1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/param.h> 35 #include <sys/bio.h> 36 #include <sys/bus.h> 37 #include <sys/systm.h> 38 #include <sys/types.h> 39 #include <sys/malloc.h> 40 #include <sys/kernel.h> 41 #include <sys/time.h> 42 #include <sys/conf.h> 43 #include <sys/fcntl.h> 44 #include <sys/proc.h> 45 #include <sys/sbuf.h> 46 #include <sys/smp.h> 47 #include <sys/taskqueue.h> 48 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/sysctl.h> 52 #include <sys/kthread.h> 53 54 #include <cam/cam.h> 55 #include <cam/cam_ccb.h> 56 #include <cam/cam_iosched.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_sim.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_sim.h> 62 #include <cam/cam_xpt_periph.h> 63 #include <cam/cam_xpt_internal.h> 64 #include <cam/cam_debug.h> 65 #include <cam/cam_compat.h> 66 67 #include <cam/scsi/scsi_all.h> 68 #include <cam/scsi/scsi_message.h> 69 #include <cam/scsi/scsi_pass.h> 70 71 #include <machine/stdarg.h> /* for xpt_print below */ 72 73 /* Wild guess based on not wanting to grow the stack too much */ 74 #define XPT_PRINT_MAXLEN 512 75 #ifdef PRINTF_BUFR_SIZE 76 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 77 #else 78 #define XPT_PRINT_LEN 128 79 #endif 80 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 81 82 /* 83 * This is the maximum number of high powered commands (e.g. start unit) 84 * that can be outstanding at a particular time. 85 */ 86 #ifndef CAM_MAX_HIGHPOWER 87 #define CAM_MAX_HIGHPOWER 4 88 #endif 89 90 /* Datastructures internal to the xpt layer */ 91 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 92 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 93 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 94 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 95 96 struct xpt_softc { 97 uint32_t xpt_generation; 98 99 /* number of high powered commands that can go through right now */ 100 struct mtx xpt_highpower_lock; 101 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* 110 * Registered buses 111 * 112 * N.B., "busses" is an archaic spelling of "buses". In new code 113 * "buses" is preferred. 114 */ 115 TAILQ_HEAD(,cam_eb) xpt_busses; 116 u_int bus_generation; 117 118 int boot_delay; 119 struct callout boot_callout; 120 struct task boot_task; 121 struct root_hold_token xpt_rootmount; 122 123 struct mtx xpt_topo_lock; 124 struct taskqueue *xpt_taskq; 125 }; 126 127 typedef enum { 128 DM_RET_COPY = 0x01, 129 DM_RET_FLAG_MASK = 0x0f, 130 DM_RET_NONE = 0x00, 131 DM_RET_STOP = 0x10, 132 DM_RET_DESCEND = 0x20, 133 DM_RET_ERROR = 0x30, 134 DM_RET_ACTION_MASK = 0xf0 135 } dev_match_ret; 136 137 typedef enum { 138 XPT_DEPTH_BUS, 139 XPT_DEPTH_TARGET, 140 XPT_DEPTH_DEVICE, 141 XPT_DEPTH_PERIPH 142 } xpt_traverse_depth; 143 144 struct xpt_traverse_config { 145 xpt_traverse_depth depth; 146 void *tr_func; 147 void *tr_arg; 148 }; 149 150 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 151 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 152 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 153 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 154 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 155 156 /* Transport layer configuration information */ 157 static struct xpt_softc xsoftc; 158 159 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 160 161 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 162 &xsoftc.boot_delay, 0, "Bus registration wait time"); 163 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 164 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 165 166 struct cam_doneq { 167 struct mtx_padalign cam_doneq_mtx; 168 STAILQ_HEAD(, ccb_hdr) cam_doneq; 169 int cam_doneq_sleep; 170 }; 171 172 static struct cam_doneq cam_doneqs[MAXCPU]; 173 static u_int __read_mostly cam_num_doneqs; 174 static struct proc *cam_proc; 175 static struct cam_doneq cam_async; 176 177 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 178 &cam_num_doneqs, 0, "Number of completion queues/threads"); 179 180 struct cam_periph *xpt_periph; 181 182 static periph_init_t xpt_periph_init; 183 184 static struct periph_driver xpt_driver = 185 { 186 xpt_periph_init, "xpt", 187 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 188 CAM_PERIPH_DRV_EARLY 189 }; 190 191 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 192 193 static d_open_t xptopen; 194 static d_close_t xptclose; 195 static d_ioctl_t xptioctl; 196 static d_ioctl_t xptdoioctl; 197 198 static struct cdevsw xpt_cdevsw = { 199 .d_version = D_VERSION, 200 .d_flags = 0, 201 .d_open = xptopen, 202 .d_close = xptclose, 203 .d_ioctl = xptioctl, 204 .d_name = "xpt", 205 }; 206 207 /* Storage for debugging datastructures */ 208 struct cam_path *cam_dpath; 209 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS; 210 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 211 &cam_dflags, 0, "Enabled debug flags"); 212 uint32_t cam_debug_delay = CAM_DEBUG_DELAY; 213 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 214 &cam_debug_delay, 0, "Delay in us after each debug message"); 215 216 /* Our boot-time initialization hook */ 217 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 218 219 static moduledata_t cam_moduledata = { 220 "cam", 221 cam_module_event_handler, 222 NULL 223 }; 224 225 static int xpt_init(void *); 226 227 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 228 MODULE_VERSION(cam, 1); 229 230 static void xpt_async_bcast(struct async_list *async_head, 231 uint32_t async_code, 232 struct cam_path *path, 233 void *async_arg); 234 static path_id_t xptnextfreepathid(void); 235 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 236 static union ccb *xpt_get_ccb(struct cam_periph *periph); 237 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 238 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 239 static void xpt_run_allocq_task(void *context, int pending); 240 static void xpt_run_devq(struct cam_devq *devq); 241 static callout_func_t xpt_release_devq_timeout; 242 static void xpt_acquire_bus(struct cam_eb *bus); 243 static void xpt_release_bus(struct cam_eb *bus); 244 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 245 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 246 int run_queue); 247 static struct cam_et* 248 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 249 static void xpt_acquire_target(struct cam_et *target); 250 static void xpt_release_target(struct cam_et *target); 251 static struct cam_eb* 252 xpt_find_bus(path_id_t path_id); 253 static struct cam_et* 254 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 255 static struct cam_ed* 256 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 257 static void xpt_config(void *arg); 258 static void xpt_hold_boot_locked(void); 259 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 260 uint32_t new_priority); 261 static xpt_devicefunc_t xptpassannouncefunc; 262 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 263 static void xptpoll(struct cam_sim *sim); 264 static void camisr_runqueue(void); 265 static void xpt_done_process(struct ccb_hdr *ccb_h); 266 static void xpt_done_td(void *); 267 static void xpt_async_td(void *); 268 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 269 u_int num_patterns, struct cam_eb *bus); 270 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 271 u_int num_patterns, 272 struct cam_ed *device); 273 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 274 u_int num_patterns, 275 struct cam_periph *periph); 276 static xpt_busfunc_t xptedtbusfunc; 277 static xpt_targetfunc_t xptedttargetfunc; 278 static xpt_devicefunc_t xptedtdevicefunc; 279 static xpt_periphfunc_t xptedtperiphfunc; 280 static xpt_pdrvfunc_t xptplistpdrvfunc; 281 static xpt_periphfunc_t xptplistperiphfunc; 282 static int xptedtmatch(struct ccb_dev_match *cdm); 283 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 284 static int xptbustraverse(struct cam_eb *start_bus, 285 xpt_busfunc_t *tr_func, void *arg); 286 static int xpttargettraverse(struct cam_eb *bus, 287 struct cam_et *start_target, 288 xpt_targetfunc_t *tr_func, void *arg); 289 static int xptdevicetraverse(struct cam_et *target, 290 struct cam_ed *start_device, 291 xpt_devicefunc_t *tr_func, void *arg); 292 static int xptperiphtraverse(struct cam_ed *device, 293 struct cam_periph *start_periph, 294 xpt_periphfunc_t *tr_func, void *arg); 295 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 296 xpt_pdrvfunc_t *tr_func, void *arg); 297 static int xptpdperiphtraverse(struct periph_driver **pdrv, 298 struct cam_periph *start_periph, 299 xpt_periphfunc_t *tr_func, 300 void *arg); 301 static xpt_busfunc_t xptdefbusfunc; 302 static xpt_targetfunc_t xptdeftargetfunc; 303 static xpt_devicefunc_t xptdefdevicefunc; 304 static xpt_periphfunc_t xptdefperiphfunc; 305 static void xpt_finishconfig_task(void *context, int pending); 306 static void xpt_dev_async_default(uint32_t async_code, 307 struct cam_eb *bus, 308 struct cam_et *target, 309 struct cam_ed *device, 310 void *async_arg); 311 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 312 struct cam_et *target, 313 lun_id_t lun_id); 314 static xpt_devicefunc_t xptsetasyncfunc; 315 static xpt_busfunc_t xptsetasyncbusfunc; 316 static cam_status xptregister(struct cam_periph *periph, 317 void *arg); 318 319 static __inline int 320 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 321 { 322 int retval; 323 324 mtx_assert(&devq->send_mtx, MA_OWNED); 325 if ((dev->ccbq.queue.entries > 0) && 326 (dev->ccbq.dev_openings > 0) && 327 (dev->ccbq.queue.qfrozen_cnt == 0)) { 328 /* 329 * The priority of a device waiting for controller 330 * resources is that of the highest priority CCB 331 * enqueued. 332 */ 333 retval = 334 xpt_schedule_dev(&devq->send_queue, 335 &dev->devq_entry, 336 CAMQ_GET_PRIO(&dev->ccbq.queue)); 337 } else { 338 retval = 0; 339 } 340 return (retval); 341 } 342 343 static __inline int 344 device_is_queued(struct cam_ed *device) 345 { 346 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 347 } 348 349 static void 350 xpt_periph_init(void) 351 { 352 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 353 } 354 355 static int 356 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 357 { 358 359 /* 360 * Only allow read-write access. 361 */ 362 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 363 return(EPERM); 364 365 /* 366 * We don't allow nonblocking access. 367 */ 368 if ((flags & O_NONBLOCK) != 0) { 369 printf("%s: can't do nonblocking access\n", devtoname(dev)); 370 return(ENODEV); 371 } 372 373 return(0); 374 } 375 376 static int 377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 378 { 379 380 return(0); 381 } 382 383 /* 384 * Don't automatically grab the xpt softc lock here even though this is going 385 * through the xpt device. The xpt device is really just a back door for 386 * accessing other devices and SIMs, so the right thing to do is to grab 387 * the appropriate SIM lock once the bus/SIM is located. 388 */ 389 static int 390 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 391 { 392 int error; 393 394 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 395 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 396 } 397 return (error); 398 } 399 400 static int 401 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 402 { 403 int error; 404 405 error = 0; 406 407 switch(cmd) { 408 /* 409 * For the transport layer CAMIOCOMMAND ioctl, we really only want 410 * to accept CCB types that don't quite make sense to send through a 411 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 412 * in the CAM spec. 413 */ 414 case CAMIOCOMMAND: { 415 union ccb *ccb; 416 union ccb *inccb; 417 struct cam_eb *bus; 418 419 inccb = (union ccb *)addr; 420 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 421 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 422 inccb->csio.bio = NULL; 423 #endif 424 425 if (inccb->ccb_h.flags & CAM_UNLOCKED) 426 return (EINVAL); 427 428 bus = xpt_find_bus(inccb->ccb_h.path_id); 429 if (bus == NULL) 430 return (EINVAL); 431 432 switch (inccb->ccb_h.func_code) { 433 case XPT_SCAN_BUS: 434 case XPT_RESET_BUS: 435 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 436 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 437 xpt_release_bus(bus); 438 return (EINVAL); 439 } 440 break; 441 case XPT_SCAN_TGT: 442 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 443 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 444 xpt_release_bus(bus); 445 return (EINVAL); 446 } 447 break; 448 default: 449 break; 450 } 451 452 switch(inccb->ccb_h.func_code) { 453 case XPT_SCAN_BUS: 454 case XPT_RESET_BUS: 455 case XPT_PATH_INQ: 456 case XPT_ENG_INQ: 457 case XPT_SCAN_LUN: 458 case XPT_SCAN_TGT: 459 460 ccb = xpt_alloc_ccb(); 461 462 /* 463 * Create a path using the bus, target, and lun the 464 * user passed in. 465 */ 466 if (xpt_create_path(&ccb->ccb_h.path, NULL, 467 inccb->ccb_h.path_id, 468 inccb->ccb_h.target_id, 469 inccb->ccb_h.target_lun) != 470 CAM_REQ_CMP){ 471 error = EINVAL; 472 xpt_free_ccb(ccb); 473 break; 474 } 475 /* Ensure all of our fields are correct */ 476 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 477 inccb->ccb_h.pinfo.priority); 478 xpt_merge_ccb(ccb, inccb); 479 xpt_path_lock(ccb->ccb_h.path); 480 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 481 xpt_path_unlock(ccb->ccb_h.path); 482 bcopy(ccb, inccb, sizeof(union ccb)); 483 xpt_free_path(ccb->ccb_h.path); 484 xpt_free_ccb(ccb); 485 break; 486 487 case XPT_DEBUG: { 488 union ccb ccb; 489 490 /* 491 * This is an immediate CCB, so it's okay to 492 * allocate it on the stack. 493 */ 494 memset(&ccb, 0, sizeof(ccb)); 495 496 /* 497 * Create a path using the bus, target, and lun the 498 * user passed in. 499 */ 500 if (xpt_create_path(&ccb.ccb_h.path, NULL, 501 inccb->ccb_h.path_id, 502 inccb->ccb_h.target_id, 503 inccb->ccb_h.target_lun) != 504 CAM_REQ_CMP){ 505 error = EINVAL; 506 break; 507 } 508 /* Ensure all of our fields are correct */ 509 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 510 inccb->ccb_h.pinfo.priority); 511 xpt_merge_ccb(&ccb, inccb); 512 xpt_action(&ccb); 513 bcopy(&ccb, inccb, sizeof(union ccb)); 514 xpt_free_path(ccb.ccb_h.path); 515 break; 516 } 517 case XPT_DEV_MATCH: { 518 struct cam_periph_map_info mapinfo; 519 struct cam_path *old_path; 520 521 /* 522 * We can't deal with physical addresses for this 523 * type of transaction. 524 */ 525 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 526 CAM_DATA_VADDR) { 527 error = EINVAL; 528 break; 529 } 530 531 /* 532 * Save this in case the caller had it set to 533 * something in particular. 534 */ 535 old_path = inccb->ccb_h.path; 536 537 /* 538 * We really don't need a path for the matching 539 * code. The path is needed because of the 540 * debugging statements in xpt_action(). They 541 * assume that the CCB has a valid path. 542 */ 543 inccb->ccb_h.path = xpt_periph->path; 544 545 bzero(&mapinfo, sizeof(mapinfo)); 546 547 /* 548 * Map the pattern and match buffers into kernel 549 * virtual address space. 550 */ 551 error = cam_periph_mapmem(inccb, &mapinfo, maxphys); 552 553 if (error) { 554 inccb->ccb_h.path = old_path; 555 break; 556 } 557 558 /* 559 * This is an immediate CCB, we can send it on directly. 560 */ 561 xpt_action(inccb); 562 563 /* 564 * Map the buffers back into user space. 565 */ 566 cam_periph_unmapmem(inccb, &mapinfo); 567 568 inccb->ccb_h.path = old_path; 569 570 error = 0; 571 break; 572 } 573 default: 574 error = ENOTSUP; 575 break; 576 } 577 xpt_release_bus(bus); 578 break; 579 } 580 /* 581 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 582 * with the periphal driver name and unit name filled in. The other 583 * fields don't really matter as input. The passthrough driver name 584 * ("pass"), and unit number are passed back in the ccb. The current 585 * device generation number, and the index into the device peripheral 586 * driver list, and the status are also passed back. Note that 587 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 588 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 589 * (or rather should be) impossible for the device peripheral driver 590 * list to change since we look at the whole thing in one pass, and 591 * we do it with lock protection. 592 * 593 */ 594 case CAMGETPASSTHRU: { 595 union ccb *ccb; 596 struct cam_periph *periph; 597 struct periph_driver **p_drv; 598 char *name; 599 u_int unit; 600 bool base_periph_found; 601 602 ccb = (union ccb *)addr; 603 unit = ccb->cgdl.unit_number; 604 name = ccb->cgdl.periph_name; 605 base_periph_found = false; 606 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 607 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 608 ccb->csio.bio = NULL; 609 #endif 610 611 /* 612 * Sanity check -- make sure we don't get a null peripheral 613 * driver name. 614 */ 615 if (*ccb->cgdl.periph_name == '\0') { 616 error = EINVAL; 617 break; 618 } 619 620 /* Keep the list from changing while we traverse it */ 621 xpt_lock_buses(); 622 623 /* first find our driver in the list of drivers */ 624 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 625 if (strcmp((*p_drv)->driver_name, name) == 0) 626 break; 627 628 if (*p_drv == NULL) { 629 xpt_unlock_buses(); 630 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 631 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 632 *ccb->cgdl.periph_name = '\0'; 633 ccb->cgdl.unit_number = 0; 634 error = ENOENT; 635 break; 636 } 637 638 /* 639 * Run through every peripheral instance of this driver 640 * and check to see whether it matches the unit passed 641 * in by the user. If it does, get out of the loops and 642 * find the passthrough driver associated with that 643 * peripheral driver. 644 */ 645 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 646 periph = TAILQ_NEXT(periph, unit_links)) { 647 if (periph->unit_number == unit) 648 break; 649 } 650 /* 651 * If we found the peripheral driver that the user passed 652 * in, go through all of the peripheral drivers for that 653 * particular device and look for a passthrough driver. 654 */ 655 if (periph != NULL) { 656 struct cam_ed *device; 657 int i; 658 659 base_periph_found = true; 660 device = periph->path->device; 661 for (i = 0, periph = SLIST_FIRST(&device->periphs); 662 periph != NULL; 663 periph = SLIST_NEXT(periph, periph_links), i++) { 664 /* 665 * Check to see whether we have a 666 * passthrough device or not. 667 */ 668 if (strcmp(periph->periph_name, "pass") == 0) { 669 /* 670 * Fill in the getdevlist fields. 671 */ 672 strlcpy(ccb->cgdl.periph_name, 673 periph->periph_name, 674 sizeof(ccb->cgdl.periph_name)); 675 ccb->cgdl.unit_number = 676 periph->unit_number; 677 if (SLIST_NEXT(periph, periph_links)) 678 ccb->cgdl.status = 679 CAM_GDEVLIST_MORE_DEVS; 680 else 681 ccb->cgdl.status = 682 CAM_GDEVLIST_LAST_DEVICE; 683 ccb->cgdl.generation = 684 device->generation; 685 ccb->cgdl.index = i; 686 /* 687 * Fill in some CCB header fields 688 * that the user may want. 689 */ 690 ccb->ccb_h.path_id = 691 periph->path->bus->path_id; 692 ccb->ccb_h.target_id = 693 periph->path->target->target_id; 694 ccb->ccb_h.target_lun = 695 periph->path->device->lun_id; 696 ccb->ccb_h.status = CAM_REQ_CMP; 697 break; 698 } 699 } 700 } 701 702 /* 703 * If the periph is null here, one of two things has 704 * happened. The first possibility is that we couldn't 705 * find the unit number of the particular peripheral driver 706 * that the user is asking about. e.g. the user asks for 707 * the passthrough driver for "da11". We find the list of 708 * "da" peripherals all right, but there is no unit 11. 709 * The other possibility is that we went through the list 710 * of peripheral drivers attached to the device structure, 711 * but didn't find one with the name "pass". Either way, 712 * we return ENOENT, since we couldn't find something. 713 */ 714 if (periph == NULL) { 715 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 716 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 717 *ccb->cgdl.periph_name = '\0'; 718 ccb->cgdl.unit_number = 0; 719 error = ENOENT; 720 /* 721 * It is unfortunate that this is even necessary, 722 * but there are many, many clueless users out there. 723 * If this is true, the user is looking for the 724 * passthrough driver, but doesn't have one in his 725 * kernel. 