xref: /freebsd/sys/cam/cam_xpt.c (revision a3e8fd0b7f663db7eafff527d5c3ca3bcfa8a537)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 #include <sys/param.h>
32 #include <sys/bus.h>
33 #include <sys/systm.h>
34 #include <sys/types.h>
35 #include <sys/malloc.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 
45 #ifdef PC98
46 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
47 #endif
48 
49 #include <cam/cam.h>
50 #include <cam/cam_ccb.h>
51 #include <cam/cam_periph.h>
52 #include <cam/cam_sim.h>
53 #include <cam/cam_xpt.h>
54 #include <cam/cam_xpt_sim.h>
55 #include <cam/cam_xpt_periph.h>
56 #include <cam/cam_debug.h>
57 
58 #include <cam/scsi/scsi_all.h>
59 #include <cam/scsi/scsi_message.h>
60 #include <cam/scsi/scsi_pass.h>
61 #include "opt_cam.h"
62 
63 /* Datastructures internal to the xpt layer */
64 
65 /*
66  * Definition of an async handler callback block.  These are used to add
67  * SIMs and peripherals to the async callback lists.
68  */
69 struct async_node {
70 	SLIST_ENTRY(async_node)	links;
71 	u_int32_t	event_enable;	/* Async Event enables */
72 	void		(*callback)(void *arg, u_int32_t code,
73 				    struct cam_path *path, void *args);
74 	void		*callback_arg;
75 };
76 
77 SLIST_HEAD(async_list, async_node);
78 SLIST_HEAD(periph_list, cam_periph);
79 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
80 
81 /*
82  * This is the maximum number of high powered commands (e.g. start unit)
83  * that can be outstanding at a particular time.
84  */
85 #ifndef CAM_MAX_HIGHPOWER
86 #define CAM_MAX_HIGHPOWER  4
87 #endif
88 
89 /* number of high powered commands that can go through right now */
90 static int num_highpower = CAM_MAX_HIGHPOWER;
91 
92 /*
93  * Structure for queueing a device in a run queue.
94  * There is one run queue for allocating new ccbs,
95  * and another for sending ccbs to the controller.
96  */
97 struct cam_ed_qinfo {
98 	cam_pinfo pinfo;
99 	struct	  cam_ed *device;
100 };
101 
102 /*
103  * The CAM EDT (Existing Device Table) contains the device information for
104  * all devices for all busses in the system.  The table contains a
105  * cam_ed structure for each device on the bus.
106  */
107 struct cam_ed {
108 	TAILQ_ENTRY(cam_ed) links;
109 	struct	cam_ed_qinfo alloc_ccb_entry;
110 	struct	cam_ed_qinfo send_ccb_entry;
111 	struct	cam_et	 *target;
112 	lun_id_t	 lun_id;
113 	struct	camq drvq;		/*
114 					 * Queue of type drivers wanting to do
115 					 * work on this device.
116 					 */
117 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
118 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
119 	struct	periph_list periphs;	/* All attached devices */
120 	u_int	generation;		/* Generation number */
121 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
122 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
123 					/* Storage for the inquiry data */
124 #ifdef CAM_NEW_TRAN_CODE
125 	cam_proto	 protocol;
126 	u_int		 protocol_version;
127 	cam_xport	 transport;
128 	u_int		 transport_version;
129 #endif /* CAM_NEW_TRAN_CODE */
130 	struct		 scsi_inquiry_data inq_data;
131 	u_int8_t	 inq_flags;	/*
132 					 * Current settings for inquiry flags.
133 					 * This allows us to override settings
134 					 * like disconnection and tagged
135 					 * queuing for a device.
136 					 */
137 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
138 	u_int8_t	 serial_num_len;
139 	u_int8_t	*serial_num;
140 	u_int32_t	 qfrozen_cnt;
141 	u_int32_t	 flags;
142 #define CAM_DEV_UNCONFIGURED	 	0x01
143 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
144 #define CAM_DEV_REL_ON_COMPLETE		0x04
145 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
146 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
147 #define CAM_DEV_TAG_AFTER_COUNT		0x20
148 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
149 	u_int32_t	 tag_delay_count;
150 #define	CAM_TAG_DELAY_COUNT		5
151 	u_int32_t	 refcount;
152 	struct		 callout_handle c_handle;
153 };
154 
155 /*
156  * Each target is represented by an ET (Existing Target).  These
157  * entries are created when a target is successfully probed with an
158  * identify, and removed when a device fails to respond after a number
159  * of retries, or a bus rescan finds the device missing.
160  */
161 struct cam_et {
162 	TAILQ_HEAD(, cam_ed) ed_entries;
163 	TAILQ_ENTRY(cam_et) links;
164 	struct	cam_eb	*bus;
165 	target_id_t	target_id;
166 	u_int32_t	refcount;
167 	u_int		generation;
168 	struct		timeval last_reset;
169 };
170 
171 /*
172  * Each bus is represented by an EB (Existing Bus).  These entries
173  * are created by calls to xpt_bus_register and deleted by calls to
174  * xpt_bus_deregister.
175  */
176 struct cam_eb {
177 	TAILQ_HEAD(, cam_et) et_entries;
178 	TAILQ_ENTRY(cam_eb)  links;
179 	path_id_t	     path_id;
180 	struct cam_sim	     *sim;
181 	struct timeval	     last_reset;
182 	u_int32_t	     flags;
183 #define	CAM_EB_RUNQ_SCHEDULED	0x01
184 	u_int32_t	     refcount;
185 	u_int		     generation;
186 };
187 
188 struct cam_path {
189 	struct cam_periph *periph;
190 	struct cam_eb	  *bus;
191 	struct cam_et	  *target;
192 	struct cam_ed	  *device;
193 };
194 
195 struct xpt_quirk_entry {
196 	struct scsi_inquiry_pattern inq_pat;
197 	u_int8_t quirks;
198 #define	CAM_QUIRK_NOLUNS	0x01
199 #define	CAM_QUIRK_NOSERIAL	0x02
200 #define	CAM_QUIRK_HILUNS	0x04
201 	u_int mintags;
202 	u_int maxtags;
203 };
204 #define	CAM_SCSI2_MAXLUN	8
205 
206 typedef enum {
207 	XPT_FLAG_OPEN		= 0x01
208 } xpt_flags;
209 
210 struct xpt_softc {
211 	xpt_flags	flags;
212 	u_int32_t	generation;
213 };
214 
215 static const char quantum[] = "QUANTUM";
216 static const char sony[] = "SONY";
217 static const char west_digital[] = "WDIGTL";
218 static const char samsung[] = "SAMSUNG";
219 static const char seagate[] = "SEAGATE";
220 static const char microp[] = "MICROP";
221 
222 static struct xpt_quirk_entry xpt_quirk_table[] =
223 {
224 	{
225 		/* Reports QUEUE FULL for temporary resource shortages */
226 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
227 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
228 	},
229 	{
230 		/* Reports QUEUE FULL for temporary resource shortages */
231 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
232 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
233 	},
234 	{
235 		/* Reports QUEUE FULL for temporary resource shortages */
236 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
237 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
238 	},
239 	{
240 		/* Broken tagged queuing drive */
241 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
242 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
243 	},
244 	{
245 		/* Broken tagged queuing drive */
246 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
247 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
248 	},
249 	{
250 		/* Broken tagged queuing drive */
251 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
252 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
253 	},
254 	{
255 		/*
256 		 * Unfortunately, the Quantum Atlas III has the same
257 		 * problem as the Atlas II drives above.
258 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
259 		 *
260 		 * For future reference, the drive with the problem was:
261 		 * QUANTUM QM39100TD-SW N1B0
262 		 *
263 		 * It's possible that Quantum will fix the problem in later
264 		 * firmware revisions.  If that happens, the quirk entry
265 		 * will need to be made specific to the firmware revisions
266 		 * with the problem.
267 		 *
268 		 */
269 		/* Reports QUEUE FULL for temporary resource shortages */
270 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
271 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
272 	},
273 	{
274 		/*
275 		 * 18 Gig Atlas III, same problem as the 9G version.
276 		 * Reported by: Andre Albsmeier
277 		 *		<andre.albsmeier@mchp.siemens.de>
278 		 *
279 		 * For future reference, the drive with the problem was:
280 		 * QUANTUM QM318000TD-S N491
281 		 */
282 		/* Reports QUEUE FULL for temporary resource shortages */
283 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
284 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
285 	},
286 	{
287 		/*
288 		 * Broken tagged queuing drive
289 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
290 		 *         and: Martin Renters <martin@tdc.on.ca>
291 		 */
292 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
293 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
294 	},
295 		/*
296 		 * The Seagate Medalist Pro drives have very poor write
297 		 * performance with anything more than 2 tags.
298 		 *
299 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
300 		 * Drive:  <SEAGATE ST36530N 1444>
301 		 *
302 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
303 		 * Drive:  <SEAGATE ST34520W 1281>
304 		 *
305 		 * No one has actually reported that the 9G version
306 		 * (ST39140*) of the Medalist Pro has the same problem, but
307 		 * we're assuming that it does because the 4G and 6.5G
308 		 * versions of the drive are broken.
309 		 */
310 	{
311 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
312 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
313 	},
314 	{
315 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
316 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
317 	},
318 	{
319 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
320 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
321 	},
322 	{
323 		/*
324 		 * Slow when tagged queueing is enabled.  Write performance
325 		 * steadily drops off with more and more concurrent
326 		 * transactions.  Best sequential write performance with
327 		 * tagged queueing turned off and write caching turned on.
328 		 *
329 		 * PR:  kern/10398
330 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
331 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
332 		 *
333 		 * The drive with the problem had the "S65A" firmware
334 		 * revision, and has also been reported (by Stephen J.
335 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
336 		 * firmware revision.
337 		 *
338 		 * Although no one has reported problems with the 2 gig
339 		 * version of the DCAS drive, the assumption is that it
340 		 * has the same problems as the 4 gig version.  Therefore
341 		 * this quirk entries disables tagged queueing for all
342 		 * DCAS drives.
343 		 */
344 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
345 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
346 	},
347 	{
348 		/* Broken tagged queuing drive */
349 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
350 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
351 	},
352 	{
353 		/* Broken tagged queuing drive */
354 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
355 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
356 	},
357 	{
358 		/*
359 		 * Broken tagged queuing drive.
360 		 * Submitted by:
361 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
362 		 * in PR kern/9535
363 		 */
364 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
365 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
366 	},
367         {
368 		/*
369 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
370 		 * 8MB/sec.)
371 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
372 		 * Best performance with these drives is achieved with
373 		 * tagged queueing turned off, and write caching turned on.
374 		 */
375 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
376 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
377         },
378         {
379 		/*
380 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
381 		 * 8MB/sec.)
382 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
383 		 * Best performance with these drives is achieved with
384 		 * tagged queueing turned off, and write caching turned on.
385 		 */
386 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
387 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
388         },
389 	{
390 		/*
391 		 * Doesn't handle queue full condition correctly,
392 		 * so we need to limit maxtags to what the device
393 		 * can handle instead of determining this automatically.
394 		 */
395 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
396 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
397 	},
398 	{
399 		/* Really only one LUN */
400 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
401 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
402 	},
403 	{
404 		/* I can't believe we need a quirk for DPT volumes. */
405 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
406 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
407 		/*mintags*/0, /*maxtags*/255
408 	},
409 	{
410 		/*
411 		 * Many Sony CDROM drives don't like multi-LUN probing.
412 		 */
413 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
414 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
415 	},
416 	{
417 		/*
418 		 * This drive doesn't like multiple LUN probing.
419 		 * Submitted by:  Parag Patel <parag@cgt.com>
420 		 */
421 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
422 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
423 	},
424 	{
425 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
426 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
427 	},
428 	{
429 		/*
430 		 * The 8200 doesn't like multi-lun probing, and probably
431 		 * don't like serial number requests either.
432 		 */
433 		{
434 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
435 			"EXB-8200*", "*"
436 		},
437 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
438 	},
439 	{
440 		/*
441 		 * Let's try the same as above, but for a drive that says
442 		 * it's an IPL-6860 but is actually an EXB 8200.
443 		 */
444 		{
445 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
446 			"IPL-6860*", "*"
447 		},
448 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
449 	},
450 	{
451 		/*
452 		 * These Hitachi drives don't like multi-lun probing.
453 		 * The PR submitter has a DK319H, but says that the Linux
454 		 * kernel has a similar work-around for the DK312 and DK314,
455 		 * so all DK31* drives are quirked here.
456 		 * PR:            misc/18793
457 		 * Submitted by:  Paul Haddad <paul@pth.com>
458 		 */
459 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
460 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
461 	},
462 	{
463 		/*
464 		 * The Hitachi CJ series with J8A8 firmware apparantly has
465 		 * problems with tagged commands.
466 		 * PR: 23536
467 		 * Reported by: amagai@nue.org
468 		 */
469 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
470 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
471 	},
472 	{
473 		/*
474 		 * These are the large storage arrays.
475 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
476 		 */
477 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
478 		CAM_QUIRK_HILUNS, 2, 1024
479 	},
480 	{
481 		/*
482 		 * This old revision of the TDC3600 is also SCSI-1, and
483 		 * hangs upon serial number probing.
484 		 */
485 		{
486 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
487 			" TDC 3600", "U07:"
488 		},
489 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
490 	},
491 	{
492 		/*
493 		 * Maxtor Personal Storage 3000XT (Firewire)
494 		 * hangs upon serial number probing.
495 		 */
496 		{
497 			T_DIRECT, SIP_MEDIA_FIXED, "Maxtor",
498 			"1394 storage", "*"
499 		},
500 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
501 	},
502 	{
503 		/*
504 		 * Would repond to all LUNs if asked for.
505 		 */
506 		{
507 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
508 			"CP150", "*"
509 		},
510 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
511 	},
512 	{
513 		/*
514 		 * Would repond to all LUNs if asked for.
515 		 */
516 		{
517 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
518 			"96X2*", "*"
519 		},
520 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
521 	},
522 	{
523 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
524 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
525 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
526 	},
527 	{
528 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
529 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
530 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
531 	},
532 	{
533 		/* TeraSolutions special settings for TRC-22 RAID */
534 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
535 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
536 	},
537 	{
538 		/* Veritas Storage Appliance */
539 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
540 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
541 	},
542 	{
543 		/*
544 		 * Would respond to all LUNs.  Device type and removable
545 		 * flag are jumper-selectable.
546 		 */
547 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
548 		  "Tahiti 1", "*"
549 		},
550 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
551 	},
552 	{
553 		/* Default tagged queuing parameters for all devices */
554 		{
555 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
556 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
557 		},
558 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
559 	},
560 };
561 
562 static const int xpt_quirk_table_size =
563 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
564 
565 typedef enum {
566 	DM_RET_COPY		= 0x01,
567 	DM_RET_FLAG_MASK	= 0x0f,
568 	DM_RET_NONE		= 0x00,
569 	DM_RET_STOP		= 0x10,
570 	DM_RET_DESCEND		= 0x20,
571 	DM_RET_ERROR		= 0x30,
572 	DM_RET_ACTION_MASK	= 0xf0
573 } dev_match_ret;
574 
575 typedef enum {
576 	XPT_DEPTH_BUS,
577 	XPT_DEPTH_TARGET,
578 	XPT_DEPTH_DEVICE,
579 	XPT_DEPTH_PERIPH
580 } xpt_traverse_depth;
581 
582 struct xpt_traverse_config {
583 	xpt_traverse_depth	depth;
584 	void			*tr_func;
585 	void			*tr_arg;
586 };
587 
588 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
589 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
590 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
591 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
592 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
593 
594 /* Transport layer configuration information */
595 static struct xpt_softc xsoftc;
596 
597 /* Queues for our software interrupt handler */
598 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
599 static cam_isrq_t cam_bioq;
600 static cam_isrq_t cam_netq;
601 
602 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
603 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
604 static u_int xpt_max_ccbs;	/*
605 				 * Maximum size of ccb pool.  Modified as
606 				 * devices are added/removed or have their
607 				 * opening counts changed.
608 				 */
609 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
610 
611 struct cam_periph *xpt_periph;
612 
613 static periph_init_t xpt_periph_init;
614 
615 static periph_init_t probe_periph_init;
616 
617 static struct periph_driver xpt_driver =
618 {
619 	xpt_periph_init, "xpt",
620 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
621 };
622 
623 static struct periph_driver probe_driver =
624 {
625 	probe_periph_init, "probe",
626 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
627 };
628 
629 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
630 PERIPHDRIVER_DECLARE(probe, probe_driver);
631 
632 #define XPT_CDEV_MAJOR 104
633 
634 static d_open_t xptopen;
635 static d_close_t xptclose;
636 static d_ioctl_t xptioctl;
637 
638 static struct cdevsw xpt_cdevsw = {
639 	/* open */	xptopen,
640 	/* close */	xptclose,
641 	/* read */	noread,
642 	/* write */	nowrite,
643 	/* ioctl */	xptioctl,
644 	/* poll */	nopoll,
645 	/* mmap */	nommap,
646 	/* strategy */	nostrategy,
647 	/* name */	"xpt",
648 	/* maj */	XPT_CDEV_MAJOR,
649 	/* dump */	nodump,
650 	/* psize */	nopsize,
651 	/* flags */	0,
652 };
653 
654 static struct intr_config_hook *xpt_config_hook;
655 
656 /* Registered busses */
657 static TAILQ_HEAD(,cam_eb) xpt_busses;
658 static u_int bus_generation;
659 
660 /* Storage for debugging datastructures */
661 #ifdef	CAMDEBUG
662 struct cam_path *cam_dpath;
663 u_int32_t cam_dflags;
664 u_int32_t cam_debug_delay;
665 #endif
666 
667 /* Pointers to software interrupt handlers */
668 static void *camnet_ih;
669 static void *cambio_ih;
670 
671 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
672 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
673 #endif
674 
675 /*
676  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
677  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
678  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
679  */
680 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
681     || defined(CAM_DEBUG_LUN)
682 #ifdef CAMDEBUG
683 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
684     || !defined(CAM_DEBUG_LUN)
685 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
686         and CAM_DEBUG_LUN"
687 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
688 #else /* !CAMDEBUG */
689 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
690 #endif /* CAMDEBUG */
691 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
692 
693 /* Our boot-time initialization hook */
694 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
695 
696 static moduledata_t cam_moduledata = {
697 	"cam",
698 	cam_module_event_handler,
699 	NULL
700 };
701 
702 static void	xpt_init(void *);
703 
704 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
705 MODULE_VERSION(cam, 1);
706 
707 
708 static cam_status	xpt_compile_path(struct cam_path *new_path,
709 					 struct cam_periph *perph,
710 					 path_id_t path_id,
711 					 target_id_t target_id,
712 					 lun_id_t lun_id);
713 
714 static void		xpt_release_path(struct cam_path *path);
715 
716 static void		xpt_async_bcast(struct async_list *async_head,
717 					u_int32_t async_code,
718 					struct cam_path *path,
719 					void *async_arg);
720 static void		xpt_dev_async(u_int32_t async_code,
721 				      struct cam_eb *bus,
722 				      struct cam_et *target,
723 				      struct cam_ed *device,
724 				      void *async_arg);
725 static path_id_t xptnextfreepathid(void);
726 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
727 static union ccb *xpt_get_ccb(struct cam_ed *device);
728 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
729 				  u_int32_t new_priority);
730 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
731 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
732 static timeout_t xpt_release_devq_timeout;
733 static timeout_t xpt_release_simq_timeout;
734 static void	 xpt_release_bus(struct cam_eb *bus);
735 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
736 					 int run_queue);
737 static struct cam_et*
738 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
739 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
740 static struct cam_ed*
741 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
742 				  lun_id_t lun_id);
743 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
744 				    struct cam_ed *device);
745 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
746 static struct cam_eb*
747 		 xpt_find_bus(path_id_t path_id);
748 static struct cam_et*
749 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
750 static struct cam_ed*
751 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
752 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
753 static void	 xpt_scan_lun(struct cam_periph *periph,
754 			      struct cam_path *path, cam_flags flags,
755 			      union ccb *ccb);
756 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
757 static xpt_busfunc_t	xptconfigbuscountfunc;
758 static xpt_busfunc_t	xptconfigfunc;
759 static void	 xpt_config(void *arg);
760 static xpt_devicefunc_t xptpassannouncefunc;
761 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
762 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
763 static void	 xptpoll(struct cam_sim *sim);
764 static void	 camisr(void *);
765 #if 0
766 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
767 static void	 xptasync(struct cam_periph *periph,
768 			  u_int32_t code, cam_path *path);
769 #endif
770 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
771 				    u_int num_patterns, struct cam_eb *bus);
772 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
773 				       u_int num_patterns,
774 				       struct cam_ed *device);
775 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
776 				       u_int num_patterns,
777 				       struct cam_periph *periph);
778 static xpt_busfunc_t	xptedtbusfunc;
779 static xpt_targetfunc_t	xptedttargetfunc;
780 static xpt_devicefunc_t	xptedtdevicefunc;
781 static xpt_periphfunc_t	xptedtperiphfunc;
782 static xpt_pdrvfunc_t	xptplistpdrvfunc;
783 static xpt_periphfunc_t	xptplistperiphfunc;
784 static int		xptedtmatch(struct ccb_dev_match *cdm);
785 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
786 static int		xptbustraverse(struct cam_eb *start_bus,
787 				       xpt_busfunc_t *tr_func, void *arg);
788 static int		xpttargettraverse(struct cam_eb *bus,
789 					  struct cam_et *start_target,
790 					  xpt_targetfunc_t *tr_func, void *arg);
791 static int		xptdevicetraverse(struct cam_et *target,
792 					  struct cam_ed *start_device,
793 					  xpt_devicefunc_t *tr_func, void *arg);
794 static int		xptperiphtraverse(struct cam_ed *device,
795 					  struct cam_periph *start_periph,
796 					  xpt_periphfunc_t *tr_func, void *arg);
797 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
798 					xpt_pdrvfunc_t *tr_func, void *arg);
799 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
800 					    struct cam_periph *start_periph,
801 					    xpt_periphfunc_t *tr_func,
802 					    void *arg);
803 static xpt_busfunc_t	xptdefbusfunc;
804 static xpt_targetfunc_t	xptdeftargetfunc;
805 static xpt_devicefunc_t	xptdefdevicefunc;
806 static xpt_periphfunc_t	xptdefperiphfunc;
807 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
808 #ifdef notusedyet
809 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
810 					    void *arg);
811 #endif
812 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
813 					    void *arg);
814 #ifdef notusedyet
815 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
816 					    void *arg);
817 #endif
818 static xpt_devicefunc_t	xptsetasyncfunc;
819 static xpt_busfunc_t	xptsetasyncbusfunc;
820 static cam_status	xptregister(struct cam_periph *periph,
821 				    void *arg);
822 static cam_status	proberegister(struct cam_periph *periph,
823 				      void *arg);
824 static void	 probeschedule(struct cam_periph *probe_periph);
825 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
826 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
827 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
828 static void	 probecleanup(struct cam_periph *periph);
829 static void	 xpt_find_quirk(struct cam_ed *device);
830 #ifdef CAM_NEW_TRAN_CODE
831 static void	 xpt_devise_transport(struct cam_path *path);
832 #endif /* CAM_NEW_TRAN_CODE */
833 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
834 					   struct cam_ed *device,
835 					   int async_update);
836 static void	 xpt_toggle_tags(struct cam_path *path);
837 static void	 xpt_start_tags(struct cam_path *path);
838 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
839 					    struct cam_ed *dev);
840 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
841 					   struct cam_ed *dev);
842 static __inline int periph_is_queued(struct cam_periph *periph);
843 static __inline int device_is_alloc_queued(struct cam_ed *device);
844 static __inline int device_is_send_queued(struct cam_ed *device);
845 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
846 
847 static __inline int
848 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
849 {
850 	int retval;
851 
852 	if (dev->ccbq.devq_openings > 0) {
853 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
854 			cam_ccbq_resize(&dev->ccbq,
855 					dev->ccbq.dev_openings
856 					+ dev->ccbq.dev_active);
857 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
858 		}
859 		/*
860 		 * The priority of a device waiting for CCB resources
861 		 * is that of the the highest priority peripheral driver
862 		 * enqueued.
863 		 */
864 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
865 					  &dev->alloc_ccb_entry.pinfo,
866 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
867 	} else {
868 		retval = 0;
869 	}
870 
871 	return (retval);
872 }
873 
874 static __inline int
875 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
876 {
877 	int	retval;
878 
879 	if (dev->ccbq.dev_openings > 0) {
880 		/*
881 		 * The priority of a device waiting for controller
882 		 * resources is that of the the highest priority CCB
883 		 * enqueued.
884 		 */
885 		retval =
886 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
887 				     &dev->send_ccb_entry.pinfo,
888 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
889 	} else {
890 		retval = 0;
891 	}
892 	return (retval);
893 }
894 
895 static __inline int
896 periph_is_queued(struct cam_periph *periph)
897 {
898 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
899 }
900 
901 static __inline int
902 device_is_alloc_queued(struct cam_ed *device)
903 {
904 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
905 }
906 
907 static __inline int
908 device_is_send_queued(struct cam_ed *device)
909 {
910 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
911 }
912 
913 static __inline int
914 dev_allocq_is_runnable(struct cam_devq *devq)
915 {
916 	/*
917 	 * Have work to do.
918 	 * Have space to do more work.
919 	 * Allowed to do work.
920 	 */
921 	return ((devq->alloc_queue.qfrozen_cnt == 0)
922 	     && (devq->alloc_queue.entries > 0)
923 	     && (devq->alloc_openings > 0));
924 }
925 
926 static void
927 xpt_periph_init()
928 {
929 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
930 }
931 
932 static void
933 probe_periph_init()
934 {
935 }
936 
937 
938 static void
939 xptdone(struct cam_periph *periph, union ccb *done_ccb)
940 {
941 	/* Caller will release the CCB */
942 	wakeup(&done_ccb->ccb_h.cbfcnp);
943 }
944 
945 static int
946 xptopen(dev_t dev, int flags, int fmt, struct thread *td)
947 {
948 	int unit;
949 
950 	unit = minor(dev) & 0xff;
951 
952 	/*
953 	 * Only allow read-write access.
954 	 */
955 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
956 		return(EPERM);
957 
958 	/*
959 	 * We don't allow nonblocking access.
960 	 */
961 	if ((flags & O_NONBLOCK) != 0) {
962 		printf("xpt%d: can't do nonblocking access\n", unit);
963 		return(ENODEV);
964 	}
965 
966 	/*
967 	 * We only have one transport layer right now.  If someone accesses
968 	 * us via something other than minor number 1, point out their
969 	 * mistake.
