xref: /freebsd/sys/cam/cam_xpt.c (revision a1a4f1a0d87b594d3f17a97dc0127eec1417e6f6)
1 /*
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/malloc.h>
35 #include <sys/device.h>
36 #include <sys/kernel.h>
37 #include <sys/time.h>
38 #include <sys/conf.h>
39 #include <sys/fcntl.h>
40 #include <sys/md5.h>
41 #include <sys/devicestat.h>
42 #include <sys/interrupt.h>
43 
44 #ifdef PC98
45 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
46 #endif
47 
48 #include <machine/clock.h>
49 #include <machine/ipl.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_conf.h>
53 #include <cam/cam_ccb.h>
54 #include <cam/cam_periph.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_debug.h>
60 
61 #include <cam/scsi/scsi_all.h>
62 #include <cam/scsi/scsi_message.h>
63 #include <cam/scsi/scsi_pass.h>
64 #include "opt_cam.h"
65 
66 /* Datastructures internal to the xpt layer */
67 
68 /*
69  * Definition of an async handler callback block.  These are used to add
70  * SIMs and peripherals to the async callback lists.
71  */
72 struct async_node {
73 	SLIST_ENTRY(async_node)	links;
74 	u_int32_t	event_enable;	/* Async Event enables */
75 	void		(*callback)(void *arg, u_int32_t code,
76 				    struct cam_path *path, void *args);
77 	void		*callback_arg;
78 };
79 
80 SLIST_HEAD(async_list, async_node);
81 SLIST_HEAD(periph_list, cam_periph);
82 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq;
83 
84 /*
85  * This is the maximum number of high powered commands (e.g. start unit)
86  * that can be outstanding at a particular time.
87  */
88 #ifndef CAM_MAX_HIGHPOWER
89 #define CAM_MAX_HIGHPOWER  4
90 #endif
91 
92 /* number of high powered commands that can go through right now */
93 static int num_highpower = CAM_MAX_HIGHPOWER;
94 
95 /*
96  * Structure for queueing a device in a run queue.
97  * There is one run queue for allocating new ccbs,
98  * and another for sending ccbs to the controller.
99  */
100 struct cam_ed_qinfo {
101 	cam_pinfo pinfo;
102 	struct	  cam_ed *device;
103 };
104 
105 /*
106  * The CAM EDT (Existing Device Table) contains the device information for
107  * all devices for all busses in the system.  The table contains a
108  * cam_ed structure for each device on the bus.
109  */
110 struct cam_ed {
111 	TAILQ_ENTRY(cam_ed) links;
112 	struct	cam_ed_qinfo alloc_ccb_entry;
113 	struct	cam_ed_qinfo send_ccb_entry;
114 	struct	cam_et	 *target;
115 	lun_id_t	 lun_id;
116 	struct	camq drvq;		/*
117 					 * Queue of type drivers wanting to do
118 					 * work on this device.
119 					 */
120 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
121 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
122 	struct	periph_list periphs;	/* All attached devices */
123 	u_int	generation;		/* Generation number */
124 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
125 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
126 					/* Storage for the inquiry data */
127 	struct	scsi_inquiry_data inq_data;
128 	u_int8_t	 inq_flags;	/*
129 					 * Current settings for inquiry flags.
130 					 * This allows us to override settings
131 					 * like disconnection and tagged
132 					 * queuing for a device.
133 					 */
134 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
135 	u_int8_t	 *serial_num;
136 	u_int8_t	 serial_num_len;
137 	u_int32_t	 qfrozen_cnt;
138 	u_int32_t	 flags;
139 #define CAM_DEV_UNCONFIGURED	 	0x01
140 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
141 #define CAM_DEV_REL_ON_COMPLETE		0x04
142 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
143 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
144 #define CAM_DEV_TAG_AFTER_COUNT		0x20
145 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
146 	u_int32_t	 tag_delay_count;
147 #define	CAM_TAG_DELAY_COUNT		5
148 	u_int32_t	 refcount;
149 	struct		 callout_handle c_handle;
150 };
151 
152 /*
153  * Each target is represented by an ET (Existing Target).  These
154  * entries are created when a target is successfully probed with an
155  * identify, and removed when a device fails to respond after a number
156  * of retries, or a bus rescan finds the device missing.
157  */
158 struct cam_et {
159 	TAILQ_HEAD(, cam_ed) ed_entries;
160 	TAILQ_ENTRY(cam_et) links;
161 	struct	cam_eb	*bus;
162 	target_id_t	target_id;
163 	u_int32_t	refcount;
164 	u_int		generation;
165 	struct		timeval last_reset;
166 };
167 
168 /*
169  * Each bus is represented by an EB (Existing Bus).  These entries
170  * are created by calls to xpt_bus_register and deleted by calls to
171  * xpt_bus_deregister.
172  */
173 struct cam_eb {
174 	TAILQ_HEAD(, cam_et) et_entries;
175 	TAILQ_ENTRY(cam_eb)  links;
176 	path_id_t	     path_id;
177 	struct cam_sim	     *sim;
178 	struct timeval	     last_reset;
179 	u_int32_t	     flags;
180 #define	CAM_EB_RUNQ_SCHEDULED	0x01
181 	u_int32_t	     refcount;
182 	u_int		     generation;
183 };
184 
185 struct cam_path {
186 	struct cam_periph *periph;
187 	struct cam_eb	  *bus;
188 	struct cam_et	  *target;
189 	struct cam_ed	  *device;
190 };
191 
192 struct xpt_quirk_entry {
193 	struct scsi_inquiry_pattern inq_pat;
194 	u_int8_t quirks;
195 #define	CAM_QUIRK_NOLUNS	0x01
196 #define	CAM_QUIRK_NOSERIAL	0x02
197 #define	CAM_QUIRK_HILUNS	0x04
198 	u_int mintags;
199 	u_int maxtags;
200 };
201 #define	CAM_SCSI2_MAXLUN	8
202 
203 typedef enum {
204 	XPT_FLAG_OPEN		= 0x01
205 } xpt_flags;
206 
207 struct xpt_softc {
208 	xpt_flags	flags;
209 	u_int32_t	generation;
210 };
211 
212 static const char quantum[] = "QUANTUM";
213 static const char sony[] = "SONY";
214 static const char west_digital[] = "WDIGTL";
215 static const char samsung[] = "SAMSUNG";
216 static const char seagate[] = "SEAGATE";
217 static const char microp[] = "MICROP";
218 
219 static struct xpt_quirk_entry xpt_quirk_table[] =
220 {
221 	{
222 		/* Reports QUEUE FULL for temporary resource shortages */
223 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
224 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
225 	},
226 	{
227 		/* Reports QUEUE FULL for temporary resource shortages */
228 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
229 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
230 	},
231 	{
232 		/* Reports QUEUE FULL for temporary resource shortages */
233 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
234 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
235 	},
236 	{
237 		/* Broken tagged queuing drive */
238 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
239 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
240 	},
241 	{
242 		/* Broken tagged queuing drive */
243 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
244 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
245 	},
246 	{
247 		/* Broken tagged queuing drive */
248 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
249 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
250 	},
251 	{
252 		/*
253 		 * Unfortunately, the Quantum Atlas III has the same
254 		 * problem as the Atlas II drives above.
255 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
256 		 *
257 		 * For future reference, the drive with the problem was:
258 		 * QUANTUM QM39100TD-SW N1B0
259 		 *
260 		 * It's possible that Quantum will fix the problem in later
261 		 * firmware revisions.  If that happens, the quirk entry
262 		 * will need to be made specific to the firmware revisions
263 		 * with the problem.
264 		 *
265 		 */
266 		/* Reports QUEUE FULL for temporary resource shortages */
267 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
268 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
269 	},
270 	{
271 		/*
272 		 * 18 Gig Atlas III, same problem as the 9G version.
273 		 * Reported by: Andre Albsmeier
274 		 *		<andre.albsmeier@mchp.siemens.de>
275 		 *
276 		 * For future reference, the drive with the problem was:
277 		 * QUANTUM QM318000TD-S N491
278 		 */
279 		/* Reports QUEUE FULL for temporary resource shortages */
280 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
281 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
282 	},
283 	{
284 		/*
285 		 * Broken tagged queuing drive
286 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
287 		 *         and: Martin Renters <martin@tdc.on.ca>
288 		 */
289 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
290 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
291 	},
292 		/*
293 		 * The Seagate Medalist Pro drives have very poor write
294 		 * performance with anything more than 2 tags.
295 		 *
296 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
297 		 * Drive:  <SEAGATE ST36530N 1444>
298 		 *
299 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
300 		 * Drive:  <SEAGATE ST34520W 1281>
301 		 *
302 		 * No one has actually reported that the 9G version
303 		 * (ST39140*) of the Medalist Pro has the same problem, but
304 		 * we're assuming that it does because the 4G and 6.5G
305 		 * versions of the drive are broken.
306 		 */
307 	{
308 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
309 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
310 	},
311 	{
312 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
313 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
314 	},
315 	{
316 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
317 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
318 	},
319 	{
320 		/*
321 		 * Slow when tagged queueing is enabled.  Write performance
322 		 * steadily drops off with more and more concurrent
323 		 * transactions.  Best sequential write performance with
324 		 * tagged queueing turned off and write caching turned on.
325 		 *
326 		 * PR:  kern/10398
327 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
328 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
329 		 *
330 		 * The drive with the problem had the "S65A" firmware
331 		 * revision, and has also been reported (by Stephen J.
332 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
333 		 * firmware revision.
334 		 *
335 		 * Although no one has reported problems with the 2 gig
336 		 * version of the DCAS drive, the assumption is that it
337 		 * has the same problems as the 4 gig version.  Therefore
338 		 * this quirk entries disables tagged queueing for all
339 		 * DCAS drives.
340 		 */
341 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
342 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
343 	},
344 	{
345 		/* Broken tagged queuing drive */
346 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
347 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
348 	},
349 	{
350 		/* Broken tagged queuing drive */
351 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
352 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
353 	},
354 	{
355 		/*
356 		 * Broken tagged queuing drive.
357 		 * Submitted by:
358 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
359 		 * in PR kern/9535
360 		 */
361 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
362 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
363 	},
364         {
365 		/*
366 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
367 		 * 8MB/sec.)
368 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
369 		 * Best performance with these drives is achieved with
370 		 * tagged queueing turned off, and write caching turned on.
371 		 */
372 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
373 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
374         },
375         {
376 		/*
377 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
378 		 * 8MB/sec.)
379 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
380 		 * Best performance with these drives is achieved with
381 		 * tagged queueing turned off, and write caching turned on.
382 		 */
383 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
384 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
385         },
386 	{
387 		/*
388 		 * Doesn't handle queue full condition correctly,
389 		 * so we need to limit maxtags to what the device
390 		 * can handle instead of determining this automatically.
391 		 */
392 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
393 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
394 	},
395 	{
396 		/* Really only one LUN */
397 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" },
398 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
399 	},
400 	{
401 		/* I can't believe we need a quirk for DPT volumes. */
402 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
403 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
404 		/*mintags*/0, /*maxtags*/255
405 	},
406 	{
407 		/*
408 		 * Many Sony CDROM drives don't like multi-LUN probing.
409 		 */
410 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
411 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
412 	},
413 	{
414 		/*
415 		 * This drive doesn't like multiple LUN probing.
416 		 * Submitted by:  Parag Patel <parag@cgt.com>
417 		 */
418 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
419 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
420 	},
421 	{
422 		/*
423 		 * The 8200 doesn't like multi-lun probing, and probably
424 		 * don't like serial number requests either.
425 		 */
426 		{
427 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
428 			"EXB-8200*", "*"
429 		},
430 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
431 	},
432 	{
433 		/*
434 		 * This old revision of the TDC3600 is also SCSI-1, and
435 		 * hangs upon serial number probing.
436 		 */
437 		{
438 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
439 			" TDC 3600", "U07:"
440 		},
441 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
442 	},
443 	{
444 		/*
445 		 * Would repond to all LUNs if asked for.
446 		 */
447 		{
448 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
449 			"CP150", "*"
450 		},
451 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
452 	},
453 	{
454 		/*
455 		 * Would repond to all LUNs if asked for.
456 		 */
457 		{
458 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
459 			"96X2*", "*"
460 		},
461 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
462 	},
463 	{
464 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
465 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
466 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
467 	},
468 	{
469 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
470 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
471 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
472 	},
473 	{
474 		/* Default tagged queuing parameters for all devices */
475 		{
476 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
477 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
478 		},
479 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
480 	},
481 };
482 
483 static const int xpt_quirk_table_size =
484 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
485 
486 typedef enum {
487 	DM_RET_COPY		= 0x01,
488 	DM_RET_FLAG_MASK	= 0x0f,
489 	DM_RET_NONE		= 0x00,
490 	DM_RET_STOP		= 0x10,
491 	DM_RET_DESCEND		= 0x20,
492 	DM_RET_ERROR		= 0x30,
493 	DM_RET_ACTION_MASK	= 0xf0
494 } dev_match_ret;
495 
496 typedef enum {
497 	XPT_DEPTH_BUS,
498 	XPT_DEPTH_TARGET,
499 	XPT_DEPTH_DEVICE,
500 	XPT_DEPTH_PERIPH
501 } xpt_traverse_depth;
502 
503 struct xpt_traverse_config {
504 	xpt_traverse_depth	depth;
505 	void			*tr_func;
506 	void			*tr_arg;
507 };
508 
509 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
510 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
511 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
512 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
513 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
514 
515 /* Transport layer configuration information */
516 static struct xpt_softc xsoftc;
517 
518 /* Queues for our software interrupt handler */
519 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
520 static cam_isrq_t cam_bioq;
521 static cam_isrq_t cam_netq;
522 
523 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */
524 static SLIST_HEAD(,ccb_hdr) ccb_freeq;
525 static u_int xpt_max_ccbs;	/*
526 				 * Maximum size of ccb pool.  Modified as
527 				 * devices are added/removed or have their
528 				 * opening counts changed.
529 				 */
530 static u_int xpt_ccb_count;	/* Current count of allocated ccbs */
531 
532 static struct cam_periph *xpt_periph;
533 
534 static periph_init_t xpt_periph_init;
535 
536 static periph_init_t probe_periph_init;
537 
538 static struct periph_driver xpt_driver =
539 {
540 	xpt_periph_init, "xpt",
541 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
542 };
543 
544 static struct periph_driver probe_driver =
545 {
546 	probe_periph_init, "probe",
547 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
548 };
549 
550 DATA_SET(periphdriver_set, xpt_driver);
551 DATA_SET(periphdriver_set, probe_driver);
552 
553 #define XPT_CDEV_MAJOR 104
554 
555 static d_open_t xptopen;
556 static d_close_t xptclose;
557 static d_ioctl_t xptioctl;
558 
559 static struct cdevsw xpt_cdevsw = {
560 	/* open */	xptopen,
561 	/* close */	xptclose,
562 	/* read */	noread,
563 	/* write */	nowrite,
564 	/* ioctl */	xptioctl,
565 	/* stop */	nostop,
566 	/* reset */	noreset,
567 	/* devtotty */	nodevtotty,
568 	/* poll */	nopoll,
569 	/* mmap */	nommap,
570 	/* strategy */	nostrategy,
571 	/* name */	"xpt",
572 	/* parms */	noparms,
573 	/* maj */	XPT_CDEV_MAJOR,
574 	/* dump */	nodump,
575 	/* psize */	nopsize,
576 	/* flags */	0,
577 	/* maxio */	0,
578 	/* bmaj */	-1
579 };
580 
581 static struct intr_config_hook *xpt_config_hook;
582 
583 /* Registered busses */
584 static TAILQ_HEAD(,cam_eb) xpt_busses;
585 static u_int bus_generation;
586 
587 /* Storage for debugging datastructures */
588 #ifdef	CAMDEBUG
589 struct cam_path *cam_dpath;
590 u_int32_t cam_dflags;
591 u_int32_t cam_debug_delay;
592 #endif
593 
594 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
595 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
596 #endif
597 
598 /*
599  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
600  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
601  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
602  */
603 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
604     || defined(CAM_DEBUG_LUN)
605 #ifdef CAMDEBUG
606 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
607     || !defined(CAM_DEBUG_LUN)
608 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
609         and CAM_DEBUG_LUN"
610 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
611 #else /* !CAMDEBUG */
612 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
613 #endif /* CAMDEBUG */
614 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
615 
616 /* Our boot-time initialization hook */
617 static void	xpt_init(void *);
618 SYSINIT(cam, SI_SUB_CONFIGURE, SI_ORDER_SECOND, xpt_init, NULL);
619 
620 static cam_status	xpt_compile_path(struct cam_path *new_path,
621 					 struct cam_periph *perph,
622 					 path_id_t path_id,
623 					 target_id_t target_id,
624 					 lun_id_t lun_id);
625 
626 static void		xpt_release_path(struct cam_path *path);
627 
628 static void		xpt_async_bcast(struct async_list *async_head,
629 					u_int32_t async_code,
630 					struct cam_path *path,
631 					void *async_arg);
632 static int 	 xptnextfreebus(path_id_t startbus);
633 static int	 xptpathid(const char *sim_name, int sim_unit, int sim_bus,
634 			   path_id_t *nextpath);
635 static union ccb *xpt_get_ccb(struct cam_ed *device);
636 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
637 				  u_int32_t new_priority);
638 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
639 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
640 static timeout_t xpt_release_devq_timeout;
641 static timeout_t xpt_release_simq_timeout;
642 static void	 xpt_release_bus(struct cam_eb *bus);
643 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
644 					 int run_queue);
645 static struct cam_et*
646 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
647 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
648 static struct cam_ed*
649 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
650 				  lun_id_t lun_id);
651 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
652 				    struct cam_ed *device);
653 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
654 static struct cam_eb*
655 		 xpt_find_bus(path_id_t path_id);
656 static struct cam_et*
657 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
658 static struct cam_ed*
659 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
660 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
661 static void	 xpt_scan_lun(struct cam_periph *periph,
662 			      struct cam_path *path, cam_flags flags,
663 			      union ccb *ccb);
664 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
665 static xpt_busfunc_t	xptconfigbuscountfunc;
666 static xpt_busfunc_t	xptconfigfunc;
667 static void	 xpt_config(void *arg);
668 static xpt_devicefunc_t xptpassannouncefunc;
669 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
670 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
671 static swihand_t swi_camnet;
672 static swihand_t swi_cambio;
673 static void	 camisr(cam_isrq_t *queue);
674 #if 0
675 static void	 xptstart(struct cam_periph *periph, union ccb *work_ccb);
676 static void	 xptasync(struct cam_periph *periph,
677 			  u_int32_t code, cam_path *path);
678 #endif
679 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
680 				    int num_patterns, struct cam_eb *bus);
681 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
682 				       int num_patterns, struct cam_ed *device);
683 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
684 				       int num_patterns,
685 				       struct cam_periph *periph);
686 static xpt_busfunc_t	xptedtbusfunc;
687 static xpt_targetfunc_t	xptedttargetfunc;
688 static xpt_devicefunc_t	xptedtdevicefunc;
689 static xpt_periphfunc_t	xptedtperiphfunc;
690 static xpt_pdrvfunc_t	xptplistpdrvfunc;
691 static xpt_periphfunc_t	xptplistperiphfunc;
692 static int		xptedtmatch(struct ccb_dev_match *cdm);
693 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
694 static int		xptbustraverse(struct cam_eb *start_bus,
695 				       xpt_busfunc_t *tr_func, void *arg);
696 static int		xpttargettraverse(struct cam_eb *bus,
697 					  struct cam_et *start_target,
698 					  xpt_targetfunc_t *tr_func, void *arg);
699 static int		xptdevicetraverse(struct cam_et *target,
700 					  struct cam_ed *start_device,
701 					  xpt_devicefunc_t *tr_func, void *arg);
702 static int		xptperiphtraverse(struct cam_ed *device,
703 					  struct cam_periph *start_periph,
704 					  xpt_periphfunc_t *tr_func, void *arg);
705 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
706 					xpt_pdrvfunc_t *tr_func, void *arg);
707 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
708 					    struct cam_periph *start_periph,
709 					    xpt_periphfunc_t *tr_func,
710 					    void *arg);
711 static xpt_busfunc_t	xptdefbusfunc;
712 static xpt_targetfunc_t	xptdeftargetfunc;
713 static xpt_devicefunc_t	xptdefdevicefunc;
714 static xpt_periphfunc_t	xptdefperiphfunc;
715 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
716 #ifdef notusedyet
717 static int		xpt_for_all_targets(xpt_targetfunc_t *tr_func,
718 					    void *arg);
719 #endif
720 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
721 					    void *arg);
722 #ifdef notusedyet
723 static int		xpt_for_all_periphs(xpt_periphfunc_t *tr_func,
724 					    void *arg);
725 #endif
726 static xpt_devicefunc_t	xptsetasyncfunc;
727 static xpt_busfunc_t	xptsetasyncbusfunc;
728 static cam_status	xptregister(struct cam_periph *periph,
729 				    void *arg);
730 static cam_status	proberegister(struct cam_periph *periph,
731 				      void *arg);
732 static void	 probeschedule(struct cam_periph *probe_periph);
733 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
734 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
735 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
736 static void	 probecleanup(struct cam_periph *periph);
737 static void	 xpt_find_quirk(struct cam_ed *device);
738 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
739 					   struct cam_ed *device,
740 					   int async_update);
741 static void	 xpt_toggle_tags(struct cam_path *path);
742 static void	 xpt_start_tags(struct cam_path *path);
743 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
744 					    struct cam_ed *dev);
745 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
746 					   struct cam_ed *dev);
747 static __inline int periph_is_queued(struct cam_periph *periph);
748 static __inline int device_is_alloc_queued(struct cam_ed *device);
749 static __inline int device_is_send_queued(struct cam_ed *device);
750 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
751 
752 static __inline int
753 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
754 {
755 	int retval;
756 
757 	if (dev->ccbq.devq_openings > 0) {
758 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
759 			cam_ccbq_resize(&dev->ccbq,
760 					dev->ccbq.dev_openings
761 					+ dev->ccbq.dev_active);
762 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
763 		}
764 		/*
765 		 * The priority of a device waiting for CCB resources
766 		 * is that of the the highest priority peripheral driver
767 		 * enqueued.
768 		 */
769 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
770 					  &dev->alloc_ccb_entry.pinfo,
771 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
772 	} else {
773 		retval = 0;
774 	}
775 
776 	return (retval);
777 }
778 
779 static __inline int
780 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
781 {
782 	int	retval;
783 
784 	if (dev->ccbq.dev_openings > 0) {
785 		/*
786 		 * The priority of a device waiting for controller
787 		 * resources is that of the the highest priority CCB
788 		 * enqueued.
789 		 */
790 		retval =
791 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
792 				     &dev->send_ccb_entry.pinfo,
793 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
794 	} else {
795 		retval = 0;
796 	}
797 	return (retval);
798 }
799 
800 static __inline int
801 periph_is_queued(struct cam_periph *periph)
802 {
803 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
804 }
805 
806 static __inline int
807 device_is_alloc_queued(struct cam_ed *device)
808 {
809 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
810 }
811 
812 static __inline int
813 device_is_send_queued(struct cam_ed *device)
814 {
815 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
816 }
817 
818 static __inline int
819 dev_allocq_is_runnable(struct cam_devq *devq)
820 {
821 	/*
822 	 * Have work to do.
823 	 * Have space to do more work.
824 	 * Allowed to do work.
825 	 */
826 	return ((devq->alloc_queue.qfrozen_cnt == 0)
827 	     && (devq->alloc_queue.entries > 0)
828 	     && (devq->alloc_openings > 0));
829 }
830 
831 static void
832 xpt_periph_init()
833 {
834 	cdevsw_add(&xpt_cdevsw);
835 }
836 
837 static void
838 probe_periph_init()
839 {
840 }
841 
842 
843 static void
844 xptdone(struct cam_periph *periph, union ccb *done_ccb)
845 {
846 	/* Caller will release the CCB */
847 	wakeup(&done_ccb->ccb_h.cbfcnp);
848 }
849 
850 static int
851 xptopen(dev_t dev, int flags, int fmt, struct proc *p)
852 {
853 	int unit;
854 
855 	unit = minor(dev) & 0xff;
856 
857 	/*
858 	 * Only allow read-write access.