726 */ 727 if (base_periph_found) { 728 printf("xptioctl: pass driver is not in the " 729 "kernel\n"); 730 printf("xptioctl: put \"device pass\" in " 731 "your kernel config file\n"); 732 } 733 } 734 xpt_unlock_buses(); 735 break; 736 } 737 default: 738 error = ENOTTY; 739 break; 740 } 741 742 return(error); 743 } 744 745 static int 746 cam_module_event_handler(module_t mod, int what, void *arg) 747 { 748 int error; 749 750 switch (what) { 751 case MOD_LOAD: 752 if ((error = xpt_init(NULL)) != 0) 753 return (error); 754 break; 755 case MOD_UNLOAD: 756 return EBUSY; 757 default: 758 return EOPNOTSUPP; 759 } 760 761 return 0; 762 } 763 764 static struct xpt_proto * 765 xpt_proto_find(cam_proto proto) 766 { 767 struct xpt_proto **pp; 768 769 SET_FOREACH(pp, cam_xpt_proto_set) { 770 if ((*pp)->proto == proto) 771 return *pp; 772 } 773 774 return NULL; 775 } 776 777 static void 778 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 779 { 780 781 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 782 xpt_free_path(done_ccb->ccb_h.path); 783 xpt_free_ccb(done_ccb); 784 } else { 785 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 786 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 787 } 788 xpt_release_boot(); 789 } 790 791 /* thread to handle bus rescans */ 792 static void 793 xpt_scanner_thread(void *dummy) 794 { 795 union ccb *ccb; 796 struct mtx *mtx; 797 struct cam_ed *device; 798 799 xpt_lock_buses(); 800 for (;;) { 801 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 802 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 803 "-", 0); 804 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 805 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 806 xpt_unlock_buses(); 807 808 /* 809 * We need to lock the device's mutex which we use as 810 * the path mutex. We can't do it directly because the 811 * cam_path in the ccb may wind up going away because 812 * the path lock may be dropped and the path retired in 813 * the completion callback. We do this directly to keep 814 * the reference counts in cam_path sane. We also have 815 * to copy the device pointer because ccb_h.path may 816 * be freed in the callback. 817 */ 818 mtx = xpt_path_mtx(ccb->ccb_h.path); 819 device = ccb->ccb_h.path->device; 820 xpt_acquire_device(device); 821 mtx_lock(mtx); 822 xpt_action(ccb); 823 mtx_unlock(mtx); 824 xpt_release_device(device); 825 826 xpt_lock_buses(); 827 } 828 } 829 } 830 831 void 832 xpt_rescan(union ccb *ccb) 833 { 834 struct ccb_hdr *hdr; 835 836 /* Prepare request */ 837 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 838 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 839 ccb->ccb_h.func_code = XPT_SCAN_BUS; 840 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 841 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 842 ccb->ccb_h.func_code = XPT_SCAN_TGT; 843 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 844 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 845 ccb->ccb_h.func_code = XPT_SCAN_LUN; 846 else { 847 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 848 xpt_free_path(ccb->ccb_h.path); 849 xpt_free_ccb(ccb); 850 return; 851 } 852 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 853 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 854 xpt_action_name(ccb->ccb_h.func_code))); 855 856 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 857 ccb->ccb_h.cbfcnp = xpt_rescan_done; 858 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 859 /* Don't make duplicate entries for the same paths. */ 860 xpt_lock_buses(); 861 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 862 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 863 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 864 wakeup(&xsoftc.ccb_scanq); 865 xpt_unlock_buses(); 866 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 867 xpt_free_path(ccb->ccb_h.path); 868 xpt_free_ccb(ccb); 869 return; 870 } 871 } 872 } 873 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 874 xpt_hold_boot_locked(); 875 wakeup(&xsoftc.ccb_scanq); 876 xpt_unlock_buses(); 877 } 878 879 /* Functions accessed by the peripheral drivers */ 880 static int 881 xpt_init(void *dummy) 882 { 883 struct cam_sim *xpt_sim; 884 struct cam_path *path; 885 struct cam_devq *devq; 886 cam_status status; 887 int error, i; 888 889 TAILQ_INIT(&xsoftc.xpt_busses); 890 TAILQ_INIT(&xsoftc.ccb_scanq); 891 STAILQ_INIT(&xsoftc.highpowerq); 892 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 893 894 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 895 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 896 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 897 898 #ifdef CAM_BOOT_DELAY 899 /* 900 * Override this value at compile time to assist our users 901 * who don't use loader to boot a kernel. 902 */ 903 xsoftc.boot_delay = CAM_BOOT_DELAY; 904 #endif 905 906 /* 907 * The xpt layer is, itself, the equivalent of a SIM. 908 * Allow 16 ccbs in the ccb pool for it. This should 909 * give decent parallelism when we probe buses and 910 * perform other XPT functions. 911 */ 912 devq = cam_simq_alloc(16); 913 xpt_sim = cam_sim_alloc(xptaction, 914 xptpoll, 915 "xpt", 916 /*softc*/NULL, 917 /*unit*/0, 918 /*mtx*/NULL, 919 /*max_dev_transactions*/0, 920 /*max_tagged_dev_transactions*/0, 921 devq); 922 if (xpt_sim == NULL) 923 return (ENOMEM); 924 925 if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 926 printf("xpt_init: xpt_bus_register failed with errno %d," 927 " failing attach\n", error); 928 return (EINVAL); 929 } 930 931 /* 932 * Looking at the XPT from the SIM layer, the XPT is 933 * the equivalent of a peripheral driver. Allocate 934 * a peripheral driver entry for us. 935 */ 936 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 937 CAM_TARGET_WILDCARD, 938 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 939 printf("xpt_init: xpt_create_path failed with status %#x," 940 " failing attach\n", status); 941 return (EINVAL); 942 } 943 xpt_path_lock(path); 944 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 945 path, NULL, 0, xpt_sim); 946 xpt_path_unlock(path); 947 xpt_free_path(path); 948 949 if (cam_num_doneqs < 1) 950 cam_num_doneqs = 1 + mp_ncpus / 6; 951 else if (cam_num_doneqs > MAXCPU) 952 cam_num_doneqs = MAXCPU; 953 for (i = 0; i < cam_num_doneqs; i++) { 954 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 955 MTX_DEF); 956 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 957 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 958 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 959 if (error != 0) { 960 cam_num_doneqs = i; 961 break; 962 } 963 } 964 if (cam_num_doneqs < 1) { 965 printf("xpt_init: Cannot init completion queues " 966 "- failing attach\n"); 967 return (ENOMEM); 968 } 969 970 mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF); 971 STAILQ_INIT(&cam_async.cam_doneq); 972 if (kproc_kthread_add(xpt_async_td, &cam_async, 973 &cam_proc, NULL, 0, 0, "cam", "async") != 0) { 974 printf("xpt_init: Cannot init async thread " 975 "- failing attach\n"); 976 return (ENOMEM); 977 } 978 979 /* 980 * Register a callback for when interrupts are enabled. 981 */ 982 config_intrhook_oneshot(xpt_config, NULL); 983 984 return (0); 985 } 986 987 static cam_status 988 xptregister(struct cam_periph *periph, void *arg) 989 { 990 struct cam_sim *xpt_sim; 991 992 if (periph == NULL) { 993 printf("xptregister: periph was NULL!!\n"); 994 return(CAM_REQ_CMP_ERR); 995 } 996 997 xpt_sim = (struct cam_sim *)arg; 998 xpt_sim->softc = periph; 999 xpt_periph = periph; 1000 periph->softc = NULL; 1001 1002 return(CAM_REQ_CMP); 1003 } 1004 1005 int32_t 1006 xpt_add_periph(struct cam_periph *periph) 1007 { 1008 struct cam_ed *device; 1009 int32_t status; 1010 1011 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1012 device = periph->path->device; 1013 status = CAM_REQ_CMP; 1014 if (device != NULL) { 1015 mtx_lock(&device->target->bus->eb_mtx); 1016 device->generation++; 1017 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1018 mtx_unlock(&device->target->bus->eb_mtx); 1019 atomic_add_32(&xsoftc.xpt_generation, 1); 1020 } 1021 1022 return (status); 1023 } 1024 1025 void 1026 xpt_remove_periph(struct cam_periph *periph) 1027 { 1028 struct cam_ed *device; 1029 1030 device = periph->path->device; 1031 if (device != NULL) { 1032 mtx_lock(&device->target->bus->eb_mtx); 1033 device->generation++; 1034 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1035 mtx_unlock(&device->target->bus->eb_mtx); 1036 atomic_add_32(&xsoftc.xpt_generation, 1); 1037 } 1038 } 1039 1040 void 1041 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1042 { 1043 char buf[128]; 1044 struct sbuf sb; 1045 1046 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL); 1047 sbuf_set_drain(&sb, sbuf_printf_drain, NULL); 1048 xpt_announce_periph_sbuf(periph, &sb, announce_string); 1049 (void)sbuf_finish(&sb); 1050 } 1051 1052 void 1053 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1054 char *announce_string) 1055 { 1056 struct cam_path *path = periph->path; 1057 struct xpt_proto *proto; 1058 1059 cam_periph_assert(periph, MA_OWNED); 1060 periph->flags |= CAM_PERIPH_ANNOUNCED; 1061 1062 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1063 periph->periph_name, periph->unit_number, 1064 path->bus->sim->sim_name, 1065 path->bus->sim->unit_number, 1066 path->bus->sim->bus_id, 1067 path->bus->path_id, 1068 path->target->target_id, 1069 (uintmax_t)path->device->lun_id); 1070 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1071 proto = xpt_proto_find(path->device->protocol); 1072 if (proto) 1073 proto->ops->announce_sbuf(path->device, sb); 1074 else 1075 sbuf_printf(sb, "Unknown protocol device %d\n", 1076 path->device->protocol); 1077 if (path->device->serial_num_len > 0) { 1078 /* Don't wrap the screen - print only the first 60 chars */ 1079 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1080 periph->periph_name, periph->unit_number, 1081 path->device->serial_num); 1082 } 1083 /* Announce transport details. */ 1084 path->bus->xport->ops->announce_sbuf(periph, sb); 1085 /* Announce command queueing. */ 1086 if (path->device->inq_flags & SID_CmdQue 1087 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1088 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1089 periph->periph_name, periph->unit_number); 1090 } 1091 /* Announce caller's details if they've passed in. */ 1092 if (announce_string != NULL) 1093 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1094 periph->unit_number, announce_string); 1095 } 1096 1097 void 1098 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1099 { 1100 if (quirks != 0) { 1101 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1102 periph->unit_number, quirks, bit_string); 1103 } 1104 } 1105 1106 void 1107 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1108 int quirks, char *bit_string) 1109 { 1110 if (quirks != 0) { 1111 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1112 periph->unit_number, quirks, bit_string); 1113 } 1114 } 1115 1116 void 1117 xpt_denounce_periph(struct cam_periph *periph) 1118 { 1119 char buf[128]; 1120 struct sbuf sb; 1121 1122 (void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL); 1123 sbuf_set_drain(&sb, sbuf_printf_drain, NULL); 1124 xpt_denounce_periph_sbuf(periph, &sb); 1125 (void)sbuf_finish(&sb); 1126 } 1127 1128 void 1129 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1130 { 1131 struct cam_path *path = periph->path; 1132 struct xpt_proto *proto; 1133 1134 cam_periph_assert(periph, MA_OWNED); 1135 1136 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1137 periph->periph_name, periph->unit_number, 1138 path->bus->sim->sim_name, 1139 path->bus->sim->unit_number, 1140 path->bus->sim->bus_id, 1141 path->bus->path_id, 1142 path->target->target_id, 1143 (uintmax_t)path->device->lun_id); 1144 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1145 proto = xpt_proto_find(path->device->protocol); 1146 if (proto) 1147 proto->ops->denounce_sbuf(path->device, sb); 1148 else 1149 sbuf_printf(sb, "Unknown protocol device %d", 1150 path->device->protocol); 1151 if (path->device->serial_num_len > 0) 1152 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1153 sbuf_cat(sb, " detached\n"); 1154 } 1155 1156 int 1157 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1158 { 1159 int ret = -1, l, o; 1160 struct ccb_dev_advinfo cdai; 1161 struct scsi_vpd_device_id *did; 1162 struct scsi_vpd_id_descriptor *idd; 1163 1164 xpt_path_assert(path, MA_OWNED); 1165 1166 memset(&cdai, 0, sizeof(cdai)); 1167 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1168 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1169 cdai.flags = CDAI_FLAG_NONE; 1170 cdai.bufsiz = len; 1171 cdai.buf = buf; 1172 1173 if (!strcmp(attr, "GEOM::ident")) 1174 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1175 else if (!strcmp(attr, "GEOM::physpath")) 1176 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1177 else if (strcmp(attr, "GEOM::lunid") == 0 || 1178 strcmp(attr, "GEOM::lunname") == 0) { 1179 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1180 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1181 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT); 1182 if (cdai.buf == NULL) { 1183 ret = ENOMEM; 1184 goto out; 1185 } 1186 } else 1187 goto out; 1188 1189 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1190 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1191 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1192 if (cdai.provsiz == 0) 1193 goto out; 1194 switch(cdai.buftype) { 1195 case CDAI_TYPE_SCSI_DEVID: 1196 did = (struct scsi_vpd_device_id *)cdai.buf; 1197 if (strcmp(attr, "GEOM::lunid") == 0) { 1198 idd = scsi_get_devid(did, cdai.provsiz, 1199 scsi_devid_is_lun_naa); 1200 if (idd == NULL) 1201 idd = scsi_get_devid(did, cdai.provsiz, 1202 scsi_devid_is_lun_eui64); 1203 if (idd == NULL) 1204 idd = scsi_get_devid(did, cdai.provsiz, 1205 scsi_devid_is_lun_uuid); 1206 if (idd == NULL) 1207 idd = scsi_get_devid(did, cdai.provsiz, 1208 scsi_devid_is_lun_md5); 1209 } else 1210 idd = NULL; 1211 1212 if (idd == NULL) 1213 idd = scsi_get_devid(did, cdai.provsiz, 1214 scsi_devid_is_lun_t10); 1215 if (idd == NULL) 1216 idd = scsi_get_devid(did, cdai.provsiz, 1217 scsi_devid_is_lun_name); 1218 if (idd == NULL) 1219 break; 1220 1221 ret = 0; 1222 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1223 SVPD_ID_CODESET_ASCII) { 1224 if (idd->length < len) { 1225 for (l = 0; l < idd->length; l++) 1226 buf[l] = idd->identifier[l] ? 1227 idd->identifier[l] : ' '; 1228 buf[l] = 0; 1229 } else 1230 ret = EFAULT; 1231 break; 1232 } 1233 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1234 SVPD_ID_CODESET_UTF8) { 1235 l = strnlen(idd->identifier, idd->length); 1236 if (l < len) { 1237 bcopy(idd->identifier, buf, l); 1238 buf[l] = 0; 1239 } else 1240 ret = EFAULT; 1241 break; 1242 } 1243 if ((idd->id_type & SVPD_ID_TYPE_MASK) == 1244 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) { 1245 if ((idd->length - 2) * 2 + 4 >= len) { 1246 ret = EFAULT; 1247 break; 1248 } 1249 for (l = 2, o = 0; l < idd->length; l++) { 1250 if (l == 6 || l == 8 || l == 10 || l == 12) 1251 o += sprintf(buf + o, "-"); 1252 o += sprintf(buf + o, "%02x", 1253 idd->identifier[l]); 1254 } 1255 break; 1256 } 1257 if (idd->length * 2 < len) { 1258 for (l = 0; l < idd->length; l++) 1259 sprintf(buf + l * 2, "%02x", 1260 idd->identifier[l]); 1261 } else 1262 ret = EFAULT; 1263 break; 1264 default: 1265 if (cdai.provsiz < len) { 1266 cdai.buf[cdai.provsiz] = 0; 1267 ret = 0; 1268 } else 1269 ret = EFAULT; 1270 break; 1271 } 1272 1273 out: 1274 if ((char *)cdai.buf != buf) 1275 free(cdai.buf, M_CAMXPT); 1276 return ret; 1277 } 1278 1279 static dev_match_ret 1280 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1281 struct cam_eb *bus) 1282 { 1283 dev_match_ret retval; 1284 u_int i; 1285 1286 retval = DM_RET_NONE; 1287 1288 /* 1289 * If we aren't given something to match against, that's an error. 1290 */ 1291 if (bus == NULL) 1292 return(DM_RET_ERROR); 1293 1294 /* 1295 * If there are no match entries, then this bus matches no 1296 * matter what. 1297 */ 1298 if ((patterns == NULL) || (num_patterns == 0)) 1299 return(DM_RET_DESCEND | DM_RET_COPY); 1300 1301 for (i = 0; i < num_patterns; i++) { 1302 struct bus_match_pattern *cur_pattern; 1303 struct device_match_pattern *dp = &patterns[i].pattern.device_pattern; 1304 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern; 1305 1306 /* 1307 * If the pattern in question isn't for a bus node, we 1308 * aren't interested. However, we do indicate to the 1309 * calling routine that we should continue descending the 1310 * tree, since the user wants to match against lower-level 1311 * EDT elements. 1312 */ 1313 if (patterns[i].type == DEV_MATCH_DEVICE && 1314 (dp->flags & DEV_MATCH_PATH) != 0 && 1315 dp->path_id != bus->path_id) 1316 continue; 1317 if (patterns[i].type == DEV_MATCH_PERIPH && 1318 (pp->flags & PERIPH_MATCH_PATH) != 0 && 1319 pp->path_id != bus->path_id) 1320 continue; 1321 if (patterns[i].type != DEV_MATCH_BUS) { 1322 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1323 retval |= DM_RET_DESCEND; 1324 continue; 1325 } 1326 1327 cur_pattern = &patterns[i].pattern.bus_pattern; 1328 1329 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1330 && (cur_pattern->path_id != bus->path_id)) 1331 continue; 1332 1333 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1334 && (cur_pattern->bus_id != bus->sim->bus_id)) 1335 continue; 1336 1337 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1338 && (cur_pattern->unit_number != bus->sim->unit_number)) 1339 continue; 1340 1341 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1342 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1343 DEV_IDLEN) != 0)) 1344 continue; 1345 1346 /* 1347 * If we get to this point, the user definitely wants 1348 * information on this bus. So tell the caller to copy the 1349 * data out. 1350 */ 1351 retval |= DM_RET_COPY; 1352 1353 /* 1354 * If the return action has been set to descend, then we 1355 * know that we've already seen a non-bus matching 1356 * expression, therefore we need to further descend the tree. 1357 * This won't change by continuing around the loop, so we 1358 * go ahead and return. If we haven't seen a non-bus 1359 * matching expression, we keep going around the loop until 1360 * we exhaust the matching expressions. We'll set the stop 1361 * flag once we fall out of the loop. 1362 */ 1363 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1364 return(retval); 1365 } 1366 1367 /* 1368 * If the return action hasn't been set to descend yet, that means 1369 * we haven't seen anything other than bus matching patterns. So 1370 * tell the caller to stop descending the tree -- the user doesn't 1371 * want to match against lower level tree elements. 1372 */ 1373 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1374 retval |= DM_RET_STOP; 1375 1376 return(retval); 1377 } 1378 1379 static dev_match_ret 1380 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1381 struct cam_ed *device) 1382 { 1383 dev_match_ret retval; 1384 u_int i; 1385 1386 retval = DM_RET_NONE; 1387 1388 /* 1389 * If we aren't given something to match against, that's an error. 1390 */ 1391 if (device == NULL) 1392 return(DM_RET_ERROR); 1393 1394 /* 1395 * If there are no match entries, then this device matches no 1396 * matter what. 1397 */ 1398 if ((patterns == NULL) || (num_patterns == 0)) 1399 return(DM_RET_DESCEND | DM_RET_COPY); 1400 1401 for (i = 0; i < num_patterns; i++) { 1402 struct device_match_pattern *cur_pattern; 1403 struct scsi_vpd_device_id *device_id_page; 1404 struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern; 1405 1406 /* 1407 * If the pattern in question isn't for a device node, we 1408 * aren't interested. 