1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 50 #ifdef PC98 51 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 52 #endif 53 54 #include <cam/cam.h> 55 #include <cam/cam_ccb.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_debug.h> 62 63 #include <cam/scsi/scsi_all.h> 64 #include <cam/scsi/scsi_message.h> 65 #include <cam/scsi/scsi_pass.h> 66 #include "opt_cam.h" 67 68 /* Datastructures internal to the xpt layer */ 69 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 70 71 /* 72 * Definition of an async handler callback block. These are used to add 73 * SIMs and peripherals to the async callback lists. 74 */ 75 struct async_node { 76 SLIST_ENTRY(async_node) links; 77 u_int32_t event_enable; /* Async Event enables */ 78 void (*callback)(void *arg, u_int32_t code, 79 struct cam_path *path, void *args); 80 void *callback_arg; 81 }; 82 83 SLIST_HEAD(async_list, async_node); 84 SLIST_HEAD(periph_list, cam_periph); 85 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 86 87 /* 88 * This is the maximum number of high powered commands (e.g. start unit) 89 * that can be outstanding at a particular time. 90 */ 91 #ifndef CAM_MAX_HIGHPOWER 92 #define CAM_MAX_HIGHPOWER 4 93 #endif 94 95 /* number of high powered commands that can go through right now */ 96 static int num_highpower = CAM_MAX_HIGHPOWER; 97 98 /* 99 * Structure for queueing a device in a run queue. 100 * There is one run queue for allocating new ccbs, 101 * and another for sending ccbs to the controller. 102 */ 103 struct cam_ed_qinfo { 104 cam_pinfo pinfo; 105 struct cam_ed *device; 106 }; 107 108 /* 109 * The CAM EDT (Existing Device Table) contains the device information for 110 * all devices for all busses in the system. The table contains a 111 * cam_ed structure for each device on the bus. 112 */ 113 struct cam_ed { 114 TAILQ_ENTRY(cam_ed) links; 115 struct cam_ed_qinfo alloc_ccb_entry; 116 struct cam_ed_qinfo send_ccb_entry; 117 struct cam_et *target; 118 lun_id_t lun_id; 119 struct camq drvq; /* 120 * Queue of type drivers wanting to do 121 * work on this device. 122 */ 123 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 124 struct async_list asyncs; /* Async callback info for this B/T/L */ 125 struct periph_list periphs; /* All attached devices */ 126 u_int generation; /* Generation number */ 127 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 128 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 129 /* Storage for the inquiry data */ 130 #ifdef CAM_NEW_TRAN_CODE 131 cam_proto protocol; 132 u_int protocol_version; 133 cam_xport transport; 134 u_int transport_version; 135 #endif /* CAM_NEW_TRAN_CODE */ 136 struct scsi_inquiry_data inq_data; 137 u_int8_t inq_flags; /* 138 * Current settings for inquiry flags. 139 * This allows us to override settings 140 * like disconnection and tagged 141 * queuing for a device. 142 */ 143 u_int8_t queue_flags; /* Queue flags from the control page */ 144 u_int8_t serial_num_len; 145 u_int8_t *serial_num; 146 u_int32_t qfrozen_cnt; 147 u_int32_t flags; 148 #define CAM_DEV_UNCONFIGURED 0x01 149 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 150 #define CAM_DEV_REL_ON_COMPLETE 0x04 151 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 152 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 153 #define CAM_DEV_TAG_AFTER_COUNT 0x20 154 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 155 u_int32_t tag_delay_count; 156 #define CAM_TAG_DELAY_COUNT 5 157 u_int32_t tag_saved_openings; 158 u_int32_t refcount; 159 struct callout_handle c_handle; 160 }; 161 162 /* 163 * Each target is represented by an ET (Existing Target). These 164 * entries are created when a target is successfully probed with an 165 * identify, and removed when a device fails to respond after a number 166 * of retries, or a bus rescan finds the device missing. 167 */ 168 struct cam_et { 169 TAILQ_HEAD(, cam_ed) ed_entries; 170 TAILQ_ENTRY(cam_et) links; 171 struct cam_eb *bus; 172 target_id_t target_id; 173 u_int32_t refcount; 174 u_int generation; 175 struct timeval last_reset; 176 }; 177 178 /* 179 * Each bus is represented by an EB (Existing Bus). These entries 180 * are created by calls to xpt_bus_register and deleted by calls to 181 * xpt_bus_deregister. 182 */ 183 struct cam_eb { 184 TAILQ_HEAD(, cam_et) et_entries; 185 TAILQ_ENTRY(cam_eb) links; 186 path_id_t path_id; 187 struct cam_sim *sim; 188 struct timeval last_reset; 189 u_int32_t flags; 190 #define CAM_EB_RUNQ_SCHEDULED 0x01 191 u_int32_t refcount; 192 u_int generation; 193 }; 194 195 struct cam_path { 196 struct cam_periph *periph; 197 struct cam_eb *bus; 198 struct cam_et *target; 199 struct cam_ed *device; 200 }; 201 202 struct xpt_quirk_entry { 203 struct scsi_inquiry_pattern inq_pat; 204 u_int8_t quirks; 205 #define CAM_QUIRK_NOLUNS 0x01 206 #define CAM_QUIRK_NOSERIAL 0x02 207 #define CAM_QUIRK_HILUNS 0x04 208 #define CAM_QUIRK_NOHILUNS 0x08 209 u_int mintags; 210 u_int maxtags; 211 }; 212 213 static int cam_srch_hi = 0; 214 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 215 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 216 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 217 sysctl_cam_search_luns, "I", 218 "allow search above LUN 7 for SCSI3 and greater devices"); 219 220 #define CAM_SCSI2_MAXLUN 8 221 /* 222 * If we're not quirked to search <= the first 8 luns 223 * and we are either quirked to search above lun 8, 224 * or we're > SCSI-2 and we've enabled hilun searching, 225 * or we're > SCSI-2 and the last lun was a success, 226 * we can look for luns above lun 8. 227 */ 228 #define CAN_SRCH_HI_SPARSE(dv) \ 229 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 230 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 231 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 232 233 #define CAN_SRCH_HI_DENSE(dv) \ 234 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 235 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 236 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 237 238 typedef enum { 239 XPT_FLAG_OPEN = 0x01 240 } xpt_flags; 241 242 struct xpt_softc { 243 xpt_flags flags; 244 u_int32_t generation; 245 }; 246 247 static const char quantum[] = "QUANTUM"; 248 static const char sony[] = "SONY"; 249 static const char west_digital[] = "WDIGTL"; 250 static const char samsung[] = "SAMSUNG"; 251 static const char seagate[] = "SEAGATE"; 252 static const char microp[] = "MICROP"; 253 254 static struct xpt_quirk_entry xpt_quirk_table[] = 255 { 256 { 257 /* Reports QUEUE FULL for temporary resource shortages */ 258 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 259 /*quirks*/0, /*mintags*/24, /*maxtags*/32 260 }, 261 { 262 /* Reports QUEUE FULL for temporary resource shortages */ 263 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 264 /*quirks*/0, /*mintags*/24, /*maxtags*/32 265 }, 266 { 267 /* Reports QUEUE FULL for temporary resource shortages */ 268 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 269 /*quirks*/0, /*mintags*/24, /*maxtags*/32 270 }, 271 { 272 /* Broken tagged queuing drive */ 273 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 274 /*quirks*/0, /*mintags*/0, /*maxtags*/0 275 }, 276 { 277 /* Broken tagged queuing drive */ 278 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 279 /*quirks*/0, /*mintags*/0, /*maxtags*/0 280 }, 281 { 282 /* Broken tagged queuing drive */ 283 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 284 /*quirks*/0, /*mintags*/0, /*maxtags*/0 285 }, 286 { 287 /* 288 * Unfortunately, the Quantum Atlas III has the same 289 * problem as the Atlas II drives above. 290 * Reported by: "Johan Granlund" <johan@granlund.nu> 291 * 292 * For future reference, the drive with the problem was: 293 * QUANTUM QM39100TD-SW N1B0 294 * 295 * It's possible that Quantum will fix the problem in later 296 * firmware revisions. If that happens, the quirk entry 297 * will need to be made specific to the firmware revisions 298 * with the problem. 299 * 300 */ 301 /* Reports QUEUE FULL for temporary resource shortages */ 302 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 303 /*quirks*/0, /*mintags*/24, /*maxtags*/32 304 }, 305 { 306 /* 307 * 18 Gig Atlas III, same problem as the 9G version. 308 * Reported by: Andre Albsmeier 309 * <andre.albsmeier@mchp.siemens.de> 310 * 311 * For future reference, the drive with the problem was: 312 * QUANTUM QM318000TD-S N491 313 */ 314 /* Reports QUEUE FULL for temporary resource shortages */ 315 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 316 /*quirks*/0, /*mintags*/24, /*maxtags*/32 317 }, 318 { 319 /* 320 * Broken tagged queuing drive 321 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 322 * and: Martin Renters <martin@tdc.on.ca> 323 */ 324 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 325 /*quirks*/0, /*mintags*/0, /*maxtags*/0 326 }, 327 /* 328 * The Seagate Medalist Pro drives have very poor write 329 * performance with anything more than 2 tags. 330 * 331 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 332 * Drive: <SEAGATE ST36530N 1444> 333 * 334 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 335 * Drive: <SEAGATE ST34520W 1281> 336 * 337 * No one has actually reported that the 9G version 338 * (ST39140*) of the Medalist Pro has the same problem, but 339 * we're assuming that it does because the 4G and 6.5G 340 * versions of the drive are broken. 341 */ 342 { 343 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 344 /*quirks*/0, /*mintags*/2, /*maxtags*/2 345 }, 346 { 347 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 348 /*quirks*/0, /*mintags*/2, /*maxtags*/2 349 }, 350 { 351 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 352 /*quirks*/0, /*mintags*/2, /*maxtags*/2 353 }, 354 { 355 /* 356 * Slow when tagged queueing is enabled. Write performance 357 * steadily drops off with more and more concurrent 358 * transactions. Best sequential write performance with 359 * tagged queueing turned off and write caching turned on. 360 * 361 * PR: kern/10398 362 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 363 * Drive: DCAS-34330 w/ "S65A" firmware. 364 * 365 * The drive with the problem had the "S65A" firmware 366 * revision, and has also been reported (by Stephen J. 367 * Roznowski <sjr@home.net>) for a drive with the "S61A" 368 * firmware revision. 369 * 370 * Although no one has reported problems with the 2 gig 371 * version of the DCAS drive, the assumption is that it 372 * has the same problems as the 4 gig version. Therefore 373 * this quirk entries disables tagged queueing for all 374 * DCAS drives. 375 */ 376 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 377 /*quirks*/0, /*mintags*/0, /*maxtags*/0 378 }, 379 { 380 /* Broken tagged queuing drive */ 381 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 382 /*quirks*/0, /*mintags*/0, /*maxtags*/0 383 }, 384 { 385 /* Broken tagged queuing drive */ 386 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 387 /*quirks*/0, /*mintags*/0, /*maxtags*/0 388 }, 389 { 390 /* 391 * Broken tagged queuing drive. 392 * Submitted by: 393 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 394 * in PR kern/9535 395 */ 396 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 397 /*quirks*/0, /*mintags*/0, /*maxtags*/0 398 }, 399 { 400 /* 401 * Slow when tagged queueing is enabled. (1.5MB/sec versus 402 * 8MB/sec.) 403 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 404 * Best performance with these drives is achieved with 405 * tagged queueing turned off, and write caching turned on. 406 */ 407 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 408 /*quirks*/0, /*mintags*/0, /*maxtags*/0 409 }, 410 { 411 /* 412 * Slow when tagged queueing is enabled. (1.5MB/sec versus 413 * 8MB/sec.) 414 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 415 * Best performance with these drives is achieved with 416 * tagged queueing turned off, and write caching turned on. 417 */ 418 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 419 /*quirks*/0, /*mintags*/0, /*maxtags*/0 420 }, 421 { 422 /* 423 * Doesn't handle queue full condition correctly, 424 * so we need to limit maxtags to what the device 425 * can handle instead of determining this automatically. 426 */ 427 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 428 /*quirks*/0, /*mintags*/2, /*maxtags*/32 429 }, 430 { 431 /* Really only one LUN */ 432 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 433 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 434 }, 435 { 436 /* I can't believe we need a quirk for DPT volumes. */ 437 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 438 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 439 /*mintags*/0, /*maxtags*/255 440 }, 441 { 442 /* 443 * Many Sony CDROM drives don't like multi-LUN probing. 444 */ 445 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 446 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 447 }, 448 { 449 /* 450 * This drive doesn't like multiple LUN probing. 451 * Submitted by: Parag Patel <parag@cgt.com> 452 */ 453 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 454 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 455 }, 456 { 457 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 458 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 459 }, 460 { 461 /* 462 * The 8200 doesn't like multi-lun probing, and probably 463 * don't like serial number requests either. 464 */ 465 { 466 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 467 "EXB-8200*", "*" 468 }, 469 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 470 }, 471 { 472 /* 473 * Let's try the same as above, but for a drive that says 474 * it's an IPL-6860 but is actually an EXB 8200. 475 */ 476 { 477 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 478 "IPL-6860*", "*" 479 }, 480 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 481 }, 482 { 483 /* 484 * These Hitachi drives don't like multi-lun probing. 485 * The PR submitter has a DK319H, but says that the Linux 486 * kernel has a similar work-around for the DK312 and DK314, 487 * so all DK31* drives are quirked here. 488 * PR: misc/18793 489 * Submitted by: Paul Haddad <paul@pth.com> 490 */ 491 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 492 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 493 }, 494 { 495 /* 496 * The Hitachi CJ series with J8A8 firmware apparantly has 497 * problems with tagged commands. 498 * PR: 23536 499 * Reported by: amagai@nue.org 500 */ 501 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 502 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 503 }, 504 { 505 /* 506 * These are the large storage arrays. 507 * Submitted by: William Carrel <william.carrel@infospace.com> 508 */ 509 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 510 CAM_QUIRK_HILUNS, 2, 1024 511 }, 512 { 513 /* 514 * This old revision of the TDC3600 is also SCSI-1, and 515 * hangs upon serial number probing. 516 */ 517 { 518 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 519 " TDC 3600", "U07:" 520 }, 521 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 522 }, 523 { 524 /* 525 * Maxtor Personal Storage 3000XT (Firewire) 526 * hangs upon serial number probing. 527 */ 528 { 529 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 530 "1394 storage", "*" 531 }, 532 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 533 }, 534 { 535 /* 536 * Would repond to all LUNs if asked for. 537 */ 538 { 539 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 540 "CP150", "*" 541 }, 542 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 543 }, 544 { 545 /* 546 * Would repond to all LUNs if asked for. 547 */ 548 { 549 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 550 "96X2*", "*" 551 }, 552 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 553 }, 554 { 555 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 556 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 557 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 558 }, 559 { 560 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 561 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 562 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 563 }, 564 { 565 /* TeraSolutions special settings for TRC-22 RAID */ 566 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 567 /*quirks*/0, /*mintags*/55, /*maxtags*/255 568 }, 569 { 570 /* Veritas Storage Appliance */ 571 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 572 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 573 }, 574 { 575 /* 576 * Would respond to all LUNs. Device type and removable 577 * flag are jumper-selectable. 578 */ 579 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 580 "Tahiti 1", "*" 581 }, 582 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 583 }, 584 { 585 /* EasyRAID E5A aka. areca ARC-6010 */ 586 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 587 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 588 }, 589 { 590 /* Default tagged queuing parameters for all devices */ 591 { 592 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 593 /*vendor*/"*", /*product*/"*", /*revision*/"*" 594 }, 595 /*quirks*/0, /*mintags*/2, /*maxtags*/255 596 }, 597 }; 598 599 static const int xpt_quirk_table_size = 600 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 601 602 typedef enum { 603 DM_RET_COPY = 0x01, 604 DM_RET_FLAG_MASK = 0x0f, 605 DM_RET_NONE = 0x00, 606 DM_RET_STOP = 0x10, 607 DM_RET_DESCEND = 0x20, 608 DM_RET_ERROR = 0x30, 609 DM_RET_ACTION_MASK = 0xf0 610 } dev_match_ret; 611 612 typedef enum { 613 XPT_DEPTH_BUS, 614 XPT_DEPTH_TARGET, 615 XPT_DEPTH_DEVICE, 616 XPT_DEPTH_PERIPH 617 } xpt_traverse_depth; 618 619 struct xpt_traverse_config { 620 xpt_traverse_depth depth; 621 void *tr_func; 622 void *tr_arg; 623 }; 624 625 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 626 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 627 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 628 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 629 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 630 631 /* Transport layer configuration information */ 632 static struct xpt_softc xsoftc; 633 634 /* Queues for our software interrupt handler */ 635 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 636 static cam_isrq_t cam_bioq; 637 static struct mtx cam_bioq_lock; 638 639 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 640 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 641 static u_int xpt_max_ccbs; /* 642 * Maximum size of ccb pool. Modified as 643 * devices are added/removed or have their 644 * opening counts changed. 645 */ 646 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 647 648 struct cam_periph *xpt_periph; 649 650 static periph_init_t xpt_periph_init; 651 652 static periph_init_t probe_periph_init; 653 654 static struct periph_driver xpt_driver = 655 { 656 xpt_periph_init, "xpt", 657 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 658 }; 659 660 static struct periph_driver probe_driver = 661 { 662 probe_periph_init, "probe", 663 TAILQ_HEAD_INITIALIZER(probe_driver.units) 664 }; 665 666 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 667 PERIPHDRIVER_DECLARE(probe, probe_driver); 668 669 670 static d_open_t xptopen; 671 static d_close_t xptclose; 672 static d_ioctl_t xptioctl; 673 674 static struct cdevsw xpt_cdevsw = { 675 .d_version = D_VERSION, 676 .d_flags = D_NEEDGIANT, 677 .d_open = xptopen, 678 .d_close = xptclose, 679 .d_ioctl = xptioctl, 680 .d_name = "xpt", 681 }; 682 683 static struct intr_config_hook *xpt_config_hook; 684 685 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb); 686 static void dead_sim_poll(struct cam_sim *sim); 687 688 /* Dummy SIM that is used when the real one has gone. */ 689 static struct cam_sim cam_dead_sim = { 690 .sim_action = dead_sim_action, 691 .sim_poll = dead_sim_poll, 692 .sim_name = "dead_sim", 693 }; 694 695 #define SIM_DEAD(sim) ((sim) == &cam_dead_sim) 696 697 /* Registered busses */ 698 static TAILQ_HEAD(,cam_eb) xpt_busses; 699 static u_int bus_generation; 700 701 /* Storage for debugging datastructures */ 702 #ifdef CAMDEBUG 703 struct cam_path *cam_dpath; 704 u_int32_t cam_dflags; 705 u_int32_t cam_debug_delay; 706 #endif 707 708 /* Pointers to software interrupt handlers */ 709 static void *cambio_ih; 710 711 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 712 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 713 #endif 714 715 /* 716 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 717 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 718 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 719 */ 720 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 721 || defined(CAM_DEBUG_LUN) 722 #ifdef CAMDEBUG 723 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 724 || !defined(CAM_DEBUG_LUN) 725 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 726 and CAM_DEBUG_LUN" 727 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 728 #else /* !CAMDEBUG */ 729 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 730 #endif /* CAMDEBUG */ 731 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 732 733 /* Our boot-time initialization hook */ 734 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 735 736 static moduledata_t cam_moduledata = { 737 "cam", 738 cam_module_event_handler, 739 NULL 740 }; 741 742 static void xpt_init(void *); 743 744 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 745 MODULE_VERSION(cam, 1); 746 747 748 static cam_status xpt_compile_path(struct cam_path *new_path, 749 struct cam_periph *perph, 750 path_id_t path_id, 751 target_id_t target_id, 752 lun_id_t lun_id); 753 754 static void xpt_release_path(struct cam_path *path); 755 756 static void xpt_async_bcast(struct async_list *async_head, 757 u_int32_t async_code, 758 struct cam_path *path, 759 void *async_arg); 760 static void xpt_dev_async(u_int32_t async_code, 761 struct cam_eb *bus, 762 struct cam_et *target, 763 struct cam_ed *device, 764 void *async_arg); 765 static path_id_t xptnextfreepathid(void); 766 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 767 static union ccb *xpt_get_ccb(struct cam_ed *device); 768 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 769 u_int32_t new_priority); 770 static void xpt_run_dev_allocq(struct cam_eb *bus); 771 static void xpt_run_dev_sendq(struct cam_eb *bus); 772 static timeout_t xpt_release_devq_timeout; 773 static timeout_t xpt_release_simq_timeout; 774 static void xpt_release_bus(struct cam_eb *bus); 775 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 776 int run_queue); 777 static struct cam_et* 778 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 779 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 780 static struct cam_ed* 781 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 782 lun_id_t lun_id); 783 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 784 struct cam_ed *device); 785 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 786 static struct cam_eb* 787 xpt_find_bus(path_id_t path_id); 788 static struct cam_et* 789 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 790 static struct cam_ed* 791 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 792 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 793 static void xpt_scan_lun(struct cam_periph *periph, 794 struct cam_path *path, cam_flags flags, 795 union ccb *ccb); 796 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 797 static xpt_busfunc_t xptconfigbuscountfunc; 798 static xpt_busfunc_t xptconfigfunc; 799 static void xpt_config(void *arg); 800 static xpt_devicefunc_t xptpassannouncefunc; 801 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 802 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 803 static void xptpoll(struct cam_sim *sim); 804 static void camisr(void *); 805 #if 0 806 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 807 static void xptasync(struct cam_periph *periph, 808 u_int32_t code, cam_path *path); 809 #endif 810 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 811 u_int num_patterns, struct cam_eb *bus); 812 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 813 u_int num_patterns, 814 struct cam_ed *device); 815 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 816 u_int num_patterns, 817 struct cam_periph *periph); 818 static xpt_busfunc_t xptedtbusfunc; 819 static xpt_targetfunc_t xptedttargetfunc; 820 static xpt_devicefunc_t xptedtdevicefunc; 821 static xpt_periphfunc_t xptedtperiphfunc; 822 static xpt_pdrvfunc_t xptplistpdrvfunc; 823 static xpt_periphfunc_t xptplistperiphfunc; 824 static int xptedtmatch(struct ccb_dev_match *cdm); 825 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 826 static int xptbustraverse(struct cam_eb *start_bus, 827 xpt_busfunc_t *tr_func, void *arg); 828 static int xpttargettraverse(struct cam_eb *bus, 829 struct cam_et *start_target, 830 xpt_targetfunc_t *tr_func, void *arg); 831 static int xptdevicetraverse(struct cam_et *target, 832 struct cam_ed *start_device, 833 xpt_devicefunc_t *tr_func, void *arg); 834 static int xptperiphtraverse(struct cam_ed *device, 835 struct cam_periph *start_periph, 836 xpt_periphfunc_t *tr_func, void *arg); 837 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 838 xpt_pdrvfunc_t *tr_func, void *arg); 839 static int xptpdperiphtraverse(struct periph_driver **pdrv, 840 struct cam_periph *start_periph, 841 xpt_periphfunc_t *tr_func, 842 void *arg); 843 static xpt_busfunc_t xptdefbusfunc; 844 static xpt_targetfunc_t xptdeftargetfunc; 845 static xpt_devicefunc_t xptdefdevicefunc; 846 static xpt_periphfunc_t xptdefperiphfunc; 847 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 848 #ifdef notusedyet 849 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 850 void *arg); 851 #endif 852 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 853 void *arg); 854 #ifdef notusedyet 855 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 856 void *arg); 857 #endif 858 static xpt_devicefunc_t xptsetasyncfunc; 859 static xpt_busfunc_t xptsetasyncbusfunc; 860 static cam_status xptregister(struct cam_periph *periph, 861 void *arg); 862 static cam_status proberegister(struct cam_periph *periph, 863 void *arg); 864 static void probeschedule(struct cam_periph *probe_periph); 865 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 866 static void proberequestdefaultnegotiation(struct cam_periph *periph); 867 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 868 static void probecleanup(struct cam_periph *periph); 869 static void xpt_find_quirk(struct cam_ed *device); 870 #ifdef CAM_NEW_TRAN_CODE 871 static void xpt_devise_transport(struct cam_path *path); 872 #endif /* CAM_NEW_TRAN_CODE */ 873 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 874 struct cam_ed *device, 875 int async_update); 876 static void xpt_toggle_tags(struct cam_path *path); 877 static void xpt_start_tags(struct cam_path *path); 878 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 879 struct cam_ed *dev); 880 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 881 struct cam_ed *dev); 882 static __inline int periph_is_queued(struct cam_periph *periph); 883 static __inline int device_is_alloc_queued(struct cam_ed *device); 884 static __inline int device_is_send_queued(struct cam_ed *device); 885 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 886 887 static __inline int 888 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 889 { 890 int retval; 891 892 if (dev->ccbq.devq_openings > 0) { 893 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 894 cam_ccbq_resize(&dev->ccbq, 895 dev->ccbq.dev_openings 896 + dev->ccbq.dev_active); 897 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 898 } 899 /* 900 * The priority of a device waiting for CCB resources 901 * is that of the the highest priority peripheral driver 902 * enqueued. 