1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 uint32_t xpt_generation; 97 98 /* number of high powered commands that can go through right now */ 99 struct mtx xpt_highpower_lock; 100 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 101 int num_highpower; 102 103 /* queue for handling async rescan requests. */ 104 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 105 int buses_to_config; 106 int buses_config_done; 107 108 /* Registered busses */ 109 TAILQ_HEAD(,cam_eb) xpt_busses; 110 u_int bus_generation; 111 112 struct intr_config_hook *xpt_config_hook; 113 114 int boot_delay; 115 struct callout boot_callout; 116 117 struct mtx xpt_topo_lock; 118 struct mtx xpt_lock; 119 struct taskqueue *xpt_taskq; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 155 156 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 157 &xsoftc.boot_delay, 0, "Bus registration wait time"); 158 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 159 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 160 161 struct cam_doneq { 162 struct mtx_padalign cam_doneq_mtx; 163 STAILQ_HEAD(, ccb_hdr) cam_doneq; 164 int cam_doneq_sleep; 165 }; 166 167 static struct cam_doneq cam_doneqs[MAXCPU]; 168 static int cam_num_doneqs; 169 static struct proc *cam_proc; 170 171 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 172 &cam_num_doneqs, 0, "Number of completion queues/threads"); 173 174 struct cam_periph *xpt_periph; 175 176 static periph_init_t xpt_periph_init; 177 178 static struct periph_driver xpt_driver = 179 { 180 xpt_periph_init, "xpt", 181 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 182 CAM_PERIPH_DRV_EARLY 183 }; 184 185 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 186 187 static d_open_t xptopen; 188 static d_close_t xptclose; 189 static d_ioctl_t xptioctl; 190 static d_ioctl_t xptdoioctl; 191 192 static struct cdevsw xpt_cdevsw = { 193 .d_version = D_VERSION, 194 .d_flags = 0, 195 .d_open = xptopen, 196 .d_close = xptclose, 197 .d_ioctl = xptioctl, 198 .d_name = "xpt", 199 }; 200 201 /* Storage for debugging datastructures */ 202 struct cam_path *cam_dpath; 203 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 204 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 205 &cam_dflags, 0, "Enabled debug flags"); 206 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 207 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 208 &cam_debug_delay, 0, "Delay in us after each debug message"); 209 210 /* Our boot-time initialization hook */ 211 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 212 213 static moduledata_t cam_moduledata = { 214 "cam", 215 cam_module_event_handler, 216 NULL 217 }; 218 219 static int xpt_init(void *); 220 221 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 222 MODULE_VERSION(cam, 1); 223 224 225 static void xpt_async_bcast(struct async_list *async_head, 226 u_int32_t async_code, 227 struct cam_path *path, 228 void *async_arg); 229 static path_id_t xptnextfreepathid(void); 230 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 231 static union ccb *xpt_get_ccb(struct cam_periph *periph); 232 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 233 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 234 static void xpt_run_allocq_task(void *context, int pending); 235 static void xpt_run_devq(struct cam_devq *devq); 236 static timeout_t xpt_release_devq_timeout; 237 static void xpt_release_simq_timeout(void *arg) __unused; 238 static void xpt_acquire_bus(struct cam_eb *bus); 239 static void xpt_release_bus(struct cam_eb *bus); 240 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 241 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 242 int run_queue); 243 static struct cam_et* 244 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 245 static void xpt_acquire_target(struct cam_et *target); 246 static void xpt_release_target(struct cam_et *target); 247 static struct cam_eb* 248 xpt_find_bus(path_id_t path_id); 249 static struct cam_et* 250 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 251 static struct cam_ed* 252 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 253 static void xpt_config(void *arg); 254 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 255 u_int32_t new_priority); 256 static xpt_devicefunc_t xptpassannouncefunc; 257 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 258 static void xptpoll(struct cam_sim *sim); 259 static void camisr_runqueue(void); 260 static void xpt_done_process(struct ccb_hdr *ccb_h); 261 static void xpt_done_td(void *); 262 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 263 u_int num_patterns, struct cam_eb *bus); 264 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 265 u_int num_patterns, 266 struct cam_ed *device); 267 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 268 u_int num_patterns, 269 struct cam_periph *periph); 270 static xpt_busfunc_t xptedtbusfunc; 271 static xpt_targetfunc_t xptedttargetfunc; 272 static xpt_devicefunc_t xptedtdevicefunc; 273 static xpt_periphfunc_t xptedtperiphfunc; 274 static xpt_pdrvfunc_t xptplistpdrvfunc; 275 static xpt_periphfunc_t xptplistperiphfunc; 276 static int xptedtmatch(struct ccb_dev_match *cdm); 277 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 278 static int xptbustraverse(struct cam_eb *start_bus, 279 xpt_busfunc_t *tr_func, void *arg); 280 static int xpttargettraverse(struct cam_eb *bus, 281 struct cam_et *start_target, 282 xpt_targetfunc_t *tr_func, void *arg); 283 static int xptdevicetraverse(struct cam_et *target, 284 struct cam_ed *start_device, 285 xpt_devicefunc_t *tr_func, void *arg); 286 static int xptperiphtraverse(struct cam_ed *device, 287 struct cam_periph *start_periph, 288 xpt_periphfunc_t *tr_func, void *arg); 289 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 290 xpt_pdrvfunc_t *tr_func, void *arg); 291 static int xptpdperiphtraverse(struct periph_driver **pdrv, 292 struct cam_periph *start_periph, 293 xpt_periphfunc_t *tr_func, 294 void *arg); 295 static xpt_busfunc_t xptdefbusfunc; 296 static xpt_targetfunc_t xptdeftargetfunc; 297 static xpt_devicefunc_t xptdefdevicefunc; 298 static xpt_periphfunc_t xptdefperiphfunc; 299 static void xpt_finishconfig_task(void *context, int pending); 300 static void xpt_dev_async_default(u_int32_t async_code, 301 struct cam_eb *bus, 302 struct cam_et *target, 303 struct cam_ed *device, 304 void *async_arg); 305 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 306 struct cam_et *target, 307 lun_id_t lun_id); 308 static xpt_devicefunc_t xptsetasyncfunc; 309 static xpt_busfunc_t xptsetasyncbusfunc; 310 static cam_status xptregister(struct cam_periph *periph, 311 void *arg); 312 static __inline int device_is_queued(struct cam_ed *device); 313 314 static __inline int 315 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 316 { 317 int retval; 318 319 mtx_assert(&devq->send_mtx, MA_OWNED); 320 if ((dev->ccbq.queue.entries > 0) && 321 (dev->ccbq.dev_openings > 0) && 322 (dev->ccbq.queue.qfrozen_cnt == 0)) { 323 /* 324 * The priority of a device waiting for controller 325 * resources is that of the highest priority CCB 326 * enqueued. 327 */ 328 retval = 329 xpt_schedule_dev(&devq->send_queue, 330 &dev->devq_entry, 331 CAMQ_GET_PRIO(&dev->ccbq.queue)); 332 } else { 333 retval = 0; 334 } 335 return (retval); 336 } 337 338 static __inline int 339 device_is_queued(struct cam_ed *device) 340 { 341 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 342 } 343 344 static void 345 xpt_periph_init() 346 { 347 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 348 } 349 350 static int 351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 352 { 353 354 /* 355 * Only allow read-write access. 356 */ 357 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 358 return(EPERM); 359 360 /* 361 * We don't allow nonblocking access. 362 */ 363 if ((flags & O_NONBLOCK) != 0) { 364 printf("%s: can't do nonblocking access\n", devtoname(dev)); 365 return(ENODEV); 366 } 367 368 return(0); 369 } 370 371 static int 372 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 373 { 374 375 return(0); 376 } 377 378 /* 379 * Don't automatically grab the xpt softc lock here even though this is going 380 * through the xpt device. The xpt device is really just a back door for 381 * accessing other devices and SIMs, so the right thing to do is to grab 382 * the appropriate SIM lock once the bus/SIM is located. 383 */ 384 static int 385 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 386 { 387 int error; 388 389 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 390 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 391 } 392 return (error); 393 } 394 395 static int 396 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 397 { 398 int error; 399 400 error = 0; 401 402 switch(cmd) { 403 /* 404 * For the transport layer CAMIOCOMMAND ioctl, we really only want 405 * to accept CCB types that don't quite make sense to send through a 406 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 407 * in the CAM spec. 408 */ 409 case CAMIOCOMMAND: { 410 union ccb *ccb; 411 union ccb *inccb; 412 struct cam_eb *bus; 413 414 inccb = (union ccb *)addr; 415 416 bus = xpt_find_bus(inccb->ccb_h.path_id); 417 if (bus == NULL) 418 return (EINVAL); 419 420 switch (inccb->ccb_h.func_code) { 421 case XPT_SCAN_BUS: 422 case XPT_RESET_BUS: 423 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 424 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 425 xpt_release_bus(bus); 426 return (EINVAL); 427 } 428 break; 429 case XPT_SCAN_TGT: 430 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 431 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 432 xpt_release_bus(bus); 433 return (EINVAL); 434 } 435 break; 436 default: 437 break; 438 } 439 440 switch(inccb->ccb_h.func_code) { 441 case XPT_SCAN_BUS: 442 case XPT_RESET_BUS: 443 case XPT_PATH_INQ: 444 case XPT_ENG_INQ: 445 case XPT_SCAN_LUN: 446 case XPT_SCAN_TGT: 447 448 ccb = xpt_alloc_ccb(); 449 450 /* 451 * Create a path using the bus, target, and lun the 452 * user passed in. 453 */ 454 if (xpt_create_path(&ccb->ccb_h.path, NULL, 455 inccb->ccb_h.path_id, 456 inccb->ccb_h.target_id, 457 inccb->ccb_h.target_lun) != 458 CAM_REQ_CMP){ 459 error = EINVAL; 460 xpt_free_ccb(ccb); 461 break; 462 } 463 /* Ensure all of our fields are correct */ 464 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 465 inccb->ccb_h.pinfo.priority); 466 xpt_merge_ccb(ccb, inccb); 467 xpt_path_lock(ccb->ccb_h.path); 468 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 469 xpt_path_unlock(ccb->ccb_h.path); 470 bcopy(ccb, inccb, sizeof(union ccb)); 471 xpt_free_path(ccb->ccb_h.path); 472 xpt_free_ccb(ccb); 473 break; 474 475 case XPT_DEBUG: { 476 union ccb ccb; 477 478 /* 479 * This is an immediate CCB, so it's okay to 480 * allocate it on the stack. 481 */ 482 483 /* 484 * Create a path using the bus, target, and lun the 485 * user passed in. 486 */ 487 if (xpt_create_path(&ccb.ccb_h.path, NULL, 488 inccb->ccb_h.path_id, 489 inccb->ccb_h.target_id, 490 inccb->ccb_h.target_lun) != 491 CAM_REQ_CMP){ 492 error = EINVAL; 493 break; 494 } 495 /* Ensure all of our fields are correct */ 496 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 497 inccb->ccb_h.pinfo.priority); 498 xpt_merge_ccb(&ccb, inccb); 499 xpt_action(&ccb); 500 bcopy(&ccb, inccb, sizeof(union ccb)); 501 xpt_free_path(ccb.ccb_h.path); 502 break; 503 504 } 505 case XPT_DEV_MATCH: { 506 struct cam_periph_map_info mapinfo; 507 struct cam_path *old_path; 508 509 /* 510 * We can't deal with physical addresses for this 511 * type of transaction. 512 */ 513 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 514 CAM_DATA_VADDR) { 515 error = EINVAL; 516 break; 517 } 518 519 /* 520 * Save this in case the caller had it set to 521 * something in particular. 522 */ 523 old_path = inccb->ccb_h.path; 524 525 /* 526 * We really don't need a path for the matching 527 * code. The path is needed because of the 528 * debugging statements in xpt_action(). They 529 * assume that the CCB has a valid path. 530 */ 531 inccb->ccb_h.path = xpt_periph->path; 532 533 bzero(&mapinfo, sizeof(mapinfo)); 534 535 /* 536 * Map the pattern and match buffers into kernel 537 * virtual address space. 538 */ 539 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 540 541 if (error) { 542 inccb->ccb_h.path = old_path; 543 break; 544 } 545 546 /* 547 * This is an immediate CCB, we can send it on directly. 548 */ 549 xpt_action(inccb); 550 551 /* 552 * Map the buffers back into user space. 553 */ 554 cam_periph_unmapmem(inccb, &mapinfo); 555 556 inccb->ccb_h.path = old_path; 557 558 error = 0; 559 break; 560 } 561 default: 562 error = ENOTSUP; 563 break; 564 } 565 xpt_release_bus(bus); 566 break; 567 } 568 /* 569 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 570 * with the periphal driver name and unit name filled in. The other 571 * fields don't really matter as input. The passthrough driver name 572 * ("pass"), and unit number are passed back in the ccb. The current 573 * device generation number, and the index into the device peripheral 574 * driver list, and the status are also passed back. Note that 575 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 576 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 577 * (or rather should be) impossible for the device peripheral driver 578 * list to change since we look at the whole thing in one pass, and 579 * we do it with lock protection. 580 * 581 */ 582 case CAMGETPASSTHRU: { 583 union ccb *ccb; 584 struct cam_periph *periph; 585 struct periph_driver **p_drv; 586 char *name; 587 u_int unit; 588 int base_periph_found; 589 590 ccb = (union ccb *)addr; 591 unit = ccb->cgdl.unit_number; 592 name = ccb->cgdl.periph_name; 593 base_periph_found = 0; 594 595 /* 596 * Sanity check -- make sure we don't get a null peripheral 597 * driver name. 598 */ 599 if (*ccb->cgdl.periph_name == '\0') { 600 error = EINVAL; 601 break; 602 } 603 604 /* Keep the list from changing while we traverse it */ 605 xpt_lock_buses(); 606 607 /* first find our driver in the list of drivers */ 608 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 609 if (strcmp((*p_drv)->driver_name, name) == 0) 610 break; 611 612 if (*p_drv == NULL) { 613 xpt_unlock_buses(); 614 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 615 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 616 *ccb->cgdl.periph_name = '\0'; 617 ccb->cgdl.unit_number = 0; 618 error = ENOENT; 619 break; 620 } 621 622 /* 623 * Run through every peripheral instance of this driver 624 * and check to see whether it matches the unit passed 625 * in by the user. If it does, get out of the loops and 626 * find the passthrough driver associated with that 627 * peripheral driver. 628 */ 629 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 630 periph = TAILQ_NEXT(periph, unit_links)) { 631 632 if (periph->unit_number == unit) 633 break; 634 } 635 /* 636 * If we found the peripheral driver that the user passed 637 * in, go through all of the peripheral drivers for that 638 * particular device and look for a passthrough driver. 639 */ 640 if (periph != NULL) { 641 struct cam_ed *device; 642 int i; 643 644 base_periph_found = 1; 645 device = periph->path->device; 646 for (i = 0, periph = SLIST_FIRST(&device->periphs); 647 periph != NULL; 648 periph = SLIST_NEXT(periph, periph_links), i++) { 649 /* 650 * Check to see whether we have a 651 * passthrough device or not. 652 */ 653 if (strcmp(periph->periph_name, "pass") == 0) { 654 /* 655 * Fill in the getdevlist fields. 656 */ 657 strcpy(ccb->cgdl.periph_name, 658 periph->periph_name); 659 ccb->cgdl.unit_number = 660 periph->unit_number; 661 if (SLIST_NEXT(periph, periph_links)) 662 ccb->cgdl.status = 663 CAM_GDEVLIST_MORE_DEVS; 664 else 665 ccb->cgdl.status = 666 CAM_GDEVLIST_LAST_DEVICE; 667 ccb->cgdl.generation = 668 device->generation; 669 ccb->cgdl.index = i; 670 /* 671 * Fill in some CCB header fields 672 * that the user may want. 673 */ 674 ccb->ccb_h.path_id = 675 periph->path->bus->path_id; 676 ccb->ccb_h.target_id = 677 periph->path->target->target_id; 678 ccb->ccb_h.target_lun = 679 periph->path->device->lun_id; 680 ccb->ccb_h.status = CAM_REQ_CMP; 681 break; 682 } 683 } 684 } 685 686 /* 687 * If the periph is null here, one of two things has 688 * happened. The first possibility is that we couldn't 689 * find the unit number of the particular peripheral driver 690 * that the user is asking about. e.g. the user asks for 691 * the passthrough driver for "da11". We find the list of 692 * "da" peripherals all right, but there is no unit 11. 693 * The other possibility is that we went through the list 694 * of peripheral drivers attached to the device structure, 695 * but didn't find one with the name "pass". Either way, 696 * we return ENOENT, since we couldn't find something. 697 */ 698 if (periph == NULL) { 699 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 700 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 701 *ccb->cgdl.periph_name = '\0'; 702 ccb->cgdl.unit_number = 0; 703 error = ENOENT; 704 /* 705 * It is unfortunate that this is even necessary, 706 * but there are many, many clueless users out there. 707 * If this is true, the user is looking for the 708 * passthrough driver, but doesn't have one in his 709 * kernel. 710 */ 711 if (base_periph_found == 1) { 712 printf("xptioctl: pass driver is not in the " 713 "kernel\n"); 714 printf("xptioctl: put \"device pass\" in " 715 "your kernel config file\n"); 716 } 717 } 718 xpt_unlock_buses(); 719 break; 720 } 721 default: 722 error = ENOTTY; 723 break; 724 } 725 726 return(error); 727 } 728 729 static int 730 cam_module_event_handler(module_t mod, int what, void *arg) 731 { 732 int error; 733 734 switch (what) { 735 case MOD_LOAD: 736 if ((error = xpt_init(NULL)) != 0) 737 return (error); 738 break; 739 case MOD_UNLOAD: 740 return EBUSY; 741 default: 742 return EOPNOTSUPP; 743 } 744 745 return 0; 746 } 747 748 static void 749 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 750 { 751 752 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 753 xpt_free_path(done_ccb->ccb_h.path); 754 xpt_free_ccb(done_ccb); 755 } else { 756 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 757 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 758 } 759 xpt_release_boot(); 760 } 761 762 /* thread to handle bus rescans */ 763 static void 764 xpt_scanner_thread(void *dummy) 765 { 766 union ccb *ccb; 767 struct cam_path path; 768 769 xpt_lock_buses(); 770 for (;;) { 771 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 772 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 773 "-", 0); 774 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 775 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 776 xpt_unlock_buses(); 777 778 /* 779 * Since lock can be dropped inside and path freed 780 * by completion callback even before return here, 781 * take our own path copy for reference. 