1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bio.h> 35 #include <sys/bus.h> 36 #include <sys/systm.h> 37 #include <sys/types.h> 38 #include <sys/malloc.h> 39 #include <sys/kernel.h> 40 #include <sys/time.h> 41 #include <sys/conf.h> 42 #include <sys/fcntl.h> 43 #include <sys/interrupt.h> 44 #include <sys/proc.h> 45 #include <sys/sbuf.h> 46 #include <sys/smp.h> 47 #include <sys/taskqueue.h> 48 49 #include <sys/lock.h> 50 #include <sys/mutex.h> 51 #include <sys/sysctl.h> 52 #include <sys/kthread.h> 53 54 #include <cam/cam.h> 55 #include <cam/cam_ccb.h> 56 #include <cam/cam_periph.h> 57 #include <cam/cam_queue.h> 58 #include <cam/cam_sim.h> 59 #include <cam/cam_xpt.h> 60 #include <cam/cam_xpt_sim.h> 61 #include <cam/cam_xpt_periph.h> 62 #include <cam/cam_xpt_internal.h> 63 #include <cam/cam_debug.h> 64 #include <cam/cam_compat.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/scsi/scsi_message.h> 68 #include <cam/scsi/scsi_pass.h> 69 70 #include <machine/md_var.h> /* geometry translation */ 71 #include <machine/stdarg.h> /* for xpt_print below */ 72 73 #include "opt_cam.h" 74 75 /* 76 * This is the maximum number of high powered commands (e.g. start unit) 77 * that can be outstanding at a particular time. 78 */ 79 #ifndef CAM_MAX_HIGHPOWER 80 #define CAM_MAX_HIGHPOWER 4 81 #endif 82 83 /* Datastructures internal to the xpt layer */ 84 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 85 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 86 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 87 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 88 89 /* Object for defering XPT actions to a taskqueue */ 90 struct xpt_task { 91 struct task task; 92 void *data1; 93 uintptr_t data2; 94 }; 95 96 struct xpt_softc { 97 uint32_t xpt_generation; 98 99 /* number of high powered commands that can go through right now */ 100 struct mtx xpt_highpower_lock; 101 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 102 int num_highpower; 103 104 /* queue for handling async rescan requests. */ 105 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 106 int buses_to_config; 107 int buses_config_done; 108 109 /* Registered busses */ 110 TAILQ_HEAD(,cam_eb) xpt_busses; 111 u_int bus_generation; 112 113 struct intr_config_hook *xpt_config_hook; 114 115 int boot_delay; 116 struct callout boot_callout; 117 118 struct mtx xpt_topo_lock; 119 struct mtx xpt_lock; 120 struct taskqueue *xpt_taskq; 121 }; 122 123 typedef enum { 124 DM_RET_COPY = 0x01, 125 DM_RET_FLAG_MASK = 0x0f, 126 DM_RET_NONE = 0x00, 127 DM_RET_STOP = 0x10, 128 DM_RET_DESCEND = 0x20, 129 DM_RET_ERROR = 0x30, 130 DM_RET_ACTION_MASK = 0xf0 131 } dev_match_ret; 132 133 typedef enum { 134 XPT_DEPTH_BUS, 135 XPT_DEPTH_TARGET, 136 XPT_DEPTH_DEVICE, 137 XPT_DEPTH_PERIPH 138 } xpt_traverse_depth; 139 140 struct xpt_traverse_config { 141 xpt_traverse_depth depth; 142 void *tr_func; 143 void *tr_arg; 144 }; 145 146 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 147 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 148 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 149 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 150 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 151 152 /* Transport layer configuration information */ 153 static struct xpt_softc xsoftc; 154 155 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 156 157 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 158 &xsoftc.boot_delay, 0, "Bus registration wait time"); 159 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 160 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 161 162 struct cam_doneq { 163 struct mtx_padalign cam_doneq_mtx; 164 STAILQ_HEAD(, ccb_hdr) cam_doneq; 165 int cam_doneq_sleep; 166 }; 167 168 static struct cam_doneq cam_doneqs[MAXCPU]; 169 static int cam_num_doneqs; 170 static struct proc *cam_proc; 171 172 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 173 &cam_num_doneqs, 0, "Number of completion queues/threads"); 174 175 struct cam_periph *xpt_periph; 176 177 static periph_init_t xpt_periph_init; 178 179 static struct periph_driver xpt_driver = 180 { 181 xpt_periph_init, "xpt", 182 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 183 CAM_PERIPH_DRV_EARLY 184 }; 185 186 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 187 188 static d_open_t xptopen; 189 static d_close_t xptclose; 190 static d_ioctl_t xptioctl; 191 static d_ioctl_t xptdoioctl; 192 193 static struct cdevsw xpt_cdevsw = { 194 .d_version = D_VERSION, 195 .d_flags = 0, 196 .d_open = xptopen, 197 .d_close = xptclose, 198 .d_ioctl = xptioctl, 199 .d_name = "xpt", 200 }; 201 202 /* Storage for debugging datastructures */ 203 struct cam_path *cam_dpath; 204 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 205 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 206 &cam_dflags, 0, "Enabled debug flags"); 207 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 208 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 209 &cam_debug_delay, 0, "Delay in us after each debug message"); 210 211 /* Our boot-time initialization hook */ 212 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 213 214 static moduledata_t cam_moduledata = { 215 "cam", 216 cam_module_event_handler, 217 NULL 218 }; 219 220 static int xpt_init(void *); 221 222 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 223 MODULE_VERSION(cam, 1); 224 225 226 static void xpt_async_bcast(struct async_list *async_head, 227 u_int32_t async_code, 228 struct cam_path *path, 229 void *async_arg); 230 static path_id_t xptnextfreepathid(void); 231 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 232 static union ccb *xpt_get_ccb(struct cam_periph *periph); 233 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 234 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 235 static void xpt_run_allocq_task(void *context, int pending); 236 static void xpt_run_devq(struct cam_devq *devq); 237 static timeout_t xpt_release_devq_timeout; 238 static void xpt_release_simq_timeout(void *arg) __unused; 239 static void xpt_acquire_bus(struct cam_eb *bus); 240 static void xpt_release_bus(struct cam_eb *bus); 241 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 242 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 243 int run_queue); 244 static struct cam_et* 245 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 246 static void xpt_acquire_target(struct cam_et *target); 247 static void xpt_release_target(struct cam_et *target); 248 static struct cam_eb* 249 xpt_find_bus(path_id_t path_id); 250 static struct cam_et* 251 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 252 static struct cam_ed* 253 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 254 static void xpt_config(void *arg); 255 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 256 u_int32_t new_priority); 257 static xpt_devicefunc_t xptpassannouncefunc; 258 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 259 static void xptpoll(struct cam_sim *sim); 260 static void camisr_runqueue(void); 261 static void xpt_done_process(struct ccb_hdr *ccb_h); 262 static void xpt_done_td(void *); 263 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 264 u_int num_patterns, struct cam_eb *bus); 265 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 266 u_int num_patterns, 267 struct cam_ed *device); 268 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 269 u_int num_patterns, 270 struct cam_periph *periph); 271 static xpt_busfunc_t xptedtbusfunc; 272 static xpt_targetfunc_t xptedttargetfunc; 273 static xpt_devicefunc_t xptedtdevicefunc; 274 static xpt_periphfunc_t xptedtperiphfunc; 275 static xpt_pdrvfunc_t xptplistpdrvfunc; 276 static xpt_periphfunc_t xptplistperiphfunc; 277 static int xptedtmatch(struct ccb_dev_match *cdm); 278 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 279 static int xptbustraverse(struct cam_eb *start_bus, 280 xpt_busfunc_t *tr_func, void *arg); 281 static int xpttargettraverse(struct cam_eb *bus, 282 struct cam_et *start_target, 283 xpt_targetfunc_t *tr_func, void *arg); 284 static int xptdevicetraverse(struct cam_et *target, 285 struct cam_ed *start_device, 286 xpt_devicefunc_t *tr_func, void *arg); 287 static int xptperiphtraverse(struct cam_ed *device, 288 struct cam_periph *start_periph, 289 xpt_periphfunc_t *tr_func, void *arg); 290 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 291 xpt_pdrvfunc_t *tr_func, void *arg); 292 static int xptpdperiphtraverse(struct periph_driver **pdrv, 293 struct cam_periph *start_periph, 294 xpt_periphfunc_t *tr_func, 295 void *arg); 296 static xpt_busfunc_t xptdefbusfunc; 297 static xpt_targetfunc_t xptdeftargetfunc; 298 static xpt_devicefunc_t xptdefdevicefunc; 299 static xpt_periphfunc_t xptdefperiphfunc; 300 static void xpt_finishconfig_task(void *context, int pending); 301 static void xpt_dev_async_default(u_int32_t async_code, 302 struct cam_eb *bus, 303 struct cam_et *target, 304 struct cam_ed *device, 305 void *async_arg); 306 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 307 struct cam_et *target, 308 lun_id_t lun_id); 309 static xpt_devicefunc_t xptsetasyncfunc; 310 static xpt_busfunc_t xptsetasyncbusfunc; 311 static cam_status xptregister(struct cam_periph *periph, 312 void *arg); 313 static const char * xpt_action_name(uint32_t action); 314 static __inline int device_is_queued(struct cam_ed *device); 315 316 static __inline int 317 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 318 { 319 int retval; 320 321 mtx_assert(&devq->send_mtx, MA_OWNED); 322 if ((dev->ccbq.queue.entries > 0) && 323 (dev->ccbq.dev_openings > 0) && 324 (dev->ccbq.queue.qfrozen_cnt == 0)) { 325 /* 326 * The priority of a device waiting for controller 327 * resources is that of the highest priority CCB 328 * enqueued. 329 */ 330 retval = 331 xpt_schedule_dev(&devq->send_queue, 332 &dev->devq_entry, 333 CAMQ_GET_PRIO(&dev->ccbq.queue)); 334 } else { 335 retval = 0; 336 } 337 return (retval); 338 } 339 340 static __inline int 341 device_is_queued(struct cam_ed *device) 342 { 343 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 344 } 345 346 static void 347 xpt_periph_init() 348 { 349 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 350 } 351 352 static int 353 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 354 { 355 356 /* 357 * Only allow read-write access. 358 */ 359 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 360 return(EPERM); 361 362 /* 363 * We don't allow nonblocking access. 364 */ 365 if ((flags & O_NONBLOCK) != 0) { 366 printf("%s: can't do nonblocking access\n", devtoname(dev)); 367 return(ENODEV); 368 } 369 370 return(0); 371 } 372 373 static int 374 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 375 { 376 377 return(0); 378 } 379 380 /* 381 * Don't automatically grab the xpt softc lock here even though this is going 382 * through the xpt device. The xpt device is really just a back door for 383 * accessing other devices and SIMs, so the right thing to do is to grab 384 * the appropriate SIM lock once the bus/SIM is located. 385 */ 386 static int 387 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 388 { 389 int error; 390 391 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 392 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 393 } 394 return (error); 395 } 396 397 static int 398 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 399 { 400 int error; 401 402 error = 0; 403 404 switch(cmd) { 405 /* 406 * For the transport layer CAMIOCOMMAND ioctl, we really only want 407 * to accept CCB types that don't quite make sense to send through a 408 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 409 * in the CAM spec. 410 */ 411 case CAMIOCOMMAND: { 412 union ccb *ccb; 413 union ccb *inccb; 414 struct cam_eb *bus; 415 416 inccb = (union ccb *)addr; 417 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 418 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 419 inccb->csio.bio = NULL; 420 #endif 421 422 bus = xpt_find_bus(inccb->ccb_h.path_id); 423 if (bus == NULL) 424 return (EINVAL); 425 426 switch (inccb->ccb_h.func_code) { 427 case XPT_SCAN_BUS: 428 case XPT_RESET_BUS: 429 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 430 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 431 xpt_release_bus(bus); 432 return (EINVAL); 433 } 434 break; 435 case XPT_SCAN_TGT: 436 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 437 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 438 xpt_release_bus(bus); 439 return (EINVAL); 440 } 441 break; 442 default: 443 break; 444 } 445 446 switch(inccb->ccb_h.func_code) { 447 case XPT_SCAN_BUS: 448 case XPT_RESET_BUS: 449 case XPT_PATH_INQ: 450 case XPT_ENG_INQ: 451 case XPT_SCAN_LUN: 452 case XPT_SCAN_TGT: 453 454 ccb = xpt_alloc_ccb(); 455 456 /* 457 * Create a path using the bus, target, and lun the 458 * user passed in. 459 */ 460 if (xpt_create_path(&ccb->ccb_h.path, NULL, 461 inccb->ccb_h.path_id, 462 inccb->ccb_h.target_id, 463 inccb->ccb_h.target_lun) != 464 CAM_REQ_CMP){ 465 error = EINVAL; 466 xpt_free_ccb(ccb); 467 break; 468 } 469 /* Ensure all of our fields are correct */ 470 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 471 inccb->ccb_h.pinfo.priority); 472 xpt_merge_ccb(ccb, inccb); 473 xpt_path_lock(ccb->ccb_h.path); 474 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 475 xpt_path_unlock(ccb->ccb_h.path); 476 bcopy(ccb, inccb, sizeof(union ccb)); 477 xpt_free_path(ccb->ccb_h.path); 478 xpt_free_ccb(ccb); 479 break; 480 481 case XPT_DEBUG: { 482 union ccb ccb; 483 484 /* 485 * This is an immediate CCB, so it's okay to 486 * allocate it on the stack. 487 */ 488 489 /* 490 * Create a path using the bus, target, and lun the 491 * user passed in. 492 */ 493 if (xpt_create_path(&ccb.ccb_h.path, NULL, 494 inccb->ccb_h.path_id, 495 inccb->ccb_h.target_id, 496 inccb->ccb_h.target_lun) != 497 CAM_REQ_CMP){ 498 error = EINVAL; 499 break; 500 } 501 /* Ensure all of our fields are correct */ 502 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 503 inccb->ccb_h.pinfo.priority); 504 xpt_merge_ccb(&ccb, inccb); 505 xpt_action(&ccb); 506 bcopy(&ccb, inccb, sizeof(union ccb)); 507 xpt_free_path(ccb.ccb_h.path); 508 break; 509 510 } 511 case XPT_DEV_MATCH: { 512 struct cam_periph_map_info mapinfo; 513 struct cam_path *old_path; 514 515 /* 516 * We can't deal with physical addresses for this 517 * type of transaction. 518 */ 519 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 520 CAM_DATA_VADDR) { 521 error = EINVAL; 522 break; 523 } 524 525 /* 526 * Save this in case the caller had it set to 527 * something in particular. 528 */ 529 old_path = inccb->ccb_h.path; 530 531 /* 532 * We really don't need a path for the matching 533 * code. The path is needed because of the 534 * debugging statements in xpt_action(). They 535 * assume that the CCB has a valid path. 536 */ 537 inccb->ccb_h.path = xpt_periph->path; 538 539 bzero(&mapinfo, sizeof(mapinfo)); 540 541 /* 542 * Map the pattern and match buffers into kernel 543 * virtual address space. 544 */ 545 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 546 547 if (error) { 548 inccb->ccb_h.path = old_path; 549 break; 550 } 551 552 /* 553 * This is an immediate CCB, we can send it on directly. 554 */ 555 xpt_action(inccb); 556 557 /* 558 * Map the buffers back into user space. 559 */ 560 cam_periph_unmapmem(inccb, &mapinfo); 561 562 inccb->ccb_h.path = old_path; 563 564 error = 0; 565 break; 566 } 567 default: 568 error = ENOTSUP; 569 break; 570 } 571 xpt_release_bus(bus); 572 break; 573 } 574 /* 575 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 576 * with the periphal driver name and unit name filled in. The other 577 * fields don't really matter as input. The passthrough driver name 578 * ("pass"), and unit number are passed back in the ccb. The current 579 * device generation number, and the index into the device peripheral 580 * driver list, and the status are also passed back. Note that 581 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 582 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 583 * (or rather should be) impossible for the device peripheral driver 584 * list to change since we look at the whole thing in one pass, and 585 * we do it with lock protection. 586 * 587 */ 588 case CAMGETPASSTHRU: { 589 union ccb *ccb; 590 struct cam_periph *periph; 591 struct periph_driver **p_drv; 592 char *name; 593 u_int unit; 594 int base_periph_found; 595 596 ccb = (union ccb *)addr; 597 unit = ccb->cgdl.unit_number; 598 name = ccb->cgdl.periph_name; 599 base_periph_found = 0; 600 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 601 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 602 ccb->csio.bio = NULL; 603 #endif 604 605 /* 606 * Sanity check -- make sure we don't get a null peripheral 607 * driver name. 608 */ 609 if (*ccb->cgdl.periph_name == '\0') { 610 error = EINVAL; 611 break; 612 } 613 614 /* Keep the list from changing while we traverse it */ 615 xpt_lock_buses(); 616 617 /* first find our driver in the list of drivers */ 618 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 619 if (strcmp((*p_drv)->driver_name, name) == 0) 620 break; 621 622 if (*p_drv == NULL) { 623 xpt_unlock_buses(); 624 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 625 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 626 *ccb->cgdl.periph_name = '\0'; 627 ccb->cgdl.unit_number = 0; 628 error = ENOENT; 629 break; 630 } 631 632 /* 633 * Run through every peripheral instance of this driver 634 * and check to see whether it matches the unit passed 635 * in by the user. If it does, get out of the loops and 636 * find the passthrough driver associated with that 637 * peripheral driver. 638 */ 639 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 640 periph = TAILQ_NEXT(periph, unit_links)) { 641 642 if (periph->unit_number == unit) 643 break; 644 } 645 /* 646 * If we found the peripheral driver that the user passed 647 * in, go through all of the peripheral drivers for that 648 * particular device and look for a passthrough driver. 649 */ 650 if (periph != NULL) { 651 struct cam_ed *device; 652 int i; 653 654 base_periph_found = 1; 655 device = periph->path->device; 656 for (i = 0, periph = SLIST_FIRST(&device->periphs); 657 periph != NULL; 658 periph = SLIST_NEXT(periph, periph_links), i++) { 659 /* 660 * Check to see whether we have a 661 * passthrough device or not. 662 */ 663 if (strcmp(periph->periph_name, "pass") == 0) { 664 /* 665 * Fill in the getdevlist fields. 666 */ 667 strcpy(ccb->cgdl.periph_name, 668 periph->periph_name); 669 ccb->cgdl.unit_number = 670 periph->unit_number; 671 if (SLIST_NEXT(periph, periph_links)) 672 ccb->cgdl.status = 673 CAM_GDEVLIST_MORE_DEVS; 674 else 675 ccb->cgdl.status = 676 CAM_GDEVLIST_LAST_DEVICE; 677 ccb->cgdl.generation = 678 device->generation; 679 ccb->cgdl.index = i; 680 /* 681 * Fill in some CCB header fields 682 * that the user may want. 683 */ 684 ccb->ccb_h.path_id = 685 periph->path->bus->path_id; 686 ccb->ccb_h.target_id = 687 periph->path->target->target_id; 688 ccb->ccb_h.target_lun = 689 periph->path->device->lun_id; 690 ccb->ccb_h.status = CAM_REQ_CMP; 691 break; 692 } 693 } 694 } 695 696 /* 697 * If the periph is null here, one of two things has 698 * happened. The first possibility is that we couldn't 699 * find the unit number of the particular peripheral driver 700 * that the user is asking about. e.g. the user asks for 701 * the passthrough driver for "da11". We find the list of 702 * "da" peripherals all right, but there is no unit 11. 