1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/systm.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/time.h> 45 #include <sys/conf.h> 46 #include <sys/fcntl.h> 47 #include <sys/proc.h> 48 #include <sys/sbuf.h> 49 #include <sys/smp.h> 50 #include <sys/taskqueue.h> 51 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/sysctl.h> 55 #include <sys/kthread.h> 56 57 #include <cam/cam.h> 58 #include <cam/cam_ccb.h> 59 #include <cam/cam_iosched.h> 60 #include <cam/cam_periph.h> 61 #include <cam/cam_queue.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt.h> 64 #include <cam/cam_xpt_sim.h> 65 #include <cam/cam_xpt_periph.h> 66 #include <cam/cam_xpt_internal.h> 67 #include <cam/cam_debug.h> 68 #include <cam/cam_compat.h> 69 70 #include <cam/scsi/scsi_all.h> 71 #include <cam/scsi/scsi_message.h> 72 #include <cam/scsi/scsi_pass.h> 73 74 #include <machine/md_var.h> /* geometry translation */ 75 #include <machine/stdarg.h> /* for xpt_print below */ 76 77 #include "opt_cam.h" 78 79 /* Wild guess based on not wanting to grow the stack too much */ 80 #define XPT_PRINT_MAXLEN 512 81 #ifdef PRINTF_BUFR_SIZE 82 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 83 #else 84 #define XPT_PRINT_LEN 128 85 #endif 86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 87 88 /* 89 * This is the maximum number of high powered commands (e.g. start unit) 90 * that can be outstanding at a particular time. 91 */ 92 #ifndef CAM_MAX_HIGHPOWER 93 #define CAM_MAX_HIGHPOWER 4 94 #endif 95 96 /* Datastructures internal to the xpt layer */ 97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 101 102 /* Object for defering XPT actions to a taskqueue */ 103 struct xpt_task { 104 struct task task; 105 void *data1; 106 uintptr_t data2; 107 }; 108 109 struct xpt_softc { 110 uint32_t xpt_generation; 111 112 /* number of high powered commands that can go through right now */ 113 struct mtx xpt_highpower_lock; 114 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 115 int num_highpower; 116 117 /* queue for handling async rescan requests. */ 118 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 119 int buses_to_config; 120 int buses_config_done; 121 int announce_nosbuf; 122 123 /* 124 * Registered buses 125 * 126 * N.B., "busses" is an archaic spelling of "buses". In new code 127 * "buses" is preferred. 128 */ 129 TAILQ_HEAD(,cam_eb) xpt_busses; 130 u_int bus_generation; 131 132 struct intr_config_hook xpt_config_hook; 133 134 int boot_delay; 135 struct callout boot_callout; 136 137 struct mtx xpt_topo_lock; 138 struct mtx xpt_lock; 139 struct taskqueue *xpt_taskq; 140 }; 141 142 typedef enum { 143 DM_RET_COPY = 0x01, 144 DM_RET_FLAG_MASK = 0x0f, 145 DM_RET_NONE = 0x00, 146 DM_RET_STOP = 0x10, 147 DM_RET_DESCEND = 0x20, 148 DM_RET_ERROR = 0x30, 149 DM_RET_ACTION_MASK = 0xf0 150 } dev_match_ret; 151 152 typedef enum { 153 XPT_DEPTH_BUS, 154 XPT_DEPTH_TARGET, 155 XPT_DEPTH_DEVICE, 156 XPT_DEPTH_PERIPH 157 } xpt_traverse_depth; 158 159 struct xpt_traverse_config { 160 xpt_traverse_depth depth; 161 void *tr_func; 162 void *tr_arg; 163 }; 164 165 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 166 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 167 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 168 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 169 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 170 171 /* Transport layer configuration information */ 172 static struct xpt_softc xsoftc; 173 174 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 175 176 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 177 &xsoftc.boot_delay, 0, "Bus registration wait time"); 178 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 179 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 180 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 181 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 182 183 struct cam_doneq { 184 struct mtx_padalign cam_doneq_mtx; 185 STAILQ_HEAD(, ccb_hdr) cam_doneq; 186 int cam_doneq_sleep; 187 }; 188 189 static struct cam_doneq cam_doneqs[MAXCPU]; 190 static int cam_num_doneqs; 191 static struct proc *cam_proc; 192 193 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 194 &cam_num_doneqs, 0, "Number of completion queues/threads"); 195 196 struct cam_periph *xpt_periph; 197 198 static periph_init_t xpt_periph_init; 199 200 static struct periph_driver xpt_driver = 201 { 202 xpt_periph_init, "xpt", 203 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 204 CAM_PERIPH_DRV_EARLY 205 }; 206 207 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 208 209 static d_open_t xptopen; 210 static d_close_t xptclose; 211 static d_ioctl_t xptioctl; 212 static d_ioctl_t xptdoioctl; 213 214 static struct cdevsw xpt_cdevsw = { 215 .d_version = D_VERSION, 216 .d_flags = 0, 217 .d_open = xptopen, 218 .d_close = xptclose, 219 .d_ioctl = xptioctl, 220 .d_name = "xpt", 221 }; 222 223 /* Storage for debugging datastructures */ 224 struct cam_path *cam_dpath; 225 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 226 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 227 &cam_dflags, 0, "Enabled debug flags"); 228 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 229 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 230 &cam_debug_delay, 0, "Delay in us after each debug message"); 231 232 /* Our boot-time initialization hook */ 233 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 234 235 static moduledata_t cam_moduledata = { 236 "cam", 237 cam_module_event_handler, 238 NULL 239 }; 240 241 static int xpt_init(void *); 242 243 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 244 MODULE_VERSION(cam, 1); 245 246 247 static void xpt_async_bcast(struct async_list *async_head, 248 u_int32_t async_code, 249 struct cam_path *path, 250 void *async_arg); 251 static path_id_t xptnextfreepathid(void); 252 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 253 static union ccb *xpt_get_ccb(struct cam_periph *periph); 254 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 255 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 256 static void xpt_run_allocq_task(void *context, int pending); 257 static void xpt_run_devq(struct cam_devq *devq); 258 static timeout_t xpt_release_devq_timeout; 259 static void xpt_release_simq_timeout(void *arg) __unused; 260 static void xpt_acquire_bus(struct cam_eb *bus); 261 static void xpt_release_bus(struct cam_eb *bus); 262 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 263 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 264 int run_queue); 265 static struct cam_et* 266 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 267 static void xpt_acquire_target(struct cam_et *target); 268 static void xpt_release_target(struct cam_et *target); 269 static struct cam_eb* 270 xpt_find_bus(path_id_t path_id); 271 static struct cam_et* 272 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 273 static struct cam_ed* 274 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 275 static void xpt_config(void *arg); 276 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 277 u_int32_t new_priority); 278 static xpt_devicefunc_t xptpassannouncefunc; 279 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 280 static void xptpoll(struct cam_sim *sim); 281 static void camisr_runqueue(void); 282 static void xpt_done_process(struct ccb_hdr *ccb_h); 283 static void xpt_done_td(void *); 284 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 285 u_int num_patterns, struct cam_eb *bus); 286 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 287 u_int num_patterns, 288 struct cam_ed *device); 289 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 290 u_int num_patterns, 291 struct cam_periph *periph); 292 static xpt_busfunc_t xptedtbusfunc; 293 static xpt_targetfunc_t xptedttargetfunc; 294 static xpt_devicefunc_t xptedtdevicefunc; 295 static xpt_periphfunc_t xptedtperiphfunc; 296 static xpt_pdrvfunc_t xptplistpdrvfunc; 297 static xpt_periphfunc_t xptplistperiphfunc; 298 static int xptedtmatch(struct ccb_dev_match *cdm); 299 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 300 static int xptbustraverse(struct cam_eb *start_bus, 301 xpt_busfunc_t *tr_func, void *arg); 302 static int xpttargettraverse(struct cam_eb *bus, 303 struct cam_et *start_target, 304 xpt_targetfunc_t *tr_func, void *arg); 305 static int xptdevicetraverse(struct cam_et *target, 306 struct cam_ed *start_device, 307 xpt_devicefunc_t *tr_func, void *arg); 308 static int xptperiphtraverse(struct cam_ed *device, 309 struct cam_periph *start_periph, 310 xpt_periphfunc_t *tr_func, void *arg); 311 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 312 xpt_pdrvfunc_t *tr_func, void *arg); 313 static int xptpdperiphtraverse(struct periph_driver **pdrv, 314 struct cam_periph *start_periph, 315 xpt_periphfunc_t *tr_func, 316 void *arg); 317 static xpt_busfunc_t xptdefbusfunc; 318 static xpt_targetfunc_t xptdeftargetfunc; 319 static xpt_devicefunc_t xptdefdevicefunc; 320 static xpt_periphfunc_t xptdefperiphfunc; 321 static void xpt_finishconfig_task(void *context, int pending); 322 static void xpt_dev_async_default(u_int32_t async_code, 323 struct cam_eb *bus, 324 struct cam_et *target, 325 struct cam_ed *device, 326 void *async_arg); 327 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 328 struct cam_et *target, 329 lun_id_t lun_id); 330 static xpt_devicefunc_t xptsetasyncfunc; 331 static xpt_busfunc_t xptsetasyncbusfunc; 332 static cam_status xptregister(struct cam_periph *periph, 333 void *arg); 334 static __inline int device_is_queued(struct cam_ed *device); 335 336 static __inline int 337 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 338 { 339 int retval; 340 341 mtx_assert(&devq->send_mtx, MA_OWNED); 342 if ((dev->ccbq.queue.entries > 0) && 343 (dev->ccbq.dev_openings > 0) && 344 (dev->ccbq.queue.qfrozen_cnt == 0)) { 345 /* 346 * The priority of a device waiting for controller 347 * resources is that of the highest priority CCB 348 * enqueued. 349 */ 350 retval = 351 xpt_schedule_dev(&devq->send_queue, 352 &dev->devq_entry, 353 CAMQ_GET_PRIO(&dev->ccbq.queue)); 354 } else { 355 retval = 0; 356 } 357 return (retval); 358 } 359 360 static __inline int 361 device_is_queued(struct cam_ed *device) 362 { 363 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 364 } 365 366 static void 367 xpt_periph_init() 368 { 369 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 370 } 371 372 static int 373 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 374 { 375 376 /* 377 * Only allow read-write access. 378 */ 379 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 380 return(EPERM); 381 382 /* 383 * We don't allow nonblocking access. 384 */ 385 if ((flags & O_NONBLOCK) != 0) { 386 printf("%s: can't do nonblocking access\n", devtoname(dev)); 387 return(ENODEV); 388 } 389 390 return(0); 391 } 392 393 static int 394 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 395 { 396 397 return(0); 398 } 399 400 /* 401 * Don't automatically grab the xpt softc lock here even though this is going 402 * through the xpt device. The xpt device is really just a back door for 403 * accessing other devices and SIMs, so the right thing to do is to grab 404 * the appropriate SIM lock once the bus/SIM is located. 405 */ 406 static int 407 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 408 { 409 int error; 410 411 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 412 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 413 } 414 return (error); 415 } 416 417 static int 418 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 419 { 420 int error; 421 422 error = 0; 423 424 switch(cmd) { 425 /* 426 * For the transport layer CAMIOCOMMAND ioctl, we really only want 427 * to accept CCB types that don't quite make sense to send through a 428 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 429 * in the CAM spec. 430 */ 431 case CAMIOCOMMAND: { 432 union ccb *ccb; 433 union ccb *inccb; 434 struct cam_eb *bus; 435 436 inccb = (union ccb *)addr; 437 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 438 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 439 inccb->csio.bio = NULL; 440 #endif 441 442 if (inccb->ccb_h.flags & CAM_UNLOCKED) 443 return (EINVAL); 444 445 bus = xpt_find_bus(inccb->ccb_h.path_id); 446 if (bus == NULL) 447 return (EINVAL); 448 449 switch (inccb->ccb_h.func_code) { 450 case XPT_SCAN_BUS: 451 case XPT_RESET_BUS: 452 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 453 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 454 xpt_release_bus(bus); 455 return (EINVAL); 456 } 457 break; 458 case XPT_SCAN_TGT: 459 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 461 xpt_release_bus(bus); 462 return (EINVAL); 463 } 464 break; 465 default: 466 break; 467 } 468 469 switch(inccb->ccb_h.func_code) { 470 case XPT_SCAN_BUS: 471 case XPT_RESET_BUS: 472 case XPT_PATH_INQ: 473 case XPT_ENG_INQ: 474 case XPT_SCAN_LUN: 475 case XPT_SCAN_TGT: 476 477 ccb = xpt_alloc_ccb(); 478 479 /* 480 * Create a path using the bus, target, and lun the 481 * user passed in. 482 */ 483 if (xpt_create_path(&ccb->ccb_h.path, NULL, 484 inccb->ccb_h.path_id, 485 inccb->ccb_h.target_id, 486 inccb->ccb_h.target_lun) != 487 CAM_REQ_CMP){ 488 error = EINVAL; 489 xpt_free_ccb(ccb); 490 break; 491 } 492 /* Ensure all of our fields are correct */ 493 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 494 inccb->ccb_h.pinfo.priority); 495 xpt_merge_ccb(ccb, inccb); 496 xpt_path_lock(ccb->ccb_h.path); 497 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 498 xpt_path_unlock(ccb->ccb_h.path); 499 bcopy(ccb, inccb, sizeof(union ccb)); 500 xpt_free_path(ccb->ccb_h.path); 501 xpt_free_ccb(ccb); 502 break; 503 504 case XPT_DEBUG: { 505 union ccb ccb; 506 507 /* 508 * This is an immediate CCB, so it's okay to 509 * allocate it on the stack. 510 */ 511 512 /* 513 * Create a path using the bus, target, and lun the 514 * user passed in. 515 */ 516 if (xpt_create_path(&ccb.ccb_h.path, NULL, 517 inccb->ccb_h.path_id, 518 inccb->ccb_h.target_id, 519 inccb->ccb_h.target_lun) != 520 CAM_REQ_CMP){ 521 error = EINVAL; 522 break; 523 } 524 /* Ensure all of our fields are correct */ 525 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 526 inccb->ccb_h.pinfo.priority); 527 xpt_merge_ccb(&ccb, inccb); 528 xpt_action(&ccb); 529 bcopy(&ccb, inccb, sizeof(union ccb)); 530 xpt_free_path(ccb.ccb_h.path); 531 break; 532 533 } 534 case XPT_DEV_MATCH: { 535 struct cam_periph_map_info mapinfo; 536 struct cam_path *old_path; 537 538 /* 539 * We can't deal with physical addresses for this 540 * type of transaction. 541 */ 542 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 543 CAM_DATA_VADDR) { 544 error = EINVAL; 545 break; 546 } 547 548 /* 549 * Save this in case the caller had it set to 550 * something in particular. 551 */ 552 old_path = inccb->ccb_h.path; 553 554 /* 555 * We really don't need a path for the matching 556 * code. The path is needed because of the 557 * debugging statements in xpt_action(). They 558 * assume that the CCB has a valid path. 559 */ 560 inccb->ccb_h.path = xpt_periph->path; 561 562 bzero(&mapinfo, sizeof(mapinfo)); 563 564 /* 565 * Map the pattern and match buffers into kernel 566 * virtual address space. 567 */ 568 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 569 570 if (error) { 571 inccb->ccb_h.path = old_path; 572 break; 573 } 574 575 /* 576 * This is an immediate CCB, we can send it on directly. 577 */ 578 xpt_action(inccb); 579 580 /* 581 * Map the buffers back into user space. 582 */ 583 cam_periph_unmapmem(inccb, &mapinfo); 584 585 inccb->ccb_h.path = old_path; 586 587 error = 0; 588 break; 589 } 590 default: 591 error = ENOTSUP; 592 break; 593 } 594 xpt_release_bus(bus); 595 break; 596 } 597 /* 598 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 599 * with the periphal driver name and unit name filled in. The other 600 * fields don't really matter as input. The passthrough driver name 601 * ("pass"), and unit number are passed back in the ccb. The current 602 * device generation number, and the index into the device peripheral 603 * driver list, and the status are also passed back. Note that 604 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 605 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 606 * (or rather should be) impossible for the device peripheral driver 607 * list to change since we look at the whole thing in one pass, and 608 * we do it with lock protection. 609 * 610 */ 611 case CAMGETPASSTHRU: { 612 union ccb *ccb; 613 struct cam_periph *periph; 614 struct periph_driver **p_drv; 615 char *name; 616 u_int unit; 617 int base_periph_found; 618 619 ccb = (union ccb *)addr; 620 unit = ccb->cgdl.unit_number; 621 name = ccb->cgdl.periph_name; 622 base_periph_found = 0; 623 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 624 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 625 ccb->csio.bio = NULL; 626 #endif 627 628 /* 629 * Sanity check -- make sure we don't get a null peripheral 630 * driver name. 631 */ 632 if (*ccb->cgdl.periph_name == '\0') { 633 error = EINVAL; 634 break; 635 } 636 637 /* Keep the list from changing while we traverse it */ 638 xpt_lock_buses(); 639 640 /* first find our driver in the list of drivers */ 641 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 642 if (strcmp((*p_drv)->driver_name, name) == 0) 643 break; 644 645 if (*p_drv == NULL) { 646 xpt_unlock_buses(); 647 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 648 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 649 *ccb->cgdl.periph_name = '\0'; 650 ccb->cgdl.unit_number = 0; 651 error = ENOENT; 652 break; 653 } 654 655 /* 656 * Run through every peripheral instance of this driver 657 * and check to see whether it matches the unit passed 658 * in by the user. If it does, get out of the loops and 659 * find the passthrough driver associated with that 660 * peripheral driver. 661 */ 662 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 663 periph = TAILQ_NEXT(periph, unit_links)) { 664 665 if (periph->unit_number == unit) 666 break; 667 } 668 /* 669 * If we found the peripheral driver that the user passed 670 * in, go through all of the peripheral drivers for that 671 * particular device and look for a passthrough driver. 672 */ 673 if (periph != NULL) { 674 struct cam_ed *device; 675 int i; 676 677 base_periph_found = 1; 678 device = periph->path->device; 679 for (i = 0, periph = SLIST_FIRST(&device->periphs); 680 periph != NULL; 681 periph = SLIST_NEXT(periph, periph_links), i++) { 682 /* 683 * Check to see whether we have a 684 * passthrough device or not. 685 */ 686 if (strcmp(periph->periph_name, "pass") == 0) { 687 /* 688 * Fill in the getdevlist fields. 689 */ 690 strlcpy(ccb->cgdl.periph_name, 691 periph->periph_name, 692 sizeof(ccb->cgdl.periph_name)); 693 ccb->cgdl.unit_number = 694 periph->unit_number; 695 if (SLIST_NEXT(periph, periph_links)) 696 ccb->cgdl.status = 697 CAM_GDEVLIST_MORE_DEVS; 698 else 699 ccb->cgdl.status = 700 CAM_GDEVLIST_LAST_DEVICE; 701 ccb->cgdl.generation = 702 device->generation; 703 ccb->cgdl.index = i; 704 /* 705 * Fill in some CCB header fields 706 * that the user may want. 707 */ 708 ccb->ccb_h.path_id = 709 periph->path->bus->path_id; 710 ccb->ccb_h.target_id = 711 periph->path->target->target_id; 712 ccb->ccb_h.target_lun = 713 periph->path->device->lun_id; 714 ccb->ccb_h.status = CAM_REQ_CMP; 715 break; 716 } 717 } 718 } 719 720 /* 721 * If the periph is null here, one of two things has 722 * happened. The first possibility is that we couldn't 723 * find the unit number of the particular peripheral driver 724 * that the user is asking about. e.g. the user asks for 725 * the passthrough driver for "da11". We find the list of 726 * "da" peripherals all right, but there is no unit 11. 727 * The other possibility is that we went through the list 728 * of peripheral drivers attached to the device structure, 729 * but didn't find one with the name "pass". Either way, 730 * we return ENOENT, since we couldn't find something. 