xref: /freebsd/sys/cam/cam_xpt.c (revision 8657387683946d0c03e09fe77029edfe309eeb20)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include "opt_printf.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/time.h>
43 #include <sys/conf.h>
44 #include <sys/fcntl.h>
45 #include <sys/interrupt.h>
46 #include <sys/proc.h>
47 #include <sys/sbuf.h>
48 #include <sys/smp.h>
49 #include <sys/taskqueue.h>
50 
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_iosched.h>
59 #include <cam/cam_periph.h>
60 #include <cam/cam_queue.h>
61 #include <cam/cam_sim.h>
62 #include <cam/cam_xpt.h>
63 #include <cam/cam_xpt_sim.h>
64 #include <cam/cam_xpt_periph.h>
65 #include <cam/cam_xpt_internal.h>
66 #include <cam/cam_debug.h>
67 #include <cam/cam_compat.h>
68 
69 #include <cam/scsi/scsi_all.h>
70 #include <cam/scsi/scsi_message.h>
71 #include <cam/scsi/scsi_pass.h>
72 
73 #include <machine/md_var.h>	/* geometry translation */
74 #include <machine/stdarg.h>	/* for xpt_print below */
75 
76 #include "opt_cam.h"
77 
78 /* Wild guess based on not wanting to grow the stack too much */
79 #define XPT_PRINT_MAXLEN	512
80 #ifdef PRINTF_BUFR_SIZE
81 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
82 #else
83 #define XPT_PRINT_LEN	128
84 #endif
85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
86 
87 /*
88  * This is the maximum number of high powered commands (e.g. start unit)
89  * that can be outstanding at a particular time.
90  */
91 #ifndef CAM_MAX_HIGHPOWER
92 #define CAM_MAX_HIGHPOWER  4
93 #endif
94 
95 /* Datastructures internal to the xpt layer */
96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
100 
101 /* Object for defering XPT actions to a taskqueue */
102 struct xpt_task {
103 	struct task	task;
104 	void		*data1;
105 	uintptr_t	data2;
106 };
107 
108 struct xpt_softc {
109 	uint32_t		xpt_generation;
110 
111 	/* number of high powered commands that can go through right now */
112 	struct mtx		xpt_highpower_lock;
113 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
114 	int			num_highpower;
115 
116 	/* queue for handling async rescan requests. */
117 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
118 	int buses_to_config;
119 	int buses_config_done;
120 	int announce_nosbuf;
121 
122 	/*
123 	 * Registered buses
124 	 *
125 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
126 	 * "buses" is preferred.
127 	 */
128 	TAILQ_HEAD(,cam_eb)	xpt_busses;
129 	u_int			bus_generation;
130 
131 	struct intr_config_hook	*xpt_config_hook;
132 
133 	int			boot_delay;
134 	struct callout 		boot_callout;
135 
136 	struct mtx		xpt_topo_lock;
137 	struct mtx		xpt_lock;
138 	struct taskqueue	*xpt_taskq;
139 };
140 
141 typedef enum {
142 	DM_RET_COPY		= 0x01,
143 	DM_RET_FLAG_MASK	= 0x0f,
144 	DM_RET_NONE		= 0x00,
145 	DM_RET_STOP		= 0x10,
146 	DM_RET_DESCEND		= 0x20,
147 	DM_RET_ERROR		= 0x30,
148 	DM_RET_ACTION_MASK	= 0xf0
149 } dev_match_ret;
150 
151 typedef enum {
152 	XPT_DEPTH_BUS,
153 	XPT_DEPTH_TARGET,
154 	XPT_DEPTH_DEVICE,
155 	XPT_DEPTH_PERIPH
156 } xpt_traverse_depth;
157 
158 struct xpt_traverse_config {
159 	xpt_traverse_depth	depth;
160 	void			*tr_func;
161 	void			*tr_arg;
162 };
163 
164 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
165 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
166 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
167 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
168 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
169 
170 /* Transport layer configuration information */
171 static struct xpt_softc xsoftc;
172 
173 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
174 
175 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
176            &xsoftc.boot_delay, 0, "Bus registration wait time");
177 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
178 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
179 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
180 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
181 
182 struct cam_doneq {
183 	struct mtx_padalign	cam_doneq_mtx;
184 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
185 	int			cam_doneq_sleep;
186 };
187 
188 static struct cam_doneq cam_doneqs[MAXCPU];
189 static int cam_num_doneqs;
190 static struct proc *cam_proc;
191 
192 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
193            &cam_num_doneqs, 0, "Number of completion queues/threads");
194 
195 struct cam_periph *xpt_periph;
196 
197 static periph_init_t xpt_periph_init;
198 
199 static struct periph_driver xpt_driver =
200 {
201 	xpt_periph_init, "xpt",
202 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
203 	CAM_PERIPH_DRV_EARLY
204 };
205 
206 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
207 
208 static d_open_t xptopen;
209 static d_close_t xptclose;
210 static d_ioctl_t xptioctl;
211 static d_ioctl_t xptdoioctl;
212 
213 static struct cdevsw xpt_cdevsw = {
214 	.d_version =	D_VERSION,
215 	.d_flags =	0,
216 	.d_open =	xptopen,
217 	.d_close =	xptclose,
218 	.d_ioctl =	xptioctl,
219 	.d_name =	"xpt",
220 };
221 
222 /* Storage for debugging datastructures */
223 struct cam_path *cam_dpath;
224 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
225 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
226 	&cam_dflags, 0, "Enabled debug flags");
227 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
228 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
229 	&cam_debug_delay, 0, "Delay in us after each debug message");
230 
231 /* Our boot-time initialization hook */
232 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
233 
234 static moduledata_t cam_moduledata = {
235 	"cam",
236 	cam_module_event_handler,
237 	NULL
238 };
239 
240 static int	xpt_init(void *);
241 
242 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
243 MODULE_VERSION(cam, 1);
244 
245 
246 static void		xpt_async_bcast(struct async_list *async_head,
247 					u_int32_t async_code,
248 					struct cam_path *path,
249 					void *async_arg);
250 static path_id_t xptnextfreepathid(void);
251 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
252 static union ccb *xpt_get_ccb(struct cam_periph *periph);
253 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
254 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
255 static void	 xpt_run_allocq_task(void *context, int pending);
256 static void	 xpt_run_devq(struct cam_devq *devq);
257 static timeout_t xpt_release_devq_timeout;
258 static void	 xpt_release_simq_timeout(void *arg) __unused;
259 static void	 xpt_acquire_bus(struct cam_eb *bus);
260 static void	 xpt_release_bus(struct cam_eb *bus);
261 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
262 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
263 		    int run_queue);
264 static struct cam_et*
265 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
266 static void	 xpt_acquire_target(struct cam_et *target);
267 static void	 xpt_release_target(struct cam_et *target);
268 static struct cam_eb*
269 		 xpt_find_bus(path_id_t path_id);
270 static struct cam_et*
271 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
272 static struct cam_ed*
273 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
274 static void	 xpt_config(void *arg);
275 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
276 				 u_int32_t new_priority);
277 static xpt_devicefunc_t xptpassannouncefunc;
278 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
279 static void	 xptpoll(struct cam_sim *sim);
280 static void	 camisr_runqueue(void);
281 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
282 static void	 xpt_done_td(void *);
283 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
284 				    u_int num_patterns, struct cam_eb *bus);
285 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
286 				       u_int num_patterns,
287 				       struct cam_ed *device);
288 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
289 				       u_int num_patterns,
290 				       struct cam_periph *periph);
291 static xpt_busfunc_t	xptedtbusfunc;
292 static xpt_targetfunc_t	xptedttargetfunc;
293 static xpt_devicefunc_t	xptedtdevicefunc;
294 static xpt_periphfunc_t	xptedtperiphfunc;
295 static xpt_pdrvfunc_t	xptplistpdrvfunc;
296 static xpt_periphfunc_t	xptplistperiphfunc;
297 static int		xptedtmatch(struct ccb_dev_match *cdm);
298 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
299 static int		xptbustraverse(struct cam_eb *start_bus,
300 				       xpt_busfunc_t *tr_func, void *arg);
301 static int		xpttargettraverse(struct cam_eb *bus,
302 					  struct cam_et *start_target,
303 					  xpt_targetfunc_t *tr_func, void *arg);
304 static int		xptdevicetraverse(struct cam_et *target,
305 					  struct cam_ed *start_device,
306 					  xpt_devicefunc_t *tr_func, void *arg);
307 static int		xptperiphtraverse(struct cam_ed *device,
308 					  struct cam_periph *start_periph,
309 					  xpt_periphfunc_t *tr_func, void *arg);
310 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
311 					xpt_pdrvfunc_t *tr_func, void *arg);
312 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
313 					    struct cam_periph *start_periph,
314 					    xpt_periphfunc_t *tr_func,
315 					    void *arg);
316 static xpt_busfunc_t	xptdefbusfunc;
317 static xpt_targetfunc_t	xptdeftargetfunc;
318 static xpt_devicefunc_t	xptdefdevicefunc;
319 static xpt_periphfunc_t	xptdefperiphfunc;
320 static void		xpt_finishconfig_task(void *context, int pending);
321 static void		xpt_dev_async_default(u_int32_t async_code,
322 					      struct cam_eb *bus,
323 					      struct cam_et *target,
324 					      struct cam_ed *device,
325 					      void *async_arg);
326 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
327 						 struct cam_et *target,
328 						 lun_id_t lun_id);
329 static xpt_devicefunc_t	xptsetasyncfunc;
330 static xpt_busfunc_t	xptsetasyncbusfunc;
331 static cam_status	xptregister(struct cam_periph *periph,
332 				    void *arg);
333 static __inline int device_is_queued(struct cam_ed *device);
334 
335 static __inline int
336 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
337 {
338 	int	retval;
339 
340 	mtx_assert(&devq->send_mtx, MA_OWNED);
341 	if ((dev->ccbq.queue.entries > 0) &&
342 	    (dev->ccbq.dev_openings > 0) &&
343 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
344 		/*
345 		 * The priority of a device waiting for controller
346 		 * resources is that of the highest priority CCB
347 		 * enqueued.
348 		 */
349 		retval =
350 		    xpt_schedule_dev(&devq->send_queue,
351 				     &dev->devq_entry,
352 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
353 	} else {
354 		retval = 0;
355 	}
356 	return (retval);
357 }
358 
359 static __inline int
360 device_is_queued(struct cam_ed *device)
361 {
362 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
363 }
364 
365 static void
366 xpt_periph_init()
367 {
368 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
369 }
370 
371 static int
372 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
373 {
374 
375 	/*
376 	 * Only allow read-write access.
377 	 */
378 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
379 		return(EPERM);
380 
381 	/*
382 	 * We don't allow nonblocking access.
383 	 */
384 	if ((flags & O_NONBLOCK) != 0) {
385 		printf("%s: can't do nonblocking access\n", devtoname(dev));
386 		return(ENODEV);
387 	}
388 
389 	return(0);
390 }
391 
392 static int
393 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
394 {
395 
396 	return(0);
397 }
398 
399 /*
400  * Don't automatically grab the xpt softc lock here even though this is going
401  * through the xpt device.  The xpt device is really just a back door for
402  * accessing other devices and SIMs, so the right thing to do is to grab
403  * the appropriate SIM lock once the bus/SIM is located.
404  */
405 static int
406 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
407 {
408 	int error;
409 
410 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
411 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
412 	}
413 	return (error);
414 }
415 
416 static int
417 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
418 {
419 	int error;
420 
421 	error = 0;
422 
423 	switch(cmd) {
424 	/*
425 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
426 	 * to accept CCB types that don't quite make sense to send through a
427 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
428 	 * in the CAM spec.
429 	 */
430 	case CAMIOCOMMAND: {
431 		union ccb *ccb;
432 		union ccb *inccb;
433 		struct cam_eb *bus;
434 
435 		inccb = (union ccb *)addr;
436 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
437 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
438 			inccb->csio.bio = NULL;
439 #endif
440 
441 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
442 			return (EINVAL);
443 
444 		bus = xpt_find_bus(inccb->ccb_h.path_id);
445 		if (bus == NULL)
446 			return (EINVAL);
447 
448 		switch (inccb->ccb_h.func_code) {
449 		case XPT_SCAN_BUS:
450 		case XPT_RESET_BUS:
451 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
452 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
453 				xpt_release_bus(bus);
454 				return (EINVAL);
455 			}
456 			break;
457 		case XPT_SCAN_TGT:
458 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
459 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
460 				xpt_release_bus(bus);
461 				return (EINVAL);
462 			}
463 			break;
464 		default:
465 			break;
466 		}
467 
468 		switch(inccb->ccb_h.func_code) {
469 		case XPT_SCAN_BUS:
470 		case XPT_RESET_BUS:
471 		case XPT_PATH_INQ:
472 		case XPT_ENG_INQ:
473 		case XPT_SCAN_LUN:
474 		case XPT_SCAN_TGT:
475 
476 			ccb = xpt_alloc_ccb();
477 
478 			/*
479 			 * Create a path using the bus, target, and lun the
480 			 * user passed in.
481 			 */
482 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
483 					    inccb->ccb_h.path_id,
484 					    inccb->ccb_h.target_id,
485 					    inccb->ccb_h.target_lun) !=
486 					    CAM_REQ_CMP){
487 				error = EINVAL;
488 				xpt_free_ccb(ccb);
489 				break;
490 			}
491 			/* Ensure all of our fields are correct */
492 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
493 				      inccb->ccb_h.pinfo.priority);
494 			xpt_merge_ccb(ccb, inccb);
495 			xpt_path_lock(ccb->ccb_h.path);
496 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
497 			xpt_path_unlock(ccb->ccb_h.path);
498 			bcopy(ccb, inccb, sizeof(union ccb));
499 			xpt_free_path(ccb->ccb_h.path);
500 			xpt_free_ccb(ccb);
501 			break;
502 
503 		case XPT_DEBUG: {
504 			union ccb ccb;
505 
506 			/*
507 			 * This is an immediate CCB, so it's okay to
508 			 * allocate it on the stack.
509 			 */
510 
511 			/*
512 			 * Create a path using the bus, target, and lun the
513 			 * user passed in.
514 			 */
515 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
516 					    inccb->ccb_h.path_id,
517 					    inccb->ccb_h.target_id,
518 					    inccb->ccb_h.target_lun) !=
519 					    CAM_REQ_CMP){
520 				error = EINVAL;
521 				break;
522 			}
523 			/* Ensure all of our fields are correct */
524 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
525 				      inccb->ccb_h.pinfo.priority);
526 			xpt_merge_ccb(&ccb, inccb);
527 			xpt_action(&ccb);
528 			bcopy(&ccb, inccb, sizeof(union ccb));
529 			xpt_free_path(ccb.ccb_h.path);
530 			break;
531 
532 		}
533 		case XPT_DEV_MATCH: {
534 			struct cam_periph_map_info mapinfo;
535 			struct cam_path *old_path;
536 
537 			/*
538 			 * We can't deal with physical addresses for this
539 			 * type of transaction.
540 			 */
541 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
542 			    CAM_DATA_VADDR) {
543 				error = EINVAL;
544 				break;
545 			}
546 
547 			/*
548 			 * Save this in case the caller had it set to
549 			 * something in particular.
550 			 */
551 			old_path = inccb->ccb_h.path;
552 
553 			/*
554 			 * We really don't need a path for the matching
555 			 * code.  The path is needed because of the
556 			 * debugging statements in xpt_action().  They
557 			 * assume that the CCB has a valid path.
558 			 */
559 			inccb->ccb_h.path = xpt_periph->path;
560 
561 			bzero(&mapinfo, sizeof(mapinfo));
562 
563 			/*
564 			 * Map the pattern and match buffers into kernel
565 			 * virtual address space.
566 			 */
567 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
568 
569 			if (error) {
570 				inccb->ccb_h.path = old_path;
571 				break;
572 			}
573 
574 			/*
575 			 * This is an immediate CCB, we can send it on directly.
576 			 */
577 			xpt_action(inccb);
578 
579 			/*
580 			 * Map the buffers back into user space.
581 			 */
582 			cam_periph_unmapmem(inccb, &mapinfo);
583 
584 			inccb->ccb_h.path = old_path;
585 
586 			error = 0;
587 			break;
588 		}
589 		default:
590 			error = ENOTSUP;
591 			break;
592 		}
593 		xpt_release_bus(bus);
594 		break;
595 	}
596 	/*
597 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
598 	 * with the periphal driver name and unit name filled in.  The other
599 	 * fields don't really matter as input.  The passthrough driver name
600 	 * ("pass"), and unit number are passed back in the ccb.  The current
601 	 * device generation number, and the index into the device peripheral
602 	 * driver list, and the status are also passed back.  Note that
603 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
604 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
605 	 * (or rather should be) impossible for the device peripheral driver
606 	 * list to change since we look at the whole thing in one pass, and
607 	 * we do it with lock protection.
608 	 *
609 	 */
610 	case CAMGETPASSTHRU: {
611 		union ccb *ccb;
612 		struct cam_periph *periph;
613 		struct periph_driver **p_drv;
614 		char   *name;
615 		u_int unit;
616 		int base_periph_found;
617 
618 		ccb = (union ccb *)addr;
619 		unit = ccb->cgdl.unit_number;
620 		name = ccb->cgdl.periph_name;
621 		base_periph_found = 0;
622 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
623 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
624 			ccb->csio.bio = NULL;
625 #endif
626 
627 		/*
628 		 * Sanity check -- make sure we don't get a null peripheral
629 		 * driver name.
630 		 */
631 		if (*ccb->cgdl.periph_name == '\0') {
632 			error = EINVAL;
633 			break;
634 		}
635 
636 		/* Keep the list from changing while we traverse it */
637 		xpt_lock_buses();
638 
639 		/* first find our driver in the list of drivers */
640 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
641 			if (strcmp((*p_drv)->driver_name, name) == 0)
642 				break;
643 
644 		if (*p_drv == NULL) {
645 			xpt_unlock_buses();
646 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
647 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
648 			*ccb->cgdl.periph_name = '\0';
649 			ccb->cgdl.unit_number = 0;
650 			error = ENOENT;
651 			break;
652 		}
653 
654 		/*
655 		 * Run through every peripheral instance of this driver
656 		 * and check to see whether it matches the unit passed
657 		 * in by the user.  If it does, get out of the loops and
658 		 * find the passthrough driver associated with that
659 		 * peripheral driver.
660 		 */
661 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
662 		     periph = TAILQ_NEXT(periph, unit_links)) {
663 
664 			if (periph->unit_number == unit)
665 				break;
666 		}
667 		/*
668 		 * If we found the peripheral driver that the user passed
669 		 * in, go through all of the peripheral drivers for that
670 		 * particular device and look for a passthrough driver.
671 		 */
672 		if (periph != NULL) {
673 			struct cam_ed *device;
674 			int i;
675 
676 			base_periph_found = 1;
677 			device = periph->path->device;
678 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
679 			     periph != NULL;
680 			     periph = SLIST_NEXT(periph, periph_links), i++) {
681 				/*
682 				 * Check to see whether we have a
683 				 * passthrough device or not.
684 				 */
685 				if (strcmp(periph->periph_name, "pass") == 0) {
686 					/*
687 					 * Fill in the getdevlist fields.
688 					 */
689 					strcpy(ccb->cgdl.periph_name,
690 					       periph->periph_name);
691 					ccb->cgdl.unit_number =
692 						periph->unit_number;
693 					if (SLIST_NEXT(periph, periph_links))
694 						ccb->cgdl.status =
695 							CAM_GDEVLIST_MORE_DEVS;
696 					else
697 						ccb->cgdl.status =
698 						       CAM_GDEVLIST_LAST_DEVICE;
699 					ccb->cgdl.generation =
700 						device->generation;
701 					ccb->cgdl.index = i;
702 					/*
703 					 * Fill in some CCB header fields
704 					 * that the user may want.
705 					 */
706 					ccb->ccb_h.path_id =
707 						periph->path->bus->path_id;
708 					ccb->ccb_h.target_id =
709 						periph->path->target->target_id;
710 					ccb->ccb_h.target_lun =
711 						periph->path->device->lun_id;
712 					ccb->ccb_h.status = CAM_REQ_CMP;
713 					break;
714 				}
715 			}
716 		}
717 
718 		/*
719 		 * If the periph is null here, one of two things has
720 		 * happened.  The first possibility is that we couldn't
721 		 * find the unit number of the particular peripheral driver
722 		 * that the user is asking about.  e.g. the user asks for
723 		 * the passthrough driver for "da11".  We find the list of
724 		 * "da" peripherals all right, but there is no unit 11.
725 		 * The other possibility is that we went through the list
726 		 * of peripheral drivers attached to the device structure,
727 		 * but didn't find one with the name "pass".  Either way,
728 		 * we return ENOENT, since we couldn't find something.
