1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #ifdef PC98 52 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 53 #endif 54 55 #include <cam/cam.h> 56 #include <cam/cam_ccb.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_sim.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_sim.h> 62 #include <cam/cam_xpt_periph.h> 63 #include <cam/cam_xpt_internal.h> 64 #include <cam/cam_debug.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/scsi/scsi_message.h> 68 #include <cam/scsi/scsi_pass.h> 69 #include <machine/stdarg.h> /* for xpt_print below */ 70 #include "opt_cam.h" 71 72 /* 73 * This is the maximum number of high powered commands (e.g. start unit) 74 * that can be outstanding at a particular time. 75 */ 76 #ifndef CAM_MAX_HIGHPOWER 77 #define CAM_MAX_HIGHPOWER 4 78 #endif 79 80 /* Datastructures internal to the xpt layer */ 81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 82 83 /* Object for defering XPT actions to a taskqueue */ 84 struct xpt_task { 85 struct task task; 86 void *data1; 87 uintptr_t data2; 88 }; 89 90 typedef enum { 91 XPT_FLAG_OPEN = 0x01 92 } xpt_flags; 93 94 struct xpt_softc { 95 xpt_flags flags; 96 u_int32_t xpt_generation; 97 98 /* number of high powered commands that can go through right now */ 99 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 100 int num_highpower; 101 102 /* queue for handling async rescan requests. */ 103 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 104 int buses_to_config; 105 int buses_config_done; 106 107 /* Registered busses */ 108 TAILQ_HEAD(,cam_eb) xpt_busses; 109 u_int bus_generation; 110 111 struct intr_config_hook *xpt_config_hook; 112 113 int boot_delay; 114 struct callout boot_callout; 115 116 struct mtx xpt_topo_lock; 117 struct mtx xpt_lock; 118 }; 119 120 typedef enum { 121 DM_RET_COPY = 0x01, 122 DM_RET_FLAG_MASK = 0x0f, 123 DM_RET_NONE = 0x00, 124 DM_RET_STOP = 0x10, 125 DM_RET_DESCEND = 0x20, 126 DM_RET_ERROR = 0x30, 127 DM_RET_ACTION_MASK = 0xf0 128 } dev_match_ret; 129 130 typedef enum { 131 XPT_DEPTH_BUS, 132 XPT_DEPTH_TARGET, 133 XPT_DEPTH_DEVICE, 134 XPT_DEPTH_PERIPH 135 } xpt_traverse_depth; 136 137 struct xpt_traverse_config { 138 xpt_traverse_depth depth; 139 void *tr_func; 140 void *tr_arg; 141 }; 142 143 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 144 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 145 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 146 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 147 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 148 149 /* Transport layer configuration information */ 150 static struct xpt_softc xsoftc; 151 152 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 153 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 154 &xsoftc.boot_delay, 0, "Bus registration wait time"); 155 156 /* Queues for our software interrupt handler */ 157 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 158 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 159 static cam_simq_t cam_simq; 160 static struct mtx cam_simq_lock; 161 162 /* Pointers to software interrupt handlers */ 163 static void *cambio_ih; 164 165 struct cam_periph *xpt_periph; 166 167 static periph_init_t xpt_periph_init; 168 169 static struct periph_driver xpt_driver = 170 { 171 xpt_periph_init, "xpt", 172 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 173 CAM_PERIPH_DRV_EARLY 174 }; 175 176 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 177 178 static d_open_t xptopen; 179 static d_close_t xptclose; 180 static d_ioctl_t xptioctl; 181 182 static struct cdevsw xpt_cdevsw = { 183 .d_version = D_VERSION, 184 .d_flags = 0, 185 .d_open = xptopen, 186 .d_close = xptclose, 187 .d_ioctl = xptioctl, 188 .d_name = "xpt", 189 }; 190 191 /* Storage for debugging datastructures */ 192 #ifdef CAMDEBUG 193 struct cam_path *cam_dpath; 194 #ifdef CAM_DEBUG_FLAGS 195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 196 #else 197 u_int32_t cam_dflags = CAM_DEBUG_NONE; 198 #endif 199 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 200 SYSCTL_INT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 201 &cam_dflags, 0, "Cam Debug Flags"); 202 u_int32_t cam_debug_delay; 203 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 204 SYSCTL_INT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 205 &cam_debug_delay, 0, "Cam Debug Flags"); 206 #endif 207 208 /* Our boot-time initialization hook */ 209 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 210 211 static moduledata_t cam_moduledata = { 212 "cam", 213 cam_module_event_handler, 214 NULL 215 }; 216 217 static int xpt_init(void *); 218 219 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 220 MODULE_VERSION(cam, 1); 221 222 223 static void xpt_async_bcast(struct async_list *async_head, 224 u_int32_t async_code, 225 struct cam_path *path, 226 void *async_arg); 227 static path_id_t xptnextfreepathid(void); 228 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 229 static union ccb *xpt_get_ccb(struct cam_ed *device); 230 static void xpt_run_dev_allocq(struct cam_eb *bus); 231 static void xpt_run_dev_sendq(struct cam_eb *bus); 232 static timeout_t xpt_release_devq_timeout; 233 static void xpt_release_simq_timeout(void *arg) __unused; 234 static void xpt_release_bus(struct cam_eb *bus); 235 static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, 236 u_int count, int run_queue); 237 static struct cam_et* 238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 239 static void xpt_release_target(struct cam_et *target); 240 static struct cam_eb* 241 xpt_find_bus(path_id_t path_id); 242 static struct cam_et* 243 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 244 static struct cam_ed* 245 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 246 static void xpt_config(void *arg); 247 static xpt_devicefunc_t xptpassannouncefunc; 248 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 249 static void xptpoll(struct cam_sim *sim); 250 static void camisr(void *); 251 static void camisr_runqueue(void *); 252 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 253 u_int num_patterns, struct cam_eb *bus); 254 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 255 u_int num_patterns, 256 struct cam_ed *device); 257 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 258 u_int num_patterns, 259 struct cam_periph *periph); 260 static xpt_busfunc_t xptedtbusfunc; 261 static xpt_targetfunc_t xptedttargetfunc; 262 static xpt_devicefunc_t xptedtdevicefunc; 263 static xpt_periphfunc_t xptedtperiphfunc; 264 static xpt_pdrvfunc_t xptplistpdrvfunc; 265 static xpt_periphfunc_t xptplistperiphfunc; 266 static int xptedtmatch(struct ccb_dev_match *cdm); 267 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 268 static int xptbustraverse(struct cam_eb *start_bus, 269 xpt_busfunc_t *tr_func, void *arg); 270 static int xpttargettraverse(struct cam_eb *bus, 271 struct cam_et *start_target, 272 xpt_targetfunc_t *tr_func, void *arg); 273 static int xptdevicetraverse(struct cam_et *target, 274 struct cam_ed *start_device, 275 xpt_devicefunc_t *tr_func, void *arg); 276 static int xptperiphtraverse(struct cam_ed *device, 277 struct cam_periph *start_periph, 278 xpt_periphfunc_t *tr_func, void *arg); 279 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 280 xpt_pdrvfunc_t *tr_func, void *arg); 281 static int xptpdperiphtraverse(struct periph_driver **pdrv, 282 struct cam_periph *start_periph, 283 xpt_periphfunc_t *tr_func, 284 void *arg); 285 static xpt_busfunc_t xptdefbusfunc; 286 static xpt_targetfunc_t xptdeftargetfunc; 287 static xpt_devicefunc_t xptdefdevicefunc; 288 static xpt_periphfunc_t xptdefperiphfunc; 289 static void xpt_finishconfig_task(void *context, int pending); 290 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 291 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 292 void *arg); 293 static void xpt_dev_async_default(u_int32_t async_code, 294 struct cam_eb *bus, 295 struct cam_et *target, 296 struct cam_ed *device, 297 void *async_arg); 298 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 299 struct cam_et *target, 300 lun_id_t lun_id); 301 static xpt_devicefunc_t xptsetasyncfunc; 302 static xpt_busfunc_t xptsetasyncbusfunc; 303 static cam_status xptregister(struct cam_periph *periph, 304 void *arg); 305 static __inline int periph_is_queued(struct cam_periph *periph); 306 static __inline int device_is_alloc_queued(struct cam_ed *device); 307 static __inline int device_is_send_queued(struct cam_ed *device); 308 309 static __inline int 310 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 311 { 312 int retval; 313 314 if ((dev->drvq.entries > 0) && 315 (dev->ccbq.devq_openings > 0) && 316 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 317 CAMQ_GET_PRIO(&dev->drvq))) == 0)) { 318 /* 319 * The priority of a device waiting for CCB resources 320 * is that of the the highest priority peripheral driver 321 * enqueued. 322 */ 323 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 324 &dev->alloc_ccb_entry.pinfo, 325 CAMQ_GET_PRIO(&dev->drvq)); 326 } else { 327 retval = 0; 328 } 329 330 return (retval); 331 } 332 333 static __inline int 334 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 335 { 336 int retval; 337 338 if ((dev->ccbq.queue.entries > 0) && 339 (dev->ccbq.dev_openings > 0) && 340 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) { 341 /* 342 * The priority of a device waiting for controller 343 * resources is that of the the highest priority CCB 344 * enqueued. 345 */ 346 retval = 347 xpt_schedule_dev(&bus->sim->devq->send_queue, 348 &dev->send_ccb_entry.pinfo, 349 CAMQ_GET_PRIO(&dev->ccbq.queue)); 350 } else { 351 retval = 0; 352 } 353 return (retval); 354 } 355 356 static __inline int 357 periph_is_queued(struct cam_periph *periph) 358 { 359 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 360 } 361 362 static __inline int 363 device_is_alloc_queued(struct cam_ed *device) 364 { 365 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 366 } 367 368 static __inline int 369 device_is_send_queued(struct cam_ed *device) 370 { 371 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 372 } 373 374 static void 375 xpt_periph_init() 376 { 377 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 378 } 379 380 static void 381 xptdone(struct cam_periph *periph, union ccb *done_ccb) 382 { 383 /* Caller will release the CCB */ 384 wakeup(&done_ccb->ccb_h.cbfcnp); 385 } 386 387 static int 388 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 389 { 390 391 /* 392 * Only allow read-write access. 393 */ 394 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 395 return(EPERM); 396 397 /* 398 * We don't allow nonblocking access. 399 */ 400 if ((flags & O_NONBLOCK) != 0) { 401 printf("%s: can't do nonblocking access\n", devtoname(dev)); 402 return(ENODEV); 403 } 404 405 /* Mark ourselves open */ 406 mtx_lock(&xsoftc.xpt_lock); 407 xsoftc.flags |= XPT_FLAG_OPEN; 408 mtx_unlock(&xsoftc.xpt_lock); 409 410 return(0); 411 } 412 413 static int 414 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 415 { 416 417 /* Mark ourselves closed */ 418 mtx_lock(&xsoftc.xpt_lock); 419 xsoftc.flags &= ~XPT_FLAG_OPEN; 420 mtx_unlock(&xsoftc.xpt_lock); 421 422 return(0); 423 } 424 425 /* 426 * Don't automatically grab the xpt softc lock here even though this is going 427 * through the xpt device. The xpt device is really just a back door for 428 * accessing other devices and SIMs, so the right thing to do is to grab 429 * the appropriate SIM lock once the bus/SIM is located. 430 */ 431 static int 432 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 433 { 434 int error; 435 436 error = 0; 437 438 switch(cmd) { 439 /* 440 * For the transport layer CAMIOCOMMAND ioctl, we really only want 441 * to accept CCB types that don't quite make sense to send through a 442 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 443 * in the CAM spec. 444 */ 445 case CAMIOCOMMAND: { 446 union ccb *ccb; 447 union ccb *inccb; 448 struct cam_eb *bus; 449 450 inccb = (union ccb *)addr; 451 452 bus = xpt_find_bus(inccb->ccb_h.path_id); 453 if (bus == NULL) 454 return (EINVAL); 455 456 switch (inccb->ccb_h.func_code) { 457 case XPT_SCAN_BUS: 458 case XPT_RESET_BUS: 459 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 461 xpt_release_bus(bus); 462 return (EINVAL); 463 } 464 break; 465 case XPT_SCAN_TGT: 466 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 467 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 468 xpt_release_bus(bus); 469 return (EINVAL); 470 } 471 break; 472 default: 473 break; 474 } 475 476 switch(inccb->ccb_h.func_code) { 477 case XPT_SCAN_BUS: 478 case XPT_RESET_BUS: 479 case XPT_PATH_INQ: 480 case XPT_ENG_INQ: 481 case XPT_SCAN_LUN: 482 case XPT_SCAN_TGT: 483 484 ccb = xpt_alloc_ccb(); 485 486 CAM_SIM_LOCK(bus->sim); 487 488 /* 489 * Create a path using the bus, target, and lun the 490 * user passed in. 491 */ 492 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 493 inccb->ccb_h.path_id, 494 inccb->ccb_h.target_id, 495 inccb->ccb_h.target_lun) != 496 CAM_REQ_CMP){ 497 error = EINVAL; 498 CAM_SIM_UNLOCK(bus->sim); 499 xpt_free_ccb(ccb); 500 break; 501 } 502 /* Ensure all of our fields are correct */ 503 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 504 inccb->ccb_h.pinfo.priority); 505 xpt_merge_ccb(ccb, inccb); 506 ccb->ccb_h.cbfcnp = xptdone; 507 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 508 bcopy(ccb, inccb, sizeof(union ccb)); 509 xpt_free_path(ccb->ccb_h.path); 510 xpt_free_ccb(ccb); 511 CAM_SIM_UNLOCK(bus->sim); 512 break; 513 514 case XPT_DEBUG: { 515 union ccb ccb; 516 517 /* 518 * This is an immediate CCB, so it's okay to 519 * allocate it on the stack. 520 */ 521 522 CAM_SIM_LOCK(bus->sim); 523 524 /* 525 * Create a path using the bus, target, and lun the 526 * user passed in. 527 */ 528 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 529 inccb->ccb_h.path_id, 530 inccb->ccb_h.target_id, 531 inccb->ccb_h.target_lun) != 532 CAM_REQ_CMP){ 533 error = EINVAL; 534 CAM_SIM_UNLOCK(bus->sim); 535 break; 536 } 537 /* Ensure all of our fields are correct */ 538 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 539 inccb->ccb_h.pinfo.priority); 540 xpt_merge_ccb(&ccb, inccb); 541 ccb.ccb_h.cbfcnp = xptdone; 542 xpt_action(&ccb); 543 CAM_SIM_UNLOCK(bus->sim); 544 bcopy(&ccb, inccb, sizeof(union ccb)); 545 xpt_free_path(ccb.ccb_h.path); 546 break; 547 548 } 549 case XPT_DEV_MATCH: { 550 struct cam_periph_map_info mapinfo; 551 struct cam_path *old_path; 552 553 /* 554 * We can't deal with physical addresses for this 555 * type of transaction. 556 */ 557 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 558 error = EINVAL; 559 break; 560 } 561 562 /* 563 * Save this in case the caller had it set to 564 * something in particular. 565 */ 566 old_path = inccb->ccb_h.path; 567 568 /* 569 * We really don't need a path for the matching 570 * code. The path is needed because of the 571 * debugging statements in xpt_action(). They 572 * assume that the CCB has a valid path. 573 */ 574 inccb->ccb_h.path = xpt_periph->path; 575 576 bzero(&mapinfo, sizeof(mapinfo)); 577 578 /* 579 * Map the pattern and match buffers into kernel 580 * virtual address space. 581 */ 582 error = cam_periph_mapmem(inccb, &mapinfo); 583 584 if (error) { 585 inccb->ccb_h.path = old_path; 586 break; 587 } 588 589 /* 590 * This is an immediate CCB, we can send it on directly. 591 */ 592 xpt_action(inccb); 593 594 /* 595 * Map the buffers back into user space. 596 */ 597 cam_periph_unmapmem(inccb, &mapinfo); 598 599 inccb->ccb_h.path = old_path; 600 601 error = 0; 602 break; 603 } 604 default: 605 error = ENOTSUP; 606 break; 607 } 608 xpt_release_bus(bus); 609 break; 610 } 611 /* 612 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 613 * with the periphal driver name and unit name filled in. The other 614 * fields don't really matter as input. The passthrough driver name 615 * ("pass"), and unit number are passed back in the ccb. The current 616 * device generation number, and the index into the device peripheral 617 * driver list, and the status are also passed back. Note that 618 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 619 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 620 * (or rather should be) impossible for the device peripheral driver 621 * list to change since we look at the whole thing in one pass, and 622 * we do it with lock protection. 623 * 624 */ 625 case CAMGETPASSTHRU: { 626 union ccb *ccb; 627 struct cam_periph *periph; 628 struct periph_driver **p_drv; 629 char *name; 630 u_int unit; 631 u_int cur_generation; 632 int base_periph_found; 633 int splbreaknum; 634 635 ccb = (union ccb *)addr; 636 unit = ccb->cgdl.unit_number; 637 name = ccb->cgdl.periph_name; 638 /* 639 * Every 100 devices, we want to drop our lock protection to 640 * give the software interrupt handler a chance to run. 641 * Most systems won't run into this check, but this should 642 * avoid starvation in the software interrupt handler in 643 * large systems. 