1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #include <cam/cam.h> 52 #include <cam/cam_ccb.h> 53 #include <cam/cam_periph.h> 54 #include <cam/cam_queue.h> 55 #include <cam/cam_sim.h> 56 #include <cam/cam_xpt.h> 57 #include <cam/cam_xpt_sim.h> 58 #include <cam/cam_xpt_periph.h> 59 #include <cam/cam_xpt_internal.h> 60 #include <cam/cam_debug.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 66 #include <machine/md_var.h> /* geometry translation */ 67 #include <machine/stdarg.h> /* for xpt_print below */ 68 69 #include "opt_cam.h" 70 71 /* 72 * This is the maximum number of high powered commands (e.g. start unit) 73 * that can be outstanding at a particular time. 74 */ 75 #ifndef CAM_MAX_HIGHPOWER 76 #define CAM_MAX_HIGHPOWER 4 77 #endif 78 79 /* Datastructures internal to the xpt layer */ 80 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 81 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 82 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 83 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 84 85 /* Object for defering XPT actions to a taskqueue */ 86 struct xpt_task { 87 struct task task; 88 void *data1; 89 uintptr_t data2; 90 }; 91 92 typedef enum { 93 XPT_FLAG_OPEN = 0x01 94 } xpt_flags; 95 96 struct xpt_softc { 97 xpt_flags flags; 98 u_int32_t xpt_generation; 99 100 /* number of high powered commands that can go through right now */ 101 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* Registered busses */ 110 TAILQ_HEAD(,cam_eb) xpt_busses; 111 u_int bus_generation; 112 113 struct intr_config_hook *xpt_config_hook; 114 115 int boot_delay; 116 struct callout boot_callout; 117 118 struct mtx xpt_topo_lock; 119 struct mtx xpt_lock; 120 }; 121 122 typedef enum { 123 DM_RET_COPY = 0x01, 124 DM_RET_FLAG_MASK = 0x0f, 125 DM_RET_NONE = 0x00, 126 DM_RET_STOP = 0x10, 127 DM_RET_DESCEND = 0x20, 128 DM_RET_ERROR = 0x30, 129 DM_RET_ACTION_MASK = 0xf0 130 } dev_match_ret; 131 132 typedef enum { 133 XPT_DEPTH_BUS, 134 XPT_DEPTH_TARGET, 135 XPT_DEPTH_DEVICE, 136 XPT_DEPTH_PERIPH 137 } xpt_traverse_depth; 138 139 struct xpt_traverse_config { 140 xpt_traverse_depth depth; 141 void *tr_func; 142 void *tr_arg; 143 }; 144 145 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 146 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 147 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 148 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 149 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 150 151 /* Transport layer configuration information */ 152 static struct xpt_softc xsoftc; 153 154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 156 &xsoftc.boot_delay, 0, "Bus registration wait time"); 157 158 /* Queues for our software interrupt handler */ 159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 161 static cam_simq_t cam_simq; 162 static struct mtx cam_simq_lock; 163 164 /* Pointers to software interrupt handlers */ 165 static void *cambio_ih; 166 167 struct cam_periph *xpt_periph; 168 169 static periph_init_t xpt_periph_init; 170 171 static struct periph_driver xpt_driver = 172 { 173 xpt_periph_init, "xpt", 174 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 175 CAM_PERIPH_DRV_EARLY 176 }; 177 178 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 179 180 static d_open_t xptopen; 181 static d_close_t xptclose; 182 static d_ioctl_t xptioctl; 183 184 static struct cdevsw xpt_cdevsw = { 185 .d_version = D_VERSION, 186 .d_flags = 0, 187 .d_open = xptopen, 188 .d_close = xptclose, 189 .d_ioctl = xptioctl, 190 .d_name = "xpt", 191 }; 192 193 /* Storage for debugging datastructures */ 194 struct cam_path *cam_dpath; 195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 196 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 197 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 198 &cam_dflags, 0, "Enabled debug flags"); 199 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 200 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 202 &cam_debug_delay, 0, "Delay in us after each debug message"); 203 204 /* Our boot-time initialization hook */ 205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 206 207 static moduledata_t cam_moduledata = { 208 "cam", 209 cam_module_event_handler, 210 NULL 211 }; 212 213 static int xpt_init(void *); 214 215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 216 MODULE_VERSION(cam, 1); 217 218 219 static void xpt_async_bcast(struct async_list *async_head, 220 u_int32_t async_code, 221 struct cam_path *path, 222 void *async_arg); 223 static path_id_t xptnextfreepathid(void); 224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 225 static union ccb *xpt_get_ccb(struct cam_ed *device); 226 static void xpt_run_dev_allocq(struct cam_ed *device); 227 static void xpt_run_devq(struct cam_devq *devq); 228 static timeout_t xpt_release_devq_timeout; 229 static void xpt_release_simq_timeout(void *arg) __unused; 230 static void xpt_release_bus(struct cam_eb *bus); 231 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 232 int run_queue); 233 static struct cam_et* 234 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 235 static void xpt_release_target(struct cam_et *target); 236 static struct cam_eb* 237 xpt_find_bus(path_id_t path_id); 238 static struct cam_et* 239 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 240 static struct cam_ed* 241 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 242 static void xpt_config(void *arg); 243 static xpt_devicefunc_t xptpassannouncefunc; 244 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 245 static void xptpoll(struct cam_sim *sim); 246 static void camisr(void *); 247 static void camisr_runqueue(void *); 248 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 249 u_int num_patterns, struct cam_eb *bus); 250 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 251 u_int num_patterns, 252 struct cam_ed *device); 253 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 254 u_int num_patterns, 255 struct cam_periph *periph); 256 static xpt_busfunc_t xptedtbusfunc; 257 static xpt_targetfunc_t xptedttargetfunc; 258 static xpt_devicefunc_t xptedtdevicefunc; 259 static xpt_periphfunc_t xptedtperiphfunc; 260 static xpt_pdrvfunc_t xptplistpdrvfunc; 261 static xpt_periphfunc_t xptplistperiphfunc; 262 static int xptedtmatch(struct ccb_dev_match *cdm); 263 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 264 static int xptbustraverse(struct cam_eb *start_bus, 265 xpt_busfunc_t *tr_func, void *arg); 266 static int xpttargettraverse(struct cam_eb *bus, 267 struct cam_et *start_target, 268 xpt_targetfunc_t *tr_func, void *arg); 269 static int xptdevicetraverse(struct cam_et *target, 270 struct cam_ed *start_device, 271 xpt_devicefunc_t *tr_func, void *arg); 272 static int xptperiphtraverse(struct cam_ed *device, 273 struct cam_periph *start_periph, 274 xpt_periphfunc_t *tr_func, void *arg); 275 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 276 xpt_pdrvfunc_t *tr_func, void *arg); 277 static int xptpdperiphtraverse(struct periph_driver **pdrv, 278 struct cam_periph *start_periph, 279 xpt_periphfunc_t *tr_func, 280 void *arg); 281 static xpt_busfunc_t xptdefbusfunc; 282 static xpt_targetfunc_t xptdeftargetfunc; 283 static xpt_devicefunc_t xptdefdevicefunc; 284 static xpt_periphfunc_t xptdefperiphfunc; 285 static void xpt_finishconfig_task(void *context, int pending); 286 static void xpt_dev_async_default(u_int32_t async_code, 287 struct cam_eb *bus, 288 struct cam_et *target, 289 struct cam_ed *device, 290 void *async_arg); 291 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 292 struct cam_et *target, 293 lun_id_t lun_id); 294 static xpt_devicefunc_t xptsetasyncfunc; 295 static xpt_busfunc_t xptsetasyncbusfunc; 296 static cam_status xptregister(struct cam_periph *periph, 297 void *arg); 298 static __inline int periph_is_queued(struct cam_periph *periph); 299 static __inline int device_is_queued(struct cam_ed *device); 300 301 static __inline int 302 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 303 { 304 int retval; 305 306 if ((dev->ccbq.queue.entries > 0) && 307 (dev->ccbq.dev_openings > 0) && 308 (dev->ccbq.queue.qfrozen_cnt == 0)) { 309 /* 310 * The priority of a device waiting for controller 311 * resources is that of the highest priority CCB 312 * enqueued. 313 */ 314 retval = 315 xpt_schedule_dev(&devq->send_queue, 316 &dev->devq_entry.pinfo, 317 CAMQ_GET_PRIO(&dev->ccbq.queue)); 318 } else { 319 retval = 0; 320 } 321 return (retval); 322 } 323 324 static __inline int 325 periph_is_queued(struct cam_periph *periph) 326 { 327 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 328 } 329 330 static __inline int 331 device_is_queued(struct cam_ed *device) 332 { 333 return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX); 334 } 335 336 static void 337 xpt_periph_init() 338 { 339 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 340 } 341 342 static void 343 xptdone(struct cam_periph *periph, union ccb *done_ccb) 344 { 345 /* Caller will release the CCB */ 346 wakeup(&done_ccb->ccb_h.cbfcnp); 347 } 348 349 static int 350 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 351 { 352 353 /* 354 * Only allow read-write access. 355 */ 356 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 357 return(EPERM); 358 359 /* 360 * We don't allow nonblocking access. 361 */ 362 if ((flags & O_NONBLOCK) != 0) { 363 printf("%s: can't do nonblocking access\n", devtoname(dev)); 364 return(ENODEV); 365 } 366 367 /* Mark ourselves open */ 368 mtx_lock(&xsoftc.xpt_lock); 369 xsoftc.flags |= XPT_FLAG_OPEN; 370 mtx_unlock(&xsoftc.xpt_lock); 371 372 return(0); 373 } 374 375 static int 376 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 377 { 378 379 /* Mark ourselves closed */ 380 mtx_lock(&xsoftc.xpt_lock); 381 xsoftc.flags &= ~XPT_FLAG_OPEN; 382 mtx_unlock(&xsoftc.xpt_lock); 383 384 return(0); 385 } 386 387 /* 388 * Don't automatically grab the xpt softc lock here even though this is going 389 * through the xpt device. The xpt device is really just a back door for 390 * accessing other devices and SIMs, so the right thing to do is to grab 391 * the appropriate SIM lock once the bus/SIM is located. 392 */ 393 static int 394 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 395 { 396 int error; 397 398 error = 0; 399 400 switch(cmd) { 401 /* 402 * For the transport layer CAMIOCOMMAND ioctl, we really only want 403 * to accept CCB types that don't quite make sense to send through a 404 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 405 * in the CAM spec. 406 */ 407 case CAMIOCOMMAND: { 408 union ccb *ccb; 409 union ccb *inccb; 410 struct cam_eb *bus; 411 412 inccb = (union ccb *)addr; 413 414 bus = xpt_find_bus(inccb->ccb_h.path_id); 415 if (bus == NULL) 416 return (EINVAL); 417 418 switch (inccb->ccb_h.func_code) { 419 case XPT_SCAN_BUS: 420 case XPT_RESET_BUS: 421 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 422 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 423 xpt_release_bus(bus); 424 return (EINVAL); 425 } 426 break; 427 case XPT_SCAN_TGT: 428 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 429 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 430 xpt_release_bus(bus); 431 return (EINVAL); 432 } 433 break; 434 default: 435 break; 436 } 437 438 switch(inccb->ccb_h.func_code) { 439 case XPT_SCAN_BUS: 440 case XPT_RESET_BUS: 441 case XPT_PATH_INQ: 442 case XPT_ENG_INQ: 443 case XPT_SCAN_LUN: 444 case XPT_SCAN_TGT: 445 446 ccb = xpt_alloc_ccb(); 447 448 CAM_SIM_LOCK(bus->sim); 449 450 /* 451 * Create a path using the bus, target, and lun the 452 * user passed in. 453 */ 454 if (xpt_create_path(&ccb->ccb_h.path, NULL, 455 inccb->ccb_h.path_id, 456 inccb->ccb_h.target_id, 457 inccb->ccb_h.target_lun) != 458 CAM_REQ_CMP){ 459 error = EINVAL; 460 CAM_SIM_UNLOCK(bus->sim); 461 xpt_free_ccb(ccb); 462 break; 463 } 464 /* Ensure all of our fields are correct */ 465 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 466 inccb->ccb_h.pinfo.priority); 467 xpt_merge_ccb(ccb, inccb); 468 ccb->ccb_h.cbfcnp = xptdone; 469 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 470 bcopy(ccb, inccb, sizeof(union ccb)); 471 xpt_free_path(ccb->ccb_h.path); 472 xpt_free_ccb(ccb); 473 CAM_SIM_UNLOCK(bus->sim); 474 break; 475 476 case XPT_DEBUG: { 477 union ccb ccb; 478 479 /* 480 * This is an immediate CCB, so it's okay to 481 * allocate it on the stack. 482 */ 483 484 CAM_SIM_LOCK(bus->sim); 485 486 /* 487 * Create a path using the bus, target, and lun the 488 * user passed in. 489 */ 490 if (xpt_create_path(&ccb.ccb_h.path, NULL, 491 inccb->ccb_h.path_id, 492 inccb->ccb_h.target_id, 493 inccb->ccb_h.target_lun) != 494 CAM_REQ_CMP){ 495 error = EINVAL; 496 CAM_SIM_UNLOCK(bus->sim); 497 break; 498 } 499 /* Ensure all of our fields are correct */ 500 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 501 inccb->ccb_h.pinfo.priority); 502 xpt_merge_ccb(&ccb, inccb); 503 ccb.ccb_h.cbfcnp = xptdone; 504 xpt_action(&ccb); 505 bcopy(&ccb, inccb, sizeof(union ccb)); 506 xpt_free_path(ccb.ccb_h.path); 507 CAM_SIM_UNLOCK(bus->sim); 508 break; 509 510 } 511 case XPT_DEV_MATCH: { 512 struct cam_periph_map_info mapinfo; 513 struct cam_path *old_path; 514 515 /* 516 * We can't deal with physical addresses for this 517 * type of transaction. 518 */ 519 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 520 CAM_DATA_VADDR) { 521 error = EINVAL; 522 break; 523 } 524 525 /* 526 * Save this in case the caller had it set to 527 * something in particular. 528 */ 529 old_path = inccb->ccb_h.path; 530 531 /* 532 * We really don't need a path for the matching 533 * code. The path is needed because of the 534 * debugging statements in xpt_action(). They 535 * assume that the CCB has a valid path. 536 */ 537 inccb->ccb_h.path = xpt_periph->path; 538 539 bzero(&mapinfo, sizeof(mapinfo)); 540 541 /* 542 * Map the pattern and match buffers into kernel 543 * virtual address space. 544 */ 545 error = cam_periph_mapmem(inccb, &mapinfo); 546 547 if (error) { 548 inccb->ccb_h.path = old_path; 549 break; 550 } 551 552 /* 553 * This is an immediate CCB, we can send it on directly. 554 */ 555 CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path)); 556 xpt_action(inccb); 557 CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path)); 558 559 /* 560 * Map the buffers back into user space. 561 */ 562 cam_periph_unmapmem(inccb, &mapinfo); 563 564 inccb->ccb_h.path = old_path; 565 566 error = 0; 567 break; 568 } 569 default: 570 error = ENOTSUP; 571 break; 572 } 573 xpt_release_bus(bus); 574 break; 575 } 576 /* 577 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 578 * with the periphal driver name and unit name filled in. The other 579 * fields don't really matter as input. The passthrough driver name 580 * ("pass"), and unit number are passed back in the ccb. The current 581 * device generation number, and the index into the device peripheral 582 * driver list, and the status are also passed back. Note that 583 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 584 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 585 * (or rather should be) impossible for the device peripheral driver 586 * list to change since we look at the whole thing in one pass, and 587 * we do it with lock protection. 588 * 589 */ 590 case CAMGETPASSTHRU: { 591 union ccb *ccb; 592 struct cam_periph *periph; 593 struct periph_driver **p_drv; 594 char *name; 595 u_int unit; 596 u_int cur_generation; 597 int base_periph_found; 598 int splbreaknum; 599 600 ccb = (union ccb *)addr; 601 unit = ccb->cgdl.unit_number; 602 name = ccb->cgdl.periph_name; 603 /* 604 * Every 100 devices, we want to drop our lock protection to 605 * give the software interrupt handler a chance to run. 606 * Most systems won't run into this check, but this should 607 * avoid starvation in the software interrupt handler in 608 * large systems. 609 */ 610 splbreaknum = 100; 611 612 ccb = (union ccb *)addr; 613 614 base_periph_found = 0; 615 616 /* 617 * Sanity check -- make sure we don't get a null peripheral 618 * driver name. 619 */ 620 if (*ccb->cgdl.periph_name == '\0') { 621 error = EINVAL; 622 break; 623 } 624 625 /* Keep the list from changing while we traverse it */ 626 xpt_lock_buses(); 627 ptstartover: 628 cur_generation = xsoftc.xpt_generation; 629 630 /* first find our driver in the list of drivers */ 631 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 632 if (strcmp((*p_drv)->driver_name, name) == 0) 633 break; 634 635 if (*p_drv == NULL) { 636 xpt_unlock_buses(); 637 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 638 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 639 *ccb->cgdl.periph_name = '\0'; 640 ccb->cgdl.unit_number = 0; 641 error = ENOENT; 642 break; 643 } 644 645 /* 646 * Run through every peripheral instance of this driver 647 * and check to see whether it matches the unit passed 648 * in by the user. If it does, get out of the loops and 649 * find the passthrough driver associated with that 650 * peripheral driver. 651 */ 652 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 653 periph = TAILQ_NEXT(periph, unit_links)) { 654 655 if (periph->unit_number == unit) { 656 break; 657 } else if (--splbreaknum == 0) { 658 xpt_unlock_buses(); 659 xpt_lock_buses(); 660 splbreaknum = 100; 661 if (cur_generation != xsoftc.xpt_generation) 662 goto ptstartover; 663 } 664 } 665 /* 666 * If we found the peripheral driver that the user passed 667 * in, go through all of the peripheral drivers for that 668 * particular device and look for a passthrough driver. 