1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 49 #ifdef PC98 50 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 51 #endif 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_sim.h> 57 #include <cam/cam_xpt.h> 58 #include <cam/cam_xpt_sim.h> 59 #include <cam/cam_xpt_periph.h> 60 #include <cam/cam_debug.h> 61 62 #include <cam/scsi/scsi_all.h> 63 #include <cam/scsi/scsi_message.h> 64 #include <cam/scsi/scsi_pass.h> 65 #include "opt_cam.h" 66 67 /* Datastructures internal to the xpt layer */ 68 69 /* 70 * Definition of an async handler callback block. These are used to add 71 * SIMs and peripherals to the async callback lists. 72 */ 73 struct async_node { 74 SLIST_ENTRY(async_node) links; 75 u_int32_t event_enable; /* Async Event enables */ 76 void (*callback)(void *arg, u_int32_t code, 77 struct cam_path *path, void *args); 78 void *callback_arg; 79 }; 80 81 SLIST_HEAD(async_list, async_node); 82 SLIST_HEAD(periph_list, cam_periph); 83 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 84 85 /* 86 * This is the maximum number of high powered commands (e.g. start unit) 87 * that can be outstanding at a particular time. 88 */ 89 #ifndef CAM_MAX_HIGHPOWER 90 #define CAM_MAX_HIGHPOWER 4 91 #endif 92 93 /* number of high powered commands that can go through right now */ 94 static int num_highpower = CAM_MAX_HIGHPOWER; 95 96 /* 97 * Structure for queueing a device in a run queue. 98 * There is one run queue for allocating new ccbs, 99 * and another for sending ccbs to the controller. 100 */ 101 struct cam_ed_qinfo { 102 cam_pinfo pinfo; 103 struct cam_ed *device; 104 }; 105 106 /* 107 * The CAM EDT (Existing Device Table) contains the device information for 108 * all devices for all busses in the system. The table contains a 109 * cam_ed structure for each device on the bus. 110 */ 111 struct cam_ed { 112 TAILQ_ENTRY(cam_ed) links; 113 struct cam_ed_qinfo alloc_ccb_entry; 114 struct cam_ed_qinfo send_ccb_entry; 115 struct cam_et *target; 116 lun_id_t lun_id; 117 struct camq drvq; /* 118 * Queue of type drivers wanting to do 119 * work on this device. 120 */ 121 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 122 struct async_list asyncs; /* Async callback info for this B/T/L */ 123 struct periph_list periphs; /* All attached devices */ 124 u_int generation; /* Generation number */ 125 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 126 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 127 /* Storage for the inquiry data */ 128 #ifdef CAM_NEW_TRAN_CODE 129 cam_proto protocol; 130 u_int protocol_version; 131 cam_xport transport; 132 u_int transport_version; 133 #endif /* CAM_NEW_TRAN_CODE */ 134 struct scsi_inquiry_data inq_data; 135 u_int8_t inq_flags; /* 136 * Current settings for inquiry flags. 137 * This allows us to override settings 138 * like disconnection and tagged 139 * queuing for a device. 140 */ 141 u_int8_t queue_flags; /* Queue flags from the control page */ 142 u_int8_t serial_num_len; 143 u_int8_t *serial_num; 144 u_int32_t qfrozen_cnt; 145 u_int32_t flags; 146 #define CAM_DEV_UNCONFIGURED 0x01 147 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 148 #define CAM_DEV_REL_ON_COMPLETE 0x04 149 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 150 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 151 #define CAM_DEV_TAG_AFTER_COUNT 0x20 152 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 153 u_int32_t tag_delay_count; 154 #define CAM_TAG_DELAY_COUNT 5 155 u_int32_t tag_saved_openings; 156 u_int32_t refcount; 157 struct callout_handle c_handle; 158 }; 159 160 /* 161 * Each target is represented by an ET (Existing Target). These 162 * entries are created when a target is successfully probed with an 163 * identify, and removed when a device fails to respond after a number 164 * of retries, or a bus rescan finds the device missing. 165 */ 166 struct cam_et { 167 TAILQ_HEAD(, cam_ed) ed_entries; 168 TAILQ_ENTRY(cam_et) links; 169 struct cam_eb *bus; 170 target_id_t target_id; 171 u_int32_t refcount; 172 u_int generation; 173 struct timeval last_reset; 174 }; 175 176 /* 177 * Each bus is represented by an EB (Existing Bus). These entries 178 * are created by calls to xpt_bus_register and deleted by calls to 179 * xpt_bus_deregister. 180 */ 181 struct cam_eb { 182 TAILQ_HEAD(, cam_et) et_entries; 183 TAILQ_ENTRY(cam_eb) links; 184 path_id_t path_id; 185 struct cam_sim *sim; 186 struct timeval last_reset; 187 u_int32_t flags; 188 #define CAM_EB_RUNQ_SCHEDULED 0x01 189 u_int32_t refcount; 190 u_int generation; 191 }; 192 193 struct cam_path { 194 struct cam_periph *periph; 195 struct cam_eb *bus; 196 struct cam_et *target; 197 struct cam_ed *device; 198 }; 199 200 struct xpt_quirk_entry { 201 struct scsi_inquiry_pattern inq_pat; 202 u_int8_t quirks; 203 #define CAM_QUIRK_NOLUNS 0x01 204 #define CAM_QUIRK_NOSERIAL 0x02 205 #define CAM_QUIRK_HILUNS 0x04 206 #define CAM_QUIRK_NOHILUNS 0x08 207 u_int mintags; 208 u_int maxtags; 209 }; 210 #define CAM_SCSI2_MAXLUN 8 211 /* 212 * If we're not quirked to search <= the first 8 luns 213 * and we are either quirked to search above lun 8, 214 * or we're > SCSI-2, we can look for luns above lun 8. 215 */ 216 #define CAN_SRCH_HI(dv) \ 217 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 218 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 219 || SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)) 220 221 typedef enum { 222 XPT_FLAG_OPEN = 0x01 223 } xpt_flags; 224 225 struct xpt_softc { 226 xpt_flags flags; 227 u_int32_t generation; 228 }; 229 230 static const char quantum[] = "QUANTUM"; 231 static const char sony[] = "SONY"; 232 static const char west_digital[] = "WDIGTL"; 233 static const char samsung[] = "SAMSUNG"; 234 static const char seagate[] = "SEAGATE"; 235 static const char microp[] = "MICROP"; 236 237 static struct xpt_quirk_entry xpt_quirk_table[] = 238 { 239 { 240 /* Reports QUEUE FULL for temporary resource shortages */ 241 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 242 /*quirks*/0, /*mintags*/24, /*maxtags*/32 243 }, 244 { 245 /* Reports QUEUE FULL for temporary resource shortages */ 246 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 247 /*quirks*/0, /*mintags*/24, /*maxtags*/32 248 }, 249 { 250 /* Reports QUEUE FULL for temporary resource shortages */ 251 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 252 /*quirks*/0, /*mintags*/24, /*maxtags*/32 253 }, 254 { 255 /* Broken tagged queuing drive */ 256 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 257 /*quirks*/0, /*mintags*/0, /*maxtags*/0 258 }, 259 { 260 /* Broken tagged queuing drive */ 261 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 262 /*quirks*/0, /*mintags*/0, /*maxtags*/0 263 }, 264 { 265 /* Broken tagged queuing drive */ 266 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 267 /*quirks*/0, /*mintags*/0, /*maxtags*/0 268 }, 269 { 270 /* 271 * Unfortunately, the Quantum Atlas III has the same 272 * problem as the Atlas II drives above. 273 * Reported by: "Johan Granlund" <johan@granlund.nu> 274 * 275 * For future reference, the drive with the problem was: 276 * QUANTUM QM39100TD-SW N1B0 277 * 278 * It's possible that Quantum will fix the problem in later 279 * firmware revisions. If that happens, the quirk entry 280 * will need to be made specific to the firmware revisions 281 * with the problem. 282 * 283 */ 284 /* Reports QUEUE FULL for temporary resource shortages */ 285 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 286 /*quirks*/0, /*mintags*/24, /*maxtags*/32 287 }, 288 { 289 /* 290 * 18 Gig Atlas III, same problem as the 9G version. 291 * Reported by: Andre Albsmeier 292 * <andre.albsmeier@mchp.siemens.de> 293 * 294 * For future reference, the drive with the problem was: 295 * QUANTUM QM318000TD-S N491 296 */ 297 /* Reports QUEUE FULL for temporary resource shortages */ 298 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 299 /*quirks*/0, /*mintags*/24, /*maxtags*/32 300 }, 301 { 302 /* 303 * Broken tagged queuing drive 304 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 305 * and: Martin Renters <martin@tdc.on.ca> 306 */ 307 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 308 /*quirks*/0, /*mintags*/0, /*maxtags*/0 309 }, 310 /* 311 * The Seagate Medalist Pro drives have very poor write 312 * performance with anything more than 2 tags. 313 * 314 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 315 * Drive: <SEAGATE ST36530N 1444> 316 * 317 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 318 * Drive: <SEAGATE ST34520W 1281> 319 * 320 * No one has actually reported that the 9G version 321 * (ST39140*) of the Medalist Pro has the same problem, but 322 * we're assuming that it does because the 4G and 6.5G 323 * versions of the drive are broken. 324 */ 325 { 326 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 327 /*quirks*/0, /*mintags*/2, /*maxtags*/2 328 }, 329 { 330 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 331 /*quirks*/0, /*mintags*/2, /*maxtags*/2 332 }, 333 { 334 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 335 /*quirks*/0, /*mintags*/2, /*maxtags*/2 336 }, 337 { 338 /* 339 * Slow when tagged queueing is enabled. Write performance 340 * steadily drops off with more and more concurrent 341 * transactions. Best sequential write performance with 342 * tagged queueing turned off and write caching turned on. 343 * 344 * PR: kern/10398 345 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 346 * Drive: DCAS-34330 w/ "S65A" firmware. 347 * 348 * The drive with the problem had the "S65A" firmware 349 * revision, and has also been reported (by Stephen J. 350 * Roznowski <sjr@home.net>) for a drive with the "S61A" 351 * firmware revision. 352 * 353 * Although no one has reported problems with the 2 gig 354 * version of the DCAS drive, the assumption is that it 355 * has the same problems as the 4 gig version. Therefore 356 * this quirk entries disables tagged queueing for all 357 * DCAS drives. 358 */ 359 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 360 /*quirks*/0, /*mintags*/0, /*maxtags*/0 361 }, 362 { 363 /* Broken tagged queuing drive */ 364 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 365 /*quirks*/0, /*mintags*/0, /*maxtags*/0 366 }, 367 { 368 /* Broken tagged queuing drive */ 369 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 370 /*quirks*/0, /*mintags*/0, /*maxtags*/0 371 }, 372 { 373 /* 374 * Broken tagged queuing drive. 375 * Submitted by: 376 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 377 * in PR kern/9535 378 */ 379 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 380 /*quirks*/0, /*mintags*/0, /*maxtags*/0 381 }, 382 { 383 /* 384 * Slow when tagged queueing is enabled. (1.5MB/sec versus 385 * 8MB/sec.) 386 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 387 * Best performance with these drives is achieved with 388 * tagged queueing turned off, and write caching turned on. 389 */ 390 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 391 /*quirks*/0, /*mintags*/0, /*maxtags*/0 392 }, 393 { 394 /* 395 * Slow when tagged queueing is enabled. (1.5MB/sec versus 396 * 8MB/sec.) 397 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 398 * Best performance with these drives is achieved with 399 * tagged queueing turned off, and write caching turned on. 400 */ 401 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 402 /*quirks*/0, /*mintags*/0, /*maxtags*/0 403 }, 404 { 405 /* 406 * Doesn't handle queue full condition correctly, 407 * so we need to limit maxtags to what the device 408 * can handle instead of determining this automatically. 409 */ 410 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 411 /*quirks*/0, /*mintags*/2, /*maxtags*/32 412 }, 413 { 414 /* Really only one LUN */ 415 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 416 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 417 }, 418 { 419 /* I can't believe we need a quirk for DPT volumes. */ 420 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 421 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 422 /*mintags*/0, /*maxtags*/255 423 }, 424 { 425 /* 426 * Many Sony CDROM drives don't like multi-LUN probing. 427 */ 428 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 429 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 430 }, 431 { 432 /* 433 * This drive doesn't like multiple LUN probing. 434 * Submitted by: Parag Patel <parag@cgt.com> 435 */ 436 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 437 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 438 }, 439 { 440 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 441 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 442 }, 443 { 444 /* 445 * The 8200 doesn't like multi-lun probing, and probably 446 * don't like serial number requests either. 447 */ 448 { 449 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 450 "EXB-8200*", "*" 451 }, 452 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 453 }, 454 { 455 /* 456 * Let's try the same as above, but for a drive that says 457 * it's an IPL-6860 but is actually an EXB 8200. 458 */ 459 { 460 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 461 "IPL-6860*", "*" 462 }, 463 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 464 }, 465 { 466 /* 467 * These Hitachi drives don't like multi-lun probing. 468 * The PR submitter has a DK319H, but says that the Linux 469 * kernel has a similar work-around for the DK312 and DK314, 470 * so all DK31* drives are quirked here. 471 * PR: misc/18793 472 * Submitted by: Paul Haddad <paul@pth.com> 473 */ 474 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 475 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 476 }, 477 { 478 /* 479 * The Hitachi CJ series with J8A8 firmware apparantly has 480 * problems with tagged commands. 481 * PR: 23536 482 * Reported by: amagai@nue.org 483 */ 484 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 485 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 486 }, 487 { 488 /* 489 * These are the large storage arrays. 490 * Submitted by: William Carrel <william.carrel@infospace.com> 491 */ 492 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 493 CAM_QUIRK_HILUNS, 2, 1024 494 }, 495 { 496 /* 497 * This old revision of the TDC3600 is also SCSI-1, and 498 * hangs upon serial number probing. 499 */ 500 { 501 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 502 " TDC 3600", "U07:" 503 }, 504 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 505 }, 506 { 507 /* 508 * Maxtor Personal Storage 3000XT (Firewire) 509 * hangs upon serial number probing. 510 */ 511 { 512 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 513 "1394 storage", "*" 514 }, 515 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 516 }, 517 { 518 /* 519 * Would repond to all LUNs if asked for. 520 */ 521 { 522 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 523 "CP150", "*" 524 }, 525 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 526 }, 527 { 528 /* 529 * Would repond to all LUNs if asked for. 530 */ 531 { 532 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 533 "96X2*", "*" 534 }, 535 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 536 }, 537 { 538 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 539 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 540 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 541 }, 542 { 543 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 544 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 545 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 546 }, 547 { 548 /* TeraSolutions special settings for TRC-22 RAID */ 549 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 550 /*quirks*/0, /*mintags*/55, /*maxtags*/255 551 }, 552 { 553 /* Veritas Storage Appliance */ 554 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 555 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 556 }, 557 { 558 /* 559 * Would respond to all LUNs. Device type and removable 560 * flag are jumper-selectable. 561 */ 562 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 563 "Tahiti 1", "*" 564 }, 565 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 566 }, 567 { 568 /* EasyRAID E5A aka. areca ARC-6010 */ 569 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 570 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 571 }, 572 { 573 /* Default tagged queuing parameters for all devices */ 574 { 575 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 576 /*vendor*/"*", /*product*/"*", /*revision*/"*" 577 }, 578 /*quirks*/0, /*mintags*/2, /*maxtags*/255 579 }, 580 }; 581 582 static const int xpt_quirk_table_size = 583 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 584 585 typedef enum { 586 DM_RET_COPY = 0x01, 587 DM_RET_FLAG_MASK = 0x0f, 588 DM_RET_NONE = 0x00, 589 DM_RET_STOP = 0x10, 590 DM_RET_DESCEND = 0x20, 591 DM_RET_ERROR = 0x30, 592 DM_RET_ACTION_MASK = 0xf0 593 } dev_match_ret; 594 595 typedef enum { 596 XPT_DEPTH_BUS, 597 XPT_DEPTH_TARGET, 598 XPT_DEPTH_DEVICE, 599 XPT_DEPTH_PERIPH 600 } xpt_traverse_depth; 601 602 struct xpt_traverse_config { 603 xpt_traverse_depth depth; 604 void *tr_func; 605 void *tr_arg; 606 }; 607 608 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 609 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 610 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 611 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 612 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 613 614 /* Transport layer configuration information */ 615 static struct xpt_softc xsoftc; 616 617 /* Queues for our software interrupt handler */ 618 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 619 static cam_isrq_t cam_bioq; 620 static struct mtx cam_bioq_lock; 621 622 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 623 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 624 static u_int xpt_max_ccbs; /* 625 * Maximum size of ccb pool. Modified as 626 * devices are added/removed or have their 627 * opening counts changed. 628 */ 629 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 630 631 struct cam_periph *xpt_periph; 632 633 static periph_init_t xpt_periph_init; 634 635 static periph_init_t probe_periph_init; 636 637 static struct periph_driver xpt_driver = 638 { 639 xpt_periph_init, "xpt", 640 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 641 }; 642 643 static struct periph_driver probe_driver = 644 { 645 probe_periph_init, "probe", 646 TAILQ_HEAD_INITIALIZER(probe_driver.units) 647 }; 648 649 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 650 PERIPHDRIVER_DECLARE(probe, probe_driver); 651 652 653 static d_open_t xptopen; 654 static d_close_t xptclose; 655 static d_ioctl_t xptioctl; 656 657 static struct cdevsw xpt_cdevsw = { 658 .d_version = D_VERSION, 659 .d_flags = D_NEEDGIANT, 660 .d_open = xptopen, 661 .d_close = xptclose, 662 .d_ioctl = xptioctl, 663 .d_name = "xpt", 664 }; 665 666 static struct intr_config_hook *xpt_config_hook; 667 668 /* Registered busses */ 669 static TAILQ_HEAD(,cam_eb) xpt_busses; 670 static u_int bus_generation; 671 672 /* Storage for debugging datastructures */ 673 #ifdef CAMDEBUG 674 struct cam_path *cam_dpath; 675 u_int32_t cam_dflags; 676 u_int32_t cam_debug_delay; 677 #endif 678 679 /* Pointers to software interrupt handlers */ 680 static void *cambio_ih; 681 682 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 683 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 684 #endif 685 686 /* 687 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 688 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 689 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 690 */ 691 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 692 || defined(CAM_DEBUG_LUN) 693 #ifdef CAMDEBUG 694 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 695 || !defined(CAM_DEBUG_LUN) 696 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 697 and CAM_DEBUG_LUN" 698 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 699 #else /* !CAMDEBUG */ 700 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 701 #endif /* CAMDEBUG */ 702 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 703 704 /* Our boot-time initialization hook */ 705 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 706 707 static moduledata_t cam_moduledata = { 708 "cam", 709 cam_module_event_handler, 710 NULL 711 }; 712 713 static void xpt_init(void *); 714 715 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 716 MODULE_VERSION(cam, 1); 717 718 719 static cam_status xpt_compile_path(struct cam_path *new_path, 720 struct cam_periph *perph, 721 path_id_t path_id, 722 target_id_t target_id, 723 lun_id_t lun_id); 724 725 static void xpt_release_path(struct cam_path *path); 726 727 static void xpt_async_bcast(struct async_list *async_head, 728 u_int32_t async_code, 729 struct cam_path *path, 730 void *async_arg); 731 static void xpt_dev_async(u_int32_t async_code, 732 struct cam_eb *bus, 733 struct cam_et *target, 734 struct cam_ed *device, 735 void *async_arg); 736 static path_id_t xptnextfreepathid(void); 737 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 738 static union ccb *xpt_get_ccb(struct cam_ed *device); 739 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 740 u_int32_t new_priority); 741 static void xpt_run_dev_allocq(struct cam_eb *bus); 742 static void xpt_run_dev_sendq(struct cam_eb *bus); 743 static timeout_t xpt_release_devq_timeout; 744 static timeout_t xpt_release_simq_timeout; 745 static void xpt_release_bus(struct cam_eb *bus); 746 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 747 int run_queue); 748 static struct cam_et* 749 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 750 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 751 static struct cam_ed* 752 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 753 lun_id_t lun_id); 754 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 755 struct cam_ed *device); 756 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 757 static struct cam_eb* 758 xpt_find_bus(path_id_t path_id); 759 static struct cam_et* 760 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 761 static struct cam_ed* 762 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 763 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 764 static void xpt_scan_lun(struct cam_periph *periph, 765 struct cam_path *path, cam_flags flags, 766 union ccb *ccb); 767 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 768 static xpt_busfunc_t xptconfigbuscountfunc; 769 static xpt_busfunc_t xptconfigfunc; 770 static void xpt_config(void *arg); 771 static xpt_devicefunc_t xptpassannouncefunc; 772 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 773 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 774 static void xptpoll(struct cam_sim *sim); 775 static void camisr(void *); 776 #if 0 777 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 778 static void xptasync(struct cam_periph *periph, 779 u_int32_t code, cam_path *path); 780 #endif 781 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 782 u_int num_patterns, struct cam_eb *bus); 783 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 784 u_int num_patterns, 785 struct cam_ed *device); 786 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 787 u_int num_patterns, 788 struct cam_periph *periph); 789 static xpt_busfunc_t xptedtbusfunc; 790 static xpt_targetfunc_t xptedttargetfunc; 791 static xpt_devicefunc_t xptedtdevicefunc; 792 static xpt_periphfunc_t xptedtperiphfunc; 793 static xpt_pdrvfunc_t xptplistpdrvfunc; 794 static xpt_periphfunc_t xptplistperiphfunc; 795 static int xptedtmatch(struct ccb_dev_match *cdm); 796 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 797 static int xptbustraverse(struct cam_eb *start_bus, 798 xpt_busfunc_t *tr_func, void *arg); 799 static int xpttargettraverse(struct cam_eb *bus, 800 struct cam_et *start_target, 801 xpt_targetfunc_t *tr_func, void *arg); 802 static int xptdevicetraverse(struct cam_et *target, 803 struct cam_ed *start_device, 804 xpt_devicefunc_t *tr_func, void *arg); 805 static int xptperiphtraverse(struct cam_ed *device, 806 struct cam_periph *start_periph, 807 xpt_periphfunc_t *tr_func, void *arg); 808 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 809 xpt_pdrvfunc_t *tr_func, void *arg); 810 static int xptpdperiphtraverse(struct periph_driver **pdrv, 811 struct cam_periph *start_periph, 812 xpt_periphfunc_t *tr_func, 813 void *arg); 814 static xpt_busfunc_t xptdefbusfunc; 815 static xpt_targetfunc_t xptdeftargetfunc; 816 static xpt_devicefunc_t xptdefdevicefunc; 817 static xpt_periphfunc_t xptdefperiphfunc; 818 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 819 #ifdef notusedyet 820 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 821 void *arg); 822 #endif 823 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 824 void *arg); 825 #ifdef notusedyet 826 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 827 void *arg); 828 #endif 829 static xpt_devicefunc_t xptsetasyncfunc; 830 static xpt_busfunc_t xptsetasyncbusfunc; 831 static cam_status xptregister(struct cam_periph *periph, 832 void *arg); 833 static cam_status proberegister(struct cam_periph *periph, 834 void *arg); 835 static void probeschedule(struct cam_periph *probe_periph); 836 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 837 static void proberequestdefaultnegotiation(struct cam_periph *periph); 838 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 839 static void probecleanup(struct cam_periph *periph); 840 static void xpt_find_quirk(struct cam_ed *device); 841 #ifdef CAM_NEW_TRAN_CODE 842 static void xpt_devise_transport(struct cam_path *path); 843 #endif /* CAM_NEW_TRAN_CODE */ 844 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 845 struct cam_ed *device, 846 int async_update); 847 static void xpt_toggle_tags(struct cam_path *path); 848 static void xpt_start_tags(struct cam_path *path); 849 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 850 struct cam_ed *dev); 851 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 852 struct cam_ed *dev); 853 static __inline int periph_is_queued(struct cam_periph *periph); 854 static __inline int device_is_alloc_queued(struct cam_ed *device); 855 static __inline int device_is_send_queued(struct cam_ed *device); 856 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 857 858 static __inline int 859 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 860 { 861 int retval; 862 863 if (dev->ccbq.devq_openings > 0) { 864 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 865 cam_ccbq_resize(&dev->ccbq, 866 dev->ccbq.dev_openings 867 + dev->ccbq.dev_active); 868 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 869 } 870 /* 871 * The priority of a device waiting for CCB resources 872 * is that of the the highest priority peripheral driver 873 * enqueued. 