644 */ 645 splbreaknum = 100; 646 647 ccb = (union ccb *)addr; 648 649 base_periph_found = 0; 650 651 /* 652 * Sanity check -- make sure we don't get a null peripheral 653 * driver name. 654 */ 655 if (*ccb->cgdl.periph_name == '\0') { 656 error = EINVAL; 657 break; 658 } 659 660 /* Keep the list from changing while we traverse it */ 661 mtx_lock(&xsoftc.xpt_topo_lock); 662 ptstartover: 663 cur_generation = xsoftc.xpt_generation; 664 665 /* first find our driver in the list of drivers */ 666 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 667 if (strcmp((*p_drv)->driver_name, name) == 0) 668 break; 669 670 if (*p_drv == NULL) { 671 mtx_unlock(&xsoftc.xpt_topo_lock); 672 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 673 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 674 *ccb->cgdl.periph_name = '\0'; 675 ccb->cgdl.unit_number = 0; 676 error = ENOENT; 677 break; 678 } 679 680 /* 681 * Run through every peripheral instance of this driver 682 * and check to see whether it matches the unit passed 683 * in by the user. If it does, get out of the loops and 684 * find the passthrough driver associated with that 685 * peripheral driver. 686 */ 687 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 688 periph = TAILQ_NEXT(periph, unit_links)) { 689 690 if (periph->unit_number == unit) { 691 break; 692 } else if (--splbreaknum == 0) { 693 mtx_unlock(&xsoftc.xpt_topo_lock); 694 mtx_lock(&xsoftc.xpt_topo_lock); 695 splbreaknum = 100; 696 if (cur_generation != xsoftc.xpt_generation) 697 goto ptstartover; 698 } 699 } 700 /* 701 * If we found the peripheral driver that the user passed 702 * in, go through all of the peripheral drivers for that 703 * particular device and look for a passthrough driver. 704 */ 705 if (periph != NULL) { 706 struct cam_ed *device; 707 int i; 708 709 base_periph_found = 1; 710 device = periph->path->device; 711 for (i = 0, periph = SLIST_FIRST(&device->periphs); 712 periph != NULL; 713 periph = SLIST_NEXT(periph, periph_links), i++) { 714 /* 715 * Check to see whether we have a 716 * passthrough device or not. 717 */ 718 if (strcmp(periph->periph_name, "pass") == 0) { 719 /* 720 * Fill in the getdevlist fields. 721 */ 722 strcpy(ccb->cgdl.periph_name, 723 periph->periph_name); 724 ccb->cgdl.unit_number = 725 periph->unit_number; 726 if (SLIST_NEXT(periph, periph_links)) 727 ccb->cgdl.status = 728 CAM_GDEVLIST_MORE_DEVS; 729 else 730 ccb->cgdl.status = 731 CAM_GDEVLIST_LAST_DEVICE; 732 ccb->cgdl.generation = 733 device->generation; 734 ccb->cgdl.index = i; 735 /* 736 * Fill in some CCB header fields 737 * that the user may want. 738 */ 739 ccb->ccb_h.path_id = 740 periph->path->bus->path_id; 741 ccb->ccb_h.target_id = 742 periph->path->target->target_id; 743 ccb->ccb_h.target_lun = 744 periph->path->device->lun_id; 745 ccb->ccb_h.status = CAM_REQ_CMP; 746 break; 747 } 748 } 749 } 750 751 /* 752 * If the periph is null here, one of two things has 753 * happened. The first possibility is that we couldn't 754 * find the unit number of the particular peripheral driver 755 * that the user is asking about. e.g. the user asks for 756 * the passthrough driver for "da11". We find the list of 757 * "da" peripherals all right, but there is no unit 11. 758 * The other possibility is that we went through the list 759 * of peripheral drivers attached to the device structure, 760 * but didn't find one with the name "pass". Either way, 761 * we return ENOENT, since we couldn't find something. 762 */ 763 if (periph == NULL) { 764 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 765 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 766 *ccb->cgdl.periph_name = '\0'; 767 ccb->cgdl.unit_number = 0; 768 error = ENOENT; 769 /* 770 * It is unfortunate that this is even necessary, 771 * but there are many, many clueless users out there. 772 * If this is true, the user is looking for the 773 * passthrough driver, but doesn't have one in his 774 * kernel. 775 */ 776 if (base_periph_found == 1) { 777 printf("xptioctl: pass driver is not in the " 778 "kernel\n"); 779 printf("xptioctl: put \"device pass\" in " 780 "your kernel config file\n"); 781 } 782 } 783 mtx_unlock(&xsoftc.xpt_topo_lock); 784 break; 785 } 786 default: 787 error = ENOTTY; 788 break; 789 } 790 791 return(error); 792 } 793 794 static int 795 cam_module_event_handler(module_t mod, int what, void *arg) 796 { 797 int error; 798 799 switch (what) { 800 case MOD_LOAD: 801 if ((error = xpt_init(NULL)) != 0) 802 return (error); 803 break; 804 case MOD_UNLOAD: 805 return EBUSY; 806 default: 807 return EOPNOTSUPP; 808 } 809 810 return 0; 811 } 812 813 static void 814 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 815 { 816 817 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 818 xpt_free_path(done_ccb->ccb_h.path); 819 xpt_free_ccb(done_ccb); 820 } else { 821 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 822 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 823 } 824 xpt_release_boot(); 825 } 826 827 /* thread to handle bus rescans */ 828 static void 829 xpt_scanner_thread(void *dummy) 830 { 831 union ccb *ccb; 832 struct cam_sim *sim; 833 834 xpt_lock_buses(); 835 for (;;) { 836 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 837 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 838 "ccb_scanq", 0); 839 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 840 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 841 xpt_unlock_buses(); 842 843 sim = ccb->ccb_h.path->bus->sim; 844 CAM_SIM_LOCK(sim); 845 xpt_action(ccb); 846 CAM_SIM_UNLOCK(sim); 847 848 xpt_lock_buses(); 849 } 850 } 851 } 852 853 void 854 xpt_rescan(union ccb *ccb) 855 { 856 struct ccb_hdr *hdr; 857 858 /* Prepare request */ 859 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 860 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 861 ccb->ccb_h.func_code = XPT_SCAN_BUS; 862 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 863 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 864 ccb->ccb_h.func_code = XPT_SCAN_TGT; 865 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 866 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 867 ccb->ccb_h.func_code = XPT_SCAN_LUN; 868 else { 869 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 870 xpt_free_path(ccb->ccb_h.path); 871 xpt_free_ccb(ccb); 872 return; 873 } 874 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 875 ccb->ccb_h.cbfcnp = xpt_rescan_done; 876 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 877 /* Don't make duplicate entries for the same paths. */ 878 xpt_lock_buses(); 879 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 880 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 881 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 882 wakeup(&xsoftc.ccb_scanq); 883 xpt_unlock_buses(); 884 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 885 xpt_free_path(ccb->ccb_h.path); 886 xpt_free_ccb(ccb); 887 return; 888 } 889 } 890 } 891 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 892 xsoftc.buses_to_config++; 893 wakeup(&xsoftc.ccb_scanq); 894 xpt_unlock_buses(); 895 } 896 897 /* Functions accessed by the peripheral drivers */ 898 static int 899 xpt_init(void *dummy) 900 { 901 struct cam_sim *xpt_sim; 902 struct cam_path *path; 903 struct cam_devq *devq; 904 cam_status status; 905 906 TAILQ_INIT(&xsoftc.xpt_busses); 907 TAILQ_INIT(&cam_simq); 908 TAILQ_INIT(&xsoftc.ccb_scanq); 909 STAILQ_INIT(&xsoftc.highpowerq); 910 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 911 912 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 913 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 914 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 915 916 /* 917 * The xpt layer is, itself, the equivelent of a SIM. 918 * Allow 16 ccbs in the ccb pool for it. This should 919 * give decent parallelism when we probe busses and 920 * perform other XPT functions. 921 */ 922 devq = cam_simq_alloc(16); 923 xpt_sim = cam_sim_alloc(xptaction, 924 xptpoll, 925 "xpt", 926 /*softc*/NULL, 927 /*unit*/0, 928 /*mtx*/&xsoftc.xpt_lock, 929 /*max_dev_transactions*/0, 930 /*max_tagged_dev_transactions*/0, 931 devq); 932 if (xpt_sim == NULL) 933 return (ENOMEM); 934 935 mtx_lock(&xsoftc.xpt_lock); 936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 937 mtx_unlock(&xsoftc.xpt_lock); 938 printf("xpt_init: xpt_bus_register failed with status %#x," 939 " failing attach\n", status); 940 return (EINVAL); 941 } 942 943 /* 944 * Looking at the XPT from the SIM layer, the XPT is 945 * the equivelent of a peripheral driver. Allocate 946 * a peripheral driver entry for us. 947 */ 948 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 949 CAM_TARGET_WILDCARD, 950 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 951 mtx_unlock(&xsoftc.xpt_lock); 952 printf("xpt_init: xpt_create_path failed with status %#x," 953 " failing attach\n", status); 954 return (EINVAL); 955 } 956 957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 958 path, NULL, 0, xpt_sim); 959 xpt_free_path(path); 960 mtx_unlock(&xsoftc.xpt_lock); 961 /* Install our software interrupt handlers */ 962 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 963 /* 964 * Register a callback for when interrupts are enabled. 965 */ 966 xsoftc.xpt_config_hook = 967 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 968 M_CAMXPT, M_NOWAIT | M_ZERO); 969 if (xsoftc.xpt_config_hook == NULL) { 970 printf("xpt_init: Cannot malloc config hook " 971 "- failing attach\n"); 972 return (ENOMEM); 973 } 974 xsoftc.xpt_config_hook->ich_func = xpt_config; 975 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 976 free (xsoftc.xpt_config_hook, M_CAMXPT); 977 printf("xpt_init: config_intrhook_establish failed " 978 "- failing attach\n"); 979 } 980 981 return (0); 982 } 983 984 static cam_status 985 xptregister(struct cam_periph *periph, void *arg) 986 { 987 struct cam_sim *xpt_sim; 988 989 if (periph == NULL) { 990 printf("xptregister: periph was NULL!!\n"); 991 return(CAM_REQ_CMP_ERR); 992 } 993 994 xpt_sim = (struct cam_sim *)arg; 995 xpt_sim->softc = periph; 996 xpt_periph = periph; 997 periph->softc = NULL; 998 999 return(CAM_REQ_CMP); 1000 } 1001 1002 int32_t 1003 xpt_add_periph(struct cam_periph *periph) 1004 { 1005 struct cam_ed *device; 1006 int32_t status; 1007 struct periph_list *periph_head; 1008 1009 mtx_assert(periph->sim->mtx, MA_OWNED); 1010 1011 device = periph->path->device; 1012 1013 periph_head = &device->periphs; 1014 1015 status = CAM_REQ_CMP; 1016 1017 if (device != NULL) { 1018 /* 1019 * Make room for this peripheral 1020 * so it will fit in the queue 1021 * when it's scheduled to run 1022 */ 1023 status = camq_resize(&device->drvq, 1024 device->drvq.array_size + 1); 1025 1026 device->generation++; 1027 1028 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1029 } 1030 1031 mtx_lock(&xsoftc.xpt_topo_lock); 1032 xsoftc.xpt_generation++; 1033 mtx_unlock(&xsoftc.xpt_topo_lock); 1034 1035 return (status); 1036 } 1037 1038 void 1039 xpt_remove_periph(struct cam_periph *periph) 1040 { 1041 struct cam_ed *device; 1042 1043 mtx_assert(periph->sim->mtx, MA_OWNED); 1044 1045 device = periph->path->device; 1046 1047 if (device != NULL) { 1048 struct periph_list *periph_head; 1049 1050 periph_head = &device->periphs; 1051 1052 /* Release the slot for this peripheral */ 1053 camq_resize(&device->drvq, device->drvq.array_size - 1); 1054 1055 device->generation++; 1056 1057 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1058 } 1059 1060 mtx_lock(&xsoftc.xpt_topo_lock); 1061 xsoftc.xpt_generation++; 1062 mtx_unlock(&xsoftc.xpt_topo_lock); 1063 } 1064 1065 1066 void 1067 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1068 { 1069 struct cam_path *path = periph->path; 1070 1071 mtx_assert(periph->sim->mtx, MA_OWNED); 1072 1073 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1074 periph->periph_name, periph->unit_number, 1075 path->bus->sim->sim_name, 1076 path->bus->sim->unit_number, 1077 path->bus->sim->bus_id, 1078 path->bus->path_id, 1079 path->target->target_id, 1080 path->device->lun_id); 1081 printf("%s%d: ", periph->periph_name, periph->unit_number); 1082 if (path->device->protocol == PROTO_SCSI) 1083 scsi_print_inquiry(&path->device->inq_data); 1084 else if (path->device->protocol == PROTO_ATA || 1085 path->device->protocol == PROTO_SATAPM) 1086 ata_print_ident(&path->device->ident_data); 1087 else 1088 printf("Unknown protocol device\n"); 1089 if (bootverbose && path->device->serial_num_len > 0) { 1090 /* Don't wrap the screen - print only the first 60 chars */ 1091 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1092 periph->unit_number, path->device->serial_num); 1093 } 1094 /* Announce transport details. */ 1095 (*(path->bus->xport->announce))(periph); 1096 /* Announce command queueing. */ 1097 if (path->device->inq_flags & SID_CmdQue 1098 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1099 printf("%s%d: Command Queueing enabled\n", 1100 periph->periph_name, periph->unit_number); 1101 } 1102 /* Announce caller's details if they've passed in. */ 1103 if (announce_string != NULL) 1104 printf("%s%d: %s\n", periph->periph_name, 1105 periph->unit_number, announce_string); 1106 } 1107 1108 static dev_match_ret 1109 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1110 struct cam_eb *bus) 1111 { 1112 dev_match_ret retval; 1113 int i; 1114 1115 retval = DM_RET_NONE; 1116 1117 /* 1118 * If we aren't given something to match against, that's an error. 1119 */ 1120 if (bus == NULL) 1121 return(DM_RET_ERROR); 1122 1123 /* 1124 * If there are no match entries, then this bus matches no 1125 * matter what. 1126 */ 1127 if ((patterns == NULL) || (num_patterns == 0)) 1128 return(DM_RET_DESCEND | DM_RET_COPY); 1129 1130 for (i = 0; i < num_patterns; i++) { 1131 struct bus_match_pattern *cur_pattern; 1132 1133 /* 1134 * If the pattern in question isn't for a bus node, we 1135 * aren't interested. However, we do indicate to the 1136 * calling routine that we should continue descending the 1137 * tree, since the user wants to match against lower-level 1138 * EDT elements. 1139 */ 1140 if (patterns[i].type != DEV_MATCH_BUS) { 1141 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1142 retval |= DM_RET_DESCEND; 1143 continue; 1144 } 1145 1146 cur_pattern = &patterns[i].pattern.bus_pattern; 1147 1148 /* 1149 * If they want to match any bus node, we give them any 1150 * device node. 1151 */ 1152 if (cur_pattern->flags == BUS_MATCH_ANY) { 1153 /* set the copy flag */ 1154 retval |= DM_RET_COPY; 1155 1156 /* 1157 * If we've already decided on an action, go ahead 1158 * and return. 1159 */ 1160 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1161 return(retval); 1162 } 1163 1164 /* 1165 * Not sure why someone would do this... 1166 */ 1167 if (cur_pattern->flags == BUS_MATCH_NONE) 1168 continue; 1169 1170 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1171 && (cur_pattern->path_id != bus->path_id)) 1172 continue; 1173 1174 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1175 && (cur_pattern->bus_id != bus->sim->bus_id)) 1176 continue; 1177 1178 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1179 && (cur_pattern->unit_number != bus->sim->unit_number)) 1180 continue; 1181 1182 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1183 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1184 DEV_IDLEN) != 0)) 1185 continue; 1186 1187 /* 1188 * If we get to this point, the user definitely wants 1189 * information on this bus. So tell the caller to copy the 1190 * data out. 1191 */ 1192 retval |= DM_RET_COPY; 1193 1194 /* 1195 * If the return action has been set to descend, then we 1196 * know that we've already seen a non-bus matching 1197 * expression, therefore we need to further descend the tree. 1198 * This won't change by continuing around the loop, so we 1199 * go ahead and return. If we haven't seen a non-bus 1200 * matching expression, we keep going around the loop until 1201 * we exhaust the matching expressions. We'll set the stop 1202 * flag once we fall out of the loop. 1203 */ 1204 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1205 return(retval); 1206 } 1207 1208 /* 1209 * If the return action hasn't been set to descend yet, that means 1210 * we haven't seen anything other than bus matching patterns. So 1211 * tell the caller to stop descending the tree -- the user doesn't 1212 * want to match against lower level tree elements. 1213 */ 1214 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1215 retval |= DM_RET_STOP; 1216 1217 return(retval); 1218 } 1219 1220 static dev_match_ret 1221 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1222 struct cam_ed *device) 1223 { 1224 dev_match_ret retval; 1225 int i; 1226 1227 retval = DM_RET_NONE; 1228 1229 /* 1230 * If we aren't given something to match against, that's an error. 1231 */ 1232 if (device == NULL) 1233 return(DM_RET_ERROR); 1234 1235 /* 1236 * If there are no match entries, then this device matches no 1237 * matter what. 1238 */ 1239 if ((patterns == NULL) || (num_patterns == 0)) 1240 return(DM_RET_DESCEND | DM_RET_COPY); 1241 1242 for (i = 0; i < num_patterns; i++) { 1243 struct device_match_pattern *cur_pattern; 1244 1245 /* 1246 * If the pattern in question isn't for a device node, we 1247 * aren't interested. 