782 */ 783 xpt_copy_path(&path, ccb->ccb_h.path); 784 xpt_path_lock(&path); 785 xpt_action(ccb); 786 xpt_path_unlock(&path); 787 xpt_release_path(&path); 788 789 xpt_lock_buses(); 790 } 791 } 792 } 793 794 void 795 xpt_rescan(union ccb *ccb) 796 { 797 struct ccb_hdr *hdr; 798 799 /* Prepare request */ 800 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 801 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 802 ccb->ccb_h.func_code = XPT_SCAN_BUS; 803 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 804 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 805 ccb->ccb_h.func_code = XPT_SCAN_TGT; 806 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 807 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 808 ccb->ccb_h.func_code = XPT_SCAN_LUN; 809 else { 810 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 811 xpt_free_path(ccb->ccb_h.path); 812 xpt_free_ccb(ccb); 813 return; 814 } 815 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 816 ccb->ccb_h.cbfcnp = xpt_rescan_done; 817 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 818 /* Don't make duplicate entries for the same paths. */ 819 xpt_lock_buses(); 820 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 821 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 822 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 823 wakeup(&xsoftc.ccb_scanq); 824 xpt_unlock_buses(); 825 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 826 xpt_free_path(ccb->ccb_h.path); 827 xpt_free_ccb(ccb); 828 return; 829 } 830 } 831 } 832 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 833 xsoftc.buses_to_config++; 834 wakeup(&xsoftc.ccb_scanq); 835 xpt_unlock_buses(); 836 } 837 838 /* Functions accessed by the peripheral drivers */ 839 static int 840 xpt_init(void *dummy) 841 { 842 struct cam_sim *xpt_sim; 843 struct cam_path *path; 844 struct cam_devq *devq; 845 cam_status status; 846 int error, i; 847 848 TAILQ_INIT(&xsoftc.xpt_busses); 849 TAILQ_INIT(&xsoftc.ccb_scanq); 850 STAILQ_INIT(&xsoftc.highpowerq); 851 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 852 853 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 854 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 855 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 856 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 857 858 #ifdef CAM_BOOT_DELAY 859 /* 860 * Override this value at compile time to assist our users 861 * who don't use loader to boot a kernel. 862 */ 863 xsoftc.boot_delay = CAM_BOOT_DELAY; 864 #endif 865 /* 866 * The xpt layer is, itself, the equivalent of a SIM. 867 * Allow 16 ccbs in the ccb pool for it. This should 868 * give decent parallelism when we probe busses and 869 * perform other XPT functions. 870 */ 871 devq = cam_simq_alloc(16); 872 xpt_sim = cam_sim_alloc(xptaction, 873 xptpoll, 874 "xpt", 875 /*softc*/NULL, 876 /*unit*/0, 877 /*mtx*/&xsoftc.xpt_lock, 878 /*max_dev_transactions*/0, 879 /*max_tagged_dev_transactions*/0, 880 devq); 881 if (xpt_sim == NULL) 882 return (ENOMEM); 883 884 mtx_lock(&xsoftc.xpt_lock); 885 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 886 mtx_unlock(&xsoftc.xpt_lock); 887 printf("xpt_init: xpt_bus_register failed with status %#x," 888 " failing attach\n", status); 889 return (EINVAL); 890 } 891 mtx_unlock(&xsoftc.xpt_lock); 892 893 /* 894 * Looking at the XPT from the SIM layer, the XPT is 895 * the equivalent of a peripheral driver. Allocate 896 * a peripheral driver entry for us. 897 */ 898 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 899 CAM_TARGET_WILDCARD, 900 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 901 printf("xpt_init: xpt_create_path failed with status %#x," 902 " failing attach\n", status); 903 return (EINVAL); 904 } 905 xpt_path_lock(path); 906 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 907 path, NULL, 0, xpt_sim); 908 xpt_path_unlock(path); 909 xpt_free_path(path); 910 911 if (cam_num_doneqs < 1) 912 cam_num_doneqs = 1 + mp_ncpus / 6; 913 else if (cam_num_doneqs > MAXCPU) 914 cam_num_doneqs = MAXCPU; 915 for (i = 0; i < cam_num_doneqs; i++) { 916 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 917 MTX_DEF); 918 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 919 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 920 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 921 if (error != 0) { 922 cam_num_doneqs = i; 923 break; 924 } 925 } 926 if (cam_num_doneqs < 1) { 927 printf("xpt_init: Cannot init completion queues " 928 "- failing attach\n"); 929 return (ENOMEM); 930 } 931 /* 932 * Register a callback for when interrupts are enabled. 933 */ 934 xsoftc.xpt_config_hook = 935 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 936 M_CAMXPT, M_NOWAIT | M_ZERO); 937 if (xsoftc.xpt_config_hook == NULL) { 938 printf("xpt_init: Cannot malloc config hook " 939 "- failing attach\n"); 940 return (ENOMEM); 941 } 942 xsoftc.xpt_config_hook->ich_func = xpt_config; 943 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 944 free (xsoftc.xpt_config_hook, M_CAMXPT); 945 printf("xpt_init: config_intrhook_establish failed " 946 "- failing attach\n"); 947 } 948 949 return (0); 950 } 951 952 static cam_status 953 xptregister(struct cam_periph *periph, void *arg) 954 { 955 struct cam_sim *xpt_sim; 956 957 if (periph == NULL) { 958 printf("xptregister: periph was NULL!!\n"); 959 return(CAM_REQ_CMP_ERR); 960 } 961 962 xpt_sim = (struct cam_sim *)arg; 963 xpt_sim->softc = periph; 964 xpt_periph = periph; 965 periph->softc = NULL; 966 967 return(CAM_REQ_CMP); 968 } 969 970 int32_t 971 xpt_add_periph(struct cam_periph *periph) 972 { 973 struct cam_ed *device; 974 int32_t status; 975 976 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 977 device = periph->path->device; 978 status = CAM_REQ_CMP; 979 if (device != NULL) { 980 mtx_lock(&device->target->bus->eb_mtx); 981 device->generation++; 982 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 983 mtx_unlock(&device->target->bus->eb_mtx); 984 atomic_add_32(&xsoftc.xpt_generation, 1); 985 } 986 987 return (status); 988 } 989 990 void 991 xpt_remove_periph(struct cam_periph *periph) 992 { 993 struct cam_ed *device; 994 995 device = periph->path->device; 996 if (device != NULL) { 997 mtx_lock(&device->target->bus->eb_mtx); 998 device->generation++; 999 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1000 mtx_unlock(&device->target->bus->eb_mtx); 1001 atomic_add_32(&xsoftc.xpt_generation, 1); 1002 } 1003 } 1004 1005 1006 void 1007 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1008 { 1009 struct cam_path *path = periph->path; 1010 1011 cam_periph_assert(periph, MA_OWNED); 1012 periph->flags |= CAM_PERIPH_ANNOUNCED; 1013 1014 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1015 periph->periph_name, periph->unit_number, 1016 path->bus->sim->sim_name, 1017 path->bus->sim->unit_number, 1018 path->bus->sim->bus_id, 1019 path->bus->path_id, 1020 path->target->target_id, 1021 (uintmax_t)path->device->lun_id); 1022 printf("%s%d: ", periph->periph_name, periph->unit_number); 1023 if (path->device->protocol == PROTO_SCSI) 1024 scsi_print_inquiry(&path->device->inq_data); 1025 else if (path->device->protocol == PROTO_ATA || 1026 path->device->protocol == PROTO_SATAPM) 1027 ata_print_ident(&path->device->ident_data); 1028 else if (path->device->protocol == PROTO_SEMB) 1029 semb_print_ident( 1030 (struct sep_identify_data *)&path->device->ident_data); 1031 else 1032 printf("Unknown protocol device\n"); 1033 if (path->device->serial_num_len > 0) { 1034 /* Don't wrap the screen - print only the first 60 chars */ 1035 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1036 periph->unit_number, path->device->serial_num); 1037 } 1038 /* Announce transport details. */ 1039 (*(path->bus->xport->announce))(periph); 1040 /* Announce command queueing. */ 1041 if (path->device->inq_flags & SID_CmdQue 1042 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1043 printf("%s%d: Command Queueing enabled\n", 1044 periph->periph_name, periph->unit_number); 1045 } 1046 /* Announce caller's details if they've passed in. */ 1047 if (announce_string != NULL) 1048 printf("%s%d: %s\n", periph->periph_name, 1049 periph->unit_number, announce_string); 1050 } 1051 1052 void 1053 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1054 { 1055 if (quirks != 0) { 1056 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1057 periph->unit_number, quirks, bit_string); 1058 } 1059 } 1060 1061 void 1062 xpt_denounce_periph(struct cam_periph *periph) 1063 { 1064 struct cam_path *path = periph->path; 1065 1066 cam_periph_assert(periph, MA_OWNED); 1067 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1068 periph->periph_name, periph->unit_number, 1069 path->bus->sim->sim_name, 1070 path->bus->sim->unit_number, 1071 path->bus->sim->bus_id, 1072 path->bus->path_id, 1073 path->target->target_id, 1074 (uintmax_t)path->device->lun_id); 1075 printf("%s%d: ", periph->periph_name, periph->unit_number); 1076 if (path->device->protocol == PROTO_SCSI) 1077 scsi_print_inquiry_short(&path->device->inq_data); 1078 else if (path->device->protocol == PROTO_ATA || 1079 path->device->protocol == PROTO_SATAPM) 1080 ata_print_ident_short(&path->device->ident_data); 1081 else if (path->device->protocol == PROTO_SEMB) 1082 semb_print_ident_short( 1083 (struct sep_identify_data *)&path->device->ident_data); 1084 else 1085 printf("Unknown protocol device"); 1086 if (path->device->serial_num_len > 0) 1087 printf(" s/n %.60s", path->device->serial_num); 1088 printf(" detached\n"); 1089 } 1090 1091 1092 int 1093 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1094 { 1095 int ret = -1, l; 1096 struct ccb_dev_advinfo cdai; 1097 struct scsi_vpd_id_descriptor *idd; 1098 1099 xpt_path_assert(path, MA_OWNED); 1100 1101 memset(&cdai, 0, sizeof(cdai)); 1102 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1103 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1104 cdai.bufsiz = len; 1105 1106 if (!strcmp(attr, "GEOM::ident")) 1107 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1108 else if (!strcmp(attr, "GEOM::physpath")) 1109 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1110 else if (strcmp(attr, "GEOM::lunid") == 0 || 1111 strcmp(attr, "GEOM::lunname") == 0) { 1112 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1113 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1114 } else 1115 goto out; 1116 1117 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1118 if (cdai.buf == NULL) { 1119 ret = ENOMEM; 1120 goto out; 1121 } 1122 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1123 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1124 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1125 if (cdai.provsiz == 0) 1126 goto out; 1127 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1128 if (strcmp(attr, "GEOM::lunid") == 0) { 1129 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1130 cdai.provsiz, scsi_devid_is_lun_naa); 1131 if (idd == NULL) 1132 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1133 cdai.provsiz, scsi_devid_is_lun_eui64); 1134 } else 1135 idd = NULL; 1136 if (idd == NULL) 1137 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1138 cdai.provsiz, scsi_devid_is_lun_t10); 1139 if (idd == NULL) 1140 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1141 cdai.provsiz, scsi_devid_is_lun_name); 1142 if (idd == NULL) 1143 goto out; 1144 ret = 0; 1145 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1146 if (idd->length < len) { 1147 for (l = 0; l < idd->length; l++) 1148 buf[l] = idd->identifier[l] ? 1149 idd->identifier[l] : ' '; 1150 buf[l] = 0; 1151 } else 1152 ret = EFAULT; 1153 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1154 l = strnlen(idd->identifier, idd->length); 1155 if (l < len) { 1156 bcopy(idd->identifier, buf, l); 1157 buf[l] = 0; 1158 } else 1159 ret = EFAULT; 1160 } else { 1161 if (idd->length * 2 < len) { 1162 for (l = 0; l < idd->length; l++) 1163 sprintf(buf + l * 2, "%02x", 1164 idd->identifier[l]); 1165 } else 1166 ret = EFAULT; 1167 } 1168 } else { 1169 ret = 0; 1170 if (strlcpy(buf, cdai.buf, len) >= len) 1171 ret = EFAULT; 1172 } 1173 1174 out: 1175 if (cdai.buf != NULL) 1176 free(cdai.buf, M_CAMXPT); 1177 return ret; 1178 } 1179 1180 static dev_match_ret 1181 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1182 struct cam_eb *bus) 1183 { 1184 dev_match_ret retval; 1185 u_int i; 1186 1187 retval = DM_RET_NONE; 1188 1189 /* 1190 * If we aren't given something to match against, that's an error. 1191 */ 1192 if (bus == NULL) 1193 return(DM_RET_ERROR); 1194 1195 /* 1196 * If there are no match entries, then this bus matches no 1197 * matter what. 1198 */ 1199 if ((patterns == NULL) || (num_patterns == 0)) 1200 return(DM_RET_DESCEND | DM_RET_COPY); 1201 1202 for (i = 0; i < num_patterns; i++) { 1203 struct bus_match_pattern *cur_pattern; 1204 1205 /* 1206 * If the pattern in question isn't for a bus node, we 1207 * aren't interested. However, we do indicate to the 1208 * calling routine that we should continue descending the 1209 * tree, since the user wants to match against lower-level 1210 * EDT elements. 1211 */ 1212 if (patterns[i].type != DEV_MATCH_BUS) { 1213 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1214 retval |= DM_RET_DESCEND; 1215 continue; 1216 } 1217 1218 cur_pattern = &patterns[i].pattern.bus_pattern; 1219 1220 /* 1221 * If they want to match any bus node, we give them any 1222 * device node. 1223 */ 1224 if (cur_pattern->flags == BUS_MATCH_ANY) { 1225 /* set the copy flag */ 1226 retval |= DM_RET_COPY; 1227 1228 /* 1229 * If we've already decided on an action, go ahead 1230 * and return. 1231 */ 1232 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1233 return(retval); 1234 } 1235 1236 /* 1237 * Not sure why someone would do this... 1238 */ 1239 if (cur_pattern->flags == BUS_MATCH_NONE) 1240 continue; 1241 1242 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1243 && (cur_pattern->path_id != bus->path_id)) 1244 continue; 1245 1246 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1247 && (cur_pattern->bus_id != bus->sim->bus_id)) 1248 continue; 1249 1250 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1251 && (cur_pattern->unit_number != bus->sim->unit_number)) 1252 continue; 1253 1254 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1255 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1256 DEV_IDLEN) != 0)) 1257 continue; 1258 1259 /* 1260 * If we get to this point, the user definitely wants 1261 * information on this bus. So tell the caller to copy the 1262 * data out. 1263 */ 1264 retval |= DM_RET_COPY; 1265 1266 /* 1267 * If the return action has been set to descend, then we 1268 * know that we've already seen a non-bus matching 1269 * expression, therefore we need to further descend the tree. 1270 * This won't change by continuing around the loop, so we 1271 * go ahead and return. If we haven't seen a non-bus 1272 * matching expression, we keep going around the loop until 1273 * we exhaust the matching expressions. We'll set the stop 1274 * flag once we fall out of the loop. 1275 */ 1276 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1277 return(retval); 1278 } 1279 1280 /* 1281 * If the return action hasn't been set to descend yet, that means 1282 * we haven't seen anything other than bus matching patterns. So 1283 * tell the caller to stop descending the tree -- the user doesn't 1284 * want to match against lower level tree elements. 1285 */ 1286 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1287 retval |= DM_RET_STOP; 1288 1289 return(retval); 1290 } 1291 1292 static dev_match_ret 1293 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1294 struct cam_ed *device) 1295 { 1296 dev_match_ret retval; 1297 u_int i; 1298 1299 retval = DM_RET_NONE; 1300 1301 /* 1302 * If we aren't given something to match against, that's an error. 1303 */ 1304 if (device == NULL) 1305 return(DM_RET_ERROR); 1306 1307 /* 1308 * If there are no match entries, then this device matches no 1309 * matter what. 1310 */ 1311 if ((patterns == NULL) || (num_patterns == 0)) 1312 return(DM_RET_DESCEND | DM_RET_COPY); 1313 1314 for (i = 0; i < num_patterns; i++) { 1315 struct device_match_pattern *cur_pattern; 1316 struct scsi_vpd_device_id *device_id_page; 1317 1318 /* 1319 * If the pattern in question isn't for a device node, we 1320 * aren't interested. 1321 */ 1322 if (patterns[i].type != DEV_MATCH_DEVICE) { 1323 if ((patterns[i].type == DEV_MATCH_PERIPH) 1324 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1325 retval |= DM_RET_DESCEND; 1326 continue; 1327 } 1328 1329 cur_pattern = &patterns[i].pattern.device_pattern; 1330 1331 /* Error out if mutually exclusive options are specified. */ 1332 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1333 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1334 return(DM_RET_ERROR); 1335 1336 /* 1337 * If they want to match any device node, we give them any 1338 * device node. 1339 */ 1340 if (cur_pattern->flags == DEV_MATCH_ANY) 1341 goto copy_dev_node; 1342 1343 /* 1344 * Not sure why someone would do this... 1345 */ 1346 if (cur_pattern->flags == DEV_MATCH_NONE) 1347 continue; 1348 1349 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1350 && (cur_pattern->path_id != device->target->bus->path_id)) 1351 continue; 1352 1353 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1354 && (cur_pattern->target_id != device->target->target_id)) 1355 continue; 1356 1357 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1358 && (cur_pattern->target_lun != device->lun_id)) 1359 continue; 1360 1361 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1362 && (cam_quirkmatch((caddr_t)&device->inq_data, 1363 (caddr_t)&cur_pattern->data.inq_pat, 1364 1, sizeof(cur_pattern->data.inq_pat), 1365 scsi_static_inquiry_match) == NULL)) 1366 continue; 1367 1368 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1369 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1370 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1371 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1372 device->device_id_len 1373 - SVPD_DEVICE_ID_HDR_LEN, 1374 cur_pattern->data.devid_pat.id, 1375 cur_pattern->data.devid_pat.id_len) != 0)) 1376 continue; 1377 1378 copy_dev_node: 1379 /* 1380 * If we get to this point, the user definitely wants 1381 * information on this device. So tell the caller to copy 1382 * the data out. 1383 */ 1384 retval |= DM_RET_COPY; 1385 1386 /* 1387 * If the return action has been set to descend, then we 1388 * know that we've already seen a peripheral matching 1389 * expression, therefore we need to further descend the tree. 1390 * This won't change by continuing around the loop, so we 1391 * go ahead and return. If we haven't seen a peripheral 1392 * matching expression, we keep going around the loop until 1393 * we exhaust the matching expressions. We'll set the stop 1394 * flag once we fall out of the loop. 1395 */ 1396 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1397 return(retval); 1398 } 1399 1400 /* 1401 * If the return action hasn't been set to descend yet, that means 1402 * we haven't seen any peripheral matching patterns. So tell the 1403 * caller to stop descending the tree -- the user doesn't want to 1404 * match against lower level tree elements. 