874 */ 875 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 876 &dev->alloc_ccb_entry.pinfo, 877 CAMQ_GET_HEAD(&dev->drvq)->priority); 878 } else { 879 retval = 0; 880 } 881 882 return (retval); 883 } 884 885 static __inline int 886 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 887 { 888 int retval; 889 890 if (dev->ccbq.dev_openings > 0) { 891 /* 892 * The priority of a device waiting for controller 893 * resources is that of the the highest priority CCB 894 * enqueued. 895 */ 896 retval = 897 xpt_schedule_dev(&bus->sim->devq->send_queue, 898 &dev->send_ccb_entry.pinfo, 899 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 900 } else { 901 retval = 0; 902 } 903 return (retval); 904 } 905 906 static __inline int 907 periph_is_queued(struct cam_periph *periph) 908 { 909 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 910 } 911 912 static __inline int 913 device_is_alloc_queued(struct cam_ed *device) 914 { 915 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 916 } 917 918 static __inline int 919 device_is_send_queued(struct cam_ed *device) 920 { 921 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 922 } 923 924 static __inline int 925 dev_allocq_is_runnable(struct cam_devq *devq) 926 { 927 /* 928 * Have work to do. 929 * Have space to do more work. 930 * Allowed to do work. 931 */ 932 return ((devq->alloc_queue.qfrozen_cnt == 0) 933 && (devq->alloc_queue.entries > 0) 934 && (devq->alloc_openings > 0)); 935 } 936 937 static void 938 xpt_periph_init() 939 { 940 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 941 } 942 943 static void 944 probe_periph_init() 945 { 946 } 947 948 949 static void 950 xptdone(struct cam_periph *periph, union ccb *done_ccb) 951 { 952 /* Caller will release the CCB */ 953 wakeup(&done_ccb->ccb_h.cbfcnp); 954 } 955 956 static int 957 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 958 { 959 int unit; 960 961 unit = minor(dev) & 0xff; 962 963 /* 964 * Only allow read-write access. 965 */ 966 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 967 return(EPERM); 968 969 /* 970 * We don't allow nonblocking access. 971 */ 972 if ((flags & O_NONBLOCK) != 0) { 973 printf("xpt%d: can't do nonblocking access\n", unit); 974 return(ENODEV); 975 } 976 977 /* 978 * We only have one transport layer right now. If someone accesses 979 * us via something other than minor number 1, point out their 980 * mistake. 981 */ 982 if (unit != 0) { 983 printf("xptopen: got invalid xpt unit %d\n", unit); 984 return(ENXIO); 985 } 986 987 /* Mark ourselves open */ 988 xsoftc.flags |= XPT_FLAG_OPEN; 989 990 return(0); 991 } 992 993 static int 994 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 995 { 996 int unit; 997 998 unit = minor(dev) & 0xff; 999 1000 /* 1001 * We only have one transport layer right now. If someone accesses 1002 * us via something other than minor number 1, point out their 1003 * mistake. 1004 */ 1005 if (unit != 0) { 1006 printf("xptclose: got invalid xpt unit %d\n", unit); 1007 return(ENXIO); 1008 } 1009 1010 /* Mark ourselves closed */ 1011 xsoftc.flags &= ~XPT_FLAG_OPEN; 1012 1013 return(0); 1014 } 1015 1016 static int 1017 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1018 { 1019 int unit, error; 1020 1021 error = 0; 1022 unit = minor(dev) & 0xff; 1023 1024 /* 1025 * We only have one transport layer right now. If someone accesses 1026 * us via something other than minor number 1, point out their 1027 * mistake. 1028 */ 1029 if (unit != 0) { 1030 printf("xptioctl: got invalid xpt unit %d\n", unit); 1031 return(ENXIO); 1032 } 1033 1034 switch(cmd) { 1035 /* 1036 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1037 * to accept CCB types that don't quite make sense to send through a 1038 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1039 * in the CAM spec. 1040 */ 1041 case CAMIOCOMMAND: { 1042 union ccb *ccb; 1043 union ccb *inccb; 1044 1045 inccb = (union ccb *)addr; 1046 1047 switch(inccb->ccb_h.func_code) { 1048 case XPT_SCAN_BUS: 1049 case XPT_RESET_BUS: 1050 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1051 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1052 error = EINVAL; 1053 break; 1054 } 1055 /* FALLTHROUGH */ 1056 case XPT_PATH_INQ: 1057 case XPT_ENG_INQ: 1058 case XPT_SCAN_LUN: 1059 1060 ccb = xpt_alloc_ccb(); 1061 1062 /* 1063 * Create a path using the bus, target, and lun the 1064 * user passed in. 1065 */ 1066 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1067 inccb->ccb_h.path_id, 1068 inccb->ccb_h.target_id, 1069 inccb->ccb_h.target_lun) != 1070 CAM_REQ_CMP){ 1071 error = EINVAL; 1072 xpt_free_ccb(ccb); 1073 break; 1074 } 1075 /* Ensure all of our fields are correct */ 1076 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1077 inccb->ccb_h.pinfo.priority); 1078 xpt_merge_ccb(ccb, inccb); 1079 ccb->ccb_h.cbfcnp = xptdone; 1080 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1081 bcopy(ccb, inccb, sizeof(union ccb)); 1082 xpt_free_path(ccb->ccb_h.path); 1083 xpt_free_ccb(ccb); 1084 break; 1085 1086 case XPT_DEBUG: { 1087 union ccb ccb; 1088 1089 /* 1090 * This is an immediate CCB, so it's okay to 1091 * allocate it on the stack. 1092 */ 1093 1094 /* 1095 * Create a path using the bus, target, and lun the 1096 * user passed in. 1097 */ 1098 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1099 inccb->ccb_h.path_id, 1100 inccb->ccb_h.target_id, 1101 inccb->ccb_h.target_lun) != 1102 CAM_REQ_CMP){ 1103 error = EINVAL; 1104 break; 1105 } 1106 /* Ensure all of our fields are correct */ 1107 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1108 inccb->ccb_h.pinfo.priority); 1109 xpt_merge_ccb(&ccb, inccb); 1110 ccb.ccb_h.cbfcnp = xptdone; 1111 xpt_action(&ccb); 1112 bcopy(&ccb, inccb, sizeof(union ccb)); 1113 xpt_free_path(ccb.ccb_h.path); 1114 break; 1115 1116 } 1117 case XPT_DEV_MATCH: { 1118 struct cam_periph_map_info mapinfo; 1119 struct cam_path *old_path; 1120 1121 /* 1122 * We can't deal with physical addresses for this 1123 * type of transaction. 1124 */ 1125 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1126 error = EINVAL; 1127 break; 1128 } 1129 1130 /* 1131 * Save this in case the caller had it set to 1132 * something in particular. 1133 */ 1134 old_path = inccb->ccb_h.path; 1135 1136 /* 1137 * We really don't need a path for the matching 1138 * code. The path is needed because of the 1139 * debugging statements in xpt_action(). They 1140 * assume that the CCB has a valid path. 1141 */ 1142 inccb->ccb_h.path = xpt_periph->path; 1143 1144 bzero(&mapinfo, sizeof(mapinfo)); 1145 1146 /* 1147 * Map the pattern and match buffers into kernel 1148 * virtual address space. 1149 */ 1150 error = cam_periph_mapmem(inccb, &mapinfo); 1151 1152 if (error) { 1153 inccb->ccb_h.path = old_path; 1154 break; 1155 } 1156 1157 /* 1158 * This is an immediate CCB, we can send it on directly. 1159 */ 1160 xpt_action(inccb); 1161 1162 /* 1163 * Map the buffers back into user space. 1164 */ 1165 cam_periph_unmapmem(inccb, &mapinfo); 1166 1167 inccb->ccb_h.path = old_path; 1168 1169 error = 0; 1170 break; 1171 } 1172 default: 1173 error = ENOTSUP; 1174 break; 1175 } 1176 break; 1177 } 1178 /* 1179 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1180 * with the periphal driver name and unit name filled in. The other 1181 * fields don't really matter as input. The passthrough driver name 1182 * ("pass"), and unit number are passed back in the ccb. The current 1183 * device generation number, and the index into the device peripheral 1184 * driver list, and the status are also passed back. Note that 1185 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1186 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1187 * (or rather should be) impossible for the device peripheral driver 1188 * list to change since we look at the whole thing in one pass, and 1189 * we do it with splcam protection. 1190 * 1191 */ 1192 case CAMGETPASSTHRU: { 1193 union ccb *ccb; 1194 struct cam_periph *periph; 1195 struct periph_driver **p_drv; 1196 char *name; 1197 u_int unit; 1198 u_int cur_generation; 1199 int base_periph_found; 1200 int splbreaknum; 1201 int s; 1202 1203 ccb = (union ccb *)addr; 1204 unit = ccb->cgdl.unit_number; 1205 name = ccb->cgdl.periph_name; 1206 /* 1207 * Every 100 devices, we want to drop our spl protection to 1208 * give the software interrupt handler a chance to run. 1209 * Most systems won't run into this check, but this should 1210 * avoid starvation in the software interrupt handler in 1211 * large systems. 1212 */ 1213 splbreaknum = 100; 1214 1215 ccb = (union ccb *)addr; 1216 1217 base_periph_found = 0; 1218 1219 /* 1220 * Sanity check -- make sure we don't get a null peripheral 1221 * driver name. 1222 */ 1223 if (*ccb->cgdl.periph_name == '\0') { 1224 error = EINVAL; 1225 break; 1226 } 1227 1228 /* Keep the list from changing while we traverse it */ 1229 s = splcam(); 1230 ptstartover: 1231 cur_generation = xsoftc.generation; 1232 1233 /* first find our driver in the list of drivers */ 1234 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1235 if (strcmp((*p_drv)->driver_name, name) == 0) 1236 break; 1237 1238 if (*p_drv == NULL) { 1239 splx(s); 1240 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1241 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1242 *ccb->cgdl.periph_name = '\0'; 1243 ccb->cgdl.unit_number = 0; 1244 error = ENOENT; 1245 break; 1246 } 1247 1248 /* 1249 * Run through every peripheral instance of this driver 1250 * and check to see whether it matches the unit passed 1251 * in by the user. If it does, get out of the loops and 1252 * find the passthrough driver associated with that 1253 * peripheral driver. 1254 */ 1255 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1256 periph = TAILQ_NEXT(periph, unit_links)) { 1257 1258 if (periph->unit_number == unit) { 1259 break; 1260 } else if (--splbreaknum == 0) { 1261 splx(s); 1262 s = splcam(); 1263 splbreaknum = 100; 1264 if (cur_generation != xsoftc.generation) 1265 goto ptstartover; 1266 } 1267 } 1268 /* 1269 * If we found the peripheral driver that the user passed 1270 * in, go through all of the peripheral drivers for that 1271 * particular device and look for a passthrough driver. 1272 */ 1273 if (periph != NULL) { 1274 struct cam_ed *device; 1275 int i; 1276 1277 base_periph_found = 1; 1278 device = periph->path->device; 1279 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1280 periph != NULL; 1281 periph = SLIST_NEXT(periph, periph_links), i++) { 1282 /* 1283 * Check to see whether we have a 1284 * passthrough device or not. 1285 */ 1286 if (strcmp(periph->periph_name, "pass") == 0) { 1287 /* 1288 * Fill in the getdevlist fields. 1289 */ 1290 strcpy(ccb->cgdl.periph_name, 1291 periph->periph_name); 1292 ccb->cgdl.unit_number = 1293 periph->unit_number; 1294 if (SLIST_NEXT(periph, periph_links)) 1295 ccb->cgdl.status = 1296 CAM_GDEVLIST_MORE_DEVS; 1297 else 1298 ccb->cgdl.status = 1299 CAM_GDEVLIST_LAST_DEVICE; 1300 ccb->cgdl.generation = 1301 device->generation; 1302 ccb->cgdl.index = i; 1303 /* 1304 * Fill in some CCB header fields 1305 * that the user may want. 1306 */ 1307 ccb->ccb_h.path_id = 1308 periph->path->bus->path_id; 1309 ccb->ccb_h.target_id = 1310 periph->path->target->target_id; 1311 ccb->ccb_h.target_lun = 1312 periph->path->device->lun_id; 1313 ccb->ccb_h.status = CAM_REQ_CMP; 1314 break; 1315 } 1316 } 1317 } 1318 1319 /* 1320 * If the periph is null here, one of two things has 1321 * happened. The first possibility is that we couldn't 1322 * find the unit number of the particular peripheral driver 1323 * that the user is asking about. e.g. the user asks for 1324 * the passthrough driver for "da11". We find the list of 1325 * "da" peripherals all right, but there is no unit 11. 1326 * The other possibility is that we went through the list 1327 * of peripheral drivers attached to the device structure, 1328 * but didn't find one with the name "pass". Either way, 1329 * we return ENOENT, since we couldn't find something. 1330 */ 1331 if (periph == NULL) { 1332 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1333 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1334 *ccb->cgdl.periph_name = '\0'; 1335 ccb->cgdl.unit_number = 0; 1336 error = ENOENT; 1337 /* 1338 * It is unfortunate that this is even necessary, 1339 * but there are many, many clueless users out there. 1340 * If this is true, the user is looking for the 1341 * passthrough driver, but doesn't have one in his 1342 * kernel. 1343 */ 1344 if (base_periph_found == 1) { 1345 printf("xptioctl: pass driver is not in the " 1346 "kernel\n"); 1347 printf("xptioctl: put \"device pass0\" in " 1348 "your kernel config file\n"); 1349 } 1350 } 1351 splx(s); 1352 break; 1353 } 1354 default: 1355 error = ENOTTY; 1356 break; 1357 } 1358 1359 return(error); 1360 } 1361 1362 static int 1363 cam_module_event_handler(module_t mod, int what, void *arg) 1364 { 1365 if (what == MOD_LOAD) { 1366 xpt_init(NULL); 1367 } else if (what == MOD_UNLOAD) { 1368 return EBUSY; 1369 } else { 1370 return EOPNOTSUPP; 1371 } 1372 1373 return 0; 1374 } 1375 1376 /* Functions accessed by the peripheral drivers */ 1377 static void 1378 xpt_init(dummy) 1379 void *dummy; 1380 { 1381 struct cam_sim *xpt_sim; 1382 struct cam_path *path; 1383 struct cam_devq *devq; 1384 cam_status status; 1385 1386 TAILQ_INIT(&xpt_busses); 1387 TAILQ_INIT(&cam_bioq); 1388 SLIST_INIT(&ccb_freeq); 1389 STAILQ_INIT(&highpowerq); 1390 1391 mtx_init(&cam_bioq_lock, "CAM BIOQ lock", NULL, MTX_DEF); 1392 1393 /* 1394 * The xpt layer is, itself, the equivelent of a SIM. 1395 * Allow 16 ccbs in the ccb pool for it. This should 1396 * give decent parallelism when we probe busses and 1397 * perform other XPT functions. 1398 */ 1399 devq = cam_simq_alloc(16); 1400 xpt_sim = cam_sim_alloc(xptaction, 1401 xptpoll, 1402 "xpt", 1403 /*softc*/NULL, 1404 /*unit*/0, 1405 /*max_dev_transactions*/0, 1406 /*max_tagged_dev_transactions*/0, 1407 devq); 1408 xpt_max_ccbs = 16; 1409 1410 xpt_bus_register(xpt_sim, /*bus #*/0); 1411 1412 /* 1413 * Looking at the XPT from the SIM layer, the XPT is 1414 * the equivelent of a peripheral driver. Allocate 1415 * a peripheral driver entry for us. 1416 */ 1417 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1418 CAM_TARGET_WILDCARD, 1419 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1420 printf("xpt_init: xpt_create_path failed with status %#x," 1421 " failing attach\n", status); 1422 return; 1423 } 1424 1425 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1426 path, NULL, 0, NULL); 1427 xpt_free_path(path); 1428 1429 xpt_sim->softc = xpt_periph; 1430 1431 /* 1432 * Register a callback for when interrupts are enabled. 1433 */ 1434 xpt_config_hook = 1435 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1436 M_TEMP, M_NOWAIT | M_ZERO); 1437 if (xpt_config_hook == NULL) { 1438 printf("xpt_init: Cannot malloc config hook " 1439 "- failing attach\n"); 1440 return; 1441 } 1442 1443 xpt_config_hook->ich_func = xpt_config; 1444 if (config_intrhook_establish(xpt_config_hook) != 0) { 1445 free (xpt_config_hook, M_TEMP); 1446 printf("xpt_init: config_intrhook_establish failed " 1447 "- failing attach\n"); 1448 } 1449 1450 /* Install our software interrupt handlers */ 1451 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1452 } 1453 1454 static cam_status 1455 xptregister(struct cam_periph *periph, void *arg) 1456 { 1457 if (periph == NULL) { 1458 printf("xptregister: periph was NULL!!\n"); 1459 return(CAM_REQ_CMP_ERR); 1460 } 1461 1462 periph->softc = NULL; 1463 1464 xpt_periph = periph; 1465 1466 return(CAM_REQ_CMP); 1467 } 1468 1469 int32_t 1470 xpt_add_periph(struct cam_periph *periph) 1471 { 1472 struct cam_ed *device; 1473 int32_t status; 1474 struct periph_list *periph_head; 1475 1476 GIANT_REQUIRED; 1477 1478 device = periph->path->device; 1479 1480 periph_head = &device->periphs; 1481 1482 status = CAM_REQ_CMP; 1483 1484 if (device != NULL) { 1485 int s; 1486 1487 /* 1488 * Make room for this peripheral 1489 * so it will fit in the queue 1490 * when it's scheduled to run 1491 */ 1492 s = splsoftcam(); 1493 status = camq_resize(&device->drvq, 1494 device->drvq.array_size + 1); 1495 1496 device->generation++; 1497 1498 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1499 1500 splx(s); 1501 } 1502 1503 xsoftc.generation++; 1504 1505 return (status); 1506 } 1507 1508 void 1509 xpt_remove_periph(struct cam_periph *periph) 1510 { 1511 struct cam_ed *device; 1512 1513 GIANT_REQUIRED; 1514 1515 device = periph->path->device; 1516 1517 if (device != NULL) { 1518 int s; 1519 struct periph_list *periph_head; 1520 1521 periph_head = &device->periphs; 1522 1523 /* Release the slot for this peripheral */ 1524 s = splsoftcam(); 1525 camq_resize(&device->drvq, device->drvq.array_size - 1); 1526 1527 device->generation++; 1528 1529 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1530 1531 splx(s); 1532 } 1533 1534 xsoftc.generation++; 1535 1536 } 1537 1538 #ifdef CAM_NEW_TRAN_CODE 1539 1540 void 1541 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1542 { 1543 struct ccb_pathinq cpi; 1544 struct ccb_trans_settings cts; 1545 struct cam_path *path; 1546 u_int speed; 1547 u_int freq; 1548 u_int mb; 1549 int s; 1550 1551 GIANT_REQUIRED; 1552 1553 path = periph->path; 1554 /* 1555 * To ensure that this is printed in one piece, 1556 * mask out CAM interrupts. 1557 */ 1558 s = splsoftcam(); 1559 printf("%s%d at %s%d bus %d target %d lun %d\n", 1560 periph->periph_name, periph->unit_number, 1561 path->bus->sim->sim_name, 1562 path->bus->sim->unit_number, 1563 path->bus->sim->bus_id, 1564 path->target->target_id, 1565 path->device->lun_id); 1566 printf("%s%d: ", periph->periph_name, periph->unit_number); 1567 scsi_print_inquiry(&path->device->inq_data); 1568 if (bootverbose && path->device->serial_num_len > 0) { 1569 /* Don't wrap the screen - print only the first 60 chars */ 1570 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1571 periph->unit_number, path->device->serial_num); 1572 } 1573 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1574 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1575 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1576 xpt_action((union ccb*)&cts); 1577 1578 /* Ask the SIM for its base transfer speed */ 1579 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1580 cpi.ccb_h.func_code = XPT_PATH_INQ; 1581 xpt_action((union ccb *)&cpi); 1582 1583 speed = cpi.base_transfer_speed; 1584 freq = 0; 1585 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1586 struct ccb_trans_settings_spi *spi; 1587 1588 spi = &cts.xport_specific.spi; 1589 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1590 && spi->sync_offset != 0) { 1591 freq = scsi_calc_syncsrate(spi->sync_period); 1592 speed = freq; 1593 } 1594 1595 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1596 speed *= (0x01 << spi->bus_width); 1597 } 1598 1599 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1600 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1601 if (fc->valid & CTS_FC_VALID_SPEED) { 1602 speed = fc->bitrate; 1603 } 1604 } 1605 1606 mb = speed / 1000; 1607 if (mb > 0) 1608 printf("%s%d: %d.%03dMB/s transfers", 1609 periph->periph_name, periph->unit_number, 1610 mb, speed % 1000); 1611 else 1612 printf("%s%d: %dKB/s transfers", periph->periph_name, 1613 periph->unit_number, speed); 1614 /* Report additional information about SPI connections */ 1615 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1616 struct ccb_trans_settings_spi *spi; 1617 1618 spi = &cts.xport_specific.spi; 1619 if (freq != 0) { 1620 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1621 freq % 1000, 1622 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1623 ? " DT" : "", 1624 spi->sync_offset); 1625 } 1626 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1627 && spi->bus_width > 0) { 1628 if (freq != 0) { 1629 printf(", "); 1630 } else { 1631 printf(" ("); 1632 } 1633 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1634 } else if (freq != 0) { 1635 printf(")"); 1636 } 1637 } 1638 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1639 struct ccb_trans_settings_fc *fc; 1640 1641 fc = &cts.xport_specific.fc; 1642 if (fc->valid & CTS_FC_VALID_WWNN) 1643 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1644 if (fc->valid & CTS_FC_VALID_WWPN) 1645 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1646 if (fc->valid & CTS_FC_VALID_PORT) 1647 printf(" PortID 0x%x", fc->port); 1648 } 1649 1650 if (path->device->inq_flags & SID_CmdQue 1651 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1652 printf("\n%s%d: Tagged Queueing Enabled", 1653 periph->periph_name, periph->unit_number); 1654 } 1655 printf("\n"); 1656 1657 /* 1658 * We only want to print the caller's announce string if they've 1659 * passed one in.. 1660 */ 1661 if (announce_string != NULL) 1662 printf("%s%d: %s\n", periph->periph_name, 1663 periph->unit_number, announce_string); 1664 splx(s); 1665 } 1666 #else /* CAM_NEW_TRAN_CODE */ 1667 void 1668 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1669 { 1670 int s; 1671 u_int mb; 1672 struct cam_path *path; 1673 struct ccb_trans_settings cts; 1674 1675 GIANT_REQUIRED; 1676 1677 path = periph->path; 1678 /* 1679 * To ensure that this is printed in one piece, 1680 * mask out CAM interrupts. 1681 */ 1682 s = splsoftcam(); 1683 printf("%s%d at %s%d bus %d target %d lun %d\n", 1684 periph->periph_name, periph->unit_number, 1685 path->bus->sim->sim_name, 1686 path->bus->sim->unit_number, 1687 path->bus->sim->bus_id, 1688 path->target->target_id, 1689 path->device->lun_id); 1690 printf("%s%d: ", periph->periph_name, periph->unit_number); 1691 scsi_print_inquiry(&path->device->inq_data); 1692 if ((bootverbose) 1693 && (path->device->serial_num_len > 0)) { 1694 /* Don't wrap the screen - print only the first 60 chars */ 1695 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1696 periph->unit_number, path->device->serial_num); 1697 } 1698 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1699 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1700 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1701 xpt_action((union ccb*)&cts); 1702 if (cts.ccb_h.status == CAM_REQ_CMP) { 1703 u_int speed; 1704 u_int freq; 1705 1706 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1707 && cts.sync_offset != 0) { 1708 freq = scsi_calc_syncsrate(cts.sync_period); 1709 speed = freq; 1710 } else { 1711 struct ccb_pathinq cpi; 1712 1713 /* Ask the SIM for its base transfer speed */ 1714 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1715 cpi.ccb_h.func_code = XPT_PATH_INQ; 1716 xpt_action((union ccb *)&cpi); 1717 1718 speed = cpi.base_transfer_speed; 1719 freq = 0; 1720 } 1721 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1722 speed *= (0x01 << cts.bus_width); 1723 mb = speed / 1000; 1724 if (mb > 0) 1725 printf("%s%d: %d.%03dMB/s transfers", 1726 periph->periph_name, periph->unit_number, 1727 mb, speed % 1000); 1728 else 1729 printf("%s%d: %dKB/s transfers", periph->periph_name, 1730 periph->unit_number, speed); 1731 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1732 && cts.sync_offset != 0) { 1733 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1734 freq % 1000, cts.sync_offset); 1735 } 1736 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1737 && cts.bus_width > 0) { 1738 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1739 && cts.sync_offset != 0) { 1740 printf(", "); 1741 } else { 1742 printf(" ("); 1743 } 1744 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1745 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1746 && cts.sync_offset != 0) { 1747 printf(")"); 1748 } 1749 1750 if (path->device->inq_flags & SID_CmdQue 1751 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1752 printf(", Tagged Queueing Enabled"); 1753 } 1754 1755 printf("\n"); 1756 } else if (path->device->inq_flags & SID_CmdQue 1757 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1758 printf("%s%d: Tagged Queueing Enabled\n", 1759 periph->periph_name, periph->unit_number); 1760 } 1761 1762 /* 1763 * We only want to print the caller's announce string if they've 1764 * passed one in.. 1765 */ 1766 if (announce_string != NULL) 1767 printf("%s%d: %s\n", periph->periph_name, 1768 periph->unit_number, announce_string); 1769 splx(s); 1770 } 1771 1772 #endif /* CAM_NEW_TRAN_CODE */ 1773 1774 static dev_match_ret 1775 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1776 struct cam_eb *bus) 1777 { 1778 dev_match_ret retval; 1779 int i; 1780 1781 retval = DM_RET_NONE; 1782 1783 /* 1784 * If we aren't given something to match against, that's an error. 