xref: /freebsd/sys/cam/cam_xpt.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #ifdef PC98
52 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
53 #endif
54 
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_sim.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_sim.h>
62 #include <cam/cam_xpt_periph.h>
63 #include <cam/cam_xpt_internal.h>
64 #include <cam/cam_debug.h>
65 
66 #include <cam/scsi/scsi_all.h>
67 #include <cam/scsi/scsi_message.h>
68 #include <cam/scsi/scsi_pass.h>
69 #include <machine/stdarg.h>	/* for xpt_print below */
70 #include "opt_cam.h"
71 
72 /*
73  * This is the maximum number of high powered commands (e.g. start unit)
74  * that can be outstanding at a particular time.
75  */
76 #ifndef CAM_MAX_HIGHPOWER
77 #define CAM_MAX_HIGHPOWER  4
78 #endif
79 
80 /* Datastructures internal to the xpt layer */
81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82 
83 /* Object for defering XPT actions to a taskqueue */
84 struct xpt_task {
85 	struct task	task;
86 	void		*data1;
87 	uintptr_t	data2;
88 };
89 
90 typedef enum {
91 	XPT_FLAG_OPEN		= 0x01
92 } xpt_flags;
93 
94 struct xpt_softc {
95 	xpt_flags		flags;
96 	u_int32_t		xpt_generation;
97 
98 	/* number of high powered commands that can go through right now */
99 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
100 	int			num_highpower;
101 
102 	/* queue for handling async rescan requests. */
103 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
104 	int buses_to_config;
105 	int buses_config_done;
106 
107 	/* Registered busses */
108 	TAILQ_HEAD(,cam_eb)	xpt_busses;
109 	u_int			bus_generation;
110 
111 	struct intr_config_hook	*xpt_config_hook;
112 
113 	int			boot_delay;
114 	struct callout 		boot_callout;
115 
116 	struct mtx		xpt_topo_lock;
117 	struct mtx		xpt_lock;
118 };
119 
120 typedef enum {
121 	DM_RET_COPY		= 0x01,
122 	DM_RET_FLAG_MASK	= 0x0f,
123 	DM_RET_NONE		= 0x00,
124 	DM_RET_STOP		= 0x10,
125 	DM_RET_DESCEND		= 0x20,
126 	DM_RET_ERROR		= 0x30,
127 	DM_RET_ACTION_MASK	= 0xf0
128 } dev_match_ret;
129 
130 typedef enum {
131 	XPT_DEPTH_BUS,
132 	XPT_DEPTH_TARGET,
133 	XPT_DEPTH_DEVICE,
134 	XPT_DEPTH_PERIPH
135 } xpt_traverse_depth;
136 
137 struct xpt_traverse_config {
138 	xpt_traverse_depth	depth;
139 	void			*tr_func;
140 	void			*tr_arg;
141 };
142 
143 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
144 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
145 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
146 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
147 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
148 
149 /* Transport layer configuration information */
150 static struct xpt_softc xsoftc;
151 
152 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
153 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
154            &xsoftc.boot_delay, 0, "Bus registration wait time");
155 
156 /* Queues for our software interrupt handler */
157 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
158 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
159 static cam_simq_t cam_simq;
160 static struct mtx cam_simq_lock;
161 
162 /* Pointers to software interrupt handlers */
163 static void *cambio_ih;
164 
165 struct cam_periph *xpt_periph;
166 
167 static periph_init_t xpt_periph_init;
168 
169 static struct periph_driver xpt_driver =
170 {
171 	xpt_periph_init, "xpt",
172 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
173 	CAM_PERIPH_DRV_EARLY
174 };
175 
176 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
177 
178 static d_open_t xptopen;
179 static d_close_t xptclose;
180 static d_ioctl_t xptioctl;
181 
182 static struct cdevsw xpt_cdevsw = {
183 	.d_version =	D_VERSION,
184 	.d_flags =	0,
185 	.d_open =	xptopen,
186 	.d_close =	xptclose,
187 	.d_ioctl =	xptioctl,
188 	.d_name =	"xpt",
189 };
190 
191 /* Storage for debugging datastructures */
192 #ifdef	CAMDEBUG
193 struct cam_path *cam_dpath;
194 #ifdef	CAM_DEBUG_FLAGS
195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
196 #else
197 u_int32_t cam_dflags = CAM_DEBUG_NONE;
198 #endif
199 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
200 SYSCTL_INT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
201 	&cam_dflags, 0, "Cam Debug Flags");
202 u_int32_t cam_debug_delay;
203 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
204 SYSCTL_INT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
205 	&cam_debug_delay, 0, "Cam Debug Flags");
206 #endif
207 
208 /* Our boot-time initialization hook */
209 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
210 
211 static moduledata_t cam_moduledata = {
212 	"cam",
213 	cam_module_event_handler,
214 	NULL
215 };
216 
217 static int	xpt_init(void *);
218 
219 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
220 MODULE_VERSION(cam, 1);
221 
222 
223 static void		xpt_async_bcast(struct async_list *async_head,
224 					u_int32_t async_code,
225 					struct cam_path *path,
226 					void *async_arg);
227 static path_id_t xptnextfreepathid(void);
228 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
229 static union ccb *xpt_get_ccb(struct cam_ed *device);
230 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
231 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
232 static timeout_t xpt_release_devq_timeout;
233 static void	 xpt_release_simq_timeout(void *arg) __unused;
234 static void	 xpt_release_bus(struct cam_eb *bus);
235 static void	 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl,
236 		    u_int count, int run_queue);
237 static struct cam_et*
238 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
239 static void	 xpt_release_target(struct cam_et *target);
240 static struct cam_eb*
241 		 xpt_find_bus(path_id_t path_id);
242 static struct cam_et*
243 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
244 static struct cam_ed*
245 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
246 static void	 xpt_config(void *arg);
247 static xpt_devicefunc_t xptpassannouncefunc;
248 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
249 static void	 xptpoll(struct cam_sim *sim);
250 static void	 camisr(void *);
251 static void	 camisr_runqueue(void *);
252 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
253 				    u_int num_patterns, struct cam_eb *bus);
254 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
255 				       u_int num_patterns,
256 				       struct cam_ed *device);
257 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
258 				       u_int num_patterns,
259 				       struct cam_periph *periph);
260 static xpt_busfunc_t	xptedtbusfunc;
261 static xpt_targetfunc_t	xptedttargetfunc;
262 static xpt_devicefunc_t	xptedtdevicefunc;
263 static xpt_periphfunc_t	xptedtperiphfunc;
264 static xpt_pdrvfunc_t	xptplistpdrvfunc;
265 static xpt_periphfunc_t	xptplistperiphfunc;
266 static int		xptedtmatch(struct ccb_dev_match *cdm);
267 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
268 static int		xptbustraverse(struct cam_eb *start_bus,
269 				       xpt_busfunc_t *tr_func, void *arg);
270 static int		xpttargettraverse(struct cam_eb *bus,
271 					  struct cam_et *start_target,
272 					  xpt_targetfunc_t *tr_func, void *arg);
273 static int		xptdevicetraverse(struct cam_et *target,
274 					  struct cam_ed *start_device,
275 					  xpt_devicefunc_t *tr_func, void *arg);
276 static int		xptperiphtraverse(struct cam_ed *device,
277 					  struct cam_periph *start_periph,
278 					  xpt_periphfunc_t *tr_func, void *arg);
279 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
280 					xpt_pdrvfunc_t *tr_func, void *arg);
281 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
282 					    struct cam_periph *start_periph,
283 					    xpt_periphfunc_t *tr_func,
284 					    void *arg);
285 static xpt_busfunc_t	xptdefbusfunc;
286 static xpt_targetfunc_t	xptdeftargetfunc;
287 static xpt_devicefunc_t	xptdefdevicefunc;
288 static xpt_periphfunc_t	xptdefperiphfunc;
289 static void		xpt_finishconfig_task(void *context, int pending);
290 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
291 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
292 					    void *arg);
293 static void		xpt_dev_async_default(u_int32_t async_code,
294 					      struct cam_eb *bus,
295 					      struct cam_et *target,
296 					      struct cam_ed *device,
297 					      void *async_arg);
298 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
299 						 struct cam_et *target,
300 						 lun_id_t lun_id);
301 static xpt_devicefunc_t	xptsetasyncfunc;
302 static xpt_busfunc_t	xptsetasyncbusfunc;
303 static cam_status	xptregister(struct cam_periph *periph,
304 				    void *arg);
305 static __inline int periph_is_queued(struct cam_periph *periph);
306 static __inline int device_is_alloc_queued(struct cam_ed *device);
307 static __inline int device_is_send_queued(struct cam_ed *device);
308 
309 static __inline int
310 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
311 {
312 	int retval;
313 
314 	if ((dev->drvq.entries > 0) &&
315 	    (dev->ccbq.devq_openings > 0) &&
316 	    (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
317 		CAMQ_GET_PRIO(&dev->drvq))) == 0)) {
318 		/*
319 		 * The priority of a device waiting for CCB resources
320 		 * is that of the the highest priority peripheral driver
321 		 * enqueued.
322 		 */
323 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
324 					  &dev->alloc_ccb_entry.pinfo,
325 					  CAMQ_GET_PRIO(&dev->drvq));
326 	} else {
327 		retval = 0;
328 	}
329 
330 	return (retval);
331 }
332 
333 static __inline int
334 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
335 {
336 	int	retval;
337 
338 	if ((dev->ccbq.queue.entries > 0) &&
339 	    (dev->ccbq.dev_openings > 0) &&
340 	    (cam_ccbq_frozen_top(&dev->ccbq) == 0)) {
341 		/*
342 		 * The priority of a device waiting for controller
343 		 * resources is that of the the highest priority CCB
344 		 * enqueued.
345 		 */
346 		retval =
347 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
348 				     &dev->send_ccb_entry.pinfo,
349 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
350 	} else {
351 		retval = 0;
352 	}
353 	return (retval);
354 }
355 
356 static __inline int
357 periph_is_queued(struct cam_periph *periph)
358 {
359 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
360 }
361 
362 static __inline int
363 device_is_alloc_queued(struct cam_ed *device)
364 {
365 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
366 }
367 
368 static __inline int
369 device_is_send_queued(struct cam_ed *device)
370 {
371 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
372 }
373 
374 static void
375 xpt_periph_init()
376 {
377 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
378 }
379 
380 static void
381 xptdone(struct cam_periph *periph, union ccb *done_ccb)
382 {
383 	/* Caller will release the CCB */
384 	wakeup(&done_ccb->ccb_h.cbfcnp);
385 }
386 
387 static int
388 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
389 {
390 
391 	/*
392 	 * Only allow read-write access.
393 	 */
394 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
395 		return(EPERM);
396 
397 	/*
398 	 * We don't allow nonblocking access.
399 	 */
400 	if ((flags & O_NONBLOCK) != 0) {
401 		printf("%s: can't do nonblocking access\n", devtoname(dev));
402 		return(ENODEV);
403 	}
404 
405 	/* Mark ourselves open */
406 	mtx_lock(&xsoftc.xpt_lock);
407 	xsoftc.flags |= XPT_FLAG_OPEN;
408 	mtx_unlock(&xsoftc.xpt_lock);
409 
410 	return(0);
411 }
412 
413 static int
414 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
415 {
416 
417 	/* Mark ourselves closed */
418 	mtx_lock(&xsoftc.xpt_lock);
419 	xsoftc.flags &= ~XPT_FLAG_OPEN;
420 	mtx_unlock(&xsoftc.xpt_lock);
421 
422 	return(0);
423 }
424 
425 /*
426  * Don't automatically grab the xpt softc lock here even though this is going
427  * through the xpt device.  The xpt device is really just a back door for
428  * accessing other devices and SIMs, so the right thing to do is to grab
429  * the appropriate SIM lock once the bus/SIM is located.
430  */
431 static int
432 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
433 {
434 	int error;
435 
436 	error = 0;
437 
438 	switch(cmd) {
439 	/*
440 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
441 	 * to accept CCB types that don't quite make sense to send through a
442 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
443 	 * in the CAM spec.
444 	 */
445 	case CAMIOCOMMAND: {
446 		union ccb *ccb;
447 		union ccb *inccb;
448 		struct cam_eb *bus;
449 
450 		inccb = (union ccb *)addr;
451 
452 		bus = xpt_find_bus(inccb->ccb_h.path_id);
453 		if (bus == NULL)
454 			return (EINVAL);
455 
456 		switch (inccb->ccb_h.func_code) {
457 		case XPT_SCAN_BUS:
458 		case XPT_RESET_BUS:
459 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
460 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 				xpt_release_bus(bus);
462 				return (EINVAL);
463 			}
464 			break;
465 		case XPT_SCAN_TGT:
466 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
467 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
468 				xpt_release_bus(bus);
469 				return (EINVAL);
470 			}
471 			break;
472 		default:
473 			break;
474 		}
475 
476 		switch(inccb->ccb_h.func_code) {
477 		case XPT_SCAN_BUS:
478 		case XPT_RESET_BUS:
479 		case XPT_PATH_INQ:
480 		case XPT_ENG_INQ:
481 		case XPT_SCAN_LUN:
482 		case XPT_SCAN_TGT:
483 
484 			ccb = xpt_alloc_ccb();
485 
486 			CAM_SIM_LOCK(bus->sim);
487 
488 			/*
489 			 * Create a path using the bus, target, and lun the
490 			 * user passed in.
491 			 */
492 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
493 					    inccb->ccb_h.path_id,
494 					    inccb->ccb_h.target_id,
495 					    inccb->ccb_h.target_lun) !=
496 					    CAM_REQ_CMP){
497 				error = EINVAL;
498 				CAM_SIM_UNLOCK(bus->sim);
499 				xpt_free_ccb(ccb);
500 				break;
501 			}
502 			/* Ensure all of our fields are correct */
503 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
504 				      inccb->ccb_h.pinfo.priority);
505 			xpt_merge_ccb(ccb, inccb);
506 			ccb->ccb_h.cbfcnp = xptdone;
507 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
508 			bcopy(ccb, inccb, sizeof(union ccb));
509 			xpt_free_path(ccb->ccb_h.path);
510 			xpt_free_ccb(ccb);
511 			CAM_SIM_UNLOCK(bus->sim);
512 			break;
513 
514 		case XPT_DEBUG: {
515 			union ccb ccb;
516 
517 			/*
518 			 * This is an immediate CCB, so it's okay to
519 			 * allocate it on the stack.
520 			 */
521 
522 			CAM_SIM_LOCK(bus->sim);
523 
524 			/*
525 			 * Create a path using the bus, target, and lun the
526 			 * user passed in.
527 			 */
528 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
529 					    inccb->ccb_h.path_id,
530 					    inccb->ccb_h.target_id,
531 					    inccb->ccb_h.target_lun) !=
532 					    CAM_REQ_CMP){
533 				error = EINVAL;
534 				CAM_SIM_UNLOCK(bus->sim);
535 				break;
536 			}
537 			/* Ensure all of our fields are correct */
538 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
539 				      inccb->ccb_h.pinfo.priority);
540 			xpt_merge_ccb(&ccb, inccb);
541 			ccb.ccb_h.cbfcnp = xptdone;
542 			xpt_action(&ccb);
543 			CAM_SIM_UNLOCK(bus->sim);
544 			bcopy(&ccb, inccb, sizeof(union ccb));
545 			xpt_free_path(ccb.ccb_h.path);
546 			break;
547 
548 		}
549 		case XPT_DEV_MATCH: {
550 			struct cam_periph_map_info mapinfo;
551 			struct cam_path *old_path;
552 
553 			/*
554 			 * We can't deal with physical addresses for this
555 			 * type of transaction.
556 			 */
557 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
558 				error = EINVAL;
559 				break;
560 			}
561 
562 			/*
563 			 * Save this in case the caller had it set to
564 			 * something in particular.
565 			 */
566 			old_path = inccb->ccb_h.path;
567 
568 			/*
569 			 * We really don't need a path for the matching
570 			 * code.  The path is needed because of the
571 			 * debugging statements in xpt_action().  They
572 			 * assume that the CCB has a valid path.
573 			 */
574 			inccb->ccb_h.path = xpt_periph->path;
575 
576 			bzero(&mapinfo, sizeof(mapinfo));
577 
578 			/*
579 			 * Map the pattern and match buffers into kernel
580 			 * virtual address space.
581 			 */
582 			error = cam_periph_mapmem(inccb, &mapinfo);
583 
584 			if (error) {
585 				inccb->ccb_h.path = old_path;
586 				break;
587 			}
588 
589 			/*
590 			 * This is an immediate CCB, we can send it on directly.
591 			 */
592 			xpt_action(inccb);
593 
594 			/*
595 			 * Map the buffers back into user space.
596 			 */
597 			cam_periph_unmapmem(inccb, &mapinfo);
598 
599 			inccb->ccb_h.path = old_path;
600 
601 			error = 0;
602 			break;
603 		}
604 		default:
605 			error = ENOTSUP;
606 			break;
607 		}
608 		xpt_release_bus(bus);
609 		break;
610 	}
611 	/*
612 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
613 	 * with the periphal driver name and unit name filled in.  The other
614 	 * fields don't really matter as input.  The passthrough driver name
615 	 * ("pass"), and unit number are passed back in the ccb.  The current
616 	 * device generation number, and the index into the device peripheral
617 	 * driver list, and the status are also passed back.  Note that
618 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
619 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
620 	 * (or rather should be) impossible for the device peripheral driver
621 	 * list to change since we look at the whole thing in one pass, and
622 	 * we do it with lock protection.
623 	 *
624 	 */
625 	case CAMGETPASSTHRU: {
626 		union ccb *ccb;
627 		struct cam_periph *periph;
628 		struct periph_driver **p_drv;
629 		char   *name;
630 		u_int unit;
631 		u_int cur_generation;
632 		int base_periph_found;
633 		int splbreaknum;
634 
635 		ccb = (union ccb *)addr;
636 		unit = ccb->cgdl.unit_number;
637 		name = ccb->cgdl.periph_name;
638 		/*
639 		 * Every 100 devices, we want to drop our lock protection to
640 		 * give the software interrupt handler a chance to run.
641 		 * Most systems won't run into this check, but this should
642 		 * avoid starvation in the software interrupt handler in
643 		 * large systems.
