1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 uint32_t xpt_generation; 97 98 /* number of high powered commands that can go through right now */ 99 struct mtx xpt_highpower_lock; 100 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 101 int num_highpower; 102 103 /* queue for handling async rescan requests. */ 104 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 105 int buses_to_config; 106 int buses_config_done; 107 108 /* Registered busses */ 109 TAILQ_HEAD(,cam_eb) xpt_busses; 110 u_int bus_generation; 111 112 struct intr_config_hook *xpt_config_hook; 113 114 int boot_delay; 115 struct callout boot_callout; 116 117 struct mtx xpt_topo_lock; 118 struct mtx xpt_lock; 119 struct taskqueue *xpt_taskq; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 155 156 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 157 &xsoftc.boot_delay, 0, "Bus registration wait time"); 158 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 159 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 160 161 struct cam_doneq { 162 struct mtx_padalign cam_doneq_mtx; 163 STAILQ_HEAD(, ccb_hdr) cam_doneq; 164 int cam_doneq_sleep; 165 }; 166 167 static struct cam_doneq cam_doneqs[MAXCPU]; 168 static int cam_num_doneqs; 169 static struct proc *cam_proc; 170 171 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 172 &cam_num_doneqs, 0, "Number of completion queues/threads"); 173 174 struct cam_periph *xpt_periph; 175 176 static periph_init_t xpt_periph_init; 177 178 static struct periph_driver xpt_driver = 179 { 180 xpt_periph_init, "xpt", 181 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 182 CAM_PERIPH_DRV_EARLY 183 }; 184 185 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 186 187 static d_open_t xptopen; 188 static d_close_t xptclose; 189 static d_ioctl_t xptioctl; 190 static d_ioctl_t xptdoioctl; 191 192 static struct cdevsw xpt_cdevsw = { 193 .d_version = D_VERSION, 194 .d_flags = 0, 195 .d_open = xptopen, 196 .d_close = xptclose, 197 .d_ioctl = xptioctl, 198 .d_name = "xpt", 199 }; 200 201 /* Storage for debugging datastructures */ 202 struct cam_path *cam_dpath; 203 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 204 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 205 &cam_dflags, 0, "Enabled debug flags"); 206 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 207 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 208 &cam_debug_delay, 0, "Delay in us after each debug message"); 209 210 /* Our boot-time initialization hook */ 211 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 212 213 static moduledata_t cam_moduledata = { 214 "cam", 215 cam_module_event_handler, 216 NULL 217 }; 218 219 static int xpt_init(void *); 220 221 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 222 MODULE_VERSION(cam, 1); 223 224 225 static void xpt_async_bcast(struct async_list *async_head, 226 u_int32_t async_code, 227 struct cam_path *path, 228 void *async_arg); 229 static path_id_t xptnextfreepathid(void); 230 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 231 static union ccb *xpt_get_ccb(struct cam_periph *periph); 232 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 233 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 234 static void xpt_run_allocq_task(void *context, int pending); 235 static void xpt_run_devq(struct cam_devq *devq); 236 static timeout_t xpt_release_devq_timeout; 237 static void xpt_release_simq_timeout(void *arg) __unused; 238 static void xpt_acquire_bus(struct cam_eb *bus); 239 static void xpt_release_bus(struct cam_eb *bus); 240 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 241 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 242 int run_queue); 243 static struct cam_et* 244 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 245 static void xpt_acquire_target(struct cam_et *target); 246 static void xpt_release_target(struct cam_et *target); 247 static struct cam_eb* 248 xpt_find_bus(path_id_t path_id); 249 static struct cam_et* 250 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 251 static struct cam_ed* 252 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 253 static void xpt_config(void *arg); 254 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 255 u_int32_t new_priority); 256 static xpt_devicefunc_t xptpassannouncefunc; 257 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 258 static void xptpoll(struct cam_sim *sim); 259 static void camisr_runqueue(void); 260 static void xpt_done_process(struct ccb_hdr *ccb_h); 261 static void xpt_done_td(void *); 262 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 263 u_int num_patterns, struct cam_eb *bus); 264 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 265 u_int num_patterns, 266 struct cam_ed *device); 267 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 268 u_int num_patterns, 269 struct cam_periph *periph); 270 static xpt_busfunc_t xptedtbusfunc; 271 static xpt_targetfunc_t xptedttargetfunc; 272 static xpt_devicefunc_t xptedtdevicefunc; 273 static xpt_periphfunc_t xptedtperiphfunc; 274 static xpt_pdrvfunc_t xptplistpdrvfunc; 275 static xpt_periphfunc_t xptplistperiphfunc; 276 static int xptedtmatch(struct ccb_dev_match *cdm); 277 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 278 static int xptbustraverse(struct cam_eb *start_bus, 279 xpt_busfunc_t *tr_func, void *arg); 280 static int xpttargettraverse(struct cam_eb *bus, 281 struct cam_et *start_target, 282 xpt_targetfunc_t *tr_func, void *arg); 283 static int xptdevicetraverse(struct cam_et *target, 284 struct cam_ed *start_device, 285 xpt_devicefunc_t *tr_func, void *arg); 286 static int xptperiphtraverse(struct cam_ed *device, 287 struct cam_periph *start_periph, 288 xpt_periphfunc_t *tr_func, void *arg); 289 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 290 xpt_pdrvfunc_t *tr_func, void *arg); 291 static int xptpdperiphtraverse(struct periph_driver **pdrv, 292 struct cam_periph *start_periph, 293 xpt_periphfunc_t *tr_func, 294 void *arg); 295 static xpt_busfunc_t xptdefbusfunc; 296 static xpt_targetfunc_t xptdeftargetfunc; 297 static xpt_devicefunc_t xptdefdevicefunc; 298 static xpt_periphfunc_t xptdefperiphfunc; 299 static void xpt_finishconfig_task(void *context, int pending); 300 static void xpt_dev_async_default(u_int32_t async_code, 301 struct cam_eb *bus, 302 struct cam_et *target, 303 struct cam_ed *device, 304 void *async_arg); 305 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 306 struct cam_et *target, 307 lun_id_t lun_id); 308 static xpt_devicefunc_t xptsetasyncfunc; 309 static xpt_busfunc_t xptsetasyncbusfunc; 310 static cam_status xptregister(struct cam_periph *periph, 311 void *arg); 312 static __inline int device_is_queued(struct cam_ed *device); 313 314 static __inline int 315 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 316 { 317 int retval; 318 319 mtx_assert(&devq->send_mtx, MA_OWNED); 320 if ((dev->ccbq.queue.entries > 0) && 321 (dev->ccbq.dev_openings > 0) && 322 (dev->ccbq.queue.qfrozen_cnt == 0)) { 323 /* 324 * The priority of a device waiting for controller 325 * resources is that of the highest priority CCB 326 * enqueued. 327 */ 328 retval = 329 xpt_schedule_dev(&devq->send_queue, 330 &dev->devq_entry, 331 CAMQ_GET_PRIO(&dev->ccbq.queue)); 332 } else { 333 retval = 0; 334 } 335 return (retval); 336 } 337 338 static __inline int 339 device_is_queued(struct cam_ed *device) 340 { 341 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 342 } 343 344 static void 345 xpt_periph_init() 346 { 347 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 348 } 349 350 static int 351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 352 { 353 354 /* 355 * Only allow read-write access. 356 */ 357 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 358 return(EPERM); 359 360 /* 361 * We don't allow nonblocking access. 362 */ 363 if ((flags & O_NONBLOCK) != 0) { 364 printf("%s: can't do nonblocking access\n", devtoname(dev)); 365 return(ENODEV); 366 } 367 368 return(0); 369 } 370 371 static int 372 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 373 { 374 375 return(0); 376 } 377 378 /* 379 * Don't automatically grab the xpt softc lock here even though this is going 380 * through the xpt device. The xpt device is really just a back door for 381 * accessing other devices and SIMs, so the right thing to do is to grab 382 * the appropriate SIM lock once the bus/SIM is located. 383 */ 384 static int 385 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 386 { 387 int error; 388 389 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 390 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 391 } 392 return (error); 393 } 394 395 static int 396 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 397 { 398 int error; 399 400 error = 0; 401 402 switch(cmd) { 403 /* 404 * For the transport layer CAMIOCOMMAND ioctl, we really only want 405 * to accept CCB types that don't quite make sense to send through a 406 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 407 * in the CAM spec. 408 */ 409 case CAMIOCOMMAND: { 410 union ccb *ccb; 411 union ccb *inccb; 412 struct cam_eb *bus; 413 414 inccb = (union ccb *)addr; 415 416 bus = xpt_find_bus(inccb->ccb_h.path_id); 417 if (bus == NULL) 418 return (EINVAL); 419 420 switch (inccb->ccb_h.func_code) { 421 case XPT_SCAN_BUS: 422 case XPT_RESET_BUS: 423 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 424 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 425 xpt_release_bus(bus); 426 return (EINVAL); 427 } 428 break; 429 case XPT_SCAN_TGT: 430 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 431 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 432 xpt_release_bus(bus); 433 return (EINVAL); 434 } 435 break; 436 default: 437 break; 438 } 439 440 switch(inccb->ccb_h.func_code) { 441 case XPT_SCAN_BUS: 442 case XPT_RESET_BUS: 443 case XPT_PATH_INQ: 444 case XPT_ENG_INQ: 445 case XPT_SCAN_LUN: 446 case XPT_SCAN_TGT: 447 448 ccb = xpt_alloc_ccb(); 449 450 /* 451 * Create a path using the bus, target, and lun the 452 * user passed in. 453 */ 454 if (xpt_create_path(&ccb->ccb_h.path, NULL, 455 inccb->ccb_h.path_id, 456 inccb->ccb_h.target_id, 457 inccb->ccb_h.target_lun) != 458 CAM_REQ_CMP){ 459 error = EINVAL; 460 xpt_free_ccb(ccb); 461 break; 462 } 463 /* Ensure all of our fields are correct */ 464 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 465 inccb->ccb_h.pinfo.priority); 466 xpt_merge_ccb(ccb, inccb); 467 xpt_path_lock(ccb->ccb_h.path); 468 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 469 xpt_path_unlock(ccb->ccb_h.path); 470 bcopy(ccb, inccb, sizeof(union ccb)); 471 xpt_free_path(ccb->ccb_h.path); 472 xpt_free_ccb(ccb); 473 break; 474 475 case XPT_DEBUG: { 476 union ccb ccb; 477 478 /* 479 * This is an immediate CCB, so it's okay to 480 * allocate it on the stack. 481 */ 482 483 /* 484 * Create a path using the bus, target, and lun the 485 * user passed in. 486 */ 487 if (xpt_create_path(&ccb.ccb_h.path, NULL, 488 inccb->ccb_h.path_id, 489 inccb->ccb_h.target_id, 490 inccb->ccb_h.target_lun) != 491 CAM_REQ_CMP){ 492 error = EINVAL; 493 break; 494 } 495 /* Ensure all of our fields are correct */ 496 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 497 inccb->ccb_h.pinfo.priority); 498 xpt_merge_ccb(&ccb, inccb); 499 xpt_action(&ccb); 500 bcopy(&ccb, inccb, sizeof(union ccb)); 501 xpt_free_path(ccb.ccb_h.path); 502 break; 503 504 } 505 case XPT_DEV_MATCH: { 506 struct cam_periph_map_info mapinfo; 507 struct cam_path *old_path; 508 509 /* 510 * We can't deal with physical addresses for this 511 * type of transaction. 512 */ 513 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 514 CAM_DATA_VADDR) { 515 error = EINVAL; 516 break; 517 } 518 519 /* 520 * Save this in case the caller had it set to 521 * something in particular. 522 */ 523 old_path = inccb->ccb_h.path; 524 525 /* 526 * We really don't need a path for the matching 527 * code. The path is needed because of the 528 * debugging statements in xpt_action(). They 529 * assume that the CCB has a valid path. 530 */ 531 inccb->ccb_h.path = xpt_periph->path; 532 533 bzero(&mapinfo, sizeof(mapinfo)); 534 535 /* 536 * Map the pattern and match buffers into kernel 537 * virtual address space. 538 */ 539 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 540 541 if (error) { 542 inccb->ccb_h.path = old_path; 543 break; 544 } 545 546 /* 547 * This is an immediate CCB, we can send it on directly. 548 */ 549 xpt_action(inccb); 550 551 /* 552 * Map the buffers back into user space. 553 */ 554 cam_periph_unmapmem(inccb, &mapinfo); 555 556 inccb->ccb_h.path = old_path; 557 558 error = 0; 559 break; 560 } 561 default: 562 error = ENOTSUP; 563 break; 564 } 565 xpt_release_bus(bus); 566 break; 567 } 568 /* 569 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 570 * with the periphal driver name and unit name filled in. The other 571 * fields don't really matter as input. The passthrough driver name 572 * ("pass"), and unit number are passed back in the ccb. The current 573 * device generation number, and the index into the device peripheral 574 * driver list, and the status are also passed back. Note that 575 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 576 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 577 * (or rather should be) impossible for the device peripheral driver 578 * list to change since we look at the whole thing in one pass, and 579 * we do it with lock protection. 580 * 581 */ 582 case CAMGETPASSTHRU: { 583 union ccb *ccb; 584 struct cam_periph *periph; 585 struct periph_driver **p_drv; 586 char *name; 587 u_int unit; 588 int base_periph_found; 589 590 ccb = (union ccb *)addr; 591 unit = ccb->cgdl.unit_number; 592 name = ccb->cgdl.periph_name; 593 base_periph_found = 0; 594 595 /* 596 * Sanity check -- make sure we don't get a null peripheral 597 * driver name. 598 */ 599 if (*ccb->cgdl.periph_name == '\0') { 600 error = EINVAL; 601 break; 602 } 603 604 /* Keep the list from changing while we traverse it */ 605 xpt_lock_buses(); 606 607 /* first find our driver in the list of drivers */ 608 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 609 if (strcmp((*p_drv)->driver_name, name) == 0) 610 break; 611 612 if (*p_drv == NULL) { 613 xpt_unlock_buses(); 614 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 615 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 616 *ccb->cgdl.periph_name = '\0'; 617 ccb->cgdl.unit_number = 0; 618 error = ENOENT; 619 break; 620 } 621 622 /* 623 * Run through every peripheral instance of this driver 624 * and check to see whether it matches the unit passed 625 * in by the user. If it does, get out of the loops and 626 * find the passthrough driver associated with that 627 * peripheral driver. 628 */ 629 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 630 periph = TAILQ_NEXT(periph, unit_links)) { 631 632 if (periph->unit_number == unit) 633 break; 634 } 635 /* 636 * If we found the peripheral driver that the user passed 637 * in, go through all of the peripheral drivers for that 638 * particular device and look for a passthrough driver. 639 */ 640 if (periph != NULL) { 641 struct cam_ed *device; 642 int i; 643 644 base_periph_found = 1; 645 device = periph->path->device; 646 for (i = 0, periph = SLIST_FIRST(&device->periphs); 647 periph != NULL; 648 periph = SLIST_NEXT(periph, periph_links), i++) { 649 /* 650 * Check to see whether we have a 651 * passthrough device or not. 652 */ 653 if (strcmp(periph->periph_name, "pass") == 0) { 654 /* 655 * Fill in the getdevlist fields. 656 */ 657 strcpy(ccb->cgdl.periph_name, 658 periph->periph_name); 659 ccb->cgdl.unit_number = 660 periph->unit_number; 661 if (SLIST_NEXT(periph, periph_links)) 662 ccb->cgdl.status = 663 CAM_GDEVLIST_MORE_DEVS; 664 else 665 ccb->cgdl.status = 666 CAM_GDEVLIST_LAST_DEVICE; 667 ccb->cgdl.generation = 668 device->generation; 669 ccb->cgdl.index = i; 670 /* 671 * Fill in some CCB header fields 672 * that the user may want. 673 */ 674 ccb->ccb_h.path_id = 675 periph->path->bus->path_id; 676 ccb->ccb_h.target_id = 677 periph->path->target->target_id; 678 ccb->ccb_h.target_lun = 679 periph->path->device->lun_id; 680 ccb->ccb_h.status = CAM_REQ_CMP; 681 break; 682 } 683 } 684 } 685 686 /* 687 * If the periph is null here, one of two things has 688 * happened. The first possibility is that we couldn't 689 * find the unit number of the particular peripheral driver 690 * that the user is asking about. e.g. the user asks for 691 * the passthrough driver for "da11". We find the list of 692 * "da" peripherals all right, but there is no unit 11. 693 * The other possibility is that we went through the list 694 * of peripheral drivers attached to the device structure, 695 * but didn't find one with the name "pass". Either way, 696 * we return ENOENT, since we couldn't find something. 697 */ 698 if (periph == NULL) { 699 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 700 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 701 *ccb->cgdl.periph_name = '\0'; 702 ccb->cgdl.unit_number = 0; 703 error = ENOENT; 704 /* 705 * It is unfortunate that this is even necessary, 706 * but there are many, many clueless users out there. 707 * If this is true, the user is looking for the 708 * passthrough driver, but doesn't have one in his 709 * kernel. 710 */ 711 if (base_periph_found == 1) { 712 printf("xptioctl: pass driver is not in the " 713 "kernel\n"); 714 printf("xptioctl: put \"device pass\" in " 715 "your kernel config file\n"); 716 } 717 } 718 xpt_unlock_buses(); 719 break; 720 } 721 default: 722 error = ENOTTY; 723 break; 724 } 725 726 return(error); 727 } 728 729 static int 730 cam_module_event_handler(module_t mod, int what, void *arg) 731 { 732 int error; 733 734 switch (what) { 735 case MOD_LOAD: 736 if ((error = xpt_init(NULL)) != 0) 737 return (error); 738 break; 739 case MOD_UNLOAD: 740 return EBUSY; 741 default: 742 return EOPNOTSUPP; 743 } 744 745 return 0; 746 } 747 748 static void 749 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 750 { 751 752 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 753 xpt_free_path(done_ccb->ccb_h.path); 754 xpt_free_ccb(done_ccb); 755 } else { 756 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 757 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 758 } 759 xpt_release_boot(); 760 } 761 762 /* thread to handle bus rescans */ 763 static void 764 xpt_scanner_thread(void *dummy) 765 { 766 union ccb *ccb; 767 struct cam_path path; 768 769 xpt_lock_buses(); 770 for (;;) { 771 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 772 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 773 "-", 0); 774 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 775 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 776 xpt_unlock_buses(); 777 778 /* 779 * Since lock can be dropped inside and path freed 780 * by completion callback even before return here, 781 * take our own path copy for reference. 