1785 */ 1786 if (bus == NULL) 1787 return(DM_RET_ERROR); 1788 1789 /* 1790 * If there are no match entries, then this bus matches no 1791 * matter what. 1792 */ 1793 if ((patterns == NULL) || (num_patterns == 0)) 1794 return(DM_RET_DESCEND | DM_RET_COPY); 1795 1796 for (i = 0; i < num_patterns; i++) { 1797 struct bus_match_pattern *cur_pattern; 1798 1799 /* 1800 * If the pattern in question isn't for a bus node, we 1801 * aren't interested. However, we do indicate to the 1802 * calling routine that we should continue descending the 1803 * tree, since the user wants to match against lower-level 1804 * EDT elements. 1805 */ 1806 if (patterns[i].type != DEV_MATCH_BUS) { 1807 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1808 retval |= DM_RET_DESCEND; 1809 continue; 1810 } 1811 1812 cur_pattern = &patterns[i].pattern.bus_pattern; 1813 1814 /* 1815 * If they want to match any bus node, we give them any 1816 * device node. 1817 */ 1818 if (cur_pattern->flags == BUS_MATCH_ANY) { 1819 /* set the copy flag */ 1820 retval |= DM_RET_COPY; 1821 1822 /* 1823 * If we've already decided on an action, go ahead 1824 * and return. 1825 */ 1826 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1827 return(retval); 1828 } 1829 1830 /* 1831 * Not sure why someone would do this... 1832 */ 1833 if (cur_pattern->flags == BUS_MATCH_NONE) 1834 continue; 1835 1836 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1837 && (cur_pattern->path_id != bus->path_id)) 1838 continue; 1839 1840 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1841 && (cur_pattern->bus_id != bus->sim->bus_id)) 1842 continue; 1843 1844 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1845 && (cur_pattern->unit_number != bus->sim->unit_number)) 1846 continue; 1847 1848 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1849 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1850 DEV_IDLEN) != 0)) 1851 continue; 1852 1853 /* 1854 * If we get to this point, the user definitely wants 1855 * information on this bus. So tell the caller to copy the 1856 * data out. 1857 */ 1858 retval |= DM_RET_COPY; 1859 1860 /* 1861 * If the return action has been set to descend, then we 1862 * know that we've already seen a non-bus matching 1863 * expression, therefore we need to further descend the tree. 1864 * This won't change by continuing around the loop, so we 1865 * go ahead and return. If we haven't seen a non-bus 1866 * matching expression, we keep going around the loop until 1867 * we exhaust the matching expressions. We'll set the stop 1868 * flag once we fall out of the loop. 1869 */ 1870 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1871 return(retval); 1872 } 1873 1874 /* 1875 * If the return action hasn't been set to descend yet, that means 1876 * we haven't seen anything other than bus matching patterns. So 1877 * tell the caller to stop descending the tree -- the user doesn't 1878 * want to match against lower level tree elements. 1879 */ 1880 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1881 retval |= DM_RET_STOP; 1882 1883 return(retval); 1884 } 1885 1886 static dev_match_ret 1887 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1888 struct cam_ed *device) 1889 { 1890 dev_match_ret retval; 1891 int i; 1892 1893 retval = DM_RET_NONE; 1894 1895 /* 1896 * If we aren't given something to match against, that's an error. 1897 */ 1898 if (device == NULL) 1899 return(DM_RET_ERROR); 1900 1901 /* 1902 * If there are no match entries, then this device matches no 1903 * matter what. 1904 */ 1905 if ((patterns == NULL) || (num_patterns == 0)) 1906 return(DM_RET_DESCEND | DM_RET_COPY); 1907 1908 for (i = 0; i < num_patterns; i++) { 1909 struct device_match_pattern *cur_pattern; 1910 1911 /* 1912 * If the pattern in question isn't for a device node, we 1913 * aren't interested. 1914 */ 1915 if (patterns[i].type != DEV_MATCH_DEVICE) { 1916 if ((patterns[i].type == DEV_MATCH_PERIPH) 1917 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1918 retval |= DM_RET_DESCEND; 1919 continue; 1920 } 1921 1922 cur_pattern = &patterns[i].pattern.device_pattern; 1923 1924 /* 1925 * If they want to match any device node, we give them any 1926 * device node. 1927 */ 1928 if (cur_pattern->flags == DEV_MATCH_ANY) { 1929 /* set the copy flag */ 1930 retval |= DM_RET_COPY; 1931 1932 1933 /* 1934 * If we've already decided on an action, go ahead 1935 * and return. 1936 */ 1937 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1938 return(retval); 1939 } 1940 1941 /* 1942 * Not sure why someone would do this... 1943 */ 1944 if (cur_pattern->flags == DEV_MATCH_NONE) 1945 continue; 1946 1947 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1948 && (cur_pattern->path_id != device->target->bus->path_id)) 1949 continue; 1950 1951 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1952 && (cur_pattern->target_id != device->target->target_id)) 1953 continue; 1954 1955 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1956 && (cur_pattern->target_lun != device->lun_id)) 1957 continue; 1958 1959 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1960 && (cam_quirkmatch((caddr_t)&device->inq_data, 1961 (caddr_t)&cur_pattern->inq_pat, 1962 1, sizeof(cur_pattern->inq_pat), 1963 scsi_static_inquiry_match) == NULL)) 1964 continue; 1965 1966 /* 1967 * If we get to this point, the user definitely wants 1968 * information on this device. So tell the caller to copy 1969 * the data out. 1970 */ 1971 retval |= DM_RET_COPY; 1972 1973 /* 1974 * If the return action has been set to descend, then we 1975 * know that we've already seen a peripheral matching 1976 * expression, therefore we need to further descend the tree. 1977 * This won't change by continuing around the loop, so we 1978 * go ahead and return. If we haven't seen a peripheral 1979 * matching expression, we keep going around the loop until 1980 * we exhaust the matching expressions. We'll set the stop 1981 * flag once we fall out of the loop. 1982 */ 1983 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1984 return(retval); 1985 } 1986 1987 /* 1988 * If the return action hasn't been set to descend yet, that means 1989 * we haven't seen any peripheral matching patterns. So tell the 1990 * caller to stop descending the tree -- the user doesn't want to 1991 * match against lower level tree elements. 1992 */ 1993 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1994 retval |= DM_RET_STOP; 1995 1996 return(retval); 1997 } 1998 1999 /* 2000 * Match a single peripheral against any number of match patterns. 2001 */ 2002 static dev_match_ret 2003 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 2004 struct cam_periph *periph) 2005 { 2006 dev_match_ret retval; 2007 int i; 2008 2009 /* 2010 * If we aren't given something to match against, that's an error. 2011 */ 2012 if (periph == NULL) 2013 return(DM_RET_ERROR); 2014 2015 /* 2016 * If there are no match entries, then this peripheral matches no 2017 * matter what. 2018 */ 2019 if ((patterns == NULL) || (num_patterns == 0)) 2020 return(DM_RET_STOP | DM_RET_COPY); 2021 2022 /* 2023 * There aren't any nodes below a peripheral node, so there's no 2024 * reason to descend the tree any further. 2025 */ 2026 retval = DM_RET_STOP; 2027 2028 for (i = 0; i < num_patterns; i++) { 2029 struct periph_match_pattern *cur_pattern; 2030 2031 /* 2032 * If the pattern in question isn't for a peripheral, we 2033 * aren't interested. 2034 */ 2035 if (patterns[i].type != DEV_MATCH_PERIPH) 2036 continue; 2037 2038 cur_pattern = &patterns[i].pattern.periph_pattern; 2039 2040 /* 2041 * If they want to match on anything, then we will do so. 2042 */ 2043 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2044 /* set the copy flag */ 2045 retval |= DM_RET_COPY; 2046 2047 /* 2048 * We've already set the return action to stop, 2049 * since there are no nodes below peripherals in 2050 * the tree. 2051 */ 2052 return(retval); 2053 } 2054 2055 /* 2056 * Not sure why someone would do this... 2057 */ 2058 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2059 continue; 2060 2061 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2062 && (cur_pattern->path_id != periph->path->bus->path_id)) 2063 continue; 2064 2065 /* 2066 * For the target and lun id's, we have to make sure the 2067 * target and lun pointers aren't NULL. The xpt peripheral 2068 * has a wildcard target and device. 2069 */ 2070 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2071 && ((periph->path->target == NULL) 2072 ||(cur_pattern->target_id != periph->path->target->target_id))) 2073 continue; 2074 2075 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2076 && ((periph->path->device == NULL) 2077 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2078 continue; 2079 2080 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2081 && (cur_pattern->unit_number != periph->unit_number)) 2082 continue; 2083 2084 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2085 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2086 DEV_IDLEN) != 0)) 2087 continue; 2088 2089 /* 2090 * If we get to this point, the user definitely wants 2091 * information on this peripheral. So tell the caller to 2092 * copy the data out. 2093 */ 2094 retval |= DM_RET_COPY; 2095 2096 /* 2097 * The return action has already been set to stop, since 2098 * peripherals don't have any nodes below them in the EDT. 2099 */ 2100 return(retval); 2101 } 2102 2103 /* 2104 * If we get to this point, the peripheral that was passed in 2105 * doesn't match any of the patterns. 2106 */ 2107 return(retval); 2108 } 2109 2110 static int 2111 xptedtbusfunc(struct cam_eb *bus, void *arg) 2112 { 2113 struct ccb_dev_match *cdm; 2114 dev_match_ret retval; 2115 2116 cdm = (struct ccb_dev_match *)arg; 2117 2118 /* 2119 * If our position is for something deeper in the tree, that means 2120 * that we've already seen this node. So, we keep going down. 2121 */ 2122 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2123 && (cdm->pos.cookie.bus == bus) 2124 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2125 && (cdm->pos.cookie.target != NULL)) 2126 retval = DM_RET_DESCEND; 2127 else 2128 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2129 2130 /* 2131 * If we got an error, bail out of the search. 2132 */ 2133 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2134 cdm->status = CAM_DEV_MATCH_ERROR; 2135 return(0); 2136 } 2137 2138 /* 2139 * If the copy flag is set, copy this bus out. 2140 */ 2141 if (retval & DM_RET_COPY) { 2142 int spaceleft, j; 2143 2144 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2145 sizeof(struct dev_match_result)); 2146 2147 /* 2148 * If we don't have enough space to put in another 2149 * match result, save our position and tell the 2150 * user there are more devices to check. 2151 */ 2152 if (spaceleft < sizeof(struct dev_match_result)) { 2153 bzero(&cdm->pos, sizeof(cdm->pos)); 2154 cdm->pos.position_type = 2155 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2156 2157 cdm->pos.cookie.bus = bus; 2158 cdm->pos.generations[CAM_BUS_GENERATION]= 2159 bus_generation; 2160 cdm->status = CAM_DEV_MATCH_MORE; 2161 return(0); 2162 } 2163 j = cdm->num_matches; 2164 cdm->num_matches++; 2165 cdm->matches[j].type = DEV_MATCH_BUS; 2166 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2167 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2168 cdm->matches[j].result.bus_result.unit_number = 2169 bus->sim->unit_number; 2170 strncpy(cdm->matches[j].result.bus_result.dev_name, 2171 bus->sim->sim_name, DEV_IDLEN); 2172 } 2173 2174 /* 2175 * If the user is only interested in busses, there's no 2176 * reason to descend to the next level in the tree. 2177 */ 2178 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2179 return(1); 2180 2181 /* 2182 * If there is a target generation recorded, check it to 2183 * make sure the target list hasn't changed. 2184 */ 2185 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2186 && (bus == cdm->pos.cookie.bus) 2187 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2188 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2189 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2190 bus->generation)) { 2191 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2192 return(0); 2193 } 2194 2195 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2196 && (cdm->pos.cookie.bus == bus) 2197 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2198 && (cdm->pos.cookie.target != NULL)) 2199 return(xpttargettraverse(bus, 2200 (struct cam_et *)cdm->pos.cookie.target, 2201 xptedttargetfunc, arg)); 2202 else 2203 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2204 } 2205 2206 static int 2207 xptedttargetfunc(struct cam_et *target, void *arg) 2208 { 2209 struct ccb_dev_match *cdm; 2210 2211 cdm = (struct ccb_dev_match *)arg; 2212 2213 /* 2214 * If there is a device list generation recorded, check it to 2215 * make sure the device list hasn't changed. 2216 */ 2217 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2218 && (cdm->pos.cookie.bus == target->bus) 2219 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2220 && (cdm->pos.cookie.target == target) 2221 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2222 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2223 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2224 target->generation)) { 2225 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2226 return(0); 2227 } 2228 2229 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2230 && (cdm->pos.cookie.bus == target->bus) 2231 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2232 && (cdm->pos.cookie.target == target) 2233 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2234 && (cdm->pos.cookie.device != NULL)) 2235 return(xptdevicetraverse(target, 2236 (struct cam_ed *)cdm->pos.cookie.device, 2237 xptedtdevicefunc, arg)); 2238 else 2239 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2240 } 2241 2242 static int 2243 xptedtdevicefunc(struct cam_ed *device, void *arg) 2244 { 2245 2246 struct ccb_dev_match *cdm; 2247 dev_match_ret retval; 2248 2249 cdm = (struct ccb_dev_match *)arg; 2250 2251 /* 2252 * If our position is for something deeper in the tree, that means 2253 * that we've already seen this node. So, we keep going down. 2254 */ 2255 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2256 && (cdm->pos.cookie.device == device) 2257 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2258 && (cdm->pos.cookie.periph != NULL)) 2259 retval = DM_RET_DESCEND; 2260 else 2261 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2262 device); 2263 2264 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2265 cdm->status = CAM_DEV_MATCH_ERROR; 2266 return(0); 2267 } 2268 2269 /* 2270 * If the copy flag is set, copy this device out. 2271 */ 2272 if (retval & DM_RET_COPY) { 2273 int spaceleft, j; 2274 2275 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2276 sizeof(struct dev_match_result)); 2277 2278 /* 2279 * If we don't have enough space to put in another 2280 * match result, save our position and tell the 2281 * user there are more devices to check. 2282 */ 2283 if (spaceleft < sizeof(struct dev_match_result)) { 2284 bzero(&cdm->pos, sizeof(cdm->pos)); 2285 cdm->pos.position_type = 2286 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2287 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2288 2289 cdm->pos.cookie.bus = device->target->bus; 2290 cdm->pos.generations[CAM_BUS_GENERATION]= 2291 bus_generation; 2292 cdm->pos.cookie.target = device->target; 2293 cdm->pos.generations[CAM_TARGET_GENERATION] = 2294 device->target->bus->generation; 2295 cdm->pos.cookie.device = device; 2296 cdm->pos.generations[CAM_DEV_GENERATION] = 2297 device->target->generation; 2298 cdm->status = CAM_DEV_MATCH_MORE; 2299 return(0); 2300 } 2301 j = cdm->num_matches; 2302 cdm->num_matches++; 2303 cdm->matches[j].type = DEV_MATCH_DEVICE; 2304 cdm->matches[j].result.device_result.path_id = 2305 device->target->bus->path_id; 2306 cdm->matches[j].result.device_result.target_id = 2307 device->target->target_id; 2308 cdm->matches[j].result.device_result.target_lun = 2309 device->lun_id; 2310 bcopy(&device->inq_data, 2311 &cdm->matches[j].result.device_result.inq_data, 2312 sizeof(struct scsi_inquiry_data)); 2313 2314 /* Let the user know whether this device is unconfigured */ 2315 if (device->flags & CAM_DEV_UNCONFIGURED) 2316 cdm->matches[j].result.device_result.flags = 2317 DEV_RESULT_UNCONFIGURED; 2318 else 2319 cdm->matches[j].result.device_result.flags = 2320 DEV_RESULT_NOFLAG; 2321 } 2322 2323 /* 2324 * If the user isn't interested in peripherals, don't descend 2325 * the tree any further. 2326 */ 2327 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2328 return(1); 2329 2330 /* 2331 * If there is a peripheral list generation recorded, make sure 2332 * it hasn't changed. 2333 */ 2334 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2335 && (device->target->bus == cdm->pos.cookie.bus) 2336 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2337 && (device->target == cdm->pos.cookie.target) 2338 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2339 && (device == cdm->pos.cookie.device) 2340 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2341 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2342 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2343 device->generation)){ 2344 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2345 return(0); 2346 } 2347 2348 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2349 && (cdm->pos.cookie.bus == device->target->bus) 2350 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2351 && (cdm->pos.cookie.target == device->target) 2352 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2353 && (cdm->pos.cookie.device == device) 2354 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2355 && (cdm->pos.cookie.periph != NULL)) 2356 return(xptperiphtraverse(device, 2357 (struct cam_periph *)cdm->pos.cookie.periph, 2358 xptedtperiphfunc, arg)); 2359 else 2360 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2361 } 2362 2363 static int 2364 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2365 { 2366 struct ccb_dev_match *cdm; 2367 dev_match_ret retval; 2368 2369 cdm = (struct ccb_dev_match *)arg; 2370 2371 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2372 2373 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2374 cdm->status = CAM_DEV_MATCH_ERROR; 2375 return(0); 2376 } 2377 2378 /* 2379 * If the copy flag is set, copy this peripheral out. 2380 */ 2381 if (retval & DM_RET_COPY) { 2382 int spaceleft, j; 2383 2384 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2385 sizeof(struct dev_match_result)); 2386 2387 /* 2388 * If we don't have enough space to put in another 2389 * match result, save our position and tell the 2390 * user there are more devices to check. 2391 */ 2392 if (spaceleft < sizeof(struct dev_match_result)) { 2393 bzero(&cdm->pos, sizeof(cdm->pos)); 2394 cdm->pos.position_type = 2395 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2396 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2397 CAM_DEV_POS_PERIPH; 2398 2399 cdm->pos.cookie.bus = periph->path->bus; 2400 cdm->pos.generations[CAM_BUS_GENERATION]= 2401 bus_generation; 2402 cdm->pos.cookie.target = periph->path->target; 2403 cdm->pos.generations[CAM_TARGET_GENERATION] = 2404 periph->path->bus->generation; 2405 cdm->pos.cookie.device = periph->path->device; 2406 cdm->pos.generations[CAM_DEV_GENERATION] = 2407 periph->path->target->generation; 2408 cdm->pos.cookie.periph = periph; 2409 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2410 periph->path->device->generation; 2411 cdm->status = CAM_DEV_MATCH_MORE; 2412 return(0); 2413 } 2414 2415 j = cdm->num_matches; 2416 cdm->num_matches++; 2417 cdm->matches[j].type = DEV_MATCH_PERIPH; 2418 cdm->matches[j].result.periph_result.path_id = 2419 periph->path->bus->path_id; 2420 cdm->matches[j].result.periph_result.target_id = 2421 periph->path->target->target_id; 2422 cdm->matches[j].result.periph_result.target_lun = 2423 periph->path->device->lun_id; 2424 cdm->matches[j].result.periph_result.unit_number = 2425 periph->unit_number; 2426 strncpy(cdm->matches[j].result.periph_result.periph_name, 2427 periph->periph_name, DEV_IDLEN); 2428 } 2429 2430 return(1); 2431 } 2432 2433 static int 2434 xptedtmatch(struct ccb_dev_match *cdm) 2435 { 2436 int ret; 2437 2438 cdm->num_matches = 0; 2439 2440 /* 2441 * Check the bus list generation. If it has changed, the user 2442 * needs to reset everything and start over. 2443 */ 2444 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2445 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2446 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2447 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2448 return(0); 2449 } 2450 2451 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2452 && (cdm->pos.cookie.bus != NULL)) 2453 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2454 xptedtbusfunc, cdm); 2455 else 2456 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2457 2458 /* 2459 * If we get back 0, that means that we had to stop before fully 2460 * traversing the EDT. It also means that one of the subroutines 2461 * has set the status field to the proper value. If we get back 1, 2462 * we've fully traversed the EDT and copied out any matching entries. 2463 */ 2464 if (ret == 1) 2465 cdm->status = CAM_DEV_MATCH_LAST; 2466 2467 return(ret); 2468 } 2469 2470 static int 2471 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2472 { 2473 struct ccb_dev_match *cdm; 2474 2475 cdm = (struct ccb_dev_match *)arg; 2476 2477 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2478 && (cdm->pos.cookie.pdrv == pdrv) 2479 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2480 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2481 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2482 (*pdrv)->generation)) { 2483 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2484 return(0); 2485 } 2486 2487 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2488 && (cdm->pos.cookie.pdrv == pdrv) 2489 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2490 && (cdm->pos.cookie.periph != NULL)) 2491 return(xptpdperiphtraverse(pdrv, 2492 (struct cam_periph *)cdm->pos.cookie.periph, 2493 xptplistperiphfunc, arg)); 2494 else 2495 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2496 } 2497 2498 static int 2499 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2500 { 2501 struct ccb_dev_match *cdm; 2502 dev_match_ret retval; 2503 2504 cdm = (struct ccb_dev_match *)arg; 2505 2506 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2507 2508 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2509 cdm->status = CAM_DEV_MATCH_ERROR; 2510 return(0); 2511 } 2512 2513 /* 2514 * If the copy flag is set, copy this peripheral out. 2515 */ 2516 if (retval & DM_RET_COPY) { 2517 int spaceleft, j; 2518 2519 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2520 sizeof(struct dev_match_result)); 2521 2522 /* 2523 * If we don't have enough space to put in another 2524 * match result, save our position and tell the 2525 * user there are more devices to check. 2526 */ 2527 if (spaceleft < sizeof(struct dev_match_result)) { 2528 struct periph_driver **pdrv; 2529 2530 pdrv = NULL; 2531 bzero(&cdm->pos, sizeof(cdm->pos)); 2532 cdm->pos.position_type = 2533 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2534 CAM_DEV_POS_PERIPH; 2535 2536 /* 2537 * This may look a bit non-sensical, but it is 2538 * actually quite logical. There are very few 2539 * peripheral drivers, and bloating every peripheral 2540 * structure with a pointer back to its parent 2541 * peripheral driver linker set entry would cost 2542 * more in the long run than doing this quick lookup. 2543 */ 2544 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2545 if (strcmp((*pdrv)->driver_name, 2546 periph->periph_name) == 0) 2547 break; 2548 } 2549 2550 if (*pdrv == NULL) { 2551 cdm->status = CAM_DEV_MATCH_ERROR; 2552 return(0); 2553 } 2554 2555 cdm->pos.cookie.pdrv = pdrv; 2556 /* 2557 * The periph generation slot does double duty, as 2558 * does the periph pointer slot. They are used for 2559 * both edt and pdrv lookups and positioning. 2560 */ 2561 cdm->pos.cookie.periph = periph; 2562 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2563 (*pdrv)->generation; 2564 cdm->status = CAM_DEV_MATCH_MORE; 2565 return(0); 2566 } 2567 2568 j = cdm->num_matches; 2569 cdm->num_matches++; 2570 cdm->matches[j].type = DEV_MATCH_PERIPH; 2571 cdm->matches[j].result.periph_result.path_id = 2572 periph->path->bus->path_id; 2573 2574 /* 2575 * The transport layer peripheral doesn't have a target or 2576 * lun. 2577 */ 2578 if (periph->path->target) 2579 cdm->matches[j].result.periph_result.target_id = 2580 periph->path->target->target_id; 2581 else 2582 cdm->matches[j].result.periph_result.target_id = -1; 2583 2584 if (periph->path->device) 2585 cdm->matches[j].result.periph_result.target_lun = 2586 periph->path->device->lun_id; 2587 else 2588 cdm->matches[j].result.periph_result.target_lun = -1; 2589 2590 cdm->matches[j].result.periph_result.unit_number = 2591 periph->unit_number; 2592 strncpy(cdm->matches[j].result.periph_result.periph_name, 2593 periph->periph_name, DEV_IDLEN); 2594 } 2595 2596 return(1); 2597 } 2598 2599 static int 2600 xptperiphlistmatch(struct ccb_dev_match *cdm) 2601 { 2602 int ret; 2603 2604 cdm->num_matches = 0; 2605 2606 /* 2607 * At this point in the edt traversal function, we check the bus 2608 * list generation to make sure that no busses have been added or 2609 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2610 * For the peripheral driver list traversal function, however, we 2611 * don't have to worry about new peripheral driver types coming or 2612 * going; they're in a linker set, and therefore can't change 2613 * without a recompile. 