1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/reboot.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 52 #ifdef PC98 53 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_sim.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/cam_xpt_sim.h> 63 #include <cam/cam_xpt_periph.h> 64 #include <cam/cam_xpt_internal.h> 65 #include <cam/cam_debug.h> 66 67 #include <cam/scsi/scsi_all.h> 68 #include <cam/scsi/scsi_message.h> 69 #include <cam/scsi/scsi_pass.h> 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 #include "opt_cam.h" 72 73 /* 74 * This is the maximum number of high powered commands (e.g. start unit) 75 * that can be outstanding at a particular time. 76 */ 77 #ifndef CAM_MAX_HIGHPOWER 78 #define CAM_MAX_HIGHPOWER 4 79 #endif 80 81 /* Datastructures internal to the xpt layer */ 82 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 83 84 /* Object for defering XPT actions to a taskqueue */ 85 struct xpt_task { 86 struct task task; 87 void *data1; 88 uintptr_t data2; 89 }; 90 91 typedef enum { 92 XPT_FLAG_OPEN = 0x01 93 } xpt_flags; 94 95 struct xpt_softc { 96 xpt_flags flags; 97 u_int32_t xpt_generation; 98 99 /* number of high powered commands that can go through right now */ 100 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 101 int num_highpower; 102 103 /* queue for handling async rescan requests. */ 104 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 105 int buses_to_config; 106 int buses_config_done; 107 108 /* Registered busses */ 109 TAILQ_HEAD(,cam_eb) xpt_busses; 110 u_int bus_generation; 111 112 struct intr_config_hook *xpt_config_hook; 113 114 int boot_delay; 115 struct callout boot_callout; 116 117 struct mtx xpt_topo_lock; 118 struct mtx xpt_lock; 119 }; 120 121 typedef enum { 122 DM_RET_COPY = 0x01, 123 DM_RET_FLAG_MASK = 0x0f, 124 DM_RET_NONE = 0x00, 125 DM_RET_STOP = 0x10, 126 DM_RET_DESCEND = 0x20, 127 DM_RET_ERROR = 0x30, 128 DM_RET_ACTION_MASK = 0xf0 129 } dev_match_ret; 130 131 typedef enum { 132 XPT_DEPTH_BUS, 133 XPT_DEPTH_TARGET, 134 XPT_DEPTH_DEVICE, 135 XPT_DEPTH_PERIPH 136 } xpt_traverse_depth; 137 138 struct xpt_traverse_config { 139 xpt_traverse_depth depth; 140 void *tr_func; 141 void *tr_arg; 142 }; 143 144 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 145 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 146 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 147 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 148 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 149 150 /* Transport layer configuration information */ 151 static struct xpt_softc xsoftc; 152 153 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 154 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 155 &xsoftc.boot_delay, 0, "Bus registration wait time"); 156 static int xpt_power_down = 0; 157 TUNABLE_INT("kern.cam.power_down", &xpt_power_down); 158 SYSCTL_INT(_kern_cam, OID_AUTO, power_down, CTLFLAG_RW, 159 &xpt_power_down, 0, "Power down devices on shutdown"); 160 161 /* Queues for our software interrupt handler */ 162 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 163 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 164 static cam_simq_t cam_simq; 165 static struct mtx cam_simq_lock; 166 167 /* Pointers to software interrupt handlers */ 168 static void *cambio_ih; 169 170 struct cam_periph *xpt_periph; 171 172 static periph_init_t xpt_periph_init; 173 174 static struct periph_driver xpt_driver = 175 { 176 xpt_periph_init, "xpt", 177 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 178 CAM_PERIPH_DRV_EARLY 179 }; 180 181 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 182 183 static d_open_t xptopen; 184 static d_close_t xptclose; 185 static d_ioctl_t xptioctl; 186 187 static struct cdevsw xpt_cdevsw = { 188 .d_version = D_VERSION, 189 .d_flags = 0, 190 .d_open = xptopen, 191 .d_close = xptclose, 192 .d_ioctl = xptioctl, 193 .d_name = "xpt", 194 }; 195 196 /* Storage for debugging datastructures */ 197 #ifdef CAMDEBUG 198 struct cam_path *cam_dpath; 199 u_int32_t cam_dflags; 200 u_int32_t cam_debug_delay; 201 #endif 202 203 /* Our boot-time initialization hook */ 204 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 205 206 static moduledata_t cam_moduledata = { 207 "cam", 208 cam_module_event_handler, 209 NULL 210 }; 211 212 static int xpt_init(void *); 213 214 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 215 MODULE_VERSION(cam, 1); 216 217 218 static void xpt_async_bcast(struct async_list *async_head, 219 u_int32_t async_code, 220 struct cam_path *path, 221 void *async_arg); 222 static path_id_t xptnextfreepathid(void); 223 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 224 static union ccb *xpt_get_ccb(struct cam_ed *device); 225 static void xpt_run_dev_allocq(struct cam_eb *bus); 226 static void xpt_run_dev_sendq(struct cam_eb *bus); 227 static timeout_t xpt_release_devq_timeout; 228 static void xpt_release_simq_timeout(void *arg) __unused; 229 static void xpt_release_bus(struct cam_eb *bus); 230 static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, 231 u_int count, int run_queue); 232 static struct cam_et* 233 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 234 static void xpt_release_target(struct cam_et *target); 235 static struct cam_eb* 236 xpt_find_bus(path_id_t path_id); 237 static struct cam_et* 238 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 239 static struct cam_ed* 240 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 241 static void xpt_config(void *arg); 242 static xpt_devicefunc_t xptpassannouncefunc; 243 static void xpt_shutdown(void *arg, int howto); 244 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 245 static void xptpoll(struct cam_sim *sim); 246 static void camisr(void *); 247 static void camisr_runqueue(void *); 248 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 249 u_int num_patterns, struct cam_eb *bus); 250 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 251 u_int num_patterns, 252 struct cam_ed *device); 253 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 254 u_int num_patterns, 255 struct cam_periph *periph); 256 static xpt_busfunc_t xptedtbusfunc; 257 static xpt_targetfunc_t xptedttargetfunc; 258 static xpt_devicefunc_t xptedtdevicefunc; 259 static xpt_periphfunc_t xptedtperiphfunc; 260 static xpt_pdrvfunc_t xptplistpdrvfunc; 261 static xpt_periphfunc_t xptplistperiphfunc; 262 static int xptedtmatch(struct ccb_dev_match *cdm); 263 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 264 static int xptbustraverse(struct cam_eb *start_bus, 265 xpt_busfunc_t *tr_func, void *arg); 266 static int xpttargettraverse(struct cam_eb *bus, 267 struct cam_et *start_target, 268 xpt_targetfunc_t *tr_func, void *arg); 269 static int xptdevicetraverse(struct cam_et *target, 270 struct cam_ed *start_device, 271 xpt_devicefunc_t *tr_func, void *arg); 272 static int xptperiphtraverse(struct cam_ed *device, 273 struct cam_periph *start_periph, 274 xpt_periphfunc_t *tr_func, void *arg); 275 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 276 xpt_pdrvfunc_t *tr_func, void *arg); 277 static int xptpdperiphtraverse(struct periph_driver **pdrv, 278 struct cam_periph *start_periph, 279 xpt_periphfunc_t *tr_func, 280 void *arg); 281 static xpt_busfunc_t xptdefbusfunc; 282 static xpt_targetfunc_t xptdeftargetfunc; 283 static xpt_devicefunc_t xptdefdevicefunc; 284 static xpt_periphfunc_t xptdefperiphfunc; 285 static void xpt_finishconfig_task(void *context, int pending); 286 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 287 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 288 void *arg); 289 static void xpt_dev_async_default(u_int32_t async_code, 290 struct cam_eb *bus, 291 struct cam_et *target, 292 struct cam_ed *device, 293 void *async_arg); 294 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 295 struct cam_et *target, 296 lun_id_t lun_id); 297 static xpt_devicefunc_t xptsetasyncfunc; 298 static xpt_busfunc_t xptsetasyncbusfunc; 299 static cam_status xptregister(struct cam_periph *periph, 300 void *arg); 301 static __inline int periph_is_queued(struct cam_periph *periph); 302 static __inline int device_is_alloc_queued(struct cam_ed *device); 303 static __inline int device_is_send_queued(struct cam_ed *device); 304 305 static __inline int 306 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 307 { 308 int retval; 309 310 if ((dev->drvq.entries > 0) && 311 (dev->ccbq.devq_openings > 0) && 312 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 313 CAMQ_GET_PRIO(&dev->drvq))) == 0)) { 314 /* 315 * The priority of a device waiting for CCB resources 316 * is that of the the highest priority peripheral driver 317 * enqueued. 318 */ 319 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 320 &dev->alloc_ccb_entry.pinfo, 321 CAMQ_GET_PRIO(&dev->drvq)); 322 } else { 323 retval = 0; 324 } 325 326 return (retval); 327 } 328 329 static __inline int 330 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 331 { 332 int retval; 333 334 if ((dev->ccbq.queue.entries > 0) && 335 (dev->ccbq.dev_openings > 0) && 336 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) { 337 /* 338 * The priority of a device waiting for controller 339 * resources is that of the the highest priority CCB 340 * enqueued. 341 */ 342 retval = 343 xpt_schedule_dev(&bus->sim->devq->send_queue, 344 &dev->send_ccb_entry.pinfo, 345 CAMQ_GET_PRIO(&dev->ccbq.queue)); 346 } else { 347 retval = 0; 348 } 349 return (retval); 350 } 351 352 static __inline int 353 periph_is_queued(struct cam_periph *periph) 354 { 355 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 356 } 357 358 static __inline int 359 device_is_alloc_queued(struct cam_ed *device) 360 { 361 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 362 } 363 364 static __inline int 365 device_is_send_queued(struct cam_ed *device) 366 { 367 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 368 } 369 370 static void 371 xpt_periph_init() 372 { 373 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 374 } 375 376 static void 377 xptdone(struct cam_periph *periph, union ccb *done_ccb) 378 { 379 /* Caller will release the CCB */ 380 wakeup(&done_ccb->ccb_h.cbfcnp); 381 } 382 383 static int 384 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 385 { 386 387 /* 388 * Only allow read-write access. 389 */ 390 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 391 return(EPERM); 392 393 /* 394 * We don't allow nonblocking access. 395 */ 396 if ((flags & O_NONBLOCK) != 0) { 397 printf("%s: can't do nonblocking access\n", devtoname(dev)); 398 return(ENODEV); 399 } 400 401 /* Mark ourselves open */ 402 mtx_lock(&xsoftc.xpt_lock); 403 xsoftc.flags |= XPT_FLAG_OPEN; 404 mtx_unlock(&xsoftc.xpt_lock); 405 406 return(0); 407 } 408 409 static int 410 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 411 { 412 413 /* Mark ourselves closed */ 414 mtx_lock(&xsoftc.xpt_lock); 415 xsoftc.flags &= ~XPT_FLAG_OPEN; 416 mtx_unlock(&xsoftc.xpt_lock); 417 418 return(0); 419 } 420 421 /* 422 * Don't automatically grab the xpt softc lock here even though this is going 423 * through the xpt device. The xpt device is really just a back door for 424 * accessing other devices and SIMs, so the right thing to do is to grab 425 * the appropriate SIM lock once the bus/SIM is located. 426 */ 427 static int 428 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 429 { 430 int error; 431 432 error = 0; 433 434 switch(cmd) { 435 /* 436 * For the transport layer CAMIOCOMMAND ioctl, we really only want 437 * to accept CCB types that don't quite make sense to send through a 438 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 439 * in the CAM spec. 440 */ 441 case CAMIOCOMMAND: { 442 union ccb *ccb; 443 union ccb *inccb; 444 struct cam_eb *bus; 445 446 inccb = (union ccb *)addr; 447 448 bus = xpt_find_bus(inccb->ccb_h.path_id); 449 if (bus == NULL) { 450 error = EINVAL; 451 break; 452 } 453 454 switch(inccb->ccb_h.func_code) { 455 case XPT_SCAN_BUS: 456 case XPT_RESET_BUS: 457 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 458 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 459 error = EINVAL; 460 break; 461 } 462 /* FALLTHROUGH */ 463 case XPT_PATH_INQ: 464 case XPT_ENG_INQ: 465 case XPT_SCAN_LUN: 466 467 ccb = xpt_alloc_ccb(); 468 469 CAM_SIM_LOCK(bus->sim); 470 /* Ensure passed in target/lun supported on this bus. */ 471 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) || 472 (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 473 if (xpt_create_path(&ccb->ccb_h.path, 474 xpt_periph, 475 inccb->ccb_h.path_id, 476 CAM_TARGET_WILDCARD, 477 CAM_LUN_WILDCARD) != CAM_REQ_CMP) { 478 error = EINVAL; 479 CAM_SIM_UNLOCK(bus->sim); 480 xpt_free_ccb(ccb); 481 break; 482 } 483 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 484 inccb->ccb_h.pinfo.priority); 485 ccb->ccb_h.func_code = XPT_PATH_INQ; 486 xpt_action(ccb); 487 xpt_free_path(ccb->ccb_h.path); 488 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD && 489 inccb->ccb_h.target_id > ccb->cpi.max_target) || 490 (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD && 491 inccb->ccb_h.target_lun > ccb->cpi.max_lun)) { 492 error = EINVAL; 493 CAM_SIM_UNLOCK(bus->sim); 494 xpt_free_ccb(ccb); 495 break; 496 } 497 } 498 /* 499 * Create a path using the bus, target, and lun the 500 * user passed in. 501 */ 502 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 503 inccb->ccb_h.path_id, 504 inccb->ccb_h.target_id, 505 inccb->ccb_h.target_lun) != 506 CAM_REQ_CMP){ 507 error = EINVAL; 508 CAM_SIM_UNLOCK(bus->sim); 509 xpt_free_ccb(ccb); 510 break; 511 } 512 /* Ensure all of our fields are correct */ 513 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 514 inccb->ccb_h.pinfo.priority); 515 xpt_merge_ccb(ccb, inccb); 516 ccb->ccb_h.cbfcnp = xptdone; 517 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 518 bcopy(ccb, inccb, sizeof(union ccb)); 519 xpt_free_path(ccb->ccb_h.path); 520 xpt_free_ccb(ccb); 521 CAM_SIM_UNLOCK(bus->sim); 522 break; 523 524 case XPT_DEBUG: { 525 union ccb ccb; 526 527 /* 528 * This is an immediate CCB, so it's okay to 529 * allocate it on the stack. 530 */ 531 532 CAM_SIM_LOCK(bus->sim); 533 534 /* 535 * Create a path using the bus, target, and lun the 536 * user passed in. 537 */ 538 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 539 inccb->ccb_h.path_id, 540 inccb->ccb_h.target_id, 541 inccb->ccb_h.target_lun) != 542 CAM_REQ_CMP){ 543 error = EINVAL; 544 CAM_SIM_UNLOCK(bus->sim); 545 break; 546 } 547 /* Ensure all of our fields are correct */ 548 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 549 inccb->ccb_h.pinfo.priority); 550 xpt_merge_ccb(&ccb, inccb); 551 ccb.ccb_h.cbfcnp = xptdone; 552 xpt_action(&ccb); 553 CAM_SIM_UNLOCK(bus->sim); 554 bcopy(&ccb, inccb, sizeof(union ccb)); 555 xpt_free_path(ccb.ccb_h.path); 556 break; 557 558 } 559 case XPT_DEV_MATCH: { 560 struct cam_periph_map_info mapinfo; 561 struct cam_path *old_path; 562 563 /* 564 * We can't deal with physical addresses for this 565 * type of transaction. 566 */ 567 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 568 error = EINVAL; 569 break; 570 } 571 572 /* 573 * Save this in case the caller had it set to 574 * something in particular. 575 */ 576 old_path = inccb->ccb_h.path; 577 578 /* 579 * We really don't need a path for the matching 580 * code. The path is needed because of the 581 * debugging statements in xpt_action(). They 582 * assume that the CCB has a valid path. 583 */ 584 inccb->ccb_h.path = xpt_periph->path; 585 586 bzero(&mapinfo, sizeof(mapinfo)); 587 588 /* 589 * Map the pattern and match buffers into kernel 590 * virtual address space. 591 */ 592 error = cam_periph_mapmem(inccb, &mapinfo); 593 594 if (error) { 595 inccb->ccb_h.path = old_path; 596 break; 597 } 598 599 /* 600 * This is an immediate CCB, we can send it on directly. 601 */ 602 xpt_action(inccb); 603 604 /* 605 * Map the buffers back into user space. 606 */ 607 cam_periph_unmapmem(inccb, &mapinfo); 608 609 inccb->ccb_h.path = old_path; 610 611 error = 0; 612 break; 613 } 614 default: 615 error = ENOTSUP; 616 break; 617 } 618 xpt_release_bus(bus); 619 break; 620 } 621 /* 622 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 623 * with the periphal driver name and unit name filled in. The other 624 * fields don't really matter as input. The passthrough driver name 625 * ("pass"), and unit number are passed back in the ccb. The current 626 * device generation number, and the index into the device peripheral 627 * driver list, and the status are also passed back. Note that 628 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 629 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 630 * (or rather should be) impossible for the device peripheral driver 631 * list to change since we look at the whole thing in one pass, and 632 * we do it with lock protection. 633 * 634 */ 635 case CAMGETPASSTHRU: { 636 union ccb *ccb; 637 struct cam_periph *periph; 638 struct periph_driver **p_drv; 639 char *name; 640 u_int unit; 641 u_int cur_generation; 642 int base_periph_found; 643 int splbreaknum; 644 645 ccb = (union ccb *)addr; 646 unit = ccb->cgdl.unit_number; 647 name = ccb->cgdl.periph_name; 648 /* 649 * Every 100 devices, we want to drop our lock protection to 650 * give the software interrupt handler a chance to run. 651 * Most systems won't run into this check, but this should 652 * avoid starvation in the software interrupt handler in 653 * large systems. 