1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_printf.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bio.h> 37 #include <sys/bus.h> 38 #include <sys/systm.h> 39 #include <sys/types.h> 40 #include <sys/malloc.h> 41 #include <sys/kernel.h> 42 #include <sys/time.h> 43 #include <sys/conf.h> 44 #include <sys/fcntl.h> 45 #include <sys/interrupt.h> 46 #include <sys/proc.h> 47 #include <sys/sbuf.h> 48 #include <sys/smp.h> 49 #include <sys/taskqueue.h> 50 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 #include <sys/sysctl.h> 54 #include <sys/kthread.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_iosched.h> 59 #include <cam/cam_periph.h> 60 #include <cam/cam_queue.h> 61 #include <cam/cam_sim.h> 62 #include <cam/cam_xpt.h> 63 #include <cam/cam_xpt_sim.h> 64 #include <cam/cam_xpt_periph.h> 65 #include <cam/cam_xpt_internal.h> 66 #include <cam/cam_debug.h> 67 #include <cam/cam_compat.h> 68 69 #include <cam/scsi/scsi_all.h> 70 #include <cam/scsi/scsi_message.h> 71 #include <cam/scsi/scsi_pass.h> 72 73 #include <machine/md_var.h> /* geometry translation */ 74 #include <machine/stdarg.h> /* for xpt_print below */ 75 76 #include "opt_cam.h" 77 78 /* Wild guess based on not wanting to grow the stack too much */ 79 #define XPT_PRINT_MAXLEN 512 80 #ifdef PRINTF_BUFR_SIZE 81 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 82 #else 83 #define XPT_PRINT_LEN 128 84 #endif 85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 86 87 /* 88 * This is the maximum number of high powered commands (e.g. start unit) 89 * that can be outstanding at a particular time. 90 */ 91 #ifndef CAM_MAX_HIGHPOWER 92 #define CAM_MAX_HIGHPOWER 4 93 #endif 94 95 /* Datastructures internal to the xpt layer */ 96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 100 101 /* Object for defering XPT actions to a taskqueue */ 102 struct xpt_task { 103 struct task task; 104 void *data1; 105 uintptr_t data2; 106 }; 107 108 struct xpt_softc { 109 uint32_t xpt_generation; 110 111 /* number of high powered commands that can go through right now */ 112 struct mtx xpt_highpower_lock; 113 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 114 int num_highpower; 115 116 /* queue for handling async rescan requests. */ 117 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 118 int buses_to_config; 119 int buses_config_done; 120 int announce_nosbuf; 121 122 /* 123 * Registered buses 124 * 125 * N.B., "busses" is an archaic spelling of "buses". In new code 126 * "buses" is preferred. 127 */ 128 TAILQ_HEAD(,cam_eb) xpt_busses; 129 u_int bus_generation; 130 131 struct intr_config_hook *xpt_config_hook; 132 133 int boot_delay; 134 struct callout boot_callout; 135 136 struct mtx xpt_topo_lock; 137 struct mtx xpt_lock; 138 struct taskqueue *xpt_taskq; 139 }; 140 141 typedef enum { 142 DM_RET_COPY = 0x01, 143 DM_RET_FLAG_MASK = 0x0f, 144 DM_RET_NONE = 0x00, 145 DM_RET_STOP = 0x10, 146 DM_RET_DESCEND = 0x20, 147 DM_RET_ERROR = 0x30, 148 DM_RET_ACTION_MASK = 0xf0 149 } dev_match_ret; 150 151 typedef enum { 152 XPT_DEPTH_BUS, 153 XPT_DEPTH_TARGET, 154 XPT_DEPTH_DEVICE, 155 XPT_DEPTH_PERIPH 156 } xpt_traverse_depth; 157 158 struct xpt_traverse_config { 159 xpt_traverse_depth depth; 160 void *tr_func; 161 void *tr_arg; 162 }; 163 164 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 165 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 166 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 167 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 168 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 169 170 /* Transport layer configuration information */ 171 static struct xpt_softc xsoftc; 172 173 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 174 175 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 176 &xsoftc.boot_delay, 0, "Bus registration wait time"); 177 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 178 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 179 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 180 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 181 182 struct cam_doneq { 183 struct mtx_padalign cam_doneq_mtx; 184 STAILQ_HEAD(, ccb_hdr) cam_doneq; 185 int cam_doneq_sleep; 186 }; 187 188 static struct cam_doneq cam_doneqs[MAXCPU]; 189 static int cam_num_doneqs; 190 static struct proc *cam_proc; 191 192 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 193 &cam_num_doneqs, 0, "Number of completion queues/threads"); 194 195 struct cam_periph *xpt_periph; 196 197 static periph_init_t xpt_periph_init; 198 199 static struct periph_driver xpt_driver = 200 { 201 xpt_periph_init, "xpt", 202 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 203 CAM_PERIPH_DRV_EARLY 204 }; 205 206 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 207 208 static d_open_t xptopen; 209 static d_close_t xptclose; 210 static d_ioctl_t xptioctl; 211 static d_ioctl_t xptdoioctl; 212 213 static struct cdevsw xpt_cdevsw = { 214 .d_version = D_VERSION, 215 .d_flags = 0, 216 .d_open = xptopen, 217 .d_close = xptclose, 218 .d_ioctl = xptioctl, 219 .d_name = "xpt", 220 }; 221 222 /* Storage for debugging datastructures */ 223 struct cam_path *cam_dpath; 224 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 225 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 226 &cam_dflags, 0, "Enabled debug flags"); 227 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 228 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 229 &cam_debug_delay, 0, "Delay in us after each debug message"); 230 231 /* Our boot-time initialization hook */ 232 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 233 234 static moduledata_t cam_moduledata = { 235 "cam", 236 cam_module_event_handler, 237 NULL 238 }; 239 240 static int xpt_init(void *); 241 242 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 243 MODULE_VERSION(cam, 1); 244 245 246 static void xpt_async_bcast(struct async_list *async_head, 247 u_int32_t async_code, 248 struct cam_path *path, 249 void *async_arg); 250 static path_id_t xptnextfreepathid(void); 251 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 252 static union ccb *xpt_get_ccb(struct cam_periph *periph); 253 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 254 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 255 static void xpt_run_allocq_task(void *context, int pending); 256 static void xpt_run_devq(struct cam_devq *devq); 257 static timeout_t xpt_release_devq_timeout; 258 static void xpt_release_simq_timeout(void *arg) __unused; 259 static void xpt_acquire_bus(struct cam_eb *bus); 260 static void xpt_release_bus(struct cam_eb *bus); 261 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 262 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 263 int run_queue); 264 static struct cam_et* 265 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 266 static void xpt_acquire_target(struct cam_et *target); 267 static void xpt_release_target(struct cam_et *target); 268 static struct cam_eb* 269 xpt_find_bus(path_id_t path_id); 270 static struct cam_et* 271 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 272 static struct cam_ed* 273 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 274 static void xpt_config(void *arg); 275 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 276 u_int32_t new_priority); 277 static xpt_devicefunc_t xptpassannouncefunc; 278 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 279 static void xptpoll(struct cam_sim *sim); 280 static void camisr_runqueue(void); 281 static void xpt_done_process(struct ccb_hdr *ccb_h); 282 static void xpt_done_td(void *); 283 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 284 u_int num_patterns, struct cam_eb *bus); 285 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 286 u_int num_patterns, 287 struct cam_ed *device); 288 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 289 u_int num_patterns, 290 struct cam_periph *periph); 291 static xpt_busfunc_t xptedtbusfunc; 292 static xpt_targetfunc_t xptedttargetfunc; 293 static xpt_devicefunc_t xptedtdevicefunc; 294 static xpt_periphfunc_t xptedtperiphfunc; 295 static xpt_pdrvfunc_t xptplistpdrvfunc; 296 static xpt_periphfunc_t xptplistperiphfunc; 297 static int xptedtmatch(struct ccb_dev_match *cdm); 298 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 299 static int xptbustraverse(struct cam_eb *start_bus, 300 xpt_busfunc_t *tr_func, void *arg); 301 static int xpttargettraverse(struct cam_eb *bus, 302 struct cam_et *start_target, 303 xpt_targetfunc_t *tr_func, void *arg); 304 static int xptdevicetraverse(struct cam_et *target, 305 struct cam_ed *start_device, 306 xpt_devicefunc_t *tr_func, void *arg); 307 static int xptperiphtraverse(struct cam_ed *device, 308 struct cam_periph *start_periph, 309 xpt_periphfunc_t *tr_func, void *arg); 310 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 311 xpt_pdrvfunc_t *tr_func, void *arg); 312 static int xptpdperiphtraverse(struct periph_driver **pdrv, 313 struct cam_periph *start_periph, 314 xpt_periphfunc_t *tr_func, 315 void *arg); 316 static xpt_busfunc_t xptdefbusfunc; 317 static xpt_targetfunc_t xptdeftargetfunc; 318 static xpt_devicefunc_t xptdefdevicefunc; 319 static xpt_periphfunc_t xptdefperiphfunc; 320 static void xpt_finishconfig_task(void *context, int pending); 321 static void xpt_dev_async_default(u_int32_t async_code, 322 struct cam_eb *bus, 323 struct cam_et *target, 324 struct cam_ed *device, 325 void *async_arg); 326 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 327 struct cam_et *target, 328 lun_id_t lun_id); 329 static xpt_devicefunc_t xptsetasyncfunc; 330 static xpt_busfunc_t xptsetasyncbusfunc; 331 static cam_status xptregister(struct cam_periph *periph, 332 void *arg); 333 static __inline int device_is_queued(struct cam_ed *device); 334 335 static __inline int 336 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 337 { 338 int retval; 339 340 mtx_assert(&devq->send_mtx, MA_OWNED); 341 if ((dev->ccbq.queue.entries > 0) && 342 (dev->ccbq.dev_openings > 0) && 343 (dev->ccbq.queue.qfrozen_cnt == 0)) { 344 /* 345 * The priority of a device waiting for controller 346 * resources is that of the highest priority CCB 347 * enqueued. 348 */ 349 retval = 350 xpt_schedule_dev(&devq->send_queue, 351 &dev->devq_entry, 352 CAMQ_GET_PRIO(&dev->ccbq.queue)); 353 } else { 354 retval = 0; 355 } 356 return (retval); 357 } 358 359 static __inline int 360 device_is_queued(struct cam_ed *device) 361 { 362 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 363 } 364 365 static void 366 xpt_periph_init() 367 { 368 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 369 } 370 371 static int 372 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 373 { 374 375 /* 376 * Only allow read-write access. 377 */ 378 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 379 return(EPERM); 380 381 /* 382 * We don't allow nonblocking access. 383 */ 384 if ((flags & O_NONBLOCK) != 0) { 385 printf("%s: can't do nonblocking access\n", devtoname(dev)); 386 return(ENODEV); 387 } 388 389 return(0); 390 } 391 392 static int 393 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 394 { 395 396 return(0); 397 } 398 399 /* 400 * Don't automatically grab the xpt softc lock here even though this is going 401 * through the xpt device. The xpt device is really just a back door for 402 * accessing other devices and SIMs, so the right thing to do is to grab 403 * the appropriate SIM lock once the bus/SIM is located. 404 */ 405 static int 406 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 407 { 408 int error; 409 410 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 411 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 412 } 413 return (error); 414 } 415 416 static int 417 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 418 { 419 int error; 420 421 error = 0; 422 423 switch(cmd) { 424 /* 425 * For the transport layer CAMIOCOMMAND ioctl, we really only want 426 * to accept CCB types that don't quite make sense to send through a 427 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 428 * in the CAM spec. 429 */ 430 case CAMIOCOMMAND: { 431 union ccb *ccb; 432 union ccb *inccb; 433 struct cam_eb *bus; 434 435 inccb = (union ccb *)addr; 436 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 437 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 438 inccb->csio.bio = NULL; 439 #endif 440 441 if (inccb->ccb_h.flags & CAM_UNLOCKED) 442 return (EINVAL); 443 444 bus = xpt_find_bus(inccb->ccb_h.path_id); 445 if (bus == NULL) 446 return (EINVAL); 447 448 switch (inccb->ccb_h.func_code) { 449 case XPT_SCAN_BUS: 450 case XPT_RESET_BUS: 451 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 452 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 453 xpt_release_bus(bus); 454 return (EINVAL); 455 } 456 break; 457 case XPT_SCAN_TGT: 458 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 459 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 460 xpt_release_bus(bus); 461 return (EINVAL); 462 } 463 break; 464 default: 465 break; 466 } 467 468 switch(inccb->ccb_h.func_code) { 469 case XPT_SCAN_BUS: 470 case XPT_RESET_BUS: 471 case XPT_PATH_INQ: 472 case XPT_ENG_INQ: 473 case XPT_SCAN_LUN: 474 case XPT_SCAN_TGT: 475 476 ccb = xpt_alloc_ccb(); 477 478 /* 479 * Create a path using the bus, target, and lun the 480 * user passed in. 481 */ 482 if (xpt_create_path(&ccb->ccb_h.path, NULL, 483 inccb->ccb_h.path_id, 484 inccb->ccb_h.target_id, 485 inccb->ccb_h.target_lun) != 486 CAM_REQ_CMP){ 487 error = EINVAL; 488 xpt_free_ccb(ccb); 489 break; 490 } 491 /* Ensure all of our fields are correct */ 492 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 493 inccb->ccb_h.pinfo.priority); 494 xpt_merge_ccb(ccb, inccb); 495 xpt_path_lock(ccb->ccb_h.path); 496 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 497 xpt_path_unlock(ccb->ccb_h.path); 498 bcopy(ccb, inccb, sizeof(union ccb)); 499 xpt_free_path(ccb->ccb_h.path); 500 xpt_free_ccb(ccb); 501 break; 502 503 case XPT_DEBUG: { 504 union ccb ccb; 505 506 /* 507 * This is an immediate CCB, so it's okay to 508 * allocate it on the stack. 509 */ 510 511 /* 512 * Create a path using the bus, target, and lun the 513 * user passed in. 514 */ 515 if (xpt_create_path(&ccb.ccb_h.path, NULL, 516 inccb->ccb_h.path_id, 517 inccb->ccb_h.target_id, 518 inccb->ccb_h.target_lun) != 519 CAM_REQ_CMP){ 520 error = EINVAL; 521 break; 522 } 523 /* Ensure all of our fields are correct */ 524 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 525 inccb->ccb_h.pinfo.priority); 526 xpt_merge_ccb(&ccb, inccb); 527 xpt_action(&ccb); 528 bcopy(&ccb, inccb, sizeof(union ccb)); 529 xpt_free_path(ccb.ccb_h.path); 530 break; 531 532 } 533 case XPT_DEV_MATCH: { 534 struct cam_periph_map_info mapinfo; 535 struct cam_path *old_path; 536 537 /* 538 * We can't deal with physical addresses for this 539 * type of transaction. 540 */ 541 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 542 CAM_DATA_VADDR) { 543 error = EINVAL; 544 break; 545 } 546 547 /* 548 * Save this in case the caller had it set to 549 * something in particular. 550 */ 551 old_path = inccb->ccb_h.path; 552 553 /* 554 * We really don't need a path for the matching 555 * code. The path is needed because of the 556 * debugging statements in xpt_action(). They 557 * assume that the CCB has a valid path. 558 */ 559 inccb->ccb_h.path = xpt_periph->path; 560 561 bzero(&mapinfo, sizeof(mapinfo)); 562 563 /* 564 * Map the pattern and match buffers into kernel 565 * virtual address space. 566 */ 567 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 568 569 if (error) { 570 inccb->ccb_h.path = old_path; 571 break; 572 } 573 574 /* 575 * This is an immediate CCB, we can send it on directly. 576 */ 577 xpt_action(inccb); 578 579 /* 580 * Map the buffers back into user space. 581 */ 582 cam_periph_unmapmem(inccb, &mapinfo); 583 584 inccb->ccb_h.path = old_path; 585 586 error = 0; 587 break; 588 } 589 default: 590 error = ENOTSUP; 591 break; 592 } 593 xpt_release_bus(bus); 594 break; 595 } 596 /* 597 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 598 * with the periphal driver name and unit name filled in. The other 599 * fields don't really matter as input. The passthrough driver name 600 * ("pass"), and unit number are passed back in the ccb. The current 601 * device generation number, and the index into the device peripheral 602 * driver list, and the status are also passed back. Note that 603 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 604 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 605 * (or rather should be) impossible for the device peripheral driver 606 * list to change since we look at the whole thing in one pass, and 607 * we do it with lock protection. 608 * 609 */ 610 case CAMGETPASSTHRU: { 611 union ccb *ccb; 612 struct cam_periph *periph; 613 struct periph_driver **p_drv; 614 char *name; 615 u_int unit; 616 int base_periph_found; 617 618 ccb = (union ccb *)addr; 619 unit = ccb->cgdl.unit_number; 620 name = ccb->cgdl.periph_name; 621 base_periph_found = 0; 622 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 623 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 624 ccb->csio.bio = NULL; 625 #endif 626 627 /* 628 * Sanity check -- make sure we don't get a null peripheral 629 * driver name. 630 */ 631 if (*ccb->cgdl.periph_name == '\0') { 632 error = EINVAL; 633 break; 634 } 635 636 /* Keep the list from changing while we traverse it */ 637 xpt_lock_buses(); 638 639 /* first find our driver in the list of drivers */ 640 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 641 if (strcmp((*p_drv)->driver_name, name) == 0) 642 break; 643 644 if (*p_drv == NULL) { 645 xpt_unlock_buses(); 646 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 647 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 648 *ccb->cgdl.periph_name = '\0'; 649 ccb->cgdl.unit_number = 0; 650 error = ENOENT; 651 break; 652 } 653 654 /* 655 * Run through every peripheral instance of this driver 656 * and check to see whether it matches the unit passed 657 * in by the user. If it does, get out of the loops and 658 * find the passthrough driver associated with that 659 * peripheral driver. 660 */ 661 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 662 periph = TAILQ_NEXT(periph, unit_links)) { 663 664 if (periph->unit_number == unit) 665 break; 666 } 667 /* 668 * If we found the peripheral driver that the user passed 669 * in, go through all of the peripheral drivers for that 670 * particular device and look for a passthrough driver. 671 */ 672 if (periph != NULL) { 673 struct cam_ed *device; 674 int i; 675 676 base_periph_found = 1; 677 device = periph->path->device; 678 for (i = 0, periph = SLIST_FIRST(&device->periphs); 679 periph != NULL; 680 periph = SLIST_NEXT(periph, periph_links), i++) { 681 /* 682 * Check to see whether we have a 683 * passthrough device or not. 684 */ 685 if (strcmp(periph->periph_name, "pass") == 0) { 686 /* 687 * Fill in the getdevlist fields. 688 */ 689 strcpy(ccb->cgdl.periph_name, 690 periph->periph_name); 691 ccb->cgdl.unit_number = 692 periph->unit_number; 693 if (SLIST_NEXT(periph, periph_links)) 694 ccb->cgdl.status = 695 CAM_GDEVLIST_MORE_DEVS; 696 else 697 ccb->cgdl.status = 698 CAM_GDEVLIST_LAST_DEVICE; 699 ccb->cgdl.generation = 700 device->generation; 701 ccb->cgdl.index = i; 702 /* 703 * Fill in some CCB header fields 704 * that the user may want. 705 */ 706 ccb->ccb_h.path_id = 707 periph->path->bus->path_id; 708 ccb->ccb_h.target_id = 709 periph->path->target->target_id; 710 ccb->ccb_h.target_lun = 711 periph->path->device->lun_id; 712 ccb->ccb_h.status = CAM_REQ_CMP; 713 break; 714 } 715 } 716 } 717 718 /* 719 * If the periph is null here, one of two things has 720 * happened. The first possibility is that we couldn't 721 * find the unit number of the particular peripheral driver 722 * that the user is asking about. e.g. the user asks for 723 * the passthrough driver for "da11". We find the list of 724 * "da" peripherals all right, but there is no unit 11. 