731 */ 732 if (periph == NULL) { 733 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 734 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 735 *ccb->cgdl.periph_name = '\0'; 736 ccb->cgdl.unit_number = 0; 737 error = ENOENT; 738 /* 739 * It is unfortunate that this is even necessary, 740 * but there are many, many clueless users out there. 741 * If this is true, the user is looking for the 742 * passthrough driver, but doesn't have one in his 743 * kernel. 744 */ 745 if (base_periph_found == 1) { 746 printf("xptioctl: pass driver is not in the " 747 "kernel\n"); 748 printf("xptioctl: put \"device pass\" in " 749 "your kernel config file\n"); 750 } 751 } 752 xpt_unlock_buses(); 753 break; 754 } 755 default: 756 error = ENOTTY; 757 break; 758 } 759 760 return(error); 761 } 762 763 static int 764 cam_module_event_handler(module_t mod, int what, void *arg) 765 { 766 int error; 767 768 switch (what) { 769 case MOD_LOAD: 770 if ((error = xpt_init(NULL)) != 0) 771 return (error); 772 break; 773 case MOD_UNLOAD: 774 return EBUSY; 775 default: 776 return EOPNOTSUPP; 777 } 778 779 return 0; 780 } 781 782 static struct xpt_proto * 783 xpt_proto_find(cam_proto proto) 784 { 785 struct xpt_proto **pp; 786 787 SET_FOREACH(pp, cam_xpt_proto_set) { 788 if ((*pp)->proto == proto) 789 return *pp; 790 } 791 792 return NULL; 793 } 794 795 static void 796 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 797 { 798 799 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 800 xpt_free_path(done_ccb->ccb_h.path); 801 xpt_free_ccb(done_ccb); 802 } else { 803 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 804 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 805 } 806 xpt_release_boot(); 807 } 808 809 /* thread to handle bus rescans */ 810 static void 811 xpt_scanner_thread(void *dummy) 812 { 813 union ccb *ccb; 814 struct cam_path path; 815 816 xpt_lock_buses(); 817 for (;;) { 818 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 819 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 820 "-", 0); 821 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 822 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 823 xpt_unlock_buses(); 824 825 /* 826 * Since lock can be dropped inside and path freed 827 * by completion callback even before return here, 828 * take our own path copy for reference. 829 */ 830 xpt_copy_path(&path, ccb->ccb_h.path); 831 xpt_path_lock(&path); 832 xpt_action(ccb); 833 xpt_path_unlock(&path); 834 xpt_release_path(&path); 835 836 xpt_lock_buses(); 837 } 838 } 839 } 840 841 void 842 xpt_rescan(union ccb *ccb) 843 { 844 struct ccb_hdr *hdr; 845 846 /* Prepare request */ 847 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 848 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 849 ccb->ccb_h.func_code = XPT_SCAN_BUS; 850 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 851 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 852 ccb->ccb_h.func_code = XPT_SCAN_TGT; 853 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 854 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 855 ccb->ccb_h.func_code = XPT_SCAN_LUN; 856 else { 857 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 858 xpt_free_path(ccb->ccb_h.path); 859 xpt_free_ccb(ccb); 860 return; 861 } 862 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 863 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 864 xpt_action_name(ccb->ccb_h.func_code))); 865 866 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 867 ccb->ccb_h.cbfcnp = xpt_rescan_done; 868 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 869 /* Don't make duplicate entries for the same paths. */ 870 xpt_lock_buses(); 871 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 872 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 873 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 874 wakeup(&xsoftc.ccb_scanq); 875 xpt_unlock_buses(); 876 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 877 xpt_free_path(ccb->ccb_h.path); 878 xpt_free_ccb(ccb); 879 return; 880 } 881 } 882 } 883 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 884 xsoftc.buses_to_config++; 885 wakeup(&xsoftc.ccb_scanq); 886 xpt_unlock_buses(); 887 } 888 889 /* Functions accessed by the peripheral drivers */ 890 static int 891 xpt_init(void *dummy) 892 { 893 struct cam_sim *xpt_sim; 894 struct cam_path *path; 895 struct cam_devq *devq; 896 cam_status status; 897 int error, i; 898 899 TAILQ_INIT(&xsoftc.xpt_busses); 900 TAILQ_INIT(&xsoftc.ccb_scanq); 901 STAILQ_INIT(&xsoftc.highpowerq); 902 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 903 904 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 905 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 906 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 907 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 908 909 #ifdef CAM_BOOT_DELAY 910 /* 911 * Override this value at compile time to assist our users 912 * who don't use loader to boot a kernel. 913 */ 914 xsoftc.boot_delay = CAM_BOOT_DELAY; 915 #endif 916 /* 917 * The xpt layer is, itself, the equivalent of a SIM. 918 * Allow 16 ccbs in the ccb pool for it. This should 919 * give decent parallelism when we probe buses and 920 * perform other XPT functions. 921 */ 922 devq = cam_simq_alloc(16); 923 xpt_sim = cam_sim_alloc(xptaction, 924 xptpoll, 925 "xpt", 926 /*softc*/NULL, 927 /*unit*/0, 928 /*mtx*/&xsoftc.xpt_lock, 929 /*max_dev_transactions*/0, 930 /*max_tagged_dev_transactions*/0, 931 devq); 932 if (xpt_sim == NULL) 933 return (ENOMEM); 934 935 mtx_lock(&xsoftc.xpt_lock); 936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 937 mtx_unlock(&xsoftc.xpt_lock); 938 printf("xpt_init: xpt_bus_register failed with status %#x," 939 " failing attach\n", status); 940 return (EINVAL); 941 } 942 mtx_unlock(&xsoftc.xpt_lock); 943 944 /* 945 * Looking at the XPT from the SIM layer, the XPT is 946 * the equivalent of a peripheral driver. Allocate 947 * a peripheral driver entry for us. 948 */ 949 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 950 CAM_TARGET_WILDCARD, 951 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 952 printf("xpt_init: xpt_create_path failed with status %#x," 953 " failing attach\n", status); 954 return (EINVAL); 955 } 956 xpt_path_lock(path); 957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 958 path, NULL, 0, xpt_sim); 959 xpt_path_unlock(path); 960 xpt_free_path(path); 961 962 if (cam_num_doneqs < 1) 963 cam_num_doneqs = 1 + mp_ncpus / 6; 964 else if (cam_num_doneqs > MAXCPU) 965 cam_num_doneqs = MAXCPU; 966 for (i = 0; i < cam_num_doneqs; i++) { 967 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 968 MTX_DEF); 969 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 970 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 971 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 972 if (error != 0) { 973 cam_num_doneqs = i; 974 break; 975 } 976 } 977 if (cam_num_doneqs < 1) { 978 printf("xpt_init: Cannot init completion queues " 979 "- failing attach\n"); 980 return (ENOMEM); 981 } 982 /* 983 * Register a callback for when interrupts are enabled. 984 */ 985 xsoftc.xpt_config_hook.ich_func = xpt_config; 986 if (config_intrhook_establish(&xsoftc.xpt_config_hook) != 0) { 987 printf("xpt_init: config_intrhook_establish failed " 988 "- failing attach\n"); 989 } 990 991 return (0); 992 } 993 994 static cam_status 995 xptregister(struct cam_periph *periph, void *arg) 996 { 997 struct cam_sim *xpt_sim; 998 999 if (periph == NULL) { 1000 printf("xptregister: periph was NULL!!\n"); 1001 return(CAM_REQ_CMP_ERR); 1002 } 1003 1004 xpt_sim = (struct cam_sim *)arg; 1005 xpt_sim->softc = periph; 1006 xpt_periph = periph; 1007 periph->softc = NULL; 1008 1009 return(CAM_REQ_CMP); 1010 } 1011 1012 int32_t 1013 xpt_add_periph(struct cam_periph *periph) 1014 { 1015 struct cam_ed *device; 1016 int32_t status; 1017 1018 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1019 device = periph->path->device; 1020 status = CAM_REQ_CMP; 1021 if (device != NULL) { 1022 mtx_lock(&device->target->bus->eb_mtx); 1023 device->generation++; 1024 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1025 mtx_unlock(&device->target->bus->eb_mtx); 1026 atomic_add_32(&xsoftc.xpt_generation, 1); 1027 } 1028 1029 return (status); 1030 } 1031 1032 void 1033 xpt_remove_periph(struct cam_periph *periph) 1034 { 1035 struct cam_ed *device; 1036 1037 device = periph->path->device; 1038 if (device != NULL) { 1039 mtx_lock(&device->target->bus->eb_mtx); 1040 device->generation++; 1041 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1042 mtx_unlock(&device->target->bus->eb_mtx); 1043 atomic_add_32(&xsoftc.xpt_generation, 1); 1044 } 1045 } 1046 1047 1048 void 1049 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1050 { 1051 struct cam_path *path = periph->path; 1052 struct xpt_proto *proto; 1053 1054 cam_periph_assert(periph, MA_OWNED); 1055 periph->flags |= CAM_PERIPH_ANNOUNCED; 1056 1057 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1058 periph->periph_name, periph->unit_number, 1059 path->bus->sim->sim_name, 1060 path->bus->sim->unit_number, 1061 path->bus->sim->bus_id, 1062 path->bus->path_id, 1063 path->target->target_id, 1064 (uintmax_t)path->device->lun_id); 1065 printf("%s%d: ", periph->periph_name, periph->unit_number); 1066 proto = xpt_proto_find(path->device->protocol); 1067 if (proto) 1068 proto->ops->announce(path->device); 1069 else 1070 printf("%s%d: Unknown protocol device %d\n", 1071 periph->periph_name, periph->unit_number, 1072 path->device->protocol); 1073 if (path->device->serial_num_len > 0) { 1074 /* Don't wrap the screen - print only the first 60 chars */ 1075 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1076 periph->unit_number, path->device->serial_num); 1077 } 1078 /* Announce transport details. */ 1079 path->bus->xport->ops->announce(periph); 1080 /* Announce command queueing. */ 1081 if (path->device->inq_flags & SID_CmdQue 1082 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1083 printf("%s%d: Command Queueing enabled\n", 1084 periph->periph_name, periph->unit_number); 1085 } 1086 /* Announce caller's details if they've passed in. */ 1087 if (announce_string != NULL) 1088 printf("%s%d: %s\n", periph->periph_name, 1089 periph->unit_number, announce_string); 1090 } 1091 1092 void 1093 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1094 char *announce_string) 1095 { 1096 struct cam_path *path = periph->path; 1097 struct xpt_proto *proto; 1098 1099 cam_periph_assert(periph, MA_OWNED); 1100 periph->flags |= CAM_PERIPH_ANNOUNCED; 1101 1102 /* Fall back to the non-sbuf method if necessary */ 1103 if (xsoftc.announce_nosbuf != 0) { 1104 xpt_announce_periph(periph, announce_string); 1105 return; 1106 } 1107 proto = xpt_proto_find(path->device->protocol); 1108 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1109 (path->bus->xport->ops->announce_sbuf == NULL)) { 1110 xpt_announce_periph(periph, announce_string); 1111 return; 1112 } 1113 1114 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1115 periph->periph_name, periph->unit_number, 1116 path->bus->sim->sim_name, 1117 path->bus->sim->unit_number, 1118 path->bus->sim->bus_id, 1119 path->bus->path_id, 1120 path->target->target_id, 1121 (uintmax_t)path->device->lun_id); 1122 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1123 1124 if (proto) 1125 proto->ops->announce_sbuf(path->device, sb); 1126 else 1127 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1128 periph->periph_name, periph->unit_number, 1129 path->device->protocol); 1130 if (path->device->serial_num_len > 0) { 1131 /* Don't wrap the screen - print only the first 60 chars */ 1132 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1133 periph->periph_name, periph->unit_number, 1134 path->device->serial_num); 1135 } 1136 /* Announce transport details. */ 1137 path->bus->xport->ops->announce_sbuf(periph, sb); 1138 /* Announce command queueing. */ 1139 if (path->device->inq_flags & SID_CmdQue 1140 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1141 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1142 periph->periph_name, periph->unit_number); 1143 } 1144 /* Announce caller's details if they've passed in. */ 1145 if (announce_string != NULL) 1146 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1147 periph->unit_number, announce_string); 1148 } 1149 1150 void 1151 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1152 { 1153 if (quirks != 0) { 1154 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1155 periph->unit_number, quirks, bit_string); 1156 } 1157 } 1158 1159 void 1160 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1161 int quirks, char *bit_string) 1162 { 1163 if (xsoftc.announce_nosbuf != 0) { 1164 xpt_announce_quirks(periph, quirks, bit_string); 1165 return; 1166 } 1167 1168 if (quirks != 0) { 1169 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1170 periph->unit_number, quirks, bit_string); 1171 } 1172 } 1173 1174 void 1175 xpt_denounce_periph(struct cam_periph *periph) 1176 { 1177 struct cam_path *path = periph->path; 1178 struct xpt_proto *proto; 1179 1180 cam_periph_assert(periph, MA_OWNED); 1181 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1182 periph->periph_name, periph->unit_number, 1183 path->bus->sim->sim_name, 1184 path->bus->sim->unit_number, 1185 path->bus->sim->bus_id, 1186 path->bus->path_id, 1187 path->target->target_id, 1188 (uintmax_t)path->device->lun_id); 1189 printf("%s%d: ", periph->periph_name, periph->unit_number); 1190 proto = xpt_proto_find(path->device->protocol); 1191 if (proto) 1192 proto->ops->denounce(path->device); 1193 else 1194 printf("%s%d: Unknown protocol device %d\n", 1195 periph->periph_name, periph->unit_number, 1196 path->device->protocol); 1197 if (path->device->serial_num_len > 0) 1198 printf(" s/n %.60s", path->device->serial_num); 1199 printf(" detached\n"); 1200 } 1201 1202 void 1203 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1204 { 1205 struct cam_path *path = periph->path; 1206 struct xpt_proto *proto; 1207 1208 cam_periph_assert(periph, MA_OWNED); 1209 1210 /* Fall back to the non-sbuf method if necessary */ 1211 if (xsoftc.announce_nosbuf != 0) { 1212 xpt_denounce_periph(periph); 1213 return; 1214 } 1215 proto = xpt_proto_find(path->device->protocol); 1216 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1217 xpt_denounce_periph(periph); 1218 return; 1219 } 1220 1221 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1222 periph->periph_name, periph->unit_number, 1223 path->bus->sim->sim_name, 1224 path->bus->sim->unit_number, 1225 path->bus->sim->bus_id, 1226 path->bus->path_id, 1227 path->target->target_id, 1228 (uintmax_t)path->device->lun_id); 1229 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1230 1231 if (proto) 1232 proto->ops->denounce_sbuf(path->device, sb); 1233 else 1234 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1235 periph->periph_name, periph->unit_number, 1236 path->device->protocol); 1237 if (path->device->serial_num_len > 0) 1238 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1239 sbuf_printf(sb, " detached\n"); 1240 } 1241 1242 int 1243 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1244 { 1245 int ret = -1, l, o; 1246 struct ccb_dev_advinfo cdai; 1247 struct scsi_vpd_device_id *did; 1248 struct scsi_vpd_id_descriptor *idd; 1249 1250 xpt_path_assert(path, MA_OWNED); 1251 1252 memset(&cdai, 0, sizeof(cdai)); 1253 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1254 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1255 cdai.flags = CDAI_FLAG_NONE; 1256 cdai.bufsiz = len; 1257 cdai.buf = buf; 1258 1259 if (!strcmp(attr, "GEOM::ident")) 1260 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1261 else if (!strcmp(attr, "GEOM::physpath")) 1262 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1263 else if (strcmp(attr, "GEOM::lunid") == 0 || 1264 strcmp(attr, "GEOM::lunname") == 0) { 1265 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1266 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1267 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT); 1268 if (cdai.buf == NULL) { 1269 ret = ENOMEM; 1270 goto out; 1271 } 1272 } else 1273 goto out; 1274 1275 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1276 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1277 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1278 if (cdai.provsiz == 0) 1279 goto out; 1280 switch(cdai.buftype) { 1281 case CDAI_TYPE_SCSI_DEVID: 1282 did = (struct scsi_vpd_device_id *)cdai.buf; 1283 if (strcmp(attr, "GEOM::lunid") == 0) { 1284 idd = scsi_get_devid(did, cdai.provsiz, 1285 scsi_devid_is_lun_naa); 1286 if (idd == NULL) 1287 idd = scsi_get_devid(did, cdai.provsiz, 1288 scsi_devid_is_lun_eui64); 1289 if (idd == NULL) 1290 idd = scsi_get_devid(did, cdai.provsiz, 1291 scsi_devid_is_lun_uuid); 1292 if (idd == NULL) 1293 idd = scsi_get_devid(did, cdai.provsiz, 1294 scsi_devid_is_lun_md5); 1295 } else 1296 idd = NULL; 1297 1298 if (idd == NULL) 1299 idd = scsi_get_devid(did, cdai.provsiz, 1300 scsi_devid_is_lun_t10); 1301 if (idd == NULL) 1302 idd = scsi_get_devid(did, cdai.provsiz, 1303 scsi_devid_is_lun_name); 1304 if (idd == NULL) 1305 break; 1306 1307 ret = 0; 1308 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1309 SVPD_ID_CODESET_ASCII) { 1310 if (idd->length < len) { 1311 for (l = 0; l < idd->length; l++) 1312 buf[l] = idd->identifier[l] ? 1313 idd->identifier[l] : ' '; 1314 buf[l] = 0; 1315 } else 1316 ret = EFAULT; 1317 break; 1318 } 1319 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1320 SVPD_ID_CODESET_UTF8) { 1321 l = strnlen(idd->identifier, idd->length); 1322 if (l < len) { 1323 bcopy(idd->identifier, buf, l); 1324 buf[l] = 0; 1325 } else 1326 ret = EFAULT; 1327 break; 1328 } 1329 if ((idd->id_type & SVPD_ID_TYPE_MASK) == 1330 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) { 1331 if ((idd->length - 2) * 2 + 4 >= len) { 1332 ret = EFAULT; 1333 break; 1334 } 1335 for (l = 2, o = 0; l < idd->length; l++) { 1336 if (l == 6 || l == 8 || l == 10 || l == 12) 1337 o += sprintf(buf + o, "-"); 1338 o += sprintf(buf + o, "%02x", 1339 idd->identifier[l]); 1340 } 1341 break; 1342 } 1343 if (idd->length * 2 < len) { 1344 for (l = 0; l < idd->length; l++) 1345 sprintf(buf + l * 2, "%02x", 1346 idd->identifier[l]); 1347 } else 1348 ret = EFAULT; 1349 break; 1350 default: 1351 if (cdai.provsiz < len) { 1352 cdai.buf[cdai.provsiz] = 0; 1353 ret = 0; 1354 } else 1355 ret = EFAULT; 1356 break; 1357 } 1358 1359 out: 1360 if ((char *)cdai.buf != buf) 1361 free(cdai.buf, M_CAMXPT); 1362 return ret; 1363 } 1364 1365 static dev_match_ret 1366 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1367 struct cam_eb *bus) 1368 { 1369 dev_match_ret retval; 1370 u_int i; 1371 1372 retval = DM_RET_NONE; 1373 1374 /* 1375 * If we aren't given something to match against, that's an error. 1376 */ 1377 if (bus == NULL) 1378 return(DM_RET_ERROR); 1379 1380 /* 1381 * If there are no match entries, then this bus matches no 1382 * matter what. 1383 */ 1384 if ((patterns == NULL) || (num_patterns == 0)) 1385 return(DM_RET_DESCEND | DM_RET_COPY); 1386 1387 for (i = 0; i < num_patterns; i++) { 1388 struct bus_match_pattern *cur_pattern; 1389 1390 /* 1391 * If the pattern in question isn't for a bus node, we 1392 * aren't interested. However, we do indicate to the 1393 * calling routine that we should continue descending the 1394 * tree, since the user wants to match against lower-level 1395 * EDT elements. 1396 */ 1397 if (patterns[i].type != DEV_MATCH_BUS) { 1398 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1399 retval |= DM_RET_DESCEND; 1400 continue; 1401 } 1402 1403 cur_pattern = &patterns[i].pattern.bus_pattern; 1404 1405 /* 1406 * If they want to match any bus node, we give them any 1407 * device node. 1408 */ 1409 if (cur_pattern->flags == BUS_MATCH_ANY) { 1410 /* set the copy flag */ 1411 retval |= DM_RET_COPY; 1412 1413 /* 1414 * If we've already decided on an action, go ahead 1415 * and return. 