2614 */ 2615 2616 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2617 && (cdm->pos.cookie.pdrv != NULL)) 2618 ret = xptpdrvtraverse( 2619 (struct periph_driver **)cdm->pos.cookie.pdrv, 2620 xptplistpdrvfunc, cdm); 2621 else 2622 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2623 2624 /* 2625 * If we get back 0, that means that we had to stop before fully 2626 * traversing the peripheral driver tree. It also means that one of 2627 * the subroutines has set the status field to the proper value. If 2628 * we get back 1, we've fully traversed the EDT and copied out any 2629 * matching entries. 2630 */ 2631 if (ret == 1) 2632 cdm->status = CAM_DEV_MATCH_LAST; 2633 2634 return(ret); 2635 } 2636 2637 static int 2638 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2639 { 2640 struct cam_eb *bus, *next_bus; 2641 int retval; 2642 2643 retval = 1; 2644 2645 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2646 bus != NULL; 2647 bus = next_bus) { 2648 next_bus = TAILQ_NEXT(bus, links); 2649 2650 retval = tr_func(bus, arg); 2651 if (retval == 0) 2652 return(retval); 2653 } 2654 2655 return(retval); 2656 } 2657 2658 static int 2659 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2660 xpt_targetfunc_t *tr_func, void *arg) 2661 { 2662 struct cam_et *target, *next_target; 2663 int retval; 2664 2665 retval = 1; 2666 for (target = (start_target ? start_target : 2667 TAILQ_FIRST(&bus->et_entries)); 2668 target != NULL; target = next_target) { 2669 2670 next_target = TAILQ_NEXT(target, links); 2671 2672 retval = tr_func(target, arg); 2673 2674 if (retval == 0) 2675 return(retval); 2676 } 2677 2678 return(retval); 2679 } 2680 2681 static int 2682 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2683 xpt_devicefunc_t *tr_func, void *arg) 2684 { 2685 struct cam_ed *device, *next_device; 2686 int retval; 2687 2688 retval = 1; 2689 for (device = (start_device ? start_device : 2690 TAILQ_FIRST(&target->ed_entries)); 2691 device != NULL; 2692 device = next_device) { 2693 2694 next_device = TAILQ_NEXT(device, links); 2695 2696 retval = tr_func(device, arg); 2697 2698 if (retval == 0) 2699 return(retval); 2700 } 2701 2702 return(retval); 2703 } 2704 2705 static int 2706 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2707 xpt_periphfunc_t *tr_func, void *arg) 2708 { 2709 struct cam_periph *periph, *next_periph; 2710 int retval; 2711 2712 retval = 1; 2713 2714 for (periph = (start_periph ? start_periph : 2715 SLIST_FIRST(&device->periphs)); 2716 periph != NULL; 2717 periph = next_periph) { 2718 2719 next_periph = SLIST_NEXT(periph, periph_links); 2720 2721 retval = tr_func(periph, arg); 2722 if (retval == 0) 2723 return(retval); 2724 } 2725 2726 return(retval); 2727 } 2728 2729 static int 2730 xptpdrvtraverse(struct periph_driver **start_pdrv, 2731 xpt_pdrvfunc_t *tr_func, void *arg) 2732 { 2733 struct periph_driver **pdrv; 2734 int retval; 2735 2736 retval = 1; 2737 2738 /* 2739 * We don't traverse the peripheral driver list like we do the 2740 * other lists, because it is a linker set, and therefore cannot be 2741 * changed during runtime. If the peripheral driver list is ever 2742 * re-done to be something other than a linker set (i.e. it can 2743 * change while the system is running), the list traversal should 2744 * be modified to work like the other traversal functions. 2745 */ 2746 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2747 *pdrv != NULL; pdrv++) { 2748 retval = tr_func(pdrv, arg); 2749 2750 if (retval == 0) 2751 return(retval); 2752 } 2753 2754 return(retval); 2755 } 2756 2757 static int 2758 xptpdperiphtraverse(struct periph_driver **pdrv, 2759 struct cam_periph *start_periph, 2760 xpt_periphfunc_t *tr_func, void *arg) 2761 { 2762 struct cam_periph *periph, *next_periph; 2763 int retval; 2764 2765 retval = 1; 2766 2767 for (periph = (start_periph ? start_periph : 2768 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2769 periph = next_periph) { 2770 2771 next_periph = TAILQ_NEXT(periph, unit_links); 2772 2773 retval = tr_func(periph, arg); 2774 if (retval == 0) 2775 return(retval); 2776 } 2777 return(retval); 2778 } 2779 2780 static int 2781 xptdefbusfunc(struct cam_eb *bus, void *arg) 2782 { 2783 struct xpt_traverse_config *tr_config; 2784 2785 tr_config = (struct xpt_traverse_config *)arg; 2786 2787 if (tr_config->depth == XPT_DEPTH_BUS) { 2788 xpt_busfunc_t *tr_func; 2789 2790 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2791 2792 return(tr_func(bus, tr_config->tr_arg)); 2793 } else 2794 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2795 } 2796 2797 static int 2798 xptdeftargetfunc(struct cam_et *target, void *arg) 2799 { 2800 struct xpt_traverse_config *tr_config; 2801 2802 tr_config = (struct xpt_traverse_config *)arg; 2803 2804 if (tr_config->depth == XPT_DEPTH_TARGET) { 2805 xpt_targetfunc_t *tr_func; 2806 2807 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2808 2809 return(tr_func(target, tr_config->tr_arg)); 2810 } else 2811 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2812 } 2813 2814 static int 2815 xptdefdevicefunc(struct cam_ed *device, void *arg) 2816 { 2817 struct xpt_traverse_config *tr_config; 2818 2819 tr_config = (struct xpt_traverse_config *)arg; 2820 2821 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2822 xpt_devicefunc_t *tr_func; 2823 2824 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2825 2826 return(tr_func(device, tr_config->tr_arg)); 2827 } else 2828 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2829 } 2830 2831 static int 2832 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2833 { 2834 struct xpt_traverse_config *tr_config; 2835 xpt_periphfunc_t *tr_func; 2836 2837 tr_config = (struct xpt_traverse_config *)arg; 2838 2839 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2840 2841 /* 2842 * Unlike the other default functions, we don't check for depth 2843 * here. The peripheral driver level is the last level in the EDT, 2844 * so if we're here, we should execute the function in question. 2845 */ 2846 return(tr_func(periph, tr_config->tr_arg)); 2847 } 2848 2849 /* 2850 * Execute the given function for every bus in the EDT. 2851 */ 2852 static int 2853 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2854 { 2855 struct xpt_traverse_config tr_config; 2856 2857 tr_config.depth = XPT_DEPTH_BUS; 2858 tr_config.tr_func = tr_func; 2859 tr_config.tr_arg = arg; 2860 2861 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2862 } 2863 2864 #ifdef notusedyet 2865 /* 2866 * Execute the given function for every target in the EDT. 2867 */ 2868 static int 2869 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2870 { 2871 struct xpt_traverse_config tr_config; 2872 2873 tr_config.depth = XPT_DEPTH_TARGET; 2874 tr_config.tr_func = tr_func; 2875 tr_config.tr_arg = arg; 2876 2877 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2878 } 2879 #endif /* notusedyet */ 2880 2881 /* 2882 * Execute the given function for every device in the EDT. 2883 */ 2884 static int 2885 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2886 { 2887 struct xpt_traverse_config tr_config; 2888 2889 tr_config.depth = XPT_DEPTH_DEVICE; 2890 tr_config.tr_func = tr_func; 2891 tr_config.tr_arg = arg; 2892 2893 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2894 } 2895 2896 #ifdef notusedyet 2897 /* 2898 * Execute the given function for every peripheral in the EDT. 2899 */ 2900 static int 2901 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2902 { 2903 struct xpt_traverse_config tr_config; 2904 2905 tr_config.depth = XPT_DEPTH_PERIPH; 2906 tr_config.tr_func = tr_func; 2907 tr_config.tr_arg = arg; 2908 2909 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2910 } 2911 #endif /* notusedyet */ 2912 2913 static int 2914 xptsetasyncfunc(struct cam_ed *device, void *arg) 2915 { 2916 struct cam_path path; 2917 struct ccb_getdev cgd; 2918 struct async_node *cur_entry; 2919 2920 cur_entry = (struct async_node *)arg; 2921 2922 /* 2923 * Don't report unconfigured devices (Wildcard devs, 2924 * devices only for target mode, device instances 2925 * that have been invalidated but are waiting for 2926 * their last reference count to be released). 2927 */ 2928 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2929 return (1); 2930 2931 xpt_compile_path(&path, 2932 NULL, 2933 device->target->bus->path_id, 2934 device->target->target_id, 2935 device->lun_id); 2936 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2937 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2938 xpt_action((union ccb *)&cgd); 2939 cur_entry->callback(cur_entry->callback_arg, 2940 AC_FOUND_DEVICE, 2941 &path, &cgd); 2942 xpt_release_path(&path); 2943 2944 return(1); 2945 } 2946 2947 static int 2948 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2949 { 2950 struct cam_path path; 2951 struct ccb_pathinq cpi; 2952 struct async_node *cur_entry; 2953 2954 cur_entry = (struct async_node *)arg; 2955 2956 xpt_compile_path(&path, /*periph*/NULL, 2957 bus->sim->path_id, 2958 CAM_TARGET_WILDCARD, 2959 CAM_LUN_WILDCARD); 2960 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2961 cpi.ccb_h.func_code = XPT_PATH_INQ; 2962 xpt_action((union ccb *)&cpi); 2963 cur_entry->callback(cur_entry->callback_arg, 2964 AC_PATH_REGISTERED, 2965 &path, &cpi); 2966 xpt_release_path(&path); 2967 2968 return(1); 2969 } 2970 2971 void 2972 xpt_action(union ccb *start_ccb) 2973 { 2974 int iopl; 2975 2976 GIANT_REQUIRED; 2977 2978 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2979 2980 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2981 2982 iopl = splsoftcam(); 2983 switch (start_ccb->ccb_h.func_code) { 2984 case XPT_SCSI_IO: 2985 { 2986 #ifdef CAM_NEW_TRAN_CODE 2987 struct cam_ed *device; 2988 #endif /* CAM_NEW_TRAN_CODE */ 2989 #ifdef CAMDEBUG 2990 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2991 struct cam_path *path; 2992 2993 path = start_ccb->ccb_h.path; 2994 #endif 2995 2996 /* 2997 * For the sake of compatibility with SCSI-1 2998 * devices that may not understand the identify 2999 * message, we include lun information in the 3000 * second byte of all commands. SCSI-1 specifies 3001 * that luns are a 3 bit value and reserves only 3 3002 * bits for lun information in the CDB. Later 3003 * revisions of the SCSI spec allow for more than 8 3004 * luns, but have deprecated lun information in the 3005 * CDB. So, if the lun won't fit, we must omit. 3006 * 3007 * Also be aware that during initial probing for devices, 3008 * the inquiry information is unknown but initialized to 0. 3009 * This means that this code will be exercised while probing 3010 * devices with an ANSI revision greater than 2. 3011 */ 3012 #ifdef CAM_NEW_TRAN_CODE 3013 device = start_ccb->ccb_h.path->device; 3014 if (device->protocol_version <= SCSI_REV_2 3015 #else /* CAM_NEW_TRAN_CODE */ 3016 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 3017 #endif /* CAM_NEW_TRAN_CODE */ 3018 && start_ccb->ccb_h.target_lun < 8 3019 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3020 3021 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3022 start_ccb->ccb_h.target_lun << 5; 3023 } 3024 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3025 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3026 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3027 &path->device->inq_data), 3028 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3029 cdb_str, sizeof(cdb_str)))); 3030 } 3031 /* FALLTHROUGH */ 3032 case XPT_TARGET_IO: 3033 case XPT_CONT_TARGET_IO: 3034 start_ccb->csio.sense_resid = 0; 3035 start_ccb->csio.resid = 0; 3036 /* FALLTHROUGH */ 3037 case XPT_RESET_DEV: 3038 case XPT_ENG_EXEC: 3039 { 3040 struct cam_path *path; 3041 int s; 3042 int runq; 3043 3044 path = start_ccb->ccb_h.path; 3045 s = splsoftcam(); 3046 3047 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3048 if (path->device->qfrozen_cnt == 0) 3049 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3050 else 3051 runq = 0; 3052 splx(s); 3053 if (runq != 0) 3054 xpt_run_dev_sendq(path->bus); 3055 break; 3056 } 3057 case XPT_SET_TRAN_SETTINGS: 3058 { 3059 xpt_set_transfer_settings(&start_ccb->cts, 3060 start_ccb->ccb_h.path->device, 3061 /*async_update*/FALSE); 3062 break; 3063 } 3064 case XPT_CALC_GEOMETRY: 3065 { 3066 struct cam_sim *sim; 3067 3068 /* Filter out garbage */ 3069 if (start_ccb->ccg.block_size == 0 3070 || start_ccb->ccg.volume_size == 0) { 3071 start_ccb->ccg.cylinders = 0; 3072 start_ccb->ccg.heads = 0; 3073 start_ccb->ccg.secs_per_track = 0; 3074 start_ccb->ccb_h.status = CAM_REQ_CMP; 3075 break; 3076 } 3077 #ifdef PC98 3078 /* 3079 * In a PC-98 system, geometry translation depens on 3080 * the "real" device geometry obtained from mode page 4. 3081 * SCSI geometry translation is performed in the 3082 * initialization routine of the SCSI BIOS and the result 3083 * stored in host memory. If the translation is available 3084 * in host memory, use it. If not, rely on the default 3085 * translation the device driver performs. 3086 */ 3087 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3088 start_ccb->ccb_h.status = CAM_REQ_CMP; 3089 break; 3090 } 3091 #endif 3092 sim = start_ccb->ccb_h.path->bus->sim; 3093 (*(sim->sim_action))(sim, start_ccb); 3094 break; 3095 } 3096 case XPT_ABORT: 3097 { 3098 union ccb* abort_ccb; 3099 int s; 3100 3101 abort_ccb = start_ccb->cab.abort_ccb; 3102 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3103 3104 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3105 struct cam_ccbq *ccbq; 3106 3107 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3108 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3109 abort_ccb->ccb_h.status = 3110 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3111 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3112 s = splcam(); 3113 xpt_done(abort_ccb); 3114 splx(s); 3115 start_ccb->ccb_h.status = CAM_REQ_CMP; 3116 break; 3117 } 3118 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3119 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3120 /* 3121 * We've caught this ccb en route to 3122 * the SIM. Flag it for abort and the 3123 * SIM will do so just before starting 3124 * real work on the CCB. 3125 */ 3126 abort_ccb->ccb_h.status = 3127 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3128 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3129 start_ccb->ccb_h.status = CAM_REQ_CMP; 3130 break; 3131 } 3132 } 3133 if (XPT_FC_IS_QUEUED(abort_ccb) 3134 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3135 /* 3136 * It's already completed but waiting 3137 * for our SWI to get to it. 3138 */ 3139 start_ccb->ccb_h.status = CAM_UA_ABORT; 3140 break; 3141 } 3142 /* 3143 * If we weren't able to take care of the abort request 3144 * in the XPT, pass the request down to the SIM for processing. 3145 */ 3146 } 3147 /* FALLTHROUGH */ 3148 case XPT_ACCEPT_TARGET_IO: 3149 case XPT_EN_LUN: 3150 case XPT_IMMED_NOTIFY: 3151 case XPT_NOTIFY_ACK: 3152 case XPT_GET_TRAN_SETTINGS: 3153 case XPT_RESET_BUS: 3154 { 3155 struct cam_sim *sim; 3156 3157 sim = start_ccb->ccb_h.path->bus->sim; 3158 (*(sim->sim_action))(sim, start_ccb); 3159 break; 3160 } 3161 case XPT_PATH_INQ: 3162 { 3163 struct cam_sim *sim; 3164 3165 sim = start_ccb->ccb_h.path->bus->sim; 3166 (*(sim->sim_action))(sim, start_ccb); 3167 break; 3168 } 3169 case XPT_PATH_STATS: 3170 start_ccb->cpis.last_reset = 3171 start_ccb->ccb_h.path->bus->last_reset; 3172 start_ccb->ccb_h.status = CAM_REQ_CMP; 3173 break; 3174 case XPT_GDEV_TYPE: 3175 { 3176 struct cam_ed *dev; 3177 int s; 3178 3179 dev = start_ccb->ccb_h.path->device; 3180 s = splcam(); 3181 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3182 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3183 } else { 3184 struct ccb_getdev *cgd; 3185 struct cam_eb *bus; 3186 struct cam_et *tar; 3187 3188 cgd = &start_ccb->cgd; 3189 bus = cgd->ccb_h.path->bus; 3190 tar = cgd->ccb_h.path->target; 3191 cgd->inq_data = dev->inq_data; 3192 cgd->ccb_h.status = CAM_REQ_CMP; 3193 cgd->serial_num_len = dev->serial_num_len; 3194 if ((dev->serial_num_len > 0) 3195 && (dev->serial_num != NULL)) 3196 bcopy(dev->serial_num, cgd->serial_num, 3197 dev->serial_num_len); 3198 } 3199 splx(s); 3200 break; 3201 } 3202 case XPT_GDEV_STATS: 3203 { 3204 struct cam_ed *dev; 3205 int s; 3206 3207 dev = start_ccb->ccb_h.path->device; 3208 s = splcam(); 3209 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3210 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3211 } else { 3212 struct ccb_getdevstats *cgds; 3213 struct cam_eb *bus; 3214 struct cam_et *tar; 3215 3216 cgds = &start_ccb->cgds; 3217 bus = cgds->ccb_h.path->bus; 3218 tar = cgds->ccb_h.path->target; 3219 cgds->dev_openings = dev->ccbq.dev_openings; 3220 cgds->dev_active = dev->ccbq.dev_active; 3221 cgds->devq_openings = dev->ccbq.devq_openings; 3222 cgds->devq_queued = dev->ccbq.queue.entries; 3223 cgds->held = dev->ccbq.held; 3224 cgds->last_reset = tar->last_reset; 3225 cgds->maxtags = dev->quirk->maxtags; 3226 cgds->mintags = dev->quirk->mintags; 3227 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3228 cgds->last_reset = bus->last_reset; 3229 cgds->ccb_h.status = CAM_REQ_CMP; 3230 } 3231 splx(s); 3232 break; 3233 } 3234 case XPT_GDEVLIST: 3235 { 3236 struct cam_periph *nperiph; 3237 struct periph_list *periph_head; 3238 struct ccb_getdevlist *cgdl; 3239 u_int i; 3240 int s; 3241 struct cam_ed *device; 3242 int found; 3243 3244 3245 found = 0; 3246 3247 /* 3248 * Don't want anyone mucking with our data. 3249 */ 3250 s = splcam(); 3251 device = start_ccb->ccb_h.path->device; 3252 periph_head = &device->periphs; 3253 cgdl = &start_ccb->cgdl; 3254 3255 /* 3256 * Check and see if the list has changed since the user 3257 * last requested a list member. If so, tell them that the 3258 * list has changed, and therefore they need to start over 3259 * from the beginning. 3260 */ 3261 if ((cgdl->index != 0) && 3262 (cgdl->generation != device->generation)) { 3263 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3264 splx(s); 3265 break; 3266 } 3267 3268 /* 3269 * Traverse the list of peripherals and attempt to find 3270 * the requested peripheral. 3271 */ 3272 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3273 (nperiph != NULL) && (i <= cgdl->index); 3274 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3275 if (i == cgdl->index) { 3276 strncpy(cgdl->periph_name, 3277 nperiph->periph_name, 3278 DEV_IDLEN); 3279 cgdl->unit_number = nperiph->unit_number; 3280 found = 1; 3281 } 3282 } 3283 if (found == 0) { 3284 cgdl->status = CAM_GDEVLIST_ERROR; 3285 splx(s); 3286 break; 3287 } 3288 3289 if (nperiph == NULL) 3290 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3291 else 3292 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3293 3294 cgdl->index++; 3295 cgdl->generation = device->generation; 3296 3297 splx(s); 3298 cgdl->ccb_h.status = CAM_REQ_CMP; 3299 break; 3300 } 3301 case XPT_DEV_MATCH: 3302 { 3303 int s; 3304 dev_pos_type position_type; 3305 struct ccb_dev_match *cdm; 3306 3307 cdm = &start_ccb->cdm; 3308 3309 /* 3310 * Prevent EDT changes while we traverse it. 3311 */ 3312 s = splcam(); 3313 /* 3314 * There are two ways of getting at information in the EDT. 3315 * The first way is via the primary EDT tree. It starts 3316 * with a list of busses, then a list of targets on a bus, 3317 * then devices/luns on a target, and then peripherals on a 3318 * device/lun. The "other" way is by the peripheral driver 3319 * lists. The peripheral driver lists are organized by 3320 * peripheral driver. (obviously) So it makes sense to 3321 * use the peripheral driver list if the user is looking 3322 * for something like "da1", or all "da" devices. If the 3323 * user is looking for something on a particular bus/target 3324 * or lun, it's generally better to go through the EDT tree. 3325 */ 3326 3327 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3328 position_type = cdm->pos.position_type; 3329 else { 3330 u_int i; 3331 3332 position_type = CAM_DEV_POS_NONE; 3333 3334 for (i = 0; i < cdm->num_patterns; i++) { 3335 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3336 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3337 position_type = CAM_DEV_POS_EDT; 3338 break; 3339 } 3340 } 3341 3342 if (cdm->num_patterns == 0) 3343 position_type = CAM_DEV_POS_EDT; 3344 else if (position_type == CAM_DEV_POS_NONE) 3345 position_type = CAM_DEV_POS_PDRV; 3346 } 3347 3348 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3349 case CAM_DEV_POS_EDT: 3350 xptedtmatch(cdm); 3351 break; 3352 case CAM_DEV_POS_PDRV: 3353 xptperiphlistmatch(cdm); 3354 break; 3355 default: 3356 cdm->status = CAM_DEV_MATCH_ERROR; 3357 break; 3358 } 3359 3360 splx(s); 3361 3362 if (cdm->status == CAM_DEV_MATCH_ERROR) 3363 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3364 else 3365 start_ccb->ccb_h.status = CAM_REQ_CMP; 3366 3367 break; 3368 } 3369 case XPT_SASYNC_CB: 3370 { 3371 struct ccb_setasync *csa; 3372 struct async_node *cur_entry; 3373 struct async_list *async_head; 3374 u_int32_t added; 3375 int s; 3376 3377 csa = &start_ccb->csa; 3378 added = csa->event_enable; 3379 async_head = &csa->ccb_h.path->device->asyncs; 3380 3381 /* 3382 * If there is already an entry for us, simply 3383 * update it. 3384 */ 3385 s = splcam(); 3386 cur_entry = SLIST_FIRST(async_head); 3387 while (cur_entry != NULL) { 3388 if ((cur_entry->callback_arg == csa->callback_arg) 3389 && (cur_entry->callback == csa->callback)) 3390 break; 3391 cur_entry = SLIST_NEXT(cur_entry, links); 3392 } 3393 3394 if (cur_entry != NULL) { 3395 /* 3396 * If the request has no flags set, 3397 * remove the entry. 3398 */ 3399 added &= ~cur_entry->event_enable; 3400 if (csa->event_enable == 0) { 3401 SLIST_REMOVE(async_head, cur_entry, 3402 async_node, links); 3403 csa->ccb_h.path->device->refcount--; 3404 free(cur_entry, M_DEVBUF); 3405 } else { 3406 cur_entry->event_enable = csa->event_enable; 3407 } 3408 } else { 3409 cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF, 3410 M_NOWAIT); 3411 if (cur_entry == NULL) { 3412 splx(s); 3413 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3414 break; 3415 } 3416 cur_entry->event_enable = csa->event_enable; 3417 cur_entry->callback_arg = csa->callback_arg; 3418 cur_entry->callback = csa->callback; 3419 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3420 csa->ccb_h.path->device->refcount++; 3421 } 3422 3423 if ((added & AC_FOUND_DEVICE) != 0) { 3424 /* 3425 * Get this peripheral up to date with all 3426 * the currently existing devices. 3427 */ 3428 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3429 } 3430 if ((added & AC_PATH_REGISTERED) != 0) { 3431 /* 3432 * Get this peripheral up to date with all 3433 * the currently existing busses. 3434 */ 3435 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3436 } 3437 splx(s); 3438 start_ccb->ccb_h.status = CAM_REQ_CMP; 3439 break; 3440 } 3441 case XPT_REL_SIMQ: 3442 { 3443 struct ccb_relsim *crs; 3444 struct cam_ed *dev; 3445 int s; 3446 3447 crs = &start_ccb->crs; 3448 dev = crs->ccb_h.path->device; 3449 if (dev == NULL) { 3450 3451 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3452 break; 3453 } 3454 3455 s = splcam(); 3456 3457 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3458 3459 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3460 3461 /* Don't ever go below one opening */ 3462 if (crs->openings > 0) { 3463 xpt_dev_ccbq_resize(crs->ccb_h.path, 3464 crs->openings); 3465 3466 if (bootverbose) { 3467 xpt_print_path(crs->ccb_h.path); 3468 printf("tagged openings " 3469 "now %d\n", 3470 crs->openings); 3471 } 3472 } 3473 } 3474 } 3475 3476 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3477 3478 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3479 3480 /* 3481 * Just extend the old timeout and decrement 3482 * the freeze count so that a single timeout 3483 * is sufficient for releasing the queue. 3484 */ 3485 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3486 untimeout(xpt_release_devq_timeout, 3487 dev, dev->c_handle); 3488 } else { 3489 3490 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3491 } 3492 3493 dev->c_handle = 3494 timeout(xpt_release_devq_timeout, 3495 dev, 3496 (crs->release_timeout * hz) / 1000); 3497 3498 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3499 3500 } 3501 3502 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3503 3504 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3505 /* 3506 * Decrement the freeze count so that a single 3507 * completion is still sufficient to unfreeze 3508 * the queue. 