1409 */ 1410 if (patterns[i].type == DEV_MATCH_PERIPH && 1411 (pp->flags & PERIPH_MATCH_TARGET) != 0 && 1412 pp->target_id != device->target->target_id) 1413 continue; 1414 if (patterns[i].type == DEV_MATCH_PERIPH && 1415 (pp->flags & PERIPH_MATCH_LUN) != 0 && 1416 pp->target_lun != device->lun_id) 1417 continue; 1418 if (patterns[i].type != DEV_MATCH_DEVICE) { 1419 if ((patterns[i].type == DEV_MATCH_PERIPH) 1420 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1421 retval |= DM_RET_DESCEND; 1422 continue; 1423 } 1424 1425 cur_pattern = &patterns[i].pattern.device_pattern; 1426 1427 /* Error out if mutually exclusive options are specified. */ 1428 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1429 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1430 return(DM_RET_ERROR); 1431 1432 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1433 && (cur_pattern->path_id != device->target->bus->path_id)) 1434 continue; 1435 1436 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1437 && (cur_pattern->target_id != device->target->target_id)) 1438 continue; 1439 1440 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1441 && (cur_pattern->target_lun != device->lun_id)) 1442 continue; 1443 1444 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1445 && (cam_quirkmatch((caddr_t)&device->inq_data, 1446 (caddr_t)&cur_pattern->data.inq_pat, 1447 1, sizeof(cur_pattern->data.inq_pat), 1448 scsi_static_inquiry_match) == NULL)) 1449 continue; 1450 1451 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1452 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1453 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1454 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1455 device->device_id_len 1456 - SVPD_DEVICE_ID_HDR_LEN, 1457 cur_pattern->data.devid_pat.id, 1458 cur_pattern->data.devid_pat.id_len) != 0)) 1459 continue; 1460 1461 /* 1462 * If we get to this point, the user definitely wants 1463 * information on this device. So tell the caller to copy 1464 * the data out. 1465 */ 1466 retval |= DM_RET_COPY; 1467 1468 /* 1469 * If the return action has been set to descend, then we 1470 * know that we've already seen a peripheral matching 1471 * expression, therefore we need to further descend the tree. 1472 * This won't change by continuing around the loop, so we 1473 * go ahead and return. If we haven't seen a peripheral 1474 * matching expression, we keep going around the loop until 1475 * we exhaust the matching expressions. We'll set the stop 1476 * flag once we fall out of the loop. 1477 */ 1478 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1479 return(retval); 1480 } 1481 1482 /* 1483 * If the return action hasn't been set to descend yet, that means 1484 * we haven't seen any peripheral matching patterns. So tell the 1485 * caller to stop descending the tree -- the user doesn't want to 1486 * match against lower level tree elements. 1487 */ 1488 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1489 retval |= DM_RET_STOP; 1490 1491 return(retval); 1492 } 1493 1494 /* 1495 * Match a single peripheral against any number of match patterns. 1496 */ 1497 static dev_match_ret 1498 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1499 struct cam_periph *periph) 1500 { 1501 dev_match_ret retval; 1502 u_int i; 1503 1504 /* 1505 * If we aren't given something to match against, that's an error. 1506 */ 1507 if (periph == NULL) 1508 return(DM_RET_ERROR); 1509 1510 /* 1511 * If there are no match entries, then this peripheral matches no 1512 * matter what. 1513 */ 1514 if ((patterns == NULL) || (num_patterns == 0)) 1515 return(DM_RET_STOP | DM_RET_COPY); 1516 1517 /* 1518 * There aren't any nodes below a peripheral node, so there's no 1519 * reason to descend the tree any further. 1520 */ 1521 retval = DM_RET_STOP; 1522 1523 for (i = 0; i < num_patterns; i++) { 1524 struct periph_match_pattern *cur_pattern; 1525 1526 /* 1527 * If the pattern in question isn't for a peripheral, we 1528 * aren't interested. 1529 */ 1530 if (patterns[i].type != DEV_MATCH_PERIPH) 1531 continue; 1532 1533 cur_pattern = &patterns[i].pattern.periph_pattern; 1534 1535 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1536 && (cur_pattern->path_id != periph->path->bus->path_id)) 1537 continue; 1538 1539 /* 1540 * For the target and lun id's, we have to make sure the 1541 * target and lun pointers aren't NULL. The xpt peripheral 1542 * has a wildcard target and device. 1543 */ 1544 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1545 && ((periph->path->target == NULL) 1546 ||(cur_pattern->target_id != periph->path->target->target_id))) 1547 continue; 1548 1549 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1550 && ((periph->path->device == NULL) 1551 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1552 continue; 1553 1554 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1555 && (cur_pattern->unit_number != periph->unit_number)) 1556 continue; 1557 1558 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1559 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1560 DEV_IDLEN) != 0)) 1561 continue; 1562 1563 /* 1564 * If we get to this point, the user definitely wants 1565 * information on this peripheral. So tell the caller to 1566 * copy the data out. 1567 */ 1568 retval |= DM_RET_COPY; 1569 1570 /* 1571 * The return action has already been set to stop, since 1572 * peripherals don't have any nodes below them in the EDT. 1573 */ 1574 return(retval); 1575 } 1576 1577 /* 1578 * If we get to this point, the peripheral that was passed in 1579 * doesn't match any of the patterns. 1580 */ 1581 return(retval); 1582 } 1583 1584 static int 1585 xptedtbusfunc(struct cam_eb *bus, void *arg) 1586 { 1587 struct ccb_dev_match *cdm; 1588 struct cam_et *target; 1589 dev_match_ret retval; 1590 1591 cdm = (struct ccb_dev_match *)arg; 1592 1593 /* 1594 * If our position is for something deeper in the tree, that means 1595 * that we've already seen this node. So, we keep going down. 1596 */ 1597 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1598 && (cdm->pos.cookie.bus == bus) 1599 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1600 && (cdm->pos.cookie.target != NULL)) 1601 retval = DM_RET_DESCEND; 1602 else 1603 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1604 1605 /* 1606 * If we got an error, bail out of the search. 1607 */ 1608 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1609 cdm->status = CAM_DEV_MATCH_ERROR; 1610 return(0); 1611 } 1612 1613 /* 1614 * If the copy flag is set, copy this bus out. 1615 */ 1616 if (retval & DM_RET_COPY) { 1617 int spaceleft, j; 1618 1619 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1620 sizeof(struct dev_match_result)); 1621 1622 /* 1623 * If we don't have enough space to put in another 1624 * match result, save our position and tell the 1625 * user there are more devices to check. 1626 */ 1627 if (spaceleft < sizeof(struct dev_match_result)) { 1628 bzero(&cdm->pos, sizeof(cdm->pos)); 1629 cdm->pos.position_type = 1630 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1631 1632 cdm->pos.cookie.bus = bus; 1633 cdm->pos.generations[CAM_BUS_GENERATION]= 1634 xsoftc.bus_generation; 1635 cdm->status = CAM_DEV_MATCH_MORE; 1636 return(0); 1637 } 1638 j = cdm->num_matches; 1639 cdm->num_matches++; 1640 cdm->matches[j].type = DEV_MATCH_BUS; 1641 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1642 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1643 cdm->matches[j].result.bus_result.unit_number = 1644 bus->sim->unit_number; 1645 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1646 bus->sim->sim_name, 1647 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1648 } 1649 1650 /* 1651 * If the user is only interested in buses, there's no 1652 * reason to descend to the next level in the tree. 1653 */ 1654 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1655 return(1); 1656 1657 /* 1658 * If there is a target generation recorded, check it to 1659 * make sure the target list hasn't changed. 1660 */ 1661 mtx_lock(&bus->eb_mtx); 1662 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1663 && (cdm->pos.cookie.bus == bus) 1664 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1665 && (cdm->pos.cookie.target != NULL)) { 1666 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1667 bus->generation)) { 1668 mtx_unlock(&bus->eb_mtx); 1669 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1670 return (0); 1671 } 1672 target = (struct cam_et *)cdm->pos.cookie.target; 1673 target->refcount++; 1674 } else 1675 target = NULL; 1676 mtx_unlock(&bus->eb_mtx); 1677 1678 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1679 } 1680 1681 static int 1682 xptedttargetfunc(struct cam_et *target, void *arg) 1683 { 1684 struct ccb_dev_match *cdm; 1685 struct cam_eb *bus; 1686 struct cam_ed *device; 1687 1688 cdm = (struct ccb_dev_match *)arg; 1689 bus = target->bus; 1690 1691 /* 1692 * If there is a device list generation recorded, check it to 1693 * make sure the device list hasn't changed. 1694 */ 1695 mtx_lock(&bus->eb_mtx); 1696 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1697 && (cdm->pos.cookie.bus == bus) 1698 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1699 && (cdm->pos.cookie.target == target) 1700 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1701 && (cdm->pos.cookie.device != NULL)) { 1702 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1703 target->generation) { 1704 mtx_unlock(&bus->eb_mtx); 1705 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1706 return(0); 1707 } 1708 device = (struct cam_ed *)cdm->pos.cookie.device; 1709 device->refcount++; 1710 } else 1711 device = NULL; 1712 mtx_unlock(&bus->eb_mtx); 1713 1714 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1715 } 1716 1717 static int 1718 xptedtdevicefunc(struct cam_ed *device, void *arg) 1719 { 1720 struct cam_eb *bus; 1721 struct cam_periph *periph; 1722 struct ccb_dev_match *cdm; 1723 dev_match_ret retval; 1724 1725 cdm = (struct ccb_dev_match *)arg; 1726 bus = device->target->bus; 1727 1728 /* 1729 * If our position is for something deeper in the tree, that means 1730 * that we've already seen this node. So, we keep going down. 1731 */ 1732 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1733 && (cdm->pos.cookie.device == device) 1734 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1735 && (cdm->pos.cookie.periph != NULL)) 1736 retval = DM_RET_DESCEND; 1737 else 1738 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1739 device); 1740 1741 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1742 cdm->status = CAM_DEV_MATCH_ERROR; 1743 return(0); 1744 } 1745 1746 /* 1747 * If the copy flag is set, copy this device out. 1748 */ 1749 if (retval & DM_RET_COPY) { 1750 int spaceleft, j; 1751 1752 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1753 sizeof(struct dev_match_result)); 1754 1755 /* 1756 * If we don't have enough space to put in another 1757 * match result, save our position and tell the 1758 * user there are more devices to check. 1759 */ 1760 if (spaceleft < sizeof(struct dev_match_result)) { 1761 bzero(&cdm->pos, sizeof(cdm->pos)); 1762 cdm->pos.position_type = 1763 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1764 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1765 1766 cdm->pos.cookie.bus = device->target->bus; 1767 cdm->pos.generations[CAM_BUS_GENERATION]= 1768 xsoftc.bus_generation; 1769 cdm->pos.cookie.target = device->target; 1770 cdm->pos.generations[CAM_TARGET_GENERATION] = 1771 device->target->bus->generation; 1772 cdm->pos.cookie.device = device; 1773 cdm->pos.generations[CAM_DEV_GENERATION] = 1774 device->target->generation; 1775 cdm->status = CAM_DEV_MATCH_MORE; 1776 return(0); 1777 } 1778 j = cdm->num_matches; 1779 cdm->num_matches++; 1780 cdm->matches[j].type = DEV_MATCH_DEVICE; 1781 cdm->matches[j].result.device_result.path_id = 1782 device->target->bus->path_id; 1783 cdm->matches[j].result.device_result.target_id = 1784 device->target->target_id; 1785 cdm->matches[j].result.device_result.target_lun = 1786 device->lun_id; 1787 cdm->matches[j].result.device_result.protocol = 1788 device->protocol; 1789 bcopy(&device->inq_data, 1790 &cdm->matches[j].result.device_result.inq_data, 1791 sizeof(struct scsi_inquiry_data)); 1792 bcopy(&device->ident_data, 1793 &cdm->matches[j].result.device_result.ident_data, 1794 sizeof(struct ata_params)); 1795 1796 /* Let the user know whether this device is unconfigured */ 1797 if (device->flags & CAM_DEV_UNCONFIGURED) 1798 cdm->matches[j].result.device_result.flags = 1799 DEV_RESULT_UNCONFIGURED; 1800 else 1801 cdm->matches[j].result.device_result.flags = 1802 DEV_RESULT_NOFLAG; 1803 } 1804 1805 /* 1806 * If the user isn't interested in peripherals, don't descend 1807 * the tree any further. 1808 */ 1809 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1810 return(1); 1811 1812 /* 1813 * If there is a peripheral list generation recorded, make sure 1814 * it hasn't changed. 1815 */ 1816 xpt_lock_buses(); 1817 mtx_lock(&bus->eb_mtx); 1818 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1819 && (cdm->pos.cookie.bus == bus) 1820 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1821 && (cdm->pos.cookie.target == device->target) 1822 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1823 && (cdm->pos.cookie.device == device) 1824 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1825 && (cdm->pos.cookie.periph != NULL)) { 1826 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1827 device->generation) { 1828 mtx_unlock(&bus->eb_mtx); 1829 xpt_unlock_buses(); 1830 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1831 return(0); 1832 } 1833 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1834 periph->refcount++; 1835 } else 1836 periph = NULL; 1837 mtx_unlock(&bus->eb_mtx); 1838 xpt_unlock_buses(); 1839 1840 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1841 } 1842 1843 static int 1844 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1845 { 1846 struct ccb_dev_match *cdm; 1847 dev_match_ret retval; 1848 1849 cdm = (struct ccb_dev_match *)arg; 1850 1851 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1852 1853 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1854 cdm->status = CAM_DEV_MATCH_ERROR; 1855 return(0); 1856 } 1857 1858 /* 1859 * If the copy flag is set, copy this peripheral out. 1860 */ 1861 if (retval & DM_RET_COPY) { 1862 int spaceleft, j; 1863 size_t l; 1864 1865 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1866 sizeof(struct dev_match_result)); 1867 1868 /* 1869 * If we don't have enough space to put in another 1870 * match result, save our position and tell the 1871 * user there are more devices to check. 1872 */ 1873 if (spaceleft < sizeof(struct dev_match_result)) { 1874 bzero(&cdm->pos, sizeof(cdm->pos)); 1875 cdm->pos.position_type = 1876 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1877 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1878 CAM_DEV_POS_PERIPH; 1879 1880 cdm->pos.cookie.bus = periph->path->bus; 1881 cdm->pos.generations[CAM_BUS_GENERATION]= 1882 xsoftc.bus_generation; 1883 cdm->pos.cookie.target = periph->path->target; 1884 cdm->pos.generations[CAM_TARGET_GENERATION] = 1885 periph->path->bus->generation; 1886 cdm->pos.cookie.device = periph->path->device; 1887 cdm->pos.generations[CAM_DEV_GENERATION] = 1888 periph->path->target->generation; 1889 cdm->pos.cookie.periph = periph; 1890 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1891 periph->path->device->generation; 1892 cdm->status = CAM_DEV_MATCH_MORE; 1893 return(0); 1894 } 1895 1896 j = cdm->num_matches; 1897 cdm->num_matches++; 1898 cdm->matches[j].type = DEV_MATCH_PERIPH; 1899 cdm->matches[j].result.periph_result.path_id = 1900 periph->path->bus->path_id; 1901 cdm->matches[j].result.periph_result.target_id = 1902 periph->path->target->target_id; 1903 cdm->matches[j].result.periph_result.target_lun = 1904 periph->path->device->lun_id; 1905 cdm->matches[j].result.periph_result.unit_number = 1906 periph->unit_number; 1907 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 1908 strlcpy(cdm->matches[j].result.periph_result.periph_name, 1909 periph->periph_name, l); 1910 } 1911 1912 return(1); 1913 } 1914 1915 static int 1916 xptedtmatch(struct ccb_dev_match *cdm) 1917 { 1918 struct cam_eb *bus; 1919 int ret; 1920 1921 cdm->num_matches = 0; 1922 1923 /* 1924 * Check the bus list generation. If it has changed, the user 1925 * needs to reset everything and start over. 1926 */ 1927 xpt_lock_buses(); 1928 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1929 && (cdm->pos.cookie.bus != NULL)) { 1930 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1931 xsoftc.bus_generation) { 1932 xpt_unlock_buses(); 1933 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1934 return(0); 1935 } 1936 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1937 bus->refcount++; 1938 } else 1939 bus = NULL; 1940 xpt_unlock_buses(); 1941 1942 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1943 1944 /* 1945 * If we get back 0, that means that we had to stop before fully 1946 * traversing the EDT. It also means that one of the subroutines 1947 * has set the status field to the proper value. If we get back 1, 1948 * we've fully traversed the EDT and copied out any matching entries. 1949 */ 1950 if (ret == 1) 1951 cdm->status = CAM_DEV_MATCH_LAST; 1952 1953 return(ret); 1954 } 1955 1956 static int 1957 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1958 { 1959 struct cam_periph *periph; 1960 struct ccb_dev_match *cdm; 1961 1962 cdm = (struct ccb_dev_match *)arg; 1963 1964 xpt_lock_buses(); 1965 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1966 && (cdm->pos.cookie.pdrv == pdrv) 1967 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1968 && (cdm->pos.cookie.periph != NULL)) { 1969 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1970 (*pdrv)->generation) { 1971 xpt_unlock_buses(); 1972 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1973 return(0); 1974 } 1975 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1976 periph->refcount++; 1977 } else 1978 periph = NULL; 1979 xpt_unlock_buses(); 1980 1981 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1982 } 1983 1984 static int 1985 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1986 { 1987 struct ccb_dev_match *cdm; 1988 dev_match_ret retval; 1989 1990 cdm = (struct ccb_dev_match *)arg; 1991 1992 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1993 1994 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1995 cdm->status = CAM_DEV_MATCH_ERROR; 1996 return(0); 1997 } 1998 1999 /* 2000 * If the copy flag is set, copy this peripheral out. 2001 */ 2002 if (retval & DM_RET_COPY) { 2003 int spaceleft, j; 2004 size_t l; 2005 2006 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2007 sizeof(struct dev_match_result)); 2008 2009 /* 2010 * If we don't have enough space to put in another 2011 * match result, save our position and tell the 2012 * user there are more devices to check. 2013 */ 2014 if (spaceleft < sizeof(struct dev_match_result)) { 2015 struct periph_driver **pdrv; 2016 2017 pdrv = NULL; 2018 bzero(&cdm->pos, sizeof(cdm->pos)); 2019 cdm->pos.position_type = 2020 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2021 CAM_DEV_POS_PERIPH; 2022 2023 /* 2024 * This may look a bit non-sensical, but it is 2025 * actually quite logical. There are very few 2026 * peripheral drivers, and bloating every peripheral 2027 * structure with a pointer back to its parent 2028 * peripheral driver linker set entry would cost 2029 * more in the long run than doing this quick lookup. 2030 */ 2031 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2032 if (strcmp((*pdrv)->driver_name, 2033 periph->periph_name) == 0) 2034 break; 2035 } 2036 2037 if (*pdrv == NULL) { 2038 cdm->status = CAM_DEV_MATCH_ERROR; 2039 return(0); 2040 } 2041 2042 cdm->pos.cookie.pdrv = pdrv; 2043 /* 2044 * The periph generation slot does double duty, as 2045 * does the periph pointer slot. They are used for 2046 * both edt and pdrv lookups and positioning. 