903 */ 904 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 905 &dev->alloc_ccb_entry.pinfo, 906 CAMQ_GET_HEAD(&dev->drvq)->priority); 907 } else { 908 retval = 0; 909 } 910 911 return (retval); 912 } 913 914 static __inline int 915 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 916 { 917 int retval; 918 919 if (dev->ccbq.dev_openings > 0) { 920 /* 921 * The priority of a device waiting for controller 922 * resources is that of the the highest priority CCB 923 * enqueued. 924 */ 925 retval = 926 xpt_schedule_dev(&bus->sim->devq->send_queue, 927 &dev->send_ccb_entry.pinfo, 928 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 929 } else { 930 retval = 0; 931 } 932 return (retval); 933 } 934 935 static __inline int 936 periph_is_queued(struct cam_periph *periph) 937 { 938 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 939 } 940 941 static __inline int 942 device_is_alloc_queued(struct cam_ed *device) 943 { 944 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 945 } 946 947 static __inline int 948 device_is_send_queued(struct cam_ed *device) 949 { 950 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 951 } 952 953 static __inline int 954 dev_allocq_is_runnable(struct cam_devq *devq) 955 { 956 /* 957 * Have work to do. 958 * Have space to do more work. 959 * Allowed to do work. 960 */ 961 return ((devq->alloc_queue.qfrozen_cnt == 0) 962 && (devq->alloc_queue.entries > 0) 963 && (devq->alloc_openings > 0)); 964 } 965 966 static void 967 xpt_periph_init() 968 { 969 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 970 } 971 972 static void 973 probe_periph_init() 974 { 975 } 976 977 978 static void 979 xptdone(struct cam_periph *periph, union ccb *done_ccb) 980 { 981 /* Caller will release the CCB */ 982 wakeup(&done_ccb->ccb_h.cbfcnp); 983 } 984 985 static int 986 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 987 { 988 int unit; 989 990 unit = minor(dev) & 0xff; 991 992 /* 993 * Only allow read-write access. 994 */ 995 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 996 return(EPERM); 997 998 /* 999 * We don't allow nonblocking access. 1000 */ 1001 if ((flags & O_NONBLOCK) != 0) { 1002 printf("xpt%d: can't do nonblocking access\n", unit); 1003 return(ENODEV); 1004 } 1005 1006 /* 1007 * We only have one transport layer right now. If someone accesses 1008 * us via something other than minor number 1, point out their 1009 * mistake. 1010 */ 1011 if (unit != 0) { 1012 printf("xptopen: got invalid xpt unit %d\n", unit); 1013 return(ENXIO); 1014 } 1015 1016 /* Mark ourselves open */ 1017 xsoftc.flags |= XPT_FLAG_OPEN; 1018 1019 return(0); 1020 } 1021 1022 static int 1023 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 1024 { 1025 int unit; 1026 1027 unit = minor(dev) & 0xff; 1028 1029 /* 1030 * We only have one transport layer right now. If someone accesses 1031 * us via something other than minor number 1, point out their 1032 * mistake. 1033 */ 1034 if (unit != 0) { 1035 printf("xptclose: got invalid xpt unit %d\n", unit); 1036 return(ENXIO); 1037 } 1038 1039 /* Mark ourselves closed */ 1040 xsoftc.flags &= ~XPT_FLAG_OPEN; 1041 1042 return(0); 1043 } 1044 1045 static int 1046 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1047 { 1048 int unit, error; 1049 1050 error = 0; 1051 unit = minor(dev) & 0xff; 1052 1053 /* 1054 * We only have one transport layer right now. If someone accesses 1055 * us via something other than minor number 1, point out their 1056 * mistake. 1057 */ 1058 if (unit != 0) { 1059 printf("xptioctl: got invalid xpt unit %d\n", unit); 1060 return(ENXIO); 1061 } 1062 1063 switch(cmd) { 1064 /* 1065 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1066 * to accept CCB types that don't quite make sense to send through a 1067 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1068 * in the CAM spec. 1069 */ 1070 case CAMIOCOMMAND: { 1071 union ccb *ccb; 1072 union ccb *inccb; 1073 1074 inccb = (union ccb *)addr; 1075 1076 switch(inccb->ccb_h.func_code) { 1077 case XPT_SCAN_BUS: 1078 case XPT_RESET_BUS: 1079 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1080 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1081 error = EINVAL; 1082 break; 1083 } 1084 /* FALLTHROUGH */ 1085 case XPT_PATH_INQ: 1086 case XPT_ENG_INQ: 1087 case XPT_SCAN_LUN: 1088 1089 ccb = xpt_alloc_ccb(); 1090 1091 /* 1092 * Create a path using the bus, target, and lun the 1093 * user passed in. 1094 */ 1095 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1096 inccb->ccb_h.path_id, 1097 inccb->ccb_h.target_id, 1098 inccb->ccb_h.target_lun) != 1099 CAM_REQ_CMP){ 1100 error = EINVAL; 1101 xpt_free_ccb(ccb); 1102 break; 1103 } 1104 /* Ensure all of our fields are correct */ 1105 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1106 inccb->ccb_h.pinfo.priority); 1107 xpt_merge_ccb(ccb, inccb); 1108 ccb->ccb_h.cbfcnp = xptdone; 1109 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1110 bcopy(ccb, inccb, sizeof(union ccb)); 1111 xpt_free_path(ccb->ccb_h.path); 1112 xpt_free_ccb(ccb); 1113 break; 1114 1115 case XPT_DEBUG: { 1116 union ccb ccb; 1117 1118 /* 1119 * This is an immediate CCB, so it's okay to 1120 * allocate it on the stack. 1121 */ 1122 1123 /* 1124 * Create a path using the bus, target, and lun the 1125 * user passed in. 1126 */ 1127 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1128 inccb->ccb_h.path_id, 1129 inccb->ccb_h.target_id, 1130 inccb->ccb_h.target_lun) != 1131 CAM_REQ_CMP){ 1132 error = EINVAL; 1133 break; 1134 } 1135 /* Ensure all of our fields are correct */ 1136 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1137 inccb->ccb_h.pinfo.priority); 1138 xpt_merge_ccb(&ccb, inccb); 1139 ccb.ccb_h.cbfcnp = xptdone; 1140 xpt_action(&ccb); 1141 bcopy(&ccb, inccb, sizeof(union ccb)); 1142 xpt_free_path(ccb.ccb_h.path); 1143 break; 1144 1145 } 1146 case XPT_DEV_MATCH: { 1147 struct cam_periph_map_info mapinfo; 1148 struct cam_path *old_path; 1149 1150 /* 1151 * We can't deal with physical addresses for this 1152 * type of transaction. 1153 */ 1154 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1155 error = EINVAL; 1156 break; 1157 } 1158 1159 /* 1160 * Save this in case the caller had it set to 1161 * something in particular. 1162 */ 1163 old_path = inccb->ccb_h.path; 1164 1165 /* 1166 * We really don't need a path for the matching 1167 * code. The path is needed because of the 1168 * debugging statements in xpt_action(). They 1169 * assume that the CCB has a valid path. 1170 */ 1171 inccb->ccb_h.path = xpt_periph->path; 1172 1173 bzero(&mapinfo, sizeof(mapinfo)); 1174 1175 /* 1176 * Map the pattern and match buffers into kernel 1177 * virtual address space. 1178 */ 1179 error = cam_periph_mapmem(inccb, &mapinfo); 1180 1181 if (error) { 1182 inccb->ccb_h.path = old_path; 1183 break; 1184 } 1185 1186 /* 1187 * This is an immediate CCB, we can send it on directly. 1188 */ 1189 xpt_action(inccb); 1190 1191 /* 1192 * Map the buffers back into user space. 1193 */ 1194 cam_periph_unmapmem(inccb, &mapinfo); 1195 1196 inccb->ccb_h.path = old_path; 1197 1198 error = 0; 1199 break; 1200 } 1201 default: 1202 error = ENOTSUP; 1203 break; 1204 } 1205 break; 1206 } 1207 /* 1208 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1209 * with the periphal driver name and unit name filled in. The other 1210 * fields don't really matter as input. The passthrough driver name 1211 * ("pass"), and unit number are passed back in the ccb. The current 1212 * device generation number, and the index into the device peripheral 1213 * driver list, and the status are also passed back. Note that 1214 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1215 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1216 * (or rather should be) impossible for the device peripheral driver 1217 * list to change since we look at the whole thing in one pass, and 1218 * we do it with splcam protection. 1219 * 1220 */ 1221 case CAMGETPASSTHRU: { 1222 union ccb *ccb; 1223 struct cam_periph *periph; 1224 struct periph_driver **p_drv; 1225 char *name; 1226 u_int unit; 1227 u_int cur_generation; 1228 int base_periph_found; 1229 int splbreaknum; 1230 int s; 1231 1232 ccb = (union ccb *)addr; 1233 unit = ccb->cgdl.unit_number; 1234 name = ccb->cgdl.periph_name; 1235 /* 1236 * Every 100 devices, we want to drop our spl protection to 1237 * give the software interrupt handler a chance to run. 1238 * Most systems won't run into this check, but this should 1239 * avoid starvation in the software interrupt handler in 1240 * large systems. 1241 */ 1242 splbreaknum = 100; 1243 1244 ccb = (union ccb *)addr; 1245 1246 base_periph_found = 0; 1247 1248 /* 1249 * Sanity check -- make sure we don't get a null peripheral 1250 * driver name. 1251 */ 1252 if (*ccb->cgdl.periph_name == '\0') { 1253 error = EINVAL; 1254 break; 1255 } 1256 1257 /* Keep the list from changing while we traverse it */ 1258 s = splcam(); 1259 ptstartover: 1260 cur_generation = xsoftc.generation; 1261 1262 /* first find our driver in the list of drivers */ 1263 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1264 if (strcmp((*p_drv)->driver_name, name) == 0) 1265 break; 1266 1267 if (*p_drv == NULL) { 1268 splx(s); 1269 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1270 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1271 *ccb->cgdl.periph_name = '\0'; 1272 ccb->cgdl.unit_number = 0; 1273 error = ENOENT; 1274 break; 1275 } 1276 1277 /* 1278 * Run through every peripheral instance of this driver 1279 * and check to see whether it matches the unit passed 1280 * in by the user. If it does, get out of the loops and 1281 * find the passthrough driver associated with that 1282 * peripheral driver. 1283 */ 1284 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1285 periph = TAILQ_NEXT(periph, unit_links)) { 1286 1287 if (periph->unit_number == unit) { 1288 break; 1289 } else if (--splbreaknum == 0) { 1290 splx(s); 1291 s = splcam(); 1292 splbreaknum = 100; 1293 if (cur_generation != xsoftc.generation) 1294 goto ptstartover; 1295 } 1296 } 1297 /* 1298 * If we found the peripheral driver that the user passed 1299 * in, go through all of the peripheral drivers for that 1300 * particular device and look for a passthrough driver. 1301 */ 1302 if (periph != NULL) { 1303 struct cam_ed *device; 1304 int i; 1305 1306 base_periph_found = 1; 1307 device = periph->path->device; 1308 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1309 periph != NULL; 1310 periph = SLIST_NEXT(periph, periph_links), i++) { 1311 /* 1312 * Check to see whether we have a 1313 * passthrough device or not. 1314 */ 1315 if (strcmp(periph->periph_name, "pass") == 0) { 1316 /* 1317 * Fill in the getdevlist fields. 1318 */ 1319 strcpy(ccb->cgdl.periph_name, 1320 periph->periph_name); 1321 ccb->cgdl.unit_number = 1322 periph->unit_number; 1323 if (SLIST_NEXT(periph, periph_links)) 1324 ccb->cgdl.status = 1325 CAM_GDEVLIST_MORE_DEVS; 1326 else 1327 ccb->cgdl.status = 1328 CAM_GDEVLIST_LAST_DEVICE; 1329 ccb->cgdl.generation = 1330 device->generation; 1331 ccb->cgdl.index = i; 1332 /* 1333 * Fill in some CCB header fields 1334 * that the user may want. 1335 */ 1336 ccb->ccb_h.path_id = 1337 periph->path->bus->path_id; 1338 ccb->ccb_h.target_id = 1339 periph->path->target->target_id; 1340 ccb->ccb_h.target_lun = 1341 periph->path->device->lun_id; 1342 ccb->ccb_h.status = CAM_REQ_CMP; 1343 break; 1344 } 1345 } 1346 } 1347 1348 /* 1349 * If the periph is null here, one of two things has 1350 * happened. The first possibility is that we couldn't 1351 * find the unit number of the particular peripheral driver 1352 * that the user is asking about. e.g. the user asks for 1353 * the passthrough driver for "da11". We find the list of 1354 * "da" peripherals all right, but there is no unit 11. 1355 * The other possibility is that we went through the list 1356 * of peripheral drivers attached to the device structure, 1357 * but didn't find one with the name "pass". Either way, 1358 * we return ENOENT, since we couldn't find something. 1359 */ 1360 if (periph == NULL) { 1361 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1362 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1363 *ccb->cgdl.periph_name = '\0'; 1364 ccb->cgdl.unit_number = 0; 1365 error = ENOENT; 1366 /* 1367 * It is unfortunate that this is even necessary, 1368 * but there are many, many clueless users out there. 1369 * If this is true, the user is looking for the 1370 * passthrough driver, but doesn't have one in his 1371 * kernel. 1372 */ 1373 if (base_periph_found == 1) { 1374 printf("xptioctl: pass driver is not in the " 1375 "kernel\n"); 1376 printf("xptioctl: put \"device pass0\" in " 1377 "your kernel config file\n"); 1378 } 1379 } 1380 splx(s); 1381 break; 1382 } 1383 default: 1384 error = ENOTTY; 1385 break; 1386 } 1387 1388 return(error); 1389 } 1390 1391 static int 1392 cam_module_event_handler(module_t mod, int what, void *arg) 1393 { 1394 if (what == MOD_LOAD) { 1395 xpt_init(NULL); 1396 } else if (what == MOD_UNLOAD) { 1397 return EBUSY; 1398 } else { 1399 return EOPNOTSUPP; 1400 } 1401 1402 return 0; 1403 } 1404 1405 /* Functions accessed by the peripheral drivers */ 1406 static void 1407 xpt_init(dummy) 1408 void *dummy; 1409 { 1410 struct cam_sim *xpt_sim; 1411 struct cam_path *path; 1412 struct cam_devq *devq; 1413 cam_status status; 1414 1415 TAILQ_INIT(&xpt_busses); 1416 TAILQ_INIT(&cam_bioq); 1417 SLIST_INIT(&ccb_freeq); 1418 STAILQ_INIT(&highpowerq); 1419 1420 mtx_init(&cam_bioq_lock, "CAM BIOQ lock", NULL, MTX_DEF); 1421 1422 /* 1423 * The xpt layer is, itself, the equivelent of a SIM. 1424 * Allow 16 ccbs in the ccb pool for it. This should 1425 * give decent parallelism when we probe busses and 1426 * perform other XPT functions. 1427 */ 1428 devq = cam_simq_alloc(16); 1429 xpt_sim = cam_sim_alloc(xptaction, 1430 xptpoll, 1431 "xpt", 1432 /*softc*/NULL, 1433 /*unit*/0, 1434 /*max_dev_transactions*/0, 1435 /*max_tagged_dev_transactions*/0, 1436 devq); 1437 xpt_max_ccbs = 16; 1438 1439 xpt_bus_register(xpt_sim, /*bus #*/0); 1440 1441 /* 1442 * Looking at the XPT from the SIM layer, the XPT is 1443 * the equivelent of a peripheral driver. Allocate 1444 * a peripheral driver entry for us. 1445 */ 1446 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1447 CAM_TARGET_WILDCARD, 1448 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1449 printf("xpt_init: xpt_create_path failed with status %#x," 1450 " failing attach\n", status); 1451 return; 1452 } 1453 1454 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1455 path, NULL, 0, NULL); 1456 xpt_free_path(path); 1457 1458 xpt_sim->softc = xpt_periph; 1459 1460 /* 1461 * Register a callback for when interrupts are enabled. 1462 */ 1463 xpt_config_hook = 1464 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1465 M_TEMP, M_NOWAIT | M_ZERO); 1466 if (xpt_config_hook == NULL) { 1467 printf("xpt_init: Cannot malloc config hook " 1468 "- failing attach\n"); 1469 return; 1470 } 1471 1472 xpt_config_hook->ich_func = xpt_config; 1473 if (config_intrhook_establish(xpt_config_hook) != 0) { 1474 free (xpt_config_hook, M_TEMP); 1475 printf("xpt_init: config_intrhook_establish failed " 1476 "- failing attach\n"); 1477 } 1478 1479 /* Install our software interrupt handlers */ 1480 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1481 } 1482 1483 static cam_status 1484 xptregister(struct cam_periph *periph, void *arg) 1485 { 1486 if (periph == NULL) { 1487 printf("xptregister: periph was NULL!!\n"); 1488 return(CAM_REQ_CMP_ERR); 1489 } 1490 1491 periph->softc = NULL; 1492 1493 xpt_periph = periph; 1494 1495 return(CAM_REQ_CMP); 1496 } 1497 1498 int32_t 1499 xpt_add_periph(struct cam_periph *periph) 1500 { 1501 struct cam_ed *device; 1502 int32_t status; 1503 struct periph_list *periph_head; 1504 1505 GIANT_REQUIRED; 1506 1507 device = periph->path->device; 1508 1509 periph_head = &device->periphs; 1510 1511 status = CAM_REQ_CMP; 1512 1513 if (device != NULL) { 1514 int s; 1515 1516 /* 1517 * Make room for this peripheral 1518 * so it will fit in the queue 1519 * when it's scheduled to run 1520 */ 1521 s = splsoftcam(); 1522 status = camq_resize(&device->drvq, 1523 device->drvq.array_size + 1); 1524 1525 device->generation++; 1526 1527 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1528 1529 splx(s); 1530 } 1531 1532 xsoftc.generation++; 1533 1534 return (status); 1535 } 1536 1537 void 1538 xpt_remove_periph(struct cam_periph *periph) 1539 { 1540 struct cam_ed *device; 1541 1542 GIANT_REQUIRED; 1543 1544 device = periph->path->device; 1545 1546 if (device != NULL) { 1547 int s; 1548 struct periph_list *periph_head; 1549 1550 periph_head = &device->periphs; 1551 1552 /* Release the slot for this peripheral */ 1553 s = splsoftcam(); 1554 camq_resize(&device->drvq, device->drvq.array_size - 1); 1555 1556 device->generation++; 1557 1558 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1559 1560 splx(s); 1561 } 1562 1563 xsoftc.generation++; 1564 1565 } 1566 1567 #ifdef CAM_NEW_TRAN_CODE 1568 1569 void 1570 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1571 { 1572 struct ccb_pathinq cpi; 1573 struct ccb_trans_settings cts; 1574 struct cam_path *path; 1575 u_int speed; 1576 u_int freq; 1577 u_int mb; 1578 int s; 1579 1580 GIANT_REQUIRED; 1581 1582 path = periph->path; 1583 /* 1584 * To ensure that this is printed in one piece, 1585 * mask out CAM interrupts. 1586 */ 1587 s = splsoftcam(); 1588 printf("%s%d at %s%d bus %d target %d lun %d\n", 1589 periph->periph_name, periph->unit_number, 1590 path->bus->sim->sim_name, 1591 path->bus->sim->unit_number, 1592 path->bus->sim->bus_id, 1593 path->target->target_id, 1594 path->device->lun_id); 1595 printf("%s%d: ", periph->periph_name, periph->unit_number); 1596 scsi_print_inquiry(&path->device->inq_data); 1597 if (bootverbose && path->device->serial_num_len > 0) { 1598 /* Don't wrap the screen - print only the first 60 chars */ 1599 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1600 periph->unit_number, path->device->serial_num); 1601 } 1602 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1603 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1604 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1605 xpt_action((union ccb*)&cts); 1606 1607 /* Ask the SIM for its base transfer speed */ 1608 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1609 cpi.ccb_h.func_code = XPT_PATH_INQ; 1610 xpt_action((union ccb *)&cpi); 1611 1612 speed = cpi.base_transfer_speed; 1613 freq = 0; 1614 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1615 struct ccb_trans_settings_spi *spi; 1616 1617 spi = &cts.xport_specific.spi; 1618 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1619 && spi->sync_offset != 0) { 1620 freq = scsi_calc_syncsrate(spi->sync_period); 1621 speed = freq; 1622 } 1623 1624 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1625 speed *= (0x01 << spi->bus_width); 1626 } 1627 1628 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1629 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1630 if (fc->valid & CTS_FC_VALID_SPEED) { 1631 speed = fc->bitrate; 1632 } 1633 } 1634 1635 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1636 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; 1637 if (sas->valid & CTS_SAS_VALID_SPEED) { 1638 speed = sas->bitrate; 1639 } 1640 } 1641 1642 mb = speed / 1000; 1643 if (mb > 0) 1644 printf("%s%d: %d.%03dMB/s transfers", 1645 periph->periph_name, periph->unit_number, 1646 mb, speed % 1000); 1647 else 1648 printf("%s%d: %dKB/s transfers", periph->periph_name, 1649 periph->unit_number, speed); 1650 /* Report additional information about SPI connections */ 1651 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1652 struct ccb_trans_settings_spi *spi; 1653 1654 spi = &cts.xport_specific.spi; 1655 if (freq != 0) { 1656 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1657 freq % 1000, 1658 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1659 ? " DT" : "", 1660 spi->sync_offset); 1661 } 1662 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1663 && spi->bus_width > 0) { 1664 if (freq != 0) { 1665 printf(", "); 1666 } else { 1667 printf(" ("); 1668 } 1669 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1670 } else if (freq != 0) { 1671 printf(")"); 1672 } 1673 } 1674 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1675 struct ccb_trans_settings_fc *fc; 1676 1677 fc = &cts.xport_specific.fc; 1678 if (fc->valid & CTS_FC_VALID_WWNN) 1679 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1680 if (fc->valid & CTS_FC_VALID_WWPN) 1681 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1682 if (fc->valid & CTS_FC_VALID_PORT) 1683 printf(" PortID 0x%x", fc->port); 1684 } 1685 1686 if (path->device->inq_flags & SID_CmdQue 1687 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1688 printf("\n%s%d: Tagged Queueing Enabled", 1689 periph->periph_name, periph->unit_number); 1690 } 1691 printf("\n"); 1692 1693 /* 1694 * We only want to print the caller's announce string if they've 1695 * passed one in.. 1696 */ 1697 if (announce_string != NULL) 1698 printf("%s%d: %s\n", periph->periph_name, 1699 periph->unit_number, announce_string); 1700 splx(s); 1701 } 1702 #else /* CAM_NEW_TRAN_CODE */ 1703 void 1704 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1705 { 1706 int s; 1707 u_int mb; 1708 struct cam_path *path; 1709 struct ccb_trans_settings cts; 1710 1711 GIANT_REQUIRED; 1712 1713 path = periph->path; 1714 /* 1715 * To ensure that this is printed in one piece, 1716 * mask out CAM interrupts. 1717 */ 1718 s = splsoftcam(); 1719 printf("%s%d at %s%d bus %d target %d lun %d\n", 1720 periph->periph_name, periph->unit_number, 1721 path->bus->sim->sim_name, 1722 path->bus->sim->unit_number, 1723 path->bus->sim->bus_id, 1724 path->target->target_id, 1725 path->device->lun_id); 1726 printf("%s%d: ", periph->periph_name, periph->unit_number); 1727 scsi_print_inquiry(&path->device->inq_data); 1728 if ((bootverbose) 1729 && (path->device->serial_num_len > 0)) { 1730 /* Don't wrap the screen - print only the first 60 chars */ 1731 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1732 periph->unit_number, path->device->serial_num); 1733 } 1734 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1735 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1736 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1737 xpt_action((union ccb*)&cts); 1738 if (cts.ccb_h.status == CAM_REQ_CMP) { 1739 u_int speed; 1740 u_int freq; 1741 1742 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1743 && cts.sync_offset != 0) { 1744 freq = scsi_calc_syncsrate(cts.sync_period); 1745 speed = freq; 1746 } else { 1747 struct ccb_pathinq cpi; 1748 1749 /* Ask the SIM for its base transfer speed */ 1750 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1751 cpi.ccb_h.func_code = XPT_PATH_INQ; 1752 xpt_action((union ccb *)&cpi); 1753 1754 speed = cpi.base_transfer_speed; 1755 freq = 0; 1756 } 1757 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1758 speed *= (0x01 << cts.bus_width); 1759 mb = speed / 1000; 1760 if (mb > 0) 1761 printf("%s%d: %d.%03dMB/s transfers", 1762 periph->periph_name, periph->unit_number, 1763 mb, speed % 1000); 1764 else 1765 printf("%s%d: %dKB/s transfers", periph->periph_name, 1766 periph->unit_number, speed); 1767 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1768 && cts.sync_offset != 0) { 1769 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1770 freq % 1000, cts.sync_offset); 1771 } 1772 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1773 && cts.bus_width > 0) { 1774 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1775 && cts.sync_offset != 0) { 1776 printf(", "); 1777 } else { 1778 printf(" ("); 1779 } 1780 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1781 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1782 && cts.sync_offset != 0) { 1783 printf(")"); 1784 } 1785 1786 if (path->device->inq_flags & SID_CmdQue 1787 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1788 printf(", Tagged Queueing Enabled"); 1789 } 1790 1791 printf("\n"); 1792 } else if (path->device->inq_flags & SID_CmdQue 1793 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1794 printf("%s%d: Tagged Queueing Enabled\n", 1795 periph->periph_name, periph->unit_number); 1796 } 1797 1798 /* 1799 * We only want to print the caller's announce string if they've 1800 * passed one in.. 1801 */ 1802 if (announce_string != NULL) 1803 printf("%s%d: %s\n", periph->periph_name, 1804 periph->unit_number, announce_string); 1805 splx(s); 1806 } 1807 1808 #endif /* CAM_NEW_TRAN_CODE */ 1809 1810 static dev_match_ret 1811 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1812 struct cam_eb *bus) 1813 { 1814 dev_match_ret retval; 1815 int i; 1816 1817 retval = DM_RET_NONE; 1818 1819 /* 1820 * If we aren't given something to match against, that's an error. 