xref: /freebsd/sys/cam/cam_xpt.c (revision 86aa9539fef591a363b06a0ebd3aa7a07f4c1579)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/md_var.h>	/* geometry translation */
75 #include <machine/stdarg.h>	/* for xpt_print below */
76 
77 #include "opt_cam.h"
78 
79 /* Wild guess based on not wanting to grow the stack too much */
80 #define XPT_PRINT_MAXLEN	512
81 #ifdef PRINTF_BUFR_SIZE
82 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
83 #else
84 #define XPT_PRINT_LEN	128
85 #endif
86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
87 
88 /*
89  * This is the maximum number of high powered commands (e.g. start unit)
90  * that can be outstanding at a particular time.
91  */
92 #ifndef CAM_MAX_HIGHPOWER
93 #define CAM_MAX_HIGHPOWER  4
94 #endif
95 
96 /* Datastructures internal to the xpt layer */
97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
101 
102 /* Object for defering XPT actions to a taskqueue */
103 struct xpt_task {
104 	struct task	task;
105 	void		*data1;
106 	uintptr_t	data2;
107 };
108 
109 struct xpt_softc {
110 	uint32_t		xpt_generation;
111 
112 	/* number of high powered commands that can go through right now */
113 	struct mtx		xpt_highpower_lock;
114 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
115 	int			num_highpower;
116 
117 	/* queue for handling async rescan requests. */
118 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
119 	int buses_to_config;
120 	int buses_config_done;
121 	int announce_nosbuf;
122 
123 	/*
124 	 * Registered buses
125 	 *
126 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
127 	 * "buses" is preferred.
128 	 */
129 	TAILQ_HEAD(,cam_eb)	xpt_busses;
130 	u_int			bus_generation;
131 
132 	struct intr_config_hook	xpt_config_hook;
133 
134 	int			boot_delay;
135 	struct callout 		boot_callout;
136 
137 	struct mtx		xpt_topo_lock;
138 	struct mtx		xpt_lock;
139 	struct taskqueue	*xpt_taskq;
140 };
141 
142 typedef enum {
143 	DM_RET_COPY		= 0x01,
144 	DM_RET_FLAG_MASK	= 0x0f,
145 	DM_RET_NONE		= 0x00,
146 	DM_RET_STOP		= 0x10,
147 	DM_RET_DESCEND		= 0x20,
148 	DM_RET_ERROR		= 0x30,
149 	DM_RET_ACTION_MASK	= 0xf0
150 } dev_match_ret;
151 
152 typedef enum {
153 	XPT_DEPTH_BUS,
154 	XPT_DEPTH_TARGET,
155 	XPT_DEPTH_DEVICE,
156 	XPT_DEPTH_PERIPH
157 } xpt_traverse_depth;
158 
159 struct xpt_traverse_config {
160 	xpt_traverse_depth	depth;
161 	void			*tr_func;
162 	void			*tr_arg;
163 };
164 
165 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
166 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
167 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
168 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
169 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
170 
171 /* Transport layer configuration information */
172 static struct xpt_softc xsoftc;
173 
174 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
175 
176 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
177            &xsoftc.boot_delay, 0, "Bus registration wait time");
178 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
179 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
180 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
181 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
182 
183 struct cam_doneq {
184 	struct mtx_padalign	cam_doneq_mtx;
185 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
186 	int			cam_doneq_sleep;
187 };
188 
189 static struct cam_doneq cam_doneqs[MAXCPU];
190 static int cam_num_doneqs;
191 static struct proc *cam_proc;
192 
193 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
194            &cam_num_doneqs, 0, "Number of completion queues/threads");
195 
196 struct cam_periph *xpt_periph;
197 
198 static periph_init_t xpt_periph_init;
199 
200 static struct periph_driver xpt_driver =
201 {
202 	xpt_periph_init, "xpt",
203 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
204 	CAM_PERIPH_DRV_EARLY
205 };
206 
207 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
208 
209 static d_open_t xptopen;
210 static d_close_t xptclose;
211 static d_ioctl_t xptioctl;
212 static d_ioctl_t xptdoioctl;
213 
214 static struct cdevsw xpt_cdevsw = {
215 	.d_version =	D_VERSION,
216 	.d_flags =	0,
217 	.d_open =	xptopen,
218 	.d_close =	xptclose,
219 	.d_ioctl =	xptioctl,
220 	.d_name =	"xpt",
221 };
222 
223 /* Storage for debugging datastructures */
224 struct cam_path *cam_dpath;
225 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
226 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
227 	&cam_dflags, 0, "Enabled debug flags");
228 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
229 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
230 	&cam_debug_delay, 0, "Delay in us after each debug message");
231 
232 /* Our boot-time initialization hook */
233 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
234 
235 static moduledata_t cam_moduledata = {
236 	"cam",
237 	cam_module_event_handler,
238 	NULL
239 };
240 
241 static int	xpt_init(void *);
242 
243 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
244 MODULE_VERSION(cam, 1);
245 
246 
247 static void		xpt_async_bcast(struct async_list *async_head,
248 					u_int32_t async_code,
249 					struct cam_path *path,
250 					void *async_arg);
251 static path_id_t xptnextfreepathid(void);
252 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
253 static union ccb *xpt_get_ccb(struct cam_periph *periph);
254 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
255 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
256 static void	 xpt_run_allocq_task(void *context, int pending);
257 static void	 xpt_run_devq(struct cam_devq *devq);
258 static timeout_t xpt_release_devq_timeout;
259 static void	 xpt_release_simq_timeout(void *arg) __unused;
260 static void	 xpt_acquire_bus(struct cam_eb *bus);
261 static void	 xpt_release_bus(struct cam_eb *bus);
262 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
263 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
264 		    int run_queue);
265 static struct cam_et*
266 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
267 static void	 xpt_acquire_target(struct cam_et *target);
268 static void	 xpt_release_target(struct cam_et *target);
269 static struct cam_eb*
270 		 xpt_find_bus(path_id_t path_id);
271 static struct cam_et*
272 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
273 static struct cam_ed*
274 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
275 static void	 xpt_config(void *arg);
276 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
277 				 u_int32_t new_priority);
278 static xpt_devicefunc_t xptpassannouncefunc;
279 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
280 static void	 xptpoll(struct cam_sim *sim);
281 static void	 camisr_runqueue(void);
282 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
283 static void	 xpt_done_td(void *);
284 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
285 				    u_int num_patterns, struct cam_eb *bus);
286 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
287 				       u_int num_patterns,
288 				       struct cam_ed *device);
289 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
290 				       u_int num_patterns,
291 				       struct cam_periph *periph);
292 static xpt_busfunc_t	xptedtbusfunc;
293 static xpt_targetfunc_t	xptedttargetfunc;
294 static xpt_devicefunc_t	xptedtdevicefunc;
295 static xpt_periphfunc_t	xptedtperiphfunc;
296 static xpt_pdrvfunc_t	xptplistpdrvfunc;
297 static xpt_periphfunc_t	xptplistperiphfunc;
298 static int		xptedtmatch(struct ccb_dev_match *cdm);
299 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
300 static int		xptbustraverse(struct cam_eb *start_bus,
301 				       xpt_busfunc_t *tr_func, void *arg);
302 static int		xpttargettraverse(struct cam_eb *bus,
303 					  struct cam_et *start_target,
304 					  xpt_targetfunc_t *tr_func, void *arg);
305 static int		xptdevicetraverse(struct cam_et *target,
306 					  struct cam_ed *start_device,
307 					  xpt_devicefunc_t *tr_func, void *arg);
308 static int		xptperiphtraverse(struct cam_ed *device,
309 					  struct cam_periph *start_periph,
310 					  xpt_periphfunc_t *tr_func, void *arg);
311 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
312 					xpt_pdrvfunc_t *tr_func, void *arg);
313 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
314 					    struct cam_periph *start_periph,
315 					    xpt_periphfunc_t *tr_func,
316 					    void *arg);
317 static xpt_busfunc_t	xptdefbusfunc;
318 static xpt_targetfunc_t	xptdeftargetfunc;
319 static xpt_devicefunc_t	xptdefdevicefunc;
320 static xpt_periphfunc_t	xptdefperiphfunc;
321 static void		xpt_finishconfig_task(void *context, int pending);
322 static void		xpt_dev_async_default(u_int32_t async_code,
323 					      struct cam_eb *bus,
324 					      struct cam_et *target,
325 					      struct cam_ed *device,
326 					      void *async_arg);
327 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
328 						 struct cam_et *target,
329 						 lun_id_t lun_id);
330 static xpt_devicefunc_t	xptsetasyncfunc;
331 static xpt_busfunc_t	xptsetasyncbusfunc;
332 static cam_status	xptregister(struct cam_periph *periph,
333 				    void *arg);
334 static __inline int device_is_queued(struct cam_ed *device);
335 
336 static __inline int
337 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
338 {
339 	int	retval;
340 
341 	mtx_assert(&devq->send_mtx, MA_OWNED);
342 	if ((dev->ccbq.queue.entries > 0) &&
343 	    (dev->ccbq.dev_openings > 0) &&
344 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
345 		/*
346 		 * The priority of a device waiting for controller
347 		 * resources is that of the highest priority CCB
348 		 * enqueued.
349 		 */
350 		retval =
351 		    xpt_schedule_dev(&devq->send_queue,
352 				     &dev->devq_entry,
353 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
354 	} else {
355 		retval = 0;
356 	}
357 	return (retval);
358 }
359 
360 static __inline int
361 device_is_queued(struct cam_ed *device)
362 {
363 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
364 }
365 
366 static void
367 xpt_periph_init()
368 {
369 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
370 }
371 
372 static int
373 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
374 {
375 
376 	/*
377 	 * Only allow read-write access.
378 	 */
379 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
380 		return(EPERM);
381 
382 	/*
383 	 * We don't allow nonblocking access.
384 	 */
385 	if ((flags & O_NONBLOCK) != 0) {
386 		printf("%s: can't do nonblocking access\n", devtoname(dev));
387 		return(ENODEV);
388 	}
389 
390 	return(0);
391 }
392 
393 static int
394 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
395 {
396 
397 	return(0);
398 }
399 
400 /*
401  * Don't automatically grab the xpt softc lock here even though this is going
402  * through the xpt device.  The xpt device is really just a back door for
403  * accessing other devices and SIMs, so the right thing to do is to grab
404  * the appropriate SIM lock once the bus/SIM is located.
405  */
406 static int
407 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
408 {
409 	int error;
410 
411 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
412 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
413 	}
414 	return (error);
415 }
416 
417 static int
418 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
419 {
420 	int error;
421 
422 	error = 0;
423 
424 	switch(cmd) {
425 	/*
426 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
427 	 * to accept CCB types that don't quite make sense to send through a
428 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
429 	 * in the CAM spec.
430 	 */
431 	case CAMIOCOMMAND: {
432 		union ccb *ccb;
433 		union ccb *inccb;
434 		struct cam_eb *bus;
435 
436 		inccb = (union ccb *)addr;
437 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
438 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
439 			inccb->csio.bio = NULL;
440 #endif
441 
442 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
443 			return (EINVAL);
444 
445 		bus = xpt_find_bus(inccb->ccb_h.path_id);
446 		if (bus == NULL)
447 			return (EINVAL);
448 
449 		switch (inccb->ccb_h.func_code) {
450 		case XPT_SCAN_BUS:
451 		case XPT_RESET_BUS:
452 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
453 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
454 				xpt_release_bus(bus);
455 				return (EINVAL);
456 			}
457 			break;
458 		case XPT_SCAN_TGT:
459 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
460 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 				xpt_release_bus(bus);
462 				return (EINVAL);
463 			}
464 			break;
465 		default:
466 			break;
467 		}
468 
469 		switch(inccb->ccb_h.func_code) {
470 		case XPT_SCAN_BUS:
471 		case XPT_RESET_BUS:
472 		case XPT_PATH_INQ:
473 		case XPT_ENG_INQ:
474 		case XPT_SCAN_LUN:
475 		case XPT_SCAN_TGT:
476 
477 			ccb = xpt_alloc_ccb();
478 
479 			/*
480 			 * Create a path using the bus, target, and lun the
481 			 * user passed in.
482 			 */
483 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
484 					    inccb->ccb_h.path_id,
485 					    inccb->ccb_h.target_id,
486 					    inccb->ccb_h.target_lun) !=
487 					    CAM_REQ_CMP){
488 				error = EINVAL;
489 				xpt_free_ccb(ccb);
490 				break;
491 			}
492 			/* Ensure all of our fields are correct */
493 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
494 				      inccb->ccb_h.pinfo.priority);
495 			xpt_merge_ccb(ccb, inccb);
496 			xpt_path_lock(ccb->ccb_h.path);
497 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
498 			xpt_path_unlock(ccb->ccb_h.path);
499 			bcopy(ccb, inccb, sizeof(union ccb));
500 			xpt_free_path(ccb->ccb_h.path);
501 			xpt_free_ccb(ccb);
502 			break;
503 
504 		case XPT_DEBUG: {
505 			union ccb ccb;
506 
507 			/*
508 			 * This is an immediate CCB, so it's okay to
509 			 * allocate it on the stack.
510 			 */
511 
512 			/*
513 			 * Create a path using the bus, target, and lun the
514 			 * user passed in.
515 			 */
516 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
517 					    inccb->ccb_h.path_id,
518 					    inccb->ccb_h.target_id,
519 					    inccb->ccb_h.target_lun) !=
520 					    CAM_REQ_CMP){
521 				error = EINVAL;
522 				break;
523 			}
524 			/* Ensure all of our fields are correct */
525 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
526 				      inccb->ccb_h.pinfo.priority);
527 			xpt_merge_ccb(&ccb, inccb);
528 			xpt_action(&ccb);
529 			bcopy(&ccb, inccb, sizeof(union ccb));
530 			xpt_free_path(ccb.ccb_h.path);
531 			break;
532 
533 		}
534 		case XPT_DEV_MATCH: {
535 			struct cam_periph_map_info mapinfo;
536 			struct cam_path *old_path;
537 
538 			/*
539 			 * We can't deal with physical addresses for this
540 			 * type of transaction.
541 			 */
542 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
543 			    CAM_DATA_VADDR) {
544 				error = EINVAL;
545 				break;
546 			}
547 
548 			/*
549 			 * Save this in case the caller had it set to
550 			 * something in particular.
551 			 */
552 			old_path = inccb->ccb_h.path;
553 
554 			/*
555 			 * We really don't need a path for the matching
556 			 * code.  The path is needed because of the
557 			 * debugging statements in xpt_action().  They
558 			 * assume that the CCB has a valid path.
559 			 */
560 			inccb->ccb_h.path = xpt_periph->path;
561 
562 			bzero(&mapinfo, sizeof(mapinfo));
563 
564 			/*
565 			 * Map the pattern and match buffers into kernel
566 			 * virtual address space.
567 			 */
568 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
569 
570 			if (error) {
571 				inccb->ccb_h.path = old_path;
572 				break;
573 			}
574 
575 			/*
576 			 * This is an immediate CCB, we can send it on directly.
577 			 */
578 			xpt_action(inccb);
579 
580 			/*
581 			 * Map the buffers back into user space.
582 			 */
583 			cam_periph_unmapmem(inccb, &mapinfo);
584 
585 			inccb->ccb_h.path = old_path;
586 
587 			error = 0;
588 			break;
589 		}
590 		default:
591 			error = ENOTSUP;
592 			break;
593 		}
594 		xpt_release_bus(bus);
595 		break;
596 	}
597 	/*
598 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
599 	 * with the periphal driver name and unit name filled in.  The other
600 	 * fields don't really matter as input.  The passthrough driver name
601 	 * ("pass"), and unit number are passed back in the ccb.  The current
602 	 * device generation number, and the index into the device peripheral
603 	 * driver list, and the status are also passed back.  Note that
604 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
605 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
606 	 * (or rather should be) impossible for the device peripheral driver
607 	 * list to change since we look at the whole thing in one pass, and
608 	 * we do it with lock protection.
609 	 *
610 	 */
611 	case CAMGETPASSTHRU: {
612 		union ccb *ccb;
613 		struct cam_periph *periph;
614 		struct periph_driver **p_drv;
615 		char   *name;
616 		u_int unit;
617 		int base_periph_found;
618 
619 		ccb = (union ccb *)addr;
620 		unit = ccb->cgdl.unit_number;
621 		name = ccb->cgdl.periph_name;
622 		base_periph_found = 0;
623 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
624 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
625 			ccb->csio.bio = NULL;
626 #endif
627 
628 		/*
629 		 * Sanity check -- make sure we don't get a null peripheral
630 		 * driver name.
631 		 */
632 		if (*ccb->cgdl.periph_name == '\0') {
633 			error = EINVAL;
634 			break;
635 		}
636 
637 		/* Keep the list from changing while we traverse it */
638 		xpt_lock_buses();
639 
640 		/* first find our driver in the list of drivers */
641 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
642 			if (strcmp((*p_drv)->driver_name, name) == 0)
643 				break;
644 
645 		if (*p_drv == NULL) {
646 			xpt_unlock_buses();
647 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
648 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
649 			*ccb->cgdl.periph_name = '\0';
650 			ccb->cgdl.unit_number = 0;
651 			error = ENOENT;
652 			break;
653 		}
654 
655 		/*
656 		 * Run through every peripheral instance of this driver
657 		 * and check to see whether it matches the unit passed
658 		 * in by the user.  If it does, get out of the loops and
659 		 * find the passthrough driver associated with that
660 		 * peripheral driver.
661 		 */
662 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
663 		     periph = TAILQ_NEXT(periph, unit_links)) {
664 
665 			if (periph->unit_number == unit)
666 				break;
667 		}
668 		/*
669 		 * If we found the peripheral driver that the user passed
670 		 * in, go through all of the peripheral drivers for that
671 		 * particular device and look for a passthrough driver.
672 		 */
673 		if (periph != NULL) {
674 			struct cam_ed *device;
675 			int i;
676 
677 			base_periph_found = 1;
678 			device = periph->path->device;
679 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
680 			     periph != NULL;
681 			     periph = SLIST_NEXT(periph, periph_links), i++) {
682 				/*
683 				 * Check to see whether we have a
684 				 * passthrough device or not.
685 				 */
686 				if (strcmp(periph->periph_name, "pass") == 0) {
687 					/*
688 					 * Fill in the getdevlist fields.
689 					 */
690 					strlcpy(ccb->cgdl.periph_name,
691 					       periph->periph_name,
692 					       sizeof(ccb->cgdl.periph_name));
693 					ccb->cgdl.unit_number =
694 						periph->unit_number;
695 					if (SLIST_NEXT(periph, periph_links))
696 						ccb->cgdl.status =
697 							CAM_GDEVLIST_MORE_DEVS;
698 					else
699 						ccb->cgdl.status =
700 						       CAM_GDEVLIST_LAST_DEVICE;
701 					ccb->cgdl.generation =
702 						device->generation;
703 					ccb->cgdl.index = i;
704 					/*
705 					 * Fill in some CCB header fields
706 					 * that the user may want.
707 					 */
708 					ccb->ccb_h.path_id =
709 						periph->path->bus->path_id;
710 					ccb->ccb_h.target_id =
711 						periph->path->target->target_id;
712 					ccb->ccb_h.target_lun =
713 						periph->path->device->lun_id;
714 					ccb->ccb_h.status = CAM_REQ_CMP;
715 					break;
716 				}
717 			}
718 		}
719 
720 		/*
721 		 * If the periph is null here, one of two things has
722 		 * happened.  The first possibility is that we couldn't
723 		 * find the unit number of the particular peripheral driver
724 		 * that the user is asking about.  e.g. the user asks for
725 		 * the passthrough driver for "da11".  We find the list of
726 		 * "da" peripherals all right, but there is no unit 11.
727 		 * The other possibility is that we went through the list
728 		 * of peripheral drivers attached to the device structure,
729 		 * but didn't find one with the name "pass".  Either way,
730 		 * we return ENOENT, since we couldn't find something.
731 		 */
732 		if (periph == NULL) {
733 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
734 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
735 			*ccb->cgdl.periph_name = '\0';
736 			ccb->cgdl.unit_number = 0;
737 			error = ENOENT;
738 			/*
739 			 * It is unfortunate that this is even necessary,
740 			 * but there are many, many clueless users out there.
741 			 * If this is true, the user is looking for the
742 			 * passthrough driver, but doesn't have one in his
743 			 * kernel.