725 * The other possibility is that we went through the list 726 * of peripheral drivers attached to the device structure, 727 * but didn't find one with the name "pass". Either way, 728 * we return ENOENT, since we couldn't find something. 729 */ 730 if (periph == NULL) { 731 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 732 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 733 *ccb->cgdl.periph_name = '\0'; 734 ccb->cgdl.unit_number = 0; 735 error = ENOENT; 736 /* 737 * It is unfortunate that this is even necessary, 738 * but there are many, many clueless users out there. 739 * If this is true, the user is looking for the 740 * passthrough driver, but doesn't have one in his 741 * kernel. 742 */ 743 if (base_periph_found == 1) { 744 printf("xptioctl: pass driver is not in the " 745 "kernel\n"); 746 printf("xptioctl: put \"device pass\" in " 747 "your kernel config file\n"); 748 } 749 } 750 xpt_unlock_buses(); 751 break; 752 } 753 default: 754 error = ENOTTY; 755 break; 756 } 757 758 return(error); 759 } 760 761 static int 762 cam_module_event_handler(module_t mod, int what, void *arg) 763 { 764 int error; 765 766 switch (what) { 767 case MOD_LOAD: 768 if ((error = xpt_init(NULL)) != 0) 769 return (error); 770 break; 771 case MOD_UNLOAD: 772 return EBUSY; 773 default: 774 return EOPNOTSUPP; 775 } 776 777 return 0; 778 } 779 780 static struct xpt_proto * 781 xpt_proto_find(cam_proto proto) 782 { 783 struct xpt_proto **pp; 784 785 SET_FOREACH(pp, cam_xpt_proto_set) { 786 if ((*pp)->proto == proto) 787 return *pp; 788 } 789 790 return NULL; 791 } 792 793 static void 794 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 795 { 796 797 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 798 xpt_free_path(done_ccb->ccb_h.path); 799 xpt_free_ccb(done_ccb); 800 } else { 801 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 802 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 803 } 804 xpt_release_boot(); 805 } 806 807 /* thread to handle bus rescans */ 808 static void 809 xpt_scanner_thread(void *dummy) 810 { 811 union ccb *ccb; 812 struct cam_path path; 813 814 xpt_lock_buses(); 815 for (;;) { 816 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 817 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 818 "-", 0); 819 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 820 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 821 xpt_unlock_buses(); 822 823 /* 824 * Since lock can be dropped inside and path freed 825 * by completion callback even before return here, 826 * take our own path copy for reference. 827 */ 828 xpt_copy_path(&path, ccb->ccb_h.path); 829 xpt_path_lock(&path); 830 xpt_action(ccb); 831 xpt_path_unlock(&path); 832 xpt_release_path(&path); 833 834 xpt_lock_buses(); 835 } 836 } 837 } 838 839 void 840 xpt_rescan(union ccb *ccb) 841 { 842 struct ccb_hdr *hdr; 843 844 /* Prepare request */ 845 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 846 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 847 ccb->ccb_h.func_code = XPT_SCAN_BUS; 848 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_TGT; 851 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 852 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 853 ccb->ccb_h.func_code = XPT_SCAN_LUN; 854 else { 855 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 856 xpt_free_path(ccb->ccb_h.path); 857 xpt_free_ccb(ccb); 858 return; 859 } 860 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 861 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 862 xpt_action_name(ccb->ccb_h.func_code))); 863 864 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 865 ccb->ccb_h.cbfcnp = xpt_rescan_done; 866 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 867 /* Don't make duplicate entries for the same paths. */ 868 xpt_lock_buses(); 869 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 870 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 871 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 872 wakeup(&xsoftc.ccb_scanq); 873 xpt_unlock_buses(); 874 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 875 xpt_free_path(ccb->ccb_h.path); 876 xpt_free_ccb(ccb); 877 return; 878 } 879 } 880 } 881 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 882 xsoftc.buses_to_config++; 883 wakeup(&xsoftc.ccb_scanq); 884 xpt_unlock_buses(); 885 } 886 887 /* Functions accessed by the peripheral drivers */ 888 static int 889 xpt_init(void *dummy) 890 { 891 struct cam_sim *xpt_sim; 892 struct cam_path *path; 893 struct cam_devq *devq; 894 cam_status status; 895 int error, i; 896 897 TAILQ_INIT(&xsoftc.xpt_busses); 898 TAILQ_INIT(&xsoftc.ccb_scanq); 899 STAILQ_INIT(&xsoftc.highpowerq); 900 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 901 902 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 903 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 904 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 905 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 906 907 #ifdef CAM_BOOT_DELAY 908 /* 909 * Override this value at compile time to assist our users 910 * who don't use loader to boot a kernel. 911 */ 912 xsoftc.boot_delay = CAM_BOOT_DELAY; 913 #endif 914 /* 915 * The xpt layer is, itself, the equivalent of a SIM. 916 * Allow 16 ccbs in the ccb pool for it. This should 917 * give decent parallelism when we probe buses and 918 * perform other XPT functions. 919 */ 920 devq = cam_simq_alloc(16); 921 xpt_sim = cam_sim_alloc(xptaction, 922 xptpoll, 923 "xpt", 924 /*softc*/NULL, 925 /*unit*/0, 926 /*mtx*/&xsoftc.xpt_lock, 927 /*max_dev_transactions*/0, 928 /*max_tagged_dev_transactions*/0, 929 devq); 930 if (xpt_sim == NULL) 931 return (ENOMEM); 932 933 mtx_lock(&xsoftc.xpt_lock); 934 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 935 mtx_unlock(&xsoftc.xpt_lock); 936 printf("xpt_init: xpt_bus_register failed with status %#x," 937 " failing attach\n", status); 938 return (EINVAL); 939 } 940 mtx_unlock(&xsoftc.xpt_lock); 941 942 /* 943 * Looking at the XPT from the SIM layer, the XPT is 944 * the equivalent of a peripheral driver. Allocate 945 * a peripheral driver entry for us. 946 */ 947 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 948 CAM_TARGET_WILDCARD, 949 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 950 printf("xpt_init: xpt_create_path failed with status %#x," 951 " failing attach\n", status); 952 return (EINVAL); 953 } 954 xpt_path_lock(path); 955 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 956 path, NULL, 0, xpt_sim); 957 xpt_path_unlock(path); 958 xpt_free_path(path); 959 960 if (cam_num_doneqs < 1) 961 cam_num_doneqs = 1 + mp_ncpus / 6; 962 else if (cam_num_doneqs > MAXCPU) 963 cam_num_doneqs = MAXCPU; 964 for (i = 0; i < cam_num_doneqs; i++) { 965 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 966 MTX_DEF); 967 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 968 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 969 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 970 if (error != 0) { 971 cam_num_doneqs = i; 972 break; 973 } 974 } 975 if (cam_num_doneqs < 1) { 976 printf("xpt_init: Cannot init completion queues " 977 "- failing attach\n"); 978 return (ENOMEM); 979 } 980 /* 981 * Register a callback for when interrupts are enabled. 982 */ 983 xsoftc.xpt_config_hook = 984 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 985 M_CAMXPT, M_NOWAIT | M_ZERO); 986 if (xsoftc.xpt_config_hook == NULL) { 987 printf("xpt_init: Cannot malloc config hook " 988 "- failing attach\n"); 989 return (ENOMEM); 990 } 991 xsoftc.xpt_config_hook->ich_func = xpt_config; 992 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 993 free (xsoftc.xpt_config_hook, M_CAMXPT); 994 printf("xpt_init: config_intrhook_establish failed " 995 "- failing attach\n"); 996 } 997 998 return (0); 999 } 1000 1001 static cam_status 1002 xptregister(struct cam_periph *periph, void *arg) 1003 { 1004 struct cam_sim *xpt_sim; 1005 1006 if (periph == NULL) { 1007 printf("xptregister: periph was NULL!!\n"); 1008 return(CAM_REQ_CMP_ERR); 1009 } 1010 1011 xpt_sim = (struct cam_sim *)arg; 1012 xpt_sim->softc = periph; 1013 xpt_periph = periph; 1014 periph->softc = NULL; 1015 1016 return(CAM_REQ_CMP); 1017 } 1018 1019 int32_t 1020 xpt_add_periph(struct cam_periph *periph) 1021 { 1022 struct cam_ed *device; 1023 int32_t status; 1024 1025 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1026 device = periph->path->device; 1027 status = CAM_REQ_CMP; 1028 if (device != NULL) { 1029 mtx_lock(&device->target->bus->eb_mtx); 1030 device->generation++; 1031 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1032 mtx_unlock(&device->target->bus->eb_mtx); 1033 atomic_add_32(&xsoftc.xpt_generation, 1); 1034 } 1035 1036 return (status); 1037 } 1038 1039 void 1040 xpt_remove_periph(struct cam_periph *periph) 1041 { 1042 struct cam_ed *device; 1043 1044 device = periph->path->device; 1045 if (device != NULL) { 1046 mtx_lock(&device->target->bus->eb_mtx); 1047 device->generation++; 1048 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1049 mtx_unlock(&device->target->bus->eb_mtx); 1050 atomic_add_32(&xsoftc.xpt_generation, 1); 1051 } 1052 } 1053 1054 1055 void 1056 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1057 { 1058 struct cam_path *path = periph->path; 1059 struct xpt_proto *proto; 1060 1061 cam_periph_assert(periph, MA_OWNED); 1062 periph->flags |= CAM_PERIPH_ANNOUNCED; 1063 1064 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1065 periph->periph_name, periph->unit_number, 1066 path->bus->sim->sim_name, 1067 path->bus->sim->unit_number, 1068 path->bus->sim->bus_id, 1069 path->bus->path_id, 1070 path->target->target_id, 1071 (uintmax_t)path->device->lun_id); 1072 printf("%s%d: ", periph->periph_name, periph->unit_number); 1073 proto = xpt_proto_find(path->device->protocol); 1074 if (proto) 1075 proto->ops->announce(path->device); 1076 else 1077 printf("%s%d: Unknown protocol device %d\n", 1078 periph->periph_name, periph->unit_number, 1079 path->device->protocol); 1080 if (path->device->serial_num_len > 0) { 1081 /* Don't wrap the screen - print only the first 60 chars */ 1082 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1083 periph->unit_number, path->device->serial_num); 1084 } 1085 /* Announce transport details. */ 1086 path->bus->xport->ops->announce(periph); 1087 /* Announce command queueing. */ 1088 if (path->device->inq_flags & SID_CmdQue 1089 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1090 printf("%s%d: Command Queueing enabled\n", 1091 periph->periph_name, periph->unit_number); 1092 } 1093 /* Announce caller's details if they've passed in. */ 1094 if (announce_string != NULL) 1095 printf("%s%d: %s\n", periph->periph_name, 1096 periph->unit_number, announce_string); 1097 } 1098 1099 void 1100 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1101 char *announce_string) 1102 { 1103 struct cam_path *path = periph->path; 1104 struct xpt_proto *proto; 1105 1106 cam_periph_assert(periph, MA_OWNED); 1107 periph->flags |= CAM_PERIPH_ANNOUNCED; 1108 1109 /* Fall back to the non-sbuf method if necessary */ 1110 if (xsoftc.announce_nosbuf != 0) { 1111 xpt_announce_periph(periph, announce_string); 1112 return; 1113 } 1114 proto = xpt_proto_find(path->device->protocol); 1115 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1116 (path->bus->xport->ops->announce_sbuf == NULL)) { 1117 xpt_announce_periph(periph, announce_string); 1118 return; 1119 } 1120 1121 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1122 periph->periph_name, periph->unit_number, 1123 path->bus->sim->sim_name, 1124 path->bus->sim->unit_number, 1125 path->bus->sim->bus_id, 1126 path->bus->path_id, 1127 path->target->target_id, 1128 (uintmax_t)path->device->lun_id); 1129 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1130 1131 if (proto) 1132 proto->ops->announce_sbuf(path->device, sb); 1133 else 1134 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1135 periph->periph_name, periph->unit_number, 1136 path->device->protocol); 1137 if (path->device->serial_num_len > 0) { 1138 /* Don't wrap the screen - print only the first 60 chars */ 1139 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1140 periph->periph_name, periph->unit_number, 1141 path->device->serial_num); 1142 } 1143 /* Announce transport details. */ 1144 path->bus->xport->ops->announce_sbuf(periph, sb); 1145 /* Announce command queueing. */ 1146 if (path->device->inq_flags & SID_CmdQue 1147 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1148 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1149 periph->periph_name, periph->unit_number); 1150 } 1151 /* Announce caller's details if they've passed in. */ 1152 if (announce_string != NULL) 1153 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1154 periph->unit_number, announce_string); 1155 } 1156 1157 void 1158 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1159 { 1160 if (quirks != 0) { 1161 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1162 periph->unit_number, quirks, bit_string); 1163 } 1164 } 1165 1166 void 1167 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1168 int quirks, char *bit_string) 1169 { 1170 if (xsoftc.announce_nosbuf != 0) { 1171 xpt_announce_quirks(periph, quirks, bit_string); 1172 return; 1173 } 1174 1175 if (quirks != 0) { 1176 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1177 periph->unit_number, quirks, bit_string); 1178 } 1179 } 1180 1181 void 1182 xpt_denounce_periph(struct cam_periph *periph) 1183 { 1184 struct cam_path *path = periph->path; 1185 struct xpt_proto *proto; 1186 1187 cam_periph_assert(periph, MA_OWNED); 1188 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1189 periph->periph_name, periph->unit_number, 1190 path->bus->sim->sim_name, 1191 path->bus->sim->unit_number, 1192 path->bus->sim->bus_id, 1193 path->bus->path_id, 1194 path->target->target_id, 1195 (uintmax_t)path->device->lun_id); 1196 printf("%s%d: ", periph->periph_name, periph->unit_number); 1197 proto = xpt_proto_find(path->device->protocol); 1198 if (proto) 1199 proto->ops->denounce(path->device); 1200 else 1201 printf("%s%d: Unknown protocol device %d\n", 1202 periph->periph_name, periph->unit_number, 1203 path->device->protocol); 1204 if (path->device->serial_num_len > 0) 1205 printf(" s/n %.60s", path->device->serial_num); 1206 printf(" detached\n"); 1207 } 1208 1209 void 1210 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1211 { 1212 struct cam_path *path = periph->path; 1213 struct xpt_proto *proto; 1214 1215 cam_periph_assert(periph, MA_OWNED); 1216 1217 /* Fall back to the non-sbuf method if necessary */ 1218 if (xsoftc.announce_nosbuf != 0) { 1219 xpt_denounce_periph(periph); 1220 return; 1221 } 1222 proto = xpt_proto_find(path->device->protocol); 1223 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1224 xpt_denounce_periph(periph); 1225 return; 1226 } 1227 1228 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1229 periph->periph_name, periph->unit_number, 1230 path->bus->sim->sim_name, 1231 path->bus->sim->unit_number, 1232 path->bus->sim->bus_id, 1233 path->bus->path_id, 1234 path->target->target_id, 1235 (uintmax_t)path->device->lun_id); 1236 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1237 1238 if (proto) 1239 proto->ops->denounce_sbuf(path->device, sb); 1240 else 1241 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1242 periph->periph_name, periph->unit_number, 1243 path->device->protocol); 1244 if (path->device->serial_num_len > 0) 1245 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1246 sbuf_printf(sb, " detached\n"); 1247 } 1248 1249 int 1250 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1251 { 1252 int ret = -1, l, o; 1253 struct ccb_dev_advinfo cdai; 1254 struct scsi_vpd_id_descriptor *idd; 1255 1256 xpt_path_assert(path, MA_OWNED); 1257 1258 memset(&cdai, 0, sizeof(cdai)); 1259 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1260 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1261 cdai.flags = CDAI_FLAG_NONE; 1262 cdai.bufsiz = len; 1263 1264 if (!strcmp(attr, "GEOM::ident")) 1265 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1266 else if (!strcmp(attr, "GEOM::physpath")) 1267 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1268 else if (strcmp(attr, "GEOM::lunid") == 0 || 1269 strcmp(attr, "GEOM::lunname") == 0) { 1270 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1271 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1272 } else 1273 goto out; 1274 1275 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1276 if (cdai.buf == NULL) { 1277 ret = ENOMEM; 1278 goto out; 1279 } 1280 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1281 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1282 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1283 if (cdai.provsiz == 0) 1284 goto out; 1285 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1286 if (strcmp(attr, "GEOM::lunid") == 0) { 1287 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1288 cdai.provsiz, scsi_devid_is_lun_naa); 1289 if (idd == NULL) 1290 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1291 cdai.provsiz, scsi_devid_is_lun_eui64); 1292 if (idd == NULL) 1293 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1294 cdai.provsiz, scsi_devid_is_lun_uuid); 1295 if (idd == NULL) 1296 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1297 cdai.provsiz, scsi_devid_is_lun_md5); 1298 } else 1299 idd = NULL; 1300 if (idd == NULL) 1301 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1302 cdai.provsiz, scsi_devid_is_lun_t10); 1303 if (idd == NULL) 1304 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1305 cdai.provsiz, scsi_devid_is_lun_name); 1306 if (idd == NULL) 1307 goto out; 1308 ret = 0; 1309 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1310 if (idd->length < len) { 1311 for (l = 0; l < idd->length; l++) 1312 buf[l] = idd->identifier[l] ? 1313 idd->identifier[l] : ' '; 1314 buf[l] = 0; 1315 } else 1316 ret = EFAULT; 1317 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1318 l = strnlen(idd->identifier, idd->length); 1319 if (l < len) { 1320 bcopy(idd->identifier, buf, l); 1321 buf[l] = 0; 1322 } else 1323 ret = EFAULT; 1324 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1325 && idd->identifier[0] == 0x10) { 1326 if ((idd->length - 2) * 2 + 4 < len) { 1327 for (l = 2, o = 0; l < idd->length; l++) { 1328 if (l == 6 || l == 8 || l == 10 || l == 12) 1329 o += sprintf(buf + o, "-"); 1330 o += sprintf(buf + o, "%02x", 1331 idd->identifier[l]); 1332 } 1333 } else 1334 ret = EFAULT; 1335 } else { 1336 if (idd->length * 2 < len) { 1337 for (l = 0; l < idd->length; l++) 1338 sprintf(buf + l * 2, "%02x", 1339 idd->identifier[l]); 1340 } else 1341 ret = EFAULT; 1342 } 1343 } else { 1344 ret = 0; 1345 if (strlcpy(buf, cdai.buf, len) >= len) 1346 ret = EFAULT; 1347 } 1348 1349 out: 1350 if (cdai.buf != NULL) 1351 free(cdai.buf, M_CAMXPT); 1352 return ret; 1353 } 1354 1355 static dev_match_ret 1356 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1357 struct cam_eb *bus) 1358 { 1359 dev_match_ret retval; 1360 u_int i; 1361 1362 retval = DM_RET_NONE; 1363 1364 /* 1365 * If we aren't given something to match against, that's an error. 1366 */ 1367 if (bus == NULL) 1368 return(DM_RET_ERROR); 1369 1370 /* 1371 * If there are no match entries, then this bus matches no 1372 * matter what. 1373 */ 1374 if ((patterns == NULL) || (num_patterns == 0)) 1375 return(DM_RET_DESCEND | DM_RET_COPY); 1376 1377 for (i = 0; i < num_patterns; i++) { 1378 struct bus_match_pattern *cur_pattern; 1379 1380 /* 1381 * If the pattern in question isn't for a bus node, we 1382 * aren't interested. However, we do indicate to the 1383 * calling routine that we should continue descending the 1384 * tree, since the user wants to match against lower-level 1385 * EDT elements. 1386 */ 1387 if (patterns[i].type != DEV_MATCH_BUS) { 1388 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1389 retval |= DM_RET_DESCEND; 1390 continue; 1391 } 1392 1393 cur_pattern = &patterns[i].pattern.bus_pattern; 1394 1395 /* 1396 * If they want to match any bus node, we give them any 1397 * device node. 1398 */ 1399 if (cur_pattern->flags == BUS_MATCH_ANY) { 1400 /* set the copy flag */ 1401 retval |= DM_RET_COPY; 1402 1403 /* 1404 * If we've already decided on an action, go ahead 1405 * and return. 