1821 */ 1822 if (bus == NULL) 1823 return(DM_RET_ERROR); 1824 1825 /* 1826 * If there are no match entries, then this bus matches no 1827 * matter what. 1828 */ 1829 if ((patterns == NULL) || (num_patterns == 0)) 1830 return(DM_RET_DESCEND | DM_RET_COPY); 1831 1832 for (i = 0; i < num_patterns; i++) { 1833 struct bus_match_pattern *cur_pattern; 1834 1835 /* 1836 * If the pattern in question isn't for a bus node, we 1837 * aren't interested. However, we do indicate to the 1838 * calling routine that we should continue descending the 1839 * tree, since the user wants to match against lower-level 1840 * EDT elements. 1841 */ 1842 if (patterns[i].type != DEV_MATCH_BUS) { 1843 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1844 retval |= DM_RET_DESCEND; 1845 continue; 1846 } 1847 1848 cur_pattern = &patterns[i].pattern.bus_pattern; 1849 1850 /* 1851 * If they want to match any bus node, we give them any 1852 * device node. 1853 */ 1854 if (cur_pattern->flags == BUS_MATCH_ANY) { 1855 /* set the copy flag */ 1856 retval |= DM_RET_COPY; 1857 1858 /* 1859 * If we've already decided on an action, go ahead 1860 * and return. 1861 */ 1862 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1863 return(retval); 1864 } 1865 1866 /* 1867 * Not sure why someone would do this... 1868 */ 1869 if (cur_pattern->flags == BUS_MATCH_NONE) 1870 continue; 1871 1872 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1873 && (cur_pattern->path_id != bus->path_id)) 1874 continue; 1875 1876 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1877 && (cur_pattern->bus_id != bus->sim->bus_id)) 1878 continue; 1879 1880 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1881 && (cur_pattern->unit_number != bus->sim->unit_number)) 1882 continue; 1883 1884 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1885 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1886 DEV_IDLEN) != 0)) 1887 continue; 1888 1889 /* 1890 * If we get to this point, the user definitely wants 1891 * information on this bus. So tell the caller to copy the 1892 * data out. 1893 */ 1894 retval |= DM_RET_COPY; 1895 1896 /* 1897 * If the return action has been set to descend, then we 1898 * know that we've already seen a non-bus matching 1899 * expression, therefore we need to further descend the tree. 1900 * This won't change by continuing around the loop, so we 1901 * go ahead and return. If we haven't seen a non-bus 1902 * matching expression, we keep going around the loop until 1903 * we exhaust the matching expressions. We'll set the stop 1904 * flag once we fall out of the loop. 1905 */ 1906 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1907 return(retval); 1908 } 1909 1910 /* 1911 * If the return action hasn't been set to descend yet, that means 1912 * we haven't seen anything other than bus matching patterns. So 1913 * tell the caller to stop descending the tree -- the user doesn't 1914 * want to match against lower level tree elements. 1915 */ 1916 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1917 retval |= DM_RET_STOP; 1918 1919 return(retval); 1920 } 1921 1922 static dev_match_ret 1923 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1924 struct cam_ed *device) 1925 { 1926 dev_match_ret retval; 1927 int i; 1928 1929 retval = DM_RET_NONE; 1930 1931 /* 1932 * If we aren't given something to match against, that's an error. 1933 */ 1934 if (device == NULL) 1935 return(DM_RET_ERROR); 1936 1937 /* 1938 * If there are no match entries, then this device matches no 1939 * matter what. 1940 */ 1941 if ((patterns == NULL) || (num_patterns == 0)) 1942 return(DM_RET_DESCEND | DM_RET_COPY); 1943 1944 for (i = 0; i < num_patterns; i++) { 1945 struct device_match_pattern *cur_pattern; 1946 1947 /* 1948 * If the pattern in question isn't for a device node, we 1949 * aren't interested. 1950 */ 1951 if (patterns[i].type != DEV_MATCH_DEVICE) { 1952 if ((patterns[i].type == DEV_MATCH_PERIPH) 1953 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1954 retval |= DM_RET_DESCEND; 1955 continue; 1956 } 1957 1958 cur_pattern = &patterns[i].pattern.device_pattern; 1959 1960 /* 1961 * If they want to match any device node, we give them any 1962 * device node. 1963 */ 1964 if (cur_pattern->flags == DEV_MATCH_ANY) { 1965 /* set the copy flag */ 1966 retval |= DM_RET_COPY; 1967 1968 1969 /* 1970 * If we've already decided on an action, go ahead 1971 * and return. 1972 */ 1973 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1974 return(retval); 1975 } 1976 1977 /* 1978 * Not sure why someone would do this... 1979 */ 1980 if (cur_pattern->flags == DEV_MATCH_NONE) 1981 continue; 1982 1983 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1984 && (cur_pattern->path_id != device->target->bus->path_id)) 1985 continue; 1986 1987 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1988 && (cur_pattern->target_id != device->target->target_id)) 1989 continue; 1990 1991 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1992 && (cur_pattern->target_lun != device->lun_id)) 1993 continue; 1994 1995 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1996 && (cam_quirkmatch((caddr_t)&device->inq_data, 1997 (caddr_t)&cur_pattern->inq_pat, 1998 1, sizeof(cur_pattern->inq_pat), 1999 scsi_static_inquiry_match) == NULL)) 2000 continue; 2001 2002 /* 2003 * If we get to this point, the user definitely wants 2004 * information on this device. So tell the caller to copy 2005 * the data out. 2006 */ 2007 retval |= DM_RET_COPY; 2008 2009 /* 2010 * If the return action has been set to descend, then we 2011 * know that we've already seen a peripheral matching 2012 * expression, therefore we need to further descend the tree. 2013 * This won't change by continuing around the loop, so we 2014 * go ahead and return. If we haven't seen a peripheral 2015 * matching expression, we keep going around the loop until 2016 * we exhaust the matching expressions. We'll set the stop 2017 * flag once we fall out of the loop. 2018 */ 2019 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 2020 return(retval); 2021 } 2022 2023 /* 2024 * If the return action hasn't been set to descend yet, that means 2025 * we haven't seen any peripheral matching patterns. So tell the 2026 * caller to stop descending the tree -- the user doesn't want to 2027 * match against lower level tree elements. 2028 */ 2029 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 2030 retval |= DM_RET_STOP; 2031 2032 return(retval); 2033 } 2034 2035 /* 2036 * Match a single peripheral against any number of match patterns. 2037 */ 2038 static dev_match_ret 2039 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 2040 struct cam_periph *periph) 2041 { 2042 dev_match_ret retval; 2043 int i; 2044 2045 /* 2046 * If we aren't given something to match against, that's an error. 2047 */ 2048 if (periph == NULL) 2049 return(DM_RET_ERROR); 2050 2051 /* 2052 * If there are no match entries, then this peripheral matches no 2053 * matter what. 2054 */ 2055 if ((patterns == NULL) || (num_patterns == 0)) 2056 return(DM_RET_STOP | DM_RET_COPY); 2057 2058 /* 2059 * There aren't any nodes below a peripheral node, so there's no 2060 * reason to descend the tree any further. 2061 */ 2062 retval = DM_RET_STOP; 2063 2064 for (i = 0; i < num_patterns; i++) { 2065 struct periph_match_pattern *cur_pattern; 2066 2067 /* 2068 * If the pattern in question isn't for a peripheral, we 2069 * aren't interested. 2070 */ 2071 if (patterns[i].type != DEV_MATCH_PERIPH) 2072 continue; 2073 2074 cur_pattern = &patterns[i].pattern.periph_pattern; 2075 2076 /* 2077 * If they want to match on anything, then we will do so. 2078 */ 2079 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2080 /* set the copy flag */ 2081 retval |= DM_RET_COPY; 2082 2083 /* 2084 * We've already set the return action to stop, 2085 * since there are no nodes below peripherals in 2086 * the tree. 2087 */ 2088 return(retval); 2089 } 2090 2091 /* 2092 * Not sure why someone would do this... 2093 */ 2094 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2095 continue; 2096 2097 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2098 && (cur_pattern->path_id != periph->path->bus->path_id)) 2099 continue; 2100 2101 /* 2102 * For the target and lun id's, we have to make sure the 2103 * target and lun pointers aren't NULL. The xpt peripheral 2104 * has a wildcard target and device. 2105 */ 2106 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2107 && ((periph->path->target == NULL) 2108 ||(cur_pattern->target_id != periph->path->target->target_id))) 2109 continue; 2110 2111 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2112 && ((periph->path->device == NULL) 2113 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2114 continue; 2115 2116 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2117 && (cur_pattern->unit_number != periph->unit_number)) 2118 continue; 2119 2120 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2121 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2122 DEV_IDLEN) != 0)) 2123 continue; 2124 2125 /* 2126 * If we get to this point, the user definitely wants 2127 * information on this peripheral. So tell the caller to 2128 * copy the data out. 2129 */ 2130 retval |= DM_RET_COPY; 2131 2132 /* 2133 * The return action has already been set to stop, since 2134 * peripherals don't have any nodes below them in the EDT. 2135 */ 2136 return(retval); 2137 } 2138 2139 /* 2140 * If we get to this point, the peripheral that was passed in 2141 * doesn't match any of the patterns. 2142 */ 2143 return(retval); 2144 } 2145 2146 static int 2147 xptedtbusfunc(struct cam_eb *bus, void *arg) 2148 { 2149 struct ccb_dev_match *cdm; 2150 dev_match_ret retval; 2151 2152 cdm = (struct ccb_dev_match *)arg; 2153 2154 /* 2155 * If our position is for something deeper in the tree, that means 2156 * that we've already seen this node. So, we keep going down. 2157 */ 2158 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2159 && (cdm->pos.cookie.bus == bus) 2160 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2161 && (cdm->pos.cookie.target != NULL)) 2162 retval = DM_RET_DESCEND; 2163 else 2164 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2165 2166 /* 2167 * If we got an error, bail out of the search. 2168 */ 2169 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2170 cdm->status = CAM_DEV_MATCH_ERROR; 2171 return(0); 2172 } 2173 2174 /* 2175 * If the copy flag is set, copy this bus out. 2176 */ 2177 if (retval & DM_RET_COPY) { 2178 int spaceleft, j; 2179 2180 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2181 sizeof(struct dev_match_result)); 2182 2183 /* 2184 * If we don't have enough space to put in another 2185 * match result, save our position and tell the 2186 * user there are more devices to check. 2187 */ 2188 if (spaceleft < sizeof(struct dev_match_result)) { 2189 bzero(&cdm->pos, sizeof(cdm->pos)); 2190 cdm->pos.position_type = 2191 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2192 2193 cdm->pos.cookie.bus = bus; 2194 cdm->pos.generations[CAM_BUS_GENERATION]= 2195 bus_generation; 2196 cdm->status = CAM_DEV_MATCH_MORE; 2197 return(0); 2198 } 2199 j = cdm->num_matches; 2200 cdm->num_matches++; 2201 cdm->matches[j].type = DEV_MATCH_BUS; 2202 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2203 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2204 cdm->matches[j].result.bus_result.unit_number = 2205 bus->sim->unit_number; 2206 strncpy(cdm->matches[j].result.bus_result.dev_name, 2207 bus->sim->sim_name, DEV_IDLEN); 2208 } 2209 2210 /* 2211 * If the user is only interested in busses, there's no 2212 * reason to descend to the next level in the tree. 2213 */ 2214 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2215 return(1); 2216 2217 /* 2218 * If there is a target generation recorded, check it to 2219 * make sure the target list hasn't changed. 2220 */ 2221 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2222 && (bus == cdm->pos.cookie.bus) 2223 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2224 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2225 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2226 bus->generation)) { 2227 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2228 return(0); 2229 } 2230 2231 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2232 && (cdm->pos.cookie.bus == bus) 2233 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2234 && (cdm->pos.cookie.target != NULL)) 2235 return(xpttargettraverse(bus, 2236 (struct cam_et *)cdm->pos.cookie.target, 2237 xptedttargetfunc, arg)); 2238 else 2239 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2240 } 2241 2242 static int 2243 xptedttargetfunc(struct cam_et *target, void *arg) 2244 { 2245 struct ccb_dev_match *cdm; 2246 2247 cdm = (struct ccb_dev_match *)arg; 2248 2249 /* 2250 * If there is a device list generation recorded, check it to 2251 * make sure the device list hasn't changed. 2252 */ 2253 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2254 && (cdm->pos.cookie.bus == target->bus) 2255 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2256 && (cdm->pos.cookie.target == target) 2257 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2258 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2259 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2260 target->generation)) { 2261 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2262 return(0); 2263 } 2264 2265 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2266 && (cdm->pos.cookie.bus == target->bus) 2267 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2268 && (cdm->pos.cookie.target == target) 2269 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2270 && (cdm->pos.cookie.device != NULL)) 2271 return(xptdevicetraverse(target, 2272 (struct cam_ed *)cdm->pos.cookie.device, 2273 xptedtdevicefunc, arg)); 2274 else 2275 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2276 } 2277 2278 static int 2279 xptedtdevicefunc(struct cam_ed *device, void *arg) 2280 { 2281 2282 struct ccb_dev_match *cdm; 2283 dev_match_ret retval; 2284 2285 cdm = (struct ccb_dev_match *)arg; 2286 2287 /* 2288 * If our position is for something deeper in the tree, that means 2289 * that we've already seen this node. So, we keep going down. 2290 */ 2291 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2292 && (cdm->pos.cookie.device == device) 2293 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2294 && (cdm->pos.cookie.periph != NULL)) 2295 retval = DM_RET_DESCEND; 2296 else 2297 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2298 device); 2299 2300 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2301 cdm->status = CAM_DEV_MATCH_ERROR; 2302 return(0); 2303 } 2304 2305 /* 2306 * If the copy flag is set, copy this device out. 2307 */ 2308 if (retval & DM_RET_COPY) { 2309 int spaceleft, j; 2310 2311 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2312 sizeof(struct dev_match_result)); 2313 2314 /* 2315 * If we don't have enough space to put in another 2316 * match result, save our position and tell the 2317 * user there are more devices to check. 2318 */ 2319 if (spaceleft < sizeof(struct dev_match_result)) { 2320 bzero(&cdm->pos, sizeof(cdm->pos)); 2321 cdm->pos.position_type = 2322 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2323 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2324 2325 cdm->pos.cookie.bus = device->target->bus; 2326 cdm->pos.generations[CAM_BUS_GENERATION]= 2327 bus_generation; 2328 cdm->pos.cookie.target = device->target; 2329 cdm->pos.generations[CAM_TARGET_GENERATION] = 2330 device->target->bus->generation; 2331 cdm->pos.cookie.device = device; 2332 cdm->pos.generations[CAM_DEV_GENERATION] = 2333 device->target->generation; 2334 cdm->status = CAM_DEV_MATCH_MORE; 2335 return(0); 2336 } 2337 j = cdm->num_matches; 2338 cdm->num_matches++; 2339 cdm->matches[j].type = DEV_MATCH_DEVICE; 2340 cdm->matches[j].result.device_result.path_id = 2341 device->target->bus->path_id; 2342 cdm->matches[j].result.device_result.target_id = 2343 device->target->target_id; 2344 cdm->matches[j].result.device_result.target_lun = 2345 device->lun_id; 2346 bcopy(&device->inq_data, 2347 &cdm->matches[j].result.device_result.inq_data, 2348 sizeof(struct scsi_inquiry_data)); 2349 2350 /* Let the user know whether this device is unconfigured */ 2351 if (device->flags & CAM_DEV_UNCONFIGURED) 2352 cdm->matches[j].result.device_result.flags = 2353 DEV_RESULT_UNCONFIGURED; 2354 else 2355 cdm->matches[j].result.device_result.flags = 2356 DEV_RESULT_NOFLAG; 2357 } 2358 2359 /* 2360 * If the user isn't interested in peripherals, don't descend 2361 * the tree any further. 2362 */ 2363 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2364 return(1); 2365 2366 /* 2367 * If there is a peripheral list generation recorded, make sure 2368 * it hasn't changed. 2369 */ 2370 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2371 && (device->target->bus == cdm->pos.cookie.bus) 2372 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2373 && (device->target == cdm->pos.cookie.target) 2374 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2375 && (device == cdm->pos.cookie.device) 2376 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2377 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2378 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2379 device->generation)){ 2380 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2381 return(0); 2382 } 2383 2384 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2385 && (cdm->pos.cookie.bus == device->target->bus) 2386 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2387 && (cdm->pos.cookie.target == device->target) 2388 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2389 && (cdm->pos.cookie.device == device) 2390 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2391 && (cdm->pos.cookie.periph != NULL)) 2392 return(xptperiphtraverse(device, 2393 (struct cam_periph *)cdm->pos.cookie.periph, 2394 xptedtperiphfunc, arg)); 2395 else 2396 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2397 } 2398 2399 static int 2400 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2401 { 2402 struct ccb_dev_match *cdm; 2403 dev_match_ret retval; 2404 2405 cdm = (struct ccb_dev_match *)arg; 2406 2407 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2408 2409 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2410 cdm->status = CAM_DEV_MATCH_ERROR; 2411 return(0); 2412 } 2413 2414 /* 2415 * If the copy flag is set, copy this peripheral out. 2416 */ 2417 if (retval & DM_RET_COPY) { 2418 int spaceleft, j; 2419 2420 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2421 sizeof(struct dev_match_result)); 2422 2423 /* 2424 * If we don't have enough space to put in another 2425 * match result, save our position and tell the 2426 * user there are more devices to check. 2427 */ 2428 if (spaceleft < sizeof(struct dev_match_result)) { 2429 bzero(&cdm->pos, sizeof(cdm->pos)); 2430 cdm->pos.position_type = 2431 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2432 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2433 CAM_DEV_POS_PERIPH; 2434 2435 cdm->pos.cookie.bus = periph->path->bus; 2436 cdm->pos.generations[CAM_BUS_GENERATION]= 2437 bus_generation; 2438 cdm->pos.cookie.target = periph->path->target; 2439 cdm->pos.generations[CAM_TARGET_GENERATION] = 2440 periph->path->bus->generation; 2441 cdm->pos.cookie.device = periph->path->device; 2442 cdm->pos.generations[CAM_DEV_GENERATION] = 2443 periph->path->target->generation; 2444 cdm->pos.cookie.periph = periph; 2445 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2446 periph->path->device->generation; 2447 cdm->status = CAM_DEV_MATCH_MORE; 2448 return(0); 2449 } 2450 2451 j = cdm->num_matches; 2452 cdm->num_matches++; 2453 cdm->matches[j].type = DEV_MATCH_PERIPH; 2454 cdm->matches[j].result.periph_result.path_id = 2455 periph->path->bus->path_id; 2456 cdm->matches[j].result.periph_result.target_id = 2457 periph->path->target->target_id; 2458 cdm->matches[j].result.periph_result.target_lun = 2459 periph->path->device->lun_id; 2460 cdm->matches[j].result.periph_result.unit_number = 2461 periph->unit_number; 2462 strncpy(cdm->matches[j].result.periph_result.periph_name, 2463 periph->periph_name, DEV_IDLEN); 2464 } 2465 2466 return(1); 2467 } 2468 2469 static int 2470 xptedtmatch(struct ccb_dev_match *cdm) 2471 { 2472 int ret; 2473 2474 cdm->num_matches = 0; 2475 2476 /* 2477 * Check the bus list generation. If it has changed, the user 2478 * needs to reset everything and start over. 2479 */ 2480 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2481 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2482 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2483 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2484 return(0); 2485 } 2486 2487 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2488 && (cdm->pos.cookie.bus != NULL)) 2489 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2490 xptedtbusfunc, cdm); 2491 else 2492 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2493 2494 /* 2495 * If we get back 0, that means that we had to stop before fully 2496 * traversing the EDT. It also means that one of the subroutines 2497 * has set the status field to the proper value. If we get back 1, 2498 * we've fully traversed the EDT and copied out any matching entries. 2499 */ 2500 if (ret == 1) 2501 cdm->status = CAM_DEV_MATCH_LAST; 2502 2503 return(ret); 2504 } 2505 2506 static int 2507 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2508 { 2509 struct ccb_dev_match *cdm; 2510 2511 cdm = (struct ccb_dev_match *)arg; 2512 2513 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2514 && (cdm->pos.cookie.pdrv == pdrv) 2515 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2516 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2517 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2518 (*pdrv)->generation)) { 2519 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2520 return(0); 2521 } 2522 2523 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2524 && (cdm->pos.cookie.pdrv == pdrv) 2525 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2526 && (cdm->pos.cookie.periph != NULL)) 2527 return(xptpdperiphtraverse(pdrv, 2528 (struct cam_periph *)cdm->pos.cookie.periph, 2529 xptplistperiphfunc, arg)); 2530 else 2531 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2532 } 2533 2534 static int 2535 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2536 { 2537 struct ccb_dev_match *cdm; 2538 dev_match_ret retval; 2539 2540 cdm = (struct ccb_dev_match *)arg; 2541 2542 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2543 2544 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2545 cdm->status = CAM_DEV_MATCH_ERROR; 2546 return(0); 2547 } 2548 2549 /* 2550 * If the copy flag is set, copy this peripheral out. 2551 */ 2552 if (retval & DM_RET_COPY) { 2553 int spaceleft, j; 2554 2555 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2556 sizeof(struct dev_match_result)); 2557 2558 /* 2559 * If we don't have enough space to put in another 2560 * match result, save our position and tell the 2561 * user there are more devices to check. 2562 */ 2563 if (spaceleft < sizeof(struct dev_match_result)) { 2564 struct periph_driver **pdrv; 2565 2566 pdrv = NULL; 2567 bzero(&cdm->pos, sizeof(cdm->pos)); 2568 cdm->pos.position_type = 2569 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2570 CAM_DEV_POS_PERIPH; 2571 2572 /* 2573 * This may look a bit non-sensical, but it is 2574 * actually quite logical. There are very few 2575 * peripheral drivers, and bloating every peripheral 2576 * structure with a pointer back to its parent 2577 * peripheral driver linker set entry would cost 2578 * more in the long run than doing this quick lookup. 2579 */ 2580 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2581 if (strcmp((*pdrv)->driver_name, 2582 periph->periph_name) == 0) 2583 break; 2584 } 2585 2586 if (*pdrv == NULL) { 2587 cdm->status = CAM_DEV_MATCH_ERROR; 2588 return(0); 2589 } 2590 2591 cdm->pos.cookie.pdrv = pdrv; 2592 /* 2593 * The periph generation slot does double duty, as 2594 * does the periph pointer slot. They are used for 2595 * both edt and pdrv lookups and positioning. 2596 */ 2597 cdm->pos.cookie.periph = periph; 2598 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2599 (*pdrv)->generation; 2600 cdm->status = CAM_DEV_MATCH_MORE; 2601 return(0); 2602 } 2603 2604 j = cdm->num_matches; 2605 cdm->num_matches++; 2606 cdm->matches[j].type = DEV_MATCH_PERIPH; 2607 cdm->matches[j].result.periph_result.path_id = 2608 periph->path->bus->path_id; 2609 2610 /* 2611 * The transport layer peripheral doesn't have a target or 2612 * lun. 2613 */ 2614 if (periph->path->target) 2615 cdm->matches[j].result.periph_result.target_id = 2616 periph->path->target->target_id; 2617 else 2618 cdm->matches[j].result.periph_result.target_id = -1; 2619 2620 if (periph->path->device) 2621 cdm->matches[j].result.periph_result.target_lun = 2622 periph->path->device->lun_id; 2623 else 2624 cdm->matches[j].result.periph_result.target_lun = -1; 2625 2626 cdm->matches[j].result.periph_result.unit_number = 2627 periph->unit_number; 2628 strncpy(cdm->matches[j].result.periph_result.periph_name, 2629 periph->periph_name, DEV_IDLEN); 2630 } 2631 2632 return(1); 2633 } 2634 2635 static int 2636 xptperiphlistmatch(struct ccb_dev_match *cdm) 2637 { 2638 int ret; 2639 2640 cdm->num_matches = 0; 2641 2642 /* 2643 * At this point in the edt traversal function, we check the bus 2644 * list generation to make sure that no busses have been added or 2645 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2646 * For the peripheral driver list traversal function, however, we 2647 * don't have to worry about new peripheral driver types coming or 2648 * going; they're in a linker set, and therefore can't change 2649 * without a recompile. 