1416 */ 1417 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1418 return(retval); 1419 } 1420 1421 /* 1422 * Not sure why someone would do this... 1423 */ 1424 if (cur_pattern->flags == BUS_MATCH_NONE) 1425 continue; 1426 1427 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1428 && (cur_pattern->path_id != bus->path_id)) 1429 continue; 1430 1431 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1432 && (cur_pattern->bus_id != bus->sim->bus_id)) 1433 continue; 1434 1435 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1436 && (cur_pattern->unit_number != bus->sim->unit_number)) 1437 continue; 1438 1439 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1440 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1441 DEV_IDLEN) != 0)) 1442 continue; 1443 1444 /* 1445 * If we get to this point, the user definitely wants 1446 * information on this bus. So tell the caller to copy the 1447 * data out. 1448 */ 1449 retval |= DM_RET_COPY; 1450 1451 /* 1452 * If the return action has been set to descend, then we 1453 * know that we've already seen a non-bus matching 1454 * expression, therefore we need to further descend the tree. 1455 * This won't change by continuing around the loop, so we 1456 * go ahead and return. If we haven't seen a non-bus 1457 * matching expression, we keep going around the loop until 1458 * we exhaust the matching expressions. We'll set the stop 1459 * flag once we fall out of the loop. 1460 */ 1461 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1462 return(retval); 1463 } 1464 1465 /* 1466 * If the return action hasn't been set to descend yet, that means 1467 * we haven't seen anything other than bus matching patterns. So 1468 * tell the caller to stop descending the tree -- the user doesn't 1469 * want to match against lower level tree elements. 1470 */ 1471 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1472 retval |= DM_RET_STOP; 1473 1474 return(retval); 1475 } 1476 1477 static dev_match_ret 1478 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1479 struct cam_ed *device) 1480 { 1481 dev_match_ret retval; 1482 u_int i; 1483 1484 retval = DM_RET_NONE; 1485 1486 /* 1487 * If we aren't given something to match against, that's an error. 1488 */ 1489 if (device == NULL) 1490 return(DM_RET_ERROR); 1491 1492 /* 1493 * If there are no match entries, then this device matches no 1494 * matter what. 1495 */ 1496 if ((patterns == NULL) || (num_patterns == 0)) 1497 return(DM_RET_DESCEND | DM_RET_COPY); 1498 1499 for (i = 0; i < num_patterns; i++) { 1500 struct device_match_pattern *cur_pattern; 1501 struct scsi_vpd_device_id *device_id_page; 1502 1503 /* 1504 * If the pattern in question isn't for a device node, we 1505 * aren't interested. 1506 */ 1507 if (patterns[i].type != DEV_MATCH_DEVICE) { 1508 if ((patterns[i].type == DEV_MATCH_PERIPH) 1509 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1510 retval |= DM_RET_DESCEND; 1511 continue; 1512 } 1513 1514 cur_pattern = &patterns[i].pattern.device_pattern; 1515 1516 /* Error out if mutually exclusive options are specified. */ 1517 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1518 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1519 return(DM_RET_ERROR); 1520 1521 /* 1522 * If they want to match any device node, we give them any 1523 * device node. 1524 */ 1525 if (cur_pattern->flags == DEV_MATCH_ANY) 1526 goto copy_dev_node; 1527 1528 /* 1529 * Not sure why someone would do this... 1530 */ 1531 if (cur_pattern->flags == DEV_MATCH_NONE) 1532 continue; 1533 1534 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1535 && (cur_pattern->path_id != device->target->bus->path_id)) 1536 continue; 1537 1538 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1539 && (cur_pattern->target_id != device->target->target_id)) 1540 continue; 1541 1542 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1543 && (cur_pattern->target_lun != device->lun_id)) 1544 continue; 1545 1546 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1547 && (cam_quirkmatch((caddr_t)&device->inq_data, 1548 (caddr_t)&cur_pattern->data.inq_pat, 1549 1, sizeof(cur_pattern->data.inq_pat), 1550 scsi_static_inquiry_match) == NULL)) 1551 continue; 1552 1553 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1554 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1555 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1556 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1557 device->device_id_len 1558 - SVPD_DEVICE_ID_HDR_LEN, 1559 cur_pattern->data.devid_pat.id, 1560 cur_pattern->data.devid_pat.id_len) != 0)) 1561 continue; 1562 1563 copy_dev_node: 1564 /* 1565 * If we get to this point, the user definitely wants 1566 * information on this device. So tell the caller to copy 1567 * the data out. 1568 */ 1569 retval |= DM_RET_COPY; 1570 1571 /* 1572 * If the return action has been set to descend, then we 1573 * know that we've already seen a peripheral matching 1574 * expression, therefore we need to further descend the tree. 1575 * This won't change by continuing around the loop, so we 1576 * go ahead and return. If we haven't seen a peripheral 1577 * matching expression, we keep going around the loop until 1578 * we exhaust the matching expressions. We'll set the stop 1579 * flag once we fall out of the loop. 1580 */ 1581 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1582 return(retval); 1583 } 1584 1585 /* 1586 * If the return action hasn't been set to descend yet, that means 1587 * we haven't seen any peripheral matching patterns. So tell the 1588 * caller to stop descending the tree -- the user doesn't want to 1589 * match against lower level tree elements. 1590 */ 1591 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1592 retval |= DM_RET_STOP; 1593 1594 return(retval); 1595 } 1596 1597 /* 1598 * Match a single peripheral against any number of match patterns. 1599 */ 1600 static dev_match_ret 1601 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1602 struct cam_periph *periph) 1603 { 1604 dev_match_ret retval; 1605 u_int i; 1606 1607 /* 1608 * If we aren't given something to match against, that's an error. 1609 */ 1610 if (periph == NULL) 1611 return(DM_RET_ERROR); 1612 1613 /* 1614 * If there are no match entries, then this peripheral matches no 1615 * matter what. 1616 */ 1617 if ((patterns == NULL) || (num_patterns == 0)) 1618 return(DM_RET_STOP | DM_RET_COPY); 1619 1620 /* 1621 * There aren't any nodes below a peripheral node, so there's no 1622 * reason to descend the tree any further. 1623 */ 1624 retval = DM_RET_STOP; 1625 1626 for (i = 0; i < num_patterns; i++) { 1627 struct periph_match_pattern *cur_pattern; 1628 1629 /* 1630 * If the pattern in question isn't for a peripheral, we 1631 * aren't interested. 1632 */ 1633 if (patterns[i].type != DEV_MATCH_PERIPH) 1634 continue; 1635 1636 cur_pattern = &patterns[i].pattern.periph_pattern; 1637 1638 /* 1639 * If they want to match on anything, then we will do so. 1640 */ 1641 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1642 /* set the copy flag */ 1643 retval |= DM_RET_COPY; 1644 1645 /* 1646 * We've already set the return action to stop, 1647 * since there are no nodes below peripherals in 1648 * the tree. 1649 */ 1650 return(retval); 1651 } 1652 1653 /* 1654 * Not sure why someone would do this... 1655 */ 1656 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1657 continue; 1658 1659 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1660 && (cur_pattern->path_id != periph->path->bus->path_id)) 1661 continue; 1662 1663 /* 1664 * For the target and lun id's, we have to make sure the 1665 * target and lun pointers aren't NULL. The xpt peripheral 1666 * has a wildcard target and device. 1667 */ 1668 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1669 && ((periph->path->target == NULL) 1670 ||(cur_pattern->target_id != periph->path->target->target_id))) 1671 continue; 1672 1673 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1674 && ((periph->path->device == NULL) 1675 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1676 continue; 1677 1678 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1679 && (cur_pattern->unit_number != periph->unit_number)) 1680 continue; 1681 1682 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1683 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1684 DEV_IDLEN) != 0)) 1685 continue; 1686 1687 /* 1688 * If we get to this point, the user definitely wants 1689 * information on this peripheral. So tell the caller to 1690 * copy the data out. 1691 */ 1692 retval |= DM_RET_COPY; 1693 1694 /* 1695 * The return action has already been set to stop, since 1696 * peripherals don't have any nodes below them in the EDT. 1697 */ 1698 return(retval); 1699 } 1700 1701 /* 1702 * If we get to this point, the peripheral that was passed in 1703 * doesn't match any of the patterns. 1704 */ 1705 return(retval); 1706 } 1707 1708 static int 1709 xptedtbusfunc(struct cam_eb *bus, void *arg) 1710 { 1711 struct ccb_dev_match *cdm; 1712 struct cam_et *target; 1713 dev_match_ret retval; 1714 1715 cdm = (struct ccb_dev_match *)arg; 1716 1717 /* 1718 * If our position is for something deeper in the tree, that means 1719 * that we've already seen this node. So, we keep going down. 1720 */ 1721 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1722 && (cdm->pos.cookie.bus == bus) 1723 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1724 && (cdm->pos.cookie.target != NULL)) 1725 retval = DM_RET_DESCEND; 1726 else 1727 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1728 1729 /* 1730 * If we got an error, bail out of the search. 1731 */ 1732 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1733 cdm->status = CAM_DEV_MATCH_ERROR; 1734 return(0); 1735 } 1736 1737 /* 1738 * If the copy flag is set, copy this bus out. 1739 */ 1740 if (retval & DM_RET_COPY) { 1741 int spaceleft, j; 1742 1743 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1744 sizeof(struct dev_match_result)); 1745 1746 /* 1747 * If we don't have enough space to put in another 1748 * match result, save our position and tell the 1749 * user there are more devices to check. 1750 */ 1751 if (spaceleft < sizeof(struct dev_match_result)) { 1752 bzero(&cdm->pos, sizeof(cdm->pos)); 1753 cdm->pos.position_type = 1754 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1755 1756 cdm->pos.cookie.bus = bus; 1757 cdm->pos.generations[CAM_BUS_GENERATION]= 1758 xsoftc.bus_generation; 1759 cdm->status = CAM_DEV_MATCH_MORE; 1760 return(0); 1761 } 1762 j = cdm->num_matches; 1763 cdm->num_matches++; 1764 cdm->matches[j].type = DEV_MATCH_BUS; 1765 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1766 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1767 cdm->matches[j].result.bus_result.unit_number = 1768 bus->sim->unit_number; 1769 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1770 bus->sim->sim_name, 1771 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1772 } 1773 1774 /* 1775 * If the user is only interested in buses, there's no 1776 * reason to descend to the next level in the tree. 1777 */ 1778 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1779 return(1); 1780 1781 /* 1782 * If there is a target generation recorded, check it to 1783 * make sure the target list hasn't changed. 1784 */ 1785 mtx_lock(&bus->eb_mtx); 1786 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1787 && (cdm->pos.cookie.bus == bus) 1788 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1789 && (cdm->pos.cookie.target != NULL)) { 1790 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1791 bus->generation)) { 1792 mtx_unlock(&bus->eb_mtx); 1793 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1794 return (0); 1795 } 1796 target = (struct cam_et *)cdm->pos.cookie.target; 1797 target->refcount++; 1798 } else 1799 target = NULL; 1800 mtx_unlock(&bus->eb_mtx); 1801 1802 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1803 } 1804 1805 static int 1806 xptedttargetfunc(struct cam_et *target, void *arg) 1807 { 1808 struct ccb_dev_match *cdm; 1809 struct cam_eb *bus; 1810 struct cam_ed *device; 1811 1812 cdm = (struct ccb_dev_match *)arg; 1813 bus = target->bus; 1814 1815 /* 1816 * If there is a device list generation recorded, check it to 1817 * make sure the device list hasn't changed. 1818 */ 1819 mtx_lock(&bus->eb_mtx); 1820 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1821 && (cdm->pos.cookie.bus == bus) 1822 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1823 && (cdm->pos.cookie.target == target) 1824 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1825 && (cdm->pos.cookie.device != NULL)) { 1826 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1827 target->generation) { 1828 mtx_unlock(&bus->eb_mtx); 1829 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1830 return(0); 1831 } 1832 device = (struct cam_ed *)cdm->pos.cookie.device; 1833 device->refcount++; 1834 } else 1835 device = NULL; 1836 mtx_unlock(&bus->eb_mtx); 1837 1838 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1839 } 1840 1841 static int 1842 xptedtdevicefunc(struct cam_ed *device, void *arg) 1843 { 1844 struct cam_eb *bus; 1845 struct cam_periph *periph; 1846 struct ccb_dev_match *cdm; 1847 dev_match_ret retval; 1848 1849 cdm = (struct ccb_dev_match *)arg; 1850 bus = device->target->bus; 1851 1852 /* 1853 * If our position is for something deeper in the tree, that means 1854 * that we've already seen this node. So, we keep going down. 1855 */ 1856 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1857 && (cdm->pos.cookie.device == device) 1858 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1859 && (cdm->pos.cookie.periph != NULL)) 1860 retval = DM_RET_DESCEND; 1861 else 1862 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1863 device); 1864 1865 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1866 cdm->status = CAM_DEV_MATCH_ERROR; 1867 return(0); 1868 } 1869 1870 /* 1871 * If the copy flag is set, copy this device out. 1872 */ 1873 if (retval & DM_RET_COPY) { 1874 int spaceleft, j; 1875 1876 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1877 sizeof(struct dev_match_result)); 1878 1879 /* 1880 * If we don't have enough space to put in another 1881 * match result, save our position and tell the 1882 * user there are more devices to check. 1883 */ 1884 if (spaceleft < sizeof(struct dev_match_result)) { 1885 bzero(&cdm->pos, sizeof(cdm->pos)); 1886 cdm->pos.position_type = 1887 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1888 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1889 1890 cdm->pos.cookie.bus = device->target->bus; 1891 cdm->pos.generations[CAM_BUS_GENERATION]= 1892 xsoftc.bus_generation; 1893 cdm->pos.cookie.target = device->target; 1894 cdm->pos.generations[CAM_TARGET_GENERATION] = 1895 device->target->bus->generation; 1896 cdm->pos.cookie.device = device; 1897 cdm->pos.generations[CAM_DEV_GENERATION] = 1898 device->target->generation; 1899 cdm->status = CAM_DEV_MATCH_MORE; 1900 return(0); 1901 } 1902 j = cdm->num_matches; 1903 cdm->num_matches++; 1904 cdm->matches[j].type = DEV_MATCH_DEVICE; 1905 cdm->matches[j].result.device_result.path_id = 1906 device->target->bus->path_id; 1907 cdm->matches[j].result.device_result.target_id = 1908 device->target->target_id; 1909 cdm->matches[j].result.device_result.target_lun = 1910 device->lun_id; 1911 cdm->matches[j].result.device_result.protocol = 1912 device->protocol; 1913 bcopy(&device->inq_data, 1914 &cdm->matches[j].result.device_result.inq_data, 1915 sizeof(struct scsi_inquiry_data)); 1916 bcopy(&device->ident_data, 1917 &cdm->matches[j].result.device_result.ident_data, 1918 sizeof(struct ata_params)); 1919 1920 /* Let the user know whether this device is unconfigured */ 1921 if (device->flags & CAM_DEV_UNCONFIGURED) 1922 cdm->matches[j].result.device_result.flags = 1923 DEV_RESULT_UNCONFIGURED; 1924 else 1925 cdm->matches[j].result.device_result.flags = 1926 DEV_RESULT_NOFLAG; 1927 } 1928 1929 /* 1930 * If the user isn't interested in peripherals, don't descend 1931 * the tree any further. 1932 */ 1933 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1934 return(1); 1935 1936 /* 1937 * If there is a peripheral list generation recorded, make sure 1938 * it hasn't changed. 1939 */ 1940 xpt_lock_buses(); 1941 mtx_lock(&bus->eb_mtx); 1942 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1943 && (cdm->pos.cookie.bus == bus) 1944 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1945 && (cdm->pos.cookie.target == device->target) 1946 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1947 && (cdm->pos.cookie.device == device) 1948 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1949 && (cdm->pos.cookie.periph != NULL)) { 1950 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1951 device->generation) { 1952 mtx_unlock(&bus->eb_mtx); 1953 xpt_unlock_buses(); 1954 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1955 return(0); 1956 } 1957 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1958 periph->refcount++; 1959 } else 1960 periph = NULL; 1961 mtx_unlock(&bus->eb_mtx); 1962 xpt_unlock_buses(); 1963 1964 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1965 } 1966 1967 static int 1968 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1969 { 1970 struct ccb_dev_match *cdm; 1971 dev_match_ret retval; 1972 1973 cdm = (struct ccb_dev_match *)arg; 1974 1975 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1976 1977 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1978 cdm->status = CAM_DEV_MATCH_ERROR; 1979 return(0); 1980 } 1981 1982 /* 1983 * If the copy flag is set, copy this peripheral out. 1984 */ 1985 if (retval & DM_RET_COPY) { 1986 int spaceleft, j; 1987 size_t l; 1988 1989 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1990 sizeof(struct dev_match_result)); 1991 1992 /* 1993 * If we don't have enough space to put in another 1994 * match result, save our position and tell the 1995 * user there are more devices to check. 1996 */ 1997 if (spaceleft < sizeof(struct dev_match_result)) { 1998 bzero(&cdm->pos, sizeof(cdm->pos)); 1999 cdm->pos.position_type = 2000 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2001 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2002 CAM_DEV_POS_PERIPH; 2003 2004 cdm->pos.cookie.bus = periph->path->bus; 2005 cdm->pos.generations[CAM_BUS_GENERATION]= 2006 xsoftc.bus_generation; 2007 cdm->pos.cookie.target = periph->path->target; 2008 cdm->pos.generations[CAM_TARGET_GENERATION] = 2009 periph->path->bus->generation; 2010 cdm->pos.cookie.device = periph->path->device; 2011 cdm->pos.generations[CAM_DEV_GENERATION] = 2012 periph->path->target->generation; 2013 cdm->pos.cookie.periph = periph; 2014 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2015 periph->path->device->generation; 2016 cdm->status = CAM_DEV_MATCH_MORE; 2017 return(0); 2018 } 2019 2020 j = cdm->num_matches; 2021 cdm->num_matches++; 2022 cdm->matches[j].type = DEV_MATCH_PERIPH; 2023 cdm->matches[j].result.periph_result.path_id = 2024 periph->path->bus->path_id; 2025 cdm->matches[j].result.periph_result.target_id = 2026 periph->path->target->target_id; 2027 cdm->matches[j].result.periph_result.target_lun = 2028 periph->path->device->lun_id; 2029 cdm->matches[j].result.periph_result.unit_number = 2030 periph->unit_number; 2031 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2032 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2033 periph->periph_name, l); 2034 } 2035 2036 return(1); 2037 } 2038 2039 static int 2040 xptedtmatch(struct ccb_dev_match *cdm) 2041 { 2042 struct cam_eb *bus; 2043 int ret; 2044 2045 cdm->num_matches = 0; 2046 2047 /* 2048 * Check the bus list generation. If it has changed, the user 2049 * needs to reset everything and start over. 2050 */ 2051 xpt_lock_buses(); 2052 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2053 && (cdm->pos.cookie.bus != NULL)) { 2054 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2055 xsoftc.bus_generation) { 2056 xpt_unlock_buses(); 2057 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2058 return(0); 2059 } 2060 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2061 bus->refcount++; 2062 } else 2063 bus = NULL; 2064 xpt_unlock_buses(); 2065 2066 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2067 2068 /* 2069 * If we get back 0, that means that we had to stop before fully 2070 * traversing the EDT. It also means that one of the subroutines 2071 * has set the status field to the proper value. If we get back 1, 2072 * we've fully traversed the EDT and copied out any matching entries. 