859 	 */
860 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
861 		return(EPERM);
862 
863 	/*
864 	 * We don't allow nonblocking access.
865 	 */
866 	if ((flags & O_NONBLOCK) != 0) {
867 		printf("xpt%d: can't do nonblocking accesss\n", unit);
868 		return(ENODEV);
869 	}
870 
871 	/*
872 	 * We only have one transport layer right now.  If someone accesses
873 	 * us via something other than minor number 1, point out their
874 	 * mistake.
875 	 */
876 	if (unit != 0) {
877 		printf("xptopen: got invalid xpt unit %d\n", unit);
878 		return(ENXIO);
879 	}
880 
881 	/* Mark ourselves open */
882 	xsoftc.flags |= XPT_FLAG_OPEN;
883 
884 	return(0);
885 }
886 
887 static int
888 xptclose(dev_t dev, int flag, int fmt, struct proc *p)
889 {
890 	int unit;
891 
892 	unit = minor(dev) & 0xff;
893 
894 	/*
895 	 * We only have one transport layer right now.  If someone accesses
896 	 * us via something other than minor number 1, point out their
897 	 * mistake.
898 	 */
899 	if (unit != 0) {
900 		printf("xptclose: got invalid xpt unit %d\n", unit);
901 		return(ENXIO);
902 	}
903 
904 	/* Mark ourselves closed */
905 	xsoftc.flags &= ~XPT_FLAG_OPEN;
906 
907 	return(0);
908 }
909 
910 static int
911 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
912 {
913 	int unit, error;
914 
915 	error = 0;
916 	unit = minor(dev) & 0xff;
917 
918 	/*
919 	 * We only have one transport layer right now.  If someone accesses
920 	 * us via something other than minor number 1, point out their
921 	 * mistake.
922 	 */
923 	if (unit != 0) {
924 		printf("xptioctl: got invalid xpt unit %d\n", unit);
925 		return(ENXIO);
926 	}
927 
928 	switch(cmd) {
929 	/*
930 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
931 	 * to accept CCB types that don't quite make sense to send through a
932 	 * passthrough driver.
933 	 */
934 	case CAMIOCOMMAND: {
935 		union ccb *ccb;
936 		union ccb *inccb;
937 
938 		inccb = (union ccb *)addr;
939 
940 		switch(inccb->ccb_h.func_code) {
941 		case XPT_SCAN_BUS:
942 		case XPT_RESET_BUS:
943 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
944 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
945 				error = EINVAL;
946 				break;
947 			}
948 			/* FALLTHROUGH */
949 		case XPT_SCAN_LUN:
950 
951 			ccb = xpt_alloc_ccb();
952 
953 			/*
954 			 * Create a path using the bus, target, and lun the
955 			 * user passed in.
956 			 */
957 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
958 					    inccb->ccb_h.path_id,
959 					    inccb->ccb_h.target_id,
960 					    inccb->ccb_h.target_lun) !=
961 					    CAM_REQ_CMP){
962 				error = EINVAL;
963 				xpt_free_ccb(ccb);
964 				break;
965 			}
966 			/* Ensure all of our fields are correct */
967 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
968 				      inccb->ccb_h.pinfo.priority);
969 			xpt_merge_ccb(ccb, inccb);
970 			ccb->ccb_h.cbfcnp = xptdone;
971 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
972 			bcopy(ccb, inccb, sizeof(union ccb));
973 			xpt_free_path(ccb->ccb_h.path);
974 			xpt_free_ccb(ccb);
975 			break;
976 
977 		case XPT_DEBUG: {
978 			union ccb ccb;
979 
980 			/*
981 			 * This is an immediate CCB, so it's okay to
982 			 * allocate it on the stack.
983 			 */
984 
985 			/*
986 			 * Create a path using the bus, target, and lun the
987 			 * user passed in.
988 			 */
989 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
990 					    inccb->ccb_h.path_id,
991 					    inccb->ccb_h.target_id,
992 					    inccb->ccb_h.target_lun) !=
993 					    CAM_REQ_CMP){
994 				error = EINVAL;
995 				break;
996 			}
997 			/* Ensure all of our fields are correct */
998 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
999 				      inccb->ccb_h.pinfo.priority);
1000 			xpt_merge_ccb(&ccb, inccb);
1001 			ccb.ccb_h.cbfcnp = xptdone;
1002 			xpt_action(&ccb);
1003 			bcopy(&ccb, inccb, sizeof(union ccb));
1004 			xpt_free_path(ccb.ccb_h.path);
1005 			break;
1006 
1007 		}
1008 		case XPT_DEV_MATCH: {
1009 			struct cam_periph_map_info mapinfo;
1010 			struct cam_path *old_path;
1011 
1012 			/*
1013 			 * We can't deal with physical addresses for this
1014 			 * type of transaction.
1015 			 */
1016 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1017 				error = EINVAL;
1018 				break;
1019 			}
1020 
1021 			/*
1022 			 * Save this in case the caller had it set to
1023 			 * something in particular.
1024 			 */
1025 			old_path = inccb->ccb_h.path;
1026 
1027 			/*
1028 			 * We really don't need a path for the matching
1029 			 * code.  The path is needed because of the
1030 			 * debugging statements in xpt_action().  They
1031 			 * assume that the CCB has a valid path.
1032 			 */
1033 			inccb->ccb_h.path = xpt_periph->path;
1034 
1035 			bzero(&mapinfo, sizeof(mapinfo));
1036 
1037 			/*
1038 			 * Map the pattern and match buffers into kernel
1039 			 * virtual address space.
1040 			 */
1041 			error = cam_periph_mapmem(inccb, &mapinfo);
1042 
1043 			if (error) {
1044 				inccb->ccb_h.path = old_path;
1045 				break;
1046 			}
1047 
1048 			/*
1049 			 * This is an immediate CCB, we can send it on directly.
1050 			 */
1051 			xpt_action(inccb);
1052 
1053 			/*
1054 			 * Map the buffers back into user space.
1055 			 */
1056 			cam_periph_unmapmem(inccb, &mapinfo);
1057 
1058 			inccb->ccb_h.path = old_path;
1059 
1060 			error = 0;
1061 			break;
1062 		}
1063 		default:
1064 			error = EINVAL;
1065 			break;
1066 		}
1067 		break;
1068 	}
1069 	/*
1070 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1071 	 * with the periphal driver name and unit name filled in.  The other
1072 	 * fields don't really matter as input.  The passthrough driver name
1073 	 * ("pass"), and unit number are passed back in the ccb.  The current
1074 	 * device generation number, and the index into the device peripheral
1075 	 * driver list, and the status are also passed back.  Note that
1076 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1077 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1078 	 * (or rather should be) impossible for the device peripheral driver
1079 	 * list to change since we look at the whole thing in one pass, and
1080 	 * we do it with splcam protection.
1081 	 *
1082 	 */
1083 	case CAMGETPASSTHRU: {
1084 		union ccb *ccb;
1085 		struct cam_periph *periph;
1086 		struct periph_driver **p_drv;
1087 		char   *name;
1088 		int unit;
1089 		int cur_generation;
1090 		int base_periph_found;
1091 		int splbreaknum;
1092 		int s;
1093 
1094 		ccb = (union ccb *)addr;
1095 		unit = ccb->cgdl.unit_number;
1096 		name = ccb->cgdl.periph_name;
1097 		/*
1098 		 * Every 100 devices, we want to drop our spl protection to
1099 		 * give the software interrupt handler a chance to run.
1100 		 * Most systems won't run into this check, but this should
1101 		 * avoid starvation in the software interrupt handler in
1102 		 * large systems.
1103 		 */
1104 		splbreaknum = 100;
1105 
1106 		ccb = (union ccb *)addr;
1107 
1108 		base_periph_found = 0;
1109 
1110 		/*
1111 		 * Sanity check -- make sure we don't get a null peripheral
1112 		 * driver name.
1113 		 */
1114 		if (*ccb->cgdl.periph_name == '\0') {
1115 			error = EINVAL;
1116 			break;
1117 		}
1118 
1119 		/* Keep the list from changing while we traverse it */
1120 		s = splcam();
1121 ptstartover:
1122 		cur_generation = xsoftc.generation;
1123 
1124 		/* first find our driver in the list of drivers */
1125 		for (p_drv = (struct periph_driver **)periphdriver_set.ls_items;
1126 		     *p_drv != NULL; p_drv++)
1127 			if (strcmp((*p_drv)->driver_name, name) == 0)
1128 				break;
1129 
1130 		if (*p_drv == NULL) {
1131 			splx(s);
1132 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1133 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1134 			*ccb->cgdl.periph_name = '\0';
1135 			ccb->cgdl.unit_number = 0;
1136 			error = ENOENT;
1137 			break;
1138 		}
1139 
1140 		/*
1141 		 * Run through every peripheral instance of this driver
1142 		 * and check to see whether it matches the unit passed
1143 		 * in by the user.  If it does, get out of the loops and
1144 		 * find the passthrough driver associated with that
1145 		 * peripheral driver.
1146 		 */
1147 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1148 		     periph = TAILQ_NEXT(periph, unit_links)) {
1149 
1150 			if (periph->unit_number == unit) {
1151 				break;
1152 			} else if (--splbreaknum == 0) {
1153 				splx(s);
1154 				s = splcam();
1155 				splbreaknum = 100;
1156 				if (cur_generation != xsoftc.generation)
1157 				       goto ptstartover;
1158 			}
1159 		}
1160 		/*
1161 		 * If we found the peripheral driver that the user passed
1162 		 * in, go through all of the peripheral drivers for that
1163 		 * particular device and look for a passthrough driver.
1164 		 */
1165 		if (periph != NULL) {
1166 			struct cam_ed *device;
1167 			int i;
1168 
1169 			base_periph_found = 1;
1170 			device = periph->path->device;
1171 			for (i = 0, periph = device->periphs.slh_first;
1172 			     periph != NULL;
1173 			     periph = periph->periph_links.sle_next, i++) {
1174 				/*
1175 				 * Check to see whether we have a
1176 				 * passthrough device or not.
1177 				 */
1178 				if (strcmp(periph->periph_name, "pass") == 0) {
1179 					/*
1180 					 * Fill in the getdevlist fields.
1181 					 */
1182 					strcpy(ccb->cgdl.periph_name,
1183 					       periph->periph_name);
1184 					ccb->cgdl.unit_number =
1185 						periph->unit_number;
1186 					if (periph->periph_links.sle_next)
1187 						ccb->cgdl.status =
1188 							CAM_GDEVLIST_MORE_DEVS;
1189 					else
1190 						ccb->cgdl.status =
1191 						       CAM_GDEVLIST_LAST_DEVICE;
1192 					ccb->cgdl.generation =
1193 						device->generation;
1194 					ccb->cgdl.index = i;
1195 					/*
1196 					 * Fill in some CCB header fields
1197 					 * that the user may want.
1198 					 */
1199 					ccb->ccb_h.path_id =
1200 						periph->path->bus->path_id;
1201 					ccb->ccb_h.target_id =
1202 						periph->path->target->target_id;
1203 					ccb->ccb_h.target_lun =
1204 						periph->path->device->lun_id;
1205 					ccb->ccb_h.status = CAM_REQ_CMP;
1206 					break;
1207 				}
1208 			}
1209 		}
1210 
1211 		/*
1212 		 * If the periph is null here, one of two things has
1213 		 * happened.  The first possibility is that we couldn't
1214 		 * find the unit number of the particular peripheral driver
1215 		 * that the user is asking about.  e.g. the user asks for
1216 		 * the passthrough driver for "da11".  We find the list of
1217 		 * "da" peripherals all right, but there is no unit 11.
1218 		 * The other possibility is that we went through the list
1219 		 * of peripheral drivers attached to the device structure,
1220 		 * but didn't find one with the name "pass".  Either way,
1221 		 * we return ENOENT, since we couldn't find something.
1222 		 */
1223 		if (periph == NULL) {
1224 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1225 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1226 			*ccb->cgdl.periph_name = '\0';
1227 			ccb->cgdl.unit_number = 0;
1228 			error = ENOENT;
1229 			/*
1230 			 * It is unfortunate that this is even necessary,
1231 			 * but there are many, many clueless users out there.
1232 			 * If this is true, the user is looking for the
1233 			 * passthrough driver, but doesn't have one in his
1234 			 * kernel.
1235 			 */
1236 			if (base_periph_found == 1) {
1237 				printf("xptioctl: pass driver is not in the "
1238 				       "kernel\n");
1239 				printf("xptioctl: put \"device pass0\" in "
1240 				       "your kernel config file\n");
1241 			}
1242 		}
1243 		splx(s);
1244 		break;
1245 		}
1246 	default:
1247 		error = ENOTTY;
1248 		break;
1249 	}
1250 
1251 	return(error);
1252 }
1253 
1254 /* Functions accessed by the peripheral drivers */
1255 static void
1256 xpt_init(dummy)
1257 	void *dummy;
1258 {
1259 	struct cam_sim *xpt_sim;
1260 	struct cam_path *path;
1261 	struct cam_devq;
1262 	cam_status status;
1263 
1264 	TAILQ_INIT(&xpt_busses);
1265 	TAILQ_INIT(&cam_bioq);
1266 	TAILQ_INIT(&cam_netq);
1267 	SLIST_INIT(&ccb_freeq);
1268 	STAILQ_INIT(&highpowerq);
1269 
1270 	/*
1271 	 * The xpt layer is, itself, the equivelent of a SIM.
1272 	 * Allow 16 ccbs in the ccb pool for it.  This should
1273 	 * give decent parallelism when we probe busses and
1274 	 * perform other XPT functions.
1275 	 */
1276 	xpt_sim = (struct cam_sim *)malloc(sizeof(*xpt_sim),
1277 					   M_DEVBUF, M_WAITOK);
1278 	xpt_sim->sim_action = xptaction;
1279 	xpt_sim->sim_name = "xpt";
1280 	xpt_sim->path_id = CAM_XPT_PATH_ID;
1281 	xpt_sim->bus_id = 0;
1282 	xpt_sim->max_tagged_dev_openings = 0;
1283 	xpt_sim->max_dev_openings = 0;
1284 	xpt_sim->devq = cam_simq_alloc(16);
1285 	xpt_max_ccbs = 16;
1286 
1287 	xpt_bus_register(xpt_sim, 0);
1288 
1289 	/*
1290 	 * Looking at the XPT from the SIM layer, the XPT is
1291 	 * the equivelent of a peripheral driver.  Allocate
1292 	 * a peripheral driver entry for us.
1293 	 */
1294 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1295 				      CAM_TARGET_WILDCARD,
1296 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1297 		printf("xpt_init: xpt_create_path failed with status %#x,"
1298 		       " failing attach\n", status);
1299 		return;
1300 	}
1301 
1302 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1303 			 path, NULL, 0, NULL);
1304 	xpt_free_path(path);
1305 
1306 	xpt_sim->softc = xpt_periph;
1307 
1308 	/*
1309 	 * Register a callback for when interrupts are enabled.
1310 	 */
1311 	xpt_config_hook =
1312 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1313 					      M_TEMP, M_NOWAIT);
1314 	if (xpt_config_hook == NULL) {
1315 		printf("xpt_init: Cannot malloc config hook "
1316 		       "- failing attach\n");
1317 		return;
1318 	}
1319 	bzero(xpt_config_hook, sizeof(*xpt_config_hook));
1320 
1321 	xpt_config_hook->ich_func = xpt_config;
1322 	if (config_intrhook_establish(xpt_config_hook) != 0) {
1323 		free (xpt_config_hook, M_TEMP);
1324 		printf("xpt_init: config_intrhook_establish failed "
1325 		       "- failing attach\n");
1326 	}
1327 
1328 	/* Install our software interrupt handlers */
1329 	register_swi(SWI_CAMNET, swi_camnet);
1330 	register_swi(SWI_CAMBIO, swi_cambio);
1331 }
1332 
1333 static cam_status
1334 xptregister(struct cam_periph *periph, void *arg)
1335 {
1336 	if (periph == NULL) {
1337 		printf("xptregister: periph was NULL!!\n");
1338 		return(CAM_REQ_CMP_ERR);
1339 	}
1340 
1341 	periph->softc = NULL;
1342 
1343 	xpt_periph = periph;
1344 
1345 	return(CAM_REQ_CMP);
1346 }
1347 
1348 int32_t
1349 xpt_add_periph(struct cam_periph *periph)
1350 {
1351 	struct cam_ed *device;
1352 	int32_t	 status;
1353 	struct periph_list *periph_head;
1354 
1355 	device = periph->path->device;
1356 
1357 	periph_head = &device->periphs;
1358 
1359 	status = CAM_REQ_CMP;
1360 
1361 	if (device != NULL) {
1362 		int s;
1363 
1364 		/*
1365 		 * Make room for this peripheral
1366 		 * so it will fit in the queue
1367 		 * when it's scheduled to run
1368 		 */
1369 		s = splsoftcam();
1370 		status = camq_resize(&device->drvq,
1371 				     device->drvq.array_size + 1);
1372 
1373 		device->generation++;
1374 
1375 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1376 
1377 		splx(s);
1378 	}
1379 
1380 	xsoftc.generation++;
1381 
1382 	return (status);
1383 }
1384 
1385 void
1386 xpt_remove_periph(struct cam_periph *periph)
1387 {
1388 	struct cam_ed *device;
1389 
1390 	device = periph->path->device;
1391 
1392 	if (device != NULL) {
1393 		int s;
1394 		struct periph_list *periph_head;
1395 
1396 		periph_head = &device->periphs;
1397 
1398 		/* Release the slot for this peripheral */
1399 		s = splsoftcam();
1400 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1401 
1402 		device->generation++;
1403 
1404 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1405 
1406 		splx(s);
1407 	}
1408 
1409 	xsoftc.generation++;
1410 
1411 }
1412 
1413 void
1414 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1415 {
1416 	int s;
1417 	u_int mb;
1418 	struct cam_path *path;
1419 	struct ccb_trans_settings cts;
1420 
1421 	path = periph->path;
1422 	/*
1423 	 * To ensure that this is printed in one piece,
1424 	 * mask out CAM interrupts.
1425 	 */
1426 	s = splsoftcam();
1427 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1428 	       periph->periph_name, periph->unit_number,
1429 	       path->bus->sim->sim_name,
1430 	       path->bus->sim->unit_number,
1431 	       path->bus->sim->bus_id,
1432 	       path->target->target_id,
1433 	       path->device->lun_id);
1434 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1435 	scsi_print_inquiry(&path->device->inq_data);
1436 	if ((bootverbose)
1437 	 && (path->device->serial_num_len > 0)) {
1438 		/* Don't wrap the screen  - print only the first 60 chars */
1439 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1440 		       periph->unit_number, path->device->serial_num);
1441 	}
1442 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1443 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1444 	cts.flags = CCB_TRANS_CURRENT_SETTINGS;
1445 	xpt_action((union ccb*)&cts);
1446 	if (cts.ccb_h.status == CAM_REQ_CMP) {
1447 		u_int speed;
1448 		u_int freq;
1449 
1450 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1451 		  && cts.sync_offset != 0) {
1452 			freq = scsi_calc_syncsrate(cts.sync_period);
1453 			speed = freq;
1454 		} else {
1455 			struct ccb_pathinq cpi;
1456 
1457 			/* Ask the SIM for its base transfer speed */
1458 			xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1459 			cpi.ccb_h.func_code = XPT_PATH_INQ;
1460 			xpt_action((union ccb *)&cpi);
1461 
1462 			speed = cpi.base_transfer_speed;
1463 			freq = 0;
1464 		}
1465 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
1466 			speed *= (0x01 << cts.bus_width);
1467 		mb = speed / 1000;
1468 		if (mb > 0)
1469 			printf("%s%d: %d.%03dMB/s transfers",
1470 			       periph->periph_name, periph->unit_number,
1471 			       mb, speed % 1000);
1472 		else
1473 			printf("%s%d: %dKB/s transfers", periph->periph_name,
1474 			       periph->unit_number, (speed % 1000) * 1000);
1475 		if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1476 		 && cts.sync_offset != 0) {
1477 			printf(" (%d.%03dMHz, offset %d", freq / 1000,
1478 			       freq % 1000, cts.sync_offset);
1479 		}
1480 		if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0
1481 		 && cts.bus_width > 0) {
1482 			if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1483 			 && cts.sync_offset != 0) {
1484 				printf(", ");
1485 			} else {
1486 				printf(" (");
1487 			}
1488 			printf("%dbit)", 8 * (0x01 << cts.bus_width));
1489 		} else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0
1490 			&& cts.sync_offset != 0) {
1491 			printf(")");
1492 		}
1493 
1494 		if (path->device->inq_flags & SID_CmdQue
1495 		 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1496 			printf(", Tagged Queueing Enabled");
1497 		}
1498 
1499 		printf("\n");
1500 	} else if (path->device->inq_flags & SID_CmdQue
1501    		|| path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1502 		printf("%s%d: Tagged Queueing Enabled\n",
1503 		       periph->periph_name, periph->unit_number);
1504 	}
1505 
1506 	/*
1507 	 * We only want to print the caller's announce string if they've
1508 	 * passed one in..
1509 	 */
1510 	if (announce_string != NULL)
1511 		printf("%s%d: %s\n", periph->periph_name,
1512 		       periph->unit_number, announce_string);
1513 	splx(s);
1514 }
1515 
1516 
1517 static dev_match_ret
1518 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns,
1519 	    struct cam_eb *bus)
1520 {
1521 	dev_match_ret retval;
1522 	int i;
1523 
1524 	retval = DM_RET_NONE;
1525 
1526 	/*
1527 	 * If we aren't given something to match against, that's an error.
1528 	 */
1529 	if (bus == NULL)
1530 		return(DM_RET_ERROR);
1531 
1532 	/*
1533 	 * If there are no match entries, then this bus matches no
1534 	 * matter what.
1535 	 */
1536 	if ((patterns == NULL) || (num_patterns == 0))
1537 		return(DM_RET_DESCEND | DM_RET_COPY);
1538 
1539 	for (i = 0; i < num_patterns; i++) {
1540 		struct bus_match_pattern *cur_pattern;
1541 
1542 		/*
1543 		 * If the pattern in question isn't for a bus node, we
1544 		 * aren't interested.  However, we do indicate to the
1545 		 * calling routine that we should continue descending the
1546 		 * tree, since the user wants to match against lower-level
1547 		 * EDT elements.
1548 		 */
1549 		if (patterns[i].type != DEV_MATCH_BUS) {
1550 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1551 				retval |= DM_RET_DESCEND;
1552 			continue;
1553 		}
1554 
1555 		cur_pattern = &patterns[i].pattern.bus_pattern;
1556 
1557 		/*
1558 		 * If they want to match any bus node, we give them any
1559 		 * device node.
1560 		 */
1561 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1562 			/* set the copy flag */
1563 			retval |= DM_RET_COPY;
1564 
1565 			/*
1566 			 * If we've already decided on an action, go ahead
1567 			 * and return.
1568 			 */
1569 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1570 				return(retval);
1571 		}
1572 
1573 		/*
1574 		 * Not sure why someone would do this...
1575 		 */
1576 		if (cur_pattern->flags == BUS_MATCH_NONE)
1577 			continue;
1578 
1579 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1580 		 && (cur_pattern->path_id != bus->path_id))
1581 			continue;
1582 
1583 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1584 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1585 			continue;
1586 
1587 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1588 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1589 			continue;
1590 
1591 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1592 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1593 			     DEV_IDLEN) != 0))
1594 			continue;
1595 
1596 		/*
1597 		 * If we get to this point, the user definitely wants
1598 		 * information on this bus.  So tell the caller to copy the
1599 		 * data out.
1600 		 */
1601 		retval |= DM_RET_COPY;
1602 
1603 		/*
1604 		 * If the return action has been set to descend, then we
1605 		 * know that we've already seen a non-bus matching
1606 		 * expression, therefore we need to further descend the tree.