669 */ 670 if (periph != NULL) { 671 struct cam_ed *device; 672 int i; 673 674 base_periph_found = 1; 675 device = periph->path->device; 676 for (i = 0, periph = SLIST_FIRST(&device->periphs); 677 periph != NULL; 678 periph = SLIST_NEXT(periph, periph_links), i++) { 679 /* 680 * Check to see whether we have a 681 * passthrough device or not. 682 */ 683 if (strcmp(periph->periph_name, "pass") == 0) { 684 /* 685 * Fill in the getdevlist fields. 686 */ 687 strcpy(ccb->cgdl.periph_name, 688 periph->periph_name); 689 ccb->cgdl.unit_number = 690 periph->unit_number; 691 if (SLIST_NEXT(periph, periph_links)) 692 ccb->cgdl.status = 693 CAM_GDEVLIST_MORE_DEVS; 694 else 695 ccb->cgdl.status = 696 CAM_GDEVLIST_LAST_DEVICE; 697 ccb->cgdl.generation = 698 device->generation; 699 ccb->cgdl.index = i; 700 /* 701 * Fill in some CCB header fields 702 * that the user may want. 703 */ 704 ccb->ccb_h.path_id = 705 periph->path->bus->path_id; 706 ccb->ccb_h.target_id = 707 periph->path->target->target_id; 708 ccb->ccb_h.target_lun = 709 periph->path->device->lun_id; 710 ccb->ccb_h.status = CAM_REQ_CMP; 711 break; 712 } 713 } 714 } 715 716 /* 717 * If the periph is null here, one of two things has 718 * happened. The first possibility is that we couldn't 719 * find the unit number of the particular peripheral driver 720 * that the user is asking about. e.g. the user asks for 721 * the passthrough driver for "da11". We find the list of 722 * "da" peripherals all right, but there is no unit 11. 723 * The other possibility is that we went through the list 724 * of peripheral drivers attached to the device structure, 725 * but didn't find one with the name "pass". Either way, 726 * we return ENOENT, since we couldn't find something. 727 */ 728 if (periph == NULL) { 729 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 730 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 731 *ccb->cgdl.periph_name = '\0'; 732 ccb->cgdl.unit_number = 0; 733 error = ENOENT; 734 /* 735 * It is unfortunate that this is even necessary, 736 * but there are many, many clueless users out there. 737 * If this is true, the user is looking for the 738 * passthrough driver, but doesn't have one in his 739 * kernel. 740 */ 741 if (base_periph_found == 1) { 742 printf("xptioctl: pass driver is not in the " 743 "kernel\n"); 744 printf("xptioctl: put \"device pass\" in " 745 "your kernel config file\n"); 746 } 747 } 748 xpt_unlock_buses(); 749 break; 750 } 751 default: 752 error = ENOTTY; 753 break; 754 } 755 756 return(error); 757 } 758 759 static int 760 cam_module_event_handler(module_t mod, int what, void *arg) 761 { 762 int error; 763 764 switch (what) { 765 case MOD_LOAD: 766 if ((error = xpt_init(NULL)) != 0) 767 return (error); 768 break; 769 case MOD_UNLOAD: 770 return EBUSY; 771 default: 772 return EOPNOTSUPP; 773 } 774 775 return 0; 776 } 777 778 static void 779 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 780 { 781 782 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 783 xpt_free_path(done_ccb->ccb_h.path); 784 xpt_free_ccb(done_ccb); 785 } else { 786 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 787 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 788 } 789 xpt_release_boot(); 790 } 791 792 /* thread to handle bus rescans */ 793 static void 794 xpt_scanner_thread(void *dummy) 795 { 796 union ccb *ccb; 797 struct cam_sim *sim; 798 799 xpt_lock_buses(); 800 for (;;) { 801 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 802 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 803 "ccb_scanq", 0); 804 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 805 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 806 xpt_unlock_buses(); 807 808 sim = ccb->ccb_h.path->bus->sim; 809 CAM_SIM_LOCK(sim); 810 xpt_action(ccb); 811 CAM_SIM_UNLOCK(sim); 812 813 xpt_lock_buses(); 814 } 815 } 816 } 817 818 void 819 xpt_rescan(union ccb *ccb) 820 { 821 struct ccb_hdr *hdr; 822 823 /* Prepare request */ 824 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 825 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 826 ccb->ccb_h.func_code = XPT_SCAN_BUS; 827 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 828 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 829 ccb->ccb_h.func_code = XPT_SCAN_TGT; 830 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 831 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 832 ccb->ccb_h.func_code = XPT_SCAN_LUN; 833 else { 834 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 835 xpt_free_path(ccb->ccb_h.path); 836 xpt_free_ccb(ccb); 837 return; 838 } 839 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 840 ccb->ccb_h.cbfcnp = xpt_rescan_done; 841 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 842 /* Don't make duplicate entries for the same paths. */ 843 xpt_lock_buses(); 844 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 845 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 846 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 847 wakeup(&xsoftc.ccb_scanq); 848 xpt_unlock_buses(); 849 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 850 xpt_free_path(ccb->ccb_h.path); 851 xpt_free_ccb(ccb); 852 return; 853 } 854 } 855 } 856 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 857 xsoftc.buses_to_config++; 858 wakeup(&xsoftc.ccb_scanq); 859 xpt_unlock_buses(); 860 } 861 862 /* Functions accessed by the peripheral drivers */ 863 static int 864 xpt_init(void *dummy) 865 { 866 struct cam_sim *xpt_sim; 867 struct cam_path *path; 868 struct cam_devq *devq; 869 cam_status status; 870 871 TAILQ_INIT(&xsoftc.xpt_busses); 872 TAILQ_INIT(&cam_simq); 873 TAILQ_INIT(&xsoftc.ccb_scanq); 874 STAILQ_INIT(&xsoftc.highpowerq); 875 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 876 877 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 878 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 879 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 880 881 #ifdef CAM_BOOT_DELAY 882 /* 883 * Override this value at compile time to assist our users 884 * who don't use loader to boot a kernel. 885 */ 886 xsoftc.boot_delay = CAM_BOOT_DELAY; 887 #endif 888 /* 889 * The xpt layer is, itself, the equivelent of a SIM. 890 * Allow 16 ccbs in the ccb pool for it. This should 891 * give decent parallelism when we probe busses and 892 * perform other XPT functions. 893 */ 894 devq = cam_simq_alloc(16); 895 xpt_sim = cam_sim_alloc(xptaction, 896 xptpoll, 897 "xpt", 898 /*softc*/NULL, 899 /*unit*/0, 900 /*mtx*/&xsoftc.xpt_lock, 901 /*max_dev_transactions*/0, 902 /*max_tagged_dev_transactions*/0, 903 devq); 904 if (xpt_sim == NULL) 905 return (ENOMEM); 906 907 mtx_lock(&xsoftc.xpt_lock); 908 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 909 mtx_unlock(&xsoftc.xpt_lock); 910 printf("xpt_init: xpt_bus_register failed with status %#x," 911 " failing attach\n", status); 912 return (EINVAL); 913 } 914 915 /* 916 * Looking at the XPT from the SIM layer, the XPT is 917 * the equivelent of a peripheral driver. Allocate 918 * a peripheral driver entry for us. 919 */ 920 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 921 CAM_TARGET_WILDCARD, 922 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 923 mtx_unlock(&xsoftc.xpt_lock); 924 printf("xpt_init: xpt_create_path failed with status %#x," 925 " failing attach\n", status); 926 return (EINVAL); 927 } 928 929 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 930 path, NULL, 0, xpt_sim); 931 xpt_free_path(path); 932 mtx_unlock(&xsoftc.xpt_lock); 933 /* Install our software interrupt handlers */ 934 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 935 /* 936 * Register a callback for when interrupts are enabled. 937 */ 938 xsoftc.xpt_config_hook = 939 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 940 M_CAMXPT, M_NOWAIT | M_ZERO); 941 if (xsoftc.xpt_config_hook == NULL) { 942 printf("xpt_init: Cannot malloc config hook " 943 "- failing attach\n"); 944 return (ENOMEM); 945 } 946 xsoftc.xpt_config_hook->ich_func = xpt_config; 947 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 948 free (xsoftc.xpt_config_hook, M_CAMXPT); 949 printf("xpt_init: config_intrhook_establish failed " 950 "- failing attach\n"); 951 } 952 953 return (0); 954 } 955 956 static cam_status 957 xptregister(struct cam_periph *periph, void *arg) 958 { 959 struct cam_sim *xpt_sim; 960 961 if (periph == NULL) { 962 printf("xptregister: periph was NULL!!\n"); 963 return(CAM_REQ_CMP_ERR); 964 } 965 966 xpt_sim = (struct cam_sim *)arg; 967 xpt_sim->softc = periph; 968 xpt_periph = periph; 969 periph->softc = NULL; 970 971 return(CAM_REQ_CMP); 972 } 973 974 int32_t 975 xpt_add_periph(struct cam_periph *periph) 976 { 977 struct cam_ed *device; 978 int32_t status; 979 struct periph_list *periph_head; 980 981 mtx_assert(periph->sim->mtx, MA_OWNED); 982 983 device = periph->path->device; 984 985 periph_head = &device->periphs; 986 987 status = CAM_REQ_CMP; 988 989 if (device != NULL) { 990 /* 991 * Make room for this peripheral 992 * so it will fit in the queue 993 * when it's scheduled to run 994 */ 995 status = camq_resize(&device->drvq, 996 device->drvq.array_size + 1); 997 998 device->generation++; 999 1000 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1001 } 1002 1003 xpt_lock_buses(); 1004 xsoftc.xpt_generation++; 1005 xpt_unlock_buses(); 1006 1007 return (status); 1008 } 1009 1010 void 1011 xpt_remove_periph(struct cam_periph *periph, int topology_lock_held) 1012 { 1013 struct cam_ed *device; 1014 1015 mtx_assert(periph->sim->mtx, MA_OWNED); 1016 1017 device = periph->path->device; 1018 1019 if (device != NULL) { 1020 struct periph_list *periph_head; 1021 1022 periph_head = &device->periphs; 1023 1024 /* Release the slot for this peripheral */ 1025 camq_resize(&device->drvq, device->drvq.array_size - 1); 1026 1027 device->generation++; 1028 1029 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1030 } 1031 1032 if (topology_lock_held == 0) 1033 xpt_lock_buses(); 1034 1035 xsoftc.xpt_generation++; 1036 1037 if (topology_lock_held == 0) 1038 xpt_unlock_buses(); 1039 } 1040 1041 1042 void 1043 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1044 { 1045 struct cam_path *path = periph->path; 1046 1047 mtx_assert(periph->sim->mtx, MA_OWNED); 1048 1049 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1050 periph->periph_name, periph->unit_number, 1051 path->bus->sim->sim_name, 1052 path->bus->sim->unit_number, 1053 path->bus->sim->bus_id, 1054 path->bus->path_id, 1055 path->target->target_id, 1056 path->device->lun_id); 1057 printf("%s%d: ", periph->periph_name, periph->unit_number); 1058 if (path->device->protocol == PROTO_SCSI) 1059 scsi_print_inquiry(&path->device->inq_data); 1060 else if (path->device->protocol == PROTO_ATA || 1061 path->device->protocol == PROTO_SATAPM) 1062 ata_print_ident(&path->device->ident_data); 1063 else if (path->device->protocol == PROTO_SEMB) 1064 semb_print_ident( 1065 (struct sep_identify_data *)&path->device->ident_data); 1066 else 1067 printf("Unknown protocol device\n"); 1068 if (bootverbose && path->device->serial_num_len > 0) { 1069 /* Don't wrap the screen - print only the first 60 chars */ 1070 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1071 periph->unit_number, path->device->serial_num); 1072 } 1073 /* Announce transport details. */ 1074 (*(path->bus->xport->announce))(periph); 1075 /* Announce command queueing. */ 1076 if (path->device->inq_flags & SID_CmdQue 1077 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1078 printf("%s%d: Command Queueing enabled\n", 1079 periph->periph_name, periph->unit_number); 1080 } 1081 /* Announce caller's details if they've passed in. */ 1082 if (announce_string != NULL) 1083 printf("%s%d: %s\n", periph->periph_name, 1084 periph->unit_number, announce_string); 1085 } 1086 1087 int 1088 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1089 { 1090 int ret = -1; 1091 struct ccb_dev_advinfo cdai; 1092 1093 mtx_assert(path->bus->sim->mtx, MA_OWNED); 1094 1095 memset(&cdai, 0, sizeof(cdai)); 1096 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1097 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1098 cdai.bufsiz = len; 1099 1100 if (!strcmp(attr, "GEOM::ident")) 1101 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1102 else if (!strcmp(attr, "GEOM::physpath")) 1103 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1104 else 1105 goto out; 1106 1107 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1108 if (cdai.buf == NULL) { 1109 ret = ENOMEM; 1110 goto out; 1111 } 1112 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1113 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1114 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1115 if (cdai.provsiz == 0) 1116 goto out; 1117 ret = 0; 1118 if (strlcpy(buf, cdai.buf, len) >= len) 1119 ret = EFAULT; 1120 1121 out: 1122 if (cdai.buf != NULL) 1123 free(cdai.buf, M_CAMXPT); 1124 return ret; 1125 } 1126 1127 static dev_match_ret 1128 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1129 struct cam_eb *bus) 1130 { 1131 dev_match_ret retval; 1132 int i; 1133 1134 retval = DM_RET_NONE; 1135 1136 /* 1137 * If we aren't given something to match against, that's an error. 1138 */ 1139 if (bus == NULL) 1140 return(DM_RET_ERROR); 1141 1142 /* 1143 * If there are no match entries, then this bus matches no 1144 * matter what. 1145 */ 1146 if ((patterns == NULL) || (num_patterns == 0)) 1147 return(DM_RET_DESCEND | DM_RET_COPY); 1148 1149 for (i = 0; i < num_patterns; i++) { 1150 struct bus_match_pattern *cur_pattern; 1151 1152 /* 1153 * If the pattern in question isn't for a bus node, we 1154 * aren't interested. However, we do indicate to the 1155 * calling routine that we should continue descending the 1156 * tree, since the user wants to match against lower-level 1157 * EDT elements. 1158 */ 1159 if (patterns[i].type != DEV_MATCH_BUS) { 1160 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1161 retval |= DM_RET_DESCEND; 1162 continue; 1163 } 1164 1165 cur_pattern = &patterns[i].pattern.bus_pattern; 1166 1167 /* 1168 * If they want to match any bus node, we give them any 1169 * device node. 1170 */ 1171 if (cur_pattern->flags == BUS_MATCH_ANY) { 1172 /* set the copy flag */ 1173 retval |= DM_RET_COPY; 1174 1175 /* 1176 * If we've already decided on an action, go ahead 1177 * and return. 1178 */ 1179 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1180 return(retval); 1181 } 1182 1183 /* 1184 * Not sure why someone would do this... 1185 */ 1186 if (cur_pattern->flags == BUS_MATCH_NONE) 1187 continue; 1188 1189 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1190 && (cur_pattern->path_id != bus->path_id)) 1191 continue; 1192 1193 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1194 && (cur_pattern->bus_id != bus->sim->bus_id)) 1195 continue; 1196 1197 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1198 && (cur_pattern->unit_number != bus->sim->unit_number)) 1199 continue; 1200 1201 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1202 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1203 DEV_IDLEN) != 0)) 1204 continue; 1205 1206 /* 1207 * If we get to this point, the user definitely wants 1208 * information on this bus. So tell the caller to copy the 1209 * data out. 1210 */ 1211 retval |= DM_RET_COPY; 1212 1213 /* 1214 * If the return action has been set to descend, then we 1215 * know that we've already seen a non-bus matching 1216 * expression, therefore we need to further descend the tree. 1217 * This won't change by continuing around the loop, so we 1218 * go ahead and return. If we haven't seen a non-bus 1219 * matching expression, we keep going around the loop until 1220 * we exhaust the matching expressions. We'll set the stop 1221 * flag once we fall out of the loop. 1222 */ 1223 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1224 return(retval); 1225 } 1226 1227 /* 1228 * If the return action hasn't been set to descend yet, that means 1229 * we haven't seen anything other than bus matching patterns. So 1230 * tell the caller to stop descending the tree -- the user doesn't 1231 * want to match against lower level tree elements. 1232 */ 1233 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1234 retval |= DM_RET_STOP; 1235 1236 return(retval); 1237 } 1238 1239 static dev_match_ret 1240 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1241 struct cam_ed *device) 1242 { 1243 dev_match_ret retval; 1244 int i; 1245 1246 retval = DM_RET_NONE; 1247 1248 /* 1249 * If we aren't given something to match against, that's an error. 1250 */ 1251 if (device == NULL) 1252 return(DM_RET_ERROR); 1253 1254 /* 1255 * If there are no match entries, then this device matches no 1256 * matter what. 1257 */ 1258 if ((patterns == NULL) || (num_patterns == 0)) 1259 return(DM_RET_DESCEND | DM_RET_COPY); 1260 1261 for (i = 0; i < num_patterns; i++) { 1262 struct device_match_pattern *cur_pattern; 1263 struct scsi_vpd_device_id *device_id_page; 1264 1265 /* 1266 * If the pattern in question isn't for a device node, we 1267 * aren't interested. 