2073 */ 2074 if (ret == 1) 2075 cdm->status = CAM_DEV_MATCH_LAST; 2076 2077 return(ret); 2078 } 2079 2080 static int 2081 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2082 { 2083 struct cam_periph *periph; 2084 struct ccb_dev_match *cdm; 2085 2086 cdm = (struct ccb_dev_match *)arg; 2087 2088 xpt_lock_buses(); 2089 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2090 && (cdm->pos.cookie.pdrv == pdrv) 2091 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2092 && (cdm->pos.cookie.periph != NULL)) { 2093 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2094 (*pdrv)->generation) { 2095 xpt_unlock_buses(); 2096 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2097 return(0); 2098 } 2099 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2100 periph->refcount++; 2101 } else 2102 periph = NULL; 2103 xpt_unlock_buses(); 2104 2105 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2106 } 2107 2108 static int 2109 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2110 { 2111 struct ccb_dev_match *cdm; 2112 dev_match_ret retval; 2113 2114 cdm = (struct ccb_dev_match *)arg; 2115 2116 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2117 2118 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2119 cdm->status = CAM_DEV_MATCH_ERROR; 2120 return(0); 2121 } 2122 2123 /* 2124 * If the copy flag is set, copy this peripheral out. 2125 */ 2126 if (retval & DM_RET_COPY) { 2127 int spaceleft, j; 2128 size_t l; 2129 2130 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2131 sizeof(struct dev_match_result)); 2132 2133 /* 2134 * If we don't have enough space to put in another 2135 * match result, save our position and tell the 2136 * user there are more devices to check. 2137 */ 2138 if (spaceleft < sizeof(struct dev_match_result)) { 2139 struct periph_driver **pdrv; 2140 2141 pdrv = NULL; 2142 bzero(&cdm->pos, sizeof(cdm->pos)); 2143 cdm->pos.position_type = 2144 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2145 CAM_DEV_POS_PERIPH; 2146 2147 /* 2148 * This may look a bit non-sensical, but it is 2149 * actually quite logical. There are very few 2150 * peripheral drivers, and bloating every peripheral 2151 * structure with a pointer back to its parent 2152 * peripheral driver linker set entry would cost 2153 * more in the long run than doing this quick lookup. 2154 */ 2155 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2156 if (strcmp((*pdrv)->driver_name, 2157 periph->periph_name) == 0) 2158 break; 2159 } 2160 2161 if (*pdrv == NULL) { 2162 cdm->status = CAM_DEV_MATCH_ERROR; 2163 return(0); 2164 } 2165 2166 cdm->pos.cookie.pdrv = pdrv; 2167 /* 2168 * The periph generation slot does double duty, as 2169 * does the periph pointer slot. They are used for 2170 * both edt and pdrv lookups and positioning. 2171 */ 2172 cdm->pos.cookie.periph = periph; 2173 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2174 (*pdrv)->generation; 2175 cdm->status = CAM_DEV_MATCH_MORE; 2176 return(0); 2177 } 2178 2179 j = cdm->num_matches; 2180 cdm->num_matches++; 2181 cdm->matches[j].type = DEV_MATCH_PERIPH; 2182 cdm->matches[j].result.periph_result.path_id = 2183 periph->path->bus->path_id; 2184 2185 /* 2186 * The transport layer peripheral doesn't have a target or 2187 * lun. 2188 */ 2189 if (periph->path->target) 2190 cdm->matches[j].result.periph_result.target_id = 2191 periph->path->target->target_id; 2192 else 2193 cdm->matches[j].result.periph_result.target_id = 2194 CAM_TARGET_WILDCARD; 2195 2196 if (periph->path->device) 2197 cdm->matches[j].result.periph_result.target_lun = 2198 periph->path->device->lun_id; 2199 else 2200 cdm->matches[j].result.periph_result.target_lun = 2201 CAM_LUN_WILDCARD; 2202 2203 cdm->matches[j].result.periph_result.unit_number = 2204 periph->unit_number; 2205 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2206 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2207 periph->periph_name, l); 2208 } 2209 2210 return(1); 2211 } 2212 2213 static int 2214 xptperiphlistmatch(struct ccb_dev_match *cdm) 2215 { 2216 int ret; 2217 2218 cdm->num_matches = 0; 2219 2220 /* 2221 * At this point in the edt traversal function, we check the bus 2222 * list generation to make sure that no buses have been added or 2223 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2224 * For the peripheral driver list traversal function, however, we 2225 * don't have to worry about new peripheral driver types coming or 2226 * going; they're in a linker set, and therefore can't change 2227 * without a recompile. 2228 */ 2229 2230 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2231 && (cdm->pos.cookie.pdrv != NULL)) 2232 ret = xptpdrvtraverse( 2233 (struct periph_driver **)cdm->pos.cookie.pdrv, 2234 xptplistpdrvfunc, cdm); 2235 else 2236 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2237 2238 /* 2239 * If we get back 0, that means that we had to stop before fully 2240 * traversing the peripheral driver tree. It also means that one of 2241 * the subroutines has set the status field to the proper value. If 2242 * we get back 1, we've fully traversed the EDT and copied out any 2243 * matching entries. 2244 */ 2245 if (ret == 1) 2246 cdm->status = CAM_DEV_MATCH_LAST; 2247 2248 return(ret); 2249 } 2250 2251 static int 2252 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2253 { 2254 struct cam_eb *bus, *next_bus; 2255 int retval; 2256 2257 retval = 1; 2258 if (start_bus) 2259 bus = start_bus; 2260 else { 2261 xpt_lock_buses(); 2262 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2263 if (bus == NULL) { 2264 xpt_unlock_buses(); 2265 return (retval); 2266 } 2267 bus->refcount++; 2268 xpt_unlock_buses(); 2269 } 2270 for (; bus != NULL; bus = next_bus) { 2271 retval = tr_func(bus, arg); 2272 if (retval == 0) { 2273 xpt_release_bus(bus); 2274 break; 2275 } 2276 xpt_lock_buses(); 2277 next_bus = TAILQ_NEXT(bus, links); 2278 if (next_bus) 2279 next_bus->refcount++; 2280 xpt_unlock_buses(); 2281 xpt_release_bus(bus); 2282 } 2283 return(retval); 2284 } 2285 2286 static int 2287 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2288 xpt_targetfunc_t *tr_func, void *arg) 2289 { 2290 struct cam_et *target, *next_target; 2291 int retval; 2292 2293 retval = 1; 2294 if (start_target) 2295 target = start_target; 2296 else { 2297 mtx_lock(&bus->eb_mtx); 2298 target = TAILQ_FIRST(&bus->et_entries); 2299 if (target == NULL) { 2300 mtx_unlock(&bus->eb_mtx); 2301 return (retval); 2302 } 2303 target->refcount++; 2304 mtx_unlock(&bus->eb_mtx); 2305 } 2306 for (; target != NULL; target = next_target) { 2307 retval = tr_func(target, arg); 2308 if (retval == 0) { 2309 xpt_release_target(target); 2310 break; 2311 } 2312 mtx_lock(&bus->eb_mtx); 2313 next_target = TAILQ_NEXT(target, links); 2314 if (next_target) 2315 next_target->refcount++; 2316 mtx_unlock(&bus->eb_mtx); 2317 xpt_release_target(target); 2318 } 2319 return(retval); 2320 } 2321 2322 static int 2323 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2324 xpt_devicefunc_t *tr_func, void *arg) 2325 { 2326 struct cam_eb *bus; 2327 struct cam_ed *device, *next_device; 2328 int retval; 2329 2330 retval = 1; 2331 bus = target->bus; 2332 if (start_device) 2333 device = start_device; 2334 else { 2335 mtx_lock(&bus->eb_mtx); 2336 device = TAILQ_FIRST(&target->ed_entries); 2337 if (device == NULL) { 2338 mtx_unlock(&bus->eb_mtx); 2339 return (retval); 2340 } 2341 device->refcount++; 2342 mtx_unlock(&bus->eb_mtx); 2343 } 2344 for (; device != NULL; device = next_device) { 2345 mtx_lock(&device->device_mtx); 2346 retval = tr_func(device, arg); 2347 mtx_unlock(&device->device_mtx); 2348 if (retval == 0) { 2349 xpt_release_device(device); 2350 break; 2351 } 2352 mtx_lock(&bus->eb_mtx); 2353 next_device = TAILQ_NEXT(device, links); 2354 if (next_device) 2355 next_device->refcount++; 2356 mtx_unlock(&bus->eb_mtx); 2357 xpt_release_device(device); 2358 } 2359 return(retval); 2360 } 2361 2362 static int 2363 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2364 xpt_periphfunc_t *tr_func, void *arg) 2365 { 2366 struct cam_eb *bus; 2367 struct cam_periph *periph, *next_periph; 2368 int retval; 2369 2370 retval = 1; 2371 2372 bus = device->target->bus; 2373 if (start_periph) 2374 periph = start_periph; 2375 else { 2376 xpt_lock_buses(); 2377 mtx_lock(&bus->eb_mtx); 2378 periph = SLIST_FIRST(&device->periphs); 2379 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2380 periph = SLIST_NEXT(periph, periph_links); 2381 if (periph == NULL) { 2382 mtx_unlock(&bus->eb_mtx); 2383 xpt_unlock_buses(); 2384 return (retval); 2385 } 2386 periph->refcount++; 2387 mtx_unlock(&bus->eb_mtx); 2388 xpt_unlock_buses(); 2389 } 2390 for (; periph != NULL; periph = next_periph) { 2391 retval = tr_func(periph, arg); 2392 if (retval == 0) { 2393 cam_periph_release_locked(periph); 2394 break; 2395 } 2396 xpt_lock_buses(); 2397 mtx_lock(&bus->eb_mtx); 2398 next_periph = SLIST_NEXT(periph, periph_links); 2399 while (next_periph != NULL && 2400 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2401 next_periph = SLIST_NEXT(next_periph, periph_links); 2402 if (next_periph) 2403 next_periph->refcount++; 2404 mtx_unlock(&bus->eb_mtx); 2405 xpt_unlock_buses(); 2406 cam_periph_release_locked(periph); 2407 } 2408 return(retval); 2409 } 2410 2411 static int 2412 xptpdrvtraverse(struct periph_driver **start_pdrv, 2413 xpt_pdrvfunc_t *tr_func, void *arg) 2414 { 2415 struct periph_driver **pdrv; 2416 int retval; 2417 2418 retval = 1; 2419 2420 /* 2421 * We don't traverse the peripheral driver list like we do the 2422 * other lists, because it is a linker set, and therefore cannot be 2423 * changed during runtime. If the peripheral driver list is ever 2424 * re-done to be something other than a linker set (i.e. it can 2425 * change while the system is running), the list traversal should 2426 * be modified to work like the other traversal functions. 2427 */ 2428 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2429 *pdrv != NULL; pdrv++) { 2430 retval = tr_func(pdrv, arg); 2431 2432 if (retval == 0) 2433 return(retval); 2434 } 2435 2436 return(retval); 2437 } 2438 2439 static int 2440 xptpdperiphtraverse(struct periph_driver **pdrv, 2441 struct cam_periph *start_periph, 2442 xpt_periphfunc_t *tr_func, void *arg) 2443 { 2444 struct cam_periph *periph, *next_periph; 2445 int retval; 2446 2447 retval = 1; 2448 2449 if (start_periph) 2450 periph = start_periph; 2451 else { 2452 xpt_lock_buses(); 2453 periph = TAILQ_FIRST(&(*pdrv)->units); 2454 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2455 periph = TAILQ_NEXT(periph, unit_links); 2456 if (periph == NULL) { 2457 xpt_unlock_buses(); 2458 return (retval); 2459 } 2460 periph->refcount++; 2461 xpt_unlock_buses(); 2462 } 2463 for (; periph != NULL; periph = next_periph) { 2464 cam_periph_lock(periph); 2465 retval = tr_func(periph, arg); 2466 cam_periph_unlock(periph); 2467 if (retval == 0) { 2468 cam_periph_release(periph); 2469 break; 2470 } 2471 xpt_lock_buses(); 2472 next_periph = TAILQ_NEXT(periph, unit_links); 2473 while (next_periph != NULL && 2474 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2475 next_periph = TAILQ_NEXT(next_periph, unit_links); 2476 if (next_periph) 2477 next_periph->refcount++; 2478 xpt_unlock_buses(); 2479 cam_periph_release(periph); 2480 } 2481 return(retval); 2482 } 2483 2484 static int 2485 xptdefbusfunc(struct cam_eb *bus, void *arg) 2486 { 2487 struct xpt_traverse_config *tr_config; 2488 2489 tr_config = (struct xpt_traverse_config *)arg; 2490 2491 if (tr_config->depth == XPT_DEPTH_BUS) { 2492 xpt_busfunc_t *tr_func; 2493 2494 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2495 2496 return(tr_func(bus, tr_config->tr_arg)); 2497 } else 2498 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2499 } 2500 2501 static int 2502 xptdeftargetfunc(struct cam_et *target, void *arg) 2503 { 2504 struct xpt_traverse_config *tr_config; 2505 2506 tr_config = (struct xpt_traverse_config *)arg; 2507 2508 if (tr_config->depth == XPT_DEPTH_TARGET) { 2509 xpt_targetfunc_t *tr_func; 2510 2511 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2512 2513 return(tr_func(target, tr_config->tr_arg)); 2514 } else 2515 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2516 } 2517 2518 static int 2519 xptdefdevicefunc(struct cam_ed *device, void *arg) 2520 { 2521 struct xpt_traverse_config *tr_config; 2522 2523 tr_config = (struct xpt_traverse_config *)arg; 2524 2525 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2526 xpt_devicefunc_t *tr_func; 2527 2528 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2529 2530 return(tr_func(device, tr_config->tr_arg)); 2531 } else 2532 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2533 } 2534 2535 static int 2536 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2537 { 2538 struct xpt_traverse_config *tr_config; 2539 xpt_periphfunc_t *tr_func; 2540 2541 tr_config = (struct xpt_traverse_config *)arg; 2542 2543 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2544 2545 /* 2546 * Unlike the other default functions, we don't check for depth 2547 * here. The peripheral driver level is the last level in the EDT, 2548 * so if we're here, we should execute the function in question. 2549 */ 2550 return(tr_func(periph, tr_config->tr_arg)); 2551 } 2552 2553 /* 2554 * Execute the given function for every bus in the EDT. 2555 */ 2556 static int 2557 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2558 { 2559 struct xpt_traverse_config tr_config; 2560 2561 tr_config.depth = XPT_DEPTH_BUS; 2562 tr_config.tr_func = tr_func; 2563 tr_config.tr_arg = arg; 2564 2565 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2566 } 2567 2568 /* 2569 * Execute the given function for every device in the EDT. 2570 */ 2571 static int 2572 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2573 { 2574 struct xpt_traverse_config tr_config; 2575 2576 tr_config.depth = XPT_DEPTH_DEVICE; 2577 tr_config.tr_func = tr_func; 2578 tr_config.tr_arg = arg; 2579 2580 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2581 } 2582 2583 static int 2584 xptsetasyncfunc(struct cam_ed *device, void *arg) 2585 { 2586 struct cam_path path; 2587 struct ccb_getdev cgd; 2588 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2589 2590 /* 2591 * Don't report unconfigured devices (Wildcard devs, 2592 * devices only for target mode, device instances 2593 * that have been invalidated but are waiting for 2594 * their last reference count to be released). 2595 */ 2596 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2597 return (1); 2598 2599 xpt_compile_path(&path, 2600 NULL, 2601 device->target->bus->path_id, 2602 device->target->target_id, 2603 device->lun_id); 2604 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2605 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2606 xpt_action((union ccb *)&cgd); 2607 csa->callback(csa->callback_arg, 2608 AC_FOUND_DEVICE, 2609 &path, &cgd); 2610 xpt_release_path(&path); 2611 2612 return(1); 2613 } 2614 2615 static int 2616 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2617 { 2618 struct cam_path path; 2619 struct ccb_pathinq cpi; 2620 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2621 2622 xpt_compile_path(&path, /*periph*/NULL, 2623 bus->path_id, 2624 CAM_TARGET_WILDCARD, 2625 CAM_LUN_WILDCARD); 2626 xpt_path_lock(&path); 2627 xpt_path_inq(&cpi, &path); 2628 csa->callback(csa->callback_arg, 2629 AC_PATH_REGISTERED, 2630 &path, &cpi); 2631 xpt_path_unlock(&path); 2632 xpt_release_path(&path); 2633 2634 return(1); 2635 } 2636 2637 void 2638 xpt_action(union ccb *start_ccb) 2639 { 2640 2641 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2642 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2643 xpt_action_name(start_ccb->ccb_h.func_code))); 2644 2645 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2646 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2647 } 2648 2649 void 2650 xpt_action_default(union ccb *start_ccb) 2651 { 2652 struct cam_path *path; 2653 struct cam_sim *sim; 2654 struct mtx *mtx; 2655 2656 path = start_ccb->ccb_h.path; 2657 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2658 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2659 xpt_action_name(start_ccb->ccb_h.func_code))); 2660 2661 switch (start_ccb->ccb_h.func_code) { 2662 case XPT_SCSI_IO: 2663 { 2664 struct cam_ed *device; 2665 2666 /* 2667 * For the sake of compatibility with SCSI-1 2668 * devices that may not understand the identify 2669 * message, we include lun information in the 2670 * second byte of all commands. SCSI-1 specifies 2671 * that luns are a 3 bit value and reserves only 3 2672 * bits for lun information in the CDB. Later 2673 * revisions of the SCSI spec allow for more than 8 2674 * luns, but have deprecated lun information in the 2675 * CDB. So, if the lun won't fit, we must omit. 2676 * 2677 * Also be aware that during initial probing for devices, 2678 * the inquiry information is unknown but initialized to 0. 2679 * This means that this code will be exercised while probing 2680 * devices with an ANSI revision greater than 2. 2681 */ 2682 device = path->device; 2683 if (device->protocol_version <= SCSI_REV_2 2684 && start_ccb->ccb_h.target_lun < 8 2685 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2686 2687 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2688 start_ccb->ccb_h.target_lun << 5; 2689 } 2690 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2691 } 2692 /* FALLTHROUGH */ 2693 case XPT_TARGET_IO: 2694 case XPT_CONT_TARGET_IO: 2695 start_ccb->csio.sense_resid = 0; 2696 start_ccb->csio.resid = 0; 2697 /* FALLTHROUGH */ 2698 case XPT_ATA_IO: 2699 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2700 start_ccb->ataio.resid = 0; 2701 /* FALLTHROUGH */ 2702 case XPT_NVME_IO: 2703 /* FALLTHROUGH */ 2704 case XPT_NVME_ADMIN: 2705 /* FALLTHROUGH */ 2706 case XPT_MMC_IO: 2707 /* XXX just like nmve_io? */ 2708 case XPT_RESET_DEV: 2709 case XPT_ENG_EXEC: 2710 case XPT_SMP_IO: 2711 { 2712 struct cam_devq *devq; 2713 2714 devq = path->bus->sim->devq; 2715 mtx_lock(&devq->send_mtx); 2716 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2717 if (xpt_schedule_devq(devq, path->device) != 0) 2718 xpt_run_devq(devq); 2719 mtx_unlock(&devq->send_mtx); 2720 break; 2721 } 2722 case XPT_CALC_GEOMETRY: 2723 /* Filter out garbage */ 2724 if (start_ccb->ccg.block_size == 0 2725 || start_ccb->ccg.volume_size == 0) { 2726 start_ccb->ccg.cylinders = 0; 2727 start_ccb->ccg.heads = 0; 2728 start_ccb->ccg.secs_per_track = 0; 2729 start_ccb->ccb_h.status = CAM_REQ_CMP; 2730 break; 2731 } 2732 #if defined(__sparc64__) 2733 /* 2734 * For sparc64, we may need adjust the geometry of large 2735 * disks in order to fit the limitations of the 16-bit 2736 * fields of the VTOC8 disk label. 2737 */ 2738 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2739 start_ccb->ccb_h.status = CAM_REQ_CMP; 2740 break; 2741 } 2742 #endif 2743 goto call_sim; 2744 case XPT_ABORT: 2745 { 2746 union ccb* abort_ccb; 2747 2748 abort_ccb = start_ccb->cab.abort_ccb; 2749 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2750 struct cam_ed *device; 2751 struct cam_devq *devq; 2752 2753 device = abort_ccb->ccb_h.path->device; 2754 devq = device->sim->devq; 2755 2756 mtx_lock(&devq->send_mtx); 2757 if (abort_ccb->ccb_h.pinfo.index > 0) { 2758 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2759 abort_ccb->ccb_h.status = 2760 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2761 xpt_freeze_devq_device(device, 1); 2762 mtx_unlock(&devq->send_mtx); 2763 xpt_done(abort_ccb); 2764 start_ccb->ccb_h.status = CAM_REQ_CMP; 2765 break; 2766 } 2767 mtx_unlock(&devq->send_mtx); 2768 2769 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2770 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2771 /* 2772 * We've caught this ccb en route to 2773 * the SIM. Flag it for abort and the 2774 * SIM will do so just before starting 2775 * real work on the CCB. 2776 */ 2777 abort_ccb->ccb_h.status = 2778 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2779 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2780 start_ccb->ccb_h.status = CAM_REQ_CMP; 2781 break; 2782 } 2783 } 2784 if (XPT_FC_IS_QUEUED(abort_ccb) 2785 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2786 /* 2787 * It's already completed but waiting 2788 * for our SWI to get to it. 2789 */ 2790 start_ccb->ccb_h.status = CAM_UA_ABORT; 2791 break; 2792 } 2793 /* 2794 * If we weren't able to take care of the abort request 2795 * in the XPT, pass the request down to the SIM for processing. 