970 	 */
971 	if (unit != 0) {
972 		printf("xptopen: got invalid xpt unit %d\n", unit);
973 		return(ENXIO);
974 	}
975 
976 	/* Mark ourselves open */
977 	xsoftc.flags |= XPT_FLAG_OPEN;
978 
979 	return(0);
980 }
981 
982 static int
983 xptclose(dev_t dev, int flag, int fmt, struct thread *td)
984 {
985 	int unit;
986 
987 	unit = minor(dev) & 0xff;
988 
989 	/*
990 	 * We only have one transport layer right now.  If someone accesses
991 	 * us via something other than minor number 1, point out their
992 	 * mistake.
993 	 */
994 	if (unit != 0) {
995 		printf("xptclose: got invalid xpt unit %d\n", unit);
996 		return(ENXIO);
997 	}
998 
999 	/* Mark ourselves closed */
1000 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1001 
1002 	return(0);
1003 }
1004 
1005 static int
1006 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1007 {
1008 	int unit, error;
1009 
1010 	error = 0;
1011 	unit = minor(dev) & 0xff;
1012 
1013 	/*
1014 	 * We only have one transport layer right now.  If someone accesses
1015 	 * us via something other than minor number 1, point out their
1016 	 * mistake.
1017 	 */
1018 	if (unit != 0) {
1019 		printf("xptioctl: got invalid xpt unit %d\n", unit);
1020 		return(ENXIO);
1021 	}
1022 
1023 	switch(cmd) {
1024 	/*
1025 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1026 	 * to accept CCB types that don't quite make sense to send through a
1027 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
1028 	 * in the CAM spec.
1029 	 */
1030 	case CAMIOCOMMAND: {
1031 		union ccb *ccb;
1032 		union ccb *inccb;
1033 
1034 		inccb = (union ccb *)addr;
1035 
1036 		switch(inccb->ccb_h.func_code) {
1037 		case XPT_SCAN_BUS:
1038 		case XPT_RESET_BUS:
1039 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1040 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1041 				error = EINVAL;
1042 				break;
1043 			}
1044 			/* FALLTHROUGH */
1045 		case XPT_PATH_INQ:
1046 		case XPT_ENG_INQ:
1047 		case XPT_SCAN_LUN:
1048 
1049 			ccb = xpt_alloc_ccb();
1050 
1051 			/*
1052 			 * Create a path using the bus, target, and lun the
1053 			 * user passed in.
1054 			 */
1055 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1056 					    inccb->ccb_h.path_id,
1057 					    inccb->ccb_h.target_id,
1058 					    inccb->ccb_h.target_lun) !=
1059 					    CAM_REQ_CMP){
1060 				error = EINVAL;
1061 				xpt_free_ccb(ccb);
1062 				break;
1063 			}
1064 			/* Ensure all of our fields are correct */
1065 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1066 				      inccb->ccb_h.pinfo.priority);
1067 			xpt_merge_ccb(ccb, inccb);
1068 			ccb->ccb_h.cbfcnp = xptdone;
1069 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1070 			bcopy(ccb, inccb, sizeof(union ccb));
1071 			xpt_free_path(ccb->ccb_h.path);
1072 			xpt_free_ccb(ccb);
1073 			break;
1074 
1075 		case XPT_DEBUG: {
1076 			union ccb ccb;
1077 
1078 			/*
1079 			 * This is an immediate CCB, so it's okay to
1080 			 * allocate it on the stack.
1081 			 */
1082 
1083 			/*
1084 			 * Create a path using the bus, target, and lun the
1085 			 * user passed in.
1086 			 */
1087 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1088 					    inccb->ccb_h.path_id,
1089 					    inccb->ccb_h.target_id,
1090 					    inccb->ccb_h.target_lun) !=
1091 					    CAM_REQ_CMP){
1092 				error = EINVAL;
1093 				break;
1094 			}
1095 			/* Ensure all of our fields are correct */
1096 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1097 				      inccb->ccb_h.pinfo.priority);
1098 			xpt_merge_ccb(&ccb, inccb);
1099 			ccb.ccb_h.cbfcnp = xptdone;
1100 			xpt_action(&ccb);
1101 			bcopy(&ccb, inccb, sizeof(union ccb));
1102 			xpt_free_path(ccb.ccb_h.path);
1103 			break;
1104 
1105 		}
1106 		case XPT_DEV_MATCH: {
1107 			struct cam_periph_map_info mapinfo;
1108 			struct cam_path *old_path;
1109 
1110 			/*
1111 			 * We can't deal with physical addresses for this
1112 			 * type of transaction.
1113 			 */
1114 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1115 				error = EINVAL;
1116 				break;
1117 			}
1118 
1119 			/*
1120 			 * Save this in case the caller had it set to
1121 			 * something in particular.
1122 			 */
1123 			old_path = inccb->ccb_h.path;
1124 
1125 			/*
1126 			 * We really don't need a path for the matching
1127 			 * code.  The path is needed because of the
1128 			 * debugging statements in xpt_action().  They
1129 			 * assume that the CCB has a valid path.
1130 			 */
1131 			inccb->ccb_h.path = xpt_periph->path;
1132 
1133 			bzero(&mapinfo, sizeof(mapinfo));
1134 
1135 			/*
1136 			 * Map the pattern and match buffers into kernel
1137 			 * virtual address space.
1138 			 */
1139 			error = cam_periph_mapmem(inccb, &mapinfo);
1140 
1141 			if (error) {
1142 				inccb->ccb_h.path = old_path;
1143 				break;
1144 			}
1145 
1146 			/*
1147 			 * This is an immediate CCB, we can send it on directly.
1148 			 */
1149 			xpt_action(inccb);
1150 
1151 			/*
1152 			 * Map the buffers back into user space.
1153 			 */
1154 			cam_periph_unmapmem(inccb, &mapinfo);
1155 
1156 			inccb->ccb_h.path = old_path;
1157 
1158 			error = 0;
1159 			break;
1160 		}
1161 		default:
1162 			error = ENOTSUP;
1163 			break;
1164 		}
1165 		break;
1166 	}
1167 	/*
1168 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1169 	 * with the periphal driver name and unit name filled in.  The other
1170 	 * fields don't really matter as input.  The passthrough driver name
1171 	 * ("pass"), and unit number are passed back in the ccb.  The current
1172 	 * device generation number, and the index into the device peripheral
1173 	 * driver list, and the status are also passed back.  Note that
1174 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1175 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1176 	 * (or rather should be) impossible for the device peripheral driver
1177 	 * list to change since we look at the whole thing in one pass, and
1178 	 * we do it with splcam protection.
1179 	 *
1180 	 */
1181 	case CAMGETPASSTHRU: {
1182 		union ccb *ccb;
1183 		struct cam_periph *periph;
1184 		struct periph_driver **p_drv;
1185 		char   *name;
1186 		u_int unit;
1187 		u_int cur_generation;
1188 		int base_periph_found;
1189 		int splbreaknum;
1190 		int s;
1191 
1192 		ccb = (union ccb *)addr;
1193 		unit = ccb->cgdl.unit_number;
1194 		name = ccb->cgdl.periph_name;
1195 		/*
1196 		 * Every 100 devices, we want to drop our spl protection to
1197 		 * give the software interrupt handler a chance to run.
1198 		 * Most systems won't run into this check, but this should
1199 		 * avoid starvation in the software interrupt handler in
1200 		 * large systems.
1201 		 */
1202 		splbreaknum = 100;
1203 
1204 		ccb = (union ccb *)addr;
1205 
1206 		base_periph_found = 0;
1207 
1208 		/*
1209 		 * Sanity check -- make sure we don't get a null peripheral
1210 		 * driver name.
1211 		 */
1212 		if (*ccb->cgdl.periph_name == '\0') {
1213 			error = EINVAL;
1214 			break;
1215 		}
1216 
1217 		/* Keep the list from changing while we traverse it */
1218 		s = splcam();
1219 ptstartover:
1220 		cur_generation = xsoftc.generation;
1221 
1222 		/* first find our driver in the list of drivers */
1223 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
1224 			if (strcmp((*p_drv)->driver_name, name) == 0)
1225 				break;
1226 
1227 		if (*p_drv == NULL) {
1228 			splx(s);
1229 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1230 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1231 			*ccb->cgdl.periph_name = '\0';
1232 			ccb->cgdl.unit_number = 0;
1233 			error = ENOENT;
1234 			break;
1235 		}
1236 
1237 		/*
1238 		 * Run through every peripheral instance of this driver
1239 		 * and check to see whether it matches the unit passed
1240 		 * in by the user.  If it does, get out of the loops and
1241 		 * find the passthrough driver associated with that
1242 		 * peripheral driver.
1243 		 */
1244 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1245 		     periph = TAILQ_NEXT(periph, unit_links)) {
1246 
1247 			if (periph->unit_number == unit) {
1248 				break;
1249 			} else if (--splbreaknum == 0) {
1250 				splx(s);
1251 				s = splcam();
1252 				splbreaknum = 100;
1253 				if (cur_generation != xsoftc.generation)
1254 				       goto ptstartover;
1255 			}
1256 		}
1257 		/*
1258 		 * If we found the peripheral driver that the user passed
1259 		 * in, go through all of the peripheral drivers for that
1260 		 * particular device and look for a passthrough driver.
1261 		 */
1262 		if (periph != NULL) {
1263 			struct cam_ed *device;
1264 			int i;
1265 
1266 			base_periph_found = 1;
1267 			device = periph->path->device;
1268 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1269 			     periph != NULL;
1270 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1271 				/*
1272 				 * Check to see whether we have a
1273 				 * passthrough device or not.
1274 				 */
1275 				if (strcmp(periph->periph_name, "pass") == 0) {
1276 					/*
1277 					 * Fill in the getdevlist fields.
1278 					 */
1279 					strcpy(ccb->cgdl.periph_name,
1280 					       periph->periph_name);
1281 					ccb->cgdl.unit_number =
1282 						periph->unit_number;
1283 					if (SLIST_NEXT(periph, periph_links))
1284 						ccb->cgdl.status =
1285 							CAM_GDEVLIST_MORE_DEVS;
1286 					else
1287 						ccb->cgdl.status =
1288 						       CAM_GDEVLIST_LAST_DEVICE;
1289 					ccb->cgdl.generation =
1290 						device->generation;
1291 					ccb->cgdl.index = i;
1292 					/*
1293 					 * Fill in some CCB header fields
1294 					 * that the user may want.
1295 					 */
1296 					ccb->ccb_h.path_id =
1297 						periph->path->bus->path_id;
1298 					ccb->ccb_h.target_id =
1299 						periph->path->target->target_id;
1300 					ccb->ccb_h.target_lun =
1301 						periph->path->device->lun_id;
1302 					ccb->ccb_h.status = CAM_REQ_CMP;
1303 					break;
1304 				}
1305 			}
1306 		}
1307 
1308 		/*
1309 		 * If the periph is null here, one of two things has
1310 		 * happened.  The first possibility is that we couldn't
1311 		 * find the unit number of the particular peripheral driver
1312 		 * that the user is asking about.  e.g. the user asks for
1313 		 * the passthrough driver for "da11".  We find the list of
1314 		 * "da" peripherals all right, but there is no unit 11.
1315 		 * The other possibility is that we went through the list
1316 		 * of peripheral drivers attached to the device structure,
1317 		 * but didn't find one with the name "pass".  Either way,
1318 		 * we return ENOENT, since we couldn't find something.
1319 		 */
1320 		if (periph == NULL) {
1321 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1322 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1323 			*ccb->cgdl.periph_name = '\0';
1324 			ccb->cgdl.unit_number = 0;
1325 			error = ENOENT;
1326 			/*
1327 			 * It is unfortunate that this is even necessary,
1328 			 * but there are many, many clueless users out there.
1329 			 * If this is true, the user is looking for the
1330 			 * passthrough driver, but doesn't have one in his
1331 			 * kernel.
1332 			 */
1333 			if (base_periph_found == 1) {
1334 				printf("xptioctl: pass driver is not in the "
1335 				       "kernel\n");
1336 				printf("xptioctl: put \"device pass0\" in "
1337 				       "your kernel config file\n");
1338 			}
1339 		}
1340 		splx(s);
1341 		break;
1342 		}
1343 	default:
1344 		error = ENOTTY;
1345 		break;
1346 	}
1347 
1348 	return(error);
1349 }
1350 
1351 static int
1352 cam_module_event_handler(module_t mod, int what, void *arg)
1353 {
1354 	if (what == MOD_LOAD) {
1355 		xpt_init(NULL);
1356 	} else if (what == MOD_UNLOAD) {
1357 		return EBUSY;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 /* Functions accessed by the peripheral drivers */
1364 static void
1365 xpt_init(dummy)
1366 	void *dummy;
1367 {
1368 	struct cam_sim *xpt_sim;
1369 	struct cam_path *path;
1370 	struct cam_devq *devq;
1371 	cam_status status;
1372 
1373 	TAILQ_INIT(&xpt_busses);
1374 	TAILQ_INIT(&cam_bioq);
1375 	TAILQ_INIT(&cam_netq);
1376 	SLIST_INIT(&ccb_freeq);
1377 	STAILQ_INIT(&highpowerq);
1378 
1379 	/*
1380 	 * The xpt layer is, itself, the equivelent of a SIM.
1381 	 * Allow 16 ccbs in the ccb pool for it.  This should
1382 	 * give decent parallelism when we probe busses and
1383 	 * perform other XPT functions.
1384 	 */
1385 	devq = cam_simq_alloc(16);
1386 	xpt_sim = cam_sim_alloc(xptaction,
1387 				xptpoll,
1388 				"xpt",
1389 				/*softc*/NULL,
1390 				/*unit*/0,
1391 				/*max_dev_transactions*/0,
1392 				/*max_tagged_dev_transactions*/0,
1393 				devq);
1394 	xpt_max_ccbs = 16;
1395 
1396 	xpt_bus_register(xpt_sim, /*bus #*/0);
1397 
1398 	/*
1399 	 * Looking at the XPT from the SIM layer, the XPT is
1400 	 * the equivelent of a peripheral driver.  Allocate
1401 	 * a peripheral driver entry for us.
1402 	 */
1403 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1404 				      CAM_TARGET_WILDCARD,
1405 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1406 		printf("xpt_init: xpt_create_path failed with status %#x,"
1407 		       " failing attach\n", status);
1408 		return;
1409 	}
1410 
1411 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1412 			 path, NULL, 0, NULL);
1413 	xpt_free_path(path);
1414 
1415 	xpt_sim->softc = xpt_periph;
1416 
1417 	/*
1418 	 * Register a callback for when interrupts are enabled.
1419 	 */
1420 	xpt_config_hook =
1421 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1422 					      M_TEMP, M_NOWAIT | M_ZERO);
1423 	if (xpt_config_hook == NULL) {
1424 		printf("xpt_init: Cannot malloc config hook "
1425 		       "- failing attach\n");
1426 		return;
1427 	}
1428 
1429 	xpt_config_hook->ich_func = xpt_config;
1430 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1431 		free (xpt_config_hook, M_TEMP);
1432 		printf("xpt_init: config_intrhook_establish failed "
1433 		       "- failing attach\n");
1434 	}
1435 
1436 	/* Install our software interrupt handlers */
1437 	swi_add(NULL, "camnet", camisr, &cam_netq, SWI_CAMNET, 0, &camnet_ih);
1438 	swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih);
1439 }
1440 
1441 static cam_status
1442 xptregister(struct cam_periph *periph, void *arg)
1443 {
1444 	if (periph == NULL) {
1445 		printf("xptregister: periph was NULL!!\n");
1446 		return(CAM_REQ_CMP_ERR);
1447 	}
1448 
1449 	periph->softc = NULL;
1450 
1451 	xpt_periph = periph;
1452 
1453 	return(CAM_REQ_CMP);
1454 }
1455 
1456 int32_t
1457 xpt_add_periph(struct cam_periph *periph)
1458 {
1459 	struct cam_ed *device;
1460 	int32_t	 status;
1461 	struct periph_list *periph_head;
1462 
1463 	device = periph->path->device;
1464 
1465 	periph_head = &device->periphs;
1466 
1467 	status = CAM_REQ_CMP;
1468 
1469 	if (device != NULL) {
1470 		int s;
1471 
1472 		/*
1473 		 * Make room for this peripheral
1474 		 * so it will fit in the queue
1475 		 * when it's scheduled to run
1476 		 */
1477 		s = splsoftcam();
1478 		status = camq_resize(&device->drvq,
1479 				     device->drvq.array_size + 1);
1480 
1481 		device->generation++;
1482 
1483 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1484 
1485 		splx(s);
1486 	}
1487 
1488 	xsoftc.generation++;
1489 
1490 	return (status);
1491 }
1492 
1493 void
1494 xpt_remove_periph(struct cam_periph *periph)
1495 {
1496 	struct cam_ed *device;
1497 
1498 	device = periph->path->device;
1499 
1500 	if (device != NULL) {
1501 		int s;
1502 		struct periph_list *periph_head;
1503 
1504 		periph_head = &device->periphs;
1505 
1506 		/* Release the slot for this peripheral */
1507 		s = splsoftcam();
1508 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1509 
1510 		device->generation++;
1511 
1512 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1513 
1514 		splx(s);
1515 	}
1516 
1517 	xsoftc.generation++;
1518 
1519 }
1520 
1521 #ifdef CAM_NEW_TRAN_CODE
1522 
1523 void
1524 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1525 {
1526 	struct	ccb_pathinq cpi;
1527 	struct	ccb_trans_settings cts;
1528 	struct	cam_path *path;
1529 	u_int	speed;
1530 	u_int	freq;
1531 	u_int	mb;
1532 	int	s;
1533 
1534 	path = periph->path;
1535 	/*
1536 	 * To ensure that this is printed in one piece,
1537 	 * mask out CAM interrupts.
1538 	 */
1539 	s = splsoftcam();
1540 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1541 	       periph->periph_name, periph->unit_number,
1542 	       path->bus->sim->sim_name,
1543 	       path->bus->sim->unit_number,
1544 	       path->bus->sim->bus_id,
1545 	       path->target->target_id,
1546 	       path->device->lun_id);
1547 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1548 	scsi_print_inquiry(&path->device->inq_data);
1549 	if (bootverbose && path->device->serial_num_len > 0) {
1550 		/* Don't wrap the screen  - print only the first 60 chars */
1551 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1552 		       periph->unit_number, path->device->serial_num);
1553 	}
1554 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1555 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1556 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1557 	xpt_action((union ccb*)&cts);
1558 
1559 	/* Ask the SIM for its base transfer speed */
1560 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1561 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1562 	xpt_action((union ccb *)&cpi);
1563 
1564 	speed = cpi.base_transfer_speed;
1565 	freq = 0;
1566 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1567 		struct	ccb_trans_settings_spi *spi;
1568 
1569 		spi = &cts.xport_specific.spi;
1570 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1571 		  && spi->sync_offset != 0) {
1572 			freq = scsi_calc_syncsrate(spi->sync_period);
1573 			speed = freq;
1574 		}
1575 
1576 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1577 			speed *= (0x01 << spi->bus_width);
1578 	}
1579 
1580 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1581 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1582 		if (fc->valid & CTS_FC_VALID_SPEED) {
1583 			speed = fc->bitrate;
1584 		}
1585 	}
1586 
1587 	mb = speed / 1000;
1588 	if (mb > 0)
1589 		printf("%s%d: %d.%03dMB/s transfers",
1590 		       periph->periph_name, periph->unit_number,
1591 		       mb, speed % 1000);
1592 	else
1593 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1594 		       periph->unit_number, speed);
1595 	/* Report additional information about SPI connections */
1596 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1597 		struct	ccb_trans_settings_spi *spi;
1598 
1599 		spi = &cts.xport_specific.spi;
1600 		if (freq != 0) {
1601 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1602 			       freq % 1000,
1603 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1604 			     ? " DT" : "",
1605 			       spi->sync_offset);
1606 		}
1607 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1608 		 && spi->bus_width > 0) {
1609 			if (freq != 0) {
1610 				printf(", ");
1611 			} else {
1612 				printf(" (");
1613 			}
1614 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1615 		} else if (freq != 0) {
1616 			printf(")");
1617 		}
1618 	}
1619 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1620 		struct	ccb_trans_settings_fc *fc;
1621 
1622 		fc = &cts.xport_specific.fc;
1623 		if (fc->valid & CTS_FC_VALID_WWNN)
1624 			printf(" WWNN 0x%llx", (long long) fc->wwnn);
1625 		if (fc->valid & CTS_FC_VALID_WWPN)
1626 			printf(" WWPN 0x%llx", (long long) fc->wwpn);
1627 		if (fc->valid & CTS_FC_VALID_PORT)
1628 			printf(" PortID 0x%x", fc->port);
1629 	}
1630 
1631 	if (path->device->inq_flags & SID_CmdQue
1632 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1633 		printf("\n%s%d: Tagged Queueing Enabled",
1634 		       periph->periph_name, periph->unit_number);
1635 	}
1636 	printf("\n");
1637 
1638 	/*
1639 	 * We only want to print the caller's announce string if they've
1640 	 * passed one in..
1641 	 */
1642 	if (announce_string != NULL)
1643 		printf("%s%d: %s\n", periph->periph_name,
1644 		       periph->unit_number, announce_string);
1645 	splx(s);
1646 }
1647 #else /* CAM_NEW_TRAN_CODE */
1648 void
1649 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1650 {
1651 	int s;
1652 	u_int mb;
1653 	struct cam_path *path;
1654 	struct ccb_trans_settings cts;
1655 
1656 	path = periph->path;
1657 	/*
1658 	 * To ensure that this is printed in one piece,
1659 	 * mask out CAM interrupts.
1660 	 */
1661 	s = splsoftcam();
1662 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1663 	       periph->periph_name, periph->unit_number,
1664 	       path->bus->sim->sim_name,
1665 	       path->bus->sim->unit_number,
1666 	       path->bus->sim->bus_id,
1667 	       path->target->target_id,
1668 	       path->device->lun_id);
1669 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1670 	scsi_print_inquiry(&path->device->inq_data);
1671 	if ((bootverbose)
1672 	 && (path->device->serial_num_len > 0)) {
1673 		/* Don't wrap the screen  - print only the first 60 chars */
1674 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1675 		       periph->unit_number, path->device->serial_num);
1676 	}
1677 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1678 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1679 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1680 	xpt_action((union ccb*)&cts);
1681 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1682 		u_int speed;
1683 		u_int freq;
1684 
1685 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1686 		  && cts.sync_offset != 0) {
1687 			freq = scsi_calc_syncsrate(cts.sync_period);
1688 			speed = freq;
1689 		} else {
1690 			struct ccb_pathinq cpi;
1691 
1692 			/* Ask the SIM for its base transfer speed */
1693 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1694 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1695 			xpt_action((union ccb *)&cpi);
1696 
1697 			speed = cpi.base_transfer_speed;
1698 			freq = 0;
1699 		}
1700 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1701 			speed *= (0x01 << cts.bus_width);
1702 		mb = speed / 1000;
1703 		if (mb > 0)
1704 			printf("%s%d: %d.%03dMB/s transfers",
1705 			       periph->periph_name, periph->unit_number,
1706 			       mb, speed % 1000);
1707 		else
1708 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1709 			       periph->unit_number, speed);
1710 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1711 		 && cts.sync_offset != 0) {
1712 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1713 			       freq % 1000, cts.sync_offset);
1714 		}
1715 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1716 		 && cts.bus_width > 0) {
1717 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1718 			 && cts.sync_offset != 0) {
1719 				printf(", ");
1720 			} else {
1721 				printf(" (");
1722 			}
1723 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1724 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1725 			&& cts.sync_offset != 0) {
1726 			printf(")");
1727 		}
1728 
1729 		if (path->device->inq_flags & SID_CmdQue
1730 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1731 			printf(", Tagged Queueing Enabled");
1732 		}
1733 
1734 		printf("\n");
1735 	} else if (path->device->inq_flags & SID_CmdQue
1736    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1737 		printf("%s%d: Tagged Queueing Enabled\n",
1738 		       periph->periph_name, periph->unit_number);
1739 	}
1740 
1741 	/*
1742 	 * We only want to print the caller's announce string if they've
1743 	 * passed one in..
1744 	 */
1745 	if (announce_string != NULL)
1746 		printf("%s%d: %s\n", periph->periph_name,
1747 		       periph->unit_number, announce_string);
1748 	splx(s);
1749 }
1750 
1751 #endif /* CAM_NEW_TRAN_CODE */
1752 
1753 static dev_match_ret
1754 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1755 	    struct cam_eb *bus)
1756 {
1757 	dev_match_ret retval;
1758 	int i;
1759 
1760 	retval = DM_RET_NONE;
1761 
1762 	/*
1763 	 * If we aren't given something to match against, that's an error.
1764 	 */
1765 	if (bus == NULL)
1766 		return(DM_RET_ERROR);
1767 
1768 	/*
1769 	 * If there are no match entries, then this bus matches no
1770 	 * matter what.
1771 	 */
1772 	if ((patterns == NULL) || (num_patterns == 0))
1773 		return(DM_RET_DESCEND | DM_RET_COPY);
1774 
1775 	for (i = 0; i < num_patterns; i++) {
1776 		struct bus_match_pattern *cur_pattern;
1777 
1778 		/*
1779 		 * If the pattern in question isn't for a bus node, we
1780 		 * aren't interested.  However, we do indicate to the
1781 		 * calling routine that we should continue descending the
1782 		 * tree, since the user wants to match against lower-level
1783 		 * EDT elements.
1784 		 */
1785 		if (patterns[i].type != DEV_MATCH_BUS) {
1786 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1787 				retval |= DM_RET_DESCEND;
1788 			continue;
1789 		}
1790 
1791 		cur_pattern = &patterns[i].pattern.bus_pattern;
1792 
1793 		/*
1794 		 * If they want to match any bus node, we give them any
1795 		 * device node.
1796 		 */
1797 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1798 			/* set the copy flag */
1799 			retval |= DM_RET_COPY;
1800 
1801 			/*
1802 			 * If we've already decided on an action, go ahead
1803 			 * and return.
1804 			 */
1805 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1806 				return(retval);
1807 		}
1808 
1809 		/*
1810 		 * Not sure why someone would do this...
1811 		 */
1812 		if (cur_pattern->flags == BUS_MATCH_NONE)
1813 			continue;
1814 
1815 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1816 		 && (cur_pattern->path_id != bus->path_id))
1817 			continue;
1818 
1819 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1820 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1821 			continue;
1822 
1823 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1824 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1825 			continue;
1826 
1827 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1828 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1829 			     DEV_IDLEN) != 0))
1830 			continue;
1831 
1832 		/*
1833 		 * If we get to this point, the user definitely wants
1834 		 * information on this bus.  So tell the caller to copy the
1835 		 * data out.