2047 */ 2048 cdm->pos.cookie.periph = periph; 2049 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2050 (*pdrv)->generation; 2051 cdm->status = CAM_DEV_MATCH_MORE; 2052 return(0); 2053 } 2054 2055 j = cdm->num_matches; 2056 cdm->num_matches++; 2057 cdm->matches[j].type = DEV_MATCH_PERIPH; 2058 cdm->matches[j].result.periph_result.path_id = 2059 periph->path->bus->path_id; 2060 2061 /* 2062 * The transport layer peripheral doesn't have a target or 2063 * lun. 2064 */ 2065 if (periph->path->target) 2066 cdm->matches[j].result.periph_result.target_id = 2067 periph->path->target->target_id; 2068 else 2069 cdm->matches[j].result.periph_result.target_id = 2070 CAM_TARGET_WILDCARD; 2071 2072 if (periph->path->device) 2073 cdm->matches[j].result.periph_result.target_lun = 2074 periph->path->device->lun_id; 2075 else 2076 cdm->matches[j].result.periph_result.target_lun = 2077 CAM_LUN_WILDCARD; 2078 2079 cdm->matches[j].result.periph_result.unit_number = 2080 periph->unit_number; 2081 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2082 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2083 periph->periph_name, l); 2084 } 2085 2086 return(1); 2087 } 2088 2089 static int 2090 xptperiphlistmatch(struct ccb_dev_match *cdm) 2091 { 2092 int ret; 2093 2094 cdm->num_matches = 0; 2095 2096 /* 2097 * At this point in the edt traversal function, we check the bus 2098 * list generation to make sure that no buses have been added or 2099 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2100 * For the peripheral driver list traversal function, however, we 2101 * don't have to worry about new peripheral driver types coming or 2102 * going; they're in a linker set, and therefore can't change 2103 * without a recompile. 2104 */ 2105 2106 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2107 && (cdm->pos.cookie.pdrv != NULL)) 2108 ret = xptpdrvtraverse( 2109 (struct periph_driver **)cdm->pos.cookie.pdrv, 2110 xptplistpdrvfunc, cdm); 2111 else 2112 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2113 2114 /* 2115 * If we get back 0, that means that we had to stop before fully 2116 * traversing the peripheral driver tree. It also means that one of 2117 * the subroutines has set the status field to the proper value. If 2118 * we get back 1, we've fully traversed the EDT and copied out any 2119 * matching entries. 2120 */ 2121 if (ret == 1) 2122 cdm->status = CAM_DEV_MATCH_LAST; 2123 2124 return(ret); 2125 } 2126 2127 static int 2128 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2129 { 2130 struct cam_eb *bus, *next_bus; 2131 int retval; 2132 2133 retval = 1; 2134 if (start_bus) 2135 bus = start_bus; 2136 else { 2137 xpt_lock_buses(); 2138 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2139 if (bus == NULL) { 2140 xpt_unlock_buses(); 2141 return (retval); 2142 } 2143 bus->refcount++; 2144 xpt_unlock_buses(); 2145 } 2146 for (; bus != NULL; bus = next_bus) { 2147 retval = tr_func(bus, arg); 2148 if (retval == 0) { 2149 xpt_release_bus(bus); 2150 break; 2151 } 2152 xpt_lock_buses(); 2153 next_bus = TAILQ_NEXT(bus, links); 2154 if (next_bus) 2155 next_bus->refcount++; 2156 xpt_unlock_buses(); 2157 xpt_release_bus(bus); 2158 } 2159 return(retval); 2160 } 2161 2162 static int 2163 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2164 xpt_targetfunc_t *tr_func, void *arg) 2165 { 2166 struct cam_et *target, *next_target; 2167 int retval; 2168 2169 retval = 1; 2170 if (start_target) 2171 target = start_target; 2172 else { 2173 mtx_lock(&bus->eb_mtx); 2174 target = TAILQ_FIRST(&bus->et_entries); 2175 if (target == NULL) { 2176 mtx_unlock(&bus->eb_mtx); 2177 return (retval); 2178 } 2179 target->refcount++; 2180 mtx_unlock(&bus->eb_mtx); 2181 } 2182 for (; target != NULL; target = next_target) { 2183 retval = tr_func(target, arg); 2184 if (retval == 0) { 2185 xpt_release_target(target); 2186 break; 2187 } 2188 mtx_lock(&bus->eb_mtx); 2189 next_target = TAILQ_NEXT(target, links); 2190 if (next_target) 2191 next_target->refcount++; 2192 mtx_unlock(&bus->eb_mtx); 2193 xpt_release_target(target); 2194 } 2195 return(retval); 2196 } 2197 2198 static int 2199 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2200 xpt_devicefunc_t *tr_func, void *arg) 2201 { 2202 struct cam_eb *bus; 2203 struct cam_ed *device, *next_device; 2204 int retval; 2205 2206 retval = 1; 2207 bus = target->bus; 2208 if (start_device) 2209 device = start_device; 2210 else { 2211 mtx_lock(&bus->eb_mtx); 2212 device = TAILQ_FIRST(&target->ed_entries); 2213 if (device == NULL) { 2214 mtx_unlock(&bus->eb_mtx); 2215 return (retval); 2216 } 2217 device->refcount++; 2218 mtx_unlock(&bus->eb_mtx); 2219 } 2220 for (; device != NULL; device = next_device) { 2221 mtx_lock(&device->device_mtx); 2222 retval = tr_func(device, arg); 2223 mtx_unlock(&device->device_mtx); 2224 if (retval == 0) { 2225 xpt_release_device(device); 2226 break; 2227 } 2228 mtx_lock(&bus->eb_mtx); 2229 next_device = TAILQ_NEXT(device, links); 2230 if (next_device) 2231 next_device->refcount++; 2232 mtx_unlock(&bus->eb_mtx); 2233 xpt_release_device(device); 2234 } 2235 return(retval); 2236 } 2237 2238 static int 2239 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2240 xpt_periphfunc_t *tr_func, void *arg) 2241 { 2242 struct cam_eb *bus; 2243 struct cam_periph *periph, *next_periph; 2244 int retval; 2245 2246 retval = 1; 2247 2248 bus = device->target->bus; 2249 if (start_periph) 2250 periph = start_periph; 2251 else { 2252 xpt_lock_buses(); 2253 mtx_lock(&bus->eb_mtx); 2254 periph = SLIST_FIRST(&device->periphs); 2255 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2256 periph = SLIST_NEXT(periph, periph_links); 2257 if (periph == NULL) { 2258 mtx_unlock(&bus->eb_mtx); 2259 xpt_unlock_buses(); 2260 return (retval); 2261 } 2262 periph->refcount++; 2263 mtx_unlock(&bus->eb_mtx); 2264 xpt_unlock_buses(); 2265 } 2266 for (; periph != NULL; periph = next_periph) { 2267 retval = tr_func(periph, arg); 2268 if (retval == 0) { 2269 cam_periph_release_locked(periph); 2270 break; 2271 } 2272 xpt_lock_buses(); 2273 mtx_lock(&bus->eb_mtx); 2274 next_periph = SLIST_NEXT(periph, periph_links); 2275 while (next_periph != NULL && 2276 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2277 next_periph = SLIST_NEXT(next_periph, periph_links); 2278 if (next_periph) 2279 next_periph->refcount++; 2280 mtx_unlock(&bus->eb_mtx); 2281 xpt_unlock_buses(); 2282 cam_periph_release_locked(periph); 2283 } 2284 return(retval); 2285 } 2286 2287 static int 2288 xptpdrvtraverse(struct periph_driver **start_pdrv, 2289 xpt_pdrvfunc_t *tr_func, void *arg) 2290 { 2291 struct periph_driver **pdrv; 2292 int retval; 2293 2294 retval = 1; 2295 2296 /* 2297 * We don't traverse the peripheral driver list like we do the 2298 * other lists, because it is a linker set, and therefore cannot be 2299 * changed during runtime. If the peripheral driver list is ever 2300 * re-done to be something other than a linker set (i.e. it can 2301 * change while the system is running), the list traversal should 2302 * be modified to work like the other traversal functions. 2303 */ 2304 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2305 *pdrv != NULL; pdrv++) { 2306 retval = tr_func(pdrv, arg); 2307 2308 if (retval == 0) 2309 return(retval); 2310 } 2311 2312 return(retval); 2313 } 2314 2315 static int 2316 xptpdperiphtraverse(struct periph_driver **pdrv, 2317 struct cam_periph *start_periph, 2318 xpt_periphfunc_t *tr_func, void *arg) 2319 { 2320 struct cam_periph *periph, *next_periph; 2321 int retval; 2322 2323 retval = 1; 2324 2325 if (start_periph) 2326 periph = start_periph; 2327 else { 2328 xpt_lock_buses(); 2329 periph = TAILQ_FIRST(&(*pdrv)->units); 2330 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2331 periph = TAILQ_NEXT(periph, unit_links); 2332 if (periph == NULL) { 2333 xpt_unlock_buses(); 2334 return (retval); 2335 } 2336 periph->refcount++; 2337 xpt_unlock_buses(); 2338 } 2339 for (; periph != NULL; periph = next_periph) { 2340 cam_periph_lock(periph); 2341 retval = tr_func(periph, arg); 2342 cam_periph_unlock(periph); 2343 if (retval == 0) { 2344 cam_periph_release(periph); 2345 break; 2346 } 2347 xpt_lock_buses(); 2348 next_periph = TAILQ_NEXT(periph, unit_links); 2349 while (next_periph != NULL && 2350 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2351 next_periph = TAILQ_NEXT(next_periph, unit_links); 2352 if (next_periph) 2353 next_periph->refcount++; 2354 xpt_unlock_buses(); 2355 cam_periph_release(periph); 2356 } 2357 return(retval); 2358 } 2359 2360 static int 2361 xptdefbusfunc(struct cam_eb *bus, void *arg) 2362 { 2363 struct xpt_traverse_config *tr_config; 2364 2365 tr_config = (struct xpt_traverse_config *)arg; 2366 2367 if (tr_config->depth == XPT_DEPTH_BUS) { 2368 xpt_busfunc_t *tr_func; 2369 2370 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2371 2372 return(tr_func(bus, tr_config->tr_arg)); 2373 } else 2374 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2375 } 2376 2377 static int 2378 xptdeftargetfunc(struct cam_et *target, void *arg) 2379 { 2380 struct xpt_traverse_config *tr_config; 2381 2382 tr_config = (struct xpt_traverse_config *)arg; 2383 2384 if (tr_config->depth == XPT_DEPTH_TARGET) { 2385 xpt_targetfunc_t *tr_func; 2386 2387 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2388 2389 return(tr_func(target, tr_config->tr_arg)); 2390 } else 2391 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2392 } 2393 2394 static int 2395 xptdefdevicefunc(struct cam_ed *device, void *arg) 2396 { 2397 struct xpt_traverse_config *tr_config; 2398 2399 tr_config = (struct xpt_traverse_config *)arg; 2400 2401 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2402 xpt_devicefunc_t *tr_func; 2403 2404 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2405 2406 return(tr_func(device, tr_config->tr_arg)); 2407 } else 2408 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2409 } 2410 2411 static int 2412 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2413 { 2414 struct xpt_traverse_config *tr_config; 2415 xpt_periphfunc_t *tr_func; 2416 2417 tr_config = (struct xpt_traverse_config *)arg; 2418 2419 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2420 2421 /* 2422 * Unlike the other default functions, we don't check for depth 2423 * here. The peripheral driver level is the last level in the EDT, 2424 * so if we're here, we should execute the function in question. 2425 */ 2426 return(tr_func(periph, tr_config->tr_arg)); 2427 } 2428 2429 /* 2430 * Execute the given function for every bus in the EDT. 2431 */ 2432 static int 2433 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2434 { 2435 struct xpt_traverse_config tr_config; 2436 2437 tr_config.depth = XPT_DEPTH_BUS; 2438 tr_config.tr_func = tr_func; 2439 tr_config.tr_arg = arg; 2440 2441 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2442 } 2443 2444 /* 2445 * Execute the given function for every device in the EDT. 2446 */ 2447 static int 2448 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2449 { 2450 struct xpt_traverse_config tr_config; 2451 2452 tr_config.depth = XPT_DEPTH_DEVICE; 2453 tr_config.tr_func = tr_func; 2454 tr_config.tr_arg = arg; 2455 2456 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2457 } 2458 2459 static int 2460 xptsetasyncfunc(struct cam_ed *device, void *arg) 2461 { 2462 struct cam_path path; 2463 struct ccb_getdev cgd; 2464 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2465 2466 /* 2467 * Don't report unconfigured devices (Wildcard devs, 2468 * devices only for target mode, device instances 2469 * that have been invalidated but are waiting for 2470 * their last reference count to be released). 2471 */ 2472 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2473 return (1); 2474 2475 memset(&cgd, 0, sizeof(cgd)); 2476 xpt_compile_path(&path, 2477 NULL, 2478 device->target->bus->path_id, 2479 device->target->target_id, 2480 device->lun_id); 2481 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2482 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2483 xpt_action((union ccb *)&cgd); 2484 csa->callback(csa->callback_arg, 2485 AC_FOUND_DEVICE, 2486 &path, &cgd); 2487 xpt_release_path(&path); 2488 2489 return(1); 2490 } 2491 2492 static int 2493 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2494 { 2495 struct cam_path path; 2496 struct ccb_pathinq cpi; 2497 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2498 2499 xpt_compile_path(&path, /*periph*/NULL, 2500 bus->path_id, 2501 CAM_TARGET_WILDCARD, 2502 CAM_LUN_WILDCARD); 2503 xpt_path_lock(&path); 2504 xpt_path_inq(&cpi, &path); 2505 csa->callback(csa->callback_arg, 2506 AC_PATH_REGISTERED, 2507 &path, &cpi); 2508 xpt_path_unlock(&path); 2509 xpt_release_path(&path); 2510 2511 return(1); 2512 } 2513 2514 void 2515 xpt_action(union ccb *start_ccb) 2516 { 2517 2518 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2519 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2520 xpt_action_name(start_ccb->ccb_h.func_code))); 2521 2522 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2523 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2524 } 2525 2526 void 2527 xpt_action_default(union ccb *start_ccb) 2528 { 2529 struct cam_path *path; 2530 struct cam_sim *sim; 2531 struct mtx *mtx; 2532 2533 path = start_ccb->ccb_h.path; 2534 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2535 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2536 xpt_action_name(start_ccb->ccb_h.func_code))); 2537 2538 switch (start_ccb->ccb_h.func_code) { 2539 case XPT_SCSI_IO: 2540 { 2541 struct cam_ed *device; 2542 2543 /* 2544 * For the sake of compatibility with SCSI-1 2545 * devices that may not understand the identify 2546 * message, we include lun information in the 2547 * second byte of all commands. SCSI-1 specifies 2548 * that luns are a 3 bit value and reserves only 3 2549 * bits for lun information in the CDB. Later 2550 * revisions of the SCSI spec allow for more than 8 2551 * luns, but have deprecated lun information in the 2552 * CDB. So, if the lun won't fit, we must omit. 2553 * 2554 * Also be aware that during initial probing for devices, 2555 * the inquiry information is unknown but initialized to 0. 2556 * This means that this code will be exercised while probing 2557 * devices with an ANSI revision greater than 2. 2558 */ 2559 device = path->device; 2560 if (device->protocol_version <= SCSI_REV_2 2561 && start_ccb->ccb_h.target_lun < 8 2562 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2563 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2564 start_ccb->ccb_h.target_lun << 5; 2565 } 2566 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2567 } 2568 /* FALLTHROUGH */ 2569 case XPT_TARGET_IO: 2570 case XPT_CONT_TARGET_IO: 2571 start_ccb->csio.sense_resid = 0; 2572 start_ccb->csio.resid = 0; 2573 /* FALLTHROUGH */ 2574 case XPT_ATA_IO: 2575 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2576 start_ccb->ataio.resid = 0; 2577 /* FALLTHROUGH */ 2578 case XPT_NVME_IO: 2579 case XPT_NVME_ADMIN: 2580 case XPT_MMC_IO: 2581 case XPT_MMC_GET_TRAN_SETTINGS: 2582 case XPT_MMC_SET_TRAN_SETTINGS: 2583 case XPT_RESET_DEV: 2584 case XPT_ENG_EXEC: 2585 case XPT_SMP_IO: 2586 { 2587 struct cam_devq *devq; 2588 2589 devq = path->bus->sim->devq; 2590 mtx_lock(&devq->send_mtx); 2591 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2592 if (xpt_schedule_devq(devq, path->device) != 0) 2593 xpt_run_devq(devq); 2594 mtx_unlock(&devq->send_mtx); 2595 break; 2596 } 2597 case XPT_CALC_GEOMETRY: 2598 /* Filter out garbage */ 2599 if (start_ccb->ccg.block_size == 0 2600 || start_ccb->ccg.volume_size == 0) { 2601 start_ccb->ccg.cylinders = 0; 2602 start_ccb->ccg.heads = 0; 2603 start_ccb->ccg.secs_per_track = 0; 2604 start_ccb->ccb_h.status = CAM_REQ_CMP; 2605 break; 2606 } 2607 goto call_sim; 2608 case XPT_ABORT: 2609 { 2610 union ccb* abort_ccb; 2611 2612 abort_ccb = start_ccb->cab.abort_ccb; 2613 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2614 struct cam_ed *device; 2615 struct cam_devq *devq; 2616 2617 device = abort_ccb->ccb_h.path->device; 2618 devq = device->sim->devq; 2619 2620 mtx_lock(&devq->send_mtx); 2621 if (abort_ccb->ccb_h.pinfo.index > 0) { 2622 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2623 abort_ccb->ccb_h.status = 2624 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2625 xpt_freeze_devq_device(device, 1); 2626 mtx_unlock(&devq->send_mtx); 2627 xpt_done(abort_ccb); 2628 start_ccb->ccb_h.status = CAM_REQ_CMP; 2629 break; 2630 } 2631 mtx_unlock(&devq->send_mtx); 2632 2633 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2634 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2635 /* 2636 * We've caught this ccb en route to 2637 * the SIM. Flag it for abort and the 2638 * SIM will do so just before starting 2639 * real work on the CCB. 2640 */ 2641 abort_ccb->ccb_h.status = 2642 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2643 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2644 start_ccb->ccb_h.status = CAM_REQ_CMP; 2645 break; 2646 } 2647 } 2648 if (XPT_FC_IS_QUEUED(abort_ccb) 2649 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2650 /* 2651 * It's already completed but waiting 2652 * for our SWI to get to it. 2653 */ 2654 start_ccb->ccb_h.status = CAM_UA_ABORT; 2655 break; 2656 } 2657 /* 2658 * If we weren't able to take care of the abort request 2659 * in the XPT, pass the request down to the SIM for processing. 2660 */ 2661 } 2662 /* FALLTHROUGH */ 2663 case XPT_ACCEPT_TARGET_IO: 2664 case XPT_EN_LUN: 2665 case XPT_IMMED_NOTIFY: 2666 case XPT_NOTIFY_ACK: 2667 case XPT_RESET_BUS: 2668 case XPT_IMMEDIATE_NOTIFY: 2669 case XPT_NOTIFY_ACKNOWLEDGE: 2670 case XPT_GET_SIM_KNOB_OLD: 2671 case XPT_GET_SIM_KNOB: 2672 case XPT_SET_SIM_KNOB: 2673 case XPT_GET_TRAN_SETTINGS: 2674 case XPT_SET_TRAN_SETTINGS: 2675 case XPT_PATH_INQ: 2676 call_sim: 2677 sim = path->bus->sim; 2678 mtx = sim->mtx; 2679 if (mtx && !mtx_owned(mtx)) 2680 mtx_lock(mtx); 2681 else 2682 mtx = NULL; 2683 2684 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2685 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2686 (*(sim->sim_action))(sim, start_ccb); 2687 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2688 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2689 if (mtx) 2690 mtx_unlock(mtx); 2691 break; 2692 case XPT_PATH_STATS: 2693 start_ccb->cpis.last_reset = path->bus->last_reset; 2694 start_ccb->ccb_h.status = CAM_REQ_CMP; 2695 break; 2696 case XPT_GDEV_TYPE: 2697 { 2698 struct cam_ed *dev; 2699 2700 dev = path->device; 2701 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2702 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2703 } else { 2704 struct ccb_getdev *cgd; 2705 2706 cgd = &start_ccb->cgd; 2707 cgd->protocol = dev->protocol; 2708 cgd->inq_data = dev->inq_data; 2709 cgd->ident_data = dev->ident_data; 2710 cgd->inq_flags = dev->inq_flags; 2711 cgd->ccb_h.status = CAM_REQ_CMP; 2712 cgd->serial_num_len = dev->serial_num_len; 2713 if ((dev->serial_num_len > 0) 2714 && (dev->serial_num != NULL)) 2715 bcopy(dev->serial_num, cgd->serial_num, 2716 dev->serial_num_len); 2717 } 2718 break; 2719 } 2720 case XPT_GDEV_STATS: 2721 { 2722 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2723 struct cam_ed *dev = path->device; 2724 struct cam_eb *bus = path->bus; 2725 struct cam_et *tar = path->target; 2726 struct cam_devq *devq = bus->sim->devq; 2727 2728 mtx_lock(&devq->send_mtx); 2729 cgds->dev_openings = dev->ccbq.dev_openings; 2730 cgds->dev_active = dev->ccbq.dev_active; 2731 cgds->allocated = dev->ccbq.allocated; 2732 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2733 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2734 cgds->last_reset = tar->last_reset; 2735 cgds->maxtags = dev->maxtags; 2736 cgds->mintags = dev->mintags; 2737 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2738 cgds->last_reset = bus->last_reset; 2739 mtx_unlock(&devq->send_mtx); 2740 cgds->ccb_h.status = CAM_REQ_CMP; 2741 break; 2742 } 2743 case XPT_GDEVLIST: 2744 { 2745 struct cam_periph *nperiph; 2746 struct periph_list *periph_head; 2747 struct ccb_getdevlist *cgdl; 2748 u_int i; 2749 struct cam_ed *device; 2750 bool found; 2751 2752 found = false; 2753 2754 /* 2755 * Don't want anyone mucking with our data. 2756 */ 2757 device = path->device; 2758 periph_head = &device->periphs; 2759 cgdl = &start_ccb->cgdl; 2760 2761 /* 2762 * Check and see if the list has changed since the user 2763 * last requested a list member. If so, tell them that the 2764 * list has changed, and therefore they need to start over 2765 * from the beginning. 2766 */ 2767 if ((cgdl->index != 0) && 2768 (cgdl->generation != device->generation)) { 2769 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2770 break; 2771 } 2772 2773 /* 2774 * Traverse the list of peripherals and attempt to find 2775 * the requested peripheral. 