744 			 */
745 			if (base_periph_found == 1) {
746 				printf("xptioctl: pass driver is not in the "
747 				       "kernel\n");
748 				printf("xptioctl: put \"device pass\" in "
749 				       "your kernel config file\n");
750 			}
751 		}
752 		xpt_unlock_buses();
753 		break;
754 		}
755 	default:
756 		error = ENOTTY;
757 		break;
758 	}
759 
760 	return(error);
761 }
762 
763 static int
764 cam_module_event_handler(module_t mod, int what, void *arg)
765 {
766 	int error;
767 
768 	switch (what) {
769 	case MOD_LOAD:
770 		if ((error = xpt_init(NULL)) != 0)
771 			return (error);
772 		break;
773 	case MOD_UNLOAD:
774 		return EBUSY;
775 	default:
776 		return EOPNOTSUPP;
777 	}
778 
779 	return 0;
780 }
781 
782 static struct xpt_proto *
783 xpt_proto_find(cam_proto proto)
784 {
785 	struct xpt_proto **pp;
786 
787 	SET_FOREACH(pp, cam_xpt_proto_set) {
788 		if ((*pp)->proto == proto)
789 			return *pp;
790 	}
791 
792 	return NULL;
793 }
794 
795 static void
796 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
797 {
798 
799 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
800 		xpt_free_path(done_ccb->ccb_h.path);
801 		xpt_free_ccb(done_ccb);
802 	} else {
803 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
804 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
805 	}
806 	xpt_release_boot();
807 }
808 
809 /* thread to handle bus rescans */
810 static void
811 xpt_scanner_thread(void *dummy)
812 {
813 	union ccb	*ccb;
814 	struct cam_path	 path;
815 
816 	xpt_lock_buses();
817 	for (;;) {
818 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
819 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
820 			       "-", 0);
821 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
822 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
823 			xpt_unlock_buses();
824 
825 			/*
826 			 * Since lock can be dropped inside and path freed
827 			 * by completion callback even before return here,
828 			 * take our own path copy for reference.
829 			 */
830 			xpt_copy_path(&path, ccb->ccb_h.path);
831 			xpt_path_lock(&path);
832 			xpt_action(ccb);
833 			xpt_path_unlock(&path);
834 			xpt_release_path(&path);
835 
836 			xpt_lock_buses();
837 		}
838 	}
839 }
840 
841 void
842 xpt_rescan(union ccb *ccb)
843 {
844 	struct ccb_hdr *hdr;
845 
846 	/* Prepare request */
847 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
848 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
849 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
850 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
851 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
852 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
853 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
854 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
855 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
856 	else {
857 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
858 		xpt_free_path(ccb->ccb_h.path);
859 		xpt_free_ccb(ccb);
860 		return;
861 	}
862 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
863 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
864  		xpt_action_name(ccb->ccb_h.func_code)));
865 
866 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
867 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
868 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
869 	/* Don't make duplicate entries for the same paths. */
870 	xpt_lock_buses();
871 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
872 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
873 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
874 				wakeup(&xsoftc.ccb_scanq);
875 				xpt_unlock_buses();
876 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
877 				xpt_free_path(ccb->ccb_h.path);
878 				xpt_free_ccb(ccb);
879 				return;
880 			}
881 		}
882 	}
883 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
884 	xsoftc.buses_to_config++;
885 	wakeup(&xsoftc.ccb_scanq);
886 	xpt_unlock_buses();
887 }
888 
889 /* Functions accessed by the peripheral drivers */
890 static int
891 xpt_init(void *dummy)
892 {
893 	struct cam_sim *xpt_sim;
894 	struct cam_path *path;
895 	struct cam_devq *devq;
896 	cam_status status;
897 	int error, i;
898 
899 	TAILQ_INIT(&xsoftc.xpt_busses);
900 	TAILQ_INIT(&xsoftc.ccb_scanq);
901 	STAILQ_INIT(&xsoftc.highpowerq);
902 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
903 
904 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
905 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
906 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
907 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
908 
909 #ifdef CAM_BOOT_DELAY
910 	/*
911 	 * Override this value at compile time to assist our users
912 	 * who don't use loader to boot a kernel.
913 	 */
914 	xsoftc.boot_delay = CAM_BOOT_DELAY;
915 #endif
916 	/*
917 	 * The xpt layer is, itself, the equivalent of a SIM.
918 	 * Allow 16 ccbs in the ccb pool for it.  This should
919 	 * give decent parallelism when we probe buses and
920 	 * perform other XPT functions.
921 	 */
922 	devq = cam_simq_alloc(16);
923 	xpt_sim = cam_sim_alloc(xptaction,
924 				xptpoll,
925 				"xpt",
926 				/*softc*/NULL,
927 				/*unit*/0,
928 				/*mtx*/&xsoftc.xpt_lock,
929 				/*max_dev_transactions*/0,
930 				/*max_tagged_dev_transactions*/0,
931 				devq);
932 	if (xpt_sim == NULL)
933 		return (ENOMEM);
934 
935 	mtx_lock(&xsoftc.xpt_lock);
936 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
937 		mtx_unlock(&xsoftc.xpt_lock);
938 		printf("xpt_init: xpt_bus_register failed with status %#x,"
939 		       " failing attach\n", status);
940 		return (EINVAL);
941 	}
942 	mtx_unlock(&xsoftc.xpt_lock);
943 
944 	/*
945 	 * Looking at the XPT from the SIM layer, the XPT is
946 	 * the equivalent of a peripheral driver.  Allocate
947 	 * a peripheral driver entry for us.
948 	 */
949 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
950 				      CAM_TARGET_WILDCARD,
951 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
952 		printf("xpt_init: xpt_create_path failed with status %#x,"
953 		       " failing attach\n", status);
954 		return (EINVAL);
955 	}
956 	xpt_path_lock(path);
957 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
958 			 path, NULL, 0, xpt_sim);
959 	xpt_path_unlock(path);
960 	xpt_free_path(path);
961 
962 	if (cam_num_doneqs < 1)
963 		cam_num_doneqs = 1 + mp_ncpus / 6;
964 	else if (cam_num_doneqs > MAXCPU)
965 		cam_num_doneqs = MAXCPU;
966 	for (i = 0; i < cam_num_doneqs; i++) {
967 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
968 		    MTX_DEF);
969 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
970 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
971 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
972 		if (error != 0) {
973 			cam_num_doneqs = i;
974 			break;
975 		}
976 	}
977 	if (cam_num_doneqs < 1) {
978 		printf("xpt_init: Cannot init completion queues "
979 		       "- failing attach\n");
980 		return (ENOMEM);
981 	}
982 	/*
983 	 * Register a callback for when interrupts are enabled.
984 	 */
985 	xsoftc.xpt_config_hook.ich_func = xpt_config;
986 	if (config_intrhook_establish(&xsoftc.xpt_config_hook) != 0) {
987 		printf("xpt_init: config_intrhook_establish failed "
988 		       "- failing attach\n");
989 	}
990 
991 	return (0);
992 }
993 
994 static cam_status
995 xptregister(struct cam_periph *periph, void *arg)
996 {
997 	struct cam_sim *xpt_sim;
998 
999 	if (periph == NULL) {
1000 		printf("xptregister: periph was NULL!!\n");
1001 		return(CAM_REQ_CMP_ERR);
1002 	}
1003 
1004 	xpt_sim = (struct cam_sim *)arg;
1005 	xpt_sim->softc = periph;
1006 	xpt_periph = periph;
1007 	periph->softc = NULL;
1008 
1009 	return(CAM_REQ_CMP);
1010 }
1011 
1012 int32_t
1013 xpt_add_periph(struct cam_periph *periph)
1014 {
1015 	struct cam_ed *device;
1016 	int32_t	 status;
1017 
1018 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1019 	device = periph->path->device;
1020 	status = CAM_REQ_CMP;
1021 	if (device != NULL) {
1022 		mtx_lock(&device->target->bus->eb_mtx);
1023 		device->generation++;
1024 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1025 		mtx_unlock(&device->target->bus->eb_mtx);
1026 		atomic_add_32(&xsoftc.xpt_generation, 1);
1027 	}
1028 
1029 	return (status);
1030 }
1031 
1032 void
1033 xpt_remove_periph(struct cam_periph *periph)
1034 {
1035 	struct cam_ed *device;
1036 
1037 	device = periph->path->device;
1038 	if (device != NULL) {
1039 		mtx_lock(&device->target->bus->eb_mtx);
1040 		device->generation++;
1041 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1042 		mtx_unlock(&device->target->bus->eb_mtx);
1043 		atomic_add_32(&xsoftc.xpt_generation, 1);
1044 	}
1045 }
1046 
1047 
1048 void
1049 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1050 {
1051 	struct	cam_path *path = periph->path;
1052 	struct  xpt_proto *proto;
1053 
1054 	cam_periph_assert(periph, MA_OWNED);
1055 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1056 
1057 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1058 	       periph->periph_name, periph->unit_number,
1059 	       path->bus->sim->sim_name,
1060 	       path->bus->sim->unit_number,
1061 	       path->bus->sim->bus_id,
1062 	       path->bus->path_id,
1063 	       path->target->target_id,
1064 	       (uintmax_t)path->device->lun_id);
1065 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1066 	proto = xpt_proto_find(path->device->protocol);
1067 	if (proto)
1068 		proto->ops->announce(path->device);
1069 	else
1070 		printf("%s%d: Unknown protocol device %d\n",
1071 		    periph->periph_name, periph->unit_number,
1072 		    path->device->protocol);
1073 	if (path->device->serial_num_len > 0) {
1074 		/* Don't wrap the screen  - print only the first 60 chars */
1075 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1076 		       periph->unit_number, path->device->serial_num);
1077 	}
1078 	/* Announce transport details. */
1079 	path->bus->xport->ops->announce(periph);
1080 	/* Announce command queueing. */
1081 	if (path->device->inq_flags & SID_CmdQue
1082 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1083 		printf("%s%d: Command Queueing enabled\n",
1084 		       periph->periph_name, periph->unit_number);
1085 	}
1086 	/* Announce caller's details if they've passed in. */
1087 	if (announce_string != NULL)
1088 		printf("%s%d: %s\n", periph->periph_name,
1089 		       periph->unit_number, announce_string);
1090 }
1091 
1092 void
1093 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1094     char *announce_string)
1095 {
1096 	struct	cam_path *path = periph->path;
1097 	struct  xpt_proto *proto;
1098 
1099 	cam_periph_assert(periph, MA_OWNED);
1100 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1101 
1102 	/* Fall back to the non-sbuf method if necessary */
1103 	if (xsoftc.announce_nosbuf != 0) {
1104 		xpt_announce_periph(periph, announce_string);
1105 		return;
1106 	}
1107 	proto = xpt_proto_find(path->device->protocol);
1108 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1109 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1110 		xpt_announce_periph(periph, announce_string);
1111 		return;
1112 	}
1113 
1114 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1115 	    periph->periph_name, periph->unit_number,
1116 	    path->bus->sim->sim_name,
1117 	    path->bus->sim->unit_number,
1118 	    path->bus->sim->bus_id,
1119 	    path->bus->path_id,
1120 	    path->target->target_id,
1121 	    (uintmax_t)path->device->lun_id);
1122 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1123 
1124 	if (proto)
1125 		proto->ops->announce_sbuf(path->device, sb);
1126 	else
1127 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1128 		    periph->periph_name, periph->unit_number,
1129 		    path->device->protocol);
1130 	if (path->device->serial_num_len > 0) {
1131 		/* Don't wrap the screen  - print only the first 60 chars */
1132 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1133 		    periph->periph_name, periph->unit_number,
1134 		    path->device->serial_num);
1135 	}
1136 	/* Announce transport details. */
1137 	path->bus->xport->ops->announce_sbuf(periph, sb);
1138 	/* Announce command queueing. */
1139 	if (path->device->inq_flags & SID_CmdQue
1140 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1141 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1142 		    periph->periph_name, periph->unit_number);
1143 	}
1144 	/* Announce caller's details if they've passed in. */
1145 	if (announce_string != NULL)
1146 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1147 		    periph->unit_number, announce_string);
1148 }
1149 
1150 void
1151 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1152 {
1153 	if (quirks != 0) {
1154 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1155 		    periph->unit_number, quirks, bit_string);
1156 	}
1157 }
1158 
1159 void
1160 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1161 			 int quirks, char *bit_string)
1162 {
1163 	if (xsoftc.announce_nosbuf != 0) {
1164 		xpt_announce_quirks(periph, quirks, bit_string);
1165 		return;
1166 	}
1167 
1168 	if (quirks != 0) {
1169 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1170 		    periph->unit_number, quirks, bit_string);
1171 	}
1172 }
1173 
1174 void
1175 xpt_denounce_periph(struct cam_periph *periph)
1176 {
1177 	struct	cam_path *path = periph->path;
1178 	struct  xpt_proto *proto;
1179 
1180 	cam_periph_assert(periph, MA_OWNED);
1181 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1182 	       periph->periph_name, periph->unit_number,
1183 	       path->bus->sim->sim_name,
1184 	       path->bus->sim->unit_number,
1185 	       path->bus->sim->bus_id,
1186 	       path->bus->path_id,
1187 	       path->target->target_id,
1188 	       (uintmax_t)path->device->lun_id);
1189 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1190 	proto = xpt_proto_find(path->device->protocol);
1191 	if (proto)
1192 		proto->ops->denounce(path->device);
1193 	else
1194 		printf("%s%d: Unknown protocol device %d\n",
1195 		    periph->periph_name, periph->unit_number,
1196 		    path->device->protocol);
1197 	if (path->device->serial_num_len > 0)
1198 		printf(" s/n %.60s", path->device->serial_num);
1199 	printf(" detached\n");
1200 }
1201 
1202 void
1203 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1204 {
1205 	struct cam_path *path = periph->path;
1206 	struct xpt_proto *proto;
1207 
1208 	cam_periph_assert(periph, MA_OWNED);
1209 
1210 	/* Fall back to the non-sbuf method if necessary */
1211 	if (xsoftc.announce_nosbuf != 0) {
1212 		xpt_denounce_periph(periph);
1213 		return;
1214 	}
1215 	proto = xpt_proto_find(path->device->protocol);
1216 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1217 		xpt_denounce_periph(periph);
1218 		return;
1219 	}
1220 
1221 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1222 	    periph->periph_name, periph->unit_number,
1223 	    path->bus->sim->sim_name,
1224 	    path->bus->sim->unit_number,
1225 	    path->bus->sim->bus_id,
1226 	    path->bus->path_id,
1227 	    path->target->target_id,
1228 	    (uintmax_t)path->device->lun_id);
1229 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1230 
1231 	if (proto)
1232 		proto->ops->denounce_sbuf(path->device, sb);
1233 	else
1234 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1235 		    periph->periph_name, periph->unit_number,
1236 		    path->device->protocol);
1237 	if (path->device->serial_num_len > 0)
1238 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1239 	sbuf_printf(sb, " detached\n");
1240 }
1241 
1242 int
1243 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1244 {
1245 	int ret = -1, l, o;
1246 	struct ccb_dev_advinfo cdai;
1247 	struct scsi_vpd_device_id *did;
1248 	struct scsi_vpd_id_descriptor *idd;
1249 
1250 	xpt_path_assert(path, MA_OWNED);
1251 
1252 	memset(&cdai, 0, sizeof(cdai));
1253 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1254 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1255 	cdai.flags = CDAI_FLAG_NONE;
1256 	cdai.bufsiz = len;
1257 	cdai.buf = buf;
1258 
1259 	if (!strcmp(attr, "GEOM::ident"))
1260 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1261 	else if (!strcmp(attr, "GEOM::physpath"))
1262 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1263 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1264 		 strcmp(attr, "GEOM::lunname") == 0) {
1265 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1266 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1267 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1268 		if (cdai.buf == NULL) {
1269 			ret = ENOMEM;
1270 			goto out;
1271 		}
1272 	} else
1273 		goto out;
1274 
1275 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1276 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1277 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1278 	if (cdai.provsiz == 0)
1279 		goto out;
1280 	switch(cdai.buftype) {
1281 	case CDAI_TYPE_SCSI_DEVID:
1282 		did = (struct scsi_vpd_device_id *)cdai.buf;
1283 		if (strcmp(attr, "GEOM::lunid") == 0) {
1284 			idd = scsi_get_devid(did, cdai.provsiz,
1285 			    scsi_devid_is_lun_naa);
1286 			if (idd == NULL)
1287 				idd = scsi_get_devid(did, cdai.provsiz,
1288 				    scsi_devid_is_lun_eui64);
1289 			if (idd == NULL)
1290 				idd = scsi_get_devid(did, cdai.provsiz,
1291 				    scsi_devid_is_lun_uuid);
1292 			if (idd == NULL)
1293 				idd = scsi_get_devid(did, cdai.provsiz,
1294 				    scsi_devid_is_lun_md5);
1295 		} else
1296 			idd = NULL;
1297 
1298 		if (idd == NULL)
1299 			idd = scsi_get_devid(did, cdai.provsiz,
1300 			    scsi_devid_is_lun_t10);
1301 		if (idd == NULL)
1302 			idd = scsi_get_devid(did, cdai.provsiz,
1303 			    scsi_devid_is_lun_name);
1304 		if (idd == NULL)
1305 			break;
1306 
1307 		ret = 0;
1308 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1309 		    SVPD_ID_CODESET_ASCII) {
1310 			if (idd->length < len) {
1311 				for (l = 0; l < idd->length; l++)
1312 					buf[l] = idd->identifier[l] ?
1313 					    idd->identifier[l] : ' ';
1314 				buf[l] = 0;
1315 			} else
1316 				ret = EFAULT;
1317 			break;
1318 		}
1319 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1320 		    SVPD_ID_CODESET_UTF8) {
1321 			l = strnlen(idd->identifier, idd->length);
1322 			if (l < len) {
1323 				bcopy(idd->identifier, buf, l);
1324 				buf[l] = 0;
1325 			} else
1326 				ret = EFAULT;
1327 			break;
1328 		}
1329 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1330 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1331 			if ((idd->length - 2) * 2 + 4 >= len) {
1332 				ret = EFAULT;
1333 				break;
1334 			}
1335 			for (l = 2, o = 0; l < idd->length; l++) {
1336 				if (l == 6 || l == 8 || l == 10 || l == 12)
1337 				    o += sprintf(buf + o, "-");
1338 				o += sprintf(buf + o, "%02x",
1339 				    idd->identifier[l]);
1340 			}
1341 			break;
1342 		}
1343 		if (idd->length * 2 < len) {
1344 			for (l = 0; l < idd->length; l++)
1345 				sprintf(buf + l * 2, "%02x",
1346 				    idd->identifier[l]);
1347 		} else
1348 				ret = EFAULT;
1349 		break;
1350 	default:
1351 		if (cdai.provsiz < len) {
1352 			cdai.buf[cdai.provsiz] = 0;
1353 			ret = 0;
1354 		} else
1355 			ret = EFAULT;
1356 		break;
1357 	}
1358 
1359 out:
1360 	if ((char *)cdai.buf != buf)
1361 		free(cdai.buf, M_CAMXPT);
1362 	return ret;
1363 }
1364 
1365 static dev_match_ret
1366 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1367 	    struct cam_eb *bus)
1368 {
1369 	dev_match_ret retval;
1370 	u_int i;
1371 
1372 	retval = DM_RET_NONE;
1373 
1374 	/*
1375 	 * If we aren't given something to match against, that's an error.
1376 	 */
1377 	if (bus == NULL)
1378 		return(DM_RET_ERROR);
1379 
1380 	/*
1381 	 * If there are no match entries, then this bus matches no
1382 	 * matter what.
1383 	 */
1384 	if ((patterns == NULL) || (num_patterns == 0))
1385 		return(DM_RET_DESCEND | DM_RET_COPY);
1386 
1387 	for (i = 0; i < num_patterns; i++) {
1388 		struct bus_match_pattern *cur_pattern;
1389 
1390 		/*
1391 		 * If the pattern in question isn't for a bus node, we
1392 		 * aren't interested.  However, we do indicate to the
1393 		 * calling routine that we should continue descending the
1394 		 * tree, since the user wants to match against lower-level
1395 		 * EDT elements.
1396 		 */
1397 		if (patterns[i].type != DEV_MATCH_BUS) {
1398 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1399 				retval |= DM_RET_DESCEND;
1400 			continue;
1401 		}
1402 
1403 		cur_pattern = &patterns[i].pattern.bus_pattern;
1404 
1405 		/*
1406 		 * If they want to match any bus node, we give them any
1407 		 * device node.
1408 		 */
1409 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1410 			/* set the copy flag */
1411 			retval |= DM_RET_COPY;
1412 
1413 			/*
1414 			 * If we've already decided on an action, go ahead
1415 			 * and return.
1416 			 */
1417 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1418 				return(retval);
1419 		}
1420 
1421 		/*
1422 		 * Not sure why someone would do this...
1423 		 */
1424 		if (cur_pattern->flags == BUS_MATCH_NONE)
1425 			continue;
1426 
1427 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1428 		 && (cur_pattern->path_id != bus->path_id))
1429 			continue;
1430 
1431 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1432 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1433 			continue;
1434 
1435 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1436 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1437 			continue;
1438 
1439 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1440 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1441 			     DEV_IDLEN) != 0))
1442 			continue;
1443 
1444 		/*
1445 		 * If we get to this point, the user definitely wants
1446 		 * information on this bus.  So tell the caller to copy the
1447 		 * data out.