782 */ 783 xpt_copy_path(&path, ccb->ccb_h.path); 784 xpt_path_lock(&path); 785 xpt_action(ccb); 786 xpt_path_unlock(&path); 787 xpt_release_path(&path); 788 789 xpt_lock_buses(); 790 } 791 } 792 } 793 794 void 795 xpt_rescan(union ccb *ccb) 796 { 797 struct ccb_hdr *hdr; 798 799 /* Prepare request */ 800 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 801 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 802 ccb->ccb_h.func_code = XPT_SCAN_BUS; 803 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 804 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 805 ccb->ccb_h.func_code = XPT_SCAN_TGT; 806 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 807 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 808 ccb->ccb_h.func_code = XPT_SCAN_LUN; 809 else { 810 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 811 xpt_free_path(ccb->ccb_h.path); 812 xpt_free_ccb(ccb); 813 return; 814 } 815 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 816 ccb->ccb_h.cbfcnp = xpt_rescan_done; 817 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 818 /* Don't make duplicate entries for the same paths. */ 819 xpt_lock_buses(); 820 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 821 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 822 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 823 wakeup(&xsoftc.ccb_scanq); 824 xpt_unlock_buses(); 825 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 826 xpt_free_path(ccb->ccb_h.path); 827 xpt_free_ccb(ccb); 828 return; 829 } 830 } 831 } 832 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 833 xsoftc.buses_to_config++; 834 wakeup(&xsoftc.ccb_scanq); 835 xpt_unlock_buses(); 836 } 837 838 /* Functions accessed by the peripheral drivers */ 839 static int 840 xpt_init(void *dummy) 841 { 842 struct cam_sim *xpt_sim; 843 struct cam_path *path; 844 struct cam_devq *devq; 845 cam_status status; 846 int error, i; 847 848 TAILQ_INIT(&xsoftc.xpt_busses); 849 TAILQ_INIT(&xsoftc.ccb_scanq); 850 STAILQ_INIT(&xsoftc.highpowerq); 851 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 852 853 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 854 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 855 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 856 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 857 858 #ifdef CAM_BOOT_DELAY 859 /* 860 * Override this value at compile time to assist our users 861 * who don't use loader to boot a kernel. 862 */ 863 xsoftc.boot_delay = CAM_BOOT_DELAY; 864 #endif 865 /* 866 * The xpt layer is, itself, the equivelent of a SIM. 867 * Allow 16 ccbs in the ccb pool for it. This should 868 * give decent parallelism when we probe busses and 869 * perform other XPT functions. 870 */ 871 devq = cam_simq_alloc(16); 872 xpt_sim = cam_sim_alloc(xptaction, 873 xptpoll, 874 "xpt", 875 /*softc*/NULL, 876 /*unit*/0, 877 /*mtx*/&xsoftc.xpt_lock, 878 /*max_dev_transactions*/0, 879 /*max_tagged_dev_transactions*/0, 880 devq); 881 if (xpt_sim == NULL) 882 return (ENOMEM); 883 884 mtx_lock(&xsoftc.xpt_lock); 885 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 886 mtx_unlock(&xsoftc.xpt_lock); 887 printf("xpt_init: xpt_bus_register failed with status %#x," 888 " failing attach\n", status); 889 return (EINVAL); 890 } 891 mtx_unlock(&xsoftc.xpt_lock); 892 893 /* 894 * Looking at the XPT from the SIM layer, the XPT is 895 * the equivelent of a peripheral driver. Allocate 896 * a peripheral driver entry for us. 897 */ 898 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 899 CAM_TARGET_WILDCARD, 900 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 901 printf("xpt_init: xpt_create_path failed with status %#x," 902 " failing attach\n", status); 903 return (EINVAL); 904 } 905 xpt_path_lock(path); 906 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 907 path, NULL, 0, xpt_sim); 908 xpt_path_unlock(path); 909 xpt_free_path(path); 910 911 if (cam_num_doneqs < 1) 912 cam_num_doneqs = 1 + mp_ncpus / 6; 913 else if (cam_num_doneqs > MAXCPU) 914 cam_num_doneqs = MAXCPU; 915 for (i = 0; i < cam_num_doneqs; i++) { 916 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 917 MTX_DEF); 918 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 919 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 920 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 921 if (error != 0) { 922 cam_num_doneqs = i; 923 break; 924 } 925 } 926 if (cam_num_doneqs < 1) { 927 printf("xpt_init: Cannot init completion queues " 928 "- failing attach\n"); 929 return (ENOMEM); 930 } 931 /* 932 * Register a callback for when interrupts are enabled. 933 */ 934 xsoftc.xpt_config_hook = 935 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 936 M_CAMXPT, M_NOWAIT | M_ZERO); 937 if (xsoftc.xpt_config_hook == NULL) { 938 printf("xpt_init: Cannot malloc config hook " 939 "- failing attach\n"); 940 return (ENOMEM); 941 } 942 xsoftc.xpt_config_hook->ich_func = xpt_config; 943 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 944 free (xsoftc.xpt_config_hook, M_CAMXPT); 945 printf("xpt_init: config_intrhook_establish failed " 946 "- failing attach\n"); 947 } 948 949 return (0); 950 } 951 952 static cam_status 953 xptregister(struct cam_periph *periph, void *arg) 954 { 955 struct cam_sim *xpt_sim; 956 957 if (periph == NULL) { 958 printf("xptregister: periph was NULL!!\n"); 959 return(CAM_REQ_CMP_ERR); 960 } 961 962 xpt_sim = (struct cam_sim *)arg; 963 xpt_sim->softc = periph; 964 xpt_periph = periph; 965 periph->softc = NULL; 966 967 return(CAM_REQ_CMP); 968 } 969 970 int32_t 971 xpt_add_periph(struct cam_periph *periph) 972 { 973 struct cam_ed *device; 974 int32_t status; 975 976 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 977 device = periph->path->device; 978 status = CAM_REQ_CMP; 979 if (device != NULL) { 980 mtx_lock(&device->target->bus->eb_mtx); 981 device->generation++; 982 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 983 mtx_unlock(&device->target->bus->eb_mtx); 984 atomic_add_32(&xsoftc.xpt_generation, 1); 985 } 986 987 return (status); 988 } 989 990 void 991 xpt_remove_periph(struct cam_periph *periph) 992 { 993 struct cam_ed *device; 994 995 device = periph->path->device; 996 if (device != NULL) { 997 mtx_lock(&device->target->bus->eb_mtx); 998 device->generation++; 999 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1000 mtx_unlock(&device->target->bus->eb_mtx); 1001 atomic_add_32(&xsoftc.xpt_generation, 1); 1002 } 1003 } 1004 1005 1006 void 1007 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1008 { 1009 struct cam_path *path = periph->path; 1010 1011 cam_periph_assert(periph, MA_OWNED); 1012 periph->flags |= CAM_PERIPH_ANNOUNCED; 1013 1014 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1015 periph->periph_name, periph->unit_number, 1016 path->bus->sim->sim_name, 1017 path->bus->sim->unit_number, 1018 path->bus->sim->bus_id, 1019 path->bus->path_id, 1020 path->target->target_id, 1021 (uintmax_t)path->device->lun_id); 1022 printf("%s%d: ", periph->periph_name, periph->unit_number); 1023 if (path->device->protocol == PROTO_SCSI) 1024 scsi_print_inquiry(&path->device->inq_data); 1025 else if (path->device->protocol == PROTO_ATA || 1026 path->device->protocol == PROTO_SATAPM) 1027 ata_print_ident(&path->device->ident_data); 1028 else if (path->device->protocol == PROTO_SEMB) 1029 semb_print_ident( 1030 (struct sep_identify_data *)&path->device->ident_data); 1031 else 1032 printf("Unknown protocol device\n"); 1033 if (path->device->serial_num_len > 0) { 1034 /* Don't wrap the screen - print only the first 60 chars */ 1035 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1036 periph->unit_number, path->device->serial_num); 1037 } 1038 /* Announce transport details. */ 1039 (*(path->bus->xport->announce))(periph); 1040 /* Announce command queueing. */ 1041 if (path->device->inq_flags & SID_CmdQue 1042 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1043 printf("%s%d: Command Queueing enabled\n", 1044 periph->periph_name, periph->unit_number); 1045 } 1046 /* Announce caller's details if they've passed in. */ 1047 if (announce_string != NULL) 1048 printf("%s%d: %s\n", periph->periph_name, 1049 periph->unit_number, announce_string); 1050 } 1051 1052 void 1053 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1054 { 1055 if (quirks != 0) { 1056 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1057 periph->unit_number, quirks, bit_string); 1058 } 1059 } 1060 1061 void 1062 xpt_denounce_periph(struct cam_periph *periph) 1063 { 1064 struct cam_path *path = periph->path; 1065 1066 cam_periph_assert(periph, MA_OWNED); 1067 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1068 periph->periph_name, periph->unit_number, 1069 path->bus->sim->sim_name, 1070 path->bus->sim->unit_number, 1071 path->bus->sim->bus_id, 1072 path->bus->path_id, 1073 path->target->target_id, 1074 (uintmax_t)path->device->lun_id); 1075 printf("%s%d: ", periph->periph_name, periph->unit_number); 1076 if (path->device->protocol == PROTO_SCSI) 1077 scsi_print_inquiry_short(&path->device->inq_data); 1078 else if (path->device->protocol == PROTO_ATA || 1079 path->device->protocol == PROTO_SATAPM) 1080 ata_print_ident_short(&path->device->ident_data); 1081 else if (path->device->protocol == PROTO_SEMB) 1082 semb_print_ident_short( 1083 (struct sep_identify_data *)&path->device->ident_data); 1084 else 1085 printf("Unknown protocol device"); 1086 if (path->device->serial_num_len > 0) 1087 printf(" s/n %.60s", path->device->serial_num); 1088 printf(" detached\n"); 1089 } 1090 1091 1092 int 1093 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1094 { 1095 int ret = -1, l; 1096 struct ccb_dev_advinfo cdai; 1097 struct scsi_vpd_id_descriptor *idd; 1098 1099 xpt_path_assert(path, MA_OWNED); 1100 1101 memset(&cdai, 0, sizeof(cdai)); 1102 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1103 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1104 cdai.bufsiz = len; 1105 1106 if (!strcmp(attr, "GEOM::ident")) 1107 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1108 else if (!strcmp(attr, "GEOM::physpath")) 1109 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1110 else if (strcmp(attr, "GEOM::lunid") == 0 || 1111 strcmp(attr, "GEOM::lunname") == 0) { 1112 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1113 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1114 } else 1115 goto out; 1116 1117 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1118 if (cdai.buf == NULL) { 1119 ret = ENOMEM; 1120 goto out; 1121 } 1122 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1123 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1124 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1125 if (cdai.provsiz == 0) 1126 goto out; 1127 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1128 if (strcmp(attr, "GEOM::lunid") == 0) { 1129 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1130 cdai.provsiz, scsi_devid_is_lun_naa); 1131 if (idd == NULL) 1132 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1133 cdai.provsiz, scsi_devid_is_lun_eui64); 1134 } else 1135 idd = NULL; 1136 if (idd == NULL) 1137 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1138 cdai.provsiz, scsi_devid_is_lun_t10); 1139 if (idd == NULL) 1140 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1141 cdai.provsiz, scsi_devid_is_lun_name); 1142 if (idd == NULL) 1143 goto out; 1144 ret = 0; 1145 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1146 if (idd->length < len) { 1147 for (l = 0; l < idd->length; l++) 1148 buf[l] = idd->identifier[l] ? 1149 idd->identifier[l] : ' '; 1150 buf[l] = 0; 1151 } else 1152 ret = EFAULT; 1153 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1154 l = strnlen(idd->identifier, idd->length); 1155 if (l < len) { 1156 bcopy(idd->identifier, buf, l); 1157 buf[l] = 0; 1158 } else 1159 ret = EFAULT; 1160 } else { 1161 if (idd->length * 2 < len) { 1162 for (l = 0; l < idd->length; l++) 1163 sprintf(buf + l * 2, "%02x", 1164 idd->identifier[l]); 1165 } else 1166 ret = EFAULT; 1167 } 1168 } else { 1169 ret = 0; 1170 if (strlcpy(buf, cdai.buf, len) >= len) 1171 ret = EFAULT; 1172 } 1173 1174 out: 1175 if (cdai.buf != NULL) 1176 free(cdai.buf, M_CAMXPT); 1177 return ret; 1178 } 1179 1180 static dev_match_ret 1181 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1182 struct cam_eb *bus) 1183 { 1184 dev_match_ret retval; 1185 int i; 1186 1187 retval = DM_RET_NONE; 1188 1189 /* 1190 * If we aren't given something to match against, that's an error. 1191 */ 1192 if (bus == NULL) 1193 return(DM_RET_ERROR); 1194 1195 /* 1196 * If there are no match entries, then this bus matches no 1197 * matter what. 1198 */ 1199 if ((patterns == NULL) || (num_patterns == 0)) 1200 return(DM_RET_DESCEND | DM_RET_COPY); 1201 1202 for (i = 0; i < num_patterns; i++) { 1203 struct bus_match_pattern *cur_pattern; 1204 1205 /* 1206 * If the pattern in question isn't for a bus node, we 1207 * aren't interested. However, we do indicate to the 1208 * calling routine that we should continue descending the 1209 * tree, since the user wants to match against lower-level 1210 * EDT elements. 1211 */ 1212 if (patterns[i].type != DEV_MATCH_BUS) { 1213 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1214 retval |= DM_RET_DESCEND; 1215 continue; 1216 } 1217 1218 cur_pattern = &patterns[i].pattern.bus_pattern; 1219 1220 /* 1221 * If they want to match any bus node, we give them any 1222 * device node. 1223 */ 1224 if (cur_pattern->flags == BUS_MATCH_ANY) { 1225 /* set the copy flag */ 1226 retval |= DM_RET_COPY; 1227 1228 /* 1229 * If we've already decided on an action, go ahead 1230 * and return. 1231 */ 1232 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1233 return(retval); 1234 } 1235 1236 /* 1237 * Not sure why someone would do this... 1238 */ 1239 if (cur_pattern->flags == BUS_MATCH_NONE) 1240 continue; 1241 1242 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1243 && (cur_pattern->path_id != bus->path_id)) 1244 continue; 1245 1246 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1247 && (cur_pattern->bus_id != bus->sim->bus_id)) 1248 continue; 1249 1250 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1251 && (cur_pattern->unit_number != bus->sim->unit_number)) 1252 continue; 1253 1254 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1255 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1256 DEV_IDLEN) != 0)) 1257 continue; 1258 1259 /* 1260 * If we get to this point, the user definitely wants 1261 * information on this bus. So tell the caller to copy the 1262 * data out. 1263 */ 1264 retval |= DM_RET_COPY; 1265 1266 /* 1267 * If the return action has been set to descend, then we 1268 * know that we've already seen a non-bus matching 1269 * expression, therefore we need to further descend the tree. 1270 * This won't change by continuing around the loop, so we 1271 * go ahead and return. If we haven't seen a non-bus 1272 * matching expression, we keep going around the loop until 1273 * we exhaust the matching expressions. We'll set the stop 1274 * flag once we fall out of the loop. 1275 */ 1276 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1277 return(retval); 1278 } 1279 1280 /* 1281 * If the return action hasn't been set to descend yet, that means 1282 * we haven't seen anything other than bus matching patterns. So 1283 * tell the caller to stop descending the tree -- the user doesn't 1284 * want to match against lower level tree elements. 1285 */ 1286 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1287 retval |= DM_RET_STOP; 1288 1289 return(retval); 1290 } 1291 1292 static dev_match_ret 1293 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1294 struct cam_ed *device) 1295 { 1296 dev_match_ret retval; 1297 int i; 1298 1299 retval = DM_RET_NONE; 1300 1301 /* 1302 * If we aren't given something to match against, that's an error. 1303 */ 1304 if (device == NULL) 1305 return(DM_RET_ERROR); 1306 1307 /* 1308 * If there are no match entries, then this device matches no 1309 * matter what. 1310 */ 1311 if ((patterns == NULL) || (num_patterns == 0)) 1312 return(DM_RET_DESCEND | DM_RET_COPY); 1313 1314 for (i = 0; i < num_patterns; i++) { 1315 struct device_match_pattern *cur_pattern; 1316 struct scsi_vpd_device_id *device_id_page; 1317 1318 /* 1319 * If the pattern in question isn't for a device node, we 1320 * aren't interested. 1321 */ 1322 if (patterns[i].type != DEV_MATCH_DEVICE) { 1323 if ((patterns[i].type == DEV_MATCH_PERIPH) 1324 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1325 retval |= DM_RET_DESCEND; 1326 continue; 1327 } 1328 1329 cur_pattern = &patterns[i].pattern.device_pattern; 1330 1331 /* Error out if mutually exclusive options are specified. */ 1332 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1333 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1334 return(DM_RET_ERROR); 1335 1336 /* 1337 * If they want to match any device node, we give them any 1338 * device node. 1339 */ 1340 if (cur_pattern->flags == DEV_MATCH_ANY) 1341 goto copy_dev_node; 1342 1343 /* 1344 * Not sure why someone would do this... 1345 */ 1346 if (cur_pattern->flags == DEV_MATCH_NONE) 1347 continue; 1348 1349 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1350 && (cur_pattern->path_id != device->target->bus->path_id)) 1351 continue; 1352 1353 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1354 && (cur_pattern->target_id != device->target->target_id)) 1355 continue; 1356 1357 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1358 && (cur_pattern->target_lun != device->lun_id)) 1359 continue; 1360 1361 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1362 && (cam_quirkmatch((caddr_t)&device->inq_data, 1363 (caddr_t)&cur_pattern->data.inq_pat, 1364 1, sizeof(cur_pattern->data.inq_pat), 1365 scsi_static_inquiry_match) == NULL)) 1366 continue; 1367 1368 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1369 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1370 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1371 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1372 device->device_id_len 1373 - SVPD_DEVICE_ID_HDR_LEN, 1374 cur_pattern->data.devid_pat.id, 1375 cur_pattern->data.devid_pat.id_len) != 0)) 1376 continue; 1377 1378 copy_dev_node: 1379 /* 1380 * If we get to this point, the user definitely wants 1381 * information on this device. So tell the caller to copy 1382 * the data out. 1383 */ 1384 retval |= DM_RET_COPY; 1385 1386 /* 1387 * If the return action has been set to descend, then we 1388 * know that we've already seen a peripheral matching 1389 * expression, therefore we need to further descend the tree. 1390 * This won't change by continuing around the loop, so we 1391 * go ahead and return. If we haven't seen a peripheral 1392 * matching expression, we keep going around the loop until 1393 * we exhaust the matching expressions. We'll set the stop 1394 * flag once we fall out of the loop. 1395 */ 1396 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1397 return(retval); 1398 } 1399 1400 /* 1401 * If the return action hasn't been set to descend yet, that means 1402 * we haven't seen any peripheral matching patterns. So tell the 1403 * caller to stop descending the tree -- the user doesn't want to 1404 * match against lower level tree elements. 