1248 */ 1249 if (patterns[i].type != DEV_MATCH_DEVICE) { 1250 if ((patterns[i].type == DEV_MATCH_PERIPH) 1251 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1252 retval |= DM_RET_DESCEND; 1253 continue; 1254 } 1255 1256 cur_pattern = &patterns[i].pattern.device_pattern; 1257 1258 /* 1259 * If they want to match any device node, we give them any 1260 * device node. 1261 */ 1262 if (cur_pattern->flags == DEV_MATCH_ANY) { 1263 /* set the copy flag */ 1264 retval |= DM_RET_COPY; 1265 1266 1267 /* 1268 * If we've already decided on an action, go ahead 1269 * and return. 1270 */ 1271 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1272 return(retval); 1273 } 1274 1275 /* 1276 * Not sure why someone would do this... 1277 */ 1278 if (cur_pattern->flags == DEV_MATCH_NONE) 1279 continue; 1280 1281 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1282 && (cur_pattern->path_id != device->target->bus->path_id)) 1283 continue; 1284 1285 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1286 && (cur_pattern->target_id != device->target->target_id)) 1287 continue; 1288 1289 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1290 && (cur_pattern->target_lun != device->lun_id)) 1291 continue; 1292 1293 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1294 && (cam_quirkmatch((caddr_t)&device->inq_data, 1295 (caddr_t)&cur_pattern->inq_pat, 1296 1, sizeof(cur_pattern->inq_pat), 1297 scsi_static_inquiry_match) == NULL)) 1298 continue; 1299 1300 /* 1301 * If we get to this point, the user definitely wants 1302 * information on this device. So tell the caller to copy 1303 * the data out. 1304 */ 1305 retval |= DM_RET_COPY; 1306 1307 /* 1308 * If the return action has been set to descend, then we 1309 * know that we've already seen a peripheral matching 1310 * expression, therefore we need to further descend the tree. 1311 * This won't change by continuing around the loop, so we 1312 * go ahead and return. If we haven't seen a peripheral 1313 * matching expression, we keep going around the loop until 1314 * we exhaust the matching expressions. We'll set the stop 1315 * flag once we fall out of the loop. 1316 */ 1317 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1318 return(retval); 1319 } 1320 1321 /* 1322 * If the return action hasn't been set to descend yet, that means 1323 * we haven't seen any peripheral matching patterns. So tell the 1324 * caller to stop descending the tree -- the user doesn't want to 1325 * match against lower level tree elements. 1326 */ 1327 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1328 retval |= DM_RET_STOP; 1329 1330 return(retval); 1331 } 1332 1333 /* 1334 * Match a single peripheral against any number of match patterns. 1335 */ 1336 static dev_match_ret 1337 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1338 struct cam_periph *periph) 1339 { 1340 dev_match_ret retval; 1341 int i; 1342 1343 /* 1344 * If we aren't given something to match against, that's an error. 1345 */ 1346 if (periph == NULL) 1347 return(DM_RET_ERROR); 1348 1349 /* 1350 * If there are no match entries, then this peripheral matches no 1351 * matter what. 1352 */ 1353 if ((patterns == NULL) || (num_patterns == 0)) 1354 return(DM_RET_STOP | DM_RET_COPY); 1355 1356 /* 1357 * There aren't any nodes below a peripheral node, so there's no 1358 * reason to descend the tree any further. 1359 */ 1360 retval = DM_RET_STOP; 1361 1362 for (i = 0; i < num_patterns; i++) { 1363 struct periph_match_pattern *cur_pattern; 1364 1365 /* 1366 * If the pattern in question isn't for a peripheral, we 1367 * aren't interested. 1368 */ 1369 if (patterns[i].type != DEV_MATCH_PERIPH) 1370 continue; 1371 1372 cur_pattern = &patterns[i].pattern.periph_pattern; 1373 1374 /* 1375 * If they want to match on anything, then we will do so. 1376 */ 1377 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1378 /* set the copy flag */ 1379 retval |= DM_RET_COPY; 1380 1381 /* 1382 * We've already set the return action to stop, 1383 * since there are no nodes below peripherals in 1384 * the tree. 1385 */ 1386 return(retval); 1387 } 1388 1389 /* 1390 * Not sure why someone would do this... 1391 */ 1392 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1393 continue; 1394 1395 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1396 && (cur_pattern->path_id != periph->path->bus->path_id)) 1397 continue; 1398 1399 /* 1400 * For the target and lun id's, we have to make sure the 1401 * target and lun pointers aren't NULL. The xpt peripheral 1402 * has a wildcard target and device. 1403 */ 1404 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1405 && ((periph->path->target == NULL) 1406 ||(cur_pattern->target_id != periph->path->target->target_id))) 1407 continue; 1408 1409 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1410 && ((periph->path->device == NULL) 1411 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1412 continue; 1413 1414 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1415 && (cur_pattern->unit_number != periph->unit_number)) 1416 continue; 1417 1418 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1419 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1420 DEV_IDLEN) != 0)) 1421 continue; 1422 1423 /* 1424 * If we get to this point, the user definitely wants 1425 * information on this peripheral. So tell the caller to 1426 * copy the data out. 1427 */ 1428 retval |= DM_RET_COPY; 1429 1430 /* 1431 * The return action has already been set to stop, since 1432 * peripherals don't have any nodes below them in the EDT. 1433 */ 1434 return(retval); 1435 } 1436 1437 /* 1438 * If we get to this point, the peripheral that was passed in 1439 * doesn't match any of the patterns. 1440 */ 1441 return(retval); 1442 } 1443 1444 static int 1445 xptedtbusfunc(struct cam_eb *bus, void *arg) 1446 { 1447 struct ccb_dev_match *cdm; 1448 dev_match_ret retval; 1449 1450 cdm = (struct ccb_dev_match *)arg; 1451 1452 /* 1453 * If our position is for something deeper in the tree, that means 1454 * that we've already seen this node. So, we keep going down. 1455 */ 1456 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1457 && (cdm->pos.cookie.bus == bus) 1458 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1459 && (cdm->pos.cookie.target != NULL)) 1460 retval = DM_RET_DESCEND; 1461 else 1462 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1463 1464 /* 1465 * If we got an error, bail out of the search. 1466 */ 1467 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1468 cdm->status = CAM_DEV_MATCH_ERROR; 1469 return(0); 1470 } 1471 1472 /* 1473 * If the copy flag is set, copy this bus out. 1474 */ 1475 if (retval & DM_RET_COPY) { 1476 int spaceleft, j; 1477 1478 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1479 sizeof(struct dev_match_result)); 1480 1481 /* 1482 * If we don't have enough space to put in another 1483 * match result, save our position and tell the 1484 * user there are more devices to check. 1485 */ 1486 if (spaceleft < sizeof(struct dev_match_result)) { 1487 bzero(&cdm->pos, sizeof(cdm->pos)); 1488 cdm->pos.position_type = 1489 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1490 1491 cdm->pos.cookie.bus = bus; 1492 cdm->pos.generations[CAM_BUS_GENERATION]= 1493 xsoftc.bus_generation; 1494 cdm->status = CAM_DEV_MATCH_MORE; 1495 return(0); 1496 } 1497 j = cdm->num_matches; 1498 cdm->num_matches++; 1499 cdm->matches[j].type = DEV_MATCH_BUS; 1500 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1501 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1502 cdm->matches[j].result.bus_result.unit_number = 1503 bus->sim->unit_number; 1504 strncpy(cdm->matches[j].result.bus_result.dev_name, 1505 bus->sim->sim_name, DEV_IDLEN); 1506 } 1507 1508 /* 1509 * If the user is only interested in busses, there's no 1510 * reason to descend to the next level in the tree. 1511 */ 1512 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1513 return(1); 1514 1515 /* 1516 * If there is a target generation recorded, check it to 1517 * make sure the target list hasn't changed. 1518 */ 1519 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1520 && (bus == cdm->pos.cookie.bus) 1521 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1522 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1523 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1524 bus->generation)) { 1525 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1526 return(0); 1527 } 1528 1529 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1530 && (cdm->pos.cookie.bus == bus) 1531 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1532 && (cdm->pos.cookie.target != NULL)) 1533 return(xpttargettraverse(bus, 1534 (struct cam_et *)cdm->pos.cookie.target, 1535 xptedttargetfunc, arg)); 1536 else 1537 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1538 } 1539 1540 static int 1541 xptedttargetfunc(struct cam_et *target, void *arg) 1542 { 1543 struct ccb_dev_match *cdm; 1544 1545 cdm = (struct ccb_dev_match *)arg; 1546 1547 /* 1548 * If there is a device list generation recorded, check it to 1549 * make sure the device list hasn't changed. 1550 */ 1551 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1552 && (cdm->pos.cookie.bus == target->bus) 1553 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1554 && (cdm->pos.cookie.target == target) 1555 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1556 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1557 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1558 target->generation)) { 1559 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1560 return(0); 1561 } 1562 1563 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1564 && (cdm->pos.cookie.bus == target->bus) 1565 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1566 && (cdm->pos.cookie.target == target) 1567 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1568 && (cdm->pos.cookie.device != NULL)) 1569 return(xptdevicetraverse(target, 1570 (struct cam_ed *)cdm->pos.cookie.device, 1571 xptedtdevicefunc, arg)); 1572 else 1573 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1574 } 1575 1576 static int 1577 xptedtdevicefunc(struct cam_ed *device, void *arg) 1578 { 1579 1580 struct ccb_dev_match *cdm; 1581 dev_match_ret retval; 1582 1583 cdm = (struct ccb_dev_match *)arg; 1584 1585 /* 1586 * If our position is for something deeper in the tree, that means 1587 * that we've already seen this node. So, we keep going down. 1588 */ 1589 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1590 && (cdm->pos.cookie.device == device) 1591 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1592 && (cdm->pos.cookie.periph != NULL)) 1593 retval = DM_RET_DESCEND; 1594 else 1595 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1596 device); 1597 1598 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1599 cdm->status = CAM_DEV_MATCH_ERROR; 1600 return(0); 1601 } 1602 1603 /* 1604 * If the copy flag is set, copy this device out. 1605 */ 1606 if (retval & DM_RET_COPY) { 1607 int spaceleft, j; 1608 1609 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1610 sizeof(struct dev_match_result)); 1611 1612 /* 1613 * If we don't have enough space to put in another 1614 * match result, save our position and tell the 1615 * user there are more devices to check. 1616 */ 1617 if (spaceleft < sizeof(struct dev_match_result)) { 1618 bzero(&cdm->pos, sizeof(cdm->pos)); 1619 cdm->pos.position_type = 1620 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1621 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1622 1623 cdm->pos.cookie.bus = device->target->bus; 1624 cdm->pos.generations[CAM_BUS_GENERATION]= 1625 xsoftc.bus_generation; 1626 cdm->pos.cookie.target = device->target; 1627 cdm->pos.generations[CAM_TARGET_GENERATION] = 1628 device->target->bus->generation; 1629 cdm->pos.cookie.device = device; 1630 cdm->pos.generations[CAM_DEV_GENERATION] = 1631 device->target->generation; 1632 cdm->status = CAM_DEV_MATCH_MORE; 1633 return(0); 1634 } 1635 j = cdm->num_matches; 1636 cdm->num_matches++; 1637 cdm->matches[j].type = DEV_MATCH_DEVICE; 1638 cdm->matches[j].result.device_result.path_id = 1639 device->target->bus->path_id; 1640 cdm->matches[j].result.device_result.target_id = 1641 device->target->target_id; 1642 cdm->matches[j].result.device_result.target_lun = 1643 device->lun_id; 1644 cdm->matches[j].result.device_result.protocol = 1645 device->protocol; 1646 bcopy(&device->inq_data, 1647 &cdm->matches[j].result.device_result.inq_data, 1648 sizeof(struct scsi_inquiry_data)); 1649 bcopy(&device->ident_data, 1650 &cdm->matches[j].result.device_result.ident_data, 1651 sizeof(struct ata_params)); 1652 1653 /* Let the user know whether this device is unconfigured */ 1654 if (device->flags & CAM_DEV_UNCONFIGURED) 1655 cdm->matches[j].result.device_result.flags = 1656 DEV_RESULT_UNCONFIGURED; 1657 else 1658 cdm->matches[j].result.device_result.flags = 1659 DEV_RESULT_NOFLAG; 1660 } 1661 1662 /* 1663 * If the user isn't interested in peripherals, don't descend 1664 * the tree any further. 1665 */ 1666 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1667 return(1); 1668 1669 /* 1670 * If there is a peripheral list generation recorded, make sure 1671 * it hasn't changed. 1672 */ 1673 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1674 && (device->target->bus == cdm->pos.cookie.bus) 1675 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1676 && (device->target == cdm->pos.cookie.target) 1677 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1678 && (device == cdm->pos.cookie.device) 1679 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1680 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1681 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1682 device->generation)){ 1683 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1684 return(0); 1685 } 1686 1687 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1688 && (cdm->pos.cookie.bus == device->target->bus) 1689 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1690 && (cdm->pos.cookie.target == device->target) 1691 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1692 && (cdm->pos.cookie.device == device) 1693 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1694 && (cdm->pos.cookie.periph != NULL)) 1695 return(xptperiphtraverse(device, 1696 (struct cam_periph *)cdm->pos.cookie.periph, 1697 xptedtperiphfunc, arg)); 1698 else 1699 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1700 } 1701 1702 static int 1703 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1704 { 1705 struct ccb_dev_match *cdm; 1706 dev_match_ret retval; 1707 1708 cdm = (struct ccb_dev_match *)arg; 1709 1710 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1711 1712 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1713 cdm->status = CAM_DEV_MATCH_ERROR; 1714 return(0); 1715 } 1716 1717 /* 1718 * If the copy flag is set, copy this peripheral out. 1719 */ 1720 if (retval & DM_RET_COPY) { 1721 int spaceleft, j; 1722 1723 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1724 sizeof(struct dev_match_result)); 1725 1726 /* 1727 * If we don't have enough space to put in another 1728 * match result, save our position and tell the 1729 * user there are more devices to check. 1730 */ 1731 if (spaceleft < sizeof(struct dev_match_result)) { 1732 bzero(&cdm->pos, sizeof(cdm->pos)); 1733 cdm->pos.position_type = 1734 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1735 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1736 CAM_DEV_POS_PERIPH; 1737 1738 cdm->pos.cookie.bus = periph->path->bus; 1739 cdm->pos.generations[CAM_BUS_GENERATION]= 1740 xsoftc.bus_generation; 1741 cdm->pos.cookie.target = periph->path->target; 1742 cdm->pos.generations[CAM_TARGET_GENERATION] = 1743 periph->path->bus->generation; 1744 cdm->pos.cookie.device = periph->path->device; 1745 cdm->pos.generations[CAM_DEV_GENERATION] = 1746 periph->path->target->generation; 1747 cdm->pos.cookie.periph = periph; 1748 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1749 periph->path->device->generation; 1750 cdm->status = CAM_DEV_MATCH_MORE; 1751 return(0); 1752 } 1753 1754 j = cdm->num_matches; 1755 cdm->num_matches++; 1756 cdm->matches[j].type = DEV_MATCH_PERIPH; 1757 cdm->matches[j].result.periph_result.path_id = 1758 periph->path->bus->path_id; 1759 cdm->matches[j].result.periph_result.target_id = 1760 periph->path->target->target_id; 1761 cdm->matches[j].result.periph_result.target_lun = 1762 periph->path->device->lun_id; 1763 cdm->matches[j].result.periph_result.unit_number = 1764 periph->unit_number; 1765 strncpy(cdm->matches[j].result.periph_result.periph_name, 1766 periph->periph_name, DEV_IDLEN); 1767 } 1768 1769 return(1); 1770 } 1771 1772 static int 1773 xptedtmatch(struct ccb_dev_match *cdm) 1774 { 1775 int ret; 1776 1777 cdm->num_matches = 0; 1778 1779 /* 1780 * Check the bus list generation. If it has changed, the user 1781 * needs to reset everything and start over. 1782 */ 1783 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1784 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1785 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1786 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1787 return(0); 1788 } 1789 1790 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1791 && (cdm->pos.cookie.bus != NULL)) 1792 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1793 xptedtbusfunc, cdm); 1794 else 1795 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1796 1797 /* 1798 * If we get back 0, that means that we had to stop before fully 1799 * traversing the EDT. It also means that one of the subroutines 1800 * has set the status field to the proper value. If we get back 1, 1801 * we've fully traversed the EDT and copied out any matching entries. 