1448 		 */
1449 		retval |= DM_RET_COPY;
1450 
1451 		/*
1452 		 * If the return action has been set to descend, then we
1453 		 * know that we've already seen a non-bus matching
1454 		 * expression, therefore we need to further descend the tree.
1455 		 * This won't change by continuing around the loop, so we
1456 		 * go ahead and return.  If we haven't seen a non-bus
1457 		 * matching expression, we keep going around the loop until
1458 		 * we exhaust the matching expressions.  We'll set the stop
1459 		 * flag once we fall out of the loop.
1460 		 */
1461 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1462 			return(retval);
1463 	}
1464 
1465 	/*
1466 	 * If the return action hasn't been set to descend yet, that means
1467 	 * we haven't seen anything other than bus matching patterns.  So
1468 	 * tell the caller to stop descending the tree -- the user doesn't
1469 	 * want to match against lower level tree elements.
1470 	 */
1471 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1472 		retval |= DM_RET_STOP;
1473 
1474 	return(retval);
1475 }
1476 
1477 static dev_match_ret
1478 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1479 	       struct cam_ed *device)
1480 {
1481 	dev_match_ret retval;
1482 	u_int i;
1483 
1484 	retval = DM_RET_NONE;
1485 
1486 	/*
1487 	 * If we aren't given something to match against, that's an error.
1488 	 */
1489 	if (device == NULL)
1490 		return(DM_RET_ERROR);
1491 
1492 	/*
1493 	 * If there are no match entries, then this device matches no
1494 	 * matter what.
1495 	 */
1496 	if ((patterns == NULL) || (num_patterns == 0))
1497 		return(DM_RET_DESCEND | DM_RET_COPY);
1498 
1499 	for (i = 0; i < num_patterns; i++) {
1500 		struct device_match_pattern *cur_pattern;
1501 		struct scsi_vpd_device_id *device_id_page;
1502 
1503 		/*
1504 		 * If the pattern in question isn't for a device node, we
1505 		 * aren't interested.
1506 		 */
1507 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1508 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1509 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1510 				retval |= DM_RET_DESCEND;
1511 			continue;
1512 		}
1513 
1514 		cur_pattern = &patterns[i].pattern.device_pattern;
1515 
1516 		/* Error out if mutually exclusive options are specified. */
1517 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1518 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1519 			return(DM_RET_ERROR);
1520 
1521 		/*
1522 		 * If they want to match any device node, we give them any
1523 		 * device node.
1524 		 */
1525 		if (cur_pattern->flags == DEV_MATCH_ANY)
1526 			goto copy_dev_node;
1527 
1528 		/*
1529 		 * Not sure why someone would do this...
1530 		 */
1531 		if (cur_pattern->flags == DEV_MATCH_NONE)
1532 			continue;
1533 
1534 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1535 		 && (cur_pattern->path_id != device->target->bus->path_id))
1536 			continue;
1537 
1538 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1539 		 && (cur_pattern->target_id != device->target->target_id))
1540 			continue;
1541 
1542 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1543 		 && (cur_pattern->target_lun != device->lun_id))
1544 			continue;
1545 
1546 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1547 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1548 				    (caddr_t)&cur_pattern->data.inq_pat,
1549 				    1, sizeof(cur_pattern->data.inq_pat),
1550 				    scsi_static_inquiry_match) == NULL))
1551 			continue;
1552 
1553 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1554 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1555 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1556 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1557 				      device->device_id_len
1558 				    - SVPD_DEVICE_ID_HDR_LEN,
1559 				      cur_pattern->data.devid_pat.id,
1560 				      cur_pattern->data.devid_pat.id_len) != 0))
1561 			continue;
1562 
1563 copy_dev_node:
1564 		/*
1565 		 * If we get to this point, the user definitely wants
1566 		 * information on this device.  So tell the caller to copy
1567 		 * the data out.
1568 		 */
1569 		retval |= DM_RET_COPY;
1570 
1571 		/*
1572 		 * If the return action has been set to descend, then we
1573 		 * know that we've already seen a peripheral matching
1574 		 * expression, therefore we need to further descend the tree.
1575 		 * This won't change by continuing around the loop, so we
1576 		 * go ahead and return.  If we haven't seen a peripheral
1577 		 * matching expression, we keep going around the loop until
1578 		 * we exhaust the matching expressions.  We'll set the stop
1579 		 * flag once we fall out of the loop.
1580 		 */
1581 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1582 			return(retval);
1583 	}
1584 
1585 	/*
1586 	 * If the return action hasn't been set to descend yet, that means
1587 	 * we haven't seen any peripheral matching patterns.  So tell the
1588 	 * caller to stop descending the tree -- the user doesn't want to
1589 	 * match against lower level tree elements.
1590 	 */
1591 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1592 		retval |= DM_RET_STOP;
1593 
1594 	return(retval);
1595 }
1596 
1597 /*
1598  * Match a single peripheral against any number of match patterns.
1599  */
1600 static dev_match_ret
1601 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1602 	       struct cam_periph *periph)
1603 {
1604 	dev_match_ret retval;
1605 	u_int i;
1606 
1607 	/*
1608 	 * If we aren't given something to match against, that's an error.
1609 	 */
1610 	if (periph == NULL)
1611 		return(DM_RET_ERROR);
1612 
1613 	/*
1614 	 * If there are no match entries, then this peripheral matches no
1615 	 * matter what.
1616 	 */
1617 	if ((patterns == NULL) || (num_patterns == 0))
1618 		return(DM_RET_STOP | DM_RET_COPY);
1619 
1620 	/*
1621 	 * There aren't any nodes below a peripheral node, so there's no
1622 	 * reason to descend the tree any further.
1623 	 */
1624 	retval = DM_RET_STOP;
1625 
1626 	for (i = 0; i < num_patterns; i++) {
1627 		struct periph_match_pattern *cur_pattern;
1628 
1629 		/*
1630 		 * If the pattern in question isn't for a peripheral, we
1631 		 * aren't interested.
1632 		 */
1633 		if (patterns[i].type != DEV_MATCH_PERIPH)
1634 			continue;
1635 
1636 		cur_pattern = &patterns[i].pattern.periph_pattern;
1637 
1638 		/*
1639 		 * If they want to match on anything, then we will do so.
1640 		 */
1641 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1642 			/* set the copy flag */
1643 			retval |= DM_RET_COPY;
1644 
1645 			/*
1646 			 * We've already set the return action to stop,
1647 			 * since there are no nodes below peripherals in
1648 			 * the tree.
1649 			 */
1650 			return(retval);
1651 		}
1652 
1653 		/*
1654 		 * Not sure why someone would do this...
1655 		 */
1656 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1657 			continue;
1658 
1659 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1660 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1661 			continue;
1662 
1663 		/*
1664 		 * For the target and lun id's, we have to make sure the
1665 		 * target and lun pointers aren't NULL.  The xpt peripheral
1666 		 * has a wildcard target and device.
1667 		 */
1668 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1669 		 && ((periph->path->target == NULL)
1670 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1671 			continue;
1672 
1673 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1674 		 && ((periph->path->device == NULL)
1675 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1676 			continue;
1677 
1678 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1679 		 && (cur_pattern->unit_number != periph->unit_number))
1680 			continue;
1681 
1682 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1683 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1684 			     DEV_IDLEN) != 0))
1685 			continue;
1686 
1687 		/*
1688 		 * If we get to this point, the user definitely wants
1689 		 * information on this peripheral.  So tell the caller to
1690 		 * copy the data out.
1691 		 */
1692 		retval |= DM_RET_COPY;
1693 
1694 		/*
1695 		 * The return action has already been set to stop, since
1696 		 * peripherals don't have any nodes below them in the EDT.
1697 		 */
1698 		return(retval);
1699 	}
1700 
1701 	/*
1702 	 * If we get to this point, the peripheral that was passed in
1703 	 * doesn't match any of the patterns.
1704 	 */
1705 	return(retval);
1706 }
1707 
1708 static int
1709 xptedtbusfunc(struct cam_eb *bus, void *arg)
1710 {
1711 	struct ccb_dev_match *cdm;
1712 	struct cam_et *target;
1713 	dev_match_ret retval;
1714 
1715 	cdm = (struct ccb_dev_match *)arg;
1716 
1717 	/*
1718 	 * If our position is for something deeper in the tree, that means
1719 	 * that we've already seen this node.  So, we keep going down.
1720 	 */
1721 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1722 	 && (cdm->pos.cookie.bus == bus)
1723 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1724 	 && (cdm->pos.cookie.target != NULL))
1725 		retval = DM_RET_DESCEND;
1726 	else
1727 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1728 
1729 	/*
1730 	 * If we got an error, bail out of the search.
1731 	 */
1732 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1733 		cdm->status = CAM_DEV_MATCH_ERROR;
1734 		return(0);
1735 	}
1736 
1737 	/*
1738 	 * If the copy flag is set, copy this bus out.
1739 	 */
1740 	if (retval & DM_RET_COPY) {
1741 		int spaceleft, j;
1742 
1743 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1744 			sizeof(struct dev_match_result));
1745 
1746 		/*
1747 		 * If we don't have enough space to put in another
1748 		 * match result, save our position and tell the
1749 		 * user there are more devices to check.
1750 		 */
1751 		if (spaceleft < sizeof(struct dev_match_result)) {
1752 			bzero(&cdm->pos, sizeof(cdm->pos));
1753 			cdm->pos.position_type =
1754 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1755 
1756 			cdm->pos.cookie.bus = bus;
1757 			cdm->pos.generations[CAM_BUS_GENERATION]=
1758 				xsoftc.bus_generation;
1759 			cdm->status = CAM_DEV_MATCH_MORE;
1760 			return(0);
1761 		}
1762 		j = cdm->num_matches;
1763 		cdm->num_matches++;
1764 		cdm->matches[j].type = DEV_MATCH_BUS;
1765 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1766 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1767 		cdm->matches[j].result.bus_result.unit_number =
1768 			bus->sim->unit_number;
1769 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1770 			bus->sim->sim_name,
1771 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1772 	}
1773 
1774 	/*
1775 	 * If the user is only interested in buses, there's no
1776 	 * reason to descend to the next level in the tree.
1777 	 */
1778 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1779 		return(1);
1780 
1781 	/*
1782 	 * If there is a target generation recorded, check it to
1783 	 * make sure the target list hasn't changed.
1784 	 */
1785 	mtx_lock(&bus->eb_mtx);
1786 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1787 	 && (cdm->pos.cookie.bus == bus)
1788 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1789 	 && (cdm->pos.cookie.target != NULL)) {
1790 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1791 		    bus->generation)) {
1792 			mtx_unlock(&bus->eb_mtx);
1793 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1794 			return (0);
1795 		}
1796 		target = (struct cam_et *)cdm->pos.cookie.target;
1797 		target->refcount++;
1798 	} else
1799 		target = NULL;
1800 	mtx_unlock(&bus->eb_mtx);
1801 
1802 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1803 }
1804 
1805 static int
1806 xptedttargetfunc(struct cam_et *target, void *arg)
1807 {
1808 	struct ccb_dev_match *cdm;
1809 	struct cam_eb *bus;
1810 	struct cam_ed *device;
1811 
1812 	cdm = (struct ccb_dev_match *)arg;
1813 	bus = target->bus;
1814 
1815 	/*
1816 	 * If there is a device list generation recorded, check it to
1817 	 * make sure the device list hasn't changed.
1818 	 */
1819 	mtx_lock(&bus->eb_mtx);
1820 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1821 	 && (cdm->pos.cookie.bus == bus)
1822 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1823 	 && (cdm->pos.cookie.target == target)
1824 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1825 	 && (cdm->pos.cookie.device != NULL)) {
1826 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1827 		    target->generation) {
1828 			mtx_unlock(&bus->eb_mtx);
1829 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1830 			return(0);
1831 		}
1832 		device = (struct cam_ed *)cdm->pos.cookie.device;
1833 		device->refcount++;
1834 	} else
1835 		device = NULL;
1836 	mtx_unlock(&bus->eb_mtx);
1837 
1838 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1839 }
1840 
1841 static int
1842 xptedtdevicefunc(struct cam_ed *device, void *arg)
1843 {
1844 	struct cam_eb *bus;
1845 	struct cam_periph *periph;
1846 	struct ccb_dev_match *cdm;
1847 	dev_match_ret retval;
1848 
1849 	cdm = (struct ccb_dev_match *)arg;
1850 	bus = device->target->bus;
1851 
1852 	/*
1853 	 * If our position is for something deeper in the tree, that means
1854 	 * that we've already seen this node.  So, we keep going down.
1855 	 */
1856 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1857 	 && (cdm->pos.cookie.device == device)
1858 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1859 	 && (cdm->pos.cookie.periph != NULL))
1860 		retval = DM_RET_DESCEND;
1861 	else
1862 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1863 					device);
1864 
1865 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1866 		cdm->status = CAM_DEV_MATCH_ERROR;
1867 		return(0);
1868 	}
1869 
1870 	/*
1871 	 * If the copy flag is set, copy this device out.
1872 	 */
1873 	if (retval & DM_RET_COPY) {
1874 		int spaceleft, j;
1875 
1876 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1877 			sizeof(struct dev_match_result));
1878 
1879 		/*
1880 		 * If we don't have enough space to put in another
1881 		 * match result, save our position and tell the
1882 		 * user there are more devices to check.
1883 		 */
1884 		if (spaceleft < sizeof(struct dev_match_result)) {
1885 			bzero(&cdm->pos, sizeof(cdm->pos));
1886 			cdm->pos.position_type =
1887 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1888 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1889 
1890 			cdm->pos.cookie.bus = device->target->bus;
1891 			cdm->pos.generations[CAM_BUS_GENERATION]=
1892 				xsoftc.bus_generation;
1893 			cdm->pos.cookie.target = device->target;
1894 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1895 				device->target->bus->generation;
1896 			cdm->pos.cookie.device = device;
1897 			cdm->pos.generations[CAM_DEV_GENERATION] =
1898 				device->target->generation;
1899 			cdm->status = CAM_DEV_MATCH_MORE;
1900 			return(0);
1901 		}
1902 		j = cdm->num_matches;
1903 		cdm->num_matches++;
1904 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1905 		cdm->matches[j].result.device_result.path_id =
1906 			device->target->bus->path_id;
1907 		cdm->matches[j].result.device_result.target_id =
1908 			device->target->target_id;
1909 		cdm->matches[j].result.device_result.target_lun =
1910 			device->lun_id;
1911 		cdm->matches[j].result.device_result.protocol =
1912 			device->protocol;
1913 		bcopy(&device->inq_data,
1914 		      &cdm->matches[j].result.device_result.inq_data,
1915 		      sizeof(struct scsi_inquiry_data));
1916 		bcopy(&device->ident_data,
1917 		      &cdm->matches[j].result.device_result.ident_data,
1918 		      sizeof(struct ata_params));
1919 
1920 		/* Let the user know whether this device is unconfigured */
1921 		if (device->flags & CAM_DEV_UNCONFIGURED)
1922 			cdm->matches[j].result.device_result.flags =
1923 				DEV_RESULT_UNCONFIGURED;
1924 		else
1925 			cdm->matches[j].result.device_result.flags =
1926 				DEV_RESULT_NOFLAG;
1927 	}
1928 
1929 	/*
1930 	 * If the user isn't interested in peripherals, don't descend
1931 	 * the tree any further.
1932 	 */
1933 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1934 		return(1);
1935 
1936 	/*
1937 	 * If there is a peripheral list generation recorded, make sure
1938 	 * it hasn't changed.
1939 	 */
1940 	xpt_lock_buses();
1941 	mtx_lock(&bus->eb_mtx);
1942 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1943 	 && (cdm->pos.cookie.bus == bus)
1944 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1945 	 && (cdm->pos.cookie.target == device->target)
1946 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1947 	 && (cdm->pos.cookie.device == device)
1948 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1949 	 && (cdm->pos.cookie.periph != NULL)) {
1950 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1951 		    device->generation) {
1952 			mtx_unlock(&bus->eb_mtx);
1953 			xpt_unlock_buses();
1954 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1955 			return(0);
1956 		}
1957 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1958 		periph->refcount++;
1959 	} else
1960 		periph = NULL;
1961 	mtx_unlock(&bus->eb_mtx);
1962 	xpt_unlock_buses();
1963 
1964 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1965 }
1966 
1967 static int
1968 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1969 {
1970 	struct ccb_dev_match *cdm;
1971 	dev_match_ret retval;
1972 
1973 	cdm = (struct ccb_dev_match *)arg;
1974 
1975 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1976 
1977 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1978 		cdm->status = CAM_DEV_MATCH_ERROR;
1979 		return(0);
1980 	}
1981 
1982 	/*
1983 	 * If the copy flag is set, copy this peripheral out.
1984 	 */
1985 	if (retval & DM_RET_COPY) {
1986 		int spaceleft, j;
1987 		size_t l;
1988 
1989 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1990 			sizeof(struct dev_match_result));
1991 
1992 		/*
1993 		 * If we don't have enough space to put in another
1994 		 * match result, save our position and tell the
1995 		 * user there are more devices to check.
1996 		 */
1997 		if (spaceleft < sizeof(struct dev_match_result)) {
1998 			bzero(&cdm->pos, sizeof(cdm->pos));
1999 			cdm->pos.position_type =
2000 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2001 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2002 				CAM_DEV_POS_PERIPH;
2003 
2004 			cdm->pos.cookie.bus = periph->path->bus;
2005 			cdm->pos.generations[CAM_BUS_GENERATION]=
2006 				xsoftc.bus_generation;
2007 			cdm->pos.cookie.target = periph->path->target;
2008 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2009 				periph->path->bus->generation;
2010 			cdm->pos.cookie.device = periph->path->device;
2011 			cdm->pos.generations[CAM_DEV_GENERATION] =
2012 				periph->path->target->generation;
2013 			cdm->pos.cookie.periph = periph;
2014 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2015 				periph->path->device->generation;
2016 			cdm->status = CAM_DEV_MATCH_MORE;
2017 			return(0);
2018 		}
2019 
2020 		j = cdm->num_matches;
2021 		cdm->num_matches++;
2022 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2023 		cdm->matches[j].result.periph_result.path_id =
2024 			periph->path->bus->path_id;
2025 		cdm->matches[j].result.periph_result.target_id =
2026 			periph->path->target->target_id;
2027 		cdm->matches[j].result.periph_result.target_lun =
2028 			periph->path->device->lun_id;
2029 		cdm->matches[j].result.periph_result.unit_number =
2030 			periph->unit_number;
2031 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2032 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2033 			periph->periph_name, l);
2034 	}
2035 
2036 	return(1);
2037 }
2038 
2039 static int
2040 xptedtmatch(struct ccb_dev_match *cdm)
2041 {
2042 	struct cam_eb *bus;
2043 	int ret;
2044 
2045 	cdm->num_matches = 0;
2046 
2047 	/*
2048 	 * Check the bus list generation.  If it has changed, the user
2049 	 * needs to reset everything and start over.
2050 	 */
2051 	xpt_lock_buses();
2052 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2053 	 && (cdm->pos.cookie.bus != NULL)) {
2054 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2055 		    xsoftc.bus_generation) {
2056 			xpt_unlock_buses();
2057 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2058 			return(0);
2059 		}
2060 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2061 		bus->refcount++;
2062 	} else
2063 		bus = NULL;
2064 	xpt_unlock_buses();
2065 
2066 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2067 
2068 	/*
2069 	 * If we get back 0, that means that we had to stop before fully
2070 	 * traversing the EDT.  It also means that one of the subroutines
2071 	 * has set the status field to the proper value.  If we get back 1,
2072 	 * we've fully traversed the EDT and copied out any matching entries.
2073 	 */
2074 	if (ret == 1)
2075 		cdm->status = CAM_DEV_MATCH_LAST;
2076 
2077 	return(ret);
2078 }
2079 
2080 static int
2081 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2082 {
2083 	struct cam_periph *periph;
2084 	struct ccb_dev_match *cdm;
2085 
2086 	cdm = (struct ccb_dev_match *)arg;
2087 
2088 	xpt_lock_buses();
2089 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2090 	 && (cdm->pos.cookie.pdrv == pdrv)
2091 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2092 	 && (cdm->pos.cookie.periph != NULL)) {
2093 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2094 		    (*pdrv)->generation) {
2095 			xpt_unlock_buses();
2096 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2097 			return(0);
2098 		}
2099 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2100 		periph->refcount++;
2101 	} else
2102 		periph = NULL;
2103 	xpt_unlock_buses();
2104 
2105 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2106 }
2107 
2108 static int
2109 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2110 {
2111 	struct ccb_dev_match *cdm;
2112 	dev_match_ret retval;
2113 
2114 	cdm = (struct ccb_dev_match *)arg;
2115 
2116 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2117 
2118 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2119 		cdm->status = CAM_DEV_MATCH_ERROR;
2120 		return(0);
2121 	}
2122 
2123 	/*
2124 	 * If the copy flag is set, copy this peripheral out.
