlist fields. 658 */ 659 strcpy(ccb->cgdl.periph_name, 660 periph->periph_name); 661 ccb->cgdl.unit_number = 662 periph->unit_number; 663 if (SLIST_NEXT(periph, periph_links)) 664 ccb->cgdl.status = 665 CAM_GDEVLIST_MORE_DEVS; 666 else 667 ccb->cgdl.status = 668 CAM_GDEVLIST_LAST_DEVICE; 669 ccb->cgdl.generation = 670 device->generation; 671 ccb->cgdl.index = i; 672 /* 673 * Fill in some CCB header fields 674 * that the user may want. 675 */ 676 ccb->ccb_h.path_id = 677 periph->path->bus->path_id; 678 ccb->ccb_h.target_id = 679 periph->path->target->target_id; 680 ccb->ccb_h.target_lun = 681 periph->path->device->lun_id; 682 ccb->ccb_h.status = CAM_REQ_CMP; 683 break; 684 } 685 } 686 } 687 688 /* 689 * If the periph is null here, one of two things has 690 * happened. The first possibility is that we couldn't 691 * find the unit number of the particular peripheral driver 692 * that the user is asking about. e.g. the user asks for 693 * the passthrough driver for "da11". We find the list of 694 * "da" peripherals all right, but there is no unit 11. 695 * The other possibility is that we went through the list 696 * of peripheral drivers attached to the device structure, 697 * but didn't find one with the name "pass". Either way, 698 * we return ENOENT, since we couldn't find something. 699 */ 700 if (periph == NULL) { 701 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 702 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 703 *ccb->cgdl.periph_name = '\0'; 704 ccb->cgdl.unit_number = 0; 705 error = ENOENT; 706 /* 707 * It is unfortunate that this is even necessary, 708 * but there are many, many clueless users out there. 709 * If this is true, the user is looking for the 710 * passthrough driver, but doesn't have one in his 711 * kernel. 712 */ 713 if (base_periph_found == 1) { 714 printf("xptioctl: pass driver is not in the " 715 "kernel\n"); 716 printf("xptioctl: put \"device pass\" in " 717 "your kernel config file\n"); 718 } 719 } 720 xpt_unlock_buses(); 721 break; 722 } 723 default: 724 error = ENOTTY; 725 break; 726 } 727 728 return(error); 729 } 730 731 static int 732 cam_module_event_handler(module_t mod, int what, void *arg) 733 { 734 int error; 735 736 switch (what) { 737 case MOD_LOAD: 738 if ((error = xpt_init(NULL)) != 0) 739 return (error); 740 break; 741 case MOD_UNLOAD: 742 return EBUSY; 743 default: 744 return EOPNOTSUPP; 745 } 746 747 return 0; 748 } 749 750 static struct xpt_proto * 751 xpt_proto_find(cam_proto proto) 752 { 753 struct xpt_proto **pp; 754 755 SET_FOREACH(pp, cam_xpt_proto_set) { 756 if ((*pp)->proto == proto) 757 return *pp; 758 } 759 760 return NULL; 761 } 762 763 static void 764 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 765 { 766 767 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 768 xpt_free_path(done_ccb->ccb_h.path); 769 xpt_free_ccb(done_ccb); 770 } else { 771 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 772 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 773 } 774 xpt_release_boot(); 775 } 776 777 /* thread to handle bus rescans */ 778 static void 779 xpt_scanner_thread(void *dummy) 780 { 781 union ccb *ccb; 782 struct cam_path path; 783 784 xpt_lock_buses(); 785 for (;;) { 786 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 787 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 788 "-", 0); 789 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 790 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 791 xpt_unlock_buses(); 792 793 /* 794 * Since lock can be dropped inside and path freed 795 * by completion callback even before return here, 796 * take our own path copy for reference. 797 */ 798 xpt_copy_path(&path, ccb->ccb_h.path); 799 xpt_path_lock(&path); 800 xpt_action(ccb); 801 xpt_path_unlock(&path); 802 xpt_release_path(&path); 803 804 xpt_lock_buses(); 805 } 806 } 807 } 808 809 void 810 xpt_rescan(union ccb *ccb) 811 { 812 struct ccb_hdr *hdr; 813 814 /* Prepare request */ 815 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 816 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 817 ccb->ccb_h.func_code = XPT_SCAN_BUS; 818 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 819 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 820 ccb->ccb_h.func_code = XPT_SCAN_TGT; 821 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 822 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 823 ccb->ccb_h.func_code = XPT_SCAN_LUN; 824 else { 825 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 826 xpt_free_path(ccb->ccb_h.path); 827 xpt_free_ccb(ccb); 828 return; 829 } 830 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 831 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 832 xpt_action_name(ccb->ccb_h.func_code))); 833 834 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 835 ccb->ccb_h.cbfcnp = xpt_rescan_done; 836 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 837 /* Don't make duplicate entries for the same paths. */ 838 xpt_lock_buses(); 839 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 840 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 841 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 842 wakeup(&xsoftc.ccb_scanq); 843 xpt_unlock_buses(); 844 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 845 xpt_free_path(ccb->ccb_h.path); 846 xpt_free_ccb(ccb); 847 return; 848 } 849 } 850 } 851 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 852 xsoftc.buses_to_config++; 853 wakeup(&xsoftc.ccb_scanq); 854 xpt_unlock_buses(); 855 } 856 857 /* Functions accessed by the peripheral drivers */ 858 static int 859 xpt_init(void *dummy) 860 { 861 struct cam_sim *xpt_sim; 862 struct cam_path *path; 863 struct cam_devq *devq; 864 cam_status status; 865 int error, i; 866 867 TAILQ_INIT(&xsoftc.xpt_busses); 868 TAILQ_INIT(&xsoftc.ccb_scanq); 869 STAILQ_INIT(&xsoftc.highpowerq); 870 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 871 872 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 873 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 874 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 875 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 876 877 #ifdef CAM_BOOT_DELAY 878 /* 879 * Override this value at compile time to assist our users 880 * who don't use loader to boot a kernel. 881 */ 882 xsoftc.boot_delay = CAM_BOOT_DELAY; 883 #endif 884 /* 885 * The xpt layer is, itself, the equivalent of a SIM. 886 * Allow 16 ccbs in the ccb pool for it. This should 887 * give decent parallelism when we probe busses and 888 * perform other XPT functions. 889 */ 890 devq = cam_simq_alloc(16); 891 xpt_sim = cam_sim_alloc(xptaction, 892 xptpoll, 893 "xpt", 894 /*softc*/NULL, 895 /*unit*/0, 896 /*mtx*/&xsoftc.xpt_lock, 897 /*max_dev_transactions*/0, 898 /*max_tagged_dev_transactions*/0, 899 devq); 900 if (xpt_sim == NULL) 901 return (ENOMEM); 902 903 mtx_lock(&xsoftc.xpt_lock); 904 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 905 mtx_unlock(&xsoftc.xpt_lock); 906 printf("xpt_init: xpt_bus_register failed with status %#x," 907 " failing attach\n", status); 908 return (EINVAL); 909 } 910 mtx_unlock(&xsoftc.xpt_lock); 911 912 /* 913 * Looking at the XPT from the SIM layer, the XPT is 914 * the equivalent of a peripheral driver. Allocate 915 * a peripheral driver entry for us. 916 */ 917 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 918 CAM_TARGET_WILDCARD, 919 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 920 printf("xpt_init: xpt_create_path failed with status %#x," 921 " failing attach\n", status); 922 return (EINVAL); 923 } 924 xpt_path_lock(path); 925 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 926 path, NULL, 0, xpt_sim); 927 xpt_path_unlock(path); 928 xpt_free_path(path); 929 930 if (cam_num_doneqs < 1) 931 cam_num_doneqs = 1 + mp_ncpus / 6; 932 else if (cam_num_doneqs > MAXCPU) 933 cam_num_doneqs = MAXCPU; 934 for (i = 0; i < cam_num_doneqs; i++) { 935 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 936 MTX_DEF); 937 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 938 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 939 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 940 if (error != 0) { 941 cam_num_doneqs = i; 942 break; 943 } 944 } 945 if (cam_num_doneqs < 1) { 946 printf("xpt_init: Cannot init completion queues " 947 "- failing attach\n"); 948 return (ENOMEM); 949 } 950 /* 951 * Register a callback for when interrupts are enabled. 952 */ 953 xsoftc.xpt_config_hook = 954 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 955 M_CAMXPT, M_NOWAIT | M_ZERO); 956 if (xsoftc.xpt_config_hook == NULL) { 957 printf("xpt_init: Cannot malloc config hook " 958 "- failing attach\n"); 959 return (ENOMEM); 960 } 961 xsoftc.xpt_config_hook->ich_func = xpt_config; 962 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 963 free (xsoftc.xpt_config_hook, M_CAMXPT); 964 printf("xpt_init: config_intrhook_establish failed " 965 "- failing attach\n"); 966 } 967 968 return (0); 969 } 970 971 static cam_status 972 xptregister(struct cam_periph *periph, void *arg) 973 { 974 struct cam_sim *xpt_sim; 975 976 if (periph == NULL) { 977 printf("xptregister: periph was NULL!!\n"); 978 return(CAM_REQ_CMP_ERR); 979 } 980 981 xpt_sim = (struct cam_sim *)arg; 982 xpt_sim->softc = periph; 983 xpt_periph = periph; 984 periph->softc = NULL; 985 986 return(CAM_REQ_CMP); 987 } 988 989 int32_t 990 xpt_add_periph(struct cam_periph *periph) 991 { 992 struct cam_ed *device; 993 int32_t status; 994 995 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 996 device = periph->path->device; 997 status = CAM_REQ_CMP; 998 if (device != NULL) { 999 mtx_lock(&device->target->bus->eb_mtx); 1000 device->generation++; 1001 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1002 mtx_unlock(&device->target->bus->eb_mtx); 1003 atomic_add_32(&xsoftc.xpt_generation, 1); 1004 } 1005 1006 return (status); 1007 } 1008 1009 void 1010 xpt_remove_periph(struct cam_periph *periph) 1011 { 1012 struct cam_ed *device; 1013 1014 device = periph->path->device; 1015 if (device != NULL) { 1016 mtx_lock(&device->target->bus->eb_mtx); 1017 device->generation++; 1018 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1019 mtx_unlock(&device->target->bus->eb_mtx); 1020 atomic_add_32(&xsoftc.xpt_generation, 1); 1021 } 1022 } 1023 1024 1025 void 1026 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1027 { 1028 struct cam_path *path = periph->path; 1029 struct xpt_proto *proto; 1030 1031 cam_periph_assert(periph, MA_OWNED); 1032 periph->flags |= CAM_PERIPH_ANNOUNCED; 1033 1034 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1035 periph->periph_name, periph->unit_number, 1036 path->bus->sim->sim_name, 1037 path->bus->sim->unit_number, 1038 path->bus->sim->bus_id, 1039 path->bus->path_id, 1040 path->target->target_id, 1041 (uintmax_t)path->device->lun_id); 1042 printf("%s%d: ", periph->periph_name, periph->unit_number); 1043 proto = xpt_proto_find(path->device->protocol); 1044 if (proto) 1045 proto->ops->announce(path->device); 1046 else 1047 printf("%s%d: Unknown protocol device %d\n", 1048 periph->periph_name, periph->unit_number, 1049 path->device->protocol); 1050 if (path->device->serial_num_len > 0) { 1051 /* Don't wrap the screen - print only the first 60 chars */ 1052 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1053 periph->unit_number, path->device->serial_num); 1054 } 1055 /* Announce transport details. */ 1056 path->bus->xport->ops->announce(periph); 1057 /* Announce command queueing. */ 1058 if (path->device->inq_flags & SID_CmdQue 1059 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1060 printf("%s%d: Command Queueing enabled\n", 1061 periph->periph_name, periph->unit_number); 1062 } 1063 /* Announce caller's details if they've passed in. */ 1064 if (announce_string != NULL) 1065 printf("%s%d: %s\n", periph->periph_name, 1066 periph->unit_number, announce_string); 1067 } 1068 1069 void 1070 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1071 { 1072 if (quirks != 0) { 1073 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1074 periph->unit_number, quirks, bit_string); 1075 } 1076 } 1077 1078 void 1079 xpt_denounce_periph(struct cam_periph *periph) 1080 { 1081 struct cam_path *path = periph->path; 1082 struct xpt_proto *proto; 1083 1084 cam_periph_assert(periph, MA_OWNED); 1085 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1086 periph->periph_name, periph->unit_number, 1087 path->bus->sim->sim_name, 1088 path->bus->sim->unit_number, 1089 path->bus->sim->bus_id, 1090 path->bus->path_id, 1091 path->target->target_id, 1092 (uintmax_t)path->device->lun_id); 1093 printf("%s%d: ", periph->periph_name, periph->unit_number); 1094 proto = xpt_proto_find(path->device->protocol); 1095 if (proto) 1096 proto->ops->denounce(path->device); 1097 else 1098 printf("%s%d: Unknown protocol device %d\n", 1099 periph->periph_name, periph->unit_number, 1100 path->device->protocol); 1101 if (path->device->serial_num_len > 0) 1102 printf(" s/n %.60s", path->device->serial_num); 1103 printf(" detached\n"); 1104 } 1105 1106 1107 int 1108 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1109 { 1110 int ret = -1, l; 1111 struct ccb_dev_advinfo cdai; 1112 struct scsi_vpd_id_descriptor *idd; 1113 1114 xpt_path_assert(path, MA_OWNED); 1115 1116 memset(&cdai, 0, sizeof(cdai)); 1117 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1118 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1119 cdai.bufsiz = len; 1120 1121 if (!strcmp(attr, "GEOM::ident")) 1122 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1123 else if (!strcmp(attr, "GEOM::physpath")) 1124 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1125 else if (strcmp(attr, "GEOM::lunid") == 0 || 1126 strcmp(attr, "GEOM::lunname") == 0) { 1127 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1128 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1129 } else 1130 goto out; 1131 1132 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1133 if (cdai.buf == NULL) { 1134 ret = ENOMEM; 1135 goto out; 1136 } 1137 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1138 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1139 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1140 if (cdai.provsiz == 0) 1141 goto out; 1142 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1143 if (strcmp(attr, "GEOM::lunid") == 0) { 1144 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1145 cdai.provsiz, scsi_devid_is_lun_naa); 1146 if (idd == NULL) 1147 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1148 cdai.provsiz, scsi_devid_is_lun_eui64); 1149 } else 1150 idd = NULL; 1151 if (idd == NULL) 1152 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1153 cdai.provsiz, scsi_devid_is_lun_t10); 1154 if (idd == NULL) 1155 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1156 cdai.provsiz, scsi_devid_is_lun_name); 1157 if (idd == NULL) 1158 goto out; 1159 ret = 0; 1160 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1161 if (idd->length < len) { 1162 for (l = 0; l < idd->length; l++) 1163 buf[l] = idd->identifier[l] ? 1164 idd->identifier[l] : ' '; 1165 buf[l] = 0; 1166 } else 1167 ret = EFAULT; 1168 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1169 l = strnlen(idd->identifier, idd->length); 1170 if (l < len) { 1171 bcopy(idd->identifier, buf, l); 1172 buf[l] = 0; 1173 } else 1174 ret = EFAULT; 1175 } else { 1176 if (idd->length * 2 < len) { 1177 for (l = 0; l < idd->length; l++) 1178 sprintf(buf + l * 2, "%02x", 1179 idd->identifier[l]); 1180 } else 1181 ret = EFAULT; 1182 } 1183 } else { 1184 ret = 0; 1185 if (strlcpy(buf, cdai.buf, len) >= len) 1186 ret = EFAULT; 1187 } 1188 1189 out: 1190 if (cdai.buf != NULL) 1191 free(cdai.buf, M_CAMXPT); 1192 return ret; 1193 } 1194 1195 static dev_match_ret 1196 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1197 struct cam_eb *bus) 1198 { 1199 dev_match_ret retval; 1200 u_int i; 1201 1202 retval = DM_RET_NONE; 1203 1204 /* 1205 * If we aren't given something to match against, that's an error. 1206 */ 1207 if (bus == NULL) 1208 return(DM_RET_ERROR); 1209 1210 /* 1211 * If there are no match entries, then this bus matches no 1212 * matter what. 1213 */ 1214 if ((patterns == NULL) || (num_patterns == 0)) 1215 return(DM_RET_DESCEND | DM_RET_COPY); 1216 1217 for (i = 0; i < num_patterns; i++) { 1218 struct bus_match_pattern *cur_pattern; 1219 1220 /* 1221 * If the pattern in question isn't for a bus node, we 1222 * aren't interested. However, we do indicate to the 1223 * calling routine that we should continue descending the 1224 * tree, since the user wants to match against lower-level 1225 * EDT elements. 1226 */ 1227 if (patterns[i].type != DEV_MATCH_BUS) { 1228 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1229 retval |= DM_RET_DESCEND; 1230 continue; 1231 } 1232 1233 cur_pattern = &patterns[i].pattern.bus_pattern; 1234 1235 /* 1236 * If they want to match any bus node, we give them any 1237 * device node. 1238 */ 1239 if (cur_pattern->flags == BUS_MATCH_ANY) { 1240 /* set the copy flag */ 1241 retval |= DM_RET_COPY; 1242 1243 /* 1244 * If we've already decided on an action, go ahead 1245 * and return. 