703 * The other possibility is that we went through the list 704 * of peripheral drivers attached to the device structure, 705 * but didn't find one with the name "pass". Either way, 706 * we return ENOENT, since we couldn't find something. 707 */ 708 if (periph == NULL) { 709 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 710 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 711 *ccb->cgdl.periph_name = '\0'; 712 ccb->cgdl.unit_number = 0; 713 error = ENOENT; 714 /* 715 * It is unfortunate that this is even necessary, 716 * but there are many, many clueless users out there. 717 * If this is true, the user is looking for the 718 * passthrough driver, but doesn't have one in his 719 * kernel. 720 */ 721 if (base_periph_found == 1) { 722 printf("xptioctl: pass driver is not in the " 723 "kernel\n"); 724 printf("xptioctl: put \"device pass\" in " 725 "your kernel config file\n"); 726 } 727 } 728 xpt_unlock_buses(); 729 break; 730 } 731 default: 732 error = ENOTTY; 733 break; 734 } 735 736 return(error); 737 } 738 739 static int 740 cam_module_event_handler(module_t mod, int what, void *arg) 741 { 742 int error; 743 744 switch (what) { 745 case MOD_LOAD: 746 if ((error = xpt_init(NULL)) != 0) 747 return (error); 748 break; 749 case MOD_UNLOAD: 750 return EBUSY; 751 default: 752 return EOPNOTSUPP; 753 } 754 755 return 0; 756 } 757 758 static struct xpt_proto * 759 xpt_proto_find(cam_proto proto) 760 { 761 struct xpt_proto **pp; 762 763 SET_FOREACH(pp, cam_xpt_proto_set) { 764 if ((*pp)->proto == proto) 765 return *pp; 766 } 767 768 return NULL; 769 } 770 771 static void 772 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 773 { 774 775 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 776 xpt_free_path(done_ccb->ccb_h.path); 777 xpt_free_ccb(done_ccb); 778 } else { 779 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 780 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 781 } 782 xpt_release_boot(); 783 } 784 785 /* thread to handle bus rescans */ 786 static void 787 xpt_scanner_thread(void *dummy) 788 { 789 union ccb *ccb; 790 struct cam_path path; 791 792 xpt_lock_buses(); 793 for (;;) { 794 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 795 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 796 "-", 0); 797 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 798 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 799 xpt_unlock_buses(); 800 801 /* 802 * Since lock can be dropped inside and path freed 803 * by completion callback even before return here, 804 * take our own path copy for reference. 805 */ 806 xpt_copy_path(&path, ccb->ccb_h.path); 807 xpt_path_lock(&path); 808 xpt_action(ccb); 809 xpt_path_unlock(&path); 810 xpt_release_path(&path); 811 812 xpt_lock_buses(); 813 } 814 } 815 } 816 817 void 818 xpt_rescan(union ccb *ccb) 819 { 820 struct ccb_hdr *hdr; 821 822 /* Prepare request */ 823 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 824 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 825 ccb->ccb_h.func_code = XPT_SCAN_BUS; 826 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 827 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 828 ccb->ccb_h.func_code = XPT_SCAN_TGT; 829 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 830 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 831 ccb->ccb_h.func_code = XPT_SCAN_LUN; 832 else { 833 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 834 xpt_free_path(ccb->ccb_h.path); 835 xpt_free_ccb(ccb); 836 return; 837 } 838 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 839 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 840 xpt_action_name(ccb->ccb_h.func_code))); 841 842 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 843 ccb->ccb_h.cbfcnp = xpt_rescan_done; 844 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 845 /* Don't make duplicate entries for the same paths. */ 846 xpt_lock_buses(); 847 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 848 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 849 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 850 wakeup(&xsoftc.ccb_scanq); 851 xpt_unlock_buses(); 852 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 853 xpt_free_path(ccb->ccb_h.path); 854 xpt_free_ccb(ccb); 855 return; 856 } 857 } 858 } 859 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 860 xsoftc.buses_to_config++; 861 wakeup(&xsoftc.ccb_scanq); 862 xpt_unlock_buses(); 863 } 864 865 /* Functions accessed by the peripheral drivers */ 866 static int 867 xpt_init(void *dummy) 868 { 869 struct cam_sim *xpt_sim; 870 struct cam_path *path; 871 struct cam_devq *devq; 872 cam_status status; 873 int error, i; 874 875 TAILQ_INIT(&xsoftc.xpt_busses); 876 TAILQ_INIT(&xsoftc.ccb_scanq); 877 STAILQ_INIT(&xsoftc.highpowerq); 878 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 879 880 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 881 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 882 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 883 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 884 885 #ifdef CAM_BOOT_DELAY 886 /* 887 * Override this value at compile time to assist our users 888 * who don't use loader to boot a kernel. 889 */ 890 xsoftc.boot_delay = CAM_BOOT_DELAY; 891 #endif 892 /* 893 * The xpt layer is, itself, the equivalent of a SIM. 894 * Allow 16 ccbs in the ccb pool for it. This should 895 * give decent parallelism when we probe busses and 896 * perform other XPT functions. 897 */ 898 devq = cam_simq_alloc(16); 899 xpt_sim = cam_sim_alloc(xptaction, 900 xptpoll, 901 "xpt", 902 /*softc*/NULL, 903 /*unit*/0, 904 /*mtx*/&xsoftc.xpt_lock, 905 /*max_dev_transactions*/0, 906 /*max_tagged_dev_transactions*/0, 907 devq); 908 if (xpt_sim == NULL) 909 return (ENOMEM); 910 911 mtx_lock(&xsoftc.xpt_lock); 912 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 913 mtx_unlock(&xsoftc.xpt_lock); 914 printf("xpt_init: xpt_bus_register failed with status %#x," 915 " failing attach\n", status); 916 return (EINVAL); 917 } 918 mtx_unlock(&xsoftc.xpt_lock); 919 920 /* 921 * Looking at the XPT from the SIM layer, the XPT is 922 * the equivalent of a peripheral driver. Allocate 923 * a peripheral driver entry for us. 924 */ 925 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 926 CAM_TARGET_WILDCARD, 927 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 928 printf("xpt_init: xpt_create_path failed with status %#x," 929 " failing attach\n", status); 930 return (EINVAL); 931 } 932 xpt_path_lock(path); 933 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 934 path, NULL, 0, xpt_sim); 935 xpt_path_unlock(path); 936 xpt_free_path(path); 937 938 if (cam_num_doneqs < 1) 939 cam_num_doneqs = 1 + mp_ncpus / 6; 940 else if (cam_num_doneqs > MAXCPU) 941 cam_num_doneqs = MAXCPU; 942 for (i = 0; i < cam_num_doneqs; i++) { 943 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 944 MTX_DEF); 945 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 946 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 947 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 948 if (error != 0) { 949 cam_num_doneqs = i; 950 break; 951 } 952 } 953 if (cam_num_doneqs < 1) { 954 printf("xpt_init: Cannot init completion queues " 955 "- failing attach\n"); 956 return (ENOMEM); 957 } 958 /* 959 * Register a callback for when interrupts are enabled. 960 */ 961 xsoftc.xpt_config_hook = 962 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 963 M_CAMXPT, M_NOWAIT | M_ZERO); 964 if (xsoftc.xpt_config_hook == NULL) { 965 printf("xpt_init: Cannot malloc config hook " 966 "- failing attach\n"); 967 return (ENOMEM); 968 } 969 xsoftc.xpt_config_hook->ich_func = xpt_config; 970 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 971 free (xsoftc.xpt_config_hook, M_CAMXPT); 972 printf("xpt_init: config_intrhook_establish failed " 973 "- failing attach\n"); 974 } 975 976 return (0); 977 } 978 979 static cam_status 980 xptregister(struct cam_periph *periph, void *arg) 981 { 982 struct cam_sim *xpt_sim; 983 984 if (periph == NULL) { 985 printf("xptregister: periph was NULL!!\n"); 986 return(CAM_REQ_CMP_ERR); 987 } 988 989 xpt_sim = (struct cam_sim *)arg; 990 xpt_sim->softc = periph; 991 xpt_periph = periph; 992 periph->softc = NULL; 993 994 return(CAM_REQ_CMP); 995 } 996 997 int32_t 998 xpt_add_periph(struct cam_periph *periph) 999 { 1000 struct cam_ed *device; 1001 int32_t status; 1002 1003 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1004 device = periph->path->device; 1005 status = CAM_REQ_CMP; 1006 if (device != NULL) { 1007 mtx_lock(&device->target->bus->eb_mtx); 1008 device->generation++; 1009 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1010 mtx_unlock(&device->target->bus->eb_mtx); 1011 atomic_add_32(&xsoftc.xpt_generation, 1); 1012 } 1013 1014 return (status); 1015 } 1016 1017 void 1018 xpt_remove_periph(struct cam_periph *periph) 1019 { 1020 struct cam_ed *device; 1021 1022 device = periph->path->device; 1023 if (device != NULL) { 1024 mtx_lock(&device->target->bus->eb_mtx); 1025 device->generation++; 1026 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1027 mtx_unlock(&device->target->bus->eb_mtx); 1028 atomic_add_32(&xsoftc.xpt_generation, 1); 1029 } 1030 } 1031 1032 1033 void 1034 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1035 { 1036 struct cam_path *path = periph->path; 1037 struct xpt_proto *proto; 1038 1039 cam_periph_assert(periph, MA_OWNED); 1040 periph->flags |= CAM_PERIPH_ANNOUNCED; 1041 1042 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1043 periph->periph_name, periph->unit_number, 1044 path->bus->sim->sim_name, 1045 path->bus->sim->unit_number, 1046 path->bus->sim->bus_id, 1047 path->bus->path_id, 1048 path->target->target_id, 1049 (uintmax_t)path->device->lun_id); 1050 printf("%s%d: ", periph->periph_name, periph->unit_number); 1051 proto = xpt_proto_find(path->device->protocol); 1052 if (proto) 1053 proto->ops->announce(path->device); 1054 else 1055 printf("%s%d: Unknown protocol device %d\n", 1056 periph->periph_name, periph->unit_number, 1057 path->device->protocol); 1058 if (path->device->serial_num_len > 0) { 1059 /* Don't wrap the screen - print only the first 60 chars */ 1060 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1061 periph->unit_number, path->device->serial_num); 1062 } 1063 /* Announce transport details. */ 1064 path->bus->xport->ops->announce(periph); 1065 /* Announce command queueing. */ 1066 if (path->device->inq_flags & SID_CmdQue 1067 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1068 printf("%s%d: Command Queueing enabled\n", 1069 periph->periph_name, periph->unit_number); 1070 } 1071 /* Announce caller's details if they've passed in. */ 1072 if (announce_string != NULL) 1073 printf("%s%d: %s\n", periph->periph_name, 1074 periph->unit_number, announce_string); 1075 } 1076 1077 void 1078 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1079 { 1080 if (quirks != 0) { 1081 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1082 periph->unit_number, quirks, bit_string); 1083 } 1084 } 1085 1086 void 1087 xpt_denounce_periph(struct cam_periph *periph) 1088 { 1089 struct cam_path *path = periph->path; 1090 struct xpt_proto *proto; 1091 1092 cam_periph_assert(periph, MA_OWNED); 1093 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1094 periph->periph_name, periph->unit_number, 1095 path->bus->sim->sim_name, 1096 path->bus->sim->unit_number, 1097 path->bus->sim->bus_id, 1098 path->bus->path_id, 1099 path->target->target_id, 1100 (uintmax_t)path->device->lun_id); 1101 printf("%s%d: ", periph->periph_name, periph->unit_number); 1102 proto = xpt_proto_find(path->device->protocol); 1103 if (proto) 1104 proto->ops->denounce(path->device); 1105 else 1106 printf("%s%d: Unknown protocol device %d\n", 1107 periph->periph_name, periph->unit_number, 1108 path->device->protocol); 1109 if (path->device->serial_num_len > 0) 1110 printf(" s/n %.60s", path->device->serial_num); 1111 printf(" detached\n"); 1112 } 1113 1114 1115 int 1116 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1117 { 1118 int ret = -1, l; 1119 struct ccb_dev_advinfo cdai; 1120 struct scsi_vpd_id_descriptor *idd; 1121 1122 xpt_path_assert(path, MA_OWNED); 1123 1124 memset(&cdai, 0, sizeof(cdai)); 1125 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1126 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1127 cdai.flags = CDAI_FLAG_NONE; 1128 cdai.bufsiz = len; 1129 1130 if (!strcmp(attr, "GEOM::ident")) 1131 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1132 else if (!strcmp(attr, "GEOM::physpath")) 1133 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1134 else if (strcmp(attr, "GEOM::lunid") == 0 || 1135 strcmp(attr, "GEOM::lunname") == 0) { 1136 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1137 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1138 } else 1139 goto out; 1140 1141 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1142 if (cdai.buf == NULL) { 1143 ret = ENOMEM; 1144 goto out; 1145 } 1146 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1147 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1148 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1149 if (cdai.provsiz == 0) 1150 goto out; 1151 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1152 if (strcmp(attr, "GEOM::lunid") == 0) { 1153 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1154 cdai.provsiz, scsi_devid_is_lun_naa); 1155 if (idd == NULL) 1156 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1157 cdai.provsiz, scsi_devid_is_lun_eui64); 1158 } else 1159 idd = NULL; 1160 if (idd == NULL) 1161 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1162 cdai.provsiz, scsi_devid_is_lun_t10); 1163 if (idd == NULL) 1164 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1165 cdai.provsiz, scsi_devid_is_lun_name); 1166 if (idd == NULL) 1167 goto out; 1168 ret = 0; 1169 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1170 if (idd->length < len) { 1171 for (l = 0; l < idd->length; l++) 1172 buf[l] = idd->identifier[l] ? 1173 idd->identifier[l] : ' '; 1174 buf[l] = 0; 1175 } else 1176 ret = EFAULT; 1177 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1178 l = strnlen(idd->identifier, idd->length); 1179 if (l < len) { 1180 bcopy(idd->identifier, buf, l); 1181 buf[l] = 0; 1182 } else 1183 ret = EFAULT; 1184 } else { 1185 if (idd->length * 2 < len) { 1186 for (l = 0; l < idd->length; l++) 1187 sprintf(buf + l * 2, "%02x", 1188 idd->identifier[l]); 1189 } else 1190 ret = EFAULT; 1191 } 1192 } else { 1193 ret = 0; 1194 if (strlcpy(buf, cdai.buf, len) >= len) 1195 ret = EFAULT; 1196 } 1197 1198 out: 1199 if (cdai.buf != NULL) 1200 free(cdai.buf, M_CAMXPT); 1201 return ret; 1202 } 1203 1204 static dev_match_ret 1205 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1206 struct cam_eb *bus) 1207 { 1208 dev_match_ret retval; 1209 u_int i; 1210 1211 retval = DM_RET_NONE; 1212 1213 /* 1214 * If we aren't given something to match against, that's an error. 1215 */ 1216 if (bus == NULL) 1217 return(DM_RET_ERROR); 1218 1219 /* 1220 * If there are no match entries, then this bus matches no 1221 * matter what. 1222 */ 1223 if ((patterns == NULL) || (num_patterns == 0)) 1224 return(DM_RET_DESCEND | DM_RET_COPY); 1225 1226 for (i = 0; i < num_patterns; i++) { 1227 struct bus_match_pattern *cur_pattern; 1228 1229 /* 1230 * If the pattern in question isn't for a bus node, we 1231 * aren't interested. However, we do indicate to the 1232 * calling routine that we should continue descending the 1233 * tree, since the user wants to match against lower-level 1234 * EDT elements. 1235 */ 1236 if (patterns[i].type != DEV_MATCH_BUS) { 1237 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1238 retval |= DM_RET_DESCEND; 1239 continue; 1240 } 1241 1242 cur_pattern = &patterns[i].pattern.bus_pattern; 1243 1244 /* 1245 * If they want to match any bus node, we give them any 1246 * device node. 1247 */ 1248 if (cur_pattern->flags == BUS_MATCH_ANY) { 1249 /* set the copy flag */ 1250 retval |= DM_RET_COPY; 1251 1252 /* 1253 * If we've already decided on an action, go ahead 1254 * and return. 1255 */ 1256 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1257 return(retval); 1258 } 1259 1260 /* 1261 * Not sure why someone would do this... 1262 */ 1263 if (cur_pattern->flags == BUS_MATCH_NONE) 1264 continue; 1265 1266 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1267 && (cur_pattern->path_id != bus->path_id)) 1268 continue; 1269 1270 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1271 && (cur_pattern->bus_id != bus->sim->bus_id)) 1272 continue; 1273 1274 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1275 && (cur_pattern->unit_number != bus->sim->unit_number)) 1276 continue; 1277 1278 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1279 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1280 DEV_IDLEN) != 0)) 1281 continue; 1282 1283 /* 1284 * If we get to this point, the user definitely wants 1285 * information on this bus. So tell the caller to copy the 1286 * data out. 1287 */ 1288 retval |= DM_RET_COPY; 1289 1290 /* 1291 * If the return action has been set to descend, then we 1292 * know that we've already seen a non-bus matching 1293 * expression, therefore we need to further descend the tree. 1294 * This won't change by continuing around the loop, so we 1295 * go ahead and return. If we haven't seen a non-bus 1296 * matching expression, we keep going around the loop until 1297 * we exhaust the matching expressions. We'll set the stop 1298 * flag once we fall out of the loop. 1299 */ 1300 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1301 return(retval); 1302 } 1303 1304 /* 1305 * If the return action hasn't been set to descend yet, that means 1306 * we haven't seen anything other than bus matching patterns. So 1307 * tell the caller to stop descending the tree -- the user doesn't 1308 * want to match against lower level tree elements. 1309 */ 1310 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1311 retval |= DM_RET_STOP; 1312 1313 return(retval); 1314 } 1315 1316 static dev_match_ret 1317 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1318 struct cam_ed *device) 1319 { 1320 dev_match_ret retval; 1321 u_int i; 1322 1323 retval = DM_RET_NONE; 1324 1325 /* 1326 * If we aren't given something to match against, that's an error. 1327 */ 1328 if (device == NULL) 1329 return(DM_RET_ERROR); 1330 1331 /* 1332 * If there are no match entries, then this device matches no 1333 * matter what. 1334 */ 1335 if ((patterns == NULL) || (num_patterns == 0)) 1336 return(DM_RET_DESCEND | DM_RET_COPY); 1337 1338 for (i = 0; i < num_patterns; i++) { 1339 struct device_match_pattern *cur_pattern; 1340 struct scsi_vpd_device_id *device_id_page; 1341 1342 /* 1343 * If the pattern in question isn't for a device node, we 1344 * aren't interested. 