1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 52 #ifdef PC98 53 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_sim.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_sim.h> 62 #include <cam/cam_xpt_periph.h> 63 #include <cam/cam_debug.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 #include <machine/stdarg.h> /* for xpt_print below */ 69 #include "opt_cam.h" 70 71 /* Datastructures internal to the xpt layer */ 72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 73 74 /* Object for defering XPT actions to a taskqueue */ 75 struct xpt_task { 76 struct task task; 77 void *data1; 78 uintptr_t data2; 79 }; 80 81 /* 82 * Definition of an async handler callback block. These are used to add 83 * SIMs and peripherals to the async callback lists. 84 */ 85 struct async_node { 86 SLIST_ENTRY(async_node) links; 87 u_int32_t event_enable; /* Async Event enables */ 88 void (*callback)(void *arg, u_int32_t code, 89 struct cam_path *path, void *args); 90 void *callback_arg; 91 }; 92 93 SLIST_HEAD(async_list, async_node); 94 SLIST_HEAD(periph_list, cam_periph); 95 96 /* 97 * This is the maximum number of high powered commands (e.g. start unit) 98 * that can be outstanding at a particular time. 99 */ 100 #ifndef CAM_MAX_HIGHPOWER 101 #define CAM_MAX_HIGHPOWER 4 102 #endif 103 104 /* 105 * Structure for queueing a device in a run queue. 106 * There is one run queue for allocating new ccbs, 107 * and another for sending ccbs to the controller. 108 */ 109 struct cam_ed_qinfo { 110 cam_pinfo pinfo; 111 struct cam_ed *device; 112 }; 113 114 /* 115 * The CAM EDT (Existing Device Table) contains the device information for 116 * all devices for all busses in the system. The table contains a 117 * cam_ed structure for each device on the bus. 118 */ 119 struct cam_ed { 120 TAILQ_ENTRY(cam_ed) links; 121 struct cam_ed_qinfo alloc_ccb_entry; 122 struct cam_ed_qinfo send_ccb_entry; 123 struct cam_et *target; 124 struct cam_sim *sim; 125 lun_id_t lun_id; 126 struct camq drvq; /* 127 * Queue of type drivers wanting to do 128 * work on this device. 129 */ 130 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 131 struct async_list asyncs; /* Async callback info for this B/T/L */ 132 struct periph_list periphs; /* All attached devices */ 133 u_int generation; /* Generation number */ 134 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 135 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 136 /* Storage for the inquiry data */ 137 cam_proto protocol; 138 u_int protocol_version; 139 cam_xport transport; 140 u_int transport_version; 141 struct scsi_inquiry_data inq_data; 142 u_int8_t inq_flags; /* 143 * Current settings for inquiry flags. 144 * This allows us to override settings 145 * like disconnection and tagged 146 * queuing for a device. 147 */ 148 u_int8_t queue_flags; /* Queue flags from the control page */ 149 u_int8_t serial_num_len; 150 u_int8_t *serial_num; 151 u_int32_t qfrozen_cnt; 152 u_int32_t flags; 153 #define CAM_DEV_UNCONFIGURED 0x01 154 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 155 #define CAM_DEV_REL_ON_COMPLETE 0x04 156 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 157 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 158 #define CAM_DEV_TAG_AFTER_COUNT 0x20 159 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 160 #define CAM_DEV_IN_DV 0x80 161 #define CAM_DEV_DV_HIT_BOTTOM 0x100 162 u_int32_t tag_delay_count; 163 #define CAM_TAG_DELAY_COUNT 5 164 u_int32_t tag_saved_openings; 165 u_int32_t refcount; 166 struct callout callout; 167 }; 168 169 /* 170 * Each target is represented by an ET (Existing Target). These 171 * entries are created when a target is successfully probed with an 172 * identify, and removed when a device fails to respond after a number 173 * of retries, or a bus rescan finds the device missing. 174 */ 175 struct cam_et { 176 TAILQ_HEAD(, cam_ed) ed_entries; 177 TAILQ_ENTRY(cam_et) links; 178 struct cam_eb *bus; 179 target_id_t target_id; 180 u_int32_t refcount; 181 u_int generation; 182 struct timeval last_reset; 183 }; 184 185 /* 186 * Each bus is represented by an EB (Existing Bus). These entries 187 * are created by calls to xpt_bus_register and deleted by calls to 188 * xpt_bus_deregister. 189 */ 190 struct cam_eb { 191 TAILQ_HEAD(, cam_et) et_entries; 192 TAILQ_ENTRY(cam_eb) links; 193 path_id_t path_id; 194 struct cam_sim *sim; 195 struct timeval last_reset; 196 u_int32_t flags; 197 #define CAM_EB_RUNQ_SCHEDULED 0x01 198 u_int32_t refcount; 199 u_int generation; 200 device_t parent_dev; 201 }; 202 203 struct cam_path { 204 struct cam_periph *periph; 205 struct cam_eb *bus; 206 struct cam_et *target; 207 struct cam_ed *device; 208 }; 209 210 struct xpt_quirk_entry { 211 struct scsi_inquiry_pattern inq_pat; 212 u_int8_t quirks; 213 #define CAM_QUIRK_NOLUNS 0x01 214 #define CAM_QUIRK_NOSERIAL 0x02 215 #define CAM_QUIRK_HILUNS 0x04 216 #define CAM_QUIRK_NOHILUNS 0x08 217 u_int mintags; 218 u_int maxtags; 219 }; 220 221 static int cam_srch_hi = 0; 222 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 223 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 224 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 225 sysctl_cam_search_luns, "I", 226 "allow search above LUN 7 for SCSI3 and greater devices"); 227 228 #define CAM_SCSI2_MAXLUN 8 229 /* 230 * If we're not quirked to search <= the first 8 luns 231 * and we are either quirked to search above lun 8, 232 * or we're > SCSI-2 and we've enabled hilun searching, 233 * or we're > SCSI-2 and the last lun was a success, 234 * we can look for luns above lun 8. 235 */ 236 #define CAN_SRCH_HI_SPARSE(dv) \ 237 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 238 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 239 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 240 241 #define CAN_SRCH_HI_DENSE(dv) \ 242 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 243 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 244 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 245 246 typedef enum { 247 XPT_FLAG_OPEN = 0x01 248 } xpt_flags; 249 250 struct xpt_softc { 251 xpt_flags flags; 252 u_int32_t xpt_generation; 253 254 /* number of high powered commands that can go through right now */ 255 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 256 int num_highpower; 257 258 /* queue for handling async rescan requests. */ 259 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 260 261 /* Registered busses */ 262 TAILQ_HEAD(,cam_eb) xpt_busses; 263 u_int bus_generation; 264 265 struct intr_config_hook *xpt_config_hook; 266 267 struct mtx xpt_topo_lock; 268 struct mtx xpt_lock; 269 }; 270 271 static const char quantum[] = "QUANTUM"; 272 static const char sony[] = "SONY"; 273 static const char west_digital[] = "WDIGTL"; 274 static const char samsung[] = "SAMSUNG"; 275 static const char seagate[] = "SEAGATE"; 276 static const char microp[] = "MICROP"; 277 278 static struct xpt_quirk_entry xpt_quirk_table[] = 279 { 280 { 281 /* Reports QUEUE FULL for temporary resource shortages */ 282 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 283 /*quirks*/0, /*mintags*/24, /*maxtags*/32 284 }, 285 { 286 /* Reports QUEUE FULL for temporary resource shortages */ 287 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 288 /*quirks*/0, /*mintags*/24, /*maxtags*/32 289 }, 290 { 291 /* Reports QUEUE FULL for temporary resource shortages */ 292 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 293 /*quirks*/0, /*mintags*/24, /*maxtags*/32 294 }, 295 { 296 /* Broken tagged queuing drive */ 297 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 298 /*quirks*/0, /*mintags*/0, /*maxtags*/0 299 }, 300 { 301 /* Broken tagged queuing drive */ 302 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 303 /*quirks*/0, /*mintags*/0, /*maxtags*/0 304 }, 305 { 306 /* Broken tagged queuing drive */ 307 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 308 /*quirks*/0, /*mintags*/0, /*maxtags*/0 309 }, 310 { 311 /* 312 * Unfortunately, the Quantum Atlas III has the same 313 * problem as the Atlas II drives above. 314 * Reported by: "Johan Granlund" <johan@granlund.nu> 315 * 316 * For future reference, the drive with the problem was: 317 * QUANTUM QM39100TD-SW N1B0 318 * 319 * It's possible that Quantum will fix the problem in later 320 * firmware revisions. If that happens, the quirk entry 321 * will need to be made specific to the firmware revisions 322 * with the problem. 323 * 324 */ 325 /* Reports QUEUE FULL for temporary resource shortages */ 326 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 327 /*quirks*/0, /*mintags*/24, /*maxtags*/32 328 }, 329 { 330 /* 331 * 18 Gig Atlas III, same problem as the 9G version. 332 * Reported by: Andre Albsmeier 333 * <andre.albsmeier@mchp.siemens.de> 334 * 335 * For future reference, the drive with the problem was: 336 * QUANTUM QM318000TD-S N491 337 */ 338 /* Reports QUEUE FULL for temporary resource shortages */ 339 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 340 /*quirks*/0, /*mintags*/24, /*maxtags*/32 341 }, 342 { 343 /* 344 * Broken tagged queuing drive 345 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 346 * and: Martin Renters <martin@tdc.on.ca> 347 */ 348 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 349 /*quirks*/0, /*mintags*/0, /*maxtags*/0 350 }, 351 /* 352 * The Seagate Medalist Pro drives have very poor write 353 * performance with anything more than 2 tags. 354 * 355 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 356 * Drive: <SEAGATE ST36530N 1444> 357 * 358 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 359 * Drive: <SEAGATE ST34520W 1281> 360 * 361 * No one has actually reported that the 9G version 362 * (ST39140*) of the Medalist Pro has the same problem, but 363 * we're assuming that it does because the 4G and 6.5G 364 * versions of the drive are broken. 365 */ 366 { 367 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 368 /*quirks*/0, /*mintags*/2, /*maxtags*/2 369 }, 370 { 371 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 372 /*quirks*/0, /*mintags*/2, /*maxtags*/2 373 }, 374 { 375 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 376 /*quirks*/0, /*mintags*/2, /*maxtags*/2 377 }, 378 { 379 /* 380 * Slow when tagged queueing is enabled. Write performance 381 * steadily drops off with more and more concurrent 382 * transactions. Best sequential write performance with 383 * tagged queueing turned off and write caching turned on. 384 * 385 * PR: kern/10398 386 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 387 * Drive: DCAS-34330 w/ "S65A" firmware. 388 * 389 * The drive with the problem had the "S65A" firmware 390 * revision, and has also been reported (by Stephen J. 391 * Roznowski <sjr@home.net>) for a drive with the "S61A" 392 * firmware revision. 393 * 394 * Although no one has reported problems with the 2 gig 395 * version of the DCAS drive, the assumption is that it 396 * has the same problems as the 4 gig version. Therefore 397 * this quirk entries disables tagged queueing for all 398 * DCAS drives. 399 */ 400 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 401 /*quirks*/0, /*mintags*/0, /*maxtags*/0 402 }, 403 { 404 /* Broken tagged queuing drive */ 405 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 406 /*quirks*/0, /*mintags*/0, /*maxtags*/0 407 }, 408 { 409 /* Broken tagged queuing drive */ 410 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 411 /*quirks*/0, /*mintags*/0, /*maxtags*/0 412 }, 413 { 414 /* This does not support other than LUN 0 */ 415 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" }, 416 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 417 }, 418 { 419 /* 420 * Broken tagged queuing drive. 421 * Submitted by: 422 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 423 * in PR kern/9535 424 */ 425 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 426 /*quirks*/0, /*mintags*/0, /*maxtags*/0 427 }, 428 { 429 /* 430 * Slow when tagged queueing is enabled. (1.5MB/sec versus 431 * 8MB/sec.) 432 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 433 * Best performance with these drives is achieved with 434 * tagged queueing turned off, and write caching turned on. 435 */ 436 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 437 /*quirks*/0, /*mintags*/0, /*maxtags*/0 438 }, 439 { 440 /* 441 * Slow when tagged queueing is enabled. (1.5MB/sec versus 442 * 8MB/sec.) 443 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 444 * Best performance with these drives is achieved with 445 * tagged queueing turned off, and write caching turned on. 446 */ 447 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 448 /*quirks*/0, /*mintags*/0, /*maxtags*/0 449 }, 450 { 451 /* 452 * Doesn't handle queue full condition correctly, 453 * so we need to limit maxtags to what the device 454 * can handle instead of determining this automatically. 455 */ 456 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 457 /*quirks*/0, /*mintags*/2, /*maxtags*/32 458 }, 459 { 460 /* Really only one LUN */ 461 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 462 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 463 }, 464 { 465 /* I can't believe we need a quirk for DPT volumes. */ 466 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 467 CAM_QUIRK_NOLUNS, 468 /*mintags*/0, /*maxtags*/255 469 }, 470 { 471 /* 472 * Many Sony CDROM drives don't like multi-LUN probing. 473 */ 474 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 475 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 476 }, 477 { 478 /* 479 * This drive doesn't like multiple LUN probing. 480 * Submitted by: Parag Patel <parag@cgt.com> 481 */ 482 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 483 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 484 }, 485 { 486 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 487 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 488 }, 489 { 490 /* 491 * The 8200 doesn't like multi-lun probing, and probably 492 * don't like serial number requests either. 493 */ 494 { 495 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 496 "EXB-8200*", "*" 497 }, 498 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 499 }, 500 { 501 /* 502 * Let's try the same as above, but for a drive that says 503 * it's an IPL-6860 but is actually an EXB 8200. 504 */ 505 { 506 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 507 "IPL-6860*", "*" 508 }, 509 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 510 }, 511 { 512 /* 513 * These Hitachi drives don't like multi-lun probing. 514 * The PR submitter has a DK319H, but says that the Linux 515 * kernel has a similar work-around for the DK312 and DK314, 516 * so all DK31* drives are quirked here. 517 * PR: misc/18793 518 * Submitted by: Paul Haddad <paul@pth.com> 519 */ 520 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 521 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 522 }, 523 { 524 /* 525 * The Hitachi CJ series with J8A8 firmware apparantly has 526 * problems with tagged commands. 527 * PR: 23536 528 * Reported by: amagai@nue.org 529 */ 530 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 531 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 532 }, 533 { 534 /* 535 * These are the large storage arrays. 536 * Submitted by: William Carrel <william.carrel@infospace.com> 537 */ 538 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 539 CAM_QUIRK_HILUNS, 2, 1024 540 }, 541 { 542 /* 543 * This old revision of the TDC3600 is also SCSI-1, and 544 * hangs upon serial number probing. 