1246 */ 1247 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1248 return(retval); 1249 } 1250 1251 /* 1252 * Not sure why someone would do this... 1253 */ 1254 if (cur_pattern->flags == BUS_MATCH_NONE) 1255 continue; 1256 1257 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1258 && (cur_pattern->path_id != bus->path_id)) 1259 continue; 1260 1261 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1262 && (cur_pattern->bus_id != bus->sim->bus_id)) 1263 continue; 1264 1265 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1266 && (cur_pattern->unit_number != bus->sim->unit_number)) 1267 continue; 1268 1269 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1270 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1271 DEV_IDLEN) != 0)) 1272 continue; 1273 1274 /* 1275 * If we get to this point, the user definitely wants 1276 * information on this bus. So tell the caller to copy the 1277 * data out. 1278 */ 1279 retval |= DM_RET_COPY; 1280 1281 /* 1282 * If the return action has been set to descend, then we 1283 * know that we've already seen a non-bus matching 1284 * expression, therefore we need to further descend the tree. 1285 * This won't change by continuing around the loop, so we 1286 * go ahead and return. If we haven't seen a non-bus 1287 * matching expression, we keep going around the loop until 1288 * we exhaust the matching expressions. We'll set the stop 1289 * flag once we fall out of the loop. 1290 */ 1291 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1292 return(retval); 1293 } 1294 1295 /* 1296 * If the return action hasn't been set to descend yet, that means 1297 * we haven't seen anything other than bus matching patterns. So 1298 * tell the caller to stop descending the tree -- the user doesn't 1299 * want to match against lower level tree elements. 1300 */ 1301 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1302 retval |= DM_RET_STOP; 1303 1304 return(retval); 1305 } 1306 1307 static dev_match_ret 1308 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1309 struct cam_ed *device) 1310 { 1311 dev_match_ret retval; 1312 u_int i; 1313 1314 retval = DM_RET_NONE; 1315 1316 /* 1317 * If we aren't given something to match against, that's an error. 1318 */ 1319 if (device == NULL) 1320 return(DM_RET_ERROR); 1321 1322 /* 1323 * If there are no match entries, then this device matches no 1324 * matter what. 1325 */ 1326 if ((patterns == NULL) || (num_patterns == 0)) 1327 return(DM_RET_DESCEND | DM_RET_COPY); 1328 1329 for (i = 0; i < num_patterns; i++) { 1330 struct device_match_pattern *cur_pattern; 1331 struct scsi_vpd_device_id *device_id_page; 1332 1333 /* 1334 * If the pattern in question isn't for a device node, we 1335 * aren't interested. 1336 */ 1337 if (patterns[i].type != DEV_MATCH_DEVICE) { 1338 if ((patterns[i].type == DEV_MATCH_PERIPH) 1339 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1340 retval |= DM_RET_DESCEND; 1341 continue; 1342 } 1343 1344 cur_pattern = &patterns[i].pattern.device_pattern; 1345 1346 /* Error out if mutually exclusive options are specified. */ 1347 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1348 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1349 return(DM_RET_ERROR); 1350 1351 /* 1352 * If they want to match any device node, we give them any 1353 * device node. 1354 */ 1355 if (cur_pattern->flags == DEV_MATCH_ANY) 1356 goto copy_dev_node; 1357 1358 /* 1359 * Not sure why someone would do this... 1360 */ 1361 if (cur_pattern->flags == DEV_MATCH_NONE) 1362 continue; 1363 1364 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1365 && (cur_pattern->path_id != device->target->bus->path_id)) 1366 continue; 1367 1368 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1369 && (cur_pattern->target_id != device->target->target_id)) 1370 continue; 1371 1372 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1373 && (cur_pattern->target_lun != device->lun_id)) 1374 continue; 1375 1376 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1377 && (cam_quirkmatch((caddr_t)&device->inq_data, 1378 (caddr_t)&cur_pattern->data.inq_pat, 1379 1, sizeof(cur_pattern->data.inq_pat), 1380 scsi_static_inquiry_match) == NULL)) 1381 continue; 1382 1383 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1384 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1385 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1386 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1387 device->device_id_len 1388 - SVPD_DEVICE_ID_HDR_LEN, 1389 cur_pattern->data.devid_pat.id, 1390 cur_pattern->data.devid_pat.id_len) != 0)) 1391 continue; 1392 1393 copy_dev_node: 1394 /* 1395 * If we get to this point, the user definitely wants 1396 * information on this device. So tell the caller to copy 1397 * the data out. 1398 */ 1399 retval |= DM_RET_COPY; 1400 1401 /* 1402 * If the return action has been set to descend, then we 1403 * know that we've already seen a peripheral matching 1404 * expression, therefore we need to further descend the tree. 1405 * This won't change by continuing around the loop, so we 1406 * go ahead and return. If we haven't seen a peripheral 1407 * matching expression, we keep going around the loop until 1408 * we exhaust the matching expressions. We'll set the stop 1409 * flag once we fall out of the loop. 1410 */ 1411 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1412 return(retval); 1413 } 1414 1415 /* 1416 * If the return action hasn't been set to descend yet, that means 1417 * we haven't seen any peripheral matching patterns. So tell the 1418 * caller to stop descending the tree -- the user doesn't want to 1419 * match against lower level tree elements. 1420 */ 1421 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1422 retval |= DM_RET_STOP; 1423 1424 return(retval); 1425 } 1426 1427 /* 1428 * Match a single peripheral against any number of match patterns. 1429 */ 1430 static dev_match_ret 1431 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1432 struct cam_periph *periph) 1433 { 1434 dev_match_ret retval; 1435 u_int i; 1436 1437 /* 1438 * If we aren't given something to match against, that's an error. 1439 */ 1440 if (periph == NULL) 1441 return(DM_RET_ERROR); 1442 1443 /* 1444 * If there are no match entries, then this peripheral matches no 1445 * matter what. 1446 */ 1447 if ((patterns == NULL) || (num_patterns == 0)) 1448 return(DM_RET_STOP | DM_RET_COPY); 1449 1450 /* 1451 * There aren't any nodes below a peripheral node, so there's no 1452 * reason to descend the tree any further. 1453 */ 1454 retval = DM_RET_STOP; 1455 1456 for (i = 0; i < num_patterns; i++) { 1457 struct periph_match_pattern *cur_pattern; 1458 1459 /* 1460 * If the pattern in question isn't for a peripheral, we 1461 * aren't interested. 1462 */ 1463 if (patterns[i].type != DEV_MATCH_PERIPH) 1464 continue; 1465 1466 cur_pattern = &patterns[i].pattern.periph_pattern; 1467 1468 /* 1469 * If they want to match on anything, then we will do so. 1470 */ 1471 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1472 /* set the copy flag */ 1473 retval |= DM_RET_COPY; 1474 1475 /* 1476 * We've already set the return action to stop, 1477 * since there are no nodes below peripherals in 1478 * the tree. 1479 */ 1480 return(retval); 1481 } 1482 1483 /* 1484 * Not sure why someone would do this... 1485 */ 1486 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1487 continue; 1488 1489 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1490 && (cur_pattern->path_id != periph->path->bus->path_id)) 1491 continue; 1492 1493 /* 1494 * For the target and lun id's, we have to make sure the 1495 * target and lun pointers aren't NULL. The xpt peripheral 1496 * has a wildcard target and device. 1497 */ 1498 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1499 && ((periph->path->target == NULL) 1500 ||(cur_pattern->target_id != periph->path->target->target_id))) 1501 continue; 1502 1503 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1504 && ((periph->path->device == NULL) 1505 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1506 continue; 1507 1508 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1509 && (cur_pattern->unit_number != periph->unit_number)) 1510 continue; 1511 1512 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1513 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1514 DEV_IDLEN) != 0)) 1515 continue; 1516 1517 /* 1518 * If we get to this point, the user definitely wants 1519 * information on this peripheral. So tell the caller to 1520 * copy the data out. 1521 */ 1522 retval |= DM_RET_COPY; 1523 1524 /* 1525 * The return action has already been set to stop, since 1526 * peripherals don't have any nodes below them in the EDT. 1527 */ 1528 return(retval); 1529 } 1530 1531 /* 1532 * If we get to this point, the peripheral that was passed in 1533 * doesn't match any of the patterns. 1534 */ 1535 return(retval); 1536 } 1537 1538 static int 1539 xptedtbusfunc(struct cam_eb *bus, void *arg) 1540 { 1541 struct ccb_dev_match *cdm; 1542 struct cam_et *target; 1543 dev_match_ret retval; 1544 1545 cdm = (struct ccb_dev_match *)arg; 1546 1547 /* 1548 * If our position is for something deeper in the tree, that means 1549 * that we've already seen this node. So, we keep going down. 1550 */ 1551 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1552 && (cdm->pos.cookie.bus == bus) 1553 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1554 && (cdm->pos.cookie.target != NULL)) 1555 retval = DM_RET_DESCEND; 1556 else 1557 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1558 1559 /* 1560 * If we got an error, bail out of the search. 1561 */ 1562 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1563 cdm->status = CAM_DEV_MATCH_ERROR; 1564 return(0); 1565 } 1566 1567 /* 1568 * If the copy flag is set, copy this bus out. 1569 */ 1570 if (retval & DM_RET_COPY) { 1571 int spaceleft, j; 1572 1573 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1574 sizeof(struct dev_match_result)); 1575 1576 /* 1577 * If we don't have enough space to put in another 1578 * match result, save our position and tell the 1579 * user there are more devices to check. 1580 */ 1581 if (spaceleft < sizeof(struct dev_match_result)) { 1582 bzero(&cdm->pos, sizeof(cdm->pos)); 1583 cdm->pos.position_type = 1584 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1585 1586 cdm->pos.cookie.bus = bus; 1587 cdm->pos.generations[CAM_BUS_GENERATION]= 1588 xsoftc.bus_generation; 1589 cdm->status = CAM_DEV_MATCH_MORE; 1590 return(0); 1591 } 1592 j = cdm->num_matches; 1593 cdm->num_matches++; 1594 cdm->matches[j].type = DEV_MATCH_BUS; 1595 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1596 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1597 cdm->matches[j].result.bus_result.unit_number = 1598 bus->sim->unit_number; 1599 strncpy(cdm->matches[j].result.bus_result.dev_name, 1600 bus->sim->sim_name, DEV_IDLEN); 1601 } 1602 1603 /* 1604 * If the user is only interested in busses, there's no 1605 * reason to descend to the next level in the tree. 1606 */ 1607 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1608 return(1); 1609 1610 /* 1611 * If there is a target generation recorded, check it to 1612 * make sure the target list hasn't changed. 1613 */ 1614 mtx_lock(&bus->eb_mtx); 1615 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1616 && (cdm->pos.cookie.bus == bus) 1617 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1618 && (cdm->pos.cookie.target != NULL)) { 1619 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1620 bus->generation)) { 1621 mtx_unlock(&bus->eb_mtx); 1622 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1623 return (0); 1624 } 1625 target = (struct cam_et *)cdm->pos.cookie.target; 1626 target->refcount++; 1627 } else 1628 target = NULL; 1629 mtx_unlock(&bus->eb_mtx); 1630 1631 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1632 } 1633 1634 static int 1635 xptedttargetfunc(struct cam_et *target, void *arg) 1636 { 1637 struct ccb_dev_match *cdm; 1638 struct cam_eb *bus; 1639 struct cam_ed *device; 1640 1641 cdm = (struct ccb_dev_match *)arg; 1642 bus = target->bus; 1643 1644 /* 1645 * If there is a device list generation recorded, check it to 1646 * make sure the device list hasn't changed. 1647 */ 1648 mtx_lock(&bus->eb_mtx); 1649 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1650 && (cdm->pos.cookie.bus == bus) 1651 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1652 && (cdm->pos.cookie.target == target) 1653 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1654 && (cdm->pos.cookie.device != NULL)) { 1655 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1656 target->generation) { 1657 mtx_unlock(&bus->eb_mtx); 1658 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1659 return(0); 1660 } 1661 device = (struct cam_ed *)cdm->pos.cookie.device; 1662 device->refcount++; 1663 } else 1664 device = NULL; 1665 mtx_unlock(&bus->eb_mtx); 1666 1667 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1668 } 1669 1670 static int 1671 xptedtdevicefunc(struct cam_ed *device, void *arg) 1672 { 1673 struct cam_eb *bus; 1674 struct cam_periph *periph; 1675 struct ccb_dev_match *cdm; 1676 dev_match_ret retval; 1677 1678 cdm = (struct ccb_dev_match *)arg; 1679 bus = device->target->bus; 1680 1681 /* 1682 * If our position is for something deeper in the tree, that means 1683 * that we've already seen this node. So, we keep going down. 1684 */ 1685 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1686 && (cdm->pos.cookie.device == device) 1687 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1688 && (cdm->pos.cookie.periph != NULL)) 1689 retval = DM_RET_DESCEND; 1690 else 1691 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1692 device); 1693 1694 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1695 cdm->status = CAM_DEV_MATCH_ERROR; 1696 return(0); 1697 } 1698 1699 /* 1700 * If the copy flag is set, copy this device out. 1701 */ 1702 if (retval & DM_RET_COPY) { 1703 int spaceleft, j; 1704 1705 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1706 sizeof(struct dev_match_result)); 1707 1708 /* 1709 * If we don't have enough space to put in another 1710 * match result, save our position and tell the 1711 * user there are more devices to check. 1712 */ 1713 if (spaceleft < sizeof(struct dev_match_result)) { 1714 bzero(&cdm->pos, sizeof(cdm->pos)); 1715 cdm->pos.position_type = 1716 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1717 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1718 1719 cdm->pos.cookie.bus = device->target->bus; 1720 cdm->pos.generations[CAM_BUS_GENERATION]= 1721 xsoftc.bus_generation; 1722 cdm->pos.cookie.target = device->target; 1723 cdm->pos.generations[CAM_TARGET_GENERATION] = 1724 device->target->bus->generation; 1725 cdm->pos.cookie.device = device; 1726 cdm->pos.generations[CAM_DEV_GENERATION] = 1727 device->target->generation; 1728 cdm->status = CAM_DEV_MATCH_MORE; 1729 return(0); 1730 } 1731 j = cdm->num_matches; 1732 cdm->num_matches++; 1733 cdm->matches[j].type = DEV_MATCH_DEVICE; 1734 cdm->matches[j].result.device_result.path_id = 1735 device->target->bus->path_id; 1736 cdm->matches[j].result.device_result.target_id = 1737 device->target->target_id; 1738 cdm->matches[j].result.device_result.target_lun = 1739 device->lun_id; 1740 cdm->matches[j].result.device_result.protocol = 1741 device->protocol; 1742 bcopy(&device->inq_data, 1743 &cdm->matches[j].result.device_result.inq_data, 1744 sizeof(struct scsi_inquiry_data)); 1745 bcopy(&device->ident_data, 1746 &cdm->matches[j].result.device_result.ident_data, 1747 sizeof(struct ata_params)); 1748 1749 /* Let the user know whether this device is unconfigured */ 1750 if (device->flags & CAM_DEV_UNCONFIGURED) 1751 cdm->matches[j].result.device_result.flags = 1752 DEV_RESULT_UNCONFIGURED; 1753 else 1754 cdm->matches[j].result.device_result.flags = 1755 DEV_RESULT_NOFLAG; 1756 } 1757 1758 /* 1759 * If the user isn't interested in peripherals, don't descend 1760 * the tree any further. 1761 */ 1762 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1763 return(1); 1764 1765 /* 1766 * If there is a peripheral list generation recorded, make sure 1767 * it hasn't changed. 1768 */ 1769 xpt_lock_buses(); 1770 mtx_lock(&bus->eb_mtx); 1771 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1772 && (cdm->pos.cookie.bus == bus) 1773 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1774 && (cdm->pos.cookie.target == device->target) 1775 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1776 && (cdm->pos.cookie.device == device) 1777 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1778 && (cdm->pos.cookie.periph != NULL)) { 1779 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1780 device->generation) { 1781 mtx_unlock(&bus->eb_mtx); 1782 xpt_unlock_buses(); 1783 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1784 return(0); 1785 } 1786 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1787 periph->refcount++; 1788 } else 1789 periph = NULL; 1790 mtx_unlock(&bus->eb_mtx); 1791 xpt_unlock_buses(); 1792 1793 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1794 } 1795 1796 static int 1797 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1798 { 1799 struct ccb_dev_match *cdm; 1800 dev_match_ret retval; 1801 1802 cdm = (struct ccb_dev_match *)arg; 1803 1804 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1805 1806 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1807 cdm->status = CAM_DEV_MATCH_ERROR; 1808 return(0); 1809 } 1810 1811 /* 1812 * If the copy flag is set, copy this peripheral out. 1813 */ 1814 if (retval & DM_RET_COPY) { 1815 int spaceleft, j; 1816 1817 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1818 sizeof(struct dev_match_result)); 1819 1820 /* 1821 * If we don't have enough space to put in another 1822 * match result, save our position and tell the 1823 * user there are more devices to check. 