1836 		 */
1837 		retval |= DM_RET_COPY;
1838 
1839 		/*
1840 		 * If the return action has been set to descend, then we
1841 		 * know that we've already seen a non-bus matching
1842 		 * expression, therefore we need to further descend the tree.
1843 		 * This won't change by continuing around the loop, so we
1844 		 * go ahead and return.  If we haven't seen a non-bus
1845 		 * matching expression, we keep going around the loop until
1846 		 * we exhaust the matching expressions.  We'll set the stop
1847 		 * flag once we fall out of the loop.
1848 		 */
1849 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1850 			return(retval);
1851 	}
1852 
1853 	/*
1854 	 * If the return action hasn't been set to descend yet, that means
1855 	 * we haven't seen anything other than bus matching patterns.  So
1856 	 * tell the caller to stop descending the tree -- the user doesn't
1857 	 * want to match against lower level tree elements.
1858 	 */
1859 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1860 		retval |= DM_RET_STOP;
1861 
1862 	return(retval);
1863 }
1864 
1865 static dev_match_ret
1866 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1867 	       struct cam_ed *device)
1868 {
1869 	dev_match_ret retval;
1870 	int i;
1871 
1872 	retval = DM_RET_NONE;
1873 
1874 	/*
1875 	 * If we aren't given something to match against, that's an error.
1876 	 */
1877 	if (device == NULL)
1878 		return(DM_RET_ERROR);
1879 
1880 	/*
1881 	 * If there are no match entries, then this device matches no
1882 	 * matter what.
1883 	 */
1884 	if ((patterns == NULL) || (patterns == 0))
1885 		return(DM_RET_DESCEND | DM_RET_COPY);
1886 
1887 	for (i = 0; i < num_patterns; i++) {
1888 		struct device_match_pattern *cur_pattern;
1889 
1890 		/*
1891 		 * If the pattern in question isn't for a device node, we
1892 		 * aren't interested.
1893 		 */
1894 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1895 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1896 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1897 				retval |= DM_RET_DESCEND;
1898 			continue;
1899 		}
1900 
1901 		cur_pattern = &patterns[i].pattern.device_pattern;
1902 
1903 		/*
1904 		 * If they want to match any device node, we give them any
1905 		 * device node.
1906 		 */
1907 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1908 			/* set the copy flag */
1909 			retval |= DM_RET_COPY;
1910 
1911 
1912 			/*
1913 			 * If we've already decided on an action, go ahead
1914 			 * and return.
1915 			 */
1916 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1917 				return(retval);
1918 		}
1919 
1920 		/*
1921 		 * Not sure why someone would do this...
1922 		 */
1923 		if (cur_pattern->flags == DEV_MATCH_NONE)
1924 			continue;
1925 
1926 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1927 		 && (cur_pattern->path_id != device->target->bus->path_id))
1928 			continue;
1929 
1930 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1931 		 && (cur_pattern->target_id != device->target->target_id))
1932 			continue;
1933 
1934 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1935 		 && (cur_pattern->target_lun != device->lun_id))
1936 			continue;
1937 
1938 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1939 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1940 				    (caddr_t)&cur_pattern->inq_pat,
1941 				    1, sizeof(cur_pattern->inq_pat),
1942 				    scsi_static_inquiry_match) == NULL))
1943 			continue;
1944 
1945 		/*
1946 		 * If we get to this point, the user definitely wants
1947 		 * information on this device.  So tell the caller to copy
1948 		 * the data out.
1949 		 */
1950 		retval |= DM_RET_COPY;
1951 
1952 		/*
1953 		 * If the return action has been set to descend, then we
1954 		 * know that we've already seen a peripheral matching
1955 		 * expression, therefore we need to further descend the tree.
1956 		 * This won't change by continuing around the loop, so we
1957 		 * go ahead and return.  If we haven't seen a peripheral
1958 		 * matching expression, we keep going around the loop until
1959 		 * we exhaust the matching expressions.  We'll set the stop
1960 		 * flag once we fall out of the loop.
1961 		 */
1962 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1963 			return(retval);
1964 	}
1965 
1966 	/*
1967 	 * If the return action hasn't been set to descend yet, that means
1968 	 * we haven't seen any peripheral matching patterns.  So tell the
1969 	 * caller to stop descending the tree -- the user doesn't want to
1970 	 * match against lower level tree elements.
1971 	 */
1972 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1973 		retval |= DM_RET_STOP;
1974 
1975 	return(retval);
1976 }
1977 
1978 /*
1979  * Match a single peripheral against any number of match patterns.
1980  */
1981 static dev_match_ret
1982 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1983 	       struct cam_periph *periph)
1984 {
1985 	dev_match_ret retval;
1986 	int i;
1987 
1988 	/*
1989 	 * If we aren't given something to match against, that's an error.
1990 	 */
1991 	if (periph == NULL)
1992 		return(DM_RET_ERROR);
1993 
1994 	/*
1995 	 * If there are no match entries, then this peripheral matches no
1996 	 * matter what.
1997 	 */
1998 	if ((patterns == NULL) || (num_patterns == 0))
1999 		return(DM_RET_STOP | DM_RET_COPY);
2000 
2001 	/*
2002 	 * There aren't any nodes below a peripheral node, so there's no
2003 	 * reason to descend the tree any further.
2004 	 */
2005 	retval = DM_RET_STOP;
2006 
2007 	for (i = 0; i < num_patterns; i++) {
2008 		struct periph_match_pattern *cur_pattern;
2009 
2010 		/*
2011 		 * If the pattern in question isn't for a peripheral, we
2012 		 * aren't interested.
2013 		 */
2014 		if (patterns[i].type != DEV_MATCH_PERIPH)
2015 			continue;
2016 
2017 		cur_pattern = &patterns[i].pattern.periph_pattern;
2018 
2019 		/*
2020 		 * If they want to match on anything, then we will do so.
2021 		 */
2022 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2023 			/* set the copy flag */
2024 			retval |= DM_RET_COPY;
2025 
2026 			/*
2027 			 * We've already set the return action to stop,
2028 			 * since there are no nodes below peripherals in
2029 			 * the tree.
2030 			 */
2031 			return(retval);
2032 		}
2033 
2034 		/*
2035 		 * Not sure why someone would do this...
2036 		 */
2037 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2038 			continue;
2039 
2040 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2041 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2042 			continue;
2043 
2044 		/*
2045 		 * For the target and lun id's, we have to make sure the
2046 		 * target and lun pointers aren't NULL.  The xpt peripheral
2047 		 * has a wildcard target and device.
2048 		 */
2049 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2050 		 && ((periph->path->target == NULL)
2051 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2052 			continue;
2053 
2054 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2055 		 && ((periph->path->device == NULL)
2056 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2057 			continue;
2058 
2059 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2060 		 && (cur_pattern->unit_number != periph->unit_number))
2061 			continue;
2062 
2063 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2064 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2065 			     DEV_IDLEN) != 0))
2066 			continue;
2067 
2068 		/*
2069 		 * If we get to this point, the user definitely wants
2070 		 * information on this peripheral.  So tell the caller to
2071 		 * copy the data out.
2072 		 */
2073 		retval |= DM_RET_COPY;
2074 
2075 		/*
2076 		 * The return action has already been set to stop, since
2077 		 * peripherals don't have any nodes below them in the EDT.
2078 		 */
2079 		return(retval);
2080 	}
2081 
2082 	/*
2083 	 * If we get to this point, the peripheral that was passed in
2084 	 * doesn't match any of the patterns.
2085 	 */
2086 	return(retval);
2087 }
2088 
2089 static int
2090 xptedtbusfunc(struct cam_eb *bus, void *arg)
2091 {
2092 	struct ccb_dev_match *cdm;
2093 	dev_match_ret retval;
2094 
2095 	cdm = (struct ccb_dev_match *)arg;
2096 
2097 	/*
2098 	 * If our position is for something deeper in the tree, that means
2099 	 * that we've already seen this node.  So, we keep going down.
2100 	 */
2101 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2102 	 && (cdm->pos.cookie.bus == bus)
2103 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2104 	 && (cdm->pos.cookie.target != NULL))
2105 		retval = DM_RET_DESCEND;
2106 	else
2107 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2108 
2109 	/*
2110 	 * If we got an error, bail out of the search.
2111 	 */
2112 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2113 		cdm->status = CAM_DEV_MATCH_ERROR;
2114 		return(0);
2115 	}
2116 
2117 	/*
2118 	 * If the copy flag is set, copy this bus out.
2119 	 */
2120 	if (retval & DM_RET_COPY) {
2121 		int spaceleft, j;
2122 
2123 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2124 			sizeof(struct dev_match_result));
2125 
2126 		/*
2127 		 * If we don't have enough space to put in another
2128 		 * match result, save our position and tell the
2129 		 * user there are more devices to check.
2130 		 */
2131 		if (spaceleft < sizeof(struct dev_match_result)) {
2132 			bzero(&cdm->pos, sizeof(cdm->pos));
2133 			cdm->pos.position_type =
2134 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2135 
2136 			cdm->pos.cookie.bus = bus;
2137 			cdm->pos.generations[CAM_BUS_GENERATION]=
2138 				bus_generation;
2139 			cdm->status = CAM_DEV_MATCH_MORE;
2140 			return(0);
2141 		}
2142 		j = cdm->num_matches;
2143 		cdm->num_matches++;
2144 		cdm->matches[j].type = DEV_MATCH_BUS;
2145 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2146 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2147 		cdm->matches[j].result.bus_result.unit_number =
2148 			bus->sim->unit_number;
2149 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2150 			bus->sim->sim_name, DEV_IDLEN);
2151 	}
2152 
2153 	/*
2154 	 * If the user is only interested in busses, there's no
2155 	 * reason to descend to the next level in the tree.
2156 	 */
2157 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2158 		return(1);
2159 
2160 	/*
2161 	 * If there is a target generation recorded, check it to
2162 	 * make sure the target list hasn't changed.
2163 	 */
2164 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2165 	 && (bus == cdm->pos.cookie.bus)
2166 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2167 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2168 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2169 	     bus->generation)) {
2170 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2171 		return(0);
2172 	}
2173 
2174 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2175 	 && (cdm->pos.cookie.bus == bus)
2176 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2177 	 && (cdm->pos.cookie.target != NULL))
2178 		return(xpttargettraverse(bus,
2179 					(struct cam_et *)cdm->pos.cookie.target,
2180 					 xptedttargetfunc, arg));
2181 	else
2182 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2183 }
2184 
2185 static int
2186 xptedttargetfunc(struct cam_et *target, void *arg)
2187 {
2188 	struct ccb_dev_match *cdm;
2189 
2190 	cdm = (struct ccb_dev_match *)arg;
2191 
2192 	/*
2193 	 * If there is a device list generation recorded, check it to
2194 	 * make sure the device list hasn't changed.
2195 	 */
2196 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2197 	 && (cdm->pos.cookie.bus == target->bus)
2198 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2199 	 && (cdm->pos.cookie.target == target)
2200 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2201 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2202 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2203 	     target->generation)) {
2204 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2205 		return(0);
2206 	}
2207 
2208 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2209 	 && (cdm->pos.cookie.bus == target->bus)
2210 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2211 	 && (cdm->pos.cookie.target == target)
2212 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2213 	 && (cdm->pos.cookie.device != NULL))
2214 		return(xptdevicetraverse(target,
2215 					(struct cam_ed *)cdm->pos.cookie.device,
2216 					 xptedtdevicefunc, arg));
2217 	else
2218 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2219 }
2220 
2221 static int
2222 xptedtdevicefunc(struct cam_ed *device, void *arg)
2223 {
2224 
2225 	struct ccb_dev_match *cdm;
2226 	dev_match_ret retval;
2227 
2228 	cdm = (struct ccb_dev_match *)arg;
2229 
2230 	/*
2231 	 * If our position is for something deeper in the tree, that means
2232 	 * that we've already seen this node.  So, we keep going down.
2233 	 */
2234 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2235 	 && (cdm->pos.cookie.device == device)
2236 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2237 	 && (cdm->pos.cookie.periph != NULL))
2238 		retval = DM_RET_DESCEND;
2239 	else
2240 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2241 					device);
2242 
2243 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2244 		cdm->status = CAM_DEV_MATCH_ERROR;
2245 		return(0);
2246 	}
2247 
2248 	/*
2249 	 * If the copy flag is set, copy this device out.
2250 	 */
2251 	if (retval & DM_RET_COPY) {
2252 		int spaceleft, j;
2253 
2254 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2255 			sizeof(struct dev_match_result));
2256 
2257 		/*
2258 		 * If we don't have enough space to put in another
2259 		 * match result, save our position and tell the
2260 		 * user there are more devices to check.
2261 		 */
2262 		if (spaceleft < sizeof(struct dev_match_result)) {
2263 			bzero(&cdm->pos, sizeof(cdm->pos));
2264 			cdm->pos.position_type =
2265 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2266 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2267 
2268 			cdm->pos.cookie.bus = device->target->bus;
2269 			cdm->pos.generations[CAM_BUS_GENERATION]=
2270 				bus_generation;
2271 			cdm->pos.cookie.target = device->target;
2272 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2273 				device->target->bus->generation;
2274 			cdm->pos.cookie.device = device;
2275 			cdm->pos.generations[CAM_DEV_GENERATION] =
2276 				device->target->generation;
2277 			cdm->status = CAM_DEV_MATCH_MORE;
2278 			return(0);
2279 		}
2280 		j = cdm->num_matches;
2281 		cdm->num_matches++;
2282 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2283 		cdm->matches[j].result.device_result.path_id =
2284 			device->target->bus->path_id;
2285 		cdm->matches[j].result.device_result.target_id =
2286 			device->target->target_id;
2287 		cdm->matches[j].result.device_result.target_lun =
2288 			device->lun_id;
2289 		bcopy(&device->inq_data,
2290 		      &cdm->matches[j].result.device_result.inq_data,
2291 		      sizeof(struct scsi_inquiry_data));
2292 
2293 		/* Let the user know whether this device is unconfigured */
2294 		if (device->flags & CAM_DEV_UNCONFIGURED)
2295 			cdm->matches[j].result.device_result.flags =
2296 				DEV_RESULT_UNCONFIGURED;
2297 		else
2298 			cdm->matches[j].result.device_result.flags =
2299 				DEV_RESULT_NOFLAG;
2300 	}
2301 
2302 	/*
2303 	 * If the user isn't interested in peripherals, don't descend
2304 	 * the tree any further.
2305 	 */
2306 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2307 		return(1);
2308 
2309 	/*
2310 	 * If there is a peripheral list generation recorded, make sure
2311 	 * it hasn't changed.
2312 	 */
2313 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2314 	 && (device->target->bus == cdm->pos.cookie.bus)
2315 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2316 	 && (device->target == cdm->pos.cookie.target)
2317 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2318 	 && (device == cdm->pos.cookie.device)
2319 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2320 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2321 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2322 	     device->generation)){
2323 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2324 		return(0);
2325 	}
2326 
2327 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2328 	 && (cdm->pos.cookie.bus == device->target->bus)
2329 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2330 	 && (cdm->pos.cookie.target == device->target)
2331 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2332 	 && (cdm->pos.cookie.device == device)
2333 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2334 	 && (cdm->pos.cookie.periph != NULL))
2335 		return(xptperiphtraverse(device,
2336 				(struct cam_periph *)cdm->pos.cookie.periph,
2337 				xptedtperiphfunc, arg));
2338 	else
2339 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2340 }
2341 
2342 static int
2343 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2344 {
2345 	struct ccb_dev_match *cdm;
2346 	dev_match_ret retval;
2347 
2348 	cdm = (struct ccb_dev_match *)arg;
2349 
2350 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2351 
2352 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2353 		cdm->status = CAM_DEV_MATCH_ERROR;
2354 		return(0);
2355 	}
2356 
2357 	/*
2358 	 * If the copy flag is set, copy this peripheral out.
2359 	 */
2360 	if (retval & DM_RET_COPY) {
2361 		int spaceleft, j;
2362 
2363 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2364 			sizeof(struct dev_match_result));
2365 
2366 		/*
2367 		 * If we don't have enough space to put in another
2368 		 * match result, save our position and tell the
2369 		 * user there are more devices to check.
2370 		 */
2371 		if (spaceleft < sizeof(struct dev_match_result)) {
2372 			bzero(&cdm->pos, sizeof(cdm->pos));
2373 			cdm->pos.position_type =
2374 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2375 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2376 				CAM_DEV_POS_PERIPH;
2377 
2378 			cdm->pos.cookie.bus = periph->path->bus;
2379 			cdm->pos.generations[CAM_BUS_GENERATION]=
2380 				bus_generation;
2381 			cdm->pos.cookie.target = periph->path->target;
2382 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2383 				periph->path->bus->generation;
2384 			cdm->pos.cookie.device = periph->path->device;
2385 			cdm->pos.generations[CAM_DEV_GENERATION] =
2386 				periph->path->target->generation;
2387 			cdm->pos.cookie.periph = periph;
2388 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2389 				periph->path->device->generation;
2390 			cdm->status = CAM_DEV_MATCH_MORE;
2391 			return(0);
2392 		}
2393 
2394 		j = cdm->num_matches;
2395 		cdm->num_matches++;
2396 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2397 		cdm->matches[j].result.periph_result.path_id =
2398 			periph->path->bus->path_id;
2399 		cdm->matches[j].result.periph_result.target_id =
2400 			periph->path->target->target_id;
2401 		cdm->matches[j].result.periph_result.target_lun =
2402 			periph->path->device->lun_id;
2403 		cdm->matches[j].result.periph_result.unit_number =
2404 			periph->unit_number;
2405 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2406 			periph->periph_name, DEV_IDLEN);
2407 	}
2408 
2409 	return(1);
2410 }
2411 
2412 static int
2413 xptedtmatch(struct ccb_dev_match *cdm)
2414 {
2415 	int ret;
2416 
2417 	cdm->num_matches = 0;
2418 
2419 	/*
2420 	 * Check the bus list generation.  If it has changed, the user
2421 	 * needs to reset everything and start over.
2422 	 */
2423 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2424 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2425 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2426 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2427 		return(0);
2428 	}
2429 
2430 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2431 	 && (cdm->pos.cookie.bus != NULL))
2432 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2433 				     xptedtbusfunc, cdm);
2434 	else
2435 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2436 
2437 	/*
2438 	 * If we get back 0, that means that we had to stop before fully
2439 	 * traversing the EDT.  It also means that one of the subroutines
2440 	 * has set the status field to the proper value.  If we get back 1,
2441 	 * we've fully traversed the EDT and copied out any matching entries.
2442 	 */
2443 	if (ret == 1)
2444 		cdm->status = CAM_DEV_MATCH_LAST;
2445 
2446 	return(ret);
2447 }
2448 
2449 static int
2450 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2451 {
2452 	struct ccb_dev_match *cdm;
2453 
2454 	cdm = (struct ccb_dev_match *)arg;
2455 
2456 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2457 	 && (cdm->pos.cookie.pdrv == pdrv)
2458 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2459 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2460 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2461 	     (*pdrv)->generation)) {
2462 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2463 		return(0);
2464 	}
2465 
2466 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2467 	 && (cdm->pos.cookie.pdrv == pdrv)
2468 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2469 	 && (cdm->pos.cookie.periph != NULL))
2470 		return(xptpdperiphtraverse(pdrv,
2471 				(struct cam_periph *)cdm->pos.cookie.periph,
2472 				xptplistperiphfunc, arg));
2473 	else
2474 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2475 }
2476 
2477 static int
2478 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2479 {
2480 	struct ccb_dev_match *cdm;
2481 	dev_match_ret retval;
2482 
2483 	cdm = (struct ccb_dev_match *)arg;
2484 
2485 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2486 
2487 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2488 		cdm->status = CAM_DEV_MATCH_ERROR;
2489 		return(0);
2490 	}
2491 
2492 	/*
2493 	 * If the copy flag is set, copy this peripheral out.
2494 	 */
2495 	if (retval & DM_RET_COPY) {
2496 		int spaceleft, j;
2497 
2498 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2499 			sizeof(struct dev_match_result));
2500 
2501 		/*
2502 		 * If we don't have enough space to put in another
2503 		 * match result, save our position and tell the
2504 		 * user there are more devices to check.
2505 		 */
2506 		if (spaceleft < sizeof(struct dev_match_result)) {
2507 			struct periph_driver **pdrv;
2508 
2509 			pdrv = NULL;
2510 			bzero(&cdm->pos, sizeof(cdm->pos));
2511 			cdm->pos.position_type =
2512 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2513 				CAM_DEV_POS_PERIPH;
2514 
2515 			/*
2516 			 * This may look a bit non-sensical, but it is
2517 			 * actually quite logical.  There are very few
2518 			 * peripheral drivers, and bloating every peripheral
2519 			 * structure with a pointer back to its parent
2520 			 * peripheral driver linker set entry would cost
2521 			 * more in the long run than doing this quick lookup.
2522 			 */
2523 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2524 				if (strcmp((*pdrv)->driver_name,
2525 				    periph->periph_name) == 0)
2526 					break;
2527 			}
2528 
2529 			if (pdrv == NULL) {
2530 				cdm->status = CAM_DEV_MATCH_ERROR;
2531 				return(0);
2532 			}
2533 
2534 			cdm->pos.cookie.pdrv = pdrv;
2535 			/*
2536 			 * The periph generation slot does double duty, as
2537 			 * does the periph pointer slot.  They are used for
2538 			 * both edt and pdrv lookups and positioning.
2539 			 */
2540 			cdm->pos.cookie.periph = periph;
2541 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2542 				(*pdrv)->generation;
2543 			cdm->status = CAM_DEV_MATCH_MORE;
2544 			return(0);
2545 		}
2546 
2547 		j = cdm->num_matches;
2548 		cdm->num_matches++;
2549 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2550 		cdm->matches[j].result.periph_result.path_id =
2551 			periph->path->bus->path_id;
2552 
2553 		/*
2554 		 * The transport layer peripheral doesn't have a target or
2555 		 * lun.
2556 		 */
2557 		if (periph->path->target)
2558 			cdm->matches[j].result.periph_result.target_id =
2559 				periph->path->target->target_id;
2560 		else
2561 			cdm->matches[j].result.periph_result.target_id = -1;
2562 
2563 		if (periph->path->device)
2564 			cdm->matches[j].result.periph_result.target_lun =
2565 				periph->path->device->lun_id;
2566 		else
2567 			cdm->matches[j].result.periph_result.target_lun = -1;
2568 
2569 		cdm->matches[j].result.periph_result.unit_number =
2570 			periph->unit_number;
2571 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2572 			periph->periph_name, DEV_IDLEN);
2573 	}
2574 
2575 	return(1);
2576 }
2577 
2578 static int
2579 xptperiphlistmatch(struct ccb_dev_match *cdm)
2580 {
2581 	int ret;
2582 
2583 	cdm->num_matches = 0;
2584 
2585 	/*
2586 	 * At this point in the edt traversal function, we check the bus
2587 	 * list generation to make sure that no busses have been added or
2588 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2589 	 * For the peripheral driver list traversal function, however, we
2590 	 * don't have to worry about new peripheral driver types coming or
2591 	 * going; they're in a linker set, and therefore can't change
2592 	 * without a recompile.
2593 	 */
2594 
2595 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2596 	 && (cdm->pos.cookie.pdrv != NULL))
2597 		ret = xptpdrvtraverse(
2598 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2599 				xptplistpdrvfunc, cdm);
2600 	else
2601 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2602 
2603 	/*
2604 	 * If we get back 0, that means that we had to stop before fully
2605 	 * traversing the peripheral driver tree.  It also means that one of
2606 	 * the subroutines has set the status field to the proper value.  If
2607 	 * we get back 1, we've fully traversed the EDT and copied out any
2608 	 * matching entries.
2609 	 */
2610 	if (ret == 1)
2611 		cdm->status = CAM_DEV_MATCH_LAST;
2612 
2613 	return(ret);
2614 }
2615 
2616 static int
2617 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2618 {
2619 	struct cam_eb *bus, *next_bus;
2620 	int retval;
2621 
2622 	retval = 1;
2623 
2624 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2625 	     bus != NULL;
2626 	     bus = next_bus) {
2627 		next_bus = TAILQ_NEXT(bus, links);
2628 
2629 		retval = tr_func(bus, arg);
2630 		if (retval == 0)
2631 			return(retval);
2632 	}
2633 
2634 	return(retval);
2635 }
2636 
2637 static int
2638 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2639 		  xpt_targetfunc_t *tr_func, void *arg)
2640 {
2641 	struct cam_et *target, *next_target;
2642 	int retval;
2643 
2644 	retval = 1;
2645 	for (target = (start_target ? start_target :
2646 		       TAILQ_FIRST(&bus->et_entries));
2647 	     target != NULL; target = next_target) {
2648 
2649 		next_target = TAILQ_NEXT(target, links);
2650 
2651 		retval = tr_func(target, arg);
2652 
2653 		if (retval == 0)
2654 			return(retval);
2655 	}
2656 
2657 	return(retval);
2658 }
2659 
2660 static int
2661 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2662 		  xpt_devicefunc_t *tr_func, void *arg)
2663 {
2664 	struct cam_ed *device, *next_device;
2665 	int retval;
2666 
2667 	retval = 1;
2668 	for (device = (start_device ? start_device :
2669 		       TAILQ_FIRST(&target->ed_entries));
2670 	     device != NULL;
2671 	     device = next_device) {
2672 
2673 		next_device = TAILQ_NEXT(device, links);
2674 
2675 		retval = tr_func(device, arg);
2676 
2677 		if (retval == 0)
2678 			return(retval);
2679 	}
2680 
2681 	return(retval);
2682 }
2683 
2684 static int
2685 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2686 		  xpt_periphfunc_t *tr_func, void *arg)
2687 {
2688 	struct cam_periph *periph, *next_periph;
2689 	int retval;
2690 
2691 	retval = 1;
2692 
2693 	for (periph = (start_periph ? start_periph :
2694 		       SLIST_FIRST(&device->periphs));
2695 	     periph != NULL;
2696 	     periph = next_periph) {
2697 
2698 		next_periph = SLIST_NEXT(periph, periph_links);
2699 
2700 		retval = tr_func(periph, arg);
2701 		if (retval == 0)
2702 			return(retval);
2703 	}
2704 
2705 	return(retval);
2706 }
2707 
2708 static int
2709 xptpdrvtraverse(struct periph_driver **start_pdrv,
2710 		xpt_pdrvfunc_t *tr_func, void *arg)
2711 {
2712 	struct periph_driver **pdrv;
2713 	int retval;
2714 
2715 	retval = 1;
2716 
2717 	/*
2718 	 * We don't traverse the peripheral driver list like we do the
2719 	 * other lists, because it is a linker set, and therefore cannot be
2720 	 * changed during runtime.  If the peripheral driver list is ever
2721 	 * re-done to be something other than a linker set (i.e. it can
2722 	 * change while the system is running), the list traversal should
2723 	 * be modified to work like the other traversal functions.