1268 */ 1269 if (patterns[i].type != DEV_MATCH_DEVICE) { 1270 if ((patterns[i].type == DEV_MATCH_PERIPH) 1271 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1272 retval |= DM_RET_DESCEND; 1273 continue; 1274 } 1275 1276 cur_pattern = &patterns[i].pattern.device_pattern; 1277 1278 /* Error out if mutually exclusive options are specified. */ 1279 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1280 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1281 return(DM_RET_ERROR); 1282 1283 /* 1284 * If they want to match any device node, we give them any 1285 * device node. 1286 */ 1287 if (cur_pattern->flags == DEV_MATCH_ANY) 1288 goto copy_dev_node; 1289 1290 /* 1291 * Not sure why someone would do this... 1292 */ 1293 if (cur_pattern->flags == DEV_MATCH_NONE) 1294 continue; 1295 1296 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1297 && (cur_pattern->path_id != device->target->bus->path_id)) 1298 continue; 1299 1300 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1301 && (cur_pattern->target_id != device->target->target_id)) 1302 continue; 1303 1304 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1305 && (cur_pattern->target_lun != device->lun_id)) 1306 continue; 1307 1308 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1309 && (cam_quirkmatch((caddr_t)&device->inq_data, 1310 (caddr_t)&cur_pattern->data.inq_pat, 1311 1, sizeof(cur_pattern->data.inq_pat), 1312 scsi_static_inquiry_match) == NULL)) 1313 continue; 1314 1315 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1316 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1317 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1318 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1319 device->device_id_len 1320 - SVPD_DEVICE_ID_HDR_LEN, 1321 cur_pattern->data.devid_pat.id, 1322 cur_pattern->data.devid_pat.id_len) != 0)) 1323 continue; 1324 1325 copy_dev_node: 1326 /* 1327 * If we get to this point, the user definitely wants 1328 * information on this device. So tell the caller to copy 1329 * the data out. 1330 */ 1331 retval |= DM_RET_COPY; 1332 1333 /* 1334 * If the return action has been set to descend, then we 1335 * know that we've already seen a peripheral matching 1336 * expression, therefore we need to further descend the tree. 1337 * This won't change by continuing around the loop, so we 1338 * go ahead and return. If we haven't seen a peripheral 1339 * matching expression, we keep going around the loop until 1340 * we exhaust the matching expressions. We'll set the stop 1341 * flag once we fall out of the loop. 1342 */ 1343 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1344 return(retval); 1345 } 1346 1347 /* 1348 * If the return action hasn't been set to descend yet, that means 1349 * we haven't seen any peripheral matching patterns. So tell the 1350 * caller to stop descending the tree -- the user doesn't want to 1351 * match against lower level tree elements. 1352 */ 1353 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1354 retval |= DM_RET_STOP; 1355 1356 return(retval); 1357 } 1358 1359 /* 1360 * Match a single peripheral against any number of match patterns. 1361 */ 1362 static dev_match_ret 1363 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1364 struct cam_periph *periph) 1365 { 1366 dev_match_ret retval; 1367 int i; 1368 1369 /* 1370 * If we aren't given something to match against, that's an error. 1371 */ 1372 if (periph == NULL) 1373 return(DM_RET_ERROR); 1374 1375 /* 1376 * If there are no match entries, then this peripheral matches no 1377 * matter what. 1378 */ 1379 if ((patterns == NULL) || (num_patterns == 0)) 1380 return(DM_RET_STOP | DM_RET_COPY); 1381 1382 /* 1383 * There aren't any nodes below a peripheral node, so there's no 1384 * reason to descend the tree any further. 1385 */ 1386 retval = DM_RET_STOP; 1387 1388 for (i = 0; i < num_patterns; i++) { 1389 struct periph_match_pattern *cur_pattern; 1390 1391 /* 1392 * If the pattern in question isn't for a peripheral, we 1393 * aren't interested. 1394 */ 1395 if (patterns[i].type != DEV_MATCH_PERIPH) 1396 continue; 1397 1398 cur_pattern = &patterns[i].pattern.periph_pattern; 1399 1400 /* 1401 * If they want to match on anything, then we will do so. 1402 */ 1403 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1404 /* set the copy flag */ 1405 retval |= DM_RET_COPY; 1406 1407 /* 1408 * We've already set the return action to stop, 1409 * since there are no nodes below peripherals in 1410 * the tree. 1411 */ 1412 return(retval); 1413 } 1414 1415 /* 1416 * Not sure why someone would do this... 1417 */ 1418 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1419 continue; 1420 1421 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1422 && (cur_pattern->path_id != periph->path->bus->path_id)) 1423 continue; 1424 1425 /* 1426 * For the target and lun id's, we have to make sure the 1427 * target and lun pointers aren't NULL. The xpt peripheral 1428 * has a wildcard target and device. 1429 */ 1430 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1431 && ((periph->path->target == NULL) 1432 ||(cur_pattern->target_id != periph->path->target->target_id))) 1433 continue; 1434 1435 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1436 && ((periph->path->device == NULL) 1437 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1438 continue; 1439 1440 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1441 && (cur_pattern->unit_number != periph->unit_number)) 1442 continue; 1443 1444 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1445 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1446 DEV_IDLEN) != 0)) 1447 continue; 1448 1449 /* 1450 * If we get to this point, the user definitely wants 1451 * information on this peripheral. So tell the caller to 1452 * copy the data out. 1453 */ 1454 retval |= DM_RET_COPY; 1455 1456 /* 1457 * The return action has already been set to stop, since 1458 * peripherals don't have any nodes below them in the EDT. 1459 */ 1460 return(retval); 1461 } 1462 1463 /* 1464 * If we get to this point, the peripheral that was passed in 1465 * doesn't match any of the patterns. 1466 */ 1467 return(retval); 1468 } 1469 1470 static int 1471 xptedtbusfunc(struct cam_eb *bus, void *arg) 1472 { 1473 struct ccb_dev_match *cdm; 1474 dev_match_ret retval; 1475 1476 cdm = (struct ccb_dev_match *)arg; 1477 1478 /* 1479 * If our position is for something deeper in the tree, that means 1480 * that we've already seen this node. So, we keep going down. 1481 */ 1482 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1483 && (cdm->pos.cookie.bus == bus) 1484 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1485 && (cdm->pos.cookie.target != NULL)) 1486 retval = DM_RET_DESCEND; 1487 else 1488 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1489 1490 /* 1491 * If we got an error, bail out of the search. 1492 */ 1493 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1494 cdm->status = CAM_DEV_MATCH_ERROR; 1495 return(0); 1496 } 1497 1498 /* 1499 * If the copy flag is set, copy this bus out. 1500 */ 1501 if (retval & DM_RET_COPY) { 1502 int spaceleft, j; 1503 1504 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1505 sizeof(struct dev_match_result)); 1506 1507 /* 1508 * If we don't have enough space to put in another 1509 * match result, save our position and tell the 1510 * user there are more devices to check. 1511 */ 1512 if (spaceleft < sizeof(struct dev_match_result)) { 1513 bzero(&cdm->pos, sizeof(cdm->pos)); 1514 cdm->pos.position_type = 1515 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1516 1517 cdm->pos.cookie.bus = bus; 1518 cdm->pos.generations[CAM_BUS_GENERATION]= 1519 xsoftc.bus_generation; 1520 cdm->status = CAM_DEV_MATCH_MORE; 1521 return(0); 1522 } 1523 j = cdm->num_matches; 1524 cdm->num_matches++; 1525 cdm->matches[j].type = DEV_MATCH_BUS; 1526 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1527 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1528 cdm->matches[j].result.bus_result.unit_number = 1529 bus->sim->unit_number; 1530 strncpy(cdm->matches[j].result.bus_result.dev_name, 1531 bus->sim->sim_name, DEV_IDLEN); 1532 } 1533 1534 /* 1535 * If the user is only interested in busses, there's no 1536 * reason to descend to the next level in the tree. 1537 */ 1538 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1539 return(1); 1540 1541 /* 1542 * If there is a target generation recorded, check it to 1543 * make sure the target list hasn't changed. 1544 */ 1545 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1546 && (bus == cdm->pos.cookie.bus) 1547 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1548 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1549 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1550 bus->generation)) { 1551 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1552 return(0); 1553 } 1554 1555 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1556 && (cdm->pos.cookie.bus == bus) 1557 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1558 && (cdm->pos.cookie.target != NULL)) 1559 return(xpttargettraverse(bus, 1560 (struct cam_et *)cdm->pos.cookie.target, 1561 xptedttargetfunc, arg)); 1562 else 1563 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1564 } 1565 1566 static int 1567 xptedttargetfunc(struct cam_et *target, void *arg) 1568 { 1569 struct ccb_dev_match *cdm; 1570 1571 cdm = (struct ccb_dev_match *)arg; 1572 1573 /* 1574 * If there is a device list generation recorded, check it to 1575 * make sure the device list hasn't changed. 1576 */ 1577 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1578 && (cdm->pos.cookie.bus == target->bus) 1579 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1580 && (cdm->pos.cookie.target == target) 1581 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1582 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1583 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1584 target->generation)) { 1585 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1586 return(0); 1587 } 1588 1589 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1590 && (cdm->pos.cookie.bus == target->bus) 1591 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1592 && (cdm->pos.cookie.target == target) 1593 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1594 && (cdm->pos.cookie.device != NULL)) 1595 return(xptdevicetraverse(target, 1596 (struct cam_ed *)cdm->pos.cookie.device, 1597 xptedtdevicefunc, arg)); 1598 else 1599 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1600 } 1601 1602 static int 1603 xptedtdevicefunc(struct cam_ed *device, void *arg) 1604 { 1605 1606 struct ccb_dev_match *cdm; 1607 dev_match_ret retval; 1608 1609 cdm = (struct ccb_dev_match *)arg; 1610 1611 /* 1612 * If our position is for something deeper in the tree, that means 1613 * that we've already seen this node. So, we keep going down. 1614 */ 1615 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1616 && (cdm->pos.cookie.device == device) 1617 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1618 && (cdm->pos.cookie.periph != NULL)) 1619 retval = DM_RET_DESCEND; 1620 else 1621 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1622 device); 1623 1624 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1625 cdm->status = CAM_DEV_MATCH_ERROR; 1626 return(0); 1627 } 1628 1629 /* 1630 * If the copy flag is set, copy this device out. 1631 */ 1632 if (retval & DM_RET_COPY) { 1633 int spaceleft, j; 1634 1635 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1636 sizeof(struct dev_match_result)); 1637 1638 /* 1639 * If we don't have enough space to put in another 1640 * match result, save our position and tell the 1641 * user there are more devices to check. 1642 */ 1643 if (spaceleft < sizeof(struct dev_match_result)) { 1644 bzero(&cdm->pos, sizeof(cdm->pos)); 1645 cdm->pos.position_type = 1646 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1647 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1648 1649 cdm->pos.cookie.bus = device->target->bus; 1650 cdm->pos.generations[CAM_BUS_GENERATION]= 1651 xsoftc.bus_generation; 1652 cdm->pos.cookie.target = device->target; 1653 cdm->pos.generations[CAM_TARGET_GENERATION] = 1654 device->target->bus->generation; 1655 cdm->pos.cookie.device = device; 1656 cdm->pos.generations[CAM_DEV_GENERATION] = 1657 device->target->generation; 1658 cdm->status = CAM_DEV_MATCH_MORE; 1659 return(0); 1660 } 1661 j = cdm->num_matches; 1662 cdm->num_matches++; 1663 cdm->matches[j].type = DEV_MATCH_DEVICE; 1664 cdm->matches[j].result.device_result.path_id = 1665 device->target->bus->path_id; 1666 cdm->matches[j].result.device_result.target_id = 1667 device->target->target_id; 1668 cdm->matches[j].result.device_result.target_lun = 1669 device->lun_id; 1670 cdm->matches[j].result.device_result.protocol = 1671 device->protocol; 1672 bcopy(&device->inq_data, 1673 &cdm->matches[j].result.device_result.inq_data, 1674 sizeof(struct scsi_inquiry_data)); 1675 bcopy(&device->ident_data, 1676 &cdm->matches[j].result.device_result.ident_data, 1677 sizeof(struct ata_params)); 1678 1679 /* Let the user know whether this device is unconfigured */ 1680 if (device->flags & CAM_DEV_UNCONFIGURED) 1681 cdm->matches[j].result.device_result.flags = 1682 DEV_RESULT_UNCONFIGURED; 1683 else 1684 cdm->matches[j].result.device_result.flags = 1685 DEV_RESULT_NOFLAG; 1686 } 1687 1688 /* 1689 * If the user isn't interested in peripherals, don't descend 1690 * the tree any further. 1691 */ 1692 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1693 return(1); 1694 1695 /* 1696 * If there is a peripheral list generation recorded, make sure 1697 * it hasn't changed. 1698 */ 1699 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1700 && (device->target->bus == cdm->pos.cookie.bus) 1701 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1702 && (device->target == cdm->pos.cookie.target) 1703 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1704 && (device == cdm->pos.cookie.device) 1705 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1706 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1707 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1708 device->generation)){ 1709 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1710 return(0); 1711 } 1712 1713 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1714 && (cdm->pos.cookie.bus == device->target->bus) 1715 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1716 && (cdm->pos.cookie.target == device->target) 1717 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1718 && (cdm->pos.cookie.device == device) 1719 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1720 && (cdm->pos.cookie.periph != NULL)) 1721 return(xptperiphtraverse(device, 1722 (struct cam_periph *)cdm->pos.cookie.periph, 1723 xptedtperiphfunc, arg)); 1724 else 1725 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1726 } 1727 1728 static int 1729 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1730 { 1731 struct ccb_dev_match *cdm; 1732 dev_match_ret retval; 1733 1734 cdm = (struct ccb_dev_match *)arg; 1735 1736 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1737 1738 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1739 cdm->status = CAM_DEV_MATCH_ERROR; 1740 return(0); 1741 } 1742 1743 /* 1744 * If the copy flag is set, copy this peripheral out. 1745 */ 1746 if (retval & DM_RET_COPY) { 1747 int spaceleft, j; 1748 1749 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1750 sizeof(struct dev_match_result)); 1751 1752 /* 1753 * If we don't have enough space to put in another 1754 * match result, save our position and tell the 1755 * user there are more devices to check. 1756 */ 1757 if (spaceleft < sizeof(struct dev_match_result)) { 1758 bzero(&cdm->pos, sizeof(cdm->pos)); 1759 cdm->pos.position_type = 1760 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1761 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1762 CAM_DEV_POS_PERIPH; 1763 1764 cdm->pos.cookie.bus = periph->path->bus; 1765 cdm->pos.generations[CAM_BUS_GENERATION]= 1766 xsoftc.bus_generation; 1767 cdm->pos.cookie.target = periph->path->target; 1768 cdm->pos.generations[CAM_TARGET_GENERATION] = 1769 periph->path->bus->generation; 1770 cdm->pos.cookie.device = periph->path->device; 1771 cdm->pos.generations[CAM_DEV_GENERATION] = 1772 periph->path->target->generation; 1773 cdm->pos.cookie.periph = periph; 1774 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1775 periph->path->device->generation; 1776 cdm->status = CAM_DEV_MATCH_MORE; 1777 return(0); 1778 } 1779 1780 j = cdm->num_matches; 1781 cdm->num_matches++; 1782 cdm->matches[j].type = DEV_MATCH_PERIPH; 1783 cdm->matches[j].result.periph_result.path_id = 1784 periph->path->bus->path_id; 1785 cdm->matches[j].result.periph_result.target_id = 1786 periph->path->target->target_id; 1787 cdm->matches[j].result.periph_result.target_lun = 1788 periph->path->device->lun_id; 1789 cdm->matches[j].result.periph_result.unit_number = 1790 periph->unit_number; 1791 strncpy(cdm->matches[j].result.periph_result.periph_name, 1792 periph->periph_name, DEV_IDLEN); 1793 } 1794 1795 return(1); 1796 } 1797 1798 static int 1799 xptedtmatch(struct ccb_dev_match *cdm) 1800 { 1801 int ret; 1802 1803 cdm->num_matches = 0; 1804 1805 /* 1806 * Check the bus list generation. If it has changed, the user 1807 * needs to reset everything and start over. 1808 */ 1809 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1810 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1811 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1812 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1813 return(0); 1814 } 1815 1816 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1817 && (cdm->pos.cookie.bus != NULL)) 1818 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1819 xptedtbusfunc, cdm); 1820 else 1821 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1822 1823 /* 1824 * If we get back 0, that means that we had to stop before fully 1825 * traversing the EDT. It also means that one of the subroutines 1826 * has set the status field to the proper value. If we get back 1, 1827 * we've fully traversed the EDT and copied out any matching entries. 