2796 */ 2797 } 2798 /* FALLTHROUGH */ 2799 case XPT_ACCEPT_TARGET_IO: 2800 case XPT_EN_LUN: 2801 case XPT_IMMED_NOTIFY: 2802 case XPT_NOTIFY_ACK: 2803 case XPT_RESET_BUS: 2804 case XPT_IMMEDIATE_NOTIFY: 2805 case XPT_NOTIFY_ACKNOWLEDGE: 2806 case XPT_GET_SIM_KNOB_OLD: 2807 case XPT_GET_SIM_KNOB: 2808 case XPT_SET_SIM_KNOB: 2809 case XPT_GET_TRAN_SETTINGS: 2810 case XPT_SET_TRAN_SETTINGS: 2811 case XPT_PATH_INQ: 2812 call_sim: 2813 sim = path->bus->sim; 2814 mtx = sim->mtx; 2815 if (mtx && !mtx_owned(mtx)) 2816 mtx_lock(mtx); 2817 else 2818 mtx = NULL; 2819 2820 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2821 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2822 (*(sim->sim_action))(sim, start_ccb); 2823 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2824 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2825 if (mtx) 2826 mtx_unlock(mtx); 2827 break; 2828 case XPT_PATH_STATS: 2829 start_ccb->cpis.last_reset = path->bus->last_reset; 2830 start_ccb->ccb_h.status = CAM_REQ_CMP; 2831 break; 2832 case XPT_GDEV_TYPE: 2833 { 2834 struct cam_ed *dev; 2835 2836 dev = path->device; 2837 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2838 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2839 } else { 2840 struct ccb_getdev *cgd; 2841 2842 cgd = &start_ccb->cgd; 2843 cgd->protocol = dev->protocol; 2844 cgd->inq_data = dev->inq_data; 2845 cgd->ident_data = dev->ident_data; 2846 cgd->inq_flags = dev->inq_flags; 2847 cgd->ccb_h.status = CAM_REQ_CMP; 2848 cgd->serial_num_len = dev->serial_num_len; 2849 if ((dev->serial_num_len > 0) 2850 && (dev->serial_num != NULL)) 2851 bcopy(dev->serial_num, cgd->serial_num, 2852 dev->serial_num_len); 2853 } 2854 break; 2855 } 2856 case XPT_GDEV_STATS: 2857 { 2858 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2859 struct cam_ed *dev = path->device; 2860 struct cam_eb *bus = path->bus; 2861 struct cam_et *tar = path->target; 2862 struct cam_devq *devq = bus->sim->devq; 2863 2864 mtx_lock(&devq->send_mtx); 2865 cgds->dev_openings = dev->ccbq.dev_openings; 2866 cgds->dev_active = dev->ccbq.dev_active; 2867 cgds->allocated = dev->ccbq.allocated; 2868 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2869 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2870 cgds->last_reset = tar->last_reset; 2871 cgds->maxtags = dev->maxtags; 2872 cgds->mintags = dev->mintags; 2873 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2874 cgds->last_reset = bus->last_reset; 2875 mtx_unlock(&devq->send_mtx); 2876 cgds->ccb_h.status = CAM_REQ_CMP; 2877 break; 2878 } 2879 case XPT_GDEVLIST: 2880 { 2881 struct cam_periph *nperiph; 2882 struct periph_list *periph_head; 2883 struct ccb_getdevlist *cgdl; 2884 u_int i; 2885 struct cam_ed *device; 2886 int found; 2887 2888 2889 found = 0; 2890 2891 /* 2892 * Don't want anyone mucking with our data. 2893 */ 2894 device = path->device; 2895 periph_head = &device->periphs; 2896 cgdl = &start_ccb->cgdl; 2897 2898 /* 2899 * Check and see if the list has changed since the user 2900 * last requested a list member. If so, tell them that the 2901 * list has changed, and therefore they need to start over 2902 * from the beginning. 2903 */ 2904 if ((cgdl->index != 0) && 2905 (cgdl->generation != device->generation)) { 2906 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2907 break; 2908 } 2909 2910 /* 2911 * Traverse the list of peripherals and attempt to find 2912 * the requested peripheral. 2913 */ 2914 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2915 (nperiph != NULL) && (i <= cgdl->index); 2916 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2917 if (i == cgdl->index) { 2918 strlcpy(cgdl->periph_name, 2919 nperiph->periph_name, 2920 sizeof(cgdl->periph_name)); 2921 cgdl->unit_number = nperiph->unit_number; 2922 found = 1; 2923 } 2924 } 2925 if (found == 0) { 2926 cgdl->status = CAM_GDEVLIST_ERROR; 2927 break; 2928 } 2929 2930 if (nperiph == NULL) 2931 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2932 else 2933 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2934 2935 cgdl->index++; 2936 cgdl->generation = device->generation; 2937 2938 cgdl->ccb_h.status = CAM_REQ_CMP; 2939 break; 2940 } 2941 case XPT_DEV_MATCH: 2942 { 2943 dev_pos_type position_type; 2944 struct ccb_dev_match *cdm; 2945 2946 cdm = &start_ccb->cdm; 2947 2948 /* 2949 * There are two ways of getting at information in the EDT. 2950 * The first way is via the primary EDT tree. It starts 2951 * with a list of buses, then a list of targets on a bus, 2952 * then devices/luns on a target, and then peripherals on a 2953 * device/lun. The "other" way is by the peripheral driver 2954 * lists. The peripheral driver lists are organized by 2955 * peripheral driver. (obviously) So it makes sense to 2956 * use the peripheral driver list if the user is looking 2957 * for something like "da1", or all "da" devices. If the 2958 * user is looking for something on a particular bus/target 2959 * or lun, it's generally better to go through the EDT tree. 2960 */ 2961 2962 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2963 position_type = cdm->pos.position_type; 2964 else { 2965 u_int i; 2966 2967 position_type = CAM_DEV_POS_NONE; 2968 2969 for (i = 0; i < cdm->num_patterns; i++) { 2970 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2971 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2972 position_type = CAM_DEV_POS_EDT; 2973 break; 2974 } 2975 } 2976 2977 if (cdm->num_patterns == 0) 2978 position_type = CAM_DEV_POS_EDT; 2979 else if (position_type == CAM_DEV_POS_NONE) 2980 position_type = CAM_DEV_POS_PDRV; 2981 } 2982 2983 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2984 case CAM_DEV_POS_EDT: 2985 xptedtmatch(cdm); 2986 break; 2987 case CAM_DEV_POS_PDRV: 2988 xptperiphlistmatch(cdm); 2989 break; 2990 default: 2991 cdm->status = CAM_DEV_MATCH_ERROR; 2992 break; 2993 } 2994 2995 if (cdm->status == CAM_DEV_MATCH_ERROR) 2996 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2997 else 2998 start_ccb->ccb_h.status = CAM_REQ_CMP; 2999 3000 break; 3001 } 3002 case XPT_SASYNC_CB: 3003 { 3004 struct ccb_setasync *csa; 3005 struct async_node *cur_entry; 3006 struct async_list *async_head; 3007 u_int32_t added; 3008 3009 csa = &start_ccb->csa; 3010 added = csa->event_enable; 3011 async_head = &path->device->asyncs; 3012 3013 /* 3014 * If there is already an entry for us, simply 3015 * update it. 3016 */ 3017 cur_entry = SLIST_FIRST(async_head); 3018 while (cur_entry != NULL) { 3019 if ((cur_entry->callback_arg == csa->callback_arg) 3020 && (cur_entry->callback == csa->callback)) 3021 break; 3022 cur_entry = SLIST_NEXT(cur_entry, links); 3023 } 3024 3025 if (cur_entry != NULL) { 3026 /* 3027 * If the request has no flags set, 3028 * remove the entry. 3029 */ 3030 added &= ~cur_entry->event_enable; 3031 if (csa->event_enable == 0) { 3032 SLIST_REMOVE(async_head, cur_entry, 3033 async_node, links); 3034 xpt_release_device(path->device); 3035 free(cur_entry, M_CAMXPT); 3036 } else { 3037 cur_entry->event_enable = csa->event_enable; 3038 } 3039 csa->event_enable = added; 3040 } else { 3041 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3042 M_NOWAIT); 3043 if (cur_entry == NULL) { 3044 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3045 break; 3046 } 3047 cur_entry->event_enable = csa->event_enable; 3048 cur_entry->event_lock = (path->bus->sim->mtx && 3049 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3050 cur_entry->callback_arg = csa->callback_arg; 3051 cur_entry->callback = csa->callback; 3052 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3053 xpt_acquire_device(path->device); 3054 } 3055 start_ccb->ccb_h.status = CAM_REQ_CMP; 3056 break; 3057 } 3058 case XPT_REL_SIMQ: 3059 { 3060 struct ccb_relsim *crs; 3061 struct cam_ed *dev; 3062 3063 crs = &start_ccb->crs; 3064 dev = path->device; 3065 if (dev == NULL) { 3066 3067 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3068 break; 3069 } 3070 3071 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3072 3073 /* Don't ever go below one opening */ 3074 if (crs->openings > 0) { 3075 xpt_dev_ccbq_resize(path, crs->openings); 3076 if (bootverbose) { 3077 xpt_print(path, 3078 "number of openings is now %d\n", 3079 crs->openings); 3080 } 3081 } 3082 } 3083 3084 mtx_lock(&dev->sim->devq->send_mtx); 3085 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3086 3087 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3088 3089 /* 3090 * Just extend the old timeout and decrement 3091 * the freeze count so that a single timeout 3092 * is sufficient for releasing the queue. 3093 */ 3094 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3095 callout_stop(&dev->callout); 3096 } else { 3097 3098 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3099 } 3100 3101 callout_reset_sbt(&dev->callout, 3102 SBT_1MS * crs->release_timeout, 0, 3103 xpt_release_devq_timeout, dev, 0); 3104 3105 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3106 3107 } 3108 3109 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3110 3111 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3112 /* 3113 * Decrement the freeze count so that a single 3114 * completion is still sufficient to unfreeze 3115 * the queue. 3116 */ 3117 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3118 } else { 3119 3120 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3121 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3122 } 3123 } 3124 3125 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3126 3127 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3128 || (dev->ccbq.dev_active == 0)) { 3129 3130 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3131 } else { 3132 3133 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3134 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3135 } 3136 } 3137 mtx_unlock(&dev->sim->devq->send_mtx); 3138 3139 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3140 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3141 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3142 start_ccb->ccb_h.status = CAM_REQ_CMP; 3143 break; 3144 } 3145 case XPT_DEBUG: { 3146 struct cam_path *oldpath; 3147 3148 /* Check that all request bits are supported. */ 3149 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3150 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3151 break; 3152 } 3153 3154 cam_dflags = CAM_DEBUG_NONE; 3155 if (cam_dpath != NULL) { 3156 oldpath = cam_dpath; 3157 cam_dpath = NULL; 3158 xpt_free_path(oldpath); 3159 } 3160 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3161 if (xpt_create_path(&cam_dpath, NULL, 3162 start_ccb->ccb_h.path_id, 3163 start_ccb->ccb_h.target_id, 3164 start_ccb->ccb_h.target_lun) != 3165 CAM_REQ_CMP) { 3166 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3167 } else { 3168 cam_dflags = start_ccb->cdbg.flags; 3169 start_ccb->ccb_h.status = CAM_REQ_CMP; 3170 xpt_print(cam_dpath, "debugging flags now %x\n", 3171 cam_dflags); 3172 } 3173 } else 3174 start_ccb->ccb_h.status = CAM_REQ_CMP; 3175 break; 3176 } 3177 case XPT_NOOP: 3178 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3179 xpt_freeze_devq(path, 1); 3180 start_ccb->ccb_h.status = CAM_REQ_CMP; 3181 break; 3182 case XPT_REPROBE_LUN: 3183 xpt_async(AC_INQ_CHANGED, path, NULL); 3184 start_ccb->ccb_h.status = CAM_REQ_CMP; 3185 xpt_done(start_ccb); 3186 break; 3187 default: 3188 case XPT_SDEV_TYPE: 3189 case XPT_TERM_IO: 3190 case XPT_ENG_INQ: 3191 /* XXX Implement */ 3192 xpt_print(start_ccb->ccb_h.path, 3193 "%s: CCB type %#x %s not supported\n", __func__, 3194 start_ccb->ccb_h.func_code, 3195 xpt_action_name(start_ccb->ccb_h.func_code)); 3196 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3197 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3198 xpt_done(start_ccb); 3199 } 3200 break; 3201 } 3202 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3203 ("xpt_action_default: func= %#x %s status %#x\n", 3204 start_ccb->ccb_h.func_code, 3205 xpt_action_name(start_ccb->ccb_h.func_code), 3206 start_ccb->ccb_h.status)); 3207 } 3208 3209 /* 3210 * Call the sim poll routine to allow the sim to complete 3211 * any inflight requests, then call camisr_runqueue to 3212 * complete any CCB that the polling completed. 3213 */ 3214 void 3215 xpt_sim_poll(struct cam_sim *sim) 3216 { 3217 struct mtx *mtx; 3218 3219 mtx = sim->mtx; 3220 if (mtx) 3221 mtx_lock(mtx); 3222 (*(sim->sim_poll))(sim); 3223 if (mtx) 3224 mtx_unlock(mtx); 3225 camisr_runqueue(); 3226 } 3227 3228 uint32_t 3229 xpt_poll_setup(union ccb *start_ccb) 3230 { 3231 u_int32_t timeout; 3232 struct cam_sim *sim; 3233 struct cam_devq *devq; 3234 struct cam_ed *dev; 3235 3236 timeout = start_ccb->ccb_h.timeout * 10; 3237 sim = start_ccb->ccb_h.path->bus->sim; 3238 devq = sim->devq; 3239 dev = start_ccb->ccb_h.path->device; 3240 3241 /* 3242 * Steal an opening so that no other queued requests 3243 * can get it before us while we simulate interrupts. 3244 */ 3245 mtx_lock(&devq->send_mtx); 3246 dev->ccbq.dev_openings--; 3247 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3248 (--timeout > 0)) { 3249 mtx_unlock(&devq->send_mtx); 3250 DELAY(100); 3251 xpt_sim_poll(sim); 3252 mtx_lock(&devq->send_mtx); 3253 } 3254 dev->ccbq.dev_openings++; 3255 mtx_unlock(&devq->send_mtx); 3256 3257 return (timeout); 3258 } 3259 3260 void 3261 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3262 { 3263 3264 while (--timeout > 0) { 3265 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); 3266 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3267 != CAM_REQ_INPROG) 3268 break; 3269 DELAY(100); 3270 } 3271 3272 if (timeout == 0) { 3273 /* 3274 * XXX Is it worth adding a sim_timeout entry 3275 * point so we can attempt recovery? If 3276 * this is only used for dumps, I don't think 3277 * it is. 3278 */ 3279 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3280 } 3281 } 3282 3283 void 3284 xpt_polled_action(union ccb *start_ccb) 3285 { 3286 uint32_t timeout; 3287 struct cam_ed *dev; 3288 3289 timeout = start_ccb->ccb_h.timeout * 10; 3290 dev = start_ccb->ccb_h.path->device; 3291 3292 mtx_unlock(&dev->device_mtx); 3293 3294 timeout = xpt_poll_setup(start_ccb); 3295 if (timeout > 0) { 3296 xpt_action(start_ccb); 3297 xpt_pollwait(start_ccb, timeout); 3298 } else { 3299 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3300 } 3301 3302 mtx_lock(&dev->device_mtx); 3303 } 3304 3305 /* 3306 * Schedule a peripheral driver to receive a ccb when its 3307 * target device has space for more transactions. 3308 */ 3309 void 3310 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3311 { 3312 3313 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3314 cam_periph_assert(periph, MA_OWNED); 3315 if (new_priority < periph->scheduled_priority) { 3316 periph->scheduled_priority = new_priority; 3317 xpt_run_allocq(periph, 0); 3318 } 3319 } 3320 3321 3322 /* 3323 * Schedule a device to run on a given queue. 3324 * If the device was inserted as a new entry on the queue, 3325 * return 1 meaning the device queue should be run. If we 3326 * were already queued, implying someone else has already 3327 * started the queue, return 0 so the caller doesn't attempt 3328 * to run the queue. 3329 */ 3330 static int 3331 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3332 u_int32_t new_priority) 3333 { 3334 int retval; 3335 u_int32_t old_priority; 3336 3337 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3338 3339 3340 old_priority = pinfo->priority; 3341 3342 /* 3343 * Are we already queued? 3344 */ 3345 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3346 /* Simply reorder based on new priority */ 3347 if (new_priority < old_priority) { 3348 camq_change_priority(queue, pinfo->index, 3349 new_priority); 3350 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3351 ("changed priority to %d\n", 3352 new_priority)); 3353 retval = 1; 3354 } else 3355 retval = 0; 3356 } else { 3357 /* New entry on the queue */ 3358 if (new_priority < old_priority) 3359 pinfo->priority = new_priority; 3360 3361 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3362 ("Inserting onto queue\n")); 3363 pinfo->generation = ++queue->generation; 3364 camq_insert(queue, pinfo); 3365 retval = 1; 3366 } 3367 return (retval); 3368 } 3369 3370 static void 3371 xpt_run_allocq_task(void *context, int pending) 3372 { 3373 struct cam_periph *periph = context; 3374 3375 cam_periph_lock(periph); 3376 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3377 xpt_run_allocq(periph, 1); 3378 cam_periph_unlock(periph); 3379 cam_periph_release(periph); 3380 } 3381 3382 static void 3383 xpt_run_allocq(struct cam_periph *periph, int sleep) 3384 { 3385 struct cam_ed *device; 3386 union ccb *ccb; 3387 uint32_t prio; 3388 3389 cam_periph_assert(periph, MA_OWNED); 3390 if (periph->periph_allocating) 3391 return; 3392 cam_periph_doacquire(periph); 3393 periph->periph_allocating = 1; 3394 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3395 device = periph->path->device; 3396 ccb = NULL; 3397 restart: 3398 while ((prio = min(periph->scheduled_priority, 3399 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3400 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3401 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3402 3403 if (ccb == NULL && 3404 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3405 if (sleep) { 3406 ccb = xpt_get_ccb(periph); 3407 goto restart; 3408 } 3409 if (periph->flags & CAM_PERIPH_RUN_TASK) 3410 break; 3411 cam_periph_doacquire(periph); 3412 periph->flags |= CAM_PERIPH_RUN_TASK; 3413 taskqueue_enqueue(xsoftc.xpt_taskq, 3414 &periph->periph_run_task); 3415 break; 3416 } 3417 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3418 if (prio == periph->immediate_priority) { 3419 periph->immediate_priority = CAM_PRIORITY_NONE; 3420 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3421 ("waking cam_periph_getccb()\n")); 3422 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3423 periph_links.sle); 3424 wakeup(&periph->ccb_list); 3425 } else { 3426 periph->scheduled_priority = CAM_PRIORITY_NONE; 3427 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3428 ("calling periph_start()\n")); 3429 periph->periph_start(periph, ccb); 3430 } 3431 ccb = NULL; 3432 } 3433 if (ccb != NULL) 3434 xpt_release_ccb(ccb); 3435 periph->periph_allocating = 0; 3436 cam_periph_release_locked(periph); 3437 } 3438 3439 static void 3440 xpt_run_devq(struct cam_devq *devq) 3441 { 3442 struct mtx *mtx; 3443 3444 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3445 3446 devq->send_queue.qfrozen_cnt++; 3447 while ((devq->send_queue.entries > 0) 3448 && (devq->send_openings > 0) 3449 && (devq->send_queue.qfrozen_cnt <= 1)) { 3450 struct cam_ed *device; 3451 union ccb *work_ccb; 3452 struct cam_sim *sim; 3453 struct xpt_proto *proto; 3454 3455 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3456 CAMQ_HEAD); 3457 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3458 ("running device %p\n", device)); 3459 3460 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3461 if (work_ccb == NULL) { 3462 printf("device on run queue with no ccbs???\n"); 3463 continue; 3464 } 3465 3466 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3467 3468 mtx_lock(&xsoftc.xpt_highpower_lock); 3469 if (xsoftc.num_highpower <= 0) { 3470 /* 3471 * We got a high power command, but we 3472 * don't have any available slots. Freeze 3473 * the device queue until we have a slot 3474 * available. 