1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include "opt_printf.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/bio.h> 37 #include <sys/bus.h> 38 #include <sys/systm.h> 39 #include <sys/types.h> 40 #include <sys/malloc.h> 41 #include <sys/kernel.h> 42 #include <sys/time.h> 43 #include <sys/conf.h> 44 #include <sys/fcntl.h> 45 #include <sys/interrupt.h> 46 #include <sys/proc.h> 47 #include <sys/sbuf.h> 48 #include <sys/smp.h> 49 #include <sys/taskqueue.h> 50 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 #include <sys/sysctl.h> 54 #include <sys/kthread.h> 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_queue.h> 60 #include <cam/cam_sim.h> 61 #include <cam/cam_xpt.h> 62 #include <cam/cam_xpt_sim.h> 63 #include <cam/cam_xpt_periph.h> 64 #include <cam/cam_xpt_internal.h> 65 #include <cam/cam_debug.h> 66 #include <cam/cam_compat.h> 67 68 #include <cam/scsi/scsi_all.h> 69 #include <cam/scsi/scsi_message.h> 70 #include <cam/scsi/scsi_pass.h> 71 72 #include <machine/md_var.h> /* geometry translation */ 73 #include <machine/stdarg.h> /* for xpt_print below */ 74 75 #include "opt_cam.h" 76 77 /* Wild guess based on not wanting to grow the stack too much */ 78 #define XPT_PRINT_MAXLEN 512 79 #ifdef PRINTF_BUFR_SIZE 80 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 81 #else 82 #define XPT_PRINT_LEN 128 83 #endif 84 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 85 86 /* 87 * This is the maximum number of high powered commands (e.g. start unit) 88 * that can be outstanding at a particular time. 89 */ 90 #ifndef CAM_MAX_HIGHPOWER 91 #define CAM_MAX_HIGHPOWER 4 92 #endif 93 94 /* Datastructures internal to the xpt layer */ 95 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 96 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 97 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 98 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 99 100 /* Object for defering XPT actions to a taskqueue */ 101 struct xpt_task { 102 struct task task; 103 void *data1; 104 uintptr_t data2; 105 }; 106 107 struct xpt_softc { 108 uint32_t xpt_generation; 109 110 /* number of high powered commands that can go through right now */ 111 struct mtx xpt_highpower_lock; 112 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 113 int num_highpower; 114 115 /* queue for handling async rescan requests. */ 116 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 117 int buses_to_config; 118 int buses_config_done; 119 120 /* 121 * Registered buses 122 * 123 * N.B., "busses" is an archaic spelling of "buses". In new code 124 * "buses" is preferred. 125 */ 126 TAILQ_HEAD(,cam_eb) xpt_busses; 127 u_int bus_generation; 128 129 struct intr_config_hook *xpt_config_hook; 130 131 int boot_delay; 132 struct callout boot_callout; 133 134 struct mtx xpt_topo_lock; 135 struct mtx xpt_lock; 136 struct taskqueue *xpt_taskq; 137 }; 138 139 typedef enum { 140 DM_RET_COPY = 0x01, 141 DM_RET_FLAG_MASK = 0x0f, 142 DM_RET_NONE = 0x00, 143 DM_RET_STOP = 0x10, 144 DM_RET_DESCEND = 0x20, 145 DM_RET_ERROR = 0x30, 146 DM_RET_ACTION_MASK = 0xf0 147 } dev_match_ret; 148 149 typedef enum { 150 XPT_DEPTH_BUS, 151 XPT_DEPTH_TARGET, 152 XPT_DEPTH_DEVICE, 153 XPT_DEPTH_PERIPH 154 } xpt_traverse_depth; 155 156 struct xpt_traverse_config { 157 xpt_traverse_depth depth; 158 void *tr_func; 159 void *tr_arg; 160 }; 161 162 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 163 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 164 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 165 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 166 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 167 168 /* Transport layer configuration information */ 169 static struct xpt_softc xsoftc; 170 171 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 172 173 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 174 &xsoftc.boot_delay, 0, "Bus registration wait time"); 175 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 176 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 177 178 struct cam_doneq { 179 struct mtx_padalign cam_doneq_mtx; 180 STAILQ_HEAD(, ccb_hdr) cam_doneq; 181 int cam_doneq_sleep; 182 }; 183 184 static struct cam_doneq cam_doneqs[MAXCPU]; 185 static int cam_num_doneqs; 186 static struct proc *cam_proc; 187 188 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 189 &cam_num_doneqs, 0, "Number of completion queues/threads"); 190 191 struct cam_periph *xpt_periph; 192 193 static periph_init_t xpt_periph_init; 194 195 static struct periph_driver xpt_driver = 196 { 197 xpt_periph_init, "xpt", 198 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 199 CAM_PERIPH_DRV_EARLY 200 }; 201 202 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 203 204 static d_open_t xptopen; 205 static d_close_t xptclose; 206 static d_ioctl_t xptioctl; 207 static d_ioctl_t xptdoioctl; 208 209 static struct cdevsw xpt_cdevsw = { 210 .d_version = D_VERSION, 211 .d_flags = 0, 212 .d_open = xptopen, 213 .d_close = xptclose, 214 .d_ioctl = xptioctl, 215 .d_name = "xpt", 216 }; 217 218 /* Storage for debugging datastructures */ 219 struct cam_path *cam_dpath; 220 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 221 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 222 &cam_dflags, 0, "Enabled debug flags"); 223 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 224 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 225 &cam_debug_delay, 0, "Delay in us after each debug message"); 226 227 /* Our boot-time initialization hook */ 228 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 229 230 static moduledata_t cam_moduledata = { 231 "cam", 232 cam_module_event_handler, 233 NULL 234 }; 235 236 static int xpt_init(void *); 237 238 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 239 MODULE_VERSION(cam, 1); 240 241 242 static void xpt_async_bcast(struct async_list *async_head, 243 u_int32_t async_code, 244 struct cam_path *path, 245 void *async_arg); 246 static path_id_t xptnextfreepathid(void); 247 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 248 static union ccb *xpt_get_ccb(struct cam_periph *periph); 249 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 250 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 251 static void xpt_run_allocq_task(void *context, int pending); 252 static void xpt_run_devq(struct cam_devq *devq); 253 static timeout_t xpt_release_devq_timeout; 254 static void xpt_release_simq_timeout(void *arg) __unused; 255 static void xpt_acquire_bus(struct cam_eb *bus); 256 static void xpt_release_bus(struct cam_eb *bus); 257 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 258 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 259 int run_queue); 260 static struct cam_et* 261 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 262 static void xpt_acquire_target(struct cam_et *target); 263 static void xpt_release_target(struct cam_et *target); 264 static struct cam_eb* 265 xpt_find_bus(path_id_t path_id); 266 static struct cam_et* 267 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 268 static struct cam_ed* 269 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 270 static void xpt_config(void *arg); 271 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 272 u_int32_t new_priority); 273 static xpt_devicefunc_t xptpassannouncefunc; 274 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 275 static void xptpoll(struct cam_sim *sim); 276 static void camisr_runqueue(void); 277 static void xpt_done_process(struct ccb_hdr *ccb_h); 278 static void xpt_done_td(void *); 279 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 280 u_int num_patterns, struct cam_eb *bus); 281 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 282 u_int num_patterns, 283 struct cam_ed *device); 284 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 285 u_int num_patterns, 286 struct cam_periph *periph); 287 static xpt_busfunc_t xptedtbusfunc; 288 static xpt_targetfunc_t xptedttargetfunc; 289 static xpt_devicefunc_t xptedtdevicefunc; 290 static xpt_periphfunc_t xptedtperiphfunc; 291 static xpt_pdrvfunc_t xptplistpdrvfunc; 292 static xpt_periphfunc_t xptplistperiphfunc; 293 static int xptedtmatch(struct ccb_dev_match *cdm); 294 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 295 static int xptbustraverse(struct cam_eb *start_bus, 296 xpt_busfunc_t *tr_func, void *arg); 297 static int xpttargettraverse(struct cam_eb *bus, 298 struct cam_et *start_target, 299 xpt_targetfunc_t *tr_func, void *arg); 300 static int xptdevicetraverse(struct cam_et *target, 301 struct cam_ed *start_device, 302 xpt_devicefunc_t *tr_func, void *arg); 303 static int xptperiphtraverse(struct cam_ed *device, 304 struct cam_periph *start_periph, 305 xpt_periphfunc_t *tr_func, void *arg); 306 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 307 xpt_pdrvfunc_t *tr_func, void *arg); 308 static int xptpdperiphtraverse(struct periph_driver **pdrv, 309 struct cam_periph *start_periph, 310 xpt_periphfunc_t *tr_func, 311 void *arg); 312 static xpt_busfunc_t xptdefbusfunc; 313 static xpt_targetfunc_t xptdeftargetfunc; 314 static xpt_devicefunc_t xptdefdevicefunc; 315 static xpt_periphfunc_t xptdefperiphfunc; 316 static void xpt_finishconfig_task(void *context, int pending); 317 static void xpt_dev_async_default(u_int32_t async_code, 318 struct cam_eb *bus, 319 struct cam_et *target, 320 struct cam_ed *device, 321 void *async_arg); 322 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 323 struct cam_et *target, 324 lun_id_t lun_id); 325 static xpt_devicefunc_t xptsetasyncfunc; 326 static xpt_busfunc_t xptsetasyncbusfunc; 327 static cam_status xptregister(struct cam_periph *periph, 328 void *arg); 329 static const char * xpt_action_name(uint32_t action); 330 static __inline int device_is_queued(struct cam_ed *device); 331 332 static __inline int 333 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 334 { 335 int retval; 336 337 mtx_assert(&devq->send_mtx, MA_OWNED); 338 if ((dev->ccbq.queue.entries > 0) && 339 (dev->ccbq.dev_openings > 0) && 340 (dev->ccbq.queue.qfrozen_cnt == 0)) { 341 /* 342 * The priority of a device waiting for controller 343 * resources is that of the highest priority CCB 344 * enqueued. 345 */ 346 retval = 347 xpt_schedule_dev(&devq->send_queue, 348 &dev->devq_entry, 349 CAMQ_GET_PRIO(&dev->ccbq.queue)); 350 } else { 351 retval = 0; 352 } 353 return (retval); 354 } 355 356 static __inline int 357 device_is_queued(struct cam_ed *device) 358 { 359 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 360 } 361 362 static void 363 xpt_periph_init() 364 { 365 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 366 } 367 368 static int 369 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 370 { 371 372 /* 373 * Only allow read-write access. 374 */ 375 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 376 return(EPERM); 377 378 /* 379 * We don't allow nonblocking access. 380 */ 381 if ((flags & O_NONBLOCK) != 0) { 382 printf("%s: can't do nonblocking access\n", devtoname(dev)); 383 return(ENODEV); 384 } 385 386 return(0); 387 } 388 389 static int 390 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 391 { 392 393 return(0); 394 } 395 396 /* 397 * Don't automatically grab the xpt softc lock here even though this is going 398 * through the xpt device. The xpt device is really just a back door for 399 * accessing other devices and SIMs, so the right thing to do is to grab 400 * the appropriate SIM lock once the bus/SIM is located. 401 */ 402 static int 403 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 404 { 405 int error; 406 407 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 408 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 409 } 410 return (error); 411 } 412 413 static int 414 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 415 { 416 int error; 417 418 error = 0; 419 420 switch(cmd) { 421 /* 422 * For the transport layer CAMIOCOMMAND ioctl, we really only want 423 * to accept CCB types that don't quite make sense to send through a 424 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 425 * in the CAM spec. 426 */ 427 case CAMIOCOMMAND: { 428 union ccb *ccb; 429 union ccb *inccb; 430 struct cam_eb *bus; 431 432 inccb = (union ccb *)addr; 433 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 434 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 435 inccb->csio.bio = NULL; 436 #endif 437 438 if (inccb->ccb_h.flags & CAM_UNLOCKED) 439 return (EINVAL); 440 441 bus = xpt_find_bus(inccb->ccb_h.path_id); 442 if (bus == NULL) 443 return (EINVAL); 444 445 switch (inccb->ccb_h.func_code) { 446 case XPT_SCAN_BUS: 447 case XPT_RESET_BUS: 448 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 449 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 450 xpt_release_bus(bus); 451 return (EINVAL); 452 } 453 break; 454 case XPT_SCAN_TGT: 455 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 456 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 457 xpt_release_bus(bus); 458 return (EINVAL); 459 } 460 break; 461 default: 462 break; 463 } 464 465 switch(inccb->ccb_h.func_code) { 466 case XPT_SCAN_BUS: 467 case XPT_RESET_BUS: 468 case XPT_PATH_INQ: 469 case XPT_ENG_INQ: 470 case XPT_SCAN_LUN: 471 case XPT_SCAN_TGT: 472 473 ccb = xpt_alloc_ccb(); 474 475 /* 476 * Create a path using the bus, target, and lun the 477 * user passed in. 478 */ 479 if (xpt_create_path(&ccb->ccb_h.path, NULL, 480 inccb->ccb_h.path_id, 481 inccb->ccb_h.target_id, 482 inccb->ccb_h.target_lun) != 483 CAM_REQ_CMP){ 484 error = EINVAL; 485 xpt_free_ccb(ccb); 486 break; 487 } 488 /* Ensure all of our fields are correct */ 489 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 490 inccb->ccb_h.pinfo.priority); 491 xpt_merge_ccb(ccb, inccb); 492 xpt_path_lock(ccb->ccb_h.path); 493 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 494 xpt_path_unlock(ccb->ccb_h.path); 495 bcopy(ccb, inccb, sizeof(union ccb)); 496 xpt_free_path(ccb->ccb_h.path); 497 xpt_free_ccb(ccb); 498 break; 499 500 case XPT_DEBUG: { 501 union ccb ccb; 502 503 /* 504 * This is an immediate CCB, so it's okay to 505 * allocate it on the stack. 506 */ 507 508 /* 509 * Create a path using the bus, target, and lun the 510 * user passed in. 511 */ 512 if (xpt_create_path(&ccb.ccb_h.path, NULL, 513 inccb->ccb_h.path_id, 514 inccb->ccb_h.target_id, 515 inccb->ccb_h.target_lun) != 516 CAM_REQ_CMP){ 517 error = EINVAL; 518 break; 519 } 520 /* Ensure all of our fields are correct */ 521 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 522 inccb->ccb_h.pinfo.priority); 523 xpt_merge_ccb(&ccb, inccb); 524 xpt_action(&ccb); 525 bcopy(&ccb, inccb, sizeof(union ccb)); 526 xpt_free_path(ccb.ccb_h.path); 527 break; 528 529 } 530 case XPT_DEV_MATCH: { 531 struct cam_periph_map_info mapinfo; 532 struct cam_path *old_path; 533 534 /* 535 * We can't deal with physical addresses for this 536 * type of transaction. 537 */ 538 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 539 CAM_DATA_VADDR) { 540 error = EINVAL; 541 break; 542 } 543 544 /* 545 * Save this in case the caller had it set to 546 * something in particular. 547 */ 548 old_path = inccb->ccb_h.path; 549 550 /* 551 * We really don't need a path for the matching 552 * code. The path is needed because of the 553 * debugging statements in xpt_action(). They 554 * assume that the CCB has a valid path. 555 */ 556 inccb->ccb_h.path = xpt_periph->path; 557 558 bzero(&mapinfo, sizeof(mapinfo)); 559 560 /* 561 * Map the pattern and match buffers into kernel 562 * virtual address space. 563 */ 564 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 565 566 if (error) { 567 inccb->ccb_h.path = old_path; 568 break; 569 } 570 571 /* 572 * This is an immediate CCB, we can send it on directly. 573 */ 574 xpt_action(inccb); 575 576 /* 577 * Map the buffers back into user space. 578 */ 579 cam_periph_unmapmem(inccb, &mapinfo); 580 581 inccb->ccb_h.path = old_path; 582 583 error = 0; 584 break; 585 } 586 default: 587 error = ENOTSUP; 588 break; 589 } 590 xpt_release_bus(bus); 591 break; 592 } 593 /* 594 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 595 * with the periphal driver name and unit name filled in. The other 596 * fields don't really matter as input. The passthrough driver name 597 * ("pass"), and unit number are passed back in the ccb. The current 598 * device generation number, and the index into the device peripheral 599 * driver list, and the status are also passed back. Note that 600 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 601 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 602 * (or rather should be) impossible for the device peripheral driver 603 * list to change since we look at the whole thing in one pass, and 604 * we do it with lock protection. 605 * 606 */ 607 case CAMGETPASSTHRU: { 608 union ccb *ccb; 609 struct cam_periph *periph; 610 struct periph_driver **p_drv; 611 char *name; 612 u_int unit; 613 int base_periph_found; 614 615 ccb = (union ccb *)addr; 616 unit = ccb->cgdl.unit_number; 617 name = ccb->cgdl.periph_name; 618 base_periph_found = 0; 619 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 620 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 621 ccb->csio.bio = NULL; 622 #endif 623 624 /* 625 * Sanity check -- make sure we don't get a null peripheral 626 * driver name. 627 */ 628 if (*ccb->cgdl.periph_name == '\0') { 629 error = EINVAL; 630 break; 631 } 632 633 /* Keep the list from changing while we traverse it */ 634 xpt_lock_buses(); 635 636 /* first find our driver in the list of drivers */ 637 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 638 if (strcmp((*p_drv)->driver_name, name) == 0) 639 break; 640 641 if (*p_drv == NULL) { 642 xpt_unlock_buses(); 643 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 644 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 645 *ccb->cgdl.periph_name = '\0'; 646 ccb->cgdl.unit_number = 0; 647 error = ENOENT; 648 break; 649 } 650 651 /* 652 * Run through every peripheral instance of this driver 653 * and check to see whether it matches the unit passed 654 * in by the user. If it does, get out of the loops and 655 * find the passthrough driver associated with that 656 * peripheral driver. 657 */ 658 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 659 periph = TAILQ_NEXT(periph, unit_links)) { 660 661 if (periph->unit_number == unit) 662 break; 663 } 664 /* 665 * If we found the peripheral driver that the user passed 666 * in, go through all of the peripheral drivers for that 667 * particular device and look for a passthrough driver. 668 */ 669 if (periph != NULL) { 670 struct cam_ed *device; 671 int i; 672 673 base_periph_found = 1; 674 device = periph->path->device; 675 for (i = 0, periph = SLIST_FIRST(&device->periphs); 676 periph != NULL; 677 periph = SLIST_NEXT(periph, periph_links), i++) { 678 /* 679 * Check to see whether we have a 680 * passthrough device or not. 681 */ 682 if (strcmp(periph->periph_name, "pass") == 0) { 683 /* 684 * Fill in the getdevlist fields. 685 */ 686 strcpy(ccb->cgdl.periph_name, 687 periph->periph_name); 688 ccb->cgdl.unit_number = 689 periph->unit_number; 690 if (SLIST_NEXT(periph, periph_links)) 691 ccb->cgdl.status = 692 CAM_GDEVLIST_MORE_DEVS; 693 else 694 ccb->cgdl.status = 695 CAM_GDEVLIST_LAST_DEVICE; 696 ccb->cgdl.generation = 697 device->generation; 698 ccb->cgdl.index = i; 699 /* 700 * Fill in some CCB header fields 701 * that the user may want. 702 */ 703 ccb->ccb_h.path_id = 704 periph->path->bus->path_id; 705 ccb->ccb_h.target_id = 706 periph->path->target->target_id; 707 ccb->ccb_h.target_lun = 708 periph->path->device->lun_id; 709 ccb->ccb_h.status = CAM_REQ_CMP; 710 break; 711 } 712 } 713 } 714 715 /* 716 * If the periph is null here, one of two things has 717 * happened. The first possibility is that we couldn't 718 * find the unit number of the particular peripheral driver 719 * that the user is asking about. e.g. the user asks for 720 * the passthrough driver for "da11". We find the list of 721 * "da" peripherals all right, but there is no unit 11. 