644 		 */
645 		splbreaknum = 100;
646 
647 		ccb = (union ccb *)addr;
648 
649 		base_periph_found = 0;
650 
651 		/*
652 		 * Sanity check -- make sure we don't get a null peripheral
653 		 * driver name.
654 		 */
655 		if (*ccb->cgdl.periph_name == '\0') {
656 			error = EINVAL;
657 			break;
658 		}
659 
660 		/* Keep the list from changing while we traverse it */
661 		mtx_lock(&xsoftc.xpt_topo_lock);
662 ptstartover:
663 		cur_generation = xsoftc.xpt_generation;
664 
665 		/* first find our driver in the list of drivers */
666 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
667 			if (strcmp((*p_drv)->driver_name, name) == 0)
668 				break;
669 
670 		if (*p_drv == NULL) {
671 			mtx_unlock(&xsoftc.xpt_topo_lock);
672 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
673 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
674 			*ccb->cgdl.periph_name = '\0';
675 			ccb->cgdl.unit_number = 0;
676 			error = ENOENT;
677 			break;
678 		}
679 
680 		/*
681 		 * Run through every peripheral instance of this driver
682 		 * and check to see whether it matches the unit passed
683 		 * in by the user.  If it does, get out of the loops and
684 		 * find the passthrough driver associated with that
685 		 * peripheral driver.
686 		 */
687 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
688 		     periph = TAILQ_NEXT(periph, unit_links)) {
689 
690 			if (periph->unit_number == unit) {
691 				break;
692 			} else if (--splbreaknum == 0) {
693 				mtx_unlock(&xsoftc.xpt_topo_lock);
694 				mtx_lock(&xsoftc.xpt_topo_lock);
695 				splbreaknum = 100;
696 				if (cur_generation != xsoftc.xpt_generation)
697 				       goto ptstartover;
698 			}
699 		}
700 		/*
701 		 * If we found the peripheral driver that the user passed
702 		 * in, go through all of the peripheral drivers for that
703 		 * particular device and look for a passthrough driver.
704 		 */
705 		if (periph != NULL) {
706 			struct cam_ed *device;
707 			int i;
708 
709 			base_periph_found = 1;
710 			device = periph->path->device;
711 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
712 			     periph != NULL;
713 			     periph = SLIST_NEXT(periph, periph_links), i++) {
714 				/*
715 				 * Check to see whether we have a
716 				 * passthrough device or not.
717 				 */
718 				if (strcmp(periph->periph_name, "pass") == 0) {
719 					/*
720 					 * Fill in the getdevlist fields.
721 					 */
722 					strcpy(ccb->cgdl.periph_name,
723 					       periph->periph_name);
724 					ccb->cgdl.unit_number =
725 						periph->unit_number;
726 					if (SLIST_NEXT(periph, periph_links))
727 						ccb->cgdl.status =
728 							CAM_GDEVLIST_MORE_DEVS;
729 					else
730 						ccb->cgdl.status =
731 						       CAM_GDEVLIST_LAST_DEVICE;
732 					ccb->cgdl.generation =
733 						device->generation;
734 					ccb->cgdl.index = i;
735 					/*
736 					 * Fill in some CCB header fields
737 					 * that the user may want.
738 					 */
739 					ccb->ccb_h.path_id =
740 						periph->path->bus->path_id;
741 					ccb->ccb_h.target_id =
742 						periph->path->target->target_id;
743 					ccb->ccb_h.target_lun =
744 						periph->path->device->lun_id;
745 					ccb->ccb_h.status = CAM_REQ_CMP;
746 					break;
747 				}
748 			}
749 		}
750 
751 		/*
752 		 * If the periph is null here, one of two things has
753 		 * happened.  The first possibility is that we couldn't
754 		 * find the unit number of the particular peripheral driver
755 		 * that the user is asking about.  e.g. the user asks for
756 		 * the passthrough driver for "da11".  We find the list of
757 		 * "da" peripherals all right, but there is no unit 11.
758 		 * The other possibility is that we went through the list
759 		 * of peripheral drivers attached to the device structure,
760 		 * but didn't find one with the name "pass".  Either way,
761 		 * we return ENOENT, since we couldn't find something.
762 		 */
763 		if (periph == NULL) {
764 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
765 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
766 			*ccb->cgdl.periph_name = '\0';
767 			ccb->cgdl.unit_number = 0;
768 			error = ENOENT;
769 			/*
770 			 * It is unfortunate that this is even necessary,
771 			 * but there are many, many clueless users out there.
772 			 * If this is true, the user is looking for the
773 			 * passthrough driver, but doesn't have one in his
774 			 * kernel.
775 			 */
776 			if (base_periph_found == 1) {
777 				printf("xptioctl: pass driver is not in the "
778 				       "kernel\n");
779 				printf("xptioctl: put \"device pass\" in "
780 				       "your kernel config file\n");
781 			}
782 		}
783 		mtx_unlock(&xsoftc.xpt_topo_lock);
784 		break;
785 		}
786 	default:
787 		error = ENOTTY;
788 		break;
789 	}
790 
791 	return(error);
792 }
793 
794 static int
795 cam_module_event_handler(module_t mod, int what, void *arg)
796 {
797 	int error;
798 
799 	switch (what) {
800 	case MOD_LOAD:
801 		if ((error = xpt_init(NULL)) != 0)
802 			return (error);
803 		break;
804 	case MOD_UNLOAD:
805 		return EBUSY;
806 	default:
807 		return EOPNOTSUPP;
808 	}
809 
810 	return 0;
811 }
812 
813 static void
814 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
815 {
816 
817 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
818 		xpt_free_path(done_ccb->ccb_h.path);
819 		xpt_free_ccb(done_ccb);
820 	} else {
821 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
822 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
823 	}
824 	xpt_release_boot();
825 }
826 
827 /* thread to handle bus rescans */
828 static void
829 xpt_scanner_thread(void *dummy)
830 {
831 	union ccb	*ccb;
832 	struct cam_sim	*sim;
833 
834 	xpt_lock_buses();
835 	for (;;) {
836 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
837 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
838 			       "ccb_scanq", 0);
839 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
840 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
841 			xpt_unlock_buses();
842 
843 			sim = ccb->ccb_h.path->bus->sim;
844 			CAM_SIM_LOCK(sim);
845 			xpt_action(ccb);
846 			CAM_SIM_UNLOCK(sim);
847 
848 			xpt_lock_buses();
849 		}
850 	}
851 }
852 
853 void
854 xpt_rescan(union ccb *ccb)
855 {
856 	struct ccb_hdr *hdr;
857 
858 	/* Prepare request */
859 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
860 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
861 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
862 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
863 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
864 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
865 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
866 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
867 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
868 	else {
869 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
870 		xpt_free_path(ccb->ccb_h.path);
871 		xpt_free_ccb(ccb);
872 		return;
873 	}
874 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
875 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
876 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
877 	/* Don't make duplicate entries for the same paths. */
878 	xpt_lock_buses();
879 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
880 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
881 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
882 				wakeup(&xsoftc.ccb_scanq);
883 				xpt_unlock_buses();
884 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
885 				xpt_free_path(ccb->ccb_h.path);
886 				xpt_free_ccb(ccb);
887 				return;
888 			}
889 		}
890 	}
891 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
892 	xsoftc.buses_to_config++;
893 	wakeup(&xsoftc.ccb_scanq);
894 	xpt_unlock_buses();
895 }
896 
897 /* Functions accessed by the peripheral drivers */
898 static int
899 xpt_init(void *dummy)
900 {
901 	struct cam_sim *xpt_sim;
902 	struct cam_path *path;
903 	struct cam_devq *devq;
904 	cam_status status;
905 
906 	TAILQ_INIT(&xsoftc.xpt_busses);
907 	TAILQ_INIT(&cam_simq);
908 	TAILQ_INIT(&xsoftc.ccb_scanq);
909 	STAILQ_INIT(&xsoftc.highpowerq);
910 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
911 
912 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
913 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
914 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
915 
916 	/*
917 	 * The xpt layer is, itself, the equivelent of a SIM.
918 	 * Allow 16 ccbs in the ccb pool for it.  This should
919 	 * give decent parallelism when we probe busses and
920 	 * perform other XPT functions.
921 	 */
922 	devq = cam_simq_alloc(16);
923 	xpt_sim = cam_sim_alloc(xptaction,
924 				xptpoll,
925 				"xpt",
926 				/*softc*/NULL,
927 				/*unit*/0,
928 				/*mtx*/&xsoftc.xpt_lock,
929 				/*max_dev_transactions*/0,
930 				/*max_tagged_dev_transactions*/0,
931 				devq);
932 	if (xpt_sim == NULL)
933 		return (ENOMEM);
934 
935 	mtx_lock(&xsoftc.xpt_lock);
936 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
937 		mtx_unlock(&xsoftc.xpt_lock);
938 		printf("xpt_init: xpt_bus_register failed with status %#x,"
939 		       " failing attach\n", status);
940 		return (EINVAL);
941 	}
942 
943 	/*
944 	 * Looking at the XPT from the SIM layer, the XPT is
945 	 * the equivelent of a peripheral driver.  Allocate
946 	 * a peripheral driver entry for us.
947 	 */
948 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
949 				      CAM_TARGET_WILDCARD,
950 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
951 		mtx_unlock(&xsoftc.xpt_lock);
952 		printf("xpt_init: xpt_create_path failed with status %#x,"
953 		       " failing attach\n", status);
954 		return (EINVAL);
955 	}
956 
957 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
958 			 path, NULL, 0, xpt_sim);
959 	xpt_free_path(path);
960 	mtx_unlock(&xsoftc.xpt_lock);
961 	/* Install our software interrupt handlers */
962 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
963 	/*
964 	 * Register a callback for when interrupts are enabled.
965 	 */
966 	xsoftc.xpt_config_hook =
967 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
968 					      M_CAMXPT, M_NOWAIT | M_ZERO);
969 	if (xsoftc.xpt_config_hook == NULL) {
970 		printf("xpt_init: Cannot malloc config hook "
971 		       "- failing attach\n");
972 		return (ENOMEM);
973 	}
974 	xsoftc.xpt_config_hook->ich_func = xpt_config;
975 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
976 		free (xsoftc.xpt_config_hook, M_CAMXPT);
977 		printf("xpt_init: config_intrhook_establish failed "
978 		       "- failing attach\n");
979 	}
980 
981 	return (0);
982 }
983 
984 static cam_status
985 xptregister(struct cam_periph *periph, void *arg)
986 {
987 	struct cam_sim *xpt_sim;
988 
989 	if (periph == NULL) {
990 		printf("xptregister: periph was NULL!!\n");
991 		return(CAM_REQ_CMP_ERR);
992 	}
993 
994 	xpt_sim = (struct cam_sim *)arg;
995 	xpt_sim->softc = periph;
996 	xpt_periph = periph;
997 	periph->softc = NULL;
998 
999 	return(CAM_REQ_CMP);
1000 }
1001 
1002 int32_t
1003 xpt_add_periph(struct cam_periph *periph)
1004 {
1005 	struct cam_ed *device;
1006 	int32_t	 status;
1007 	struct periph_list *periph_head;
1008 
1009 	mtx_assert(periph->sim->mtx, MA_OWNED);
1010 
1011 	device = periph->path->device;
1012 
1013 	periph_head = &device->periphs;
1014 
1015 	status = CAM_REQ_CMP;
1016 
1017 	if (device != NULL) {
1018 		/*
1019 		 * Make room for this peripheral
1020 		 * so it will fit in the queue
1021 		 * when it's scheduled to run
1022 		 */
1023 		status = camq_resize(&device->drvq,
1024 				     device->drvq.array_size + 1);
1025 
1026 		device->generation++;
1027 
1028 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1029 	}
1030 
1031 	mtx_lock(&xsoftc.xpt_topo_lock);
1032 	xsoftc.xpt_generation++;
1033 	mtx_unlock(&xsoftc.xpt_topo_lock);
1034 
1035 	return (status);
1036 }
1037 
1038 void
1039 xpt_remove_periph(struct cam_periph *periph)
1040 {
1041 	struct cam_ed *device;
1042 
1043 	mtx_assert(periph->sim->mtx, MA_OWNED);
1044 
1045 	device = periph->path->device;
1046 
1047 	if (device != NULL) {
1048 		struct periph_list *periph_head;
1049 
1050 		periph_head = &device->periphs;
1051 
1052 		/* Release the slot for this peripheral */
1053 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1054 
1055 		device->generation++;
1056 
1057 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1058 	}
1059 
1060 	mtx_lock(&xsoftc.xpt_topo_lock);
1061 	xsoftc.xpt_generation++;
1062 	mtx_unlock(&xsoftc.xpt_topo_lock);
1063 }
1064 
1065 
1066 void
1067 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1068 {
1069 	struct	cam_path *path = periph->path;
1070 
1071 	mtx_assert(periph->sim->mtx, MA_OWNED);
1072 
1073 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1074 	       periph->periph_name, periph->unit_number,
1075 	       path->bus->sim->sim_name,
1076 	       path->bus->sim->unit_number,
1077 	       path->bus->sim->bus_id,
1078 	       path->bus->path_id,
1079 	       path->target->target_id,
1080 	       path->device->lun_id);
1081 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1082 	if (path->device->protocol == PROTO_SCSI)
1083 		scsi_print_inquiry(&path->device->inq_data);
1084 	else if (path->device->protocol == PROTO_ATA ||
1085 	    path->device->protocol == PROTO_SATAPM)
1086 		ata_print_ident(&path->device->ident_data);
1087 	else
1088 		printf("Unknown protocol device\n");
1089 	if (bootverbose && path->device->serial_num_len > 0) {
1090 		/* Don't wrap the screen  - print only the first 60 chars */
1091 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1092 		       periph->unit_number, path->device->serial_num);
1093 	}
1094 	/* Announce transport details. */
1095 	(*(path->bus->xport->announce))(periph);
1096 	/* Announce command queueing. */
1097 	if (path->device->inq_flags & SID_CmdQue
1098 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1099 		printf("%s%d: Command Queueing enabled\n",
1100 		       periph->periph_name, periph->unit_number);
1101 	}
1102 	/* Announce caller's details if they've passed in. */
1103 	if (announce_string != NULL)
1104 		printf("%s%d: %s\n", periph->periph_name,
1105 		       periph->unit_number, announce_string);
1106 }
1107 
1108 static dev_match_ret
1109 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1110 	    struct cam_eb *bus)
1111 {
1112 	dev_match_ret retval;
1113 	int i;
1114 
1115 	retval = DM_RET_NONE;
1116 
1117 	/*
1118 	 * If we aren't given something to match against, that's an error.
1119 	 */
1120 	if (bus == NULL)
1121 		return(DM_RET_ERROR);
1122 
1123 	/*
1124 	 * If there are no match entries, then this bus matches no
1125 	 * matter what.
1126 	 */
1127 	if ((patterns == NULL) || (num_patterns == 0))
1128 		return(DM_RET_DESCEND | DM_RET_COPY);
1129 
1130 	for (i = 0; i < num_patterns; i++) {
1131 		struct bus_match_pattern *cur_pattern;
1132 
1133 		/*
1134 		 * If the pattern in question isn't for a bus node, we
1135 		 * aren't interested.  However, we do indicate to the
1136 		 * calling routine that we should continue descending the
1137 		 * tree, since the user wants to match against lower-level
1138 		 * EDT elements.
1139 		 */
1140 		if (patterns[i].type != DEV_MATCH_BUS) {
1141 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1142 				retval |= DM_RET_DESCEND;
1143 			continue;
1144 		}
1145 
1146 		cur_pattern = &patterns[i].pattern.bus_pattern;
1147 
1148 		/*
1149 		 * If they want to match any bus node, we give them any
1150 		 * device node.
1151 		 */
1152 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1153 			/* set the copy flag */
1154 			retval |= DM_RET_COPY;
1155 
1156 			/*
1157 			 * If we've already decided on an action, go ahead
1158 			 * and return.
1159 			 */
1160 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1161 				return(retval);
1162 		}
1163 
1164 		/*
1165 		 * Not sure why someone would do this...
1166 		 */
1167 		if (cur_pattern->flags == BUS_MATCH_NONE)
1168 			continue;
1169 
1170 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1171 		 && (cur_pattern->path_id != bus->path_id))
1172 			continue;
1173 
1174 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1175 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1176 			continue;
1177 
1178 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1179 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1180 			continue;
1181 
1182 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1183 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1184 			     DEV_IDLEN) != 0))
1185 			continue;
1186 
1187 		/*
1188 		 * If we get to this point, the user definitely wants
1189 		 * information on this bus.  So tell the caller to copy the
1190 		 * data out.
1191 		 */
1192 		retval |= DM_RET_COPY;
1193 
1194 		/*
1195 		 * If the return action has been set to descend, then we
1196 		 * know that we've already seen a non-bus matching
1197 		 * expression, therefore we need to further descend the tree.
1198 		 * This won't change by continuing around the loop, so we
1199 		 * go ahead and return.  If we haven't seen a non-bus
1200 		 * matching expression, we keep going around the loop until
1201 		 * we exhaust the matching expressions.  We'll set the stop
1202 		 * flag once we fall out of the loop.
1203 		 */
1204 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1205 			return(retval);
1206 	}
1207 
1208 	/*
1209 	 * If the return action hasn't been set to descend yet, that means
1210 	 * we haven't seen anything other than bus matching patterns.  So
1211 	 * tell the caller to stop descending the tree -- the user doesn't
1212 	 * want to match against lower level tree elements.
1213 	 */
1214 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1215 		retval |= DM_RET_STOP;
1216 
1217 	return(retval);
1218 }
1219 
1220 static dev_match_ret
1221 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1222 	       struct cam_ed *device)
1223 {
1224 	dev_match_ret retval;
1225 	int i;
1226 
1227 	retval = DM_RET_NONE;
1228 
1229 	/*
1230 	 * If we aren't given something to match against, that's an error.
1231 	 */
1232 	if (device == NULL)
1233 		return(DM_RET_ERROR);
1234 
1235 	/*
1236 	 * If there are no match entries, then this device matches no
1237 	 * matter what.
1238 	 */
1239 	if ((patterns == NULL) || (num_patterns == 0))
1240 		return(DM_RET_DESCEND | DM_RET_COPY);
1241 
1242 	for (i = 0; i < num_patterns; i++) {
1243 		struct device_match_pattern *cur_pattern;
1244 
1245 		/*
1246 		 * If the pattern in question isn't for a device node, we
1247 		 * aren't interested.