1405 */ 1406 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1407 retval |= DM_RET_STOP; 1408 1409 return(retval); 1410 } 1411 1412 /* 1413 * Match a single peripheral against any number of match patterns. 1414 */ 1415 static dev_match_ret 1416 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1417 struct cam_periph *periph) 1418 { 1419 dev_match_ret retval; 1420 int i; 1421 1422 /* 1423 * If we aren't given something to match against, that's an error. 1424 */ 1425 if (periph == NULL) 1426 return(DM_RET_ERROR); 1427 1428 /* 1429 * If there are no match entries, then this peripheral matches no 1430 * matter what. 1431 */ 1432 if ((patterns == NULL) || (num_patterns == 0)) 1433 return(DM_RET_STOP | DM_RET_COPY); 1434 1435 /* 1436 * There aren't any nodes below a peripheral node, so there's no 1437 * reason to descend the tree any further. 1438 */ 1439 retval = DM_RET_STOP; 1440 1441 for (i = 0; i < num_patterns; i++) { 1442 struct periph_match_pattern *cur_pattern; 1443 1444 /* 1445 * If the pattern in question isn't for a peripheral, we 1446 * aren't interested. 1447 */ 1448 if (patterns[i].type != DEV_MATCH_PERIPH) 1449 continue; 1450 1451 cur_pattern = &patterns[i].pattern.periph_pattern; 1452 1453 /* 1454 * If they want to match on anything, then we will do so. 1455 */ 1456 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1457 /* set the copy flag */ 1458 retval |= DM_RET_COPY; 1459 1460 /* 1461 * We've already set the return action to stop, 1462 * since there are no nodes below peripherals in 1463 * the tree. 1464 */ 1465 return(retval); 1466 } 1467 1468 /* 1469 * Not sure why someone would do this... 1470 */ 1471 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1472 continue; 1473 1474 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1475 && (cur_pattern->path_id != periph->path->bus->path_id)) 1476 continue; 1477 1478 /* 1479 * For the target and lun id's, we have to make sure the 1480 * target and lun pointers aren't NULL. The xpt peripheral 1481 * has a wildcard target and device. 1482 */ 1483 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1484 && ((periph->path->target == NULL) 1485 ||(cur_pattern->target_id != periph->path->target->target_id))) 1486 continue; 1487 1488 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1489 && ((periph->path->device == NULL) 1490 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1491 continue; 1492 1493 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1494 && (cur_pattern->unit_number != periph->unit_number)) 1495 continue; 1496 1497 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1498 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1499 DEV_IDLEN) != 0)) 1500 continue; 1501 1502 /* 1503 * If we get to this point, the user definitely wants 1504 * information on this peripheral. So tell the caller to 1505 * copy the data out. 1506 */ 1507 retval |= DM_RET_COPY; 1508 1509 /* 1510 * The return action has already been set to stop, since 1511 * peripherals don't have any nodes below them in the EDT. 1512 */ 1513 return(retval); 1514 } 1515 1516 /* 1517 * If we get to this point, the peripheral that was passed in 1518 * doesn't match any of the patterns. 1519 */ 1520 return(retval); 1521 } 1522 1523 static int 1524 xptedtbusfunc(struct cam_eb *bus, void *arg) 1525 { 1526 struct ccb_dev_match *cdm; 1527 struct cam_et *target; 1528 dev_match_ret retval; 1529 1530 cdm = (struct ccb_dev_match *)arg; 1531 1532 /* 1533 * If our position is for something deeper in the tree, that means 1534 * that we've already seen this node. So, we keep going down. 1535 */ 1536 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1537 && (cdm->pos.cookie.bus == bus) 1538 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1539 && (cdm->pos.cookie.target != NULL)) 1540 retval = DM_RET_DESCEND; 1541 else 1542 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1543 1544 /* 1545 * If we got an error, bail out of the search. 1546 */ 1547 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1548 cdm->status = CAM_DEV_MATCH_ERROR; 1549 return(0); 1550 } 1551 1552 /* 1553 * If the copy flag is set, copy this bus out. 1554 */ 1555 if (retval & DM_RET_COPY) { 1556 int spaceleft, j; 1557 1558 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1559 sizeof(struct dev_match_result)); 1560 1561 /* 1562 * If we don't have enough space to put in another 1563 * match result, save our position and tell the 1564 * user there are more devices to check. 1565 */ 1566 if (spaceleft < sizeof(struct dev_match_result)) { 1567 bzero(&cdm->pos, sizeof(cdm->pos)); 1568 cdm->pos.position_type = 1569 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1570 1571 cdm->pos.cookie.bus = bus; 1572 cdm->pos.generations[CAM_BUS_GENERATION]= 1573 xsoftc.bus_generation; 1574 cdm->status = CAM_DEV_MATCH_MORE; 1575 return(0); 1576 } 1577 j = cdm->num_matches; 1578 cdm->num_matches++; 1579 cdm->matches[j].type = DEV_MATCH_BUS; 1580 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1581 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1582 cdm->matches[j].result.bus_result.unit_number = 1583 bus->sim->unit_number; 1584 strncpy(cdm->matches[j].result.bus_result.dev_name, 1585 bus->sim->sim_name, DEV_IDLEN); 1586 } 1587 1588 /* 1589 * If the user is only interested in busses, there's no 1590 * reason to descend to the next level in the tree. 1591 */ 1592 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1593 return(1); 1594 1595 /* 1596 * If there is a target generation recorded, check it to 1597 * make sure the target list hasn't changed. 1598 */ 1599 mtx_lock(&bus->eb_mtx); 1600 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1601 && (cdm->pos.cookie.bus == bus) 1602 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1603 && (cdm->pos.cookie.target != NULL)) { 1604 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1605 bus->generation)) { 1606 mtx_unlock(&bus->eb_mtx); 1607 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1608 return (0); 1609 } 1610 target = (struct cam_et *)cdm->pos.cookie.target; 1611 target->refcount++; 1612 } else 1613 target = NULL; 1614 mtx_unlock(&bus->eb_mtx); 1615 1616 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1617 } 1618 1619 static int 1620 xptedttargetfunc(struct cam_et *target, void *arg) 1621 { 1622 struct ccb_dev_match *cdm; 1623 struct cam_eb *bus; 1624 struct cam_ed *device; 1625 1626 cdm = (struct ccb_dev_match *)arg; 1627 bus = target->bus; 1628 1629 /* 1630 * If there is a device list generation recorded, check it to 1631 * make sure the device list hasn't changed. 1632 */ 1633 mtx_lock(&bus->eb_mtx); 1634 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1635 && (cdm->pos.cookie.bus == bus) 1636 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1637 && (cdm->pos.cookie.target == target) 1638 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1639 && (cdm->pos.cookie.device != NULL)) { 1640 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1641 target->generation) { 1642 mtx_unlock(&bus->eb_mtx); 1643 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1644 return(0); 1645 } 1646 device = (struct cam_ed *)cdm->pos.cookie.device; 1647 device->refcount++; 1648 } else 1649 device = NULL; 1650 mtx_unlock(&bus->eb_mtx); 1651 1652 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1653 } 1654 1655 static int 1656 xptedtdevicefunc(struct cam_ed *device, void *arg) 1657 { 1658 struct cam_eb *bus; 1659 struct cam_periph *periph; 1660 struct ccb_dev_match *cdm; 1661 dev_match_ret retval; 1662 1663 cdm = (struct ccb_dev_match *)arg; 1664 bus = device->target->bus; 1665 1666 /* 1667 * If our position is for something deeper in the tree, that means 1668 * that we've already seen this node. So, we keep going down. 1669 */ 1670 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1671 && (cdm->pos.cookie.device == device) 1672 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1673 && (cdm->pos.cookie.periph != NULL)) 1674 retval = DM_RET_DESCEND; 1675 else 1676 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1677 device); 1678 1679 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1680 cdm->status = CAM_DEV_MATCH_ERROR; 1681 return(0); 1682 } 1683 1684 /* 1685 * If the copy flag is set, copy this device out. 1686 */ 1687 if (retval & DM_RET_COPY) { 1688 int spaceleft, j; 1689 1690 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1691 sizeof(struct dev_match_result)); 1692 1693 /* 1694 * If we don't have enough space to put in another 1695 * match result, save our position and tell the 1696 * user there are more devices to check. 1697 */ 1698 if (spaceleft < sizeof(struct dev_match_result)) { 1699 bzero(&cdm->pos, sizeof(cdm->pos)); 1700 cdm->pos.position_type = 1701 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1702 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1703 1704 cdm->pos.cookie.bus = device->target->bus; 1705 cdm->pos.generations[CAM_BUS_GENERATION]= 1706 xsoftc.bus_generation; 1707 cdm->pos.cookie.target = device->target; 1708 cdm->pos.generations[CAM_TARGET_GENERATION] = 1709 device->target->bus->generation; 1710 cdm->pos.cookie.device = device; 1711 cdm->pos.generations[CAM_DEV_GENERATION] = 1712 device->target->generation; 1713 cdm->status = CAM_DEV_MATCH_MORE; 1714 return(0); 1715 } 1716 j = cdm->num_matches; 1717 cdm->num_matches++; 1718 cdm->matches[j].type = DEV_MATCH_DEVICE; 1719 cdm->matches[j].result.device_result.path_id = 1720 device->target->bus->path_id; 1721 cdm->matches[j].result.device_result.target_id = 1722 device->target->target_id; 1723 cdm->matches[j].result.device_result.target_lun = 1724 device->lun_id; 1725 cdm->matches[j].result.device_result.protocol = 1726 device->protocol; 1727 bcopy(&device->inq_data, 1728 &cdm->matches[j].result.device_result.inq_data, 1729 sizeof(struct scsi_inquiry_data)); 1730 bcopy(&device->ident_data, 1731 &cdm->matches[j].result.device_result.ident_data, 1732 sizeof(struct ata_params)); 1733 1734 /* Let the user know whether this device is unconfigured */ 1735 if (device->flags & CAM_DEV_UNCONFIGURED) 1736 cdm->matches[j].result.device_result.flags = 1737 DEV_RESULT_UNCONFIGURED; 1738 else 1739 cdm->matches[j].result.device_result.flags = 1740 DEV_RESULT_NOFLAG; 1741 } 1742 1743 /* 1744 * If the user isn't interested in peripherals, don't descend 1745 * the tree any further. 1746 */ 1747 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1748 return(1); 1749 1750 /* 1751 * If there is a peripheral list generation recorded, make sure 1752 * it hasn't changed. 1753 */ 1754 xpt_lock_buses(); 1755 mtx_lock(&bus->eb_mtx); 1756 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1757 && (cdm->pos.cookie.bus == bus) 1758 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1759 && (cdm->pos.cookie.target == device->target) 1760 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1761 && (cdm->pos.cookie.device == device) 1762 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1763 && (cdm->pos.cookie.periph != NULL)) { 1764 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1765 device->generation) { 1766 mtx_unlock(&bus->eb_mtx); 1767 xpt_unlock_buses(); 1768 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1769 return(0); 1770 } 1771 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1772 periph->refcount++; 1773 } else 1774 periph = NULL; 1775 mtx_unlock(&bus->eb_mtx); 1776 xpt_unlock_buses(); 1777 1778 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1779 } 1780 1781 static int 1782 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1783 { 1784 struct ccb_dev_match *cdm; 1785 dev_match_ret retval; 1786 1787 cdm = (struct ccb_dev_match *)arg; 1788 1789 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1790 1791 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1792 cdm->status = CAM_DEV_MATCH_ERROR; 1793 return(0); 1794 } 1795 1796 /* 1797 * If the copy flag is set, copy this peripheral out. 1798 */ 1799 if (retval & DM_RET_COPY) { 1800 int spaceleft, j; 1801 1802 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1803 sizeof(struct dev_match_result)); 1804 1805 /* 1806 * If we don't have enough space to put in another 1807 * match result, save our position and tell the 1808 * user there are more devices to check. 1809 */ 1810 if (spaceleft < sizeof(struct dev_match_result)) { 1811 bzero(&cdm->pos, sizeof(cdm->pos)); 1812 cdm->pos.position_type = 1813 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1814 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1815 CAM_DEV_POS_PERIPH; 1816 1817 cdm->pos.cookie.bus = periph->path->bus; 1818 cdm->pos.generations[CAM_BUS_GENERATION]= 1819 xsoftc.bus_generation; 1820 cdm->pos.cookie.target = periph->path->target; 1821 cdm->pos.generations[CAM_TARGET_GENERATION] = 1822 periph->path->bus->generation; 1823 cdm->pos.cookie.device = periph->path->device; 1824 cdm->pos.generations[CAM_DEV_GENERATION] = 1825 periph->path->target->generation; 1826 cdm->pos.cookie.periph = periph; 1827 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1828 periph->path->device->generation; 1829 cdm->status = CAM_DEV_MATCH_MORE; 1830 return(0); 1831 } 1832 1833 j = cdm->num_matches; 1834 cdm->num_matches++; 1835 cdm->matches[j].type = DEV_MATCH_PERIPH; 1836 cdm->matches[j].result.periph_result.path_id = 1837 periph->path->bus->path_id; 1838 cdm->matches[j].result.periph_result.target_id = 1839 periph->path->target->target_id; 1840 cdm->matches[j].result.periph_result.target_lun = 1841 periph->path->device->lun_id; 1842 cdm->matches[j].result.periph_result.unit_number = 1843 periph->unit_number; 1844 strncpy(cdm->matches[j].result.periph_result.periph_name, 1845 periph->periph_name, DEV_IDLEN); 1846 } 1847 1848 return(1); 1849 } 1850 1851 static int 1852 xptedtmatch(struct ccb_dev_match *cdm) 1853 { 1854 struct cam_eb *bus; 1855 int ret; 1856 1857 cdm->num_matches = 0; 1858 1859 /* 1860 * Check the bus list generation. If it has changed, the user 1861 * needs to reset everything and start over. 1862 */ 1863 xpt_lock_buses(); 1864 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1865 && (cdm->pos.cookie.bus != NULL)) { 1866 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1867 xsoftc.bus_generation) { 1868 xpt_unlock_buses(); 1869 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1870 return(0); 1871 } 1872 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1873 bus->refcount++; 1874 } else 1875 bus = NULL; 1876 xpt_unlock_buses(); 1877 1878 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1879 1880 /* 1881 * If we get back 0, that means that we had to stop before fully 1882 * traversing the EDT. It also means that one of the subroutines 1883 * has set the status field to the proper value. If we get back 1, 1884 * we've fully traversed the EDT and copied out any matching entries. 1885 */ 1886 if (ret == 1) 1887 cdm->status = CAM_DEV_MATCH_LAST; 1888 1889 return(ret); 1890 } 1891 1892 static int 1893 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1894 { 1895 struct cam_periph *periph; 1896 struct ccb_dev_match *cdm; 1897 1898 cdm = (struct ccb_dev_match *)arg; 1899 1900 xpt_lock_buses(); 1901 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1902 && (cdm->pos.cookie.pdrv == pdrv) 1903 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1904 && (cdm->pos.cookie.periph != NULL)) { 1905 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1906 (*pdrv)->generation) { 1907 xpt_unlock_buses(); 1908 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1909 return(0); 1910 } 1911 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1912 periph->refcount++; 1913 } else 1914 periph = NULL; 1915 xpt_unlock_buses(); 1916 1917 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1918 } 1919 1920 static int 1921 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1922 { 1923 struct ccb_dev_match *cdm; 1924 dev_match_ret retval; 1925 1926 cdm = (struct ccb_dev_match *)arg; 1927 1928 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1929 1930 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1931 cdm->status = CAM_DEV_MATCH_ERROR; 1932 return(0); 1933 } 1934 1935 /* 1936 * If the copy flag is set, copy this peripheral out. 1937 */ 1938 if (retval & DM_RET_COPY) { 1939 int spaceleft, j; 1940 1941 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1942 sizeof(struct dev_match_result)); 1943 1944 /* 1945 * If we don't have enough space to put in another 1946 * match result, save our position and tell the 1947 * user there are more devices to check. 1948 */ 1949 if (spaceleft < sizeof(struct dev_match_result)) { 1950 struct periph_driver **pdrv; 1951 1952 pdrv = NULL; 1953 bzero(&cdm->pos, sizeof(cdm->pos)); 1954 cdm->pos.position_type = 1955 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1956 CAM_DEV_POS_PERIPH; 1957 1958 /* 1959 * This may look a bit non-sensical, but it is 1960 * actually quite logical. There are very few 1961 * peripheral drivers, and bloating every peripheral 1962 * structure with a pointer back to its parent 1963 * peripheral driver linker set entry would cost 1964 * more in the long run than doing this quick lookup. 1965 */ 1966 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1967 if (strcmp((*pdrv)->driver_name, 1968 periph->periph_name) == 0) 1969 break; 1970 } 1971 1972 if (*pdrv == NULL) { 1973 cdm->status = CAM_DEV_MATCH_ERROR; 1974 return(0); 1975 } 1976 1977 cdm->pos.cookie.pdrv = pdrv; 1978 /* 1979 * The periph generation slot does double duty, as 1980 * does the periph pointer slot. They are used for 1981 * both edt and pdrv lookups and positioning. 