545 */ 546 { 547 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 548 " TDC 3600", "U07:" 549 }, 550 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 551 }, 552 { 553 /* 554 * Would repond to all LUNs if asked for. 555 */ 556 { 557 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 558 "CP150", "*" 559 }, 560 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 561 }, 562 { 563 /* 564 * Would repond to all LUNs if asked for. 565 */ 566 { 567 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 568 "96X2*", "*" 569 }, 570 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 571 }, 572 { 573 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 574 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 575 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 576 }, 577 { 578 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 579 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 580 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 581 }, 582 { 583 /* TeraSolutions special settings for TRC-22 RAID */ 584 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 585 /*quirks*/0, /*mintags*/55, /*maxtags*/255 586 }, 587 { 588 /* Veritas Storage Appliance */ 589 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 590 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 591 }, 592 { 593 /* 594 * Would respond to all LUNs. Device type and removable 595 * flag are jumper-selectable. 596 */ 597 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 598 "Tahiti 1", "*" 599 }, 600 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 601 }, 602 { 603 /* EasyRAID E5A aka. areca ARC-6010 */ 604 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 605 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 606 }, 607 { 608 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" }, 609 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 610 }, 611 { 612 /* Default tagged queuing parameters for all devices */ 613 { 614 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 615 /*vendor*/"*", /*product*/"*", /*revision*/"*" 616 }, 617 /*quirks*/0, /*mintags*/2, /*maxtags*/255 618 }, 619 }; 620 621 static const int xpt_quirk_table_size = 622 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 623 624 typedef enum { 625 DM_RET_COPY = 0x01, 626 DM_RET_FLAG_MASK = 0x0f, 627 DM_RET_NONE = 0x00, 628 DM_RET_STOP = 0x10, 629 DM_RET_DESCEND = 0x20, 630 DM_RET_ERROR = 0x30, 631 DM_RET_ACTION_MASK = 0xf0 632 } dev_match_ret; 633 634 typedef enum { 635 XPT_DEPTH_BUS, 636 XPT_DEPTH_TARGET, 637 XPT_DEPTH_DEVICE, 638 XPT_DEPTH_PERIPH 639 } xpt_traverse_depth; 640 641 struct xpt_traverse_config { 642 xpt_traverse_depth depth; 643 void *tr_func; 644 void *tr_arg; 645 }; 646 647 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 648 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 649 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 650 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 651 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 652 653 /* Transport layer configuration information */ 654 static struct xpt_softc xsoftc; 655 656 /* Queues for our software interrupt handler */ 657 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 658 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 659 static cam_simq_t cam_simq; 660 static struct mtx cam_simq_lock; 661 662 /* Pointers to software interrupt handlers */ 663 static void *cambio_ih; 664 665 struct cam_periph *xpt_periph; 666 667 static periph_init_t xpt_periph_init; 668 669 static periph_init_t probe_periph_init; 670 671 static struct periph_driver xpt_driver = 672 { 673 xpt_periph_init, "xpt", 674 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 675 }; 676 677 static struct periph_driver probe_driver = 678 { 679 probe_periph_init, "probe", 680 TAILQ_HEAD_INITIALIZER(probe_driver.units) 681 }; 682 683 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 684 PERIPHDRIVER_DECLARE(probe, probe_driver); 685 686 687 static d_open_t xptopen; 688 static d_close_t xptclose; 689 static d_ioctl_t xptioctl; 690 691 static struct cdevsw xpt_cdevsw = { 692 .d_version = D_VERSION, 693 .d_flags = 0, 694 .d_open = xptopen, 695 .d_close = xptclose, 696 .d_ioctl = xptioctl, 697 .d_name = "xpt", 698 }; 699 700 701 /* Storage for debugging datastructures */ 702 #ifdef CAMDEBUG 703 struct cam_path *cam_dpath; 704 u_int32_t cam_dflags; 705 u_int32_t cam_debug_delay; 706 #endif 707 708 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 709 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 710 #endif 711 712 /* 713 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 714 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 715 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 716 */ 717 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 718 || defined(CAM_DEBUG_LUN) 719 #ifdef CAMDEBUG 720 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 721 || !defined(CAM_DEBUG_LUN) 722 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 723 and CAM_DEBUG_LUN" 724 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 725 #else /* !CAMDEBUG */ 726 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 727 #endif /* CAMDEBUG */ 728 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 729 730 /* Our boot-time initialization hook */ 731 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 732 733 static moduledata_t cam_moduledata = { 734 "cam", 735 cam_module_event_handler, 736 NULL 737 }; 738 739 static int xpt_init(void *); 740 741 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 742 MODULE_VERSION(cam, 1); 743 744 745 static cam_status xpt_compile_path(struct cam_path *new_path, 746 struct cam_periph *perph, 747 path_id_t path_id, 748 target_id_t target_id, 749 lun_id_t lun_id); 750 751 static void xpt_release_path(struct cam_path *path); 752 753 static void xpt_async_bcast(struct async_list *async_head, 754 u_int32_t async_code, 755 struct cam_path *path, 756 void *async_arg); 757 static void xpt_dev_async(u_int32_t async_code, 758 struct cam_eb *bus, 759 struct cam_et *target, 760 struct cam_ed *device, 761 void *async_arg); 762 static path_id_t xptnextfreepathid(void); 763 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 764 static union ccb *xpt_get_ccb(struct cam_ed *device); 765 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 766 u_int32_t new_priority); 767 static void xpt_run_dev_allocq(struct cam_eb *bus); 768 static void xpt_run_dev_sendq(struct cam_eb *bus); 769 static timeout_t xpt_release_devq_timeout; 770 static void xpt_release_simq_timeout(void *arg) __unused; 771 static void xpt_release_bus(struct cam_eb *bus); 772 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 773 int run_queue); 774 static struct cam_et* 775 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 776 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 777 static struct cam_ed* 778 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 779 lun_id_t lun_id); 780 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 781 struct cam_ed *device); 782 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 783 static struct cam_eb* 784 xpt_find_bus(path_id_t path_id); 785 static struct cam_et* 786 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 787 static struct cam_ed* 788 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 789 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 790 static void xpt_scan_lun(struct cam_periph *periph, 791 struct cam_path *path, cam_flags flags, 792 union ccb *ccb); 793 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 794 static xpt_busfunc_t xptconfigbuscountfunc; 795 static xpt_busfunc_t xptconfigfunc; 796 static void xpt_config(void *arg); 797 static xpt_devicefunc_t xptpassannouncefunc; 798 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 799 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 800 static void xptpoll(struct cam_sim *sim); 801 static void camisr(void *); 802 static void camisr_runqueue(void *); 803 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 804 u_int num_patterns, struct cam_eb *bus); 805 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 806 u_int num_patterns, 807 struct cam_ed *device); 808 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 809 u_int num_patterns, 810 struct cam_periph *periph); 811 static xpt_busfunc_t xptedtbusfunc; 812 static xpt_targetfunc_t xptedttargetfunc; 813 static xpt_devicefunc_t xptedtdevicefunc; 814 static xpt_periphfunc_t xptedtperiphfunc; 815 static xpt_pdrvfunc_t xptplistpdrvfunc; 816 static xpt_periphfunc_t xptplistperiphfunc; 817 static int xptedtmatch(struct ccb_dev_match *cdm); 818 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 819 static int xptbustraverse(struct cam_eb *start_bus, 820 xpt_busfunc_t *tr_func, void *arg); 821 static int xpttargettraverse(struct cam_eb *bus, 822 struct cam_et *start_target, 823 xpt_targetfunc_t *tr_func, void *arg); 824 static int xptdevicetraverse(struct cam_et *target, 825 struct cam_ed *start_device, 826 xpt_devicefunc_t *tr_func, void *arg); 827 static int xptperiphtraverse(struct cam_ed *device, 828 struct cam_periph *start_periph, 829 xpt_periphfunc_t *tr_func, void *arg); 830 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 831 xpt_pdrvfunc_t *tr_func, void *arg); 832 static int xptpdperiphtraverse(struct periph_driver **pdrv, 833 struct cam_periph *start_periph, 834 xpt_periphfunc_t *tr_func, 835 void *arg); 836 static xpt_busfunc_t xptdefbusfunc; 837 static xpt_targetfunc_t xptdeftargetfunc; 838 static xpt_devicefunc_t xptdefdevicefunc; 839 static xpt_periphfunc_t xptdefperiphfunc; 840 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 841 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 842 void *arg); 843 static xpt_devicefunc_t xptsetasyncfunc; 844 static xpt_busfunc_t xptsetasyncbusfunc; 845 static cam_status xptregister(struct cam_periph *periph, 846 void *arg); 847 static cam_status proberegister(struct cam_periph *periph, 848 void *arg); 849 static void probeschedule(struct cam_periph *probe_periph); 850 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 851 static void proberequestdefaultnegotiation(struct cam_periph *periph); 852 static int proberequestbackoff(struct cam_periph *periph, 853 struct cam_ed *device); 854 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 855 static void probecleanup(struct cam_periph *periph); 856 static void xpt_find_quirk(struct cam_ed *device); 857 static void xpt_devise_transport(struct cam_path *path); 858 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 859 struct cam_ed *device, 860 int async_update); 861 static void xpt_toggle_tags(struct cam_path *path); 862 static void xpt_start_tags(struct cam_path *path); 863 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 864 struct cam_ed *dev); 865 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 866 struct cam_ed *dev); 867 static __inline int periph_is_queued(struct cam_periph *periph); 868 static __inline int device_is_alloc_queued(struct cam_ed *device); 869 static __inline int device_is_send_queued(struct cam_ed *device); 870 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 871 872 static __inline int 873 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 874 { 875 int retval; 876 877 if (dev->ccbq.devq_openings > 0) { 878 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 879 cam_ccbq_resize(&dev->ccbq, 880 dev->ccbq.dev_openings 881 + dev->ccbq.dev_active); 882 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 883 } 884 /* 885 * The priority of a device waiting for CCB resources 886 * is that of the the highest priority peripheral driver 887 * enqueued. 888 */ 889 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 890 &dev->alloc_ccb_entry.pinfo, 891 CAMQ_GET_HEAD(&dev->drvq)->priority); 892 } else { 893 retval = 0; 894 } 895 896 return (retval); 897 } 898 899 static __inline int 900 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 901 { 902 int retval; 903 904 if (dev->ccbq.dev_openings > 0) { 905 /* 906 * The priority of a device waiting for controller 907 * resources is that of the the highest priority CCB 908 * enqueued. 909 */ 910 retval = 911 xpt_schedule_dev(&bus->sim->devq->send_queue, 912 &dev->send_ccb_entry.pinfo, 913 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 914 } else { 915 retval = 0; 916 } 917 return (retval); 918 } 919 920 static __inline int 921 periph_is_queued(struct cam_periph *periph) 922 { 923 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 924 } 925 926 static __inline int 927 device_is_alloc_queued(struct cam_ed *device) 928 { 929 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 930 } 931 932 static __inline int 933 device_is_send_queued(struct cam_ed *device) 934 { 935 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 936 } 937 938 static __inline int 939 dev_allocq_is_runnable(struct cam_devq *devq) 940 { 941 /* 942 * Have work to do. 943 * Have space to do more work. 944 * Allowed to do work. 945 */ 946 return ((devq->alloc_queue.qfrozen_cnt == 0) 947 && (devq->alloc_queue.entries > 0) 948 && (devq->alloc_openings > 0)); 949 } 950 951 static void 952 xpt_periph_init() 953 { 954 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 955 } 956 957 static void 958 probe_periph_init() 959 { 960 } 961 962 963 static void 964 xptdone(struct cam_periph *periph, union ccb *done_ccb) 965 { 966 /* Caller will release the CCB */ 967 wakeup(&done_ccb->ccb_h.cbfcnp); 968 } 969 970 static int 971 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 972 { 973 974 /* 975 * Only allow read-write access. 976 */ 977 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 978 return(EPERM); 979 980 /* 981 * We don't allow nonblocking access. 982 */ 983 if ((flags & O_NONBLOCK) != 0) { 984 printf("%s: can't do nonblocking access\n", devtoname(dev)); 985 return(ENODEV); 986 } 987 988 /* Mark ourselves open */ 989 mtx_lock(&xsoftc.xpt_lock); 990 xsoftc.flags |= XPT_FLAG_OPEN; 991 mtx_unlock(&xsoftc.xpt_lock); 992 993 return(0); 994 } 995 996 static int 997 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 998 { 999 1000 /* Mark ourselves closed */ 1001 mtx_lock(&xsoftc.xpt_lock); 1002 xsoftc.flags &= ~XPT_FLAG_OPEN; 1003 mtx_unlock(&xsoftc.xpt_lock); 1004 1005 return(0); 1006 } 1007 1008 /* 1009 * Don't automatically grab the xpt softc lock here even though this is going 1010 * through the xpt device. The xpt device is really just a back door for 1011 * accessing other devices and SIMs, so the right thing to do is to grab 1012 * the appropriate SIM lock once the bus/SIM is located. 1013 */ 1014 static int 1015 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1016 { 1017 int error; 1018 1019 error = 0; 1020 1021 switch(cmd) { 1022 /* 1023 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1024 * to accept CCB types that don't quite make sense to send through a 1025 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1026 * in the CAM spec. 1027 */ 1028 case CAMIOCOMMAND: { 1029 union ccb *ccb; 1030 union ccb *inccb; 1031 struct cam_eb *bus; 1032 1033 inccb = (union ccb *)addr; 1034 1035 bus = xpt_find_bus(inccb->ccb_h.path_id); 1036 if (bus == NULL) { 1037 error = EINVAL; 1038 break; 1039 } 1040 1041 switch(inccb->ccb_h.func_code) { 1042 case XPT_SCAN_BUS: 1043 case XPT_RESET_BUS: 1044 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1045 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1046 error = EINVAL; 1047 break; 1048 } 1049 /* FALLTHROUGH */ 1050 case XPT_PATH_INQ: 1051 case XPT_ENG_INQ: 1052 case XPT_SCAN_LUN: 1053 1054 ccb = xpt_alloc_ccb(); 1055 1056 CAM_SIM_LOCK(bus->sim); 1057 1058 /* 1059 * Create a path using the bus, target, and lun the 1060 * user passed in. 1061 */ 1062 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1063 inccb->ccb_h.path_id, 1064 inccb->ccb_h.target_id, 1065 inccb->ccb_h.target_lun) != 1066 CAM_REQ_CMP){ 1067 error = EINVAL; 1068 CAM_SIM_UNLOCK(bus->sim); 1069 xpt_free_ccb(ccb); 1070 break; 1071 } 1072 /* Ensure all of our fields are correct */ 1073 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1074 inccb->ccb_h.pinfo.priority); 1075 xpt_merge_ccb(ccb, inccb); 1076 ccb->ccb_h.cbfcnp = xptdone; 1077 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1078 bcopy(ccb, inccb, sizeof(union ccb)); 1079 xpt_free_path(ccb->ccb_h.path); 1080 xpt_free_ccb(ccb); 1081 CAM_SIM_UNLOCK(bus->sim); 1082 break; 1083 1084 case XPT_DEBUG: { 1085 union ccb ccb; 1086 1087 /* 1088 * This is an immediate CCB, so it's okay to 1089 * allocate it on the stack. 