2724 	 */
2725 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2726 	     *pdrv != NULL; pdrv++) {
2727 		retval = tr_func(pdrv, arg);
2728 
2729 		if (retval == 0)
2730 			return(retval);
2731 	}
2732 
2733 	return(retval);
2734 }
2735 
2736 static int
2737 xptpdperiphtraverse(struct periph_driver **pdrv,
2738 		    struct cam_periph *start_periph,
2739 		    xpt_periphfunc_t *tr_func, void *arg)
2740 {
2741 	struct cam_periph *periph, *next_periph;
2742 	int retval;
2743 
2744 	retval = 1;
2745 
2746 	for (periph = (start_periph ? start_periph :
2747 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2748 	     periph = next_periph) {
2749 
2750 		next_periph = TAILQ_NEXT(periph, unit_links);
2751 
2752 		retval = tr_func(periph, arg);
2753 		if (retval == 0)
2754 			return(retval);
2755 	}
2756 	return(retval);
2757 }
2758 
2759 static int
2760 xptdefbusfunc(struct cam_eb *bus, void *arg)
2761 {
2762 	struct xpt_traverse_config *tr_config;
2763 
2764 	tr_config = (struct xpt_traverse_config *)arg;
2765 
2766 	if (tr_config->depth == XPT_DEPTH_BUS) {
2767 		xpt_busfunc_t *tr_func;
2768 
2769 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2770 
2771 		return(tr_func(bus, tr_config->tr_arg));
2772 	} else
2773 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2774 }
2775 
2776 static int
2777 xptdeftargetfunc(struct cam_et *target, void *arg)
2778 {
2779 	struct xpt_traverse_config *tr_config;
2780 
2781 	tr_config = (struct xpt_traverse_config *)arg;
2782 
2783 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2784 		xpt_targetfunc_t *tr_func;
2785 
2786 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2787 
2788 		return(tr_func(target, tr_config->tr_arg));
2789 	} else
2790 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2791 }
2792 
2793 static int
2794 xptdefdevicefunc(struct cam_ed *device, void *arg)
2795 {
2796 	struct xpt_traverse_config *tr_config;
2797 
2798 	tr_config = (struct xpt_traverse_config *)arg;
2799 
2800 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2801 		xpt_devicefunc_t *tr_func;
2802 
2803 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2804 
2805 		return(tr_func(device, tr_config->tr_arg));
2806 	} else
2807 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2808 }
2809 
2810 static int
2811 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2812 {
2813 	struct xpt_traverse_config *tr_config;
2814 	xpt_periphfunc_t *tr_func;
2815 
2816 	tr_config = (struct xpt_traverse_config *)arg;
2817 
2818 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2819 
2820 	/*
2821 	 * Unlike the other default functions, we don't check for depth
2822 	 * here.  The peripheral driver level is the last level in the EDT,
2823 	 * so if we're here, we should execute the function in question.
2824 	 */
2825 	return(tr_func(periph, tr_config->tr_arg));
2826 }
2827 
2828 /*
2829  * Execute the given function for every bus in the EDT.
2830  */
2831 static int
2832 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2833 {
2834 	struct xpt_traverse_config tr_config;
2835 
2836 	tr_config.depth = XPT_DEPTH_BUS;
2837 	tr_config.tr_func = tr_func;
2838 	tr_config.tr_arg = arg;
2839 
2840 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2841 }
2842 
2843 #ifdef notusedyet
2844 /*
2845  * Execute the given function for every target in the EDT.
2846  */
2847 static int
2848 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2849 {
2850 	struct xpt_traverse_config tr_config;
2851 
2852 	tr_config.depth = XPT_DEPTH_TARGET;
2853 	tr_config.tr_func = tr_func;
2854 	tr_config.tr_arg = arg;
2855 
2856 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2857 }
2858 #endif /* notusedyet */
2859 
2860 /*
2861  * Execute the given function for every device in the EDT.
2862  */
2863 static int
2864 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2865 {
2866 	struct xpt_traverse_config tr_config;
2867 
2868 	tr_config.depth = XPT_DEPTH_DEVICE;
2869 	tr_config.tr_func = tr_func;
2870 	tr_config.tr_arg = arg;
2871 
2872 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2873 }
2874 
2875 #ifdef notusedyet
2876 /*
2877  * Execute the given function for every peripheral in the EDT.
2878  */
2879 static int
2880 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2881 {
2882 	struct xpt_traverse_config tr_config;
2883 
2884 	tr_config.depth = XPT_DEPTH_PERIPH;
2885 	tr_config.tr_func = tr_func;
2886 	tr_config.tr_arg = arg;
2887 
2888 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2889 }
2890 #endif /* notusedyet */
2891 
2892 static int
2893 xptsetasyncfunc(struct cam_ed *device, void *arg)
2894 {
2895 	struct cam_path path;
2896 	struct ccb_getdev cgd;
2897 	struct async_node *cur_entry;
2898 
2899 	cur_entry = (struct async_node *)arg;
2900 
2901 	/*
2902 	 * Don't report unconfigured devices (Wildcard devs,
2903 	 * devices only for target mode, device instances
2904 	 * that have been invalidated but are waiting for
2905 	 * their last reference count to be released).
2906 	 */
2907 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2908 		return (1);
2909 
2910 	xpt_compile_path(&path,
2911 			 NULL,
2912 			 device->target->bus->path_id,
2913 			 device->target->target_id,
2914 			 device->lun_id);
2915 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2916 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2917 	xpt_action((union ccb *)&cgd);
2918 	cur_entry->callback(cur_entry->callback_arg,
2919 			    AC_FOUND_DEVICE,
2920 			    &path, &cgd);
2921 	xpt_release_path(&path);
2922 
2923 	return(1);
2924 }
2925 
2926 static int
2927 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2928 {
2929 	struct cam_path path;
2930 	struct ccb_pathinq cpi;
2931 	struct async_node *cur_entry;
2932 
2933 	cur_entry = (struct async_node *)arg;
2934 
2935 	xpt_compile_path(&path, /*periph*/NULL,
2936 			 bus->sim->path_id,
2937 			 CAM_TARGET_WILDCARD,
2938 			 CAM_LUN_WILDCARD);
2939 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2940 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2941 	xpt_action((union ccb *)&cpi);
2942 	cur_entry->callback(cur_entry->callback_arg,
2943 			    AC_PATH_REGISTERED,
2944 			    &path, &cpi);
2945 	xpt_release_path(&path);
2946 
2947 	return(1);
2948 }
2949 
2950 void
2951 xpt_action(union ccb *start_ccb)
2952 {
2953 	int iopl;
2954 
2955 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2956 
2957 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2958 
2959 	iopl = splsoftcam();
2960 	switch (start_ccb->ccb_h.func_code) {
2961 	case XPT_SCSI_IO:
2962 	{
2963 #ifdef CAM_NEW_TRAN_CODE
2964 		struct cam_ed *device;
2965 #endif /* CAM_NEW_TRAN_CODE */
2966 #ifdef CAMDEBUG
2967 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2968 		struct cam_path *path;
2969 
2970 		path = start_ccb->ccb_h.path;
2971 #endif
2972 
2973 		/*
2974 		 * For the sake of compatibility with SCSI-1
2975 		 * devices that may not understand the identify
2976 		 * message, we include lun information in the
2977 		 * second byte of all commands.  SCSI-1 specifies
2978 		 * that luns are a 3 bit value and reserves only 3
2979 		 * bits for lun information in the CDB.  Later
2980 		 * revisions of the SCSI spec allow for more than 8
2981 		 * luns, but have deprecated lun information in the
2982 		 * CDB.  So, if the lun won't fit, we must omit.
2983 		 *
2984 		 * Also be aware that during initial probing for devices,
2985 		 * the inquiry information is unknown but initialized to 0.
2986 		 * This means that this code will be exercised while probing
2987 		 * devices with an ANSI revision greater than 2.
2988 		 */
2989 #ifdef CAM_NEW_TRAN_CODE
2990 		device = start_ccb->ccb_h.path->device;
2991 		if (device->protocol_version <= SCSI_REV_2
2992 #else /* CAM_NEW_TRAN_CODE */
2993 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2994 #endif /* CAM_NEW_TRAN_CODE */
2995 		 && start_ccb->ccb_h.target_lun < 8
2996 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2997 
2998 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2999 			    start_ccb->ccb_h.target_lun << 5;
3000 		}
3001 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3002 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3003 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3004 			  	       &path->device->inq_data),
3005 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3006 					  cdb_str, sizeof(cdb_str))));
3007 		/* FALLTHROUGH */
3008 	}
3009 	case XPT_TARGET_IO:
3010 	case XPT_CONT_TARGET_IO:
3011 		start_ccb->csio.sense_resid = 0;
3012 		start_ccb->csio.resid = 0;
3013 		/* FALLTHROUGH */
3014 	case XPT_RESET_DEV:
3015 	case XPT_ENG_EXEC:
3016 	{
3017 		struct cam_path *path;
3018 		int s;
3019 		int runq;
3020 
3021 		path = start_ccb->ccb_h.path;
3022 		s = splsoftcam();
3023 
3024 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3025 		if (path->device->qfrozen_cnt == 0)
3026 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3027 		else
3028 			runq = 0;
3029 		splx(s);
3030 		if (runq != 0)
3031 			xpt_run_dev_sendq(path->bus);
3032 		break;
3033 	}
3034 	case XPT_SET_TRAN_SETTINGS:
3035 	{
3036 		xpt_set_transfer_settings(&start_ccb->cts,
3037 					  start_ccb->ccb_h.path->device,
3038 					  /*async_update*/FALSE);
3039 		break;
3040 	}
3041 	case XPT_CALC_GEOMETRY:
3042 	{
3043 		struct cam_sim *sim;
3044 
3045 		/* Filter out garbage */
3046 		if (start_ccb->ccg.block_size == 0
3047 		 || start_ccb->ccg.volume_size == 0) {
3048 			start_ccb->ccg.cylinders = 0;
3049 			start_ccb->ccg.heads = 0;
3050 			start_ccb->ccg.secs_per_track = 0;
3051 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3052 			break;
3053 		}
3054 #ifdef PC98
3055 		/*
3056 		 * In a PC-98 system, geometry translation depens on
3057 		 * the "real" device geometry obtained from mode page 4.
3058 		 * SCSI geometry translation is performed in the
3059 		 * initialization routine of the SCSI BIOS and the result
3060 		 * stored in host memory.  If the translation is available
3061 		 * in host memory, use it.  If not, rely on the default
3062 		 * translation the device driver performs.
3063 		 */
3064 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
3065 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3066 			break;
3067 		}
3068 #endif
3069 		sim = start_ccb->ccb_h.path->bus->sim;
3070 		(*(sim->sim_action))(sim, start_ccb);
3071 		break;
3072 	}
3073 	case XPT_ABORT:
3074 	{
3075 		union ccb* abort_ccb;
3076 		int s;
3077 
3078 		abort_ccb = start_ccb->cab.abort_ccb;
3079 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3080 
3081 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3082 				struct cam_ccbq *ccbq;
3083 
3084 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3085 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3086 				abort_ccb->ccb_h.status =
3087 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3088 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3089 				s = splcam();
3090 				xpt_done(abort_ccb);
3091 				splx(s);
3092 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3093 				break;
3094 			}
3095 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3096 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3097 				/*
3098 				 * We've caught this ccb en route to
3099 				 * the SIM.  Flag it for abort and the
3100 				 * SIM will do so just before starting
3101 				 * real work on the CCB.
3102 				 */
3103 				abort_ccb->ccb_h.status =
3104 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3105 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3106 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3107 				break;
3108 			}
3109 		}
3110 		if (XPT_FC_IS_QUEUED(abort_ccb)
3111 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3112 			/*
3113 			 * It's already completed but waiting
3114 			 * for our SWI to get to it.
3115 			 */
3116 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3117 			break;
3118 		}
3119 		/*
3120 		 * If we weren't able to take care of the abort request
3121 		 * in the XPT, pass the request down to the SIM for processing.
3122 		 */
3123 		/* FALLTHROUGH */
3124 	}
3125 	case XPT_ACCEPT_TARGET_IO:
3126 	case XPT_EN_LUN:
3127 	case XPT_IMMED_NOTIFY:
3128 	case XPT_NOTIFY_ACK:
3129 	case XPT_GET_TRAN_SETTINGS:
3130 	case XPT_RESET_BUS:
3131 	{
3132 		struct cam_sim *sim;
3133 
3134 		sim = start_ccb->ccb_h.path->bus->sim;
3135 		(*(sim->sim_action))(sim, start_ccb);
3136 		break;
3137 	}
3138 	case XPT_PATH_INQ:
3139 	{
3140 		struct cam_sim *sim;
3141 
3142 		sim = start_ccb->ccb_h.path->bus->sim;
3143 		(*(sim->sim_action))(sim, start_ccb);
3144 		break;
3145 	}
3146 	case XPT_PATH_STATS:
3147 		start_ccb->cpis.last_reset =
3148 			start_ccb->ccb_h.path->bus->last_reset;
3149 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3150 		break;
3151 	case XPT_GDEV_TYPE:
3152 	{
3153 		struct cam_ed *dev;
3154 		int s;
3155 
3156 		dev = start_ccb->ccb_h.path->device;
3157 		s = splcam();
3158 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3159 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3160 		} else {
3161 			struct ccb_getdev *cgd;
3162 			struct cam_eb *bus;
3163 			struct cam_et *tar;
3164 
3165 			cgd = &start_ccb->cgd;
3166 			bus = cgd->ccb_h.path->bus;
3167 			tar = cgd->ccb_h.path->target;
3168 			cgd->inq_data = dev->inq_data;
3169 			cgd->ccb_h.status = CAM_REQ_CMP;
3170 			cgd->serial_num_len = dev->serial_num_len;
3171 			if ((dev->serial_num_len > 0)
3172 			 && (dev->serial_num != NULL))
3173 				bcopy(dev->serial_num, cgd->serial_num,
3174 				      dev->serial_num_len);
3175 		}
3176 		splx(s);
3177 		break;
3178 	}
3179 	case XPT_GDEV_STATS:
3180 	{
3181 		struct cam_ed *dev;
3182 		int s;
3183 
3184 		dev = start_ccb->ccb_h.path->device;
3185 		s = splcam();
3186 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3187 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3188 		} else {
3189 			struct ccb_getdevstats *cgds;
3190 			struct cam_eb *bus;
3191 			struct cam_et *tar;
3192 
3193 			cgds = &start_ccb->cgds;
3194 			bus = cgds->ccb_h.path->bus;
3195 			tar = cgds->ccb_h.path->target;
3196 			cgds->dev_openings = dev->ccbq.dev_openings;
3197 			cgds->dev_active = dev->ccbq.dev_active;
3198 			cgds->devq_openings = dev->ccbq.devq_openings;
3199 			cgds->devq_queued = dev->ccbq.queue.entries;
3200 			cgds->held = dev->ccbq.held;
3201 			cgds->last_reset = tar->last_reset;
3202 			cgds->maxtags = dev->quirk->maxtags;
3203 			cgds->mintags = dev->quirk->mintags;
3204 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3205 				cgds->last_reset = bus->last_reset;
3206 			cgds->ccb_h.status = CAM_REQ_CMP;
3207 		}
3208 		splx(s);
3209 		break;
3210 	}
3211 	case XPT_GDEVLIST:
3212 	{
3213 		struct cam_periph	*nperiph;
3214 		struct periph_list	*periph_head;
3215 		struct ccb_getdevlist	*cgdl;
3216 		u_int			i;
3217 		int			s;
3218 		struct cam_ed		*device;
3219 		int			found;
3220 
3221 
3222 		found = 0;
3223 
3224 		/*
3225 		 * Don't want anyone mucking with our data.
3226 		 */
3227 		s = splcam();
3228 		device = start_ccb->ccb_h.path->device;
3229 		periph_head = &device->periphs;
3230 		cgdl = &start_ccb->cgdl;
3231 
3232 		/*
3233 		 * Check and see if the list has changed since the user
3234 		 * last requested a list member.  If so, tell them that the
3235 		 * list has changed, and therefore they need to start over
3236 		 * from the beginning.
3237 		 */
3238 		if ((cgdl->index != 0) &&
3239 		    (cgdl->generation != device->generation)) {
3240 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3241 			splx(s);
3242 			break;
3243 		}
3244 
3245 		/*
3246 		 * Traverse the list of peripherals and attempt to find
3247 		 * the requested peripheral.
3248 		 */
3249 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3250 		     (nperiph != NULL) && (i <= cgdl->index);
3251 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3252 			if (i == cgdl->index) {
3253 				strncpy(cgdl->periph_name,
3254 					nperiph->periph_name,
3255 					DEV_IDLEN);
3256 				cgdl->unit_number = nperiph->unit_number;
3257 				found = 1;
3258 			}
3259 		}
3260 		if (found == 0) {
3261 			cgdl->status = CAM_GDEVLIST_ERROR;
3262 			splx(s);
3263 			break;
3264 		}
3265 
3266 		if (nperiph == NULL)
3267 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3268 		else
3269 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3270 
3271 		cgdl->index++;
3272 		cgdl->generation = device->generation;
3273 
3274 		splx(s);
3275 		cgdl->ccb_h.status = CAM_REQ_CMP;
3276 		break;
3277 	}
3278 	case XPT_DEV_MATCH:
3279 	{
3280 		int s;
3281 		dev_pos_type position_type;
3282 		struct ccb_dev_match *cdm;
3283 		int ret;
3284 
3285 		cdm = &start_ccb->cdm;
3286 
3287 		/*
3288 		 * Prevent EDT changes while we traverse it.
3289 		 */
3290 		s = splcam();
3291 		/*
3292 		 * There are two ways of getting at information in the EDT.
3293 		 * The first way is via the primary EDT tree.  It starts
3294 		 * with a list of busses, then a list of targets on a bus,
3295 		 * then devices/luns on a target, and then peripherals on a
3296 		 * device/lun.  The "other" way is by the peripheral driver
3297 		 * lists.  The peripheral driver lists are organized by
3298 		 * peripheral driver.  (obviously)  So it makes sense to
3299 		 * use the peripheral driver list if the user is looking
3300 		 * for something like "da1", or all "da" devices.  If the
3301 		 * user is looking for something on a particular bus/target
3302 		 * or lun, it's generally better to go through the EDT tree.
3303 		 */
3304 
3305 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3306 			position_type = cdm->pos.position_type;
3307 		else {
3308 			u_int i;
3309 
3310 			position_type = CAM_DEV_POS_NONE;
3311 
3312 			for (i = 0; i < cdm->num_patterns; i++) {
3313 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3314 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3315 					position_type = CAM_DEV_POS_EDT;
3316 					break;
3317 				}
3318 			}
3319 
3320 			if (cdm->num_patterns == 0)
3321 				position_type = CAM_DEV_POS_EDT;
3322 			else if (position_type == CAM_DEV_POS_NONE)
3323 				position_type = CAM_DEV_POS_PDRV;
3324 		}
3325 
3326 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3327 		case CAM_DEV_POS_EDT:
3328 			ret = xptedtmatch(cdm);
3329 			break;
3330 		case CAM_DEV_POS_PDRV:
3331 			ret = xptperiphlistmatch(cdm);
3332 			break;
3333 		default:
3334 			cdm->status = CAM_DEV_MATCH_ERROR;
3335 			break;
3336 		}
3337 
3338 		splx(s);
3339 
3340 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3341 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3342 		else
3343 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3344 
3345 		break;
3346 	}
3347 	case XPT_SASYNC_CB:
3348 	{
3349 		struct ccb_setasync *csa;
3350 		struct async_node *cur_entry;
3351 		struct async_list *async_head;
3352 		u_int32_t added;
3353 		int s;
3354 
3355 		csa = &start_ccb->csa;
3356 		added = csa->event_enable;
3357 		async_head = &csa->ccb_h.path->device->asyncs;
3358 
3359 		/*
3360 		 * If there is already an entry for us, simply
3361 		 * update it.
3362 		 */
3363 		s = splcam();
3364 		cur_entry = SLIST_FIRST(async_head);
3365 		while (cur_entry != NULL) {
3366 			if ((cur_entry->callback_arg == csa->callback_arg)
3367 			 && (cur_entry->callback == csa->callback))
3368 				break;
3369 			cur_entry = SLIST_NEXT(cur_entry, links);
3370 		}
3371 
3372 		if (cur_entry != NULL) {
3373 		 	/*
3374 			 * If the request has no flags set,
3375 			 * remove the entry.
3376 			 */
3377 			added &= ~cur_entry->event_enable;
3378 			if (csa->event_enable == 0) {
3379 				SLIST_REMOVE(async_head, cur_entry,
3380 					     async_node, links);
3381 				csa->ccb_h.path->device->refcount--;
3382 				free(cur_entry, M_DEVBUF);
3383 			} else {
3384 				cur_entry->event_enable = csa->event_enable;
3385 			}
3386 		} else {
3387 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3388 					   M_NOWAIT);
3389 			if (cur_entry == NULL) {
3390 				splx(s);
3391 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3392 				break;
3393 			}
3394 			cur_entry->event_enable = csa->event_enable;
3395 			cur_entry->callback_arg = csa->callback_arg;
3396 			cur_entry->callback = csa->callback;
3397 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3398 			csa->ccb_h.path->device->refcount++;
3399 		}
3400 
3401 		if ((added & AC_FOUND_DEVICE) != 0) {
3402 			/*
3403 			 * Get this peripheral up to date with all
3404 			 * the currently existing devices.
3405 			 */
3406 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3407 		}
3408 		if ((added & AC_PATH_REGISTERED) != 0) {
3409 			/*
3410 			 * Get this peripheral up to date with all
3411 			 * the currently existing busses.
3412 			 */
3413 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3414 		}
3415 		splx(s);
3416 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3417 		break;
3418 	}
3419 	case XPT_REL_SIMQ:
3420 	{
3421 		struct ccb_relsim *crs;
3422 		struct cam_ed *dev;
3423 		int s;
3424 
3425 		crs = &start_ccb->crs;
3426 		dev = crs->ccb_h.path->device;
3427 		if (dev == NULL) {
3428 
3429 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3430 			break;
3431 		}
3432 
3433 		s = splcam();
3434 
3435 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3436 
3437  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3438 
3439 				/* Don't ever go below one opening */
3440 				if (crs->openings > 0) {
3441 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3442 							    crs->openings);
3443 
3444 					if (bootverbose) {
3445 						xpt_print_path(crs->ccb_h.path);
3446 						printf("tagged openings "
3447 						       "now %d\n",
3448 						       crs->openings);
3449 					}
3450 				}
3451 			}
3452 		}
3453 
3454 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3455 
3456 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3457 
3458 				/*
3459 				 * Just extend the old timeout and decrement
3460 				 * the freeze count so that a single timeout
3461 				 * is sufficient for releasing the queue.
3462 				 */
3463 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3464 				untimeout(xpt_release_devq_timeout,
3465 					  dev, dev->c_handle);
3466 			} else {
3467 
3468 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3469 			}
3470 
3471 			dev->c_handle =
3472 				timeout(xpt_release_devq_timeout,
3473 					dev,
3474 					(crs->release_timeout * hz) / 1000);
3475 
3476 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3477 
3478 		}
3479 
3480 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3481 
3482 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3483 				/*
3484 				 * Decrement the freeze count so that a single
3485 				 * completion is still sufficient to unfreeze
3486 				 * the queue.
3487 				 */
3488 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3489 			} else {
3490 
3491 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3492 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3493 			}
3494 		}
3495 
3496 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3497 
3498 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3499 			 || (dev->ccbq.dev_active == 0)) {
3500 
3501 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3502 			} else {
3503 
3504 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3505 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3506 			}
3507 		}
3508 		splx(s);
3509 
3510 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3511 
3512 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3513 					 /*run_queue*/TRUE);
3514 		}
3515 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3516 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3517 		break;
3518 	}
3519 	case XPT_SCAN_BUS:
3520 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3521 		break;
3522 	case XPT_SCAN_LUN:
3523 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3524 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3525 			     start_ccb);
3526 		break;
3527 	case XPT_DEBUG: {
3528 #ifdef CAMDEBUG
3529 		int s;
3530 
3531 		s = splcam();
3532 #ifdef CAM_DEBUG_DELAY
3533 		cam_debug_delay = CAM_DEBUG_DELAY;
3534 #endif
3535 		cam_dflags = start_ccb->cdbg.flags;
3536 		if (cam_dpath != NULL) {
3537 			xpt_free_path(cam_dpath);
3538 			cam_dpath = NULL;
3539 		}
3540 
3541 		if (cam_dflags != CAM_DEBUG_NONE) {
3542 			if (xpt_create_path(&cam_dpath, xpt_periph,
3543 					    start_ccb->ccb_h.path_id,
3544 					    start_ccb->ccb_h.target_id,
3545 					    start_ccb->ccb_h.target_lun) !=
3546 					    CAM_REQ_CMP) {
3547 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3548 				cam_dflags = CAM_DEBUG_NONE;
3549 			} else {
3550 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3551 				xpt_print_path(cam_dpath);
3552 				printf("debugging flags now %x\n", cam_dflags);
3553 			}
3554 		} else {
3555 			cam_dpath = NULL;
3556 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3557 		}
3558 		splx(s);
3559 #else /* !CAMDEBUG */
3560 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3561 #endif /* CAMDEBUG */
3562 		break;
3563 	}
3564 	case XPT_NOOP:
3565 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3566 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3567 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3568 		break;
3569 	default:
3570 	case XPT_SDEV_TYPE:
3571 	case XPT_TERM_IO:
3572 	case XPT_ENG_INQ:
3573 		/* XXX Implement */
3574 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3575 		break;
3576 	}
3577 	splx(iopl);
3578 }
3579 
3580 void
3581 xpt_polled_action(union ccb *start_ccb)
3582 {
3583 	int	  s;
3584 	u_int32_t timeout;
3585 	struct	  cam_sim *sim;
3586 	struct	  cam_devq *devq;
3587 	struct	  cam_ed *dev;
3588 
3589 	timeout = start_ccb->ccb_h.timeout;
3590 	sim = start_ccb->ccb_h.path->bus->sim;
3591 	devq = sim->devq;
3592 	dev = start_ccb->ccb_h.path->device;
3593 
3594 	s = splcam();
3595 
3596 	/*
3597 	 * Steal an opening so that no other queued requests
3598 	 * can get it before us while we simulate interrupts.