2125 	 */
2126 	if (retval & DM_RET_COPY) {
2127 		int spaceleft, j;
2128 		size_t l;
2129 
2130 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2131 			sizeof(struct dev_match_result));
2132 
2133 		/*
2134 		 * If we don't have enough space to put in another
2135 		 * match result, save our position and tell the
2136 		 * user there are more devices to check.
2137 		 */
2138 		if (spaceleft < sizeof(struct dev_match_result)) {
2139 			struct periph_driver **pdrv;
2140 
2141 			pdrv = NULL;
2142 			bzero(&cdm->pos, sizeof(cdm->pos));
2143 			cdm->pos.position_type =
2144 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2145 				CAM_DEV_POS_PERIPH;
2146 
2147 			/*
2148 			 * This may look a bit non-sensical, but it is
2149 			 * actually quite logical.  There are very few
2150 			 * peripheral drivers, and bloating every peripheral
2151 			 * structure with a pointer back to its parent
2152 			 * peripheral driver linker set entry would cost
2153 			 * more in the long run than doing this quick lookup.
2154 			 */
2155 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2156 				if (strcmp((*pdrv)->driver_name,
2157 				    periph->periph_name) == 0)
2158 					break;
2159 			}
2160 
2161 			if (*pdrv == NULL) {
2162 				cdm->status = CAM_DEV_MATCH_ERROR;
2163 				return(0);
2164 			}
2165 
2166 			cdm->pos.cookie.pdrv = pdrv;
2167 			/*
2168 			 * The periph generation slot does double duty, as
2169 			 * does the periph pointer slot.  They are used for
2170 			 * both edt and pdrv lookups and positioning.
2171 			 */
2172 			cdm->pos.cookie.periph = periph;
2173 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2174 				(*pdrv)->generation;
2175 			cdm->status = CAM_DEV_MATCH_MORE;
2176 			return(0);
2177 		}
2178 
2179 		j = cdm->num_matches;
2180 		cdm->num_matches++;
2181 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2182 		cdm->matches[j].result.periph_result.path_id =
2183 			periph->path->bus->path_id;
2184 
2185 		/*
2186 		 * The transport layer peripheral doesn't have a target or
2187 		 * lun.
2188 		 */
2189 		if (periph->path->target)
2190 			cdm->matches[j].result.periph_result.target_id =
2191 				periph->path->target->target_id;
2192 		else
2193 			cdm->matches[j].result.periph_result.target_id =
2194 				CAM_TARGET_WILDCARD;
2195 
2196 		if (periph->path->device)
2197 			cdm->matches[j].result.periph_result.target_lun =
2198 				periph->path->device->lun_id;
2199 		else
2200 			cdm->matches[j].result.periph_result.target_lun =
2201 				CAM_LUN_WILDCARD;
2202 
2203 		cdm->matches[j].result.periph_result.unit_number =
2204 			periph->unit_number;
2205 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2206 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2207 			periph->periph_name, l);
2208 	}
2209 
2210 	return(1);
2211 }
2212 
2213 static int
2214 xptperiphlistmatch(struct ccb_dev_match *cdm)
2215 {
2216 	int ret;
2217 
2218 	cdm->num_matches = 0;
2219 
2220 	/*
2221 	 * At this point in the edt traversal function, we check the bus
2222 	 * list generation to make sure that no buses have been added or
2223 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2224 	 * For the peripheral driver list traversal function, however, we
2225 	 * don't have to worry about new peripheral driver types coming or
2226 	 * going; they're in a linker set, and therefore can't change
2227 	 * without a recompile.
2228 	 */
2229 
2230 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2231 	 && (cdm->pos.cookie.pdrv != NULL))
2232 		ret = xptpdrvtraverse(
2233 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2234 				xptplistpdrvfunc, cdm);
2235 	else
2236 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2237 
2238 	/*
2239 	 * If we get back 0, that means that we had to stop before fully
2240 	 * traversing the peripheral driver tree.  It also means that one of
2241 	 * the subroutines has set the status field to the proper value.  If
2242 	 * we get back 1, we've fully traversed the EDT and copied out any
2243 	 * matching entries.
2244 	 */
2245 	if (ret == 1)
2246 		cdm->status = CAM_DEV_MATCH_LAST;
2247 
2248 	return(ret);
2249 }
2250 
2251 static int
2252 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2253 {
2254 	struct cam_eb *bus, *next_bus;
2255 	int retval;
2256 
2257 	retval = 1;
2258 	if (start_bus)
2259 		bus = start_bus;
2260 	else {
2261 		xpt_lock_buses();
2262 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2263 		if (bus == NULL) {
2264 			xpt_unlock_buses();
2265 			return (retval);
2266 		}
2267 		bus->refcount++;
2268 		xpt_unlock_buses();
2269 	}
2270 	for (; bus != NULL; bus = next_bus) {
2271 		retval = tr_func(bus, arg);
2272 		if (retval == 0) {
2273 			xpt_release_bus(bus);
2274 			break;
2275 		}
2276 		xpt_lock_buses();
2277 		next_bus = TAILQ_NEXT(bus, links);
2278 		if (next_bus)
2279 			next_bus->refcount++;
2280 		xpt_unlock_buses();
2281 		xpt_release_bus(bus);
2282 	}
2283 	return(retval);
2284 }
2285 
2286 static int
2287 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2288 		  xpt_targetfunc_t *tr_func, void *arg)
2289 {
2290 	struct cam_et *target, *next_target;
2291 	int retval;
2292 
2293 	retval = 1;
2294 	if (start_target)
2295 		target = start_target;
2296 	else {
2297 		mtx_lock(&bus->eb_mtx);
2298 		target = TAILQ_FIRST(&bus->et_entries);
2299 		if (target == NULL) {
2300 			mtx_unlock(&bus->eb_mtx);
2301 			return (retval);
2302 		}
2303 		target->refcount++;
2304 		mtx_unlock(&bus->eb_mtx);
2305 	}
2306 	for (; target != NULL; target = next_target) {
2307 		retval = tr_func(target, arg);
2308 		if (retval == 0) {
2309 			xpt_release_target(target);
2310 			break;
2311 		}
2312 		mtx_lock(&bus->eb_mtx);
2313 		next_target = TAILQ_NEXT(target, links);
2314 		if (next_target)
2315 			next_target->refcount++;
2316 		mtx_unlock(&bus->eb_mtx);
2317 		xpt_release_target(target);
2318 	}
2319 	return(retval);
2320 }
2321 
2322 static int
2323 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2324 		  xpt_devicefunc_t *tr_func, void *arg)
2325 {
2326 	struct cam_eb *bus;
2327 	struct cam_ed *device, *next_device;
2328 	int retval;
2329 
2330 	retval = 1;
2331 	bus = target->bus;
2332 	if (start_device)
2333 		device = start_device;
2334 	else {
2335 		mtx_lock(&bus->eb_mtx);
2336 		device = TAILQ_FIRST(&target->ed_entries);
2337 		if (device == NULL) {
2338 			mtx_unlock(&bus->eb_mtx);
2339 			return (retval);
2340 		}
2341 		device->refcount++;
2342 		mtx_unlock(&bus->eb_mtx);
2343 	}
2344 	for (; device != NULL; device = next_device) {
2345 		mtx_lock(&device->device_mtx);
2346 		retval = tr_func(device, arg);
2347 		mtx_unlock(&device->device_mtx);
2348 		if (retval == 0) {
2349 			xpt_release_device(device);
2350 			break;
2351 		}
2352 		mtx_lock(&bus->eb_mtx);
2353 		next_device = TAILQ_NEXT(device, links);
2354 		if (next_device)
2355 			next_device->refcount++;
2356 		mtx_unlock(&bus->eb_mtx);
2357 		xpt_release_device(device);
2358 	}
2359 	return(retval);
2360 }
2361 
2362 static int
2363 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2364 		  xpt_periphfunc_t *tr_func, void *arg)
2365 {
2366 	struct cam_eb *bus;
2367 	struct cam_periph *periph, *next_periph;
2368 	int retval;
2369 
2370 	retval = 1;
2371 
2372 	bus = device->target->bus;
2373 	if (start_periph)
2374 		periph = start_periph;
2375 	else {
2376 		xpt_lock_buses();
2377 		mtx_lock(&bus->eb_mtx);
2378 		periph = SLIST_FIRST(&device->periphs);
2379 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2380 			periph = SLIST_NEXT(periph, periph_links);
2381 		if (periph == NULL) {
2382 			mtx_unlock(&bus->eb_mtx);
2383 			xpt_unlock_buses();
2384 			return (retval);
2385 		}
2386 		periph->refcount++;
2387 		mtx_unlock(&bus->eb_mtx);
2388 		xpt_unlock_buses();
2389 	}
2390 	for (; periph != NULL; periph = next_periph) {
2391 		retval = tr_func(periph, arg);
2392 		if (retval == 0) {
2393 			cam_periph_release_locked(periph);
2394 			break;
2395 		}
2396 		xpt_lock_buses();
2397 		mtx_lock(&bus->eb_mtx);
2398 		next_periph = SLIST_NEXT(periph, periph_links);
2399 		while (next_periph != NULL &&
2400 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2401 			next_periph = SLIST_NEXT(next_periph, periph_links);
2402 		if (next_periph)
2403 			next_periph->refcount++;
2404 		mtx_unlock(&bus->eb_mtx);
2405 		xpt_unlock_buses();
2406 		cam_periph_release_locked(periph);
2407 	}
2408 	return(retval);
2409 }
2410 
2411 static int
2412 xptpdrvtraverse(struct periph_driver **start_pdrv,
2413 		xpt_pdrvfunc_t *tr_func, void *arg)
2414 {
2415 	struct periph_driver **pdrv;
2416 	int retval;
2417 
2418 	retval = 1;
2419 
2420 	/*
2421 	 * We don't traverse the peripheral driver list like we do the
2422 	 * other lists, because it is a linker set, and therefore cannot be
2423 	 * changed during runtime.  If the peripheral driver list is ever
2424 	 * re-done to be something other than a linker set (i.e. it can
2425 	 * change while the system is running), the list traversal should
2426 	 * be modified to work like the other traversal functions.
2427 	 */
2428 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2429 	     *pdrv != NULL; pdrv++) {
2430 		retval = tr_func(pdrv, arg);
2431 
2432 		if (retval == 0)
2433 			return(retval);
2434 	}
2435 
2436 	return(retval);
2437 }
2438 
2439 static int
2440 xptpdperiphtraverse(struct periph_driver **pdrv,
2441 		    struct cam_periph *start_periph,
2442 		    xpt_periphfunc_t *tr_func, void *arg)
2443 {
2444 	struct cam_periph *periph, *next_periph;
2445 	int retval;
2446 
2447 	retval = 1;
2448 
2449 	if (start_periph)
2450 		periph = start_periph;
2451 	else {
2452 		xpt_lock_buses();
2453 		periph = TAILQ_FIRST(&(*pdrv)->units);
2454 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2455 			periph = TAILQ_NEXT(periph, unit_links);
2456 		if (periph == NULL) {
2457 			xpt_unlock_buses();
2458 			return (retval);
2459 		}
2460 		periph->refcount++;
2461 		xpt_unlock_buses();
2462 	}
2463 	for (; periph != NULL; periph = next_periph) {
2464 		cam_periph_lock(periph);
2465 		retval = tr_func(periph, arg);
2466 		cam_periph_unlock(periph);
2467 		if (retval == 0) {
2468 			cam_periph_release(periph);
2469 			break;
2470 		}
2471 		xpt_lock_buses();
2472 		next_periph = TAILQ_NEXT(periph, unit_links);
2473 		while (next_periph != NULL &&
2474 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2475 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2476 		if (next_periph)
2477 			next_periph->refcount++;
2478 		xpt_unlock_buses();
2479 		cam_periph_release(periph);
2480 	}
2481 	return(retval);
2482 }
2483 
2484 static int
2485 xptdefbusfunc(struct cam_eb *bus, void *arg)
2486 {
2487 	struct xpt_traverse_config *tr_config;
2488 
2489 	tr_config = (struct xpt_traverse_config *)arg;
2490 
2491 	if (tr_config->depth == XPT_DEPTH_BUS) {
2492 		xpt_busfunc_t *tr_func;
2493 
2494 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2495 
2496 		return(tr_func(bus, tr_config->tr_arg));
2497 	} else
2498 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2499 }
2500 
2501 static int
2502 xptdeftargetfunc(struct cam_et *target, void *arg)
2503 {
2504 	struct xpt_traverse_config *tr_config;
2505 
2506 	tr_config = (struct xpt_traverse_config *)arg;
2507 
2508 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2509 		xpt_targetfunc_t *tr_func;
2510 
2511 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2512 
2513 		return(tr_func(target, tr_config->tr_arg));
2514 	} else
2515 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2516 }
2517 
2518 static int
2519 xptdefdevicefunc(struct cam_ed *device, void *arg)
2520 {
2521 	struct xpt_traverse_config *tr_config;
2522 
2523 	tr_config = (struct xpt_traverse_config *)arg;
2524 
2525 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2526 		xpt_devicefunc_t *tr_func;
2527 
2528 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2529 
2530 		return(tr_func(device, tr_config->tr_arg));
2531 	} else
2532 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2533 }
2534 
2535 static int
2536 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2537 {
2538 	struct xpt_traverse_config *tr_config;
2539 	xpt_periphfunc_t *tr_func;
2540 
2541 	tr_config = (struct xpt_traverse_config *)arg;
2542 
2543 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2544 
2545 	/*
2546 	 * Unlike the other default functions, we don't check for depth
2547 	 * here.  The peripheral driver level is the last level in the EDT,
2548 	 * so if we're here, we should execute the function in question.
2549 	 */
2550 	return(tr_func(periph, tr_config->tr_arg));
2551 }
2552 
2553 /*
2554  * Execute the given function for every bus in the EDT.
2555  */
2556 static int
2557 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2558 {
2559 	struct xpt_traverse_config tr_config;
2560 
2561 	tr_config.depth = XPT_DEPTH_BUS;
2562 	tr_config.tr_func = tr_func;
2563 	tr_config.tr_arg = arg;
2564 
2565 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2566 }
2567 
2568 /*
2569  * Execute the given function for every device in the EDT.
2570  */
2571 static int
2572 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2573 {
2574 	struct xpt_traverse_config tr_config;
2575 
2576 	tr_config.depth = XPT_DEPTH_DEVICE;
2577 	tr_config.tr_func = tr_func;
2578 	tr_config.tr_arg = arg;
2579 
2580 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2581 }
2582 
2583 static int
2584 xptsetasyncfunc(struct cam_ed *device, void *arg)
2585 {
2586 	struct cam_path path;
2587 	struct ccb_getdev cgd;
2588 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2589 
2590 	/*
2591 	 * Don't report unconfigured devices (Wildcard devs,
2592 	 * devices only for target mode, device instances
2593 	 * that have been invalidated but are waiting for
2594 	 * their last reference count to be released).
2595 	 */
2596 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2597 		return (1);
2598 
2599 	xpt_compile_path(&path,
2600 			 NULL,
2601 			 device->target->bus->path_id,
2602 			 device->target->target_id,
2603 			 device->lun_id);
2604 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2605 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2606 	xpt_action((union ccb *)&cgd);
2607 	csa->callback(csa->callback_arg,
2608 			    AC_FOUND_DEVICE,
2609 			    &path, &cgd);
2610 	xpt_release_path(&path);
2611 
2612 	return(1);
2613 }
2614 
2615 static int
2616 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2617 {
2618 	struct cam_path path;
2619 	struct ccb_pathinq cpi;
2620 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2621 
2622 	xpt_compile_path(&path, /*periph*/NULL,
2623 			 bus->path_id,
2624 			 CAM_TARGET_WILDCARD,
2625 			 CAM_LUN_WILDCARD);
2626 	xpt_path_lock(&path);
2627 	xpt_path_inq(&cpi, &path);
2628 	csa->callback(csa->callback_arg,
2629 			    AC_PATH_REGISTERED,
2630 			    &path, &cpi);
2631 	xpt_path_unlock(&path);
2632 	xpt_release_path(&path);
2633 
2634 	return(1);
2635 }
2636 
2637 void
2638 xpt_action(union ccb *start_ccb)
2639 {
2640 
2641 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2642 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2643 		xpt_action_name(start_ccb->ccb_h.func_code)));
2644 
2645 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2646 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2647 }
2648 
2649 void
2650 xpt_action_default(union ccb *start_ccb)
2651 {
2652 	struct cam_path *path;
2653 	struct cam_sim *sim;
2654 	struct mtx *mtx;
2655 
2656 	path = start_ccb->ccb_h.path;
2657 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2658 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2659 		xpt_action_name(start_ccb->ccb_h.func_code)));
2660 
2661 	switch (start_ccb->ccb_h.func_code) {
2662 	case XPT_SCSI_IO:
2663 	{
2664 		struct cam_ed *device;
2665 
2666 		/*
2667 		 * For the sake of compatibility with SCSI-1
2668 		 * devices that may not understand the identify
2669 		 * message, we include lun information in the
2670 		 * second byte of all commands.  SCSI-1 specifies
2671 		 * that luns are a 3 bit value and reserves only 3
2672 		 * bits for lun information in the CDB.  Later
2673 		 * revisions of the SCSI spec allow for more than 8
2674 		 * luns, but have deprecated lun information in the
2675 		 * CDB.  So, if the lun won't fit, we must omit.
2676 		 *
2677 		 * Also be aware that during initial probing for devices,
2678 		 * the inquiry information is unknown but initialized to 0.
2679 		 * This means that this code will be exercised while probing
2680 		 * devices with an ANSI revision greater than 2.
2681 		 */
2682 		device = path->device;
2683 		if (device->protocol_version <= SCSI_REV_2
2684 		 && start_ccb->ccb_h.target_lun < 8
2685 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2686 
2687 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2688 			    start_ccb->ccb_h.target_lun << 5;
2689 		}
2690 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2691 	}
2692 	/* FALLTHROUGH */
2693 	case XPT_TARGET_IO:
2694 	case XPT_CONT_TARGET_IO:
2695 		start_ccb->csio.sense_resid = 0;
2696 		start_ccb->csio.resid = 0;
2697 		/* FALLTHROUGH */
2698 	case XPT_ATA_IO:
2699 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2700 			start_ccb->ataio.resid = 0;
2701 		/* FALLTHROUGH */
2702 	case XPT_NVME_IO:
2703 		/* FALLTHROUGH */
2704 	case XPT_NVME_ADMIN:
2705 		/* FALLTHROUGH */
2706 	case XPT_MMC_IO:
2707 		/* XXX just like nmve_io? */
2708 	case XPT_RESET_DEV:
2709 	case XPT_ENG_EXEC:
2710 	case XPT_SMP_IO:
2711 	{
2712 		struct cam_devq *devq;
2713 
2714 		devq = path->bus->sim->devq;
2715 		mtx_lock(&devq->send_mtx);
2716 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2717 		if (xpt_schedule_devq(devq, path->device) != 0)
2718 			xpt_run_devq(devq);
2719 		mtx_unlock(&devq->send_mtx);
2720 		break;
2721 	}
2722 	case XPT_CALC_GEOMETRY:
2723 		/* Filter out garbage */
2724 		if (start_ccb->ccg.block_size == 0
2725 		 || start_ccb->ccg.volume_size == 0) {
2726 			start_ccb->ccg.cylinders = 0;
2727 			start_ccb->ccg.heads = 0;
2728 			start_ccb->ccg.secs_per_track = 0;
2729 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2730 			break;
2731 		}
2732 #if defined(__sparc64__)
2733 		/*
2734 		 * For sparc64, we may need adjust the geometry of large
2735 		 * disks in order to fit the limitations of the 16-bit
2736 		 * fields of the VTOC8 disk label.
2737 		 */
2738 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2739 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2740 			break;
2741 		}
2742 #endif
2743 		goto call_sim;
2744 	case XPT_ABORT:
2745 	{
2746 		union ccb* abort_ccb;
2747 
2748 		abort_ccb = start_ccb->cab.abort_ccb;
2749 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2750 			struct cam_ed *device;
2751 			struct cam_devq *devq;
2752 
2753 			device = abort_ccb->ccb_h.path->device;
2754 			devq = device->sim->devq;
2755 
2756 			mtx_lock(&devq->send_mtx);
2757 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2758 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2759 				abort_ccb->ccb_h.status =
2760 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2761 				xpt_freeze_devq_device(device, 1);
2762 				mtx_unlock(&devq->send_mtx);
2763 				xpt_done(abort_ccb);
2764 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2765 				break;
2766 			}
2767 			mtx_unlock(&devq->send_mtx);
2768 
2769 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2770 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2771 				/*
2772 				 * We've caught this ccb en route to
2773 				 * the SIM.  Flag it for abort and the
2774 				 * SIM will do so just before starting
2775 				 * real work on the CCB.
2776 				 */
2777 				abort_ccb->ccb_h.status =
2778 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2779 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2780 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2781 				break;
2782 			}
2783 		}
2784 		if (XPT_FC_IS_QUEUED(abort_ccb)
2785 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2786 			/*
2787 			 * It's already completed but waiting
2788 			 * for our SWI to get to it.