1802 */ 1803 if (ret == 1) 1804 cdm->status = CAM_DEV_MATCH_LAST; 1805 1806 return(ret); 1807 } 1808 1809 static int 1810 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1811 { 1812 struct ccb_dev_match *cdm; 1813 1814 cdm = (struct ccb_dev_match *)arg; 1815 1816 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1817 && (cdm->pos.cookie.pdrv == pdrv) 1818 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1819 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1820 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1821 (*pdrv)->generation)) { 1822 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1823 return(0); 1824 } 1825 1826 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1827 && (cdm->pos.cookie.pdrv == pdrv) 1828 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1829 && (cdm->pos.cookie.periph != NULL)) 1830 return(xptpdperiphtraverse(pdrv, 1831 (struct cam_periph *)cdm->pos.cookie.periph, 1832 xptplistperiphfunc, arg)); 1833 else 1834 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1835 } 1836 1837 static int 1838 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1839 { 1840 struct ccb_dev_match *cdm; 1841 dev_match_ret retval; 1842 1843 cdm = (struct ccb_dev_match *)arg; 1844 1845 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1846 1847 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1848 cdm->status = CAM_DEV_MATCH_ERROR; 1849 return(0); 1850 } 1851 1852 /* 1853 * If the copy flag is set, copy this peripheral out. 1854 */ 1855 if (retval & DM_RET_COPY) { 1856 int spaceleft, j; 1857 1858 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1859 sizeof(struct dev_match_result)); 1860 1861 /* 1862 * If we don't have enough space to put in another 1863 * match result, save our position and tell the 1864 * user there are more devices to check. 1865 */ 1866 if (spaceleft < sizeof(struct dev_match_result)) { 1867 struct periph_driver **pdrv; 1868 1869 pdrv = NULL; 1870 bzero(&cdm->pos, sizeof(cdm->pos)); 1871 cdm->pos.position_type = 1872 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1873 CAM_DEV_POS_PERIPH; 1874 1875 /* 1876 * This may look a bit non-sensical, but it is 1877 * actually quite logical. There are very few 1878 * peripheral drivers, and bloating every peripheral 1879 * structure with a pointer back to its parent 1880 * peripheral driver linker set entry would cost 1881 * more in the long run than doing this quick lookup. 1882 */ 1883 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1884 if (strcmp((*pdrv)->driver_name, 1885 periph->periph_name) == 0) 1886 break; 1887 } 1888 1889 if (*pdrv == NULL) { 1890 cdm->status = CAM_DEV_MATCH_ERROR; 1891 return(0); 1892 } 1893 1894 cdm->pos.cookie.pdrv = pdrv; 1895 /* 1896 * The periph generation slot does double duty, as 1897 * does the periph pointer slot. They are used for 1898 * both edt and pdrv lookups and positioning. 1899 */ 1900 cdm->pos.cookie.periph = periph; 1901 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1902 (*pdrv)->generation; 1903 cdm->status = CAM_DEV_MATCH_MORE; 1904 return(0); 1905 } 1906 1907 j = cdm->num_matches; 1908 cdm->num_matches++; 1909 cdm->matches[j].type = DEV_MATCH_PERIPH; 1910 cdm->matches[j].result.periph_result.path_id = 1911 periph->path->bus->path_id; 1912 1913 /* 1914 * The transport layer peripheral doesn't have a target or 1915 * lun. 1916 */ 1917 if (periph->path->target) 1918 cdm->matches[j].result.periph_result.target_id = 1919 periph->path->target->target_id; 1920 else 1921 cdm->matches[j].result.periph_result.target_id = -1; 1922 1923 if (periph->path->device) 1924 cdm->matches[j].result.periph_result.target_lun = 1925 periph->path->device->lun_id; 1926 else 1927 cdm->matches[j].result.periph_result.target_lun = -1; 1928 1929 cdm->matches[j].result.periph_result.unit_number = 1930 periph->unit_number; 1931 strncpy(cdm->matches[j].result.periph_result.periph_name, 1932 periph->periph_name, DEV_IDLEN); 1933 } 1934 1935 return(1); 1936 } 1937 1938 static int 1939 xptperiphlistmatch(struct ccb_dev_match *cdm) 1940 { 1941 int ret; 1942 1943 cdm->num_matches = 0; 1944 1945 /* 1946 * At this point in the edt traversal function, we check the bus 1947 * list generation to make sure that no busses have been added or 1948 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1949 * For the peripheral driver list traversal function, however, we 1950 * don't have to worry about new peripheral driver types coming or 1951 * going; they're in a linker set, and therefore can't change 1952 * without a recompile. 1953 */ 1954 1955 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1956 && (cdm->pos.cookie.pdrv != NULL)) 1957 ret = xptpdrvtraverse( 1958 (struct periph_driver **)cdm->pos.cookie.pdrv, 1959 xptplistpdrvfunc, cdm); 1960 else 1961 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 1962 1963 /* 1964 * If we get back 0, that means that we had to stop before fully 1965 * traversing the peripheral driver tree. It also means that one of 1966 * the subroutines has set the status field to the proper value. If 1967 * we get back 1, we've fully traversed the EDT and copied out any 1968 * matching entries. 1969 */ 1970 if (ret == 1) 1971 cdm->status = CAM_DEV_MATCH_LAST; 1972 1973 return(ret); 1974 } 1975 1976 static int 1977 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 1978 { 1979 struct cam_eb *bus, *next_bus; 1980 int retval; 1981 1982 retval = 1; 1983 1984 mtx_lock(&xsoftc.xpt_topo_lock); 1985 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 1986 bus != NULL; 1987 bus = next_bus) { 1988 next_bus = TAILQ_NEXT(bus, links); 1989 1990 mtx_unlock(&xsoftc.xpt_topo_lock); 1991 CAM_SIM_LOCK(bus->sim); 1992 retval = tr_func(bus, arg); 1993 CAM_SIM_UNLOCK(bus->sim); 1994 if (retval == 0) 1995 return(retval); 1996 mtx_lock(&xsoftc.xpt_topo_lock); 1997 } 1998 mtx_unlock(&xsoftc.xpt_topo_lock); 1999 2000 return(retval); 2001 } 2002 2003 int 2004 xpt_sim_opened(struct cam_sim *sim) 2005 { 2006 struct cam_eb *bus; 2007 struct cam_et *target; 2008 struct cam_ed *device; 2009 struct cam_periph *periph; 2010 2011 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1")); 2012 mtx_assert(sim->mtx, MA_OWNED); 2013 2014 mtx_lock(&xsoftc.xpt_topo_lock); 2015 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 2016 if (bus->sim != sim) 2017 continue; 2018 2019 TAILQ_FOREACH(target, &bus->et_entries, links) { 2020 TAILQ_FOREACH(device, &target->ed_entries, links) { 2021 SLIST_FOREACH(periph, &device->periphs, 2022 periph_links) { 2023 if (periph->refcount > 0) { 2024 mtx_unlock(&xsoftc.xpt_topo_lock); 2025 return (1); 2026 } 2027 } 2028 } 2029 } 2030 } 2031 2032 mtx_unlock(&xsoftc.xpt_topo_lock); 2033 return (0); 2034 } 2035 2036 static int 2037 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2038 xpt_targetfunc_t *tr_func, void *arg) 2039 { 2040 struct cam_et *target, *next_target; 2041 int retval; 2042 2043 retval = 1; 2044 for (target = (start_target ? start_target : 2045 TAILQ_FIRST(&bus->et_entries)); 2046 target != NULL; target = next_target) { 2047 2048 next_target = TAILQ_NEXT(target, links); 2049 2050 retval = tr_func(target, arg); 2051 2052 if (retval == 0) 2053 return(retval); 2054 } 2055 2056 return(retval); 2057 } 2058 2059 static int 2060 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2061 xpt_devicefunc_t *tr_func, void *arg) 2062 { 2063 struct cam_ed *device, *next_device; 2064 int retval; 2065 2066 retval = 1; 2067 for (device = (start_device ? start_device : 2068 TAILQ_FIRST(&target->ed_entries)); 2069 device != NULL; 2070 device = next_device) { 2071 2072 next_device = TAILQ_NEXT(device, links); 2073 2074 retval = tr_func(device, arg); 2075 2076 if (retval == 0) 2077 return(retval); 2078 } 2079 2080 return(retval); 2081 } 2082 2083 static int 2084 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2085 xpt_periphfunc_t *tr_func, void *arg) 2086 { 2087 struct cam_periph *periph, *next_periph; 2088 int retval; 2089 2090 retval = 1; 2091 2092 for (periph = (start_periph ? start_periph : 2093 SLIST_FIRST(&device->periphs)); 2094 periph != NULL; 2095 periph = next_periph) { 2096 2097 next_periph = SLIST_NEXT(periph, periph_links); 2098 2099 retval = tr_func(periph, arg); 2100 if (retval == 0) 2101 return(retval); 2102 } 2103 2104 return(retval); 2105 } 2106 2107 static int 2108 xptpdrvtraverse(struct periph_driver **start_pdrv, 2109 xpt_pdrvfunc_t *tr_func, void *arg) 2110 { 2111 struct periph_driver **pdrv; 2112 int retval; 2113 2114 retval = 1; 2115 2116 /* 2117 * We don't traverse the peripheral driver list like we do the 2118 * other lists, because it is a linker set, and therefore cannot be 2119 * changed during runtime. If the peripheral driver list is ever 2120 * re-done to be something other than a linker set (i.e. it can 2121 * change while the system is running), the list traversal should 2122 * be modified to work like the other traversal functions. 2123 */ 2124 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2125 *pdrv != NULL; pdrv++) { 2126 retval = tr_func(pdrv, arg); 2127 2128 if (retval == 0) 2129 return(retval); 2130 } 2131 2132 return(retval); 2133 } 2134 2135 static int 2136 xptpdperiphtraverse(struct periph_driver **pdrv, 2137 struct cam_periph *start_periph, 2138 xpt_periphfunc_t *tr_func, void *arg) 2139 { 2140 struct cam_periph *periph, *next_periph; 2141 int retval; 2142 2143 retval = 1; 2144 2145 xpt_lock_buses(); 2146 for (periph = (start_periph ? start_periph : 2147 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2148 periph = next_periph) { 2149 2150 next_periph = TAILQ_NEXT(periph, unit_links); 2151 2152 retval = tr_func(periph, arg); 2153 if (retval == 0) { 2154 xpt_unlock_buses(); 2155 return(retval); 2156 } 2157 } 2158 xpt_unlock_buses(); 2159 return(retval); 2160 } 2161 2162 static int 2163 xptdefbusfunc(struct cam_eb *bus, void *arg) 2164 { 2165 struct xpt_traverse_config *tr_config; 2166 2167 tr_config = (struct xpt_traverse_config *)arg; 2168 2169 if (tr_config->depth == XPT_DEPTH_BUS) { 2170 xpt_busfunc_t *tr_func; 2171 2172 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2173 2174 return(tr_func(bus, tr_config->tr_arg)); 2175 } else 2176 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2177 } 2178 2179 static int 2180 xptdeftargetfunc(struct cam_et *target, void *arg) 2181 { 2182 struct xpt_traverse_config *tr_config; 2183 2184 tr_config = (struct xpt_traverse_config *)arg; 2185 2186 if (tr_config->depth == XPT_DEPTH_TARGET) { 2187 xpt_targetfunc_t *tr_func; 2188 2189 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2190 2191 return(tr_func(target, tr_config->tr_arg)); 2192 } else 2193 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2194 } 2195 2196 static int 2197 xptdefdevicefunc(struct cam_ed *device, void *arg) 2198 { 2199 struct xpt_traverse_config *tr_config; 2200 2201 tr_config = (struct xpt_traverse_config *)arg; 2202 2203 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2204 xpt_devicefunc_t *tr_func; 2205 2206 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2207 2208 return(tr_func(device, tr_config->tr_arg)); 2209 } else 2210 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2211 } 2212 2213 static int 2214 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2215 { 2216 struct xpt_traverse_config *tr_config; 2217 xpt_periphfunc_t *tr_func; 2218 2219 tr_config = (struct xpt_traverse_config *)arg; 2220 2221 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2222 2223 /* 2224 * Unlike the other default functions, we don't check for depth 2225 * here. The peripheral driver level is the last level in the EDT, 2226 * so if we're here, we should execute the function in question. 2227 */ 2228 return(tr_func(periph, tr_config->tr_arg)); 2229 } 2230 2231 /* 2232 * Execute the given function for every bus in the EDT. 2233 */ 2234 static int 2235 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2236 { 2237 struct xpt_traverse_config tr_config; 2238 2239 tr_config.depth = XPT_DEPTH_BUS; 2240 tr_config.tr_func = tr_func; 2241 tr_config.tr_arg = arg; 2242 2243 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2244 } 2245 2246 /* 2247 * Execute the given function for every device in the EDT. 2248 */ 2249 static int 2250 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2251 { 2252 struct xpt_traverse_config tr_config; 2253 2254 tr_config.depth = XPT_DEPTH_DEVICE; 2255 tr_config.tr_func = tr_func; 2256 tr_config.tr_arg = arg; 2257 2258 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2259 } 2260 2261 static int 2262 xptsetasyncfunc(struct cam_ed *device, void *arg) 2263 { 2264 struct cam_path path; 2265 struct ccb_getdev cgd; 2266 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2267 2268 /* 2269 * Don't report unconfigured devices (Wildcard devs, 2270 * devices only for target mode, device instances 2271 * that have been invalidated but are waiting for 2272 * their last reference count to be released). 2273 */ 2274 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2275 return (1); 2276 2277 xpt_compile_path(&path, 2278 NULL, 2279 device->target->bus->path_id, 2280 device->target->target_id, 2281 device->lun_id); 2282 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2283 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2284 xpt_action((union ccb *)&cgd); 2285 csa->callback(csa->callback_arg, 2286 AC_FOUND_DEVICE, 2287 &path, &cgd); 2288 xpt_release_path(&path); 2289 2290 return(1); 2291 } 2292 2293 static int 2294 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2295 { 2296 struct cam_path path; 2297 struct ccb_pathinq cpi; 2298 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2299 2300 xpt_compile_path(&path, /*periph*/NULL, 2301 bus->sim->path_id, 2302 CAM_TARGET_WILDCARD, 2303 CAM_LUN_WILDCARD); 2304 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2305 cpi.ccb_h.func_code = XPT_PATH_INQ; 2306 xpt_action((union ccb *)&cpi); 2307 csa->callback(csa->callback_arg, 2308 AC_PATH_REGISTERED, 2309 &path, &cpi); 2310 xpt_release_path(&path); 2311 2312 return(1); 2313 } 2314 2315 void 2316 xpt_action(union ccb *start_ccb) 2317 { 2318 2319 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2320 2321 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2322 /* Compatibility for RL-unaware code. */ 2323 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0) 2324 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1; 2325 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2326 } 2327 2328 void 2329 xpt_action_default(union ccb *start_ccb) 2330 { 2331 2332 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2333 2334 switch (start_ccb->ccb_h.func_code) { 2335 case XPT_SCSI_IO: 2336 { 2337 struct cam_ed *device; 2338 #ifdef CAMDEBUG 2339 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2340 struct cam_path *path; 2341 2342 path = start_ccb->ccb_h.path; 2343 #endif 2344 2345 /* 2346 * For the sake of compatibility with SCSI-1 2347 * devices that may not understand the identify 2348 * message, we include lun information in the 2349 * second byte of all commands. SCSI-1 specifies 2350 * that luns are a 3 bit value and reserves only 3 2351 * bits for lun information in the CDB. Later 2352 * revisions of the SCSI spec allow for more than 8 2353 * luns, but have deprecated lun information in the 2354 * CDB. So, if the lun won't fit, we must omit. 2355 * 2356 * Also be aware that during initial probing for devices, 2357 * the inquiry information is unknown but initialized to 0. 2358 * This means that this code will be exercised while probing 2359 * devices with an ANSI revision greater than 2. 2360 */ 2361 device = start_ccb->ccb_h.path->device; 2362 if (device->protocol_version <= SCSI_REV_2 2363 && start_ccb->ccb_h.target_lun < 8 2364 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2365 2366 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2367 start_ccb->ccb_h.target_lun << 5; 2368 } 2369 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2370 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2371 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2372 &path->device->inq_data), 2373 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2374 cdb_str, sizeof(cdb_str)))); 2375 } 2376 /* FALLTHROUGH */ 2377 case XPT_TARGET_IO: 2378 case XPT_CONT_TARGET_IO: 2379 start_ccb->csio.sense_resid = 0; 2380 start_ccb->csio.resid = 0; 2381 /* FALLTHROUGH */ 2382 case XPT_ATA_IO: 2383 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) { 2384 start_ccb->ataio.resid = 0; 2385 } 2386 /* FALLTHROUGH */ 2387 case XPT_RESET_DEV: 2388 case XPT_ENG_EXEC: 2389 { 2390 struct cam_path *path = start_ccb->ccb_h.path; 2391 int frozen; 2392 2393 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2394 path->device->sim->devq->alloc_openings += frozen; 2395 if (frozen > 0) 2396 xpt_run_dev_allocq(path->bus); 2397 if (xpt_schedule_dev_sendq(path->bus, path->device)) 2398 xpt_run_dev_sendq(path->bus); 2399 break; 2400 } 2401 case XPT_CALC_GEOMETRY: 2402 { 2403 struct cam_sim *sim; 2404 2405 /* Filter out garbage */ 2406 if (start_ccb->ccg.block_size == 0 2407 || start_ccb->ccg.volume_size == 0) { 2408 start_ccb->ccg.cylinders = 0; 2409 start_ccb->ccg.heads = 0; 2410 start_ccb->ccg.secs_per_track = 0; 2411 start_ccb->ccb_h.status = CAM_REQ_CMP; 2412 break; 2413 } 2414 #ifdef PC98 2415 /* 2416 * In a PC-98 system, geometry translation depens on 2417 * the "real" device geometry obtained from mode page 4. 