729 		 */
730 		if (periph == NULL) {
731 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
732 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
733 			*ccb->cgdl.periph_name = '\0';
734 			ccb->cgdl.unit_number = 0;
735 			error = ENOENT;
736 			/*
737 			 * It is unfortunate that this is even necessary,
738 			 * but there are many, many clueless users out there.
739 			 * If this is true, the user is looking for the
740 			 * passthrough driver, but doesn't have one in his
741 			 * kernel.
742 			 */
743 			if (base_periph_found == 1) {
744 				printf("xptioctl: pass driver is not in the "
745 				       "kernel\n");
746 				printf("xptioctl: put \"device pass\" in "
747 				       "your kernel config file\n");
748 			}
749 		}
750 		xpt_unlock_buses();
751 		break;
752 		}
753 	default:
754 		error = ENOTTY;
755 		break;
756 	}
757 
758 	return(error);
759 }
760 
761 static int
762 cam_module_event_handler(module_t mod, int what, void *arg)
763 {
764 	int error;
765 
766 	switch (what) {
767 	case MOD_LOAD:
768 		if ((error = xpt_init(NULL)) != 0)
769 			return (error);
770 		break;
771 	case MOD_UNLOAD:
772 		return EBUSY;
773 	default:
774 		return EOPNOTSUPP;
775 	}
776 
777 	return 0;
778 }
779 
780 static struct xpt_proto *
781 xpt_proto_find(cam_proto proto)
782 {
783 	struct xpt_proto **pp;
784 
785 	SET_FOREACH(pp, cam_xpt_proto_set) {
786 		if ((*pp)->proto == proto)
787 			return *pp;
788 	}
789 
790 	return NULL;
791 }
792 
793 static void
794 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
795 {
796 
797 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
798 		xpt_free_path(done_ccb->ccb_h.path);
799 		xpt_free_ccb(done_ccb);
800 	} else {
801 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
802 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
803 	}
804 	xpt_release_boot();
805 }
806 
807 /* thread to handle bus rescans */
808 static void
809 xpt_scanner_thread(void *dummy)
810 {
811 	union ccb	*ccb;
812 	struct cam_path	 path;
813 
814 	xpt_lock_buses();
815 	for (;;) {
816 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
817 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
818 			       "-", 0);
819 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
820 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
821 			xpt_unlock_buses();
822 
823 			/*
824 			 * Since lock can be dropped inside and path freed
825 			 * by completion callback even before return here,
826 			 * take our own path copy for reference.
827 			 */
828 			xpt_copy_path(&path, ccb->ccb_h.path);
829 			xpt_path_lock(&path);
830 			xpt_action(ccb);
831 			xpt_path_unlock(&path);
832 			xpt_release_path(&path);
833 
834 			xpt_lock_buses();
835 		}
836 	}
837 }
838 
839 void
840 xpt_rescan(union ccb *ccb)
841 {
842 	struct ccb_hdr *hdr;
843 
844 	/* Prepare request */
845 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
846 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
847 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
848 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
849 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
850 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
851 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
852 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
853 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
854 	else {
855 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
856 		xpt_free_path(ccb->ccb_h.path);
857 		xpt_free_ccb(ccb);
858 		return;
859 	}
860 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
861 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
862  		xpt_action_name(ccb->ccb_h.func_code)));
863 
864 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
865 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
866 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
867 	/* Don't make duplicate entries for the same paths. */
868 	xpt_lock_buses();
869 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
870 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
871 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
872 				wakeup(&xsoftc.ccb_scanq);
873 				xpt_unlock_buses();
874 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
875 				xpt_free_path(ccb->ccb_h.path);
876 				xpt_free_ccb(ccb);
877 				return;
878 			}
879 		}
880 	}
881 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
882 	xsoftc.buses_to_config++;
883 	wakeup(&xsoftc.ccb_scanq);
884 	xpt_unlock_buses();
885 }
886 
887 /* Functions accessed by the peripheral drivers */
888 static int
889 xpt_init(void *dummy)
890 {
891 	struct cam_sim *xpt_sim;
892 	struct cam_path *path;
893 	struct cam_devq *devq;
894 	cam_status status;
895 	int error, i;
896 
897 	TAILQ_INIT(&xsoftc.xpt_busses);
898 	TAILQ_INIT(&xsoftc.ccb_scanq);
899 	STAILQ_INIT(&xsoftc.highpowerq);
900 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
901 
902 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
903 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
904 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
905 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
906 
907 #ifdef CAM_BOOT_DELAY
908 	/*
909 	 * Override this value at compile time to assist our users
910 	 * who don't use loader to boot a kernel.
911 	 */
912 	xsoftc.boot_delay = CAM_BOOT_DELAY;
913 #endif
914 	/*
915 	 * The xpt layer is, itself, the equivalent of a SIM.
916 	 * Allow 16 ccbs in the ccb pool for it.  This should
917 	 * give decent parallelism when we probe buses and
918 	 * perform other XPT functions.
919 	 */
920 	devq = cam_simq_alloc(16);
921 	xpt_sim = cam_sim_alloc(xptaction,
922 				xptpoll,
923 				"xpt",
924 				/*softc*/NULL,
925 				/*unit*/0,
926 				/*mtx*/&xsoftc.xpt_lock,
927 				/*max_dev_transactions*/0,
928 				/*max_tagged_dev_transactions*/0,
929 				devq);
930 	if (xpt_sim == NULL)
931 		return (ENOMEM);
932 
933 	mtx_lock(&xsoftc.xpt_lock);
934 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
935 		mtx_unlock(&xsoftc.xpt_lock);
936 		printf("xpt_init: xpt_bus_register failed with status %#x,"
937 		       " failing attach\n", status);
938 		return (EINVAL);
939 	}
940 	mtx_unlock(&xsoftc.xpt_lock);
941 
942 	/*
943 	 * Looking at the XPT from the SIM layer, the XPT is
944 	 * the equivalent of a peripheral driver.  Allocate
945 	 * a peripheral driver entry for us.
946 	 */
947 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
948 				      CAM_TARGET_WILDCARD,
949 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
950 		printf("xpt_init: xpt_create_path failed with status %#x,"
951 		       " failing attach\n", status);
952 		return (EINVAL);
953 	}
954 	xpt_path_lock(path);
955 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
956 			 path, NULL, 0, xpt_sim);
957 	xpt_path_unlock(path);
958 	xpt_free_path(path);
959 
960 	if (cam_num_doneqs < 1)
961 		cam_num_doneqs = 1 + mp_ncpus / 6;
962 	else if (cam_num_doneqs > MAXCPU)
963 		cam_num_doneqs = MAXCPU;
964 	for (i = 0; i < cam_num_doneqs; i++) {
965 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
966 		    MTX_DEF);
967 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
968 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
969 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
970 		if (error != 0) {
971 			cam_num_doneqs = i;
972 			break;
973 		}
974 	}
975 	if (cam_num_doneqs < 1) {
976 		printf("xpt_init: Cannot init completion queues "
977 		       "- failing attach\n");
978 		return (ENOMEM);
979 	}
980 	/*
981 	 * Register a callback for when interrupts are enabled.
982 	 */
983 	xsoftc.xpt_config_hook =
984 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
985 					      M_CAMXPT, M_NOWAIT | M_ZERO);
986 	if (xsoftc.xpt_config_hook == NULL) {
987 		printf("xpt_init: Cannot malloc config hook "
988 		       "- failing attach\n");
989 		return (ENOMEM);
990 	}
991 	xsoftc.xpt_config_hook->ich_func = xpt_config;
992 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
993 		free (xsoftc.xpt_config_hook, M_CAMXPT);
994 		printf("xpt_init: config_intrhook_establish failed "
995 		       "- failing attach\n");
996 	}
997 
998 	return (0);
999 }
1000 
1001 static cam_status
1002 xptregister(struct cam_periph *periph, void *arg)
1003 {
1004 	struct cam_sim *xpt_sim;
1005 
1006 	if (periph == NULL) {
1007 		printf("xptregister: periph was NULL!!\n");
1008 		return(CAM_REQ_CMP_ERR);
1009 	}
1010 
1011 	xpt_sim = (struct cam_sim *)arg;
1012 	xpt_sim->softc = periph;
1013 	xpt_periph = periph;
1014 	periph->softc = NULL;
1015 
1016 	return(CAM_REQ_CMP);
1017 }
1018 
1019 int32_t
1020 xpt_add_periph(struct cam_periph *periph)
1021 {
1022 	struct cam_ed *device;
1023 	int32_t	 status;
1024 
1025 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1026 	device = periph->path->device;
1027 	status = CAM_REQ_CMP;
1028 	if (device != NULL) {
1029 		mtx_lock(&device->target->bus->eb_mtx);
1030 		device->generation++;
1031 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1032 		mtx_unlock(&device->target->bus->eb_mtx);
1033 		atomic_add_32(&xsoftc.xpt_generation, 1);
1034 	}
1035 
1036 	return (status);
1037 }
1038 
1039 void
1040 xpt_remove_periph(struct cam_periph *periph)
1041 {
1042 	struct cam_ed *device;
1043 
1044 	device = periph->path->device;
1045 	if (device != NULL) {
1046 		mtx_lock(&device->target->bus->eb_mtx);
1047 		device->generation++;
1048 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1049 		mtx_unlock(&device->target->bus->eb_mtx);
1050 		atomic_add_32(&xsoftc.xpt_generation, 1);
1051 	}
1052 }
1053 
1054 
1055 void
1056 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1057 {
1058 	struct	cam_path *path = periph->path;
1059 	struct  xpt_proto *proto;
1060 
1061 	cam_periph_assert(periph, MA_OWNED);
1062 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1063 
1064 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1065 	       periph->periph_name, periph->unit_number,
1066 	       path->bus->sim->sim_name,
1067 	       path->bus->sim->unit_number,
1068 	       path->bus->sim->bus_id,
1069 	       path->bus->path_id,
1070 	       path->target->target_id,
1071 	       (uintmax_t)path->device->lun_id);
1072 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1073 	proto = xpt_proto_find(path->device->protocol);
1074 	if (proto)
1075 		proto->ops->announce(path->device);
1076 	else
1077 		printf("%s%d: Unknown protocol device %d\n",
1078 		    periph->periph_name, periph->unit_number,
1079 		    path->device->protocol);
1080 	if (path->device->serial_num_len > 0) {
1081 		/* Don't wrap the screen  - print only the first 60 chars */
1082 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1083 		       periph->unit_number, path->device->serial_num);
1084 	}
1085 	/* Announce transport details. */
1086 	path->bus->xport->ops->announce(periph);
1087 	/* Announce command queueing. */
1088 	if (path->device->inq_flags & SID_CmdQue
1089 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1090 		printf("%s%d: Command Queueing enabled\n",
1091 		       periph->periph_name, periph->unit_number);
1092 	}
1093 	/* Announce caller's details if they've passed in. */
1094 	if (announce_string != NULL)
1095 		printf("%s%d: %s\n", periph->periph_name,
1096 		       periph->unit_number, announce_string);
1097 }
1098 
1099 void
1100 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1101     char *announce_string)
1102 {
1103 	struct	cam_path *path = periph->path;
1104 	struct  xpt_proto *proto;
1105 
1106 	cam_periph_assert(periph, MA_OWNED);
1107 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1108 
1109 	/* Fall back to the non-sbuf method if necessary */
1110 	if (xsoftc.announce_nosbuf != 0) {
1111 		xpt_announce_periph(periph, announce_string);
1112 		return;
1113 	}
1114 	proto = xpt_proto_find(path->device->protocol);
1115 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1116 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1117 		xpt_announce_periph(periph, announce_string);
1118 		return;
1119 	}
1120 
1121 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1122 	    periph->periph_name, periph->unit_number,
1123 	    path->bus->sim->sim_name,
1124 	    path->bus->sim->unit_number,
1125 	    path->bus->sim->bus_id,
1126 	    path->bus->path_id,
1127 	    path->target->target_id,
1128 	    (uintmax_t)path->device->lun_id);
1129 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1130 
1131 	if (proto)
1132 		proto->ops->announce_sbuf(path->device, sb);
1133 	else
1134 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1135 		    periph->periph_name, periph->unit_number,
1136 		    path->device->protocol);
1137 	if (path->device->serial_num_len > 0) {
1138 		/* Don't wrap the screen  - print only the first 60 chars */
1139 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1140 		    periph->periph_name, periph->unit_number,
1141 		    path->device->serial_num);
1142 	}
1143 	/* Announce transport details. */
1144 	path->bus->xport->ops->announce_sbuf(periph, sb);
1145 	/* Announce command queueing. */
1146 	if (path->device->inq_flags & SID_CmdQue
1147 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1148 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1149 		    periph->periph_name, periph->unit_number);
1150 	}
1151 	/* Announce caller's details if they've passed in. */
1152 	if (announce_string != NULL)
1153 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1154 		    periph->unit_number, announce_string);
1155 }
1156 
1157 void
1158 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1159 {
1160 	if (quirks != 0) {
1161 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1162 		    periph->unit_number, quirks, bit_string);
1163 	}
1164 }
1165 
1166 void
1167 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1168 			 int quirks, char *bit_string)
1169 {
1170 	if (xsoftc.announce_nosbuf != 0) {
1171 		xpt_announce_quirks(periph, quirks, bit_string);
1172 		return;
1173 	}
1174 
1175 	if (quirks != 0) {
1176 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1177 		    periph->unit_number, quirks, bit_string);
1178 	}
1179 }
1180 
1181 void
1182 xpt_denounce_periph(struct cam_periph *periph)
1183 {
1184 	struct	cam_path *path = periph->path;
1185 	struct  xpt_proto *proto;
1186 
1187 	cam_periph_assert(periph, MA_OWNED);
1188 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1189 	       periph->periph_name, periph->unit_number,
1190 	       path->bus->sim->sim_name,
1191 	       path->bus->sim->unit_number,
1192 	       path->bus->sim->bus_id,
1193 	       path->bus->path_id,
1194 	       path->target->target_id,
1195 	       (uintmax_t)path->device->lun_id);
1196 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1197 	proto = xpt_proto_find(path->device->protocol);
1198 	if (proto)
1199 		proto->ops->denounce(path->device);
1200 	else
1201 		printf("%s%d: Unknown protocol device %d\n",
1202 		    periph->periph_name, periph->unit_number,
1203 		    path->device->protocol);
1204 	if (path->device->serial_num_len > 0)
1205 		printf(" s/n %.60s", path->device->serial_num);
1206 	printf(" detached\n");
1207 }
1208 
1209 void
1210 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1211 {
1212 	struct cam_path *path = periph->path;
1213 	struct xpt_proto *proto;
1214 
1215 	cam_periph_assert(periph, MA_OWNED);
1216 
1217 	/* Fall back to the non-sbuf method if necessary */
1218 	if (xsoftc.announce_nosbuf != 0) {
1219 		xpt_denounce_periph(periph);
1220 		return;
1221 	}
1222 	proto = xpt_proto_find(path->device->protocol);
1223 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1224 		xpt_denounce_periph(periph);
1225 		return;
1226 	}
1227 
1228 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1229 	    periph->periph_name, periph->unit_number,
1230 	    path->bus->sim->sim_name,
1231 	    path->bus->sim->unit_number,
1232 	    path->bus->sim->bus_id,
1233 	    path->bus->path_id,
1234 	    path->target->target_id,
1235 	    (uintmax_t)path->device->lun_id);
1236 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1237 
1238 	if (proto)
1239 		proto->ops->denounce_sbuf(path->device, sb);
1240 	else
1241 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1242 		    periph->periph_name, periph->unit_number,
1243 		    path->device->protocol);
1244 	if (path->device->serial_num_len > 0)
1245 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1246 	sbuf_printf(sb, " detached\n");
1247 }
1248 
1249 int
1250 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1251 {
1252 	int ret = -1, l, o;
1253 	struct ccb_dev_advinfo cdai;
1254 	struct scsi_vpd_id_descriptor *idd;
1255 
1256 	xpt_path_assert(path, MA_OWNED);
1257 
1258 	memset(&cdai, 0, sizeof(cdai));
1259 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1260 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1261 	cdai.flags = CDAI_FLAG_NONE;
1262 	cdai.bufsiz = len;
1263 
1264 	if (!strcmp(attr, "GEOM::ident"))
1265 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1266 	else if (!strcmp(attr, "GEOM::physpath"))
1267 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1268 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1269 		 strcmp(attr, "GEOM::lunname") == 0) {
1270 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1271 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1272 	} else
1273 		goto out;
1274 
1275 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1276 	if (cdai.buf == NULL) {
1277 		ret = ENOMEM;
1278 		goto out;
1279 	}
1280 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1281 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1282 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1283 	if (cdai.provsiz == 0)
1284 		goto out;
1285 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1286 		if (strcmp(attr, "GEOM::lunid") == 0) {
1287 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1288 			    cdai.provsiz, scsi_devid_is_lun_naa);
1289 			if (idd == NULL)
1290 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1291 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1292 			if (idd == NULL)
1293 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1294 				    cdai.provsiz, scsi_devid_is_lun_uuid);
1295 			if (idd == NULL)
1296 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1297 				    cdai.provsiz, scsi_devid_is_lun_md5);
1298 		} else
1299 			idd = NULL;
1300 		if (idd == NULL)
1301 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1302 			    cdai.provsiz, scsi_devid_is_lun_t10);
1303 		if (idd == NULL)
1304 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1305 			    cdai.provsiz, scsi_devid_is_lun_name);
1306 		if (idd == NULL)
1307 			goto out;
1308 		ret = 0;
1309 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1310 			if (idd->length < len) {
1311 				for (l = 0; l < idd->length; l++)
1312 					buf[l] = idd->identifier[l] ?
1313 					    idd->identifier[l] : ' ';
1314 				buf[l] = 0;
1315 			} else
1316 				ret = EFAULT;
1317 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1318 			l = strnlen(idd->identifier, idd->length);
1319 			if (l < len) {
1320 				bcopy(idd->identifier, buf, l);
1321 				buf[l] = 0;
1322 			} else
1323 				ret = EFAULT;
1324 		} else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
1325 		    && idd->identifier[0] == 0x10) {
1326 			if ((idd->length - 2) * 2 + 4 < len) {
1327 				for (l = 2, o = 0; l < idd->length; l++) {
1328 					if (l == 6 || l == 8 || l == 10 || l == 12)
1329 					    o += sprintf(buf + o, "-");
1330 					o += sprintf(buf + o, "%02x",
1331 					    idd->identifier[l]);
1332 				}
1333 			} else
1334 				ret = EFAULT;
1335 		} else {
1336 			if (idd->length * 2 < len) {
1337 				for (l = 0; l < idd->length; l++)
1338 					sprintf(buf + l * 2, "%02x",
1339 					    idd->identifier[l]);
1340 			} else
1341 				ret = EFAULT;
1342 		}
1343 	} else {
1344 		ret = 0;
1345 		if (strlcpy(buf, cdai.buf, len) >= len)
1346 			ret = EFAULT;
1347 	}
1348 
1349 out:
1350 	if (cdai.buf != NULL)
1351 		free(cdai.buf, M_CAMXPT);
1352 	return ret;
1353 }
1354 
1355 static dev_match_ret
1356 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1357 	    struct cam_eb *bus)
1358 {
1359 	dev_match_ret retval;
1360 	u_int i;
1361 
1362 	retval = DM_RET_NONE;
1363 
1364 	/*
1365 	 * If we aren't given something to match against, that's an error.
1366 	 */
1367 	if (bus == NULL)
1368 		return(DM_RET_ERROR);
1369 
1370 	/*
1371 	 * If there are no match entries, then this bus matches no
1372 	 * matter what.
1373 	 */
1374 	if ((patterns == NULL) || (num_patterns == 0))
1375 		return(DM_RET_DESCEND | DM_RET_COPY);
1376 
1377 	for (i = 0; i < num_patterns; i++) {
1378 		struct bus_match_pattern *cur_pattern;
1379 
1380 		/*
1381 		 * If the pattern in question isn't for a bus node, we
1382 		 * aren't interested.  However, we do indicate to the
1383 		 * calling routine that we should continue descending the
1384 		 * tree, since the user wants to match against lower-level
1385 		 * EDT elements.
1386 		 */
1387 		if (patterns[i].type != DEV_MATCH_BUS) {
1388 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1389 				retval |= DM_RET_DESCEND;
1390 			continue;
1391 		}
1392 
1393 		cur_pattern = &patterns[i].pattern.bus_pattern;
1394 
1395 		/*
1396 		 * If they want to match any bus node, we give them any
1397 		 * device node.
1398 		 */
1399 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1400 			/* set the copy flag */
1401 			retval |= DM_RET_COPY;
1402 
1403 			/*
1404 			 * If we've already decided on an action, go ahead
1405 			 * and return.
1406 			 */
1407 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1408 				return(retval);
1409 		}
1410 
1411 		/*
1412 		 * Not sure why someone would do this...