2776 */ 2777 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2778 (nperiph != NULL) && (i <= cgdl->index); 2779 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2780 if (i == cgdl->index) { 2781 strlcpy(cgdl->periph_name, 2782 nperiph->periph_name, 2783 sizeof(cgdl->periph_name)); 2784 cgdl->unit_number = nperiph->unit_number; 2785 found = true; 2786 } 2787 } 2788 if (!found) { 2789 cgdl->status = CAM_GDEVLIST_ERROR; 2790 break; 2791 } 2792 2793 if (nperiph == NULL) 2794 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2795 else 2796 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2797 2798 cgdl->index++; 2799 cgdl->generation = device->generation; 2800 2801 cgdl->ccb_h.status = CAM_REQ_CMP; 2802 break; 2803 } 2804 case XPT_DEV_MATCH: 2805 { 2806 dev_pos_type position_type; 2807 struct ccb_dev_match *cdm; 2808 2809 cdm = &start_ccb->cdm; 2810 2811 /* 2812 * There are two ways of getting at information in the EDT. 2813 * The first way is via the primary EDT tree. It starts 2814 * with a list of buses, then a list of targets on a bus, 2815 * then devices/luns on a target, and then peripherals on a 2816 * device/lun. The "other" way is by the peripheral driver 2817 * lists. The peripheral driver lists are organized by 2818 * peripheral driver. (obviously) So it makes sense to 2819 * use the peripheral driver list if the user is looking 2820 * for something like "da1", or all "da" devices. If the 2821 * user is looking for something on a particular bus/target 2822 * or lun, it's generally better to go through the EDT tree. 2823 */ 2824 2825 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2826 position_type = cdm->pos.position_type; 2827 else { 2828 u_int i; 2829 2830 position_type = CAM_DEV_POS_NONE; 2831 2832 for (i = 0; i < cdm->num_patterns; i++) { 2833 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2834 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2835 position_type = CAM_DEV_POS_EDT; 2836 break; 2837 } 2838 } 2839 2840 if (cdm->num_patterns == 0) 2841 position_type = CAM_DEV_POS_EDT; 2842 else if (position_type == CAM_DEV_POS_NONE) 2843 position_type = CAM_DEV_POS_PDRV; 2844 } 2845 2846 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2847 case CAM_DEV_POS_EDT: 2848 xptedtmatch(cdm); 2849 break; 2850 case CAM_DEV_POS_PDRV: 2851 xptperiphlistmatch(cdm); 2852 break; 2853 default: 2854 cdm->status = CAM_DEV_MATCH_ERROR; 2855 break; 2856 } 2857 2858 if (cdm->status == CAM_DEV_MATCH_ERROR) 2859 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2860 else 2861 start_ccb->ccb_h.status = CAM_REQ_CMP; 2862 2863 break; 2864 } 2865 case XPT_SASYNC_CB: 2866 { 2867 struct ccb_setasync *csa; 2868 struct async_node *cur_entry; 2869 struct async_list *async_head; 2870 uint32_t added; 2871 2872 csa = &start_ccb->csa; 2873 added = csa->event_enable; 2874 async_head = &path->device->asyncs; 2875 2876 /* 2877 * If there is already an entry for us, simply 2878 * update it. 2879 */ 2880 cur_entry = SLIST_FIRST(async_head); 2881 while (cur_entry != NULL) { 2882 if ((cur_entry->callback_arg == csa->callback_arg) 2883 && (cur_entry->callback == csa->callback)) 2884 break; 2885 cur_entry = SLIST_NEXT(cur_entry, links); 2886 } 2887 2888 if (cur_entry != NULL) { 2889 /* 2890 * If the request has no flags set, 2891 * remove the entry. 2892 */ 2893 added &= ~cur_entry->event_enable; 2894 if (csa->event_enable == 0) { 2895 SLIST_REMOVE(async_head, cur_entry, 2896 async_node, links); 2897 xpt_release_device(path->device); 2898 free(cur_entry, M_CAMXPT); 2899 } else { 2900 cur_entry->event_enable = csa->event_enable; 2901 } 2902 csa->event_enable = added; 2903 } else { 2904 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2905 M_NOWAIT); 2906 if (cur_entry == NULL) { 2907 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2908 break; 2909 } 2910 cur_entry->event_enable = csa->event_enable; 2911 cur_entry->event_lock = (path->bus->sim->mtx && 2912 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 2913 cur_entry->callback_arg = csa->callback_arg; 2914 cur_entry->callback = csa->callback; 2915 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2916 xpt_acquire_device(path->device); 2917 } 2918 start_ccb->ccb_h.status = CAM_REQ_CMP; 2919 break; 2920 } 2921 case XPT_REL_SIMQ: 2922 { 2923 struct ccb_relsim *crs; 2924 struct cam_ed *dev; 2925 2926 crs = &start_ccb->crs; 2927 dev = path->device; 2928 if (dev == NULL) { 2929 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2930 break; 2931 } 2932 2933 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2934 /* Don't ever go below one opening */ 2935 if (crs->openings > 0) { 2936 xpt_dev_ccbq_resize(path, crs->openings); 2937 if (bootverbose) { 2938 xpt_print(path, 2939 "number of openings is now %d\n", 2940 crs->openings); 2941 } 2942 } 2943 } 2944 2945 mtx_lock(&dev->sim->devq->send_mtx); 2946 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2947 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2948 /* 2949 * Just extend the old timeout and decrement 2950 * the freeze count so that a single timeout 2951 * is sufficient for releasing the queue. 2952 */ 2953 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2954 callout_stop(&dev->callout); 2955 } else { 2956 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2957 } 2958 2959 callout_reset_sbt(&dev->callout, 2960 SBT_1MS * crs->release_timeout, SBT_1MS, 2961 xpt_release_devq_timeout, dev, 0); 2962 2963 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2964 } 2965 2966 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2967 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2968 /* 2969 * Decrement the freeze count so that a single 2970 * completion is still sufficient to unfreeze 2971 * the queue. 2972 */ 2973 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2974 } else { 2975 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2976 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2977 } 2978 } 2979 2980 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2981 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2982 || (dev->ccbq.dev_active == 0)) { 2983 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2984 } else { 2985 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2986 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2987 } 2988 } 2989 mtx_unlock(&dev->sim->devq->send_mtx); 2990 2991 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2992 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2993 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2994 start_ccb->ccb_h.status = CAM_REQ_CMP; 2995 break; 2996 } 2997 case XPT_DEBUG: { 2998 struct cam_path *oldpath; 2999 3000 /* Check that all request bits are supported. */ 3001 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3002 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3003 break; 3004 } 3005 3006 cam_dflags = CAM_DEBUG_NONE; 3007 if (cam_dpath != NULL) { 3008 oldpath = cam_dpath; 3009 cam_dpath = NULL; 3010 xpt_free_path(oldpath); 3011 } 3012 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3013 if (xpt_create_path(&cam_dpath, NULL, 3014 start_ccb->ccb_h.path_id, 3015 start_ccb->ccb_h.target_id, 3016 start_ccb->ccb_h.target_lun) != 3017 CAM_REQ_CMP) { 3018 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3019 } else { 3020 cam_dflags = start_ccb->cdbg.flags; 3021 start_ccb->ccb_h.status = CAM_REQ_CMP; 3022 xpt_print(cam_dpath, "debugging flags now %x\n", 3023 cam_dflags); 3024 } 3025 } else 3026 start_ccb->ccb_h.status = CAM_REQ_CMP; 3027 break; 3028 } 3029 case XPT_NOOP: 3030 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3031 xpt_freeze_devq(path, 1); 3032 start_ccb->ccb_h.status = CAM_REQ_CMP; 3033 break; 3034 case XPT_REPROBE_LUN: 3035 xpt_async(AC_INQ_CHANGED, path, NULL); 3036 start_ccb->ccb_h.status = CAM_REQ_CMP; 3037 xpt_done(start_ccb); 3038 break; 3039 case XPT_ASYNC: 3040 /* 3041 * Queue the async operation so it can be run from a sleepable 3042 * context. 3043 */ 3044 start_ccb->ccb_h.status = CAM_REQ_CMP; 3045 mtx_lock(&cam_async.cam_doneq_mtx); 3046 STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe); 3047 start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX; 3048 mtx_unlock(&cam_async.cam_doneq_mtx); 3049 wakeup(&cam_async.cam_doneq); 3050 break; 3051 default: 3052 case XPT_SDEV_TYPE: 3053 case XPT_TERM_IO: 3054 case XPT_ENG_INQ: 3055 /* XXX Implement */ 3056 xpt_print(start_ccb->ccb_h.path, 3057 "%s: CCB type %#x %s not supported\n", __func__, 3058 start_ccb->ccb_h.func_code, 3059 xpt_action_name(start_ccb->ccb_h.func_code)); 3060 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3061 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3062 xpt_done(start_ccb); 3063 } 3064 break; 3065 } 3066 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3067 ("xpt_action_default: func= %#x %s status %#x\n", 3068 start_ccb->ccb_h.func_code, 3069 xpt_action_name(start_ccb->ccb_h.func_code), 3070 start_ccb->ccb_h.status)); 3071 } 3072 3073 /* 3074 * Call the sim poll routine to allow the sim to complete 3075 * any inflight requests, then call camisr_runqueue to 3076 * complete any CCB that the polling completed. 3077 */ 3078 void 3079 xpt_sim_poll(struct cam_sim *sim) 3080 { 3081 struct mtx *mtx; 3082 3083 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__)); 3084 mtx = sim->mtx; 3085 if (mtx) 3086 mtx_lock(mtx); 3087 (*(sim->sim_poll))(sim); 3088 if (mtx) 3089 mtx_unlock(mtx); 3090 camisr_runqueue(); 3091 } 3092 3093 uint32_t 3094 xpt_poll_setup(union ccb *start_ccb) 3095 { 3096 uint32_t timeout; 3097 struct cam_sim *sim; 3098 struct cam_devq *devq; 3099 struct cam_ed *dev; 3100 3101 timeout = start_ccb->ccb_h.timeout * 10; 3102 sim = start_ccb->ccb_h.path->bus->sim; 3103 devq = sim->devq; 3104 dev = start_ccb->ccb_h.path->device; 3105 3106 KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__)); 3107 3108 /* 3109 * Steal an opening so that no other queued requests 3110 * can get it before us while we simulate interrupts. 3111 */ 3112 mtx_lock(&devq->send_mtx); 3113 dev->ccbq.dev_openings--; 3114 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3115 (--timeout > 0)) { 3116 mtx_unlock(&devq->send_mtx); 3117 DELAY(100); 3118 xpt_sim_poll(sim); 3119 mtx_lock(&devq->send_mtx); 3120 } 3121 dev->ccbq.dev_openings++; 3122 mtx_unlock(&devq->send_mtx); 3123 3124 return (timeout); 3125 } 3126 3127 void 3128 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3129 { 3130 3131 KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim), 3132 ("%s: non-pollable sim", __func__)); 3133 while (--timeout > 0) { 3134 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); 3135 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3136 != CAM_REQ_INPROG) 3137 break; 3138 DELAY(100); 3139 } 3140 3141 if (timeout == 0) { 3142 /* 3143 * XXX Is it worth adding a sim_timeout entry 3144 * point so we can attempt recovery? If 3145 * this is only used for dumps, I don't think 3146 * it is. 3147 */ 3148 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3149 } 3150 } 3151 3152 /* 3153 * Schedule a peripheral driver to receive a ccb when its 3154 * target device has space for more transactions. 3155 */ 3156 void 3157 xpt_schedule(struct cam_periph *periph, uint32_t new_priority) 3158 { 3159 3160 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3161 cam_periph_assert(periph, MA_OWNED); 3162 if (new_priority < periph->scheduled_priority) { 3163 periph->scheduled_priority = new_priority; 3164 xpt_run_allocq(periph, 0); 3165 } 3166 } 3167 3168 /* 3169 * Schedule a device to run on a given queue. 3170 * If the device was inserted as a new entry on the queue, 3171 * return 1 meaning the device queue should be run. If we 3172 * were already queued, implying someone else has already 3173 * started the queue, return 0 so the caller doesn't attempt 3174 * to run the queue. 3175 */ 3176 static int 3177 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3178 uint32_t new_priority) 3179 { 3180 int retval; 3181 uint32_t old_priority; 3182 3183 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3184 3185 old_priority = pinfo->priority; 3186 3187 /* 3188 * Are we already queued? 3189 */ 3190 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3191 /* Simply reorder based on new priority */ 3192 if (new_priority < old_priority) { 3193 camq_change_priority(queue, pinfo->index, 3194 new_priority); 3195 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3196 ("changed priority to %d\n", 3197 new_priority)); 3198 retval = 1; 3199 } else 3200 retval = 0; 3201 } else { 3202 /* New entry on the queue */ 3203 if (new_priority < old_priority) 3204 pinfo->priority = new_priority; 3205 3206 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3207 ("Inserting onto queue\n")); 3208 pinfo->generation = ++queue->generation; 3209 camq_insert(queue, pinfo); 3210 retval = 1; 3211 } 3212 return (retval); 3213 } 3214 3215 static void 3216 xpt_run_allocq_task(void *context, int pending) 3217 { 3218 struct cam_periph *periph = context; 3219 3220 cam_periph_lock(periph); 3221 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3222 xpt_run_allocq(periph, 1); 3223 cam_periph_unlock(periph); 3224 cam_periph_release(periph); 3225 } 3226 3227 static void 3228 xpt_run_allocq(struct cam_periph *periph, int sleep) 3229 { 3230 struct cam_ed *device; 3231 union ccb *ccb; 3232 uint32_t prio; 3233 3234 cam_periph_assert(periph, MA_OWNED); 3235 if (periph->periph_allocating) 3236 return; 3237 cam_periph_doacquire(periph); 3238 periph->periph_allocating = 1; 3239 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3240 device = periph->path->device; 3241 ccb = NULL; 3242 restart: 3243 while ((prio = min(periph->scheduled_priority, 3244 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3245 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3246 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3247 if (ccb == NULL && 3248 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3249 if (sleep) { 3250 ccb = xpt_get_ccb(periph); 3251 goto restart; 3252 } 3253 if (periph->flags & CAM_PERIPH_RUN_TASK) 3254 break; 3255 cam_periph_doacquire(periph); 3256 periph->flags |= CAM_PERIPH_RUN_TASK; 3257 taskqueue_enqueue(xsoftc.xpt_taskq, 3258 &periph->periph_run_task); 3259 break; 3260 } 3261 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3262 if (prio == periph->immediate_priority) { 3263 periph->immediate_priority = CAM_PRIORITY_NONE; 3264 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3265 ("waking cam_periph_getccb()\n")); 3266 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3267 periph_links.sle); 3268 wakeup(&periph->ccb_list); 3269 } else { 3270 periph->scheduled_priority = CAM_PRIORITY_NONE; 3271 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3272 ("calling periph_start()\n")); 3273 periph->periph_start(periph, ccb); 3274 } 3275 ccb = NULL; 3276 } 3277 if (ccb != NULL) 3278 xpt_release_ccb(ccb); 3279 periph->periph_allocating = 0; 3280 cam_periph_release_locked(periph); 3281 } 3282 3283 static void 3284 xpt_run_devq(struct cam_devq *devq) 3285 { 3286 struct mtx *mtx; 3287 3288 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3289 3290 devq->send_queue.qfrozen_cnt++; 3291 while ((devq->send_queue.entries > 0) 3292 && (devq->send_openings > 0) 3293 && (devq->send_queue.qfrozen_cnt <= 1)) { 3294 struct cam_ed *device; 3295 union ccb *work_ccb; 3296 struct cam_sim *sim; 3297 struct xpt_proto *proto; 3298 3299 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3300 CAMQ_HEAD); 3301 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3302 ("running device %p\n", device)); 3303 3304 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3305 if (work_ccb == NULL) { 3306 printf("device on run queue with no ccbs???\n"); 3307 continue; 3308 } 3309 3310 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3311 mtx_lock(&xsoftc.xpt_highpower_lock); 3312 if (xsoftc.num_highpower <= 0) { 3313 /* 3314 * We got a high power command, but we 3315 * don't have any available slots. Freeze 3316 * the device queue until we have a slot 3317 * available. 3318 */ 3319 xpt_freeze_devq_device(device, 1); 3320 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3321 highpowerq_entry); 3322 3323 mtx_unlock(&xsoftc.xpt_highpower_lock); 3324 continue; 3325 } else { 3326 /* 3327 * Consume a high power slot while 3328 * this ccb runs. 3329 */ 3330 xsoftc.num_highpower--; 3331 } 3332 mtx_unlock(&xsoftc.xpt_highpower_lock); 3333 } 3334 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3335 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3336 devq->send_openings--; 3337 devq->send_active++; 3338 xpt_schedule_devq(devq, device); 3339 mtx_unlock(&devq->send_mtx); 3340 3341 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3342 /* 3343 * The client wants to freeze the queue 3344 * after this CCB is sent. 3345 */ 3346 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3347 } 3348 3349 /* In Target mode, the peripheral driver knows best... */ 3350 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3351 if ((device->inq_flags & SID_CmdQue) != 0 3352 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3353 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3354 else 3355 /* 3356 * Clear this in case of a retried CCB that 3357 * failed due to a rejected tag. 3358 */ 3359 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3360 } 3361 3362 KASSERT(device == work_ccb->ccb_h.path->device, 3363 ("device (%p) / path->device (%p) mismatch", 3364 device, work_ccb->ccb_h.path->device)); 3365 proto = xpt_proto_find(device->protocol); 3366 if (proto && proto->ops->debug_out) 3367 proto->ops->debug_out(work_ccb); 3368 3369 /* 3370 * Device queues can be shared among multiple SIM instances 3371 * that reside on different buses. Use the SIM from the 3372 * queued device, rather than the one from the calling bus. 3373 */ 3374 sim = device->sim; 3375 mtx = sim->mtx; 3376 if (mtx && !mtx_owned(mtx)) 3377 mtx_lock(mtx); 3378 else 3379 mtx = NULL; 3380 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3381 (*(sim->sim_action))(sim, work_ccb); 3382 if (mtx) 3383 mtx_unlock(mtx); 3384 mtx_lock(&devq->send_mtx); 3385 } 3386 devq->send_queue.qfrozen_cnt--; 3387 } 3388 3389 /* 3390 * This function merges stuff from the src ccb into the dst ccb, while keeping 3391 * important fields in the dst ccb constant. 3392 */ 3393 void 3394 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb) 3395 { 3396 3397 /* 3398 * Pull fields that are valid for peripheral drivers to set 3399 * into the dst CCB along with the CCB "payload". 3400 */ 3401 dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count; 3402 dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code; 3403 dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout; 3404 dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags; 3405 bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1], 3406 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3407 } 3408 3409 void 3410 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3411 uint32_t priority, uint32_t flags) 3412 { 3413 3414 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3415 ccb_h->pinfo.priority = priority; 3416 ccb_h->path = path; 3417 ccb_h->path_id = path->bus->path_id; 3418 if (path->target) 3419 ccb_h->target_id = path->target->target_id; 3420 else 3421 ccb_h->target_id = CAM_TARGET_WILDCARD; 3422 if (path->device) { 3423 ccb_h->target_lun = path->device->lun_id; 3424 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3425 } else { 3426 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3427 } 3428 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3429 ccb_h->flags = flags; 3430 ccb_h->xflags = 0; 3431 } 3432 3433 void 3434 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority) 3435 { 3436 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3437 } 3438 3439 /* Path manipulation functions */ 3440 cam_status 3441 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3442 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3443 { 3444 struct cam_path *path; 3445 cam_status status; 3446 3447 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3448 3449 if (path == NULL) { 3450 status = CAM_RESRC_UNAVAIL; 3451 return(status); 3452 } 3453 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3454 if (status != CAM_REQ_CMP) { 3455 free(path, M_CAMPATH); 3456 path = NULL; 3457 } 3458 *new_path_ptr = path; 3459 return (status); 3460 } 3461 3462 cam_status 3463 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3464 struct cam_periph *periph, path_id_t path_id, 3465 target_id_t target_id, lun_id_t lun_id) 3466 { 3467 3468 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3469 lun_id)); 3470 } 3471 3472 cam_status 3473 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3474 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3475 { 3476 struct cam_eb *bus; 3477 struct cam_et *target; 3478 struct cam_ed *device; 3479 cam_status status; 3480 3481 status = CAM_REQ_CMP; /* Completed without error */ 3482 target = NULL; /* Wildcarded */ 3483 device = NULL; /* Wildcarded */ 3484 3485 /* 3486 * We will potentially modify the EDT, so block interrupts 3487 * that may attempt to create cam paths. 