1405 */ 1406 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1407 retval |= DM_RET_STOP; 1408 1409 return(retval); 1410 } 1411 1412 /* 1413 * Match a single peripheral against any number of match patterns. 1414 */ 1415 static dev_match_ret 1416 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1417 struct cam_periph *periph) 1418 { 1419 dev_match_ret retval; 1420 u_int i; 1421 1422 /* 1423 * If we aren't given something to match against, that's an error. 1424 */ 1425 if (periph == NULL) 1426 return(DM_RET_ERROR); 1427 1428 /* 1429 * If there are no match entries, then this peripheral matches no 1430 * matter what. 1431 */ 1432 if ((patterns == NULL) || (num_patterns == 0)) 1433 return(DM_RET_STOP | DM_RET_COPY); 1434 1435 /* 1436 * There aren't any nodes below a peripheral node, so there's no 1437 * reason to descend the tree any further. 1438 */ 1439 retval = DM_RET_STOP; 1440 1441 for (i = 0; i < num_patterns; i++) { 1442 struct periph_match_pattern *cur_pattern; 1443 1444 /* 1445 * If the pattern in question isn't for a peripheral, we 1446 * aren't interested. 1447 */ 1448 if (patterns[i].type != DEV_MATCH_PERIPH) 1449 continue; 1450 1451 cur_pattern = &patterns[i].pattern.periph_pattern; 1452 1453 /* 1454 * If they want to match on anything, then we will do so. 1455 */ 1456 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1457 /* set the copy flag */ 1458 retval |= DM_RET_COPY; 1459 1460 /* 1461 * We've already set the return action to stop, 1462 * since there are no nodes below peripherals in 1463 * the tree. 1464 */ 1465 return(retval); 1466 } 1467 1468 /* 1469 * Not sure why someone would do this... 1470 */ 1471 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1472 continue; 1473 1474 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1475 && (cur_pattern->path_id != periph->path->bus->path_id)) 1476 continue; 1477 1478 /* 1479 * For the target and lun id's, we have to make sure the 1480 * target and lun pointers aren't NULL. The xpt peripheral 1481 * has a wildcard target and device. 1482 */ 1483 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1484 && ((periph->path->target == NULL) 1485 ||(cur_pattern->target_id != periph->path->target->target_id))) 1486 continue; 1487 1488 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1489 && ((periph->path->device == NULL) 1490 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1491 continue; 1492 1493 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1494 && (cur_pattern->unit_number != periph->unit_number)) 1495 continue; 1496 1497 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1498 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1499 DEV_IDLEN) != 0)) 1500 continue; 1501 1502 /* 1503 * If we get to this point, the user definitely wants 1504 * information on this peripheral. So tell the caller to 1505 * copy the data out. 1506 */ 1507 retval |= DM_RET_COPY; 1508 1509 /* 1510 * The return action has already been set to stop, since 1511 * peripherals don't have any nodes below them in the EDT. 1512 */ 1513 return(retval); 1514 } 1515 1516 /* 1517 * If we get to this point, the peripheral that was passed in 1518 * doesn't match any of the patterns. 1519 */ 1520 return(retval); 1521 } 1522 1523 static int 1524 xptedtbusfunc(struct cam_eb *bus, void *arg) 1525 { 1526 struct ccb_dev_match *cdm; 1527 struct cam_et *target; 1528 dev_match_ret retval; 1529 1530 cdm = (struct ccb_dev_match *)arg; 1531 1532 /* 1533 * If our position is for something deeper in the tree, that means 1534 * that we've already seen this node. So, we keep going down. 1535 */ 1536 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1537 && (cdm->pos.cookie.bus == bus) 1538 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1539 && (cdm->pos.cookie.target != NULL)) 1540 retval = DM_RET_DESCEND; 1541 else 1542 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1543 1544 /* 1545 * If we got an error, bail out of the search. 1546 */ 1547 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1548 cdm->status = CAM_DEV_MATCH_ERROR; 1549 return(0); 1550 } 1551 1552 /* 1553 * If the copy flag is set, copy this bus out. 1554 */ 1555 if (retval & DM_RET_COPY) { 1556 int spaceleft, j; 1557 1558 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1559 sizeof(struct dev_match_result)); 1560 1561 /* 1562 * If we don't have enough space to put in another 1563 * match result, save our position and tell the 1564 * user there are more devices to check. 1565 */ 1566 if (spaceleft < sizeof(struct dev_match_result)) { 1567 bzero(&cdm->pos, sizeof(cdm->pos)); 1568 cdm->pos.position_type = 1569 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1570 1571 cdm->pos.cookie.bus = bus; 1572 cdm->pos.generations[CAM_BUS_GENERATION]= 1573 xsoftc.bus_generation; 1574 cdm->status = CAM_DEV_MATCH_MORE; 1575 return(0); 1576 } 1577 j = cdm->num_matches; 1578 cdm->num_matches++; 1579 cdm->matches[j].type = DEV_MATCH_BUS; 1580 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1581 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1582 cdm->matches[j].result.bus_result.unit_number = 1583 bus->sim->unit_number; 1584 strncpy(cdm->matches[j].result.bus_result.dev_name, 1585 bus->sim->sim_name, DEV_IDLEN); 1586 } 1587 1588 /* 1589 * If the user is only interested in busses, there's no 1590 * reason to descend to the next level in the tree. 1591 */ 1592 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1593 return(1); 1594 1595 /* 1596 * If there is a target generation recorded, check it to 1597 * make sure the target list hasn't changed. 1598 */ 1599 mtx_lock(&bus->eb_mtx); 1600 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1601 && (cdm->pos.cookie.bus == bus) 1602 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1603 && (cdm->pos.cookie.target != NULL)) { 1604 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1605 bus->generation)) { 1606 mtx_unlock(&bus->eb_mtx); 1607 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1608 return (0); 1609 } 1610 target = (struct cam_et *)cdm->pos.cookie.target; 1611 target->refcount++; 1612 } else 1613 target = NULL; 1614 mtx_unlock(&bus->eb_mtx); 1615 1616 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1617 } 1618 1619 static int 1620 xptedttargetfunc(struct cam_et *target, void *arg) 1621 { 1622 struct ccb_dev_match *cdm; 1623 struct cam_eb *bus; 1624 struct cam_ed *device; 1625 1626 cdm = (struct ccb_dev_match *)arg; 1627 bus = target->bus; 1628 1629 /* 1630 * If there is a device list generation recorded, check it to 1631 * make sure the device list hasn't changed. 1632 */ 1633 mtx_lock(&bus->eb_mtx); 1634 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1635 && (cdm->pos.cookie.bus == bus) 1636 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1637 && (cdm->pos.cookie.target == target) 1638 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1639 && (cdm->pos.cookie.device != NULL)) { 1640 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1641 target->generation) { 1642 mtx_unlock(&bus->eb_mtx); 1643 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1644 return(0); 1645 } 1646 device = (struct cam_ed *)cdm->pos.cookie.device; 1647 device->refcount++; 1648 } else 1649 device = NULL; 1650 mtx_unlock(&bus->eb_mtx); 1651 1652 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1653 } 1654 1655 static int 1656 xptedtdevicefunc(struct cam_ed *device, void *arg) 1657 { 1658 struct cam_eb *bus; 1659 struct cam_periph *periph; 1660 struct ccb_dev_match *cdm; 1661 dev_match_ret retval; 1662 1663 cdm = (struct ccb_dev_match *)arg; 1664 bus = device->target->bus; 1665 1666 /* 1667 * If our position is for something deeper in the tree, that means 1668 * that we've already seen this node. So, we keep going down. 1669 */ 1670 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1671 && (cdm->pos.cookie.device == device) 1672 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1673 && (cdm->pos.cookie.periph != NULL)) 1674 retval = DM_RET_DESCEND; 1675 else 1676 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1677 device); 1678 1679 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1680 cdm->status = CAM_DEV_MATCH_ERROR; 1681 return(0); 1682 } 1683 1684 /* 1685 * If the copy flag is set, copy this device out. 1686 */ 1687 if (retval & DM_RET_COPY) { 1688 int spaceleft, j; 1689 1690 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1691 sizeof(struct dev_match_result)); 1692 1693 /* 1694 * If we don't have enough space to put in another 1695 * match result, save our position and tell the 1696 * user there are more devices to check. 1697 */ 1698 if (spaceleft < sizeof(struct dev_match_result)) { 1699 bzero(&cdm->pos, sizeof(cdm->pos)); 1700 cdm->pos.position_type = 1701 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1702 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1703 1704 cdm->pos.cookie.bus = device->target->bus; 1705 cdm->pos.generations[CAM_BUS_GENERATION]= 1706 xsoftc.bus_generation; 1707 cdm->pos.cookie.target = device->target; 1708 cdm->pos.generations[CAM_TARGET_GENERATION] = 1709 device->target->bus->generation; 1710 cdm->pos.cookie.device = device; 1711 cdm->pos.generations[CAM_DEV_GENERATION] = 1712 device->target->generation; 1713 cdm->status = CAM_DEV_MATCH_MORE; 1714 return(0); 1715 } 1716 j = cdm->num_matches; 1717 cdm->num_matches++; 1718 cdm->matches[j].type = DEV_MATCH_DEVICE; 1719 cdm->matches[j].result.device_result.path_id = 1720 device->target->bus->path_id; 1721 cdm->matches[j].result.device_result.target_id = 1722 device->target->target_id; 1723 cdm->matches[j].result.device_result.target_lun = 1724 device->lun_id; 1725 cdm->matches[j].result.device_result.protocol = 1726 device->protocol; 1727 bcopy(&device->inq_data, 1728 &cdm->matches[j].result.device_result.inq_data, 1729 sizeof(struct scsi_inquiry_data)); 1730 bcopy(&device->ident_data, 1731 &cdm->matches[j].result.device_result.ident_data, 1732 sizeof(struct ata_params)); 1733 1734 /* Let the user know whether this device is unconfigured */ 1735 if (device->flags & CAM_DEV_UNCONFIGURED) 1736 cdm->matches[j].result.device_result.flags = 1737 DEV_RESULT_UNCONFIGURED; 1738 else 1739 cdm->matches[j].result.device_result.flags = 1740 DEV_RESULT_NOFLAG; 1741 } 1742 1743 /* 1744 * If the user isn't interested in peripherals, don't descend 1745 * the tree any further. 1746 */ 1747 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1748 return(1); 1749 1750 /* 1751 * If there is a peripheral list generation recorded, make sure 1752 * it hasn't changed. 1753 */ 1754 xpt_lock_buses(); 1755 mtx_lock(&bus->eb_mtx); 1756 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1757 && (cdm->pos.cookie.bus == bus) 1758 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1759 && (cdm->pos.cookie.target == device->target) 1760 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1761 && (cdm->pos.cookie.device == device) 1762 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1763 && (cdm->pos.cookie.periph != NULL)) { 1764 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1765 device->generation) { 1766 mtx_unlock(&bus->eb_mtx); 1767 xpt_unlock_buses(); 1768 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1769 return(0); 1770 } 1771 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1772 periph->refcount++; 1773 } else 1774 periph = NULL; 1775 mtx_unlock(&bus->eb_mtx); 1776 xpt_unlock_buses(); 1777 1778 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1779 } 1780 1781 static int 1782 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1783 { 1784 struct ccb_dev_match *cdm; 1785 dev_match_ret retval; 1786 1787 cdm = (struct ccb_dev_match *)arg; 1788 1789 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1790 1791 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1792 cdm->status = CAM_DEV_MATCH_ERROR; 1793 return(0); 1794 } 1795 1796 /* 1797 * If the copy flag is set, copy this peripheral out. 1798 */ 1799 if (retval & DM_RET_COPY) { 1800 int spaceleft, j; 1801 1802 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1803 sizeof(struct dev_match_result)); 1804 1805 /* 1806 * If we don't have enough space to put in another 1807 * match result, save our position and tell the 1808 * user there are more devices to check. 1809 */ 1810 if (spaceleft < sizeof(struct dev_match_result)) { 1811 bzero(&cdm->pos, sizeof(cdm->pos)); 1812 cdm->pos.position_type = 1813 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1814 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1815 CAM_DEV_POS_PERIPH; 1816 1817 cdm->pos.cookie.bus = periph->path->bus; 1818 cdm->pos.generations[CAM_BUS_GENERATION]= 1819 xsoftc.bus_generation; 1820 cdm->pos.cookie.target = periph->path->target; 1821 cdm->pos.generations[CAM_TARGET_GENERATION] = 1822 periph->path->bus->generation; 1823 cdm->pos.cookie.device = periph->path->device; 1824 cdm->pos.generations[CAM_DEV_GENERATION] = 1825 periph->path->target->generation; 1826 cdm->pos.cookie.periph = periph; 1827 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1828 periph->path->device->generation; 1829 cdm->status = CAM_DEV_MATCH_MORE; 1830 return(0); 1831 } 1832 1833 j = cdm->num_matches; 1834 cdm->num_matches++; 1835 cdm->matches[j].type = DEV_MATCH_PERIPH; 1836 cdm->matches[j].result.periph_result.path_id = 1837 periph->path->bus->path_id; 1838 cdm->matches[j].result.periph_result.target_id = 1839 periph->path->target->target_id; 1840 cdm->matches[j].result.periph_result.target_lun = 1841 periph->path->device->lun_id; 1842 cdm->matches[j].result.periph_result.unit_number = 1843 periph->unit_number; 1844 strncpy(cdm->matches[j].result.periph_result.periph_name, 1845 periph->periph_name, DEV_IDLEN); 1846 } 1847 1848 return(1); 1849 } 1850 1851 static int 1852 xptedtmatch(struct ccb_dev_match *cdm) 1853 { 1854 struct cam_eb *bus; 1855 int ret; 1856 1857 cdm->num_matches = 0; 1858 1859 /* 1860 * Check the bus list generation. If it has changed, the user 1861 * needs to reset everything and start over. 1862 */ 1863 xpt_lock_buses(); 1864 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1865 && (cdm->pos.cookie.bus != NULL)) { 1866 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1867 xsoftc.bus_generation) { 1868 xpt_unlock_buses(); 1869 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1870 return(0); 1871 } 1872 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1873 bus->refcount++; 1874 } else 1875 bus = NULL; 1876 xpt_unlock_buses(); 1877 1878 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1879 1880 /* 1881 * If we get back 0, that means that we had to stop before fully 1882 * traversing the EDT. It also means that one of the subroutines 1883 * has set the status field to the proper value. If we get back 1, 1884 * we've fully traversed the EDT and copied out any matching entries. 1885 */ 1886 if (ret == 1) 1887 cdm->status = CAM_DEV_MATCH_LAST; 1888 1889 return(ret); 1890 } 1891 1892 static int 1893 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1894 { 1895 struct cam_periph *periph; 1896 struct ccb_dev_match *cdm; 1897 1898 cdm = (struct ccb_dev_match *)arg; 1899 1900 xpt_lock_buses(); 1901 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1902 && (cdm->pos.cookie.pdrv == pdrv) 1903 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1904 && (cdm->pos.cookie.periph != NULL)) { 1905 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1906 (*pdrv)->generation) { 1907 xpt_unlock_buses(); 1908 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1909 return(0); 1910 } 1911 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1912 periph->refcount++; 1913 } else 1914 periph = NULL; 1915 xpt_unlock_buses(); 1916 1917 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1918 } 1919 1920 static int 1921 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1922 { 1923 struct ccb_dev_match *cdm; 1924 dev_match_ret retval; 1925 1926 cdm = (struct ccb_dev_match *)arg; 1927 1928 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1929 1930 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1931 cdm->status = CAM_DEV_MATCH_ERROR; 1932 return(0); 1933 } 1934 1935 /* 1936 * If the copy flag is set, copy this peripheral out. 1937 */ 1938 if (retval & DM_RET_COPY) { 1939 int spaceleft, j; 1940 1941 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1942 sizeof(struct dev_match_result)); 1943 1944 /* 1945 * If we don't have enough space to put in another 1946 * match result, save our position and tell the 1947 * user there are more devices to check. 1948 */ 1949 if (spaceleft < sizeof(struct dev_match_result)) { 1950 struct periph_driver **pdrv; 1951 1952 pdrv = NULL; 1953 bzero(&cdm->pos, sizeof(cdm->pos)); 1954 cdm->pos.position_type = 1955 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1956 CAM_DEV_POS_PERIPH; 1957 1958 /* 1959 * This may look a bit non-sensical, but it is 1960 * actually quite logical. There are very few 1961 * peripheral drivers, and bloating every peripheral 1962 * structure with a pointer back to its parent 1963 * peripheral driver linker set entry would cost 1964 * more in the long run than doing this quick lookup. 1965 */ 1966 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1967 if (strcmp((*pdrv)->driver_name, 1968 periph->periph_name) == 0) 1969 break; 1970 } 1971 1972 if (*pdrv == NULL) { 1973 cdm->status = CAM_DEV_MATCH_ERROR; 1974 return(0); 1975 } 1976 1977 cdm->pos.cookie.pdrv = pdrv; 1978 /* 1979 * The periph generation slot does double duty, as 1980 * does the periph pointer slot. They are used for 1981 * both edt and pdrv lookups and positioning. 