2650 */ 2651 2652 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2653 && (cdm->pos.cookie.pdrv != NULL)) 2654 ret = xptpdrvtraverse( 2655 (struct periph_driver **)cdm->pos.cookie.pdrv, 2656 xptplistpdrvfunc, cdm); 2657 else 2658 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2659 2660 /* 2661 * If we get back 0, that means that we had to stop before fully 2662 * traversing the peripheral driver tree. It also means that one of 2663 * the subroutines has set the status field to the proper value. If 2664 * we get back 1, we've fully traversed the EDT and copied out any 2665 * matching entries. 2666 */ 2667 if (ret == 1) 2668 cdm->status = CAM_DEV_MATCH_LAST; 2669 2670 return(ret); 2671 } 2672 2673 static int 2674 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2675 { 2676 struct cam_eb *bus, *next_bus; 2677 int retval; 2678 2679 retval = 1; 2680 2681 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2682 bus != NULL; 2683 bus = next_bus) { 2684 next_bus = TAILQ_NEXT(bus, links); 2685 2686 retval = tr_func(bus, arg); 2687 if (retval == 0) 2688 return(retval); 2689 } 2690 2691 return(retval); 2692 } 2693 2694 static int 2695 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2696 xpt_targetfunc_t *tr_func, void *arg) 2697 { 2698 struct cam_et *target, *next_target; 2699 int retval; 2700 2701 retval = 1; 2702 for (target = (start_target ? start_target : 2703 TAILQ_FIRST(&bus->et_entries)); 2704 target != NULL; target = next_target) { 2705 2706 next_target = TAILQ_NEXT(target, links); 2707 2708 retval = tr_func(target, arg); 2709 2710 if (retval == 0) 2711 return(retval); 2712 } 2713 2714 return(retval); 2715 } 2716 2717 static int 2718 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2719 xpt_devicefunc_t *tr_func, void *arg) 2720 { 2721 struct cam_ed *device, *next_device; 2722 int retval; 2723 2724 retval = 1; 2725 for (device = (start_device ? start_device : 2726 TAILQ_FIRST(&target->ed_entries)); 2727 device != NULL; 2728 device = next_device) { 2729 2730 next_device = TAILQ_NEXT(device, links); 2731 2732 retval = tr_func(device, arg); 2733 2734 if (retval == 0) 2735 return(retval); 2736 } 2737 2738 return(retval); 2739 } 2740 2741 static int 2742 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2743 xpt_periphfunc_t *tr_func, void *arg) 2744 { 2745 struct cam_periph *periph, *next_periph; 2746 int retval; 2747 2748 retval = 1; 2749 2750 for (periph = (start_periph ? start_periph : 2751 SLIST_FIRST(&device->periphs)); 2752 periph != NULL; 2753 periph = next_periph) { 2754 2755 next_periph = SLIST_NEXT(periph, periph_links); 2756 2757 retval = tr_func(periph, arg); 2758 if (retval == 0) 2759 return(retval); 2760 } 2761 2762 return(retval); 2763 } 2764 2765 static int 2766 xptpdrvtraverse(struct periph_driver **start_pdrv, 2767 xpt_pdrvfunc_t *tr_func, void *arg) 2768 { 2769 struct periph_driver **pdrv; 2770 int retval; 2771 2772 retval = 1; 2773 2774 /* 2775 * We don't traverse the peripheral driver list like we do the 2776 * other lists, because it is a linker set, and therefore cannot be 2777 * changed during runtime. If the peripheral driver list is ever 2778 * re-done to be something other than a linker set (i.e. it can 2779 * change while the system is running), the list traversal should 2780 * be modified to work like the other traversal functions. 2781 */ 2782 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2783 *pdrv != NULL; pdrv++) { 2784 retval = tr_func(pdrv, arg); 2785 2786 if (retval == 0) 2787 return(retval); 2788 } 2789 2790 return(retval); 2791 } 2792 2793 static int 2794 xptpdperiphtraverse(struct periph_driver **pdrv, 2795 struct cam_periph *start_periph, 2796 xpt_periphfunc_t *tr_func, void *arg) 2797 { 2798 struct cam_periph *periph, *next_periph; 2799 int retval; 2800 2801 retval = 1; 2802 2803 for (periph = (start_periph ? start_periph : 2804 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2805 periph = next_periph) { 2806 2807 next_periph = TAILQ_NEXT(periph, unit_links); 2808 2809 retval = tr_func(periph, arg); 2810 if (retval == 0) 2811 return(retval); 2812 } 2813 return(retval); 2814 } 2815 2816 static int 2817 xptdefbusfunc(struct cam_eb *bus, void *arg) 2818 { 2819 struct xpt_traverse_config *tr_config; 2820 2821 tr_config = (struct xpt_traverse_config *)arg; 2822 2823 if (tr_config->depth == XPT_DEPTH_BUS) { 2824 xpt_busfunc_t *tr_func; 2825 2826 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2827 2828 return(tr_func(bus, tr_config->tr_arg)); 2829 } else 2830 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2831 } 2832 2833 static int 2834 xptdeftargetfunc(struct cam_et *target, void *arg) 2835 { 2836 struct xpt_traverse_config *tr_config; 2837 2838 tr_config = (struct xpt_traverse_config *)arg; 2839 2840 if (tr_config->depth == XPT_DEPTH_TARGET) { 2841 xpt_targetfunc_t *tr_func; 2842 2843 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2844 2845 return(tr_func(target, tr_config->tr_arg)); 2846 } else 2847 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2848 } 2849 2850 static int 2851 xptdefdevicefunc(struct cam_ed *device, void *arg) 2852 { 2853 struct xpt_traverse_config *tr_config; 2854 2855 tr_config = (struct xpt_traverse_config *)arg; 2856 2857 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2858 xpt_devicefunc_t *tr_func; 2859 2860 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2861 2862 return(tr_func(device, tr_config->tr_arg)); 2863 } else 2864 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2865 } 2866 2867 static int 2868 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2869 { 2870 struct xpt_traverse_config *tr_config; 2871 xpt_periphfunc_t *tr_func; 2872 2873 tr_config = (struct xpt_traverse_config *)arg; 2874 2875 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2876 2877 /* 2878 * Unlike the other default functions, we don't check for depth 2879 * here. The peripheral driver level is the last level in the EDT, 2880 * so if we're here, we should execute the function in question. 2881 */ 2882 return(tr_func(periph, tr_config->tr_arg)); 2883 } 2884 2885 /* 2886 * Execute the given function for every bus in the EDT. 2887 */ 2888 static int 2889 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2890 { 2891 struct xpt_traverse_config tr_config; 2892 2893 tr_config.depth = XPT_DEPTH_BUS; 2894 tr_config.tr_func = tr_func; 2895 tr_config.tr_arg = arg; 2896 2897 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2898 } 2899 2900 #ifdef notusedyet 2901 /* 2902 * Execute the given function for every target in the EDT. 2903 */ 2904 static int 2905 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2906 { 2907 struct xpt_traverse_config tr_config; 2908 2909 tr_config.depth = XPT_DEPTH_TARGET; 2910 tr_config.tr_func = tr_func; 2911 tr_config.tr_arg = arg; 2912 2913 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2914 } 2915 #endif /* notusedyet */ 2916 2917 /* 2918 * Execute the given function for every device in the EDT. 2919 */ 2920 static int 2921 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2922 { 2923 struct xpt_traverse_config tr_config; 2924 2925 tr_config.depth = XPT_DEPTH_DEVICE; 2926 tr_config.tr_func = tr_func; 2927 tr_config.tr_arg = arg; 2928 2929 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2930 } 2931 2932 #ifdef notusedyet 2933 /* 2934 * Execute the given function for every peripheral in the EDT. 2935 */ 2936 static int 2937 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2938 { 2939 struct xpt_traverse_config tr_config; 2940 2941 tr_config.depth = XPT_DEPTH_PERIPH; 2942 tr_config.tr_func = tr_func; 2943 tr_config.tr_arg = arg; 2944 2945 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2946 } 2947 #endif /* notusedyet */ 2948 2949 static int 2950 xptsetasyncfunc(struct cam_ed *device, void *arg) 2951 { 2952 struct cam_path path; 2953 struct ccb_getdev cgd; 2954 struct async_node *cur_entry; 2955 2956 cur_entry = (struct async_node *)arg; 2957 2958 /* 2959 * Don't report unconfigured devices (Wildcard devs, 2960 * devices only for target mode, device instances 2961 * that have been invalidated but are waiting for 2962 * their last reference count to be released). 2963 */ 2964 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2965 return (1); 2966 2967 xpt_compile_path(&path, 2968 NULL, 2969 device->target->bus->path_id, 2970 device->target->target_id, 2971 device->lun_id); 2972 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2973 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2974 xpt_action((union ccb *)&cgd); 2975 cur_entry->callback(cur_entry->callback_arg, 2976 AC_FOUND_DEVICE, 2977 &path, &cgd); 2978 xpt_release_path(&path); 2979 2980 return(1); 2981 } 2982 2983 static int 2984 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2985 { 2986 struct cam_path path; 2987 struct ccb_pathinq cpi; 2988 struct async_node *cur_entry; 2989 2990 cur_entry = (struct async_node *)arg; 2991 2992 xpt_compile_path(&path, /*periph*/NULL, 2993 bus->sim->path_id, 2994 CAM_TARGET_WILDCARD, 2995 CAM_LUN_WILDCARD); 2996 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2997 cpi.ccb_h.func_code = XPT_PATH_INQ; 2998 xpt_action((union ccb *)&cpi); 2999 cur_entry->callback(cur_entry->callback_arg, 3000 AC_PATH_REGISTERED, 3001 &path, &cpi); 3002 xpt_release_path(&path); 3003 3004 return(1); 3005 } 3006 3007 void 3008 xpt_action(union ccb *start_ccb) 3009 { 3010 int iopl; 3011 3012 GIANT_REQUIRED; 3013 3014 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 3015 3016 start_ccb->ccb_h.status = CAM_REQ_INPROG; 3017 3018 iopl = splsoftcam(); 3019 switch (start_ccb->ccb_h.func_code) { 3020 case XPT_SCSI_IO: 3021 { 3022 #ifdef CAM_NEW_TRAN_CODE 3023 struct cam_ed *device; 3024 #endif /* CAM_NEW_TRAN_CODE */ 3025 #ifdef CAMDEBUG 3026 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3027 struct cam_path *path; 3028 3029 path = start_ccb->ccb_h.path; 3030 #endif 3031 3032 /* 3033 * For the sake of compatibility with SCSI-1 3034 * devices that may not understand the identify 3035 * message, we include lun information in the 3036 * second byte of all commands. SCSI-1 specifies 3037 * that luns are a 3 bit value and reserves only 3 3038 * bits for lun information in the CDB. Later 3039 * revisions of the SCSI spec allow for more than 8 3040 * luns, but have deprecated lun information in the 3041 * CDB. So, if the lun won't fit, we must omit. 3042 * 3043 * Also be aware that during initial probing for devices, 3044 * the inquiry information is unknown but initialized to 0. 3045 * This means that this code will be exercised while probing 3046 * devices with an ANSI revision greater than 2. 3047 */ 3048 #ifdef CAM_NEW_TRAN_CODE 3049 device = start_ccb->ccb_h.path->device; 3050 if (device->protocol_version <= SCSI_REV_2 3051 #else /* CAM_NEW_TRAN_CODE */ 3052 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 3053 #endif /* CAM_NEW_TRAN_CODE */ 3054 && start_ccb->ccb_h.target_lun < 8 3055 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3056 3057 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3058 start_ccb->ccb_h.target_lun << 5; 3059 } 3060 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3061 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3062 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3063 &path->device->inq_data), 3064 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3065 cdb_str, sizeof(cdb_str)))); 3066 } 3067 /* FALLTHROUGH */ 3068 case XPT_TARGET_IO: 3069 case XPT_CONT_TARGET_IO: 3070 start_ccb->csio.sense_resid = 0; 3071 start_ccb->csio.resid = 0; 3072 /* FALLTHROUGH */ 3073 case XPT_RESET_DEV: 3074 case XPT_ENG_EXEC: 3075 { 3076 struct cam_path *path; 3077 struct cam_sim *sim; 3078 int s; 3079 int runq; 3080 3081 path = start_ccb->ccb_h.path; 3082 s = splsoftcam(); 3083 3084 sim = path->bus->sim; 3085 if (SIM_DEAD(sim)) { 3086 /* The SIM has gone; just execute the CCB directly. */ 3087 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb); 3088 (*(sim->sim_action))(sim, start_ccb); 3089 splx(s); 3090 break; 3091 } 3092 3093 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3094 if (path->device->qfrozen_cnt == 0) 3095 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3096 else 3097 runq = 0; 3098 splx(s); 3099 if (runq != 0) 3100 xpt_run_dev_sendq(path->bus); 3101 break; 3102 } 3103 case XPT_SET_TRAN_SETTINGS: 3104 { 3105 xpt_set_transfer_settings(&start_ccb->cts, 3106 start_ccb->ccb_h.path->device, 3107 /*async_update*/FALSE); 3108 break; 3109 } 3110 case XPT_CALC_GEOMETRY: 3111 { 3112 struct cam_sim *sim; 3113 3114 /* Filter out garbage */ 3115 if (start_ccb->ccg.block_size == 0 3116 || start_ccb->ccg.volume_size == 0) { 3117 start_ccb->ccg.cylinders = 0; 3118 start_ccb->ccg.heads = 0; 3119 start_ccb->ccg.secs_per_track = 0; 3120 start_ccb->ccb_h.status = CAM_REQ_CMP; 3121 break; 3122 } 3123 #ifdef PC98 3124 /* 3125 * In a PC-98 system, geometry translation depens on 3126 * the "real" device geometry obtained from mode page 4. 3127 * SCSI geometry translation is performed in the 3128 * initialization routine of the SCSI BIOS and the result 3129 * stored in host memory. If the translation is available 3130 * in host memory, use it. If not, rely on the default 3131 * translation the device driver performs. 3132 */ 3133 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3134 start_ccb->ccb_h.status = CAM_REQ_CMP; 3135 break; 3136 } 3137 #endif 3138 sim = start_ccb->ccb_h.path->bus->sim; 3139 (*(sim->sim_action))(sim, start_ccb); 3140 break; 3141 } 3142 case XPT_ABORT: 3143 { 3144 union ccb* abort_ccb; 3145 int s; 3146 3147 abort_ccb = start_ccb->cab.abort_ccb; 3148 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3149 3150 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3151 struct cam_ccbq *ccbq; 3152 3153 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3154 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3155 abort_ccb->ccb_h.status = 3156 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3157 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3158 s = splcam(); 3159 xpt_done(abort_ccb); 3160 splx(s); 3161 start_ccb->ccb_h.status = CAM_REQ_CMP; 3162 break; 3163 } 3164 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3165 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3166 /* 3167 * We've caught this ccb en route to 3168 * the SIM. Flag it for abort and the 3169 * SIM will do so just before starting 3170 * real work on the CCB. 3171 */ 3172 abort_ccb->ccb_h.status = 3173 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3174 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3175 start_ccb->ccb_h.status = CAM_REQ_CMP; 3176 break; 3177 } 3178 } 3179 if (XPT_FC_IS_QUEUED(abort_ccb) 3180 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3181 /* 3182 * It's already completed but waiting 3183 * for our SWI to get to it. 3184 */ 3185 start_ccb->ccb_h.status = CAM_UA_ABORT; 3186 break; 3187 } 3188 /* 3189 * If we weren't able to take care of the abort request 3190 * in the XPT, pass the request down to the SIM for processing. 3191 */ 3192 } 3193 /* FALLTHROUGH */ 3194 case XPT_ACCEPT_TARGET_IO: 3195 case XPT_EN_LUN: 3196 case XPT_IMMED_NOTIFY: 3197 case XPT_NOTIFY_ACK: 3198 case XPT_GET_TRAN_SETTINGS: 3199 case XPT_RESET_BUS: 3200 { 3201 struct cam_sim *sim; 3202 3203 sim = start_ccb->ccb_h.path->bus->sim; 3204 (*(sim->sim_action))(sim, start_ccb); 3205 break; 3206 } 3207 case XPT_PATH_INQ: 3208 { 3209 struct cam_sim *sim; 3210 3211 sim = start_ccb->ccb_h.path->bus->sim; 3212 (*(sim->sim_action))(sim, start_ccb); 3213 break; 3214 } 3215 case XPT_PATH_STATS: 3216 start_ccb->cpis.last_reset = 3217 start_ccb->ccb_h.path->bus->last_reset; 3218 start_ccb->ccb_h.status = CAM_REQ_CMP; 3219 break; 3220 case XPT_GDEV_TYPE: 3221 { 3222 struct cam_ed *dev; 3223 int s; 3224 3225 dev = start_ccb->ccb_h.path->device; 3226 s = splcam(); 3227 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3228 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3229 } else { 3230 struct ccb_getdev *cgd; 3231 struct cam_eb *bus; 3232 struct cam_et *tar; 3233 3234 cgd = &start_ccb->cgd; 3235 bus = cgd->ccb_h.path->bus; 3236 tar = cgd->ccb_h.path->target; 3237 cgd->inq_data = dev->inq_data; 3238 cgd->ccb_h.status = CAM_REQ_CMP; 3239 cgd->serial_num_len = dev->serial_num_len; 3240 if ((dev->serial_num_len > 0) 3241 && (dev->serial_num != NULL)) 3242 bcopy(dev->serial_num, cgd->serial_num, 3243 dev->serial_num_len); 3244 } 3245 splx(s); 3246 break; 3247 } 3248 case XPT_GDEV_STATS: 3249 { 3250 struct cam_ed *dev; 3251 int s; 3252 3253 dev = start_ccb->ccb_h.path->device; 3254 s = splcam(); 3255 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3256 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3257 } else { 3258 struct ccb_getdevstats *cgds; 3259 struct cam_eb *bus; 3260 struct cam_et *tar; 3261 3262 cgds = &start_ccb->cgds; 3263 bus = cgds->ccb_h.path->bus; 3264 tar = cgds->ccb_h.path->target; 3265 cgds->dev_openings = dev->ccbq.dev_openings; 3266 cgds->dev_active = dev->ccbq.dev_active; 3267 cgds->devq_openings = dev->ccbq.devq_openings; 3268 cgds->devq_queued = dev->ccbq.queue.entries; 3269 cgds->held = dev->ccbq.held; 3270 cgds->last_reset = tar->last_reset; 3271 cgds->maxtags = dev->quirk->maxtags; 3272 cgds->mintags = dev->quirk->mintags; 3273 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3274 cgds->last_reset = bus->last_reset; 3275 cgds->ccb_h.status = CAM_REQ_CMP; 3276 } 3277 splx(s); 3278 break; 3279 } 3280 case XPT_GDEVLIST: 3281 { 3282 struct cam_periph *nperiph; 3283 struct periph_list *periph_head; 3284 struct ccb_getdevlist *cgdl; 3285 u_int i; 3286 int s; 3287 struct cam_ed *device; 3288 int found; 3289 3290 3291 found = 0; 3292 3293 /* 3294 * Don't want anyone mucking with our data. 3295 */ 3296 s = splcam(); 3297 device = start_ccb->ccb_h.path->device; 3298 periph_head = &device->periphs; 3299 cgdl = &start_ccb->cgdl; 3300 3301 /* 3302 * Check and see if the list has changed since the user 3303 * last requested a list member. If so, tell them that the 3304 * list has changed, and therefore they need to start over 3305 * from the beginning. 3306 */ 3307 if ((cgdl->index != 0) && 3308 (cgdl->generation != device->generation)) { 3309 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3310 splx(s); 3311 break; 3312 } 3313 3314 /* 3315 * Traverse the list of peripherals and attempt to find 3316 * the requested peripheral. 3317 */ 3318 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3319 (nperiph != NULL) && (i <= cgdl->index); 3320 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3321 if (i == cgdl->index) { 3322 strncpy(cgdl->periph_name, 3323 nperiph->periph_name, 3324 DEV_IDLEN); 3325 cgdl->unit_number = nperiph->unit_number; 3326 found = 1; 3327 } 3328 } 3329 if (found == 0) { 3330 cgdl->status = CAM_GDEVLIST_ERROR; 3331 splx(s); 3332 break; 3333 } 3334 3335 if (nperiph == NULL) 3336 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3337 else 3338 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3339 3340 cgdl->index++; 3341 cgdl->generation = device->generation; 3342 3343 splx(s); 3344 cgdl->ccb_h.status = CAM_REQ_CMP; 3345 break; 3346 } 3347 case XPT_DEV_MATCH: 3348 { 3349 int s; 3350 dev_pos_type position_type; 3351 struct ccb_dev_match *cdm; 3352 3353 cdm = &start_ccb->cdm; 3354 3355 /* 3356 * Prevent EDT changes while we traverse it. 3357 */ 3358 s = splcam(); 3359 /* 3360 * There are two ways of getting at information in the EDT. 3361 * The first way is via the primary EDT tree. It starts 3362 * with a list of busses, then a list of targets on a bus, 3363 * then devices/luns on a target, and then peripherals on a 3364 * device/lun. The "other" way is by the peripheral driver 3365 * lists. The peripheral driver lists are organized by 3366 * peripheral driver. (obviously) So it makes sense to 3367 * use the peripheral driver list if the user is looking 3368 * for something like "da1", or all "da" devices. If the 3369 * user is looking for something on a particular bus/target 3370 * or lun, it's generally better to go through the EDT tree. 3371 */ 3372 3373 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3374 position_type = cdm->pos.position_type; 3375 else { 3376 u_int i; 3377 3378 position_type = CAM_DEV_POS_NONE; 3379 3380 for (i = 0; i < cdm->num_patterns; i++) { 3381 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3382 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3383 position_type = CAM_DEV_POS_EDT; 3384 break; 3385 } 3386 } 3387 3388 if (cdm->num_patterns == 0) 3389 position_type = CAM_DEV_POS_EDT; 3390 else if (position_type == CAM_DEV_POS_NONE) 3391 position_type = CAM_DEV_POS_PDRV; 3392 } 3393 3394 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3395 case CAM_DEV_POS_EDT: 3396 xptedtmatch(cdm); 3397 break; 3398 case CAM_DEV_POS_PDRV: 3399 xptperiphlistmatch(cdm); 3400 break; 3401 default: 3402 cdm->status = CAM_DEV_MATCH_ERROR; 3403 break; 3404 } 3405 3406 splx(s); 3407 3408 if (cdm->status == CAM_DEV_MATCH_ERROR) 3409 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3410 else 3411 start_ccb->ccb_h.status = CAM_REQ_CMP; 3412 3413 break; 3414 } 3415 case XPT_SASYNC_CB: 3416 { 3417 struct ccb_setasync *csa; 3418 struct async_node *cur_entry; 3419 struct async_list *async_head; 3420 u_int32_t added; 3421 int s; 3422 3423 csa = &start_ccb->csa; 3424 added = csa->event_enable; 3425 async_head = &csa->ccb_h.path->device->asyncs; 3426 3427 /* 3428 * If there is already an entry for us, simply 3429 * update it. 3430 */ 3431 s = splcam(); 3432 cur_entry = SLIST_FIRST(async_head); 3433 while (cur_entry != NULL) { 3434 if ((cur_entry->callback_arg == csa->callback_arg) 3435 && (cur_entry->callback == csa->callback)) 3436 break; 3437 cur_entry = SLIST_NEXT(cur_entry, links); 3438 } 3439 3440 if (cur_entry != NULL) { 3441 /* 3442 * If the request has no flags set, 3443 * remove the entry. 3444 */ 3445 added &= ~cur_entry->event_enable; 3446 if (csa->event_enable == 0) { 3447 SLIST_REMOVE(async_head, cur_entry, 3448 async_node, links); 3449 csa->ccb_h.path->device->refcount--; 3450 free(cur_entry, M_CAMXPT); 3451 } else { 3452 cur_entry->event_enable = csa->event_enable; 3453 } 3454 } else { 3455 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3456 M_NOWAIT); 3457 if (cur_entry == NULL) { 3458 splx(s); 3459 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3460 break; 3461 } 3462 cur_entry->event_enable = csa->event_enable; 3463 cur_entry->callback_arg = csa->callback_arg; 3464 cur_entry->callback = csa->callback; 3465 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3466 csa->ccb_h.path->device->refcount++; 3467 } 3468 3469 if ((added & AC_FOUND_DEVICE) != 0) { 3470 /* 3471 * Get this peripheral up to date with all 3472 * the currently existing devices. 3473 */ 3474 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3475 } 3476 if ((added & AC_PATH_REGISTERED) != 0) { 3477 /* 3478 * Get this peripheral up to date with all 3479 * the currently existing busses. 3480 */ 3481 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3482 } 3483 splx(s); 3484 start_ccb->ccb_h.status = CAM_REQ_CMP; 3485 break; 3486 } 3487 case XPT_REL_SIMQ: 3488 { 3489 struct ccb_relsim *crs; 3490 struct cam_ed *dev; 3491 int s; 3492 3493 crs = &start_ccb->crs; 3494 dev = crs->ccb_h.path->device; 3495 if (dev == NULL) { 3496 3497 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3498 break; 3499 } 3500 3501 s = splcam(); 3502 3503 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3504 3505 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3506 3507 /* Don't ever go below one opening */ 3508 if (crs->openings > 0) { 3509 xpt_dev_ccbq_resize(crs->ccb_h.path, 3510 crs->openings); 3511 3512 if (bootverbose) { 3513 xpt_print_path(crs->ccb_h.path); 3514 printf("tagged openings " 3515 "now %d\n", 3516 crs->openings); 3517 } 3518 } 3519 } 3520 } 3521 3522 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3523 3524 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3525 3526 /* 3527 * Just extend the old timeout and decrement 3528 * the freeze count so that a single timeout 3529 * is sufficient for releasing the queue. 3530 */ 3531 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3532 untimeout(xpt_release_devq_timeout, 3533 dev, dev->c_handle); 3534 } else { 3535 3536 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3537 } 3538 3539 dev->c_handle = 3540 timeout(xpt_release_devq_timeout, 3541 dev, 3542 (crs->release_timeout * hz) / 1000); 3543 3544 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3545 3546 } 3547 3548 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3549 3550 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3551 /* 3552 * Decrement the freeze count so that a single 3553 * completion is still sufficient to unfreeze 3554 * the queue. 3555 */ 3556 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3557 } else { 3558 3559 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3560 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3561 } 3562 } 3563 3564 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3565 3566 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3567 || (dev->ccbq.dev_active == 0)) { 3568 3569 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3570 } else { 3571 3572 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3573 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3574 } 3575 } 3576 splx(s); 3577 3578 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3579 3580 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3581 /*run_queue*/TRUE); 3582 } 3583 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3584 start_ccb->ccb_h.status = CAM_REQ_CMP; 3585 break; 3586 } 3587 case XPT_SCAN_BUS: 3588 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3589 break; 3590 case XPT_SCAN_LUN: 3591 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3592 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3593 start_ccb); 3594 break; 3595 case XPT_DEBUG: { 3596 #ifdef CAMDEBUG 3597 int s; 3598 3599 s = splcam(); 3600 #ifdef CAM_DEBUG_DELAY 3601 cam_debug_delay = CAM_DEBUG_DELAY; 3602 #endif 3603 cam_dflags = start_ccb->cdbg.flags; 3604 if (cam_dpath != NULL) { 3605 xpt_free_path(cam_dpath); 3606 cam_dpath = NULL; 3607 } 3608 3609 if (cam_dflags != CAM_DEBUG_NONE) { 3610 if (xpt_create_path(&cam_dpath, xpt_periph, 3611 start_ccb->ccb_h.path_id, 3612 start_ccb->ccb_h.target_id, 3613 start_ccb->ccb_h.target_lun) != 3614 CAM_REQ_CMP) { 3615 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3616 cam_dflags = CAM_DEBUG_NONE; 3617 } else { 3618 start_ccb->ccb_h.status = CAM_REQ_CMP; 3619 xpt_print_path(cam_dpath); 3620 printf("debugging flags now %x\n", cam_dflags); 3621 } 3622 } else { 3623 cam_dpath = NULL; 3624 start_ccb->ccb_h.status = CAM_REQ_CMP; 3625 } 3626 splx(s); 3627 #else /* !CAMDEBUG */ 3628 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3629 #endif /* CAMDEBUG */ 3630 break; 3631 } 3632 case XPT_NOOP: 3633 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3634 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3635 start_ccb->ccb_h.status = CAM_REQ_CMP; 3636 break; 3637 default: 3638 case XPT_SDEV_TYPE: 3639 case XPT_TERM_IO: 3640 case XPT_ENG_INQ: 3641 /* XXX Implement */ 3642 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3643 break; 3644 } 3645 splx(iopl); 3646 } 3647 3648 void 3649 xpt_polled_action(union ccb *start_ccb) 3650 { 3651 int s; 3652 u_int32_t timeout; 3653 struct cam_sim *sim; 3654 struct cam_devq *devq; 3655 struct cam_ed *dev; 3656 3657 GIANT_REQUIRED; 3658 3659 timeout = start_ccb->ccb_h.timeout; 3660 sim = start_ccb->ccb_h.path->bus->sim; 3661 devq = sim->devq; 3662 dev = start_ccb->ccb_h.path->device; 3663 3664 s = splcam(); 3665 3666 /* 3667 * Steal an opening so that no other queued requests 3668 * can get it before us while we simulate interrupts. 