3599 	 */
3600 	dev->ccbq.devq_openings--;
3601 	dev->ccbq.dev_openings--;
3602 
3603 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3604 	   && (--timeout > 0)) {
3605 		DELAY(1000);
3606 		(*(sim->sim_poll))(sim);
3607 		camisr(&cam_netq);
3608 		camisr(&cam_bioq);
3609 	}
3610 
3611 	dev->ccbq.devq_openings++;
3612 	dev->ccbq.dev_openings++;
3613 
3614 	if (timeout != 0) {
3615 		xpt_action(start_ccb);
3616 		while(--timeout > 0) {
3617 			(*(sim->sim_poll))(sim);
3618 			camisr(&cam_netq);
3619 			camisr(&cam_bioq);
3620 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3621 			    != CAM_REQ_INPROG)
3622 				break;
3623 			DELAY(1000);
3624 		}
3625 		if (timeout == 0) {
3626 			/*
3627 			 * XXX Is it worth adding a sim_timeout entry
3628 			 * point so we can attempt recovery?  If
3629 			 * this is only used for dumps, I don't think
3630 			 * it is.
3631 			 */
3632 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3633 		}
3634 	} else {
3635 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3636 	}
3637 	splx(s);
3638 }
3639 
3640 /*
3641  * Schedule a peripheral driver to receive a ccb when it's
3642  * target device has space for more transactions.
3643  */
3644 void
3645 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3646 {
3647 	struct cam_ed *device;
3648 	int s;
3649 	int runq;
3650 
3651 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3652 	device = perph->path->device;
3653 	s = splsoftcam();
3654 	if (periph_is_queued(perph)) {
3655 		/* Simply reorder based on new priority */
3656 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3657 			  ("   change priority to %d\n", new_priority));
3658 		if (new_priority < perph->pinfo.priority) {
3659 			camq_change_priority(&device->drvq,
3660 					     perph->pinfo.index,
3661 					     new_priority);
3662 		}
3663 		runq = 0;
3664 	} else {
3665 		/* New entry on the queue */
3666 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3667 			  ("   added periph to queue\n"));
3668 		perph->pinfo.priority = new_priority;
3669 		perph->pinfo.generation = ++device->drvq.generation;
3670 		camq_insert(&device->drvq, &perph->pinfo);
3671 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3672 	}
3673 	splx(s);
3674 	if (runq != 0) {
3675 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3676 			  ("   calling xpt_run_devq\n"));
3677 		xpt_run_dev_allocq(perph->path->bus);
3678 	}
3679 }
3680 
3681 
3682 /*
3683  * Schedule a device to run on a given queue.
3684  * If the device was inserted as a new entry on the queue,
3685  * return 1 meaning the device queue should be run. If we
3686  * were already queued, implying someone else has already
3687  * started the queue, return 0 so the caller doesn't attempt
3688  * to run the queue.  Must be run at either splsoftcam
3689  * (or splcam since that encompases splsoftcam).
3690  */
3691 static int
3692 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3693 		 u_int32_t new_priority)
3694 {
3695 	int retval;
3696 	u_int32_t old_priority;
3697 
3698 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3699 
3700 	old_priority = pinfo->priority;
3701 
3702 	/*
3703 	 * Are we already queued?
3704 	 */
3705 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3706 		/* Simply reorder based on new priority */
3707 		if (new_priority < old_priority) {
3708 			camq_change_priority(queue, pinfo->index,
3709 					     new_priority);
3710 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3711 					("changed priority to %d\n",
3712 					 new_priority));
3713 		}
3714 		retval = 0;
3715 	} else {
3716 		/* New entry on the queue */
3717 		if (new_priority < old_priority)
3718 			pinfo->priority = new_priority;
3719 
3720 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3721 				("Inserting onto queue\n"));
3722 		pinfo->generation = ++queue->generation;
3723 		camq_insert(queue, pinfo);
3724 		retval = 1;
3725 	}
3726 	return (retval);
3727 }
3728 
3729 static void
3730 xpt_run_dev_allocq(struct cam_eb *bus)
3731 {
3732 	struct	cam_devq *devq;
3733 	int	s;
3734 
3735 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3736 	devq = bus->sim->devq;
3737 
3738 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3739 			("   qfrozen_cnt == 0x%x, entries == %d, "
3740 			 "openings == %d, active == %d\n",
3741 			 devq->alloc_queue.qfrozen_cnt,
3742 			 devq->alloc_queue.entries,
3743 			 devq->alloc_openings,
3744 			 devq->alloc_active));
3745 
3746 	s = splsoftcam();
3747 	devq->alloc_queue.qfrozen_cnt++;
3748 	while ((devq->alloc_queue.entries > 0)
3749 	    && (devq->alloc_openings > 0)
3750 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3751 		struct	cam_ed_qinfo *qinfo;
3752 		struct	cam_ed *device;
3753 		union	ccb *work_ccb;
3754 		struct	cam_periph *drv;
3755 		struct	camq *drvq;
3756 
3757 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3758 							   CAMQ_HEAD);
3759 		device = qinfo->device;
3760 
3761 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3762 				("running device %p\n", device));
3763 
3764 		drvq = &device->drvq;
3765 
3766 #ifdef CAMDEBUG
3767 		if (drvq->entries <= 0) {
3768 			panic("xpt_run_dev_allocq: "
3769 			      "Device on queue without any work to do");
3770 		}
3771 #endif
3772 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3773 			devq->alloc_openings--;
3774 			devq->alloc_active++;
3775 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3776 			splx(s);
3777 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3778 				      drv->pinfo.priority);
3779 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3780 					("calling periph start\n"));
3781 			drv->periph_start(drv, work_ccb);
3782 		} else {
3783 			/*
3784 			 * Malloc failure in alloc_ccb
3785 			 */
3786 			/*
3787 			 * XXX add us to a list to be run from free_ccb
3788 			 * if we don't have any ccbs active on this
3789 			 * device queue otherwise we may never get run
3790 			 * again.
3791 			 */
3792 			break;
3793 		}
3794 
3795 		/* Raise IPL for possible insertion and test at top of loop */
3796 		s = splsoftcam();
3797 
3798 		if (drvq->entries > 0) {
3799 			/* We have more work.  Attempt to reschedule */
3800 			xpt_schedule_dev_allocq(bus, device);
3801 		}
3802 	}
3803 	devq->alloc_queue.qfrozen_cnt--;
3804 	splx(s);
3805 }
3806 
3807 static void
3808 xpt_run_dev_sendq(struct cam_eb *bus)
3809 {
3810 	struct	cam_devq *devq;
3811 	int	s;
3812 
3813 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3814 
3815 	devq = bus->sim->devq;
3816 
3817 	s = splcam();
3818 	devq->send_queue.qfrozen_cnt++;
3819 	splx(s);
3820 	s = splsoftcam();
3821 	while ((devq->send_queue.entries > 0)
3822 	    && (devq->send_openings > 0)) {
3823 		struct	cam_ed_qinfo *qinfo;
3824 		struct	cam_ed *device;
3825 		union ccb *work_ccb;
3826 		struct	cam_sim *sim;
3827 		int	ospl;
3828 
3829 		ospl = splcam();
3830 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3831 			splx(ospl);
3832 			break;
3833 		}
3834 
3835 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3836 							   CAMQ_HEAD);
3837 		device = qinfo->device;
3838 
3839 		/*
3840 		 * If the device has been "frozen", don't attempt
3841 		 * to run it.
3842 		 */
3843 		if (device->qfrozen_cnt > 0) {
3844 			splx(ospl);
3845 			continue;
3846 		}
3847 
3848 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3849 				("running device %p\n", device));
3850 
3851 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3852 		if (work_ccb == NULL) {
3853 			printf("device on run queue with no ccbs???\n");
3854 			splx(ospl);
3855 			continue;
3856 		}
3857 
3858 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3859 
3860 		 	if (num_highpower <= 0) {
3861 				/*
3862 				 * We got a high power command, but we
3863 				 * don't have any available slots.  Freeze
3864 				 * the device queue until we have a slot
3865 				 * available.
3866 				 */
3867 				device->qfrozen_cnt++;
3868 				STAILQ_INSERT_TAIL(&highpowerq,
3869 						   &work_ccb->ccb_h,
3870 						   xpt_links.stqe);
3871 
3872 				splx(ospl);
3873 				continue;
3874 			} else {
3875 				/*
3876 				 * Consume a high power slot while
3877 				 * this ccb runs.
3878 				 */
3879 				num_highpower--;
3880 			}
3881 		}
3882 		devq->active_dev = device;
3883 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3884 
3885 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3886 		splx(ospl);
3887 
3888 		devq->send_openings--;
3889 		devq->send_active++;
3890 
3891 		if (device->ccbq.queue.entries > 0)
3892 			xpt_schedule_dev_sendq(bus, device);
3893 
3894 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3895 			/*
3896 			 * The client wants to freeze the queue
3897 			 * after this CCB is sent.
3898 			 */
3899 			ospl = splcam();
3900 			device->qfrozen_cnt++;
3901 			splx(ospl);
3902 		}
3903 
3904 		splx(s);
3905 
3906 		/* In Target mode, the peripheral driver knows best... */
3907 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3908 			if ((device->inq_flags & SID_CmdQue) != 0
3909 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3910 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3911 			else
3912 				/*
3913 				 * Clear this in case of a retried CCB that
3914 				 * failed due to a rejected tag.
3915 				 */
3916 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3917 		}
3918 
3919 		/*
3920 		 * Device queues can be shared among multiple sim instances
3921 		 * that reside on different busses.  Use the SIM in the queue
3922 		 * CCB's path, rather than the one in the bus that was passed
3923 		 * into this function.
3924 		 */
3925 		sim = work_ccb->ccb_h.path->bus->sim;
3926 		(*(sim->sim_action))(sim, work_ccb);
3927 
3928 		ospl = splcam();
3929 		devq->active_dev = NULL;
3930 		splx(ospl);
3931 		/* Raise IPL for possible insertion and test at top of loop */
3932 		s = splsoftcam();
3933 	}
3934 	splx(s);
3935 	s = splcam();
3936 	devq->send_queue.qfrozen_cnt--;
3937 	splx(s);
3938 }
3939 
3940 /*
3941  * This function merges stuff from the slave ccb into the master ccb, while
3942  * keeping important fields in the master ccb constant.
3943  */
3944 void
3945 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3946 {
3947 	/*
3948 	 * Pull fields that are valid for peripheral drivers to set
3949 	 * into the master CCB along with the CCB "payload".
3950 	 */
3951 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3952 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3953 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3954 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3955 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3956 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3957 }
3958 
3959 void
3960 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3961 {
3962 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3963 	ccb_h->pinfo.priority = priority;
3964 	ccb_h->path = path;
3965 	ccb_h->path_id = path->bus->path_id;
3966 	if (path->target)
3967 		ccb_h->target_id = path->target->target_id;
3968 	else
3969 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3970 	if (path->device) {
3971 		ccb_h->target_lun = path->device->lun_id;
3972 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3973 	} else {
3974 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3975 	}
3976 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3977 	ccb_h->flags = 0;
3978 }
3979 
3980 /* Path manipulation functions */
3981 cam_status
3982 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3983 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3984 {
3985 	struct	   cam_path *path;
3986 	cam_status status;
3987 
3988 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3989 
3990 	if (path == NULL) {
3991 		status = CAM_RESRC_UNAVAIL;
3992 		return(status);
3993 	}
3994 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3995 	if (status != CAM_REQ_CMP) {
3996 		free(path, M_DEVBUF);
3997 		path = NULL;
3998 	}
3999 	*new_path_ptr = path;
4000 	return (status);
4001 }
4002 
4003 static cam_status
4004 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
4005 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
4006 {
4007 	struct	     cam_eb *bus;
4008 	struct	     cam_et *target;
4009 	struct	     cam_ed *device;
4010 	cam_status   status;
4011 	int	     s;
4012 
4013 	status = CAM_REQ_CMP;	/* Completed without error */
4014 	target = NULL;		/* Wildcarded */
4015 	device = NULL;		/* Wildcarded */
4016 
4017 	/*
4018 	 * We will potentially modify the EDT, so block interrupts
4019 	 * that may attempt to create cam paths.
4020 	 */
4021 	s = splcam();
4022 	bus = xpt_find_bus(path_id);
4023 	if (bus == NULL) {
4024 		status = CAM_PATH_INVALID;
4025 	} else {
4026 		target = xpt_find_target(bus, target_id);
4027 		if (target == NULL) {
4028 			/* Create one */
4029 			struct cam_et *new_target;
4030 
4031 			new_target = xpt_alloc_target(bus, target_id);
4032 			if (new_target == NULL) {
4033 				status = CAM_RESRC_UNAVAIL;
4034 			} else {
4035 				target = new_target;
4036 			}
4037 		}
4038 		if (target != NULL) {
4039 			device = xpt_find_device(target, lun_id);
4040 			if (device == NULL) {
4041 				/* Create one */
4042 				struct cam_ed *new_device;
4043 
4044 				new_device = xpt_alloc_device(bus,
4045 							      target,
4046 							      lun_id);
4047 				if (new_device == NULL) {
4048 					status = CAM_RESRC_UNAVAIL;
4049 				} else {
4050 					device = new_device;
4051 				}
4052 			}
4053 		}
4054 	}
4055 	splx(s);
4056 
4057 	/*
4058 	 * Only touch the user's data if we are successful.
4059 	 */
4060 	if (status == CAM_REQ_CMP) {
4061 		new_path->periph = perph;
4062 		new_path->bus = bus;
4063 		new_path->target = target;
4064 		new_path->device = device;
4065 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4066 	} else {
4067 		if (device != NULL)
4068 			xpt_release_device(bus, target, device);
4069 		if (target != NULL)
4070 			xpt_release_target(bus, target);
4071 		if (bus != NULL)
4072 			xpt_release_bus(bus);
4073 	}
4074 	return (status);
4075 }
4076 
4077 static void
4078 xpt_release_path(struct cam_path *path)
4079 {
4080 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4081 	if (path->device != NULL) {
4082 		xpt_release_device(path->bus, path->target, path->device);
4083 		path->device = NULL;
4084 	}
4085 	if (path->target != NULL) {
4086 		xpt_release_target(path->bus, path->target);
4087 		path->target = NULL;
4088 	}
4089 	if (path->bus != NULL) {
4090 		xpt_release_bus(path->bus);
4091 		path->bus = NULL;
4092 	}
4093 }
4094 
4095 void
4096 xpt_free_path(struct cam_path *path)
4097 {
4098 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4099 	xpt_release_path(path);
4100 	free(path, M_DEVBUF);
4101 }
4102 
4103 
4104 /*
4105  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4106  * in path1, 2 for match with wildcards in path2.
4107  */
4108 int
4109 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4110 {
4111 	int retval = 0;
4112 
4113 	if (path1->bus != path2->bus) {
4114 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4115 			retval = 1;
4116 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4117 			retval = 2;
4118 		else
4119 			return (-1);
4120 	}
4121 	if (path1->target != path2->target) {
4122 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4123 			if (retval == 0)
4124 				retval = 1;
4125 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4126 			retval = 2;
4127 		else
4128 			return (-1);
4129 	}
4130 	if (path1->device != path2->device) {
4131 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4132 			if (retval == 0)
4133 				retval = 1;
4134 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4135 			retval = 2;
4136 		else
4137 			return (-1);
4138 	}
4139 	return (retval);
4140 }
4141 
4142 void
4143 xpt_print_path(struct cam_path *path)
4144 {
4145 	if (path == NULL)
4146 		printf("(nopath): ");
4147 	else {
4148 		if (path->periph != NULL)
4149 			printf("(%s%d:", path->periph->periph_name,
4150 			       path->periph->unit_number);
4151 		else
4152 			printf("(noperiph:");
4153 
4154 		if (path->bus != NULL)
4155 			printf("%s%d:%d:", path->bus->sim->sim_name,
4156 			       path->bus->sim->unit_number,
4157 			       path->bus->sim->bus_id);
4158 		else
4159 			printf("nobus:");
4160 
4161 		if (path->target != NULL)
4162 			printf("%d:", path->target->target_id);
4163 		else
4164 			printf("X:");
4165 
4166 		if (path->device != NULL)
4167 			printf("%d): ", path->device->lun_id);
4168 		else
4169 			printf("X): ");
4170 	}
4171 }
4172 
4173 int
4174 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4175 {
4176 	struct sbuf sb;
4177 
4178 	sbuf_new(&sb, str, str_len, 0);
4179 
4180 	if (path == NULL)
4181 		sbuf_printf(&sb, "(nopath): ");
4182 	else {
4183 		if (path->periph != NULL)
4184 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4185 				    path->periph->unit_number);
4186 		else
4187 			sbuf_printf(&sb, "(noperiph:");
4188 
4189 		if (path->bus != NULL)
4190 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4191 				    path->bus->sim->unit_number,
4192 				    path->bus->sim->bus_id);
4193 		else
4194 			sbuf_printf(&sb, "nobus:");
4195 
4196 		if (path->target != NULL)
4197 			sbuf_printf(&sb, "%d:", path->target->target_id);
4198 		else
4199 			sbuf_printf(&sb, "X:");
4200 
4201 		if (path->device != NULL)
4202 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4203 		else
4204 			sbuf_printf(&sb, "X): ");
4205 	}
4206 	sbuf_finish(&sb);
4207 
4208 	return(sbuf_len(&sb));
4209 }
4210 
4211 path_id_t
4212 xpt_path_path_id(struct cam_path *path)
4213 {
4214 	return(path->bus->path_id);
4215 }
4216 
4217 target_id_t
4218 xpt_path_target_id(struct cam_path *path)
4219 {
4220 	if (path->target != NULL)
4221 		return (path->target->target_id);
4222 	else
4223 		return (CAM_TARGET_WILDCARD);
4224 }
4225 
4226 lun_id_t
4227 xpt_path_lun_id(struct cam_path *path)
4228 {
4229 	if (path->device != NULL)
4230 		return (path->device->lun_id);
4231 	else
4232 		return (CAM_LUN_WILDCARD);
4233 }
4234 
4235 struct cam_sim *
4236 xpt_path_sim(struct cam_path *path)
4237 {
4238 	return (path->bus->sim);
4239 }
4240 
4241 struct cam_periph*
4242 xpt_path_periph(struct cam_path *path)
4243 {
4244 	return (path->periph);
4245 }
4246 
4247 /*
4248  * Release a CAM control block for the caller.  Remit the cost of the structure
4249  * to the device referenced by the path.  If the this device had no 'credits'
4250  * and peripheral drivers have registered async callbacks for this notification
4251  * call them now.
4252  */
4253 void
4254 xpt_release_ccb(union ccb *free_ccb)
4255 {
4256 	int	 s;
4257 	struct	 cam_path *path;
4258 	struct	 cam_ed *device;
4259 	struct	 cam_eb *bus;
4260 
4261 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4262 	path = free_ccb->ccb_h.path;
4263 	device = path->device;
4264 	bus = path->bus;
4265 	s = splsoftcam();
4266 	cam_ccbq_release_opening(&device->ccbq);
4267 	if (xpt_ccb_count > xpt_max_ccbs) {
4268 		xpt_free_ccb(free_ccb);
4269 		xpt_ccb_count--;
4270 	} else {
4271 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
4272 	}
4273 	bus->sim->devq->alloc_openings++;
4274 	bus->sim->devq->alloc_active--;
4275 	/* XXX Turn this into an inline function - xpt_run_device?? */
4276 	if ((device_is_alloc_queued(device) == 0)
4277 	 && (device->drvq.entries > 0)) {
4278 		xpt_schedule_dev_allocq(bus, device);
4279 	}
4280 	splx(s);
4281 	if (dev_allocq_is_runnable(bus->sim->devq))
4282 		xpt_run_dev_allocq(bus);
4283 }
4284 
4285 /* Functions accessed by SIM drivers */
4286 
4287 /*
4288  * A sim structure, listing the SIM entry points and instance
4289  * identification info is passed to xpt_bus_register to hook the SIM
4290  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4291  * for this new bus and places it in the array of busses and assigns
4292  * it a path_id.  The path_id may be influenced by "hard wiring"
4293  * information specified by the user.  Once interrupt services are
4294  * availible, the bus will be probed.
4295  */
4296 int32_t
4297 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4298 {
4299 	struct cam_eb *new_bus;
4300 	struct cam_eb *old_bus;
4301 	struct ccb_pathinq cpi;
4302 	int s;
4303 
4304 	sim->bus_id = bus;
4305 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4306 					  M_DEVBUF, M_NOWAIT);
4307 	if (new_bus == NULL) {
4308 		/* Couldn't satisfy request */
4309 		return (CAM_RESRC_UNAVAIL);
4310 	}
4311 
4312 	if (strcmp(sim->sim_name, "xpt") != 0) {
4313 
4314 		sim->path_id =
4315 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4316 	}
4317 
4318 	TAILQ_INIT(&new_bus->et_entries);
4319 	new_bus->path_id = sim->path_id;
4320 	new_bus->sim = sim;
4321 	timevalclear(&new_bus->last_reset);
4322 	new_bus->flags = 0;
4323 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4324 	new_bus->generation = 0;
4325 	s = splcam();
4326 	old_bus = TAILQ_FIRST(&xpt_busses);
4327 	while (old_bus != NULL
4328 	    && old_bus->path_id < new_bus->path_id)
4329 		old_bus = TAILQ_NEXT(old_bus, links);
4330 	if (old_bus != NULL)
4331 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4332 	else
4333 		TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4334 	bus_generation++;
4335 	splx(s);
4336 
4337 	/* Notify interested parties */
4338 	if (sim->path_id != CAM_XPT_PATH_ID) {
4339 		struct cam_path path;
4340 
4341 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4342 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4343 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4344 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4345 		xpt_action((union ccb *)&cpi);
4346 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4347 		xpt_release_path(&path);
4348 	}
4349 	return (CAM_SUCCESS);
4350 }
4351 
4352 int32_t
4353 xpt_bus_deregister(path_id_t pathid)
4354 {
4355 	struct cam_path bus_path;
4356 	cam_status status;
4357 
4358 	status = xpt_compile_path(&bus_path, NULL, pathid,
4359 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4360 	if (status != CAM_REQ_CMP)
4361 		return (status);
4362 
4363 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4364 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4365 
4366 	/* Release the reference count held while registered. */
4367 	xpt_release_bus(bus_path.bus);
4368 	xpt_release_path(&bus_path);
4369 
4370 	return (CAM_REQ_CMP);
4371 }
4372 
4373 static path_id_t
4374 xptnextfreepathid(void)
4375 {
4376 	struct cam_eb *bus;
4377 	path_id_t pathid;
4378 	const char *strval;
4379 
4380 	pathid = 0;
4381 	bus = TAILQ_FIRST(&xpt_busses);
4382 retry:
4383 	/* Find an unoccupied pathid */
4384 	while (bus != NULL
4385 	    && bus->path_id <= pathid) {
4386 		if (bus->path_id == pathid)
4387 			pathid++;
4388 		bus = TAILQ_NEXT(bus, links);
4389 	}
4390 
4391 	/*
4392 	 * Ensure that this pathid is not reserved for
4393 	 * a bus that may be registered in the future.
4394 	 */
4395 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4396 		++pathid;
4397 		/* Start the search over */
4398 		goto retry;
4399 	}
4400 	return (pathid);
4401 }
4402 
4403 static path_id_t
4404 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4405 {
4406 	path_id_t pathid;
4407 	int i, dunit, val;
4408 	char buf[32];
4409 	const char *dname;
4410 
4411 	pathid = CAM_XPT_PATH_ID;
4412 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4413 	i = 0;
4414 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4415 		if (strcmp(dname, "scbus")) {
4416 			/* Avoid a bit of foot shooting. */
4417 			continue;
4418 		}
4419 		if (dunit < 0)		/* unwired?! */
4420 			continue;
4421 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4422 			if (sim_bus == val) {
4423 				pathid = dunit;
4424 				break;
4425 			}
4426 		} else if (sim_bus == 0) {
4427 			/* Unspecified matches bus 0 */
4428 			pathid = dunit;
4429 			break;
4430 		} else {
4431 			printf("Ambiguous scbus configuration for %s%d "
4432 			       "bus %d, cannot wire down.  The kernel "
4433 			       "config entry for scbus%d should "
4434 			       "specify a controller bus.\n"
4435 			       "Scbus will be assigned dynamically.\n",
4436 			       sim_name, sim_unit, sim_bus, dunit);
4437 			break;
4438 		}
4439 	}
4440 
4441 	if (pathid == CAM_XPT_PATH_ID)
4442 		pathid = xptnextfreepathid();
4443 	return (pathid);
4444 }
4445 
4446 void
4447 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4448 {
4449 	struct cam_eb *bus;
4450 	struct cam_et *target, *next_target;
4451 	struct cam_ed *device, *next_device;
4452 	int s;
4453 
4454 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4455 
4456 	/*
4457 	 * Most async events come from a CAM interrupt context.  In
4458 	 * a few cases, the error recovery code at the peripheral layer,
4459 	 * which may run from our SWI or a process context, may signal
4460 	 * deferred events with a call to xpt_async. Ensure async
4461 	 * notifications are serialized by blocking cam interrupts.
4462 	 */
4463 	s = splcam();
4464 
4465 	bus = path->bus;
4466 
4467 	if (async_code == AC_BUS_RESET) {
4468 		int s;
4469 
4470 		s = splclock();
4471 		/* Update our notion of when the last reset occurred */
4472 		microtime(&bus->last_reset);
4473 		splx(s);
4474 	}
4475 
4476 	for (target = TAILQ_FIRST(&bus->et_entries);
4477 	     target != NULL;
4478 	     target = next_target) {
4479 
4480 		next_target = TAILQ_NEXT(target, links);
4481 
4482 		if (path->target != target
4483 		 && path->target->target_id != CAM_TARGET_WILDCARD
4484 		 && target->target_id != CAM_TARGET_WILDCARD)
4485 			continue;
4486 
4487 		if (async_code == AC_SENT_BDR) {
4488 			int s;
4489 
4490 			/* Update our notion of when the last reset occurred */
4491 			s = splclock();
4492 			microtime(&path->target->last_reset);
4493 			splx(s);
4494 		}
4495 
4496 		for (device = TAILQ_FIRST(&target->ed_entries);
4497 		     device != NULL;
4498 		     device = next_device) {
4499 
4500 			next_device = TAILQ_NEXT(device, links);
4501 
4502 			if (path->device != device
4503 			 && path->device->lun_id != CAM_LUN_WILDCARD
4504 			 && device->lun_id != CAM_LUN_WILDCARD)
4505 				continue;
4506 
4507 			xpt_dev_async(async_code, bus, target,
4508 				      device, async_arg);
4509 
4510 			xpt_async_bcast(&device->asyncs, async_code,
4511 					path, async_arg);
4512 		}
4513 	}
4514 
4515 	/*
4516 	 * If this wasn't a fully wildcarded async, tell all
4517 	 * clients that want all async events.