654 */ 655 splbreaknum = 100; 656 657 ccb = (union ccb *)addr; 658 659 base_periph_found = 0; 660 661 /* 662 * Sanity check -- make sure we don't get a null peripheral 663 * driver name. 664 */ 665 if (*ccb->cgdl.periph_name == '\0') { 666 error = EINVAL; 667 break; 668 } 669 670 /* Keep the list from changing while we traverse it */ 671 mtx_lock(&xsoftc.xpt_topo_lock); 672 ptstartover: 673 cur_generation = xsoftc.xpt_generation; 674 675 /* first find our driver in the list of drivers */ 676 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 677 if (strcmp((*p_drv)->driver_name, name) == 0) 678 break; 679 680 if (*p_drv == NULL) { 681 mtx_unlock(&xsoftc.xpt_topo_lock); 682 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 683 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 684 *ccb->cgdl.periph_name = '\0'; 685 ccb->cgdl.unit_number = 0; 686 error = ENOENT; 687 break; 688 } 689 690 /* 691 * Run through every peripheral instance of this driver 692 * and check to see whether it matches the unit passed 693 * in by the user. If it does, get out of the loops and 694 * find the passthrough driver associated with that 695 * peripheral driver. 696 */ 697 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 698 periph = TAILQ_NEXT(periph, unit_links)) { 699 700 if (periph->unit_number == unit) { 701 break; 702 } else if (--splbreaknum == 0) { 703 mtx_unlock(&xsoftc.xpt_topo_lock); 704 mtx_lock(&xsoftc.xpt_topo_lock); 705 splbreaknum = 100; 706 if (cur_generation != xsoftc.xpt_generation) 707 goto ptstartover; 708 } 709 } 710 /* 711 * If we found the peripheral driver that the user passed 712 * in, go through all of the peripheral drivers for that 713 * particular device and look for a passthrough driver. 714 */ 715 if (periph != NULL) { 716 struct cam_ed *device; 717 int i; 718 719 base_periph_found = 1; 720 device = periph->path->device; 721 for (i = 0, periph = SLIST_FIRST(&device->periphs); 722 periph != NULL; 723 periph = SLIST_NEXT(periph, periph_links), i++) { 724 /* 725 * Check to see whether we have a 726 * passthrough device or not. 727 */ 728 if (strcmp(periph->periph_name, "pass") == 0) { 729 /* 730 * Fill in the getdevlist fields. 731 */ 732 strcpy(ccb->cgdl.periph_name, 733 periph->periph_name); 734 ccb->cgdl.unit_number = 735 periph->unit_number; 736 if (SLIST_NEXT(periph, periph_links)) 737 ccb->cgdl.status = 738 CAM_GDEVLIST_MORE_DEVS; 739 else 740 ccb->cgdl.status = 741 CAM_GDEVLIST_LAST_DEVICE; 742 ccb->cgdl.generation = 743 device->generation; 744 ccb->cgdl.index = i; 745 /* 746 * Fill in some CCB header fields 747 * that the user may want. 748 */ 749 ccb->ccb_h.path_id = 750 periph->path->bus->path_id; 751 ccb->ccb_h.target_id = 752 periph->path->target->target_id; 753 ccb->ccb_h.target_lun = 754 periph->path->device->lun_id; 755 ccb->ccb_h.status = CAM_REQ_CMP; 756 break; 757 } 758 } 759 } 760 761 /* 762 * If the periph is null here, one of two things has 763 * happened. The first possibility is that we couldn't 764 * find the unit number of the particular peripheral driver 765 * that the user is asking about. e.g. the user asks for 766 * the passthrough driver for "da11". We find the list of 767 * "da" peripherals all right, but there is no unit 11. 768 * The other possibility is that we went through the list 769 * of peripheral drivers attached to the device structure, 770 * but didn't find one with the name "pass". Either way, 771 * we return ENOENT, since we couldn't find something. 772 */ 773 if (periph == NULL) { 774 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 775 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 776 *ccb->cgdl.periph_name = '\0'; 777 ccb->cgdl.unit_number = 0; 778 error = ENOENT; 779 /* 780 * It is unfortunate that this is even necessary, 781 * but there are many, many clueless users out there. 782 * If this is true, the user is looking for the 783 * passthrough driver, but doesn't have one in his 784 * kernel. 785 */ 786 if (base_periph_found == 1) { 787 printf("xptioctl: pass driver is not in the " 788 "kernel\n"); 789 printf("xptioctl: put \"device pass\" in " 790 "your kernel config file\n"); 791 } 792 } 793 mtx_unlock(&xsoftc.xpt_topo_lock); 794 break; 795 } 796 default: 797 error = ENOTTY; 798 break; 799 } 800 801 return(error); 802 } 803 804 static int 805 cam_module_event_handler(module_t mod, int what, void *arg) 806 { 807 int error; 808 809 switch (what) { 810 case MOD_LOAD: 811 if ((error = xpt_init(NULL)) != 0) 812 return (error); 813 break; 814 case MOD_UNLOAD: 815 return EBUSY; 816 default: 817 return EOPNOTSUPP; 818 } 819 820 return 0; 821 } 822 823 static void 824 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 825 { 826 827 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 828 xpt_free_path(done_ccb->ccb_h.path); 829 xpt_free_ccb(done_ccb); 830 } else { 831 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 832 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 833 } 834 xpt_release_boot(); 835 } 836 837 /* thread to handle bus rescans */ 838 static void 839 xpt_scanner_thread(void *dummy) 840 { 841 union ccb *ccb; 842 struct cam_sim *sim; 843 844 xpt_lock_buses(); 845 for (;;) { 846 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 847 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 848 "ccb_scanq", 0); 849 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 850 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 851 xpt_unlock_buses(); 852 853 sim = ccb->ccb_h.path->bus->sim; 854 CAM_SIM_LOCK(sim); 855 xpt_action(ccb); 856 CAM_SIM_UNLOCK(sim); 857 858 xpt_lock_buses(); 859 } 860 } 861 } 862 863 void 864 xpt_rescan(union ccb *ccb) 865 { 866 struct ccb_hdr *hdr; 867 868 /* Prepare request */ 869 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD || 870 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 871 ccb->ccb_h.func_code = XPT_SCAN_BUS; 872 else 873 ccb->ccb_h.func_code = XPT_SCAN_LUN; 874 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 875 ccb->ccb_h.cbfcnp = xpt_rescan_done; 876 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 877 /* Don't make duplicate entries for the same paths. */ 878 xpt_lock_buses(); 879 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 880 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 881 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 882 wakeup(&xsoftc.ccb_scanq); 883 xpt_unlock_buses(); 884 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 885 xpt_free_path(ccb->ccb_h.path); 886 xpt_free_ccb(ccb); 887 return; 888 } 889 } 890 } 891 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 892 xsoftc.buses_to_config++; 893 wakeup(&xsoftc.ccb_scanq); 894 xpt_unlock_buses(); 895 } 896 897 /* Functions accessed by the peripheral drivers */ 898 static int 899 xpt_init(void *dummy) 900 { 901 struct cam_sim *xpt_sim; 902 struct cam_path *path; 903 struct cam_devq *devq; 904 cam_status status; 905 906 TAILQ_INIT(&xsoftc.xpt_busses); 907 TAILQ_INIT(&cam_simq); 908 TAILQ_INIT(&xsoftc.ccb_scanq); 909 STAILQ_INIT(&xsoftc.highpowerq); 910 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 911 912 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 913 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 914 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 915 916 /* 917 * The xpt layer is, itself, the equivelent of a SIM. 918 * Allow 16 ccbs in the ccb pool for it. This should 919 * give decent parallelism when we probe busses and 920 * perform other XPT functions. 921 */ 922 devq = cam_simq_alloc(16); 923 xpt_sim = cam_sim_alloc(xptaction, 924 xptpoll, 925 "xpt", 926 /*softc*/NULL, 927 /*unit*/0, 928 /*mtx*/&xsoftc.xpt_lock, 929 /*max_dev_transactions*/0, 930 /*max_tagged_dev_transactions*/0, 931 devq); 932 if (xpt_sim == NULL) 933 return (ENOMEM); 934 935 mtx_lock(&xsoftc.xpt_lock); 936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 937 mtx_unlock(&xsoftc.xpt_lock); 938 printf("xpt_init: xpt_bus_register failed with status %#x," 939 " failing attach\n", status); 940 return (EINVAL); 941 } 942 943 /* 944 * Looking at the XPT from the SIM layer, the XPT is 945 * the equivelent of a peripheral driver. Allocate 946 * a peripheral driver entry for us. 947 */ 948 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 949 CAM_TARGET_WILDCARD, 950 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 951 mtx_unlock(&xsoftc.xpt_lock); 952 printf("xpt_init: xpt_create_path failed with status %#x," 953 " failing attach\n", status); 954 return (EINVAL); 955 } 956 957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 958 path, NULL, 0, xpt_sim); 959 xpt_free_path(path); 960 mtx_unlock(&xsoftc.xpt_lock); 961 /* Install our software interrupt handlers */ 962 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 963 /* 964 * Register a callback for when interrupts are enabled. 965 */ 966 xsoftc.xpt_config_hook = 967 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 968 M_CAMXPT, M_NOWAIT | M_ZERO); 969 if (xsoftc.xpt_config_hook == NULL) { 970 printf("xpt_init: Cannot malloc config hook " 971 "- failing attach\n"); 972 return (ENOMEM); 973 } 974 xsoftc.xpt_config_hook->ich_func = xpt_config; 975 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 976 free (xsoftc.xpt_config_hook, M_CAMXPT); 977 printf("xpt_init: config_intrhook_establish failed " 978 "- failing attach\n"); 979 } 980 981 return (0); 982 } 983 984 static cam_status 985 xptregister(struct cam_periph *periph, void *arg) 986 { 987 struct cam_sim *xpt_sim; 988 989 if (periph == NULL) { 990 printf("xptregister: periph was NULL!!\n"); 991 return(CAM_REQ_CMP_ERR); 992 } 993 994 xpt_sim = (struct cam_sim *)arg; 995 xpt_sim->softc = periph; 996 xpt_periph = periph; 997 periph->softc = NULL; 998 999 return(CAM_REQ_CMP); 1000 } 1001 1002 int32_t 1003 xpt_add_periph(struct cam_periph *periph) 1004 { 1005 struct cam_ed *device; 1006 int32_t status; 1007 struct periph_list *periph_head; 1008 1009 mtx_assert(periph->sim->mtx, MA_OWNED); 1010 1011 device = periph->path->device; 1012 1013 periph_head = &device->periphs; 1014 1015 status = CAM_REQ_CMP; 1016 1017 if (device != NULL) { 1018 /* 1019 * Make room for this peripheral 1020 * so it will fit in the queue 1021 * when it's scheduled to run 1022 */ 1023 status = camq_resize(&device->drvq, 1024 device->drvq.array_size + 1); 1025 1026 device->generation++; 1027 1028 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1029 } 1030 1031 mtx_lock(&xsoftc.xpt_topo_lock); 1032 xsoftc.xpt_generation++; 1033 mtx_unlock(&xsoftc.xpt_topo_lock); 1034 1035 return (status); 1036 } 1037 1038 void 1039 xpt_remove_periph(struct cam_periph *periph) 1040 { 1041 struct cam_ed *device; 1042 1043 mtx_assert(periph->sim->mtx, MA_OWNED); 1044 1045 device = periph->path->device; 1046 1047 if (device != NULL) { 1048 struct periph_list *periph_head; 1049 1050 periph_head = &device->periphs; 1051 1052 /* Release the slot for this peripheral */ 1053 camq_resize(&device->drvq, device->drvq.array_size - 1); 1054 1055 device->generation++; 1056 1057 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1058 } 1059 1060 mtx_lock(&xsoftc.xpt_topo_lock); 1061 xsoftc.xpt_generation++; 1062 mtx_unlock(&xsoftc.xpt_topo_lock); 1063 } 1064 1065 1066 void 1067 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1068 { 1069 struct cam_path *path = periph->path; 1070 1071 mtx_assert(periph->sim->mtx, MA_OWNED); 1072 1073 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1074 periph->periph_name, periph->unit_number, 1075 path->bus->sim->sim_name, 1076 path->bus->sim->unit_number, 1077 path->bus->sim->bus_id, 1078 path->bus->path_id, 1079 path->target->target_id, 1080 path->device->lun_id); 1081 printf("%s%d: ", periph->periph_name, periph->unit_number); 1082 if (path->device->protocol == PROTO_SCSI) 1083 scsi_print_inquiry(&path->device->inq_data); 1084 else if (path->device->protocol == PROTO_ATA || 1085 path->device->protocol == PROTO_SATAPM) 1086 ata_print_ident(&path->device->ident_data); 1087 else 1088 printf("Unknown protocol device\n"); 1089 if (bootverbose && path->device->serial_num_len > 0) { 1090 /* Don't wrap the screen - print only the first 60 chars */ 1091 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1092 periph->unit_number, path->device->serial_num); 1093 } 1094 /* Announce transport details. */ 1095 (*(path->bus->xport->announce))(periph); 1096 /* Announce command queueing. */ 1097 if (path->device->inq_flags & SID_CmdQue 1098 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1099 printf("\n%s%d: Command Queueing enabled", 1100 periph->periph_name, periph->unit_number); 1101 } 1102 /* Announce caller's details if they've passed in. */ 1103 if (announce_string != NULL) 1104 printf("%s%d: %s\n", periph->periph_name, 1105 periph->unit_number, announce_string); 1106 } 1107 1108 static dev_match_ret 1109 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1110 struct cam_eb *bus) 1111 { 1112 dev_match_ret retval; 1113 int i; 1114 1115 retval = DM_RET_NONE; 1116 1117 /* 1118 * If we aren't given something to match against, that's an error. 1119 */ 1120 if (bus == NULL) 1121 return(DM_RET_ERROR); 1122 1123 /* 1124 * If there are no match entries, then this bus matches no 1125 * matter what. 1126 */ 1127 if ((patterns == NULL) || (num_patterns == 0)) 1128 return(DM_RET_DESCEND | DM_RET_COPY); 1129 1130 for (i = 0; i < num_patterns; i++) { 1131 struct bus_match_pattern *cur_pattern; 1132 1133 /* 1134 * If the pattern in question isn't for a bus node, we 1135 * aren't interested. However, we do indicate to the 1136 * calling routine that we should continue descending the 1137 * tree, since the user wants to match against lower-level 1138 * EDT elements. 1139 */ 1140 if (patterns[i].type != DEV_MATCH_BUS) { 1141 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1142 retval |= DM_RET_DESCEND; 1143 continue; 1144 } 1145 1146 cur_pattern = &patterns[i].pattern.bus_pattern; 1147 1148 /* 1149 * If they want to match any bus node, we give them any 1150 * device node. 1151 */ 1152 if (cur_pattern->flags == BUS_MATCH_ANY) { 1153 /* set the copy flag */ 1154 retval |= DM_RET_COPY; 1155 1156 /* 1157 * If we've already decided on an action, go ahead 1158 * and return. 1159 */ 1160 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1161 return(retval); 1162 } 1163 1164 /* 1165 * Not sure why someone would do this... 1166 */ 1167 if (cur_pattern->flags == BUS_MATCH_NONE) 1168 continue; 1169 1170 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1171 && (cur_pattern->path_id != bus->path_id)) 1172 continue; 1173 1174 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1175 && (cur_pattern->bus_id != bus->sim->bus_id)) 1176 continue; 1177 1178 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1179 && (cur_pattern->unit_number != bus->sim->unit_number)) 1180 continue; 1181 1182 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1183 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1184 DEV_IDLEN) != 0)) 1185 continue; 1186 1187 /* 1188 * If we get to this point, the user definitely wants 1189 * information on this bus. So tell the caller to copy the 1190 * data out. 1191 */ 1192 retval |= DM_RET_COPY; 1193 1194 /* 1195 * If the return action has been set to descend, then we 1196 * know that we've already seen a non-bus matching 1197 * expression, therefore we need to further descend the tree. 1198 * This won't change by continuing around the loop, so we 1199 * go ahead and return. If we haven't seen a non-bus 1200 * matching expression, we keep going around the loop until 1201 * we exhaust the matching expressions. We'll set the stop 1202 * flag once we fall out of the loop. 1203 */ 1204 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1205 return(retval); 1206 } 1207 1208 /* 1209 * If the return action hasn't been set to descend yet, that means 1210 * we haven't seen anything other than bus matching patterns. So 1211 * tell the caller to stop descending the tree -- the user doesn't 1212 * want to match against lower level tree elements. 1213 */ 1214 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1215 retval |= DM_RET_STOP; 1216 1217 return(retval); 1218 } 1219 1220 static dev_match_ret 1221 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1222 struct cam_ed *device) 1223 { 1224 dev_match_ret retval; 1225 int i; 1226 1227 retval = DM_RET_NONE; 1228 1229 /* 1230 * If we aren't given something to match against, that's an error. 1231 */ 1232 if (device == NULL) 1233 return(DM_RET_ERROR); 1234 1235 /* 1236 * If there are no match entries, then this device matches no 1237 * matter what. 1238 */ 1239 if ((patterns == NULL) || (num_patterns == 0)) 1240 return(DM_RET_DESCEND | DM_RET_COPY); 1241 1242 for (i = 0; i < num_patterns; i++) { 1243 struct device_match_pattern *cur_pattern; 1244 1245 /* 1246 * If the pattern in question isn't for a device node, we 1247 * aren't interested. 1248 */ 1249 if (patterns[i].type != DEV_MATCH_DEVICE) { 1250 if ((patterns[i].type == DEV_MATCH_PERIPH) 1251 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1252 retval |= DM_RET_DESCEND; 1253 continue; 1254 } 1255 1256 cur_pattern = &patterns[i].pattern.device_pattern; 1257 1258 /* 1259 * If they want to match any device node, we give them any 1260 * device node. 1261 */ 1262 if (cur_pattern->flags == DEV_MATCH_ANY) { 1263 /* set the copy flag */ 1264 retval |= DM_RET_COPY; 1265 1266 1267 /* 1268 * If we've already decided on an action, go ahead 1269 * and return. 