3488 */ 3489 bus = xpt_find_bus(path_id); 3490 if (bus == NULL) { 3491 status = CAM_PATH_INVALID; 3492 } else { 3493 xpt_lock_buses(); 3494 mtx_lock(&bus->eb_mtx); 3495 target = xpt_find_target(bus, target_id); 3496 if (target == NULL) { 3497 /* Create one */ 3498 struct cam_et *new_target; 3499 3500 new_target = xpt_alloc_target(bus, target_id); 3501 if (new_target == NULL) { 3502 status = CAM_RESRC_UNAVAIL; 3503 } else { 3504 target = new_target; 3505 } 3506 } 3507 xpt_unlock_buses(); 3508 if (target != NULL) { 3509 device = xpt_find_device(target, lun_id); 3510 if (device == NULL) { 3511 /* Create one */ 3512 struct cam_ed *new_device; 3513 3514 new_device = 3515 (*(bus->xport->ops->alloc_device))(bus, 3516 target, 3517 lun_id); 3518 if (new_device == NULL) { 3519 status = CAM_RESRC_UNAVAIL; 3520 } else { 3521 device = new_device; 3522 } 3523 } 3524 } 3525 mtx_unlock(&bus->eb_mtx); 3526 } 3527 3528 /* 3529 * Only touch the user's data if we are successful. 3530 */ 3531 if (status == CAM_REQ_CMP) { 3532 new_path->periph = perph; 3533 new_path->bus = bus; 3534 new_path->target = target; 3535 new_path->device = device; 3536 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3537 } else { 3538 if (device != NULL) 3539 xpt_release_device(device); 3540 if (target != NULL) 3541 xpt_release_target(target); 3542 if (bus != NULL) 3543 xpt_release_bus(bus); 3544 } 3545 return (status); 3546 } 3547 3548 int 3549 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3550 { 3551 struct cam_path *new_path; 3552 3553 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3554 if (new_path == NULL) 3555 return (ENOMEM); 3556 *new_path = *path; 3557 if (path->bus != NULL) 3558 xpt_acquire_bus(path->bus); 3559 if (path->target != NULL) 3560 xpt_acquire_target(path->target); 3561 if (path->device != NULL) 3562 xpt_acquire_device(path->device); 3563 *new_path_ptr = new_path; 3564 return (0); 3565 } 3566 3567 void 3568 xpt_release_path(struct cam_path *path) 3569 { 3570 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3571 if (path->device != NULL) { 3572 xpt_release_device(path->device); 3573 path->device = NULL; 3574 } 3575 if (path->target != NULL) { 3576 xpt_release_target(path->target); 3577 path->target = NULL; 3578 } 3579 if (path->bus != NULL) { 3580 xpt_release_bus(path->bus); 3581 path->bus = NULL; 3582 } 3583 } 3584 3585 void 3586 xpt_free_path(struct cam_path *path) 3587 { 3588 3589 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3590 xpt_release_path(path); 3591 free(path, M_CAMPATH); 3592 } 3593 3594 void 3595 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3596 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3597 { 3598 3599 xpt_lock_buses(); 3600 if (bus_ref) { 3601 if (path->bus) 3602 *bus_ref = path->bus->refcount; 3603 else 3604 *bus_ref = 0; 3605 } 3606 if (periph_ref) { 3607 if (path->periph) 3608 *periph_ref = path->periph->refcount; 3609 else 3610 *periph_ref = 0; 3611 } 3612 xpt_unlock_buses(); 3613 if (target_ref) { 3614 if (path->target) 3615 *target_ref = path->target->refcount; 3616 else 3617 *target_ref = 0; 3618 } 3619 if (device_ref) { 3620 if (path->device) 3621 *device_ref = path->device->refcount; 3622 else 3623 *device_ref = 0; 3624 } 3625 } 3626 3627 /* 3628 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3629 * in path1, 2 for match with wildcards in path2. 3630 */ 3631 int 3632 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3633 { 3634 int retval = 0; 3635 3636 if (path1->bus != path2->bus) { 3637 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3638 retval = 1; 3639 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3640 retval = 2; 3641 else 3642 return (-1); 3643 } 3644 if (path1->target != path2->target) { 3645 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3646 if (retval == 0) 3647 retval = 1; 3648 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3649 retval = 2; 3650 else 3651 return (-1); 3652 } 3653 if (path1->device != path2->device) { 3654 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3655 if (retval == 0) 3656 retval = 1; 3657 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3658 retval = 2; 3659 else 3660 return (-1); 3661 } 3662 return (retval); 3663 } 3664 3665 int 3666 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3667 { 3668 int retval = 0; 3669 3670 if (path->bus != dev->target->bus) { 3671 if (path->bus->path_id == CAM_BUS_WILDCARD) 3672 retval = 1; 3673 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3674 retval = 2; 3675 else 3676 return (-1); 3677 } 3678 if (path->target != dev->target) { 3679 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3680 if (retval == 0) 3681 retval = 1; 3682 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3683 retval = 2; 3684 else 3685 return (-1); 3686 } 3687 if (path->device != dev) { 3688 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3689 if (retval == 0) 3690 retval = 1; 3691 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3692 retval = 2; 3693 else 3694 return (-1); 3695 } 3696 return (retval); 3697 } 3698 3699 void 3700 xpt_print_path(struct cam_path *path) 3701 { 3702 struct sbuf sb; 3703 char buffer[XPT_PRINT_LEN]; 3704 3705 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3706 xpt_path_sbuf(path, &sb); 3707 sbuf_finish(&sb); 3708 printf("%s", sbuf_data(&sb)); 3709 sbuf_delete(&sb); 3710 } 3711 3712 static void 3713 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb) 3714 { 3715 if (device == NULL) 3716 sbuf_cat(sb, "(nopath): "); 3717 else { 3718 sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ", 3719 device->sim->sim_name, 3720 device->sim->unit_number, 3721 device->sim->bus_id, 3722 device->target->target_id, 3723 (uintmax_t)device->lun_id); 3724 } 3725 } 3726 3727 void 3728 xpt_print(struct cam_path *path, const char *fmt, ...) 3729 { 3730 va_list ap; 3731 struct sbuf sb; 3732 char buffer[XPT_PRINT_LEN]; 3733 3734 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3735 3736 xpt_path_sbuf(path, &sb); 3737 va_start(ap, fmt); 3738 sbuf_vprintf(&sb, fmt, ap); 3739 va_end(ap); 3740 3741 sbuf_finish(&sb); 3742 printf("%s", sbuf_data(&sb)); 3743 sbuf_delete(&sb); 3744 } 3745 3746 char * 3747 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3748 { 3749 struct sbuf sb; 3750 3751 sbuf_new(&sb, str, str_len, 0); 3752 xpt_path_sbuf(path, &sb); 3753 sbuf_finish(&sb); 3754 return (str); 3755 } 3756 3757 void 3758 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3759 { 3760 3761 if (path == NULL) 3762 sbuf_cat(sb, "(nopath): "); 3763 else { 3764 if (path->periph != NULL) 3765 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3766 path->periph->unit_number); 3767 else 3768 sbuf_cat(sb, "(noperiph:"); 3769 3770 if (path->bus != NULL) 3771 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3772 path->bus->sim->unit_number, 3773 path->bus->sim->bus_id); 3774 else 3775 sbuf_cat(sb, "nobus:"); 3776 3777 if (path->target != NULL) 3778 sbuf_printf(sb, "%d:", path->target->target_id); 3779 else 3780 sbuf_cat(sb, "X:"); 3781 3782 if (path->device != NULL) 3783 sbuf_printf(sb, "%jx): ", 3784 (uintmax_t)path->device->lun_id); 3785 else 3786 sbuf_cat(sb, "X): "); 3787 } 3788 } 3789 3790 path_id_t 3791 xpt_path_path_id(struct cam_path *path) 3792 { 3793 return(path->bus->path_id); 3794 } 3795 3796 target_id_t 3797 xpt_path_target_id(struct cam_path *path) 3798 { 3799 if (path->target != NULL) 3800 return (path->target->target_id); 3801 else 3802 return (CAM_TARGET_WILDCARD); 3803 } 3804 3805 lun_id_t 3806 xpt_path_lun_id(struct cam_path *path) 3807 { 3808 if (path->device != NULL) 3809 return (path->device->lun_id); 3810 else 3811 return (CAM_LUN_WILDCARD); 3812 } 3813 3814 struct cam_sim * 3815 xpt_path_sim(struct cam_path *path) 3816 { 3817 3818 return (path->bus->sim); 3819 } 3820 3821 struct cam_periph* 3822 xpt_path_periph(struct cam_path *path) 3823 { 3824 3825 return (path->periph); 3826 } 3827 3828 /* 3829 * Release a CAM control block for the caller. Remit the cost of the structure 3830 * to the device referenced by the path. If the this device had no 'credits' 3831 * and peripheral drivers have registered async callbacks for this notification 3832 * call them now. 3833 */ 3834 void 3835 xpt_release_ccb(union ccb *free_ccb) 3836 { 3837 struct cam_ed *device; 3838 struct cam_periph *periph; 3839 3840 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3841 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3842 device = free_ccb->ccb_h.path->device; 3843 periph = free_ccb->ccb_h.path->periph; 3844 3845 xpt_free_ccb(free_ccb); 3846 periph->periph_allocated--; 3847 cam_ccbq_release_opening(&device->ccbq); 3848 xpt_run_allocq(periph, 0); 3849 } 3850 3851 /* Functions accessed by SIM drivers */ 3852 3853 static struct xpt_xport_ops xport_default_ops = { 3854 .alloc_device = xpt_alloc_device_default, 3855 .action = xpt_action_default, 3856 .async = xpt_dev_async_default, 3857 }; 3858 static struct xpt_xport xport_default = { 3859 .xport = XPORT_UNKNOWN, 3860 .name = "unknown", 3861 .ops = &xport_default_ops, 3862 }; 3863 3864 CAM_XPT_XPORT(xport_default); 3865 3866 /* 3867 * A sim structure, listing the SIM entry points and instance 3868 * identification info is passed to xpt_bus_register to hook the SIM 3869 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3870 * for this new bus and places it in the array of buses and assigns 3871 * it a path_id. The path_id may be influenced by "hard wiring" 3872 * information specified by the user. Once interrupt services are 3873 * available, the bus will be probed. 3874 */ 3875 int 3876 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus) 3877 { 3878 struct cam_eb *new_bus; 3879 struct cam_eb *old_bus; 3880 struct ccb_pathinq cpi; 3881 struct cam_path *path; 3882 cam_status status; 3883 3884 sim->bus_id = bus; 3885 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3886 M_CAMXPT, M_NOWAIT|M_ZERO); 3887 if (new_bus == NULL) { 3888 /* Couldn't satisfy request */ 3889 return (ENOMEM); 3890 } 3891 3892 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3893 TAILQ_INIT(&new_bus->et_entries); 3894 cam_sim_hold(sim); 3895 new_bus->sim = sim; 3896 timevalclear(&new_bus->last_reset); 3897 new_bus->flags = 0; 3898 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3899 new_bus->generation = 0; 3900 new_bus->parent_dev = parent; 3901 3902 xpt_lock_buses(); 3903 sim->path_id = new_bus->path_id = 3904 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3905 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3906 while (old_bus != NULL 3907 && old_bus->path_id < new_bus->path_id) 3908 old_bus = TAILQ_NEXT(old_bus, links); 3909 if (old_bus != NULL) 3910 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3911 else 3912 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3913 xsoftc.bus_generation++; 3914 xpt_unlock_buses(); 3915 3916 /* 3917 * Set a default transport so that a PATH_INQ can be issued to 3918 * the SIM. This will then allow for probing and attaching of 3919 * a more appropriate transport. 3920 */ 3921 new_bus->xport = &xport_default; 3922 3923 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3924 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3925 if (status != CAM_REQ_CMP) { 3926 xpt_release_bus(new_bus); 3927 return (ENOMEM); 3928 } 3929 3930 xpt_path_inq(&cpi, path); 3931 3932 /* 3933 * Use the results of PATH_INQ to pick a transport. Note that 3934 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses 3935 * xport_default instead of a transport from 3936 * cam_xpt_port_set. 3937 */ 3938 if (cam_ccb_success((union ccb *)&cpi) && 3939 cpi.transport != XPORT_UNSPECIFIED) { 3940 struct xpt_xport **xpt; 3941 3942 SET_FOREACH(xpt, cam_xpt_xport_set) { 3943 if ((*xpt)->xport == cpi.transport) { 3944 new_bus->xport = *xpt; 3945 break; 3946 } 3947 } 3948 if (new_bus->xport == &xport_default) { 3949 xpt_print(path, 3950 "No transport found for %d\n", cpi.transport); 3951 xpt_release_bus(new_bus); 3952 xpt_free_path(path); 3953 return (EINVAL); 3954 } 3955 } 3956 3957 /* Notify interested parties */ 3958 if (sim->path_id != CAM_XPT_PATH_ID) { 3959 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3960 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3961 union ccb *scan_ccb; 3962 3963 /* Initiate bus rescan. */ 3964 scan_ccb = xpt_alloc_ccb_nowait(); 3965 if (scan_ccb != NULL) { 3966 scan_ccb->ccb_h.path = path; 3967 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3968 scan_ccb->crcn.flags = 0; 3969 xpt_rescan(scan_ccb); 3970 } else { 3971 xpt_print(path, 3972 "Can't allocate CCB to scan bus\n"); 3973 xpt_free_path(path); 3974 } 3975 } else 3976 xpt_free_path(path); 3977 } else 3978 xpt_free_path(path); 3979 return (CAM_SUCCESS); 3980 } 3981 3982 int 3983 xpt_bus_deregister(path_id_t pathid) 3984 { 3985 struct cam_path bus_path; 3986 cam_status status; 3987 3988 status = xpt_compile_path(&bus_path, NULL, pathid, 3989 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3990 if (status != CAM_REQ_CMP) 3991 return (ENOMEM); 3992 3993 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3994 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3995 3996 /* Release the reference count held while registered. */ 3997 xpt_release_bus(bus_path.bus); 3998 xpt_release_path(&bus_path); 3999 4000 return (CAM_SUCCESS); 4001 } 4002 4003 static path_id_t 4004 xptnextfreepathid(void) 4005 { 4006 struct cam_eb *bus; 4007 path_id_t pathid; 4008 const char *strval; 4009 4010 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4011 pathid = 0; 4012 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4013 retry: 4014 /* Find an unoccupied pathid */ 4015 while (bus != NULL && bus->path_id <= pathid) { 4016 if (bus->path_id == pathid) 4017 pathid++; 4018 bus = TAILQ_NEXT(bus, links); 4019 } 4020 4021 /* 4022 * Ensure that this pathid is not reserved for 4023 * a bus that may be registered in the future. 4024 */ 4025 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4026 ++pathid; 4027 /* Start the search over */ 4028 goto retry; 4029 } 4030 return (pathid); 4031 } 4032 4033 static path_id_t 4034 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4035 { 4036 path_id_t pathid; 4037 int i, dunit, val; 4038 char buf[32]; 4039 const char *dname; 4040 4041 pathid = CAM_XPT_PATH_ID; 4042 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4043 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4044 return (pathid); 4045 i = 0; 4046 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4047 if (strcmp(dname, "scbus")) { 4048 /* Avoid a bit of foot shooting. */ 4049 continue; 4050 } 4051 if (dunit < 0) /* unwired?! */ 4052 continue; 4053 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4054 if (sim_bus == val) { 4055 pathid = dunit; 4056 break; 4057 } 4058 } else if (sim_bus == 0) { 4059 /* Unspecified matches bus 0 */ 4060 pathid = dunit; 4061 break; 4062 } else { 4063 printf("Ambiguous scbus configuration for %s%d " 4064 "bus %d, cannot wire down. The kernel " 4065 "config entry for scbus%d should " 4066 "specify a controller bus.\n" 4067 "Scbus will be assigned dynamically.\n", 4068 sim_name, sim_unit, sim_bus, dunit); 4069 break; 4070 } 4071 } 4072 4073 if (pathid == CAM_XPT_PATH_ID) 4074 pathid = xptnextfreepathid(); 4075 return (pathid); 4076 } 4077 4078 static const char * 4079 xpt_async_string(uint32_t async_code) 4080 { 4081 4082 switch (async_code) { 4083 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4084 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4085 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4086 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4087 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4088 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4089 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4090 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4091 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4092 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4093 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4094 case AC_CONTRACT: return ("AC_CONTRACT"); 4095 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4096 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4097 } 4098 return ("AC_UNKNOWN"); 4099 } 4100 4101 static int 4102 xpt_async_size(uint32_t async_code) 4103 { 4104 4105 switch (async_code) { 4106 case AC_BUS_RESET: return (0); 4107 case AC_UNSOL_RESEL: return (0); 4108 case AC_SCSI_AEN: return (0); 4109 case AC_SENT_BDR: return (0); 4110 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4111 case AC_PATH_DEREGISTERED: return (0); 4112 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4113 case AC_LOST_DEVICE: return (0); 4114 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4115 case AC_INQ_CHANGED: return (0); 4116 case AC_GETDEV_CHANGED: return (0); 4117 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4118 case AC_ADVINFO_CHANGED: return (-1); 4119 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4120 } 4121 return (0); 4122 } 4123 4124 static int 4125 xpt_async_process_dev(struct cam_ed *device, void *arg) 4126 { 4127 union ccb *ccb = arg; 4128 struct cam_path *path = ccb->ccb_h.path; 4129 void *async_arg = ccb->casync.async_arg_ptr; 4130 uint32_t async_code = ccb->casync.async_code; 4131 bool relock; 4132 4133 if (path->device != device 4134 && path->device->lun_id != CAM_LUN_WILDCARD 4135 && device->lun_id != CAM_LUN_WILDCARD) 4136 return (1); 4137 4138 /* 4139 * The async callback could free the device. 4140 * If it is a broadcast async, it doesn't hold 4141 * device reference, so take our own reference. 4142 */ 4143 xpt_acquire_device(device); 4144 4145 /* 4146 * If async for specific device is to be delivered to 4147 * the wildcard client, take the specific device lock. 4148 * XXX: We may need a way for client to specify it. 4149 */ 4150 if ((device->lun_id == CAM_LUN_WILDCARD && 4151 path->device->lun_id != CAM_LUN_WILDCARD) || 4152 (device->target->target_id == CAM_TARGET_WILDCARD && 4153 path->target->target_id != CAM_TARGET_WILDCARD) || 4154 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4155 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4156 mtx_unlock(&device->device_mtx); 4157 xpt_path_lock(path); 4158 relock = true; 4159 } else 4160 relock = false; 4161 4162 (*(device->target->bus->xport->ops->async))(async_code, 4163 device->target->bus, device->target, device, async_arg); 4164 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4165 4166 if (relock) { 4167 xpt_path_unlock(path); 4168 mtx_lock(&device->device_mtx); 4169 } 4170 xpt_release_device(device); 4171 return (1); 4172 } 4173 4174 static int 4175 xpt_async_process_tgt(struct cam_et *target, void *arg) 4176 { 4177 union ccb *ccb = arg; 4178 struct cam_path *path = ccb->ccb_h.path; 4179 4180 if (path->target != target 4181 && path->target->target_id != CAM_TARGET_WILDCARD 4182 && target->target_id != CAM_TARGET_WILDCARD) 4183 return (1); 4184 4185 if (ccb->casync.async_code == AC_SENT_BDR) { 4186 /* Update our notion of when the last reset occurred */ 4187 microtime(&target->last_reset); 4188 } 4189 4190 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4191 } 4192 4193 static void 4194 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4195 { 4196 struct cam_eb *bus; 4197 struct cam_path *path; 4198 void *async_arg; 4199 uint32_t async_code; 4200 4201 path = ccb->ccb_h.path; 4202 async_code = ccb->casync.async_code; 4203 async_arg = ccb->casync.async_arg_ptr; 4204 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4205 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4206 bus = path->bus; 4207 4208 if (async_code == AC_BUS_RESET) { 4209 /* Update our notion of when the last reset occurred */ 4210 microtime(&bus->last_reset); 4211 } 4212 4213 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4214 4215 /* 4216 * If this wasn't a fully wildcarded async, tell all 4217 * clients that want all async events. 