3509 */ 3510 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3511 } else { 3512 3513 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3514 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3515 } 3516 } 3517 3518 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3519 3520 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3521 || (dev->ccbq.dev_active == 0)) { 3522 3523 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3524 } else { 3525 3526 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3527 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3528 } 3529 } 3530 splx(s); 3531 3532 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3533 3534 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3535 /*run_queue*/TRUE); 3536 } 3537 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3538 start_ccb->ccb_h.status = CAM_REQ_CMP; 3539 break; 3540 } 3541 case XPT_SCAN_BUS: 3542 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3543 break; 3544 case XPT_SCAN_LUN: 3545 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3546 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3547 start_ccb); 3548 break; 3549 case XPT_DEBUG: { 3550 #ifdef CAMDEBUG 3551 int s; 3552 3553 s = splcam(); 3554 #ifdef CAM_DEBUG_DELAY 3555 cam_debug_delay = CAM_DEBUG_DELAY; 3556 #endif 3557 cam_dflags = start_ccb->cdbg.flags; 3558 if (cam_dpath != NULL) { 3559 xpt_free_path(cam_dpath); 3560 cam_dpath = NULL; 3561 } 3562 3563 if (cam_dflags != CAM_DEBUG_NONE) { 3564 if (xpt_create_path(&cam_dpath, xpt_periph, 3565 start_ccb->ccb_h.path_id, 3566 start_ccb->ccb_h.target_id, 3567 start_ccb->ccb_h.target_lun) != 3568 CAM_REQ_CMP) { 3569 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3570 cam_dflags = CAM_DEBUG_NONE; 3571 } else { 3572 start_ccb->ccb_h.status = CAM_REQ_CMP; 3573 xpt_print_path(cam_dpath); 3574 printf("debugging flags now %x\n", cam_dflags); 3575 } 3576 } else { 3577 cam_dpath = NULL; 3578 start_ccb->ccb_h.status = CAM_REQ_CMP; 3579 } 3580 splx(s); 3581 #else /* !CAMDEBUG */ 3582 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3583 #endif /* CAMDEBUG */ 3584 break; 3585 } 3586 case XPT_NOOP: 3587 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3588 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3589 start_ccb->ccb_h.status = CAM_REQ_CMP; 3590 break; 3591 default: 3592 case XPT_SDEV_TYPE: 3593 case XPT_TERM_IO: 3594 case XPT_ENG_INQ: 3595 /* XXX Implement */ 3596 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3597 break; 3598 } 3599 splx(iopl); 3600 } 3601 3602 void 3603 xpt_polled_action(union ccb *start_ccb) 3604 { 3605 int s; 3606 u_int32_t timeout; 3607 struct cam_sim *sim; 3608 struct cam_devq *devq; 3609 struct cam_ed *dev; 3610 3611 GIANT_REQUIRED; 3612 3613 timeout = start_ccb->ccb_h.timeout; 3614 sim = start_ccb->ccb_h.path->bus->sim; 3615 devq = sim->devq; 3616 dev = start_ccb->ccb_h.path->device; 3617 3618 s = splcam(); 3619 3620 /* 3621 * Steal an opening so that no other queued requests 3622 * can get it before us while we simulate interrupts. 3623 */ 3624 dev->ccbq.devq_openings--; 3625 dev->ccbq.dev_openings--; 3626 3627 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) 3628 && (--timeout > 0)) { 3629 DELAY(1000); 3630 (*(sim->sim_poll))(sim); 3631 camisr(&cam_bioq); 3632 } 3633 3634 dev->ccbq.devq_openings++; 3635 dev->ccbq.dev_openings++; 3636 3637 if (timeout != 0) { 3638 xpt_action(start_ccb); 3639 while(--timeout > 0) { 3640 (*(sim->sim_poll))(sim); 3641 camisr(&cam_bioq); 3642 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3643 != CAM_REQ_INPROG) 3644 break; 3645 DELAY(1000); 3646 } 3647 if (timeout == 0) { 3648 /* 3649 * XXX Is it worth adding a sim_timeout entry 3650 * point so we can attempt recovery? If 3651 * this is only used for dumps, I don't think 3652 * it is. 3653 */ 3654 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3655 } 3656 } else { 3657 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3658 } 3659 splx(s); 3660 } 3661 3662 /* 3663 * Schedule a peripheral driver to receive a ccb when it's 3664 * target device has space for more transactions. 3665 */ 3666 void 3667 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3668 { 3669 struct cam_ed *device; 3670 int s; 3671 int runq; 3672 3673 GIANT_REQUIRED; 3674 3675 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3676 device = perph->path->device; 3677 s = splsoftcam(); 3678 if (periph_is_queued(perph)) { 3679 /* Simply reorder based on new priority */ 3680 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3681 (" change priority to %d\n", new_priority)); 3682 if (new_priority < perph->pinfo.priority) { 3683 camq_change_priority(&device->drvq, 3684 perph->pinfo.index, 3685 new_priority); 3686 } 3687 runq = 0; 3688 } else { 3689 /* New entry on the queue */ 3690 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3691 (" added periph to queue\n")); 3692 perph->pinfo.priority = new_priority; 3693 perph->pinfo.generation = ++device->drvq.generation; 3694 camq_insert(&device->drvq, &perph->pinfo); 3695 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3696 } 3697 splx(s); 3698 if (runq != 0) { 3699 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3700 (" calling xpt_run_devq\n")); 3701 xpt_run_dev_allocq(perph->path->bus); 3702 } 3703 } 3704 3705 3706 /* 3707 * Schedule a device to run on a given queue. 3708 * If the device was inserted as a new entry on the queue, 3709 * return 1 meaning the device queue should be run. If we 3710 * were already queued, implying someone else has already 3711 * started the queue, return 0 so the caller doesn't attempt 3712 * to run the queue. Must be run at either splsoftcam 3713 * (or splcam since that encompases splsoftcam). 3714 */ 3715 static int 3716 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3717 u_int32_t new_priority) 3718 { 3719 int retval; 3720 u_int32_t old_priority; 3721 3722 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3723 3724 old_priority = pinfo->priority; 3725 3726 /* 3727 * Are we already queued? 3728 */ 3729 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3730 /* Simply reorder based on new priority */ 3731 if (new_priority < old_priority) { 3732 camq_change_priority(queue, pinfo->index, 3733 new_priority); 3734 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3735 ("changed priority to %d\n", 3736 new_priority)); 3737 } 3738 retval = 0; 3739 } else { 3740 /* New entry on the queue */ 3741 if (new_priority < old_priority) 3742 pinfo->priority = new_priority; 3743 3744 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3745 ("Inserting onto queue\n")); 3746 pinfo->generation = ++queue->generation; 3747 camq_insert(queue, pinfo); 3748 retval = 1; 3749 } 3750 return (retval); 3751 } 3752 3753 static void 3754 xpt_run_dev_allocq(struct cam_eb *bus) 3755 { 3756 struct cam_devq *devq; 3757 int s; 3758 3759 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3760 devq = bus->sim->devq; 3761 3762 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3763 (" qfrozen_cnt == 0x%x, entries == %d, " 3764 "openings == %d, active == %d\n", 3765 devq->alloc_queue.qfrozen_cnt, 3766 devq->alloc_queue.entries, 3767 devq->alloc_openings, 3768 devq->alloc_active)); 3769 3770 s = splsoftcam(); 3771 devq->alloc_queue.qfrozen_cnt++; 3772 while ((devq->alloc_queue.entries > 0) 3773 && (devq->alloc_openings > 0) 3774 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3775 struct cam_ed_qinfo *qinfo; 3776 struct cam_ed *device; 3777 union ccb *work_ccb; 3778 struct cam_periph *drv; 3779 struct camq *drvq; 3780 3781 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3782 CAMQ_HEAD); 3783 device = qinfo->device; 3784 3785 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3786 ("running device %p\n", device)); 3787 3788 drvq = &device->drvq; 3789 3790 #ifdef CAMDEBUG 3791 if (drvq->entries <= 0) { 3792 panic("xpt_run_dev_allocq: " 3793 "Device on queue without any work to do"); 3794 } 3795 #endif 3796 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3797 devq->alloc_openings--; 3798 devq->alloc_active++; 3799 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3800 splx(s); 3801 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3802 drv->pinfo.priority); 3803 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3804 ("calling periph start\n")); 3805 drv->periph_start(drv, work_ccb); 3806 } else { 3807 /* 3808 * Malloc failure in alloc_ccb 3809 */ 3810 /* 3811 * XXX add us to a list to be run from free_ccb 3812 * if we don't have any ccbs active on this 3813 * device queue otherwise we may never get run 3814 * again. 3815 */ 3816 break; 3817 } 3818 3819 /* Raise IPL for possible insertion and test at top of loop */ 3820 s = splsoftcam(); 3821 3822 if (drvq->entries > 0) { 3823 /* We have more work. Attempt to reschedule */ 3824 xpt_schedule_dev_allocq(bus, device); 3825 } 3826 } 3827 devq->alloc_queue.qfrozen_cnt--; 3828 splx(s); 3829 } 3830 3831 static void 3832 xpt_run_dev_sendq(struct cam_eb *bus) 3833 { 3834 struct cam_devq *devq; 3835 int s; 3836 3837 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3838 3839 devq = bus->sim->devq; 3840 3841 s = splcam(); 3842 devq->send_queue.qfrozen_cnt++; 3843 splx(s); 3844 s = splsoftcam(); 3845 while ((devq->send_queue.entries > 0) 3846 && (devq->send_openings > 0)) { 3847 struct cam_ed_qinfo *qinfo; 3848 struct cam_ed *device; 3849 union ccb *work_ccb; 3850 struct cam_sim *sim; 3851 int ospl; 3852 3853 ospl = splcam(); 3854 if (devq->send_queue.qfrozen_cnt > 1) { 3855 splx(ospl); 3856 break; 3857 } 3858 3859 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3860 CAMQ_HEAD); 3861 device = qinfo->device; 3862 3863 /* 3864 * If the device has been "frozen", don't attempt 3865 * to run it. 3866 */ 3867 if (device->qfrozen_cnt > 0) { 3868 splx(ospl); 3869 continue; 3870 } 3871 3872 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3873 ("running device %p\n", device)); 3874 3875 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3876 if (work_ccb == NULL) { 3877 printf("device on run queue with no ccbs???\n"); 3878 splx(ospl); 3879 continue; 3880 } 3881 3882 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3883 3884 if (num_highpower <= 0) { 3885 /* 3886 * We got a high power command, but we 3887 * don't have any available slots. Freeze 3888 * the device queue until we have a slot 3889 * available. 3890 */ 3891 device->qfrozen_cnt++; 3892 STAILQ_INSERT_TAIL(&highpowerq, 3893 &work_ccb->ccb_h, 3894 xpt_links.stqe); 3895 3896 splx(ospl); 3897 continue; 3898 } else { 3899 /* 3900 * Consume a high power slot while 3901 * this ccb runs. 3902 */ 3903 num_highpower--; 3904 } 3905 } 3906 devq->active_dev = device; 3907 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3908 3909 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3910 splx(ospl); 3911 3912 devq->send_openings--; 3913 devq->send_active++; 3914 3915 if (device->ccbq.queue.entries > 0) 3916 xpt_schedule_dev_sendq(bus, device); 3917 3918 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3919 /* 3920 * The client wants to freeze the queue 3921 * after this CCB is sent. 3922 */ 3923 ospl = splcam(); 3924 device->qfrozen_cnt++; 3925 splx(ospl); 3926 } 3927 3928 splx(s); 3929 3930 /* In Target mode, the peripheral driver knows best... */ 3931 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3932 if ((device->inq_flags & SID_CmdQue) != 0 3933 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3934 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3935 else 3936 /* 3937 * Clear this in case of a retried CCB that 3938 * failed due to a rejected tag. 3939 */ 3940 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3941 } 3942 3943 /* 3944 * Device queues can be shared among multiple sim instances 3945 * that reside on different busses. Use the SIM in the queue 3946 * CCB's path, rather than the one in the bus that was passed 3947 * into this function. 3948 */ 3949 sim = work_ccb->ccb_h.path->bus->sim; 3950 (*(sim->sim_action))(sim, work_ccb); 3951 3952 ospl = splcam(); 3953 devq->active_dev = NULL; 3954 splx(ospl); 3955 /* Raise IPL for possible insertion and test at top of loop */ 3956 s = splsoftcam(); 3957 } 3958 splx(s); 3959 s = splcam(); 3960 devq->send_queue.qfrozen_cnt--; 3961 splx(s); 3962 } 3963 3964 /* 3965 * This function merges stuff from the slave ccb into the master ccb, while 3966 * keeping important fields in the master ccb constant. 3967 */ 3968 void 3969 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3970 { 3971 GIANT_REQUIRED; 3972 3973 /* 3974 * Pull fields that are valid for peripheral drivers to set 3975 * into the master CCB along with the CCB "payload". 3976 */ 3977 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3978 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3979 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3980 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3981 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3982 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3983 } 3984 3985 void 3986 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3987 { 3988 GIANT_REQUIRED; 3989 3990 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3991 ccb_h->pinfo.priority = priority; 3992 ccb_h->path = path; 3993 ccb_h->path_id = path->bus->path_id; 3994 if (path->target) 3995 ccb_h->target_id = path->target->target_id; 3996 else 3997 ccb_h->target_id = CAM_TARGET_WILDCARD; 3998 if (path->device) { 3999 ccb_h->target_lun = path->device->lun_id; 4000 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 4001 } else { 4002 ccb_h->target_lun = CAM_TARGET_WILDCARD; 4003 } 4004 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4005 ccb_h->flags = 0; 4006 } 4007 4008 /* Path manipulation functions */ 4009 cam_status 4010 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 4011 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4012 { 4013 struct cam_path *path; 4014 cam_status status; 4015 4016 GIANT_REQUIRED; 4017 4018 path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT); 4019 4020 if (path == NULL) { 4021 status = CAM_RESRC_UNAVAIL; 4022 return(status); 4023 } 4024 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 4025 if (status != CAM_REQ_CMP) { 4026 free(path, M_DEVBUF); 4027 path = NULL; 4028 } 4029 *new_path_ptr = path; 4030 return (status); 4031 } 4032 4033 static cam_status 4034 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 4035 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4036 { 4037 struct cam_eb *bus; 4038 struct cam_et *target; 4039 struct cam_ed *device; 4040 cam_status status; 4041 int s; 4042 4043 status = CAM_REQ_CMP; /* Completed without error */ 4044 target = NULL; /* Wildcarded */ 4045 device = NULL; /* Wildcarded */ 4046 4047 /* 4048 * We will potentially modify the EDT, so block interrupts 4049 * that may attempt to create cam paths. 4050 */ 4051 s = splcam(); 4052 bus = xpt_find_bus(path_id); 4053 if (bus == NULL) { 4054 status = CAM_PATH_INVALID; 4055 } else { 4056 target = xpt_find_target(bus, target_id); 4057 if (target == NULL) { 4058 /* Create one */ 4059 struct cam_et *new_target; 4060 4061 new_target = xpt_alloc_target(bus, target_id); 4062 if (new_target == NULL) { 4063 status = CAM_RESRC_UNAVAIL; 4064 } else { 4065 target = new_target; 4066 } 4067 } 4068 if (target != NULL) { 4069 device = xpt_find_device(target, lun_id); 4070 if (device == NULL) { 4071 /* Create one */ 4072 struct cam_ed *new_device; 4073 4074 new_device = xpt_alloc_device(bus, 4075 target, 4076 lun_id); 4077 if (new_device == NULL) { 4078 status = CAM_RESRC_UNAVAIL; 4079 } else { 4080 device = new_device; 4081 } 4082 } 4083 } 4084 } 4085 splx(s); 4086 4087 /* 4088 * Only touch the user's data if we are successful. 4089 */ 4090 if (status == CAM_REQ_CMP) { 4091 new_path->periph = perph; 4092 new_path->bus = bus; 4093 new_path->target = target; 4094 new_path->device = device; 4095 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4096 } else { 4097 if (device != NULL) 4098 xpt_release_device(bus, target, device); 4099 if (target != NULL) 4100 xpt_release_target(bus, target); 4101 if (bus != NULL) 4102 xpt_release_bus(bus); 4103 } 4104 return (status); 4105 } 4106 4107 static void 4108 xpt_release_path(struct cam_path *path) 4109 { 4110 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4111 if (path->device != NULL) { 4112 xpt_release_device(path->bus, path->target, path->device); 4113 path->device = NULL; 4114 } 4115 if (path->target != NULL) { 4116 xpt_release_target(path->bus, path->target); 4117 path->target = NULL; 4118 } 4119 if (path->bus != NULL) { 4120 xpt_release_bus(path->bus); 4121 path->bus = NULL; 4122 } 4123 } 4124 4125 void 4126 xpt_free_path(struct cam_path *path) 4127 { 4128 GIANT_REQUIRED; 4129 4130 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4131 xpt_release_path(path); 4132 free(path, M_DEVBUF); 4133 } 4134 4135 4136 /* 4137 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4138 * in path1, 2 for match with wildcards in path2. 4139 */ 4140 int 4141 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4142 { 4143 GIANT_REQUIRED; 4144 4145 int retval = 0; 4146 4147 if (path1->bus != path2->bus) { 4148 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4149 retval = 1; 4150 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4151 retval = 2; 4152 else 4153 return (-1); 4154 } 4155 if (path1->target != path2->target) { 4156 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4157 if (retval == 0) 4158 retval = 1; 4159 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4160 retval = 2; 4161 else 4162 return (-1); 4163 } 4164 if (path1->device != path2->device) { 4165 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4166 if (retval == 0) 4167 retval = 1; 4168 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4169 retval = 2; 4170 else 4171 return (-1); 4172 } 4173 return (retval); 4174 } 4175 4176 void 4177 xpt_print_path(struct cam_path *path) 4178 { 4179 GIANT_REQUIRED; 4180 4181 if (path == NULL) 4182 printf("(nopath): "); 4183 else { 4184 if (path->periph != NULL) 4185 printf("(%s%d:", path->periph->periph_name, 4186 path->periph->unit_number); 4187 else 4188 printf("(noperiph:"); 4189 4190 if (path->bus != NULL) 4191 printf("%s%d:%d:", path->bus->sim->sim_name, 4192 path->bus->sim->unit_number, 4193 path->bus->sim->bus_id); 4194 else 4195 printf("nobus:"); 4196 4197 if (path->target != NULL) 4198 printf("%d:", path->target->target_id); 4199 else 4200 printf("X:"); 4201 4202 if (path->device != NULL) 4203 printf("%d): ", path->device->lun_id); 4204 else 4205 printf("X): "); 4206 } 4207 } 4208 4209 int 4210 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4211 { 4212 struct sbuf sb; 4213 4214 GIANT_REQUIRED; 4215 4216 sbuf_new(&sb, str, str_len, 0); 4217 4218 if (path == NULL) 4219 sbuf_printf(&sb, "(nopath): "); 4220 else { 4221 if (path->periph != NULL) 4222 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4223 path->periph->unit_number); 4224 else 4225 sbuf_printf(&sb, "(noperiph:"); 4226 4227 if (path->bus != NULL) 4228 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4229 path->bus->sim->unit_number, 4230 path->bus->sim->bus_id); 4231 else 4232 sbuf_printf(&sb, "nobus:"); 4233 4234 if (path->target != NULL) 4235 sbuf_printf(&sb, "%d:", path->target->target_id); 4236 else 4237 sbuf_printf(&sb, "X:"); 4238 4239 if (path->device != NULL) 4240 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4241 else 4242 sbuf_printf(&sb, "X): "); 4243 } 4244 sbuf_finish(&sb); 4245 4246 return(sbuf_len(&sb)); 4247 } 4248 4249 path_id_t 4250 xpt_path_path_id(struct cam_path *path) 4251 { 4252 GIANT_REQUIRED; 4253 4254 return(path->bus->path_id); 4255 } 4256 4257 target_id_t 4258 xpt_path_target_id(struct cam_path *path) 4259 { 4260 GIANT_REQUIRED; 4261 4262 if (path->target != NULL) 4263 return (path->target->target_id); 4264 else 4265 return (CAM_TARGET_WILDCARD); 4266 } 4267 4268 lun_id_t 4269 xpt_path_lun_id(struct cam_path *path) 4270 { 4271 GIANT_REQUIRED; 4272 4273 if (path->device != NULL) 4274 return (path->device->lun_id); 4275 else 4276 return (CAM_LUN_WILDCARD); 4277 } 4278 4279 struct cam_sim * 4280 xpt_path_sim(struct cam_path *path) 4281 { 4282 GIANT_REQUIRED; 4283 4284 return (path->bus->sim); 4285 } 4286 4287 struct cam_periph* 4288 xpt_path_periph(struct cam_path *path) 4289 { 4290 GIANT_REQUIRED; 4291 4292 return (path->periph); 4293 } 4294 4295 /* 4296 * Release a CAM control block for the caller. Remit the cost of the structure 4297 * to the device referenced by the path. If the this device had no 'credits' 4298 * and peripheral drivers have registered async callbacks for this notification 4299 * call them now. 4300 */ 4301 void 4302 xpt_release_ccb(union ccb *free_ccb) 4303 { 4304 int s; 4305 struct cam_path *path; 4306 struct cam_ed *device; 4307 struct cam_eb *bus; 4308 4309 GIANT_REQUIRED; 4310 4311 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4312 path = free_ccb->ccb_h.path; 4313 device = path->device; 4314 bus = path->bus; 4315 s = splsoftcam(); 4316 cam_ccbq_release_opening(&device->ccbq); 4317 if (xpt_ccb_count > xpt_max_ccbs) { 4318 xpt_free_ccb(free_ccb); 4319 xpt_ccb_count--; 4320 } else { 4321 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4322 } 4323 bus->sim->devq->alloc_openings++; 4324 bus->sim->devq->alloc_active--; 4325 /* XXX Turn this into an inline function - xpt_run_device?? */ 4326 if ((device_is_alloc_queued(device) == 0) 4327 && (device->drvq.entries > 0)) { 4328 xpt_schedule_dev_allocq(bus, device); 4329 } 4330 splx(s); 4331 if (dev_allocq_is_runnable(bus->sim->devq)) 4332 xpt_run_dev_allocq(bus); 4333 } 4334 4335 /* Functions accessed by SIM drivers */ 4336 4337 /* 4338 * A sim structure, listing the SIM entry points and instance 4339 * identification info is passed to xpt_bus_register to hook the SIM 4340 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4341 * for this new bus and places it in the array of busses and assigns 4342 * it a path_id. The path_id may be influenced by "hard wiring" 4343 * information specified by the user. Once interrupt services are 4344 * availible, the bus will be probed. 4345 */ 4346 int32_t 4347 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4348 { 4349 struct cam_eb *new_bus; 4350 struct cam_eb *old_bus; 4351 struct ccb_pathinq cpi; 4352 int s; 4353 4354 GIANT_REQUIRED; 4355 4356 sim->bus_id = bus; 4357 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4358 M_DEVBUF, M_NOWAIT); 4359 if (new_bus == NULL) { 4360 /* Couldn't satisfy request */ 4361 return (CAM_RESRC_UNAVAIL); 4362 } 4363 4364 if (strcmp(sim->sim_name, "xpt") != 0) { 4365 4366 sim->path_id = 4367 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4368 } 4369 4370 TAILQ_INIT(&new_bus->et_entries); 4371 new_bus->path_id = sim->path_id; 4372 new_bus->sim = sim; 4373 timevalclear(&new_bus->last_reset); 4374 new_bus->flags = 0; 4375 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4376 new_bus->generation = 0; 4377 s = splcam(); 4378 old_bus = TAILQ_FIRST(&xpt_busses); 4379 while (old_bus != NULL 4380 && old_bus->path_id < new_bus->path_id) 4381 old_bus = TAILQ_NEXT(old_bus, links); 4382 if (old_bus != NULL) 4383 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4384 else 4385 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4386 bus_generation++; 4387 splx(s); 4388 4389 /* Notify interested parties */ 4390 if (sim->path_id != CAM_XPT_PATH_ID) { 4391 struct cam_path path; 4392 4393 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4394 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4395 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4396 cpi.ccb_h.func_code = XPT_PATH_INQ; 4397 xpt_action((union ccb *)&cpi); 4398 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4399 xpt_release_path(&path); 4400 } 4401 return (CAM_SUCCESS); 4402 } 4403 4404 int32_t 4405 xpt_bus_deregister(path_id_t pathid) 4406 { 4407 struct cam_path bus_path; 4408 cam_status status; 4409 4410 GIANT_REQUIRED; 4411 4412 status = xpt_compile_path(&bus_path, NULL, pathid, 4413 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4414 if (status != CAM_REQ_CMP) 4415 return (status); 4416 4417 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4418 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4419 4420 /* Release the reference count held while registered. */ 4421 xpt_release_bus(bus_path.bus); 4422 xpt_release_path(&bus_path); 4423 4424 return (CAM_REQ_CMP); 4425 } 4426 4427 static path_id_t 4428 xptnextfreepathid(void) 4429 { 4430 struct cam_eb *bus; 4431 path_id_t pathid; 4432 const char *strval; 4433 4434 pathid = 0; 4435 bus = TAILQ_FIRST(&xpt_busses); 4436 retry: 4437 /* Find an unoccupied pathid */ 4438 while (bus != NULL 4439 && bus->path_id <= pathid) { 4440 if (bus->path_id == pathid) 4441 pathid++; 4442 bus = TAILQ_NEXT(bus, links); 4443 } 4444 4445 /* 4446 * Ensure that this pathid is not reserved for 4447 * a bus that may be registered in the future. 4448 */ 4449 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4450 ++pathid; 4451 /* Start the search over */ 4452 goto retry; 4453 } 4454 return (pathid); 4455 } 4456 4457 static path_id_t 4458 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4459 { 4460 path_id_t pathid; 4461 int i, dunit, val; 4462 char buf[32]; 4463 const char *dname; 4464 4465 pathid = CAM_XPT_PATH_ID; 4466 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4467 i = 0; 4468 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4469 if (strcmp(dname, "scbus")) { 4470 /* Avoid a bit of foot shooting. */ 4471 continue; 4472 } 4473 if (dunit < 0) /* unwired?! */ 4474 continue; 4475 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4476 if (sim_bus == val) { 4477 pathid = dunit; 4478 break; 4479 } 4480 } else if (sim_bus == 0) { 4481 /* Unspecified matches bus 0 */ 4482 pathid = dunit; 4483 break; 4484 } else { 4485 printf("Ambiguous scbus configuration for %s%d " 4486 "bus %d, cannot wire down. The kernel " 4487 "config entry for scbus%d should " 4488 "specify a controller bus.\n" 4489 "Scbus will be assigned dynamically.\n", 4490 sim_name, sim_unit, sim_bus, dunit); 4491 break; 4492 } 4493 } 4494 4495 if (pathid == CAM_XPT_PATH_ID) 4496 pathid = xptnextfreepathid(); 4497 return (pathid); 4498 } 4499 4500 void 4501 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4502 { 4503 struct cam_eb *bus; 4504 struct cam_et *target, *next_target; 4505 struct cam_ed *device, *next_device; 4506 int s; 4507 4508 GIANT_REQUIRED; 4509 4510 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4511 4512 /* 4513 * Most async events come from a CAM interrupt context. In 4514 * a few cases, the error recovery code at the peripheral layer, 4515 * which may run from our SWI or a process context, may signal 4516 * deferred events with a call to xpt_async. Ensure async 4517 * notifications are serialized by blocking cam interrupts. 