1607 		 * This won't change by continuing around the loop, so we
1608 		 * go ahead and return.  If we haven't seen a non-bus
1609 		 * matching expression, we keep going around the loop until
1610 		 * we exhaust the matching expressions.  We'll set the stop
1611 		 * flag once we fall out of the loop.
1612 		 */
1613 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1614 			return(retval);
1615 	}
1616 
1617 	/*
1618 	 * If the return action hasn't been set to descend yet, that means
1619 	 * we haven't seen anything other than bus matching patterns.  So
1620 	 * tell the caller to stop descending the tree -- the user doesn't
1621 	 * want to match against lower level tree elements.
1622 	 */
1623 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1624 		retval |= DM_RET_STOP;
1625 
1626 	return(retval);
1627 }
1628 
1629 static dev_match_ret
1630 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns,
1631 	       struct cam_ed *device)
1632 {
1633 	dev_match_ret retval;
1634 	int i;
1635 
1636 	retval = DM_RET_NONE;
1637 
1638 	/*
1639 	 * If we aren't given something to match against, that's an error.
1640 	 */
1641 	if (device == NULL)
1642 		return(DM_RET_ERROR);
1643 
1644 	/*
1645 	 * If there are no match entries, then this device matches no
1646 	 * matter what.
1647 	 */
1648 	if ((patterns == NULL) || (patterns == 0))
1649 		return(DM_RET_DESCEND | DM_RET_COPY);
1650 
1651 	for (i = 0; i < num_patterns; i++) {
1652 		struct device_match_pattern *cur_pattern;
1653 
1654 		/*
1655 		 * If the pattern in question isn't for a device node, we
1656 		 * aren't interested.
1657 		 */
1658 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1659 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1660 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1661 				retval |= DM_RET_DESCEND;
1662 			continue;
1663 		}
1664 
1665 		cur_pattern = &patterns[i].pattern.device_pattern;
1666 
1667 		/*
1668 		 * If they want to match any device node, we give them any
1669 		 * device node.
1670 		 */
1671 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1672 			/* set the copy flag */
1673 			retval |= DM_RET_COPY;
1674 
1675 
1676 			/*
1677 			 * If we've already decided on an action, go ahead
1678 			 * and return.
1679 			 */
1680 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1681 				return(retval);
1682 		}
1683 
1684 		/*
1685 		 * Not sure why someone would do this...
1686 		 */
1687 		if (cur_pattern->flags == DEV_MATCH_NONE)
1688 			continue;
1689 
1690 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1691 		 && (cur_pattern->path_id != device->target->bus->path_id))
1692 			continue;
1693 
1694 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1695 		 && (cur_pattern->target_id != device->target->target_id))
1696 			continue;
1697 
1698 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1699 		 && (cur_pattern->target_lun != device->lun_id))
1700 			continue;
1701 
1702 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1703 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1704 				    (caddr_t)&cur_pattern->inq_pat,
1705 				    1, sizeof(cur_pattern->inq_pat),
1706 				    scsi_static_inquiry_match) == NULL))
1707 			continue;
1708 
1709 		/*
1710 		 * If we get to this point, the user definitely wants
1711 		 * information on this device.  So tell the caller to copy
1712 		 * the data out.
1713 		 */
1714 		retval |= DM_RET_COPY;
1715 
1716 		/*
1717 		 * If the return action has been set to descend, then we
1718 		 * know that we've already seen a peripheral matching
1719 		 * expression, therefore we need to further descend the tree.
1720 		 * This won't change by continuing around the loop, so we
1721 		 * go ahead and return.  If we haven't seen a peripheral
1722 		 * matching expression, we keep going around the loop until
1723 		 * we exhaust the matching expressions.  We'll set the stop
1724 		 * flag once we fall out of the loop.
1725 		 */
1726 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1727 			return(retval);
1728 	}
1729 
1730 	/*
1731 	 * If the return action hasn't been set to descend yet, that means
1732 	 * we haven't seen any peripheral matching patterns.  So tell the
1733 	 * caller to stop descending the tree -- the user doesn't want to
1734 	 * match against lower level tree elements.
1735 	 */
1736 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1737 		retval |= DM_RET_STOP;
1738 
1739 	return(retval);
1740 }
1741 
1742 /*
1743  * Match a single peripheral against any number of match patterns.
1744  */
1745 static dev_match_ret
1746 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns,
1747 	       struct cam_periph *periph)
1748 {
1749 	dev_match_ret retval;
1750 	int i;
1751 
1752 	/*
1753 	 * If we aren't given something to match against, that's an error.
1754 	 */
1755 	if (periph == NULL)
1756 		return(DM_RET_ERROR);
1757 
1758 	/*
1759 	 * If there are no match entries, then this peripheral matches no
1760 	 * matter what.
1761 	 */
1762 	if ((patterns == NULL) || (num_patterns == 0))
1763 		return(DM_RET_STOP | DM_RET_COPY);
1764 
1765 	/*
1766 	 * There aren't any nodes below a peripheral node, so there's no
1767 	 * reason to descend the tree any further.
1768 	 */
1769 	retval = DM_RET_STOP;
1770 
1771 	for (i = 0; i < num_patterns; i++) {
1772 		struct periph_match_pattern *cur_pattern;
1773 
1774 		/*
1775 		 * If the pattern in question isn't for a peripheral, we
1776 		 * aren't interested.
1777 		 */
1778 		if (patterns[i].type != DEV_MATCH_PERIPH)
1779 			continue;
1780 
1781 		cur_pattern = &patterns[i].pattern.periph_pattern;
1782 
1783 		/*
1784 		 * If they want to match on anything, then we will do so.
1785 		 */
1786 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1787 			/* set the copy flag */
1788 			retval |= DM_RET_COPY;
1789 
1790 			/*
1791 			 * We've already set the return action to stop,
1792 			 * since there are no nodes below peripherals in
1793 			 * the tree.
1794 			 */
1795 			return(retval);
1796 		}
1797 
1798 		/*
1799 		 * Not sure why someone would do this...
1800 		 */
1801 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1802 			continue;
1803 
1804 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1805 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1806 			continue;
1807 
1808 		/*
1809 		 * For the target and lun id's, we have to make sure the
1810 		 * target and lun pointers aren't NULL.  The xpt peripheral
1811 		 * has a wildcard target and device.
1812 		 */
1813 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1814 		 && ((periph->path->target == NULL)
1815 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1816 			continue;
1817 
1818 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1819 		 && ((periph->path->device == NULL)
1820 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1821 			continue;
1822 
1823 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1824 		 && (cur_pattern->unit_number != periph->unit_number))
1825 			continue;
1826 
1827 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1828 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1829 			     DEV_IDLEN) != 0))
1830 			continue;
1831 
1832 		/*
1833 		 * If we get to this point, the user definitely wants
1834 		 * information on this peripheral.  So tell the caller to
1835 		 * copy the data out.
1836 		 */
1837 		retval |= DM_RET_COPY;
1838 
1839 		/*
1840 		 * The return action has already been set to stop, since
1841 		 * peripherals don't have any nodes below them in the EDT.
1842 		 */
1843 		return(retval);
1844 	}
1845 
1846 	/*
1847 	 * If we get to this point, the peripheral that was passed in
1848 	 * doesn't match any of the patterns.
1849 	 */
1850 	return(retval);
1851 }
1852 
1853 static int
1854 xptedtbusfunc(struct cam_eb *bus, void *arg)
1855 {
1856 	struct ccb_dev_match *cdm;
1857 	dev_match_ret retval;
1858 
1859 	cdm = (struct ccb_dev_match *)arg;
1860 
1861 	/*
1862 	 * If our position is for something deeper in the tree, that means
1863 	 * that we've already seen this node.  So, we keep going down.
1864 	 */
1865 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1866 	 && (cdm->pos.cookie.bus == bus)
1867 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1868 	 && (cdm->pos.cookie.target != NULL))
1869 		retval = DM_RET_DESCEND;
1870 	else
1871 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1872 
1873 	/*
1874 	 * If we got an error, bail out of the search.
1875 	 */
1876 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1877 		cdm->status = CAM_DEV_MATCH_ERROR;
1878 		return(0);
1879 	}
1880 
1881 	/*
1882 	 * If the copy flag is set, copy this bus out.
1883 	 */
1884 	if (retval & DM_RET_COPY) {
1885 		int spaceleft, j;
1886 
1887 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1888 			sizeof(struct dev_match_result));
1889 
1890 		/*
1891 		 * If we don't have enough space to put in another
1892 		 * match result, save our position and tell the
1893 		 * user there are more devices to check.
1894 		 */
1895 		if (spaceleft < sizeof(struct dev_match_result)) {
1896 			bzero(&cdm->pos, sizeof(cdm->pos));
1897 			cdm->pos.position_type =
1898 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1899 
1900 			cdm->pos.cookie.bus = bus;
1901 			cdm->pos.generations[CAM_BUS_GENERATION]=
1902 				bus_generation;
1903 			cdm->status = CAM_DEV_MATCH_MORE;
1904 			return(0);
1905 		}
1906 		j = cdm->num_matches;
1907 		cdm->num_matches++;
1908 		cdm->matches[j].type = DEV_MATCH_BUS;
1909 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1910 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1911 		cdm->matches[j].result.bus_result.unit_number =
1912 			bus->sim->unit_number;
1913 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1914 			bus->sim->sim_name, DEV_IDLEN);
1915 	}
1916 
1917 	/*
1918 	 * If the user is only interested in busses, there's no
1919 	 * reason to descend to the next level in the tree.
1920 	 */
1921 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1922 		return(1);
1923 
1924 	/*
1925 	 * If there is a target generation recorded, check it to
1926 	 * make sure the target list hasn't changed.
1927 	 */
1928 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1929 	 && (bus == cdm->pos.cookie.bus)
1930 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1931 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1932 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1933 	     bus->generation)) {
1934 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1935 		return(0);
1936 	}
1937 
1938 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1939 	 && (cdm->pos.cookie.bus == bus)
1940 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1941 	 && (cdm->pos.cookie.target != NULL))
1942 		return(xpttargettraverse(bus,
1943 					(struct cam_et *)cdm->pos.cookie.target,
1944 					 xptedttargetfunc, arg));
1945 	else
1946 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1947 }
1948 
1949 static int
1950 xptedttargetfunc(struct cam_et *target, void *arg)
1951 {
1952 	struct ccb_dev_match *cdm;
1953 
1954 	cdm = (struct ccb_dev_match *)arg;
1955 
1956 	/*
1957 	 * If there is a device list generation recorded, check it to
1958 	 * make sure the device list hasn't changed.
1959 	 */
1960 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1961 	 && (cdm->pos.cookie.bus == target->bus)
1962 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1963 	 && (cdm->pos.cookie.target == target)
1964 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1965 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1966 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1967 	     target->generation)) {
1968 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1969 		return(0);
1970 	}
1971 
1972 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1973 	 && (cdm->pos.cookie.bus == target->bus)
1974 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1975 	 && (cdm->pos.cookie.target == target)
1976 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1977 	 && (cdm->pos.cookie.device != NULL))
1978 		return(xptdevicetraverse(target,
1979 					(struct cam_ed *)cdm->pos.cookie.device,
1980 					 xptedtdevicefunc, arg));
1981 	else
1982 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1983 }
1984 
1985 static int
1986 xptedtdevicefunc(struct cam_ed *device, void *arg)
1987 {
1988 
1989 	struct ccb_dev_match *cdm;
1990 	dev_match_ret retval;
1991 
1992 	cdm = (struct ccb_dev_match *)arg;
1993 
1994 	/*
1995 	 * If our position is for something deeper in the tree, that means
1996 	 * that we've already seen this node.  So, we keep going down.
1997 	 */
1998 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1999 	 && (cdm->pos.cookie.device == device)
2000 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2001 	 && (cdm->pos.cookie.periph != NULL))
2002 		retval = DM_RET_DESCEND;
2003 	else
2004 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2005 					device);
2006 
2007 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2008 		cdm->status = CAM_DEV_MATCH_ERROR;
2009 		return(0);
2010 	}
2011 
2012 	/*
2013 	 * If the copy flag is set, copy this device out.
2014 	 */
2015 	if (retval & DM_RET_COPY) {
2016 		int spaceleft, j;
2017 
2018 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2019 			sizeof(struct dev_match_result));
2020 
2021 		/*
2022 		 * If we don't have enough space to put in another
2023 		 * match result, save our position and tell the
2024 		 * user there are more devices to check.
2025 		 */
2026 		if (spaceleft < sizeof(struct dev_match_result)) {
2027 			bzero(&cdm->pos, sizeof(cdm->pos));
2028 			cdm->pos.position_type =
2029 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2030 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2031 
2032 			cdm->pos.cookie.bus = device->target->bus;
2033 			cdm->pos.generations[CAM_BUS_GENERATION]=
2034 				bus_generation;
2035 			cdm->pos.cookie.target = device->target;
2036 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2037 				device->target->bus->generation;
2038 			cdm->pos.cookie.device = device;
2039 			cdm->pos.generations[CAM_DEV_GENERATION] =
2040 				device->target->generation;
2041 			cdm->status = CAM_DEV_MATCH_MORE;
2042 			return(0);
2043 		}
2044 		j = cdm->num_matches;
2045 		cdm->num_matches++;
2046 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2047 		cdm->matches[j].result.device_result.path_id =
2048 			device->target->bus->path_id;
2049 		cdm->matches[j].result.device_result.target_id =
2050 			device->target->target_id;
2051 		cdm->matches[j].result.device_result.target_lun =
2052 			device->lun_id;
2053 		bcopy(&device->inq_data,
2054 		      &cdm->matches[j].result.device_result.inq_data,
2055 		      sizeof(struct scsi_inquiry_data));
2056 
2057 		/* Let the user know whether this device is unconfigured */
2058 		if (device->flags & CAM_DEV_UNCONFIGURED)
2059 			cdm->matches[j].result.device_result.flags =
2060 				DEV_RESULT_UNCONFIGURED;
2061 		else
2062 			cdm->matches[j].result.device_result.flags =
2063 				DEV_RESULT_NOFLAG;
2064 	}
2065 
2066 	/*
2067 	 * If the user isn't interested in peripherals, don't descend
2068 	 * the tree any further.
2069 	 */
2070 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2071 		return(1);
2072 
2073 	/*
2074 	 * If there is a peripheral list generation recorded, make sure
2075 	 * it hasn't changed.
2076 	 */
2077 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2078 	 && (device->target->bus == cdm->pos.cookie.bus)
2079 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2080 	 && (device->target == cdm->pos.cookie.target)
2081 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2082 	 && (device == cdm->pos.cookie.device)
2083 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2084 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2085 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2086 	     device->generation)){
2087 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2088 		return(0);
2089 	}
2090 
2091 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2092 	 && (cdm->pos.cookie.bus == device->target->bus)
2093 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2094 	 && (cdm->pos.cookie.target == device->target)
2095 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2096 	 && (cdm->pos.cookie.device == device)
2097 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2098 	 && (cdm->pos.cookie.periph != NULL))
2099 		return(xptperiphtraverse(device,
2100 				(struct cam_periph *)cdm->pos.cookie.periph,
2101 				xptedtperiphfunc, arg));
2102 	else
2103 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2104 }
2105 
2106 static int
2107 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2108 {
2109 	struct ccb_dev_match *cdm;
2110 	dev_match_ret retval;
2111 
2112 	cdm = (struct ccb_dev_match *)arg;
2113 
2114 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2115 
2116 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2117 		cdm->status = CAM_DEV_MATCH_ERROR;
2118 		return(0);
2119 	}
2120 
2121 	/*
2122 	 * If the copy flag is set, copy this peripheral out.
2123 	 */
2124 	if (retval & DM_RET_COPY) {
2125 		int spaceleft, j;
2126 
2127 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2128 			sizeof(struct dev_match_result));
2129 
2130 		/*
2131 		 * If we don't have enough space to put in another
2132 		 * match result, save our position and tell the
2133 		 * user there are more devices to check.
2134 		 */
2135 		if (spaceleft < sizeof(struct dev_match_result)) {
2136 			bzero(&cdm->pos, sizeof(cdm->pos));
2137 			cdm->pos.position_type =
2138 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2139 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2140 				CAM_DEV_POS_PERIPH;
2141 
2142 			cdm->pos.cookie.bus = periph->path->bus;
2143 			cdm->pos.generations[CAM_BUS_GENERATION]=
2144 				bus_generation;
2145 			cdm->pos.cookie.target = periph->path->target;
2146 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2147 				periph->path->bus->generation;
2148 			cdm->pos.cookie.device = periph->path->device;
2149 			cdm->pos.generations[CAM_DEV_GENERATION] =
2150 				periph->path->target->generation;
2151 			cdm->pos.cookie.periph = periph;
2152 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2153 				periph->path->device->generation;
2154 			cdm->status = CAM_DEV_MATCH_MORE;
2155 			return(0);
2156 		}
2157 
2158 		j = cdm->num_matches;
2159 		cdm->num_matches++;
2160 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2161 		cdm->matches[j].result.periph_result.path_id =
2162 			periph->path->bus->path_id;
2163 		cdm->matches[j].result.periph_result.target_id =
2164 			periph->path->target->target_id;
2165 		cdm->matches[j].result.periph_result.target_lun =
2166 			periph->path->device->lun_id;
2167 		cdm->matches[j].result.periph_result.unit_number =
2168 			periph->unit_number;
2169 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2170 			periph->periph_name, DEV_IDLEN);
2171 	}
2172 
2173 	return(1);
2174 }
2175 
2176 static int
2177 xptedtmatch(struct ccb_dev_match *cdm)
2178 {
2179 	int ret;
2180 
2181 	cdm->num_matches = 0;
2182 
2183 	/*
2184 	 * Check the bus list generation.  If it has changed, the user
2185 	 * needs to reset everything and start over.
2186 	 */
2187 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2188 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2189 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) {
2190 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2191 		return(0);
2192 	}
2193 
2194 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2195 	 && (cdm->pos.cookie.bus != NULL))
2196 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2197 				     xptedtbusfunc, cdm);
2198 	else
2199 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2200 
2201 	/*
2202 	 * If we get back 0, that means that we had to stop before fully
2203 	 * traversing the EDT.  It also means that one of the subroutines
2204 	 * has set the status field to the proper value.  If we get back 1,
2205 	 * we've fully traversed the EDT and copied out any matching entries.
2206 	 */
2207 	if (ret == 1)
2208 		cdm->status = CAM_DEV_MATCH_LAST;
2209 
2210 	return(ret);
2211 }
2212 
2213 static int
2214 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2215 {
2216 	struct ccb_dev_match *cdm;
2217 
2218 	cdm = (struct ccb_dev_match *)arg;
2219 
2220 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2221 	 && (cdm->pos.cookie.pdrv == pdrv)
2222 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2223 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2224 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2225 	     (*pdrv)->generation)) {
2226 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2227 		return(0);
2228 	}
2229 
2230 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2231 	 && (cdm->pos.cookie.pdrv == pdrv)
2232 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2233 	 && (cdm->pos.cookie.periph != NULL))
2234 		return(xptpdperiphtraverse(pdrv,
2235 				(struct cam_periph *)cdm->pos.cookie.periph,
2236 				xptplistperiphfunc, arg));
2237 	else
2238 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2239 }
2240 
2241 static int
2242 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2243 {
2244 	struct ccb_dev_match *cdm;
2245 	dev_match_ret retval;
2246 
2247 	cdm = (struct ccb_dev_match *)arg;
2248 
2249 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2250 
2251 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2252 		cdm->status = CAM_DEV_MATCH_ERROR;
2253 		return(0);
2254 	}
2255 
2256 	/*
2257 	 * If the copy flag is set, copy this peripheral out.
2258 	 */
2259 	if (retval & DM_RET_COPY) {
2260 		int spaceleft, j;
2261 
2262 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2263 			sizeof(struct dev_match_result));
2264 
2265 		/*
2266 		 * If we don't have enough space to put in another
2267 		 * match result, save our position and tell the
2268 		 * user there are more devices to check.
2269 		 */
2270 		if (spaceleft < sizeof(struct dev_match_result)) {
2271 			struct periph_driver **pdrv;
2272 
2273 			pdrv = NULL;
2274 			bzero(&cdm->pos, sizeof(cdm->pos));
2275 			cdm->pos.position_type =
2276 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2277 				CAM_DEV_POS_PERIPH;
2278 
2279 			/*
2280 			 * This may look a bit non-sensical, but it is
2281 			 * actually quite logical.  There are very few
2282 			 * peripheral drivers, and bloating every peripheral
2283 			 * structure with a pointer back to its parent
2284 			 * peripheral driver linker set entry would cost
2285 			 * more in the long run than doing this quick lookup.
2286 			 */
2287 			for (pdrv =
2288 			     (struct periph_driver **)periphdriver_set.ls_items;
2289 			     *pdrv != NULL; pdrv++) {
2290 				if (strcmp((*pdrv)->driver_name,
2291 				    periph->periph_name) == 0)
2292 					break;
2293 			}
2294 
2295 			if (pdrv == NULL) {
2296 				cdm->status = CAM_DEV_MATCH_ERROR;
2297 				return(0);
2298 			}
2299 
2300 			cdm->pos.cookie.pdrv = pdrv;
2301 			/*
2302 			 * The periph generation slot does double duty, as
2303 			 * does the periph pointer slot.  They are used for
2304 			 * both edt and pdrv lookups and positioning.
2305 			 */
2306 			cdm->pos.cookie.periph = periph;
2307 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2308 				(*pdrv)->generation;
2309 			cdm->status = CAM_DEV_MATCH_MORE;
2310 			return(0);
2311 		}
2312 
2313 		j = cdm->num_matches;
2314 		cdm->num_matches++;
2315 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2316 		cdm->matches[j].result.periph_result.path_id =
2317 			periph->path->bus->path_id;
2318 
2319 		/*
2320 		 * The transport layer peripheral doesn't have a target or
2321 		 * lun.
2322 		 */
2323 		if (periph->path->target)
2324 			cdm->matches[j].result.periph_result.target_id =
2325 				periph->path->target->target_id;
2326 		else
2327 			cdm->matches[j].result.periph_result.target_id = -1;
2328 
2329 		if (periph->path->device)
2330 			cdm->matches[j].result.periph_result.target_lun =
2331 				periph->path->device->lun_id;
2332 		else
2333 			cdm->matches[j].result.periph_result.target_lun = -1;
2334 
2335 		cdm->matches[j].result.periph_result.unit_number =
2336 			periph->unit_number;
2337 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2338 			periph->periph_name, DEV_IDLEN);
2339 	}
2340 
2341 	return(1);
2342 }
2343 
2344 static int
2345 xptperiphlistmatch(struct ccb_dev_match *cdm)
2346 {
2347 	int ret;
2348 
2349 	cdm->num_matches = 0;
2350 
2351 	/*
2352 	 * At this point in the edt traversal function, we check the bus
2353 	 * list generation to make sure that no busses have been added or
2354 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2355 	 * For the peripheral driver list traversal function, however, we
2356 	 * don't have to worry about new peripheral driver types coming or
2357 	 * going; they're in a linker set, and therefore can't change
2358 	 * without a recompile.
2359 	 */
2360 
2361 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2362 	 && (cdm->pos.cookie.pdrv != NULL))
2363 		ret = xptpdrvtraverse(
2364 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2365 				xptplistpdrvfunc, cdm);
2366 	else
2367 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2368 
2369 	/*
2370 	 * If we get back 0, that means that we had to stop before fully
2371 	 * traversing the peripheral driver tree.  It also means that one of
2372 	 * the subroutines has set the status field to the proper value.  If
2373 	 * we get back 1, we've fully traversed the EDT and copied out any
2374 	 * matching entries.