1345 */ 1346 if (patterns[i].type != DEV_MATCH_DEVICE) { 1347 if ((patterns[i].type == DEV_MATCH_PERIPH) 1348 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1349 retval |= DM_RET_DESCEND; 1350 continue; 1351 } 1352 1353 cur_pattern = &patterns[i].pattern.device_pattern; 1354 1355 /* Error out if mutually exclusive options are specified. */ 1356 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1357 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1358 return(DM_RET_ERROR); 1359 1360 /* 1361 * If they want to match any device node, we give them any 1362 * device node. 1363 */ 1364 if (cur_pattern->flags == DEV_MATCH_ANY) 1365 goto copy_dev_node; 1366 1367 /* 1368 * Not sure why someone would do this... 1369 */ 1370 if (cur_pattern->flags == DEV_MATCH_NONE) 1371 continue; 1372 1373 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1374 && (cur_pattern->path_id != device->target->bus->path_id)) 1375 continue; 1376 1377 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1378 && (cur_pattern->target_id != device->target->target_id)) 1379 continue; 1380 1381 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1382 && (cur_pattern->target_lun != device->lun_id)) 1383 continue; 1384 1385 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1386 && (cam_quirkmatch((caddr_t)&device->inq_data, 1387 (caddr_t)&cur_pattern->data.inq_pat, 1388 1, sizeof(cur_pattern->data.inq_pat), 1389 scsi_static_inquiry_match) == NULL)) 1390 continue; 1391 1392 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1393 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1394 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1395 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1396 device->device_id_len 1397 - SVPD_DEVICE_ID_HDR_LEN, 1398 cur_pattern->data.devid_pat.id, 1399 cur_pattern->data.devid_pat.id_len) != 0)) 1400 continue; 1401 1402 copy_dev_node: 1403 /* 1404 * If we get to this point, the user definitely wants 1405 * information on this device. So tell the caller to copy 1406 * the data out. 1407 */ 1408 retval |= DM_RET_COPY; 1409 1410 /* 1411 * If the return action has been set to descend, then we 1412 * know that we've already seen a peripheral matching 1413 * expression, therefore we need to further descend the tree. 1414 * This won't change by continuing around the loop, so we 1415 * go ahead and return. If we haven't seen a peripheral 1416 * matching expression, we keep going around the loop until 1417 * we exhaust the matching expressions. We'll set the stop 1418 * flag once we fall out of the loop. 1419 */ 1420 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1421 return(retval); 1422 } 1423 1424 /* 1425 * If the return action hasn't been set to descend yet, that means 1426 * we haven't seen any peripheral matching patterns. So tell the 1427 * caller to stop descending the tree -- the user doesn't want to 1428 * match against lower level tree elements. 1429 */ 1430 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1431 retval |= DM_RET_STOP; 1432 1433 return(retval); 1434 } 1435 1436 /* 1437 * Match a single peripheral against any number of match patterns. 1438 */ 1439 static dev_match_ret 1440 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1441 struct cam_periph *periph) 1442 { 1443 dev_match_ret retval; 1444 u_int i; 1445 1446 /* 1447 * If we aren't given something to match against, that's an error. 1448 */ 1449 if (periph == NULL) 1450 return(DM_RET_ERROR); 1451 1452 /* 1453 * If there are no match entries, then this peripheral matches no 1454 * matter what. 1455 */ 1456 if ((patterns == NULL) || (num_patterns == 0)) 1457 return(DM_RET_STOP | DM_RET_COPY); 1458 1459 /* 1460 * There aren't any nodes below a peripheral node, so there's no 1461 * reason to descend the tree any further. 1462 */ 1463 retval = DM_RET_STOP; 1464 1465 for (i = 0; i < num_patterns; i++) { 1466 struct periph_match_pattern *cur_pattern; 1467 1468 /* 1469 * If the pattern in question isn't for a peripheral, we 1470 * aren't interested. 1471 */ 1472 if (patterns[i].type != DEV_MATCH_PERIPH) 1473 continue; 1474 1475 cur_pattern = &patterns[i].pattern.periph_pattern; 1476 1477 /* 1478 * If they want to match on anything, then we will do so. 1479 */ 1480 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1481 /* set the copy flag */ 1482 retval |= DM_RET_COPY; 1483 1484 /* 1485 * We've already set the return action to stop, 1486 * since there are no nodes below peripherals in 1487 * the tree. 1488 */ 1489 return(retval); 1490 } 1491 1492 /* 1493 * Not sure why someone would do this... 1494 */ 1495 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1496 continue; 1497 1498 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1499 && (cur_pattern->path_id != periph->path->bus->path_id)) 1500 continue; 1501 1502 /* 1503 * For the target and lun id's, we have to make sure the 1504 * target and lun pointers aren't NULL. The xpt peripheral 1505 * has a wildcard target and device. 1506 */ 1507 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1508 && ((periph->path->target == NULL) 1509 ||(cur_pattern->target_id != periph->path->target->target_id))) 1510 continue; 1511 1512 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1513 && ((periph->path->device == NULL) 1514 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1515 continue; 1516 1517 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1518 && (cur_pattern->unit_number != periph->unit_number)) 1519 continue; 1520 1521 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1522 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1523 DEV_IDLEN) != 0)) 1524 continue; 1525 1526 /* 1527 * If we get to this point, the user definitely wants 1528 * information on this peripheral. So tell the caller to 1529 * copy the data out. 1530 */ 1531 retval |= DM_RET_COPY; 1532 1533 /* 1534 * The return action has already been set to stop, since 1535 * peripherals don't have any nodes below them in the EDT. 1536 */ 1537 return(retval); 1538 } 1539 1540 /* 1541 * If we get to this point, the peripheral that was passed in 1542 * doesn't match any of the patterns. 1543 */ 1544 return(retval); 1545 } 1546 1547 static int 1548 xptedtbusfunc(struct cam_eb *bus, void *arg) 1549 { 1550 struct ccb_dev_match *cdm; 1551 struct cam_et *target; 1552 dev_match_ret retval; 1553 1554 cdm = (struct ccb_dev_match *)arg; 1555 1556 /* 1557 * If our position is for something deeper in the tree, that means 1558 * that we've already seen this node. So, we keep going down. 1559 */ 1560 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1561 && (cdm->pos.cookie.bus == bus) 1562 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1563 && (cdm->pos.cookie.target != NULL)) 1564 retval = DM_RET_DESCEND; 1565 else 1566 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1567 1568 /* 1569 * If we got an error, bail out of the search. 1570 */ 1571 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1572 cdm->status = CAM_DEV_MATCH_ERROR; 1573 return(0); 1574 } 1575 1576 /* 1577 * If the copy flag is set, copy this bus out. 1578 */ 1579 if (retval & DM_RET_COPY) { 1580 int spaceleft, j; 1581 1582 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1583 sizeof(struct dev_match_result)); 1584 1585 /* 1586 * If we don't have enough space to put in another 1587 * match result, save our position and tell the 1588 * user there are more devices to check. 1589 */ 1590 if (spaceleft < sizeof(struct dev_match_result)) { 1591 bzero(&cdm->pos, sizeof(cdm->pos)); 1592 cdm->pos.position_type = 1593 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1594 1595 cdm->pos.cookie.bus = bus; 1596 cdm->pos.generations[CAM_BUS_GENERATION]= 1597 xsoftc.bus_generation; 1598 cdm->status = CAM_DEV_MATCH_MORE; 1599 return(0); 1600 } 1601 j = cdm->num_matches; 1602 cdm->num_matches++; 1603 cdm->matches[j].type = DEV_MATCH_BUS; 1604 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1605 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1606 cdm->matches[j].result.bus_result.unit_number = 1607 bus->sim->unit_number; 1608 strncpy(cdm->matches[j].result.bus_result.dev_name, 1609 bus->sim->sim_name, DEV_IDLEN); 1610 } 1611 1612 /* 1613 * If the user is only interested in busses, there's no 1614 * reason to descend to the next level in the tree. 1615 */ 1616 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1617 return(1); 1618 1619 /* 1620 * If there is a target generation recorded, check it to 1621 * make sure the target list hasn't changed. 1622 */ 1623 mtx_lock(&bus->eb_mtx); 1624 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1625 && (cdm->pos.cookie.bus == bus) 1626 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1627 && (cdm->pos.cookie.target != NULL)) { 1628 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1629 bus->generation)) { 1630 mtx_unlock(&bus->eb_mtx); 1631 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1632 return (0); 1633 } 1634 target = (struct cam_et *)cdm->pos.cookie.target; 1635 target->refcount++; 1636 } else 1637 target = NULL; 1638 mtx_unlock(&bus->eb_mtx); 1639 1640 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1641 } 1642 1643 static int 1644 xptedttargetfunc(struct cam_et *target, void *arg) 1645 { 1646 struct ccb_dev_match *cdm; 1647 struct cam_eb *bus; 1648 struct cam_ed *device; 1649 1650 cdm = (struct ccb_dev_match *)arg; 1651 bus = target->bus; 1652 1653 /* 1654 * If there is a device list generation recorded, check it to 1655 * make sure the device list hasn't changed. 1656 */ 1657 mtx_lock(&bus->eb_mtx); 1658 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1659 && (cdm->pos.cookie.bus == bus) 1660 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1661 && (cdm->pos.cookie.target == target) 1662 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1663 && (cdm->pos.cookie.device != NULL)) { 1664 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1665 target->generation) { 1666 mtx_unlock(&bus->eb_mtx); 1667 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1668 return(0); 1669 } 1670 device = (struct cam_ed *)cdm->pos.cookie.device; 1671 device->refcount++; 1672 } else 1673 device = NULL; 1674 mtx_unlock(&bus->eb_mtx); 1675 1676 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1677 } 1678 1679 static int 1680 xptedtdevicefunc(struct cam_ed *device, void *arg) 1681 { 1682 struct cam_eb *bus; 1683 struct cam_periph *periph; 1684 struct ccb_dev_match *cdm; 1685 dev_match_ret retval; 1686 1687 cdm = (struct ccb_dev_match *)arg; 1688 bus = device->target->bus; 1689 1690 /* 1691 * If our position is for something deeper in the tree, that means 1692 * that we've already seen this node. So, we keep going down. 1693 */ 1694 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1695 && (cdm->pos.cookie.device == device) 1696 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1697 && (cdm->pos.cookie.periph != NULL)) 1698 retval = DM_RET_DESCEND; 1699 else 1700 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1701 device); 1702 1703 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1704 cdm->status = CAM_DEV_MATCH_ERROR; 1705 return(0); 1706 } 1707 1708 /* 1709 * If the copy flag is set, copy this device out. 1710 */ 1711 if (retval & DM_RET_COPY) { 1712 int spaceleft, j; 1713 1714 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1715 sizeof(struct dev_match_result)); 1716 1717 /* 1718 * If we don't have enough space to put in another 1719 * match result, save our position and tell the 1720 * user there are more devices to check. 1721 */ 1722 if (spaceleft < sizeof(struct dev_match_result)) { 1723 bzero(&cdm->pos, sizeof(cdm->pos)); 1724 cdm->pos.position_type = 1725 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1726 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1727 1728 cdm->pos.cookie.bus = device->target->bus; 1729 cdm->pos.generations[CAM_BUS_GENERATION]= 1730 xsoftc.bus_generation; 1731 cdm->pos.cookie.target = device->target; 1732 cdm->pos.generations[CAM_TARGET_GENERATION] = 1733 device->target->bus->generation; 1734 cdm->pos.cookie.device = device; 1735 cdm->pos.generations[CAM_DEV_GENERATION] = 1736 device->target->generation; 1737 cdm->status = CAM_DEV_MATCH_MORE; 1738 return(0); 1739 } 1740 j = cdm->num_matches; 1741 cdm->num_matches++; 1742 cdm->matches[j].type = DEV_MATCH_DEVICE; 1743 cdm->matches[j].result.device_result.path_id = 1744 device->target->bus->path_id; 1745 cdm->matches[j].result.device_result.target_id = 1746 device->target->target_id; 1747 cdm->matches[j].result.device_result.target_lun = 1748 device->lun_id; 1749 cdm->matches[j].result.device_result.protocol = 1750 device->protocol; 1751 bcopy(&device->inq_data, 1752 &cdm->matches[j].result.device_result.inq_data, 1753 sizeof(struct scsi_inquiry_data)); 1754 bcopy(&device->ident_data, 1755 &cdm->matches[j].result.device_result.ident_data, 1756 sizeof(struct ata_params)); 1757 1758 /* Let the user know whether this device is unconfigured */ 1759 if (device->flags & CAM_DEV_UNCONFIGURED) 1760 cdm->matches[j].result.device_result.flags = 1761 DEV_RESULT_UNCONFIGURED; 1762 else 1763 cdm->matches[j].result.device_result.flags = 1764 DEV_RESULT_NOFLAG; 1765 } 1766 1767 /* 1768 * If the user isn't interested in peripherals, don't descend 1769 * the tree any further. 1770 */ 1771 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1772 return(1); 1773 1774 /* 1775 * If there is a peripheral list generation recorded, make sure 1776 * it hasn't changed. 1777 */ 1778 xpt_lock_buses(); 1779 mtx_lock(&bus->eb_mtx); 1780 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1781 && (cdm->pos.cookie.bus == bus) 1782 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1783 && (cdm->pos.cookie.target == device->target) 1784 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1785 && (cdm->pos.cookie.device == device) 1786 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1787 && (cdm->pos.cookie.periph != NULL)) { 1788 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1789 device->generation) { 1790 mtx_unlock(&bus->eb_mtx); 1791 xpt_unlock_buses(); 1792 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1793 return(0); 1794 } 1795 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1796 periph->refcount++; 1797 } else 1798 periph = NULL; 1799 mtx_unlock(&bus->eb_mtx); 1800 xpt_unlock_buses(); 1801 1802 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1803 } 1804 1805 static int 1806 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1807 { 1808 struct ccb_dev_match *cdm; 1809 dev_match_ret retval; 1810 1811 cdm = (struct ccb_dev_match *)arg; 1812 1813 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1814 1815 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1816 cdm->status = CAM_DEV_MATCH_ERROR; 1817 return(0); 1818 } 1819 1820 /* 1821 * If the copy flag is set, copy this peripheral out. 1822 */ 1823 if (retval & DM_RET_COPY) { 1824 int spaceleft, j; 1825 1826 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1827 sizeof(struct dev_match_result)); 1828 1829 /* 1830 * If we don't have enough space to put in another 1831 * match result, save our position and tell the 1832 * user there are more devices to check. 1833 */ 1834 if (spaceleft < sizeof(struct dev_match_result)) { 1835 bzero(&cdm->pos, sizeof(cdm->pos)); 1836 cdm->pos.position_type = 1837 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1838 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1839 CAM_DEV_POS_PERIPH; 1840 1841 cdm->pos.cookie.bus = periph->path->bus; 1842 cdm->pos.generations[CAM_BUS_GENERATION]= 1843 xsoftc.bus_generation; 1844 cdm->pos.cookie.target = periph->path->target; 1845 cdm->pos.generations[CAM_TARGET_GENERATION] = 1846 periph->path->bus->generation; 1847 cdm->pos.cookie.device = periph->path->device; 1848 cdm->pos.generations[CAM_DEV_GENERATION] = 1849 periph->path->target->generation; 1850 cdm->pos.cookie.periph = periph; 1851 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1852 periph->path->device->generation; 1853 cdm->status = CAM_DEV_MATCH_MORE; 1854 return(0); 1855 } 1856 1857 j = cdm->num_matches; 1858 cdm->num_matches++; 1859 cdm->matches[j].type = DEV_MATCH_PERIPH; 1860 cdm->matches[j].result.periph_result.path_id = 1861 periph->path->bus->path_id; 1862 cdm->matches[j].result.periph_result.target_id = 1863 periph->path->target->target_id; 1864 cdm->matches[j].result.periph_result.target_lun = 1865 periph->path->device->lun_id; 1866 cdm->matches[j].result.periph_result.unit_number = 1867 periph->unit_number; 1868 strncpy(cdm->matches[j].result.periph_result.periph_name, 1869 periph->periph_name, DEV_IDLEN); 1870 } 1871 1872 return(1); 1873 } 1874 1875 static int 1876 xptedtmatch(struct ccb_dev_match *cdm) 1877 { 1878 struct cam_eb *bus; 1879 int ret; 1880 1881 cdm->num_matches = 0; 1882 1883 /* 1884 * Check the bus list generation. If it has changed, the user 1885 * needs to reset everything and start over. 1886 */ 1887 xpt_lock_buses(); 1888 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1889 && (cdm->pos.cookie.bus != NULL)) { 1890 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1891 xsoftc.bus_generation) { 1892 xpt_unlock_buses(); 1893 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1894 return(0); 1895 } 1896 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1897 bus->refcount++; 1898 } else 1899 bus = NULL; 1900 xpt_unlock_buses(); 1901 1902 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1903 1904 /* 1905 * If we get back 0, that means that we had to stop before fully 1906 * traversing the EDT. It also means that one of the subroutines 1907 * has set the status field to the proper value. If we get back 1, 1908 * we've fully traversed the EDT and copied out any matching entries. 1909 */ 1910 if (ret == 1) 1911 cdm->status = CAM_DEV_MATCH_LAST; 1912 1913 return(ret); 1914 } 1915 1916 static int 1917 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1918 { 1919 struct cam_periph *periph; 1920 struct ccb_dev_match *cdm; 1921 1922 cdm = (struct ccb_dev_match *)arg; 1923 1924 xpt_lock_buses(); 1925 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1926 && (cdm->pos.cookie.pdrv == pdrv) 1927 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1928 && (cdm->pos.cookie.periph != NULL)) { 1929 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1930 (*pdrv)->generation) { 1931 xpt_unlock_buses(); 1932 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1933 return(0); 1934 } 1935 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1936 periph->refcount++; 1937 } else 1938 periph = NULL; 1939 xpt_unlock_buses(); 1940 1941 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1942 } 1943 1944 static int 1945 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1946 { 1947 struct ccb_dev_match *cdm; 1948 dev_match_ret retval; 1949 1950 cdm = (struct ccb_dev_match *)arg; 1951 1952 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1953 1954 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1955 cdm->status = CAM_DEV_MATCH_ERROR; 1956 return(0); 1957 } 1958 1959 /* 1960 * If the copy flag is set, copy this peripheral out. 1961 */ 1962 if (retval & DM_RET_COPY) { 1963 int spaceleft, j; 1964 1965 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1966 sizeof(struct dev_match_result)); 1967 1968 /* 1969 * If we don't have enough space to put in another 1970 * match result, save our position and tell the 1971 * user there are more devices to check. 1972 */ 1973 if (spaceleft < sizeof(struct dev_match_result)) { 1974 struct periph_driver **pdrv; 1975 1976 pdrv = NULL; 1977 bzero(&cdm->pos, sizeof(cdm->pos)); 1978 cdm->pos.position_type = 1979 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1980 CAM_DEV_POS_PERIPH; 1981 1982 /* 1983 * This may look a bit non-sensical, but it is 1984 * actually quite logical. There are very few 1985 * peripheral drivers, and bloating every peripheral 1986 * structure with a pointer back to its parent 1987 * peripheral driver linker set entry would cost 1988 * more in the long run than doing this quick lookup. 1989 */ 1990 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1991 if (strcmp((*pdrv)->driver_name, 1992 periph->periph_name) == 0) 1993 break; 1994 } 1995 1996 if (*pdrv == NULL) { 1997 cdm->status = CAM_DEV_MATCH_ERROR; 1998 return(0); 1999 } 2000 2001 cdm->pos.cookie.pdrv = pdrv; 2002 /* 2003 * The periph generation slot does double duty, as 2004 * does the periph pointer slot. They are used for 2005 * both edt and pdrv lookups and positioning. 