1406 */ 1407 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1408 return(retval); 1409 } 1410 1411 /* 1412 * Not sure why someone would do this... 1413 */ 1414 if (cur_pattern->flags == BUS_MATCH_NONE) 1415 continue; 1416 1417 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1418 && (cur_pattern->path_id != bus->path_id)) 1419 continue; 1420 1421 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1422 && (cur_pattern->bus_id != bus->sim->bus_id)) 1423 continue; 1424 1425 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1426 && (cur_pattern->unit_number != bus->sim->unit_number)) 1427 continue; 1428 1429 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1430 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1431 DEV_IDLEN) != 0)) 1432 continue; 1433 1434 /* 1435 * If we get to this point, the user definitely wants 1436 * information on this bus. So tell the caller to copy the 1437 * data out. 1438 */ 1439 retval |= DM_RET_COPY; 1440 1441 /* 1442 * If the return action has been set to descend, then we 1443 * know that we've already seen a non-bus matching 1444 * expression, therefore we need to further descend the tree. 1445 * This won't change by continuing around the loop, so we 1446 * go ahead and return. If we haven't seen a non-bus 1447 * matching expression, we keep going around the loop until 1448 * we exhaust the matching expressions. We'll set the stop 1449 * flag once we fall out of the loop. 1450 */ 1451 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1452 return(retval); 1453 } 1454 1455 /* 1456 * If the return action hasn't been set to descend yet, that means 1457 * we haven't seen anything other than bus matching patterns. So 1458 * tell the caller to stop descending the tree -- the user doesn't 1459 * want to match against lower level tree elements. 1460 */ 1461 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1462 retval |= DM_RET_STOP; 1463 1464 return(retval); 1465 } 1466 1467 static dev_match_ret 1468 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1469 struct cam_ed *device) 1470 { 1471 dev_match_ret retval; 1472 u_int i; 1473 1474 retval = DM_RET_NONE; 1475 1476 /* 1477 * If we aren't given something to match against, that's an error. 1478 */ 1479 if (device == NULL) 1480 return(DM_RET_ERROR); 1481 1482 /* 1483 * If there are no match entries, then this device matches no 1484 * matter what. 1485 */ 1486 if ((patterns == NULL) || (num_patterns == 0)) 1487 return(DM_RET_DESCEND | DM_RET_COPY); 1488 1489 for (i = 0; i < num_patterns; i++) { 1490 struct device_match_pattern *cur_pattern; 1491 struct scsi_vpd_device_id *device_id_page; 1492 1493 /* 1494 * If the pattern in question isn't for a device node, we 1495 * aren't interested. 1496 */ 1497 if (patterns[i].type != DEV_MATCH_DEVICE) { 1498 if ((patterns[i].type == DEV_MATCH_PERIPH) 1499 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1500 retval |= DM_RET_DESCEND; 1501 continue; 1502 } 1503 1504 cur_pattern = &patterns[i].pattern.device_pattern; 1505 1506 /* Error out if mutually exclusive options are specified. */ 1507 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1508 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1509 return(DM_RET_ERROR); 1510 1511 /* 1512 * If they want to match any device node, we give them any 1513 * device node. 1514 */ 1515 if (cur_pattern->flags == DEV_MATCH_ANY) 1516 goto copy_dev_node; 1517 1518 /* 1519 * Not sure why someone would do this... 1520 */ 1521 if (cur_pattern->flags == DEV_MATCH_NONE) 1522 continue; 1523 1524 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1525 && (cur_pattern->path_id != device->target->bus->path_id)) 1526 continue; 1527 1528 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1529 && (cur_pattern->target_id != device->target->target_id)) 1530 continue; 1531 1532 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1533 && (cur_pattern->target_lun != device->lun_id)) 1534 continue; 1535 1536 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1537 && (cam_quirkmatch((caddr_t)&device->inq_data, 1538 (caddr_t)&cur_pattern->data.inq_pat, 1539 1, sizeof(cur_pattern->data.inq_pat), 1540 scsi_static_inquiry_match) == NULL)) 1541 continue; 1542 1543 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1544 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1545 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1546 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1547 device->device_id_len 1548 - SVPD_DEVICE_ID_HDR_LEN, 1549 cur_pattern->data.devid_pat.id, 1550 cur_pattern->data.devid_pat.id_len) != 0)) 1551 continue; 1552 1553 copy_dev_node: 1554 /* 1555 * If we get to this point, the user definitely wants 1556 * information on this device. So tell the caller to copy 1557 * the data out. 1558 */ 1559 retval |= DM_RET_COPY; 1560 1561 /* 1562 * If the return action has been set to descend, then we 1563 * know that we've already seen a peripheral matching 1564 * expression, therefore we need to further descend the tree. 1565 * This won't change by continuing around the loop, so we 1566 * go ahead and return. If we haven't seen a peripheral 1567 * matching expression, we keep going around the loop until 1568 * we exhaust the matching expressions. We'll set the stop 1569 * flag once we fall out of the loop. 1570 */ 1571 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1572 return(retval); 1573 } 1574 1575 /* 1576 * If the return action hasn't been set to descend yet, that means 1577 * we haven't seen any peripheral matching patterns. So tell the 1578 * caller to stop descending the tree -- the user doesn't want to 1579 * match against lower level tree elements. 1580 */ 1581 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1582 retval |= DM_RET_STOP; 1583 1584 return(retval); 1585 } 1586 1587 /* 1588 * Match a single peripheral against any number of match patterns. 1589 */ 1590 static dev_match_ret 1591 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1592 struct cam_periph *periph) 1593 { 1594 dev_match_ret retval; 1595 u_int i; 1596 1597 /* 1598 * If we aren't given something to match against, that's an error. 1599 */ 1600 if (periph == NULL) 1601 return(DM_RET_ERROR); 1602 1603 /* 1604 * If there are no match entries, then this peripheral matches no 1605 * matter what. 1606 */ 1607 if ((patterns == NULL) || (num_patterns == 0)) 1608 return(DM_RET_STOP | DM_RET_COPY); 1609 1610 /* 1611 * There aren't any nodes below a peripheral node, so there's no 1612 * reason to descend the tree any further. 1613 */ 1614 retval = DM_RET_STOP; 1615 1616 for (i = 0; i < num_patterns; i++) { 1617 struct periph_match_pattern *cur_pattern; 1618 1619 /* 1620 * If the pattern in question isn't for a peripheral, we 1621 * aren't interested. 1622 */ 1623 if (patterns[i].type != DEV_MATCH_PERIPH) 1624 continue; 1625 1626 cur_pattern = &patterns[i].pattern.periph_pattern; 1627 1628 /* 1629 * If they want to match on anything, then we will do so. 1630 */ 1631 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1632 /* set the copy flag */ 1633 retval |= DM_RET_COPY; 1634 1635 /* 1636 * We've already set the return action to stop, 1637 * since there are no nodes below peripherals in 1638 * the tree. 1639 */ 1640 return(retval); 1641 } 1642 1643 /* 1644 * Not sure why someone would do this... 1645 */ 1646 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1647 continue; 1648 1649 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1650 && (cur_pattern->path_id != periph->path->bus->path_id)) 1651 continue; 1652 1653 /* 1654 * For the target and lun id's, we have to make sure the 1655 * target and lun pointers aren't NULL. The xpt peripheral 1656 * has a wildcard target and device. 1657 */ 1658 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1659 && ((periph->path->target == NULL) 1660 ||(cur_pattern->target_id != periph->path->target->target_id))) 1661 continue; 1662 1663 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1664 && ((periph->path->device == NULL) 1665 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1666 continue; 1667 1668 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1669 && (cur_pattern->unit_number != periph->unit_number)) 1670 continue; 1671 1672 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1673 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1674 DEV_IDLEN) != 0)) 1675 continue; 1676 1677 /* 1678 * If we get to this point, the user definitely wants 1679 * information on this peripheral. So tell the caller to 1680 * copy the data out. 1681 */ 1682 retval |= DM_RET_COPY; 1683 1684 /* 1685 * The return action has already been set to stop, since 1686 * peripherals don't have any nodes below them in the EDT. 1687 */ 1688 return(retval); 1689 } 1690 1691 /* 1692 * If we get to this point, the peripheral that was passed in 1693 * doesn't match any of the patterns. 1694 */ 1695 return(retval); 1696 } 1697 1698 static int 1699 xptedtbusfunc(struct cam_eb *bus, void *arg) 1700 { 1701 struct ccb_dev_match *cdm; 1702 struct cam_et *target; 1703 dev_match_ret retval; 1704 1705 cdm = (struct ccb_dev_match *)arg; 1706 1707 /* 1708 * If our position is for something deeper in the tree, that means 1709 * that we've already seen this node. So, we keep going down. 1710 */ 1711 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1712 && (cdm->pos.cookie.bus == bus) 1713 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1714 && (cdm->pos.cookie.target != NULL)) 1715 retval = DM_RET_DESCEND; 1716 else 1717 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1718 1719 /* 1720 * If we got an error, bail out of the search. 1721 */ 1722 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1723 cdm->status = CAM_DEV_MATCH_ERROR; 1724 return(0); 1725 } 1726 1727 /* 1728 * If the copy flag is set, copy this bus out. 1729 */ 1730 if (retval & DM_RET_COPY) { 1731 int spaceleft, j; 1732 1733 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1734 sizeof(struct dev_match_result)); 1735 1736 /* 1737 * If we don't have enough space to put in another 1738 * match result, save our position and tell the 1739 * user there are more devices to check. 1740 */ 1741 if (spaceleft < sizeof(struct dev_match_result)) { 1742 bzero(&cdm->pos, sizeof(cdm->pos)); 1743 cdm->pos.position_type = 1744 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1745 1746 cdm->pos.cookie.bus = bus; 1747 cdm->pos.generations[CAM_BUS_GENERATION]= 1748 xsoftc.bus_generation; 1749 cdm->status = CAM_DEV_MATCH_MORE; 1750 return(0); 1751 } 1752 j = cdm->num_matches; 1753 cdm->num_matches++; 1754 cdm->matches[j].type = DEV_MATCH_BUS; 1755 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1756 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1757 cdm->matches[j].result.bus_result.unit_number = 1758 bus->sim->unit_number; 1759 strncpy(cdm->matches[j].result.bus_result.dev_name, 1760 bus->sim->sim_name, DEV_IDLEN); 1761 } 1762 1763 /* 1764 * If the user is only interested in buses, there's no 1765 * reason to descend to the next level in the tree. 1766 */ 1767 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1768 return(1); 1769 1770 /* 1771 * If there is a target generation recorded, check it to 1772 * make sure the target list hasn't changed. 1773 */ 1774 mtx_lock(&bus->eb_mtx); 1775 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1776 && (cdm->pos.cookie.bus == bus) 1777 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1778 && (cdm->pos.cookie.target != NULL)) { 1779 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1780 bus->generation)) { 1781 mtx_unlock(&bus->eb_mtx); 1782 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1783 return (0); 1784 } 1785 target = (struct cam_et *)cdm->pos.cookie.target; 1786 target->refcount++; 1787 } else 1788 target = NULL; 1789 mtx_unlock(&bus->eb_mtx); 1790 1791 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1792 } 1793 1794 static int 1795 xptedttargetfunc(struct cam_et *target, void *arg) 1796 { 1797 struct ccb_dev_match *cdm; 1798 struct cam_eb *bus; 1799 struct cam_ed *device; 1800 1801 cdm = (struct ccb_dev_match *)arg; 1802 bus = target->bus; 1803 1804 /* 1805 * If there is a device list generation recorded, check it to 1806 * make sure the device list hasn't changed. 1807 */ 1808 mtx_lock(&bus->eb_mtx); 1809 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1810 && (cdm->pos.cookie.bus == bus) 1811 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1812 && (cdm->pos.cookie.target == target) 1813 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1814 && (cdm->pos.cookie.device != NULL)) { 1815 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1816 target->generation) { 1817 mtx_unlock(&bus->eb_mtx); 1818 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1819 return(0); 1820 } 1821 device = (struct cam_ed *)cdm->pos.cookie.device; 1822 device->refcount++; 1823 } else 1824 device = NULL; 1825 mtx_unlock(&bus->eb_mtx); 1826 1827 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1828 } 1829 1830 static int 1831 xptedtdevicefunc(struct cam_ed *device, void *arg) 1832 { 1833 struct cam_eb *bus; 1834 struct cam_periph *periph; 1835 struct ccb_dev_match *cdm; 1836 dev_match_ret retval; 1837 1838 cdm = (struct ccb_dev_match *)arg; 1839 bus = device->target->bus; 1840 1841 /* 1842 * If our position is for something deeper in the tree, that means 1843 * that we've already seen this node. So, we keep going down. 1844 */ 1845 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1846 && (cdm->pos.cookie.device == device) 1847 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1848 && (cdm->pos.cookie.periph != NULL)) 1849 retval = DM_RET_DESCEND; 1850 else 1851 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1852 device); 1853 1854 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1855 cdm->status = CAM_DEV_MATCH_ERROR; 1856 return(0); 1857 } 1858 1859 /* 1860 * If the copy flag is set, copy this device out. 1861 */ 1862 if (retval & DM_RET_COPY) { 1863 int spaceleft, j; 1864 1865 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1866 sizeof(struct dev_match_result)); 1867 1868 /* 1869 * If we don't have enough space to put in another 1870 * match result, save our position and tell the 1871 * user there are more devices to check. 1872 */ 1873 if (spaceleft < sizeof(struct dev_match_result)) { 1874 bzero(&cdm->pos, sizeof(cdm->pos)); 1875 cdm->pos.position_type = 1876 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1877 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1878 1879 cdm->pos.cookie.bus = device->target->bus; 1880 cdm->pos.generations[CAM_BUS_GENERATION]= 1881 xsoftc.bus_generation; 1882 cdm->pos.cookie.target = device->target; 1883 cdm->pos.generations[CAM_TARGET_GENERATION] = 1884 device->target->bus->generation; 1885 cdm->pos.cookie.device = device; 1886 cdm->pos.generations[CAM_DEV_GENERATION] = 1887 device->target->generation; 1888 cdm->status = CAM_DEV_MATCH_MORE; 1889 return(0); 1890 } 1891 j = cdm->num_matches; 1892 cdm->num_matches++; 1893 cdm->matches[j].type = DEV_MATCH_DEVICE; 1894 cdm->matches[j].result.device_result.path_id = 1895 device->target->bus->path_id; 1896 cdm->matches[j].result.device_result.target_id = 1897 device->target->target_id; 1898 cdm->matches[j].result.device_result.target_lun = 1899 device->lun_id; 1900 cdm->matches[j].result.device_result.protocol = 1901 device->protocol; 1902 bcopy(&device->inq_data, 1903 &cdm->matches[j].result.device_result.inq_data, 1904 sizeof(struct scsi_inquiry_data)); 1905 bcopy(&device->ident_data, 1906 &cdm->matches[j].result.device_result.ident_data, 1907 sizeof(struct ata_params)); 1908 bcopy(&device->mmc_ident_data, 1909 &cdm->matches[j].result.device_result.mmc_ident_data, 1910 sizeof(struct mmc_params)); 1911 1912 /* Let the user know whether this device is unconfigured */ 1913 if (device->flags & CAM_DEV_UNCONFIGURED) 1914 cdm->matches[j].result.device_result.flags = 1915 DEV_RESULT_UNCONFIGURED; 1916 else 1917 cdm->matches[j].result.device_result.flags = 1918 DEV_RESULT_NOFLAG; 1919 } 1920 1921 /* 1922 * If the user isn't interested in peripherals, don't descend 1923 * the tree any further. 1924 */ 1925 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1926 return(1); 1927 1928 /* 1929 * If there is a peripheral list generation recorded, make sure 1930 * it hasn't changed. 1931 */ 1932 xpt_lock_buses(); 1933 mtx_lock(&bus->eb_mtx); 1934 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1935 && (cdm->pos.cookie.bus == bus) 1936 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1937 && (cdm->pos.cookie.target == device->target) 1938 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1939 && (cdm->pos.cookie.device == device) 1940 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1941 && (cdm->pos.cookie.periph != NULL)) { 1942 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1943 device->generation) { 1944 mtx_unlock(&bus->eb_mtx); 1945 xpt_unlock_buses(); 1946 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1947 return(0); 1948 } 1949 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1950 periph->refcount++; 1951 } else 1952 periph = NULL; 1953 mtx_unlock(&bus->eb_mtx); 1954 xpt_unlock_buses(); 1955 1956 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1957 } 1958 1959 static int 1960 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1961 { 1962 struct ccb_dev_match *cdm; 1963 dev_match_ret retval; 1964 1965 cdm = (struct ccb_dev_match *)arg; 1966 1967 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1968 1969 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1970 cdm->status = CAM_DEV_MATCH_ERROR; 1971 return(0); 1972 } 1973 1974 /* 1975 * If the copy flag is set, copy this peripheral out. 1976 */ 1977 if (retval & DM_RET_COPY) { 1978 int spaceleft, j; 1979 1980 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1981 sizeof(struct dev_match_result)); 1982 1983 /* 1984 * If we don't have enough space to put in another 1985 * match result, save our position and tell the 1986 * user there are more devices to check. 1987 */ 1988 if (spaceleft < sizeof(struct dev_match_result)) { 1989 bzero(&cdm->pos, sizeof(cdm->pos)); 1990 cdm->pos.position_type = 1991 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1992 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1993 CAM_DEV_POS_PERIPH; 1994 1995 cdm->pos.cookie.bus = periph->path->bus; 1996 cdm->pos.generations[CAM_BUS_GENERATION]= 1997 xsoftc.bus_generation; 1998 cdm->pos.cookie.target = periph->path->target; 1999 cdm->pos.generations[CAM_TARGET_GENERATION] = 2000 periph->path->bus->generation; 2001 cdm->pos.cookie.device = periph->path->device; 2002 cdm->pos.generations[CAM_DEV_GENERATION] = 2003 periph->path->target->generation; 2004 cdm->pos.cookie.periph = periph; 2005 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2006 periph->path->device->generation; 2007 cdm->status = CAM_DEV_MATCH_MORE; 2008 return(0); 2009 } 2010 2011 j = cdm->num_matches; 2012 cdm->num_matches++; 2013 cdm->matches[j].type = DEV_MATCH_PERIPH; 2014 cdm->matches[j].result.periph_result.path_id = 2015 periph->path->bus->path_id; 2016 cdm->matches[j].result.periph_result.target_id = 2017 periph->path->target->target_id; 2018 cdm->matches[j].result.periph_result.target_lun = 2019 periph->path->device->lun_id; 2020 cdm->matches[j].result.periph_result.unit_number = 2021 periph->unit_number; 2022 strncpy(cdm->matches[j].result.periph_result.periph_name, 2023 periph->periph_name, DEV_IDLEN); 2024 } 2025 2026 return(1); 2027 } 2028 2029 static int 2030 xptedtmatch(struct ccb_dev_match *cdm) 2031 { 2032 struct cam_eb *bus; 2033 int ret; 2034 2035 cdm->num_matches = 0; 2036 2037 /* 2038 * Check the bus list generation. If it has changed, the user 2039 * needs to reset everything and start over. 2040 */ 2041 xpt_lock_buses(); 2042 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2043 && (cdm->pos.cookie.bus != NULL)) { 2044 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2045 xsoftc.bus_generation) { 2046 xpt_unlock_buses(); 2047 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2048 return(0); 2049 } 2050 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2051 bus->refcount++; 2052 } else 2053 bus = NULL; 2054 xpt_unlock_buses(); 2055 2056 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2057 2058 /* 2059 * If we get back 0, that means that we had to stop before fully 2060 * traversing the EDT. It also means that one of the subroutines 2061 * has set the status field to the proper value. If we get back 1, 2062 * we've fully traversed the EDT and copied out any matching entries. 