1090 */ 1091 1092 CAM_SIM_LOCK(bus->sim); 1093 1094 /* 1095 * Create a path using the bus, target, and lun the 1096 * user passed in. 1097 */ 1098 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1099 inccb->ccb_h.path_id, 1100 inccb->ccb_h.target_id, 1101 inccb->ccb_h.target_lun) != 1102 CAM_REQ_CMP){ 1103 error = EINVAL; 1104 CAM_SIM_UNLOCK(bus->sim); 1105 break; 1106 } 1107 /* Ensure all of our fields are correct */ 1108 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1109 inccb->ccb_h.pinfo.priority); 1110 xpt_merge_ccb(&ccb, inccb); 1111 ccb.ccb_h.cbfcnp = xptdone; 1112 xpt_action(&ccb); 1113 CAM_SIM_UNLOCK(bus->sim); 1114 bcopy(&ccb, inccb, sizeof(union ccb)); 1115 xpt_free_path(ccb.ccb_h.path); 1116 break; 1117 1118 } 1119 case XPT_DEV_MATCH: { 1120 struct cam_periph_map_info mapinfo; 1121 struct cam_path *old_path; 1122 1123 /* 1124 * We can't deal with physical addresses for this 1125 * type of transaction. 1126 */ 1127 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1128 error = EINVAL; 1129 break; 1130 } 1131 1132 /* 1133 * Save this in case the caller had it set to 1134 * something in particular. 1135 */ 1136 old_path = inccb->ccb_h.path; 1137 1138 /* 1139 * We really don't need a path for the matching 1140 * code. The path is needed because of the 1141 * debugging statements in xpt_action(). They 1142 * assume that the CCB has a valid path. 1143 */ 1144 inccb->ccb_h.path = xpt_periph->path; 1145 1146 bzero(&mapinfo, sizeof(mapinfo)); 1147 1148 /* 1149 * Map the pattern and match buffers into kernel 1150 * virtual address space. 1151 */ 1152 error = cam_periph_mapmem(inccb, &mapinfo); 1153 1154 if (error) { 1155 inccb->ccb_h.path = old_path; 1156 break; 1157 } 1158 1159 /* 1160 * This is an immediate CCB, we can send it on directly. 1161 */ 1162 xpt_action(inccb); 1163 1164 /* 1165 * Map the buffers back into user space. 1166 */ 1167 cam_periph_unmapmem(inccb, &mapinfo); 1168 1169 inccb->ccb_h.path = old_path; 1170 1171 error = 0; 1172 break; 1173 } 1174 default: 1175 error = ENOTSUP; 1176 break; 1177 } 1178 xpt_release_bus(bus); 1179 break; 1180 } 1181 /* 1182 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1183 * with the periphal driver name and unit name filled in. The other 1184 * fields don't really matter as input. The passthrough driver name 1185 * ("pass"), and unit number are passed back in the ccb. The current 1186 * device generation number, and the index into the device peripheral 1187 * driver list, and the status are also passed back. Note that 1188 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1189 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1190 * (or rather should be) impossible for the device peripheral driver 1191 * list to change since we look at the whole thing in one pass, and 1192 * we do it with lock protection. 1193 * 1194 */ 1195 case CAMGETPASSTHRU: { 1196 union ccb *ccb; 1197 struct cam_periph *periph; 1198 struct periph_driver **p_drv; 1199 char *name; 1200 u_int unit; 1201 u_int cur_generation; 1202 int base_periph_found; 1203 int splbreaknum; 1204 1205 ccb = (union ccb *)addr; 1206 unit = ccb->cgdl.unit_number; 1207 name = ccb->cgdl.periph_name; 1208 /* 1209 * Every 100 devices, we want to drop our lock protection to 1210 * give the software interrupt handler a chance to run. 1211 * Most systems won't run into this check, but this should 1212 * avoid starvation in the software interrupt handler in 1213 * large systems. 1214 */ 1215 splbreaknum = 100; 1216 1217 ccb = (union ccb *)addr; 1218 1219 base_periph_found = 0; 1220 1221 /* 1222 * Sanity check -- make sure we don't get a null peripheral 1223 * driver name. 1224 */ 1225 if (*ccb->cgdl.periph_name == '\0') { 1226 error = EINVAL; 1227 break; 1228 } 1229 1230 /* Keep the list from changing while we traverse it */ 1231 mtx_lock(&xsoftc.xpt_topo_lock); 1232 ptstartover: 1233 cur_generation = xsoftc.xpt_generation; 1234 1235 /* first find our driver in the list of drivers */ 1236 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1237 if (strcmp((*p_drv)->driver_name, name) == 0) 1238 break; 1239 1240 if (*p_drv == NULL) { 1241 mtx_unlock(&xsoftc.xpt_topo_lock); 1242 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1243 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1244 *ccb->cgdl.periph_name = '\0'; 1245 ccb->cgdl.unit_number = 0; 1246 error = ENOENT; 1247 break; 1248 } 1249 1250 /* 1251 * Run through every peripheral instance of this driver 1252 * and check to see whether it matches the unit passed 1253 * in by the user. If it does, get out of the loops and 1254 * find the passthrough driver associated with that 1255 * peripheral driver. 1256 */ 1257 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1258 periph = TAILQ_NEXT(periph, unit_links)) { 1259 1260 if (periph->unit_number == unit) { 1261 break; 1262 } else if (--splbreaknum == 0) { 1263 mtx_unlock(&xsoftc.xpt_topo_lock); 1264 mtx_lock(&xsoftc.xpt_topo_lock); 1265 splbreaknum = 100; 1266 if (cur_generation != xsoftc.xpt_generation) 1267 goto ptstartover; 1268 } 1269 } 1270 /* 1271 * If we found the peripheral driver that the user passed 1272 * in, go through all of the peripheral drivers for that 1273 * particular device and look for a passthrough driver. 1274 */ 1275 if (periph != NULL) { 1276 struct cam_ed *device; 1277 int i; 1278 1279 base_periph_found = 1; 1280 device = periph->path->device; 1281 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1282 periph != NULL; 1283 periph = SLIST_NEXT(periph, periph_links), i++) { 1284 /* 1285 * Check to see whether we have a 1286 * passthrough device or not. 1287 */ 1288 if (strcmp(periph->periph_name, "pass") == 0) { 1289 /* 1290 * Fill in the getdevlist fields. 1291 */ 1292 strcpy(ccb->cgdl.periph_name, 1293 periph->periph_name); 1294 ccb->cgdl.unit_number = 1295 periph->unit_number; 1296 if (SLIST_NEXT(periph, periph_links)) 1297 ccb->cgdl.status = 1298 CAM_GDEVLIST_MORE_DEVS; 1299 else 1300 ccb->cgdl.status = 1301 CAM_GDEVLIST_LAST_DEVICE; 1302 ccb->cgdl.generation = 1303 device->generation; 1304 ccb->cgdl.index = i; 1305 /* 1306 * Fill in some CCB header fields 1307 * that the user may want. 1308 */ 1309 ccb->ccb_h.path_id = 1310 periph->path->bus->path_id; 1311 ccb->ccb_h.target_id = 1312 periph->path->target->target_id; 1313 ccb->ccb_h.target_lun = 1314 periph->path->device->lun_id; 1315 ccb->ccb_h.status = CAM_REQ_CMP; 1316 break; 1317 } 1318 } 1319 } 1320 1321 /* 1322 * If the periph is null here, one of two things has 1323 * happened. The first possibility is that we couldn't 1324 * find the unit number of the particular peripheral driver 1325 * that the user is asking about. e.g. the user asks for 1326 * the passthrough driver for "da11". We find the list of 1327 * "da" peripherals all right, but there is no unit 11. 1328 * The other possibility is that we went through the list 1329 * of peripheral drivers attached to the device structure, 1330 * but didn't find one with the name "pass". Either way, 1331 * we return ENOENT, since we couldn't find something. 1332 */ 1333 if (periph == NULL) { 1334 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1335 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1336 *ccb->cgdl.periph_name = '\0'; 1337 ccb->cgdl.unit_number = 0; 1338 error = ENOENT; 1339 /* 1340 * It is unfortunate that this is even necessary, 1341 * but there are many, many clueless users out there. 1342 * If this is true, the user is looking for the 1343 * passthrough driver, but doesn't have one in his 1344 * kernel. 1345 */ 1346 if (base_periph_found == 1) { 1347 printf("xptioctl: pass driver is not in the " 1348 "kernel\n"); 1349 printf("xptioctl: put \"device pass\" in " 1350 "your kernel config file\n"); 1351 } 1352 } 1353 mtx_unlock(&xsoftc.xpt_topo_lock); 1354 break; 1355 } 1356 default: 1357 error = ENOTTY; 1358 break; 1359 } 1360 1361 return(error); 1362 } 1363 1364 static int 1365 cam_module_event_handler(module_t mod, int what, void *arg) 1366 { 1367 int error; 1368 1369 switch (what) { 1370 case MOD_LOAD: 1371 if ((error = xpt_init(NULL)) != 0) 1372 return (error); 1373 break; 1374 case MOD_UNLOAD: 1375 return EBUSY; 1376 default: 1377 return EOPNOTSUPP; 1378 } 1379 1380 return 0; 1381 } 1382 1383 /* thread to handle bus rescans */ 1384 static void 1385 xpt_scanner_thread(void *dummy) 1386 { 1387 cam_isrq_t queue; 1388 union ccb *ccb; 1389 struct cam_sim *sim; 1390 1391 for (;;) { 1392 /* 1393 * Wait for a rescan request to come in. When it does, splice 1394 * it onto a queue from local storage so that the xpt lock 1395 * doesn't need to be held while the requests are being 1396 * processed. 1397 */ 1398 xpt_lock_buses(); 1399 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 1400 "ccb_scanq", 0); 1401 TAILQ_INIT(&queue); 1402 TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe); 1403 xpt_unlock_buses(); 1404 1405 while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) { 1406 TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe); 1407 1408 sim = ccb->ccb_h.path->bus->sim; 1409 CAM_SIM_LOCK(sim); 1410 1411 ccb->ccb_h.func_code = XPT_SCAN_BUS; 1412 ccb->ccb_h.cbfcnp = xptdone; 1413 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5); 1414 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1415 xpt_free_path(ccb->ccb_h.path); 1416 xpt_free_ccb(ccb); 1417 CAM_SIM_UNLOCK(sim); 1418 } 1419 } 1420 } 1421 1422 void 1423 xpt_rescan(union ccb *ccb) 1424 { 1425 struct ccb_hdr *hdr; 1426 1427 /* 1428 * Don't make duplicate entries for the same paths. 1429 */ 1430 xpt_lock_buses(); 1431 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 1432 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 1433 xpt_unlock_buses(); 1434 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 1435 xpt_free_path(ccb->ccb_h.path); 1436 xpt_free_ccb(ccb); 1437 return; 1438 } 1439 } 1440 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 1441 wakeup(&xsoftc.ccb_scanq); 1442 xpt_unlock_buses(); 1443 } 1444 1445 /* Functions accessed by the peripheral drivers */ 1446 static int 1447 xpt_init(void *dummy) 1448 { 1449 struct cam_sim *xpt_sim; 1450 struct cam_path *path; 1451 struct cam_devq *devq; 1452 cam_status status; 1453 1454 TAILQ_INIT(&xsoftc.xpt_busses); 1455 TAILQ_INIT(&cam_simq); 1456 TAILQ_INIT(&xsoftc.ccb_scanq); 1457 STAILQ_INIT(&xsoftc.highpowerq); 1458 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 1459 1460 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 1461 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 1462 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 1463 1464 /* 1465 * The xpt layer is, itself, the equivelent of a SIM. 1466 * Allow 16 ccbs in the ccb pool for it. This should 1467 * give decent parallelism when we probe busses and 1468 * perform other XPT functions. 1469 */ 1470 devq = cam_simq_alloc(16); 1471 xpt_sim = cam_sim_alloc(xptaction, 1472 xptpoll, 1473 "xpt", 1474 /*softc*/NULL, 1475 /*unit*/0, 1476 /*mtx*/&xsoftc.xpt_lock, 1477 /*max_dev_transactions*/0, 1478 /*max_tagged_dev_transactions*/0, 1479 devq); 1480 if (xpt_sim == NULL) 1481 return (ENOMEM); 1482 1483 xpt_sim->max_ccbs = 16; 1484 1485 mtx_lock(&xsoftc.xpt_lock); 1486 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 1487 printf("xpt_init: xpt_bus_register failed with status %#x," 1488 " failing attach\n", status); 1489 return (EINVAL); 1490 } 1491 1492 /* 1493 * Looking at the XPT from the SIM layer, the XPT is 1494 * the equivelent of a peripheral driver. Allocate 1495 * a peripheral driver entry for us. 1496 */ 1497 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1498 CAM_TARGET_WILDCARD, 1499 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1500 printf("xpt_init: xpt_create_path failed with status %#x," 1501 " failing attach\n", status); 1502 return (EINVAL); 1503 } 1504 1505 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1506 path, NULL, 0, xpt_sim); 1507 xpt_free_path(path); 1508 mtx_unlock(&xsoftc.xpt_lock); 1509 1510 /* 1511 * Register a callback for when interrupts are enabled. 1512 */ 1513 xsoftc.xpt_config_hook = 1514 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1515 M_CAMXPT, M_NOWAIT | M_ZERO); 1516 if (xsoftc.xpt_config_hook == NULL) { 1517 printf("xpt_init: Cannot malloc config hook " 1518 "- failing attach\n"); 1519 return (ENOMEM); 1520 } 1521 1522 xsoftc.xpt_config_hook->ich_func = xpt_config; 1523 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 1524 free (xsoftc.xpt_config_hook, M_CAMXPT); 1525 printf("xpt_init: config_intrhook_establish failed " 1526 "- failing attach\n"); 1527 } 1528 1529 /* fire up rescan thread */ 1530 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 1531 printf("xpt_init: failed to create rescan thread\n"); 1532 } 1533 /* Install our software interrupt handlers */ 1534 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 1535 1536 return (0); 1537 } 1538 1539 static cam_status 1540 xptregister(struct cam_periph *periph, void *arg) 1541 { 1542 struct cam_sim *xpt_sim; 1543 1544 if (periph == NULL) { 1545 printf("xptregister: periph was NULL!!\n"); 1546 return(CAM_REQ_CMP_ERR); 1547 } 1548 1549 xpt_sim = (struct cam_sim *)arg; 1550 xpt_sim->softc = periph; 1551 xpt_periph = periph; 1552 periph->softc = NULL; 1553 1554 return(CAM_REQ_CMP); 1555 } 1556 1557 int32_t 1558 xpt_add_periph(struct cam_periph *periph) 1559 { 1560 struct cam_ed *device; 1561 int32_t status; 1562 struct periph_list *periph_head; 1563 1564 mtx_assert(periph->sim->mtx, MA_OWNED); 1565 1566 device = periph->path->device; 1567 1568 periph_head = &device->periphs; 1569 1570 status = CAM_REQ_CMP; 1571 1572 if (device != NULL) { 1573 /* 1574 * Make room for this peripheral 1575 * so it will fit in the queue 1576 * when it's scheduled to run 1577 */ 1578 status = camq_resize(&device->drvq, 1579 device->drvq.array_size + 1); 1580 1581 device->generation++; 1582 1583 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1584 } 1585 1586 mtx_lock(&xsoftc.xpt_topo_lock); 1587 xsoftc.xpt_generation++; 1588 mtx_unlock(&xsoftc.xpt_topo_lock); 1589 1590 return (status); 1591 } 1592 1593 void 1594 xpt_remove_periph(struct cam_periph *periph) 1595 { 1596 struct cam_ed *device; 1597 1598 mtx_assert(periph->sim->mtx, MA_OWNED); 1599 1600 device = periph->path->device; 1601 1602 if (device != NULL) { 1603 struct periph_list *periph_head; 1604 1605 periph_head = &device->periphs; 1606 1607 /* Release the slot for this peripheral */ 1608 camq_resize(&device->drvq, device->drvq.array_size - 1); 1609 1610 device->generation++; 1611 1612 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1613 } 1614 1615 mtx_lock(&xsoftc.xpt_topo_lock); 1616 xsoftc.xpt_generation++; 1617 mtx_unlock(&xsoftc.xpt_topo_lock); 1618 } 1619 1620 1621 void 1622 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1623 { 1624 struct ccb_pathinq cpi; 1625 struct ccb_trans_settings cts; 1626 struct cam_path *path; 1627 u_int speed; 1628 u_int freq; 1629 u_int mb; 1630 1631 mtx_assert(periph->sim->mtx, MA_OWNED); 1632 1633 path = periph->path; 1634 /* 1635 * To ensure that this is printed in one piece, 1636 * mask out CAM interrupts. 