2375 	 */
2376 	if (ret == 1)
2377 		cdm->status = CAM_DEV_MATCH_LAST;
2378 
2379 	return(ret);
2380 }
2381 
2382 static int
2383 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2384 {
2385 	struct cam_eb *bus, *next_bus;
2386 	int retval;
2387 
2388 	retval = 1;
2389 
2390 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses));
2391 	     bus != NULL;
2392 	     bus = next_bus) {
2393 		next_bus = TAILQ_NEXT(bus, links);
2394 
2395 		retval = tr_func(bus, arg);
2396 		if (retval == 0)
2397 			return(retval);
2398 	}
2399 
2400 	return(retval);
2401 }
2402 
2403 static int
2404 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2405 		  xpt_targetfunc_t *tr_func, void *arg)
2406 {
2407 	struct cam_et *target, *next_target;
2408 	int retval;
2409 
2410 	retval = 1;
2411 	for (target = (start_target ? start_target :
2412 		       TAILQ_FIRST(&bus->et_entries));
2413 	     target != NULL; target = next_target) {
2414 
2415 		next_target = TAILQ_NEXT(target, links);
2416 
2417 		retval = tr_func(target, arg);
2418 
2419 		if (retval == 0)
2420 			return(retval);
2421 	}
2422 
2423 	return(retval);
2424 }
2425 
2426 static int
2427 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2428 		  xpt_devicefunc_t *tr_func, void *arg)
2429 {
2430 	struct cam_ed *device, *next_device;
2431 	int retval;
2432 
2433 	retval = 1;
2434 	for (device = (start_device ? start_device :
2435 		       TAILQ_FIRST(&target->ed_entries));
2436 	     device != NULL;
2437 	     device = next_device) {
2438 
2439 		next_device = TAILQ_NEXT(device, links);
2440 
2441 		retval = tr_func(device, arg);
2442 
2443 		if (retval == 0)
2444 			return(retval);
2445 	}
2446 
2447 	return(retval);
2448 }
2449 
2450 static int
2451 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2452 		  xpt_periphfunc_t *tr_func, void *arg)
2453 {
2454 	struct cam_periph *periph, *next_periph;
2455 	int retval;
2456 
2457 	retval = 1;
2458 
2459 	for (periph = (start_periph ? start_periph :
2460 		       SLIST_FIRST(&device->periphs));
2461 	     periph != NULL;
2462 	     periph = next_periph) {
2463 
2464 		next_periph = SLIST_NEXT(periph, periph_links);
2465 
2466 		retval = tr_func(periph, arg);
2467 		if (retval == 0)
2468 			return(retval);
2469 	}
2470 
2471 	return(retval);
2472 }
2473 
2474 static int
2475 xptpdrvtraverse(struct periph_driver **start_pdrv,
2476 		xpt_pdrvfunc_t *tr_func, void *arg)
2477 {
2478 	struct periph_driver **pdrv;
2479 	int retval;
2480 
2481 	retval = 1;
2482 
2483 	/*
2484 	 * We don't traverse the peripheral driver list like we do the
2485 	 * other lists, because it is a linker set, and therefore cannot be
2486 	 * changed during runtime.  If the peripheral driver list is ever
2487 	 * re-done to be something other than a linker set (i.e. it can
2488 	 * change while the system is running), the list traversal should
2489 	 * be modified to work like the other traversal functions.
2490 	 */
2491 	for (pdrv = (start_pdrv ? start_pdrv :
2492 	     (struct periph_driver **)periphdriver_set.ls_items);
2493 	     *pdrv != NULL; pdrv++) {
2494 		retval = tr_func(pdrv, arg);
2495 
2496 		if (retval == 0)
2497 			return(retval);
2498 	}
2499 
2500 	return(retval);
2501 }
2502 
2503 static int
2504 xptpdperiphtraverse(struct periph_driver **pdrv,
2505 		    struct cam_periph *start_periph,
2506 		    xpt_periphfunc_t *tr_func, void *arg)
2507 {
2508 	struct cam_periph *periph, *next_periph;
2509 	int retval;
2510 
2511 	retval = 1;
2512 
2513 	for (periph = (start_periph ? start_periph :
2514 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2515 	     periph = next_periph) {
2516 
2517 		next_periph = TAILQ_NEXT(periph, unit_links);
2518 
2519 		retval = tr_func(periph, arg);
2520 		if (retval == 0)
2521 			return(retval);
2522 	}
2523 	return(retval);
2524 }
2525 
2526 static int
2527 xptdefbusfunc(struct cam_eb *bus, void *arg)
2528 {
2529 	struct xpt_traverse_config *tr_config;
2530 
2531 	tr_config = (struct xpt_traverse_config *)arg;
2532 
2533 	if (tr_config->depth == XPT_DEPTH_BUS) {
2534 		xpt_busfunc_t *tr_func;
2535 
2536 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2537 
2538 		return(tr_func(bus, tr_config->tr_arg));
2539 	} else
2540 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2541 }
2542 
2543 static int
2544 xptdeftargetfunc(struct cam_et *target, void *arg)
2545 {
2546 	struct xpt_traverse_config *tr_config;
2547 
2548 	tr_config = (struct xpt_traverse_config *)arg;
2549 
2550 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2551 		xpt_targetfunc_t *tr_func;
2552 
2553 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2554 
2555 		return(tr_func(target, tr_config->tr_arg));
2556 	} else
2557 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2558 }
2559 
2560 static int
2561 xptdefdevicefunc(struct cam_ed *device, void *arg)
2562 {
2563 	struct xpt_traverse_config *tr_config;
2564 
2565 	tr_config = (struct xpt_traverse_config *)arg;
2566 
2567 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2568 		xpt_devicefunc_t *tr_func;
2569 
2570 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2571 
2572 		return(tr_func(device, tr_config->tr_arg));
2573 	} else
2574 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2575 }
2576 
2577 static int
2578 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2579 {
2580 	struct xpt_traverse_config *tr_config;
2581 	xpt_periphfunc_t *tr_func;
2582 
2583 	tr_config = (struct xpt_traverse_config *)arg;
2584 
2585 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2586 
2587 	/*
2588 	 * Unlike the other default functions, we don't check for depth
2589 	 * here.  The peripheral driver level is the last level in the EDT,
2590 	 * so if we're here, we should execute the function in question.
2591 	 */
2592 	return(tr_func(periph, tr_config->tr_arg));
2593 }
2594 
2595 /*
2596  * Execute the given function for every bus in the EDT.
2597  */
2598 static int
2599 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2600 {
2601 	struct xpt_traverse_config tr_config;
2602 
2603 	tr_config.depth = XPT_DEPTH_BUS;
2604 	tr_config.tr_func = tr_func;
2605 	tr_config.tr_arg = arg;
2606 
2607 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2608 }
2609 
2610 #ifdef notusedyet
2611 /*
2612  * Execute the given function for every target in the EDT.
2613  */
2614 static int
2615 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg)
2616 {
2617 	struct xpt_traverse_config tr_config;
2618 
2619 	tr_config.depth = XPT_DEPTH_TARGET;
2620 	tr_config.tr_func = tr_func;
2621 	tr_config.tr_arg = arg;
2622 
2623 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2624 }
2625 #endif /* notusedyet */
2626 
2627 /*
2628  * Execute the given function for every device in the EDT.
2629  */
2630 static int
2631 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2632 {
2633 	struct xpt_traverse_config tr_config;
2634 
2635 	tr_config.depth = XPT_DEPTH_DEVICE;
2636 	tr_config.tr_func = tr_func;
2637 	tr_config.tr_arg = arg;
2638 
2639 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2640 }
2641 
2642 #ifdef notusedyet
2643 /*
2644  * Execute the given function for every peripheral in the EDT.
2645  */
2646 static int
2647 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg)
2648 {
2649 	struct xpt_traverse_config tr_config;
2650 
2651 	tr_config.depth = XPT_DEPTH_PERIPH;
2652 	tr_config.tr_func = tr_func;
2653 	tr_config.tr_arg = arg;
2654 
2655 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2656 }
2657 #endif /* notusedyet */
2658 
2659 static int
2660 xptsetasyncfunc(struct cam_ed *device, void *arg)
2661 {
2662 	struct cam_path path;
2663 	struct ccb_getdev cgd;
2664 	struct async_node *cur_entry;
2665 
2666 	cur_entry = (struct async_node *)arg;
2667 
2668 	/*
2669 	 * Don't report unconfigured devices (Wildcard devs,
2670 	 * devices only for target mode, device instances
2671 	 * that have been invalidated but are waiting for
2672 	 * their last reference count to be released).
2673 	 */
2674 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2675 		return (1);
2676 
2677 	xpt_compile_path(&path,
2678 			 NULL,
2679 			 device->target->bus->path_id,
2680 			 device->target->target_id,
2681 			 device->lun_id);
2682 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2683 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2684 	xpt_action((union ccb *)&cgd);
2685 	cur_entry->callback(cur_entry->callback_arg,
2686 			    AC_FOUND_DEVICE,
2687 			    &path, &cgd);
2688 	xpt_release_path(&path);
2689 
2690 	return(1);
2691 }
2692 
2693 static int
2694 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2695 {
2696 	struct cam_path path;
2697 	struct ccb_pathinq cpi;
2698 	struct async_node *cur_entry;
2699 
2700 	cur_entry = (struct async_node *)arg;
2701 
2702 	xpt_compile_path(&path, /*periph*/NULL,
2703 			 bus->sim->path_id,
2704 			 CAM_TARGET_WILDCARD,
2705 			 CAM_LUN_WILDCARD);
2706 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2707 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2708 	xpt_action((union ccb *)&cpi);
2709 	cur_entry->callback(cur_entry->callback_arg,
2710 			    AC_PATH_REGISTERED,
2711 			    &path, &cpi);
2712 	xpt_release_path(&path);
2713 
2714 	return(1);
2715 }
2716 
2717 void
2718 xpt_action(union ccb *start_ccb)
2719 {
2720 	int iopl;
2721 
2722 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2723 
2724 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2725 
2726 	iopl = splsoftcam();
2727 	switch (start_ccb->ccb_h.func_code) {
2728 	case XPT_SCSI_IO:
2729 	{
2730 #ifdef CAMDEBUG
2731 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2732 		struct cam_path *path;
2733 
2734 		path = start_ccb->ccb_h.path;
2735 #endif
2736 
2737 		/*
2738 		 * For the sake of compatibility with SCSI-1
2739 		 * devices that may not understand the identify
2740 		 * message, we include lun information in the
2741 		 * second byte of all commands.  SCSI-1 specifies
2742 		 * that luns are a 3 bit value and reserves only 3
2743 		 * bits for lun information in the CDB.  Later
2744 		 * revisions of the SCSI spec allow for more than 8
2745 		 * luns, but have deprecated lun information in the
2746 		 * CDB.  So, if the lun won't fit, we must omit.
2747 		 *
2748 		 * Also be aware that during initial probing for devices,
2749 		 * the inquiry information is unknown but initialized to 0.
2750 		 * This means that this code will be exercised while probing
2751 		 * devices with an ANSI revision greater than 2.
2752 		 */
2753 		if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2
2754 		 && start_ccb->ccb_h.target_lun < 8
2755 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2756 
2757 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2758 			    start_ccb->ccb_h.target_lun << 5;
2759 		}
2760 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2761 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2762 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2763 			  	       &path->device->inq_data),
2764 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2765 					  cdb_str, sizeof(cdb_str))));
2766 		/* FALLTHROUGH */
2767 	}
2768 	case XPT_TARGET_IO:
2769 	case XPT_CONT_TARGET_IO:
2770 		start_ccb->csio.sense_resid = 0;
2771 		start_ccb->csio.resid = 0;
2772 		/* FALLTHROUGH */
2773 	case XPT_ENG_EXEC:
2774 	{
2775 		struct cam_path *path;
2776 		int s;
2777 		int runq;
2778 
2779 		path = start_ccb->ccb_h.path;
2780 		s = splsoftcam();
2781 
2782 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2783 		if (path->device->qfrozen_cnt == 0)
2784 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2785 		else
2786 			runq = 0;
2787 		splx(s);
2788 		if (runq != 0)
2789 			xpt_run_dev_sendq(path->bus);
2790 		break;
2791 	}
2792 	case XPT_SET_TRAN_SETTINGS:
2793 	{
2794 		xpt_set_transfer_settings(&start_ccb->cts,
2795 					  start_ccb->ccb_h.path->device,
2796 					  /*async_update*/FALSE);
2797 		break;
2798 	}
2799 	case XPT_CALC_GEOMETRY:
2800 	{
2801 		struct cam_sim *sim;
2802 
2803 		/* Filter out garbage */
2804 		if (start_ccb->ccg.block_size == 0
2805 		 || start_ccb->ccg.volume_size == 0) {
2806 			start_ccb->ccg.cylinders = 0;
2807 			start_ccb->ccg.heads = 0;
2808 			start_ccb->ccg.secs_per_track = 0;
2809 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2810 			break;
2811 		}
2812 #ifdef PC98
2813 		/*
2814 		 * In a PC-98 system, geometry translation depens on
2815 		 * the "real" device geometry obtained from mode page 4.
2816 		 * SCSI geometry translation is performed in the
2817 		 * initialization routine of the SCSI BIOS and the result
2818 		 * stored in host memory.  If the translation is available
2819 		 * in host memory, use it.  If not, rely on the default
2820 		 * translation the device driver performs.
2821 		 */
2822 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2823 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2824 			break;
2825 		}
2826 #endif
2827 		sim = start_ccb->ccb_h.path->bus->sim;
2828 		(*(sim->sim_action))(sim, start_ccb);
2829 		break;
2830 	}
2831 	case XPT_ABORT:
2832 	{
2833 		union ccb* abort_ccb;
2834 		int s;
2835 
2836 		abort_ccb = start_ccb->cab.abort_ccb;
2837 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2838 
2839 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2840 				struct cam_ccbq *ccbq;
2841 
2842 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2843 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2844 				abort_ccb->ccb_h.status =
2845 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2846 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2847 				s = splcam();
2848 				xpt_done(abort_ccb);
2849 				splx(s);
2850 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2851 				break;
2852 			}
2853 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2854 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2855 				/*
2856 				 * We've caught this ccb en route to
2857 				 * the SIM.  Flag it for abort and the
2858 				 * SIM will do so just before starting
2859 				 * real work on the CCB.
2860 				 */
2861 				abort_ccb->ccb_h.status =
2862 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2863 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2864 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2865 				break;
2866 			}
2867 		}
2868 		if (XPT_FC_IS_QUEUED(abort_ccb)
2869 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2870 			/*
2871 			 * It's already completed but waiting
2872 			 * for our SWI to get to it.
2873 			 */
2874 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2875 			break;
2876 		}
2877 		/*
2878 		 * If we weren't able to take care of the abort request
2879 		 * in the XPT, pass the request down to the SIM for processing.
2880 		 */
2881 		/* FALLTHROUGH */
2882 	}
2883 	case XPT_RESET_DEV:
2884 	case XPT_ACCEPT_TARGET_IO:
2885 	case XPT_EN_LUN:
2886 	case XPT_IMMED_NOTIFY:
2887 	case XPT_NOTIFY_ACK:
2888 	case XPT_GET_TRAN_SETTINGS:
2889 	case XPT_RESET_BUS:
2890 	{
2891 		struct cam_sim *sim;
2892 
2893 		sim = start_ccb->ccb_h.path->bus->sim;
2894 		(*(sim->sim_action))(sim, start_ccb);
2895 		break;
2896 	}
2897 	case XPT_PATH_INQ:
2898 	{
2899 		struct cam_sim *sim;
2900 
2901 		sim = start_ccb->ccb_h.path->bus->sim;
2902 		(*(sim->sim_action))(sim, start_ccb);
2903 		break;
2904 	}
2905 	case XPT_PATH_STATS:
2906 		start_ccb->cpis.last_reset =
2907 			start_ccb->ccb_h.path->bus->last_reset;
2908 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2909 		break;
2910 	case XPT_GDEV_TYPE:
2911 	{
2912 		struct cam_ed *dev;
2913 		int s;
2914 
2915 		dev = start_ccb->ccb_h.path->device;
2916 		s = splcam();
2917 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2918 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2919 		} else {
2920 			struct ccb_getdev *cgd;
2921 			struct cam_eb *bus;
2922 			struct cam_et *tar;
2923 
2924 			cgd = &start_ccb->cgd;
2925 			bus = cgd->ccb_h.path->bus;
2926 			tar = cgd->ccb_h.path->target;
2927 			cgd->inq_data = dev->inq_data;
2928 			cgd->pd_type = SID_TYPE(&dev->inq_data);
2929 #ifndef GARBAGE_COLLECT
2930 			cgd->dev_openings = dev->ccbq.dev_openings;
2931 			cgd->dev_active = dev->ccbq.dev_active;
2932 			cgd->devq_openings = dev->ccbq.devq_openings;
2933 			cgd->devq_queued = dev->ccbq.queue.entries;
2934 			cgd->held = dev->ccbq.held;
2935 			cgd->maxtags = dev->quirk->maxtags;
2936 			cgd->mintags = dev->quirk->mintags;
2937 #endif
2938 			cgd->ccb_h.status = CAM_REQ_CMP;
2939 			cgd->serial_num_len = dev->serial_num_len;
2940 			if ((dev->serial_num_len > 0)
2941 			 && (dev->serial_num != NULL))
2942 				bcopy(dev->serial_num, cgd->serial_num,
2943 				      dev->serial_num_len);
2944 		}
2945 		splx(s);
2946 		break;
2947 	}
2948 	case XPT_GDEV_STATS:
2949 	{
2950 		struct cam_ed *dev;
2951 		int s;
2952 
2953 		dev = start_ccb->ccb_h.path->device;
2954 		s = splcam();
2955 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2956 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2957 		} else {
2958 			struct ccb_getdevstats *cgds;
2959 			struct cam_eb *bus;
2960 			struct cam_et *tar;
2961 
2962 			cgds = &start_ccb->cgds;
2963 			bus = cgds->ccb_h.path->bus;
2964 			tar = cgds->ccb_h.path->target;
2965 			cgds->dev_openings = dev->ccbq.dev_openings;
2966 			cgds->dev_active = dev->ccbq.dev_active;
2967 			cgds->devq_openings = dev->ccbq.devq_openings;
2968 			cgds->devq_queued = dev->ccbq.queue.entries;
2969 			cgds->held = dev->ccbq.held;
2970 			cgds->last_reset = tar->last_reset;
2971 			cgds->maxtags = dev->quirk->maxtags;
2972 			cgds->mintags = dev->quirk->mintags;
2973 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2974 				cgds->last_reset = bus->last_reset;
2975 			cgds->ccb_h.status = CAM_REQ_CMP;
2976 		}
2977 		splx(s);
2978 		break;
2979 	}
2980 	case XPT_GDEVLIST:
2981 	{
2982 		struct cam_periph	*nperiph;
2983 		struct periph_list	*periph_head;
2984 		struct ccb_getdevlist	*cgdl;
2985 		int			i;
2986 		int			s;
2987 		struct cam_ed		*device;
2988 		int			found;
2989 
2990 
2991 		found = 0;
2992 
2993 		/*
2994 		 * Don't want anyone mucking with our data.
2995 		 */
2996 		s = splcam();
2997 		device = start_ccb->ccb_h.path->device;
2998 		periph_head = &device->periphs;
2999 		cgdl = &start_ccb->cgdl;
3000 
3001 		/*
3002 		 * Check and see if the list has changed since the user
3003 		 * last requested a list member.  If so, tell them that the
3004 		 * list has changed, and therefore they need to start over
3005 		 * from the beginning.
3006 		 */
3007 		if ((cgdl->index != 0) &&
3008 		    (cgdl->generation != device->generation)) {
3009 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3010 			splx(s);
3011 			break;
3012 		}
3013 
3014 		/*
3015 		 * Traverse the list of peripherals and attempt to find
3016 		 * the requested peripheral.
3017 		 */
3018 		for (nperiph = periph_head->slh_first, i = 0;
3019 		     (nperiph != NULL) && (i <= cgdl->index);
3020 		     nperiph = nperiph->periph_links.sle_next, i++) {
3021 			if (i == cgdl->index) {
3022 				strncpy(cgdl->periph_name,
3023 					nperiph->periph_name,
3024 					DEV_IDLEN);
3025 				cgdl->unit_number = nperiph->unit_number;
3026 				found = 1;
3027 			}
3028 		}
3029 		if (found == 0) {
3030 			cgdl->status = CAM_GDEVLIST_ERROR;
3031 			splx(s);
3032 			break;
3033 		}
3034 
3035 		if (nperiph == NULL)
3036 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3037 		else
3038 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3039 
3040 		cgdl->index++;
3041 		cgdl->generation = device->generation;
3042 
3043 		splx(s);
3044 		cgdl->ccb_h.status = CAM_REQ_CMP;
3045 		break;
3046 	}
3047 	case XPT_DEV_MATCH:
3048 	{
3049 		int s;
3050 		dev_pos_type position_type;
3051 		struct ccb_dev_match *cdm;
3052 		int ret;
3053 
3054 		cdm = &start_ccb->cdm;
3055 
3056 		/*
3057 		 * Prevent EDT changes while we traverse it.
3058 		 */
3059 		s = splcam();
3060 		/*
3061 		 * There are two ways of getting at information in the EDT.
3062 		 * The first way is via the primary EDT tree.  It starts
3063 		 * with a list of busses, then a list of targets on a bus,
3064 		 * then devices/luns on a target, and then peripherals on a
3065 		 * device/lun.  The "other" way is by the peripheral driver
3066 		 * lists.  The peripheral driver lists are organized by
3067 		 * peripheral driver.  (obviously)  So it makes sense to
3068 		 * use the peripheral driver list if the user is looking
3069 		 * for something like "da1", or all "da" devices.  If the
3070 		 * user is looking for something on a particular bus/target
3071 		 * or lun, it's generally better to go through the EDT tree.
3072 		 */
3073 
3074 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3075 			position_type = cdm->pos.position_type;
3076 		else {
3077 			int i;
3078 
3079 			position_type = CAM_DEV_POS_NONE;
3080 
3081 			for (i = 0; i < cdm->num_patterns; i++) {
3082 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3083 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3084 					position_type = CAM_DEV_POS_EDT;
3085 					break;
3086 				}
3087 			}
3088 
3089 			if (cdm->num_patterns == 0)
3090 				position_type = CAM_DEV_POS_EDT;
3091 			else if (position_type == CAM_DEV_POS_NONE)
3092 				position_type = CAM_DEV_POS_PDRV;
3093 		}
3094 
3095 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3096 		case CAM_DEV_POS_EDT:
3097 			ret = xptedtmatch(cdm);
3098 			break;
3099 		case CAM_DEV_POS_PDRV:
3100 			ret = xptperiphlistmatch(cdm);
3101 			break;
3102 		default:
3103 			cdm->status = CAM_DEV_MATCH_ERROR;
3104 			break;
3105 		}
3106 
3107 		splx(s);
3108 
3109 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3110 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3111 		else
3112 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3113 
3114 		break;
3115 	}
3116 	case XPT_SASYNC_CB:
3117 	{
3118 		struct ccb_setasync *csa;
3119 		struct async_node *cur_entry;
3120 		struct async_list *async_head;
3121 		u_int32_t added;
3122 		int s;
3123 
3124 		csa = &start_ccb->csa;
3125 		added = csa->event_enable;
3126 		async_head = &csa->ccb_h.path->device->asyncs;
3127 
3128 		/*
3129 		 * If there is already an entry for us, simply
3130 		 * update it.
3131 		 */
3132 		s = splcam();
3133 		cur_entry = SLIST_FIRST(async_head);
3134 		while (cur_entry != NULL) {
3135 			if ((cur_entry->callback_arg == csa->callback_arg)
3136 			 && (cur_entry->callback == csa->callback))
3137 				break;
3138 			cur_entry = SLIST_NEXT(cur_entry, links);
3139 		}
3140 
3141 		if (cur_entry != NULL) {
3142 		 	/*
3143 			 * If the request has no flags set,
3144 			 * remove the entry.