1270 */ 1271 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1272 return(retval); 1273 } 1274 1275 /* 1276 * Not sure why someone would do this... 1277 */ 1278 if (cur_pattern->flags == DEV_MATCH_NONE) 1279 continue; 1280 1281 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1282 && (cur_pattern->path_id != device->target->bus->path_id)) 1283 continue; 1284 1285 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1286 && (cur_pattern->target_id != device->target->target_id)) 1287 continue; 1288 1289 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1290 && (cur_pattern->target_lun != device->lun_id)) 1291 continue; 1292 1293 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1294 && (cam_quirkmatch((caddr_t)&device->inq_data, 1295 (caddr_t)&cur_pattern->inq_pat, 1296 1, sizeof(cur_pattern->inq_pat), 1297 scsi_static_inquiry_match) == NULL)) 1298 continue; 1299 1300 /* 1301 * If we get to this point, the user definitely wants 1302 * information on this device. So tell the caller to copy 1303 * the data out. 1304 */ 1305 retval |= DM_RET_COPY; 1306 1307 /* 1308 * If the return action has been set to descend, then we 1309 * know that we've already seen a peripheral matching 1310 * expression, therefore we need to further descend the tree. 1311 * This won't change by continuing around the loop, so we 1312 * go ahead and return. If we haven't seen a peripheral 1313 * matching expression, we keep going around the loop until 1314 * we exhaust the matching expressions. We'll set the stop 1315 * flag once we fall out of the loop. 1316 */ 1317 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1318 return(retval); 1319 } 1320 1321 /* 1322 * If the return action hasn't been set to descend yet, that means 1323 * we haven't seen any peripheral matching patterns. So tell the 1324 * caller to stop descending the tree -- the user doesn't want to 1325 * match against lower level tree elements. 1326 */ 1327 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1328 retval |= DM_RET_STOP; 1329 1330 return(retval); 1331 } 1332 1333 /* 1334 * Match a single peripheral against any number of match patterns. 1335 */ 1336 static dev_match_ret 1337 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1338 struct cam_periph *periph) 1339 { 1340 dev_match_ret retval; 1341 int i; 1342 1343 /* 1344 * If we aren't given something to match against, that's an error. 1345 */ 1346 if (periph == NULL) 1347 return(DM_RET_ERROR); 1348 1349 /* 1350 * If there are no match entries, then this peripheral matches no 1351 * matter what. 1352 */ 1353 if ((patterns == NULL) || (num_patterns == 0)) 1354 return(DM_RET_STOP | DM_RET_COPY); 1355 1356 /* 1357 * There aren't any nodes below a peripheral node, so there's no 1358 * reason to descend the tree any further. 1359 */ 1360 retval = DM_RET_STOP; 1361 1362 for (i = 0; i < num_patterns; i++) { 1363 struct periph_match_pattern *cur_pattern; 1364 1365 /* 1366 * If the pattern in question isn't for a peripheral, we 1367 * aren't interested. 1368 */ 1369 if (patterns[i].type != DEV_MATCH_PERIPH) 1370 continue; 1371 1372 cur_pattern = &patterns[i].pattern.periph_pattern; 1373 1374 /* 1375 * If they want to match on anything, then we will do so. 1376 */ 1377 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1378 /* set the copy flag */ 1379 retval |= DM_RET_COPY; 1380 1381 /* 1382 * We've already set the return action to stop, 1383 * since there are no nodes below peripherals in 1384 * the tree. 1385 */ 1386 return(retval); 1387 } 1388 1389 /* 1390 * Not sure why someone would do this... 1391 */ 1392 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1393 continue; 1394 1395 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1396 && (cur_pattern->path_id != periph->path->bus->path_id)) 1397 continue; 1398 1399 /* 1400 * For the target and lun id's, we have to make sure the 1401 * target and lun pointers aren't NULL. The xpt peripheral 1402 * has a wildcard target and device. 1403 */ 1404 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1405 && ((periph->path->target == NULL) 1406 ||(cur_pattern->target_id != periph->path->target->target_id))) 1407 continue; 1408 1409 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1410 && ((periph->path->device == NULL) 1411 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1412 continue; 1413 1414 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1415 && (cur_pattern->unit_number != periph->unit_number)) 1416 continue; 1417 1418 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1419 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1420 DEV_IDLEN) != 0)) 1421 continue; 1422 1423 /* 1424 * If we get to this point, the user definitely wants 1425 * information on this peripheral. So tell the caller to 1426 * copy the data out. 1427 */ 1428 retval |= DM_RET_COPY; 1429 1430 /* 1431 * The return action has already been set to stop, since 1432 * peripherals don't have any nodes below them in the EDT. 1433 */ 1434 return(retval); 1435 } 1436 1437 /* 1438 * If we get to this point, the peripheral that was passed in 1439 * doesn't match any of the patterns. 1440 */ 1441 return(retval); 1442 } 1443 1444 static int 1445 xptedtbusfunc(struct cam_eb *bus, void *arg) 1446 { 1447 struct ccb_dev_match *cdm; 1448 dev_match_ret retval; 1449 1450 cdm = (struct ccb_dev_match *)arg; 1451 1452 /* 1453 * If our position is for something deeper in the tree, that means 1454 * that we've already seen this node. So, we keep going down. 1455 */ 1456 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1457 && (cdm->pos.cookie.bus == bus) 1458 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1459 && (cdm->pos.cookie.target != NULL)) 1460 retval = DM_RET_DESCEND; 1461 else 1462 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1463 1464 /* 1465 * If we got an error, bail out of the search. 1466 */ 1467 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1468 cdm->status = CAM_DEV_MATCH_ERROR; 1469 return(0); 1470 } 1471 1472 /* 1473 * If the copy flag is set, copy this bus out. 1474 */ 1475 if (retval & DM_RET_COPY) { 1476 int spaceleft, j; 1477 1478 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1479 sizeof(struct dev_match_result)); 1480 1481 /* 1482 * If we don't have enough space to put in another 1483 * match result, save our position and tell the 1484 * user there are more devices to check. 1485 */ 1486 if (spaceleft < sizeof(struct dev_match_result)) { 1487 bzero(&cdm->pos, sizeof(cdm->pos)); 1488 cdm->pos.position_type = 1489 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1490 1491 cdm->pos.cookie.bus = bus; 1492 cdm->pos.generations[CAM_BUS_GENERATION]= 1493 xsoftc.bus_generation; 1494 cdm->status = CAM_DEV_MATCH_MORE; 1495 return(0); 1496 } 1497 j = cdm->num_matches; 1498 cdm->num_matches++; 1499 cdm->matches[j].type = DEV_MATCH_BUS; 1500 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1501 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1502 cdm->matches[j].result.bus_result.unit_number = 1503 bus->sim->unit_number; 1504 strncpy(cdm->matches[j].result.bus_result.dev_name, 1505 bus->sim->sim_name, DEV_IDLEN); 1506 } 1507 1508 /* 1509 * If the user is only interested in busses, there's no 1510 * reason to descend to the next level in the tree. 1511 */ 1512 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1513 return(1); 1514 1515 /* 1516 * If there is a target generation recorded, check it to 1517 * make sure the target list hasn't changed. 1518 */ 1519 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1520 && (bus == cdm->pos.cookie.bus) 1521 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1522 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1523 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1524 bus->generation)) { 1525 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1526 return(0); 1527 } 1528 1529 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1530 && (cdm->pos.cookie.bus == bus) 1531 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1532 && (cdm->pos.cookie.target != NULL)) 1533 return(xpttargettraverse(bus, 1534 (struct cam_et *)cdm->pos.cookie.target, 1535 xptedttargetfunc, arg)); 1536 else 1537 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1538 } 1539 1540 static int 1541 xptedttargetfunc(struct cam_et *target, void *arg) 1542 { 1543 struct ccb_dev_match *cdm; 1544 1545 cdm = (struct ccb_dev_match *)arg; 1546 1547 /* 1548 * If there is a device list generation recorded, check it to 1549 * make sure the device list hasn't changed. 1550 */ 1551 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1552 && (cdm->pos.cookie.bus == target->bus) 1553 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1554 && (cdm->pos.cookie.target == target) 1555 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1556 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1557 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1558 target->generation)) { 1559 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1560 return(0); 1561 } 1562 1563 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1564 && (cdm->pos.cookie.bus == target->bus) 1565 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1566 && (cdm->pos.cookie.target == target) 1567 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1568 && (cdm->pos.cookie.device != NULL)) 1569 return(xptdevicetraverse(target, 1570 (struct cam_ed *)cdm->pos.cookie.device, 1571 xptedtdevicefunc, arg)); 1572 else 1573 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1574 } 1575 1576 static int 1577 xptedtdevicefunc(struct cam_ed *device, void *arg) 1578 { 1579 1580 struct ccb_dev_match *cdm; 1581 dev_match_ret retval; 1582 1583 cdm = (struct ccb_dev_match *)arg; 1584 1585 /* 1586 * If our position is for something deeper in the tree, that means 1587 * that we've already seen this node. So, we keep going down. 1588 */ 1589 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1590 && (cdm->pos.cookie.device == device) 1591 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1592 && (cdm->pos.cookie.periph != NULL)) 1593 retval = DM_RET_DESCEND; 1594 else 1595 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1596 device); 1597 1598 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1599 cdm->status = CAM_DEV_MATCH_ERROR; 1600 return(0); 1601 } 1602 1603 /* 1604 * If the copy flag is set, copy this device out. 1605 */ 1606 if (retval & DM_RET_COPY) { 1607 int spaceleft, j; 1608 1609 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1610 sizeof(struct dev_match_result)); 1611 1612 /* 1613 * If we don't have enough space to put in another 1614 * match result, save our position and tell the 1615 * user there are more devices to check. 1616 */ 1617 if (spaceleft < sizeof(struct dev_match_result)) { 1618 bzero(&cdm->pos, sizeof(cdm->pos)); 1619 cdm->pos.position_type = 1620 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1621 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1622 1623 cdm->pos.cookie.bus = device->target->bus; 1624 cdm->pos.generations[CAM_BUS_GENERATION]= 1625 xsoftc.bus_generation; 1626 cdm->pos.cookie.target = device->target; 1627 cdm->pos.generations[CAM_TARGET_GENERATION] = 1628 device->target->bus->generation; 1629 cdm->pos.cookie.device = device; 1630 cdm->pos.generations[CAM_DEV_GENERATION] = 1631 device->target->generation; 1632 cdm->status = CAM_DEV_MATCH_MORE; 1633 return(0); 1634 } 1635 j = cdm->num_matches; 1636 cdm->num_matches++; 1637 cdm->matches[j].type = DEV_MATCH_DEVICE; 1638 cdm->matches[j].result.device_result.path_id = 1639 device->target->bus->path_id; 1640 cdm->matches[j].result.device_result.target_id = 1641 device->target->target_id; 1642 cdm->matches[j].result.device_result.target_lun = 1643 device->lun_id; 1644 cdm->matches[j].result.device_result.protocol = 1645 device->protocol; 1646 bcopy(&device->inq_data, 1647 &cdm->matches[j].result.device_result.inq_data, 1648 sizeof(struct scsi_inquiry_data)); 1649 bcopy(&device->ident_data, 1650 &cdm->matches[j].result.device_result.ident_data, 1651 sizeof(struct ata_params)); 1652 1653 /* Let the user know whether this device is unconfigured */ 1654 if (device->flags & CAM_DEV_UNCONFIGURED) 1655 cdm->matches[j].result.device_result.flags = 1656 DEV_RESULT_UNCONFIGURED; 1657 else 1658 cdm->matches[j].result.device_result.flags = 1659 DEV_RESULT_NOFLAG; 1660 } 1661 1662 /* 1663 * If the user isn't interested in peripherals, don't descend 1664 * the tree any further. 1665 */ 1666 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1667 return(1); 1668 1669 /* 1670 * If there is a peripheral list generation recorded, make sure 1671 * it hasn't changed. 1672 */ 1673 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1674 && (device->target->bus == cdm->pos.cookie.bus) 1675 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1676 && (device->target == cdm->pos.cookie.target) 1677 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1678 && (device == cdm->pos.cookie.device) 1679 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1680 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1681 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1682 device->generation)){ 1683 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1684 return(0); 1685 } 1686 1687 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1688 && (cdm->pos.cookie.bus == device->target->bus) 1689 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1690 && (cdm->pos.cookie.target == device->target) 1691 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1692 && (cdm->pos.cookie.device == device) 1693 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1694 && (cdm->pos.cookie.periph != NULL)) 1695 return(xptperiphtraverse(device, 1696 (struct cam_periph *)cdm->pos.cookie.periph, 1697 xptedtperiphfunc, arg)); 1698 else 1699 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1700 } 1701 1702 static int 1703 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1704 { 1705 struct ccb_dev_match *cdm; 1706 dev_match_ret retval; 1707 1708 cdm = (struct ccb_dev_match *)arg; 1709 1710 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1711 1712 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1713 cdm->status = CAM_DEV_MATCH_ERROR; 1714 return(0); 1715 } 1716 1717 /* 1718 * If the copy flag is set, copy this peripheral out. 1719 */ 1720 if (retval & DM_RET_COPY) { 1721 int spaceleft, j; 1722 1723 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1724 sizeof(struct dev_match_result)); 1725 1726 /* 1727 * If we don't have enough space to put in another 1728 * match result, save our position and tell the 1729 * user there are more devices to check. 1730 */ 1731 if (spaceleft < sizeof(struct dev_match_result)) { 1732 bzero(&cdm->pos, sizeof(cdm->pos)); 1733 cdm->pos.position_type = 1734 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1735 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1736 CAM_DEV_POS_PERIPH; 1737 1738 cdm->pos.cookie.bus = periph->path->bus; 1739 cdm->pos.generations[CAM_BUS_GENERATION]= 1740 xsoftc.bus_generation; 1741 cdm->pos.cookie.target = periph->path->target; 1742 cdm->pos.generations[CAM_TARGET_GENERATION] = 1743 periph->path->bus->generation; 1744 cdm->pos.cookie.device = periph->path->device; 1745 cdm->pos.generations[CAM_DEV_GENERATION] = 1746 periph->path->target->generation; 1747 cdm->pos.cookie.periph = periph; 1748 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1749 periph->path->device->generation; 1750 cdm->status = CAM_DEV_MATCH_MORE; 1751 return(0); 1752 } 1753 1754 j = cdm->num_matches; 1755 cdm->num_matches++; 1756 cdm->matches[j].type = DEV_MATCH_PERIPH; 1757 cdm->matches[j].result.periph_result.path_id = 1758 periph->path->bus->path_id; 1759 cdm->matches[j].result.periph_result.target_id = 1760 periph->path->target->target_id; 1761 cdm->matches[j].result.periph_result.target_lun = 1762 periph->path->device->lun_id; 1763 cdm->matches[j].result.periph_result.unit_number = 1764 periph->unit_number; 1765 strncpy(cdm->matches[j].result.periph_result.periph_name, 1766 periph->periph_name, DEV_IDLEN); 1767 } 1768 1769 return(1); 1770 } 1771 1772 static int 1773 xptedtmatch(struct ccb_dev_match *cdm) 1774 { 1775 int ret; 1776 1777 cdm->num_matches = 0; 1778 1779 /* 1780 * Check the bus list generation. If it has changed, the user 1781 * needs to reset everything and start over. 1782 */ 1783 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1784 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1785 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1786 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1787 return(0); 1788 } 1789 1790 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1791 && (cdm->pos.cookie.bus != NULL)) 1792 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1793 xptedtbusfunc, cdm); 1794 else 1795 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1796 1797 /* 1798 * If we get back 0, that means that we had to stop before fully 1799 * traversing the EDT. It also means that one of the subroutines 1800 * has set the status field to the proper value. If we get back 1, 1801 * we've fully traversed the EDT and copied out any matching entries. 