2418 * SCSI geometry translation is performed in the 2419 * initialization routine of the SCSI BIOS and the result 2420 * stored in host memory. If the translation is available 2421 * in host memory, use it. If not, rely on the default 2422 * translation the device driver performs. 2423 */ 2424 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2425 start_ccb->ccb_h.status = CAM_REQ_CMP; 2426 break; 2427 } 2428 #endif 2429 sim = start_ccb->ccb_h.path->bus->sim; 2430 (*(sim->sim_action))(sim, start_ccb); 2431 break; 2432 } 2433 case XPT_ABORT: 2434 { 2435 union ccb* abort_ccb; 2436 2437 abort_ccb = start_ccb->cab.abort_ccb; 2438 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2439 2440 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2441 struct cam_ccbq *ccbq; 2442 struct cam_ed *device; 2443 2444 device = abort_ccb->ccb_h.path->device; 2445 ccbq = &device->ccbq; 2446 device->sim->devq->alloc_openings -= 2447 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2448 abort_ccb->ccb_h.status = 2449 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2450 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2451 xpt_done(abort_ccb); 2452 start_ccb->ccb_h.status = CAM_REQ_CMP; 2453 break; 2454 } 2455 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2456 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2457 /* 2458 * We've caught this ccb en route to 2459 * the SIM. Flag it for abort and the 2460 * SIM will do so just before starting 2461 * real work on the CCB. 2462 */ 2463 abort_ccb->ccb_h.status = 2464 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2465 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2466 start_ccb->ccb_h.status = CAM_REQ_CMP; 2467 break; 2468 } 2469 } 2470 if (XPT_FC_IS_QUEUED(abort_ccb) 2471 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2472 /* 2473 * It's already completed but waiting 2474 * for our SWI to get to it. 2475 */ 2476 start_ccb->ccb_h.status = CAM_UA_ABORT; 2477 break; 2478 } 2479 /* 2480 * If we weren't able to take care of the abort request 2481 * in the XPT, pass the request down to the SIM for processing. 2482 */ 2483 } 2484 /* FALLTHROUGH */ 2485 case XPT_ACCEPT_TARGET_IO: 2486 case XPT_EN_LUN: 2487 case XPT_IMMED_NOTIFY: 2488 case XPT_NOTIFY_ACK: 2489 case XPT_RESET_BUS: 2490 case XPT_IMMEDIATE_NOTIFY: 2491 case XPT_NOTIFY_ACKNOWLEDGE: 2492 case XPT_GET_SIM_KNOB: 2493 case XPT_SET_SIM_KNOB: 2494 { 2495 struct cam_sim *sim; 2496 2497 sim = start_ccb->ccb_h.path->bus->sim; 2498 (*(sim->sim_action))(sim, start_ccb); 2499 break; 2500 } 2501 case XPT_PATH_INQ: 2502 { 2503 struct cam_sim *sim; 2504 2505 sim = start_ccb->ccb_h.path->bus->sim; 2506 (*(sim->sim_action))(sim, start_ccb); 2507 break; 2508 } 2509 case XPT_PATH_STATS: 2510 start_ccb->cpis.last_reset = 2511 start_ccb->ccb_h.path->bus->last_reset; 2512 start_ccb->ccb_h.status = CAM_REQ_CMP; 2513 break; 2514 case XPT_GDEV_TYPE: 2515 { 2516 struct cam_ed *dev; 2517 2518 dev = start_ccb->ccb_h.path->device; 2519 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2520 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2521 } else { 2522 struct ccb_getdev *cgd; 2523 struct cam_eb *bus; 2524 struct cam_et *tar; 2525 2526 cgd = &start_ccb->cgd; 2527 bus = cgd->ccb_h.path->bus; 2528 tar = cgd->ccb_h.path->target; 2529 cgd->protocol = dev->protocol; 2530 cgd->inq_data = dev->inq_data; 2531 cgd->ident_data = dev->ident_data; 2532 cgd->inq_flags = dev->inq_flags; 2533 cgd->ccb_h.status = CAM_REQ_CMP; 2534 cgd->serial_num_len = dev->serial_num_len; 2535 if ((dev->serial_num_len > 0) 2536 && (dev->serial_num != NULL)) 2537 bcopy(dev->serial_num, cgd->serial_num, 2538 dev->serial_num_len); 2539 } 2540 break; 2541 } 2542 case XPT_GDEV_STATS: 2543 { 2544 struct cam_ed *dev; 2545 2546 dev = start_ccb->ccb_h.path->device; 2547 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2548 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2549 } else { 2550 struct ccb_getdevstats *cgds; 2551 struct cam_eb *bus; 2552 struct cam_et *tar; 2553 2554 cgds = &start_ccb->cgds; 2555 bus = cgds->ccb_h.path->bus; 2556 tar = cgds->ccb_h.path->target; 2557 cgds->dev_openings = dev->ccbq.dev_openings; 2558 cgds->dev_active = dev->ccbq.dev_active; 2559 cgds->devq_openings = dev->ccbq.devq_openings; 2560 cgds->devq_queued = dev->ccbq.queue.entries; 2561 cgds->held = dev->ccbq.held; 2562 cgds->last_reset = tar->last_reset; 2563 cgds->maxtags = dev->maxtags; 2564 cgds->mintags = dev->mintags; 2565 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2566 cgds->last_reset = bus->last_reset; 2567 cgds->ccb_h.status = CAM_REQ_CMP; 2568 } 2569 break; 2570 } 2571 case XPT_GDEVLIST: 2572 { 2573 struct cam_periph *nperiph; 2574 struct periph_list *periph_head; 2575 struct ccb_getdevlist *cgdl; 2576 u_int i; 2577 struct cam_ed *device; 2578 int found; 2579 2580 2581 found = 0; 2582 2583 /* 2584 * Don't want anyone mucking with our data. 2585 */ 2586 device = start_ccb->ccb_h.path->device; 2587 periph_head = &device->periphs; 2588 cgdl = &start_ccb->cgdl; 2589 2590 /* 2591 * Check and see if the list has changed since the user 2592 * last requested a list member. If so, tell them that the 2593 * list has changed, and therefore they need to start over 2594 * from the beginning. 2595 */ 2596 if ((cgdl->index != 0) && 2597 (cgdl->generation != device->generation)) { 2598 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2599 break; 2600 } 2601 2602 /* 2603 * Traverse the list of peripherals and attempt to find 2604 * the requested peripheral. 2605 */ 2606 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2607 (nperiph != NULL) && (i <= cgdl->index); 2608 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2609 if (i == cgdl->index) { 2610 strncpy(cgdl->periph_name, 2611 nperiph->periph_name, 2612 DEV_IDLEN); 2613 cgdl->unit_number = nperiph->unit_number; 2614 found = 1; 2615 } 2616 } 2617 if (found == 0) { 2618 cgdl->status = CAM_GDEVLIST_ERROR; 2619 break; 2620 } 2621 2622 if (nperiph == NULL) 2623 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2624 else 2625 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2626 2627 cgdl->index++; 2628 cgdl->generation = device->generation; 2629 2630 cgdl->ccb_h.status = CAM_REQ_CMP; 2631 break; 2632 } 2633 case XPT_DEV_MATCH: 2634 { 2635 dev_pos_type position_type; 2636 struct ccb_dev_match *cdm; 2637 2638 cdm = &start_ccb->cdm; 2639 2640 /* 2641 * There are two ways of getting at information in the EDT. 2642 * The first way is via the primary EDT tree. It starts 2643 * with a list of busses, then a list of targets on a bus, 2644 * then devices/luns on a target, and then peripherals on a 2645 * device/lun. The "other" way is by the peripheral driver 2646 * lists. The peripheral driver lists are organized by 2647 * peripheral driver. (obviously) So it makes sense to 2648 * use the peripheral driver list if the user is looking 2649 * for something like "da1", or all "da" devices. If the 2650 * user is looking for something on a particular bus/target 2651 * or lun, it's generally better to go through the EDT tree. 2652 */ 2653 2654 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2655 position_type = cdm->pos.position_type; 2656 else { 2657 u_int i; 2658 2659 position_type = CAM_DEV_POS_NONE; 2660 2661 for (i = 0; i < cdm->num_patterns; i++) { 2662 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2663 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2664 position_type = CAM_DEV_POS_EDT; 2665 break; 2666 } 2667 } 2668 2669 if (cdm->num_patterns == 0) 2670 position_type = CAM_DEV_POS_EDT; 2671 else if (position_type == CAM_DEV_POS_NONE) 2672 position_type = CAM_DEV_POS_PDRV; 2673 } 2674 2675 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2676 case CAM_DEV_POS_EDT: 2677 xptedtmatch(cdm); 2678 break; 2679 case CAM_DEV_POS_PDRV: 2680 xptperiphlistmatch(cdm); 2681 break; 2682 default: 2683 cdm->status = CAM_DEV_MATCH_ERROR; 2684 break; 2685 } 2686 2687 if (cdm->status == CAM_DEV_MATCH_ERROR) 2688 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2689 else 2690 start_ccb->ccb_h.status = CAM_REQ_CMP; 2691 2692 break; 2693 } 2694 case XPT_SASYNC_CB: 2695 { 2696 struct ccb_setasync *csa; 2697 struct async_node *cur_entry; 2698 struct async_list *async_head; 2699 u_int32_t added; 2700 2701 csa = &start_ccb->csa; 2702 added = csa->event_enable; 2703 async_head = &csa->ccb_h.path->device->asyncs; 2704 2705 /* 2706 * If there is already an entry for us, simply 2707 * update it. 2708 */ 2709 cur_entry = SLIST_FIRST(async_head); 2710 while (cur_entry != NULL) { 2711 if ((cur_entry->callback_arg == csa->callback_arg) 2712 && (cur_entry->callback == csa->callback)) 2713 break; 2714 cur_entry = SLIST_NEXT(cur_entry, links); 2715 } 2716 2717 if (cur_entry != NULL) { 2718 /* 2719 * If the request has no flags set, 2720 * remove the entry. 2721 */ 2722 added &= ~cur_entry->event_enable; 2723 if (csa->event_enable == 0) { 2724 SLIST_REMOVE(async_head, cur_entry, 2725 async_node, links); 2726 xpt_release_device(csa->ccb_h.path->device); 2727 free(cur_entry, M_CAMXPT); 2728 } else { 2729 cur_entry->event_enable = csa->event_enable; 2730 } 2731 csa->event_enable = added; 2732 } else { 2733 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2734 M_NOWAIT); 2735 if (cur_entry == NULL) { 2736 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2737 break; 2738 } 2739 cur_entry->event_enable = csa->event_enable; 2740 cur_entry->callback_arg = csa->callback_arg; 2741 cur_entry->callback = csa->callback; 2742 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2743 xpt_acquire_device(csa->ccb_h.path->device); 2744 } 2745 start_ccb->ccb_h.status = CAM_REQ_CMP; 2746 break; 2747 } 2748 case XPT_REL_SIMQ: 2749 { 2750 struct ccb_relsim *crs; 2751 struct cam_ed *dev; 2752 2753 crs = &start_ccb->crs; 2754 dev = crs->ccb_h.path->device; 2755 if (dev == NULL) { 2756 2757 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2758 break; 2759 } 2760 2761 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2762 2763 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 2764 /* Don't ever go below one opening */ 2765 if (crs->openings > 0) { 2766 xpt_dev_ccbq_resize(crs->ccb_h.path, 2767 crs->openings); 2768 2769 if (bootverbose) { 2770 xpt_print(crs->ccb_h.path, 2771 "tagged openings now %d\n", 2772 crs->openings); 2773 } 2774 } 2775 } 2776 } 2777 2778 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2779 2780 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2781 2782 /* 2783 * Just extend the old timeout and decrement 2784 * the freeze count so that a single timeout 2785 * is sufficient for releasing the queue. 2786 */ 2787 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2788 callout_stop(&dev->callout); 2789 } else { 2790 2791 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2792 } 2793 2794 callout_reset(&dev->callout, 2795 (crs->release_timeout * hz) / 1000, 2796 xpt_release_devq_timeout, dev); 2797 2798 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2799 2800 } 2801 2802 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2803 2804 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2805 /* 2806 * Decrement the freeze count so that a single 2807 * completion is still sufficient to unfreeze 2808 * the queue. 2809 */ 2810 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2811 } else { 2812 2813 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2814 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2815 } 2816 } 2817 2818 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2819 2820 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2821 || (dev->ccbq.dev_active == 0)) { 2822 2823 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2824 } else { 2825 2826 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2827 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2828 } 2829 } 2830 2831 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 2832 xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/ 2833 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2834 crs->release_timeout : 0, 2835 /*count*/1, /*run_queue*/TRUE); 2836 } 2837 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0]; 2838 start_ccb->ccb_h.status = CAM_REQ_CMP; 2839 break; 2840 } 2841 case XPT_DEBUG: { 2842 #ifdef CAMDEBUG 2843 #ifdef CAM_DEBUG_DELAY 2844 cam_debug_delay = CAM_DEBUG_DELAY; 2845 #endif 2846 cam_dflags = start_ccb->cdbg.flags; 2847 if (cam_dpath != NULL) { 2848 xpt_free_path(cam_dpath); 2849 cam_dpath = NULL; 2850 } 2851 2852 if (cam_dflags != CAM_DEBUG_NONE) { 2853 if (xpt_create_path(&cam_dpath, xpt_periph, 2854 start_ccb->ccb_h.path_id, 2855 start_ccb->ccb_h.target_id, 2856 start_ccb->ccb_h.target_lun) != 2857 CAM_REQ_CMP) { 2858 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2859 cam_dflags = CAM_DEBUG_NONE; 2860 } else { 2861 start_ccb->ccb_h.status = CAM_REQ_CMP; 2862 xpt_print(cam_dpath, "debugging flags now %x\n", 2863 cam_dflags); 2864 } 2865 } else { 2866 cam_dpath = NULL; 2867 start_ccb->ccb_h.status = CAM_REQ_CMP; 2868 } 2869 #else /* !CAMDEBUG */ 2870 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2871 #endif /* CAMDEBUG */ 2872 break; 2873 } 2874 case XPT_FREEZE_QUEUE: 2875 { 2876 struct ccb_relsim *crs = &start_ccb->crs; 2877 2878 xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/ 2879 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2880 crs->release_timeout : 0, /*count*/1); 2881 start_ccb->ccb_h.status = CAM_REQ_CMP; 2882 break; 2883 } 2884 case XPT_NOOP: 2885 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2886 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 2887 start_ccb->ccb_h.status = CAM_REQ_CMP; 2888 break; 2889 default: 2890 case XPT_SDEV_TYPE: 2891 case XPT_TERM_IO: 2892 case XPT_ENG_INQ: 2893 /* XXX Implement */ 2894 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2895 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2896 xpt_done(start_ccb); 2897 } 2898 break; 2899 } 2900 } 2901 2902 void 2903 xpt_polled_action(union ccb *start_ccb) 2904 { 2905 u_int32_t timeout; 2906 struct cam_sim *sim; 2907 struct cam_devq *devq; 2908 struct cam_ed *dev; 2909 2910 2911 timeout = start_ccb->ccb_h.timeout * 10; 2912 sim = start_ccb->ccb_h.path->bus->sim; 2913 devq = sim->devq; 2914 dev = start_ccb->ccb_h.path->device; 2915 2916 mtx_assert(sim->mtx, MA_OWNED); 2917 2918 /* 2919 * Steal an opening so that no other queued requests 2920 * can get it before us while we simulate interrupts. 2921 */ 2922 dev->ccbq.devq_openings--; 2923 dev->ccbq.dev_openings--; 2924 2925 while(((devq != NULL && devq->send_openings <= 0) || 2926 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 2927 DELAY(100); 2928 (*(sim->sim_poll))(sim); 2929 camisr_runqueue(&sim->sim_doneq); 2930 } 2931 2932 dev->ccbq.devq_openings++; 2933 dev->ccbq.dev_openings++; 2934 2935 if (timeout != 0) { 2936 xpt_action(start_ccb); 2937 while(--timeout > 0) { 2938 (*(sim->sim_poll))(sim); 2939 camisr_runqueue(&sim->sim_doneq); 2940 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 2941 != CAM_REQ_INPROG) 2942 break; 2943 DELAY(100); 2944 } 2945 if (timeout == 0) { 2946 /* 2947 * XXX Is it worth adding a sim_timeout entry 2948 * point so we can attempt recovery? If 2949 * this is only used for dumps, I don't think 2950 * it is. 2951 */ 2952 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 2953 } 2954 } else { 2955 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2956 } 2957 } 2958 2959 /* 2960 * Schedule a peripheral driver to receive a ccb when it's 2961 * target device has space for more transactions. 2962 */ 2963 void 2964 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 2965 { 2966 struct cam_ed *device; 2967 int runq = 0; 2968 2969 mtx_assert(perph->sim->mtx, MA_OWNED); 2970 2971 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 2972 device = perph->path->device; 2973 if (periph_is_queued(perph)) { 2974 /* Simply reorder based on new priority */ 2975 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 2976 (" change priority to %d\n", new_priority)); 2977 if (new_priority < perph->pinfo.priority) { 2978 camq_change_priority(&device->drvq, 2979 perph->pinfo.index, 2980 new_priority); 2981 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 2982 } 2983 } else { 2984 /* New entry on the queue */ 2985 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 2986 (" added periph to queue\n")); 2987 perph->pinfo.priority = new_priority; 2988 perph->pinfo.generation = ++device->drvq.generation; 2989 camq_insert(&device->drvq, &perph->pinfo); 2990 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 2991 } 2992 if (runq != 0) { 2993 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 2994 (" calling xpt_run_devq\n")); 2995 xpt_run_dev_allocq(perph->path->bus); 2996 } 2997 } 2998 2999 3000 /* 3001 * Schedule a device to run on a given queue. 