1824 */ 1825 if (spaceleft < sizeof(struct dev_match_result)) { 1826 bzero(&cdm->pos, sizeof(cdm->pos)); 1827 cdm->pos.position_type = 1828 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1829 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1830 CAM_DEV_POS_PERIPH; 1831 1832 cdm->pos.cookie.bus = periph->path->bus; 1833 cdm->pos.generations[CAM_BUS_GENERATION]= 1834 xsoftc.bus_generation; 1835 cdm->pos.cookie.target = periph->path->target; 1836 cdm->pos.generations[CAM_TARGET_GENERATION] = 1837 periph->path->bus->generation; 1838 cdm->pos.cookie.device = periph->path->device; 1839 cdm->pos.generations[CAM_DEV_GENERATION] = 1840 periph->path->target->generation; 1841 cdm->pos.cookie.periph = periph; 1842 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1843 periph->path->device->generation; 1844 cdm->status = CAM_DEV_MATCH_MORE; 1845 return(0); 1846 } 1847 1848 j = cdm->num_matches; 1849 cdm->num_matches++; 1850 cdm->matches[j].type = DEV_MATCH_PERIPH; 1851 cdm->matches[j].result.periph_result.path_id = 1852 periph->path->bus->path_id; 1853 cdm->matches[j].result.periph_result.target_id = 1854 periph->path->target->target_id; 1855 cdm->matches[j].result.periph_result.target_lun = 1856 periph->path->device->lun_id; 1857 cdm->matches[j].result.periph_result.unit_number = 1858 periph->unit_number; 1859 strncpy(cdm->matches[j].result.periph_result.periph_name, 1860 periph->periph_name, DEV_IDLEN); 1861 } 1862 1863 return(1); 1864 } 1865 1866 static int 1867 xptedtmatch(struct ccb_dev_match *cdm) 1868 { 1869 struct cam_eb *bus; 1870 int ret; 1871 1872 cdm->num_matches = 0; 1873 1874 /* 1875 * Check the bus list generation. If it has changed, the user 1876 * needs to reset everything and start over. 1877 */ 1878 xpt_lock_buses(); 1879 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1880 && (cdm->pos.cookie.bus != NULL)) { 1881 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1882 xsoftc.bus_generation) { 1883 xpt_unlock_buses(); 1884 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1885 return(0); 1886 } 1887 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1888 bus->refcount++; 1889 } else 1890 bus = NULL; 1891 xpt_unlock_buses(); 1892 1893 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1894 1895 /* 1896 * If we get back 0, that means that we had to stop before fully 1897 * traversing the EDT. It also means that one of the subroutines 1898 * has set the status field to the proper value. If we get back 1, 1899 * we've fully traversed the EDT and copied out any matching entries. 1900 */ 1901 if (ret == 1) 1902 cdm->status = CAM_DEV_MATCH_LAST; 1903 1904 return(ret); 1905 } 1906 1907 static int 1908 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1909 { 1910 struct cam_periph *periph; 1911 struct ccb_dev_match *cdm; 1912 1913 cdm = (struct ccb_dev_match *)arg; 1914 1915 xpt_lock_buses(); 1916 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1917 && (cdm->pos.cookie.pdrv == pdrv) 1918 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1919 && (cdm->pos.cookie.periph != NULL)) { 1920 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1921 (*pdrv)->generation) { 1922 xpt_unlock_buses(); 1923 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1924 return(0); 1925 } 1926 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1927 periph->refcount++; 1928 } else 1929 periph = NULL; 1930 xpt_unlock_buses(); 1931 1932 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1933 } 1934 1935 static int 1936 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1937 { 1938 struct ccb_dev_match *cdm; 1939 dev_match_ret retval; 1940 1941 cdm = (struct ccb_dev_match *)arg; 1942 1943 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1944 1945 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1946 cdm->status = CAM_DEV_MATCH_ERROR; 1947 return(0); 1948 } 1949 1950 /* 1951 * If the copy flag is set, copy this peripheral out. 1952 */ 1953 if (retval & DM_RET_COPY) { 1954 int spaceleft, j; 1955 1956 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1957 sizeof(struct dev_match_result)); 1958 1959 /* 1960 * If we don't have enough space to put in another 1961 * match result, save our position and tell the 1962 * user there are more devices to check. 1963 */ 1964 if (spaceleft < sizeof(struct dev_match_result)) { 1965 struct periph_driver **pdrv; 1966 1967 pdrv = NULL; 1968 bzero(&cdm->pos, sizeof(cdm->pos)); 1969 cdm->pos.position_type = 1970 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1971 CAM_DEV_POS_PERIPH; 1972 1973 /* 1974 * This may look a bit non-sensical, but it is 1975 * actually quite logical. There are very few 1976 * peripheral drivers, and bloating every peripheral 1977 * structure with a pointer back to its parent 1978 * peripheral driver linker set entry would cost 1979 * more in the long run than doing this quick lookup. 1980 */ 1981 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1982 if (strcmp((*pdrv)->driver_name, 1983 periph->periph_name) == 0) 1984 break; 1985 } 1986 1987 if (*pdrv == NULL) { 1988 cdm->status = CAM_DEV_MATCH_ERROR; 1989 return(0); 1990 } 1991 1992 cdm->pos.cookie.pdrv = pdrv; 1993 /* 1994 * The periph generation slot does double duty, as 1995 * does the periph pointer slot. They are used for 1996 * both edt and pdrv lookups and positioning. 1997 */ 1998 cdm->pos.cookie.periph = periph; 1999 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2000 (*pdrv)->generation; 2001 cdm->status = CAM_DEV_MATCH_MORE; 2002 return(0); 2003 } 2004 2005 j = cdm->num_matches; 2006 cdm->num_matches++; 2007 cdm->matches[j].type = DEV_MATCH_PERIPH; 2008 cdm->matches[j].result.periph_result.path_id = 2009 periph->path->bus->path_id; 2010 2011 /* 2012 * The transport layer peripheral doesn't have a target or 2013 * lun. 2014 */ 2015 if (periph->path->target) 2016 cdm->matches[j].result.periph_result.target_id = 2017 periph->path->target->target_id; 2018 else 2019 cdm->matches[j].result.periph_result.target_id = 2020 CAM_TARGET_WILDCARD; 2021 2022 if (periph->path->device) 2023 cdm->matches[j].result.periph_result.target_lun = 2024 periph->path->device->lun_id; 2025 else 2026 cdm->matches[j].result.periph_result.target_lun = 2027 CAM_LUN_WILDCARD; 2028 2029 cdm->matches[j].result.periph_result.unit_number = 2030 periph->unit_number; 2031 strncpy(cdm->matches[j].result.periph_result.periph_name, 2032 periph->periph_name, DEV_IDLEN); 2033 } 2034 2035 return(1); 2036 } 2037 2038 static int 2039 xptperiphlistmatch(struct ccb_dev_match *cdm) 2040 { 2041 int ret; 2042 2043 cdm->num_matches = 0; 2044 2045 /* 2046 * At this point in the edt traversal function, we check the bus 2047 * list generation to make sure that no busses have been added or 2048 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2049 * For the peripheral driver list traversal function, however, we 2050 * don't have to worry about new peripheral driver types coming or 2051 * going; they're in a linker set, and therefore can't change 2052 * without a recompile. 2053 */ 2054 2055 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2056 && (cdm->pos.cookie.pdrv != NULL)) 2057 ret = xptpdrvtraverse( 2058 (struct periph_driver **)cdm->pos.cookie.pdrv, 2059 xptplistpdrvfunc, cdm); 2060 else 2061 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2062 2063 /* 2064 * If we get back 0, that means that we had to stop before fully 2065 * traversing the peripheral driver tree. It also means that one of 2066 * the subroutines has set the status field to the proper value. If 2067 * we get back 1, we've fully traversed the EDT and copied out any 2068 * matching entries. 2069 */ 2070 if (ret == 1) 2071 cdm->status = CAM_DEV_MATCH_LAST; 2072 2073 return(ret); 2074 } 2075 2076 static int 2077 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2078 { 2079 struct cam_eb *bus, *next_bus; 2080 int retval; 2081 2082 retval = 1; 2083 if (start_bus) 2084 bus = start_bus; 2085 else { 2086 xpt_lock_buses(); 2087 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2088 if (bus == NULL) { 2089 xpt_unlock_buses(); 2090 return (retval); 2091 } 2092 bus->refcount++; 2093 xpt_unlock_buses(); 2094 } 2095 for (; bus != NULL; bus = next_bus) { 2096 retval = tr_func(bus, arg); 2097 if (retval == 0) { 2098 xpt_release_bus(bus); 2099 break; 2100 } 2101 xpt_lock_buses(); 2102 next_bus = TAILQ_NEXT(bus, links); 2103 if (next_bus) 2104 next_bus->refcount++; 2105 xpt_unlock_buses(); 2106 xpt_release_bus(bus); 2107 } 2108 return(retval); 2109 } 2110 2111 static int 2112 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2113 xpt_targetfunc_t *tr_func, void *arg) 2114 { 2115 struct cam_et *target, *next_target; 2116 int retval; 2117 2118 retval = 1; 2119 if (start_target) 2120 target = start_target; 2121 else { 2122 mtx_lock(&bus->eb_mtx); 2123 target = TAILQ_FIRST(&bus->et_entries); 2124 if (target == NULL) { 2125 mtx_unlock(&bus->eb_mtx); 2126 return (retval); 2127 } 2128 target->refcount++; 2129 mtx_unlock(&bus->eb_mtx); 2130 } 2131 for (; target != NULL; target = next_target) { 2132 retval = tr_func(target, arg); 2133 if (retval == 0) { 2134 xpt_release_target(target); 2135 break; 2136 } 2137 mtx_lock(&bus->eb_mtx); 2138 next_target = TAILQ_NEXT(target, links); 2139 if (next_target) 2140 next_target->refcount++; 2141 mtx_unlock(&bus->eb_mtx); 2142 xpt_release_target(target); 2143 } 2144 return(retval); 2145 } 2146 2147 static int 2148 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2149 xpt_devicefunc_t *tr_func, void *arg) 2150 { 2151 struct cam_eb *bus; 2152 struct cam_ed *device, *next_device; 2153 int retval; 2154 2155 retval = 1; 2156 bus = target->bus; 2157 if (start_device) 2158 device = start_device; 2159 else { 2160 mtx_lock(&bus->eb_mtx); 2161 device = TAILQ_FIRST(&target->ed_entries); 2162 if (device == NULL) { 2163 mtx_unlock(&bus->eb_mtx); 2164 return (retval); 2165 } 2166 device->refcount++; 2167 mtx_unlock(&bus->eb_mtx); 2168 } 2169 for (; device != NULL; device = next_device) { 2170 mtx_lock(&device->device_mtx); 2171 retval = tr_func(device, arg); 2172 mtx_unlock(&device->device_mtx); 2173 if (retval == 0) { 2174 xpt_release_device(device); 2175 break; 2176 } 2177 mtx_lock(&bus->eb_mtx); 2178 next_device = TAILQ_NEXT(device, links); 2179 if (next_device) 2180 next_device->refcount++; 2181 mtx_unlock(&bus->eb_mtx); 2182 xpt_release_device(device); 2183 } 2184 return(retval); 2185 } 2186 2187 static int 2188 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2189 xpt_periphfunc_t *tr_func, void *arg) 2190 { 2191 struct cam_eb *bus; 2192 struct cam_periph *periph, *next_periph; 2193 int retval; 2194 2195 retval = 1; 2196 2197 bus = device->target->bus; 2198 if (start_periph) 2199 periph = start_periph; 2200 else { 2201 xpt_lock_buses(); 2202 mtx_lock(&bus->eb_mtx); 2203 periph = SLIST_FIRST(&device->periphs); 2204 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2205 periph = SLIST_NEXT(periph, periph_links); 2206 if (periph == NULL) { 2207 mtx_unlock(&bus->eb_mtx); 2208 xpt_unlock_buses(); 2209 return (retval); 2210 } 2211 periph->refcount++; 2212 mtx_unlock(&bus->eb_mtx); 2213 xpt_unlock_buses(); 2214 } 2215 for (; periph != NULL; periph = next_periph) { 2216 retval = tr_func(periph, arg); 2217 if (retval == 0) { 2218 cam_periph_release_locked(periph); 2219 break; 2220 } 2221 xpt_lock_buses(); 2222 mtx_lock(&bus->eb_mtx); 2223 next_periph = SLIST_NEXT(periph, periph_links); 2224 while (next_periph != NULL && 2225 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2226 next_periph = SLIST_NEXT(next_periph, periph_links); 2227 if (next_periph) 2228 next_periph->refcount++; 2229 mtx_unlock(&bus->eb_mtx); 2230 xpt_unlock_buses(); 2231 cam_periph_release_locked(periph); 2232 } 2233 return(retval); 2234 } 2235 2236 static int 2237 xptpdrvtraverse(struct periph_driver **start_pdrv, 2238 xpt_pdrvfunc_t *tr_func, void *arg) 2239 { 2240 struct periph_driver **pdrv; 2241 int retval; 2242 2243 retval = 1; 2244 2245 /* 2246 * We don't traverse the peripheral driver list like we do the 2247 * other lists, because it is a linker set, and therefore cannot be 2248 * changed during runtime. If the peripheral driver list is ever 2249 * re-done to be something other than a linker set (i.e. it can 2250 * change while the system is running), the list traversal should 2251 * be modified to work like the other traversal functions. 2252 */ 2253 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2254 *pdrv != NULL; pdrv++) { 2255 retval = tr_func(pdrv, arg); 2256 2257 if (retval == 0) 2258 return(retval); 2259 } 2260 2261 return(retval); 2262 } 2263 2264 static int 2265 xptpdperiphtraverse(struct periph_driver **pdrv, 2266 struct cam_periph *start_periph, 2267 xpt_periphfunc_t *tr_func, void *arg) 2268 { 2269 struct cam_periph *periph, *next_periph; 2270 int retval; 2271 2272 retval = 1; 2273 2274 if (start_periph) 2275 periph = start_periph; 2276 else { 2277 xpt_lock_buses(); 2278 periph = TAILQ_FIRST(&(*pdrv)->units); 2279 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2280 periph = TAILQ_NEXT(periph, unit_links); 2281 if (periph == NULL) { 2282 xpt_unlock_buses(); 2283 return (retval); 2284 } 2285 periph->refcount++; 2286 xpt_unlock_buses(); 2287 } 2288 for (; periph != NULL; periph = next_periph) { 2289 cam_periph_lock(periph); 2290 retval = tr_func(periph, arg); 2291 cam_periph_unlock(periph); 2292 if (retval == 0) { 2293 cam_periph_release(periph); 2294 break; 2295 } 2296 xpt_lock_buses(); 2297 next_periph = TAILQ_NEXT(periph, unit_links); 2298 while (next_periph != NULL && 2299 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2300 next_periph = TAILQ_NEXT(next_periph, unit_links); 2301 if (next_periph) 2302 next_periph->refcount++; 2303 xpt_unlock_buses(); 2304 cam_periph_release(periph); 2305 } 2306 return(retval); 2307 } 2308 2309 static int 2310 xptdefbusfunc(struct cam_eb *bus, void *arg) 2311 { 2312 struct xpt_traverse_config *tr_config; 2313 2314 tr_config = (struct xpt_traverse_config *)arg; 2315 2316 if (tr_config->depth == XPT_DEPTH_BUS) { 2317 xpt_busfunc_t *tr_func; 2318 2319 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2320 2321 return(tr_func(bus, tr_config->tr_arg)); 2322 } else 2323 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2324 } 2325 2326 static int 2327 xptdeftargetfunc(struct cam_et *target, void *arg) 2328 { 2329 struct xpt_traverse_config *tr_config; 2330 2331 tr_config = (struct xpt_traverse_config *)arg; 2332 2333 if (tr_config->depth == XPT_DEPTH_TARGET) { 2334 xpt_targetfunc_t *tr_func; 2335 2336 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2337 2338 return(tr_func(target, tr_config->tr_arg)); 2339 } else 2340 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2341 } 2342 2343 static int 2344 xptdefdevicefunc(struct cam_ed *device, void *arg) 2345 { 2346 struct xpt_traverse_config *tr_config; 2347 2348 tr_config = (struct xpt_traverse_config *)arg; 2349 2350 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2351 xpt_devicefunc_t *tr_func; 2352 2353 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2354 2355 return(tr_func(device, tr_config->tr_arg)); 2356 } else 2357 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2358 } 2359 2360 static int 2361 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2362 { 2363 struct xpt_traverse_config *tr_config; 2364 xpt_periphfunc_t *tr_func; 2365 2366 tr_config = (struct xpt_traverse_config *)arg; 2367 2368 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2369 2370 /* 2371 * Unlike the other default functions, we don't check for depth 2372 * here. The peripheral driver level is the last level in the EDT, 2373 * so if we're here, we should execute the function in question. 2374 */ 2375 return(tr_func(periph, tr_config->tr_arg)); 2376 } 2377 2378 /* 2379 * Execute the given function for every bus in the EDT. 2380 */ 2381 static int 2382 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2383 { 2384 struct xpt_traverse_config tr_config; 2385 2386 tr_config.depth = XPT_DEPTH_BUS; 2387 tr_config.tr_func = tr_func; 2388 tr_config.tr_arg = arg; 2389 2390 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2391 } 2392 2393 /* 2394 * Execute the given function for every device in the EDT. 2395 */ 2396 static int 2397 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2398 { 2399 struct xpt_traverse_config tr_config; 2400 2401 tr_config.depth = XPT_DEPTH_DEVICE; 2402 tr_config.tr_func = tr_func; 2403 tr_config.tr_arg = arg; 2404 2405 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2406 } 2407 2408 static int 2409 xptsetasyncfunc(struct cam_ed *device, void *arg) 2410 { 2411 struct cam_path path; 2412 struct ccb_getdev cgd; 2413 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2414 2415 /* 2416 * Don't report unconfigured devices (Wildcard devs, 2417 * devices only for target mode, device instances 2418 * that have been invalidated but are waiting for 2419 * their last reference count to be released). 