1413 		 */
1414 		if (cur_pattern->flags == BUS_MATCH_NONE)
1415 			continue;
1416 
1417 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1418 		 && (cur_pattern->path_id != bus->path_id))
1419 			continue;
1420 
1421 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1422 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1423 			continue;
1424 
1425 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1426 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1427 			continue;
1428 
1429 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1430 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1431 			     DEV_IDLEN) != 0))
1432 			continue;
1433 
1434 		/*
1435 		 * If we get to this point, the user definitely wants
1436 		 * information on this bus.  So tell the caller to copy the
1437 		 * data out.
1438 		 */
1439 		retval |= DM_RET_COPY;
1440 
1441 		/*
1442 		 * If the return action has been set to descend, then we
1443 		 * know that we've already seen a non-bus matching
1444 		 * expression, therefore we need to further descend the tree.
1445 		 * This won't change by continuing around the loop, so we
1446 		 * go ahead and return.  If we haven't seen a non-bus
1447 		 * matching expression, we keep going around the loop until
1448 		 * we exhaust the matching expressions.  We'll set the stop
1449 		 * flag once we fall out of the loop.
1450 		 */
1451 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1452 			return(retval);
1453 	}
1454 
1455 	/*
1456 	 * If the return action hasn't been set to descend yet, that means
1457 	 * we haven't seen anything other than bus matching patterns.  So
1458 	 * tell the caller to stop descending the tree -- the user doesn't
1459 	 * want to match against lower level tree elements.
1460 	 */
1461 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1462 		retval |= DM_RET_STOP;
1463 
1464 	return(retval);
1465 }
1466 
1467 static dev_match_ret
1468 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1469 	       struct cam_ed *device)
1470 {
1471 	dev_match_ret retval;
1472 	u_int i;
1473 
1474 	retval = DM_RET_NONE;
1475 
1476 	/*
1477 	 * If we aren't given something to match against, that's an error.
1478 	 */
1479 	if (device == NULL)
1480 		return(DM_RET_ERROR);
1481 
1482 	/*
1483 	 * If there are no match entries, then this device matches no
1484 	 * matter what.
1485 	 */
1486 	if ((patterns == NULL) || (num_patterns == 0))
1487 		return(DM_RET_DESCEND | DM_RET_COPY);
1488 
1489 	for (i = 0; i < num_patterns; i++) {
1490 		struct device_match_pattern *cur_pattern;
1491 		struct scsi_vpd_device_id *device_id_page;
1492 
1493 		/*
1494 		 * If the pattern in question isn't for a device node, we
1495 		 * aren't interested.
1496 		 */
1497 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1498 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1499 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1500 				retval |= DM_RET_DESCEND;
1501 			continue;
1502 		}
1503 
1504 		cur_pattern = &patterns[i].pattern.device_pattern;
1505 
1506 		/* Error out if mutually exclusive options are specified. */
1507 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1508 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1509 			return(DM_RET_ERROR);
1510 
1511 		/*
1512 		 * If they want to match any device node, we give them any
1513 		 * device node.
1514 		 */
1515 		if (cur_pattern->flags == DEV_MATCH_ANY)
1516 			goto copy_dev_node;
1517 
1518 		/*
1519 		 * Not sure why someone would do this...
1520 		 */
1521 		if (cur_pattern->flags == DEV_MATCH_NONE)
1522 			continue;
1523 
1524 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1525 		 && (cur_pattern->path_id != device->target->bus->path_id))
1526 			continue;
1527 
1528 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1529 		 && (cur_pattern->target_id != device->target->target_id))
1530 			continue;
1531 
1532 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1533 		 && (cur_pattern->target_lun != device->lun_id))
1534 			continue;
1535 
1536 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1537 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1538 				    (caddr_t)&cur_pattern->data.inq_pat,
1539 				    1, sizeof(cur_pattern->data.inq_pat),
1540 				    scsi_static_inquiry_match) == NULL))
1541 			continue;
1542 
1543 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1544 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1545 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1546 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1547 				      device->device_id_len
1548 				    - SVPD_DEVICE_ID_HDR_LEN,
1549 				      cur_pattern->data.devid_pat.id,
1550 				      cur_pattern->data.devid_pat.id_len) != 0))
1551 			continue;
1552 
1553 copy_dev_node:
1554 		/*
1555 		 * If we get to this point, the user definitely wants
1556 		 * information on this device.  So tell the caller to copy
1557 		 * the data out.
1558 		 */
1559 		retval |= DM_RET_COPY;
1560 
1561 		/*
1562 		 * If the return action has been set to descend, then we
1563 		 * know that we've already seen a peripheral matching
1564 		 * expression, therefore we need to further descend the tree.
1565 		 * This won't change by continuing around the loop, so we
1566 		 * go ahead and return.  If we haven't seen a peripheral
1567 		 * matching expression, we keep going around the loop until
1568 		 * we exhaust the matching expressions.  We'll set the stop
1569 		 * flag once we fall out of the loop.
1570 		 */
1571 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1572 			return(retval);
1573 	}
1574 
1575 	/*
1576 	 * If the return action hasn't been set to descend yet, that means
1577 	 * we haven't seen any peripheral matching patterns.  So tell the
1578 	 * caller to stop descending the tree -- the user doesn't want to
1579 	 * match against lower level tree elements.
1580 	 */
1581 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1582 		retval |= DM_RET_STOP;
1583 
1584 	return(retval);
1585 }
1586 
1587 /*
1588  * Match a single peripheral against any number of match patterns.
1589  */
1590 static dev_match_ret
1591 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1592 	       struct cam_periph *periph)
1593 {
1594 	dev_match_ret retval;
1595 	u_int i;
1596 
1597 	/*
1598 	 * If we aren't given something to match against, that's an error.
1599 	 */
1600 	if (periph == NULL)
1601 		return(DM_RET_ERROR);
1602 
1603 	/*
1604 	 * If there are no match entries, then this peripheral matches no
1605 	 * matter what.
1606 	 */
1607 	if ((patterns == NULL) || (num_patterns == 0))
1608 		return(DM_RET_STOP | DM_RET_COPY);
1609 
1610 	/*
1611 	 * There aren't any nodes below a peripheral node, so there's no
1612 	 * reason to descend the tree any further.
1613 	 */
1614 	retval = DM_RET_STOP;
1615 
1616 	for (i = 0; i < num_patterns; i++) {
1617 		struct periph_match_pattern *cur_pattern;
1618 
1619 		/*
1620 		 * If the pattern in question isn't for a peripheral, we
1621 		 * aren't interested.
1622 		 */
1623 		if (patterns[i].type != DEV_MATCH_PERIPH)
1624 			continue;
1625 
1626 		cur_pattern = &patterns[i].pattern.periph_pattern;
1627 
1628 		/*
1629 		 * If they want to match on anything, then we will do so.
1630 		 */
1631 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1632 			/* set the copy flag */
1633 			retval |= DM_RET_COPY;
1634 
1635 			/*
1636 			 * We've already set the return action to stop,
1637 			 * since there are no nodes below peripherals in
1638 			 * the tree.
1639 			 */
1640 			return(retval);
1641 		}
1642 
1643 		/*
1644 		 * Not sure why someone would do this...
1645 		 */
1646 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1647 			continue;
1648 
1649 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1650 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1651 			continue;
1652 
1653 		/*
1654 		 * For the target and lun id's, we have to make sure the
1655 		 * target and lun pointers aren't NULL.  The xpt peripheral
1656 		 * has a wildcard target and device.
1657 		 */
1658 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1659 		 && ((periph->path->target == NULL)
1660 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1661 			continue;
1662 
1663 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1664 		 && ((periph->path->device == NULL)
1665 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1666 			continue;
1667 
1668 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1669 		 && (cur_pattern->unit_number != periph->unit_number))
1670 			continue;
1671 
1672 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1673 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1674 			     DEV_IDLEN) != 0))
1675 			continue;
1676 
1677 		/*
1678 		 * If we get to this point, the user definitely wants
1679 		 * information on this peripheral.  So tell the caller to
1680 		 * copy the data out.
1681 		 */
1682 		retval |= DM_RET_COPY;
1683 
1684 		/*
1685 		 * The return action has already been set to stop, since
1686 		 * peripherals don't have any nodes below them in the EDT.
1687 		 */
1688 		return(retval);
1689 	}
1690 
1691 	/*
1692 	 * If we get to this point, the peripheral that was passed in
1693 	 * doesn't match any of the patterns.
1694 	 */
1695 	return(retval);
1696 }
1697 
1698 static int
1699 xptedtbusfunc(struct cam_eb *bus, void *arg)
1700 {
1701 	struct ccb_dev_match *cdm;
1702 	struct cam_et *target;
1703 	dev_match_ret retval;
1704 
1705 	cdm = (struct ccb_dev_match *)arg;
1706 
1707 	/*
1708 	 * If our position is for something deeper in the tree, that means
1709 	 * that we've already seen this node.  So, we keep going down.
1710 	 */
1711 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1712 	 && (cdm->pos.cookie.bus == bus)
1713 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1714 	 && (cdm->pos.cookie.target != NULL))
1715 		retval = DM_RET_DESCEND;
1716 	else
1717 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1718 
1719 	/*
1720 	 * If we got an error, bail out of the search.
1721 	 */
1722 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1723 		cdm->status = CAM_DEV_MATCH_ERROR;
1724 		return(0);
1725 	}
1726 
1727 	/*
1728 	 * If the copy flag is set, copy this bus out.
1729 	 */
1730 	if (retval & DM_RET_COPY) {
1731 		int spaceleft, j;
1732 
1733 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1734 			sizeof(struct dev_match_result));
1735 
1736 		/*
1737 		 * If we don't have enough space to put in another
1738 		 * match result, save our position and tell the
1739 		 * user there are more devices to check.
1740 		 */
1741 		if (spaceleft < sizeof(struct dev_match_result)) {
1742 			bzero(&cdm->pos, sizeof(cdm->pos));
1743 			cdm->pos.position_type =
1744 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1745 
1746 			cdm->pos.cookie.bus = bus;
1747 			cdm->pos.generations[CAM_BUS_GENERATION]=
1748 				xsoftc.bus_generation;
1749 			cdm->status = CAM_DEV_MATCH_MORE;
1750 			return(0);
1751 		}
1752 		j = cdm->num_matches;
1753 		cdm->num_matches++;
1754 		cdm->matches[j].type = DEV_MATCH_BUS;
1755 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1756 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1757 		cdm->matches[j].result.bus_result.unit_number =
1758 			bus->sim->unit_number;
1759 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1760 			bus->sim->sim_name, DEV_IDLEN);
1761 	}
1762 
1763 	/*
1764 	 * If the user is only interested in buses, there's no
1765 	 * reason to descend to the next level in the tree.
1766 	 */
1767 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1768 		return(1);
1769 
1770 	/*
1771 	 * If there is a target generation recorded, check it to
1772 	 * make sure the target list hasn't changed.
1773 	 */
1774 	mtx_lock(&bus->eb_mtx);
1775 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1776 	 && (cdm->pos.cookie.bus == bus)
1777 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1778 	 && (cdm->pos.cookie.target != NULL)) {
1779 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1780 		    bus->generation)) {
1781 			mtx_unlock(&bus->eb_mtx);
1782 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1783 			return (0);
1784 		}
1785 		target = (struct cam_et *)cdm->pos.cookie.target;
1786 		target->refcount++;
1787 	} else
1788 		target = NULL;
1789 	mtx_unlock(&bus->eb_mtx);
1790 
1791 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1792 }
1793 
1794 static int
1795 xptedttargetfunc(struct cam_et *target, void *arg)
1796 {
1797 	struct ccb_dev_match *cdm;
1798 	struct cam_eb *bus;
1799 	struct cam_ed *device;
1800 
1801 	cdm = (struct ccb_dev_match *)arg;
1802 	bus = target->bus;
1803 
1804 	/*
1805 	 * If there is a device list generation recorded, check it to
1806 	 * make sure the device list hasn't changed.
1807 	 */
1808 	mtx_lock(&bus->eb_mtx);
1809 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1810 	 && (cdm->pos.cookie.bus == bus)
1811 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1812 	 && (cdm->pos.cookie.target == target)
1813 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1814 	 && (cdm->pos.cookie.device != NULL)) {
1815 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1816 		    target->generation) {
1817 			mtx_unlock(&bus->eb_mtx);
1818 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1819 			return(0);
1820 		}
1821 		device = (struct cam_ed *)cdm->pos.cookie.device;
1822 		device->refcount++;
1823 	} else
1824 		device = NULL;
1825 	mtx_unlock(&bus->eb_mtx);
1826 
1827 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1828 }
1829 
1830 static int
1831 xptedtdevicefunc(struct cam_ed *device, void *arg)
1832 {
1833 	struct cam_eb *bus;
1834 	struct cam_periph *periph;
1835 	struct ccb_dev_match *cdm;
1836 	dev_match_ret retval;
1837 
1838 	cdm = (struct ccb_dev_match *)arg;
1839 	bus = device->target->bus;
1840 
1841 	/*
1842 	 * If our position is for something deeper in the tree, that means
1843 	 * that we've already seen this node.  So, we keep going down.
1844 	 */
1845 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1846 	 && (cdm->pos.cookie.device == device)
1847 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1848 	 && (cdm->pos.cookie.periph != NULL))
1849 		retval = DM_RET_DESCEND;
1850 	else
1851 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1852 					device);
1853 
1854 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1855 		cdm->status = CAM_DEV_MATCH_ERROR;
1856 		return(0);
1857 	}
1858 
1859 	/*
1860 	 * If the copy flag is set, copy this device out.
1861 	 */
1862 	if (retval & DM_RET_COPY) {
1863 		int spaceleft, j;
1864 
1865 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1866 			sizeof(struct dev_match_result));
1867 
1868 		/*
1869 		 * If we don't have enough space to put in another
1870 		 * match result, save our position and tell the
1871 		 * user there are more devices to check.
1872 		 */
1873 		if (spaceleft < sizeof(struct dev_match_result)) {
1874 			bzero(&cdm->pos, sizeof(cdm->pos));
1875 			cdm->pos.position_type =
1876 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1877 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1878 
1879 			cdm->pos.cookie.bus = device->target->bus;
1880 			cdm->pos.generations[CAM_BUS_GENERATION]=
1881 				xsoftc.bus_generation;
1882 			cdm->pos.cookie.target = device->target;
1883 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1884 				device->target->bus->generation;
1885 			cdm->pos.cookie.device = device;
1886 			cdm->pos.generations[CAM_DEV_GENERATION] =
1887 				device->target->generation;
1888 			cdm->status = CAM_DEV_MATCH_MORE;
1889 			return(0);
1890 		}
1891 		j = cdm->num_matches;
1892 		cdm->num_matches++;
1893 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1894 		cdm->matches[j].result.device_result.path_id =
1895 			device->target->bus->path_id;
1896 		cdm->matches[j].result.device_result.target_id =
1897 			device->target->target_id;
1898 		cdm->matches[j].result.device_result.target_lun =
1899 			device->lun_id;
1900 		cdm->matches[j].result.device_result.protocol =
1901 			device->protocol;
1902 		bcopy(&device->inq_data,
1903 		      &cdm->matches[j].result.device_result.inq_data,
1904 		      sizeof(struct scsi_inquiry_data));
1905 		bcopy(&device->ident_data,
1906 		      &cdm->matches[j].result.device_result.ident_data,
1907 		      sizeof(struct ata_params));
1908 		bcopy(&device->mmc_ident_data,
1909 		      &cdm->matches[j].result.device_result.mmc_ident_data,
1910 		      sizeof(struct mmc_params));
1911 
1912 		/* Let the user know whether this device is unconfigured */
1913 		if (device->flags & CAM_DEV_UNCONFIGURED)
1914 			cdm->matches[j].result.device_result.flags =
1915 				DEV_RESULT_UNCONFIGURED;
1916 		else
1917 			cdm->matches[j].result.device_result.flags =
1918 				DEV_RESULT_NOFLAG;
1919 	}
1920 
1921 	/*
1922 	 * If the user isn't interested in peripherals, don't descend
1923 	 * the tree any further.
1924 	 */
1925 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1926 		return(1);
1927 
1928 	/*
1929 	 * If there is a peripheral list generation recorded, make sure
1930 	 * it hasn't changed.
1931 	 */
1932 	xpt_lock_buses();
1933 	mtx_lock(&bus->eb_mtx);
1934 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1935 	 && (cdm->pos.cookie.bus == bus)
1936 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1937 	 && (cdm->pos.cookie.target == device->target)
1938 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1939 	 && (cdm->pos.cookie.device == device)
1940 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1941 	 && (cdm->pos.cookie.periph != NULL)) {
1942 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1943 		    device->generation) {
1944 			mtx_unlock(&bus->eb_mtx);
1945 			xpt_unlock_buses();
1946 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1947 			return(0);
1948 		}
1949 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1950 		periph->refcount++;
1951 	} else
1952 		periph = NULL;
1953 	mtx_unlock(&bus->eb_mtx);
1954 	xpt_unlock_buses();
1955 
1956 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1957 }
1958 
1959 static int
1960 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1961 {
1962 	struct ccb_dev_match *cdm;
1963 	dev_match_ret retval;
1964 
1965 	cdm = (struct ccb_dev_match *)arg;
1966 
1967 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1968 
1969 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1970 		cdm->status = CAM_DEV_MATCH_ERROR;
1971 		return(0);
1972 	}
1973 
1974 	/*
1975 	 * If the copy flag is set, copy this peripheral out.
1976 	 */
1977 	if (retval & DM_RET_COPY) {
1978 		int spaceleft, j;
1979 
1980 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1981 			sizeof(struct dev_match_result));
1982 
1983 		/*
1984 		 * If we don't have enough space to put in another
1985 		 * match result, save our position and tell the
1986 		 * user there are more devices to check.
1987 		 */
1988 		if (spaceleft < sizeof(struct dev_match_result)) {
1989 			bzero(&cdm->pos, sizeof(cdm->pos));
1990 			cdm->pos.position_type =
1991 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1992 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1993 				CAM_DEV_POS_PERIPH;
1994 
1995 			cdm->pos.cookie.bus = periph->path->bus;
1996 			cdm->pos.generations[CAM_BUS_GENERATION]=
1997 				xsoftc.bus_generation;
1998 			cdm->pos.cookie.target = periph->path->target;
1999 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2000 				periph->path->bus->generation;
2001 			cdm->pos.cookie.device = periph->path->device;
2002 			cdm->pos.generations[CAM_DEV_GENERATION] =
2003 				periph->path->target->generation;
2004 			cdm->pos.cookie.periph = periph;
2005 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2006 				periph->path->device->generation;
2007 			cdm->status = CAM_DEV_MATCH_MORE;
2008 			return(0);
2009 		}
2010 
2011 		j = cdm->num_matches;
2012 		cdm->num_matches++;
2013 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2014 		cdm->matches[j].result.periph_result.path_id =
2015 			periph->path->bus->path_id;
2016 		cdm->matches[j].result.periph_result.target_id =
2017 			periph->path->target->target_id;
2018 		cdm->matches[j].result.periph_result.target_lun =
2019 			periph->path->device->lun_id;
2020 		cdm->matches[j].result.periph_result.unit_number =
2021 			periph->unit_number;
2022 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2023 			periph->periph_name, DEV_IDLEN);
2024 	}
2025 
2026 	return(1);
2027 }
2028 
2029 static int
2030 xptedtmatch(struct ccb_dev_match *cdm)
2031 {
2032 	struct cam_eb *bus;
2033 	int ret;
2034 
2035 	cdm->num_matches = 0;
2036 
2037 	/*
2038 	 * Check the bus list generation.  If it has changed, the user
2039 	 * needs to reset everything and start over.
2040 	 */
2041 	xpt_lock_buses();
2042 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2043 	 && (cdm->pos.cookie.bus != NULL)) {
2044 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2045 		    xsoftc.bus_generation) {
2046 			xpt_unlock_buses();
2047 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2048 			return(0);
2049 		}
2050 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2051 		bus->refcount++;
2052 	} else
2053 		bus = NULL;
2054 	xpt_unlock_buses();
2055 
2056 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2057 
2058 	/*
2059 	 * If we get back 0, that means that we had to stop before fully
2060 	 * traversing the EDT.  It also means that one of the subroutines
2061 	 * has set the status field to the proper value.  If we get back 1,
2062 	 * we've fully traversed the EDT and copied out any matching entries.