2063 */ 2064 if (ret == 1) 2065 cdm->status = CAM_DEV_MATCH_LAST; 2066 2067 return(ret); 2068 } 2069 2070 static int 2071 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2072 { 2073 struct cam_periph *periph; 2074 struct ccb_dev_match *cdm; 2075 2076 cdm = (struct ccb_dev_match *)arg; 2077 2078 xpt_lock_buses(); 2079 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2080 && (cdm->pos.cookie.pdrv == pdrv) 2081 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2082 && (cdm->pos.cookie.periph != NULL)) { 2083 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2084 (*pdrv)->generation) { 2085 xpt_unlock_buses(); 2086 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2087 return(0); 2088 } 2089 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2090 periph->refcount++; 2091 } else 2092 periph = NULL; 2093 xpt_unlock_buses(); 2094 2095 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2096 } 2097 2098 static int 2099 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2100 { 2101 struct ccb_dev_match *cdm; 2102 dev_match_ret retval; 2103 2104 cdm = (struct ccb_dev_match *)arg; 2105 2106 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2107 2108 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2109 cdm->status = CAM_DEV_MATCH_ERROR; 2110 return(0); 2111 } 2112 2113 /* 2114 * If the copy flag is set, copy this peripheral out. 2115 */ 2116 if (retval & DM_RET_COPY) { 2117 int spaceleft, j; 2118 2119 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2120 sizeof(struct dev_match_result)); 2121 2122 /* 2123 * If we don't have enough space to put in another 2124 * match result, save our position and tell the 2125 * user there are more devices to check. 2126 */ 2127 if (spaceleft < sizeof(struct dev_match_result)) { 2128 struct periph_driver **pdrv; 2129 2130 pdrv = NULL; 2131 bzero(&cdm->pos, sizeof(cdm->pos)); 2132 cdm->pos.position_type = 2133 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2134 CAM_DEV_POS_PERIPH; 2135 2136 /* 2137 * This may look a bit non-sensical, but it is 2138 * actually quite logical. There are very few 2139 * peripheral drivers, and bloating every peripheral 2140 * structure with a pointer back to its parent 2141 * peripheral driver linker set entry would cost 2142 * more in the long run than doing this quick lookup. 2143 */ 2144 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2145 if (strcmp((*pdrv)->driver_name, 2146 periph->periph_name) == 0) 2147 break; 2148 } 2149 2150 if (*pdrv == NULL) { 2151 cdm->status = CAM_DEV_MATCH_ERROR; 2152 return(0); 2153 } 2154 2155 cdm->pos.cookie.pdrv = pdrv; 2156 /* 2157 * The periph generation slot does double duty, as 2158 * does the periph pointer slot. They are used for 2159 * both edt and pdrv lookups and positioning. 2160 */ 2161 cdm->pos.cookie.periph = periph; 2162 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2163 (*pdrv)->generation; 2164 cdm->status = CAM_DEV_MATCH_MORE; 2165 return(0); 2166 } 2167 2168 j = cdm->num_matches; 2169 cdm->num_matches++; 2170 cdm->matches[j].type = DEV_MATCH_PERIPH; 2171 cdm->matches[j].result.periph_result.path_id = 2172 periph->path->bus->path_id; 2173 2174 /* 2175 * The transport layer peripheral doesn't have a target or 2176 * lun. 2177 */ 2178 if (periph->path->target) 2179 cdm->matches[j].result.periph_result.target_id = 2180 periph->path->target->target_id; 2181 else 2182 cdm->matches[j].result.periph_result.target_id = 2183 CAM_TARGET_WILDCARD; 2184 2185 if (periph->path->device) 2186 cdm->matches[j].result.periph_result.target_lun = 2187 periph->path->device->lun_id; 2188 else 2189 cdm->matches[j].result.periph_result.target_lun = 2190 CAM_LUN_WILDCARD; 2191 2192 cdm->matches[j].result.periph_result.unit_number = 2193 periph->unit_number; 2194 strncpy(cdm->matches[j].result.periph_result.periph_name, 2195 periph->periph_name, DEV_IDLEN); 2196 } 2197 2198 return(1); 2199 } 2200 2201 static int 2202 xptperiphlistmatch(struct ccb_dev_match *cdm) 2203 { 2204 int ret; 2205 2206 cdm->num_matches = 0; 2207 2208 /* 2209 * At this point in the edt traversal function, we check the bus 2210 * list generation to make sure that no buses have been added or 2211 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2212 * For the peripheral driver list traversal function, however, we 2213 * don't have to worry about new peripheral driver types coming or 2214 * going; they're in a linker set, and therefore can't change 2215 * without a recompile. 2216 */ 2217 2218 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2219 && (cdm->pos.cookie.pdrv != NULL)) 2220 ret = xptpdrvtraverse( 2221 (struct periph_driver **)cdm->pos.cookie.pdrv, 2222 xptplistpdrvfunc, cdm); 2223 else 2224 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2225 2226 /* 2227 * If we get back 0, that means that we had to stop before fully 2228 * traversing the peripheral driver tree. It also means that one of 2229 * the subroutines has set the status field to the proper value. If 2230 * we get back 1, we've fully traversed the EDT and copied out any 2231 * matching entries. 2232 */ 2233 if (ret == 1) 2234 cdm->status = CAM_DEV_MATCH_LAST; 2235 2236 return(ret); 2237 } 2238 2239 static int 2240 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2241 { 2242 struct cam_eb *bus, *next_bus; 2243 int retval; 2244 2245 retval = 1; 2246 if (start_bus) 2247 bus = start_bus; 2248 else { 2249 xpt_lock_buses(); 2250 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2251 if (bus == NULL) { 2252 xpt_unlock_buses(); 2253 return (retval); 2254 } 2255 bus->refcount++; 2256 xpt_unlock_buses(); 2257 } 2258 for (; bus != NULL; bus = next_bus) { 2259 retval = tr_func(bus, arg); 2260 if (retval == 0) { 2261 xpt_release_bus(bus); 2262 break; 2263 } 2264 xpt_lock_buses(); 2265 next_bus = TAILQ_NEXT(bus, links); 2266 if (next_bus) 2267 next_bus->refcount++; 2268 xpt_unlock_buses(); 2269 xpt_release_bus(bus); 2270 } 2271 return(retval); 2272 } 2273 2274 static int 2275 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2276 xpt_targetfunc_t *tr_func, void *arg) 2277 { 2278 struct cam_et *target, *next_target; 2279 int retval; 2280 2281 retval = 1; 2282 if (start_target) 2283 target = start_target; 2284 else { 2285 mtx_lock(&bus->eb_mtx); 2286 target = TAILQ_FIRST(&bus->et_entries); 2287 if (target == NULL) { 2288 mtx_unlock(&bus->eb_mtx); 2289 return (retval); 2290 } 2291 target->refcount++; 2292 mtx_unlock(&bus->eb_mtx); 2293 } 2294 for (; target != NULL; target = next_target) { 2295 retval = tr_func(target, arg); 2296 if (retval == 0) { 2297 xpt_release_target(target); 2298 break; 2299 } 2300 mtx_lock(&bus->eb_mtx); 2301 next_target = TAILQ_NEXT(target, links); 2302 if (next_target) 2303 next_target->refcount++; 2304 mtx_unlock(&bus->eb_mtx); 2305 xpt_release_target(target); 2306 } 2307 return(retval); 2308 } 2309 2310 static int 2311 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2312 xpt_devicefunc_t *tr_func, void *arg) 2313 { 2314 struct cam_eb *bus; 2315 struct cam_ed *device, *next_device; 2316 int retval; 2317 2318 retval = 1; 2319 bus = target->bus; 2320 if (start_device) 2321 device = start_device; 2322 else { 2323 mtx_lock(&bus->eb_mtx); 2324 device = TAILQ_FIRST(&target->ed_entries); 2325 if (device == NULL) { 2326 mtx_unlock(&bus->eb_mtx); 2327 return (retval); 2328 } 2329 device->refcount++; 2330 mtx_unlock(&bus->eb_mtx); 2331 } 2332 for (; device != NULL; device = next_device) { 2333 mtx_lock(&device->device_mtx); 2334 retval = tr_func(device, arg); 2335 mtx_unlock(&device->device_mtx); 2336 if (retval == 0) { 2337 xpt_release_device(device); 2338 break; 2339 } 2340 mtx_lock(&bus->eb_mtx); 2341 next_device = TAILQ_NEXT(device, links); 2342 if (next_device) 2343 next_device->refcount++; 2344 mtx_unlock(&bus->eb_mtx); 2345 xpt_release_device(device); 2346 } 2347 return(retval); 2348 } 2349 2350 static int 2351 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2352 xpt_periphfunc_t *tr_func, void *arg) 2353 { 2354 struct cam_eb *bus; 2355 struct cam_periph *periph, *next_periph; 2356 int retval; 2357 2358 retval = 1; 2359 2360 bus = device->target->bus; 2361 if (start_periph) 2362 periph = start_periph; 2363 else { 2364 xpt_lock_buses(); 2365 mtx_lock(&bus->eb_mtx); 2366 periph = SLIST_FIRST(&device->periphs); 2367 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2368 periph = SLIST_NEXT(periph, periph_links); 2369 if (periph == NULL) { 2370 mtx_unlock(&bus->eb_mtx); 2371 xpt_unlock_buses(); 2372 return (retval); 2373 } 2374 periph->refcount++; 2375 mtx_unlock(&bus->eb_mtx); 2376 xpt_unlock_buses(); 2377 } 2378 for (; periph != NULL; periph = next_periph) { 2379 retval = tr_func(periph, arg); 2380 if (retval == 0) { 2381 cam_periph_release_locked(periph); 2382 break; 2383 } 2384 xpt_lock_buses(); 2385 mtx_lock(&bus->eb_mtx); 2386 next_periph = SLIST_NEXT(periph, periph_links); 2387 while (next_periph != NULL && 2388 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2389 next_periph = SLIST_NEXT(next_periph, periph_links); 2390 if (next_periph) 2391 next_periph->refcount++; 2392 mtx_unlock(&bus->eb_mtx); 2393 xpt_unlock_buses(); 2394 cam_periph_release_locked(periph); 2395 } 2396 return(retval); 2397 } 2398 2399 static int 2400 xptpdrvtraverse(struct periph_driver **start_pdrv, 2401 xpt_pdrvfunc_t *tr_func, void *arg) 2402 { 2403 struct periph_driver **pdrv; 2404 int retval; 2405 2406 retval = 1; 2407 2408 /* 2409 * We don't traverse the peripheral driver list like we do the 2410 * other lists, because it is a linker set, and therefore cannot be 2411 * changed during runtime. If the peripheral driver list is ever 2412 * re-done to be something other than a linker set (i.e. it can 2413 * change while the system is running), the list traversal should 2414 * be modified to work like the other traversal functions. 2415 */ 2416 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2417 *pdrv != NULL; pdrv++) { 2418 retval = tr_func(pdrv, arg); 2419 2420 if (retval == 0) 2421 return(retval); 2422 } 2423 2424 return(retval); 2425 } 2426 2427 static int 2428 xptpdperiphtraverse(struct periph_driver **pdrv, 2429 struct cam_periph *start_periph, 2430 xpt_periphfunc_t *tr_func, void *arg) 2431 { 2432 struct cam_periph *periph, *next_periph; 2433 int retval; 2434 2435 retval = 1; 2436 2437 if (start_periph) 2438 periph = start_periph; 2439 else { 2440 xpt_lock_buses(); 2441 periph = TAILQ_FIRST(&(*pdrv)->units); 2442 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2443 periph = TAILQ_NEXT(periph, unit_links); 2444 if (periph == NULL) { 2445 xpt_unlock_buses(); 2446 return (retval); 2447 } 2448 periph->refcount++; 2449 xpt_unlock_buses(); 2450 } 2451 for (; periph != NULL; periph = next_periph) { 2452 cam_periph_lock(periph); 2453 retval = tr_func(periph, arg); 2454 cam_periph_unlock(periph); 2455 if (retval == 0) { 2456 cam_periph_release(periph); 2457 break; 2458 } 2459 xpt_lock_buses(); 2460 next_periph = TAILQ_NEXT(periph, unit_links); 2461 while (next_periph != NULL && 2462 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2463 next_periph = TAILQ_NEXT(next_periph, unit_links); 2464 if (next_periph) 2465 next_periph->refcount++; 2466 xpt_unlock_buses(); 2467 cam_periph_release(periph); 2468 } 2469 return(retval); 2470 } 2471 2472 static int 2473 xptdefbusfunc(struct cam_eb *bus, void *arg) 2474 { 2475 struct xpt_traverse_config *tr_config; 2476 2477 tr_config = (struct xpt_traverse_config *)arg; 2478 2479 if (tr_config->depth == XPT_DEPTH_BUS) { 2480 xpt_busfunc_t *tr_func; 2481 2482 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2483 2484 return(tr_func(bus, tr_config->tr_arg)); 2485 } else 2486 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2487 } 2488 2489 static int 2490 xptdeftargetfunc(struct cam_et *target, void *arg) 2491 { 2492 struct xpt_traverse_config *tr_config; 2493 2494 tr_config = (struct xpt_traverse_config *)arg; 2495 2496 if (tr_config->depth == XPT_DEPTH_TARGET) { 2497 xpt_targetfunc_t *tr_func; 2498 2499 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2500 2501 return(tr_func(target, tr_config->tr_arg)); 2502 } else 2503 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2504 } 2505 2506 static int 2507 xptdefdevicefunc(struct cam_ed *device, void *arg) 2508 { 2509 struct xpt_traverse_config *tr_config; 2510 2511 tr_config = (struct xpt_traverse_config *)arg; 2512 2513 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2514 xpt_devicefunc_t *tr_func; 2515 2516 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2517 2518 return(tr_func(device, tr_config->tr_arg)); 2519 } else 2520 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2521 } 2522 2523 static int 2524 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2525 { 2526 struct xpt_traverse_config *tr_config; 2527 xpt_periphfunc_t *tr_func; 2528 2529 tr_config = (struct xpt_traverse_config *)arg; 2530 2531 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2532 2533 /* 2534 * Unlike the other default functions, we don't check for depth 2535 * here. The peripheral driver level is the last level in the EDT, 2536 * so if we're here, we should execute the function in question. 2537 */ 2538 return(tr_func(periph, tr_config->tr_arg)); 2539 } 2540 2541 /* 2542 * Execute the given function for every bus in the EDT. 2543 */ 2544 static int 2545 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2546 { 2547 struct xpt_traverse_config tr_config; 2548 2549 tr_config.depth = XPT_DEPTH_BUS; 2550 tr_config.tr_func = tr_func; 2551 tr_config.tr_arg = arg; 2552 2553 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2554 } 2555 2556 /* 2557 * Execute the given function for every device in the EDT. 2558 */ 2559 static int 2560 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2561 { 2562 struct xpt_traverse_config tr_config; 2563 2564 tr_config.depth = XPT_DEPTH_DEVICE; 2565 tr_config.tr_func = tr_func; 2566 tr_config.tr_arg = arg; 2567 2568 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2569 } 2570 2571 static int 2572 xptsetasyncfunc(struct cam_ed *device, void *arg) 2573 { 2574 struct cam_path path; 2575 struct ccb_getdev cgd; 2576 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2577 2578 /* 2579 * Don't report unconfigured devices (Wildcard devs, 2580 * devices only for target mode, device instances 2581 * that have been invalidated but are waiting for 2582 * their last reference count to be released). 2583 */ 2584 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2585 return (1); 2586 2587 xpt_compile_path(&path, 2588 NULL, 2589 device->target->bus->path_id, 2590 device->target->target_id, 2591 device->lun_id); 2592 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2593 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2594 xpt_action((union ccb *)&cgd); 2595 csa->callback(csa->callback_arg, 2596 AC_FOUND_DEVICE, 2597 &path, &cgd); 2598 xpt_release_path(&path); 2599 2600 return(1); 2601 } 2602 2603 static int 2604 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2605 { 2606 struct cam_path path; 2607 struct ccb_pathinq cpi; 2608 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2609 2610 xpt_compile_path(&path, /*periph*/NULL, 2611 bus->path_id, 2612 CAM_TARGET_WILDCARD, 2613 CAM_LUN_WILDCARD); 2614 xpt_path_lock(&path); 2615 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2616 cpi.ccb_h.func_code = XPT_PATH_INQ; 2617 xpt_action((union ccb *)&cpi); 2618 csa->callback(csa->callback_arg, 2619 AC_PATH_REGISTERED, 2620 &path, &cpi); 2621 xpt_path_unlock(&path); 2622 xpt_release_path(&path); 2623 2624 return(1); 2625 } 2626 2627 void 2628 xpt_action(union ccb *start_ccb) 2629 { 2630 2631 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2632 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2633 xpt_action_name(start_ccb->ccb_h.func_code))); 2634 2635 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2636 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2637 } 2638 2639 void 2640 xpt_action_default(union ccb *start_ccb) 2641 { 2642 struct cam_path *path; 2643 struct cam_sim *sim; 2644 struct mtx *mtx; 2645 2646 path = start_ccb->ccb_h.path; 2647 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2648 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2649 xpt_action_name(start_ccb->ccb_h.func_code))); 2650 2651 switch (start_ccb->ccb_h.func_code) { 2652 case XPT_SCSI_IO: 2653 { 2654 struct cam_ed *device; 2655 2656 /* 2657 * For the sake of compatibility with SCSI-1 2658 * devices that may not understand the identify 2659 * message, we include lun information in the 2660 * second byte of all commands. SCSI-1 specifies 2661 * that luns are a 3 bit value and reserves only 3 2662 * bits for lun information in the CDB. Later 2663 * revisions of the SCSI spec allow for more than 8 2664 * luns, but have deprecated lun information in the 2665 * CDB. So, if the lun won't fit, we must omit. 2666 * 2667 * Also be aware that during initial probing for devices, 2668 * the inquiry information is unknown but initialized to 0. 2669 * This means that this code will be exercised while probing 2670 * devices with an ANSI revision greater than 2. 2671 */ 2672 device = path->device; 2673 if (device->protocol_version <= SCSI_REV_2 2674 && start_ccb->ccb_h.target_lun < 8 2675 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2676 2677 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2678 start_ccb->ccb_h.target_lun << 5; 2679 } 2680 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2681 } 2682 /* FALLTHROUGH */ 2683 case XPT_TARGET_IO: 2684 case XPT_CONT_TARGET_IO: 2685 start_ccb->csio.sense_resid = 0; 2686 start_ccb->csio.resid = 0; 2687 /* FALLTHROUGH */ 2688 case XPT_ATA_IO: 2689 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2690 start_ccb->ataio.resid = 0; 2691 /* FALLTHROUGH */ 2692 case XPT_NVME_IO: 2693 /* FALLTHROUGH */ 2694 case XPT_NVME_ADMIN: 2695 /* FALLTHROUGH */ 2696 case XPT_MMC_IO: 2697 /* XXX just like nmve_io? */ 2698 case XPT_RESET_DEV: 2699 case XPT_ENG_EXEC: 2700 case XPT_SMP_IO: 2701 { 2702 struct cam_devq *devq; 2703 2704 devq = path->bus->sim->devq; 2705 mtx_lock(&devq->send_mtx); 2706 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2707 if (xpt_schedule_devq(devq, path->device) != 0) 2708 xpt_run_devq(devq); 2709 mtx_unlock(&devq->send_mtx); 2710 break; 2711 } 2712 case XPT_CALC_GEOMETRY: 2713 /* Filter out garbage */ 2714 if (start_ccb->ccg.block_size == 0 2715 || start_ccb->ccg.volume_size == 0) { 2716 start_ccb->ccg.cylinders = 0; 2717 start_ccb->ccg.heads = 0; 2718 start_ccb->ccg.secs_per_track = 0; 2719 start_ccb->ccb_h.status = CAM_REQ_CMP; 2720 break; 2721 } 2722 #if defined(__sparc64__) 2723 /* 2724 * For sparc64, we may need adjust the geometry of large 2725 * disks in order to fit the limitations of the 16-bit 2726 * fields of the VTOC8 disk label. 