722 * The other possibility is that we went through the list 723 * of peripheral drivers attached to the device structure, 724 * but didn't find one with the name "pass". Either way, 725 * we return ENOENT, since we couldn't find something. 726 */ 727 if (periph == NULL) { 728 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 729 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 730 *ccb->cgdl.periph_name = '\0'; 731 ccb->cgdl.unit_number = 0; 732 error = ENOENT; 733 /* 734 * It is unfortunate that this is even necessary, 735 * but there are many, many clueless users out there. 736 * If this is true, the user is looking for the 737 * passthrough driver, but doesn't have one in his 738 * kernel. 739 */ 740 if (base_periph_found == 1) { 741 printf("xptioctl: pass driver is not in the " 742 "kernel\n"); 743 printf("xptioctl: put \"device pass\" in " 744 "your kernel config file\n"); 745 } 746 } 747 xpt_unlock_buses(); 748 break; 749 } 750 default: 751 error = ENOTTY; 752 break; 753 } 754 755 return(error); 756 } 757 758 static int 759 cam_module_event_handler(module_t mod, int what, void *arg) 760 { 761 int error; 762 763 switch (what) { 764 case MOD_LOAD: 765 if ((error = xpt_init(NULL)) != 0) 766 return (error); 767 break; 768 case MOD_UNLOAD: 769 return EBUSY; 770 default: 771 return EOPNOTSUPP; 772 } 773 774 return 0; 775 } 776 777 static struct xpt_proto * 778 xpt_proto_find(cam_proto proto) 779 { 780 struct xpt_proto **pp; 781 782 SET_FOREACH(pp, cam_xpt_proto_set) { 783 if ((*pp)->proto == proto) 784 return *pp; 785 } 786 787 return NULL; 788 } 789 790 static void 791 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 792 { 793 794 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 795 xpt_free_path(done_ccb->ccb_h.path); 796 xpt_free_ccb(done_ccb); 797 } else { 798 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 799 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 800 } 801 xpt_release_boot(); 802 } 803 804 /* thread to handle bus rescans */ 805 static void 806 xpt_scanner_thread(void *dummy) 807 { 808 union ccb *ccb; 809 struct cam_path path; 810 811 xpt_lock_buses(); 812 for (;;) { 813 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 814 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 815 "-", 0); 816 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 817 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 818 xpt_unlock_buses(); 819 820 /* 821 * Since lock can be dropped inside and path freed 822 * by completion callback even before return here, 823 * take our own path copy for reference. 824 */ 825 xpt_copy_path(&path, ccb->ccb_h.path); 826 xpt_path_lock(&path); 827 xpt_action(ccb); 828 xpt_path_unlock(&path); 829 xpt_release_path(&path); 830 831 xpt_lock_buses(); 832 } 833 } 834 } 835 836 void 837 xpt_rescan(union ccb *ccb) 838 { 839 struct ccb_hdr *hdr; 840 841 /* Prepare request */ 842 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 843 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 844 ccb->ccb_h.func_code = XPT_SCAN_BUS; 845 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 846 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 847 ccb->ccb_h.func_code = XPT_SCAN_TGT; 848 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_LUN; 851 else { 852 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 853 xpt_free_path(ccb->ccb_h.path); 854 xpt_free_ccb(ccb); 855 return; 856 } 857 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 858 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 859 xpt_action_name(ccb->ccb_h.func_code))); 860 861 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 862 ccb->ccb_h.cbfcnp = xpt_rescan_done; 863 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 864 /* Don't make duplicate entries for the same paths. */ 865 xpt_lock_buses(); 866 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 867 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 868 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 869 wakeup(&xsoftc.ccb_scanq); 870 xpt_unlock_buses(); 871 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 872 xpt_free_path(ccb->ccb_h.path); 873 xpt_free_ccb(ccb); 874 return; 875 } 876 } 877 } 878 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 879 xsoftc.buses_to_config++; 880 wakeup(&xsoftc.ccb_scanq); 881 xpt_unlock_buses(); 882 } 883 884 /* Functions accessed by the peripheral drivers */ 885 static int 886 xpt_init(void *dummy) 887 { 888 struct cam_sim *xpt_sim; 889 struct cam_path *path; 890 struct cam_devq *devq; 891 cam_status status; 892 int error, i; 893 894 TAILQ_INIT(&xsoftc.xpt_busses); 895 TAILQ_INIT(&xsoftc.ccb_scanq); 896 STAILQ_INIT(&xsoftc.highpowerq); 897 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 898 899 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 900 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 901 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 902 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 903 904 #ifdef CAM_BOOT_DELAY 905 /* 906 * Override this value at compile time to assist our users 907 * who don't use loader to boot a kernel. 908 */ 909 xsoftc.boot_delay = CAM_BOOT_DELAY; 910 #endif 911 /* 912 * The xpt layer is, itself, the equivalent of a SIM. 913 * Allow 16 ccbs in the ccb pool for it. This should 914 * give decent parallelism when we probe buses and 915 * perform other XPT functions. 916 */ 917 devq = cam_simq_alloc(16); 918 xpt_sim = cam_sim_alloc(xptaction, 919 xptpoll, 920 "xpt", 921 /*softc*/NULL, 922 /*unit*/0, 923 /*mtx*/&xsoftc.xpt_lock, 924 /*max_dev_transactions*/0, 925 /*max_tagged_dev_transactions*/0, 926 devq); 927 if (xpt_sim == NULL) 928 return (ENOMEM); 929 930 mtx_lock(&xsoftc.xpt_lock); 931 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 932 mtx_unlock(&xsoftc.xpt_lock); 933 printf("xpt_init: xpt_bus_register failed with status %#x," 934 " failing attach\n", status); 935 return (EINVAL); 936 } 937 mtx_unlock(&xsoftc.xpt_lock); 938 939 /* 940 * Looking at the XPT from the SIM layer, the XPT is 941 * the equivalent of a peripheral driver. Allocate 942 * a peripheral driver entry for us. 943 */ 944 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 945 CAM_TARGET_WILDCARD, 946 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 947 printf("xpt_init: xpt_create_path failed with status %#x," 948 " failing attach\n", status); 949 return (EINVAL); 950 } 951 xpt_path_lock(path); 952 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 953 path, NULL, 0, xpt_sim); 954 xpt_path_unlock(path); 955 xpt_free_path(path); 956 957 if (cam_num_doneqs < 1) 958 cam_num_doneqs = 1 + mp_ncpus / 6; 959 else if (cam_num_doneqs > MAXCPU) 960 cam_num_doneqs = MAXCPU; 961 for (i = 0; i < cam_num_doneqs; i++) { 962 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 963 MTX_DEF); 964 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 965 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 966 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 967 if (error != 0) { 968 cam_num_doneqs = i; 969 break; 970 } 971 } 972 if (cam_num_doneqs < 1) { 973 printf("xpt_init: Cannot init completion queues " 974 "- failing attach\n"); 975 return (ENOMEM); 976 } 977 /* 978 * Register a callback for when interrupts are enabled. 979 */ 980 xsoftc.xpt_config_hook = 981 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 982 M_CAMXPT, M_NOWAIT | M_ZERO); 983 if (xsoftc.xpt_config_hook == NULL) { 984 printf("xpt_init: Cannot malloc config hook " 985 "- failing attach\n"); 986 return (ENOMEM); 987 } 988 xsoftc.xpt_config_hook->ich_func = xpt_config; 989 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 990 free (xsoftc.xpt_config_hook, M_CAMXPT); 991 printf("xpt_init: config_intrhook_establish failed " 992 "- failing attach\n"); 993 } 994 995 return (0); 996 } 997 998 static cam_status 999 xptregister(struct cam_periph *periph, void *arg) 1000 { 1001 struct cam_sim *xpt_sim; 1002 1003 if (periph == NULL) { 1004 printf("xptregister: periph was NULL!!\n"); 1005 return(CAM_REQ_CMP_ERR); 1006 } 1007 1008 xpt_sim = (struct cam_sim *)arg; 1009 xpt_sim->softc = periph; 1010 xpt_periph = periph; 1011 periph->softc = NULL; 1012 1013 return(CAM_REQ_CMP); 1014 } 1015 1016 int32_t 1017 xpt_add_periph(struct cam_periph *periph) 1018 { 1019 struct cam_ed *device; 1020 int32_t status; 1021 1022 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1023 device = periph->path->device; 1024 status = CAM_REQ_CMP; 1025 if (device != NULL) { 1026 mtx_lock(&device->target->bus->eb_mtx); 1027 device->generation++; 1028 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1029 mtx_unlock(&device->target->bus->eb_mtx); 1030 atomic_add_32(&xsoftc.xpt_generation, 1); 1031 } 1032 1033 return (status); 1034 } 1035 1036 void 1037 xpt_remove_periph(struct cam_periph *periph) 1038 { 1039 struct cam_ed *device; 1040 1041 device = periph->path->device; 1042 if (device != NULL) { 1043 mtx_lock(&device->target->bus->eb_mtx); 1044 device->generation++; 1045 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1046 mtx_unlock(&device->target->bus->eb_mtx); 1047 atomic_add_32(&xsoftc.xpt_generation, 1); 1048 } 1049 } 1050 1051 1052 void 1053 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1054 { 1055 struct cam_path *path = periph->path; 1056 struct xpt_proto *proto; 1057 1058 cam_periph_assert(periph, MA_OWNED); 1059 periph->flags |= CAM_PERIPH_ANNOUNCED; 1060 1061 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1062 periph->periph_name, periph->unit_number, 1063 path->bus->sim->sim_name, 1064 path->bus->sim->unit_number, 1065 path->bus->sim->bus_id, 1066 path->bus->path_id, 1067 path->target->target_id, 1068 (uintmax_t)path->device->lun_id); 1069 printf("%s%d: ", periph->periph_name, periph->unit_number); 1070 proto = xpt_proto_find(path->device->protocol); 1071 if (proto) 1072 proto->ops->announce(path->device); 1073 else 1074 printf("%s%d: Unknown protocol device %d\n", 1075 periph->periph_name, periph->unit_number, 1076 path->device->protocol); 1077 if (path->device->serial_num_len > 0) { 1078 /* Don't wrap the screen - print only the first 60 chars */ 1079 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1080 periph->unit_number, path->device->serial_num); 1081 } 1082 /* Announce transport details. */ 1083 path->bus->xport->ops->announce(periph); 1084 /* Announce command queueing. */ 1085 if (path->device->inq_flags & SID_CmdQue 1086 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1087 printf("%s%d: Command Queueing enabled\n", 1088 periph->periph_name, periph->unit_number); 1089 } 1090 /* Announce caller's details if they've passed in. */ 1091 if (announce_string != NULL) 1092 printf("%s%d: %s\n", periph->periph_name, 1093 periph->unit_number, announce_string); 1094 } 1095 1096 void 1097 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1098 { 1099 if (quirks != 0) { 1100 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1101 periph->unit_number, quirks, bit_string); 1102 } 1103 } 1104 1105 void 1106 xpt_denounce_periph(struct cam_periph *periph) 1107 { 1108 struct cam_path *path = periph->path; 1109 struct xpt_proto *proto; 1110 1111 cam_periph_assert(periph, MA_OWNED); 1112 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1113 periph->periph_name, periph->unit_number, 1114 path->bus->sim->sim_name, 1115 path->bus->sim->unit_number, 1116 path->bus->sim->bus_id, 1117 path->bus->path_id, 1118 path->target->target_id, 1119 (uintmax_t)path->device->lun_id); 1120 printf("%s%d: ", periph->periph_name, periph->unit_number); 1121 proto = xpt_proto_find(path->device->protocol); 1122 if (proto) 1123 proto->ops->denounce(path->device); 1124 else 1125 printf("%s%d: Unknown protocol device %d\n", 1126 periph->periph_name, periph->unit_number, 1127 path->device->protocol); 1128 if (path->device->serial_num_len > 0) 1129 printf(" s/n %.60s", path->device->serial_num); 1130 printf(" detached\n"); 1131 } 1132 1133 1134 int 1135 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1136 { 1137 int ret = -1, l, o; 1138 struct ccb_dev_advinfo cdai; 1139 struct scsi_vpd_id_descriptor *idd; 1140 1141 xpt_path_assert(path, MA_OWNED); 1142 1143 memset(&cdai, 0, sizeof(cdai)); 1144 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1145 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1146 cdai.flags = CDAI_FLAG_NONE; 1147 cdai.bufsiz = len; 1148 1149 if (!strcmp(attr, "GEOM::ident")) 1150 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1151 else if (!strcmp(attr, "GEOM::physpath")) 1152 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1153 else if (strcmp(attr, "GEOM::lunid") == 0 || 1154 strcmp(attr, "GEOM::lunname") == 0) { 1155 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1156 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1157 } else 1158 goto out; 1159 1160 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1161 if (cdai.buf == NULL) { 1162 ret = ENOMEM; 1163 goto out; 1164 } 1165 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1166 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1167 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1168 if (cdai.provsiz == 0) 1169 goto out; 1170 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1171 if (strcmp(attr, "GEOM::lunid") == 0) { 1172 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1173 cdai.provsiz, scsi_devid_is_lun_naa); 1174 if (idd == NULL) 1175 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1176 cdai.provsiz, scsi_devid_is_lun_eui64); 1177 if (idd == NULL) 1178 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1179 cdai.provsiz, scsi_devid_is_lun_uuid); 1180 if (idd == NULL) 1181 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1182 cdai.provsiz, scsi_devid_is_lun_md5); 1183 } else 1184 idd = NULL; 1185 if (idd == NULL) 1186 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1187 cdai.provsiz, scsi_devid_is_lun_t10); 1188 if (idd == NULL) 1189 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1190 cdai.provsiz, scsi_devid_is_lun_name); 1191 if (idd == NULL) 1192 goto out; 1193 ret = 0; 1194 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1195 if (idd->length < len) { 1196 for (l = 0; l < idd->length; l++) 1197 buf[l] = idd->identifier[l] ? 1198 idd->identifier[l] : ' '; 1199 buf[l] = 0; 1200 } else 1201 ret = EFAULT; 1202 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1203 l = strnlen(idd->identifier, idd->length); 1204 if (l < len) { 1205 bcopy(idd->identifier, buf, l); 1206 buf[l] = 0; 1207 } else 1208 ret = EFAULT; 1209 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1210 && idd->identifier[0] == 0x10) { 1211 if ((idd->length - 2) * 2 + 4 < len) { 1212 for (l = 2, o = 0; l < idd->length; l++) { 1213 if (l == 6 || l == 8 || l == 10 || l == 12) 1214 o += sprintf(buf + o, "-"); 1215 o += sprintf(buf + o, "%02x", 1216 idd->identifier[l]); 1217 } 1218 } else 1219 ret = EFAULT; 1220 } else { 1221 if (idd->length * 2 < len) { 1222 for (l = 0; l < idd->length; l++) 1223 sprintf(buf + l * 2, "%02x", 1224 idd->identifier[l]); 1225 } else 1226 ret = EFAULT; 1227 } 1228 } else { 1229 ret = 0; 1230 if (strlcpy(buf, cdai.buf, len) >= len) 1231 ret = EFAULT; 1232 } 1233 1234 out: 1235 if (cdai.buf != NULL) 1236 free(cdai.buf, M_CAMXPT); 1237 return ret; 1238 } 1239 1240 static dev_match_ret 1241 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1242 struct cam_eb *bus) 1243 { 1244 dev_match_ret retval; 1245 u_int i; 1246 1247 retval = DM_RET_NONE; 1248 1249 /* 1250 * If we aren't given something to match against, that's an error. 1251 */ 1252 if (bus == NULL) 1253 return(DM_RET_ERROR); 1254 1255 /* 1256 * If there are no match entries, then this bus matches no 1257 * matter what. 1258 */ 1259 if ((patterns == NULL) || (num_patterns == 0)) 1260 return(DM_RET_DESCEND | DM_RET_COPY); 1261 1262 for (i = 0; i < num_patterns; i++) { 1263 struct bus_match_pattern *cur_pattern; 1264 1265 /* 1266 * If the pattern in question isn't for a bus node, we 1267 * aren't interested. However, we do indicate to the 1268 * calling routine that we should continue descending the 1269 * tree, since the user wants to match against lower-level 1270 * EDT elements. 1271 */ 1272 if (patterns[i].type != DEV_MATCH_BUS) { 1273 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1274 retval |= DM_RET_DESCEND; 1275 continue; 1276 } 1277 1278 cur_pattern = &patterns[i].pattern.bus_pattern; 1279 1280 /* 1281 * If they want to match any bus node, we give them any 1282 * device node. 1283 */ 1284 if (cur_pattern->flags == BUS_MATCH_ANY) { 1285 /* set the copy flag */ 1286 retval |= DM_RET_COPY; 1287 1288 /* 1289 * If we've already decided on an action, go ahead 1290 * and return. 1291 */ 1292 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1293 return(retval); 1294 } 1295 1296 /* 1297 * Not sure why someone would do this... 1298 */ 1299 if (cur_pattern->flags == BUS_MATCH_NONE) 1300 continue; 1301 1302 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1303 && (cur_pattern->path_id != bus->path_id)) 1304 continue; 1305 1306 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1307 && (cur_pattern->bus_id != bus->sim->bus_id)) 1308 continue; 1309 1310 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1311 && (cur_pattern->unit_number != bus->sim->unit_number)) 1312 continue; 1313 1314 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1315 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1316 DEV_IDLEN) != 0)) 1317 continue; 1318 1319 /* 1320 * If we get to this point, the user definitely wants 1321 * information on this bus. So tell the caller to copy the 1322 * data out. 1323 */ 1324 retval |= DM_RET_COPY; 1325 1326 /* 1327 * If the return action has been set to descend, then we 1328 * know that we've already seen a non-bus matching 1329 * expression, therefore we need to further descend the tree. 1330 * This won't change by continuing around the loop, so we 1331 * go ahead and return. If we haven't seen a non-bus 1332 * matching expression, we keep going around the loop until 1333 * we exhaust the matching expressions. We'll set the stop 1334 * flag once we fall out of the loop. 1335 */ 1336 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1337 return(retval); 1338 } 1339 1340 /* 1341 * If the return action hasn't been set to descend yet, that means 1342 * we haven't seen anything other than bus matching patterns. So 1343 * tell the caller to stop descending the tree -- the user doesn't 1344 * want to match against lower level tree elements. 1345 */ 1346 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1347 retval |= DM_RET_STOP; 1348 1349 return(retval); 1350 } 1351 1352 static dev_match_ret 1353 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1354 struct cam_ed *device) 1355 { 1356 dev_match_ret retval; 1357 u_int i; 1358 1359 retval = DM_RET_NONE; 1360 1361 /* 1362 * If we aren't given something to match against, that's an error. 1363 */ 1364 if (device == NULL) 1365 return(DM_RET_ERROR); 1366 1367 /* 1368 * If there are no match entries, then this device matches no 1369 * matter what. 1370 */ 1371 if ((patterns == NULL) || (num_patterns == 0)) 1372 return(DM_RET_DESCEND | DM_RET_COPY); 1373 1374 for (i = 0; i < num_patterns; i++) { 1375 struct device_match_pattern *cur_pattern; 1376 struct scsi_vpd_device_id *device_id_page; 1377 1378 /* 1379 * If the pattern in question isn't for a device node, we 1380 * aren't interested. 