1828 */ 1829 if (ret == 1) 1830 cdm->status = CAM_DEV_MATCH_LAST; 1831 1832 return(ret); 1833 } 1834 1835 static int 1836 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1837 { 1838 struct ccb_dev_match *cdm; 1839 1840 cdm = (struct ccb_dev_match *)arg; 1841 1842 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1843 && (cdm->pos.cookie.pdrv == pdrv) 1844 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1845 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1846 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1847 (*pdrv)->generation)) { 1848 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1849 return(0); 1850 } 1851 1852 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1853 && (cdm->pos.cookie.pdrv == pdrv) 1854 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1855 && (cdm->pos.cookie.periph != NULL)) 1856 return(xptpdperiphtraverse(pdrv, 1857 (struct cam_periph *)cdm->pos.cookie.periph, 1858 xptplistperiphfunc, arg)); 1859 else 1860 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1861 } 1862 1863 static int 1864 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1865 { 1866 struct ccb_dev_match *cdm; 1867 dev_match_ret retval; 1868 1869 cdm = (struct ccb_dev_match *)arg; 1870 1871 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1872 1873 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1874 cdm->status = CAM_DEV_MATCH_ERROR; 1875 return(0); 1876 } 1877 1878 /* 1879 * If the copy flag is set, copy this peripheral out. 1880 */ 1881 if (retval & DM_RET_COPY) { 1882 int spaceleft, j; 1883 1884 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1885 sizeof(struct dev_match_result)); 1886 1887 /* 1888 * If we don't have enough space to put in another 1889 * match result, save our position and tell the 1890 * user there are more devices to check. 1891 */ 1892 if (spaceleft < sizeof(struct dev_match_result)) { 1893 struct periph_driver **pdrv; 1894 1895 pdrv = NULL; 1896 bzero(&cdm->pos, sizeof(cdm->pos)); 1897 cdm->pos.position_type = 1898 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1899 CAM_DEV_POS_PERIPH; 1900 1901 /* 1902 * This may look a bit non-sensical, but it is 1903 * actually quite logical. There are very few 1904 * peripheral drivers, and bloating every peripheral 1905 * structure with a pointer back to its parent 1906 * peripheral driver linker set entry would cost 1907 * more in the long run than doing this quick lookup. 1908 */ 1909 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1910 if (strcmp((*pdrv)->driver_name, 1911 periph->periph_name) == 0) 1912 break; 1913 } 1914 1915 if (*pdrv == NULL) { 1916 cdm->status = CAM_DEV_MATCH_ERROR; 1917 return(0); 1918 } 1919 1920 cdm->pos.cookie.pdrv = pdrv; 1921 /* 1922 * The periph generation slot does double duty, as 1923 * does the periph pointer slot. They are used for 1924 * both edt and pdrv lookups and positioning. 1925 */ 1926 cdm->pos.cookie.periph = periph; 1927 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1928 (*pdrv)->generation; 1929 cdm->status = CAM_DEV_MATCH_MORE; 1930 return(0); 1931 } 1932 1933 j = cdm->num_matches; 1934 cdm->num_matches++; 1935 cdm->matches[j].type = DEV_MATCH_PERIPH; 1936 cdm->matches[j].result.periph_result.path_id = 1937 periph->path->bus->path_id; 1938 1939 /* 1940 * The transport layer peripheral doesn't have a target or 1941 * lun. 1942 */ 1943 if (periph->path->target) 1944 cdm->matches[j].result.periph_result.target_id = 1945 periph->path->target->target_id; 1946 else 1947 cdm->matches[j].result.periph_result.target_id = -1; 1948 1949 if (periph->path->device) 1950 cdm->matches[j].result.periph_result.target_lun = 1951 periph->path->device->lun_id; 1952 else 1953 cdm->matches[j].result.periph_result.target_lun = -1; 1954 1955 cdm->matches[j].result.periph_result.unit_number = 1956 periph->unit_number; 1957 strncpy(cdm->matches[j].result.periph_result.periph_name, 1958 periph->periph_name, DEV_IDLEN); 1959 } 1960 1961 return(1); 1962 } 1963 1964 static int 1965 xptperiphlistmatch(struct ccb_dev_match *cdm) 1966 { 1967 int ret; 1968 1969 cdm->num_matches = 0; 1970 1971 /* 1972 * At this point in the edt traversal function, we check the bus 1973 * list generation to make sure that no busses have been added or 1974 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1975 * For the peripheral driver list traversal function, however, we 1976 * don't have to worry about new peripheral driver types coming or 1977 * going; they're in a linker set, and therefore can't change 1978 * without a recompile. 1979 */ 1980 1981 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1982 && (cdm->pos.cookie.pdrv != NULL)) 1983 ret = xptpdrvtraverse( 1984 (struct periph_driver **)cdm->pos.cookie.pdrv, 1985 xptplistpdrvfunc, cdm); 1986 else 1987 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 1988 1989 /* 1990 * If we get back 0, that means that we had to stop before fully 1991 * traversing the peripheral driver tree. It also means that one of 1992 * the subroutines has set the status field to the proper value. If 1993 * we get back 1, we've fully traversed the EDT and copied out any 1994 * matching entries. 1995 */ 1996 if (ret == 1) 1997 cdm->status = CAM_DEV_MATCH_LAST; 1998 1999 return(ret); 2000 } 2001 2002 static int 2003 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2004 { 2005 struct cam_eb *bus, *next_bus; 2006 int retval; 2007 2008 retval = 1; 2009 2010 xpt_lock_buses(); 2011 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2012 bus != NULL; 2013 bus = next_bus) { 2014 2015 bus->refcount++; 2016 2017 /* 2018 * XXX The locking here is obviously very complex. We 2019 * should work to simplify it. 2020 */ 2021 xpt_unlock_buses(); 2022 CAM_SIM_LOCK(bus->sim); 2023 retval = tr_func(bus, arg); 2024 CAM_SIM_UNLOCK(bus->sim); 2025 2026 xpt_lock_buses(); 2027 next_bus = TAILQ_NEXT(bus, links); 2028 xpt_unlock_buses(); 2029 2030 xpt_release_bus(bus); 2031 2032 if (retval == 0) 2033 return(retval); 2034 xpt_lock_buses(); 2035 } 2036 xpt_unlock_buses(); 2037 2038 return(retval); 2039 } 2040 2041 static int 2042 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2043 xpt_targetfunc_t *tr_func, void *arg) 2044 { 2045 struct cam_et *target, *next_target; 2046 int retval; 2047 2048 mtx_assert(bus->sim->mtx, MA_OWNED); 2049 retval = 1; 2050 for (target = (start_target ? start_target : 2051 TAILQ_FIRST(&bus->et_entries)); 2052 target != NULL; target = next_target) { 2053 2054 target->refcount++; 2055 2056 retval = tr_func(target, arg); 2057 2058 next_target = TAILQ_NEXT(target, links); 2059 2060 xpt_release_target(target); 2061 2062 if (retval == 0) 2063 return(retval); 2064 } 2065 2066 return(retval); 2067 } 2068 2069 static int 2070 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2071 xpt_devicefunc_t *tr_func, void *arg) 2072 { 2073 struct cam_ed *device, *next_device; 2074 int retval; 2075 2076 mtx_assert(target->bus->sim->mtx, MA_OWNED); 2077 retval = 1; 2078 for (device = (start_device ? start_device : 2079 TAILQ_FIRST(&target->ed_entries)); 2080 device != NULL; 2081 device = next_device) { 2082 2083 /* 2084 * Hold a reference so the current device does not go away 2085 * on us. 2086 */ 2087 device->refcount++; 2088 2089 retval = tr_func(device, arg); 2090 2091 /* 2092 * Grab our next pointer before we release the current 2093 * device. 2094 */ 2095 next_device = TAILQ_NEXT(device, links); 2096 2097 xpt_release_device(device); 2098 2099 if (retval == 0) 2100 return(retval); 2101 } 2102 2103 return(retval); 2104 } 2105 2106 static int 2107 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2108 xpt_periphfunc_t *tr_func, void *arg) 2109 { 2110 struct cam_periph *periph, *next_periph; 2111 int retval; 2112 2113 retval = 1; 2114 2115 mtx_assert(device->sim->mtx, MA_OWNED); 2116 xpt_lock_buses(); 2117 for (periph = (start_periph ? start_periph : 2118 SLIST_FIRST(&device->periphs)); 2119 periph != NULL; 2120 periph = next_periph) { 2121 2122 2123 /* 2124 * In this case, we want to show peripherals that have been 2125 * invalidated, but not peripherals that are scheduled to 2126 * be freed. So instead of calling cam_periph_acquire(), 2127 * which will fail if the periph has been invalidated, we 2128 * just check for the free flag here. If it is in the 2129 * process of being freed, we skip to the next periph. 2130 */ 2131 if (periph->flags & CAM_PERIPH_FREE) { 2132 next_periph = SLIST_NEXT(periph, periph_links); 2133 continue; 2134 } 2135 2136 /* 2137 * Acquire a reference to this periph while we call the 2138 * traversal function, so it can't go away. 2139 */ 2140 periph->refcount++; 2141 2142 retval = tr_func(periph, arg); 2143 2144 /* 2145 * Grab the next peripheral before we release this one, so 2146 * our next pointer is still valid. 2147 */ 2148 next_periph = SLIST_NEXT(periph, periph_links); 2149 2150 cam_periph_release_locked_buses(periph); 2151 2152 if (retval == 0) 2153 goto bailout_done; 2154 } 2155 2156 bailout_done: 2157 2158 xpt_unlock_buses(); 2159 2160 return(retval); 2161 } 2162 2163 static int 2164 xptpdrvtraverse(struct periph_driver **start_pdrv, 2165 xpt_pdrvfunc_t *tr_func, void *arg) 2166 { 2167 struct periph_driver **pdrv; 2168 int retval; 2169 2170 retval = 1; 2171 2172 /* 2173 * We don't traverse the peripheral driver list like we do the 2174 * other lists, because it is a linker set, and therefore cannot be 2175 * changed during runtime. If the peripheral driver list is ever 2176 * re-done to be something other than a linker set (i.e. it can 2177 * change while the system is running), the list traversal should 2178 * be modified to work like the other traversal functions. 2179 */ 2180 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2181 *pdrv != NULL; pdrv++) { 2182 retval = tr_func(pdrv, arg); 2183 2184 if (retval == 0) 2185 return(retval); 2186 } 2187 2188 return(retval); 2189 } 2190 2191 static int 2192 xptpdperiphtraverse(struct periph_driver **pdrv, 2193 struct cam_periph *start_periph, 2194 xpt_periphfunc_t *tr_func, void *arg) 2195 { 2196 struct cam_periph *periph, *next_periph; 2197 struct cam_sim *sim; 2198 int retval; 2199 2200 retval = 1; 2201 2202 xpt_lock_buses(); 2203 for (periph = (start_periph ? start_periph : 2204 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2205 periph = next_periph) { 2206 2207 2208 /* 2209 * In this case, we want to show peripherals that have been 2210 * invalidated, but not peripherals that are scheduled to 2211 * be freed. So instead of calling cam_periph_acquire(), 2212 * which will fail if the periph has been invalidated, we 2213 * just check for the free flag here. If it is free, we 2214 * skip to the next periph. 2215 */ 2216 if (periph->flags & CAM_PERIPH_FREE) { 2217 next_periph = TAILQ_NEXT(periph, unit_links); 2218 continue; 2219 } 2220 2221 /* 2222 * Acquire a reference to this periph while we call the 2223 * traversal function, so it can't go away. 2224 */ 2225 periph->refcount++; 2226 sim = periph->sim; 2227 xpt_unlock_buses(); 2228 CAM_SIM_LOCK(sim); 2229 xpt_lock_buses(); 2230 retval = tr_func(periph, arg); 2231 2232 /* 2233 * Grab the next peripheral before we release this one, so 2234 * our next pointer is still valid. 2235 */ 2236 next_periph = TAILQ_NEXT(periph, unit_links); 2237 2238 cam_periph_release_locked_buses(periph); 2239 CAM_SIM_UNLOCK(sim); 2240 2241 if (retval == 0) 2242 goto bailout_done; 2243 } 2244 bailout_done: 2245 2246 xpt_unlock_buses(); 2247 2248 return(retval); 2249 } 2250 2251 static int 2252 xptdefbusfunc(struct cam_eb *bus, void *arg) 2253 { 2254 struct xpt_traverse_config *tr_config; 2255 2256 tr_config = (struct xpt_traverse_config *)arg; 2257 2258 if (tr_config->depth == XPT_DEPTH_BUS) { 2259 xpt_busfunc_t *tr_func; 2260 2261 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2262 2263 return(tr_func(bus, tr_config->tr_arg)); 2264 } else 2265 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2266 } 2267 2268 static int 2269 xptdeftargetfunc(struct cam_et *target, void *arg) 2270 { 2271 struct xpt_traverse_config *tr_config; 2272 2273 tr_config = (struct xpt_traverse_config *)arg; 2274 2275 if (tr_config->depth == XPT_DEPTH_TARGET) { 2276 xpt_targetfunc_t *tr_func; 2277 2278 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2279 2280 return(tr_func(target, tr_config->tr_arg)); 2281 } else 2282 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2283 } 2284 2285 static int 2286 xptdefdevicefunc(struct cam_ed *device, void *arg) 2287 { 2288 struct xpt_traverse_config *tr_config; 2289 2290 tr_config = (struct xpt_traverse_config *)arg; 2291 2292 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2293 xpt_devicefunc_t *tr_func; 2294 2295 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2296 2297 return(tr_func(device, tr_config->tr_arg)); 2298 } else 2299 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2300 } 2301 2302 static int 2303 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2304 { 2305 struct xpt_traverse_config *tr_config; 2306 xpt_periphfunc_t *tr_func; 2307 2308 tr_config = (struct xpt_traverse_config *)arg; 2309 2310 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2311 2312 /* 2313 * Unlike the other default functions, we don't check for depth 2314 * here. The peripheral driver level is the last level in the EDT, 2315 * so if we're here, we should execute the function in question. 2316 */ 2317 return(tr_func(periph, tr_config->tr_arg)); 2318 } 2319 2320 /* 2321 * Execute the given function for every bus in the EDT. 2322 */ 2323 static int 2324 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2325 { 2326 struct xpt_traverse_config tr_config; 2327 2328 tr_config.depth = XPT_DEPTH_BUS; 2329 tr_config.tr_func = tr_func; 2330 tr_config.tr_arg = arg; 2331 2332 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2333 } 2334 2335 /* 2336 * Execute the given function for every device in the EDT. 2337 */ 2338 static int 2339 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2340 { 2341 struct xpt_traverse_config tr_config; 2342 2343 tr_config.depth = XPT_DEPTH_DEVICE; 2344 tr_config.tr_func = tr_func; 2345 tr_config.tr_arg = arg; 2346 2347 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2348 } 2349 2350 static int 2351 xptsetasyncfunc(struct cam_ed *device, void *arg) 2352 { 2353 struct cam_path path; 2354 struct ccb_getdev cgd; 2355 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2356 2357 /* 2358 * Don't report unconfigured devices (Wildcard devs, 2359 * devices only for target mode, device instances 2360 * that have been invalidated but are waiting for 2361 * their last reference count to be released). 2362 */ 2363 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2364 return (1); 2365 2366 xpt_compile_path(&path, 2367 NULL, 2368 device->target->bus->path_id, 2369 device->target->target_id, 2370 device->lun_id); 2371 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2372 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2373 xpt_action((union ccb *)&cgd); 2374 csa->callback(csa->callback_arg, 2375 AC_FOUND_DEVICE, 2376 &path, &cgd); 2377 xpt_release_path(&path); 2378 2379 return(1); 2380 } 2381 2382 static int 2383 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2384 { 2385 struct cam_path path; 2386 struct ccb_pathinq cpi; 2387 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2388 2389 xpt_compile_path(&path, /*periph*/NULL, 2390 bus->sim->path_id, 2391 CAM_TARGET_WILDCARD, 2392 CAM_LUN_WILDCARD); 2393 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2394 cpi.ccb_h.func_code = XPT_PATH_INQ; 2395 xpt_action((union ccb *)&cpi); 2396 csa->callback(csa->callback_arg, 2397 AC_PATH_REGISTERED, 2398 &path, &cpi); 2399 xpt_release_path(&path); 2400 2401 return(1); 2402 } 2403 2404 void 2405 xpt_action(union ccb *start_ccb) 2406 { 2407 2408 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2409 2410 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2411 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2412 } 2413 2414 void 2415 xpt_action_default(union ccb *start_ccb) 2416 { 2417 struct cam_path *path; 2418 2419 path = start_ccb->ccb_h.path; 2420 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2421 2422 switch (start_ccb->ccb_h.func_code) { 2423 case XPT_SCSI_IO: 2424 { 2425 struct cam_ed *device; 2426 2427 /* 2428 * For the sake of compatibility with SCSI-1 2429 * devices that may not understand the identify 2430 * message, we include lun information in the 2431 * second byte of all commands. SCSI-1 specifies 2432 * that luns are a 3 bit value and reserves only 3 2433 * bits for lun information in the CDB. Later 2434 * revisions of the SCSI spec allow for more than 8 2435 * luns, but have deprecated lun information in the 2436 * CDB. So, if the lun won't fit, we must omit. 2437 * 2438 * Also be aware that during initial probing for devices, 2439 * the inquiry information is unknown but initialized to 0. 2440 * This means that this code will be exercised while probing 2441 * devices with an ANSI revision greater than 2. 2442 */ 2443 device = path->device; 2444 if (device->protocol_version <= SCSI_REV_2 2445 && start_ccb->ccb_h.target_lun < 8 2446 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2447 2448 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2449 start_ccb->ccb_h.target_lun << 5; 2450 } 2451 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2452 } 2453 /* FALLTHROUGH */ 2454 case XPT_TARGET_IO: 2455 case XPT_CONT_TARGET_IO: 2456 start_ccb->csio.sense_resid = 0; 2457 start_ccb->csio.resid = 0; 2458 /* FALLTHROUGH */ 2459 case XPT_ATA_IO: 2460 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2461 start_ccb->ataio.resid = 0; 2462 /* FALLTHROUGH */ 2463 case XPT_RESET_DEV: 2464 case XPT_ENG_EXEC: 2465 case XPT_SMP_IO: 2466 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2467 if (xpt_schedule_devq(path->bus->sim->devq, path->device)) 2468 xpt_run_devq(path->bus->sim->devq); 2469 break; 2470 case XPT_CALC_GEOMETRY: 2471 { 2472 struct cam_sim *sim; 2473 2474 /* Filter out garbage */ 2475 if (start_ccb->ccg.block_size == 0 2476 || start_ccb->ccg.volume_size == 0) { 2477 start_ccb->ccg.cylinders = 0; 2478 start_ccb->ccg.heads = 0; 2479 start_ccb->ccg.secs_per_track = 0; 2480 start_ccb->ccb_h.status = CAM_REQ_CMP; 2481 break; 2482 } 2483 #if defined(PC98) || defined(__sparc64__) 2484 /* 2485 * In a PC-98 system, geometry translation depens on 2486 * the "real" device geometry obtained from mode page 4. 