1982 */ 1983 cdm->pos.cookie.periph = periph; 1984 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1985 (*pdrv)->generation; 1986 cdm->status = CAM_DEV_MATCH_MORE; 1987 return(0); 1988 } 1989 1990 j = cdm->num_matches; 1991 cdm->num_matches++; 1992 cdm->matches[j].type = DEV_MATCH_PERIPH; 1993 cdm->matches[j].result.periph_result.path_id = 1994 periph->path->bus->path_id; 1995 1996 /* 1997 * The transport layer peripheral doesn't have a target or 1998 * lun. 1999 */ 2000 if (periph->path->target) 2001 cdm->matches[j].result.periph_result.target_id = 2002 periph->path->target->target_id; 2003 else 2004 cdm->matches[j].result.periph_result.target_id = 2005 CAM_TARGET_WILDCARD; 2006 2007 if (periph->path->device) 2008 cdm->matches[j].result.periph_result.target_lun = 2009 periph->path->device->lun_id; 2010 else 2011 cdm->matches[j].result.periph_result.target_lun = 2012 CAM_LUN_WILDCARD; 2013 2014 cdm->matches[j].result.periph_result.unit_number = 2015 periph->unit_number; 2016 strncpy(cdm->matches[j].result.periph_result.periph_name, 2017 periph->periph_name, DEV_IDLEN); 2018 } 2019 2020 return(1); 2021 } 2022 2023 static int 2024 xptperiphlistmatch(struct ccb_dev_match *cdm) 2025 { 2026 int ret; 2027 2028 cdm->num_matches = 0; 2029 2030 /* 2031 * At this point in the edt traversal function, we check the bus 2032 * list generation to make sure that no busses have been added or 2033 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2034 * For the peripheral driver list traversal function, however, we 2035 * don't have to worry about new peripheral driver types coming or 2036 * going; they're in a linker set, and therefore can't change 2037 * without a recompile. 2038 */ 2039 2040 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2041 && (cdm->pos.cookie.pdrv != NULL)) 2042 ret = xptpdrvtraverse( 2043 (struct periph_driver **)cdm->pos.cookie.pdrv, 2044 xptplistpdrvfunc, cdm); 2045 else 2046 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2047 2048 /* 2049 * If we get back 0, that means that we had to stop before fully 2050 * traversing the peripheral driver tree. It also means that one of 2051 * the subroutines has set the status field to the proper value. If 2052 * we get back 1, we've fully traversed the EDT and copied out any 2053 * matching entries. 2054 */ 2055 if (ret == 1) 2056 cdm->status = CAM_DEV_MATCH_LAST; 2057 2058 return(ret); 2059 } 2060 2061 static int 2062 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2063 { 2064 struct cam_eb *bus, *next_bus; 2065 int retval; 2066 2067 retval = 1; 2068 if (start_bus) 2069 bus = start_bus; 2070 else { 2071 xpt_lock_buses(); 2072 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2073 if (bus == NULL) { 2074 xpt_unlock_buses(); 2075 return (retval); 2076 } 2077 bus->refcount++; 2078 xpt_unlock_buses(); 2079 } 2080 for (; bus != NULL; bus = next_bus) { 2081 retval = tr_func(bus, arg); 2082 if (retval == 0) { 2083 xpt_release_bus(bus); 2084 break; 2085 } 2086 xpt_lock_buses(); 2087 next_bus = TAILQ_NEXT(bus, links); 2088 if (next_bus) 2089 next_bus->refcount++; 2090 xpt_unlock_buses(); 2091 xpt_release_bus(bus); 2092 } 2093 return(retval); 2094 } 2095 2096 static int 2097 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2098 xpt_targetfunc_t *tr_func, void *arg) 2099 { 2100 struct cam_et *target, *next_target; 2101 int retval; 2102 2103 retval = 1; 2104 if (start_target) 2105 target = start_target; 2106 else { 2107 mtx_lock(&bus->eb_mtx); 2108 target = TAILQ_FIRST(&bus->et_entries); 2109 if (target == NULL) { 2110 mtx_unlock(&bus->eb_mtx); 2111 return (retval); 2112 } 2113 target->refcount++; 2114 mtx_unlock(&bus->eb_mtx); 2115 } 2116 for (; target != NULL; target = next_target) { 2117 retval = tr_func(target, arg); 2118 if (retval == 0) { 2119 xpt_release_target(target); 2120 break; 2121 } 2122 mtx_lock(&bus->eb_mtx); 2123 next_target = TAILQ_NEXT(target, links); 2124 if (next_target) 2125 next_target->refcount++; 2126 mtx_unlock(&bus->eb_mtx); 2127 xpt_release_target(target); 2128 } 2129 return(retval); 2130 } 2131 2132 static int 2133 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2134 xpt_devicefunc_t *tr_func, void *arg) 2135 { 2136 struct cam_eb *bus; 2137 struct cam_ed *device, *next_device; 2138 int retval; 2139 2140 retval = 1; 2141 bus = target->bus; 2142 if (start_device) 2143 device = start_device; 2144 else { 2145 mtx_lock(&bus->eb_mtx); 2146 device = TAILQ_FIRST(&target->ed_entries); 2147 if (device == NULL) { 2148 mtx_unlock(&bus->eb_mtx); 2149 return (retval); 2150 } 2151 device->refcount++; 2152 mtx_unlock(&bus->eb_mtx); 2153 } 2154 for (; device != NULL; device = next_device) { 2155 mtx_lock(&device->device_mtx); 2156 retval = tr_func(device, arg); 2157 mtx_unlock(&device->device_mtx); 2158 if (retval == 0) { 2159 xpt_release_device(device); 2160 break; 2161 } 2162 mtx_lock(&bus->eb_mtx); 2163 next_device = TAILQ_NEXT(device, links); 2164 if (next_device) 2165 next_device->refcount++; 2166 mtx_unlock(&bus->eb_mtx); 2167 xpt_release_device(device); 2168 } 2169 return(retval); 2170 } 2171 2172 static int 2173 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2174 xpt_periphfunc_t *tr_func, void *arg) 2175 { 2176 struct cam_eb *bus; 2177 struct cam_periph *periph, *next_periph; 2178 int retval; 2179 2180 retval = 1; 2181 2182 bus = device->target->bus; 2183 if (start_periph) 2184 periph = start_periph; 2185 else { 2186 xpt_lock_buses(); 2187 mtx_lock(&bus->eb_mtx); 2188 periph = SLIST_FIRST(&device->periphs); 2189 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2190 periph = SLIST_NEXT(periph, periph_links); 2191 if (periph == NULL) { 2192 mtx_unlock(&bus->eb_mtx); 2193 xpt_unlock_buses(); 2194 return (retval); 2195 } 2196 periph->refcount++; 2197 mtx_unlock(&bus->eb_mtx); 2198 xpt_unlock_buses(); 2199 } 2200 for (; periph != NULL; periph = next_periph) { 2201 retval = tr_func(periph, arg); 2202 if (retval == 0) { 2203 cam_periph_release_locked(periph); 2204 break; 2205 } 2206 xpt_lock_buses(); 2207 mtx_lock(&bus->eb_mtx); 2208 next_periph = SLIST_NEXT(periph, periph_links); 2209 while (next_periph != NULL && 2210 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2211 next_periph = SLIST_NEXT(next_periph, periph_links); 2212 if (next_periph) 2213 next_periph->refcount++; 2214 mtx_unlock(&bus->eb_mtx); 2215 xpt_unlock_buses(); 2216 cam_periph_release_locked(periph); 2217 } 2218 return(retval); 2219 } 2220 2221 static int 2222 xptpdrvtraverse(struct periph_driver **start_pdrv, 2223 xpt_pdrvfunc_t *tr_func, void *arg) 2224 { 2225 struct periph_driver **pdrv; 2226 int retval; 2227 2228 retval = 1; 2229 2230 /* 2231 * We don't traverse the peripheral driver list like we do the 2232 * other lists, because it is a linker set, and therefore cannot be 2233 * changed during runtime. If the peripheral driver list is ever 2234 * re-done to be something other than a linker set (i.e. it can 2235 * change while the system is running), the list traversal should 2236 * be modified to work like the other traversal functions. 2237 */ 2238 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2239 *pdrv != NULL; pdrv++) { 2240 retval = tr_func(pdrv, arg); 2241 2242 if (retval == 0) 2243 return(retval); 2244 } 2245 2246 return(retval); 2247 } 2248 2249 static int 2250 xptpdperiphtraverse(struct periph_driver **pdrv, 2251 struct cam_periph *start_periph, 2252 xpt_periphfunc_t *tr_func, void *arg) 2253 { 2254 struct cam_periph *periph, *next_periph; 2255 int retval; 2256 2257 retval = 1; 2258 2259 if (start_periph) 2260 periph = start_periph; 2261 else { 2262 xpt_lock_buses(); 2263 periph = TAILQ_FIRST(&(*pdrv)->units); 2264 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2265 periph = TAILQ_NEXT(periph, unit_links); 2266 if (periph == NULL) { 2267 xpt_unlock_buses(); 2268 return (retval); 2269 } 2270 periph->refcount++; 2271 xpt_unlock_buses(); 2272 } 2273 for (; periph != NULL; periph = next_periph) { 2274 cam_periph_lock(periph); 2275 retval = tr_func(periph, arg); 2276 cam_periph_unlock(periph); 2277 if (retval == 0) { 2278 cam_periph_release(periph); 2279 break; 2280 } 2281 xpt_lock_buses(); 2282 next_periph = TAILQ_NEXT(periph, unit_links); 2283 while (next_periph != NULL && 2284 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2285 next_periph = TAILQ_NEXT(next_periph, unit_links); 2286 if (next_periph) 2287 next_periph->refcount++; 2288 xpt_unlock_buses(); 2289 cam_periph_release(periph); 2290 } 2291 return(retval); 2292 } 2293 2294 static int 2295 xptdefbusfunc(struct cam_eb *bus, void *arg) 2296 { 2297 struct xpt_traverse_config *tr_config; 2298 2299 tr_config = (struct xpt_traverse_config *)arg; 2300 2301 if (tr_config->depth == XPT_DEPTH_BUS) { 2302 xpt_busfunc_t *tr_func; 2303 2304 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2305 2306 return(tr_func(bus, tr_config->tr_arg)); 2307 } else 2308 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2309 } 2310 2311 static int 2312 xptdeftargetfunc(struct cam_et *target, void *arg) 2313 { 2314 struct xpt_traverse_config *tr_config; 2315 2316 tr_config = (struct xpt_traverse_config *)arg; 2317 2318 if (tr_config->depth == XPT_DEPTH_TARGET) { 2319 xpt_targetfunc_t *tr_func; 2320 2321 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2322 2323 return(tr_func(target, tr_config->tr_arg)); 2324 } else 2325 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2326 } 2327 2328 static int 2329 xptdefdevicefunc(struct cam_ed *device, void *arg) 2330 { 2331 struct xpt_traverse_config *tr_config; 2332 2333 tr_config = (struct xpt_traverse_config *)arg; 2334 2335 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2336 xpt_devicefunc_t *tr_func; 2337 2338 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2339 2340 return(tr_func(device, tr_config->tr_arg)); 2341 } else 2342 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2343 } 2344 2345 static int 2346 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2347 { 2348 struct xpt_traverse_config *tr_config; 2349 xpt_periphfunc_t *tr_func; 2350 2351 tr_config = (struct xpt_traverse_config *)arg; 2352 2353 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2354 2355 /* 2356 * Unlike the other default functions, we don't check for depth 2357 * here. The peripheral driver level is the last level in the EDT, 2358 * so if we're here, we should execute the function in question. 2359 */ 2360 return(tr_func(periph, tr_config->tr_arg)); 2361 } 2362 2363 /* 2364 * Execute the given function for every bus in the EDT. 2365 */ 2366 static int 2367 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2368 { 2369 struct xpt_traverse_config tr_config; 2370 2371 tr_config.depth = XPT_DEPTH_BUS; 2372 tr_config.tr_func = tr_func; 2373 tr_config.tr_arg = arg; 2374 2375 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2376 } 2377 2378 /* 2379 * Execute the given function for every device in the EDT. 2380 */ 2381 static int 2382 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2383 { 2384 struct xpt_traverse_config tr_config; 2385 2386 tr_config.depth = XPT_DEPTH_DEVICE; 2387 tr_config.tr_func = tr_func; 2388 tr_config.tr_arg = arg; 2389 2390 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2391 } 2392 2393 static int 2394 xptsetasyncfunc(struct cam_ed *device, void *arg) 2395 { 2396 struct cam_path path; 2397 struct ccb_getdev cgd; 2398 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2399 2400 /* 2401 * Don't report unconfigured devices (Wildcard devs, 2402 * devices only for target mode, device instances 2403 * that have been invalidated but are waiting for 2404 * their last reference count to be released). 2405 */ 2406 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2407 return (1); 2408 2409 xpt_compile_path(&path, 2410 NULL, 2411 device->target->bus->path_id, 2412 device->target->target_id, 2413 device->lun_id); 2414 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2415 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2416 xpt_action((union ccb *)&cgd); 2417 csa->callback(csa->callback_arg, 2418 AC_FOUND_DEVICE, 2419 &path, &cgd); 2420 xpt_release_path(&path); 2421 2422 return(1); 2423 } 2424 2425 static int 2426 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2427 { 2428 struct cam_path path; 2429 struct ccb_pathinq cpi; 2430 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2431 2432 xpt_compile_path(&path, /*periph*/NULL, 2433 bus->path_id, 2434 CAM_TARGET_WILDCARD, 2435 CAM_LUN_WILDCARD); 2436 xpt_path_lock(&path); 2437 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2438 cpi.ccb_h.func_code = XPT_PATH_INQ; 2439 xpt_action((union ccb *)&cpi); 2440 csa->callback(csa->callback_arg, 2441 AC_PATH_REGISTERED, 2442 &path, &cpi); 2443 xpt_path_unlock(&path); 2444 xpt_release_path(&path); 2445 2446 return(1); 2447 } 2448 2449 void 2450 xpt_action(union ccb *start_ccb) 2451 { 2452 2453 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2454 ("xpt_action: func=%#x\n", start_ccb->ccb_h.func_code)); 2455 2456 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2457 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2458 } 2459 2460 void 2461 xpt_action_default(union ccb *start_ccb) 2462 { 2463 struct cam_path *path; 2464 struct cam_sim *sim; 2465 int lock; 2466 2467 path = start_ccb->ccb_h.path; 2468 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2469 ("xpt_action_default: func=%#x\n", start_ccb->ccb_h.func_code)); 2470 2471 switch (start_ccb->ccb_h.func_code) { 2472 case XPT_SCSI_IO: 2473 { 2474 struct cam_ed *device; 2475 2476 /* 2477 * For the sake of compatibility with SCSI-1 2478 * devices that may not understand the identify 2479 * message, we include lun information in the 2480 * second byte of all commands. SCSI-1 specifies 2481 * that luns are a 3 bit value and reserves only 3 2482 * bits for lun information in the CDB. Later 2483 * revisions of the SCSI spec allow for more than 8 2484 * luns, but have deprecated lun information in the 2485 * CDB. So, if the lun won't fit, we must omit. 2486 * 2487 * Also be aware that during initial probing for devices, 2488 * the inquiry information is unknown but initialized to 0. 2489 * This means that this code will be exercised while probing 2490 * devices with an ANSI revision greater than 2. 2491 */ 2492 device = path->device; 2493 if (device->protocol_version <= SCSI_REV_2 2494 && start_ccb->ccb_h.target_lun < 8 2495 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2496 2497 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2498 start_ccb->ccb_h.target_lun << 5; 2499 } 2500 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2501 } 2502 /* FALLTHROUGH */ 2503 case XPT_TARGET_IO: 2504 case XPT_CONT_TARGET_IO: 2505 start_ccb->csio.sense_resid = 0; 2506 start_ccb->csio.resid = 0; 2507 /* FALLTHROUGH */ 2508 case XPT_ATA_IO: 2509 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2510 start_ccb->ataio.resid = 0; 2511 /* FALLTHROUGH */ 2512 case XPT_RESET_DEV: 2513 case XPT_ENG_EXEC: 2514 case XPT_SMP_IO: 2515 { 2516 struct cam_devq *devq; 2517 2518 devq = path->bus->sim->devq; 2519 mtx_lock(&devq->send_mtx); 2520 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2521 if (xpt_schedule_devq(devq, path->device) != 0) 2522 xpt_run_devq(devq); 2523 mtx_unlock(&devq->send_mtx); 2524 break; 2525 } 2526 case XPT_CALC_GEOMETRY: 2527 /* Filter out garbage */ 2528 if (start_ccb->ccg.block_size == 0 2529 || start_ccb->ccg.volume_size == 0) { 2530 start_ccb->ccg.cylinders = 0; 2531 start_ccb->ccg.heads = 0; 2532 start_ccb->ccg.secs_per_track = 0; 2533 start_ccb->ccb_h.status = CAM_REQ_CMP; 2534 break; 2535 } 2536 #if defined(PC98) || defined(__sparc64__) 2537 /* 2538 * In a PC-98 system, geometry translation depens on 2539 * the "real" device geometry obtained from mode page 4. 2540 * SCSI geometry translation is performed in the 2541 * initialization routine of the SCSI BIOS and the result 2542 * stored in host memory. If the translation is available 2543 * in host memory, use it. If not, rely on the default 2544 * translation the device driver performs. 2545 * For sparc64, we may need adjust the geometry of large 2546 * disks in order to fit the limitations of the 16-bit 2547 * fields of the VTOC8 disk label. 2548 */ 2549 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2550 start_ccb->ccb_h.status = CAM_REQ_CMP; 2551 break; 2552 } 2553 #endif 2554 goto call_sim; 2555 case XPT_ABORT: 2556 { 2557 union ccb* abort_ccb; 2558 2559 abort_ccb = start_ccb->cab.abort_ccb; 2560 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2561 2562 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2563 struct cam_ccbq *ccbq; 2564 struct cam_ed *device; 2565 2566 device = abort_ccb->ccb_h.path->device; 2567 ccbq = &device->ccbq; 2568 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2569 abort_ccb->ccb_h.status = 2570 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2571 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2572 xpt_done(abort_ccb); 2573 start_ccb->ccb_h.status = CAM_REQ_CMP; 2574 break; 2575 } 2576 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2577 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2578 /* 2579 * We've caught this ccb en route to 2580 * the SIM. Flag it for abort and the 2581 * SIM will do so just before starting 2582 * real work on the CCB. 2583 */ 2584 abort_ccb->ccb_h.status = 2585 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2586 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2587 start_ccb->ccb_h.status = CAM_REQ_CMP; 2588 break; 2589 } 2590 } 2591 if (XPT_FC_IS_QUEUED(abort_ccb) 2592 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2593 /* 2594 * It's already completed but waiting 2595 * for our SWI to get to it. 2596 */ 2597 start_ccb->ccb_h.status = CAM_UA_ABORT; 2598 break; 2599 } 2600 /* 2601 * If we weren't able to take care of the abort request 2602 * in the XPT, pass the request down to the SIM for processing. 