2063 	 */
2064 	if (ret == 1)
2065 		cdm->status = CAM_DEV_MATCH_LAST;
2066 
2067 	return(ret);
2068 }
2069 
2070 static int
2071 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2072 {
2073 	struct cam_periph *periph;
2074 	struct ccb_dev_match *cdm;
2075 
2076 	cdm = (struct ccb_dev_match *)arg;
2077 
2078 	xpt_lock_buses();
2079 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2080 	 && (cdm->pos.cookie.pdrv == pdrv)
2081 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2082 	 && (cdm->pos.cookie.periph != NULL)) {
2083 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2084 		    (*pdrv)->generation) {
2085 			xpt_unlock_buses();
2086 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2087 			return(0);
2088 		}
2089 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2090 		periph->refcount++;
2091 	} else
2092 		periph = NULL;
2093 	xpt_unlock_buses();
2094 
2095 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2096 }
2097 
2098 static int
2099 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2100 {
2101 	struct ccb_dev_match *cdm;
2102 	dev_match_ret retval;
2103 
2104 	cdm = (struct ccb_dev_match *)arg;
2105 
2106 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2107 
2108 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2109 		cdm->status = CAM_DEV_MATCH_ERROR;
2110 		return(0);
2111 	}
2112 
2113 	/*
2114 	 * If the copy flag is set, copy this peripheral out.
2115 	 */
2116 	if (retval & DM_RET_COPY) {
2117 		int spaceleft, j;
2118 
2119 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2120 			sizeof(struct dev_match_result));
2121 
2122 		/*
2123 		 * If we don't have enough space to put in another
2124 		 * match result, save our position and tell the
2125 		 * user there are more devices to check.
2126 		 */
2127 		if (spaceleft < sizeof(struct dev_match_result)) {
2128 			struct periph_driver **pdrv;
2129 
2130 			pdrv = NULL;
2131 			bzero(&cdm->pos, sizeof(cdm->pos));
2132 			cdm->pos.position_type =
2133 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2134 				CAM_DEV_POS_PERIPH;
2135 
2136 			/*
2137 			 * This may look a bit non-sensical, but it is
2138 			 * actually quite logical.  There are very few
2139 			 * peripheral drivers, and bloating every peripheral
2140 			 * structure with a pointer back to its parent
2141 			 * peripheral driver linker set entry would cost
2142 			 * more in the long run than doing this quick lookup.
2143 			 */
2144 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2145 				if (strcmp((*pdrv)->driver_name,
2146 				    periph->periph_name) == 0)
2147 					break;
2148 			}
2149 
2150 			if (*pdrv == NULL) {
2151 				cdm->status = CAM_DEV_MATCH_ERROR;
2152 				return(0);
2153 			}
2154 
2155 			cdm->pos.cookie.pdrv = pdrv;
2156 			/*
2157 			 * The periph generation slot does double duty, as
2158 			 * does the periph pointer slot.  They are used for
2159 			 * both edt and pdrv lookups and positioning.
2160 			 */
2161 			cdm->pos.cookie.periph = periph;
2162 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2163 				(*pdrv)->generation;
2164 			cdm->status = CAM_DEV_MATCH_MORE;
2165 			return(0);
2166 		}
2167 
2168 		j = cdm->num_matches;
2169 		cdm->num_matches++;
2170 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2171 		cdm->matches[j].result.periph_result.path_id =
2172 			periph->path->bus->path_id;
2173 
2174 		/*
2175 		 * The transport layer peripheral doesn't have a target or
2176 		 * lun.
2177 		 */
2178 		if (periph->path->target)
2179 			cdm->matches[j].result.periph_result.target_id =
2180 				periph->path->target->target_id;
2181 		else
2182 			cdm->matches[j].result.periph_result.target_id =
2183 				CAM_TARGET_WILDCARD;
2184 
2185 		if (periph->path->device)
2186 			cdm->matches[j].result.periph_result.target_lun =
2187 				periph->path->device->lun_id;
2188 		else
2189 			cdm->matches[j].result.periph_result.target_lun =
2190 				CAM_LUN_WILDCARD;
2191 
2192 		cdm->matches[j].result.periph_result.unit_number =
2193 			periph->unit_number;
2194 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2195 			periph->periph_name, DEV_IDLEN);
2196 	}
2197 
2198 	return(1);
2199 }
2200 
2201 static int
2202 xptperiphlistmatch(struct ccb_dev_match *cdm)
2203 {
2204 	int ret;
2205 
2206 	cdm->num_matches = 0;
2207 
2208 	/*
2209 	 * At this point in the edt traversal function, we check the bus
2210 	 * list generation to make sure that no buses have been added or
2211 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2212 	 * For the peripheral driver list traversal function, however, we
2213 	 * don't have to worry about new peripheral driver types coming or
2214 	 * going; they're in a linker set, and therefore can't change
2215 	 * without a recompile.
2216 	 */
2217 
2218 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2219 	 && (cdm->pos.cookie.pdrv != NULL))
2220 		ret = xptpdrvtraverse(
2221 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2222 				xptplistpdrvfunc, cdm);
2223 	else
2224 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2225 
2226 	/*
2227 	 * If we get back 0, that means that we had to stop before fully
2228 	 * traversing the peripheral driver tree.  It also means that one of
2229 	 * the subroutines has set the status field to the proper value.  If
2230 	 * we get back 1, we've fully traversed the EDT and copied out any
2231 	 * matching entries.
2232 	 */
2233 	if (ret == 1)
2234 		cdm->status = CAM_DEV_MATCH_LAST;
2235 
2236 	return(ret);
2237 }
2238 
2239 static int
2240 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2241 {
2242 	struct cam_eb *bus, *next_bus;
2243 	int retval;
2244 
2245 	retval = 1;
2246 	if (start_bus)
2247 		bus = start_bus;
2248 	else {
2249 		xpt_lock_buses();
2250 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2251 		if (bus == NULL) {
2252 			xpt_unlock_buses();
2253 			return (retval);
2254 		}
2255 		bus->refcount++;
2256 		xpt_unlock_buses();
2257 	}
2258 	for (; bus != NULL; bus = next_bus) {
2259 		retval = tr_func(bus, arg);
2260 		if (retval == 0) {
2261 			xpt_release_bus(bus);
2262 			break;
2263 		}
2264 		xpt_lock_buses();
2265 		next_bus = TAILQ_NEXT(bus, links);
2266 		if (next_bus)
2267 			next_bus->refcount++;
2268 		xpt_unlock_buses();
2269 		xpt_release_bus(bus);
2270 	}
2271 	return(retval);
2272 }
2273 
2274 static int
2275 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2276 		  xpt_targetfunc_t *tr_func, void *arg)
2277 {
2278 	struct cam_et *target, *next_target;
2279 	int retval;
2280 
2281 	retval = 1;
2282 	if (start_target)
2283 		target = start_target;
2284 	else {
2285 		mtx_lock(&bus->eb_mtx);
2286 		target = TAILQ_FIRST(&bus->et_entries);
2287 		if (target == NULL) {
2288 			mtx_unlock(&bus->eb_mtx);
2289 			return (retval);
2290 		}
2291 		target->refcount++;
2292 		mtx_unlock(&bus->eb_mtx);
2293 	}
2294 	for (; target != NULL; target = next_target) {
2295 		retval = tr_func(target, arg);
2296 		if (retval == 0) {
2297 			xpt_release_target(target);
2298 			break;
2299 		}
2300 		mtx_lock(&bus->eb_mtx);
2301 		next_target = TAILQ_NEXT(target, links);
2302 		if (next_target)
2303 			next_target->refcount++;
2304 		mtx_unlock(&bus->eb_mtx);
2305 		xpt_release_target(target);
2306 	}
2307 	return(retval);
2308 }
2309 
2310 static int
2311 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2312 		  xpt_devicefunc_t *tr_func, void *arg)
2313 {
2314 	struct cam_eb *bus;
2315 	struct cam_ed *device, *next_device;
2316 	int retval;
2317 
2318 	retval = 1;
2319 	bus = target->bus;
2320 	if (start_device)
2321 		device = start_device;
2322 	else {
2323 		mtx_lock(&bus->eb_mtx);
2324 		device = TAILQ_FIRST(&target->ed_entries);
2325 		if (device == NULL) {
2326 			mtx_unlock(&bus->eb_mtx);
2327 			return (retval);
2328 		}
2329 		device->refcount++;
2330 		mtx_unlock(&bus->eb_mtx);
2331 	}
2332 	for (; device != NULL; device = next_device) {
2333 		mtx_lock(&device->device_mtx);
2334 		retval = tr_func(device, arg);
2335 		mtx_unlock(&device->device_mtx);
2336 		if (retval == 0) {
2337 			xpt_release_device(device);
2338 			break;
2339 		}
2340 		mtx_lock(&bus->eb_mtx);
2341 		next_device = TAILQ_NEXT(device, links);
2342 		if (next_device)
2343 			next_device->refcount++;
2344 		mtx_unlock(&bus->eb_mtx);
2345 		xpt_release_device(device);
2346 	}
2347 	return(retval);
2348 }
2349 
2350 static int
2351 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2352 		  xpt_periphfunc_t *tr_func, void *arg)
2353 {
2354 	struct cam_eb *bus;
2355 	struct cam_periph *periph, *next_periph;
2356 	int retval;
2357 
2358 	retval = 1;
2359 
2360 	bus = device->target->bus;
2361 	if (start_periph)
2362 		periph = start_periph;
2363 	else {
2364 		xpt_lock_buses();
2365 		mtx_lock(&bus->eb_mtx);
2366 		periph = SLIST_FIRST(&device->periphs);
2367 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2368 			periph = SLIST_NEXT(periph, periph_links);
2369 		if (periph == NULL) {
2370 			mtx_unlock(&bus->eb_mtx);
2371 			xpt_unlock_buses();
2372 			return (retval);
2373 		}
2374 		periph->refcount++;
2375 		mtx_unlock(&bus->eb_mtx);
2376 		xpt_unlock_buses();
2377 	}
2378 	for (; periph != NULL; periph = next_periph) {
2379 		retval = tr_func(periph, arg);
2380 		if (retval == 0) {
2381 			cam_periph_release_locked(periph);
2382 			break;
2383 		}
2384 		xpt_lock_buses();
2385 		mtx_lock(&bus->eb_mtx);
2386 		next_periph = SLIST_NEXT(periph, periph_links);
2387 		while (next_periph != NULL &&
2388 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2389 			next_periph = SLIST_NEXT(next_periph, periph_links);
2390 		if (next_periph)
2391 			next_periph->refcount++;
2392 		mtx_unlock(&bus->eb_mtx);
2393 		xpt_unlock_buses();
2394 		cam_periph_release_locked(periph);
2395 	}
2396 	return(retval);
2397 }
2398 
2399 static int
2400 xptpdrvtraverse(struct periph_driver **start_pdrv,
2401 		xpt_pdrvfunc_t *tr_func, void *arg)
2402 {
2403 	struct periph_driver **pdrv;
2404 	int retval;
2405 
2406 	retval = 1;
2407 
2408 	/*
2409 	 * We don't traverse the peripheral driver list like we do the
2410 	 * other lists, because it is a linker set, and therefore cannot be
2411 	 * changed during runtime.  If the peripheral driver list is ever
2412 	 * re-done to be something other than a linker set (i.e. it can
2413 	 * change while the system is running), the list traversal should
2414 	 * be modified to work like the other traversal functions.
2415 	 */
2416 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2417 	     *pdrv != NULL; pdrv++) {
2418 		retval = tr_func(pdrv, arg);
2419 
2420 		if (retval == 0)
2421 			return(retval);
2422 	}
2423 
2424 	return(retval);
2425 }
2426 
2427 static int
2428 xptpdperiphtraverse(struct periph_driver **pdrv,
2429 		    struct cam_periph *start_periph,
2430 		    xpt_periphfunc_t *tr_func, void *arg)
2431 {
2432 	struct cam_periph *periph, *next_periph;
2433 	int retval;
2434 
2435 	retval = 1;
2436 
2437 	if (start_periph)
2438 		periph = start_periph;
2439 	else {
2440 		xpt_lock_buses();
2441 		periph = TAILQ_FIRST(&(*pdrv)->units);
2442 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2443 			periph = TAILQ_NEXT(periph, unit_links);
2444 		if (periph == NULL) {
2445 			xpt_unlock_buses();
2446 			return (retval);
2447 		}
2448 		periph->refcount++;
2449 		xpt_unlock_buses();
2450 	}
2451 	for (; periph != NULL; periph = next_periph) {
2452 		cam_periph_lock(periph);
2453 		retval = tr_func(periph, arg);
2454 		cam_periph_unlock(periph);
2455 		if (retval == 0) {
2456 			cam_periph_release(periph);
2457 			break;
2458 		}
2459 		xpt_lock_buses();
2460 		next_periph = TAILQ_NEXT(periph, unit_links);
2461 		while (next_periph != NULL &&
2462 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2463 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2464 		if (next_periph)
2465 			next_periph->refcount++;
2466 		xpt_unlock_buses();
2467 		cam_periph_release(periph);
2468 	}
2469 	return(retval);
2470 }
2471 
2472 static int
2473 xptdefbusfunc(struct cam_eb *bus, void *arg)
2474 {
2475 	struct xpt_traverse_config *tr_config;
2476 
2477 	tr_config = (struct xpt_traverse_config *)arg;
2478 
2479 	if (tr_config->depth == XPT_DEPTH_BUS) {
2480 		xpt_busfunc_t *tr_func;
2481 
2482 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2483 
2484 		return(tr_func(bus, tr_config->tr_arg));
2485 	} else
2486 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2487 }
2488 
2489 static int
2490 xptdeftargetfunc(struct cam_et *target, void *arg)
2491 {
2492 	struct xpt_traverse_config *tr_config;
2493 
2494 	tr_config = (struct xpt_traverse_config *)arg;
2495 
2496 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2497 		xpt_targetfunc_t *tr_func;
2498 
2499 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2500 
2501 		return(tr_func(target, tr_config->tr_arg));
2502 	} else
2503 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2504 }
2505 
2506 static int
2507 xptdefdevicefunc(struct cam_ed *device, void *arg)
2508 {
2509 	struct xpt_traverse_config *tr_config;
2510 
2511 	tr_config = (struct xpt_traverse_config *)arg;
2512 
2513 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2514 		xpt_devicefunc_t *tr_func;
2515 
2516 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2517 
2518 		return(tr_func(device, tr_config->tr_arg));
2519 	} else
2520 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2521 }
2522 
2523 static int
2524 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2525 {
2526 	struct xpt_traverse_config *tr_config;
2527 	xpt_periphfunc_t *tr_func;
2528 
2529 	tr_config = (struct xpt_traverse_config *)arg;
2530 
2531 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2532 
2533 	/*
2534 	 * Unlike the other default functions, we don't check for depth
2535 	 * here.  The peripheral driver level is the last level in the EDT,
2536 	 * so if we're here, we should execute the function in question.
2537 	 */
2538 	return(tr_func(periph, tr_config->tr_arg));
2539 }
2540 
2541 /*
2542  * Execute the given function for every bus in the EDT.
2543  */
2544 static int
2545 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2546 {
2547 	struct xpt_traverse_config tr_config;
2548 
2549 	tr_config.depth = XPT_DEPTH_BUS;
2550 	tr_config.tr_func = tr_func;
2551 	tr_config.tr_arg = arg;
2552 
2553 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2554 }
2555 
2556 /*
2557  * Execute the given function for every device in the EDT.
2558  */
2559 static int
2560 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2561 {
2562 	struct xpt_traverse_config tr_config;
2563 
2564 	tr_config.depth = XPT_DEPTH_DEVICE;
2565 	tr_config.tr_func = tr_func;
2566 	tr_config.tr_arg = arg;
2567 
2568 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2569 }
2570 
2571 static int
2572 xptsetasyncfunc(struct cam_ed *device, void *arg)
2573 {
2574 	struct cam_path path;
2575 	struct ccb_getdev cgd;
2576 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2577 
2578 	/*
2579 	 * Don't report unconfigured devices (Wildcard devs,
2580 	 * devices only for target mode, device instances
2581 	 * that have been invalidated but are waiting for
2582 	 * their last reference count to be released).
2583 	 */
2584 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2585 		return (1);
2586 
2587 	xpt_compile_path(&path,
2588 			 NULL,
2589 			 device->target->bus->path_id,
2590 			 device->target->target_id,
2591 			 device->lun_id);
2592 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2593 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2594 	xpt_action((union ccb *)&cgd);
2595 	csa->callback(csa->callback_arg,
2596 			    AC_FOUND_DEVICE,
2597 			    &path, &cgd);
2598 	xpt_release_path(&path);
2599 
2600 	return(1);
2601 }
2602 
2603 static int
2604 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2605 {
2606 	struct cam_path path;
2607 	struct ccb_pathinq cpi;
2608 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2609 
2610 	xpt_compile_path(&path, /*periph*/NULL,
2611 			 bus->path_id,
2612 			 CAM_TARGET_WILDCARD,
2613 			 CAM_LUN_WILDCARD);
2614 	xpt_path_lock(&path);
2615 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2616 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2617 	xpt_action((union ccb *)&cpi);
2618 	csa->callback(csa->callback_arg,
2619 			    AC_PATH_REGISTERED,
2620 			    &path, &cpi);
2621 	xpt_path_unlock(&path);
2622 	xpt_release_path(&path);
2623 
2624 	return(1);
2625 }
2626 
2627 void
2628 xpt_action(union ccb *start_ccb)
2629 {
2630 
2631 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2632 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2633 		xpt_action_name(start_ccb->ccb_h.func_code)));
2634 
2635 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2636 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2637 }
2638 
2639 void
2640 xpt_action_default(union ccb *start_ccb)
2641 {
2642 	struct cam_path *path;
2643 	struct cam_sim *sim;
2644 	struct mtx *mtx;
2645 
2646 	path = start_ccb->ccb_h.path;
2647 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2648 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2649 		xpt_action_name(start_ccb->ccb_h.func_code)));
2650 
2651 	switch (start_ccb->ccb_h.func_code) {
2652 	case XPT_SCSI_IO:
2653 	{
2654 		struct cam_ed *device;
2655 
2656 		/*
2657 		 * For the sake of compatibility with SCSI-1
2658 		 * devices that may not understand the identify
2659 		 * message, we include lun information in the
2660 		 * second byte of all commands.  SCSI-1 specifies
2661 		 * that luns are a 3 bit value and reserves only 3
2662 		 * bits for lun information in the CDB.  Later
2663 		 * revisions of the SCSI spec allow for more than 8
2664 		 * luns, but have deprecated lun information in the
2665 		 * CDB.  So, if the lun won't fit, we must omit.
2666 		 *
2667 		 * Also be aware that during initial probing for devices,
2668 		 * the inquiry information is unknown but initialized to 0.
2669 		 * This means that this code will be exercised while probing
2670 		 * devices with an ANSI revision greater than 2.
2671 		 */
2672 		device = path->device;
2673 		if (device->protocol_version <= SCSI_REV_2
2674 		 && start_ccb->ccb_h.target_lun < 8
2675 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2676 
2677 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2678 			    start_ccb->ccb_h.target_lun << 5;
2679 		}
2680 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2681 	}
2682 	/* FALLTHROUGH */
2683 	case XPT_TARGET_IO:
2684 	case XPT_CONT_TARGET_IO:
2685 		start_ccb->csio.sense_resid = 0;
2686 		start_ccb->csio.resid = 0;
2687 		/* FALLTHROUGH */
2688 	case XPT_ATA_IO:
2689 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2690 			start_ccb->ataio.resid = 0;
2691 		/* FALLTHROUGH */
2692 	case XPT_NVME_IO:
2693 		/* FALLTHROUGH */
2694 	case XPT_NVME_ADMIN:
2695 		/* FALLTHROUGH */
2696 	case XPT_MMC_IO:
2697 		/* XXX just like nmve_io? */
2698 	case XPT_RESET_DEV:
2699 	case XPT_ENG_EXEC:
2700 	case XPT_SMP_IO:
2701 	{
2702 		struct cam_devq *devq;
2703 
2704 		devq = path->bus->sim->devq;
2705 		mtx_lock(&devq->send_mtx);
2706 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2707 		if (xpt_schedule_devq(devq, path->device) != 0)
2708 			xpt_run_devq(devq);
2709 		mtx_unlock(&devq->send_mtx);
2710 		break;
2711 	}
2712 	case XPT_CALC_GEOMETRY:
2713 		/* Filter out garbage */
2714 		if (start_ccb->ccg.block_size == 0
2715 		 || start_ccb->ccg.volume_size == 0) {
2716 			start_ccb->ccg.cylinders = 0;
2717 			start_ccb->ccg.heads = 0;
2718 			start_ccb->ccg.secs_per_track = 0;
2719 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2720 			break;
2721 		}
2722 #if defined(__sparc64__)
2723 		/*
2724 		 * For sparc64, we may need adjust the geometry of large
2725 		 * disks in order to fit the limitations of the 16-bit
2726 		 * fields of the VTOC8 disk label.
