xref: /freebsd/sys/cam/cam_xpt.c (revision 9034852c84a13f0e3b5527e1c886ca94b2863b2b)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/proc.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/taskqueue.h>
47 
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_sim.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/cam_xpt_sim.h>
60 #include <cam/cam_xpt_periph.h>
61 #include <cam/cam_xpt_internal.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 
69 #include <machine/md_var.h>	/* geometry translation */
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 
72 #include "opt_cam.h"
73 
74 /*
75  * This is the maximum number of high powered commands (e.g. start unit)
76  * that can be outstanding at a particular time.
77  */
78 #ifndef CAM_MAX_HIGHPOWER
79 #define CAM_MAX_HIGHPOWER  4
80 #endif
81 
82 /* Datastructures internal to the xpt layer */
83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
87 
88 /* Object for defering XPT actions to a taskqueue */
89 struct xpt_task {
90 	struct task	task;
91 	void		*data1;
92 	uintptr_t	data2;
93 };
94 
95 struct xpt_softc {
96 	uint32_t		xpt_generation;
97 
98 	/* number of high powered commands that can go through right now */
99 	struct mtx		xpt_highpower_lock;
100 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
101 	int			num_highpower;
102 
103 	/* queue for handling async rescan requests. */
104 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 	int buses_to_config;
106 	int buses_config_done;
107 
108 	/* Registered busses */
109 	TAILQ_HEAD(,cam_eb)	xpt_busses;
110 	u_int			bus_generation;
111 
112 	struct intr_config_hook	*xpt_config_hook;
113 
114 	int			boot_delay;
115 	struct callout 		boot_callout;
116 
117 	struct mtx		xpt_topo_lock;
118 	struct mtx		xpt_lock;
119 	struct taskqueue	*xpt_taskq;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
155 
156 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
157            &xsoftc.boot_delay, 0, "Bus registration wait time");
158 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
159 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
160 
161 struct cam_doneq {
162 	struct mtx_padalign	cam_doneq_mtx;
163 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
164 	int			cam_doneq_sleep;
165 };
166 
167 static struct cam_doneq cam_doneqs[MAXCPU];
168 static int cam_num_doneqs;
169 static struct proc *cam_proc;
170 
171 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
172            &cam_num_doneqs, 0, "Number of completion queues/threads");
173 
174 struct cam_periph *xpt_periph;
175 
176 static periph_init_t xpt_periph_init;
177 
178 static struct periph_driver xpt_driver =
179 {
180 	xpt_periph_init, "xpt",
181 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
182 	CAM_PERIPH_DRV_EARLY
183 };
184 
185 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
186 
187 static d_open_t xptopen;
188 static d_close_t xptclose;
189 static d_ioctl_t xptioctl;
190 static d_ioctl_t xptdoioctl;
191 
192 static struct cdevsw xpt_cdevsw = {
193 	.d_version =	D_VERSION,
194 	.d_flags =	0,
195 	.d_open =	xptopen,
196 	.d_close =	xptclose,
197 	.d_ioctl =	xptioctl,
198 	.d_name =	"xpt",
199 };
200 
201 /* Storage for debugging datastructures */
202 struct cam_path *cam_dpath;
203 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
204 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
205 	&cam_dflags, 0, "Enabled debug flags");
206 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
207 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
208 	&cam_debug_delay, 0, "Delay in us after each debug message");
209 
210 /* Our boot-time initialization hook */
211 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
212 
213 static moduledata_t cam_moduledata = {
214 	"cam",
215 	cam_module_event_handler,
216 	NULL
217 };
218 
219 static int	xpt_init(void *);
220 
221 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
222 MODULE_VERSION(cam, 1);
223 
224 
225 static void		xpt_async_bcast(struct async_list *async_head,
226 					u_int32_t async_code,
227 					struct cam_path *path,
228 					void *async_arg);
229 static path_id_t xptnextfreepathid(void);
230 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
231 static union ccb *xpt_get_ccb(struct cam_periph *periph);
232 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
233 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
234 static void	 xpt_run_allocq_task(void *context, int pending);
235 static void	 xpt_run_devq(struct cam_devq *devq);
236 static timeout_t xpt_release_devq_timeout;
237 static void	 xpt_release_simq_timeout(void *arg) __unused;
238 static void	 xpt_acquire_bus(struct cam_eb *bus);
239 static void	 xpt_release_bus(struct cam_eb *bus);
240 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
241 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
242 		    int run_queue);
243 static struct cam_et*
244 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
245 static void	 xpt_acquire_target(struct cam_et *target);
246 static void	 xpt_release_target(struct cam_et *target);
247 static struct cam_eb*
248 		 xpt_find_bus(path_id_t path_id);
249 static struct cam_et*
250 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
251 static struct cam_ed*
252 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
253 static void	 xpt_config(void *arg);
254 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
255 				 u_int32_t new_priority);
256 static xpt_devicefunc_t xptpassannouncefunc;
257 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
258 static void	 xptpoll(struct cam_sim *sim);
259 static void	 camisr_runqueue(void);
260 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
261 static void	 xpt_done_td(void *);
262 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
263 				    u_int num_patterns, struct cam_eb *bus);
264 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
265 				       u_int num_patterns,
266 				       struct cam_ed *device);
267 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
268 				       u_int num_patterns,
269 				       struct cam_periph *periph);
270 static xpt_busfunc_t	xptedtbusfunc;
271 static xpt_targetfunc_t	xptedttargetfunc;
272 static xpt_devicefunc_t	xptedtdevicefunc;
273 static xpt_periphfunc_t	xptedtperiphfunc;
274 static xpt_pdrvfunc_t	xptplistpdrvfunc;
275 static xpt_periphfunc_t	xptplistperiphfunc;
276 static int		xptedtmatch(struct ccb_dev_match *cdm);
277 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
278 static int		xptbustraverse(struct cam_eb *start_bus,
279 				       xpt_busfunc_t *tr_func, void *arg);
280 static int		xpttargettraverse(struct cam_eb *bus,
281 					  struct cam_et *start_target,
282 					  xpt_targetfunc_t *tr_func, void *arg);
283 static int		xptdevicetraverse(struct cam_et *target,
284 					  struct cam_ed *start_device,
285 					  xpt_devicefunc_t *tr_func, void *arg);
286 static int		xptperiphtraverse(struct cam_ed *device,
287 					  struct cam_periph *start_periph,
288 					  xpt_periphfunc_t *tr_func, void *arg);
289 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
290 					xpt_pdrvfunc_t *tr_func, void *arg);
291 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
292 					    struct cam_periph *start_periph,
293 					    xpt_periphfunc_t *tr_func,
294 					    void *arg);
295 static xpt_busfunc_t	xptdefbusfunc;
296 static xpt_targetfunc_t	xptdeftargetfunc;
297 static xpt_devicefunc_t	xptdefdevicefunc;
298 static xpt_periphfunc_t	xptdefperiphfunc;
299 static void		xpt_finishconfig_task(void *context, int pending);
300 static void		xpt_dev_async_default(u_int32_t async_code,
301 					      struct cam_eb *bus,
302 					      struct cam_et *target,
303 					      struct cam_ed *device,
304 					      void *async_arg);
305 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
306 						 struct cam_et *target,
307 						 lun_id_t lun_id);
308 static xpt_devicefunc_t	xptsetasyncfunc;
309 static xpt_busfunc_t	xptsetasyncbusfunc;
310 static cam_status	xptregister(struct cam_periph *periph,
311 				    void *arg);
312 static __inline int device_is_queued(struct cam_ed *device);
313 
314 static __inline int
315 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
316 {
317 	int	retval;
318 
319 	mtx_assert(&devq->send_mtx, MA_OWNED);
320 	if ((dev->ccbq.queue.entries > 0) &&
321 	    (dev->ccbq.dev_openings > 0) &&
322 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
323 		/*
324 		 * The priority of a device waiting for controller
325 		 * resources is that of the highest priority CCB
326 		 * enqueued.
327 		 */
328 		retval =
329 		    xpt_schedule_dev(&devq->send_queue,
330 				     &dev->devq_entry,
331 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
332 	} else {
333 		retval = 0;
334 	}
335 	return (retval);
336 }
337 
338 static __inline int
339 device_is_queued(struct cam_ed *device)
340 {
341 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
342 }
343 
344 static void
345 xpt_periph_init()
346 {
347 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
348 }
349 
350 static int
351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
352 {
353 
354 	/*
355 	 * Only allow read-write access.
356 	 */
357 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
358 		return(EPERM);
359 
360 	/*
361 	 * We don't allow nonblocking access.
362 	 */
363 	if ((flags & O_NONBLOCK) != 0) {
364 		printf("%s: can't do nonblocking access\n", devtoname(dev));
365 		return(ENODEV);
366 	}
367 
368 	return(0);
369 }
370 
371 static int
372 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
373 {
374 
375 	return(0);
376 }
377 
378 /*
379  * Don't automatically grab the xpt softc lock here even though this is going
380  * through the xpt device.  The xpt device is really just a back door for
381  * accessing other devices and SIMs, so the right thing to do is to grab
382  * the appropriate SIM lock once the bus/SIM is located.
383  */
384 static int
385 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
386 {
387 	int error;
388 
389 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
390 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
391 	}
392 	return (error);
393 }
394 
395 static int
396 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
397 {
398 	int error;
399 
400 	error = 0;
401 
402 	switch(cmd) {
403 	/*
404 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
405 	 * to accept CCB types that don't quite make sense to send through a
406 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
407 	 * in the CAM spec.
408 	 */
409 	case CAMIOCOMMAND: {
410 		union ccb *ccb;
411 		union ccb *inccb;
412 		struct cam_eb *bus;
413 
414 		inccb = (union ccb *)addr;
415 
416 		bus = xpt_find_bus(inccb->ccb_h.path_id);
417 		if (bus == NULL)
418 			return (EINVAL);
419 
420 		switch (inccb->ccb_h.func_code) {
421 		case XPT_SCAN_BUS:
422 		case XPT_RESET_BUS:
423 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
424 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
425 				xpt_release_bus(bus);
426 				return (EINVAL);
427 			}
428 			break;
429 		case XPT_SCAN_TGT:
430 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
431 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
432 				xpt_release_bus(bus);
433 				return (EINVAL);
434 			}
435 			break;
436 		default:
437 			break;
438 		}
439 
440 		switch(inccb->ccb_h.func_code) {
441 		case XPT_SCAN_BUS:
442 		case XPT_RESET_BUS:
443 		case XPT_PATH_INQ:
444 		case XPT_ENG_INQ:
445 		case XPT_SCAN_LUN:
446 		case XPT_SCAN_TGT:
447 
448 			ccb = xpt_alloc_ccb();
449 
450 			/*
451 			 * Create a path using the bus, target, and lun the
452 			 * user passed in.
453 			 */
454 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
455 					    inccb->ccb_h.path_id,
456 					    inccb->ccb_h.target_id,
457 					    inccb->ccb_h.target_lun) !=
458 					    CAM_REQ_CMP){
459 				error = EINVAL;
460 				xpt_free_ccb(ccb);
461 				break;
462 			}
463 			/* Ensure all of our fields are correct */
464 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
465 				      inccb->ccb_h.pinfo.priority);
466 			xpt_merge_ccb(ccb, inccb);
467 			xpt_path_lock(ccb->ccb_h.path);
468 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
469 			xpt_path_unlock(ccb->ccb_h.path);
470 			bcopy(ccb, inccb, sizeof(union ccb));
471 			xpt_free_path(ccb->ccb_h.path);
472 			xpt_free_ccb(ccb);
473 			break;
474 
475 		case XPT_DEBUG: {
476 			union ccb ccb;
477 
478 			/*
479 			 * This is an immediate CCB, so it's okay to
480 			 * allocate it on the stack.
481 			 */
482 
483 			/*
484 			 * Create a path using the bus, target, and lun the
485 			 * user passed in.
486 			 */
487 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
488 					    inccb->ccb_h.path_id,
489 					    inccb->ccb_h.target_id,
490 					    inccb->ccb_h.target_lun) !=
491 					    CAM_REQ_CMP){
492 				error = EINVAL;
493 				break;
494 			}
495 			/* Ensure all of our fields are correct */
496 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
497 				      inccb->ccb_h.pinfo.priority);
498 			xpt_merge_ccb(&ccb, inccb);
499 			xpt_action(&ccb);
500 			bcopy(&ccb, inccb, sizeof(union ccb));
501 			xpt_free_path(ccb.ccb_h.path);
502 			break;
503 
504 		}
505 		case XPT_DEV_MATCH: {
506 			struct cam_periph_map_info mapinfo;
507 			struct cam_path *old_path;
508 
509 			/*
510 			 * We can't deal with physical addresses for this
511 			 * type of transaction.
512 			 */
513 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
514 			    CAM_DATA_VADDR) {
515 				error = EINVAL;
516 				break;
517 			}
518 
519 			/*
520 			 * Save this in case the caller had it set to
521 			 * something in particular.
522 			 */
523 			old_path = inccb->ccb_h.path;
524 
525 			/*
526 			 * We really don't need a path for the matching
527 			 * code.  The path is needed because of the
528 			 * debugging statements in xpt_action().  They
529 			 * assume that the CCB has a valid path.
530 			 */
531 			inccb->ccb_h.path = xpt_periph->path;
532 
533 			bzero(&mapinfo, sizeof(mapinfo));
534 
535 			/*
536 			 * Map the pattern and match buffers into kernel
537 			 * virtual address space.
538 			 */
539 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
540 
541 			if (error) {
542 				inccb->ccb_h.path = old_path;
543 				break;
544 			}
545 
546 			/*
547 			 * This is an immediate CCB, we can send it on directly.
548 			 */
549 			xpt_action(inccb);
550 
551 			/*
552 			 * Map the buffers back into user space.
553 			 */
554 			cam_periph_unmapmem(inccb, &mapinfo);
555 
556 			inccb->ccb_h.path = old_path;
557 
558 			error = 0;
559 			break;
560 		}
561 		default:
562 			error = ENOTSUP;
563 			break;
564 		}
565 		xpt_release_bus(bus);
566 		break;
567 	}
568 	/*
569 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
570 	 * with the periphal driver name and unit name filled in.  The other
571 	 * fields don't really matter as input.  The passthrough driver name
572 	 * ("pass"), and unit number are passed back in the ccb.  The current
573 	 * device generation number, and the index into the device peripheral
574 	 * driver list, and the status are also passed back.  Note that
575 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
576 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
577 	 * (or rather should be) impossible for the device peripheral driver
578 	 * list to change since we look at the whole thing in one pass, and
579 	 * we do it with lock protection.
580 	 *
581 	 */
582 	case CAMGETPASSTHRU: {
583 		union ccb *ccb;
584 		struct cam_periph *periph;
585 		struct periph_driver **p_drv;
586 		char   *name;
587 		u_int unit;
588 		int base_periph_found;
589 
590 		ccb = (union ccb *)addr;
591 		unit = ccb->cgdl.unit_number;
592 		name = ccb->cgdl.periph_name;
593 		base_periph_found = 0;
594 
595 		/*
596 		 * Sanity check -- make sure we don't get a null peripheral
597 		 * driver name.
598 		 */
599 		if (*ccb->cgdl.periph_name == '\0') {
600 			error = EINVAL;
601 			break;
602 		}
603 
604 		/* Keep the list from changing while we traverse it */
605 		xpt_lock_buses();
606 
607 		/* first find our driver in the list of drivers */
608 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
609 			if (strcmp((*p_drv)->driver_name, name) == 0)
610 				break;
611 
612 		if (*p_drv == NULL) {
613 			xpt_unlock_buses();
614 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
615 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
616 			*ccb->cgdl.periph_name = '\0';
617 			ccb->cgdl.unit_number = 0;
618 			error = ENOENT;
619 			break;
620 		}
621 
622 		/*
623 		 * Run through every peripheral instance of this driver
624 		 * and check to see whether it matches the unit passed
625 		 * in by the user.  If it does, get out of the loops and
626 		 * find the passthrough driver associated with that
627 		 * peripheral driver.
628 		 */
629 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
630 		     periph = TAILQ_NEXT(periph, unit_links)) {
631 
632 			if (periph->unit_number == unit)
633 				break;
634 		}
635 		/*
636 		 * If we found the peripheral driver that the user passed
637 		 * in, go through all of the peripheral drivers for that
638 		 * particular device and look for a passthrough driver.
639 		 */
640 		if (periph != NULL) {
641 			struct cam_ed *device;
642 			int i;
643 
644 			base_periph_found = 1;
645 			device = periph->path->device;
646 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
647 			     periph != NULL;
648 			     periph = SLIST_NEXT(periph, periph_links), i++) {
649 				/*
650 				 * Check to see whether we have a
651 				 * passthrough device or not.
652 				 */
653 				if (strcmp(periph->periph_name, "pass") == 0) {
654 					/*
655 					 * Fill in the getdevlist fields.
656 					 */
657 					strcpy(ccb->cgdl.periph_name,
658 					       periph->periph_name);
659 					ccb->cgdl.unit_number =
660 						periph->unit_number;
661 					if (SLIST_NEXT(periph, periph_links))
662 						ccb->cgdl.status =
663 							CAM_GDEVLIST_MORE_DEVS;
664 					else
665 						ccb->cgdl.status =
666 						       CAM_GDEVLIST_LAST_DEVICE;
667 					ccb->cgdl.generation =
668 						device->generation;
669 					ccb->cgdl.index = i;
670 					/*
671 					 * Fill in some CCB header fields
672 					 * that the user may want.
673 					 */
674 					ccb->ccb_h.path_id =
675 						periph->path->bus->path_id;
676 					ccb->ccb_h.target_id =
677 						periph->path->target->target_id;
678 					ccb->ccb_h.target_lun =
679 						periph->path->device->lun_id;
680 					ccb->ccb_h.status = CAM_REQ_CMP;
681 					break;
682 				}
683 			}
684 		}
685 
686 		/*
687 		 * If the periph is null here, one of two things has
688 		 * happened.  The first possibility is that we couldn't
689 		 * find the unit number of the particular peripheral driver
690 		 * that the user is asking about.  e.g. the user asks for
691 		 * the passthrough driver for "da11".  We find the list of
692 		 * "da" peripherals all right, but there is no unit 11.
693 		 * The other possibility is that we went through the list
694 		 * of peripheral drivers attached to the device structure,
695 		 * but didn't find one with the name "pass".  Either way,
696 		 * we return ENOENT, since we couldn't find something.
697 		 */
698 		if (periph == NULL) {
699 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
700 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
701 			*ccb->cgdl.periph_name = '\0';
702 			ccb->cgdl.unit_number = 0;
703 			error = ENOENT;
704 			/*
705 			 * It is unfortunate that this is even necessary,
706 			 * but there are many, many clueless users out there.
707 			 * If this is true, the user is looking for the
708 			 * passthrough driver, but doesn't have one in his
709 			 * kernel.