2006 */ 2007 cdm->pos.cookie.periph = periph; 2008 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2009 (*pdrv)->generation; 2010 cdm->status = CAM_DEV_MATCH_MORE; 2011 return(0); 2012 } 2013 2014 j = cdm->num_matches; 2015 cdm->num_matches++; 2016 cdm->matches[j].type = DEV_MATCH_PERIPH; 2017 cdm->matches[j].result.periph_result.path_id = 2018 periph->path->bus->path_id; 2019 2020 /* 2021 * The transport layer peripheral doesn't have a target or 2022 * lun. 2023 */ 2024 if (periph->path->target) 2025 cdm->matches[j].result.periph_result.target_id = 2026 periph->path->target->target_id; 2027 else 2028 cdm->matches[j].result.periph_result.target_id = 2029 CAM_TARGET_WILDCARD; 2030 2031 if (periph->path->device) 2032 cdm->matches[j].result.periph_result.target_lun = 2033 periph->path->device->lun_id; 2034 else 2035 cdm->matches[j].result.periph_result.target_lun = 2036 CAM_LUN_WILDCARD; 2037 2038 cdm->matches[j].result.periph_result.unit_number = 2039 periph->unit_number; 2040 strncpy(cdm->matches[j].result.periph_result.periph_name, 2041 periph->periph_name, DEV_IDLEN); 2042 } 2043 2044 return(1); 2045 } 2046 2047 static int 2048 xptperiphlistmatch(struct ccb_dev_match *cdm) 2049 { 2050 int ret; 2051 2052 cdm->num_matches = 0; 2053 2054 /* 2055 * At this point in the edt traversal function, we check the bus 2056 * list generation to make sure that no busses have been added or 2057 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2058 * For the peripheral driver list traversal function, however, we 2059 * don't have to worry about new peripheral driver types coming or 2060 * going; they're in a linker set, and therefore can't change 2061 * without a recompile. 2062 */ 2063 2064 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2065 && (cdm->pos.cookie.pdrv != NULL)) 2066 ret = xptpdrvtraverse( 2067 (struct periph_driver **)cdm->pos.cookie.pdrv, 2068 xptplistpdrvfunc, cdm); 2069 else 2070 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2071 2072 /* 2073 * If we get back 0, that means that we had to stop before fully 2074 * traversing the peripheral driver tree. It also means that one of 2075 * the subroutines has set the status field to the proper value. If 2076 * we get back 1, we've fully traversed the EDT and copied out any 2077 * matching entries. 2078 */ 2079 if (ret == 1) 2080 cdm->status = CAM_DEV_MATCH_LAST; 2081 2082 return(ret); 2083 } 2084 2085 static int 2086 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2087 { 2088 struct cam_eb *bus, *next_bus; 2089 int retval; 2090 2091 retval = 1; 2092 if (start_bus) 2093 bus = start_bus; 2094 else { 2095 xpt_lock_buses(); 2096 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2097 if (bus == NULL) { 2098 xpt_unlock_buses(); 2099 return (retval); 2100 } 2101 bus->refcount++; 2102 xpt_unlock_buses(); 2103 } 2104 for (; bus != NULL; bus = next_bus) { 2105 retval = tr_func(bus, arg); 2106 if (retval == 0) { 2107 xpt_release_bus(bus); 2108 break; 2109 } 2110 xpt_lock_buses(); 2111 next_bus = TAILQ_NEXT(bus, links); 2112 if (next_bus) 2113 next_bus->refcount++; 2114 xpt_unlock_buses(); 2115 xpt_release_bus(bus); 2116 } 2117 return(retval); 2118 } 2119 2120 static int 2121 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2122 xpt_targetfunc_t *tr_func, void *arg) 2123 { 2124 struct cam_et *target, *next_target; 2125 int retval; 2126 2127 retval = 1; 2128 if (start_target) 2129 target = start_target; 2130 else { 2131 mtx_lock(&bus->eb_mtx); 2132 target = TAILQ_FIRST(&bus->et_entries); 2133 if (target == NULL) { 2134 mtx_unlock(&bus->eb_mtx); 2135 return (retval); 2136 } 2137 target->refcount++; 2138 mtx_unlock(&bus->eb_mtx); 2139 } 2140 for (; target != NULL; target = next_target) { 2141 retval = tr_func(target, arg); 2142 if (retval == 0) { 2143 xpt_release_target(target); 2144 break; 2145 } 2146 mtx_lock(&bus->eb_mtx); 2147 next_target = TAILQ_NEXT(target, links); 2148 if (next_target) 2149 next_target->refcount++; 2150 mtx_unlock(&bus->eb_mtx); 2151 xpt_release_target(target); 2152 } 2153 return(retval); 2154 } 2155 2156 static int 2157 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2158 xpt_devicefunc_t *tr_func, void *arg) 2159 { 2160 struct cam_eb *bus; 2161 struct cam_ed *device, *next_device; 2162 int retval; 2163 2164 retval = 1; 2165 bus = target->bus; 2166 if (start_device) 2167 device = start_device; 2168 else { 2169 mtx_lock(&bus->eb_mtx); 2170 device = TAILQ_FIRST(&target->ed_entries); 2171 if (device == NULL) { 2172 mtx_unlock(&bus->eb_mtx); 2173 return (retval); 2174 } 2175 device->refcount++; 2176 mtx_unlock(&bus->eb_mtx); 2177 } 2178 for (; device != NULL; device = next_device) { 2179 mtx_lock(&device->device_mtx); 2180 retval = tr_func(device, arg); 2181 mtx_unlock(&device->device_mtx); 2182 if (retval == 0) { 2183 xpt_release_device(device); 2184 break; 2185 } 2186 mtx_lock(&bus->eb_mtx); 2187 next_device = TAILQ_NEXT(device, links); 2188 if (next_device) 2189 next_device->refcount++; 2190 mtx_unlock(&bus->eb_mtx); 2191 xpt_release_device(device); 2192 } 2193 return(retval); 2194 } 2195 2196 static int 2197 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2198 xpt_periphfunc_t *tr_func, void *arg) 2199 { 2200 struct cam_eb *bus; 2201 struct cam_periph *periph, *next_periph; 2202 int retval; 2203 2204 retval = 1; 2205 2206 bus = device->target->bus; 2207 if (start_periph) 2208 periph = start_periph; 2209 else { 2210 xpt_lock_buses(); 2211 mtx_lock(&bus->eb_mtx); 2212 periph = SLIST_FIRST(&device->periphs); 2213 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2214 periph = SLIST_NEXT(periph, periph_links); 2215 if (periph == NULL) { 2216 mtx_unlock(&bus->eb_mtx); 2217 xpt_unlock_buses(); 2218 return (retval); 2219 } 2220 periph->refcount++; 2221 mtx_unlock(&bus->eb_mtx); 2222 xpt_unlock_buses(); 2223 } 2224 for (; periph != NULL; periph = next_periph) { 2225 retval = tr_func(periph, arg); 2226 if (retval == 0) { 2227 cam_periph_release_locked(periph); 2228 break; 2229 } 2230 xpt_lock_buses(); 2231 mtx_lock(&bus->eb_mtx); 2232 next_periph = SLIST_NEXT(periph, periph_links); 2233 while (next_periph != NULL && 2234 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2235 next_periph = SLIST_NEXT(next_periph, periph_links); 2236 if (next_periph) 2237 next_periph->refcount++; 2238 mtx_unlock(&bus->eb_mtx); 2239 xpt_unlock_buses(); 2240 cam_periph_release_locked(periph); 2241 } 2242 return(retval); 2243 } 2244 2245 static int 2246 xptpdrvtraverse(struct periph_driver **start_pdrv, 2247 xpt_pdrvfunc_t *tr_func, void *arg) 2248 { 2249 struct periph_driver **pdrv; 2250 int retval; 2251 2252 retval = 1; 2253 2254 /* 2255 * We don't traverse the peripheral driver list like we do the 2256 * other lists, because it is a linker set, and therefore cannot be 2257 * changed during runtime. If the peripheral driver list is ever 2258 * re-done to be something other than a linker set (i.e. it can 2259 * change while the system is running), the list traversal should 2260 * be modified to work like the other traversal functions. 2261 */ 2262 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2263 *pdrv != NULL; pdrv++) { 2264 retval = tr_func(pdrv, arg); 2265 2266 if (retval == 0) 2267 return(retval); 2268 } 2269 2270 return(retval); 2271 } 2272 2273 static int 2274 xptpdperiphtraverse(struct periph_driver **pdrv, 2275 struct cam_periph *start_periph, 2276 xpt_periphfunc_t *tr_func, void *arg) 2277 { 2278 struct cam_periph *periph, *next_periph; 2279 int retval; 2280 2281 retval = 1; 2282 2283 if (start_periph) 2284 periph = start_periph; 2285 else { 2286 xpt_lock_buses(); 2287 periph = TAILQ_FIRST(&(*pdrv)->units); 2288 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2289 periph = TAILQ_NEXT(periph, unit_links); 2290 if (periph == NULL) { 2291 xpt_unlock_buses(); 2292 return (retval); 2293 } 2294 periph->refcount++; 2295 xpt_unlock_buses(); 2296 } 2297 for (; periph != NULL; periph = next_periph) { 2298 cam_periph_lock(periph); 2299 retval = tr_func(periph, arg); 2300 cam_periph_unlock(periph); 2301 if (retval == 0) { 2302 cam_periph_release(periph); 2303 break; 2304 } 2305 xpt_lock_buses(); 2306 next_periph = TAILQ_NEXT(periph, unit_links); 2307 while (next_periph != NULL && 2308 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2309 next_periph = TAILQ_NEXT(next_periph, unit_links); 2310 if (next_periph) 2311 next_periph->refcount++; 2312 xpt_unlock_buses(); 2313 cam_periph_release(periph); 2314 } 2315 return(retval); 2316 } 2317 2318 static int 2319 xptdefbusfunc(struct cam_eb *bus, void *arg) 2320 { 2321 struct xpt_traverse_config *tr_config; 2322 2323 tr_config = (struct xpt_traverse_config *)arg; 2324 2325 if (tr_config->depth == XPT_DEPTH_BUS) { 2326 xpt_busfunc_t *tr_func; 2327 2328 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2329 2330 return(tr_func(bus, tr_config->tr_arg)); 2331 } else 2332 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2333 } 2334 2335 static int 2336 xptdeftargetfunc(struct cam_et *target, void *arg) 2337 { 2338 struct xpt_traverse_config *tr_config; 2339 2340 tr_config = (struct xpt_traverse_config *)arg; 2341 2342 if (tr_config->depth == XPT_DEPTH_TARGET) { 2343 xpt_targetfunc_t *tr_func; 2344 2345 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2346 2347 return(tr_func(target, tr_config->tr_arg)); 2348 } else 2349 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2350 } 2351 2352 static int 2353 xptdefdevicefunc(struct cam_ed *device, void *arg) 2354 { 2355 struct xpt_traverse_config *tr_config; 2356 2357 tr_config = (struct xpt_traverse_config *)arg; 2358 2359 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2360 xpt_devicefunc_t *tr_func; 2361 2362 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2363 2364 return(tr_func(device, tr_config->tr_arg)); 2365 } else 2366 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2367 } 2368 2369 static int 2370 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2371 { 2372 struct xpt_traverse_config *tr_config; 2373 xpt_periphfunc_t *tr_func; 2374 2375 tr_config = (struct xpt_traverse_config *)arg; 2376 2377 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2378 2379 /* 2380 * Unlike the other default functions, we don't check for depth 2381 * here. The peripheral driver level is the last level in the EDT, 2382 * so if we're here, we should execute the function in question. 2383 */ 2384 return(tr_func(periph, tr_config->tr_arg)); 2385 } 2386 2387 /* 2388 * Execute the given function for every bus in the EDT. 2389 */ 2390 static int 2391 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2392 { 2393 struct xpt_traverse_config tr_config; 2394 2395 tr_config.depth = XPT_DEPTH_BUS; 2396 tr_config.tr_func = tr_func; 2397 tr_config.tr_arg = arg; 2398 2399 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2400 } 2401 2402 /* 2403 * Execute the given function for every device in the EDT. 2404 */ 2405 static int 2406 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2407 { 2408 struct xpt_traverse_config tr_config; 2409 2410 tr_config.depth = XPT_DEPTH_DEVICE; 2411 tr_config.tr_func = tr_func; 2412 tr_config.tr_arg = arg; 2413 2414 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2415 } 2416 2417 static int 2418 xptsetasyncfunc(struct cam_ed *device, void *arg) 2419 { 2420 struct cam_path path; 2421 struct ccb_getdev cgd; 2422 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2423 2424 /* 2425 * Don't report unconfigured devices (Wildcard devs, 2426 * devices only for target mode, device instances 2427 * that have been invalidated but are waiting for 2428 * their last reference count to be released). 2429 */ 2430 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2431 return (1); 2432 2433 xpt_compile_path(&path, 2434 NULL, 2435 device->target->bus->path_id, 2436 device->target->target_id, 2437 device->lun_id); 2438 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2439 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2440 xpt_action((union ccb *)&cgd); 2441 csa->callback(csa->callback_arg, 2442 AC_FOUND_DEVICE, 2443 &path, &cgd); 2444 xpt_release_path(&path); 2445 2446 return(1); 2447 } 2448 2449 static int 2450 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2451 { 2452 struct cam_path path; 2453 struct ccb_pathinq cpi; 2454 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2455 2456 xpt_compile_path(&path, /*periph*/NULL, 2457 bus->path_id, 2458 CAM_TARGET_WILDCARD, 2459 CAM_LUN_WILDCARD); 2460 xpt_path_lock(&path); 2461 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2462 cpi.ccb_h.func_code = XPT_PATH_INQ; 2463 xpt_action((union ccb *)&cpi); 2464 csa->callback(csa->callback_arg, 2465 AC_PATH_REGISTERED, 2466 &path, &cpi); 2467 xpt_path_unlock(&path); 2468 xpt_release_path(&path); 2469 2470 return(1); 2471 } 2472 2473 void 2474 xpt_action(union ccb *start_ccb) 2475 { 2476 2477 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2478 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2479 xpt_action_name(start_ccb->ccb_h.func_code))); 2480 2481 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2482 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2483 } 2484 2485 void 2486 xpt_action_default(union ccb *start_ccb) 2487 { 2488 struct cam_path *path; 2489 struct cam_sim *sim; 2490 int lock; 2491 2492 path = start_ccb->ccb_h.path; 2493 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2494 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2495 xpt_action_name(start_ccb->ccb_h.func_code))); 2496 2497 switch (start_ccb->ccb_h.func_code) { 2498 case XPT_SCSI_IO: 2499 { 2500 struct cam_ed *device; 2501 2502 /* 2503 * For the sake of compatibility with SCSI-1 2504 * devices that may not understand the identify 2505 * message, we include lun information in the 2506 * second byte of all commands. SCSI-1 specifies 2507 * that luns are a 3 bit value and reserves only 3 2508 * bits for lun information in the CDB. Later 2509 * revisions of the SCSI spec allow for more than 8 2510 * luns, but have deprecated lun information in the 2511 * CDB. So, if the lun won't fit, we must omit. 2512 * 2513 * Also be aware that during initial probing for devices, 2514 * the inquiry information is unknown but initialized to 0. 2515 * This means that this code will be exercised while probing 2516 * devices with an ANSI revision greater than 2. 2517 */ 2518 device = path->device; 2519 if (device->protocol_version <= SCSI_REV_2 2520 && start_ccb->ccb_h.target_lun < 8 2521 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2522 2523 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2524 start_ccb->ccb_h.target_lun << 5; 2525 } 2526 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2527 } 2528 /* FALLTHROUGH */ 2529 case XPT_TARGET_IO: 2530 case XPT_CONT_TARGET_IO: 2531 start_ccb->csio.sense_resid = 0; 2532 start_ccb->csio.resid = 0; 2533 /* FALLTHROUGH */ 2534 case XPT_ATA_IO: 2535 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2536 start_ccb->ataio.resid = 0; 2537 /* FALLTHROUGH */ 2538 case XPT_NVME_IO: 2539 if (start_ccb->ccb_h.func_code == XPT_NVME_IO) 2540 start_ccb->nvmeio.resid = 0; 2541 /* FALLTHROUGH */ 2542 case XPT_RESET_DEV: 2543 case XPT_ENG_EXEC: 2544 case XPT_SMP_IO: 2545 { 2546 struct cam_devq *devq; 2547 2548 devq = path->bus->sim->devq; 2549 mtx_lock(&devq->send_mtx); 2550 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2551 if (xpt_schedule_devq(devq, path->device) != 0) 2552 xpt_run_devq(devq); 2553 mtx_unlock(&devq->send_mtx); 2554 break; 2555 } 2556 case XPT_CALC_GEOMETRY: 2557 /* Filter out garbage */ 2558 if (start_ccb->ccg.block_size == 0 2559 || start_ccb->ccg.volume_size == 0) { 2560 start_ccb->ccg.cylinders = 0; 2561 start_ccb->ccg.heads = 0; 2562 start_ccb->ccg.secs_per_track = 0; 2563 start_ccb->ccb_h.status = CAM_REQ_CMP; 2564 break; 2565 } 2566 #if defined(PC98) || defined(__sparc64__) 2567 /* 2568 * In a PC-98 system, geometry translation depens on 2569 * the "real" device geometry obtained from mode page 4. 2570 * SCSI geometry translation is performed in the 2571 * initialization routine of the SCSI BIOS and the result 2572 * stored in host memory. If the translation is available 2573 * in host memory, use it. If not, rely on the default 2574 * translation the device driver performs. 2575 * For sparc64, we may need adjust the geometry of large 2576 * disks in order to fit the limitations of the 16-bit 2577 * fields of the VTOC8 disk label. 2578 */ 2579 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2580 start_ccb->ccb_h.status = CAM_REQ_CMP; 2581 break; 2582 } 2583 #endif 2584 goto call_sim; 2585 case XPT_ABORT: 2586 { 2587 union ccb* abort_ccb; 2588 2589 abort_ccb = start_ccb->cab.abort_ccb; 2590 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2591 struct cam_ed *device; 2592 struct cam_devq *devq; 2593 2594 device = abort_ccb->ccb_h.path->device; 2595 devq = device->sim->devq; 2596 2597 mtx_lock(&devq->send_mtx); 2598 if (abort_ccb->ccb_h.pinfo.index > 0) { 2599 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2600 abort_ccb->ccb_h.status = 2601 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2602 xpt_freeze_devq_device(device, 1); 2603 mtx_unlock(&devq->send_mtx); 2604 xpt_done(abort_ccb); 2605 start_ccb->ccb_h.status = CAM_REQ_CMP; 2606 break; 2607 } 2608 mtx_unlock(&devq->send_mtx); 2609 2610 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2611 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2612 /* 2613 * We've caught this ccb en route to 2614 * the SIM. Flag it for abort and the 2615 * SIM will do so just before starting 2616 * real work on the CCB. 2617 */ 2618 abort_ccb->ccb_h.status = 2619 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2620 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2621 start_ccb->ccb_h.status = CAM_REQ_CMP; 2622 break; 2623 } 2624 } 2625 if (XPT_FC_IS_QUEUED(abort_ccb) 2626 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2627 /* 2628 * It's already completed but waiting 2629 * for our SWI to get to it. 2630 */ 2631 start_ccb->ccb_h.status = CAM_UA_ABORT; 2632 break; 2633 } 2634 /* 2635 * If we weren't able to take care of the abort request 2636 * in the XPT, pass the request down to the SIM for processing. 