2727 		 */
2728 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2729 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2730 			break;
2731 		}
2732 #endif
2733 		goto call_sim;
2734 	case XPT_ABORT:
2735 	{
2736 		union ccb* abort_ccb;
2737 
2738 		abort_ccb = start_ccb->cab.abort_ccb;
2739 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2740 			struct cam_ed *device;
2741 			struct cam_devq *devq;
2742 
2743 			device = abort_ccb->ccb_h.path->device;
2744 			devq = device->sim->devq;
2745 
2746 			mtx_lock(&devq->send_mtx);
2747 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2748 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2749 				abort_ccb->ccb_h.status =
2750 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2751 				xpt_freeze_devq_device(device, 1);
2752 				mtx_unlock(&devq->send_mtx);
2753 				xpt_done(abort_ccb);
2754 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2755 				break;
2756 			}
2757 			mtx_unlock(&devq->send_mtx);
2758 
2759 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2760 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2761 				/*
2762 				 * We've caught this ccb en route to
2763 				 * the SIM.  Flag it for abort and the
2764 				 * SIM will do so just before starting
2765 				 * real work on the CCB.
2766 				 */
2767 				abort_ccb->ccb_h.status =
2768 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2769 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2770 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2771 				break;
2772 			}
2773 		}
2774 		if (XPT_FC_IS_QUEUED(abort_ccb)
2775 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2776 			/*
2777 			 * It's already completed but waiting
2778 			 * for our SWI to get to it.
2779 			 */
2780 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2781 			break;
2782 		}
2783 		/*
2784 		 * If we weren't able to take care of the abort request
2785 		 * in the XPT, pass the request down to the SIM for processing.
2786 		 */
2787 	}
2788 	/* FALLTHROUGH */
2789 	case XPT_ACCEPT_TARGET_IO:
2790 	case XPT_EN_LUN:
2791 	case XPT_IMMED_NOTIFY:
2792 	case XPT_NOTIFY_ACK:
2793 	case XPT_RESET_BUS:
2794 	case XPT_IMMEDIATE_NOTIFY:
2795 	case XPT_NOTIFY_ACKNOWLEDGE:
2796 	case XPT_GET_SIM_KNOB_OLD:
2797 	case XPT_GET_SIM_KNOB:
2798 	case XPT_SET_SIM_KNOB:
2799 	case XPT_GET_TRAN_SETTINGS:
2800 	case XPT_SET_TRAN_SETTINGS:
2801 	case XPT_PATH_INQ:
2802 call_sim:
2803 		sim = path->bus->sim;
2804 		mtx = sim->mtx;
2805 		if (mtx && !mtx_owned(mtx))
2806 			mtx_lock(mtx);
2807 		else
2808 			mtx = NULL;
2809 
2810 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2811 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2812 		(*(sim->sim_action))(sim, start_ccb);
2813 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2814 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2815 		if (mtx)
2816 			mtx_unlock(mtx);
2817 		break;
2818 	case XPT_PATH_STATS:
2819 		start_ccb->cpis.last_reset = path->bus->last_reset;
2820 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2821 		break;
2822 	case XPT_GDEV_TYPE:
2823 	{
2824 		struct cam_ed *dev;
2825 
2826 		dev = path->device;
2827 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2828 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2829 		} else {
2830 			struct ccb_getdev *cgd;
2831 
2832 			cgd = &start_ccb->cgd;
2833 			cgd->protocol = dev->protocol;
2834 			cgd->inq_data = dev->inq_data;
2835 			cgd->ident_data = dev->ident_data;
2836 			cgd->inq_flags = dev->inq_flags;
2837 			cgd->nvme_data = dev->nvme_data;
2838 			cgd->nvme_cdata = dev->nvme_cdata;
2839 			cgd->ccb_h.status = CAM_REQ_CMP;
2840 			cgd->serial_num_len = dev->serial_num_len;
2841 			if ((dev->serial_num_len > 0)
2842 			 && (dev->serial_num != NULL))
2843 				bcopy(dev->serial_num, cgd->serial_num,
2844 				      dev->serial_num_len);
2845 		}
2846 		break;
2847 	}
2848 	case XPT_GDEV_STATS:
2849 	{
2850 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2851 		struct cam_ed *dev = path->device;
2852 		struct cam_eb *bus = path->bus;
2853 		struct cam_et *tar = path->target;
2854 		struct cam_devq *devq = bus->sim->devq;
2855 
2856 		mtx_lock(&devq->send_mtx);
2857 		cgds->dev_openings = dev->ccbq.dev_openings;
2858 		cgds->dev_active = dev->ccbq.dev_active;
2859 		cgds->allocated = dev->ccbq.allocated;
2860 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2861 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2862 		cgds->last_reset = tar->last_reset;
2863 		cgds->maxtags = dev->maxtags;
2864 		cgds->mintags = dev->mintags;
2865 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2866 			cgds->last_reset = bus->last_reset;
2867 		mtx_unlock(&devq->send_mtx);
2868 		cgds->ccb_h.status = CAM_REQ_CMP;
2869 		break;
2870 	}
2871 	case XPT_GDEVLIST:
2872 	{
2873 		struct cam_periph	*nperiph;
2874 		struct periph_list	*periph_head;
2875 		struct ccb_getdevlist	*cgdl;
2876 		u_int			i;
2877 		struct cam_ed		*device;
2878 		int			found;
2879 
2880 
2881 		found = 0;
2882 
2883 		/*
2884 		 * Don't want anyone mucking with our data.
2885 		 */
2886 		device = path->device;
2887 		periph_head = &device->periphs;
2888 		cgdl = &start_ccb->cgdl;
2889 
2890 		/*
2891 		 * Check and see if the list has changed since the user
2892 		 * last requested a list member.  If so, tell them that the
2893 		 * list has changed, and therefore they need to start over
2894 		 * from the beginning.
2895 		 */
2896 		if ((cgdl->index != 0) &&
2897 		    (cgdl->generation != device->generation)) {
2898 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2899 			break;
2900 		}
2901 
2902 		/*
2903 		 * Traverse the list of peripherals and attempt to find
2904 		 * the requested peripheral.
2905 		 */
2906 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2907 		     (nperiph != NULL) && (i <= cgdl->index);
2908 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2909 			if (i == cgdl->index) {
2910 				strncpy(cgdl->periph_name,
2911 					nperiph->periph_name,
2912 					DEV_IDLEN);
2913 				cgdl->unit_number = nperiph->unit_number;
2914 				found = 1;
2915 			}
2916 		}
2917 		if (found == 0) {
2918 			cgdl->status = CAM_GDEVLIST_ERROR;
2919 			break;
2920 		}
2921 
2922 		if (nperiph == NULL)
2923 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2924 		else
2925 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2926 
2927 		cgdl->index++;
2928 		cgdl->generation = device->generation;
2929 
2930 		cgdl->ccb_h.status = CAM_REQ_CMP;
2931 		break;
2932 	}
2933 	case XPT_DEV_MATCH:
2934 	{
2935 		dev_pos_type position_type;
2936 		struct ccb_dev_match *cdm;
2937 
2938 		cdm = &start_ccb->cdm;
2939 
2940 		/*
2941 		 * There are two ways of getting at information in the EDT.
2942 		 * The first way is via the primary EDT tree.  It starts
2943 		 * with a list of buses, then a list of targets on a bus,
2944 		 * then devices/luns on a target, and then peripherals on a
2945 		 * device/lun.  The "other" way is by the peripheral driver
2946 		 * lists.  The peripheral driver lists are organized by
2947 		 * peripheral driver.  (obviously)  So it makes sense to
2948 		 * use the peripheral driver list if the user is looking
2949 		 * for something like "da1", or all "da" devices.  If the
2950 		 * user is looking for something on a particular bus/target
2951 		 * or lun, it's generally better to go through the EDT tree.
2952 		 */
2953 
2954 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2955 			position_type = cdm->pos.position_type;
2956 		else {
2957 			u_int i;
2958 
2959 			position_type = CAM_DEV_POS_NONE;
2960 
2961 			for (i = 0; i < cdm->num_patterns; i++) {
2962 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2963 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2964 					position_type = CAM_DEV_POS_EDT;
2965 					break;
2966 				}
2967 			}
2968 
2969 			if (cdm->num_patterns == 0)
2970 				position_type = CAM_DEV_POS_EDT;
2971 			else if (position_type == CAM_DEV_POS_NONE)
2972 				position_type = CAM_DEV_POS_PDRV;
2973 		}
2974 
2975 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2976 		case CAM_DEV_POS_EDT:
2977 			xptedtmatch(cdm);
2978 			break;
2979 		case CAM_DEV_POS_PDRV:
2980 			xptperiphlistmatch(cdm);
2981 			break;
2982 		default:
2983 			cdm->status = CAM_DEV_MATCH_ERROR;
2984 			break;
2985 		}
2986 
2987 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2988 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2989 		else
2990 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2991 
2992 		break;
2993 	}
2994 	case XPT_SASYNC_CB:
2995 	{
2996 		struct ccb_setasync *csa;
2997 		struct async_node *cur_entry;
2998 		struct async_list *async_head;
2999 		u_int32_t added;
3000 
3001 		csa = &start_ccb->csa;
3002 		added = csa->event_enable;
3003 		async_head = &path->device->asyncs;
3004 
3005 		/*
3006 		 * If there is already an entry for us, simply
3007 		 * update it.
3008 		 */
3009 		cur_entry = SLIST_FIRST(async_head);
3010 		while (cur_entry != NULL) {
3011 			if ((cur_entry->callback_arg == csa->callback_arg)
3012 			 && (cur_entry->callback == csa->callback))
3013 				break;
3014 			cur_entry = SLIST_NEXT(cur_entry, links);
3015 		}
3016 
3017 		if (cur_entry != NULL) {
3018 		 	/*
3019 			 * If the request has no flags set,
3020 			 * remove the entry.
3021 			 */
3022 			added &= ~cur_entry->event_enable;
3023 			if (csa->event_enable == 0) {
3024 				SLIST_REMOVE(async_head, cur_entry,
3025 					     async_node, links);
3026 				xpt_release_device(path->device);
3027 				free(cur_entry, M_CAMXPT);
3028 			} else {
3029 				cur_entry->event_enable = csa->event_enable;
3030 			}
3031 			csa->event_enable = added;
3032 		} else {
3033 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3034 					   M_NOWAIT);
3035 			if (cur_entry == NULL) {
3036 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3037 				break;
3038 			}
3039 			cur_entry->event_enable = csa->event_enable;
3040 			cur_entry->event_lock = (path->bus->sim->mtx &&
3041 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3042 			cur_entry->callback_arg = csa->callback_arg;
3043 			cur_entry->callback = csa->callback;
3044 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3045 			xpt_acquire_device(path->device);
3046 		}
3047 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3048 		break;
3049 	}
3050 	case XPT_REL_SIMQ:
3051 	{
3052 		struct ccb_relsim *crs;
3053 		struct cam_ed *dev;
3054 
3055 		crs = &start_ccb->crs;
3056 		dev = path->device;
3057 		if (dev == NULL) {
3058 
3059 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3060 			break;
3061 		}
3062 
3063 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3064 
3065 			/* Don't ever go below one opening */
3066 			if (crs->openings > 0) {
3067 				xpt_dev_ccbq_resize(path, crs->openings);
3068 				if (bootverbose) {
3069 					xpt_print(path,
3070 					    "number of openings is now %d\n",
3071 					    crs->openings);
3072 				}
3073 			}
3074 		}
3075 
3076 		mtx_lock(&dev->sim->devq->send_mtx);
3077 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3078 
3079 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3080 
3081 				/*
3082 				 * Just extend the old timeout and decrement
3083 				 * the freeze count so that a single timeout
3084 				 * is sufficient for releasing the queue.
3085 				 */
3086 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3087 				callout_stop(&dev->callout);
3088 			} else {
3089 
3090 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3091 			}
3092 
3093 			callout_reset_sbt(&dev->callout,
3094 			    SBT_1MS * crs->release_timeout, 0,
3095 			    xpt_release_devq_timeout, dev, 0);
3096 
3097 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3098 
3099 		}
3100 
3101 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3102 
3103 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3104 				/*
3105 				 * Decrement the freeze count so that a single
3106 				 * completion is still sufficient to unfreeze
3107 				 * the queue.
3108 				 */
3109 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3110 			} else {
3111 
3112 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3113 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3114 			}
3115 		}
3116 
3117 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3118 
3119 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3120 			 || (dev->ccbq.dev_active == 0)) {
3121 
3122 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3123 			} else {
3124 
3125 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3126 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3127 			}
3128 		}
3129 		mtx_unlock(&dev->sim->devq->send_mtx);
3130 
3131 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3132 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3133 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3134 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3135 		break;
3136 	}
3137 	case XPT_DEBUG: {
3138 		struct cam_path *oldpath;
3139 
3140 		/* Check that all request bits are supported. */
3141 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3142 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3143 			break;
3144 		}
3145 
3146 		cam_dflags = CAM_DEBUG_NONE;
3147 		if (cam_dpath != NULL) {
3148 			oldpath = cam_dpath;
3149 			cam_dpath = NULL;
3150 			xpt_free_path(oldpath);
3151 		}
3152 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3153 			if (xpt_create_path(&cam_dpath, NULL,
3154 					    start_ccb->ccb_h.path_id,
3155 					    start_ccb->ccb_h.target_id,
3156 					    start_ccb->ccb_h.target_lun) !=
3157 					    CAM_REQ_CMP) {
3158 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3159 			} else {
3160 				cam_dflags = start_ccb->cdbg.flags;
3161 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3162 				xpt_print(cam_dpath, "debugging flags now %x\n",
3163 				    cam_dflags);
3164 			}
3165 		} else
3166 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3167 		break;
3168 	}
3169 	case XPT_NOOP:
3170 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3171 			xpt_freeze_devq(path, 1);
3172 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3173 		break;
3174 	case XPT_REPROBE_LUN:
3175 		xpt_async(AC_INQ_CHANGED, path, NULL);
3176 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3177 		xpt_done(start_ccb);
3178 		break;
3179 	default:
3180 	case XPT_SDEV_TYPE:
3181 	case XPT_TERM_IO:
3182 	case XPT_ENG_INQ:
3183 		/* XXX Implement */
3184 		xpt_print(start_ccb->ccb_h.path,
3185 		    "%s: CCB type %#x %s not supported\n", __func__,
3186 		    start_ccb->ccb_h.func_code,
3187 		    xpt_action_name(start_ccb->ccb_h.func_code));
3188 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3189 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3190 			xpt_done(start_ccb);
3191 		}
3192 		break;
3193 	}
3194 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3195 	    ("xpt_action_default: func= %#x %s status %#x\n",
3196 		start_ccb->ccb_h.func_code,
3197  		xpt_action_name(start_ccb->ccb_h.func_code),
3198 		start_ccb->ccb_h.status));
3199 }
3200 
3201 void
3202 xpt_polled_action(union ccb *start_ccb)
3203 {
3204 	u_int32_t timeout;
3205 	struct	  cam_sim *sim;
3206 	struct	  cam_devq *devq;
3207 	struct	  cam_ed *dev;
3208 	struct mtx *mtx;
3209 
3210 	timeout = start_ccb->ccb_h.timeout * 10;
3211 	sim = start_ccb->ccb_h.path->bus->sim;
3212 	devq = sim->devq;
3213 	mtx = sim->mtx;
3214 	dev = start_ccb->ccb_h.path->device;
3215 
3216 	mtx_unlock(&dev->device_mtx);
3217 
3218 	/*
3219 	 * Steal an opening so that no other queued requests
3220 	 * can get it before us while we simulate interrupts.
3221 	 */
3222 	mtx_lock(&devq->send_mtx);
3223 	dev->ccbq.dev_openings--;
3224 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3225 	    (--timeout > 0)) {
3226 		mtx_unlock(&devq->send_mtx);
3227 		DELAY(100);
3228 		if (mtx)
3229 			mtx_lock(mtx);
3230 		(*(sim->sim_poll))(sim);
3231 		if (mtx)
3232 			mtx_unlock(mtx);
3233 		camisr_runqueue();
3234 		mtx_lock(&devq->send_mtx);
3235 	}
3236 	dev->ccbq.dev_openings++;
3237 	mtx_unlock(&devq->send_mtx);
3238 
3239 	if (timeout != 0) {
3240 		xpt_action(start_ccb);
3241 		while(--timeout > 0) {
3242 			if (mtx)
3243 				mtx_lock(mtx);
3244 			(*(sim->sim_poll))(sim);
3245 			if (mtx)
3246 				mtx_unlock(mtx);
3247 			camisr_runqueue();
3248 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3249 			    != CAM_REQ_INPROG)
3250 				break;
3251 			DELAY(100);
3252 		}
3253 		if (timeout == 0) {
3254 			/*
3255 			 * XXX Is it worth adding a sim_timeout entry
3256 			 * point so we can attempt recovery?  If
3257 			 * this is only used for dumps, I don't think
3258 			 * it is.
3259 			 */
3260 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3261 		}
3262 	} else {
3263 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3264 	}
3265 
3266 	mtx_lock(&dev->device_mtx);
3267 }
3268 
3269 /*
3270  * Schedule a peripheral driver to receive a ccb when its
3271  * target device has space for more transactions.
3272  */
3273 void
3274 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3275 {
3276 
3277 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3278 	cam_periph_assert(periph, MA_OWNED);
3279 	if (new_priority < periph->scheduled_priority) {
3280 		periph->scheduled_priority = new_priority;
3281 		xpt_run_allocq(periph, 0);
3282 	}
3283 }
3284 
3285 
3286 /*
3287  * Schedule a device to run on a given queue.
3288  * If the device was inserted as a new entry on the queue,
3289  * return 1 meaning the device queue should be run. If we
3290  * were already queued, implying someone else has already
3291  * started the queue, return 0 so the caller doesn't attempt
3292  * to run the queue.
3293  */
3294 static int
3295 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3296 		 u_int32_t new_priority)
3297 {
3298 	int retval;
3299 	u_int32_t old_priority;
3300 
3301 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3302 
3303 	old_priority = pinfo->priority;
3304 
3305 	/*
3306 	 * Are we already queued?
3307 	 */
3308 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3309 		/* Simply reorder based on new priority */
3310 		if (new_priority < old_priority) {
3311 			camq_change_priority(queue, pinfo->index,
3312 					     new_priority);
3313 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3314 					("changed priority to %d\n",
3315 					 new_priority));
3316 			retval = 1;
3317 		} else
3318 			retval = 0;
3319 	} else {
3320 		/* New entry on the queue */
3321 		if (new_priority < old_priority)
3322 			pinfo->priority = new_priority;
3323 
3324 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3325 				("Inserting onto queue\n"));
3326 		pinfo->generation = ++queue->generation;
3327 		camq_insert(queue, pinfo);
3328 		retval = 1;
3329 	}
3330 	return (retval);
3331 }
3332 
3333 static void
3334 xpt_run_allocq_task(void *context, int pending)
3335 {
3336 	struct cam_periph *periph = context;
3337 
3338 	cam_periph_lock(periph);
3339 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3340 	xpt_run_allocq(periph, 1);
3341 	cam_periph_unlock(periph);
3342 	cam_periph_release(periph);
3343 }
3344 
3345 static void
3346 xpt_run_allocq(struct cam_periph *periph, int sleep)
3347 {
3348 	struct cam_ed	*device;
3349 	union ccb	*ccb;
3350 	uint32_t	 prio;
3351 
3352 	cam_periph_assert(periph, MA_OWNED);
3353 	if (periph->periph_allocating)
3354 		return;
3355 	periph->periph_allocating = 1;
3356 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3357 	device = periph->path->device;
3358 	ccb = NULL;
3359 restart:
3360 	while ((prio = min(periph->scheduled_priority,
3361 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3362 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3363 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3364 
3365 		if (ccb == NULL &&
3366 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3367 			if (sleep) {
3368 				ccb = xpt_get_ccb(periph);
3369 				goto restart;
3370 			}
3371 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3372 				break;
3373 			cam_periph_doacquire(periph);
3374 			periph->flags |= CAM_PERIPH_RUN_TASK;
3375 			taskqueue_enqueue(xsoftc.xpt_taskq,
3376 			    &periph->periph_run_task);
3377 			break;
3378 		}
3379 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3380 		if (prio == periph->immediate_priority) {
3381 			periph->immediate_priority = CAM_PRIORITY_NONE;
3382 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3383 					("waking cam_periph_getccb()\n"));
3384 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3385 					  periph_links.sle);
3386 			wakeup(&periph->ccb_list);
3387 		} else {
3388 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3389 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3390 					("calling periph_start()\n"));
3391 			periph->periph_start(periph, ccb);
3392 		}
3393 		ccb = NULL;
3394 	}
3395 	if (ccb != NULL)
3396 		xpt_release_ccb(ccb);
3397 	periph->periph_allocating = 0;
3398 }
3399 
3400 static void
3401 xpt_run_devq(struct cam_devq *devq)
3402 {
3403 	struct mtx *mtx;
3404 
3405 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3406 
3407 	devq->send_queue.qfrozen_cnt++;
3408 	while ((devq->send_queue.entries > 0)
3409 	    && (devq->send_openings > 0)
3410 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3411 		struct	cam_ed *device;
3412 		union ccb *work_ccb;
3413 		struct	cam_sim *sim;
3414 		struct xpt_proto *proto;
3415 
3416 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3417 							   CAMQ_HEAD);
3418 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3419 				("running device %p\n", device));
3420 
3421 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3422 		if (work_ccb == NULL) {
3423 			printf("device on run queue with no ccbs???\n");
3424 			continue;
3425 		}
3426 
3427 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3428 
3429 			mtx_lock(&xsoftc.xpt_highpower_lock);
3430 		 	if (xsoftc.num_highpower <= 0) {
3431 				/*
3432 				 * We got a high power command, but we
3433 				 * don't have any available slots.  Freeze
3434 				 * the device queue until we have a slot
3435 				 * available.