4518 	 */
4519 	if (bus != xpt_periph->path->bus)
4520 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4521 				path, async_arg);
4522 	splx(s);
4523 }
4524 
4525 static void
4526 xpt_async_bcast(struct async_list *async_head,
4527 		u_int32_t async_code,
4528 		struct cam_path *path, void *async_arg)
4529 {
4530 	struct async_node *cur_entry;
4531 
4532 	cur_entry = SLIST_FIRST(async_head);
4533 	while (cur_entry != NULL) {
4534 		struct async_node *next_entry;
4535 		/*
4536 		 * Grab the next list entry before we call the current
4537 		 * entry's callback.  This is because the callback function
4538 		 * can delete its async callback entry.
4539 		 */
4540 		next_entry = SLIST_NEXT(cur_entry, links);
4541 		if ((cur_entry->event_enable & async_code) != 0)
4542 			cur_entry->callback(cur_entry->callback_arg,
4543 					    async_code, path,
4544 					    async_arg);
4545 		cur_entry = next_entry;
4546 	}
4547 }
4548 
4549 /*
4550  * Handle any per-device event notifications that require action by the XPT.
4551  */
4552 static void
4553 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4554 	      struct cam_ed *device, void *async_arg)
4555 {
4556 	cam_status status;
4557 	struct cam_path newpath;
4558 
4559 	/*
4560 	 * We only need to handle events for real devices.
4561 	 */
4562 	if (target->target_id == CAM_TARGET_WILDCARD
4563 	 || device->lun_id == CAM_LUN_WILDCARD)
4564 		return;
4565 
4566 	/*
4567 	 * We need our own path with wildcards expanded to
4568 	 * handle certain types of events.
4569 	 */
4570 	if ((async_code == AC_SENT_BDR)
4571 	 || (async_code == AC_BUS_RESET)
4572 	 || (async_code == AC_INQ_CHANGED))
4573 		status = xpt_compile_path(&newpath, NULL,
4574 					  bus->path_id,
4575 					  target->target_id,
4576 					  device->lun_id);
4577 	else
4578 		status = CAM_REQ_CMP_ERR;
4579 
4580 	if (status == CAM_REQ_CMP) {
4581 
4582 		/*
4583 		 * Allow transfer negotiation to occur in a
4584 		 * tag free environment.
4585 		 */
4586 		if (async_code == AC_SENT_BDR
4587 		 || async_code == AC_BUS_RESET)
4588 			xpt_toggle_tags(&newpath);
4589 
4590 		if (async_code == AC_INQ_CHANGED) {
4591 			/*
4592 			 * We've sent a start unit command, or
4593 			 * something similar to a device that
4594 			 * may have caused its inquiry data to
4595 			 * change. So we re-scan the device to
4596 			 * refresh the inquiry data for it.
4597 			 */
4598 			xpt_scan_lun(newpath.periph, &newpath,
4599 				     CAM_EXPECT_INQ_CHANGE, NULL);
4600 		}
4601 		xpt_release_path(&newpath);
4602 	} else if (async_code == AC_LOST_DEVICE) {
4603 		device->flags |= CAM_DEV_UNCONFIGURED;
4604 	} else if (async_code == AC_TRANSFER_NEG) {
4605 		struct ccb_trans_settings *settings;
4606 
4607 		settings = (struct ccb_trans_settings *)async_arg;
4608 		xpt_set_transfer_settings(settings, device,
4609 					  /*async_update*/TRUE);
4610 	}
4611 }
4612 
4613 u_int32_t
4614 xpt_freeze_devq(struct cam_path *path, u_int count)
4615 {
4616 	int s;
4617 	struct ccb_hdr *ccbh;
4618 
4619 	s = splcam();
4620 	path->device->qfrozen_cnt += count;
4621 
4622 	/*
4623 	 * Mark the last CCB in the queue as needing
4624 	 * to be requeued if the driver hasn't
4625 	 * changed it's state yet.  This fixes a race
4626 	 * where a ccb is just about to be queued to
4627 	 * a controller driver when it's interrupt routine
4628 	 * freezes the queue.  To completly close the
4629 	 * hole, controller drives must check to see
4630 	 * if a ccb's status is still CAM_REQ_INPROG
4631 	 * under spl protection just before they queue
4632 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4633 	 * an example.
4634 	 */
4635 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4636 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4637 		ccbh->status = CAM_REQUEUE_REQ;
4638 	splx(s);
4639 	return (path->device->qfrozen_cnt);
4640 }
4641 
4642 u_int32_t
4643 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4644 {
4645 	sim->devq->send_queue.qfrozen_cnt += count;
4646 	if (sim->devq->active_dev != NULL) {
4647 		struct ccb_hdr *ccbh;
4648 
4649 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4650 				  ccb_hdr_tailq);
4651 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4652 			ccbh->status = CAM_REQUEUE_REQ;
4653 	}
4654 	return (sim->devq->send_queue.qfrozen_cnt);
4655 }
4656 
4657 static void
4658 xpt_release_devq_timeout(void *arg)
4659 {
4660 	struct cam_ed *device;
4661 
4662 	device = (struct cam_ed *)arg;
4663 
4664 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4665 }
4666 
4667 void
4668 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4669 {
4670 	xpt_release_devq_device(path->device, count, run_queue);
4671 }
4672 
4673 static void
4674 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4675 {
4676 	int	rundevq;
4677 	int	s0, s1;
4678 
4679 	rundevq = 0;
4680 	s0 = splsoftcam();
4681 	s1 = splcam();
4682 	if (dev->qfrozen_cnt > 0) {
4683 
4684 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4685 		dev->qfrozen_cnt -= count;
4686 		if (dev->qfrozen_cnt == 0) {
4687 
4688 			/*
4689 			 * No longer need to wait for a successful
4690 			 * command completion.
4691 			 */
4692 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4693 
4694 			/*
4695 			 * Remove any timeouts that might be scheduled
4696 			 * to release this queue.
4697 			 */
4698 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4699 				untimeout(xpt_release_devq_timeout, dev,
4700 					  dev->c_handle);
4701 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4702 			}
4703 
4704 			/*
4705 			 * Now that we are unfrozen schedule the
4706 			 * device so any pending transactions are
4707 			 * run.
4708 			 */
4709 			if ((dev->ccbq.queue.entries > 0)
4710 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4711 			 && (run_queue != 0)) {
4712 				rundevq = 1;
4713 			}
4714 		}
4715 	}
4716 	splx(s1);
4717 	if (rundevq != 0)
4718 		xpt_run_dev_sendq(dev->target->bus);
4719 	splx(s0);
4720 }
4721 
4722 void
4723 xpt_release_simq(struct cam_sim *sim, int run_queue)
4724 {
4725 	int	s;
4726 	struct	camq *sendq;
4727 
4728 	sendq = &(sim->devq->send_queue);
4729 	s = splcam();
4730 	if (sendq->qfrozen_cnt > 0) {
4731 
4732 		sendq->qfrozen_cnt--;
4733 		if (sendq->qfrozen_cnt == 0) {
4734 			struct cam_eb *bus;
4735 
4736 			/*
4737 			 * If there is a timeout scheduled to release this
4738 			 * sim queue, remove it.  The queue frozen count is
4739 			 * already at 0.
4740 			 */
4741 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4742 				untimeout(xpt_release_simq_timeout, sim,
4743 					  sim->c_handle);
4744 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4745 			}
4746 			bus = xpt_find_bus(sim->path_id);
4747 			splx(s);
4748 
4749 			if (run_queue) {
4750 				/*
4751 				 * Now that we are unfrozen run the send queue.
4752 				 */
4753 				xpt_run_dev_sendq(bus);
4754 			}
4755 			xpt_release_bus(bus);
4756 		} else
4757 			splx(s);
4758 	} else
4759 		splx(s);
4760 }
4761 
4762 static void
4763 xpt_release_simq_timeout(void *arg)
4764 {
4765 	struct cam_sim *sim;
4766 
4767 	sim = (struct cam_sim *)arg;
4768 	xpt_release_simq(sim, /* run_queue */ TRUE);
4769 }
4770 
4771 void
4772 xpt_done(union ccb *done_ccb)
4773 {
4774 	int s;
4775 
4776 	s = splcam();
4777 
4778 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4779 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4780 		/*
4781 		 * Queue up the request for handling by our SWI handler
4782 		 * any of the "non-immediate" type of ccbs.
4783 		 */
4784 		switch (done_ccb->ccb_h.path->periph->type) {
4785 		case CAM_PERIPH_BIO:
4786 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4787 					  sim_links.tqe);
4788 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4789 			swi_sched(cambio_ih, 0);
4790 			break;
4791 		case CAM_PERIPH_NET:
4792 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4793 					  sim_links.tqe);
4794 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4795 			swi_sched(camnet_ih, 0);
4796 			break;
4797 		}
4798 	}
4799 	splx(s);
4800 }
4801 
4802 union ccb *
4803 xpt_alloc_ccb()
4804 {
4805 	union ccb *new_ccb;
4806 
4807 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4808 	return (new_ccb);
4809 }
4810 
4811 void
4812 xpt_free_ccb(union ccb *free_ccb)
4813 {
4814 	free(free_ccb, M_DEVBUF);
4815 }
4816 
4817 
4818 
4819 /* Private XPT functions */
4820 
4821 /*
4822  * Get a CAM control block for the caller. Charge the structure to the device
4823  * referenced by the path.  If the this device has no 'credits' then the
4824  * device already has the maximum number of outstanding operations under way
4825  * and we return NULL. If we don't have sufficient resources to allocate more
4826  * ccbs, we also return NULL.
4827  */
4828 static union ccb *
4829 xpt_get_ccb(struct cam_ed *device)
4830 {
4831 	union ccb *new_ccb;
4832 	int s;
4833 
4834 	s = splsoftcam();
4835 	if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) {
4836 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4837                 if (new_ccb == NULL) {
4838 			splx(s);
4839 			return (NULL);
4840 		}
4841 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4842 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4843 				  xpt_links.sle);
4844 		xpt_ccb_count++;
4845 	}
4846 	cam_ccbq_take_opening(&device->ccbq);
4847 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4848 	splx(s);
4849 	return (new_ccb);
4850 }
4851 
4852 static void
4853 xpt_release_bus(struct cam_eb *bus)
4854 {
4855 	int s;
4856 
4857 	s = splcam();
4858 	if ((--bus->refcount == 0)
4859 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4860 		TAILQ_REMOVE(&xpt_busses, bus, links);
4861 		bus_generation++;
4862 		splx(s);
4863 		free(bus, M_DEVBUF);
4864 	} else
4865 		splx(s);
4866 }
4867 
4868 static struct cam_et *
4869 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4870 {
4871 	struct cam_et *target;
4872 
4873 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4874 	if (target != NULL) {
4875 		struct cam_et *cur_target;
4876 
4877 		TAILQ_INIT(&target->ed_entries);
4878 		target->bus = bus;
4879 		target->target_id = target_id;
4880 		target->refcount = 1;
4881 		target->generation = 0;
4882 		timevalclear(&target->last_reset);
4883 		/*
4884 		 * Hold a reference to our parent bus so it
4885 		 * will not go away before we do.
4886 		 */
4887 		bus->refcount++;
4888 
4889 		/* Insertion sort into our bus's target list */
4890 		cur_target = TAILQ_FIRST(&bus->et_entries);
4891 		while (cur_target != NULL && cur_target->target_id < target_id)
4892 			cur_target = TAILQ_NEXT(cur_target, links);
4893 
4894 		if (cur_target != NULL) {
4895 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4896 		} else {
4897 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4898 		}
4899 		bus->generation++;
4900 	}
4901 	return (target);
4902 }
4903 
4904 static void
4905 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4906 {
4907 	int s;
4908 
4909 	s = splcam();
4910 	if ((--target->refcount == 0)
4911 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4912 		TAILQ_REMOVE(&bus->et_entries, target, links);
4913 		bus->generation++;
4914 		splx(s);
4915 		free(target, M_DEVBUF);
4916 		xpt_release_bus(bus);
4917 	} else
4918 		splx(s);
4919 }
4920 
4921 static struct cam_ed *
4922 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4923 {
4924 #ifdef CAM_NEW_TRAN_CODE
4925 	struct	   cam_path path;
4926 #endif /* CAM_NEW_TRAN_CODE */
4927 	struct	   cam_ed *device;
4928 	struct	   cam_devq *devq;
4929 	cam_status status;
4930 
4931 	/* Make space for us in the device queue on our bus */
4932 	devq = bus->sim->devq;
4933 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4934 
4935 	if (status != CAM_REQ_CMP) {
4936 		device = NULL;
4937 	} else {
4938 		device = (struct cam_ed *)malloc(sizeof(*device),
4939 						 M_DEVBUF, M_NOWAIT);
4940 	}
4941 
4942 	if (device != NULL) {
4943 		struct cam_ed *cur_device;
4944 
4945 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4946 		device->alloc_ccb_entry.device = device;
4947 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4948 		device->send_ccb_entry.device = device;
4949 		device->target = target;
4950 		device->lun_id = lun_id;
4951 		/* Initialize our queues */
4952 		if (camq_init(&device->drvq, 0) != 0) {
4953 			free(device, M_DEVBUF);
4954 			return (NULL);
4955 		}
4956 		if (cam_ccbq_init(&device->ccbq,
4957 				  bus->sim->max_dev_openings) != 0) {
4958 			camq_fini(&device->drvq);
4959 			free(device, M_DEVBUF);
4960 			return (NULL);
4961 		}
4962 		SLIST_INIT(&device->asyncs);
4963 		SLIST_INIT(&device->periphs);
4964 		device->generation = 0;
4965 		device->owner = NULL;
4966 		/*
4967 		 * Take the default quirk entry until we have inquiry
4968 		 * data and can determine a better quirk to use.
4969 		 */
4970 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4971 		bzero(&device->inq_data, sizeof(device->inq_data));
4972 		device->inq_flags = 0;
4973 		device->queue_flags = 0;
4974 		device->serial_num = NULL;
4975 		device->serial_num_len = 0;
4976 		device->qfrozen_cnt = 0;
4977 		device->flags = CAM_DEV_UNCONFIGURED;
4978 		device->tag_delay_count = 0;
4979 		device->refcount = 1;
4980 		callout_handle_init(&device->c_handle);
4981 
4982 		/*
4983 		 * Hold a reference to our parent target so it
4984 		 * will not go away before we do.
4985 		 */
4986 		target->refcount++;
4987 
4988 		/*
4989 		 * XXX should be limited by number of CCBs this bus can
4990 		 * do.
4991 		 */
4992 		xpt_max_ccbs += device->ccbq.devq_openings;
4993 		/* Insertion sort into our target's device list */
4994 		cur_device = TAILQ_FIRST(&target->ed_entries);
4995 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4996 			cur_device = TAILQ_NEXT(cur_device, links);
4997 		if (cur_device != NULL) {
4998 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4999 		} else {
5000 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5001 		}
5002 		target->generation++;
5003 #ifdef CAM_NEW_TRAN_CODE
5004 		if (lun_id != CAM_LUN_WILDCARD) {
5005 			xpt_compile_path(&path,
5006 					 NULL,
5007 					 bus->path_id,
5008 					 target->target_id,
5009 					 lun_id);
5010 			xpt_devise_transport(&path);
5011 			xpt_release_path(&path);
5012 		}
5013 #endif /* CAM_NEW_TRAN_CODE */
5014 	}
5015 	return (device);
5016 }
5017 
5018 static void
5019 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5020 		   struct cam_ed *device)
5021 {
5022 	int s;
5023 
5024 	s = splcam();
5025 	if ((--device->refcount == 0)
5026 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
5027 		struct cam_devq *devq;
5028 
5029 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5030 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5031 			panic("Removing device while still queued for ccbs");
5032 
5033 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
5034 				untimeout(xpt_release_devq_timeout, device,
5035 					  device->c_handle);
5036 
5037 		TAILQ_REMOVE(&target->ed_entries, device,links);
5038 		target->generation++;
5039 		xpt_max_ccbs -= device->ccbq.devq_openings;
5040 		/* Release our slot in the devq */
5041 		devq = bus->sim->devq;
5042 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5043 		splx(s);
5044 		free(device, M_DEVBUF);
5045 		xpt_release_target(bus, target);
5046 	} else
5047 		splx(s);
5048 }
5049 
5050 static u_int32_t
5051 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5052 {
5053 	int	s;
5054 	int	diff;
5055 	int	result;
5056 	struct	cam_ed *dev;
5057 
5058 	dev = path->device;
5059 	s = splsoftcam();
5060 
5061 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5062 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5063 	if (result == CAM_REQ_CMP && (diff < 0)) {
5064 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5065 	}
5066 	/* Adjust the global limit */
5067 	xpt_max_ccbs += diff;
5068 	splx(s);
5069 	return (result);
5070 }
5071 
5072 static struct cam_eb *
5073 xpt_find_bus(path_id_t path_id)
5074 {
5075 	struct cam_eb *bus;
5076 
5077 	for (bus = TAILQ_FIRST(&xpt_busses);
5078 	     bus != NULL;
5079 	     bus = TAILQ_NEXT(bus, links)) {
5080 		if (bus->path_id == path_id) {
5081 			bus->refcount++;
5082 			break;
5083 		}
5084 	}
5085 	return (bus);
5086 }
5087 
5088 static struct cam_et *
5089 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5090 {
5091 	struct cam_et *target;
5092 
5093 	for (target = TAILQ_FIRST(&bus->et_entries);
5094 	     target != NULL;
5095 	     target = TAILQ_NEXT(target, links)) {
5096 		if (target->target_id == target_id) {
5097 			target->refcount++;
5098 			break;
5099 		}
5100 	}
5101 	return (target);
5102 }
5103 
5104 static struct cam_ed *
5105 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5106 {
5107 	struct cam_ed *device;
5108 
5109 	for (device = TAILQ_FIRST(&target->ed_entries);
5110 	     device != NULL;
5111 	     device = TAILQ_NEXT(device, links)) {
5112 		if (device->lun_id == lun_id) {
5113 			device->refcount++;
5114 			break;
5115 		}
5116 	}
5117 	return (device);
5118 }
5119 
5120 typedef struct {
5121 	union	ccb *request_ccb;
5122 	struct 	ccb_pathinq *cpi;
5123 	int	pending_count;
5124 } xpt_scan_bus_info;
5125 
5126 /*
5127  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5128  * As the scan progresses, xpt_scan_bus is used as the
5129  * callback on completion function.
5130  */
5131 static void
5132 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5133 {
5134 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5135 		  ("xpt_scan_bus\n"));
5136 	switch (request_ccb->ccb_h.func_code) {
5137 	case XPT_SCAN_BUS:
5138 	{
5139 		xpt_scan_bus_info *scan_info;
5140 		union	ccb *work_ccb;
5141 		struct	cam_path *path;
5142 		u_int	i;
5143 		u_int	max_target;
5144 		u_int	initiator_id;
5145 
5146 		/* Find out the characteristics of the bus */
5147 		work_ccb = xpt_alloc_ccb();
5148 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5149 			      request_ccb->ccb_h.pinfo.priority);
5150 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5151 		xpt_action(work_ccb);
5152 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5153 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5154 			xpt_free_ccb(work_ccb);
5155 			xpt_done(request_ccb);
5156 			return;
5157 		}
5158 
5159 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5160 			/*
5161 			 * Can't scan the bus on an adapter that
5162 			 * cannot perform the initiator role.
5163 			 */
5164 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5165 			xpt_free_ccb(work_ccb);
5166 			xpt_done(request_ccb);
5167 			return;
5168 		}
5169 
5170 		/* Save some state for use while we probe for devices */
5171 		scan_info = (xpt_scan_bus_info *)
5172 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
5173 		scan_info->request_ccb = request_ccb;
5174 		scan_info->cpi = &work_ccb->cpi;
5175 
5176 		/* Cache on our stack so we can work asynchronously */
5177 		max_target = scan_info->cpi->max_target;
5178 		initiator_id = scan_info->cpi->initiator_id;
5179 
5180 		/*
5181 		 * Don't count the initiator if the
5182 		 * initiator is addressable.
5183 		 */
5184 		scan_info->pending_count = max_target + 1;
5185 		if (initiator_id <= max_target)
5186 			scan_info->pending_count--;
5187 
5188 		for (i = 0; i <= max_target; i++) {
5189 			cam_status status;
5190 		 	if (i == initiator_id)
5191 				continue;
5192 
5193 			status = xpt_create_path(&path, xpt_periph,
5194 						 request_ccb->ccb_h.path_id,
5195 						 i, 0);
5196 			if (status != CAM_REQ_CMP) {
5197 				printf("xpt_scan_bus: xpt_create_path failed"
5198 				       " with status %#x, bus scan halted\n",
5199 				       status);
5200 				break;
5201 			}
5202 			work_ccb = xpt_alloc_ccb();
5203 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5204 				      request_ccb->ccb_h.pinfo.priority);
5205 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5206 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5207 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5208 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5209 			xpt_action(work_ccb);
5210 		}
5211 		break;
5212 	}
5213 	case XPT_SCAN_LUN:
5214 	{
5215 		xpt_scan_bus_info *scan_info;
5216 		path_id_t path_id;
5217 		target_id_t target_id;
5218 		lun_id_t lun_id;
5219 
5220 		/* Reuse the same CCB to query if a device was really found */
5221 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5222 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5223 			      request_ccb->ccb_h.pinfo.priority);
5224 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5225 
5226 		path_id = request_ccb->ccb_h.path_id;
5227 		target_id = request_ccb->ccb_h.target_id;
5228 		lun_id = request_ccb->ccb_h.target_lun;
5229 		xpt_action(request_ccb);
5230 
5231 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5232 			struct cam_ed *device;
5233 			struct cam_et *target;
5234 			int s, phl;
5235 
5236 			/*
5237 			 * If we already probed lun 0 successfully, or
5238 			 * we have additional configured luns on this
5239 			 * target that might have "gone away", go onto
5240 			 * the next lun.
5241 			 */
5242 			target = request_ccb->ccb_h.path->target;
5243 			/*
5244 			 * We may touch devices that we don't
5245 			 * hold references too, so ensure they
5246 			 * don't disappear out from under us.
5247 			 * The target above is referenced by the
5248 			 * path in the request ccb.
5249 			 */
5250 			phl = 0;
5251 			s = splcam();
5252 			device = TAILQ_FIRST(&target->ed_entries);
5253 			if (device != NULL) {
5254 				phl = device->quirk->quirks & CAM_QUIRK_HILUNS;
5255 				if (device->lun_id == 0)
5256 					device = TAILQ_NEXT(device, links);
5257 			}
5258 			splx(s);
5259 			if ((lun_id != 0) || (device != NULL)) {
5260 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5261 					lun_id++;
5262 			}
5263 		} else {
5264 			struct cam_ed *device;
5265 
5266 			device = request_ccb->ccb_h.path->device;
5267 
5268 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5269 				/* Try the next lun */
5270 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
5271 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
5272 					lun_id++;
5273 			}
5274 		}
5275 
5276 		xpt_free_path(request_ccb->ccb_h.path);
5277 
5278 		/* Check Bounds */
5279 		if ((lun_id == request_ccb->ccb_h.target_lun)
5280 		 || lun_id > scan_info->cpi->max_lun) {
5281 			/* We're done */
5282 
5283 			xpt_free_ccb(request_ccb);
5284 			scan_info->pending_count--;
5285 			if (scan_info->pending_count == 0) {
5286 				xpt_free_ccb((union ccb *)scan_info->cpi);
5287 				request_ccb = scan_info->request_ccb;
5288 				free(scan_info, M_TEMP);
5289 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5290 				xpt_done(request_ccb);
5291 			}
5292 		} else {
5293 			/* Try the next device */
5294 			struct cam_path *path;
5295 			cam_status status;
5296 
5297 			path = request_ccb->ccb_h.path;
5298 			status = xpt_create_path(&path, xpt_periph,
5299 						 path_id, target_id, lun_id);
5300 			if (status != CAM_REQ_CMP) {
5301 				printf("xpt_scan_bus: xpt_create_path failed "
5302 				       "with status %#x, halting LUN scan\n",
5303 			 	       status);
5304 				xpt_free_ccb(request_ccb);
5305 				scan_info->pending_count--;
5306 				if (scan_info->pending_count == 0) {
5307 					xpt_free_ccb(
5308 						(union ccb *)scan_info->cpi);
5309 					request_ccb = scan_info->request_ccb;
5310 					free(scan_info, M_TEMP);
5311 					request_ccb->ccb_h.status = CAM_REQ_CMP;
5312 					xpt_done(request_ccb);
5313 					break;
5314 				}
5315 			}
5316 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5317 				      request_ccb->ccb_h.pinfo.priority);
5318 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5319 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5320 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5321 			request_ccb->crcn.flags =
5322 				scan_info->request_ccb->crcn.flags;
5323 			xpt_action(request_ccb);
5324 		}
5325 		break;
5326 	}
5327 	default:
5328 		break;
5329 	}
5330 }
5331 
5332 typedef enum {
5333 	PROBE_TUR,
5334 	PROBE_INQUIRY,
5335 	PROBE_FULL_INQUIRY,
5336 	PROBE_MODE_SENSE,
5337 	PROBE_SERIAL_NUM,
5338 	PROBE_TUR_FOR_NEGOTIATION
5339 } probe_action;
5340 
5341 typedef enum {
5342 	PROBE_INQUIRY_CKSUM	= 0x01,
5343 	PROBE_SERIAL_CKSUM	= 0x02,
5344 	PROBE_NO_ANNOUNCE	= 0x04
5345 } probe_flags;
5346 
5347 typedef struct {
5348 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5349 	probe_action	action;
5350 	union ccb	saved_ccb;
5351 	probe_flags	flags;
5352 	MD5_CTX		context;
5353 	u_int8_t	digest[16];
5354 } probe_softc;
5355 
5356 static void
5357 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5358 	     cam_flags flags, union ccb *request_ccb)
5359 {
5360 	struct ccb_pathinq cpi;
5361 	cam_status status;
5362 	struct cam_path *new_path;
5363 	struct cam_periph *old_periph;
5364 	int s;
5365 
5366 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5367 		  ("xpt_scan_lun\n"));
5368 
5369 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5370 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5371 	xpt_action((union ccb *)&cpi);
5372 
5373 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5374 		if (request_ccb != NULL) {
5375 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5376 			xpt_done(request_ccb);
5377 		}
5378 		return;
5379 	}
5380 
5381 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5382 		/*
5383 		 * Can't scan the bus on an adapter that
5384 		 * cannot perform the initiator role.