2603 */ 2604 } 2605 /* FALLTHROUGH */ 2606 case XPT_ACCEPT_TARGET_IO: 2607 case XPT_EN_LUN: 2608 case XPT_IMMED_NOTIFY: 2609 case XPT_NOTIFY_ACK: 2610 case XPT_RESET_BUS: 2611 case XPT_IMMEDIATE_NOTIFY: 2612 case XPT_NOTIFY_ACKNOWLEDGE: 2613 case XPT_GET_SIM_KNOB_OLD: 2614 case XPT_GET_SIM_KNOB: 2615 case XPT_SET_SIM_KNOB: 2616 case XPT_GET_TRAN_SETTINGS: 2617 case XPT_SET_TRAN_SETTINGS: 2618 case XPT_PATH_INQ: 2619 call_sim: 2620 sim = path->bus->sim; 2621 lock = (mtx_owned(sim->mtx) == 0); 2622 if (lock) 2623 CAM_SIM_LOCK(sim); 2624 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2625 ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code)); 2626 (*(sim->sim_action))(sim, start_ccb); 2627 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2628 ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status)); 2629 if (lock) 2630 CAM_SIM_UNLOCK(sim); 2631 break; 2632 case XPT_PATH_STATS: 2633 start_ccb->cpis.last_reset = path->bus->last_reset; 2634 start_ccb->ccb_h.status = CAM_REQ_CMP; 2635 break; 2636 case XPT_GDEV_TYPE: 2637 { 2638 struct cam_ed *dev; 2639 2640 dev = path->device; 2641 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2642 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2643 } else { 2644 struct ccb_getdev *cgd; 2645 2646 cgd = &start_ccb->cgd; 2647 cgd->protocol = dev->protocol; 2648 cgd->inq_data = dev->inq_data; 2649 cgd->ident_data = dev->ident_data; 2650 cgd->inq_flags = dev->inq_flags; 2651 cgd->ccb_h.status = CAM_REQ_CMP; 2652 cgd->serial_num_len = dev->serial_num_len; 2653 if ((dev->serial_num_len > 0) 2654 && (dev->serial_num != NULL)) 2655 bcopy(dev->serial_num, cgd->serial_num, 2656 dev->serial_num_len); 2657 } 2658 break; 2659 } 2660 case XPT_GDEV_STATS: 2661 { 2662 struct cam_ed *dev; 2663 2664 dev = path->device; 2665 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2666 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2667 } else { 2668 struct ccb_getdevstats *cgds; 2669 struct cam_eb *bus; 2670 struct cam_et *tar; 2671 struct cam_devq *devq; 2672 2673 cgds = &start_ccb->cgds; 2674 bus = path->bus; 2675 tar = path->target; 2676 devq = bus->sim->devq; 2677 mtx_lock(&devq->send_mtx); 2678 cgds->dev_openings = dev->ccbq.dev_openings; 2679 cgds->dev_active = dev->ccbq.dev_active; 2680 cgds->allocated = dev->ccbq.allocated; 2681 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2682 cgds->held = cgds->allocated - cgds->dev_active - 2683 cgds->queued; 2684 cgds->last_reset = tar->last_reset; 2685 cgds->maxtags = dev->maxtags; 2686 cgds->mintags = dev->mintags; 2687 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2688 cgds->last_reset = bus->last_reset; 2689 mtx_unlock(&devq->send_mtx); 2690 cgds->ccb_h.status = CAM_REQ_CMP; 2691 } 2692 break; 2693 } 2694 case XPT_GDEVLIST: 2695 { 2696 struct cam_periph *nperiph; 2697 struct periph_list *periph_head; 2698 struct ccb_getdevlist *cgdl; 2699 u_int i; 2700 struct cam_ed *device; 2701 int found; 2702 2703 2704 found = 0; 2705 2706 /* 2707 * Don't want anyone mucking with our data. 2708 */ 2709 device = path->device; 2710 periph_head = &device->periphs; 2711 cgdl = &start_ccb->cgdl; 2712 2713 /* 2714 * Check and see if the list has changed since the user 2715 * last requested a list member. If so, tell them that the 2716 * list has changed, and therefore they need to start over 2717 * from the beginning. 2718 */ 2719 if ((cgdl->index != 0) && 2720 (cgdl->generation != device->generation)) { 2721 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2722 break; 2723 } 2724 2725 /* 2726 * Traverse the list of peripherals and attempt to find 2727 * the requested peripheral. 2728 */ 2729 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2730 (nperiph != NULL) && (i <= cgdl->index); 2731 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2732 if (i == cgdl->index) { 2733 strncpy(cgdl->periph_name, 2734 nperiph->periph_name, 2735 DEV_IDLEN); 2736 cgdl->unit_number = nperiph->unit_number; 2737 found = 1; 2738 } 2739 } 2740 if (found == 0) { 2741 cgdl->status = CAM_GDEVLIST_ERROR; 2742 break; 2743 } 2744 2745 if (nperiph == NULL) 2746 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2747 else 2748 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2749 2750 cgdl->index++; 2751 cgdl->generation = device->generation; 2752 2753 cgdl->ccb_h.status = CAM_REQ_CMP; 2754 break; 2755 } 2756 case XPT_DEV_MATCH: 2757 { 2758 dev_pos_type position_type; 2759 struct ccb_dev_match *cdm; 2760 2761 cdm = &start_ccb->cdm; 2762 2763 /* 2764 * There are two ways of getting at information in the EDT. 2765 * The first way is via the primary EDT tree. It starts 2766 * with a list of busses, then a list of targets on a bus, 2767 * then devices/luns on a target, and then peripherals on a 2768 * device/lun. The "other" way is by the peripheral driver 2769 * lists. The peripheral driver lists are organized by 2770 * peripheral driver. (obviously) So it makes sense to 2771 * use the peripheral driver list if the user is looking 2772 * for something like "da1", or all "da" devices. If the 2773 * user is looking for something on a particular bus/target 2774 * or lun, it's generally better to go through the EDT tree. 2775 */ 2776 2777 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2778 position_type = cdm->pos.position_type; 2779 else { 2780 u_int i; 2781 2782 position_type = CAM_DEV_POS_NONE; 2783 2784 for (i = 0; i < cdm->num_patterns; i++) { 2785 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2786 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2787 position_type = CAM_DEV_POS_EDT; 2788 break; 2789 } 2790 } 2791 2792 if (cdm->num_patterns == 0) 2793 position_type = CAM_DEV_POS_EDT; 2794 else if (position_type == CAM_DEV_POS_NONE) 2795 position_type = CAM_DEV_POS_PDRV; 2796 } 2797 2798 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2799 case CAM_DEV_POS_EDT: 2800 xptedtmatch(cdm); 2801 break; 2802 case CAM_DEV_POS_PDRV: 2803 xptperiphlistmatch(cdm); 2804 break; 2805 default: 2806 cdm->status = CAM_DEV_MATCH_ERROR; 2807 break; 2808 } 2809 2810 if (cdm->status == CAM_DEV_MATCH_ERROR) 2811 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2812 else 2813 start_ccb->ccb_h.status = CAM_REQ_CMP; 2814 2815 break; 2816 } 2817 case XPT_SASYNC_CB: 2818 { 2819 struct ccb_setasync *csa; 2820 struct async_node *cur_entry; 2821 struct async_list *async_head; 2822 u_int32_t added; 2823 2824 csa = &start_ccb->csa; 2825 added = csa->event_enable; 2826 async_head = &path->device->asyncs; 2827 2828 /* 2829 * If there is already an entry for us, simply 2830 * update it. 2831 */ 2832 cur_entry = SLIST_FIRST(async_head); 2833 while (cur_entry != NULL) { 2834 if ((cur_entry->callback_arg == csa->callback_arg) 2835 && (cur_entry->callback == csa->callback)) 2836 break; 2837 cur_entry = SLIST_NEXT(cur_entry, links); 2838 } 2839 2840 if (cur_entry != NULL) { 2841 /* 2842 * If the request has no flags set, 2843 * remove the entry. 2844 */ 2845 added &= ~cur_entry->event_enable; 2846 if (csa->event_enable == 0) { 2847 SLIST_REMOVE(async_head, cur_entry, 2848 async_node, links); 2849 xpt_release_device(path->device); 2850 free(cur_entry, M_CAMXPT); 2851 } else { 2852 cur_entry->event_enable = csa->event_enable; 2853 } 2854 csa->event_enable = added; 2855 } else { 2856 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2857 M_NOWAIT); 2858 if (cur_entry == NULL) { 2859 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2860 break; 2861 } 2862 cur_entry->event_enable = csa->event_enable; 2863 cur_entry->event_lock = 2864 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2865 cur_entry->callback_arg = csa->callback_arg; 2866 cur_entry->callback = csa->callback; 2867 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2868 xpt_acquire_device(path->device); 2869 } 2870 start_ccb->ccb_h.status = CAM_REQ_CMP; 2871 break; 2872 } 2873 case XPT_REL_SIMQ: 2874 { 2875 struct ccb_relsim *crs; 2876 struct cam_ed *dev; 2877 2878 crs = &start_ccb->crs; 2879 dev = path->device; 2880 if (dev == NULL) { 2881 2882 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2883 break; 2884 } 2885 2886 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2887 2888 /* Don't ever go below one opening */ 2889 if (crs->openings > 0) { 2890 xpt_dev_ccbq_resize(path, crs->openings); 2891 if (bootverbose) { 2892 xpt_print(path, 2893 "number of openings is now %d\n", 2894 crs->openings); 2895 } 2896 } 2897 } 2898 2899 mtx_lock(&dev->sim->devq->send_mtx); 2900 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2901 2902 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2903 2904 /* 2905 * Just extend the old timeout and decrement 2906 * the freeze count so that a single timeout 2907 * is sufficient for releasing the queue. 2908 */ 2909 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2910 callout_stop(&dev->callout); 2911 } else { 2912 2913 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2914 } 2915 2916 callout_reset_sbt(&dev->callout, 2917 SBT_1MS * crs->release_timeout, 0, 2918 xpt_release_devq_timeout, dev, 0); 2919 2920 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2921 2922 } 2923 2924 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2925 2926 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2927 /* 2928 * Decrement the freeze count so that a single 2929 * completion is still sufficient to unfreeze 2930 * the queue. 2931 */ 2932 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2933 } else { 2934 2935 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2936 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2937 } 2938 } 2939 2940 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2941 2942 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2943 || (dev->ccbq.dev_active == 0)) { 2944 2945 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2946 } else { 2947 2948 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2949 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2950 } 2951 } 2952 mtx_unlock(&dev->sim->devq->send_mtx); 2953 2954 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2955 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2956 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2957 start_ccb->ccb_h.status = CAM_REQ_CMP; 2958 break; 2959 } 2960 case XPT_DEBUG: { 2961 struct cam_path *oldpath; 2962 2963 /* Check that all request bits are supported. */ 2964 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2965 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2966 break; 2967 } 2968 2969 cam_dflags = CAM_DEBUG_NONE; 2970 if (cam_dpath != NULL) { 2971 oldpath = cam_dpath; 2972 cam_dpath = NULL; 2973 xpt_free_path(oldpath); 2974 } 2975 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2976 if (xpt_create_path(&cam_dpath, NULL, 2977 start_ccb->ccb_h.path_id, 2978 start_ccb->ccb_h.target_id, 2979 start_ccb->ccb_h.target_lun) != 2980 CAM_REQ_CMP) { 2981 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2982 } else { 2983 cam_dflags = start_ccb->cdbg.flags; 2984 start_ccb->ccb_h.status = CAM_REQ_CMP; 2985 xpt_print(cam_dpath, "debugging flags now %x\n", 2986 cam_dflags); 2987 } 2988 } else 2989 start_ccb->ccb_h.status = CAM_REQ_CMP; 2990 break; 2991 } 2992 case XPT_NOOP: 2993 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2994 xpt_freeze_devq(path, 1); 2995 start_ccb->ccb_h.status = CAM_REQ_CMP; 2996 break; 2997 case XPT_REPROBE_LUN: 2998 xpt_async(AC_INQ_CHANGED, path, NULL); 2999 start_ccb->ccb_h.status = CAM_REQ_CMP; 3000 xpt_done(start_ccb); 3001 break; 3002 default: 3003 case XPT_SDEV_TYPE: 3004 case XPT_TERM_IO: 3005 case XPT_ENG_INQ: 3006 /* XXX Implement */ 3007 printf("%s: CCB type %#x not supported\n", __func__, 3008 start_ccb->ccb_h.func_code); 3009 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3010 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3011 xpt_done(start_ccb); 3012 } 3013 break; 3014 } 3015 } 3016 3017 void 3018 xpt_polled_action(union ccb *start_ccb) 3019 { 3020 u_int32_t timeout; 3021 struct cam_sim *sim; 3022 struct cam_devq *devq; 3023 struct cam_ed *dev; 3024 3025 timeout = start_ccb->ccb_h.timeout * 10; 3026 sim = start_ccb->ccb_h.path->bus->sim; 3027 devq = sim->devq; 3028 dev = start_ccb->ccb_h.path->device; 3029 3030 mtx_unlock(&dev->device_mtx); 3031 3032 /* 3033 * Steal an opening so that no other queued requests 3034 * can get it before us while we simulate interrupts. 3035 */ 3036 mtx_lock(&devq->send_mtx); 3037 dev->ccbq.dev_openings--; 3038 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3039 (--timeout > 0)) { 3040 mtx_unlock(&devq->send_mtx); 3041 DELAY(100); 3042 CAM_SIM_LOCK(sim); 3043 (*(sim->sim_poll))(sim); 3044 CAM_SIM_UNLOCK(sim); 3045 camisr_runqueue(); 3046 mtx_lock(&devq->send_mtx); 3047 } 3048 dev->ccbq.dev_openings++; 3049 mtx_unlock(&devq->send_mtx); 3050 3051 if (timeout != 0) { 3052 xpt_action(start_ccb); 3053 while(--timeout > 0) { 3054 CAM_SIM_LOCK(sim); 3055 (*(sim->sim_poll))(sim); 3056 CAM_SIM_UNLOCK(sim); 3057 camisr_runqueue(); 3058 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3059 != CAM_REQ_INPROG) 3060 break; 3061 DELAY(100); 3062 } 3063 if (timeout == 0) { 3064 /* 3065 * XXX Is it worth adding a sim_timeout entry 3066 * point so we can attempt recovery? If 3067 * this is only used for dumps, I don't think 3068 * it is. 3069 */ 3070 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3071 } 3072 } else { 3073 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3074 } 3075 3076 mtx_lock(&dev->device_mtx); 3077 } 3078 3079 /* 3080 * Schedule a peripheral driver to receive a ccb when its 3081 * target device has space for more transactions. 3082 */ 3083 void 3084 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3085 { 3086 3087 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3088 cam_periph_assert(periph, MA_OWNED); 3089 if (new_priority < periph->scheduled_priority) { 3090 periph->scheduled_priority = new_priority; 3091 xpt_run_allocq(periph, 0); 3092 } 3093 } 3094 3095 3096 /* 3097 * Schedule a device to run on a given queue. 3098 * If the device was inserted as a new entry on the queue, 3099 * return 1 meaning the device queue should be run. If we 3100 * were already queued, implying someone else has already 3101 * started the queue, return 0 so the caller doesn't attempt 3102 * to run the queue. 3103 */ 3104 static int 3105 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3106 u_int32_t new_priority) 3107 { 3108 int retval; 3109 u_int32_t old_priority; 3110 3111 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3112 3113 old_priority = pinfo->priority; 3114 3115 /* 3116 * Are we already queued? 3117 */ 3118 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3119 /* Simply reorder based on new priority */ 3120 if (new_priority < old_priority) { 3121 camq_change_priority(queue, pinfo->index, 3122 new_priority); 3123 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3124 ("changed priority to %d\n", 3125 new_priority)); 3126 retval = 1; 3127 } else 3128 retval = 0; 3129 } else { 3130 /* New entry on the queue */ 3131 if (new_priority < old_priority) 3132 pinfo->priority = new_priority; 3133 3134 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3135 ("Inserting onto queue\n")); 3136 pinfo->generation = ++queue->generation; 3137 camq_insert(queue, pinfo); 3138 retval = 1; 3139 } 3140 return (retval); 3141 } 3142 3143 static void 3144 xpt_run_allocq_task(void *context, int pending) 3145 { 3146 struct cam_periph *periph = context; 3147 3148 cam_periph_lock(periph); 3149 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3150 xpt_run_allocq(periph, 1); 3151 cam_periph_unlock(periph); 3152 cam_periph_release(periph); 3153 } 3154 3155 static void 3156 xpt_run_allocq(struct cam_periph *periph, int sleep) 3157 { 3158 struct cam_ed *device; 3159 union ccb *ccb; 3160 uint32_t prio; 3161 3162 cam_periph_assert(periph, MA_OWNED); 3163 if (periph->periph_allocating) 3164 return; 3165 periph->periph_allocating = 1; 3166 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3167 device = periph->path->device; 3168 ccb = NULL; 3169 restart: 3170 while ((prio = min(periph->scheduled_priority, 3171 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3172 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3173 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3174 3175 if (ccb == NULL && 3176 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3177 if (sleep) { 3178 ccb = xpt_get_ccb(periph); 3179 goto restart; 3180 } 3181 if (periph->flags & CAM_PERIPH_RUN_TASK) 3182 break; 3183 cam_periph_doacquire(periph); 3184 periph->flags |= CAM_PERIPH_RUN_TASK; 3185 taskqueue_enqueue(xsoftc.xpt_taskq, 3186 &periph->periph_run_task); 3187 break; 3188 } 3189 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3190 if (prio == periph->immediate_priority) { 3191 periph->immediate_priority = CAM_PRIORITY_NONE; 3192 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3193 ("waking cam_periph_getccb()\n")); 3194 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3195 periph_links.sle); 3196 wakeup(&periph->ccb_list); 3197 } else { 3198 periph->scheduled_priority = CAM_PRIORITY_NONE; 3199 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3200 ("calling periph_start()\n")); 3201 periph->periph_start(periph, ccb); 3202 } 3203 ccb = NULL; 3204 } 3205 if (ccb != NULL) 3206 xpt_release_ccb(ccb); 3207 periph->periph_allocating = 0; 3208 } 3209 3210 static void 3211 xpt_run_devq(struct cam_devq *devq) 3212 { 3213 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3214 int lock; 3215 3216 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3217 3218 devq->send_queue.qfrozen_cnt++; 3219 while ((devq->send_queue.entries > 0) 3220 && (devq->send_openings > 0) 3221 && (devq->send_queue.qfrozen_cnt <= 1)) { 3222 struct cam_ed *device; 3223 union ccb *work_ccb; 3224 struct cam_sim *sim; 3225 3226 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3227 CAMQ_HEAD); 3228 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3229 ("running device %p\n", device)); 3230 3231 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3232 if (work_ccb == NULL) { 3233 printf("device on run queue with no ccbs???\n"); 3234 continue; 3235 } 3236 3237 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3238 3239 mtx_lock(&xsoftc.xpt_highpower_lock); 3240 if (xsoftc.num_highpower <= 0) { 3241 /* 3242 * We got a high power command, but we 3243 * don't have any available slots. Freeze 3244 * the device queue until we have a slot 3245 * available. 