3475 */ 3476 xpt_freeze_devq_device(device, 1); 3477 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3478 highpowerq_entry); 3479 3480 mtx_unlock(&xsoftc.xpt_highpower_lock); 3481 continue; 3482 } else { 3483 /* 3484 * Consume a high power slot while 3485 * this ccb runs. 3486 */ 3487 xsoftc.num_highpower--; 3488 } 3489 mtx_unlock(&xsoftc.xpt_highpower_lock); 3490 } 3491 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3492 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3493 devq->send_openings--; 3494 devq->send_active++; 3495 xpt_schedule_devq(devq, device); 3496 mtx_unlock(&devq->send_mtx); 3497 3498 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3499 /* 3500 * The client wants to freeze the queue 3501 * after this CCB is sent. 3502 */ 3503 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3504 } 3505 3506 /* In Target mode, the peripheral driver knows best... */ 3507 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3508 if ((device->inq_flags & SID_CmdQue) != 0 3509 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3510 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3511 else 3512 /* 3513 * Clear this in case of a retried CCB that 3514 * failed due to a rejected tag. 3515 */ 3516 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3517 } 3518 3519 KASSERT(device == work_ccb->ccb_h.path->device, 3520 ("device (%p) / path->device (%p) mismatch", 3521 device, work_ccb->ccb_h.path->device)); 3522 proto = xpt_proto_find(device->protocol); 3523 if (proto && proto->ops->debug_out) 3524 proto->ops->debug_out(work_ccb); 3525 3526 /* 3527 * Device queues can be shared among multiple SIM instances 3528 * that reside on different buses. Use the SIM from the 3529 * queued device, rather than the one from the calling bus. 3530 */ 3531 sim = device->sim; 3532 mtx = sim->mtx; 3533 if (mtx && !mtx_owned(mtx)) 3534 mtx_lock(mtx); 3535 else 3536 mtx = NULL; 3537 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3538 (*(sim->sim_action))(sim, work_ccb); 3539 if (mtx) 3540 mtx_unlock(mtx); 3541 mtx_lock(&devq->send_mtx); 3542 } 3543 devq->send_queue.qfrozen_cnt--; 3544 } 3545 3546 /* 3547 * This function merges stuff from the slave ccb into the master ccb, while 3548 * keeping important fields in the master ccb constant. 3549 */ 3550 void 3551 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3552 { 3553 3554 /* 3555 * Pull fields that are valid for peripheral drivers to set 3556 * into the master CCB along with the CCB "payload". 3557 */ 3558 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3559 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3560 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3561 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3562 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3563 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3564 } 3565 3566 void 3567 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3568 u_int32_t priority, u_int32_t flags) 3569 { 3570 3571 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3572 ccb_h->pinfo.priority = priority; 3573 ccb_h->path = path; 3574 ccb_h->path_id = path->bus->path_id; 3575 if (path->target) 3576 ccb_h->target_id = path->target->target_id; 3577 else 3578 ccb_h->target_id = CAM_TARGET_WILDCARD; 3579 if (path->device) { 3580 ccb_h->target_lun = path->device->lun_id; 3581 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3582 } else { 3583 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3584 } 3585 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3586 ccb_h->flags = flags; 3587 ccb_h->xflags = 0; 3588 } 3589 3590 void 3591 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3592 { 3593 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3594 } 3595 3596 /* Path manipulation functions */ 3597 cam_status 3598 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3599 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3600 { 3601 struct cam_path *path; 3602 cam_status status; 3603 3604 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3605 3606 if (path == NULL) { 3607 status = CAM_RESRC_UNAVAIL; 3608 return(status); 3609 } 3610 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3611 if (status != CAM_REQ_CMP) { 3612 free(path, M_CAMPATH); 3613 path = NULL; 3614 } 3615 *new_path_ptr = path; 3616 return (status); 3617 } 3618 3619 cam_status 3620 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3621 struct cam_periph *periph, path_id_t path_id, 3622 target_id_t target_id, lun_id_t lun_id) 3623 { 3624 3625 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3626 lun_id)); 3627 } 3628 3629 cam_status 3630 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3631 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3632 { 3633 struct cam_eb *bus; 3634 struct cam_et *target; 3635 struct cam_ed *device; 3636 cam_status status; 3637 3638 status = CAM_REQ_CMP; /* Completed without error */ 3639 target = NULL; /* Wildcarded */ 3640 device = NULL; /* Wildcarded */ 3641 3642 /* 3643 * We will potentially modify the EDT, so block interrupts 3644 * that may attempt to create cam paths. 3645 */ 3646 bus = xpt_find_bus(path_id); 3647 if (bus == NULL) { 3648 status = CAM_PATH_INVALID; 3649 } else { 3650 xpt_lock_buses(); 3651 mtx_lock(&bus->eb_mtx); 3652 target = xpt_find_target(bus, target_id); 3653 if (target == NULL) { 3654 /* Create one */ 3655 struct cam_et *new_target; 3656 3657 new_target = xpt_alloc_target(bus, target_id); 3658 if (new_target == NULL) { 3659 status = CAM_RESRC_UNAVAIL; 3660 } else { 3661 target = new_target; 3662 } 3663 } 3664 xpt_unlock_buses(); 3665 if (target != NULL) { 3666 device = xpt_find_device(target, lun_id); 3667 if (device == NULL) { 3668 /* Create one */ 3669 struct cam_ed *new_device; 3670 3671 new_device = 3672 (*(bus->xport->ops->alloc_device))(bus, 3673 target, 3674 lun_id); 3675 if (new_device == NULL) { 3676 status = CAM_RESRC_UNAVAIL; 3677 } else { 3678 device = new_device; 3679 } 3680 } 3681 } 3682 mtx_unlock(&bus->eb_mtx); 3683 } 3684 3685 /* 3686 * Only touch the user's data if we are successful. 3687 */ 3688 if (status == CAM_REQ_CMP) { 3689 new_path->periph = perph; 3690 new_path->bus = bus; 3691 new_path->target = target; 3692 new_path->device = device; 3693 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3694 } else { 3695 if (device != NULL) 3696 xpt_release_device(device); 3697 if (target != NULL) 3698 xpt_release_target(target); 3699 if (bus != NULL) 3700 xpt_release_bus(bus); 3701 } 3702 return (status); 3703 } 3704 3705 cam_status 3706 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3707 { 3708 struct cam_path *new_path; 3709 3710 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3711 if (new_path == NULL) 3712 return(CAM_RESRC_UNAVAIL); 3713 xpt_copy_path(new_path, path); 3714 *new_path_ptr = new_path; 3715 return (CAM_REQ_CMP); 3716 } 3717 3718 void 3719 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3720 { 3721 3722 *new_path = *path; 3723 if (path->bus != NULL) 3724 xpt_acquire_bus(path->bus); 3725 if (path->target != NULL) 3726 xpt_acquire_target(path->target); 3727 if (path->device != NULL) 3728 xpt_acquire_device(path->device); 3729 } 3730 3731 void 3732 xpt_release_path(struct cam_path *path) 3733 { 3734 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3735 if (path->device != NULL) { 3736 xpt_release_device(path->device); 3737 path->device = NULL; 3738 } 3739 if (path->target != NULL) { 3740 xpt_release_target(path->target); 3741 path->target = NULL; 3742 } 3743 if (path->bus != NULL) { 3744 xpt_release_bus(path->bus); 3745 path->bus = NULL; 3746 } 3747 } 3748 3749 void 3750 xpt_free_path(struct cam_path *path) 3751 { 3752 3753 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3754 xpt_release_path(path); 3755 free(path, M_CAMPATH); 3756 } 3757 3758 void 3759 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3760 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3761 { 3762 3763 xpt_lock_buses(); 3764 if (bus_ref) { 3765 if (path->bus) 3766 *bus_ref = path->bus->refcount; 3767 else 3768 *bus_ref = 0; 3769 } 3770 if (periph_ref) { 3771 if (path->periph) 3772 *periph_ref = path->periph->refcount; 3773 else 3774 *periph_ref = 0; 3775 } 3776 xpt_unlock_buses(); 3777 if (target_ref) { 3778 if (path->target) 3779 *target_ref = path->target->refcount; 3780 else 3781 *target_ref = 0; 3782 } 3783 if (device_ref) { 3784 if (path->device) 3785 *device_ref = path->device->refcount; 3786 else 3787 *device_ref = 0; 3788 } 3789 } 3790 3791 /* 3792 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3793 * in path1, 2 for match with wildcards in path2. 3794 */ 3795 int 3796 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3797 { 3798 int retval = 0; 3799 3800 if (path1->bus != path2->bus) { 3801 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3802 retval = 1; 3803 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3804 retval = 2; 3805 else 3806 return (-1); 3807 } 3808 if (path1->target != path2->target) { 3809 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3810 if (retval == 0) 3811 retval = 1; 3812 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3813 retval = 2; 3814 else 3815 return (-1); 3816 } 3817 if (path1->device != path2->device) { 3818 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3819 if (retval == 0) 3820 retval = 1; 3821 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3822 retval = 2; 3823 else 3824 return (-1); 3825 } 3826 return (retval); 3827 } 3828 3829 int 3830 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3831 { 3832 int retval = 0; 3833 3834 if (path->bus != dev->target->bus) { 3835 if (path->bus->path_id == CAM_BUS_WILDCARD) 3836 retval = 1; 3837 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3838 retval = 2; 3839 else 3840 return (-1); 3841 } 3842 if (path->target != dev->target) { 3843 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3844 if (retval == 0) 3845 retval = 1; 3846 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3847 retval = 2; 3848 else 3849 return (-1); 3850 } 3851 if (path->device != dev) { 3852 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3853 if (retval == 0) 3854 retval = 1; 3855 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3856 retval = 2; 3857 else 3858 return (-1); 3859 } 3860 return (retval); 3861 } 3862 3863 void 3864 xpt_print_path(struct cam_path *path) 3865 { 3866 struct sbuf sb; 3867 char buffer[XPT_PRINT_LEN]; 3868 3869 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3870 xpt_path_sbuf(path, &sb); 3871 sbuf_finish(&sb); 3872 printf("%s", sbuf_data(&sb)); 3873 sbuf_delete(&sb); 3874 } 3875 3876 void 3877 xpt_print_device(struct cam_ed *device) 3878 { 3879 3880 if (device == NULL) 3881 printf("(nopath): "); 3882 else { 3883 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3884 device->sim->unit_number, 3885 device->sim->bus_id, 3886 device->target->target_id, 3887 (uintmax_t)device->lun_id); 3888 } 3889 } 3890 3891 void 3892 xpt_print(struct cam_path *path, const char *fmt, ...) 3893 { 3894 va_list ap; 3895 struct sbuf sb; 3896 char buffer[XPT_PRINT_LEN]; 3897 3898 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3899 3900 xpt_path_sbuf(path, &sb); 3901 va_start(ap, fmt); 3902 sbuf_vprintf(&sb, fmt, ap); 3903 va_end(ap); 3904 3905 sbuf_finish(&sb); 3906 printf("%s", sbuf_data(&sb)); 3907 sbuf_delete(&sb); 3908 } 3909 3910 int 3911 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3912 { 3913 struct sbuf sb; 3914 int len; 3915 3916 sbuf_new(&sb, str, str_len, 0); 3917 len = xpt_path_sbuf(path, &sb); 3918 sbuf_finish(&sb); 3919 return (len); 3920 } 3921 3922 int 3923 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3924 { 3925 3926 if (path == NULL) 3927 sbuf_printf(sb, "(nopath): "); 3928 else { 3929 if (path->periph != NULL) 3930 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3931 path->periph->unit_number); 3932 else 3933 sbuf_printf(sb, "(noperiph:"); 3934 3935 if (path->bus != NULL) 3936 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3937 path->bus->sim->unit_number, 3938 path->bus->sim->bus_id); 3939 else 3940 sbuf_printf(sb, "nobus:"); 3941 3942 if (path->target != NULL) 3943 sbuf_printf(sb, "%d:", path->target->target_id); 3944 else 3945 sbuf_printf(sb, "X:"); 3946 3947 if (path->device != NULL) 3948 sbuf_printf(sb, "%jx): ", 3949 (uintmax_t)path->device->lun_id); 3950 else 3951 sbuf_printf(sb, "X): "); 3952 } 3953 3954 return(sbuf_len(sb)); 3955 } 3956 3957 path_id_t 3958 xpt_path_path_id(struct cam_path *path) 3959 { 3960 return(path->bus->path_id); 3961 } 3962 3963 target_id_t 3964 xpt_path_target_id(struct cam_path *path) 3965 { 3966 if (path->target != NULL) 3967 return (path->target->target_id); 3968 else 3969 return (CAM_TARGET_WILDCARD); 3970 } 3971 3972 lun_id_t 3973 xpt_path_lun_id(struct cam_path *path) 3974 { 3975 if (path->device != NULL) 3976 return (path->device->lun_id); 3977 else 3978 return (CAM_LUN_WILDCARD); 3979 } 3980 3981 struct cam_sim * 3982 xpt_path_sim(struct cam_path *path) 3983 { 3984 3985 return (path->bus->sim); 3986 } 3987 3988 struct cam_periph* 3989 xpt_path_periph(struct cam_path *path) 3990 { 3991 3992 return (path->periph); 3993 } 3994 3995 /* 3996 * Release a CAM control block for the caller. Remit the cost of the structure 3997 * to the device referenced by the path. If the this device had no 'credits' 3998 * and peripheral drivers have registered async callbacks for this notification 3999 * call them now. 4000 */ 4001 void 4002 xpt_release_ccb(union ccb *free_ccb) 4003 { 4004 struct cam_ed *device; 4005 struct cam_periph *periph; 4006 4007 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4008 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 4009 device = free_ccb->ccb_h.path->device; 4010 periph = free_ccb->ccb_h.path->periph; 4011 4012 xpt_free_ccb(free_ccb); 4013 periph->periph_allocated--; 4014 cam_ccbq_release_opening(&device->ccbq); 4015 xpt_run_allocq(periph, 0); 4016 } 4017 4018 /* Functions accessed by SIM drivers */ 4019 4020 static struct xpt_xport_ops xport_default_ops = { 4021 .alloc_device = xpt_alloc_device_default, 4022 .action = xpt_action_default, 4023 .async = xpt_dev_async_default, 4024 }; 4025 static struct xpt_xport xport_default = { 4026 .xport = XPORT_UNKNOWN, 4027 .name = "unknown", 4028 .ops = &xport_default_ops, 4029 }; 4030 4031 CAM_XPT_XPORT(xport_default); 4032 4033 /* 4034 * A sim structure, listing the SIM entry points and instance 4035 * identification info is passed to xpt_bus_register to hook the SIM 4036 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4037 * for this new bus and places it in the array of buses and assigns 4038 * it a path_id. The path_id may be influenced by "hard wiring" 4039 * information specified by the user. Once interrupt services are 4040 * available, the bus will be probed. 4041 */ 4042 int32_t 4043 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4044 { 4045 struct cam_eb *new_bus; 4046 struct cam_eb *old_bus; 4047 struct ccb_pathinq cpi; 4048 struct cam_path *path; 4049 cam_status status; 4050 4051 sim->bus_id = bus; 4052 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4053 M_CAMXPT, M_NOWAIT|M_ZERO); 4054 if (new_bus == NULL) { 4055 /* Couldn't satisfy request */ 4056 return (CAM_RESRC_UNAVAIL); 4057 } 4058 4059 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4060 TAILQ_INIT(&new_bus->et_entries); 4061 cam_sim_hold(sim); 4062 new_bus->sim = sim; 4063 timevalclear(&new_bus->last_reset); 4064 new_bus->flags = 0; 4065 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4066 new_bus->generation = 0; 4067 4068 xpt_lock_buses(); 4069 sim->path_id = new_bus->path_id = 4070 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4071 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4072 while (old_bus != NULL 4073 && old_bus->path_id < new_bus->path_id) 4074 old_bus = TAILQ_NEXT(old_bus, links); 4075 if (old_bus != NULL) 4076 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4077 else 4078 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4079 xsoftc.bus_generation++; 4080 xpt_unlock_buses(); 4081 4082 /* 4083 * Set a default transport so that a PATH_INQ can be issued to 4084 * the SIM. This will then allow for probing and attaching of 4085 * a more appropriate transport. 4086 */ 4087 new_bus->xport = &xport_default; 4088 4089 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4090 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4091 if (status != CAM_REQ_CMP) { 4092 xpt_release_bus(new_bus); 4093 return (CAM_RESRC_UNAVAIL); 4094 } 4095 4096 xpt_path_inq(&cpi, path); 4097 4098 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4099 struct xpt_xport **xpt; 4100 4101 SET_FOREACH(xpt, cam_xpt_xport_set) { 4102 if ((*xpt)->xport == cpi.transport) { 4103 new_bus->xport = *xpt; 4104 break; 4105 } 4106 } 4107 if (new_bus->xport == NULL) { 4108 xpt_print(path, 4109 "No transport found for %d\n", cpi.transport); 4110 xpt_release_bus(new_bus); 4111 free(path, M_CAMXPT); 4112 return (CAM_RESRC_UNAVAIL); 4113 } 4114 } 4115 4116 /* Notify interested parties */ 4117 if (sim->path_id != CAM_XPT_PATH_ID) { 4118 4119 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4120 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4121 union ccb *scan_ccb; 4122 4123 /* Initiate bus rescan. */ 4124 scan_ccb = xpt_alloc_ccb_nowait(); 4125 if (scan_ccb != NULL) { 4126 scan_ccb->ccb_h.path = path; 4127 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4128 scan_ccb->crcn.flags = 0; 4129 xpt_rescan(scan_ccb); 4130 } else { 4131 xpt_print(path, 4132 "Can't allocate CCB to scan bus\n"); 4133 xpt_free_path(path); 4134 } 4135 } else 4136 xpt_free_path(path); 4137 } else 4138 xpt_free_path(path); 4139 return (CAM_SUCCESS); 4140 } 4141 4142 int32_t 4143 xpt_bus_deregister(path_id_t pathid) 4144 { 4145 struct cam_path bus_path; 4146 cam_status status; 4147 4148 status = xpt_compile_path(&bus_path, NULL, pathid, 4149 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4150 if (status != CAM_REQ_CMP) 4151 return (status); 4152 4153 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4154 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4155 4156 /* Release the reference count held while registered. */ 4157 xpt_release_bus(bus_path.bus); 4158 xpt_release_path(&bus_path); 4159 4160 return (CAM_REQ_CMP); 4161 } 4162 4163 static path_id_t 4164 xptnextfreepathid(void) 4165 { 4166 struct cam_eb *bus; 4167 path_id_t pathid; 4168 const char *strval; 4169 4170 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4171 pathid = 0; 4172 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4173 retry: 4174 /* Find an unoccupied pathid */ 4175 while (bus != NULL && bus->path_id <= pathid) { 4176 if (bus->path_id == pathid) 4177 pathid++; 4178 bus = TAILQ_NEXT(bus, links); 4179 } 4180 4181 /* 4182 * Ensure that this pathid is not reserved for 4183 * a bus that may be registered in the future. 4184 */ 4185 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4186 ++pathid; 4187 /* Start the search over */ 4188 goto retry; 4189 } 4190 return (pathid); 4191 } 4192 4193 static path_id_t 4194 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4195 { 4196 path_id_t pathid; 4197 int i, dunit, val; 4198 char buf[32]; 4199 const char *dname; 4200 4201 pathid = CAM_XPT_PATH_ID; 4202 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4203 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4204 return (pathid); 4205 i = 0; 4206 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4207 if (strcmp(dname, "scbus")) { 4208 /* Avoid a bit of foot shooting. */ 4209 continue; 4210 } 4211 if (dunit < 0) /* unwired?! */ 4212 continue; 4213 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4214 if (sim_bus == val) { 4215 pathid = dunit; 4216 break; 4217 } 4218 } else if (sim_bus == 0) { 4219 /* Unspecified matches bus 0 */ 4220 pathid = dunit; 4221 break; 4222 } else { 4223 printf("Ambiguous scbus configuration for %s%d " 4224 "bus %d, cannot wire down. The kernel " 4225 "config entry for scbus%d should " 4226 "specify a controller bus.\n" 4227 "Scbus will be assigned dynamically.