1248 		 */
1249 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1250 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1251 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1252 				retval |= DM_RET_DESCEND;
1253 			continue;
1254 		}
1255 
1256 		cur_pattern = &patterns[i].pattern.device_pattern;
1257 
1258 		/*
1259 		 * If they want to match any device node, we give them any
1260 		 * device node.
1261 		 */
1262 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1263 			/* set the copy flag */
1264 			retval |= DM_RET_COPY;
1265 
1266 
1267 			/*
1268 			 * If we've already decided on an action, go ahead
1269 			 * and return.
1270 			 */
1271 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1272 				return(retval);
1273 		}
1274 
1275 		/*
1276 		 * Not sure why someone would do this...
1277 		 */
1278 		if (cur_pattern->flags == DEV_MATCH_NONE)
1279 			continue;
1280 
1281 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1282 		 && (cur_pattern->path_id != device->target->bus->path_id))
1283 			continue;
1284 
1285 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1286 		 && (cur_pattern->target_id != device->target->target_id))
1287 			continue;
1288 
1289 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1290 		 && (cur_pattern->target_lun != device->lun_id))
1291 			continue;
1292 
1293 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1294 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1295 				    (caddr_t)&cur_pattern->inq_pat,
1296 				    1, sizeof(cur_pattern->inq_pat),
1297 				    scsi_static_inquiry_match) == NULL))
1298 			continue;
1299 
1300 		/*
1301 		 * If we get to this point, the user definitely wants
1302 		 * information on this device.  So tell the caller to copy
1303 		 * the data out.
1304 		 */
1305 		retval |= DM_RET_COPY;
1306 
1307 		/*
1308 		 * If the return action has been set to descend, then we
1309 		 * know that we've already seen a peripheral matching
1310 		 * expression, therefore we need to further descend the tree.
1311 		 * This won't change by continuing around the loop, so we
1312 		 * go ahead and return.  If we haven't seen a peripheral
1313 		 * matching expression, we keep going around the loop until
1314 		 * we exhaust the matching expressions.  We'll set the stop
1315 		 * flag once we fall out of the loop.
1316 		 */
1317 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1318 			return(retval);
1319 	}
1320 
1321 	/*
1322 	 * If the return action hasn't been set to descend yet, that means
1323 	 * we haven't seen any peripheral matching patterns.  So tell the
1324 	 * caller to stop descending the tree -- the user doesn't want to
1325 	 * match against lower level tree elements.
1326 	 */
1327 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1328 		retval |= DM_RET_STOP;
1329 
1330 	return(retval);
1331 }
1332 
1333 /*
1334  * Match a single peripheral against any number of match patterns.
1335  */
1336 static dev_match_ret
1337 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1338 	       struct cam_periph *periph)
1339 {
1340 	dev_match_ret retval;
1341 	int i;
1342 
1343 	/*
1344 	 * If we aren't given something to match against, that's an error.
1345 	 */
1346 	if (periph == NULL)
1347 		return(DM_RET_ERROR);
1348 
1349 	/*
1350 	 * If there are no match entries, then this peripheral matches no
1351 	 * matter what.
1352 	 */
1353 	if ((patterns == NULL) || (num_patterns == 0))
1354 		return(DM_RET_STOP | DM_RET_COPY);
1355 
1356 	/*
1357 	 * There aren't any nodes below a peripheral node, so there's no
1358 	 * reason to descend the tree any further.
1359 	 */
1360 	retval = DM_RET_STOP;
1361 
1362 	for (i = 0; i < num_patterns; i++) {
1363 		struct periph_match_pattern *cur_pattern;
1364 
1365 		/*
1366 		 * If the pattern in question isn't for a peripheral, we
1367 		 * aren't interested.
1368 		 */
1369 		if (patterns[i].type != DEV_MATCH_PERIPH)
1370 			continue;
1371 
1372 		cur_pattern = &patterns[i].pattern.periph_pattern;
1373 
1374 		/*
1375 		 * If they want to match on anything, then we will do so.
1376 		 */
1377 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1378 			/* set the copy flag */
1379 			retval |= DM_RET_COPY;
1380 
1381 			/*
1382 			 * We've already set the return action to stop,
1383 			 * since there are no nodes below peripherals in
1384 			 * the tree.
1385 			 */
1386 			return(retval);
1387 		}
1388 
1389 		/*
1390 		 * Not sure why someone would do this...
1391 		 */
1392 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1393 			continue;
1394 
1395 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1396 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1397 			continue;
1398 
1399 		/*
1400 		 * For the target and lun id's, we have to make sure the
1401 		 * target and lun pointers aren't NULL.  The xpt peripheral
1402 		 * has a wildcard target and device.
1403 		 */
1404 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1405 		 && ((periph->path->target == NULL)
1406 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1407 			continue;
1408 
1409 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1410 		 && ((periph->path->device == NULL)
1411 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1412 			continue;
1413 
1414 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1415 		 && (cur_pattern->unit_number != periph->unit_number))
1416 			continue;
1417 
1418 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1419 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1420 			     DEV_IDLEN) != 0))
1421 			continue;
1422 
1423 		/*
1424 		 * If we get to this point, the user definitely wants
1425 		 * information on this peripheral.  So tell the caller to
1426 		 * copy the data out.
1427 		 */
1428 		retval |= DM_RET_COPY;
1429 
1430 		/*
1431 		 * The return action has already been set to stop, since
1432 		 * peripherals don't have any nodes below them in the EDT.
1433 		 */
1434 		return(retval);
1435 	}
1436 
1437 	/*
1438 	 * If we get to this point, the peripheral that was passed in
1439 	 * doesn't match any of the patterns.
1440 	 */
1441 	return(retval);
1442 }
1443 
1444 static int
1445 xptedtbusfunc(struct cam_eb *bus, void *arg)
1446 {
1447 	struct ccb_dev_match *cdm;
1448 	dev_match_ret retval;
1449 
1450 	cdm = (struct ccb_dev_match *)arg;
1451 
1452 	/*
1453 	 * If our position is for something deeper in the tree, that means
1454 	 * that we've already seen this node.  So, we keep going down.
1455 	 */
1456 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1457 	 && (cdm->pos.cookie.bus == bus)
1458 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1459 	 && (cdm->pos.cookie.target != NULL))
1460 		retval = DM_RET_DESCEND;
1461 	else
1462 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1463 
1464 	/*
1465 	 * If we got an error, bail out of the search.
1466 	 */
1467 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1468 		cdm->status = CAM_DEV_MATCH_ERROR;
1469 		return(0);
1470 	}
1471 
1472 	/*
1473 	 * If the copy flag is set, copy this bus out.
1474 	 */
1475 	if (retval & DM_RET_COPY) {
1476 		int spaceleft, j;
1477 
1478 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1479 			sizeof(struct dev_match_result));
1480 
1481 		/*
1482 		 * If we don't have enough space to put in another
1483 		 * match result, save our position and tell the
1484 		 * user there are more devices to check.
1485 		 */
1486 		if (spaceleft < sizeof(struct dev_match_result)) {
1487 			bzero(&cdm->pos, sizeof(cdm->pos));
1488 			cdm->pos.position_type =
1489 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1490 
1491 			cdm->pos.cookie.bus = bus;
1492 			cdm->pos.generations[CAM_BUS_GENERATION]=
1493 				xsoftc.bus_generation;
1494 			cdm->status = CAM_DEV_MATCH_MORE;
1495 			return(0);
1496 		}
1497 		j = cdm->num_matches;
1498 		cdm->num_matches++;
1499 		cdm->matches[j].type = DEV_MATCH_BUS;
1500 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1501 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1502 		cdm->matches[j].result.bus_result.unit_number =
1503 			bus->sim->unit_number;
1504 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1505 			bus->sim->sim_name, DEV_IDLEN);
1506 	}
1507 
1508 	/*
1509 	 * If the user is only interested in busses, there's no
1510 	 * reason to descend to the next level in the tree.
1511 	 */
1512 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1513 		return(1);
1514 
1515 	/*
1516 	 * If there is a target generation recorded, check it to
1517 	 * make sure the target list hasn't changed.
1518 	 */
1519 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1520 	 && (bus == cdm->pos.cookie.bus)
1521 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1522 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1523 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1524 	     bus->generation)) {
1525 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1526 		return(0);
1527 	}
1528 
1529 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1530 	 && (cdm->pos.cookie.bus == bus)
1531 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1532 	 && (cdm->pos.cookie.target != NULL))
1533 		return(xpttargettraverse(bus,
1534 					(struct cam_et *)cdm->pos.cookie.target,
1535 					 xptedttargetfunc, arg));
1536 	else
1537 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1538 }
1539 
1540 static int
1541 xptedttargetfunc(struct cam_et *target, void *arg)
1542 {
1543 	struct ccb_dev_match *cdm;
1544 
1545 	cdm = (struct ccb_dev_match *)arg;
1546 
1547 	/*
1548 	 * If there is a device list generation recorded, check it to
1549 	 * make sure the device list hasn't changed.
1550 	 */
1551 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1552 	 && (cdm->pos.cookie.bus == target->bus)
1553 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1554 	 && (cdm->pos.cookie.target == target)
1555 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1556 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1557 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1558 	     target->generation)) {
1559 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1560 		return(0);
1561 	}
1562 
1563 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1564 	 && (cdm->pos.cookie.bus == target->bus)
1565 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1566 	 && (cdm->pos.cookie.target == target)
1567 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1568 	 && (cdm->pos.cookie.device != NULL))
1569 		return(xptdevicetraverse(target,
1570 					(struct cam_ed *)cdm->pos.cookie.device,
1571 					 xptedtdevicefunc, arg));
1572 	else
1573 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1574 }
1575 
1576 static int
1577 xptedtdevicefunc(struct cam_ed *device, void *arg)
1578 {
1579 
1580 	struct ccb_dev_match *cdm;
1581 	dev_match_ret retval;
1582 
1583 	cdm = (struct ccb_dev_match *)arg;
1584 
1585 	/*
1586 	 * If our position is for something deeper in the tree, that means
1587 	 * that we've already seen this node.  So, we keep going down.
1588 	 */
1589 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1590 	 && (cdm->pos.cookie.device == device)
1591 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1592 	 && (cdm->pos.cookie.periph != NULL))
1593 		retval = DM_RET_DESCEND;
1594 	else
1595 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1596 					device);
1597 
1598 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1599 		cdm->status = CAM_DEV_MATCH_ERROR;
1600 		return(0);
1601 	}
1602 
1603 	/*
1604 	 * If the copy flag is set, copy this device out.
1605 	 */
1606 	if (retval & DM_RET_COPY) {
1607 		int spaceleft, j;
1608 
1609 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1610 			sizeof(struct dev_match_result));
1611 
1612 		/*
1613 		 * If we don't have enough space to put in another
1614 		 * match result, save our position and tell the
1615 		 * user there are more devices to check.
1616 		 */
1617 		if (spaceleft < sizeof(struct dev_match_result)) {
1618 			bzero(&cdm->pos, sizeof(cdm->pos));
1619 			cdm->pos.position_type =
1620 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1621 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1622 
1623 			cdm->pos.cookie.bus = device->target->bus;
1624 			cdm->pos.generations[CAM_BUS_GENERATION]=
1625 				xsoftc.bus_generation;
1626 			cdm->pos.cookie.target = device->target;
1627 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1628 				device->target->bus->generation;
1629 			cdm->pos.cookie.device = device;
1630 			cdm->pos.generations[CAM_DEV_GENERATION] =
1631 				device->target->generation;
1632 			cdm->status = CAM_DEV_MATCH_MORE;
1633 			return(0);
1634 		}
1635 		j = cdm->num_matches;
1636 		cdm->num_matches++;
1637 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1638 		cdm->matches[j].result.device_result.path_id =
1639 			device->target->bus->path_id;
1640 		cdm->matches[j].result.device_result.target_id =
1641 			device->target->target_id;
1642 		cdm->matches[j].result.device_result.target_lun =
1643 			device->lun_id;
1644 		cdm->matches[j].result.device_result.protocol =
1645 			device->protocol;
1646 		bcopy(&device->inq_data,
1647 		      &cdm->matches[j].result.device_result.inq_data,
1648 		      sizeof(struct scsi_inquiry_data));
1649 		bcopy(&device->ident_data,
1650 		      &cdm->matches[j].result.device_result.ident_data,
1651 		      sizeof(struct ata_params));
1652 
1653 		/* Let the user know whether this device is unconfigured */
1654 		if (device->flags & CAM_DEV_UNCONFIGURED)
1655 			cdm->matches[j].result.device_result.flags =
1656 				DEV_RESULT_UNCONFIGURED;
1657 		else
1658 			cdm->matches[j].result.device_result.flags =
1659 				DEV_RESULT_NOFLAG;
1660 	}
1661 
1662 	/*
1663 	 * If the user isn't interested in peripherals, don't descend
1664 	 * the tree any further.
1665 	 */
1666 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1667 		return(1);
1668 
1669 	/*
1670 	 * If there is a peripheral list generation recorded, make sure
1671 	 * it hasn't changed.
1672 	 */
1673 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1674 	 && (device->target->bus == cdm->pos.cookie.bus)
1675 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1676 	 && (device->target == cdm->pos.cookie.target)
1677 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1678 	 && (device == cdm->pos.cookie.device)
1679 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1680 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1681 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1682 	     device->generation)){
1683 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1684 		return(0);
1685 	}
1686 
1687 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1688 	 && (cdm->pos.cookie.bus == device->target->bus)
1689 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1690 	 && (cdm->pos.cookie.target == device->target)
1691 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1692 	 && (cdm->pos.cookie.device == device)
1693 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1694 	 && (cdm->pos.cookie.periph != NULL))
1695 		return(xptperiphtraverse(device,
1696 				(struct cam_periph *)cdm->pos.cookie.periph,
1697 				xptedtperiphfunc, arg));
1698 	else
1699 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1700 }
1701 
1702 static int
1703 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1704 {
1705 	struct ccb_dev_match *cdm;
1706 	dev_match_ret retval;
1707 
1708 	cdm = (struct ccb_dev_match *)arg;
1709 
1710 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1711 
1712 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1713 		cdm->status = CAM_DEV_MATCH_ERROR;
1714 		return(0);
1715 	}
1716 
1717 	/*
1718 	 * If the copy flag is set, copy this peripheral out.
1719 	 */
1720 	if (retval & DM_RET_COPY) {
1721 		int spaceleft, j;
1722 
1723 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1724 			sizeof(struct dev_match_result));
1725 
1726 		/*
1727 		 * If we don't have enough space to put in another
1728 		 * match result, save our position and tell the
1729 		 * user there are more devices to check.
1730 		 */
1731 		if (spaceleft < sizeof(struct dev_match_result)) {
1732 			bzero(&cdm->pos, sizeof(cdm->pos));
1733 			cdm->pos.position_type =
1734 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1735 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1736 				CAM_DEV_POS_PERIPH;
1737 
1738 			cdm->pos.cookie.bus = periph->path->bus;
1739 			cdm->pos.generations[CAM_BUS_GENERATION]=
1740 				xsoftc.bus_generation;
1741 			cdm->pos.cookie.target = periph->path->target;
1742 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1743 				periph->path->bus->generation;
1744 			cdm->pos.cookie.device = periph->path->device;
1745 			cdm->pos.generations[CAM_DEV_GENERATION] =
1746 				periph->path->target->generation;
1747 			cdm->pos.cookie.periph = periph;
1748 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1749 				periph->path->device->generation;
1750 			cdm->status = CAM_DEV_MATCH_MORE;
1751 			return(0);
1752 		}
1753 
1754 		j = cdm->num_matches;
1755 		cdm->num_matches++;
1756 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1757 		cdm->matches[j].result.periph_result.path_id =
1758 			periph->path->bus->path_id;
1759 		cdm->matches[j].result.periph_result.target_id =
1760 			periph->path->target->target_id;
1761 		cdm->matches[j].result.periph_result.target_lun =
1762 			periph->path->device->lun_id;
1763 		cdm->matches[j].result.periph_result.unit_number =
1764 			periph->unit_number;
1765 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1766 			periph->periph_name, DEV_IDLEN);
1767 	}
1768 
1769 	return(1);
1770 }
1771 
1772 static int
1773 xptedtmatch(struct ccb_dev_match *cdm)
1774 {
1775 	int ret;
1776 
1777 	cdm->num_matches = 0;
1778 
1779 	/*
1780 	 * Check the bus list generation.  If it has changed, the user
1781 	 * needs to reset everything and start over.
1782 	 */
1783 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1784 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1785 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1786 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1787 		return(0);
1788 	}
1789 
1790 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1791 	 && (cdm->pos.cookie.bus != NULL))
1792 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1793 				     xptedtbusfunc, cdm);
1794 	else
1795 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1796 
1797 	/*
1798 	 * If we get back 0, that means that we had to stop before fully
1799 	 * traversing the EDT.  It also means that one of the subroutines
1800 	 * has set the status field to the proper value.  If we get back 1,
1801 	 * we've fully traversed the EDT and copied out any matching entries.
1802 	 */
1803 	if (ret == 1)
1804 		cdm->status = CAM_DEV_MATCH_LAST;
1805 
1806 	return(ret);
1807 }
1808 
1809 static int
1810 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1811 {
1812 	struct ccb_dev_match *cdm;
1813 
1814 	cdm = (struct ccb_dev_match *)arg;
1815 
1816 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1817 	 && (cdm->pos.cookie.pdrv == pdrv)
1818 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1819 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1820 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1821 	     (*pdrv)->generation)) {
1822 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1823 		return(0);
1824 	}
1825 
1826 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1827 	 && (cdm->pos.cookie.pdrv == pdrv)
1828 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1829 	 && (cdm->pos.cookie.periph != NULL))
1830 		return(xptpdperiphtraverse(pdrv,
1831 				(struct cam_periph *)cdm->pos.cookie.periph,
1832 				xptplistperiphfunc, arg));
1833 	else
1834 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1835 }
1836 
1837 static int
1838 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1839 {
1840 	struct ccb_dev_match *cdm;
1841 	dev_match_ret retval;
1842 
1843 	cdm = (struct ccb_dev_match *)arg;
1844 
1845 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1846 
1847 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1848 		cdm->status = CAM_DEV_MATCH_ERROR;
1849 		return(0);
1850 	}
1851 
1852 	/*
1853 	 * If the copy flag is set, copy this peripheral out.