1381 */ 1382 if (patterns[i].type != DEV_MATCH_DEVICE) { 1383 if ((patterns[i].type == DEV_MATCH_PERIPH) 1384 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1385 retval |= DM_RET_DESCEND; 1386 continue; 1387 } 1388 1389 cur_pattern = &patterns[i].pattern.device_pattern; 1390 1391 /* Error out if mutually exclusive options are specified. */ 1392 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1393 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1394 return(DM_RET_ERROR); 1395 1396 /* 1397 * If they want to match any device node, we give them any 1398 * device node. 1399 */ 1400 if (cur_pattern->flags == DEV_MATCH_ANY) 1401 goto copy_dev_node; 1402 1403 /* 1404 * Not sure why someone would do this... 1405 */ 1406 if (cur_pattern->flags == DEV_MATCH_NONE) 1407 continue; 1408 1409 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1410 && (cur_pattern->path_id != device->target->bus->path_id)) 1411 continue; 1412 1413 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1414 && (cur_pattern->target_id != device->target->target_id)) 1415 continue; 1416 1417 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1418 && (cur_pattern->target_lun != device->lun_id)) 1419 continue; 1420 1421 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1422 && (cam_quirkmatch((caddr_t)&device->inq_data, 1423 (caddr_t)&cur_pattern->data.inq_pat, 1424 1, sizeof(cur_pattern->data.inq_pat), 1425 scsi_static_inquiry_match) == NULL)) 1426 continue; 1427 1428 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1429 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1430 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1431 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1432 device->device_id_len 1433 - SVPD_DEVICE_ID_HDR_LEN, 1434 cur_pattern->data.devid_pat.id, 1435 cur_pattern->data.devid_pat.id_len) != 0)) 1436 continue; 1437 1438 copy_dev_node: 1439 /* 1440 * If we get to this point, the user definitely wants 1441 * information on this device. So tell the caller to copy 1442 * the data out. 1443 */ 1444 retval |= DM_RET_COPY; 1445 1446 /* 1447 * If the return action has been set to descend, then we 1448 * know that we've already seen a peripheral matching 1449 * expression, therefore we need to further descend the tree. 1450 * This won't change by continuing around the loop, so we 1451 * go ahead and return. If we haven't seen a peripheral 1452 * matching expression, we keep going around the loop until 1453 * we exhaust the matching expressions. We'll set the stop 1454 * flag once we fall out of the loop. 1455 */ 1456 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1457 return(retval); 1458 } 1459 1460 /* 1461 * If the return action hasn't been set to descend yet, that means 1462 * we haven't seen any peripheral matching patterns. So tell the 1463 * caller to stop descending the tree -- the user doesn't want to 1464 * match against lower level tree elements. 1465 */ 1466 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1467 retval |= DM_RET_STOP; 1468 1469 return(retval); 1470 } 1471 1472 /* 1473 * Match a single peripheral against any number of match patterns. 1474 */ 1475 static dev_match_ret 1476 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1477 struct cam_periph *periph) 1478 { 1479 dev_match_ret retval; 1480 u_int i; 1481 1482 /* 1483 * If we aren't given something to match against, that's an error. 1484 */ 1485 if (periph == NULL) 1486 return(DM_RET_ERROR); 1487 1488 /* 1489 * If there are no match entries, then this peripheral matches no 1490 * matter what. 1491 */ 1492 if ((patterns == NULL) || (num_patterns == 0)) 1493 return(DM_RET_STOP | DM_RET_COPY); 1494 1495 /* 1496 * There aren't any nodes below a peripheral node, so there's no 1497 * reason to descend the tree any further. 1498 */ 1499 retval = DM_RET_STOP; 1500 1501 for (i = 0; i < num_patterns; i++) { 1502 struct periph_match_pattern *cur_pattern; 1503 1504 /* 1505 * If the pattern in question isn't for a peripheral, we 1506 * aren't interested. 1507 */ 1508 if (patterns[i].type != DEV_MATCH_PERIPH) 1509 continue; 1510 1511 cur_pattern = &patterns[i].pattern.periph_pattern; 1512 1513 /* 1514 * If they want to match on anything, then we will do so. 1515 */ 1516 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1517 /* set the copy flag */ 1518 retval |= DM_RET_COPY; 1519 1520 /* 1521 * We've already set the return action to stop, 1522 * since there are no nodes below peripherals in 1523 * the tree. 1524 */ 1525 return(retval); 1526 } 1527 1528 /* 1529 * Not sure why someone would do this... 1530 */ 1531 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1532 continue; 1533 1534 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1535 && (cur_pattern->path_id != periph->path->bus->path_id)) 1536 continue; 1537 1538 /* 1539 * For the target and lun id's, we have to make sure the 1540 * target and lun pointers aren't NULL. The xpt peripheral 1541 * has a wildcard target and device. 1542 */ 1543 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1544 && ((periph->path->target == NULL) 1545 ||(cur_pattern->target_id != periph->path->target->target_id))) 1546 continue; 1547 1548 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1549 && ((periph->path->device == NULL) 1550 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1551 continue; 1552 1553 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1554 && (cur_pattern->unit_number != periph->unit_number)) 1555 continue; 1556 1557 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1558 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1559 DEV_IDLEN) != 0)) 1560 continue; 1561 1562 /* 1563 * If we get to this point, the user definitely wants 1564 * information on this peripheral. So tell the caller to 1565 * copy the data out. 1566 */ 1567 retval |= DM_RET_COPY; 1568 1569 /* 1570 * The return action has already been set to stop, since 1571 * peripherals don't have any nodes below them in the EDT. 1572 */ 1573 return(retval); 1574 } 1575 1576 /* 1577 * If we get to this point, the peripheral that was passed in 1578 * doesn't match any of the patterns. 1579 */ 1580 return(retval); 1581 } 1582 1583 static int 1584 xptedtbusfunc(struct cam_eb *bus, void *arg) 1585 { 1586 struct ccb_dev_match *cdm; 1587 struct cam_et *target; 1588 dev_match_ret retval; 1589 1590 cdm = (struct ccb_dev_match *)arg; 1591 1592 /* 1593 * If our position is for something deeper in the tree, that means 1594 * that we've already seen this node. So, we keep going down. 1595 */ 1596 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1597 && (cdm->pos.cookie.bus == bus) 1598 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1599 && (cdm->pos.cookie.target != NULL)) 1600 retval = DM_RET_DESCEND; 1601 else 1602 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1603 1604 /* 1605 * If we got an error, bail out of the search. 1606 */ 1607 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1608 cdm->status = CAM_DEV_MATCH_ERROR; 1609 return(0); 1610 } 1611 1612 /* 1613 * If the copy flag is set, copy this bus out. 1614 */ 1615 if (retval & DM_RET_COPY) { 1616 int spaceleft, j; 1617 1618 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1619 sizeof(struct dev_match_result)); 1620 1621 /* 1622 * If we don't have enough space to put in another 1623 * match result, save our position and tell the 1624 * user there are more devices to check. 1625 */ 1626 if (spaceleft < sizeof(struct dev_match_result)) { 1627 bzero(&cdm->pos, sizeof(cdm->pos)); 1628 cdm->pos.position_type = 1629 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1630 1631 cdm->pos.cookie.bus = bus; 1632 cdm->pos.generations[CAM_BUS_GENERATION]= 1633 xsoftc.bus_generation; 1634 cdm->status = CAM_DEV_MATCH_MORE; 1635 return(0); 1636 } 1637 j = cdm->num_matches; 1638 cdm->num_matches++; 1639 cdm->matches[j].type = DEV_MATCH_BUS; 1640 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1641 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1642 cdm->matches[j].result.bus_result.unit_number = 1643 bus->sim->unit_number; 1644 strncpy(cdm->matches[j].result.bus_result.dev_name, 1645 bus->sim->sim_name, DEV_IDLEN); 1646 } 1647 1648 /* 1649 * If the user is only interested in buses, there's no 1650 * reason to descend to the next level in the tree. 1651 */ 1652 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1653 return(1); 1654 1655 /* 1656 * If there is a target generation recorded, check it to 1657 * make sure the target list hasn't changed. 1658 */ 1659 mtx_lock(&bus->eb_mtx); 1660 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1661 && (cdm->pos.cookie.bus == bus) 1662 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1663 && (cdm->pos.cookie.target != NULL)) { 1664 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1665 bus->generation)) { 1666 mtx_unlock(&bus->eb_mtx); 1667 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1668 return (0); 1669 } 1670 target = (struct cam_et *)cdm->pos.cookie.target; 1671 target->refcount++; 1672 } else 1673 target = NULL; 1674 mtx_unlock(&bus->eb_mtx); 1675 1676 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1677 } 1678 1679 static int 1680 xptedttargetfunc(struct cam_et *target, void *arg) 1681 { 1682 struct ccb_dev_match *cdm; 1683 struct cam_eb *bus; 1684 struct cam_ed *device; 1685 1686 cdm = (struct ccb_dev_match *)arg; 1687 bus = target->bus; 1688 1689 /* 1690 * If there is a device list generation recorded, check it to 1691 * make sure the device list hasn't changed. 1692 */ 1693 mtx_lock(&bus->eb_mtx); 1694 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1695 && (cdm->pos.cookie.bus == bus) 1696 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1697 && (cdm->pos.cookie.target == target) 1698 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1699 && (cdm->pos.cookie.device != NULL)) { 1700 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1701 target->generation) { 1702 mtx_unlock(&bus->eb_mtx); 1703 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1704 return(0); 1705 } 1706 device = (struct cam_ed *)cdm->pos.cookie.device; 1707 device->refcount++; 1708 } else 1709 device = NULL; 1710 mtx_unlock(&bus->eb_mtx); 1711 1712 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1713 } 1714 1715 static int 1716 xptedtdevicefunc(struct cam_ed *device, void *arg) 1717 { 1718 struct cam_eb *bus; 1719 struct cam_periph *periph; 1720 struct ccb_dev_match *cdm; 1721 dev_match_ret retval; 1722 1723 cdm = (struct ccb_dev_match *)arg; 1724 bus = device->target->bus; 1725 1726 /* 1727 * If our position is for something deeper in the tree, that means 1728 * that we've already seen this node. So, we keep going down. 1729 */ 1730 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1731 && (cdm->pos.cookie.device == device) 1732 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1733 && (cdm->pos.cookie.periph != NULL)) 1734 retval = DM_RET_DESCEND; 1735 else 1736 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1737 device); 1738 1739 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1740 cdm->status = CAM_DEV_MATCH_ERROR; 1741 return(0); 1742 } 1743 1744 /* 1745 * If the copy flag is set, copy this device out. 1746 */ 1747 if (retval & DM_RET_COPY) { 1748 int spaceleft, j; 1749 1750 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1751 sizeof(struct dev_match_result)); 1752 1753 /* 1754 * If we don't have enough space to put in another 1755 * match result, save our position and tell the 1756 * user there are more devices to check. 1757 */ 1758 if (spaceleft < sizeof(struct dev_match_result)) { 1759 bzero(&cdm->pos, sizeof(cdm->pos)); 1760 cdm->pos.position_type = 1761 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1762 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1763 1764 cdm->pos.cookie.bus = device->target->bus; 1765 cdm->pos.generations[CAM_BUS_GENERATION]= 1766 xsoftc.bus_generation; 1767 cdm->pos.cookie.target = device->target; 1768 cdm->pos.generations[CAM_TARGET_GENERATION] = 1769 device->target->bus->generation; 1770 cdm->pos.cookie.device = device; 1771 cdm->pos.generations[CAM_DEV_GENERATION] = 1772 device->target->generation; 1773 cdm->status = CAM_DEV_MATCH_MORE; 1774 return(0); 1775 } 1776 j = cdm->num_matches; 1777 cdm->num_matches++; 1778 cdm->matches[j].type = DEV_MATCH_DEVICE; 1779 cdm->matches[j].result.device_result.path_id = 1780 device->target->bus->path_id; 1781 cdm->matches[j].result.device_result.target_id = 1782 device->target->target_id; 1783 cdm->matches[j].result.device_result.target_lun = 1784 device->lun_id; 1785 cdm->matches[j].result.device_result.protocol = 1786 device->protocol; 1787 bcopy(&device->inq_data, 1788 &cdm->matches[j].result.device_result.inq_data, 1789 sizeof(struct scsi_inquiry_data)); 1790 bcopy(&device->ident_data, 1791 &cdm->matches[j].result.device_result.ident_data, 1792 sizeof(struct ata_params)); 1793 1794 /* Let the user know whether this device is unconfigured */ 1795 if (device->flags & CAM_DEV_UNCONFIGURED) 1796 cdm->matches[j].result.device_result.flags = 1797 DEV_RESULT_UNCONFIGURED; 1798 else 1799 cdm->matches[j].result.device_result.flags = 1800 DEV_RESULT_NOFLAG; 1801 } 1802 1803 /* 1804 * If the user isn't interested in peripherals, don't descend 1805 * the tree any further. 1806 */ 1807 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1808 return(1); 1809 1810 /* 1811 * If there is a peripheral list generation recorded, make sure 1812 * it hasn't changed. 1813 */ 1814 xpt_lock_buses(); 1815 mtx_lock(&bus->eb_mtx); 1816 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1817 && (cdm->pos.cookie.bus == bus) 1818 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1819 && (cdm->pos.cookie.target == device->target) 1820 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1821 && (cdm->pos.cookie.device == device) 1822 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1823 && (cdm->pos.cookie.periph != NULL)) { 1824 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1825 device->generation) { 1826 mtx_unlock(&bus->eb_mtx); 1827 xpt_unlock_buses(); 1828 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1829 return(0); 1830 } 1831 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1832 periph->refcount++; 1833 } else 1834 periph = NULL; 1835 mtx_unlock(&bus->eb_mtx); 1836 xpt_unlock_buses(); 1837 1838 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1839 } 1840 1841 static int 1842 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1843 { 1844 struct ccb_dev_match *cdm; 1845 dev_match_ret retval; 1846 1847 cdm = (struct ccb_dev_match *)arg; 1848 1849 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1850 1851 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1852 cdm->status = CAM_DEV_MATCH_ERROR; 1853 return(0); 1854 } 1855 1856 /* 1857 * If the copy flag is set, copy this peripheral out. 1858 */ 1859 if (retval & DM_RET_COPY) { 1860 int spaceleft, j; 1861 1862 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1863 sizeof(struct dev_match_result)); 1864 1865 /* 1866 * If we don't have enough space to put in another 1867 * match result, save our position and tell the 1868 * user there are more devices to check. 1869 */ 1870 if (spaceleft < sizeof(struct dev_match_result)) { 1871 bzero(&cdm->pos, sizeof(cdm->pos)); 1872 cdm->pos.position_type = 1873 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1874 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1875 CAM_DEV_POS_PERIPH; 1876 1877 cdm->pos.cookie.bus = periph->path->bus; 1878 cdm->pos.generations[CAM_BUS_GENERATION]= 1879 xsoftc.bus_generation; 1880 cdm->pos.cookie.target = periph->path->target; 1881 cdm->pos.generations[CAM_TARGET_GENERATION] = 1882 periph->path->bus->generation; 1883 cdm->pos.cookie.device = periph->path->device; 1884 cdm->pos.generations[CAM_DEV_GENERATION] = 1885 periph->path->target->generation; 1886 cdm->pos.cookie.periph = periph; 1887 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1888 periph->path->device->generation; 1889 cdm->status = CAM_DEV_MATCH_MORE; 1890 return(0); 1891 } 1892 1893 j = cdm->num_matches; 1894 cdm->num_matches++; 1895 cdm->matches[j].type = DEV_MATCH_PERIPH; 1896 cdm->matches[j].result.periph_result.path_id = 1897 periph->path->bus->path_id; 1898 cdm->matches[j].result.periph_result.target_id = 1899 periph->path->target->target_id; 1900 cdm->matches[j].result.periph_result.target_lun = 1901 periph->path->device->lun_id; 1902 cdm->matches[j].result.periph_result.unit_number = 1903 periph->unit_number; 1904 strncpy(cdm->matches[j].result.periph_result.periph_name, 1905 periph->periph_name, DEV_IDLEN); 1906 } 1907 1908 return(1); 1909 } 1910 1911 static int 1912 xptedtmatch(struct ccb_dev_match *cdm) 1913 { 1914 struct cam_eb *bus; 1915 int ret; 1916 1917 cdm->num_matches = 0; 1918 1919 /* 1920 * Check the bus list generation. If it has changed, the user 1921 * needs to reset everything and start over. 1922 */ 1923 xpt_lock_buses(); 1924 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1925 && (cdm->pos.cookie.bus != NULL)) { 1926 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1927 xsoftc.bus_generation) { 1928 xpt_unlock_buses(); 1929 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1930 return(0); 1931 } 1932 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1933 bus->refcount++; 1934 } else 1935 bus = NULL; 1936 xpt_unlock_buses(); 1937 1938 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1939 1940 /* 1941 * If we get back 0, that means that we had to stop before fully 1942 * traversing the EDT. It also means that one of the subroutines 1943 * has set the status field to the proper value. If we get back 1, 1944 * we've fully traversed the EDT and copied out any matching entries. 1945 */ 1946 if (ret == 1) 1947 cdm->status = CAM_DEV_MATCH_LAST; 1948 1949 return(ret); 1950 } 1951 1952 static int 1953 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1954 { 1955 struct cam_periph *periph; 1956 struct ccb_dev_match *cdm; 1957 1958 cdm = (struct ccb_dev_match *)arg; 1959 1960 xpt_lock_buses(); 1961 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1962 && (cdm->pos.cookie.pdrv == pdrv) 1963 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1964 && (cdm->pos.cookie.periph != NULL)) { 1965 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1966 (*pdrv)->generation) { 1967 xpt_unlock_buses(); 1968 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1969 return(0); 1970 } 1971 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1972 periph->refcount++; 1973 } else 1974 periph = NULL; 1975 xpt_unlock_buses(); 1976 1977 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1978 } 1979 1980 static int 1981 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1982 { 1983 struct ccb_dev_match *cdm; 1984 dev_match_ret retval; 1985 1986 cdm = (struct ccb_dev_match *)arg; 1987 1988 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1989 1990 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1991 cdm->status = CAM_DEV_MATCH_ERROR; 1992 return(0); 1993 } 1994 1995 /* 1996 * If the copy flag is set, copy this peripheral out. 1997 */ 1998 if (retval & DM_RET_COPY) { 1999 int spaceleft, j; 2000 2001 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2002 sizeof(struct dev_match_result)); 2003 2004 /* 2005 * If we don't have enough space to put in another 2006 * match result, save our position and tell the 2007 * user there are more devices to check. 