4518 */ 4519 s = splcam(); 4520 4521 bus = path->bus; 4522 4523 if (async_code == AC_BUS_RESET) { 4524 int s; 4525 4526 s = splclock(); 4527 /* Update our notion of when the last reset occurred */ 4528 microtime(&bus->last_reset); 4529 splx(s); 4530 } 4531 4532 for (target = TAILQ_FIRST(&bus->et_entries); 4533 target != NULL; 4534 target = next_target) { 4535 4536 next_target = TAILQ_NEXT(target, links); 4537 4538 if (path->target != target 4539 && path->target->target_id != CAM_TARGET_WILDCARD 4540 && target->target_id != CAM_TARGET_WILDCARD) 4541 continue; 4542 4543 if (async_code == AC_SENT_BDR) { 4544 int s; 4545 4546 /* Update our notion of when the last reset occurred */ 4547 s = splclock(); 4548 microtime(&path->target->last_reset); 4549 splx(s); 4550 } 4551 4552 for (device = TAILQ_FIRST(&target->ed_entries); 4553 device != NULL; 4554 device = next_device) { 4555 4556 next_device = TAILQ_NEXT(device, links); 4557 4558 if (path->device != device 4559 && path->device->lun_id != CAM_LUN_WILDCARD 4560 && device->lun_id != CAM_LUN_WILDCARD) 4561 continue; 4562 4563 xpt_dev_async(async_code, bus, target, 4564 device, async_arg); 4565 4566 xpt_async_bcast(&device->asyncs, async_code, 4567 path, async_arg); 4568 } 4569 } 4570 4571 /* 4572 * If this wasn't a fully wildcarded async, tell all 4573 * clients that want all async events. 4574 */ 4575 if (bus != xpt_periph->path->bus) 4576 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4577 path, async_arg); 4578 splx(s); 4579 } 4580 4581 static void 4582 xpt_async_bcast(struct async_list *async_head, 4583 u_int32_t async_code, 4584 struct cam_path *path, void *async_arg) 4585 { 4586 struct async_node *cur_entry; 4587 4588 cur_entry = SLIST_FIRST(async_head); 4589 while (cur_entry != NULL) { 4590 struct async_node *next_entry; 4591 /* 4592 * Grab the next list entry before we call the current 4593 * entry's callback. This is because the callback function 4594 * can delete its async callback entry. 4595 */ 4596 next_entry = SLIST_NEXT(cur_entry, links); 4597 if ((cur_entry->event_enable & async_code) != 0) 4598 cur_entry->callback(cur_entry->callback_arg, 4599 async_code, path, 4600 async_arg); 4601 cur_entry = next_entry; 4602 } 4603 } 4604 4605 /* 4606 * Handle any per-device event notifications that require action by the XPT. 4607 */ 4608 static void 4609 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4610 struct cam_ed *device, void *async_arg) 4611 { 4612 cam_status status; 4613 struct cam_path newpath; 4614 4615 /* 4616 * We only need to handle events for real devices. 4617 */ 4618 if (target->target_id == CAM_TARGET_WILDCARD 4619 || device->lun_id == CAM_LUN_WILDCARD) 4620 return; 4621 4622 /* 4623 * We need our own path with wildcards expanded to 4624 * handle certain types of events. 4625 */ 4626 if ((async_code == AC_SENT_BDR) 4627 || (async_code == AC_BUS_RESET) 4628 || (async_code == AC_INQ_CHANGED)) 4629 status = xpt_compile_path(&newpath, NULL, 4630 bus->path_id, 4631 target->target_id, 4632 device->lun_id); 4633 else 4634 status = CAM_REQ_CMP_ERR; 4635 4636 if (status == CAM_REQ_CMP) { 4637 4638 /* 4639 * Allow transfer negotiation to occur in a 4640 * tag free environment. 4641 */ 4642 if (async_code == AC_SENT_BDR 4643 || async_code == AC_BUS_RESET) 4644 xpt_toggle_tags(&newpath); 4645 4646 if (async_code == AC_INQ_CHANGED) { 4647 /* 4648 * We've sent a start unit command, or 4649 * something similar to a device that 4650 * may have caused its inquiry data to 4651 * change. So we re-scan the device to 4652 * refresh the inquiry data for it. 4653 */ 4654 xpt_scan_lun(newpath.periph, &newpath, 4655 CAM_EXPECT_INQ_CHANGE, NULL); 4656 } 4657 xpt_release_path(&newpath); 4658 } else if (async_code == AC_LOST_DEVICE) { 4659 device->flags |= CAM_DEV_UNCONFIGURED; 4660 } else if (async_code == AC_TRANSFER_NEG) { 4661 struct ccb_trans_settings *settings; 4662 4663 settings = (struct ccb_trans_settings *)async_arg; 4664 xpt_set_transfer_settings(settings, device, 4665 /*async_update*/TRUE); 4666 } 4667 } 4668 4669 u_int32_t 4670 xpt_freeze_devq(struct cam_path *path, u_int count) 4671 { 4672 int s; 4673 struct ccb_hdr *ccbh; 4674 4675 GIANT_REQUIRED; 4676 4677 s = splcam(); 4678 path->device->qfrozen_cnt += count; 4679 4680 /* 4681 * Mark the last CCB in the queue as needing 4682 * to be requeued if the driver hasn't 4683 * changed it's state yet. This fixes a race 4684 * where a ccb is just about to be queued to 4685 * a controller driver when it's interrupt routine 4686 * freezes the queue. To completly close the 4687 * hole, controller drives must check to see 4688 * if a ccb's status is still CAM_REQ_INPROG 4689 * under spl protection just before they queue 4690 * the CCB. See ahc_action/ahc_freeze_devq for 4691 * an example. 4692 */ 4693 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4694 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4695 ccbh->status = CAM_REQUEUE_REQ; 4696 splx(s); 4697 return (path->device->qfrozen_cnt); 4698 } 4699 4700 u_int32_t 4701 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4702 { 4703 GIANT_REQUIRED; 4704 4705 sim->devq->send_queue.qfrozen_cnt += count; 4706 if (sim->devq->active_dev != NULL) { 4707 struct ccb_hdr *ccbh; 4708 4709 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4710 ccb_hdr_tailq); 4711 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4712 ccbh->status = CAM_REQUEUE_REQ; 4713 } 4714 return (sim->devq->send_queue.qfrozen_cnt); 4715 } 4716 4717 static void 4718 xpt_release_devq_timeout(void *arg) 4719 { 4720 struct cam_ed *device; 4721 4722 device = (struct cam_ed *)arg; 4723 4724 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4725 } 4726 4727 void 4728 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4729 { 4730 GIANT_REQUIRED; 4731 4732 xpt_release_devq_device(path->device, count, run_queue); 4733 } 4734 4735 static void 4736 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4737 { 4738 int rundevq; 4739 int s0, s1; 4740 4741 rundevq = 0; 4742 s0 = splsoftcam(); 4743 s1 = splcam(); 4744 if (dev->qfrozen_cnt > 0) { 4745 4746 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4747 dev->qfrozen_cnt -= count; 4748 if (dev->qfrozen_cnt == 0) { 4749 4750 /* 4751 * No longer need to wait for a successful 4752 * command completion. 4753 */ 4754 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4755 4756 /* 4757 * Remove any timeouts that might be scheduled 4758 * to release this queue. 4759 */ 4760 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4761 untimeout(xpt_release_devq_timeout, dev, 4762 dev->c_handle); 4763 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4764 } 4765 4766 /* 4767 * Now that we are unfrozen schedule the 4768 * device so any pending transactions are 4769 * run. 4770 */ 4771 if ((dev->ccbq.queue.entries > 0) 4772 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4773 && (run_queue != 0)) { 4774 rundevq = 1; 4775 } 4776 } 4777 } 4778 splx(s1); 4779 if (rundevq != 0) 4780 xpt_run_dev_sendq(dev->target->bus); 4781 splx(s0); 4782 } 4783 4784 void 4785 xpt_release_simq(struct cam_sim *sim, int run_queue) 4786 { 4787 int s; 4788 struct camq *sendq; 4789 4790 GIANT_REQUIRED; 4791 4792 sendq = &(sim->devq->send_queue); 4793 s = splcam(); 4794 if (sendq->qfrozen_cnt > 0) { 4795 4796 sendq->qfrozen_cnt--; 4797 if (sendq->qfrozen_cnt == 0) { 4798 struct cam_eb *bus; 4799 4800 /* 4801 * If there is a timeout scheduled to release this 4802 * sim queue, remove it. The queue frozen count is 4803 * already at 0. 4804 */ 4805 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4806 untimeout(xpt_release_simq_timeout, sim, 4807 sim->c_handle); 4808 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4809 } 4810 bus = xpt_find_bus(sim->path_id); 4811 splx(s); 4812 4813 if (run_queue) { 4814 /* 4815 * Now that we are unfrozen run the send queue. 4816 */ 4817 xpt_run_dev_sendq(bus); 4818 } 4819 xpt_release_bus(bus); 4820 } else 4821 splx(s); 4822 } else 4823 splx(s); 4824 } 4825 4826 static void 4827 xpt_release_simq_timeout(void *arg) 4828 { 4829 struct cam_sim *sim; 4830 4831 sim = (struct cam_sim *)arg; 4832 xpt_release_simq(sim, /* run_queue */ TRUE); 4833 } 4834 4835 void 4836 xpt_done(union ccb *done_ccb) 4837 { 4838 int s; 4839 4840 s = splcam(); 4841 4842 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4843 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4844 /* 4845 * Queue up the request for handling by our SWI handler 4846 * any of the "non-immediate" type of ccbs. 4847 */ 4848 switch (done_ccb->ccb_h.path->periph->type) { 4849 case CAM_PERIPH_BIO: 4850 mtx_lock(&cam_bioq_lock); 4851 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4852 sim_links.tqe); 4853 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4854 mtx_unlock(&cam_bioq_lock); 4855 swi_sched(cambio_ih, 0); 4856 break; 4857 default: 4858 panic("unknown periph type %d", 4859 done_ccb->ccb_h.path->periph->type); 4860 } 4861 } 4862 splx(s); 4863 } 4864 4865 union ccb * 4866 xpt_alloc_ccb() 4867 { 4868 union ccb *new_ccb; 4869 4870 GIANT_REQUIRED; 4871 4872 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK); 4873 return (new_ccb); 4874 } 4875 4876 void 4877 xpt_free_ccb(union ccb *free_ccb) 4878 { 4879 free(free_ccb, M_DEVBUF); 4880 } 4881 4882 4883 4884 /* Private XPT functions */ 4885 4886 /* 4887 * Get a CAM control block for the caller. Charge the structure to the device 4888 * referenced by the path. If the this device has no 'credits' then the 4889 * device already has the maximum number of outstanding operations under way 4890 * and we return NULL. If we don't have sufficient resources to allocate more 4891 * ccbs, we also return NULL. 4892 */ 4893 static union ccb * 4894 xpt_get_ccb(struct cam_ed *device) 4895 { 4896 union ccb *new_ccb; 4897 int s; 4898 4899 s = splsoftcam(); 4900 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 4901 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT); 4902 if (new_ccb == NULL) { 4903 splx(s); 4904 return (NULL); 4905 } 4906 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4907 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4908 xpt_links.sle); 4909 xpt_ccb_count++; 4910 } 4911 cam_ccbq_take_opening(&device->ccbq); 4912 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4913 splx(s); 4914 return (new_ccb); 4915 } 4916 4917 static void 4918 xpt_release_bus(struct cam_eb *bus) 4919 { 4920 int s; 4921 4922 s = splcam(); 4923 if ((--bus->refcount == 0) 4924 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4925 TAILQ_REMOVE(&xpt_busses, bus, links); 4926 bus_generation++; 4927 splx(s); 4928 free(bus, M_DEVBUF); 4929 } else 4930 splx(s); 4931 } 4932 4933 static struct cam_et * 4934 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4935 { 4936 struct cam_et *target; 4937 4938 target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT); 4939 if (target != NULL) { 4940 struct cam_et *cur_target; 4941 4942 TAILQ_INIT(&target->ed_entries); 4943 target->bus = bus; 4944 target->target_id = target_id; 4945 target->refcount = 1; 4946 target->generation = 0; 4947 timevalclear(&target->last_reset); 4948 /* 4949 * Hold a reference to our parent bus so it 4950 * will not go away before we do. 4951 */ 4952 bus->refcount++; 4953 4954 /* Insertion sort into our bus's target list */ 4955 cur_target = TAILQ_FIRST(&bus->et_entries); 4956 while (cur_target != NULL && cur_target->target_id < target_id) 4957 cur_target = TAILQ_NEXT(cur_target, links); 4958 4959 if (cur_target != NULL) { 4960 TAILQ_INSERT_BEFORE(cur_target, target, links); 4961 } else { 4962 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4963 } 4964 bus->generation++; 4965 } 4966 return (target); 4967 } 4968 4969 static void 4970 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4971 { 4972 int s; 4973 4974 s = splcam(); 4975 if ((--target->refcount == 0) 4976 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4977 TAILQ_REMOVE(&bus->et_entries, target, links); 4978 bus->generation++; 4979 splx(s); 4980 free(target, M_DEVBUF); 4981 xpt_release_bus(bus); 4982 } else 4983 splx(s); 4984 } 4985 4986 static struct cam_ed * 4987 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4988 { 4989 #ifdef CAM_NEW_TRAN_CODE 4990 struct cam_path path; 4991 #endif /* CAM_NEW_TRAN_CODE */ 4992 struct cam_ed *device; 4993 struct cam_devq *devq; 4994 cam_status status; 4995 4996 /* Make space for us in the device queue on our bus */ 4997 devq = bus->sim->devq; 4998 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4999 5000 if (status != CAM_REQ_CMP) { 5001 device = NULL; 5002 } else { 5003 device = (struct cam_ed *)malloc(sizeof(*device), 5004 M_DEVBUF, M_NOWAIT); 5005 } 5006 5007 if (device != NULL) { 5008 struct cam_ed *cur_device; 5009 5010 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 5011 device->alloc_ccb_entry.device = device; 5012 cam_init_pinfo(&device->send_ccb_entry.pinfo); 5013 device->send_ccb_entry.device = device; 5014 device->target = target; 5015 device->lun_id = lun_id; 5016 /* Initialize our queues */ 5017 if (camq_init(&device->drvq, 0) != 0) { 5018 free(device, M_DEVBUF); 5019 return (NULL); 5020 } 5021 if (cam_ccbq_init(&device->ccbq, 5022 bus->sim->max_dev_openings) != 0) { 5023 camq_fini(&device->drvq); 5024 free(device, M_DEVBUF); 5025 return (NULL); 5026 } 5027 SLIST_INIT(&device->asyncs); 5028 SLIST_INIT(&device->periphs); 5029 device->generation = 0; 5030 device->owner = NULL; 5031 /* 5032 * Take the default quirk entry until we have inquiry 5033 * data and can determine a better quirk to use. 5034 */ 5035 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5036 bzero(&device->inq_data, sizeof(device->inq_data)); 5037 device->inq_flags = 0; 5038 device->queue_flags = 0; 5039 device->serial_num = NULL; 5040 device->serial_num_len = 0; 5041 device->qfrozen_cnt = 0; 5042 device->flags = CAM_DEV_UNCONFIGURED; 5043 device->tag_delay_count = 0; 5044 device->tag_saved_openings = 0; 5045 device->refcount = 1; 5046 callout_handle_init(&device->c_handle); 5047 5048 /* 5049 * Hold a reference to our parent target so it 5050 * will not go away before we do. 5051 */ 5052 target->refcount++; 5053 5054 /* 5055 * XXX should be limited by number of CCBs this bus can 5056 * do. 5057 */ 5058 xpt_max_ccbs += device->ccbq.devq_openings; 5059 /* Insertion sort into our target's device list */ 5060 cur_device = TAILQ_FIRST(&target->ed_entries); 5061 while (cur_device != NULL && cur_device->lun_id < lun_id) 5062 cur_device = TAILQ_NEXT(cur_device, links); 5063 if (cur_device != NULL) { 5064 TAILQ_INSERT_BEFORE(cur_device, device, links); 5065 } else { 5066 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5067 } 5068 target->generation++; 5069 #ifdef CAM_NEW_TRAN_CODE 5070 if (lun_id != CAM_LUN_WILDCARD) { 5071 xpt_compile_path(&path, 5072 NULL, 5073 bus->path_id, 5074 target->target_id, 5075 lun_id); 5076 xpt_devise_transport(&path); 5077 xpt_release_path(&path); 5078 } 5079 #endif /* CAM_NEW_TRAN_CODE */ 5080 } 5081 return (device); 5082 } 5083 5084 static void 5085 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5086 struct cam_ed *device) 5087 { 5088 int s; 5089 5090 s = splcam(); 5091 if ((--device->refcount == 0) 5092 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5093 struct cam_devq *devq; 5094 5095 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5096 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5097 panic("Removing device while still queued for ccbs"); 5098 5099 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5100 untimeout(xpt_release_devq_timeout, device, 5101 device->c_handle); 5102 5103 TAILQ_REMOVE(&target->ed_entries, device,links); 5104 target->generation++; 5105 xpt_max_ccbs -= device->ccbq.devq_openings; 5106 /* Release our slot in the devq */ 5107 devq = bus->sim->devq; 5108 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5109 splx(s); 5110 free(device, M_DEVBUF); 5111 xpt_release_target(bus, target); 5112 } else 5113 splx(s); 5114 } 5115 5116 static u_int32_t 5117 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5118 { 5119 int s; 5120 int diff; 5121 int result; 5122 struct cam_ed *dev; 5123 5124 dev = path->device; 5125 s = splsoftcam(); 5126 5127 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5128 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5129 if (result == CAM_REQ_CMP && (diff < 0)) { 5130 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5131 } 5132 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5133 || (dev->inq_flags & SID_CmdQue) != 0) 5134 dev->tag_saved_openings = newopenings; 5135 /* Adjust the global limit */ 5136 xpt_max_ccbs += diff; 5137 splx(s); 5138 return (result); 5139 } 5140 5141 static struct cam_eb * 5142 xpt_find_bus(path_id_t path_id) 5143 { 5144 struct cam_eb *bus; 5145 5146 for (bus = TAILQ_FIRST(&xpt_busses); 5147 bus != NULL; 5148 bus = TAILQ_NEXT(bus, links)) { 5149 if (bus->path_id == path_id) { 5150 bus->refcount++; 5151 break; 5152 } 5153 } 5154 return (bus); 5155 } 5156 5157 static struct cam_et * 5158 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5159 { 5160 struct cam_et *target; 5161 5162 for (target = TAILQ_FIRST(&bus->et_entries); 5163 target != NULL; 5164 target = TAILQ_NEXT(target, links)) { 5165 if (target->target_id == target_id) { 5166 target->refcount++; 5167 break; 5168 } 5169 } 5170 return (target); 5171 } 5172 5173 static struct cam_ed * 5174 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5175 { 5176 struct cam_ed *device; 5177 5178 for (device = TAILQ_FIRST(&target->ed_entries); 5179 device != NULL; 5180 device = TAILQ_NEXT(device, links)) { 5181 if (device->lun_id == lun_id) { 5182 device->refcount++; 5183 break; 5184 } 5185 } 5186 return (device); 5187 } 5188 5189 typedef struct { 5190 union ccb *request_ccb; 5191 struct ccb_pathinq *cpi; 5192 int pending_count; 5193 } xpt_scan_bus_info; 5194 5195 /* 5196 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5197 * As the scan progresses, xpt_scan_bus is used as the 5198 * callback on completion function. 5199 */ 5200 static void 5201 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5202 { 5203 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5204 ("xpt_scan_bus\n")); 5205 switch (request_ccb->ccb_h.func_code) { 5206 case XPT_SCAN_BUS: 5207 { 5208 xpt_scan_bus_info *scan_info; 5209 union ccb *work_ccb; 5210 struct cam_path *path; 5211 u_int i; 5212 u_int max_target; 5213 u_int initiator_id; 5214 5215 /* Find out the characteristics of the bus */ 5216 work_ccb = xpt_alloc_ccb(); 5217 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5218 request_ccb->ccb_h.pinfo.priority); 5219 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5220 xpt_action(work_ccb); 5221 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5222 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5223 xpt_free_ccb(work_ccb); 5224 xpt_done(request_ccb); 5225 return; 5226 } 5227 5228 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5229 /* 5230 * Can't scan the bus on an adapter that 5231 * cannot perform the initiator role. 5232 */ 5233 request_ccb->ccb_h.status = CAM_REQ_CMP; 5234 xpt_free_ccb(work_ccb); 5235 xpt_done(request_ccb); 5236 return; 5237 } 5238 5239 /* Save some state for use while we probe for devices */ 5240 scan_info = (xpt_scan_bus_info *) 5241 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5242 scan_info->request_ccb = request_ccb; 5243 scan_info->cpi = &work_ccb->cpi; 5244 5245 /* Cache on our stack so we can work asynchronously */ 5246 max_target = scan_info->cpi->max_target; 5247 initiator_id = scan_info->cpi->initiator_id; 5248 5249 /* 5250 * Don't count the initiator if the 5251 * initiator is addressable. 5252 */ 5253 scan_info->pending_count = max_target + 1; 5254 if (initiator_id <= max_target) 5255 scan_info->pending_count--; 5256 5257 for (i = 0; i <= max_target; i++) { 5258 cam_status status; 5259 if (i == initiator_id) 5260 continue; 5261 5262 status = xpt_create_path(&path, xpt_periph, 5263 request_ccb->ccb_h.path_id, 5264 i, 0); 5265 if (status != CAM_REQ_CMP) { 5266 printf("xpt_scan_bus: xpt_create_path failed" 5267 " with status %#x, bus scan halted\n", 5268 status); 5269 break; 5270 } 5271 work_ccb = xpt_alloc_ccb(); 5272 xpt_setup_ccb(&work_ccb->ccb_h, path, 5273 request_ccb->ccb_h.pinfo.priority); 5274 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5275 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5276 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5277 work_ccb->crcn.flags = request_ccb->crcn.flags; 5278 xpt_action(work_ccb); 5279 } 5280 break; 5281 } 5282 case XPT_SCAN_LUN: 5283 { 5284 xpt_scan_bus_info *scan_info; 5285 path_id_t path_id; 5286 target_id_t target_id; 5287 lun_id_t lun_id; 5288 5289 /* Reuse the same CCB to query if a device was really found */ 5290 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5291 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5292 request_ccb->ccb_h.pinfo.priority); 5293 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5294 5295 path_id = request_ccb->ccb_h.path_id; 5296 target_id = request_ccb->ccb_h.target_id; 5297 lun_id = request_ccb->ccb_h.target_lun; 5298 xpt_action(request_ccb); 5299 5300 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5301 struct cam_ed *device; 5302 struct cam_et *target; 5303 int s, phl; 5304 5305 /* 5306 * If we already probed lun 0 successfully, or 5307 * we have additional configured luns on this 5308 * target that might have "gone away", go onto 5309 * the next lun. 5310 */ 5311 target = request_ccb->ccb_h.path->target; 5312 /* 5313 * We may touch devices that we don't 5314 * hold references too, so ensure they 5315 * don't disappear out from under us. 5316 * The target above is referenced by the 5317 * path in the request ccb. 5318 */ 5319 phl = 0; 5320 s = splcam(); 5321 device = TAILQ_FIRST(&target->ed_entries); 5322 if (device != NULL) { 5323 phl = CAN_SRCH_HI(device); 5324 if (device->lun_id == 0) 5325 device = TAILQ_NEXT(device, links); 5326 } 5327 splx(s); 5328 if ((lun_id != 0) || (device != NULL)) { 5329 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5330 lun_id++; 5331 } 5332 } else { 5333 struct cam_ed *device; 5334 5335 device = request_ccb->ccb_h.path->device; 5336 5337 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5338 /* Try the next lun */ 5339 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5340 || CAN_SRCH_HI(device)) 5341 lun_id++; 5342 } 5343 } 5344 5345 xpt_free_path(request_ccb->ccb_h.path); 5346 5347 /* Check Bounds */ 5348 if ((lun_id == request_ccb->ccb_h.target_lun) 5349 || lun_id > scan_info->cpi->max_lun) { 5350 /* We're done */ 5351 5352 xpt_free_ccb(request_ccb); 5353 scan_info->pending_count--; 5354 if (scan_info->pending_count == 0) { 5355 xpt_free_ccb((union ccb *)scan_info->cpi); 5356 request_ccb = scan_info->request_ccb; 5357 free(scan_info, M_TEMP); 5358 request_ccb->ccb_h.status = CAM_REQ_CMP; 5359 xpt_done(request_ccb); 5360 } 5361 } else { 5362 /* Try the next device */ 5363 struct cam_path *path; 5364 cam_status status; 5365 5366 status = xpt_create_path(&path, xpt_periph, 5367 path_id, target_id, lun_id); 5368 if (status != CAM_REQ_CMP) { 5369 printf("xpt_scan_bus: xpt_create_path failed " 5370 "with status %#x, halting LUN scan\n", 5371 status); 5372 xpt_free_ccb(request_ccb); 5373 scan_info->pending_count--; 5374 if (scan_info->pending_count == 0) { 5375 xpt_free_ccb( 5376 (union ccb *)scan_info->cpi); 5377 request_ccb = scan_info->request_ccb; 5378 free(scan_info, M_TEMP); 5379 request_ccb->ccb_h.status = CAM_REQ_CMP; 5380 xpt_done(request_ccb); 5381 } 5382 break; 5383 } 5384 xpt_setup_ccb(&request_ccb->ccb_h, path, 5385 request_ccb->ccb_h.pinfo.priority); 5386 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5387 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5388 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5389 request_ccb->crcn.flags = 5390 scan_info->request_ccb->crcn.flags; 5391 xpt_action(request_ccb); 5392 } 5393 break; 5394 } 5395 default: 5396 break; 5397 } 5398 } 5399 5400 typedef enum { 5401 PROBE_TUR, 5402 PROBE_INQUIRY, 5403 PROBE_FULL_INQUIRY, 5404 PROBE_MODE_SENSE, 5405 PROBE_SERIAL_NUM, 5406 PROBE_TUR_FOR_NEGOTIATION 5407 } probe_action; 5408 5409 typedef enum { 5410 PROBE_INQUIRY_CKSUM = 0x01, 5411 PROBE_SERIAL_CKSUM = 0x02, 5412 PROBE_NO_ANNOUNCE = 0x04 5413 } probe_flags; 5414 5415 typedef struct { 5416 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5417 probe_action action; 5418 union ccb saved_ccb; 5419 probe_flags flags; 5420 MD5_CTX context; 5421 u_int8_t digest[16]; 5422 } probe_softc; 5423 5424 static void 5425 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5426 cam_flags flags, union ccb *request_ccb) 5427 { 5428 struct ccb_pathinq cpi; 5429 cam_status status; 5430 struct cam_path *new_path; 5431 struct cam_periph *old_periph; 5432 int s; 5433 5434 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5435 ("xpt_scan_lun\n")); 5436 5437 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5438 cpi.ccb_h.func_code = XPT_PATH_INQ; 5439 xpt_action((union ccb *)&cpi); 5440 5441 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5442 if (request_ccb != NULL) { 5443 request_ccb->ccb_h.status = cpi.ccb_h.status; 5444 xpt_done(request_ccb); 5445 } 5446 return; 5447 } 5448 5449 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5450 /* 5451 * Can't scan the bus on an adapter that 5452 * cannot perform the initiator role. 5453 */ 5454 if (request_ccb != NULL) { 5455 request_ccb->ccb_h.status = CAM_REQ_CMP; 5456 xpt_done(request_ccb); 5457 } 5458 return; 5459 } 5460 5461 if (request_ccb == NULL) { 5462 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5463 if (request_ccb == NULL) { 5464 xpt_print_path(path); 5465 printf("xpt_scan_lun: can't allocate CCB, can't " 5466 "continue\n"); 5467 return; 5468 } 5469 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5470 if (new_path == NULL) { 5471 xpt_print_path(path); 5472 printf("xpt_scan_lun: can't allocate path, can't " 5473 "continue\n"); 5474 free(request_ccb, M_TEMP); 5475 return; 5476 } 5477 status = xpt_compile_path(new_path, xpt_periph, 5478 path->bus->path_id, 5479 path->target->target_id, 5480 path->device->lun_id); 5481 5482 if (status != CAM_REQ_CMP) { 5483 xpt_print_path(path); 5484 printf("xpt_scan_lun: can't compile path, can't " 5485 "continue\n"); 5486 free(request_ccb, M_TEMP); 5487 free(new_path, M_TEMP); 5488 return; 5489 } 5490 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5491 request_ccb->ccb_h.cbfcnp = xptscandone; 5492 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5493 request_ccb->crcn.flags = flags; 5494 } 5495 5496 s = splsoftcam(); 5497 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5498 probe_softc *softc; 5499 5500 softc = (probe_softc *)old_periph->softc; 5501 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5502 periph_links.tqe); 5503 } else { 5504 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5505 probestart, "probe", 5506 CAM_PERIPH_BIO, 5507 request_ccb->ccb_h.path, NULL, 0, 5508 request_ccb); 5509 5510 if (status != CAM_REQ_CMP) { 5511 xpt_print_path(path); 5512 printf("xpt_scan_lun: cam_alloc_periph returned an " 5513 "error, can't continue probe\n"); 5514 request_ccb->ccb_h.status = status; 5515 xpt_done(request_ccb); 5516 } 5517 } 5518 splx(s); 5519 } 5520 5521 static void 5522 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5523 { 5524 xpt_release_path(done_ccb->ccb_h.path); 5525 free(done_ccb->ccb_h.path, M_TEMP); 5526 free(done_ccb, M_TEMP); 5527 } 5528 5529 static cam_status 5530 proberegister(struct cam_periph *periph, void *arg) 5531 { 5532 union ccb *request_ccb; /* CCB representing the probe request */ 5533 probe_softc *softc; 5534 5535 request_ccb = (union ccb *)arg; 5536 if (periph == NULL) { 5537 printf("proberegister: periph was NULL!!