3669 */ 3670 dev->ccbq.devq_openings--; 3671 dev->ccbq.dev_openings--; 3672 3673 while(((devq != NULL && devq->send_openings <= 0) || 3674 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3675 DELAY(1000); 3676 (*(sim->sim_poll))(sim); 3677 camisr(&cam_bioq); 3678 } 3679 3680 dev->ccbq.devq_openings++; 3681 dev->ccbq.dev_openings++; 3682 3683 if (timeout != 0) { 3684 xpt_action(start_ccb); 3685 while(--timeout > 0) { 3686 (*(sim->sim_poll))(sim); 3687 camisr(&cam_bioq); 3688 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3689 != CAM_REQ_INPROG) 3690 break; 3691 DELAY(1000); 3692 } 3693 if (timeout == 0) { 3694 /* 3695 * XXX Is it worth adding a sim_timeout entry 3696 * point so we can attempt recovery? If 3697 * this is only used for dumps, I don't think 3698 * it is. 3699 */ 3700 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3701 } 3702 } else { 3703 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3704 } 3705 splx(s); 3706 } 3707 3708 /* 3709 * Schedule a peripheral driver to receive a ccb when it's 3710 * target device has space for more transactions. 3711 */ 3712 void 3713 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3714 { 3715 struct cam_ed *device; 3716 union ccb *work_ccb; 3717 int s; 3718 int runq; 3719 3720 GIANT_REQUIRED; 3721 3722 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3723 device = perph->path->device; 3724 s = splsoftcam(); 3725 if (periph_is_queued(perph)) { 3726 /* Simply reorder based on new priority */ 3727 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3728 (" change priority to %d\n", new_priority)); 3729 if (new_priority < perph->pinfo.priority) { 3730 camq_change_priority(&device->drvq, 3731 perph->pinfo.index, 3732 new_priority); 3733 } 3734 runq = 0; 3735 } else if (SIM_DEAD(perph->path->bus->sim)) { 3736 /* The SIM is gone so just call periph_start directly. */ 3737 work_ccb = xpt_get_ccb(perph->path->device); 3738 splx(s); 3739 if (work_ccb == NULL) 3740 return; /* XXX */ 3741 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority); 3742 perph->pinfo.priority = new_priority; 3743 perph->periph_start(perph, work_ccb); 3744 return; 3745 } else { 3746 /* New entry on the queue */ 3747 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3748 (" added periph to queue\n")); 3749 perph->pinfo.priority = new_priority; 3750 perph->pinfo.generation = ++device->drvq.generation; 3751 camq_insert(&device->drvq, &perph->pinfo); 3752 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3753 } 3754 splx(s); 3755 if (runq != 0) { 3756 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3757 (" calling xpt_run_devq\n")); 3758 xpt_run_dev_allocq(perph->path->bus); 3759 } 3760 } 3761 3762 3763 /* 3764 * Schedule a device to run on a given queue. 3765 * If the device was inserted as a new entry on the queue, 3766 * return 1 meaning the device queue should be run. If we 3767 * were already queued, implying someone else has already 3768 * started the queue, return 0 so the caller doesn't attempt 3769 * to run the queue. Must be run at either splsoftcam 3770 * (or splcam since that encompases splsoftcam). 3771 */ 3772 static int 3773 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3774 u_int32_t new_priority) 3775 { 3776 int retval; 3777 u_int32_t old_priority; 3778 3779 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3780 3781 old_priority = pinfo->priority; 3782 3783 /* 3784 * Are we already queued? 3785 */ 3786 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3787 /* Simply reorder based on new priority */ 3788 if (new_priority < old_priority) { 3789 camq_change_priority(queue, pinfo->index, 3790 new_priority); 3791 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3792 ("changed priority to %d\n", 3793 new_priority)); 3794 } 3795 retval = 0; 3796 } else { 3797 /* New entry on the queue */ 3798 if (new_priority < old_priority) 3799 pinfo->priority = new_priority; 3800 3801 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3802 ("Inserting onto queue\n")); 3803 pinfo->generation = ++queue->generation; 3804 camq_insert(queue, pinfo); 3805 retval = 1; 3806 } 3807 return (retval); 3808 } 3809 3810 static void 3811 xpt_run_dev_allocq(struct cam_eb *bus) 3812 { 3813 struct cam_devq *devq; 3814 int s; 3815 3816 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3817 devq = bus->sim->devq; 3818 3819 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3820 (" qfrozen_cnt == 0x%x, entries == %d, " 3821 "openings == %d, active == %d\n", 3822 devq->alloc_queue.qfrozen_cnt, 3823 devq->alloc_queue.entries, 3824 devq->alloc_openings, 3825 devq->alloc_active)); 3826 3827 s = splsoftcam(); 3828 devq->alloc_queue.qfrozen_cnt++; 3829 while ((devq->alloc_queue.entries > 0) 3830 && (devq->alloc_openings > 0) 3831 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3832 struct cam_ed_qinfo *qinfo; 3833 struct cam_ed *device; 3834 union ccb *work_ccb; 3835 struct cam_periph *drv; 3836 struct camq *drvq; 3837 3838 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3839 CAMQ_HEAD); 3840 device = qinfo->device; 3841 3842 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3843 ("running device %p\n", device)); 3844 3845 drvq = &device->drvq; 3846 3847 #ifdef CAMDEBUG 3848 if (drvq->entries <= 0) { 3849 panic("xpt_run_dev_allocq: " 3850 "Device on queue without any work to do"); 3851 } 3852 #endif 3853 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3854 devq->alloc_openings--; 3855 devq->alloc_active++; 3856 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3857 splx(s); 3858 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3859 drv->pinfo.priority); 3860 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3861 ("calling periph start\n")); 3862 drv->periph_start(drv, work_ccb); 3863 } else { 3864 /* 3865 * Malloc failure in alloc_ccb 3866 */ 3867 /* 3868 * XXX add us to a list to be run from free_ccb 3869 * if we don't have any ccbs active on this 3870 * device queue otherwise we may never get run 3871 * again. 3872 */ 3873 break; 3874 } 3875 3876 /* Raise IPL for possible insertion and test at top of loop */ 3877 s = splsoftcam(); 3878 3879 if (drvq->entries > 0) { 3880 /* We have more work. Attempt to reschedule */ 3881 xpt_schedule_dev_allocq(bus, device); 3882 } 3883 } 3884 devq->alloc_queue.qfrozen_cnt--; 3885 splx(s); 3886 } 3887 3888 static void 3889 xpt_run_dev_sendq(struct cam_eb *bus) 3890 { 3891 struct cam_devq *devq; 3892 int s; 3893 3894 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3895 3896 devq = bus->sim->devq; 3897 3898 s = splcam(); 3899 devq->send_queue.qfrozen_cnt++; 3900 splx(s); 3901 s = splsoftcam(); 3902 while ((devq->send_queue.entries > 0) 3903 && (devq->send_openings > 0)) { 3904 struct cam_ed_qinfo *qinfo; 3905 struct cam_ed *device; 3906 union ccb *work_ccb; 3907 struct cam_sim *sim; 3908 int ospl; 3909 3910 ospl = splcam(); 3911 if (devq->send_queue.qfrozen_cnt > 1) { 3912 splx(ospl); 3913 break; 3914 } 3915 3916 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3917 CAMQ_HEAD); 3918 device = qinfo->device; 3919 3920 /* 3921 * If the device has been "frozen", don't attempt 3922 * to run it. 3923 */ 3924 if (device->qfrozen_cnt > 0) { 3925 splx(ospl); 3926 continue; 3927 } 3928 3929 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3930 ("running device %p\n", device)); 3931 3932 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3933 if (work_ccb == NULL) { 3934 printf("device on run queue with no ccbs???\n"); 3935 splx(ospl); 3936 continue; 3937 } 3938 3939 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3940 3941 if (num_highpower <= 0) { 3942 /* 3943 * We got a high power command, but we 3944 * don't have any available slots. Freeze 3945 * the device queue until we have a slot 3946 * available. 3947 */ 3948 device->qfrozen_cnt++; 3949 STAILQ_INSERT_TAIL(&highpowerq, 3950 &work_ccb->ccb_h, 3951 xpt_links.stqe); 3952 3953 splx(ospl); 3954 continue; 3955 } else { 3956 /* 3957 * Consume a high power slot while 3958 * this ccb runs. 3959 */ 3960 num_highpower--; 3961 } 3962 } 3963 devq->active_dev = device; 3964 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3965 3966 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3967 splx(ospl); 3968 3969 devq->send_openings--; 3970 devq->send_active++; 3971 3972 if (device->ccbq.queue.entries > 0) 3973 xpt_schedule_dev_sendq(bus, device); 3974 3975 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3976 /* 3977 * The client wants to freeze the queue 3978 * after this CCB is sent. 3979 */ 3980 ospl = splcam(); 3981 device->qfrozen_cnt++; 3982 splx(ospl); 3983 } 3984 3985 splx(s); 3986 3987 /* In Target mode, the peripheral driver knows best... */ 3988 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3989 if ((device->inq_flags & SID_CmdQue) != 0 3990 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3991 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3992 else 3993 /* 3994 * Clear this in case of a retried CCB that 3995 * failed due to a rejected tag. 3996 */ 3997 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3998 } 3999 4000 /* 4001 * Device queues can be shared among multiple sim instances 4002 * that reside on different busses. Use the SIM in the queue 4003 * CCB's path, rather than the one in the bus that was passed 4004 * into this function. 4005 */ 4006 sim = work_ccb->ccb_h.path->bus->sim; 4007 (*(sim->sim_action))(sim, work_ccb); 4008 4009 ospl = splcam(); 4010 devq->active_dev = NULL; 4011 splx(ospl); 4012 /* Raise IPL for possible insertion and test at top of loop */ 4013 s = splsoftcam(); 4014 } 4015 splx(s); 4016 s = splcam(); 4017 devq->send_queue.qfrozen_cnt--; 4018 splx(s); 4019 } 4020 4021 /* 4022 * This function merges stuff from the slave ccb into the master ccb, while 4023 * keeping important fields in the master ccb constant. 4024 */ 4025 void 4026 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 4027 { 4028 GIANT_REQUIRED; 4029 4030 /* 4031 * Pull fields that are valid for peripheral drivers to set 4032 * into the master CCB along with the CCB "payload". 4033 */ 4034 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 4035 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 4036 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 4037 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 4038 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 4039 sizeof(union ccb) - sizeof(struct ccb_hdr)); 4040 } 4041 4042 void 4043 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 4044 { 4045 GIANT_REQUIRED; 4046 4047 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 4048 ccb_h->pinfo.priority = priority; 4049 ccb_h->path = path; 4050 ccb_h->path_id = path->bus->path_id; 4051 if (path->target) 4052 ccb_h->target_id = path->target->target_id; 4053 else 4054 ccb_h->target_id = CAM_TARGET_WILDCARD; 4055 if (path->device) { 4056 ccb_h->target_lun = path->device->lun_id; 4057 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 4058 } else { 4059 ccb_h->target_lun = CAM_TARGET_WILDCARD; 4060 } 4061 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4062 ccb_h->flags = 0; 4063 } 4064 4065 /* Path manipulation functions */ 4066 cam_status 4067 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 4068 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4069 { 4070 struct cam_path *path; 4071 cam_status status; 4072 4073 GIANT_REQUIRED; 4074 4075 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 4076 4077 if (path == NULL) { 4078 status = CAM_RESRC_UNAVAIL; 4079 return(status); 4080 } 4081 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 4082 if (status != CAM_REQ_CMP) { 4083 free(path, M_CAMXPT); 4084 path = NULL; 4085 } 4086 *new_path_ptr = path; 4087 return (status); 4088 } 4089 4090 static cam_status 4091 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 4092 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4093 { 4094 struct cam_eb *bus; 4095 struct cam_et *target; 4096 struct cam_ed *device; 4097 cam_status status; 4098 int s; 4099 4100 status = CAM_REQ_CMP; /* Completed without error */ 4101 target = NULL; /* Wildcarded */ 4102 device = NULL; /* Wildcarded */ 4103 4104 /* 4105 * We will potentially modify the EDT, so block interrupts 4106 * that may attempt to create cam paths. 4107 */ 4108 s = splcam(); 4109 bus = xpt_find_bus(path_id); 4110 if (bus == NULL) { 4111 status = CAM_PATH_INVALID; 4112 } else { 4113 target = xpt_find_target(bus, target_id); 4114 if (target == NULL) { 4115 /* Create one */ 4116 struct cam_et *new_target; 4117 4118 new_target = xpt_alloc_target(bus, target_id); 4119 if (new_target == NULL) { 4120 status = CAM_RESRC_UNAVAIL; 4121 } else { 4122 target = new_target; 4123 } 4124 } 4125 if (target != NULL) { 4126 device = xpt_find_device(target, lun_id); 4127 if (device == NULL) { 4128 /* Create one */ 4129 struct cam_ed *new_device; 4130 4131 new_device = xpt_alloc_device(bus, 4132 target, 4133 lun_id); 4134 if (new_device == NULL) { 4135 status = CAM_RESRC_UNAVAIL; 4136 } else { 4137 device = new_device; 4138 } 4139 } 4140 } 4141 } 4142 splx(s); 4143 4144 /* 4145 * Only touch the user's data if we are successful. 4146 */ 4147 if (status == CAM_REQ_CMP) { 4148 new_path->periph = perph; 4149 new_path->bus = bus; 4150 new_path->target = target; 4151 new_path->device = device; 4152 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4153 } else { 4154 if (device != NULL) 4155 xpt_release_device(bus, target, device); 4156 if (target != NULL) 4157 xpt_release_target(bus, target); 4158 if (bus != NULL) 4159 xpt_release_bus(bus); 4160 } 4161 return (status); 4162 } 4163 4164 static void 4165 xpt_release_path(struct cam_path *path) 4166 { 4167 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4168 if (path->device != NULL) { 4169 xpt_release_device(path->bus, path->target, path->device); 4170 path->device = NULL; 4171 } 4172 if (path->target != NULL) { 4173 xpt_release_target(path->bus, path->target); 4174 path->target = NULL; 4175 } 4176 if (path->bus != NULL) { 4177 xpt_release_bus(path->bus); 4178 path->bus = NULL; 4179 } 4180 } 4181 4182 void 4183 xpt_free_path(struct cam_path *path) 4184 { 4185 GIANT_REQUIRED; 4186 4187 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4188 xpt_release_path(path); 4189 free(path, M_CAMXPT); 4190 } 4191 4192 4193 /* 4194 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4195 * in path1, 2 for match with wildcards in path2. 4196 */ 4197 int 4198 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4199 { 4200 GIANT_REQUIRED; 4201 4202 int retval = 0; 4203 4204 if (path1->bus != path2->bus) { 4205 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4206 retval = 1; 4207 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4208 retval = 2; 4209 else 4210 return (-1); 4211 } 4212 if (path1->target != path2->target) { 4213 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4214 if (retval == 0) 4215 retval = 1; 4216 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4217 retval = 2; 4218 else 4219 return (-1); 4220 } 4221 if (path1->device != path2->device) { 4222 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4223 if (retval == 0) 4224 retval = 1; 4225 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4226 retval = 2; 4227 else 4228 return (-1); 4229 } 4230 return (retval); 4231 } 4232 4233 void 4234 xpt_print_path(struct cam_path *path) 4235 { 4236 GIANT_REQUIRED; 4237 4238 if (path == NULL) 4239 printf("(nopath): "); 4240 else { 4241 if (path->periph != NULL) 4242 printf("(%s%d:", path->periph->periph_name, 4243 path->periph->unit_number); 4244 else 4245 printf("(noperiph:"); 4246 4247 if (path->bus != NULL) 4248 printf("%s%d:%d:", path->bus->sim->sim_name, 4249 path->bus->sim->unit_number, 4250 path->bus->sim->bus_id); 4251 else 4252 printf("nobus:"); 4253 4254 if (path->target != NULL) 4255 printf("%d:", path->target->target_id); 4256 else 4257 printf("X:"); 4258 4259 if (path->device != NULL) 4260 printf("%d): ", path->device->lun_id); 4261 else 4262 printf("X): "); 4263 } 4264 } 4265 4266 int 4267 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4268 { 4269 struct sbuf sb; 4270 4271 GIANT_REQUIRED; 4272 4273 sbuf_new(&sb, str, str_len, 0); 4274 4275 if (path == NULL) 4276 sbuf_printf(&sb, "(nopath): "); 4277 else { 4278 if (path->periph != NULL) 4279 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4280 path->periph->unit_number); 4281 else 4282 sbuf_printf(&sb, "(noperiph:"); 4283 4284 if (path->bus != NULL) 4285 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4286 path->bus->sim->unit_number, 4287 path->bus->sim->bus_id); 4288 else 4289 sbuf_printf(&sb, "nobus:"); 4290 4291 if (path->target != NULL) 4292 sbuf_printf(&sb, "%d:", path->target->target_id); 4293 else 4294 sbuf_printf(&sb, "X:"); 4295 4296 if (path->device != NULL) 4297 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4298 else 4299 sbuf_printf(&sb, "X): "); 4300 } 4301 sbuf_finish(&sb); 4302 4303 return(sbuf_len(&sb)); 4304 } 4305 4306 path_id_t 4307 xpt_path_path_id(struct cam_path *path) 4308 { 4309 GIANT_REQUIRED; 4310 4311 return(path->bus->path_id); 4312 } 4313 4314 target_id_t 4315 xpt_path_target_id(struct cam_path *path) 4316 { 4317 GIANT_REQUIRED; 4318 4319 if (path->target != NULL) 4320 return (path->target->target_id); 4321 else 4322 return (CAM_TARGET_WILDCARD); 4323 } 4324 4325 lun_id_t 4326 xpt_path_lun_id(struct cam_path *path) 4327 { 4328 GIANT_REQUIRED; 4329 4330 if (path->device != NULL) 4331 return (path->device->lun_id); 4332 else 4333 return (CAM_LUN_WILDCARD); 4334 } 4335 4336 struct cam_sim * 4337 xpt_path_sim(struct cam_path *path) 4338 { 4339 GIANT_REQUIRED; 4340 4341 return (path->bus->sim); 4342 } 4343 4344 struct cam_periph* 4345 xpt_path_periph(struct cam_path *path) 4346 { 4347 GIANT_REQUIRED; 4348 4349 return (path->periph); 4350 } 4351 4352 /* 4353 * Release a CAM control block for the caller. Remit the cost of the structure 4354 * to the device referenced by the path. If the this device had no 'credits' 4355 * and peripheral drivers have registered async callbacks for this notification 4356 * call them now. 4357 */ 4358 void 4359 xpt_release_ccb(union ccb *free_ccb) 4360 { 4361 int s; 4362 struct cam_path *path; 4363 struct cam_ed *device; 4364 struct cam_eb *bus; 4365 4366 GIANT_REQUIRED; 4367 4368 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4369 path = free_ccb->ccb_h.path; 4370 device = path->device; 4371 bus = path->bus; 4372 s = splsoftcam(); 4373 cam_ccbq_release_opening(&device->ccbq); 4374 if (xpt_ccb_count > xpt_max_ccbs) { 4375 xpt_free_ccb(free_ccb); 4376 xpt_ccb_count--; 4377 } else { 4378 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4379 } 4380 if (bus->sim->devq == NULL) { 4381 splx(s); 4382 return; 4383 } 4384 bus->sim->devq->alloc_openings++; 4385 bus->sim->devq->alloc_active--; 4386 /* XXX Turn this into an inline function - xpt_run_device?? */ 4387 if ((device_is_alloc_queued(device) == 0) 4388 && (device->drvq.entries > 0)) { 4389 xpt_schedule_dev_allocq(bus, device); 4390 } 4391 splx(s); 4392 if (dev_allocq_is_runnable(bus->sim->devq)) 4393 xpt_run_dev_allocq(bus); 4394 } 4395 4396 /* Functions accessed by SIM drivers */ 4397 4398 /* 4399 * A sim structure, listing the SIM entry points and instance 4400 * identification info is passed to xpt_bus_register to hook the SIM 4401 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4402 * for this new bus and places it in the array of busses and assigns 4403 * it a path_id. The path_id may be influenced by "hard wiring" 4404 * information specified by the user. Once interrupt services are 4405 * availible, the bus will be probed. 4406 */ 4407 int32_t 4408 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4409 { 4410 struct cam_eb *new_bus; 4411 struct cam_eb *old_bus; 4412 struct ccb_pathinq cpi; 4413 int s; 4414 4415 GIANT_REQUIRED; 4416 4417 sim->bus_id = bus; 4418 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4419 M_CAMXPT, M_NOWAIT); 4420 if (new_bus == NULL) { 4421 /* Couldn't satisfy request */ 4422 return (CAM_RESRC_UNAVAIL); 4423 } 4424 4425 if (strcmp(sim->sim_name, "xpt") != 0) { 4426 4427 sim->path_id = 4428 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4429 } 4430 4431 TAILQ_INIT(&new_bus->et_entries); 4432 new_bus->path_id = sim->path_id; 4433 new_bus->sim = sim; 4434 timevalclear(&new_bus->last_reset); 4435 new_bus->flags = 0; 4436 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4437 new_bus->generation = 0; 4438 s = splcam(); 4439 old_bus = TAILQ_FIRST(&xpt_busses); 4440 while (old_bus != NULL 4441 && old_bus->path_id < new_bus->path_id) 4442 old_bus = TAILQ_NEXT(old_bus, links); 4443 if (old_bus != NULL) 4444 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4445 else 4446 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4447 bus_generation++; 4448 splx(s); 4449 4450 /* Notify interested parties */ 4451 if (sim->path_id != CAM_XPT_PATH_ID) { 4452 struct cam_path path; 4453 4454 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4455 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4456 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4457 cpi.ccb_h.func_code = XPT_PATH_INQ; 4458 xpt_action((union ccb *)&cpi); 4459 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4460 xpt_release_path(&path); 4461 } 4462 return (CAM_SUCCESS); 4463 } 4464 4465 int32_t 4466 xpt_bus_deregister(path_id_t pathid) 4467 { 4468 struct cam_path bus_path; 4469 struct cam_ed *device; 4470 struct cam_ed_qinfo *qinfo; 4471 struct cam_devq *devq; 4472 struct cam_periph *periph; 4473 struct cam_sim *ccbsim; 4474 union ccb *work_ccb; 4475 cam_status status; 4476 4477 GIANT_REQUIRED; 4478 4479 status = xpt_compile_path(&bus_path, NULL, pathid, 4480 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4481 if (status != CAM_REQ_CMP) 4482 return (status); 4483 4484 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4485 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4486 4487 /* The SIM may be gone, so use a dummy SIM for any stray operations. */ 4488 devq = bus_path.bus->sim->devq; 4489 bus_path.bus->sim = &cam_dead_sim; 4490 4491 /* Execute any pending operations now. */ 4492 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 4493 CAMQ_HEAD)) != NULL || 4494 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 4495 CAMQ_HEAD)) != NULL) { 4496 do { 4497 device = qinfo->device; 4498 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 4499 if (work_ccb != NULL) { 4500 devq->active_dev = device; 4501 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 4502 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 4503 ccbsim = work_ccb->ccb_h.path->bus->sim; 4504 (*(ccbsim->sim_action))(ccbsim, work_ccb); 4505 } 4506 4507 periph = (struct cam_periph *)camq_remove(&device->drvq, 4508 CAMQ_HEAD); 4509 if (periph != NULL) 4510 xpt_schedule(periph, periph->pinfo.priority); 4511 } while (work_ccb != NULL || periph != NULL); 4512 } 4513 4514 /* Make sure all completed CCBs are processed. */ 4515 while (!TAILQ_EMPTY(&cam_bioq)) { 4516 camisr(&cam_bioq); 4517 4518 /* Repeat the async's for the benefit of any new devices. */ 4519 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4520 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4521 } 4522 4523 /* Release the reference count held while registered. */ 4524 xpt_release_bus(bus_path.bus); 4525 xpt_release_path(&bus_path); 4526 4527 /* Recheck for more completed CCBs. */ 4528 while (!TAILQ_EMPTY(&cam_bioq)) 4529 camisr(&cam_bioq); 4530 4531 return (CAM_REQ_CMP); 4532 } 4533 4534 static path_id_t 4535 xptnextfreepathid(void) 4536 { 4537 struct cam_eb *bus; 4538 path_id_t pathid; 4539 const char *strval; 4540 4541 pathid = 0; 4542 bus = TAILQ_FIRST(&xpt_busses); 4543 retry: 4544 /* Find an unoccupied pathid */ 4545 while (bus != NULL 4546 && bus->path_id <= pathid) { 4547 if (bus->path_id == pathid) 4548 pathid++; 4549 bus = TAILQ_NEXT(bus, links); 4550 } 4551 4552 /* 4553 * Ensure that this pathid is not reserved for 4554 * a bus that may be registered in the future. 4555 */ 4556 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4557 ++pathid; 4558 /* Start the search over */ 4559 goto retry; 4560 } 4561 return (pathid); 4562 } 4563 4564 static path_id_t 4565 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4566 { 4567 path_id_t pathid; 4568 int i, dunit, val; 4569 char buf[32]; 4570 const char *dname; 4571 4572 pathid = CAM_XPT_PATH_ID; 4573 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4574 i = 0; 4575 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4576 if (strcmp(dname, "scbus")) { 4577 /* Avoid a bit of foot shooting. */ 4578 continue; 4579 } 4580 if (dunit < 0) /* unwired?! */ 4581 continue; 4582 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4583 if (sim_bus == val) { 4584 pathid = dunit; 4585 break; 4586 } 4587 } else if (sim_bus == 0) { 4588 /* Unspecified matches bus 0 */ 4589 pathid = dunit; 4590 break; 4591 } else { 4592 printf("Ambiguous scbus configuration for %s%d " 4593 "bus %d, cannot wire down. The kernel " 4594 "config entry for scbus%d should " 4595 "specify a controller bus.