2727 */ 2728 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2729 start_ccb->ccb_h.status = CAM_REQ_CMP; 2730 break; 2731 } 2732 #endif 2733 goto call_sim; 2734 case XPT_ABORT: 2735 { 2736 union ccb* abort_ccb; 2737 2738 abort_ccb = start_ccb->cab.abort_ccb; 2739 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2740 struct cam_ed *device; 2741 struct cam_devq *devq; 2742 2743 device = abort_ccb->ccb_h.path->device; 2744 devq = device->sim->devq; 2745 2746 mtx_lock(&devq->send_mtx); 2747 if (abort_ccb->ccb_h.pinfo.index > 0) { 2748 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2749 abort_ccb->ccb_h.status = 2750 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2751 xpt_freeze_devq_device(device, 1); 2752 mtx_unlock(&devq->send_mtx); 2753 xpt_done(abort_ccb); 2754 start_ccb->ccb_h.status = CAM_REQ_CMP; 2755 break; 2756 } 2757 mtx_unlock(&devq->send_mtx); 2758 2759 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2760 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2761 /* 2762 * We've caught this ccb en route to 2763 * the SIM. Flag it for abort and the 2764 * SIM will do so just before starting 2765 * real work on the CCB. 2766 */ 2767 abort_ccb->ccb_h.status = 2768 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2769 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2770 start_ccb->ccb_h.status = CAM_REQ_CMP; 2771 break; 2772 } 2773 } 2774 if (XPT_FC_IS_QUEUED(abort_ccb) 2775 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2776 /* 2777 * It's already completed but waiting 2778 * for our SWI to get to it. 2779 */ 2780 start_ccb->ccb_h.status = CAM_UA_ABORT; 2781 break; 2782 } 2783 /* 2784 * If we weren't able to take care of the abort request 2785 * in the XPT, pass the request down to the SIM for processing. 2786 */ 2787 } 2788 /* FALLTHROUGH */ 2789 case XPT_ACCEPT_TARGET_IO: 2790 case XPT_EN_LUN: 2791 case XPT_IMMED_NOTIFY: 2792 case XPT_NOTIFY_ACK: 2793 case XPT_RESET_BUS: 2794 case XPT_IMMEDIATE_NOTIFY: 2795 case XPT_NOTIFY_ACKNOWLEDGE: 2796 case XPT_GET_SIM_KNOB_OLD: 2797 case XPT_GET_SIM_KNOB: 2798 case XPT_SET_SIM_KNOB: 2799 case XPT_GET_TRAN_SETTINGS: 2800 case XPT_SET_TRAN_SETTINGS: 2801 case XPT_PATH_INQ: 2802 call_sim: 2803 sim = path->bus->sim; 2804 mtx = sim->mtx; 2805 if (mtx && !mtx_owned(mtx)) 2806 mtx_lock(mtx); 2807 else 2808 mtx = NULL; 2809 2810 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2811 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2812 (*(sim->sim_action))(sim, start_ccb); 2813 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2814 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2815 if (mtx) 2816 mtx_unlock(mtx); 2817 break; 2818 case XPT_PATH_STATS: 2819 start_ccb->cpis.last_reset = path->bus->last_reset; 2820 start_ccb->ccb_h.status = CAM_REQ_CMP; 2821 break; 2822 case XPT_GDEV_TYPE: 2823 { 2824 struct cam_ed *dev; 2825 2826 dev = path->device; 2827 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2828 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2829 } else { 2830 struct ccb_getdev *cgd; 2831 2832 cgd = &start_ccb->cgd; 2833 cgd->protocol = dev->protocol; 2834 cgd->inq_data = dev->inq_data; 2835 cgd->ident_data = dev->ident_data; 2836 cgd->inq_flags = dev->inq_flags; 2837 cgd->nvme_data = dev->nvme_data; 2838 cgd->nvme_cdata = dev->nvme_cdata; 2839 cgd->ccb_h.status = CAM_REQ_CMP; 2840 cgd->serial_num_len = dev->serial_num_len; 2841 if ((dev->serial_num_len > 0) 2842 && (dev->serial_num != NULL)) 2843 bcopy(dev->serial_num, cgd->serial_num, 2844 dev->serial_num_len); 2845 } 2846 break; 2847 } 2848 case XPT_GDEV_STATS: 2849 { 2850 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2851 struct cam_ed *dev = path->device; 2852 struct cam_eb *bus = path->bus; 2853 struct cam_et *tar = path->target; 2854 struct cam_devq *devq = bus->sim->devq; 2855 2856 mtx_lock(&devq->send_mtx); 2857 cgds->dev_openings = dev->ccbq.dev_openings; 2858 cgds->dev_active = dev->ccbq.dev_active; 2859 cgds->allocated = dev->ccbq.allocated; 2860 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2861 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2862 cgds->last_reset = tar->last_reset; 2863 cgds->maxtags = dev->maxtags; 2864 cgds->mintags = dev->mintags; 2865 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2866 cgds->last_reset = bus->last_reset; 2867 mtx_unlock(&devq->send_mtx); 2868 cgds->ccb_h.status = CAM_REQ_CMP; 2869 break; 2870 } 2871 case XPT_GDEVLIST: 2872 { 2873 struct cam_periph *nperiph; 2874 struct periph_list *periph_head; 2875 struct ccb_getdevlist *cgdl; 2876 u_int i; 2877 struct cam_ed *device; 2878 int found; 2879 2880 2881 found = 0; 2882 2883 /* 2884 * Don't want anyone mucking with our data. 2885 */ 2886 device = path->device; 2887 periph_head = &device->periphs; 2888 cgdl = &start_ccb->cgdl; 2889 2890 /* 2891 * Check and see if the list has changed since the user 2892 * last requested a list member. If so, tell them that the 2893 * list has changed, and therefore they need to start over 2894 * from the beginning. 2895 */ 2896 if ((cgdl->index != 0) && 2897 (cgdl->generation != device->generation)) { 2898 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2899 break; 2900 } 2901 2902 /* 2903 * Traverse the list of peripherals and attempt to find 2904 * the requested peripheral. 2905 */ 2906 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2907 (nperiph != NULL) && (i <= cgdl->index); 2908 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2909 if (i == cgdl->index) { 2910 strncpy(cgdl->periph_name, 2911 nperiph->periph_name, 2912 DEV_IDLEN); 2913 cgdl->unit_number = nperiph->unit_number; 2914 found = 1; 2915 } 2916 } 2917 if (found == 0) { 2918 cgdl->status = CAM_GDEVLIST_ERROR; 2919 break; 2920 } 2921 2922 if (nperiph == NULL) 2923 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2924 else 2925 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2926 2927 cgdl->index++; 2928 cgdl->generation = device->generation; 2929 2930 cgdl->ccb_h.status = CAM_REQ_CMP; 2931 break; 2932 } 2933 case XPT_DEV_MATCH: 2934 { 2935 dev_pos_type position_type; 2936 struct ccb_dev_match *cdm; 2937 2938 cdm = &start_ccb->cdm; 2939 2940 /* 2941 * There are two ways of getting at information in the EDT. 2942 * The first way is via the primary EDT tree. It starts 2943 * with a list of buses, then a list of targets on a bus, 2944 * then devices/luns on a target, and then peripherals on a 2945 * device/lun. The "other" way is by the peripheral driver 2946 * lists. The peripheral driver lists are organized by 2947 * peripheral driver. (obviously) So it makes sense to 2948 * use the peripheral driver list if the user is looking 2949 * for something like "da1", or all "da" devices. If the 2950 * user is looking for something on a particular bus/target 2951 * or lun, it's generally better to go through the EDT tree. 2952 */ 2953 2954 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2955 position_type = cdm->pos.position_type; 2956 else { 2957 u_int i; 2958 2959 position_type = CAM_DEV_POS_NONE; 2960 2961 for (i = 0; i < cdm->num_patterns; i++) { 2962 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2963 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2964 position_type = CAM_DEV_POS_EDT; 2965 break; 2966 } 2967 } 2968 2969 if (cdm->num_patterns == 0) 2970 position_type = CAM_DEV_POS_EDT; 2971 else if (position_type == CAM_DEV_POS_NONE) 2972 position_type = CAM_DEV_POS_PDRV; 2973 } 2974 2975 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2976 case CAM_DEV_POS_EDT: 2977 xptedtmatch(cdm); 2978 break; 2979 case CAM_DEV_POS_PDRV: 2980 xptperiphlistmatch(cdm); 2981 break; 2982 default: 2983 cdm->status = CAM_DEV_MATCH_ERROR; 2984 break; 2985 } 2986 2987 if (cdm->status == CAM_DEV_MATCH_ERROR) 2988 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2989 else 2990 start_ccb->ccb_h.status = CAM_REQ_CMP; 2991 2992 break; 2993 } 2994 case XPT_SASYNC_CB: 2995 { 2996 struct ccb_setasync *csa; 2997 struct async_node *cur_entry; 2998 struct async_list *async_head; 2999 u_int32_t added; 3000 3001 csa = &start_ccb->csa; 3002 added = csa->event_enable; 3003 async_head = &path->device->asyncs; 3004 3005 /* 3006 * If there is already an entry for us, simply 3007 * update it. 3008 */ 3009 cur_entry = SLIST_FIRST(async_head); 3010 while (cur_entry != NULL) { 3011 if ((cur_entry->callback_arg == csa->callback_arg) 3012 && (cur_entry->callback == csa->callback)) 3013 break; 3014 cur_entry = SLIST_NEXT(cur_entry, links); 3015 } 3016 3017 if (cur_entry != NULL) { 3018 /* 3019 * If the request has no flags set, 3020 * remove the entry. 3021 */ 3022 added &= ~cur_entry->event_enable; 3023 if (csa->event_enable == 0) { 3024 SLIST_REMOVE(async_head, cur_entry, 3025 async_node, links); 3026 xpt_release_device(path->device); 3027 free(cur_entry, M_CAMXPT); 3028 } else { 3029 cur_entry->event_enable = csa->event_enable; 3030 } 3031 csa->event_enable = added; 3032 } else { 3033 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3034 M_NOWAIT); 3035 if (cur_entry == NULL) { 3036 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3037 break; 3038 } 3039 cur_entry->event_enable = csa->event_enable; 3040 cur_entry->event_lock = (path->bus->sim->mtx && 3041 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3042 cur_entry->callback_arg = csa->callback_arg; 3043 cur_entry->callback = csa->callback; 3044 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3045 xpt_acquire_device(path->device); 3046 } 3047 start_ccb->ccb_h.status = CAM_REQ_CMP; 3048 break; 3049 } 3050 case XPT_REL_SIMQ: 3051 { 3052 struct ccb_relsim *crs; 3053 struct cam_ed *dev; 3054 3055 crs = &start_ccb->crs; 3056 dev = path->device; 3057 if (dev == NULL) { 3058 3059 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3060 break; 3061 } 3062 3063 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3064 3065 /* Don't ever go below one opening */ 3066 if (crs->openings > 0) { 3067 xpt_dev_ccbq_resize(path, crs->openings); 3068 if (bootverbose) { 3069 xpt_print(path, 3070 "number of openings is now %d\n", 3071 crs->openings); 3072 } 3073 } 3074 } 3075 3076 mtx_lock(&dev->sim->devq->send_mtx); 3077 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3078 3079 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3080 3081 /* 3082 * Just extend the old timeout and decrement 3083 * the freeze count so that a single timeout 3084 * is sufficient for releasing the queue. 3085 */ 3086 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3087 callout_stop(&dev->callout); 3088 } else { 3089 3090 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3091 } 3092 3093 callout_reset_sbt(&dev->callout, 3094 SBT_1MS * crs->release_timeout, 0, 3095 xpt_release_devq_timeout, dev, 0); 3096 3097 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3098 3099 } 3100 3101 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3102 3103 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3104 /* 3105 * Decrement the freeze count so that a single 3106 * completion is still sufficient to unfreeze 3107 * the queue. 3108 */ 3109 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3110 } else { 3111 3112 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3113 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3114 } 3115 } 3116 3117 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3118 3119 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3120 || (dev->ccbq.dev_active == 0)) { 3121 3122 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3123 } else { 3124 3125 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3126 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3127 } 3128 } 3129 mtx_unlock(&dev->sim->devq->send_mtx); 3130 3131 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3132 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3133 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3134 start_ccb->ccb_h.status = CAM_REQ_CMP; 3135 break; 3136 } 3137 case XPT_DEBUG: { 3138 struct cam_path *oldpath; 3139 3140 /* Check that all request bits are supported. */ 3141 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3142 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3143 break; 3144 } 3145 3146 cam_dflags = CAM_DEBUG_NONE; 3147 if (cam_dpath != NULL) { 3148 oldpath = cam_dpath; 3149 cam_dpath = NULL; 3150 xpt_free_path(oldpath); 3151 } 3152 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3153 if (xpt_create_path(&cam_dpath, NULL, 3154 start_ccb->ccb_h.path_id, 3155 start_ccb->ccb_h.target_id, 3156 start_ccb->ccb_h.target_lun) != 3157 CAM_REQ_CMP) { 3158 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3159 } else { 3160 cam_dflags = start_ccb->cdbg.flags; 3161 start_ccb->ccb_h.status = CAM_REQ_CMP; 3162 xpt_print(cam_dpath, "debugging flags now %x\n", 3163 cam_dflags); 3164 } 3165 } else 3166 start_ccb->ccb_h.status = CAM_REQ_CMP; 3167 break; 3168 } 3169 case XPT_NOOP: 3170 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3171 xpt_freeze_devq(path, 1); 3172 start_ccb->ccb_h.status = CAM_REQ_CMP; 3173 break; 3174 case XPT_REPROBE_LUN: 3175 xpt_async(AC_INQ_CHANGED, path, NULL); 3176 start_ccb->ccb_h.status = CAM_REQ_CMP; 3177 xpt_done(start_ccb); 3178 break; 3179 default: 3180 case XPT_SDEV_TYPE: 3181 case XPT_TERM_IO: 3182 case XPT_ENG_INQ: 3183 /* XXX Implement */ 3184 xpt_print(start_ccb->ccb_h.path, 3185 "%s: CCB type %#x %s not supported\n", __func__, 3186 start_ccb->ccb_h.func_code, 3187 xpt_action_name(start_ccb->ccb_h.func_code)); 3188 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3189 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3190 xpt_done(start_ccb); 3191 } 3192 break; 3193 } 3194 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3195 ("xpt_action_default: func= %#x %s status %#x\n", 3196 start_ccb->ccb_h.func_code, 3197 xpt_action_name(start_ccb->ccb_h.func_code), 3198 start_ccb->ccb_h.status)); 3199 } 3200 3201 void 3202 xpt_polled_action(union ccb *start_ccb) 3203 { 3204 u_int32_t timeout; 3205 struct cam_sim *sim; 3206 struct cam_devq *devq; 3207 struct cam_ed *dev; 3208 struct mtx *mtx; 3209 3210 timeout = start_ccb->ccb_h.timeout * 10; 3211 sim = start_ccb->ccb_h.path->bus->sim; 3212 devq = sim->devq; 3213 mtx = sim->mtx; 3214 dev = start_ccb->ccb_h.path->device; 3215 3216 mtx_unlock(&dev->device_mtx); 3217 3218 /* 3219 * Steal an opening so that no other queued requests 3220 * can get it before us while we simulate interrupts. 3221 */ 3222 mtx_lock(&devq->send_mtx); 3223 dev->ccbq.dev_openings--; 3224 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3225 (--timeout > 0)) { 3226 mtx_unlock(&devq->send_mtx); 3227 DELAY(100); 3228 if (mtx) 3229 mtx_lock(mtx); 3230 (*(sim->sim_poll))(sim); 3231 if (mtx) 3232 mtx_unlock(mtx); 3233 camisr_runqueue(); 3234 mtx_lock(&devq->send_mtx); 3235 } 3236 dev->ccbq.dev_openings++; 3237 mtx_unlock(&devq->send_mtx); 3238 3239 if (timeout != 0) { 3240 xpt_action(start_ccb); 3241 while(--timeout > 0) { 3242 if (mtx) 3243 mtx_lock(mtx); 3244 (*(sim->sim_poll))(sim); 3245 if (mtx) 3246 mtx_unlock(mtx); 3247 camisr_runqueue(); 3248 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3249 != CAM_REQ_INPROG) 3250 break; 3251 DELAY(100); 3252 } 3253 if (timeout == 0) { 3254 /* 3255 * XXX Is it worth adding a sim_timeout entry 3256 * point so we can attempt recovery? If 3257 * this is only used for dumps, I don't think 3258 * it is. 3259 */ 3260 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3261 } 3262 } else { 3263 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3264 } 3265 3266 mtx_lock(&dev->device_mtx); 3267 } 3268 3269 /* 3270 * Schedule a peripheral driver to receive a ccb when its 3271 * target device has space for more transactions. 3272 */ 3273 void 3274 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3275 { 3276 3277 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3278 cam_periph_assert(periph, MA_OWNED); 3279 if (new_priority < periph->scheduled_priority) { 3280 periph->scheduled_priority = new_priority; 3281 xpt_run_allocq(periph, 0); 3282 } 3283 } 3284 3285 3286 /* 3287 * Schedule a device to run on a given queue. 3288 * If the device was inserted as a new entry on the queue, 3289 * return 1 meaning the device queue should be run. If we 3290 * were already queued, implying someone else has already 3291 * started the queue, return 0 so the caller doesn't attempt 3292 * to run the queue. 3293 */ 3294 static int 3295 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3296 u_int32_t new_priority) 3297 { 3298 int retval; 3299 u_int32_t old_priority; 3300 3301 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3302 3303 old_priority = pinfo->priority; 3304 3305 /* 3306 * Are we already queued? 3307 */ 3308 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3309 /* Simply reorder based on new priority */ 3310 if (new_priority < old_priority) { 3311 camq_change_priority(queue, pinfo->index, 3312 new_priority); 3313 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3314 ("changed priority to %d\n", 3315 new_priority)); 3316 retval = 1; 3317 } else 3318 retval = 0; 3319 } else { 3320 /* New entry on the queue */ 3321 if (new_priority < old_priority) 3322 pinfo->priority = new_priority; 3323 3324 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3325 ("Inserting onto queue\n")); 3326 pinfo->generation = ++queue->generation; 3327 camq_insert(queue, pinfo); 3328 retval = 1; 3329 } 3330 return (retval); 3331 } 3332 3333 static void 3334 xpt_run_allocq_task(void *context, int pending) 3335 { 3336 struct cam_periph *periph = context; 3337 3338 cam_periph_lock(periph); 3339 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3340 xpt_run_allocq(periph, 1); 3341 cam_periph_unlock(periph); 3342 cam_periph_release(periph); 3343 } 3344 3345 static void 3346 xpt_run_allocq(struct cam_periph *periph, int sleep) 3347 { 3348 struct cam_ed *device; 3349 union ccb *ccb; 3350 uint32_t prio; 3351 3352 cam_periph_assert(periph, MA_OWNED); 3353 if (periph->periph_allocating) 3354 return; 3355 periph->periph_allocating = 1; 3356 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3357 device = periph->path->device; 3358 ccb = NULL; 3359 restart: 3360 while ((prio = min(periph->scheduled_priority, 3361 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3362 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3363 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3364 3365 if (ccb == NULL && 3366 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3367 if (sleep) { 3368 ccb = xpt_get_ccb(periph); 3369 goto restart; 3370 } 3371 if (periph->flags & CAM_PERIPH_RUN_TASK) 3372 break; 3373 cam_periph_doacquire(periph); 3374 periph->flags |= CAM_PERIPH_RUN_TASK; 3375 taskqueue_enqueue(xsoftc.xpt_taskq, 3376 &periph->periph_run_task); 3377 break; 3378 } 3379 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3380 if (prio == periph->immediate_priority) { 3381 periph->immediate_priority = CAM_PRIORITY_NONE; 3382 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3383 ("waking cam_periph_getccb()\n")); 3384 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3385 periph_links.sle); 3386 wakeup(&periph->ccb_list); 3387 } else { 3388 periph->scheduled_priority = CAM_PRIORITY_NONE; 3389 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3390 ("calling periph_start()\n")); 3391 periph->periph_start(periph, ccb); 3392 } 3393 ccb = NULL; 3394 } 3395 if (ccb != NULL) 3396 xpt_release_ccb(ccb); 3397 periph->periph_allocating = 0; 3398 } 3399 3400 static void 3401 xpt_run_devq(struct cam_devq *devq) 3402 { 3403 struct mtx *mtx; 3404 3405 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3406 3407 devq->send_queue.qfrozen_cnt++; 3408 while ((devq->send_queue.entries > 0) 3409 && (devq->send_openings > 0) 3410 && (devq->send_queue.qfrozen_cnt <= 1)) { 3411 struct cam_ed *device; 3412 union ccb *work_ccb; 3413 struct cam_sim *sim; 3414 struct xpt_proto *proto; 3415 3416 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3417 CAMQ_HEAD); 3418 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3419 ("running device %p\n", device)); 3420 3421 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3422 if (work_ccb == NULL) { 3423 printf("device on run queue with no ccbs???\n"); 3424 continue; 3425 } 3426 3427 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3428 3429 mtx_lock(&xsoftc.xpt_highpower_lock); 3430 if (xsoftc.num_highpower <= 0) { 3431 /* 3432 * We got a high power command, but we 3433 * don't have any available slots. Freeze 3434 * the device queue until we have a slot 3435 * available. 