2008 */ 2009 if (spaceleft < sizeof(struct dev_match_result)) { 2010 struct periph_driver **pdrv; 2011 2012 pdrv = NULL; 2013 bzero(&cdm->pos, sizeof(cdm->pos)); 2014 cdm->pos.position_type = 2015 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2016 CAM_DEV_POS_PERIPH; 2017 2018 /* 2019 * This may look a bit non-sensical, but it is 2020 * actually quite logical. There are very few 2021 * peripheral drivers, and bloating every peripheral 2022 * structure with a pointer back to its parent 2023 * peripheral driver linker set entry would cost 2024 * more in the long run than doing this quick lookup. 2025 */ 2026 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2027 if (strcmp((*pdrv)->driver_name, 2028 periph->periph_name) == 0) 2029 break; 2030 } 2031 2032 if (*pdrv == NULL) { 2033 cdm->status = CAM_DEV_MATCH_ERROR; 2034 return(0); 2035 } 2036 2037 cdm->pos.cookie.pdrv = pdrv; 2038 /* 2039 * The periph generation slot does double duty, as 2040 * does the periph pointer slot. They are used for 2041 * both edt and pdrv lookups and positioning. 2042 */ 2043 cdm->pos.cookie.periph = periph; 2044 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2045 (*pdrv)->generation; 2046 cdm->status = CAM_DEV_MATCH_MORE; 2047 return(0); 2048 } 2049 2050 j = cdm->num_matches; 2051 cdm->num_matches++; 2052 cdm->matches[j].type = DEV_MATCH_PERIPH; 2053 cdm->matches[j].result.periph_result.path_id = 2054 periph->path->bus->path_id; 2055 2056 /* 2057 * The transport layer peripheral doesn't have a target or 2058 * lun. 2059 */ 2060 if (periph->path->target) 2061 cdm->matches[j].result.periph_result.target_id = 2062 periph->path->target->target_id; 2063 else 2064 cdm->matches[j].result.periph_result.target_id = 2065 CAM_TARGET_WILDCARD; 2066 2067 if (periph->path->device) 2068 cdm->matches[j].result.periph_result.target_lun = 2069 periph->path->device->lun_id; 2070 else 2071 cdm->matches[j].result.periph_result.target_lun = 2072 CAM_LUN_WILDCARD; 2073 2074 cdm->matches[j].result.periph_result.unit_number = 2075 periph->unit_number; 2076 strncpy(cdm->matches[j].result.periph_result.periph_name, 2077 periph->periph_name, DEV_IDLEN); 2078 } 2079 2080 return(1); 2081 } 2082 2083 static int 2084 xptperiphlistmatch(struct ccb_dev_match *cdm) 2085 { 2086 int ret; 2087 2088 cdm->num_matches = 0; 2089 2090 /* 2091 * At this point in the edt traversal function, we check the bus 2092 * list generation to make sure that no buses have been added or 2093 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2094 * For the peripheral driver list traversal function, however, we 2095 * don't have to worry about new peripheral driver types coming or 2096 * going; they're in a linker set, and therefore can't change 2097 * without a recompile. 2098 */ 2099 2100 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2101 && (cdm->pos.cookie.pdrv != NULL)) 2102 ret = xptpdrvtraverse( 2103 (struct periph_driver **)cdm->pos.cookie.pdrv, 2104 xptplistpdrvfunc, cdm); 2105 else 2106 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2107 2108 /* 2109 * If we get back 0, that means that we had to stop before fully 2110 * traversing the peripheral driver tree. It also means that one of 2111 * the subroutines has set the status field to the proper value. If 2112 * we get back 1, we've fully traversed the EDT and copied out any 2113 * matching entries. 2114 */ 2115 if (ret == 1) 2116 cdm->status = CAM_DEV_MATCH_LAST; 2117 2118 return(ret); 2119 } 2120 2121 static int 2122 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2123 { 2124 struct cam_eb *bus, *next_bus; 2125 int retval; 2126 2127 retval = 1; 2128 if (start_bus) 2129 bus = start_bus; 2130 else { 2131 xpt_lock_buses(); 2132 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2133 if (bus == NULL) { 2134 xpt_unlock_buses(); 2135 return (retval); 2136 } 2137 bus->refcount++; 2138 xpt_unlock_buses(); 2139 } 2140 for (; bus != NULL; bus = next_bus) { 2141 retval = tr_func(bus, arg); 2142 if (retval == 0) { 2143 xpt_release_bus(bus); 2144 break; 2145 } 2146 xpt_lock_buses(); 2147 next_bus = TAILQ_NEXT(bus, links); 2148 if (next_bus) 2149 next_bus->refcount++; 2150 xpt_unlock_buses(); 2151 xpt_release_bus(bus); 2152 } 2153 return(retval); 2154 } 2155 2156 static int 2157 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2158 xpt_targetfunc_t *tr_func, void *arg) 2159 { 2160 struct cam_et *target, *next_target; 2161 int retval; 2162 2163 retval = 1; 2164 if (start_target) 2165 target = start_target; 2166 else { 2167 mtx_lock(&bus->eb_mtx); 2168 target = TAILQ_FIRST(&bus->et_entries); 2169 if (target == NULL) { 2170 mtx_unlock(&bus->eb_mtx); 2171 return (retval); 2172 } 2173 target->refcount++; 2174 mtx_unlock(&bus->eb_mtx); 2175 } 2176 for (; target != NULL; target = next_target) { 2177 retval = tr_func(target, arg); 2178 if (retval == 0) { 2179 xpt_release_target(target); 2180 break; 2181 } 2182 mtx_lock(&bus->eb_mtx); 2183 next_target = TAILQ_NEXT(target, links); 2184 if (next_target) 2185 next_target->refcount++; 2186 mtx_unlock(&bus->eb_mtx); 2187 xpt_release_target(target); 2188 } 2189 return(retval); 2190 } 2191 2192 static int 2193 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2194 xpt_devicefunc_t *tr_func, void *arg) 2195 { 2196 struct cam_eb *bus; 2197 struct cam_ed *device, *next_device; 2198 int retval; 2199 2200 retval = 1; 2201 bus = target->bus; 2202 if (start_device) 2203 device = start_device; 2204 else { 2205 mtx_lock(&bus->eb_mtx); 2206 device = TAILQ_FIRST(&target->ed_entries); 2207 if (device == NULL) { 2208 mtx_unlock(&bus->eb_mtx); 2209 return (retval); 2210 } 2211 device->refcount++; 2212 mtx_unlock(&bus->eb_mtx); 2213 } 2214 for (; device != NULL; device = next_device) { 2215 mtx_lock(&device->device_mtx); 2216 retval = tr_func(device, arg); 2217 mtx_unlock(&device->device_mtx); 2218 if (retval == 0) { 2219 xpt_release_device(device); 2220 break; 2221 } 2222 mtx_lock(&bus->eb_mtx); 2223 next_device = TAILQ_NEXT(device, links); 2224 if (next_device) 2225 next_device->refcount++; 2226 mtx_unlock(&bus->eb_mtx); 2227 xpt_release_device(device); 2228 } 2229 return(retval); 2230 } 2231 2232 static int 2233 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2234 xpt_periphfunc_t *tr_func, void *arg) 2235 { 2236 struct cam_eb *bus; 2237 struct cam_periph *periph, *next_periph; 2238 int retval; 2239 2240 retval = 1; 2241 2242 bus = device->target->bus; 2243 if (start_periph) 2244 periph = start_periph; 2245 else { 2246 xpt_lock_buses(); 2247 mtx_lock(&bus->eb_mtx); 2248 periph = SLIST_FIRST(&device->periphs); 2249 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2250 periph = SLIST_NEXT(periph, periph_links); 2251 if (periph == NULL) { 2252 mtx_unlock(&bus->eb_mtx); 2253 xpt_unlock_buses(); 2254 return (retval); 2255 } 2256 periph->refcount++; 2257 mtx_unlock(&bus->eb_mtx); 2258 xpt_unlock_buses(); 2259 } 2260 for (; periph != NULL; periph = next_periph) { 2261 retval = tr_func(periph, arg); 2262 if (retval == 0) { 2263 cam_periph_release_locked(periph); 2264 break; 2265 } 2266 xpt_lock_buses(); 2267 mtx_lock(&bus->eb_mtx); 2268 next_periph = SLIST_NEXT(periph, periph_links); 2269 while (next_periph != NULL && 2270 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2271 next_periph = SLIST_NEXT(next_periph, periph_links); 2272 if (next_periph) 2273 next_periph->refcount++; 2274 mtx_unlock(&bus->eb_mtx); 2275 xpt_unlock_buses(); 2276 cam_periph_release_locked(periph); 2277 } 2278 return(retval); 2279 } 2280 2281 static int 2282 xptpdrvtraverse(struct periph_driver **start_pdrv, 2283 xpt_pdrvfunc_t *tr_func, void *arg) 2284 { 2285 struct periph_driver **pdrv; 2286 int retval; 2287 2288 retval = 1; 2289 2290 /* 2291 * We don't traverse the peripheral driver list like we do the 2292 * other lists, because it is a linker set, and therefore cannot be 2293 * changed during runtime. If the peripheral driver list is ever 2294 * re-done to be something other than a linker set (i.e. it can 2295 * change while the system is running), the list traversal should 2296 * be modified to work like the other traversal functions. 2297 */ 2298 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2299 *pdrv != NULL; pdrv++) { 2300 retval = tr_func(pdrv, arg); 2301 2302 if (retval == 0) 2303 return(retval); 2304 } 2305 2306 return(retval); 2307 } 2308 2309 static int 2310 xptpdperiphtraverse(struct periph_driver **pdrv, 2311 struct cam_periph *start_periph, 2312 xpt_periphfunc_t *tr_func, void *arg) 2313 { 2314 struct cam_periph *periph, *next_periph; 2315 int retval; 2316 2317 retval = 1; 2318 2319 if (start_periph) 2320 periph = start_periph; 2321 else { 2322 xpt_lock_buses(); 2323 periph = TAILQ_FIRST(&(*pdrv)->units); 2324 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2325 periph = TAILQ_NEXT(periph, unit_links); 2326 if (periph == NULL) { 2327 xpt_unlock_buses(); 2328 return (retval); 2329 } 2330 periph->refcount++; 2331 xpt_unlock_buses(); 2332 } 2333 for (; periph != NULL; periph = next_periph) { 2334 cam_periph_lock(periph); 2335 retval = tr_func(periph, arg); 2336 cam_periph_unlock(periph); 2337 if (retval == 0) { 2338 cam_periph_release(periph); 2339 break; 2340 } 2341 xpt_lock_buses(); 2342 next_periph = TAILQ_NEXT(periph, unit_links); 2343 while (next_periph != NULL && 2344 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2345 next_periph = TAILQ_NEXT(next_periph, unit_links); 2346 if (next_periph) 2347 next_periph->refcount++; 2348 xpt_unlock_buses(); 2349 cam_periph_release(periph); 2350 } 2351 return(retval); 2352 } 2353 2354 static int 2355 xptdefbusfunc(struct cam_eb *bus, void *arg) 2356 { 2357 struct xpt_traverse_config *tr_config; 2358 2359 tr_config = (struct xpt_traverse_config *)arg; 2360 2361 if (tr_config->depth == XPT_DEPTH_BUS) { 2362 xpt_busfunc_t *tr_func; 2363 2364 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2365 2366 return(tr_func(bus, tr_config->tr_arg)); 2367 } else 2368 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2369 } 2370 2371 static int 2372 xptdeftargetfunc(struct cam_et *target, void *arg) 2373 { 2374 struct xpt_traverse_config *tr_config; 2375 2376 tr_config = (struct xpt_traverse_config *)arg; 2377 2378 if (tr_config->depth == XPT_DEPTH_TARGET) { 2379 xpt_targetfunc_t *tr_func; 2380 2381 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2382 2383 return(tr_func(target, tr_config->tr_arg)); 2384 } else 2385 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2386 } 2387 2388 static int 2389 xptdefdevicefunc(struct cam_ed *device, void *arg) 2390 { 2391 struct xpt_traverse_config *tr_config; 2392 2393 tr_config = (struct xpt_traverse_config *)arg; 2394 2395 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2396 xpt_devicefunc_t *tr_func; 2397 2398 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2399 2400 return(tr_func(device, tr_config->tr_arg)); 2401 } else 2402 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2403 } 2404 2405 static int 2406 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2407 { 2408 struct xpt_traverse_config *tr_config; 2409 xpt_periphfunc_t *tr_func; 2410 2411 tr_config = (struct xpt_traverse_config *)arg; 2412 2413 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2414 2415 /* 2416 * Unlike the other default functions, we don't check for depth 2417 * here. The peripheral driver level is the last level in the EDT, 2418 * so if we're here, we should execute the function in question. 2419 */ 2420 return(tr_func(periph, tr_config->tr_arg)); 2421 } 2422 2423 /* 2424 * Execute the given function for every bus in the EDT. 2425 */ 2426 static int 2427 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2428 { 2429 struct xpt_traverse_config tr_config; 2430 2431 tr_config.depth = XPT_DEPTH_BUS; 2432 tr_config.tr_func = tr_func; 2433 tr_config.tr_arg = arg; 2434 2435 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2436 } 2437 2438 /* 2439 * Execute the given function for every device in the EDT. 2440 */ 2441 static int 2442 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2443 { 2444 struct xpt_traverse_config tr_config; 2445 2446 tr_config.depth = XPT_DEPTH_DEVICE; 2447 tr_config.tr_func = tr_func; 2448 tr_config.tr_arg = arg; 2449 2450 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2451 } 2452 2453 static int 2454 xptsetasyncfunc(struct cam_ed *device, void *arg) 2455 { 2456 struct cam_path path; 2457 struct ccb_getdev cgd; 2458 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2459 2460 /* 2461 * Don't report unconfigured devices (Wildcard devs, 2462 * devices only for target mode, device instances 2463 * that have been invalidated but are waiting for 2464 * their last reference count to be released). 2465 */ 2466 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2467 return (1); 2468 2469 xpt_compile_path(&path, 2470 NULL, 2471 device->target->bus->path_id, 2472 device->target->target_id, 2473 device->lun_id); 2474 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2475 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2476 xpt_action((union ccb *)&cgd); 2477 csa->callback(csa->callback_arg, 2478 AC_FOUND_DEVICE, 2479 &path, &cgd); 2480 xpt_release_path(&path); 2481 2482 return(1); 2483 } 2484 2485 static int 2486 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2487 { 2488 struct cam_path path; 2489 struct ccb_pathinq cpi; 2490 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2491 2492 xpt_compile_path(&path, /*periph*/NULL, 2493 bus->path_id, 2494 CAM_TARGET_WILDCARD, 2495 CAM_LUN_WILDCARD); 2496 xpt_path_lock(&path); 2497 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2498 cpi.ccb_h.func_code = XPT_PATH_INQ; 2499 xpt_action((union ccb *)&cpi); 2500 csa->callback(csa->callback_arg, 2501 AC_PATH_REGISTERED, 2502 &path, &cpi); 2503 xpt_path_unlock(&path); 2504 xpt_release_path(&path); 2505 2506 return(1); 2507 } 2508 2509 void 2510 xpt_action(union ccb *start_ccb) 2511 { 2512 2513 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2514 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2515 xpt_action_name(start_ccb->ccb_h.func_code))); 2516 2517 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2518 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2519 } 2520 2521 void 2522 xpt_action_default(union ccb *start_ccb) 2523 { 2524 struct cam_path *path; 2525 struct cam_sim *sim; 2526 int lock; 2527 2528 path = start_ccb->ccb_h.path; 2529 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2530 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2531 xpt_action_name(start_ccb->ccb_h.func_code))); 2532 2533 switch (start_ccb->ccb_h.func_code) { 2534 case XPT_SCSI_IO: 2535 { 2536 struct cam_ed *device; 2537 2538 /* 2539 * For the sake of compatibility with SCSI-1 2540 * devices that may not understand the identify 2541 * message, we include lun information in the 2542 * second byte of all commands. SCSI-1 specifies 2543 * that luns are a 3 bit value and reserves only 3 2544 * bits for lun information in the CDB. Later 2545 * revisions of the SCSI spec allow for more than 8 2546 * luns, but have deprecated lun information in the 2547 * CDB. So, if the lun won't fit, we must omit. 2548 * 2549 * Also be aware that during initial probing for devices, 2550 * the inquiry information is unknown but initialized to 0. 2551 * This means that this code will be exercised while probing 2552 * devices with an ANSI revision greater than 2. 2553 */ 2554 device = path->device; 2555 if (device->protocol_version <= SCSI_REV_2 2556 && start_ccb->ccb_h.target_lun < 8 2557 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2558 2559 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2560 start_ccb->ccb_h.target_lun << 5; 2561 } 2562 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2563 } 2564 /* FALLTHROUGH */ 2565 case XPT_TARGET_IO: 2566 case XPT_CONT_TARGET_IO: 2567 start_ccb->csio.sense_resid = 0; 2568 start_ccb->csio.resid = 0; 2569 /* FALLTHROUGH */ 2570 case XPT_ATA_IO: 2571 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2572 start_ccb->ataio.resid = 0; 2573 /* FALLTHROUGH */ 2574 case XPT_NVME_IO: 2575 if (start_ccb->ccb_h.func_code == XPT_NVME_IO) 2576 start_ccb->nvmeio.resid = 0; 2577 /* FALLTHROUGH */ 2578 case XPT_RESET_DEV: 2579 case XPT_ENG_EXEC: 2580 case XPT_SMP_IO: 2581 { 2582 struct cam_devq *devq; 2583 2584 devq = path->bus->sim->devq; 2585 mtx_lock(&devq->send_mtx); 2586 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2587 if (xpt_schedule_devq(devq, path->device) != 0) 2588 xpt_run_devq(devq); 2589 mtx_unlock(&devq->send_mtx); 2590 break; 2591 } 2592 case XPT_CALC_GEOMETRY: 2593 /* Filter out garbage */ 2594 if (start_ccb->ccg.block_size == 0 2595 || start_ccb->ccg.volume_size == 0) { 2596 start_ccb->ccg.cylinders = 0; 2597 start_ccb->ccg.heads = 0; 2598 start_ccb->ccg.secs_per_track = 0; 2599 start_ccb->ccb_h.status = CAM_REQ_CMP; 2600 break; 2601 } 2602 #if defined(__sparc64__) 2603 /* 2604 * For sparc64, we may need adjust the geometry of large 2605 * disks in order to fit the limitations of the 16-bit 2606 * fields of the VTOC8 disk label. 2607 */ 2608 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2609 start_ccb->ccb_h.status = CAM_REQ_CMP; 2610 break; 2611 } 2612 #endif 2613 goto call_sim; 2614 case XPT_ABORT: 2615 { 2616 union ccb* abort_ccb; 2617 2618 abort_ccb = start_ccb->cab.abort_ccb; 2619 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2620 struct cam_ed *device; 2621 struct cam_devq *devq; 2622 2623 device = abort_ccb->ccb_h.path->device; 2624 devq = device->sim->devq; 2625 2626 mtx_lock(&devq->send_mtx); 2627 if (abort_ccb->ccb_h.pinfo.index > 0) { 2628 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2629 abort_ccb->ccb_h.status = 2630 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2631 xpt_freeze_devq_device(device, 1); 2632 mtx_unlock(&devq->send_mtx); 2633 xpt_done(abort_ccb); 2634 start_ccb->ccb_h.status = CAM_REQ_CMP; 2635 break; 2636 } 2637 mtx_unlock(&devq->send_mtx); 2638 2639 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2640 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2641 /* 2642 * We've caught this ccb en route to 2643 * the SIM. Flag it for abort and the 2644 * SIM will do so just before starting 2645 * real work on the CCB. 2646 */ 2647 abort_ccb->ccb_h.status = 2648 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2649 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2650 start_ccb->ccb_h.status = CAM_REQ_CMP; 2651 break; 2652 } 2653 } 2654 if (XPT_FC_IS_QUEUED(abort_ccb) 2655 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2656 /* 2657 * It's already completed but waiting 2658 * for our SWI to get to it. 2659 */ 2660 start_ccb->ccb_h.status = CAM_UA_ABORT; 2661 break; 2662 } 2663 /* 2664 * If we weren't able to take care of the abort request 2665 * in the XPT, pass the request down to the SIM for processing. 