5385 		 */
5386 		if (request_ccb != NULL) {
5387 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5388 			xpt_done(request_ccb);
5389 		}
5390 		return;
5391 	}
5392 
5393 	if (request_ccb == NULL) {
5394 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5395 		if (request_ccb == NULL) {
5396 			xpt_print_path(path);
5397 			printf("xpt_scan_lun: can't allocate CCB, can't "
5398 			       "continue\n");
5399 			return;
5400 		}
5401 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5402 		if (new_path == NULL) {
5403 			xpt_print_path(path);
5404 			printf("xpt_scan_lun: can't allocate path, can't "
5405 			       "continue\n");
5406 			free(request_ccb, M_TEMP);
5407 			return;
5408 		}
5409 		status = xpt_compile_path(new_path, xpt_periph,
5410 					  path->bus->path_id,
5411 					  path->target->target_id,
5412 					  path->device->lun_id);
5413 
5414 		if (status != CAM_REQ_CMP) {
5415 			xpt_print_path(path);
5416 			printf("xpt_scan_lun: can't compile path, can't "
5417 			       "continue\n");
5418 			free(request_ccb, M_TEMP);
5419 			free(new_path, M_TEMP);
5420 			return;
5421 		}
5422 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5423 		request_ccb->ccb_h.cbfcnp = xptscandone;
5424 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5425 		request_ccb->crcn.flags = flags;
5426 	}
5427 
5428 	s = splsoftcam();
5429 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5430 		probe_softc *softc;
5431 
5432 		softc = (probe_softc *)old_periph->softc;
5433 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5434 				  periph_links.tqe);
5435 	} else {
5436 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5437 					  probestart, "probe",
5438 					  CAM_PERIPH_BIO,
5439 					  request_ccb->ccb_h.path, NULL, 0,
5440 					  request_ccb);
5441 
5442 		if (status != CAM_REQ_CMP) {
5443 			xpt_print_path(path);
5444 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5445 			       "error, can't continue probe\n");
5446 			request_ccb->ccb_h.status = status;
5447 			xpt_done(request_ccb);
5448 		}
5449 	}
5450 	splx(s);
5451 }
5452 
5453 static void
5454 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5455 {
5456 	xpt_release_path(done_ccb->ccb_h.path);
5457 	free(done_ccb->ccb_h.path, M_TEMP);
5458 	free(done_ccb, M_TEMP);
5459 }
5460 
5461 static cam_status
5462 proberegister(struct cam_periph *periph, void *arg)
5463 {
5464 	union ccb *request_ccb;	/* CCB representing the probe request */
5465 	probe_softc *softc;
5466 
5467 	request_ccb = (union ccb *)arg;
5468 	if (periph == NULL) {
5469 		printf("proberegister: periph was NULL!!\n");
5470 		return(CAM_REQ_CMP_ERR);
5471 	}
5472 
5473 	if (request_ccb == NULL) {
5474 		printf("proberegister: no probe CCB, "
5475 		       "can't register device\n");
5476 		return(CAM_REQ_CMP_ERR);
5477 	}
5478 
5479 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5480 
5481 	if (softc == NULL) {
5482 		printf("proberegister: Unable to probe new device. "
5483 		       "Unable to allocate softc\n");
5484 		return(CAM_REQ_CMP_ERR);
5485 	}
5486 	TAILQ_INIT(&softc->request_ccbs);
5487 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5488 			  periph_links.tqe);
5489 	softc->flags = 0;
5490 	periph->softc = softc;
5491 	cam_periph_acquire(periph);
5492 	/*
5493 	 * Ensure we've waited at least a bus settle
5494 	 * delay before attempting to probe the device.
5495 	 * For HBAs that don't do bus resets, this won't make a difference.
5496 	 */
5497 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5498 				      scsi_delay);
5499 	probeschedule(periph);
5500 	return(CAM_REQ_CMP);
5501 }
5502 
5503 static void
5504 probeschedule(struct cam_periph *periph)
5505 {
5506 	struct ccb_pathinq cpi;
5507 	union ccb *ccb;
5508 	probe_softc *softc;
5509 
5510 	softc = (probe_softc *)periph->softc;
5511 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5512 
5513 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5514 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5515 	xpt_action((union ccb *)&cpi);
5516 
5517 	/*
5518 	 * If a device has gone away and another device, or the same one,
5519 	 * is back in the same place, it should have a unit attention
5520 	 * condition pending.  It will not report the unit attention in
5521 	 * response to an inquiry, which may leave invalid transfer
5522 	 * negotiations in effect.  The TUR will reveal the unit attention
5523 	 * condition.  Only send the TUR for lun 0, since some devices
5524 	 * will get confused by commands other than inquiry to non-existent
5525 	 * luns.  If you think a device has gone away start your scan from
5526 	 * lun 0.  This will insure that any bogus transfer settings are
5527 	 * invalidated.
5528 	 *
5529 	 * If we haven't seen the device before and the controller supports
5530 	 * some kind of transfer negotiation, negotiate with the first
5531 	 * sent command if no bus reset was performed at startup.  This
5532 	 * ensures that the device is not confused by transfer negotiation
5533 	 * settings left over by loader or BIOS action.
5534 	 */
5535 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5536 	 && (ccb->ccb_h.target_lun == 0)) {
5537 		softc->action = PROBE_TUR;
5538 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5539 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5540 		proberequestdefaultnegotiation(periph);
5541 		softc->action = PROBE_INQUIRY;
5542 	} else {
5543 		softc->action = PROBE_INQUIRY;
5544 	}
5545 
5546 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5547 		softc->flags |= PROBE_NO_ANNOUNCE;
5548 	else
5549 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5550 
5551 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5552 }
5553 
5554 static void
5555 probestart(struct cam_periph *periph, union ccb *start_ccb)
5556 {
5557 	/* Probe the device that our peripheral driver points to */
5558 	struct ccb_scsiio *csio;
5559 	probe_softc *softc;
5560 
5561 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5562 
5563 	softc = (probe_softc *)periph->softc;
5564 	csio = &start_ccb->csio;
5565 
5566 	switch (softc->action) {
5567 	case PROBE_TUR:
5568 	case PROBE_TUR_FOR_NEGOTIATION:
5569 	{
5570 		scsi_test_unit_ready(csio,
5571 				     /*retries*/4,
5572 				     probedone,
5573 				     MSG_SIMPLE_Q_TAG,
5574 				     SSD_FULL_SIZE,
5575 				     /*timeout*/60000);
5576 		break;
5577 	}
5578 	case PROBE_INQUIRY:
5579 	case PROBE_FULL_INQUIRY:
5580 	{
5581 		u_int inquiry_len;
5582 		struct scsi_inquiry_data *inq_buf;
5583 
5584 		inq_buf = &periph->path->device->inq_data;
5585 		/*
5586 		 * If the device is currently configured, we calculate an
5587 		 * MD5 checksum of the inquiry data, and if the serial number
5588 		 * length is greater than 0, add the serial number data
5589 		 * into the checksum as well.  Once the inquiry and the
5590 		 * serial number check finish, we attempt to figure out
5591 		 * whether we still have the same device.
5592 		 */
5593 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5594 
5595 			MD5Init(&softc->context);
5596 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5597 				  sizeof(struct scsi_inquiry_data));
5598 			softc->flags |= PROBE_INQUIRY_CKSUM;
5599 			if (periph->path->device->serial_num_len > 0) {
5600 				MD5Update(&softc->context,
5601 					  periph->path->device->serial_num,
5602 					  periph->path->device->serial_num_len);
5603 				softc->flags |= PROBE_SERIAL_CKSUM;
5604 			}
5605 			MD5Final(softc->digest, &softc->context);
5606 		}
5607 
5608 		if (softc->action == PROBE_INQUIRY)
5609 			inquiry_len = SHORT_INQUIRY_LENGTH;
5610 		else
5611 			inquiry_len = inq_buf->additional_length + 4;
5612 
5613 		scsi_inquiry(csio,
5614 			     /*retries*/4,
5615 			     probedone,
5616 			     MSG_SIMPLE_Q_TAG,
5617 			     (u_int8_t *)inq_buf,
5618 			     inquiry_len,
5619 			     /*evpd*/FALSE,
5620 			     /*page_code*/0,
5621 			     SSD_MIN_SIZE,
5622 			     /*timeout*/60 * 1000);
5623 		break;
5624 	}
5625 	case PROBE_MODE_SENSE:
5626 	{
5627 		void  *mode_buf;
5628 		int    mode_buf_len;
5629 
5630 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5631 			     + sizeof(struct scsi_mode_blk_desc)
5632 			     + sizeof(struct scsi_control_page);
5633 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5634 		if (mode_buf != NULL) {
5635 	                scsi_mode_sense(csio,
5636 					/*retries*/4,
5637 					probedone,
5638 					MSG_SIMPLE_Q_TAG,
5639 					/*dbd*/FALSE,
5640 					SMS_PAGE_CTRL_CURRENT,
5641 					SMS_CONTROL_MODE_PAGE,
5642 					mode_buf,
5643 					mode_buf_len,
5644 					SSD_FULL_SIZE,
5645 					/*timeout*/60000);
5646 			break;
5647 		}
5648 		xpt_print_path(periph->path);
5649 		printf("Unable to mode sense control page - malloc failure\n");
5650 		softc->action = PROBE_SERIAL_NUM;
5651 		/* FALLTHROUGH */
5652 	}
5653 	case PROBE_SERIAL_NUM:
5654 	{
5655 		struct scsi_vpd_unit_serial_number *serial_buf;
5656 		struct cam_ed* device;
5657 
5658 		serial_buf = NULL;
5659 		device = periph->path->device;
5660 		device->serial_num = NULL;
5661 		device->serial_num_len = 0;
5662 
5663 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5664 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5665 				malloc(sizeof(*serial_buf), M_TEMP,
5666 					M_NOWAIT | M_ZERO);
5667 
5668 		if (serial_buf != NULL) {
5669 			scsi_inquiry(csio,
5670 				     /*retries*/4,
5671 				     probedone,
5672 				     MSG_SIMPLE_Q_TAG,
5673 				     (u_int8_t *)serial_buf,
5674 				     sizeof(*serial_buf),
5675 				     /*evpd*/TRUE,
5676 				     SVPD_UNIT_SERIAL_NUMBER,
5677 				     SSD_MIN_SIZE,
5678 				     /*timeout*/60 * 1000);
5679 			break;
5680 		}
5681 		/*
5682 		 * We'll have to do without, let our probedone
5683 		 * routine finish up for us.
5684 		 */
5685 		start_ccb->csio.data_ptr = NULL;
5686 		probedone(periph, start_ccb);
5687 		return;
5688 	}
5689 	}
5690 	xpt_action(start_ccb);
5691 }
5692 
5693 static void
5694 proberequestdefaultnegotiation(struct cam_periph *periph)
5695 {
5696 	struct ccb_trans_settings cts;
5697 
5698 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5699 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5700 #ifdef CAM_NEW_TRAN_CODE
5701 	cts.type = CTS_TYPE_USER_SETTINGS;
5702 #else /* CAM_NEW_TRAN_CODE */
5703 	cts.flags = CCB_TRANS_USER_SETTINGS;
5704 #endif /* CAM_NEW_TRAN_CODE */
5705 	xpt_action((union ccb *)&cts);
5706 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5707 #ifdef CAM_NEW_TRAN_CODE
5708 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5709 #else /* CAM_NEW_TRAN_CODE */
5710 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5711 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5712 #endif /* CAM_NEW_TRAN_CODE */
5713 	xpt_action((union ccb *)&cts);
5714 }
5715 
5716 static void
5717 probedone(struct cam_periph *periph, union ccb *done_ccb)
5718 {
5719 	probe_softc *softc;
5720 	struct cam_path *path;
5721 	u_int32_t  priority;
5722 
5723 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5724 
5725 	softc = (probe_softc *)periph->softc;
5726 	path = done_ccb->ccb_h.path;
5727 	priority = done_ccb->ccb_h.pinfo.priority;
5728 
5729 	switch (softc->action) {
5730 	case PROBE_TUR:
5731 	{
5732 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5733 
5734 			if (cam_periph_error(done_ccb, 0,
5735 					     SF_NO_PRINT, NULL) == ERESTART)
5736 				return;
5737 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5738 				/* Don't wedge the queue */
5739 				xpt_release_devq(done_ccb->ccb_h.path,
5740 						 /*count*/1,
5741 						 /*run_queue*/TRUE);
5742 		}
5743 		softc->action = PROBE_INQUIRY;
5744 		xpt_release_ccb(done_ccb);
5745 		xpt_schedule(periph, priority);
5746 		return;
5747 	}
5748 	case PROBE_INQUIRY:
5749 	case PROBE_FULL_INQUIRY:
5750 	{
5751 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5752 			struct scsi_inquiry_data *inq_buf;
5753 			u_int8_t periph_qual;
5754 
5755 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5756 			inq_buf = &path->device->inq_data;
5757 
5758 			periph_qual = SID_QUAL(inq_buf);
5759 
5760 			switch(periph_qual) {
5761 			case SID_QUAL_LU_CONNECTED:
5762 			{
5763 				u_int8_t alen;
5764 
5765 				/*
5766 				 * We conservatively request only
5767 				 * SHORT_INQUIRY_LEN bytes of inquiry
5768 				 * information during our first try
5769 				 * at sending an INQUIRY. If the device
5770 				 * has more information to give,
5771 				 * perform a second request specifying
5772 				 * the amount of information the device
5773 				 * is willing to give.
5774 				 */
5775 				alen = inq_buf->additional_length;
5776 				if (softc->action == PROBE_INQUIRY
5777 				 && alen > (SHORT_INQUIRY_LENGTH - 4)) {
5778 					softc->action = PROBE_FULL_INQUIRY;
5779 					xpt_release_ccb(done_ccb);
5780 					xpt_schedule(periph, priority);
5781 					return;
5782 				}
5783 
5784 				xpt_find_quirk(path->device);
5785 
5786 #ifdef CAM_NEW_TRAN_CODE
5787 				xpt_devise_transport(path);
5788 #endif /* CAM_NEW_TRAN_CODE */
5789 				if ((inq_buf->flags & SID_CmdQue) != 0)
5790 					softc->action = PROBE_MODE_SENSE;
5791 				else
5792 					softc->action = PROBE_SERIAL_NUM;
5793 
5794 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5795 
5796 				xpt_release_ccb(done_ccb);
5797 				xpt_schedule(periph, priority);
5798 				return;
5799 			}
5800 			default:
5801 				break;
5802 			}
5803 		} else if (cam_periph_error(done_ccb, 0,
5804 					    done_ccb->ccb_h.target_lun > 0
5805 					    ? SF_RETRY_UA|SF_QUIET_IR
5806 					    : SF_RETRY_UA,
5807 					    &softc->saved_ccb) == ERESTART) {
5808 			return;
5809 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5810 			/* Don't wedge the queue */
5811 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5812 					 /*run_queue*/TRUE);
5813 		}
5814 		/*
5815 		 * If we get to this point, we got an error status back
5816 		 * from the inquiry and the error status doesn't require
5817 		 * automatically retrying the command.  Therefore, the
5818 		 * inquiry failed.  If we had inquiry information before
5819 		 * for this device, but this latest inquiry command failed,
5820 		 * the device has probably gone away.  If this device isn't
5821 		 * already marked unconfigured, notify the peripheral
5822 		 * drivers that this device is no more.
5823 		 */
5824 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5825 			/* Send the async notification. */
5826 			xpt_async(AC_LOST_DEVICE, path, NULL);
5827 
5828 		xpt_release_ccb(done_ccb);
5829 		break;
5830 	}
5831 	case PROBE_MODE_SENSE:
5832 	{
5833 		struct ccb_scsiio *csio;
5834 		struct scsi_mode_header_6 *mode_hdr;
5835 
5836 		csio = &done_ccb->csio;
5837 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5838 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5839 			struct scsi_control_page *page;
5840 			u_int8_t *offset;
5841 
5842 			offset = ((u_int8_t *)&mode_hdr[1])
5843 			    + mode_hdr->blk_desc_len;
5844 			page = (struct scsi_control_page *)offset;
5845 			path->device->queue_flags = page->queue_flags;
5846 		} else if (cam_periph_error(done_ccb, 0,
5847 					    SF_RETRY_UA|SF_NO_PRINT,
5848 					    &softc->saved_ccb) == ERESTART) {
5849 			return;
5850 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5851 			/* Don't wedge the queue */
5852 			xpt_release_devq(done_ccb->ccb_h.path,
5853 					 /*count*/1, /*run_queue*/TRUE);
5854 		}
5855 		xpt_release_ccb(done_ccb);
5856 		free(mode_hdr, M_TEMP);
5857 		softc->action = PROBE_SERIAL_NUM;
5858 		xpt_schedule(periph, priority);
5859 		return;
5860 	}
5861 	case PROBE_SERIAL_NUM:
5862 	{
5863 		struct ccb_scsiio *csio;
5864 		struct scsi_vpd_unit_serial_number *serial_buf;
5865 		u_int32_t  priority;
5866 		int changed;
5867 		int have_serialnum;
5868 
5869 		changed = 1;
5870 		have_serialnum = 0;
5871 		csio = &done_ccb->csio;
5872 		priority = done_ccb->ccb_h.pinfo.priority;
5873 		serial_buf =
5874 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5875 
5876 		/* Clean up from previous instance of this device */
5877 		if (path->device->serial_num != NULL) {
5878 			free(path->device->serial_num, M_DEVBUF);
5879 			path->device->serial_num = NULL;
5880 			path->device->serial_num_len = 0;
5881 		}
5882 
5883 		if (serial_buf == NULL) {
5884 			/*
5885 			 * Don't process the command as it was never sent
5886 			 */
5887 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5888 			&& (serial_buf->length > 0)) {
5889 
5890 			have_serialnum = 1;
5891 			path->device->serial_num =
5892 				(u_int8_t *)malloc((serial_buf->length + 1),
5893 						   M_DEVBUF, M_NOWAIT);
5894 			if (path->device->serial_num != NULL) {
5895 				bcopy(serial_buf->serial_num,
5896 				      path->device->serial_num,
5897 				      serial_buf->length);
5898 				path->device->serial_num_len =
5899 				    serial_buf->length;
5900 				path->device->serial_num[serial_buf->length]
5901 				    = '\0';
5902 			}
5903 		} else if (cam_periph_error(done_ccb, 0,
5904 					    SF_RETRY_UA|SF_NO_PRINT,
5905 					    &softc->saved_ccb) == ERESTART) {
5906 			return;
5907 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5908 			/* Don't wedge the queue */
5909 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5910 					 /*run_queue*/TRUE);
5911 		}
5912 
5913 		/*
5914 		 * Let's see if we have seen this device before.
5915 		 */
5916 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5917 			MD5_CTX context;
5918 			u_int8_t digest[16];
5919 
5920 			MD5Init(&context);
5921 
5922 			MD5Update(&context,
5923 				  (unsigned char *)&path->device->inq_data,
5924 				  sizeof(struct scsi_inquiry_data));
5925 
5926 			if (have_serialnum)
5927 				MD5Update(&context, serial_buf->serial_num,
5928 					  serial_buf->length);
5929 
5930 			MD5Final(digest, &context);
5931 			if (bcmp(softc->digest, digest, 16) == 0)
5932 				changed = 0;
5933 
5934 			/*
5935 			 * XXX Do we need to do a TUR in order to ensure
5936 			 *     that the device really hasn't changed???
5937 			 */
5938 			if ((changed != 0)
5939 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5940 				xpt_async(AC_LOST_DEVICE, path, NULL);
5941 		}
5942 		if (serial_buf != NULL)
5943 			free(serial_buf, M_TEMP);
5944 
5945 		if (changed != 0) {
5946 			/*
5947 			 * Now that we have all the necessary
5948 			 * information to safely perform transfer
5949 			 * negotiations... Controllers don't perform
5950 			 * any negotiation or tagged queuing until
5951 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5952 			 * received.  So, on a new device, just retreive
5953 			 * the user settings, and set them as the current
5954 			 * settings to set the device up.
5955 			 */
5956 			proberequestdefaultnegotiation(periph);
5957 			xpt_release_ccb(done_ccb);
5958 
5959 			/*
5960 			 * Perform a TUR to allow the controller to
5961 			 * perform any necessary transfer negotiation.
5962 			 */
5963 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5964 			xpt_schedule(periph, priority);
5965 			return;
5966 		}
5967 		xpt_release_ccb(done_ccb);
5968 		break;
5969 	}
5970 	case PROBE_TUR_FOR_NEGOTIATION:
5971 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5972 			/* Don't wedge the queue */
5973 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5974 					 /*run_queue*/TRUE);
5975 		}
5976 
5977 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5978 
5979 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5980 			/* Inform the XPT that a new device has been found */
5981 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5982 			xpt_action(done_ccb);
5983 
5984 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5985 		}
5986 		xpt_release_ccb(done_ccb);
5987 		break;
5988 	}
5989 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5990 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5991 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5992 	xpt_done(done_ccb);
5993 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5994 		cam_periph_invalidate(periph);
5995 		cam_periph_release(periph);
5996 	} else {
5997 		probeschedule(periph);
5998 	}
5999 }
6000 
6001 static void
6002 probecleanup(struct cam_periph *periph)
6003 {
6004 	free(periph->softc, M_TEMP);
6005 }
6006 
6007 static void
6008 xpt_find_quirk(struct cam_ed *device)
6009 {
6010 	caddr_t	match;
6011 
6012 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6013 			       (caddr_t)xpt_quirk_table,
6014 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6015 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6016 
6017 	if (match == NULL)
6018 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6019 
6020 	device->quirk = (struct xpt_quirk_entry *)match;
6021 }
6022 
6023 #ifdef CAM_NEW_TRAN_CODE
6024 
6025 static void
6026 xpt_devise_transport(struct cam_path *path)
6027 {
6028 	struct ccb_pathinq cpi;
6029 	struct ccb_trans_settings cts;
6030 	struct scsi_inquiry_data *inq_buf;
6031 
6032 	/* Get transport information from the SIM */
6033 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6034 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6035 	xpt_action((union ccb *)&cpi);
6036 
6037 	inq_buf = NULL;
6038 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6039 		inq_buf = &path->device->inq_data;
6040 	path->device->protocol = PROTO_SCSI;
6041 	path->device->protocol_version =
6042 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6043 	path->device->transport = cpi.transport;
6044 	path->device->transport_version = cpi.transport_version;
6045 
6046 	/*
6047 	 * Any device not using SPI3 features should
6048 	 * be considered SPI2 or lower.
6049 	 */
6050 	if (inq_buf != NULL) {
6051 		if (path->device->transport == XPORT_SPI
6052 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6053 		 && path->device->transport_version > 2)
6054 			path->device->transport_version = 2;
6055 	} else {
6056 		struct cam_ed* otherdev;
6057 
6058 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6059 		     otherdev != NULL;
6060 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6061 			if (otherdev != path->device)
6062 				break;
6063 		}
6064 
6065 		if (otherdev != NULL) {
6066 			/*
6067 			 * Initially assume the same versioning as
6068 			 * prior luns for this target.
6069 			 */
6070 			path->device->protocol_version =
6071 			    otherdev->protocol_version;
6072 			path->device->transport_version =
6073 			    otherdev->transport_version;
6074 		} else {
6075 			/* Until we know better, opt for safty */
6076 			path->device->protocol_version = 2;
6077 			if (path->device->transport == XPORT_SPI)
6078 				path->device->transport_version = 2;
6079 			else
6080 				path->device->transport_version = 0;
6081 		}
6082 	}
6083 
6084 	/*
6085 	 * XXX
6086 	 * For a device compliant with SPC-2 we should be able
6087 	 * to determine the transport version supported by
6088 	 * scrutinizing the version descriptors in the
6089 	 * inquiry buffer.
6090 	 */
6091 
6092 	/* Tell the controller what we think */
6093 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6094 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6095 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6096 	cts.transport = path->device->transport;
6097 	cts.transport_version = path->device->transport_version;
6098 	cts.protocol = path->device->protocol;
6099 	cts.protocol_version = path->device->protocol_version;
6100 	cts.proto_specific.valid = 0;
6101 	cts.xport_specific.valid = 0;
6102 	xpt_action((union ccb *)&cts);
6103 }
6104 
6105 static void
6106 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6107 			  int async_update)
6108 {
6109 	struct	ccb_pathinq cpi;
6110 	struct	ccb_trans_settings cur_cts;
6111 	struct	ccb_trans_settings_scsi *scsi;
6112 	struct	ccb_trans_settings_scsi *cur_scsi;
6113 	struct	cam_sim *sim;
6114 	struct	scsi_inquiry_data *inq_data;
6115 
6116 	if (device == NULL) {
6117 		cts->ccb_h.status = CAM_PATH_INVALID;
6118 		xpt_done((union ccb *)cts);
6119 		return;
6120 	}
6121 
6122 	if (cts->protocol == PROTO_UNKNOWN
6123 	 || cts->protocol == PROTO_UNSPECIFIED) {
6124 		cts->protocol = device->protocol;
6125 		cts->protocol_version = device->protocol_version;
6126 	}
6127 
6128 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6129 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6130 		cts->protocol_version = device->protocol_version;
6131 
6132 	if (cts->protocol != device->protocol) {
6133 		xpt_print_path(cts->ccb_h.path);
6134 		printf("Uninitialized Protocol %x:%x?\n",
6135 		       cts->protocol, device->protocol);
6136 		cts->protocol = device->protocol;
6137 	}
6138 
6139 	if (cts->protocol_version > device->protocol_version) {
6140 		if (bootverbose) {
6141 			xpt_print_path(cts->ccb_h.path);
6142 			printf("Down reving Protocol Version from %d to %d?\n",
6143 			       cts->protocol_version, device->protocol_version);
6144 		}
6145 		cts->protocol_version = device->protocol_version;
6146 	}
6147 
6148 	if (cts->transport == XPORT_UNKNOWN
6149 	 || cts->transport == XPORT_UNSPECIFIED) {
6150 		cts->transport = device->transport;
6151 		cts->transport_version = device->transport_version;
6152 	}
6153 
6154 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6155 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6156 		cts->transport_version = device->transport_version;
6157 
6158 	if (cts->transport != device->transport) {
6159 		xpt_print_path(cts->ccb_h.path);
6160 		printf("Uninitialized Transport %x:%x?\n",
6161 		       cts->transport, device->transport);
6162 		cts->transport = device->transport;
6163 	}
6164 
6165 	if (cts->transport_version > device->transport_version) {
6166 		if (bootverbose) {
6167 			xpt_print_path(cts->ccb_h.path);
6168 			printf("Down reving Transport Version from %d to %d?\n",
6169 			       cts->transport_version,
6170 			       device->transport_version);
6171 		}
6172 		cts->transport_version = device->transport_version;
6173 	}
6174 
6175 	sim = cts->ccb_h.path->bus->sim;
6176 
6177 	/*
6178 	 * Nothing more of interest to do unless
6179 	 * this is a device connected via the
6180 	 * SCSI protocol.