3002 * If the device was inserted as a new entry on the queue, 3003 * return 1 meaning the device queue should be run. If we 3004 * were already queued, implying someone else has already 3005 * started the queue, return 0 so the caller doesn't attempt 3006 * to run the queue. 3007 */ 3008 int 3009 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3010 u_int32_t new_priority) 3011 { 3012 int retval; 3013 u_int32_t old_priority; 3014 3015 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3016 3017 old_priority = pinfo->priority; 3018 3019 /* 3020 * Are we already queued? 3021 */ 3022 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3023 /* Simply reorder based on new priority */ 3024 if (new_priority < old_priority) { 3025 camq_change_priority(queue, pinfo->index, 3026 new_priority); 3027 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3028 ("changed priority to %d\n", 3029 new_priority)); 3030 retval = 1; 3031 } else 3032 retval = 0; 3033 } else { 3034 /* New entry on the queue */ 3035 if (new_priority < old_priority) 3036 pinfo->priority = new_priority; 3037 3038 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3039 ("Inserting onto queue\n")); 3040 pinfo->generation = ++queue->generation; 3041 camq_insert(queue, pinfo); 3042 retval = 1; 3043 } 3044 return (retval); 3045 } 3046 3047 static void 3048 xpt_run_dev_allocq(struct cam_eb *bus) 3049 { 3050 struct cam_devq *devq; 3051 3052 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3053 devq = bus->sim->devq; 3054 3055 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3056 (" qfrozen_cnt == 0x%x, entries == %d, " 3057 "openings == %d, active == %d\n", 3058 devq->alloc_queue.qfrozen_cnt[0], 3059 devq->alloc_queue.entries, 3060 devq->alloc_openings, 3061 devq->alloc_active)); 3062 3063 devq->alloc_queue.qfrozen_cnt[0]++; 3064 while ((devq->alloc_queue.entries > 0) 3065 && (devq->alloc_openings > 0) 3066 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) { 3067 struct cam_ed_qinfo *qinfo; 3068 struct cam_ed *device; 3069 union ccb *work_ccb; 3070 struct cam_periph *drv; 3071 struct camq *drvq; 3072 3073 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3074 CAMQ_HEAD); 3075 device = qinfo->device; 3076 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3077 ("running device %p\n", device)); 3078 3079 drvq = &device->drvq; 3080 3081 #ifdef CAMDEBUG 3082 if (drvq->entries <= 0) { 3083 panic("xpt_run_dev_allocq: " 3084 "Device on queue without any work to do"); 3085 } 3086 #endif 3087 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3088 devq->alloc_openings--; 3089 devq->alloc_active++; 3090 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3091 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3092 drv->pinfo.priority); 3093 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3094 ("calling periph start\n")); 3095 drv->periph_start(drv, work_ccb); 3096 } else { 3097 /* 3098 * Malloc failure in alloc_ccb 3099 */ 3100 /* 3101 * XXX add us to a list to be run from free_ccb 3102 * if we don't have any ccbs active on this 3103 * device queue otherwise we may never get run 3104 * again. 3105 */ 3106 break; 3107 } 3108 3109 /* We may have more work. Attempt to reschedule. */ 3110 xpt_schedule_dev_allocq(bus, device); 3111 } 3112 devq->alloc_queue.qfrozen_cnt[0]--; 3113 } 3114 3115 static void 3116 xpt_run_dev_sendq(struct cam_eb *bus) 3117 { 3118 struct cam_devq *devq; 3119 3120 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3121 3122 devq = bus->sim->devq; 3123 3124 devq->send_queue.qfrozen_cnt[0]++; 3125 while ((devq->send_queue.entries > 0) 3126 && (devq->send_openings > 0) 3127 && (devq->send_queue.qfrozen_cnt[0] <= 1)) { 3128 struct cam_ed_qinfo *qinfo; 3129 struct cam_ed *device; 3130 union ccb *work_ccb; 3131 struct cam_sim *sim; 3132 3133 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3134 CAMQ_HEAD); 3135 device = qinfo->device; 3136 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3137 ("running device %p\n", device)); 3138 3139 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3140 if (work_ccb == NULL) { 3141 printf("device on run queue with no ccbs???\n"); 3142 continue; 3143 } 3144 3145 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3146 3147 mtx_lock(&xsoftc.xpt_lock); 3148 if (xsoftc.num_highpower <= 0) { 3149 /* 3150 * We got a high power command, but we 3151 * don't have any available slots. Freeze 3152 * the device queue until we have a slot 3153 * available. 3154 */ 3155 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3156 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3157 &work_ccb->ccb_h, 3158 xpt_links.stqe); 3159 3160 mtx_unlock(&xsoftc.xpt_lock); 3161 continue; 3162 } else { 3163 /* 3164 * Consume a high power slot while 3165 * this ccb runs. 3166 */ 3167 xsoftc.num_highpower--; 3168 } 3169 mtx_unlock(&xsoftc.xpt_lock); 3170 } 3171 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3172 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3173 3174 devq->send_openings--; 3175 devq->send_active++; 3176 3177 xpt_schedule_dev_sendq(bus, device); 3178 3179 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3180 /* 3181 * The client wants to freeze the queue 3182 * after this CCB is sent. 3183 */ 3184 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3185 } 3186 3187 /* In Target mode, the peripheral driver knows best... */ 3188 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3189 if ((device->inq_flags & SID_CmdQue) != 0 3190 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3191 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3192 else 3193 /* 3194 * Clear this in case of a retried CCB that 3195 * failed due to a rejected tag. 3196 */ 3197 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3198 } 3199 3200 /* 3201 * Device queues can be shared among multiple sim instances 3202 * that reside on different busses. Use the SIM in the queue 3203 * CCB's path, rather than the one in the bus that was passed 3204 * into this function. 3205 */ 3206 sim = work_ccb->ccb_h.path->bus->sim; 3207 (*(sim->sim_action))(sim, work_ccb); 3208 } 3209 devq->send_queue.qfrozen_cnt[0]--; 3210 } 3211 3212 /* 3213 * This function merges stuff from the slave ccb into the master ccb, while 3214 * keeping important fields in the master ccb constant. 3215 */ 3216 void 3217 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3218 { 3219 3220 /* 3221 * Pull fields that are valid for peripheral drivers to set 3222 * into the master CCB along with the CCB "payload". 3223 */ 3224 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3225 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3226 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3227 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3228 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3229 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3230 } 3231 3232 void 3233 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3234 { 3235 3236 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3237 ccb_h->pinfo.priority = priority; 3238 ccb_h->path = path; 3239 ccb_h->path_id = path->bus->path_id; 3240 if (path->target) 3241 ccb_h->target_id = path->target->target_id; 3242 else 3243 ccb_h->target_id = CAM_TARGET_WILDCARD; 3244 if (path->device) { 3245 ccb_h->target_lun = path->device->lun_id; 3246 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3247 } else { 3248 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3249 } 3250 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3251 ccb_h->flags = 0; 3252 } 3253 3254 /* Path manipulation functions */ 3255 cam_status 3256 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3257 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3258 { 3259 struct cam_path *path; 3260 cam_status status; 3261 3262 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3263 3264 if (path == NULL) { 3265 status = CAM_RESRC_UNAVAIL; 3266 return(status); 3267 } 3268 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3269 if (status != CAM_REQ_CMP) { 3270 free(path, M_CAMXPT); 3271 path = NULL; 3272 } 3273 *new_path_ptr = path; 3274 return (status); 3275 } 3276 3277 cam_status 3278 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3279 struct cam_periph *periph, path_id_t path_id, 3280 target_id_t target_id, lun_id_t lun_id) 3281 { 3282 struct cam_path *path; 3283 struct cam_eb *bus = NULL; 3284 cam_status status; 3285 int need_unlock = 0; 3286 3287 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3288 3289 if (path_id != CAM_BUS_WILDCARD) { 3290 bus = xpt_find_bus(path_id); 3291 if (bus != NULL) { 3292 need_unlock = 1; 3293 CAM_SIM_LOCK(bus->sim); 3294 } 3295 } 3296 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3297 if (need_unlock) 3298 CAM_SIM_UNLOCK(bus->sim); 3299 if (status != CAM_REQ_CMP) { 3300 free(path, M_CAMXPT); 3301 path = NULL; 3302 } 3303 *new_path_ptr = path; 3304 return (status); 3305 } 3306 3307 cam_status 3308 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3309 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3310 { 3311 struct cam_eb *bus; 3312 struct cam_et *target; 3313 struct cam_ed *device; 3314 cam_status status; 3315 3316 status = CAM_REQ_CMP; /* Completed without error */ 3317 target = NULL; /* Wildcarded */ 3318 device = NULL; /* Wildcarded */ 3319 3320 /* 3321 * We will potentially modify the EDT, so block interrupts 3322 * that may attempt to create cam paths. 3323 */ 3324 bus = xpt_find_bus(path_id); 3325 if (bus == NULL) { 3326 status = CAM_PATH_INVALID; 3327 } else { 3328 target = xpt_find_target(bus, target_id); 3329 if (target == NULL) { 3330 /* Create one */ 3331 struct cam_et *new_target; 3332 3333 new_target = xpt_alloc_target(bus, target_id); 3334 if (new_target == NULL) { 3335 status = CAM_RESRC_UNAVAIL; 3336 } else { 3337 target = new_target; 3338 } 3339 } 3340 if (target != NULL) { 3341 device = xpt_find_device(target, lun_id); 3342 if (device == NULL) { 3343 /* Create one */ 3344 struct cam_ed *new_device; 3345 3346 new_device = 3347 (*(bus->xport->alloc_device))(bus, 3348 target, 3349 lun_id); 3350 if (new_device == NULL) { 3351 status = CAM_RESRC_UNAVAIL; 3352 } else { 3353 device = new_device; 3354 } 3355 } 3356 } 3357 } 3358 3359 /* 3360 * Only touch the user's data if we are successful. 3361 */ 3362 if (status == CAM_REQ_CMP) { 3363 new_path->periph = perph; 3364 new_path->bus = bus; 3365 new_path->target = target; 3366 new_path->device = device; 3367 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3368 } else { 3369 if (device != NULL) 3370 xpt_release_device(device); 3371 if (target != NULL) 3372 xpt_release_target(target); 3373 if (bus != NULL) 3374 xpt_release_bus(bus); 3375 } 3376 return (status); 3377 } 3378 3379 void 3380 xpt_release_path(struct cam_path *path) 3381 { 3382 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3383 if (path->device != NULL) { 3384 xpt_release_device(path->device); 3385 path->device = NULL; 3386 } 3387 if (path->target != NULL) { 3388 xpt_release_target(path->target); 3389 path->target = NULL; 3390 } 3391 if (path->bus != NULL) { 3392 xpt_release_bus(path->bus); 3393 path->bus = NULL; 3394 } 3395 } 3396 3397 void 3398 xpt_free_path(struct cam_path *path) 3399 { 3400 3401 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3402 xpt_release_path(path); 3403 free(path, M_CAMXPT); 3404 } 3405 3406 3407 /* 3408 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3409 * in path1, 2 for match with wildcards in path2. 3410 */ 3411 int 3412 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3413 { 3414 int retval = 0; 3415 3416 if (path1->bus != path2->bus) { 3417 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3418 retval = 1; 3419 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3420 retval = 2; 3421 else 3422 return (-1); 3423 } 3424 if (path1->target != path2->target) { 3425 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3426 if (retval == 0) 3427 retval = 1; 3428 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3429 retval = 2; 3430 else 3431 return (-1); 3432 } 3433 if (path1->device != path2->device) { 3434 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3435 if (retval == 0) 3436 retval = 1; 3437 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3438 retval = 2; 3439 else 3440 return (-1); 3441 } 3442 return (retval); 3443 } 3444 3445 void 3446 xpt_print_path(struct cam_path *path) 3447 { 3448 3449 if (path == NULL) 3450 printf("(nopath): "); 3451 else { 3452 if (path->periph != NULL) 3453 printf("(%s%d:", path->periph->periph_name, 3454 path->periph->unit_number); 3455 else 3456 printf("(noperiph:"); 3457 3458 if (path->bus != NULL) 3459 printf("%s%d:%d:", path->bus->sim->sim_name, 3460 path->bus->sim->unit_number, 3461 path->bus->sim->bus_id); 3462 else 3463 printf("nobus:"); 3464 3465 if (path->target != NULL) 3466 printf("%d:", path->target->target_id); 3467 else 3468 printf("X:"); 3469 3470 if (path->device != NULL) 3471 printf("%d): ", path->device->lun_id); 3472 else 3473 printf("X): "); 3474 } 3475 } 3476 3477 void 3478 xpt_print(struct cam_path *path, const char *fmt, ...) 3479 { 3480 va_list ap; 3481 xpt_print_path(path); 3482 va_start(ap, fmt); 3483 vprintf(fmt, ap); 3484 va_end(ap); 3485 } 3486 3487 int 3488 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3489 { 3490 struct sbuf sb; 3491 3492 #ifdef INVARIANTS 3493 if (path != NULL && path->bus != NULL) 3494 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3495 #endif 3496 3497 sbuf_new(&sb, str, str_len, 0); 3498 3499 if (path == NULL) 3500 sbuf_printf(&sb, "(nopath): "); 3501 else { 3502 if (path->periph != NULL) 3503 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3504 path->periph->unit_number); 3505 else 3506 sbuf_printf(&sb, "(noperiph:"); 3507 3508 if (path->bus != NULL) 3509 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3510 path->bus->sim->unit_number, 3511 path->bus->sim->bus_id); 3512 else 3513 sbuf_printf(&sb, "nobus:"); 3514 3515 if (path->target != NULL) 3516 sbuf_printf(&sb, "%d:", path->target->target_id); 3517 else 3518 sbuf_printf(&sb, "X:"); 3519 3520 if (path->device != NULL) 3521 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3522 else 3523 sbuf_printf(&sb, "X): "); 3524 } 3525 sbuf_finish(&sb); 3526 3527 return(sbuf_len(&sb)); 3528 } 3529 3530 path_id_t 3531 xpt_path_path_id(struct cam_path *path) 3532 { 3533 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3534 3535 return(path->bus->path_id); 3536 } 3537 3538 target_id_t 3539 xpt_path_target_id(struct cam_path *path) 3540 { 3541 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3542 3543 if (path->target != NULL) 3544 return (path->target->target_id); 3545 else 3546 return (CAM_TARGET_WILDCARD); 3547 } 3548 3549 lun_id_t 3550 xpt_path_lun_id(struct cam_path *path) 3551 { 3552 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3553 3554 if (path->device != NULL) 3555 return (path->device->lun_id); 3556 else 3557 return (CAM_LUN_WILDCARD); 3558 } 3559 3560 struct cam_sim * 3561 xpt_path_sim(struct cam_path *path) 3562 { 3563 3564 return (path->bus->sim); 3565 } 3566 3567 struct cam_periph* 3568 xpt_path_periph(struct cam_path *path) 3569 { 3570 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3571 3572 return (path->periph); 3573 } 3574 3575 /* 3576 * Release a CAM control block for the caller. Remit the cost of the structure 3577 * to the device referenced by the path. If the this device had no 'credits' 3578 * and peripheral drivers have registered async callbacks for this notification 3579 * call them now. 3580 */ 3581 void 3582 xpt_release_ccb(union ccb *free_ccb) 3583 { 3584 struct cam_path *path; 3585 struct cam_ed *device; 3586 struct cam_eb *bus; 3587 struct cam_sim *sim; 3588 3589 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3590 path = free_ccb->ccb_h.path; 3591 device = path->device; 3592 bus = path->bus; 3593 sim = bus->sim; 3594 3595 mtx_assert(sim->mtx, MA_OWNED); 3596 3597 cam_ccbq_release_opening(&device->ccbq); 3598 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3599 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3600 cam_ccbq_resize(&device->ccbq, 3601 device->ccbq.dev_openings + device->ccbq.dev_active); 3602 } 3603 if (sim->ccb_count > sim->max_ccbs) { 3604 xpt_free_ccb(free_ccb); 3605 sim->ccb_count--; 3606 } else { 3607 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3608 xpt_links.sle); 3609 } 3610 if (sim->devq == NULL) { 3611 return; 3612 } 3613 sim->devq->alloc_openings++; 3614 sim->devq->alloc_active--; 3615 if (device_is_alloc_queued(device) == 0) 3616 xpt_schedule_dev_allocq(bus, device); 3617 xpt_run_dev_allocq(bus); 3618 } 3619 3620 /* Functions accessed by SIM drivers */ 3621 3622 static struct xpt_xport xport_default = { 3623 .alloc_device = xpt_alloc_device_default, 3624 .action = xpt_action_default, 3625 .async = xpt_dev_async_default, 3626 }; 3627 3628 /* 3629 * A sim structure, listing the SIM entry points and instance 3630 * identification info is passed to xpt_bus_register to hook the SIM 3631 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3632 * for this new bus and places it in the array of busses and assigns 3633 * it a path_id. The path_id may be influenced by "hard wiring" 3634 * information specified by the user. Once interrupt services are 3635 * available, the bus will be probed. 