2789 			 */
2790 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2791 			break;
2792 		}
2793 		/*
2794 		 * If we weren't able to take care of the abort request
2795 		 * in the XPT, pass the request down to the SIM for processing.
2796 		 */
2797 	}
2798 	/* FALLTHROUGH */
2799 	case XPT_ACCEPT_TARGET_IO:
2800 	case XPT_EN_LUN:
2801 	case XPT_IMMED_NOTIFY:
2802 	case XPT_NOTIFY_ACK:
2803 	case XPT_RESET_BUS:
2804 	case XPT_IMMEDIATE_NOTIFY:
2805 	case XPT_NOTIFY_ACKNOWLEDGE:
2806 	case XPT_GET_SIM_KNOB_OLD:
2807 	case XPT_GET_SIM_KNOB:
2808 	case XPT_SET_SIM_KNOB:
2809 	case XPT_GET_TRAN_SETTINGS:
2810 	case XPT_SET_TRAN_SETTINGS:
2811 	case XPT_PATH_INQ:
2812 call_sim:
2813 		sim = path->bus->sim;
2814 		mtx = sim->mtx;
2815 		if (mtx && !mtx_owned(mtx))
2816 			mtx_lock(mtx);
2817 		else
2818 			mtx = NULL;
2819 
2820 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2821 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2822 		(*(sim->sim_action))(sim, start_ccb);
2823 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2824 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2825 		if (mtx)
2826 			mtx_unlock(mtx);
2827 		break;
2828 	case XPT_PATH_STATS:
2829 		start_ccb->cpis.last_reset = path->bus->last_reset;
2830 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2831 		break;
2832 	case XPT_GDEV_TYPE:
2833 	{
2834 		struct cam_ed *dev;
2835 
2836 		dev = path->device;
2837 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2838 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2839 		} else {
2840 			struct ccb_getdev *cgd;
2841 
2842 			cgd = &start_ccb->cgd;
2843 			cgd->protocol = dev->protocol;
2844 			cgd->inq_data = dev->inq_data;
2845 			cgd->ident_data = dev->ident_data;
2846 			cgd->inq_flags = dev->inq_flags;
2847 			cgd->ccb_h.status = CAM_REQ_CMP;
2848 			cgd->serial_num_len = dev->serial_num_len;
2849 			if ((dev->serial_num_len > 0)
2850 			 && (dev->serial_num != NULL))
2851 				bcopy(dev->serial_num, cgd->serial_num,
2852 				      dev->serial_num_len);
2853 		}
2854 		break;
2855 	}
2856 	case XPT_GDEV_STATS:
2857 	{
2858 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2859 		struct cam_ed *dev = path->device;
2860 		struct cam_eb *bus = path->bus;
2861 		struct cam_et *tar = path->target;
2862 		struct cam_devq *devq = bus->sim->devq;
2863 
2864 		mtx_lock(&devq->send_mtx);
2865 		cgds->dev_openings = dev->ccbq.dev_openings;
2866 		cgds->dev_active = dev->ccbq.dev_active;
2867 		cgds->allocated = dev->ccbq.allocated;
2868 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2869 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2870 		cgds->last_reset = tar->last_reset;
2871 		cgds->maxtags = dev->maxtags;
2872 		cgds->mintags = dev->mintags;
2873 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2874 			cgds->last_reset = bus->last_reset;
2875 		mtx_unlock(&devq->send_mtx);
2876 		cgds->ccb_h.status = CAM_REQ_CMP;
2877 		break;
2878 	}
2879 	case XPT_GDEVLIST:
2880 	{
2881 		struct cam_periph	*nperiph;
2882 		struct periph_list	*periph_head;
2883 		struct ccb_getdevlist	*cgdl;
2884 		u_int			i;
2885 		struct cam_ed		*device;
2886 		int			found;
2887 
2888 
2889 		found = 0;
2890 
2891 		/*
2892 		 * Don't want anyone mucking with our data.
2893 		 */
2894 		device = path->device;
2895 		periph_head = &device->periphs;
2896 		cgdl = &start_ccb->cgdl;
2897 
2898 		/*
2899 		 * Check and see if the list has changed since the user
2900 		 * last requested a list member.  If so, tell them that the
2901 		 * list has changed, and therefore they need to start over
2902 		 * from the beginning.
2903 		 */
2904 		if ((cgdl->index != 0) &&
2905 		    (cgdl->generation != device->generation)) {
2906 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2907 			break;
2908 		}
2909 
2910 		/*
2911 		 * Traverse the list of peripherals and attempt to find
2912 		 * the requested peripheral.
2913 		 */
2914 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2915 		     (nperiph != NULL) && (i <= cgdl->index);
2916 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2917 			if (i == cgdl->index) {
2918 				strlcpy(cgdl->periph_name,
2919 					nperiph->periph_name,
2920 					sizeof(cgdl->periph_name));
2921 				cgdl->unit_number = nperiph->unit_number;
2922 				found = 1;
2923 			}
2924 		}
2925 		if (found == 0) {
2926 			cgdl->status = CAM_GDEVLIST_ERROR;
2927 			break;
2928 		}
2929 
2930 		if (nperiph == NULL)
2931 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2932 		else
2933 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2934 
2935 		cgdl->index++;
2936 		cgdl->generation = device->generation;
2937 
2938 		cgdl->ccb_h.status = CAM_REQ_CMP;
2939 		break;
2940 	}
2941 	case XPT_DEV_MATCH:
2942 	{
2943 		dev_pos_type position_type;
2944 		struct ccb_dev_match *cdm;
2945 
2946 		cdm = &start_ccb->cdm;
2947 
2948 		/*
2949 		 * There are two ways of getting at information in the EDT.
2950 		 * The first way is via the primary EDT tree.  It starts
2951 		 * with a list of buses, then a list of targets on a bus,
2952 		 * then devices/luns on a target, and then peripherals on a
2953 		 * device/lun.  The "other" way is by the peripheral driver
2954 		 * lists.  The peripheral driver lists are organized by
2955 		 * peripheral driver.  (obviously)  So it makes sense to
2956 		 * use the peripheral driver list if the user is looking
2957 		 * for something like "da1", or all "da" devices.  If the
2958 		 * user is looking for something on a particular bus/target
2959 		 * or lun, it's generally better to go through the EDT tree.
2960 		 */
2961 
2962 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2963 			position_type = cdm->pos.position_type;
2964 		else {
2965 			u_int i;
2966 
2967 			position_type = CAM_DEV_POS_NONE;
2968 
2969 			for (i = 0; i < cdm->num_patterns; i++) {
2970 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2971 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2972 					position_type = CAM_DEV_POS_EDT;
2973 					break;
2974 				}
2975 			}
2976 
2977 			if (cdm->num_patterns == 0)
2978 				position_type = CAM_DEV_POS_EDT;
2979 			else if (position_type == CAM_DEV_POS_NONE)
2980 				position_type = CAM_DEV_POS_PDRV;
2981 		}
2982 
2983 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2984 		case CAM_DEV_POS_EDT:
2985 			xptedtmatch(cdm);
2986 			break;
2987 		case CAM_DEV_POS_PDRV:
2988 			xptperiphlistmatch(cdm);
2989 			break;
2990 		default:
2991 			cdm->status = CAM_DEV_MATCH_ERROR;
2992 			break;
2993 		}
2994 
2995 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2996 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2997 		else
2998 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2999 
3000 		break;
3001 	}
3002 	case XPT_SASYNC_CB:
3003 	{
3004 		struct ccb_setasync *csa;
3005 		struct async_node *cur_entry;
3006 		struct async_list *async_head;
3007 		u_int32_t added;
3008 
3009 		csa = &start_ccb->csa;
3010 		added = csa->event_enable;
3011 		async_head = &path->device->asyncs;
3012 
3013 		/*
3014 		 * If there is already an entry for us, simply
3015 		 * update it.
3016 		 */
3017 		cur_entry = SLIST_FIRST(async_head);
3018 		while (cur_entry != NULL) {
3019 			if ((cur_entry->callback_arg == csa->callback_arg)
3020 			 && (cur_entry->callback == csa->callback))
3021 				break;
3022 			cur_entry = SLIST_NEXT(cur_entry, links);
3023 		}
3024 
3025 		if (cur_entry != NULL) {
3026 		 	/*
3027 			 * If the request has no flags set,
3028 			 * remove the entry.
3029 			 */
3030 			added &= ~cur_entry->event_enable;
3031 			if (csa->event_enable == 0) {
3032 				SLIST_REMOVE(async_head, cur_entry,
3033 					     async_node, links);
3034 				xpt_release_device(path->device);
3035 				free(cur_entry, M_CAMXPT);
3036 			} else {
3037 				cur_entry->event_enable = csa->event_enable;
3038 			}
3039 			csa->event_enable = added;
3040 		} else {
3041 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3042 					   M_NOWAIT);
3043 			if (cur_entry == NULL) {
3044 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3045 				break;
3046 			}
3047 			cur_entry->event_enable = csa->event_enable;
3048 			cur_entry->event_lock = (path->bus->sim->mtx &&
3049 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3050 			cur_entry->callback_arg = csa->callback_arg;
3051 			cur_entry->callback = csa->callback;
3052 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3053 			xpt_acquire_device(path->device);
3054 		}
3055 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3056 		break;
3057 	}
3058 	case XPT_REL_SIMQ:
3059 	{
3060 		struct ccb_relsim *crs;
3061 		struct cam_ed *dev;
3062 
3063 		crs = &start_ccb->crs;
3064 		dev = path->device;
3065 		if (dev == NULL) {
3066 
3067 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3068 			break;
3069 		}
3070 
3071 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3072 
3073 			/* Don't ever go below one opening */
3074 			if (crs->openings > 0) {
3075 				xpt_dev_ccbq_resize(path, crs->openings);
3076 				if (bootverbose) {
3077 					xpt_print(path,
3078 					    "number of openings is now %d\n",
3079 					    crs->openings);
3080 				}
3081 			}
3082 		}
3083 
3084 		mtx_lock(&dev->sim->devq->send_mtx);
3085 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3086 
3087 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3088 
3089 				/*
3090 				 * Just extend the old timeout and decrement
3091 				 * the freeze count so that a single timeout
3092 				 * is sufficient for releasing the queue.
3093 				 */
3094 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3095 				callout_stop(&dev->callout);
3096 			} else {
3097 
3098 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3099 			}
3100 
3101 			callout_reset_sbt(&dev->callout,
3102 			    SBT_1MS * crs->release_timeout, 0,
3103 			    xpt_release_devq_timeout, dev, 0);
3104 
3105 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3106 
3107 		}
3108 
3109 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3110 
3111 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3112 				/*
3113 				 * Decrement the freeze count so that a single
3114 				 * completion is still sufficient to unfreeze
3115 				 * the queue.
3116 				 */
3117 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3118 			} else {
3119 
3120 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3121 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3122 			}
3123 		}
3124 
3125 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3126 
3127 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3128 			 || (dev->ccbq.dev_active == 0)) {
3129 
3130 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3131 			} else {
3132 
3133 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3134 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3135 			}
3136 		}
3137 		mtx_unlock(&dev->sim->devq->send_mtx);
3138 
3139 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3140 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3141 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3142 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3143 		break;
3144 	}
3145 	case XPT_DEBUG: {
3146 		struct cam_path *oldpath;
3147 
3148 		/* Check that all request bits are supported. */
3149 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3150 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3151 			break;
3152 		}
3153 
3154 		cam_dflags = CAM_DEBUG_NONE;
3155 		if (cam_dpath != NULL) {
3156 			oldpath = cam_dpath;
3157 			cam_dpath = NULL;
3158 			xpt_free_path(oldpath);
3159 		}
3160 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3161 			if (xpt_create_path(&cam_dpath, NULL,
3162 					    start_ccb->ccb_h.path_id,
3163 					    start_ccb->ccb_h.target_id,
3164 					    start_ccb->ccb_h.target_lun) !=
3165 					    CAM_REQ_CMP) {
3166 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3167 			} else {
3168 				cam_dflags = start_ccb->cdbg.flags;
3169 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3170 				xpt_print(cam_dpath, "debugging flags now %x\n",
3171 				    cam_dflags);
3172 			}
3173 		} else
3174 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3175 		break;
3176 	}
3177 	case XPT_NOOP:
3178 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3179 			xpt_freeze_devq(path, 1);
3180 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3181 		break;
3182 	case XPT_REPROBE_LUN:
3183 		xpt_async(AC_INQ_CHANGED, path, NULL);
3184 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3185 		xpt_done(start_ccb);
3186 		break;
3187 	default:
3188 	case XPT_SDEV_TYPE:
3189 	case XPT_TERM_IO:
3190 	case XPT_ENG_INQ:
3191 		/* XXX Implement */
3192 		xpt_print(start_ccb->ccb_h.path,
3193 		    "%s: CCB type %#x %s not supported\n", __func__,
3194 		    start_ccb->ccb_h.func_code,
3195 		    xpt_action_name(start_ccb->ccb_h.func_code));
3196 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3197 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3198 			xpt_done(start_ccb);
3199 		}
3200 		break;
3201 	}
3202 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3203 	    ("xpt_action_default: func= %#x %s status %#x\n",
3204 		start_ccb->ccb_h.func_code,
3205  		xpt_action_name(start_ccb->ccb_h.func_code),
3206 		start_ccb->ccb_h.status));
3207 }
3208 
3209 /*
3210  * Call the sim poll routine to allow the sim to complete
3211  * any inflight requests, then call camisr_runqueue to
3212  * complete any CCB that the polling completed.
3213  */
3214 void
3215 xpt_sim_poll(struct cam_sim *sim)
3216 {
3217 	struct mtx *mtx;
3218 
3219 	mtx = sim->mtx;
3220 	if (mtx)
3221 		mtx_lock(mtx);
3222 	(*(sim->sim_poll))(sim);
3223 	if (mtx)
3224 		mtx_unlock(mtx);
3225 	camisr_runqueue();
3226 }
3227 
3228 uint32_t
3229 xpt_poll_setup(union ccb *start_ccb)
3230 {
3231 	u_int32_t timeout;
3232 	struct	  cam_sim *sim;
3233 	struct	  cam_devq *devq;
3234 	struct	  cam_ed *dev;
3235 
3236 	timeout = start_ccb->ccb_h.timeout * 10;
3237 	sim = start_ccb->ccb_h.path->bus->sim;
3238 	devq = sim->devq;
3239 	dev = start_ccb->ccb_h.path->device;
3240 
3241 	/*
3242 	 * Steal an opening so that no other queued requests
3243 	 * can get it before us while we simulate interrupts.
3244 	 */
3245 	mtx_lock(&devq->send_mtx);
3246 	dev->ccbq.dev_openings--;
3247 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3248 	    (--timeout > 0)) {
3249 		mtx_unlock(&devq->send_mtx);
3250 		DELAY(100);
3251 		xpt_sim_poll(sim);
3252 		mtx_lock(&devq->send_mtx);
3253 	}
3254 	dev->ccbq.dev_openings++;
3255 	mtx_unlock(&devq->send_mtx);
3256 
3257 	return (timeout);
3258 }
3259 
3260 void
3261 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3262 {
3263 
3264 	while (--timeout > 0) {
3265 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3266 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3267 		    != CAM_REQ_INPROG)
3268 			break;
3269 		DELAY(100);
3270 	}
3271 
3272 	if (timeout == 0) {
3273 		/*
3274 		 * XXX Is it worth adding a sim_timeout entry
3275 		 * point so we can attempt recovery?  If
3276 		 * this is only used for dumps, I don't think
3277 		 * it is.
3278 		 */
3279 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3280 	}
3281 }
3282 
3283 void
3284 xpt_polled_action(union ccb *start_ccb)
3285 {
3286 	uint32_t	timeout;
3287 	struct cam_ed	*dev;
3288 
3289 	timeout = start_ccb->ccb_h.timeout * 10;
3290 	dev = start_ccb->ccb_h.path->device;
3291 
3292 	mtx_unlock(&dev->device_mtx);
3293 
3294 	timeout = xpt_poll_setup(start_ccb);
3295 	if (timeout > 0) {
3296 		xpt_action(start_ccb);
3297 		xpt_pollwait(start_ccb, timeout);
3298 	} else {
3299 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3300 	}
3301 
3302 	mtx_lock(&dev->device_mtx);
3303 }
3304 
3305 /*
3306  * Schedule a peripheral driver to receive a ccb when its
3307  * target device has space for more transactions.
3308  */
3309 void
3310 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3311 {
3312 
3313 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3314 	cam_periph_assert(periph, MA_OWNED);
3315 	if (new_priority < periph->scheduled_priority) {
3316 		periph->scheduled_priority = new_priority;
3317 		xpt_run_allocq(periph, 0);
3318 	}
3319 }
3320 
3321 
3322 /*
3323  * Schedule a device to run on a given queue.
3324  * If the device was inserted as a new entry on the queue,
3325  * return 1 meaning the device queue should be run. If we
3326  * were already queued, implying someone else has already
3327  * started the queue, return 0 so the caller doesn't attempt
3328  * to run the queue.
3329  */
3330 static int
3331 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3332 		 u_int32_t new_priority)
3333 {
3334 	int retval;
3335 	u_int32_t old_priority;
3336 
3337 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3338 
3339 
3340 	old_priority = pinfo->priority;
3341 
3342 	/*
3343 	 * Are we already queued?
3344 	 */
3345 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3346 		/* Simply reorder based on new priority */
3347 		if (new_priority < old_priority) {
3348 			camq_change_priority(queue, pinfo->index,
3349 					     new_priority);
3350 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3351 					("changed priority to %d\n",
3352 					 new_priority));
3353 			retval = 1;
3354 		} else
3355 			retval = 0;
3356 	} else {
3357 		/* New entry on the queue */
3358 		if (new_priority < old_priority)
3359 			pinfo->priority = new_priority;
3360 
3361 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3362 				("Inserting onto queue\n"));
3363 		pinfo->generation = ++queue->generation;
3364 		camq_insert(queue, pinfo);
3365 		retval = 1;
3366 	}
3367 	return (retval);
3368 }
3369 
3370 static void
3371 xpt_run_allocq_task(void *context, int pending)
3372 {
3373 	struct cam_periph *periph = context;
3374 
3375 	cam_periph_lock(periph);
3376 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3377 	xpt_run_allocq(periph, 1);
3378 	cam_periph_unlock(periph);
3379 	cam_periph_release(periph);
3380 }
3381 
3382 static void
3383 xpt_run_allocq(struct cam_periph *periph, int sleep)
3384 {
3385 	struct cam_ed	*device;
3386 	union ccb	*ccb;
3387 	uint32_t	 prio;
3388 
3389 	cam_periph_assert(periph, MA_OWNED);
3390 	if (periph->periph_allocating)
3391 		return;
3392 	cam_periph_doacquire(periph);
3393 	periph->periph_allocating = 1;
3394 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3395 	device = periph->path->device;
3396 	ccb = NULL;
3397 restart:
3398 	while ((prio = min(periph->scheduled_priority,
3399 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3400 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3401 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3402 
3403 		if (ccb == NULL &&
3404 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3405 			if (sleep) {
3406 				ccb = xpt_get_ccb(periph);
3407 				goto restart;
3408 			}
3409 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3410 				break;
3411 			cam_periph_doacquire(periph);
3412 			periph->flags |= CAM_PERIPH_RUN_TASK;
3413 			taskqueue_enqueue(xsoftc.xpt_taskq,
3414 			    &periph->periph_run_task);
3415 			break;
3416 		}
3417 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3418 		if (prio == periph->immediate_priority) {
3419 			periph->immediate_priority = CAM_PRIORITY_NONE;
3420 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3421 					("waking cam_periph_getccb()\n"));
3422 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3423 					  periph_links.sle);
3424 			wakeup(&periph->ccb_list);
3425 		} else {
3426 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3427 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3428 					("calling periph_start()\n"));
3429 			periph->periph_start(periph, ccb);
3430 		}
3431 		ccb = NULL;
3432 	}
3433 	if (ccb != NULL)
3434 		xpt_release_ccb(ccb);
3435 	periph->periph_allocating = 0;
3436 	cam_periph_release_locked(periph);
3437 }
3438 
3439 static void
3440 xpt_run_devq(struct cam_devq *devq)
3441 {
3442 	struct mtx *mtx;
3443 
3444 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3445 
3446 	devq->send_queue.qfrozen_cnt++;
3447 	while ((devq->send_queue.entries > 0)
3448 	    && (devq->send_openings > 0)
3449 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3450 		struct	cam_ed *device;
3451 		union ccb *work_ccb;
3452 		struct	cam_sim *sim;
3453 		struct xpt_proto *proto;
3454 
3455 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3456 							   CAMQ_HEAD);
3457 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3458 				("running device %p\n", device));
3459 
3460 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3461 		if (work_ccb == NULL) {
3462 			printf("device on run queue with no ccbs???\n");
3463 			continue;
3464 		}
3465 
3466 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3467 
3468 			mtx_lock(&xsoftc.xpt_highpower_lock);
3469 		 	if (xsoftc.num_highpower <= 0) {
3470 				/*
3471 				 * We got a high power command, but we
3472 				 * don't have any available slots.  Freeze
3473 				 * the device queue until we have a slot
3474 				 * available.