\n"); 5538 return(CAM_REQ_CMP_ERR); 5539 } 5540 5541 if (request_ccb == NULL) { 5542 printf("proberegister: no probe CCB, " 5543 "can't register device\n"); 5544 return(CAM_REQ_CMP_ERR); 5545 } 5546 5547 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5548 5549 if (softc == NULL) { 5550 printf("proberegister: Unable to probe new device. " 5551 "Unable to allocate softc\n"); 5552 return(CAM_REQ_CMP_ERR); 5553 } 5554 TAILQ_INIT(&softc->request_ccbs); 5555 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5556 periph_links.tqe); 5557 softc->flags = 0; 5558 periph->softc = softc; 5559 cam_periph_acquire(periph); 5560 /* 5561 * Ensure we've waited at least a bus settle 5562 * delay before attempting to probe the device. 5563 * For HBAs that don't do bus resets, this won't make a difference. 5564 */ 5565 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5566 scsi_delay); 5567 probeschedule(periph); 5568 return(CAM_REQ_CMP); 5569 } 5570 5571 static void 5572 probeschedule(struct cam_periph *periph) 5573 { 5574 struct ccb_pathinq cpi; 5575 union ccb *ccb; 5576 probe_softc *softc; 5577 5578 softc = (probe_softc *)periph->softc; 5579 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5580 5581 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5582 cpi.ccb_h.func_code = XPT_PATH_INQ; 5583 xpt_action((union ccb *)&cpi); 5584 5585 /* 5586 * If a device has gone away and another device, or the same one, 5587 * is back in the same place, it should have a unit attention 5588 * condition pending. It will not report the unit attention in 5589 * response to an inquiry, which may leave invalid transfer 5590 * negotiations in effect. The TUR will reveal the unit attention 5591 * condition. Only send the TUR for lun 0, since some devices 5592 * will get confused by commands other than inquiry to non-existent 5593 * luns. If you think a device has gone away start your scan from 5594 * lun 0. This will insure that any bogus transfer settings are 5595 * invalidated. 5596 * 5597 * If we haven't seen the device before and the controller supports 5598 * some kind of transfer negotiation, negotiate with the first 5599 * sent command if no bus reset was performed at startup. This 5600 * ensures that the device is not confused by transfer negotiation 5601 * settings left over by loader or BIOS action. 5602 */ 5603 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5604 && (ccb->ccb_h.target_lun == 0)) { 5605 softc->action = PROBE_TUR; 5606 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5607 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5608 proberequestdefaultnegotiation(periph); 5609 softc->action = PROBE_INQUIRY; 5610 } else { 5611 softc->action = PROBE_INQUIRY; 5612 } 5613 5614 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5615 softc->flags |= PROBE_NO_ANNOUNCE; 5616 else 5617 softc->flags &= ~PROBE_NO_ANNOUNCE; 5618 5619 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5620 } 5621 5622 static void 5623 probestart(struct cam_periph *periph, union ccb *start_ccb) 5624 { 5625 /* Probe the device that our peripheral driver points to */ 5626 struct ccb_scsiio *csio; 5627 probe_softc *softc; 5628 5629 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5630 5631 softc = (probe_softc *)periph->softc; 5632 csio = &start_ccb->csio; 5633 5634 switch (softc->action) { 5635 case PROBE_TUR: 5636 case PROBE_TUR_FOR_NEGOTIATION: 5637 { 5638 scsi_test_unit_ready(csio, 5639 /*retries*/4, 5640 probedone, 5641 MSG_SIMPLE_Q_TAG, 5642 SSD_FULL_SIZE, 5643 /*timeout*/60000); 5644 break; 5645 } 5646 case PROBE_INQUIRY: 5647 case PROBE_FULL_INQUIRY: 5648 { 5649 u_int inquiry_len; 5650 struct scsi_inquiry_data *inq_buf; 5651 5652 inq_buf = &periph->path->device->inq_data; 5653 /* 5654 * If the device is currently configured, we calculate an 5655 * MD5 checksum of the inquiry data, and if the serial number 5656 * length is greater than 0, add the serial number data 5657 * into the checksum as well. Once the inquiry and the 5658 * serial number check finish, we attempt to figure out 5659 * whether we still have the same device. 5660 */ 5661 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5662 5663 MD5Init(&softc->context); 5664 MD5Update(&softc->context, (unsigned char *)inq_buf, 5665 sizeof(struct scsi_inquiry_data)); 5666 softc->flags |= PROBE_INQUIRY_CKSUM; 5667 if (periph->path->device->serial_num_len > 0) { 5668 MD5Update(&softc->context, 5669 periph->path->device->serial_num, 5670 periph->path->device->serial_num_len); 5671 softc->flags |= PROBE_SERIAL_CKSUM; 5672 } 5673 MD5Final(softc->digest, &softc->context); 5674 } 5675 5676 if (softc->action == PROBE_INQUIRY) 5677 inquiry_len = SHORT_INQUIRY_LENGTH; 5678 else 5679 inquiry_len = inq_buf->additional_length 5680 + offsetof(struct scsi_inquiry_data, 5681 additional_length) + 1; 5682 5683 /* 5684 * Some parallel SCSI devices fail to send an 5685 * ignore wide residue message when dealing with 5686 * odd length inquiry requests. Round up to be 5687 * safe. 5688 */ 5689 inquiry_len = roundup2(inquiry_len, 2); 5690 5691 scsi_inquiry(csio, 5692 /*retries*/4, 5693 probedone, 5694 MSG_SIMPLE_Q_TAG, 5695 (u_int8_t *)inq_buf, 5696 inquiry_len, 5697 /*evpd*/FALSE, 5698 /*page_code*/0, 5699 SSD_MIN_SIZE, 5700 /*timeout*/60 * 1000); 5701 break; 5702 } 5703 case PROBE_MODE_SENSE: 5704 { 5705 void *mode_buf; 5706 int mode_buf_len; 5707 5708 mode_buf_len = sizeof(struct scsi_mode_header_6) 5709 + sizeof(struct scsi_mode_blk_desc) 5710 + sizeof(struct scsi_control_page); 5711 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5712 if (mode_buf != NULL) { 5713 scsi_mode_sense(csio, 5714 /*retries*/4, 5715 probedone, 5716 MSG_SIMPLE_Q_TAG, 5717 /*dbd*/FALSE, 5718 SMS_PAGE_CTRL_CURRENT, 5719 SMS_CONTROL_MODE_PAGE, 5720 mode_buf, 5721 mode_buf_len, 5722 SSD_FULL_SIZE, 5723 /*timeout*/60000); 5724 break; 5725 } 5726 xpt_print_path(periph->path); 5727 printf("Unable to mode sense control page - malloc failure\n"); 5728 softc->action = PROBE_SERIAL_NUM; 5729 } 5730 /* FALLTHROUGH */ 5731 case PROBE_SERIAL_NUM: 5732 { 5733 struct scsi_vpd_unit_serial_number *serial_buf; 5734 struct cam_ed* device; 5735 5736 serial_buf = NULL; 5737 device = periph->path->device; 5738 device->serial_num = NULL; 5739 device->serial_num_len = 0; 5740 5741 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5742 serial_buf = (struct scsi_vpd_unit_serial_number *) 5743 malloc(sizeof(*serial_buf), M_TEMP, 5744 M_NOWAIT | M_ZERO); 5745 5746 if (serial_buf != NULL) { 5747 scsi_inquiry(csio, 5748 /*retries*/4, 5749 probedone, 5750 MSG_SIMPLE_Q_TAG, 5751 (u_int8_t *)serial_buf, 5752 sizeof(*serial_buf), 5753 /*evpd*/TRUE, 5754 SVPD_UNIT_SERIAL_NUMBER, 5755 SSD_MIN_SIZE, 5756 /*timeout*/60 * 1000); 5757 break; 5758 } 5759 /* 5760 * We'll have to do without, let our probedone 5761 * routine finish up for us. 5762 */ 5763 start_ccb->csio.data_ptr = NULL; 5764 probedone(periph, start_ccb); 5765 return; 5766 } 5767 } 5768 xpt_action(start_ccb); 5769 } 5770 5771 static void 5772 proberequestdefaultnegotiation(struct cam_periph *periph) 5773 { 5774 struct ccb_trans_settings cts; 5775 5776 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5777 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5778 #ifdef CAM_NEW_TRAN_CODE 5779 cts.type = CTS_TYPE_USER_SETTINGS; 5780 #else /* CAM_NEW_TRAN_CODE */ 5781 cts.flags = CCB_TRANS_USER_SETTINGS; 5782 #endif /* CAM_NEW_TRAN_CODE */ 5783 xpt_action((union ccb *)&cts); 5784 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5785 #ifdef CAM_NEW_TRAN_CODE 5786 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5787 #else /* CAM_NEW_TRAN_CODE */ 5788 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5789 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5790 #endif /* CAM_NEW_TRAN_CODE */ 5791 xpt_action((union ccb *)&cts); 5792 } 5793 5794 static void 5795 probedone(struct cam_periph *periph, union ccb *done_ccb) 5796 { 5797 probe_softc *softc; 5798 struct cam_path *path; 5799 u_int32_t priority; 5800 5801 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5802 5803 softc = (probe_softc *)periph->softc; 5804 path = done_ccb->ccb_h.path; 5805 priority = done_ccb->ccb_h.pinfo.priority; 5806 5807 switch (softc->action) { 5808 case PROBE_TUR: 5809 { 5810 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5811 5812 if (cam_periph_error(done_ccb, 0, 5813 SF_NO_PRINT, NULL) == ERESTART) 5814 return; 5815 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5816 /* Don't wedge the queue */ 5817 xpt_release_devq(done_ccb->ccb_h.path, 5818 /*count*/1, 5819 /*run_queue*/TRUE); 5820 } 5821 softc->action = PROBE_INQUIRY; 5822 xpt_release_ccb(done_ccb); 5823 xpt_schedule(periph, priority); 5824 return; 5825 } 5826 case PROBE_INQUIRY: 5827 case PROBE_FULL_INQUIRY: 5828 { 5829 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5830 struct scsi_inquiry_data *inq_buf; 5831 u_int8_t periph_qual; 5832 5833 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5834 inq_buf = &path->device->inq_data; 5835 5836 periph_qual = SID_QUAL(inq_buf); 5837 5838 switch(periph_qual) { 5839 case SID_QUAL_LU_CONNECTED: 5840 { 5841 u_int8_t len; 5842 5843 /* 5844 * We conservatively request only 5845 * SHORT_INQUIRY_LEN bytes of inquiry 5846 * information during our first try 5847 * at sending an INQUIRY. If the device 5848 * has more information to give, 5849 * perform a second request specifying 5850 * the amount of information the device 5851 * is willing to give. 5852 */ 5853 len = inq_buf->additional_length 5854 + offsetof(struct scsi_inquiry_data, 5855 additional_length) + 1; 5856 if (softc->action == PROBE_INQUIRY 5857 && len > SHORT_INQUIRY_LENGTH) { 5858 softc->action = PROBE_FULL_INQUIRY; 5859 xpt_release_ccb(done_ccb); 5860 xpt_schedule(periph, priority); 5861 return; 5862 } 5863 5864 xpt_find_quirk(path->device); 5865 5866 #ifdef CAM_NEW_TRAN_CODE 5867 xpt_devise_transport(path); 5868 #endif /* CAM_NEW_TRAN_CODE */ 5869 if ((inq_buf->flags & SID_CmdQue) != 0) 5870 softc->action = PROBE_MODE_SENSE; 5871 else 5872 softc->action = PROBE_SERIAL_NUM; 5873 5874 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5875 5876 xpt_release_ccb(done_ccb); 5877 xpt_schedule(periph, priority); 5878 return; 5879 } 5880 default: 5881 break; 5882 } 5883 } else if (cam_periph_error(done_ccb, 0, 5884 done_ccb->ccb_h.target_lun > 0 5885 ? SF_RETRY_UA|SF_QUIET_IR 5886 : SF_RETRY_UA, 5887 &softc->saved_ccb) == ERESTART) { 5888 return; 5889 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5890 /* Don't wedge the queue */ 5891 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5892 /*run_queue*/TRUE); 5893 } 5894 /* 5895 * If we get to this point, we got an error status back 5896 * from the inquiry and the error status doesn't require 5897 * automatically retrying the command. Therefore, the 5898 * inquiry failed. If we had inquiry information before 5899 * for this device, but this latest inquiry command failed, 5900 * the device has probably gone away. If this device isn't 5901 * already marked unconfigured, notify the peripheral 5902 * drivers that this device is no more. 5903 */ 5904 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5905 /* Send the async notification. */ 5906 xpt_async(AC_LOST_DEVICE, path, NULL); 5907 5908 xpt_release_ccb(done_ccb); 5909 break; 5910 } 5911 case PROBE_MODE_SENSE: 5912 { 5913 struct ccb_scsiio *csio; 5914 struct scsi_mode_header_6 *mode_hdr; 5915 5916 csio = &done_ccb->csio; 5917 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 5918 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5919 struct scsi_control_page *page; 5920 u_int8_t *offset; 5921 5922 offset = ((u_int8_t *)&mode_hdr[1]) 5923 + mode_hdr->blk_desc_len; 5924 page = (struct scsi_control_page *)offset; 5925 path->device->queue_flags = page->queue_flags; 5926 } else if (cam_periph_error(done_ccb, 0, 5927 SF_RETRY_UA|SF_NO_PRINT, 5928 &softc->saved_ccb) == ERESTART) { 5929 return; 5930 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5931 /* Don't wedge the queue */ 5932 xpt_release_devq(done_ccb->ccb_h.path, 5933 /*count*/1, /*run_queue*/TRUE); 5934 } 5935 xpt_release_ccb(done_ccb); 5936 free(mode_hdr, M_TEMP); 5937 softc->action = PROBE_SERIAL_NUM; 5938 xpt_schedule(periph, priority); 5939 return; 5940 } 5941 case PROBE_SERIAL_NUM: 5942 { 5943 struct ccb_scsiio *csio; 5944 struct scsi_vpd_unit_serial_number *serial_buf; 5945 u_int32_t priority; 5946 int changed; 5947 int have_serialnum; 5948 5949 changed = 1; 5950 have_serialnum = 0; 5951 csio = &done_ccb->csio; 5952 priority = done_ccb->ccb_h.pinfo.priority; 5953 serial_buf = 5954 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 5955 5956 /* Clean up from previous instance of this device */ 5957 if (path->device->serial_num != NULL) { 5958 free(path->device->serial_num, M_DEVBUF); 5959 path->device->serial_num = NULL; 5960 path->device->serial_num_len = 0; 5961 } 5962 5963 if (serial_buf == NULL) { 5964 /* 5965 * Don't process the command as it was never sent 5966 */ 5967 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 5968 && (serial_buf->length > 0)) { 5969 5970 have_serialnum = 1; 5971 path->device->serial_num = 5972 (u_int8_t *)malloc((serial_buf->length + 1), 5973 M_DEVBUF, M_NOWAIT); 5974 if (path->device->serial_num != NULL) { 5975 bcopy(serial_buf->serial_num, 5976 path->device->serial_num, 5977 serial_buf->length); 5978 path->device->serial_num_len = 5979 serial_buf->length; 5980 path->device->serial_num[serial_buf->length] 5981 = '\0'; 5982 } 5983 } else if (cam_periph_error(done_ccb, 0, 5984 SF_RETRY_UA|SF_NO_PRINT, 5985 &softc->saved_ccb) == ERESTART) { 5986 return; 5987 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5988 /* Don't wedge the queue */ 5989 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5990 /*run_queue*/TRUE); 5991 } 5992 5993 /* 5994 * Let's see if we have seen this device before. 5995 */ 5996 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 5997 MD5_CTX context; 5998 u_int8_t digest[16]; 5999 6000 MD5Init(&context); 6001 6002 MD5Update(&context, 6003 (unsigned char *)&path->device->inq_data, 6004 sizeof(struct scsi_inquiry_data)); 6005 6006 if (have_serialnum) 6007 MD5Update(&context, serial_buf->serial_num, 6008 serial_buf->length); 6009 6010 MD5Final(digest, &context); 6011 if (bcmp(softc->digest, digest, 16) == 0) 6012 changed = 0; 6013 6014 /* 6015 * XXX Do we need to do a TUR in order to ensure 6016 * that the device really hasn't changed??? 6017 */ 6018 if ((changed != 0) 6019 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6020 xpt_async(AC_LOST_DEVICE, path, NULL); 6021 } 6022 if (serial_buf != NULL) 6023 free(serial_buf, M_TEMP); 6024 6025 if (changed != 0) { 6026 /* 6027 * Now that we have all the necessary 6028 * information to safely perform transfer 6029 * negotiations... Controllers don't perform 6030 * any negotiation or tagged queuing until 6031 * after the first XPT_SET_TRAN_SETTINGS ccb is 6032 * received. So, on a new device, just retreive 6033 * the user settings, and set them as the current 6034 * settings to set the device up. 6035 */ 6036 proberequestdefaultnegotiation(periph); 6037 xpt_release_ccb(done_ccb); 6038 6039 /* 6040 * Perform a TUR to allow the controller to 6041 * perform any necessary transfer negotiation. 6042 */ 6043 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6044 xpt_schedule(periph, priority); 6045 return; 6046 } 6047 xpt_release_ccb(done_ccb); 6048 break; 6049 } 6050 case PROBE_TUR_FOR_NEGOTIATION: 6051 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6052 /* Don't wedge the queue */ 6053 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6054 /*run_queue*/TRUE); 6055 } 6056 6057 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6058 6059 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6060 /* Inform the XPT that a new device has been found */ 6061 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6062 xpt_action(done_ccb); 6063 6064 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6065 done_ccb); 6066 } 6067 xpt_release_ccb(done_ccb); 6068 break; 6069 } 6070 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6071 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6072 done_ccb->ccb_h.status = CAM_REQ_CMP; 6073 xpt_done(done_ccb); 6074 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6075 cam_periph_invalidate(periph); 6076 cam_periph_release(periph); 6077 } else { 6078 probeschedule(periph); 6079 } 6080 } 6081 6082 static void 6083 probecleanup(struct cam_periph *periph) 6084 { 6085 free(periph->softc, M_TEMP); 6086 } 6087 6088 static void 6089 xpt_find_quirk(struct cam_ed *device) 6090 { 6091 caddr_t match; 6092 6093 match = cam_quirkmatch((caddr_t)&device->inq_data, 6094 (caddr_t)xpt_quirk_table, 6095 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6096 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6097 6098 if (match == NULL) 6099 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6100 6101 device->quirk = (struct xpt_quirk_entry *)match; 6102 } 6103 6104 #ifdef CAM_NEW_TRAN_CODE 6105 6106 static void 6107 xpt_devise_transport(struct cam_path *path) 6108 { 6109 struct ccb_pathinq cpi; 6110 struct ccb_trans_settings cts; 6111 struct scsi_inquiry_data *inq_buf; 6112 6113 /* Get transport information from the SIM */ 6114 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6115 cpi.ccb_h.func_code = XPT_PATH_INQ; 6116 xpt_action((union ccb *)&cpi); 6117 6118 inq_buf = NULL; 6119 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6120 inq_buf = &path->device->inq_data; 6121 path->device->protocol = PROTO_SCSI; 6122 path->device->protocol_version = 6123 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6124 path->device->transport = cpi.transport; 6125 path->device->transport_version = cpi.transport_version; 6126 6127 /* 6128 * Any device not using SPI3 features should 6129 * be considered SPI2 or lower. 6130 */ 6131 if (inq_buf != NULL) { 6132 if (path->device->transport == XPORT_SPI 6133 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6134 && path->device->transport_version > 2) 6135 path->device->transport_version = 2; 6136 } else { 6137 struct cam_ed* otherdev; 6138 6139 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6140 otherdev != NULL; 6141 otherdev = TAILQ_NEXT(otherdev, links)) { 6142 if (otherdev != path->device) 6143 break; 6144 } 6145 6146 if (otherdev != NULL) { 6147 /* 6148 * Initially assume the same versioning as 6149 * prior luns for this target. 6150 */ 6151 path->device->protocol_version = 6152 otherdev->protocol_version; 6153 path->device->transport_version = 6154 otherdev->transport_version; 6155 } else { 6156 /* Until we know better, opt for safty */ 6157 path->device->protocol_version = 2; 6158 if (path->device->transport == XPORT_SPI) 6159 path->device->transport_version = 2; 6160 else 6161 path->device->transport_version = 0; 6162 } 6163 } 6164 6165 /* 6166 * XXX 6167 * For a device compliant with SPC-2 we should be able 6168 * to determine the transport version supported by 6169 * scrutinizing the version descriptors in the 6170 * inquiry buffer. 6171 */ 6172 6173 /* Tell the controller what we think */ 6174 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6175 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6176 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6177 cts.transport = path->device->transport; 6178 cts.transport_version = path->device->transport_version; 6179 cts.protocol = path->device->protocol; 6180 cts.protocol_version = path->device->protocol_version; 6181 cts.proto_specific.valid = 0; 6182 cts.xport_specific.valid = 0; 6183 xpt_action((union ccb *)&cts); 6184 } 6185 6186 static void 6187 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6188 int async_update) 6189 { 6190 struct ccb_pathinq cpi; 6191 struct ccb_trans_settings cur_cts; 6192 struct ccb_trans_settings_scsi *scsi; 6193 struct ccb_trans_settings_scsi *cur_scsi; 6194 struct cam_sim *sim; 6195 struct scsi_inquiry_data *inq_data; 6196 6197 if (device == NULL) { 6198 cts->ccb_h.status = CAM_PATH_INVALID; 6199 xpt_done((union ccb *)cts); 6200 return; 6201 } 6202 6203 if (cts->protocol == PROTO_UNKNOWN 6204 || cts->protocol == PROTO_UNSPECIFIED) { 6205 cts->protocol = device->protocol; 6206 cts->protocol_version = device->protocol_version; 6207 } 6208 6209 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6210 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6211 cts->protocol_version = device->protocol_version; 6212 6213 if (cts->protocol != device->protocol) { 6214 xpt_print_path(cts->ccb_h.path); 6215 printf("Uninitialized Protocol %x:%x?\n", 6216 cts->protocol, device->protocol); 6217 cts->protocol = device->protocol; 6218 } 6219 6220 if (cts->protocol_version > device->protocol_version) { 6221 if (bootverbose) { 6222 xpt_print_path(cts->ccb_h.path); 6223 printf("Down reving Protocol Version from %d to %d?\n", 6224 cts->protocol_version, device->protocol_version); 6225 } 6226 cts->protocol_version = device->protocol_version; 6227 } 6228 6229 if (cts->transport == XPORT_UNKNOWN 6230 || cts->transport == XPORT_UNSPECIFIED) { 6231 cts->transport = device->transport; 6232 cts->transport_version = device->transport_version; 6233 } 6234 6235 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6236 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6237 cts->transport_version = device->transport_version; 6238 6239 if (cts->transport != device->transport) { 6240 xpt_print_path(cts->ccb_h.path); 6241 printf("Uninitialized Transport %x:%x?\n", 6242 cts->transport, device->transport); 6243 cts->transport = device->transport; 6244 } 6245 6246 if (cts->transport_version > device->transport_version) { 6247 if (bootverbose) { 6248 xpt_print_path(cts->ccb_h.path); 6249 printf("Down reving Transport Version from %d to %d?\n", 6250 cts->transport_version, 6251 device->transport_version); 6252 } 6253 cts->transport_version = device->transport_version; 6254 } 6255 6256 sim = cts->ccb_h.path->bus->sim; 6257 6258 /* 6259 * Nothing more of interest to do unless 6260 * this is a device connected via the 6261 * SCSI protocol. 6262 */ 6263 if (cts->protocol != PROTO_SCSI) { 6264 if (async_update == FALSE) 6265 (*(sim->sim_action))(sim, (union ccb *)cts); 6266 return; 6267 } 6268 6269 inq_data = &device->inq_data; 6270 scsi = &cts->proto_specific.scsi; 6271 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6272 cpi.ccb_h.func_code = XPT_PATH_INQ; 6273 xpt_action((union ccb *)&cpi); 6274 6275 /* SCSI specific sanity checking */ 6276 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6277 || (inq_data->flags & SID_CmdQue) == 0 6278 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6279 || (device->quirk->mintags == 0)) { 6280 /* 6281 * Can't tag on hardware that doesn't support tags, 6282 * doesn't have it enabled, or has broken tag support. 