3145 			 */
3146 			added &= ~cur_entry->event_enable;
3147 			if (csa->event_enable == 0) {
3148 				SLIST_REMOVE(async_head, cur_entry,
3149 					     async_node, links);
3150 				csa->ccb_h.path->device->refcount--;
3151 				free(cur_entry, M_DEVBUF);
3152 			} else {
3153 				cur_entry->event_enable = csa->event_enable;
3154 			}
3155 		} else {
3156 			cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF,
3157 					   M_NOWAIT);
3158 			if (cur_entry == NULL) {
3159 				splx(s);
3160 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3161 				break;
3162 			}
3163 			cur_entry->callback_arg = csa->callback_arg;
3164 			cur_entry->callback = csa->callback;
3165 			cur_entry->event_enable = csa->event_enable;
3166 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3167 			csa->ccb_h.path->device->refcount++;
3168 		}
3169 
3170 		if ((added & AC_FOUND_DEVICE) != 0) {
3171 			/*
3172 			 * Get this peripheral up to date with all
3173 			 * the currently existing devices.
3174 			 */
3175 			xpt_for_all_devices(xptsetasyncfunc, cur_entry);
3176 		}
3177 		if ((added & AC_PATH_REGISTERED) != 0) {
3178 			/*
3179 			 * Get this peripheral up to date with all
3180 			 * the currently existing busses.
3181 			 */
3182 			xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
3183 		}
3184 		splx(s);
3185 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3186 		break;
3187 	}
3188 	case XPT_REL_SIMQ:
3189 	{
3190 		struct ccb_relsim *crs;
3191 		struct cam_ed *dev;
3192 		int s;
3193 
3194 		crs = &start_ccb->crs;
3195 		dev = crs->ccb_h.path->device;
3196 		if (dev == NULL) {
3197 
3198 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3199 			break;
3200 		}
3201 
3202 		s = splcam();
3203 
3204 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3205 
3206  			if ((dev->inq_data.flags & SID_CmdQue) != 0) {
3207 
3208 				/* Don't ever go below one opening */
3209 				if (crs->openings > 0) {
3210 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3211 							    crs->openings);
3212 
3213 					if (bootverbose) {
3214 						xpt_print_path(crs->ccb_h.path);
3215 						printf("tagged openings "
3216 						       "now %d\n",
3217 						       crs->openings);
3218 					}
3219 				}
3220 			}
3221 		}
3222 
3223 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3224 
3225 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3226 
3227 				/*
3228 				 * Just extend the old timeout and decrement
3229 				 * the freeze count so that a single timeout
3230 				 * is sufficient for releasing the queue.
3231 				 */
3232 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3233 				untimeout(xpt_release_devq_timeout,
3234 					  dev, dev->c_handle);
3235 			} else {
3236 
3237 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3238 			}
3239 
3240 			dev->c_handle =
3241 				timeout(xpt_release_devq_timeout,
3242 					dev,
3243 					(crs->release_timeout * hz) / 1000);
3244 
3245 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3246 
3247 		}
3248 
3249 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3250 
3251 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3252 				/*
3253 				 * Decrement the freeze count so that a single
3254 				 * completion is still sufficient to unfreeze
3255 				 * the queue.
3256 				 */
3257 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3258 			} else {
3259 
3260 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3261 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3262 			}
3263 		}
3264 
3265 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3266 
3267 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3268 			 || (dev->ccbq.dev_active == 0)) {
3269 
3270 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3271 			} else {
3272 
3273 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3274 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3275 			}
3276 		}
3277 		splx(s);
3278 
3279 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3280 
3281 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3282 					 /*run_queue*/TRUE);
3283 		}
3284 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3285 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3286 		break;
3287 	}
3288 	case XPT_SCAN_BUS:
3289 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3290 		break;
3291 	case XPT_SCAN_LUN:
3292 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3293 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3294 			     start_ccb);
3295 		break;
3296 	case XPT_DEBUG: {
3297 #ifdef CAMDEBUG
3298 		int s;
3299 
3300 		s = splcam();
3301 #ifdef CAM_DEBUG_DELAY
3302 		cam_debug_delay = CAM_DEBUG_DELAY;
3303 #endif
3304 		cam_dflags = start_ccb->cdbg.flags;
3305 		if (cam_dpath != NULL) {
3306 			xpt_free_path(cam_dpath);
3307 			cam_dpath = NULL;
3308 		}
3309 
3310 		if (cam_dflags != CAM_DEBUG_NONE) {
3311 			if (xpt_create_path(&cam_dpath, xpt_periph,
3312 					    start_ccb->ccb_h.path_id,
3313 					    start_ccb->ccb_h.target_id,
3314 					    start_ccb->ccb_h.target_lun) !=
3315 					    CAM_REQ_CMP) {
3316 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3317 				cam_dflags = CAM_DEBUG_NONE;
3318 			} else {
3319 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3320 				xpt_print_path(cam_dpath);
3321 				printf("debugging flags now %x\n", cam_dflags);
3322 			}
3323 		} else {
3324 			cam_dpath = NULL;
3325 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3326 		}
3327 		splx(s);
3328 #else /* !CAMDEBUG */
3329 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3330 #endif /* CAMDEBUG */
3331 		break;
3332 	}
3333 	case XPT_NOOP:
3334 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3335 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3336 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3337 		break;
3338 	default:
3339 	case XPT_SDEV_TYPE:
3340 	case XPT_TERM_IO:
3341 	case XPT_ENG_INQ:
3342 		/* XXX Implement */
3343 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3344 		break;
3345 	}
3346 	splx(iopl);
3347 }
3348 
3349 void
3350 xpt_polled_action(union ccb *start_ccb)
3351 {
3352 	int	  s;
3353 	u_int32_t timeout;
3354 	struct	  cam_sim *sim;
3355 	struct	  cam_devq *devq;
3356 	struct	  cam_ed *dev;
3357 
3358 	timeout = start_ccb->ccb_h.timeout;
3359 	sim = start_ccb->ccb_h.path->bus->sim;
3360 	devq = sim->devq;
3361 	dev = start_ccb->ccb_h.path->device;
3362 
3363 	s = splcam();
3364 
3365 	/*
3366 	 * Steal an opening so that no other queued requests
3367 	 * can get it before us while we simulate interrupts.
3368 	 */
3369 	dev->ccbq.devq_openings--;
3370 	dev->ccbq.dev_openings--;
3371 
3372 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0)
3373 	   && (--timeout > 0)) {
3374 		DELAY(1000);
3375 		(*(sim->sim_poll))(sim);
3376 		swi_camnet();
3377 		swi_cambio();
3378 	}
3379 
3380 	dev->ccbq.devq_openings++;
3381 	dev->ccbq.dev_openings++;
3382 
3383 	if (timeout != 0) {
3384 		xpt_action(start_ccb);
3385 		while(--timeout > 0) {
3386 			(*(sim->sim_poll))(sim);
3387 			swi_camnet();
3388 			swi_cambio();
3389 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3390 			    != CAM_REQ_INPROG)
3391 				break;
3392 			DELAY(1000);
3393 		}
3394 		if (timeout == 0) {
3395 			/*
3396 			 * XXX Is it worth adding a sim_timeout entry
3397 			 * point so we can attempt recovery?  If
3398 			 * this is only used for dumps, I don't think
3399 			 * it is.
3400 			 */
3401 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3402 		}
3403 	} else {
3404 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3405 	}
3406 	splx(s);
3407 }
3408 
3409 /*
3410  * Schedule a peripheral driver to receive a ccb when it's
3411  * target device has space for more transactions.
3412  */
3413 void
3414 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3415 {
3416 	struct cam_ed *device;
3417 	int s;
3418 	int runq;
3419 
3420 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3421 	device = perph->path->device;
3422 	s = splsoftcam();
3423 	if (periph_is_queued(perph)) {
3424 		/* Simply reorder based on new priority */
3425 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3426 			  ("   change priority to %d\n", new_priority));
3427 		if (new_priority < perph->pinfo.priority) {
3428 			camq_change_priority(&device->drvq,
3429 					     perph->pinfo.index,
3430 					     new_priority);
3431 		}
3432 		runq = 0;
3433 	} else {
3434 		/* New entry on the queue */
3435 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3436 			  ("   added periph to queue\n"));
3437 		perph->pinfo.priority = new_priority;
3438 		perph->pinfo.generation = ++device->drvq.generation;
3439 		camq_insert(&device->drvq, &perph->pinfo);
3440 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3441 	}
3442 	splx(s);
3443 	if (runq != 0) {
3444 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3445 			  ("   calling xpt_run_devq\n"));
3446 		xpt_run_dev_allocq(perph->path->bus);
3447 	}
3448 }
3449 
3450 
3451 /*
3452  * Schedule a device to run on a given queue.
3453  * If the device was inserted as a new entry on the queue,
3454  * return 1 meaning the device queue should be run. If we
3455  * were already queued, implying someone else has already
3456  * started the queue, return 0 so the caller doesn't attempt
3457  * to run the queue.  Must be run at either splsoftcam
3458  * (or splcam since that encompases splsoftcam).
3459  */
3460 static int
3461 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3462 		 u_int32_t new_priority)
3463 {
3464 	int retval;
3465 	u_int32_t old_priority;
3466 
3467 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3468 
3469 	old_priority = pinfo->priority;
3470 
3471 	/*
3472 	 * Are we already queued?
3473 	 */
3474 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3475 		/* Simply reorder based on new priority */
3476 		if (new_priority < old_priority) {
3477 			camq_change_priority(queue, pinfo->index,
3478 					     new_priority);
3479 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3480 					("changed priority to %d\n",
3481 					 new_priority));
3482 		}
3483 		retval = 0;
3484 	} else {
3485 		/* New entry on the queue */
3486 		if (new_priority < old_priority)
3487 			pinfo->priority = new_priority;
3488 
3489 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3490 				("Inserting onto queue\n"));
3491 		pinfo->generation = ++queue->generation;
3492 		camq_insert(queue, pinfo);
3493 		retval = 1;
3494 	}
3495 	return (retval);
3496 }
3497 
3498 static void
3499 xpt_run_dev_allocq(struct cam_eb *bus)
3500 {
3501 	struct	cam_devq *devq;
3502 	int	s;
3503 
3504 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3505 	devq = bus->sim->devq;
3506 
3507 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3508 			("   qfrozen_cnt == 0x%x, entries == %d, "
3509 			 "openings == %d, active == %d\n",
3510 			 devq->alloc_queue.qfrozen_cnt,
3511 			 devq->alloc_queue.entries,
3512 			 devq->alloc_openings,
3513 			 devq->alloc_active));
3514 
3515 	s = splsoftcam();
3516 	devq->alloc_queue.qfrozen_cnt++;
3517 	while ((devq->alloc_queue.entries > 0)
3518 	    && (devq->alloc_openings > 0)
3519 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3520 		struct	cam_ed_qinfo *qinfo;
3521 		struct	cam_ed *device;
3522 		union	ccb *work_ccb;
3523 		struct	cam_periph *drv;
3524 		struct	camq *drvq;
3525 
3526 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3527 							   CAMQ_HEAD);
3528 		device = qinfo->device;
3529 
3530 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3531 				("running device %p\n", device));
3532 
3533 		drvq = &device->drvq;
3534 
3535 #ifdef CAMDEBUG
3536 		if (drvq->entries <= 0) {
3537 			panic("xpt_run_dev_allocq: "
3538 			      "Device on queue without any work to do");
3539 		}
3540 #endif
3541 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3542 			devq->alloc_openings--;
3543 			devq->alloc_active++;
3544 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3545 			splx(s);
3546 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3547 				      drv->pinfo.priority);
3548 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3549 					("calling periph start\n"));
3550 			drv->periph_start(drv, work_ccb);
3551 		} else {
3552 			/*
3553 			 * Malloc failure in alloc_ccb
3554 			 */
3555 			/*
3556 			 * XXX add us to a list to be run from free_ccb
3557 			 * if we don't have any ccbs active on this
3558 			 * device queue otherwise we may never get run
3559 			 * again.
3560 			 */
3561 			break;
3562 		}
3563 
3564 		/* Raise IPL for possible insertion and test at top of loop */
3565 		s = splsoftcam();
3566 
3567 		if (drvq->entries > 0) {
3568 			/* We have more work.  Attempt to reschedule */
3569 			xpt_schedule_dev_allocq(bus, device);
3570 		}
3571 	}
3572 	devq->alloc_queue.qfrozen_cnt--;
3573 	splx(s);
3574 }
3575 
3576 static void
3577 xpt_run_dev_sendq(struct cam_eb *bus)
3578 {
3579 	struct	cam_devq *devq;
3580 	int	s;
3581 
3582 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3583 
3584 	devq = bus->sim->devq;
3585 
3586 	s = splcam();
3587 	devq->send_queue.qfrozen_cnt++;
3588 	splx(s);
3589 	s = splsoftcam();
3590 	while ((devq->send_queue.entries > 0)
3591 	    && (devq->send_openings > 0)) {
3592 		struct	cam_ed_qinfo *qinfo;
3593 		struct	cam_ed *device;
3594 		union ccb *work_ccb;
3595 		struct	cam_sim *sim;
3596 		int	ospl;
3597 
3598 		ospl = splcam();
3599 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3600 			splx(ospl);
3601 			break;
3602 		}
3603 
3604 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3605 							   CAMQ_HEAD);
3606 		device = qinfo->device;
3607 
3608 		/*
3609 		 * If the device has been "frozen", don't attempt
3610 		 * to run it.
3611 		 */
3612 		if (device->qfrozen_cnt > 0) {
3613 			splx(ospl);
3614 			continue;
3615 		}
3616 
3617 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3618 				("running device %p\n", device));
3619 
3620 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3621 		if (work_ccb == NULL) {
3622 			printf("device on run queue with no ccbs???");
3623 			splx(ospl);
3624 			continue;
3625 		}
3626 
3627 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3628 
3629 		 	if (num_highpower <= 0) {
3630 				/*
3631 				 * We got a high power command, but we
3632 				 * don't have any available slots.  Freeze
3633 				 * the device queue until we have a slot
3634 				 * available.
3635 				 */
3636 				device->qfrozen_cnt++;
3637 				STAILQ_INSERT_TAIL(&highpowerq,
3638 						   &work_ccb->ccb_h,
3639 						   xpt_links.stqe);
3640 
3641 				splx(ospl);
3642 				continue;
3643 			} else {
3644 				/*
3645 				 * Consume a high power slot while
3646 				 * this ccb runs.
3647 				 */
3648 				num_highpower--;
3649 			}
3650 		}
3651 		devq->active_dev = device;
3652 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3653 
3654 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3655 		splx(ospl);
3656 
3657 		devq->send_openings--;
3658 		devq->send_active++;
3659 
3660 		if (device->ccbq.queue.entries > 0)
3661 			xpt_schedule_dev_sendq(bus, device);
3662 
3663 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3664 			/*
3665 			 * The client wants to freeze the queue
3666 			 * after this CCB is sent.
3667 			 */
3668 			ospl = splcam();
3669 			device->qfrozen_cnt++;
3670 			splx(ospl);
3671 		}
3672 
3673 		splx(s);
3674 
3675 		if ((device->inq_flags & SID_CmdQue) != 0)
3676 			work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3677 		else
3678 			/*
3679 			 * Clear this in case of a retried CCB that failed
3680 			 * due to a rejected tag.
3681 			 */
3682 			work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3683 
3684 		/*
3685 		 * Device queues can be shared among multiple sim instances
3686 		 * that reside on different busses.  Use the SIM in the queue
3687 		 * CCB's path, rather than the one in the bus that was passed
3688 		 * into this function.
3689 		 */
3690 		sim = work_ccb->ccb_h.path->bus->sim;
3691 		(*(sim->sim_action))(sim, work_ccb);
3692 
3693 		ospl = splcam();
3694 		devq->active_dev = NULL;
3695 		splx(ospl);
3696 		/* Raise IPL for possible insertion and test at top of loop */
3697 		s = splsoftcam();
3698 	}
3699 	splx(s);
3700 	s = splcam();
3701 	devq->send_queue.qfrozen_cnt--;
3702 	splx(s);
3703 }
3704 
3705 /*
3706  * This function merges stuff from the slave ccb into the master ccb, while
3707  * keeping important fields in the master ccb constant.
3708  */
3709 void
3710 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3711 {
3712 	/*
3713 	 * Pull fields that are valid for peripheral drivers to set
3714 	 * into the master CCB along with the CCB "payload".
3715 	 */
3716 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3717 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3718 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3719 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3720 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3721 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3722 }
3723 
3724 void
3725 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3726 {
3727 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3728 	ccb_h->pinfo.priority = priority;
3729 	ccb_h->path = path;
3730 	ccb_h->path_id = path->bus->path_id;
3731 	if (path->target)
3732 		ccb_h->target_id = path->target->target_id;
3733 	else
3734 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3735 	if (path->device) {
3736 		ccb_h->target_lun = path->device->lun_id;
3737 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3738 	} else {
3739 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3740 	}
3741 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3742 	ccb_h->flags = 0;
3743 }
3744 
3745 /* Path manipulation functions */
3746 cam_status
3747 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3748 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3749 {
3750 	struct	   cam_path *path;
3751 	cam_status status;
3752 
3753 	path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT);
3754 
3755 	if (path == NULL) {
3756 		status = CAM_RESRC_UNAVAIL;
3757 		return(status);
3758 	}
3759 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3760 	if (status != CAM_REQ_CMP) {
3761 		free(path, M_DEVBUF);
3762 		path = NULL;
3763 	}
3764 	*new_path_ptr = path;
3765 	return (status);
3766 }
3767 
3768 static cam_status
3769 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3770 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3771 {
3772 	struct	     cam_eb *bus;
3773 	struct	     cam_et *target;
3774 	struct	     cam_ed *device;
3775 	cam_status   status;
3776 	int	     s;
3777 
3778 	status = CAM_REQ_CMP;	/* Completed without error */
3779 	target = NULL;		/* Wildcarded */
3780 	device = NULL;		/* Wildcarded */
3781 
3782 	/*
3783 	 * We will potentially modify the EDT, so block interrupts
3784 	 * that may attempt to create cam paths.
3785 	 */
3786 	s = splcam();
3787 	bus = xpt_find_bus(path_id);
3788 	if (bus == NULL) {
3789 		status = CAM_PATH_INVALID;
3790 	} else {
3791 		target = xpt_find_target(bus, target_id);
3792 		if (target == NULL) {
3793 			/* Create one */
3794 			struct cam_et *new_target;
3795 
3796 			new_target = xpt_alloc_target(bus, target_id);
3797 			if (new_target == NULL) {
3798 				status = CAM_RESRC_UNAVAIL;
3799 			} else {
3800 				target = new_target;
3801 			}
3802 		}
3803 		if (target != NULL) {
3804 			device = xpt_find_device(target, lun_id);
3805 			if (device == NULL) {
3806 				/* Create one */
3807 				struct cam_ed *new_device;
3808 
3809 				new_device = xpt_alloc_device(bus,
3810 							      target,
3811 							      lun_id);
3812 				if (new_device == NULL) {
3813 					status = CAM_RESRC_UNAVAIL;
3814 				} else {
3815 					device = new_device;
3816 				}
3817 			}
3818 		}
3819 	}
3820 	splx(s);
3821 
3822 	/*
3823 	 * Only touch the user's data if we are successful.
3824 	 */
3825 	if (status == CAM_REQ_CMP) {
3826 		new_path->periph = perph;
3827 		new_path->bus = bus;
3828 		new_path->target = target;
3829 		new_path->device = device;
3830 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3831 	} else {
3832 		if (device != NULL)
3833 			xpt_release_device(bus, target, device);
3834 		if (target != NULL)
3835 			xpt_release_target(bus, target);
3836 		if (bus != NULL)
3837 			xpt_release_bus(bus);
3838 	}
3839 	return (status);
3840 }
3841 
3842 static void
3843 xpt_release_path(struct cam_path *path)
3844 {
3845 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3846 	if (path->device != NULL) {
3847 		xpt_release_device(path->bus, path->target, path->device);
3848 		path->device = NULL;
3849 	}
3850 	if (path->target != NULL) {
3851 		xpt_release_target(path->bus, path->target);
3852 		path->target = NULL;
3853 	}
3854 	if (path->bus != NULL) {
3855 		xpt_release_bus(path->bus);
3856 		path->bus = NULL;
3857 	}
3858 }
3859 
3860 void
3861 xpt_free_path(struct cam_path *path)
3862 {
3863 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3864 	xpt_release_path(path);
3865 	free(path, M_DEVBUF);
3866 }
3867 
3868 
3869 /*
3870  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3871  * in path1, 2 for match with wildcards in path2.
3872  */
3873 int
3874 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3875 {
3876 	int retval = 0;
3877 
3878 	if (path1->bus != path2->bus) {
3879 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3880 			retval = 1;
3881 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3882 			retval = 2;
3883 		else
3884 			return (-1);
3885 	}
3886 	if (path1->target != path2->target) {
3887 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3888 			if (retval == 0)
3889 				retval = 1;
3890 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3891 			retval = 2;
3892 		else
3893 			return (-1);
3894 	}
3895 	if (path1->device != path2->device) {
3896 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3897 			if (retval == 0)
3898 				retval = 1;
3899 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3900 			retval = 2;
3901 		else
3902 			return (-1);
3903 	}
3904 	return (retval);
3905 }
3906 
3907 void
3908 xpt_print_path(struct cam_path *path)
3909 {
3910 	if (path == NULL)
3911 		printf("(nopath): ");
3912 	else {
3913 		if (path->periph != NULL)
3914 			printf("(%s%d:", path->periph->periph_name,
3915 			       path->periph->unit_number);
3916 		else
3917 			printf("(noperiph:");
3918 
3919 		if (path->bus != NULL)
3920 			printf("%s%d:%d:", path->bus->sim->sim_name,
3921 			       path->bus->sim->unit_number,
3922 			       path->bus->sim->bus_id);
3923 		else
3924 			printf("nobus:");
3925 
3926 		if (path->target != NULL)
3927 			printf("%d:", path->target->target_id);
3928 		else
3929 			printf("X:");
3930 
3931 		if (path->device != NULL)
3932 			printf("%d): ", path->device->lun_id);
3933 		else
3934 			printf("X): ");
3935 	}
3936 }
3937 
3938 path_id_t
3939 xpt_path_path_id(struct cam_path *path)
3940 {
3941 	return(path->bus->path_id);
3942 }
3943 
3944 target_id_t
3945 xpt_path_target_id(struct cam_path *path)
3946 {
3947 	if (path->target != NULL)
3948 		return (path->target->target_id);
3949 	else
3950 		return (CAM_TARGET_WILDCARD);
3951 }
3952 
3953 lun_id_t
3954 xpt_path_lun_id(struct cam_path *path)
3955 {
3956 	if (path->device != NULL)
3957 		return (path->device->lun_id);
3958 	else
3959 		return (CAM_LUN_WILDCARD);
3960 }
3961 
3962 struct cam_sim *
3963 xpt_path_sim(struct cam_path *path)
3964 {
3965 	return (path->bus->sim);
3966 }
3967 
3968 struct cam_periph*
3969 xpt_path_periph(struct cam_path *path)
3970 {
3971 	return (path->periph);
3972 }
3973 
3974 /*
3975  * Release a CAM control block for the caller.  Remit the cost of the structure
3976  * to the device referenced by the path.  If the this device had no 'credits'
3977  * and peripheral drivers have registered async callbacks for this notification
3978  * call them now.
3979  */
3980 void
3981 xpt_release_ccb(union ccb *free_ccb)
3982 {
3983 	int	 s;
3984 	struct	 cam_path *path;
3985 	struct	 cam_ed *device;
3986 	struct	 cam_eb *bus;
3987 
3988 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3989 	path = free_ccb->ccb_h.path;
3990 	device = path->device;
3991 	bus = path->bus;
3992 	s = splsoftcam();
3993 	cam_ccbq_release_opening(&device->ccbq);
3994 	if (xpt_ccb_count > xpt_max_ccbs) {
3995 		xpt_free_ccb(free_ccb);
3996 		xpt_ccb_count--;
3997 	} else {
3998 		SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle);
3999 	}
4000 	bus->sim->devq->alloc_openings++;
4001 	bus->sim->devq->alloc_active--;
4002 	/* XXX Turn this into an inline function - xpt_run_device?? */
4003 	if ((device_is_alloc_queued(device) == 0)
4004 	 && (device->drvq.entries > 0)) {
4005 		xpt_schedule_dev_allocq(bus, device);
4006 	}
4007 	splx(s);
4008 	if (dev_allocq_is_runnable(bus->sim->devq))
4009 		xpt_run_dev_allocq(bus);
4010 }
4011 
4012 /* Functions accessed by SIM drivers */
4013 
4014 /*
4015  * A sim structure, listing the SIM entry points and instance
4016  * identification info is passed to xpt_bus_register to hook the SIM
4017  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4018  * for this new bus and places it in the array of busses and assigns
4019  * it a path_id.  The path_id may be influenced by "hard wiring"
4020  * information specified by the user.  Once interrupt services are
4021  * availible, the bus will be probed.