1802 */ 1803 if (ret == 1) 1804 cdm->status = CAM_DEV_MATCH_LAST; 1805 1806 return(ret); 1807 } 1808 1809 static int 1810 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1811 { 1812 struct ccb_dev_match *cdm; 1813 1814 cdm = (struct ccb_dev_match *)arg; 1815 1816 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1817 && (cdm->pos.cookie.pdrv == pdrv) 1818 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1819 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1820 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1821 (*pdrv)->generation)) { 1822 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1823 return(0); 1824 } 1825 1826 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1827 && (cdm->pos.cookie.pdrv == pdrv) 1828 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1829 && (cdm->pos.cookie.periph != NULL)) 1830 return(xptpdperiphtraverse(pdrv, 1831 (struct cam_periph *)cdm->pos.cookie.periph, 1832 xptplistperiphfunc, arg)); 1833 else 1834 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1835 } 1836 1837 static int 1838 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1839 { 1840 struct ccb_dev_match *cdm; 1841 dev_match_ret retval; 1842 1843 cdm = (struct ccb_dev_match *)arg; 1844 1845 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1846 1847 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1848 cdm->status = CAM_DEV_MATCH_ERROR; 1849 return(0); 1850 } 1851 1852 /* 1853 * If the copy flag is set, copy this peripheral out. 1854 */ 1855 if (retval & DM_RET_COPY) { 1856 int spaceleft, j; 1857 1858 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1859 sizeof(struct dev_match_result)); 1860 1861 /* 1862 * If we don't have enough space to put in another 1863 * match result, save our position and tell the 1864 * user there are more devices to check. 1865 */ 1866 if (spaceleft < sizeof(struct dev_match_result)) { 1867 struct periph_driver **pdrv; 1868 1869 pdrv = NULL; 1870 bzero(&cdm->pos, sizeof(cdm->pos)); 1871 cdm->pos.position_type = 1872 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1873 CAM_DEV_POS_PERIPH; 1874 1875 /* 1876 * This may look a bit non-sensical, but it is 1877 * actually quite logical. There are very few 1878 * peripheral drivers, and bloating every peripheral 1879 * structure with a pointer back to its parent 1880 * peripheral driver linker set entry would cost 1881 * more in the long run than doing this quick lookup. 1882 */ 1883 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1884 if (strcmp((*pdrv)->driver_name, 1885 periph->periph_name) == 0) 1886 break; 1887 } 1888 1889 if (*pdrv == NULL) { 1890 cdm->status = CAM_DEV_MATCH_ERROR; 1891 return(0); 1892 } 1893 1894 cdm->pos.cookie.pdrv = pdrv; 1895 /* 1896 * The periph generation slot does double duty, as 1897 * does the periph pointer slot. They are used for 1898 * both edt and pdrv lookups and positioning. 1899 */ 1900 cdm->pos.cookie.periph = periph; 1901 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1902 (*pdrv)->generation; 1903 cdm->status = CAM_DEV_MATCH_MORE; 1904 return(0); 1905 } 1906 1907 j = cdm->num_matches; 1908 cdm->num_matches++; 1909 cdm->matches[j].type = DEV_MATCH_PERIPH; 1910 cdm->matches[j].result.periph_result.path_id = 1911 periph->path->bus->path_id; 1912 1913 /* 1914 * The transport layer peripheral doesn't have a target or 1915 * lun. 1916 */ 1917 if (periph->path->target) 1918 cdm->matches[j].result.periph_result.target_id = 1919 periph->path->target->target_id; 1920 else 1921 cdm->matches[j].result.periph_result.target_id = -1; 1922 1923 if (periph->path->device) 1924 cdm->matches[j].result.periph_result.target_lun = 1925 periph->path->device->lun_id; 1926 else 1927 cdm->matches[j].result.periph_result.target_lun = -1; 1928 1929 cdm->matches[j].result.periph_result.unit_number = 1930 periph->unit_number; 1931 strncpy(cdm->matches[j].result.periph_result.periph_name, 1932 periph->periph_name, DEV_IDLEN); 1933 } 1934 1935 return(1); 1936 } 1937 1938 static int 1939 xptperiphlistmatch(struct ccb_dev_match *cdm) 1940 { 1941 int ret; 1942 1943 cdm->num_matches = 0; 1944 1945 /* 1946 * At this point in the edt traversal function, we check the bus 1947 * list generation to make sure that no busses have been added or 1948 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1949 * For the peripheral driver list traversal function, however, we 1950 * don't have to worry about new peripheral driver types coming or 1951 * going; they're in a linker set, and therefore can't change 1952 * without a recompile. 1953 */ 1954 1955 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1956 && (cdm->pos.cookie.pdrv != NULL)) 1957 ret = xptpdrvtraverse( 1958 (struct periph_driver **)cdm->pos.cookie.pdrv, 1959 xptplistpdrvfunc, cdm); 1960 else 1961 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 1962 1963 /* 1964 * If we get back 0, that means that we had to stop before fully 1965 * traversing the peripheral driver tree. It also means that one of 1966 * the subroutines has set the status field to the proper value. If 1967 * we get back 1, we've fully traversed the EDT and copied out any 1968 * matching entries. 1969 */ 1970 if (ret == 1) 1971 cdm->status = CAM_DEV_MATCH_LAST; 1972 1973 return(ret); 1974 } 1975 1976 static int 1977 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 1978 { 1979 struct cam_eb *bus, *next_bus; 1980 int retval; 1981 1982 retval = 1; 1983 1984 mtx_lock(&xsoftc.xpt_topo_lock); 1985 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 1986 bus != NULL; 1987 bus = next_bus) { 1988 next_bus = TAILQ_NEXT(bus, links); 1989 1990 mtx_unlock(&xsoftc.xpt_topo_lock); 1991 CAM_SIM_LOCK(bus->sim); 1992 retval = tr_func(bus, arg); 1993 CAM_SIM_UNLOCK(bus->sim); 1994 if (retval == 0) 1995 return(retval); 1996 mtx_lock(&xsoftc.xpt_topo_lock); 1997 } 1998 mtx_unlock(&xsoftc.xpt_topo_lock); 1999 2000 return(retval); 2001 } 2002 2003 int 2004 xpt_sim_opened(struct cam_sim *sim) 2005 { 2006 struct cam_eb *bus; 2007 struct cam_et *target; 2008 struct cam_ed *device; 2009 struct cam_periph *periph; 2010 2011 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1")); 2012 mtx_assert(sim->mtx, MA_OWNED); 2013 2014 mtx_lock(&xsoftc.xpt_topo_lock); 2015 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 2016 if (bus->sim != sim) 2017 continue; 2018 2019 TAILQ_FOREACH(target, &bus->et_entries, links) { 2020 TAILQ_FOREACH(device, &target->ed_entries, links) { 2021 SLIST_FOREACH(periph, &device->periphs, 2022 periph_links) { 2023 if (periph->refcount > 0) { 2024 mtx_unlock(&xsoftc.xpt_topo_lock); 2025 return (1); 2026 } 2027 } 2028 } 2029 } 2030 } 2031 2032 mtx_unlock(&xsoftc.xpt_topo_lock); 2033 return (0); 2034 } 2035 2036 static int 2037 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2038 xpt_targetfunc_t *tr_func, void *arg) 2039 { 2040 struct cam_et *target, *next_target; 2041 int retval; 2042 2043 retval = 1; 2044 for (target = (start_target ? start_target : 2045 TAILQ_FIRST(&bus->et_entries)); 2046 target != NULL; target = next_target) { 2047 2048 next_target = TAILQ_NEXT(target, links); 2049 2050 retval = tr_func(target, arg); 2051 2052 if (retval == 0) 2053 return(retval); 2054 } 2055 2056 return(retval); 2057 } 2058 2059 static int 2060 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2061 xpt_devicefunc_t *tr_func, void *arg) 2062 { 2063 struct cam_ed *device, *next_device; 2064 int retval; 2065 2066 retval = 1; 2067 for (device = (start_device ? start_device : 2068 TAILQ_FIRST(&target->ed_entries)); 2069 device != NULL; 2070 device = next_device) { 2071 2072 next_device = TAILQ_NEXT(device, links); 2073 2074 retval = tr_func(device, arg); 2075 2076 if (retval == 0) 2077 return(retval); 2078 } 2079 2080 return(retval); 2081 } 2082 2083 static int 2084 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2085 xpt_periphfunc_t *tr_func, void *arg) 2086 { 2087 struct cam_periph *periph, *next_periph; 2088 int retval; 2089 2090 retval = 1; 2091 2092 for (periph = (start_periph ? start_periph : 2093 SLIST_FIRST(&device->periphs)); 2094 periph != NULL; 2095 periph = next_periph) { 2096 2097 next_periph = SLIST_NEXT(periph, periph_links); 2098 2099 retval = tr_func(periph, arg); 2100 if (retval == 0) 2101 return(retval); 2102 } 2103 2104 return(retval); 2105 } 2106 2107 static int 2108 xptpdrvtraverse(struct periph_driver **start_pdrv, 2109 xpt_pdrvfunc_t *tr_func, void *arg) 2110 { 2111 struct periph_driver **pdrv; 2112 int retval; 2113 2114 retval = 1; 2115 2116 /* 2117 * We don't traverse the peripheral driver list like we do the 2118 * other lists, because it is a linker set, and therefore cannot be 2119 * changed during runtime. If the peripheral driver list is ever 2120 * re-done to be something other than a linker set (i.e. it can 2121 * change while the system is running), the list traversal should 2122 * be modified to work like the other traversal functions. 2123 */ 2124 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2125 *pdrv != NULL; pdrv++) { 2126 retval = tr_func(pdrv, arg); 2127 2128 if (retval == 0) 2129 return(retval); 2130 } 2131 2132 return(retval); 2133 } 2134 2135 static int 2136 xptpdperiphtraverse(struct periph_driver **pdrv, 2137 struct cam_periph *start_periph, 2138 xpt_periphfunc_t *tr_func, void *arg) 2139 { 2140 struct cam_periph *periph, *next_periph; 2141 int retval; 2142 2143 retval = 1; 2144 2145 for (periph = (start_periph ? start_periph : 2146 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2147 periph = next_periph) { 2148 2149 next_periph = TAILQ_NEXT(periph, unit_links); 2150 2151 retval = tr_func(periph, arg); 2152 if (retval == 0) 2153 return(retval); 2154 } 2155 return(retval); 2156 } 2157 2158 static int 2159 xptdefbusfunc(struct cam_eb *bus, void *arg) 2160 { 2161 struct xpt_traverse_config *tr_config; 2162 2163 tr_config = (struct xpt_traverse_config *)arg; 2164 2165 if (tr_config->depth == XPT_DEPTH_BUS) { 2166 xpt_busfunc_t *tr_func; 2167 2168 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2169 2170 return(tr_func(bus, tr_config->tr_arg)); 2171 } else 2172 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2173 } 2174 2175 static int 2176 xptdeftargetfunc(struct cam_et *target, void *arg) 2177 { 2178 struct xpt_traverse_config *tr_config; 2179 2180 tr_config = (struct xpt_traverse_config *)arg; 2181 2182 if (tr_config->depth == XPT_DEPTH_TARGET) { 2183 xpt_targetfunc_t *tr_func; 2184 2185 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2186 2187 return(tr_func(target, tr_config->tr_arg)); 2188 } else 2189 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2190 } 2191 2192 static int 2193 xptdefdevicefunc(struct cam_ed *device, void *arg) 2194 { 2195 struct xpt_traverse_config *tr_config; 2196 2197 tr_config = (struct xpt_traverse_config *)arg; 2198 2199 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2200 xpt_devicefunc_t *tr_func; 2201 2202 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2203 2204 return(tr_func(device, tr_config->tr_arg)); 2205 } else 2206 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2207 } 2208 2209 static int 2210 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2211 { 2212 struct xpt_traverse_config *tr_config; 2213 xpt_periphfunc_t *tr_func; 2214 2215 tr_config = (struct xpt_traverse_config *)arg; 2216 2217 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2218 2219 /* 2220 * Unlike the other default functions, we don't check for depth 2221 * here. The peripheral driver level is the last level in the EDT, 2222 * so if we're here, we should execute the function in question. 2223 */ 2224 return(tr_func(periph, tr_config->tr_arg)); 2225 } 2226 2227 /* 2228 * Execute the given function for every bus in the EDT. 2229 */ 2230 static int 2231 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2232 { 2233 struct xpt_traverse_config tr_config; 2234 2235 tr_config.depth = XPT_DEPTH_BUS; 2236 tr_config.tr_func = tr_func; 2237 tr_config.tr_arg = arg; 2238 2239 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2240 } 2241 2242 /* 2243 * Execute the given function for every device in the EDT. 2244 */ 2245 static int 2246 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2247 { 2248 struct xpt_traverse_config tr_config; 2249 2250 tr_config.depth = XPT_DEPTH_DEVICE; 2251 tr_config.tr_func = tr_func; 2252 tr_config.tr_arg = arg; 2253 2254 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2255 } 2256 2257 static int 2258 xptsetasyncfunc(struct cam_ed *device, void *arg) 2259 { 2260 struct cam_path path; 2261 struct ccb_getdev cgd; 2262 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2263 2264 /* 2265 * Don't report unconfigured devices (Wildcard devs, 2266 * devices only for target mode, device instances 2267 * that have been invalidated but are waiting for 2268 * their last reference count to be released). 2269 */ 2270 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2271 return (1); 2272 2273 xpt_compile_path(&path, 2274 NULL, 2275 device->target->bus->path_id, 2276 device->target->target_id, 2277 device->lun_id); 2278 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2279 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2280 xpt_action((union ccb *)&cgd); 2281 csa->callback(csa->callback_arg, 2282 AC_FOUND_DEVICE, 2283 &path, &cgd); 2284 xpt_release_path(&path); 2285 2286 return(1); 2287 } 2288 2289 static int 2290 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2291 { 2292 struct cam_path path; 2293 struct ccb_pathinq cpi; 2294 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2295 2296 xpt_compile_path(&path, /*periph*/NULL, 2297 bus->sim->path_id, 2298 CAM_TARGET_WILDCARD, 2299 CAM_LUN_WILDCARD); 2300 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2301 cpi.ccb_h.func_code = XPT_PATH_INQ; 2302 xpt_action((union ccb *)&cpi); 2303 csa->callback(csa->callback_arg, 2304 AC_PATH_REGISTERED, 2305 &path, &cpi); 2306 xpt_release_path(&path); 2307 2308 return(1); 2309 } 2310 2311 void 2312 xpt_action(union ccb *start_ccb) 2313 { 2314 2315 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2316 2317 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2318 /* Compatibility for RL-unaware code. */ 2319 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0) 2320 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1; 2321 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2322 } 2323 2324 void 2325 xpt_action_default(union ccb *start_ccb) 2326 { 2327 2328 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2329 2330 2331 switch (start_ccb->ccb_h.func_code) { 2332 case XPT_SCSI_IO: 2333 { 2334 struct cam_ed *device; 2335 #ifdef CAMDEBUG 2336 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2337 struct cam_path *path; 2338 2339 path = start_ccb->ccb_h.path; 2340 #endif 2341 2342 /* 2343 * For the sake of compatibility with SCSI-1 2344 * devices that may not understand the identify 2345 * message, we include lun information in the 2346 * second byte of all commands. SCSI-1 specifies 2347 * that luns are a 3 bit value and reserves only 3 2348 * bits for lun information in the CDB. Later 2349 * revisions of the SCSI spec allow for more than 8 2350 * luns, but have deprecated lun information in the 2351 * CDB. So, if the lun won't fit, we must omit. 2352 * 2353 * Also be aware that during initial probing for devices, 2354 * the inquiry information is unknown but initialized to 0. 2355 * This means that this code will be exercised while probing 2356 * devices with an ANSI revision greater than 2. 2357 */ 2358 device = start_ccb->ccb_h.path->device; 2359 if (device->protocol_version <= SCSI_REV_2 2360 && start_ccb->ccb_h.target_lun < 8 2361 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2362 2363 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2364 start_ccb->ccb_h.target_lun << 5; 2365 } 2366 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2367 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2368 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2369 &path->device->inq_data), 2370 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2371 cdb_str, sizeof(cdb_str)))); 2372 } 2373 /* FALLTHROUGH */ 2374 case XPT_TARGET_IO: 2375 case XPT_CONT_TARGET_IO: 2376 start_ccb->csio.sense_resid = 0; 2377 start_ccb->csio.resid = 0; 2378 /* FALLTHROUGH */ 2379 case XPT_ATA_IO: 2380 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) { 2381 start_ccb->ataio.resid = 0; 2382 } 2383 case XPT_RESET_DEV: 2384 case XPT_ENG_EXEC: 2385 { 2386 struct cam_path *path = start_ccb->ccb_h.path; 2387 int frozen; 2388 2389 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2390 path->device->sim->devq->alloc_openings += frozen; 2391 if (frozen > 0) 2392 xpt_run_dev_allocq(path->bus); 2393 if (xpt_schedule_dev_sendq(path->bus, path->device)) 2394 xpt_run_dev_sendq(path->bus); 2395 break; 2396 } 2397 case XPT_CALC_GEOMETRY: 2398 { 2399 struct cam_sim *sim; 2400 2401 /* Filter out garbage */ 2402 if (start_ccb->ccg.block_size == 0 2403 || start_ccb->ccg.volume_size == 0) { 2404 start_ccb->ccg.cylinders = 0; 2405 start_ccb->ccg.heads = 0; 2406 start_ccb->ccg.secs_per_track = 0; 2407 start_ccb->ccb_h.status = CAM_REQ_CMP; 2408 break; 2409 } 2410 #ifdef PC98 2411 /* 2412 * In a PC-98 system, geometry translation depens on 2413 * the "real" device geometry obtained from mode page 4. 2414 * SCSI geometry translation is performed in the 2415 * initialization routine of the SCSI BIOS and the result 2416 * stored in host memory. If the translation is available 2417 * in host memory, use it. If not, rely on the default 2418 * translation the device driver performs. 