3436 				 */
3437 				xpt_freeze_devq_device(device, 1);
3438 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3439 						   highpowerq_entry);
3440 
3441 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3442 				continue;
3443 			} else {
3444 				/*
3445 				 * Consume a high power slot while
3446 				 * this ccb runs.
3447 				 */
3448 				xsoftc.num_highpower--;
3449 			}
3450 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3451 		}
3452 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3453 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3454 		devq->send_openings--;
3455 		devq->send_active++;
3456 		xpt_schedule_devq(devq, device);
3457 		mtx_unlock(&devq->send_mtx);
3458 
3459 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3460 			/*
3461 			 * The client wants to freeze the queue
3462 			 * after this CCB is sent.
3463 			 */
3464 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3465 		}
3466 
3467 		/* In Target mode, the peripheral driver knows best... */
3468 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3469 			if ((device->inq_flags & SID_CmdQue) != 0
3470 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3471 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3472 			else
3473 				/*
3474 				 * Clear this in case of a retried CCB that
3475 				 * failed due to a rejected tag.
3476 				 */
3477 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3478 		}
3479 
3480 		KASSERT(device == work_ccb->ccb_h.path->device,
3481 		    ("device (%p) / path->device (%p) mismatch",
3482 			device, work_ccb->ccb_h.path->device));
3483 		proto = xpt_proto_find(device->protocol);
3484 		if (proto && proto->ops->debug_out)
3485 			proto->ops->debug_out(work_ccb);
3486 
3487 		/*
3488 		 * Device queues can be shared among multiple SIM instances
3489 		 * that reside on different buses.  Use the SIM from the
3490 		 * queued device, rather than the one from the calling bus.
3491 		 */
3492 		sim = device->sim;
3493 		mtx = sim->mtx;
3494 		if (mtx && !mtx_owned(mtx))
3495 			mtx_lock(mtx);
3496 		else
3497 			mtx = NULL;
3498 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3499 		(*(sim->sim_action))(sim, work_ccb);
3500 		if (mtx)
3501 			mtx_unlock(mtx);
3502 		mtx_lock(&devq->send_mtx);
3503 	}
3504 	devq->send_queue.qfrozen_cnt--;
3505 }
3506 
3507 /*
3508  * This function merges stuff from the slave ccb into the master ccb, while
3509  * keeping important fields in the master ccb constant.
3510  */
3511 void
3512 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3513 {
3514 
3515 	/*
3516 	 * Pull fields that are valid for peripheral drivers to set
3517 	 * into the master CCB along with the CCB "payload".
3518 	 */
3519 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3520 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3521 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3522 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3523 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3524 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3525 }
3526 
3527 void
3528 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3529 		    u_int32_t priority, u_int32_t flags)
3530 {
3531 
3532 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3533 	ccb_h->pinfo.priority = priority;
3534 	ccb_h->path = path;
3535 	ccb_h->path_id = path->bus->path_id;
3536 	if (path->target)
3537 		ccb_h->target_id = path->target->target_id;
3538 	else
3539 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3540 	if (path->device) {
3541 		ccb_h->target_lun = path->device->lun_id;
3542 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3543 	} else {
3544 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3545 	}
3546 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3547 	ccb_h->flags = flags;
3548 	ccb_h->xflags = 0;
3549 }
3550 
3551 void
3552 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3553 {
3554 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3555 }
3556 
3557 /* Path manipulation functions */
3558 cam_status
3559 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3560 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3561 {
3562 	struct	   cam_path *path;
3563 	cam_status status;
3564 
3565 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3566 
3567 	if (path == NULL) {
3568 		status = CAM_RESRC_UNAVAIL;
3569 		return(status);
3570 	}
3571 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3572 	if (status != CAM_REQ_CMP) {
3573 		free(path, M_CAMPATH);
3574 		path = NULL;
3575 	}
3576 	*new_path_ptr = path;
3577 	return (status);
3578 }
3579 
3580 cam_status
3581 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3582 			 struct cam_periph *periph, path_id_t path_id,
3583 			 target_id_t target_id, lun_id_t lun_id)
3584 {
3585 
3586 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3587 	    lun_id));
3588 }
3589 
3590 cam_status
3591 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3592 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3593 {
3594 	struct	     cam_eb *bus;
3595 	struct	     cam_et *target;
3596 	struct	     cam_ed *device;
3597 	cam_status   status;
3598 
3599 	status = CAM_REQ_CMP;	/* Completed without error */
3600 	target = NULL;		/* Wildcarded */
3601 	device = NULL;		/* Wildcarded */
3602 
3603 	/*
3604 	 * We will potentially modify the EDT, so block interrupts
3605 	 * that may attempt to create cam paths.
3606 	 */
3607 	bus = xpt_find_bus(path_id);
3608 	if (bus == NULL) {
3609 		status = CAM_PATH_INVALID;
3610 	} else {
3611 		xpt_lock_buses();
3612 		mtx_lock(&bus->eb_mtx);
3613 		target = xpt_find_target(bus, target_id);
3614 		if (target == NULL) {
3615 			/* Create one */
3616 			struct cam_et *new_target;
3617 
3618 			new_target = xpt_alloc_target(bus, target_id);
3619 			if (new_target == NULL) {
3620 				status = CAM_RESRC_UNAVAIL;
3621 			} else {
3622 				target = new_target;
3623 			}
3624 		}
3625 		xpt_unlock_buses();
3626 		if (target != NULL) {
3627 			device = xpt_find_device(target, lun_id);
3628 			if (device == NULL) {
3629 				/* Create one */
3630 				struct cam_ed *new_device;
3631 
3632 				new_device =
3633 				    (*(bus->xport->ops->alloc_device))(bus,
3634 								       target,
3635 								       lun_id);
3636 				if (new_device == NULL) {
3637 					status = CAM_RESRC_UNAVAIL;
3638 				} else {
3639 					device = new_device;
3640 				}
3641 			}
3642 		}
3643 		mtx_unlock(&bus->eb_mtx);
3644 	}
3645 
3646 	/*
3647 	 * Only touch the user's data if we are successful.
3648 	 */
3649 	if (status == CAM_REQ_CMP) {
3650 		new_path->periph = perph;
3651 		new_path->bus = bus;
3652 		new_path->target = target;
3653 		new_path->device = device;
3654 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3655 	} else {
3656 		if (device != NULL)
3657 			xpt_release_device(device);
3658 		if (target != NULL)
3659 			xpt_release_target(target);
3660 		if (bus != NULL)
3661 			xpt_release_bus(bus);
3662 	}
3663 	return (status);
3664 }
3665 
3666 cam_status
3667 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3668 {
3669 	struct	   cam_path *new_path;
3670 
3671 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3672 	if (new_path == NULL)
3673 		return(CAM_RESRC_UNAVAIL);
3674 	xpt_copy_path(new_path, path);
3675 	*new_path_ptr = new_path;
3676 	return (CAM_REQ_CMP);
3677 }
3678 
3679 void
3680 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3681 {
3682 
3683 	*new_path = *path;
3684 	if (path->bus != NULL)
3685 		xpt_acquire_bus(path->bus);
3686 	if (path->target != NULL)
3687 		xpt_acquire_target(path->target);
3688 	if (path->device != NULL)
3689 		xpt_acquire_device(path->device);
3690 }
3691 
3692 void
3693 xpt_release_path(struct cam_path *path)
3694 {
3695 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3696 	if (path->device != NULL) {
3697 		xpt_release_device(path->device);
3698 		path->device = NULL;
3699 	}
3700 	if (path->target != NULL) {
3701 		xpt_release_target(path->target);
3702 		path->target = NULL;
3703 	}
3704 	if (path->bus != NULL) {
3705 		xpt_release_bus(path->bus);
3706 		path->bus = NULL;
3707 	}
3708 }
3709 
3710 void
3711 xpt_free_path(struct cam_path *path)
3712 {
3713 
3714 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3715 	xpt_release_path(path);
3716 	free(path, M_CAMPATH);
3717 }
3718 
3719 void
3720 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3721     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3722 {
3723 
3724 	xpt_lock_buses();
3725 	if (bus_ref) {
3726 		if (path->bus)
3727 			*bus_ref = path->bus->refcount;
3728 		else
3729 			*bus_ref = 0;
3730 	}
3731 	if (periph_ref) {
3732 		if (path->periph)
3733 			*periph_ref = path->periph->refcount;
3734 		else
3735 			*periph_ref = 0;
3736 	}
3737 	xpt_unlock_buses();
3738 	if (target_ref) {
3739 		if (path->target)
3740 			*target_ref = path->target->refcount;
3741 		else
3742 			*target_ref = 0;
3743 	}
3744 	if (device_ref) {
3745 		if (path->device)
3746 			*device_ref = path->device->refcount;
3747 		else
3748 			*device_ref = 0;
3749 	}
3750 }
3751 
3752 /*
3753  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3754  * in path1, 2 for match with wildcards in path2.
3755  */
3756 int
3757 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3758 {
3759 	int retval = 0;
3760 
3761 	if (path1->bus != path2->bus) {
3762 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3763 			retval = 1;
3764 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3765 			retval = 2;
3766 		else
3767 			return (-1);
3768 	}
3769 	if (path1->target != path2->target) {
3770 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3771 			if (retval == 0)
3772 				retval = 1;
3773 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3774 			retval = 2;
3775 		else
3776 			return (-1);
3777 	}
3778 	if (path1->device != path2->device) {
3779 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3780 			if (retval == 0)
3781 				retval = 1;
3782 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3783 			retval = 2;
3784 		else
3785 			return (-1);
3786 	}
3787 	return (retval);
3788 }
3789 
3790 int
3791 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3792 {
3793 	int retval = 0;
3794 
3795 	if (path->bus != dev->target->bus) {
3796 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3797 			retval = 1;
3798 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3799 			retval = 2;
3800 		else
3801 			return (-1);
3802 	}
3803 	if (path->target != dev->target) {
3804 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3805 			if (retval == 0)
3806 				retval = 1;
3807 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3808 			retval = 2;
3809 		else
3810 			return (-1);
3811 	}
3812 	if (path->device != dev) {
3813 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3814 			if (retval == 0)
3815 				retval = 1;
3816 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3817 			retval = 2;
3818 		else
3819 			return (-1);
3820 	}
3821 	return (retval);
3822 }
3823 
3824 void
3825 xpt_print_path(struct cam_path *path)
3826 {
3827 	struct sbuf sb;
3828 	char buffer[XPT_PRINT_LEN];
3829 
3830 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3831 	xpt_path_sbuf(path, &sb);
3832 	sbuf_finish(&sb);
3833 	printf("%s", sbuf_data(&sb));
3834 	sbuf_delete(&sb);
3835 }
3836 
3837 void
3838 xpt_print_device(struct cam_ed *device)
3839 {
3840 
3841 	if (device == NULL)
3842 		printf("(nopath): ");
3843 	else {
3844 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3845 		       device->sim->unit_number,
3846 		       device->sim->bus_id,
3847 		       device->target->target_id,
3848 		       (uintmax_t)device->lun_id);
3849 	}
3850 }
3851 
3852 void
3853 xpt_print(struct cam_path *path, const char *fmt, ...)
3854 {
3855 	va_list ap;
3856 	struct sbuf sb;
3857 	char buffer[XPT_PRINT_LEN];
3858 
3859 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3860 
3861 	xpt_path_sbuf(path, &sb);
3862 	va_start(ap, fmt);
3863 	sbuf_vprintf(&sb, fmt, ap);
3864 	va_end(ap);
3865 
3866 	sbuf_finish(&sb);
3867 	printf("%s", sbuf_data(&sb));
3868 	sbuf_delete(&sb);
3869 }
3870 
3871 int
3872 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3873 {
3874 	struct sbuf sb;
3875 	int len;
3876 
3877 	sbuf_new(&sb, str, str_len, 0);
3878 	len = xpt_path_sbuf(path, &sb);
3879 	sbuf_finish(&sb);
3880 	return (len);
3881 }
3882 
3883 int
3884 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3885 {
3886 
3887 	if (path == NULL)
3888 		sbuf_printf(sb, "(nopath): ");
3889 	else {
3890 		if (path->periph != NULL)
3891 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3892 				    path->periph->unit_number);
3893 		else
3894 			sbuf_printf(sb, "(noperiph:");
3895 
3896 		if (path->bus != NULL)
3897 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3898 				    path->bus->sim->unit_number,
3899 				    path->bus->sim->bus_id);
3900 		else
3901 			sbuf_printf(sb, "nobus:");
3902 
3903 		if (path->target != NULL)
3904 			sbuf_printf(sb, "%d:", path->target->target_id);
3905 		else
3906 			sbuf_printf(sb, "X:");
3907 
3908 		if (path->device != NULL)
3909 			sbuf_printf(sb, "%jx): ",
3910 			    (uintmax_t)path->device->lun_id);
3911 		else
3912 			sbuf_printf(sb, "X): ");
3913 	}
3914 
3915 	return(sbuf_len(sb));
3916 }
3917 
3918 path_id_t
3919 xpt_path_path_id(struct cam_path *path)
3920 {
3921 	return(path->bus->path_id);
3922 }
3923 
3924 target_id_t
3925 xpt_path_target_id(struct cam_path *path)
3926 {
3927 	if (path->target != NULL)
3928 		return (path->target->target_id);
3929 	else
3930 		return (CAM_TARGET_WILDCARD);
3931 }
3932 
3933 lun_id_t
3934 xpt_path_lun_id(struct cam_path *path)
3935 {
3936 	if (path->device != NULL)
3937 		return (path->device->lun_id);
3938 	else
3939 		return (CAM_LUN_WILDCARD);
3940 }
3941 
3942 struct cam_sim *
3943 xpt_path_sim(struct cam_path *path)
3944 {
3945 
3946 	return (path->bus->sim);
3947 }
3948 
3949 struct cam_periph*
3950 xpt_path_periph(struct cam_path *path)
3951 {
3952 
3953 	return (path->periph);
3954 }
3955 
3956 /*
3957  * Release a CAM control block for the caller.  Remit the cost of the structure
3958  * to the device referenced by the path.  If the this device had no 'credits'
3959  * and peripheral drivers have registered async callbacks for this notification
3960  * call them now.
3961  */
3962 void
3963 xpt_release_ccb(union ccb *free_ccb)
3964 {
3965 	struct	 cam_ed *device;
3966 	struct	 cam_periph *periph;
3967 
3968 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3969 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3970 	device = free_ccb->ccb_h.path->device;
3971 	periph = free_ccb->ccb_h.path->periph;
3972 
3973 	xpt_free_ccb(free_ccb);
3974 	periph->periph_allocated--;
3975 	cam_ccbq_release_opening(&device->ccbq);
3976 	xpt_run_allocq(periph, 0);
3977 }
3978 
3979 /* Functions accessed by SIM drivers */
3980 
3981 static struct xpt_xport_ops xport_default_ops = {
3982 	.alloc_device = xpt_alloc_device_default,
3983 	.action = xpt_action_default,
3984 	.async = xpt_dev_async_default,
3985 };
3986 static struct xpt_xport xport_default = {
3987 	.xport = XPORT_UNKNOWN,
3988 	.name = "unknown",
3989 	.ops = &xport_default_ops,
3990 };
3991 
3992 CAM_XPT_XPORT(xport_default);
3993 
3994 /*
3995  * A sim structure, listing the SIM entry points and instance
3996  * identification info is passed to xpt_bus_register to hook the SIM
3997  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3998  * for this new bus and places it in the array of buses and assigns
3999  * it a path_id.  The path_id may be influenced by "hard wiring"
4000  * information specified by the user.  Once interrupt services are
4001  * available, the bus will be probed.
4002  */
4003 int32_t
4004 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4005 {
4006 	struct cam_eb *new_bus;
4007 	struct cam_eb *old_bus;
4008 	struct ccb_pathinq cpi;
4009 	struct cam_path *path;
4010 	cam_status status;
4011 
4012 	sim->bus_id = bus;
4013 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4014 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4015 	if (new_bus == NULL) {
4016 		/* Couldn't satisfy request */
4017 		return (CAM_RESRC_UNAVAIL);
4018 	}
4019 
4020 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4021 	TAILQ_INIT(&new_bus->et_entries);
4022 	cam_sim_hold(sim);
4023 	new_bus->sim = sim;
4024 	timevalclear(&new_bus->last_reset);
4025 	new_bus->flags = 0;
4026 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4027 	new_bus->generation = 0;
4028 
4029 	xpt_lock_buses();
4030 	sim->path_id = new_bus->path_id =
4031 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4032 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4033 	while (old_bus != NULL
4034 	    && old_bus->path_id < new_bus->path_id)
4035 		old_bus = TAILQ_NEXT(old_bus, links);
4036 	if (old_bus != NULL)
4037 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4038 	else
4039 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4040 	xsoftc.bus_generation++;
4041 	xpt_unlock_buses();
4042 
4043 	/*
4044 	 * Set a default transport so that a PATH_INQ can be issued to
4045 	 * the SIM.  This will then allow for probing and attaching of
4046 	 * a more appropriate transport.
4047 	 */
4048 	new_bus->xport = &xport_default;
4049 
4050 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4051 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4052 	if (status != CAM_REQ_CMP) {
4053 		xpt_release_bus(new_bus);
4054 		free(path, M_CAMXPT);
4055 		return (CAM_RESRC_UNAVAIL);
4056 	}
4057 
4058 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
4059 	cpi.ccb_h.func_code = XPT_PATH_INQ;
4060 	xpt_action((union ccb *)&cpi);
4061 
4062 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4063 		struct xpt_xport **xpt;
4064 
4065 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4066 			if ((*xpt)->xport == cpi.transport) {
4067 				new_bus->xport = *xpt;
4068 				break;
4069 			}
4070 		}
4071 		if (new_bus->xport == NULL) {
4072 			xpt_print(path,
4073 			    "No transport found for %d\n", cpi.transport);
4074 			xpt_release_bus(new_bus);
4075 			free(path, M_CAMXPT);
4076 			return (CAM_RESRC_UNAVAIL);
4077 		}
4078 	}
4079 
4080 	/* Notify interested parties */
4081 	if (sim->path_id != CAM_XPT_PATH_ID) {
4082 
4083 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4084 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4085 			union	ccb *scan_ccb;
4086 
4087 			/* Initiate bus rescan. */
4088 			scan_ccb = xpt_alloc_ccb_nowait();
4089 			if (scan_ccb != NULL) {
4090 				scan_ccb->ccb_h.path = path;
4091 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4092 				scan_ccb->crcn.flags = 0;
4093 				xpt_rescan(scan_ccb);
4094 			} else {
4095 				xpt_print(path,
4096 					  "Can't allocate CCB to scan bus\n");
4097 				xpt_free_path(path);
4098 			}
4099 		} else
4100 			xpt_free_path(path);
4101 	} else
4102 		xpt_free_path(path);
4103 	return (CAM_SUCCESS);
4104 }
4105 
4106 int32_t
4107 xpt_bus_deregister(path_id_t pathid)
4108 {
4109 	struct cam_path bus_path;
4110 	cam_status status;
4111 
4112 	status = xpt_compile_path(&bus_path, NULL, pathid,
4113 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4114 	if (status != CAM_REQ_CMP)
4115 		return (status);
4116 
4117 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4118 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4119 
4120 	/* Release the reference count held while registered. */
4121 	xpt_release_bus(bus_path.bus);
4122 	xpt_release_path(&bus_path);
4123 
4124 	return (CAM_REQ_CMP);
4125 }
4126 
4127 static path_id_t
4128 xptnextfreepathid(void)
4129 {
4130 	struct cam_eb *bus;
4131 	path_id_t pathid;
4132 	const char *strval;
4133 
4134 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4135 	pathid = 0;
4136 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4137 retry:
4138 	/* Find an unoccupied pathid */
4139 	while (bus != NULL && bus->path_id <= pathid) {
4140 		if (bus->path_id == pathid)
4141 			pathid++;
4142 		bus = TAILQ_NEXT(bus, links);
4143 	}
4144 
4145 	/*
4146 	 * Ensure that this pathid is not reserved for
4147 	 * a bus that may be registered in the future.