4022  */
4023 int32_t
4024 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4025 {
4026 	static path_id_t buscount;
4027 	struct cam_eb *new_bus;
4028 	struct ccb_pathinq cpi;
4029 	int s;
4030 
4031 	sim->bus_id = bus;
4032 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4033 					  M_DEVBUF, M_NOWAIT);
4034 	if (new_bus == NULL) {
4035 		/* Couldn't satisfy request */
4036 		return (CAM_RESRC_UNAVAIL);
4037 	}
4038 
4039 	bzero(new_bus, sizeof(*new_bus));
4040 
4041 	if (strcmp(sim->sim_name, "xpt") != 0) {
4042 
4043 		sim->path_id = xptpathid(sim->sim_name, sim->unit_number,
4044 					 sim->bus_id, &buscount);
4045 	}
4046 
4047 	new_bus->path_id = sim->path_id;
4048 	new_bus->sim = sim;
4049 	TAILQ_INIT(&new_bus->et_entries);
4050 	timevalclear(&new_bus->last_reset);
4051 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4052 	s = splcam();
4053 	TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links);
4054 	bus_generation++;
4055 	splx(s);
4056 
4057 	/* Notify interested parties */
4058 	if (sim->path_id != CAM_XPT_PATH_ID) {
4059 		struct cam_path path;
4060 
4061 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4062 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4063 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4064 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4065 		xpt_action((union ccb *)&cpi);
4066 		xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi);
4067 		xpt_release_path(&path);
4068 	}
4069 	return (CAM_SUCCESS);
4070 }
4071 
4072 static int
4073 xptnextfreebus(path_id_t startbus)
4074 {
4075 	struct cam_sim_config *sim_conf;
4076 
4077 	sim_conf = cam_sinit;
4078 	while (sim_conf->sim_name != NULL) {
4079 
4080 		if (IS_SPECIFIED(sim_conf->pathid)
4081 		 && (startbus == sim_conf->pathid)) {
4082 			++startbus;
4083 			/* Start the search over */
4084 			sim_conf = cam_sinit;
4085 		} else {
4086 			sim_conf++;
4087 		}
4088 	}
4089 	return (startbus);
4090 }
4091 
4092 static int
4093 xptpathid(const char *sim_name, int sim_unit,
4094 	  int sim_bus, path_id_t *nextpath)
4095 {
4096 	struct cam_sim_config *sim_conf;
4097 	path_id_t pathid;
4098 
4099 	pathid = CAM_XPT_PATH_ID;
4100 	for (sim_conf = cam_sinit; sim_conf->sim_name != NULL; sim_conf++) {
4101 
4102 		if (!IS_SPECIFIED(sim_conf->pathid))
4103 			continue;
4104 
4105 		if (!strcmp(sim_name, sim_conf->sim_name)
4106 		 && (sim_unit == sim_conf->sim_unit)) {
4107 
4108 			if (IS_SPECIFIED(sim_conf->sim_bus)) {
4109 				if (sim_bus == sim_conf->sim_bus) {
4110 					pathid = sim_conf->pathid;
4111 					break;
4112 				}
4113 			} else if (sim_bus == 0) {
4114 				/* Unspecified matches bus 0 */
4115 				pathid = sim_conf->pathid;
4116 				break;
4117 			} else {
4118 				printf("Ambiguous scbus configuration for %s%d "
4119 				       "bus %d, cannot wire down.  The kernel "
4120 				       "config entry for scbus%d should "
4121 				       "specify a controller bus.\n"
4122 				       "Scbus will be assigned dynamically.\n",
4123 				       sim_name, sim_unit, sim_bus,
4124 				       sim_conf->pathid);
4125                              break;
4126 			}
4127 		}
4128 	}
4129 
4130 	if (pathid == CAM_XPT_PATH_ID) {
4131 		pathid = xptnextfreebus(*nextpath);
4132 		*nextpath = pathid + 1;
4133 	}
4134 	return (pathid);
4135 }
4136 
4137 int32_t
4138 xpt_bus_deregister(path_id)
4139 	u_int8_t path_id;
4140 {
4141 	/* XXX */
4142 	return (CAM_SUCCESS);
4143 }
4144 
4145 void
4146 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4147 {
4148 	struct cam_eb *bus;
4149 	struct cam_et *target, *next_target;
4150 	struct cam_ed *device, *next_device;
4151 	int s;
4152 
4153 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4154 
4155 	/*
4156 	 * Most async events come from a CAM interrupt context.  In
4157 	 * a few cases, the error recovery code at the peripheral layer,
4158 	 * which may run from our SWI or a process context, may signal
4159 	 * deferred events with a call to xpt_async. Ensure async
4160 	 * notifications are serialized by blocking cam interrupts.
4161 	 */
4162 	s = splcam();
4163 
4164 	bus = path->bus;
4165 
4166 	if (async_code == AC_BUS_RESET) {
4167 		int s;
4168 
4169 		s = splclock();
4170 		/* Update our notion of when the last reset occurred */
4171 		microtime(&bus->last_reset);
4172 		splx(s);
4173 	}
4174 
4175 	for (target = TAILQ_FIRST(&bus->et_entries);
4176 	     target != NULL;
4177 	     target = next_target) {
4178 
4179 		next_target = TAILQ_NEXT(target, links);
4180 
4181 		if (path->target != target
4182 		 && path->target->target_id != CAM_TARGET_WILDCARD)
4183 			continue;
4184 
4185 		if (async_code == AC_SENT_BDR) {
4186 			int s;
4187 
4188 			/* Update our notion of when the last reset occurred */
4189 			s = splclock();
4190 			microtime(&path->target->last_reset);
4191 			splx(s);
4192 		}
4193 
4194 		for (device = TAILQ_FIRST(&target->ed_entries);
4195 		     device != NULL;
4196 		     device = next_device) {
4197 			cam_status status;
4198 			struct cam_path newpath;
4199 
4200 			next_device = TAILQ_NEXT(device, links);
4201 
4202 			if (path->device != device
4203 			 && path->device->lun_id != CAM_LUN_WILDCARD)
4204 				continue;
4205 
4206 			/*
4207 			 * We need our own path with wildcards expanded to
4208 			 * handle certain types of events.
4209 			 */
4210 			if ((async_code == AC_SENT_BDR)
4211 			 || (async_code == AC_BUS_RESET)
4212 			 || (async_code == AC_INQ_CHANGED))
4213 				status = xpt_compile_path(&newpath, NULL,
4214 							  bus->path_id,
4215 							  target->target_id,
4216 							  device->lun_id);
4217 			else
4218 				status = CAM_REQ_CMP_ERR;
4219 
4220 			if (status == CAM_REQ_CMP) {
4221 
4222 				/*
4223 				 * Allow transfer negotiation to occur in a
4224 				 * tag free environment.
4225 				 */
4226 				if (async_code == AC_SENT_BDR
4227 				  || async_code == AC_BUS_RESET)
4228 					xpt_toggle_tags(&newpath);
4229 
4230 				if (async_code == AC_INQ_CHANGED) {
4231 					/*
4232 					 * We've sent a start unit command, or
4233 					 * something similar to a device that
4234 					 * may have caused its inquiry data to
4235 					 * change. So we re-scan the device to
4236 					 * refresh the inquiry data for it.
4237 					 */
4238 					xpt_scan_lun(newpath.periph, &newpath,
4239 						     CAM_EXPECT_INQ_CHANGE,
4240 						     NULL);
4241 				}
4242 				xpt_release_path(&newpath);
4243 			} else if (async_code == AC_LOST_DEVICE) {
4244 				device->flags |= CAM_DEV_UNCONFIGURED;
4245 			} else if (async_code == AC_TRANSFER_NEG) {
4246 				struct ccb_trans_settings *settings;
4247 
4248 				settings =
4249 				    (struct ccb_trans_settings *)async_arg;
4250 				xpt_set_transfer_settings(settings, device,
4251 							  /*async_update*/TRUE);
4252 			}
4253 
4254 			xpt_async_bcast(&device->asyncs,
4255 					async_code,
4256 					path,
4257 					async_arg);
4258 		}
4259 	}
4260 
4261 	/*
4262 	 * If this wasn't a fully wildcarded async, tell all
4263 	 * clients that want all async events.
4264 	 */
4265 	if (bus != xpt_periph->path->bus)
4266 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4267 				path, async_arg);
4268 	splx(s);
4269 }
4270 
4271 static void
4272 xpt_async_bcast(struct async_list *async_head,
4273 		u_int32_t async_code,
4274 		struct cam_path *path, void *async_arg)
4275 {
4276 	struct async_node *cur_entry;
4277 
4278 	cur_entry = SLIST_FIRST(async_head);
4279 	while (cur_entry != NULL) {
4280 		struct async_node *next_entry;
4281 		/*
4282 		 * Grab the next list entry before we call the current
4283 		 * entry's callback.  This is because the callback function
4284 		 * can delete its async callback entry.
4285 		 */
4286 		next_entry = SLIST_NEXT(cur_entry, links);
4287 		if ((cur_entry->event_enable & async_code) != 0)
4288 			cur_entry->callback(cur_entry->callback_arg,
4289 					    async_code, path,
4290 					    async_arg);
4291 		cur_entry = next_entry;
4292 	}
4293 }
4294 
4295 u_int32_t
4296 xpt_freeze_devq(struct cam_path *path, u_int count)
4297 {
4298 	int s;
4299 	struct ccb_hdr *ccbh;
4300 
4301 	s = splcam();
4302 	path->device->qfrozen_cnt += count;
4303 
4304 	/*
4305 	 * Mark the last CCB in the queue as needing
4306 	 * to be requeued if the driver hasn't
4307 	 * changed it's state yet.  This fixes a race
4308 	 * where a ccb is just about to be queued to
4309 	 * a controller driver when it's interrupt routine
4310 	 * freezes the queue.  To completly close the
4311 	 * hole, controller drives must check to see
4312 	 * if a ccb's status is still CAM_REQ_INPROG
4313 	 * under spl protection just before they queue
4314 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4315 	 * an example.
4316 	 */
4317 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4318 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4319 		ccbh->status = CAM_REQUEUE_REQ;
4320 	splx(s);
4321 	return (path->device->qfrozen_cnt);
4322 }
4323 
4324 u_int32_t
4325 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4326 {
4327 	sim->devq->send_queue.qfrozen_cnt += count;
4328 	if (sim->devq->active_dev != NULL) {
4329 		struct ccb_hdr *ccbh;
4330 
4331 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4332 				  ccb_hdr_tailq);
4333 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4334 			ccbh->status = CAM_REQUEUE_REQ;
4335 	}
4336 	return (sim->devq->send_queue.qfrozen_cnt);
4337 }
4338 
4339 static void
4340 xpt_release_devq_timeout(void *arg)
4341 {
4342 	struct cam_ed *device;
4343 
4344 	device = (struct cam_ed *)arg;
4345 
4346 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4347 }
4348 
4349 void
4350 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4351 {
4352 	xpt_release_devq_device(path->device, count, run_queue);
4353 }
4354 
4355 static void
4356 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4357 {
4358 	int	rundevq;
4359 	int	s;
4360 
4361 	rundevq = 0;
4362 	s = splcam();
4363 	if (dev->qfrozen_cnt > 0) {
4364 
4365 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4366 		dev->qfrozen_cnt -= count;
4367 		if (dev->qfrozen_cnt == 0) {
4368 
4369 			/*
4370 			 * No longer need to wait for a successful
4371 			 * command completion.
4372 			 */
4373 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4374 
4375 			/*
4376 			 * Remove any timeouts that might be scheduled
4377 			 * to release this queue.
4378 			 */
4379 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4380 				untimeout(xpt_release_devq_timeout, dev,
4381 					  dev->c_handle);
4382 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4383 			}
4384 
4385 			/*
4386 			 * Now that we are unfrozen schedule the
4387 			 * device so any pending transactions are
4388 			 * run.
4389 			 */
4390 			if ((dev->ccbq.queue.entries > 0)
4391 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4392 			 && (run_queue != 0)) {
4393 				rundevq = 1;
4394 			}
4395 		}
4396 	}
4397 	splx(s);
4398 	if (rundevq != 0)
4399 		xpt_run_dev_sendq(dev->target->bus);
4400 }
4401 
4402 void
4403 xpt_release_simq(struct cam_sim *sim, int run_queue)
4404 {
4405 	int	s;
4406 	struct	camq *sendq;
4407 
4408 	sendq = &(sim->devq->send_queue);
4409 	s = splcam();
4410 	if (sendq->qfrozen_cnt > 0) {
4411 
4412 		sendq->qfrozen_cnt--;
4413 		if (sendq->qfrozen_cnt == 0) {
4414 			struct cam_eb *bus;
4415 
4416 			/*
4417 			 * If there is a timeout scheduled to release this
4418 			 * sim queue, remove it.  The queue frozen count is
4419 			 * already at 0.
4420 			 */
4421 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4422 				untimeout(xpt_release_simq_timeout, sim,
4423 					  sim->c_handle);
4424 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4425 			}
4426 			bus = xpt_find_bus(sim->path_id);
4427 			splx(s);
4428 
4429 			if (run_queue) {
4430 				/*
4431 				 * Now that we are unfrozen run the send queue.
4432 				 */
4433 				xpt_run_dev_sendq(bus);
4434 			}
4435 			xpt_release_bus(bus);
4436 		} else
4437 			splx(s);
4438 	} else
4439 		splx(s);
4440 }
4441 
4442 static void
4443 xpt_release_simq_timeout(void *arg)
4444 {
4445 	struct cam_sim *sim;
4446 
4447 	sim = (struct cam_sim *)arg;
4448 	xpt_release_simq(sim, /* run_queue */ TRUE);
4449 }
4450 
4451 void
4452 xpt_done(union ccb *done_ccb)
4453 {
4454 	int s;
4455 
4456 	s = splcam();
4457 
4458 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4459 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4460 		/*
4461 		 * Queue up the request for handling by our SWI handler
4462 		 * any of the "non-immediate" type of ccbs.
4463 		 */
4464 		switch (done_ccb->ccb_h.path->periph->type) {
4465 		case CAM_PERIPH_BIO:
4466 			TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h,
4467 					  sim_links.tqe);
4468 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4469 			setsoftcambio();
4470 			break;
4471 		case CAM_PERIPH_NET:
4472 			TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h,
4473 					  sim_links.tqe);
4474 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4475 			setsoftcamnet();
4476 			break;
4477 		}
4478 	}
4479 	splx(s);
4480 }
4481 
4482 union ccb *
4483 xpt_alloc_ccb()
4484 {
4485 	union ccb *new_ccb;
4486 
4487 	new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK);
4488 	return (new_ccb);
4489 }
4490 
4491 void
4492 xpt_free_ccb(union ccb *free_ccb)
4493 {
4494 	free(free_ccb, M_DEVBUF);
4495 }
4496 
4497 
4498 
4499 /* Private XPT functions */
4500 
4501 /*
4502  * Get a CAM control block for the caller. Charge the structure to the device
4503  * referenced by the path.  If the this device has no 'credits' then the
4504  * device already has the maximum number of outstanding operations under way
4505  * and we return NULL. If we don't have sufficient resources to allocate more
4506  * ccbs, we also return NULL.
4507  */
4508 static union ccb *
4509 xpt_get_ccb(struct cam_ed *device)
4510 {
4511 	union ccb *new_ccb;
4512 	int s;
4513 
4514 	s = splsoftcam();
4515 	if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) {
4516 		new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT);
4517                 if (new_ccb == NULL) {
4518 			splx(s);
4519 			return (NULL);
4520 		}
4521 		callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4522 		SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h,
4523 				  xpt_links.sle);
4524 		xpt_ccb_count++;
4525 	}
4526 	cam_ccbq_take_opening(&device->ccbq);
4527 	SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle);
4528 	splx(s);
4529 	return (new_ccb);
4530 }
4531 
4532 static void
4533 xpt_release_bus(struct cam_eb *bus)
4534 {
4535 	int s;
4536 
4537 	s = splcam();
4538 	if ((--bus->refcount == 0)
4539 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4540 		TAILQ_REMOVE(&xpt_busses, bus, links);
4541 		bus_generation++;
4542 		splx(s);
4543 		free(bus, M_DEVBUF);
4544 	} else
4545 		splx(s);
4546 }
4547 
4548 static struct cam_et *
4549 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4550 {
4551 	struct cam_et *target;
4552 
4553 	target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT);
4554 	if (target != NULL) {
4555 		struct cam_et *cur_target;
4556 
4557 		target->bus = bus;
4558 		target->target_id = target_id;
4559 		target->refcount = 1;
4560 		/*
4561 		 * Hold a reference to our parent bus so it
4562 		 * will not go away before we do.
4563 		 */
4564 		bus->refcount++;
4565 		TAILQ_INIT(&target->ed_entries);
4566 		timevalclear(&target->last_reset);
4567 
4568 		/* Insertion sort into our bus's target list */
4569 		cur_target = TAILQ_FIRST(&bus->et_entries);
4570 		while (cur_target != NULL && cur_target->target_id < target_id)
4571 			cur_target = TAILQ_NEXT(cur_target, links);
4572 
4573 		if (cur_target != NULL) {
4574 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4575 		} else {
4576 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4577 		}
4578 		bus->generation++;
4579 	}
4580 	return (target);
4581 }
4582 
4583 static void
4584 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4585 {
4586 	int s;
4587 
4588 	s = splcam();
4589 	if ((--target->refcount == 0)
4590 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4591 		TAILQ_REMOVE(&bus->et_entries, target, links);
4592 		bus->generation++;
4593 		splx(s);
4594 		free(target, M_DEVBUF);
4595 		xpt_release_bus(bus);
4596 	} else
4597 		splx(s);
4598 }
4599 
4600 static struct cam_ed *
4601 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4602 {
4603 	struct	   cam_ed *device;
4604 	struct	   cam_devq *devq;
4605 	cam_status status;
4606 
4607 	/* Make space for us in the device queue on our bus */
4608 	devq = bus->sim->devq;
4609 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4610 
4611 	if (status != CAM_REQ_CMP) {
4612 		device = NULL;
4613 	} else {
4614 		device = (struct cam_ed *)malloc(sizeof(*device),
4615 						 M_DEVBUF, M_NOWAIT);
4616 	}
4617 
4618 	if (device != NULL) {
4619 		struct cam_ed *cur_device;
4620 
4621 		bzero(device, sizeof(*device));
4622 
4623 		SLIST_INIT(&device->asyncs);
4624 		SLIST_INIT(&device->periphs);
4625 		callout_handle_init(&device->c_handle);
4626 		device->refcount = 1;
4627 		device->flags |= CAM_DEV_UNCONFIGURED;
4628 		/*
4629 		 * Take the default quirk entry until we have inquiry
4630 		 * data and can determine a better quirk to use.
4631 		 */
4632 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
4633 
4634 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4635 		device->alloc_ccb_entry.device = device;
4636 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4637 		device->send_ccb_entry.device = device;
4638 
4639 		device->target = target;
4640 		/*
4641 		 * Hold a reference to our parent target so it
4642 		 * will not go away before we do.
4643 		 */
4644 		target->refcount++;
4645 
4646 		device->lun_id = lun_id;
4647 
4648 		/* Initialize our queues */
4649 		if (camq_init(&device->drvq, 0) != 0) {
4650 			free(device, M_DEVBUF);
4651 			return (NULL);
4652 		}
4653 
4654 		if (cam_ccbq_init(&device->ccbq,
4655 				  bus->sim->max_dev_openings) != 0) {
4656 			camq_fini(&device->drvq);
4657 			free(device, M_DEVBUF);
4658 			return (NULL);
4659 		}
4660 		/*
4661 		 * XXX should be limited by number of CCBs this bus can
4662 		 * do.
4663 		 */
4664 		xpt_max_ccbs += device->ccbq.devq_openings;
4665 		/* Insertion sort into our target's device list */
4666 		cur_device = TAILQ_FIRST(&target->ed_entries);
4667 		while (cur_device != NULL && cur_device->lun_id < lun_id)
4668 			cur_device = TAILQ_NEXT(cur_device, links);
4669 		if (cur_device != NULL) {
4670 			TAILQ_INSERT_BEFORE(cur_device, device, links);
4671 		} else {
4672 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4673 		}
4674 		target->generation++;
4675 	}
4676 	return (device);
4677 }
4678 
4679 static void
4680 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4681 		   struct cam_ed *device)
4682 {
4683 	int s;
4684 
4685 	s = splcam();
4686 	if ((--device->refcount == 0)
4687 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4688 		struct cam_devq *devq;
4689 
4690 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4691 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4692 			panic("Removing device while still queued for ccbs");
4693 
4694 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4695 				untimeout(xpt_release_devq_timeout, device,
4696 					  device->c_handle);
4697 
4698 		TAILQ_REMOVE(&target->ed_entries, device,links);
4699 		target->generation++;
4700 		xpt_max_ccbs -= device->ccbq.devq_openings;
4701 		/* Release our slot in the devq */
4702 		devq = bus->sim->devq;
4703 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4704 		splx(s);
4705 		free(device, M_DEVBUF);
4706 	} else
4707 		splx(s);
4708 }
4709 
4710 static u_int32_t
4711 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4712 {
4713 	int	s;
4714 	int	diff;
4715 	int	result;
4716 	struct	cam_ed *dev;
4717 
4718 	dev = path->device;
4719 	s = splsoftcam();
4720 
4721 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4722 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4723 	if (result == CAM_REQ_CMP && (diff < 0)) {
4724 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4725 	}
4726 	/* Adjust the global limit */
4727 	xpt_max_ccbs += diff;
4728 	splx(s);
4729 	return (result);
4730 }
4731 
4732 static struct cam_eb *
4733 xpt_find_bus(path_id_t path_id)
4734 {
4735 	struct cam_eb *bus;
4736 
4737 	for (bus = TAILQ_FIRST(&xpt_busses);
4738 	     bus != NULL;
4739 	     bus = TAILQ_NEXT(bus, links)) {
4740 		if (bus->path_id == path_id) {
4741 			bus->refcount++;
4742 			break;
4743 		}
4744 	}
4745 	return (bus);
4746 }
4747 
4748 static struct cam_et *
4749 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4750 {
4751 	struct cam_et *target;
4752 
4753 	for (target = TAILQ_FIRST(&bus->et_entries);
4754 	     target != NULL;
4755 	     target = TAILQ_NEXT(target, links)) {
4756 		if (target->target_id == target_id) {
4757 			target->refcount++;
4758 			break;
4759 		}
4760 	}
4761 	return (target);
4762 }
4763 
4764 static struct cam_ed *
4765 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4766 {
4767 	struct cam_ed *device;
4768 
4769 	for (device = TAILQ_FIRST(&target->ed_entries);
4770 	     device != NULL;
4771 	     device = TAILQ_NEXT(device, links)) {
4772 		if (device->lun_id == lun_id) {
4773 			device->refcount++;
4774 			break;
4775 		}
4776 	}
4777 	return (device);
4778 }
4779 
4780 typedef struct {
4781 	union	ccb *request_ccb;
4782 	struct 	ccb_pathinq *cpi;
4783 	int	pending_count;
4784 } xpt_scan_bus_info;
4785 
4786 /*
4787  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
4788  * As the scan progresses, xpt_scan_bus is used as the
4789  * callback on completion function.