1982 */ 1983 cdm->pos.cookie.periph = periph; 1984 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1985 (*pdrv)->generation; 1986 cdm->status = CAM_DEV_MATCH_MORE; 1987 return(0); 1988 } 1989 1990 j = cdm->num_matches; 1991 cdm->num_matches++; 1992 cdm->matches[j].type = DEV_MATCH_PERIPH; 1993 cdm->matches[j].result.periph_result.path_id = 1994 periph->path->bus->path_id; 1995 1996 /* 1997 * The transport layer peripheral doesn't have a target or 1998 * lun. 1999 */ 2000 if (periph->path->target) 2001 cdm->matches[j].result.periph_result.target_id = 2002 periph->path->target->target_id; 2003 else 2004 cdm->matches[j].result.periph_result.target_id = 2005 CAM_TARGET_WILDCARD; 2006 2007 if (periph->path->device) 2008 cdm->matches[j].result.periph_result.target_lun = 2009 periph->path->device->lun_id; 2010 else 2011 cdm->matches[j].result.periph_result.target_lun = 2012 CAM_LUN_WILDCARD; 2013 2014 cdm->matches[j].result.periph_result.unit_number = 2015 periph->unit_number; 2016 strncpy(cdm->matches[j].result.periph_result.periph_name, 2017 periph->periph_name, DEV_IDLEN); 2018 } 2019 2020 return(1); 2021 } 2022 2023 static int 2024 xptperiphlistmatch(struct ccb_dev_match *cdm) 2025 { 2026 int ret; 2027 2028 cdm->num_matches = 0; 2029 2030 /* 2031 * At this point in the edt traversal function, we check the bus 2032 * list generation to make sure that no busses have been added or 2033 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2034 * For the peripheral driver list traversal function, however, we 2035 * don't have to worry about new peripheral driver types coming or 2036 * going; they're in a linker set, and therefore can't change 2037 * without a recompile. 2038 */ 2039 2040 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2041 && (cdm->pos.cookie.pdrv != NULL)) 2042 ret = xptpdrvtraverse( 2043 (struct periph_driver **)cdm->pos.cookie.pdrv, 2044 xptplistpdrvfunc, cdm); 2045 else 2046 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2047 2048 /* 2049 * If we get back 0, that means that we had to stop before fully 2050 * traversing the peripheral driver tree. It also means that one of 2051 * the subroutines has set the status field to the proper value. If 2052 * we get back 1, we've fully traversed the EDT and copied out any 2053 * matching entries. 2054 */ 2055 if (ret == 1) 2056 cdm->status = CAM_DEV_MATCH_LAST; 2057 2058 return(ret); 2059 } 2060 2061 static int 2062 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2063 { 2064 struct cam_eb *bus, *next_bus; 2065 int retval; 2066 2067 retval = 1; 2068 if (start_bus) 2069 bus = start_bus; 2070 else { 2071 xpt_lock_buses(); 2072 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2073 if (bus == NULL) { 2074 xpt_unlock_buses(); 2075 return (retval); 2076 } 2077 bus->refcount++; 2078 xpt_unlock_buses(); 2079 } 2080 for (; bus != NULL; bus = next_bus) { 2081 retval = tr_func(bus, arg); 2082 if (retval == 0) { 2083 xpt_release_bus(bus); 2084 break; 2085 } 2086 xpt_lock_buses(); 2087 next_bus = TAILQ_NEXT(bus, links); 2088 if (next_bus) 2089 next_bus->refcount++; 2090 xpt_unlock_buses(); 2091 xpt_release_bus(bus); 2092 } 2093 return(retval); 2094 } 2095 2096 static int 2097 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2098 xpt_targetfunc_t *tr_func, void *arg) 2099 { 2100 struct cam_et *target, *next_target; 2101 int retval; 2102 2103 retval = 1; 2104 if (start_target) 2105 target = start_target; 2106 else { 2107 mtx_lock(&bus->eb_mtx); 2108 target = TAILQ_FIRST(&bus->et_entries); 2109 if (target == NULL) { 2110 mtx_unlock(&bus->eb_mtx); 2111 return (retval); 2112 } 2113 target->refcount++; 2114 mtx_unlock(&bus->eb_mtx); 2115 } 2116 for (; target != NULL; target = next_target) { 2117 retval = tr_func(target, arg); 2118 if (retval == 0) { 2119 xpt_release_target(target); 2120 break; 2121 } 2122 mtx_lock(&bus->eb_mtx); 2123 next_target = TAILQ_NEXT(target, links); 2124 if (next_target) 2125 next_target->refcount++; 2126 mtx_unlock(&bus->eb_mtx); 2127 xpt_release_target(target); 2128 } 2129 return(retval); 2130 } 2131 2132 static int 2133 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2134 xpt_devicefunc_t *tr_func, void *arg) 2135 { 2136 struct cam_eb *bus; 2137 struct cam_ed *device, *next_device; 2138 int retval; 2139 2140 retval = 1; 2141 bus = target->bus; 2142 if (start_device) 2143 device = start_device; 2144 else { 2145 mtx_lock(&bus->eb_mtx); 2146 device = TAILQ_FIRST(&target->ed_entries); 2147 if (device == NULL) { 2148 mtx_unlock(&bus->eb_mtx); 2149 return (retval); 2150 } 2151 device->refcount++; 2152 mtx_unlock(&bus->eb_mtx); 2153 } 2154 for (; device != NULL; device = next_device) { 2155 mtx_lock(&device->device_mtx); 2156 retval = tr_func(device, arg); 2157 mtx_unlock(&device->device_mtx); 2158 if (retval == 0) { 2159 xpt_release_device(device); 2160 break; 2161 } 2162 mtx_lock(&bus->eb_mtx); 2163 next_device = TAILQ_NEXT(device, links); 2164 if (next_device) 2165 next_device->refcount++; 2166 mtx_unlock(&bus->eb_mtx); 2167 xpt_release_device(device); 2168 } 2169 return(retval); 2170 } 2171 2172 static int 2173 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2174 xpt_periphfunc_t *tr_func, void *arg) 2175 { 2176 struct cam_eb *bus; 2177 struct cam_periph *periph, *next_periph; 2178 int retval; 2179 2180 retval = 1; 2181 2182 bus = device->target->bus; 2183 if (start_periph) 2184 periph = start_periph; 2185 else { 2186 xpt_lock_buses(); 2187 mtx_lock(&bus->eb_mtx); 2188 periph = SLIST_FIRST(&device->periphs); 2189 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2190 periph = SLIST_NEXT(periph, periph_links); 2191 if (periph == NULL) { 2192 mtx_unlock(&bus->eb_mtx); 2193 xpt_unlock_buses(); 2194 return (retval); 2195 } 2196 periph->refcount++; 2197 mtx_unlock(&bus->eb_mtx); 2198 xpt_unlock_buses(); 2199 } 2200 for (; periph != NULL; periph = next_periph) { 2201 retval = tr_func(periph, arg); 2202 if (retval == 0) { 2203 cam_periph_release_locked(periph); 2204 break; 2205 } 2206 xpt_lock_buses(); 2207 mtx_lock(&bus->eb_mtx); 2208 next_periph = SLIST_NEXT(periph, periph_links); 2209 while (next_periph != NULL && 2210 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2211 next_periph = SLIST_NEXT(next_periph, periph_links); 2212 if (next_periph) 2213 next_periph->refcount++; 2214 mtx_unlock(&bus->eb_mtx); 2215 xpt_unlock_buses(); 2216 cam_periph_release_locked(periph); 2217 } 2218 return(retval); 2219 } 2220 2221 static int 2222 xptpdrvtraverse(struct periph_driver **start_pdrv, 2223 xpt_pdrvfunc_t *tr_func, void *arg) 2224 { 2225 struct periph_driver **pdrv; 2226 int retval; 2227 2228 retval = 1; 2229 2230 /* 2231 * We don't traverse the peripheral driver list like we do the 2232 * other lists, because it is a linker set, and therefore cannot be 2233 * changed during runtime. If the peripheral driver list is ever 2234 * re-done to be something other than a linker set (i.e. it can 2235 * change while the system is running), the list traversal should 2236 * be modified to work like the other traversal functions. 2237 */ 2238 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2239 *pdrv != NULL; pdrv++) { 2240 retval = tr_func(pdrv, arg); 2241 2242 if (retval == 0) 2243 return(retval); 2244 } 2245 2246 return(retval); 2247 } 2248 2249 static int 2250 xptpdperiphtraverse(struct periph_driver **pdrv, 2251 struct cam_periph *start_periph, 2252 xpt_periphfunc_t *tr_func, void *arg) 2253 { 2254 struct cam_periph *periph, *next_periph; 2255 int retval; 2256 2257 retval = 1; 2258 2259 if (start_periph) 2260 periph = start_periph; 2261 else { 2262 xpt_lock_buses(); 2263 periph = TAILQ_FIRST(&(*pdrv)->units); 2264 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2265 periph = TAILQ_NEXT(periph, unit_links); 2266 if (periph == NULL) { 2267 xpt_unlock_buses(); 2268 return (retval); 2269 } 2270 periph->refcount++; 2271 xpt_unlock_buses(); 2272 } 2273 for (; periph != NULL; periph = next_periph) { 2274 cam_periph_lock(periph); 2275 retval = tr_func(periph, arg); 2276 cam_periph_unlock(periph); 2277 if (retval == 0) { 2278 cam_periph_release(periph); 2279 break; 2280 } 2281 xpt_lock_buses(); 2282 next_periph = TAILQ_NEXT(periph, unit_links); 2283 while (next_periph != NULL && 2284 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2285 next_periph = TAILQ_NEXT(next_periph, unit_links); 2286 if (next_periph) 2287 next_periph->refcount++; 2288 xpt_unlock_buses(); 2289 cam_periph_release(periph); 2290 } 2291 return(retval); 2292 } 2293 2294 static int 2295 xptdefbusfunc(struct cam_eb *bus, void *arg) 2296 { 2297 struct xpt_traverse_config *tr_config; 2298 2299 tr_config = (struct xpt_traverse_config *)arg; 2300 2301 if (tr_config->depth == XPT_DEPTH_BUS) { 2302 xpt_busfunc_t *tr_func; 2303 2304 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2305 2306 return(tr_func(bus, tr_config->tr_arg)); 2307 } else 2308 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2309 } 2310 2311 static int 2312 xptdeftargetfunc(struct cam_et *target, void *arg) 2313 { 2314 struct xpt_traverse_config *tr_config; 2315 2316 tr_config = (struct xpt_traverse_config *)arg; 2317 2318 if (tr_config->depth == XPT_DEPTH_TARGET) { 2319 xpt_targetfunc_t *tr_func; 2320 2321 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2322 2323 return(tr_func(target, tr_config->tr_arg)); 2324 } else 2325 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2326 } 2327 2328 static int 2329 xptdefdevicefunc(struct cam_ed *device, void *arg) 2330 { 2331 struct xpt_traverse_config *tr_config; 2332 2333 tr_config = (struct xpt_traverse_config *)arg; 2334 2335 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2336 xpt_devicefunc_t *tr_func; 2337 2338 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2339 2340 return(tr_func(device, tr_config->tr_arg)); 2341 } else 2342 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2343 } 2344 2345 static int 2346 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2347 { 2348 struct xpt_traverse_config *tr_config; 2349 xpt_periphfunc_t *tr_func; 2350 2351 tr_config = (struct xpt_traverse_config *)arg; 2352 2353 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2354 2355 /* 2356 * Unlike the other default functions, we don't check for depth 2357 * here. The peripheral driver level is the last level in the EDT, 2358 * so if we're here, we should execute the function in question. 2359 */ 2360 return(tr_func(periph, tr_config->tr_arg)); 2361 } 2362 2363 /* 2364 * Execute the given function for every bus in the EDT. 2365 */ 2366 static int 2367 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2368 { 2369 struct xpt_traverse_config tr_config; 2370 2371 tr_config.depth = XPT_DEPTH_BUS; 2372 tr_config.tr_func = tr_func; 2373 tr_config.tr_arg = arg; 2374 2375 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2376 } 2377 2378 /* 2379 * Execute the given function for every device in the EDT. 2380 */ 2381 static int 2382 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2383 { 2384 struct xpt_traverse_config tr_config; 2385 2386 tr_config.depth = XPT_DEPTH_DEVICE; 2387 tr_config.tr_func = tr_func; 2388 tr_config.tr_arg = arg; 2389 2390 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2391 } 2392 2393 static int 2394 xptsetasyncfunc(struct cam_ed *device, void *arg) 2395 { 2396 struct cam_path path; 2397 struct ccb_getdev cgd; 2398 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2399 2400 /* 2401 * Don't report unconfigured devices (Wildcard devs, 2402 * devices only for target mode, device instances 2403 * that have been invalidated but are waiting for 2404 * their last reference count to be released). 2405 */ 2406 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2407 return (1); 2408 2409 xpt_compile_path(&path, 2410 NULL, 2411 device->target->bus->path_id, 2412 device->target->target_id, 2413 device->lun_id); 2414 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2415 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2416 xpt_action((union ccb *)&cgd); 2417 csa->callback(csa->callback_arg, 2418 AC_FOUND_DEVICE, 2419 &path, &cgd); 2420 xpt_release_path(&path); 2421 2422 return(1); 2423 } 2424 2425 static int 2426 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2427 { 2428 struct cam_path path; 2429 struct ccb_pathinq cpi; 2430 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2431 2432 xpt_compile_path(&path, /*periph*/NULL, 2433 bus->path_id, 2434 CAM_TARGET_WILDCARD, 2435 CAM_LUN_WILDCARD); 2436 xpt_path_lock(&path); 2437 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2438 cpi.ccb_h.func_code = XPT_PATH_INQ; 2439 xpt_action((union ccb *)&cpi); 2440 csa->callback(csa->callback_arg, 2441 AC_PATH_REGISTERED, 2442 &path, &cpi); 2443 xpt_path_unlock(&path); 2444 xpt_release_path(&path); 2445 2446 return(1); 2447 } 2448 2449 void 2450 xpt_action(union ccb *start_ccb) 2451 { 2452 2453 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2454 2455 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2456 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2457 } 2458 2459 void 2460 xpt_action_default(union ccb *start_ccb) 2461 { 2462 struct cam_path *path; 2463 struct cam_sim *sim; 2464 int lock; 2465 2466 path = start_ccb->ccb_h.path; 2467 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2468 2469 switch (start_ccb->ccb_h.func_code) { 2470 case XPT_SCSI_IO: 2471 { 2472 struct cam_ed *device; 2473 2474 /* 2475 * For the sake of compatibility with SCSI-1 2476 * devices that may not understand the identify 2477 * message, we include lun information in the 2478 * second byte of all commands. SCSI-1 specifies 2479 * that luns are a 3 bit value and reserves only 3 2480 * bits for lun information in the CDB. Later 2481 * revisions of the SCSI spec allow for more than 8 2482 * luns, but have deprecated lun information in the 2483 * CDB. So, if the lun won't fit, we must omit. 2484 * 2485 * Also be aware that during initial probing for devices, 2486 * the inquiry information is unknown but initialized to 0. 2487 * This means that this code will be exercised while probing 2488 * devices with an ANSI revision greater than 2. 2489 */ 2490 device = path->device; 2491 if (device->protocol_version <= SCSI_REV_2 2492 && start_ccb->ccb_h.target_lun < 8 2493 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2494 2495 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2496 start_ccb->ccb_h.target_lun << 5; 2497 } 2498 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2499 } 2500 /* FALLTHROUGH */ 2501 case XPT_TARGET_IO: 2502 case XPT_CONT_TARGET_IO: 2503 start_ccb->csio.sense_resid = 0; 2504 start_ccb->csio.resid = 0; 2505 /* FALLTHROUGH */ 2506 case XPT_ATA_IO: 2507 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2508 start_ccb->ataio.resid = 0; 2509 /* FALLTHROUGH */ 2510 case XPT_RESET_DEV: 2511 case XPT_ENG_EXEC: 2512 case XPT_SMP_IO: 2513 { 2514 struct cam_devq *devq; 2515 2516 devq = path->bus->sim->devq; 2517 mtx_lock(&devq->send_mtx); 2518 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2519 if (xpt_schedule_devq(devq, path->device) != 0) 2520 xpt_run_devq(devq); 2521 mtx_unlock(&devq->send_mtx); 2522 break; 2523 } 2524 case XPT_CALC_GEOMETRY: 2525 /* Filter out garbage */ 2526 if (start_ccb->ccg.block_size == 0 2527 || start_ccb->ccg.volume_size == 0) { 2528 start_ccb->ccg.cylinders = 0; 2529 start_ccb->ccg.heads = 0; 2530 start_ccb->ccg.secs_per_track = 0; 2531 start_ccb->ccb_h.status = CAM_REQ_CMP; 2532 break; 2533 } 2534 #if defined(PC98) || defined(__sparc64__) 2535 /* 2536 * In a PC-98 system, geometry translation depens on 2537 * the "real" device geometry obtained from mode page 4. 2538 * SCSI geometry translation is performed in the 2539 * initialization routine of the SCSI BIOS and the result 2540 * stored in host memory. If the translation is available 2541 * in host memory, use it. If not, rely on the default 2542 * translation the device driver performs. 2543 * For sparc64, we may need adjust the geometry of large 2544 * disks in order to fit the limitations of the 16-bit 2545 * fields of the VTOC8 disk label. 2546 */ 2547 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2548 start_ccb->ccb_h.status = CAM_REQ_CMP; 2549 break; 2550 } 2551 #endif 2552 goto call_sim; 2553 case XPT_ABORT: 2554 { 2555 union ccb* abort_ccb; 2556 2557 abort_ccb = start_ccb->cab.abort_ccb; 2558 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2559 2560 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2561 struct cam_ccbq *ccbq; 2562 struct cam_ed *device; 2563 2564 device = abort_ccb->ccb_h.path->device; 2565 ccbq = &device->ccbq; 2566 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2567 abort_ccb->ccb_h.status = 2568 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2569 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2570 xpt_done(abort_ccb); 2571 start_ccb->ccb_h.status = CAM_REQ_CMP; 2572 break; 2573 } 2574 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2575 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2576 /* 2577 * We've caught this ccb en route to 2578 * the SIM. Flag it for abort and the 2579 * SIM will do so just before starting 2580 * real work on the CCB. 2581 */ 2582 abort_ccb->ccb_h.status = 2583 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2584 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2585 start_ccb->ccb_h.status = CAM_REQ_CMP; 2586 break; 2587 } 2588 } 2589 if (XPT_FC_IS_QUEUED(abort_ccb) 2590 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2591 /* 2592 * It's already completed but waiting 2593 * for our SWI to get to it. 2594 */ 2595 start_ccb->ccb_h.status = CAM_UA_ABORT; 2596 break; 2597 } 2598 /* 2599 * If we weren't able to take care of the abort request 2600 * in the XPT, pass the request down to the SIM for processing. 