3436 */ 3437 xpt_freeze_devq_device(device, 1); 3438 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3439 highpowerq_entry); 3440 3441 mtx_unlock(&xsoftc.xpt_highpower_lock); 3442 continue; 3443 } else { 3444 /* 3445 * Consume a high power slot while 3446 * this ccb runs. 3447 */ 3448 xsoftc.num_highpower--; 3449 } 3450 mtx_unlock(&xsoftc.xpt_highpower_lock); 3451 } 3452 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3453 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3454 devq->send_openings--; 3455 devq->send_active++; 3456 xpt_schedule_devq(devq, device); 3457 mtx_unlock(&devq->send_mtx); 3458 3459 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3460 /* 3461 * The client wants to freeze the queue 3462 * after this CCB is sent. 3463 */ 3464 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3465 } 3466 3467 /* In Target mode, the peripheral driver knows best... */ 3468 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3469 if ((device->inq_flags & SID_CmdQue) != 0 3470 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3471 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3472 else 3473 /* 3474 * Clear this in case of a retried CCB that 3475 * failed due to a rejected tag. 3476 */ 3477 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3478 } 3479 3480 KASSERT(device == work_ccb->ccb_h.path->device, 3481 ("device (%p) / path->device (%p) mismatch", 3482 device, work_ccb->ccb_h.path->device)); 3483 proto = xpt_proto_find(device->protocol); 3484 if (proto && proto->ops->debug_out) 3485 proto->ops->debug_out(work_ccb); 3486 3487 /* 3488 * Device queues can be shared among multiple SIM instances 3489 * that reside on different buses. Use the SIM from the 3490 * queued device, rather than the one from the calling bus. 3491 */ 3492 sim = device->sim; 3493 mtx = sim->mtx; 3494 if (mtx && !mtx_owned(mtx)) 3495 mtx_lock(mtx); 3496 else 3497 mtx = NULL; 3498 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3499 (*(sim->sim_action))(sim, work_ccb); 3500 if (mtx) 3501 mtx_unlock(mtx); 3502 mtx_lock(&devq->send_mtx); 3503 } 3504 devq->send_queue.qfrozen_cnt--; 3505 } 3506 3507 /* 3508 * This function merges stuff from the slave ccb into the master ccb, while 3509 * keeping important fields in the master ccb constant. 3510 */ 3511 void 3512 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3513 { 3514 3515 /* 3516 * Pull fields that are valid for peripheral drivers to set 3517 * into the master CCB along with the CCB "payload". 3518 */ 3519 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3520 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3521 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3522 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3523 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3524 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3525 } 3526 3527 void 3528 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3529 u_int32_t priority, u_int32_t flags) 3530 { 3531 3532 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3533 ccb_h->pinfo.priority = priority; 3534 ccb_h->path = path; 3535 ccb_h->path_id = path->bus->path_id; 3536 if (path->target) 3537 ccb_h->target_id = path->target->target_id; 3538 else 3539 ccb_h->target_id = CAM_TARGET_WILDCARD; 3540 if (path->device) { 3541 ccb_h->target_lun = path->device->lun_id; 3542 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3543 } else { 3544 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3545 } 3546 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3547 ccb_h->flags = flags; 3548 ccb_h->xflags = 0; 3549 } 3550 3551 void 3552 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3553 { 3554 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3555 } 3556 3557 /* Path manipulation functions */ 3558 cam_status 3559 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3560 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3561 { 3562 struct cam_path *path; 3563 cam_status status; 3564 3565 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3566 3567 if (path == NULL) { 3568 status = CAM_RESRC_UNAVAIL; 3569 return(status); 3570 } 3571 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3572 if (status != CAM_REQ_CMP) { 3573 free(path, M_CAMPATH); 3574 path = NULL; 3575 } 3576 *new_path_ptr = path; 3577 return (status); 3578 } 3579 3580 cam_status 3581 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3582 struct cam_periph *periph, path_id_t path_id, 3583 target_id_t target_id, lun_id_t lun_id) 3584 { 3585 3586 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3587 lun_id)); 3588 } 3589 3590 cam_status 3591 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3592 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3593 { 3594 struct cam_eb *bus; 3595 struct cam_et *target; 3596 struct cam_ed *device; 3597 cam_status status; 3598 3599 status = CAM_REQ_CMP; /* Completed without error */ 3600 target = NULL; /* Wildcarded */ 3601 device = NULL; /* Wildcarded */ 3602 3603 /* 3604 * We will potentially modify the EDT, so block interrupts 3605 * that may attempt to create cam paths. 3606 */ 3607 bus = xpt_find_bus(path_id); 3608 if (bus == NULL) { 3609 status = CAM_PATH_INVALID; 3610 } else { 3611 xpt_lock_buses(); 3612 mtx_lock(&bus->eb_mtx); 3613 target = xpt_find_target(bus, target_id); 3614 if (target == NULL) { 3615 /* Create one */ 3616 struct cam_et *new_target; 3617 3618 new_target = xpt_alloc_target(bus, target_id); 3619 if (new_target == NULL) { 3620 status = CAM_RESRC_UNAVAIL; 3621 } else { 3622 target = new_target; 3623 } 3624 } 3625 xpt_unlock_buses(); 3626 if (target != NULL) { 3627 device = xpt_find_device(target, lun_id); 3628 if (device == NULL) { 3629 /* Create one */ 3630 struct cam_ed *new_device; 3631 3632 new_device = 3633 (*(bus->xport->ops->alloc_device))(bus, 3634 target, 3635 lun_id); 3636 if (new_device == NULL) { 3637 status = CAM_RESRC_UNAVAIL; 3638 } else { 3639 device = new_device; 3640 } 3641 } 3642 } 3643 mtx_unlock(&bus->eb_mtx); 3644 } 3645 3646 /* 3647 * Only touch the user's data if we are successful. 3648 */ 3649 if (status == CAM_REQ_CMP) { 3650 new_path->periph = perph; 3651 new_path->bus = bus; 3652 new_path->target = target; 3653 new_path->device = device; 3654 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3655 } else { 3656 if (device != NULL) 3657 xpt_release_device(device); 3658 if (target != NULL) 3659 xpt_release_target(target); 3660 if (bus != NULL) 3661 xpt_release_bus(bus); 3662 } 3663 return (status); 3664 } 3665 3666 cam_status 3667 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3668 { 3669 struct cam_path *new_path; 3670 3671 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3672 if (new_path == NULL) 3673 return(CAM_RESRC_UNAVAIL); 3674 xpt_copy_path(new_path, path); 3675 *new_path_ptr = new_path; 3676 return (CAM_REQ_CMP); 3677 } 3678 3679 void 3680 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3681 { 3682 3683 *new_path = *path; 3684 if (path->bus != NULL) 3685 xpt_acquire_bus(path->bus); 3686 if (path->target != NULL) 3687 xpt_acquire_target(path->target); 3688 if (path->device != NULL) 3689 xpt_acquire_device(path->device); 3690 } 3691 3692 void 3693 xpt_release_path(struct cam_path *path) 3694 { 3695 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3696 if (path->device != NULL) { 3697 xpt_release_device(path->device); 3698 path->device = NULL; 3699 } 3700 if (path->target != NULL) { 3701 xpt_release_target(path->target); 3702 path->target = NULL; 3703 } 3704 if (path->bus != NULL) { 3705 xpt_release_bus(path->bus); 3706 path->bus = NULL; 3707 } 3708 } 3709 3710 void 3711 xpt_free_path(struct cam_path *path) 3712 { 3713 3714 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3715 xpt_release_path(path); 3716 free(path, M_CAMPATH); 3717 } 3718 3719 void 3720 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3721 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3722 { 3723 3724 xpt_lock_buses(); 3725 if (bus_ref) { 3726 if (path->bus) 3727 *bus_ref = path->bus->refcount; 3728 else 3729 *bus_ref = 0; 3730 } 3731 if (periph_ref) { 3732 if (path->periph) 3733 *periph_ref = path->periph->refcount; 3734 else 3735 *periph_ref = 0; 3736 } 3737 xpt_unlock_buses(); 3738 if (target_ref) { 3739 if (path->target) 3740 *target_ref = path->target->refcount; 3741 else 3742 *target_ref = 0; 3743 } 3744 if (device_ref) { 3745 if (path->device) 3746 *device_ref = path->device->refcount; 3747 else 3748 *device_ref = 0; 3749 } 3750 } 3751 3752 /* 3753 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3754 * in path1, 2 for match with wildcards in path2. 3755 */ 3756 int 3757 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3758 { 3759 int retval = 0; 3760 3761 if (path1->bus != path2->bus) { 3762 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3763 retval = 1; 3764 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3765 retval = 2; 3766 else 3767 return (-1); 3768 } 3769 if (path1->target != path2->target) { 3770 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3771 if (retval == 0) 3772 retval = 1; 3773 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3774 retval = 2; 3775 else 3776 return (-1); 3777 } 3778 if (path1->device != path2->device) { 3779 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3780 if (retval == 0) 3781 retval = 1; 3782 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3783 retval = 2; 3784 else 3785 return (-1); 3786 } 3787 return (retval); 3788 } 3789 3790 int 3791 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3792 { 3793 int retval = 0; 3794 3795 if (path->bus != dev->target->bus) { 3796 if (path->bus->path_id == CAM_BUS_WILDCARD) 3797 retval = 1; 3798 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3799 retval = 2; 3800 else 3801 return (-1); 3802 } 3803 if (path->target != dev->target) { 3804 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3805 if (retval == 0) 3806 retval = 1; 3807 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3808 retval = 2; 3809 else 3810 return (-1); 3811 } 3812 if (path->device != dev) { 3813 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3814 if (retval == 0) 3815 retval = 1; 3816 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3817 retval = 2; 3818 else 3819 return (-1); 3820 } 3821 return (retval); 3822 } 3823 3824 void 3825 xpt_print_path(struct cam_path *path) 3826 { 3827 struct sbuf sb; 3828 char buffer[XPT_PRINT_LEN]; 3829 3830 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3831 xpt_path_sbuf(path, &sb); 3832 sbuf_finish(&sb); 3833 printf("%s", sbuf_data(&sb)); 3834 sbuf_delete(&sb); 3835 } 3836 3837 void 3838 xpt_print_device(struct cam_ed *device) 3839 { 3840 3841 if (device == NULL) 3842 printf("(nopath): "); 3843 else { 3844 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3845 device->sim->unit_number, 3846 device->sim->bus_id, 3847 device->target->target_id, 3848 (uintmax_t)device->lun_id); 3849 } 3850 } 3851 3852 void 3853 xpt_print(struct cam_path *path, const char *fmt, ...) 3854 { 3855 va_list ap; 3856 struct sbuf sb; 3857 char buffer[XPT_PRINT_LEN]; 3858 3859 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3860 3861 xpt_path_sbuf(path, &sb); 3862 va_start(ap, fmt); 3863 sbuf_vprintf(&sb, fmt, ap); 3864 va_end(ap); 3865 3866 sbuf_finish(&sb); 3867 printf("%s", sbuf_data(&sb)); 3868 sbuf_delete(&sb); 3869 } 3870 3871 int 3872 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3873 { 3874 struct sbuf sb; 3875 int len; 3876 3877 sbuf_new(&sb, str, str_len, 0); 3878 len = xpt_path_sbuf(path, &sb); 3879 sbuf_finish(&sb); 3880 return (len); 3881 } 3882 3883 int 3884 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3885 { 3886 3887 if (path == NULL) 3888 sbuf_printf(sb, "(nopath): "); 3889 else { 3890 if (path->periph != NULL) 3891 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3892 path->periph->unit_number); 3893 else 3894 sbuf_printf(sb, "(noperiph:"); 3895 3896 if (path->bus != NULL) 3897 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3898 path->bus->sim->unit_number, 3899 path->bus->sim->bus_id); 3900 else 3901 sbuf_printf(sb, "nobus:"); 3902 3903 if (path->target != NULL) 3904 sbuf_printf(sb, "%d:", path->target->target_id); 3905 else 3906 sbuf_printf(sb, "X:"); 3907 3908 if (path->device != NULL) 3909 sbuf_printf(sb, "%jx): ", 3910 (uintmax_t)path->device->lun_id); 3911 else 3912 sbuf_printf(sb, "X): "); 3913 } 3914 3915 return(sbuf_len(sb)); 3916 } 3917 3918 path_id_t 3919 xpt_path_path_id(struct cam_path *path) 3920 { 3921 return(path->bus->path_id); 3922 } 3923 3924 target_id_t 3925 xpt_path_target_id(struct cam_path *path) 3926 { 3927 if (path->target != NULL) 3928 return (path->target->target_id); 3929 else 3930 return (CAM_TARGET_WILDCARD); 3931 } 3932 3933 lun_id_t 3934 xpt_path_lun_id(struct cam_path *path) 3935 { 3936 if (path->device != NULL) 3937 return (path->device->lun_id); 3938 else 3939 return (CAM_LUN_WILDCARD); 3940 } 3941 3942 struct cam_sim * 3943 xpt_path_sim(struct cam_path *path) 3944 { 3945 3946 return (path->bus->sim); 3947 } 3948 3949 struct cam_periph* 3950 xpt_path_periph(struct cam_path *path) 3951 { 3952 3953 return (path->periph); 3954 } 3955 3956 /* 3957 * Release a CAM control block for the caller. Remit the cost of the structure 3958 * to the device referenced by the path. If the this device had no 'credits' 3959 * and peripheral drivers have registered async callbacks for this notification 3960 * call them now. 3961 */ 3962 void 3963 xpt_release_ccb(union ccb *free_ccb) 3964 { 3965 struct cam_ed *device; 3966 struct cam_periph *periph; 3967 3968 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3969 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3970 device = free_ccb->ccb_h.path->device; 3971 periph = free_ccb->ccb_h.path->periph; 3972 3973 xpt_free_ccb(free_ccb); 3974 periph->periph_allocated--; 3975 cam_ccbq_release_opening(&device->ccbq); 3976 xpt_run_allocq(periph, 0); 3977 } 3978 3979 /* Functions accessed by SIM drivers */ 3980 3981 static struct xpt_xport_ops xport_default_ops = { 3982 .alloc_device = xpt_alloc_device_default, 3983 .action = xpt_action_default, 3984 .async = xpt_dev_async_default, 3985 }; 3986 static struct xpt_xport xport_default = { 3987 .xport = XPORT_UNKNOWN, 3988 .name = "unknown", 3989 .ops = &xport_default_ops, 3990 }; 3991 3992 CAM_XPT_XPORT(xport_default); 3993 3994 /* 3995 * A sim structure, listing the SIM entry points and instance 3996 * identification info is passed to xpt_bus_register to hook the SIM 3997 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3998 * for this new bus and places it in the array of buses and assigns 3999 * it a path_id. The path_id may be influenced by "hard wiring" 4000 * information specified by the user. Once interrupt services are 4001 * available, the bus will be probed. 4002 */ 4003 int32_t 4004 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4005 { 4006 struct cam_eb *new_bus; 4007 struct cam_eb *old_bus; 4008 struct ccb_pathinq cpi; 4009 struct cam_path *path; 4010 cam_status status; 4011 4012 sim->bus_id = bus; 4013 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4014 M_CAMXPT, M_NOWAIT|M_ZERO); 4015 if (new_bus == NULL) { 4016 /* Couldn't satisfy request */ 4017 return (CAM_RESRC_UNAVAIL); 4018 } 4019 4020 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4021 TAILQ_INIT(&new_bus->et_entries); 4022 cam_sim_hold(sim); 4023 new_bus->sim = sim; 4024 timevalclear(&new_bus->last_reset); 4025 new_bus->flags = 0; 4026 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4027 new_bus->generation = 0; 4028 4029 xpt_lock_buses(); 4030 sim->path_id = new_bus->path_id = 4031 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4032 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4033 while (old_bus != NULL 4034 && old_bus->path_id < new_bus->path_id) 4035 old_bus = TAILQ_NEXT(old_bus, links); 4036 if (old_bus != NULL) 4037 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4038 else 4039 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4040 xsoftc.bus_generation++; 4041 xpt_unlock_buses(); 4042 4043 /* 4044 * Set a default transport so that a PATH_INQ can be issued to 4045 * the SIM. This will then allow for probing and attaching of 4046 * a more appropriate transport. 4047 */ 4048 new_bus->xport = &xport_default; 4049 4050 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4051 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4052 if (status != CAM_REQ_CMP) { 4053 xpt_release_bus(new_bus); 4054 free(path, M_CAMXPT); 4055 return (CAM_RESRC_UNAVAIL); 4056 } 4057 4058 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 4059 cpi.ccb_h.func_code = XPT_PATH_INQ; 4060 xpt_action((union ccb *)&cpi); 4061 4062 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4063 struct xpt_xport **xpt; 4064 4065 SET_FOREACH(xpt, cam_xpt_xport_set) { 4066 if ((*xpt)->xport == cpi.transport) { 4067 new_bus->xport = *xpt; 4068 break; 4069 } 4070 } 4071 if (new_bus->xport == NULL) { 4072 xpt_print(path, 4073 "No transport found for %d\n", cpi.transport); 4074 xpt_release_bus(new_bus); 4075 free(path, M_CAMXPT); 4076 return (CAM_RESRC_UNAVAIL); 4077 } 4078 } 4079 4080 /* Notify interested parties */ 4081 if (sim->path_id != CAM_XPT_PATH_ID) { 4082 4083 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4084 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4085 union ccb *scan_ccb; 4086 4087 /* Initiate bus rescan. */ 4088 scan_ccb = xpt_alloc_ccb_nowait(); 4089 if (scan_ccb != NULL) { 4090 scan_ccb->ccb_h.path = path; 4091 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4092 scan_ccb->crcn.flags = 0; 4093 xpt_rescan(scan_ccb); 4094 } else { 4095 xpt_print(path, 4096 "Can't allocate CCB to scan bus\n"); 4097 xpt_free_path(path); 4098 } 4099 } else 4100 xpt_free_path(path); 4101 } else 4102 xpt_free_path(path); 4103 return (CAM_SUCCESS); 4104 } 4105 4106 int32_t 4107 xpt_bus_deregister(path_id_t pathid) 4108 { 4109 struct cam_path bus_path; 4110 cam_status status; 4111 4112 status = xpt_compile_path(&bus_path, NULL, pathid, 4113 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4114 if (status != CAM_REQ_CMP) 4115 return (status); 4116 4117 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4118 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4119 4120 /* Release the reference count held while registered. */ 4121 xpt_release_bus(bus_path.bus); 4122 xpt_release_path(&bus_path); 4123 4124 return (CAM_REQ_CMP); 4125 } 4126 4127 static path_id_t 4128 xptnextfreepathid(void) 4129 { 4130 struct cam_eb *bus; 4131 path_id_t pathid; 4132 const char *strval; 4133 4134 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4135 pathid = 0; 4136 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4137 retry: 4138 /* Find an unoccupied pathid */ 4139 while (bus != NULL && bus->path_id <= pathid) { 4140 if (bus->path_id == pathid) 4141 pathid++; 4142 bus = TAILQ_NEXT(bus, links); 4143 } 4144 4145 /* 4146 * Ensure that this pathid is not reserved for 4147 * a bus that may be registered in the future. 4148 */ 4149 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4150 ++pathid; 4151 /* Start the search over */ 4152 goto retry; 4153 } 4154 return (pathid); 4155 } 4156 4157 static path_id_t 4158 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4159 { 4160 path_id_t pathid; 4161 int i, dunit, val; 4162 char buf[32]; 4163 const char *dname; 4164 4165 pathid = CAM_XPT_PATH_ID; 4166 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4167 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4168 return (pathid); 4169 i = 0; 4170 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4171 if (strcmp(dname, "scbus")) { 4172 /* Avoid a bit of foot shooting. */ 4173 continue; 4174 } 4175 if (dunit < 0) /* unwired?! */ 4176 continue; 4177 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4178 if (sim_bus == val) { 4179 pathid = dunit; 4180 break; 4181 } 4182 } else if (sim_bus == 0) { 4183 /* Unspecified matches bus 0 */ 4184 pathid = dunit; 4185 break; 4186 } else { 4187 printf("Ambiguous scbus configuration for %s%d " 4188 "bus %d, cannot wire down. The kernel " 4189 "config entry for scbus%d should " 4190 "specify a controller bus.\n" 4191 "Scbus will be assigned dynamically.