3475 				 */
3476 				xpt_freeze_devq_device(device, 1);
3477 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3478 						   highpowerq_entry);
3479 
3480 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3481 				continue;
3482 			} else {
3483 				/*
3484 				 * Consume a high power slot while
3485 				 * this ccb runs.
3486 				 */
3487 				xsoftc.num_highpower--;
3488 			}
3489 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3490 		}
3491 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3492 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3493 		devq->send_openings--;
3494 		devq->send_active++;
3495 		xpt_schedule_devq(devq, device);
3496 		mtx_unlock(&devq->send_mtx);
3497 
3498 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3499 			/*
3500 			 * The client wants to freeze the queue
3501 			 * after this CCB is sent.
3502 			 */
3503 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3504 		}
3505 
3506 		/* In Target mode, the peripheral driver knows best... */
3507 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3508 			if ((device->inq_flags & SID_CmdQue) != 0
3509 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3510 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3511 			else
3512 				/*
3513 				 * Clear this in case of a retried CCB that
3514 				 * failed due to a rejected tag.
3515 				 */
3516 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3517 		}
3518 
3519 		KASSERT(device == work_ccb->ccb_h.path->device,
3520 		    ("device (%p) / path->device (%p) mismatch",
3521 			device, work_ccb->ccb_h.path->device));
3522 		proto = xpt_proto_find(device->protocol);
3523 		if (proto && proto->ops->debug_out)
3524 			proto->ops->debug_out(work_ccb);
3525 
3526 		/*
3527 		 * Device queues can be shared among multiple SIM instances
3528 		 * that reside on different buses.  Use the SIM from the
3529 		 * queued device, rather than the one from the calling bus.
3530 		 */
3531 		sim = device->sim;
3532 		mtx = sim->mtx;
3533 		if (mtx && !mtx_owned(mtx))
3534 			mtx_lock(mtx);
3535 		else
3536 			mtx = NULL;
3537 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3538 		(*(sim->sim_action))(sim, work_ccb);
3539 		if (mtx)
3540 			mtx_unlock(mtx);
3541 		mtx_lock(&devq->send_mtx);
3542 	}
3543 	devq->send_queue.qfrozen_cnt--;
3544 }
3545 
3546 /*
3547  * This function merges stuff from the slave ccb into the master ccb, while
3548  * keeping important fields in the master ccb constant.
3549  */
3550 void
3551 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3552 {
3553 
3554 	/*
3555 	 * Pull fields that are valid for peripheral drivers to set
3556 	 * into the master CCB along with the CCB "payload".
3557 	 */
3558 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3559 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3560 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3561 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3562 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3563 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3564 }
3565 
3566 void
3567 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3568 		    u_int32_t priority, u_int32_t flags)
3569 {
3570 
3571 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3572 	ccb_h->pinfo.priority = priority;
3573 	ccb_h->path = path;
3574 	ccb_h->path_id = path->bus->path_id;
3575 	if (path->target)
3576 		ccb_h->target_id = path->target->target_id;
3577 	else
3578 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3579 	if (path->device) {
3580 		ccb_h->target_lun = path->device->lun_id;
3581 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3582 	} else {
3583 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3584 	}
3585 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3586 	ccb_h->flags = flags;
3587 	ccb_h->xflags = 0;
3588 }
3589 
3590 void
3591 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3592 {
3593 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3594 }
3595 
3596 /* Path manipulation functions */
3597 cam_status
3598 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3599 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3600 {
3601 	struct	   cam_path *path;
3602 	cam_status status;
3603 
3604 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3605 
3606 	if (path == NULL) {
3607 		status = CAM_RESRC_UNAVAIL;
3608 		return(status);
3609 	}
3610 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3611 	if (status != CAM_REQ_CMP) {
3612 		free(path, M_CAMPATH);
3613 		path = NULL;
3614 	}
3615 	*new_path_ptr = path;
3616 	return (status);
3617 }
3618 
3619 cam_status
3620 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3621 			 struct cam_periph *periph, path_id_t path_id,
3622 			 target_id_t target_id, lun_id_t lun_id)
3623 {
3624 
3625 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3626 	    lun_id));
3627 }
3628 
3629 cam_status
3630 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3631 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3632 {
3633 	struct	     cam_eb *bus;
3634 	struct	     cam_et *target;
3635 	struct	     cam_ed *device;
3636 	cam_status   status;
3637 
3638 	status = CAM_REQ_CMP;	/* Completed without error */
3639 	target = NULL;		/* Wildcarded */
3640 	device = NULL;		/* Wildcarded */
3641 
3642 	/*
3643 	 * We will potentially modify the EDT, so block interrupts
3644 	 * that may attempt to create cam paths.
3645 	 */
3646 	bus = xpt_find_bus(path_id);
3647 	if (bus == NULL) {
3648 		status = CAM_PATH_INVALID;
3649 	} else {
3650 		xpt_lock_buses();
3651 		mtx_lock(&bus->eb_mtx);
3652 		target = xpt_find_target(bus, target_id);
3653 		if (target == NULL) {
3654 			/* Create one */
3655 			struct cam_et *new_target;
3656 
3657 			new_target = xpt_alloc_target(bus, target_id);
3658 			if (new_target == NULL) {
3659 				status = CAM_RESRC_UNAVAIL;
3660 			} else {
3661 				target = new_target;
3662 			}
3663 		}
3664 		xpt_unlock_buses();
3665 		if (target != NULL) {
3666 			device = xpt_find_device(target, lun_id);
3667 			if (device == NULL) {
3668 				/* Create one */
3669 				struct cam_ed *new_device;
3670 
3671 				new_device =
3672 				    (*(bus->xport->ops->alloc_device))(bus,
3673 								       target,
3674 								       lun_id);
3675 				if (new_device == NULL) {
3676 					status = CAM_RESRC_UNAVAIL;
3677 				} else {
3678 					device = new_device;
3679 				}
3680 			}
3681 		}
3682 		mtx_unlock(&bus->eb_mtx);
3683 	}
3684 
3685 	/*
3686 	 * Only touch the user's data if we are successful.
3687 	 */
3688 	if (status == CAM_REQ_CMP) {
3689 		new_path->periph = perph;
3690 		new_path->bus = bus;
3691 		new_path->target = target;
3692 		new_path->device = device;
3693 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3694 	} else {
3695 		if (device != NULL)
3696 			xpt_release_device(device);
3697 		if (target != NULL)
3698 			xpt_release_target(target);
3699 		if (bus != NULL)
3700 			xpt_release_bus(bus);
3701 	}
3702 	return (status);
3703 }
3704 
3705 cam_status
3706 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3707 {
3708 	struct	   cam_path *new_path;
3709 
3710 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3711 	if (new_path == NULL)
3712 		return(CAM_RESRC_UNAVAIL);
3713 	xpt_copy_path(new_path, path);
3714 	*new_path_ptr = new_path;
3715 	return (CAM_REQ_CMP);
3716 }
3717 
3718 void
3719 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3720 {
3721 
3722 	*new_path = *path;
3723 	if (path->bus != NULL)
3724 		xpt_acquire_bus(path->bus);
3725 	if (path->target != NULL)
3726 		xpt_acquire_target(path->target);
3727 	if (path->device != NULL)
3728 		xpt_acquire_device(path->device);
3729 }
3730 
3731 void
3732 xpt_release_path(struct cam_path *path)
3733 {
3734 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3735 	if (path->device != NULL) {
3736 		xpt_release_device(path->device);
3737 		path->device = NULL;
3738 	}
3739 	if (path->target != NULL) {
3740 		xpt_release_target(path->target);
3741 		path->target = NULL;
3742 	}
3743 	if (path->bus != NULL) {
3744 		xpt_release_bus(path->bus);
3745 		path->bus = NULL;
3746 	}
3747 }
3748 
3749 void
3750 xpt_free_path(struct cam_path *path)
3751 {
3752 
3753 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3754 	xpt_release_path(path);
3755 	free(path, M_CAMPATH);
3756 }
3757 
3758 void
3759 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3760     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3761 {
3762 
3763 	xpt_lock_buses();
3764 	if (bus_ref) {
3765 		if (path->bus)
3766 			*bus_ref = path->bus->refcount;
3767 		else
3768 			*bus_ref = 0;
3769 	}
3770 	if (periph_ref) {
3771 		if (path->periph)
3772 			*periph_ref = path->periph->refcount;
3773 		else
3774 			*periph_ref = 0;
3775 	}
3776 	xpt_unlock_buses();
3777 	if (target_ref) {
3778 		if (path->target)
3779 			*target_ref = path->target->refcount;
3780 		else
3781 			*target_ref = 0;
3782 	}
3783 	if (device_ref) {
3784 		if (path->device)
3785 			*device_ref = path->device->refcount;
3786 		else
3787 			*device_ref = 0;
3788 	}
3789 }
3790 
3791 /*
3792  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3793  * in path1, 2 for match with wildcards in path2.
3794  */
3795 int
3796 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3797 {
3798 	int retval = 0;
3799 
3800 	if (path1->bus != path2->bus) {
3801 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3802 			retval = 1;
3803 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3804 			retval = 2;
3805 		else
3806 			return (-1);
3807 	}
3808 	if (path1->target != path2->target) {
3809 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3810 			if (retval == 0)
3811 				retval = 1;
3812 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3813 			retval = 2;
3814 		else
3815 			return (-1);
3816 	}
3817 	if (path1->device != path2->device) {
3818 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3819 			if (retval == 0)
3820 				retval = 1;
3821 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3822 			retval = 2;
3823 		else
3824 			return (-1);
3825 	}
3826 	return (retval);
3827 }
3828 
3829 int
3830 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3831 {
3832 	int retval = 0;
3833 
3834 	if (path->bus != dev->target->bus) {
3835 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3836 			retval = 1;
3837 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3838 			retval = 2;
3839 		else
3840 			return (-1);
3841 	}
3842 	if (path->target != dev->target) {
3843 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3844 			if (retval == 0)
3845 				retval = 1;
3846 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3847 			retval = 2;
3848 		else
3849 			return (-1);
3850 	}
3851 	if (path->device != dev) {
3852 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3853 			if (retval == 0)
3854 				retval = 1;
3855 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3856 			retval = 2;
3857 		else
3858 			return (-1);
3859 	}
3860 	return (retval);
3861 }
3862 
3863 void
3864 xpt_print_path(struct cam_path *path)
3865 {
3866 	struct sbuf sb;
3867 	char buffer[XPT_PRINT_LEN];
3868 
3869 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3870 	xpt_path_sbuf(path, &sb);
3871 	sbuf_finish(&sb);
3872 	printf("%s", sbuf_data(&sb));
3873 	sbuf_delete(&sb);
3874 }
3875 
3876 void
3877 xpt_print_device(struct cam_ed *device)
3878 {
3879 
3880 	if (device == NULL)
3881 		printf("(nopath): ");
3882 	else {
3883 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3884 		       device->sim->unit_number,
3885 		       device->sim->bus_id,
3886 		       device->target->target_id,
3887 		       (uintmax_t)device->lun_id);
3888 	}
3889 }
3890 
3891 void
3892 xpt_print(struct cam_path *path, const char *fmt, ...)
3893 {
3894 	va_list ap;
3895 	struct sbuf sb;
3896 	char buffer[XPT_PRINT_LEN];
3897 
3898 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3899 
3900 	xpt_path_sbuf(path, &sb);
3901 	va_start(ap, fmt);
3902 	sbuf_vprintf(&sb, fmt, ap);
3903 	va_end(ap);
3904 
3905 	sbuf_finish(&sb);
3906 	printf("%s", sbuf_data(&sb));
3907 	sbuf_delete(&sb);
3908 }
3909 
3910 int
3911 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3912 {
3913 	struct sbuf sb;
3914 	int len;
3915 
3916 	sbuf_new(&sb, str, str_len, 0);
3917 	len = xpt_path_sbuf(path, &sb);
3918 	sbuf_finish(&sb);
3919 	return (len);
3920 }
3921 
3922 int
3923 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3924 {
3925 
3926 	if (path == NULL)
3927 		sbuf_printf(sb, "(nopath): ");
3928 	else {
3929 		if (path->periph != NULL)
3930 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3931 				    path->periph->unit_number);
3932 		else
3933 			sbuf_printf(sb, "(noperiph:");
3934 
3935 		if (path->bus != NULL)
3936 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3937 				    path->bus->sim->unit_number,
3938 				    path->bus->sim->bus_id);
3939 		else
3940 			sbuf_printf(sb, "nobus:");
3941 
3942 		if (path->target != NULL)
3943 			sbuf_printf(sb, "%d:", path->target->target_id);
3944 		else
3945 			sbuf_printf(sb, "X:");
3946 
3947 		if (path->device != NULL)
3948 			sbuf_printf(sb, "%jx): ",
3949 			    (uintmax_t)path->device->lun_id);
3950 		else
3951 			sbuf_printf(sb, "X): ");
3952 	}
3953 
3954 	return(sbuf_len(sb));
3955 }
3956 
3957 path_id_t
3958 xpt_path_path_id(struct cam_path *path)
3959 {
3960 	return(path->bus->path_id);
3961 }
3962 
3963 target_id_t
3964 xpt_path_target_id(struct cam_path *path)
3965 {
3966 	if (path->target != NULL)
3967 		return (path->target->target_id);
3968 	else
3969 		return (CAM_TARGET_WILDCARD);
3970 }
3971 
3972 lun_id_t
3973 xpt_path_lun_id(struct cam_path *path)
3974 {
3975 	if (path->device != NULL)
3976 		return (path->device->lun_id);
3977 	else
3978 		return (CAM_LUN_WILDCARD);
3979 }
3980 
3981 struct cam_sim *
3982 xpt_path_sim(struct cam_path *path)
3983 {
3984 
3985 	return (path->bus->sim);
3986 }
3987 
3988 struct cam_periph*
3989 xpt_path_periph(struct cam_path *path)
3990 {
3991 
3992 	return (path->periph);
3993 }
3994 
3995 /*
3996  * Release a CAM control block for the caller.  Remit the cost of the structure
3997  * to the device referenced by the path.  If the this device had no 'credits'
3998  * and peripheral drivers have registered async callbacks for this notification
3999  * call them now.
4000  */
4001 void
4002 xpt_release_ccb(union ccb *free_ccb)
4003 {
4004 	struct	 cam_ed *device;
4005 	struct	 cam_periph *periph;
4006 
4007 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4008 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
4009 	device = free_ccb->ccb_h.path->device;
4010 	periph = free_ccb->ccb_h.path->periph;
4011 
4012 	xpt_free_ccb(free_ccb);
4013 	periph->periph_allocated--;
4014 	cam_ccbq_release_opening(&device->ccbq);
4015 	xpt_run_allocq(periph, 0);
4016 }
4017 
4018 /* Functions accessed by SIM drivers */
4019 
4020 static struct xpt_xport_ops xport_default_ops = {
4021 	.alloc_device = xpt_alloc_device_default,
4022 	.action = xpt_action_default,
4023 	.async = xpt_dev_async_default,
4024 };
4025 static struct xpt_xport xport_default = {
4026 	.xport = XPORT_UNKNOWN,
4027 	.name = "unknown",
4028 	.ops = &xport_default_ops,
4029 };
4030 
4031 CAM_XPT_XPORT(xport_default);
4032 
4033 /*
4034  * A sim structure, listing the SIM entry points and instance
4035  * identification info is passed to xpt_bus_register to hook the SIM
4036  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4037  * for this new bus and places it in the array of buses and assigns
4038  * it a path_id.  The path_id may be influenced by "hard wiring"
4039  * information specified by the user.  Once interrupt services are
4040  * available, the bus will be probed.
4041  */
4042 int32_t
4043 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4044 {
4045 	struct cam_eb *new_bus;
4046 	struct cam_eb *old_bus;
4047 	struct ccb_pathinq cpi;
4048 	struct cam_path *path;
4049 	cam_status status;
4050 
4051 	sim->bus_id = bus;
4052 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4053 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4054 	if (new_bus == NULL) {
4055 		/* Couldn't satisfy request */
4056 		return (CAM_RESRC_UNAVAIL);
4057 	}
4058 
4059 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4060 	TAILQ_INIT(&new_bus->et_entries);
4061 	cam_sim_hold(sim);
4062 	new_bus->sim = sim;
4063 	timevalclear(&new_bus->last_reset);
4064 	new_bus->flags = 0;
4065 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4066 	new_bus->generation = 0;
4067 
4068 	xpt_lock_buses();
4069 	sim->path_id = new_bus->path_id =
4070 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4071 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4072 	while (old_bus != NULL
4073 	    && old_bus->path_id < new_bus->path_id)
4074 		old_bus = TAILQ_NEXT(old_bus, links);
4075 	if (old_bus != NULL)
4076 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4077 	else
4078 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4079 	xsoftc.bus_generation++;
4080 	xpt_unlock_buses();
4081 
4082 	/*
4083 	 * Set a default transport so that a PATH_INQ can be issued to
4084 	 * the SIM.  This will then allow for probing and attaching of
4085 	 * a more appropriate transport.
4086 	 */
4087 	new_bus->xport = &xport_default;
4088 
4089 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4090 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4091 	if (status != CAM_REQ_CMP) {
4092 		xpt_release_bus(new_bus);
4093 		return (CAM_RESRC_UNAVAIL);
4094 	}
4095 
4096 	xpt_path_inq(&cpi, path);
4097 
4098 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4099 		struct xpt_xport **xpt;
4100 
4101 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4102 			if ((*xpt)->xport == cpi.transport) {
4103 				new_bus->xport = *xpt;
4104 				break;
4105 			}
4106 		}
4107 		if (new_bus->xport == NULL) {
4108 			xpt_print(path,
4109 			    "No transport found for %d\n", cpi.transport);
4110 			xpt_release_bus(new_bus);
4111 			free(path, M_CAMXPT);
4112 			return (CAM_RESRC_UNAVAIL);
4113 		}
4114 	}
4115 
4116 	/* Notify interested parties */
4117 	if (sim->path_id != CAM_XPT_PATH_ID) {
4118 
4119 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4120 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4121 			union	ccb *scan_ccb;
4122 
4123 			/* Initiate bus rescan. */
4124 			scan_ccb = xpt_alloc_ccb_nowait();
4125 			if (scan_ccb != NULL) {
4126 				scan_ccb->ccb_h.path = path;
4127 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4128 				scan_ccb->crcn.flags = 0;
4129 				xpt_rescan(scan_ccb);
4130 			} else {
4131 				xpt_print(path,
4132 					  "Can't allocate CCB to scan bus\n");
4133 				xpt_free_path(path);
4134 			}
4135 		} else
4136 			xpt_free_path(path);
4137 	} else
4138 		xpt_free_path(path);
4139 	return (CAM_SUCCESS);
4140 }
4141 
4142 int32_t
4143 xpt_bus_deregister(path_id_t pathid)
4144 {
4145 	struct cam_path bus_path;
4146 	cam_status status;
4147 
4148 	status = xpt_compile_path(&bus_path, NULL, pathid,
4149 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4150 	if (status != CAM_REQ_CMP)
4151 		return (status);
4152 
4153 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4154 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4155 
4156 	/* Release the reference count held while registered. */
4157 	xpt_release_bus(bus_path.bus);
4158 	xpt_release_path(&bus_path);
4159 
4160 	return (CAM_REQ_CMP);
4161 }
4162 
4163 static path_id_t
4164 xptnextfreepathid(void)
4165 {
4166 	struct cam_eb *bus;
4167 	path_id_t pathid;
4168 	const char *strval;
4169 
4170 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4171 	pathid = 0;
4172 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4173 retry:
4174 	/* Find an unoccupied pathid */
4175 	while (bus != NULL && bus->path_id <= pathid) {
4176 		if (bus->path_id == pathid)
4177 			pathid++;
4178 		bus = TAILQ_NEXT(bus, links);
4179 	}
4180 
4181 	/*
4182 	 * Ensure that this pathid is not reserved for
4183 	 * a bus that may be registered in the future.