3636 */ 3637 int32_t 3638 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3639 { 3640 struct cam_eb *new_bus; 3641 struct cam_eb *old_bus; 3642 struct ccb_pathinq cpi; 3643 struct cam_path *path; 3644 cam_status status; 3645 3646 mtx_assert(sim->mtx, MA_OWNED); 3647 3648 sim->bus_id = bus; 3649 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3650 M_CAMXPT, M_NOWAIT); 3651 if (new_bus == NULL) { 3652 /* Couldn't satisfy request */ 3653 return (CAM_RESRC_UNAVAIL); 3654 } 3655 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3656 if (path == NULL) { 3657 free(new_bus, M_CAMXPT); 3658 return (CAM_RESRC_UNAVAIL); 3659 } 3660 3661 if (strcmp(sim->sim_name, "xpt") != 0) { 3662 sim->path_id = 3663 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3664 } 3665 3666 TAILQ_INIT(&new_bus->et_entries); 3667 new_bus->path_id = sim->path_id; 3668 cam_sim_hold(sim); 3669 new_bus->sim = sim; 3670 timevalclear(&new_bus->last_reset); 3671 new_bus->flags = 0; 3672 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3673 new_bus->generation = 0; 3674 3675 mtx_lock(&xsoftc.xpt_topo_lock); 3676 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3677 while (old_bus != NULL 3678 && old_bus->path_id < new_bus->path_id) 3679 old_bus = TAILQ_NEXT(old_bus, links); 3680 if (old_bus != NULL) 3681 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3682 else 3683 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3684 xsoftc.bus_generation++; 3685 mtx_unlock(&xsoftc.xpt_topo_lock); 3686 3687 /* 3688 * Set a default transport so that a PATH_INQ can be issued to 3689 * the SIM. This will then allow for probing and attaching of 3690 * a more appropriate transport. 3691 */ 3692 new_bus->xport = &xport_default; 3693 3694 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id, 3695 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3696 if (status != CAM_REQ_CMP) 3697 printf("xpt_compile_path returned %d\n", status); 3698 3699 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3700 cpi.ccb_h.func_code = XPT_PATH_INQ; 3701 xpt_action((union ccb *)&cpi); 3702 3703 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3704 switch (cpi.transport) { 3705 case XPORT_SPI: 3706 case XPORT_SAS: 3707 case XPORT_FC: 3708 case XPORT_USB: 3709 case XPORT_ISCSI: 3710 case XPORT_PPB: 3711 new_bus->xport = scsi_get_xport(); 3712 break; 3713 case XPORT_ATA: 3714 case XPORT_SATA: 3715 new_bus->xport = ata_get_xport(); 3716 break; 3717 default: 3718 new_bus->xport = &xport_default; 3719 break; 3720 } 3721 } 3722 3723 /* Notify interested parties */ 3724 if (sim->path_id != CAM_XPT_PATH_ID) { 3725 union ccb *scan_ccb; 3726 3727 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3728 /* Initiate bus rescan. */ 3729 scan_ccb = xpt_alloc_ccb_nowait(); 3730 scan_ccb->ccb_h.path = path; 3731 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3732 scan_ccb->crcn.flags = 0; 3733 xpt_rescan(scan_ccb); 3734 } else 3735 xpt_free_path(path); 3736 return (CAM_SUCCESS); 3737 } 3738 3739 int32_t 3740 xpt_bus_deregister(path_id_t pathid) 3741 { 3742 struct cam_path bus_path; 3743 cam_status status; 3744 3745 status = xpt_compile_path(&bus_path, NULL, pathid, 3746 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3747 if (status != CAM_REQ_CMP) 3748 return (status); 3749 3750 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3751 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3752 3753 /* Release the reference count held while registered. */ 3754 xpt_release_bus(bus_path.bus); 3755 xpt_release_path(&bus_path); 3756 3757 return (CAM_REQ_CMP); 3758 } 3759 3760 static path_id_t 3761 xptnextfreepathid(void) 3762 { 3763 struct cam_eb *bus; 3764 path_id_t pathid; 3765 const char *strval; 3766 3767 pathid = 0; 3768 mtx_lock(&xsoftc.xpt_topo_lock); 3769 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3770 retry: 3771 /* Find an unoccupied pathid */ 3772 while (bus != NULL && bus->path_id <= pathid) { 3773 if (bus->path_id == pathid) 3774 pathid++; 3775 bus = TAILQ_NEXT(bus, links); 3776 } 3777 mtx_unlock(&xsoftc.xpt_topo_lock); 3778 3779 /* 3780 * Ensure that this pathid is not reserved for 3781 * a bus that may be registered in the future. 3782 */ 3783 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3784 ++pathid; 3785 /* Start the search over */ 3786 mtx_lock(&xsoftc.xpt_topo_lock); 3787 goto retry; 3788 } 3789 return (pathid); 3790 } 3791 3792 static path_id_t 3793 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3794 { 3795 path_id_t pathid; 3796 int i, dunit, val; 3797 char buf[32]; 3798 const char *dname; 3799 3800 pathid = CAM_XPT_PATH_ID; 3801 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3802 i = 0; 3803 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3804 if (strcmp(dname, "scbus")) { 3805 /* Avoid a bit of foot shooting. */ 3806 continue; 3807 } 3808 if (dunit < 0) /* unwired?! */ 3809 continue; 3810 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3811 if (sim_bus == val) { 3812 pathid = dunit; 3813 break; 3814 } 3815 } else if (sim_bus == 0) { 3816 /* Unspecified matches bus 0 */ 3817 pathid = dunit; 3818 break; 3819 } else { 3820 printf("Ambiguous scbus configuration for %s%d " 3821 "bus %d, cannot wire down. The kernel " 3822 "config entry for scbus%d should " 3823 "specify a controller bus.\n" 3824 "Scbus will be assigned dynamically.\n", 3825 sim_name, sim_unit, sim_bus, dunit); 3826 break; 3827 } 3828 } 3829 3830 if (pathid == CAM_XPT_PATH_ID) 3831 pathid = xptnextfreepathid(); 3832 return (pathid); 3833 } 3834 3835 void 3836 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 3837 { 3838 struct cam_eb *bus; 3839 struct cam_et *target, *next_target; 3840 struct cam_ed *device, *next_device; 3841 3842 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3843 3844 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 3845 3846 /* 3847 * Most async events come from a CAM interrupt context. In 3848 * a few cases, the error recovery code at the peripheral layer, 3849 * which may run from our SWI or a process context, may signal 3850 * deferred events with a call to xpt_async. 3851 */ 3852 3853 bus = path->bus; 3854 3855 if (async_code == AC_BUS_RESET) { 3856 /* Update our notion of when the last reset occurred */ 3857 microtime(&bus->last_reset); 3858 } 3859 3860 for (target = TAILQ_FIRST(&bus->et_entries); 3861 target != NULL; 3862 target = next_target) { 3863 3864 next_target = TAILQ_NEXT(target, links); 3865 3866 if (path->target != target 3867 && path->target->target_id != CAM_TARGET_WILDCARD 3868 && target->target_id != CAM_TARGET_WILDCARD) 3869 continue; 3870 3871 if (async_code == AC_SENT_BDR) { 3872 /* Update our notion of when the last reset occurred */ 3873 microtime(&path->target->last_reset); 3874 } 3875 3876 for (device = TAILQ_FIRST(&target->ed_entries); 3877 device != NULL; 3878 device = next_device) { 3879 3880 next_device = TAILQ_NEXT(device, links); 3881 3882 if (path->device != device 3883 && path->device->lun_id != CAM_LUN_WILDCARD 3884 && device->lun_id != CAM_LUN_WILDCARD) 3885 continue; 3886 /* 3887 * The async callback could free the device. 3888 * If it is a broadcast async, it doesn't hold 3889 * device reference, so take our own reference. 3890 */ 3891 xpt_acquire_device(device); 3892 (*(bus->xport->async))(async_code, bus, 3893 target, device, 3894 async_arg); 3895 3896 xpt_async_bcast(&device->asyncs, async_code, 3897 path, async_arg); 3898 xpt_release_device(device); 3899 } 3900 } 3901 3902 /* 3903 * If this wasn't a fully wildcarded async, tell all 3904 * clients that want all async events. 3905 */ 3906 if (bus != xpt_periph->path->bus) 3907 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 3908 path, async_arg); 3909 } 3910 3911 static void 3912 xpt_async_bcast(struct async_list *async_head, 3913 u_int32_t async_code, 3914 struct cam_path *path, void *async_arg) 3915 { 3916 struct async_node *cur_entry; 3917 3918 cur_entry = SLIST_FIRST(async_head); 3919 while (cur_entry != NULL) { 3920 struct async_node *next_entry; 3921 /* 3922 * Grab the next list entry before we call the current 3923 * entry's callback. This is because the callback function 3924 * can delete its async callback entry. 3925 */ 3926 next_entry = SLIST_NEXT(cur_entry, links); 3927 if ((cur_entry->event_enable & async_code) != 0) 3928 cur_entry->callback(cur_entry->callback_arg, 3929 async_code, path, 3930 async_arg); 3931 cur_entry = next_entry; 3932 } 3933 } 3934 3935 static void 3936 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 3937 struct cam_et *target, struct cam_ed *device, 3938 void *async_arg) 3939 { 3940 printf("%s called\n", __func__); 3941 } 3942 3943 u_int32_t 3944 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count) 3945 { 3946 struct cam_ed *dev = path->device; 3947 3948 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3949 dev->sim->devq->alloc_openings += 3950 cam_ccbq_freeze(&dev->ccbq, rl, count); 3951 /* Remove frozen device from allocq. */ 3952 if (device_is_alloc_queued(dev) && 3953 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 3954 CAMQ_GET_PRIO(&dev->drvq)))) { 3955 camq_remove(&dev->sim->devq->alloc_queue, 3956 dev->alloc_ccb_entry.pinfo.index); 3957 } 3958 /* Remove frozen device from sendq. */ 3959 if (device_is_send_queued(dev) && 3960 cam_ccbq_frozen_top(&dev->ccbq)) { 3961 camq_remove(&dev->sim->devq->send_queue, 3962 dev->send_ccb_entry.pinfo.index); 3963 } 3964 return (dev->ccbq.queue.qfrozen_cnt[rl]); 3965 } 3966 3967 u_int32_t 3968 xpt_freeze_devq(struct cam_path *path, u_int count) 3969 { 3970 3971 return (xpt_freeze_devq_rl(path, 0, count)); 3972 } 3973 3974 u_int32_t 3975 xpt_freeze_simq(struct cam_sim *sim, u_int count) 3976 { 3977 3978 mtx_assert(sim->mtx, MA_OWNED); 3979 sim->devq->send_queue.qfrozen_cnt[0] += count; 3980 return (sim->devq->send_queue.qfrozen_cnt[0]); 3981 } 3982 3983 static void 3984 xpt_release_devq_timeout(void *arg) 3985 { 3986 struct cam_ed *device; 3987 3988 device = (struct cam_ed *)arg; 3989 3990 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE); 3991 } 3992 3993 void 3994 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 3995 { 3996 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3997 3998 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue); 3999 } 4000 4001 void 4002 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue) 4003 { 4004 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4005 4006 xpt_release_devq_device(path->device, rl, count, run_queue); 4007 } 4008 4009 static void 4010 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue) 4011 { 4012 4013 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) { 4014 #ifdef INVARIANTS 4015 printf("xpt_release_devq(%d): requested %u > present %u\n", 4016 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]); 4017 #endif 4018 count = dev->ccbq.queue.qfrozen_cnt[rl]; 4019 } 4020 dev->sim->devq->alloc_openings -= 4021 cam_ccbq_release(&dev->ccbq, rl, count); 4022 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4023 CAMQ_GET_PRIO(&dev->drvq))) == 0) { 4024 if (xpt_schedule_dev_allocq(dev->target->bus, dev)) 4025 xpt_run_dev_allocq(dev->target->bus); 4026 } 4027 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) { 4028 /* 4029 * No longer need to wait for a successful 4030 * command completion. 4031 */ 4032 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4033 /* 4034 * Remove any timeouts that might be scheduled 4035 * to release this queue. 4036 */ 4037 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4038 callout_stop(&dev->callout); 4039 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4040 } 4041 if (run_queue == 0) 4042 return; 4043 /* 4044 * Now that we are unfrozen schedule the 4045 * device so any pending transactions are 4046 * run. 4047 */ 4048 if (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4049 xpt_run_dev_sendq(dev->target->bus); 4050 } 4051 } 4052 4053 void 4054 xpt_release_simq(struct cam_sim *sim, int run_queue) 4055 { 4056 struct camq *sendq; 4057 4058 mtx_assert(sim->mtx, MA_OWNED); 4059 sendq = &(sim->devq->send_queue); 4060 if (sendq->qfrozen_cnt[0] <= 0) { 4061 #ifdef INVARIANTS 4062 printf("xpt_release_simq: requested 1 > present %u\n", 4063 sendq->qfrozen_cnt[0]); 4064 #endif 4065 } else 4066 sendq->qfrozen_cnt[0]--; 4067 if (sendq->qfrozen_cnt[0] == 0) { 4068 /* 4069 * If there is a timeout scheduled to release this 4070 * sim queue, remove it. The queue frozen count is 4071 * already at 0. 4072 */ 4073 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4074 callout_stop(&sim->callout); 4075 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4076 } 4077 if (run_queue) { 4078 struct cam_eb *bus; 4079 4080 /* 4081 * Now that we are unfrozen run the send queue. 4082 */ 4083 bus = xpt_find_bus(sim->path_id); 4084 xpt_run_dev_sendq(bus); 4085 xpt_release_bus(bus); 4086 } 4087 } 4088 } 4089 4090 /* 4091 * XXX Appears to be unused. 4092 */ 4093 static void 4094 xpt_release_simq_timeout(void *arg) 4095 { 4096 struct cam_sim *sim; 4097 4098 sim = (struct cam_sim *)arg; 4099 xpt_release_simq(sim, /* run_queue */ TRUE); 4100 } 4101 4102 void 4103 xpt_done(union ccb *done_ccb) 4104 { 4105 struct cam_sim *sim; 4106 int first; 4107 4108 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4109 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4110 /* 4111 * Queue up the request for handling by our SWI handler 4112 * any of the "non-immediate" type of ccbs. 4113 */ 4114 sim = done_ccb->ccb_h.path->bus->sim; 4115 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4116 sim_links.tqe); 4117 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4118 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4119 mtx_lock(&cam_simq_lock); 4120 first = TAILQ_EMPTY(&cam_simq); 4121 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4122 mtx_unlock(&cam_simq_lock); 4123 sim->flags |= CAM_SIM_ON_DONEQ; 4124 if (first) 4125 swi_sched(cambio_ih, 0); 4126 } 4127 } 4128 } 4129 4130 union ccb * 4131 xpt_alloc_ccb() 4132 { 4133 union ccb *new_ccb; 4134 4135 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4136 return (new_ccb); 4137 } 4138 4139 union ccb * 4140 xpt_alloc_ccb_nowait() 4141 { 4142 union ccb *new_ccb; 4143 4144 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4145 return (new_ccb); 4146 } 4147 4148 void 4149 xpt_free_ccb(union ccb *free_ccb) 4150 { 4151 free(free_ccb, M_CAMXPT); 4152 } 4153 4154 4155 4156 /* Private XPT functions */ 4157 4158 /* 4159 * Get a CAM control block for the caller. Charge the structure to the device 4160 * referenced by the path. If the this device has no 'credits' then the 4161 * device already has the maximum number of outstanding operations under way 4162 * and we return NULL. If we don't have sufficient resources to allocate more 4163 * ccbs, we also return NULL. 4164 */ 4165 static union ccb * 4166 xpt_get_ccb(struct cam_ed *device) 4167 { 4168 union ccb *new_ccb; 4169 struct cam_sim *sim; 4170 4171 sim = device->sim; 4172 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4173 new_ccb = xpt_alloc_ccb_nowait(); 4174 if (new_ccb == NULL) { 4175 return (NULL); 4176 } 4177 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4178 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4179 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4180 xpt_links.sle); 4181 sim->ccb_count++; 4182 } 4183 cam_ccbq_take_opening(&device->ccbq); 4184 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4185 return (new_ccb); 4186 } 4187 4188 static void 4189 xpt_release_bus(struct cam_eb *bus) 4190 { 4191 4192 if ((--bus->refcount == 0) 4193 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4194 mtx_lock(&xsoftc.xpt_topo_lock); 4195 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4196 xsoftc.bus_generation++; 4197 mtx_unlock(&xsoftc.xpt_topo_lock); 4198 cam_sim_release(bus->sim); 4199 free(bus, M_CAMXPT); 4200 } 4201 } 4202 4203 static struct cam_et * 4204 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4205 { 4206 struct cam_et *target; 4207 4208 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4209 if (target != NULL) { 4210 struct cam_et *cur_target; 4211 4212 TAILQ_INIT(&target->ed_entries); 4213 target->bus = bus; 4214 target->target_id = target_id; 4215 target->refcount = 1; 4216 target->generation = 0; 4217 target->luns = NULL; 4218 timevalclear(&target->last_reset); 4219 /* 4220 * Hold a reference to our parent bus so it 4221 * will not go away before we