\n" 4596 "Scbus will be assigned dynamically.\n", 4597 sim_name, sim_unit, sim_bus, dunit); 4598 break; 4599 } 4600 } 4601 4602 if (pathid == CAM_XPT_PATH_ID) 4603 pathid = xptnextfreepathid(); 4604 return (pathid); 4605 } 4606 4607 void 4608 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4609 { 4610 struct cam_eb *bus; 4611 struct cam_et *target, *next_target; 4612 struct cam_ed *device, *next_device; 4613 int s; 4614 4615 GIANT_REQUIRED; 4616 4617 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4618 4619 /* 4620 * Most async events come from a CAM interrupt context. In 4621 * a few cases, the error recovery code at the peripheral layer, 4622 * which may run from our SWI or a process context, may signal 4623 * deferred events with a call to xpt_async. Ensure async 4624 * notifications are serialized by blocking cam interrupts. 4625 */ 4626 s = splcam(); 4627 4628 bus = path->bus; 4629 4630 if (async_code == AC_BUS_RESET) { 4631 int s; 4632 4633 s = splclock(); 4634 /* Update our notion of when the last reset occurred */ 4635 microtime(&bus->last_reset); 4636 splx(s); 4637 } 4638 4639 for (target = TAILQ_FIRST(&bus->et_entries); 4640 target != NULL; 4641 target = next_target) { 4642 4643 next_target = TAILQ_NEXT(target, links); 4644 4645 if (path->target != target 4646 && path->target->target_id != CAM_TARGET_WILDCARD 4647 && target->target_id != CAM_TARGET_WILDCARD) 4648 continue; 4649 4650 if (async_code == AC_SENT_BDR) { 4651 int s; 4652 4653 /* Update our notion of when the last reset occurred */ 4654 s = splclock(); 4655 microtime(&path->target->last_reset); 4656 splx(s); 4657 } 4658 4659 for (device = TAILQ_FIRST(&target->ed_entries); 4660 device != NULL; 4661 device = next_device) { 4662 4663 next_device = TAILQ_NEXT(device, links); 4664 4665 if (path->device != device 4666 && path->device->lun_id != CAM_LUN_WILDCARD 4667 && device->lun_id != CAM_LUN_WILDCARD) 4668 continue; 4669 4670 xpt_dev_async(async_code, bus, target, 4671 device, async_arg); 4672 4673 xpt_async_bcast(&device->asyncs, async_code, 4674 path, async_arg); 4675 } 4676 } 4677 4678 /* 4679 * If this wasn't a fully wildcarded async, tell all 4680 * clients that want all async events. 4681 */ 4682 if (bus != xpt_periph->path->bus) 4683 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4684 path, async_arg); 4685 splx(s); 4686 } 4687 4688 static void 4689 xpt_async_bcast(struct async_list *async_head, 4690 u_int32_t async_code, 4691 struct cam_path *path, void *async_arg) 4692 { 4693 struct async_node *cur_entry; 4694 4695 cur_entry = SLIST_FIRST(async_head); 4696 while (cur_entry != NULL) { 4697 struct async_node *next_entry; 4698 /* 4699 * Grab the next list entry before we call the current 4700 * entry's callback. This is because the callback function 4701 * can delete its async callback entry. 4702 */ 4703 next_entry = SLIST_NEXT(cur_entry, links); 4704 if ((cur_entry->event_enable & async_code) != 0) 4705 cur_entry->callback(cur_entry->callback_arg, 4706 async_code, path, 4707 async_arg); 4708 cur_entry = next_entry; 4709 } 4710 } 4711 4712 /* 4713 * Handle any per-device event notifications that require action by the XPT. 4714 */ 4715 static void 4716 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4717 struct cam_ed *device, void *async_arg) 4718 { 4719 cam_status status; 4720 struct cam_path newpath; 4721 4722 /* 4723 * We only need to handle events for real devices. 4724 */ 4725 if (target->target_id == CAM_TARGET_WILDCARD 4726 || device->lun_id == CAM_LUN_WILDCARD) 4727 return; 4728 4729 /* 4730 * We need our own path with wildcards expanded to 4731 * handle certain types of events. 4732 */ 4733 if ((async_code == AC_SENT_BDR) 4734 || (async_code == AC_BUS_RESET) 4735 || (async_code == AC_INQ_CHANGED)) 4736 status = xpt_compile_path(&newpath, NULL, 4737 bus->path_id, 4738 target->target_id, 4739 device->lun_id); 4740 else 4741 status = CAM_REQ_CMP_ERR; 4742 4743 if (status == CAM_REQ_CMP) { 4744 4745 /* 4746 * Allow transfer negotiation to occur in a 4747 * tag free environment. 4748 */ 4749 if (async_code == AC_SENT_BDR 4750 || async_code == AC_BUS_RESET) 4751 xpt_toggle_tags(&newpath); 4752 4753 if (async_code == AC_INQ_CHANGED) { 4754 /* 4755 * We've sent a start unit command, or 4756 * something similar to a device that 4757 * may have caused its inquiry data to 4758 * change. So we re-scan the device to 4759 * refresh the inquiry data for it. 4760 */ 4761 xpt_scan_lun(newpath.periph, &newpath, 4762 CAM_EXPECT_INQ_CHANGE, NULL); 4763 } 4764 xpt_release_path(&newpath); 4765 } else if (async_code == AC_LOST_DEVICE) { 4766 device->flags |= CAM_DEV_UNCONFIGURED; 4767 } else if (async_code == AC_TRANSFER_NEG) { 4768 struct ccb_trans_settings *settings; 4769 4770 settings = (struct ccb_trans_settings *)async_arg; 4771 xpt_set_transfer_settings(settings, device, 4772 /*async_update*/TRUE); 4773 } 4774 } 4775 4776 u_int32_t 4777 xpt_freeze_devq(struct cam_path *path, u_int count) 4778 { 4779 int s; 4780 struct ccb_hdr *ccbh; 4781 4782 GIANT_REQUIRED; 4783 4784 s = splcam(); 4785 path->device->qfrozen_cnt += count; 4786 4787 /* 4788 * Mark the last CCB in the queue as needing 4789 * to be requeued if the driver hasn't 4790 * changed it's state yet. This fixes a race 4791 * where a ccb is just about to be queued to 4792 * a controller driver when it's interrupt routine 4793 * freezes the queue. To completly close the 4794 * hole, controller drives must check to see 4795 * if a ccb's status is still CAM_REQ_INPROG 4796 * under spl protection just before they queue 4797 * the CCB. See ahc_action/ahc_freeze_devq for 4798 * an example. 4799 */ 4800 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4801 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4802 ccbh->status = CAM_REQUEUE_REQ; 4803 splx(s); 4804 return (path->device->qfrozen_cnt); 4805 } 4806 4807 u_int32_t 4808 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4809 { 4810 GIANT_REQUIRED; 4811 4812 sim->devq->send_queue.qfrozen_cnt += count; 4813 if (sim->devq->active_dev != NULL) { 4814 struct ccb_hdr *ccbh; 4815 4816 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4817 ccb_hdr_tailq); 4818 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4819 ccbh->status = CAM_REQUEUE_REQ; 4820 } 4821 return (sim->devq->send_queue.qfrozen_cnt); 4822 } 4823 4824 static void 4825 xpt_release_devq_timeout(void *arg) 4826 { 4827 struct cam_ed *device; 4828 4829 device = (struct cam_ed *)arg; 4830 4831 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4832 } 4833 4834 void 4835 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4836 { 4837 GIANT_REQUIRED; 4838 4839 xpt_release_devq_device(path->device, count, run_queue); 4840 } 4841 4842 static void 4843 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4844 { 4845 int rundevq; 4846 int s0, s1; 4847 4848 rundevq = 0; 4849 s0 = splsoftcam(); 4850 s1 = splcam(); 4851 if (dev->qfrozen_cnt > 0) { 4852 4853 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4854 dev->qfrozen_cnt -= count; 4855 if (dev->qfrozen_cnt == 0) { 4856 4857 /* 4858 * No longer need to wait for a successful 4859 * command completion. 4860 */ 4861 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4862 4863 /* 4864 * Remove any timeouts that might be scheduled 4865 * to release this queue. 4866 */ 4867 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4868 untimeout(xpt_release_devq_timeout, dev, 4869 dev->c_handle); 4870 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4871 } 4872 4873 /* 4874 * Now that we are unfrozen schedule the 4875 * device so any pending transactions are 4876 * run. 4877 */ 4878 if ((dev->ccbq.queue.entries > 0) 4879 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4880 && (run_queue != 0)) { 4881 rundevq = 1; 4882 } 4883 } 4884 } 4885 splx(s1); 4886 if (rundevq != 0) 4887 xpt_run_dev_sendq(dev->target->bus); 4888 splx(s0); 4889 } 4890 4891 void 4892 xpt_release_simq(struct cam_sim *sim, int run_queue) 4893 { 4894 int s; 4895 struct camq *sendq; 4896 4897 GIANT_REQUIRED; 4898 4899 sendq = &(sim->devq->send_queue); 4900 s = splcam(); 4901 if (sendq->qfrozen_cnt > 0) { 4902 4903 sendq->qfrozen_cnt--; 4904 if (sendq->qfrozen_cnt == 0) { 4905 struct cam_eb *bus; 4906 4907 /* 4908 * If there is a timeout scheduled to release this 4909 * sim queue, remove it. The queue frozen count is 4910 * already at 0. 4911 */ 4912 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4913 untimeout(xpt_release_simq_timeout, sim, 4914 sim->c_handle); 4915 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4916 } 4917 bus = xpt_find_bus(sim->path_id); 4918 splx(s); 4919 4920 if (run_queue) { 4921 /* 4922 * Now that we are unfrozen run the send queue. 4923 */ 4924 xpt_run_dev_sendq(bus); 4925 } 4926 xpt_release_bus(bus); 4927 } else 4928 splx(s); 4929 } else 4930 splx(s); 4931 } 4932 4933 static void 4934 xpt_release_simq_timeout(void *arg) 4935 { 4936 struct cam_sim *sim; 4937 4938 sim = (struct cam_sim *)arg; 4939 xpt_release_simq(sim, /* run_queue */ TRUE); 4940 } 4941 4942 void 4943 xpt_done(union ccb *done_ccb) 4944 { 4945 int s; 4946 4947 s = splcam(); 4948 4949 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4950 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4951 /* 4952 * Queue up the request for handling by our SWI handler 4953 * any of the "non-immediate" type of ccbs. 4954 */ 4955 switch (done_ccb->ccb_h.path->periph->type) { 4956 case CAM_PERIPH_BIO: 4957 mtx_lock(&cam_bioq_lock); 4958 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4959 sim_links.tqe); 4960 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4961 mtx_unlock(&cam_bioq_lock); 4962 swi_sched(cambio_ih, 0); 4963 break; 4964 default: 4965 panic("unknown periph type %d", 4966 done_ccb->ccb_h.path->periph->type); 4967 } 4968 } 4969 splx(s); 4970 } 4971 4972 union ccb * 4973 xpt_alloc_ccb() 4974 { 4975 union ccb *new_ccb; 4976 4977 GIANT_REQUIRED; 4978 4979 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_WAITOK); 4980 return (new_ccb); 4981 } 4982 4983 union ccb * 4984 xpt_alloc_ccb_nowait() 4985 { 4986 union ccb *new_ccb; 4987 4988 GIANT_REQUIRED; 4989 4990 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_NOWAIT); 4991 return (new_ccb); 4992 } 4993 4994 void 4995 xpt_free_ccb(union ccb *free_ccb) 4996 { 4997 free(free_ccb, M_CAMXPT); 4998 } 4999 5000 5001 5002 /* Private XPT functions */ 5003 5004 /* 5005 * Get a CAM control block for the caller. Charge the structure to the device 5006 * referenced by the path. If the this device has no 'credits' then the 5007 * device already has the maximum number of outstanding operations under way 5008 * and we return NULL. If we don't have sufficient resources to allocate more 5009 * ccbs, we also return NULL. 5010 */ 5011 static union ccb * 5012 xpt_get_ccb(struct cam_ed *device) 5013 { 5014 union ccb *new_ccb; 5015 int s; 5016 5017 s = splsoftcam(); 5018 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 5019 new_ccb = xpt_alloc_ccb_nowait(); 5020 if (new_ccb == NULL) { 5021 splx(s); 5022 return (NULL); 5023 } 5024 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 5025 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 5026 xpt_links.sle); 5027 xpt_ccb_count++; 5028 } 5029 cam_ccbq_take_opening(&device->ccbq); 5030 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 5031 splx(s); 5032 return (new_ccb); 5033 } 5034 5035 static void 5036 xpt_release_bus(struct cam_eb *bus) 5037 { 5038 int s; 5039 5040 s = splcam(); 5041 if ((--bus->refcount == 0) 5042 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 5043 TAILQ_REMOVE(&xpt_busses, bus, links); 5044 bus_generation++; 5045 splx(s); 5046 free(bus, M_CAMXPT); 5047 } else 5048 splx(s); 5049 } 5050 5051 static struct cam_et * 5052 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 5053 { 5054 struct cam_et *target; 5055 5056 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 5057 if (target != NULL) { 5058 struct cam_et *cur_target; 5059 5060 TAILQ_INIT(&target->ed_entries); 5061 target->bus = bus; 5062 target->target_id = target_id; 5063 target->refcount = 1; 5064 target->generation = 0; 5065 timevalclear(&target->last_reset); 5066 /* 5067 * Hold a reference to our parent bus so it 5068 * will not go away before we do. 5069 */ 5070 bus->refcount++; 5071 5072 /* Insertion sort into our bus's target list */ 5073 cur_target = TAILQ_FIRST(&bus->et_entries); 5074 while (cur_target != NULL && cur_target->target_id < target_id) 5075 cur_target = TAILQ_NEXT(cur_target, links); 5076 5077 if (cur_target != NULL) { 5078 TAILQ_INSERT_BEFORE(cur_target, target, links); 5079 } else { 5080 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 5081 } 5082 bus->generation++; 5083 } 5084 return (target); 5085 } 5086 5087 static void 5088 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 5089 { 5090 int s; 5091 5092 s = splcam(); 5093 if ((--target->refcount == 0) 5094 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 5095 TAILQ_REMOVE(&bus->et_entries, target, links); 5096 bus->generation++; 5097 splx(s); 5098 free(target, M_CAMXPT); 5099 xpt_release_bus(bus); 5100 } else 5101 splx(s); 5102 } 5103 5104 static struct cam_ed * 5105 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 5106 { 5107 #ifdef CAM_NEW_TRAN_CODE 5108 struct cam_path path; 5109 #endif /* CAM_NEW_TRAN_CODE */ 5110 struct cam_ed *device; 5111 struct cam_devq *devq; 5112 cam_status status; 5113 5114 if (SIM_DEAD(bus->sim)) 5115 return (NULL); 5116 5117 /* Make space for us in the device queue on our bus */ 5118 devq = bus->sim->devq; 5119 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 5120 5121 if (status != CAM_REQ_CMP) { 5122 device = NULL; 5123 } else { 5124 device = (struct cam_ed *)malloc(sizeof(*device), 5125 M_CAMXPT, M_NOWAIT); 5126 } 5127 5128 if (device != NULL) { 5129 struct cam_ed *cur_device; 5130 5131 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 5132 device->alloc_ccb_entry.device = device; 5133 cam_init_pinfo(&device->send_ccb_entry.pinfo); 5134 device->send_ccb_entry.device = device; 5135 device->target = target; 5136 device->lun_id = lun_id; 5137 /* Initialize our queues */ 5138 if (camq_init(&device->drvq, 0) != 0) { 5139 free(device, M_CAMXPT); 5140 return (NULL); 5141 } 5142 if (cam_ccbq_init(&device->ccbq, 5143 bus->sim->max_dev_openings) != 0) { 5144 camq_fini(&device->drvq); 5145 free(device, M_CAMXPT); 5146 return (NULL); 5147 } 5148 SLIST_INIT(&device->asyncs); 5149 SLIST_INIT(&device->periphs); 5150 device->generation = 0; 5151 device->owner = NULL; 5152 /* 5153 * Take the default quirk entry until we have inquiry 5154 * data and can determine a better quirk to use. 5155 */ 5156 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5157 bzero(&device->inq_data, sizeof(device->inq_data)); 5158 device->inq_flags = 0; 5159 device->queue_flags = 0; 5160 device->serial_num = NULL; 5161 device->serial_num_len = 0; 5162 device->qfrozen_cnt = 0; 5163 device->flags = CAM_DEV_UNCONFIGURED; 5164 device->tag_delay_count = 0; 5165 device->tag_saved_openings = 0; 5166 device->refcount = 1; 5167 callout_handle_init(&device->c_handle); 5168 5169 /* 5170 * Hold a reference to our parent target so it 5171 * will not go away before we do. 5172 */ 5173 target->refcount++; 5174 5175 /* 5176 * XXX should be limited by number of CCBs this bus can 5177 * do. 5178 */ 5179 xpt_max_ccbs += device->ccbq.devq_openings; 5180 /* Insertion sort into our target's device list */ 5181 cur_device = TAILQ_FIRST(&target->ed_entries); 5182 while (cur_device != NULL && cur_device->lun_id < lun_id) 5183 cur_device = TAILQ_NEXT(cur_device, links); 5184 if (cur_device != NULL) { 5185 TAILQ_INSERT_BEFORE(cur_device, device, links); 5186 } else { 5187 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5188 } 5189 target->generation++; 5190 #ifdef CAM_NEW_TRAN_CODE 5191 if (lun_id != CAM_LUN_WILDCARD) { 5192 xpt_compile_path(&path, 5193 NULL, 5194 bus->path_id, 5195 target->target_id, 5196 lun_id); 5197 xpt_devise_transport(&path); 5198 xpt_release_path(&path); 5199 } 5200 #endif /* CAM_NEW_TRAN_CODE */ 5201 } 5202 return (device); 5203 } 5204 5205 static void 5206 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5207 struct cam_ed *device) 5208 { 5209 int s; 5210 5211 s = splcam(); 5212 if ((--device->refcount == 0) 5213 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5214 struct cam_devq *devq; 5215 5216 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5217 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5218 panic("Removing device while still queued for ccbs"); 5219 5220 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5221 untimeout(xpt_release_devq_timeout, device, 5222 device->c_handle); 5223 5224 TAILQ_REMOVE(&target->ed_entries, device,links); 5225 target->generation++; 5226 xpt_max_ccbs -= device->ccbq.devq_openings; 5227 if (!SIM_DEAD(bus->sim)) { 5228 /* Release our slot in the devq */ 5229 devq = bus->sim->devq; 5230 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5231 } 5232 splx(s); 5233 camq_fini(&device->drvq); 5234 camq_fini(&device->ccbq.queue); 5235 free(device, M_CAMXPT); 5236 xpt_release_target(bus, target); 5237 } else 5238 splx(s); 5239 } 5240 5241 static u_int32_t 5242 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5243 { 5244 int s; 5245 int diff; 5246 int result; 5247 struct cam_ed *dev; 5248 5249 dev = path->device; 5250 s = splsoftcam(); 5251 5252 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5253 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5254 if (result == CAM_REQ_CMP && (diff < 0)) { 5255 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5256 } 5257 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5258 || (dev->inq_flags & SID_CmdQue) != 0) 5259 dev->tag_saved_openings = newopenings; 5260 /* Adjust the global limit */ 5261 xpt_max_ccbs += diff; 5262 splx(s); 5263 return (result); 5264 } 5265 5266 static struct cam_eb * 5267 xpt_find_bus(path_id_t path_id) 5268 { 5269 struct cam_eb *bus; 5270 5271 for (bus = TAILQ_FIRST(&xpt_busses); 5272 bus != NULL; 5273 bus = TAILQ_NEXT(bus, links)) { 5274 if (bus->path_id == path_id) { 5275 bus->refcount++; 5276 break; 5277 } 5278 } 5279 return (bus); 5280 } 5281 5282 static struct cam_et * 5283 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5284 { 5285 struct cam_et *target; 5286 5287 for (target = TAILQ_FIRST(&bus->et_entries); 5288 target != NULL; 5289 target = TAILQ_NEXT(target, links)) { 5290 if (target->target_id == target_id) { 5291 target->refcount++; 5292 break; 5293 } 5294 } 5295 return (target); 5296 } 5297 5298 static struct cam_ed * 5299 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5300 { 5301 struct cam_ed *device; 5302 5303 for (device = TAILQ_FIRST(&target->ed_entries); 5304 device != NULL; 5305 device = TAILQ_NEXT(device, links)) { 5306 if (device->lun_id == lun_id) { 5307 device->refcount++; 5308 break; 5309 } 5310 } 5311 return (device); 5312 } 5313 5314 typedef struct { 5315 union ccb *request_ccb; 5316 struct ccb_pathinq *cpi; 5317 int pending_count; 5318 } xpt_scan_bus_info; 5319 5320 /* 5321 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5322 * As the scan progresses, xpt_scan_bus is used as the 5323 * callback on completion function. 5324 */ 5325 static void 5326 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5327 { 5328 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5329 ("xpt_scan_bus\n")); 5330 switch (request_ccb->ccb_h.func_code) { 5331 case XPT_SCAN_BUS: 5332 { 5333 xpt_scan_bus_info *scan_info; 5334 union ccb *work_ccb; 5335 struct cam_path *path; 5336 u_int i; 5337 u_int max_target; 5338 u_int initiator_id; 5339 5340 /* Find out the characteristics of the bus */ 5341 work_ccb = xpt_alloc_ccb(); 5342 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5343 request_ccb->ccb_h.pinfo.priority); 5344 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5345 xpt_action(work_ccb); 5346 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5347 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5348 xpt_free_ccb(work_ccb); 5349 xpt_done(request_ccb); 5350 return; 5351 } 5352 5353 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5354 /* 5355 * Can't scan the bus on an adapter that 5356 * cannot perform the initiator role. 5357 */ 5358 request_ccb->ccb_h.status = CAM_REQ_CMP; 5359 xpt_free_ccb(work_ccb); 5360 xpt_done(request_ccb); 5361 return; 5362 } 5363 5364 /* Save some state for use while we probe for devices */ 5365 scan_info = (xpt_scan_bus_info *) 5366 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5367 scan_info->request_ccb = request_ccb; 5368 scan_info->cpi = &work_ccb->cpi; 5369 5370 /* Cache on our stack so we can work asynchronously */ 5371 max_target = scan_info->cpi->max_target; 5372 initiator_id = scan_info->cpi->initiator_id; 5373 5374 /* 5375 * Don't count the initiator if the 5376 * initiator is addressable. 5377 */ 5378 scan_info->pending_count = max_target + 1; 5379 if (initiator_id <= max_target) 5380 scan_info->pending_count--; 5381 5382 for (i = 0; i <= max_target; i++) { 5383 cam_status status; 5384 if (i == initiator_id) 5385 continue; 5386 5387 status = xpt_create_path(&path, xpt_periph, 5388 request_ccb->ccb_h.path_id, 5389 i, 0); 5390 if (status != CAM_REQ_CMP) { 5391 printf("xpt_scan_bus: xpt_create_path failed" 5392 " with status %#x, bus scan halted\n", 5393 status); 5394 break; 5395 } 5396 work_ccb = xpt_alloc_ccb(); 5397 xpt_setup_ccb(&work_ccb->ccb_h, path, 5398 request_ccb->ccb_h.pinfo.priority); 5399 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5400 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5401 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5402 work_ccb->crcn.flags = request_ccb->crcn.flags; 5403 xpt_action(work_ccb); 5404 } 5405 break; 5406 } 5407 case XPT_SCAN_LUN: 5408 { 5409 xpt_scan_bus_info *scan_info; 5410 path_id_t path_id; 5411 target_id_t target_id; 5412 lun_id_t lun_id; 5413 5414 /* Reuse the same CCB to query if a device was really found */ 5415 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5416 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5417 request_ccb->ccb_h.pinfo.priority); 5418 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5419 5420 path_id = request_ccb->ccb_h.path_id; 5421 target_id = request_ccb->ccb_h.target_id; 5422 lun_id = request_ccb->ccb_h.target_lun; 5423 xpt_action(request_ccb); 5424 5425 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5426 struct cam_ed *device; 5427 struct cam_et *target; 5428 int s, phl; 5429 5430 /* 5431 * If we already probed lun 0 successfully, or 5432 * we have additional configured luns on this 5433 * target that might have "gone away", go onto 5434 * the next lun. 5435 */ 5436 target = request_ccb->ccb_h.path->target; 5437 /* 5438 * We may touch devices that we don't 5439 * hold references too, so ensure they 5440 * don't disappear out from under us. 5441 * The target above is referenced by the 5442 * path in the request ccb. 5443 */ 5444 phl = 0; 5445 s = splcam(); 5446 device = TAILQ_FIRST(&target->ed_entries); 5447 if (device != NULL) { 5448 phl = CAN_SRCH_HI_SPARSE(device); 5449 if (device->lun_id == 0) 5450 device = TAILQ_NEXT(device, links); 5451 } 5452 splx(s); 5453 if ((lun_id != 0) || (device != NULL)) { 5454 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5455 lun_id++; 5456 } 5457 } else { 5458 struct cam_ed *device; 5459 5460 device = request_ccb->ccb_h.path->device; 5461 5462 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5463 /* Try the next lun */ 5464 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5465 || CAN_SRCH_HI_DENSE(device)) 5466 lun_id++; 5467 } 5468 } 5469 5470 xpt_free_path(request_ccb->ccb_h.path); 5471 5472 /* Check Bounds */ 5473 if ((lun_id == request_ccb->ccb_h.target_lun) 5474 || lun_id > scan_info->cpi->max_lun) { 5475 /* We're done */ 5476 5477 xpt_free_ccb(request_ccb); 5478 scan_info->pending_count--; 5479 if (scan_info->pending_count == 0) { 5480 xpt_free_ccb((union ccb *)scan_info->cpi); 5481 request_ccb = scan_info->request_ccb; 5482 free(scan_info, M_TEMP); 5483 request_ccb->ccb_h.status = CAM_REQ_CMP; 5484 xpt_done(request_ccb); 5485 } 5486 } else { 5487 /* Try the next device */ 5488 struct cam_path *path; 5489 cam_status status; 5490 5491 status = xpt_create_path(&path, xpt_periph, 5492 path_id, target_id, lun_id); 5493 if (status != CAM_REQ_CMP) { 5494 printf("xpt_scan_bus: xpt_create_path failed " 5495 "with status %#x, halting LUN scan\n", 5496 status); 5497 xpt_free_ccb(request_ccb); 5498 scan_info->pending_count--; 5499 if (scan_info->pending_count == 0) { 5500 xpt_free_ccb( 5501 (union ccb *)scan_info->cpi); 5502 request_ccb = scan_info->request_ccb; 5503 free(scan_info, M_TEMP); 5504 request_ccb->ccb_h.status = CAM_REQ_CMP; 5505 xpt_done(request_ccb); 5506 } 5507 break; 5508 } 5509 xpt_setup_ccb(&request_ccb->ccb_h, path, 5510 request_ccb->ccb_h.pinfo.priority); 5511 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5512 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5513 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5514 request_ccb->crcn.flags = 5515 scan_info->request_ccb->crcn.flags; 5516 xpt_action(request_ccb); 5517 } 5518 break; 5519 } 5520 default: 5521 break; 5522 } 5523 } 5524 5525 typedef enum { 5526 PROBE_TUR, 5527 PROBE_INQUIRY, 5528 PROBE_FULL_INQUIRY, 5529 PROBE_MODE_SENSE, 5530 PROBE_SERIAL_NUM, 5531 PROBE_TUR_FOR_NEGOTIATION 5532 } probe_action; 5533 5534 typedef enum { 5535 PROBE_INQUIRY_CKSUM = 0x01, 5536 PROBE_SERIAL_CKSUM = 0x02, 5537 PROBE_NO_ANNOUNCE = 0x04 5538 } probe_flags; 5539 5540 typedef struct { 5541 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5542 probe_action action; 5543 union ccb saved_ccb; 5544 probe_flags flags; 5545 MD5_CTX context; 5546 u_int8_t digest[16]; 5547 } probe_softc; 5548 5549 static void 5550 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5551 cam_flags flags, union ccb *request_ccb) 5552 { 5553 struct ccb_pathinq cpi; 5554 cam_status status; 5555 struct cam_path *new_path; 5556 struct cam_periph *old_periph; 5557 int s; 5558 5559 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5560 ("xpt_scan_lun\n")); 5561 5562 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5563 cpi.ccb_h.func_code = XPT_PATH_INQ; 5564 xpt_action((union ccb *)&cpi); 5565 5566 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5567 if (request_ccb != NULL) { 5568 request_ccb->ccb_h.status = cpi.ccb_h.status; 5569 xpt_done(request_ccb); 5570 } 5571 return; 5572 } 5573 5574 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5575 /* 5576 * Can't scan the bus on an adapter that 5577 * cannot perform the initiator role. 5578 */ 5579 if (request_ccb != NULL) { 5580 request_ccb->ccb_h.status = CAM_REQ_CMP; 5581 xpt_done(request_ccb); 5582 } 5583 return; 5584 } 5585 5586 if (request_ccb == NULL) { 5587 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5588 if (request_ccb == NULL) { 5589 xpt_print_path(path); 5590 printf("xpt_scan_lun: can't allocate CCB, can't " 5591 "continue\n"); 5592 return; 5593 } 5594 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5595 if (new_path == NULL) { 5596 xpt_print_path(path); 5597 printf("xpt_scan_lun: can't allocate path, can't " 5598 "continue\n"); 5599 free(request_ccb, M_TEMP); 5600 return; 5601 } 5602 status = xpt_compile_path(new_path, xpt_periph, 5603 path->bus->path_id, 5604 path->target->target_id, 5605 path->device->lun_id); 5606 5607 if (status != CAM_REQ_CMP) { 5608 xpt_print_path(path); 5609 printf("xpt_scan_lun: can't compile path, can't " 5610 "continue\n"); 5611 free(request_ccb, M_TEMP); 5612 free(new_path, M_TEMP); 5613 return; 5614 } 5615 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5616 request_ccb->ccb_h.cbfcnp = xptscandone; 5617 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5618 request_ccb->crcn.flags = flags; 5619 } 5620 5621 s = splsoftcam(); 5622 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5623 probe_softc *softc; 5624 5625 softc = (probe_softc *)old_periph->softc; 5626 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5627 periph_links.tqe); 5628 } else { 5629 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5630 probestart, "probe", 5631 CAM_PERIPH_BIO, 5632 request_ccb->ccb_h.path, NULL, 0, 5633 request_ccb); 5634 5635 if (status != CAM_REQ_CMP) { 5636 xpt_print_path(path); 5637 printf("xpt_scan_lun: cam_alloc_periph returned an " 5638 "error, can't continue probe\n"); 5639 request_ccb->ccb_h.status = status; 5640 xpt_done(request_ccb); 5641 } 5642 } 5643 splx(s); 5644 } 5645 5646 static void 5647 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5648 { 5649 xpt_release_path(done_ccb->ccb_h.path); 5650 free(done_ccb->ccb_h.path, M_TEMP); 5651 free(done_ccb, M_TEMP); 5652 } 5653 5654 static cam_status 5655 proberegister(struct cam_periph *periph, void *arg) 5656 { 5657 union ccb *request_ccb; /* CCB representing the probe request */ 5658 probe_softc *softc; 5659 5660 request_ccb = (union ccb *)arg; 5661 if (periph == NULL) { 5662 printf("proberegister: periph was NULL!!