1637 */ 1638 printf("%s%d at %s%d bus %d target %d lun %d\n", 1639 periph->periph_name, periph->unit_number, 1640 path->bus->sim->sim_name, 1641 path->bus->sim->unit_number, 1642 path->bus->sim->bus_id, 1643 path->target->target_id, 1644 path->device->lun_id); 1645 printf("%s%d: ", periph->periph_name, periph->unit_number); 1646 scsi_print_inquiry(&path->device->inq_data); 1647 if (bootverbose && path->device->serial_num_len > 0) { 1648 /* Don't wrap the screen - print only the first 60 chars */ 1649 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1650 periph->unit_number, path->device->serial_num); 1651 } 1652 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1653 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1654 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1655 xpt_action((union ccb*)&cts); 1656 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1657 return; 1658 } 1659 1660 /* Ask the SIM for its base transfer speed */ 1661 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1662 cpi.ccb_h.func_code = XPT_PATH_INQ; 1663 xpt_action((union ccb *)&cpi); 1664 1665 speed = cpi.base_transfer_speed; 1666 freq = 0; 1667 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1668 struct ccb_trans_settings_spi *spi; 1669 1670 spi = &cts.xport_specific.spi; 1671 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1672 && spi->sync_offset != 0) { 1673 freq = scsi_calc_syncsrate(spi->sync_period); 1674 speed = freq; 1675 } 1676 1677 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1678 speed *= (0x01 << spi->bus_width); 1679 } 1680 1681 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1682 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1683 if (fc->valid & CTS_FC_VALID_SPEED) { 1684 speed = fc->bitrate; 1685 } 1686 } 1687 1688 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1689 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; 1690 if (sas->valid & CTS_SAS_VALID_SPEED) { 1691 speed = sas->bitrate; 1692 } 1693 } 1694 1695 mb = speed / 1000; 1696 if (mb > 0) 1697 printf("%s%d: %d.%03dMB/s transfers", 1698 periph->periph_name, periph->unit_number, 1699 mb, speed % 1000); 1700 else 1701 printf("%s%d: %dKB/s transfers", periph->periph_name, 1702 periph->unit_number, speed); 1703 /* Report additional information about SPI connections */ 1704 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1705 struct ccb_trans_settings_spi *spi; 1706 1707 spi = &cts.xport_specific.spi; 1708 if (freq != 0) { 1709 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1710 freq % 1000, 1711 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1712 ? " DT" : "", 1713 spi->sync_offset); 1714 } 1715 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1716 && spi->bus_width > 0) { 1717 if (freq != 0) { 1718 printf(", "); 1719 } else { 1720 printf(" ("); 1721 } 1722 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1723 } else if (freq != 0) { 1724 printf(")"); 1725 } 1726 } 1727 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1728 struct ccb_trans_settings_fc *fc; 1729 1730 fc = &cts.xport_specific.fc; 1731 if (fc->valid & CTS_FC_VALID_WWNN) 1732 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1733 if (fc->valid & CTS_FC_VALID_WWPN) 1734 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1735 if (fc->valid & CTS_FC_VALID_PORT) 1736 printf(" PortID 0x%x", fc->port); 1737 } 1738 1739 if (path->device->inq_flags & SID_CmdQue 1740 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1741 printf("\n%s%d: Command Queueing Enabled", 1742 periph->periph_name, periph->unit_number); 1743 } 1744 printf("\n"); 1745 1746 /* 1747 * We only want to print the caller's announce string if they've 1748 * passed one in.. 1749 */ 1750 if (announce_string != NULL) 1751 printf("%s%d: %s\n", periph->periph_name, 1752 periph->unit_number, announce_string); 1753 } 1754 1755 static dev_match_ret 1756 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1757 struct cam_eb *bus) 1758 { 1759 dev_match_ret retval; 1760 int i; 1761 1762 retval = DM_RET_NONE; 1763 1764 /* 1765 * If we aren't given something to match against, that's an error. 1766 */ 1767 if (bus == NULL) 1768 return(DM_RET_ERROR); 1769 1770 /* 1771 * If there are no match entries, then this bus matches no 1772 * matter what. 1773 */ 1774 if ((patterns == NULL) || (num_patterns == 0)) 1775 return(DM_RET_DESCEND | DM_RET_COPY); 1776 1777 for (i = 0; i < num_patterns; i++) { 1778 struct bus_match_pattern *cur_pattern; 1779 1780 /* 1781 * If the pattern in question isn't for a bus node, we 1782 * aren't interested. However, we do indicate to the 1783 * calling routine that we should continue descending the 1784 * tree, since the user wants to match against lower-level 1785 * EDT elements. 1786 */ 1787 if (patterns[i].type != DEV_MATCH_BUS) { 1788 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1789 retval |= DM_RET_DESCEND; 1790 continue; 1791 } 1792 1793 cur_pattern = &patterns[i].pattern.bus_pattern; 1794 1795 /* 1796 * If they want to match any bus node, we give them any 1797 * device node. 1798 */ 1799 if (cur_pattern->flags == BUS_MATCH_ANY) { 1800 /* set the copy flag */ 1801 retval |= DM_RET_COPY; 1802 1803 /* 1804 * If we've already decided on an action, go ahead 1805 * and return. 1806 */ 1807 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1808 return(retval); 1809 } 1810 1811 /* 1812 * Not sure why someone would do this... 1813 */ 1814 if (cur_pattern->flags == BUS_MATCH_NONE) 1815 continue; 1816 1817 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1818 && (cur_pattern->path_id != bus->path_id)) 1819 continue; 1820 1821 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1822 && (cur_pattern->bus_id != bus->sim->bus_id)) 1823 continue; 1824 1825 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1826 && (cur_pattern->unit_number != bus->sim->unit_number)) 1827 continue; 1828 1829 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1830 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1831 DEV_IDLEN) != 0)) 1832 continue; 1833 1834 /* 1835 * If we get to this point, the user definitely wants 1836 * information on this bus. So tell the caller to copy the 1837 * data out. 1838 */ 1839 retval |= DM_RET_COPY; 1840 1841 /* 1842 * If the return action has been set to descend, then we 1843 * know that we've already seen a non-bus matching 1844 * expression, therefore we need to further descend the tree. 1845 * This won't change by continuing around the loop, so we 1846 * go ahead and return. If we haven't seen a non-bus 1847 * matching expression, we keep going around the loop until 1848 * we exhaust the matching expressions. We'll set the stop 1849 * flag once we fall out of the loop. 1850 */ 1851 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1852 return(retval); 1853 } 1854 1855 /* 1856 * If the return action hasn't been set to descend yet, that means 1857 * we haven't seen anything other than bus matching patterns. So 1858 * tell the caller to stop descending the tree -- the user doesn't 1859 * want to match against lower level tree elements. 1860 */ 1861 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1862 retval |= DM_RET_STOP; 1863 1864 return(retval); 1865 } 1866 1867 static dev_match_ret 1868 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1869 struct cam_ed *device) 1870 { 1871 dev_match_ret retval; 1872 int i; 1873 1874 retval = DM_RET_NONE; 1875 1876 /* 1877 * If we aren't given something to match against, that's an error. 1878 */ 1879 if (device == NULL) 1880 return(DM_RET_ERROR); 1881 1882 /* 1883 * If there are no match entries, then this device matches no 1884 * matter what. 1885 */ 1886 if ((patterns == NULL) || (num_patterns == 0)) 1887 return(DM_RET_DESCEND | DM_RET_COPY); 1888 1889 for (i = 0; i < num_patterns; i++) { 1890 struct device_match_pattern *cur_pattern; 1891 1892 /* 1893 * If the pattern in question isn't for a device node, we 1894 * aren't interested. 1895 */ 1896 if (patterns[i].type != DEV_MATCH_DEVICE) { 1897 if ((patterns[i].type == DEV_MATCH_PERIPH) 1898 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1899 retval |= DM_RET_DESCEND; 1900 continue; 1901 } 1902 1903 cur_pattern = &patterns[i].pattern.device_pattern; 1904 1905 /* 1906 * If they want to match any device node, we give them any 1907 * device node. 1908 */ 1909 if (cur_pattern->flags == DEV_MATCH_ANY) { 1910 /* set the copy flag */ 1911 retval |= DM_RET_COPY; 1912 1913 1914 /* 1915 * If we've already decided on an action, go ahead 1916 * and return. 1917 */ 1918 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1919 return(retval); 1920 } 1921 1922 /* 1923 * Not sure why someone would do this... 1924 */ 1925 if (cur_pattern->flags == DEV_MATCH_NONE) 1926 continue; 1927 1928 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1929 && (cur_pattern->path_id != device->target->bus->path_id)) 1930 continue; 1931 1932 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1933 && (cur_pattern->target_id != device->target->target_id)) 1934 continue; 1935 1936 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1937 && (cur_pattern->target_lun != device->lun_id)) 1938 continue; 1939 1940 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1941 && (cam_quirkmatch((caddr_t)&device->inq_data, 1942 (caddr_t)&cur_pattern->inq_pat, 1943 1, sizeof(cur_pattern->inq_pat), 1944 scsi_static_inquiry_match) == NULL)) 1945 continue; 1946 1947 /* 1948 * If we get to this point, the user definitely wants 1949 * information on this device. So tell the caller to copy 1950 * the data out. 1951 */ 1952 retval |= DM_RET_COPY; 1953 1954 /* 1955 * If the return action has been set to descend, then we 1956 * know that we've already seen a peripheral matching 1957 * expression, therefore we need to further descend the tree. 1958 * This won't change by continuing around the loop, so we 1959 * go ahead and return. If we haven't seen a peripheral 1960 * matching expression, we keep going around the loop until 1961 * we exhaust the matching expressions. We'll set the stop 1962 * flag once we fall out of the loop. 1963 */ 1964 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1965 return(retval); 1966 } 1967 1968 /* 1969 * If the return action hasn't been set to descend yet, that means 1970 * we haven't seen any peripheral matching patterns. So tell the 1971 * caller to stop descending the tree -- the user doesn't want to 1972 * match against lower level tree elements. 1973 */ 1974 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1975 retval |= DM_RET_STOP; 1976 1977 return(retval); 1978 } 1979 1980 /* 1981 * Match a single peripheral against any number of match patterns. 1982 */ 1983 static dev_match_ret 1984 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1985 struct cam_periph *periph) 1986 { 1987 dev_match_ret retval; 1988 int i; 1989 1990 /* 1991 * If we aren't given something to match against, that's an error. 1992 */ 1993 if (periph == NULL) 1994 return(DM_RET_ERROR); 1995 1996 /* 1997 * If there are no match entries, then this peripheral matches no 1998 * matter what. 1999 */ 2000 if ((patterns == NULL) || (num_patterns == 0)) 2001 return(DM_RET_STOP | DM_RET_COPY); 2002 2003 /* 2004 * There aren't any nodes below a peripheral node, so there's no 2005 * reason to descend the tree any further. 2006 */ 2007 retval = DM_RET_STOP; 2008 2009 for (i = 0; i < num_patterns; i++) { 2010 struct periph_match_pattern *cur_pattern; 2011 2012 /* 2013 * If the pattern in question isn't for a peripheral, we 2014 * aren't interested. 2015 */ 2016 if (patterns[i].type != DEV_MATCH_PERIPH) 2017 continue; 2018 2019 cur_pattern = &patterns[i].pattern.periph_pattern; 2020 2021 /* 2022 * If they want to match on anything, then we will do so. 2023 */ 2024 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2025 /* set the copy flag */ 2026 retval |= DM_RET_COPY; 2027 2028 /* 2029 * We've already set the return action to stop, 2030 * since there are no nodes below peripherals in 2031 * the tree. 2032 */ 2033 return(retval); 2034 } 2035 2036 /* 2037 * Not sure why someone would do this... 2038 */ 2039 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2040 continue; 2041 2042 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2043 && (cur_pattern->path_id != periph->path->bus->path_id)) 2044 continue; 2045 2046 /* 2047 * For the target and lun id's, we have to make sure the 2048 * target and lun pointers aren't NULL. The xpt peripheral 2049 * has a wildcard target and device. 2050 */ 2051 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2052 && ((periph->path->target == NULL) 2053 ||(cur_pattern->target_id != periph->path->target->target_id))) 2054 continue; 2055 2056 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2057 && ((periph->path->device == NULL) 2058 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2059 continue; 2060 2061 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2062 && (cur_pattern->unit_number != periph->unit_number)) 2063 continue; 2064 2065 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2066 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2067 DEV_IDLEN) != 0)) 2068 continue; 2069 2070 /* 2071 * If we get to this point, the user definitely wants 2072 * information on this peripheral. So tell the caller to 2073 * copy the data out. 2074 */ 2075 retval |= DM_RET_COPY; 2076 2077 /* 2078 * The return action has already been set to stop, since 2079 * peripherals don't have any nodes below them in the EDT. 2080 */ 2081 return(retval); 2082 } 2083 2084 /* 2085 * If we get to this point, the peripheral that was passed in 2086 * doesn't match any of the patterns. 2087 */ 2088 return(retval); 2089 } 2090 2091 static int 2092 xptedtbusfunc(struct cam_eb *bus, void *arg) 2093 { 2094 struct ccb_dev_match *cdm; 2095 dev_match_ret retval; 2096 2097 cdm = (struct ccb_dev_match *)arg; 2098 2099 /* 2100 * If our position is for something deeper in the tree, that means 2101 * that we've already seen this node. So, we keep going down. 2102 */ 2103 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2104 && (cdm->pos.cookie.bus == bus) 2105 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2106 && (cdm->pos.cookie.target != NULL)) 2107 retval = DM_RET_DESCEND; 2108 else 2109 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2110 2111 /* 2112 * If we got an error, bail out of the search. 2113 */ 2114 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2115 cdm->status = CAM_DEV_MATCH_ERROR; 2116 return(0); 2117 } 2118 2119 /* 2120 * If the copy flag is set, copy this bus out. 2121 */ 2122 if (retval & DM_RET_COPY) { 2123 int spaceleft, j; 2124 2125 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2126 sizeof(struct dev_match_result)); 2127 2128 /* 2129 * If we don't have enough space to put in another 2130 * match result, save our position and tell the 2131 * user there are more devices to check. 2132 */ 2133 if (spaceleft < sizeof(struct dev_match_result)) { 2134 bzero(&cdm->pos, sizeof(cdm->pos)); 2135 cdm->pos.position_type = 2136 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2137 2138 cdm->pos.cookie.bus = bus; 2139 cdm->pos.generations[CAM_BUS_GENERATION]= 2140 xsoftc.bus_generation; 2141 cdm->status = CAM_DEV_MATCH_MORE; 2142 return(0); 2143 } 2144 j = cdm->num_matches; 2145 cdm->num_matches++; 2146 cdm->matches[j].type = DEV_MATCH_BUS; 2147 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2148 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2149 cdm->matches[j].result.bus_result.unit_number = 2150 bus->sim->unit_number; 2151 strncpy(cdm->matches[j].result.bus_result.dev_name, 2152 bus->sim->sim_name, DEV_IDLEN); 2153 } 2154 2155 /* 2156 * If the user is only interested in busses, there's no 2157 * reason to descend to the next level in the tree. 2158 */ 2159 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2160 return(1); 2161 2162 /* 2163 * If there is a target generation recorded, check it to 2164 * make sure the target list hasn't changed. 