2601 */ 2602 } 2603 /* FALLTHROUGH */ 2604 case XPT_ACCEPT_TARGET_IO: 2605 case XPT_EN_LUN: 2606 case XPT_IMMED_NOTIFY: 2607 case XPT_NOTIFY_ACK: 2608 case XPT_RESET_BUS: 2609 case XPT_IMMEDIATE_NOTIFY: 2610 case XPT_NOTIFY_ACKNOWLEDGE: 2611 case XPT_GET_SIM_KNOB: 2612 case XPT_SET_SIM_KNOB: 2613 case XPT_GET_TRAN_SETTINGS: 2614 case XPT_SET_TRAN_SETTINGS: 2615 case XPT_PATH_INQ: 2616 call_sim: 2617 sim = path->bus->sim; 2618 lock = (mtx_owned(sim->mtx) == 0); 2619 if (lock) 2620 CAM_SIM_LOCK(sim); 2621 (*(sim->sim_action))(sim, start_ccb); 2622 if (lock) 2623 CAM_SIM_UNLOCK(sim); 2624 break; 2625 case XPT_PATH_STATS: 2626 start_ccb->cpis.last_reset = path->bus->last_reset; 2627 start_ccb->ccb_h.status = CAM_REQ_CMP; 2628 break; 2629 case XPT_GDEV_TYPE: 2630 { 2631 struct cam_ed *dev; 2632 2633 dev = path->device; 2634 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2635 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2636 } else { 2637 struct ccb_getdev *cgd; 2638 2639 cgd = &start_ccb->cgd; 2640 cgd->protocol = dev->protocol; 2641 cgd->inq_data = dev->inq_data; 2642 cgd->ident_data = dev->ident_data; 2643 cgd->inq_flags = dev->inq_flags; 2644 cgd->ccb_h.status = CAM_REQ_CMP; 2645 cgd->serial_num_len = dev->serial_num_len; 2646 if ((dev->serial_num_len > 0) 2647 && (dev->serial_num != NULL)) 2648 bcopy(dev->serial_num, cgd->serial_num, 2649 dev->serial_num_len); 2650 } 2651 break; 2652 } 2653 case XPT_GDEV_STATS: 2654 { 2655 struct cam_ed *dev; 2656 2657 dev = path->device; 2658 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2659 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2660 } else { 2661 struct ccb_getdevstats *cgds; 2662 struct cam_eb *bus; 2663 struct cam_et *tar; 2664 struct cam_devq *devq; 2665 2666 cgds = &start_ccb->cgds; 2667 bus = path->bus; 2668 tar = path->target; 2669 devq = bus->sim->devq; 2670 mtx_lock(&devq->send_mtx); 2671 cgds->dev_openings = dev->ccbq.dev_openings; 2672 cgds->dev_active = dev->ccbq.dev_active; 2673 cgds->allocated = dev->ccbq.allocated; 2674 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2675 cgds->held = cgds->allocated - cgds->dev_active - 2676 cgds->queued; 2677 cgds->last_reset = tar->last_reset; 2678 cgds->maxtags = dev->maxtags; 2679 cgds->mintags = dev->mintags; 2680 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2681 cgds->last_reset = bus->last_reset; 2682 mtx_unlock(&devq->send_mtx); 2683 cgds->ccb_h.status = CAM_REQ_CMP; 2684 } 2685 break; 2686 } 2687 case XPT_GDEVLIST: 2688 { 2689 struct cam_periph *nperiph; 2690 struct periph_list *periph_head; 2691 struct ccb_getdevlist *cgdl; 2692 u_int i; 2693 struct cam_ed *device; 2694 int found; 2695 2696 2697 found = 0; 2698 2699 /* 2700 * Don't want anyone mucking with our data. 2701 */ 2702 device = path->device; 2703 periph_head = &device->periphs; 2704 cgdl = &start_ccb->cgdl; 2705 2706 /* 2707 * Check and see if the list has changed since the user 2708 * last requested a list member. If so, tell them that the 2709 * list has changed, and therefore they need to start over 2710 * from the beginning. 2711 */ 2712 if ((cgdl->index != 0) && 2713 (cgdl->generation != device->generation)) { 2714 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2715 break; 2716 } 2717 2718 /* 2719 * Traverse the list of peripherals and attempt to find 2720 * the requested peripheral. 2721 */ 2722 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2723 (nperiph != NULL) && (i <= cgdl->index); 2724 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2725 if (i == cgdl->index) { 2726 strncpy(cgdl->periph_name, 2727 nperiph->periph_name, 2728 DEV_IDLEN); 2729 cgdl->unit_number = nperiph->unit_number; 2730 found = 1; 2731 } 2732 } 2733 if (found == 0) { 2734 cgdl->status = CAM_GDEVLIST_ERROR; 2735 break; 2736 } 2737 2738 if (nperiph == NULL) 2739 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2740 else 2741 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2742 2743 cgdl->index++; 2744 cgdl->generation = device->generation; 2745 2746 cgdl->ccb_h.status = CAM_REQ_CMP; 2747 break; 2748 } 2749 case XPT_DEV_MATCH: 2750 { 2751 dev_pos_type position_type; 2752 struct ccb_dev_match *cdm; 2753 2754 cdm = &start_ccb->cdm; 2755 2756 /* 2757 * There are two ways of getting at information in the EDT. 2758 * The first way is via the primary EDT tree. It starts 2759 * with a list of busses, then a list of targets on a bus, 2760 * then devices/luns on a target, and then peripherals on a 2761 * device/lun. The "other" way is by the peripheral driver 2762 * lists. The peripheral driver lists are organized by 2763 * peripheral driver. (obviously) So it makes sense to 2764 * use the peripheral driver list if the user is looking 2765 * for something like "da1", or all "da" devices. If the 2766 * user is looking for something on a particular bus/target 2767 * or lun, it's generally better to go through the EDT tree. 2768 */ 2769 2770 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2771 position_type = cdm->pos.position_type; 2772 else { 2773 u_int i; 2774 2775 position_type = CAM_DEV_POS_NONE; 2776 2777 for (i = 0; i < cdm->num_patterns; i++) { 2778 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2779 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2780 position_type = CAM_DEV_POS_EDT; 2781 break; 2782 } 2783 } 2784 2785 if (cdm->num_patterns == 0) 2786 position_type = CAM_DEV_POS_EDT; 2787 else if (position_type == CAM_DEV_POS_NONE) 2788 position_type = CAM_DEV_POS_PDRV; 2789 } 2790 2791 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2792 case CAM_DEV_POS_EDT: 2793 xptedtmatch(cdm); 2794 break; 2795 case CAM_DEV_POS_PDRV: 2796 xptperiphlistmatch(cdm); 2797 break; 2798 default: 2799 cdm->status = CAM_DEV_MATCH_ERROR; 2800 break; 2801 } 2802 2803 if (cdm->status == CAM_DEV_MATCH_ERROR) 2804 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2805 else 2806 start_ccb->ccb_h.status = CAM_REQ_CMP; 2807 2808 break; 2809 } 2810 case XPT_SASYNC_CB: 2811 { 2812 struct ccb_setasync *csa; 2813 struct async_node *cur_entry; 2814 struct async_list *async_head; 2815 u_int32_t added; 2816 2817 csa = &start_ccb->csa; 2818 added = csa->event_enable; 2819 async_head = &path->device->asyncs; 2820 2821 /* 2822 * If there is already an entry for us, simply 2823 * update it. 2824 */ 2825 cur_entry = SLIST_FIRST(async_head); 2826 while (cur_entry != NULL) { 2827 if ((cur_entry->callback_arg == csa->callback_arg) 2828 && (cur_entry->callback == csa->callback)) 2829 break; 2830 cur_entry = SLIST_NEXT(cur_entry, links); 2831 } 2832 2833 if (cur_entry != NULL) { 2834 /* 2835 * If the request has no flags set, 2836 * remove the entry. 2837 */ 2838 added &= ~cur_entry->event_enable; 2839 if (csa->event_enable == 0) { 2840 SLIST_REMOVE(async_head, cur_entry, 2841 async_node, links); 2842 xpt_release_device(path->device); 2843 free(cur_entry, M_CAMXPT); 2844 } else { 2845 cur_entry->event_enable = csa->event_enable; 2846 } 2847 csa->event_enable = added; 2848 } else { 2849 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2850 M_NOWAIT); 2851 if (cur_entry == NULL) { 2852 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2853 break; 2854 } 2855 cur_entry->event_enable = csa->event_enable; 2856 cur_entry->event_lock = 2857 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2858 cur_entry->callback_arg = csa->callback_arg; 2859 cur_entry->callback = csa->callback; 2860 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2861 xpt_acquire_device(path->device); 2862 } 2863 start_ccb->ccb_h.status = CAM_REQ_CMP; 2864 break; 2865 } 2866 case XPT_REL_SIMQ: 2867 { 2868 struct ccb_relsim *crs; 2869 struct cam_ed *dev; 2870 2871 crs = &start_ccb->crs; 2872 dev = path->device; 2873 if (dev == NULL) { 2874 2875 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2876 break; 2877 } 2878 2879 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2880 2881 /* Don't ever go below one opening */ 2882 if (crs->openings > 0) { 2883 xpt_dev_ccbq_resize(path, crs->openings); 2884 if (bootverbose) { 2885 xpt_print(path, 2886 "number of openings is now %d\n", 2887 crs->openings); 2888 } 2889 } 2890 } 2891 2892 mtx_lock(&dev->sim->devq->send_mtx); 2893 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2894 2895 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2896 2897 /* 2898 * Just extend the old timeout and decrement 2899 * the freeze count so that a single timeout 2900 * is sufficient for releasing the queue. 2901 */ 2902 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2903 callout_stop(&dev->callout); 2904 } else { 2905 2906 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2907 } 2908 2909 callout_reset_sbt(&dev->callout, 2910 SBT_1MS * crs->release_timeout, 0, 2911 xpt_release_devq_timeout, dev, 0); 2912 2913 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2914 2915 } 2916 2917 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2918 2919 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2920 /* 2921 * Decrement the freeze count so that a single 2922 * completion is still sufficient to unfreeze 2923 * the queue. 2924 */ 2925 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2926 } else { 2927 2928 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2929 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2930 } 2931 } 2932 2933 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2934 2935 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2936 || (dev->ccbq.dev_active == 0)) { 2937 2938 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2939 } else { 2940 2941 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2942 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2943 } 2944 } 2945 mtx_unlock(&dev->sim->devq->send_mtx); 2946 2947 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2948 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2949 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2950 start_ccb->ccb_h.status = CAM_REQ_CMP; 2951 break; 2952 } 2953 case XPT_DEBUG: { 2954 struct cam_path *oldpath; 2955 2956 /* Check that all request bits are supported. */ 2957 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2958 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2959 break; 2960 } 2961 2962 cam_dflags = CAM_DEBUG_NONE; 2963 if (cam_dpath != NULL) { 2964 oldpath = cam_dpath; 2965 cam_dpath = NULL; 2966 xpt_free_path(oldpath); 2967 } 2968 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2969 if (xpt_create_path(&cam_dpath, NULL, 2970 start_ccb->ccb_h.path_id, 2971 start_ccb->ccb_h.target_id, 2972 start_ccb->ccb_h.target_lun) != 2973 CAM_REQ_CMP) { 2974 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2975 } else { 2976 cam_dflags = start_ccb->cdbg.flags; 2977 start_ccb->ccb_h.status = CAM_REQ_CMP; 2978 xpt_print(cam_dpath, "debugging flags now %x\n", 2979 cam_dflags); 2980 } 2981 } else 2982 start_ccb->ccb_h.status = CAM_REQ_CMP; 2983 break; 2984 } 2985 case XPT_NOOP: 2986 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2987 xpt_freeze_devq(path, 1); 2988 start_ccb->ccb_h.status = CAM_REQ_CMP; 2989 break; 2990 default: 2991 case XPT_SDEV_TYPE: 2992 case XPT_TERM_IO: 2993 case XPT_ENG_INQ: 2994 /* XXX Implement */ 2995 printf("%s: CCB type %#x not supported\n", __func__, 2996 start_ccb->ccb_h.func_code); 2997 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2998 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2999 xpt_done(start_ccb); 3000 } 3001 break; 3002 } 3003 } 3004 3005 void 3006 xpt_polled_action(union ccb *start_ccb) 3007 { 3008 u_int32_t timeout; 3009 struct cam_sim *sim; 3010 struct cam_devq *devq; 3011 struct cam_ed *dev; 3012 3013 timeout = start_ccb->ccb_h.timeout * 10; 3014 sim = start_ccb->ccb_h.path->bus->sim; 3015 devq = sim->devq; 3016 dev = start_ccb->ccb_h.path->device; 3017 3018 mtx_unlock(&dev->device_mtx); 3019 3020 /* 3021 * Steal an opening so that no other queued requests 3022 * can get it before us while we simulate interrupts. 3023 */ 3024 mtx_lock(&devq->send_mtx); 3025 dev->ccbq.dev_openings--; 3026 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3027 (--timeout > 0)) { 3028 mtx_unlock(&devq->send_mtx); 3029 DELAY(100); 3030 CAM_SIM_LOCK(sim); 3031 (*(sim->sim_poll))(sim); 3032 CAM_SIM_UNLOCK(sim); 3033 camisr_runqueue(); 3034 mtx_lock(&devq->send_mtx); 3035 } 3036 dev->ccbq.dev_openings++; 3037 mtx_unlock(&devq->send_mtx); 3038 3039 if (timeout != 0) { 3040 xpt_action(start_ccb); 3041 while(--timeout > 0) { 3042 CAM_SIM_LOCK(sim); 3043 (*(sim->sim_poll))(sim); 3044 CAM_SIM_UNLOCK(sim); 3045 camisr_runqueue(); 3046 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3047 != CAM_REQ_INPROG) 3048 break; 3049 DELAY(100); 3050 } 3051 if (timeout == 0) { 3052 /* 3053 * XXX Is it worth adding a sim_timeout entry 3054 * point so we can attempt recovery? If 3055 * this is only used for dumps, I don't think 3056 * it is. 3057 */ 3058 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3059 } 3060 } else { 3061 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3062 } 3063 3064 mtx_lock(&dev->device_mtx); 3065 } 3066 3067 /* 3068 * Schedule a peripheral driver to receive a ccb when its 3069 * target device has space for more transactions. 3070 */ 3071 void 3072 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3073 { 3074 3075 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3076 cam_periph_assert(periph, MA_OWNED); 3077 if (new_priority < periph->scheduled_priority) { 3078 periph->scheduled_priority = new_priority; 3079 xpt_run_allocq(periph, 0); 3080 } 3081 } 3082 3083 3084 /* 3085 * Schedule a device to run on a given queue. 3086 * If the device was inserted as a new entry on the queue, 3087 * return 1 meaning the device queue should be run. If we 3088 * were already queued, implying someone else has already 3089 * started the queue, return 0 so the caller doesn't attempt 3090 * to run the queue. 3091 */ 3092 static int 3093 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3094 u_int32_t new_priority) 3095 { 3096 int retval; 3097 u_int32_t old_priority; 3098 3099 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3100 3101 old_priority = pinfo->priority; 3102 3103 /* 3104 * Are we already queued? 3105 */ 3106 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3107 /* Simply reorder based on new priority */ 3108 if (new_priority < old_priority) { 3109 camq_change_priority(queue, pinfo->index, 3110 new_priority); 3111 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3112 ("changed priority to %d\n", 3113 new_priority)); 3114 retval = 1; 3115 } else 3116 retval = 0; 3117 } else { 3118 /* New entry on the queue */ 3119 if (new_priority < old_priority) 3120 pinfo->priority = new_priority; 3121 3122 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3123 ("Inserting onto queue\n")); 3124 pinfo->generation = ++queue->generation; 3125 camq_insert(queue, pinfo); 3126 retval = 1; 3127 } 3128 return (retval); 3129 } 3130 3131 static void 3132 xpt_run_allocq_task(void *context, int pending) 3133 { 3134 struct cam_periph *periph = context; 3135 3136 cam_periph_lock(periph); 3137 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3138 xpt_run_allocq(periph, 1); 3139 cam_periph_unlock(periph); 3140 cam_periph_release(periph); 3141 } 3142 3143 static void 3144 xpt_run_allocq(struct cam_periph *periph, int sleep) 3145 { 3146 struct cam_ed *device; 3147 union ccb *ccb; 3148 uint32_t prio; 3149 3150 cam_periph_assert(periph, MA_OWNED); 3151 if (periph->periph_allocating) 3152 return; 3153 periph->periph_allocating = 1; 3154 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3155 device = periph->path->device; 3156 ccb = NULL; 3157 restart: 3158 while ((prio = min(periph->scheduled_priority, 3159 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3160 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3161 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3162 3163 if (ccb == NULL && 3164 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3165 if (sleep) { 3166 ccb = xpt_get_ccb(periph); 3167 goto restart; 3168 } 3169 if (periph->flags & CAM_PERIPH_RUN_TASK) 3170 break; 3171 cam_periph_doacquire(periph); 3172 periph->flags |= CAM_PERIPH_RUN_TASK; 3173 taskqueue_enqueue(xsoftc.xpt_taskq, 3174 &periph->periph_run_task); 3175 break; 3176 } 3177 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3178 if (prio == periph->immediate_priority) { 3179 periph->immediate_priority = CAM_PRIORITY_NONE; 3180 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3181 ("waking cam_periph_getccb()\n")); 3182 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3183 periph_links.sle); 3184 wakeup(&periph->ccb_list); 3185 } else { 3186 periph->scheduled_priority = CAM_PRIORITY_NONE; 3187 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3188 ("calling periph_start()\n")); 3189 periph->periph_start(periph, ccb); 3190 } 3191 ccb = NULL; 3192 } 3193 if (ccb != NULL) 3194 xpt_release_ccb(ccb); 3195 periph->periph_allocating = 0; 3196 } 3197 3198 static void 3199 xpt_run_devq(struct cam_devq *devq) 3200 { 3201 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3202 int lock; 3203 3204 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3205 3206 devq->send_queue.qfrozen_cnt++; 3207 while ((devq->send_queue.entries > 0) 3208 && (devq->send_openings > 0) 3209 && (devq->send_queue.qfrozen_cnt <= 1)) { 3210 struct cam_ed *device; 3211 union ccb *work_ccb; 3212 struct cam_sim *sim; 3213 3214 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3215 CAMQ_HEAD); 3216 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3217 ("running device %p\n", device)); 3218 3219 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3220 if (work_ccb == NULL) { 3221 printf("device on run queue with no ccbs???\n"); 3222 continue; 3223 } 3224 3225 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3226 3227 mtx_lock(&xsoftc.xpt_highpower_lock); 3228 if (xsoftc.num_highpower <= 0) { 3229 /* 3230 * We got a high power command, but we 3231 * don't have any available slots. Freeze 3232 * the device queue until we have a slot 3233 * available. 