3246 */ 3247 xpt_freeze_devq_device(device, 1); 3248 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3249 highpowerq_entry); 3250 3251 mtx_unlock(&xsoftc.xpt_highpower_lock); 3252 continue; 3253 } else { 3254 /* 3255 * Consume a high power slot while 3256 * this ccb runs. 3257 */ 3258 xsoftc.num_highpower--; 3259 } 3260 mtx_unlock(&xsoftc.xpt_highpower_lock); 3261 } 3262 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3263 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3264 devq->send_openings--; 3265 devq->send_active++; 3266 xpt_schedule_devq(devq, device); 3267 mtx_unlock(&devq->send_mtx); 3268 3269 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3270 /* 3271 * The client wants to freeze the queue 3272 * after this CCB is sent. 3273 */ 3274 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3275 } 3276 3277 /* In Target mode, the peripheral driver knows best... */ 3278 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3279 if ((device->inq_flags & SID_CmdQue) != 0 3280 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3281 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3282 else 3283 /* 3284 * Clear this in case of a retried CCB that 3285 * failed due to a rejected tag. 3286 */ 3287 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3288 } 3289 3290 switch (work_ccb->ccb_h.func_code) { 3291 case XPT_SCSI_IO: 3292 CAM_DEBUG(work_ccb->ccb_h.path, 3293 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3294 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3295 &device->inq_data), 3296 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3297 cdb_str, sizeof(cdb_str)))); 3298 break; 3299 case XPT_ATA_IO: 3300 CAM_DEBUG(work_ccb->ccb_h.path, 3301 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3302 ata_op_string(&work_ccb->ataio.cmd), 3303 ata_cmd_string(&work_ccb->ataio.cmd, 3304 cdb_str, sizeof(cdb_str)))); 3305 break; 3306 default: 3307 break; 3308 } 3309 3310 /* 3311 * Device queues can be shared among multiple SIM instances 3312 * that reside on different busses. Use the SIM from the 3313 * queued device, rather than the one from the calling bus. 3314 */ 3315 sim = device->sim; 3316 lock = (mtx_owned(sim->mtx) == 0); 3317 if (lock) 3318 CAM_SIM_LOCK(sim); 3319 work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms 3320 (*(sim->sim_action))(sim, work_ccb); 3321 if (lock) 3322 CAM_SIM_UNLOCK(sim); 3323 mtx_lock(&devq->send_mtx); 3324 } 3325 devq->send_queue.qfrozen_cnt--; 3326 } 3327 3328 /* 3329 * This function merges stuff from the slave ccb into the master ccb, while 3330 * keeping important fields in the master ccb constant. 3331 */ 3332 void 3333 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3334 { 3335 3336 /* 3337 * Pull fields that are valid for peripheral drivers to set 3338 * into the master CCB along with the CCB "payload". 3339 */ 3340 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3341 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3342 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3343 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3344 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3345 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3346 } 3347 3348 void 3349 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3350 u_int32_t priority, u_int32_t flags) 3351 { 3352 3353 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3354 ccb_h->pinfo.priority = priority; 3355 ccb_h->path = path; 3356 ccb_h->path_id = path->bus->path_id; 3357 if (path->target) 3358 ccb_h->target_id = path->target->target_id; 3359 else 3360 ccb_h->target_id = CAM_TARGET_WILDCARD; 3361 if (path->device) { 3362 ccb_h->target_lun = path->device->lun_id; 3363 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3364 } else { 3365 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3366 } 3367 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3368 ccb_h->flags = flags; 3369 ccb_h->xflags = 0; 3370 } 3371 3372 void 3373 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3374 { 3375 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3376 } 3377 3378 /* Path manipulation functions */ 3379 cam_status 3380 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3381 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3382 { 3383 struct cam_path *path; 3384 cam_status status; 3385 3386 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3387 3388 if (path == NULL) { 3389 status = CAM_RESRC_UNAVAIL; 3390 return(status); 3391 } 3392 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3393 if (status != CAM_REQ_CMP) { 3394 free(path, M_CAMPATH); 3395 path = NULL; 3396 } 3397 *new_path_ptr = path; 3398 return (status); 3399 } 3400 3401 cam_status 3402 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3403 struct cam_periph *periph, path_id_t path_id, 3404 target_id_t target_id, lun_id_t lun_id) 3405 { 3406 3407 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3408 lun_id)); 3409 } 3410 3411 cam_status 3412 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3413 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3414 { 3415 struct cam_eb *bus; 3416 struct cam_et *target; 3417 struct cam_ed *device; 3418 cam_status status; 3419 3420 status = CAM_REQ_CMP; /* Completed without error */ 3421 target = NULL; /* Wildcarded */ 3422 device = NULL; /* Wildcarded */ 3423 3424 /* 3425 * We will potentially modify the EDT, so block interrupts 3426 * that may attempt to create cam paths. 3427 */ 3428 bus = xpt_find_bus(path_id); 3429 if (bus == NULL) { 3430 status = CAM_PATH_INVALID; 3431 } else { 3432 xpt_lock_buses(); 3433 mtx_lock(&bus->eb_mtx); 3434 target = xpt_find_target(bus, target_id); 3435 if (target == NULL) { 3436 /* Create one */ 3437 struct cam_et *new_target; 3438 3439 new_target = xpt_alloc_target(bus, target_id); 3440 if (new_target == NULL) { 3441 status = CAM_RESRC_UNAVAIL; 3442 } else { 3443 target = new_target; 3444 } 3445 } 3446 xpt_unlock_buses(); 3447 if (target != NULL) { 3448 device = xpt_find_device(target, lun_id); 3449 if (device == NULL) { 3450 /* Create one */ 3451 struct cam_ed *new_device; 3452 3453 new_device = 3454 (*(bus->xport->alloc_device))(bus, 3455 target, 3456 lun_id); 3457 if (new_device == NULL) { 3458 status = CAM_RESRC_UNAVAIL; 3459 } else { 3460 device = new_device; 3461 } 3462 } 3463 } 3464 mtx_unlock(&bus->eb_mtx); 3465 } 3466 3467 /* 3468 * Only touch the user's data if we are successful. 3469 */ 3470 if (status == CAM_REQ_CMP) { 3471 new_path->periph = perph; 3472 new_path->bus = bus; 3473 new_path->target = target; 3474 new_path->device = device; 3475 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3476 } else { 3477 if (device != NULL) 3478 xpt_release_device(device); 3479 if (target != NULL) 3480 xpt_release_target(target); 3481 if (bus != NULL) 3482 xpt_release_bus(bus); 3483 } 3484 return (status); 3485 } 3486 3487 cam_status 3488 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3489 { 3490 struct cam_path *new_path; 3491 3492 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3493 if (new_path == NULL) 3494 return(CAM_RESRC_UNAVAIL); 3495 xpt_copy_path(new_path, path); 3496 *new_path_ptr = new_path; 3497 return (CAM_REQ_CMP); 3498 } 3499 3500 void 3501 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3502 { 3503 3504 *new_path = *path; 3505 if (path->bus != NULL) 3506 xpt_acquire_bus(path->bus); 3507 if (path->target != NULL) 3508 xpt_acquire_target(path->target); 3509 if (path->device != NULL) 3510 xpt_acquire_device(path->device); 3511 } 3512 3513 void 3514 xpt_release_path(struct cam_path *path) 3515 { 3516 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3517 if (path->device != NULL) { 3518 xpt_release_device(path->device); 3519 path->device = NULL; 3520 } 3521 if (path->target != NULL) { 3522 xpt_release_target(path->target); 3523 path->target = NULL; 3524 } 3525 if (path->bus != NULL) { 3526 xpt_release_bus(path->bus); 3527 path->bus = NULL; 3528 } 3529 } 3530 3531 void 3532 xpt_free_path(struct cam_path *path) 3533 { 3534 3535 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3536 xpt_release_path(path); 3537 free(path, M_CAMPATH); 3538 } 3539 3540 void 3541 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3542 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3543 { 3544 3545 xpt_lock_buses(); 3546 if (bus_ref) { 3547 if (path->bus) 3548 *bus_ref = path->bus->refcount; 3549 else 3550 *bus_ref = 0; 3551 } 3552 if (periph_ref) { 3553 if (path->periph) 3554 *periph_ref = path->periph->refcount; 3555 else 3556 *periph_ref = 0; 3557 } 3558 xpt_unlock_buses(); 3559 if (target_ref) { 3560 if (path->target) 3561 *target_ref = path->target->refcount; 3562 else 3563 *target_ref = 0; 3564 } 3565 if (device_ref) { 3566 if (path->device) 3567 *device_ref = path->device->refcount; 3568 else 3569 *device_ref = 0; 3570 } 3571 } 3572 3573 /* 3574 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3575 * in path1, 2 for match with wildcards in path2. 3576 */ 3577 int 3578 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3579 { 3580 int retval = 0; 3581 3582 if (path1->bus != path2->bus) { 3583 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3584 retval = 1; 3585 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3586 retval = 2; 3587 else 3588 return (-1); 3589 } 3590 if (path1->target != path2->target) { 3591 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3592 if (retval == 0) 3593 retval = 1; 3594 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3595 retval = 2; 3596 else 3597 return (-1); 3598 } 3599 if (path1->device != path2->device) { 3600 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3601 if (retval == 0) 3602 retval = 1; 3603 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3604 retval = 2; 3605 else 3606 return (-1); 3607 } 3608 return (retval); 3609 } 3610 3611 int 3612 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3613 { 3614 int retval = 0; 3615 3616 if (path->bus != dev->target->bus) { 3617 if (path->bus->path_id == CAM_BUS_WILDCARD) 3618 retval = 1; 3619 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3620 retval = 2; 3621 else 3622 return (-1); 3623 } 3624 if (path->target != dev->target) { 3625 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3626 if (retval == 0) 3627 retval = 1; 3628 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3629 retval = 2; 3630 else 3631 return (-1); 3632 } 3633 if (path->device != dev) { 3634 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3635 if (retval == 0) 3636 retval = 1; 3637 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3638 retval = 2; 3639 else 3640 return (-1); 3641 } 3642 return (retval); 3643 } 3644 3645 void 3646 xpt_print_path(struct cam_path *path) 3647 { 3648 3649 if (path == NULL) 3650 printf("(nopath): "); 3651 else { 3652 if (path->periph != NULL) 3653 printf("(%s%d:", path->periph->periph_name, 3654 path->periph->unit_number); 3655 else 3656 printf("(noperiph:"); 3657 3658 if (path->bus != NULL) 3659 printf("%s%d:%d:", path->bus->sim->sim_name, 3660 path->bus->sim->unit_number, 3661 path->bus->sim->bus_id); 3662 else 3663 printf("nobus:"); 3664 3665 if (path->target != NULL) 3666 printf("%d:", path->target->target_id); 3667 else 3668 printf("X:"); 3669 3670 if (path->device != NULL) 3671 printf("%jx): ", (uintmax_t)path->device->lun_id); 3672 else 3673 printf("X): "); 3674 } 3675 } 3676 3677 void 3678 xpt_print_device(struct cam_ed *device) 3679 { 3680 3681 if (device == NULL) 3682 printf("(nopath): "); 3683 else { 3684 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3685 device->sim->unit_number, 3686 device->sim->bus_id, 3687 device->target->target_id, 3688 (uintmax_t)device->lun_id); 3689 } 3690 } 3691 3692 void 3693 xpt_print(struct cam_path *path, const char *fmt, ...) 3694 { 3695 va_list ap; 3696 xpt_print_path(path); 3697 va_start(ap, fmt); 3698 vprintf(fmt, ap); 3699 va_end(ap); 3700 } 3701 3702 int 3703 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3704 { 3705 struct sbuf sb; 3706 3707 sbuf_new(&sb, str, str_len, 0); 3708 3709 if (path == NULL) 3710 sbuf_printf(&sb, "(nopath): "); 3711 else { 3712 if (path->periph != NULL) 3713 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3714 path->periph->unit_number); 3715 else 3716 sbuf_printf(&sb, "(noperiph:"); 3717 3718 if (path->bus != NULL) 3719 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3720 path->bus->sim->unit_number, 3721 path->bus->sim->bus_id); 3722 else 3723 sbuf_printf(&sb, "nobus:"); 3724 3725 if (path->target != NULL) 3726 sbuf_printf(&sb, "%d:", path->target->target_id); 3727 else 3728 sbuf_printf(&sb, "X:"); 3729 3730 if (path->device != NULL) 3731 sbuf_printf(&sb, "%jx): ", 3732 (uintmax_t)path->device->lun_id); 3733 else 3734 sbuf_printf(&sb, "X): "); 3735 } 3736 sbuf_finish(&sb); 3737 3738 return(sbuf_len(&sb)); 3739 } 3740 3741 path_id_t 3742 xpt_path_path_id(struct cam_path *path) 3743 { 3744 return(path->bus->path_id); 3745 } 3746 3747 target_id_t 3748 xpt_path_target_id(struct cam_path *path) 3749 { 3750 if (path->target != NULL) 3751 return (path->target->target_id); 3752 else 3753 return (CAM_TARGET_WILDCARD); 3754 } 3755 3756 lun_id_t 3757 xpt_path_lun_id(struct cam_path *path) 3758 { 3759 if (path->device != NULL) 3760 return (path->device->lun_id); 3761 else 3762 return (CAM_LUN_WILDCARD); 3763 } 3764 3765 struct cam_sim * 3766 xpt_path_sim(struct cam_path *path) 3767 { 3768 3769 return (path->bus->sim); 3770 } 3771 3772 struct cam_periph* 3773 xpt_path_periph(struct cam_path *path) 3774 { 3775 3776 return (path->periph); 3777 } 3778 3779 /* 3780 * Release a CAM control block for the caller. Remit the cost of the structure 3781 * to the device referenced by the path. If the this device had no 'credits' 3782 * and peripheral drivers have registered async callbacks for this notification 3783 * call them now. 3784 */ 3785 void 3786 xpt_release_ccb(union ccb *free_ccb) 3787 { 3788 struct cam_ed *device; 3789 struct cam_periph *periph; 3790 3791 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3792 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3793 device = free_ccb->ccb_h.path->device; 3794 periph = free_ccb->ccb_h.path->periph; 3795 3796 xpt_free_ccb(free_ccb); 3797 periph->periph_allocated--; 3798 cam_ccbq_release_opening(&device->ccbq); 3799 xpt_run_allocq(periph, 0); 3800 } 3801 3802 /* Functions accessed by SIM drivers */ 3803 3804 static struct xpt_xport xport_default = { 3805 .alloc_device = xpt_alloc_device_default, 3806 .action = xpt_action_default, 3807 .async = xpt_dev_async_default, 3808 }; 3809 3810 /* 3811 * A sim structure, listing the SIM entry points and instance 3812 * identification info is passed to xpt_bus_register to hook the SIM 3813 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3814 * for this new bus and places it in the array of busses and assigns 3815 * it a path_id. The path_id may be influenced by "hard wiring" 3816 * information specified by the user. Once interrupt services are 3817 * available, the bus will be probed. 3818 */ 3819 int32_t 3820 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3821 { 3822 struct cam_eb *new_bus; 3823 struct cam_eb *old_bus; 3824 struct ccb_pathinq cpi; 3825 struct cam_path *path; 3826 cam_status status; 3827 3828 mtx_assert(sim->mtx, MA_OWNED); 3829 3830 sim->bus_id = bus; 3831 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3832 M_CAMXPT, M_NOWAIT|M_ZERO); 3833 if (new_bus == NULL) { 3834 /* Couldn't satisfy request */ 3835 return (CAM_RESRC_UNAVAIL); 3836 } 3837 3838 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3839 TAILQ_INIT(&new_bus->et_entries); 3840 cam_sim_hold(sim); 3841 new_bus->sim = sim; 3842 timevalclear(&new_bus->last_reset); 3843 new_bus->flags = 0; 3844 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3845 new_bus->generation = 0; 3846 3847 xpt_lock_buses(); 3848 sim->path_id = new_bus->path_id = 3849 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3850 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3851 while (old_bus != NULL 3852 && old_bus->path_id < new_bus->path_id) 3853 old_bus = TAILQ_NEXT(old_bus, links); 3854 if (old_bus != NULL) 3855 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3856 else 3857 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3858 xsoftc.bus_generation++; 3859 xpt_unlock_buses(); 3860 3861 /* 3862 * Set a default transport so that a PATH_INQ can be issued to 3863 * the SIM. This will then allow for probing and attaching of 3864 * a more appropriate transport. 3865 */ 3866 new_bus->xport = &xport_default; 3867 3868 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3869 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3870 if (status != CAM_REQ_CMP) { 3871 xpt_release_bus(new_bus); 3872 free(path, M_CAMXPT); 3873 return (CAM_RESRC_UNAVAIL); 3874 } 3875 3876 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3877 cpi.ccb_h.func_code = XPT_PATH_INQ; 3878 xpt_action((union ccb *)&cpi); 3879 3880 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3881 switch (cpi.transport) { 3882 case XPORT_SPI: 3883 case XPORT_SAS: 3884 case XPORT_FC: 3885 case XPORT_USB: 3886 case XPORT_ISCSI: 3887 case XPORT_SRP: 3888 case XPORT_PPB: 3889 new_bus->xport = scsi_get_xport(); 3890 break; 3891 case XPORT_ATA: 3892 case XPORT_SATA: 3893 new_bus->xport = ata_get_xport(); 3894 break; 3895 default: 3896 new_bus->xport = &xport_default; 3897 break; 3898 } 3899 } 3900 3901 /* Notify interested parties */ 3902 if (sim->path_id != CAM_XPT_PATH_ID) { 3903 3904 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3905 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3906 union ccb *scan_ccb; 3907 3908 /* Initiate bus rescan. */ 3909 scan_ccb = xpt_alloc_ccb_nowait(); 3910 if (scan_ccb != NULL) { 3911 scan_ccb->ccb_h.path = path; 3912 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3913 scan_ccb->crcn.flags = 0; 3914 xpt_rescan(scan_ccb); 3915 } else { 3916 xpt_print(path, 3917 "Can't allocate CCB to scan bus\n"); 3918 xpt_free_path(path); 3919 } 3920 } else 3921 xpt_free_path(path); 3922 } else 3923 xpt_free_path(path); 3924 return (CAM_SUCCESS); 3925 } 3926 3927 int32_t 3928 xpt_bus_deregister(path_id_t pathid) 3929 { 3930 struct cam_path bus_path; 3931 cam_status status; 3932 3933 status = xpt_compile_path(&bus_path, NULL, pathid, 3934 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3935 if (status != CAM_REQ_CMP) 3936 return (status); 3937 3938 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3939 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3940 3941 /* Release the reference count held while registered. */ 3942 xpt_release_bus(bus_path.bus); 3943 xpt_release_path(&bus_path); 3944 3945 return (CAM_REQ_CMP); 3946 } 3947 3948 static path_id_t 3949 xptnextfreepathid(void) 3950 { 3951 struct cam_eb *bus; 3952 path_id_t pathid; 3953 const char *strval; 3954 3955 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3956 pathid = 0; 3957 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3958 retry: 3959 /* Find an unoccupied pathid */ 3960 while (bus != NULL && bus->path_id <= pathid) { 3961 if (bus->path_id == pathid) 3962 pathid++; 3963 bus = TAILQ_NEXT(bus, links); 3964 } 3965 3966 /* 3967 * Ensure that this pathid is not reserved for 3968 * a bus that may be registered in the future. 