710 			 */
711 			if (base_periph_found == 1) {
712 				printf("xptioctl: pass driver is not in the "
713 				       "kernel\n");
714 				printf("xptioctl: put \"device pass\" in "
715 				       "your kernel config file\n");
716 			}
717 		}
718 		xpt_unlock_buses();
719 		break;
720 		}
721 	default:
722 		error = ENOTTY;
723 		break;
724 	}
725 
726 	return(error);
727 }
728 
729 static int
730 cam_module_event_handler(module_t mod, int what, void *arg)
731 {
732 	int error;
733 
734 	switch (what) {
735 	case MOD_LOAD:
736 		if ((error = xpt_init(NULL)) != 0)
737 			return (error);
738 		break;
739 	case MOD_UNLOAD:
740 		return EBUSY;
741 	default:
742 		return EOPNOTSUPP;
743 	}
744 
745 	return 0;
746 }
747 
748 static void
749 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
750 {
751 
752 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
753 		xpt_free_path(done_ccb->ccb_h.path);
754 		xpt_free_ccb(done_ccb);
755 	} else {
756 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
757 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
758 	}
759 	xpt_release_boot();
760 }
761 
762 /* thread to handle bus rescans */
763 static void
764 xpt_scanner_thread(void *dummy)
765 {
766 	union ccb	*ccb;
767 	struct cam_path	 path;
768 
769 	xpt_lock_buses();
770 	for (;;) {
771 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
772 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
773 			       "-", 0);
774 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
775 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
776 			xpt_unlock_buses();
777 
778 			/*
779 			 * Since lock can be dropped inside and path freed
780 			 * by completion callback even before return here,
781 			 * take our own path copy for reference.
782 			 */
783 			xpt_copy_path(&path, ccb->ccb_h.path);
784 			xpt_path_lock(&path);
785 			xpt_action(ccb);
786 			xpt_path_unlock(&path);
787 			xpt_release_path(&path);
788 
789 			xpt_lock_buses();
790 		}
791 	}
792 }
793 
794 void
795 xpt_rescan(union ccb *ccb)
796 {
797 	struct ccb_hdr *hdr;
798 
799 	/* Prepare request */
800 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
801 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
802 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
803 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
804 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
805 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
806 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
807 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
808 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
809 	else {
810 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
811 		xpt_free_path(ccb->ccb_h.path);
812 		xpt_free_ccb(ccb);
813 		return;
814 	}
815 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
816 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
817 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
818 	/* Don't make duplicate entries for the same paths. */
819 	xpt_lock_buses();
820 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
821 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
822 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
823 				wakeup(&xsoftc.ccb_scanq);
824 				xpt_unlock_buses();
825 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
826 				xpt_free_path(ccb->ccb_h.path);
827 				xpt_free_ccb(ccb);
828 				return;
829 			}
830 		}
831 	}
832 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
833 	xsoftc.buses_to_config++;
834 	wakeup(&xsoftc.ccb_scanq);
835 	xpt_unlock_buses();
836 }
837 
838 /* Functions accessed by the peripheral drivers */
839 static int
840 xpt_init(void *dummy)
841 {
842 	struct cam_sim *xpt_sim;
843 	struct cam_path *path;
844 	struct cam_devq *devq;
845 	cam_status status;
846 	int error, i;
847 
848 	TAILQ_INIT(&xsoftc.xpt_busses);
849 	TAILQ_INIT(&xsoftc.ccb_scanq);
850 	STAILQ_INIT(&xsoftc.highpowerq);
851 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
852 
853 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
854 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
855 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
856 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
857 
858 #ifdef CAM_BOOT_DELAY
859 	/*
860 	 * Override this value at compile time to assist our users
861 	 * who don't use loader to boot a kernel.
862 	 */
863 	xsoftc.boot_delay = CAM_BOOT_DELAY;
864 #endif
865 	/*
866 	 * The xpt layer is, itself, the equivelent of a SIM.
867 	 * Allow 16 ccbs in the ccb pool for it.  This should
868 	 * give decent parallelism when we probe busses and
869 	 * perform other XPT functions.
870 	 */
871 	devq = cam_simq_alloc(16);
872 	xpt_sim = cam_sim_alloc(xptaction,
873 				xptpoll,
874 				"xpt",
875 				/*softc*/NULL,
876 				/*unit*/0,
877 				/*mtx*/&xsoftc.xpt_lock,
878 				/*max_dev_transactions*/0,
879 				/*max_tagged_dev_transactions*/0,
880 				devq);
881 	if (xpt_sim == NULL)
882 		return (ENOMEM);
883 
884 	mtx_lock(&xsoftc.xpt_lock);
885 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
886 		mtx_unlock(&xsoftc.xpt_lock);
887 		printf("xpt_init: xpt_bus_register failed with status %#x,"
888 		       " failing attach\n", status);
889 		return (EINVAL);
890 	}
891 	mtx_unlock(&xsoftc.xpt_lock);
892 
893 	/*
894 	 * Looking at the XPT from the SIM layer, the XPT is
895 	 * the equivelent of a peripheral driver.  Allocate
896 	 * a peripheral driver entry for us.
897 	 */
898 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
899 				      CAM_TARGET_WILDCARD,
900 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
901 		printf("xpt_init: xpt_create_path failed with status %#x,"
902 		       " failing attach\n", status);
903 		return (EINVAL);
904 	}
905 	xpt_path_lock(path);
906 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
907 			 path, NULL, 0, xpt_sim);
908 	xpt_path_unlock(path);
909 	xpt_free_path(path);
910 
911 	if (cam_num_doneqs < 1)
912 		cam_num_doneqs = 1 + mp_ncpus / 6;
913 	else if (cam_num_doneqs > MAXCPU)
914 		cam_num_doneqs = MAXCPU;
915 	for (i = 0; i < cam_num_doneqs; i++) {
916 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
917 		    MTX_DEF);
918 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
919 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
920 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
921 		if (error != 0) {
922 			cam_num_doneqs = i;
923 			break;
924 		}
925 	}
926 	if (cam_num_doneqs < 1) {
927 		printf("xpt_init: Cannot init completion queues "
928 		       "- failing attach\n");
929 		return (ENOMEM);
930 	}
931 	/*
932 	 * Register a callback for when interrupts are enabled.
933 	 */
934 	xsoftc.xpt_config_hook =
935 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
936 					      M_CAMXPT, M_NOWAIT | M_ZERO);
937 	if (xsoftc.xpt_config_hook == NULL) {
938 		printf("xpt_init: Cannot malloc config hook "
939 		       "- failing attach\n");
940 		return (ENOMEM);
941 	}
942 	xsoftc.xpt_config_hook->ich_func = xpt_config;
943 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
944 		free (xsoftc.xpt_config_hook, M_CAMXPT);
945 		printf("xpt_init: config_intrhook_establish failed "
946 		       "- failing attach\n");
947 	}
948 
949 	return (0);
950 }
951 
952 static cam_status
953 xptregister(struct cam_periph *periph, void *arg)
954 {
955 	struct cam_sim *xpt_sim;
956 
957 	if (periph == NULL) {
958 		printf("xptregister: periph was NULL!!\n");
959 		return(CAM_REQ_CMP_ERR);
960 	}
961 
962 	xpt_sim = (struct cam_sim *)arg;
963 	xpt_sim->softc = periph;
964 	xpt_periph = periph;
965 	periph->softc = NULL;
966 
967 	return(CAM_REQ_CMP);
968 }
969 
970 int32_t
971 xpt_add_periph(struct cam_periph *periph)
972 {
973 	struct cam_ed *device;
974 	int32_t	 status;
975 
976 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
977 	device = periph->path->device;
978 	status = CAM_REQ_CMP;
979 	if (device != NULL) {
980 		mtx_lock(&device->target->bus->eb_mtx);
981 		device->generation++;
982 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
983 		mtx_unlock(&device->target->bus->eb_mtx);
984 		atomic_add_32(&xsoftc.xpt_generation, 1);
985 	}
986 
987 	return (status);
988 }
989 
990 void
991 xpt_remove_periph(struct cam_periph *periph)
992 {
993 	struct cam_ed *device;
994 
995 	device = periph->path->device;
996 	if (device != NULL) {
997 		mtx_lock(&device->target->bus->eb_mtx);
998 		device->generation++;
999 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1000 		mtx_unlock(&device->target->bus->eb_mtx);
1001 		atomic_add_32(&xsoftc.xpt_generation, 1);
1002 	}
1003 }
1004 
1005 
1006 void
1007 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1008 {
1009 	struct	cam_path *path = periph->path;
1010 
1011 	cam_periph_assert(periph, MA_OWNED);
1012 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1013 
1014 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1015 	       periph->periph_name, periph->unit_number,
1016 	       path->bus->sim->sim_name,
1017 	       path->bus->sim->unit_number,
1018 	       path->bus->sim->bus_id,
1019 	       path->bus->path_id,
1020 	       path->target->target_id,
1021 	       (uintmax_t)path->device->lun_id);
1022 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1023 	if (path->device->protocol == PROTO_SCSI)
1024 		scsi_print_inquiry(&path->device->inq_data);
1025 	else if (path->device->protocol == PROTO_ATA ||
1026 	    path->device->protocol == PROTO_SATAPM)
1027 		ata_print_ident(&path->device->ident_data);
1028 	else if (path->device->protocol == PROTO_SEMB)
1029 		semb_print_ident(
1030 		    (struct sep_identify_data *)&path->device->ident_data);
1031 	else
1032 		printf("Unknown protocol device\n");
1033 	if (path->device->serial_num_len > 0) {
1034 		/* Don't wrap the screen  - print only the first 60 chars */
1035 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1036 		       periph->unit_number, path->device->serial_num);
1037 	}
1038 	/* Announce transport details. */
1039 	(*(path->bus->xport->announce))(periph);
1040 	/* Announce command queueing. */
1041 	if (path->device->inq_flags & SID_CmdQue
1042 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1043 		printf("%s%d: Command Queueing enabled\n",
1044 		       periph->periph_name, periph->unit_number);
1045 	}
1046 	/* Announce caller's details if they've passed in. */
1047 	if (announce_string != NULL)
1048 		printf("%s%d: %s\n", periph->periph_name,
1049 		       periph->unit_number, announce_string);
1050 }
1051 
1052 void
1053 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1054 {
1055 	if (quirks != 0) {
1056 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1057 		    periph->unit_number, quirks, bit_string);
1058 	}
1059 }
1060 
1061 void
1062 xpt_denounce_periph(struct cam_periph *periph)
1063 {
1064 	struct	cam_path *path = periph->path;
1065 
1066 	cam_periph_assert(periph, MA_OWNED);
1067 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1068 	       periph->periph_name, periph->unit_number,
1069 	       path->bus->sim->sim_name,
1070 	       path->bus->sim->unit_number,
1071 	       path->bus->sim->bus_id,
1072 	       path->bus->path_id,
1073 	       path->target->target_id,
1074 	       (uintmax_t)path->device->lun_id);
1075 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1076 	if (path->device->protocol == PROTO_SCSI)
1077 		scsi_print_inquiry_short(&path->device->inq_data);
1078 	else if (path->device->protocol == PROTO_ATA ||
1079 	    path->device->protocol == PROTO_SATAPM)
1080 		ata_print_ident_short(&path->device->ident_data);
1081 	else if (path->device->protocol == PROTO_SEMB)
1082 		semb_print_ident_short(
1083 		    (struct sep_identify_data *)&path->device->ident_data);
1084 	else
1085 		printf("Unknown protocol device");
1086 	if (path->device->serial_num_len > 0)
1087 		printf(" s/n %.60s", path->device->serial_num);
1088 	printf(" detached\n");
1089 }
1090 
1091 
1092 int
1093 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1094 {
1095 	int ret = -1, l;
1096 	struct ccb_dev_advinfo cdai;
1097 	struct scsi_vpd_id_descriptor *idd;
1098 
1099 	xpt_path_assert(path, MA_OWNED);
1100 
1101 	memset(&cdai, 0, sizeof(cdai));
1102 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1103 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1104 	cdai.bufsiz = len;
1105 
1106 	if (!strcmp(attr, "GEOM::ident"))
1107 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1108 	else if (!strcmp(attr, "GEOM::physpath"))
1109 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1110 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1111 		 strcmp(attr, "GEOM::lunname") == 0) {
1112 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1113 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1114 	} else
1115 		goto out;
1116 
1117 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1118 	if (cdai.buf == NULL) {
1119 		ret = ENOMEM;
1120 		goto out;
1121 	}
1122 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1123 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1124 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1125 	if (cdai.provsiz == 0)
1126 		goto out;
1127 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1128 		if (strcmp(attr, "GEOM::lunid") == 0) {
1129 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1130 			    cdai.provsiz, scsi_devid_is_lun_naa);
1131 			if (idd == NULL)
1132 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1133 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1134 		} else
1135 			idd = NULL;
1136 		if (idd == NULL)
1137 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1138 			    cdai.provsiz, scsi_devid_is_lun_t10);
1139 		if (idd == NULL)
1140 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1141 			    cdai.provsiz, scsi_devid_is_lun_name);
1142 		if (idd == NULL)
1143 			goto out;
1144 		ret = 0;
1145 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1146 			if (idd->length < len) {
1147 				for (l = 0; l < idd->length; l++)
1148 					buf[l] = idd->identifier[l] ?
1149 					    idd->identifier[l] : ' ';
1150 				buf[l] = 0;
1151 			} else
1152 				ret = EFAULT;
1153 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1154 			l = strnlen(idd->identifier, idd->length);
1155 			if (l < len) {
1156 				bcopy(idd->identifier, buf, l);
1157 				buf[l] = 0;
1158 			} else
1159 				ret = EFAULT;
1160 		} else {
1161 			if (idd->length * 2 < len) {
1162 				for (l = 0; l < idd->length; l++)
1163 					sprintf(buf + l * 2, "%02x",
1164 					    idd->identifier[l]);
1165 			} else
1166 				ret = EFAULT;
1167 		}
1168 	} else {
1169 		ret = 0;
1170 		if (strlcpy(buf, cdai.buf, len) >= len)
1171 			ret = EFAULT;
1172 	}
1173 
1174 out:
1175 	if (cdai.buf != NULL)
1176 		free(cdai.buf, M_CAMXPT);
1177 	return ret;
1178 }
1179 
1180 static dev_match_ret
1181 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1182 	    struct cam_eb *bus)
1183 {
1184 	dev_match_ret retval;
1185 	int i;
1186 
1187 	retval = DM_RET_NONE;
1188 
1189 	/*
1190 	 * If we aren't given something to match against, that's an error.
1191 	 */
1192 	if (bus == NULL)
1193 		return(DM_RET_ERROR);
1194 
1195 	/*
1196 	 * If there are no match entries, then this bus matches no
1197 	 * matter what.
1198 	 */
1199 	if ((patterns == NULL) || (num_patterns == 0))
1200 		return(DM_RET_DESCEND | DM_RET_COPY);
1201 
1202 	for (i = 0; i < num_patterns; i++) {
1203 		struct bus_match_pattern *cur_pattern;
1204 
1205 		/*
1206 		 * If the pattern in question isn't for a bus node, we
1207 		 * aren't interested.  However, we do indicate to the
1208 		 * calling routine that we should continue descending the
1209 		 * tree, since the user wants to match against lower-level
1210 		 * EDT elements.
1211 		 */
1212 		if (patterns[i].type != DEV_MATCH_BUS) {
1213 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1214 				retval |= DM_RET_DESCEND;
1215 			continue;
1216 		}
1217 
1218 		cur_pattern = &patterns[i].pattern.bus_pattern;
1219 
1220 		/*
1221 		 * If they want to match any bus node, we give them any
1222 		 * device node.
1223 		 */
1224 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1225 			/* set the copy flag */
1226 			retval |= DM_RET_COPY;
1227 
1228 			/*
1229 			 * If we've already decided on an action, go ahead
1230 			 * and return.
1231 			 */
1232 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1233 				return(retval);
1234 		}
1235 
1236 		/*
1237 		 * Not sure why someone would do this...
1238 		 */
1239 		if (cur_pattern->flags == BUS_MATCH_NONE)
1240 			continue;
1241 
1242 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1243 		 && (cur_pattern->path_id != bus->path_id))
1244 			continue;
1245 
1246 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1247 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1248 			continue;
1249 
1250 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1251 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1252 			continue;
1253 
1254 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1255 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1256 			     DEV_IDLEN) != 0))
1257 			continue;
1258 
1259 		/*
1260 		 * If we get to this point, the user definitely wants
1261 		 * information on this bus.  So tell the caller to copy the
1262 		 * data out.
1263 		 */
1264 		retval |= DM_RET_COPY;
1265 
1266 		/*
1267 		 * If the return action has been set to descend, then we
1268 		 * know that we've already seen a non-bus matching
1269 		 * expression, therefore we need to further descend the tree.
1270 		 * This won't change by continuing around the loop, so we
1271 		 * go ahead and return.  If we haven't seen a non-bus
1272 		 * matching expression, we keep going around the loop until
1273 		 * we exhaust the matching expressions.  We'll set the stop
1274 		 * flag once we fall out of the loop.
1275 		 */
1276 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1277 			return(retval);
1278 	}
1279 
1280 	/*
1281 	 * If the return action hasn't been set to descend yet, that means
1282 	 * we haven't seen anything other than bus matching patterns.  So
1283 	 * tell the caller to stop descending the tree -- the user doesn't
1284 	 * want to match against lower level tree elements.
1285 	 */
1286 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1287 		retval |= DM_RET_STOP;
1288 
1289 	return(retval);
1290 }
1291 
1292 static dev_match_ret
1293 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1294 	       struct cam_ed *device)
1295 {
1296 	dev_match_ret retval;
1297 	int i;
1298 
1299 	retval = DM_RET_NONE;
1300 
1301 	/*
1302 	 * If we aren't given something to match against, that's an error.
1303 	 */
1304 	if (device == NULL)
1305 		return(DM_RET_ERROR);
1306 
1307 	/*
1308 	 * If there are no match entries, then this device matches no
1309 	 * matter what.
1310 	 */
1311 	if ((patterns == NULL) || (num_patterns == 0))
1312 		return(DM_RET_DESCEND | DM_RET_COPY);
1313 
1314 	for (i = 0; i < num_patterns; i++) {
1315 		struct device_match_pattern *cur_pattern;
1316 		struct scsi_vpd_device_id *device_id_page;
1317 
1318 		/*
1319 		 * If the pattern in question isn't for a device node, we
1320 		 * aren't interested.
1321 		 */
1322 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1323 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1324 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1325 				retval |= DM_RET_DESCEND;
1326 			continue;
1327 		}
1328 
1329 		cur_pattern = &patterns[i].pattern.device_pattern;
1330 
1331 		/* Error out if mutually exclusive options are specified. */
1332 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1333 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1334 			return(DM_RET_ERROR);
1335 
1336 		/*
1337 		 * If they want to match any device node, we give them any
1338 		 * device node.
1339 		 */
1340 		if (cur_pattern->flags == DEV_MATCH_ANY)
1341 			goto copy_dev_node;
1342 
1343 		/*
1344 		 * Not sure why someone would do this...
1345 		 */
1346 		if (cur_pattern->flags == DEV_MATCH_NONE)
1347 			continue;
1348 
1349 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1350 		 && (cur_pattern->path_id != device->target->bus->path_id))
1351 			continue;
1352 
1353 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1354 		 && (cur_pattern->target_id != device->target->target_id))
1355 			continue;
1356 
1357 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1358 		 && (cur_pattern->target_lun != device->lun_id))
1359 			continue;
1360 
1361 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1362 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1363 				    (caddr_t)&cur_pattern->data.inq_pat,
1364 				    1, sizeof(cur_pattern->data.inq_pat),
1365 				    scsi_static_inquiry_match) == NULL))
1366 			continue;
1367 
1368 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1369 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1370 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1371 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1372 				      device->device_id_len
1373 				    - SVPD_DEVICE_ID_HDR_LEN,
1374 				      cur_pattern->data.devid_pat.id,
1375 				      cur_pattern->data.devid_pat.id_len) != 0))
1376 			continue;
1377 
1378 copy_dev_node:
1379 		/*
1380 		 * If we get to this point, the user definitely wants
1381 		 * information on this device.  So tell the caller to copy
1382 		 * the data out.