2419 */ 2420 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2421 start_ccb->ccb_h.status = CAM_REQ_CMP; 2422 break; 2423 } 2424 #endif 2425 sim = start_ccb->ccb_h.path->bus->sim; 2426 (*(sim->sim_action))(sim, start_ccb); 2427 break; 2428 } 2429 case XPT_ABORT: 2430 { 2431 union ccb* abort_ccb; 2432 2433 abort_ccb = start_ccb->cab.abort_ccb; 2434 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2435 2436 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2437 struct cam_ccbq *ccbq; 2438 struct cam_ed *device; 2439 2440 device = abort_ccb->ccb_h.path->device; 2441 ccbq = &device->ccbq; 2442 device->sim->devq->alloc_openings -= 2443 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2444 abort_ccb->ccb_h.status = 2445 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2446 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2447 xpt_done(abort_ccb); 2448 start_ccb->ccb_h.status = CAM_REQ_CMP; 2449 break; 2450 } 2451 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2452 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2453 /* 2454 * We've caught this ccb en route to 2455 * the SIM. Flag it for abort and the 2456 * SIM will do so just before starting 2457 * real work on the CCB. 2458 */ 2459 abort_ccb->ccb_h.status = 2460 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2461 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2462 start_ccb->ccb_h.status = CAM_REQ_CMP; 2463 break; 2464 } 2465 } 2466 if (XPT_FC_IS_QUEUED(abort_ccb) 2467 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2468 /* 2469 * It's already completed but waiting 2470 * for our SWI to get to it. 2471 */ 2472 start_ccb->ccb_h.status = CAM_UA_ABORT; 2473 break; 2474 } 2475 /* 2476 * If we weren't able to take care of the abort request 2477 * in the XPT, pass the request down to the SIM for processing. 2478 */ 2479 } 2480 /* FALLTHROUGH */ 2481 case XPT_ACCEPT_TARGET_IO: 2482 case XPT_EN_LUN: 2483 case XPT_IMMED_NOTIFY: 2484 case XPT_NOTIFY_ACK: 2485 case XPT_RESET_BUS: 2486 case XPT_IMMEDIATE_NOTIFY: 2487 case XPT_NOTIFY_ACKNOWLEDGE: 2488 case XPT_GET_SIM_KNOB: 2489 case XPT_SET_SIM_KNOB: 2490 { 2491 struct cam_sim *sim; 2492 2493 sim = start_ccb->ccb_h.path->bus->sim; 2494 (*(sim->sim_action))(sim, start_ccb); 2495 break; 2496 } 2497 case XPT_PATH_INQ: 2498 { 2499 struct cam_sim *sim; 2500 2501 sim = start_ccb->ccb_h.path->bus->sim; 2502 (*(sim->sim_action))(sim, start_ccb); 2503 break; 2504 } 2505 case XPT_PATH_STATS: 2506 start_ccb->cpis.last_reset = 2507 start_ccb->ccb_h.path->bus->last_reset; 2508 start_ccb->ccb_h.status = CAM_REQ_CMP; 2509 break; 2510 case XPT_GDEV_TYPE: 2511 { 2512 struct cam_ed *dev; 2513 2514 dev = start_ccb->ccb_h.path->device; 2515 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2516 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2517 } else { 2518 struct ccb_getdev *cgd; 2519 struct cam_eb *bus; 2520 struct cam_et *tar; 2521 2522 cgd = &start_ccb->cgd; 2523 bus = cgd->ccb_h.path->bus; 2524 tar = cgd->ccb_h.path->target; 2525 cgd->protocol = dev->protocol; 2526 cgd->inq_data = dev->inq_data; 2527 cgd->ident_data = dev->ident_data; 2528 cgd->inq_flags = dev->inq_flags; 2529 cgd->ccb_h.status = CAM_REQ_CMP; 2530 cgd->serial_num_len = dev->serial_num_len; 2531 if ((dev->serial_num_len > 0) 2532 && (dev->serial_num != NULL)) 2533 bcopy(dev->serial_num, cgd->serial_num, 2534 dev->serial_num_len); 2535 } 2536 break; 2537 } 2538 case XPT_GDEV_STATS: 2539 { 2540 struct cam_ed *dev; 2541 2542 dev = start_ccb->ccb_h.path->device; 2543 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2544 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2545 } else { 2546 struct ccb_getdevstats *cgds; 2547 struct cam_eb *bus; 2548 struct cam_et *tar; 2549 2550 cgds = &start_ccb->cgds; 2551 bus = cgds->ccb_h.path->bus; 2552 tar = cgds->ccb_h.path->target; 2553 cgds->dev_openings = dev->ccbq.dev_openings; 2554 cgds->dev_active = dev->ccbq.dev_active; 2555 cgds->devq_openings = dev->ccbq.devq_openings; 2556 cgds->devq_queued = dev->ccbq.queue.entries; 2557 cgds->held = dev->ccbq.held; 2558 cgds->last_reset = tar->last_reset; 2559 cgds->maxtags = dev->maxtags; 2560 cgds->mintags = dev->mintags; 2561 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2562 cgds->last_reset = bus->last_reset; 2563 cgds->ccb_h.status = CAM_REQ_CMP; 2564 } 2565 break; 2566 } 2567 case XPT_GDEVLIST: 2568 { 2569 struct cam_periph *nperiph; 2570 struct periph_list *periph_head; 2571 struct ccb_getdevlist *cgdl; 2572 u_int i; 2573 struct cam_ed *device; 2574 int found; 2575 2576 2577 found = 0; 2578 2579 /* 2580 * Don't want anyone mucking with our data. 2581 */ 2582 device = start_ccb->ccb_h.path->device; 2583 periph_head = &device->periphs; 2584 cgdl = &start_ccb->cgdl; 2585 2586 /* 2587 * Check and see if the list has changed since the user 2588 * last requested a list member. If so, tell them that the 2589 * list has changed, and therefore they need to start over 2590 * from the beginning. 2591 */ 2592 if ((cgdl->index != 0) && 2593 (cgdl->generation != device->generation)) { 2594 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2595 break; 2596 } 2597 2598 /* 2599 * Traverse the list of peripherals and attempt to find 2600 * the requested peripheral. 2601 */ 2602 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2603 (nperiph != NULL) && (i <= cgdl->index); 2604 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2605 if (i == cgdl->index) { 2606 strncpy(cgdl->periph_name, 2607 nperiph->periph_name, 2608 DEV_IDLEN); 2609 cgdl->unit_number = nperiph->unit_number; 2610 found = 1; 2611 } 2612 } 2613 if (found == 0) { 2614 cgdl->status = CAM_GDEVLIST_ERROR; 2615 break; 2616 } 2617 2618 if (nperiph == NULL) 2619 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2620 else 2621 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2622 2623 cgdl->index++; 2624 cgdl->generation = device->generation; 2625 2626 cgdl->ccb_h.status = CAM_REQ_CMP; 2627 break; 2628 } 2629 case XPT_DEV_MATCH: 2630 { 2631 dev_pos_type position_type; 2632 struct ccb_dev_match *cdm; 2633 2634 cdm = &start_ccb->cdm; 2635 2636 /* 2637 * There are two ways of getting at information in the EDT. 2638 * The first way is via the primary EDT tree. It starts 2639 * with a list of busses, then a list of targets on a bus, 2640 * then devices/luns on a target, and then peripherals on a 2641 * device/lun. The "other" way is by the peripheral driver 2642 * lists. The peripheral driver lists are organized by 2643 * peripheral driver. (obviously) So it makes sense to 2644 * use the peripheral driver list if the user is looking 2645 * for something like "da1", or all "da" devices. If the 2646 * user is looking for something on a particular bus/target 2647 * or lun, it's generally better to go through the EDT tree. 2648 */ 2649 2650 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2651 position_type = cdm->pos.position_type; 2652 else { 2653 u_int i; 2654 2655 position_type = CAM_DEV_POS_NONE; 2656 2657 for (i = 0; i < cdm->num_patterns; i++) { 2658 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2659 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2660 position_type = CAM_DEV_POS_EDT; 2661 break; 2662 } 2663 } 2664 2665 if (cdm->num_patterns == 0) 2666 position_type = CAM_DEV_POS_EDT; 2667 else if (position_type == CAM_DEV_POS_NONE) 2668 position_type = CAM_DEV_POS_PDRV; 2669 } 2670 2671 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2672 case CAM_DEV_POS_EDT: 2673 xptedtmatch(cdm); 2674 break; 2675 case CAM_DEV_POS_PDRV: 2676 xptperiphlistmatch(cdm); 2677 break; 2678 default: 2679 cdm->status = CAM_DEV_MATCH_ERROR; 2680 break; 2681 } 2682 2683 if (cdm->status == CAM_DEV_MATCH_ERROR) 2684 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2685 else 2686 start_ccb->ccb_h.status = CAM_REQ_CMP; 2687 2688 break; 2689 } 2690 case XPT_SASYNC_CB: 2691 { 2692 struct ccb_setasync *csa; 2693 struct async_node *cur_entry; 2694 struct async_list *async_head; 2695 u_int32_t added; 2696 2697 csa = &start_ccb->csa; 2698 added = csa->event_enable; 2699 async_head = &csa->ccb_h.path->device->asyncs; 2700 2701 /* 2702 * If there is already an entry for us, simply 2703 * update it. 2704 */ 2705 cur_entry = SLIST_FIRST(async_head); 2706 while (cur_entry != NULL) { 2707 if ((cur_entry->callback_arg == csa->callback_arg) 2708 && (cur_entry->callback == csa->callback)) 2709 break; 2710 cur_entry = SLIST_NEXT(cur_entry, links); 2711 } 2712 2713 if (cur_entry != NULL) { 2714 /* 2715 * If the request has no flags set, 2716 * remove the entry. 2717 */ 2718 added &= ~cur_entry->event_enable; 2719 if (csa->event_enable == 0) { 2720 SLIST_REMOVE(async_head, cur_entry, 2721 async_node, links); 2722 xpt_release_device(csa->ccb_h.path->device); 2723 free(cur_entry, M_CAMXPT); 2724 } else { 2725 cur_entry->event_enable = csa->event_enable; 2726 } 2727 csa->event_enable = added; 2728 } else { 2729 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2730 M_NOWAIT); 2731 if (cur_entry == NULL) { 2732 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2733 break; 2734 } 2735 cur_entry->event_enable = csa->event_enable; 2736 cur_entry->callback_arg = csa->callback_arg; 2737 cur_entry->callback = csa->callback; 2738 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2739 xpt_acquire_device(csa->ccb_h.path->device); 2740 } 2741 start_ccb->ccb_h.status = CAM_REQ_CMP; 2742 break; 2743 } 2744 case XPT_REL_SIMQ: 2745 { 2746 struct ccb_relsim *crs; 2747 struct cam_ed *dev; 2748 2749 crs = &start_ccb->crs; 2750 dev = crs->ccb_h.path->device; 2751 if (dev == NULL) { 2752 2753 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2754 break; 2755 } 2756 2757 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2758 2759 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 2760 /* Don't ever go below one opening */ 2761 if (crs->openings > 0) { 2762 xpt_dev_ccbq_resize(crs->ccb_h.path, 2763 crs->openings); 2764 2765 if (bootverbose) { 2766 xpt_print(crs->ccb_h.path, 2767 "tagged openings now %d\n", 2768 crs->openings); 2769 } 2770 } 2771 } 2772 } 2773 2774 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2775 2776 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2777 2778 /* 2779 * Just extend the old timeout and decrement 2780 * the freeze count so that a single timeout 2781 * is sufficient for releasing the queue. 2782 */ 2783 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2784 callout_stop(&dev->callout); 2785 } else { 2786 2787 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2788 } 2789 2790 callout_reset(&dev->callout, 2791 (crs->release_timeout * hz) / 1000, 2792 xpt_release_devq_timeout, dev); 2793 2794 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2795 2796 } 2797 2798 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2799 2800 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2801 /* 2802 * Decrement the freeze count so that a single 2803 * completion is still sufficient to unfreeze 2804 * the queue. 2805 */ 2806 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2807 } else { 2808 2809 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2810 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2811 } 2812 } 2813 2814 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2815 2816 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2817 || (dev->ccbq.dev_active == 0)) { 2818 2819 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2820 } else { 2821 2822 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2823 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2824 } 2825 } 2826 2827 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 2828 xpt_release_devq_rl(crs->ccb_h.path, /*runlevel*/ 2829 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2830 crs->release_timeout : 0, 2831 /*count*/1, /*run_queue*/TRUE); 2832 } 2833 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0]; 2834 start_ccb->ccb_h.status = CAM_REQ_CMP; 2835 break; 2836 } 2837 case XPT_DEBUG: { 2838 #ifdef CAMDEBUG 2839 #ifdef CAM_DEBUG_DELAY 2840 cam_debug_delay = CAM_DEBUG_DELAY; 2841 #endif 2842 cam_dflags = start_ccb->cdbg.flags; 2843 if (cam_dpath != NULL) { 2844 xpt_free_path(cam_dpath); 2845 cam_dpath = NULL; 2846 } 2847 2848 if (cam_dflags != CAM_DEBUG_NONE) { 2849 if (xpt_create_path(&cam_dpath, xpt_periph, 2850 start_ccb->ccb_h.path_id, 2851 start_ccb->ccb_h.target_id, 2852 start_ccb->ccb_h.target_lun) != 2853 CAM_REQ_CMP) { 2854 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2855 cam_dflags = CAM_DEBUG_NONE; 2856 } else { 2857 start_ccb->ccb_h.status = CAM_REQ_CMP; 2858 xpt_print(cam_dpath, "debugging flags now %x\n", 2859 cam_dflags); 2860 } 2861 } else { 2862 cam_dpath = NULL; 2863 start_ccb->ccb_h.status = CAM_REQ_CMP; 2864 } 2865 #else /* !CAMDEBUG */ 2866 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2867 #endif /* CAMDEBUG */ 2868 break; 2869 } 2870 case XPT_FREEZE_QUEUE: 2871 { 2872 struct ccb_relsim *crs = &start_ccb->crs; 2873 2874 xpt_freeze_devq_rl(crs->ccb_h.path, /*runlevel*/ 2875 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2876 crs->release_timeout : 0, /*count*/1); 2877 start_ccb->ccb_h.status = CAM_REQ_CMP; 2878 break; 2879 } 2880 case XPT_NOOP: 2881 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2882 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 2883 start_ccb->ccb_h.status = CAM_REQ_CMP; 2884 break; 2885 default: 2886 case XPT_SDEV_TYPE: 2887 case XPT_TERM_IO: 2888 case XPT_ENG_INQ: 2889 /* XXX Implement */ 2890 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2891 break; 2892 } 2893 } 2894 2895 void 2896 xpt_polled_action(union ccb *start_ccb) 2897 { 2898 u_int32_t timeout; 2899 struct cam_sim *sim; 2900 struct cam_devq *devq; 2901 struct cam_ed *dev; 2902 2903 2904 timeout = start_ccb->ccb_h.timeout; 2905 sim = start_ccb->ccb_h.path->bus->sim; 2906 devq = sim->devq; 2907 dev = start_ccb->ccb_h.path->device; 2908 2909 mtx_assert(sim->mtx, MA_OWNED); 2910 2911 /* 2912 * Steal an opening so that no other queued requests 2913 * can get it before us while we simulate interrupts. 2914 */ 2915 dev->ccbq.devq_openings--; 2916 dev->ccbq.dev_openings--; 2917 2918 while(((devq != NULL && devq->send_openings <= 0) || 2919 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 2920 DELAY(1000); 2921 (*(sim->sim_poll))(sim); 2922 camisr_runqueue(&sim->sim_doneq); 2923 } 2924 2925 dev->ccbq.devq_openings++; 2926 dev->ccbq.dev_openings++; 2927 2928 if (timeout != 0) { 2929 xpt_action(start_ccb); 2930 while(--timeout > 0) { 2931 (*(sim->sim_poll))(sim); 2932 camisr_runqueue(&sim->sim_doneq); 2933 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 2934 != CAM_REQ_INPROG) 2935 break; 2936 DELAY(1000); 2937 } 2938 if (timeout == 0) { 2939 /* 2940 * XXX Is it worth adding a sim_timeout entry 2941 * point so we can attempt recovery? If 2942 * this is only used for dumps, I don't think 2943 * it is. 2944 */ 2945 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 2946 } 2947 } else { 2948 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2949 } 2950 } 2951 2952 /* 2953 * Schedule a peripheral driver to receive a ccb when it's 2954 * target device has space for more transactions. 2955 */ 2956 void 2957 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 2958 { 2959 struct cam_ed *device; 2960 int runq = 0; 2961 2962 mtx_assert(perph->sim->mtx, MA_OWNED); 2963 2964 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 2965 device = perph->path->device; 2966 if (periph_is_queued(perph)) { 2967 /* Simply reorder based on new priority */ 2968 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 2969 (" change priority to %d\n", new_priority)); 2970 if (new_priority < perph->pinfo.priority) { 2971 camq_change_priority(&device->drvq, 2972 perph->pinfo.index, 2973 new_priority); 2974 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 2975 } 2976 } else { 2977 /* New entry on the queue */ 2978 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 2979 (" added periph to queue\n")); 2980 perph->pinfo.priority = new_priority; 2981 perph->pinfo.generation = ++device->drvq.generation; 2982 camq_insert(&device->drvq, &perph->pinfo); 2983 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 2984 } 2985 if (runq != 0) { 2986 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 2987 (" calling xpt_run_devq\n")); 2988 xpt_run_dev_allocq(perph->path->bus); 2989 } 2990 } 2991 2992 2993 /* 2994 * Schedule a device to run on a given queue. 2995 * If the device was inserted as a new entry on the queue, 2996 * return 1 meaning the device queue should be run. If we 2997 * were already queued, implying someone else has already 2998 * started the queue, return 0 so the caller doesn't attempt 2999 * to run the queue. 3000 */ 3001 int 3002 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3003 u_int32_t new_priority) 3004 { 3005 int retval; 3006 u_int32_t old_priority; 3007 3008 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3009 3010 old_priority = pinfo->priority; 3011 3012 /* 3013 * Are we already queued? 