\n", 4228 sim_name, sim_unit, sim_bus, dunit); 4229 break; 4230 } 4231 } 4232 4233 if (pathid == CAM_XPT_PATH_ID) 4234 pathid = xptnextfreepathid(); 4235 return (pathid); 4236 } 4237 4238 static const char * 4239 xpt_async_string(u_int32_t async_code) 4240 { 4241 4242 switch (async_code) { 4243 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4244 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4245 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4246 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4247 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4248 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4249 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4250 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4251 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4252 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4253 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4254 case AC_CONTRACT: return ("AC_CONTRACT"); 4255 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4256 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4257 } 4258 return ("AC_UNKNOWN"); 4259 } 4260 4261 static int 4262 xpt_async_size(u_int32_t async_code) 4263 { 4264 4265 switch (async_code) { 4266 case AC_BUS_RESET: return (0); 4267 case AC_UNSOL_RESEL: return (0); 4268 case AC_SCSI_AEN: return (0); 4269 case AC_SENT_BDR: return (0); 4270 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4271 case AC_PATH_DEREGISTERED: return (0); 4272 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4273 case AC_LOST_DEVICE: return (0); 4274 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4275 case AC_INQ_CHANGED: return (0); 4276 case AC_GETDEV_CHANGED: return (0); 4277 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4278 case AC_ADVINFO_CHANGED: return (-1); 4279 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4280 } 4281 return (0); 4282 } 4283 4284 static int 4285 xpt_async_process_dev(struct cam_ed *device, void *arg) 4286 { 4287 union ccb *ccb = arg; 4288 struct cam_path *path = ccb->ccb_h.path; 4289 void *async_arg = ccb->casync.async_arg_ptr; 4290 u_int32_t async_code = ccb->casync.async_code; 4291 int relock; 4292 4293 if (path->device != device 4294 && path->device->lun_id != CAM_LUN_WILDCARD 4295 && device->lun_id != CAM_LUN_WILDCARD) 4296 return (1); 4297 4298 /* 4299 * The async callback could free the device. 4300 * If it is a broadcast async, it doesn't hold 4301 * device reference, so take our own reference. 4302 */ 4303 xpt_acquire_device(device); 4304 4305 /* 4306 * If async for specific device is to be delivered to 4307 * the wildcard client, take the specific device lock. 4308 * XXX: We may need a way for client to specify it. 4309 */ 4310 if ((device->lun_id == CAM_LUN_WILDCARD && 4311 path->device->lun_id != CAM_LUN_WILDCARD) || 4312 (device->target->target_id == CAM_TARGET_WILDCARD && 4313 path->target->target_id != CAM_TARGET_WILDCARD) || 4314 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4315 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4316 mtx_unlock(&device->device_mtx); 4317 xpt_path_lock(path); 4318 relock = 1; 4319 } else 4320 relock = 0; 4321 4322 (*(device->target->bus->xport->ops->async))(async_code, 4323 device->target->bus, device->target, device, async_arg); 4324 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4325 4326 if (relock) { 4327 xpt_path_unlock(path); 4328 mtx_lock(&device->device_mtx); 4329 } 4330 xpt_release_device(device); 4331 return (1); 4332 } 4333 4334 static int 4335 xpt_async_process_tgt(struct cam_et *target, void *arg) 4336 { 4337 union ccb *ccb = arg; 4338 struct cam_path *path = ccb->ccb_h.path; 4339 4340 if (path->target != target 4341 && path->target->target_id != CAM_TARGET_WILDCARD 4342 && target->target_id != CAM_TARGET_WILDCARD) 4343 return (1); 4344 4345 if (ccb->casync.async_code == AC_SENT_BDR) { 4346 /* Update our notion of when the last reset occurred */ 4347 microtime(&target->last_reset); 4348 } 4349 4350 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4351 } 4352 4353 static void 4354 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4355 { 4356 struct cam_eb *bus; 4357 struct cam_path *path; 4358 void *async_arg; 4359 u_int32_t async_code; 4360 4361 path = ccb->ccb_h.path; 4362 async_code = ccb->casync.async_code; 4363 async_arg = ccb->casync.async_arg_ptr; 4364 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4365 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4366 bus = path->bus; 4367 4368 if (async_code == AC_BUS_RESET) { 4369 /* Update our notion of when the last reset occurred */ 4370 microtime(&bus->last_reset); 4371 } 4372 4373 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4374 4375 /* 4376 * If this wasn't a fully wildcarded async, tell all 4377 * clients that want all async events. 4378 */ 4379 if (bus != xpt_periph->path->bus) { 4380 xpt_path_lock(xpt_periph->path); 4381 xpt_async_process_dev(xpt_periph->path->device, ccb); 4382 xpt_path_unlock(xpt_periph->path); 4383 } 4384 4385 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4386 xpt_release_devq(path, 1, TRUE); 4387 else 4388 xpt_release_simq(path->bus->sim, TRUE); 4389 if (ccb->casync.async_arg_size > 0) 4390 free(async_arg, M_CAMXPT); 4391 xpt_free_path(path); 4392 xpt_free_ccb(ccb); 4393 } 4394 4395 static void 4396 xpt_async_bcast(struct async_list *async_head, 4397 u_int32_t async_code, 4398 struct cam_path *path, void *async_arg) 4399 { 4400 struct async_node *cur_entry; 4401 struct mtx *mtx; 4402 4403 cur_entry = SLIST_FIRST(async_head); 4404 while (cur_entry != NULL) { 4405 struct async_node *next_entry; 4406 /* 4407 * Grab the next list entry before we call the current 4408 * entry's callback. This is because the callback function 4409 * can delete its async callback entry. 4410 */ 4411 next_entry = SLIST_NEXT(cur_entry, links); 4412 if ((cur_entry->event_enable & async_code) != 0) { 4413 mtx = cur_entry->event_lock ? 4414 path->device->sim->mtx : NULL; 4415 if (mtx) 4416 mtx_lock(mtx); 4417 cur_entry->callback(cur_entry->callback_arg, 4418 async_code, path, 4419 async_arg); 4420 if (mtx) 4421 mtx_unlock(mtx); 4422 } 4423 cur_entry = next_entry; 4424 } 4425 } 4426 4427 void 4428 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4429 { 4430 union ccb *ccb; 4431 int size; 4432 4433 ccb = xpt_alloc_ccb_nowait(); 4434 if (ccb == NULL) { 4435 xpt_print(path, "Can't allocate CCB to send %s\n", 4436 xpt_async_string(async_code)); 4437 return; 4438 } 4439 4440 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4441 xpt_print(path, "Can't allocate path to send %s\n", 4442 xpt_async_string(async_code)); 4443 xpt_free_ccb(ccb); 4444 return; 4445 } 4446 ccb->ccb_h.path->periph = NULL; 4447 ccb->ccb_h.func_code = XPT_ASYNC; 4448 ccb->ccb_h.cbfcnp = xpt_async_process; 4449 ccb->ccb_h.flags |= CAM_UNLOCKED; 4450 ccb->casync.async_code = async_code; 4451 ccb->casync.async_arg_size = 0; 4452 size = xpt_async_size(async_code); 4453 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4454 ("xpt_async: func %#x %s aync_code %d %s\n", 4455 ccb->ccb_h.func_code, 4456 xpt_action_name(ccb->ccb_h.func_code), 4457 async_code, 4458 xpt_async_string(async_code))); 4459 if (size > 0 && async_arg != NULL) { 4460 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4461 if (ccb->casync.async_arg_ptr == NULL) { 4462 xpt_print(path, "Can't allocate argument to send %s\n", 4463 xpt_async_string(async_code)); 4464 xpt_free_path(ccb->ccb_h.path); 4465 xpt_free_ccb(ccb); 4466 return; 4467 } 4468 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4469 ccb->casync.async_arg_size = size; 4470 } else if (size < 0) { 4471 ccb->casync.async_arg_ptr = async_arg; 4472 ccb->casync.async_arg_size = size; 4473 } 4474 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4475 xpt_freeze_devq(path, 1); 4476 else 4477 xpt_freeze_simq(path->bus->sim, 1); 4478 xpt_done(ccb); 4479 } 4480 4481 static void 4482 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4483 struct cam_et *target, struct cam_ed *device, 4484 void *async_arg) 4485 { 4486 4487 /* 4488 * We only need to handle events for real devices. 4489 */ 4490 if (target->target_id == CAM_TARGET_WILDCARD 4491 || device->lun_id == CAM_LUN_WILDCARD) 4492 return; 4493 4494 printf("%s called\n", __func__); 4495 } 4496 4497 static uint32_t 4498 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4499 { 4500 struct cam_devq *devq; 4501 uint32_t freeze; 4502 4503 devq = dev->sim->devq; 4504 mtx_assert(&devq->send_mtx, MA_OWNED); 4505 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4506 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4507 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4508 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4509 /* Remove frozen device from sendq. */ 4510 if (device_is_queued(dev)) 4511 camq_remove(&devq->send_queue, dev->devq_entry.index); 4512 return (freeze); 4513 } 4514 4515 u_int32_t 4516 xpt_freeze_devq(struct cam_path *path, u_int count) 4517 { 4518 struct cam_ed *dev = path->device; 4519 struct cam_devq *devq; 4520 uint32_t freeze; 4521 4522 devq = dev->sim->devq; 4523 mtx_lock(&devq->send_mtx); 4524 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4525 freeze = xpt_freeze_devq_device(dev, count); 4526 mtx_unlock(&devq->send_mtx); 4527 return (freeze); 4528 } 4529 4530 u_int32_t 4531 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4532 { 4533 struct cam_devq *devq; 4534 uint32_t freeze; 4535 4536 devq = sim->devq; 4537 mtx_lock(&devq->send_mtx); 4538 freeze = (devq->send_queue.qfrozen_cnt += count); 4539 mtx_unlock(&devq->send_mtx); 4540 return (freeze); 4541 } 4542 4543 static void 4544 xpt_release_devq_timeout(void *arg) 4545 { 4546 struct cam_ed *dev; 4547 struct cam_devq *devq; 4548 4549 dev = (struct cam_ed *)arg; 4550 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4551 devq = dev->sim->devq; 4552 mtx_assert(&devq->send_mtx, MA_OWNED); 4553 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4554 xpt_run_devq(devq); 4555 } 4556 4557 void 4558 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4559 { 4560 struct cam_ed *dev; 4561 struct cam_devq *devq; 4562 4563 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4564 count, run_queue)); 4565 dev = path->device; 4566 devq = dev->sim->devq; 4567 mtx_lock(&devq->send_mtx); 4568 if (xpt_release_devq_device(dev, count, run_queue)) 4569 xpt_run_devq(dev->sim->devq); 4570 mtx_unlock(&devq->send_mtx); 4571 } 4572 4573 static int 4574 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4575 { 4576 4577 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4578 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4579 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4580 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4581 if (count > dev->ccbq.queue.qfrozen_cnt) { 4582 #ifdef INVARIANTS 4583 printf("xpt_release_devq(): requested %u > present %u\n", 4584 count, dev->ccbq.queue.qfrozen_cnt); 4585 #endif 4586 count = dev->ccbq.queue.qfrozen_cnt; 4587 } 4588 dev->ccbq.queue.qfrozen_cnt -= count; 4589 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4590 /* 4591 * No longer need to wait for a successful 4592 * command completion. 4593 */ 4594 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4595 /* 4596 * Remove any timeouts that might be scheduled 4597 * to release this queue. 4598 */ 4599 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4600 callout_stop(&dev->callout); 4601 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4602 } 4603 /* 4604 * Now that we are unfrozen schedule the 4605 * device so any pending transactions are 4606 * run. 4607 */ 4608 xpt_schedule_devq(dev->sim->devq, dev); 4609 } else 4610 run_queue = 0; 4611 return (run_queue); 4612 } 4613 4614 void 4615 xpt_release_simq(struct cam_sim *sim, int run_queue) 4616 { 4617 struct cam_devq *devq; 4618 4619 devq = sim->devq; 4620 mtx_lock(&devq->send_mtx); 4621 if (devq->send_queue.qfrozen_cnt <= 0) { 4622 #ifdef INVARIANTS 4623 printf("xpt_release_simq: requested 1 > present %u\n", 4624 devq->send_queue.qfrozen_cnt); 4625 #endif 4626 } else 4627 devq->send_queue.qfrozen_cnt--; 4628 if (devq->send_queue.qfrozen_cnt == 0) { 4629 /* 4630 * If there is a timeout scheduled to release this 4631 * sim queue, remove it. The queue frozen count is 4632 * already at 0. 4633 */ 4634 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4635 callout_stop(&sim->callout); 4636 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4637 } 4638 if (run_queue) { 4639 /* 4640 * Now that we are unfrozen run the send queue. 4641 */ 4642 xpt_run_devq(sim->devq); 4643 } 4644 } 4645 mtx_unlock(&devq->send_mtx); 4646 } 4647 4648 /* 4649 * XXX Appears to be unused. 4650 */ 4651 static void 4652 xpt_release_simq_timeout(void *arg) 4653 { 4654 struct cam_sim *sim; 4655 4656 sim = (struct cam_sim *)arg; 4657 xpt_release_simq(sim, /* run_queue */ TRUE); 4658 } 4659 4660 void 4661 xpt_done(union ccb *done_ccb) 4662 { 4663 struct cam_doneq *queue; 4664 int run, hash; 4665 4666 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4667 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4668 done_ccb->csio.bio != NULL) 4669 biotrack(done_ccb->csio.bio, __func__); 4670 #endif 4671 4672 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4673 ("xpt_done: func= %#x %s status %#x\n", 4674 done_ccb->ccb_h.func_code, 4675 xpt_action_name(done_ccb->ccb_h.func_code), 4676 done_ccb->ccb_h.status)); 4677 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4678 return; 4679 4680 /* Store the time the ccb was in the sim */ 4681 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4682 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4683 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4684 queue = &cam_doneqs[hash]; 4685 mtx_lock(&queue->cam_doneq_mtx); 4686 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4687 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4688 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4689 mtx_unlock(&queue->cam_doneq_mtx); 4690 if (run) 4691 wakeup(&queue->cam_doneq); 4692 } 4693 4694 void 4695 xpt_done_direct(union ccb *done_ccb) 4696 { 4697 4698 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4699 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4700 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4701 return; 4702 4703 /* Store the time the ccb was in the sim */ 4704 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4705 xpt_done_process(&done_ccb->ccb_h); 4706 } 4707 4708 union ccb * 4709 xpt_alloc_ccb() 4710 { 4711 union ccb *new_ccb; 4712 4713 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4714 return (new_ccb); 4715 } 4716 4717 union ccb * 4718 xpt_alloc_ccb_nowait() 4719 { 4720 union ccb *new_ccb; 4721 4722 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4723 return (new_ccb); 4724 } 4725 4726 void 4727 xpt_free_ccb(union ccb *free_ccb) 4728 { 4729 free(free_ccb, M_CAMCCB); 4730 } 4731 4732 4733 4734 /* Private XPT functions */ 4735 4736 /* 4737 * Get a CAM control block for the caller. Charge the structure to the device 4738 * referenced by the path. If we don't have sufficient resources to allocate 4739 * more ccbs, we return NULL. 4740 */ 4741 static union ccb * 4742 xpt_get_ccb_nowait(struct cam_periph *periph) 4743 { 4744 union ccb *new_ccb; 4745 4746 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4747 if (new_ccb == NULL) 4748 return (NULL); 4749 periph->periph_allocated++; 4750 cam_ccbq_take_opening(&periph->path->device->ccbq); 4751 return (new_ccb); 4752 } 4753 4754 static union ccb * 4755 xpt_get_ccb(struct cam_periph *periph) 4756 { 4757 union ccb *new_ccb; 4758 4759 cam_periph_unlock(periph); 4760 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4761 cam_periph_lock(periph); 4762 periph->periph_allocated++; 4763 cam_ccbq_take_opening(&periph->path->device->ccbq); 4764 return (new_ccb); 4765 } 4766 4767 union ccb * 4768 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4769 { 4770 struct ccb_hdr *ccb_h; 4771 4772 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4773 cam_periph_assert(periph, MA_OWNED); 4774 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4775 ccb_h->pinfo.priority != priority) { 4776 if (priority < periph->immediate_priority) { 4777 periph->immediate_priority = priority; 4778 xpt_run_allocq(periph, 0); 4779 } else 4780 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4781 "cgticb", 0); 4782 } 4783 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4784 return ((union ccb *)ccb_h); 4785 } 4786 4787 static void 4788 xpt_acquire_bus(struct cam_eb *bus) 4789 { 4790 4791 xpt_lock_buses(); 4792 bus->refcount++; 4793 xpt_unlock_buses(); 4794 } 4795 4796 static void 4797 xpt_release_bus(struct cam_eb *bus) 4798 { 4799 4800 xpt_lock_buses(); 4801 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4802 if (--bus->refcount > 0) { 4803 xpt_unlock_buses(); 4804 return; 4805 } 4806 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4807 xsoftc.bus_generation++; 4808 xpt_unlock_buses(); 4809 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4810 ("destroying bus, but target list is not empty")); 4811 cam_sim_release(bus->sim); 4812 mtx_destroy(&bus->eb_mtx); 4813 free(bus, M_CAMXPT); 4814 } 4815 4816 static struct cam_et * 4817 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4818 { 4819 struct cam_et *cur_target, *target; 4820 4821 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4822 mtx_assert(&bus->eb_mtx, MA_OWNED); 4823 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4824 M_NOWAIT|M_ZERO); 4825 if (target == NULL) 4826 return (NULL); 4827 4828 TAILQ_INIT(&target->ed_entries); 4829 target->bus = bus; 4830 target->target_id = target_id; 4831 target->refcount = 1; 4832 target->generation = 0; 4833 target->luns = NULL; 4834 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4835 timevalclear(&target->last_reset); 4836 /* 4837 * Hold a reference to our parent bus so it 4838 * will not go away before we do. 4839 */ 4840 bus->refcount++; 4841 4842 /* Insertion sort into our bus's target list */ 4843 cur_target = TAILQ_FIRST(&bus->et_entries); 4844 while (cur_target != NULL && cur_target->target_id < target_id) 4845 cur_target = TAILQ_NEXT(cur_target, links); 4846 if (cur_target != NULL) { 4847 TAILQ_INSERT_BEFORE(cur_target, target, links); 4848 } else { 4849 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4850 } 4851 bus->generation++; 4852 return (target); 4853 } 4854 4855 static void 4856 xpt_acquire_target(struct cam_et *target) 4857 { 4858 struct cam_eb *bus = target->bus; 4859 4860 mtx_lock(&bus->eb_mtx); 4861 target->refcount++; 4862 mtx_unlock(&bus->eb_mtx); 4863 } 4864 4865 static void 4866 xpt_release_target(struct cam_et *target) 4867 { 4868 struct cam_eb *bus = target->bus; 4869 4870 mtx_lock(&bus->eb_mtx); 4871 if (--target->refcount > 0) { 4872 mtx_unlock(&bus->eb_mtx); 4873 return; 4874 } 4875 TAILQ_REMOVE(&bus->et_entries, target, links); 4876 bus->generation++; 4877 mtx_unlock(&bus->eb_mtx); 4878 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4879 ("destroying target, but device list is not empty")); 4880 xpt_release_bus(bus); 4881 mtx_destroy(&target->luns_mtx); 4882 if (target->luns) 4883 free(target->luns, M_CAMXPT); 4884 free(target, M_CAMXPT); 4885 } 4886 4887 static struct cam_ed * 4888 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4889 lun_id_t lun_id) 4890 { 4891 struct cam_ed *device; 4892 4893 device = xpt_alloc_device(bus, target, lun_id); 4894 if (device == NULL) 4895 return (NULL); 4896 4897 device->mintags = 1; 4898 device->maxtags = 1; 4899 return (device); 4900 } 4901 4902 static void 4903 xpt_destroy_device(void *context, int pending) 4904 { 4905 struct cam_ed *device = context; 4906 4907 mtx_lock(&device->device_mtx); 4908 mtx_destroy(&device->device_mtx); 4909 free(device, M_CAMDEV); 4910 } 4911 4912 struct cam_ed * 4913 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4914 { 4915 struct cam_ed *cur_device, *device; 4916 struct cam_devq *devq; 4917 cam_status status; 4918 4919 mtx_assert(&bus->eb_mtx, MA_OWNED); 4920 /* Make space for us in the device queue on our bus */ 4921 devq = bus->sim->devq; 4922 mtx_lock(&devq->send_mtx); 4923 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4924 mtx_unlock(&devq->send_mtx); 4925 if (status != CAM_REQ_CMP) 4926 return (NULL); 4927 4928 device = (struct cam_ed *)malloc(sizeof(*device), 4929 M_CAMDEV, M_NOWAIT|M_ZERO); 4930 if (device == NULL) 4931 return (NULL); 4932 4933 cam_init_pinfo(&device->devq_entry); 4934 device->target = target; 4935 device->lun_id = lun_id; 4936 device->sim = bus->sim; 4937 if (cam_ccbq_init(&device->ccbq, 4938 bus->sim->max_dev_openings) != 0) { 4939 free(device, M_CAMDEV); 4940 return (NULL); 4941 } 4942 SLIST_INIT(&device->asyncs); 4943 SLIST_INIT(&device->periphs); 4944 device->generation = 0; 4945 device->flags = CAM_DEV_UNCONFIGURED; 4946 device->tag_delay_count = 0; 4947 device->tag_saved_openings = 0; 4948 device->refcount = 1; 4949 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4950 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4951 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4952 /* 4953 * Hold a reference to our parent bus so it 4954 * will not go away before we do. 4955 */ 4956 target->refcount++; 4957 4958 cur_device = TAILQ_FIRST(&target->ed_entries); 4959 while (cur_device != NULL && cur_device->lun_id < lun_id) 4960 cur_device = TAILQ_NEXT(cur_device, links); 4961 if (cur_device != NULL) 4962 TAILQ_INSERT_BEFORE(cur_device, device, links); 4963 else 4964 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4965 target->generation++; 4966 return (device); 4967 } 4968 4969 void 4970 xpt_acquire_device(struct cam_ed *device) 4971 { 4972 struct cam_eb *bus = device->target->bus; 4973 4974 mtx_lock(&bus->eb_mtx); 4975 device->refcount++; 4976 mtx_unlock(&bus->eb_mtx); 4977 } 4978 4979 void 4980 xpt_release_device(struct cam_ed *device) 4981 { 4982 struct cam_eb *bus = device->target->bus; 4983 struct cam_devq *devq; 4984 4985 mtx_lock(&bus->eb_mtx); 4986 if (--device->refcount > 0) { 4987 mtx_unlock(&bus->eb_mtx); 4988 return; 4989 } 4990 4991 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4992 device->target->generation++; 4993 mtx_unlock(&bus->eb_mtx); 4994 4995 /* Release our slot in the devq */ 4996 devq = bus->sim->devq; 4997 mtx_lock(&devq->send_mtx); 4998 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4999 mtx_unlock(&devq->send_mtx); 5000 5001 KASSERT(SLIST_EMPTY(&device->periphs), 5002 ("destroying device, but periphs list is not empty")); 5003 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 5004 ("destroying device while still queued for ccbs")); 5005 5006 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5007 callout_stop(&device->callout); 5008 5009 xpt_release_target(device->target); 5010 5011 cam_ccbq_fini(&device->ccbq); 5012 /* 5013 * Free allocated memory. free(9) does nothing if the 5014 * supplied pointer is NULL, so it is safe to call without 5015 * checking. 