2165 */ 2166 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2167 && (bus == cdm->pos.cookie.bus) 2168 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2169 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2170 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2171 bus->generation)) { 2172 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2173 return(0); 2174 } 2175 2176 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2177 && (cdm->pos.cookie.bus == bus) 2178 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2179 && (cdm->pos.cookie.target != NULL)) 2180 return(xpttargettraverse(bus, 2181 (struct cam_et *)cdm->pos.cookie.target, 2182 xptedttargetfunc, arg)); 2183 else 2184 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2185 } 2186 2187 static int 2188 xptedttargetfunc(struct cam_et *target, void *arg) 2189 { 2190 struct ccb_dev_match *cdm; 2191 2192 cdm = (struct ccb_dev_match *)arg; 2193 2194 /* 2195 * If there is a device list generation recorded, check it to 2196 * make sure the device list hasn't changed. 2197 */ 2198 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2199 && (cdm->pos.cookie.bus == target->bus) 2200 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2201 && (cdm->pos.cookie.target == target) 2202 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2203 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2204 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2205 target->generation)) { 2206 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2207 return(0); 2208 } 2209 2210 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2211 && (cdm->pos.cookie.bus == target->bus) 2212 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2213 && (cdm->pos.cookie.target == target) 2214 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2215 && (cdm->pos.cookie.device != NULL)) 2216 return(xptdevicetraverse(target, 2217 (struct cam_ed *)cdm->pos.cookie.device, 2218 xptedtdevicefunc, arg)); 2219 else 2220 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2221 } 2222 2223 static int 2224 xptedtdevicefunc(struct cam_ed *device, void *arg) 2225 { 2226 2227 struct ccb_dev_match *cdm; 2228 dev_match_ret retval; 2229 2230 cdm = (struct ccb_dev_match *)arg; 2231 2232 /* 2233 * If our position is for something deeper in the tree, that means 2234 * that we've already seen this node. So, we keep going down. 2235 */ 2236 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2237 && (cdm->pos.cookie.device == device) 2238 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2239 && (cdm->pos.cookie.periph != NULL)) 2240 retval = DM_RET_DESCEND; 2241 else 2242 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2243 device); 2244 2245 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2246 cdm->status = CAM_DEV_MATCH_ERROR; 2247 return(0); 2248 } 2249 2250 /* 2251 * If the copy flag is set, copy this device out. 2252 */ 2253 if (retval & DM_RET_COPY) { 2254 int spaceleft, j; 2255 2256 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2257 sizeof(struct dev_match_result)); 2258 2259 /* 2260 * If we don't have enough space to put in another 2261 * match result, save our position and tell the 2262 * user there are more devices to check. 2263 */ 2264 if (spaceleft < sizeof(struct dev_match_result)) { 2265 bzero(&cdm->pos, sizeof(cdm->pos)); 2266 cdm->pos.position_type = 2267 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2268 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2269 2270 cdm->pos.cookie.bus = device->target->bus; 2271 cdm->pos.generations[CAM_BUS_GENERATION]= 2272 xsoftc.bus_generation; 2273 cdm->pos.cookie.target = device->target; 2274 cdm->pos.generations[CAM_TARGET_GENERATION] = 2275 device->target->bus->generation; 2276 cdm->pos.cookie.device = device; 2277 cdm->pos.generations[CAM_DEV_GENERATION] = 2278 device->target->generation; 2279 cdm->status = CAM_DEV_MATCH_MORE; 2280 return(0); 2281 } 2282 j = cdm->num_matches; 2283 cdm->num_matches++; 2284 cdm->matches[j].type = DEV_MATCH_DEVICE; 2285 cdm->matches[j].result.device_result.path_id = 2286 device->target->bus->path_id; 2287 cdm->matches[j].result.device_result.target_id = 2288 device->target->target_id; 2289 cdm->matches[j].result.device_result.target_lun = 2290 device->lun_id; 2291 bcopy(&device->inq_data, 2292 &cdm->matches[j].result.device_result.inq_data, 2293 sizeof(struct scsi_inquiry_data)); 2294 2295 /* Let the user know whether this device is unconfigured */ 2296 if (device->flags & CAM_DEV_UNCONFIGURED) 2297 cdm->matches[j].result.device_result.flags = 2298 DEV_RESULT_UNCONFIGURED; 2299 else 2300 cdm->matches[j].result.device_result.flags = 2301 DEV_RESULT_NOFLAG; 2302 } 2303 2304 /* 2305 * If the user isn't interested in peripherals, don't descend 2306 * the tree any further. 2307 */ 2308 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2309 return(1); 2310 2311 /* 2312 * If there is a peripheral list generation recorded, make sure 2313 * it hasn't changed. 2314 */ 2315 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2316 && (device->target->bus == cdm->pos.cookie.bus) 2317 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2318 && (device->target == cdm->pos.cookie.target) 2319 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2320 && (device == cdm->pos.cookie.device) 2321 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2322 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2323 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2324 device->generation)){ 2325 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2326 return(0); 2327 } 2328 2329 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2330 && (cdm->pos.cookie.bus == device->target->bus) 2331 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2332 && (cdm->pos.cookie.target == device->target) 2333 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2334 && (cdm->pos.cookie.device == device) 2335 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2336 && (cdm->pos.cookie.periph != NULL)) 2337 return(xptperiphtraverse(device, 2338 (struct cam_periph *)cdm->pos.cookie.periph, 2339 xptedtperiphfunc, arg)); 2340 else 2341 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2342 } 2343 2344 static int 2345 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2346 { 2347 struct ccb_dev_match *cdm; 2348 dev_match_ret retval; 2349 2350 cdm = (struct ccb_dev_match *)arg; 2351 2352 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2353 2354 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2355 cdm->status = CAM_DEV_MATCH_ERROR; 2356 return(0); 2357 } 2358 2359 /* 2360 * If the copy flag is set, copy this peripheral out. 2361 */ 2362 if (retval & DM_RET_COPY) { 2363 int spaceleft, j; 2364 2365 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2366 sizeof(struct dev_match_result)); 2367 2368 /* 2369 * If we don't have enough space to put in another 2370 * match result, save our position and tell the 2371 * user there are more devices to check. 2372 */ 2373 if (spaceleft < sizeof(struct dev_match_result)) { 2374 bzero(&cdm->pos, sizeof(cdm->pos)); 2375 cdm->pos.position_type = 2376 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2377 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2378 CAM_DEV_POS_PERIPH; 2379 2380 cdm->pos.cookie.bus = periph->path->bus; 2381 cdm->pos.generations[CAM_BUS_GENERATION]= 2382 xsoftc.bus_generation; 2383 cdm->pos.cookie.target = periph->path->target; 2384 cdm->pos.generations[CAM_TARGET_GENERATION] = 2385 periph->path->bus->generation; 2386 cdm->pos.cookie.device = periph->path->device; 2387 cdm->pos.generations[CAM_DEV_GENERATION] = 2388 periph->path->target->generation; 2389 cdm->pos.cookie.periph = periph; 2390 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2391 periph->path->device->generation; 2392 cdm->status = CAM_DEV_MATCH_MORE; 2393 return(0); 2394 } 2395 2396 j = cdm->num_matches; 2397 cdm->num_matches++; 2398 cdm->matches[j].type = DEV_MATCH_PERIPH; 2399 cdm->matches[j].result.periph_result.path_id = 2400 periph->path->bus->path_id; 2401 cdm->matches[j].result.periph_result.target_id = 2402 periph->path->target->target_id; 2403 cdm->matches[j].result.periph_result.target_lun = 2404 periph->path->device->lun_id; 2405 cdm->matches[j].result.periph_result.unit_number = 2406 periph->unit_number; 2407 strncpy(cdm->matches[j].result.periph_result.periph_name, 2408 periph->periph_name, DEV_IDLEN); 2409 } 2410 2411 return(1); 2412 } 2413 2414 static int 2415 xptedtmatch(struct ccb_dev_match *cdm) 2416 { 2417 int ret; 2418 2419 cdm->num_matches = 0; 2420 2421 /* 2422 * Check the bus list generation. If it has changed, the user 2423 * needs to reset everything and start over. 2424 */ 2425 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2426 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2427 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 2428 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2429 return(0); 2430 } 2431 2432 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2433 && (cdm->pos.cookie.bus != NULL)) 2434 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2435 xptedtbusfunc, cdm); 2436 else 2437 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2438 2439 /* 2440 * If we get back 0, that means that we had to stop before fully 2441 * traversing the EDT. It also means that one of the subroutines 2442 * has set the status field to the proper value. If we get back 1, 2443 * we've fully traversed the EDT and copied out any matching entries. 2444 */ 2445 if (ret == 1) 2446 cdm->status = CAM_DEV_MATCH_LAST; 2447 2448 return(ret); 2449 } 2450 2451 static int 2452 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2453 { 2454 struct ccb_dev_match *cdm; 2455 2456 cdm = (struct ccb_dev_match *)arg; 2457 2458 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2459 && (cdm->pos.cookie.pdrv == pdrv) 2460 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2461 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2462 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2463 (*pdrv)->generation)) { 2464 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2465 return(0); 2466 } 2467 2468 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2469 && (cdm->pos.cookie.pdrv == pdrv) 2470 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2471 && (cdm->pos.cookie.periph != NULL)) 2472 return(xptpdperiphtraverse(pdrv, 2473 (struct cam_periph *)cdm->pos.cookie.periph, 2474 xptplistperiphfunc, arg)); 2475 else 2476 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2477 } 2478 2479 static int 2480 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2481 { 2482 struct ccb_dev_match *cdm; 2483 dev_match_ret retval; 2484 2485 cdm = (struct ccb_dev_match *)arg; 2486 2487 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2488 2489 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2490 cdm->status = CAM_DEV_MATCH_ERROR; 2491 return(0); 2492 } 2493 2494 /* 2495 * If the copy flag is set, copy this peripheral out. 2496 */ 2497 if (retval & DM_RET_COPY) { 2498 int spaceleft, j; 2499 2500 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2501 sizeof(struct dev_match_result)); 2502 2503 /* 2504 * If we don't have enough space to put in another 2505 * match result, save our position and tell the 2506 * user there are more devices to check. 2507 */ 2508 if (spaceleft < sizeof(struct dev_match_result)) { 2509 struct periph_driver **pdrv; 2510 2511 pdrv = NULL; 2512 bzero(&cdm->pos, sizeof(cdm->pos)); 2513 cdm->pos.position_type = 2514 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2515 CAM_DEV_POS_PERIPH; 2516 2517 /* 2518 * This may look a bit non-sensical, but it is 2519 * actually quite logical. There are very few 2520 * peripheral drivers, and bloating every peripheral 2521 * structure with a pointer back to its parent 2522 * peripheral driver linker set entry would cost 2523 * more in the long run than doing this quick lookup. 2524 */ 2525 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2526 if (strcmp((*pdrv)->driver_name, 2527 periph->periph_name) == 0) 2528 break; 2529 } 2530 2531 if (*pdrv == NULL) { 2532 cdm->status = CAM_DEV_MATCH_ERROR; 2533 return(0); 2534 } 2535 2536 cdm->pos.cookie.pdrv = pdrv; 2537 /* 2538 * The periph generation slot does double duty, as 2539 * does the periph pointer slot. They are used for 2540 * both edt and pdrv lookups and positioning. 2541 */ 2542 cdm->pos.cookie.periph = periph; 2543 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2544 (*pdrv)->generation; 2545 cdm->status = CAM_DEV_MATCH_MORE; 2546 return(0); 2547 } 2548 2549 j = cdm->num_matches; 2550 cdm->num_matches++; 2551 cdm->matches[j].type = DEV_MATCH_PERIPH; 2552 cdm->matches[j].result.periph_result.path_id = 2553 periph->path->bus->path_id; 2554 2555 /* 2556 * The transport layer peripheral doesn't have a target or 2557 * lun. 2558 */ 2559 if (periph->path->target) 2560 cdm->matches[j].result.periph_result.target_id = 2561 periph->path->target->target_id; 2562 else 2563 cdm->matches[j].result.periph_result.target_id = -1; 2564 2565 if (periph->path->device) 2566 cdm->matches[j].result.periph_result.target_lun = 2567 periph->path->device->lun_id; 2568 else 2569 cdm->matches[j].result.periph_result.target_lun = -1; 2570 2571 cdm->matches[j].result.periph_result.unit_number = 2572 periph->unit_number; 2573 strncpy(cdm->matches[j].result.periph_result.periph_name, 2574 periph->periph_name, DEV_IDLEN); 2575 } 2576 2577 return(1); 2578 } 2579 2580 static int 2581 xptperiphlistmatch(struct ccb_dev_match *cdm) 2582 { 2583 int ret; 2584 2585 cdm->num_matches = 0; 2586 2587 /* 2588 * At this point in the edt traversal function, we check the bus 2589 * list generation to make sure that no busses have been added or 2590 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2591 * For the peripheral driver list traversal function, however, we 2592 * don't have to worry about new peripheral driver types coming or 2593 * going; they're in a linker set, and therefore can't change 2594 * without a recompile. 2595 */ 2596 2597 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2598 && (cdm->pos.cookie.pdrv != NULL)) 2599 ret = xptpdrvtraverse( 2600 (struct periph_driver **)cdm->pos.cookie.pdrv, 2601 xptplistpdrvfunc, cdm); 2602 else 2603 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2604 2605 /* 2606 * If we get back 0, that means that we had to stop before fully 2607 * traversing the peripheral driver tree. It also means that one of 2608 * the subroutines has set the status field to the proper value. If 2609 * we get back 1, we've fully traversed the EDT and copied out any 2610 * matching entries. 2611 */ 2612 if (ret == 1) 2613 cdm->status = CAM_DEV_MATCH_LAST; 2614 2615 return(ret); 2616 } 2617 2618 static int 2619 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2620 { 2621 struct cam_eb *bus, *next_bus; 2622 int retval; 2623 2624 retval = 1; 2625 2626 mtx_lock(&xsoftc.xpt_topo_lock); 2627 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2628 bus != NULL; 2629 bus = next_bus) { 2630 next_bus = TAILQ_NEXT(bus, links); 2631 2632 mtx_unlock(&xsoftc.xpt_topo_lock); 2633 CAM_SIM_LOCK(bus->sim); 2634 retval = tr_func(bus, arg); 2635 CAM_SIM_UNLOCK(bus->sim); 2636 if (retval == 0) 2637 return(retval); 2638 mtx_lock(&xsoftc.xpt_topo_lock); 2639 } 2640 mtx_unlock(&xsoftc.xpt_topo_lock); 2641 2642 return(retval); 2643 } 2644 2645 static int 2646 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2647 xpt_targetfunc_t *tr_func, void *arg) 2648 { 2649 struct cam_et *target, *next_target; 2650 int retval; 2651 2652 retval = 1; 2653 for (target = (start_target ? start_target : 2654 TAILQ_FIRST(&bus->et_entries)); 2655 target != NULL; target = next_target) { 2656 2657 next_target = TAILQ_NEXT(target, links); 2658 2659 retval = tr_func(target, arg); 2660 2661 if (retval == 0) 2662 return(retval); 2663 } 2664 2665 return(retval); 2666 } 2667 2668 static int 2669 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2670 xpt_devicefunc_t *tr_func, void *arg) 2671 { 2672 struct cam_ed *device, *next_device; 2673 int retval; 2674 2675 retval = 1; 2676 for (device = (start_device ? start_device : 2677 TAILQ_FIRST(&target->ed_entries)); 2678 device != NULL; 2679 device = next_device) { 2680 2681 next_device = TAILQ_NEXT(device, links); 2682 2683 retval = tr_func(device, arg); 2684 2685 if (retval == 0) 2686 return(retval); 2687 } 2688 2689 return(retval); 2690 } 2691 2692 static int 2693 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2694 xpt_periphfunc_t *tr_func, void *arg) 2695 { 2696 struct cam_periph *periph, *next_periph; 2697 int retval; 2698 2699 retval = 1; 2700 2701 for (periph = (start_periph ? start_periph : 2702 SLIST_FIRST(&device->periphs)); 2703 periph != NULL; 2704 periph = next_periph) { 2705 2706 next_periph = SLIST_NEXT(periph, periph_links); 2707 2708 retval = tr_func(periph, arg); 2709 if (retval == 0) 2710 return(retval); 2711 } 2712 2713 return(retval); 2714 } 2715 2716 static int 2717 xptpdrvtraverse(struct periph_driver **start_pdrv, 2718 xpt_pdrvfunc_t *tr_func, void *arg) 2719 { 2720 struct periph_driver **pdrv; 2721 int retval; 2722 2723 retval = 1; 2724 2725 /* 2726 * We don't traverse the peripheral driver list like we do the 2727 * other lists, because it is a linker set, and therefore cannot be 2728 * changed during runtime. If the peripheral driver list is ever 2729 * re-done to be something other than a linker set (i.e. it can 2730 * change while the system is running), the list traversal should 2731 * be modified to work like the other traversal functions. 