3014 */ 3015 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3016 /* Simply reorder based on new priority */ 3017 if (new_priority < old_priority) { 3018 camq_change_priority(queue, pinfo->index, 3019 new_priority); 3020 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3021 ("changed priority to %d\n", 3022 new_priority)); 3023 retval = 1; 3024 } else 3025 retval = 0; 3026 } else { 3027 /* New entry on the queue */ 3028 if (new_priority < old_priority) 3029 pinfo->priority = new_priority; 3030 3031 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3032 ("Inserting onto queue\n")); 3033 pinfo->generation = ++queue->generation; 3034 camq_insert(queue, pinfo); 3035 retval = 1; 3036 } 3037 return (retval); 3038 } 3039 3040 static void 3041 xpt_run_dev_allocq(struct cam_eb *bus) 3042 { 3043 struct cam_devq *devq; 3044 3045 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3046 devq = bus->sim->devq; 3047 3048 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3049 (" qfrozen_cnt == 0x%x, entries == %d, " 3050 "openings == %d, active == %d\n", 3051 devq->alloc_queue.qfrozen_cnt[0], 3052 devq->alloc_queue.entries, 3053 devq->alloc_openings, 3054 devq->alloc_active)); 3055 3056 devq->alloc_queue.qfrozen_cnt[0]++; 3057 while ((devq->alloc_queue.entries > 0) 3058 && (devq->alloc_openings > 0) 3059 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) { 3060 struct cam_ed_qinfo *qinfo; 3061 struct cam_ed *device; 3062 union ccb *work_ccb; 3063 struct cam_periph *drv; 3064 struct camq *drvq; 3065 3066 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3067 CAMQ_HEAD); 3068 device = qinfo->device; 3069 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3070 ("running device %p\n", device)); 3071 3072 drvq = &device->drvq; 3073 3074 #ifdef CAMDEBUG 3075 if (drvq->entries <= 0) { 3076 panic("xpt_run_dev_allocq: " 3077 "Device on queue without any work to do"); 3078 } 3079 #endif 3080 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3081 devq->alloc_openings--; 3082 devq->alloc_active++; 3083 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3084 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3085 drv->pinfo.priority); 3086 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3087 ("calling periph start\n")); 3088 drv->periph_start(drv, work_ccb); 3089 } else { 3090 /* 3091 * Malloc failure in alloc_ccb 3092 */ 3093 /* 3094 * XXX add us to a list to be run from free_ccb 3095 * if we don't have any ccbs active on this 3096 * device queue otherwise we may never get run 3097 * again. 3098 */ 3099 break; 3100 } 3101 3102 /* We may have more work. Attempt to reschedule. */ 3103 xpt_schedule_dev_allocq(bus, device); 3104 } 3105 devq->alloc_queue.qfrozen_cnt[0]--; 3106 } 3107 3108 static void 3109 xpt_run_dev_sendq(struct cam_eb *bus) 3110 { 3111 struct cam_devq *devq; 3112 3113 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3114 3115 devq = bus->sim->devq; 3116 3117 devq->send_queue.qfrozen_cnt[0]++; 3118 while ((devq->send_queue.entries > 0) 3119 && (devq->send_openings > 0) 3120 && (devq->send_queue.qfrozen_cnt[0] <= 1)) { 3121 struct cam_ed_qinfo *qinfo; 3122 struct cam_ed *device; 3123 union ccb *work_ccb; 3124 struct cam_sim *sim; 3125 3126 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3127 CAMQ_HEAD); 3128 device = qinfo->device; 3129 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3130 ("running device %p\n", device)); 3131 3132 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3133 if (work_ccb == NULL) { 3134 printf("device on run queue with no ccbs???\n"); 3135 continue; 3136 } 3137 3138 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3139 3140 mtx_lock(&xsoftc.xpt_lock); 3141 if (xsoftc.num_highpower <= 0) { 3142 /* 3143 * We got a high power command, but we 3144 * don't have any available slots. Freeze 3145 * the device queue until we have a slot 3146 * available. 3147 */ 3148 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3149 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3150 &work_ccb->ccb_h, 3151 xpt_links.stqe); 3152 3153 mtx_unlock(&xsoftc.xpt_lock); 3154 continue; 3155 } else { 3156 /* 3157 * Consume a high power slot while 3158 * this ccb runs. 3159 */ 3160 xsoftc.num_highpower--; 3161 } 3162 mtx_unlock(&xsoftc.xpt_lock); 3163 } 3164 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3165 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3166 3167 devq->send_openings--; 3168 devq->send_active++; 3169 3170 xpt_schedule_dev_sendq(bus, device); 3171 3172 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3173 /* 3174 * The client wants to freeze the queue 3175 * after this CCB is sent. 3176 */ 3177 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3178 } 3179 3180 /* In Target mode, the peripheral driver knows best... */ 3181 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3182 if ((device->inq_flags & SID_CmdQue) != 0 3183 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3184 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3185 else 3186 /* 3187 * Clear this in case of a retried CCB that 3188 * failed due to a rejected tag. 3189 */ 3190 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3191 } 3192 3193 /* 3194 * Device queues can be shared among multiple sim instances 3195 * that reside on different busses. Use the SIM in the queue 3196 * CCB's path, rather than the one in the bus that was passed 3197 * into this function. 3198 */ 3199 sim = work_ccb->ccb_h.path->bus->sim; 3200 (*(sim->sim_action))(sim, work_ccb); 3201 } 3202 devq->send_queue.qfrozen_cnt[0]--; 3203 } 3204 3205 /* 3206 * This function merges stuff from the slave ccb into the master ccb, while 3207 * keeping important fields in the master ccb constant. 3208 */ 3209 void 3210 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3211 { 3212 3213 /* 3214 * Pull fields that are valid for peripheral drivers to set 3215 * into the master CCB along with the CCB "payload". 3216 */ 3217 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3218 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3219 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3220 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3221 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3222 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3223 } 3224 3225 void 3226 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3227 { 3228 3229 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3230 ccb_h->pinfo.priority = priority; 3231 ccb_h->path = path; 3232 ccb_h->path_id = path->bus->path_id; 3233 if (path->target) 3234 ccb_h->target_id = path->target->target_id; 3235 else 3236 ccb_h->target_id = CAM_TARGET_WILDCARD; 3237 if (path->device) { 3238 ccb_h->target_lun = path->device->lun_id; 3239 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3240 } else { 3241 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3242 } 3243 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3244 ccb_h->flags = 0; 3245 } 3246 3247 /* Path manipulation functions */ 3248 cam_status 3249 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3250 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3251 { 3252 struct cam_path *path; 3253 cam_status status; 3254 3255 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3256 3257 if (path == NULL) { 3258 status = CAM_RESRC_UNAVAIL; 3259 return(status); 3260 } 3261 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3262 if (status != CAM_REQ_CMP) { 3263 free(path, M_CAMXPT); 3264 path = NULL; 3265 } 3266 *new_path_ptr = path; 3267 return (status); 3268 } 3269 3270 cam_status 3271 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3272 struct cam_periph *periph, path_id_t path_id, 3273 target_id_t target_id, lun_id_t lun_id) 3274 { 3275 struct cam_path *path; 3276 struct cam_eb *bus = NULL; 3277 cam_status status; 3278 int need_unlock = 0; 3279 3280 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3281 3282 if (path_id != CAM_BUS_WILDCARD) { 3283 bus = xpt_find_bus(path_id); 3284 if (bus != NULL) { 3285 need_unlock = 1; 3286 CAM_SIM_LOCK(bus->sim); 3287 } 3288 } 3289 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3290 if (need_unlock) 3291 CAM_SIM_UNLOCK(bus->sim); 3292 if (status != CAM_REQ_CMP) { 3293 free(path, M_CAMXPT); 3294 path = NULL; 3295 } 3296 *new_path_ptr = path; 3297 return (status); 3298 } 3299 3300 cam_status 3301 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3302 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3303 { 3304 struct cam_eb *bus; 3305 struct cam_et *target; 3306 struct cam_ed *device; 3307 cam_status status; 3308 3309 status = CAM_REQ_CMP; /* Completed without error */ 3310 target = NULL; /* Wildcarded */ 3311 device = NULL; /* Wildcarded */ 3312 3313 /* 3314 * We will potentially modify the EDT, so block interrupts 3315 * that may attempt to create cam paths. 3316 */ 3317 bus = xpt_find_bus(path_id); 3318 if (bus == NULL) { 3319 status = CAM_PATH_INVALID; 3320 } else { 3321 target = xpt_find_target(bus, target_id); 3322 if (target == NULL) { 3323 /* Create one */ 3324 struct cam_et *new_target; 3325 3326 new_target = xpt_alloc_target(bus, target_id); 3327 if (new_target == NULL) { 3328 status = CAM_RESRC_UNAVAIL; 3329 } else { 3330 target = new_target; 3331 } 3332 } 3333 if (target != NULL) { 3334 device = xpt_find_device(target, lun_id); 3335 if (device == NULL) { 3336 /* Create one */ 3337 struct cam_ed *new_device; 3338 3339 new_device = 3340 (*(bus->xport->alloc_device))(bus, 3341 target, 3342 lun_id); 3343 if (new_device == NULL) { 3344 status = CAM_RESRC_UNAVAIL; 3345 } else { 3346 device = new_device; 3347 } 3348 } 3349 } 3350 } 3351 3352 /* 3353 * Only touch the user's data if we are successful. 3354 */ 3355 if (status == CAM_REQ_CMP) { 3356 new_path->periph = perph; 3357 new_path->bus = bus; 3358 new_path->target = target; 3359 new_path->device = device; 3360 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3361 } else { 3362 if (device != NULL) 3363 xpt_release_device(device); 3364 if (target != NULL) 3365 xpt_release_target(target); 3366 if (bus != NULL) 3367 xpt_release_bus(bus); 3368 } 3369 return (status); 3370 } 3371 3372 void 3373 xpt_release_path(struct cam_path *path) 3374 { 3375 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3376 if (path->device != NULL) { 3377 xpt_release_device(path->device); 3378 path->device = NULL; 3379 } 3380 if (path->target != NULL) { 3381 xpt_release_target(path->target); 3382 path->target = NULL; 3383 } 3384 if (path->bus != NULL) { 3385 xpt_release_bus(path->bus); 3386 path->bus = NULL; 3387 } 3388 } 3389 3390 void 3391 xpt_free_path(struct cam_path *path) 3392 { 3393 3394 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3395 xpt_release_path(path); 3396 free(path, M_CAMXPT); 3397 } 3398 3399 3400 /* 3401 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3402 * in path1, 2 for match with wildcards in path2. 3403 */ 3404 int 3405 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3406 { 3407 int retval = 0; 3408 3409 if (path1->bus != path2->bus) { 3410 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3411 retval = 1; 3412 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3413 retval = 2; 3414 else 3415 return (-1); 3416 } 3417 if (path1->target != path2->target) { 3418 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3419 if (retval == 0) 3420 retval = 1; 3421 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3422 retval = 2; 3423 else 3424 return (-1); 3425 } 3426 if (path1->device != path2->device) { 3427 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3428 if (retval == 0) 3429 retval = 1; 3430 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3431 retval = 2; 3432 else 3433 return (-1); 3434 } 3435 return (retval); 3436 } 3437 3438 void 3439 xpt_print_path(struct cam_path *path) 3440 { 3441 3442 if (path == NULL) 3443 printf("(nopath): "); 3444 else { 3445 if (path->periph != NULL) 3446 printf("(%s%d:", path->periph->periph_name, 3447 path->periph->unit_number); 3448 else 3449 printf("(noperiph:"); 3450 3451 if (path->bus != NULL) 3452 printf("%s%d:%d:", path->bus->sim->sim_name, 3453 path->bus->sim->unit_number, 3454 path->bus->sim->bus_id); 3455 else 3456 printf("nobus:"); 3457 3458 if (path->target != NULL) 3459 printf("%d:", path->target->target_id); 3460 else 3461 printf("X:"); 3462 3463 if (path->device != NULL) 3464 printf("%d): ", path->device->lun_id); 3465 else 3466 printf("X): "); 3467 } 3468 } 3469 3470 void 3471 xpt_print(struct cam_path *path, const char *fmt, ...) 3472 { 3473 va_list ap; 3474 xpt_print_path(path); 3475 va_start(ap, fmt); 3476 vprintf(fmt, ap); 3477 va_end(ap); 3478 } 3479 3480 int 3481 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3482 { 3483 struct sbuf sb; 3484 3485 #ifdef INVARIANTS 3486 if (path != NULL && path->bus != NULL) 3487 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3488 #endif 3489 3490 sbuf_new(&sb, str, str_len, 0); 3491 3492 if (path == NULL) 3493 sbuf_printf(&sb, "(nopath): "); 3494 else { 3495 if (path->periph != NULL) 3496 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3497 path->periph->unit_number); 3498 else 3499 sbuf_printf(&sb, "(noperiph:"); 3500 3501 if (path->bus != NULL) 3502 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3503 path->bus->sim->unit_number, 3504 path->bus->sim->bus_id); 3505 else 3506 sbuf_printf(&sb, "nobus:"); 3507 3508 if (path->target != NULL) 3509 sbuf_printf(&sb, "%d:", path->target->target_id); 3510 else 3511 sbuf_printf(&sb, "X:"); 3512 3513 if (path->device != NULL) 3514 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3515 else 3516 sbuf_printf(&sb, "X): "); 3517 } 3518 sbuf_finish(&sb); 3519 3520 return(sbuf_len(&sb)); 3521 } 3522 3523 path_id_t 3524 xpt_path_path_id(struct cam_path *path) 3525 { 3526 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3527 3528 return(path->bus->path_id); 3529 } 3530 3531 target_id_t 3532 xpt_path_target_id(struct cam_path *path) 3533 { 3534 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3535 3536 if (path->target != NULL) 3537 return (path->target->target_id); 3538 else 3539 return (CAM_TARGET_WILDCARD); 3540 } 3541 3542 lun_id_t 3543 xpt_path_lun_id(struct cam_path *path) 3544 { 3545 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3546 3547 if (path->device != NULL) 3548 return (path->device->lun_id); 3549 else 3550 return (CAM_LUN_WILDCARD); 3551 } 3552 3553 struct cam_sim * 3554 xpt_path_sim(struct cam_path *path) 3555 { 3556 3557 return (path->bus->sim); 3558 } 3559 3560 struct cam_periph* 3561 xpt_path_periph(struct cam_path *path) 3562 { 3563 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3564 3565 return (path->periph); 3566 } 3567 3568 /* 3569 * Release a CAM control block for the caller. Remit the cost of the structure 3570 * to the device referenced by the path. If the this device had no 'credits' 3571 * and peripheral drivers have registered async callbacks for this notification 3572 * call them now. 3573 */ 3574 void 3575 xpt_release_ccb(union ccb *free_ccb) 3576 { 3577 struct cam_path *path; 3578 struct cam_ed *device; 3579 struct cam_eb *bus; 3580 struct cam_sim *sim; 3581 3582 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3583 path = free_ccb->ccb_h.path; 3584 device = path->device; 3585 bus = path->bus; 3586 sim = bus->sim; 3587 3588 mtx_assert(sim->mtx, MA_OWNED); 3589 3590 cam_ccbq_release_opening(&device->ccbq); 3591 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3592 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3593 cam_ccbq_resize(&device->ccbq, 3594 device->ccbq.dev_openings + device->ccbq.dev_active); 3595 } 3596 if (sim->ccb_count > sim->max_ccbs) { 3597 xpt_free_ccb(free_ccb); 3598 sim->ccb_count--; 3599 } else { 3600 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3601 xpt_links.sle); 3602 } 3603 if (sim->devq == NULL) { 3604 return; 3605 } 3606 sim->devq->alloc_openings++; 3607 sim->devq->alloc_active--; 3608 if (device_is_alloc_queued(device) == 0) 3609 xpt_schedule_dev_allocq(bus, device); 3610 xpt_run_dev_allocq(bus); 3611 } 3612 3613 /* Functions accessed by SIM drivers */ 3614 3615 static struct xpt_xport xport_default = { 3616 .alloc_device = xpt_alloc_device_default, 3617 .action = xpt_action_default, 3618 .async = xpt_dev_async_default, 3619 }; 3620 3621 /* 3622 * A sim structure, listing the SIM entry points and instance 3623 * identification info is passed to xpt_bus_register to hook the SIM 3624 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3625 * for this new bus and places it in the array of busses and assigns 3626 * it a path_id. The path_id may be influenced by "hard wiring" 3627 * information specified by the user. Once interrupt services are 3628 * available, the bus will be probed. 3629 */ 3630 int32_t 3631 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3632 { 3633 struct cam_eb *new_bus; 3634 struct cam_eb *old_bus; 3635 struct ccb_pathinq cpi; 3636 struct cam_path *path; 3637 cam_status status; 3638 3639 mtx_assert(sim->mtx, MA_OWNED); 3640 3641 sim->bus_id = bus; 3642 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3643 M_CAMXPT, M_NOWAIT); 3644 if (new_bus == NULL) { 3645 /* Couldn't satisfy request */ 3646 return (CAM_RESRC_UNAVAIL); 3647 } 3648 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3649 if (path == NULL) { 3650 free(new_bus, M_CAMXPT); 3651 return (CAM_RESRC_UNAVAIL); 3652 } 3653 3654 if (strcmp(sim->sim_name, "xpt") != 0) { 3655 sim->path_id = 3656 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3657 } 3658 3659 TAILQ_INIT(&new_bus->et_entries); 3660 new_bus->path_id = sim->path_id; 3661 cam_sim_hold(sim); 3662 new_bus->sim = sim; 3663 timevalclear(&new_bus->last_reset); 3664 new_bus->flags = 0; 3665 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3666 new_bus->generation = 0; 3667 3668 mtx_lock(&xsoftc.xpt_topo_lock); 3669 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3670 while (old_bus != NULL 3671 && old_bus->path_id < new_bus->path_id) 3672 old_bus = TAILQ_NEXT(old_bus, links); 3673 if (old_bus != NULL) 3674 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3675 else 3676 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3677 xsoftc.bus_generation++; 3678 mtx_unlock(&xsoftc.xpt_topo_lock); 3679 3680 /* 3681 * Set a default transport so that a PATH_INQ can be issued to 3682 * the SIM. This will then allow for probing and attaching of 3683 * a more appropriate transport. 