4148 	 */
4149 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4150 		++pathid;
4151 		/* Start the search over */
4152 		goto retry;
4153 	}
4154 	return (pathid);
4155 }
4156 
4157 static path_id_t
4158 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4159 {
4160 	path_id_t pathid;
4161 	int i, dunit, val;
4162 	char buf[32];
4163 	const char *dname;
4164 
4165 	pathid = CAM_XPT_PATH_ID;
4166 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4167 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4168 		return (pathid);
4169 	i = 0;
4170 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4171 		if (strcmp(dname, "scbus")) {
4172 			/* Avoid a bit of foot shooting. */
4173 			continue;
4174 		}
4175 		if (dunit < 0)		/* unwired?! */
4176 			continue;
4177 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4178 			if (sim_bus == val) {
4179 				pathid = dunit;
4180 				break;
4181 			}
4182 		} else if (sim_bus == 0) {
4183 			/* Unspecified matches bus 0 */
4184 			pathid = dunit;
4185 			break;
4186 		} else {
4187 			printf("Ambiguous scbus configuration for %s%d "
4188 			       "bus %d, cannot wire down.  The kernel "
4189 			       "config entry for scbus%d should "
4190 			       "specify a controller bus.\n"
4191 			       "Scbus will be assigned dynamically.\n",
4192 			       sim_name, sim_unit, sim_bus, dunit);
4193 			break;
4194 		}
4195 	}
4196 
4197 	if (pathid == CAM_XPT_PATH_ID)
4198 		pathid = xptnextfreepathid();
4199 	return (pathid);
4200 }
4201 
4202 static const char *
4203 xpt_async_string(u_int32_t async_code)
4204 {
4205 
4206 	switch (async_code) {
4207 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4208 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4209 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4210 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4211 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4212 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4213 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4214 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4215 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4216 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4217 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4218 	case AC_CONTRACT: return ("AC_CONTRACT");
4219 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4220 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4221 	}
4222 	return ("AC_UNKNOWN");
4223 }
4224 
4225 static int
4226 xpt_async_size(u_int32_t async_code)
4227 {
4228 
4229 	switch (async_code) {
4230 	case AC_BUS_RESET: return (0);
4231 	case AC_UNSOL_RESEL: return (0);
4232 	case AC_SCSI_AEN: return (0);
4233 	case AC_SENT_BDR: return (0);
4234 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4235 	case AC_PATH_DEREGISTERED: return (0);
4236 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4237 	case AC_LOST_DEVICE: return (0);
4238 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4239 	case AC_INQ_CHANGED: return (0);
4240 	case AC_GETDEV_CHANGED: return (0);
4241 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4242 	case AC_ADVINFO_CHANGED: return (-1);
4243 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4244 	}
4245 	return (0);
4246 }
4247 
4248 static int
4249 xpt_async_process_dev(struct cam_ed *device, void *arg)
4250 {
4251 	union ccb *ccb = arg;
4252 	struct cam_path *path = ccb->ccb_h.path;
4253 	void *async_arg = ccb->casync.async_arg_ptr;
4254 	u_int32_t async_code = ccb->casync.async_code;
4255 	int relock;
4256 
4257 	if (path->device != device
4258 	 && path->device->lun_id != CAM_LUN_WILDCARD
4259 	 && device->lun_id != CAM_LUN_WILDCARD)
4260 		return (1);
4261 
4262 	/*
4263 	 * The async callback could free the device.
4264 	 * If it is a broadcast async, it doesn't hold
4265 	 * device reference, so take our own reference.
4266 	 */
4267 	xpt_acquire_device(device);
4268 
4269 	/*
4270 	 * If async for specific device is to be delivered to
4271 	 * the wildcard client, take the specific device lock.
4272 	 * XXX: We may need a way for client to specify it.
4273 	 */
4274 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4275 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4276 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4277 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4278 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4279 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4280 		mtx_unlock(&device->device_mtx);
4281 		xpt_path_lock(path);
4282 		relock = 1;
4283 	} else
4284 		relock = 0;
4285 
4286 	(*(device->target->bus->xport->ops->async))(async_code,
4287 	    device->target->bus, device->target, device, async_arg);
4288 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4289 
4290 	if (relock) {
4291 		xpt_path_unlock(path);
4292 		mtx_lock(&device->device_mtx);
4293 	}
4294 	xpt_release_device(device);
4295 	return (1);
4296 }
4297 
4298 static int
4299 xpt_async_process_tgt(struct cam_et *target, void *arg)
4300 {
4301 	union ccb *ccb = arg;
4302 	struct cam_path *path = ccb->ccb_h.path;
4303 
4304 	if (path->target != target
4305 	 && path->target->target_id != CAM_TARGET_WILDCARD
4306 	 && target->target_id != CAM_TARGET_WILDCARD)
4307 		return (1);
4308 
4309 	if (ccb->casync.async_code == AC_SENT_BDR) {
4310 		/* Update our notion of when the last reset occurred */
4311 		microtime(&target->last_reset);
4312 	}
4313 
4314 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4315 }
4316 
4317 static void
4318 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4319 {
4320 	struct cam_eb *bus;
4321 	struct cam_path *path;
4322 	void *async_arg;
4323 	u_int32_t async_code;
4324 
4325 	path = ccb->ccb_h.path;
4326 	async_code = ccb->casync.async_code;
4327 	async_arg = ccb->casync.async_arg_ptr;
4328 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4329 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4330 	bus = path->bus;
4331 
4332 	if (async_code == AC_BUS_RESET) {
4333 		/* Update our notion of when the last reset occurred */
4334 		microtime(&bus->last_reset);
4335 	}
4336 
4337 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4338 
4339 	/*
4340 	 * If this wasn't a fully wildcarded async, tell all
4341 	 * clients that want all async events.
4342 	 */
4343 	if (bus != xpt_periph->path->bus) {
4344 		xpt_path_lock(xpt_periph->path);
4345 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4346 		xpt_path_unlock(xpt_periph->path);
4347 	}
4348 
4349 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4350 		xpt_release_devq(path, 1, TRUE);
4351 	else
4352 		xpt_release_simq(path->bus->sim, TRUE);
4353 	if (ccb->casync.async_arg_size > 0)
4354 		free(async_arg, M_CAMXPT);
4355 	xpt_free_path(path);
4356 	xpt_free_ccb(ccb);
4357 }
4358 
4359 static void
4360 xpt_async_bcast(struct async_list *async_head,
4361 		u_int32_t async_code,
4362 		struct cam_path *path, void *async_arg)
4363 {
4364 	struct async_node *cur_entry;
4365 	struct mtx *mtx;
4366 
4367 	cur_entry = SLIST_FIRST(async_head);
4368 	while (cur_entry != NULL) {
4369 		struct async_node *next_entry;
4370 		/*
4371 		 * Grab the next list entry before we call the current
4372 		 * entry's callback.  This is because the callback function
4373 		 * can delete its async callback entry.
4374 		 */
4375 		next_entry = SLIST_NEXT(cur_entry, links);
4376 		if ((cur_entry->event_enable & async_code) != 0) {
4377 			mtx = cur_entry->event_lock ?
4378 			    path->device->sim->mtx : NULL;
4379 			if (mtx)
4380 				mtx_lock(mtx);
4381 			cur_entry->callback(cur_entry->callback_arg,
4382 					    async_code, path,
4383 					    async_arg);
4384 			if (mtx)
4385 				mtx_unlock(mtx);
4386 		}
4387 		cur_entry = next_entry;
4388 	}
4389 }
4390 
4391 void
4392 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4393 {
4394 	union ccb *ccb;
4395 	int size;
4396 
4397 	ccb = xpt_alloc_ccb_nowait();
4398 	if (ccb == NULL) {
4399 		xpt_print(path, "Can't allocate CCB to send %s\n",
4400 		    xpt_async_string(async_code));
4401 		return;
4402 	}
4403 
4404 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4405 		xpt_print(path, "Can't allocate path to send %s\n",
4406 		    xpt_async_string(async_code));
4407 		xpt_free_ccb(ccb);
4408 		return;
4409 	}
4410 	ccb->ccb_h.path->periph = NULL;
4411 	ccb->ccb_h.func_code = XPT_ASYNC;
4412 	ccb->ccb_h.cbfcnp = xpt_async_process;
4413 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4414 	ccb->casync.async_code = async_code;
4415 	ccb->casync.async_arg_size = 0;
4416 	size = xpt_async_size(async_code);
4417 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4418 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4419 		ccb->ccb_h.func_code,
4420 		xpt_action_name(ccb->ccb_h.func_code),
4421 		async_code,
4422 		xpt_async_string(async_code)));
4423 	if (size > 0 && async_arg != NULL) {
4424 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4425 		if (ccb->casync.async_arg_ptr == NULL) {
4426 			xpt_print(path, "Can't allocate argument to send %s\n",
4427 			    xpt_async_string(async_code));
4428 			xpt_free_path(ccb->ccb_h.path);
4429 			xpt_free_ccb(ccb);
4430 			return;
4431 		}
4432 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4433 		ccb->casync.async_arg_size = size;
4434 	} else if (size < 0) {
4435 		ccb->casync.async_arg_ptr = async_arg;
4436 		ccb->casync.async_arg_size = size;
4437 	}
4438 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4439 		xpt_freeze_devq(path, 1);
4440 	else
4441 		xpt_freeze_simq(path->bus->sim, 1);
4442 	xpt_done(ccb);
4443 }
4444 
4445 static void
4446 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4447 		      struct cam_et *target, struct cam_ed *device,
4448 		      void *async_arg)
4449 {
4450 
4451 	/*
4452 	 * We only need to handle events for real devices.
4453 	 */
4454 	if (target->target_id == CAM_TARGET_WILDCARD
4455 	 || device->lun_id == CAM_LUN_WILDCARD)
4456 		return;
4457 
4458 	printf("%s called\n", __func__);
4459 }
4460 
4461 static uint32_t
4462 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4463 {
4464 	struct cam_devq	*devq;
4465 	uint32_t freeze;
4466 
4467 	devq = dev->sim->devq;
4468 	mtx_assert(&devq->send_mtx, MA_OWNED);
4469 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4470 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4471 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4472 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4473 	/* Remove frozen device from sendq. */
4474 	if (device_is_queued(dev))
4475 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4476 	return (freeze);
4477 }
4478 
4479 u_int32_t
4480 xpt_freeze_devq(struct cam_path *path, u_int count)
4481 {
4482 	struct cam_ed	*dev = path->device;
4483 	struct cam_devq	*devq;
4484 	uint32_t	 freeze;
4485 
4486 	devq = dev->sim->devq;
4487 	mtx_lock(&devq->send_mtx);
4488 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4489 	freeze = xpt_freeze_devq_device(dev, count);
4490 	mtx_unlock(&devq->send_mtx);
4491 	return (freeze);
4492 }
4493 
4494 u_int32_t
4495 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4496 {
4497 	struct cam_devq	*devq;
4498 	uint32_t	 freeze;
4499 
4500 	devq = sim->devq;
4501 	mtx_lock(&devq->send_mtx);
4502 	freeze = (devq->send_queue.qfrozen_cnt += count);
4503 	mtx_unlock(&devq->send_mtx);
4504 	return (freeze);
4505 }
4506 
4507 static void
4508 xpt_release_devq_timeout(void *arg)
4509 {
4510 	struct cam_ed *dev;
4511 	struct cam_devq *devq;
4512 
4513 	dev = (struct cam_ed *)arg;
4514 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4515 	devq = dev->sim->devq;
4516 	mtx_assert(&devq->send_mtx, MA_OWNED);
4517 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4518 		xpt_run_devq(devq);
4519 }
4520 
4521 void
4522 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4523 {
4524 	struct cam_ed *dev;
4525 	struct cam_devq *devq;
4526 
4527 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4528 	    count, run_queue));
4529 	dev = path->device;
4530 	devq = dev->sim->devq;
4531 	mtx_lock(&devq->send_mtx);
4532 	if (xpt_release_devq_device(dev, count, run_queue))
4533 		xpt_run_devq(dev->sim->devq);
4534 	mtx_unlock(&devq->send_mtx);
4535 }
4536 
4537 static int
4538 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4539 {
4540 
4541 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4542 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4543 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4544 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4545 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4546 #ifdef INVARIANTS
4547 		printf("xpt_release_devq(): requested %u > present %u\n",
4548 		    count, dev->ccbq.queue.qfrozen_cnt);
4549 #endif
4550 		count = dev->ccbq.queue.qfrozen_cnt;
4551 	}
4552 	dev->ccbq.queue.qfrozen_cnt -= count;
4553 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4554 		/*
4555 		 * No longer need to wait for a successful
4556 		 * command completion.
4557 		 */
4558 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4559 		/*
4560 		 * Remove any timeouts that might be scheduled
4561 		 * to release this queue.
4562 		 */
4563 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4564 			callout_stop(&dev->callout);
4565 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4566 		}
4567 		/*
4568 		 * Now that we are unfrozen schedule the
4569 		 * device so any pending transactions are
4570 		 * run.
4571 		 */
4572 		xpt_schedule_devq(dev->sim->devq, dev);
4573 	} else
4574 		run_queue = 0;
4575 	return (run_queue);
4576 }
4577 
4578 void
4579 xpt_release_simq(struct cam_sim *sim, int run_queue)
4580 {
4581 	struct cam_devq	*devq;
4582 
4583 	devq = sim->devq;
4584 	mtx_lock(&devq->send_mtx);
4585 	if (devq->send_queue.qfrozen_cnt <= 0) {
4586 #ifdef INVARIANTS
4587 		printf("xpt_release_simq: requested 1 > present %u\n",
4588 		    devq->send_queue.qfrozen_cnt);
4589 #endif
4590 	} else
4591 		devq->send_queue.qfrozen_cnt--;
4592 	if (devq->send_queue.qfrozen_cnt == 0) {
4593 		/*
4594 		 * If there is a timeout scheduled to release this
4595 		 * sim queue, remove it.  The queue frozen count is
4596 		 * already at 0.
4597 		 */
4598 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4599 			callout_stop(&sim->callout);
4600 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4601 		}
4602 		if (run_queue) {
4603 			/*
4604 			 * Now that we are unfrozen run the send queue.
4605 			 */
4606 			xpt_run_devq(sim->devq);
4607 		}
4608 	}
4609 	mtx_unlock(&devq->send_mtx);
4610 }
4611 
4612 /*
4613  * XXX Appears to be unused.
4614  */
4615 static void
4616 xpt_release_simq_timeout(void *arg)
4617 {
4618 	struct cam_sim *sim;
4619 
4620 	sim = (struct cam_sim *)arg;
4621 	xpt_release_simq(sim, /* run_queue */ TRUE);
4622 }
4623 
4624 void
4625 xpt_done(union ccb *done_ccb)
4626 {
4627 	struct cam_doneq *queue;
4628 	int	run, hash;
4629 
4630 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4631 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4632 	    done_ccb->csio.bio != NULL)
4633 		biotrack(done_ccb->csio.bio, __func__);
4634 #endif
4635 
4636 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4637 	    ("xpt_done: func= %#x %s status %#x\n",
4638 		done_ccb->ccb_h.func_code,
4639 		xpt_action_name(done_ccb->ccb_h.func_code),
4640 		done_ccb->ccb_h.status));
4641 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4642 		return;
4643 
4644 	/* Store the time the ccb was in the sim */
4645 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4646 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4647 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4648 	queue = &cam_doneqs[hash];
4649 	mtx_lock(&queue->cam_doneq_mtx);
4650 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4651 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4652 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4653 	mtx_unlock(&queue->cam_doneq_mtx);
4654 	if (run)
4655 		wakeup(&queue->cam_doneq);
4656 }
4657 
4658 void
4659 xpt_done_direct(union ccb *done_ccb)
4660 {
4661 
4662 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4663 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4664 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4665 		return;
4666 
4667 	/* Store the time the ccb was in the sim */
4668 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4669 	xpt_done_process(&done_ccb->ccb_h);
4670 }
4671 
4672 union ccb *
4673 xpt_alloc_ccb()
4674 {
4675 	union ccb *new_ccb;
4676 
4677 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4678 	return (new_ccb);
4679 }
4680 
4681 union ccb *
4682 xpt_alloc_ccb_nowait()
4683 {
4684 	union ccb *new_ccb;
4685 
4686 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4687 	return (new_ccb);
4688 }
4689 
4690 void
4691 xpt_free_ccb(union ccb *free_ccb)
4692 {
4693 	free(free_ccb, M_CAMCCB);
4694 }
4695 
4696 
4697 
4698 /* Private XPT functions */
4699 
4700 /*
4701  * Get a CAM control block for the caller. Charge the structure to the device
4702  * referenced by the path.  If we don't have sufficient resources to allocate
4703  * more ccbs, we return NULL.
4704  */
4705 static union ccb *
4706 xpt_get_ccb_nowait(struct cam_periph *periph)
4707 {
4708 	union ccb *new_ccb;
4709 
4710 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4711 	if (new_ccb == NULL)
4712 		return (NULL);
4713 	periph->periph_allocated++;
4714 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4715 	return (new_ccb);
4716 }
4717 
4718 static union ccb *
4719 xpt_get_ccb(struct cam_periph *periph)
4720 {
4721 	union ccb *new_ccb;
4722 
4723 	cam_periph_unlock(periph);
4724 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4725 	cam_periph_lock(periph);
4726 	periph->periph_allocated++;
4727 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4728 	return (new_ccb);
4729 }
4730 
4731 union ccb *
4732 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4733 {
4734 	struct ccb_hdr *ccb_h;
4735 
4736 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4737 	cam_periph_assert(periph, MA_OWNED);
4738 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4739 	    ccb_h->pinfo.priority != priority) {
4740 		if (priority < periph->immediate_priority) {
4741 			periph->immediate_priority = priority;
4742 			xpt_run_allocq(periph, 0);
4743 		} else
4744 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4745 			    "cgticb", 0);
4746 	}
4747 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4748 	return ((union ccb *)ccb_h);
4749 }
4750 
4751 static void
4752 xpt_acquire_bus(struct cam_eb *bus)
4753 {
4754 
4755 	xpt_lock_buses();
4756 	bus->refcount++;
4757 	xpt_unlock_buses();
4758 }
4759 
4760 static void
4761 xpt_release_bus(struct cam_eb *bus)
4762 {
4763 
4764 	xpt_lock_buses();
4765 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4766 	if (--bus->refcount > 0) {
4767 		xpt_unlock_buses();
4768 		return;
4769 	}
4770 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4771 	xsoftc.bus_generation++;
4772 	xpt_unlock_buses();
4773 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4774 	    ("destroying bus, but target list is not empty"));
4775 	cam_sim_release(bus->sim);
4776 	mtx_destroy(&bus->eb_mtx);
4777 	free(bus, M_CAMXPT);
4778 }
4779 
4780 static struct cam_et *
4781 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4782 {
4783 	struct cam_et *cur_target, *target;
4784 
4785 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4786 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4787 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4788 					 M_NOWAIT|M_ZERO);
4789 	if (target == NULL)
4790 		return (NULL);
4791 
4792 	TAILQ_INIT(&target->ed_entries);
4793 	target->bus = bus;
4794 	target->target_id = target_id;
4795 	target->refcount = 1;
4796 	target->generation = 0;
4797 	target->luns = NULL;
4798 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4799 	timevalclear(&target->last_reset);
4800 	/*
4801 	 * Hold a reference to our parent bus so it
4802 	 * will not go away before we do.