\n"); 5663 return(CAM_REQ_CMP_ERR); 5664 } 5665 5666 if (request_ccb == NULL) { 5667 printf("proberegister: no probe CCB, " 5668 "can't register device\n"); 5669 return(CAM_REQ_CMP_ERR); 5670 } 5671 5672 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5673 5674 if (softc == NULL) { 5675 printf("proberegister: Unable to probe new device. " 5676 "Unable to allocate softc\n"); 5677 return(CAM_REQ_CMP_ERR); 5678 } 5679 TAILQ_INIT(&softc->request_ccbs); 5680 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5681 periph_links.tqe); 5682 softc->flags = 0; 5683 periph->softc = softc; 5684 cam_periph_acquire(periph); 5685 /* 5686 * Ensure we've waited at least a bus settle 5687 * delay before attempting to probe the device. 5688 * For HBAs that don't do bus resets, this won't make a difference. 5689 */ 5690 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5691 scsi_delay); 5692 probeschedule(periph); 5693 return(CAM_REQ_CMP); 5694 } 5695 5696 static void 5697 probeschedule(struct cam_periph *periph) 5698 { 5699 struct ccb_pathinq cpi; 5700 union ccb *ccb; 5701 probe_softc *softc; 5702 5703 softc = (probe_softc *)periph->softc; 5704 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5705 5706 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5707 cpi.ccb_h.func_code = XPT_PATH_INQ; 5708 xpt_action((union ccb *)&cpi); 5709 5710 /* 5711 * If a device has gone away and another device, or the same one, 5712 * is back in the same place, it should have a unit attention 5713 * condition pending. It will not report the unit attention in 5714 * response to an inquiry, which may leave invalid transfer 5715 * negotiations in effect. The TUR will reveal the unit attention 5716 * condition. Only send the TUR for lun 0, since some devices 5717 * will get confused by commands other than inquiry to non-existent 5718 * luns. If you think a device has gone away start your scan from 5719 * lun 0. This will insure that any bogus transfer settings are 5720 * invalidated. 5721 * 5722 * If we haven't seen the device before and the controller supports 5723 * some kind of transfer negotiation, negotiate with the first 5724 * sent command if no bus reset was performed at startup. This 5725 * ensures that the device is not confused by transfer negotiation 5726 * settings left over by loader or BIOS action. 5727 */ 5728 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5729 && (ccb->ccb_h.target_lun == 0)) { 5730 softc->action = PROBE_TUR; 5731 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5732 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5733 proberequestdefaultnegotiation(periph); 5734 softc->action = PROBE_INQUIRY; 5735 } else { 5736 softc->action = PROBE_INQUIRY; 5737 } 5738 5739 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5740 softc->flags |= PROBE_NO_ANNOUNCE; 5741 else 5742 softc->flags &= ~PROBE_NO_ANNOUNCE; 5743 5744 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5745 } 5746 5747 static void 5748 probestart(struct cam_periph *periph, union ccb *start_ccb) 5749 { 5750 /* Probe the device that our peripheral driver points to */ 5751 struct ccb_scsiio *csio; 5752 probe_softc *softc; 5753 5754 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5755 5756 softc = (probe_softc *)periph->softc; 5757 csio = &start_ccb->csio; 5758 5759 switch (softc->action) { 5760 case PROBE_TUR: 5761 case PROBE_TUR_FOR_NEGOTIATION: 5762 { 5763 scsi_test_unit_ready(csio, 5764 /*retries*/4, 5765 probedone, 5766 MSG_SIMPLE_Q_TAG, 5767 SSD_FULL_SIZE, 5768 /*timeout*/60000); 5769 break; 5770 } 5771 case PROBE_INQUIRY: 5772 case PROBE_FULL_INQUIRY: 5773 { 5774 u_int inquiry_len; 5775 struct scsi_inquiry_data *inq_buf; 5776 5777 inq_buf = &periph->path->device->inq_data; 5778 /* 5779 * If the device is currently configured, we calculate an 5780 * MD5 checksum of the inquiry data, and if the serial number 5781 * length is greater than 0, add the serial number data 5782 * into the checksum as well. Once the inquiry and the 5783 * serial number check finish, we attempt to figure out 5784 * whether we still have the same device. 5785 */ 5786 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5787 5788 MD5Init(&softc->context); 5789 MD5Update(&softc->context, (unsigned char *)inq_buf, 5790 sizeof(struct scsi_inquiry_data)); 5791 softc->flags |= PROBE_INQUIRY_CKSUM; 5792 if (periph->path->device->serial_num_len > 0) { 5793 MD5Update(&softc->context, 5794 periph->path->device->serial_num, 5795 periph->path->device->serial_num_len); 5796 softc->flags |= PROBE_SERIAL_CKSUM; 5797 } 5798 MD5Final(softc->digest, &softc->context); 5799 } 5800 5801 if (softc->action == PROBE_INQUIRY) 5802 inquiry_len = SHORT_INQUIRY_LENGTH; 5803 else 5804 inquiry_len = inq_buf->additional_length 5805 + offsetof(struct scsi_inquiry_data, 5806 additional_length) + 1; 5807 5808 /* 5809 * Some parallel SCSI devices fail to send an 5810 * ignore wide residue message when dealing with 5811 * odd length inquiry requests. Round up to be 5812 * safe. 5813 */ 5814 inquiry_len = roundup2(inquiry_len, 2); 5815 5816 scsi_inquiry(csio, 5817 /*retries*/4, 5818 probedone, 5819 MSG_SIMPLE_Q_TAG, 5820 (u_int8_t *)inq_buf, 5821 inquiry_len, 5822 /*evpd*/FALSE, 5823 /*page_code*/0, 5824 SSD_MIN_SIZE, 5825 /*timeout*/60 * 1000); 5826 break; 5827 } 5828 case PROBE_MODE_SENSE: 5829 { 5830 void *mode_buf; 5831 int mode_buf_len; 5832 5833 mode_buf_len = sizeof(struct scsi_mode_header_6) 5834 + sizeof(struct scsi_mode_blk_desc) 5835 + sizeof(struct scsi_control_page); 5836 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5837 if (mode_buf != NULL) { 5838 scsi_mode_sense(csio, 5839 /*retries*/4, 5840 probedone, 5841 MSG_SIMPLE_Q_TAG, 5842 /*dbd*/FALSE, 5843 SMS_PAGE_CTRL_CURRENT, 5844 SMS_CONTROL_MODE_PAGE, 5845 mode_buf, 5846 mode_buf_len, 5847 SSD_FULL_SIZE, 5848 /*timeout*/60000); 5849 break; 5850 } 5851 xpt_print_path(periph->path); 5852 printf("Unable to mode sense control page - malloc failure\n"); 5853 softc->action = PROBE_SERIAL_NUM; 5854 } 5855 /* FALLTHROUGH */ 5856 case PROBE_SERIAL_NUM: 5857 { 5858 struct scsi_vpd_unit_serial_number *serial_buf; 5859 struct cam_ed* device; 5860 5861 serial_buf = NULL; 5862 device = periph->path->device; 5863 device->serial_num = NULL; 5864 device->serial_num_len = 0; 5865 5866 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5867 serial_buf = (struct scsi_vpd_unit_serial_number *) 5868 malloc(sizeof(*serial_buf), M_TEMP, 5869 M_NOWAIT | M_ZERO); 5870 5871 if (serial_buf != NULL) { 5872 scsi_inquiry(csio, 5873 /*retries*/4, 5874 probedone, 5875 MSG_SIMPLE_Q_TAG, 5876 (u_int8_t *)serial_buf, 5877 sizeof(*serial_buf), 5878 /*evpd*/TRUE, 5879 SVPD_UNIT_SERIAL_NUMBER, 5880 SSD_MIN_SIZE, 5881 /*timeout*/60 * 1000); 5882 break; 5883 } 5884 /* 5885 * We'll have to do without, let our probedone 5886 * routine finish up for us. 5887 */ 5888 start_ccb->csio.data_ptr = NULL; 5889 probedone(periph, start_ccb); 5890 return; 5891 } 5892 } 5893 xpt_action(start_ccb); 5894 } 5895 5896 static void 5897 proberequestdefaultnegotiation(struct cam_periph *periph) 5898 { 5899 struct ccb_trans_settings cts; 5900 5901 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5902 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5903 #ifdef CAM_NEW_TRAN_CODE 5904 cts.type = CTS_TYPE_USER_SETTINGS; 5905 #else /* CAM_NEW_TRAN_CODE */ 5906 cts.flags = CCB_TRANS_USER_SETTINGS; 5907 #endif /* CAM_NEW_TRAN_CODE */ 5908 xpt_action((union ccb *)&cts); 5909 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5910 #ifdef CAM_NEW_TRAN_CODE 5911 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5912 #else /* CAM_NEW_TRAN_CODE */ 5913 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5914 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5915 #endif /* CAM_NEW_TRAN_CODE */ 5916 xpt_action((union ccb *)&cts); 5917 } 5918 5919 static void 5920 probedone(struct cam_periph *periph, union ccb *done_ccb) 5921 { 5922 probe_softc *softc; 5923 struct cam_path *path; 5924 u_int32_t priority; 5925 5926 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5927 5928 softc = (probe_softc *)periph->softc; 5929 path = done_ccb->ccb_h.path; 5930 priority = done_ccb->ccb_h.pinfo.priority; 5931 5932 switch (softc->action) { 5933 case PROBE_TUR: 5934 { 5935 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5936 5937 if (cam_periph_error(done_ccb, 0, 5938 SF_NO_PRINT, NULL) == ERESTART) 5939 return; 5940 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5941 /* Don't wedge the queue */ 5942 xpt_release_devq(done_ccb->ccb_h.path, 5943 /*count*/1, 5944 /*run_queue*/TRUE); 5945 } 5946 softc->action = PROBE_INQUIRY; 5947 xpt_release_ccb(done_ccb); 5948 xpt_schedule(periph, priority); 5949 return; 5950 } 5951 case PROBE_INQUIRY: 5952 case PROBE_FULL_INQUIRY: 5953 { 5954 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5955 struct scsi_inquiry_data *inq_buf; 5956 u_int8_t periph_qual; 5957 5958 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5959 inq_buf = &path->device->inq_data; 5960 5961 periph_qual = SID_QUAL(inq_buf); 5962 5963 switch(periph_qual) { 5964 case SID_QUAL_LU_CONNECTED: 5965 { 5966 u_int8_t len; 5967 5968 /* 5969 * We conservatively request only 5970 * SHORT_INQUIRY_LEN bytes of inquiry 5971 * information during our first try 5972 * at sending an INQUIRY. If the device 5973 * has more information to give, 5974 * perform a second request specifying 5975 * the amount of information the device 5976 * is willing to give. 5977 */ 5978 len = inq_buf->additional_length 5979 + offsetof(struct scsi_inquiry_data, 5980 additional_length) + 1; 5981 if (softc->action == PROBE_INQUIRY 5982 && len > SHORT_INQUIRY_LENGTH) { 5983 softc->action = PROBE_FULL_INQUIRY; 5984 xpt_release_ccb(done_ccb); 5985 xpt_schedule(periph, priority); 5986 return; 5987 } 5988 5989 xpt_find_quirk(path->device); 5990 5991 #ifdef CAM_NEW_TRAN_CODE 5992 xpt_devise_transport(path); 5993 #endif /* CAM_NEW_TRAN_CODE */ 5994 if ((inq_buf->flags & SID_CmdQue) != 0) 5995 softc->action = PROBE_MODE_SENSE; 5996 else 5997 softc->action = PROBE_SERIAL_NUM; 5998 5999 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6000 6001 xpt_release_ccb(done_ccb); 6002 xpt_schedule(periph, priority); 6003 return; 6004 } 6005 default: 6006 break; 6007 } 6008 } else if (cam_periph_error(done_ccb, 0, 6009 done_ccb->ccb_h.target_lun > 0 6010 ? SF_RETRY_UA|SF_QUIET_IR 6011 : SF_RETRY_UA, 6012 &softc->saved_ccb) == ERESTART) { 6013 return; 6014 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6015 /* Don't wedge the queue */ 6016 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6017 /*run_queue*/TRUE); 6018 } 6019 /* 6020 * If we get to this point, we got an error status back 6021 * from the inquiry and the error status doesn't require 6022 * automatically retrying the command. Therefore, the 6023 * inquiry failed. If we had inquiry information before 6024 * for this device, but this latest inquiry command failed, 6025 * the device has probably gone away. If this device isn't 6026 * already marked unconfigured, notify the peripheral 6027 * drivers that this device is no more. 6028 */ 6029 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 6030 /* Send the async notification. */ 6031 xpt_async(AC_LOST_DEVICE, path, NULL); 6032 6033 xpt_release_ccb(done_ccb); 6034 break; 6035 } 6036 case PROBE_MODE_SENSE: 6037 { 6038 struct ccb_scsiio *csio; 6039 struct scsi_mode_header_6 *mode_hdr; 6040 6041 csio = &done_ccb->csio; 6042 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 6043 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6044 struct scsi_control_page *page; 6045 u_int8_t *offset; 6046 6047 offset = ((u_int8_t *)&mode_hdr[1]) 6048 + mode_hdr->blk_desc_len; 6049 page = (struct scsi_control_page *)offset; 6050 path->device->queue_flags = page->queue_flags; 6051 } else if (cam_periph_error(done_ccb, 0, 6052 SF_RETRY_UA|SF_NO_PRINT, 6053 &softc->saved_ccb) == ERESTART) { 6054 return; 6055 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6056 /* Don't wedge the queue */ 6057 xpt_release_devq(done_ccb->ccb_h.path, 6058 /*count*/1, /*run_queue*/TRUE); 6059 } 6060 xpt_release_ccb(done_ccb); 6061 free(mode_hdr, M_TEMP); 6062 softc->action = PROBE_SERIAL_NUM; 6063 xpt_schedule(periph, priority); 6064 return; 6065 } 6066 case PROBE_SERIAL_NUM: 6067 { 6068 struct ccb_scsiio *csio; 6069 struct scsi_vpd_unit_serial_number *serial_buf; 6070 u_int32_t priority; 6071 int changed; 6072 int have_serialnum; 6073 6074 changed = 1; 6075 have_serialnum = 0; 6076 csio = &done_ccb->csio; 6077 priority = done_ccb->ccb_h.pinfo.priority; 6078 serial_buf = 6079 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 6080 6081 /* Clean up from previous instance of this device */ 6082 if (path->device->serial_num != NULL) { 6083 free(path->device->serial_num, M_CAMXPT); 6084 path->device->serial_num = NULL; 6085 path->device->serial_num_len = 0; 6086 } 6087 6088 if (serial_buf == NULL) { 6089 /* 6090 * Don't process the command as it was never sent 6091 */ 6092 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6093 && (serial_buf->length > 0)) { 6094 6095 have_serialnum = 1; 6096 path->device->serial_num = 6097 (u_int8_t *)malloc((serial_buf->length + 1), 6098 M_CAMXPT, M_NOWAIT); 6099 if (path->device->serial_num != NULL) { 6100 bcopy(serial_buf->serial_num, 6101 path->device->serial_num, 6102 serial_buf->length); 6103 path->device->serial_num_len = 6104 serial_buf->length; 6105 path->device->serial_num[serial_buf->length] 6106 = '\0'; 6107 } 6108 } else if (cam_periph_error(done_ccb, 0, 6109 SF_RETRY_UA|SF_NO_PRINT, 6110 &softc->saved_ccb) == ERESTART) { 6111 return; 6112 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6113 /* Don't wedge the queue */ 6114 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6115 /*run_queue*/TRUE); 6116 } 6117 6118 /* 6119 * Let's see if we have seen this device before. 6120 */ 6121 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6122 MD5_CTX context; 6123 u_int8_t digest[16]; 6124 6125 MD5Init(&context); 6126 6127 MD5Update(&context, 6128 (unsigned char *)&path->device->inq_data, 6129 sizeof(struct scsi_inquiry_data)); 6130 6131 if (have_serialnum) 6132 MD5Update(&context, serial_buf->serial_num, 6133 serial_buf->length); 6134 6135 MD5Final(digest, &context); 6136 if (bcmp(softc->digest, digest, 16) == 0) 6137 changed = 0; 6138 6139 /* 6140 * XXX Do we need to do a TUR in order to ensure 6141 * that the device really hasn't changed??? 6142 */ 6143 if ((changed != 0) 6144 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6145 xpt_async(AC_LOST_DEVICE, path, NULL); 6146 } 6147 if (serial_buf != NULL) 6148 free(serial_buf, M_TEMP); 6149 6150 if (changed != 0) { 6151 /* 6152 * Now that we have all the necessary 6153 * information to safely perform transfer 6154 * negotiations... Controllers don't perform 6155 * any negotiation or tagged queuing until 6156 * after the first XPT_SET_TRAN_SETTINGS ccb is 6157 * received. So, on a new device, just retreive 6158 * the user settings, and set them as the current 6159 * settings to set the device up. 6160 */ 6161 proberequestdefaultnegotiation(periph); 6162 xpt_release_ccb(done_ccb); 6163 6164 /* 6165 * Perform a TUR to allow the controller to 6166 * perform any necessary transfer negotiation. 6167 */ 6168 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6169 xpt_schedule(periph, priority); 6170 return; 6171 } 6172 xpt_release_ccb(done_ccb); 6173 break; 6174 } 6175 case PROBE_TUR_FOR_NEGOTIATION: 6176 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6177 /* Don't wedge the queue */ 6178 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6179 /*run_queue*/TRUE); 6180 } 6181 6182 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6183 6184 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6185 /* Inform the XPT that a new device has been found */ 6186 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6187 xpt_action(done_ccb); 6188 6189 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6190 done_ccb); 6191 } 6192 xpt_release_ccb(done_ccb); 6193 break; 6194 } 6195 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6196 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6197 done_ccb->ccb_h.status = CAM_REQ_CMP; 6198 xpt_done(done_ccb); 6199 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6200 cam_periph_invalidate(periph); 6201 cam_periph_release(periph); 6202 } else { 6203 probeschedule(periph); 6204 } 6205 } 6206 6207 static void 6208 probecleanup(struct cam_periph *periph) 6209 { 6210 free(periph->softc, M_TEMP); 6211 } 6212 6213 static void 6214 xpt_find_quirk(struct cam_ed *device) 6215 { 6216 caddr_t match; 6217 6218 match = cam_quirkmatch((caddr_t)&device->inq_data, 6219 (caddr_t)xpt_quirk_table, 6220 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6221 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6222 6223 if (match == NULL) 6224 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6225 6226 device->quirk = (struct xpt_quirk_entry *)match; 6227 } 6228 6229 static int 6230 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6231 { 6232 int error, bool; 6233 6234 bool = cam_srch_hi; 6235 error = sysctl_handle_int(oidp, &bool, sizeof(bool), req); 6236 if (error != 0 || req->newptr == NULL) 6237 return (error); 6238 if (bool == 0 || bool == 1) { 6239 cam_srch_hi = bool; 6240 return (0); 6241 } else { 6242 return (EINVAL); 6243 } 6244 } 6245 6246 #ifdef CAM_NEW_TRAN_CODE 6247 6248 static void 6249 xpt_devise_transport(struct cam_path *path) 6250 { 6251 struct ccb_pathinq cpi; 6252 struct ccb_trans_settings cts; 6253 struct scsi_inquiry_data *inq_buf; 6254 6255 /* Get transport information from the SIM */ 6256 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6257 cpi.ccb_h.func_code = XPT_PATH_INQ; 6258 xpt_action((union ccb *)&cpi); 6259 6260 inq_buf = NULL; 6261 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6262 inq_buf = &path->device->inq_data; 6263 path->device->protocol = PROTO_SCSI; 6264 path->device->protocol_version = 6265 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6266 path->device->transport = cpi.transport; 6267 path->device->transport_version = cpi.transport_version; 6268 6269 /* 6270 * Any device not using SPI3 features should 6271 * be considered SPI2 or lower. 6272 */ 6273 if (inq_buf != NULL) { 6274 if (path->device->transport == XPORT_SPI 6275 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6276 && path->device->transport_version > 2) 6277 path->device->transport_version = 2; 6278 } else { 6279 struct cam_ed* otherdev; 6280 6281 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6282 otherdev != NULL; 6283 otherdev = TAILQ_NEXT(otherdev, links)) { 6284 if (otherdev != path->device) 6285 break; 6286 } 6287 6288 if (otherdev != NULL) { 6289 /* 6290 * Initially assume the same versioning as 6291 * prior luns for this target. 6292 */ 6293 path->device->protocol_version = 6294 otherdev->protocol_version; 6295 path->device->transport_version = 6296 otherdev->transport_version; 6297 } else { 6298 /* Until we know better, opt for safty */ 6299 path->device->protocol_version = 2; 6300 if (path->device->transport == XPORT_SPI) 6301 path->device->transport_version = 2; 6302 else 6303 path->device->transport_version = 0; 6304 } 6305 } 6306 6307 /* 6308 * XXX 6309 * For a device compliant with SPC-2 we should be able 6310 * to determine the transport version supported by 6311 * scrutinizing the version descriptors in the 6312 * inquiry buffer. 6313 */ 6314 6315 /* Tell the controller what we think */ 6316 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6317 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6318 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6319 cts.transport = path->device->transport; 6320 cts.transport_version = path->device->transport_version; 6321 cts.protocol = path->device->protocol; 6322 cts.protocol_version = path->device->protocol_version; 6323 cts.proto_specific.valid = 0; 6324 cts.xport_specific.valid = 0; 6325 xpt_action((union ccb *)&cts); 6326 } 6327 6328 static void 6329 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6330 int async_update) 6331 { 6332 struct ccb_pathinq cpi; 6333 struct ccb_trans_settings cur_cts; 6334 struct ccb_trans_settings_scsi *scsi; 6335 struct ccb_trans_settings_scsi *cur_scsi; 6336 struct cam_sim *sim; 6337 struct scsi_inquiry_data *inq_data; 6338 6339 if (device == NULL) { 6340 cts->ccb_h.status = CAM_PATH_INVALID; 6341 xpt_done((union ccb *)cts); 6342 return; 6343 } 6344 6345 if (cts->protocol == PROTO_UNKNOWN 6346 || cts->protocol == PROTO_UNSPECIFIED) { 6347 cts->protocol = device->protocol; 6348 cts->protocol_version = device->protocol_version; 6349 } 6350 6351 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6352 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6353 cts->protocol_version = device->protocol_version; 6354 6355 if (cts->protocol != device->protocol) { 6356 xpt_print_path(cts->ccb_h.path); 6357 printf("Uninitialized Protocol %x:%x?\n", 6358 cts->protocol, device->protocol); 6359 cts->protocol = device->protocol; 6360 } 6361 6362 if (cts->protocol_version > device->protocol_version) { 6363 if (bootverbose) { 6364 xpt_print_path(cts->ccb_h.path); 6365 printf("Down reving Protocol Version from %d to %d?\n", 6366 cts->protocol_version, device->protocol_version); 6367 } 6368 cts->protocol_version = device->protocol_version; 6369 } 6370 6371 if (cts->transport == XPORT_UNKNOWN 6372 || cts->transport == XPORT_UNSPECIFIED) { 6373 cts->transport = device->transport; 6374 cts->transport_version = device->transport_version; 6375 } 6376 6377 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6378 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6379 cts->transport_version = device->transport_version; 6380 6381 if (cts->transport != device->transport) { 6382 xpt_print_path(cts->ccb_h.path); 6383 printf("Uninitialized Transport %x:%x?\n", 6384 cts->transport, device->transport); 6385 cts->transport = device->transport; 6386 } 6387 6388 if (cts->transport_version > device->transport_version) { 6389 if (bootverbose) { 6390 xpt_print_path(cts->ccb_h.path); 6391 printf("Down reving Transport Version from %d to %d?\n", 6392 cts->transport_version, 6393 device->transport_version); 6394 } 6395 cts->transport_version = device->transport_version; 6396 } 6397 6398 sim = cts->ccb_h.path->bus->sim; 6399 6400 /* 6401 * Nothing more of interest to do unless 6402 * this is a device connected via the 6403 * SCSI protocol. 6404 */ 6405 if (cts->protocol != PROTO_SCSI) { 6406 if (async_update == FALSE) 6407 (*(sim->sim_action))(sim, (union ccb *)cts); 6408 return; 6409 } 6410 6411 inq_data = &device->inq_data; 6412 scsi = &cts->proto_specific.scsi; 6413 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6414 cpi.ccb_h.func_code = XPT_PATH_INQ; 6415 xpt_action((union ccb *)&cpi); 6416 6417 /* SCSI specific sanity checking */ 6418 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6419 || (inq_data->flags & SID_CmdQue) == 0 6420 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6421 || (device->quirk->mintags == 0)) { 6422 /* 6423 * Can't tag on hardware that doesn't support tags, 6424 * doesn't have it enabled, or has broken tag support. 