2637 */ 2638 } 2639 /* FALLTHROUGH */ 2640 case XPT_ACCEPT_TARGET_IO: 2641 case XPT_EN_LUN: 2642 case XPT_IMMED_NOTIFY: 2643 case XPT_NOTIFY_ACK: 2644 case XPT_RESET_BUS: 2645 case XPT_IMMEDIATE_NOTIFY: 2646 case XPT_NOTIFY_ACKNOWLEDGE: 2647 case XPT_GET_SIM_KNOB_OLD: 2648 case XPT_GET_SIM_KNOB: 2649 case XPT_SET_SIM_KNOB: 2650 case XPT_GET_TRAN_SETTINGS: 2651 case XPT_SET_TRAN_SETTINGS: 2652 case XPT_PATH_INQ: 2653 call_sim: 2654 sim = path->bus->sim; 2655 lock = (mtx_owned(sim->mtx) == 0); 2656 if (lock) 2657 CAM_SIM_LOCK(sim); 2658 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2659 ("sim->sim_action: func=%#x\n", start_ccb->ccb_h.func_code)); 2660 (*(sim->sim_action))(sim, start_ccb); 2661 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2662 ("sim->sim_action: status=%#x\n", start_ccb->ccb_h.status)); 2663 if (lock) 2664 CAM_SIM_UNLOCK(sim); 2665 break; 2666 case XPT_PATH_STATS: 2667 start_ccb->cpis.last_reset = path->bus->last_reset; 2668 start_ccb->ccb_h.status = CAM_REQ_CMP; 2669 break; 2670 case XPT_GDEV_TYPE: 2671 { 2672 struct cam_ed *dev; 2673 2674 dev = path->device; 2675 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2676 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2677 } else { 2678 struct ccb_getdev *cgd; 2679 2680 cgd = &start_ccb->cgd; 2681 cgd->protocol = dev->protocol; 2682 cgd->inq_data = dev->inq_data; 2683 cgd->ident_data = dev->ident_data; 2684 cgd->inq_flags = dev->inq_flags; 2685 cgd->nvme_data = dev->nvme_data; 2686 cgd->nvme_cdata = dev->nvme_cdata; 2687 cgd->ccb_h.status = CAM_REQ_CMP; 2688 cgd->serial_num_len = dev->serial_num_len; 2689 if ((dev->serial_num_len > 0) 2690 && (dev->serial_num != NULL)) 2691 bcopy(dev->serial_num, cgd->serial_num, 2692 dev->serial_num_len); 2693 } 2694 break; 2695 } 2696 case XPT_GDEV_STATS: 2697 { 2698 struct cam_ed *dev; 2699 2700 dev = path->device; 2701 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2702 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2703 } else { 2704 struct ccb_getdevstats *cgds; 2705 struct cam_eb *bus; 2706 struct cam_et *tar; 2707 struct cam_devq *devq; 2708 2709 cgds = &start_ccb->cgds; 2710 bus = path->bus; 2711 tar = path->target; 2712 devq = bus->sim->devq; 2713 mtx_lock(&devq->send_mtx); 2714 cgds->dev_openings = dev->ccbq.dev_openings; 2715 cgds->dev_active = dev->ccbq.dev_active; 2716 cgds->allocated = dev->ccbq.allocated; 2717 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2718 cgds->held = cgds->allocated - cgds->dev_active - 2719 cgds->queued; 2720 cgds->last_reset = tar->last_reset; 2721 cgds->maxtags = dev->maxtags; 2722 cgds->mintags = dev->mintags; 2723 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2724 cgds->last_reset = bus->last_reset; 2725 mtx_unlock(&devq->send_mtx); 2726 cgds->ccb_h.status = CAM_REQ_CMP; 2727 } 2728 break; 2729 } 2730 case XPT_GDEVLIST: 2731 { 2732 struct cam_periph *nperiph; 2733 struct periph_list *periph_head; 2734 struct ccb_getdevlist *cgdl; 2735 u_int i; 2736 struct cam_ed *device; 2737 int found; 2738 2739 2740 found = 0; 2741 2742 /* 2743 * Don't want anyone mucking with our data. 2744 */ 2745 device = path->device; 2746 periph_head = &device->periphs; 2747 cgdl = &start_ccb->cgdl; 2748 2749 /* 2750 * Check and see if the list has changed since the user 2751 * last requested a list member. If so, tell them that the 2752 * list has changed, and therefore they need to start over 2753 * from the beginning. 2754 */ 2755 if ((cgdl->index != 0) && 2756 (cgdl->generation != device->generation)) { 2757 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2758 break; 2759 } 2760 2761 /* 2762 * Traverse the list of peripherals and attempt to find 2763 * the requested peripheral. 2764 */ 2765 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2766 (nperiph != NULL) && (i <= cgdl->index); 2767 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2768 if (i == cgdl->index) { 2769 strncpy(cgdl->periph_name, 2770 nperiph->periph_name, 2771 DEV_IDLEN); 2772 cgdl->unit_number = nperiph->unit_number; 2773 found = 1; 2774 } 2775 } 2776 if (found == 0) { 2777 cgdl->status = CAM_GDEVLIST_ERROR; 2778 break; 2779 } 2780 2781 if (nperiph == NULL) 2782 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2783 else 2784 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2785 2786 cgdl->index++; 2787 cgdl->generation = device->generation; 2788 2789 cgdl->ccb_h.status = CAM_REQ_CMP; 2790 break; 2791 } 2792 case XPT_DEV_MATCH: 2793 { 2794 dev_pos_type position_type; 2795 struct ccb_dev_match *cdm; 2796 2797 cdm = &start_ccb->cdm; 2798 2799 /* 2800 * There are two ways of getting at information in the EDT. 2801 * The first way is via the primary EDT tree. It starts 2802 * with a list of busses, then a list of targets on a bus, 2803 * then devices/luns on a target, and then peripherals on a 2804 * device/lun. The "other" way is by the peripheral driver 2805 * lists. The peripheral driver lists are organized by 2806 * peripheral driver. (obviously) So it makes sense to 2807 * use the peripheral driver list if the user is looking 2808 * for something like "da1", or all "da" devices. If the 2809 * user is looking for something on a particular bus/target 2810 * or lun, it's generally better to go through the EDT tree. 2811 */ 2812 2813 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2814 position_type = cdm->pos.position_type; 2815 else { 2816 u_int i; 2817 2818 position_type = CAM_DEV_POS_NONE; 2819 2820 for (i = 0; i < cdm->num_patterns; i++) { 2821 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2822 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2823 position_type = CAM_DEV_POS_EDT; 2824 break; 2825 } 2826 } 2827 2828 if (cdm->num_patterns == 0) 2829 position_type = CAM_DEV_POS_EDT; 2830 else if (position_type == CAM_DEV_POS_NONE) 2831 position_type = CAM_DEV_POS_PDRV; 2832 } 2833 2834 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2835 case CAM_DEV_POS_EDT: 2836 xptedtmatch(cdm); 2837 break; 2838 case CAM_DEV_POS_PDRV: 2839 xptperiphlistmatch(cdm); 2840 break; 2841 default: 2842 cdm->status = CAM_DEV_MATCH_ERROR; 2843 break; 2844 } 2845 2846 if (cdm->status == CAM_DEV_MATCH_ERROR) 2847 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2848 else 2849 start_ccb->ccb_h.status = CAM_REQ_CMP; 2850 2851 break; 2852 } 2853 case XPT_SASYNC_CB: 2854 { 2855 struct ccb_setasync *csa; 2856 struct async_node *cur_entry; 2857 struct async_list *async_head; 2858 u_int32_t added; 2859 2860 csa = &start_ccb->csa; 2861 added = csa->event_enable; 2862 async_head = &path->device->asyncs; 2863 2864 /* 2865 * If there is already an entry for us, simply 2866 * update it. 2867 */ 2868 cur_entry = SLIST_FIRST(async_head); 2869 while (cur_entry != NULL) { 2870 if ((cur_entry->callback_arg == csa->callback_arg) 2871 && (cur_entry->callback == csa->callback)) 2872 break; 2873 cur_entry = SLIST_NEXT(cur_entry, links); 2874 } 2875 2876 if (cur_entry != NULL) { 2877 /* 2878 * If the request has no flags set, 2879 * remove the entry. 2880 */ 2881 added &= ~cur_entry->event_enable; 2882 if (csa->event_enable == 0) { 2883 SLIST_REMOVE(async_head, cur_entry, 2884 async_node, links); 2885 xpt_release_device(path->device); 2886 free(cur_entry, M_CAMXPT); 2887 } else { 2888 cur_entry->event_enable = csa->event_enable; 2889 } 2890 csa->event_enable = added; 2891 } else { 2892 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2893 M_NOWAIT); 2894 if (cur_entry == NULL) { 2895 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2896 break; 2897 } 2898 cur_entry->event_enable = csa->event_enable; 2899 cur_entry->event_lock = 2900 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2901 cur_entry->callback_arg = csa->callback_arg; 2902 cur_entry->callback = csa->callback; 2903 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2904 xpt_acquire_device(path->device); 2905 } 2906 start_ccb->ccb_h.status = CAM_REQ_CMP; 2907 break; 2908 } 2909 case XPT_REL_SIMQ: 2910 { 2911 struct ccb_relsim *crs; 2912 struct cam_ed *dev; 2913 2914 crs = &start_ccb->crs; 2915 dev = path->device; 2916 if (dev == NULL) { 2917 2918 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2919 break; 2920 } 2921 2922 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2923 2924 /* Don't ever go below one opening */ 2925 if (crs->openings > 0) { 2926 xpt_dev_ccbq_resize(path, crs->openings); 2927 if (bootverbose) { 2928 xpt_print(path, 2929 "number of openings is now %d\n", 2930 crs->openings); 2931 } 2932 } 2933 } 2934 2935 mtx_lock(&dev->sim->devq->send_mtx); 2936 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2937 2938 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2939 2940 /* 2941 * Just extend the old timeout and decrement 2942 * the freeze count so that a single timeout 2943 * is sufficient for releasing the queue. 2944 */ 2945 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2946 callout_stop(&dev->callout); 2947 } else { 2948 2949 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2950 } 2951 2952 callout_reset_sbt(&dev->callout, 2953 SBT_1MS * crs->release_timeout, 0, 2954 xpt_release_devq_timeout, dev, 0); 2955 2956 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2957 2958 } 2959 2960 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2961 2962 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2963 /* 2964 * Decrement the freeze count so that a single 2965 * completion is still sufficient to unfreeze 2966 * the queue. 2967 */ 2968 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2969 } else { 2970 2971 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2972 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2973 } 2974 } 2975 2976 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2977 2978 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2979 || (dev->ccbq.dev_active == 0)) { 2980 2981 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2982 } else { 2983 2984 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2985 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2986 } 2987 } 2988 mtx_unlock(&dev->sim->devq->send_mtx); 2989 2990 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2991 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2992 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2993 start_ccb->ccb_h.status = CAM_REQ_CMP; 2994 break; 2995 } 2996 case XPT_DEBUG: { 2997 struct cam_path *oldpath; 2998 2999 /* Check that all request bits are supported. */ 3000 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3001 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3002 break; 3003 } 3004 3005 cam_dflags = CAM_DEBUG_NONE; 3006 if (cam_dpath != NULL) { 3007 oldpath = cam_dpath; 3008 cam_dpath = NULL; 3009 xpt_free_path(oldpath); 3010 } 3011 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3012 if (xpt_create_path(&cam_dpath, NULL, 3013 start_ccb->ccb_h.path_id, 3014 start_ccb->ccb_h.target_id, 3015 start_ccb->ccb_h.target_lun) != 3016 CAM_REQ_CMP) { 3017 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3018 } else { 3019 cam_dflags = start_ccb->cdbg.flags; 3020 start_ccb->ccb_h.status = CAM_REQ_CMP; 3021 xpt_print(cam_dpath, "debugging flags now %x\n", 3022 cam_dflags); 3023 } 3024 } else 3025 start_ccb->ccb_h.status = CAM_REQ_CMP; 3026 break; 3027 } 3028 case XPT_NOOP: 3029 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3030 xpt_freeze_devq(path, 1); 3031 start_ccb->ccb_h.status = CAM_REQ_CMP; 3032 break; 3033 case XPT_REPROBE_LUN: 3034 xpt_async(AC_INQ_CHANGED, path, NULL); 3035 start_ccb->ccb_h.status = CAM_REQ_CMP; 3036 xpt_done(start_ccb); 3037 break; 3038 default: 3039 case XPT_SDEV_TYPE: 3040 case XPT_TERM_IO: 3041 case XPT_ENG_INQ: 3042 /* XXX Implement */ 3043 xpt_print_path(start_ccb->ccb_h.path); 3044 printf("%s: CCB type %#x %s not supported\n", __func__, 3045 start_ccb->ccb_h.func_code, 3046 xpt_action_name(start_ccb->ccb_h.func_code)); 3047 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3048 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3049 xpt_done(start_ccb); 3050 } 3051 break; 3052 } 3053 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3054 ("xpt_action_default: func= %#x %s status %#x\n", 3055 start_ccb->ccb_h.func_code, 3056 xpt_action_name(start_ccb->ccb_h.func_code), 3057 start_ccb->ccb_h.status)); 3058 } 3059 3060 void 3061 xpt_polled_action(union ccb *start_ccb) 3062 { 3063 u_int32_t timeout; 3064 struct cam_sim *sim; 3065 struct cam_devq *devq; 3066 struct cam_ed *dev; 3067 3068 timeout = start_ccb->ccb_h.timeout * 10; 3069 sim = start_ccb->ccb_h.path->bus->sim; 3070 devq = sim->devq; 3071 dev = start_ccb->ccb_h.path->device; 3072 3073 mtx_unlock(&dev->device_mtx); 3074 3075 /* 3076 * Steal an opening so that no other queued requests 3077 * can get it before us while we simulate interrupts. 3078 */ 3079 mtx_lock(&devq->send_mtx); 3080 dev->ccbq.dev_openings--; 3081 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3082 (--timeout > 0)) { 3083 mtx_unlock(&devq->send_mtx); 3084 DELAY(100); 3085 CAM_SIM_LOCK(sim); 3086 (*(sim->sim_poll))(sim); 3087 CAM_SIM_UNLOCK(sim); 3088 camisr_runqueue(); 3089 mtx_lock(&devq->send_mtx); 3090 } 3091 dev->ccbq.dev_openings++; 3092 mtx_unlock(&devq->send_mtx); 3093 3094 if (timeout != 0) { 3095 xpt_action(start_ccb); 3096 while(--timeout > 0) { 3097 CAM_SIM_LOCK(sim); 3098 (*(sim->sim_poll))(sim); 3099 CAM_SIM_UNLOCK(sim); 3100 camisr_runqueue(); 3101 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3102 != CAM_REQ_INPROG) 3103 break; 3104 DELAY(100); 3105 } 3106 if (timeout == 0) { 3107 /* 3108 * XXX Is it worth adding a sim_timeout entry 3109 * point so we can attempt recovery? If 3110 * this is only used for dumps, I don't think 3111 * it is. 3112 */ 3113 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3114 } 3115 } else { 3116 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3117 } 3118 3119 mtx_lock(&dev->device_mtx); 3120 } 3121 3122 /* 3123 * Schedule a peripheral driver to receive a ccb when its 3124 * target device has space for more transactions. 3125 */ 3126 void 3127 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3128 { 3129 3130 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3131 cam_periph_assert(periph, MA_OWNED); 3132 if (new_priority < periph->scheduled_priority) { 3133 periph->scheduled_priority = new_priority; 3134 xpt_run_allocq(periph, 0); 3135 } 3136 } 3137 3138 3139 /* 3140 * Schedule a device to run on a given queue. 3141 * If the device was inserted as a new entry on the queue, 3142 * return 1 meaning the device queue should be run. If we 3143 * were already queued, implying someone else has already 3144 * started the queue, return 0 so the caller doesn't attempt 3145 * to run the queue. 3146 */ 3147 static int 3148 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3149 u_int32_t new_priority) 3150 { 3151 int retval; 3152 u_int32_t old_priority; 3153 3154 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3155 3156 old_priority = pinfo->priority; 3157 3158 /* 3159 * Are we already queued? 3160 */ 3161 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3162 /* Simply reorder based on new priority */ 3163 if (new_priority < old_priority) { 3164 camq_change_priority(queue, pinfo->index, 3165 new_priority); 3166 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3167 ("changed priority to %d\n", 3168 new_priority)); 3169 retval = 1; 3170 } else 3171 retval = 0; 3172 } else { 3173 /* New entry on the queue */ 3174 if (new_priority < old_priority) 3175 pinfo->priority = new_priority; 3176 3177 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3178 ("Inserting onto queue\n")); 3179 pinfo->generation = ++queue->generation; 3180 camq_insert(queue, pinfo); 3181 retval = 1; 3182 } 3183 return (retval); 3184 } 3185 3186 static void 3187 xpt_run_allocq_task(void *context, int pending) 3188 { 3189 struct cam_periph *periph = context; 3190 3191 cam_periph_lock(periph); 3192 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3193 xpt_run_allocq(periph, 1); 3194 cam_periph_unlock(periph); 3195 cam_periph_release(periph); 3196 } 3197 3198 static void 3199 xpt_run_allocq(struct cam_periph *periph, int sleep) 3200 { 3201 struct cam_ed *device; 3202 union ccb *ccb; 3203 uint32_t prio; 3204 3205 cam_periph_assert(periph, MA_OWNED); 3206 if (periph->periph_allocating) 3207 return; 3208 periph->periph_allocating = 1; 3209 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3210 device = periph->path->device; 3211 ccb = NULL; 3212 restart: 3213 while ((prio = min(periph->scheduled_priority, 3214 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3215 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3216 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3217 3218 if (ccb == NULL && 3219 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3220 if (sleep) { 3221 ccb = xpt_get_ccb(periph); 3222 goto restart; 3223 } 3224 if (periph->flags & CAM_PERIPH_RUN_TASK) 3225 break; 3226 cam_periph_doacquire(periph); 3227 periph->flags |= CAM_PERIPH_RUN_TASK; 3228 taskqueue_enqueue(xsoftc.xpt_taskq, 3229 &periph->periph_run_task); 3230 break; 3231 } 3232 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3233 if (prio == periph->immediate_priority) { 3234 periph->immediate_priority = CAM_PRIORITY_NONE; 3235 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3236 ("waking cam_periph_getccb()\n")); 3237 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3238 periph_links.sle); 3239 wakeup(&periph->ccb_list); 3240 } else { 3241 periph->scheduled_priority = CAM_PRIORITY_NONE; 3242 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3243 ("calling periph_start()\n")); 3244 periph->periph_start(periph, ccb); 3245 } 3246 ccb = NULL; 3247 } 3248 if (ccb != NULL) 3249 xpt_release_ccb(ccb); 3250 periph->periph_allocating = 0; 3251 } 3252 3253 static void 3254 xpt_run_devq(struct cam_devq *devq) 3255 { 3256 int lock; 3257 3258 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3259 3260 devq->send_queue.qfrozen_cnt++; 3261 while ((devq->send_queue.entries > 0) 3262 && (devq->send_openings > 0) 3263 && (devq->send_queue.qfrozen_cnt <= 1)) { 3264 struct cam_ed *device; 3265 union ccb *work_ccb; 3266 struct cam_sim *sim; 3267 struct xpt_proto *proto; 3268 3269 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3270 CAMQ_HEAD); 3271 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3272 ("running device %p\n", device)); 3273 3274 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3275 if (work_ccb == NULL) { 3276 printf("device on run queue with no ccbs???\n"); 3277 continue; 3278 } 3279 3280 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3281 3282 mtx_lock(&xsoftc.xpt_highpower_lock); 3283 if (xsoftc.num_highpower <= 0) { 3284 /* 3285 * We got a high power command, but we 3286 * don't have any available slots. Freeze 3287 * the device queue until we have a slot 3288 * available. 3289 */ 3290 xpt_freeze_devq_device(device, 1); 3291 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3292 highpowerq_entry); 3293 3294 mtx_unlock(&xsoftc.xpt_highpower_lock); 3295 continue; 3296 } else { 3297 /* 3298 * Consume a high power slot while 3299 * this ccb runs. 3300 */ 3301 xsoftc.num_highpower--; 3302 } 3303 mtx_unlock(&xsoftc.xpt_highpower_lock); 3304 } 3305 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3306 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3307 devq->send_openings--; 3308 devq->send_active++; 3309 xpt_schedule_devq(devq, device); 3310 mtx_unlock(&devq->send_mtx); 3311 3312 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3313 /* 3314 * The client wants to freeze the queue 3315 * after this CCB is sent. 3316 */ 3317 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3318 } 3319 3320 /* In Target mode, the peripheral driver knows best... */ 3321 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3322 if ((device->inq_flags & SID_CmdQue) != 0 3323 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3324 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3325 else 3326 /* 3327 * Clear this in case of a retried CCB that 3328 * failed due to a rejected tag. 3329 */ 3330 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3331 } 3332 3333 KASSERT(device == work_ccb->ccb_h.path->device, 3334 ("device (%p) / path->device (%p) mismatch", 3335 device, work_ccb->ccb_h.path->device)); 3336 proto = xpt_proto_find(device->protocol); 3337 if (proto && proto->ops->debug_out) 3338 proto->ops->debug_out(work_ccb); 3339 3340 /* 3341 * Device queues can be shared among multiple SIM instances 3342 * that reside on different busses. Use the SIM from the 3343 * queued device, rather than the one from the calling bus. 3344 */ 3345 sim = device->sim; 3346 lock = (mtx_owned(sim->mtx) == 0); 3347 if (lock) 3348 CAM_SIM_LOCK(sim); 3349 work_ccb->ccb_h.qos.sim_data = sbinuptime(); // xxx uintprt_t too small 32bit platforms 3350 (*(sim->sim_action))(sim, work_ccb); 3351 if (lock) 3352 CAM_SIM_UNLOCK(sim); 3353 mtx_lock(&devq->send_mtx); 3354 } 3355 devq->send_queue.qfrozen_cnt--; 3356 } 3357 3358 /* 3359 * This function merges stuff from the slave ccb into the master ccb, while 3360 * keeping important fields in the master ccb constant. 