3969 */ 3970 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3971 ++pathid; 3972 /* Start the search over */ 3973 goto retry; 3974 } 3975 return (pathid); 3976 } 3977 3978 static path_id_t 3979 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3980 { 3981 path_id_t pathid; 3982 int i, dunit, val; 3983 char buf[32]; 3984 const char *dname; 3985 3986 pathid = CAM_XPT_PATH_ID; 3987 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3988 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 3989 return (pathid); 3990 i = 0; 3991 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3992 if (strcmp(dname, "scbus")) { 3993 /* Avoid a bit of foot shooting. */ 3994 continue; 3995 } 3996 if (dunit < 0) /* unwired?! */ 3997 continue; 3998 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3999 if (sim_bus == val) { 4000 pathid = dunit; 4001 break; 4002 } 4003 } else if (sim_bus == 0) { 4004 /* Unspecified matches bus 0 */ 4005 pathid = dunit; 4006 break; 4007 } else { 4008 printf("Ambiguous scbus configuration for %s%d " 4009 "bus %d, cannot wire down. The kernel " 4010 "config entry for scbus%d should " 4011 "specify a controller bus.\n" 4012 "Scbus will be assigned dynamically.\n", 4013 sim_name, sim_unit, sim_bus, dunit); 4014 break; 4015 } 4016 } 4017 4018 if (pathid == CAM_XPT_PATH_ID) 4019 pathid = xptnextfreepathid(); 4020 return (pathid); 4021 } 4022 4023 static const char * 4024 xpt_async_string(u_int32_t async_code) 4025 { 4026 4027 switch (async_code) { 4028 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4029 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4030 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4031 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4032 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4033 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4034 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4035 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4036 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4037 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4038 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4039 case AC_CONTRACT: return ("AC_CONTRACT"); 4040 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4041 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4042 } 4043 return ("AC_UNKNOWN"); 4044 } 4045 4046 static int 4047 xpt_async_size(u_int32_t async_code) 4048 { 4049 4050 switch (async_code) { 4051 case AC_BUS_RESET: return (0); 4052 case AC_UNSOL_RESEL: return (0); 4053 case AC_SCSI_AEN: return (0); 4054 case AC_SENT_BDR: return (0); 4055 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4056 case AC_PATH_DEREGISTERED: return (0); 4057 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4058 case AC_LOST_DEVICE: return (0); 4059 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4060 case AC_INQ_CHANGED: return (0); 4061 case AC_GETDEV_CHANGED: return (0); 4062 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4063 case AC_ADVINFO_CHANGED: return (-1); 4064 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4065 } 4066 return (0); 4067 } 4068 4069 static int 4070 xpt_async_process_dev(struct cam_ed *device, void *arg) 4071 { 4072 union ccb *ccb = arg; 4073 struct cam_path *path = ccb->ccb_h.path; 4074 void *async_arg = ccb->casync.async_arg_ptr; 4075 u_int32_t async_code = ccb->casync.async_code; 4076 int relock; 4077 4078 if (path->device != device 4079 && path->device->lun_id != CAM_LUN_WILDCARD 4080 && device->lun_id != CAM_LUN_WILDCARD) 4081 return (1); 4082 4083 /* 4084 * The async callback could free the device. 4085 * If it is a broadcast async, it doesn't hold 4086 * device reference, so take our own reference. 4087 */ 4088 xpt_acquire_device(device); 4089 4090 /* 4091 * If async for specific device is to be delivered to 4092 * the wildcard client, take the specific device lock. 4093 * XXX: We may need a way for client to specify it. 4094 */ 4095 if ((device->lun_id == CAM_LUN_WILDCARD && 4096 path->device->lun_id != CAM_LUN_WILDCARD) || 4097 (device->target->target_id == CAM_TARGET_WILDCARD && 4098 path->target->target_id != CAM_TARGET_WILDCARD) || 4099 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4100 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4101 mtx_unlock(&device->device_mtx); 4102 xpt_path_lock(path); 4103 relock = 1; 4104 } else 4105 relock = 0; 4106 4107 (*(device->target->bus->xport->async))(async_code, 4108 device->target->bus, device->target, device, async_arg); 4109 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4110 4111 if (relock) { 4112 xpt_path_unlock(path); 4113 mtx_lock(&device->device_mtx); 4114 } 4115 xpt_release_device(device); 4116 return (1); 4117 } 4118 4119 static int 4120 xpt_async_process_tgt(struct cam_et *target, void *arg) 4121 { 4122 union ccb *ccb = arg; 4123 struct cam_path *path = ccb->ccb_h.path; 4124 4125 if (path->target != target 4126 && path->target->target_id != CAM_TARGET_WILDCARD 4127 && target->target_id != CAM_TARGET_WILDCARD) 4128 return (1); 4129 4130 if (ccb->casync.async_code == AC_SENT_BDR) { 4131 /* Update our notion of when the last reset occurred */ 4132 microtime(&target->last_reset); 4133 } 4134 4135 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4136 } 4137 4138 static void 4139 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4140 { 4141 struct cam_eb *bus; 4142 struct cam_path *path; 4143 void *async_arg; 4144 u_int32_t async_code; 4145 4146 path = ccb->ccb_h.path; 4147 async_code = ccb->casync.async_code; 4148 async_arg = ccb->casync.async_arg_ptr; 4149 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4150 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4151 bus = path->bus; 4152 4153 if (async_code == AC_BUS_RESET) { 4154 /* Update our notion of when the last reset occurred */ 4155 microtime(&bus->last_reset); 4156 } 4157 4158 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4159 4160 /* 4161 * If this wasn't a fully wildcarded async, tell all 4162 * clients that want all async events. 4163 */ 4164 if (bus != xpt_periph->path->bus) { 4165 xpt_path_lock(xpt_periph->path); 4166 xpt_async_process_dev(xpt_periph->path->device, ccb); 4167 xpt_path_unlock(xpt_periph->path); 4168 } 4169 4170 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4171 xpt_release_devq(path, 1, TRUE); 4172 else 4173 xpt_release_simq(path->bus->sim, TRUE); 4174 if (ccb->casync.async_arg_size > 0) 4175 free(async_arg, M_CAMXPT); 4176 xpt_free_path(path); 4177 xpt_free_ccb(ccb); 4178 } 4179 4180 static void 4181 xpt_async_bcast(struct async_list *async_head, 4182 u_int32_t async_code, 4183 struct cam_path *path, void *async_arg) 4184 { 4185 struct async_node *cur_entry; 4186 int lock; 4187 4188 cur_entry = SLIST_FIRST(async_head); 4189 while (cur_entry != NULL) { 4190 struct async_node *next_entry; 4191 /* 4192 * Grab the next list entry before we call the current 4193 * entry's callback. This is because the callback function 4194 * can delete its async callback entry. 4195 */ 4196 next_entry = SLIST_NEXT(cur_entry, links); 4197 if ((cur_entry->event_enable & async_code) != 0) { 4198 lock = cur_entry->event_lock; 4199 if (lock) 4200 CAM_SIM_LOCK(path->device->sim); 4201 cur_entry->callback(cur_entry->callback_arg, 4202 async_code, path, 4203 async_arg); 4204 if (lock) 4205 CAM_SIM_UNLOCK(path->device->sim); 4206 } 4207 cur_entry = next_entry; 4208 } 4209 } 4210 4211 void 4212 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4213 { 4214 union ccb *ccb; 4215 int size; 4216 4217 ccb = xpt_alloc_ccb_nowait(); 4218 if (ccb == NULL) { 4219 xpt_print(path, "Can't allocate CCB to send %s\n", 4220 xpt_async_string(async_code)); 4221 return; 4222 } 4223 4224 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4225 xpt_print(path, "Can't allocate path to send %s\n", 4226 xpt_async_string(async_code)); 4227 xpt_free_ccb(ccb); 4228 return; 4229 } 4230 ccb->ccb_h.path->periph = NULL; 4231 ccb->ccb_h.func_code = XPT_ASYNC; 4232 ccb->ccb_h.cbfcnp = xpt_async_process; 4233 ccb->ccb_h.flags |= CAM_UNLOCKED; 4234 ccb->casync.async_code = async_code; 4235 ccb->casync.async_arg_size = 0; 4236 size = xpt_async_size(async_code); 4237 if (size > 0 && async_arg != NULL) { 4238 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4239 if (ccb->casync.async_arg_ptr == NULL) { 4240 xpt_print(path, "Can't allocate argument to send %s\n", 4241 xpt_async_string(async_code)); 4242 xpt_free_path(ccb->ccb_h.path); 4243 xpt_free_ccb(ccb); 4244 return; 4245 } 4246 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4247 ccb->casync.async_arg_size = size; 4248 } else if (size < 0) { 4249 ccb->casync.async_arg_ptr = async_arg; 4250 ccb->casync.async_arg_size = size; 4251 } 4252 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4253 xpt_freeze_devq(path, 1); 4254 else 4255 xpt_freeze_simq(path->bus->sim, 1); 4256 xpt_done(ccb); 4257 } 4258 4259 static void 4260 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4261 struct cam_et *target, struct cam_ed *device, 4262 void *async_arg) 4263 { 4264 4265 /* 4266 * We only need to handle events for real devices. 4267 */ 4268 if (target->target_id == CAM_TARGET_WILDCARD 4269 || device->lun_id == CAM_LUN_WILDCARD) 4270 return; 4271 4272 printf("%s called\n", __func__); 4273 } 4274 4275 static uint32_t 4276 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4277 { 4278 struct cam_devq *devq; 4279 uint32_t freeze; 4280 4281 devq = dev->sim->devq; 4282 mtx_assert(&devq->send_mtx, MA_OWNED); 4283 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4284 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4285 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4286 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4287 /* Remove frozen device from sendq. */ 4288 if (device_is_queued(dev)) 4289 camq_remove(&devq->send_queue, dev->devq_entry.index); 4290 return (freeze); 4291 } 4292 4293 u_int32_t 4294 xpt_freeze_devq(struct cam_path *path, u_int count) 4295 { 4296 struct cam_ed *dev = path->device; 4297 struct cam_devq *devq; 4298 uint32_t freeze; 4299 4300 devq = dev->sim->devq; 4301 mtx_lock(&devq->send_mtx); 4302 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4303 freeze = xpt_freeze_devq_device(dev, count); 4304 mtx_unlock(&devq->send_mtx); 4305 return (freeze); 4306 } 4307 4308 u_int32_t 4309 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4310 { 4311 struct cam_devq *devq; 4312 uint32_t freeze; 4313 4314 devq = sim->devq; 4315 mtx_lock(&devq->send_mtx); 4316 freeze = (devq->send_queue.qfrozen_cnt += count); 4317 mtx_unlock(&devq->send_mtx); 4318 return (freeze); 4319 } 4320 4321 static void 4322 xpt_release_devq_timeout(void *arg) 4323 { 4324 struct cam_ed *dev; 4325 struct cam_devq *devq; 4326 4327 dev = (struct cam_ed *)arg; 4328 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4329 devq = dev->sim->devq; 4330 mtx_assert(&devq->send_mtx, MA_OWNED); 4331 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4332 xpt_run_devq(devq); 4333 } 4334 4335 void 4336 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4337 { 4338 struct cam_ed *dev; 4339 struct cam_devq *devq; 4340 4341 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4342 count, run_queue)); 4343 dev = path->device; 4344 devq = dev->sim->devq; 4345 mtx_lock(&devq->send_mtx); 4346 if (xpt_release_devq_device(dev, count, run_queue)) 4347 xpt_run_devq(dev->sim->devq); 4348 mtx_unlock(&devq->send_mtx); 4349 } 4350 4351 static int 4352 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4353 { 4354 4355 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4356 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4357 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4358 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4359 if (count > dev->ccbq.queue.qfrozen_cnt) { 4360 #ifdef INVARIANTS 4361 printf("xpt_release_devq(): requested %u > present %u\n", 4362 count, dev->ccbq.queue.qfrozen_cnt); 4363 #endif 4364 count = dev->ccbq.queue.qfrozen_cnt; 4365 } 4366 dev->ccbq.queue.qfrozen_cnt -= count; 4367 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4368 /* 4369 * No longer need to wait for a successful 4370 * command completion. 4371 */ 4372 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4373 /* 4374 * Remove any timeouts that might be scheduled 4375 * to release this queue. 4376 */ 4377 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4378 callout_stop(&dev->callout); 4379 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4380 } 4381 /* 4382 * Now that we are unfrozen schedule the 4383 * device so any pending transactions are 4384 * run. 4385 */ 4386 xpt_schedule_devq(dev->sim->devq, dev); 4387 } else 4388 run_queue = 0; 4389 return (run_queue); 4390 } 4391 4392 void 4393 xpt_release_simq(struct cam_sim *sim, int run_queue) 4394 { 4395 struct cam_devq *devq; 4396 4397 devq = sim->devq; 4398 mtx_lock(&devq->send_mtx); 4399 if (devq->send_queue.qfrozen_cnt <= 0) { 4400 #ifdef INVARIANTS 4401 printf("xpt_release_simq: requested 1 > present %u\n", 4402 devq->send_queue.qfrozen_cnt); 4403 #endif 4404 } else 4405 devq->send_queue.qfrozen_cnt--; 4406 if (devq->send_queue.qfrozen_cnt == 0) { 4407 /* 4408 * If there is a timeout scheduled to release this 4409 * sim queue, remove it. The queue frozen count is 4410 * already at 0. 4411 */ 4412 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4413 callout_stop(&sim->callout); 4414 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4415 } 4416 if (run_queue) { 4417 /* 4418 * Now that we are unfrozen run the send queue. 4419 */ 4420 xpt_run_devq(sim->devq); 4421 } 4422 } 4423 mtx_unlock(&devq->send_mtx); 4424 } 4425 4426 /* 4427 * XXX Appears to be unused. 4428 */ 4429 static void 4430 xpt_release_simq_timeout(void *arg) 4431 { 4432 struct cam_sim *sim; 4433 4434 sim = (struct cam_sim *)arg; 4435 xpt_release_simq(sim, /* run_queue */ TRUE); 4436 } 4437 4438 void 4439 xpt_done(union ccb *done_ccb) 4440 { 4441 struct cam_doneq *queue; 4442 int run, hash; 4443 4444 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4445 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4446 return; 4447 4448 /* Store the time the ccb was in the sim */ 4449 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4450 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4451 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4452 queue = &cam_doneqs[hash]; 4453 mtx_lock(&queue->cam_doneq_mtx); 4454 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4455 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4456 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4457 mtx_unlock(&queue->cam_doneq_mtx); 4458 if (run) 4459 wakeup(&queue->cam_doneq); 4460 } 4461 4462 void 4463 xpt_done_direct(union ccb *done_ccb) 4464 { 4465 4466 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); 4467 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4468 return; 4469 4470 /* Store the time the ccb was in the sim */ 4471 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4472 xpt_done_process(&done_ccb->ccb_h); 4473 } 4474 4475 union ccb * 4476 xpt_alloc_ccb() 4477 { 4478 union ccb *new_ccb; 4479 4480 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4481 return (new_ccb); 4482 } 4483 4484 union ccb * 4485 xpt_alloc_ccb_nowait() 4486 { 4487 union ccb *new_ccb; 4488 4489 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4490 return (new_ccb); 4491 } 4492 4493 void 4494 xpt_free_ccb(union ccb *free_ccb) 4495 { 4496 free(free_ccb, M_CAMCCB); 4497 } 4498 4499 4500 4501 /* Private XPT functions */ 4502 4503 /* 4504 * Get a CAM control block for the caller. Charge the structure to the device 4505 * referenced by the path. If we don't have sufficient resources to allocate 4506 * more ccbs, we return NULL. 4507 */ 4508 static union ccb * 4509 xpt_get_ccb_nowait(struct cam_periph *periph) 4510 { 4511 union ccb *new_ccb; 4512 4513 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4514 if (new_ccb == NULL) 4515 return (NULL); 4516 periph->periph_allocated++; 4517 cam_ccbq_take_opening(&periph->path->device->ccbq); 4518 return (new_ccb); 4519 } 4520 4521 static union ccb * 4522 xpt_get_ccb(struct cam_periph *periph) 4523 { 4524 union ccb *new_ccb; 4525 4526 cam_periph_unlock(periph); 4527 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4528 cam_periph_lock(periph); 4529 periph->periph_allocated++; 4530 cam_ccbq_take_opening(&periph->path->device->ccbq); 4531 return (new_ccb); 4532 } 4533 4534 union ccb * 4535 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4536 { 4537 struct ccb_hdr *ccb_h; 4538 4539 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4540 cam_periph_assert(periph, MA_OWNED); 4541 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4542 ccb_h->pinfo.priority != priority) { 4543 if (priority < periph->immediate_priority) { 4544 periph->immediate_priority = priority; 4545 xpt_run_allocq(periph, 0); 4546 } else 4547 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4548 "cgticb", 0); 4549 } 4550 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4551 return ((union ccb *)ccb_h); 4552 } 4553 4554 static void 4555 xpt_acquire_bus(struct cam_eb *bus) 4556 { 4557 4558 xpt_lock_buses(); 4559 bus->refcount++; 4560 xpt_unlock_buses(); 4561 } 4562 4563 static void 4564 xpt_release_bus(struct cam_eb *bus) 4565 { 4566 4567 xpt_lock_buses(); 4568 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4569 if (--bus->refcount > 0) { 4570 xpt_unlock_buses(); 4571 return; 4572 } 4573 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4574 xsoftc.bus_generation++; 4575 xpt_unlock_buses(); 4576 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4577 ("destroying bus, but target list is not empty")); 4578 cam_sim_release(bus->sim); 4579 mtx_destroy(&bus->eb_mtx); 4580 free(bus, M_CAMXPT); 4581 } 4582 4583 static struct cam_et * 4584 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4585 { 4586 struct cam_et *cur_target, *target; 4587 4588 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4589 mtx_assert(&bus->eb_mtx, MA_OWNED); 4590 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4591 M_NOWAIT|M_ZERO); 4592 if (target == NULL) 4593 return (NULL); 4594 4595 TAILQ_INIT(&target->ed_entries); 4596 target->bus = bus; 4597 target->target_id = target_id; 4598 target->refcount = 1; 4599 target->generation = 0; 4600 target->luns = NULL; 4601 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4602 timevalclear(&target->last_reset); 4603 /* 4604 * Hold a reference to our parent bus so it 4605 * will not go away before we do. 4606 */ 4607 bus->refcount++; 4608 4609 /* Insertion sort into our bus's target list */ 4610 cur_target = TAILQ_FIRST(&bus->et_entries); 4611 while (cur_target != NULL && cur_target->target_id < target_id) 4612 cur_target = TAILQ_NEXT(cur_target, links); 4613 if (cur_target != NULL) { 4614 TAILQ_INSERT_BEFORE(cur_target, target, links); 4615 } else { 4616 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4617 } 4618 bus->generation++; 4619 return (target); 4620 } 4621 4622 static void 4623 xpt_acquire_target(struct cam_et *target) 4624 { 4625 struct cam_eb *bus = target->bus; 4626 4627 mtx_lock(&bus->eb_mtx); 4628 target->refcount++; 4629 mtx_unlock(&bus->eb_mtx); 4630 } 4631 4632 static void 4633 xpt_release_target(struct