2487 * SCSI geometry translation is performed in the 2488 * initialization routine of the SCSI BIOS and the result 2489 * stored in host memory. If the translation is available 2490 * in host memory, use it. If not, rely on the default 2491 * translation the device driver performs. 2492 * For sparc64, we may need adjust the geometry of large 2493 * disks in order to fit the limitations of the 16-bit 2494 * fields of the VTOC8 disk label. 2495 */ 2496 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2497 start_ccb->ccb_h.status = CAM_REQ_CMP; 2498 break; 2499 } 2500 #endif 2501 sim = path->bus->sim; 2502 (*(sim->sim_action))(sim, start_ccb); 2503 break; 2504 } 2505 case XPT_ABORT: 2506 { 2507 union ccb* abort_ccb; 2508 2509 abort_ccb = start_ccb->cab.abort_ccb; 2510 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2511 2512 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2513 struct cam_ccbq *ccbq; 2514 struct cam_ed *device; 2515 2516 device = abort_ccb->ccb_h.path->device; 2517 ccbq = &device->ccbq; 2518 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2519 abort_ccb->ccb_h.status = 2520 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2521 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2522 xpt_done(abort_ccb); 2523 start_ccb->ccb_h.status = CAM_REQ_CMP; 2524 break; 2525 } 2526 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2527 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2528 /* 2529 * We've caught this ccb en route to 2530 * the SIM. Flag it for abort and the 2531 * SIM will do so just before starting 2532 * real work on the CCB. 2533 */ 2534 abort_ccb->ccb_h.status = 2535 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2536 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2537 start_ccb->ccb_h.status = CAM_REQ_CMP; 2538 break; 2539 } 2540 } 2541 if (XPT_FC_IS_QUEUED(abort_ccb) 2542 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2543 /* 2544 * It's already completed but waiting 2545 * for our SWI to get to it. 2546 */ 2547 start_ccb->ccb_h.status = CAM_UA_ABORT; 2548 break; 2549 } 2550 /* 2551 * If we weren't able to take care of the abort request 2552 * in the XPT, pass the request down to the SIM for processing. 2553 */ 2554 } 2555 /* FALLTHROUGH */ 2556 case XPT_ACCEPT_TARGET_IO: 2557 case XPT_EN_LUN: 2558 case XPT_IMMED_NOTIFY: 2559 case XPT_NOTIFY_ACK: 2560 case XPT_RESET_BUS: 2561 case XPT_IMMEDIATE_NOTIFY: 2562 case XPT_NOTIFY_ACKNOWLEDGE: 2563 case XPT_GET_SIM_KNOB: 2564 case XPT_SET_SIM_KNOB: 2565 { 2566 struct cam_sim *sim; 2567 2568 sim = path->bus->sim; 2569 (*(sim->sim_action))(sim, start_ccb); 2570 break; 2571 } 2572 case XPT_PATH_INQ: 2573 { 2574 struct cam_sim *sim; 2575 2576 sim = path->bus->sim; 2577 (*(sim->sim_action))(sim, start_ccb); 2578 break; 2579 } 2580 case XPT_PATH_STATS: 2581 start_ccb->cpis.last_reset = path->bus->last_reset; 2582 start_ccb->ccb_h.status = CAM_REQ_CMP; 2583 break; 2584 case XPT_GDEV_TYPE: 2585 { 2586 struct cam_ed *dev; 2587 2588 dev = path->device; 2589 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2590 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2591 } else { 2592 struct ccb_getdev *cgd; 2593 2594 cgd = &start_ccb->cgd; 2595 cgd->protocol = dev->protocol; 2596 cgd->inq_data = dev->inq_data; 2597 cgd->ident_data = dev->ident_data; 2598 cgd->inq_flags = dev->inq_flags; 2599 cgd->ccb_h.status = CAM_REQ_CMP; 2600 cgd->serial_num_len = dev->serial_num_len; 2601 if ((dev->serial_num_len > 0) 2602 && (dev->serial_num != NULL)) 2603 bcopy(dev->serial_num, cgd->serial_num, 2604 dev->serial_num_len); 2605 } 2606 break; 2607 } 2608 case XPT_GDEV_STATS: 2609 { 2610 struct cam_ed *dev; 2611 2612 dev = path->device; 2613 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2614 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2615 } else { 2616 struct ccb_getdevstats *cgds; 2617 struct cam_eb *bus; 2618 struct cam_et *tar; 2619 2620 cgds = &start_ccb->cgds; 2621 bus = path->bus; 2622 tar = path->target; 2623 cgds->dev_openings = dev->ccbq.dev_openings; 2624 cgds->dev_active = dev->ccbq.dev_active; 2625 cgds->devq_openings = dev->ccbq.devq_openings; 2626 cgds->devq_queued = dev->ccbq.queue.entries; 2627 cgds->held = dev->ccbq.held; 2628 cgds->last_reset = tar->last_reset; 2629 cgds->maxtags = dev->maxtags; 2630 cgds->mintags = dev->mintags; 2631 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2632 cgds->last_reset = bus->last_reset; 2633 cgds->ccb_h.status = CAM_REQ_CMP; 2634 } 2635 break; 2636 } 2637 case XPT_GDEVLIST: 2638 { 2639 struct cam_periph *nperiph; 2640 struct periph_list *periph_head; 2641 struct ccb_getdevlist *cgdl; 2642 u_int i; 2643 struct cam_ed *device; 2644 int found; 2645 2646 2647 found = 0; 2648 2649 /* 2650 * Don't want anyone mucking with our data. 2651 */ 2652 device = path->device; 2653 periph_head = &device->periphs; 2654 cgdl = &start_ccb->cgdl; 2655 2656 /* 2657 * Check and see if the list has changed since the user 2658 * last requested a list member. If so, tell them that the 2659 * list has changed, and therefore they need to start over 2660 * from the beginning. 2661 */ 2662 if ((cgdl->index != 0) && 2663 (cgdl->generation != device->generation)) { 2664 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2665 break; 2666 } 2667 2668 /* 2669 * Traverse the list of peripherals and attempt to find 2670 * the requested peripheral. 2671 */ 2672 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2673 (nperiph != NULL) && (i <= cgdl->index); 2674 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2675 if (i == cgdl->index) { 2676 strncpy(cgdl->periph_name, 2677 nperiph->periph_name, 2678 DEV_IDLEN); 2679 cgdl->unit_number = nperiph->unit_number; 2680 found = 1; 2681 } 2682 } 2683 if (found == 0) { 2684 cgdl->status = CAM_GDEVLIST_ERROR; 2685 break; 2686 } 2687 2688 if (nperiph == NULL) 2689 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2690 else 2691 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2692 2693 cgdl->index++; 2694 cgdl->generation = device->generation; 2695 2696 cgdl->ccb_h.status = CAM_REQ_CMP; 2697 break; 2698 } 2699 case XPT_DEV_MATCH: 2700 { 2701 dev_pos_type position_type; 2702 struct ccb_dev_match *cdm; 2703 2704 cdm = &start_ccb->cdm; 2705 2706 /* 2707 * There are two ways of getting at information in the EDT. 2708 * The first way is via the primary EDT tree. It starts 2709 * with a list of busses, then a list of targets on a bus, 2710 * then devices/luns on a target, and then peripherals on a 2711 * device/lun. The "other" way is by the peripheral driver 2712 * lists. The peripheral driver lists are organized by 2713 * peripheral driver. (obviously) So it makes sense to 2714 * use the peripheral driver list if the user is looking 2715 * for something like "da1", or all "da" devices. If the 2716 * user is looking for something on a particular bus/target 2717 * or lun, it's generally better to go through the EDT tree. 2718 */ 2719 2720 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2721 position_type = cdm->pos.position_type; 2722 else { 2723 u_int i; 2724 2725 position_type = CAM_DEV_POS_NONE; 2726 2727 for (i = 0; i < cdm->num_patterns; i++) { 2728 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2729 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2730 position_type = CAM_DEV_POS_EDT; 2731 break; 2732 } 2733 } 2734 2735 if (cdm->num_patterns == 0) 2736 position_type = CAM_DEV_POS_EDT; 2737 else if (position_type == CAM_DEV_POS_NONE) 2738 position_type = CAM_DEV_POS_PDRV; 2739 } 2740 2741 /* 2742 * Note that we drop the SIM lock here, because the EDT 2743 * traversal code needs to do its own locking. 2744 */ 2745 CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path)); 2746 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2747 case CAM_DEV_POS_EDT: 2748 xptedtmatch(cdm); 2749 break; 2750 case CAM_DEV_POS_PDRV: 2751 xptperiphlistmatch(cdm); 2752 break; 2753 default: 2754 cdm->status = CAM_DEV_MATCH_ERROR; 2755 break; 2756 } 2757 CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path)); 2758 2759 if (cdm->status == CAM_DEV_MATCH_ERROR) 2760 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2761 else 2762 start_ccb->ccb_h.status = CAM_REQ_CMP; 2763 2764 break; 2765 } 2766 case XPT_SASYNC_CB: 2767 { 2768 struct ccb_setasync *csa; 2769 struct async_node *cur_entry; 2770 struct async_list *async_head; 2771 u_int32_t added; 2772 2773 csa = &start_ccb->csa; 2774 added = csa->event_enable; 2775 async_head = &path->device->asyncs; 2776 2777 /* 2778 * If there is already an entry for us, simply 2779 * update it. 2780 */ 2781 cur_entry = SLIST_FIRST(async_head); 2782 while (cur_entry != NULL) { 2783 if ((cur_entry->callback_arg == csa->callback_arg) 2784 && (cur_entry->callback == csa->callback)) 2785 break; 2786 cur_entry = SLIST_NEXT(cur_entry, links); 2787 } 2788 2789 if (cur_entry != NULL) { 2790 /* 2791 * If the request has no flags set, 2792 * remove the entry. 2793 */ 2794 added &= ~cur_entry->event_enable; 2795 if (csa->event_enable == 0) { 2796 SLIST_REMOVE(async_head, cur_entry, 2797 async_node, links); 2798 xpt_release_device(path->device); 2799 free(cur_entry, M_CAMXPT); 2800 } else { 2801 cur_entry->event_enable = csa->event_enable; 2802 } 2803 csa->event_enable = added; 2804 } else { 2805 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2806 M_NOWAIT); 2807 if (cur_entry == NULL) { 2808 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2809 break; 2810 } 2811 cur_entry->event_enable = csa->event_enable; 2812 cur_entry->callback_arg = csa->callback_arg; 2813 cur_entry->callback = csa->callback; 2814 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2815 xpt_acquire_device(path->device); 2816 } 2817 start_ccb->ccb_h.status = CAM_REQ_CMP; 2818 break; 2819 } 2820 case XPT_REL_SIMQ: 2821 { 2822 struct ccb_relsim *crs; 2823 struct cam_ed *dev; 2824 2825 crs = &start_ccb->crs; 2826 dev = path->device; 2827 if (dev == NULL) { 2828 2829 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2830 break; 2831 } 2832 2833 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2834 2835 /* Don't ever go below one opening */ 2836 if (crs->openings > 0) { 2837 xpt_dev_ccbq_resize(path, crs->openings); 2838 if (bootverbose) { 2839 xpt_print(path, 2840 "number of openings is now %d\n", 2841 crs->openings); 2842 } 2843 } 2844 } 2845 2846 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2847 2848 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2849 2850 /* 2851 * Just extend the old timeout and decrement 2852 * the freeze count so that a single timeout 2853 * is sufficient for releasing the queue. 2854 */ 2855 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2856 callout_stop(&dev->callout); 2857 } else { 2858 2859 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2860 } 2861 2862 callout_reset(&dev->callout, 2863 (crs->release_timeout * hz) / 1000, 2864 xpt_release_devq_timeout, dev); 2865 2866 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2867 2868 } 2869 2870 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2871 2872 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2873 /* 2874 * Decrement the freeze count so that a single 2875 * completion is still sufficient to unfreeze 2876 * the queue. 2877 */ 2878 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2879 } else { 2880 2881 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2882 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2883 } 2884 } 2885 2886 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2887 2888 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2889 || (dev->ccbq.dev_active == 0)) { 2890 2891 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2892 } else { 2893 2894 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2895 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2896 } 2897 } 2898 2899 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2900 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2901 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2902 start_ccb->ccb_h.status = CAM_REQ_CMP; 2903 break; 2904 } 2905 case XPT_DEBUG: { 2906 struct cam_path *oldpath; 2907 struct cam_sim *oldsim; 2908 2909 /* Check that all request bits are supported. */ 2910 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2911 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2912 break; 2913 } 2914 2915 cam_dflags = CAM_DEBUG_NONE; 2916 if (cam_dpath != NULL) { 2917 /* To release the old path we must hold proper lock. */ 2918 oldpath = cam_dpath; 2919 cam_dpath = NULL; 2920 oldsim = xpt_path_sim(oldpath); 2921 CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2922 CAM_SIM_LOCK(oldsim); 2923 xpt_free_path(oldpath); 2924 CAM_SIM_UNLOCK(oldsim); 2925 CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path)); 2926 } 2927 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2928 if (xpt_create_path(&cam_dpath, NULL, 2929 start_ccb->ccb_h.path_id, 2930 start_ccb->ccb_h.target_id, 2931 start_ccb->ccb_h.target_lun) != 2932 CAM_REQ_CMP) { 2933 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2934 } else { 2935 cam_dflags = start_ccb->cdbg.flags; 2936 start_ccb->ccb_h.status = CAM_REQ_CMP; 2937 xpt_print(cam_dpath, "debugging flags now %x\n", 2938 cam_dflags); 2939 } 2940 } else 2941 start_ccb->ccb_h.status = CAM_REQ_CMP; 2942 break; 2943 } 2944 case XPT_NOOP: 2945 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2946 xpt_freeze_devq(path, 1); 2947 start_ccb->ccb_h.status = CAM_REQ_CMP; 2948 break; 2949 default: 2950 case XPT_SDEV_TYPE: 2951 case XPT_TERM_IO: 2952 case XPT_ENG_INQ: 2953 /* XXX Implement */ 2954 printf("%s: CCB type %#x not supported\n", __func__, 2955 start_ccb->ccb_h.func_code); 2956 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2957 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2958 xpt_done(start_ccb); 2959 } 2960 break; 2961 } 2962 } 2963 2964 void 2965 xpt_polled_action(union ccb *start_ccb) 2966 { 2967 u_int32_t timeout; 2968 struct cam_sim *sim; 2969 struct cam_devq *devq; 2970 struct cam_ed *dev; 2971 2972 2973 timeout = start_ccb->ccb_h.timeout * 10; 2974 sim = start_ccb->ccb_h.path->bus->sim; 2975 devq = sim->devq; 2976 dev = start_ccb->ccb_h.path->device; 2977 2978 mtx_assert(sim->mtx, MA_OWNED); 2979 2980 /* Don't use ISR for this SIM while polling. */ 2981 sim->flags |= CAM_SIM_POLLED; 2982 2983 /* 2984 * Steal an opening so that no other queued requests 2985 * can get it before us while we simulate interrupts. 2986 */ 2987 dev->ccbq.devq_openings--; 2988 dev->ccbq.dev_openings--; 2989 2990 while(((devq != NULL && devq->send_openings <= 0) || 2991 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 2992 DELAY(100); 2993 (*(sim->sim_poll))(sim); 2994 camisr_runqueue(&sim->sim_doneq); 2995 } 2996 2997 dev->ccbq.devq_openings++; 2998 dev->ccbq.dev_openings++; 2999 3000 if (timeout != 0) { 3001 xpt_action(start_ccb); 3002 while(--timeout > 0) { 3003 (*(sim->sim_poll))(sim); 3004 camisr_runqueue(&sim->sim_doneq); 3005 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3006 != CAM_REQ_INPROG) 3007 break; 3008 DELAY(100); 3009 } 3010 if (timeout == 0) { 3011 /* 3012 * XXX Is it worth adding a sim_timeout entry 3013 * point so we can attempt recovery? If 3014 * this is only used for dumps, I don't think 3015 * it is. 3016 */ 3017 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3018 } 3019 } else { 3020 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3021 } 3022 3023 /* We will use CAM ISR for this SIM again. */ 3024 sim->flags &= ~CAM_SIM_POLLED; 3025 } 3026 3027 /* 3028 * Schedule a peripheral driver to receive a ccb when it's 3029 * target device has space for more transactions. 3030 */ 3031 void 3032 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3033 { 3034 struct cam_ed *device; 3035 int runq = 0; 3036 3037 mtx_assert(perph->sim->mtx, MA_OWNED); 3038 3039 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3040 device = perph->path->device; 3041 if (periph_is_queued(perph)) { 3042 /* Simply reorder based on new priority */ 3043 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3044 (" change priority to %d\n", new_priority)); 3045 if (new_priority < perph->pinfo.priority) { 3046 camq_change_priority(&device->drvq, 3047 perph->pinfo.index, 3048 new_priority); 3049 runq = 1; 3050 } 3051 } else { 3052 /* New entry on the queue */ 3053 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3054 (" added periph to queue\n")); 3055 perph->pinfo.priority = new_priority; 3056 perph->pinfo.generation = ++device->drvq.generation; 3057 camq_insert(&device->drvq, &perph->pinfo); 3058 runq = 1; 3059 } 3060 if (runq != 0) { 3061 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3062 (" calling xpt_run_dev_allocq\n")); 3063 xpt_run_dev_allocq(device); 3064 } 3065 } 3066 3067 3068 /* 3069 * Schedule a device to run on a given queue. 3070 * If the device was inserted as a new entry on the queue, 3071 * return 1 meaning the device queue should be run. If we 3072 * were already queued, implying someone else has already 3073 * started the queue, return 0 so the caller doesn't attempt 3074 * to run the queue. 