3234 */ 3235 xpt_freeze_devq_device(device, 1); 3236 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3237 highpowerq_entry); 3238 3239 mtx_unlock(&xsoftc.xpt_highpower_lock); 3240 continue; 3241 } else { 3242 /* 3243 * Consume a high power slot while 3244 * this ccb runs. 3245 */ 3246 xsoftc.num_highpower--; 3247 } 3248 mtx_unlock(&xsoftc.xpt_highpower_lock); 3249 } 3250 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3251 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3252 devq->send_openings--; 3253 devq->send_active++; 3254 xpt_schedule_devq(devq, device); 3255 mtx_unlock(&devq->send_mtx); 3256 3257 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3258 /* 3259 * The client wants to freeze the queue 3260 * after this CCB is sent. 3261 */ 3262 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3263 } 3264 3265 /* In Target mode, the peripheral driver knows best... */ 3266 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3267 if ((device->inq_flags & SID_CmdQue) != 0 3268 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3269 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3270 else 3271 /* 3272 * Clear this in case of a retried CCB that 3273 * failed due to a rejected tag. 3274 */ 3275 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3276 } 3277 3278 switch (work_ccb->ccb_h.func_code) { 3279 case XPT_SCSI_IO: 3280 CAM_DEBUG(work_ccb->ccb_h.path, 3281 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3282 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3283 &device->inq_data), 3284 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3285 cdb_str, sizeof(cdb_str)))); 3286 break; 3287 case XPT_ATA_IO: 3288 CAM_DEBUG(work_ccb->ccb_h.path, 3289 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3290 ata_op_string(&work_ccb->ataio.cmd), 3291 ata_cmd_string(&work_ccb->ataio.cmd, 3292 cdb_str, sizeof(cdb_str)))); 3293 break; 3294 default: 3295 break; 3296 } 3297 3298 /* 3299 * Device queues can be shared among multiple SIM instances 3300 * that reside on different busses. Use the SIM from the 3301 * queued device, rather than the one from the calling bus. 3302 */ 3303 sim = device->sim; 3304 lock = (mtx_owned(sim->mtx) == 0); 3305 if (lock) 3306 CAM_SIM_LOCK(sim); 3307 (*(sim->sim_action))(sim, work_ccb); 3308 if (lock) 3309 CAM_SIM_UNLOCK(sim); 3310 mtx_lock(&devq->send_mtx); 3311 } 3312 devq->send_queue.qfrozen_cnt--; 3313 } 3314 3315 /* 3316 * This function merges stuff from the slave ccb into the master ccb, while 3317 * keeping important fields in the master ccb constant. 3318 */ 3319 void 3320 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3321 { 3322 3323 /* 3324 * Pull fields that are valid for peripheral drivers to set 3325 * into the master CCB along with the CCB "payload". 3326 */ 3327 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3328 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3329 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3330 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3331 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3332 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3333 } 3334 3335 void 3336 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3337 { 3338 3339 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3340 ccb_h->pinfo.priority = priority; 3341 ccb_h->path = path; 3342 ccb_h->path_id = path->bus->path_id; 3343 if (path->target) 3344 ccb_h->target_id = path->target->target_id; 3345 else 3346 ccb_h->target_id = CAM_TARGET_WILDCARD; 3347 if (path->device) { 3348 ccb_h->target_lun = path->device->lun_id; 3349 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3350 } else { 3351 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3352 } 3353 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3354 ccb_h->flags = 0; 3355 ccb_h->xflags = 0; 3356 } 3357 3358 /* Path manipulation functions */ 3359 cam_status 3360 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3361 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3362 { 3363 struct cam_path *path; 3364 cam_status status; 3365 3366 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3367 3368 if (path == NULL) { 3369 status = CAM_RESRC_UNAVAIL; 3370 return(status); 3371 } 3372 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3373 if (status != CAM_REQ_CMP) { 3374 free(path, M_CAMPATH); 3375 path = NULL; 3376 } 3377 *new_path_ptr = path; 3378 return (status); 3379 } 3380 3381 cam_status 3382 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3383 struct cam_periph *periph, path_id_t path_id, 3384 target_id_t target_id, lun_id_t lun_id) 3385 { 3386 3387 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3388 lun_id)); 3389 } 3390 3391 cam_status 3392 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3393 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3394 { 3395 struct cam_eb *bus; 3396 struct cam_et *target; 3397 struct cam_ed *device; 3398 cam_status status; 3399 3400 status = CAM_REQ_CMP; /* Completed without error */ 3401 target = NULL; /* Wildcarded */ 3402 device = NULL; /* Wildcarded */ 3403 3404 /* 3405 * We will potentially modify the EDT, so block interrupts 3406 * that may attempt to create cam paths. 3407 */ 3408 bus = xpt_find_bus(path_id); 3409 if (bus == NULL) { 3410 status = CAM_PATH_INVALID; 3411 } else { 3412 xpt_lock_buses(); 3413 mtx_lock(&bus->eb_mtx); 3414 target = xpt_find_target(bus, target_id); 3415 if (target == NULL) { 3416 /* Create one */ 3417 struct cam_et *new_target; 3418 3419 new_target = xpt_alloc_target(bus, target_id); 3420 if (new_target == NULL) { 3421 status = CAM_RESRC_UNAVAIL; 3422 } else { 3423 target = new_target; 3424 } 3425 } 3426 xpt_unlock_buses(); 3427 if (target != NULL) { 3428 device = xpt_find_device(target, lun_id); 3429 if (device == NULL) { 3430 /* Create one */ 3431 struct cam_ed *new_device; 3432 3433 new_device = 3434 (*(bus->xport->alloc_device))(bus, 3435 target, 3436 lun_id); 3437 if (new_device == NULL) { 3438 status = CAM_RESRC_UNAVAIL; 3439 } else { 3440 device = new_device; 3441 } 3442 } 3443 } 3444 mtx_unlock(&bus->eb_mtx); 3445 } 3446 3447 /* 3448 * Only touch the user's data if we are successful. 3449 */ 3450 if (status == CAM_REQ_CMP) { 3451 new_path->periph = perph; 3452 new_path->bus = bus; 3453 new_path->target = target; 3454 new_path->device = device; 3455 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3456 } else { 3457 if (device != NULL) 3458 xpt_release_device(device); 3459 if (target != NULL) 3460 xpt_release_target(target); 3461 if (bus != NULL) 3462 xpt_release_bus(bus); 3463 } 3464 return (status); 3465 } 3466 3467 cam_status 3468 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3469 { 3470 struct cam_path *new_path; 3471 3472 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3473 if (new_path == NULL) 3474 return(CAM_RESRC_UNAVAIL); 3475 xpt_copy_path(new_path, path); 3476 *new_path_ptr = new_path; 3477 return (CAM_REQ_CMP); 3478 } 3479 3480 void 3481 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3482 { 3483 3484 *new_path = *path; 3485 if (path->bus != NULL) 3486 xpt_acquire_bus(path->bus); 3487 if (path->target != NULL) 3488 xpt_acquire_target(path->target); 3489 if (path->device != NULL) 3490 xpt_acquire_device(path->device); 3491 } 3492 3493 void 3494 xpt_release_path(struct cam_path *path) 3495 { 3496 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3497 if (path->device != NULL) { 3498 xpt_release_device(path->device); 3499 path->device = NULL; 3500 } 3501 if (path->target != NULL) { 3502 xpt_release_target(path->target); 3503 path->target = NULL; 3504 } 3505 if (path->bus != NULL) { 3506 xpt_release_bus(path->bus); 3507 path->bus = NULL; 3508 } 3509 } 3510 3511 void 3512 xpt_free_path(struct cam_path *path) 3513 { 3514 3515 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3516 xpt_release_path(path); 3517 free(path, M_CAMPATH); 3518 } 3519 3520 void 3521 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3522 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3523 { 3524 3525 xpt_lock_buses(); 3526 if (bus_ref) { 3527 if (path->bus) 3528 *bus_ref = path->bus->refcount; 3529 else 3530 *bus_ref = 0; 3531 } 3532 if (periph_ref) { 3533 if (path->periph) 3534 *periph_ref = path->periph->refcount; 3535 else 3536 *periph_ref = 0; 3537 } 3538 xpt_unlock_buses(); 3539 if (target_ref) { 3540 if (path->target) 3541 *target_ref = path->target->refcount; 3542 else 3543 *target_ref = 0; 3544 } 3545 if (device_ref) { 3546 if (path->device) 3547 *device_ref = path->device->refcount; 3548 else 3549 *device_ref = 0; 3550 } 3551 } 3552 3553 /* 3554 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3555 * in path1, 2 for match with wildcards in path2. 3556 */ 3557 int 3558 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3559 { 3560 int retval = 0; 3561 3562 if (path1->bus != path2->bus) { 3563 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3564 retval = 1; 3565 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3566 retval = 2; 3567 else 3568 return (-1); 3569 } 3570 if (path1->target != path2->target) { 3571 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3572 if (retval == 0) 3573 retval = 1; 3574 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3575 retval = 2; 3576 else 3577 return (-1); 3578 } 3579 if (path1->device != path2->device) { 3580 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3581 if (retval == 0) 3582 retval = 1; 3583 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3584 retval = 2; 3585 else 3586 return (-1); 3587 } 3588 return (retval); 3589 } 3590 3591 int 3592 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3593 { 3594 int retval = 0; 3595 3596 if (path->bus != dev->target->bus) { 3597 if (path->bus->path_id == CAM_BUS_WILDCARD) 3598 retval = 1; 3599 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3600 retval = 2; 3601 else 3602 return (-1); 3603 } 3604 if (path->target != dev->target) { 3605 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3606 if (retval == 0) 3607 retval = 1; 3608 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3609 retval = 2; 3610 else 3611 return (-1); 3612 } 3613 if (path->device != dev) { 3614 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3615 if (retval == 0) 3616 retval = 1; 3617 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3618 retval = 2; 3619 else 3620 return (-1); 3621 } 3622 return (retval); 3623 } 3624 3625 void 3626 xpt_print_path(struct cam_path *path) 3627 { 3628 3629 if (path == NULL) 3630 printf("(nopath): "); 3631 else { 3632 if (path->periph != NULL) 3633 printf("(%s%d:", path->periph->periph_name, 3634 path->periph->unit_number); 3635 else 3636 printf("(noperiph:"); 3637 3638 if (path->bus != NULL) 3639 printf("%s%d:%d:", path->bus->sim->sim_name, 3640 path->bus->sim->unit_number, 3641 path->bus->sim->bus_id); 3642 else 3643 printf("nobus:"); 3644 3645 if (path->target != NULL) 3646 printf("%d:", path->target->target_id); 3647 else 3648 printf("X:"); 3649 3650 if (path->device != NULL) 3651 printf("%jx): ", (uintmax_t)path->device->lun_id); 3652 else 3653 printf("X): "); 3654 } 3655 } 3656 3657 void 3658 xpt_print_device(struct cam_ed *device) 3659 { 3660 3661 if (device == NULL) 3662 printf("(nopath): "); 3663 else { 3664 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3665 device->sim->unit_number, 3666 device->sim->bus_id, 3667 device->target->target_id, 3668 (uintmax_t)device->lun_id); 3669 } 3670 } 3671 3672 void 3673 xpt_print(struct cam_path *path, const char *fmt, ...) 3674 { 3675 va_list ap; 3676 xpt_print_path(path); 3677 va_start(ap, fmt); 3678 vprintf(fmt, ap); 3679 va_end(ap); 3680 } 3681 3682 int 3683 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3684 { 3685 struct sbuf sb; 3686 3687 sbuf_new(&sb, str, str_len, 0); 3688 3689 if (path == NULL) 3690 sbuf_printf(&sb, "(nopath): "); 3691 else { 3692 if (path->periph != NULL) 3693 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3694 path->periph->unit_number); 3695 else 3696 sbuf_printf(&sb, "(noperiph:"); 3697 3698 if (path->bus != NULL) 3699 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3700 path->bus->sim->unit_number, 3701 path->bus->sim->bus_id); 3702 else 3703 sbuf_printf(&sb, "nobus:"); 3704 3705 if (path->target != NULL) 3706 sbuf_printf(&sb, "%d:", path->target->target_id); 3707 else 3708 sbuf_printf(&sb, "X:"); 3709 3710 if (path->device != NULL) 3711 sbuf_printf(&sb, "%jx): ", 3712 (uintmax_t)path->device->lun_id); 3713 else 3714 sbuf_printf(&sb, "X): "); 3715 } 3716 sbuf_finish(&sb); 3717 3718 return(sbuf_len(&sb)); 3719 } 3720 3721 path_id_t 3722 xpt_path_path_id(struct cam_path *path) 3723 { 3724 return(path->bus->path_id); 3725 } 3726 3727 target_id_t 3728 xpt_path_target_id(struct cam_path *path) 3729 { 3730 if (path->target != NULL) 3731 return (path->target->target_id); 3732 else 3733 return (CAM_TARGET_WILDCARD); 3734 } 3735 3736 lun_id_t 3737 xpt_path_lun_id(struct cam_path *path) 3738 { 3739 if (path->device != NULL) 3740 return (path->device->lun_id); 3741 else 3742 return (CAM_LUN_WILDCARD); 3743 } 3744 3745 struct cam_sim * 3746 xpt_path_sim(struct cam_path *path) 3747 { 3748 3749 return (path->bus->sim); 3750 } 3751 3752 struct cam_periph* 3753 xpt_path_periph(struct cam_path *path) 3754 { 3755 3756 return (path->periph); 3757 } 3758 3759 /* 3760 * Release a CAM control block for the caller. Remit the cost of the structure 3761 * to the device referenced by the path. If the this device had no 'credits' 3762 * and peripheral drivers have registered async callbacks for this notification 3763 * call them now. 3764 */ 3765 void 3766 xpt_release_ccb(union ccb *free_ccb) 3767 { 3768 struct cam_ed *device; 3769 struct cam_periph *periph; 3770 3771 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3772 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3773 device = free_ccb->ccb_h.path->device; 3774 periph = free_ccb->ccb_h.path->periph; 3775 3776 xpt_free_ccb(free_ccb); 3777 periph->periph_allocated--; 3778 cam_ccbq_release_opening(&device->ccbq); 3779 xpt_run_allocq(periph, 0); 3780 } 3781 3782 /* Functions accessed by SIM drivers */ 3783 3784 static struct xpt_xport xport_default = { 3785 .alloc_device = xpt_alloc_device_default, 3786 .action = xpt_action_default, 3787 .async = xpt_dev_async_default, 3788 }; 3789 3790 /* 3791 * A sim structure, listing the SIM entry points and instance 3792 * identification info is passed to xpt_bus_register to hook the SIM 3793 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3794 * for this new bus and places it in the array of busses and assigns 3795 * it a path_id. The path_id may be influenced by "hard wiring" 3796 * information specified by the user. Once interrupt services are 3797 * available, the bus will be probed. 3798 */ 3799 int32_t 3800 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3801 { 3802 struct cam_eb *new_bus; 3803 struct cam_eb *old_bus; 3804 struct ccb_pathinq cpi; 3805 struct cam_path *path; 3806 cam_status status; 3807 3808 mtx_assert(sim->mtx, MA_OWNED); 3809 3810 sim->bus_id = bus; 3811 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3812 M_CAMXPT, M_NOWAIT|M_ZERO); 3813 if (new_bus == NULL) { 3814 /* Couldn't satisfy request */ 3815 return (CAM_RESRC_UNAVAIL); 3816 } 3817 3818 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3819 TAILQ_INIT(&new_bus->et_entries); 3820 cam_sim_hold(sim); 3821 new_bus->sim = sim; 3822 timevalclear(&new_bus->last_reset); 3823 new_bus->flags = 0; 3824 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3825 new_bus->generation = 0; 3826 3827 xpt_lock_buses(); 3828 sim->path_id = new_bus->path_id = 3829 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3830 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3831 while (old_bus != NULL 3832 && old_bus->path_id < new_bus->path_id) 3833 old_bus = TAILQ_NEXT(old_bus, links); 3834 if (old_bus != NULL) 3835 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3836 else 3837 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3838 xsoftc.bus_generation++; 3839 xpt_unlock_buses(); 3840 3841 /* 3842 * Set a default transport so that a PATH_INQ can be issued to 3843 * the SIM. This will then allow for probing and attaching of 3844 * a more appropriate transport. 3845 */ 3846 new_bus->xport = &xport_default; 3847 3848 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3849 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3850 if (status != CAM_REQ_CMP) { 3851 xpt_release_bus(new_bus); 3852 free(path, M_CAMXPT); 3853 return (CAM_RESRC_UNAVAIL); 3854 } 3855 3856 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3857 cpi.ccb_h.func_code = XPT_PATH_INQ; 3858 xpt_action((union ccb *)&cpi); 3859 3860 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3861 switch (cpi.transport) { 3862 case XPORT_SPI: 3863 case XPORT_SAS: 3864 case XPORT_FC: 3865 case XPORT_USB: 3866 case XPORT_ISCSI: 3867 case XPORT_SRP: 3868 case XPORT_PPB: 3869 new_bus->xport = scsi_get_xport(); 3870 break; 3871 case XPORT_ATA: 3872 case XPORT_SATA: 3873 new_bus->xport = ata_get_xport(); 3874 break; 3875 default: 3876 new_bus->xport = &xport_default; 3877 break; 3878 } 3879 } 3880 3881 /* Notify interested parties */ 3882 if (sim->path_id != CAM_XPT_PATH_ID) { 3883 3884 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3885 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3886 union ccb *scan_ccb; 3887 3888 /* Initiate bus rescan. */ 3889 scan_ccb = xpt_alloc_ccb_nowait(); 3890 if (scan_ccb != NULL) { 3891 scan_ccb->ccb_h.path = path; 3892 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3893 scan_ccb->crcn.flags = 0; 3894 xpt_rescan(scan_ccb); 3895 } else { 3896 xpt_print(path, 3897 "Can't allocate CCB to scan bus\n"); 3898 xpt_free_path(path); 3899 } 3900 } else 3901 xpt_free_path(path); 3902 } else 3903 xpt_free_path(path); 3904 return (CAM_SUCCESS); 3905 } 3906 3907 int32_t 3908 xpt_bus_deregister(path_id_t pathid) 3909 { 3910 struct cam_path bus_path; 3911 cam_status status; 3912 3913 status = xpt_compile_path(&bus_path, NULL, pathid, 3914 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3915 if (status != CAM_REQ_CMP) 3916 return (status); 3917 3918 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3919 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3920 3921 /* Release the reference count held while registered. */ 3922 xpt_release_bus(bus_path.bus); 3923 xpt_release_path(&bus_path); 3924 3925 return (CAM_REQ_CMP); 3926 } 3927 3928 static path_id_t 3929 xptnextfreepathid(void) 3930 { 3931 struct cam_eb *bus; 3932 path_id_t pathid; 3933 const char *strval; 3934 3935 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3936 pathid = 0; 3937 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3938 retry: 3939 /* Find an unoccupied pathid */ 3940 while (bus != NULL && bus->path_id <= pathid) { 3941 if (bus->path_id == pathid) 3942 pathid++; 3943 bus = TAILQ_NEXT(bus, links); 3944 } 3945 3946 /* 3947 * Ensure that this pathid is not reserved for 3948 * a bus that may be registered in the future. 3949 */ 3950 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3951 ++pathid; 3952 /* Start the search over */ 3953 goto retry; 3954 } 3955 return (pathid); 3956 } 3957 3958 static path_id_t 3959 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3960 { 3961 path_id_t pathid; 3962 int i, dunit, val; 3963 char buf[32]; 3964 const char *dname; 3965 3966 pathid = CAM_XPT_PATH_ID; 3967 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3968 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 3969 return (pathid); 3970 i = 0; 3971 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3972 if (strcmp(dname, "scbus")) { 3973 /* Avoid a bit of foot shooting. */ 3974 continue; 3975 } 3976 if (dunit < 0) /* unwired?! */ 3977 continue; 3978 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3979 if (sim_bus == val) { 3980 pathid = dunit; 3981 break; 3982 } 3983 } else if (sim_bus == 0) { 3984 /* Unspecified matches bus 0 */ 3985 pathid = dunit; 3986 break; 3987 } else { 3988 printf("Ambiguous scbus configuration for %s%d " 3989 "bus %d, cannot wire down. The kernel " 3990 "config entry for scbus%d should " 3991 "specify a controller bus.