\n", 4192 sim_name, sim_unit, sim_bus, dunit); 4193 break; 4194 } 4195 } 4196 4197 if (pathid == CAM_XPT_PATH_ID) 4198 pathid = xptnextfreepathid(); 4199 return (pathid); 4200 } 4201 4202 static const char * 4203 xpt_async_string(u_int32_t async_code) 4204 { 4205 4206 switch (async_code) { 4207 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4208 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4209 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4210 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4211 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4212 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4213 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4214 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4215 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4216 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4217 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4218 case AC_CONTRACT: return ("AC_CONTRACT"); 4219 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4220 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4221 } 4222 return ("AC_UNKNOWN"); 4223 } 4224 4225 static int 4226 xpt_async_size(u_int32_t async_code) 4227 { 4228 4229 switch (async_code) { 4230 case AC_BUS_RESET: return (0); 4231 case AC_UNSOL_RESEL: return (0); 4232 case AC_SCSI_AEN: return (0); 4233 case AC_SENT_BDR: return (0); 4234 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4235 case AC_PATH_DEREGISTERED: return (0); 4236 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4237 case AC_LOST_DEVICE: return (0); 4238 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4239 case AC_INQ_CHANGED: return (0); 4240 case AC_GETDEV_CHANGED: return (0); 4241 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4242 case AC_ADVINFO_CHANGED: return (-1); 4243 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4244 } 4245 return (0); 4246 } 4247 4248 static int 4249 xpt_async_process_dev(struct cam_ed *device, void *arg) 4250 { 4251 union ccb *ccb = arg; 4252 struct cam_path *path = ccb->ccb_h.path; 4253 void *async_arg = ccb->casync.async_arg_ptr; 4254 u_int32_t async_code = ccb->casync.async_code; 4255 int relock; 4256 4257 if (path->device != device 4258 && path->device->lun_id != CAM_LUN_WILDCARD 4259 && device->lun_id != CAM_LUN_WILDCARD) 4260 return (1); 4261 4262 /* 4263 * The async callback could free the device. 4264 * If it is a broadcast async, it doesn't hold 4265 * device reference, so take our own reference. 4266 */ 4267 xpt_acquire_device(device); 4268 4269 /* 4270 * If async for specific device is to be delivered to 4271 * the wildcard client, take the specific device lock. 4272 * XXX: We may need a way for client to specify it. 4273 */ 4274 if ((device->lun_id == CAM_LUN_WILDCARD && 4275 path->device->lun_id != CAM_LUN_WILDCARD) || 4276 (device->target->target_id == CAM_TARGET_WILDCARD && 4277 path->target->target_id != CAM_TARGET_WILDCARD) || 4278 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4279 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4280 mtx_unlock(&device->device_mtx); 4281 xpt_path_lock(path); 4282 relock = 1; 4283 } else 4284 relock = 0; 4285 4286 (*(device->target->bus->xport->ops->async))(async_code, 4287 device->target->bus, device->target, device, async_arg); 4288 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4289 4290 if (relock) { 4291 xpt_path_unlock(path); 4292 mtx_lock(&device->device_mtx); 4293 } 4294 xpt_release_device(device); 4295 return (1); 4296 } 4297 4298 static int 4299 xpt_async_process_tgt(struct cam_et *target, void *arg) 4300 { 4301 union ccb *ccb = arg; 4302 struct cam_path *path = ccb->ccb_h.path; 4303 4304 if (path->target != target 4305 && path->target->target_id != CAM_TARGET_WILDCARD 4306 && target->target_id != CAM_TARGET_WILDCARD) 4307 return (1); 4308 4309 if (ccb->casync.async_code == AC_SENT_BDR) { 4310 /* Update our notion of when the last reset occurred */ 4311 microtime(&target->last_reset); 4312 } 4313 4314 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4315 } 4316 4317 static void 4318 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4319 { 4320 struct cam_eb *bus; 4321 struct cam_path *path; 4322 void *async_arg; 4323 u_int32_t async_code; 4324 4325 path = ccb->ccb_h.path; 4326 async_code = ccb->casync.async_code; 4327 async_arg = ccb->casync.async_arg_ptr; 4328 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4329 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4330 bus = path->bus; 4331 4332 if (async_code == AC_BUS_RESET) { 4333 /* Update our notion of when the last reset occurred */ 4334 microtime(&bus->last_reset); 4335 } 4336 4337 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4338 4339 /* 4340 * If this wasn't a fully wildcarded async, tell all 4341 * clients that want all async events. 4342 */ 4343 if (bus != xpt_periph->path->bus) { 4344 xpt_path_lock(xpt_periph->path); 4345 xpt_async_process_dev(xpt_periph->path->device, ccb); 4346 xpt_path_unlock(xpt_periph->path); 4347 } 4348 4349 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4350 xpt_release_devq(path, 1, TRUE); 4351 else 4352 xpt_release_simq(path->bus->sim, TRUE); 4353 if (ccb->casync.async_arg_size > 0) 4354 free(async_arg, M_CAMXPT); 4355 xpt_free_path(path); 4356 xpt_free_ccb(ccb); 4357 } 4358 4359 static void 4360 xpt_async_bcast(struct async_list *async_head, 4361 u_int32_t async_code, 4362 struct cam_path *path, void *async_arg) 4363 { 4364 struct async_node *cur_entry; 4365 struct mtx *mtx; 4366 4367 cur_entry = SLIST_FIRST(async_head); 4368 while (cur_entry != NULL) { 4369 struct async_node *next_entry; 4370 /* 4371 * Grab the next list entry before we call the current 4372 * entry's callback. This is because the callback function 4373 * can delete its async callback entry. 4374 */ 4375 next_entry = SLIST_NEXT(cur_entry, links); 4376 if ((cur_entry->event_enable & async_code) != 0) { 4377 mtx = cur_entry->event_lock ? 4378 path->device->sim->mtx : NULL; 4379 if (mtx) 4380 mtx_lock(mtx); 4381 cur_entry->callback(cur_entry->callback_arg, 4382 async_code, path, 4383 async_arg); 4384 if (mtx) 4385 mtx_unlock(mtx); 4386 } 4387 cur_entry = next_entry; 4388 } 4389 } 4390 4391 void 4392 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4393 { 4394 union ccb *ccb; 4395 int size; 4396 4397 ccb = xpt_alloc_ccb_nowait(); 4398 if (ccb == NULL) { 4399 xpt_print(path, "Can't allocate CCB to send %s\n", 4400 xpt_async_string(async_code)); 4401 return; 4402 } 4403 4404 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4405 xpt_print(path, "Can't allocate path to send %s\n", 4406 xpt_async_string(async_code)); 4407 xpt_free_ccb(ccb); 4408 return; 4409 } 4410 ccb->ccb_h.path->periph = NULL; 4411 ccb->ccb_h.func_code = XPT_ASYNC; 4412 ccb->ccb_h.cbfcnp = xpt_async_process; 4413 ccb->ccb_h.flags |= CAM_UNLOCKED; 4414 ccb->casync.async_code = async_code; 4415 ccb->casync.async_arg_size = 0; 4416 size = xpt_async_size(async_code); 4417 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4418 ("xpt_async: func %#x %s aync_code %d %s\n", 4419 ccb->ccb_h.func_code, 4420 xpt_action_name(ccb->ccb_h.func_code), 4421 async_code, 4422 xpt_async_string(async_code))); 4423 if (size > 0 && async_arg != NULL) { 4424 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4425 if (ccb->casync.async_arg_ptr == NULL) { 4426 xpt_print(path, "Can't allocate argument to send %s\n", 4427 xpt_async_string(async_code)); 4428 xpt_free_path(ccb->ccb_h.path); 4429 xpt_free_ccb(ccb); 4430 return; 4431 } 4432 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4433 ccb->casync.async_arg_size = size; 4434 } else if (size < 0) { 4435 ccb->casync.async_arg_ptr = async_arg; 4436 ccb->casync.async_arg_size = size; 4437 } 4438 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4439 xpt_freeze_devq(path, 1); 4440 else 4441 xpt_freeze_simq(path->bus->sim, 1); 4442 xpt_done(ccb); 4443 } 4444 4445 static void 4446 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4447 struct cam_et *target, struct cam_ed *device, 4448 void *async_arg) 4449 { 4450 4451 /* 4452 * We only need to handle events for real devices. 4453 */ 4454 if (target->target_id == CAM_TARGET_WILDCARD 4455 || device->lun_id == CAM_LUN_WILDCARD) 4456 return; 4457 4458 printf("%s called\n", __func__); 4459 } 4460 4461 static uint32_t 4462 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4463 { 4464 struct cam_devq *devq; 4465 uint32_t freeze; 4466 4467 devq = dev->sim->devq; 4468 mtx_assert(&devq->send_mtx, MA_OWNED); 4469 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4470 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4471 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4472 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4473 /* Remove frozen device from sendq. */ 4474 if (device_is_queued(dev)) 4475 camq_remove(&devq->send_queue, dev->devq_entry.index); 4476 return (freeze); 4477 } 4478 4479 u_int32_t 4480 xpt_freeze_devq(struct cam_path *path, u_int count) 4481 { 4482 struct cam_ed *dev = path->device; 4483 struct cam_devq *devq; 4484 uint32_t freeze; 4485 4486 devq = dev->sim->devq; 4487 mtx_lock(&devq->send_mtx); 4488 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4489 freeze = xpt_freeze_devq_device(dev, count); 4490 mtx_unlock(&devq->send_mtx); 4491 return (freeze); 4492 } 4493 4494 u_int32_t 4495 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4496 { 4497 struct cam_devq *devq; 4498 uint32_t freeze; 4499 4500 devq = sim->devq; 4501 mtx_lock(&devq->send_mtx); 4502 freeze = (devq->send_queue.qfrozen_cnt += count); 4503 mtx_unlock(&devq->send_mtx); 4504 return (freeze); 4505 } 4506 4507 static void 4508 xpt_release_devq_timeout(void *arg) 4509 { 4510 struct cam_ed *dev; 4511 struct cam_devq *devq; 4512 4513 dev = (struct cam_ed *)arg; 4514 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4515 devq = dev->sim->devq; 4516 mtx_assert(&devq->send_mtx, MA_OWNED); 4517 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4518 xpt_run_devq(devq); 4519 } 4520 4521 void 4522 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4523 { 4524 struct cam_ed *dev; 4525 struct cam_devq *devq; 4526 4527 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4528 count, run_queue)); 4529 dev = path->device; 4530 devq = dev->sim->devq; 4531 mtx_lock(&devq->send_mtx); 4532 if (xpt_release_devq_device(dev, count, run_queue)) 4533 xpt_run_devq(dev->sim->devq); 4534 mtx_unlock(&devq->send_mtx); 4535 } 4536 4537 static int 4538 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4539 { 4540 4541 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4542 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4543 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4544 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4545 if (count > dev->ccbq.queue.qfrozen_cnt) { 4546 #ifdef INVARIANTS 4547 printf("xpt_release_devq(): requested %u > present %u\n", 4548 count, dev->ccbq.queue.qfrozen_cnt); 4549 #endif 4550 count = dev->ccbq.queue.qfrozen_cnt; 4551 } 4552 dev->ccbq.queue.qfrozen_cnt -= count; 4553 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4554 /* 4555 * No longer need to wait for a successful 4556 * command completion. 4557 */ 4558 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4559 /* 4560 * Remove any timeouts that might be scheduled 4561 * to release this queue. 4562 */ 4563 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4564 callout_stop(&dev->callout); 4565 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4566 } 4567 /* 4568 * Now that we are unfrozen schedule the 4569 * device so any pending transactions are 4570 * run. 4571 */ 4572 xpt_schedule_devq(dev->sim->devq, dev); 4573 } else 4574 run_queue = 0; 4575 return (run_queue); 4576 } 4577 4578 void 4579 xpt_release_simq(struct cam_sim *sim, int run_queue) 4580 { 4581 struct cam_devq *devq; 4582 4583 devq = sim->devq; 4584 mtx_lock(&devq->send_mtx); 4585 if (devq->send_queue.qfrozen_cnt <= 0) { 4586 #ifdef INVARIANTS 4587 printf("xpt_release_simq: requested 1 > present %u\n", 4588 devq->send_queue.qfrozen_cnt); 4589 #endif 4590 } else 4591 devq->send_queue.qfrozen_cnt--; 4592 if (devq->send_queue.qfrozen_cnt == 0) { 4593 /* 4594 * If there is a timeout scheduled to release this 4595 * sim queue, remove it. The queue frozen count is 4596 * already at 0. 4597 */ 4598 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4599 callout_stop(&sim->callout); 4600 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4601 } 4602 if (run_queue) { 4603 /* 4604 * Now that we are unfrozen run the send queue. 4605 */ 4606 xpt_run_devq(sim->devq); 4607 } 4608 } 4609 mtx_unlock(&devq->send_mtx); 4610 } 4611 4612 /* 4613 * XXX Appears to be unused. 4614 */ 4615 static void 4616 xpt_release_simq_timeout(void *arg) 4617 { 4618 struct cam_sim *sim; 4619 4620 sim = (struct cam_sim *)arg; 4621 xpt_release_simq(sim, /* run_queue */ TRUE); 4622 } 4623 4624 void 4625 xpt_done(union ccb *done_ccb) 4626 { 4627 struct cam_doneq *queue; 4628 int run, hash; 4629 4630 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4631 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4632 done_ccb->csio.bio != NULL) 4633 biotrack(done_ccb->csio.bio, __func__); 4634 #endif 4635 4636 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4637 ("xpt_done: func= %#x %s status %#x\n", 4638 done_ccb->ccb_h.func_code, 4639 xpt_action_name(done_ccb->ccb_h.func_code), 4640 done_ccb->ccb_h.status)); 4641 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4642 return; 4643 4644 /* Store the time the ccb was in the sim */ 4645 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4646 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4647 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4648 queue = &cam_doneqs[hash]; 4649 mtx_lock(&queue->cam_doneq_mtx); 4650 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4651 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4652 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4653 mtx_unlock(&queue->cam_doneq_mtx); 4654 if (run) 4655 wakeup(&queue->cam_doneq); 4656 } 4657 4658 void 4659 xpt_done_direct(union ccb *done_ccb) 4660 { 4661 4662 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4663 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4664 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4665 return; 4666 4667 /* Store the time the ccb was in the sim */ 4668 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4669 xpt_done_process(&done_ccb->ccb_h); 4670 } 4671 4672 union ccb * 4673 xpt_alloc_ccb() 4674 { 4675 union ccb *new_ccb; 4676 4677 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4678 return (new_ccb); 4679 } 4680 4681 union ccb * 4682 xpt_alloc_ccb_nowait() 4683 { 4684 union ccb *new_ccb; 4685 4686 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4687 return (new_ccb); 4688 } 4689 4690 void 4691 xpt_free_ccb(union ccb *free_ccb) 4692 { 4693 free(free_ccb, M_CAMCCB); 4694 } 4695 4696 4697 4698 /* Private XPT functions */ 4699 4700 /* 4701 * Get a CAM control block for the caller. Charge the structure to the device 4702 * referenced by the path. If we don't have sufficient resources to allocate 4703 * more ccbs, we return NULL. 4704 */ 4705 static union ccb * 4706 xpt_get_ccb_nowait(struct cam_periph *periph) 4707 { 4708 union ccb *new_ccb; 4709 4710 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4711 if (new_ccb == NULL) 4712 return (NULL); 4713 periph->periph_allocated++; 4714 cam_ccbq_take_opening(&periph->path->device->ccbq); 4715 return (new_ccb); 4716 } 4717 4718 static union ccb * 4719 xpt_get_ccb(struct cam_periph *periph) 4720 { 4721 union ccb *new_ccb; 4722 4723 cam_periph_unlock(periph); 4724 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4725 cam_periph_lock(periph); 4726 periph->periph_allocated++; 4727 cam_ccbq_take_opening(&periph->path->device->ccbq); 4728 return (new_ccb); 4729 } 4730 4731 union ccb * 4732 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4733 { 4734 struct ccb_hdr *ccb_h; 4735 4736 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4737 cam_periph_assert(periph, MA_OWNED); 4738 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4739 ccb_h->pinfo.priority != priority) { 4740 if (priority < periph->immediate_priority) { 4741 periph->immediate_priority = priority; 4742 xpt_run_allocq(periph, 0); 4743 } else 4744 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4745 "cgticb", 0); 4746 } 4747 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4748 return ((union ccb *)ccb_h); 4749 } 4750 4751 static void 4752 xpt_acquire_bus(struct cam_eb *bus) 4753 { 4754 4755 xpt_lock_buses(); 4756 bus->refcount++; 4757 xpt_unlock_buses(); 4758 } 4759 4760 static void 4761 xpt_release_bus(struct cam_eb *bus) 4762 { 4763 4764 xpt_lock_buses(); 4765 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4766 if (--bus->refcount > 0) { 4767 xpt_unlock_buses(); 4768 return; 4769 } 4770 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4771 xsoftc.bus_generation++; 4772 xpt_unlock_buses(); 4773 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4774 ("destroying bus, but target list is not empty")); 4775 cam_sim_release(bus->sim); 4776 mtx_destroy(&bus->eb_mtx); 4777 free(bus, M_CAMXPT); 4778 } 4779 4780 static struct cam_et * 4781 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4782 { 4783 struct cam_et *cur_target, *target; 4784 4785 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4786 mtx_assert(&bus->eb_mtx, MA_OWNED); 4787 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4788 M_NOWAIT|M_ZERO); 4789 if (target == NULL) 4790 return (NULL); 4791 4792 TAILQ_INIT(&target->ed_entries); 4793 target->bus = bus; 4794 target->target_id = target_id; 4795 target->refcount = 1; 4796 target->generation = 0; 4797 target->luns = NULL; 4798 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4799 timevalclear(&target->last_reset); 4800 /* 4801 * Hold a reference to our parent bus so it 4802 * will not go away before we do. 4803 */ 4804 bus->refcount++; 4805 4806 /* Insertion sort into our bus's target list */ 4807 cur_target = TAILQ_FIRST(&bus->et_entries); 4808 while (cur_target != NULL && cur_target->target_id < target_id) 4809 cur_target = TAILQ_NEXT(cur_target, links); 4810 if (cur_target != NULL) { 4811 TAILQ_INSERT_BEFORE(cur_target, target, links); 4812 } else { 4813 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4814 } 4815 bus->generation++; 4816 return (target); 4817 } 4818 4819 static void 4820 xpt_acquire_target(struct cam_et *target) 4821 { 4822 struct cam_eb *bus = target->bus; 4823 4824 mtx_lock(&bus->eb_mtx); 4825 target->refcount++; 4826 mtx_unlock(&bus->eb_mtx); 4827 } 4828 4829 static void 4830 xpt_release_target(struct cam_et *target) 4831 { 4832 struct cam_eb *bus = target->bus; 4833 4834 mtx_lock(&bus->eb_mtx); 4835 if (--target->refcount > 0) { 4836 mtx_unlock(&bus->eb_mtx); 4837 return; 4838 } 4839 TAILQ_REMOVE(&bus->et_entries, target, links); 4840 bus->generation++; 4841 mtx_unlock(&bus->eb_mtx); 4842 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4843 ("destroying target, but device list is not empty")); 4844 xpt_release_bus(bus); 4845 mtx_destroy(&target->luns_mtx); 4846 if (target->luns) 4847 free(target->luns, M_CAMXPT); 4848 free(target, M_CAMXPT); 4849 } 4850 4851 static struct cam_ed * 4852 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4853 lun_id_t lun_id) 4854 { 4855 struct cam_ed *device; 4856 4857 device = xpt_alloc_device(bus, target, lun_id); 4858 if (device == NULL) 4859 return (NULL); 4860 4861 device->mintags = 1; 4862 device->maxtags = 1; 4863 return (device); 4864 } 4865 4866 static void 4867 xpt_destroy_device(void *context, int pending) 4868 { 4869 struct cam_ed *device = context; 4870 4871 mtx_lock(&device->device_mtx); 4872 mtx_destroy(&device->device_mtx); 4873 free(device, M_CAMDEV); 4874 } 4875 4876 struct cam_ed * 4877 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4878 { 4879 struct cam_ed *cur_device, *device; 4880 struct cam_devq *devq; 4881 cam_status status; 4882 4883 mtx_assert(&bus->eb_mtx, MA_OWNED); 4884 /* Make space for us in the device queue on our bus */ 4885 devq = bus->sim->devq; 4886 mtx_lock(&devq->send_mtx); 4887 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4888 mtx_unlock(&devq->send_mtx); 4889 if (status != CAM_REQ_CMP) 4890 return (NULL); 4891 4892 device = (struct cam_ed *)malloc(sizeof(*device), 4893 M_CAMDEV, M_NOWAIT|M_ZERO); 4894 if (device == NULL) 4895 return (NULL); 4896 4897 cam_init_pinfo(&device->devq_entry); 4898 device->target = target; 4899 device->lun_id = lun_id; 4900 device->sim = bus->sim; 4901 if (cam_ccbq_init(&device->ccbq, 4902 bus->sim->max_dev_openings) != 0) { 4903 free(device, M_CAMDEV); 4904 return (NULL); 4905 } 4906 SLIST_INIT(&device->asyncs); 4907 SLIST_INIT(&device->periphs); 4908 device->generation = 0; 4909 device->flags = CAM_DEV_UNCONFIGURED; 4910 device->tag_delay_count = 0; 4911 device->tag_saved_openings = 0; 4912 device->refcount = 1; 4913 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4914 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4915 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4916 /* 4917 * Hold a reference to our parent bus so it 4918 * will not go away before we do. 4919 */ 4920 target->refcount++; 4921 4922 cur_device = TAILQ_FIRST(&target->ed_entries); 4923 while (cur_device != NULL && cur_device->lun_id < lun_id) 4924 cur_device = TAILQ_NEXT(cur_device, links); 4925 if (cur_device != NULL) 4926 TAILQ_INSERT_BEFORE(cur_device, device, links); 4927 else 4928 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4929 target->generation++; 4930 return (device); 4931 } 4932 4933 void 4934 xpt_acquire_device(struct cam_ed *device) 4935 { 4936 struct cam_eb *bus = device->target->bus; 4937 4938 mtx_lock(&bus->eb_mtx); 4939 device->refcount++; 4940 mtx_unlock(&bus->eb_mtx); 4941 } 4942 4943 void 4944 xpt_release_device(struct cam_ed *device) 4945 { 4946 struct cam_eb *bus = device->target->bus; 4947 struct cam_devq *devq; 4948 4949 mtx_lock(&bus->eb_mtx); 4950 if (--device->refcount > 0) { 4951 mtx_unlock(&bus->eb_mtx); 4952 return; 4953 } 4954 4955 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4956 device->target->generation++; 4957 mtx_unlock(&bus->eb_mtx); 4958 4959 /* Release our slot in the devq */ 4960 devq = bus->sim->devq; 4961 mtx_lock(&devq->send_mtx); 4962 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4963 mtx_unlock(&devq->send_mtx); 4964 4965 KASSERT(SLIST_EMPTY(&device->periphs), 4966 ("destroying device, but periphs list is not empty")); 4967 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4968 ("destroying device while still queued for ccbs")); 4969 4970 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4971 callout_stop(&device->callout); 4972 4973 xpt_release_target(device->target); 4974 4975 cam_ccbq_fini(&device->ccbq); 4976 /* 4977 * Free allocated memory. free(9) does nothing if the 4978 * supplied pointer is NULL, so it is safe to call without 4979 * checking. 