cam_et *target) 4634 { 4635 struct cam_eb *bus = target->bus; 4636 4637 mtx_lock(&bus->eb_mtx); 4638 if (--target->refcount > 0) { 4639 mtx_unlock(&bus->eb_mtx); 4640 return; 4641 } 4642 TAILQ_REMOVE(&bus->et_entries, target, links); 4643 bus->generation++; 4644 mtx_unlock(&bus->eb_mtx); 4645 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4646 ("destroying target, but device list is not empty")); 4647 xpt_release_bus(bus); 4648 mtx_destroy(&target->luns_mtx); 4649 if (target->luns) 4650 free(target->luns, M_CAMXPT); 4651 free(target, M_CAMXPT); 4652 } 4653 4654 static struct cam_ed * 4655 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4656 lun_id_t lun_id) 4657 { 4658 struct cam_ed *device; 4659 4660 device = xpt_alloc_device(bus, target, lun_id); 4661 if (device == NULL) 4662 return (NULL); 4663 4664 device->mintags = 1; 4665 device->maxtags = 1; 4666 return (device); 4667 } 4668 4669 static void 4670 xpt_destroy_device(void *context, int pending) 4671 { 4672 struct cam_ed *device = context; 4673 4674 mtx_lock(&device->device_mtx); 4675 mtx_destroy(&device->device_mtx); 4676 free(device, M_CAMDEV); 4677 } 4678 4679 struct cam_ed * 4680 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4681 { 4682 struct cam_ed *cur_device, *device; 4683 struct cam_devq *devq; 4684 cam_status status; 4685 4686 mtx_assert(&bus->eb_mtx, MA_OWNED); 4687 /* Make space for us in the device queue on our bus */ 4688 devq = bus->sim->devq; 4689 mtx_lock(&devq->send_mtx); 4690 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4691 mtx_unlock(&devq->send_mtx); 4692 if (status != CAM_REQ_CMP) 4693 return (NULL); 4694 4695 device = (struct cam_ed *)malloc(sizeof(*device), 4696 M_CAMDEV, M_NOWAIT|M_ZERO); 4697 if (device == NULL) 4698 return (NULL); 4699 4700 cam_init_pinfo(&device->devq_entry); 4701 device->target = target; 4702 device->lun_id = lun_id; 4703 device->sim = bus->sim; 4704 if (cam_ccbq_init(&device->ccbq, 4705 bus->sim->max_dev_openings) != 0) { 4706 free(device, M_CAMDEV); 4707 return (NULL); 4708 } 4709 SLIST_INIT(&device->asyncs); 4710 SLIST_INIT(&device->periphs); 4711 device->generation = 0; 4712 device->flags = CAM_DEV_UNCONFIGURED; 4713 device->tag_delay_count = 0; 4714 device->tag_saved_openings = 0; 4715 device->refcount = 1; 4716 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4717 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4718 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4719 /* 4720 * Hold a reference to our parent bus so it 4721 * will not go away before we do. 4722 */ 4723 target->refcount++; 4724 4725 cur_device = TAILQ_FIRST(&target->ed_entries); 4726 while (cur_device != NULL && cur_device->lun_id < lun_id) 4727 cur_device = TAILQ_NEXT(cur_device, links); 4728 if (cur_device != NULL) 4729 TAILQ_INSERT_BEFORE(cur_device, device, links); 4730 else 4731 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4732 target->generation++; 4733 return (device); 4734 } 4735 4736 void 4737 xpt_acquire_device(struct cam_ed *device) 4738 { 4739 struct cam_eb *bus = device->target->bus; 4740 4741 mtx_lock(&bus->eb_mtx); 4742 device->refcount++; 4743 mtx_unlock(&bus->eb_mtx); 4744 } 4745 4746 void 4747 xpt_release_device(struct cam_ed *device) 4748 { 4749 struct cam_eb *bus = device->target->bus; 4750 struct cam_devq *devq; 4751 4752 mtx_lock(&bus->eb_mtx); 4753 if (--device->refcount > 0) { 4754 mtx_unlock(&bus->eb_mtx); 4755 return; 4756 } 4757 4758 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4759 device->target->generation++; 4760 mtx_unlock(&bus->eb_mtx); 4761 4762 /* Release our slot in the devq */ 4763 devq = bus->sim->devq; 4764 mtx_lock(&devq->send_mtx); 4765 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4766 mtx_unlock(&devq->send_mtx); 4767 4768 KASSERT(SLIST_EMPTY(&device->periphs), 4769 ("destroying device, but periphs list is not empty")); 4770 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4771 ("destroying device while still queued for ccbs")); 4772 4773 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4774 callout_stop(&device->callout); 4775 4776 xpt_release_target(device->target); 4777 4778 cam_ccbq_fini(&device->ccbq); 4779 /* 4780 * Free allocated memory. free(9) does nothing if the 4781 * supplied pointer is NULL, so it is safe to call without 4782 * checking. 4783 */ 4784 free(device->supported_vpds, M_CAMXPT); 4785 free(device->device_id, M_CAMXPT); 4786 free(device->ext_inq, M_CAMXPT); 4787 free(device->physpath, M_CAMXPT); 4788 free(device->rcap_buf, M_CAMXPT); 4789 free(device->serial_num, M_CAMXPT); 4790 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4791 } 4792 4793 u_int32_t 4794 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4795 { 4796 int result; 4797 struct cam_ed *dev; 4798 4799 dev = path->device; 4800 mtx_lock(&dev->sim->devq->send_mtx); 4801 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4802 mtx_unlock(&dev->sim->devq->send_mtx); 4803 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4804 || (dev->inq_flags & SID_CmdQue) != 0) 4805 dev->tag_saved_openings = newopenings; 4806 return (result); 4807 } 4808 4809 static struct cam_eb * 4810 xpt_find_bus(path_id_t path_id) 4811 { 4812 struct cam_eb *bus; 4813 4814 xpt_lock_buses(); 4815 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4816 bus != NULL; 4817 bus = TAILQ_NEXT(bus, links)) { 4818 if (bus->path_id == path_id) { 4819 bus->refcount++; 4820 break; 4821 } 4822 } 4823 xpt_unlock_buses(); 4824 return (bus); 4825 } 4826 4827 static struct cam_et * 4828 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4829 { 4830 struct cam_et *target; 4831 4832 mtx_assert(&bus->eb_mtx, MA_OWNED); 4833 for (target = TAILQ_FIRST(&bus->et_entries); 4834 target != NULL; 4835 target = TAILQ_NEXT(target, links)) { 4836 if (target->target_id == target_id) { 4837 target->refcount++; 4838 break; 4839 } 4840 } 4841 return (target); 4842 } 4843 4844 static struct cam_ed * 4845 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4846 { 4847 struct cam_ed *device; 4848 4849 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4850 for (device = TAILQ_FIRST(&target->ed_entries); 4851 device != NULL; 4852 device = TAILQ_NEXT(device, links)) { 4853 if (device->lun_id == lun_id) { 4854 device->refcount++; 4855 break; 4856 } 4857 } 4858 return (device); 4859 } 4860 4861 void 4862 xpt_start_tags(struct cam_path *path) 4863 { 4864 struct ccb_relsim crs; 4865 struct cam_ed *device; 4866 struct cam_sim *sim; 4867 int newopenings; 4868 4869 device = path->device; 4870 sim = path->bus->sim; 4871 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4872 xpt_freeze_devq(path, /*count*/1); 4873 device->inq_flags |= SID_CmdQue; 4874 if (device->tag_saved_openings != 0) 4875 newopenings = device->tag_saved_openings; 4876 else 4877 newopenings = min(device->maxtags, 4878 sim->max_tagged_dev_openings); 4879 xpt_dev_ccbq_resize(path, newopenings); 4880 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4881 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4882 crs.ccb_h.func_code = XPT_REL_SIMQ; 4883 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4884 crs.openings 4885 = crs.release_timeout 4886 = crs.qfrozen_cnt 4887 = 0; 4888 xpt_action((union ccb *)&crs); 4889 } 4890 4891 void 4892 xpt_stop_tags(struct cam_path *path) 4893 { 4894 struct ccb_relsim crs; 4895 struct cam_ed *device; 4896 struct cam_sim *sim; 4897 4898 device = path->device; 4899 sim = path->bus->sim; 4900 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4901 device->tag_delay_count = 0; 4902 xpt_freeze_devq(path, /*count*/1); 4903 device->inq_flags &= ~SID_CmdQue; 4904 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4905 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4906 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4907 crs.ccb_h.func_code = XPT_REL_SIMQ; 4908 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4909 crs.openings 4910 = crs.release_timeout 4911 = crs.qfrozen_cnt 4912 = 0; 4913 xpt_action((union ccb *)&crs); 4914 } 4915 4916 static void 4917 xpt_boot_delay(void *arg) 4918 { 4919 4920 xpt_release_boot(); 4921 } 4922 4923 static void 4924 xpt_config(void *arg) 4925 { 4926 /* 4927 * Now that interrupts are enabled, go find our devices 4928 */ 4929 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4930 printf("xpt_config: failed to create taskqueue thread.\n"); 4931 4932 /* Setup debugging path */ 4933 if (cam_dflags != CAM_DEBUG_NONE) { 4934 if (xpt_create_path(&cam_dpath, NULL, 4935 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4936 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4937 printf("xpt_config: xpt_create_path() failed for debug" 4938 " target %d:%d:%d, debugging disabled\n", 4939 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4940 cam_dflags = CAM_DEBUG_NONE; 4941 } 4942 } else 4943 cam_dpath = NULL; 4944 4945 periphdriver_init(1); 4946 xpt_hold_boot(); 4947 callout_init(&xsoftc.boot_callout, 1); 4948 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 4949 xpt_boot_delay, NULL, 0); 4950 /* Fire up rescan thread. */ 4951 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4952 "cam", "scanner")) { 4953 printf("xpt_config: failed to create rescan thread.\n"); 4954 } 4955 } 4956 4957 void 4958 xpt_hold_boot(void) 4959 { 4960 xpt_lock_buses(); 4961 xsoftc.buses_to_config++; 4962 xpt_unlock_buses(); 4963 } 4964 4965 void 4966 xpt_release_boot(void) 4967 { 4968 xpt_lock_buses(); 4969 xsoftc.buses_to_config--; 4970 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4971 struct xpt_task *task; 4972 4973 xsoftc.buses_config_done = 1; 4974 xpt_unlock_buses(); 4975 /* Call manually because we don't have any busses */ 4976 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4977 if (task != NULL) { 4978 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4979 taskqueue_enqueue(taskqueue_thread, &task->task); 4980 } 4981 } else 4982 xpt_unlock_buses(); 4983 } 4984 4985 /* 4986 * If the given device only has one peripheral attached to it, and if that 4987 * peripheral is the passthrough driver, announce it. This insures that the 4988 * user sees some sort of announcement for every peripheral in their system. 4989 */ 4990 static int 4991 xptpassannouncefunc(struct cam_ed *device, void *arg) 4992 { 4993 struct cam_periph *periph; 4994 int i; 4995 4996 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4997 periph = SLIST_NEXT(periph, periph_links), i++); 4998 4999 periph = SLIST_FIRST(&device->periphs); 5000 if ((i == 1) 5001 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5002 xpt_announce_periph(periph, NULL); 5003 5004 return(1); 5005 } 5006 5007 static void 5008 xpt_finishconfig_task(void *context, int pending) 5009 { 5010 5011 periphdriver_init(2); 5012 /* 5013 * Check for devices with no "standard" peripheral driver 5014 * attached. For any devices like that, announce the 5015 * passthrough driver so the user will see something. 5016 */ 5017 if (!bootverbose) 5018 xpt_for_all_devices(xptpassannouncefunc, NULL); 5019 5020 /* Release our hook so that the boot can continue. */ 5021 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5022 free(xsoftc.xpt_config_hook, M_CAMXPT); 5023 xsoftc.xpt_config_hook = NULL; 5024 5025 free(context, M_CAMXPT); 5026 } 5027 5028 cam_status 5029 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5030 struct cam_path *path) 5031 { 5032 struct ccb_setasync csa; 5033 cam_status status; 5034 int xptpath = 0; 5035 5036 if (path == NULL) { 5037 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5038 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5039 if (status != CAM_REQ_CMP) 5040 return (status); 5041 xpt_path_lock(path); 5042 xptpath = 1; 5043 } 5044 5045 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5046 csa.ccb_h.func_code = XPT_SASYNC_CB; 5047 csa.event_enable = event; 5048 csa.callback = cbfunc; 5049 csa.callback_arg = cbarg; 5050 xpt_action((union ccb *)&csa); 5051 status = csa.ccb_h.status; 5052 5053 if (xptpath) { 5054 xpt_path_unlock(path); 5055 xpt_free_path(path); 5056 } 5057 5058 if ((status == CAM_REQ_CMP) && 5059 (csa.event_enable & AC_FOUND_DEVICE)) { 5060 /* 5061 * Get this peripheral up to date with all 5062 * the currently existing devices. 5063 */ 5064 xpt_for_all_devices(xptsetasyncfunc, &csa); 5065 } 5066 if ((status == CAM_REQ_CMP) && 5067 (csa.event_enable & AC_PATH_REGISTERED)) { 5068 /* 5069 * Get this peripheral up to date with all 5070 * the currently existing busses. 5071 */ 5072 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5073 } 5074 5075 return (status); 5076 } 5077 5078 static void 5079 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5080 { 5081 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5082 5083 switch (work_ccb->ccb_h.func_code) { 5084 /* Common cases first */ 5085 case XPT_PATH_INQ: /* Path routing inquiry */ 5086 { 5087 struct ccb_pathinq *cpi; 5088 5089 cpi = &work_ccb->cpi; 5090 cpi->version_num = 1; /* XXX??? */ 5091 cpi->hba_inquiry = 0; 5092 cpi->target_sprt = 0; 5093 cpi->hba_misc = 0; 5094 cpi->hba_eng_cnt = 0; 5095 cpi->max_target = 0; 5096 cpi->max_lun = 0; 5097 cpi->initiator_id = 0; 5098 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5099 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5100 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5101 cpi->unit_number = sim->unit_number; 5102 cpi->bus_id = sim->bus_id; 5103 cpi->base_transfer_speed = 0; 5104 cpi->protocol = PROTO_UNSPECIFIED; 5105 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5106 cpi->transport = XPORT_UNSPECIFIED; 5107 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5108 cpi->ccb_h.status = CAM_REQ_CMP; 5109 xpt_done(work_ccb); 5110 break; 5111 } 5112 default: 5113 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5114 xpt_done(work_ccb); 5115 break; 5116 } 5117 } 5118 5119 /* 5120 * The xpt as a "controller" has no interrupt sources, so polling 5121 * is a no-op. 5122 */ 5123 static void 5124 xptpoll(struct cam_sim *sim) 5125 { 5126 } 5127 5128 void 5129 xpt_lock_buses(void) 5130 { 5131 mtx_lock(&xsoftc.xpt_topo_lock); 5132 } 5133 5134 void 5135 xpt_unlock_buses(void) 5136 { 5137 mtx_unlock(&xsoftc.xpt_topo_lock); 5138 } 5139 5140 struct mtx * 5141 xpt_path_mtx(struct cam_path *path) 5142 { 5143 5144 return (&path->device->device_mtx); 5145 } 5146 5147 static void 5148 xpt_done_process(struct ccb_hdr *ccb_h) 5149 { 5150 struct cam_sim *sim; 5151 struct cam_devq *devq; 5152 struct mtx *mtx = NULL; 5153 5154 if (ccb_h->flags & CAM_HIGH_POWER) { 5155 struct highpowerlist *hphead; 5156 struct cam_ed *device; 5157 5158 mtx_lock(&xsoftc.xpt_highpower_lock); 5159 hphead = &xsoftc.highpowerq; 5160 5161 device = STAILQ_FIRST(hphead); 5162 5163 /* 5164 * Increment the count since this command is done. 5165 */ 5166 xsoftc.num_highpower++; 5167 5168 /* 5169 * Any high powered commands queued up? 5170 */ 5171 if (device != NULL) { 5172 5173 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5174 mtx_unlock(&xsoftc.xpt_highpower_lock); 5175 5176 mtx_lock(&device->sim->devq->send_mtx); 5177 xpt_release_devq_device(device, 5178 /*count*/1, /*runqueue*/TRUE); 5179 mtx_unlock(&device->sim->devq->send_mtx); 5180 } else 5181 mtx_unlock(&xsoftc.xpt_highpower_lock); 5182 } 5183 5184 sim = ccb_h->path->bus->sim; 5185 5186 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5187 xpt_release_simq(sim, /*run_queue*/FALSE); 5188 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5189 } 5190 5191 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5192 && (ccb_h->status & CAM_DEV_QFRZN)) { 5193 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5194 ccb_h->status &= ~CAM_DEV_QFRZN; 5195 } 5196 5197 devq = sim->devq; 5198 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5199 struct cam_ed *dev = ccb_h->path->device; 5200 5201 mtx_lock(&devq->send_mtx); 5202 devq->send_active--; 5203 devq->send_openings++; 5204 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5205 5206 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5207 && (dev->ccbq.dev_active == 0))) { 5208 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5209 xpt_release_devq_device(dev, /*count*/1, 5210 /*run_queue*/FALSE); 5211 } 5212 5213 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5214 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5215 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5216 xpt_release_devq_device(dev, /*count*/1, 5217 /*run_queue*/FALSE); 5218 } 5219 5220 if (!device_is_queued(dev)) 5221 (void)xpt_schedule_devq(devq, dev); 5222 xpt_run_devq(devq); 5223 mtx_unlock(&devq->send_mtx); 5224 5225 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5226 mtx = xpt_path_mtx(ccb_h->path); 5227 mtx_lock(mtx); 5228 5229 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5230 && (--dev->tag_delay_count == 0)) 5231 xpt_start_tags(ccb_h->path); 5232 } 5233 } 5234 5235 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5236 if (mtx == NULL) { 5237 mtx = xpt_path_mtx(ccb_h->path); 5238 mtx_lock(mtx); 5239 } 5240 } else { 5241 if (mtx != NULL) { 5242 mtx_unlock(mtx); 5243 mtx = NULL; 5244 } 5245 } 5246 5247 /* Call the peripheral driver's callback */ 5248 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5249 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5250 if (mtx != NULL) 5251 mtx_unlock(mtx); 5252 } 5253 5254 void 5255 xpt_done_td(void *arg) 5256 { 5257 struct cam_doneq *queue = arg; 5258 struct ccb_hdr *ccb_h; 5259 STAILQ_HEAD(, ccb_hdr) doneq; 5260 5261 STAILQ_INIT(&doneq); 5262 mtx_lock(&queue->cam_doneq_mtx); 5263 while (1) { 5264 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5265 queue->cam_doneq_sleep = 1; 5266 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5267 PRIBIO, "-", 0); 5268 queue->cam_doneq_sleep = 0; 5269 } 5270 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5271 mtx_unlock(&queue->cam_doneq_mtx); 5272 5273 THREAD_NO_SLEEPING(); 5274 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5275 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5276 xpt_done_process(ccb_h); 5277 } 5278 THREAD_SLEEPING_OK(); 5279 5280 mtx_lock(&queue->cam_doneq_mtx); 5281 } 5282 } 5283 5284 static void 5285 camisr_runqueue(void) 5286 { 5287 struct ccb_hdr *ccb_h; 5288 struct cam_doneq *queue; 5289 int i; 5290 5291 /* Process global queues. */ 5292 for (i = 0; i < cam_num_doneqs; i++) { 5293 queue = &cam_doneqs[i]; 5294 mtx_lock(&queue->cam_doneq_mtx); 5295 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5296 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5297 mtx_unlock(&queue->cam_doneq_mtx); 5298 xpt_done_process(ccb_h); 5299 mtx_lock(&queue->cam_doneq_mtx); 5300 } 5301 mtx_unlock(&queue->cam_doneq_mtx); 5302 } 5303 } 5304