2732 */ 2733 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2734 *pdrv != NULL; pdrv++) { 2735 retval = tr_func(pdrv, arg); 2736 2737 if (retval == 0) 2738 return(retval); 2739 } 2740 2741 return(retval); 2742 } 2743 2744 static int 2745 xptpdperiphtraverse(struct periph_driver **pdrv, 2746 struct cam_periph *start_periph, 2747 xpt_periphfunc_t *tr_func, void *arg) 2748 { 2749 struct cam_periph *periph, *next_periph; 2750 int retval; 2751 2752 retval = 1; 2753 2754 for (periph = (start_periph ? start_periph : 2755 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2756 periph = next_periph) { 2757 2758 next_periph = TAILQ_NEXT(periph, unit_links); 2759 2760 retval = tr_func(periph, arg); 2761 if (retval == 0) 2762 return(retval); 2763 } 2764 return(retval); 2765 } 2766 2767 static int 2768 xptdefbusfunc(struct cam_eb *bus, void *arg) 2769 { 2770 struct xpt_traverse_config *tr_config; 2771 2772 tr_config = (struct xpt_traverse_config *)arg; 2773 2774 if (tr_config->depth == XPT_DEPTH_BUS) { 2775 xpt_busfunc_t *tr_func; 2776 2777 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2778 2779 return(tr_func(bus, tr_config->tr_arg)); 2780 } else 2781 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2782 } 2783 2784 static int 2785 xptdeftargetfunc(struct cam_et *target, void *arg) 2786 { 2787 struct xpt_traverse_config *tr_config; 2788 2789 tr_config = (struct xpt_traverse_config *)arg; 2790 2791 if (tr_config->depth == XPT_DEPTH_TARGET) { 2792 xpt_targetfunc_t *tr_func; 2793 2794 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2795 2796 return(tr_func(target, tr_config->tr_arg)); 2797 } else 2798 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2799 } 2800 2801 static int 2802 xptdefdevicefunc(struct cam_ed *device, void *arg) 2803 { 2804 struct xpt_traverse_config *tr_config; 2805 2806 tr_config = (struct xpt_traverse_config *)arg; 2807 2808 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2809 xpt_devicefunc_t *tr_func; 2810 2811 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2812 2813 return(tr_func(device, tr_config->tr_arg)); 2814 } else 2815 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2816 } 2817 2818 static int 2819 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2820 { 2821 struct xpt_traverse_config *tr_config; 2822 xpt_periphfunc_t *tr_func; 2823 2824 tr_config = (struct xpt_traverse_config *)arg; 2825 2826 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2827 2828 /* 2829 * Unlike the other default functions, we don't check for depth 2830 * here. The peripheral driver level is the last level in the EDT, 2831 * so if we're here, we should execute the function in question. 2832 */ 2833 return(tr_func(periph, tr_config->tr_arg)); 2834 } 2835 2836 /* 2837 * Execute the given function for every bus in the EDT. 2838 */ 2839 static int 2840 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2841 { 2842 struct xpt_traverse_config tr_config; 2843 2844 tr_config.depth = XPT_DEPTH_BUS; 2845 tr_config.tr_func = tr_func; 2846 tr_config.tr_arg = arg; 2847 2848 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2849 } 2850 2851 /* 2852 * Execute the given function for every device in the EDT. 2853 */ 2854 static int 2855 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2856 { 2857 struct xpt_traverse_config tr_config; 2858 2859 tr_config.depth = XPT_DEPTH_DEVICE; 2860 tr_config.tr_func = tr_func; 2861 tr_config.tr_arg = arg; 2862 2863 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2864 } 2865 2866 static int 2867 xptsetasyncfunc(struct cam_ed *device, void *arg) 2868 { 2869 struct cam_path path; 2870 struct ccb_getdev cgd; 2871 struct async_node *cur_entry; 2872 2873 cur_entry = (struct async_node *)arg; 2874 2875 /* 2876 * Don't report unconfigured devices (Wildcard devs, 2877 * devices only for target mode, device instances 2878 * that have been invalidated but are waiting for 2879 * their last reference count to be released). 2880 */ 2881 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2882 return (1); 2883 2884 xpt_compile_path(&path, 2885 NULL, 2886 device->target->bus->path_id, 2887 device->target->target_id, 2888 device->lun_id); 2889 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2890 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2891 xpt_action((union ccb *)&cgd); 2892 cur_entry->callback(cur_entry->callback_arg, 2893 AC_FOUND_DEVICE, 2894 &path, &cgd); 2895 xpt_release_path(&path); 2896 2897 return(1); 2898 } 2899 2900 static int 2901 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2902 { 2903 struct cam_path path; 2904 struct ccb_pathinq cpi; 2905 struct async_node *cur_entry; 2906 2907 cur_entry = (struct async_node *)arg; 2908 2909 xpt_compile_path(&path, /*periph*/NULL, 2910 bus->sim->path_id, 2911 CAM_TARGET_WILDCARD, 2912 CAM_LUN_WILDCARD); 2913 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2914 cpi.ccb_h.func_code = XPT_PATH_INQ; 2915 xpt_action((union ccb *)&cpi); 2916 cur_entry->callback(cur_entry->callback_arg, 2917 AC_PATH_REGISTERED, 2918 &path, &cpi); 2919 xpt_release_path(&path); 2920 2921 return(1); 2922 } 2923 2924 static void 2925 xpt_action_sasync_cb(void *context, int pending) 2926 { 2927 struct async_node *cur_entry; 2928 struct xpt_task *task; 2929 uint32_t added; 2930 2931 task = (struct xpt_task *)context; 2932 cur_entry = (struct async_node *)task->data1; 2933 added = task->data2; 2934 2935 if ((added & AC_FOUND_DEVICE) != 0) { 2936 /* 2937 * Get this peripheral up to date with all 2938 * the currently existing devices. 2939 */ 2940 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 2941 } 2942 if ((added & AC_PATH_REGISTERED) != 0) { 2943 /* 2944 * Get this peripheral up to date with all 2945 * the currently existing busses. 2946 */ 2947 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 2948 } 2949 2950 free(task, M_CAMXPT); 2951 } 2952 2953 void 2954 xpt_action(union ccb *start_ccb) 2955 { 2956 2957 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2958 2959 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2960 2961 switch (start_ccb->ccb_h.func_code) { 2962 case XPT_SCSI_IO: 2963 { 2964 struct cam_ed *device; 2965 #ifdef CAMDEBUG 2966 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2967 struct cam_path *path; 2968 2969 path = start_ccb->ccb_h.path; 2970 #endif 2971 2972 /* 2973 * For the sake of compatibility with SCSI-1 2974 * devices that may not understand the identify 2975 * message, we include lun information in the 2976 * second byte of all commands. SCSI-1 specifies 2977 * that luns are a 3 bit value and reserves only 3 2978 * bits for lun information in the CDB. Later 2979 * revisions of the SCSI spec allow for more than 8 2980 * luns, but have deprecated lun information in the 2981 * CDB. So, if the lun won't fit, we must omit. 2982 * 2983 * Also be aware that during initial probing for devices, 2984 * the inquiry information is unknown but initialized to 0. 2985 * This means that this code will be exercised while probing 2986 * devices with an ANSI revision greater than 2. 2987 */ 2988 device = start_ccb->ccb_h.path->device; 2989 if (device->protocol_version <= SCSI_REV_2 2990 && start_ccb->ccb_h.target_lun < 8 2991 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2992 2993 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2994 start_ccb->ccb_h.target_lun << 5; 2995 } 2996 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2997 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2998 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2999 &path->device->inq_data), 3000 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3001 cdb_str, sizeof(cdb_str)))); 3002 } 3003 /* FALLTHROUGH */ 3004 case XPT_TARGET_IO: 3005 case XPT_CONT_TARGET_IO: 3006 start_ccb->csio.sense_resid = 0; 3007 start_ccb->csio.resid = 0; 3008 /* FALLTHROUGH */ 3009 case XPT_RESET_DEV: 3010 case XPT_ENG_EXEC: 3011 { 3012 struct cam_path *path; 3013 int runq; 3014 3015 path = start_ccb->ccb_h.path; 3016 3017 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3018 if (path->device->qfrozen_cnt == 0) 3019 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3020 else 3021 runq = 0; 3022 if (runq != 0) 3023 xpt_run_dev_sendq(path->bus); 3024 break; 3025 } 3026 case XPT_SET_TRAN_SETTINGS: 3027 { 3028 xpt_set_transfer_settings(&start_ccb->cts, 3029 start_ccb->ccb_h.path->device, 3030 /*async_update*/FALSE); 3031 break; 3032 } 3033 case XPT_CALC_GEOMETRY: 3034 { 3035 struct cam_sim *sim; 3036 3037 /* Filter out garbage */ 3038 if (start_ccb->ccg.block_size == 0 3039 || start_ccb->ccg.volume_size == 0) { 3040 start_ccb->ccg.cylinders = 0; 3041 start_ccb->ccg.heads = 0; 3042 start_ccb->ccg.secs_per_track = 0; 3043 start_ccb->ccb_h.status = CAM_REQ_CMP; 3044 break; 3045 } 3046 #ifdef PC98 3047 /* 3048 * In a PC-98 system, geometry translation depens on 3049 * the "real" device geometry obtained from mode page 4. 3050 * SCSI geometry translation is performed in the 3051 * initialization routine of the SCSI BIOS and the result 3052 * stored in host memory. If the translation is available 3053 * in host memory, use it. If not, rely on the default 3054 * translation the device driver performs. 3055 */ 3056 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3057 start_ccb->ccb_h.status = CAM_REQ_CMP; 3058 break; 3059 } 3060 #endif 3061 sim = start_ccb->ccb_h.path->bus->sim; 3062 (*(sim->sim_action))(sim, start_ccb); 3063 break; 3064 } 3065 case XPT_ABORT: 3066 { 3067 union ccb* abort_ccb; 3068 3069 abort_ccb = start_ccb->cab.abort_ccb; 3070 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3071 3072 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3073 struct cam_ccbq *ccbq; 3074 3075 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3076 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3077 abort_ccb->ccb_h.status = 3078 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3079 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3080 xpt_done(abort_ccb); 3081 start_ccb->ccb_h.status = CAM_REQ_CMP; 3082 break; 3083 } 3084 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3085 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3086 /* 3087 * We've caught this ccb en route to 3088 * the SIM. Flag it for abort and the 3089 * SIM will do so just before starting 3090 * real work on the CCB. 3091 */ 3092 abort_ccb->ccb_h.status = 3093 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3094 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3095 start_ccb->ccb_h.status = CAM_REQ_CMP; 3096 break; 3097 } 3098 } 3099 if (XPT_FC_IS_QUEUED(abort_ccb) 3100 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3101 /* 3102 * It's already completed but waiting 3103 * for our SWI to get to it. 3104 */ 3105 start_ccb->ccb_h.status = CAM_UA_ABORT; 3106 break; 3107 } 3108 /* 3109 * If we weren't able to take care of the abort request 3110 * in the XPT, pass the request down to the SIM for processing. 3111 */ 3112 } 3113 /* FALLTHROUGH */ 3114 case XPT_ACCEPT_TARGET_IO: 3115 case XPT_EN_LUN: 3116 case XPT_IMMED_NOTIFY: 3117 case XPT_NOTIFY_ACK: 3118 case XPT_GET_TRAN_SETTINGS: 3119 case XPT_RESET_BUS: 3120 { 3121 struct cam_sim *sim; 3122 3123 sim = start_ccb->ccb_h.path->bus->sim; 3124 (*(sim->sim_action))(sim, start_ccb); 3125 break; 3126 } 3127 case XPT_PATH_INQ: 3128 { 3129 struct cam_sim *sim; 3130 3131 sim = start_ccb->ccb_h.path->bus->sim; 3132 (*(sim->sim_action))(sim, start_ccb); 3133 break; 3134 } 3135 case XPT_PATH_STATS: 3136 start_ccb->cpis.last_reset = 3137 start_ccb->ccb_h.path->bus->last_reset; 3138 start_ccb->ccb_h.status = CAM_REQ_CMP; 3139 break; 3140 case XPT_GDEV_TYPE: 3141 { 3142 struct cam_ed *dev; 3143 3144 dev = start_ccb->ccb_h.path->device; 3145 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3146 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3147 } else { 3148 struct ccb_getdev *cgd; 3149 struct cam_eb *bus; 3150 struct cam_et *tar; 3151 3152 cgd = &start_ccb->cgd; 3153 bus = cgd->ccb_h.path->bus; 3154 tar = cgd->ccb_h.path->target; 3155 cgd->inq_data = dev->inq_data; 3156 cgd->ccb_h.status = CAM_REQ_CMP; 3157 cgd->serial_num_len = dev->serial_num_len; 3158 if ((dev->serial_num_len > 0) 3159 && (dev->serial_num != NULL)) 3160 bcopy(dev->serial_num, cgd->serial_num, 3161 dev->serial_num_len); 3162 } 3163 break; 3164 } 3165 case XPT_GDEV_STATS: 3166 { 3167 struct cam_ed *dev; 3168 3169 dev = start_ccb->ccb_h.path->device; 3170 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3171 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3172 } else { 3173 struct ccb_getdevstats *cgds; 3174 struct cam_eb *bus; 3175 struct cam_et *tar; 3176 3177 cgds = &start_ccb->cgds; 3178 bus = cgds->ccb_h.path->bus; 3179 tar = cgds->ccb_h.path->target; 3180 cgds->dev_openings = dev->ccbq.dev_openings; 3181 cgds->dev_active = dev->ccbq.dev_active; 3182 cgds->devq_openings = dev->ccbq.devq_openings; 3183 cgds->devq_queued = dev->ccbq.queue.entries; 3184 cgds->held = dev->ccbq.held; 3185 cgds->last_reset = tar->last_reset; 3186 cgds->maxtags = dev->quirk->maxtags; 3187 cgds->mintags = dev->quirk->mintags; 3188 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3189 cgds->last_reset = bus->last_reset; 3190 cgds->ccb_h.status = CAM_REQ_CMP; 3191 } 3192 break; 3193 } 3194 case XPT_GDEVLIST: 3195 { 3196 struct cam_periph *nperiph; 3197 struct periph_list *periph_head; 3198 struct ccb_getdevlist *cgdl; 3199 u_int i; 3200 struct cam_ed *device; 3201 int found; 3202 3203 3204 found = 0; 3205 3206 /* 3207 * Don't want anyone mucking with our data. 3208 */ 3209 device = start_ccb->ccb_h.path->device; 3210 periph_head = &device->periphs; 3211 cgdl = &start_ccb->cgdl; 3212 3213 /* 3214 * Check and see if the list has changed since the user 3215 * last requested a list member. If so, tell them that the 3216 * list has changed, and therefore they need to start over 3217 * from the beginning. 3218 */ 3219 if ((cgdl->index != 0) && 3220 (cgdl->generation != device->generation)) { 3221 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3222 break; 3223 } 3224 3225 /* 3226 * Traverse the list of peripherals and attempt to find 3227 * the requested peripheral. 