2420 */ 2421 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2422 return (1); 2423 2424 xpt_compile_path(&path, 2425 NULL, 2426 device->target->bus->path_id, 2427 device->target->target_id, 2428 device->lun_id); 2429 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2430 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2431 xpt_action((union ccb *)&cgd); 2432 csa->callback(csa->callback_arg, 2433 AC_FOUND_DEVICE, 2434 &path, &cgd); 2435 xpt_release_path(&path); 2436 2437 return(1); 2438 } 2439 2440 static int 2441 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2442 { 2443 struct cam_path path; 2444 struct ccb_pathinq cpi; 2445 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2446 2447 xpt_compile_path(&path, /*periph*/NULL, 2448 bus->path_id, 2449 CAM_TARGET_WILDCARD, 2450 CAM_LUN_WILDCARD); 2451 xpt_path_lock(&path); 2452 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2453 cpi.ccb_h.func_code = XPT_PATH_INQ; 2454 xpt_action((union ccb *)&cpi); 2455 csa->callback(csa->callback_arg, 2456 AC_PATH_REGISTERED, 2457 &path, &cpi); 2458 xpt_path_unlock(&path); 2459 xpt_release_path(&path); 2460 2461 return(1); 2462 } 2463 2464 void 2465 xpt_action(union ccb *start_ccb) 2466 { 2467 2468 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2469 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2470 xpt_action_name(start_ccb->ccb_h.func_code))); 2471 2472 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2473 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2474 } 2475 2476 void 2477 xpt_action_default(union ccb *start_ccb) 2478 { 2479 struct cam_path *path; 2480 struct cam_sim *sim; 2481 int lock; 2482 2483 path = start_ccb->ccb_h.path; 2484 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2485 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2486 xpt_action_name(start_ccb->ccb_h.func_code))); 2487 2488 switch (start_ccb->ccb_h.func_code) { 2489 case XPT_SCSI_IO: 2490 { 2491 struct cam_ed *device; 2492 2493 /* 2494 * For the sake of compatibility with SCSI-1 2495 * devices that may not understand the identify 2496 * message, we include lun information in the 2497 * second byte of all commands. SCSI-1 specifies 2498 * that luns are a 3 bit value and reserves only 3 2499 * bits for lun information in the CDB. Later 2500 * revisions of the SCSI spec allow for more than 8 2501 * luns, but have deprecated lun information in the 2502 * CDB. So, if the lun won't fit, we must omit. 2503 * 2504 * Also be aware that during initial probing for devices, 2505 * the inquiry information is unknown but initialized to 0. 2506 * This means that this code will be exercised while probing 2507 * devices with an ANSI revision greater than 2. 2508 */ 2509 device = path->device; 2510 if (device->protocol_version <= SCSI_REV_2 2511 && start_ccb->ccb_h.target_lun < 8 2512 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2513 2514 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2515 start_ccb->ccb_h.target_lun << 5; 2516 } 2517 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2518 } 2519 /* FALLTHROUGH */ 2520 case XPT_TARGET_IO: 2521 case XPT_CONT_TARGET_IO: 2522 start_ccb->csio.sense_resid = 0; 2523 start_ccb->csio.resid = 0; 2524 /* FALLTHROUGH */ 2525 case XPT_ATA_IO: 2526 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2527 start_ccb->ataio.resid = 0; 2528 /* FALLTHROUGH */ 2529 case XPT_NVME_IO: 2530 if (start_ccb->ccb_h.func_code == XPT_NVME_IO) 2531 start_ccb->nvmeio.resid = 0; 2532 /* FALLTHROUGH */ 2533 case XPT_RESET_DEV: 2534 case XPT_ENG_EXEC: 2535 case XPT_SMP_IO: 2536 { 2537 struct cam_devq *devq; 2538 2539 devq = path->bus->sim->devq; 2540 mtx_lock(&devq->send_mtx); 2541 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2542 if (xpt_schedule_devq(devq, path->device) != 0) 2543 xpt_run_devq(devq); 2544 mtx_unlock(&devq->send_mtx); 2545 break; 2546 } 2547 case XPT_CALC_GEOMETRY: 2548 /* Filter out garbage */ 2549 if (start_ccb->ccg.block_size == 0 2550 || start_ccb->ccg.volume_size == 0) { 2551 start_ccb->ccg.cylinders = 0; 2552 start_ccb->ccg.heads = 0; 2553 start_ccb->ccg.secs_per_track = 0; 2554 start_ccb->ccb_h.status = CAM_REQ_CMP; 2555 break; 2556 } 2557 #if defined(PC98) || defined(__sparc64__) 2558 /* 2559 * In a PC-98 system, geometry translation depens on 2560 * the "real" device geometry obtained from mode page 4. 2561 * SCSI geometry translation is performed in the 2562 * initialization routine of the SCSI BIOS and the result 2563 * stored in host memory. If the translation is available 2564 * in host memory, use it. If not, rely on the default 2565 * translation the device driver performs. 2566 * For sparc64, we may need adjust the geometry of large 2567 * disks in order to fit the limitations of the 16-bit 2568 * fields of the VTOC8 disk label. 2569 */ 2570 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2571 start_ccb->ccb_h.status = CAM_REQ_CMP; 2572 break; 2573 } 2574 #endif 2575 goto call_sim; 2576 case XPT_ABORT: 2577 { 2578 union ccb* abort_ccb; 2579 2580 abort_ccb = start_ccb->cab.abort_ccb; 2581 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2582 struct cam_ed *device; 2583 struct cam_devq *devq; 2584 2585 device = abort_ccb->ccb_h.path->device; 2586 devq = device->sim->devq; 2587 2588 mtx_lock(&devq->send_mtx); 2589 if (abort_ccb->ccb_h.pinfo.index > 0) { 2590 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2591 abort_ccb->ccb_h.status = 2592 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2593 xpt_freeze_devq_device(device, 1); 2594 mtx_unlock(&devq->send_mtx); 2595 xpt_done(abort_ccb); 2596 start_ccb->ccb_h.status = CAM_REQ_CMP; 2597 break; 2598 } 2599 mtx_unlock(&devq->send_mtx); 2600 2601 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2602 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2603 /* 2604 * We've caught this ccb en route to 2605 * the SIM. Flag it for abort and the 2606 * SIM will do so just before starting 2607 * real work on the CCB. 2608 */ 2609 abort_ccb->ccb_h.status = 2610 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2611 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2612 start_ccb->ccb_h.status = CAM_REQ_CMP; 2613 break; 2614 } 2615 } 2616 if (XPT_FC_IS_QUEUED(abort_ccb) 2617 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2618 /* 2619 * It's already completed but waiting 2620 * for our SWI to get to it. 2621 */ 2622 start_ccb->ccb_h.status = CAM_UA_ABORT; 2623 break; 2624 } 2625 /* 2626 * If we weren't able to take care of the abort request 2627 * in the XPT, pass the request down to the SIM for processing. 2628 */ 2629 } 2630 /* FALLTHROUGH */ 2631 case XPT_ACCEPT_TARGET_IO: 2632 case XPT_EN_LUN: 2633 case XPT_IMMED_NOTIFY: 2634 case XPT_NOTIFY_ACK: 2635 case XPT_RESET_BUS: 2636 case XPT_IMMEDIATE_NOTIFY: 2637 case XPT_NOTIFY_ACKNOWLEDGE: 2638 case XPT_GET_SIM_KNOB_OLD: 2639 case XPT_GET_SIM_KNOB: 2640 case XPT_SET_SIM_KNOB: 2641 case XPT_GET_TRAN_SETTINGS: 2642 case XPT_SET_TRAN_SETTINGS: 2643 case XPT_PATH_INQ: 2644 call_sim: 2645 sim = path->bus->sim; 2646 lock = (mtx_owned(sim->mtx) == 0); 2647 if (lock) 2648 CAM_SIM_LOCK(sim); 2649 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2650 ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code)); 2651 (*(sim->sim_action))(sim, start_ccb); 2652 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2653 ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status)); 2654 if (lock) 2655 CAM_SIM_UNLOCK(sim); 2656 break; 2657 case XPT_PATH_STATS: 2658 start_ccb->cpis.last_reset = path->bus->last_reset; 2659 start_ccb->ccb_h.status = CAM_REQ_CMP; 2660 break; 2661 case XPT_GDEV_TYPE: 2662 { 2663 struct cam_ed *dev; 2664 2665 dev = path->device; 2666 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2667 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2668 } else { 2669 struct ccb_getdev *cgd; 2670 2671 cgd = &start_ccb->cgd; 2672 cgd->protocol = dev->protocol; 2673 cgd->inq_data = dev->inq_data; 2674 cgd->ident_data = dev->ident_data; 2675 cgd->inq_flags = dev->inq_flags; 2676 cgd->nvme_data = dev->nvme_data; 2677 cgd->nvme_cdata = dev->nvme_cdata; 2678 cgd->ccb_h.status = CAM_REQ_CMP; 2679 cgd->serial_num_len = dev->serial_num_len; 2680 if ((dev->serial_num_len > 0) 2681 && (dev->serial_num != NULL)) 2682 bcopy(dev->serial_num, cgd->serial_num, 2683 dev->serial_num_len); 2684 } 2685 break; 2686 } 2687 case XPT_GDEV_STATS: 2688 { 2689 struct cam_ed *dev; 2690 2691 dev = path->device; 2692 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2693 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2694 } else { 2695 struct ccb_getdevstats *cgds; 2696 struct cam_eb *bus; 2697 struct cam_et *tar; 2698 struct cam_devq *devq; 2699 2700 cgds = &start_ccb->cgds; 2701 bus = path->bus; 2702 tar = path->target; 2703 devq = bus->sim->devq; 2704 mtx_lock(&devq->send_mtx); 2705 cgds->dev_openings = dev->ccbq.dev_openings; 2706 cgds->dev_active = dev->ccbq.dev_active; 2707 cgds->allocated = dev->ccbq.allocated; 2708 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2709 cgds->held = cgds->allocated - cgds->dev_active - 2710 cgds->queued; 2711 cgds->last_reset = tar->last_reset; 2712 cgds->maxtags = dev->maxtags; 2713 cgds->mintags = dev->mintags; 2714 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2715 cgds->last_reset = bus->last_reset; 2716 mtx_unlock(&devq->send_mtx); 2717 cgds->ccb_h.status = CAM_REQ_CMP; 2718 } 2719 break; 2720 } 2721 case XPT_GDEVLIST: 2722 { 2723 struct cam_periph *nperiph; 2724 struct periph_list *periph_head; 2725 struct ccb_getdevlist *cgdl; 2726 u_int i; 2727 struct cam_ed *device; 2728 int found; 2729 2730 2731 found = 0; 2732 2733 /* 2734 * Don't want anyone mucking with our data. 2735 */ 2736 device = path->device; 2737 periph_head = &device->periphs; 2738 cgdl = &start_ccb->cgdl; 2739 2740 /* 2741 * Check and see if the list has changed since the user 2742 * last requested a list member. If so, tell them that the 2743 * list has changed, and therefore they need to start over 2744 * from the beginning. 2745 */ 2746 if ((cgdl->index != 0) && 2747 (cgdl->generation != device->generation)) { 2748 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2749 break; 2750 } 2751 2752 /* 2753 * Traverse the list of peripherals and attempt to find 2754 * the requested peripheral. 2755 */ 2756 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2757 (nperiph != NULL) && (i <= cgdl->index); 2758 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2759 if (i == cgdl->index) { 2760 strncpy(cgdl->periph_name, 2761 nperiph->periph_name, 2762 DEV_IDLEN); 2763 cgdl->unit_number = nperiph->unit_number; 2764 found = 1; 2765 } 2766 } 2767 if (found == 0) { 2768 cgdl->status = CAM_GDEVLIST_ERROR; 2769 break; 2770 } 2771 2772 if (nperiph == NULL) 2773 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2774 else 2775 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2776 2777 cgdl->index++; 2778 cgdl->generation = device->generation; 2779 2780 cgdl->ccb_h.status = CAM_REQ_CMP; 2781 break; 2782 } 2783 case XPT_DEV_MATCH: 2784 { 2785 dev_pos_type position_type; 2786 struct ccb_dev_match *cdm; 2787 2788 cdm = &start_ccb->cdm; 2789 2790 /* 2791 * There are two ways of getting at information in the EDT. 2792 * The first way is via the primary EDT tree. It starts 2793 * with a list of busses, then a list of targets on a bus, 2794 * then devices/luns on a target, and then peripherals on a 2795 * device/lun. The "other" way is by the peripheral driver 2796 * lists. The peripheral driver lists are organized by 2797 * peripheral driver. (obviously) So it makes sense to 2798 * use the peripheral driver list if the user is looking 2799 * for something like "da1", or all "da" devices. If the 2800 * user is looking for something on a particular bus/target 2801 * or lun, it's generally better to go through the EDT tree. 2802 */ 2803 2804 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2805 position_type = cdm->pos.position_type; 2806 else { 2807 u_int i; 2808 2809 position_type = CAM_DEV_POS_NONE; 2810 2811 for (i = 0; i < cdm->num_patterns; i++) { 2812 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2813 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2814 position_type = CAM_DEV_POS_EDT; 2815 break; 2816 } 2817 } 2818 2819 if (cdm->num_patterns == 0) 2820 position_type = CAM_DEV_POS_EDT; 2821 else if (position_type == CAM_DEV_POS_NONE) 2822 position_type = CAM_DEV_POS_PDRV; 2823 } 2824 2825 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2826 case CAM_DEV_POS_EDT: 2827 xptedtmatch(cdm); 2828 break; 2829 case CAM_DEV_POS_PDRV: 2830 xptperiphlistmatch(cdm); 2831 break; 2832 default: 2833 cdm->status = CAM_DEV_MATCH_ERROR; 2834 break; 2835 } 2836 2837 if (cdm->status == CAM_DEV_MATCH_ERROR) 2838 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2839 else 2840 start_ccb->ccb_h.status = CAM_REQ_CMP; 2841 2842 break; 2843 } 2844 case XPT_SASYNC_CB: 2845 { 2846 struct ccb_setasync *csa; 2847 struct async_node *cur_entry; 2848 struct async_list *async_head; 2849 u_int32_t added; 2850 2851 csa = &start_ccb->csa; 2852 added = csa->event_enable; 2853 async_head = &path->device->asyncs; 2854 2855 /* 2856 * If there is already an entry for us, simply 2857 * update it. 2858 */ 2859 cur_entry = SLIST_FIRST(async_head); 2860 while (cur_entry != NULL) { 2861 if ((cur_entry->callback_arg == csa->callback_arg) 2862 && (cur_entry->callback == csa->callback)) 2863 break; 2864 cur_entry = SLIST_NEXT(cur_entry, links); 2865 } 2866 2867 if (cur_entry != NULL) { 2868 /* 2869 * If the request has no flags set, 2870 * remove the entry. 2871 */ 2872 added &= ~cur_entry->event_enable; 2873 if (csa->event_enable == 0) { 2874 SLIST_REMOVE(async_head, cur_entry, 2875 async_node, links); 2876 xpt_release_device(path->device); 2877 free(cur_entry, M_CAMXPT); 2878 } else { 2879 cur_entry->event_enable = csa->event_enable; 2880 } 2881 csa->event_enable = added; 2882 } else { 2883 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2884 M_NOWAIT); 2885 if (cur_entry == NULL) { 2886 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2887 break; 2888 } 2889 cur_entry->event_enable = csa->event_enable; 2890 cur_entry->event_lock = 2891 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2892 cur_entry->callback_arg = csa->callback_arg; 2893 cur_entry->callback = csa->callback; 2894 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2895 xpt_acquire_device(path->device); 2896 } 2897 start_ccb->ccb_h.status = CAM_REQ_CMP; 2898 break; 2899 } 2900 case XPT_REL_SIMQ: 2901 { 2902 struct ccb_relsim *crs; 2903 struct cam_ed *dev; 2904 2905 crs = &start_ccb->crs; 2906 dev = path->device; 2907 if (dev == NULL) { 2908 2909 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2910 break; 2911 } 2912 2913 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2914 2915 /* Don't ever go below one opening */ 2916 if (crs->openings > 0) { 2917 xpt_dev_ccbq_resize(path, crs->openings); 2918 if (bootverbose) { 2919 xpt_print(path, 2920 "number of openings is now %d\n", 2921 crs->openings); 2922 } 2923 } 2924 } 2925 2926 mtx_lock(&dev->sim->devq->send_mtx); 2927 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2928 2929 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2930 2931 /* 2932 * Just extend the old timeout and decrement 2933 * the freeze count so that a single timeout 2934 * is sufficient for releasing the queue. 2935 */ 2936 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2937 callout_stop(&dev->callout); 2938 } else { 2939 2940 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2941 } 2942 2943 callout_reset_sbt(&dev->callout, 2944 SBT_1MS * crs->release_timeout, 0, 2945 xpt_release_devq_timeout, dev, 0); 2946 2947 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2948 2949 } 2950 2951 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2952 2953 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2954 /* 2955 * Decrement the freeze count so that a single 2956 * completion is still sufficient to unfreeze 2957 * the queue. 