4218 */ 4219 if (bus != xpt_periph->path->bus) { 4220 xpt_path_lock(xpt_periph->path); 4221 xpt_async_process_dev(xpt_periph->path->device, ccb); 4222 xpt_path_unlock(xpt_periph->path); 4223 } 4224 4225 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4226 xpt_release_devq(path, 1, TRUE); 4227 else 4228 xpt_release_simq(path->bus->sim, TRUE); 4229 if (ccb->casync.async_arg_size > 0) 4230 free(async_arg, M_CAMXPT); 4231 xpt_free_path(path); 4232 xpt_free_ccb(ccb); 4233 } 4234 4235 static void 4236 xpt_async_bcast(struct async_list *async_head, 4237 uint32_t async_code, 4238 struct cam_path *path, void *async_arg) 4239 { 4240 struct async_node *cur_entry; 4241 struct mtx *mtx; 4242 4243 cur_entry = SLIST_FIRST(async_head); 4244 while (cur_entry != NULL) { 4245 struct async_node *next_entry; 4246 /* 4247 * Grab the next list entry before we call the current 4248 * entry's callback. This is because the callback function 4249 * can delete its async callback entry. 4250 */ 4251 next_entry = SLIST_NEXT(cur_entry, links); 4252 if ((cur_entry->event_enable & async_code) != 0) { 4253 mtx = cur_entry->event_lock ? 4254 path->device->sim->mtx : NULL; 4255 if (mtx) 4256 mtx_lock(mtx); 4257 cur_entry->callback(cur_entry->callback_arg, 4258 async_code, path, 4259 async_arg); 4260 if (mtx) 4261 mtx_unlock(mtx); 4262 } 4263 cur_entry = next_entry; 4264 } 4265 } 4266 4267 void 4268 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg) 4269 { 4270 union ccb *ccb; 4271 int size; 4272 4273 ccb = xpt_alloc_ccb_nowait(); 4274 if (ccb == NULL) { 4275 xpt_print(path, "Can't allocate CCB to send %s\n", 4276 xpt_async_string(async_code)); 4277 return; 4278 } 4279 4280 if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) { 4281 xpt_print(path, "Can't allocate path to send %s\n", 4282 xpt_async_string(async_code)); 4283 xpt_free_ccb(ccb); 4284 return; 4285 } 4286 ccb->ccb_h.path->periph = NULL; 4287 ccb->ccb_h.func_code = XPT_ASYNC; 4288 ccb->ccb_h.cbfcnp = xpt_async_process; 4289 ccb->ccb_h.flags |= CAM_UNLOCKED; 4290 ccb->casync.async_code = async_code; 4291 ccb->casync.async_arg_size = 0; 4292 size = xpt_async_size(async_code); 4293 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4294 ("xpt_async: func %#x %s aync_code %d %s\n", 4295 ccb->ccb_h.func_code, 4296 xpt_action_name(ccb->ccb_h.func_code), 4297 async_code, 4298 xpt_async_string(async_code))); 4299 if (size > 0 && async_arg != NULL) { 4300 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4301 if (ccb->casync.async_arg_ptr == NULL) { 4302 xpt_print(path, "Can't allocate argument to send %s\n", 4303 xpt_async_string(async_code)); 4304 xpt_free_path(ccb->ccb_h.path); 4305 xpt_free_ccb(ccb); 4306 return; 4307 } 4308 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4309 ccb->casync.async_arg_size = size; 4310 } else if (size < 0) { 4311 ccb->casync.async_arg_ptr = async_arg; 4312 ccb->casync.async_arg_size = size; 4313 } 4314 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4315 xpt_freeze_devq(path, 1); 4316 else 4317 xpt_freeze_simq(path->bus->sim, 1); 4318 xpt_action(ccb); 4319 } 4320 4321 static void 4322 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus, 4323 struct cam_et *target, struct cam_ed *device, 4324 void *async_arg) 4325 { 4326 4327 /* 4328 * We only need to handle events for real devices. 4329 */ 4330 if (target->target_id == CAM_TARGET_WILDCARD 4331 || device->lun_id == CAM_LUN_WILDCARD) 4332 return; 4333 4334 printf("%s called\n", __func__); 4335 } 4336 4337 static uint32_t 4338 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4339 { 4340 struct cam_devq *devq; 4341 uint32_t freeze; 4342 4343 devq = dev->sim->devq; 4344 mtx_assert(&devq->send_mtx, MA_OWNED); 4345 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4346 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4347 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4348 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4349 /* Remove frozen device from sendq. */ 4350 if (device_is_queued(dev)) 4351 camq_remove(&devq->send_queue, dev->devq_entry.index); 4352 return (freeze); 4353 } 4354 4355 uint32_t 4356 xpt_freeze_devq(struct cam_path *path, u_int count) 4357 { 4358 struct cam_ed *dev = path->device; 4359 struct cam_devq *devq; 4360 uint32_t freeze; 4361 4362 devq = dev->sim->devq; 4363 mtx_lock(&devq->send_mtx); 4364 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4365 freeze = xpt_freeze_devq_device(dev, count); 4366 mtx_unlock(&devq->send_mtx); 4367 return (freeze); 4368 } 4369 4370 uint32_t 4371 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4372 { 4373 struct cam_devq *devq; 4374 uint32_t freeze; 4375 4376 devq = sim->devq; 4377 mtx_lock(&devq->send_mtx); 4378 freeze = (devq->send_queue.qfrozen_cnt += count); 4379 mtx_unlock(&devq->send_mtx); 4380 return (freeze); 4381 } 4382 4383 static void 4384 xpt_release_devq_timeout(void *arg) 4385 { 4386 struct cam_ed *dev; 4387 struct cam_devq *devq; 4388 4389 dev = (struct cam_ed *)arg; 4390 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4391 devq = dev->sim->devq; 4392 mtx_assert(&devq->send_mtx, MA_OWNED); 4393 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4394 xpt_run_devq(devq); 4395 } 4396 4397 void 4398 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4399 { 4400 struct cam_ed *dev; 4401 struct cam_devq *devq; 4402 4403 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4404 count, run_queue)); 4405 dev = path->device; 4406 devq = dev->sim->devq; 4407 mtx_lock(&devq->send_mtx); 4408 if (xpt_release_devq_device(dev, count, run_queue)) 4409 xpt_run_devq(dev->sim->devq); 4410 mtx_unlock(&devq->send_mtx); 4411 } 4412 4413 static int 4414 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4415 { 4416 4417 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4418 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4419 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4420 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4421 if (count > dev->ccbq.queue.qfrozen_cnt) { 4422 #ifdef INVARIANTS 4423 printf("xpt_release_devq(): requested %u > present %u\n", 4424 count, dev->ccbq.queue.qfrozen_cnt); 4425 #endif 4426 count = dev->ccbq.queue.qfrozen_cnt; 4427 } 4428 dev->ccbq.queue.qfrozen_cnt -= count; 4429 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4430 /* 4431 * No longer need to wait for a successful 4432 * command completion. 4433 */ 4434 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4435 /* 4436 * Remove any timeouts that might be scheduled 4437 * to release this queue. 4438 */ 4439 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4440 callout_stop(&dev->callout); 4441 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4442 } 4443 /* 4444 * Now that we are unfrozen schedule the 4445 * device so any pending transactions are 4446 * run. 4447 */ 4448 xpt_schedule_devq(dev->sim->devq, dev); 4449 } else 4450 run_queue = 0; 4451 return (run_queue); 4452 } 4453 4454 void 4455 xpt_release_simq(struct cam_sim *sim, int run_queue) 4456 { 4457 struct cam_devq *devq; 4458 4459 devq = sim->devq; 4460 mtx_lock(&devq->send_mtx); 4461 if (devq->send_queue.qfrozen_cnt <= 0) { 4462 #ifdef INVARIANTS 4463 printf("xpt_release_simq: requested 1 > present %u\n", 4464 devq->send_queue.qfrozen_cnt); 4465 #endif 4466 } else 4467 devq->send_queue.qfrozen_cnt--; 4468 if (devq->send_queue.qfrozen_cnt == 0) { 4469 if (run_queue) { 4470 /* 4471 * Now that we are unfrozen run the send queue. 4472 */ 4473 xpt_run_devq(sim->devq); 4474 } 4475 } 4476 mtx_unlock(&devq->send_mtx); 4477 } 4478 4479 void 4480 xpt_done(union ccb *done_ccb) 4481 { 4482 struct cam_doneq *queue; 4483 int run, hash; 4484 4485 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4486 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4487 done_ccb->csio.bio != NULL) 4488 biotrack(done_ccb->csio.bio, __func__); 4489 #endif 4490 4491 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4492 ("xpt_done: func= %#x %s status %#x\n", 4493 done_ccb->ccb_h.func_code, 4494 xpt_action_name(done_ccb->ccb_h.func_code), 4495 done_ccb->ccb_h.status)); 4496 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4497 return; 4498 4499 /* Store the time the ccb was in the sim */ 4500 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4501 done_ccb->ccb_h.status |= CAM_QOS_VALID; 4502 hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4503 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4504 queue = &cam_doneqs[hash]; 4505 mtx_lock(&queue->cam_doneq_mtx); 4506 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4507 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4508 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4509 mtx_unlock(&queue->cam_doneq_mtx); 4510 if (run && !dumping) 4511 wakeup(&queue->cam_doneq); 4512 } 4513 4514 void 4515 xpt_done_direct(union ccb *done_ccb) 4516 { 4517 4518 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4519 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4520 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4521 return; 4522 4523 /* Store the time the ccb was in the sim */ 4524 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4525 done_ccb->ccb_h.status |= CAM_QOS_VALID; 4526 xpt_done_process(&done_ccb->ccb_h); 4527 } 4528 4529 union ccb * 4530 xpt_alloc_ccb(void) 4531 { 4532 union ccb *new_ccb; 4533 4534 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4535 return (new_ccb); 4536 } 4537 4538 union ccb * 4539 xpt_alloc_ccb_nowait(void) 4540 { 4541 union ccb *new_ccb; 4542 4543 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4544 return (new_ccb); 4545 } 4546 4547 void 4548 xpt_free_ccb(union ccb *free_ccb) 4549 { 4550 struct cam_periph *periph; 4551 4552 if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) { 4553 /* 4554 * Looks like a CCB allocated from a periph UMA zone. 4555 */ 4556 periph = free_ccb->ccb_h.path->periph; 4557 uma_zfree(periph->ccb_zone, free_ccb); 4558 } else { 4559 free(free_ccb, M_CAMCCB); 4560 } 4561 } 4562 4563 /* Private XPT functions */ 4564 4565 /* 4566 * Get a CAM control block for the caller. Charge the structure to the device 4567 * referenced by the path. If we don't have sufficient resources to allocate 4568 * more ccbs, we return NULL. 4569 */ 4570 static union ccb * 4571 xpt_get_ccb_nowait(struct cam_periph *periph) 4572 { 4573 union ccb *new_ccb; 4574 int alloc_flags; 4575 4576 if (periph->ccb_zone != NULL) { 4577 alloc_flags = CAM_CCB_FROM_UMA; 4578 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT); 4579 } else { 4580 alloc_flags = 0; 4581 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4582 } 4583 if (new_ccb == NULL) 4584 return (NULL); 4585 new_ccb->ccb_h.alloc_flags = alloc_flags; 4586 periph->periph_allocated++; 4587 cam_ccbq_take_opening(&periph->path->device->ccbq); 4588 return (new_ccb); 4589 } 4590 4591 static union ccb * 4592 xpt_get_ccb(struct cam_periph *periph) 4593 { 4594 union ccb *new_ccb; 4595 int alloc_flags; 4596 4597 cam_periph_unlock(periph); 4598 if (periph->ccb_zone != NULL) { 4599 alloc_flags = CAM_CCB_FROM_UMA; 4600 new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK); 4601 } else { 4602 alloc_flags = 0; 4603 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4604 } 4605 new_ccb->ccb_h.alloc_flags = alloc_flags; 4606 cam_periph_lock(periph); 4607 periph->periph_allocated++; 4608 cam_ccbq_take_opening(&periph->path->device->ccbq); 4609 return (new_ccb); 4610 } 4611 4612 union ccb * 4613 cam_periph_getccb(struct cam_periph *periph, uint32_t priority) 4614 { 4615 struct ccb_hdr *ccb_h; 4616 4617 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4618 cam_periph_assert(periph, MA_OWNED); 4619 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4620 ccb_h->pinfo.priority != priority) { 4621 if (priority < periph->immediate_priority) { 4622 periph->immediate_priority = priority; 4623 xpt_run_allocq(periph, 0); 4624 } else 4625 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4626 "cgticb", 0); 4627 } 4628 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4629 return ((union ccb *)ccb_h); 4630 } 4631 4632 static void 4633 xpt_acquire_bus(struct cam_eb *bus) 4634 { 4635 4636 xpt_lock_buses(); 4637 bus->refcount++; 4638 xpt_unlock_buses(); 4639 } 4640 4641 static void 4642 xpt_release_bus(struct cam_eb *bus) 4643 { 4644 4645 xpt_lock_buses(); 4646 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4647 if (--bus->refcount > 0) { 4648 xpt_unlock_buses(); 4649 return; 4650 } 4651 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4652 xsoftc.bus_generation++; 4653 xpt_unlock_buses(); 4654 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4655 ("destroying bus, but target list is not empty")); 4656 cam_sim_release(bus->sim); 4657 mtx_destroy(&bus->eb_mtx); 4658 free(bus, M_CAMXPT); 4659 } 4660 4661 static struct cam_et * 4662 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4663 { 4664 struct cam_et *cur_target, *target; 4665 4666 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4667 mtx_assert(&bus->eb_mtx, MA_OWNED); 4668 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4669 M_NOWAIT|M_ZERO); 4670 if (target == NULL) 4671 return (NULL); 4672 4673 TAILQ_INIT(&target->ed_entries); 4674 target->bus = bus; 4675 target->target_id = target_id; 4676 target->refcount = 1; 4677 target->generation = 0; 4678 target->luns = NULL; 4679 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4680 timevalclear(&target->last_reset); 4681 /* 4682 * Hold a reference to our parent bus so it 4683 * will not go away before we do. 4684 */ 4685 bus->refcount++; 4686 4687 /* Insertion sort into our bus's target list */ 4688 cur_target = TAILQ_FIRST(&bus->et_entries); 4689 while (cur_target != NULL && cur_target->target_id < target_id) 4690 cur_target = TAILQ_NEXT(cur_target, links); 4691 if (cur_target != NULL) { 4692 TAILQ_INSERT_BEFORE(cur_target, target, links); 4693 } else { 4694 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4695 } 4696 bus->generation++; 4697 return (target); 4698 } 4699 4700 static void 4701 xpt_acquire_target(struct cam_et *target) 4702 { 4703 struct cam_eb *bus = target->bus; 4704 4705 mtx_lock(&bus->eb_mtx); 4706 target->refcount++; 4707 mtx_unlock(&bus->eb_mtx); 4708 } 4709 4710 static void 4711 xpt_release_target(struct cam_et *target) 4712 { 4713 struct cam_eb *bus = target->bus; 4714 4715 mtx_lock(&bus->eb_mtx); 4716 if (--target->refcount > 0) { 4717 mtx_unlock(&bus->eb_mtx); 4718 return; 4719 } 4720 TAILQ_REMOVE(&bus->et_entries, target, links); 4721 bus->generation++; 4722 mtx_unlock(&bus->eb_mtx); 4723 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4724 ("destroying target, but device list is not empty")); 4725 xpt_release_bus(bus); 4726 mtx_destroy(&target->luns_mtx); 4727 if (target->luns) 4728 free(target->luns, M_CAMXPT); 4729 free(target, M_CAMXPT); 4730 } 4731 4732 static struct cam_ed * 4733 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4734 lun_id_t lun_id) 4735 { 4736 struct cam_ed *device; 4737 4738 device = xpt_alloc_device(bus, target, lun_id); 4739 if (device == NULL) 4740 return (NULL); 4741 4742 device->mintags = 1; 4743 device->maxtags = 1; 4744 return (device); 4745 } 4746 4747 static void 4748 xpt_destroy_device(void *context, int pending) 4749 { 4750 struct cam_ed *device = context; 4751 4752 mtx_lock(&device->device_mtx); 4753 mtx_destroy(&device->device_mtx); 4754 free(device, M_CAMDEV); 4755 } 4756 4757 struct cam_ed * 4758 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4759 { 4760 struct cam_ed *cur_device, *device; 4761 struct cam_devq *devq; 4762 cam_status status; 4763 4764 mtx_assert(&bus->eb_mtx, MA_OWNED); 4765 /* Make space for us in the device queue on our bus */ 4766 devq = bus->sim->devq; 4767 mtx_lock(&devq->send_mtx); 4768 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4769 mtx_unlock(&devq->send_mtx); 4770 if (status != CAM_REQ_CMP) 4771 return (NULL); 4772 4773 device = (struct cam_ed *)malloc(sizeof(*device), 4774 M_CAMDEV, M_NOWAIT|M_ZERO); 4775 if (device == NULL) 4776 return (NULL); 4777 4778 cam_init_pinfo(&device->devq_entry); 4779 device->target = target; 4780 device->lun_id = lun_id; 4781 device->sim = bus->sim; 4782 if (cam_ccbq_init(&device->ccbq, 4783 bus->sim->max_dev_openings) != 0) { 4784 free(device, M_CAMDEV); 4785 return (NULL); 4786 } 4787 SLIST_INIT(&device->asyncs); 4788 SLIST_INIT(&device->periphs); 4789 device->generation = 0; 4790 device->flags = CAM_DEV_UNCONFIGURED; 4791 device->tag_delay_count = 0; 4792 device->tag_saved_openings = 0; 4793 device->refcount = 1; 4794 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4795 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4796 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4797 /* 4798 * Hold a reference to our parent bus so it 4799 * will not go away before we do. 4800 */ 4801 target->refcount++; 4802 4803 cur_device = TAILQ_FIRST(&target->ed_entries); 4804 while (cur_device != NULL && cur_device->lun_id < lun_id) 4805 cur_device = TAILQ_NEXT(cur_device, links); 4806 if (cur_device != NULL) 4807 TAILQ_INSERT_BEFORE(cur_device, device, links); 4808 else 4809 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4810 target->generation++; 4811 return (device); 4812 } 4813 4814 void 4815 xpt_acquire_device(struct cam_ed *device) 4816 { 4817 struct cam_eb *bus = device->target->bus; 4818 4819 mtx_lock(&bus->eb_mtx); 4820 device->refcount++; 4821 mtx_unlock(&bus->eb_mtx); 4822 } 4823 4824 void 4825 xpt_release_device(struct cam_ed *device) 4826 { 4827 struct cam_eb *bus = device->target->bus; 4828 struct cam_devq *devq; 4829 4830 mtx_lock(&bus->eb_mtx); 4831 if (--device->refcount > 0) { 4832 mtx_unlock(&bus->eb_mtx); 4833 return; 4834 } 4835 4836 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4837 device->target->generation++; 4838 mtx_unlock(&bus->eb_mtx); 4839 4840 /* Release our slot in the devq */ 4841 devq = bus->sim->devq; 4842 mtx_lock(&devq->send_mtx); 4843 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4844 4845 KASSERT(SLIST_EMPTY(&device->periphs), 4846 ("destroying device, but periphs list is not empty")); 4847 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4848 ("destroying device while still queued for ccbs")); 4849 4850 /* The send_mtx must be held when accessing the callout */ 4851 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4852 callout_stop(&device->callout); 4853 4854 mtx_unlock(&devq->send_mtx); 4855 4856 xpt_release_target(device->target); 4857 4858 cam_ccbq_fini(&device->ccbq); 4859 /* 4860 * Free allocated memory. free(9) does nothing if the 4861 * supplied pointer is NULL, so it is safe to call without 4862 * checking. 