6425 */ 6426 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6427 } 6428 6429 if (async_update == FALSE) { 6430 /* 6431 * Perform sanity checking against what the 6432 * controller and device can do. 6433 */ 6434 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6435 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6436 cur_cts.type = cts->type; 6437 xpt_action((union ccb *)&cur_cts); 6438 6439 cur_scsi = &cur_cts.proto_specific.scsi; 6440 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6441 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6442 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6443 } 6444 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6445 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6446 } 6447 6448 /* SPI specific sanity checking */ 6449 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6450 u_int spi3caps; 6451 struct ccb_trans_settings_spi *spi; 6452 struct ccb_trans_settings_spi *cur_spi; 6453 6454 spi = &cts->xport_specific.spi; 6455 6456 cur_spi = &cur_cts.xport_specific.spi; 6457 6458 /* Fill in any gaps in what the user gave us */ 6459 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6460 spi->sync_period = cur_spi->sync_period; 6461 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6462 spi->sync_period = 0; 6463 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6464 spi->sync_offset = cur_spi->sync_offset; 6465 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6466 spi->sync_offset = 0; 6467 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6468 spi->ppr_options = cur_spi->ppr_options; 6469 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6470 spi->ppr_options = 0; 6471 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6472 spi->bus_width = cur_spi->bus_width; 6473 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6474 spi->bus_width = 0; 6475 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6476 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6477 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6478 } 6479 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6480 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6481 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6482 && (inq_data->flags & SID_Sync) == 0 6483 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6484 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6485 || (cur_spi->sync_offset == 0) 6486 || (cur_spi->sync_period == 0)) { 6487 /* Force async */ 6488 spi->sync_period = 0; 6489 spi->sync_offset = 0; 6490 } 6491 6492 switch (spi->bus_width) { 6493 case MSG_EXT_WDTR_BUS_32_BIT: 6494 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6495 || (inq_data->flags & SID_WBus32) != 0 6496 || cts->type == CTS_TYPE_USER_SETTINGS) 6497 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6498 break; 6499 /* Fall Through to 16-bit */ 6500 case MSG_EXT_WDTR_BUS_16_BIT: 6501 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6502 || (inq_data->flags & SID_WBus16) != 0 6503 || cts->type == CTS_TYPE_USER_SETTINGS) 6504 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6505 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6506 break; 6507 } 6508 /* Fall Through to 8-bit */ 6509 default: /* New bus width?? */ 6510 case MSG_EXT_WDTR_BUS_8_BIT: 6511 /* All targets can do this */ 6512 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6513 break; 6514 } 6515 6516 spi3caps = cpi.xport_specific.spi.ppr_options; 6517 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6518 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6519 spi3caps &= inq_data->spi3data; 6520 6521 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6522 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6523 6524 if ((spi3caps & SID_SPI_IUS) == 0) 6525 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6526 6527 if ((spi3caps & SID_SPI_QAS) == 0) 6528 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6529 6530 /* No SPI Transfer settings are allowed unless we are wide */ 6531 if (spi->bus_width == 0) 6532 spi->ppr_options = 0; 6533 6534 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6535 /* 6536 * Can't tag queue without disconnection. 6537 */ 6538 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6539 scsi->valid |= CTS_SCSI_VALID_TQ; 6540 } 6541 6542 /* 6543 * If we are currently performing tagged transactions to 6544 * this device and want to change its negotiation parameters, 6545 * go non-tagged for a bit to give the controller a chance to 6546 * negotiate unhampered by tag messages. 6547 */ 6548 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6549 && (device->inq_flags & SID_CmdQue) != 0 6550 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6551 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6552 CTS_SPI_VALID_SYNC_OFFSET| 6553 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6554 xpt_toggle_tags(cts->ccb_h.path); 6555 } 6556 6557 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6558 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6559 int device_tagenb; 6560 6561 /* 6562 * If we are transitioning from tags to no-tags or 6563 * vice-versa, we need to carefully freeze and restart 6564 * the queue so that we don't overlap tagged and non-tagged 6565 * commands. We also temporarily stop tags if there is 6566 * a change in transfer negotiation settings to allow 6567 * "tag-less" negotiation. 6568 */ 6569 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6570 || (device->inq_flags & SID_CmdQue) != 0) 6571 device_tagenb = TRUE; 6572 else 6573 device_tagenb = FALSE; 6574 6575 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6576 && device_tagenb == FALSE) 6577 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6578 && device_tagenb == TRUE)) { 6579 6580 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6581 /* 6582 * Delay change to use tags until after a 6583 * few commands have gone to this device so 6584 * the controller has time to perform transfer 6585 * negotiations without tagged messages getting 6586 * in the way. 6587 */ 6588 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6589 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6590 } else { 6591 struct ccb_relsim crs; 6592 6593 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6594 device->inq_flags &= ~SID_CmdQue; 6595 xpt_dev_ccbq_resize(cts->ccb_h.path, 6596 sim->max_dev_openings); 6597 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6598 device->tag_delay_count = 0; 6599 6600 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6601 /*priority*/1); 6602 crs.ccb_h.func_code = XPT_REL_SIMQ; 6603 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6604 crs.openings 6605 = crs.release_timeout 6606 = crs.qfrozen_cnt 6607 = 0; 6608 xpt_action((union ccb *)&crs); 6609 } 6610 } 6611 } 6612 if (async_update == FALSE) 6613 (*(sim->sim_action))(sim, (union ccb *)cts); 6614 } 6615 6616 #else /* CAM_NEW_TRAN_CODE */ 6617 6618 static void 6619 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6620 int async_update) 6621 { 6622 struct cam_sim *sim; 6623 int qfrozen; 6624 6625 sim = cts->ccb_h.path->bus->sim; 6626 if (async_update == FALSE) { 6627 struct scsi_inquiry_data *inq_data; 6628 struct ccb_pathinq cpi; 6629 struct ccb_trans_settings cur_cts; 6630 6631 if (device == NULL) { 6632 cts->ccb_h.status = CAM_PATH_INVALID; 6633 xpt_done((union ccb *)cts); 6634 return; 6635 } 6636 6637 /* 6638 * Perform sanity checking against what the 6639 * controller and device can do. 6640 */ 6641 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6642 cpi.ccb_h.func_code = XPT_PATH_INQ; 6643 xpt_action((union ccb *)&cpi); 6644 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6645 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6646 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 6647 xpt_action((union ccb *)&cur_cts); 6648 inq_data = &device->inq_data; 6649 6650 /* Fill in any gaps in what the user gave us */ 6651 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 6652 cts->sync_period = cur_cts.sync_period; 6653 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 6654 cts->sync_offset = cur_cts.sync_offset; 6655 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 6656 cts->bus_width = cur_cts.bus_width; 6657 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 6658 cts->flags &= ~CCB_TRANS_DISC_ENB; 6659 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 6660 } 6661 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 6662 cts->flags &= ~CCB_TRANS_TAG_ENB; 6663 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 6664 } 6665 6666 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6667 && (inq_data->flags & SID_Sync) == 0) 6668 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6669 || (cts->sync_offset == 0) 6670 || (cts->sync_period == 0)) { 6671 /* Force async */ 6672 cts->sync_period = 0; 6673 cts->sync_offset = 0; 6674 } else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6675 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 6676 && cts->sync_period <= 0x9) { 6677 /* 6678 * Don't allow DT transmission rates if the 6679 * device does not support it. 6680 */ 6681 cts->sync_period = 0xa; 6682 } 6683 6684 switch (cts->bus_width) { 6685 case MSG_EXT_WDTR_BUS_32_BIT: 6686 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6687 || (inq_data->flags & SID_WBus32) != 0) 6688 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6689 break; 6690 /* FALLTHROUGH to 16-bit */ 6691 case MSG_EXT_WDTR_BUS_16_BIT: 6692 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6693 || (inq_data->flags & SID_WBus16) != 0) 6694 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6695 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6696 break; 6697 } 6698 /* FALLTHROUGH to 8-bit */ 6699 default: /* New bus width?? */ 6700 case MSG_EXT_WDTR_BUS_8_BIT: 6701 /* All targets can do this */ 6702 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6703 break; 6704 } 6705 6706 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 6707 /* 6708 * Can't tag queue without disconnection. 6709 */ 6710 cts->flags &= ~CCB_TRANS_TAG_ENB; 6711 cts->valid |= CCB_TRANS_TQ_VALID; 6712 } 6713 6714 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6715 || (inq_data->flags & SID_CmdQue) == 0 6716 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6717 || (device->quirk->mintags == 0)) { 6718 /* 6719 * Can't tag on hardware that doesn't support, 6720 * doesn't have it enabled, or has broken tag support. 6721 */ 6722 cts->flags &= ~CCB_TRANS_TAG_ENB; 6723 } 6724 } 6725 6726 qfrozen = FALSE; 6727 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 6728 int device_tagenb; 6729 6730 /* 6731 * If we are transitioning from tags to no-tags or 6732 * vice-versa, we need to carefully freeze and restart 6733 * the queue so that we don't overlap tagged and non-tagged 6734 * commands. We also temporarily stop tags if there is 6735 * a change in transfer negotiation settings to allow 6736 * "tag-less" negotiation. 6737 */ 6738 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6739 || (device->inq_flags & SID_CmdQue) != 0) 6740 device_tagenb = TRUE; 6741 else 6742 device_tagenb = FALSE; 6743 6744 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 6745 && device_tagenb == FALSE) 6746 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 6747 && device_tagenb == TRUE)) { 6748 6749 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 6750 /* 6751 * Delay change to use tags until after a 6752 * few commands have gone to this device so 6753 * the controller has time to perform transfer 6754 * negotiations without tagged messages getting 6755 * in the way. 6756 */ 6757 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6758 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6759 } else { 6760 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6761 qfrozen = TRUE; 6762 device->inq_flags &= ~SID_CmdQue; 6763 xpt_dev_ccbq_resize(cts->ccb_h.path, 6764 sim->max_dev_openings); 6765 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6766 device->tag_delay_count = 0; 6767 } 6768 } 6769 } 6770 6771 if (async_update == FALSE) { 6772 /* 6773 * If we are currently performing tagged transactions to 6774 * this device and want to change its negotiation parameters, 6775 * go non-tagged for a bit to give the controller a chance to 6776 * negotiate unhampered by tag messages. 6777 */ 6778 if ((device->inq_flags & SID_CmdQue) != 0 6779 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 6780 CCB_TRANS_SYNC_OFFSET_VALID| 6781 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 6782 xpt_toggle_tags(cts->ccb_h.path); 6783 6784 (*(sim->sim_action))(sim, (union ccb *)cts); 6785 } 6786 6787 if (qfrozen) { 6788 struct ccb_relsim crs; 6789 6790 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6791 /*priority*/1); 6792 crs.ccb_h.func_code = XPT_REL_SIMQ; 6793 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6794 crs.openings 6795 = crs.release_timeout 6796 = crs.qfrozen_cnt 6797 = 0; 6798 xpt_action((union ccb *)&crs); 6799 } 6800 } 6801 6802 6803 #endif /* CAM_NEW_TRAN_CODE */ 6804 6805 static void 6806 xpt_toggle_tags(struct cam_path *path) 6807 { 6808 struct cam_ed *dev; 6809 6810 /* 6811 * Give controllers a chance to renegotiate 6812 * before starting tag operations. We 6813 * "toggle" tagged queuing off then on 6814 * which causes the tag enable command delay 6815 * counter to come into effect. 6816 */ 6817 dev = path->device; 6818 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6819 || ((dev->inq_flags & SID_CmdQue) != 0 6820 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6821 struct ccb_trans_settings cts; 6822 6823 xpt_setup_ccb(&cts.ccb_h, path, 1); 6824 #ifdef CAM_NEW_TRAN_CODE 6825 cts.protocol = PROTO_SCSI; 6826 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6827 cts.transport = XPORT_UNSPECIFIED; 6828 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6829 cts.proto_specific.scsi.flags = 0; 6830 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6831 #else /* CAM_NEW_TRAN_CODE */ 6832 cts.flags = 0; 6833 cts.valid = CCB_TRANS_TQ_VALID; 6834 #endif /* CAM_NEW_TRAN_CODE */ 6835 xpt_set_transfer_settings(&cts, path->device, 6836 /*async_update*/TRUE); 6837 #ifdef CAM_NEW_TRAN_CODE 6838 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6839 #else /* CAM_NEW_TRAN_CODE */ 6840 cts.flags = CCB_TRANS_TAG_ENB; 6841 #endif /* CAM_NEW_TRAN_CODE */ 6842 xpt_set_transfer_settings(&cts, path->device, 6843 /*async_update*/TRUE); 6844 } 6845 } 6846 6847 static void 6848 xpt_start_tags(struct cam_path *path) 6849 { 6850 struct ccb_relsim crs; 6851 struct cam_ed *device; 6852 struct cam_sim *sim; 6853 int newopenings; 6854 6855 device = path->device; 6856 sim = path->bus->sim; 6857 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6858 xpt_freeze_devq(path, /*count*/1); 6859 device->inq_flags |= SID_CmdQue; 6860 if (device->tag_saved_openings != 0) 6861 newopenings = device->tag_saved_openings; 6862 else 6863 newopenings = min(device->quirk->maxtags, 6864 sim->max_tagged_dev_openings); 6865 xpt_dev_ccbq_resize(path, newopenings); 6866 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6867 crs.ccb_h.func_code = XPT_REL_SIMQ; 6868 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6869 crs.openings 6870 = crs.release_timeout 6871 = crs.qfrozen_cnt 6872 = 0; 6873 xpt_action((union ccb *)&crs); 6874 } 6875 6876 static int busses_to_config; 6877 static int busses_to_reset; 6878 6879 static int 6880 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6881 { 6882 if (bus->path_id != CAM_XPT_PATH_ID) { 6883 struct cam_path path; 6884 struct ccb_pathinq cpi; 6885 int can_negotiate; 6886 6887 busses_to_config++; 6888 xpt_compile_path(&path, NULL, bus->path_id, 6889 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6890 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6891 cpi.ccb_h.func_code = XPT_PATH_INQ; 6892 xpt_action((union ccb *)&cpi); 6893 can_negotiate = cpi.hba_inquiry; 6894 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6895 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6896 && can_negotiate) 6897 busses_to_reset++; 6898 xpt_release_path(&path); 6899 } 6900 6901 return(1); 6902 } 6903 6904 static int 6905 xptconfigfunc(struct cam_eb *bus, void *arg) 6906 { 6907 struct cam_path *path; 6908 union ccb *work_ccb; 6909 6910 if (bus->path_id != CAM_XPT_PATH_ID) { 6911 cam_status status; 6912 int can_negotiate; 6913 6914 work_ccb = xpt_alloc_ccb(); 6915 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6916 CAM_TARGET_WILDCARD, 6917 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6918 printf("xptconfigfunc: xpt_create_path failed with " 6919 "status %#x for bus %d\n", status, bus->path_id); 6920 printf("xptconfigfunc: halting bus configuration\n"); 6921 xpt_free_ccb(work_ccb); 6922 busses_to_config--; 6923 xpt_finishconfig(xpt_periph, NULL); 6924 return(0); 6925 } 6926 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6927 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6928 xpt_action(work_ccb); 6929 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6930 printf("xptconfigfunc: CPI failed on bus %d " 6931 "with status %d\n", bus->path_id, 6932 work_ccb->ccb_h.status); 6933 xpt_finishconfig(xpt_periph, work_ccb); 6934 return(1); 6935 } 6936 6937 can_negotiate = work_ccb->cpi.hba_inquiry; 6938 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6939 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6940 && (can_negotiate != 0)) { 6941 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6942 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6943 work_ccb->ccb_h.cbfcnp = NULL; 6944 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6945 ("Resetting Bus\n")); 6946 xpt_action(work_ccb); 6947 xpt_finishconfig(xpt_periph, work_ccb); 6948 } else { 6949 /* Act as though we performed a successful BUS RESET */ 6950 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6951 xpt_finishconfig(xpt_periph, work_ccb); 6952 } 6953 } 6954 6955 return(1); 6956 } 6957 6958 static void 6959 xpt_config(void *arg) 6960 { 6961 /* 6962 * Now that interrupts are enabled, go find our devices 6963 */ 6964 6965 #ifdef CAMDEBUG 6966 /* Setup debugging flags and path */ 6967 #ifdef CAM_DEBUG_FLAGS 6968 cam_dflags = CAM_DEBUG_FLAGS; 6969 #else /* !CAM_DEBUG_FLAGS */ 6970 cam_dflags = CAM_DEBUG_NONE; 6971 #endif /* CAM_DEBUG_FLAGS */ 6972 #ifdef CAM_DEBUG_BUS 6973 if (cam_dflags != CAM_DEBUG_NONE) { 6974 if (xpt_create_path(&cam_dpath, xpt_periph, 6975 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6976 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6977 printf("xpt_config: xpt_create_path() failed for debug" 6978 " target %d:%d:%d, debugging disabled\n", 6979 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6980 cam_dflags = CAM_DEBUG_NONE; 6981 } 6982 } else 6983 cam_dpath = NULL; 6984 #else /* !CAM_DEBUG_BUS */ 6985 cam_dpath = NULL; 6986 #endif /* CAM_DEBUG_BUS */ 6987 #endif /* CAMDEBUG */ 6988 6989 /* 6990 * Scan all installed busses. 6991 */ 6992 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6993 6994 if (busses_to_config == 0) { 6995 /* Call manually because we don't have any busses */ 6996 xpt_finishconfig(xpt_periph, NULL); 6997 } else { 6998 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6999 printf("Waiting %d seconds for SCSI " 7000 "devices to settle\n", scsi_delay/1000); 7001 } 7002 xpt_for_all_busses(xptconfigfunc, NULL); 7003 } 7004 } 7005 7006 /* 7007 * If the given device only has one peripheral attached to it, and if that 7008 * peripheral is the passthrough driver, announce it. This insures that the 7009 * user sees some sort of announcement for every peripheral in their system. 7010 */ 7011 static int 7012 xptpassannouncefunc(struct cam_ed *device, void *arg) 7013 { 7014 struct cam_periph *periph; 7015 int i; 7016 7017 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 7018 periph = SLIST_NEXT(periph, periph_links), i++); 7019 7020 periph = SLIST_FIRST(&device->periphs); 7021 if ((i == 1) 7022 && (strncmp(periph->periph_name, "pass", 4) == 0)) 7023 xpt_announce_periph(periph, NULL); 7024 7025 return(1); 7026 } 7027 7028 static void 7029 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 7030 { 7031 struct periph_driver **p_drv; 7032 int i; 7033 7034 if (done_ccb != NULL) { 7035 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 7036 ("xpt_finishconfig\n")); 7037 switch(done_ccb->ccb_h.func_code) { 7038 case XPT_RESET_BUS: 7039 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 7040 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 7041 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 7042 done_ccb->crcn.flags = 0; 7043 xpt_action(done_ccb); 7044 return; 7045 } 7046 /* FALLTHROUGH */ 7047 case XPT_SCAN_BUS: 7048 default: 7049 xpt_free_path(done_ccb->ccb_h.path); 7050 busses_to_config--; 7051 break; 7052 } 7053 } 7054 7055 if (busses_to_config == 0) { 7056 /* Register all the peripheral drivers */ 7057 /* XXX This will have to change when we have loadable modules */ 7058 p_drv = periph_drivers; 7059 for (i = 0; p_drv[i] != NULL; i++) { 7060 (*p_drv[i]->init)(); 7061 } 7062 7063 /* 7064 * Check for devices with no "standard" peripheral driver 7065 * attached. For any devices like that, announce the 7066 * passthrough driver so the user will see something. 7067 */ 7068 xpt_for_all_devices(xptpassannouncefunc, NULL); 7069 7070 /* Release our hook so that the boot can continue. */ 7071 config_intrhook_disestablish(xpt_config_hook); 7072 free(xpt_config_hook, M_TEMP); 7073 xpt_config_hook = NULL; 7074 } 7075 if (done_ccb != NULL) 7076 xpt_free_ccb(done_ccb); 7077 } 7078 7079 static void 7080 xptaction(struct cam_sim *sim, union ccb *work_ccb) 7081 { 7082 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 7083 7084 switch (work_ccb->ccb_h.func_code) { 7085 /* Common cases first */ 7086 case XPT_PATH_INQ: /* Path routing inquiry */ 7087 { 7088 struct ccb_pathinq *cpi; 7089 7090 cpi = &work_ccb->cpi; 7091 cpi->version_num = 1; /* XXX??? */ 7092 cpi->hba_inquiry = 0; 7093 cpi->target_sprt = 0; 7094 cpi->hba_misc = 0; 7095 cpi->hba_eng_cnt = 0; 7096 cpi->max_target = 0; 7097 cpi->max_lun = 0; 7098 cpi->initiator_id = 0; 7099 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7100 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7101 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7102 cpi->unit_number = sim->unit_number; 7103 cpi->bus_id = sim->bus_id; 7104 cpi->base_transfer_speed = 0; 7105 #ifdef CAM_NEW_TRAN_CODE 7106 cpi->protocol = PROTO_UNSPECIFIED; 7107 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7108 cpi->transport = XPORT_UNSPECIFIED; 7109 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7110 #endif /* CAM_NEW_TRAN_CODE */ 7111 cpi->ccb_h.status = CAM_REQ_CMP; 7112 xpt_done(work_ccb); 7113 break; 7114 } 7115 default: 7116 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7117 xpt_done(work_ccb); 7118 break; 7119 } 7120 } 7121 7122 /* 7123 * The xpt as a "controller" has no interrupt sources, so polling 7124 * is a no-op. 7125 */ 7126 static void 7127 xptpoll(struct cam_sim *sim) 7128 { 7129 } 7130 7131 static void 7132 camisr(void *V_queue) 7133 { 7134 cam_isrq_t *oqueue = V_queue; 7135 cam_isrq_t queue; 7136 int s; 7137 struct ccb_hdr *ccb_h; 7138 7139 /* 7140 * Transfer the ccb_bioq list to a temporary list so we can operate 7141 * on it without needing to lock/unlock on every loop. The concat 7142 * function with re-init the real list for us. 7143 */ 7144 s = splcam(); 7145 mtx_lock(&cam_bioq_lock); 7146 TAILQ_INIT(&queue); 7147 TAILQ_CONCAT(&queue, oqueue, sim_links.tqe); 7148 mtx_unlock(&cam_bioq_lock); 7149 7150 while ((ccb_h = TAILQ_FIRST(&queue)) != NULL) { 7151 int runq; 7152 7153 TAILQ_REMOVE(&queue, ccb_h, sim_links.tqe); 7154 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7155 splx(s); 7156 7157 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7158 ("camisr\n")); 7159 7160 runq = FALSE; 7161 7162 if (ccb_h->flags & CAM_HIGH_POWER) { 7163 struct highpowerlist *hphead; 7164 union ccb *send_ccb; 7165 7166 hphead = &highpowerq; 7167 7168 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7169 7170 /* 7171 * Increment the count since this command is done. 7172 */ 7173 num_highpower++; 7174 7175 /* 7176 * Any high powered commands queued up? 7177 */ 7178 if (send_ccb != NULL) { 7179 7180 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7181 7182 xpt_release_devq(send_ccb->ccb_h.path, 7183 /*count*/1, /*runqueue*/TRUE); 7184 } 7185 } 7186 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7187 struct cam_ed *dev; 7188 7189 dev = ccb_h->path->device; 7190 7191 s = splcam(); 7192 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7193 7194 if (!SIM_DEAD(ccb_h->path->bus->sim)) { 7195 ccb_h->path->bus->sim->devq->send_active--; 7196 ccb_h->path->bus->sim->devq->send_openings++; 7197 } 7198 splx(s); 7199 7200 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7201 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7202 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7203 && (dev->ccbq.dev_active == 0))) { 7204 7205 xpt_release_devq(ccb_h->path, /*count*/1, 7206 /*run_queue*/TRUE); 7207 } 7208 7209 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7210 && (--dev->tag_delay_count == 0)) 7211 xpt_start_tags(ccb_h->path); 7212 7213 if ((dev->ccbq.queue.entries > 0) 7214 && (dev->qfrozen_cnt == 0) 7215 && (device_is_send_queued(dev) == 0)) { 7216 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7217 dev); 7218 } 7219 } 7220 7221 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7222 xpt_release_simq(ccb_h->path->bus->sim, 7223 /*run_queue*/TRUE); 7224 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7225 runq = FALSE; 7226 } 7227 7228 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7229 && (ccb_h->status & CAM_DEV_QFRZN)) { 7230 xpt_release_devq(ccb_h->path, /*count*/1, 7231 /*run_queue*/TRUE); 7232 ccb_h->status &= ~CAM_DEV_QFRZN; 7233 } else if (runq) { 7234 xpt_run_dev_sendq(ccb_h->path->bus); 7235 } 7236 7237 /* Call the peripheral driver's callback */ 7238 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7239 7240 /* Raise IPL for while test */ 7241 s = splcam(); 7242 } 7243 splx(s); 7244 } 7245 7246 static void 7247 dead_sim_action(struct cam_sim *sim, union ccb *ccb) 7248 { 7249 7250 ccb->ccb_h.status = CAM_DEV_NOT_THERE; 7251 xpt_done(ccb); 7252 } 7253 7254 static void 7255 dead_sim_poll(struct cam_sim *sim) 7256 { 7257 } 7258