6181 	 */
6182 	if (cts->protocol != PROTO_SCSI) {
6183 		if (async_update == FALSE)
6184 			(*(sim->sim_action))(sim, (union ccb *)cts);
6185 		return;
6186 	}
6187 
6188 	inq_data = &device->inq_data;
6189 	scsi = &cts->proto_specific.scsi;
6190 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6191 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6192 	xpt_action((union ccb *)&cpi);
6193 
6194 	/* SCSI specific sanity checking */
6195 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6196 	 || (inq_data->flags & SID_CmdQue) == 0
6197 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6198 	 || (device->quirk->mintags == 0)) {
6199 		/*
6200 		 * Can't tag on hardware that doesn't support tags,
6201 		 * doesn't have it enabled, or has broken tag support.
6202 		 */
6203 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6204 	}
6205 
6206 	if (async_update == FALSE) {
6207 		/*
6208 		 * Perform sanity checking against what the
6209 		 * controller and device can do.
6210 		 */
6211 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6212 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6213 		cur_cts.type = cts->type;
6214 		xpt_action((union ccb *)&cur_cts);
6215 
6216 		cur_scsi = &cur_cts.proto_specific.scsi;
6217 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6218 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6219 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6220 		}
6221 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6222 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6223 	}
6224 
6225 	/* SPI specific sanity checking */
6226 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6227 		u_int spi3caps;
6228 		struct ccb_trans_settings_spi *spi;
6229 		struct ccb_trans_settings_spi *cur_spi;
6230 
6231 		spi = &cts->xport_specific.spi;
6232 
6233 		cur_spi = &cur_cts.xport_specific.spi;
6234 
6235 		/* Fill in any gaps in what the user gave us */
6236 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6237 			spi->sync_period = cur_spi->sync_period;
6238 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6239 			spi->sync_period = 0;
6240 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6241 			spi->sync_offset = cur_spi->sync_offset;
6242 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6243 			spi->sync_offset = 0;
6244 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6245 			spi->ppr_options = cur_spi->ppr_options;
6246 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6247 			spi->ppr_options = 0;
6248 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6249 			spi->bus_width = cur_spi->bus_width;
6250 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6251 			spi->bus_width = 0;
6252 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6253 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6254 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6255 		}
6256 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6257 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6258 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6259 		  && (inq_data->flags & SID_Sync) == 0
6260 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6261 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6262 		 || (cur_spi->sync_offset == 0)
6263 		 || (cur_spi->sync_period == 0)) {
6264 			/* Force async */
6265 			spi->sync_period = 0;
6266 			spi->sync_offset = 0;
6267 		}
6268 
6269 		switch (spi->bus_width) {
6270 		case MSG_EXT_WDTR_BUS_32_BIT:
6271 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6272 			  || (inq_data->flags & SID_WBus32) != 0
6273 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6274 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6275 				break;
6276 			/* Fall Through to 16-bit */
6277 		case MSG_EXT_WDTR_BUS_16_BIT:
6278 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6279 			  || (inq_data->flags & SID_WBus16) != 0
6280 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6281 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6282 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6283 				break;
6284 			}
6285 			/* Fall Through to 8-bit */
6286 		default: /* New bus width?? */
6287 		case MSG_EXT_WDTR_BUS_8_BIT:
6288 			/* All targets can do this */
6289 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6290 			break;
6291 		}
6292 
6293 		spi3caps = cpi.xport_specific.spi.ppr_options;
6294 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6295 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6296 			spi3caps &= inq_data->spi3data;
6297 
6298 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6299 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6300 
6301 		if ((spi3caps & SID_SPI_IUS) == 0)
6302 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6303 
6304 		if ((spi3caps & SID_SPI_QAS) == 0)
6305 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6306 
6307 		/* No SPI Transfer settings are allowed unless we are wide */
6308 		if (spi->bus_width == 0)
6309 			spi->ppr_options = 0;
6310 
6311 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6312 			/*
6313 			 * Can't tag queue without disconnection.
6314 			 */
6315 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6316 			scsi->valid |= CTS_SCSI_VALID_TQ;
6317 		}
6318 
6319 		/*
6320 		 * If we are currently performing tagged transactions to
6321 		 * this device and want to change its negotiation parameters,
6322 		 * go non-tagged for a bit to give the controller a chance to
6323 		 * negotiate unhampered by tag messages.
6324 		 */
6325 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6326 		 && (device->inq_flags & SID_CmdQue) != 0
6327 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6328 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6329 				   CTS_SPI_VALID_SYNC_OFFSET|
6330 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6331 			xpt_toggle_tags(cts->ccb_h.path);
6332 	}
6333 
6334 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6335 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6336 		int device_tagenb;
6337 
6338 		/*
6339 		 * If we are transitioning from tags to no-tags or
6340 		 * vice-versa, we need to carefully freeze and restart
6341 		 * the queue so that we don't overlap tagged and non-tagged
6342 		 * commands.  We also temporarily stop tags if there is
6343 		 * a change in transfer negotiation settings to allow
6344 		 * "tag-less" negotiation.
6345 		 */
6346 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6347 		 || (device->inq_flags & SID_CmdQue) != 0)
6348 			device_tagenb = TRUE;
6349 		else
6350 			device_tagenb = FALSE;
6351 
6352 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6353 		  && device_tagenb == FALSE)
6354 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6355 		  && device_tagenb == TRUE)) {
6356 
6357 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6358 				/*
6359 				 * Delay change to use tags until after a
6360 				 * few commands have gone to this device so
6361 				 * the controller has time to perform transfer
6362 				 * negotiations without tagged messages getting
6363 				 * in the way.
6364 				 */
6365 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6366 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6367 			} else {
6368 				struct ccb_relsim crs;
6369 
6370 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6371 		  		device->inq_flags &= ~SID_CmdQue;
6372 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6373 						    sim->max_dev_openings);
6374 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6375 				device->tag_delay_count = 0;
6376 
6377 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6378 					      /*priority*/1);
6379 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6380 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6381 				crs.openings
6382 				    = crs.release_timeout
6383 				    = crs.qfrozen_cnt
6384 				    = 0;
6385 				xpt_action((union ccb *)&crs);
6386 			}
6387 		}
6388 	}
6389 	if (async_update == FALSE)
6390 		(*(sim->sim_action))(sim, (union ccb *)cts);
6391 }
6392 
6393 #else /* CAM_NEW_TRAN_CODE */
6394 
6395 static void
6396 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6397 			  int async_update)
6398 {
6399 	struct	cam_sim *sim;
6400 	int	qfrozen;
6401 
6402 	sim = cts->ccb_h.path->bus->sim;
6403 	if (async_update == FALSE) {
6404 		struct	scsi_inquiry_data *inq_data;
6405 		struct	ccb_pathinq cpi;
6406 		struct	ccb_trans_settings cur_cts;
6407 
6408 		if (device == NULL) {
6409 			cts->ccb_h.status = CAM_PATH_INVALID;
6410 			xpt_done((union ccb *)cts);
6411 			return;
6412 		}
6413 
6414 		/*
6415 		 * Perform sanity checking against what the
6416 		 * controller and device can do.
6417 		 */
6418 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6419 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6420 		xpt_action((union ccb *)&cpi);
6421 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6422 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6423 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
6424 		xpt_action((union ccb *)&cur_cts);
6425 		inq_data = &device->inq_data;
6426 
6427 		/* Fill in any gaps in what the user gave us */
6428 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
6429 			cts->sync_period = cur_cts.sync_period;
6430 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
6431 			cts->sync_offset = cur_cts.sync_offset;
6432 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
6433 			cts->bus_width = cur_cts.bus_width;
6434 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
6435 			cts->flags &= ~CCB_TRANS_DISC_ENB;
6436 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
6437 		}
6438 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
6439 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6440 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
6441 		}
6442 
6443 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6444 		  && (inq_data->flags & SID_Sync) == 0)
6445 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6446 		 || (cts->sync_offset == 0)
6447 		 || (cts->sync_period == 0)) {
6448 			/* Force async */
6449 			cts->sync_period = 0;
6450 			cts->sync_offset = 0;
6451 		} else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6452 			&& (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0
6453 			&& cts->sync_period <= 0x9) {
6454 			/*
6455 			 * Don't allow DT transmission rates if the
6456 			 * device does not support it.
6457 			 */
6458 			cts->sync_period = 0xa;
6459 		}
6460 
6461 		switch (cts->bus_width) {
6462 		case MSG_EXT_WDTR_BUS_32_BIT:
6463 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6464 			  || (inq_data->flags & SID_WBus32) != 0)
6465 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6466 				break;
6467 			/* FALLTHROUGH to 16-bit */
6468 		case MSG_EXT_WDTR_BUS_16_BIT:
6469 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6470 			  || (inq_data->flags & SID_WBus16) != 0)
6471 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6472 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6473 				break;
6474 			}
6475 			/* FALLTHROUGH to 8-bit */
6476 		default: /* New bus width?? */
6477 		case MSG_EXT_WDTR_BUS_8_BIT:
6478 			/* All targets can do this */
6479 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6480 			break;
6481 		}
6482 
6483 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
6484 			/*
6485 			 * Can't tag queue without disconnection.
6486 			 */
6487 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6488 			cts->valid |= CCB_TRANS_TQ_VALID;
6489 		}
6490 
6491 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6492 		 || (inq_data->flags & SID_CmdQue) == 0
6493 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6494 		 || (device->quirk->mintags == 0)) {
6495 			/*
6496 			 * Can't tag on hardware that doesn't support,
6497 			 * doesn't have it enabled, or has broken tag support.
6498 			 */
6499 			cts->flags &= ~CCB_TRANS_TAG_ENB;
6500 		}
6501 	}
6502 
6503 	qfrozen = FALSE;
6504 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
6505 		int device_tagenb;
6506 
6507 		/*
6508 		 * If we are transitioning from tags to no-tags or
6509 		 * vice-versa, we need to carefully freeze and restart
6510 		 * the queue so that we don't overlap tagged and non-tagged
6511 		 * commands.  We also temporarily stop tags if there is
6512 		 * a change in transfer negotiation settings to allow
6513 		 * "tag-less" negotiation.
6514 		 */
6515 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6516 		 || (device->inq_flags & SID_CmdQue) != 0)
6517 			device_tagenb = TRUE;
6518 		else
6519 			device_tagenb = FALSE;
6520 
6521 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
6522 		  && device_tagenb == FALSE)
6523 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
6524 		  && device_tagenb == TRUE)) {
6525 
6526 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
6527 				/*
6528 				 * Delay change to use tags until after a
6529 				 * few commands have gone to this device so
6530 				 * the controller has time to perform transfer
6531 				 * negotiations without tagged messages getting
6532 				 * in the way.
6533 				 */
6534 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6535 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6536 			} else {
6537 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6538 				qfrozen = TRUE;
6539 		  		device->inq_flags &= ~SID_CmdQue;
6540 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6541 						    sim->max_dev_openings);
6542 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6543 				device->tag_delay_count = 0;
6544 			}
6545 		}
6546 	}
6547 
6548 	if (async_update == FALSE) {
6549 		/*
6550 		 * If we are currently performing tagged transactions to
6551 		 * this device and want to change its negotiation parameters,
6552 		 * go non-tagged for a bit to give the controller a chance to
6553 		 * negotiate unhampered by tag messages.
6554 		 */
6555 		if ((device->inq_flags & SID_CmdQue) != 0
6556 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
6557 				   CCB_TRANS_SYNC_OFFSET_VALID|
6558 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
6559 			xpt_toggle_tags(cts->ccb_h.path);
6560 
6561 		(*(sim->sim_action))(sim, (union ccb *)cts);
6562 	}
6563 
6564 	if (qfrozen) {
6565 		struct ccb_relsim crs;
6566 
6567 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6568 			      /*priority*/1);
6569 		crs.ccb_h.func_code = XPT_REL_SIMQ;
6570 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6571 		crs.openings
6572 		    = crs.release_timeout
6573 		    = crs.qfrozen_cnt
6574 		    = 0;
6575 		xpt_action((union ccb *)&crs);
6576 	}
6577 }
6578 
6579 
6580 #endif /* CAM_NEW_TRAN_CODE */
6581 
6582 static void
6583 xpt_toggle_tags(struct cam_path *path)
6584 {
6585 	struct cam_ed *dev;
6586 
6587 	/*
6588 	 * Give controllers a chance to renegotiate
6589 	 * before starting tag operations.  We
6590 	 * "toggle" tagged queuing off then on
6591 	 * which causes the tag enable command delay
6592 	 * counter to come into effect.
6593 	 */
6594 	dev = path->device;
6595 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6596 	 || ((dev->inq_flags & SID_CmdQue) != 0
6597  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6598 		struct ccb_trans_settings cts;
6599 
6600 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6601 #ifdef CAM_NEW_TRAN_CODE
6602 		cts.protocol = PROTO_SCSI;
6603 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6604 		cts.transport = XPORT_UNSPECIFIED;
6605 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6606 		cts.proto_specific.scsi.flags = 0;
6607 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6608 #else /* CAM_NEW_TRAN_CODE */
6609 		cts.flags = 0;
6610 		cts.valid = CCB_TRANS_TQ_VALID;
6611 #endif /* CAM_NEW_TRAN_CODE */
6612 		xpt_set_transfer_settings(&cts, path->device,
6613 					  /*async_update*/TRUE);
6614 #ifdef CAM_NEW_TRAN_CODE
6615 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6616 #else /* CAM_NEW_TRAN_CODE */
6617 		cts.flags = CCB_TRANS_TAG_ENB;
6618 #endif /* CAM_NEW_TRAN_CODE */
6619 		xpt_set_transfer_settings(&cts, path->device,
6620 					  /*async_update*/TRUE);
6621 	}
6622 }
6623 
6624 static void
6625 xpt_start_tags(struct cam_path *path)
6626 {
6627 	struct ccb_relsim crs;
6628 	struct cam_ed *device;
6629 	struct cam_sim *sim;
6630 	int    newopenings;
6631 
6632 	device = path->device;
6633 	sim = path->bus->sim;
6634 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6635 	xpt_freeze_devq(path, /*count*/1);
6636 	device->inq_flags |= SID_CmdQue;
6637 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
6638 	xpt_dev_ccbq_resize(path, newopenings);
6639 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6640 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6641 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6642 	crs.openings
6643 	    = crs.release_timeout
6644 	    = crs.qfrozen_cnt
6645 	    = 0;
6646 	xpt_action((union ccb *)&crs);
6647 }
6648 
6649 static int busses_to_config;
6650 static int busses_to_reset;
6651 
6652 static int
6653 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6654 {
6655 	if (bus->path_id != CAM_XPT_PATH_ID) {
6656 		struct cam_path path;
6657 		struct ccb_pathinq cpi;
6658 		int can_negotiate;
6659 
6660 		busses_to_config++;
6661 		xpt_compile_path(&path, NULL, bus->path_id,
6662 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6663 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6664 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6665 		xpt_action((union ccb *)&cpi);
6666 		can_negotiate = cpi.hba_inquiry;
6667 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6668 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6669 		 && can_negotiate)
6670 			busses_to_reset++;
6671 		xpt_release_path(&path);
6672 	}
6673 
6674 	return(1);
6675 }
6676 
6677 static int
6678 xptconfigfunc(struct cam_eb *bus, void *arg)
6679 {
6680 	struct	cam_path *path;
6681 	union	ccb *work_ccb;
6682 
6683 	if (bus->path_id != CAM_XPT_PATH_ID) {
6684 		cam_status status;
6685 		int can_negotiate;
6686 
6687 		work_ccb = xpt_alloc_ccb();
6688 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6689 					      CAM_TARGET_WILDCARD,
6690 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6691 			printf("xptconfigfunc: xpt_create_path failed with "
6692 			       "status %#x for bus %d\n", status, bus->path_id);
6693 			printf("xptconfigfunc: halting bus configuration\n");
6694 			xpt_free_ccb(work_ccb);
6695 			busses_to_config--;
6696 			xpt_finishconfig(xpt_periph, NULL);
6697 			return(0);
6698 		}
6699 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6700 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6701 		xpt_action(work_ccb);
6702 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6703 			printf("xptconfigfunc: CPI failed on bus %d "
6704 			       "with status %d\n", bus->path_id,
6705 			       work_ccb->ccb_h.status);
6706 			xpt_finishconfig(xpt_periph, work_ccb);
6707 			return(1);
6708 		}
6709 
6710 		can_negotiate = work_ccb->cpi.hba_inquiry;
6711 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6712 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6713 		 && (can_negotiate != 0)) {
6714 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6715 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6716 			work_ccb->ccb_h.cbfcnp = NULL;
6717 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6718 				  ("Resetting Bus\n"));
6719 			xpt_action(work_ccb);
6720 			xpt_finishconfig(xpt_periph, work_ccb);
6721 		} else {
6722 			/* Act as though we performed a successful BUS RESET */
6723 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6724 			xpt_finishconfig(xpt_periph, work_ccb);
6725 		}
6726 	}
6727 
6728 	return(1);
6729 }
6730 
6731 static void
6732 xpt_config(void *arg)
6733 {
6734 	/*
6735 	 * Now that interrupts are enabled, go find our devices
6736 	 */
6737 
6738 #ifdef CAMDEBUG
6739 	/* Setup debugging flags and path */
6740 #ifdef CAM_DEBUG_FLAGS
6741 	cam_dflags = CAM_DEBUG_FLAGS;
6742 #else /* !CAM_DEBUG_FLAGS */
6743 	cam_dflags = CAM_DEBUG_NONE;
6744 #endif /* CAM_DEBUG_FLAGS */
6745 #ifdef CAM_DEBUG_BUS
6746 	if (cam_dflags != CAM_DEBUG_NONE) {
6747 		if (xpt_create_path(&cam_dpath, xpt_periph,
6748 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6749 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6750 			printf("xpt_config: xpt_create_path() failed for debug"
6751 			       " target %d:%d:%d, debugging disabled\n",
6752 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6753 			cam_dflags = CAM_DEBUG_NONE;
6754 		}
6755 	} else
6756 		cam_dpath = NULL;
6757 #else /* !CAM_DEBUG_BUS */
6758 	cam_dpath = NULL;
6759 #endif /* CAM_DEBUG_BUS */
6760 #endif /* CAMDEBUG */
6761 
6762 	/*
6763 	 * Scan all installed busses.
6764 	 */
6765 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6766 
6767 	if (busses_to_config == 0) {
6768 		/* Call manually because we don't have any busses */
6769 		xpt_finishconfig(xpt_periph, NULL);
6770 	} else  {
6771 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
6772 			printf("Waiting %d seconds for SCSI "
6773 			       "devices to settle\n", scsi_delay/1000);
6774 		}
6775 		xpt_for_all_busses(xptconfigfunc, NULL);
6776 	}
6777 }
6778 
6779 /*
6780  * If the given device only has one peripheral attached to it, and if that
6781  * peripheral is the passthrough driver, announce it.  This insures that the
6782  * user sees some sort of announcement for every peripheral in their system.
6783  */
6784 static int
6785 xptpassannouncefunc(struct cam_ed *device, void *arg)
6786 {
6787 	struct cam_periph *periph;
6788 	int i;
6789 
6790 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6791 	     periph = SLIST_NEXT(periph, periph_links), i++);
6792 
6793 	periph = SLIST_FIRST(&device->periphs);
6794 	if ((i == 1)
6795 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6796 		xpt_announce_periph(periph, NULL);
6797 
6798 	return(1);
6799 }
6800 
6801 static void
6802 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6803 {
6804 	struct	periph_driver **p_drv;
6805 	int	i;
6806 
6807 	if (done_ccb != NULL) {
6808 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6809 			  ("xpt_finishconfig\n"));
6810 		switch(done_ccb->ccb_h.func_code) {
6811 		case XPT_RESET_BUS:
6812 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6813 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6814 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6815 				xpt_action(done_ccb);
6816 				return;
6817 			}
6818 			/* FALLTHROUGH */
6819 		case XPT_SCAN_BUS:
6820 		default:
6821 			xpt_free_path(done_ccb->ccb_h.path);
6822 			busses_to_config--;
6823 			break;
6824 		}
6825 	}
6826 
6827 	if (busses_to_config == 0) {
6828 		/* Register all the peripheral drivers */
6829 		/* XXX This will have to change when we have loadable modules */
6830 		p_drv = periph_drivers;
6831 		for (i = 0; p_drv[i] != NULL; i++) {
6832 			(*p_drv[i]->init)();
6833 		}
6834 
6835 		/*
6836 		 * Check for devices with no "standard" peripheral driver
6837 		 * attached.  For any devices like that, announce the
6838 		 * passthrough driver so the user will see something.
6839 		 */
6840 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6841 
6842 		/* Release our hook so that the boot can continue. */
6843 		config_intrhook_disestablish(xpt_config_hook);
6844 		free(xpt_config_hook, M_TEMP);
6845 		xpt_config_hook = NULL;
6846 	}
6847 	if (done_ccb != NULL)
6848 		xpt_free_ccb(done_ccb);
6849 }
6850 
6851 static void
6852 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6853 {
6854 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6855 
6856 	switch (work_ccb->ccb_h.func_code) {
6857 	/* Common cases first */
6858 	case XPT_PATH_INQ:		/* Path routing inquiry */
6859 	{
6860 		struct ccb_pathinq *cpi;
6861 
6862 		cpi = &work_ccb->cpi;
6863 		cpi->version_num = 1; /* XXX??? */
6864 		cpi->hba_inquiry = 0;
6865 		cpi->target_sprt = 0;
6866 		cpi->hba_misc = 0;
6867 		cpi->hba_eng_cnt = 0;
6868 		cpi->max_target = 0;
6869 		cpi->max_lun = 0;
6870 		cpi->initiator_id = 0;
6871 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6872 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6873 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6874 		cpi->unit_number = sim->unit_number;
6875 		cpi->bus_id = sim->bus_id;
6876 		cpi->base_transfer_speed = 0;
6877 #ifdef CAM_NEW_TRAN_CODE
6878 		cpi->protocol = PROTO_UNSPECIFIED;
6879 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
6880 		cpi->transport = XPORT_UNSPECIFIED;
6881 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
6882 #endif /* CAM_NEW_TRAN_CODE */
6883 		cpi->ccb_h.status = CAM_REQ_CMP;
6884 		xpt_done(work_ccb);
6885 		break;
6886 	}
6887 	default:
6888 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6889 		xpt_done(work_ccb);
6890 		break;
6891 	}
6892 }
6893 
6894 /*
6895  * The xpt as a "controller" has no interrupt sources, so polling
6896  * is a no-op.
6897  */
6898 static void
6899 xptpoll(struct cam_sim *sim)
6900 {
6901 }
6902 
6903 static void
6904 camisr(void *V_queue)
6905 {
6906 	cam_isrq_t *queue = V_queue;
6907 	int	s;
6908 	struct	ccb_hdr *ccb_h;
6909 
6910 	s = splcam();
6911 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6912 		int	runq;
6913 
6914 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6915 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6916 		splx(s);
6917 
6918 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6919 			  ("camisr\n"));
6920 
6921 		runq = FALSE;
6922 
6923 		if (ccb_h->flags & CAM_HIGH_POWER) {
6924 			struct highpowerlist	*hphead;
6925 			struct cam_ed		*device;
6926 			union ccb		*send_ccb;
6927 
6928 			hphead = &highpowerq;
6929 
6930 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6931 
6932 			/*
6933 			 * Increment the count since this command is done.
6934 			 */
6935 			num_highpower++;
6936 
6937 			/*
6938 			 * Any high powered commands queued up?
6939 			 */
6940 			if (send_ccb != NULL) {
6941 				device = send_ccb->ccb_h.path->device;
6942 
6943 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6944 
6945 				xpt_release_devq(send_ccb->ccb_h.path,
6946 						 /*count*/1, /*runqueue*/TRUE);
6947 			}
6948 		}
6949 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6950 			struct cam_ed *dev;
6951 
6952 			dev = ccb_h->path->device;
6953 
6954 			s = splcam();
6955 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6956 
6957 			ccb_h->path->bus->sim->devq->send_active--;
6958 			ccb_h->path->bus->sim->devq->send_openings++;
6959 			splx(s);
6960 
6961 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6962 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
6963 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6964 			  && (dev->ccbq.dev_active == 0))) {
6965 
6966 				xpt_release_devq(ccb_h->path, /*count*/1,
6967 						 /*run_queue*/TRUE);
6968 			}
6969 
6970 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6971 			 && (--dev->tag_delay_count == 0))
6972 				xpt_start_tags(ccb_h->path);
6973 
6974 			if ((dev->ccbq.queue.entries > 0)
6975 			 && (dev->qfrozen_cnt == 0)
6976 			 && (device_is_send_queued(dev) == 0)) {
6977 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6978 							      dev);
6979 			}
6980 		}
6981 
6982 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6983 			xpt_release_simq(ccb_h->path->bus->sim,
6984 					 /*run_queue*/TRUE);
6985 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
6986 			runq = FALSE;
6987 		}
6988 
6989 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6990 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
6991 			xpt_release_devq(ccb_h->path, /*count*/1,
6992 					 /*run_queue*/TRUE);
6993 			ccb_h->status &= ~CAM_DEV_QFRZN;
6994 		} else if (runq) {
6995 			xpt_run_dev_sendq(ccb_h->path->bus);
6996 		}
6997 
6998 		/* Call the peripheral driver's callback */
6999 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7000 
7001 		/* Raise IPL for while test */
7002 		s = splcam();
7003 	}
7004 	splx(s);
7005 }
7006