2666 */ 2667 } 2668 /* FALLTHROUGH */ 2669 case XPT_ACCEPT_TARGET_IO: 2670 case XPT_EN_LUN: 2671 case XPT_IMMED_NOTIFY: 2672 case XPT_NOTIFY_ACK: 2673 case XPT_RESET_BUS: 2674 case XPT_IMMEDIATE_NOTIFY: 2675 case XPT_NOTIFY_ACKNOWLEDGE: 2676 case XPT_GET_SIM_KNOB_OLD: 2677 case XPT_GET_SIM_KNOB: 2678 case XPT_SET_SIM_KNOB: 2679 case XPT_GET_TRAN_SETTINGS: 2680 case XPT_SET_TRAN_SETTINGS: 2681 case XPT_PATH_INQ: 2682 call_sim: 2683 sim = path->bus->sim; 2684 lock = (mtx_owned(sim->mtx) == 0); 2685 if (lock) 2686 CAM_SIM_LOCK(sim); 2687 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2688 ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code)); 2689 (*(sim->sim_action))(sim, start_ccb); 2690 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2691 ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status)); 2692 if (lock) 2693 CAM_SIM_UNLOCK(sim); 2694 break; 2695 case XPT_PATH_STATS: 2696 start_ccb->cpis.last_reset = path->bus->last_reset; 2697 start_ccb->ccb_h.status = CAM_REQ_CMP; 2698 break; 2699 case XPT_GDEV_TYPE: 2700 { 2701 struct cam_ed *dev; 2702 2703 dev = path->device; 2704 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2705 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2706 } else { 2707 struct ccb_getdev *cgd; 2708 2709 cgd = &start_ccb->cgd; 2710 cgd->protocol = dev->protocol; 2711 cgd->inq_data = dev->inq_data; 2712 cgd->ident_data = dev->ident_data; 2713 cgd->inq_flags = dev->inq_flags; 2714 cgd->nvme_data = dev->nvme_data; 2715 cgd->nvme_cdata = dev->nvme_cdata; 2716 cgd->ccb_h.status = CAM_REQ_CMP; 2717 cgd->serial_num_len = dev->serial_num_len; 2718 if ((dev->serial_num_len > 0) 2719 && (dev->serial_num != NULL)) 2720 bcopy(dev->serial_num, cgd->serial_num, 2721 dev->serial_num_len); 2722 } 2723 break; 2724 } 2725 case XPT_GDEV_STATS: 2726 { 2727 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2728 struct cam_ed *dev = path->device; 2729 struct cam_eb *bus = path->bus; 2730 struct cam_et *tar = path->target; 2731 struct cam_devq *devq = bus->sim->devq; 2732 2733 mtx_lock(&devq->send_mtx); 2734 cgds->dev_openings = dev->ccbq.dev_openings; 2735 cgds->dev_active = dev->ccbq.dev_active; 2736 cgds->allocated = dev->ccbq.allocated; 2737 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2738 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2739 cgds->last_reset = tar->last_reset; 2740 cgds->maxtags = dev->maxtags; 2741 cgds->mintags = dev->mintags; 2742 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2743 cgds->last_reset = bus->last_reset; 2744 mtx_unlock(&devq->send_mtx); 2745 cgds->ccb_h.status = CAM_REQ_CMP; 2746 break; 2747 } 2748 case XPT_GDEVLIST: 2749 { 2750 struct cam_periph *nperiph; 2751 struct periph_list *periph_head; 2752 struct ccb_getdevlist *cgdl; 2753 u_int i; 2754 struct cam_ed *device; 2755 int found; 2756 2757 2758 found = 0; 2759 2760 /* 2761 * Don't want anyone mucking with our data. 2762 */ 2763 device = path->device; 2764 periph_head = &device->periphs; 2765 cgdl = &start_ccb->cgdl; 2766 2767 /* 2768 * Check and see if the list has changed since the user 2769 * last requested a list member. If so, tell them that the 2770 * list has changed, and therefore they need to start over 2771 * from the beginning. 2772 */ 2773 if ((cgdl->index != 0) && 2774 (cgdl->generation != device->generation)) { 2775 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2776 break; 2777 } 2778 2779 /* 2780 * Traverse the list of peripherals and attempt to find 2781 * the requested peripheral. 2782 */ 2783 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2784 (nperiph != NULL) && (i <= cgdl->index); 2785 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2786 if (i == cgdl->index) { 2787 strncpy(cgdl->periph_name, 2788 nperiph->periph_name, 2789 DEV_IDLEN); 2790 cgdl->unit_number = nperiph->unit_number; 2791 found = 1; 2792 } 2793 } 2794 if (found == 0) { 2795 cgdl->status = CAM_GDEVLIST_ERROR; 2796 break; 2797 } 2798 2799 if (nperiph == NULL) 2800 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2801 else 2802 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2803 2804 cgdl->index++; 2805 cgdl->generation = device->generation; 2806 2807 cgdl->ccb_h.status = CAM_REQ_CMP; 2808 break; 2809 } 2810 case XPT_DEV_MATCH: 2811 { 2812 dev_pos_type position_type; 2813 struct ccb_dev_match *cdm; 2814 2815 cdm = &start_ccb->cdm; 2816 2817 /* 2818 * There are two ways of getting at information in the EDT. 2819 * The first way is via the primary EDT tree. It starts 2820 * with a list of buses, then a list of targets on a bus, 2821 * then devices/luns on a target, and then peripherals on a 2822 * device/lun. The "other" way is by the peripheral driver 2823 * lists. The peripheral driver lists are organized by 2824 * peripheral driver. (obviously) So it makes sense to 2825 * use the peripheral driver list if the user is looking 2826 * for something like "da1", or all "da" devices. If the 2827 * user is looking for something on a particular bus/target 2828 * or lun, it's generally better to go through the EDT tree. 2829 */ 2830 2831 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2832 position_type = cdm->pos.position_type; 2833 else { 2834 u_int i; 2835 2836 position_type = CAM_DEV_POS_NONE; 2837 2838 for (i = 0; i < cdm->num_patterns; i++) { 2839 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2840 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2841 position_type = CAM_DEV_POS_EDT; 2842 break; 2843 } 2844 } 2845 2846 if (cdm->num_patterns == 0) 2847 position_type = CAM_DEV_POS_EDT; 2848 else if (position_type == CAM_DEV_POS_NONE) 2849 position_type = CAM_DEV_POS_PDRV; 2850 } 2851 2852 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2853 case CAM_DEV_POS_EDT: 2854 xptedtmatch(cdm); 2855 break; 2856 case CAM_DEV_POS_PDRV: 2857 xptperiphlistmatch(cdm); 2858 break; 2859 default: 2860 cdm->status = CAM_DEV_MATCH_ERROR; 2861 break; 2862 } 2863 2864 if (cdm->status == CAM_DEV_MATCH_ERROR) 2865 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2866 else 2867 start_ccb->ccb_h.status = CAM_REQ_CMP; 2868 2869 break; 2870 } 2871 case XPT_SASYNC_CB: 2872 { 2873 struct ccb_setasync *csa; 2874 struct async_node *cur_entry; 2875 struct async_list *async_head; 2876 u_int32_t added; 2877 2878 csa = &start_ccb->csa; 2879 added = csa->event_enable; 2880 async_head = &path->device->asyncs; 2881 2882 /* 2883 * If there is already an entry for us, simply 2884 * update it. 2885 */ 2886 cur_entry = SLIST_FIRST(async_head); 2887 while (cur_entry != NULL) { 2888 if ((cur_entry->callback_arg == csa->callback_arg) 2889 && (cur_entry->callback == csa->callback)) 2890 break; 2891 cur_entry = SLIST_NEXT(cur_entry, links); 2892 } 2893 2894 if (cur_entry != NULL) { 2895 /* 2896 * If the request has no flags set, 2897 * remove the entry. 2898 */ 2899 added &= ~cur_entry->event_enable; 2900 if (csa->event_enable == 0) { 2901 SLIST_REMOVE(async_head, cur_entry, 2902 async_node, links); 2903 xpt_release_device(path->device); 2904 free(cur_entry, M_CAMXPT); 2905 } else { 2906 cur_entry->event_enable = csa->event_enable; 2907 } 2908 csa->event_enable = added; 2909 } else { 2910 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2911 M_NOWAIT); 2912 if (cur_entry == NULL) { 2913 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2914 break; 2915 } 2916 cur_entry->event_enable = csa->event_enable; 2917 cur_entry->event_lock = 2918 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2919 cur_entry->callback_arg = csa->callback_arg; 2920 cur_entry->callback = csa->callback; 2921 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2922 xpt_acquire_device(path->device); 2923 } 2924 start_ccb->ccb_h.status = CAM_REQ_CMP; 2925 break; 2926 } 2927 case XPT_REL_SIMQ: 2928 { 2929 struct ccb_relsim *crs; 2930 struct cam_ed *dev; 2931 2932 crs = &start_ccb->crs; 2933 dev = path->device; 2934 if (dev == NULL) { 2935 2936 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2937 break; 2938 } 2939 2940 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2941 2942 /* Don't ever go below one opening */ 2943 if (crs->openings > 0) { 2944 xpt_dev_ccbq_resize(path, crs->openings); 2945 if (bootverbose) { 2946 xpt_print(path, 2947 "number of openings is now %d\n", 2948 crs->openings); 2949 } 2950 } 2951 } 2952 2953 mtx_lock(&dev->sim->devq->send_mtx); 2954 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2955 2956 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2957 2958 /* 2959 * Just extend the old timeout and decrement 2960 * the freeze count so that a single timeout 2961 * is sufficient for releasing the queue. 2962 */ 2963 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2964 callout_stop(&dev->callout); 2965 } else { 2966 2967 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2968 } 2969 2970 callout_reset_sbt(&dev->callout, 2971 SBT_1MS * crs->release_timeout, 0, 2972 xpt_release_devq_timeout, dev, 0); 2973 2974 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2975 2976 } 2977 2978 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2979 2980 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2981 /* 2982 * Decrement the freeze count so that a single 2983 * completion is still sufficient to unfreeze 2984 * the queue. 2985 */ 2986 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2987 } else { 2988 2989 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2990 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2991 } 2992 } 2993 2994 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2995 2996 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2997 || (dev->ccbq.dev_active == 0)) { 2998 2999 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3000 } else { 3001 3002 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3003 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3004 } 3005 } 3006 mtx_unlock(&dev->sim->devq->send_mtx); 3007 3008 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3009 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3010 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3011 start_ccb->ccb_h.status = CAM_REQ_CMP; 3012 break; 3013 } 3014 case XPT_DEBUG: { 3015 struct cam_path *oldpath; 3016 3017 /* Check that all request bits are supported. */ 3018 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3019 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3020 break; 3021 } 3022 3023 cam_dflags = CAM_DEBUG_NONE; 3024 if (cam_dpath != NULL) { 3025 oldpath = cam_dpath; 3026 cam_dpath = NULL; 3027 xpt_free_path(oldpath); 3028 } 3029 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3030 if (xpt_create_path(&cam_dpath, NULL, 3031 start_ccb->ccb_h.path_id, 3032 start_ccb->ccb_h.target_id, 3033 start_ccb->ccb_h.target_lun) != 3034 CAM_REQ_CMP) { 3035 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3036 } else { 3037 cam_dflags = start_ccb->cdbg.flags; 3038 start_ccb->ccb_h.status = CAM_REQ_CMP; 3039 xpt_print(cam_dpath, "debugging flags now %x\n", 3040 cam_dflags); 3041 } 3042 } else 3043 start_ccb->ccb_h.status = CAM_REQ_CMP; 3044 break; 3045 } 3046 case XPT_NOOP: 3047 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3048 xpt_freeze_devq(path, 1); 3049 start_ccb->ccb_h.status = CAM_REQ_CMP; 3050 break; 3051 case XPT_REPROBE_LUN: 3052 xpt_async(AC_INQ_CHANGED, path, NULL); 3053 start_ccb->ccb_h.status = CAM_REQ_CMP; 3054 xpt_done(start_ccb); 3055 break; 3056 default: 3057 case XPT_SDEV_TYPE: 3058 case XPT_TERM_IO: 3059 case XPT_ENG_INQ: 3060 /* XXX Implement */ 3061 xpt_print(start_ccb->ccb_h.path, 3062 "%s: CCB type %#x %s not supported\n", __func__, 3063 start_ccb->ccb_h.func_code, 3064 xpt_action_name(start_ccb->ccb_h.func_code)); 3065 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3066 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3067 xpt_done(start_ccb); 3068 } 3069 break; 3070 } 3071 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3072 ("xpt_action_default: func= %#x %s status %#x\n", 3073 start_ccb->ccb_h.func_code, 3074 xpt_action_name(start_ccb->ccb_h.func_code), 3075 start_ccb->ccb_h.status)); 3076 } 3077 3078 void 3079 xpt_polled_action(union ccb *start_ccb) 3080 { 3081 u_int32_t timeout; 3082 struct cam_sim *sim; 3083 struct cam_devq *devq; 3084 struct cam_ed *dev; 3085 3086 timeout = start_ccb->ccb_h.timeout * 10; 3087 sim = start_ccb->ccb_h.path->bus->sim; 3088 devq = sim->devq; 3089 dev = start_ccb->ccb_h.path->device; 3090 3091 mtx_unlock(&dev->device_mtx); 3092 3093 /* 3094 * Steal an opening so that no other queued requests 3095 * can get it before us while we simulate interrupts. 3096 */ 3097 mtx_lock(&devq->send_mtx); 3098 dev->ccbq.dev_openings--; 3099 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3100 (--timeout > 0)) { 3101 mtx_unlock(&devq->send_mtx); 3102 DELAY(100); 3103 CAM_SIM_LOCK(sim); 3104 (*(sim->sim_poll))(sim); 3105 CAM_SIM_UNLOCK(sim); 3106 camisr_runqueue(); 3107 mtx_lock(&devq->send_mtx); 3108 } 3109 dev->ccbq.dev_openings++; 3110 mtx_unlock(&devq->send_mtx); 3111 3112 if (timeout != 0) { 3113 xpt_action(start_ccb); 3114 while(--timeout > 0) { 3115 CAM_SIM_LOCK(sim); 3116 (*(sim->sim_poll))(sim); 3117 CAM_SIM_UNLOCK(sim); 3118 camisr_runqueue(); 3119 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3120 != CAM_REQ_INPROG) 3121 break; 3122 DELAY(100); 3123 } 3124 if (timeout == 0) { 3125 /* 3126 * XXX Is it worth adding a sim_timeout entry 3127 * point so we can attempt recovery? If 3128 * this is only used for dumps, I don't think 3129 * it is. 3130 */ 3131 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3132 } 3133 } else { 3134 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3135 } 3136 3137 mtx_lock(&dev->device_mtx); 3138 } 3139 3140 /* 3141 * Schedule a peripheral driver to receive a ccb when its 3142 * target device has space for more transactions. 3143 */ 3144 void 3145 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3146 { 3147 3148 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3149 cam_periph_assert(periph, MA_OWNED); 3150 if (new_priority < periph->scheduled_priority) { 3151 periph->scheduled_priority = new_priority; 3152 xpt_run_allocq(periph, 0); 3153 } 3154 } 3155 3156 3157 /* 3158 * Schedule a device to run on a given queue. 3159 * If the device was inserted as a new entry on the queue, 3160 * return 1 meaning the device queue should be run. If we 3161 * were already queued, implying someone else has already 3162 * started the queue, return 0 so the caller doesn't attempt 3163 * to run the queue. 3164 */ 3165 static int 3166 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3167 u_int32_t new_priority) 3168 { 3169 int retval; 3170 u_int32_t old_priority; 3171 3172 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3173 3174 old_priority = pinfo->priority; 3175 3176 /* 3177 * Are we already queued? 3178 */ 3179 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3180 /* Simply reorder based on new priority */ 3181 if (new_priority < old_priority) { 3182 camq_change_priority(queue, pinfo->index, 3183 new_priority); 3184 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3185 ("changed priority to %d\n", 3186 new_priority)); 3187 retval = 1; 3188 } else 3189 retval = 0; 3190 } else { 3191 /* New entry on the queue */ 3192 if (new_priority < old_priority) 3193 pinfo->priority = new_priority; 3194 3195 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3196 ("Inserting onto queue\n")); 3197 pinfo->generation = ++queue->generation; 3198 camq_insert(queue, pinfo); 3199 retval = 1; 3200 } 3201 return (retval); 3202 } 3203 3204 static void 3205 xpt_run_allocq_task(void *context, int pending) 3206 { 3207 struct cam_periph *periph = context; 3208 3209 cam_periph_lock(periph); 3210 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3211 xpt_run_allocq(periph, 1); 3212 cam_periph_unlock(periph); 3213 cam_periph_release(periph); 3214 } 3215 3216 static void 3217 xpt_run_allocq(struct cam_periph *periph, int sleep) 3218 { 3219 struct cam_ed *device; 3220 union ccb *ccb; 3221 uint32_t prio; 3222 3223 cam_periph_assert(periph, MA_OWNED); 3224 if (periph->periph_allocating) 3225 return; 3226 periph->periph_allocating = 1; 3227 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3228 device = periph->path->device; 3229 ccb = NULL; 3230 restart: 3231 while ((prio = min(periph->scheduled_priority, 3232 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3233 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3234 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3235 3236 if (ccb == NULL && 3237 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3238 if (sleep) { 3239 ccb = xpt_get_ccb(periph); 3240 goto restart; 3241 } 3242 if (periph->flags & CAM_PERIPH_RUN_TASK) 3243 break; 3244 cam_periph_doacquire(periph); 3245 periph->flags |= CAM_PERIPH_RUN_TASK; 3246 taskqueue_enqueue(xsoftc.xpt_taskq, 3247 &periph->periph_run_task); 3248 break; 3249 } 3250 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3251 if (prio == periph->immediate_priority) { 3252 periph->immediate_priority = CAM_PRIORITY_NONE; 3253 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3254 ("waking cam_periph_getccb()\n")); 3255 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3256 periph_links.sle); 3257 wakeup(&periph->ccb_list); 3258 } else { 3259 periph->scheduled_priority = CAM_PRIORITY_NONE; 3260 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3261 ("calling periph_start()\n")); 3262 periph->periph_start(periph, ccb); 3263 } 3264 ccb = NULL; 3265 } 3266 if (ccb != NULL) 3267 xpt_release_ccb(ccb); 3268 periph->periph_allocating = 0; 3269 } 3270 3271 static void 3272 xpt_run_devq(struct cam_devq *devq) 3273 { 3274 int lock; 3275 3276 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3277 3278 devq->send_queue.qfrozen_cnt++; 3279 while ((devq->send_queue.entries > 0) 3280 && (devq->send_openings > 0) 3281 && (devq->send_queue.qfrozen_cnt <= 1)) { 3282 struct cam_ed *device; 3283 union ccb *work_ccb; 3284 struct cam_sim *sim; 3285 struct xpt_proto *proto; 3286 3287 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3288 CAMQ_HEAD); 3289 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3290 ("running device %p\n", device)); 3291 3292 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3293 if (work_ccb == NULL) { 3294 printf("device on run queue with no ccbs???\n"); 3295 continue; 3296 } 3297 3298 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3299 3300 mtx_lock(&xsoftc.xpt_highpower_lock); 3301 if (xsoftc.num_highpower <= 0) { 3302 /* 3303 * We got a high power command, but we 3304 * don't have any available slots. Freeze 3305 * the device queue until we have a slot 3306 * available. 3307 */ 3308 xpt_freeze_devq_device(device, 1); 3309 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3310 highpowerq_entry); 3311 3312 mtx_unlock(&xsoftc.xpt_highpower_lock); 3313 continue; 3314 } else { 3315 /* 3316 * Consume a high power slot while 3317 * this ccb runs. 3318 */ 3319 xsoftc.num_highpower--; 3320 } 3321 mtx_unlock(&xsoftc.xpt_highpower_lock); 3322 } 3323 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3324 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3325 devq->send_openings--; 3326 devq->send_active++; 3327 xpt_schedule_devq(devq, device); 3328 mtx_unlock(&devq->send_mtx); 3329 3330 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3331 /* 3332 * The client wants to freeze the queue 3333 * after this CCB is sent. 3334 */ 3335 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3336 } 3337 3338 /* In Target mode, the peripheral driver knows best... */ 3339 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3340 if ((device->inq_flags & SID_CmdQue) != 0 3341 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3342 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3343 else 3344 /* 3345 * Clear this in case of a retried CCB that 3346 * failed due to a rejected tag. 3347 */ 3348 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3349 } 3350 3351 KASSERT(device == work_ccb->ccb_h.path->device, 3352 ("device (%p) / path->device (%p) mismatch", 3353 device, work_ccb->ccb_h.path->device)); 3354 proto = xpt_proto_find(device->protocol); 3355 if (proto && proto->ops->debug_out) 3356 proto->ops->debug_out(work_ccb); 3357 3358 /* 3359 * Device queues can be shared among multiple SIM instances 3360 * that reside on different buses. Use the SIM from the 3361 * queued device, rather than the one from the calling bus. 3362 */ 3363 sim = device->sim; 3364 lock = (mtx_owned(sim->mtx) == 0); 3365 if (lock) 3366 CAM_SIM_LOCK(sim); 3367 work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms 3368 (*(sim->sim_action))(sim, work_ccb); 3369 if (lock) 3370 CAM_SIM_UNLOCK(sim); 3371 mtx_lock(&devq->send_mtx); 3372 } 3373 devq->send_queue.qfrozen_cnt--; 3374 } 3375 3376 /* 3377 * This function merges stuff from the slave ccb into the master ccb, while 3378 * keeping important fields in the master ccb constant. 