1383 		 */
1384 		retval |= DM_RET_COPY;
1385 
1386 		/*
1387 		 * If the return action has been set to descend, then we
1388 		 * know that we've already seen a peripheral matching
1389 		 * expression, therefore we need to further descend the tree.
1390 		 * This won't change by continuing around the loop, so we
1391 		 * go ahead and return.  If we haven't seen a peripheral
1392 		 * matching expression, we keep going around the loop until
1393 		 * we exhaust the matching expressions.  We'll set the stop
1394 		 * flag once we fall out of the loop.
1395 		 */
1396 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1397 			return(retval);
1398 	}
1399 
1400 	/*
1401 	 * If the return action hasn't been set to descend yet, that means
1402 	 * we haven't seen any peripheral matching patterns.  So tell the
1403 	 * caller to stop descending the tree -- the user doesn't want to
1404 	 * match against lower level tree elements.
1405 	 */
1406 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1407 		retval |= DM_RET_STOP;
1408 
1409 	return(retval);
1410 }
1411 
1412 /*
1413  * Match a single peripheral against any number of match patterns.
1414  */
1415 static dev_match_ret
1416 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1417 	       struct cam_periph *periph)
1418 {
1419 	dev_match_ret retval;
1420 	int i;
1421 
1422 	/*
1423 	 * If we aren't given something to match against, that's an error.
1424 	 */
1425 	if (periph == NULL)
1426 		return(DM_RET_ERROR);
1427 
1428 	/*
1429 	 * If there are no match entries, then this peripheral matches no
1430 	 * matter what.
1431 	 */
1432 	if ((patterns == NULL) || (num_patterns == 0))
1433 		return(DM_RET_STOP | DM_RET_COPY);
1434 
1435 	/*
1436 	 * There aren't any nodes below a peripheral node, so there's no
1437 	 * reason to descend the tree any further.
1438 	 */
1439 	retval = DM_RET_STOP;
1440 
1441 	for (i = 0; i < num_patterns; i++) {
1442 		struct periph_match_pattern *cur_pattern;
1443 
1444 		/*
1445 		 * If the pattern in question isn't for a peripheral, we
1446 		 * aren't interested.
1447 		 */
1448 		if (patterns[i].type != DEV_MATCH_PERIPH)
1449 			continue;
1450 
1451 		cur_pattern = &patterns[i].pattern.periph_pattern;
1452 
1453 		/*
1454 		 * If they want to match on anything, then we will do so.
1455 		 */
1456 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1457 			/* set the copy flag */
1458 			retval |= DM_RET_COPY;
1459 
1460 			/*
1461 			 * We've already set the return action to stop,
1462 			 * since there are no nodes below peripherals in
1463 			 * the tree.
1464 			 */
1465 			return(retval);
1466 		}
1467 
1468 		/*
1469 		 * Not sure why someone would do this...
1470 		 */
1471 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1472 			continue;
1473 
1474 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1475 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1476 			continue;
1477 
1478 		/*
1479 		 * For the target and lun id's, we have to make sure the
1480 		 * target and lun pointers aren't NULL.  The xpt peripheral
1481 		 * has a wildcard target and device.
1482 		 */
1483 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1484 		 && ((periph->path->target == NULL)
1485 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1486 			continue;
1487 
1488 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1489 		 && ((periph->path->device == NULL)
1490 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1491 			continue;
1492 
1493 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1494 		 && (cur_pattern->unit_number != periph->unit_number))
1495 			continue;
1496 
1497 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1498 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1499 			     DEV_IDLEN) != 0))
1500 			continue;
1501 
1502 		/*
1503 		 * If we get to this point, the user definitely wants
1504 		 * information on this peripheral.  So tell the caller to
1505 		 * copy the data out.
1506 		 */
1507 		retval |= DM_RET_COPY;
1508 
1509 		/*
1510 		 * The return action has already been set to stop, since
1511 		 * peripherals don't have any nodes below them in the EDT.
1512 		 */
1513 		return(retval);
1514 	}
1515 
1516 	/*
1517 	 * If we get to this point, the peripheral that was passed in
1518 	 * doesn't match any of the patterns.
1519 	 */
1520 	return(retval);
1521 }
1522 
1523 static int
1524 xptedtbusfunc(struct cam_eb *bus, void *arg)
1525 {
1526 	struct ccb_dev_match *cdm;
1527 	struct cam_et *target;
1528 	dev_match_ret retval;
1529 
1530 	cdm = (struct ccb_dev_match *)arg;
1531 
1532 	/*
1533 	 * If our position is for something deeper in the tree, that means
1534 	 * that we've already seen this node.  So, we keep going down.
1535 	 */
1536 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1537 	 && (cdm->pos.cookie.bus == bus)
1538 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1539 	 && (cdm->pos.cookie.target != NULL))
1540 		retval = DM_RET_DESCEND;
1541 	else
1542 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1543 
1544 	/*
1545 	 * If we got an error, bail out of the search.
1546 	 */
1547 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1548 		cdm->status = CAM_DEV_MATCH_ERROR;
1549 		return(0);
1550 	}
1551 
1552 	/*
1553 	 * If the copy flag is set, copy this bus out.
1554 	 */
1555 	if (retval & DM_RET_COPY) {
1556 		int spaceleft, j;
1557 
1558 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1559 			sizeof(struct dev_match_result));
1560 
1561 		/*
1562 		 * If we don't have enough space to put in another
1563 		 * match result, save our position and tell the
1564 		 * user there are more devices to check.
1565 		 */
1566 		if (spaceleft < sizeof(struct dev_match_result)) {
1567 			bzero(&cdm->pos, sizeof(cdm->pos));
1568 			cdm->pos.position_type =
1569 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1570 
1571 			cdm->pos.cookie.bus = bus;
1572 			cdm->pos.generations[CAM_BUS_GENERATION]=
1573 				xsoftc.bus_generation;
1574 			cdm->status = CAM_DEV_MATCH_MORE;
1575 			return(0);
1576 		}
1577 		j = cdm->num_matches;
1578 		cdm->num_matches++;
1579 		cdm->matches[j].type = DEV_MATCH_BUS;
1580 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1581 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1582 		cdm->matches[j].result.bus_result.unit_number =
1583 			bus->sim->unit_number;
1584 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1585 			bus->sim->sim_name, DEV_IDLEN);
1586 	}
1587 
1588 	/*
1589 	 * If the user is only interested in busses, there's no
1590 	 * reason to descend to the next level in the tree.
1591 	 */
1592 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1593 		return(1);
1594 
1595 	/*
1596 	 * If there is a target generation recorded, check it to
1597 	 * make sure the target list hasn't changed.
1598 	 */
1599 	mtx_lock(&bus->eb_mtx);
1600 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1601 	 && (cdm->pos.cookie.bus == bus)
1602 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1603 	 && (cdm->pos.cookie.target != NULL)) {
1604 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1605 		    bus->generation)) {
1606 			mtx_unlock(&bus->eb_mtx);
1607 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1608 			return (0);
1609 		}
1610 		target = (struct cam_et *)cdm->pos.cookie.target;
1611 		target->refcount++;
1612 	} else
1613 		target = NULL;
1614 	mtx_unlock(&bus->eb_mtx);
1615 
1616 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1617 }
1618 
1619 static int
1620 xptedttargetfunc(struct cam_et *target, void *arg)
1621 {
1622 	struct ccb_dev_match *cdm;
1623 	struct cam_eb *bus;
1624 	struct cam_ed *device;
1625 
1626 	cdm = (struct ccb_dev_match *)arg;
1627 	bus = target->bus;
1628 
1629 	/*
1630 	 * If there is a device list generation recorded, check it to
1631 	 * make sure the device list hasn't changed.
1632 	 */
1633 	mtx_lock(&bus->eb_mtx);
1634 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1635 	 && (cdm->pos.cookie.bus == bus)
1636 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1637 	 && (cdm->pos.cookie.target == target)
1638 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1639 	 && (cdm->pos.cookie.device != NULL)) {
1640 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1641 		    target->generation) {
1642 			mtx_unlock(&bus->eb_mtx);
1643 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1644 			return(0);
1645 		}
1646 		device = (struct cam_ed *)cdm->pos.cookie.device;
1647 		device->refcount++;
1648 	} else
1649 		device = NULL;
1650 	mtx_unlock(&bus->eb_mtx);
1651 
1652 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1653 }
1654 
1655 static int
1656 xptedtdevicefunc(struct cam_ed *device, void *arg)
1657 {
1658 	struct cam_eb *bus;
1659 	struct cam_periph *periph;
1660 	struct ccb_dev_match *cdm;
1661 	dev_match_ret retval;
1662 
1663 	cdm = (struct ccb_dev_match *)arg;
1664 	bus = device->target->bus;
1665 
1666 	/*
1667 	 * If our position is for something deeper in the tree, that means
1668 	 * that we've already seen this node.  So, we keep going down.
1669 	 */
1670 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1671 	 && (cdm->pos.cookie.device == device)
1672 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1673 	 && (cdm->pos.cookie.periph != NULL))
1674 		retval = DM_RET_DESCEND;
1675 	else
1676 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1677 					device);
1678 
1679 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1680 		cdm->status = CAM_DEV_MATCH_ERROR;
1681 		return(0);
1682 	}
1683 
1684 	/*
1685 	 * If the copy flag is set, copy this device out.
1686 	 */
1687 	if (retval & DM_RET_COPY) {
1688 		int spaceleft, j;
1689 
1690 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1691 			sizeof(struct dev_match_result));
1692 
1693 		/*
1694 		 * If we don't have enough space to put in another
1695 		 * match result, save our position and tell the
1696 		 * user there are more devices to check.
1697 		 */
1698 		if (spaceleft < sizeof(struct dev_match_result)) {
1699 			bzero(&cdm->pos, sizeof(cdm->pos));
1700 			cdm->pos.position_type =
1701 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1702 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1703 
1704 			cdm->pos.cookie.bus = device->target->bus;
1705 			cdm->pos.generations[CAM_BUS_GENERATION]=
1706 				xsoftc.bus_generation;
1707 			cdm->pos.cookie.target = device->target;
1708 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1709 				device->target->bus->generation;
1710 			cdm->pos.cookie.device = device;
1711 			cdm->pos.generations[CAM_DEV_GENERATION] =
1712 				device->target->generation;
1713 			cdm->status = CAM_DEV_MATCH_MORE;
1714 			return(0);
1715 		}
1716 		j = cdm->num_matches;
1717 		cdm->num_matches++;
1718 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1719 		cdm->matches[j].result.device_result.path_id =
1720 			device->target->bus->path_id;
1721 		cdm->matches[j].result.device_result.target_id =
1722 			device->target->target_id;
1723 		cdm->matches[j].result.device_result.target_lun =
1724 			device->lun_id;
1725 		cdm->matches[j].result.device_result.protocol =
1726 			device->protocol;
1727 		bcopy(&device->inq_data,
1728 		      &cdm->matches[j].result.device_result.inq_data,
1729 		      sizeof(struct scsi_inquiry_data));
1730 		bcopy(&device->ident_data,
1731 		      &cdm->matches[j].result.device_result.ident_data,
1732 		      sizeof(struct ata_params));
1733 
1734 		/* Let the user know whether this device is unconfigured */
1735 		if (device->flags & CAM_DEV_UNCONFIGURED)
1736 			cdm->matches[j].result.device_result.flags =
1737 				DEV_RESULT_UNCONFIGURED;
1738 		else
1739 			cdm->matches[j].result.device_result.flags =
1740 				DEV_RESULT_NOFLAG;
1741 	}
1742 
1743 	/*
1744 	 * If the user isn't interested in peripherals, don't descend
1745 	 * the tree any further.
1746 	 */
1747 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1748 		return(1);
1749 
1750 	/*
1751 	 * If there is a peripheral list generation recorded, make sure
1752 	 * it hasn't changed.
1753 	 */
1754 	xpt_lock_buses();
1755 	mtx_lock(&bus->eb_mtx);
1756 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1757 	 && (cdm->pos.cookie.bus == bus)
1758 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1759 	 && (cdm->pos.cookie.target == device->target)
1760 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1761 	 && (cdm->pos.cookie.device == device)
1762 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1763 	 && (cdm->pos.cookie.periph != NULL)) {
1764 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1765 		    device->generation) {
1766 			mtx_unlock(&bus->eb_mtx);
1767 			xpt_unlock_buses();
1768 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1769 			return(0);
1770 		}
1771 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1772 		periph->refcount++;
1773 	} else
1774 		periph = NULL;
1775 	mtx_unlock(&bus->eb_mtx);
1776 	xpt_unlock_buses();
1777 
1778 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1779 }
1780 
1781 static int
1782 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1783 {
1784 	struct ccb_dev_match *cdm;
1785 	dev_match_ret retval;
1786 
1787 	cdm = (struct ccb_dev_match *)arg;
1788 
1789 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1790 
1791 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1792 		cdm->status = CAM_DEV_MATCH_ERROR;
1793 		return(0);
1794 	}
1795 
1796 	/*
1797 	 * If the copy flag is set, copy this peripheral out.
1798 	 */
1799 	if (retval & DM_RET_COPY) {
1800 		int spaceleft, j;
1801 
1802 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1803 			sizeof(struct dev_match_result));
1804 
1805 		/*
1806 		 * If we don't have enough space to put in another
1807 		 * match result, save our position and tell the
1808 		 * user there are more devices to check.
1809 		 */
1810 		if (spaceleft < sizeof(struct dev_match_result)) {
1811 			bzero(&cdm->pos, sizeof(cdm->pos));
1812 			cdm->pos.position_type =
1813 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1814 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1815 				CAM_DEV_POS_PERIPH;
1816 
1817 			cdm->pos.cookie.bus = periph->path->bus;
1818 			cdm->pos.generations[CAM_BUS_GENERATION]=
1819 				xsoftc.bus_generation;
1820 			cdm->pos.cookie.target = periph->path->target;
1821 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1822 				periph->path->bus->generation;
1823 			cdm->pos.cookie.device = periph->path->device;
1824 			cdm->pos.generations[CAM_DEV_GENERATION] =
1825 				periph->path->target->generation;
1826 			cdm->pos.cookie.periph = periph;
1827 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1828 				periph->path->device->generation;
1829 			cdm->status = CAM_DEV_MATCH_MORE;
1830 			return(0);
1831 		}
1832 
1833 		j = cdm->num_matches;
1834 		cdm->num_matches++;
1835 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1836 		cdm->matches[j].result.periph_result.path_id =
1837 			periph->path->bus->path_id;
1838 		cdm->matches[j].result.periph_result.target_id =
1839 			periph->path->target->target_id;
1840 		cdm->matches[j].result.periph_result.target_lun =
1841 			periph->path->device->lun_id;
1842 		cdm->matches[j].result.periph_result.unit_number =
1843 			periph->unit_number;
1844 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1845 			periph->periph_name, DEV_IDLEN);
1846 	}
1847 
1848 	return(1);
1849 }
1850 
1851 static int
1852 xptedtmatch(struct ccb_dev_match *cdm)
1853 {
1854 	struct cam_eb *bus;
1855 	int ret;
1856 
1857 	cdm->num_matches = 0;
1858 
1859 	/*
1860 	 * Check the bus list generation.  If it has changed, the user
1861 	 * needs to reset everything and start over.
1862 	 */
1863 	xpt_lock_buses();
1864 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1865 	 && (cdm->pos.cookie.bus != NULL)) {
1866 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1867 		    xsoftc.bus_generation) {
1868 			xpt_unlock_buses();
1869 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1870 			return(0);
1871 		}
1872 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1873 		bus->refcount++;
1874 	} else
1875 		bus = NULL;
1876 	xpt_unlock_buses();
1877 
1878 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1879 
1880 	/*
1881 	 * If we get back 0, that means that we had to stop before fully
1882 	 * traversing the EDT.  It also means that one of the subroutines
1883 	 * has set the status field to the proper value.  If we get back 1,
1884 	 * we've fully traversed the EDT and copied out any matching entries.
1885 	 */
1886 	if (ret == 1)
1887 		cdm->status = CAM_DEV_MATCH_LAST;
1888 
1889 	return(ret);
1890 }
1891 
1892 static int
1893 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1894 {
1895 	struct cam_periph *periph;
1896 	struct ccb_dev_match *cdm;
1897 
1898 	cdm = (struct ccb_dev_match *)arg;
1899 
1900 	xpt_lock_buses();
1901 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1902 	 && (cdm->pos.cookie.pdrv == pdrv)
1903 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1904 	 && (cdm->pos.cookie.periph != NULL)) {
1905 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1906 		    (*pdrv)->generation) {
1907 			xpt_unlock_buses();
1908 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1909 			return(0);
1910 		}
1911 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1912 		periph->refcount++;
1913 	} else
1914 		periph = NULL;
1915 	xpt_unlock_buses();
1916 
1917 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1918 }
1919 
1920 static int
1921 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1922 {
1923 	struct ccb_dev_match *cdm;
1924 	dev_match_ret retval;
1925 
1926 	cdm = (struct ccb_dev_match *)arg;
1927 
1928 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1929 
1930 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1931 		cdm->status = CAM_DEV_MATCH_ERROR;
1932 		return(0);
1933 	}
1934 
1935 	/*
1936 	 * If the copy flag is set, copy this peripheral out.
1937 	 */
1938 	if (retval & DM_RET_COPY) {
1939 		int spaceleft, j;
1940 
1941 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1942 			sizeof(struct dev_match_result));
1943 
1944 		/*
1945 		 * If we don't have enough space to put in another
1946 		 * match result, save our position and tell the
1947 		 * user there are more devices to check.
1948 		 */
1949 		if (spaceleft < sizeof(struct dev_match_result)) {
1950 			struct periph_driver **pdrv;
1951 
1952 			pdrv = NULL;
1953 			bzero(&cdm->pos, sizeof(cdm->pos));
1954 			cdm->pos.position_type =
1955 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1956 				CAM_DEV_POS_PERIPH;
1957 
1958 			/*
1959 			 * This may look a bit non-sensical, but it is
1960 			 * actually quite logical.  There are very few
1961 			 * peripheral drivers, and bloating every peripheral
1962 			 * structure with a pointer back to its parent
1963 			 * peripheral driver linker set entry would cost
1964 			 * more in the long run than doing this quick lookup.
1965 			 */
1966 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1967 				if (strcmp((*pdrv)->driver_name,
1968 				    periph->periph_name) == 0)
1969 					break;
1970 			}
1971 
1972 			if (*pdrv == NULL) {
1973 				cdm->status = CAM_DEV_MATCH_ERROR;
1974 				return(0);
1975 			}
1976 
1977 			cdm->pos.cookie.pdrv = pdrv;
1978 			/*
1979 			 * The periph generation slot does double duty, as
1980 			 * does the periph pointer slot.  They are used for
1981 			 * both edt and pdrv lookups and positioning.
1982 			 */
1983 			cdm->pos.cookie.periph = periph;
1984 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1985 				(*pdrv)->generation;
1986 			cdm->status = CAM_DEV_MATCH_MORE;
1987 			return(0);
1988 		}
1989 
1990 		j = cdm->num_matches;
1991 		cdm->num_matches++;
1992 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1993 		cdm->matches[j].result.periph_result.path_id =
1994 			periph->path->bus->path_id;
1995 
1996 		/*
1997 		 * The transport layer peripheral doesn't have a target or
1998 		 * lun.