2958 */ 2959 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2960 } else { 2961 2962 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2963 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2964 } 2965 } 2966 2967 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2968 2969 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2970 || (dev->ccbq.dev_active == 0)) { 2971 2972 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2973 } else { 2974 2975 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2976 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2977 } 2978 } 2979 mtx_unlock(&dev->sim->devq->send_mtx); 2980 2981 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2982 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2983 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2984 start_ccb->ccb_h.status = CAM_REQ_CMP; 2985 break; 2986 } 2987 case XPT_DEBUG: { 2988 struct cam_path *oldpath; 2989 2990 /* Check that all request bits are supported. */ 2991 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2992 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2993 break; 2994 } 2995 2996 cam_dflags = CAM_DEBUG_NONE; 2997 if (cam_dpath != NULL) { 2998 oldpath = cam_dpath; 2999 cam_dpath = NULL; 3000 xpt_free_path(oldpath); 3001 } 3002 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3003 if (xpt_create_path(&cam_dpath, NULL, 3004 start_ccb->ccb_h.path_id, 3005 start_ccb->ccb_h.target_id, 3006 start_ccb->ccb_h.target_lun) != 3007 CAM_REQ_CMP) { 3008 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3009 } else { 3010 cam_dflags = start_ccb->cdbg.flags; 3011 start_ccb->ccb_h.status = CAM_REQ_CMP; 3012 xpt_print(cam_dpath, "debugging flags now %x\n", 3013 cam_dflags); 3014 } 3015 } else 3016 start_ccb->ccb_h.status = CAM_REQ_CMP; 3017 break; 3018 } 3019 case XPT_NOOP: 3020 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3021 xpt_freeze_devq(path, 1); 3022 start_ccb->ccb_h.status = CAM_REQ_CMP; 3023 break; 3024 case XPT_REPROBE_LUN: 3025 xpt_async(AC_INQ_CHANGED, path, NULL); 3026 start_ccb->ccb_h.status = CAM_REQ_CMP; 3027 xpt_done(start_ccb); 3028 break; 3029 default: 3030 case XPT_SDEV_TYPE: 3031 case XPT_TERM_IO: 3032 case XPT_ENG_INQ: 3033 /* XXX Implement */ 3034 xpt_print_path(start_ccb->ccb_h.path); 3035 printf("%s: CCB type %#x %s not supported\n", __func__, 3036 start_ccb->ccb_h.func_code, 3037 xpt_action_name(start_ccb->ccb_h.func_code)); 3038 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3039 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3040 xpt_done(start_ccb); 3041 } 3042 break; 3043 } 3044 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3045 ("xpt_action_default: func= %#x %s status %#x\n", 3046 start_ccb->ccb_h.func_code, 3047 xpt_action_name(start_ccb->ccb_h.func_code), 3048 start_ccb->ccb_h.status)); 3049 } 3050 3051 void 3052 xpt_polled_action(union ccb *start_ccb) 3053 { 3054 u_int32_t timeout; 3055 struct cam_sim *sim; 3056 struct cam_devq *devq; 3057 struct cam_ed *dev; 3058 3059 timeout = start_ccb->ccb_h.timeout * 10; 3060 sim = start_ccb->ccb_h.path->bus->sim; 3061 devq = sim->devq; 3062 dev = start_ccb->ccb_h.path->device; 3063 3064 mtx_unlock(&dev->device_mtx); 3065 3066 /* 3067 * Steal an opening so that no other queued requests 3068 * can get it before us while we simulate interrupts. 3069 */ 3070 mtx_lock(&devq->send_mtx); 3071 dev->ccbq.dev_openings--; 3072 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3073 (--timeout > 0)) { 3074 mtx_unlock(&devq->send_mtx); 3075 DELAY(100); 3076 CAM_SIM_LOCK(sim); 3077 (*(sim->sim_poll))(sim); 3078 CAM_SIM_UNLOCK(sim); 3079 camisr_runqueue(); 3080 mtx_lock(&devq->send_mtx); 3081 } 3082 dev->ccbq.dev_openings++; 3083 mtx_unlock(&devq->send_mtx); 3084 3085 if (timeout != 0) { 3086 xpt_action(start_ccb); 3087 while(--timeout > 0) { 3088 CAM_SIM_LOCK(sim); 3089 (*(sim->sim_poll))(sim); 3090 CAM_SIM_UNLOCK(sim); 3091 camisr_runqueue(); 3092 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3093 != CAM_REQ_INPROG) 3094 break; 3095 DELAY(100); 3096 } 3097 if (timeout == 0) { 3098 /* 3099 * XXX Is it worth adding a sim_timeout entry 3100 * point so we can attempt recovery? If 3101 * this is only used for dumps, I don't think 3102 * it is. 3103 */ 3104 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3105 } 3106 } else { 3107 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3108 } 3109 3110 mtx_lock(&dev->device_mtx); 3111 } 3112 3113 /* 3114 * Schedule a peripheral driver to receive a ccb when its 3115 * target device has space for more transactions. 3116 */ 3117 void 3118 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3119 { 3120 3121 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3122 cam_periph_assert(periph, MA_OWNED); 3123 if (new_priority < periph->scheduled_priority) { 3124 periph->scheduled_priority = new_priority; 3125 xpt_run_allocq(periph, 0); 3126 } 3127 } 3128 3129 3130 /* 3131 * Schedule a device to run on a given queue. 3132 * If the device was inserted as a new entry on the queue, 3133 * return 1 meaning the device queue should be run. If we 3134 * were already queued, implying someone else has already 3135 * started the queue, return 0 so the caller doesn't attempt 3136 * to run the queue. 3137 */ 3138 static int 3139 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3140 u_int32_t new_priority) 3141 { 3142 int retval; 3143 u_int32_t old_priority; 3144 3145 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3146 3147 old_priority = pinfo->priority; 3148 3149 /* 3150 * Are we already queued? 3151 */ 3152 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3153 /* Simply reorder based on new priority */ 3154 if (new_priority < old_priority) { 3155 camq_change_priority(queue, pinfo->index, 3156 new_priority); 3157 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3158 ("changed priority to %d\n", 3159 new_priority)); 3160 retval = 1; 3161 } else 3162 retval = 0; 3163 } else { 3164 /* New entry on the queue */ 3165 if (new_priority < old_priority) 3166 pinfo->priority = new_priority; 3167 3168 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3169 ("Inserting onto queue\n")); 3170 pinfo->generation = ++queue->generation; 3171 camq_insert(queue, pinfo); 3172 retval = 1; 3173 } 3174 return (retval); 3175 } 3176 3177 static void 3178 xpt_run_allocq_task(void *context, int pending) 3179 { 3180 struct cam_periph *periph = context; 3181 3182 cam_periph_lock(periph); 3183 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3184 xpt_run_allocq(periph, 1); 3185 cam_periph_unlock(periph); 3186 cam_periph_release(periph); 3187 } 3188 3189 static void 3190 xpt_run_allocq(struct cam_periph *periph, int sleep) 3191 { 3192 struct cam_ed *device; 3193 union ccb *ccb; 3194 uint32_t prio; 3195 3196 cam_periph_assert(periph, MA_OWNED); 3197 if (periph->periph_allocating) 3198 return; 3199 periph->periph_allocating = 1; 3200 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3201 device = periph->path->device; 3202 ccb = NULL; 3203 restart: 3204 while ((prio = min(periph->scheduled_priority, 3205 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3206 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3207 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3208 3209 if (ccb == NULL && 3210 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3211 if (sleep) { 3212 ccb = xpt_get_ccb(periph); 3213 goto restart; 3214 } 3215 if (periph->flags & CAM_PERIPH_RUN_TASK) 3216 break; 3217 cam_periph_doacquire(periph); 3218 periph->flags |= CAM_PERIPH_RUN_TASK; 3219 taskqueue_enqueue(xsoftc.xpt_taskq, 3220 &periph->periph_run_task); 3221 break; 3222 } 3223 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3224 if (prio == periph->immediate_priority) { 3225 periph->immediate_priority = CAM_PRIORITY_NONE; 3226 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3227 ("waking cam_periph_getccb()\n")); 3228 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3229 periph_links.sle); 3230 wakeup(&periph->ccb_list); 3231 } else { 3232 periph->scheduled_priority = CAM_PRIORITY_NONE; 3233 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3234 ("calling periph_start()\n")); 3235 periph->periph_start(periph, ccb); 3236 } 3237 ccb = NULL; 3238 } 3239 if (ccb != NULL) 3240 xpt_release_ccb(ccb); 3241 periph->periph_allocating = 0; 3242 } 3243 3244 static void 3245 xpt_run_devq(struct cam_devq *devq) 3246 { 3247 int lock; 3248 3249 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3250 3251 devq->send_queue.qfrozen_cnt++; 3252 while ((devq->send_queue.entries > 0) 3253 && (devq->send_openings > 0) 3254 && (devq->send_queue.qfrozen_cnt <= 1)) { 3255 struct cam_ed *device; 3256 union ccb *work_ccb; 3257 struct cam_sim *sim; 3258 struct xpt_proto *proto; 3259 3260 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3261 CAMQ_HEAD); 3262 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3263 ("running device %p\n", device)); 3264 3265 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3266 if (work_ccb == NULL) { 3267 printf("device on run queue with no ccbs???\n"); 3268 continue; 3269 } 3270 3271 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3272 3273 mtx_lock(&xsoftc.xpt_highpower_lock); 3274 if (xsoftc.num_highpower <= 0) { 3275 /* 3276 * We got a high power command, but we 3277 * don't have any available slots. Freeze 3278 * the device queue until we have a slot 3279 * available. 3280 */ 3281 xpt_freeze_devq_device(device, 1); 3282 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3283 highpowerq_entry); 3284 3285 mtx_unlock(&xsoftc.xpt_highpower_lock); 3286 continue; 3287 } else { 3288 /* 3289 * Consume a high power slot while 3290 * this ccb runs. 3291 */ 3292 xsoftc.num_highpower--; 3293 } 3294 mtx_unlock(&xsoftc.xpt_highpower_lock); 3295 } 3296 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3297 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3298 devq->send_openings--; 3299 devq->send_active++; 3300 xpt_schedule_devq(devq, device); 3301 mtx_unlock(&devq->send_mtx); 3302 3303 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3304 /* 3305 * The client wants to freeze the queue 3306 * after this CCB is sent. 3307 */ 3308 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3309 } 3310 3311 /* In Target mode, the peripheral driver knows best... */ 3312 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3313 if ((device->inq_flags & SID_CmdQue) != 0 3314 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3315 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3316 else 3317 /* 3318 * Clear this in case of a retried CCB that 3319 * failed due to a rejected tag. 3320 */ 3321 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3322 } 3323 3324 KASSERT(device == work_ccb->ccb_h.path->device, 3325 ("device (%p) / path->device (%p) mismatch", 3326 device, work_ccb->ccb_h.path->device)); 3327 proto = xpt_proto_find(device->protocol); 3328 if (proto && proto->ops->debug_out) 3329 proto->ops->debug_out(work_ccb); 3330 3331 /* 3332 * Device queues can be shared among multiple SIM instances 3333 * that reside on different busses. Use the SIM from the 3334 * queued device, rather than the one from the calling bus. 3335 */ 3336 sim = device->sim; 3337 lock = (mtx_owned(sim->mtx) == 0); 3338 if (lock) 3339 CAM_SIM_LOCK(sim); 3340 work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms 3341 (*(sim->sim_action))(sim, work_ccb); 3342 if (lock) 3343 CAM_SIM_UNLOCK(sim); 3344 mtx_lock(&devq->send_mtx); 3345 } 3346 devq->send_queue.qfrozen_cnt--; 3347 } 3348 3349 /* 3350 * This function merges stuff from the slave ccb into the master ccb, while 3351 * keeping important fields in the master ccb constant. 3352 */ 3353 void 3354 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3355 { 3356 3357 /* 3358 * Pull fields that are valid for peripheral drivers to set 3359 * into the master CCB along with the CCB "payload". 3360 */ 3361 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3362 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3363 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3364 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3365 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3366 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3367 } 3368 3369 void 3370 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3371 u_int32_t priority, u_int32_t flags) 3372 { 3373 3374 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3375 ccb_h->pinfo.priority = priority; 3376 ccb_h->path = path; 3377 ccb_h->path_id = path->bus->path_id; 3378 if (path->target) 3379 ccb_h->target_id = path->target->target_id; 3380 else 3381 ccb_h->target_id = CAM_TARGET_WILDCARD; 3382 if (path->device) { 3383 ccb_h->target_lun = path->device->lun_id; 3384 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3385 } else { 3386 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3387 } 3388 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3389 ccb_h->flags = flags; 3390 ccb_h->xflags = 0; 3391 } 3392 3393 void 3394 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3395 { 3396 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3397 } 3398 3399 /* Path manipulation functions */ 3400 cam_status 3401 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3402 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3403 { 3404 struct cam_path *path; 3405 cam_status status; 3406 3407 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3408 3409 if (path == NULL) { 3410 status = CAM_RESRC_UNAVAIL; 3411 return(status); 3412 } 3413 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3414 if (status != CAM_REQ_CMP) { 3415 free(path, M_CAMPATH); 3416 path = NULL; 3417 } 3418 *new_path_ptr = path; 3419 return (status); 3420 } 3421 3422 cam_status 3423 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3424 struct cam_periph *periph, path_id_t path_id, 3425 target_id_t target_id, lun_id_t lun_id) 3426 { 3427 3428 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3429 lun_id)); 3430 } 3431 3432 cam_status 3433 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3434 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3435 { 3436 struct cam_eb *bus; 3437 struct cam_et *target; 3438 struct cam_ed *device; 3439 cam_status status; 3440 3441 status = CAM_REQ_CMP; /* Completed without error */ 3442 target = NULL; /* Wildcarded */ 3443 device = NULL; /* Wildcarded */ 3444 3445 /* 3446 * We will potentially modify the EDT, so block interrupts 3447 * that may attempt to create cam paths. 3448 */ 3449 bus = xpt_find_bus(path_id); 3450 if (bus == NULL) { 3451 status = CAM_PATH_INVALID; 3452 } else { 3453 xpt_lock_buses(); 3454 mtx_lock(&bus->eb_mtx); 3455 target = xpt_find_target(bus, target_id); 3456 if (target == NULL) { 3457 /* Create one */ 3458 struct cam_et *new_target; 3459 3460 new_target = xpt_alloc_target(bus, target_id); 3461 if (new_target == NULL) { 3462 status = CAM_RESRC_UNAVAIL; 3463 } else { 3464 target = new_target; 3465 } 3466 } 3467 xpt_unlock_buses(); 3468 if (target != NULL) { 3469 device = xpt_find_device(target, lun_id); 3470 if (device == NULL) { 3471 /* Create one */ 3472 struct cam_ed *new_device; 3473 3474 new_device = 3475 (*(bus->xport->ops->alloc_device))(bus, 3476 target, 3477 lun_id); 3478 if (new_device == NULL) { 3479 status = CAM_RESRC_UNAVAIL; 3480 } else { 3481 device = new_device; 3482 } 3483 } 3484 } 3485 mtx_unlock(&bus->eb_mtx); 3486 } 3487 3488 /* 3489 * Only touch the user's data if we are successful. 3490 */ 3491 if (status == CAM_REQ_CMP) { 3492 new_path->periph = perph; 3493 new_path->bus = bus; 3494 new_path->target = target; 3495 new_path->device = device; 3496 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3497 } else { 3498 if (device != NULL) 3499 xpt_release_device(device); 3500 if (target != NULL) 3501 xpt_release_target(target); 3502 if (bus != NULL) 3503 xpt_release_bus(bus); 3504 } 3505 return (status); 3506 } 3507 3508 cam_status 3509 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3510 { 3511 struct cam_path *new_path; 3512 3513 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3514 if (new_path == NULL) 3515 return(CAM_RESRC_UNAVAIL); 3516 xpt_copy_path(new_path, path); 3517 *new_path_ptr = new_path; 3518 return (CAM_REQ_CMP); 3519 } 3520 3521 void 3522 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3523 { 3524 3525 *new_path = *path; 3526 if (path->bus != NULL) 3527 xpt_acquire_bus(path->bus); 3528 if (path->target != NULL) 3529 xpt_acquire_target(path->target); 3530 if (path->device != NULL) 3531 xpt_acquire_device(path->device); 3532 } 3533 3534 void 3535 xpt_release_path(struct cam_path *path) 3536 { 3537 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3538 if (path->device != NULL) { 3539 xpt_release_device(path->device); 3540 path->device = NULL; 3541 } 3542 if (path->target != NULL) { 3543 xpt_release_target(path->target); 3544 path->target = NULL; 3545 } 3546 if (path->bus != NULL) { 3547 xpt_release_bus(path->bus); 3548 path->bus = NULL; 3549 } 3550 } 3551 3552 void 3553 xpt_free_path(struct cam_path *path) 3554 { 3555 3556 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3557 xpt_release_path(path); 3558 free(path, M_CAMPATH); 3559 } 3560 3561 void 3562 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3563 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3564 { 3565 3566 xpt_lock_buses(); 3567 if (bus_ref) { 3568 if (path->bus) 3569 *bus_ref = path->bus->refcount; 3570 else 3571 *bus_ref = 0; 3572 } 3573 if (periph_ref) { 3574 if (path->periph) 3575 *periph_ref = path->periph->refcount; 3576 else 3577 *periph_ref = 0; 3578 } 3579 xpt_unlock_buses(); 3580 if (target_ref) { 3581 if (path->target) 3582 *target_ref = path->target->refcount; 3583 else 3584 *target_ref = 0; 3585 } 3586 if (device_ref) { 3587 if (path->device) 3588 *device_ref = path->device->refcount; 3589 else 3590 *device_ref = 0; 3591 } 3592 } 3593 3594 /* 3595 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3596 * in path1, 2 for match with wildcards in path2. 