3379 */ 3380 void 3381 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3382 { 3383 3384 /* 3385 * Pull fields that are valid for peripheral drivers to set 3386 * into the master CCB along with the CCB "payload". 3387 */ 3388 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3389 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3390 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3391 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3392 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3393 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3394 } 3395 3396 void 3397 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3398 u_int32_t priority, u_int32_t flags) 3399 { 3400 3401 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3402 ccb_h->pinfo.priority = priority; 3403 ccb_h->path = path; 3404 ccb_h->path_id = path->bus->path_id; 3405 if (path->target) 3406 ccb_h->target_id = path->target->target_id; 3407 else 3408 ccb_h->target_id = CAM_TARGET_WILDCARD; 3409 if (path->device) { 3410 ccb_h->target_lun = path->device->lun_id; 3411 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3412 } else { 3413 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3414 } 3415 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3416 ccb_h->flags = flags; 3417 ccb_h->xflags = 0; 3418 } 3419 3420 void 3421 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3422 { 3423 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3424 } 3425 3426 /* Path manipulation functions */ 3427 cam_status 3428 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3429 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3430 { 3431 struct cam_path *path; 3432 cam_status status; 3433 3434 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3435 3436 if (path == NULL) { 3437 status = CAM_RESRC_UNAVAIL; 3438 return(status); 3439 } 3440 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3441 if (status != CAM_REQ_CMP) { 3442 free(path, M_CAMPATH); 3443 path = NULL; 3444 } 3445 *new_path_ptr = path; 3446 return (status); 3447 } 3448 3449 cam_status 3450 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3451 struct cam_periph *periph, path_id_t path_id, 3452 target_id_t target_id, lun_id_t lun_id) 3453 { 3454 3455 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3456 lun_id)); 3457 } 3458 3459 cam_status 3460 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3461 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3462 { 3463 struct cam_eb *bus; 3464 struct cam_et *target; 3465 struct cam_ed *device; 3466 cam_status status; 3467 3468 status = CAM_REQ_CMP; /* Completed without error */ 3469 target = NULL; /* Wildcarded */ 3470 device = NULL; /* Wildcarded */ 3471 3472 /* 3473 * We will potentially modify the EDT, so block interrupts 3474 * that may attempt to create cam paths. 3475 */ 3476 bus = xpt_find_bus(path_id); 3477 if (bus == NULL) { 3478 status = CAM_PATH_INVALID; 3479 } else { 3480 xpt_lock_buses(); 3481 mtx_lock(&bus->eb_mtx); 3482 target = xpt_find_target(bus, target_id); 3483 if (target == NULL) { 3484 /* Create one */ 3485 struct cam_et *new_target; 3486 3487 new_target = xpt_alloc_target(bus, target_id); 3488 if (new_target == NULL) { 3489 status = CAM_RESRC_UNAVAIL; 3490 } else { 3491 target = new_target; 3492 } 3493 } 3494 xpt_unlock_buses(); 3495 if (target != NULL) { 3496 device = xpt_find_device(target, lun_id); 3497 if (device == NULL) { 3498 /* Create one */ 3499 struct cam_ed *new_device; 3500 3501 new_device = 3502 (*(bus->xport->ops->alloc_device))(bus, 3503 target, 3504 lun_id); 3505 if (new_device == NULL) { 3506 status = CAM_RESRC_UNAVAIL; 3507 } else { 3508 device = new_device; 3509 } 3510 } 3511 } 3512 mtx_unlock(&bus->eb_mtx); 3513 } 3514 3515 /* 3516 * Only touch the user's data if we are successful. 3517 */ 3518 if (status == CAM_REQ_CMP) { 3519 new_path->periph = perph; 3520 new_path->bus = bus; 3521 new_path->target = target; 3522 new_path->device = device; 3523 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3524 } else { 3525 if (device != NULL) 3526 xpt_release_device(device); 3527 if (target != NULL) 3528 xpt_release_target(target); 3529 if (bus != NULL) 3530 xpt_release_bus(bus); 3531 } 3532 return (status); 3533 } 3534 3535 cam_status 3536 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3537 { 3538 struct cam_path *new_path; 3539 3540 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3541 if (new_path == NULL) 3542 return(CAM_RESRC_UNAVAIL); 3543 xpt_copy_path(new_path, path); 3544 *new_path_ptr = new_path; 3545 return (CAM_REQ_CMP); 3546 } 3547 3548 void 3549 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3550 { 3551 3552 *new_path = *path; 3553 if (path->bus != NULL) 3554 xpt_acquire_bus(path->bus); 3555 if (path->target != NULL) 3556 xpt_acquire_target(path->target); 3557 if (path->device != NULL) 3558 xpt_acquire_device(path->device); 3559 } 3560 3561 void 3562 xpt_release_path(struct cam_path *path) 3563 { 3564 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3565 if (path->device != NULL) { 3566 xpt_release_device(path->device); 3567 path->device = NULL; 3568 } 3569 if (path->target != NULL) { 3570 xpt_release_target(path->target); 3571 path->target = NULL; 3572 } 3573 if (path->bus != NULL) { 3574 xpt_release_bus(path->bus); 3575 path->bus = NULL; 3576 } 3577 } 3578 3579 void 3580 xpt_free_path(struct cam_path *path) 3581 { 3582 3583 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3584 xpt_release_path(path); 3585 free(path, M_CAMPATH); 3586 } 3587 3588 void 3589 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3590 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3591 { 3592 3593 xpt_lock_buses(); 3594 if (bus_ref) { 3595 if (path->bus) 3596 *bus_ref = path->bus->refcount; 3597 else 3598 *bus_ref = 0; 3599 } 3600 if (periph_ref) { 3601 if (path->periph) 3602 *periph_ref = path->periph->refcount; 3603 else 3604 *periph_ref = 0; 3605 } 3606 xpt_unlock_buses(); 3607 if (target_ref) { 3608 if (path->target) 3609 *target_ref = path->target->refcount; 3610 else 3611 *target_ref = 0; 3612 } 3613 if (device_ref) { 3614 if (path->device) 3615 *device_ref = path->device->refcount; 3616 else 3617 *device_ref = 0; 3618 } 3619 } 3620 3621 /* 3622 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3623 * in path1, 2 for match with wildcards in path2. 3624 */ 3625 int 3626 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3627 { 3628 int retval = 0; 3629 3630 if (path1->bus != path2->bus) { 3631 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3632 retval = 1; 3633 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3634 retval = 2; 3635 else 3636 return (-1); 3637 } 3638 if (path1->target != path2->target) { 3639 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3640 if (retval == 0) 3641 retval = 1; 3642 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3643 retval = 2; 3644 else 3645 return (-1); 3646 } 3647 if (path1->device != path2->device) { 3648 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3649 if (retval == 0) 3650 retval = 1; 3651 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3652 retval = 2; 3653 else 3654 return (-1); 3655 } 3656 return (retval); 3657 } 3658 3659 int 3660 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3661 { 3662 int retval = 0; 3663 3664 if (path->bus != dev->target->bus) { 3665 if (path->bus->path_id == CAM_BUS_WILDCARD) 3666 retval = 1; 3667 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3668 retval = 2; 3669 else 3670 return (-1); 3671 } 3672 if (path->target != dev->target) { 3673 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3674 if (retval == 0) 3675 retval = 1; 3676 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3677 retval = 2; 3678 else 3679 return (-1); 3680 } 3681 if (path->device != dev) { 3682 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3683 if (retval == 0) 3684 retval = 1; 3685 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3686 retval = 2; 3687 else 3688 return (-1); 3689 } 3690 return (retval); 3691 } 3692 3693 void 3694 xpt_print_path(struct cam_path *path) 3695 { 3696 struct sbuf sb; 3697 char buffer[XPT_PRINT_LEN]; 3698 3699 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3700 xpt_path_sbuf(path, &sb); 3701 sbuf_finish(&sb); 3702 printf("%s", sbuf_data(&sb)); 3703 sbuf_delete(&sb); 3704 } 3705 3706 void 3707 xpt_print_device(struct cam_ed *device) 3708 { 3709 3710 if (device == NULL) 3711 printf("(nopath): "); 3712 else { 3713 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3714 device->sim->unit_number, 3715 device->sim->bus_id, 3716 device->target->target_id, 3717 (uintmax_t)device->lun_id); 3718 } 3719 } 3720 3721 void 3722 xpt_print(struct cam_path *path, const char *fmt, ...) 3723 { 3724 va_list ap; 3725 struct sbuf sb; 3726 char buffer[XPT_PRINT_LEN]; 3727 3728 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3729 3730 xpt_path_sbuf(path, &sb); 3731 va_start(ap, fmt); 3732 sbuf_vprintf(&sb, fmt, ap); 3733 va_end(ap); 3734 3735 sbuf_finish(&sb); 3736 printf("%s", sbuf_data(&sb)); 3737 sbuf_delete(&sb); 3738 } 3739 3740 int 3741 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3742 { 3743 struct sbuf sb; 3744 int len; 3745 3746 sbuf_new(&sb, str, str_len, 0); 3747 len = xpt_path_sbuf(path, &sb); 3748 sbuf_finish(&sb); 3749 return (len); 3750 } 3751 3752 int 3753 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3754 { 3755 3756 if (path == NULL) 3757 sbuf_printf(sb, "(nopath): "); 3758 else { 3759 if (path->periph != NULL) 3760 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3761 path->periph->unit_number); 3762 else 3763 sbuf_printf(sb, "(noperiph:"); 3764 3765 if (path->bus != NULL) 3766 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3767 path->bus->sim->unit_number, 3768 path->bus->sim->bus_id); 3769 else 3770 sbuf_printf(sb, "nobus:"); 3771 3772 if (path->target != NULL) 3773 sbuf_printf(sb, "%d:", path->target->target_id); 3774 else 3775 sbuf_printf(sb, "X:"); 3776 3777 if (path->device != NULL) 3778 sbuf_printf(sb, "%jx): ", 3779 (uintmax_t)path->device->lun_id); 3780 else 3781 sbuf_printf(sb, "X): "); 3782 } 3783 3784 return(sbuf_len(sb)); 3785 } 3786 3787 path_id_t 3788 xpt_path_path_id(struct cam_path *path) 3789 { 3790 return(path->bus->path_id); 3791 } 3792 3793 target_id_t 3794 xpt_path_target_id(struct cam_path *path) 3795 { 3796 if (path->target != NULL) 3797 return (path->target->target_id); 3798 else 3799 return (CAM_TARGET_WILDCARD); 3800 } 3801 3802 lun_id_t 3803 xpt_path_lun_id(struct cam_path *path) 3804 { 3805 if (path->device != NULL) 3806 return (path->device->lun_id); 3807 else 3808 return (CAM_LUN_WILDCARD); 3809 } 3810 3811 struct cam_sim * 3812 xpt_path_sim(struct cam_path *path) 3813 { 3814 3815 return (path->bus->sim); 3816 } 3817 3818 struct cam_periph* 3819 xpt_path_periph(struct cam_path *path) 3820 { 3821 3822 return (path->periph); 3823 } 3824 3825 /* 3826 * Release a CAM control block for the caller. Remit the cost of the structure 3827 * to the device referenced by the path. If the this device had no 'credits' 3828 * and peripheral drivers have registered async callbacks for this notification 3829 * call them now. 3830 */ 3831 void 3832 xpt_release_ccb(union ccb *free_ccb) 3833 { 3834 struct cam_ed *device; 3835 struct cam_periph *periph; 3836 3837 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3838 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3839 device = free_ccb->ccb_h.path->device; 3840 periph = free_ccb->ccb_h.path->periph; 3841 3842 xpt_free_ccb(free_ccb); 3843 periph->periph_allocated--; 3844 cam_ccbq_release_opening(&device->ccbq); 3845 xpt_run_allocq(periph, 0); 3846 } 3847 3848 /* Functions accessed by SIM drivers */ 3849 3850 static struct xpt_xport_ops xport_default_ops = { 3851 .alloc_device = xpt_alloc_device_default, 3852 .action = xpt_action_default, 3853 .async = xpt_dev_async_default, 3854 }; 3855 static struct xpt_xport xport_default = { 3856 .xport = XPORT_UNKNOWN, 3857 .name = "unknown", 3858 .ops = &xport_default_ops, 3859 }; 3860 3861 CAM_XPT_XPORT(xport_default); 3862 3863 /* 3864 * A sim structure, listing the SIM entry points and instance 3865 * identification info is passed to xpt_bus_register to hook the SIM 3866 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3867 * for this new bus and places it in the array of buses and assigns 3868 * it a path_id. The path_id may be influenced by "hard wiring" 3869 * information specified by the user. Once interrupt services are 3870 * available, the bus will be probed. 3871 */ 3872 int32_t 3873 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3874 { 3875 struct cam_eb *new_bus; 3876 struct cam_eb *old_bus; 3877 struct ccb_pathinq cpi; 3878 struct cam_path *path; 3879 cam_status status; 3880 3881 mtx_assert(sim->mtx, MA_OWNED); 3882 3883 sim->bus_id = bus; 3884 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3885 M_CAMXPT, M_NOWAIT|M_ZERO); 3886 if (new_bus == NULL) { 3887 /* Couldn't satisfy request */ 3888 return (CAM_RESRC_UNAVAIL); 3889 } 3890 3891 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3892 TAILQ_INIT(&new_bus->et_entries); 3893 cam_sim_hold(sim); 3894 new_bus->sim = sim; 3895 timevalclear(&new_bus->last_reset); 3896 new_bus->flags = 0; 3897 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3898 new_bus->generation = 0; 3899 3900 xpt_lock_buses(); 3901 sim->path_id = new_bus->path_id = 3902 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3903 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3904 while (old_bus != NULL 3905 && old_bus->path_id < new_bus->path_id) 3906 old_bus = TAILQ_NEXT(old_bus, links); 3907 if (old_bus != NULL) 3908 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3909 else 3910 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3911 xsoftc.bus_generation++; 3912 xpt_unlock_buses(); 3913 3914 /* 3915 * Set a default transport so that a PATH_INQ can be issued to 3916 * the SIM. This will then allow for probing and attaching of 3917 * a more appropriate transport. 3918 */ 3919 new_bus->xport = &xport_default; 3920 3921 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3922 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3923 if (status != CAM_REQ_CMP) { 3924 xpt_release_bus(new_bus); 3925 free(path, M_CAMXPT); 3926 return (CAM_RESRC_UNAVAIL); 3927 } 3928 3929 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3930 cpi.ccb_h.func_code = XPT_PATH_INQ; 3931 xpt_action((union ccb *)&cpi); 3932 3933 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3934 struct xpt_xport **xpt; 3935 3936 SET_FOREACH(xpt, cam_xpt_xport_set) { 3937 if ((*xpt)->xport == cpi.transport) { 3938 new_bus->xport = *xpt; 3939 break; 3940 } 3941 } 3942 if (new_bus->xport == NULL) { 3943 xpt_print(path, 3944 "No transport found for %d\n", cpi.transport); 3945 xpt_release_bus(new_bus); 3946 free(path, M_CAMXPT); 3947 return (CAM_RESRC_UNAVAIL); 3948 } 3949 } 3950 3951 /* Notify interested parties */ 3952 if (sim->path_id != CAM_XPT_PATH_ID) { 3953 3954 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3955 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3956 union ccb *scan_ccb; 3957 3958 /* Initiate bus rescan. */ 3959 scan_ccb = xpt_alloc_ccb_nowait(); 3960 if (scan_ccb != NULL) { 3961 scan_ccb->ccb_h.path = path; 3962 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3963 scan_ccb->crcn.flags = 0; 3964 xpt_rescan(scan_ccb); 3965 } else { 3966 xpt_print(path, 3967 "Can't allocate CCB to scan bus\n"); 3968 xpt_free_path(path); 3969 } 3970 } else 3971 xpt_free_path(path); 3972 } else 3973 xpt_free_path(path); 3974 return (CAM_SUCCESS); 3975 } 3976 3977 int32_t 3978 xpt_bus_deregister(path_id_t pathid) 3979 { 3980 struct cam_path bus_path; 3981 cam_status status; 3982 3983 status = xpt_compile_path(&bus_path, NULL, pathid, 3984 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3985 if (status != CAM_REQ_CMP) 3986 return (status); 3987 3988 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3989 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3990 3991 /* Release the reference count held while registered. */ 3992 xpt_release_bus(bus_path.bus); 3993 xpt_release_path(&bus_path); 3994 3995 return (CAM_REQ_CMP); 3996 } 3997 3998 static path_id_t 3999 xptnextfreepathid(void) 4000 { 4001 struct cam_eb *bus; 4002 path_id_t pathid; 4003 const char *strval; 4004 4005 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4006 pathid = 0; 4007 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4008 retry: 4009 /* Find an unoccupied pathid */ 4010 while (bus != NULL && bus->path_id <= pathid) { 4011 if (bus->path_id == pathid) 4012 pathid++; 4013 bus = TAILQ_NEXT(bus, links); 4014 } 4015 4016 /* 4017 * Ensure that this pathid is not reserved for 4018 * a bus that may be registered in the future. 4019 */ 4020 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4021 ++pathid; 4022 /* Start the search over */ 4023 goto retry; 4024 } 4025 return (pathid); 4026 } 4027 4028 static path_id_t 4029 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4030 { 4031 path_id_t pathid; 4032 int i, dunit, val; 4033 char buf[32]; 4034 const char *dname; 4035 4036 pathid = CAM_XPT_PATH_ID; 4037 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4038 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4039 return (pathid); 4040 i = 0; 4041 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4042 if (strcmp(dname, "scbus")) { 4043 /* Avoid a bit of foot shooting. */ 4044 continue; 4045 } 4046 if (dunit < 0) /* unwired?! */ 4047 continue; 4048 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4049 if (sim_bus == val) { 4050 pathid = dunit; 4051 break; 4052 } 4053 } else if (sim_bus == 0) { 4054 /* Unspecified matches bus 0 */ 4055 pathid = dunit; 4056 break; 4057 } else { 4058 printf("Ambiguous scbus configuration for %s%d " 4059 "bus %d, cannot wire down. The kernel " 4060 "config entry for scbus%d should " 4061 "specify a controller bus.\n" 4062 "Scbus will be assigned dynamically.