1999 		 */
2000 		if (periph->path->target)
2001 			cdm->matches[j].result.periph_result.target_id =
2002 				periph->path->target->target_id;
2003 		else
2004 			cdm->matches[j].result.periph_result.target_id =
2005 				CAM_TARGET_WILDCARD;
2006 
2007 		if (periph->path->device)
2008 			cdm->matches[j].result.periph_result.target_lun =
2009 				periph->path->device->lun_id;
2010 		else
2011 			cdm->matches[j].result.periph_result.target_lun =
2012 				CAM_LUN_WILDCARD;
2013 
2014 		cdm->matches[j].result.periph_result.unit_number =
2015 			periph->unit_number;
2016 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2017 			periph->periph_name, DEV_IDLEN);
2018 	}
2019 
2020 	return(1);
2021 }
2022 
2023 static int
2024 xptperiphlistmatch(struct ccb_dev_match *cdm)
2025 {
2026 	int ret;
2027 
2028 	cdm->num_matches = 0;
2029 
2030 	/*
2031 	 * At this point in the edt traversal function, we check the bus
2032 	 * list generation to make sure that no busses have been added or
2033 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2034 	 * For the peripheral driver list traversal function, however, we
2035 	 * don't have to worry about new peripheral driver types coming or
2036 	 * going; they're in a linker set, and therefore can't change
2037 	 * without a recompile.
2038 	 */
2039 
2040 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2041 	 && (cdm->pos.cookie.pdrv != NULL))
2042 		ret = xptpdrvtraverse(
2043 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2044 				xptplistpdrvfunc, cdm);
2045 	else
2046 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2047 
2048 	/*
2049 	 * If we get back 0, that means that we had to stop before fully
2050 	 * traversing the peripheral driver tree.  It also means that one of
2051 	 * the subroutines has set the status field to the proper value.  If
2052 	 * we get back 1, we've fully traversed the EDT and copied out any
2053 	 * matching entries.
2054 	 */
2055 	if (ret == 1)
2056 		cdm->status = CAM_DEV_MATCH_LAST;
2057 
2058 	return(ret);
2059 }
2060 
2061 static int
2062 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2063 {
2064 	struct cam_eb *bus, *next_bus;
2065 	int retval;
2066 
2067 	retval = 1;
2068 	if (start_bus)
2069 		bus = start_bus;
2070 	else {
2071 		xpt_lock_buses();
2072 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2073 		if (bus == NULL) {
2074 			xpt_unlock_buses();
2075 			return (retval);
2076 		}
2077 		bus->refcount++;
2078 		xpt_unlock_buses();
2079 	}
2080 	for (; bus != NULL; bus = next_bus) {
2081 		retval = tr_func(bus, arg);
2082 		if (retval == 0) {
2083 			xpt_release_bus(bus);
2084 			break;
2085 		}
2086 		xpt_lock_buses();
2087 		next_bus = TAILQ_NEXT(bus, links);
2088 		if (next_bus)
2089 			next_bus->refcount++;
2090 		xpt_unlock_buses();
2091 		xpt_release_bus(bus);
2092 	}
2093 	return(retval);
2094 }
2095 
2096 static int
2097 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2098 		  xpt_targetfunc_t *tr_func, void *arg)
2099 {
2100 	struct cam_et *target, *next_target;
2101 	int retval;
2102 
2103 	retval = 1;
2104 	if (start_target)
2105 		target = start_target;
2106 	else {
2107 		mtx_lock(&bus->eb_mtx);
2108 		target = TAILQ_FIRST(&bus->et_entries);
2109 		if (target == NULL) {
2110 			mtx_unlock(&bus->eb_mtx);
2111 			return (retval);
2112 		}
2113 		target->refcount++;
2114 		mtx_unlock(&bus->eb_mtx);
2115 	}
2116 	for (; target != NULL; target = next_target) {
2117 		retval = tr_func(target, arg);
2118 		if (retval == 0) {
2119 			xpt_release_target(target);
2120 			break;
2121 		}
2122 		mtx_lock(&bus->eb_mtx);
2123 		next_target = TAILQ_NEXT(target, links);
2124 		if (next_target)
2125 			next_target->refcount++;
2126 		mtx_unlock(&bus->eb_mtx);
2127 		xpt_release_target(target);
2128 	}
2129 	return(retval);
2130 }
2131 
2132 static int
2133 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2134 		  xpt_devicefunc_t *tr_func, void *arg)
2135 {
2136 	struct cam_eb *bus;
2137 	struct cam_ed *device, *next_device;
2138 	int retval;
2139 
2140 	retval = 1;
2141 	bus = target->bus;
2142 	if (start_device)
2143 		device = start_device;
2144 	else {
2145 		mtx_lock(&bus->eb_mtx);
2146 		device = TAILQ_FIRST(&target->ed_entries);
2147 		if (device == NULL) {
2148 			mtx_unlock(&bus->eb_mtx);
2149 			return (retval);
2150 		}
2151 		device->refcount++;
2152 		mtx_unlock(&bus->eb_mtx);
2153 	}
2154 	for (; device != NULL; device = next_device) {
2155 		mtx_lock(&device->device_mtx);
2156 		retval = tr_func(device, arg);
2157 		mtx_unlock(&device->device_mtx);
2158 		if (retval == 0) {
2159 			xpt_release_device(device);
2160 			break;
2161 		}
2162 		mtx_lock(&bus->eb_mtx);
2163 		next_device = TAILQ_NEXT(device, links);
2164 		if (next_device)
2165 			next_device->refcount++;
2166 		mtx_unlock(&bus->eb_mtx);
2167 		xpt_release_device(device);
2168 	}
2169 	return(retval);
2170 }
2171 
2172 static int
2173 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2174 		  xpt_periphfunc_t *tr_func, void *arg)
2175 {
2176 	struct cam_eb *bus;
2177 	struct cam_periph *periph, *next_periph;
2178 	int retval;
2179 
2180 	retval = 1;
2181 
2182 	bus = device->target->bus;
2183 	if (start_periph)
2184 		periph = start_periph;
2185 	else {
2186 		xpt_lock_buses();
2187 		mtx_lock(&bus->eb_mtx);
2188 		periph = SLIST_FIRST(&device->periphs);
2189 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2190 			periph = SLIST_NEXT(periph, periph_links);
2191 		if (periph == NULL) {
2192 			mtx_unlock(&bus->eb_mtx);
2193 			xpt_unlock_buses();
2194 			return (retval);
2195 		}
2196 		periph->refcount++;
2197 		mtx_unlock(&bus->eb_mtx);
2198 		xpt_unlock_buses();
2199 	}
2200 	for (; periph != NULL; periph = next_periph) {
2201 		retval = tr_func(periph, arg);
2202 		if (retval == 0) {
2203 			cam_periph_release_locked(periph);
2204 			break;
2205 		}
2206 		xpt_lock_buses();
2207 		mtx_lock(&bus->eb_mtx);
2208 		next_periph = SLIST_NEXT(periph, periph_links);
2209 		while (next_periph != NULL &&
2210 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2211 			next_periph = SLIST_NEXT(next_periph, periph_links);
2212 		if (next_periph)
2213 			next_periph->refcount++;
2214 		mtx_unlock(&bus->eb_mtx);
2215 		xpt_unlock_buses();
2216 		cam_periph_release_locked(periph);
2217 	}
2218 	return(retval);
2219 }
2220 
2221 static int
2222 xptpdrvtraverse(struct periph_driver **start_pdrv,
2223 		xpt_pdrvfunc_t *tr_func, void *arg)
2224 {
2225 	struct periph_driver **pdrv;
2226 	int retval;
2227 
2228 	retval = 1;
2229 
2230 	/*
2231 	 * We don't traverse the peripheral driver list like we do the
2232 	 * other lists, because it is a linker set, and therefore cannot be
2233 	 * changed during runtime.  If the peripheral driver list is ever
2234 	 * re-done to be something other than a linker set (i.e. it can
2235 	 * change while the system is running), the list traversal should
2236 	 * be modified to work like the other traversal functions.
2237 	 */
2238 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2239 	     *pdrv != NULL; pdrv++) {
2240 		retval = tr_func(pdrv, arg);
2241 
2242 		if (retval == 0)
2243 			return(retval);
2244 	}
2245 
2246 	return(retval);
2247 }
2248 
2249 static int
2250 xptpdperiphtraverse(struct periph_driver **pdrv,
2251 		    struct cam_periph *start_periph,
2252 		    xpt_periphfunc_t *tr_func, void *arg)
2253 {
2254 	struct cam_periph *periph, *next_periph;
2255 	int retval;
2256 
2257 	retval = 1;
2258 
2259 	if (start_periph)
2260 		periph = start_periph;
2261 	else {
2262 		xpt_lock_buses();
2263 		periph = TAILQ_FIRST(&(*pdrv)->units);
2264 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2265 			periph = TAILQ_NEXT(periph, unit_links);
2266 		if (periph == NULL) {
2267 			xpt_unlock_buses();
2268 			return (retval);
2269 		}
2270 		periph->refcount++;
2271 		xpt_unlock_buses();
2272 	}
2273 	for (; periph != NULL; periph = next_periph) {
2274 		cam_periph_lock(periph);
2275 		retval = tr_func(periph, arg);
2276 		cam_periph_unlock(periph);
2277 		if (retval == 0) {
2278 			cam_periph_release(periph);
2279 			break;
2280 		}
2281 		xpt_lock_buses();
2282 		next_periph = TAILQ_NEXT(periph, unit_links);
2283 		while (next_periph != NULL &&
2284 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2285 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2286 		if (next_periph)
2287 			next_periph->refcount++;
2288 		xpt_unlock_buses();
2289 		cam_periph_release(periph);
2290 	}
2291 	return(retval);
2292 }
2293 
2294 static int
2295 xptdefbusfunc(struct cam_eb *bus, void *arg)
2296 {
2297 	struct xpt_traverse_config *tr_config;
2298 
2299 	tr_config = (struct xpt_traverse_config *)arg;
2300 
2301 	if (tr_config->depth == XPT_DEPTH_BUS) {
2302 		xpt_busfunc_t *tr_func;
2303 
2304 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2305 
2306 		return(tr_func(bus, tr_config->tr_arg));
2307 	} else
2308 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2309 }
2310 
2311 static int
2312 xptdeftargetfunc(struct cam_et *target, void *arg)
2313 {
2314 	struct xpt_traverse_config *tr_config;
2315 
2316 	tr_config = (struct xpt_traverse_config *)arg;
2317 
2318 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2319 		xpt_targetfunc_t *tr_func;
2320 
2321 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2322 
2323 		return(tr_func(target, tr_config->tr_arg));
2324 	} else
2325 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2326 }
2327 
2328 static int
2329 xptdefdevicefunc(struct cam_ed *device, void *arg)
2330 {
2331 	struct xpt_traverse_config *tr_config;
2332 
2333 	tr_config = (struct xpt_traverse_config *)arg;
2334 
2335 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2336 		xpt_devicefunc_t *tr_func;
2337 
2338 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2339 
2340 		return(tr_func(device, tr_config->tr_arg));
2341 	} else
2342 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2343 }
2344 
2345 static int
2346 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2347 {
2348 	struct xpt_traverse_config *tr_config;
2349 	xpt_periphfunc_t *tr_func;
2350 
2351 	tr_config = (struct xpt_traverse_config *)arg;
2352 
2353 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2354 
2355 	/*
2356 	 * Unlike the other default functions, we don't check for depth
2357 	 * here.  The peripheral driver level is the last level in the EDT,
2358 	 * so if we're here, we should execute the function in question.
2359 	 */
2360 	return(tr_func(periph, tr_config->tr_arg));
2361 }
2362 
2363 /*
2364  * Execute the given function for every bus in the EDT.
2365  */
2366 static int
2367 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2368 {
2369 	struct xpt_traverse_config tr_config;
2370 
2371 	tr_config.depth = XPT_DEPTH_BUS;
2372 	tr_config.tr_func = tr_func;
2373 	tr_config.tr_arg = arg;
2374 
2375 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2376 }
2377 
2378 /*
2379  * Execute the given function for every device in the EDT.
2380  */
2381 static int
2382 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2383 {
2384 	struct xpt_traverse_config tr_config;
2385 
2386 	tr_config.depth = XPT_DEPTH_DEVICE;
2387 	tr_config.tr_func = tr_func;
2388 	tr_config.tr_arg = arg;
2389 
2390 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2391 }
2392 
2393 static int
2394 xptsetasyncfunc(struct cam_ed *device, void *arg)
2395 {
2396 	struct cam_path path;
2397 	struct ccb_getdev cgd;
2398 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2399 
2400 	/*
2401 	 * Don't report unconfigured devices (Wildcard devs,
2402 	 * devices only for target mode, device instances
2403 	 * that have been invalidated but are waiting for
2404 	 * their last reference count to be released).
2405 	 */
2406 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2407 		return (1);
2408 
2409 	xpt_compile_path(&path,
2410 			 NULL,
2411 			 device->target->bus->path_id,
2412 			 device->target->target_id,
2413 			 device->lun_id);
2414 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2415 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2416 	xpt_action((union ccb *)&cgd);
2417 	csa->callback(csa->callback_arg,
2418 			    AC_FOUND_DEVICE,
2419 			    &path, &cgd);
2420 	xpt_release_path(&path);
2421 
2422 	return(1);
2423 }
2424 
2425 static int
2426 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2427 {
2428 	struct cam_path path;
2429 	struct ccb_pathinq cpi;
2430 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2431 
2432 	xpt_compile_path(&path, /*periph*/NULL,
2433 			 bus->path_id,
2434 			 CAM_TARGET_WILDCARD,
2435 			 CAM_LUN_WILDCARD);
2436 	xpt_path_lock(&path);
2437 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2438 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2439 	xpt_action((union ccb *)&cpi);
2440 	csa->callback(csa->callback_arg,
2441 			    AC_PATH_REGISTERED,
2442 			    &path, &cpi);
2443 	xpt_path_unlock(&path);
2444 	xpt_release_path(&path);
2445 
2446 	return(1);
2447 }
2448 
2449 void
2450 xpt_action(union ccb *start_ccb)
2451 {
2452 
2453 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2454 
2455 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2456 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2457 }
2458 
2459 void
2460 xpt_action_default(union ccb *start_ccb)
2461 {
2462 	struct cam_path *path;
2463 	struct cam_sim *sim;
2464 	int lock;
2465 
2466 	path = start_ccb->ccb_h.path;
2467 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2468 
2469 	switch (start_ccb->ccb_h.func_code) {
2470 	case XPT_SCSI_IO:
2471 	{
2472 		struct cam_ed *device;
2473 
2474 		/*
2475 		 * For the sake of compatibility with SCSI-1
2476 		 * devices that may not understand the identify
2477 		 * message, we include lun information in the
2478 		 * second byte of all commands.  SCSI-1 specifies
2479 		 * that luns are a 3 bit value and reserves only 3
2480 		 * bits for lun information in the CDB.  Later
2481 		 * revisions of the SCSI spec allow for more than 8
2482 		 * luns, but have deprecated lun information in the
2483 		 * CDB.  So, if the lun won't fit, we must omit.
2484 		 *
2485 		 * Also be aware that during initial probing for devices,
2486 		 * the inquiry information is unknown but initialized to 0.
2487 		 * This means that this code will be exercised while probing
2488 		 * devices with an ANSI revision greater than 2.
2489 		 */
2490 		device = path->device;
2491 		if (device->protocol_version <= SCSI_REV_2
2492 		 && start_ccb->ccb_h.target_lun < 8
2493 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2494 
2495 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2496 			    start_ccb->ccb_h.target_lun << 5;
2497 		}
2498 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2499 	}
2500 	/* FALLTHROUGH */
2501 	case XPT_TARGET_IO:
2502 	case XPT_CONT_TARGET_IO:
2503 		start_ccb->csio.sense_resid = 0;
2504 		start_ccb->csio.resid = 0;
2505 		/* FALLTHROUGH */
2506 	case XPT_ATA_IO:
2507 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2508 			start_ccb->ataio.resid = 0;
2509 		/* FALLTHROUGH */
2510 	case XPT_RESET_DEV:
2511 	case XPT_ENG_EXEC:
2512 	case XPT_SMP_IO:
2513 	{
2514 		struct cam_devq *devq;
2515 
2516 		devq = path->bus->sim->devq;
2517 		mtx_lock(&devq->send_mtx);
2518 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2519 		if (xpt_schedule_devq(devq, path->device) != 0)
2520 			xpt_run_devq(devq);
2521 		mtx_unlock(&devq->send_mtx);
2522 		break;
2523 	}
2524 	case XPT_CALC_GEOMETRY:
2525 		/* Filter out garbage */
2526 		if (start_ccb->ccg.block_size == 0
2527 		 || start_ccb->ccg.volume_size == 0) {
2528 			start_ccb->ccg.cylinders = 0;
2529 			start_ccb->ccg.heads = 0;
2530 			start_ccb->ccg.secs_per_track = 0;
2531 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2532 			break;
2533 		}
2534 #if defined(PC98) || defined(__sparc64__)
2535 		/*
2536 		 * In a PC-98 system, geometry translation depens on
2537 		 * the "real" device geometry obtained from mode page 4.
2538 		 * SCSI geometry translation is performed in the
2539 		 * initialization routine of the SCSI BIOS and the result
2540 		 * stored in host memory.  If the translation is available
2541 		 * in host memory, use it.  If not, rely on the default
2542 		 * translation the device driver performs.
2543 		 * For sparc64, we may need adjust the geometry of large
2544 		 * disks in order to fit the limitations of the 16-bit
2545 		 * fields of the VTOC8 disk label.
2546 		 */
2547 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2548 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2549 			break;
2550 		}
2551 #endif
2552 		goto call_sim;
2553 	case XPT_ABORT:
2554 	{
2555 		union ccb* abort_ccb;
2556 
2557 		abort_ccb = start_ccb->cab.abort_ccb;
2558 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2559 
2560 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2561 				struct cam_ccbq *ccbq;
2562 				struct cam_ed *device;
2563 
2564 				device = abort_ccb->ccb_h.path->device;
2565 				ccbq = &device->ccbq;
2566 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2567 				abort_ccb->ccb_h.status =
2568 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2569 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2570 				xpt_done(abort_ccb);
2571 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2572 				break;
2573 			}
2574 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2575 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2576 				/*
2577 				 * We've caught this ccb en route to
2578 				 * the SIM.  Flag it for abort and the
2579 				 * SIM will do so just before starting
2580 				 * real work on the CCB.
2581 				 */
2582 				abort_ccb->ccb_h.status =
2583 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2584 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2585 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2586 				break;
2587 			}
2588 		}
2589 		if (XPT_FC_IS_QUEUED(abort_ccb)
2590 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2591 			/*
2592 			 * It's already completed but waiting
2593 			 * for our SWI to get to it.
2594 			 */
2595 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2596 			break;
2597 		}
2598 		/*
2599 		 * If we weren't able to take care of the abort request
2600 		 * in the XPT, pass the request down to the SIM for processing.