3361 */ 3362 void 3363 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3364 { 3365 3366 /* 3367 * Pull fields that are valid for peripheral drivers to set 3368 * into the master CCB along with the CCB "payload". 3369 */ 3370 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3371 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3372 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3373 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3374 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3375 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3376 } 3377 3378 void 3379 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3380 u_int32_t priority, u_int32_t flags) 3381 { 3382 3383 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3384 ccb_h->pinfo.priority = priority; 3385 ccb_h->path = path; 3386 ccb_h->path_id = path->bus->path_id; 3387 if (path->target) 3388 ccb_h->target_id = path->target->target_id; 3389 else 3390 ccb_h->target_id = CAM_TARGET_WILDCARD; 3391 if (path->device) { 3392 ccb_h->target_lun = path->device->lun_id; 3393 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3394 } else { 3395 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3396 } 3397 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3398 ccb_h->flags = flags; 3399 ccb_h->xflags = 0; 3400 } 3401 3402 void 3403 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3404 { 3405 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3406 } 3407 3408 /* Path manipulation functions */ 3409 cam_status 3410 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3411 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3412 { 3413 struct cam_path *path; 3414 cam_status status; 3415 3416 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3417 3418 if (path == NULL) { 3419 status = CAM_RESRC_UNAVAIL; 3420 return(status); 3421 } 3422 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3423 if (status != CAM_REQ_CMP) { 3424 free(path, M_CAMPATH); 3425 path = NULL; 3426 } 3427 *new_path_ptr = path; 3428 return (status); 3429 } 3430 3431 cam_status 3432 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3433 struct cam_periph *periph, path_id_t path_id, 3434 target_id_t target_id, lun_id_t lun_id) 3435 { 3436 3437 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3438 lun_id)); 3439 } 3440 3441 cam_status 3442 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3443 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3444 { 3445 struct cam_eb *bus; 3446 struct cam_et *target; 3447 struct cam_ed *device; 3448 cam_status status; 3449 3450 status = CAM_REQ_CMP; /* Completed without error */ 3451 target = NULL; /* Wildcarded */ 3452 device = NULL; /* Wildcarded */ 3453 3454 /* 3455 * We will potentially modify the EDT, so block interrupts 3456 * that may attempt to create cam paths. 3457 */ 3458 bus = xpt_find_bus(path_id); 3459 if (bus == NULL) { 3460 status = CAM_PATH_INVALID; 3461 } else { 3462 xpt_lock_buses(); 3463 mtx_lock(&bus->eb_mtx); 3464 target = xpt_find_target(bus, target_id); 3465 if (target == NULL) { 3466 /* Create one */ 3467 struct cam_et *new_target; 3468 3469 new_target = xpt_alloc_target(bus, target_id); 3470 if (new_target == NULL) { 3471 status = CAM_RESRC_UNAVAIL; 3472 } else { 3473 target = new_target; 3474 } 3475 } 3476 xpt_unlock_buses(); 3477 if (target != NULL) { 3478 device = xpt_find_device(target, lun_id); 3479 if (device == NULL) { 3480 /* Create one */ 3481 struct cam_ed *new_device; 3482 3483 new_device = 3484 (*(bus->xport->ops->alloc_device))(bus, 3485 target, 3486 lun_id); 3487 if (new_device == NULL) { 3488 status = CAM_RESRC_UNAVAIL; 3489 } else { 3490 device = new_device; 3491 } 3492 } 3493 } 3494 mtx_unlock(&bus->eb_mtx); 3495 } 3496 3497 /* 3498 * Only touch the user's data if we are successful. 3499 */ 3500 if (status == CAM_REQ_CMP) { 3501 new_path->periph = perph; 3502 new_path->bus = bus; 3503 new_path->target = target; 3504 new_path->device = device; 3505 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3506 } else { 3507 if (device != NULL) 3508 xpt_release_device(device); 3509 if (target != NULL) 3510 xpt_release_target(target); 3511 if (bus != NULL) 3512 xpt_release_bus(bus); 3513 } 3514 return (status); 3515 } 3516 3517 cam_status 3518 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3519 { 3520 struct cam_path *new_path; 3521 3522 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3523 if (new_path == NULL) 3524 return(CAM_RESRC_UNAVAIL); 3525 xpt_copy_path(new_path, path); 3526 *new_path_ptr = new_path; 3527 return (CAM_REQ_CMP); 3528 } 3529 3530 void 3531 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3532 { 3533 3534 *new_path = *path; 3535 if (path->bus != NULL) 3536 xpt_acquire_bus(path->bus); 3537 if (path->target != NULL) 3538 xpt_acquire_target(path->target); 3539 if (path->device != NULL) 3540 xpt_acquire_device(path->device); 3541 } 3542 3543 void 3544 xpt_release_path(struct cam_path *path) 3545 { 3546 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3547 if (path->device != NULL) { 3548 xpt_release_device(path->device); 3549 path->device = NULL; 3550 } 3551 if (path->target != NULL) { 3552 xpt_release_target(path->target); 3553 path->target = NULL; 3554 } 3555 if (path->bus != NULL) { 3556 xpt_release_bus(path->bus); 3557 path->bus = NULL; 3558 } 3559 } 3560 3561 void 3562 xpt_free_path(struct cam_path *path) 3563 { 3564 3565 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3566 xpt_release_path(path); 3567 free(path, M_CAMPATH); 3568 } 3569 3570 void 3571 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3572 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3573 { 3574 3575 xpt_lock_buses(); 3576 if (bus_ref) { 3577 if (path->bus) 3578 *bus_ref = path->bus->refcount; 3579 else 3580 *bus_ref = 0; 3581 } 3582 if (periph_ref) { 3583 if (path->periph) 3584 *periph_ref = path->periph->refcount; 3585 else 3586 *periph_ref = 0; 3587 } 3588 xpt_unlock_buses(); 3589 if (target_ref) { 3590 if (path->target) 3591 *target_ref = path->target->refcount; 3592 else 3593 *target_ref = 0; 3594 } 3595 if (device_ref) { 3596 if (path->device) 3597 *device_ref = path->device->refcount; 3598 else 3599 *device_ref = 0; 3600 } 3601 } 3602 3603 /* 3604 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3605 * in path1, 2 for match with wildcards in path2. 3606 */ 3607 int 3608 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3609 { 3610 int retval = 0; 3611 3612 if (path1->bus != path2->bus) { 3613 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3614 retval = 1; 3615 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3616 retval = 2; 3617 else 3618 return (-1); 3619 } 3620 if (path1->target != path2->target) { 3621 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3622 if (retval == 0) 3623 retval = 1; 3624 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3625 retval = 2; 3626 else 3627 return (-1); 3628 } 3629 if (path1->device != path2->device) { 3630 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3631 if (retval == 0) 3632 retval = 1; 3633 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3634 retval = 2; 3635 else 3636 return (-1); 3637 } 3638 return (retval); 3639 } 3640 3641 int 3642 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3643 { 3644 int retval = 0; 3645 3646 if (path->bus != dev->target->bus) { 3647 if (path->bus->path_id == CAM_BUS_WILDCARD) 3648 retval = 1; 3649 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3650 retval = 2; 3651 else 3652 return (-1); 3653 } 3654 if (path->target != dev->target) { 3655 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3656 if (retval == 0) 3657 retval = 1; 3658 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3659 retval = 2; 3660 else 3661 return (-1); 3662 } 3663 if (path->device != dev) { 3664 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3665 if (retval == 0) 3666 retval = 1; 3667 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3668 retval = 2; 3669 else 3670 return (-1); 3671 } 3672 return (retval); 3673 } 3674 3675 void 3676 xpt_print_path(struct cam_path *path) 3677 { 3678 3679 if (path == NULL) 3680 printf("(nopath): "); 3681 else { 3682 if (path->periph != NULL) 3683 printf("(%s%d:", path->periph->periph_name, 3684 path->periph->unit_number); 3685 else 3686 printf("(noperiph:"); 3687 3688 if (path->bus != NULL) 3689 printf("%s%d:%d:", path->bus->sim->sim_name, 3690 path->bus->sim->unit_number, 3691 path->bus->sim->bus_id); 3692 else 3693 printf("nobus:"); 3694 3695 if (path->target != NULL) 3696 printf("%d:", path->target->target_id); 3697 else 3698 printf("X:"); 3699 3700 if (path->device != NULL) 3701 printf("%jx): ", (uintmax_t)path->device->lun_id); 3702 else 3703 printf("X): "); 3704 } 3705 } 3706 3707 void 3708 xpt_print_device(struct cam_ed *device) 3709 { 3710 3711 if (device == NULL) 3712 printf("(nopath): "); 3713 else { 3714 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3715 device->sim->unit_number, 3716 device->sim->bus_id, 3717 device->target->target_id, 3718 (uintmax_t)device->lun_id); 3719 } 3720 } 3721 3722 void 3723 xpt_print(struct cam_path *path, const char *fmt, ...) 3724 { 3725 va_list ap; 3726 xpt_print_path(path); 3727 va_start(ap, fmt); 3728 vprintf(fmt, ap); 3729 va_end(ap); 3730 } 3731 3732 int 3733 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3734 { 3735 struct sbuf sb; 3736 3737 sbuf_new(&sb, str, str_len, 0); 3738 3739 if (path == NULL) 3740 sbuf_printf(&sb, "(nopath): "); 3741 else { 3742 if (path->periph != NULL) 3743 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3744 path->periph->unit_number); 3745 else 3746 sbuf_printf(&sb, "(noperiph:"); 3747 3748 if (path->bus != NULL) 3749 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3750 path->bus->sim->unit_number, 3751 path->bus->sim->bus_id); 3752 else 3753 sbuf_printf(&sb, "nobus:"); 3754 3755 if (path->target != NULL) 3756 sbuf_printf(&sb, "%d:", path->target->target_id); 3757 else 3758 sbuf_printf(&sb, "X:"); 3759 3760 if (path->device != NULL) 3761 sbuf_printf(&sb, "%jx): ", 3762 (uintmax_t)path->device->lun_id); 3763 else 3764 sbuf_printf(&sb, "X): "); 3765 } 3766 sbuf_finish(&sb); 3767 3768 return(sbuf_len(&sb)); 3769 } 3770 3771 path_id_t 3772 xpt_path_path_id(struct cam_path *path) 3773 { 3774 return(path->bus->path_id); 3775 } 3776 3777 target_id_t 3778 xpt_path_target_id(struct cam_path *path) 3779 { 3780 if (path->target != NULL) 3781 return (path->target->target_id); 3782 else 3783 return (CAM_TARGET_WILDCARD); 3784 } 3785 3786 lun_id_t 3787 xpt_path_lun_id(struct cam_path *path) 3788 { 3789 if (path->device != NULL) 3790 return (path->device->lun_id); 3791 else 3792 return (CAM_LUN_WILDCARD); 3793 } 3794 3795 struct cam_sim * 3796 xpt_path_sim(struct cam_path *path) 3797 { 3798 3799 return (path->bus->sim); 3800 } 3801 3802 struct cam_periph* 3803 xpt_path_periph(struct cam_path *path) 3804 { 3805 3806 return (path->periph); 3807 } 3808 3809 /* 3810 * Release a CAM control block for the caller. Remit the cost of the structure 3811 * to the device referenced by the path. If the this device had no 'credits' 3812 * and peripheral drivers have registered async callbacks for this notification 3813 * call them now. 3814 */ 3815 void 3816 xpt_release_ccb(union ccb *free_ccb) 3817 { 3818 struct cam_ed *device; 3819 struct cam_periph *periph; 3820 3821 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3822 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3823 device = free_ccb->ccb_h.path->device; 3824 periph = free_ccb->ccb_h.path->periph; 3825 3826 xpt_free_ccb(free_ccb); 3827 periph->periph_allocated--; 3828 cam_ccbq_release_opening(&device->ccbq); 3829 xpt_run_allocq(periph, 0); 3830 } 3831 3832 /* Functions accessed by SIM drivers */ 3833 3834 static struct xpt_xport_ops xport_default_ops = { 3835 .alloc_device = xpt_alloc_device_default, 3836 .action = xpt_action_default, 3837 .async = xpt_dev_async_default, 3838 }; 3839 static struct xpt_xport xport_default = { 3840 .xport = XPORT_UNKNOWN, 3841 .name = "unknown", 3842 .ops = &xport_default_ops, 3843 }; 3844 3845 CAM_XPT_XPORT(xport_default); 3846 3847 /* 3848 * A sim structure, listing the SIM entry points and instance 3849 * identification info is passed to xpt_bus_register to hook the SIM 3850 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3851 * for this new bus and places it in the array of busses and assigns 3852 * it a path_id. The path_id may be influenced by "hard wiring" 3853 * information specified by the user. Once interrupt services are 3854 * available, the bus will be probed. 3855 */ 3856 int32_t 3857 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3858 { 3859 struct cam_eb *new_bus; 3860 struct cam_eb *old_bus; 3861 struct ccb_pathinq cpi; 3862 struct cam_path *path; 3863 cam_status status; 3864 3865 mtx_assert(sim->mtx, MA_OWNED); 3866 3867 sim->bus_id = bus; 3868 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3869 M_CAMXPT, M_NOWAIT|M_ZERO); 3870 if (new_bus == NULL) { 3871 /* Couldn't satisfy request */ 3872 return (CAM_RESRC_UNAVAIL); 3873 } 3874 3875 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3876 TAILQ_INIT(&new_bus->et_entries); 3877 cam_sim_hold(sim); 3878 new_bus->sim = sim; 3879 timevalclear(&new_bus->last_reset); 3880 new_bus->flags = 0; 3881 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3882 new_bus->generation = 0; 3883 3884 xpt_lock_buses(); 3885 sim->path_id = new_bus->path_id = 3886 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3887 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3888 while (old_bus != NULL 3889 && old_bus->path_id < new_bus->path_id) 3890 old_bus = TAILQ_NEXT(old_bus, links); 3891 if (old_bus != NULL) 3892 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3893 else 3894 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3895 xsoftc.bus_generation++; 3896 xpt_unlock_buses(); 3897 3898 /* 3899 * Set a default transport so that a PATH_INQ can be issued to 3900 * the SIM. This will then allow for probing and attaching of 3901 * a more appropriate transport. 3902 */ 3903 new_bus->xport = &xport_default; 3904 3905 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3906 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3907 if (status != CAM_REQ_CMP) { 3908 xpt_release_bus(new_bus); 3909 free(path, M_CAMXPT); 3910 return (CAM_RESRC_UNAVAIL); 3911 } 3912 3913 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3914 cpi.ccb_h.func_code = XPT_PATH_INQ; 3915 xpt_action((union ccb *)&cpi); 3916 3917 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3918 struct xpt_xport **xpt; 3919 3920 SET_FOREACH(xpt, cam_xpt_xport_set) { 3921 if ((*xpt)->xport == cpi.transport) { 3922 new_bus->xport = *xpt; 3923 break; 3924 } 3925 } 3926 if (new_bus->xport == NULL) { 3927 xpt_print_path(path); 3928 printf("No transport found for %d\n", cpi.transport); 3929 xpt_release_bus(new_bus); 3930 free(path, M_CAMXPT); 3931 return (CAM_RESRC_UNAVAIL); 3932 } 3933 } 3934 3935 /* Notify interested parties */ 3936 if (sim->path_id != CAM_XPT_PATH_ID) { 3937 3938 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3939 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3940 union ccb *scan_ccb; 3941 3942 /* Initiate bus rescan. */ 3943 scan_ccb = xpt_alloc_ccb_nowait(); 3944 if (scan_ccb != NULL) { 3945 scan_ccb->ccb_h.path = path; 3946 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3947 scan_ccb->crcn.flags = 0; 3948 xpt_rescan(scan_ccb); 3949 } else { 3950 xpt_print(path, 3951 "Can't allocate CCB to scan bus\n"); 3952 xpt_free_path(path); 3953 } 3954 } else 3955 xpt_free_path(path); 3956 } else 3957 xpt_free_path(path); 3958 return (CAM_SUCCESS); 3959 } 3960 3961 int32_t 3962 xpt_bus_deregister(path_id_t pathid) 3963 { 3964 struct cam_path bus_path; 3965 cam_status status; 3966 3967 status = xpt_compile_path(&bus_path, NULL, pathid, 3968 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3969 if (status != CAM_REQ_CMP) 3970 return (status); 3971 3972 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3973 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3974 3975 /* Release the reference count held while registered. */ 3976 xpt_release_bus(bus_path.bus); 3977 xpt_release_path(&bus_path); 3978 3979 return (CAM_REQ_CMP); 3980 } 3981 3982 static path_id_t 3983 xptnextfreepathid(void) 3984 { 3985 struct cam_eb *bus; 3986 path_id_t pathid; 3987 const char *strval; 3988 3989 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3990 pathid = 0; 3991 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3992 retry: 3993 /* Find an unoccupied pathid */ 3994 while (bus != NULL && bus->path_id <= pathid) { 3995 if (bus->path_id == pathid) 3996 pathid++; 3997 bus = TAILQ_NEXT(bus, links); 3998 } 3999 4000 /* 4001 * Ensure that this pathid is not reserved for 4002 * a bus that may be registered in the future. 4003 */ 4004 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4005 ++pathid; 4006 /* Start the search over */ 4007 goto retry; 4008 } 4009 return (pathid); 4010 } 4011 4012 static path_id_t 4013 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4014 { 4015 path_id_t pathid; 4016 int i, dunit, val; 4017 char buf[32]; 4018 const char *dname; 4019 4020 pathid = CAM_XPT_PATH_ID; 4021 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4022 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4023 return (pathid); 4024 i = 0; 4025 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4026 if (strcmp(dname, "scbus")) { 4027 /* Avoid a bit of foot shooting. */ 4028 continue; 4029 } 4030 if (dunit < 0) /* unwired?! */ 4031 continue; 4032 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4033 if (sim_bus == val) { 4034 pathid = dunit; 4035 break; 4036 } 4037 } else if (sim_bus == 0) { 4038 /* Unspecified matches bus 0 */ 4039 pathid = dunit; 4040 break; 4041 } else { 4042 printf("Ambiguous scbus configuration for %s%d " 4043 "bus %d, cannot wire down. The kernel " 4044 "config entry for scbus%d should " 4045 "specify a controller bus.\n" 4046 "Scbus will be assigned dynamically.\n", 4047 sim_name, sim_unit, sim_bus, dunit); 4048 break; 4049 } 4050 } 4051 4052 if (pathid == CAM_XPT_PATH_ID) 4053 pathid = xptnextfreepathid(); 4054 return (pathid); 4055 } 4056 4057 static const char * 4058 xpt_async_string(u_int32_t async_code) 4059 { 4060 4061 switch (async_code) { 4062 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4063 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4064 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4065 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4066 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4067 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4068 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4069 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4070 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4071 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4072 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4073 case AC_CONTRACT: return ("AC_CONTRACT"); 4074 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4075 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4076 } 4077 return ("AC_UNKNOWN"); 4078 } 4079 4080 static int 4081 xpt_async_size(u_int32_t async_code) 4082 { 4083 4084 switch (async_code) { 4085 case AC_BUS_RESET: return (0); 4086 case AC_UNSOL_RESEL: return (0); 4087 case AC_SCSI_AEN: return (0); 4088 case AC_SENT_BDR: return (0); 4089 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4090 case AC_PATH_DEREGISTERED: return (0); 4091 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4092 case AC_LOST_DEVICE: return (0); 4093 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4094 case AC_INQ_CHANGED: return (0); 4095 case AC_GETDEV_CHANGED: return (0); 4096 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4097 case AC_ADVINFO_CHANGED: return (-1); 4098 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4099 } 4100 return (0); 4101 } 4102 4103 static int 4104 xpt_async_process_dev(struct cam_ed *device, void *arg) 4105 { 4106 union ccb *ccb = arg; 4107 struct cam_path *path = ccb->ccb_h.path; 4108 void *async_arg = ccb->casync.async_arg_ptr; 4109 u_int32_t async_code = ccb->casync.async_code; 4110 int relock; 4111 4112 if (path->device != device 4113 && path->device->lun_id != CAM_LUN_WILDCARD 4114 && device->lun_id != CAM_LUN_WILDCARD) 4115 return (1); 4116 4117 /* 4118 * The async callback could free the device. 