3597 */ 3598 int 3599 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3600 { 3601 int retval = 0; 3602 3603 if (path1->bus != path2->bus) { 3604 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3605 retval = 1; 3606 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3607 retval = 2; 3608 else 3609 return (-1); 3610 } 3611 if (path1->target != path2->target) { 3612 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3613 if (retval == 0) 3614 retval = 1; 3615 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3616 retval = 2; 3617 else 3618 return (-1); 3619 } 3620 if (path1->device != path2->device) { 3621 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3622 if (retval == 0) 3623 retval = 1; 3624 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3625 retval = 2; 3626 else 3627 return (-1); 3628 } 3629 return (retval); 3630 } 3631 3632 int 3633 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3634 { 3635 int retval = 0; 3636 3637 if (path->bus != dev->target->bus) { 3638 if (path->bus->path_id == CAM_BUS_WILDCARD) 3639 retval = 1; 3640 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3641 retval = 2; 3642 else 3643 return (-1); 3644 } 3645 if (path->target != dev->target) { 3646 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3647 if (retval == 0) 3648 retval = 1; 3649 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3650 retval = 2; 3651 else 3652 return (-1); 3653 } 3654 if (path->device != dev) { 3655 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3656 if (retval == 0) 3657 retval = 1; 3658 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3659 retval = 2; 3660 else 3661 return (-1); 3662 } 3663 return (retval); 3664 } 3665 3666 void 3667 xpt_print_path(struct cam_path *path) 3668 { 3669 3670 if (path == NULL) 3671 printf("(nopath): "); 3672 else { 3673 if (path->periph != NULL) 3674 printf("(%s%d:", path->periph->periph_name, 3675 path->periph->unit_number); 3676 else 3677 printf("(noperiph:"); 3678 3679 if (path->bus != NULL) 3680 printf("%s%d:%d:", path->bus->sim->sim_name, 3681 path->bus->sim->unit_number, 3682 path->bus->sim->bus_id); 3683 else 3684 printf("nobus:"); 3685 3686 if (path->target != NULL) 3687 printf("%d:", path->target->target_id); 3688 else 3689 printf("X:"); 3690 3691 if (path->device != NULL) 3692 printf("%jx): ", (uintmax_t)path->device->lun_id); 3693 else 3694 printf("X): "); 3695 } 3696 } 3697 3698 void 3699 xpt_print_device(struct cam_ed *device) 3700 { 3701 3702 if (device == NULL) 3703 printf("(nopath): "); 3704 else { 3705 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3706 device->sim->unit_number, 3707 device->sim->bus_id, 3708 device->target->target_id, 3709 (uintmax_t)device->lun_id); 3710 } 3711 } 3712 3713 void 3714 xpt_print(struct cam_path *path, const char *fmt, ...) 3715 { 3716 va_list ap; 3717 xpt_print_path(path); 3718 va_start(ap, fmt); 3719 vprintf(fmt, ap); 3720 va_end(ap); 3721 } 3722 3723 int 3724 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3725 { 3726 struct sbuf sb; 3727 3728 sbuf_new(&sb, str, str_len, 0); 3729 3730 if (path == NULL) 3731 sbuf_printf(&sb, "(nopath): "); 3732 else { 3733 if (path->periph != NULL) 3734 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3735 path->periph->unit_number); 3736 else 3737 sbuf_printf(&sb, "(noperiph:"); 3738 3739 if (path->bus != NULL) 3740 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3741 path->bus->sim->unit_number, 3742 path->bus->sim->bus_id); 3743 else 3744 sbuf_printf(&sb, "nobus:"); 3745 3746 if (path->target != NULL) 3747 sbuf_printf(&sb, "%d:", path->target->target_id); 3748 else 3749 sbuf_printf(&sb, "X:"); 3750 3751 if (path->device != NULL) 3752 sbuf_printf(&sb, "%jx): ", 3753 (uintmax_t)path->device->lun_id); 3754 else 3755 sbuf_printf(&sb, "X): "); 3756 } 3757 sbuf_finish(&sb); 3758 3759 return(sbuf_len(&sb)); 3760 } 3761 3762 path_id_t 3763 xpt_path_path_id(struct cam_path *path) 3764 { 3765 return(path->bus->path_id); 3766 } 3767 3768 target_id_t 3769 xpt_path_target_id(struct cam_path *path) 3770 { 3771 if (path->target != NULL) 3772 return (path->target->target_id); 3773 else 3774 return (CAM_TARGET_WILDCARD); 3775 } 3776 3777 lun_id_t 3778 xpt_path_lun_id(struct cam_path *path) 3779 { 3780 if (path->device != NULL) 3781 return (path->device->lun_id); 3782 else 3783 return (CAM_LUN_WILDCARD); 3784 } 3785 3786 struct cam_sim * 3787 xpt_path_sim(struct cam_path *path) 3788 { 3789 3790 return (path->bus->sim); 3791 } 3792 3793 struct cam_periph* 3794 xpt_path_periph(struct cam_path *path) 3795 { 3796 3797 return (path->periph); 3798 } 3799 3800 /* 3801 * Release a CAM control block for the caller. Remit the cost of the structure 3802 * to the device referenced by the path. If the this device had no 'credits' 3803 * and peripheral drivers have registered async callbacks for this notification 3804 * call them now. 3805 */ 3806 void 3807 xpt_release_ccb(union ccb *free_ccb) 3808 { 3809 struct cam_ed *device; 3810 struct cam_periph *periph; 3811 3812 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3813 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3814 device = free_ccb->ccb_h.path->device; 3815 periph = free_ccb->ccb_h.path->periph; 3816 3817 xpt_free_ccb(free_ccb); 3818 periph->periph_allocated--; 3819 cam_ccbq_release_opening(&device->ccbq); 3820 xpt_run_allocq(periph, 0); 3821 } 3822 3823 /* Functions accessed by SIM drivers */ 3824 3825 static struct xpt_xport_ops xport_default_ops = { 3826 .alloc_device = xpt_alloc_device_default, 3827 .action = xpt_action_default, 3828 .async = xpt_dev_async_default, 3829 }; 3830 static struct xpt_xport xport_default = { 3831 .xport = XPORT_UNKNOWN, 3832 .name = "unknown", 3833 .ops = &xport_default_ops, 3834 }; 3835 3836 CAM_XPT_XPORT(xport_default); 3837 3838 /* 3839 * A sim structure, listing the SIM entry points and instance 3840 * identification info is passed to xpt_bus_register to hook the SIM 3841 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3842 * for this new bus and places it in the array of busses and assigns 3843 * it a path_id. The path_id may be influenced by "hard wiring" 3844 * information specified by the user. Once interrupt services are 3845 * available, the bus will be probed. 3846 */ 3847 int32_t 3848 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3849 { 3850 struct cam_eb *new_bus; 3851 struct cam_eb *old_bus; 3852 struct ccb_pathinq cpi; 3853 struct cam_path *path; 3854 cam_status status; 3855 3856 mtx_assert(sim->mtx, MA_OWNED); 3857 3858 sim->bus_id = bus; 3859 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3860 M_CAMXPT, M_NOWAIT|M_ZERO); 3861 if (new_bus == NULL) { 3862 /* Couldn't satisfy request */ 3863 return (CAM_RESRC_UNAVAIL); 3864 } 3865 3866 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3867 TAILQ_INIT(&new_bus->et_entries); 3868 cam_sim_hold(sim); 3869 new_bus->sim = sim; 3870 timevalclear(&new_bus->last_reset); 3871 new_bus->flags = 0; 3872 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3873 new_bus->generation = 0; 3874 3875 xpt_lock_buses(); 3876 sim->path_id = new_bus->path_id = 3877 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3878 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3879 while (old_bus != NULL 3880 && old_bus->path_id < new_bus->path_id) 3881 old_bus = TAILQ_NEXT(old_bus, links); 3882 if (old_bus != NULL) 3883 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3884 else 3885 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3886 xsoftc.bus_generation++; 3887 xpt_unlock_buses(); 3888 3889 /* 3890 * Set a default transport so that a PATH_INQ can be issued to 3891 * the SIM. This will then allow for probing and attaching of 3892 * a more appropriate transport. 3893 */ 3894 new_bus->xport = &xport_default; 3895 3896 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3897 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3898 if (status != CAM_REQ_CMP) { 3899 xpt_release_bus(new_bus); 3900 free(path, M_CAMXPT); 3901 return (CAM_RESRC_UNAVAIL); 3902 } 3903 3904 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3905 cpi.ccb_h.func_code = XPT_PATH_INQ; 3906 xpt_action((union ccb *)&cpi); 3907 3908 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3909 struct xpt_xport **xpt; 3910 3911 SET_FOREACH(xpt, cam_xpt_xport_set) { 3912 if ((*xpt)->xport == cpi.transport) { 3913 new_bus->xport = *xpt; 3914 break; 3915 } 3916 } 3917 if (new_bus->xport == NULL) { 3918 xpt_print_path(path); 3919 printf("No transport found for %d\n", cpi.transport); 3920 xpt_release_bus(new_bus); 3921 free(path, M_CAMXPT); 3922 return (CAM_RESRC_UNAVAIL); 3923 } 3924 } 3925 3926 /* Notify interested parties */ 3927 if (sim->path_id != CAM_XPT_PATH_ID) { 3928 3929 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3930 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3931 union ccb *scan_ccb; 3932 3933 /* Initiate bus rescan. */ 3934 scan_ccb = xpt_alloc_ccb_nowait(); 3935 if (scan_ccb != NULL) { 3936 scan_ccb->ccb_h.path = path; 3937 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3938 scan_ccb->crcn.flags = 0; 3939 xpt_rescan(scan_ccb); 3940 } else { 3941 xpt_print(path, 3942 "Can't allocate CCB to scan bus\n"); 3943 xpt_free_path(path); 3944 } 3945 } else 3946 xpt_free_path(path); 3947 } else 3948 xpt_free_path(path); 3949 return (CAM_SUCCESS); 3950 } 3951 3952 int32_t 3953 xpt_bus_deregister(path_id_t pathid) 3954 { 3955 struct cam_path bus_path; 3956 cam_status status; 3957 3958 status = xpt_compile_path(&bus_path, NULL, pathid, 3959 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3960 if (status != CAM_REQ_CMP) 3961 return (status); 3962 3963 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3964 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3965 3966 /* Release the reference count held while registered. */ 3967 xpt_release_bus(bus_path.bus); 3968 xpt_release_path(&bus_path); 3969 3970 return (CAM_REQ_CMP); 3971 } 3972 3973 static path_id_t 3974 xptnextfreepathid(void) 3975 { 3976 struct cam_eb *bus; 3977 path_id_t pathid; 3978 const char *strval; 3979 3980 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3981 pathid = 0; 3982 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3983 retry: 3984 /* Find an unoccupied pathid */ 3985 while (bus != NULL && bus->path_id <= pathid) { 3986 if (bus->path_id == pathid) 3987 pathid++; 3988 bus = TAILQ_NEXT(bus, links); 3989 } 3990 3991 /* 3992 * Ensure that this pathid is not reserved for 3993 * a bus that may be registered in the future. 3994 */ 3995 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3996 ++pathid; 3997 /* Start the search over */ 3998 goto retry; 3999 } 4000 return (pathid); 4001 } 4002 4003 static path_id_t 4004 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4005 { 4006 path_id_t pathid; 4007 int i, dunit, val; 4008 char buf[32]; 4009 const char *dname; 4010 4011 pathid = CAM_XPT_PATH_ID; 4012 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4013 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4014 return (pathid); 4015 i = 0; 4016 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4017 if (strcmp(dname, "scbus")) { 4018 /* Avoid a bit of foot shooting. */ 4019 continue; 4020 } 4021 if (dunit < 0) /* unwired?! */ 4022 continue; 4023 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4024 if (sim_bus == val) { 4025 pathid = dunit; 4026 break; 4027 } 4028 } else if (sim_bus == 0) { 4029 /* Unspecified matches bus 0 */ 4030 pathid = dunit; 4031 break; 4032 } else { 4033 printf("Ambiguous scbus configuration for %s%d " 4034 "bus %d, cannot wire down. The kernel " 4035 "config entry for scbus%d should " 4036 "specify a controller bus.\n" 4037 "Scbus will be assigned dynamically.\n", 4038 sim_name, sim_unit, sim_bus, dunit); 4039 break; 4040 } 4041 } 4042 4043 if (pathid == CAM_XPT_PATH_ID) 4044 pathid = xptnextfreepathid(); 4045 return (pathid); 4046 } 4047 4048 static const char * 4049 xpt_async_string(u_int32_t async_code) 4050 { 4051 4052 switch (async_code) { 4053 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4054 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4055 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4056 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4057 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4058 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4059 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4060 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4061 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4062 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4063 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4064 case AC_CONTRACT: return ("AC_CONTRACT"); 4065 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4066 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4067 } 4068 return ("AC_UNKNOWN"); 4069 } 4070 4071 static int 4072 xpt_async_size(u_int32_t async_code) 4073 { 4074 4075 switch (async_code) { 4076 case AC_BUS_RESET: return (0); 4077 case AC_UNSOL_RESEL: return (0); 4078 case AC_SCSI_AEN: return (0); 4079 case AC_SENT_BDR: return (0); 4080 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4081 case AC_PATH_DEREGISTERED: return (0); 4082 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4083 case AC_LOST_DEVICE: return (0); 4084 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4085 case AC_INQ_CHANGED: return (0); 4086 case AC_GETDEV_CHANGED: return (0); 4087 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4088 case AC_ADVINFO_CHANGED: return (-1); 4089 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4090 } 4091 return (0); 4092 } 4093 4094 static int 4095 xpt_async_process_dev(struct cam_ed *device, void *arg) 4096 { 4097 union ccb *ccb = arg; 4098 struct cam_path *path = ccb->ccb_h.path; 4099 void *async_arg = ccb->casync.async_arg_ptr; 4100 u_int32_t async_code = ccb->casync.async_code; 4101 int relock; 4102 4103 if (path->device != device 4104 && path->device->lun_id != CAM_LUN_WILDCARD 4105 && device->lun_id != CAM_LUN_WILDCARD) 4106 return (1); 4107 4108 /* 4109 * The async callback could free the device. 4110 * If it is a broadcast async, it doesn't hold 4111 * device reference, so take our own reference. 4112 */ 4113 xpt_acquire_device(device); 4114 4115 /* 4116 * If async for specific device is to be delivered to 4117 * the wildcard client, take the specific device lock. 4118 * XXX: We may need a way for client to specify it. 4119 */ 4120 if ((device->lun_id == CAM_LUN_WILDCARD && 4121 path->device->lun_id != CAM_LUN_WILDCARD) || 4122 (device->target->target_id == CAM_TARGET_WILDCARD && 4123 path->target->target_id != CAM_TARGET_WILDCARD) || 4124 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4125 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4126 mtx_unlock(&device->device_mtx); 4127 xpt_path_lock(path); 4128 relock = 1; 4129 } else 4130 relock = 0; 4131 4132 (*(device->target->bus->xport->ops->async))(async_code, 4133 device->target->bus, device->target, device, async_arg); 4134 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4135 4136 if (relock) { 4137 xpt_path_unlock(path); 4138 mtx_lock(&device->device_mtx); 4139 } 4140 xpt_release_device(device); 4141 return (1); 4142 } 4143 4144 static int 4145 xpt_async_process_tgt(struct cam_et *target, void *arg) 4146 { 4147 union ccb *ccb = arg; 4148 struct cam_path *path = ccb->ccb_h.path; 4149 4150 if (path->target != target 4151 && path->target->target_id != CAM_TARGET_WILDCARD 4152 && target->target_id != CAM_TARGET_WILDCARD) 4153 return (1); 4154 4155 if (ccb->casync.async_code == AC_SENT_BDR) { 4156 /* Update our notion of when the last reset occurred */ 4157 microtime(&target->last_reset); 4158 } 4159 4160 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4161 } 4162 4163 static void 4164 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4165 { 4166 struct cam_eb *bus; 4167 struct cam_path *path; 4168 void *async_arg; 4169 u_int32_t async_code; 4170 4171 path = ccb->ccb_h.path; 4172 async_code = ccb->casync.async_code; 4173 async_arg = ccb->casync.async_arg_ptr; 4174 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4175 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4176 bus = path->bus; 4177 4178 if (async_code == AC_BUS_RESET) { 4179 /* Update our notion of when the last reset occurred */ 4180 microtime(&bus->last_reset); 4181 } 4182 4183 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4184 4185 /* 4186 * If this wasn't a fully wildcarded async, tell all 4187 * clients that want all async events. 4188 */ 4189 if (bus != xpt_periph->path->bus) { 4190 xpt_path_lock(xpt_periph->path); 4191 xpt_async_process_dev(xpt_periph->path->device, ccb); 4192 xpt_path_unlock(xpt_periph->path); 4193 } 4194 4195 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4196 xpt_release_devq(path, 1, TRUE); 4197 else 4198 xpt_release_simq(path->bus->sim, TRUE); 4199 if (ccb->casync.async_arg_size > 0) 4200 free(async_arg, M_CAMXPT); 4201 xpt_free_path(path); 4202 xpt_free_ccb(ccb); 4203 } 4204 4205 static void 4206 xpt_async_bcast(struct async_list *async_head, 4207 u_int32_t async_code, 4208 struct cam_path *path, void *async_arg) 4209 { 4210 struct async_node *cur_entry; 4211 int lock; 4212 4213 cur_entry = SLIST_FIRST(async_head); 4214 while (cur_entry != NULL) { 4215 struct async_node *next_entry; 4216 /* 4217 * Grab the next list entry before we call the current 4218 * entry's callback. This is because the callback function 4219 * can delete its async callback entry. 