3075 */ 3076 int 3077 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3078 u_int32_t new_priority) 3079 { 3080 int retval; 3081 u_int32_t old_priority; 3082 3083 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3084 3085 old_priority = pinfo->priority; 3086 3087 /* 3088 * Are we already queued? 3089 */ 3090 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3091 /* Simply reorder based on new priority */ 3092 if (new_priority < old_priority) { 3093 camq_change_priority(queue, pinfo->index, 3094 new_priority); 3095 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3096 ("changed priority to %d\n", 3097 new_priority)); 3098 retval = 1; 3099 } else 3100 retval = 0; 3101 } else { 3102 /* New entry on the queue */ 3103 if (new_priority < old_priority) 3104 pinfo->priority = new_priority; 3105 3106 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3107 ("Inserting onto queue\n")); 3108 pinfo->generation = ++queue->generation; 3109 camq_insert(queue, pinfo); 3110 retval = 1; 3111 } 3112 return (retval); 3113 } 3114 3115 static void 3116 xpt_run_dev_allocq(struct cam_ed *device) 3117 { 3118 struct camq *drvq; 3119 3120 if (device->ccbq.devq_allocating) 3121 return; 3122 device->ccbq.devq_allocating = 1; 3123 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device)); 3124 drvq = &device->drvq; 3125 while ((drvq->entries > 0) && 3126 (device->ccbq.devq_openings > 0 || 3127 CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) && 3128 (device->ccbq.queue.qfrozen_cnt == 0)) { 3129 union ccb *work_ccb; 3130 struct cam_periph *drv; 3131 3132 KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: " 3133 "Device on queue without any work to do")); 3134 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3135 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3136 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3137 drv->pinfo.priority); 3138 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3139 ("calling periph start\n")); 3140 drv->periph_start(drv, work_ccb); 3141 } else { 3142 /* 3143 * Malloc failure in alloc_ccb 3144 */ 3145 /* 3146 * XXX add us to a list to be run from free_ccb 3147 * if we don't have any ccbs active on this 3148 * device queue otherwise we may never get run 3149 * again. 3150 */ 3151 break; 3152 } 3153 } 3154 device->ccbq.devq_allocating = 0; 3155 } 3156 3157 static void 3158 xpt_run_devq(struct cam_devq *devq) 3159 { 3160 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3161 3162 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3163 3164 devq->send_queue.qfrozen_cnt++; 3165 while ((devq->send_queue.entries > 0) 3166 && (devq->send_openings > 0) 3167 && (devq->send_queue.qfrozen_cnt <= 1)) { 3168 struct cam_ed_qinfo *qinfo; 3169 struct cam_ed *device; 3170 union ccb *work_ccb; 3171 struct cam_sim *sim; 3172 3173 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3174 CAMQ_HEAD); 3175 device = qinfo->device; 3176 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3177 ("running device %p\n", device)); 3178 3179 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3180 if (work_ccb == NULL) { 3181 printf("device on run queue with no ccbs???\n"); 3182 continue; 3183 } 3184 3185 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3186 3187 mtx_lock(&xsoftc.xpt_lock); 3188 if (xsoftc.num_highpower <= 0) { 3189 /* 3190 * We got a high power command, but we 3191 * don't have any available slots. Freeze 3192 * the device queue until we have a slot 3193 * available. 3194 */ 3195 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3196 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3197 &work_ccb->ccb_h, 3198 xpt_links.stqe); 3199 3200 mtx_unlock(&xsoftc.xpt_lock); 3201 continue; 3202 } else { 3203 /* 3204 * Consume a high power slot while 3205 * this ccb runs. 3206 */ 3207 xsoftc.num_highpower--; 3208 } 3209 mtx_unlock(&xsoftc.xpt_lock); 3210 } 3211 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3212 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3213 3214 devq->send_openings--; 3215 devq->send_active++; 3216 3217 xpt_schedule_devq(devq, device); 3218 3219 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3220 /* 3221 * The client wants to freeze the queue 3222 * after this CCB is sent. 3223 */ 3224 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3225 } 3226 3227 /* In Target mode, the peripheral driver knows best... */ 3228 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3229 if ((device->inq_flags & SID_CmdQue) != 0 3230 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3231 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3232 else 3233 /* 3234 * Clear this in case of a retried CCB that 3235 * failed due to a rejected tag. 3236 */ 3237 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3238 } 3239 3240 switch (work_ccb->ccb_h.func_code) { 3241 case XPT_SCSI_IO: 3242 CAM_DEBUG(work_ccb->ccb_h.path, 3243 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3244 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3245 &device->inq_data), 3246 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3247 cdb_str, sizeof(cdb_str)))); 3248 break; 3249 case XPT_ATA_IO: 3250 CAM_DEBUG(work_ccb->ccb_h.path, 3251 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3252 ata_op_string(&work_ccb->ataio.cmd), 3253 ata_cmd_string(&work_ccb->ataio.cmd, 3254 cdb_str, sizeof(cdb_str)))); 3255 break; 3256 default: 3257 break; 3258 } 3259 3260 /* 3261 * Device queues can be shared among multiple sim instances 3262 * that reside on different busses. Use the SIM in the queue 3263 * CCB's path, rather than the one in the bus that was passed 3264 * into this function. 3265 */ 3266 sim = work_ccb->ccb_h.path->bus->sim; 3267 (*(sim->sim_action))(sim, work_ccb); 3268 } 3269 devq->send_queue.qfrozen_cnt--; 3270 } 3271 3272 /* 3273 * This function merges stuff from the slave ccb into the master ccb, while 3274 * keeping important fields in the master ccb constant. 3275 */ 3276 void 3277 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3278 { 3279 3280 /* 3281 * Pull fields that are valid for peripheral drivers to set 3282 * into the master CCB along with the CCB "payload". 3283 */ 3284 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3285 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3286 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3287 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3288 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3289 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3290 } 3291 3292 void 3293 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3294 { 3295 3296 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3297 ccb_h->pinfo.priority = priority; 3298 ccb_h->path = path; 3299 ccb_h->path_id = path->bus->path_id; 3300 if (path->target) 3301 ccb_h->target_id = path->target->target_id; 3302 else 3303 ccb_h->target_id = CAM_TARGET_WILDCARD; 3304 if (path->device) { 3305 ccb_h->target_lun = path->device->lun_id; 3306 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3307 } else { 3308 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3309 } 3310 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3311 ccb_h->flags = 0; 3312 } 3313 3314 /* Path manipulation functions */ 3315 cam_status 3316 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3317 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3318 { 3319 struct cam_path *path; 3320 cam_status status; 3321 3322 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3323 3324 if (path == NULL) { 3325 status = CAM_RESRC_UNAVAIL; 3326 return(status); 3327 } 3328 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3329 if (status != CAM_REQ_CMP) { 3330 free(path, M_CAMPATH); 3331 path = NULL; 3332 } 3333 *new_path_ptr = path; 3334 return (status); 3335 } 3336 3337 cam_status 3338 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3339 struct cam_periph *periph, path_id_t path_id, 3340 target_id_t target_id, lun_id_t lun_id) 3341 { 3342 struct cam_path *path; 3343 struct cam_eb *bus = NULL; 3344 cam_status status; 3345 3346 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK); 3347 3348 bus = xpt_find_bus(path_id); 3349 if (bus != NULL) 3350 CAM_SIM_LOCK(bus->sim); 3351 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3352 if (bus != NULL) { 3353 CAM_SIM_UNLOCK(bus->sim); 3354 xpt_release_bus(bus); 3355 } 3356 if (status != CAM_REQ_CMP) { 3357 free(path, M_CAMPATH); 3358 path = NULL; 3359 } 3360 *new_path_ptr = path; 3361 return (status); 3362 } 3363 3364 cam_status 3365 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3366 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3367 { 3368 struct cam_eb *bus; 3369 struct cam_et *target; 3370 struct cam_ed *device; 3371 cam_status status; 3372 3373 status = CAM_REQ_CMP; /* Completed without error */ 3374 target = NULL; /* Wildcarded */ 3375 device = NULL; /* Wildcarded */ 3376 3377 /* 3378 * We will potentially modify the EDT, so block interrupts 3379 * that may attempt to create cam paths. 3380 */ 3381 bus = xpt_find_bus(path_id); 3382 if (bus == NULL) { 3383 status = CAM_PATH_INVALID; 3384 } else { 3385 target = xpt_find_target(bus, target_id); 3386 if (target == NULL) { 3387 /* Create one */ 3388 struct cam_et *new_target; 3389 3390 new_target = xpt_alloc_target(bus, target_id); 3391 if (new_target == NULL) { 3392 status = CAM_RESRC_UNAVAIL; 3393 } else { 3394 target = new_target; 3395 } 3396 } 3397 if (target != NULL) { 3398 device = xpt_find_device(target, lun_id); 3399 if (device == NULL) { 3400 /* Create one */ 3401 struct cam_ed *new_device; 3402 3403 new_device = 3404 (*(bus->xport->alloc_device))(bus, 3405 target, 3406 lun_id); 3407 if (new_device == NULL) { 3408 status = CAM_RESRC_UNAVAIL; 3409 } else { 3410 device = new_device; 3411 } 3412 } 3413 } 3414 } 3415 3416 /* 3417 * Only touch the user's data if we are successful. 3418 */ 3419 if (status == CAM_REQ_CMP) { 3420 new_path->periph = perph; 3421 new_path->bus = bus; 3422 new_path->target = target; 3423 new_path->device = device; 3424 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3425 } else { 3426 if (device != NULL) 3427 xpt_release_device(device); 3428 if (target != NULL) 3429 xpt_release_target(target); 3430 if (bus != NULL) 3431 xpt_release_bus(bus); 3432 } 3433 return (status); 3434 } 3435 3436 void 3437 xpt_release_path(struct cam_path *path) 3438 { 3439 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3440 if (path->device != NULL) { 3441 xpt_release_device(path->device); 3442 path->device = NULL; 3443 } 3444 if (path->target != NULL) { 3445 xpt_release_target(path->target); 3446 path->target = NULL; 3447 } 3448 if (path->bus != NULL) { 3449 xpt_release_bus(path->bus); 3450 path->bus = NULL; 3451 } 3452 } 3453 3454 void 3455 xpt_free_path(struct cam_path *path) 3456 { 3457 3458 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3459 xpt_release_path(path); 3460 free(path, M_CAMPATH); 3461 } 3462 3463 void 3464 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3465 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3466 { 3467 3468 xpt_lock_buses(); 3469 if (bus_ref) { 3470 if (path->bus) 3471 *bus_ref = path->bus->refcount; 3472 else 3473 *bus_ref = 0; 3474 } 3475 if (periph_ref) { 3476 if (path->periph) 3477 *periph_ref = path->periph->refcount; 3478 else 3479 *periph_ref = 0; 3480 } 3481 xpt_unlock_buses(); 3482 if (target_ref) { 3483 if (path->target) 3484 *target_ref = path->target->refcount; 3485 else 3486 *target_ref = 0; 3487 } 3488 if (device_ref) { 3489 if (path->device) 3490 *device_ref = path->device->refcount; 3491 else 3492 *device_ref = 0; 3493 } 3494 } 3495 3496 /* 3497 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3498 * in path1, 2 for match with wildcards in path2. 3499 */ 3500 int 3501 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3502 { 3503 int retval = 0; 3504 3505 if (path1->bus != path2->bus) { 3506 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3507 retval = 1; 3508 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3509 retval = 2; 3510 else 3511 return (-1); 3512 } 3513 if (path1->target != path2->target) { 3514 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3515 if (retval == 0) 3516 retval = 1; 3517 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3518 retval = 2; 3519 else 3520 return (-1); 3521 } 3522 if (path1->device != path2->device) { 3523 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3524 if (retval == 0) 3525 retval = 1; 3526 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3527 retval = 2; 3528 else 3529 return (-1); 3530 } 3531 return (retval); 3532 } 3533 3534 void 3535 xpt_print_path(struct cam_path *path) 3536 { 3537 3538 if (path == NULL) 3539 printf("(nopath): "); 3540 else { 3541 if (path->periph != NULL) 3542 printf("(%s%d:", path->periph->periph_name, 3543 path->periph->unit_number); 3544 else 3545 printf("(noperiph:"); 3546 3547 if (path->bus != NULL) 3548 printf("%s%d:%d:", path->bus->sim->sim_name, 3549 path->bus->sim->unit_number, 3550 path->bus->sim->bus_id); 3551 else 3552 printf("nobus:"); 3553 3554 if (path->target != NULL) 3555 printf("%d:", path->target->target_id); 3556 else 3557 printf("X:"); 3558 3559 if (path->device != NULL) 3560 printf("%d): ", path->device->lun_id); 3561 else 3562 printf("X): "); 3563 } 3564 } 3565 3566 void 3567 xpt_print(struct cam_path *path, const char *fmt, ...) 3568 { 3569 va_list ap; 3570 xpt_print_path(path); 3571 va_start(ap, fmt); 3572 vprintf(fmt, ap); 3573 va_end(ap); 3574 } 3575 3576 int 3577 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3578 { 3579 struct sbuf sb; 3580 3581 #ifdef INVARIANTS 3582 if (path != NULL && path->bus != NULL) 3583 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3584 #endif 3585 3586 sbuf_new(&sb, str, str_len, 0); 3587 3588 if (path == NULL) 3589 sbuf_printf(&sb, "(nopath): "); 3590 else { 3591 if (path->periph != NULL) 3592 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3593 path->periph->unit_number); 3594 else 3595 sbuf_printf(&sb, "(noperiph:"); 3596 3597 if (path->bus != NULL) 3598 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3599 path->bus->sim->unit_number, 3600 path->bus->sim->bus_id); 3601 else 3602 sbuf_printf(&sb, "nobus:"); 3603 3604 if (path->target != NULL) 3605 sbuf_printf(&sb, "%d:", path->target->target_id); 3606 else 3607 sbuf_printf(&sb, "X:"); 3608 3609 if (path->device != NULL) 3610 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3611 else 3612 sbuf_printf(&sb, "X): "); 3613 } 3614 sbuf_finish(&sb); 3615 3616 return(sbuf_len(&sb)); 3617 } 3618 3619 path_id_t 3620 xpt_path_path_id(struct cam_path *path) 3621 { 3622 return(path->bus->path_id); 3623 } 3624 3625 target_id_t 3626 xpt_path_target_id(struct cam_path *path) 3627 { 3628 if (path->target != NULL) 3629 return (path->target->target_id); 3630 else 3631 return (CAM_TARGET_WILDCARD); 3632 } 3633 3634 lun_id_t 3635 xpt_path_lun_id(struct cam_path *path) 3636 { 3637 if (path->device != NULL) 3638 return (path->device->lun_id); 3639 else 3640 return (CAM_LUN_WILDCARD); 3641 } 3642 3643 struct cam_sim * 3644 xpt_path_sim(struct cam_path *path) 3645 { 3646 3647 return (path->bus->sim); 3648 } 3649 3650 struct cam_periph* 3651 xpt_path_periph(struct cam_path *path) 3652 { 3653 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3654 3655 return (path->periph); 3656 } 3657 3658 int 3659 xpt_path_legacy_ata_id(struct cam_path *path) 3660 { 3661 struct cam_eb *bus; 3662 int bus_id; 3663 3664 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3665 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3666 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3667 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3668 return (-1); 3669 3670 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3671 path->bus->sim->unit_number < 2) { 3672 bus_id = path->bus->sim->unit_number; 3673 } else { 3674 bus_id = 2; 3675 xpt_lock_buses(); 3676 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3677 if (bus == path->bus) 3678 break; 3679 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3680 bus->sim->unit_number >= 2) || 3681 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3682 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3683 strcmp(bus->sim->sim_name, "siisch") == 0) 3684 bus_id++; 3685 } 3686 xpt_unlock_buses(); 3687 } 3688 if (path->target != NULL) { 3689 if (path->target->target_id < 2) 3690 return (bus_id * 2 + path->target->target_id); 3691 else 3692 return (-1); 3693 } else 3694 return (bus_id * 2); 3695 } 3696 3697 /* 3698 * Release a CAM control block for the caller. Remit the cost of the structure 3699 * to the device referenced by the path. If the this device had no 'credits' 3700 * and peripheral drivers have registered async callbacks for this notification 3701 * call them now. 3702 */ 3703 void 3704 xpt_release_ccb(union ccb *free_ccb) 3705 { 3706 struct cam_path *path; 3707 struct cam_ed *device; 3708 struct cam_eb *bus; 3709 struct cam_sim *sim; 3710 3711 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3712 path = free_ccb->ccb_h.path; 3713 device = path->device; 3714 bus = path->bus; 3715 sim = bus->sim; 3716 3717 mtx_assert(sim->mtx, MA_OWNED); 3718 3719 cam_ccbq_release_opening(&device->ccbq); 3720 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3721 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3722 cam_ccbq_resize(&device->ccbq, 3723 device->ccbq.dev_openings + device->ccbq.dev_active); 3724 } 3725 if (sim->ccb_count > sim->max_ccbs) { 3726 xpt_free_ccb(free_ccb); 3727 sim->ccb_count--; 3728 } else { 3729 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3730 xpt_links.sle); 3731 } 3732 xpt_run_dev_allocq(device); 3733 } 3734 3735 /* Functions accessed by SIM drivers */ 3736 3737 static struct xpt_xport xport_default = { 3738 .alloc_device = xpt_alloc_device_default, 3739 .action = xpt_action_default, 3740 .async = xpt_dev_async_default, 3741 }; 3742 3743 /* 3744 * A sim structure, listing the SIM entry points and instance 3745 * identification info is passed to xpt_bus_register to hook the SIM 3746 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3747 * for this new bus and places it in the array of busses and assigns 3748 * it a path_id. The path_id may be influenced by "hard wiring" 3749 * information specified by the user. Once interrupt services are 3750 * available, the bus will be probed. 