1854 	 */
1855 	if (retval & DM_RET_COPY) {
1856 		int spaceleft, j;
1857 
1858 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1859 			sizeof(struct dev_match_result));
1860 
1861 		/*
1862 		 * If we don't have enough space to put in another
1863 		 * match result, save our position and tell the
1864 		 * user there are more devices to check.
1865 		 */
1866 		if (spaceleft < sizeof(struct dev_match_result)) {
1867 			struct periph_driver **pdrv;
1868 
1869 			pdrv = NULL;
1870 			bzero(&cdm->pos, sizeof(cdm->pos));
1871 			cdm->pos.position_type =
1872 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1873 				CAM_DEV_POS_PERIPH;
1874 
1875 			/*
1876 			 * This may look a bit non-sensical, but it is
1877 			 * actually quite logical.  There are very few
1878 			 * peripheral drivers, and bloating every peripheral
1879 			 * structure with a pointer back to its parent
1880 			 * peripheral driver linker set entry would cost
1881 			 * more in the long run than doing this quick lookup.
1882 			 */
1883 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1884 				if (strcmp((*pdrv)->driver_name,
1885 				    periph->periph_name) == 0)
1886 					break;
1887 			}
1888 
1889 			if (*pdrv == NULL) {
1890 				cdm->status = CAM_DEV_MATCH_ERROR;
1891 				return(0);
1892 			}
1893 
1894 			cdm->pos.cookie.pdrv = pdrv;
1895 			/*
1896 			 * The periph generation slot does double duty, as
1897 			 * does the periph pointer slot.  They are used for
1898 			 * both edt and pdrv lookups and positioning.
1899 			 */
1900 			cdm->pos.cookie.periph = periph;
1901 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1902 				(*pdrv)->generation;
1903 			cdm->status = CAM_DEV_MATCH_MORE;
1904 			return(0);
1905 		}
1906 
1907 		j = cdm->num_matches;
1908 		cdm->num_matches++;
1909 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1910 		cdm->matches[j].result.periph_result.path_id =
1911 			periph->path->bus->path_id;
1912 
1913 		/*
1914 		 * The transport layer peripheral doesn't have a target or
1915 		 * lun.
1916 		 */
1917 		if (periph->path->target)
1918 			cdm->matches[j].result.periph_result.target_id =
1919 				periph->path->target->target_id;
1920 		else
1921 			cdm->matches[j].result.periph_result.target_id = -1;
1922 
1923 		if (periph->path->device)
1924 			cdm->matches[j].result.periph_result.target_lun =
1925 				periph->path->device->lun_id;
1926 		else
1927 			cdm->matches[j].result.periph_result.target_lun = -1;
1928 
1929 		cdm->matches[j].result.periph_result.unit_number =
1930 			periph->unit_number;
1931 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1932 			periph->periph_name, DEV_IDLEN);
1933 	}
1934 
1935 	return(1);
1936 }
1937 
1938 static int
1939 xptperiphlistmatch(struct ccb_dev_match *cdm)
1940 {
1941 	int ret;
1942 
1943 	cdm->num_matches = 0;
1944 
1945 	/*
1946 	 * At this point in the edt traversal function, we check the bus
1947 	 * list generation to make sure that no busses have been added or
1948 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
1949 	 * For the peripheral driver list traversal function, however, we
1950 	 * don't have to worry about new peripheral driver types coming or
1951 	 * going; they're in a linker set, and therefore can't change
1952 	 * without a recompile.
1953 	 */
1954 
1955 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1956 	 && (cdm->pos.cookie.pdrv != NULL))
1957 		ret = xptpdrvtraverse(
1958 				(struct periph_driver **)cdm->pos.cookie.pdrv,
1959 				xptplistpdrvfunc, cdm);
1960 	else
1961 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
1962 
1963 	/*
1964 	 * If we get back 0, that means that we had to stop before fully
1965 	 * traversing the peripheral driver tree.  It also means that one of
1966 	 * the subroutines has set the status field to the proper value.  If
1967 	 * we get back 1, we've fully traversed the EDT and copied out any
1968 	 * matching entries.
1969 	 */
1970 	if (ret == 1)
1971 		cdm->status = CAM_DEV_MATCH_LAST;
1972 
1973 	return(ret);
1974 }
1975 
1976 static int
1977 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
1978 {
1979 	struct cam_eb *bus, *next_bus;
1980 	int retval;
1981 
1982 	retval = 1;
1983 
1984 	mtx_lock(&xsoftc.xpt_topo_lock);
1985 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
1986 	     bus != NULL;
1987 	     bus = next_bus) {
1988 		next_bus = TAILQ_NEXT(bus, links);
1989 
1990 		mtx_unlock(&xsoftc.xpt_topo_lock);
1991 		CAM_SIM_LOCK(bus->sim);
1992 		retval = tr_func(bus, arg);
1993 		CAM_SIM_UNLOCK(bus->sim);
1994 		if (retval == 0)
1995 			return(retval);
1996 		mtx_lock(&xsoftc.xpt_topo_lock);
1997 	}
1998 	mtx_unlock(&xsoftc.xpt_topo_lock);
1999 
2000 	return(retval);
2001 }
2002 
2003 int
2004 xpt_sim_opened(struct cam_sim *sim)
2005 {
2006 	struct cam_eb *bus;
2007 	struct cam_et *target;
2008 	struct cam_ed *device;
2009 	struct cam_periph *periph;
2010 
2011 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2012 	mtx_assert(sim->mtx, MA_OWNED);
2013 
2014 	mtx_lock(&xsoftc.xpt_topo_lock);
2015 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2016 		if (bus->sim != sim)
2017 			continue;
2018 
2019 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2020 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2021 				SLIST_FOREACH(periph, &device->periphs,
2022 				    periph_links) {
2023 					if (periph->refcount > 0) {
2024 						mtx_unlock(&xsoftc.xpt_topo_lock);
2025 						return (1);
2026 					}
2027 				}
2028 			}
2029 		}
2030 	}
2031 
2032 	mtx_unlock(&xsoftc.xpt_topo_lock);
2033 	return (0);
2034 }
2035 
2036 static int
2037 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2038 		  xpt_targetfunc_t *tr_func, void *arg)
2039 {
2040 	struct cam_et *target, *next_target;
2041 	int retval;
2042 
2043 	retval = 1;
2044 	for (target = (start_target ? start_target :
2045 		       TAILQ_FIRST(&bus->et_entries));
2046 	     target != NULL; target = next_target) {
2047 
2048 		next_target = TAILQ_NEXT(target, links);
2049 
2050 		retval = tr_func(target, arg);
2051 
2052 		if (retval == 0)
2053 			return(retval);
2054 	}
2055 
2056 	return(retval);
2057 }
2058 
2059 static int
2060 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2061 		  xpt_devicefunc_t *tr_func, void *arg)
2062 {
2063 	struct cam_ed *device, *next_device;
2064 	int retval;
2065 
2066 	retval = 1;
2067 	for (device = (start_device ? start_device :
2068 		       TAILQ_FIRST(&target->ed_entries));
2069 	     device != NULL;
2070 	     device = next_device) {
2071 
2072 		next_device = TAILQ_NEXT(device, links);
2073 
2074 		retval = tr_func(device, arg);
2075 
2076 		if (retval == 0)
2077 			return(retval);
2078 	}
2079 
2080 	return(retval);
2081 }
2082 
2083 static int
2084 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2085 		  xpt_periphfunc_t *tr_func, void *arg)
2086 {
2087 	struct cam_periph *periph, *next_periph;
2088 	int retval;
2089 
2090 	retval = 1;
2091 
2092 	for (periph = (start_periph ? start_periph :
2093 		       SLIST_FIRST(&device->periphs));
2094 	     periph != NULL;
2095 	     periph = next_periph) {
2096 
2097 		next_periph = SLIST_NEXT(periph, periph_links);
2098 
2099 		retval = tr_func(periph, arg);
2100 		if (retval == 0)
2101 			return(retval);
2102 	}
2103 
2104 	return(retval);
2105 }
2106 
2107 static int
2108 xptpdrvtraverse(struct periph_driver **start_pdrv,
2109 		xpt_pdrvfunc_t *tr_func, void *arg)
2110 {
2111 	struct periph_driver **pdrv;
2112 	int retval;
2113 
2114 	retval = 1;
2115 
2116 	/*
2117 	 * We don't traverse the peripheral driver list like we do the
2118 	 * other lists, because it is a linker set, and therefore cannot be
2119 	 * changed during runtime.  If the peripheral driver list is ever
2120 	 * re-done to be something other than a linker set (i.e. it can
2121 	 * change while the system is running), the list traversal should
2122 	 * be modified to work like the other traversal functions.
2123 	 */
2124 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2125 	     *pdrv != NULL; pdrv++) {
2126 		retval = tr_func(pdrv, arg);
2127 
2128 		if (retval == 0)
2129 			return(retval);
2130 	}
2131 
2132 	return(retval);
2133 }
2134 
2135 static int
2136 xptpdperiphtraverse(struct periph_driver **pdrv,
2137 		    struct cam_periph *start_periph,
2138 		    xpt_periphfunc_t *tr_func, void *arg)
2139 {
2140 	struct cam_periph *periph, *next_periph;
2141 	int retval;
2142 
2143 	retval = 1;
2144 
2145 	xpt_lock_buses();
2146 	for (periph = (start_periph ? start_periph :
2147 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2148 	     periph = next_periph) {
2149 
2150 		next_periph = TAILQ_NEXT(periph, unit_links);
2151 
2152 		retval = tr_func(periph, arg);
2153 		if (retval == 0) {
2154 			xpt_unlock_buses();
2155 			return(retval);
2156 		}
2157 	}
2158 	xpt_unlock_buses();
2159 	return(retval);
2160 }
2161 
2162 static int
2163 xptdefbusfunc(struct cam_eb *bus, void *arg)
2164 {
2165 	struct xpt_traverse_config *tr_config;
2166 
2167 	tr_config = (struct xpt_traverse_config *)arg;
2168 
2169 	if (tr_config->depth == XPT_DEPTH_BUS) {
2170 		xpt_busfunc_t *tr_func;
2171 
2172 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2173 
2174 		return(tr_func(bus, tr_config->tr_arg));
2175 	} else
2176 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2177 }
2178 
2179 static int
2180 xptdeftargetfunc(struct cam_et *target, void *arg)
2181 {
2182 	struct xpt_traverse_config *tr_config;
2183 
2184 	tr_config = (struct xpt_traverse_config *)arg;
2185 
2186 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2187 		xpt_targetfunc_t *tr_func;
2188 
2189 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2190 
2191 		return(tr_func(target, tr_config->tr_arg));
2192 	} else
2193 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2194 }
2195 
2196 static int
2197 xptdefdevicefunc(struct cam_ed *device, void *arg)
2198 {
2199 	struct xpt_traverse_config *tr_config;
2200 
2201 	tr_config = (struct xpt_traverse_config *)arg;
2202 
2203 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2204 		xpt_devicefunc_t *tr_func;
2205 
2206 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2207 
2208 		return(tr_func(device, tr_config->tr_arg));
2209 	} else
2210 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2211 }
2212 
2213 static int
2214 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2215 {
2216 	struct xpt_traverse_config *tr_config;
2217 	xpt_periphfunc_t *tr_func;
2218 
2219 	tr_config = (struct xpt_traverse_config *)arg;
2220 
2221 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2222 
2223 	/*
2224 	 * Unlike the other default functions, we don't check for depth
2225 	 * here.  The peripheral driver level is the last level in the EDT,
2226 	 * so if we're here, we should execute the function in question.
2227 	 */
2228 	return(tr_func(periph, tr_config->tr_arg));
2229 }
2230 
2231 /*
2232  * Execute the given function for every bus in the EDT.
2233  */
2234 static int
2235 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2236 {
2237 	struct xpt_traverse_config tr_config;
2238 
2239 	tr_config.depth = XPT_DEPTH_BUS;
2240 	tr_config.tr_func = tr_func;
2241 	tr_config.tr_arg = arg;
2242 
2243 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2244 }
2245 
2246 /*
2247  * Execute the given function for every device in the EDT.
2248  */
2249 static int
2250 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2251 {
2252 	struct xpt_traverse_config tr_config;
2253 
2254 	tr_config.depth = XPT_DEPTH_DEVICE;
2255 	tr_config.tr_func = tr_func;
2256 	tr_config.tr_arg = arg;
2257 
2258 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2259 }
2260 
2261 static int
2262 xptsetasyncfunc(struct cam_ed *device, void *arg)
2263 {
2264 	struct cam_path path;
2265 	struct ccb_getdev cgd;
2266 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2267 
2268 	/*
2269 	 * Don't report unconfigured devices (Wildcard devs,
2270 	 * devices only for target mode, device instances
2271 	 * that have been invalidated but are waiting for
2272 	 * their last reference count to be released).
2273 	 */
2274 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2275 		return (1);
2276 
2277 	xpt_compile_path(&path,
2278 			 NULL,
2279 			 device->target->bus->path_id,
2280 			 device->target->target_id,
2281 			 device->lun_id);
2282 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2283 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2284 	xpt_action((union ccb *)&cgd);
2285 	csa->callback(csa->callback_arg,
2286 			    AC_FOUND_DEVICE,
2287 			    &path, &cgd);
2288 	xpt_release_path(&path);
2289 
2290 	return(1);
2291 }
2292 
2293 static int
2294 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2295 {
2296 	struct cam_path path;
2297 	struct ccb_pathinq cpi;
2298 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2299 
2300 	xpt_compile_path(&path, /*periph*/NULL,
2301 			 bus->sim->path_id,
2302 			 CAM_TARGET_WILDCARD,
2303 			 CAM_LUN_WILDCARD);
2304 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2305 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2306 	xpt_action((union ccb *)&cpi);
2307 	csa->callback(csa->callback_arg,
2308 			    AC_PATH_REGISTERED,
2309 			    &path, &cpi);
2310 	xpt_release_path(&path);
2311 
2312 	return(1);
2313 }
2314 
2315 void
2316 xpt_action(union ccb *start_ccb)
2317 {
2318 
2319 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2320 
2321 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2322 	/* Compatibility for RL-unaware code. */
2323 	if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0)
2324 	    start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1;
2325 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2326 }
2327 
2328 void
2329 xpt_action_default(union ccb *start_ccb)
2330 {
2331 
2332 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2333 
2334 	switch (start_ccb->ccb_h.func_code) {
2335 	case XPT_SCSI_IO:
2336 	{
2337 		struct cam_ed *device;
2338 #ifdef CAMDEBUG
2339 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2340 		struct cam_path *path;
2341 
2342 		path = start_ccb->ccb_h.path;
2343 #endif
2344 
2345 		/*
2346 		 * For the sake of compatibility with SCSI-1
2347 		 * devices that may not understand the identify
2348 		 * message, we include lun information in the
2349 		 * second byte of all commands.  SCSI-1 specifies
2350 		 * that luns are a 3 bit value and reserves only 3
2351 		 * bits for lun information in the CDB.  Later
2352 		 * revisions of the SCSI spec allow for more than 8
2353 		 * luns, but have deprecated lun information in the
2354 		 * CDB.  So, if the lun won't fit, we must omit.
2355 		 *
2356 		 * Also be aware that during initial probing for devices,
2357 		 * the inquiry information is unknown but initialized to 0.
2358 		 * This means that this code will be exercised while probing
2359 		 * devices with an ANSI revision greater than 2.
2360 		 */
2361 		device = start_ccb->ccb_h.path->device;
2362 		if (device->protocol_version <= SCSI_REV_2
2363 		 && start_ccb->ccb_h.target_lun < 8
2364 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2365 
2366 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2367 			    start_ccb->ccb_h.target_lun << 5;
2368 		}
2369 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2370 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2371 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2372 			  	       &path->device->inq_data),
2373 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2374 					  cdb_str, sizeof(cdb_str))));
2375 	}
2376 	/* FALLTHROUGH */
2377 	case XPT_TARGET_IO:
2378 	case XPT_CONT_TARGET_IO:
2379 		start_ccb->csio.sense_resid = 0;
2380 		start_ccb->csio.resid = 0;
2381 		/* FALLTHROUGH */
2382 	case XPT_ATA_IO:
2383 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2384 			start_ccb->ataio.resid = 0;
2385 		}
2386 		/* FALLTHROUGH */
2387 	case XPT_RESET_DEV:
2388 	case XPT_ENG_EXEC:
2389 	{
2390 		struct cam_path *path = start_ccb->ccb_h.path;
2391 		int frozen;
2392 
2393 		frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2394 		path->device->sim->devq->alloc_openings += frozen;
2395 		if (frozen > 0)
2396 			xpt_run_dev_allocq(path->bus);
2397 		if (xpt_schedule_dev_sendq(path->bus, path->device))
2398 			xpt_run_dev_sendq(path->bus);
2399 		break;
2400 	}
2401 	case XPT_CALC_GEOMETRY:
2402 	{
2403 		struct cam_sim *sim;
2404 
2405 		/* Filter out garbage */
2406 		if (start_ccb->ccg.block_size == 0
2407 		 || start_ccb->ccg.volume_size == 0) {
2408 			start_ccb->ccg.cylinders = 0;
2409 			start_ccb->ccg.heads = 0;
2410 			start_ccb->ccg.secs_per_track = 0;
2411 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2412 			break;
2413 		}
2414 #ifdef PC98
2415 		/*
2416 		 * In a PC-98 system, geometry translation depens on
2417 		 * the "real" device geometry obtained from mode page 4.
2418 		 * SCSI geometry translation is performed in the
2419 		 * initialization routine of the SCSI BIOS and the result
2420 		 * stored in host memory.  If the translation is available
2421 		 * in host memory, use it.  If not, rely on the default
2422 		 * translation the device driver performs.
2423 		 */
2424 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2425 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2426 			break;
2427 		}
2428 #endif
2429 		sim = start_ccb->ccb_h.path->bus->sim;
2430 		(*(sim->sim_action))(sim, start_ccb);
2431 		break;
2432 	}
2433 	case XPT_ABORT:
2434 	{
2435 		union ccb* abort_ccb;
2436 
2437 		abort_ccb = start_ccb->cab.abort_ccb;
2438 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2439 
2440 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2441 				struct cam_ccbq *ccbq;
2442 				struct cam_ed *device;
2443 
2444 				device = abort_ccb->ccb_h.path->device;
2445 				ccbq = &device->ccbq;
2446 				device->sim->devq->alloc_openings -=
2447 				    cam_ccbq_remove_ccb(ccbq, abort_ccb);
2448 				abort_ccb->ccb_h.status =
2449 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2450 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2451 				xpt_done(abort_ccb);
2452 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2453 				break;
2454 			}
2455 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2456 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2457 				/*
2458 				 * We've caught this ccb en route to
2459 				 * the SIM.  Flag it for abort and the
2460 				 * SIM will do so just before starting
2461 				 * real work on the CCB.