4790  */
4791 static void
4792 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
4793 {
4794 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4795 		  ("xpt_scan_bus\n"));
4796 	switch (request_ccb->ccb_h.func_code) {
4797 	case XPT_SCAN_BUS:
4798 	{
4799 		xpt_scan_bus_info *scan_info;
4800 		union	ccb *work_ccb;
4801 		struct	cam_path *path;
4802 		u_int	i;
4803 		u_int	max_target;
4804 		u_int	initiator_id;
4805 
4806 		/* Find out the characteristics of the bus */
4807 		work_ccb = xpt_alloc_ccb();
4808 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
4809 			      request_ccb->ccb_h.pinfo.priority);
4810 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4811 		xpt_action(work_ccb);
4812 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4813 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
4814 			xpt_free_ccb(work_ccb);
4815 			xpt_done(request_ccb);
4816 			return;
4817 		}
4818 
4819 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
4820 			/*
4821 			 * Can't scan the bus on an adapter that
4822 			 * cannot perform the initiator role.
4823 			 */
4824 			request_ccb->ccb_h.status = CAM_REQ_CMP;
4825 			xpt_free_ccb(work_ccb);
4826 			xpt_done(request_ccb);
4827 			return;
4828 		}
4829 
4830 		/* Save some state for use while we probe for devices */
4831 		scan_info = (xpt_scan_bus_info *)
4832 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK);
4833 		scan_info->request_ccb = request_ccb;
4834 		scan_info->cpi = &work_ccb->cpi;
4835 
4836 		/* Cache on our stack so we can work asynchronously */
4837 		max_target = scan_info->cpi->max_target;
4838 		initiator_id = scan_info->cpi->initiator_id;
4839 
4840 		/*
4841 		 * Don't count the initiator if the
4842 		 * initiator is addressable.
4843 		 */
4844 		scan_info->pending_count = max_target + 1;
4845 		if (initiator_id <= max_target)
4846 			scan_info->pending_count--;
4847 
4848 		for (i = 0; i <= max_target; i++) {
4849 			cam_status status;
4850 		 	if (i == initiator_id)
4851 				continue;
4852 
4853 			status = xpt_create_path(&path, xpt_periph,
4854 						 request_ccb->ccb_h.path_id,
4855 						 i, 0);
4856 			if (status != CAM_REQ_CMP) {
4857 				printf("xpt_scan_bus: xpt_create_path failed"
4858 				       " with status %#x, bus scan halted\n",
4859 				       status);
4860 				break;
4861 			}
4862 			work_ccb = xpt_alloc_ccb();
4863 			xpt_setup_ccb(&work_ccb->ccb_h, path,
4864 				      request_ccb->ccb_h.pinfo.priority);
4865 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4866 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4867 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
4868 			work_ccb->crcn.flags = request_ccb->crcn.flags;
4869 #if 0
4870 			printf("xpt_scan_bus: probing %d:%d:%d\n",
4871 				request_ccb->ccb_h.path_id, i, 0);
4872 #endif
4873 			xpt_action(work_ccb);
4874 		}
4875 		break;
4876 	}
4877 	case XPT_SCAN_LUN:
4878 	{
4879 		xpt_scan_bus_info *scan_info;
4880 		path_id_t path_id;
4881 		target_id_t target_id;
4882 		lun_id_t lun_id;
4883 
4884 		/* Reuse the same CCB to query if a device was really found */
4885 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
4886 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
4887 			      request_ccb->ccb_h.pinfo.priority);
4888 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
4889 
4890 		path_id = request_ccb->ccb_h.path_id;
4891 		target_id = request_ccb->ccb_h.target_id;
4892 		lun_id = request_ccb->ccb_h.target_lun;
4893 		xpt_action(request_ccb);
4894 
4895 #if 0
4896 		printf("xpt_scan_bus: got back probe from %d:%d:%d\n",
4897 			path_id, target_id, lun_id);
4898 #endif
4899 
4900 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
4901 			struct cam_ed *device;
4902 			struct cam_et *target;
4903 			int s;
4904 
4905 			/*
4906 			 * If we already probed lun 0 successfully, or
4907 			 * we have additional configured luns on this
4908 			 * target that might have "gone away", go onto
4909 			 * the next lun.
4910 			 */
4911 			target = request_ccb->ccb_h.path->target;
4912 			s = splcam();
4913 			device = TAILQ_FIRST(&target->ed_entries);
4914 			if (device != NULL)
4915 				device = TAILQ_NEXT(device, links);
4916 			splx(s);
4917 
4918 			if ((lun_id != 0) || (device != NULL)) {
4919 				/* Try the next lun */
4920 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
4921 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
4922 					lun_id++;
4923 			}
4924 		} else {
4925 			struct cam_ed *device;
4926 
4927 			device = request_ccb->ccb_h.path->device;
4928 
4929 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
4930 				/* Try the next lun */
4931 				if (lun_id < (CAM_SCSI2_MAXLUN-1) ||
4932 				    (device->quirk->quirks & CAM_QUIRK_HILUNS))
4933 					lun_id++;
4934 			}
4935 		}
4936 
4937 		xpt_free_path(request_ccb->ccb_h.path);
4938 
4939 		/* Check Bounds */
4940 		if ((lun_id == request_ccb->ccb_h.target_lun)
4941 		 || lun_id > scan_info->cpi->max_lun) {
4942 			/* We're done */
4943 
4944 			xpt_free_ccb(request_ccb);
4945 			scan_info->pending_count--;
4946 			if (scan_info->pending_count == 0) {
4947 				xpt_free_ccb((union ccb *)scan_info->cpi);
4948 				request_ccb = scan_info->request_ccb;
4949 				free(scan_info, M_TEMP);
4950 				request_ccb->ccb_h.status = CAM_REQ_CMP;
4951 				xpt_done(request_ccb);
4952 			}
4953 		} else {
4954 			/* Try the next device */
4955 			struct cam_path *path;
4956 			cam_status status;
4957 
4958 			path = request_ccb->ccb_h.path;
4959 			status = xpt_create_path(&path, xpt_periph,
4960 						 path_id, target_id, lun_id);
4961 			if (status != CAM_REQ_CMP) {
4962 				printf("xpt_scan_bus: xpt_create_path failed "
4963 				       "with status %#x, halting LUN scan\n",
4964 			 	       status);
4965 				xpt_free_ccb(request_ccb);
4966 				scan_info->pending_count--;
4967 				if (scan_info->pending_count == 0) {
4968 					xpt_free_ccb(
4969 						(union ccb *)scan_info->cpi);
4970 					request_ccb = scan_info->request_ccb;
4971 					free(scan_info, M_TEMP);
4972 					request_ccb->ccb_h.status = CAM_REQ_CMP;
4973 					xpt_done(request_ccb);
4974 					break;
4975 				}
4976 			}
4977 			xpt_setup_ccb(&request_ccb->ccb_h, path,
4978 				      request_ccb->ccb_h.pinfo.priority);
4979 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
4980 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
4981 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
4982 			request_ccb->crcn.flags =
4983 				scan_info->request_ccb->crcn.flags;
4984 #if 0
4985 			xpt_print_path(path);
4986 			printf("xpt_scan bus probing\n");
4987 #endif
4988 			xpt_action(request_ccb);
4989 		}
4990 		break;
4991 	}
4992 	default:
4993 		break;
4994 	}
4995 }
4996 
4997 typedef enum {
4998 	PROBE_TUR,
4999 	PROBE_INQUIRY,
5000 	PROBE_MODE_SENSE,
5001 	PROBE_SERIAL_NUM,
5002 	PROBE_TUR_FOR_NEGOTIATION
5003 } probe_action;
5004 
5005 typedef enum {
5006 	PROBE_INQUIRY_CKSUM	= 0x01,
5007 	PROBE_SERIAL_CKSUM	= 0x02,
5008 	PROBE_NO_ANNOUNCE	= 0x04
5009 } probe_flags;
5010 
5011 typedef struct {
5012 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5013 	probe_action	action;
5014 	union ccb	saved_ccb;
5015 	probe_flags	flags;
5016 	MD5_CTX		context;
5017 	u_int8_t	digest[16];
5018 } probe_softc;
5019 
5020 static void
5021 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5022 	     cam_flags flags, union ccb *request_ccb)
5023 {
5024 	struct ccb_pathinq cpi;
5025 	cam_status status;
5026 	struct cam_path *new_path;
5027 	struct cam_periph *old_periph;
5028 	int s;
5029 
5030 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5031 		  ("xpt_scan_lun\n"));
5032 
5033 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5034 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5035 	xpt_action((union ccb *)&cpi);
5036 
5037 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5038 		if (request_ccb != NULL) {
5039 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5040 			xpt_done(request_ccb);
5041 		}
5042 		return;
5043 	}
5044 
5045 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5046 		/*
5047 		 * Can't scan the bus on an adapter that
5048 		 * cannot perform the initiator role.
5049 		 */
5050 		if (request_ccb != NULL) {
5051 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5052 			xpt_done(request_ccb);
5053 		}
5054 		return;
5055 	}
5056 
5057 	if (request_ccb == NULL) {
5058 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5059 		if (request_ccb == NULL) {
5060 			xpt_print_path(path);
5061 			printf("xpt_scan_lun: can't allocate CCB, can't "
5062 			       "continue\n");
5063 			return;
5064 		}
5065 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5066 		if (new_path == NULL) {
5067 			xpt_print_path(path);
5068 			printf("xpt_scan_lun: can't allocate path, can't "
5069 			       "continue\n");
5070 			free(request_ccb, M_TEMP);
5071 			return;
5072 		}
5073 		status = xpt_compile_path(new_path, xpt_periph,
5074 					  path->bus->path_id,
5075 					  path->target->target_id,
5076 					  path->device->lun_id);
5077 
5078 		if (status != CAM_REQ_CMP) {
5079 			xpt_print_path(path);
5080 			printf("xpt_scan_lun: can't compile path, can't "
5081 			       "continue\n");
5082 			free(request_ccb, M_TEMP);
5083 			free(new_path, M_TEMP);
5084 			return;
5085 		}
5086 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5087 		request_ccb->ccb_h.cbfcnp = xptscandone;
5088 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5089 		request_ccb->crcn.flags = flags;
5090 	}
5091 
5092 	s = splsoftcam();
5093 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5094 		probe_softc *softc;
5095 
5096 		softc = (probe_softc *)old_periph->softc;
5097 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5098 				  periph_links.tqe);
5099 	} else {
5100 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5101 					  probestart, "probe",
5102 					  CAM_PERIPH_BIO,
5103 					  request_ccb->ccb_h.path, NULL, 0,
5104 					  request_ccb);
5105 
5106 		if (status != CAM_REQ_CMP) {
5107 			xpt_print_path(path);
5108 			printf("xpt_scan_lun: cam_alloc_periph returned an "
5109 			       "error, can't continue probe\n");
5110 			request_ccb->ccb_h.status = status;
5111 			xpt_done(request_ccb);
5112 		}
5113 	}
5114 	splx(s);
5115 }
5116 
5117 static void
5118 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5119 {
5120 	xpt_release_path(done_ccb->ccb_h.path);
5121 	free(done_ccb->ccb_h.path, M_TEMP);
5122 	free(done_ccb, M_TEMP);
5123 }
5124 
5125 static cam_status
5126 proberegister(struct cam_periph *periph, void *arg)
5127 {
5128 	union ccb *request_ccb;	/* CCB representing the probe request */
5129 	probe_softc *softc;
5130 
5131 	request_ccb = (union ccb *)arg;
5132 	if (periph == NULL) {
5133 		printf("proberegister: periph was NULL!!\n");
5134 		return(CAM_REQ_CMP_ERR);
5135 	}
5136 
5137 	if (request_ccb == NULL) {
5138 		printf("proberegister: no probe CCB, can't register device\n");
5139 		return(CAM_REQ_CMP_ERR);
5140 	}
5141 
5142 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5143 
5144 	if (softc == NULL) {
5145 		printf("proberegister: Unable to probe new device. "
5146 		       "Unable to allocate softc\n");
5147 		return(CAM_REQ_CMP_ERR);
5148 	}
5149 	TAILQ_INIT(&softc->request_ccbs);
5150 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5151 			  periph_links.tqe);
5152 	softc->flags = 0;
5153 	periph->softc = softc;
5154 	cam_periph_acquire(periph);
5155 	/*
5156 	 * Ensure we've waited at least a bus settle
5157 	 * delay before attempting to probe the device.
5158 	 */
5159 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5160 				      SCSI_DELAY);
5161 	probeschedule(periph);
5162 	return(CAM_REQ_CMP);
5163 }
5164 
5165 static void
5166 probeschedule(struct cam_periph *periph)
5167 {
5168 	struct ccb_pathinq cpi;
5169 	union ccb *ccb;
5170 	probe_softc *softc;
5171 
5172 	softc = (probe_softc *)periph->softc;
5173 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5174 
5175 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5176 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5177 	xpt_action((union ccb *)&cpi);
5178 
5179 	/*
5180 	 * If a device has gone away and another device, or the same one,
5181 	 * is back in the same place, it should have a unit attention
5182 	 * condition pending.  It will not report the unit attention in
5183 	 * response to an inquiry, which may leave invalid transfer
5184 	 * negotiations in effect.  The TUR will reveal the unit attention
5185 	 * condition.  Only send the TUR for lun 0, since some devices
5186 	 * will get confused by commands other than inquiry to non-existent
5187 	 * luns.  If you think a device has gone away start your scan from
5188 	 * lun 0.  This will insure that any bogus transfer settings are
5189 	 * invalidated.
5190 	 *
5191 	 * If we haven't seen the device before and the controller supports
5192 	 * some kind of transfer negotiation, negotiate with the first
5193 	 * sent command if no bus reset was performed at startup.  This
5194 	 * ensures that the device is not confused by transfer negotiation
5195 	 * settings left over by loader or BIOS action.
5196 	 */
5197 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5198 	 && (ccb->ccb_h.target_lun == 0)) {
5199 		softc->action = PROBE_TUR;
5200 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5201 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5202 		proberequestdefaultnegotiation(periph);
5203 		softc->action = PROBE_INQUIRY;
5204 	} else {
5205 		softc->action = PROBE_INQUIRY;
5206 	}
5207 
5208 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5209 		softc->flags |= PROBE_NO_ANNOUNCE;
5210 	else
5211 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5212 
5213 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5214 }
5215 
5216 static void
5217 probestart(struct cam_periph *periph, union ccb *start_ccb)
5218 {
5219 	/* Probe the device that our peripheral driver points to */
5220 	struct ccb_scsiio *csio;
5221 	probe_softc *softc;
5222 
5223 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5224 
5225 	softc = (probe_softc *)periph->softc;
5226 	csio = &start_ccb->csio;
5227 
5228 	switch (softc->action) {
5229 	case PROBE_TUR:
5230 	case PROBE_TUR_FOR_NEGOTIATION:
5231 	{
5232 		scsi_test_unit_ready(csio,
5233 				     /*retries*/4,
5234 				     probedone,
5235 				     MSG_SIMPLE_Q_TAG,
5236 				     SSD_FULL_SIZE,
5237 				     /*timeout*/60000);
5238 		break;
5239 	}
5240 	case PROBE_INQUIRY:
5241 	{
5242 		struct scsi_inquiry_data *inq_buf;
5243 
5244 		inq_buf = &periph->path->device->inq_data;
5245 		/*
5246 		 * If the device is currently configured, we calculate an
5247 		 * MD5 checksum of the inquiry data, and if the serial number
5248 		 * length is greater than 0, add the serial number data
5249 		 * into the checksum as well.  Once the inquiry and the
5250 		 * serial number check finish, we attempt to figure out
5251 		 * whether we still have the same device.
5252 		 */
5253 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5254 
5255 			MD5Init(&softc->context);
5256 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5257 				  sizeof(struct scsi_inquiry_data));
5258 			softc->flags |= PROBE_INQUIRY_CKSUM;
5259 			if (periph->path->device->serial_num_len > 0) {
5260 				MD5Update(&softc->context,
5261 					  periph->path->device->serial_num,
5262 					  periph->path->device->serial_num_len);
5263 				softc->flags |= PROBE_SERIAL_CKSUM;
5264 			}
5265 			MD5Final(softc->digest, &softc->context);
5266 		}
5267 
5268 		scsi_inquiry(csio,
5269 			     /*retries*/4,
5270 			     probedone,
5271 			     MSG_SIMPLE_Q_TAG,
5272 			     (u_int8_t *)inq_buf,
5273 			     sizeof(*inq_buf),
5274 			     /*evpd*/FALSE,
5275 			     /*page_code*/0,
5276 			     SSD_MIN_SIZE,
5277 			     /*timeout*/60 * 1000);
5278 		break;
5279 	}
5280 	case PROBE_MODE_SENSE:
5281 	{
5282 		void  *mode_buf;
5283 		int    mode_buf_len;
5284 
5285 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5286 			     + sizeof(struct scsi_mode_blk_desc)
5287 			     + sizeof(struct scsi_control_page);
5288 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5289 		if (mode_buf != NULL) {
5290 	                scsi_mode_sense(csio,
5291 					/*retries*/4,
5292 					probedone,
5293 					MSG_SIMPLE_Q_TAG,
5294 					/*dbd*/FALSE,
5295 					SMS_PAGE_CTRL_CURRENT,
5296 					SMS_CONTROL_MODE_PAGE,
5297 					mode_buf,
5298 					mode_buf_len,
5299 					SSD_FULL_SIZE,
5300 					/*timeout*/60000);
5301 			break;
5302 		}
5303 		xpt_print_path(periph->path);
5304 		printf("Unable to mode sense control page - malloc failure\n");
5305 		softc->action = PROBE_SERIAL_NUM;
5306 		/* FALLTHROUGH */
5307 	}
5308 	case PROBE_SERIAL_NUM:
5309 	{
5310 		struct scsi_vpd_unit_serial_number *serial_buf;
5311 		struct cam_ed* device;
5312 
5313 		serial_buf = NULL;
5314 		device = periph->path->device;
5315 		device->serial_num = NULL;
5316 		device->serial_num_len = 0;
5317 
5318 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5319 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5320 				malloc(sizeof(*serial_buf), M_TEMP, M_NOWAIT);
5321 
5322 		if (serial_buf != NULL) {
5323 			bzero(serial_buf, sizeof(*serial_buf));
5324 			scsi_inquiry(csio,
5325 				     /*retries*/4,
5326 				     probedone,
5327 				     MSG_SIMPLE_Q_TAG,
5328 				     (u_int8_t *)serial_buf,
5329 				     sizeof(*serial_buf),
5330 				     /*evpd*/TRUE,
5331 				     SVPD_UNIT_SERIAL_NUMBER,
5332 				     SSD_MIN_SIZE,
5333 				     /*timeout*/60 * 1000);
5334 			break;
5335 		}
5336 		/*
5337 		 * We'll have to do without, let our probedone
5338 		 * routine finish up for us.
5339 		 */
5340 		start_ccb->csio.data_ptr = NULL;
5341 		probedone(periph, start_ccb);
5342 		return;
5343 	}
5344 	}
5345 	xpt_action(start_ccb);
5346 }
5347 
5348 static void
5349 proberequestdefaultnegotiation(struct cam_periph *periph)
5350 {
5351 	struct ccb_trans_settings cts;
5352 
5353 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5354 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5355 	cts.flags = CCB_TRANS_USER_SETTINGS;
5356 	xpt_action((union ccb *)&cts);
5357 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5358 	cts.flags &= ~CCB_TRANS_USER_SETTINGS;
5359 	cts.flags |= CCB_TRANS_CURRENT_SETTINGS;
5360 	xpt_action((union ccb *)&cts);
5361 }
5362 
5363 static void
5364 probedone(struct cam_periph *periph, union ccb *done_ccb)
5365 {
5366 	probe_softc *softc;
5367 	struct cam_path *path;
5368 	u_int32_t  priority;
5369 
5370 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5371 
5372 	softc = (probe_softc *)periph->softc;
5373 	path = done_ccb->ccb_h.path;
5374 	priority = done_ccb->ccb_h.pinfo.priority;
5375 
5376 	switch (softc->action) {
5377 	case PROBE_TUR:
5378 	{
5379 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5380 
5381 			if (cam_periph_error(done_ccb, 0,
5382 					     SF_NO_PRINT, NULL) == ERESTART)
5383 				return;
5384 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5385 				/* Don't wedge the queue */
5386 				xpt_release_devq(done_ccb->ccb_h.path,
5387 						 /*count*/1,
5388 						 /*run_queue*/TRUE);
5389 		}
5390 		softc->action = PROBE_INQUIRY;
5391 		xpt_release_ccb(done_ccb);
5392 		xpt_schedule(periph, priority);
5393 		return;
5394 	}
5395 	case PROBE_INQUIRY:
5396 	{
5397 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5398 			struct scsi_inquiry_data *inq_buf;
5399 			u_int8_t periph_qual;
5400 			u_int8_t periph_dtype;
5401 
5402 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
5403 			inq_buf = &path->device->inq_data;
5404 
5405 			periph_qual = SID_QUAL(inq_buf);
5406 			periph_dtype = SID_TYPE(inq_buf);
5407 			if (periph_dtype != T_NODEVICE) {
5408 				switch(periph_qual) {
5409 				case SID_QUAL_LU_CONNECTED:
5410 				{
5411 					xpt_find_quirk(path->device);
5412 
5413 					if ((inq_buf->flags & SID_CmdQue) != 0)
5414 						softc->action =
5415 						    PROBE_MODE_SENSE;
5416 					else
5417 						softc->action =
5418 						    PROBE_SERIAL_NUM;
5419 
5420 					path->device->flags &=
5421 						~CAM_DEV_UNCONFIGURED;
5422 
5423 					xpt_release_ccb(done_ccb);
5424 					xpt_schedule(periph, priority);
5425 					return;
5426 				}
5427 				default:
5428 					break;
5429 				}
5430 			}
5431 		} else if (cam_periph_error(done_ccb, 0,
5432 					    done_ccb->ccb_h.target_lun > 0
5433 					    ? SF_RETRY_UA|SF_QUIET_IR
5434 					    : SF_RETRY_UA,
5435 					    &softc->saved_ccb) == ERESTART) {
5436 			return;
5437 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5438 			/* Don't wedge the queue */
5439 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5440 					 /*run_queue*/TRUE);
5441 		}
5442 		/*
5443 		 * If we get to this point, we got an error status back
5444 		 * from the inquiry and the error status doesn't require
5445 		 * automatically retrying the command.  Therefore, the
5446 		 * inquiry failed.  If we had inquiry information before
5447 		 * for this device, but this latest inquiry command failed,
5448 		 * the device has probably gone away.  If this device isn't
5449 		 * already marked unconfigured, notify the peripheral
5450 		 * drivers that this device is no more.