3751 */ 3752 int32_t 3753 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3754 { 3755 struct cam_eb *new_bus; 3756 struct cam_eb *old_bus; 3757 struct ccb_pathinq cpi; 3758 struct cam_path *path; 3759 cam_status status; 3760 3761 mtx_assert(sim->mtx, MA_OWNED); 3762 3763 sim->bus_id = bus; 3764 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3765 M_CAMXPT, M_NOWAIT); 3766 if (new_bus == NULL) { 3767 /* Couldn't satisfy request */ 3768 return (CAM_RESRC_UNAVAIL); 3769 } 3770 if (strcmp(sim->sim_name, "xpt") != 0) { 3771 sim->path_id = 3772 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3773 } 3774 3775 TAILQ_INIT(&new_bus->et_entries); 3776 new_bus->path_id = sim->path_id; 3777 cam_sim_hold(sim); 3778 new_bus->sim = sim; 3779 timevalclear(&new_bus->last_reset); 3780 new_bus->flags = 0; 3781 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3782 new_bus->generation = 0; 3783 3784 xpt_lock_buses(); 3785 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3786 while (old_bus != NULL 3787 && old_bus->path_id < new_bus->path_id) 3788 old_bus = TAILQ_NEXT(old_bus, links); 3789 if (old_bus != NULL) 3790 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3791 else 3792 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3793 xsoftc.bus_generation++; 3794 xpt_unlock_buses(); 3795 3796 /* 3797 * Set a default transport so that a PATH_INQ can be issued to 3798 * the SIM. This will then allow for probing and attaching of 3799 * a more appropriate transport. 3800 */ 3801 new_bus->xport = &xport_default; 3802 3803 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3804 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3805 if (status != CAM_REQ_CMP) { 3806 xpt_release_bus(new_bus); 3807 free(path, M_CAMXPT); 3808 return (CAM_RESRC_UNAVAIL); 3809 } 3810 3811 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3812 cpi.ccb_h.func_code = XPT_PATH_INQ; 3813 xpt_action((union ccb *)&cpi); 3814 3815 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3816 switch (cpi.transport) { 3817 case XPORT_SPI: 3818 case XPORT_SAS: 3819 case XPORT_FC: 3820 case XPORT_USB: 3821 case XPORT_ISCSI: 3822 case XPORT_PPB: 3823 new_bus->xport = scsi_get_xport(); 3824 break; 3825 case XPORT_ATA: 3826 case XPORT_SATA: 3827 new_bus->xport = ata_get_xport(); 3828 break; 3829 default: 3830 new_bus->xport = &xport_default; 3831 break; 3832 } 3833 } 3834 3835 /* Notify interested parties */ 3836 if (sim->path_id != CAM_XPT_PATH_ID) { 3837 union ccb *scan_ccb; 3838 3839 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3840 /* Initiate bus rescan. */ 3841 scan_ccb = xpt_alloc_ccb_nowait(); 3842 scan_ccb->ccb_h.path = path; 3843 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3844 scan_ccb->crcn.flags = 0; 3845 xpt_rescan(scan_ccb); 3846 } else 3847 xpt_free_path(path); 3848 return (CAM_SUCCESS); 3849 } 3850 3851 int32_t 3852 xpt_bus_deregister(path_id_t pathid) 3853 { 3854 struct cam_path bus_path; 3855 cam_status status; 3856 3857 status = xpt_compile_path(&bus_path, NULL, pathid, 3858 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3859 if (status != CAM_REQ_CMP) 3860 return (status); 3861 3862 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3863 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3864 3865 /* Release the reference count held while registered. */ 3866 xpt_release_bus(bus_path.bus); 3867 xpt_release_path(&bus_path); 3868 3869 return (CAM_REQ_CMP); 3870 } 3871 3872 static path_id_t 3873 xptnextfreepathid(void) 3874 { 3875 struct cam_eb *bus; 3876 path_id_t pathid; 3877 const char *strval; 3878 3879 pathid = 0; 3880 xpt_lock_buses(); 3881 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3882 retry: 3883 /* Find an unoccupied pathid */ 3884 while (bus != NULL && bus->path_id <= pathid) { 3885 if (bus->path_id == pathid) 3886 pathid++; 3887 bus = TAILQ_NEXT(bus, links); 3888 } 3889 xpt_unlock_buses(); 3890 3891 /* 3892 * Ensure that this pathid is not reserved for 3893 * a bus that may be registered in the future. 3894 */ 3895 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3896 ++pathid; 3897 /* Start the search over */ 3898 xpt_lock_buses(); 3899 goto retry; 3900 } 3901 return (pathid); 3902 } 3903 3904 static path_id_t 3905 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3906 { 3907 path_id_t pathid; 3908 int i, dunit, val; 3909 char buf[32]; 3910 const char *dname; 3911 3912 pathid = CAM_XPT_PATH_ID; 3913 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3914 i = 0; 3915 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3916 if (strcmp(dname, "scbus")) { 3917 /* Avoid a bit of foot shooting. */ 3918 continue; 3919 } 3920 if (dunit < 0) /* unwired?! */ 3921 continue; 3922 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3923 if (sim_bus == val) { 3924 pathid = dunit; 3925 break; 3926 } 3927 } else if (sim_bus == 0) { 3928 /* Unspecified matches bus 0 */ 3929 pathid = dunit; 3930 break; 3931 } else { 3932 printf("Ambiguous scbus configuration for %s%d " 3933 "bus %d, cannot wire down. The kernel " 3934 "config entry for scbus%d should " 3935 "specify a controller bus.\n" 3936 "Scbus will be assigned dynamically.\n", 3937 sim_name, sim_unit, sim_bus, dunit); 3938 break; 3939 } 3940 } 3941 3942 if (pathid == CAM_XPT_PATH_ID) 3943 pathid = xptnextfreepathid(); 3944 return (pathid); 3945 } 3946 3947 static const char * 3948 xpt_async_string(u_int32_t async_code) 3949 { 3950 3951 switch (async_code) { 3952 case AC_BUS_RESET: return ("AC_BUS_RESET"); 3953 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 3954 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 3955 case AC_SENT_BDR: return ("AC_SENT_BDR"); 3956 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 3957 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 3958 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 3959 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 3960 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 3961 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 3962 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 3963 case AC_CONTRACT: return ("AC_CONTRACT"); 3964 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 3965 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 3966 } 3967 return ("AC_UNKNOWN"); 3968 } 3969 3970 void 3971 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 3972 { 3973 struct cam_eb *bus; 3974 struct cam_et *target, *next_target; 3975 struct cam_ed *device, *next_device; 3976 3977 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3978 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 3979 ("xpt_async(%s)\n", xpt_async_string(async_code))); 3980 3981 /* 3982 * Most async events come from a CAM interrupt context. In 3983 * a few cases, the error recovery code at the peripheral layer, 3984 * which may run from our SWI or a process context, may signal 3985 * deferred events with a call to xpt_async. 3986 */ 3987 3988 bus = path->bus; 3989 3990 if (async_code == AC_BUS_RESET) { 3991 /* Update our notion of when the last reset occurred */ 3992 microtime(&bus->last_reset); 3993 } 3994 3995 for (target = TAILQ_FIRST(&bus->et_entries); 3996 target != NULL; 3997 target = next_target) { 3998 3999 next_target = TAILQ_NEXT(target, links); 4000 4001 if (path->target != target 4002 && path->target->target_id != CAM_TARGET_WILDCARD 4003 && target->target_id != CAM_TARGET_WILDCARD) 4004 continue; 4005 4006 if (async_code == AC_SENT_BDR) { 4007 /* Update our notion of when the last reset occurred */ 4008 microtime(&path->target->last_reset); 4009 } 4010 4011 for (device = TAILQ_FIRST(&target->ed_entries); 4012 device != NULL; 4013 device = next_device) { 4014 4015 next_device = TAILQ_NEXT(device, links); 4016 4017 if (path->device != device 4018 && path->device->lun_id != CAM_LUN_WILDCARD 4019 && device->lun_id != CAM_LUN_WILDCARD) 4020 continue; 4021 /* 4022 * The async callback could free the device. 4023 * If it is a broadcast async, it doesn't hold 4024 * device reference, so take our own reference. 4025 */ 4026 xpt_acquire_device(device); 4027 (*(bus->xport->async))(async_code, bus, 4028 target, device, 4029 async_arg); 4030 4031 xpt_async_bcast(&device->asyncs, async_code, 4032 path, async_arg); 4033 xpt_release_device(device); 4034 } 4035 } 4036 4037 /* 4038 * If this wasn't a fully wildcarded async, tell all 4039 * clients that want all async events. 4040 */ 4041 if (bus != xpt_periph->path->bus) 4042 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4043 path, async_arg); 4044 } 4045 4046 static void 4047 xpt_async_bcast(struct async_list *async_head, 4048 u_int32_t async_code, 4049 struct cam_path *path, void *async_arg) 4050 { 4051 struct async_node *cur_entry; 4052 4053 cur_entry = SLIST_FIRST(async_head); 4054 while (cur_entry != NULL) { 4055 struct async_node *next_entry; 4056 /* 4057 * Grab the next list entry before we call the current 4058 * entry's callback. This is because the callback function 4059 * can delete its async callback entry. 4060 */ 4061 next_entry = SLIST_NEXT(cur_entry, links); 4062 if ((cur_entry->event_enable & async_code) != 0) 4063 cur_entry->callback(cur_entry->callback_arg, 4064 async_code, path, 4065 async_arg); 4066 cur_entry = next_entry; 4067 } 4068 } 4069 4070 static void 4071 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4072 struct cam_et *target, struct cam_ed *device, 4073 void *async_arg) 4074 { 4075 printf("%s called\n", __func__); 4076 } 4077 4078 u_int32_t 4079 xpt_freeze_devq(struct cam_path *path, u_int count) 4080 { 4081 struct cam_ed *dev = path->device; 4082 4083 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4084 dev->ccbq.queue.qfrozen_cnt += count; 4085 /* Remove frozen device from sendq. */ 4086 if (device_is_queued(dev)) { 4087 camq_remove(&dev->sim->devq->send_queue, 4088 dev->devq_entry.pinfo.index); 4089 } 4090 return (dev->ccbq.queue.qfrozen_cnt); 4091 } 4092 4093 u_int32_t 4094 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4095 { 4096 4097 mtx_assert(sim->mtx, MA_OWNED); 4098 sim->devq->send_queue.qfrozen_cnt += count; 4099 return (sim->devq->send_queue.qfrozen_cnt); 4100 } 4101 4102 static void 4103 xpt_release_devq_timeout(void *arg) 4104 { 4105 struct cam_ed *device; 4106 4107 device = (struct cam_ed *)arg; 4108 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4109 } 4110 4111 void 4112 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4113 { 4114 4115 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4116 xpt_release_devq_device(path->device, count, run_queue); 4117 } 4118 4119 void 4120 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4121 { 4122 4123 if (count > dev->ccbq.queue.qfrozen_cnt) { 4124 #ifdef INVARIANTS 4125 printf("xpt_release_devq(): requested %u > present %u\n", 4126 count, dev->ccbq.queue.qfrozen_cnt); 4127 #endif 4128 count = dev->ccbq.queue.qfrozen_cnt; 4129 } 4130 dev->ccbq.queue.qfrozen_cnt -= count; 4131 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4132 /* 4133 * No longer need to wait for a successful 4134 * command completion. 4135 */ 4136 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4137 /* 4138 * Remove any timeouts that might be scheduled 4139 * to release this queue. 4140 */ 4141 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4142 callout_stop(&dev->callout); 4143 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4144 } 4145 xpt_run_dev_allocq(dev); 4146 if (run_queue == 0) 4147 return; 4148 /* 4149 * Now that we are unfrozen schedule the 4150 * device so any pending transactions are 4151 * run. 4152 */ 4153 if (xpt_schedule_devq(dev->sim->devq, dev)) 4154 xpt_run_devq(dev->sim->devq); 4155 } 4156 } 4157 4158 void 4159 xpt_release_simq(struct cam_sim *sim, int run_queue) 4160 { 4161 struct camq *sendq; 4162 4163 mtx_assert(sim->mtx, MA_OWNED); 4164 sendq = &(sim->devq->send_queue); 4165 if (sendq->qfrozen_cnt <= 0) { 4166 #ifdef INVARIANTS 4167 printf("xpt_release_simq: requested 1 > present %u\n", 4168 sendq->qfrozen_cnt); 4169 #endif 4170 } else 4171 sendq->qfrozen_cnt--; 4172 if (sendq->qfrozen_cnt == 0) { 4173 /* 4174 * If there is a timeout scheduled to release this 4175 * sim queue, remove it. The queue frozen count is 4176 * already at 0. 4177 */ 4178 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4179 callout_stop(&sim->callout); 4180 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4181 } 4182 if (run_queue) { 4183 /* 4184 * Now that we are unfrozen run the send queue. 4185 */ 4186 xpt_run_devq(sim->devq); 4187 } 4188 } 4189 } 4190 4191 /* 4192 * XXX Appears to be unused. 4193 */ 4194 static void 4195 xpt_release_simq_timeout(void *arg) 4196 { 4197 struct cam_sim *sim; 4198 4199 sim = (struct cam_sim *)arg; 4200 xpt_release_simq(sim, /* run_queue */ TRUE); 4201 } 4202 4203 void 4204 xpt_done(union ccb *done_ccb) 4205 { 4206 struct cam_sim *sim; 4207 int first; 4208 4209 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4210 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4211 /* 4212 * Queue up the request for handling by our SWI handler 4213 * any of the "non-immediate" type of ccbs. 4214 */ 4215 sim = done_ccb->ccb_h.path->bus->sim; 4216 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4217 sim_links.tqe); 4218 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4219 if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED | 4220 CAM_SIM_BATCH)) == 0) { 4221 mtx_lock(&cam_simq_lock); 4222 first = TAILQ_EMPTY(&cam_simq); 4223 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4224 mtx_unlock(&cam_simq_lock); 4225 sim->flags |= CAM_SIM_ON_DONEQ; 4226 if (first) 4227 swi_sched(cambio_ih, 0); 4228 } 4229 } 4230 } 4231 4232 void 4233 xpt_batch_start(struct cam_sim *sim) 4234 { 4235 4236 KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set")); 4237 sim->flags |= CAM_SIM_BATCH; 4238 } 4239 4240 void 4241 xpt_batch_done(struct cam_sim *sim) 4242 { 4243 4244 KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set")); 4245 sim->flags &= ~CAM_SIM_BATCH; 4246 if (!TAILQ_EMPTY(&sim->sim_doneq) && 4247 (sim->flags & CAM_SIM_ON_DONEQ) == 0) 4248 camisr_runqueue(&sim->sim_doneq); 4249 } 4250 4251 union ccb * 4252 xpt_alloc_ccb() 4253 { 4254 union ccb *new_ccb; 4255 4256 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4257 return (new_ccb); 4258 } 4259 4260 union ccb * 4261 xpt_alloc_ccb_nowait() 4262 { 4263 union ccb *new_ccb; 4264 4265 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4266 return (new_ccb); 4267 } 4268 4269 void 4270 xpt_free_ccb(union ccb *free_ccb) 4271 { 4272 free(free_ccb, M_CAMCCB); 4273 } 4274 4275 4276 4277 /* Private XPT functions */ 4278 4279 /* 4280 * Get a CAM control block for the caller. Charge the structure to the device 4281 * referenced by the path. If the this device has no 'credits' then the 4282 * device already has the maximum number of outstanding operations under way 4283 * and we return NULL. If we don't have sufficient resources to allocate more 4284 * ccbs, we also return NULL. 4285 */ 4286 static union ccb * 4287 xpt_get_ccb(struct cam_ed *device) 4288 { 4289 union ccb *new_ccb; 4290 struct cam_sim *sim; 4291 4292 sim = device->sim; 4293 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4294 new_ccb = xpt_alloc_ccb_nowait(); 4295 if (new_ccb == NULL) { 4296 return (NULL); 4297 } 4298 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4299 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4300 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4301 xpt_links.sle); 4302 sim->ccb_count++; 4303 } 4304 cam_ccbq_take_opening(&device->ccbq); 4305 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4306 return (new_ccb); 4307 } 4308 4309 static void 4310 xpt_release_bus(struct cam_eb *bus) 4311 { 4312 4313 xpt_lock_buses(); 4314 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4315 if (--bus->refcount > 0) { 4316 xpt_unlock_buses(); 4317 return; 4318 } 4319 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4320 ("refcount is zero, but target list is not empty")); 4321 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4322 xsoftc.bus_generation++; 4323 xpt_unlock_buses(); 4324 cam_sim_release(bus->sim); 4325 free(bus, M_CAMXPT); 4326 } 4327 4328 static struct cam_et * 4329 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4330 { 4331 struct cam_et *cur_target, *target; 4332 4333 mtx_assert(bus->sim->mtx, MA_OWNED); 4334 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4335 M_NOWAIT|M_ZERO); 4336 if (target == NULL) 4337 return (NULL); 4338 4339 TAILQ_INIT(&target->ed_entries); 4340 target->bus = bus; 4341 target->target_id = target_id; 4342 target->refcount = 1; 4343 target->generation = 0; 4344 target->luns = NULL; 4345 timevalclear(&target->last_reset); 4346 /* 4347 * Hold a reference to our parent bus so it 4348 * will not go away before we do. 4349 */ 4350 xpt_lock_buses(); 4351 