2601 		 */
2602 	}
2603 	/* FALLTHROUGH */
2604 	case XPT_ACCEPT_TARGET_IO:
2605 	case XPT_EN_LUN:
2606 	case XPT_IMMED_NOTIFY:
2607 	case XPT_NOTIFY_ACK:
2608 	case XPT_RESET_BUS:
2609 	case XPT_IMMEDIATE_NOTIFY:
2610 	case XPT_NOTIFY_ACKNOWLEDGE:
2611 	case XPT_GET_SIM_KNOB:
2612 	case XPT_SET_SIM_KNOB:
2613 	case XPT_GET_TRAN_SETTINGS:
2614 	case XPT_SET_TRAN_SETTINGS:
2615 	case XPT_PATH_INQ:
2616 call_sim:
2617 		sim = path->bus->sim;
2618 		lock = (mtx_owned(sim->mtx) == 0);
2619 		if (lock)
2620 			CAM_SIM_LOCK(sim);
2621 		(*(sim->sim_action))(sim, start_ccb);
2622 		if (lock)
2623 			CAM_SIM_UNLOCK(sim);
2624 		break;
2625 	case XPT_PATH_STATS:
2626 		start_ccb->cpis.last_reset = path->bus->last_reset;
2627 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2628 		break;
2629 	case XPT_GDEV_TYPE:
2630 	{
2631 		struct cam_ed *dev;
2632 
2633 		dev = path->device;
2634 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2635 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2636 		} else {
2637 			struct ccb_getdev *cgd;
2638 
2639 			cgd = &start_ccb->cgd;
2640 			cgd->protocol = dev->protocol;
2641 			cgd->inq_data = dev->inq_data;
2642 			cgd->ident_data = dev->ident_data;
2643 			cgd->inq_flags = dev->inq_flags;
2644 			cgd->ccb_h.status = CAM_REQ_CMP;
2645 			cgd->serial_num_len = dev->serial_num_len;
2646 			if ((dev->serial_num_len > 0)
2647 			 && (dev->serial_num != NULL))
2648 				bcopy(dev->serial_num, cgd->serial_num,
2649 				      dev->serial_num_len);
2650 		}
2651 		break;
2652 	}
2653 	case XPT_GDEV_STATS:
2654 	{
2655 		struct cam_ed *dev;
2656 
2657 		dev = path->device;
2658 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2659 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2660 		} else {
2661 			struct ccb_getdevstats *cgds;
2662 			struct cam_eb *bus;
2663 			struct cam_et *tar;
2664 			struct cam_devq *devq;
2665 
2666 			cgds = &start_ccb->cgds;
2667 			bus = path->bus;
2668 			tar = path->target;
2669 			devq = bus->sim->devq;
2670 			mtx_lock(&devq->send_mtx);
2671 			cgds->dev_openings = dev->ccbq.dev_openings;
2672 			cgds->dev_active = dev->ccbq.dev_active;
2673 			cgds->allocated = dev->ccbq.allocated;
2674 			cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2675 			cgds->held = cgds->allocated - cgds->dev_active -
2676 			    cgds->queued;
2677 			cgds->last_reset = tar->last_reset;
2678 			cgds->maxtags = dev->maxtags;
2679 			cgds->mintags = dev->mintags;
2680 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2681 				cgds->last_reset = bus->last_reset;
2682 			mtx_unlock(&devq->send_mtx);
2683 			cgds->ccb_h.status = CAM_REQ_CMP;
2684 		}
2685 		break;
2686 	}
2687 	case XPT_GDEVLIST:
2688 	{
2689 		struct cam_periph	*nperiph;
2690 		struct periph_list	*periph_head;
2691 		struct ccb_getdevlist	*cgdl;
2692 		u_int			i;
2693 		struct cam_ed		*device;
2694 		int			found;
2695 
2696 
2697 		found = 0;
2698 
2699 		/*
2700 		 * Don't want anyone mucking with our data.
2701 		 */
2702 		device = path->device;
2703 		periph_head = &device->periphs;
2704 		cgdl = &start_ccb->cgdl;
2705 
2706 		/*
2707 		 * Check and see if the list has changed since the user
2708 		 * last requested a list member.  If so, tell them that the
2709 		 * list has changed, and therefore they need to start over
2710 		 * from the beginning.
2711 		 */
2712 		if ((cgdl->index != 0) &&
2713 		    (cgdl->generation != device->generation)) {
2714 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2715 			break;
2716 		}
2717 
2718 		/*
2719 		 * Traverse the list of peripherals and attempt to find
2720 		 * the requested peripheral.
2721 		 */
2722 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2723 		     (nperiph != NULL) && (i <= cgdl->index);
2724 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2725 			if (i == cgdl->index) {
2726 				strncpy(cgdl->periph_name,
2727 					nperiph->periph_name,
2728 					DEV_IDLEN);
2729 				cgdl->unit_number = nperiph->unit_number;
2730 				found = 1;
2731 			}
2732 		}
2733 		if (found == 0) {
2734 			cgdl->status = CAM_GDEVLIST_ERROR;
2735 			break;
2736 		}
2737 
2738 		if (nperiph == NULL)
2739 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2740 		else
2741 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2742 
2743 		cgdl->index++;
2744 		cgdl->generation = device->generation;
2745 
2746 		cgdl->ccb_h.status = CAM_REQ_CMP;
2747 		break;
2748 	}
2749 	case XPT_DEV_MATCH:
2750 	{
2751 		dev_pos_type position_type;
2752 		struct ccb_dev_match *cdm;
2753 
2754 		cdm = &start_ccb->cdm;
2755 
2756 		/*
2757 		 * There are two ways of getting at information in the EDT.
2758 		 * The first way is via the primary EDT tree.  It starts
2759 		 * with a list of busses, then a list of targets on a bus,
2760 		 * then devices/luns on a target, and then peripherals on a
2761 		 * device/lun.  The "other" way is by the peripheral driver
2762 		 * lists.  The peripheral driver lists are organized by
2763 		 * peripheral driver.  (obviously)  So it makes sense to
2764 		 * use the peripheral driver list if the user is looking
2765 		 * for something like "da1", or all "da" devices.  If the
2766 		 * user is looking for something on a particular bus/target
2767 		 * or lun, it's generally better to go through the EDT tree.
2768 		 */
2769 
2770 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2771 			position_type = cdm->pos.position_type;
2772 		else {
2773 			u_int i;
2774 
2775 			position_type = CAM_DEV_POS_NONE;
2776 
2777 			for (i = 0; i < cdm->num_patterns; i++) {
2778 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2779 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2780 					position_type = CAM_DEV_POS_EDT;
2781 					break;
2782 				}
2783 			}
2784 
2785 			if (cdm->num_patterns == 0)
2786 				position_type = CAM_DEV_POS_EDT;
2787 			else if (position_type == CAM_DEV_POS_NONE)
2788 				position_type = CAM_DEV_POS_PDRV;
2789 		}
2790 
2791 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2792 		case CAM_DEV_POS_EDT:
2793 			xptedtmatch(cdm);
2794 			break;
2795 		case CAM_DEV_POS_PDRV:
2796 			xptperiphlistmatch(cdm);
2797 			break;
2798 		default:
2799 			cdm->status = CAM_DEV_MATCH_ERROR;
2800 			break;
2801 		}
2802 
2803 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2804 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2805 		else
2806 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2807 
2808 		break;
2809 	}
2810 	case XPT_SASYNC_CB:
2811 	{
2812 		struct ccb_setasync *csa;
2813 		struct async_node *cur_entry;
2814 		struct async_list *async_head;
2815 		u_int32_t added;
2816 
2817 		csa = &start_ccb->csa;
2818 		added = csa->event_enable;
2819 		async_head = &path->device->asyncs;
2820 
2821 		/*
2822 		 * If there is already an entry for us, simply
2823 		 * update it.
2824 		 */
2825 		cur_entry = SLIST_FIRST(async_head);
2826 		while (cur_entry != NULL) {
2827 			if ((cur_entry->callback_arg == csa->callback_arg)
2828 			 && (cur_entry->callback == csa->callback))
2829 				break;
2830 			cur_entry = SLIST_NEXT(cur_entry, links);
2831 		}
2832 
2833 		if (cur_entry != NULL) {
2834 		 	/*
2835 			 * If the request has no flags set,
2836 			 * remove the entry.
2837 			 */
2838 			added &= ~cur_entry->event_enable;
2839 			if (csa->event_enable == 0) {
2840 				SLIST_REMOVE(async_head, cur_entry,
2841 					     async_node, links);
2842 				xpt_release_device(path->device);
2843 				free(cur_entry, M_CAMXPT);
2844 			} else {
2845 				cur_entry->event_enable = csa->event_enable;
2846 			}
2847 			csa->event_enable = added;
2848 		} else {
2849 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2850 					   M_NOWAIT);
2851 			if (cur_entry == NULL) {
2852 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2853 				break;
2854 			}
2855 			cur_entry->event_enable = csa->event_enable;
2856 			cur_entry->event_lock =
2857 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2858 			cur_entry->callback_arg = csa->callback_arg;
2859 			cur_entry->callback = csa->callback;
2860 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2861 			xpt_acquire_device(path->device);
2862 		}
2863 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2864 		break;
2865 	}
2866 	case XPT_REL_SIMQ:
2867 	{
2868 		struct ccb_relsim *crs;
2869 		struct cam_ed *dev;
2870 
2871 		crs = &start_ccb->crs;
2872 		dev = path->device;
2873 		if (dev == NULL) {
2874 
2875 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2876 			break;
2877 		}
2878 
2879 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2880 
2881 			/* Don't ever go below one opening */
2882 			if (crs->openings > 0) {
2883 				xpt_dev_ccbq_resize(path, crs->openings);
2884 				if (bootverbose) {
2885 					xpt_print(path,
2886 					    "number of openings is now %d\n",
2887 					    crs->openings);
2888 				}
2889 			}
2890 		}
2891 
2892 		mtx_lock(&dev->sim->devq->send_mtx);
2893 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2894 
2895 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2896 
2897 				/*
2898 				 * Just extend the old timeout and decrement
2899 				 * the freeze count so that a single timeout
2900 				 * is sufficient for releasing the queue.
2901 				 */
2902 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2903 				callout_stop(&dev->callout);
2904 			} else {
2905 
2906 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2907 			}
2908 
2909 			callout_reset_sbt(&dev->callout,
2910 			    SBT_1MS * crs->release_timeout, 0,
2911 			    xpt_release_devq_timeout, dev, 0);
2912 
2913 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2914 
2915 		}
2916 
2917 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2918 
2919 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2920 				/*
2921 				 * Decrement the freeze count so that a single
2922 				 * completion is still sufficient to unfreeze
2923 				 * the queue.
2924 				 */
2925 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2926 			} else {
2927 
2928 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2929 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2930 			}
2931 		}
2932 
2933 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2934 
2935 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2936 			 || (dev->ccbq.dev_active == 0)) {
2937 
2938 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2939 			} else {
2940 
2941 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2942 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2943 			}
2944 		}
2945 		mtx_unlock(&dev->sim->devq->send_mtx);
2946 
2947 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2948 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2949 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2950 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2951 		break;
2952 	}
2953 	case XPT_DEBUG: {
2954 		struct cam_path *oldpath;
2955 
2956 		/* Check that all request bits are supported. */
2957 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2958 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2959 			break;
2960 		}
2961 
2962 		cam_dflags = CAM_DEBUG_NONE;
2963 		if (cam_dpath != NULL) {
2964 			oldpath = cam_dpath;
2965 			cam_dpath = NULL;
2966 			xpt_free_path(oldpath);
2967 		}
2968 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2969 			if (xpt_create_path(&cam_dpath, NULL,
2970 					    start_ccb->ccb_h.path_id,
2971 					    start_ccb->ccb_h.target_id,
2972 					    start_ccb->ccb_h.target_lun) !=
2973 					    CAM_REQ_CMP) {
2974 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2975 			} else {
2976 				cam_dflags = start_ccb->cdbg.flags;
2977 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2978 				xpt_print(cam_dpath, "debugging flags now %x\n",
2979 				    cam_dflags);
2980 			}
2981 		} else
2982 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2983 		break;
2984 	}
2985 	case XPT_NOOP:
2986 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2987 			xpt_freeze_devq(path, 1);
2988 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2989 		break;
2990 	default:
2991 	case XPT_SDEV_TYPE:
2992 	case XPT_TERM_IO:
2993 	case XPT_ENG_INQ:
2994 		/* XXX Implement */
2995 		printf("%s: CCB type %#x not supported\n", __func__,
2996 		       start_ccb->ccb_h.func_code);
2997 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2998 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2999 			xpt_done(start_ccb);
3000 		}
3001 		break;
3002 	}
3003 }
3004 
3005 void
3006 xpt_polled_action(union ccb *start_ccb)
3007 {
3008 	u_int32_t timeout;
3009 	struct	  cam_sim *sim;
3010 	struct	  cam_devq *devq;
3011 	struct	  cam_ed *dev;
3012 
3013 	timeout = start_ccb->ccb_h.timeout * 10;
3014 	sim = start_ccb->ccb_h.path->bus->sim;
3015 	devq = sim->devq;
3016 	dev = start_ccb->ccb_h.path->device;
3017 
3018 	mtx_unlock(&dev->device_mtx);
3019 
3020 	/*
3021 	 * Steal an opening so that no other queued requests
3022 	 * can get it before us while we simulate interrupts.
3023 	 */
3024 	mtx_lock(&devq->send_mtx);
3025 	dev->ccbq.dev_openings--;
3026 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3027 	    (--timeout > 0)) {
3028 		mtx_unlock(&devq->send_mtx);
3029 		DELAY(100);
3030 		CAM_SIM_LOCK(sim);
3031 		(*(sim->sim_poll))(sim);
3032 		CAM_SIM_UNLOCK(sim);
3033 		camisr_runqueue();
3034 		mtx_lock(&devq->send_mtx);
3035 	}
3036 	dev->ccbq.dev_openings++;
3037 	mtx_unlock(&devq->send_mtx);
3038 
3039 	if (timeout != 0) {
3040 		xpt_action(start_ccb);
3041 		while(--timeout > 0) {
3042 			CAM_SIM_LOCK(sim);
3043 			(*(sim->sim_poll))(sim);
3044 			CAM_SIM_UNLOCK(sim);
3045 			camisr_runqueue();
3046 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3047 			    != CAM_REQ_INPROG)
3048 				break;
3049 			DELAY(100);
3050 		}
3051 		if (timeout == 0) {
3052 			/*
3053 			 * XXX Is it worth adding a sim_timeout entry
3054 			 * point so we can attempt recovery?  If
3055 			 * this is only used for dumps, I don't think
3056 			 * it is.
3057 			 */
3058 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3059 		}
3060 	} else {
3061 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3062 	}
3063 
3064 	mtx_lock(&dev->device_mtx);
3065 }
3066 
3067 /*
3068  * Schedule a peripheral driver to receive a ccb when its
3069  * target device has space for more transactions.
3070  */
3071 void
3072 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3073 {
3074 
3075 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3076 	cam_periph_assert(periph, MA_OWNED);
3077 	if (new_priority < periph->scheduled_priority) {
3078 		periph->scheduled_priority = new_priority;
3079 		xpt_run_allocq(periph, 0);
3080 	}
3081 }
3082 
3083 
3084 /*
3085  * Schedule a device to run on a given queue.
3086  * If the device was inserted as a new entry on the queue,
3087  * return 1 meaning the device queue should be run. If we
3088  * were already queued, implying someone else has already
3089  * started the queue, return 0 so the caller doesn't attempt
3090  * to run the queue.
3091  */
3092 static int
3093 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3094 		 u_int32_t new_priority)
3095 {
3096 	int retval;
3097 	u_int32_t old_priority;
3098 
3099 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3100 
3101 	old_priority = pinfo->priority;
3102 
3103 	/*
3104 	 * Are we already queued?
3105 	 */
3106 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3107 		/* Simply reorder based on new priority */
3108 		if (new_priority < old_priority) {
3109 			camq_change_priority(queue, pinfo->index,
3110 					     new_priority);
3111 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3112 					("changed priority to %d\n",
3113 					 new_priority));
3114 			retval = 1;
3115 		} else
3116 			retval = 0;
3117 	} else {
3118 		/* New entry on the queue */
3119 		if (new_priority < old_priority)
3120 			pinfo->priority = new_priority;
3121 
3122 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3123 				("Inserting onto queue\n"));
3124 		pinfo->generation = ++queue->generation;
3125 		camq_insert(queue, pinfo);
3126 		retval = 1;
3127 	}
3128 	return (retval);
3129 }
3130 
3131 static void
3132 xpt_run_allocq_task(void *context, int pending)
3133 {
3134 	struct cam_periph *periph = context;
3135 
3136 	cam_periph_lock(periph);
3137 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3138 	xpt_run_allocq(periph, 1);
3139 	cam_periph_unlock(periph);
3140 	cam_periph_release(periph);
3141 }
3142 
3143 static void
3144 xpt_run_allocq(struct cam_periph *periph, int sleep)
3145 {
3146 	struct cam_ed	*device;
3147 	union ccb	*ccb;
3148 	uint32_t	 prio;
3149 
3150 	cam_periph_assert(periph, MA_OWNED);
3151 	if (periph->periph_allocating)
3152 		return;
3153 	periph->periph_allocating = 1;
3154 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3155 	device = periph->path->device;
3156 	ccb = NULL;
3157 restart:
3158 	while ((prio = min(periph->scheduled_priority,
3159 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3160 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3161 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3162 
3163 		if (ccb == NULL &&
3164 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3165 			if (sleep) {
3166 				ccb = xpt_get_ccb(periph);
3167 				goto restart;
3168 			}
3169 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3170 				break;
3171 			cam_periph_doacquire(periph);
3172 			periph->flags |= CAM_PERIPH_RUN_TASK;
3173 			taskqueue_enqueue(xsoftc.xpt_taskq,
3174 			    &periph->periph_run_task);
3175 			break;
3176 		}
3177 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3178 		if (prio == periph->immediate_priority) {
3179 			periph->immediate_priority = CAM_PRIORITY_NONE;
3180 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3181 					("waking cam_periph_getccb()\n"));
3182 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3183 					  periph_links.sle);
3184 			wakeup(&periph->ccb_list);
3185 		} else {
3186 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3187 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3188 					("calling periph_start()\n"));
3189 			periph->periph_start(periph, ccb);
3190 		}
3191 		ccb = NULL;
3192 	}
3193 	if (ccb != NULL)
3194 		xpt_release_ccb(ccb);
3195 	periph->periph_allocating = 0;
3196 }
3197 
3198 static void
3199 xpt_run_devq(struct cam_devq *devq)
3200 {
3201 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3202 	int lock;
3203 
3204 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3205 
3206 	devq->send_queue.qfrozen_cnt++;
3207 	while ((devq->send_queue.entries > 0)
3208 	    && (devq->send_openings > 0)
3209 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3210 		struct	cam_ed *device;
3211 		union ccb *work_ccb;
3212 		struct	cam_sim *sim;
3213 
3214 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3215 							   CAMQ_HEAD);
3216 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3217 				("running device %p\n", device));
3218 
3219 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3220 		if (work_ccb == NULL) {
3221 			printf("device on run queue with no ccbs???\n");
3222 			continue;
3223 		}
3224 
3225 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3226 
3227 			mtx_lock(&xsoftc.xpt_highpower_lock);
3228 		 	if (xsoftc.num_highpower <= 0) {
3229 				/*
3230 				 * We got a high power command, but we
3231 				 * don't have any available slots.  Freeze
3232 				 * the device queue until we have a slot
3233 				 * available.
3234 				 */
3235 				xpt_freeze_devq_device(device, 1);
3236 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3237 						   highpowerq_entry);
3238 
3239 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3240 				continue;
3241 			} else {
3242 				/*
3243 				 * Consume a high power slot while
3244 				 * this ccb runs.
3245 				 */
3246 				xsoftc.num_highpower--;
3247 			}
3248 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3249 		}
3250 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3251 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3252 		devq->send_openings--;
3253 		devq->send_active++;
3254 		xpt_schedule_devq(devq, device);
3255 		mtx_unlock(&devq->send_mtx);
3256 
3257 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3258 			/*
3259 			 * The client wants to freeze the queue
3260 			 * after this CCB is sent.
3261 			 */
3262 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3263 		}
3264 
3265 		/* In Target mode, the peripheral driver knows best... */
3266 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3267 			if ((device->inq_flags & SID_CmdQue) != 0
3268 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3269 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3270 			else
3271 				/*
3272 				 * Clear this in case of a retried CCB that
3273 				 * failed due to a rejected tag.