5451 		 */
5452 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5453 			/* Send the async notification. */
5454 			xpt_async(AC_LOST_DEVICE, path, NULL);
5455 
5456 		xpt_release_ccb(done_ccb);
5457 		break;
5458 	}
5459 	case PROBE_MODE_SENSE:
5460 	{
5461 		struct ccb_scsiio *csio;
5462 		struct scsi_mode_header_6 *mode_hdr;
5463 
5464 		csio = &done_ccb->csio;
5465 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
5466 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5467 			struct scsi_control_page *page;
5468 			u_int8_t *offset;
5469 
5470 			offset = ((u_int8_t *)&mode_hdr[1])
5471 			    + mode_hdr->blk_desc_len;
5472 			page = (struct scsi_control_page *)offset;
5473 			path->device->queue_flags = page->queue_flags;
5474 		} else if (cam_periph_error(done_ccb, 0,
5475 					    SF_RETRY_UA|SF_NO_PRINT,
5476 					    &softc->saved_ccb) == ERESTART) {
5477 			return;
5478 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5479 			/* Don't wedge the queue */
5480 			xpt_release_devq(done_ccb->ccb_h.path,
5481 					 /*count*/1, /*run_queue*/TRUE);
5482 		}
5483 		xpt_release_ccb(done_ccb);
5484 		free(mode_hdr, M_TEMP);
5485 		softc->action = PROBE_SERIAL_NUM;
5486 		xpt_schedule(periph, priority);
5487 		return;
5488 	}
5489 	case PROBE_SERIAL_NUM:
5490 	{
5491 		struct ccb_scsiio *csio;
5492 		struct scsi_vpd_unit_serial_number *serial_buf;
5493 		u_int32_t  priority;
5494 		int changed;
5495 		int have_serialnum;
5496 
5497 		changed = 1;
5498 		have_serialnum = 0;
5499 		csio = &done_ccb->csio;
5500 		priority = done_ccb->ccb_h.pinfo.priority;
5501 		serial_buf =
5502 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
5503 
5504 		/* Clean up from previous instance of this device */
5505 		if (path->device->serial_num != NULL) {
5506 			free(path->device->serial_num, M_DEVBUF);
5507 			path->device->serial_num = NULL;
5508 			path->device->serial_num_len = 0;
5509 		}
5510 
5511 		if (serial_buf == NULL) {
5512 			/*
5513 			 * Don't process the command as it was never sent
5514 			 */
5515 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
5516 			&& (serial_buf->length > 0)) {
5517 
5518 			have_serialnum = 1;
5519 			path->device->serial_num =
5520 				(u_int8_t *)malloc((serial_buf->length + 1),
5521 						   M_DEVBUF, M_NOWAIT);
5522 			if (path->device->serial_num != NULL) {
5523 				bcopy(serial_buf->serial_num,
5524 				      path->device->serial_num,
5525 				      serial_buf->length);
5526 				path->device->serial_num_len =
5527 				    serial_buf->length;
5528 				path->device->serial_num[serial_buf->length]
5529 				    = '\0';
5530 			}
5531 		} else if (cam_periph_error(done_ccb, 0,
5532 					    SF_RETRY_UA|SF_NO_PRINT,
5533 					    &softc->saved_ccb) == ERESTART) {
5534 			return;
5535 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5536 			/* Don't wedge the queue */
5537 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5538 					 /*run_queue*/TRUE);
5539 		}
5540 
5541 		/*
5542 		 * Let's see if we have seen this device before.
5543 		 */
5544 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
5545 			MD5_CTX context;
5546 			u_int8_t digest[16];
5547 
5548 			MD5Init(&context);
5549 
5550 			MD5Update(&context,
5551 				  (unsigned char *)&path->device->inq_data,
5552 				  sizeof(struct scsi_inquiry_data));
5553 
5554 			if (have_serialnum)
5555 				MD5Update(&context, serial_buf->serial_num,
5556 					  serial_buf->length);
5557 
5558 			MD5Final(digest, &context);
5559 			if (bcmp(softc->digest, digest, 16) == 0)
5560 				changed = 0;
5561 
5562 			/*
5563 			 * XXX Do we need to do a TUR in order to ensure
5564 			 *     that the device really hasn't changed???
5565 			 */
5566 			if ((changed != 0)
5567 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
5568 				xpt_async(AC_LOST_DEVICE, path, NULL);
5569 		}
5570 		if (serial_buf != NULL)
5571 			free(serial_buf, M_TEMP);
5572 
5573 		if (changed != 0) {
5574 			/*
5575 			 * Now that we have all the necessary
5576 			 * information to safely perform transfer
5577 			 * negotiations... Controllers don't perform
5578 			 * any negotiation or tagged queuing until
5579 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
5580 			 * received.  So, on a new device, just retreive
5581 			 * the user settings, and set them as the current
5582 			 * settings to set the device up.
5583 			 */
5584 			proberequestdefaultnegotiation(periph);
5585 			xpt_release_ccb(done_ccb);
5586 
5587 			/*
5588 			 * Perform a TUR to allow the controller to
5589 			 * perform any necessary transfer negotiation.
5590 			 */
5591 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
5592 			xpt_schedule(periph, priority);
5593 			return;
5594 		}
5595 		xpt_release_ccb(done_ccb);
5596 		break;
5597 	}
5598 	case PROBE_TUR_FOR_NEGOTIATION:
5599 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
5600 			/* Don't wedge the queue */
5601 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
5602 					 /*run_queue*/TRUE);
5603 		}
5604 
5605 		path->device->flags &= ~CAM_DEV_UNCONFIGURED;
5606 
5607 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
5608 			/* Inform the XPT that a new device has been found */
5609 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5610 			xpt_action(done_ccb);
5611 
5612 			xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb);
5613 		}
5614 		xpt_release_ccb(done_ccb);
5615 		break;
5616 	}
5617 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5618 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
5619 	done_ccb->ccb_h.status = CAM_REQ_CMP;
5620 	xpt_done(done_ccb);
5621 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
5622 		cam_periph_invalidate(periph);
5623 		cam_periph_release(periph);
5624 	} else {
5625 		probeschedule(periph);
5626 	}
5627 }
5628 
5629 static void
5630 probecleanup(struct cam_periph *periph)
5631 {
5632 	free(periph->softc, M_TEMP);
5633 }
5634 
5635 static void
5636 xpt_find_quirk(struct cam_ed *device)
5637 {
5638 	caddr_t	match;
5639 
5640 	match = cam_quirkmatch((caddr_t)&device->inq_data,
5641 			       (caddr_t)xpt_quirk_table,
5642 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
5643 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
5644 
5645 	if (match == NULL)
5646 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
5647 
5648 	device->quirk = (struct xpt_quirk_entry *)match;
5649 }
5650 
5651 static void
5652 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
5653 			  int async_update)
5654 {
5655 	struct	cam_sim *sim;
5656 	int	qfrozen;
5657 
5658 	sim = cts->ccb_h.path->bus->sim;
5659 	if (async_update == FALSE) {
5660 		struct	scsi_inquiry_data *inq_data;
5661 		struct	ccb_pathinq cpi;
5662 		struct	ccb_trans_settings cur_cts;
5663 
5664 		if (device == NULL) {
5665 			cts->ccb_h.status = CAM_PATH_INVALID;
5666 			xpt_done((union ccb *)cts);
5667 			return;
5668 		}
5669 
5670 		/*
5671 		 * Perform sanity checking against what the
5672 		 * controller and device can do.
5673 		 */
5674 		xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
5675 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5676 		xpt_action((union ccb *)&cpi);
5677 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
5678 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5679 		cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS;
5680 		xpt_action((union ccb *)&cur_cts);
5681 		inq_data = &device->inq_data;
5682 
5683 		/* Fill in any gaps in what the user gave us */
5684 		if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
5685 			cts->sync_period = cur_cts.sync_period;
5686 		if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
5687 			cts->sync_offset = cur_cts.sync_offset;
5688 		if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0)
5689 			cts->bus_width = cur_cts.bus_width;
5690 		if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) {
5691 			cts->flags &= ~CCB_TRANS_DISC_ENB;
5692 			cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB;
5693 		}
5694 		if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) {
5695 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5696 			cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB;
5697 		}
5698 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
5699 		  && (inq_data->flags & SID_Sync) == 0)
5700 		 || (cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
5701 			/* Force async */
5702 			cts->sync_period = 0;
5703 			cts->sync_offset = 0;
5704 		}
5705 
5706 		switch (cts->bus_width) {
5707 		case MSG_EXT_WDTR_BUS_32_BIT:
5708 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5709 			  || (inq_data->flags & SID_WBus32) != 0)
5710 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
5711 				break;
5712 			/* Fall Through to 16-bit */
5713 		case MSG_EXT_WDTR_BUS_16_BIT:
5714 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
5715 			  || (inq_data->flags & SID_WBus16) != 0)
5716 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
5717 				cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
5718 				break;
5719 			}
5720 			/* Fall Through to 8-bit */
5721 		default: /* New bus width?? */
5722 		case MSG_EXT_WDTR_BUS_8_BIT:
5723 			/* All targets can do this */
5724 			cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
5725 			break;
5726 		}
5727 
5728 		if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) {
5729 			/*
5730 			 * Can't tag queue without disconnection.
5731 			 */
5732 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5733 			cts->valid |= CCB_TRANS_TQ_VALID;
5734 		}
5735 
5736 		if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
5737 		 || (inq_data->flags & SID_CmdQue) == 0
5738 		 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
5739 		 || (device->quirk->mintags == 0)) {
5740 			/*
5741 			 * Can't tag on hardware that doesn't support,
5742 			 * doesn't have it enabled, or has broken tag support.
5743 			 */
5744 			cts->flags &= ~CCB_TRANS_TAG_ENB;
5745 		}
5746 	}
5747 
5748 	qfrozen = FALSE;
5749 	if ((cts->valid & CCB_TRANS_TQ_VALID) != 0
5750 	 && (async_update == FALSE)) {
5751 		int device_tagenb;
5752 
5753 		/*
5754 		 * If we are transitioning from tags to no-tags or
5755 		 * vice-versa, we need to carefully freeze and restart
5756 		 * the queue so that we don't overlap tagged and non-tagged
5757 		 * commands.  We also temporarily stop tags if there is
5758 		 * a change in transfer negotiation settings to allow
5759 		 * "tag-less" negotiation.
5760 		 */
5761 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5762 		 || (device->inq_flags & SID_CmdQue) != 0)
5763 			device_tagenb = TRUE;
5764 		else
5765 			device_tagenb = FALSE;
5766 
5767 		if (((cts->flags & CCB_TRANS_TAG_ENB) != 0
5768 		  && device_tagenb == FALSE)
5769 		 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0
5770 		  && device_tagenb == TRUE)) {
5771 
5772 			if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
5773 				/*
5774 				 * Delay change to use tags until after a
5775 				 * few commands have gone to this device so
5776 				 * the controller has time to perform transfer
5777 				 * negotiations without tagged messages getting
5778 				 * in the way.
5779 				 */
5780 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
5781 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
5782 			} else {
5783 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
5784 				qfrozen = TRUE;
5785 		  		device->inq_flags &= ~SID_CmdQue;
5786 				xpt_dev_ccbq_resize(cts->ccb_h.path,
5787 						    sim->max_dev_openings);
5788 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5789 				device->tag_delay_count = 0;
5790 			}
5791 		}
5792 	}
5793 
5794 	if (async_update == FALSE) {
5795 		/*
5796 		 * If we are currently performing tagged transactions to
5797 		 * this device and want to change its negotiation parameters,
5798 		 * go non-tagged for a bit to give the controller a chance to
5799 		 * negotiate unhampered by tag messages.
5800 		 */
5801 		if ((device->inq_flags & SID_CmdQue) != 0
5802 		 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID|
5803 				   CCB_TRANS_SYNC_OFFSET_VALID|
5804 				   CCB_TRANS_BUS_WIDTH_VALID)) != 0)
5805 			xpt_toggle_tags(cts->ccb_h.path);
5806 
5807 		(*(sim->sim_action))(sim, (union ccb *)cts);
5808 	}
5809 
5810 	if (qfrozen) {
5811 		struct ccb_relsim crs;
5812 
5813 		xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
5814 			      /*priority*/1);
5815 		crs.ccb_h.func_code = XPT_REL_SIMQ;
5816 		crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5817 		crs.openings
5818 		    = crs.release_timeout
5819 		    = crs.qfrozen_cnt
5820 		    = 0;
5821 		xpt_action((union ccb *)&crs);
5822 	}
5823 }
5824 
5825 static void
5826 xpt_toggle_tags(struct cam_path *path)
5827 {
5828 	struct cam_ed *dev;
5829 
5830 	/*
5831 	 * Give controllers a chance to renegotiate
5832 	 * before starting tag operations.  We
5833 	 * "toggle" tagged queuing off then on
5834 	 * which causes the tag enable command delay
5835 	 * counter to come into effect.
5836 	 */
5837 	dev = path->device;
5838 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5839 	 || ((dev->inq_flags & SID_CmdQue) != 0
5840  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
5841 		struct ccb_trans_settings cts;
5842 
5843 		xpt_setup_ccb(&cts.ccb_h, path, 1);
5844 		cts.flags = 0;
5845 		cts.valid = CCB_TRANS_TQ_VALID;
5846 		xpt_set_transfer_settings(&cts, path->device,
5847 					  /*async_update*/TRUE);
5848 		cts.flags = CCB_TRANS_TAG_ENB;
5849 		xpt_set_transfer_settings(&cts, path->device,
5850 					  /*async_update*/TRUE);
5851 	}
5852 }
5853 
5854 static void
5855 xpt_start_tags(struct cam_path *path)
5856 {
5857 	struct ccb_relsim crs;
5858 	struct cam_ed *device;
5859 	struct cam_sim *sim;
5860 	int    newopenings;
5861 
5862 	device = path->device;
5863 	sim = path->bus->sim;
5864 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5865 	xpt_freeze_devq(path, /*count*/1);
5866 	device->inq_flags |= SID_CmdQue;
5867 	newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings);
5868 	xpt_dev_ccbq_resize(path, newopenings);
5869 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
5870 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5871 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5872 	crs.openings
5873 	    = crs.release_timeout
5874 	    = crs.qfrozen_cnt
5875 	    = 0;
5876 	xpt_action((union ccb *)&crs);
5877 }
5878 
5879 static int busses_to_config;
5880 static int busses_to_reset;
5881 
5882 static int
5883 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
5884 {
5885 	if (bus->path_id != CAM_XPT_PATH_ID) {
5886 		struct cam_path path;
5887 		struct ccb_pathinq cpi;
5888 		int can_negotiate;
5889 
5890 		busses_to_config++;
5891 		xpt_compile_path(&path, NULL, bus->path_id,
5892 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5893 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
5894 		cpi.ccb_h.func_code = XPT_PATH_INQ;
5895 		xpt_action((union ccb *)&cpi);
5896 		can_negotiate = cpi.hba_inquiry;
5897 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5898 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
5899 		 && can_negotiate)
5900 			busses_to_reset++;
5901 		xpt_release_path(&path);
5902 	}
5903 
5904 	return(1);
5905 }
5906 
5907 static int
5908 xptconfigfunc(struct cam_eb *bus, void *arg)
5909 {
5910 	struct	cam_path *path;
5911 	union	ccb *work_ccb;
5912 
5913 	if (bus->path_id != CAM_XPT_PATH_ID) {
5914 		cam_status status;
5915 		int can_negotiate;
5916 
5917 		work_ccb = xpt_alloc_ccb();
5918 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
5919 					      CAM_TARGET_WILDCARD,
5920 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
5921 			printf("xptconfigfunc: xpt_create_path failed with "
5922 			       "status %#x for bus %d\n", status, bus->path_id);
5923 			printf("xptconfigfunc: halting bus configuration\n");
5924 			xpt_free_ccb(work_ccb);
5925 			busses_to_config--;
5926 			xpt_finishconfig(xpt_periph, NULL);
5927 			return(0);
5928 		}
5929 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
5930 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5931 		xpt_action(work_ccb);
5932 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5933 			printf("xptconfigfunc: CPI failed on bus %d "
5934 			       "with status %d\n", bus->path_id,
5935 			       work_ccb->ccb_h.status);
5936 			xpt_finishconfig(xpt_periph, work_ccb);
5937 			return(1);
5938 		}
5939 
5940 		can_negotiate = work_ccb->cpi.hba_inquiry;
5941 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
5942 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
5943 		 && (can_negotiate != 0)) {
5944 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
5945 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
5946 			work_ccb->ccb_h.cbfcnp = NULL;
5947 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
5948 				  ("Resetting Bus\n"));
5949 			xpt_action(work_ccb);
5950 			xpt_finishconfig(xpt_periph, work_ccb);
5951 		} else {
5952 			/* Act as though we performed a successful BUS RESET */
5953 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
5954 			xpt_finishconfig(xpt_periph, work_ccb);
5955 		}
5956 	}
5957 
5958 	return(1);
5959 }
5960 
5961 static void
5962 xpt_config(void *arg)
5963 {
5964 	/* Now that interrupts are enabled, go find our devices */
5965 
5966 #ifdef CAMDEBUG
5967 	/* Setup debugging flags and path */
5968 #ifdef CAM_DEBUG_FLAGS
5969 	cam_dflags = CAM_DEBUG_FLAGS;
5970 #else /* !CAM_DEBUG_FLAGS */
5971 	cam_dflags = CAM_DEBUG_NONE;
5972 #endif /* CAM_DEBUG_FLAGS */
5973 #ifdef CAM_DEBUG_BUS
5974 	if (cam_dflags != CAM_DEBUG_NONE) {
5975 		if (xpt_create_path(&cam_dpath, xpt_periph,
5976 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5977 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5978 			printf("xpt_config: xpt_create_path() failed for debug"
5979 			       " target %d:%d:%d, debugging disabled\n",
5980 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5981 			cam_dflags = CAM_DEBUG_NONE;
5982 		}
5983 	} else
5984 		cam_dpath = NULL;
5985 #else /* !CAM_DEBUG_BUS */
5986 	cam_dpath = NULL;
5987 #endif /* CAM_DEBUG_BUS */
5988 #endif /* CAMDEBUG */
5989 
5990 	/*
5991 	 * Scan all installed busses.
5992 	 */
5993 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
5994 
5995 	if (busses_to_config == 0) {
5996 		/* Call manually because we don't have any busses */
5997 		xpt_finishconfig(xpt_periph, NULL);
5998 	} else  {
5999 		if (busses_to_reset > 0 && SCSI_DELAY >= 2000) {
6000 			printf("Waiting %d seconds for SCSI "
6001 			       "devices to settle\n", SCSI_DELAY/1000);
6002 		}
6003 		xpt_for_all_busses(xptconfigfunc, NULL);
6004 	}
6005 }
6006 
6007 /*
6008  * If the given device only has one peripheral attached to it, and if that
6009  * peripheral is the passthrough driver, announce it.  This insures that the
6010  * user sees some sort of announcement for every peripheral in their system.
6011  */
6012 static int
6013 xptpassannouncefunc(struct cam_ed *device, void *arg)
6014 {
6015 	struct cam_periph *periph;
6016 	int i;
6017 
6018 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6019 	     periph = SLIST_NEXT(periph, periph_links), i++);
6020 
6021 	periph = SLIST_FIRST(&device->periphs);
6022 	if ((i == 1)
6023 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6024 		xpt_announce_periph(periph, NULL);
6025 
6026 	return(1);
6027 }
6028 
6029 static void
6030 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6031 {
6032 	struct	periph_driver **p_drv;
6033 	int	i;
6034 
6035 	if (done_ccb != NULL) {
6036 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
6037 			  ("xpt_finishconfig\n"));
6038 		switch(done_ccb->ccb_h.func_code) {
6039 		case XPT_RESET_BUS:
6040 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
6041 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
6042 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
6043 				xpt_action(done_ccb);
6044 				return;
6045 			}
6046 			/* FALLTHROUGH */
6047 		case XPT_SCAN_BUS:
6048 		default:
6049 			xpt_free_path(done_ccb->ccb_h.path);
6050 			busses_to_config--;
6051 			break;
6052 		}
6053 	}
6054 
6055 	if (busses_to_config == 0) {
6056 		/* Register all the peripheral drivers */
6057 		/* XXX This will have to change when we have loadable modules */
6058 		p_drv = (struct periph_driver **)periphdriver_set.ls_items;
6059 		for (i = 0; p_drv[i] != NULL; i++) {
6060 			(*p_drv[i]->init)();
6061 		}
6062 
6063 		/*
6064 		 * Check for devices with no "standard" peripheral driver
6065 		 * attached.  For any devices like that, announce the
6066 		 * passthrough driver so the user will see something.
6067 		 */
6068 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6069 
6070 		/* Release our hook so that the boot can continue. */
6071 		config_intrhook_disestablish(xpt_config_hook);
6072 		free(xpt_config_hook, M_TEMP);
6073 		xpt_config_hook = NULL;
6074 	}
6075 	if (done_ccb != NULL)
6076 		xpt_free_ccb(done_ccb);
6077 }
6078 
6079 static void
6080 xptaction(struct cam_sim *sim, union ccb *work_ccb)
6081 {
6082 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
6083 
6084 	switch (work_ccb->ccb_h.func_code) {
6085 	/* Common cases first */
6086 	case XPT_PATH_INQ:		/* Path routing inquiry */
6087 	{
6088 		struct ccb_pathinq *cpi;
6089 
6090 		cpi = &work_ccb->cpi;
6091 		cpi->version_num = 1; /* XXX??? */
6092 		cpi->hba_inquiry = 0;
6093 		cpi->target_sprt = 0;
6094 		cpi->hba_misc = 0;
6095 		cpi->hba_eng_cnt = 0;
6096 		cpi->max_target = 0;
6097 		cpi->max_lun = 0;
6098 		cpi->initiator_id = 0;
6099 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
6100 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
6101 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
6102 		cpi->unit_number = sim->unit_number;
6103 		cpi->bus_id = sim->bus_id;
6104 		cpi->base_transfer_speed = 0;
6105 		cpi->ccb_h.status = CAM_REQ_CMP;
6106 		xpt_done(work_ccb);
6107 		break;
6108 	}
6109 	default:
6110 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
6111 		xpt_done(work_ccb);
6112 		break;
6113 	}
6114 }
6115 
6116 /*
6117  * Should only be called by the machine interrupt dispatch routines,
6118  * so put these prototypes here instead of in the header.
6119  */
6120 
6121 static void
6122 swi_camnet(void)
6123 {
6124 	camisr(&cam_netq);
6125 }
6126 
6127 static void
6128 swi_cambio(void)
6129 {
6130 	camisr(&cam_bioq);
6131 }
6132 
6133 static void
6134 camisr(cam_isrq_t *queue)
6135 {
6136 	int	s;
6137 	struct	ccb_hdr *ccb_h;
6138 
6139 	s = splcam();
6140 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
6141 		int	runq;
6142 
6143 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
6144 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
6145 		splx(s);
6146 
6147 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
6148 			  ("camisr"));
6149 
6150 		runq = FALSE;
6151 
6152 		if (ccb_h->flags & CAM_HIGH_POWER) {
6153 			struct highpowerlist	*hphead;
6154 			struct cam_ed		*device;
6155 			union ccb		*send_ccb;
6156 
6157 			hphead = &highpowerq;
6158 
6159 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
6160 
6161 			/*
6162 			 * Increment the count since this command is done.
6163 			 */
6164 			num_highpower++;
6165 
6166 			/*
6167 			 * Any high powered commands queued up?
6168 			 */
6169 			if (send_ccb != NULL) {
6170 				device = send_ccb->ccb_h.path->device;
6171 
6172 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
6173 
6174 				xpt_release_devq(send_ccb->ccb_h.path,
6175 						 /*count*/1, /*runqueue*/TRUE);
6176 			}
6177 		}
6178 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
6179 			struct cam_ed *dev;
6180 
6181 			dev = ccb_h->path->device;
6182 
6183 			s = splcam();
6184 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
6185 
6186 			ccb_h->path->bus->sim->devq->send_active--;
6187 			ccb_h->path->bus->sim->devq->send_openings++;
6188 			splx(s);
6189 
6190 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
6191 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
6192 			  && (dev->ccbq.dev_active == 0))) {
6193 
6194 				xpt_release_devq(ccb_h->path, /*count*/1,
6195 						 /*run_queue*/TRUE);
6196 			}
6197 
6198 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6199 			 && (--dev->tag_delay_count == 0))
6200 				xpt_start_tags(ccb_h->path);
6201 
6202 			if ((dev->ccbq.queue.entries > 0)
6203 			 && (dev->qfrozen_cnt == 0)
6204 			 && (device_is_send_queued(dev) == 0)) {
6205 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
6206 							      dev);
6207 			}
6208 		}
6209 
6210 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
6211 			xpt_release_simq(ccb_h->path->bus->sim,
6212 					 /*run_queue*/TRUE);
6213 		} else if ((ccb_h->flags & CAM_DEV_QFRZDIS)
6214 			&& (ccb_h->status & CAM_DEV_QFRZN)) {
6215 			xpt_release_devq(ccb_h->path, /*count*/1,
6216 					 /*run_queue*/TRUE);
6217 			ccb_h->status &= ~CAM_DEV_QFRZN;
6218 		} else if (runq) {
6219 			xpt_run_dev_sendq(ccb_h->path->bus);
6220 		}
6221 
6222 		/* Call the peripheral driver's callback */
6223 		(*ccb_h->cbfcnp)(ccb_h->path->periph,
6224 				 (union ccb *)ccb_h);
6225 
6226 		/* Raise IPL for while test */
6227 		s = splcam();
6228 	}
6229 	splx(s);
6230 }
6231