bus->refcount++; 4352 xpt_unlock_buses(); 4353 4354 /* Insertion sort into our bus's target list */ 4355 cur_target = TAILQ_FIRST(&bus->et_entries); 4356 while (cur_target != NULL && cur_target->target_id < target_id) 4357 cur_target = TAILQ_NEXT(cur_target, links); 4358 if (cur_target != NULL) { 4359 TAILQ_INSERT_BEFORE(cur_target, target, links); 4360 } else { 4361 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4362 } 4363 bus->generation++; 4364 return (target); 4365 } 4366 4367 static void 4368 xpt_release_target(struct cam_et *target) 4369 { 4370 4371 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4372 if (--target->refcount > 0) 4373 return; 4374 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4375 ("refcount is zero, but device list is not empty")); 4376 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4377 target->bus->generation++; 4378 xpt_release_bus(target->bus); 4379 if (target->luns) 4380 free(target->luns, M_CAMXPT); 4381 free(target, M_CAMXPT); 4382 } 4383 4384 static struct cam_ed * 4385 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4386 lun_id_t lun_id) 4387 { 4388 struct cam_ed *device; 4389 4390 device = xpt_alloc_device(bus, target, lun_id); 4391 if (device == NULL) 4392 return (NULL); 4393 4394 device->mintags = 1; 4395 device->maxtags = 1; 4396 bus->sim->max_ccbs += device->ccbq.devq_openings; 4397 return (device); 4398 } 4399 4400 struct cam_ed * 4401 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4402 { 4403 struct cam_ed *cur_device, *device; 4404 struct cam_devq *devq; 4405 cam_status status; 4406 4407 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4408 /* Make space for us in the device queue on our bus */ 4409 devq = bus->sim->devq; 4410 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4411 if (status != CAM_REQ_CMP) 4412 return (NULL); 4413 4414 device = (struct cam_ed *)malloc(sizeof(*device), 4415 M_CAMDEV, M_NOWAIT|M_ZERO); 4416 if (device == NULL) 4417 return (NULL); 4418 4419 cam_init_pinfo(&device->devq_entry.pinfo); 4420 device->devq_entry.device = device; 4421 device->target = target; 4422 device->lun_id = lun_id; 4423 device->sim = bus->sim; 4424 /* Initialize our queues */ 4425 if (camq_init(&device->drvq, 0) != 0) { 4426 free(device, M_CAMDEV); 4427 return (NULL); 4428 } 4429 if (cam_ccbq_init(&device->ccbq, 4430 bus->sim->max_dev_openings) != 0) { 4431 camq_fini(&device->drvq); 4432 free(device, M_CAMDEV); 4433 return (NULL); 4434 } 4435 SLIST_INIT(&device->asyncs); 4436 SLIST_INIT(&device->periphs); 4437 device->generation = 0; 4438 device->flags = CAM_DEV_UNCONFIGURED; 4439 device->tag_delay_count = 0; 4440 device->tag_saved_openings = 0; 4441 device->refcount = 1; 4442 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4443 4444 cur_device = TAILQ_FIRST(&target->ed_entries); 4445 while (cur_device != NULL && cur_device->lun_id < lun_id) 4446 cur_device = TAILQ_NEXT(cur_device, links); 4447 if (cur_device != NULL) 4448 TAILQ_INSERT_BEFORE(cur_device, device, links); 4449 else 4450 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4451 target->refcount++; 4452 target->generation++; 4453 return (device); 4454 } 4455 4456 void 4457 xpt_acquire_device(struct cam_ed *device) 4458 { 4459 4460 mtx_assert(device->sim->mtx, MA_OWNED); 4461 device->refcount++; 4462 } 4463 4464 void 4465 xpt_release_device(struct cam_ed *device) 4466 { 4467 struct cam_devq *devq; 4468 4469 mtx_assert(device->sim->mtx, MA_OWNED); 4470 if (--device->refcount > 0) 4471 return; 4472 4473 KASSERT(SLIST_EMPTY(&device->periphs), 4474 ("refcount is zero, but periphs list is not empty")); 4475 if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4476 panic("Removing device while still queued for ccbs"); 4477 4478 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4479 callout_stop(&device->callout); 4480 4481 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4482 device->target->generation++; 4483 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4484 /* Release our slot in the devq */ 4485 devq = device->target->bus->sim->devq; 4486 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4487 camq_fini(&device->drvq); 4488 cam_ccbq_fini(&device->ccbq); 4489 /* 4490 * Free allocated memory. free(9) does nothing if the 4491 * supplied pointer is NULL, so it is safe to call without 4492 * checking. 4493 */ 4494 free(device->supported_vpds, M_CAMXPT); 4495 free(device->device_id, M_CAMXPT); 4496 free(device->physpath, M_CAMXPT); 4497 free(device->rcap_buf, M_CAMXPT); 4498 free(device->serial_num, M_CAMXPT); 4499 4500 xpt_release_target(device->target); 4501 free(device, M_CAMDEV); 4502 } 4503 4504 u_int32_t 4505 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4506 { 4507 int diff; 4508 int result; 4509 struct cam_ed *dev; 4510 4511 dev = path->device; 4512 4513 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4514 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4515 if (result == CAM_REQ_CMP && (diff < 0)) { 4516 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4517 } 4518 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4519 || (dev->inq_flags & SID_CmdQue) != 0) 4520 dev->tag_saved_openings = newopenings; 4521 /* Adjust the global limit */ 4522 dev->sim->max_ccbs += diff; 4523 return (result); 4524 } 4525 4526 static struct cam_eb * 4527 xpt_find_bus(path_id_t path_id) 4528 { 4529 struct cam_eb *bus; 4530 4531 xpt_lock_buses(); 4532 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4533 bus != NULL; 4534 bus = TAILQ_NEXT(bus, links)) { 4535 if (bus->path_id == path_id) { 4536 bus->refcount++; 4537 break; 4538 } 4539 } 4540 xpt_unlock_buses(); 4541 return (bus); 4542 } 4543 4544 static struct cam_et * 4545 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4546 { 4547 struct cam_et *target; 4548 4549 mtx_assert(bus->sim->mtx, MA_OWNED); 4550 for (target = TAILQ_FIRST(&bus->et_entries); 4551 target != NULL; 4552 target = TAILQ_NEXT(target, links)) { 4553 if (target->target_id == target_id) { 4554 target->refcount++; 4555 break; 4556 } 4557 } 4558 return (target); 4559 } 4560 4561 static struct cam_ed * 4562 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4563 { 4564 struct cam_ed *device; 4565 4566 mtx_assert(target->bus->sim->mtx, MA_OWNED); 4567 for (device = TAILQ_FIRST(&target->ed_entries); 4568 device != NULL; 4569 device = TAILQ_NEXT(device, links)) { 4570 if (device->lun_id == lun_id) { 4571 device->refcount++; 4572 break; 4573 } 4574 } 4575 return (device); 4576 } 4577 4578 void 4579 xpt_start_tags(struct cam_path *path) 4580 { 4581 struct ccb_relsim crs; 4582 struct cam_ed *device; 4583 struct cam_sim *sim; 4584 int newopenings; 4585 4586 device = path->device; 4587 sim = path->bus->sim; 4588 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4589 xpt_freeze_devq(path, /*count*/1); 4590 device->inq_flags |= SID_CmdQue; 4591 if (device->tag_saved_openings != 0) 4592 newopenings = device->tag_saved_openings; 4593 else 4594 newopenings = min(device->maxtags, 4595 sim->max_tagged_dev_openings); 4596 xpt_dev_ccbq_resize(path, newopenings); 4597 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4598 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4599 crs.ccb_h.func_code = XPT_REL_SIMQ; 4600 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4601 crs.openings 4602 = crs.release_timeout 4603 = crs.qfrozen_cnt 4604 = 0; 4605 xpt_action((union ccb *)&crs); 4606 } 4607 4608 void 4609 xpt_stop_tags(struct cam_path *path) 4610 { 4611 struct ccb_relsim crs; 4612 struct cam_ed *device; 4613 struct cam_sim *sim; 4614 4615 device = path->device; 4616 sim = path->bus->sim; 4617 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4618 device->tag_delay_count = 0; 4619 xpt_freeze_devq(path, /*count*/1); 4620 device->inq_flags &= ~SID_CmdQue; 4621 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4622 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4623 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4624 crs.ccb_h.func_code = XPT_REL_SIMQ; 4625 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4626 crs.openings 4627 = crs.release_timeout 4628 = crs.qfrozen_cnt 4629 = 0; 4630 xpt_action((union ccb *)&crs); 4631 } 4632 4633 static void 4634 xpt_boot_delay(void *arg) 4635 { 4636 4637 xpt_release_boot(); 4638 } 4639 4640 static void 4641 xpt_config(void *arg) 4642 { 4643 /* 4644 * Now that interrupts are enabled, go find our devices 4645 */ 4646 4647 /* Setup debugging path */ 4648 if (cam_dflags != CAM_DEBUG_NONE) { 4649 if (xpt_create_path_unlocked(&cam_dpath, NULL, 4650 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4651 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4652 printf("xpt_config: xpt_create_path() failed for debug" 4653 " target %d:%d:%d, debugging disabled\n", 4654 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4655 cam_dflags = CAM_DEBUG_NONE; 4656 } 4657 } else 4658 cam_dpath = NULL; 4659 4660 periphdriver_init(1); 4661 xpt_hold_boot(); 4662 callout_init(&xsoftc.boot_callout, 1); 4663 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4664 xpt_boot_delay, NULL); 4665 /* Fire up rescan thread. */ 4666 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4667 printf("xpt_config: failed to create rescan thread.\n"); 4668 } 4669 } 4670 4671 void 4672 xpt_hold_boot(void) 4673 { 4674 xpt_lock_buses(); 4675 xsoftc.buses_to_config++; 4676 xpt_unlock_buses(); 4677 } 4678 4679 void 4680 xpt_release_boot(void) 4681 { 4682 xpt_lock_buses(); 4683 xsoftc.buses_to_config--; 4684 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4685 struct xpt_task *task; 4686 4687 xsoftc.buses_config_done = 1; 4688 xpt_unlock_buses(); 4689 /* Call manually because we don't have any busses */ 4690 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4691 if (task != NULL) { 4692 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4693 taskqueue_enqueue(taskqueue_thread, &task->task); 4694 } 4695 } else 4696 xpt_unlock_buses(); 4697 } 4698 4699 /* 4700 * If the given device only has one peripheral attached to it, and if that 4701 * peripheral is the passthrough driver, announce it. This insures that the 4702 * user sees some sort of announcement for every peripheral in their system. 4703 */ 4704 static int 4705 xptpassannouncefunc(struct cam_ed *device, void *arg) 4706 { 4707 struct cam_periph *periph; 4708 int i; 4709 4710 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4711 periph = SLIST_NEXT(periph, periph_links), i++); 4712 4713 periph = SLIST_FIRST(&device->periphs); 4714 if ((i == 1) 4715 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4716 xpt_announce_periph(periph, NULL); 4717 4718 return(1); 4719 } 4720 4721 static void 4722 xpt_finishconfig_task(void *context, int pending) 4723 { 4724 4725 periphdriver_init(2); 4726 /* 4727 * Check for devices with no "standard" peripheral driver 4728 * attached. For any devices like that, announce the 4729 * passthrough driver so the user will see something. 4730 */ 4731 if (!bootverbose) 4732 xpt_for_all_devices(xptpassannouncefunc, NULL); 4733 4734 /* Release our hook so that the boot can continue. */ 4735 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4736 free(xsoftc.xpt_config_hook, M_CAMXPT); 4737 xsoftc.xpt_config_hook = NULL; 4738 4739 free(context, M_CAMXPT); 4740 } 4741 4742 cam_status 4743 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4744 struct cam_path *path) 4745 { 4746 struct ccb_setasync csa; 4747 cam_status status; 4748 int xptpath = 0; 4749 4750 if (path == NULL) { 4751 mtx_lock(&xsoftc.xpt_lock); 4752 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4753 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4754 if (status != CAM_REQ_CMP) { 4755 mtx_unlock(&xsoftc.xpt_lock); 4756 return (status); 4757 } 4758 xptpath = 1; 4759 } 4760 4761 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4762 csa.ccb_h.func_code = XPT_SASYNC_CB; 4763 csa.event_enable = event; 4764 csa.callback = cbfunc; 4765 csa.callback_arg = cbarg; 4766 xpt_action((union ccb *)&csa); 4767 status = csa.ccb_h.status; 4768 4769 if (xptpath) { 4770 xpt_free_path(path); 4771 mtx_unlock(&xsoftc.xpt_lock); 4772 } 4773 4774 if ((status == CAM_REQ_CMP) && 4775 (csa.event_enable & AC_FOUND_DEVICE)) { 4776 /* 4777 * Get this peripheral up to date with all 4778 * the currently existing devices. 4779 */ 4780 xpt_for_all_devices(xptsetasyncfunc, &csa); 4781 } 4782 if ((status == CAM_REQ_CMP) && 4783 (csa.event_enable & AC_PATH_REGISTERED)) { 4784 /* 4785 * Get this peripheral up to date with all 4786 * the currently existing busses. 4787 */ 4788 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4789 } 4790 4791 return (status); 4792 } 4793 4794 static void 4795 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4796 { 4797 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4798 4799 switch (work_ccb->ccb_h.func_code) { 4800 /* Common cases first */ 4801 case XPT_PATH_INQ: /* Path routing inquiry */ 4802 { 4803 struct ccb_pathinq *cpi; 4804 4805 cpi = &work_ccb->cpi; 4806 cpi->version_num = 1; /* XXX??? */ 4807 cpi->hba_inquiry = 0; 4808 cpi->target_sprt = 0; 4809 cpi->hba_misc = 0; 4810 cpi->hba_eng_cnt = 0; 4811 cpi->max_target = 0; 4812 cpi->max_lun = 0; 4813 cpi->initiator_id = 0; 4814 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4815 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4816 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4817 cpi->unit_number = sim->unit_number; 4818 cpi->bus_id = sim->bus_id; 4819 cpi->base_transfer_speed = 0; 4820 cpi->protocol = PROTO_UNSPECIFIED; 4821 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4822 cpi->transport = XPORT_UNSPECIFIED; 4823 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4824 cpi->ccb_h.status = CAM_REQ_CMP; 4825 xpt_done(work_ccb); 4826 break; 4827 } 4828 default: 4829 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4830 xpt_done(work_ccb); 4831 break; 4832 } 4833 } 4834 4835 /* 4836 * The xpt as a "controller" has no interrupt sources, so polling 4837 * is a no-op. 4838 */ 4839 static void 4840 xptpoll(struct cam_sim *sim) 4841 { 4842 } 4843 4844 void 4845 xpt_lock_buses(void) 4846 { 4847 mtx_lock(&xsoftc.xpt_topo_lock); 4848 } 4849 4850 void 4851 xpt_unlock_buses(void) 4852 { 4853 mtx_unlock(&xsoftc.xpt_topo_lock); 4854 } 4855 4856 static void 4857 camisr(void *dummy) 4858 { 4859 cam_simq_t queue; 4860 struct cam_sim *sim; 4861 4862 mtx_lock(&cam_simq_lock); 4863 TAILQ_INIT(&queue); 4864 while (!TAILQ_EMPTY(&cam_simq)) { 4865 TAILQ_CONCAT(&queue, &cam_simq, links); 4866 mtx_unlock(&cam_simq_lock); 4867 4868 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4869 TAILQ_REMOVE(&queue, sim, links); 4870 CAM_SIM_LOCK(sim); 4871 camisr_runqueue(&sim->sim_doneq); 4872 sim->flags &= ~CAM_SIM_ON_DONEQ; 4873 CAM_SIM_UNLOCK(sim); 4874 } 4875 mtx_lock(&cam_simq_lock); 4876 } 4877 mtx_unlock(&cam_simq_lock); 4878 } 4879 4880 static void 4881 camisr_runqueue(void *V_queue) 4882 { 4883 cam_isrq_t *queue = V_queue; 4884 struct ccb_hdr *ccb_h; 4885 4886 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 4887 int runq; 4888 4889 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 4890 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4891 4892 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 4893 ("camisr\n")); 4894 4895 runq = FALSE; 4896 4897 if (ccb_h->flags & CAM_HIGH_POWER) { 4898 struct highpowerlist *hphead; 4899 union ccb *send_ccb; 4900 4901 mtx_lock(&xsoftc.xpt_lock); 4902 hphead = &xsoftc.highpowerq; 4903 4904 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 4905 4906 /* 4907 * Increment the count since this command is done. 4908 */ 4909 xsoftc.num_highpower++; 4910 4911 /* 4912 * Any high powered commands queued up? 4913 */ 4914 if (send_ccb != NULL) { 4915 4916 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 4917 mtx_unlock(&xsoftc.xpt_lock); 4918 4919 xpt_release_devq(send_ccb->ccb_h.path, 4920 /*count*/1, /*runqueue*/TRUE); 4921 } else 4922 mtx_unlock(&xsoftc.xpt_lock); 4923 } 4924 4925 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 4926 struct cam_ed *dev; 4927 4928 dev = ccb_h->path->device; 4929 4930 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 4931 ccb_h->path->bus->sim->devq->send_active--; 4932 ccb_h->path->bus->sim->devq->send_openings++; 4933 runq = TRUE; 4934 4935 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 4936 && (dev->ccbq.dev_active == 0))) { 4937 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 4938 xpt_release_devq(ccb_h->path, /*count*/1, 4939 /*run_queue*/FALSE); 4940 } 4941 4942 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 4943 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 4944 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4945 xpt_release_devq(ccb_h->path, /*count*/1, 4946 /*run_queue*/FALSE); 4947 } 4948 4949 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4950 && (--dev->tag_delay_count == 0)) 4951 xpt_start_tags(ccb_h->path); 4952 if (!device_is_queued(dev)) { 4953 (void)xpt_schedule_devq( 4954 ccb_h->path->bus->sim->devq, dev); 4955 } 4956 } 4957 4958 if (ccb_h->status & CAM_RELEASE_SIMQ) { 4959 xpt_release_simq(ccb_h->path->bus->sim, 4960 /*run_queue*/TRUE); 4961 ccb_h->status &= ~CAM_RELEASE_SIMQ; 4962 runq = FALSE; 4963 } 4964 4965 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 4966 && (ccb_h->status & CAM_DEV_QFRZN)) { 4967 xpt_release_devq(ccb_h->path, /*count*/1, 4968 /*run_queue*/TRUE); 4969 ccb_h->status &= ~CAM_DEV_QFRZN; 4970 } else if (runq) { 4971 xpt_run_devq(ccb_h->path->bus->sim->devq); 4972 } 4973 4974 /* Call the peripheral driver's callback */ 4975 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 4976 } 4977 } 4978