4863 */ 4864 free(device->supported_vpds, M_CAMXPT); 4865 free(device->device_id, M_CAMXPT); 4866 free(device->ext_inq, M_CAMXPT); 4867 free(device->physpath, M_CAMXPT); 4868 free(device->rcap_buf, M_CAMXPT); 4869 free(device->serial_num, M_CAMXPT); 4870 free(device->nvme_data, M_CAMXPT); 4871 free(device->nvme_cdata, M_CAMXPT); 4872 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4873 } 4874 4875 uint32_t 4876 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4877 { 4878 int result; 4879 struct cam_ed *dev; 4880 4881 dev = path->device; 4882 mtx_lock(&dev->sim->devq->send_mtx); 4883 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4884 mtx_unlock(&dev->sim->devq->send_mtx); 4885 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4886 || (dev->inq_flags & SID_CmdQue) != 0) 4887 dev->tag_saved_openings = newopenings; 4888 return (result); 4889 } 4890 4891 static struct cam_eb * 4892 xpt_find_bus(path_id_t path_id) 4893 { 4894 struct cam_eb *bus; 4895 4896 xpt_lock_buses(); 4897 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4898 bus != NULL; 4899 bus = TAILQ_NEXT(bus, links)) { 4900 if (bus->path_id == path_id) { 4901 bus->refcount++; 4902 break; 4903 } 4904 } 4905 xpt_unlock_buses(); 4906 return (bus); 4907 } 4908 4909 static struct cam_et * 4910 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4911 { 4912 struct cam_et *target; 4913 4914 mtx_assert(&bus->eb_mtx, MA_OWNED); 4915 for (target = TAILQ_FIRST(&bus->et_entries); 4916 target != NULL; 4917 target = TAILQ_NEXT(target, links)) { 4918 if (target->target_id == target_id) { 4919 target->refcount++; 4920 break; 4921 } 4922 } 4923 return (target); 4924 } 4925 4926 static struct cam_ed * 4927 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4928 { 4929 struct cam_ed *device; 4930 4931 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4932 for (device = TAILQ_FIRST(&target->ed_entries); 4933 device != NULL; 4934 device = TAILQ_NEXT(device, links)) { 4935 if (device->lun_id == lun_id) { 4936 device->refcount++; 4937 break; 4938 } 4939 } 4940 return (device); 4941 } 4942 4943 void 4944 xpt_start_tags(struct cam_path *path) 4945 { 4946 struct ccb_relsim crs; 4947 struct cam_ed *device; 4948 struct cam_sim *sim; 4949 int newopenings; 4950 4951 device = path->device; 4952 sim = path->bus->sim; 4953 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4954 xpt_freeze_devq(path, /*count*/1); 4955 device->inq_flags |= SID_CmdQue; 4956 if (device->tag_saved_openings != 0) 4957 newopenings = device->tag_saved_openings; 4958 else 4959 newopenings = min(device->maxtags, 4960 sim->max_tagged_dev_openings); 4961 xpt_dev_ccbq_resize(path, newopenings); 4962 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4963 memset(&crs, 0, sizeof(crs)); 4964 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4965 crs.ccb_h.func_code = XPT_REL_SIMQ; 4966 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4967 crs.openings 4968 = crs.release_timeout 4969 = crs.qfrozen_cnt 4970 = 0; 4971 xpt_action((union ccb *)&crs); 4972 } 4973 4974 void 4975 xpt_stop_tags(struct cam_path *path) 4976 { 4977 struct ccb_relsim crs; 4978 struct cam_ed *device; 4979 struct cam_sim *sim; 4980 4981 device = path->device; 4982 sim = path->bus->sim; 4983 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4984 device->tag_delay_count = 0; 4985 xpt_freeze_devq(path, /*count*/1); 4986 device->inq_flags &= ~SID_CmdQue; 4987 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4988 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4989 memset(&crs, 0, sizeof(crs)); 4990 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4991 crs.ccb_h.func_code = XPT_REL_SIMQ; 4992 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4993 crs.openings 4994 = crs.release_timeout 4995 = crs.qfrozen_cnt 4996 = 0; 4997 xpt_action((union ccb *)&crs); 4998 } 4999 5000 /* 5001 * Assume all possible buses are detected by this time, so allow boot 5002 * as soon as they all are scanned. 5003 */ 5004 static void 5005 xpt_boot_delay(void *arg) 5006 { 5007 5008 xpt_release_boot(); 5009 } 5010 5011 /* 5012 * Now that all config hooks have completed, start boot_delay timer, 5013 * waiting for possibly still undetected buses (USB) to appear. 5014 */ 5015 static void 5016 xpt_ch_done(void *arg) 5017 { 5018 5019 callout_init(&xsoftc.boot_callout, 1); 5020 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 5021 SBT_1MS, xpt_boot_delay, NULL, 0); 5022 } 5023 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL); 5024 5025 /* 5026 * Now that interrupts are enabled, go find our devices 5027 */ 5028 static void 5029 xpt_config(void *arg) 5030 { 5031 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5032 printf("xpt_config: failed to create taskqueue thread.\n"); 5033 5034 /* Setup debugging path */ 5035 if (cam_dflags != CAM_DEBUG_NONE) { 5036 if (xpt_create_path(&cam_dpath, NULL, 5037 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5038 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5039 printf("xpt_config: xpt_create_path() failed for debug" 5040 " target %d:%d:%d, debugging disabled\n", 5041 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5042 cam_dflags = CAM_DEBUG_NONE; 5043 } 5044 } else 5045 cam_dpath = NULL; 5046 5047 periphdriver_init(1); 5048 xpt_hold_boot(); 5049 5050 /* Fire up rescan thread. */ 5051 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5052 "cam", "scanner")) { 5053 printf("xpt_config: failed to create rescan thread.\n"); 5054 } 5055 } 5056 5057 void 5058 xpt_hold_boot_locked(void) 5059 { 5060 5061 if (xsoftc.buses_to_config++ == 0) 5062 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount); 5063 } 5064 5065 void 5066 xpt_hold_boot(void) 5067 { 5068 5069 xpt_lock_buses(); 5070 xpt_hold_boot_locked(); 5071 xpt_unlock_buses(); 5072 } 5073 5074 void 5075 xpt_release_boot(void) 5076 { 5077 5078 xpt_lock_buses(); 5079 if (--xsoftc.buses_to_config == 0) { 5080 if (xsoftc.buses_config_done == 0) { 5081 xsoftc.buses_config_done = 1; 5082 xsoftc.buses_to_config++; 5083 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task, 5084 NULL); 5085 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task); 5086 } else 5087 root_mount_rel(&xsoftc.xpt_rootmount); 5088 } 5089 xpt_unlock_buses(); 5090 } 5091 5092 /* 5093 * If the given device only has one peripheral attached to it, and if that 5094 * peripheral is the passthrough driver, announce it. This insures that the 5095 * user sees some sort of announcement for every peripheral in their system. 5096 */ 5097 static int 5098 xptpassannouncefunc(struct cam_ed *device, void *arg) 5099 { 5100 struct cam_periph *periph; 5101 int i; 5102 5103 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5104 periph = SLIST_NEXT(periph, periph_links), i++); 5105 5106 periph = SLIST_FIRST(&device->periphs); 5107 if ((i == 1) 5108 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5109 xpt_announce_periph(periph, NULL); 5110 5111 return(1); 5112 } 5113 5114 static void 5115 xpt_finishconfig_task(void *context, int pending) 5116 { 5117 5118 periphdriver_init(2); 5119 /* 5120 * Check for devices with no "standard" peripheral driver 5121 * attached. For any devices like that, announce the 5122 * passthrough driver so the user will see something. 5123 */ 5124 if (!bootverbose) 5125 xpt_for_all_devices(xptpassannouncefunc, NULL); 5126 5127 xpt_release_boot(); 5128 } 5129 5130 cam_status 5131 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5132 struct cam_path *path) 5133 { 5134 struct ccb_setasync csa; 5135 cam_status status; 5136 bool xptpath = false; 5137 5138 if (path == NULL) { 5139 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5140 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5141 if (status != CAM_REQ_CMP) 5142 return (status); 5143 xpt_path_lock(path); 5144 xptpath = true; 5145 } 5146 5147 memset(&csa, 0, sizeof(csa)); 5148 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5149 csa.ccb_h.func_code = XPT_SASYNC_CB; 5150 csa.event_enable = event; 5151 csa.callback = cbfunc; 5152 csa.callback_arg = cbarg; 5153 xpt_action((union ccb *)&csa); 5154 status = csa.ccb_h.status; 5155 5156 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5157 ("xpt_register_async: func %p\n", cbfunc)); 5158 5159 if (xptpath) { 5160 xpt_path_unlock(path); 5161 xpt_free_path(path); 5162 } 5163 5164 if ((status == CAM_REQ_CMP) && 5165 (csa.event_enable & AC_FOUND_DEVICE)) { 5166 /* 5167 * Get this peripheral up to date with all 5168 * the currently existing devices. 5169 */ 5170 xpt_for_all_devices(xptsetasyncfunc, &csa); 5171 } 5172 if ((status == CAM_REQ_CMP) && 5173 (csa.event_enable & AC_PATH_REGISTERED)) { 5174 /* 5175 * Get this peripheral up to date with all 5176 * the currently existing buses. 5177 */ 5178 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5179 } 5180 5181 return (status); 5182 } 5183 5184 static void 5185 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5186 { 5187 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5188 5189 switch (work_ccb->ccb_h.func_code) { 5190 /* Common cases first */ 5191 case XPT_PATH_INQ: /* Path routing inquiry */ 5192 { 5193 struct ccb_pathinq *cpi; 5194 5195 cpi = &work_ccb->cpi; 5196 cpi->version_num = 1; /* XXX??? */ 5197 cpi->hba_inquiry = 0; 5198 cpi->target_sprt = 0; 5199 cpi->hba_misc = 0; 5200 cpi->hba_eng_cnt = 0; 5201 cpi->max_target = 0; 5202 cpi->max_lun = 0; 5203 cpi->initiator_id = 0; 5204 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5205 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5206 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5207 cpi->unit_number = sim->unit_number; 5208 cpi->bus_id = sim->bus_id; 5209 cpi->base_transfer_speed = 0; 5210 cpi->protocol = PROTO_UNSPECIFIED; 5211 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5212 cpi->transport = XPORT_UNSPECIFIED; 5213 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5214 cpi->ccb_h.status = CAM_REQ_CMP; 5215 break; 5216 } 5217 default: 5218 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5219 break; 5220 } 5221 xpt_done(work_ccb); 5222 } 5223 5224 /* 5225 * The xpt as a "controller" has no interrupt sources, so polling 5226 * is a no-op. 5227 */ 5228 static void 5229 xptpoll(struct cam_sim *sim) 5230 { 5231 } 5232 5233 void 5234 xpt_lock_buses(void) 5235 { 5236 mtx_lock(&xsoftc.xpt_topo_lock); 5237 } 5238 5239 void 5240 xpt_unlock_buses(void) 5241 { 5242 mtx_unlock(&xsoftc.xpt_topo_lock); 5243 } 5244 5245 struct mtx * 5246 xpt_path_mtx(struct cam_path *path) 5247 { 5248 5249 return (&path->device->device_mtx); 5250 } 5251 5252 static void 5253 xpt_done_process(struct ccb_hdr *ccb_h) 5254 { 5255 struct cam_sim *sim = NULL; 5256 struct cam_devq *devq = NULL; 5257 struct mtx *mtx = NULL; 5258 5259 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5260 struct ccb_scsiio *csio; 5261 5262 if (ccb_h->func_code == XPT_SCSI_IO) { 5263 csio = &((union ccb *)ccb_h)->csio; 5264 if (csio->bio != NULL) 5265 biotrack(csio->bio, __func__); 5266 } 5267 #endif 5268 5269 if (ccb_h->flags & CAM_HIGH_POWER) { 5270 struct highpowerlist *hphead; 5271 struct cam_ed *device; 5272 5273 mtx_lock(&xsoftc.xpt_highpower_lock); 5274 hphead = &xsoftc.highpowerq; 5275 5276 device = STAILQ_FIRST(hphead); 5277 5278 /* 5279 * Increment the count since this command is done. 5280 */ 5281 xsoftc.num_highpower++; 5282 5283 /* 5284 * Any high powered commands queued up? 5285 */ 5286 if (device != NULL) { 5287 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5288 mtx_unlock(&xsoftc.xpt_highpower_lock); 5289 5290 mtx_lock(&device->sim->devq->send_mtx); 5291 xpt_release_devq_device(device, 5292 /*count*/1, /*runqueue*/TRUE); 5293 mtx_unlock(&device->sim->devq->send_mtx); 5294 } else 5295 mtx_unlock(&xsoftc.xpt_highpower_lock); 5296 } 5297 5298 /* 5299 * Insulate against a race where the periph is destroyed but CCBs are 5300 * still not all processed. This shouldn't happen, but allows us better 5301 * bug diagnostic when it does. 5302 */ 5303 if (ccb_h->path->bus) 5304 sim = ccb_h->path->bus->sim; 5305 5306 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5307 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); 5308 xpt_release_simq(sim, /*run_queue*/FALSE); 5309 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5310 } 5311 5312 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5313 && (ccb_h->status & CAM_DEV_QFRZN)) { 5314 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5315 ccb_h->status &= ~CAM_DEV_QFRZN; 5316 } 5317 5318 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5319 struct cam_ed *dev = ccb_h->path->device; 5320 5321 if (sim) 5322 devq = sim->devq; 5323 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.", 5324 ccb_h, xpt_action_name(ccb_h->func_code))); 5325 5326 mtx_lock(&devq->send_mtx); 5327 devq->send_active--; 5328 devq->send_openings++; 5329 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5330 5331 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5332 && (dev->ccbq.dev_active == 0))) { 5333 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5334 xpt_release_devq_device(dev, /*count*/1, 5335 /*run_queue*/FALSE); 5336 } 5337 5338 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5339 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5340 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5341 xpt_release_devq_device(dev, /*count*/1, 5342 /*run_queue*/FALSE); 5343 } 5344 5345 if (!device_is_queued(dev)) 5346 (void)xpt_schedule_devq(devq, dev); 5347 xpt_run_devq(devq); 5348 mtx_unlock(&devq->send_mtx); 5349 5350 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5351 mtx = xpt_path_mtx(ccb_h->path); 5352 mtx_lock(mtx); 5353 5354 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5355 && (--dev->tag_delay_count == 0)) 5356 xpt_start_tags(ccb_h->path); 5357 } 5358 } 5359 5360 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5361 if (mtx == NULL) { 5362 mtx = xpt_path_mtx(ccb_h->path); 5363 mtx_lock(mtx); 5364 } 5365 } else { 5366 if (mtx != NULL) { 5367 mtx_unlock(mtx); 5368 mtx = NULL; 5369 } 5370 } 5371 5372 /* Call the peripheral driver's callback */ 5373 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5374 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5375 if (mtx != NULL) 5376 mtx_unlock(mtx); 5377 } 5378 5379 /* 5380 * Parameterize instead and use xpt_done_td? 5381 */ 5382 static void 5383 xpt_async_td(void *arg) 5384 { 5385 struct cam_doneq *queue = arg; 5386 struct ccb_hdr *ccb_h; 5387 STAILQ_HEAD(, ccb_hdr) doneq; 5388 5389 STAILQ_INIT(&doneq); 5390 mtx_lock(&queue->cam_doneq_mtx); 5391 while (1) { 5392 while (STAILQ_EMPTY(&queue->cam_doneq)) 5393 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5394 PRIBIO, "-", 0); 5395 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5396 mtx_unlock(&queue->cam_doneq_mtx); 5397 5398 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5399 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5400 xpt_done_process(ccb_h); 5401 } 5402 5403 mtx_lock(&queue->cam_doneq_mtx); 5404 } 5405 } 5406 5407 void 5408 xpt_done_td(void *arg) 5409 { 5410 struct cam_doneq *queue = arg; 5411 struct ccb_hdr *ccb_h; 5412 STAILQ_HEAD(, ccb_hdr) doneq; 5413 5414 STAILQ_INIT(&doneq); 5415 mtx_lock(&queue->cam_doneq_mtx); 5416 while (1) { 5417 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5418 queue->cam_doneq_sleep = 1; 5419 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5420 PRIBIO, "-", 0); 5421 queue->cam_doneq_sleep = 0; 5422 } 5423 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5424 mtx_unlock(&queue->cam_doneq_mtx); 5425 5426 THREAD_NO_SLEEPING(); 5427 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5428 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5429 xpt_done_process(ccb_h); 5430 } 5431 THREAD_SLEEPING_OK(); 5432 5433 mtx_lock(&queue->cam_doneq_mtx); 5434 } 5435 } 5436 5437 static void 5438 camisr_runqueue(void) 5439 { 5440 struct ccb_hdr *ccb_h; 5441 struct cam_doneq *queue; 5442 int i; 5443 5444 /* Process global queues. */ 5445 for (i = 0; i < cam_num_doneqs; i++) { 5446 queue = &cam_doneqs[i]; 5447 mtx_lock(&queue->cam_doneq_mtx); 5448 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5449 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5450 mtx_unlock(&queue->cam_doneq_mtx); 5451 xpt_done_process(ccb_h); 5452 mtx_lock(&queue->cam_doneq_mtx); 5453 } 5454 mtx_unlock(&queue->cam_doneq_mtx); 5455 } 5456 } 5457 5458 /** 5459 * @brief Return the device_t associated with the path 5460 * 5461 * When a SIM is created, it registers a bus with a NEWBUS device_t. This is 5462 * stored in the internal cam_eb bus structure. There is no guarnatee any given 5463 * path will have a @c device_t associated with it (it's legal to call @c 5464 * xpt_bus_register with a @c NULL @c device_t. 5465 * 5466 * @param path Path to return the device_t for. 5467 */ 5468 device_t 5469 xpt_path_sim_device(const struct cam_path *path) 5470 { 5471 return (path->bus->parent_dev); 5472 } 5473 5474 struct kv 5475 { 5476 uint32_t v; 5477 const char *name; 5478 }; 5479 5480 static struct kv map[] = { 5481 { XPT_NOOP, "XPT_NOOP" }, 5482 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5483 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5484 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5485 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5486 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5487 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5488 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5489 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5490 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5491 { XPT_DEBUG, "XPT_DEBUG" }, 5492 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5493 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5494 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5495 { XPT_ASYNC, "XPT_ASYNC" }, 5496 { XPT_ABORT, "XPT_ABORT" }, 5497 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5498 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5499 { XPT_TERM_IO, "XPT_TERM_IO" }, 5500 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5501 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5502 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5503 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5504 { XPT_ATA_IO, "XPT_ATA_IO" }, 5505 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5506 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5507 { XPT_NVME_IO, "XPT_NVME_IO" }, 5508 { XPT_MMC_IO, "XPT_MMC_IO" }, 5509 { XPT_SMP_IO, "XPT_SMP_IO" }, 5510 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5511 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5512 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5513 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5514 { XPT_EN_LUN, "XPT_EN_LUN" }, 5515 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5516 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5517 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5518 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5519 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5520 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5521 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5522 { 0, 0 } 5523 }; 5524 5525 const char * 5526 xpt_action_name(uint32_t action) 5527 { 5528 static char buffer[32]; /* Only for unknown messages -- racy */ 5529 struct kv *walker = map; 5530 5531 while (walker->name != NULL) { 5532 if (walker->v == action) 5533 return (walker->name); 5534 walker++; 5535 } 5536 5537 snprintf(buffer, sizeof(buffer), "%#x", action); 5538 return (buffer); 5539 } 5540 5541 void 5542 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...) 5543 { 5544 struct sbuf sbuf; 5545 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */ 5546 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN); 5547 va_list ap; 5548 5549 sbuf_set_drain(sb, sbuf_printf_drain, NULL); 5550 xpt_path_sbuf(path, sb); 5551 va_start(ap, fmt); 5552 sbuf_vprintf(sb, fmt, ap); 5553 va_end(ap); 5554 sbuf_finish(sb); 5555 sbuf_delete(sb); 5556 if (cam_debug_delay != 0) 5557 DELAY(cam_debug_delay); 5558 } 5559 5560 void 5561 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...) 5562 { 5563 struct sbuf sbuf; 5564 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */ 5565 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN); 5566 va_list ap; 5567 5568 sbuf_set_drain(sb, sbuf_printf_drain, NULL); 5569 xpt_device_sbuf(dev, sb); 5570 va_start(ap, fmt); 5571 sbuf_vprintf(sb, fmt, ap); 5572 va_end(ap); 5573 sbuf_finish(sb); 5574 sbuf_delete(sb); 5575 if (cam_debug_delay != 0) 5576 DELAY(cam_debug_delay); 5577 } 5578 5579 void 5580 xpt_cam_debug(const char *fmt, ...) 5581 { 5582 struct sbuf sbuf; 5583 char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */ 5584 struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN); 5585 va_list ap; 5586 5587 sbuf_set_drain(sb, sbuf_printf_drain, NULL); 5588 sbuf_cat(sb, "cam_debug: "); 5589 va_start(ap, fmt); 5590 sbuf_vprintf(sb, fmt, ap); 5591 va_end(ap); 5592 sbuf_finish(sb); 5593 sbuf_delete(sb); 5594 if (cam_debug_delay != 0) 5595 DELAY(cam_debug_delay); 5596 } 5597