4220 */ 4221 next_entry = SLIST_NEXT(cur_entry, links); 4222 if ((cur_entry->event_enable & async_code) != 0) { 4223 lock = cur_entry->event_lock; 4224 if (lock) 4225 CAM_SIM_LOCK(path->device->sim); 4226 cur_entry->callback(cur_entry->callback_arg, 4227 async_code, path, 4228 async_arg); 4229 if (lock) 4230 CAM_SIM_UNLOCK(path->device->sim); 4231 } 4232 cur_entry = next_entry; 4233 } 4234 } 4235 4236 void 4237 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4238 { 4239 union ccb *ccb; 4240 int size; 4241 4242 ccb = xpt_alloc_ccb_nowait(); 4243 if (ccb == NULL) { 4244 xpt_print(path, "Can't allocate CCB to send %s\n", 4245 xpt_async_string(async_code)); 4246 return; 4247 } 4248 4249 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4250 xpt_print(path, "Can't allocate path to send %s\n", 4251 xpt_async_string(async_code)); 4252 xpt_free_ccb(ccb); 4253 return; 4254 } 4255 ccb->ccb_h.path->periph = NULL; 4256 ccb->ccb_h.func_code = XPT_ASYNC; 4257 ccb->ccb_h.cbfcnp = xpt_async_process; 4258 ccb->ccb_h.flags |= CAM_UNLOCKED; 4259 ccb->casync.async_code = async_code; 4260 ccb->casync.async_arg_size = 0; 4261 size = xpt_async_size(async_code); 4262 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4263 ("xpt_async: func %#x %s aync_code %d %s\n", 4264 ccb->ccb_h.func_code, 4265 xpt_action_name(ccb->ccb_h.func_code), 4266 async_code, 4267 xpt_async_string(async_code))); 4268 if (size > 0 && async_arg != NULL) { 4269 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4270 if (ccb->casync.async_arg_ptr == NULL) { 4271 xpt_print(path, "Can't allocate argument to send %s\n", 4272 xpt_async_string(async_code)); 4273 xpt_free_path(ccb->ccb_h.path); 4274 xpt_free_ccb(ccb); 4275 return; 4276 } 4277 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4278 ccb->casync.async_arg_size = size; 4279 } else if (size < 0) { 4280 ccb->casync.async_arg_ptr = async_arg; 4281 ccb->casync.async_arg_size = size; 4282 } 4283 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4284 xpt_freeze_devq(path, 1); 4285 else 4286 xpt_freeze_simq(path->bus->sim, 1); 4287 xpt_done(ccb); 4288 } 4289 4290 static void 4291 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4292 struct cam_et *target, struct cam_ed *device, 4293 void *async_arg) 4294 { 4295 4296 /* 4297 * We only need to handle events for real devices. 4298 */ 4299 if (target->target_id == CAM_TARGET_WILDCARD 4300 || device->lun_id == CAM_LUN_WILDCARD) 4301 return; 4302 4303 printf("%s called\n", __func__); 4304 } 4305 4306 static uint32_t 4307 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4308 { 4309 struct cam_devq *devq; 4310 uint32_t freeze; 4311 4312 devq = dev->sim->devq; 4313 mtx_assert(&devq->send_mtx, MA_OWNED); 4314 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4315 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4316 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4317 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4318 /* Remove frozen device from sendq. */ 4319 if (device_is_queued(dev)) 4320 camq_remove(&devq->send_queue, dev->devq_entry.index); 4321 return (freeze); 4322 } 4323 4324 u_int32_t 4325 xpt_freeze_devq(struct cam_path *path, u_int count) 4326 { 4327 struct cam_ed *dev = path->device; 4328 struct cam_devq *devq; 4329 uint32_t freeze; 4330 4331 devq = dev->sim->devq; 4332 mtx_lock(&devq->send_mtx); 4333 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4334 freeze = xpt_freeze_devq_device(dev, count); 4335 mtx_unlock(&devq->send_mtx); 4336 return (freeze); 4337 } 4338 4339 u_int32_t 4340 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4341 { 4342 struct cam_devq *devq; 4343 uint32_t freeze; 4344 4345 devq = sim->devq; 4346 mtx_lock(&devq->send_mtx); 4347 freeze = (devq->send_queue.qfrozen_cnt += count); 4348 mtx_unlock(&devq->send_mtx); 4349 return (freeze); 4350 } 4351 4352 static void 4353 xpt_release_devq_timeout(void *arg) 4354 { 4355 struct cam_ed *dev; 4356 struct cam_devq *devq; 4357 4358 dev = (struct cam_ed *)arg; 4359 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4360 devq = dev->sim->devq; 4361 mtx_assert(&devq->send_mtx, MA_OWNED); 4362 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4363 xpt_run_devq(devq); 4364 } 4365 4366 void 4367 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4368 { 4369 struct cam_ed *dev; 4370 struct cam_devq *devq; 4371 4372 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4373 count, run_queue)); 4374 dev = path->device; 4375 devq = dev->sim->devq; 4376 mtx_lock(&devq->send_mtx); 4377 if (xpt_release_devq_device(dev, count, run_queue)) 4378 xpt_run_devq(dev->sim->devq); 4379 mtx_unlock(&devq->send_mtx); 4380 } 4381 4382 static int 4383 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4384 { 4385 4386 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4387 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4388 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4389 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4390 if (count > dev->ccbq.queue.qfrozen_cnt) { 4391 #ifdef INVARIANTS 4392 printf("xpt_release_devq(): requested %u > present %u\n", 4393 count, dev->ccbq.queue.qfrozen_cnt); 4394 #endif 4395 count = dev->ccbq.queue.qfrozen_cnt; 4396 } 4397 dev->ccbq.queue.qfrozen_cnt -= count; 4398 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4399 /* 4400 * No longer need to wait for a successful 4401 * command completion. 4402 */ 4403 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4404 /* 4405 * Remove any timeouts that might be scheduled 4406 * to release this queue. 4407 */ 4408 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4409 callout_stop(&dev->callout); 4410 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4411 } 4412 /* 4413 * Now that we are unfrozen schedule the 4414 * device so any pending transactions are 4415 * run. 4416 */ 4417 xpt_schedule_devq(dev->sim->devq, dev); 4418 } else 4419 run_queue = 0; 4420 return (run_queue); 4421 } 4422 4423 void 4424 xpt_release_simq(struct cam_sim *sim, int run_queue) 4425 { 4426 struct cam_devq *devq; 4427 4428 devq = sim->devq; 4429 mtx_lock(&devq->send_mtx); 4430 if (devq->send_queue.qfrozen_cnt <= 0) { 4431 #ifdef INVARIANTS 4432 printf("xpt_release_simq: requested 1 > present %u\n", 4433 devq->send_queue.qfrozen_cnt); 4434 #endif 4435 } else 4436 devq->send_queue.qfrozen_cnt--; 4437 if (devq->send_queue.qfrozen_cnt == 0) { 4438 /* 4439 * If there is a timeout scheduled to release this 4440 * sim queue, remove it. The queue frozen count is 4441 * already at 0. 4442 */ 4443 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4444 callout_stop(&sim->callout); 4445 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4446 } 4447 if (run_queue) { 4448 /* 4449 * Now that we are unfrozen run the send queue. 4450 */ 4451 xpt_run_devq(sim->devq); 4452 } 4453 } 4454 mtx_unlock(&devq->send_mtx); 4455 } 4456 4457 /* 4458 * XXX Appears to be unused. 4459 */ 4460 static void 4461 xpt_release_simq_timeout(void *arg) 4462 { 4463 struct cam_sim *sim; 4464 4465 sim = (struct cam_sim *)arg; 4466 xpt_release_simq(sim, /* run_queue */ TRUE); 4467 } 4468 4469 void 4470 xpt_done(union ccb *done_ccb) 4471 { 4472 struct cam_doneq *queue; 4473 int run, hash; 4474 4475 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4476 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4477 done_ccb->csio.bio != NULL) 4478 biotrack(done_ccb->csio.bio, __func__); 4479 #endif 4480 4481 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4482 ("xpt_done: func= %#x %s status %#x\n", 4483 done_ccb->ccb_h.func_code, 4484 xpt_action_name(done_ccb->ccb_h.func_code), 4485 done_ccb->ccb_h.status)); 4486 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4487 return; 4488 4489 /* Store the time the ccb was in the sim */ 4490 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4491 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4492 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4493 queue = &cam_doneqs[hash]; 4494 mtx_lock(&queue->cam_doneq_mtx); 4495 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4496 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4497 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4498 mtx_unlock(&queue->cam_doneq_mtx); 4499 if (run) 4500 wakeup(&queue->cam_doneq); 4501 } 4502 4503 void 4504 xpt_done_direct(union ccb *done_ccb) 4505 { 4506 4507 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4508 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4509 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4510 return; 4511 4512 /* Store the time the ccb was in the sim */ 4513 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4514 xpt_done_process(&done_ccb->ccb_h); 4515 } 4516 4517 union ccb * 4518 xpt_alloc_ccb() 4519 { 4520 union ccb *new_ccb; 4521 4522 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4523 return (new_ccb); 4524 } 4525 4526 union ccb * 4527 xpt_alloc_ccb_nowait() 4528 { 4529 union ccb *new_ccb; 4530 4531 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4532 return (new_ccb); 4533 } 4534 4535 void 4536 xpt_free_ccb(union ccb *free_ccb) 4537 { 4538 free(free_ccb, M_CAMCCB); 4539 } 4540 4541 4542 4543 /* Private XPT functions */ 4544 4545 /* 4546 * Get a CAM control block for the caller. Charge the structure to the device 4547 * referenced by the path. If we don't have sufficient resources to allocate 4548 * more ccbs, we return NULL. 4549 */ 4550 static union ccb * 4551 xpt_get_ccb_nowait(struct cam_periph *periph) 4552 { 4553 union ccb *new_ccb; 4554 4555 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4556 if (new_ccb == NULL) 4557 return (NULL); 4558 periph->periph_allocated++; 4559 cam_ccbq_take_opening(&periph->path->device->ccbq); 4560 return (new_ccb); 4561 } 4562 4563 static union ccb * 4564 xpt_get_ccb(struct cam_periph *periph) 4565 { 4566 union ccb *new_ccb; 4567 4568 cam_periph_unlock(periph); 4569 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4570 cam_periph_lock(periph); 4571 periph->periph_allocated++; 4572 cam_ccbq_take_opening(&periph->path->device->ccbq); 4573 return (new_ccb); 4574 } 4575 4576 union ccb * 4577 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4578 { 4579 struct ccb_hdr *ccb_h; 4580 4581 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4582 cam_periph_assert(periph, MA_OWNED); 4583 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4584 ccb_h->pinfo.priority != priority) { 4585 if (priority < periph->immediate_priority) { 4586 periph->immediate_priority = priority; 4587 xpt_run_allocq(periph, 0); 4588 } else 4589 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4590 "cgticb", 0); 4591 } 4592 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4593 return ((union ccb *)ccb_h); 4594 } 4595 4596 static void 4597 xpt_acquire_bus(struct cam_eb *bus) 4598 { 4599 4600 xpt_lock_buses(); 4601 bus->refcount++; 4602 xpt_unlock_buses(); 4603 } 4604 4605 static void 4606 xpt_release_bus(struct cam_eb *bus) 4607 { 4608 4609 xpt_lock_buses(); 4610 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4611 if (--bus->refcount > 0) { 4612 xpt_unlock_buses(); 4613 return; 4614 } 4615 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4616 xsoftc.bus_generation++; 4617 xpt_unlock_buses(); 4618 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4619 ("destroying bus, but target list is not empty")); 4620 cam_sim_release(bus->sim); 4621 mtx_destroy(&bus->eb_mtx); 4622 free(bus, M_CAMXPT); 4623 } 4624 4625 static struct cam_et * 4626 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4627 { 4628 struct cam_et *cur_target, *target; 4629 4630 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4631 mtx_assert(&bus->eb_mtx, MA_OWNED); 4632 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4633 M_NOWAIT|M_ZERO); 4634 if (target == NULL) 4635 return (NULL); 4636 4637 TAILQ_INIT(&target->ed_entries); 4638 target->bus = bus; 4639 target->target_id = target_id; 4640 target->refcount = 1; 4641 target->generation = 0; 4642 target->luns = NULL; 4643 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4644 timevalclear(&target->last_reset); 4645 /* 4646 * Hold a reference to our parent bus so it 4647 * will not go away before we do. 4648 */ 4649 bus->refcount++; 4650 4651 /* Insertion sort into our bus's target list */ 4652 cur_target = TAILQ_FIRST(&bus->et_entries); 4653 while (cur_target != NULL && cur_target->target_id < target_id) 4654 cur_target = TAILQ_NEXT(cur_target, links); 4655 if (cur_target != NULL) { 4656 TAILQ_INSERT_BEFORE(cur_target, target, links); 4657 } else { 4658 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4659 } 4660 bus->generation++; 4661 return (target); 4662 } 4663 4664 static void 4665 xpt_acquire_target(struct cam_et *target) 4666 { 4667 struct cam_eb *bus = target->bus; 4668 4669 mtx_lock(&bus->eb_mtx); 4670 target->refcount++; 4671 mtx_unlock(&bus->eb_mtx); 4672 } 4673 4674 static void 4675 xpt_release_target(struct cam_et *target) 4676 { 4677 struct cam_eb *bus = target->bus; 4678 4679 mtx_lock(&bus->eb_mtx); 4680 if (--target->refcount > 0) { 4681 mtx_unlock(&bus->eb_mtx); 4682 return; 4683 } 4684 TAILQ_REMOVE(&bus->et_entries, target, links); 4685 bus->generation++; 4686 mtx_unlock(&bus->eb_mtx); 4687 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4688 ("destroying target, but device list is not empty")); 4689 xpt_release_bus(bus); 4690 mtx_destroy(&target->luns_mtx); 4691 if (target->luns) 4692 free(target->luns, M_CAMXPT); 4693 free(target, M_CAMXPT); 4694 } 4695 4696 static struct cam_ed * 4697 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4698 lun_id_t lun_id) 4699 { 4700 struct cam_ed *device; 4701 4702 device = xpt_alloc_device(bus, target, lun_id); 4703 if (device == NULL) 4704 return (NULL); 4705 4706 device->mintags = 1; 4707 device->maxtags = 1; 4708 return (device); 4709 } 4710 4711 static void 4712 xpt_destroy_device(void *context, int pending) 4713 { 4714 struct cam_ed *device = context; 4715 4716 mtx_lock(&device->device_mtx); 4717 mtx_destroy(&device->device_mtx); 4718 free(device, M_CAMDEV); 4719 } 4720 4721 struct cam_ed * 4722 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4723 { 4724 struct cam_ed *cur_device, *device; 4725 struct cam_devq *devq; 4726 cam_status status; 4727 4728 mtx_assert(&bus->eb_mtx, MA_OWNED); 4729 /* Make space for us in the device queue on our bus */ 4730 devq = bus->sim->devq; 4731 mtx_lock(&devq->send_mtx); 4732 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4733 mtx_unlock(&devq->send_mtx); 4734 if (status != CAM_REQ_CMP) 4735 return (NULL); 4736 4737 device = (struct cam_ed *)malloc(sizeof(*device), 4738 M_CAMDEV, M_NOWAIT|M_ZERO); 4739 if (device == NULL) 4740 return (NULL); 4741 4742 cam_init_pinfo(&device->devq_entry); 4743 device->target = target; 4744 device->lun_id = lun_id; 4745 device->sim = bus->sim; 4746 if (cam_ccbq_init(&device->ccbq, 4747 bus->sim->max_dev_openings) != 0) { 4748 free(device, M_CAMDEV); 4749 return (NULL); 4750 } 4751 SLIST_INIT(&device->asyncs); 4752 SLIST_INIT(&device->periphs); 4753 device->generation = 0; 4754 device->flags = CAM_DEV_UNCONFIGURED; 4755 device->tag_delay_count = 0; 4756 device->tag_saved_openings = 0; 4757 device->refcount = 1; 4758 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4759 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4760 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4761 /* 4762 * Hold a reference to our parent bus so it 4763 * will not go away before we do. 4764 */ 4765 target->refcount++; 4766 4767 cur_device = TAILQ_FIRST(&target->ed_entries); 4768 while (cur_device != NULL && cur_device->lun_id < lun_id) 4769 cur_device = TAILQ_NEXT(cur_device, links); 4770 if (cur_device != NULL) 4771 TAILQ_INSERT_BEFORE(cur_device, device, links); 4772 else 4773 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4774 target->generation++; 4775 return (device); 4776 } 4777 4778 void 4779 xpt_acquire_device(struct cam_ed *device) 4780 { 4781 struct cam_eb *bus = device->target->bus; 4782 4783 mtx_lock(&bus->eb_mtx); 4784 device->refcount++; 4785 mtx_unlock(&bus->eb_mtx); 4786 } 4787 4788 void 4789 xpt_release_device(struct cam_ed *device) 4790 { 4791 struct cam_eb *bus = device->target->bus; 4792 struct cam_devq *devq; 4793 4794 mtx_lock(&bus->eb_mtx); 4795 if (--device->refcount > 0) { 4796 mtx_unlock(&bus->eb_mtx); 4797 return; 4798 } 4799 4800 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4801 device->target->generation++; 4802 mtx_unlock(&bus->eb_mtx); 4803 4804 /* Release our slot in the devq */ 4805 devq = bus->sim->devq; 4806 mtx_lock(&devq->send_mtx); 4807 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4808 mtx_unlock(&devq->send_mtx); 4809 4810 KASSERT(SLIST_EMPTY(&device->periphs), 4811 ("destroying device, but periphs list is not empty")); 4812 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4813 ("destroying device while still queued for ccbs")); 4814 4815 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4816 callout_stop(&device->callout); 4817 4818 xpt_release_target(device->target); 4819 4820 cam_ccbq_fini(&device->ccbq); 4821 /* 4822 * Free allocated memory. free(9) does nothing if the 4823 * supplied pointer is NULL, so it is safe to call without 4824 * checking. 