3274 				 */
3275 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3276 		}
3277 
3278 		switch (work_ccb->ccb_h.func_code) {
3279 		case XPT_SCSI_IO:
3280 			CAM_DEBUG(work_ccb->ccb_h.path,
3281 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3282 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3283 					  &device->inq_data),
3284 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3285 					     cdb_str, sizeof(cdb_str))));
3286 			break;
3287 		case XPT_ATA_IO:
3288 			CAM_DEBUG(work_ccb->ccb_h.path,
3289 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3290 			     ata_op_string(&work_ccb->ataio.cmd),
3291 			     ata_cmd_string(&work_ccb->ataio.cmd,
3292 					    cdb_str, sizeof(cdb_str))));
3293 			break;
3294 		default:
3295 			break;
3296 		}
3297 
3298 		/*
3299 		 * Device queues can be shared among multiple SIM instances
3300 		 * that reside on different busses.  Use the SIM from the
3301 		 * queued device, rather than the one from the calling bus.
3302 		 */
3303 		sim = device->sim;
3304 		lock = (mtx_owned(sim->mtx) == 0);
3305 		if (lock)
3306 			CAM_SIM_LOCK(sim);
3307 		(*(sim->sim_action))(sim, work_ccb);
3308 		if (lock)
3309 			CAM_SIM_UNLOCK(sim);
3310 		mtx_lock(&devq->send_mtx);
3311 	}
3312 	devq->send_queue.qfrozen_cnt--;
3313 }
3314 
3315 /*
3316  * This function merges stuff from the slave ccb into the master ccb, while
3317  * keeping important fields in the master ccb constant.
3318  */
3319 void
3320 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3321 {
3322 
3323 	/*
3324 	 * Pull fields that are valid for peripheral drivers to set
3325 	 * into the master CCB along with the CCB "payload".
3326 	 */
3327 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3328 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3329 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3330 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3331 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3332 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3333 }
3334 
3335 void
3336 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3337 {
3338 
3339 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3340 	ccb_h->pinfo.priority = priority;
3341 	ccb_h->path = path;
3342 	ccb_h->path_id = path->bus->path_id;
3343 	if (path->target)
3344 		ccb_h->target_id = path->target->target_id;
3345 	else
3346 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3347 	if (path->device) {
3348 		ccb_h->target_lun = path->device->lun_id;
3349 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3350 	} else {
3351 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3352 	}
3353 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3354 	ccb_h->flags = 0;
3355 	ccb_h->xflags = 0;
3356 }
3357 
3358 /* Path manipulation functions */
3359 cam_status
3360 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3361 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3362 {
3363 	struct	   cam_path *path;
3364 	cam_status status;
3365 
3366 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3367 
3368 	if (path == NULL) {
3369 		status = CAM_RESRC_UNAVAIL;
3370 		return(status);
3371 	}
3372 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3373 	if (status != CAM_REQ_CMP) {
3374 		free(path, M_CAMPATH);
3375 		path = NULL;
3376 	}
3377 	*new_path_ptr = path;
3378 	return (status);
3379 }
3380 
3381 cam_status
3382 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3383 			 struct cam_periph *periph, path_id_t path_id,
3384 			 target_id_t target_id, lun_id_t lun_id)
3385 {
3386 
3387 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3388 	    lun_id));
3389 }
3390 
3391 cam_status
3392 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3393 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3394 {
3395 	struct	     cam_eb *bus;
3396 	struct	     cam_et *target;
3397 	struct	     cam_ed *device;
3398 	cam_status   status;
3399 
3400 	status = CAM_REQ_CMP;	/* Completed without error */
3401 	target = NULL;		/* Wildcarded */
3402 	device = NULL;		/* Wildcarded */
3403 
3404 	/*
3405 	 * We will potentially modify the EDT, so block interrupts
3406 	 * that may attempt to create cam paths.
3407 	 */
3408 	bus = xpt_find_bus(path_id);
3409 	if (bus == NULL) {
3410 		status = CAM_PATH_INVALID;
3411 	} else {
3412 		xpt_lock_buses();
3413 		mtx_lock(&bus->eb_mtx);
3414 		target = xpt_find_target(bus, target_id);
3415 		if (target == NULL) {
3416 			/* Create one */
3417 			struct cam_et *new_target;
3418 
3419 			new_target = xpt_alloc_target(bus, target_id);
3420 			if (new_target == NULL) {
3421 				status = CAM_RESRC_UNAVAIL;
3422 			} else {
3423 				target = new_target;
3424 			}
3425 		}
3426 		xpt_unlock_buses();
3427 		if (target != NULL) {
3428 			device = xpt_find_device(target, lun_id);
3429 			if (device == NULL) {
3430 				/* Create one */
3431 				struct cam_ed *new_device;
3432 
3433 				new_device =
3434 				    (*(bus->xport->alloc_device))(bus,
3435 								      target,
3436 								      lun_id);
3437 				if (new_device == NULL) {
3438 					status = CAM_RESRC_UNAVAIL;
3439 				} else {
3440 					device = new_device;
3441 				}
3442 			}
3443 		}
3444 		mtx_unlock(&bus->eb_mtx);
3445 	}
3446 
3447 	/*
3448 	 * Only touch the user's data if we are successful.
3449 	 */
3450 	if (status == CAM_REQ_CMP) {
3451 		new_path->periph = perph;
3452 		new_path->bus = bus;
3453 		new_path->target = target;
3454 		new_path->device = device;
3455 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3456 	} else {
3457 		if (device != NULL)
3458 			xpt_release_device(device);
3459 		if (target != NULL)
3460 			xpt_release_target(target);
3461 		if (bus != NULL)
3462 			xpt_release_bus(bus);
3463 	}
3464 	return (status);
3465 }
3466 
3467 cam_status
3468 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3469 {
3470 	struct	   cam_path *new_path;
3471 
3472 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3473 	if (new_path == NULL)
3474 		return(CAM_RESRC_UNAVAIL);
3475 	xpt_copy_path(new_path, path);
3476 	*new_path_ptr = new_path;
3477 	return (CAM_REQ_CMP);
3478 }
3479 
3480 void
3481 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3482 {
3483 
3484 	*new_path = *path;
3485 	if (path->bus != NULL)
3486 		xpt_acquire_bus(path->bus);
3487 	if (path->target != NULL)
3488 		xpt_acquire_target(path->target);
3489 	if (path->device != NULL)
3490 		xpt_acquire_device(path->device);
3491 }
3492 
3493 void
3494 xpt_release_path(struct cam_path *path)
3495 {
3496 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3497 	if (path->device != NULL) {
3498 		xpt_release_device(path->device);
3499 		path->device = NULL;
3500 	}
3501 	if (path->target != NULL) {
3502 		xpt_release_target(path->target);
3503 		path->target = NULL;
3504 	}
3505 	if (path->bus != NULL) {
3506 		xpt_release_bus(path->bus);
3507 		path->bus = NULL;
3508 	}
3509 }
3510 
3511 void
3512 xpt_free_path(struct cam_path *path)
3513 {
3514 
3515 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3516 	xpt_release_path(path);
3517 	free(path, M_CAMPATH);
3518 }
3519 
3520 void
3521 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3522     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3523 {
3524 
3525 	xpt_lock_buses();
3526 	if (bus_ref) {
3527 		if (path->bus)
3528 			*bus_ref = path->bus->refcount;
3529 		else
3530 			*bus_ref = 0;
3531 	}
3532 	if (periph_ref) {
3533 		if (path->periph)
3534 			*periph_ref = path->periph->refcount;
3535 		else
3536 			*periph_ref = 0;
3537 	}
3538 	xpt_unlock_buses();
3539 	if (target_ref) {
3540 		if (path->target)
3541 			*target_ref = path->target->refcount;
3542 		else
3543 			*target_ref = 0;
3544 	}
3545 	if (device_ref) {
3546 		if (path->device)
3547 			*device_ref = path->device->refcount;
3548 		else
3549 			*device_ref = 0;
3550 	}
3551 }
3552 
3553 /*
3554  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3555  * in path1, 2 for match with wildcards in path2.
3556  */
3557 int
3558 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3559 {
3560 	int retval = 0;
3561 
3562 	if (path1->bus != path2->bus) {
3563 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3564 			retval = 1;
3565 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3566 			retval = 2;
3567 		else
3568 			return (-1);
3569 	}
3570 	if (path1->target != path2->target) {
3571 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3572 			if (retval == 0)
3573 				retval = 1;
3574 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3575 			retval = 2;
3576 		else
3577 			return (-1);
3578 	}
3579 	if (path1->device != path2->device) {
3580 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3581 			if (retval == 0)
3582 				retval = 1;
3583 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3584 			retval = 2;
3585 		else
3586 			return (-1);
3587 	}
3588 	return (retval);
3589 }
3590 
3591 int
3592 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3593 {
3594 	int retval = 0;
3595 
3596 	if (path->bus != dev->target->bus) {
3597 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3598 			retval = 1;
3599 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3600 			retval = 2;
3601 		else
3602 			return (-1);
3603 	}
3604 	if (path->target != dev->target) {
3605 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3606 			if (retval == 0)
3607 				retval = 1;
3608 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3609 			retval = 2;
3610 		else
3611 			return (-1);
3612 	}
3613 	if (path->device != dev) {
3614 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3615 			if (retval == 0)
3616 				retval = 1;
3617 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3618 			retval = 2;
3619 		else
3620 			return (-1);
3621 	}
3622 	return (retval);
3623 }
3624 
3625 void
3626 xpt_print_path(struct cam_path *path)
3627 {
3628 
3629 	if (path == NULL)
3630 		printf("(nopath): ");
3631 	else {
3632 		if (path->periph != NULL)
3633 			printf("(%s%d:", path->periph->periph_name,
3634 			       path->periph->unit_number);
3635 		else
3636 			printf("(noperiph:");
3637 
3638 		if (path->bus != NULL)
3639 			printf("%s%d:%d:", path->bus->sim->sim_name,
3640 			       path->bus->sim->unit_number,
3641 			       path->bus->sim->bus_id);
3642 		else
3643 			printf("nobus:");
3644 
3645 		if (path->target != NULL)
3646 			printf("%d:", path->target->target_id);
3647 		else
3648 			printf("X:");
3649 
3650 		if (path->device != NULL)
3651 			printf("%jx): ", (uintmax_t)path->device->lun_id);
3652 		else
3653 			printf("X): ");
3654 	}
3655 }
3656 
3657 void
3658 xpt_print_device(struct cam_ed *device)
3659 {
3660 
3661 	if (device == NULL)
3662 		printf("(nopath): ");
3663 	else {
3664 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3665 		       device->sim->unit_number,
3666 		       device->sim->bus_id,
3667 		       device->target->target_id,
3668 		       (uintmax_t)device->lun_id);
3669 	}
3670 }
3671 
3672 void
3673 xpt_print(struct cam_path *path, const char *fmt, ...)
3674 {
3675 	va_list ap;
3676 	xpt_print_path(path);
3677 	va_start(ap, fmt);
3678 	vprintf(fmt, ap);
3679 	va_end(ap);
3680 }
3681 
3682 int
3683 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3684 {
3685 	struct sbuf sb;
3686 
3687 	sbuf_new(&sb, str, str_len, 0);
3688 
3689 	if (path == NULL)
3690 		sbuf_printf(&sb, "(nopath): ");
3691 	else {
3692 		if (path->periph != NULL)
3693 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3694 				    path->periph->unit_number);
3695 		else
3696 			sbuf_printf(&sb, "(noperiph:");
3697 
3698 		if (path->bus != NULL)
3699 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3700 				    path->bus->sim->unit_number,
3701 				    path->bus->sim->bus_id);
3702 		else
3703 			sbuf_printf(&sb, "nobus:");
3704 
3705 		if (path->target != NULL)
3706 			sbuf_printf(&sb, "%d:", path->target->target_id);
3707 		else
3708 			sbuf_printf(&sb, "X:");
3709 
3710 		if (path->device != NULL)
3711 			sbuf_printf(&sb, "%jx): ",
3712 			    (uintmax_t)path->device->lun_id);
3713 		else
3714 			sbuf_printf(&sb, "X): ");
3715 	}
3716 	sbuf_finish(&sb);
3717 
3718 	return(sbuf_len(&sb));
3719 }
3720 
3721 path_id_t
3722 xpt_path_path_id(struct cam_path *path)
3723 {
3724 	return(path->bus->path_id);
3725 }
3726 
3727 target_id_t
3728 xpt_path_target_id(struct cam_path *path)
3729 {
3730 	if (path->target != NULL)
3731 		return (path->target->target_id);
3732 	else
3733 		return (CAM_TARGET_WILDCARD);
3734 }
3735 
3736 lun_id_t
3737 xpt_path_lun_id(struct cam_path *path)
3738 {
3739 	if (path->device != NULL)
3740 		return (path->device->lun_id);
3741 	else
3742 		return (CAM_LUN_WILDCARD);
3743 }
3744 
3745 struct cam_sim *
3746 xpt_path_sim(struct cam_path *path)
3747 {
3748 
3749 	return (path->bus->sim);
3750 }
3751 
3752 struct cam_periph*
3753 xpt_path_periph(struct cam_path *path)
3754 {
3755 
3756 	return (path->periph);
3757 }
3758 
3759 /*
3760  * Release a CAM control block for the caller.  Remit the cost of the structure
3761  * to the device referenced by the path.  If the this device had no 'credits'
3762  * and peripheral drivers have registered async callbacks for this notification
3763  * call them now.
3764  */
3765 void
3766 xpt_release_ccb(union ccb *free_ccb)
3767 {
3768 	struct	 cam_ed *device;
3769 	struct	 cam_periph *periph;
3770 
3771 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3772 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3773 	device = free_ccb->ccb_h.path->device;
3774 	periph = free_ccb->ccb_h.path->periph;
3775 
3776 	xpt_free_ccb(free_ccb);
3777 	periph->periph_allocated--;
3778 	cam_ccbq_release_opening(&device->ccbq);
3779 	xpt_run_allocq(periph, 0);
3780 }
3781 
3782 /* Functions accessed by SIM drivers */
3783 
3784 static struct xpt_xport xport_default = {
3785 	.alloc_device = xpt_alloc_device_default,
3786 	.action = xpt_action_default,
3787 	.async = xpt_dev_async_default,
3788 };
3789 
3790 /*
3791  * A sim structure, listing the SIM entry points and instance
3792  * identification info is passed to xpt_bus_register to hook the SIM
3793  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3794  * for this new bus and places it in the array of busses and assigns
3795  * it a path_id.  The path_id may be influenced by "hard wiring"
3796  * information specified by the user.  Once interrupt services are
3797  * available, the bus will be probed.
3798  */
3799 int32_t
3800 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3801 {
3802 	struct cam_eb *new_bus;
3803 	struct cam_eb *old_bus;
3804 	struct ccb_pathinq cpi;
3805 	struct cam_path *path;
3806 	cam_status status;
3807 
3808 	mtx_assert(sim->mtx, MA_OWNED);
3809 
3810 	sim->bus_id = bus;
3811 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3812 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3813 	if (new_bus == NULL) {
3814 		/* Couldn't satisfy request */
3815 		return (CAM_RESRC_UNAVAIL);
3816 	}
3817 
3818 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3819 	TAILQ_INIT(&new_bus->et_entries);
3820 	cam_sim_hold(sim);
3821 	new_bus->sim = sim;
3822 	timevalclear(&new_bus->last_reset);
3823 	new_bus->flags = 0;
3824 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3825 	new_bus->generation = 0;
3826 
3827 	xpt_lock_buses();
3828 	sim->path_id = new_bus->path_id =
3829 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3830 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3831 	while (old_bus != NULL
3832 	    && old_bus->path_id < new_bus->path_id)
3833 		old_bus = TAILQ_NEXT(old_bus, links);
3834 	if (old_bus != NULL)
3835 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3836 	else
3837 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3838 	xsoftc.bus_generation++;
3839 	xpt_unlock_buses();
3840 
3841 	/*
3842 	 * Set a default transport so that a PATH_INQ can be issued to
3843 	 * the SIM.  This will then allow for probing and attaching of
3844 	 * a more appropriate transport.
3845 	 */
3846 	new_bus->xport = &xport_default;
3847 
3848 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3849 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3850 	if (status != CAM_REQ_CMP) {
3851 		xpt_release_bus(new_bus);
3852 		free(path, M_CAMXPT);
3853 		return (CAM_RESRC_UNAVAIL);
3854 	}
3855 
3856 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3857 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3858 	xpt_action((union ccb *)&cpi);
3859 
3860 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3861 		switch (cpi.transport) {
3862 		case XPORT_SPI:
3863 		case XPORT_SAS:
3864 		case XPORT_FC:
3865 		case XPORT_USB:
3866 		case XPORT_ISCSI:
3867 		case XPORT_SRP:
3868 		case XPORT_PPB:
3869 			new_bus->xport = scsi_get_xport();
3870 			break;
3871 		case XPORT_ATA:
3872 		case XPORT_SATA:
3873 			new_bus->xport = ata_get_xport();
3874 			break;
3875 		default:
3876 			new_bus->xport = &xport_default;
3877 			break;
3878 		}
3879 	}
3880 
3881 	/* Notify interested parties */
3882 	if (sim->path_id != CAM_XPT_PATH_ID) {
3883 
3884 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3885 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3886 			union	ccb *scan_ccb;
3887 
3888 			/* Initiate bus rescan. */
3889 			scan_ccb = xpt_alloc_ccb_nowait();
3890 			if (scan_ccb != NULL) {
3891 				scan_ccb->ccb_h.path = path;
3892 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3893 				scan_ccb->crcn.flags = 0;
3894 				xpt_rescan(scan_ccb);
3895 			} else {
3896 				xpt_print(path,
3897 					  "Can't allocate CCB to scan bus\n");
3898 				xpt_free_path(path);
3899 			}
3900 		} else
3901 			xpt_free_path(path);
3902 	} else
3903 		xpt_free_path(path);
3904 	return (CAM_SUCCESS);
3905 }
3906 
3907 int32_t
3908 xpt_bus_deregister(path_id_t pathid)
3909 {
3910 	struct cam_path bus_path;
3911 	cam_status status;
3912 
3913 	status = xpt_compile_path(&bus_path, NULL, pathid,
3914 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3915 	if (status != CAM_REQ_CMP)
3916 		return (status);
3917 
3918 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3919 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3920 
3921 	/* Release the reference count held while registered. */
3922 	xpt_release_bus(bus_path.bus);
3923 	xpt_release_path(&bus_path);
3924 
3925 	return (CAM_REQ_CMP);
3926 }
3927 
3928 static path_id_t
3929 xptnextfreepathid(void)
3930 {
3931 	struct cam_eb *bus;
3932 	path_id_t pathid;
3933 	const char *strval;
3934 
3935 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3936 	pathid = 0;
3937 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3938 retry:
3939 	/* Find an unoccupied pathid */
3940 	while (bus != NULL && bus->path_id <= pathid) {
3941 		if (bus->path_id == pathid)
3942 			pathid++;
3943 		bus = TAILQ_NEXT(bus, links);
3944 	}
3945 
3946 	/*
3947 	 * Ensure that this pathid is not reserved for
3948 	 * a bus that may be registered in the future.