4184 	 */
4185 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4186 		++pathid;
4187 		/* Start the search over */
4188 		goto retry;
4189 	}
4190 	return (pathid);
4191 }
4192 
4193 static path_id_t
4194 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4195 {
4196 	path_id_t pathid;
4197 	int i, dunit, val;
4198 	char buf[32];
4199 	const char *dname;
4200 
4201 	pathid = CAM_XPT_PATH_ID;
4202 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4203 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4204 		return (pathid);
4205 	i = 0;
4206 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4207 		if (strcmp(dname, "scbus")) {
4208 			/* Avoid a bit of foot shooting. */
4209 			continue;
4210 		}
4211 		if (dunit < 0)		/* unwired?! */
4212 			continue;
4213 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4214 			if (sim_bus == val) {
4215 				pathid = dunit;
4216 				break;
4217 			}
4218 		} else if (sim_bus == 0) {
4219 			/* Unspecified matches bus 0 */
4220 			pathid = dunit;
4221 			break;
4222 		} else {
4223 			printf("Ambiguous scbus configuration for %s%d "
4224 			       "bus %d, cannot wire down.  The kernel "
4225 			       "config entry for scbus%d should "
4226 			       "specify a controller bus.\n"
4227 			       "Scbus will be assigned dynamically.\n",
4228 			       sim_name, sim_unit, sim_bus, dunit);
4229 			break;
4230 		}
4231 	}
4232 
4233 	if (pathid == CAM_XPT_PATH_ID)
4234 		pathid = xptnextfreepathid();
4235 	return (pathid);
4236 }
4237 
4238 static const char *
4239 xpt_async_string(u_int32_t async_code)
4240 {
4241 
4242 	switch (async_code) {
4243 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4244 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4245 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4246 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4247 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4248 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4249 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4250 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4251 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4252 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4253 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4254 	case AC_CONTRACT: return ("AC_CONTRACT");
4255 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4256 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4257 	}
4258 	return ("AC_UNKNOWN");
4259 }
4260 
4261 static int
4262 xpt_async_size(u_int32_t async_code)
4263 {
4264 
4265 	switch (async_code) {
4266 	case AC_BUS_RESET: return (0);
4267 	case AC_UNSOL_RESEL: return (0);
4268 	case AC_SCSI_AEN: return (0);
4269 	case AC_SENT_BDR: return (0);
4270 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4271 	case AC_PATH_DEREGISTERED: return (0);
4272 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4273 	case AC_LOST_DEVICE: return (0);
4274 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4275 	case AC_INQ_CHANGED: return (0);
4276 	case AC_GETDEV_CHANGED: return (0);
4277 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4278 	case AC_ADVINFO_CHANGED: return (-1);
4279 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4280 	}
4281 	return (0);
4282 }
4283 
4284 static int
4285 xpt_async_process_dev(struct cam_ed *device, void *arg)
4286 {
4287 	union ccb *ccb = arg;
4288 	struct cam_path *path = ccb->ccb_h.path;
4289 	void *async_arg = ccb->casync.async_arg_ptr;
4290 	u_int32_t async_code = ccb->casync.async_code;
4291 	int relock;
4292 
4293 	if (path->device != device
4294 	 && path->device->lun_id != CAM_LUN_WILDCARD
4295 	 && device->lun_id != CAM_LUN_WILDCARD)
4296 		return (1);
4297 
4298 	/*
4299 	 * The async callback could free the device.
4300 	 * If it is a broadcast async, it doesn't hold
4301 	 * device reference, so take our own reference.
4302 	 */
4303 	xpt_acquire_device(device);
4304 
4305 	/*
4306 	 * If async for specific device is to be delivered to
4307 	 * the wildcard client, take the specific device lock.
4308 	 * XXX: We may need a way for client to specify it.
4309 	 */
4310 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4311 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4312 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4313 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4314 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4315 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4316 		mtx_unlock(&device->device_mtx);
4317 		xpt_path_lock(path);
4318 		relock = 1;
4319 	} else
4320 		relock = 0;
4321 
4322 	(*(device->target->bus->xport->ops->async))(async_code,
4323 	    device->target->bus, device->target, device, async_arg);
4324 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4325 
4326 	if (relock) {
4327 		xpt_path_unlock(path);
4328 		mtx_lock(&device->device_mtx);
4329 	}
4330 	xpt_release_device(device);
4331 	return (1);
4332 }
4333 
4334 static int
4335 xpt_async_process_tgt(struct cam_et *target, void *arg)
4336 {
4337 	union ccb *ccb = arg;
4338 	struct cam_path *path = ccb->ccb_h.path;
4339 
4340 	if (path->target != target
4341 	 && path->target->target_id != CAM_TARGET_WILDCARD
4342 	 && target->target_id != CAM_TARGET_WILDCARD)
4343 		return (1);
4344 
4345 	if (ccb->casync.async_code == AC_SENT_BDR) {
4346 		/* Update our notion of when the last reset occurred */
4347 		microtime(&target->last_reset);
4348 	}
4349 
4350 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4351 }
4352 
4353 static void
4354 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4355 {
4356 	struct cam_eb *bus;
4357 	struct cam_path *path;
4358 	void *async_arg;
4359 	u_int32_t async_code;
4360 
4361 	path = ccb->ccb_h.path;
4362 	async_code = ccb->casync.async_code;
4363 	async_arg = ccb->casync.async_arg_ptr;
4364 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4365 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4366 	bus = path->bus;
4367 
4368 	if (async_code == AC_BUS_RESET) {
4369 		/* Update our notion of when the last reset occurred */
4370 		microtime(&bus->last_reset);
4371 	}
4372 
4373 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4374 
4375 	/*
4376 	 * If this wasn't a fully wildcarded async, tell all
4377 	 * clients that want all async events.
4378 	 */
4379 	if (bus != xpt_periph->path->bus) {
4380 		xpt_path_lock(xpt_periph->path);
4381 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4382 		xpt_path_unlock(xpt_periph->path);
4383 	}
4384 
4385 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4386 		xpt_release_devq(path, 1, TRUE);
4387 	else
4388 		xpt_release_simq(path->bus->sim, TRUE);
4389 	if (ccb->casync.async_arg_size > 0)
4390 		free(async_arg, M_CAMXPT);
4391 	xpt_free_path(path);
4392 	xpt_free_ccb(ccb);
4393 }
4394 
4395 static void
4396 xpt_async_bcast(struct async_list *async_head,
4397 		u_int32_t async_code,
4398 		struct cam_path *path, void *async_arg)
4399 {
4400 	struct async_node *cur_entry;
4401 	struct mtx *mtx;
4402 
4403 	cur_entry = SLIST_FIRST(async_head);
4404 	while (cur_entry != NULL) {
4405 		struct async_node *next_entry;
4406 		/*
4407 		 * Grab the next list entry before we call the current
4408 		 * entry's callback.  This is because the callback function
4409 		 * can delete its async callback entry.
4410 		 */
4411 		next_entry = SLIST_NEXT(cur_entry, links);
4412 		if ((cur_entry->event_enable & async_code) != 0) {
4413 			mtx = cur_entry->event_lock ?
4414 			    path->device->sim->mtx : NULL;
4415 			if (mtx)
4416 				mtx_lock(mtx);
4417 			cur_entry->callback(cur_entry->callback_arg,
4418 					    async_code, path,
4419 					    async_arg);
4420 			if (mtx)
4421 				mtx_unlock(mtx);
4422 		}
4423 		cur_entry = next_entry;
4424 	}
4425 }
4426 
4427 void
4428 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4429 {
4430 	union ccb *ccb;
4431 	int size;
4432 
4433 	ccb = xpt_alloc_ccb_nowait();
4434 	if (ccb == NULL) {
4435 		xpt_print(path, "Can't allocate CCB to send %s\n",
4436 		    xpt_async_string(async_code));
4437 		return;
4438 	}
4439 
4440 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4441 		xpt_print(path, "Can't allocate path to send %s\n",
4442 		    xpt_async_string(async_code));
4443 		xpt_free_ccb(ccb);
4444 		return;
4445 	}
4446 	ccb->ccb_h.path->periph = NULL;
4447 	ccb->ccb_h.func_code = XPT_ASYNC;
4448 	ccb->ccb_h.cbfcnp = xpt_async_process;
4449 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4450 	ccb->casync.async_code = async_code;
4451 	ccb->casync.async_arg_size = 0;
4452 	size = xpt_async_size(async_code);
4453 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4454 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4455 		ccb->ccb_h.func_code,
4456 		xpt_action_name(ccb->ccb_h.func_code),
4457 		async_code,
4458 		xpt_async_string(async_code)));
4459 	if (size > 0 && async_arg != NULL) {
4460 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4461 		if (ccb->casync.async_arg_ptr == NULL) {
4462 			xpt_print(path, "Can't allocate argument to send %s\n",
4463 			    xpt_async_string(async_code));
4464 			xpt_free_path(ccb->ccb_h.path);
4465 			xpt_free_ccb(ccb);
4466 			return;
4467 		}
4468 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4469 		ccb->casync.async_arg_size = size;
4470 	} else if (size < 0) {
4471 		ccb->casync.async_arg_ptr = async_arg;
4472 		ccb->casync.async_arg_size = size;
4473 	}
4474 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4475 		xpt_freeze_devq(path, 1);
4476 	else
4477 		xpt_freeze_simq(path->bus->sim, 1);
4478 	xpt_done(ccb);
4479 }
4480 
4481 static void
4482 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4483 		      struct cam_et *target, struct cam_ed *device,
4484 		      void *async_arg)
4485 {
4486 
4487 	/*
4488 	 * We only need to handle events for real devices.
4489 	 */
4490 	if (target->target_id == CAM_TARGET_WILDCARD
4491 	 || device->lun_id == CAM_LUN_WILDCARD)
4492 		return;
4493 
4494 	printf("%s called\n", __func__);
4495 }
4496 
4497 static uint32_t
4498 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4499 {
4500 	struct cam_devq	*devq;
4501 	uint32_t freeze;
4502 
4503 	devq = dev->sim->devq;
4504 	mtx_assert(&devq->send_mtx, MA_OWNED);
4505 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4506 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4507 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4508 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4509 	/* Remove frozen device from sendq. */
4510 	if (device_is_queued(dev))
4511 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4512 	return (freeze);
4513 }
4514 
4515 u_int32_t
4516 xpt_freeze_devq(struct cam_path *path, u_int count)
4517 {
4518 	struct cam_ed	*dev = path->device;
4519 	struct cam_devq	*devq;
4520 	uint32_t	 freeze;
4521 
4522 	devq = dev->sim->devq;
4523 	mtx_lock(&devq->send_mtx);
4524 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4525 	freeze = xpt_freeze_devq_device(dev, count);
4526 	mtx_unlock(&devq->send_mtx);
4527 	return (freeze);
4528 }
4529 
4530 u_int32_t
4531 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4532 {
4533 	struct cam_devq	*devq;
4534 	uint32_t	 freeze;
4535 
4536 	devq = sim->devq;
4537 	mtx_lock(&devq->send_mtx);
4538 	freeze = (devq->send_queue.qfrozen_cnt += count);
4539 	mtx_unlock(&devq->send_mtx);
4540 	return (freeze);
4541 }
4542 
4543 static void
4544 xpt_release_devq_timeout(void *arg)
4545 {
4546 	struct cam_ed *dev;
4547 	struct cam_devq *devq;
4548 
4549 	dev = (struct cam_ed *)arg;
4550 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4551 	devq = dev->sim->devq;
4552 	mtx_assert(&devq->send_mtx, MA_OWNED);
4553 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4554 		xpt_run_devq(devq);
4555 }
4556 
4557 void
4558 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4559 {
4560 	struct cam_ed *dev;
4561 	struct cam_devq *devq;
4562 
4563 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4564 	    count, run_queue));
4565 	dev = path->device;
4566 	devq = dev->sim->devq;
4567 	mtx_lock(&devq->send_mtx);
4568 	if (xpt_release_devq_device(dev, count, run_queue))
4569 		xpt_run_devq(dev->sim->devq);
4570 	mtx_unlock(&devq->send_mtx);
4571 }
4572 
4573 static int
4574 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4575 {
4576 
4577 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4578 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4579 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4580 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4581 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4582 #ifdef INVARIANTS
4583 		printf("xpt_release_devq(): requested %u > present %u\n",
4584 		    count, dev->ccbq.queue.qfrozen_cnt);
4585 #endif
4586 		count = dev->ccbq.queue.qfrozen_cnt;
4587 	}
4588 	dev->ccbq.queue.qfrozen_cnt -= count;
4589 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4590 		/*
4591 		 * No longer need to wait for a successful
4592 		 * command completion.
4593 		 */
4594 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4595 		/*
4596 		 * Remove any timeouts that might be scheduled
4597 		 * to release this queue.
4598 		 */
4599 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4600 			callout_stop(&dev->callout);
4601 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4602 		}
4603 		/*
4604 		 * Now that we are unfrozen schedule the
4605 		 * device so any pending transactions are
4606 		 * run.
4607 		 */
4608 		xpt_schedule_devq(dev->sim->devq, dev);
4609 	} else
4610 		run_queue = 0;
4611 	return (run_queue);
4612 }
4613 
4614 void
4615 xpt_release_simq(struct cam_sim *sim, int run_queue)
4616 {
4617 	struct cam_devq	*devq;
4618 
4619 	devq = sim->devq;
4620 	mtx_lock(&devq->send_mtx);
4621 	if (devq->send_queue.qfrozen_cnt <= 0) {
4622 #ifdef INVARIANTS
4623 		printf("xpt_release_simq: requested 1 > present %u\n",
4624 		    devq->send_queue.qfrozen_cnt);
4625 #endif
4626 	} else
4627 		devq->send_queue.qfrozen_cnt--;
4628 	if (devq->send_queue.qfrozen_cnt == 0) {
4629 		/*
4630 		 * If there is a timeout scheduled to release this
4631 		 * sim queue, remove it.  The queue frozen count is
4632 		 * already at 0.
4633 		 */
4634 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4635 			callout_stop(&sim->callout);
4636 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4637 		}
4638 		if (run_queue) {
4639 			/*
4640 			 * Now that we are unfrozen run the send queue.
4641 			 */
4642 			xpt_run_devq(sim->devq);
4643 		}
4644 	}
4645 	mtx_unlock(&devq->send_mtx);
4646 }
4647 
4648 /*
4649  * XXX Appears to be unused.
4650  */
4651 static void
4652 xpt_release_simq_timeout(void *arg)
4653 {
4654 	struct cam_sim *sim;
4655 
4656 	sim = (struct cam_sim *)arg;
4657 	xpt_release_simq(sim, /* run_queue */ TRUE);
4658 }
4659 
4660 void
4661 xpt_done(union ccb *done_ccb)
4662 {
4663 	struct cam_doneq *queue;
4664 	int	run, hash;
4665 
4666 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4667 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4668 	    done_ccb->csio.bio != NULL)
4669 		biotrack(done_ccb->csio.bio, __func__);
4670 #endif
4671 
4672 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4673 	    ("xpt_done: func= %#x %s status %#x\n",
4674 		done_ccb->ccb_h.func_code,
4675 		xpt_action_name(done_ccb->ccb_h.func_code),
4676 		done_ccb->ccb_h.status));
4677 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4678 		return;
4679 
4680 	/* Store the time the ccb was in the sim */
4681 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4682 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4683 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4684 	queue = &cam_doneqs[hash];
4685 	mtx_lock(&queue->cam_doneq_mtx);
4686 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4687 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4688 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4689 	mtx_unlock(&queue->cam_doneq_mtx);
4690 	if (run)
4691 		wakeup(&queue->cam_doneq);
4692 }
4693 
4694 void
4695 xpt_done_direct(union ccb *done_ccb)
4696 {
4697 
4698 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4699 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4700 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4701 		return;
4702 
4703 	/* Store the time the ccb was in the sim */
4704 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4705 	xpt_done_process(&done_ccb->ccb_h);
4706 }
4707 
4708 union ccb *
4709 xpt_alloc_ccb()
4710 {
4711 	union ccb *new_ccb;
4712 
4713 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4714 	return (new_ccb);
4715 }
4716 
4717 union ccb *
4718 xpt_alloc_ccb_nowait()
4719 {
4720 	union ccb *new_ccb;
4721 
4722 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4723 	return (new_ccb);
4724 }
4725 
4726 void
4727 xpt_free_ccb(union ccb *free_ccb)
4728 {
4729 	free(free_ccb, M_CAMCCB);
4730 }
4731 
4732 
4733 
4734 /* Private XPT functions */
4735 
4736 /*
4737  * Get a CAM control block for the caller. Charge the structure to the device
4738  * referenced by the path.  If we don't have sufficient resources to allocate
4739  * more ccbs, we return NULL.
4740  */
4741 static union ccb *
4742 xpt_get_ccb_nowait(struct cam_periph *periph)
4743 {
4744 	union ccb *new_ccb;
4745 
4746 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4747 	if (new_ccb == NULL)
4748 		return (NULL);
4749 	periph->periph_allocated++;
4750 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4751 	return (new_ccb);
4752 }
4753 
4754 static union ccb *
4755 xpt_get_ccb(struct cam_periph *periph)
4756 {
4757 	union ccb *new_ccb;
4758 
4759 	cam_periph_unlock(periph);
4760 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4761 	cam_periph_lock(periph);
4762 	periph->periph_allocated++;
4763 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4764 	return (new_ccb);
4765 }
4766 
4767 union ccb *
4768 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4769 {
4770 	struct ccb_hdr *ccb_h;
4771 
4772 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4773 	cam_periph_assert(periph, MA_OWNED);
4774 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4775 	    ccb_h->pinfo.priority != priority) {
4776 		if (priority < periph->immediate_priority) {
4777 			periph->immediate_priority = priority;
4778 			xpt_run_allocq(periph, 0);
4779 		} else
4780 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4781 			    "cgticb", 0);
4782 	}
4783 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4784 	return ((union ccb *)ccb_h);
4785 }
4786 
4787 static void
4788 xpt_acquire_bus(struct cam_eb *bus)
4789 {
4790 
4791 	xpt_lock_buses();
4792 	bus->refcount++;
4793 	xpt_unlock_buses();
4794 }
4795 
4796 static void
4797 xpt_release_bus(struct cam_eb *bus)
4798 {
4799 
4800 	xpt_lock_buses();
4801 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4802 	if (--bus->refcount > 0) {
4803 		xpt_unlock_buses();
4804 		return;
4805 	}
4806 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4807 	xsoftc.bus_generation++;
4808 	xpt_unlock_buses();
4809 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4810 	    ("destroying bus, but target list is not empty"));
4811 	cam_sim_release(bus->sim);
4812 	mtx_destroy(&bus->eb_mtx);
4813 	free(bus, M_CAMXPT);
4814 }
4815 
4816 static struct cam_et *
4817 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4818 {
4819 	struct cam_et *cur_target, *target;
4820 
4821 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4822 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4823 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4824 					 M_NOWAIT|M_ZERO);
4825 	if (target == NULL)
4826 		return (NULL);
4827 
4828 	TAILQ_INIT(&target->ed_entries);
4829 	target->bus = bus;
4830 	target->target_id = target_id;
4831 	target->refcount = 1;
4832 	target->generation = 0;
4833 	target->luns = NULL;
4834 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4835 	timevalclear(&target->last_reset);
4836 	/*
4837 	 * Hold a reference to our parent bus so it
4838 	 * will not go away before we do.
4839 	 */
4840 	bus->refcount++;
4841 
4842 	/* Insertion sort into our bus's target list */
4843 	cur_target = TAILQ_FIRST(&bus->et_entries);
4844 	while (cur_target != NULL && cur_target->target_id < target_id)
4845 		cur_target = TAILQ_NEXT(cur_target, links);
4846 	if (cur_target != NULL) {
4847 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4848 	} else {
4849 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4850 	}
4851 	bus->generation++;
4852 	return (target);
4853 }
4854 
4855 static void
4856 xpt_acquire_target(struct cam_et *target)
4857 {
4858 	struct cam_eb *bus = target->bus;
4859 
4860 	mtx_lock(&bus->eb_mtx);
4861 	target->refcount++;
4862 	mtx_unlock(&bus->eb_mtx);
4863 }
4864 
4865 static void
4866 xpt_release_target(struct cam_et *target)
4867 {
4868 	struct cam_eb *bus = target->bus;
4869 
4870 	mtx_lock(&bus->eb_mtx);
4871 	if (--target->refcount > 0) {
4872 		mtx_unlock(&bus->eb_mtx);
4873 		return;
4874 	}
4875 	TAILQ_REMOVE(&bus->et_entries, target, links);
4876 	bus->generation++;
4877 	mtx_unlock(&bus->eb_mtx);
4878 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4879 	    ("destroying target, but device list is not empty"));
4880 	xpt_release_bus(bus);
4881 	mtx_destroy(&target->luns_mtx);
4882 	if (target->luns)
4883 		free(target->luns, M_CAMXPT);
4884 	free(target, M_CAMXPT);
4885 }
4886 
4887 static struct cam_ed *
4888 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4889 			 lun_id_t lun_id)
4890 {
4891 	struct cam_ed *device;
4892 
4893 	device = xpt_alloc_device(bus, target, lun_id);
4894 	if (device == NULL)
4895 		return (NULL);
4896 
4897 	device->mintags = 1;
4898 	device->maxtags = 1;
4899 	return (device);
4900 }
4901 
4902 static void
4903 xpt_destroy_device(void *context, int pending)
4904 {
4905 	struct cam_ed	*device = context;
4906 
4907 	mtx_lock(&device->device_mtx);
4908 	mtx_destroy(&device->device_mtx);
4909 	free(device, M_CAMDEV);
4910 }
4911 
4912 struct cam_ed *
4913 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4914 {
4915 	struct cam_ed	*cur_device, *device;
4916 	struct cam_devq	*devq;
4917 	cam_status status;
4918 
4919 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4920 	/* Make space for us in the device queue on our bus */
4921 	devq = bus->sim->devq;
4922 	mtx_lock(&devq->send_mtx);
4923 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4924 	mtx_unlock(&devq->send_mtx);
4925 	if (status != CAM_REQ_CMP)
4926 		return (NULL);
4927 
4928 	device = (struct cam_ed *)malloc(sizeof(*device),
4929 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4930 	if (device == NULL)
4931 		return (NULL);
4932 
4933 	cam_init_pinfo(&device->devq_entry);
4934 	device->target = target;
4935 	device->lun_id = lun_id;
4936 	device->sim = bus->sim;
4937 	if (cam_ccbq_init(&device->ccbq,
4938 			  bus->sim->max_dev_openings) != 0) {
4939 		free(device, M_CAMDEV);
4940 		return (NULL);
4941 	}
4942 	SLIST_INIT(&device->asyncs);
4943 	SLIST_INIT(&device->periphs);
4944 	device->generation = 0;
4945 	device->flags = CAM_DEV_UNCONFIGURED;
4946 	device->tag_delay_count = 0;
4947 	device->tag_saved_openings = 0;
4948 	device->refcount = 1;
4949 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4950 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4951 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4952 	/*
4953 	 * Hold a reference to our parent bus so it
4954 	 * will not go away before we do.