\n" 3992 "Scbus will be assigned dynamically.\n", 3993 sim_name, sim_unit, sim_bus, dunit); 3994 break; 3995 } 3996 } 3997 3998 if (pathid == CAM_XPT_PATH_ID) 3999 pathid = xptnextfreepathid(); 4000 return (pathid); 4001 } 4002 4003 static const char * 4004 xpt_async_string(u_int32_t async_code) 4005 { 4006 4007 switch (async_code) { 4008 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4009 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4010 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4011 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4012 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4013 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4014 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4015 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4016 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4017 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4018 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4019 case AC_CONTRACT: return ("AC_CONTRACT"); 4020 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4021 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4022 } 4023 return ("AC_UNKNOWN"); 4024 } 4025 4026 static int 4027 xpt_async_size(u_int32_t async_code) 4028 { 4029 4030 switch (async_code) { 4031 case AC_BUS_RESET: return (0); 4032 case AC_UNSOL_RESEL: return (0); 4033 case AC_SCSI_AEN: return (0); 4034 case AC_SENT_BDR: return (0); 4035 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4036 case AC_PATH_DEREGISTERED: return (0); 4037 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4038 case AC_LOST_DEVICE: return (0); 4039 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4040 case AC_INQ_CHANGED: return (0); 4041 case AC_GETDEV_CHANGED: return (0); 4042 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4043 case AC_ADVINFO_CHANGED: return (-1); 4044 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4045 } 4046 return (0); 4047 } 4048 4049 static int 4050 xpt_async_process_dev(struct cam_ed *device, void *arg) 4051 { 4052 union ccb *ccb = arg; 4053 struct cam_path *path = ccb->ccb_h.path; 4054 void *async_arg = ccb->casync.async_arg_ptr; 4055 u_int32_t async_code = ccb->casync.async_code; 4056 int relock; 4057 4058 if (path->device != device 4059 && path->device->lun_id != CAM_LUN_WILDCARD 4060 && device->lun_id != CAM_LUN_WILDCARD) 4061 return (1); 4062 4063 /* 4064 * The async callback could free the device. 4065 * If it is a broadcast async, it doesn't hold 4066 * device reference, so take our own reference. 4067 */ 4068 xpt_acquire_device(device); 4069 4070 /* 4071 * If async for specific device is to be delivered to 4072 * the wildcard client, take the specific device lock. 4073 * XXX: We may need a way for client to specify it. 4074 */ 4075 if ((device->lun_id == CAM_LUN_WILDCARD && 4076 path->device->lun_id != CAM_LUN_WILDCARD) || 4077 (device->target->target_id == CAM_TARGET_WILDCARD && 4078 path->target->target_id != CAM_TARGET_WILDCARD) || 4079 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4080 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4081 mtx_unlock(&device->device_mtx); 4082 xpt_path_lock(path); 4083 relock = 1; 4084 } else 4085 relock = 0; 4086 4087 (*(device->target->bus->xport->async))(async_code, 4088 device->target->bus, device->target, device, async_arg); 4089 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4090 4091 if (relock) { 4092 xpt_path_unlock(path); 4093 mtx_lock(&device->device_mtx); 4094 } 4095 xpt_release_device(device); 4096 return (1); 4097 } 4098 4099 static int 4100 xpt_async_process_tgt(struct cam_et *target, void *arg) 4101 { 4102 union ccb *ccb = arg; 4103 struct cam_path *path = ccb->ccb_h.path; 4104 4105 if (path->target != target 4106 && path->target->target_id != CAM_TARGET_WILDCARD 4107 && target->target_id != CAM_TARGET_WILDCARD) 4108 return (1); 4109 4110 if (ccb->casync.async_code == AC_SENT_BDR) { 4111 /* Update our notion of when the last reset occurred */ 4112 microtime(&target->last_reset); 4113 } 4114 4115 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4116 } 4117 4118 static void 4119 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4120 { 4121 struct cam_eb *bus; 4122 struct cam_path *path; 4123 void *async_arg; 4124 u_int32_t async_code; 4125 4126 path = ccb->ccb_h.path; 4127 async_code = ccb->casync.async_code; 4128 async_arg = ccb->casync.async_arg_ptr; 4129 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4130 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4131 bus = path->bus; 4132 4133 if (async_code == AC_BUS_RESET) { 4134 /* Update our notion of when the last reset occurred */ 4135 microtime(&bus->last_reset); 4136 } 4137 4138 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4139 4140 /* 4141 * If this wasn't a fully wildcarded async, tell all 4142 * clients that want all async events. 4143 */ 4144 if (bus != xpt_periph->path->bus) { 4145 xpt_path_lock(xpt_periph->path); 4146 xpt_async_process_dev(xpt_periph->path->device, ccb); 4147 xpt_path_unlock(xpt_periph->path); 4148 } 4149 4150 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4151 xpt_release_devq(path, 1, TRUE); 4152 else 4153 xpt_release_simq(path->bus->sim, TRUE); 4154 if (ccb->casync.async_arg_size > 0) 4155 free(async_arg, M_CAMXPT); 4156 xpt_free_path(path); 4157 xpt_free_ccb(ccb); 4158 } 4159 4160 static void 4161 xpt_async_bcast(struct async_list *async_head, 4162 u_int32_t async_code, 4163 struct cam_path *path, void *async_arg) 4164 { 4165 struct async_node *cur_entry; 4166 int lock; 4167 4168 cur_entry = SLIST_FIRST(async_head); 4169 while (cur_entry != NULL) { 4170 struct async_node *next_entry; 4171 /* 4172 * Grab the next list entry before we call the current 4173 * entry's callback. This is because the callback function 4174 * can delete its async callback entry. 4175 */ 4176 next_entry = SLIST_NEXT(cur_entry, links); 4177 if ((cur_entry->event_enable & async_code) != 0) { 4178 lock = cur_entry->event_lock; 4179 if (lock) 4180 CAM_SIM_LOCK(path->device->sim); 4181 cur_entry->callback(cur_entry->callback_arg, 4182 async_code, path, 4183 async_arg); 4184 if (lock) 4185 CAM_SIM_UNLOCK(path->device->sim); 4186 } 4187 cur_entry = next_entry; 4188 } 4189 } 4190 4191 void 4192 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4193 { 4194 union ccb *ccb; 4195 int size; 4196 4197 ccb = xpt_alloc_ccb_nowait(); 4198 if (ccb == NULL) { 4199 xpt_print(path, "Can't allocate CCB to send %s\n", 4200 xpt_async_string(async_code)); 4201 return; 4202 } 4203 4204 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4205 xpt_print(path, "Can't allocate path to send %s\n", 4206 xpt_async_string(async_code)); 4207 xpt_free_ccb(ccb); 4208 return; 4209 } 4210 ccb->ccb_h.path->periph = NULL; 4211 ccb->ccb_h.func_code = XPT_ASYNC; 4212 ccb->ccb_h.cbfcnp = xpt_async_process; 4213 ccb->ccb_h.flags |= CAM_UNLOCKED; 4214 ccb->casync.async_code = async_code; 4215 ccb->casync.async_arg_size = 0; 4216 size = xpt_async_size(async_code); 4217 if (size > 0 && async_arg != NULL) { 4218 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4219 if (ccb->casync.async_arg_ptr == NULL) { 4220 xpt_print(path, "Can't allocate argument to send %s\n", 4221 xpt_async_string(async_code)); 4222 xpt_free_path(ccb->ccb_h.path); 4223 xpt_free_ccb(ccb); 4224 return; 4225 } 4226 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4227 ccb->casync.async_arg_size = size; 4228 } else if (size < 0) { 4229 ccb->casync.async_arg_ptr = async_arg; 4230 ccb->casync.async_arg_size = size; 4231 } 4232 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4233 xpt_freeze_devq(path, 1); 4234 else 4235 xpt_freeze_simq(path->bus->sim, 1); 4236 xpt_done(ccb); 4237 } 4238 4239 static void 4240 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4241 struct cam_et *target, struct cam_ed *device, 4242 void *async_arg) 4243 { 4244 4245 /* 4246 * We only need to handle events for real devices. 4247 */ 4248 if (target->target_id == CAM_TARGET_WILDCARD 4249 || device->lun_id == CAM_LUN_WILDCARD) 4250 return; 4251 4252 printf("%s called\n", __func__); 4253 } 4254 4255 static uint32_t 4256 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4257 { 4258 struct cam_devq *devq; 4259 uint32_t freeze; 4260 4261 devq = dev->sim->devq; 4262 mtx_assert(&devq->send_mtx, MA_OWNED); 4263 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4264 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4265 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4266 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4267 /* Remove frozen device from sendq. */ 4268 if (device_is_queued(dev)) 4269 camq_remove(&devq->send_queue, dev->devq_entry.index); 4270 return (freeze); 4271 } 4272 4273 u_int32_t 4274 xpt_freeze_devq(struct cam_path *path, u_int count) 4275 { 4276 struct cam_ed *dev = path->device; 4277 struct cam_devq *devq; 4278 uint32_t freeze; 4279 4280 devq = dev->sim->devq; 4281 mtx_lock(&devq->send_mtx); 4282 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4283 freeze = xpt_freeze_devq_device(dev, count); 4284 mtx_unlock(&devq->send_mtx); 4285 return (freeze); 4286 } 4287 4288 u_int32_t 4289 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4290 { 4291 struct cam_devq *devq; 4292 uint32_t freeze; 4293 4294 devq = sim->devq; 4295 mtx_lock(&devq->send_mtx); 4296 freeze = (devq->send_queue.qfrozen_cnt += count); 4297 mtx_unlock(&devq->send_mtx); 4298 return (freeze); 4299 } 4300 4301 static void 4302 xpt_release_devq_timeout(void *arg) 4303 { 4304 struct cam_ed *dev; 4305 struct cam_devq *devq; 4306 4307 dev = (struct cam_ed *)arg; 4308 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4309 devq = dev->sim->devq; 4310 mtx_assert(&devq->send_mtx, MA_OWNED); 4311 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4312 xpt_run_devq(devq); 4313 } 4314 4315 void 4316 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4317 { 4318 struct cam_ed *dev; 4319 struct cam_devq *devq; 4320 4321 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4322 count, run_queue)); 4323 dev = path->device; 4324 devq = dev->sim->devq; 4325 mtx_lock(&devq->send_mtx); 4326 if (xpt_release_devq_device(dev, count, run_queue)) 4327 xpt_run_devq(dev->sim->devq); 4328 mtx_unlock(&devq->send_mtx); 4329 } 4330 4331 static int 4332 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4333 { 4334 4335 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4336 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4337 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4338 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4339 if (count > dev->ccbq.queue.qfrozen_cnt) { 4340 #ifdef INVARIANTS 4341 printf("xpt_release_devq(): requested %u > present %u\n", 4342 count, dev->ccbq.queue.qfrozen_cnt); 4343 #endif 4344 count = dev->ccbq.queue.qfrozen_cnt; 4345 } 4346 dev->ccbq.queue.qfrozen_cnt -= count; 4347 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4348 /* 4349 * No longer need to wait for a successful 4350 * command completion. 4351 */ 4352 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4353 /* 4354 * Remove any timeouts that might be scheduled 4355 * to release this queue. 4356 */ 4357 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4358 callout_stop(&dev->callout); 4359 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4360 } 4361 /* 4362 * Now that we are unfrozen schedule the 4363 * device so any pending transactions are 4364 * run. 4365 */ 4366 xpt_schedule_devq(dev->sim->devq, dev); 4367 } else 4368 run_queue = 0; 4369 return (run_queue); 4370 } 4371 4372 void 4373 xpt_release_simq(struct cam_sim *sim, int run_queue) 4374 { 4375 struct cam_devq *devq; 4376 4377 devq = sim->devq; 4378 mtx_lock(&devq->send_mtx); 4379 if (devq->send_queue.qfrozen_cnt <= 0) { 4380 #ifdef INVARIANTS 4381 printf("xpt_release_simq: requested 1 > present %u\n", 4382 devq->send_queue.qfrozen_cnt); 4383 #endif 4384 } else 4385 devq->send_queue.qfrozen_cnt--; 4386 if (devq->send_queue.qfrozen_cnt == 0) { 4387 /* 4388 * If there is a timeout scheduled to release this 4389 * sim queue, remove it. The queue frozen count is 4390 * already at 0. 4391 */ 4392 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4393 callout_stop(&sim->callout); 4394 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4395 } 4396 if (run_queue) { 4397 /* 4398 * Now that we are unfrozen run the send queue. 4399 */ 4400 xpt_run_devq(sim->devq); 4401 } 4402 } 4403 mtx_unlock(&devq->send_mtx); 4404 } 4405 4406 /* 4407 * XXX Appears to be unused. 4408 */ 4409 static void 4410 xpt_release_simq_timeout(void *arg) 4411 { 4412 struct cam_sim *sim; 4413 4414 sim = (struct cam_sim *)arg; 4415 xpt_release_simq(sim, /* run_queue */ TRUE); 4416 } 4417 4418 void 4419 xpt_done(union ccb *done_ccb) 4420 { 4421 struct cam_doneq *queue; 4422 int run, hash; 4423 4424 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4425 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4426 return; 4427 4428 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4429 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4430 queue = &cam_doneqs[hash]; 4431 mtx_lock(&queue->cam_doneq_mtx); 4432 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4433 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4434 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4435 mtx_unlock(&queue->cam_doneq_mtx); 4436 if (run) 4437 wakeup(&queue->cam_doneq); 4438 } 4439 4440 void 4441 xpt_done_direct(union ccb *done_ccb) 4442 { 4443 4444 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); 4445 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4446 return; 4447 4448 xpt_done_process(&done_ccb->ccb_h); 4449 } 4450 4451 union ccb * 4452 xpt_alloc_ccb() 4453 { 4454 union ccb *new_ccb; 4455 4456 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4457 return (new_ccb); 4458 } 4459 4460 union ccb * 4461 xpt_alloc_ccb_nowait() 4462 { 4463 union ccb *new_ccb; 4464 4465 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4466 return (new_ccb); 4467 } 4468 4469 void 4470 xpt_free_ccb(union ccb *free_ccb) 4471 { 4472 free(free_ccb, M_CAMCCB); 4473 } 4474 4475 4476 4477 /* Private XPT functions */ 4478 4479 /* 4480 * Get a CAM control block for the caller. Charge the structure to the device 4481 * referenced by the path. If we don't have sufficient resources to allocate 4482 * more ccbs, we return NULL. 4483 */ 4484 static union ccb * 4485 xpt_get_ccb_nowait(struct cam_periph *periph) 4486 { 4487 union ccb *new_ccb; 4488 4489 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4490 if (new_ccb == NULL) 4491 return (NULL); 4492 periph->periph_allocated++; 4493 cam_ccbq_take_opening(&periph->path->device->ccbq); 4494 return (new_ccb); 4495 } 4496 4497 static union ccb * 4498 xpt_get_ccb(struct cam_periph *periph) 4499 { 4500 union ccb *new_ccb; 4501 4502 cam_periph_unlock(periph); 4503 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4504 cam_periph_lock(periph); 4505 periph->periph_allocated++; 4506 cam_ccbq_take_opening(&periph->path->device->ccbq); 4507 return (new_ccb); 4508 } 4509 4510 union ccb * 4511 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4512 { 4513 struct ccb_hdr *ccb_h; 4514 4515 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4516 cam_periph_assert(periph, MA_OWNED); 4517 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4518 ccb_h->pinfo.priority != priority) { 4519 if (priority < periph->immediate_priority) { 4520 periph->immediate_priority = priority; 4521 xpt_run_allocq(periph, 0); 4522 } else 4523 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4524 "cgticb", 0); 4525 } 4526 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4527 return ((union ccb *)ccb_h); 4528 } 4529 4530 static void 4531 xpt_acquire_bus(struct cam_eb *bus) 4532 { 4533 4534 xpt_lock_buses(); 4535 bus->refcount++; 4536 xpt_unlock_buses(); 4537 } 4538 4539 static void 4540 xpt_release_bus(struct cam_eb *bus) 4541 { 4542 4543 xpt_lock_buses(); 4544 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4545 if (--bus->refcount > 0) { 4546 xpt_unlock_buses(); 4547 return; 4548 } 4549 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4550 xsoftc.bus_generation++; 4551 xpt_unlock_buses(); 4552 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4553 ("destroying bus, but target list is not empty")); 4554 cam_sim_release(bus->sim); 4555 mtx_destroy(&bus->eb_mtx); 4556 free(bus, M_CAMXPT); 4557 } 4558 4559 static struct cam_et * 4560 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4561 { 4562 struct cam_et *cur_target, *target; 4563 4564 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4565 mtx_assert(&bus->eb_mtx, MA_OWNED); 4566 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4567 M_NOWAIT|M_ZERO); 4568 if (target == NULL) 4569 return (NULL); 4570 4571 TAILQ_INIT(&target->ed_entries); 4572 target->bus = bus; 4573 target->target_id = target_id; 4574 target->refcount = 1; 4575 target->generation = 0; 4576 target->luns = NULL; 4577 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4578 timevalclear(&target->last_reset); 4579 /* 4580 * Hold a reference to our parent bus so it 4581 * will not go away before we do. 4582 */ 4583 bus->refcount++; 4584 4585 /* Insertion sort into our bus's target list */ 4586 cur_target = TAILQ_FIRST(&bus->et_entries); 4587 while (cur_target != NULL && cur_target->target_id < target_id) 4588 cur_target = TAILQ_NEXT(cur_target, links); 4589 if (cur_target != NULL) { 4590 TAILQ_INSERT_BEFORE(cur_target, target, links); 4591 } else { 4592 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4593 } 4594 bus->generation++; 4595 return (target); 4596 } 4597 4598 static void 4599 xpt_acquire_target(struct cam_et *target) 4600 { 4601 struct cam_eb *bus = target->bus; 4602 4603 mtx_lock(&bus->eb_mtx); 4604 target->refcount++; 4605 mtx_unlock(&bus->eb_mtx); 4606 } 4607 4608 static void 4609 xpt_release_target(struct cam_et *target) 4610 { 4611 struct cam_eb *bus = target->bus; 4612 4613 mtx_lock(&bus->eb_mtx); 4614 if (--target->refcount > 