3949 	 */
3950 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3951 		++pathid;
3952 		/* Start the search over */
3953 		goto retry;
3954 	}
3955 	return (pathid);
3956 }
3957 
3958 static path_id_t
3959 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3960 {
3961 	path_id_t pathid;
3962 	int i, dunit, val;
3963 	char buf[32];
3964 	const char *dname;
3965 
3966 	pathid = CAM_XPT_PATH_ID;
3967 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3968 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
3969 		return (pathid);
3970 	i = 0;
3971 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3972 		if (strcmp(dname, "scbus")) {
3973 			/* Avoid a bit of foot shooting. */
3974 			continue;
3975 		}
3976 		if (dunit < 0)		/* unwired?! */
3977 			continue;
3978 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3979 			if (sim_bus == val) {
3980 				pathid = dunit;
3981 				break;
3982 			}
3983 		} else if (sim_bus == 0) {
3984 			/* Unspecified matches bus 0 */
3985 			pathid = dunit;
3986 			break;
3987 		} else {
3988 			printf("Ambiguous scbus configuration for %s%d "
3989 			       "bus %d, cannot wire down.  The kernel "
3990 			       "config entry for scbus%d should "
3991 			       "specify a controller bus.\n"
3992 			       "Scbus will be assigned dynamically.\n",
3993 			       sim_name, sim_unit, sim_bus, dunit);
3994 			break;
3995 		}
3996 	}
3997 
3998 	if (pathid == CAM_XPT_PATH_ID)
3999 		pathid = xptnextfreepathid();
4000 	return (pathid);
4001 }
4002 
4003 static const char *
4004 xpt_async_string(u_int32_t async_code)
4005 {
4006 
4007 	switch (async_code) {
4008 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4009 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4010 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4011 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4012 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4013 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4014 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4015 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4016 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4017 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4018 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4019 	case AC_CONTRACT: return ("AC_CONTRACT");
4020 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4021 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4022 	}
4023 	return ("AC_UNKNOWN");
4024 }
4025 
4026 static int
4027 xpt_async_size(u_int32_t async_code)
4028 {
4029 
4030 	switch (async_code) {
4031 	case AC_BUS_RESET: return (0);
4032 	case AC_UNSOL_RESEL: return (0);
4033 	case AC_SCSI_AEN: return (0);
4034 	case AC_SENT_BDR: return (0);
4035 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4036 	case AC_PATH_DEREGISTERED: return (0);
4037 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4038 	case AC_LOST_DEVICE: return (0);
4039 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4040 	case AC_INQ_CHANGED: return (0);
4041 	case AC_GETDEV_CHANGED: return (0);
4042 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4043 	case AC_ADVINFO_CHANGED: return (-1);
4044 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4045 	}
4046 	return (0);
4047 }
4048 
4049 static int
4050 xpt_async_process_dev(struct cam_ed *device, void *arg)
4051 {
4052 	union ccb *ccb = arg;
4053 	struct cam_path *path = ccb->ccb_h.path;
4054 	void *async_arg = ccb->casync.async_arg_ptr;
4055 	u_int32_t async_code = ccb->casync.async_code;
4056 	int relock;
4057 
4058 	if (path->device != device
4059 	 && path->device->lun_id != CAM_LUN_WILDCARD
4060 	 && device->lun_id != CAM_LUN_WILDCARD)
4061 		return (1);
4062 
4063 	/*
4064 	 * The async callback could free the device.
4065 	 * If it is a broadcast async, it doesn't hold
4066 	 * device reference, so take our own reference.
4067 	 */
4068 	xpt_acquire_device(device);
4069 
4070 	/*
4071 	 * If async for specific device is to be delivered to
4072 	 * the wildcard client, take the specific device lock.
4073 	 * XXX: We may need a way for client to specify it.
4074 	 */
4075 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4076 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4077 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4078 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4079 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4080 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4081 		mtx_unlock(&device->device_mtx);
4082 		xpt_path_lock(path);
4083 		relock = 1;
4084 	} else
4085 		relock = 0;
4086 
4087 	(*(device->target->bus->xport->async))(async_code,
4088 	    device->target->bus, device->target, device, async_arg);
4089 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4090 
4091 	if (relock) {
4092 		xpt_path_unlock(path);
4093 		mtx_lock(&device->device_mtx);
4094 	}
4095 	xpt_release_device(device);
4096 	return (1);
4097 }
4098 
4099 static int
4100 xpt_async_process_tgt(struct cam_et *target, void *arg)
4101 {
4102 	union ccb *ccb = arg;
4103 	struct cam_path *path = ccb->ccb_h.path;
4104 
4105 	if (path->target != target
4106 	 && path->target->target_id != CAM_TARGET_WILDCARD
4107 	 && target->target_id != CAM_TARGET_WILDCARD)
4108 		return (1);
4109 
4110 	if (ccb->casync.async_code == AC_SENT_BDR) {
4111 		/* Update our notion of when the last reset occurred */
4112 		microtime(&target->last_reset);
4113 	}
4114 
4115 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4116 }
4117 
4118 static void
4119 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4120 {
4121 	struct cam_eb *bus;
4122 	struct cam_path *path;
4123 	void *async_arg;
4124 	u_int32_t async_code;
4125 
4126 	path = ccb->ccb_h.path;
4127 	async_code = ccb->casync.async_code;
4128 	async_arg = ccb->casync.async_arg_ptr;
4129 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4130 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4131 	bus = path->bus;
4132 
4133 	if (async_code == AC_BUS_RESET) {
4134 		/* Update our notion of when the last reset occurred */
4135 		microtime(&bus->last_reset);
4136 	}
4137 
4138 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4139 
4140 	/*
4141 	 * If this wasn't a fully wildcarded async, tell all
4142 	 * clients that want all async events.
4143 	 */
4144 	if (bus != xpt_periph->path->bus) {
4145 		xpt_path_lock(xpt_periph->path);
4146 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4147 		xpt_path_unlock(xpt_periph->path);
4148 	}
4149 
4150 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4151 		xpt_release_devq(path, 1, TRUE);
4152 	else
4153 		xpt_release_simq(path->bus->sim, TRUE);
4154 	if (ccb->casync.async_arg_size > 0)
4155 		free(async_arg, M_CAMXPT);
4156 	xpt_free_path(path);
4157 	xpt_free_ccb(ccb);
4158 }
4159 
4160 static void
4161 xpt_async_bcast(struct async_list *async_head,
4162 		u_int32_t async_code,
4163 		struct cam_path *path, void *async_arg)
4164 {
4165 	struct async_node *cur_entry;
4166 	int lock;
4167 
4168 	cur_entry = SLIST_FIRST(async_head);
4169 	while (cur_entry != NULL) {
4170 		struct async_node *next_entry;
4171 		/*
4172 		 * Grab the next list entry before we call the current
4173 		 * entry's callback.  This is because the callback function
4174 		 * can delete its async callback entry.
4175 		 */
4176 		next_entry = SLIST_NEXT(cur_entry, links);
4177 		if ((cur_entry->event_enable & async_code) != 0) {
4178 			lock = cur_entry->event_lock;
4179 			if (lock)
4180 				CAM_SIM_LOCK(path->device->sim);
4181 			cur_entry->callback(cur_entry->callback_arg,
4182 					    async_code, path,
4183 					    async_arg);
4184 			if (lock)
4185 				CAM_SIM_UNLOCK(path->device->sim);
4186 		}
4187 		cur_entry = next_entry;
4188 	}
4189 }
4190 
4191 void
4192 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4193 {
4194 	union ccb *ccb;
4195 	int size;
4196 
4197 	ccb = xpt_alloc_ccb_nowait();
4198 	if (ccb == NULL) {
4199 		xpt_print(path, "Can't allocate CCB to send %s\n",
4200 		    xpt_async_string(async_code));
4201 		return;
4202 	}
4203 
4204 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4205 		xpt_print(path, "Can't allocate path to send %s\n",
4206 		    xpt_async_string(async_code));
4207 		xpt_free_ccb(ccb);
4208 		return;
4209 	}
4210 	ccb->ccb_h.path->periph = NULL;
4211 	ccb->ccb_h.func_code = XPT_ASYNC;
4212 	ccb->ccb_h.cbfcnp = xpt_async_process;
4213 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4214 	ccb->casync.async_code = async_code;
4215 	ccb->casync.async_arg_size = 0;
4216 	size = xpt_async_size(async_code);
4217 	if (size > 0 && async_arg != NULL) {
4218 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4219 		if (ccb->casync.async_arg_ptr == NULL) {
4220 			xpt_print(path, "Can't allocate argument to send %s\n",
4221 			    xpt_async_string(async_code));
4222 			xpt_free_path(ccb->ccb_h.path);
4223 			xpt_free_ccb(ccb);
4224 			return;
4225 		}
4226 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4227 		ccb->casync.async_arg_size = size;
4228 	} else if (size < 0) {
4229 		ccb->casync.async_arg_ptr = async_arg;
4230 		ccb->casync.async_arg_size = size;
4231 	}
4232 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4233 		xpt_freeze_devq(path, 1);
4234 	else
4235 		xpt_freeze_simq(path->bus->sim, 1);
4236 	xpt_done(ccb);
4237 }
4238 
4239 static void
4240 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4241 		      struct cam_et *target, struct cam_ed *device,
4242 		      void *async_arg)
4243 {
4244 
4245 	/*
4246 	 * We only need to handle events for real devices.
4247 	 */
4248 	if (target->target_id == CAM_TARGET_WILDCARD
4249 	 || device->lun_id == CAM_LUN_WILDCARD)
4250 		return;
4251 
4252 	printf("%s called\n", __func__);
4253 }
4254 
4255 static uint32_t
4256 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4257 {
4258 	struct cam_devq	*devq;
4259 	uint32_t freeze;
4260 
4261 	devq = dev->sim->devq;
4262 	mtx_assert(&devq->send_mtx, MA_OWNED);
4263 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4264 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4265 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4266 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4267 	/* Remove frozen device from sendq. */
4268 	if (device_is_queued(dev))
4269 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4270 	return (freeze);
4271 }
4272 
4273 u_int32_t
4274 xpt_freeze_devq(struct cam_path *path, u_int count)
4275 {
4276 	struct cam_ed	*dev = path->device;
4277 	struct cam_devq	*devq;
4278 	uint32_t	 freeze;
4279 
4280 	devq = dev->sim->devq;
4281 	mtx_lock(&devq->send_mtx);
4282 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4283 	freeze = xpt_freeze_devq_device(dev, count);
4284 	mtx_unlock(&devq->send_mtx);
4285 	return (freeze);
4286 }
4287 
4288 u_int32_t
4289 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4290 {
4291 	struct cam_devq	*devq;
4292 	uint32_t	 freeze;
4293 
4294 	devq = sim->devq;
4295 	mtx_lock(&devq->send_mtx);
4296 	freeze = (devq->send_queue.qfrozen_cnt += count);
4297 	mtx_unlock(&devq->send_mtx);
4298 	return (freeze);
4299 }
4300 
4301 static void
4302 xpt_release_devq_timeout(void *arg)
4303 {
4304 	struct cam_ed *dev;
4305 	struct cam_devq *devq;
4306 
4307 	dev = (struct cam_ed *)arg;
4308 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4309 	devq = dev->sim->devq;
4310 	mtx_assert(&devq->send_mtx, MA_OWNED);
4311 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4312 		xpt_run_devq(devq);
4313 }
4314 
4315 void
4316 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4317 {
4318 	struct cam_ed *dev;
4319 	struct cam_devq *devq;
4320 
4321 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4322 	    count, run_queue));
4323 	dev = path->device;
4324 	devq = dev->sim->devq;
4325 	mtx_lock(&devq->send_mtx);
4326 	if (xpt_release_devq_device(dev, count, run_queue))
4327 		xpt_run_devq(dev->sim->devq);
4328 	mtx_unlock(&devq->send_mtx);
4329 }
4330 
4331 static int
4332 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4333 {
4334 
4335 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4336 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4337 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4338 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4339 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4340 #ifdef INVARIANTS
4341 		printf("xpt_release_devq(): requested %u > present %u\n",
4342 		    count, dev->ccbq.queue.qfrozen_cnt);
4343 #endif
4344 		count = dev->ccbq.queue.qfrozen_cnt;
4345 	}
4346 	dev->ccbq.queue.qfrozen_cnt -= count;
4347 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4348 		/*
4349 		 * No longer need to wait for a successful
4350 		 * command completion.
4351 		 */
4352 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4353 		/*
4354 		 * Remove any timeouts that might be scheduled
4355 		 * to release this queue.
4356 		 */
4357 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4358 			callout_stop(&dev->callout);
4359 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4360 		}
4361 		/*
4362 		 * Now that we are unfrozen schedule the
4363 		 * device so any pending transactions are
4364 		 * run.
4365 		 */
4366 		xpt_schedule_devq(dev->sim->devq, dev);
4367 	} else
4368 		run_queue = 0;
4369 	return (run_queue);
4370 }
4371 
4372 void
4373 xpt_release_simq(struct cam_sim *sim, int run_queue)
4374 {
4375 	struct cam_devq	*devq;
4376 
4377 	devq = sim->devq;
4378 	mtx_lock(&devq->send_mtx);
4379 	if (devq->send_queue.qfrozen_cnt <= 0) {
4380 #ifdef INVARIANTS
4381 		printf("xpt_release_simq: requested 1 > present %u\n",
4382 		    devq->send_queue.qfrozen_cnt);
4383 #endif
4384 	} else
4385 		devq->send_queue.qfrozen_cnt--;
4386 	if (devq->send_queue.qfrozen_cnt == 0) {
4387 		/*
4388 		 * If there is a timeout scheduled to release this
4389 		 * sim queue, remove it.  The queue frozen count is
4390 		 * already at 0.
4391 		 */
4392 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4393 			callout_stop(&sim->callout);
4394 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4395 		}
4396 		if (run_queue) {
4397 			/*
4398 			 * Now that we are unfrozen run the send queue.
4399 			 */
4400 			xpt_run_devq(sim->devq);
4401 		}
4402 	}
4403 	mtx_unlock(&devq->send_mtx);
4404 }
4405 
4406 /*
4407  * XXX Appears to be unused.
4408  */
4409 static void
4410 xpt_release_simq_timeout(void *arg)
4411 {
4412 	struct cam_sim *sim;
4413 
4414 	sim = (struct cam_sim *)arg;
4415 	xpt_release_simq(sim, /* run_queue */ TRUE);
4416 }
4417 
4418 void
4419 xpt_done(union ccb *done_ccb)
4420 {
4421 	struct cam_doneq *queue;
4422 	int	run, hash;
4423 
4424 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4425 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4426 		return;
4427 
4428 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4429 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4430 	queue = &cam_doneqs[hash];
4431 	mtx_lock(&queue->cam_doneq_mtx);
4432 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4433 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4434 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4435 	mtx_unlock(&queue->cam_doneq_mtx);
4436 	if (run)
4437 		wakeup(&queue->cam_doneq);
4438 }
4439 
4440 void
4441 xpt_done_direct(union ccb *done_ccb)
4442 {
4443 
4444 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n"));
4445 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4446 		return;
4447 
4448 	xpt_done_process(&done_ccb->ccb_h);
4449 }
4450 
4451 union ccb *
4452 xpt_alloc_ccb()
4453 {
4454 	union ccb *new_ccb;
4455 
4456 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4457 	return (new_ccb);
4458 }
4459 
4460 union ccb *
4461 xpt_alloc_ccb_nowait()
4462 {
4463 	union ccb *new_ccb;
4464 
4465 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4466 	return (new_ccb);
4467 }
4468 
4469 void
4470 xpt_free_ccb(union ccb *free_ccb)
4471 {
4472 	free(free_ccb, M_CAMCCB);
4473 }
4474 
4475 
4476 
4477 /* Private XPT functions */
4478 
4479 /*
4480  * Get a CAM control block for the caller. Charge the structure to the device
4481  * referenced by the path.  If we don't have sufficient resources to allocate
4482  * more ccbs, we return NULL.
4483  */
4484 static union ccb *
4485 xpt_get_ccb_nowait(struct cam_periph *periph)
4486 {
4487 	union ccb *new_ccb;
4488 
4489 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4490 	if (new_ccb == NULL)
4491 		return (NULL);
4492 	periph->periph_allocated++;
4493 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4494 	return (new_ccb);
4495 }
4496 
4497 static union ccb *
4498 xpt_get_ccb(struct cam_periph *periph)
4499 {
4500 	union ccb *new_ccb;
4501 
4502 	cam_periph_unlock(periph);
4503 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4504 	cam_periph_lock(periph);
4505 	periph->periph_allocated++;
4506 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4507 	return (new_ccb);
4508 }
4509 
4510 union ccb *
4511 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4512 {
4513 	struct ccb_hdr *ccb_h;
4514 
4515 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4516 	cam_periph_assert(periph, MA_OWNED);
4517 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4518 	    ccb_h->pinfo.priority != priority) {
4519 		if (priority < periph->immediate_priority) {
4520 			periph->immediate_priority = priority;
4521 			xpt_run_allocq(periph, 0);
4522 		} else
4523 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4524 			    "cgticb", 0);
4525 	}
4526 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4527 	return ((union ccb *)ccb_h);
4528 }
4529 
4530 static void
4531 xpt_acquire_bus(struct cam_eb *bus)
4532 {
4533 
4534 	xpt_lock_buses();
4535 	bus->refcount++;
4536 	xpt_unlock_buses();
4537 }
4538 
4539 static void
4540 xpt_release_bus(struct cam_eb *bus)
4541 {
4542 
4543 	xpt_lock_buses();
4544 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4545 	if (--bus->refcount > 0) {
4546 		xpt_unlock_buses();
4547 		return;
4548 	}
4549 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4550 	xsoftc.bus_generation++;
4551 	xpt_unlock_buses();
4552 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4553 	    ("destroying bus, but target list is not empty"));
4554 	cam_sim_release(bus->sim);
4555 	mtx_destroy(&bus->eb_mtx);
4556 	free(bus, M_CAMXPT);
4557 }
4558 
4559 static struct cam_et *
4560 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4561 {
4562 	struct cam_et *cur_target, *target;
4563 
4564 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4565 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4566 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4567 					 M_NOWAIT|M_ZERO);
4568 	if (target == NULL)
4569 		return (NULL);
4570 
4571 	TAILQ_INIT(&target->ed_entries);
4572 	target->bus = bus;
4573 	target->target_id = target_id;
4574 	target->refcount = 1;
4575 	target->generation = 0;
4576 	target->luns = NULL;
4577 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4578 	timevalclear(&target->last_reset);
4579 	/*
4580 	 * Hold a reference to our parent bus so it
4581 	 * will not go away before we do.