4955 	 */
4956 	target->refcount++;
4957 
4958 	cur_device = TAILQ_FIRST(&target->ed_entries);
4959 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4960 		cur_device = TAILQ_NEXT(cur_device, links);
4961 	if (cur_device != NULL)
4962 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4963 	else
4964 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4965 	target->generation++;
4966 	return (device);
4967 }
4968 
4969 void
4970 xpt_acquire_device(struct cam_ed *device)
4971 {
4972 	struct cam_eb *bus = device->target->bus;
4973 
4974 	mtx_lock(&bus->eb_mtx);
4975 	device->refcount++;
4976 	mtx_unlock(&bus->eb_mtx);
4977 }
4978 
4979 void
4980 xpt_release_device(struct cam_ed *device)
4981 {
4982 	struct cam_eb *bus = device->target->bus;
4983 	struct cam_devq *devq;
4984 
4985 	mtx_lock(&bus->eb_mtx);
4986 	if (--device->refcount > 0) {
4987 		mtx_unlock(&bus->eb_mtx);
4988 		return;
4989 	}
4990 
4991 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4992 	device->target->generation++;
4993 	mtx_unlock(&bus->eb_mtx);
4994 
4995 	/* Release our slot in the devq */
4996 	devq = bus->sim->devq;
4997 	mtx_lock(&devq->send_mtx);
4998 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4999 	mtx_unlock(&devq->send_mtx);
5000 
5001 	KASSERT(SLIST_EMPTY(&device->periphs),
5002 	    ("destroying device, but periphs list is not empty"));
5003 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
5004 	    ("destroying device while still queued for ccbs"));
5005 
5006 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
5007 		callout_stop(&device->callout);
5008 
5009 	xpt_release_target(device->target);
5010 
5011 	cam_ccbq_fini(&device->ccbq);
5012 	/*
5013 	 * Free allocated memory.  free(9) does nothing if the
5014 	 * supplied pointer is NULL, so it is safe to call without
5015 	 * checking.
5016 	 */
5017 	free(device->supported_vpds, M_CAMXPT);
5018 	free(device->device_id, M_CAMXPT);
5019 	free(device->ext_inq, M_CAMXPT);
5020 	free(device->physpath, M_CAMXPT);
5021 	free(device->rcap_buf, M_CAMXPT);
5022 	free(device->serial_num, M_CAMXPT);
5023 	free(device->nvme_data, M_CAMXPT);
5024 	free(device->nvme_cdata, M_CAMXPT);
5025 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
5026 }
5027 
5028 u_int32_t
5029 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5030 {
5031 	int	result;
5032 	struct	cam_ed *dev;
5033 
5034 	dev = path->device;
5035 	mtx_lock(&dev->sim->devq->send_mtx);
5036 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5037 	mtx_unlock(&dev->sim->devq->send_mtx);
5038 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5039 	 || (dev->inq_flags & SID_CmdQue) != 0)
5040 		dev->tag_saved_openings = newopenings;
5041 	return (result);
5042 }
5043 
5044 static struct cam_eb *
5045 xpt_find_bus(path_id_t path_id)
5046 {
5047 	struct cam_eb *bus;
5048 
5049 	xpt_lock_buses();
5050 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5051 	     bus != NULL;
5052 	     bus = TAILQ_NEXT(bus, links)) {
5053 		if (bus->path_id == path_id) {
5054 			bus->refcount++;
5055 			break;
5056 		}
5057 	}
5058 	xpt_unlock_buses();
5059 	return (bus);
5060 }
5061 
5062 static struct cam_et *
5063 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5064 {
5065 	struct cam_et *target;
5066 
5067 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5068 	for (target = TAILQ_FIRST(&bus->et_entries);
5069 	     target != NULL;
5070 	     target = TAILQ_NEXT(target, links)) {
5071 		if (target->target_id == target_id) {
5072 			target->refcount++;
5073 			break;
5074 		}
5075 	}
5076 	return (target);
5077 }
5078 
5079 static struct cam_ed *
5080 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5081 {
5082 	struct cam_ed *device;
5083 
5084 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5085 	for (device = TAILQ_FIRST(&target->ed_entries);
5086 	     device != NULL;
5087 	     device = TAILQ_NEXT(device, links)) {
5088 		if (device->lun_id == lun_id) {
5089 			device->refcount++;
5090 			break;
5091 		}
5092 	}
5093 	return (device);
5094 }
5095 
5096 void
5097 xpt_start_tags(struct cam_path *path)
5098 {
5099 	struct ccb_relsim crs;
5100 	struct cam_ed *device;
5101 	struct cam_sim *sim;
5102 	int    newopenings;
5103 
5104 	device = path->device;
5105 	sim = path->bus->sim;
5106 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5107 	xpt_freeze_devq(path, /*count*/1);
5108 	device->inq_flags |= SID_CmdQue;
5109 	if (device->tag_saved_openings != 0)
5110 		newopenings = device->tag_saved_openings;
5111 	else
5112 		newopenings = min(device->maxtags,
5113 				  sim->max_tagged_dev_openings);
5114 	xpt_dev_ccbq_resize(path, newopenings);
5115 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5116 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5117 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5118 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5119 	crs.openings
5120 	    = crs.release_timeout
5121 	    = crs.qfrozen_cnt
5122 	    = 0;
5123 	xpt_action((union ccb *)&crs);
5124 }
5125 
5126 void
5127 xpt_stop_tags(struct cam_path *path)
5128 {
5129 	struct ccb_relsim crs;
5130 	struct cam_ed *device;
5131 	struct cam_sim *sim;
5132 
5133 	device = path->device;
5134 	sim = path->bus->sim;
5135 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5136 	device->tag_delay_count = 0;
5137 	xpt_freeze_devq(path, /*count*/1);
5138 	device->inq_flags &= ~SID_CmdQue;
5139 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5140 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5141 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5142 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5143 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5144 	crs.openings
5145 	    = crs.release_timeout
5146 	    = crs.qfrozen_cnt
5147 	    = 0;
5148 	xpt_action((union ccb *)&crs);
5149 }
5150 
5151 static void
5152 xpt_boot_delay(void *arg)
5153 {
5154 
5155 	xpt_release_boot();
5156 }
5157 
5158 static void
5159 xpt_config(void *arg)
5160 {
5161 	/*
5162 	 * Now that interrupts are enabled, go find our devices
5163 	 */
5164 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5165 		printf("xpt_config: failed to create taskqueue thread.\n");
5166 
5167 	/* Setup debugging path */
5168 	if (cam_dflags != CAM_DEBUG_NONE) {
5169 		if (xpt_create_path(&cam_dpath, NULL,
5170 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5171 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5172 			printf("xpt_config: xpt_create_path() failed for debug"
5173 			       " target %d:%d:%d, debugging disabled\n",
5174 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5175 			cam_dflags = CAM_DEBUG_NONE;
5176 		}
5177 	} else
5178 		cam_dpath = NULL;
5179 
5180 	periphdriver_init(1);
5181 	xpt_hold_boot();
5182 	callout_init(&xsoftc.boot_callout, 1);
5183 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5184 	    xpt_boot_delay, NULL, 0);
5185 	/* Fire up rescan thread. */
5186 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5187 	    "cam", "scanner")) {
5188 		printf("xpt_config: failed to create rescan thread.\n");
5189 	}
5190 }
5191 
5192 void
5193 xpt_hold_boot(void)
5194 {
5195 	xpt_lock_buses();
5196 	xsoftc.buses_to_config++;
5197 	xpt_unlock_buses();
5198 }
5199 
5200 void
5201 xpt_release_boot(void)
5202 {
5203 	xpt_lock_buses();
5204 	xsoftc.buses_to_config--;
5205 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5206 		struct	xpt_task *task;
5207 
5208 		xsoftc.buses_config_done = 1;
5209 		xpt_unlock_buses();
5210 		/* Call manually because we don't have any buses */
5211 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5212 		if (task != NULL) {
5213 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5214 			taskqueue_enqueue(taskqueue_thread, &task->task);
5215 		}
5216 	} else
5217 		xpt_unlock_buses();
5218 }
5219 
5220 /*
5221  * If the given device only has one peripheral attached to it, and if that
5222  * peripheral is the passthrough driver, announce it.  This insures that the
5223  * user sees some sort of announcement for every peripheral in their system.
5224  */
5225 static int
5226 xptpassannouncefunc(struct cam_ed *device, void *arg)
5227 {
5228 	struct cam_periph *periph;
5229 	int i;
5230 
5231 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5232 	     periph = SLIST_NEXT(periph, periph_links), i++);
5233 
5234 	periph = SLIST_FIRST(&device->periphs);
5235 	if ((i == 1)
5236 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5237 		xpt_announce_periph(periph, NULL);
5238 
5239 	return(1);
5240 }
5241 
5242 static void
5243 xpt_finishconfig_task(void *context, int pending)
5244 {
5245 
5246 	periphdriver_init(2);
5247 	/*
5248 	 * Check for devices with no "standard" peripheral driver
5249 	 * attached.  For any devices like that, announce the
5250 	 * passthrough driver so the user will see something.
5251 	 */
5252 	if (!bootverbose)
5253 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5254 
5255 	/* Release our hook so that the boot can continue. */
5256 	config_intrhook_disestablish(&xsoftc.xpt_config_hook);
5257 
5258 	free(context, M_CAMXPT);
5259 }
5260 
5261 cam_status
5262 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5263 		   struct cam_path *path)
5264 {
5265 	struct ccb_setasync csa;
5266 	cam_status status;
5267 	int xptpath = 0;
5268 
5269 	if (path == NULL) {
5270 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5271 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5272 		if (status != CAM_REQ_CMP)
5273 			return (status);
5274 		xpt_path_lock(path);
5275 		xptpath = 1;
5276 	}
5277 
5278 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5279 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5280 	csa.event_enable = event;
5281 	csa.callback = cbfunc;
5282 	csa.callback_arg = cbarg;
5283 	xpt_action((union ccb *)&csa);
5284 	status = csa.ccb_h.status;
5285 
5286 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5287 	    ("xpt_register_async: func %p\n", cbfunc));
5288 
5289 	if (xptpath) {
5290 		xpt_path_unlock(path);
5291 		xpt_free_path(path);
5292 	}
5293 
5294 	if ((status == CAM_REQ_CMP) &&
5295 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5296 		/*
5297 		 * Get this peripheral up to date with all
5298 		 * the currently existing devices.
5299 		 */
5300 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5301 	}
5302 	if ((status == CAM_REQ_CMP) &&
5303 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5304 		/*
5305 		 * Get this peripheral up to date with all
5306 		 * the currently existing buses.
5307 		 */
5308 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5309 	}
5310 
5311 	return (status);
5312 }
5313 
5314 static void
5315 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5316 {
5317 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5318 
5319 	switch (work_ccb->ccb_h.func_code) {
5320 	/* Common cases first */
5321 	case XPT_PATH_INQ:		/* Path routing inquiry */
5322 	{
5323 		struct ccb_pathinq *cpi;
5324 
5325 		cpi = &work_ccb->cpi;
5326 		cpi->version_num = 1; /* XXX??? */
5327 		cpi->hba_inquiry = 0;
5328 		cpi->target_sprt = 0;
5329 		cpi->hba_misc = 0;
5330 		cpi->hba_eng_cnt = 0;
5331 		cpi->max_target = 0;
5332 		cpi->max_lun = 0;
5333 		cpi->initiator_id = 0;
5334 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5335 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5336 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5337 		cpi->unit_number = sim->unit_number;
5338 		cpi->bus_id = sim->bus_id;
5339 		cpi->base_transfer_speed = 0;
5340 		cpi->protocol = PROTO_UNSPECIFIED;
5341 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5342 		cpi->transport = XPORT_UNSPECIFIED;
5343 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5344 		cpi->ccb_h.status = CAM_REQ_CMP;
5345 		xpt_done(work_ccb);
5346 		break;
5347 	}
5348 	default:
5349 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5350 		xpt_done(work_ccb);
5351 		break;
5352 	}
5353 }
5354 
5355 /*
5356  * The xpt as a "controller" has no interrupt sources, so polling
5357  * is a no-op.
5358  */
5359 static void
5360 xptpoll(struct cam_sim *sim)
5361 {
5362 }
5363 
5364 void
5365 xpt_lock_buses(void)
5366 {
5367 	mtx_lock(&xsoftc.xpt_topo_lock);
5368 }
5369 
5370 void
5371 xpt_unlock_buses(void)
5372 {
5373 	mtx_unlock(&xsoftc.xpt_topo_lock);
5374 }
5375 
5376 struct mtx *
5377 xpt_path_mtx(struct cam_path *path)
5378 {
5379 
5380 	return (&path->device->device_mtx);
5381 }
5382 
5383 static void
5384 xpt_done_process(struct ccb_hdr *ccb_h)
5385 {
5386 	struct cam_sim *sim = NULL;
5387 	struct cam_devq *devq = NULL;
5388 	struct mtx *mtx = NULL;
5389 
5390 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5391 	struct ccb_scsiio *csio;
5392 
5393 	if (ccb_h->func_code == XPT_SCSI_IO) {
5394 		csio = &((union ccb *)ccb_h)->csio;
5395 		if (csio->bio != NULL)
5396 			biotrack(csio->bio, __func__);
5397 	}
5398 #endif
5399 
5400 	if (ccb_h->flags & CAM_HIGH_POWER) {
5401 		struct highpowerlist	*hphead;
5402 		struct cam_ed		*device;
5403 
5404 		mtx_lock(&xsoftc.xpt_highpower_lock);
5405 		hphead = &xsoftc.highpowerq;
5406 
5407 		device = STAILQ_FIRST(hphead);
5408 
5409 		/*
5410 		 * Increment the count since this command is done.
5411 		 */
5412 		xsoftc.num_highpower++;
5413 
5414 		/*
5415 		 * Any high powered commands queued up?
5416 		 */
5417 		if (device != NULL) {
5418 
5419 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5420 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5421 
5422 			mtx_lock(&device->sim->devq->send_mtx);
5423 			xpt_release_devq_device(device,
5424 					 /*count*/1, /*runqueue*/TRUE);
5425 			mtx_unlock(&device->sim->devq->send_mtx);
5426 		} else
5427 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5428 	}
5429 
5430 	/*
5431 	 * Insulate against a race where the periph is destroyed but CCBs are
5432 	 * still not all processed. This shouldn't happen, but allows us better
5433 	 * bug diagnostic when it does.
5434 	 */
5435 	if (ccb_h->path->bus)
5436 		sim = ccb_h->path->bus->sim;
5437 
5438 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5439 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5440 		xpt_release_simq(sim, /*run_queue*/FALSE);
5441 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5442 	}
5443 
5444 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5445 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5446 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5447 		ccb_h->status &= ~CAM_DEV_QFRZN;
5448 	}
5449 
5450 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5451 		struct cam_ed *dev = ccb_h->path->device;
5452 
5453 		if (sim)
5454 			devq = sim->devq;
5455 		KASSERT(devq, ("Periph disappeared with request pending."));
5456 
5457 		mtx_lock(&devq->send_mtx);
5458 		devq->send_active--;
5459 		devq->send_openings++;
5460 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5461 
5462 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5463 		  && (dev->ccbq.dev_active == 0))) {
5464 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5465 			xpt_release_devq_device(dev, /*count*/1,
5466 					 /*run_queue*/FALSE);
5467 		}
5468 
5469 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5470 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5471 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5472 			xpt_release_devq_device(dev, /*count*/1,
5473 					 /*run_queue*/FALSE);
5474 		}
5475 
5476 		if (!device_is_queued(dev))
5477 			(void)xpt_schedule_devq(devq, dev);
5478 		xpt_run_devq(devq);
5479 		mtx_unlock(&devq->send_mtx);
5480 
5481 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5482 			mtx = xpt_path_mtx(ccb_h->path);
5483 			mtx_lock(mtx);
5484 
5485 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5486 			 && (--dev->tag_delay_count == 0))
5487 				xpt_start_tags(ccb_h->path);
5488 		}
5489 	}
5490 
5491 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5492 		if (mtx == NULL) {
5493 			mtx = xpt_path_mtx(ccb_h->path);
5494 			mtx_lock(mtx);
5495 		}
5496 	} else {
5497 		if (mtx != NULL) {
5498 			mtx_unlock(mtx);
5499 			mtx = NULL;
5500 		}
5501 	}
5502 
5503 	/* Call the peripheral driver's callback */
5504 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5505 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5506 	if (mtx != NULL)
5507 		mtx_unlock(mtx);
5508 }
5509 
5510 void
5511 xpt_done_td(void *arg)
5512 {
5513 	struct cam_doneq *queue = arg;
5514 	struct ccb_hdr *ccb_h;
5515 	STAILQ_HEAD(, ccb_hdr)	doneq;
5516 
5517 	STAILQ_INIT(&doneq);
5518 	mtx_lock(&queue->cam_doneq_mtx);
5519 	while (1) {
5520 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5521 			queue->cam_doneq_sleep = 1;
5522 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5523 			    PRIBIO, "-", 0);
5524 			queue->cam_doneq_sleep = 0;
5525 		}
5526 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5527 		mtx_unlock(&queue->cam_doneq_mtx);
5528 
5529 		THREAD_NO_SLEEPING();
5530 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5531 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5532 			xpt_done_process(ccb_h);
5533 		}
5534 		THREAD_SLEEPING_OK();
5535 
5536 		mtx_lock(&queue->cam_doneq_mtx);
5537 	}
5538 }
5539 
5540 static void
5541 camisr_runqueue(void)
5542 {
5543 	struct	ccb_hdr *ccb_h;
5544 	struct cam_doneq *queue;
5545 	int i;
5546 
5547 	/* Process global queues. */
5548 	for (i = 0; i < cam_num_doneqs; i++) {
5549 		queue = &cam_doneqs[i];
5550 		mtx_lock(&queue->cam_doneq_mtx);
5551 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5552 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5553 			mtx_unlock(&queue->cam_doneq_mtx);
5554 			xpt_done_process(ccb_h);
5555 			mtx_lock(&queue->cam_doneq_mtx);
5556 		}
5557 		mtx_unlock(&queue->cam_doneq_mtx);
5558 	}
5559 }
5560 
5561 struct kv
5562 {
5563 	uint32_t v;
5564 	const char *name;
5565 };
5566 
5567 static struct kv map[] = {
5568 	{ XPT_NOOP, "XPT_NOOP" },
5569 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5570 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5571 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5572 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5573 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5574 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5575 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5576 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5577 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5578 	{ XPT_DEBUG, "XPT_DEBUG" },
5579 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5580 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5581 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5582 	{ XPT_ASYNC, "XPT_ASYNC" },
5583 	{ XPT_ABORT, "XPT_ABORT" },
5584 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5585 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5586 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5587 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5588 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5589 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5590 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5591 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5592 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5593 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5594 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5595 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5596 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5597 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5598 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5599 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5600 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5601 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5602 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5603 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5604 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5605 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5606 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5607 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5608 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5609 	{ 0, 0 }
5610 };
5611 
5612 const char *
5613 xpt_action_name(uint32_t action)
5614 {
5615 	static char buffer[32];	/* Only for unknown messages -- racy */
5616 	struct kv *walker = map;
5617 
5618 	while (walker->name != NULL) {
5619 		if (walker->v == action)
5620 			return (walker->name);
5621 		walker++;
5622 	}
5623 
5624 	snprintf(buffer, sizeof(buffer), "%#x", action);
5625 	return (buffer);
5626 }
5627