0) { 4615 mtx_unlock(&bus->eb_mtx); 4616 return; 4617 } 4618 TAILQ_REMOVE(&bus->et_entries, target, links); 4619 bus->generation++; 4620 mtx_unlock(&bus->eb_mtx); 4621 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4622 ("destroying target, but device list is not empty")); 4623 xpt_release_bus(bus); 4624 mtx_destroy(&target->luns_mtx); 4625 if (target->luns) 4626 free(target->luns, M_CAMXPT); 4627 free(target, M_CAMXPT); 4628 } 4629 4630 static struct cam_ed * 4631 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4632 lun_id_t lun_id) 4633 { 4634 struct cam_ed *device; 4635 4636 device = xpt_alloc_device(bus, target, lun_id); 4637 if (device == NULL) 4638 return (NULL); 4639 4640 device->mintags = 1; 4641 device->maxtags = 1; 4642 return (device); 4643 } 4644 4645 static void 4646 xpt_destroy_device(void *context, int pending) 4647 { 4648 struct cam_ed *device = context; 4649 4650 mtx_lock(&device->device_mtx); 4651 mtx_destroy(&device->device_mtx); 4652 free(device, M_CAMDEV); 4653 } 4654 4655 struct cam_ed * 4656 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4657 { 4658 struct cam_ed *cur_device, *device; 4659 struct cam_devq *devq; 4660 cam_status status; 4661 4662 mtx_assert(&bus->eb_mtx, MA_OWNED); 4663 /* Make space for us in the device queue on our bus */ 4664 devq = bus->sim->devq; 4665 mtx_lock(&devq->send_mtx); 4666 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4667 mtx_unlock(&devq->send_mtx); 4668 if (status != CAM_REQ_CMP) 4669 return (NULL); 4670 4671 device = (struct cam_ed *)malloc(sizeof(*device), 4672 M_CAMDEV, M_NOWAIT|M_ZERO); 4673 if (device == NULL) 4674 return (NULL); 4675 4676 cam_init_pinfo(&device->devq_entry); 4677 device->target = target; 4678 device->lun_id = lun_id; 4679 device->sim = bus->sim; 4680 if (cam_ccbq_init(&device->ccbq, 4681 bus->sim->max_dev_openings) != 0) { 4682 free(device, M_CAMDEV); 4683 return (NULL); 4684 } 4685 SLIST_INIT(&device->asyncs); 4686 SLIST_INIT(&device->periphs); 4687 device->generation = 0; 4688 device->flags = CAM_DEV_UNCONFIGURED; 4689 device->tag_delay_count = 0; 4690 device->tag_saved_openings = 0; 4691 device->refcount = 1; 4692 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4693 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4694 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4695 /* 4696 * Hold a reference to our parent bus so it 4697 * will not go away before we do. 4698 */ 4699 target->refcount++; 4700 4701 cur_device = TAILQ_FIRST(&target->ed_entries); 4702 while (cur_device != NULL && cur_device->lun_id < lun_id) 4703 cur_device = TAILQ_NEXT(cur_device, links); 4704 if (cur_device != NULL) 4705 TAILQ_INSERT_BEFORE(cur_device, device, links); 4706 else 4707 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4708 target->generation++; 4709 return (device); 4710 } 4711 4712 void 4713 xpt_acquire_device(struct cam_ed *device) 4714 { 4715 struct cam_eb *bus = device->target->bus; 4716 4717 mtx_lock(&bus->eb_mtx); 4718 device->refcount++; 4719 mtx_unlock(&bus->eb_mtx); 4720 } 4721 4722 void 4723 xpt_release_device(struct cam_ed *device) 4724 { 4725 struct cam_eb *bus = device->target->bus; 4726 struct cam_devq *devq; 4727 4728 mtx_lock(&bus->eb_mtx); 4729 if (--device->refcount > 0) { 4730 mtx_unlock(&bus->eb_mtx); 4731 return; 4732 } 4733 4734 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4735 device->target->generation++; 4736 mtx_unlock(&bus->eb_mtx); 4737 4738 /* Release our slot in the devq */ 4739 devq = bus->sim->devq; 4740 mtx_lock(&devq->send_mtx); 4741 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4742 mtx_unlock(&devq->send_mtx); 4743 4744 KASSERT(SLIST_EMPTY(&device->periphs), 4745 ("destroying device, but periphs list is not empty")); 4746 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4747 ("destroying device while still queued for ccbs")); 4748 4749 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4750 callout_stop(&device->callout); 4751 4752 xpt_release_target(device->target); 4753 4754 cam_ccbq_fini(&device->ccbq); 4755 /* 4756 * Free allocated memory. free(9) does nothing if the 4757 * supplied pointer is NULL, so it is safe to call without 4758 * checking. 4759 */ 4760 free(device->supported_vpds, M_CAMXPT); 4761 free(device->device_id, M_CAMXPT); 4762 free(device->ext_inq, M_CAMXPT); 4763 free(device->physpath, M_CAMXPT); 4764 free(device->rcap_buf, M_CAMXPT); 4765 free(device->serial_num, M_CAMXPT); 4766 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4767 } 4768 4769 u_int32_t 4770 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4771 { 4772 int result; 4773 struct cam_ed *dev; 4774 4775 dev = path->device; 4776 mtx_lock(&dev->sim->devq->send_mtx); 4777 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4778 mtx_unlock(&dev->sim->devq->send_mtx); 4779 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4780 || (dev->inq_flags & SID_CmdQue) != 0) 4781 dev->tag_saved_openings = newopenings; 4782 return (result); 4783 } 4784 4785 static struct cam_eb * 4786 xpt_find_bus(path_id_t path_id) 4787 { 4788 struct cam_eb *bus; 4789 4790 xpt_lock_buses(); 4791 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4792 bus != NULL; 4793 bus = TAILQ_NEXT(bus, links)) { 4794 if (bus->path_id == path_id) { 4795 bus->refcount++; 4796 break; 4797 } 4798 } 4799 xpt_unlock_buses(); 4800 return (bus); 4801 } 4802 4803 static struct cam_et * 4804 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4805 { 4806 struct cam_et *target; 4807 4808 mtx_assert(&bus->eb_mtx, MA_OWNED); 4809 for (target = TAILQ_FIRST(&bus->et_entries); 4810 target != NULL; 4811 target = TAILQ_NEXT(target, links)) { 4812 if (target->target_id == target_id) { 4813 target->refcount++; 4814 break; 4815 } 4816 } 4817 return (target); 4818 } 4819 4820 static struct cam_ed * 4821 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4822 { 4823 struct cam_ed *device; 4824 4825 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4826 for (device = TAILQ_FIRST(&target->ed_entries); 4827 device != NULL; 4828 device = TAILQ_NEXT(device, links)) { 4829 if (device->lun_id == lun_id) { 4830 device->refcount++; 4831 break; 4832 } 4833 } 4834 return (device); 4835 } 4836 4837 void 4838 xpt_start_tags(struct cam_path *path) 4839 { 4840 struct ccb_relsim crs; 4841 struct cam_ed *device; 4842 struct cam_sim *sim; 4843 int newopenings; 4844 4845 device = path->device; 4846 sim = path->bus->sim; 4847 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4848 xpt_freeze_devq(path, /*count*/1); 4849 device->inq_flags |= SID_CmdQue; 4850 if (device->tag_saved_openings != 0) 4851 newopenings = device->tag_saved_openings; 4852 else 4853 newopenings = min(device->maxtags, 4854 sim->max_tagged_dev_openings); 4855 xpt_dev_ccbq_resize(path, newopenings); 4856 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4857 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4858 crs.ccb_h.func_code = XPT_REL_SIMQ; 4859 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4860 crs.openings 4861 = crs.release_timeout 4862 = crs.qfrozen_cnt 4863 = 0; 4864 xpt_action((union ccb *)&crs); 4865 } 4866 4867 void 4868 xpt_stop_tags(struct cam_path *path) 4869 { 4870 struct ccb_relsim crs; 4871 struct cam_ed *device; 4872 struct cam_sim *sim; 4873 4874 device = path->device; 4875 sim = path->bus->sim; 4876 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4877 device->tag_delay_count = 0; 4878 xpt_freeze_devq(path, /*count*/1); 4879 device->inq_flags &= ~SID_CmdQue; 4880 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4881 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4882 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4883 crs.ccb_h.func_code = XPT_REL_SIMQ; 4884 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4885 crs.openings 4886 = crs.release_timeout 4887 = crs.qfrozen_cnt 4888 = 0; 4889 xpt_action((union ccb *)&crs); 4890 } 4891 4892 static void 4893 xpt_boot_delay(void *arg) 4894 { 4895 4896 xpt_release_boot(); 4897 } 4898 4899 static void 4900 xpt_config(void *arg) 4901 { 4902 /* 4903 * Now that interrupts are enabled, go find our devices 4904 */ 4905 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4906 printf("xpt_config: failed to create taskqueue thread.\n"); 4907 4908 /* Setup debugging path */ 4909 if (cam_dflags != CAM_DEBUG_NONE) { 4910 if (xpt_create_path(&cam_dpath, NULL, 4911 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4912 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4913 printf("xpt_config: xpt_create_path() failed for debug" 4914 " target %d:%d:%d, debugging disabled\n", 4915 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4916 cam_dflags = CAM_DEBUG_NONE; 4917 } 4918 } else 4919 cam_dpath = NULL; 4920 4921 periphdriver_init(1); 4922 xpt_hold_boot(); 4923 callout_init(&xsoftc.boot_callout, 1); 4924 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 4925 xpt_boot_delay, NULL, 0); 4926 /* Fire up rescan thread. */ 4927 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4928 "cam", "scanner")) { 4929 printf("xpt_config: failed to create rescan thread.\n"); 4930 } 4931 } 4932 4933 void 4934 xpt_hold_boot(void) 4935 { 4936 xpt_lock_buses(); 4937 xsoftc.buses_to_config++; 4938 xpt_unlock_buses(); 4939 } 4940 4941 void 4942 xpt_release_boot(void) 4943 { 4944 xpt_lock_buses(); 4945 xsoftc.buses_to_config--; 4946 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4947 struct xpt_task *task; 4948 4949 xsoftc.buses_config_done = 1; 4950 xpt_unlock_buses(); 4951 /* Call manually because we don't have any busses */ 4952 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4953 if (task != NULL) { 4954 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4955 taskqueue_enqueue(taskqueue_thread, &task->task); 4956 } 4957 } else 4958 xpt_unlock_buses(); 4959 } 4960 4961 /* 4962 * If the given device only has one peripheral attached to it, and if that 4963 * peripheral is the passthrough driver, announce it. This insures that the 4964 * user sees some sort of announcement for every peripheral in their system. 4965 */ 4966 static int 4967 xptpassannouncefunc(struct cam_ed *device, void *arg) 4968 { 4969 struct cam_periph *periph; 4970 int i; 4971 4972 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4973 periph = SLIST_NEXT(periph, periph_links), i++); 4974 4975 periph = SLIST_FIRST(&device->periphs); 4976 if ((i == 1) 4977 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4978 xpt_announce_periph(periph, NULL); 4979 4980 return(1); 4981 } 4982 4983 static void 4984 xpt_finishconfig_task(void *context, int pending) 4985 { 4986 4987 periphdriver_init(2); 4988 /* 4989 * Check for devices with no "standard" peripheral driver 4990 * attached. For any devices like that, announce the 4991 * passthrough driver so the user will see something. 4992 */ 4993 if (!bootverbose) 4994 xpt_for_all_devices(xptpassannouncefunc, NULL); 4995 4996 /* Release our hook so that the boot can continue. */ 4997 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4998 free(xsoftc.xpt_config_hook, M_CAMXPT); 4999 xsoftc.xpt_config_hook = NULL; 5000 5001 free(context, M_CAMXPT); 5002 } 5003 5004 cam_status 5005 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5006 struct cam_path *path) 5007 { 5008 struct ccb_setasync csa; 5009 cam_status status; 5010 int xptpath = 0; 5011 5012 if (path == NULL) { 5013 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5014 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5015 if (status != CAM_REQ_CMP) 5016 return (status); 5017 xpt_path_lock(path); 5018 xptpath = 1; 5019 } 5020 5021 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5022 csa.ccb_h.func_code = XPT_SASYNC_CB; 5023 csa.event_enable = event; 5024 csa.callback = cbfunc; 5025 csa.callback_arg = cbarg; 5026 xpt_action((union ccb *)&csa); 5027 status = csa.ccb_h.status; 5028 5029 if (xptpath) { 5030 xpt_path_unlock(path); 5031 xpt_free_path(path); 5032 } 5033 5034 if ((status == CAM_REQ_CMP) && 5035 (csa.event_enable & AC_FOUND_DEVICE)) { 5036 /* 5037 * Get this peripheral up to date with all 5038 * the currently existing devices. 5039 */ 5040 xpt_for_all_devices(xptsetasyncfunc, &csa); 5041 } 5042 if ((status == CAM_REQ_CMP) && 5043 (csa.event_enable & AC_PATH_REGISTERED)) { 5044 /* 5045 * Get this peripheral up to date with all 5046 * the currently existing busses. 5047 */ 5048 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5049 } 5050 5051 return (status); 5052 } 5053 5054 static void 5055 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5056 { 5057 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5058 5059 switch (work_ccb->ccb_h.func_code) { 5060 /* Common cases first */ 5061 case XPT_PATH_INQ: /* Path routing inquiry */ 5062 { 5063 struct ccb_pathinq *cpi; 5064 5065 cpi = &work_ccb->cpi; 5066 cpi->version_num = 1; /* XXX??? */ 5067 cpi->hba_inquiry = 0; 5068 cpi->target_sprt = 0; 5069 cpi->hba_misc = 0; 5070 cpi->hba_eng_cnt = 0; 5071 cpi->max_target = 0; 5072 cpi->max_lun = 0; 5073 cpi->initiator_id = 0; 5074 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5075 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5076 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5077 cpi->unit_number = sim->unit_number; 5078 cpi->bus_id = sim->bus_id; 5079 cpi->base_transfer_speed = 0; 5080 cpi->protocol = PROTO_UNSPECIFIED; 5081 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5082 cpi->transport = XPORT_UNSPECIFIED; 5083 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5084 cpi->ccb_h.status = CAM_REQ_CMP; 5085 xpt_done(work_ccb); 5086 break; 5087 } 5088 default: 5089 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5090 xpt_done(work_ccb); 5091 break; 5092 } 5093 } 5094 5095 /* 5096 * The xpt as a "controller" has no interrupt sources, so polling 5097 * is a no-op. 5098 */ 5099 static void 5100 xptpoll(struct cam_sim *sim) 5101 { 5102 } 5103 5104 void 5105 xpt_lock_buses(void) 5106 { 5107 mtx_lock(&xsoftc.xpt_topo_lock); 5108 } 5109 5110 void 5111 xpt_unlock_buses(void) 5112 { 5113 mtx_unlock(&xsoftc.xpt_topo_lock); 5114 } 5115 5116 struct mtx * 5117 xpt_path_mtx(struct cam_path *path) 5118 { 5119 5120 return (&path->device->device_mtx); 5121 } 5122 5123 static void 5124 xpt_done_process(struct ccb_hdr *ccb_h) 5125 { 5126 struct cam_sim *sim; 5127 struct cam_devq *devq; 5128 struct mtx *mtx = NULL; 5129 5130 if (ccb_h->flags & CAM_HIGH_POWER) { 5131 struct highpowerlist *hphead; 5132 struct cam_ed *device; 5133 5134 mtx_lock(&xsoftc.xpt_highpower_lock); 5135 hphead = &xsoftc.highpowerq; 5136 5137 device = STAILQ_FIRST(hphead); 5138 5139 /* 5140 * Increment the count since this command is done. 5141 */ 5142 xsoftc.num_highpower++; 5143 5144 /* 5145 * Any high powered commands queued up? 5146 */ 5147 if (device != NULL) { 5148 5149 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5150 mtx_unlock(&xsoftc.xpt_highpower_lock); 5151 5152 mtx_lock(&device->sim->devq->send_mtx); 5153 xpt_release_devq_device(device, 5154 /*count*/1, /*runqueue*/TRUE); 5155 mtx_unlock(&device->sim->devq->send_mtx); 5156 } else 5157 mtx_unlock(&xsoftc.xpt_highpower_lock); 5158 } 5159 5160 sim = ccb_h->path->bus->sim; 5161 5162 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5163 xpt_release_simq(sim, /*run_queue*/FALSE); 5164 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5165 } 5166 5167 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5168 && (ccb_h->status & CAM_DEV_QFRZN)) { 5169 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5170 ccb_h->status &= ~CAM_DEV_QFRZN; 5171 } 5172 5173 devq = sim->devq; 5174 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5175 struct cam_ed *dev = ccb_h->path->device; 5176 5177 mtx_lock(&devq->send_mtx); 5178 devq->send_active--; 5179 devq->send_openings++; 5180 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5181 5182 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5183 && (dev->ccbq.dev_active == 0))) { 5184 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5185 xpt_release_devq_device(dev, /*count*/1, 5186 /*run_queue*/FALSE); 5187 } 5188 5189 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5190 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5191 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5192 xpt_release_devq_device(dev, /*count*/1, 5193 /*run_queue*/FALSE); 5194 } 5195 5196 if (!device_is_queued(dev)) 5197 (void)xpt_schedule_devq(devq, dev); 5198 xpt_run_devq(devq); 5199 mtx_unlock(&devq->send_mtx); 5200 5201 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5202 mtx = xpt_path_mtx(ccb_h->path); 5203 mtx_lock(mtx); 5204 5205 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5206 && (--dev->tag_delay_count == 0)) 5207 xpt_start_tags(ccb_h->path); 5208 } 5209 } 5210 5211 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5212 if (mtx == NULL) { 5213 mtx = xpt_path_mtx(ccb_h->path); 5214 mtx_lock(mtx); 5215 } 5216 } else { 5217 if (mtx != NULL) { 5218 mtx_unlock(mtx); 5219 mtx = NULL; 5220 } 5221 } 5222 5223 /* Call the peripheral driver's callback */ 5224 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5225 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5226 if (mtx != NULL) 5227 mtx_unlock(mtx); 5228 } 5229 5230 void 5231 xpt_done_td(void *arg) 5232 { 5233 struct cam_doneq *queue = arg; 5234 struct ccb_hdr *ccb_h; 5235 STAILQ_HEAD(, ccb_hdr) doneq; 5236 5237 STAILQ_INIT(&doneq); 5238 mtx_lock(&queue->cam_doneq_mtx); 5239 while (1) { 5240 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5241 queue->cam_doneq_sleep = 1; 5242 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5243 PRIBIO, "-", 0); 5244 queue->cam_doneq_sleep = 0; 5245 } 5246 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5247 mtx_unlock(&queue->cam_doneq_mtx); 5248 5249 THREAD_NO_SLEEPING(); 5250 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5251 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5252 xpt_done_process(ccb_h); 5253 } 5254 THREAD_SLEEPING_OK(); 5255 5256 mtx_lock(&queue->cam_doneq_mtx); 5257 } 5258 } 5259 5260 static void 5261 camisr_runqueue(void) 5262 { 5263 struct ccb_hdr *ccb_h; 5264 struct cam_doneq *queue; 5265 int i; 5266 5267 /* Process global queues. */ 5268 for (i = 0; i < cam_num_doneqs; i++) { 5269 queue = &cam_doneqs[i]; 5270 mtx_lock(&queue->cam_doneq_mtx); 5271 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5272 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5273 mtx_unlock(&queue->cam_doneq_mtx); 5274 xpt_done_process(ccb_h); 5275 mtx_lock(&queue->cam_doneq_mtx); 5276 } 5277 mtx_unlock(&queue->cam_doneq_mtx); 5278 } 5279 } 5280