do. 4222 */ 4223 bus->refcount++; 4224 4225 /* Insertion sort into our bus's target list */ 4226 cur_target = TAILQ_FIRST(&bus->et_entries); 4227 while (cur_target != NULL && cur_target->target_id < target_id) 4228 cur_target = TAILQ_NEXT(cur_target, links); 4229 4230 if (cur_target != NULL) { 4231 TAILQ_INSERT_BEFORE(cur_target, target, links); 4232 } else { 4233 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4234 } 4235 bus->generation++; 4236 } 4237 return (target); 4238 } 4239 4240 static void 4241 xpt_release_target(struct cam_et *target) 4242 { 4243 4244 if ((--target->refcount == 0) 4245 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4246 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4247 target->bus->generation++; 4248 xpt_release_bus(target->bus); 4249 if (target->luns) 4250 free(target->luns, M_CAMXPT); 4251 free(target, M_CAMXPT); 4252 } 4253 } 4254 4255 static struct cam_ed * 4256 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4257 lun_id_t lun_id) 4258 { 4259 struct cam_ed *device, *cur_device; 4260 4261 device = xpt_alloc_device(bus, target, lun_id); 4262 if (device == NULL) 4263 return (NULL); 4264 4265 device->mintags = 1; 4266 device->maxtags = 1; 4267 bus->sim->max_ccbs += device->ccbq.devq_openings; 4268 cur_device = TAILQ_FIRST(&target->ed_entries); 4269 while (cur_device != NULL && cur_device->lun_id < lun_id) 4270 cur_device = TAILQ_NEXT(cur_device, links); 4271 if (cur_device != NULL) { 4272 TAILQ_INSERT_BEFORE(cur_device, device, links); 4273 } else { 4274 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4275 } 4276 target->generation++; 4277 4278 return (device); 4279 } 4280 4281 struct cam_ed * 4282 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4283 { 4284 struct cam_ed *device; 4285 struct cam_devq *devq; 4286 cam_status status; 4287 4288 /* Make space for us in the device queue on our bus */ 4289 devq = bus->sim->devq; 4290 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4291 4292 if (status != CAM_REQ_CMP) { 4293 device = NULL; 4294 } else { 4295 device = (struct cam_ed *)malloc(sizeof(*device), 4296 M_CAMXPT, M_NOWAIT); 4297 } 4298 4299 if (device != NULL) { 4300 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4301 device->alloc_ccb_entry.device = device; 4302 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4303 device->send_ccb_entry.device = device; 4304 device->target = target; 4305 device->lun_id = lun_id; 4306 device->sim = bus->sim; 4307 /* Initialize our queues */ 4308 if (camq_init(&device->drvq, 0) != 0) { 4309 free(device, M_CAMXPT); 4310 return (NULL); 4311 } 4312 if (cam_ccbq_init(&device->ccbq, 4313 bus->sim->max_dev_openings) != 0) { 4314 camq_fini(&device->drvq); 4315 free(device, M_CAMXPT); 4316 return (NULL); 4317 } 4318 SLIST_INIT(&device->asyncs); 4319 SLIST_INIT(&device->periphs); 4320 device->generation = 0; 4321 device->owner = NULL; 4322 device->flags = CAM_DEV_UNCONFIGURED; 4323 device->tag_delay_count = 0; 4324 device->tag_saved_openings = 0; 4325 device->refcount = 1; 4326 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4327 4328 /* 4329 * Hold a reference to our parent target so it 4330 * will not go away before we do. 4331 */ 4332 target->refcount++; 4333 4334 } 4335 return (device); 4336 } 4337 4338 void 4339 xpt_acquire_device(struct cam_ed *device) 4340 { 4341 4342 device->refcount++; 4343 } 4344 4345 void 4346 xpt_release_device(struct cam_ed *device) 4347 { 4348 4349 if (--device->refcount == 0) { 4350 struct cam_devq *devq; 4351 4352 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4353 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4354 panic("Removing device while still queued for ccbs"); 4355 4356 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4357 callout_stop(&device->callout); 4358 4359 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4360 device->target->generation++; 4361 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4362 /* Release our slot in the devq */ 4363 devq = device->target->bus->sim->devq; 4364 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4365 camq_fini(&device->drvq); 4366 cam_ccbq_fini(&device->ccbq); 4367 xpt_release_target(device->target); 4368 free(device, M_CAMXPT); 4369 } 4370 } 4371 4372 u_int32_t 4373 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4374 { 4375 int diff; 4376 int result; 4377 struct cam_ed *dev; 4378 4379 dev = path->device; 4380 4381 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4382 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4383 if (result == CAM_REQ_CMP && (diff < 0)) { 4384 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4385 } 4386 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4387 || (dev->inq_flags & SID_CmdQue) != 0) 4388 dev->tag_saved_openings = newopenings; 4389 /* Adjust the global limit */ 4390 dev->sim->max_ccbs += diff; 4391 return (result); 4392 } 4393 4394 static struct cam_eb * 4395 xpt_find_bus(path_id_t path_id) 4396 { 4397 struct cam_eb *bus; 4398 4399 mtx_lock(&xsoftc.xpt_topo_lock); 4400 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4401 bus != NULL; 4402 bus = TAILQ_NEXT(bus, links)) { 4403 if (bus->path_id == path_id) { 4404 bus->refcount++; 4405 break; 4406 } 4407 } 4408 mtx_unlock(&xsoftc.xpt_topo_lock); 4409 return (bus); 4410 } 4411 4412 static struct cam_et * 4413 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4414 { 4415 struct cam_et *target; 4416 4417 for (target = TAILQ_FIRST(&bus->et_entries); 4418 target != NULL; 4419 target = TAILQ_NEXT(target, links)) { 4420 if (target->target_id == target_id) { 4421 target->refcount++; 4422 break; 4423 } 4424 } 4425 return (target); 4426 } 4427 4428 static struct cam_ed * 4429 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4430 { 4431 struct cam_ed *device; 4432 4433 for (device = TAILQ_FIRST(&target->ed_entries); 4434 device != NULL; 4435 device = TAILQ_NEXT(device, links)) { 4436 if (device->lun_id == lun_id) { 4437 device->refcount++; 4438 break; 4439 } 4440 } 4441 return (device); 4442 } 4443 4444 void 4445 xpt_start_tags(struct cam_path *path) 4446 { 4447 struct ccb_relsim crs; 4448 struct cam_ed *device; 4449 struct cam_sim *sim; 4450 int newopenings; 4451 4452 device = path->device; 4453 sim = path->bus->sim; 4454 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4455 xpt_freeze_devq(path, /*count*/1); 4456 device->inq_flags |= SID_CmdQue; 4457 if (device->tag_saved_openings != 0) 4458 newopenings = device->tag_saved_openings; 4459 else 4460 newopenings = min(device->maxtags, 4461 sim->max_tagged_dev_openings); 4462 xpt_dev_ccbq_resize(path, newopenings); 4463 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4464 crs.ccb_h.func_code = XPT_REL_SIMQ; 4465 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4466 crs.openings 4467 = crs.release_timeout 4468 = crs.qfrozen_cnt 4469 = 0; 4470 xpt_action((union ccb *)&crs); 4471 } 4472 4473 void 4474 xpt_stop_tags(struct cam_path *path) 4475 { 4476 struct ccb_relsim crs; 4477 struct cam_ed *device; 4478 struct cam_sim *sim; 4479 4480 device = path->device; 4481 sim = path->bus->sim; 4482 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4483 device->tag_delay_count = 0; 4484 xpt_freeze_devq(path, /*count*/1); 4485 device->inq_flags &= ~SID_CmdQue; 4486 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4487 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4488 crs.ccb_h.func_code = XPT_REL_SIMQ; 4489 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4490 crs.openings 4491 = crs.release_timeout 4492 = crs.qfrozen_cnt 4493 = 0; 4494 xpt_action((union ccb *)&crs); 4495 } 4496 4497 static void 4498 xpt_boot_delay(void *arg) 4499 { 4500 4501 xpt_release_boot(); 4502 } 4503 4504 static void 4505 xpt_config(void *arg) 4506 { 4507 /* 4508 * Now that interrupts are enabled, go find our devices 4509 */ 4510 4511 #ifdef CAMDEBUG 4512 /* Setup debugging flags and path */ 4513 #ifdef CAM_DEBUG_BUS 4514 if (cam_dflags != CAM_DEBUG_NONE) { 4515 /* 4516 * Locking is specifically omitted here. No SIMs have 4517 * registered yet, so xpt_create_path will only be searching 4518 * empty lists of targets and devices. 4519 */ 4520 if (xpt_create_path(&cam_dpath, xpt_periph, 4521 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4522 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4523 printf("xpt_config: xpt_create_path() failed for debug" 4524 " target %d:%d:%d, debugging disabled\n", 4525 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4526 cam_dflags = CAM_DEBUG_NONE; 4527 } 4528 } else 4529 cam_dpath = NULL; 4530 #else /* !CAM_DEBUG_BUS */ 4531 cam_dpath = NULL; 4532 #endif /* CAM_DEBUG_BUS */ 4533 #endif /* CAMDEBUG */ 4534 4535 periphdriver_init(1); 4536 xpt_hold_boot(); 4537 callout_init(&xsoftc.boot_callout, 1); 4538 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4539 xpt_boot_delay, NULL); 4540 /* Fire up rescan thread. */ 4541 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4542 printf("xpt_config: failed to create rescan thread.\n"); 4543 } 4544 } 4545 4546 void 4547 xpt_hold_boot(void) 4548 { 4549 xpt_lock_buses(); 4550 xsoftc.buses_to_config++; 4551 xpt_unlock_buses(); 4552 } 4553 4554 void 4555 xpt_release_boot(void) 4556 { 4557 xpt_lock_buses(); 4558 xsoftc.buses_to_config--; 4559 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4560 struct xpt_task *task; 4561 4562 xsoftc.buses_config_done = 1; 4563 xpt_unlock_buses(); 4564 /* Call manually because we don't have any busses */ 4565 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4566 if (task != NULL) { 4567 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4568 taskqueue_enqueue(taskqueue_thread, &task->task); 4569 } 4570 } else 4571 xpt_unlock_buses(); 4572 } 4573 4574 /* 4575 * If the given device only has one peripheral attached to it, and if that 4576 * peripheral is the passthrough driver, announce it. This insures that the 4577 * user sees some sort of announcement for every peripheral in their system. 4578 */ 4579 static int 4580 xptpassannouncefunc(struct cam_ed *device, void *arg) 4581 { 4582 struct cam_periph *periph; 4583 int i; 4584 4585 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4586 periph = SLIST_NEXT(periph, periph_links), i++); 4587 4588 periph = SLIST_FIRST(&device->periphs); 4589 if ((i == 1) 4590 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4591 xpt_announce_periph(periph, NULL); 4592 4593 return(1); 4594 } 4595 4596 static void 4597 xpt_finishconfig_task(void *context, int pending) 4598 { 4599 4600 periphdriver_init(2); 4601 /* 4602 * Check for devices with no "standard" peripheral driver 4603 * attached. For any devices like that, announce the 4604 * passthrough driver so the user will see something. 4605 */ 4606 xpt_for_all_devices(xptpassannouncefunc, NULL); 4607 4608 /* Release our hook so that the boot can continue. */ 4609 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4610 free(xsoftc.xpt_config_hook, M_CAMXPT); 4611 xsoftc.xpt_config_hook = NULL; 4612 4613 free(context, M_CAMXPT); 4614 } 4615 4616 cam_status 4617 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4618 struct cam_path *path) 4619 { 4620 struct ccb_setasync csa; 4621 cam_status status; 4622 int xptpath = 0; 4623 4624 if (path == NULL) { 4625 mtx_lock(&xsoftc.xpt_lock); 4626 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4627 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4628 if (status != CAM_REQ_CMP) { 4629 mtx_unlock(&xsoftc.xpt_lock); 4630 return (status); 4631 } 4632 xptpath = 1; 4633 } 4634 4635 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4636 csa.ccb_h.func_code = XPT_SASYNC_CB; 4637 csa.event_enable = event; 4638 csa.callback = cbfunc; 4639 csa.callback_arg = cbarg; 4640 xpt_action((union ccb *)&csa); 4641 status = csa.ccb_h.status; 4642 if (xptpath) { 4643 xpt_free_path(path); 4644 mtx_unlock(&xsoftc.xpt_lock); 4645 4646 if ((status == CAM_REQ_CMP) && 4647 (csa.event_enable & AC_FOUND_DEVICE)) { 4648 /* 4649 * Get this peripheral up to date with all 4650 * the currently existing devices. 4651 */ 4652 xpt_for_all_devices(xptsetasyncfunc, &csa); 4653 } 4654 if ((status == CAM_REQ_CMP) && 4655 (csa.event_enable & AC_PATH_REGISTERED)) { 4656 /* 4657 * Get this peripheral up to date with all 4658 * the currently existing busses. 4659 */ 4660 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4661 } 4662 } 4663 return (status); 4664 } 4665 4666 static void 4667 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4668 { 4669 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4670 4671 switch (work_ccb->ccb_h.func_code) { 4672 /* Common cases first */ 4673 case XPT_PATH_INQ: /* Path routing inquiry */ 4674 { 4675 struct ccb_pathinq *cpi; 4676 4677 cpi = &work_ccb->cpi; 4678 cpi->version_num = 1; /* XXX??? */ 4679 cpi->hba_inquiry = 0; 4680 cpi->target_sprt = 0; 4681 cpi->hba_misc = 0; 4682 cpi->hba_eng_cnt = 0; 4683 cpi->max_target = 0; 4684 cpi->max_lun = 0; 4685 cpi->initiator_id = 0; 4686 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4687 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4688 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4689 cpi->unit_number = sim->unit_number; 4690 cpi->bus_id = sim->bus_id; 4691 cpi->base_transfer_speed = 0; 4692 cpi->protocol = PROTO_UNSPECIFIED; 4693 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4694 cpi->transport = XPORT_UNSPECIFIED; 4695 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4696 cpi->ccb_h.status = CAM_REQ_CMP; 4697 xpt_done(work_ccb); 4698 break; 4699 } 4700 default: 4701 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4702 xpt_done(work_ccb); 4703 break; 4704 } 4705 } 4706 4707 /* 4708 * The xpt as a "controller" has no interrupt sources, so polling 4709 * is a no-op. 4710 */ 4711 static void 4712 xptpoll(struct cam_sim *sim) 4713 { 4714 } 4715 4716 void 4717 xpt_lock_buses(void) 4718 { 4719 mtx_lock(&xsoftc.xpt_topo_lock); 4720 } 4721 4722 void 4723 xpt_unlock_buses(void) 4724 { 4725 mtx_unlock(&xsoftc.xpt_topo_lock); 4726 } 4727 4728 static void 4729 camisr(void *dummy) 4730 { 4731 cam_simq_t queue; 4732 struct cam_sim *sim; 4733 4734 mtx_lock(&cam_simq_lock); 4735 TAILQ_INIT(&queue); 4736 while (!TAILQ_EMPTY(&cam_simq)) { 4737 TAILQ_CONCAT(&queue, &cam_simq, links); 4738 mtx_unlock(&cam_simq_lock); 4739 4740 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4741 TAILQ_REMOVE(&queue, sim, links); 4742 CAM_SIM_LOCK(sim); 4743 sim->flags &= ~CAM_SIM_ON_DONEQ; 4744 camisr_runqueue(&sim->sim_doneq); 4745 CAM_SIM_UNLOCK(sim); 4746 } 4747 mtx_lock(&cam_simq_lock); 4748 } 4749 mtx_unlock(&cam_simq_lock); 4750 } 4751 4752 static void 4753 camisr_runqueue(void *V_queue) 4754 { 4755 cam_isrq_t *queue = V_queue; 4756 struct ccb_hdr *ccb_h; 4757 4758 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 4759 int runq; 4760 4761 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 4762 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4763 4764 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 4765 ("camisr\n")); 4766 4767 runq = FALSE; 4768 4769 if (ccb_h->flags & CAM_HIGH_POWER) { 4770 struct highpowerlist *hphead; 4771 union ccb *send_ccb; 4772 4773 mtx_lock(&xsoftc.xpt_lock); 4774 hphead = &xsoftc.highpowerq; 4775 4776 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 4777 4778 /* 4779 * Increment the count since this command is done. 4780 */ 4781 xsoftc.num_highpower++; 4782 4783 /* 4784 * Any high powered commands queued up? 4785 */ 4786 if (send_ccb != NULL) { 4787 4788 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 4789 mtx_unlock(&xsoftc.xpt_lock); 4790 4791 xpt_release_devq(send_ccb->ccb_h.path, 4792 /*count*/1, /*runqueue*/TRUE); 4793 } else 4794 mtx_unlock(&xsoftc.xpt_lock); 4795 } 4796 4797 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 4798 struct cam_ed *dev; 4799 4800 dev = ccb_h->path->device; 4801 4802 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 4803 ccb_h->path->bus->sim->devq->send_active--; 4804 ccb_h->path->bus->sim->devq->send_openings++; 4805 runq = TRUE; 4806 4807 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 4808 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 4809 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 4810 && (dev->ccbq.dev_active == 0))) { 4811 xpt_release_devq(ccb_h->path, /*count*/1, 4812 /*run_queue*/FALSE); 4813 } 4814 4815 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4816 && (--dev->tag_delay_count == 0)) 4817 xpt_start_tags(ccb_h->path); 4818 if (!device_is_send_queued(dev)) 4819 xpt_schedule_dev_sendq(ccb_h->path->bus, dev); 4820 } 4821 4822 if (ccb_h->status & CAM_RELEASE_SIMQ) { 4823 xpt_release_simq(ccb_h->path->bus->sim, 4824 /*run_queue*/TRUE); 4825 ccb_h->status &= ~CAM_RELEASE_SIMQ; 4826 runq = FALSE; 4827 } 4828 4829 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 4830 && (ccb_h->status & CAM_DEV_QFRZN)) { 4831 xpt_release_devq(ccb_h->path, /*count*/1, 4832 /*run_queue*/TRUE); 4833 ccb_h->status &= ~CAM_DEV_QFRZN; 4834 } else if (runq) { 4835 xpt_run_dev_sendq(ccb_h->path->bus); 4836 } 4837 4838 /* Call the peripheral driver's callback */ 4839 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 4840 } 4841 } 4842