2462 				 */
2463 				abort_ccb->ccb_h.status =
2464 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2465 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2466 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2467 				break;
2468 			}
2469 		}
2470 		if (XPT_FC_IS_QUEUED(abort_ccb)
2471 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2472 			/*
2473 			 * It's already completed but waiting
2474 			 * for our SWI to get to it.
2475 			 */
2476 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2477 			break;
2478 		}
2479 		/*
2480 		 * If we weren't able to take care of the abort request
2481 		 * in the XPT, pass the request down to the SIM for processing.
2482 		 */
2483 	}
2484 	/* FALLTHROUGH */
2485 	case XPT_ACCEPT_TARGET_IO:
2486 	case XPT_EN_LUN:
2487 	case XPT_IMMED_NOTIFY:
2488 	case XPT_NOTIFY_ACK:
2489 	case XPT_RESET_BUS:
2490 	case XPT_IMMEDIATE_NOTIFY:
2491 	case XPT_NOTIFY_ACKNOWLEDGE:
2492 	case XPT_GET_SIM_KNOB:
2493 	case XPT_SET_SIM_KNOB:
2494 	{
2495 		struct cam_sim *sim;
2496 
2497 		sim = start_ccb->ccb_h.path->bus->sim;
2498 		(*(sim->sim_action))(sim, start_ccb);
2499 		break;
2500 	}
2501 	case XPT_PATH_INQ:
2502 	{
2503 		struct cam_sim *sim;
2504 
2505 		sim = start_ccb->ccb_h.path->bus->sim;
2506 		(*(sim->sim_action))(sim, start_ccb);
2507 		break;
2508 	}
2509 	case XPT_PATH_STATS:
2510 		start_ccb->cpis.last_reset =
2511 			start_ccb->ccb_h.path->bus->last_reset;
2512 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2513 		break;
2514 	case XPT_GDEV_TYPE:
2515 	{
2516 		struct cam_ed *dev;
2517 
2518 		dev = start_ccb->ccb_h.path->device;
2519 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2520 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2521 		} else {
2522 			struct ccb_getdev *cgd;
2523 			struct cam_eb *bus;
2524 			struct cam_et *tar;
2525 
2526 			cgd = &start_ccb->cgd;
2527 			bus = cgd->ccb_h.path->bus;
2528 			tar = cgd->ccb_h.path->target;
2529 			cgd->protocol = dev->protocol;
2530 			cgd->inq_data = dev->inq_data;
2531 			cgd->ident_data = dev->ident_data;
2532 			cgd->inq_flags = dev->inq_flags;
2533 			cgd->ccb_h.status = CAM_REQ_CMP;
2534 			cgd->serial_num_len = dev->serial_num_len;
2535 			if ((dev->serial_num_len > 0)
2536 			 && (dev->serial_num != NULL))
2537 				bcopy(dev->serial_num, cgd->serial_num,
2538 				      dev->serial_num_len);
2539 		}
2540 		break;
2541 	}
2542 	case XPT_GDEV_STATS:
2543 	{
2544 		struct cam_ed *dev;
2545 
2546 		dev = start_ccb->ccb_h.path->device;
2547 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2548 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2549 		} else {
2550 			struct ccb_getdevstats *cgds;
2551 			struct cam_eb *bus;
2552 			struct cam_et *tar;
2553 
2554 			cgds = &start_ccb->cgds;
2555 			bus = cgds->ccb_h.path->bus;
2556 			tar = cgds->ccb_h.path->target;
2557 			cgds->dev_openings = dev->ccbq.dev_openings;
2558 			cgds->dev_active = dev->ccbq.dev_active;
2559 			cgds->devq_openings = dev->ccbq.devq_openings;
2560 			cgds->devq_queued = dev->ccbq.queue.entries;
2561 			cgds->held = dev->ccbq.held;
2562 			cgds->last_reset = tar->last_reset;
2563 			cgds->maxtags = dev->maxtags;
2564 			cgds->mintags = dev->mintags;
2565 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2566 				cgds->last_reset = bus->last_reset;
2567 			cgds->ccb_h.status = CAM_REQ_CMP;
2568 		}
2569 		break;
2570 	}
2571 	case XPT_GDEVLIST:
2572 	{
2573 		struct cam_periph	*nperiph;
2574 		struct periph_list	*periph_head;
2575 		struct ccb_getdevlist	*cgdl;
2576 		u_int			i;
2577 		struct cam_ed		*device;
2578 		int			found;
2579 
2580 
2581 		found = 0;
2582 
2583 		/*
2584 		 * Don't want anyone mucking with our data.
2585 		 */
2586 		device = start_ccb->ccb_h.path->device;
2587 		periph_head = &device->periphs;
2588 		cgdl = &start_ccb->cgdl;
2589 
2590 		/*
2591 		 * Check and see if the list has changed since the user
2592 		 * last requested a list member.  If so, tell them that the
2593 		 * list has changed, and therefore they need to start over
2594 		 * from the beginning.
2595 		 */
2596 		if ((cgdl->index != 0) &&
2597 		    (cgdl->generation != device->generation)) {
2598 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2599 			break;
2600 		}
2601 
2602 		/*
2603 		 * Traverse the list of peripherals and attempt to find
2604 		 * the requested peripheral.
2605 		 */
2606 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2607 		     (nperiph != NULL) && (i <= cgdl->index);
2608 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2609 			if (i == cgdl->index) {
2610 				strncpy(cgdl->periph_name,
2611 					nperiph->periph_name,
2612 					DEV_IDLEN);
2613 				cgdl->unit_number = nperiph->unit_number;
2614 				found = 1;
2615 			}
2616 		}
2617 		if (found == 0) {
2618 			cgdl->status = CAM_GDEVLIST_ERROR;
2619 			break;
2620 		}
2621 
2622 		if (nperiph == NULL)
2623 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2624 		else
2625 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2626 
2627 		cgdl->index++;
2628 		cgdl->generation = device->generation;
2629 
2630 		cgdl->ccb_h.status = CAM_REQ_CMP;
2631 		break;
2632 	}
2633 	case XPT_DEV_MATCH:
2634 	{
2635 		dev_pos_type position_type;
2636 		struct ccb_dev_match *cdm;
2637 
2638 		cdm = &start_ccb->cdm;
2639 
2640 		/*
2641 		 * There are two ways of getting at information in the EDT.
2642 		 * The first way is via the primary EDT tree.  It starts
2643 		 * with a list of busses, then a list of targets on a bus,
2644 		 * then devices/luns on a target, and then peripherals on a
2645 		 * device/lun.  The "other" way is by the peripheral driver
2646 		 * lists.  The peripheral driver lists are organized by
2647 		 * peripheral driver.  (obviously)  So it makes sense to
2648 		 * use the peripheral driver list if the user is looking
2649 		 * for something like "da1", or all "da" devices.  If the
2650 		 * user is looking for something on a particular bus/target
2651 		 * or lun, it's generally better to go through the EDT tree.
2652 		 */
2653 
2654 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2655 			position_type = cdm->pos.position_type;
2656 		else {
2657 			u_int i;
2658 
2659 			position_type = CAM_DEV_POS_NONE;
2660 
2661 			for (i = 0; i < cdm->num_patterns; i++) {
2662 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2663 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2664 					position_type = CAM_DEV_POS_EDT;
2665 					break;
2666 				}
2667 			}
2668 
2669 			if (cdm->num_patterns == 0)
2670 				position_type = CAM_DEV_POS_EDT;
2671 			else if (position_type == CAM_DEV_POS_NONE)
2672 				position_type = CAM_DEV_POS_PDRV;
2673 		}
2674 
2675 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2676 		case CAM_DEV_POS_EDT:
2677 			xptedtmatch(cdm);
2678 			break;
2679 		case CAM_DEV_POS_PDRV:
2680 			xptperiphlistmatch(cdm);
2681 			break;
2682 		default:
2683 			cdm->status = CAM_DEV_MATCH_ERROR;
2684 			break;
2685 		}
2686 
2687 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2688 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2689 		else
2690 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2691 
2692 		break;
2693 	}
2694 	case XPT_SASYNC_CB:
2695 	{
2696 		struct ccb_setasync *csa;
2697 		struct async_node *cur_entry;
2698 		struct async_list *async_head;
2699 		u_int32_t added;
2700 
2701 		csa = &start_ccb->csa;
2702 		added = csa->event_enable;
2703 		async_head = &csa->ccb_h.path->device->asyncs;
2704 
2705 		/*
2706 		 * If there is already an entry for us, simply
2707 		 * update it.
2708 		 */
2709 		cur_entry = SLIST_FIRST(async_head);
2710 		while (cur_entry != NULL) {
2711 			if ((cur_entry->callback_arg == csa->callback_arg)
2712 			 && (cur_entry->callback == csa->callback))
2713 				break;
2714 			cur_entry = SLIST_NEXT(cur_entry, links);
2715 		}
2716 
2717 		if (cur_entry != NULL) {
2718 		 	/*
2719 			 * If the request has no flags set,
2720 			 * remove the entry.
2721 			 */
2722 			added &= ~cur_entry->event_enable;
2723 			if (csa->event_enable == 0) {
2724 				SLIST_REMOVE(async_head, cur_entry,
2725 					     async_node, links);
2726 				xpt_release_device(csa->ccb_h.path->device);
2727 				free(cur_entry, M_CAMXPT);
2728 			} else {
2729 				cur_entry->event_enable = csa->event_enable;
2730 			}
2731 			csa->event_enable = added;
2732 		} else {
2733 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2734 					   M_NOWAIT);
2735 			if (cur_entry == NULL) {
2736 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2737 				break;
2738 			}
2739 			cur_entry->event_enable = csa->event_enable;
2740 			cur_entry->callback_arg = csa->callback_arg;
2741 			cur_entry->callback = csa->callback;
2742 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2743 			xpt_acquire_device(csa->ccb_h.path->device);
2744 		}
2745 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2746 		break;
2747 	}
2748 	case XPT_REL_SIMQ:
2749 	{
2750 		struct ccb_relsim *crs;
2751 		struct cam_ed *dev;
2752 
2753 		crs = &start_ccb->crs;
2754 		dev = crs->ccb_h.path->device;
2755 		if (dev == NULL) {
2756 
2757 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2758 			break;
2759 		}
2760 
2761 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2762 
2763  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2764 				/* Don't ever go below one opening */
2765 				if (crs->openings > 0) {
2766 					xpt_dev_ccbq_resize(crs->ccb_h.path,
2767 							    crs->openings);
2768 
2769 					if (bootverbose) {
2770 						xpt_print(crs->ccb_h.path,
2771 						    "tagged openings now %d\n",
2772 						    crs->openings);
2773 					}
2774 				}
2775 			}
2776 		}
2777 
2778 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2779 
2780 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2781 
2782 				/*
2783 				 * Just extend the old timeout and decrement
2784 				 * the freeze count so that a single timeout
2785 				 * is sufficient for releasing the queue.
2786 				 */
2787 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2788 				callout_stop(&dev->callout);
2789 			} else {
2790 
2791 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2792 			}
2793 
2794 			callout_reset(&dev->callout,
2795 			    (crs->release_timeout * hz) / 1000,
2796 			    xpt_release_devq_timeout, dev);
2797 
2798 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2799 
2800 		}
2801 
2802 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2803 
2804 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2805 				/*
2806 				 * Decrement the freeze count so that a single
2807 				 * completion is still sufficient to unfreeze
2808 				 * the queue.
2809 				 */
2810 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2811 			} else {
2812 
2813 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2814 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2815 			}
2816 		}
2817 
2818 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2819 
2820 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2821 			 || (dev->ccbq.dev_active == 0)) {
2822 
2823 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2824 			} else {
2825 
2826 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2827 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2828 			}
2829 		}
2830 
2831 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2832 			xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/
2833 			    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2834 				crs->release_timeout : 0,
2835 			    /*count*/1, /*run_queue*/TRUE);
2836 		}
2837 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0];
2838 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2839 		break;
2840 	}
2841 	case XPT_DEBUG: {
2842 #ifdef CAMDEBUG
2843 #ifdef CAM_DEBUG_DELAY
2844 		cam_debug_delay = CAM_DEBUG_DELAY;
2845 #endif
2846 		cam_dflags = start_ccb->cdbg.flags;
2847 		if (cam_dpath != NULL) {
2848 			xpt_free_path(cam_dpath);
2849 			cam_dpath = NULL;
2850 		}
2851 
2852 		if (cam_dflags != CAM_DEBUG_NONE) {
2853 			if (xpt_create_path(&cam_dpath, xpt_periph,
2854 					    start_ccb->ccb_h.path_id,
2855 					    start_ccb->ccb_h.target_id,
2856 					    start_ccb->ccb_h.target_lun) !=
2857 					    CAM_REQ_CMP) {
2858 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2859 				cam_dflags = CAM_DEBUG_NONE;
2860 			} else {
2861 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2862 				xpt_print(cam_dpath, "debugging flags now %x\n",
2863 				    cam_dflags);
2864 			}
2865 		} else {
2866 			cam_dpath = NULL;
2867 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2868 		}
2869 #else /* !CAMDEBUG */
2870 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2871 #endif /* CAMDEBUG */
2872 		break;
2873 	}
2874 	case XPT_FREEZE_QUEUE:
2875 	{
2876 		struct ccb_relsim *crs = &start_ccb->crs;
2877 
2878 		xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/
2879 		    (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ?
2880 		    crs->release_timeout : 0, /*count*/1);
2881 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2882 		break;
2883 	}
2884 	case XPT_NOOP:
2885 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2886 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
2887 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2888 		break;
2889 	default:
2890 	case XPT_SDEV_TYPE:
2891 	case XPT_TERM_IO:
2892 	case XPT_ENG_INQ:
2893 		/* XXX Implement */
2894 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2895 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2896 			xpt_done(start_ccb);
2897 		}
2898 		break;
2899 	}
2900 }
2901 
2902 void
2903 xpt_polled_action(union ccb *start_ccb)
2904 {
2905 	u_int32_t timeout;
2906 	struct	  cam_sim *sim;
2907 	struct	  cam_devq *devq;
2908 	struct	  cam_ed *dev;
2909 
2910 
2911 	timeout = start_ccb->ccb_h.timeout * 10;
2912 	sim = start_ccb->ccb_h.path->bus->sim;
2913 	devq = sim->devq;
2914 	dev = start_ccb->ccb_h.path->device;
2915 
2916 	mtx_assert(sim->mtx, MA_OWNED);
2917 
2918 	/*
2919 	 * Steal an opening so that no other queued requests
2920 	 * can get it before us while we simulate interrupts.
2921 	 */
2922 	dev->ccbq.devq_openings--;
2923 	dev->ccbq.dev_openings--;
2924 
2925 	while(((devq != NULL && devq->send_openings <= 0) ||
2926 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
2927 		DELAY(100);
2928 		(*(sim->sim_poll))(sim);
2929 		camisr_runqueue(&sim->sim_doneq);
2930 	}
2931 
2932 	dev->ccbq.devq_openings++;
2933 	dev->ccbq.dev_openings++;
2934 
2935 	if (timeout != 0) {
2936 		xpt_action(start_ccb);
2937 		while(--timeout > 0) {
2938 			(*(sim->sim_poll))(sim);
2939 			camisr_runqueue(&sim->sim_doneq);
2940 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
2941 			    != CAM_REQ_INPROG)
2942 				break;
2943 			DELAY(100);
2944 		}
2945 		if (timeout == 0) {
2946 			/*
2947 			 * XXX Is it worth adding a sim_timeout entry
2948 			 * point so we can attempt recovery?  If
2949 			 * this is only used for dumps, I don't think
2950 			 * it is.
2951 			 */
2952 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
2953 		}
2954 	} else {
2955 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2956 	}
2957 }
2958 
2959 /*
2960  * Schedule a peripheral driver to receive a ccb when it's
2961  * target device has space for more transactions.
2962  */
2963 void
2964 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
2965 {
2966 	struct cam_ed *device;
2967 	int runq = 0;
2968 
2969 	mtx_assert(perph->sim->mtx, MA_OWNED);
2970 
2971 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
2972 	device = perph->path->device;
2973 	if (periph_is_queued(perph)) {
2974 		/* Simply reorder based on new priority */
2975 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2976 			  ("   change priority to %d\n", new_priority));
2977 		if (new_priority < perph->pinfo.priority) {
2978 			camq_change_priority(&device->drvq,
2979 					     perph->pinfo.index,
2980 					     new_priority);
2981 			runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2982 		}
2983 	} else {
2984 		/* New entry on the queue */
2985 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2986 			  ("   added periph to queue\n"));
2987 		perph->pinfo.priority = new_priority;
2988 		perph->pinfo.generation = ++device->drvq.generation;
2989 		camq_insert(&device->drvq, &perph->pinfo);
2990 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
2991 	}
2992 	if (runq != 0) {
2993 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
2994 			  ("   calling xpt_run_devq\n"));
2995 		xpt_run_dev_allocq(perph->path->bus);
2996 	}
2997 }
2998 
2999 
3000 /*
3001  * Schedule a device to run on a given queue.
3002  * If the device was inserted as a new entry on the queue,
3003  * return 1 meaning the device queue should be run. If we
3004  * were already queued, implying someone else has already
3005  * started the queue, return 0 so the caller doesn't attempt
3006  * to run the queue.
3007  */
3008 int
3009 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3010 		 u_int32_t new_priority)
3011 {
3012 	int retval;
3013 	u_int32_t old_priority;
3014 
3015 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3016 
3017 	old_priority = pinfo->priority;
3018 
3019 	/*
3020 	 * Are we already queued?