3228 */ 3229 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3230 (nperiph != NULL) && (i <= cgdl->index); 3231 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3232 if (i == cgdl->index) { 3233 strncpy(cgdl->periph_name, 3234 nperiph->periph_name, 3235 DEV_IDLEN); 3236 cgdl->unit_number = nperiph->unit_number; 3237 found = 1; 3238 } 3239 } 3240 if (found == 0) { 3241 cgdl->status = CAM_GDEVLIST_ERROR; 3242 break; 3243 } 3244 3245 if (nperiph == NULL) 3246 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3247 else 3248 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3249 3250 cgdl->index++; 3251 cgdl->generation = device->generation; 3252 3253 cgdl->ccb_h.status = CAM_REQ_CMP; 3254 break; 3255 } 3256 case XPT_DEV_MATCH: 3257 { 3258 dev_pos_type position_type; 3259 struct ccb_dev_match *cdm; 3260 3261 cdm = &start_ccb->cdm; 3262 3263 /* 3264 * There are two ways of getting at information in the EDT. 3265 * The first way is via the primary EDT tree. It starts 3266 * with a list of busses, then a list of targets on a bus, 3267 * then devices/luns on a target, and then peripherals on a 3268 * device/lun. The "other" way is by the peripheral driver 3269 * lists. The peripheral driver lists are organized by 3270 * peripheral driver. (obviously) So it makes sense to 3271 * use the peripheral driver list if the user is looking 3272 * for something like "da1", or all "da" devices. If the 3273 * user is looking for something on a particular bus/target 3274 * or lun, it's generally better to go through the EDT tree. 3275 */ 3276 3277 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3278 position_type = cdm->pos.position_type; 3279 else { 3280 u_int i; 3281 3282 position_type = CAM_DEV_POS_NONE; 3283 3284 for (i = 0; i < cdm->num_patterns; i++) { 3285 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3286 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3287 position_type = CAM_DEV_POS_EDT; 3288 break; 3289 } 3290 } 3291 3292 if (cdm->num_patterns == 0) 3293 position_type = CAM_DEV_POS_EDT; 3294 else if (position_type == CAM_DEV_POS_NONE) 3295 position_type = CAM_DEV_POS_PDRV; 3296 } 3297 3298 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3299 case CAM_DEV_POS_EDT: 3300 xptedtmatch(cdm); 3301 break; 3302 case CAM_DEV_POS_PDRV: 3303 xptperiphlistmatch(cdm); 3304 break; 3305 default: 3306 cdm->status = CAM_DEV_MATCH_ERROR; 3307 break; 3308 } 3309 3310 if (cdm->status == CAM_DEV_MATCH_ERROR) 3311 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3312 else 3313 start_ccb->ccb_h.status = CAM_REQ_CMP; 3314 3315 break; 3316 } 3317 case XPT_SASYNC_CB: 3318 { 3319 struct ccb_setasync *csa; 3320 struct async_node *cur_entry; 3321 struct async_list *async_head; 3322 u_int32_t added; 3323 3324 csa = &start_ccb->csa; 3325 added = csa->event_enable; 3326 async_head = &csa->ccb_h.path->device->asyncs; 3327 3328 /* 3329 * If there is already an entry for us, simply 3330 * update it. 3331 */ 3332 cur_entry = SLIST_FIRST(async_head); 3333 while (cur_entry != NULL) { 3334 if ((cur_entry->callback_arg == csa->callback_arg) 3335 && (cur_entry->callback == csa->callback)) 3336 break; 3337 cur_entry = SLIST_NEXT(cur_entry, links); 3338 } 3339 3340 if (cur_entry != NULL) { 3341 /* 3342 * If the request has no flags set, 3343 * remove the entry. 3344 */ 3345 added &= ~cur_entry->event_enable; 3346 if (csa->event_enable == 0) { 3347 SLIST_REMOVE(async_head, cur_entry, 3348 async_node, links); 3349 csa->ccb_h.path->device->refcount--; 3350 free(cur_entry, M_CAMXPT); 3351 } else { 3352 cur_entry->event_enable = csa->event_enable; 3353 } 3354 } else { 3355 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3356 M_NOWAIT); 3357 if (cur_entry == NULL) { 3358 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3359 break; 3360 } 3361 cur_entry->event_enable = csa->event_enable; 3362 cur_entry->callback_arg = csa->callback_arg; 3363 cur_entry->callback = csa->callback; 3364 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3365 csa->ccb_h.path->device->refcount++; 3366 } 3367 3368 /* 3369 * Need to decouple this operation via a taqskqueue so that 3370 * the locking doesn't become a mess. 3371 */ 3372 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) { 3373 struct xpt_task *task; 3374 3375 task = malloc(sizeof(struct xpt_task), M_CAMXPT, 3376 M_NOWAIT); 3377 if (task == NULL) { 3378 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3379 break; 3380 } 3381 3382 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task); 3383 task->data1 = cur_entry; 3384 task->data2 = added; 3385 taskqueue_enqueue(taskqueue_thread, &task->task); 3386 } 3387 3388 start_ccb->ccb_h.status = CAM_REQ_CMP; 3389 break; 3390 } 3391 case XPT_REL_SIMQ: 3392 { 3393 struct ccb_relsim *crs; 3394 struct cam_ed *dev; 3395 3396 crs = &start_ccb->crs; 3397 dev = crs->ccb_h.path->device; 3398 if (dev == NULL) { 3399 3400 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3401 break; 3402 } 3403 3404 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3405 3406 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 3407 /* Don't ever go below one opening */ 3408 if (crs->openings > 0) { 3409 xpt_dev_ccbq_resize(crs->ccb_h.path, 3410 crs->openings); 3411 3412 if (bootverbose) { 3413 xpt_print(crs->ccb_h.path, 3414 "tagged openings now %d\n", 3415 crs->openings); 3416 } 3417 } 3418 } 3419 } 3420 3421 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3422 3423 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3424 3425 /* 3426 * Just extend the old timeout and decrement 3427 * the freeze count so that a single timeout 3428 * is sufficient for releasing the queue. 3429 */ 3430 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3431 callout_stop(&dev->callout); 3432 } else { 3433 3434 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3435 } 3436 3437 callout_reset(&dev->callout, 3438 (crs->release_timeout * hz) / 1000, 3439 xpt_release_devq_timeout, dev); 3440 3441 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3442 3443 } 3444 3445 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3446 3447 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3448 /* 3449 * Decrement the freeze count so that a single 3450 * completion is still sufficient to unfreeze 3451 * the queue. 3452 */ 3453 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3454 } else { 3455 3456 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3457 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3458 } 3459 } 3460 3461 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3462 3463 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3464 || (dev->ccbq.dev_active == 0)) { 3465 3466 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3467 } else { 3468 3469 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3470 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3471 } 3472 } 3473 3474 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3475 3476 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3477 /*run_queue*/TRUE); 3478 } 3479 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3480 start_ccb->ccb_h.status = CAM_REQ_CMP; 3481 break; 3482 } 3483 case XPT_SCAN_BUS: 3484 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3485 break; 3486 case XPT_SCAN_LUN: 3487 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3488 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3489 start_ccb); 3490 break; 3491 case XPT_DEBUG: { 3492 #ifdef CAMDEBUG 3493 #ifdef CAM_DEBUG_DELAY 3494 cam_debug_delay = CAM_DEBUG_DELAY; 3495 #endif 3496 cam_dflags = start_ccb->cdbg.flags; 3497 if (cam_dpath != NULL) { 3498 xpt_free_path(cam_dpath); 3499 cam_dpath = NULL; 3500 } 3501 3502 if (cam_dflags != CAM_DEBUG_NONE) { 3503 if (xpt_create_path(&cam_dpath, xpt_periph, 3504 start_ccb->ccb_h.path_id, 3505 start_ccb->ccb_h.target_id, 3506 start_ccb->ccb_h.target_lun) != 3507 CAM_REQ_CMP) { 3508 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3509 cam_dflags = CAM_DEBUG_NONE; 3510 } else { 3511 start_ccb->ccb_h.status = CAM_REQ_CMP; 3512 xpt_print(cam_dpath, "debugging flags now %x\n", 3513 cam_dflags); 3514 } 3515 } else { 3516 cam_dpath = NULL; 3517 start_ccb->ccb_h.status = CAM_REQ_CMP; 3518 } 3519 #else /* !CAMDEBUG */ 3520 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3521 #endif /* CAMDEBUG */ 3522 break; 3523 } 3524 case XPT_NOOP: 3525 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3526 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3527 start_ccb->ccb_h.status = CAM_REQ_CMP; 3528 break; 3529 default: 3530 case XPT_SDEV_TYPE: 3531 case XPT_TERM_IO: 3532 case XPT_ENG_INQ: 3533 /* XXX Implement */ 3534 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3535 break; 3536 } 3537 } 3538 3539 void 3540 xpt_polled_action(union ccb *start_ccb) 3541 { 3542 u_int32_t timeout; 3543 struct cam_sim *sim; 3544 struct cam_devq *devq; 3545 struct cam_ed *dev; 3546 3547 3548 timeout = start_ccb->ccb_h.timeout; 3549 sim = start_ccb->ccb_h.path->bus->sim; 3550 devq = sim->devq; 3551 dev = start_ccb->ccb_h.path->device; 3552 3553 mtx_assert(sim->mtx, MA_OWNED); 3554 3555 /* 3556 * Steal an opening so that no other queued requests 3557 * can get it before us while we simulate interrupts. 3558 */ 3559 dev->ccbq.devq_openings--; 3560 dev->ccbq.dev_openings--; 3561 3562 while(((devq != NULL && devq->send_openings <= 0) || 3563 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3564 DELAY(1000); 3565 (*(sim->sim_poll))(sim); 3566 camisr_runqueue(&sim->sim_doneq); 3567 } 3568 3569 dev->ccbq.devq_openings++; 3570 dev->ccbq.dev_openings++; 3571 3572 if (timeout != 0) { 3573 xpt_action(start_ccb); 3574 while(--timeout > 0) { 3575 (*(sim->sim_poll))(sim); 3576 camisr_runqueue(&sim->sim_doneq); 3577 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3578 != CAM_REQ_INPROG) 3579 break; 3580 DELAY(1000); 3581 } 3582 if (timeout == 0) { 3583 /* 3584 * XXX Is it worth adding a sim_timeout entry 3585 * point so we can attempt recovery? If 3586 * this is only used for dumps, I don't think 3587 * it is. 3588 */ 3589 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3590 } 3591 } else { 3592 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3593 } 3594 } 3595 3596 /* 3597 * Schedule a peripheral driver to receive a ccb when it's 3598 * target device has space for more transactions. 3599 */ 3600 void 3601 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3602 { 3603 struct cam_ed *device; 3604 int runq; 3605 3606 mtx_assert(perph->sim->mtx, MA_OWNED); 3607 3608 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3609 device = perph->path->device; 3610 if (periph_is_queued(perph)) { 3611 /* Simply reorder based on new priority */ 3612 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3613 (" change priority to %d\n", new_priority)); 3614 if (new_priority < perph->pinfo.priority) { 3615 camq_change_priority(&device->drvq, 3616 perph->pinfo.index, 3617 new_priority); 3618 } 3619 runq = 0; 3620 } else { 3621 /* New entry on the queue */ 3622 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3623 (" added periph to queue\n")); 3624 perph->pinfo.priority = new_priority; 3625 perph->pinfo.generation = ++device->drvq.generation; 3626 camq_insert(&device->drvq, &perph->pinfo); 3627 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3628 } 3629 if (runq != 0) { 3630 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3631 (" calling xpt_run_devq\n")); 3632 xpt_run_dev_allocq(perph->path->bus); 3633 } 3634 } 3635 3636 3637 /* 3638 * Schedule a device to run on a given queue. 3639 * If the device was inserted as a new entry on the queue, 3640 * return 1 meaning the device queue should be run. If we 3641 * were already queued, implying someone else has already 3642 * started the queue, return 0 so the caller doesn't attempt 3643 * to run the queue. 3644 */ 3645 static int 3646 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3647 u_int32_t new_priority) 3648 { 3649 int retval; 3650 u_int32_t old_priority; 3651 3652 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3653 3654 old_priority = pinfo->priority; 3655 3656 /* 3657 * Are we already queued? 3658 */ 3659 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3660 /* Simply reorder based on new priority */ 3661 if (new_priority < old_priority) { 3662 camq_change_priority(queue, pinfo->index, 3663 new_priority); 3664 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3665 ("changed priority to %d\n", 3666 new_priority)); 3667 } 3668 retval = 0; 3669 } else { 3670 /* New entry on the queue */ 3671 if (new_priority < old_priority) 3672 pinfo->priority = new_priority; 3673 3674 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3675 ("Inserting onto queue\n")); 3676 pinfo->generation = ++queue->generation; 3677 camq_insert(queue, pinfo); 3678 retval = 1; 3679 } 3680 return (retval); 3681 } 3682 3683 static void 3684 xpt_run_dev_allocq(struct cam_eb *bus) 3685 { 3686 struct cam_devq *devq; 3687 3688 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3689 devq = bus->sim->devq; 3690 3691 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3692 (" qfrozen_cnt == 0x%x, entries == %d, " 3693 "openings == %d, active == %d\n", 3694 devq->alloc_queue.qfrozen_cnt, 3695 devq->alloc_queue.entries, 3696 devq->alloc_openings, 3697 devq->alloc_active)); 3698 3699 devq->alloc_queue.qfrozen_cnt++; 3700 while ((devq->alloc_queue.entries > 0) 3701 && (devq->alloc_openings > 0) 3702 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3703 struct cam_ed_qinfo *qinfo; 3704 struct cam_ed *device; 3705 union ccb *work_ccb; 3706 struct cam_periph *drv; 3707 struct camq *drvq; 3708 3709 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3710 CAMQ_HEAD); 3711 device = qinfo->device; 3712 3713 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3714 ("running device %p\n", device)); 3715 3716 drvq = &device->drvq; 3717 3718 #ifdef CAMDEBUG 3719 if (drvq->entries <= 0) { 3720 panic("xpt_run_dev_allocq: " 3721 "Device on queue without any work to do"); 3722 } 3723 #endif 3724 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3725 devq->alloc_openings--; 3726 devq->alloc_active++; 3727 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3728 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3729 drv->pinfo.priority); 3730 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3731 ("calling periph start\n")); 3732 drv->periph_start(drv, work_ccb); 3733 } else { 3734 /* 3735 * Malloc failure in alloc_ccb 3736 */ 3737 /* 3738 * XXX add us to a list to be run from free_ccb 3739 * if we don't have any ccbs active on this 3740 * device queue otherwise we may never get run 3741 * again. 3742 */ 3743 break; 3744 } 3745 3746 if (drvq->entries > 0) { 3747 /* We have more work. Attempt to reschedule */ 3748 xpt_schedule_dev_allocq(bus, device); 3749 } 3750 } 3751 devq->alloc_queue.qfrozen_cnt--; 3752 } 3753 3754 static void 3755 xpt_run_dev_sendq(struct cam_eb *bus) 3756 { 3757 struct cam_devq *devq; 3758 3759 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3760 3761 devq = bus->sim->devq; 3762 3763 devq->send_queue.qfrozen_cnt++; 3764 while ((devq->send_queue.entries > 0) 3765 && (devq->send_openings > 0)) { 3766 struct cam_ed_qinfo *qinfo; 3767 struct cam_ed *device; 3768 union ccb *work_ccb; 3769 struct cam_sim *sim; 3770 3771 if (devq->send_queue.qfrozen_cnt > 1) { 3772 break; 3773 } 3774 3775 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3776 CAMQ_HEAD); 3777 device = qinfo->device; 3778 3779 /* 3780 * If the device has been "frozen", don't attempt 3781 * to run it. 3782 */ 3783 if (device->qfrozen_cnt > 0) { 3784 continue; 3785 } 3786 3787 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3788 ("running device %p\n", device)); 3789 3790 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3791 if (work_ccb == NULL) { 3792 printf("device on run queue with no ccbs???\n"); 3793 continue; 3794 } 3795 3796 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3797 3798 mtx_lock(&xsoftc.xpt_lock); 3799 if (xsoftc.num_highpower <= 0) { 3800 /* 3801 * We got a high power command, but we 3802 * don't have any available slots. Freeze 3803 * the device queue until we have a slot 3804 * available. 