5016 */ 5017 free(device->supported_vpds, M_CAMXPT); 5018 free(device->device_id, M_CAMXPT); 5019 free(device->ext_inq, M_CAMXPT); 5020 free(device->physpath, M_CAMXPT); 5021 free(device->rcap_buf, M_CAMXPT); 5022 free(device->serial_num, M_CAMXPT); 5023 free(device->nvme_data, M_CAMXPT); 5024 free(device->nvme_cdata, M_CAMXPT); 5025 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 5026 } 5027 5028 u_int32_t 5029 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5030 { 5031 int result; 5032 struct cam_ed *dev; 5033 5034 dev = path->device; 5035 mtx_lock(&dev->sim->devq->send_mtx); 5036 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5037 mtx_unlock(&dev->sim->devq->send_mtx); 5038 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5039 || (dev->inq_flags & SID_CmdQue) != 0) 5040 dev->tag_saved_openings = newopenings; 5041 return (result); 5042 } 5043 5044 static struct cam_eb * 5045 xpt_find_bus(path_id_t path_id) 5046 { 5047 struct cam_eb *bus; 5048 5049 xpt_lock_buses(); 5050 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5051 bus != NULL; 5052 bus = TAILQ_NEXT(bus, links)) { 5053 if (bus->path_id == path_id) { 5054 bus->refcount++; 5055 break; 5056 } 5057 } 5058 xpt_unlock_buses(); 5059 return (bus); 5060 } 5061 5062 static struct cam_et * 5063 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5064 { 5065 struct cam_et *target; 5066 5067 mtx_assert(&bus->eb_mtx, MA_OWNED); 5068 for (target = TAILQ_FIRST(&bus->et_entries); 5069 target != NULL; 5070 target = TAILQ_NEXT(target, links)) { 5071 if (target->target_id == target_id) { 5072 target->refcount++; 5073 break; 5074 } 5075 } 5076 return (target); 5077 } 5078 5079 static struct cam_ed * 5080 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5081 { 5082 struct cam_ed *device; 5083 5084 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5085 for (device = TAILQ_FIRST(&target->ed_entries); 5086 device != NULL; 5087 device = TAILQ_NEXT(device, links)) { 5088 if (device->lun_id == lun_id) { 5089 device->refcount++; 5090 break; 5091 } 5092 } 5093 return (device); 5094 } 5095 5096 void 5097 xpt_start_tags(struct cam_path *path) 5098 { 5099 struct ccb_relsim crs; 5100 struct cam_ed *device; 5101 struct cam_sim *sim; 5102 int newopenings; 5103 5104 device = path->device; 5105 sim = path->bus->sim; 5106 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5107 xpt_freeze_devq(path, /*count*/1); 5108 device->inq_flags |= SID_CmdQue; 5109 if (device->tag_saved_openings != 0) 5110 newopenings = device->tag_saved_openings; 5111 else 5112 newopenings = min(device->maxtags, 5113 sim->max_tagged_dev_openings); 5114 xpt_dev_ccbq_resize(path, newopenings); 5115 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5116 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5117 crs.ccb_h.func_code = XPT_REL_SIMQ; 5118 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5119 crs.openings 5120 = crs.release_timeout 5121 = crs.qfrozen_cnt 5122 = 0; 5123 xpt_action((union ccb *)&crs); 5124 } 5125 5126 void 5127 xpt_stop_tags(struct cam_path *path) 5128 { 5129 struct ccb_relsim crs; 5130 struct cam_ed *device; 5131 struct cam_sim *sim; 5132 5133 device = path->device; 5134 sim = path->bus->sim; 5135 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5136 device->tag_delay_count = 0; 5137 xpt_freeze_devq(path, /*count*/1); 5138 device->inq_flags &= ~SID_CmdQue; 5139 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5140 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5141 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5142 crs.ccb_h.func_code = XPT_REL_SIMQ; 5143 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5144 crs.openings 5145 = crs.release_timeout 5146 = crs.qfrozen_cnt 5147 = 0; 5148 xpt_action((union ccb *)&crs); 5149 } 5150 5151 static void 5152 xpt_boot_delay(void *arg) 5153 { 5154 5155 xpt_release_boot(); 5156 } 5157 5158 static void 5159 xpt_config(void *arg) 5160 { 5161 /* 5162 * Now that interrupts are enabled, go find our devices 5163 */ 5164 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5165 printf("xpt_config: failed to create taskqueue thread.\n"); 5166 5167 /* Setup debugging path */ 5168 if (cam_dflags != CAM_DEBUG_NONE) { 5169 if (xpt_create_path(&cam_dpath, NULL, 5170 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5171 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5172 printf("xpt_config: xpt_create_path() failed for debug" 5173 " target %d:%d:%d, debugging disabled\n", 5174 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5175 cam_dflags = CAM_DEBUG_NONE; 5176 } 5177 } else 5178 cam_dpath = NULL; 5179 5180 periphdriver_init(1); 5181 xpt_hold_boot(); 5182 callout_init(&xsoftc.boot_callout, 1); 5183 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5184 xpt_boot_delay, NULL, 0); 5185 /* Fire up rescan thread. */ 5186 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5187 "cam", "scanner")) { 5188 printf("xpt_config: failed to create rescan thread.\n"); 5189 } 5190 } 5191 5192 void 5193 xpt_hold_boot(void) 5194 { 5195 xpt_lock_buses(); 5196 xsoftc.buses_to_config++; 5197 xpt_unlock_buses(); 5198 } 5199 5200 void 5201 xpt_release_boot(void) 5202 { 5203 xpt_lock_buses(); 5204 xsoftc.buses_to_config--; 5205 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5206 struct xpt_task *task; 5207 5208 xsoftc.buses_config_done = 1; 5209 xpt_unlock_buses(); 5210 /* Call manually because we don't have any buses */ 5211 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5212 if (task != NULL) { 5213 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5214 taskqueue_enqueue(taskqueue_thread, &task->task); 5215 } 5216 } else 5217 xpt_unlock_buses(); 5218 } 5219 5220 /* 5221 * If the given device only has one peripheral attached to it, and if that 5222 * peripheral is the passthrough driver, announce it. This insures that the 5223 * user sees some sort of announcement for every peripheral in their system. 5224 */ 5225 static int 5226 xptpassannouncefunc(struct cam_ed *device, void *arg) 5227 { 5228 struct cam_periph *periph; 5229 int i; 5230 5231 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5232 periph = SLIST_NEXT(periph, periph_links), i++); 5233 5234 periph = SLIST_FIRST(&device->periphs); 5235 if ((i == 1) 5236 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5237 xpt_announce_periph(periph, NULL); 5238 5239 return(1); 5240 } 5241 5242 static void 5243 xpt_finishconfig_task(void *context, int pending) 5244 { 5245 5246 periphdriver_init(2); 5247 /* 5248 * Check for devices with no "standard" peripheral driver 5249 * attached. For any devices like that, announce the 5250 * passthrough driver so the user will see something. 5251 */ 5252 if (!bootverbose) 5253 xpt_for_all_devices(xptpassannouncefunc, NULL); 5254 5255 /* Release our hook so that the boot can continue. */ 5256 config_intrhook_disestablish(&xsoftc.xpt_config_hook); 5257 5258 free(context, M_CAMXPT); 5259 } 5260 5261 cam_status 5262 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5263 struct cam_path *path) 5264 { 5265 struct ccb_setasync csa; 5266 cam_status status; 5267 int xptpath = 0; 5268 5269 if (path == NULL) { 5270 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5271 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5272 if (status != CAM_REQ_CMP) 5273 return (status); 5274 xpt_path_lock(path); 5275 xptpath = 1; 5276 } 5277 5278 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5279 csa.ccb_h.func_code = XPT_SASYNC_CB; 5280 csa.event_enable = event; 5281 csa.callback = cbfunc; 5282 csa.callback_arg = cbarg; 5283 xpt_action((union ccb *)&csa); 5284 status = csa.ccb_h.status; 5285 5286 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5287 ("xpt_register_async: func %p\n", cbfunc)); 5288 5289 if (xptpath) { 5290 xpt_path_unlock(path); 5291 xpt_free_path(path); 5292 } 5293 5294 if ((status == CAM_REQ_CMP) && 5295 (csa.event_enable & AC_FOUND_DEVICE)) { 5296 /* 5297 * Get this peripheral up to date with all 5298 * the currently existing devices. 5299 */ 5300 xpt_for_all_devices(xptsetasyncfunc, &csa); 5301 } 5302 if ((status == CAM_REQ_CMP) && 5303 (csa.event_enable & AC_PATH_REGISTERED)) { 5304 /* 5305 * Get this peripheral up to date with all 5306 * the currently existing buses. 5307 */ 5308 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5309 } 5310 5311 return (status); 5312 } 5313 5314 static void 5315 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5316 { 5317 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5318 5319 switch (work_ccb->ccb_h.func_code) { 5320 /* Common cases first */ 5321 case XPT_PATH_INQ: /* Path routing inquiry */ 5322 { 5323 struct ccb_pathinq *cpi; 5324 5325 cpi = &work_ccb->cpi; 5326 cpi->version_num = 1; /* XXX??? */ 5327 cpi->hba_inquiry = 0; 5328 cpi->target_sprt = 0; 5329 cpi->hba_misc = 0; 5330 cpi->hba_eng_cnt = 0; 5331 cpi->max_target = 0; 5332 cpi->max_lun = 0; 5333 cpi->initiator_id = 0; 5334 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5335 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5336 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5337 cpi->unit_number = sim->unit_number; 5338 cpi->bus_id = sim->bus_id; 5339 cpi->base_transfer_speed = 0; 5340 cpi->protocol = PROTO_UNSPECIFIED; 5341 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5342 cpi->transport = XPORT_UNSPECIFIED; 5343 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5344 cpi->ccb_h.status = CAM_REQ_CMP; 5345 xpt_done(work_ccb); 5346 break; 5347 } 5348 default: 5349 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5350 xpt_done(work_ccb); 5351 break; 5352 } 5353 } 5354 5355 /* 5356 * The xpt as a "controller" has no interrupt sources, so polling 5357 * is a no-op. 5358 */ 5359 static void 5360 xptpoll(struct cam_sim *sim) 5361 { 5362 } 5363 5364 void 5365 xpt_lock_buses(void) 5366 { 5367 mtx_lock(&xsoftc.xpt_topo_lock); 5368 } 5369 5370 void 5371 xpt_unlock_buses(void) 5372 { 5373 mtx_unlock(&xsoftc.xpt_topo_lock); 5374 } 5375 5376 struct mtx * 5377 xpt_path_mtx(struct cam_path *path) 5378 { 5379 5380 return (&path->device->device_mtx); 5381 } 5382 5383 static void 5384 xpt_done_process(struct ccb_hdr *ccb_h) 5385 { 5386 struct cam_sim *sim = NULL; 5387 struct cam_devq *devq = NULL; 5388 struct mtx *mtx = NULL; 5389 5390 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5391 struct ccb_scsiio *csio; 5392 5393 if (ccb_h->func_code == XPT_SCSI_IO) { 5394 csio = &((union ccb *)ccb_h)->csio; 5395 if (csio->bio != NULL) 5396 biotrack(csio->bio, __func__); 5397 } 5398 #endif 5399 5400 if (ccb_h->flags & CAM_HIGH_POWER) { 5401 struct highpowerlist *hphead; 5402 struct cam_ed *device; 5403 5404 mtx_lock(&xsoftc.xpt_highpower_lock); 5405 hphead = &xsoftc.highpowerq; 5406 5407 device = STAILQ_FIRST(hphead); 5408 5409 /* 5410 * Increment the count since this command is done. 5411 */ 5412 xsoftc.num_highpower++; 5413 5414 /* 5415 * Any high powered commands queued up? 5416 */ 5417 if (device != NULL) { 5418 5419 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5420 mtx_unlock(&xsoftc.xpt_highpower_lock); 5421 5422 mtx_lock(&device->sim->devq->send_mtx); 5423 xpt_release_devq_device(device, 5424 /*count*/1, /*runqueue*/TRUE); 5425 mtx_unlock(&device->sim->devq->send_mtx); 5426 } else 5427 mtx_unlock(&xsoftc.xpt_highpower_lock); 5428 } 5429 5430 /* 5431 * Insulate against a race where the periph is destroyed but CCBs are 5432 * still not all processed. This shouldn't happen, but allows us better 5433 * bug diagnostic when it does. 5434 */ 5435 if (ccb_h->path->bus) 5436 sim = ccb_h->path->bus->sim; 5437 5438 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5439 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); 5440 xpt_release_simq(sim, /*run_queue*/FALSE); 5441 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5442 } 5443 5444 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5445 && (ccb_h->status & CAM_DEV_QFRZN)) { 5446 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5447 ccb_h->status &= ~CAM_DEV_QFRZN; 5448 } 5449 5450 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5451 struct cam_ed *dev = ccb_h->path->device; 5452 5453 if (sim) 5454 devq = sim->devq; 5455 KASSERT(devq, ("Periph disappeared with request pending.")); 5456 5457 mtx_lock(&devq->send_mtx); 5458 devq->send_active--; 5459 devq->send_openings++; 5460 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5461 5462 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5463 && (dev->ccbq.dev_active == 0))) { 5464 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5465 xpt_release_devq_device(dev, /*count*/1, 5466 /*run_queue*/FALSE); 5467 } 5468 5469 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5470 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5471 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5472 xpt_release_devq_device(dev, /*count*/1, 5473 /*run_queue*/FALSE); 5474 } 5475 5476 if (!device_is_queued(dev)) 5477 (void)xpt_schedule_devq(devq, dev); 5478 xpt_run_devq(devq); 5479 mtx_unlock(&devq->send_mtx); 5480 5481 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5482 mtx = xpt_path_mtx(ccb_h->path); 5483 mtx_lock(mtx); 5484 5485 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5486 && (--dev->tag_delay_count == 0)) 5487 xpt_start_tags(ccb_h->path); 5488 } 5489 } 5490 5491 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5492 if (mtx == NULL) { 5493 mtx = xpt_path_mtx(ccb_h->path); 5494 mtx_lock(mtx); 5495 } 5496 } else { 5497 if (mtx != NULL) { 5498 mtx_unlock(mtx); 5499 mtx = NULL; 5500 } 5501 } 5502 5503 /* Call the peripheral driver's callback */ 5504 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5505 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5506 if (mtx != NULL) 5507 mtx_unlock(mtx); 5508 } 5509 5510 void 5511 xpt_done_td(void *arg) 5512 { 5513 struct cam_doneq *queue = arg; 5514 struct ccb_hdr *ccb_h; 5515 STAILQ_HEAD(, ccb_hdr) doneq; 5516 5517 STAILQ_INIT(&doneq); 5518 mtx_lock(&queue->cam_doneq_mtx); 5519 while (1) { 5520 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5521 queue->cam_doneq_sleep = 1; 5522 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5523 PRIBIO, "-", 0); 5524 queue->cam_doneq_sleep = 0; 5525 } 5526 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5527 mtx_unlock(&queue->cam_doneq_mtx); 5528 5529 THREAD_NO_SLEEPING(); 5530 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5531 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5532 xpt_done_process(ccb_h); 5533 } 5534 THREAD_SLEEPING_OK(); 5535 5536 mtx_lock(&queue->cam_doneq_mtx); 5537 } 5538 } 5539 5540 static void 5541 camisr_runqueue(void) 5542 { 5543 struct ccb_hdr *ccb_h; 5544 struct cam_doneq *queue; 5545 int i; 5546 5547 /* Process global queues. */ 5548 for (i = 0; i < cam_num_doneqs; i++) { 5549 queue = &cam_doneqs[i]; 5550 mtx_lock(&queue->cam_doneq_mtx); 5551 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5552 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5553 mtx_unlock(&queue->cam_doneq_mtx); 5554 xpt_done_process(ccb_h); 5555 mtx_lock(&queue->cam_doneq_mtx); 5556 } 5557 mtx_unlock(&queue->cam_doneq_mtx); 5558 } 5559 } 5560 5561 struct kv 5562 { 5563 uint32_t v; 5564 const char *name; 5565 }; 5566 5567 static struct kv map[] = { 5568 { XPT_NOOP, "XPT_NOOP" }, 5569 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5570 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5571 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5572 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5573 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5574 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5575 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5576 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5577 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5578 { XPT_DEBUG, "XPT_DEBUG" }, 5579 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5580 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5581 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5582 { XPT_ASYNC, "XPT_ASYNC" }, 5583 { XPT_ABORT, "XPT_ABORT" }, 5584 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5585 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5586 { XPT_TERM_IO, "XPT_TERM_IO" }, 5587 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5588 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5589 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5590 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5591 { XPT_ATA_IO, "XPT_ATA_IO" }, 5592 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5593 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5594 { XPT_NVME_IO, "XPT_NVME_IO" }, 5595 { XPT_MMC_IO, "XPT_MMC_IO" }, 5596 { XPT_SMP_IO, "XPT_SMP_IO" }, 5597 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5598 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5599 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5600 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5601 { XPT_EN_LUN, "XPT_EN_LUN" }, 5602 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5603 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5604 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5605 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5606 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5607 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5608 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5609 { 0, 0 } 5610 }; 5611 5612 const char * 5613 xpt_action_name(uint32_t action) 5614 { 5615 static char buffer[32]; /* Only for unknown messages -- racy */ 5616 struct kv *walker = map; 5617 5618 while (walker->name != NULL) { 5619 if (walker->v == action) 5620 return (walker->name); 5621 walker++; 5622 } 5623 5624 snprintf(buffer, sizeof(buffer), "%#x", action); 5625 return (buffer); 5626 } 5627