3021 	 */
3022 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3023 		/* Simply reorder based on new priority */
3024 		if (new_priority < old_priority) {
3025 			camq_change_priority(queue, pinfo->index,
3026 					     new_priority);
3027 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3028 					("changed priority to %d\n",
3029 					 new_priority));
3030 			retval = 1;
3031 		} else
3032 			retval = 0;
3033 	} else {
3034 		/* New entry on the queue */
3035 		if (new_priority < old_priority)
3036 			pinfo->priority = new_priority;
3037 
3038 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3039 				("Inserting onto queue\n"));
3040 		pinfo->generation = ++queue->generation;
3041 		camq_insert(queue, pinfo);
3042 		retval = 1;
3043 	}
3044 	return (retval);
3045 }
3046 
3047 static void
3048 xpt_run_dev_allocq(struct cam_eb *bus)
3049 {
3050 	struct	cam_devq *devq;
3051 
3052 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3053 	devq = bus->sim->devq;
3054 
3055 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3056 			("   qfrozen_cnt == 0x%x, entries == %d, "
3057 			 "openings == %d, active == %d\n",
3058 			 devq->alloc_queue.qfrozen_cnt[0],
3059 			 devq->alloc_queue.entries,
3060 			 devq->alloc_openings,
3061 			 devq->alloc_active));
3062 
3063 	devq->alloc_queue.qfrozen_cnt[0]++;
3064 	while ((devq->alloc_queue.entries > 0)
3065 	    && (devq->alloc_openings > 0)
3066 	    && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) {
3067 		struct	cam_ed_qinfo *qinfo;
3068 		struct	cam_ed *device;
3069 		union	ccb *work_ccb;
3070 		struct	cam_periph *drv;
3071 		struct	camq *drvq;
3072 
3073 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3074 							   CAMQ_HEAD);
3075 		device = qinfo->device;
3076 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3077 				("running device %p\n", device));
3078 
3079 		drvq = &device->drvq;
3080 
3081 #ifdef CAMDEBUG
3082 		if (drvq->entries <= 0) {
3083 			panic("xpt_run_dev_allocq: "
3084 			      "Device on queue without any work to do");
3085 		}
3086 #endif
3087 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3088 			devq->alloc_openings--;
3089 			devq->alloc_active++;
3090 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3091 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3092 				      drv->pinfo.priority);
3093 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3094 					("calling periph start\n"));
3095 			drv->periph_start(drv, work_ccb);
3096 		} else {
3097 			/*
3098 			 * Malloc failure in alloc_ccb
3099 			 */
3100 			/*
3101 			 * XXX add us to a list to be run from free_ccb
3102 			 * if we don't have any ccbs active on this
3103 			 * device queue otherwise we may never get run
3104 			 * again.
3105 			 */
3106 			break;
3107 		}
3108 
3109 		/* We may have more work. Attempt to reschedule. */
3110 		xpt_schedule_dev_allocq(bus, device);
3111 	}
3112 	devq->alloc_queue.qfrozen_cnt[0]--;
3113 }
3114 
3115 static void
3116 xpt_run_dev_sendq(struct cam_eb *bus)
3117 {
3118 	struct	cam_devq *devq;
3119 
3120 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3121 
3122 	devq = bus->sim->devq;
3123 
3124 	devq->send_queue.qfrozen_cnt[0]++;
3125 	while ((devq->send_queue.entries > 0)
3126 	    && (devq->send_openings > 0)
3127 	    && (devq->send_queue.qfrozen_cnt[0] <= 1)) {
3128 		struct	cam_ed_qinfo *qinfo;
3129 		struct	cam_ed *device;
3130 		union ccb *work_ccb;
3131 		struct	cam_sim *sim;
3132 
3133 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3134 							   CAMQ_HEAD);
3135 		device = qinfo->device;
3136 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3137 				("running device %p\n", device));
3138 
3139 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3140 		if (work_ccb == NULL) {
3141 			printf("device on run queue with no ccbs???\n");
3142 			continue;
3143 		}
3144 
3145 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3146 
3147 			mtx_lock(&xsoftc.xpt_lock);
3148 		 	if (xsoftc.num_highpower <= 0) {
3149 				/*
3150 				 * We got a high power command, but we
3151 				 * don't have any available slots.  Freeze
3152 				 * the device queue until we have a slot
3153 				 * available.
3154 				 */
3155 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3156 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3157 						   &work_ccb->ccb_h,
3158 						   xpt_links.stqe);
3159 
3160 				mtx_unlock(&xsoftc.xpt_lock);
3161 				continue;
3162 			} else {
3163 				/*
3164 				 * Consume a high power slot while
3165 				 * this ccb runs.
3166 				 */
3167 				xsoftc.num_highpower--;
3168 			}
3169 			mtx_unlock(&xsoftc.xpt_lock);
3170 		}
3171 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3172 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3173 
3174 		devq->send_openings--;
3175 		devq->send_active++;
3176 
3177 		xpt_schedule_dev_sendq(bus, device);
3178 
3179 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3180 			/*
3181 			 * The client wants to freeze the queue
3182 			 * after this CCB is sent.
3183 			 */
3184 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3185 		}
3186 
3187 		/* In Target mode, the peripheral driver knows best... */
3188 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3189 			if ((device->inq_flags & SID_CmdQue) != 0
3190 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3191 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3192 			else
3193 				/*
3194 				 * Clear this in case of a retried CCB that
3195 				 * failed due to a rejected tag.
3196 				 */
3197 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3198 		}
3199 
3200 		/*
3201 		 * Device queues can be shared among multiple sim instances
3202 		 * that reside on different busses.  Use the SIM in the queue
3203 		 * CCB's path, rather than the one in the bus that was passed
3204 		 * into this function.
3205 		 */
3206 		sim = work_ccb->ccb_h.path->bus->sim;
3207 		(*(sim->sim_action))(sim, work_ccb);
3208 	}
3209 	devq->send_queue.qfrozen_cnt[0]--;
3210 }
3211 
3212 /*
3213  * This function merges stuff from the slave ccb into the master ccb, while
3214  * keeping important fields in the master ccb constant.
3215  */
3216 void
3217 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3218 {
3219 
3220 	/*
3221 	 * Pull fields that are valid for peripheral drivers to set
3222 	 * into the master CCB along with the CCB "payload".
3223 	 */
3224 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3225 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3226 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3227 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3228 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3229 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3230 }
3231 
3232 void
3233 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3234 {
3235 
3236 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3237 	ccb_h->pinfo.priority = priority;
3238 	ccb_h->path = path;
3239 	ccb_h->path_id = path->bus->path_id;
3240 	if (path->target)
3241 		ccb_h->target_id = path->target->target_id;
3242 	else
3243 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3244 	if (path->device) {
3245 		ccb_h->target_lun = path->device->lun_id;
3246 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3247 	} else {
3248 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3249 	}
3250 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3251 	ccb_h->flags = 0;
3252 }
3253 
3254 /* Path manipulation functions */
3255 cam_status
3256 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3257 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3258 {
3259 	struct	   cam_path *path;
3260 	cam_status status;
3261 
3262 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3263 
3264 	if (path == NULL) {
3265 		status = CAM_RESRC_UNAVAIL;
3266 		return(status);
3267 	}
3268 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3269 	if (status != CAM_REQ_CMP) {
3270 		free(path, M_CAMXPT);
3271 		path = NULL;
3272 	}
3273 	*new_path_ptr = path;
3274 	return (status);
3275 }
3276 
3277 cam_status
3278 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3279 			 struct cam_periph *periph, path_id_t path_id,
3280 			 target_id_t target_id, lun_id_t lun_id)
3281 {
3282 	struct	   cam_path *path;
3283 	struct	   cam_eb *bus = NULL;
3284 	cam_status status;
3285 	int	   need_unlock = 0;
3286 
3287 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3288 
3289 	if (path_id != CAM_BUS_WILDCARD) {
3290 		bus = xpt_find_bus(path_id);
3291 		if (bus != NULL) {
3292 			need_unlock = 1;
3293 			CAM_SIM_LOCK(bus->sim);
3294 		}
3295 	}
3296 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3297 	if (need_unlock)
3298 		CAM_SIM_UNLOCK(bus->sim);
3299 	if (status != CAM_REQ_CMP) {
3300 		free(path, M_CAMXPT);
3301 		path = NULL;
3302 	}
3303 	*new_path_ptr = path;
3304 	return (status);
3305 }
3306 
3307 cam_status
3308 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3309 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3310 {
3311 	struct	     cam_eb *bus;
3312 	struct	     cam_et *target;
3313 	struct	     cam_ed *device;
3314 	cam_status   status;
3315 
3316 	status = CAM_REQ_CMP;	/* Completed without error */
3317 	target = NULL;		/* Wildcarded */
3318 	device = NULL;		/* Wildcarded */
3319 
3320 	/*
3321 	 * We will potentially modify the EDT, so block interrupts
3322 	 * that may attempt to create cam paths.
3323 	 */
3324 	bus = xpt_find_bus(path_id);
3325 	if (bus == NULL) {
3326 		status = CAM_PATH_INVALID;
3327 	} else {
3328 		target = xpt_find_target(bus, target_id);
3329 		if (target == NULL) {
3330 			/* Create one */
3331 			struct cam_et *new_target;
3332 
3333 			new_target = xpt_alloc_target(bus, target_id);
3334 			if (new_target == NULL) {
3335 				status = CAM_RESRC_UNAVAIL;
3336 			} else {
3337 				target = new_target;
3338 			}
3339 		}
3340 		if (target != NULL) {
3341 			device = xpt_find_device(target, lun_id);
3342 			if (device == NULL) {
3343 				/* Create one */
3344 				struct cam_ed *new_device;
3345 
3346 				new_device =
3347 				    (*(bus->xport->alloc_device))(bus,
3348 								      target,
3349 								      lun_id);
3350 				if (new_device == NULL) {
3351 					status = CAM_RESRC_UNAVAIL;
3352 				} else {
3353 					device = new_device;
3354 				}
3355 			}
3356 		}
3357 	}
3358 
3359 	/*
3360 	 * Only touch the user's data if we are successful.
3361 	 */
3362 	if (status == CAM_REQ_CMP) {
3363 		new_path->periph = perph;
3364 		new_path->bus = bus;
3365 		new_path->target = target;
3366 		new_path->device = device;
3367 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3368 	} else {
3369 		if (device != NULL)
3370 			xpt_release_device(device);
3371 		if (target != NULL)
3372 			xpt_release_target(target);
3373 		if (bus != NULL)
3374 			xpt_release_bus(bus);
3375 	}
3376 	return (status);
3377 }
3378 
3379 void
3380 xpt_release_path(struct cam_path *path)
3381 {
3382 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3383 	if (path->device != NULL) {
3384 		xpt_release_device(path->device);
3385 		path->device = NULL;
3386 	}
3387 	if (path->target != NULL) {
3388 		xpt_release_target(path->target);
3389 		path->target = NULL;
3390 	}
3391 	if (path->bus != NULL) {
3392 		xpt_release_bus(path->bus);
3393 		path->bus = NULL;
3394 	}
3395 }
3396 
3397 void
3398 xpt_free_path(struct cam_path *path)
3399 {
3400 
3401 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3402 	xpt_release_path(path);
3403 	free(path, M_CAMXPT);
3404 }
3405 
3406 
3407 /*
3408  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3409  * in path1, 2 for match with wildcards in path2.
3410  */
3411 int
3412 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3413 {
3414 	int retval = 0;
3415 
3416 	if (path1->bus != path2->bus) {
3417 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3418 			retval = 1;
3419 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3420 			retval = 2;
3421 		else
3422 			return (-1);
3423 	}
3424 	if (path1->target != path2->target) {
3425 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3426 			if (retval == 0)
3427 				retval = 1;
3428 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3429 			retval = 2;
3430 		else
3431 			return (-1);
3432 	}
3433 	if (path1->device != path2->device) {
3434 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3435 			if (retval == 0)
3436 				retval = 1;
3437 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3438 			retval = 2;
3439 		else
3440 			return (-1);
3441 	}
3442 	return (retval);
3443 }
3444 
3445 void
3446 xpt_print_path(struct cam_path *path)
3447 {
3448 
3449 	if (path == NULL)
3450 		printf("(nopath): ");
3451 	else {
3452 		if (path->periph != NULL)
3453 			printf("(%s%d:", path->periph->periph_name,
3454 			       path->periph->unit_number);
3455 		else
3456 			printf("(noperiph:");
3457 
3458 		if (path->bus != NULL)
3459 			printf("%s%d:%d:", path->bus->sim->sim_name,
3460 			       path->bus->sim->unit_number,
3461 			       path->bus->sim->bus_id);
3462 		else
3463 			printf("nobus:");
3464 
3465 		if (path->target != NULL)
3466 			printf("%d:", path->target->target_id);
3467 		else
3468 			printf("X:");
3469 
3470 		if (path->device != NULL)
3471 			printf("%d): ", path->device->lun_id);
3472 		else
3473 			printf("X): ");
3474 	}
3475 }
3476 
3477 void
3478 xpt_print(struct cam_path *path, const char *fmt, ...)
3479 {
3480 	va_list ap;
3481 	xpt_print_path(path);
3482 	va_start(ap, fmt);
3483 	vprintf(fmt, ap);
3484 	va_end(ap);
3485 }
3486 
3487 int
3488 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3489 {
3490 	struct sbuf sb;
3491 
3492 #ifdef INVARIANTS
3493 	if (path != NULL && path->bus != NULL)
3494 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3495 #endif
3496 
3497 	sbuf_new(&sb, str, str_len, 0);
3498 
3499 	if (path == NULL)
3500 		sbuf_printf(&sb, "(nopath): ");
3501 	else {
3502 		if (path->periph != NULL)
3503 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3504 				    path->periph->unit_number);
3505 		else
3506 			sbuf_printf(&sb, "(noperiph:");
3507 
3508 		if (path->bus != NULL)
3509 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3510 				    path->bus->sim->unit_number,
3511 				    path->bus->sim->bus_id);
3512 		else
3513 			sbuf_printf(&sb, "nobus:");
3514 
3515 		if (path->target != NULL)
3516 			sbuf_printf(&sb, "%d:", path->target->target_id);
3517 		else
3518 			sbuf_printf(&sb, "X:");
3519 
3520 		if (path->device != NULL)
3521 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3522 		else
3523 			sbuf_printf(&sb, "X): ");
3524 	}
3525 	sbuf_finish(&sb);
3526 
3527 	return(sbuf_len(&sb));
3528 }
3529 
3530 path_id_t
3531 xpt_path_path_id(struct cam_path *path)
3532 {
3533 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3534 
3535 	return(path->bus->path_id);
3536 }
3537 
3538 target_id_t
3539 xpt_path_target_id(struct cam_path *path)
3540 {
3541 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3542 
3543 	if (path->target != NULL)
3544 		return (path->target->target_id);
3545 	else
3546 		return (CAM_TARGET_WILDCARD);
3547 }
3548 
3549 lun_id_t
3550 xpt_path_lun_id(struct cam_path *path)
3551 {
3552 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3553 
3554 	if (path->device != NULL)
3555 		return (path->device->lun_id);
3556 	else
3557 		return (CAM_LUN_WILDCARD);
3558 }
3559 
3560 struct cam_sim *
3561 xpt_path_sim(struct cam_path *path)
3562 {
3563 
3564 	return (path->bus->sim);
3565 }
3566 
3567 struct cam_periph*
3568 xpt_path_periph(struct cam_path *path)
3569 {
3570 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3571 
3572 	return (path->periph);
3573 }
3574 
3575 /*
3576  * Release a CAM control block for the caller.  Remit the cost of the structure
3577  * to the device referenced by the path.  If the this device had no 'credits'
3578  * and peripheral drivers have registered async callbacks for this notification
3579  * call them now.
3580  */
3581 void
3582 xpt_release_ccb(union ccb *free_ccb)
3583 {
3584 	struct	 cam_path *path;
3585 	struct	 cam_ed *device;
3586 	struct	 cam_eb *bus;
3587 	struct   cam_sim *sim;
3588 
3589 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3590 	path = free_ccb->ccb_h.path;
3591 	device = path->device;
3592 	bus = path->bus;
3593 	sim = bus->sim;
3594 
3595 	mtx_assert(sim->mtx, MA_OWNED);
3596 
3597 	cam_ccbq_release_opening(&device->ccbq);
3598 	if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) {
3599 		device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
3600 		cam_ccbq_resize(&device->ccbq,
3601 		    device->ccbq.dev_openings + device->ccbq.dev_active);
3602 	}
3603 	if (sim->ccb_count > sim->max_ccbs) {
3604 		xpt_free_ccb(free_ccb);
3605 		sim->ccb_count--;
3606 	} else {
3607 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3608 		    xpt_links.sle);
3609 	}
3610 	if (sim->devq == NULL) {
3611 		return;
3612 	}
3613 	sim->devq->alloc_openings++;
3614 	sim->devq->alloc_active--;
3615 	if (device_is_alloc_queued(device) == 0)
3616 		xpt_schedule_dev_allocq(bus, device);
3617 	xpt_run_dev_allocq(bus);
3618 }
3619 
3620 /* Functions accessed by SIM drivers */
3621 
3622 static struct xpt_xport xport_default = {
3623 	.alloc_device = xpt_alloc_device_default,
3624 	.action = xpt_action_default,
3625 	.async = xpt_dev_async_default,
3626 };
3627 
3628 /*
3629  * A sim structure, listing the SIM entry points and instance
3630  * identification info is passed to xpt_bus_register to hook the SIM
3631  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3632  * for this new bus and places it in the array of busses and assigns
3633  * it a path_id.  The path_id may be influenced by "hard wiring"
3634  * information specified by the user.  Once interrupt services are
3635  * available, the bus will be probed.