\n", 4063 sim_name, sim_unit, sim_bus, dunit); 4064 break; 4065 } 4066 } 4067 4068 if (pathid == CAM_XPT_PATH_ID) 4069 pathid = xptnextfreepathid(); 4070 return (pathid); 4071 } 4072 4073 static const char * 4074 xpt_async_string(u_int32_t async_code) 4075 { 4076 4077 switch (async_code) { 4078 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4079 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4080 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4081 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4082 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4083 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4084 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4085 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4086 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4087 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4088 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4089 case AC_CONTRACT: return ("AC_CONTRACT"); 4090 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4091 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4092 } 4093 return ("AC_UNKNOWN"); 4094 } 4095 4096 static int 4097 xpt_async_size(u_int32_t async_code) 4098 { 4099 4100 switch (async_code) { 4101 case AC_BUS_RESET: return (0); 4102 case AC_UNSOL_RESEL: return (0); 4103 case AC_SCSI_AEN: return (0); 4104 case AC_SENT_BDR: return (0); 4105 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4106 case AC_PATH_DEREGISTERED: return (0); 4107 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4108 case AC_LOST_DEVICE: return (0); 4109 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4110 case AC_INQ_CHANGED: return (0); 4111 case AC_GETDEV_CHANGED: return (0); 4112 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4113 case AC_ADVINFO_CHANGED: return (-1); 4114 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4115 } 4116 return (0); 4117 } 4118 4119 static int 4120 xpt_async_process_dev(struct cam_ed *device, void *arg) 4121 { 4122 union ccb *ccb = arg; 4123 struct cam_path *path = ccb->ccb_h.path; 4124 void *async_arg = ccb->casync.async_arg_ptr; 4125 u_int32_t async_code = ccb->casync.async_code; 4126 int relock; 4127 4128 if (path->device != device 4129 && path->device->lun_id != CAM_LUN_WILDCARD 4130 && device->lun_id != CAM_LUN_WILDCARD) 4131 return (1); 4132 4133 /* 4134 * The async callback could free the device. 4135 * If it is a broadcast async, it doesn't hold 4136 * device reference, so take our own reference. 4137 */ 4138 xpt_acquire_device(device); 4139 4140 /* 4141 * If async for specific device is to be delivered to 4142 * the wildcard client, take the specific device lock. 4143 * XXX: We may need a way for client to specify it. 4144 */ 4145 if ((device->lun_id == CAM_LUN_WILDCARD && 4146 path->device->lun_id != CAM_LUN_WILDCARD) || 4147 (device->target->target_id == CAM_TARGET_WILDCARD && 4148 path->target->target_id != CAM_TARGET_WILDCARD) || 4149 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4150 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4151 mtx_unlock(&device->device_mtx); 4152 xpt_path_lock(path); 4153 relock = 1; 4154 } else 4155 relock = 0; 4156 4157 (*(device->target->bus->xport->ops->async))(async_code, 4158 device->target->bus, device->target, device, async_arg); 4159 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4160 4161 if (relock) { 4162 xpt_path_unlock(path); 4163 mtx_lock(&device->device_mtx); 4164 } 4165 xpt_release_device(device); 4166 return (1); 4167 } 4168 4169 static int 4170 xpt_async_process_tgt(struct cam_et *target, void *arg) 4171 { 4172 union ccb *ccb = arg; 4173 struct cam_path *path = ccb->ccb_h.path; 4174 4175 if (path->target != target 4176 && path->target->target_id != CAM_TARGET_WILDCARD 4177 && target->target_id != CAM_TARGET_WILDCARD) 4178 return (1); 4179 4180 if (ccb->casync.async_code == AC_SENT_BDR) { 4181 /* Update our notion of when the last reset occurred */ 4182 microtime(&target->last_reset); 4183 } 4184 4185 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4186 } 4187 4188 static void 4189 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4190 { 4191 struct cam_eb *bus; 4192 struct cam_path *path; 4193 void *async_arg; 4194 u_int32_t async_code; 4195 4196 path = ccb->ccb_h.path; 4197 async_code = ccb->casync.async_code; 4198 async_arg = ccb->casync.async_arg_ptr; 4199 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4200 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4201 bus = path->bus; 4202 4203 if (async_code == AC_BUS_RESET) { 4204 /* Update our notion of when the last reset occurred */ 4205 microtime(&bus->last_reset); 4206 } 4207 4208 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4209 4210 /* 4211 * If this wasn't a fully wildcarded async, tell all 4212 * clients that want all async events. 4213 */ 4214 if (bus != xpt_periph->path->bus) { 4215 xpt_path_lock(xpt_periph->path); 4216 xpt_async_process_dev(xpt_periph->path->device, ccb); 4217 xpt_path_unlock(xpt_periph->path); 4218 } 4219 4220 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4221 xpt_release_devq(path, 1, TRUE); 4222 else 4223 xpt_release_simq(path->bus->sim, TRUE); 4224 if (ccb->casync.async_arg_size > 0) 4225 free(async_arg, M_CAMXPT); 4226 xpt_free_path(path); 4227 xpt_free_ccb(ccb); 4228 } 4229 4230 static void 4231 xpt_async_bcast(struct async_list *async_head, 4232 u_int32_t async_code, 4233 struct cam_path *path, void *async_arg) 4234 { 4235 struct async_node *cur_entry; 4236 int lock; 4237 4238 cur_entry = SLIST_FIRST(async_head); 4239 while (cur_entry != NULL) { 4240 struct async_node *next_entry; 4241 /* 4242 * Grab the next list entry before we call the current 4243 * entry's callback. This is because the callback function 4244 * can delete its async callback entry. 4245 */ 4246 next_entry = SLIST_NEXT(cur_entry, links); 4247 if ((cur_entry->event_enable & async_code) != 0) { 4248 lock = cur_entry->event_lock; 4249 if (lock) 4250 CAM_SIM_LOCK(path->device->sim); 4251 cur_entry->callback(cur_entry->callback_arg, 4252 async_code, path, 4253 async_arg); 4254 if (lock) 4255 CAM_SIM_UNLOCK(path->device->sim); 4256 } 4257 cur_entry = next_entry; 4258 } 4259 } 4260 4261 void 4262 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4263 { 4264 union ccb *ccb; 4265 int size; 4266 4267 ccb = xpt_alloc_ccb_nowait(); 4268 if (ccb == NULL) { 4269 xpt_print(path, "Can't allocate CCB to send %s\n", 4270 xpt_async_string(async_code)); 4271 return; 4272 } 4273 4274 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4275 xpt_print(path, "Can't allocate path to send %s\n", 4276 xpt_async_string(async_code)); 4277 xpt_free_ccb(ccb); 4278 return; 4279 } 4280 ccb->ccb_h.path->periph = NULL; 4281 ccb->ccb_h.func_code = XPT_ASYNC; 4282 ccb->ccb_h.cbfcnp = xpt_async_process; 4283 ccb->ccb_h.flags |= CAM_UNLOCKED; 4284 ccb->casync.async_code = async_code; 4285 ccb->casync.async_arg_size = 0; 4286 size = xpt_async_size(async_code); 4287 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4288 ("xpt_async: func %#x %s aync_code %d %s\n", 4289 ccb->ccb_h.func_code, 4290 xpt_action_name(ccb->ccb_h.func_code), 4291 async_code, 4292 xpt_async_string(async_code))); 4293 if (size > 0 && async_arg != NULL) { 4294 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4295 if (ccb->casync.async_arg_ptr == NULL) { 4296 xpt_print(path, "Can't allocate argument to send %s\n", 4297 xpt_async_string(async_code)); 4298 xpt_free_path(ccb->ccb_h.path); 4299 xpt_free_ccb(ccb); 4300 return; 4301 } 4302 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4303 ccb->casync.async_arg_size = size; 4304 } else if (size < 0) { 4305 ccb->casync.async_arg_ptr = async_arg; 4306 ccb->casync.async_arg_size = size; 4307 } 4308 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4309 xpt_freeze_devq(path, 1); 4310 else 4311 xpt_freeze_simq(path->bus->sim, 1); 4312 xpt_done(ccb); 4313 } 4314 4315 static void 4316 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4317 struct cam_et *target, struct cam_ed *device, 4318 void *async_arg) 4319 { 4320 4321 /* 4322 * We only need to handle events for real devices. 4323 */ 4324 if (target->target_id == CAM_TARGET_WILDCARD 4325 || device->lun_id == CAM_LUN_WILDCARD) 4326 return; 4327 4328 printf("%s called\n", __func__); 4329 } 4330 4331 static uint32_t 4332 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4333 { 4334 struct cam_devq *devq; 4335 uint32_t freeze; 4336 4337 devq = dev->sim->devq; 4338 mtx_assert(&devq->send_mtx, MA_OWNED); 4339 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4340 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4341 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4342 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4343 /* Remove frozen device from sendq. */ 4344 if (device_is_queued(dev)) 4345 camq_remove(&devq->send_queue, dev->devq_entry.index); 4346 return (freeze); 4347 } 4348 4349 u_int32_t 4350 xpt_freeze_devq(struct cam_path *path, u_int count) 4351 { 4352 struct cam_ed *dev = path->device; 4353 struct cam_devq *devq; 4354 uint32_t freeze; 4355 4356 devq = dev->sim->devq; 4357 mtx_lock(&devq->send_mtx); 4358 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4359 freeze = xpt_freeze_devq_device(dev, count); 4360 mtx_unlock(&devq->send_mtx); 4361 return (freeze); 4362 } 4363 4364 u_int32_t 4365 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4366 { 4367 struct cam_devq *devq; 4368 uint32_t freeze; 4369 4370 devq = sim->devq; 4371 mtx_lock(&devq->send_mtx); 4372 freeze = (devq->send_queue.qfrozen_cnt += count); 4373 mtx_unlock(&devq->send_mtx); 4374 return (freeze); 4375 } 4376 4377 static void 4378 xpt_release_devq_timeout(void *arg) 4379 { 4380 struct cam_ed *dev; 4381 struct cam_devq *devq; 4382 4383 dev = (struct cam_ed *)arg; 4384 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4385 devq = dev->sim->devq; 4386 mtx_assert(&devq->send_mtx, MA_OWNED); 4387 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4388 xpt_run_devq(devq); 4389 } 4390 4391 void 4392 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4393 { 4394 struct cam_ed *dev; 4395 struct cam_devq *devq; 4396 4397 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4398 count, run_queue)); 4399 dev = path->device; 4400 devq = dev->sim->devq; 4401 mtx_lock(&devq->send_mtx); 4402 if (xpt_release_devq_device(dev, count, run_queue)) 4403 xpt_run_devq(dev->sim->devq); 4404 mtx_unlock(&devq->send_mtx); 4405 } 4406 4407 static int 4408 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4409 { 4410 4411 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4412 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4413 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4414 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4415 if (count > dev->ccbq.queue.qfrozen_cnt) { 4416 #ifdef INVARIANTS 4417 printf("xpt_release_devq(): requested %u > present %u\n", 4418 count, dev->ccbq.queue.qfrozen_cnt); 4419 #endif 4420 count = dev->ccbq.queue.qfrozen_cnt; 4421 } 4422 dev->ccbq.queue.qfrozen_cnt -= count; 4423 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4424 /* 4425 * No longer need to wait for a successful 4426 * command completion. 4427 */ 4428 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4429 /* 4430 * Remove any timeouts that might be scheduled 4431 * to release this queue. 4432 */ 4433 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4434 callout_stop(&dev->callout); 4435 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4436 } 4437 /* 4438 * Now that we are unfrozen schedule the 4439 * device so any pending transactions are 4440 * run. 4441 */ 4442 xpt_schedule_devq(dev->sim->devq, dev); 4443 } else 4444 run_queue = 0; 4445 return (run_queue); 4446 } 4447 4448 void 4449 xpt_release_simq(struct cam_sim *sim, int run_queue) 4450 { 4451 struct cam_devq *devq; 4452 4453 devq = sim->devq; 4454 mtx_lock(&devq->send_mtx); 4455 if (devq->send_queue.qfrozen_cnt <= 0) { 4456 #ifdef INVARIANTS 4457 printf("xpt_release_simq: requested 1 > present %u\n", 4458 devq->send_queue.qfrozen_cnt); 4459 #endif 4460 } else 4461 devq->send_queue.qfrozen_cnt--; 4462 if (devq->send_queue.qfrozen_cnt == 0) { 4463 /* 4464 * If there is a timeout scheduled to release this 4465 * sim queue, remove it. The queue frozen count is 4466 * already at 0. 4467 */ 4468 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4469 callout_stop(&sim->callout); 4470 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4471 } 4472 if (run_queue) { 4473 /* 4474 * Now that we are unfrozen run the send queue. 4475 */ 4476 xpt_run_devq(sim->devq); 4477 } 4478 } 4479 mtx_unlock(&devq->send_mtx); 4480 } 4481 4482 /* 4483 * XXX Appears to be unused. 4484 */ 4485 static void 4486 xpt_release_simq_timeout(void *arg) 4487 { 4488 struct cam_sim *sim; 4489 4490 sim = (struct cam_sim *)arg; 4491 xpt_release_simq(sim, /* run_queue */ TRUE); 4492 } 4493 4494 void 4495 xpt_done(union ccb *done_ccb) 4496 { 4497 struct cam_doneq *queue; 4498 int run, hash; 4499 4500 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4501 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4502 done_ccb->csio.bio != NULL) 4503 biotrack(done_ccb->csio.bio, __func__); 4504 #endif 4505 4506 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4507 ("xpt_done: func= %#x %s status %#x\n", 4508 done_ccb->ccb_h.func_code, 4509 xpt_action_name(done_ccb->ccb_h.func_code), 4510 done_ccb->ccb_h.status)); 4511 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4512 return; 4513 4514 /* Store the time the ccb was in the sim */ 4515 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4516 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4517 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4518 queue = &cam_doneqs[hash]; 4519 mtx_lock(&queue->cam_doneq_mtx); 4520 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4521 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4522 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4523 mtx_unlock(&queue->cam_doneq_mtx); 4524 if (run) 4525 wakeup(&queue->cam_doneq); 4526 } 4527 4528 void 4529 xpt_done_direct(union ccb *done_ccb) 4530 { 4531 4532 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4533 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4534 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4535 return; 4536 4537 /* Store the time the ccb was in the sim */ 4538 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4539 xpt_done_process(&done_ccb->ccb_h); 4540 } 4541 4542 union ccb * 4543 xpt_alloc_ccb() 4544 { 4545 union ccb *new_ccb; 4546 4547 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4548 return (new_ccb); 4549 } 4550 4551 union ccb * 4552 xpt_alloc_ccb_nowait() 4553 { 4554 union ccb *new_ccb; 4555 4556 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4557 return (new_ccb); 4558 } 4559 4560 void 4561 xpt_free_ccb(union ccb *free_ccb) 4562 { 4563 free(free_ccb, M_CAMCCB); 4564 } 4565 4566 4567 4568 /* Private XPT functions */ 4569 4570 /* 4571 * Get a CAM control block for the caller. Charge the structure to the device 4572 * referenced by the path. If we don't have sufficient resources to allocate 4573 * more ccbs, we return NULL. 4574 */ 4575 static union ccb * 4576 xpt_get_ccb_nowait(struct cam_periph *periph) 4577 { 4578 union ccb *new_ccb; 4579 4580 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4581 if (new_ccb == NULL) 4582 return (NULL); 4583 periph->periph_allocated++; 4584 cam_ccbq_take_opening(&periph->path->device->ccbq); 4585 return (new_ccb); 4586 } 4587 4588 static union ccb * 4589 xpt_get_ccb(struct cam_periph *periph) 4590 { 4591 union ccb *new_ccb; 4592 4593 cam_periph_unlock(periph); 4594 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4595 cam_periph_lock(periph); 4596 periph->periph_allocated++; 4597 cam_ccbq_take_opening(&periph->path->device->ccbq); 4598 return (new_ccb); 4599 } 4600 4601 union ccb * 4602 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4603 { 4604 struct ccb_hdr *ccb_h; 4605 4606 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4607 cam_periph_assert(periph, MA_OWNED); 4608 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4609 ccb_h->pinfo.priority != priority) { 4610 if (priority < periph->immediate_priority) { 4611 periph->immediate_priority = priority; 4612 xpt_run_allocq(periph, 0); 4613 } else 4614 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4615 "cgticb", 0); 4616 } 4617 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4618 return ((union ccb *)ccb_h); 4619 } 4620 4621 static void 4622 xpt_acquire_bus(struct cam_eb *bus) 4623 { 4624 4625 xpt_lock_buses(); 4626 bus->refcount++; 4627 xpt_unlock_buses(); 4628 } 4629 4630 static void 4631 xpt_release_bus(struct cam_eb *bus) 4632 { 4633 4634 xpt_lock_buses(); 4635 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4636 if (--bus->refcount > 0) { 4637 xpt_unlock_buses(); 4638 return; 4639 } 4640 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4641 xsoftc.bus_generation++; 4642 xpt_unlock_buses(); 4643 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4644 ("destroying bus, but target list is not empty")); 4645 cam_sim_release(bus->sim); 4646 mtx_destroy(&bus->eb_mtx); 4647 free(bus, M_CAMXPT); 4648 } 4649 4650 static struct cam_et * 4651 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4652 { 4653 struct cam_et *cur_target, *target; 4654 4655 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4656 mtx_assert(&bus->eb_mtx, MA_OWNED); 4657 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4658 M_NOWAIT|M_ZERO); 4659 if (target == NULL) 4660 return (NULL); 4661 4662 TAILQ_INIT(&target->ed_entries); 4663 target->bus = bus; 4664 target->target_id = target_id; 4665 target->refcount = 1; 4666 target->generation = 0; 4667 target->luns = NULL; 4668 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4669 timevalclear(&target->last_reset); 4670 /* 4671 * Hold a reference to our parent bus so it 4672 * will not go away before we do. 4673 */ 4674 bus->refcount++; 4675 4676 /* Insertion sort into our bus's target list */ 4677 cur_target = TAILQ_FIRST(&bus->et_entries); 4678 while (cur_target != NULL && cur_target->target_id < target_id) 4679 cur_target = TAILQ_NEXT(cur_target, links); 4680 if (cur_target != NULL) { 4681 TAILQ_INSERT_BEFORE(cur_target, target, links); 4682 } else { 4683 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4684 } 4685 bus->generation++; 4686 return (target); 4687 } 4688 4689 static void 4690 xpt_acquire_target(struct cam_et *target) 4691 { 4692 struct cam_eb *bus = target->bus; 4693 4694 mtx_lock(&bus->eb_mtx); 4695 target->refcount++; 4696 mtx_unlock(&bus->eb_mtx); 4697 } 4698 4699 static void 4700 xpt_release_target(struct cam_et *target) 4701 { 4702 struct cam_eb *bus = target->bus; 4703 4704 mtx_lock(&bus->eb_mtx); 4705 if (--target->refcount > 0) { 4706 mtx_unlock(&bus->eb_mtx); 4707 return; 4708 } 4709 TAILQ_REMOVE(&bus->et_entries, target, links); 4710 bus->generation++; 4711 mtx_unlock(&bus->eb_mtx); 4712 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4713 ("destroying target, but device list is not empty")); 4714 xpt_release_bus(bus); 4715 mtx_destroy(&target->luns_mtx); 4716 if (target->luns) 4717 free(target->luns, M_CAMXPT); 4718 free(target, M_CAMXPT); 4719 } 4720 4721 static struct cam_ed * 4722 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4723 lun_id_t lun_id) 4724 { 4725 struct cam_ed *device; 4726 4727 device = xpt_alloc_device(bus, target, lun_id); 4728 if (device == NULL) 4729 return (NULL); 4730 4731 device->mintags = 1; 4732 device->maxtags = 1; 4733 return (device); 4734 } 4735 4736 static void 4737 xpt_destroy_device(void *context, int pending) 4738 { 4739 struct cam_ed *device = context; 4740 4741 mtx_lock(&device->device_mtx); 4742 mtx_destroy(&device->device_mtx); 4743 free(device, M_CAMDEV); 4744 } 4745 4746 struct cam_ed * 4747 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4748 { 4749 struct cam_ed *cur_device, *device; 4750 struct cam_devq *devq; 4751 cam_status status; 4752 4753 mtx_assert(&bus->eb_mtx, MA_OWNED); 4754 /* Make space for us in the device queue on our bus */ 4755 devq = bus->sim->devq; 4756 mtx_lock(&devq->send_mtx); 4757 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4758 mtx_unlock(&devq->send_mtx); 4759 if (status != CAM_REQ_CMP) 4760 return (NULL); 4761 4762 device = (struct cam_ed *)malloc(sizeof(*device), 4763 M_CAMDEV, M_NOWAIT|M_ZERO); 4764 if (device == NULL) 4765 return (NULL); 4766 4767 cam_init_pinfo(&device->devq_entry); 4768 device->target = target; 4769 device->lun_id = lun_id; 4770 device->sim = bus->sim; 4771 if (cam_ccbq_init(&device->ccbq, 4772 bus->sim->max_dev_openings) != 0) { 4773 free(device, M_CAMDEV); 4774 return (NULL); 4775 } 4776 SLIST_INIT(&device->asyncs); 4777 SLIST_INIT(&device->periphs); 4778 device->generation = 0; 4779 device->flags = CAM_DEV_UNCONFIGURED; 4780 device->tag_delay_count = 0; 4781 device->tag_saved_openings = 0; 4782 device->refcount = 1; 4783 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4784 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4785 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4786 /* 4787 * Hold a reference to our parent bus so it 4788 * will not go away before we do. 4789 */ 4790 target->refcount++; 4791 4792 cur_device = TAILQ_FIRST(&target->ed_entries); 4793 while (cur_device != NULL && cur_device->lun_id < lun_id) 4794 cur_device = TAILQ_NEXT(cur_device, links); 4795 if (cur_device != NULL) 4796 TAILQ_INSERT_BEFORE(cur_device, device, links); 4797 else 4798 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4799 target->generation++; 4800 return (device); 4801 } 4802 4803 void 4804 xpt_acquire_device(struct cam_ed *device) 4805 { 4806 struct cam_eb *bus = device->target->bus; 4807 4808 mtx_lock(&bus->eb_mtx); 4809 device->refcount++; 4810 mtx_unlock(&bus->eb_mtx); 4811 } 4812 4813 void 4814 xpt_release_device(struct cam_ed *device) 4815 { 4816 struct cam_eb *bus = device->target->bus; 4817 struct cam_devq *devq; 4818 4819 mtx_lock(&bus->eb_mtx); 4820 if (--device->refcount > 0) { 4821 mtx_unlock(&bus->eb_mtx); 4822 return; 4823 } 4824 4825 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4826 device->target->generation++; 4827 mtx_unlock(&bus->eb_mtx); 4828 4829 /* Release our slot in the devq */ 4830 devq = bus->sim->devq; 4831 mtx_lock(&devq->send_mtx); 4832 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4833 mtx_unlock(&devq->send_mtx); 4834 4835 KASSERT(SLIST_EMPTY(&device->periphs), 4836 ("destroying device, but periphs list is not empty")); 4837 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4838 ("destroying device while still queued for ccbs")); 4839 4840 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4841 callout_stop(&device->callout); 4842 4843 xpt_release_target(device->target); 4844 4845 cam_ccbq_fini(&device->ccbq); 4846 /* 4847 * Free allocated memory. free(9) does nothing if the 4848 * supplied pointer is NULL, so it is safe to call without 4849 * checking. 