4980 */ 4981 free(device->supported_vpds, M_CAMXPT); 4982 free(device->device_id, M_CAMXPT); 4983 free(device->ext_inq, M_CAMXPT); 4984 free(device->physpath, M_CAMXPT); 4985 free(device->rcap_buf, M_CAMXPT); 4986 free(device->serial_num, M_CAMXPT); 4987 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4988 } 4989 4990 u_int32_t 4991 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4992 { 4993 int result; 4994 struct cam_ed *dev; 4995 4996 dev = path->device; 4997 mtx_lock(&dev->sim->devq->send_mtx); 4998 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4999 mtx_unlock(&dev->sim->devq->send_mtx); 5000 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5001 || (dev->inq_flags & SID_CmdQue) != 0) 5002 dev->tag_saved_openings = newopenings; 5003 return (result); 5004 } 5005 5006 static struct cam_eb * 5007 xpt_find_bus(path_id_t path_id) 5008 { 5009 struct cam_eb *bus; 5010 5011 xpt_lock_buses(); 5012 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5013 bus != NULL; 5014 bus = TAILQ_NEXT(bus, links)) { 5015 if (bus->path_id == path_id) { 5016 bus->refcount++; 5017 break; 5018 } 5019 } 5020 xpt_unlock_buses(); 5021 return (bus); 5022 } 5023 5024 static struct cam_et * 5025 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5026 { 5027 struct cam_et *target; 5028 5029 mtx_assert(&bus->eb_mtx, MA_OWNED); 5030 for (target = TAILQ_FIRST(&bus->et_entries); 5031 target != NULL; 5032 target = TAILQ_NEXT(target, links)) { 5033 if (target->target_id == target_id) { 5034 target->refcount++; 5035 break; 5036 } 5037 } 5038 return (target); 5039 } 5040 5041 static struct cam_ed * 5042 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5043 { 5044 struct cam_ed *device; 5045 5046 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5047 for (device = TAILQ_FIRST(&target->ed_entries); 5048 device != NULL; 5049 device = TAILQ_NEXT(device, links)) { 5050 if (device->lun_id == lun_id) { 5051 device->refcount++; 5052 break; 5053 } 5054 } 5055 return (device); 5056 } 5057 5058 void 5059 xpt_start_tags(struct cam_path *path) 5060 { 5061 struct ccb_relsim crs; 5062 struct cam_ed *device; 5063 struct cam_sim *sim; 5064 int newopenings; 5065 5066 device = path->device; 5067 sim = path->bus->sim; 5068 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5069 xpt_freeze_devq(path, /*count*/1); 5070 device->inq_flags |= SID_CmdQue; 5071 if (device->tag_saved_openings != 0) 5072 newopenings = device->tag_saved_openings; 5073 else 5074 newopenings = min(device->maxtags, 5075 sim->max_tagged_dev_openings); 5076 xpt_dev_ccbq_resize(path, newopenings); 5077 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5078 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5079 crs.ccb_h.func_code = XPT_REL_SIMQ; 5080 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5081 crs.openings 5082 = crs.release_timeout 5083 = crs.qfrozen_cnt 5084 = 0; 5085 xpt_action((union ccb *)&crs); 5086 } 5087 5088 void 5089 xpt_stop_tags(struct cam_path *path) 5090 { 5091 struct ccb_relsim crs; 5092 struct cam_ed *device; 5093 struct cam_sim *sim; 5094 5095 device = path->device; 5096 sim = path->bus->sim; 5097 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5098 device->tag_delay_count = 0; 5099 xpt_freeze_devq(path, /*count*/1); 5100 device->inq_flags &= ~SID_CmdQue; 5101 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5102 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5103 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5104 crs.ccb_h.func_code = XPT_REL_SIMQ; 5105 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5106 crs.openings 5107 = crs.release_timeout 5108 = crs.qfrozen_cnt 5109 = 0; 5110 xpt_action((union ccb *)&crs); 5111 } 5112 5113 static void 5114 xpt_boot_delay(void *arg) 5115 { 5116 5117 xpt_release_boot(); 5118 } 5119 5120 static void 5121 xpt_config(void *arg) 5122 { 5123 /* 5124 * Now that interrupts are enabled, go find our devices 5125 */ 5126 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5127 printf("xpt_config: failed to create taskqueue thread.\n"); 5128 5129 /* Setup debugging path */ 5130 if (cam_dflags != CAM_DEBUG_NONE) { 5131 if (xpt_create_path(&cam_dpath, NULL, 5132 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5133 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5134 printf("xpt_config: xpt_create_path() failed for debug" 5135 " target %d:%d:%d, debugging disabled\n", 5136 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5137 cam_dflags = CAM_DEBUG_NONE; 5138 } 5139 } else 5140 cam_dpath = NULL; 5141 5142 periphdriver_init(1); 5143 xpt_hold_boot(); 5144 callout_init(&xsoftc.boot_callout, 1); 5145 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5146 xpt_boot_delay, NULL, 0); 5147 /* Fire up rescan thread. */ 5148 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5149 "cam", "scanner")) { 5150 printf("xpt_config: failed to create rescan thread.\n"); 5151 } 5152 } 5153 5154 void 5155 xpt_hold_boot(void) 5156 { 5157 xpt_lock_buses(); 5158 xsoftc.buses_to_config++; 5159 xpt_unlock_buses(); 5160 } 5161 5162 void 5163 xpt_release_boot(void) 5164 { 5165 xpt_lock_buses(); 5166 xsoftc.buses_to_config--; 5167 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5168 struct xpt_task *task; 5169 5170 xsoftc.buses_config_done = 1; 5171 xpt_unlock_buses(); 5172 /* Call manually because we don't have any buses */ 5173 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5174 if (task != NULL) { 5175 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5176 taskqueue_enqueue(taskqueue_thread, &task->task); 5177 } 5178 } else 5179 xpt_unlock_buses(); 5180 } 5181 5182 /* 5183 * If the given device only has one peripheral attached to it, and if that 5184 * peripheral is the passthrough driver, announce it. This insures that the 5185 * user sees some sort of announcement for every peripheral in their system. 5186 */ 5187 static int 5188 xptpassannouncefunc(struct cam_ed *device, void *arg) 5189 { 5190 struct cam_periph *periph; 5191 int i; 5192 5193 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5194 periph = SLIST_NEXT(periph, periph_links), i++); 5195 5196 periph = SLIST_FIRST(&device->periphs); 5197 if ((i == 1) 5198 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5199 xpt_announce_periph(periph, NULL); 5200 5201 return(1); 5202 } 5203 5204 static void 5205 xpt_finishconfig_task(void *context, int pending) 5206 { 5207 5208 periphdriver_init(2); 5209 /* 5210 * Check for devices with no "standard" peripheral driver 5211 * attached. For any devices like that, announce the 5212 * passthrough driver so the user will see something. 5213 */ 5214 if (!bootverbose) 5215 xpt_for_all_devices(xptpassannouncefunc, NULL); 5216 5217 /* Release our hook so that the boot can continue. */ 5218 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5219 free(xsoftc.xpt_config_hook, M_CAMXPT); 5220 xsoftc.xpt_config_hook = NULL; 5221 5222 free(context, M_CAMXPT); 5223 } 5224 5225 cam_status 5226 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5227 struct cam_path *path) 5228 { 5229 struct ccb_setasync csa; 5230 cam_status status; 5231 int xptpath = 0; 5232 5233 if (path == NULL) { 5234 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5235 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5236 if (status != CAM_REQ_CMP) 5237 return (status); 5238 xpt_path_lock(path); 5239 xptpath = 1; 5240 } 5241 5242 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5243 csa.ccb_h.func_code = XPT_SASYNC_CB; 5244 csa.event_enable = event; 5245 csa.callback = cbfunc; 5246 csa.callback_arg = cbarg; 5247 xpt_action((union ccb *)&csa); 5248 status = csa.ccb_h.status; 5249 5250 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5251 ("xpt_register_async: func %p\n", cbfunc)); 5252 5253 if (xptpath) { 5254 xpt_path_unlock(path); 5255 xpt_free_path(path); 5256 } 5257 5258 if ((status == CAM_REQ_CMP) && 5259 (csa.event_enable & AC_FOUND_DEVICE)) { 5260 /* 5261 * Get this peripheral up to date with all 5262 * the currently existing devices. 5263 */ 5264 xpt_for_all_devices(xptsetasyncfunc, &csa); 5265 } 5266 if ((status == CAM_REQ_CMP) && 5267 (csa.event_enable & AC_PATH_REGISTERED)) { 5268 /* 5269 * Get this peripheral up to date with all 5270 * the currently existing buses. 5271 */ 5272 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5273 } 5274 5275 return (status); 5276 } 5277 5278 static void 5279 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5280 { 5281 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5282 5283 switch (work_ccb->ccb_h.func_code) { 5284 /* Common cases first */ 5285 case XPT_PATH_INQ: /* Path routing inquiry */ 5286 { 5287 struct ccb_pathinq *cpi; 5288 5289 cpi = &work_ccb->cpi; 5290 cpi->version_num = 1; /* XXX??? */ 5291 cpi->hba_inquiry = 0; 5292 cpi->target_sprt = 0; 5293 cpi->hba_misc = 0; 5294 cpi->hba_eng_cnt = 0; 5295 cpi->max_target = 0; 5296 cpi->max_lun = 0; 5297 cpi->initiator_id = 0; 5298 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5299 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5300 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5301 cpi->unit_number = sim->unit_number; 5302 cpi->bus_id = sim->bus_id; 5303 cpi->base_transfer_speed = 0; 5304 cpi->protocol = PROTO_UNSPECIFIED; 5305 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5306 cpi->transport = XPORT_UNSPECIFIED; 5307 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5308 cpi->ccb_h.status = CAM_REQ_CMP; 5309 xpt_done(work_ccb); 5310 break; 5311 } 5312 default: 5313 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5314 xpt_done(work_ccb); 5315 break; 5316 } 5317 } 5318 5319 /* 5320 * The xpt as a "controller" has no interrupt sources, so polling 5321 * is a no-op. 5322 */ 5323 static void 5324 xptpoll(struct cam_sim *sim) 5325 { 5326 } 5327 5328 void 5329 xpt_lock_buses(void) 5330 { 5331 mtx_lock(&xsoftc.xpt_topo_lock); 5332 } 5333 5334 void 5335 xpt_unlock_buses(void) 5336 { 5337 mtx_unlock(&xsoftc.xpt_topo_lock); 5338 } 5339 5340 struct mtx * 5341 xpt_path_mtx(struct cam_path *path) 5342 { 5343 5344 return (&path->device->device_mtx); 5345 } 5346 5347 static void 5348 xpt_done_process(struct ccb_hdr *ccb_h) 5349 { 5350 struct cam_sim *sim; 5351 struct cam_devq *devq; 5352 struct mtx *mtx = NULL; 5353 5354 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5355 struct ccb_scsiio *csio; 5356 5357 if (ccb_h->func_code == XPT_SCSI_IO) { 5358 csio = &((union ccb *)ccb_h)->csio; 5359 if (csio->bio != NULL) 5360 biotrack(csio->bio, __func__); 5361 } 5362 #endif 5363 5364 if (ccb_h->flags & CAM_HIGH_POWER) { 5365 struct highpowerlist *hphead; 5366 struct cam_ed *device; 5367 5368 mtx_lock(&xsoftc.xpt_highpower_lock); 5369 hphead = &xsoftc.highpowerq; 5370 5371 device = STAILQ_FIRST(hphead); 5372 5373 /* 5374 * Increment the count since this command is done. 5375 */ 5376 xsoftc.num_highpower++; 5377 5378 /* 5379 * Any high powered commands queued up? 5380 */ 5381 if (device != NULL) { 5382 5383 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5384 mtx_unlock(&xsoftc.xpt_highpower_lock); 5385 5386 mtx_lock(&device->sim->devq->send_mtx); 5387 xpt_release_devq_device(device, 5388 /*count*/1, /*runqueue*/TRUE); 5389 mtx_unlock(&device->sim->devq->send_mtx); 5390 } else 5391 mtx_unlock(&xsoftc.xpt_highpower_lock); 5392 } 5393 5394 sim = ccb_h->path->bus->sim; 5395 5396 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5397 xpt_release_simq(sim, /*run_queue*/FALSE); 5398 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5399 } 5400 5401 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5402 && (ccb_h->status & CAM_DEV_QFRZN)) { 5403 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5404 ccb_h->status &= ~CAM_DEV_QFRZN; 5405 } 5406 5407 devq = sim->devq; 5408 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5409 struct cam_ed *dev = ccb_h->path->device; 5410 5411 mtx_lock(&devq->send_mtx); 5412 devq->send_active--; 5413 devq->send_openings++; 5414 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5415 5416 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5417 && (dev->ccbq.dev_active == 0))) { 5418 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5419 xpt_release_devq_device(dev, /*count*/1, 5420 /*run_queue*/FALSE); 5421 } 5422 5423 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5424 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5425 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5426 xpt_release_devq_device(dev, /*count*/1, 5427 /*run_queue*/FALSE); 5428 } 5429 5430 if (!device_is_queued(dev)) 5431 (void)xpt_schedule_devq(devq, dev); 5432 xpt_run_devq(devq); 5433 mtx_unlock(&devq->send_mtx); 5434 5435 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5436 mtx = xpt_path_mtx(ccb_h->path); 5437 mtx_lock(mtx); 5438 5439 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5440 && (--dev->tag_delay_count == 0)) 5441 xpt_start_tags(ccb_h->path); 5442 } 5443 } 5444 5445 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5446 if (mtx == NULL) { 5447 mtx = xpt_path_mtx(ccb_h->path); 5448 mtx_lock(mtx); 5449 } 5450 } else { 5451 if (mtx != NULL) { 5452 mtx_unlock(mtx); 5453 mtx = NULL; 5454 } 5455 } 5456 5457 /* Call the peripheral driver's callback */ 5458 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5459 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5460 if (mtx != NULL) 5461 mtx_unlock(mtx); 5462 } 5463 5464 void 5465 xpt_done_td(void *arg) 5466 { 5467 struct cam_doneq *queue = arg; 5468 struct ccb_hdr *ccb_h; 5469 STAILQ_HEAD(, ccb_hdr) doneq; 5470 5471 STAILQ_INIT(&doneq); 5472 mtx_lock(&queue->cam_doneq_mtx); 5473 while (1) { 5474 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5475 queue->cam_doneq_sleep = 1; 5476 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5477 PRIBIO, "-", 0); 5478 queue->cam_doneq_sleep = 0; 5479 } 5480 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5481 mtx_unlock(&queue->cam_doneq_mtx); 5482 5483 THREAD_NO_SLEEPING(); 5484 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5485 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5486 xpt_done_process(ccb_h); 5487 } 5488 THREAD_SLEEPING_OK(); 5489 5490 mtx_lock(&queue->cam_doneq_mtx); 5491 } 5492 } 5493 5494 static void 5495 camisr_runqueue(void) 5496 { 5497 struct ccb_hdr *ccb_h; 5498 struct cam_doneq *queue; 5499 int i; 5500 5501 /* Process global queues. */ 5502 for (i = 0; i < cam_num_doneqs; i++) { 5503 queue = &cam_doneqs[i]; 5504 mtx_lock(&queue->cam_doneq_mtx); 5505 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5506 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5507 mtx_unlock(&queue->cam_doneq_mtx); 5508 xpt_done_process(ccb_h); 5509 mtx_lock(&queue->cam_doneq_mtx); 5510 } 5511 mtx_unlock(&queue->cam_doneq_mtx); 5512 } 5513 } 5514 5515 struct kv 5516 { 5517 uint32_t v; 5518 const char *name; 5519 }; 5520 5521 static struct kv map[] = { 5522 { XPT_NOOP, "XPT_NOOP" }, 5523 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5524 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5525 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5526 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5527 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5528 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5529 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5530 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5531 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5532 { XPT_DEBUG, "XPT_DEBUG" }, 5533 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5534 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5535 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5536 { XPT_ASYNC, "XPT_ASYNC" }, 5537 { XPT_ABORT, "XPT_ABORT" }, 5538 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5539 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5540 { XPT_TERM_IO, "XPT_TERM_IO" }, 5541 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5542 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5543 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5544 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5545 { XPT_ATA_IO, "XPT_ATA_IO" }, 5546 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5547 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5548 { XPT_NVME_IO, "XPT_NVME_IO" }, 5549 { XPT_MMC_IO, "XPT_MMC_IO" }, 5550 { XPT_SMP_IO, "XPT_SMP_IO" }, 5551 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5552 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5553 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5554 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5555 { XPT_EN_LUN, "XPT_EN_LUN" }, 5556 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5557 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5558 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5559 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5560 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5561 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5562 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5563 { 0, 0 } 5564 }; 5565 5566 const char * 5567 xpt_action_name(uint32_t action) 5568 { 5569 static char buffer[32]; /* Only for unknown messages -- racy */ 5570 struct kv *walker = map; 5571 5572 while (walker->name != NULL) { 5573 if (walker->v == action) 5574 return (walker->name); 5575 walker++; 5576 } 5577 5578 snprintf(buffer, sizeof(buffer), "%#x", action); 5579 return (buffer); 5580 } 5581