4582 	 */
4583 	bus->refcount++;
4584 
4585 	/* Insertion sort into our bus's target list */
4586 	cur_target = TAILQ_FIRST(&bus->et_entries);
4587 	while (cur_target != NULL && cur_target->target_id < target_id)
4588 		cur_target = TAILQ_NEXT(cur_target, links);
4589 	if (cur_target != NULL) {
4590 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4591 	} else {
4592 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4593 	}
4594 	bus->generation++;
4595 	return (target);
4596 }
4597 
4598 static void
4599 xpt_acquire_target(struct cam_et *target)
4600 {
4601 	struct cam_eb *bus = target->bus;
4602 
4603 	mtx_lock(&bus->eb_mtx);
4604 	target->refcount++;
4605 	mtx_unlock(&bus->eb_mtx);
4606 }
4607 
4608 static void
4609 xpt_release_target(struct cam_et *target)
4610 {
4611 	struct cam_eb *bus = target->bus;
4612 
4613 	mtx_lock(&bus->eb_mtx);
4614 	if (--target->refcount > 0) {
4615 		mtx_unlock(&bus->eb_mtx);
4616 		return;
4617 	}
4618 	TAILQ_REMOVE(&bus->et_entries, target, links);
4619 	bus->generation++;
4620 	mtx_unlock(&bus->eb_mtx);
4621 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4622 	    ("destroying target, but device list is not empty"));
4623 	xpt_release_bus(bus);
4624 	mtx_destroy(&target->luns_mtx);
4625 	if (target->luns)
4626 		free(target->luns, M_CAMXPT);
4627 	free(target, M_CAMXPT);
4628 }
4629 
4630 static struct cam_ed *
4631 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4632 			 lun_id_t lun_id)
4633 {
4634 	struct cam_ed *device;
4635 
4636 	device = xpt_alloc_device(bus, target, lun_id);
4637 	if (device == NULL)
4638 		return (NULL);
4639 
4640 	device->mintags = 1;
4641 	device->maxtags = 1;
4642 	return (device);
4643 }
4644 
4645 static void
4646 xpt_destroy_device(void *context, int pending)
4647 {
4648 	struct cam_ed	*device = context;
4649 
4650 	mtx_lock(&device->device_mtx);
4651 	mtx_destroy(&device->device_mtx);
4652 	free(device, M_CAMDEV);
4653 }
4654 
4655 struct cam_ed *
4656 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4657 {
4658 	struct cam_ed	*cur_device, *device;
4659 	struct cam_devq	*devq;
4660 	cam_status status;
4661 
4662 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4663 	/* Make space for us in the device queue on our bus */
4664 	devq = bus->sim->devq;
4665 	mtx_lock(&devq->send_mtx);
4666 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4667 	mtx_unlock(&devq->send_mtx);
4668 	if (status != CAM_REQ_CMP)
4669 		return (NULL);
4670 
4671 	device = (struct cam_ed *)malloc(sizeof(*device),
4672 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4673 	if (device == NULL)
4674 		return (NULL);
4675 
4676 	cam_init_pinfo(&device->devq_entry);
4677 	device->target = target;
4678 	device->lun_id = lun_id;
4679 	device->sim = bus->sim;
4680 	if (cam_ccbq_init(&device->ccbq,
4681 			  bus->sim->max_dev_openings) != 0) {
4682 		free(device, M_CAMDEV);
4683 		return (NULL);
4684 	}
4685 	SLIST_INIT(&device->asyncs);
4686 	SLIST_INIT(&device->periphs);
4687 	device->generation = 0;
4688 	device->flags = CAM_DEV_UNCONFIGURED;
4689 	device->tag_delay_count = 0;
4690 	device->tag_saved_openings = 0;
4691 	device->refcount = 1;
4692 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4693 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4694 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4695 	/*
4696 	 * Hold a reference to our parent bus so it
4697 	 * will not go away before we do.
4698 	 */
4699 	target->refcount++;
4700 
4701 	cur_device = TAILQ_FIRST(&target->ed_entries);
4702 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4703 		cur_device = TAILQ_NEXT(cur_device, links);
4704 	if (cur_device != NULL)
4705 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4706 	else
4707 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4708 	target->generation++;
4709 	return (device);
4710 }
4711 
4712 void
4713 xpt_acquire_device(struct cam_ed *device)
4714 {
4715 	struct cam_eb *bus = device->target->bus;
4716 
4717 	mtx_lock(&bus->eb_mtx);
4718 	device->refcount++;
4719 	mtx_unlock(&bus->eb_mtx);
4720 }
4721 
4722 void
4723 xpt_release_device(struct cam_ed *device)
4724 {
4725 	struct cam_eb *bus = device->target->bus;
4726 	struct cam_devq *devq;
4727 
4728 	mtx_lock(&bus->eb_mtx);
4729 	if (--device->refcount > 0) {
4730 		mtx_unlock(&bus->eb_mtx);
4731 		return;
4732 	}
4733 
4734 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4735 	device->target->generation++;
4736 	mtx_unlock(&bus->eb_mtx);
4737 
4738 	/* Release our slot in the devq */
4739 	devq = bus->sim->devq;
4740 	mtx_lock(&devq->send_mtx);
4741 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4742 	mtx_unlock(&devq->send_mtx);
4743 
4744 	KASSERT(SLIST_EMPTY(&device->periphs),
4745 	    ("destroying device, but periphs list is not empty"));
4746 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4747 	    ("destroying device while still queued for ccbs"));
4748 
4749 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4750 		callout_stop(&device->callout);
4751 
4752 	xpt_release_target(device->target);
4753 
4754 	cam_ccbq_fini(&device->ccbq);
4755 	/*
4756 	 * Free allocated memory.  free(9) does nothing if the
4757 	 * supplied pointer is NULL, so it is safe to call without
4758 	 * checking.
4759 	 */
4760 	free(device->supported_vpds, M_CAMXPT);
4761 	free(device->device_id, M_CAMXPT);
4762 	free(device->ext_inq, M_CAMXPT);
4763 	free(device->physpath, M_CAMXPT);
4764 	free(device->rcap_buf, M_CAMXPT);
4765 	free(device->serial_num, M_CAMXPT);
4766 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4767 }
4768 
4769 u_int32_t
4770 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4771 {
4772 	int	result;
4773 	struct	cam_ed *dev;
4774 
4775 	dev = path->device;
4776 	mtx_lock(&dev->sim->devq->send_mtx);
4777 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4778 	mtx_unlock(&dev->sim->devq->send_mtx);
4779 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4780 	 || (dev->inq_flags & SID_CmdQue) != 0)
4781 		dev->tag_saved_openings = newopenings;
4782 	return (result);
4783 }
4784 
4785 static struct cam_eb *
4786 xpt_find_bus(path_id_t path_id)
4787 {
4788 	struct cam_eb *bus;
4789 
4790 	xpt_lock_buses();
4791 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4792 	     bus != NULL;
4793 	     bus = TAILQ_NEXT(bus, links)) {
4794 		if (bus->path_id == path_id) {
4795 			bus->refcount++;
4796 			break;
4797 		}
4798 	}
4799 	xpt_unlock_buses();
4800 	return (bus);
4801 }
4802 
4803 static struct cam_et *
4804 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4805 {
4806 	struct cam_et *target;
4807 
4808 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4809 	for (target = TAILQ_FIRST(&bus->et_entries);
4810 	     target != NULL;
4811 	     target = TAILQ_NEXT(target, links)) {
4812 		if (target->target_id == target_id) {
4813 			target->refcount++;
4814 			break;
4815 		}
4816 	}
4817 	return (target);
4818 }
4819 
4820 static struct cam_ed *
4821 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4822 {
4823 	struct cam_ed *device;
4824 
4825 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4826 	for (device = TAILQ_FIRST(&target->ed_entries);
4827 	     device != NULL;
4828 	     device = TAILQ_NEXT(device, links)) {
4829 		if (device->lun_id == lun_id) {
4830 			device->refcount++;
4831 			break;
4832 		}
4833 	}
4834 	return (device);
4835 }
4836 
4837 void
4838 xpt_start_tags(struct cam_path *path)
4839 {
4840 	struct ccb_relsim crs;
4841 	struct cam_ed *device;
4842 	struct cam_sim *sim;
4843 	int    newopenings;
4844 
4845 	device = path->device;
4846 	sim = path->bus->sim;
4847 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4848 	xpt_freeze_devq(path, /*count*/1);
4849 	device->inq_flags |= SID_CmdQue;
4850 	if (device->tag_saved_openings != 0)
4851 		newopenings = device->tag_saved_openings;
4852 	else
4853 		newopenings = min(device->maxtags,
4854 				  sim->max_tagged_dev_openings);
4855 	xpt_dev_ccbq_resize(path, newopenings);
4856 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4857 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4858 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4859 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4860 	crs.openings
4861 	    = crs.release_timeout
4862 	    = crs.qfrozen_cnt
4863 	    = 0;
4864 	xpt_action((union ccb *)&crs);
4865 }
4866 
4867 void
4868 xpt_stop_tags(struct cam_path *path)
4869 {
4870 	struct ccb_relsim crs;
4871 	struct cam_ed *device;
4872 	struct cam_sim *sim;
4873 
4874 	device = path->device;
4875 	sim = path->bus->sim;
4876 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4877 	device->tag_delay_count = 0;
4878 	xpt_freeze_devq(path, /*count*/1);
4879 	device->inq_flags &= ~SID_CmdQue;
4880 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4881 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4882 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4883 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4884 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4885 	crs.openings
4886 	    = crs.release_timeout
4887 	    = crs.qfrozen_cnt
4888 	    = 0;
4889 	xpt_action((union ccb *)&crs);
4890 }
4891 
4892 static void
4893 xpt_boot_delay(void *arg)
4894 {
4895 
4896 	xpt_release_boot();
4897 }
4898 
4899 static void
4900 xpt_config(void *arg)
4901 {
4902 	/*
4903 	 * Now that interrupts are enabled, go find our devices
4904 	 */
4905 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4906 		printf("xpt_config: failed to create taskqueue thread.\n");
4907 
4908 	/* Setup debugging path */
4909 	if (cam_dflags != CAM_DEBUG_NONE) {
4910 		if (xpt_create_path(&cam_dpath, NULL,
4911 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4912 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4913 			printf("xpt_config: xpt_create_path() failed for debug"
4914 			       " target %d:%d:%d, debugging disabled\n",
4915 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4916 			cam_dflags = CAM_DEBUG_NONE;
4917 		}
4918 	} else
4919 		cam_dpath = NULL;
4920 
4921 	periphdriver_init(1);
4922 	xpt_hold_boot();
4923 	callout_init(&xsoftc.boot_callout, 1);
4924 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
4925 	    xpt_boot_delay, NULL, 0);
4926 	/* Fire up rescan thread. */
4927 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
4928 	    "cam", "scanner")) {
4929 		printf("xpt_config: failed to create rescan thread.\n");
4930 	}
4931 }
4932 
4933 void
4934 xpt_hold_boot(void)
4935 {
4936 	xpt_lock_buses();
4937 	xsoftc.buses_to_config++;
4938 	xpt_unlock_buses();
4939 }
4940 
4941 void
4942 xpt_release_boot(void)
4943 {
4944 	xpt_lock_buses();
4945 	xsoftc.buses_to_config--;
4946 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4947 		struct	xpt_task *task;
4948 
4949 		xsoftc.buses_config_done = 1;
4950 		xpt_unlock_buses();
4951 		/* Call manually because we don't have any busses */
4952 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4953 		if (task != NULL) {
4954 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4955 			taskqueue_enqueue(taskqueue_thread, &task->task);
4956 		}
4957 	} else
4958 		xpt_unlock_buses();
4959 }
4960 
4961 /*
4962  * If the given device only has one peripheral attached to it, and if that
4963  * peripheral is the passthrough driver, announce it.  This insures that the
4964  * user sees some sort of announcement for every peripheral in their system.
4965  */
4966 static int
4967 xptpassannouncefunc(struct cam_ed *device, void *arg)
4968 {
4969 	struct cam_periph *periph;
4970 	int i;
4971 
4972 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4973 	     periph = SLIST_NEXT(periph, periph_links), i++);
4974 
4975 	periph = SLIST_FIRST(&device->periphs);
4976 	if ((i == 1)
4977 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4978 		xpt_announce_periph(periph, NULL);
4979 
4980 	return(1);
4981 }
4982 
4983 static void
4984 xpt_finishconfig_task(void *context, int pending)
4985 {
4986 
4987 	periphdriver_init(2);
4988 	/*
4989 	 * Check for devices with no "standard" peripheral driver
4990 	 * attached.  For any devices like that, announce the
4991 	 * passthrough driver so the user will see something.
4992 	 */
4993 	if (!bootverbose)
4994 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4995 
4996 	/* Release our hook so that the boot can continue. */
4997 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4998 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4999 	xsoftc.xpt_config_hook = NULL;
5000 
5001 	free(context, M_CAMXPT);
5002 }
5003 
5004 cam_status
5005 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5006 		   struct cam_path *path)
5007 {
5008 	struct ccb_setasync csa;
5009 	cam_status status;
5010 	int xptpath = 0;
5011 
5012 	if (path == NULL) {
5013 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5014 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5015 		if (status != CAM_REQ_CMP)
5016 			return (status);
5017 		xpt_path_lock(path);
5018 		xptpath = 1;
5019 	}
5020 
5021 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5022 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5023 	csa.event_enable = event;
5024 	csa.callback = cbfunc;
5025 	csa.callback_arg = cbarg;
5026 	xpt_action((union ccb *)&csa);
5027 	status = csa.ccb_h.status;
5028 
5029 	if (xptpath) {
5030 		xpt_path_unlock(path);
5031 		xpt_free_path(path);
5032 	}
5033 
5034 	if ((status == CAM_REQ_CMP) &&
5035 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5036 		/*
5037 		 * Get this peripheral up to date with all
5038 		 * the currently existing devices.
5039 		 */
5040 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5041 	}
5042 	if ((status == CAM_REQ_CMP) &&
5043 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5044 		/*
5045 		 * Get this peripheral up to date with all
5046 		 * the currently existing busses.
5047 		 */
5048 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5049 	}
5050 
5051 	return (status);
5052 }
5053 
5054 static void
5055 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5056 {
5057 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5058 
5059 	switch (work_ccb->ccb_h.func_code) {
5060 	/* Common cases first */
5061 	case XPT_PATH_INQ:		/* Path routing inquiry */
5062 	{
5063 		struct ccb_pathinq *cpi;
5064 
5065 		cpi = &work_ccb->cpi;
5066 		cpi->version_num = 1; /* XXX??? */
5067 		cpi->hba_inquiry = 0;
5068 		cpi->target_sprt = 0;
5069 		cpi->hba_misc = 0;
5070 		cpi->hba_eng_cnt = 0;
5071 		cpi->max_target = 0;
5072 		cpi->max_lun = 0;
5073 		cpi->initiator_id = 0;
5074 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5075 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
5076 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5077 		cpi->unit_number = sim->unit_number;
5078 		cpi->bus_id = sim->bus_id;
5079 		cpi->base_transfer_speed = 0;
5080 		cpi->protocol = PROTO_UNSPECIFIED;
5081 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5082 		cpi->transport = XPORT_UNSPECIFIED;
5083 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5084 		cpi->ccb_h.status = CAM_REQ_CMP;
5085 		xpt_done(work_ccb);
5086 		break;
5087 	}
5088 	default:
5089 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5090 		xpt_done(work_ccb);
5091 		break;
5092 	}
5093 }
5094 
5095 /*
5096  * The xpt as a "controller" has no interrupt sources, so polling
5097  * is a no-op.
5098  */
5099 static void
5100 xptpoll(struct cam_sim *sim)
5101 {
5102 }
5103 
5104 void
5105 xpt_lock_buses(void)
5106 {
5107 	mtx_lock(&xsoftc.xpt_topo_lock);
5108 }
5109 
5110 void
5111 xpt_unlock_buses(void)
5112 {
5113 	mtx_unlock(&xsoftc.xpt_topo_lock);
5114 }
5115 
5116 struct mtx *
5117 xpt_path_mtx(struct cam_path *path)
5118 {
5119 
5120 	return (&path->device->device_mtx);
5121 }
5122 
5123 static void
5124 xpt_done_process(struct ccb_hdr *ccb_h)
5125 {
5126 	struct cam_sim *sim;
5127 	struct cam_devq *devq;
5128 	struct mtx *mtx = NULL;
5129 
5130 	if (ccb_h->flags & CAM_HIGH_POWER) {
5131 		struct highpowerlist	*hphead;
5132 		struct cam_ed		*device;
5133 
5134 		mtx_lock(&xsoftc.xpt_highpower_lock);
5135 		hphead = &xsoftc.highpowerq;
5136 
5137 		device = STAILQ_FIRST(hphead);
5138 
5139 		/*
5140 		 * Increment the count since this command is done.
5141 		 */
5142 		xsoftc.num_highpower++;
5143 
5144 		/*
5145 		 * Any high powered commands queued up?
5146 		 */
5147 		if (device != NULL) {
5148 
5149 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5150 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5151 
5152 			mtx_lock(&device->sim->devq->send_mtx);
5153 			xpt_release_devq_device(device,
5154 					 /*count*/1, /*runqueue*/TRUE);
5155 			mtx_unlock(&device->sim->devq->send_mtx);
5156 		} else
5157 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5158 	}
5159 
5160 	sim = ccb_h->path->bus->sim;
5161 
5162 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5163 		xpt_release_simq(sim, /*run_queue*/FALSE);
5164 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5165 	}
5166 
5167 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5168 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5169 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5170 		ccb_h->status &= ~CAM_DEV_QFRZN;
5171 	}
5172 
5173 	devq = sim->devq;
5174 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5175 		struct cam_ed *dev = ccb_h->path->device;
5176 
5177 		mtx_lock(&devq->send_mtx);
5178 		devq->send_active--;
5179 		devq->send_openings++;
5180 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5181 
5182 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5183 		  && (dev->ccbq.dev_active == 0))) {
5184 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5185 			xpt_release_devq_device(dev, /*count*/1,
5186 					 /*run_queue*/FALSE);
5187 		}
5188 
5189 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5190 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5191 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5192 			xpt_release_devq_device(dev, /*count*/1,
5193 					 /*run_queue*/FALSE);
5194 		}
5195 
5196 		if (!device_is_queued(dev))
5197 			(void)xpt_schedule_devq(devq, dev);
5198 		xpt_run_devq(devq);
5199 		mtx_unlock(&devq->send_mtx);
5200 
5201 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5202 			mtx = xpt_path_mtx(ccb_h->path);
5203 			mtx_lock(mtx);
5204 
5205 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5206 			 && (--dev->tag_delay_count == 0))
5207 				xpt_start_tags(ccb_h->path);
5208 		}
5209 	}
5210 
5211 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5212 		if (mtx == NULL) {
5213 			mtx = xpt_path_mtx(ccb_h->path);
5214 			mtx_lock(mtx);
5215 		}
5216 	} else {
5217 		if (mtx != NULL) {
5218 			mtx_unlock(mtx);
5219 			mtx = NULL;
5220 		}
5221 	}
5222 
5223 	/* Call the peripheral driver's callback */
5224 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5225 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5226 	if (mtx != NULL)
5227 		mtx_unlock(mtx);
5228 }
5229 
5230 void
5231 xpt_done_td(void *arg)
5232 {
5233 	struct cam_doneq *queue = arg;
5234 	struct ccb_hdr *ccb_h;
5235 	STAILQ_HEAD(, ccb_hdr)	doneq;
5236 
5237 	STAILQ_INIT(&doneq);
5238 	mtx_lock(&queue->cam_doneq_mtx);
5239 	while (1) {
5240 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5241 			queue->cam_doneq_sleep = 1;
5242 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5243 			    PRIBIO, "-", 0);
5244 			queue->cam_doneq_sleep = 0;
5245 		}
5246 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5247 		mtx_unlock(&queue->cam_doneq_mtx);
5248 
5249 		THREAD_NO_SLEEPING();
5250 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5251 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5252 			xpt_done_process(ccb_h);
5253 		}
5254 		THREAD_SLEEPING_OK();
5255 
5256 		mtx_lock(&queue->cam_doneq_mtx);
5257 	}
5258 }
5259 
5260 static void
5261 camisr_runqueue(void)
5262 {
5263 	struct	ccb_hdr *ccb_h;
5264 	struct cam_doneq *queue;
5265 	int i;
5266 
5267 	/* Process global queues. */
5268 	for (i = 0; i < cam_num_doneqs; i++) {
5269 		queue = &cam_doneqs[i];
5270 		mtx_lock(&queue->cam_doneq_mtx);
5271 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5272 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5273 			mtx_unlock(&queue->cam_doneq_mtx);
5274 			xpt_done_process(ccb_h);
5275 			mtx_lock(&queue->cam_doneq_mtx);
5276 		}
5277 		mtx_unlock(&queue->cam_doneq_mtx);
5278 	}
5279 }
5280