6283 */ 6284 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6285 } 6286 6287 if (async_update == FALSE) { 6288 /* 6289 * Perform sanity checking against what the 6290 * controller and device can do. 6291 */ 6292 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6293 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6294 cur_cts.type = cts->type; 6295 xpt_action((union ccb *)&cur_cts); 6296 6297 cur_scsi = &cur_cts.proto_specific.scsi; 6298 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6299 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6300 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6301 } 6302 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6303 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6304 } 6305 6306 /* SPI specific sanity checking */ 6307 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6308 u_int spi3caps; 6309 struct ccb_trans_settings_spi *spi; 6310 struct ccb_trans_settings_spi *cur_spi; 6311 6312 spi = &cts->xport_specific.spi; 6313 6314 cur_spi = &cur_cts.xport_specific.spi; 6315 6316 /* Fill in any gaps in what the user gave us */ 6317 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6318 spi->sync_period = cur_spi->sync_period; 6319 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6320 spi->sync_period = 0; 6321 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6322 spi->sync_offset = cur_spi->sync_offset; 6323 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6324 spi->sync_offset = 0; 6325 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6326 spi->ppr_options = cur_spi->ppr_options; 6327 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6328 spi->ppr_options = 0; 6329 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6330 spi->bus_width = cur_spi->bus_width; 6331 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6332 spi->bus_width = 0; 6333 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6334 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6335 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6336 } 6337 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6338 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6339 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6340 && (inq_data->flags & SID_Sync) == 0 6341 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6342 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6343 || (cur_spi->sync_offset == 0) 6344 || (cur_spi->sync_period == 0)) { 6345 /* Force async */ 6346 spi->sync_period = 0; 6347 spi->sync_offset = 0; 6348 } 6349 6350 switch (spi->bus_width) { 6351 case MSG_EXT_WDTR_BUS_32_BIT: 6352 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6353 || (inq_data->flags & SID_WBus32) != 0 6354 || cts->type == CTS_TYPE_USER_SETTINGS) 6355 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6356 break; 6357 /* Fall Through to 16-bit */ 6358 case MSG_EXT_WDTR_BUS_16_BIT: 6359 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6360 || (inq_data->flags & SID_WBus16) != 0 6361 || cts->type == CTS_TYPE_USER_SETTINGS) 6362 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6363 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6364 break; 6365 } 6366 /* Fall Through to 8-bit */ 6367 default: /* New bus width?? */ 6368 case MSG_EXT_WDTR_BUS_8_BIT: 6369 /* All targets can do this */ 6370 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6371 break; 6372 } 6373 6374 spi3caps = cpi.xport_specific.spi.ppr_options; 6375 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6376 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6377 spi3caps &= inq_data->spi3data; 6378 6379 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6380 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6381 6382 if ((spi3caps & SID_SPI_IUS) == 0) 6383 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6384 6385 if ((spi3caps & SID_SPI_QAS) == 0) 6386 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6387 6388 /* No SPI Transfer settings are allowed unless we are wide */ 6389 if (spi->bus_width == 0) 6390 spi->ppr_options = 0; 6391 6392 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6393 /* 6394 * Can't tag queue without disconnection. 6395 */ 6396 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6397 scsi->valid |= CTS_SCSI_VALID_TQ; 6398 } 6399 6400 /* 6401 * If we are currently performing tagged transactions to 6402 * this device and want to change its negotiation parameters, 6403 * go non-tagged for a bit to give the controller a chance to 6404 * negotiate unhampered by tag messages. 6405 */ 6406 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6407 && (device->inq_flags & SID_CmdQue) != 0 6408 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6409 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6410 CTS_SPI_VALID_SYNC_OFFSET| 6411 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6412 xpt_toggle_tags(cts->ccb_h.path); 6413 } 6414 6415 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6416 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6417 int device_tagenb; 6418 6419 /* 6420 * If we are transitioning from tags to no-tags or 6421 * vice-versa, we need to carefully freeze and restart 6422 * the queue so that we don't overlap tagged and non-tagged 6423 * commands. We also temporarily stop tags if there is 6424 * a change in transfer negotiation settings to allow 6425 * "tag-less" negotiation. 6426 */ 6427 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6428 || (device->inq_flags & SID_CmdQue) != 0) 6429 device_tagenb = TRUE; 6430 else 6431 device_tagenb = FALSE; 6432 6433 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6434 && device_tagenb == FALSE) 6435 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6436 && device_tagenb == TRUE)) { 6437 6438 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6439 /* 6440 * Delay change to use tags until after a 6441 * few commands have gone to this device so 6442 * the controller has time to perform transfer 6443 * negotiations without tagged messages getting 6444 * in the way. 6445 */ 6446 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6447 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6448 } else { 6449 struct ccb_relsim crs; 6450 6451 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6452 device->inq_flags &= ~SID_CmdQue; 6453 xpt_dev_ccbq_resize(cts->ccb_h.path, 6454 sim->max_dev_openings); 6455 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6456 device->tag_delay_count = 0; 6457 6458 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6459 /*priority*/1); 6460 crs.ccb_h.func_code = XPT_REL_SIMQ; 6461 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6462 crs.openings 6463 = crs.release_timeout 6464 = crs.qfrozen_cnt 6465 = 0; 6466 xpt_action((union ccb *)&crs); 6467 } 6468 } 6469 } 6470 if (async_update == FALSE) 6471 (*(sim->sim_action))(sim, (union ccb *)cts); 6472 } 6473 6474 #else /* CAM_NEW_TRAN_CODE */ 6475 6476 static void 6477 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6478 int async_update) 6479 { 6480 struct cam_sim *sim; 6481 int qfrozen; 6482 6483 sim = cts->ccb_h.path->bus->sim; 6484 if (async_update == FALSE) { 6485 struct scsi_inquiry_data *inq_data; 6486 struct ccb_pathinq cpi; 6487 struct ccb_trans_settings cur_cts; 6488 6489 if (device == NULL) { 6490 cts->ccb_h.status = CAM_PATH_INVALID; 6491 xpt_done((union ccb *)cts); 6492 return; 6493 } 6494 6495 /* 6496 * Perform sanity checking against what the 6497 * controller and device can do. 6498 */ 6499 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6500 cpi.ccb_h.func_code = XPT_PATH_INQ; 6501 xpt_action((union ccb *)&cpi); 6502 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6503 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6504 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 6505 xpt_action((union ccb *)&cur_cts); 6506 inq_data = &device->inq_data; 6507 6508 /* Fill in any gaps in what the user gave us */ 6509 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 6510 cts->sync_period = cur_cts.sync_period; 6511 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 6512 cts->sync_offset = cur_cts.sync_offset; 6513 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 6514 cts->bus_width = cur_cts.bus_width; 6515 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 6516 cts->flags &= ~CCB_TRANS_DISC_ENB; 6517 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 6518 } 6519 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 6520 cts->flags &= ~CCB_TRANS_TAG_ENB; 6521 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 6522 } 6523 6524 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6525 && (inq_data->flags & SID_Sync) == 0) 6526 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6527 || (cts->sync_offset == 0) 6528 || (cts->sync_period == 0)) { 6529 /* Force async */ 6530 cts->sync_period = 0; 6531 cts->sync_offset = 0; 6532 } else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6533 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 6534 && cts->sync_period <= 0x9) { 6535 /* 6536 * Don't allow DT transmission rates if the 6537 * device does not support it. 6538 */ 6539 cts->sync_period = 0xa; 6540 } 6541 6542 switch (cts->bus_width) { 6543 case MSG_EXT_WDTR_BUS_32_BIT: 6544 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6545 || (inq_data->flags & SID_WBus32) != 0) 6546 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6547 break; 6548 /* FALLTHROUGH to 16-bit */ 6549 case MSG_EXT_WDTR_BUS_16_BIT: 6550 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6551 || (inq_data->flags & SID_WBus16) != 0) 6552 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6553 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6554 break; 6555 } 6556 /* FALLTHROUGH to 8-bit */ 6557 default: /* New bus width?? */ 6558 case MSG_EXT_WDTR_BUS_8_BIT: 6559 /* All targets can do this */ 6560 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6561 break; 6562 } 6563 6564 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 6565 /* 6566 * Can't tag queue without disconnection. 6567 */ 6568 cts->flags &= ~CCB_TRANS_TAG_ENB; 6569 cts->valid |= CCB_TRANS_TQ_VALID; 6570 } 6571 6572 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6573 || (inq_data->flags & SID_CmdQue) == 0 6574 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6575 || (device->quirk->mintags == 0)) { 6576 /* 6577 * Can't tag on hardware that doesn't support, 6578 * doesn't have it enabled, or has broken tag support. 6579 */ 6580 cts->flags &= ~CCB_TRANS_TAG_ENB; 6581 } 6582 } 6583 6584 qfrozen = FALSE; 6585 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 6586 int device_tagenb; 6587 6588 /* 6589 * If we are transitioning from tags to no-tags or 6590 * vice-versa, we need to carefully freeze and restart 6591 * the queue so that we don't overlap tagged and non-tagged 6592 * commands. We also temporarily stop tags if there is 6593 * a change in transfer negotiation settings to allow 6594 * "tag-less" negotiation. 6595 */ 6596 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6597 || (device->inq_flags & SID_CmdQue) != 0) 6598 device_tagenb = TRUE; 6599 else 6600 device_tagenb = FALSE; 6601 6602 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 6603 && device_tagenb == FALSE) 6604 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 6605 && device_tagenb == TRUE)) { 6606 6607 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 6608 /* 6609 * Delay change to use tags until after a 6610 * few commands have gone to this device so 6611 * the controller has time to perform transfer 6612 * negotiations without tagged messages getting 6613 * in the way. 6614 */ 6615 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6616 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6617 } else { 6618 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6619 qfrozen = TRUE; 6620 device->inq_flags &= ~SID_CmdQue; 6621 xpt_dev_ccbq_resize(cts->ccb_h.path, 6622 sim->max_dev_openings); 6623 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6624 device->tag_delay_count = 0; 6625 } 6626 } 6627 } 6628 6629 if (async_update == FALSE) { 6630 /* 6631 * If we are currently performing tagged transactions to 6632 * this device and want to change its negotiation parameters, 6633 * go non-tagged for a bit to give the controller a chance to 6634 * negotiate unhampered by tag messages. 6635 */ 6636 if ((device->inq_flags & SID_CmdQue) != 0 6637 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 6638 CCB_TRANS_SYNC_OFFSET_VALID| 6639 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 6640 xpt_toggle_tags(cts->ccb_h.path); 6641 6642 (*(sim->sim_action))(sim, (union ccb *)cts); 6643 } 6644 6645 if (qfrozen) { 6646 struct ccb_relsim crs; 6647 6648 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6649 /*priority*/1); 6650 crs.ccb_h.func_code = XPT_REL_SIMQ; 6651 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6652 crs.openings 6653 = crs.release_timeout 6654 = crs.qfrozen_cnt 6655 = 0; 6656 xpt_action((union ccb *)&crs); 6657 } 6658 } 6659 6660 6661 #endif /* CAM_NEW_TRAN_CODE */ 6662 6663 static void 6664 xpt_toggle_tags(struct cam_path *path) 6665 { 6666 struct cam_ed *dev; 6667 6668 /* 6669 * Give controllers a chance to renegotiate 6670 * before starting tag operations. We 6671 * "toggle" tagged queuing off then on 6672 * which causes the tag enable command delay 6673 * counter to come into effect. 6674 */ 6675 dev = path->device; 6676 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6677 || ((dev->inq_flags & SID_CmdQue) != 0 6678 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6679 struct ccb_trans_settings cts; 6680 6681 xpt_setup_ccb(&cts.ccb_h, path, 1); 6682 #ifdef CAM_NEW_TRAN_CODE 6683 cts.protocol = PROTO_SCSI; 6684 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6685 cts.transport = XPORT_UNSPECIFIED; 6686 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6687 cts.proto_specific.scsi.flags = 0; 6688 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6689 #else /* CAM_NEW_TRAN_CODE */ 6690 cts.flags = 0; 6691 cts.valid = CCB_TRANS_TQ_VALID; 6692 #endif /* CAM_NEW_TRAN_CODE */ 6693 xpt_set_transfer_settings(&cts, path->device, 6694 /*async_update*/TRUE); 6695 #ifdef CAM_NEW_TRAN_CODE 6696 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6697 #else /* CAM_NEW_TRAN_CODE */ 6698 cts.flags = CCB_TRANS_TAG_ENB; 6699 #endif /* CAM_NEW_TRAN_CODE */ 6700 xpt_set_transfer_settings(&cts, path->device, 6701 /*async_update*/TRUE); 6702 } 6703 } 6704 6705 static void 6706 xpt_start_tags(struct cam_path *path) 6707 { 6708 struct ccb_relsim crs; 6709 struct cam_ed *device; 6710 struct cam_sim *sim; 6711 int newopenings; 6712 6713 device = path->device; 6714 sim = path->bus->sim; 6715 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6716 xpt_freeze_devq(path, /*count*/1); 6717 device->inq_flags |= SID_CmdQue; 6718 if (device->tag_saved_openings != 0) 6719 newopenings = device->tag_saved_openings; 6720 else 6721 newopenings = min(device->quirk->maxtags, 6722 sim->max_tagged_dev_openings); 6723 xpt_dev_ccbq_resize(path, newopenings); 6724 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6725 crs.ccb_h.func_code = XPT_REL_SIMQ; 6726 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6727 crs.openings 6728 = crs.release_timeout 6729 = crs.qfrozen_cnt 6730 = 0; 6731 xpt_action((union ccb *)&crs); 6732 } 6733 6734 static int busses_to_config; 6735 static int busses_to_reset; 6736 6737 static int 6738 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6739 { 6740 if (bus->path_id != CAM_XPT_PATH_ID) { 6741 struct cam_path path; 6742 struct ccb_pathinq cpi; 6743 int can_negotiate; 6744 6745 busses_to_config++; 6746 xpt_compile_path(&path, NULL, bus->path_id, 6747 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6748 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6749 cpi.ccb_h.func_code = XPT_PATH_INQ; 6750 xpt_action((union ccb *)&cpi); 6751 can_negotiate = cpi.hba_inquiry; 6752 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6753 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6754 && can_negotiate) 6755 busses_to_reset++; 6756 xpt_release_path(&path); 6757 } 6758 6759 return(1); 6760 } 6761 6762 static int 6763 xptconfigfunc(struct cam_eb *bus, void *arg) 6764 { 6765 struct cam_path *path; 6766 union ccb *work_ccb; 6767 6768 if (bus->path_id != CAM_XPT_PATH_ID) { 6769 cam_status status; 6770 int can_negotiate; 6771 6772 work_ccb = xpt_alloc_ccb(); 6773 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6774 CAM_TARGET_WILDCARD, 6775 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6776 printf("xptconfigfunc: xpt_create_path failed with " 6777 "status %#x for bus %d\n", status, bus->path_id); 6778 printf("xptconfigfunc: halting bus configuration\n"); 6779 xpt_free_ccb(work_ccb); 6780 busses_to_config--; 6781 xpt_finishconfig(xpt_periph, NULL); 6782 return(0); 6783 } 6784 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6785 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6786 xpt_action(work_ccb); 6787 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6788 printf("xptconfigfunc: CPI failed on bus %d " 6789 "with status %d\n", bus->path_id, 6790 work_ccb->ccb_h.status); 6791 xpt_finishconfig(xpt_periph, work_ccb); 6792 return(1); 6793 } 6794 6795 can_negotiate = work_ccb->cpi.hba_inquiry; 6796 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6797 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6798 && (can_negotiate != 0)) { 6799 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6800 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6801 work_ccb->ccb_h.cbfcnp = NULL; 6802 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6803 ("Resetting Bus\n")); 6804 xpt_action(work_ccb); 6805 xpt_finishconfig(xpt_periph, work_ccb); 6806 } else { 6807 /* Act as though we performed a successful BUS RESET */ 6808 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6809 xpt_finishconfig(xpt_periph, work_ccb); 6810 } 6811 } 6812 6813 return(1); 6814 } 6815 6816 static void 6817 xpt_config(void *arg) 6818 { 6819 /* 6820 * Now that interrupts are enabled, go find our devices 6821 */ 6822 6823 #ifdef CAMDEBUG 6824 /* Setup debugging flags and path */ 6825 #ifdef CAM_DEBUG_FLAGS 6826 cam_dflags = CAM_DEBUG_FLAGS; 6827 #else /* !CAM_DEBUG_FLAGS */ 6828 cam_dflags = CAM_DEBUG_NONE; 6829 #endif /* CAM_DEBUG_FLAGS */ 6830 #ifdef CAM_DEBUG_BUS 6831 if (cam_dflags != CAM_DEBUG_NONE) { 6832 if (xpt_create_path(&cam_dpath, xpt_periph, 6833 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6834 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6835 printf("xpt_config: xpt_create_path() failed for debug" 6836 " target %d:%d:%d, debugging disabled\n", 6837 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6838 cam_dflags = CAM_DEBUG_NONE; 6839 } 6840 } else 6841 cam_dpath = NULL; 6842 #else /* !CAM_DEBUG_BUS */ 6843 cam_dpath = NULL; 6844 #endif /* CAM_DEBUG_BUS */ 6845 #endif /* CAMDEBUG */ 6846 6847 /* 6848 * Scan all installed busses. 6849 */ 6850 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6851 6852 if (busses_to_config == 0) { 6853 /* Call manually because we don't have any busses */ 6854 xpt_finishconfig(xpt_periph, NULL); 6855 } else { 6856 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6857 printf("Waiting %d seconds for SCSI " 6858 "devices to settle\n", scsi_delay/1000); 6859 } 6860 xpt_for_all_busses(xptconfigfunc, NULL); 6861 } 6862 } 6863 6864 /* 6865 * If the given device only has one peripheral attached to it, and if that 6866 * peripheral is the passthrough driver, announce it. This insures that the 6867 * user sees some sort of announcement for every peripheral in their system. 6868 */ 6869 static int 6870 xptpassannouncefunc(struct cam_ed *device, void *arg) 6871 { 6872 struct cam_periph *periph; 6873 int i; 6874 6875 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6876 periph = SLIST_NEXT(periph, periph_links), i++); 6877 6878 periph = SLIST_FIRST(&device->periphs); 6879 if ((i == 1) 6880 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6881 xpt_announce_periph(periph, NULL); 6882 6883 return(1); 6884 } 6885 6886 static void 6887 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6888 { 6889 struct periph_driver **p_drv; 6890 int i; 6891 6892 if (done_ccb != NULL) { 6893 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6894 ("xpt_finishconfig\n")); 6895 switch(done_ccb->ccb_h.func_code) { 6896 case XPT_RESET_BUS: 6897 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6898 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6899 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6900 done_ccb->crcn.flags = 0; 6901 xpt_action(done_ccb); 6902 return; 6903 } 6904 /* FALLTHROUGH */ 6905 case XPT_SCAN_BUS: 6906 default: 6907 xpt_free_path(done_ccb->ccb_h.path); 6908 busses_to_config--; 6909 break; 6910 } 6911 } 6912 6913 if (busses_to_config == 0) { 6914 /* Register all the peripheral drivers */ 6915 /* XXX This will have to change when we have loadable modules */ 6916 p_drv = periph_drivers; 6917 for (i = 0; p_drv[i] != NULL; i++) { 6918 (*p_drv[i]->init)(); 6919 } 6920 6921 /* 6922 * Check for devices with no "standard" peripheral driver 6923 * attached. For any devices like that, announce the 6924 * passthrough driver so the user will see something. 6925 */ 6926 xpt_for_all_devices(xptpassannouncefunc, NULL); 6927 6928 /* Release our hook so that the boot can continue. */ 6929 config_intrhook_disestablish(xpt_config_hook); 6930 free(xpt_config_hook, M_TEMP); 6931 xpt_config_hook = NULL; 6932 } 6933 if (done_ccb != NULL) 6934 xpt_free_ccb(done_ccb); 6935 } 6936 6937 static void 6938 xptaction(struct cam_sim *sim, union ccb *work_ccb) 6939 { 6940 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 6941 6942 switch (work_ccb->ccb_h.func_code) { 6943 /* Common cases first */ 6944 case XPT_PATH_INQ: /* Path routing inquiry */ 6945 { 6946 struct ccb_pathinq *cpi; 6947 6948 cpi = &work_ccb->cpi; 6949 cpi->version_num = 1; /* XXX??? */ 6950 cpi->hba_inquiry = 0; 6951 cpi->target_sprt = 0; 6952 cpi->hba_misc = 0; 6953 cpi->hba_eng_cnt = 0; 6954 cpi->max_target = 0; 6955 cpi->max_lun = 0; 6956 cpi->initiator_id = 0; 6957 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 6958 strncpy(cpi->hba_vid, "", HBA_IDLEN); 6959 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 6960 cpi->unit_number = sim->unit_number; 6961 cpi->bus_id = sim->bus_id; 6962 cpi->base_transfer_speed = 0; 6963 #ifdef CAM_NEW_TRAN_CODE 6964 cpi->protocol = PROTO_UNSPECIFIED; 6965 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 6966 cpi->transport = XPORT_UNSPECIFIED; 6967 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 6968 #endif /* CAM_NEW_TRAN_CODE */ 6969 cpi->ccb_h.status = CAM_REQ_CMP; 6970 xpt_done(work_ccb); 6971 break; 6972 } 6973 default: 6974 work_ccb->ccb_h.status = CAM_REQ_INVALID; 6975 xpt_done(work_ccb); 6976 break; 6977 } 6978 } 6979 6980 /* 6981 * The xpt as a "controller" has no interrupt sources, so polling 6982 * is a no-op. 6983 */ 6984 static void 6985 xptpoll(struct cam_sim *sim) 6986 { 6987 } 6988 6989 static void 6990 camisr(void *V_queue) 6991 { 6992 cam_isrq_t *oqueue = V_queue; 6993 cam_isrq_t queue; 6994 int s; 6995 struct ccb_hdr *ccb_h; 6996 6997 /* 6998 * Transfer the ccb_bioq list to a temporary list so we can operate 6999 * on it without needing to lock/unlock on every loop. The concat 7000 * function with re-init the real list for us. 7001 */ 7002 s = splcam(); 7003 mtx_lock(&cam_bioq_lock); 7004 TAILQ_INIT(&queue); 7005 TAILQ_CONCAT(&queue, oqueue, sim_links.tqe); 7006 mtx_unlock(&cam_bioq_lock); 7007 7008 while ((ccb_h = TAILQ_FIRST(&queue)) != NULL) { 7009 int runq; 7010 7011 TAILQ_REMOVE(&queue, ccb_h, sim_links.tqe); 7012 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7013 splx(s); 7014 7015 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7016 ("camisr\n")); 7017 7018 runq = FALSE; 7019 7020 if (ccb_h->flags & CAM_HIGH_POWER) { 7021 struct highpowerlist *hphead; 7022 union ccb *send_ccb; 7023 7024 hphead = &highpowerq; 7025 7026 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7027 7028 /* 7029 * Increment the count since this command is done. 7030 */ 7031 num_highpower++; 7032 7033 /* 7034 * Any high powered commands queued up? 7035 */ 7036 if (send_ccb != NULL) { 7037 7038 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7039 7040 xpt_release_devq(send_ccb->ccb_h.path, 7041 /*count*/1, /*runqueue*/TRUE); 7042 } 7043 } 7044 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7045 struct cam_ed *dev; 7046 7047 dev = ccb_h->path->device; 7048 7049 s = splcam(); 7050 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7051 7052 ccb_h->path->bus->sim->devq->send_active--; 7053 ccb_h->path->bus->sim->devq->send_openings++; 7054 splx(s); 7055 7056 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7057 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7058 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7059 && (dev->ccbq.dev_active == 0))) { 7060 7061 xpt_release_devq(ccb_h->path, /*count*/1, 7062 /*run_queue*/TRUE); 7063 } 7064 7065 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7066 && (--dev->tag_delay_count == 0)) 7067 xpt_start_tags(ccb_h->path); 7068 7069 if ((dev->ccbq.queue.entries > 0) 7070 && (dev->qfrozen_cnt == 0) 7071 && (device_is_send_queued(dev) == 0)) { 7072 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7073 dev); 7074 } 7075 } 7076 7077 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7078 xpt_release_simq(ccb_h->path->bus->sim, 7079 /*run_queue*/TRUE); 7080 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7081 runq = FALSE; 7082 } 7083 7084 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7085 && (ccb_h->status & CAM_DEV_QFRZN)) { 7086 xpt_release_devq(ccb_h->path, /*count*/1, 7087 /*run_queue*/TRUE); 7088 ccb_h->status &= ~CAM_DEV_QFRZN; 7089 } else if (runq) { 7090 xpt_run_dev_sendq(ccb_h->path->bus); 7091 } 7092 7093 /* Call the peripheral driver's callback */ 7094 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7095 7096 /* Raise IPL for while test */ 7097 s = splcam(); 7098 } 7099 splx(s); 7100 } 7101