4850 */ 4851 free(device->supported_vpds, M_CAMXPT); 4852 free(device->device_id, M_CAMXPT); 4853 free(device->ext_inq, M_CAMXPT); 4854 free(device->physpath, M_CAMXPT); 4855 free(device->rcap_buf, M_CAMXPT); 4856 free(device->serial_num, M_CAMXPT); 4857 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4858 } 4859 4860 u_int32_t 4861 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4862 { 4863 int result; 4864 struct cam_ed *dev; 4865 4866 dev = path->device; 4867 mtx_lock(&dev->sim->devq->send_mtx); 4868 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4869 mtx_unlock(&dev->sim->devq->send_mtx); 4870 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4871 || (dev->inq_flags & SID_CmdQue) != 0) 4872 dev->tag_saved_openings = newopenings; 4873 return (result); 4874 } 4875 4876 static struct cam_eb * 4877 xpt_find_bus(path_id_t path_id) 4878 { 4879 struct cam_eb *bus; 4880 4881 xpt_lock_buses(); 4882 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4883 bus != NULL; 4884 bus = TAILQ_NEXT(bus, links)) { 4885 if (bus->path_id == path_id) { 4886 bus->refcount++; 4887 break; 4888 } 4889 } 4890 xpt_unlock_buses(); 4891 return (bus); 4892 } 4893 4894 static struct cam_et * 4895 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4896 { 4897 struct cam_et *target; 4898 4899 mtx_assert(&bus->eb_mtx, MA_OWNED); 4900 for (target = TAILQ_FIRST(&bus->et_entries); 4901 target != NULL; 4902 target = TAILQ_NEXT(target, links)) { 4903 if (target->target_id == target_id) { 4904 target->refcount++; 4905 break; 4906 } 4907 } 4908 return (target); 4909 } 4910 4911 static struct cam_ed * 4912 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4913 { 4914 struct cam_ed *device; 4915 4916 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4917 for (device = TAILQ_FIRST(&target->ed_entries); 4918 device != NULL; 4919 device = TAILQ_NEXT(device, links)) { 4920 if (device->lun_id == lun_id) { 4921 device->refcount++; 4922 break; 4923 } 4924 } 4925 return (device); 4926 } 4927 4928 void 4929 xpt_start_tags(struct cam_path *path) 4930 { 4931 struct ccb_relsim crs; 4932 struct cam_ed *device; 4933 struct cam_sim *sim; 4934 int newopenings; 4935 4936 device = path->device; 4937 sim = path->bus->sim; 4938 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4939 xpt_freeze_devq(path, /*count*/1); 4940 device->inq_flags |= SID_CmdQue; 4941 if (device->tag_saved_openings != 0) 4942 newopenings = device->tag_saved_openings; 4943 else 4944 newopenings = min(device->maxtags, 4945 sim->max_tagged_dev_openings); 4946 xpt_dev_ccbq_resize(path, newopenings); 4947 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4948 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4949 crs.ccb_h.func_code = XPT_REL_SIMQ; 4950 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4951 crs.openings 4952 = crs.release_timeout 4953 = crs.qfrozen_cnt 4954 = 0; 4955 xpt_action((union ccb *)&crs); 4956 } 4957 4958 void 4959 xpt_stop_tags(struct cam_path *path) 4960 { 4961 struct ccb_relsim crs; 4962 struct cam_ed *device; 4963 struct cam_sim *sim; 4964 4965 device = path->device; 4966 sim = path->bus->sim; 4967 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4968 device->tag_delay_count = 0; 4969 xpt_freeze_devq(path, /*count*/1); 4970 device->inq_flags &= ~SID_CmdQue; 4971 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4972 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4973 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4974 crs.ccb_h.func_code = XPT_REL_SIMQ; 4975 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4976 crs.openings 4977 = crs.release_timeout 4978 = crs.qfrozen_cnt 4979 = 0; 4980 xpt_action((union ccb *)&crs); 4981 } 4982 4983 static void 4984 xpt_boot_delay(void *arg) 4985 { 4986 4987 xpt_release_boot(); 4988 } 4989 4990 static void 4991 xpt_config(void *arg) 4992 { 4993 /* 4994 * Now that interrupts are enabled, go find our devices 4995 */ 4996 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4997 printf("xpt_config: failed to create taskqueue thread.\n"); 4998 4999 /* Setup debugging path */ 5000 if (cam_dflags != CAM_DEBUG_NONE) { 5001 if (xpt_create_path(&cam_dpath, NULL, 5002 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5003 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5004 printf("xpt_config: xpt_create_path() failed for debug" 5005 " target %d:%d:%d, debugging disabled\n", 5006 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5007 cam_dflags = CAM_DEBUG_NONE; 5008 } 5009 } else 5010 cam_dpath = NULL; 5011 5012 periphdriver_init(1); 5013 xpt_hold_boot(); 5014 callout_init(&xsoftc.boot_callout, 1); 5015 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5016 xpt_boot_delay, NULL, 0); 5017 /* Fire up rescan thread. */ 5018 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5019 "cam", "scanner")) { 5020 printf("xpt_config: failed to create rescan thread.\n"); 5021 } 5022 } 5023 5024 void 5025 xpt_hold_boot(void) 5026 { 5027 xpt_lock_buses(); 5028 xsoftc.buses_to_config++; 5029 xpt_unlock_buses(); 5030 } 5031 5032 void 5033 xpt_release_boot(void) 5034 { 5035 xpt_lock_buses(); 5036 xsoftc.buses_to_config--; 5037 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5038 struct xpt_task *task; 5039 5040 xsoftc.buses_config_done = 1; 5041 xpt_unlock_buses(); 5042 /* Call manually because we don't have any buses */ 5043 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5044 if (task != NULL) { 5045 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5046 taskqueue_enqueue(taskqueue_thread, &task->task); 5047 } 5048 } else 5049 xpt_unlock_buses(); 5050 } 5051 5052 /* 5053 * If the given device only has one peripheral attached to it, and if that 5054 * peripheral is the passthrough driver, announce it. This insures that the 5055 * user sees some sort of announcement for every peripheral in their system. 5056 */ 5057 static int 5058 xptpassannouncefunc(struct cam_ed *device, void *arg) 5059 { 5060 struct cam_periph *periph; 5061 int i; 5062 5063 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5064 periph = SLIST_NEXT(periph, periph_links), i++); 5065 5066 periph = SLIST_FIRST(&device->periphs); 5067 if ((i == 1) 5068 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5069 xpt_announce_periph(periph, NULL); 5070 5071 return(1); 5072 } 5073 5074 static void 5075 xpt_finishconfig_task(void *context, int pending) 5076 { 5077 5078 periphdriver_init(2); 5079 /* 5080 * Check for devices with no "standard" peripheral driver 5081 * attached. For any devices like that, announce the 5082 * passthrough driver so the user will see something. 5083 */ 5084 if (!bootverbose) 5085 xpt_for_all_devices(xptpassannouncefunc, NULL); 5086 5087 /* Release our hook so that the boot can continue. */ 5088 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5089 free(xsoftc.xpt_config_hook, M_CAMXPT); 5090 xsoftc.xpt_config_hook = NULL; 5091 5092 free(context, M_CAMXPT); 5093 } 5094 5095 cam_status 5096 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5097 struct cam_path *path) 5098 { 5099 struct ccb_setasync csa; 5100 cam_status status; 5101 int xptpath = 0; 5102 5103 if (path == NULL) { 5104 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5105 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5106 if (status != CAM_REQ_CMP) 5107 return (status); 5108 xpt_path_lock(path); 5109 xptpath = 1; 5110 } 5111 5112 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5113 csa.ccb_h.func_code = XPT_SASYNC_CB; 5114 csa.event_enable = event; 5115 csa.callback = cbfunc; 5116 csa.callback_arg = cbarg; 5117 xpt_action((union ccb *)&csa); 5118 status = csa.ccb_h.status; 5119 5120 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5121 ("xpt_register_async: func %p\n", cbfunc)); 5122 5123 if (xptpath) { 5124 xpt_path_unlock(path); 5125 xpt_free_path(path); 5126 } 5127 5128 if ((status == CAM_REQ_CMP) && 5129 (csa.event_enable & AC_FOUND_DEVICE)) { 5130 /* 5131 * Get this peripheral up to date with all 5132 * the currently existing devices. 5133 */ 5134 xpt_for_all_devices(xptsetasyncfunc, &csa); 5135 } 5136 if ((status == CAM_REQ_CMP) && 5137 (csa.event_enable & AC_PATH_REGISTERED)) { 5138 /* 5139 * Get this peripheral up to date with all 5140 * the currently existing buses. 5141 */ 5142 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5143 } 5144 5145 return (status); 5146 } 5147 5148 static void 5149 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5150 { 5151 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5152 5153 switch (work_ccb->ccb_h.func_code) { 5154 /* Common cases first */ 5155 case XPT_PATH_INQ: /* Path routing inquiry */ 5156 { 5157 struct ccb_pathinq *cpi; 5158 5159 cpi = &work_ccb->cpi; 5160 cpi->version_num = 1; /* XXX??? */ 5161 cpi->hba_inquiry = 0; 5162 cpi->target_sprt = 0; 5163 cpi->hba_misc = 0; 5164 cpi->hba_eng_cnt = 0; 5165 cpi->max_target = 0; 5166 cpi->max_lun = 0; 5167 cpi->initiator_id = 0; 5168 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5169 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5170 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5171 cpi->unit_number = sim->unit_number; 5172 cpi->bus_id = sim->bus_id; 5173 cpi->base_transfer_speed = 0; 5174 cpi->protocol = PROTO_UNSPECIFIED; 5175 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5176 cpi->transport = XPORT_UNSPECIFIED; 5177 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5178 cpi->ccb_h.status = CAM_REQ_CMP; 5179 xpt_done(work_ccb); 5180 break; 5181 } 5182 default: 5183 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5184 xpt_done(work_ccb); 5185 break; 5186 } 5187 } 5188 5189 /* 5190 * The xpt as a "controller" has no interrupt sources, so polling 5191 * is a no-op. 5192 */ 5193 static void 5194 xptpoll(struct cam_sim *sim) 5195 { 5196 } 5197 5198 void 5199 xpt_lock_buses(void) 5200 { 5201 mtx_lock(&xsoftc.xpt_topo_lock); 5202 } 5203 5204 void 5205 xpt_unlock_buses(void) 5206 { 5207 mtx_unlock(&xsoftc.xpt_topo_lock); 5208 } 5209 5210 struct mtx * 5211 xpt_path_mtx(struct cam_path *path) 5212 { 5213 5214 return (&path->device->device_mtx); 5215 } 5216 5217 static void 5218 xpt_done_process(struct ccb_hdr *ccb_h) 5219 { 5220 struct cam_sim *sim; 5221 struct cam_devq *devq; 5222 struct mtx *mtx = NULL; 5223 5224 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5225 struct ccb_scsiio *csio; 5226 5227 if (ccb_h->func_code == XPT_SCSI_IO) { 5228 csio = &((union ccb *)ccb_h)->csio; 5229 if (csio->bio != NULL) 5230 biotrack(csio->bio, __func__); 5231 } 5232 #endif 5233 5234 if (ccb_h->flags & CAM_HIGH_POWER) { 5235 struct highpowerlist *hphead; 5236 struct cam_ed *device; 5237 5238 mtx_lock(&xsoftc.xpt_highpower_lock); 5239 hphead = &xsoftc.highpowerq; 5240 5241 device = STAILQ_FIRST(hphead); 5242 5243 /* 5244 * Increment the count since this command is done. 5245 */ 5246 xsoftc.num_highpower++; 5247 5248 /* 5249 * Any high powered commands queued up? 5250 */ 5251 if (device != NULL) { 5252 5253 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5254 mtx_unlock(&xsoftc.xpt_highpower_lock); 5255 5256 mtx_lock(&device->sim->devq->send_mtx); 5257 xpt_release_devq_device(device, 5258 /*count*/1, /*runqueue*/TRUE); 5259 mtx_unlock(&device->sim->devq->send_mtx); 5260 } else 5261 mtx_unlock(&xsoftc.xpt_highpower_lock); 5262 } 5263 5264 sim = ccb_h->path->bus->sim; 5265 5266 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5267 xpt_release_simq(sim, /*run_queue*/FALSE); 5268 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5269 } 5270 5271 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5272 && (ccb_h->status & CAM_DEV_QFRZN)) { 5273 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5274 ccb_h->status &= ~CAM_DEV_QFRZN; 5275 } 5276 5277 devq = sim->devq; 5278 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5279 struct cam_ed *dev = ccb_h->path->device; 5280 5281 mtx_lock(&devq->send_mtx); 5282 devq->send_active--; 5283 devq->send_openings++; 5284 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5285 5286 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5287 && (dev->ccbq.dev_active == 0))) { 5288 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5289 xpt_release_devq_device(dev, /*count*/1, 5290 /*run_queue*/FALSE); 5291 } 5292 5293 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5294 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5295 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5296 xpt_release_devq_device(dev, /*count*/1, 5297 /*run_queue*/FALSE); 5298 } 5299 5300 if (!device_is_queued(dev)) 5301 (void)xpt_schedule_devq(devq, dev); 5302 xpt_run_devq(devq); 5303 mtx_unlock(&devq->send_mtx); 5304 5305 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5306 mtx = xpt_path_mtx(ccb_h->path); 5307 mtx_lock(mtx); 5308 5309 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5310 && (--dev->tag_delay_count == 0)) 5311 xpt_start_tags(ccb_h->path); 5312 } 5313 } 5314 5315 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5316 if (mtx == NULL) { 5317 mtx = xpt_path_mtx(ccb_h->path); 5318 mtx_lock(mtx); 5319 } 5320 } else { 5321 if (mtx != NULL) { 5322 mtx_unlock(mtx); 5323 mtx = NULL; 5324 } 5325 } 5326 5327 /* Call the peripheral driver's callback */ 5328 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5329 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5330 if (mtx != NULL) 5331 mtx_unlock(mtx); 5332 } 5333 5334 void 5335 xpt_done_td(void *arg) 5336 { 5337 struct cam_doneq *queue = arg; 5338 struct ccb_hdr *ccb_h; 5339 STAILQ_HEAD(, ccb_hdr) doneq; 5340 5341 STAILQ_INIT(&doneq); 5342 mtx_lock(&queue->cam_doneq_mtx); 5343 while (1) { 5344 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5345 queue->cam_doneq_sleep = 1; 5346 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5347 PRIBIO, "-", 0); 5348 queue->cam_doneq_sleep = 0; 5349 } 5350 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5351 mtx_unlock(&queue->cam_doneq_mtx); 5352 5353 THREAD_NO_SLEEPING(); 5354 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5355 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5356 xpt_done_process(ccb_h); 5357 } 5358 THREAD_SLEEPING_OK(); 5359 5360 mtx_lock(&queue->cam_doneq_mtx); 5361 } 5362 } 5363 5364 static void 5365 camisr_runqueue(void) 5366 { 5367 struct ccb_hdr *ccb_h; 5368 struct cam_doneq *queue; 5369 int i; 5370 5371 /* Process global queues. */ 5372 for (i = 0; i < cam_num_doneqs; i++) { 5373 queue = &cam_doneqs[i]; 5374 mtx_lock(&queue->cam_doneq_mtx); 5375 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5376 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5377 mtx_unlock(&queue->cam_doneq_mtx); 5378 xpt_done_process(ccb_h); 5379 mtx_lock(&queue->cam_doneq_mtx); 5380 } 5381 mtx_unlock(&queue->cam_doneq_mtx); 5382 } 5383 } 5384 5385 struct kv 5386 { 5387 uint32_t v; 5388 const char *name; 5389 }; 5390 5391 static struct kv map[] = { 5392 { XPT_NOOP, "XPT_NOOP" }, 5393 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5394 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5395 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5396 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5397 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5398 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5399 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5400 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5401 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5402 { XPT_DEBUG, "XPT_DEBUG" }, 5403 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5404 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5405 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5406 { XPT_ASYNC, "XPT_ASYNC" }, 5407 { XPT_ABORT, "XPT_ABORT" }, 5408 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5409 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5410 { XPT_TERM_IO, "XPT_TERM_IO" }, 5411 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5412 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5413 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5414 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5415 { XPT_ATA_IO, "XPT_ATA_IO" }, 5416 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5417 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5418 { XPT_NVME_IO, "XPT_NVME_IO" }, 5419 { XPT_MMCSD_IO, "XPT_MMCSD_IO" }, 5420 { XPT_SMP_IO, "XPT_SMP_IO" }, 5421 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5422 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5423 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5424 { XPT_EN_LUN, "XPT_EN_LUN" }, 5425 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5426 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5427 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5428 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5429 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5430 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5431 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5432 { 0, 0 } 5433 }; 5434 5435 static const char * 5436 xpt_action_name(uint32_t action) 5437 { 5438 static char buffer[32]; /* Only for unknown messages -- racy */ 5439 struct kv *walker = map; 5440 5441 while (walker->name != NULL) { 5442 if (walker->v == action) 5443 return (walker->name); 5444 walker++; 5445 } 5446 5447 snprintf(buffer, sizeof(buffer), "%#x", action); 5448 return (buffer); 5449 } 5450