4119 * If it is a broadcast async, it doesn't hold 4120 * device reference, so take our own reference. 4121 */ 4122 xpt_acquire_device(device); 4123 4124 /* 4125 * If async for specific device is to be delivered to 4126 * the wildcard client, take the specific device lock. 4127 * XXX: We may need a way for client to specify it. 4128 */ 4129 if ((device->lun_id == CAM_LUN_WILDCARD && 4130 path->device->lun_id != CAM_LUN_WILDCARD) || 4131 (device->target->target_id == CAM_TARGET_WILDCARD && 4132 path->target->target_id != CAM_TARGET_WILDCARD) || 4133 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4134 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4135 mtx_unlock(&device->device_mtx); 4136 xpt_path_lock(path); 4137 relock = 1; 4138 } else 4139 relock = 0; 4140 4141 (*(device->target->bus->xport->ops->async))(async_code, 4142 device->target->bus, device->target, device, async_arg); 4143 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4144 4145 if (relock) { 4146 xpt_path_unlock(path); 4147 mtx_lock(&device->device_mtx); 4148 } 4149 xpt_release_device(device); 4150 return (1); 4151 } 4152 4153 static int 4154 xpt_async_process_tgt(struct cam_et *target, void *arg) 4155 { 4156 union ccb *ccb = arg; 4157 struct cam_path *path = ccb->ccb_h.path; 4158 4159 if (path->target != target 4160 && path->target->target_id != CAM_TARGET_WILDCARD 4161 && target->target_id != CAM_TARGET_WILDCARD) 4162 return (1); 4163 4164 if (ccb->casync.async_code == AC_SENT_BDR) { 4165 /* Update our notion of when the last reset occurred */ 4166 microtime(&target->last_reset); 4167 } 4168 4169 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4170 } 4171 4172 static void 4173 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4174 { 4175 struct cam_eb *bus; 4176 struct cam_path *path; 4177 void *async_arg; 4178 u_int32_t async_code; 4179 4180 path = ccb->ccb_h.path; 4181 async_code = ccb->casync.async_code; 4182 async_arg = ccb->casync.async_arg_ptr; 4183 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4184 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4185 bus = path->bus; 4186 4187 if (async_code == AC_BUS_RESET) { 4188 /* Update our notion of when the last reset occurred */ 4189 microtime(&bus->last_reset); 4190 } 4191 4192 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4193 4194 /* 4195 * If this wasn't a fully wildcarded async, tell all 4196 * clients that want all async events. 4197 */ 4198 if (bus != xpt_periph->path->bus) { 4199 xpt_path_lock(xpt_periph->path); 4200 xpt_async_process_dev(xpt_periph->path->device, ccb); 4201 xpt_path_unlock(xpt_periph->path); 4202 } 4203 4204 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4205 xpt_release_devq(path, 1, TRUE); 4206 else 4207 xpt_release_simq(path->bus->sim, TRUE); 4208 if (ccb->casync.async_arg_size > 0) 4209 free(async_arg, M_CAMXPT); 4210 xpt_free_path(path); 4211 xpt_free_ccb(ccb); 4212 } 4213 4214 static void 4215 xpt_async_bcast(struct async_list *async_head, 4216 u_int32_t async_code, 4217 struct cam_path *path, void *async_arg) 4218 { 4219 struct async_node *cur_entry; 4220 int lock; 4221 4222 cur_entry = SLIST_FIRST(async_head); 4223 while (cur_entry != NULL) { 4224 struct async_node *next_entry; 4225 /* 4226 * Grab the next list entry before we call the current 4227 * entry's callback. This is because the callback function 4228 * can delete its async callback entry. 4229 */ 4230 next_entry = SLIST_NEXT(cur_entry, links); 4231 if ((cur_entry->event_enable & async_code) != 0) { 4232 lock = cur_entry->event_lock; 4233 if (lock) 4234 CAM_SIM_LOCK(path->device->sim); 4235 cur_entry->callback(cur_entry->callback_arg, 4236 async_code, path, 4237 async_arg); 4238 if (lock) 4239 CAM_SIM_UNLOCK(path->device->sim); 4240 } 4241 cur_entry = next_entry; 4242 } 4243 } 4244 4245 void 4246 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4247 { 4248 union ccb *ccb; 4249 int size; 4250 4251 ccb = xpt_alloc_ccb_nowait(); 4252 if (ccb == NULL) { 4253 xpt_print(path, "Can't allocate CCB to send %s\n", 4254 xpt_async_string(async_code)); 4255 return; 4256 } 4257 4258 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4259 xpt_print(path, "Can't allocate path to send %s\n", 4260 xpt_async_string(async_code)); 4261 xpt_free_ccb(ccb); 4262 return; 4263 } 4264 ccb->ccb_h.path->periph = NULL; 4265 ccb->ccb_h.func_code = XPT_ASYNC; 4266 ccb->ccb_h.cbfcnp = xpt_async_process; 4267 ccb->ccb_h.flags |= CAM_UNLOCKED; 4268 ccb->casync.async_code = async_code; 4269 ccb->casync.async_arg_size = 0; 4270 size = xpt_async_size(async_code); 4271 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4272 ("xpt_async: func %#x %s aync_code %d %s\n", 4273 ccb->ccb_h.func_code, 4274 xpt_action_name(ccb->ccb_h.func_code), 4275 async_code, 4276 xpt_async_string(async_code))); 4277 if (size > 0 && async_arg != NULL) { 4278 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4279 if (ccb->casync.async_arg_ptr == NULL) { 4280 xpt_print(path, "Can't allocate argument to send %s\n", 4281 xpt_async_string(async_code)); 4282 xpt_free_path(ccb->ccb_h.path); 4283 xpt_free_ccb(ccb); 4284 return; 4285 } 4286 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4287 ccb->casync.async_arg_size = size; 4288 } else if (size < 0) { 4289 ccb->casync.async_arg_ptr = async_arg; 4290 ccb->casync.async_arg_size = size; 4291 } 4292 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4293 xpt_freeze_devq(path, 1); 4294 else 4295 xpt_freeze_simq(path->bus->sim, 1); 4296 xpt_done(ccb); 4297 } 4298 4299 static void 4300 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4301 struct cam_et *target, struct cam_ed *device, 4302 void *async_arg) 4303 { 4304 4305 /* 4306 * We only need to handle events for real devices. 4307 */ 4308 if (target->target_id == CAM_TARGET_WILDCARD 4309 || device->lun_id == CAM_LUN_WILDCARD) 4310 return; 4311 4312 printf("%s called\n", __func__); 4313 } 4314 4315 static uint32_t 4316 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4317 { 4318 struct cam_devq *devq; 4319 uint32_t freeze; 4320 4321 devq = dev->sim->devq; 4322 mtx_assert(&devq->send_mtx, MA_OWNED); 4323 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4324 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4325 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4326 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4327 /* Remove frozen device from sendq. */ 4328 if (device_is_queued(dev)) 4329 camq_remove(&devq->send_queue, dev->devq_entry.index); 4330 return (freeze); 4331 } 4332 4333 u_int32_t 4334 xpt_freeze_devq(struct cam_path *path, u_int count) 4335 { 4336 struct cam_ed *dev = path->device; 4337 struct cam_devq *devq; 4338 uint32_t freeze; 4339 4340 devq = dev->sim->devq; 4341 mtx_lock(&devq->send_mtx); 4342 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4343 freeze = xpt_freeze_devq_device(dev, count); 4344 mtx_unlock(&devq->send_mtx); 4345 return (freeze); 4346 } 4347 4348 u_int32_t 4349 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4350 { 4351 struct cam_devq *devq; 4352 uint32_t freeze; 4353 4354 devq = sim->devq; 4355 mtx_lock(&devq->send_mtx); 4356 freeze = (devq->send_queue.qfrozen_cnt += count); 4357 mtx_unlock(&devq->send_mtx); 4358 return (freeze); 4359 } 4360 4361 static void 4362 xpt_release_devq_timeout(void *arg) 4363 { 4364 struct cam_ed *dev; 4365 struct cam_devq *devq; 4366 4367 dev = (struct cam_ed *)arg; 4368 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4369 devq = dev->sim->devq; 4370 mtx_assert(&devq->send_mtx, MA_OWNED); 4371 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4372 xpt_run_devq(devq); 4373 } 4374 4375 void 4376 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4377 { 4378 struct cam_ed *dev; 4379 struct cam_devq *devq; 4380 4381 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4382 count, run_queue)); 4383 dev = path->device; 4384 devq = dev->sim->devq; 4385 mtx_lock(&devq->send_mtx); 4386 if (xpt_release_devq_device(dev, count, run_queue)) 4387 xpt_run_devq(dev->sim->devq); 4388 mtx_unlock(&devq->send_mtx); 4389 } 4390 4391 static int 4392 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4393 { 4394 4395 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4396 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4397 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4398 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4399 if (count > dev->ccbq.queue.qfrozen_cnt) { 4400 #ifdef INVARIANTS 4401 printf("xpt_release_devq(): requested %u > present %u\n", 4402 count, dev->ccbq.queue.qfrozen_cnt); 4403 #endif 4404 count = dev->ccbq.queue.qfrozen_cnt; 4405 } 4406 dev->ccbq.queue.qfrozen_cnt -= count; 4407 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4408 /* 4409 * No longer need to wait for a successful 4410 * command completion. 4411 */ 4412 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4413 /* 4414 * Remove any timeouts that might be scheduled 4415 * to release this queue. 4416 */ 4417 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4418 callout_stop(&dev->callout); 4419 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4420 } 4421 /* 4422 * Now that we are unfrozen schedule the 4423 * device so any pending transactions are 4424 * run. 4425 */ 4426 xpt_schedule_devq(dev->sim->devq, dev); 4427 } else 4428 run_queue = 0; 4429 return (run_queue); 4430 } 4431 4432 void 4433 xpt_release_simq(struct cam_sim *sim, int run_queue) 4434 { 4435 struct cam_devq *devq; 4436 4437 devq = sim->devq; 4438 mtx_lock(&devq->send_mtx); 4439 if (devq->send_queue.qfrozen_cnt <= 0) { 4440 #ifdef INVARIANTS 4441 printf("xpt_release_simq: requested 1 > present %u\n", 4442 devq->send_queue.qfrozen_cnt); 4443 #endif 4444 } else 4445 devq->send_queue.qfrozen_cnt--; 4446 if (devq->send_queue.qfrozen_cnt == 0) { 4447 /* 4448 * If there is a timeout scheduled to release this 4449 * sim queue, remove it. The queue frozen count is 4450 * already at 0. 4451 */ 4452 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4453 callout_stop(&sim->callout); 4454 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4455 } 4456 if (run_queue) { 4457 /* 4458 * Now that we are unfrozen run the send queue. 4459 */ 4460 xpt_run_devq(sim->devq); 4461 } 4462 } 4463 mtx_unlock(&devq->send_mtx); 4464 } 4465 4466 /* 4467 * XXX Appears to be unused. 4468 */ 4469 static void 4470 xpt_release_simq_timeout(void *arg) 4471 { 4472 struct cam_sim *sim; 4473 4474 sim = (struct cam_sim *)arg; 4475 xpt_release_simq(sim, /* run_queue */ TRUE); 4476 } 4477 4478 void 4479 xpt_done(union ccb *done_ccb) 4480 { 4481 struct cam_doneq *queue; 4482 int run, hash; 4483 4484 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4485 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4486 done_ccb->csio.bio != NULL) 4487 biotrack(done_ccb->csio.bio, __func__); 4488 #endif 4489 4490 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4491 ("xpt_done: func= %#x %s status %#x\n", 4492 done_ccb->ccb_h.func_code, 4493 xpt_action_name(done_ccb->ccb_h.func_code), 4494 done_ccb->ccb_h.status)); 4495 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4496 return; 4497 4498 /* Store the time the ccb was in the sim */ 4499 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4500 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4501 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4502 queue = &cam_doneqs[hash]; 4503 mtx_lock(&queue->cam_doneq_mtx); 4504 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4505 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4506 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4507 mtx_unlock(&queue->cam_doneq_mtx); 4508 if (run) 4509 wakeup(&queue->cam_doneq); 4510 } 4511 4512 void 4513 xpt_done_direct(union ccb *done_ccb) 4514 { 4515 4516 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4517 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4518 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4519 return; 4520 4521 /* Store the time the ccb was in the sim */ 4522 done_ccb->ccb_h.qos.sim_data = sbinuptime() - done_ccb->ccb_h.qos.sim_data; 4523 xpt_done_process(&done_ccb->ccb_h); 4524 } 4525 4526 union ccb * 4527 xpt_alloc_ccb() 4528 { 4529 union ccb *new_ccb; 4530 4531 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4532 return (new_ccb); 4533 } 4534 4535 union ccb * 4536 xpt_alloc_ccb_nowait() 4537 { 4538 union ccb *new_ccb; 4539 4540 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4541 return (new_ccb); 4542 } 4543 4544 void 4545 xpt_free_ccb(union ccb *free_ccb) 4546 { 4547 free(free_ccb, M_CAMCCB); 4548 } 4549 4550 4551 4552 /* Private XPT functions */ 4553 4554 /* 4555 * Get a CAM control block for the caller. Charge the structure to the device 4556 * referenced by the path. If we don't have sufficient resources to allocate 4557 * more ccbs, we return NULL. 4558 */ 4559 static union ccb * 4560 xpt_get_ccb_nowait(struct cam_periph *periph) 4561 { 4562 union ccb *new_ccb; 4563 4564 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4565 if (new_ccb == NULL) 4566 return (NULL); 4567 periph->periph_allocated++; 4568 cam_ccbq_take_opening(&periph->path->device->ccbq); 4569 return (new_ccb); 4570 } 4571 4572 static union ccb * 4573 xpt_get_ccb(struct cam_periph *periph) 4574 { 4575 union ccb *new_ccb; 4576 4577 cam_periph_unlock(periph); 4578 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4579 cam_periph_lock(periph); 4580 periph->periph_allocated++; 4581 cam_ccbq_take_opening(&periph->path->device->ccbq); 4582 return (new_ccb); 4583 } 4584 4585 union ccb * 4586 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4587 { 4588 struct ccb_hdr *ccb_h; 4589 4590 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4591 cam_periph_assert(periph, MA_OWNED); 4592 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4593 ccb_h->pinfo.priority != priority) { 4594 if (priority < periph->immediate_priority) { 4595 periph->immediate_priority = priority; 4596 xpt_run_allocq(periph, 0); 4597 } else 4598 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4599 "cgticb", 0); 4600 } 4601 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4602 return ((union ccb *)ccb_h); 4603 } 4604 4605 static void 4606 xpt_acquire_bus(struct cam_eb *bus) 4607 { 4608 4609 xpt_lock_buses(); 4610 bus->refcount++; 4611 xpt_unlock_buses(); 4612 } 4613 4614 static void 4615 xpt_release_bus(struct cam_eb *bus) 4616 { 4617 4618 xpt_lock_buses(); 4619 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4620 if (--bus->refcount > 0) { 4621 xpt_unlock_buses(); 4622 return; 4623 } 4624 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4625 xsoftc.bus_generation++; 4626 xpt_unlock_buses(); 4627 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4628 ("destroying bus, but target list is not empty")); 4629 cam_sim_release(bus->sim); 4630 mtx_destroy(&bus->eb_mtx); 4631 free(bus, M_CAMXPT); 4632 } 4633 4634 static struct cam_et * 4635 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4636 { 4637 struct cam_et *cur_target, *target; 4638 4639 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4640 mtx_assert(&bus->eb_mtx, MA_OWNED); 4641 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4642 M_NOWAIT|M_ZERO); 4643 if (target == NULL) 4644 return (NULL); 4645 4646 TAILQ_INIT(&target->ed_entries); 4647 target->bus = bus; 4648 target->target_id = target_id; 4649 target->refcount = 1; 4650 target->generation = 0; 4651 target->luns = NULL; 4652 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4653 timevalclear(&target->last_reset); 4654 /* 4655 * Hold a reference to our parent bus so it 4656 * will not go away before we do. 4657 */ 4658 bus->refcount++; 4659 4660 /* Insertion sort into our bus's target list */ 4661 cur_target = TAILQ_FIRST(&bus->et_entries); 4662 while (cur_target != NULL && cur_target->target_id < target_id) 4663 cur_target = TAILQ_NEXT(cur_target, links); 4664 if (cur_target != NULL) { 4665 TAILQ_INSERT_BEFORE(cur_target, target, links); 4666 } else { 4667 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4668 } 4669 bus->generation++; 4670 return (target); 4671 } 4672 4673 static void 4674 xpt_acquire_target(struct cam_et *target) 4675 { 4676 struct cam_eb *bus = target->bus; 4677 4678 mtx_lock(&bus->eb_mtx); 4679 target->refcount++; 4680 mtx_unlock(&bus->eb_mtx); 4681 } 4682 4683 static void 4684 xpt_release_target(struct cam_et *target) 4685 { 4686 struct cam_eb *bus = target->bus; 4687 4688 mtx_lock(&bus->eb_mtx); 4689 if (--target->refcount > 0) { 4690 mtx_unlock(&bus->eb_mtx); 4691 return; 4692 } 4693 TAILQ_REMOVE(&bus->et_entries, target, links); 4694 bus->generation++; 4695 mtx_unlock(&bus->eb_mtx); 4696 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4697 ("destroying target, but device list is not empty")); 4698 xpt_release_bus(bus); 4699 mtx_destroy(&target->luns_mtx); 4700 if (target->luns) 4701 free(target->luns, M_CAMXPT); 4702 free(target, M_CAMXPT); 4703 } 4704 4705 static struct cam_ed * 4706 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4707 lun_id_t lun_id) 4708 { 4709 struct cam_ed *device; 4710 4711 device = xpt_alloc_device(bus, target, lun_id); 4712 if (device == NULL) 4713 return (NULL); 4714 4715 device->mintags = 1; 4716 device->maxtags = 1; 4717 return (device); 4718 } 4719 4720 static void 4721 xpt_destroy_device(void *context, int pending) 4722 { 4723 struct cam_ed *device = context; 4724 4725 mtx_lock(&device->device_mtx); 4726 mtx_destroy(&device->device_mtx); 4727 free(device, M_CAMDEV); 4728 } 4729 4730 struct cam_ed * 4731 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4732 { 4733 struct cam_ed *cur_device, *device; 4734 struct cam_devq *devq; 4735 cam_status status; 4736 4737 mtx_assert(&bus->eb_mtx, MA_OWNED); 4738 /* Make space for us in the device queue on our bus */ 4739 devq = bus->sim->devq; 4740 mtx_lock(&devq->send_mtx); 4741 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4742 mtx_unlock(&devq->send_mtx); 4743 if (status != CAM_REQ_CMP) 4744 return (NULL); 4745 4746 device = (struct cam_ed *)malloc(sizeof(*device), 4747 M_CAMDEV, M_NOWAIT|M_ZERO); 4748 if (device == NULL) 4749 return (NULL); 4750 4751 cam_init_pinfo(&device->devq_entry); 4752 device->target = target; 4753 device->lun_id = lun_id; 4754 device->sim = bus->sim; 4755 if (cam_ccbq_init(&device->ccbq, 4756 bus->sim->max_dev_openings) != 0) { 4757 free(device, M_CAMDEV); 4758 return (NULL); 4759 } 4760 SLIST_INIT(&device->asyncs); 4761 SLIST_INIT(&device->periphs); 4762 device->generation = 0; 4763 device->flags = CAM_DEV_UNCONFIGURED; 4764 device->tag_delay_count = 0; 4765 device->tag_saved_openings = 0; 4766 device->refcount = 1; 4767 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4768 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4769 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4770 /* 4771 * Hold a reference to our parent bus so it 4772 * will not go away before we do. 4773 */ 4774 target->refcount++; 4775 4776 cur_device = TAILQ_FIRST(&target->ed_entries); 4777 while (cur_device != NULL && cur_device->lun_id < lun_id) 4778 cur_device = TAILQ_NEXT(cur_device, links); 4779 if (cur_device != NULL) 4780 TAILQ_INSERT_BEFORE(cur_device, device, links); 4781 else 4782 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4783 target->generation++; 4784 return (device); 4785 } 4786 4787 void 4788 xpt_acquire_device(struct cam_ed *device) 4789 { 4790 struct cam_eb *bus = device->target->bus; 4791 4792 mtx_lock(&bus->eb_mtx); 4793 device->refcount++; 4794 mtx_unlock(&bus->eb_mtx); 4795 } 4796 4797 void 4798 xpt_release_device(struct cam_ed *device) 4799 { 4800 struct cam_eb *bus = device->target->bus; 4801 struct cam_devq *devq; 4802 4803 mtx_lock(&bus->eb_mtx); 4804 if (--device->refcount > 0) { 4805 mtx_unlock(&bus->eb_mtx); 4806 return; 4807 } 4808 4809 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4810 device->target->generation++; 4811 mtx_unlock(&bus->eb_mtx); 4812 4813 /* Release our slot in the devq */ 4814 devq = bus->sim->devq; 4815 mtx_lock(&devq->send_mtx); 4816 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4817 mtx_unlock(&devq->send_mtx); 4818 4819 KASSERT(SLIST_EMPTY(&device->periphs), 4820 ("destroying device, but periphs list is not empty")); 4821 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4822 ("destroying device while still queued for ccbs")); 4823 4824 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4825 callout_stop(&device->callout); 4826 4827 xpt_release_target(device->target); 4828 4829 cam_ccbq_fini(&device->ccbq); 4830 /* 4831 * Free allocated memory. free(9) does nothing if the 4832 * supplied pointer is NULL, so it is safe to call without 4833 * checking. 