4803 	 */
4804 	bus->refcount++;
4805 
4806 	/* Insertion sort into our bus's target list */
4807 	cur_target = TAILQ_FIRST(&bus->et_entries);
4808 	while (cur_target != NULL && cur_target->target_id < target_id)
4809 		cur_target = TAILQ_NEXT(cur_target, links);
4810 	if (cur_target != NULL) {
4811 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4812 	} else {
4813 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4814 	}
4815 	bus->generation++;
4816 	return (target);
4817 }
4818 
4819 static void
4820 xpt_acquire_target(struct cam_et *target)
4821 {
4822 	struct cam_eb *bus = target->bus;
4823 
4824 	mtx_lock(&bus->eb_mtx);
4825 	target->refcount++;
4826 	mtx_unlock(&bus->eb_mtx);
4827 }
4828 
4829 static void
4830 xpt_release_target(struct cam_et *target)
4831 {
4832 	struct cam_eb *bus = target->bus;
4833 
4834 	mtx_lock(&bus->eb_mtx);
4835 	if (--target->refcount > 0) {
4836 		mtx_unlock(&bus->eb_mtx);
4837 		return;
4838 	}
4839 	TAILQ_REMOVE(&bus->et_entries, target, links);
4840 	bus->generation++;
4841 	mtx_unlock(&bus->eb_mtx);
4842 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4843 	    ("destroying target, but device list is not empty"));
4844 	xpt_release_bus(bus);
4845 	mtx_destroy(&target->luns_mtx);
4846 	if (target->luns)
4847 		free(target->luns, M_CAMXPT);
4848 	free(target, M_CAMXPT);
4849 }
4850 
4851 static struct cam_ed *
4852 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4853 			 lun_id_t lun_id)
4854 {
4855 	struct cam_ed *device;
4856 
4857 	device = xpt_alloc_device(bus, target, lun_id);
4858 	if (device == NULL)
4859 		return (NULL);
4860 
4861 	device->mintags = 1;
4862 	device->maxtags = 1;
4863 	return (device);
4864 }
4865 
4866 static void
4867 xpt_destroy_device(void *context, int pending)
4868 {
4869 	struct cam_ed	*device = context;
4870 
4871 	mtx_lock(&device->device_mtx);
4872 	mtx_destroy(&device->device_mtx);
4873 	free(device, M_CAMDEV);
4874 }
4875 
4876 struct cam_ed *
4877 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4878 {
4879 	struct cam_ed	*cur_device, *device;
4880 	struct cam_devq	*devq;
4881 	cam_status status;
4882 
4883 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4884 	/* Make space for us in the device queue on our bus */
4885 	devq = bus->sim->devq;
4886 	mtx_lock(&devq->send_mtx);
4887 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4888 	mtx_unlock(&devq->send_mtx);
4889 	if (status != CAM_REQ_CMP)
4890 		return (NULL);
4891 
4892 	device = (struct cam_ed *)malloc(sizeof(*device),
4893 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4894 	if (device == NULL)
4895 		return (NULL);
4896 
4897 	cam_init_pinfo(&device->devq_entry);
4898 	device->target = target;
4899 	device->lun_id = lun_id;
4900 	device->sim = bus->sim;
4901 	if (cam_ccbq_init(&device->ccbq,
4902 			  bus->sim->max_dev_openings) != 0) {
4903 		free(device, M_CAMDEV);
4904 		return (NULL);
4905 	}
4906 	SLIST_INIT(&device->asyncs);
4907 	SLIST_INIT(&device->periphs);
4908 	device->generation = 0;
4909 	device->flags = CAM_DEV_UNCONFIGURED;
4910 	device->tag_delay_count = 0;
4911 	device->tag_saved_openings = 0;
4912 	device->refcount = 1;
4913 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4914 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4915 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4916 	/*
4917 	 * Hold a reference to our parent bus so it
4918 	 * will not go away before we do.
4919 	 */
4920 	target->refcount++;
4921 
4922 	cur_device = TAILQ_FIRST(&target->ed_entries);
4923 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4924 		cur_device = TAILQ_NEXT(cur_device, links);
4925 	if (cur_device != NULL)
4926 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4927 	else
4928 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4929 	target->generation++;
4930 	return (device);
4931 }
4932 
4933 void
4934 xpt_acquire_device(struct cam_ed *device)
4935 {
4936 	struct cam_eb *bus = device->target->bus;
4937 
4938 	mtx_lock(&bus->eb_mtx);
4939 	device->refcount++;
4940 	mtx_unlock(&bus->eb_mtx);
4941 }
4942 
4943 void
4944 xpt_release_device(struct cam_ed *device)
4945 {
4946 	struct cam_eb *bus = device->target->bus;
4947 	struct cam_devq *devq;
4948 
4949 	mtx_lock(&bus->eb_mtx);
4950 	if (--device->refcount > 0) {
4951 		mtx_unlock(&bus->eb_mtx);
4952 		return;
4953 	}
4954 
4955 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4956 	device->target->generation++;
4957 	mtx_unlock(&bus->eb_mtx);
4958 
4959 	/* Release our slot in the devq */
4960 	devq = bus->sim->devq;
4961 	mtx_lock(&devq->send_mtx);
4962 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4963 	mtx_unlock(&devq->send_mtx);
4964 
4965 	KASSERT(SLIST_EMPTY(&device->periphs),
4966 	    ("destroying device, but periphs list is not empty"));
4967 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4968 	    ("destroying device while still queued for ccbs"));
4969 
4970 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4971 		callout_stop(&device->callout);
4972 
4973 	xpt_release_target(device->target);
4974 
4975 	cam_ccbq_fini(&device->ccbq);
4976 	/*
4977 	 * Free allocated memory.  free(9) does nothing if the
4978 	 * supplied pointer is NULL, so it is safe to call without
4979 	 * checking.
4980 	 */
4981 	free(device->supported_vpds, M_CAMXPT);
4982 	free(device->device_id, M_CAMXPT);
4983 	free(device->ext_inq, M_CAMXPT);
4984 	free(device->physpath, M_CAMXPT);
4985 	free(device->rcap_buf, M_CAMXPT);
4986 	free(device->serial_num, M_CAMXPT);
4987 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4988 }
4989 
4990 u_int32_t
4991 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4992 {
4993 	int	result;
4994 	struct	cam_ed *dev;
4995 
4996 	dev = path->device;
4997 	mtx_lock(&dev->sim->devq->send_mtx);
4998 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4999 	mtx_unlock(&dev->sim->devq->send_mtx);
5000 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5001 	 || (dev->inq_flags & SID_CmdQue) != 0)
5002 		dev->tag_saved_openings = newopenings;
5003 	return (result);
5004 }
5005 
5006 static struct cam_eb *
5007 xpt_find_bus(path_id_t path_id)
5008 {
5009 	struct cam_eb *bus;
5010 
5011 	xpt_lock_buses();
5012 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5013 	     bus != NULL;
5014 	     bus = TAILQ_NEXT(bus, links)) {
5015 		if (bus->path_id == path_id) {
5016 			bus->refcount++;
5017 			break;
5018 		}
5019 	}
5020 	xpt_unlock_buses();
5021 	return (bus);
5022 }
5023 
5024 static struct cam_et *
5025 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5026 {
5027 	struct cam_et *target;
5028 
5029 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5030 	for (target = TAILQ_FIRST(&bus->et_entries);
5031 	     target != NULL;
5032 	     target = TAILQ_NEXT(target, links)) {
5033 		if (target->target_id == target_id) {
5034 			target->refcount++;
5035 			break;
5036 		}
5037 	}
5038 	return (target);
5039 }
5040 
5041 static struct cam_ed *
5042 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5043 {
5044 	struct cam_ed *device;
5045 
5046 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5047 	for (device = TAILQ_FIRST(&target->ed_entries);
5048 	     device != NULL;
5049 	     device = TAILQ_NEXT(device, links)) {
5050 		if (device->lun_id == lun_id) {
5051 			device->refcount++;
5052 			break;
5053 		}
5054 	}
5055 	return (device);
5056 }
5057 
5058 void
5059 xpt_start_tags(struct cam_path *path)
5060 {
5061 	struct ccb_relsim crs;
5062 	struct cam_ed *device;
5063 	struct cam_sim *sim;
5064 	int    newopenings;
5065 
5066 	device = path->device;
5067 	sim = path->bus->sim;
5068 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5069 	xpt_freeze_devq(path, /*count*/1);
5070 	device->inq_flags |= SID_CmdQue;
5071 	if (device->tag_saved_openings != 0)
5072 		newopenings = device->tag_saved_openings;
5073 	else
5074 		newopenings = min(device->maxtags,
5075 				  sim->max_tagged_dev_openings);
5076 	xpt_dev_ccbq_resize(path, newopenings);
5077 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5078 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5079 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5080 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5081 	crs.openings
5082 	    = crs.release_timeout
5083 	    = crs.qfrozen_cnt
5084 	    = 0;
5085 	xpt_action((union ccb *)&crs);
5086 }
5087 
5088 void
5089 xpt_stop_tags(struct cam_path *path)
5090 {
5091 	struct ccb_relsim crs;
5092 	struct cam_ed *device;
5093 	struct cam_sim *sim;
5094 
5095 	device = path->device;
5096 	sim = path->bus->sim;
5097 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5098 	device->tag_delay_count = 0;
5099 	xpt_freeze_devq(path, /*count*/1);
5100 	device->inq_flags &= ~SID_CmdQue;
5101 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5102 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5103 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5104 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5105 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5106 	crs.openings
5107 	    = crs.release_timeout
5108 	    = crs.qfrozen_cnt
5109 	    = 0;
5110 	xpt_action((union ccb *)&crs);
5111 }
5112 
5113 static void
5114 xpt_boot_delay(void *arg)
5115 {
5116 
5117 	xpt_release_boot();
5118 }
5119 
5120 static void
5121 xpt_config(void *arg)
5122 {
5123 	/*
5124 	 * Now that interrupts are enabled, go find our devices
5125 	 */
5126 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5127 		printf("xpt_config: failed to create taskqueue thread.\n");
5128 
5129 	/* Setup debugging path */
5130 	if (cam_dflags != CAM_DEBUG_NONE) {
5131 		if (xpt_create_path(&cam_dpath, NULL,
5132 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5133 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5134 			printf("xpt_config: xpt_create_path() failed for debug"
5135 			       " target %d:%d:%d, debugging disabled\n",
5136 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5137 			cam_dflags = CAM_DEBUG_NONE;
5138 		}
5139 	} else
5140 		cam_dpath = NULL;
5141 
5142 	periphdriver_init(1);
5143 	xpt_hold_boot();
5144 	callout_init(&xsoftc.boot_callout, 1);
5145 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5146 	    xpt_boot_delay, NULL, 0);
5147 	/* Fire up rescan thread. */
5148 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5149 	    "cam", "scanner")) {
5150 		printf("xpt_config: failed to create rescan thread.\n");
5151 	}
5152 }
5153 
5154 void
5155 xpt_hold_boot(void)
5156 {
5157 	xpt_lock_buses();
5158 	xsoftc.buses_to_config++;
5159 	xpt_unlock_buses();
5160 }
5161 
5162 void
5163 xpt_release_boot(void)
5164 {
5165 	xpt_lock_buses();
5166 	xsoftc.buses_to_config--;
5167 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5168 		struct	xpt_task *task;
5169 
5170 		xsoftc.buses_config_done = 1;
5171 		xpt_unlock_buses();
5172 		/* Call manually because we don't have any buses */
5173 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5174 		if (task != NULL) {
5175 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5176 			taskqueue_enqueue(taskqueue_thread, &task->task);
5177 		}
5178 	} else
5179 		xpt_unlock_buses();
5180 }
5181 
5182 /*
5183  * If the given device only has one peripheral attached to it, and if that
5184  * peripheral is the passthrough driver, announce it.  This insures that the
5185  * user sees some sort of announcement for every peripheral in their system.
5186  */
5187 static int
5188 xptpassannouncefunc(struct cam_ed *device, void *arg)
5189 {
5190 	struct cam_periph *periph;
5191 	int i;
5192 
5193 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5194 	     periph = SLIST_NEXT(periph, periph_links), i++);
5195 
5196 	periph = SLIST_FIRST(&device->periphs);
5197 	if ((i == 1)
5198 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5199 		xpt_announce_periph(periph, NULL);
5200 
5201 	return(1);
5202 }
5203 
5204 static void
5205 xpt_finishconfig_task(void *context, int pending)
5206 {
5207 
5208 	periphdriver_init(2);
5209 	/*
5210 	 * Check for devices with no "standard" peripheral driver
5211 	 * attached.  For any devices like that, announce the
5212 	 * passthrough driver so the user will see something.
5213 	 */
5214 	if (!bootverbose)
5215 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5216 
5217 	/* Release our hook so that the boot can continue. */
5218 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5219 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5220 	xsoftc.xpt_config_hook = NULL;
5221 
5222 	free(context, M_CAMXPT);
5223 }
5224 
5225 cam_status
5226 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5227 		   struct cam_path *path)
5228 {
5229 	struct ccb_setasync csa;
5230 	cam_status status;
5231 	int xptpath = 0;
5232 
5233 	if (path == NULL) {
5234 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5235 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5236 		if (status != CAM_REQ_CMP)
5237 			return (status);
5238 		xpt_path_lock(path);
5239 		xptpath = 1;
5240 	}
5241 
5242 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5243 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5244 	csa.event_enable = event;
5245 	csa.callback = cbfunc;
5246 	csa.callback_arg = cbarg;
5247 	xpt_action((union ccb *)&csa);
5248 	status = csa.ccb_h.status;
5249 
5250 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5251 	    ("xpt_register_async: func %p\n", cbfunc));
5252 
5253 	if (xptpath) {
5254 		xpt_path_unlock(path);
5255 		xpt_free_path(path);
5256 	}
5257 
5258 	if ((status == CAM_REQ_CMP) &&
5259 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5260 		/*
5261 		 * Get this peripheral up to date with all
5262 		 * the currently existing devices.
5263 		 */
5264 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5265 	}
5266 	if ((status == CAM_REQ_CMP) &&
5267 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5268 		/*
5269 		 * Get this peripheral up to date with all
5270 		 * the currently existing buses.
5271 		 */
5272 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5273 	}
5274 
5275 	return (status);
5276 }
5277 
5278 static void
5279 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5280 {
5281 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5282 
5283 	switch (work_ccb->ccb_h.func_code) {
5284 	/* Common cases first */
5285 	case XPT_PATH_INQ:		/* Path routing inquiry */
5286 	{
5287 		struct ccb_pathinq *cpi;
5288 
5289 		cpi = &work_ccb->cpi;
5290 		cpi->version_num = 1; /* XXX??? */
5291 		cpi->hba_inquiry = 0;
5292 		cpi->target_sprt = 0;
5293 		cpi->hba_misc = 0;
5294 		cpi->hba_eng_cnt = 0;
5295 		cpi->max_target = 0;
5296 		cpi->max_lun = 0;
5297 		cpi->initiator_id = 0;
5298 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5299 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5300 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5301 		cpi->unit_number = sim->unit_number;
5302 		cpi->bus_id = sim->bus_id;
5303 		cpi->base_transfer_speed = 0;
5304 		cpi->protocol = PROTO_UNSPECIFIED;
5305 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5306 		cpi->transport = XPORT_UNSPECIFIED;
5307 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5308 		cpi->ccb_h.status = CAM_REQ_CMP;
5309 		xpt_done(work_ccb);
5310 		break;
5311 	}
5312 	default:
5313 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5314 		xpt_done(work_ccb);
5315 		break;
5316 	}
5317 }
5318 
5319 /*
5320  * The xpt as a "controller" has no interrupt sources, so polling
5321  * is a no-op.
5322  */
5323 static void
5324 xptpoll(struct cam_sim *sim)
5325 {
5326 }
5327 
5328 void
5329 xpt_lock_buses(void)
5330 {
5331 	mtx_lock(&xsoftc.xpt_topo_lock);
5332 }
5333 
5334 void
5335 xpt_unlock_buses(void)
5336 {
5337 	mtx_unlock(&xsoftc.xpt_topo_lock);
5338 }
5339 
5340 struct mtx *
5341 xpt_path_mtx(struct cam_path *path)
5342 {
5343 
5344 	return (&path->device->device_mtx);
5345 }
5346 
5347 static void
5348 xpt_done_process(struct ccb_hdr *ccb_h)
5349 {
5350 	struct cam_sim *sim;
5351 	struct cam_devq *devq;
5352 	struct mtx *mtx = NULL;
5353 
5354 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5355 	struct ccb_scsiio *csio;
5356 
5357 	if (ccb_h->func_code == XPT_SCSI_IO) {
5358 		csio = &((union ccb *)ccb_h)->csio;
5359 		if (csio->bio != NULL)
5360 			biotrack(csio->bio, __func__);
5361 	}
5362 #endif
5363 
5364 	if (ccb_h->flags & CAM_HIGH_POWER) {
5365 		struct highpowerlist	*hphead;
5366 		struct cam_ed		*device;
5367 
5368 		mtx_lock(&xsoftc.xpt_highpower_lock);
5369 		hphead = &xsoftc.highpowerq;
5370 
5371 		device = STAILQ_FIRST(hphead);
5372 
5373 		/*
5374 		 * Increment the count since this command is done.
5375 		 */
5376 		xsoftc.num_highpower++;
5377 
5378 		/*
5379 		 * Any high powered commands queued up?
5380 		 */
5381 		if (device != NULL) {
5382 
5383 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5384 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5385 
5386 			mtx_lock(&device->sim->devq->send_mtx);
5387 			xpt_release_devq_device(device,
5388 					 /*count*/1, /*runqueue*/TRUE);
5389 			mtx_unlock(&device->sim->devq->send_mtx);
5390 		} else
5391 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5392 	}
5393 
5394 	sim = ccb_h->path->bus->sim;
5395 
5396 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5397 		xpt_release_simq(sim, /*run_queue*/FALSE);
5398 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5399 	}
5400 
5401 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5402 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5403 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5404 		ccb_h->status &= ~CAM_DEV_QFRZN;
5405 	}
5406 
5407 	devq = sim->devq;
5408 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5409 		struct cam_ed *dev = ccb_h->path->device;
5410 
5411 		mtx_lock(&devq->send_mtx);
5412 		devq->send_active--;
5413 		devq->send_openings++;
5414 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5415 
5416 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5417 		  && (dev->ccbq.dev_active == 0))) {
5418 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5419 			xpt_release_devq_device(dev, /*count*/1,
5420 					 /*run_queue*/FALSE);
5421 		}
5422 
5423 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5424 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5425 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5426 			xpt_release_devq_device(dev, /*count*/1,
5427 					 /*run_queue*/FALSE);
5428 		}
5429 
5430 		if (!device_is_queued(dev))
5431 			(void)xpt_schedule_devq(devq, dev);
5432 		xpt_run_devq(devq);
5433 		mtx_unlock(&devq->send_mtx);
5434 
5435 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5436 			mtx = xpt_path_mtx(ccb_h->path);
5437 			mtx_lock(mtx);
5438 
5439 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5440 			 && (--dev->tag_delay_count == 0))
5441 				xpt_start_tags(ccb_h->path);
5442 		}
5443 	}
5444 
5445 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5446 		if (mtx == NULL) {
5447 			mtx = xpt_path_mtx(ccb_h->path);
5448 			mtx_lock(mtx);
5449 		}
5450 	} else {
5451 		if (mtx != NULL) {
5452 			mtx_unlock(mtx);
5453 			mtx = NULL;
5454 		}
5455 	}
5456 
5457 	/* Call the peripheral driver's callback */
5458 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5459 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5460 	if (mtx != NULL)
5461 		mtx_unlock(mtx);
5462 }
5463 
5464 void
5465 xpt_done_td(void *arg)
5466 {
5467 	struct cam_doneq *queue = arg;
5468 	struct ccb_hdr *ccb_h;
5469 	STAILQ_HEAD(, ccb_hdr)	doneq;
5470 
5471 	STAILQ_INIT(&doneq);
5472 	mtx_lock(&queue->cam_doneq_mtx);
5473 	while (1) {
5474 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5475 			queue->cam_doneq_sleep = 1;
5476 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5477 			    PRIBIO, "-", 0);
5478 			queue->cam_doneq_sleep = 0;
5479 		}
5480 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5481 		mtx_unlock(&queue->cam_doneq_mtx);
5482 
5483 		THREAD_NO_SLEEPING();
5484 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5485 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5486 			xpt_done_process(ccb_h);
5487 		}
5488 		THREAD_SLEEPING_OK();
5489 
5490 		mtx_lock(&queue->cam_doneq_mtx);
5491 	}
5492 }
5493 
5494 static void
5495 camisr_runqueue(void)
5496 {
5497 	struct	ccb_hdr *ccb_h;
5498 	struct cam_doneq *queue;
5499 	int i;
5500 
5501 	/* Process global queues. */
5502 	for (i = 0; i < cam_num_doneqs; i++) {
5503 		queue = &cam_doneqs[i];
5504 		mtx_lock(&queue->cam_doneq_mtx);
5505 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5506 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5507 			mtx_unlock(&queue->cam_doneq_mtx);
5508 			xpt_done_process(ccb_h);
5509 			mtx_lock(&queue->cam_doneq_mtx);
5510 		}
5511 		mtx_unlock(&queue->cam_doneq_mtx);
5512 	}
5513 }
5514 
5515 struct kv
5516 {
5517 	uint32_t v;
5518 	const char *name;
5519 };
5520 
5521 static struct kv map[] = {
5522 	{ XPT_NOOP, "XPT_NOOP" },
5523 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5524 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5525 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5526 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5527 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5528 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5529 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5530 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5531 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5532 	{ XPT_DEBUG, "XPT_DEBUG" },
5533 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5534 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5535 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5536 	{ XPT_ASYNC, "XPT_ASYNC" },
5537 	{ XPT_ABORT, "XPT_ABORT" },
5538 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5539 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5540 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5541 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5542 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5543 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5544 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5545 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5546 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5547 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5548 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5549 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5550 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5551 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5552 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5553 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5554 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5555 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5556 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5557 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5558 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5559 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5560 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5561 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5562 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5563 	{ 0, 0 }
5564 };
5565 
5566 const char *
5567 xpt_action_name(uint32_t action)
5568 {
5569 	static char buffer[32];	/* Only for unknown messages -- racy */
5570 	struct kv *walker = map;
5571 
5572 	while (walker->name != NULL) {
5573 		if (walker->v == action)
5574 			return (walker->name);
5575 		walker++;
5576 	}
5577 
5578 	snprintf(buffer, sizeof(buffer), "%#x", action);
5579 	return (buffer);
5580 }
5581