3684 */ 3685 new_bus->xport = &xport_default; 3686 3687 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id, 3688 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3689 if (status != CAM_REQ_CMP) 3690 printf("xpt_compile_path returned %d\n", status); 3691 3692 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3693 cpi.ccb_h.func_code = XPT_PATH_INQ; 3694 xpt_action((union ccb *)&cpi); 3695 3696 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3697 switch (cpi.transport) { 3698 case XPORT_SPI: 3699 case XPORT_SAS: 3700 case XPORT_FC: 3701 case XPORT_USB: 3702 case XPORT_ISCSI: 3703 case XPORT_PPB: 3704 new_bus->xport = scsi_get_xport(); 3705 break; 3706 case XPORT_ATA: 3707 case XPORT_SATA: 3708 new_bus->xport = ata_get_xport(); 3709 break; 3710 default: 3711 new_bus->xport = &xport_default; 3712 break; 3713 } 3714 } 3715 3716 /* Notify interested parties */ 3717 if (sim->path_id != CAM_XPT_PATH_ID) { 3718 union ccb *scan_ccb; 3719 3720 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3721 /* Initiate bus rescan. */ 3722 scan_ccb = xpt_alloc_ccb_nowait(); 3723 scan_ccb->ccb_h.path = path; 3724 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3725 scan_ccb->crcn.flags = 0; 3726 xpt_rescan(scan_ccb); 3727 } else 3728 xpt_free_path(path); 3729 return (CAM_SUCCESS); 3730 } 3731 3732 int32_t 3733 xpt_bus_deregister(path_id_t pathid) 3734 { 3735 struct cam_path bus_path; 3736 cam_status status; 3737 3738 status = xpt_compile_path(&bus_path, NULL, pathid, 3739 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3740 if (status != CAM_REQ_CMP) 3741 return (status); 3742 3743 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3744 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3745 3746 /* Release the reference count held while registered. */ 3747 xpt_release_bus(bus_path.bus); 3748 xpt_release_path(&bus_path); 3749 3750 return (CAM_REQ_CMP); 3751 } 3752 3753 static path_id_t 3754 xptnextfreepathid(void) 3755 { 3756 struct cam_eb *bus; 3757 path_id_t pathid; 3758 const char *strval; 3759 3760 pathid = 0; 3761 mtx_lock(&xsoftc.xpt_topo_lock); 3762 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3763 retry: 3764 /* Find an unoccupied pathid */ 3765 while (bus != NULL && bus->path_id <= pathid) { 3766 if (bus->path_id == pathid) 3767 pathid++; 3768 bus = TAILQ_NEXT(bus, links); 3769 } 3770 mtx_unlock(&xsoftc.xpt_topo_lock); 3771 3772 /* 3773 * Ensure that this pathid is not reserved for 3774 * a bus that may be registered in the future. 3775 */ 3776 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3777 ++pathid; 3778 /* Start the search over */ 3779 mtx_lock(&xsoftc.xpt_topo_lock); 3780 goto retry; 3781 } 3782 return (pathid); 3783 } 3784 3785 static path_id_t 3786 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3787 { 3788 path_id_t pathid; 3789 int i, dunit, val; 3790 char buf[32]; 3791 const char *dname; 3792 3793 pathid = CAM_XPT_PATH_ID; 3794 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3795 i = 0; 3796 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3797 if (strcmp(dname, "scbus")) { 3798 /* Avoid a bit of foot shooting. */ 3799 continue; 3800 } 3801 if (dunit < 0) /* unwired?! */ 3802 continue; 3803 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3804 if (sim_bus == val) { 3805 pathid = dunit; 3806 break; 3807 } 3808 } else if (sim_bus == 0) { 3809 /* Unspecified matches bus 0 */ 3810 pathid = dunit; 3811 break; 3812 } else { 3813 printf("Ambiguous scbus configuration for %s%d " 3814 "bus %d, cannot wire down. The kernel " 3815 "config entry for scbus%d should " 3816 "specify a controller bus.\n" 3817 "Scbus will be assigned dynamically.\n", 3818 sim_name, sim_unit, sim_bus, dunit); 3819 break; 3820 } 3821 } 3822 3823 if (pathid == CAM_XPT_PATH_ID) 3824 pathid = xptnextfreepathid(); 3825 return (pathid); 3826 } 3827 3828 void 3829 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 3830 { 3831 struct cam_eb *bus; 3832 struct cam_et *target, *next_target; 3833 struct cam_ed *device, *next_device; 3834 3835 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3836 3837 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 3838 3839 /* 3840 * Most async events come from a CAM interrupt context. In 3841 * a few cases, the error recovery code at the peripheral layer, 3842 * which may run from our SWI or a process context, may signal 3843 * deferred events with a call to xpt_async. 3844 */ 3845 3846 bus = path->bus; 3847 3848 if (async_code == AC_BUS_RESET) { 3849 /* Update our notion of when the last reset occurred */ 3850 microtime(&bus->last_reset); 3851 } 3852 3853 for (target = TAILQ_FIRST(&bus->et_entries); 3854 target != NULL; 3855 target = next_target) { 3856 3857 next_target = TAILQ_NEXT(target, links); 3858 3859 if (path->target != target 3860 && path->target->target_id != CAM_TARGET_WILDCARD 3861 && target->target_id != CAM_TARGET_WILDCARD) 3862 continue; 3863 3864 if (async_code == AC_SENT_BDR) { 3865 /* Update our notion of when the last reset occurred */ 3866 microtime(&path->target->last_reset); 3867 } 3868 3869 for (device = TAILQ_FIRST(&target->ed_entries); 3870 device != NULL; 3871 device = next_device) { 3872 3873 next_device = TAILQ_NEXT(device, links); 3874 3875 if (path->device != device 3876 && path->device->lun_id != CAM_LUN_WILDCARD 3877 && device->lun_id != CAM_LUN_WILDCARD) 3878 continue; 3879 /* 3880 * The async callback could free the device. 3881 * If it is a broadcast async, it doesn't hold 3882 * device reference, so take our own reference. 3883 */ 3884 xpt_acquire_device(device); 3885 (*(bus->xport->async))(async_code, bus, 3886 target, device, 3887 async_arg); 3888 3889 xpt_async_bcast(&device->asyncs, async_code, 3890 path, async_arg); 3891 xpt_release_device(device); 3892 } 3893 } 3894 3895 /* 3896 * If this wasn't a fully wildcarded async, tell all 3897 * clients that want all async events. 3898 */ 3899 if (bus != xpt_periph->path->bus) 3900 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 3901 path, async_arg); 3902 } 3903 3904 static void 3905 xpt_async_bcast(struct async_list *async_head, 3906 u_int32_t async_code, 3907 struct cam_path *path, void *async_arg) 3908 { 3909 struct async_node *cur_entry; 3910 3911 cur_entry = SLIST_FIRST(async_head); 3912 while (cur_entry != NULL) { 3913 struct async_node *next_entry; 3914 /* 3915 * Grab the next list entry before we call the current 3916 * entry's callback. This is because the callback function 3917 * can delete its async callback entry. 3918 */ 3919 next_entry = SLIST_NEXT(cur_entry, links); 3920 if ((cur_entry->event_enable & async_code) != 0) 3921 cur_entry->callback(cur_entry->callback_arg, 3922 async_code, path, 3923 async_arg); 3924 cur_entry = next_entry; 3925 } 3926 } 3927 3928 static void 3929 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 3930 struct cam_et *target, struct cam_ed *device, 3931 void *async_arg) 3932 { 3933 printf("xpt_dev_async called\n"); 3934 } 3935 3936 u_int32_t 3937 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count) 3938 { 3939 struct cam_ed *dev = path->device; 3940 3941 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3942 dev->sim->devq->alloc_openings += 3943 cam_ccbq_freeze(&dev->ccbq, rl, count); 3944 /* Remove frozen device from allocq. */ 3945 if (device_is_alloc_queued(dev) && 3946 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 3947 CAMQ_GET_PRIO(&dev->drvq)))) { 3948 camq_remove(&dev->sim->devq->alloc_queue, 3949 dev->alloc_ccb_entry.pinfo.index); 3950 } 3951 /* Remove frozen device from sendq. */ 3952 if (device_is_send_queued(dev) && 3953 cam_ccbq_frozen_top(&dev->ccbq)) { 3954 camq_remove(&dev->sim->devq->send_queue, 3955 dev->send_ccb_entry.pinfo.index); 3956 } 3957 return (dev->ccbq.queue.qfrozen_cnt[rl]); 3958 } 3959 3960 u_int32_t 3961 xpt_freeze_devq(struct cam_path *path, u_int count) 3962 { 3963 3964 return (xpt_freeze_devq_rl(path, 0, count)); 3965 } 3966 3967 u_int32_t 3968 xpt_freeze_simq(struct cam_sim *sim, u_int count) 3969 { 3970 3971 mtx_assert(sim->mtx, MA_OWNED); 3972 sim->devq->send_queue.qfrozen_cnt[0] += count; 3973 return (sim->devq->send_queue.qfrozen_cnt[0]); 3974 } 3975 3976 static void 3977 xpt_release_devq_timeout(void *arg) 3978 { 3979 struct cam_ed *device; 3980 3981 device = (struct cam_ed *)arg; 3982 3983 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE); 3984 } 3985 3986 void 3987 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 3988 { 3989 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3990 3991 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue); 3992 } 3993 3994 void 3995 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue) 3996 { 3997 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3998 3999 xpt_release_devq_device(path->device, rl, count, run_queue); 4000 } 4001 4002 static void 4003 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue) 4004 { 4005 4006 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) { 4007 #ifdef INVARIANTS 4008 printf("xpt_release_devq(%d): requested %u > present %u\n", 4009 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]); 4010 #endif 4011 count = dev->ccbq.queue.qfrozen_cnt[rl]; 4012 } 4013 dev->sim->devq->alloc_openings -= 4014 cam_ccbq_release(&dev->ccbq, rl, count); 4015 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4016 CAMQ_GET_PRIO(&dev->drvq))) == 0) { 4017 if (xpt_schedule_dev_allocq(dev->target->bus, dev)) 4018 xpt_run_dev_allocq(dev->target->bus); 4019 } 4020 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) { 4021 /* 4022 * No longer need to wait for a successful 4023 * command completion. 4024 */ 4025 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4026 /* 4027 * Remove any timeouts that might be scheduled 4028 * to release this queue. 4029 */ 4030 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4031 callout_stop(&dev->callout); 4032 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4033 } 4034 if (run_queue == 0) 4035 return; 4036 /* 4037 * Now that we are unfrozen schedule the 4038 * device so any pending transactions are 4039 * run. 4040 */ 4041 if (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4042 xpt_run_dev_sendq(dev->target->bus); 4043 } 4044 } 4045 4046 void 4047 xpt_release_simq(struct cam_sim *sim, int run_queue) 4048 { 4049 struct camq *sendq; 4050 4051 mtx_assert(sim->mtx, MA_OWNED); 4052 sendq = &(sim->devq->send_queue); 4053 if (sendq->qfrozen_cnt[0] <= 0) { 4054 #ifdef INVARIANTS 4055 printf("xpt_release_simq: requested 1 > present %u\n", 4056 sendq->qfrozen_cnt[0]); 4057 #endif 4058 } else 4059 sendq->qfrozen_cnt[0]--; 4060 if (sendq->qfrozen_cnt[0] == 0) { 4061 /* 4062 * If there is a timeout scheduled to release this 4063 * sim queue, remove it. The queue frozen count is 4064 * already at 0. 4065 */ 4066 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4067 callout_stop(&sim->callout); 4068 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4069 } 4070 if (run_queue) { 4071 struct cam_eb *bus; 4072 4073 /* 4074 * Now that we are unfrozen run the send queue. 4075 */ 4076 bus = xpt_find_bus(sim->path_id); 4077 xpt_run_dev_sendq(bus); 4078 xpt_release_bus(bus); 4079 } 4080 } 4081 } 4082 4083 /* 4084 * XXX Appears to be unused. 4085 */ 4086 static void 4087 xpt_release_simq_timeout(void *arg) 4088 { 4089 struct cam_sim *sim; 4090 4091 sim = (struct cam_sim *)arg; 4092 xpt_release_simq(sim, /* run_queue */ TRUE); 4093 } 4094 4095 void 4096 xpt_done(union ccb *done_ccb) 4097 { 4098 struct cam_sim *sim; 4099 int first; 4100 4101 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4102 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4103 /* 4104 * Queue up the request for handling by our SWI handler 4105 * any of the "non-immediate" type of ccbs. 4106 */ 4107 sim = done_ccb->ccb_h.path->bus->sim; 4108 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4109 sim_links.tqe); 4110 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4111 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4112 mtx_lock(&cam_simq_lock); 4113 first = TAILQ_EMPTY(&cam_simq); 4114 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4115 mtx_unlock(&cam_simq_lock); 4116 sim->flags |= CAM_SIM_ON_DONEQ; 4117 if (first) 4118 swi_sched(cambio_ih, 0); 4119 } 4120 } 4121 } 4122 4123 union ccb * 4124 xpt_alloc_ccb() 4125 { 4126 union ccb *new_ccb; 4127 4128 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4129 return (new_ccb); 4130 } 4131 4132 union ccb * 4133 xpt_alloc_ccb_nowait() 4134 { 4135 union ccb *new_ccb; 4136 4137 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4138 return (new_ccb); 4139 } 4140 4141 void 4142 xpt_free_ccb(union ccb *free_ccb) 4143 { 4144 free(free_ccb, M_CAMXPT); 4145 } 4146 4147 4148 4149 /* Private XPT functions */ 4150 4151 /* 4152 * Get a CAM control block for the caller. Charge the structure to the device 4153 * referenced by the path. If the this device has no 'credits' then the 4154 * device already has the maximum number of outstanding operations under way 4155 * and we return NULL. If we don't have sufficient resources to allocate more 4156 * ccbs, we also return NULL. 4157 */ 4158 static union ccb * 4159 xpt_get_ccb(struct cam_ed *device) 4160 { 4161 union ccb *new_ccb; 4162 struct cam_sim *sim; 4163 4164 sim = device->sim; 4165 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4166 new_ccb = xpt_alloc_ccb_nowait(); 4167 if (new_ccb == NULL) { 4168 return (NULL); 4169 } 4170 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4171 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4172 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4173 xpt_links.sle); 4174 sim->ccb_count++; 4175 } 4176 cam_ccbq_take_opening(&device->ccbq); 4177 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4178 return (new_ccb); 4179 } 4180 4181 static void 4182 xpt_release_bus(struct cam_eb *bus) 4183 { 4184 4185 if ((--bus->refcount == 0) 4186 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4187 mtx_lock(&xsoftc.xpt_topo_lock); 4188 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4189 xsoftc.bus_generation++; 4190 mtx_unlock(&xsoftc.xpt_topo_lock); 4191 cam_sim_release(bus->sim); 4192 free(bus, M_CAMXPT); 4193 } 4194 } 4195 4196 static struct cam_et * 4197 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4198 { 4199 struct cam_et *target; 4200 4201 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4202 if (target != NULL) { 4203 struct cam_et *cur_target; 4204 4205 TAILQ_INIT(&target->ed_entries); 4206 target->bus = bus; 4207 target->target_id = target_id; 4208 target->refcount = 1; 4209 target->generation = 0; 4210 timevalclear(&target->last_reset); 4211 /* 4212 * Hold a reference to our parent bus so it 4213 * will not go away before we do. 4214 */ 4215 bus->refcount++; 4216 4217 /* Insertion sort into our bus's target list */ 4218 cur_target = TAILQ_FIRST(&bus->et_entries); 4219 while (cur_target != NULL && cur_target->target_id < target_id) 4220 cur_target = TAILQ_NEXT(cur_target, links); 4221 4222 if (cur_target != NULL) { 4223 TAILQ_INSERT_BEFORE(cur_target, target, links); 4224 } else { 4225 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4226 } 4227 bus->generation++; 4228 } 4229 return (target); 4230 } 4231 4232 static void 4233 xpt_release_target(struct cam_et *target) 4234 { 4235 4236 if ((--target->refcount == 0) 4237 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4238 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4239 target->bus->generation++; 4240 xpt_release_bus(target->bus); 4241 free(target, M_CAMXPT); 4242 } 4243 } 4244 4245 static struct cam_ed * 4246 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4247 lun_id_t lun_id) 4248 { 4249 struct cam_ed *device, *cur_device; 4250 4251 device = xpt_alloc_device(bus, target, lun_id); 4252 if (device == NULL) 4253 return (NULL); 4254 4255 device->mintags = 1; 4256 device->maxtags = 1; 4257 bus->sim->max_ccbs += device->ccbq.devq_openings; 4258 cur_device = TAILQ_FIRST(&target->ed_entries); 4259 while (cur_device != NULL && cur_device->lun_id < lun_id) 4260 cur_device = TAILQ_NEXT(cur_device, links); 4261 if (cur_device != NULL) { 4262 TAILQ_INSERT_BEFORE(cur_device, device, links); 4263 } else { 4264 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4265 } 4266 target->generation++; 4267 4268 return (device); 4269 } 4270 4271 struct cam_ed * 4272 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4273 { 4274 struct cam_ed *device; 4275 struct cam_devq *devq; 4276 cam_status status; 4277 4278 /* Make space for us in the device queue on our bus */ 4279 devq = bus->sim->devq; 4280 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4281 4282 if (status != CAM_REQ_CMP) { 4283 device = NULL; 4284 } else { 4285 device = (struct cam_ed *)malloc(sizeof(*device), 4286 M_CAMXPT, M_NOWAIT); 4287 } 4288 4289 if (device != NULL) { 4290 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4291 device->alloc_ccb_entry.device = device; 4292 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4293 device->send_ccb_entry.device = device; 4294 device->target = target; 4295 device->lun_id = lun_id; 4296 device->sim = bus->sim; 4297 /* Initialize our queues */ 4298 if (camq_init(&device->drvq, 0) != 0) { 4299 free(device, M_CAMXPT); 4300 return (NULL); 4301 } 4302 if (cam_ccbq_init(&device->ccbq, 4303 bus->sim->max_dev_openings) != 0) { 4304 camq_fini(&device->drvq); 4305 free(device, M_CAMXPT); 4306 return (NULL); 4307 } 4308 SLIST_INIT(&device->asyncs); 4309 SLIST_INIT(&device->periphs); 4310 device->generation = 0; 4311 device->owner = NULL; 4312 device->flags = CAM_DEV_UNCONFIGURED; 4313 device->tag_delay_count = 0; 4314 device->tag_saved_openings = 0; 4315 device->refcount = 1; 4316 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4317 4318 /* 4319 * Hold a reference to our parent target so it 4320 * will not go away before we do. 4321 */ 4322 target->refcount++; 4323 4324 } 4325 return (device); 4326 } 4327 4328 void 4329 xpt_acquire_device(struct cam_ed *device) 4330 { 4331 4332 device->refcount++; 4333 } 4334 4335 void 4336 xpt_release_device(struct cam_ed *device) 4337 { 4338 4339 if (--device->refcount == 0) { 4340 struct cam_devq *devq; 4341 4342 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4343 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4344 panic("Removing device while still queued for ccbs"); 4345 4346 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4347 callout_stop(&device->callout); 4348 4349 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4350 device->target->generation++; 4351 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4352 /* Release our slot in the devq */ 4353 devq = device->target->bus->sim->devq; 4354 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4355 camq_fini(&device->drvq); 4356 cam_ccbq_fini(&device->ccbq); 4357 xpt_release_target(device->target); 4358 free(device, M_CAMXPT); 4359 } 4360 } 4361 4362 u_int32_t 4363 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4364 { 4365 int diff; 4366 int result; 4367 struct cam_ed *dev; 4368 4369 dev = path->device; 4370 4371 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4372 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4373 if (result == CAM_REQ_CMP && (diff < 0)) { 4374 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4375 } 4376 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4377 || (dev->inq_flags & SID_CmdQue) != 0) 4378 dev->tag_saved_openings = newopenings; 4379 /* Adjust the global limit */ 4380 dev->sim->max_ccbs += diff; 4381 return (result); 4382 } 4383 4384 static struct cam_eb * 4385 xpt_find_bus(path_id_t path_id) 4386 { 4387 struct cam_eb *bus; 4388 4389 mtx_lock(&xsoftc.xpt_topo_lock); 4390 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4391 bus != NULL; 4392 bus = TAILQ_NEXT(bus, links)) { 4393 if (bus->path_id == path_id) { 4394 bus->refcount++; 4395 break; 4396 } 4397 } 4398 mtx_unlock(&xsoftc.xpt_topo_lock); 4399 return (bus); 4400 } 4401 4402 static struct cam_et * 4403 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4404 { 4405 struct cam_et *target; 4406 4407 for (target = TAILQ_FIRST(&bus->et_entries); 4408 target != NULL; 4409 target = TAILQ_NEXT(target, links)) { 4410 if (target->target_id == target_id) { 4411 target->refcount++; 4412 break; 4413 } 4414 } 4415 return (target); 4416 } 4417 4418 static struct cam_ed * 4419 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4420 { 4421 struct cam_ed *device; 4422 4423 for (device = TAILQ_FIRST(&target->ed_entries); 4424 device != NULL; 4425 device = TAILQ_NEXT(device, links)) { 4426 if (device->lun_id == lun_id) { 4427 device->refcount++; 4428 break; 4429 } 4430 } 4431 return (device); 4432 } 4433 4434 void 4435 xpt_start_tags(struct cam_path *path) 4436 { 4437 struct ccb_relsim crs; 4438 struct cam_ed *device; 4439 struct cam_sim *sim; 4440 int newopenings; 4441 4442 device = path->device; 4443 sim = path->bus->sim; 4444 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4445 xpt_freeze_devq(path, /*count*/1); 4446 device->inq_flags |= SID_CmdQue; 4447 if (device->tag_saved_openings != 0) 4448 newopenings = device->tag_saved_openings; 4449 else 4450 newopenings = min(device->maxtags, 4451 sim->max_tagged_dev_openings); 4452 xpt_dev_ccbq_resize(path, newopenings); 4453 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4454 crs.ccb_h.func_code = XPT_REL_SIMQ; 4455 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4456 crs.openings 4457 = crs.release_timeout 4458 = crs.qfrozen_cnt 4459 = 0; 4460 xpt_action((union ccb *)&crs); 4461 } 4462 4463 void 4464 xpt_stop_tags(struct cam_path *path) 4465 { 4466 struct ccb_relsim crs; 4467 struct cam_ed *device; 4468 struct cam_sim *sim; 4469 4470 device = path->device; 4471 sim = path->bus->sim; 4472 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4473 device->tag_delay_count = 0; 4474 xpt_freeze_devq(path, /*count*/1); 4475 device->inq_flags &= ~SID_CmdQue; 4476 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4477 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4478 crs.ccb_h.func_code = XPT_REL_SIMQ; 4479 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4480 crs.openings 4481 = crs.release_timeout 4482 = crs.qfrozen_cnt 4483 = 0; 4484 xpt_action((union ccb *)&crs); 4485 } 4486 4487 static void 4488 xpt_boot_delay(void *arg) 4489 { 4490 4491 xpt_release_boot(); 4492 } 4493 4494 static void 4495 xpt_config(void *arg) 4496 { 4497 /* 4498 * Now that interrupts are enabled, go find our devices 4499 */ 4500 4501 #ifdef CAMDEBUG 4502 /* Setup debugging flags and path */ 4503 #ifdef CAM_DEBUG_FLAGS 4504 cam_dflags = CAM_DEBUG_FLAGS; 4505 #else /* !CAM_DEBUG_FLAGS */ 4506 cam_dflags = CAM_DEBUG_NONE; 4507 #endif /* CAM_DEBUG_FLAGS */ 4508 #ifdef CAM_DEBUG_BUS 4509 if (cam_dflags != CAM_DEBUG_NONE) { 4510 /* 4511 * Locking is specifically omitted here. No SIMs have 4512 * registered yet, so xpt_create_path will only be searching 4513 * empty lists of targets and devices. 4514 */ 4515 if (xpt_create_path(&cam_dpath, xpt_periph, 4516 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4517 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4518 printf("xpt_config: xpt_create_path() failed for debug" 4519 " target %d:%d:%d, debugging disabled\n", 4520 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4521 cam_dflags = CAM_DEBUG_NONE; 4522 } 4523 } else 4524 cam_dpath = NULL; 4525 #else /* !CAM_DEBUG_BUS */ 4526 cam_dpath = NULL; 4527 #endif /* CAM_DEBUG_BUS */ 4528 #endif /* CAMDEBUG */ 4529 4530 /* Register our shutdown event handler */ 4531 if ((EVENTHANDLER_REGISTER(shutdown_final, xpt_shutdown, 4532 NULL, SHUTDOWN_PRI_FIRST)) == NULL) { 4533 printf("xpt_config: failed to register shutdown event.\n"); 4534 } 4535 4536 periphdriver_init(1); 4537 xpt_hold_boot(); 4538 callout_init(&xsoftc.boot_callout, 1); 4539 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4540 xpt_boot_delay, NULL); 4541 /* Fire up rescan thread. */ 4542 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4543 printf("xpt_config: failed to create rescan thread.\n"); 4544 } 4545 } 4546 4547 void 4548 xpt_hold_boot(void) 4549 { 4550 xpt_lock_buses(); 4551 xsoftc.buses_to_config++; 4552 xpt_unlock_buses(); 4553 } 4554 4555 void 4556 xpt_release_boot(void) 4557 { 4558 xpt_lock_buses(); 4559 xsoftc.buses_to_config--; 4560 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4561 struct xpt_task *task; 4562 4563 xsoftc.buses_config_done = 1; 4564 xpt_unlock_buses(); 4565 /* Call manually because we don't have any busses */ 4566 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4567 if (task != NULL) { 4568 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4569 taskqueue_enqueue(taskqueue_thread, &task->task); 4570 } 4571 } else 4572 xpt_unlock_buses(); 4573 } 4574 4575 /* 4576 * If the given device only has one peripheral attached to it, and if that 4577 * peripheral is the passthrough driver, announce it. This insures that the 4578 * user sees some sort of announcement for every peripheral in their system. 4579 */ 4580 static int 4581 xptpassannouncefunc(struct cam_ed *device, void *arg) 4582 { 4583 struct cam_periph *periph; 4584 int i; 4585 4586 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4587 periph = SLIST_NEXT(periph, periph_links), i++); 4588 4589 periph = SLIST_FIRST(&device->periphs); 4590 if ((i == 1) 4591 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4592 xpt_announce_periph(periph, NULL); 4593 4594 return(1); 4595 } 4596 4597 static void 4598 xpt_finishconfig_task(void *context, int pending) 4599 { 4600 4601 periphdriver_init(2); 4602 /* 4603 * Check for devices with no "standard" peripheral driver 4604 * attached. For any devices like that, announce the 4605 * passthrough driver so the user will see something. 4606 */ 4607 xpt_for_all_devices(xptpassannouncefunc, NULL); 4608 4609 /* Release our hook so that the boot can continue. */ 4610 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4611 free(xsoftc.xpt_config_hook, M_CAMXPT); 4612 xsoftc.xpt_config_hook = NULL; 4613 4614 free(context, M_CAMXPT); 4615 } 4616 4617 /* 4618 * Power down all devices when we are going to power down the system. 4619 */ 4620 static void 4621 xpt_shutdown_dev_done(struct cam_periph *periph, union ccb *done_ccb) 4622 { 4623 4624 /* No-op. We're polling. */ 4625 return; 4626 } 4627 4628 static int 4629 xpt_shutdown_dev(struct cam_ed *device, void *arg) 4630 { 4631 union ccb ccb; 4632 struct cam_path path; 4633 4634 if (device->flags & CAM_DEV_UNCONFIGURED) 4635 return (1); 4636 4637 if (device->protocol == PROTO_ATA) { 4638 /* Only power down device if it supports power management. */ 4639 if ((device->ident_data.support.command1 & 4640 ATA_SUPPORT_POWERMGT) == 0) 4641 return (1); 4642 } else if (device->protocol != PROTO_SCSI) 4643 return (1); 4644 4645 xpt_compile_path(&path, 4646 NULL, 4647 device->target->bus->path_id, 4648 device->target->target_id, 4649 device->lun_id); 4650 xpt_setup_ccb(&ccb.ccb_h, &path, CAM_PRIORITY_NORMAL); 4651 if (device->protocol == PROTO_ATA) { 4652 cam_fill_ataio(&ccb.ataio, 4653 1, 4654 xpt_shutdown_dev_done, 4655 CAM_DIR_NONE, 4656 0, 4657 NULL, 4658 0, 4659 30*1000); 4660 ata_28bit_cmd(&ccb.ataio, ATA_SLEEP, 0, 0, 0); 4661 } else { 4662 scsi_start_stop(&ccb.csio, 4663 /*retries*/1, 4664 xpt_shutdown_dev_done, 4665 MSG_SIMPLE_Q_TAG, 4666 /*start*/FALSE, 4667 /*load/eject*/FALSE, 4668 /*immediate*/TRUE, 4669 SSD_FULL_SIZE, 4670 /*timeout*/50*1000); 4671 } 4672 xpt_polled_action(&ccb); 4673 4674 if ((ccb.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) 4675 xpt_print(&path, "Device power down failed\n"); 4676 if ((ccb.ccb_h.status & CAM_DEV_QFRZN) != 0) 4677 cam_release_devq(ccb.ccb_h.path, 4678 /*relsim_flags*/0, 4679 /*reduction*/0, 4680 /*timeout*/0, 4681 /*getcount_only*/0); 4682 xpt_release_path(&path); 4683 return (1); 4684 } 4685 4686 static void 4687 xpt_shutdown(void * arg, int howto) 4688 { 4689 4690 if (!xpt_power_down) 4691 return; 4692 if ((howto & RB_POWEROFF) == 0) 4693 return; 4694 4695 xpt_for_all_devices(xpt_shutdown_dev, NULL); 4696 } 4697 4698 cam_status 4699 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4700 struct cam_path *path) 4701 { 4702 struct ccb_setasync csa; 4703 cam_status status; 4704 int xptpath = 0; 4705 4706 if (path == NULL) { 4707 mtx_lock(&xsoftc.xpt_lock); 4708 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4709 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4710 if (status != CAM_REQ_CMP) { 4711 mtx_unlock(&xsoftc.xpt_lock); 4712 return (status); 4713 } 4714 xptpath = 1; 4715 } 4716 4717 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4718 csa.ccb_h.func_code = XPT_SASYNC_CB; 4719 csa.event_enable = event; 4720 csa.callback = cbfunc; 4721 csa.callback_arg = cbarg; 4722 xpt_action((union ccb *)&csa); 4723 status = csa.ccb_h.status; 4724 if (xptpath) { 4725 xpt_free_path(path); 4726 mtx_unlock(&xsoftc.xpt_lock); 4727 4728 if ((status == CAM_REQ_CMP) && 4729 (csa.event_enable & AC_FOUND_DEVICE)) { 4730 /* 4731 * Get this peripheral up to date with all 4732 * the currently existing devices. 4733 */ 4734 xpt_for_all_devices(xptsetasyncfunc, &csa); 4735 } 4736 if ((status == CAM_REQ_CMP) && 4737 (csa.event_enable & AC_PATH_REGISTERED)) { 4738 /* 4739 * Get this peripheral up to date with all 4740 * the currently existing busses. 4741 */ 4742 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4743 } 4744 } 4745 return (status); 4746 } 4747 4748 static void 4749 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4750 { 4751 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4752 4753 switch (work_ccb->ccb_h.func_code) { 4754 /* Common cases first */ 4755 case XPT_PATH_INQ: /* Path routing inquiry */ 4756 { 4757 struct ccb_pathinq *cpi; 4758 4759 cpi = &work_ccb->cpi; 4760 cpi->version_num = 1; /* XXX??? */ 4761 cpi->hba_inquiry = 0; 4762 cpi->target_sprt = 0; 4763 cpi->hba_misc = 0; 4764 cpi->hba_eng_cnt = 0; 4765 cpi->max_target = 0; 4766 cpi->max_lun = 0; 4767 cpi->initiator_id = 0; 4768 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4769 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4770 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4771 cpi->unit_number = sim->unit_number; 4772 cpi->bus_id = sim->bus_id; 4773 cpi->base_transfer_speed = 0; 4774 cpi->protocol = PROTO_UNSPECIFIED; 4775 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4776 cpi->transport = XPORT_UNSPECIFIED; 4777 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4778 cpi->ccb_h.status = CAM_REQ_CMP; 4779 xpt_done(work_ccb); 4780 break; 4781 } 4782 default: 4783 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4784 xpt_done(work_ccb); 4785 break; 4786 } 4787 } 4788 4789 /* 4790 * The xpt as a "controller" has no interrupt sources, so polling 4791 * is a no-op. 4792 */ 4793 static void 4794 xptpoll(struct cam_sim *sim) 4795 { 4796 } 4797 4798 void 4799 xpt_lock_buses(void) 4800 { 4801 mtx_lock(&xsoftc.xpt_topo_lock); 4802 } 4803 4804 void 4805 xpt_unlock_buses(void) 4806 { 4807 mtx_unlock(&xsoftc.xpt_topo_lock); 4808 } 4809 4810 static void 4811 camisr(void *dummy) 4812 { 4813 cam_simq_t queue; 4814 struct cam_sim *sim; 4815 4816 mtx_lock(&cam_simq_lock); 4817 TAILQ_INIT(&queue); 4818 while (!TAILQ_EMPTY(&cam_simq)) { 4819 TAILQ_CONCAT(&queue, &cam_simq, links); 4820 mtx_unlock(&cam_simq_lock); 4821 4822 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4823 TAILQ_REMOVE(&queue, sim, links); 4824 CAM_SIM_LOCK(sim); 4825 sim->flags &= ~CAM_SIM_ON_DONEQ; 4826 camisr_runqueue(&sim->sim_doneq); 4827 CAM_SIM_UNLOCK(sim); 4828 } 4829 mtx_lock(&cam_simq_lock); 4830 } 4831 mtx_unlock(&cam_simq_lock); 4832 } 4833 4834 static void 4835 camisr_runqueue(void *V_queue) 4836 { 4837 cam_isrq_t *queue = V_queue; 4838 struct ccb_hdr *ccb_h; 4839 4840 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 4841 int runq; 4842 4843 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 4844 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4845 4846 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 4847 ("camisr\n")); 4848 4849 runq = FALSE; 4850 4851 if (ccb_h->flags & CAM_HIGH_POWER) { 4852 struct highpowerlist *hphead; 4853 union ccb *send_ccb; 4854 4855 mtx_lock(&xsoftc.xpt_lock); 4856 hphead = &xsoftc.highpowerq; 4857 4858 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 4859 4860 /* 4861 * Increment the count since this command is done. 4862 */ 4863 xsoftc.num_highpower++; 4864 4865 /* 4866 * Any high powered commands queued up? 4867 */ 4868 if (send_ccb != NULL) { 4869 4870 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 4871 mtx_unlock(&xsoftc.xpt_lock); 4872 4873 xpt_release_devq(send_ccb->ccb_h.path, 4874 /*count*/1, /*runqueue*/TRUE); 4875 } else 4876 mtx_unlock(&xsoftc.xpt_lock); 4877 } 4878 4879 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 4880 struct cam_ed *dev; 4881 4882 dev = ccb_h->path->device; 4883 4884 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 4885 ccb_h->path->bus->sim->devq->send_active--; 4886 ccb_h->path->bus->sim->devq->send_openings++; 4887 runq = TRUE; 4888 4889 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 4890 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 4891 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 4892 && (dev->ccbq.dev_active == 0))) { 4893 xpt_release_devq(ccb_h->path, /*count*/1, 4894 /*run_queue*/FALSE); 4895 } 4896 4897 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4898 && (--dev->tag_delay_count == 0)) 4899 xpt_start_tags(ccb_h->path); 4900 } 4901 4902 if (ccb_h->status & CAM_RELEASE_SIMQ) { 4903 xpt_release_simq(ccb_h->path->bus->sim, 4904 /*run_queue*/TRUE); 4905 ccb_h->status &= ~CAM_RELEASE_SIMQ; 4906 runq = FALSE; 4907 } 4908 4909 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 4910 && (ccb_h->status & CAM_DEV_QFRZN)) { 4911 xpt_release_devq(ccb_h->path, /*count*/1, 4912 /*run_queue*/TRUE); 4913 ccb_h->status &= ~CAM_DEV_QFRZN; 4914 } else if (runq) { 4915 xpt_run_dev_sendq(ccb_h->path->bus); 4916 } 4917 4918 /* Call the peripheral driver's callback */ 4919 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 4920 } 4921 } 4922 4923