4834 */ 4835 free(device->supported_vpds, M_CAMXPT); 4836 free(device->device_id, M_CAMXPT); 4837 free(device->ext_inq, M_CAMXPT); 4838 free(device->physpath, M_CAMXPT); 4839 free(device->rcap_buf, M_CAMXPT); 4840 free(device->serial_num, M_CAMXPT); 4841 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4842 } 4843 4844 u_int32_t 4845 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4846 { 4847 int result; 4848 struct cam_ed *dev; 4849 4850 dev = path->device; 4851 mtx_lock(&dev->sim->devq->send_mtx); 4852 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4853 mtx_unlock(&dev->sim->devq->send_mtx); 4854 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4855 || (dev->inq_flags & SID_CmdQue) != 0) 4856 dev->tag_saved_openings = newopenings; 4857 return (result); 4858 } 4859 4860 static struct cam_eb * 4861 xpt_find_bus(path_id_t path_id) 4862 { 4863 struct cam_eb *bus; 4864 4865 xpt_lock_buses(); 4866 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4867 bus != NULL; 4868 bus = TAILQ_NEXT(bus, links)) { 4869 if (bus->path_id == path_id) { 4870 bus->refcount++; 4871 break; 4872 } 4873 } 4874 xpt_unlock_buses(); 4875 return (bus); 4876 } 4877 4878 static struct cam_et * 4879 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4880 { 4881 struct cam_et *target; 4882 4883 mtx_assert(&bus->eb_mtx, MA_OWNED); 4884 for (target = TAILQ_FIRST(&bus->et_entries); 4885 target != NULL; 4886 target = TAILQ_NEXT(target, links)) { 4887 if (target->target_id == target_id) { 4888 target->refcount++; 4889 break; 4890 } 4891 } 4892 return (target); 4893 } 4894 4895 static struct cam_ed * 4896 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4897 { 4898 struct cam_ed *device; 4899 4900 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4901 for (device = TAILQ_FIRST(&target->ed_entries); 4902 device != NULL; 4903 device = TAILQ_NEXT(device, links)) { 4904 if (device->lun_id == lun_id) { 4905 device->refcount++; 4906 break; 4907 } 4908 } 4909 return (device); 4910 } 4911 4912 void 4913 xpt_start_tags(struct cam_path *path) 4914 { 4915 struct ccb_relsim crs; 4916 struct cam_ed *device; 4917 struct cam_sim *sim; 4918 int newopenings; 4919 4920 device = path->device; 4921 sim = path->bus->sim; 4922 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4923 xpt_freeze_devq(path, /*count*/1); 4924 device->inq_flags |= SID_CmdQue; 4925 if (device->tag_saved_openings != 0) 4926 newopenings = device->tag_saved_openings; 4927 else 4928 newopenings = min(device->maxtags, 4929 sim->max_tagged_dev_openings); 4930 xpt_dev_ccbq_resize(path, newopenings); 4931 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4932 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4933 crs.ccb_h.func_code = XPT_REL_SIMQ; 4934 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4935 crs.openings 4936 = crs.release_timeout 4937 = crs.qfrozen_cnt 4938 = 0; 4939 xpt_action((union ccb *)&crs); 4940 } 4941 4942 void 4943 xpt_stop_tags(struct cam_path *path) 4944 { 4945 struct ccb_relsim crs; 4946 struct cam_ed *device; 4947 struct cam_sim *sim; 4948 4949 device = path->device; 4950 sim = path->bus->sim; 4951 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4952 device->tag_delay_count = 0; 4953 xpt_freeze_devq(path, /*count*/1); 4954 device->inq_flags &= ~SID_CmdQue; 4955 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4956 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4957 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4958 crs.ccb_h.func_code = XPT_REL_SIMQ; 4959 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4960 crs.openings 4961 = crs.release_timeout 4962 = crs.qfrozen_cnt 4963 = 0; 4964 xpt_action((union ccb *)&crs); 4965 } 4966 4967 static void 4968 xpt_boot_delay(void *arg) 4969 { 4970 4971 xpt_release_boot(); 4972 } 4973 4974 static void 4975 xpt_config(void *arg) 4976 { 4977 /* 4978 * Now that interrupts are enabled, go find our devices 4979 */ 4980 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4981 printf("xpt_config: failed to create taskqueue thread.\n"); 4982 4983 /* Setup debugging path */ 4984 if (cam_dflags != CAM_DEBUG_NONE) { 4985 if (xpt_create_path(&cam_dpath, NULL, 4986 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4987 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4988 printf("xpt_config: xpt_create_path() failed for debug" 4989 " target %d:%d:%d, debugging disabled\n", 4990 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4991 cam_dflags = CAM_DEBUG_NONE; 4992 } 4993 } else 4994 cam_dpath = NULL; 4995 4996 periphdriver_init(1); 4997 xpt_hold_boot(); 4998 callout_init(&xsoftc.boot_callout, 1); 4999 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5000 xpt_boot_delay, NULL, 0); 5001 /* Fire up rescan thread. */ 5002 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5003 "cam", "scanner")) { 5004 printf("xpt_config: failed to create rescan thread.\n"); 5005 } 5006 } 5007 5008 void 5009 xpt_hold_boot(void) 5010 { 5011 xpt_lock_buses(); 5012 xsoftc.buses_to_config++; 5013 xpt_unlock_buses(); 5014 } 5015 5016 void 5017 xpt_release_boot(void) 5018 { 5019 xpt_lock_buses(); 5020 xsoftc.buses_to_config--; 5021 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5022 struct xpt_task *task; 5023 5024 xsoftc.buses_config_done = 1; 5025 xpt_unlock_buses(); 5026 /* Call manually because we don't have any busses */ 5027 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5028 if (task != NULL) { 5029 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5030 taskqueue_enqueue(taskqueue_thread, &task->task); 5031 } 5032 } else 5033 xpt_unlock_buses(); 5034 } 5035 5036 /* 5037 * If the given device only has one peripheral attached to it, and if that 5038 * peripheral is the passthrough driver, announce it. This insures that the 5039 * user sees some sort of announcement for every peripheral in their system. 5040 */ 5041 static int 5042 xptpassannouncefunc(struct cam_ed *device, void *arg) 5043 { 5044 struct cam_periph *periph; 5045 int i; 5046 5047 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5048 periph = SLIST_NEXT(periph, periph_links), i++); 5049 5050 periph = SLIST_FIRST(&device->periphs); 5051 if ((i == 1) 5052 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5053 xpt_announce_periph(periph, NULL); 5054 5055 return(1); 5056 } 5057 5058 static void 5059 xpt_finishconfig_task(void *context, int pending) 5060 { 5061 5062 periphdriver_init(2); 5063 /* 5064 * Check for devices with no "standard" peripheral driver 5065 * attached. For any devices like that, announce the 5066 * passthrough driver so the user will see something. 5067 */ 5068 if (!bootverbose) 5069 xpt_for_all_devices(xptpassannouncefunc, NULL); 5070 5071 /* Release our hook so that the boot can continue. */ 5072 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5073 free(xsoftc.xpt_config_hook, M_CAMXPT); 5074 xsoftc.xpt_config_hook = NULL; 5075 5076 free(context, M_CAMXPT); 5077 } 5078 5079 cam_status 5080 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5081 struct cam_path *path) 5082 { 5083 struct ccb_setasync csa; 5084 cam_status status; 5085 int xptpath = 0; 5086 5087 if (path == NULL) { 5088 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5089 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5090 if (status != CAM_REQ_CMP) 5091 return (status); 5092 xpt_path_lock(path); 5093 xptpath = 1; 5094 } 5095 5096 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5097 csa.ccb_h.func_code = XPT_SASYNC_CB; 5098 csa.event_enable = event; 5099 csa.callback = cbfunc; 5100 csa.callback_arg = cbarg; 5101 xpt_action((union ccb *)&csa); 5102 status = csa.ccb_h.status; 5103 5104 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5105 ("xpt_register_async: func %p\n", cbfunc)); 5106 5107 if (xptpath) { 5108 xpt_path_unlock(path); 5109 xpt_free_path(path); 5110 } 5111 5112 if ((status == CAM_REQ_CMP) && 5113 (csa.event_enable & AC_FOUND_DEVICE)) { 5114 /* 5115 * Get this peripheral up to date with all 5116 * the currently existing devices. 5117 */ 5118 xpt_for_all_devices(xptsetasyncfunc, &csa); 5119 } 5120 if ((status == CAM_REQ_CMP) && 5121 (csa.event_enable & AC_PATH_REGISTERED)) { 5122 /* 5123 * Get this peripheral up to date with all 5124 * the currently existing busses. 5125 */ 5126 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5127 } 5128 5129 return (status); 5130 } 5131 5132 static void 5133 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5134 { 5135 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5136 5137 switch (work_ccb->ccb_h.func_code) { 5138 /* Common cases first */ 5139 case XPT_PATH_INQ: /* Path routing inquiry */ 5140 { 5141 struct ccb_pathinq *cpi; 5142 5143 cpi = &work_ccb->cpi; 5144 cpi->version_num = 1; /* XXX??? */ 5145 cpi->hba_inquiry = 0; 5146 cpi->target_sprt = 0; 5147 cpi->hba_misc = 0; 5148 cpi->hba_eng_cnt = 0; 5149 cpi->max_target = 0; 5150 cpi->max_lun = 0; 5151 cpi->initiator_id = 0; 5152 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5153 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5154 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5155 cpi->unit_number = sim->unit_number; 5156 cpi->bus_id = sim->bus_id; 5157 cpi->base_transfer_speed = 0; 5158 cpi->protocol = PROTO_UNSPECIFIED; 5159 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5160 cpi->transport = XPORT_UNSPECIFIED; 5161 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5162 cpi->ccb_h.status = CAM_REQ_CMP; 5163 xpt_done(work_ccb); 5164 break; 5165 } 5166 default: 5167 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5168 xpt_done(work_ccb); 5169 break; 5170 } 5171 } 5172 5173 /* 5174 * The xpt as a "controller" has no interrupt sources, so polling 5175 * is a no-op. 5176 */ 5177 static void 5178 xptpoll(struct cam_sim *sim) 5179 { 5180 } 5181 5182 void 5183 xpt_lock_buses(void) 5184 { 5185 mtx_lock(&xsoftc.xpt_topo_lock); 5186 } 5187 5188 void 5189 xpt_unlock_buses(void) 5190 { 5191 mtx_unlock(&xsoftc.xpt_topo_lock); 5192 } 5193 5194 struct mtx * 5195 xpt_path_mtx(struct cam_path *path) 5196 { 5197 5198 return (&path->device->device_mtx); 5199 } 5200 5201 static void 5202 xpt_done_process(struct ccb_hdr *ccb_h) 5203 { 5204 struct cam_sim *sim; 5205 struct cam_devq *devq; 5206 struct mtx *mtx = NULL; 5207 5208 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5209 struct ccb_scsiio *csio; 5210 5211 if (ccb_h->func_code == XPT_SCSI_IO) { 5212 csio = &((union ccb *)ccb_h)->csio; 5213 if (csio->bio != NULL) 5214 biotrack(csio->bio, __func__); 5215 } 5216 #endif 5217 5218 if (ccb_h->flags & CAM_HIGH_POWER) { 5219 struct highpowerlist *hphead; 5220 struct cam_ed *device; 5221 5222 mtx_lock(&xsoftc.xpt_highpower_lock); 5223 hphead = &xsoftc.highpowerq; 5224 5225 device = STAILQ_FIRST(hphead); 5226 5227 /* 5228 * Increment the count since this command is done. 5229 */ 5230 xsoftc.num_highpower++; 5231 5232 /* 5233 * Any high powered commands queued up? 5234 */ 5235 if (device != NULL) { 5236 5237 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5238 mtx_unlock(&xsoftc.xpt_highpower_lock); 5239 5240 mtx_lock(&device->sim->devq->send_mtx); 5241 xpt_release_devq_device(device, 5242 /*count*/1, /*runqueue*/TRUE); 5243 mtx_unlock(&device->sim->devq->send_mtx); 5244 } else 5245 mtx_unlock(&xsoftc.xpt_highpower_lock); 5246 } 5247 5248 sim = ccb_h->path->bus->sim; 5249 5250 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5251 xpt_release_simq(sim, /*run_queue*/FALSE); 5252 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5253 } 5254 5255 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5256 && (ccb_h->status & CAM_DEV_QFRZN)) { 5257 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5258 ccb_h->status &= ~CAM_DEV_QFRZN; 5259 } 5260 5261 devq = sim->devq; 5262 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5263 struct cam_ed *dev = ccb_h->path->device; 5264 5265 mtx_lock(&devq->send_mtx); 5266 devq->send_active--; 5267 devq->send_openings++; 5268 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5269 5270 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5271 && (dev->ccbq.dev_active == 0))) { 5272 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5273 xpt_release_devq_device(dev, /*count*/1, 5274 /*run_queue*/FALSE); 5275 } 5276 5277 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5278 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5279 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5280 xpt_release_devq_device(dev, /*count*/1, 5281 /*run_queue*/FALSE); 5282 } 5283 5284 if (!device_is_queued(dev)) 5285 (void)xpt_schedule_devq(devq, dev); 5286 xpt_run_devq(devq); 5287 mtx_unlock(&devq->send_mtx); 5288 5289 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5290 mtx = xpt_path_mtx(ccb_h->path); 5291 mtx_lock(mtx); 5292 5293 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5294 && (--dev->tag_delay_count == 0)) 5295 xpt_start_tags(ccb_h->path); 5296 } 5297 } 5298 5299 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5300 if (mtx == NULL) { 5301 mtx = xpt_path_mtx(ccb_h->path); 5302 mtx_lock(mtx); 5303 } 5304 } else { 5305 if (mtx != NULL) { 5306 mtx_unlock(mtx); 5307 mtx = NULL; 5308 } 5309 } 5310 5311 /* Call the peripheral driver's callback */ 5312 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5313 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5314 if (mtx != NULL) 5315 mtx_unlock(mtx); 5316 } 5317 5318 void 5319 xpt_done_td(void *arg) 5320 { 5321 struct cam_doneq *queue = arg; 5322 struct ccb_hdr *ccb_h; 5323 STAILQ_HEAD(, ccb_hdr) doneq; 5324 5325 STAILQ_INIT(&doneq); 5326 mtx_lock(&queue->cam_doneq_mtx); 5327 while (1) { 5328 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5329 queue->cam_doneq_sleep = 1; 5330 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5331 PRIBIO, "-", 0); 5332 queue->cam_doneq_sleep = 0; 5333 } 5334 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5335 mtx_unlock(&queue->cam_doneq_mtx); 5336 5337 THREAD_NO_SLEEPING(); 5338 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5339 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5340 xpt_done_process(ccb_h); 5341 } 5342 THREAD_SLEEPING_OK(); 5343 5344 mtx_lock(&queue->cam_doneq_mtx); 5345 } 5346 } 5347 5348 static void 5349 camisr_runqueue(void) 5350 { 5351 struct ccb_hdr *ccb_h; 5352 struct cam_doneq *queue; 5353 int i; 5354 5355 /* Process global queues. */ 5356 for (i = 0; i < cam_num_doneqs; i++) { 5357 queue = &cam_doneqs[i]; 5358 mtx_lock(&queue->cam_doneq_mtx); 5359 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5360 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5361 mtx_unlock(&queue->cam_doneq_mtx); 5362 xpt_done_process(ccb_h); 5363 mtx_lock(&queue->cam_doneq_mtx); 5364 } 5365 mtx_unlock(&queue->cam_doneq_mtx); 5366 } 5367 } 5368 5369 struct kv 5370 { 5371 uint32_t v; 5372 const char *name; 5373 }; 5374 5375 static struct kv map[] = { 5376 { XPT_NOOP, "XPT_NOOP" }, 5377 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5378 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5379 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5380 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5381 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5382 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5383 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5384 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5385 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5386 { XPT_DEBUG, "XPT_DEBUG" }, 5387 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5388 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5389 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5390 { XPT_ASYNC, "XPT_ASYNC" }, 5391 { XPT_ABORT, "XPT_ABORT" }, 5392 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5393 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5394 { XPT_TERM_IO, "XPT_TERM_IO" }, 5395 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5396 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5397 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5398 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5399 { XPT_ATA_IO, "XPT_ATA_IO" }, 5400 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5401 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5402 { XPT_NVME_IO, "XPT_NVME_IO" }, 5403 { XPT_MMCSD_IO, "XPT_MMCSD_IO" }, 5404 { XPT_SMP_IO, "XPT_SMP_IO" }, 5405 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5406 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5407 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5408 { XPT_EN_LUN, "XPT_EN_LUN" }, 5409 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5410 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5411 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5412 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5413 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5414 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5415 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5416 { 0, 0 } 5417 }; 5418 5419 static const char * 5420 xpt_action_name(uint32_t action) 5421 { 5422 static char buffer[32]; /* Only for unknown messages -- racy */ 5423 struct kv *walker = map; 5424 5425 while (walker->name != NULL) { 5426 if (walker->v == action) 5427 return (walker->name); 5428 walker++; 5429 } 5430 5431 snprintf(buffer, sizeof(buffer), "%#x", action); 5432 return (buffer); 5433 } 5434