4825 */ 4826 free(device->supported_vpds, M_CAMXPT); 4827 free(device->device_id, M_CAMXPT); 4828 free(device->ext_inq, M_CAMXPT); 4829 free(device->physpath, M_CAMXPT); 4830 free(device->rcap_buf, M_CAMXPT); 4831 free(device->serial_num, M_CAMXPT); 4832 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4833 } 4834 4835 u_int32_t 4836 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4837 { 4838 int result; 4839 struct cam_ed *dev; 4840 4841 dev = path->device; 4842 mtx_lock(&dev->sim->devq->send_mtx); 4843 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4844 mtx_unlock(&dev->sim->devq->send_mtx); 4845 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4846 || (dev->inq_flags & SID_CmdQue) != 0) 4847 dev->tag_saved_openings = newopenings; 4848 return (result); 4849 } 4850 4851 static struct cam_eb * 4852 xpt_find_bus(path_id_t path_id) 4853 { 4854 struct cam_eb *bus; 4855 4856 xpt_lock_buses(); 4857 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4858 bus != NULL; 4859 bus = TAILQ_NEXT(bus, links)) { 4860 if (bus->path_id == path_id) { 4861 bus->refcount++; 4862 break; 4863 } 4864 } 4865 xpt_unlock_buses(); 4866 return (bus); 4867 } 4868 4869 static struct cam_et * 4870 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4871 { 4872 struct cam_et *target; 4873 4874 mtx_assert(&bus->eb_mtx, MA_OWNED); 4875 for (target = TAILQ_FIRST(&bus->et_entries); 4876 target != NULL; 4877 target = TAILQ_NEXT(target, links)) { 4878 if (target->target_id == target_id) { 4879 target->refcount++; 4880 break; 4881 } 4882 } 4883 return (target); 4884 } 4885 4886 static struct cam_ed * 4887 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4888 { 4889 struct cam_ed *device; 4890 4891 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4892 for (device = TAILQ_FIRST(&target->ed_entries); 4893 device != NULL; 4894 device = TAILQ_NEXT(device, links)) { 4895 if (device->lun_id == lun_id) { 4896 device->refcount++; 4897 break; 4898 } 4899 } 4900 return (device); 4901 } 4902 4903 void 4904 xpt_start_tags(struct cam_path *path) 4905 { 4906 struct ccb_relsim crs; 4907 struct cam_ed *device; 4908 struct cam_sim *sim; 4909 int newopenings; 4910 4911 device = path->device; 4912 sim = path->bus->sim; 4913 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4914 xpt_freeze_devq(path, /*count*/1); 4915 device->inq_flags |= SID_CmdQue; 4916 if (device->tag_saved_openings != 0) 4917 newopenings = device->tag_saved_openings; 4918 else 4919 newopenings = min(device->maxtags, 4920 sim->max_tagged_dev_openings); 4921 xpt_dev_ccbq_resize(path, newopenings); 4922 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4923 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4924 crs.ccb_h.func_code = XPT_REL_SIMQ; 4925 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4926 crs.openings 4927 = crs.release_timeout 4928 = crs.qfrozen_cnt 4929 = 0; 4930 xpt_action((union ccb *)&crs); 4931 } 4932 4933 void 4934 xpt_stop_tags(struct cam_path *path) 4935 { 4936 struct ccb_relsim crs; 4937 struct cam_ed *device; 4938 struct cam_sim *sim; 4939 4940 device = path->device; 4941 sim = path->bus->sim; 4942 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4943 device->tag_delay_count = 0; 4944 xpt_freeze_devq(path, /*count*/1); 4945 device->inq_flags &= ~SID_CmdQue; 4946 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4947 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4948 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4949 crs.ccb_h.func_code = XPT_REL_SIMQ; 4950 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4951 crs.openings 4952 = crs.release_timeout 4953 = crs.qfrozen_cnt 4954 = 0; 4955 xpt_action((union ccb *)&crs); 4956 } 4957 4958 static void 4959 xpt_boot_delay(void *arg) 4960 { 4961 4962 xpt_release_boot(); 4963 } 4964 4965 static void 4966 xpt_config(void *arg) 4967 { 4968 /* 4969 * Now that interrupts are enabled, go find our devices 4970 */ 4971 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4972 printf("xpt_config: failed to create taskqueue thread.\n"); 4973 4974 /* Setup debugging path */ 4975 if (cam_dflags != CAM_DEBUG_NONE) { 4976 if (xpt_create_path(&cam_dpath, NULL, 4977 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4978 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4979 printf("xpt_config: xpt_create_path() failed for debug" 4980 " target %d:%d:%d, debugging disabled\n", 4981 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4982 cam_dflags = CAM_DEBUG_NONE; 4983 } 4984 } else 4985 cam_dpath = NULL; 4986 4987 periphdriver_init(1); 4988 xpt_hold_boot(); 4989 callout_init(&xsoftc.boot_callout, 1); 4990 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 4991 xpt_boot_delay, NULL, 0); 4992 /* Fire up rescan thread. */ 4993 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4994 "cam", "scanner")) { 4995 printf("xpt_config: failed to create rescan thread.\n"); 4996 } 4997 } 4998 4999 void 5000 xpt_hold_boot(void) 5001 { 5002 xpt_lock_buses(); 5003 xsoftc.buses_to_config++; 5004 xpt_unlock_buses(); 5005 } 5006 5007 void 5008 xpt_release_boot(void) 5009 { 5010 xpt_lock_buses(); 5011 xsoftc.buses_to_config--; 5012 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5013 struct xpt_task *task; 5014 5015 xsoftc.buses_config_done = 1; 5016 xpt_unlock_buses(); 5017 /* Call manually because we don't have any busses */ 5018 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5019 if (task != NULL) { 5020 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5021 taskqueue_enqueue(taskqueue_thread, &task->task); 5022 } 5023 } else 5024 xpt_unlock_buses(); 5025 } 5026 5027 /* 5028 * If the given device only has one peripheral attached to it, and if that 5029 * peripheral is the passthrough driver, announce it. This insures that the 5030 * user sees some sort of announcement for every peripheral in their system. 5031 */ 5032 static int 5033 xptpassannouncefunc(struct cam_ed *device, void *arg) 5034 { 5035 struct cam_periph *periph; 5036 int i; 5037 5038 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5039 periph = SLIST_NEXT(periph, periph_links), i++); 5040 5041 periph = SLIST_FIRST(&device->periphs); 5042 if ((i == 1) 5043 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5044 xpt_announce_periph(periph, NULL); 5045 5046 return(1); 5047 } 5048 5049 static void 5050 xpt_finishconfig_task(void *context, int pending) 5051 { 5052 5053 periphdriver_init(2); 5054 /* 5055 * Check for devices with no "standard" peripheral driver 5056 * attached. For any devices like that, announce the 5057 * passthrough driver so the user will see something. 5058 */ 5059 if (!bootverbose) 5060 xpt_for_all_devices(xptpassannouncefunc, NULL); 5061 5062 /* Release our hook so that the boot can continue. */ 5063 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5064 free(xsoftc.xpt_config_hook, M_CAMXPT); 5065 xsoftc.xpt_config_hook = NULL; 5066 5067 free(context, M_CAMXPT); 5068 } 5069 5070 cam_status 5071 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5072 struct cam_path *path) 5073 { 5074 struct ccb_setasync csa; 5075 cam_status status; 5076 int xptpath = 0; 5077 5078 if (path == NULL) { 5079 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5080 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5081 if (status != CAM_REQ_CMP) 5082 return (status); 5083 xpt_path_lock(path); 5084 xptpath = 1; 5085 } 5086 5087 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5088 csa.ccb_h.func_code = XPT_SASYNC_CB; 5089 csa.event_enable = event; 5090 csa.callback = cbfunc; 5091 csa.callback_arg = cbarg; 5092 xpt_action((union ccb *)&csa); 5093 status = csa.ccb_h.status; 5094 5095 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5096 ("xpt_register_async: func %p\n", cbfunc)); 5097 5098 if (xptpath) { 5099 xpt_path_unlock(path); 5100 xpt_free_path(path); 5101 } 5102 5103 if ((status == CAM_REQ_CMP) && 5104 (csa.event_enable & AC_FOUND_DEVICE)) { 5105 /* 5106 * Get this peripheral up to date with all 5107 * the currently existing devices. 5108 */ 5109 xpt_for_all_devices(xptsetasyncfunc, &csa); 5110 } 5111 if ((status == CAM_REQ_CMP) && 5112 (csa.event_enable & AC_PATH_REGISTERED)) { 5113 /* 5114 * Get this peripheral up to date with all 5115 * the currently existing busses. 5116 */ 5117 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5118 } 5119 5120 return (status); 5121 } 5122 5123 static void 5124 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5125 { 5126 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5127 5128 switch (work_ccb->ccb_h.func_code) { 5129 /* Common cases first */ 5130 case XPT_PATH_INQ: /* Path routing inquiry */ 5131 { 5132 struct ccb_pathinq *cpi; 5133 5134 cpi = &work_ccb->cpi; 5135 cpi->version_num = 1; /* XXX??? */ 5136 cpi->hba_inquiry = 0; 5137 cpi->target_sprt = 0; 5138 cpi->hba_misc = 0; 5139 cpi->hba_eng_cnt = 0; 5140 cpi->max_target = 0; 5141 cpi->max_lun = 0; 5142 cpi->initiator_id = 0; 5143 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5144 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5145 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5146 cpi->unit_number = sim->unit_number; 5147 cpi->bus_id = sim->bus_id; 5148 cpi->base_transfer_speed = 0; 5149 cpi->protocol = PROTO_UNSPECIFIED; 5150 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5151 cpi->transport = XPORT_UNSPECIFIED; 5152 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5153 cpi->ccb_h.status = CAM_REQ_CMP; 5154 xpt_done(work_ccb); 5155 break; 5156 } 5157 default: 5158 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5159 xpt_done(work_ccb); 5160 break; 5161 } 5162 } 5163 5164 /* 5165 * The xpt as a "controller" has no interrupt sources, so polling 5166 * is a no-op. 5167 */ 5168 static void 5169 xptpoll(struct cam_sim *sim) 5170 { 5171 } 5172 5173 void 5174 xpt_lock_buses(void) 5175 { 5176 mtx_lock(&xsoftc.xpt_topo_lock); 5177 } 5178 5179 void 5180 xpt_unlock_buses(void) 5181 { 5182 mtx_unlock(&xsoftc.xpt_topo_lock); 5183 } 5184 5185 struct mtx * 5186 xpt_path_mtx(struct cam_path *path) 5187 { 5188 5189 return (&path->device->device_mtx); 5190 } 5191 5192 static void 5193 xpt_done_process(struct ccb_hdr *ccb_h) 5194 { 5195 struct cam_sim *sim; 5196 struct cam_devq *devq; 5197 struct mtx *mtx = NULL; 5198 5199 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5200 struct ccb_scsiio *csio; 5201 5202 if (ccb_h->func_code == XPT_SCSI_IO) { 5203 csio = &((union ccb *)ccb_h)->csio; 5204 if (csio->bio != NULL) 5205 biotrack(csio->bio, __func__); 5206 } 5207 #endif 5208 5209 if (ccb_h->flags & CAM_HIGH_POWER) { 5210 struct highpowerlist *hphead; 5211 struct cam_ed *device; 5212 5213 mtx_lock(&xsoftc.xpt_highpower_lock); 5214 hphead = &xsoftc.highpowerq; 5215 5216 device = STAILQ_FIRST(hphead); 5217 5218 /* 5219 * Increment the count since this command is done. 5220 */ 5221 xsoftc.num_highpower++; 5222 5223 /* 5224 * Any high powered commands queued up? 5225 */ 5226 if (device != NULL) { 5227 5228 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5229 mtx_unlock(&xsoftc.xpt_highpower_lock); 5230 5231 mtx_lock(&device->sim->devq->send_mtx); 5232 xpt_release_devq_device(device, 5233 /*count*/1, /*runqueue*/TRUE); 5234 mtx_unlock(&device->sim->devq->send_mtx); 5235 } else 5236 mtx_unlock(&xsoftc.xpt_highpower_lock); 5237 } 5238 5239 sim = ccb_h->path->bus->sim; 5240 5241 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5242 xpt_release_simq(sim, /*run_queue*/FALSE); 5243 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5244 } 5245 5246 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5247 && (ccb_h->status & CAM_DEV_QFRZN)) { 5248 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5249 ccb_h->status &= ~CAM_DEV_QFRZN; 5250 } 5251 5252 devq = sim->devq; 5253 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5254 struct cam_ed *dev = ccb_h->path->device; 5255 5256 mtx_lock(&devq->send_mtx); 5257 devq->send_active--; 5258 devq->send_openings++; 5259 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5260 5261 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5262 && (dev->ccbq.dev_active == 0))) { 5263 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5264 xpt_release_devq_device(dev, /*count*/1, 5265 /*run_queue*/FALSE); 5266 } 5267 5268 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5269 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5270 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5271 xpt_release_devq_device(dev, /*count*/1, 5272 /*run_queue*/FALSE); 5273 } 5274 5275 if (!device_is_queued(dev)) 5276 (void)xpt_schedule_devq(devq, dev); 5277 xpt_run_devq(devq); 5278 mtx_unlock(&devq->send_mtx); 5279 5280 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5281 mtx = xpt_path_mtx(ccb_h->path); 5282 mtx_lock(mtx); 5283 5284 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5285 && (--dev->tag_delay_count == 0)) 5286 xpt_start_tags(ccb_h->path); 5287 } 5288 } 5289 5290 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5291 if (mtx == NULL) { 5292 mtx = xpt_path_mtx(ccb_h->path); 5293 mtx_lock(mtx); 5294 } 5295 } else { 5296 if (mtx != NULL) { 5297 mtx_unlock(mtx); 5298 mtx = NULL; 5299 } 5300 } 5301 5302 /* Call the peripheral driver's callback */ 5303 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5304 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5305 if (mtx != NULL) 5306 mtx_unlock(mtx); 5307 } 5308 5309 void 5310 xpt_done_td(void *arg) 5311 { 5312 struct cam_doneq *queue = arg; 5313 struct ccb_hdr *ccb_h; 5314 STAILQ_HEAD(, ccb_hdr) doneq; 5315 5316 STAILQ_INIT(&doneq); 5317 mtx_lock(&queue->cam_doneq_mtx); 5318 while (1) { 5319 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5320 queue->cam_doneq_sleep = 1; 5321 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5322 PRIBIO, "-", 0); 5323 queue->cam_doneq_sleep = 0; 5324 } 5325 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5326 mtx_unlock(&queue->cam_doneq_mtx); 5327 5328 THREAD_NO_SLEEPING(); 5329 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5330 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5331 xpt_done_process(ccb_h); 5332 } 5333 THREAD_SLEEPING_OK(); 5334 5335 mtx_lock(&queue->cam_doneq_mtx); 5336 } 5337 } 5338 5339 static void 5340 camisr_runqueue(void) 5341 { 5342 struct ccb_hdr *ccb_h; 5343 struct cam_doneq *queue; 5344 int i; 5345 5346 /* Process global queues. */ 5347 for (i = 0; i < cam_num_doneqs; i++) { 5348 queue = &cam_doneqs[i]; 5349 mtx_lock(&queue->cam_doneq_mtx); 5350 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5351 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5352 mtx_unlock(&queue->cam_doneq_mtx); 5353 xpt_done_process(ccb_h); 5354 mtx_lock(&queue->cam_doneq_mtx); 5355 } 5356 mtx_unlock(&queue->cam_doneq_mtx); 5357 } 5358 } 5359 5360 struct kv 5361 { 5362 uint32_t v; 5363 const char *name; 5364 }; 5365 5366 static struct kv map[] = { 5367 { XPT_NOOP, "XPT_NOOP" }, 5368 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5369 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5370 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5371 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5372 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5373 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5374 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5375 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5376 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5377 { XPT_DEBUG, "XPT_DEBUG" }, 5378 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5379 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5380 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5381 { XPT_ASYNC, "XPT_ASYNC" }, 5382 { XPT_ABORT, "XPT_ABORT" }, 5383 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5384 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5385 { XPT_TERM_IO, "XPT_TERM_IO" }, 5386 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5387 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5388 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5389 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5390 { XPT_ATA_IO, "XPT_ATA_IO" }, 5391 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5392 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5393 { XPT_NVME_IO, "XPT_NVME_IO" }, 5394 { XPT_MMCSD_IO, "XPT_MMCSD_IO" }, 5395 { XPT_SMP_IO, "XPT_SMP_IO" }, 5396 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5397 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5398 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5399 { XPT_EN_LUN, "XPT_EN_LUN" }, 5400 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5401 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5402 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5403 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5404 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5405 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5406 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5407 { 0, 0 } 5408 }; 5409 5410 static const char * 5411 xpt_action_name(uint32_t action) 5412 { 5413 static char buffer[32]; /* Only for unknown messages -- racy */ 5414 struct kv *walker = map; 5415 5416 while (walker->name != NULL) { 5417 if (walker->v == action) 5418 return (walker->name); 5419 walker++; 5420 } 5421 5422 snprintf(buffer, sizeof(buffer), "%#x", action); 5423 return (buffer); 5424 } 5425