3636  */
3637 int32_t
3638 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3639 {
3640 	struct cam_eb *new_bus;
3641 	struct cam_eb *old_bus;
3642 	struct ccb_pathinq cpi;
3643 	struct cam_path *path;
3644 	cam_status status;
3645 
3646 	mtx_assert(sim->mtx, MA_OWNED);
3647 
3648 	sim->bus_id = bus;
3649 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3650 					  M_CAMXPT, M_NOWAIT);
3651 	if (new_bus == NULL) {
3652 		/* Couldn't satisfy request */
3653 		return (CAM_RESRC_UNAVAIL);
3654 	}
3655 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3656 	if (path == NULL) {
3657 		free(new_bus, M_CAMXPT);
3658 		return (CAM_RESRC_UNAVAIL);
3659 	}
3660 
3661 	if (strcmp(sim->sim_name, "xpt") != 0) {
3662 		sim->path_id =
3663 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3664 	}
3665 
3666 	TAILQ_INIT(&new_bus->et_entries);
3667 	new_bus->path_id = sim->path_id;
3668 	cam_sim_hold(sim);
3669 	new_bus->sim = sim;
3670 	timevalclear(&new_bus->last_reset);
3671 	new_bus->flags = 0;
3672 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3673 	new_bus->generation = 0;
3674 
3675 	mtx_lock(&xsoftc.xpt_topo_lock);
3676 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3677 	while (old_bus != NULL
3678 	    && old_bus->path_id < new_bus->path_id)
3679 		old_bus = TAILQ_NEXT(old_bus, links);
3680 	if (old_bus != NULL)
3681 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3682 	else
3683 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3684 	xsoftc.bus_generation++;
3685 	mtx_unlock(&xsoftc.xpt_topo_lock);
3686 
3687 	/*
3688 	 * Set a default transport so that a PATH_INQ can be issued to
3689 	 * the SIM.  This will then allow for probing and attaching of
3690 	 * a more appropriate transport.
3691 	 */
3692 	new_bus->xport = &xport_default;
3693 
3694 	status = xpt_compile_path(path, /*periph*/NULL, sim->path_id,
3695 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3696 	if (status != CAM_REQ_CMP)
3697 		printf("xpt_compile_path returned %d\n", status);
3698 
3699 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3700 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3701 	xpt_action((union ccb *)&cpi);
3702 
3703 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3704 		switch (cpi.transport) {
3705 		case XPORT_SPI:
3706 		case XPORT_SAS:
3707 		case XPORT_FC:
3708 		case XPORT_USB:
3709 		case XPORT_ISCSI:
3710 		case XPORT_PPB:
3711 			new_bus->xport = scsi_get_xport();
3712 			break;
3713 		case XPORT_ATA:
3714 		case XPORT_SATA:
3715 			new_bus->xport = ata_get_xport();
3716 			break;
3717 		default:
3718 			new_bus->xport = &xport_default;
3719 			break;
3720 		}
3721 	}
3722 
3723 	/* Notify interested parties */
3724 	if (sim->path_id != CAM_XPT_PATH_ID) {
3725 		union	ccb *scan_ccb;
3726 
3727 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3728 		/* Initiate bus rescan. */
3729 		scan_ccb = xpt_alloc_ccb_nowait();
3730 		scan_ccb->ccb_h.path = path;
3731 		scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3732 		scan_ccb->crcn.flags = 0;
3733 		xpt_rescan(scan_ccb);
3734 	} else
3735 		xpt_free_path(path);
3736 	return (CAM_SUCCESS);
3737 }
3738 
3739 int32_t
3740 xpt_bus_deregister(path_id_t pathid)
3741 {
3742 	struct cam_path bus_path;
3743 	cam_status status;
3744 
3745 	status = xpt_compile_path(&bus_path, NULL, pathid,
3746 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3747 	if (status != CAM_REQ_CMP)
3748 		return (status);
3749 
3750 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3751 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3752 
3753 	/* Release the reference count held while registered. */
3754 	xpt_release_bus(bus_path.bus);
3755 	xpt_release_path(&bus_path);
3756 
3757 	return (CAM_REQ_CMP);
3758 }
3759 
3760 static path_id_t
3761 xptnextfreepathid(void)
3762 {
3763 	struct cam_eb *bus;
3764 	path_id_t pathid;
3765 	const char *strval;
3766 
3767 	pathid = 0;
3768 	mtx_lock(&xsoftc.xpt_topo_lock);
3769 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3770 retry:
3771 	/* Find an unoccupied pathid */
3772 	while (bus != NULL && bus->path_id <= pathid) {
3773 		if (bus->path_id == pathid)
3774 			pathid++;
3775 		bus = TAILQ_NEXT(bus, links);
3776 	}
3777 	mtx_unlock(&xsoftc.xpt_topo_lock);
3778 
3779 	/*
3780 	 * Ensure that this pathid is not reserved for
3781 	 * a bus that may be registered in the future.
3782 	 */
3783 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3784 		++pathid;
3785 		/* Start the search over */
3786 		mtx_lock(&xsoftc.xpt_topo_lock);
3787 		goto retry;
3788 	}
3789 	return (pathid);
3790 }
3791 
3792 static path_id_t
3793 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3794 {
3795 	path_id_t pathid;
3796 	int i, dunit, val;
3797 	char buf[32];
3798 	const char *dname;
3799 
3800 	pathid = CAM_XPT_PATH_ID;
3801 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3802 	i = 0;
3803 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3804 		if (strcmp(dname, "scbus")) {
3805 			/* Avoid a bit of foot shooting. */
3806 			continue;
3807 		}
3808 		if (dunit < 0)		/* unwired?! */
3809 			continue;
3810 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3811 			if (sim_bus == val) {
3812 				pathid = dunit;
3813 				break;
3814 			}
3815 		} else if (sim_bus == 0) {
3816 			/* Unspecified matches bus 0 */
3817 			pathid = dunit;
3818 			break;
3819 		} else {
3820 			printf("Ambiguous scbus configuration for %s%d "
3821 			       "bus %d, cannot wire down.  The kernel "
3822 			       "config entry for scbus%d should "
3823 			       "specify a controller bus.\n"
3824 			       "Scbus will be assigned dynamically.\n",
3825 			       sim_name, sim_unit, sim_bus, dunit);
3826 			break;
3827 		}
3828 	}
3829 
3830 	if (pathid == CAM_XPT_PATH_ID)
3831 		pathid = xptnextfreepathid();
3832 	return (pathid);
3833 }
3834 
3835 void
3836 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3837 {
3838 	struct cam_eb *bus;
3839 	struct cam_et *target, *next_target;
3840 	struct cam_ed *device, *next_device;
3841 
3842 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3843 
3844 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3845 
3846 	/*
3847 	 * Most async events come from a CAM interrupt context.  In
3848 	 * a few cases, the error recovery code at the peripheral layer,
3849 	 * which may run from our SWI or a process context, may signal
3850 	 * deferred events with a call to xpt_async.
3851 	 */
3852 
3853 	bus = path->bus;
3854 
3855 	if (async_code == AC_BUS_RESET) {
3856 		/* Update our notion of when the last reset occurred */
3857 		microtime(&bus->last_reset);
3858 	}
3859 
3860 	for (target = TAILQ_FIRST(&bus->et_entries);
3861 	     target != NULL;
3862 	     target = next_target) {
3863 
3864 		next_target = TAILQ_NEXT(target, links);
3865 
3866 		if (path->target != target
3867 		 && path->target->target_id != CAM_TARGET_WILDCARD
3868 		 && target->target_id != CAM_TARGET_WILDCARD)
3869 			continue;
3870 
3871 		if (async_code == AC_SENT_BDR) {
3872 			/* Update our notion of when the last reset occurred */
3873 			microtime(&path->target->last_reset);
3874 		}
3875 
3876 		for (device = TAILQ_FIRST(&target->ed_entries);
3877 		     device != NULL;
3878 		     device = next_device) {
3879 
3880 			next_device = TAILQ_NEXT(device, links);
3881 
3882 			if (path->device != device
3883 			 && path->device->lun_id != CAM_LUN_WILDCARD
3884 			 && device->lun_id != CAM_LUN_WILDCARD)
3885 				continue;
3886 			/*
3887 			 * The async callback could free the device.
3888 			 * If it is a broadcast async, it doesn't hold
3889 			 * device reference, so take our own reference.
3890 			 */
3891 			xpt_acquire_device(device);
3892 			(*(bus->xport->async))(async_code, bus,
3893 					       target, device,
3894 					       async_arg);
3895 
3896 			xpt_async_bcast(&device->asyncs, async_code,
3897 					path, async_arg);
3898 			xpt_release_device(device);
3899 		}
3900 	}
3901 
3902 	/*
3903 	 * If this wasn't a fully wildcarded async, tell all
3904 	 * clients that want all async events.
3905 	 */
3906 	if (bus != xpt_periph->path->bus)
3907 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
3908 				path, async_arg);
3909 }
3910 
3911 static void
3912 xpt_async_bcast(struct async_list *async_head,
3913 		u_int32_t async_code,
3914 		struct cam_path *path, void *async_arg)
3915 {
3916 	struct async_node *cur_entry;
3917 
3918 	cur_entry = SLIST_FIRST(async_head);
3919 	while (cur_entry != NULL) {
3920 		struct async_node *next_entry;
3921 		/*
3922 		 * Grab the next list entry before we call the current
3923 		 * entry's callback.  This is because the callback function
3924 		 * can delete its async callback entry.
3925 		 */
3926 		next_entry = SLIST_NEXT(cur_entry, links);
3927 		if ((cur_entry->event_enable & async_code) != 0)
3928 			cur_entry->callback(cur_entry->callback_arg,
3929 					    async_code, path,
3930 					    async_arg);
3931 		cur_entry = next_entry;
3932 	}
3933 }
3934 
3935 static void
3936 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
3937 		      struct cam_et *target, struct cam_ed *device,
3938 		      void *async_arg)
3939 {
3940 	printf("%s called\n", __func__);
3941 }
3942 
3943 u_int32_t
3944 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count)
3945 {
3946 	struct cam_ed *dev = path->device;
3947 
3948 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3949 	dev->sim->devq->alloc_openings +=
3950 	    cam_ccbq_freeze(&dev->ccbq, rl, count);
3951 	/* Remove frozen device from allocq. */
3952 	if (device_is_alloc_queued(dev) &&
3953 	    cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
3954 	     CAMQ_GET_PRIO(&dev->drvq)))) {
3955 		camq_remove(&dev->sim->devq->alloc_queue,
3956 		    dev->alloc_ccb_entry.pinfo.index);
3957 	}
3958 	/* Remove frozen device from sendq. */
3959 	if (device_is_send_queued(dev) &&
3960 	    cam_ccbq_frozen_top(&dev->ccbq)) {
3961 		camq_remove(&dev->sim->devq->send_queue,
3962 		    dev->send_ccb_entry.pinfo.index);
3963 	}
3964 	return (dev->ccbq.queue.qfrozen_cnt[rl]);
3965 }
3966 
3967 u_int32_t
3968 xpt_freeze_devq(struct cam_path *path, u_int count)
3969 {
3970 
3971 	return (xpt_freeze_devq_rl(path, 0, count));
3972 }
3973 
3974 u_int32_t
3975 xpt_freeze_simq(struct cam_sim *sim, u_int count)
3976 {
3977 
3978 	mtx_assert(sim->mtx, MA_OWNED);
3979 	sim->devq->send_queue.qfrozen_cnt[0] += count;
3980 	return (sim->devq->send_queue.qfrozen_cnt[0]);
3981 }
3982 
3983 static void
3984 xpt_release_devq_timeout(void *arg)
3985 {
3986 	struct cam_ed *device;
3987 
3988 	device = (struct cam_ed *)arg;
3989 
3990 	xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE);
3991 }
3992 
3993 void
3994 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
3995 {
3996 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3997 
3998 	xpt_release_devq_device(path->device, /*rl*/0, count, run_queue);
3999 }
4000 
4001 void
4002 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue)
4003 {
4004 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4005 
4006 	xpt_release_devq_device(path->device, rl, count, run_queue);
4007 }
4008 
4009 static void
4010 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue)
4011 {
4012 
4013 	if (count > dev->ccbq.queue.qfrozen_cnt[rl]) {
4014 #ifdef INVARIANTS
4015 		printf("xpt_release_devq(%d): requested %u > present %u\n",
4016 		    rl, count, dev->ccbq.queue.qfrozen_cnt[rl]);
4017 #endif
4018 		count = dev->ccbq.queue.qfrozen_cnt[rl];
4019 	}
4020 	dev->sim->devq->alloc_openings -=
4021 	    cam_ccbq_release(&dev->ccbq, rl, count);
4022 	if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL(
4023 	    CAMQ_GET_PRIO(&dev->drvq))) == 0) {
4024 		if (xpt_schedule_dev_allocq(dev->target->bus, dev))
4025 			xpt_run_dev_allocq(dev->target->bus);
4026 	}
4027 	if (cam_ccbq_frozen_top(&dev->ccbq) == 0) {
4028 		/*
4029 		 * No longer need to wait for a successful
4030 		 * command completion.
4031 		 */
4032 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4033 		/*
4034 		 * Remove any timeouts that might be scheduled
4035 		 * to release this queue.
4036 		 */
4037 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4038 			callout_stop(&dev->callout);
4039 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4040 		}
4041 		if (run_queue == 0)
4042 			return;
4043 		/*
4044 		 * Now that we are unfrozen schedule the
4045 		 * device so any pending transactions are
4046 		 * run.
4047 		 */
4048 		if (xpt_schedule_dev_sendq(dev->target->bus, dev))
4049 			xpt_run_dev_sendq(dev->target->bus);
4050 	}
4051 }
4052 
4053 void
4054 xpt_release_simq(struct cam_sim *sim, int run_queue)
4055 {
4056 	struct	camq *sendq;
4057 
4058 	mtx_assert(sim->mtx, MA_OWNED);
4059 	sendq = &(sim->devq->send_queue);
4060 	if (sendq->qfrozen_cnt[0] <= 0) {
4061 #ifdef INVARIANTS
4062 		printf("xpt_release_simq: requested 1 > present %u\n",
4063 		    sendq->qfrozen_cnt[0]);
4064 #endif
4065 	} else
4066 		sendq->qfrozen_cnt[0]--;
4067 	if (sendq->qfrozen_cnt[0] == 0) {
4068 		/*
4069 		 * If there is a timeout scheduled to release this
4070 		 * sim queue, remove it.  The queue frozen count is
4071 		 * already at 0.
4072 		 */
4073 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4074 			callout_stop(&sim->callout);
4075 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4076 		}
4077 		if (run_queue) {
4078 			struct cam_eb *bus;
4079 
4080 			/*
4081 			 * Now that we are unfrozen run the send queue.
4082 			 */
4083 			bus = xpt_find_bus(sim->path_id);
4084 			xpt_run_dev_sendq(bus);
4085 			xpt_release_bus(bus);
4086 		}
4087 	}
4088 }
4089 
4090 /*
4091  * XXX Appears to be unused.
4092  */
4093 static void
4094 xpt_release_simq_timeout(void *arg)
4095 {
4096 	struct cam_sim *sim;
4097 
4098 	sim = (struct cam_sim *)arg;
4099 	xpt_release_simq(sim, /* run_queue */ TRUE);
4100 }
4101 
4102 void
4103 xpt_done(union ccb *done_ccb)
4104 {
4105 	struct cam_sim *sim;
4106 	int	first;
4107 
4108 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4109 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4110 		/*
4111 		 * Queue up the request for handling by our SWI handler
4112 		 * any of the "non-immediate" type of ccbs.
4113 		 */
4114 		sim = done_ccb->ccb_h.path->bus->sim;
4115 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4116 		    sim_links.tqe);
4117 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4118 		if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4119 			mtx_lock(&cam_simq_lock);
4120 			first = TAILQ_EMPTY(&cam_simq);
4121 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4122 			mtx_unlock(&cam_simq_lock);
4123 			sim->flags |= CAM_SIM_ON_DONEQ;
4124 			if (first)
4125 				swi_sched(cambio_ih, 0);
4126 		}
4127 	}
4128 }
4129 
4130 union ccb *
4131 xpt_alloc_ccb()
4132 {
4133 	union ccb *new_ccb;
4134 
4135 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4136 	return (new_ccb);
4137 }
4138 
4139 union ccb *
4140 xpt_alloc_ccb_nowait()
4141 {
4142 	union ccb *new_ccb;
4143 
4144 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4145 	return (new_ccb);
4146 }
4147 
4148 void
4149 xpt_free_ccb(union ccb *free_ccb)
4150 {
4151 	free(free_ccb, M_CAMXPT);
4152 }
4153 
4154 
4155 
4156 /* Private XPT functions */
4157 
4158 /*
4159  * Get a CAM control block for the caller. Charge the structure to the device
4160  * referenced by the path.  If the this device has no 'credits' then the
4161  * device already has the maximum number of outstanding operations under way
4162  * and we return NULL. If we don't have sufficient resources to allocate more
4163  * ccbs, we also return NULL.
4164  */
4165 static union ccb *
4166 xpt_get_ccb(struct cam_ed *device)
4167 {
4168 	union ccb *new_ccb;
4169 	struct cam_sim *sim;
4170 
4171 	sim = device->sim;
4172 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4173 		new_ccb = xpt_alloc_ccb_nowait();
4174                 if (new_ccb == NULL) {
4175 			return (NULL);
4176 		}
4177 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4178 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4179 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4180 				  xpt_links.sle);
4181 		sim->ccb_count++;
4182 	}
4183 	cam_ccbq_take_opening(&device->ccbq);
4184 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4185 	return (new_ccb);
4186 }
4187 
4188 static void
4189 xpt_release_bus(struct cam_eb *bus)
4190 {
4191 
4192 	if ((--bus->refcount == 0)
4193 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4194 		mtx_lock(&xsoftc.xpt_topo_lock);
4195 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4196 		xsoftc.bus_generation++;
4197 		mtx_unlock(&xsoftc.xpt_topo_lock);
4198 		cam_sim_release(bus->sim);
4199 		free(bus, M_CAMXPT);
4200 	}
4201 }
4202 
4203 static struct cam_et *
4204 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4205 {
4206 	struct cam_et *target;
4207 
4208 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4209 	if (target != NULL) {
4210 		struct cam_et *cur_target;
4211 
4212 		TAILQ_INIT(&target->ed_entries);
4213 		target->bus = bus;
4214 		target->target_id = target_id;
4215 		target->refcount = 1;
4216 		target->generation = 0;
4217 		target->luns = NULL;
4218 		timevalclear(&target->last_reset);
4219 		/*
4220 		 * Hold a reference to our parent bus so it
4221 		 * will not go away before we do.
4222 		 */
4223 		bus->refcount++;
4224 
4225 		/* Insertion sort into our bus's target list */
4226 		cur_target = TAILQ_FIRST(&bus->et_entries);
4227 		while (cur_target != NULL && cur_target->target_id < target_id)
4228 			cur_target = TAILQ_NEXT(cur_target, links);
4229 
4230 		if (cur_target != NULL) {
4231 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4232 		} else {
4233 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4234 		}
4235 		bus->generation++;
4236 	}
4237 	return (target);
4238 }
4239 
4240 static void
4241 xpt_release_target(struct cam_et *target)
4242 {
4243 
4244 	if ((--target->refcount == 0)
4245 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4246 		TAILQ_REMOVE(&target->bus->et_entries, target, links);
4247 		target->bus->generation++;
4248 		xpt_release_bus(target->bus);
4249 		if (target->luns)
4250 			free(target->luns, M_CAMXPT);
4251 		free(target, M_CAMXPT);
4252 	}
4253 }
4254 
4255 static struct cam_ed *
4256 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4257 			 lun_id_t lun_id)
4258 {
4259 	struct cam_ed *device, *cur_device;
4260 
4261 	device = xpt_alloc_device(bus, target, lun_id);
4262 	if (device == NULL)
4263 		return (NULL);
4264 
4265 	device->mintags = 1;
4266 	device->maxtags = 1;
4267 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4268 	cur_device = TAILQ_FIRST(&target->ed_entries);
4269 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4270 		cur_device = TAILQ_NEXT(cur_device, links);
4271 	if (cur_device != NULL) {
4272 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4273 	} else {
4274 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4275 	}
4276 	target->generation++;
4277 
4278 	return (device);
4279 }
4280 
4281 struct cam_ed *
4282 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4283 {
4284 	struct	   cam_ed *device;
4285 	struct	   cam_devq *devq;
4286 	cam_status status;
4287 
4288 	/* Make space for us in the device queue on our bus */
4289 	devq = bus->sim->devq;
4290 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4291 
4292 	if (status != CAM_REQ_CMP) {
4293 		device = NULL;
4294 	} else {
4295 		device = (struct cam_ed *)malloc(sizeof(*device),
4296 						 M_CAMXPT, M_NOWAIT);
4297 	}
4298 
4299 	if (device != NULL) {
4300 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4301 		device->alloc_ccb_entry.device = device;
4302 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4303 		device->send_ccb_entry.device = device;
4304 		device->target = target;
4305 		device->lun_id = lun_id;
4306 		device->sim = bus->sim;
4307 		/* Initialize our queues */
4308 		if (camq_init(&device->drvq, 0) != 0) {
4309 			free(device, M_CAMXPT);
4310 			return (NULL);
4311 		}
4312 		if (cam_ccbq_init(&device->ccbq,
4313 				  bus->sim->max_dev_openings) != 0) {
4314 			camq_fini(&device->drvq);
4315 			free(device, M_CAMXPT);
4316 			return (NULL);
4317 		}
4318 		SLIST_INIT(&device->asyncs);
4319 		SLIST_INIT(&device->periphs);
4320 		device->generation = 0;
4321 		device->owner = NULL;
4322 		device->flags = CAM_DEV_UNCONFIGURED;
4323 		device->tag_delay_count = 0;
4324 		device->tag_saved_openings = 0;
4325 		device->refcount = 1;
4326 		callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4327 
4328 		/*
4329 		 * Hold a reference to our parent target so it
4330 		 * will not go away before we do.
4331 		 */
4332 		target->refcount++;
4333 
4334 	}
4335 	return (device);
4336 }
4337 
4338 void
4339 xpt_acquire_device(struct cam_ed *device)
4340 {
4341 
4342 	device->refcount++;
4343 }
4344 
4345 void
4346 xpt_release_device(struct cam_ed *device)
4347 {
4348 
4349 	if (--device->refcount == 0) {
4350 		struct cam_devq *devq;
4351 
4352 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4353 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4354 			panic("Removing device while still queued for ccbs");
4355 
4356 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4357 				callout_stop(&device->callout);
4358 
4359 		TAILQ_REMOVE(&device->target->ed_entries, device,links);
4360 		device->target->generation++;
4361 		device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4362 		/* Release our slot in the devq */
4363 		devq = device->target->bus->sim->devq;
4364 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4365 		camq_fini(&device->drvq);
4366 		cam_ccbq_fini(&device->ccbq);
4367 		xpt_release_target(device->target);
4368 		free(device, M_CAMXPT);
4369 	}
4370 }
4371 
4372 u_int32_t
4373 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4374 {
4375 	int	diff;
4376 	int	result;
4377 	struct	cam_ed *dev;
4378 
4379 	dev = path->device;
4380 
4381 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4382 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4383 	if (result == CAM_REQ_CMP && (diff < 0)) {
4384 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4385 	}
4386 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4387 	 || (dev->inq_flags & SID_CmdQue) != 0)
4388 		dev->tag_saved_openings = newopenings;
4389 	/* Adjust the global limit */
4390 	dev->sim->max_ccbs += diff;
4391 	return (result);
4392 }
4393 
4394 static struct cam_eb *
4395 xpt_find_bus(path_id_t path_id)
4396 {
4397 	struct cam_eb *bus;
4398 
4399 	mtx_lock(&xsoftc.xpt_topo_lock);
4400 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4401 	     bus != NULL;
4402 	     bus = TAILQ_NEXT(bus, links)) {
4403 		if (bus->path_id == path_id) {
4404 			bus->refcount++;
4405 			break;
4406 		}
4407 	}
4408 	mtx_unlock(&xsoftc.xpt_topo_lock);
4409 	return (bus);
4410 }
4411 
4412 static struct cam_et *
4413 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4414 {
4415 	struct cam_et *target;
4416 
4417 	for (target = TAILQ_FIRST(&bus->et_entries);
4418 	     target != NULL;
4419 	     target = TAILQ_NEXT(target, links)) {
4420 		if (target->target_id == target_id) {
4421 			target->refcount++;
4422 			break;
4423 		}
4424 	}
4425 	return (target);
4426 }
4427 
4428 static struct cam_ed *
4429 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4430 {
4431 	struct cam_ed *device;
4432 
4433 	for (device = TAILQ_FIRST(&target->ed_entries);
4434 	     device != NULL;
4435 	     device = TAILQ_NEXT(device, links)) {
4436 		if (device->lun_id == lun_id) {
4437 			device->refcount++;
4438 			break;
4439 		}
4440 	}
4441 	return (device);
4442 }
4443 
4444 void
4445 xpt_start_tags(struct cam_path *path)
4446 {
4447 	struct ccb_relsim crs;
4448 	struct cam_ed *device;
4449 	struct cam_sim *sim;
4450 	int    newopenings;
4451 
4452 	device = path->device;
4453 	sim = path->bus->sim;
4454 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4455 	xpt_freeze_devq(path, /*count*/1);
4456 	device->inq_flags |= SID_CmdQue;
4457 	if (device->tag_saved_openings != 0)
4458 		newopenings = device->tag_saved_openings;
4459 	else
4460 		newopenings = min(device->maxtags,
4461 				  sim->max_tagged_dev_openings);
4462 	xpt_dev_ccbq_resize(path, newopenings);
4463 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4464 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4465 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4466 	crs.openings
4467 	    = crs.release_timeout
4468 	    = crs.qfrozen_cnt
4469 	    = 0;
4470 	xpt_action((union ccb *)&crs);
4471 }
4472 
4473 void
4474 xpt_stop_tags(struct cam_path *path)
4475 {
4476 	struct ccb_relsim crs;
4477 	struct cam_ed *device;
4478 	struct cam_sim *sim;
4479 
4480 	device = path->device;
4481 	sim = path->bus->sim;
4482 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4483 	device->tag_delay_count = 0;
4484 	xpt_freeze_devq(path, /*count*/1);
4485 	device->inq_flags &= ~SID_CmdQue;
4486 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4487 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4488 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4489 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4490 	crs.openings
4491 	    = crs.release_timeout
4492 	    = crs.qfrozen_cnt
4493 	    = 0;
4494 	xpt_action((union ccb *)&crs);
4495 }
4496 
4497 static void
4498 xpt_boot_delay(void *arg)
4499 {
4500 
4501 	xpt_release_boot();
4502 }
4503 
4504 static void
4505 xpt_config(void *arg)
4506 {
4507 	/*
4508 	 * Now that interrupts are enabled, go find our devices
4509 	 */
4510 
4511 #ifdef CAMDEBUG
4512 	/* Setup debugging flags and path */
4513 #ifdef CAM_DEBUG_BUS
4514 	if (cam_dflags != CAM_DEBUG_NONE) {
4515 		/*
4516 		 * Locking is specifically omitted here.  No SIMs have
4517 		 * registered yet, so xpt_create_path will only be searching
4518 		 * empty lists of targets and devices.
4519 		 */
4520 		if (xpt_create_path(&cam_dpath, xpt_periph,
4521 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4522 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4523 			printf("xpt_config: xpt_create_path() failed for debug"
4524 			       " target %d:%d:%d, debugging disabled\n",
4525 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4526 			cam_dflags = CAM_DEBUG_NONE;
4527 		}
4528 	} else
4529 		cam_dpath = NULL;
4530 #else /* !CAM_DEBUG_BUS */
4531 	cam_dpath = NULL;
4532 #endif /* CAM_DEBUG_BUS */
4533 #endif /* CAMDEBUG */
4534 
4535 	periphdriver_init(1);
4536 	xpt_hold_boot();
4537 	callout_init(&xsoftc.boot_callout, 1);
4538 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4539 	    xpt_boot_delay, NULL);
4540 	/* Fire up rescan thread. */
4541 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4542 		printf("xpt_config: failed to create rescan thread.\n");
4543 	}
4544 }
4545 
4546 void
4547 xpt_hold_boot(void)
4548 {
4549 	xpt_lock_buses();
4550 	xsoftc.buses_to_config++;
4551 	xpt_unlock_buses();
4552 }
4553 
4554 void
4555 xpt_release_boot(void)
4556 {
4557 	xpt_lock_buses();
4558 	xsoftc.buses_to_config--;
4559 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4560 		struct	xpt_task *task;
4561 
4562 		xsoftc.buses_config_done = 1;
4563 		xpt_unlock_buses();
4564 		/* Call manually because we don't have any busses */
4565 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4566 		if (task != NULL) {
4567 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4568 			taskqueue_enqueue(taskqueue_thread, &task->task);
4569 		}
4570 	} else
4571 		xpt_unlock_buses();
4572 }
4573 
4574 /*
4575  * If the given device only has one peripheral attached to it, and if that
4576  * peripheral is the passthrough driver, announce it.  This insures that the
4577  * user sees some sort of announcement for every peripheral in their system.
4578  */
4579 static int
4580 xptpassannouncefunc(struct cam_ed *device, void *arg)
4581 {
4582 	struct cam_periph *periph;
4583 	int i;
4584 
4585 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4586 	     periph = SLIST_NEXT(periph, periph_links), i++);
4587 
4588 	periph = SLIST_FIRST(&device->periphs);
4589 	if ((i == 1)
4590 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4591 		xpt_announce_periph(periph, NULL);
4592 
4593 	return(1);
4594 }
4595 
4596 static void
4597 xpt_finishconfig_task(void *context, int pending)
4598 {
4599 
4600 	periphdriver_init(2);
4601 	/*
4602 	 * Check for devices with no "standard" peripheral driver
4603 	 * attached.  For any devices like that, announce the
4604 	 * passthrough driver so the user will see something.
4605 	 */
4606 	xpt_for_all_devices(xptpassannouncefunc, NULL);
4607 
4608 	/* Release our hook so that the boot can continue. */
4609 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4610 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4611 	xsoftc.xpt_config_hook = NULL;
4612 
4613 	free(context, M_CAMXPT);
4614 }
4615 
4616 cam_status
4617 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4618 		   struct cam_path *path)
4619 {
4620 	struct ccb_setasync csa;
4621 	cam_status status;
4622 	int xptpath = 0;
4623 
4624 	if (path == NULL) {
4625 		mtx_lock(&xsoftc.xpt_lock);
4626 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4627 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4628 		if (status != CAM_REQ_CMP) {
4629 			mtx_unlock(&xsoftc.xpt_lock);
4630 			return (status);
4631 		}
4632 		xptpath = 1;
4633 	}
4634 
4635 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4636 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4637 	csa.event_enable = event;
4638 	csa.callback = cbfunc;
4639 	csa.callback_arg = cbarg;
4640 	xpt_action((union ccb *)&csa);
4641 	status = csa.ccb_h.status;
4642 	if (xptpath) {
4643 		xpt_free_path(path);
4644 		mtx_unlock(&xsoftc.xpt_lock);
4645 
4646 		if ((status == CAM_REQ_CMP) &&
4647 		    (csa.event_enable & AC_FOUND_DEVICE)) {
4648 			/*
4649 			 * Get this peripheral up to date with all
4650 			 * the currently existing devices.
4651 			 */
4652 			xpt_for_all_devices(xptsetasyncfunc, &csa);
4653 		}
4654 		if ((status == CAM_REQ_CMP) &&
4655 		    (csa.event_enable & AC_PATH_REGISTERED)) {
4656 			/*
4657 			 * Get this peripheral up to date with all
4658 			 * the currently existing busses.
4659 			 */
4660 			xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4661 		}
4662 	}
4663 	return (status);
4664 }
4665 
4666 static void
4667 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4668 {
4669 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4670 
4671 	switch (work_ccb->ccb_h.func_code) {
4672 	/* Common cases first */
4673 	case XPT_PATH_INQ:		/* Path routing inquiry */
4674 	{
4675 		struct ccb_pathinq *cpi;
4676 
4677 		cpi = &work_ccb->cpi;
4678 		cpi->version_num = 1; /* XXX??? */
4679 		cpi->hba_inquiry = 0;
4680 		cpi->target_sprt = 0;
4681 		cpi->hba_misc = 0;
4682 		cpi->hba_eng_cnt = 0;
4683 		cpi->max_target = 0;
4684 		cpi->max_lun = 0;
4685 		cpi->initiator_id = 0;
4686 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4687 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4688 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4689 		cpi->unit_number = sim->unit_number;
4690 		cpi->bus_id = sim->bus_id;
4691 		cpi->base_transfer_speed = 0;
4692 		cpi->protocol = PROTO_UNSPECIFIED;
4693 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4694 		cpi->transport = XPORT_UNSPECIFIED;
4695 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4696 		cpi->ccb_h.status = CAM_REQ_CMP;
4697 		xpt_done(work_ccb);
4698 		break;
4699 	}
4700 	default:
4701 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4702 		xpt_done(work_ccb);
4703 		break;
4704 	}
4705 }
4706 
4707 /*
4708  * The xpt as a "controller" has no interrupt sources, so polling
4709  * is a no-op.
4710  */
4711 static void
4712 xptpoll(struct cam_sim *sim)
4713 {
4714 }
4715 
4716 void
4717 xpt_lock_buses(void)
4718 {
4719 	mtx_lock(&xsoftc.xpt_topo_lock);
4720 }
4721 
4722 void
4723 xpt_unlock_buses(void)
4724 {
4725 	mtx_unlock(&xsoftc.xpt_topo_lock);
4726 }
4727 
4728 static void
4729 camisr(void *dummy)
4730 {
4731 	cam_simq_t queue;
4732 	struct cam_sim *sim;
4733 
4734 	mtx_lock(&cam_simq_lock);
4735 	TAILQ_INIT(&queue);
4736 	while (!TAILQ_EMPTY(&cam_simq)) {
4737 		TAILQ_CONCAT(&queue, &cam_simq, links);
4738 		mtx_unlock(&cam_simq_lock);
4739 
4740 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4741 			TAILQ_REMOVE(&queue, sim, links);
4742 			CAM_SIM_LOCK(sim);
4743 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4744 			camisr_runqueue(&sim->sim_doneq);
4745 			CAM_SIM_UNLOCK(sim);
4746 		}
4747 		mtx_lock(&cam_simq_lock);
4748 	}
4749 	mtx_unlock(&cam_simq_lock);
4750 }
4751 
4752 static void
4753 camisr_runqueue(void *V_queue)
4754 {
4755 	cam_isrq_t *queue = V_queue;
4756 	struct	ccb_hdr *ccb_h;
4757 
4758 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4759 		int	runq;
4760 
4761 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4762 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4763 
4764 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4765 			  ("camisr\n"));
4766 
4767 		runq = FALSE;
4768 
4769 		if (ccb_h->flags & CAM_HIGH_POWER) {
4770 			struct highpowerlist	*hphead;
4771 			union ccb		*send_ccb;
4772 
4773 			mtx_lock(&xsoftc.xpt_lock);
4774 			hphead = &xsoftc.highpowerq;
4775 
4776 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4777 
4778 			/*
4779 			 * Increment the count since this command is done.
4780 			 */
4781 			xsoftc.num_highpower++;
4782 
4783 			/*
4784 			 * Any high powered commands queued up?
4785 			 */
4786 			if (send_ccb != NULL) {
4787 
4788 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4789 				mtx_unlock(&xsoftc.xpt_lock);
4790 
4791 				xpt_release_devq(send_ccb->ccb_h.path,
4792 						 /*count*/1, /*runqueue*/TRUE);
4793 			} else
4794 				mtx_unlock(&xsoftc.xpt_lock);
4795 		}
4796 
4797 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4798 			struct cam_ed *dev;
4799 
4800 			dev = ccb_h->path->device;
4801 
4802 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4803 			ccb_h->path->bus->sim->devq->send_active--;
4804 			ccb_h->path->bus->sim->devq->send_openings++;
4805 			runq = TRUE;
4806 
4807 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4808 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4809 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4810 			  && (dev->ccbq.dev_active == 0))) {
4811 				xpt_release_devq(ccb_h->path, /*count*/1,
4812 						 /*run_queue*/FALSE);
4813 			}
4814 
4815 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4816 			 && (--dev->tag_delay_count == 0))
4817 				xpt_start_tags(ccb_h->path);
4818 			if (!device_is_send_queued(dev))
4819 				xpt_schedule_dev_sendq(ccb_h->path->bus, dev);
4820 		}
4821 
4822 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
4823 			xpt_release_simq(ccb_h->path->bus->sim,
4824 					 /*run_queue*/TRUE);
4825 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
4826 			runq = FALSE;
4827 		}
4828 
4829 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4830 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
4831 			xpt_release_devq(ccb_h->path, /*count*/1,
4832 					 /*run_queue*/TRUE);
4833 			ccb_h->status &= ~CAM_DEV_QFRZN;
4834 		} else if (runq) {
4835 			xpt_run_dev_sendq(ccb_h->path->bus);
4836 		}
4837 
4838 		/* Call the peripheral driver's callback */
4839 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4840 	}
4841 }
4842