3805 */ 3806 device->qfrozen_cnt++; 3807 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3808 &work_ccb->ccb_h, 3809 xpt_links.stqe); 3810 3811 mtx_unlock(&xsoftc.xpt_lock); 3812 continue; 3813 } else { 3814 /* 3815 * Consume a high power slot while 3816 * this ccb runs. 3817 */ 3818 xsoftc.num_highpower--; 3819 } 3820 mtx_unlock(&xsoftc.xpt_lock); 3821 } 3822 devq->active_dev = device; 3823 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3824 3825 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3826 3827 devq->send_openings--; 3828 devq->send_active++; 3829 3830 if (device->ccbq.queue.entries > 0) 3831 xpt_schedule_dev_sendq(bus, device); 3832 3833 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3834 /* 3835 * The client wants to freeze the queue 3836 * after this CCB is sent. 3837 */ 3838 device->qfrozen_cnt++; 3839 } 3840 3841 /* In Target mode, the peripheral driver knows best... */ 3842 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3843 if ((device->inq_flags & SID_CmdQue) != 0 3844 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3845 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3846 else 3847 /* 3848 * Clear this in case of a retried CCB that 3849 * failed due to a rejected tag. 3850 */ 3851 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3852 } 3853 3854 /* 3855 * Device queues can be shared among multiple sim instances 3856 * that reside on different busses. Use the SIM in the queue 3857 * CCB's path, rather than the one in the bus that was passed 3858 * into this function. 3859 */ 3860 sim = work_ccb->ccb_h.path->bus->sim; 3861 (*(sim->sim_action))(sim, work_ccb); 3862 3863 devq->active_dev = NULL; 3864 } 3865 devq->send_queue.qfrozen_cnt--; 3866 } 3867 3868 /* 3869 * This function merges stuff from the slave ccb into the master ccb, while 3870 * keeping important fields in the master ccb constant. 3871 */ 3872 void 3873 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3874 { 3875 3876 /* 3877 * Pull fields that are valid for peripheral drivers to set 3878 * into the master CCB along with the CCB "payload". 3879 */ 3880 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3881 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3882 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3883 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3884 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3885 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3886 } 3887 3888 void 3889 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3890 { 3891 3892 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3893 ccb_h->pinfo.priority = priority; 3894 ccb_h->path = path; 3895 ccb_h->path_id = path->bus->path_id; 3896 if (path->target) 3897 ccb_h->target_id = path->target->target_id; 3898 else 3899 ccb_h->target_id = CAM_TARGET_WILDCARD; 3900 if (path->device) { 3901 ccb_h->target_lun = path->device->lun_id; 3902 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3903 } else { 3904 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3905 } 3906 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3907 ccb_h->flags = 0; 3908 } 3909 3910 /* Path manipulation functions */ 3911 cam_status 3912 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3913 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3914 { 3915 struct cam_path *path; 3916 cam_status status; 3917 3918 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3919 3920 if (path == NULL) { 3921 status = CAM_RESRC_UNAVAIL; 3922 return(status); 3923 } 3924 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3925 if (status != CAM_REQ_CMP) { 3926 free(path, M_CAMXPT); 3927 path = NULL; 3928 } 3929 *new_path_ptr = path; 3930 return (status); 3931 } 3932 3933 cam_status 3934 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3935 struct cam_periph *periph, path_id_t path_id, 3936 target_id_t target_id, lun_id_t lun_id) 3937 { 3938 struct cam_path *path; 3939 struct cam_eb *bus = NULL; 3940 cam_status status; 3941 int need_unlock = 0; 3942 3943 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3944 3945 if (path_id != CAM_BUS_WILDCARD) { 3946 bus = xpt_find_bus(path_id); 3947 if (bus != NULL) { 3948 need_unlock = 1; 3949 CAM_SIM_LOCK(bus->sim); 3950 } 3951 } 3952 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3953 if (need_unlock) 3954 CAM_SIM_UNLOCK(bus->sim); 3955 if (status != CAM_REQ_CMP) { 3956 free(path, M_CAMXPT); 3957 path = NULL; 3958 } 3959 *new_path_ptr = path; 3960 return (status); 3961 } 3962 3963 static cam_status 3964 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3965 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3966 { 3967 struct cam_eb *bus; 3968 struct cam_et *target; 3969 struct cam_ed *device; 3970 cam_status status; 3971 3972 status = CAM_REQ_CMP; /* Completed without error */ 3973 target = NULL; /* Wildcarded */ 3974 device = NULL; /* Wildcarded */ 3975 3976 /* 3977 * We will potentially modify the EDT, so block interrupts 3978 * that may attempt to create cam paths. 3979 */ 3980 bus = xpt_find_bus(path_id); 3981 if (bus == NULL) { 3982 status = CAM_PATH_INVALID; 3983 } else { 3984 target = xpt_find_target(bus, target_id); 3985 if (target == NULL) { 3986 /* Create one */ 3987 struct cam_et *new_target; 3988 3989 new_target = xpt_alloc_target(bus, target_id); 3990 if (new_target == NULL) { 3991 status = CAM_RESRC_UNAVAIL; 3992 } else { 3993 target = new_target; 3994 } 3995 } 3996 if (target != NULL) { 3997 device = xpt_find_device(target, lun_id); 3998 if (device == NULL) { 3999 /* Create one */ 4000 struct cam_ed *new_device; 4001 4002 new_device = xpt_alloc_device(bus, 4003 target, 4004 lun_id); 4005 if (new_device == NULL) { 4006 status = CAM_RESRC_UNAVAIL; 4007 } else { 4008 device = new_device; 4009 } 4010 } 4011 } 4012 } 4013 4014 /* 4015 * Only touch the user's data if we are successful. 4016 */ 4017 if (status == CAM_REQ_CMP) { 4018 new_path->periph = perph; 4019 new_path->bus = bus; 4020 new_path->target = target; 4021 new_path->device = device; 4022 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4023 } else { 4024 if (device != NULL) 4025 xpt_release_device(bus, target, device); 4026 if (target != NULL) 4027 xpt_release_target(bus, target); 4028 if (bus != NULL) 4029 xpt_release_bus(bus); 4030 } 4031 return (status); 4032 } 4033 4034 static void 4035 xpt_release_path(struct cam_path *path) 4036 { 4037 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4038 if (path->device != NULL) { 4039 xpt_release_device(path->bus, path->target, path->device); 4040 path->device = NULL; 4041 } 4042 if (path->target != NULL) { 4043 xpt_release_target(path->bus, path->target); 4044 path->target = NULL; 4045 } 4046 if (path->bus != NULL) { 4047 xpt_release_bus(path->bus); 4048 path->bus = NULL; 4049 } 4050 } 4051 4052 void 4053 xpt_free_path(struct cam_path *path) 4054 { 4055 4056 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4057 xpt_release_path(path); 4058 free(path, M_CAMXPT); 4059 } 4060 4061 4062 /* 4063 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4064 * in path1, 2 for match with wildcards in path2. 4065 */ 4066 int 4067 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4068 { 4069 int retval = 0; 4070 4071 if (path1->bus != path2->bus) { 4072 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4073 retval = 1; 4074 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4075 retval = 2; 4076 else 4077 return (-1); 4078 } 4079 if (path1->target != path2->target) { 4080 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4081 if (retval == 0) 4082 retval = 1; 4083 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4084 retval = 2; 4085 else 4086 return (-1); 4087 } 4088 if (path1->device != path2->device) { 4089 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4090 if (retval == 0) 4091 retval = 1; 4092 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4093 retval = 2; 4094 else 4095 return (-1); 4096 } 4097 return (retval); 4098 } 4099 4100 void 4101 xpt_print_path(struct cam_path *path) 4102 { 4103 4104 if (path == NULL) 4105 printf("(nopath): "); 4106 else { 4107 if (path->periph != NULL) 4108 printf("(%s%d:", path->periph->periph_name, 4109 path->periph->unit_number); 4110 else 4111 printf("(noperiph:"); 4112 4113 if (path->bus != NULL) 4114 printf("%s%d:%d:", path->bus->sim->sim_name, 4115 path->bus->sim->unit_number, 4116 path->bus->sim->bus_id); 4117 else 4118 printf("nobus:"); 4119 4120 if (path->target != NULL) 4121 printf("%d:", path->target->target_id); 4122 else 4123 printf("X:"); 4124 4125 if (path->device != NULL) 4126 printf("%d): ", path->device->lun_id); 4127 else 4128 printf("X): "); 4129 } 4130 } 4131 4132 void 4133 xpt_print(struct cam_path *path, const char *fmt, ...) 4134 { 4135 va_list ap; 4136 xpt_print_path(path); 4137 va_start(ap, fmt); 4138 vprintf(fmt, ap); 4139 va_end(ap); 4140 } 4141 4142 int 4143 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4144 { 4145 struct sbuf sb; 4146 4147 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4148 4149 sbuf_new(&sb, str, str_len, 0); 4150 4151 if (path == NULL) 4152 sbuf_printf(&sb, "(nopath): "); 4153 else { 4154 if (path->periph != NULL) 4155 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4156 path->periph->unit_number); 4157 else 4158 sbuf_printf(&sb, "(noperiph:"); 4159 4160 if (path->bus != NULL) 4161 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4162 path->bus->sim->unit_number, 4163 path->bus->sim->bus_id); 4164 else 4165 sbuf_printf(&sb, "nobus:"); 4166 4167 if (path->target != NULL) 4168 sbuf_printf(&sb, "%d:", path->target->target_id); 4169 else 4170 sbuf_printf(&sb, "X:"); 4171 4172 if (path->device != NULL) 4173 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4174 else 4175 sbuf_printf(&sb, "X): "); 4176 } 4177 sbuf_finish(&sb); 4178 4179 return(sbuf_len(&sb)); 4180 } 4181 4182 path_id_t 4183 xpt_path_path_id(struct cam_path *path) 4184 { 4185 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4186 4187 return(path->bus->path_id); 4188 } 4189 4190 target_id_t 4191 xpt_path_target_id(struct cam_path *path) 4192 { 4193 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4194 4195 if (path->target != NULL) 4196 return (path->target->target_id); 4197 else 4198 return (CAM_TARGET_WILDCARD); 4199 } 4200 4201 lun_id_t 4202 xpt_path_lun_id(struct cam_path *path) 4203 { 4204 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4205 4206 if (path->device != NULL) 4207 return (path->device->lun_id); 4208 else 4209 return (CAM_LUN_WILDCARD); 4210 } 4211 4212 struct cam_sim * 4213 xpt_path_sim(struct cam_path *path) 4214 { 4215 4216 return (path->bus->sim); 4217 } 4218 4219 struct cam_periph* 4220 xpt_path_periph(struct cam_path *path) 4221 { 4222 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4223 4224 return (path->periph); 4225 } 4226 4227 /* 4228 * Release a CAM control block for the caller. Remit the cost of the structure 4229 * to the device referenced by the path. If the this device had no 'credits' 4230 * and peripheral drivers have registered async callbacks for this notification 4231 * call them now. 4232 */ 4233 void 4234 xpt_release_ccb(union ccb *free_ccb) 4235 { 4236 struct cam_path *path; 4237 struct cam_ed *device; 4238 struct cam_eb *bus; 4239 struct cam_sim *sim; 4240 4241 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4242 path = free_ccb->ccb_h.path; 4243 device = path->device; 4244 bus = path->bus; 4245 sim = bus->sim; 4246 4247 mtx_assert(sim->mtx, MA_OWNED); 4248 4249 cam_ccbq_release_opening(&device->ccbq); 4250 if (sim->ccb_count > sim->max_ccbs) { 4251 xpt_free_ccb(free_ccb); 4252 sim->ccb_count--; 4253 } else { 4254 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 4255 xpt_links.sle); 4256 } 4257 if (sim->devq == NULL) { 4258 return; 4259 } 4260 sim->devq->alloc_openings++; 4261 sim->devq->alloc_active--; 4262 /* XXX Turn this into an inline function - xpt_run_device?? */ 4263 if ((device_is_alloc_queued(device) == 0) 4264 && (device->drvq.entries > 0)) { 4265 xpt_schedule_dev_allocq(bus, device); 4266 } 4267 if (dev_allocq_is_runnable(sim->devq)) 4268 xpt_run_dev_allocq(bus); 4269 } 4270 4271 /* Functions accessed by SIM drivers */ 4272 4273 /* 4274 * A sim structure, listing the SIM entry points and instance 4275 * identification info is passed to xpt_bus_register to hook the SIM 4276 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4277 * for this new bus and places it in the array of busses and assigns 4278 * it a path_id. The path_id may be influenced by "hard wiring" 4279 * information specified by the user. Once interrupt services are 4280 * availible, the bus will be probed. 4281 */ 4282 int32_t 4283 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4284 { 4285 struct cam_eb *new_bus; 4286 struct cam_eb *old_bus; 4287 struct ccb_pathinq cpi; 4288 4289 mtx_assert(sim->mtx, MA_OWNED); 4290 4291 sim->bus_id = bus; 4292 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4293 M_CAMXPT, M_NOWAIT); 4294 if (new_bus == NULL) { 4295 /* Couldn't satisfy request */ 4296 return (CAM_RESRC_UNAVAIL); 4297 } 4298 4299 if (strcmp(sim->sim_name, "xpt") != 0) { 4300 4301 sim->path_id = 4302 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4303 } 4304 4305 TAILQ_INIT(&new_bus->et_entries); 4306 new_bus->path_id = sim->path_id; 4307 cam_sim_hold(sim); 4308 new_bus->sim = sim; 4309 timevalclear(&new_bus->last_reset); 4310 new_bus->flags = 0; 4311 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4312 new_bus->generation = 0; 4313 mtx_lock(&xsoftc.xpt_topo_lock); 4314 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4315 while (old_bus != NULL 4316 && old_bus->path_id < new_bus->path_id) 4317 old_bus = TAILQ_NEXT(old_bus, links); 4318 if (old_bus != NULL) 4319 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4320 else 4321 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4322 xsoftc.bus_generation++; 4323 mtx_unlock(&xsoftc.xpt_topo_lock); 4324 4325 /* Notify interested parties */ 4326 if (sim->path_id != CAM_XPT_PATH_ID) { 4327 struct cam_path path; 4328 4329 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4330 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4331 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4332 cpi.ccb_h.func_code = XPT_PATH_INQ; 4333 xpt_action((union ccb *)&cpi); 4334 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4335 xpt_release_path(&path); 4336 } 4337 return (CAM_SUCCESS); 4338 } 4339 4340 int32_t 4341 xpt_bus_deregister(path_id_t pathid) 4342 { 4343 struct cam_path bus_path; 4344 cam_status status; 4345 4346 status = xpt_compile_path(&bus_path, NULL, pathid, 4347 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4348 if (status != CAM_REQ_CMP) 4349 return (status); 4350 4351 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4352 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4353 4354 /* Release the reference count held while registered. */ 4355 xpt_release_bus(bus_path.bus); 4356 xpt_release_path(&bus_path); 4357 4358 return (CAM_REQ_CMP); 4359 } 4360 4361 static path_id_t 4362 xptnextfreepathid(void) 4363 { 4364 struct cam_eb *bus; 4365 path_id_t pathid; 4366 const char *strval; 4367 4368 pathid = 0; 4369 mtx_lock(&xsoftc.xpt_topo_lock); 4370 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4371 retry: 4372 /* Find an unoccupied pathid */ 4373 while (bus != NULL && bus->path_id <= pathid) { 4374 if (bus->path_id == pathid) 4375 pathid++; 4376 bus = TAILQ_NEXT(bus, links); 4377 } 4378 mtx_unlock(&xsoftc.xpt_topo_lock); 4379 4380 /* 4381 * Ensure that this pathid is not reserved for 4382 * a bus that may be registered in the future. 4383 */ 4384 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4385 ++pathid; 4386 /* Start the search over */ 4387 mtx_lock(&xsoftc.xpt_topo_lock); 4388 goto retry; 4389 } 4390 return (pathid); 4391 } 4392 4393 static path_id_t 4394 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4395 { 4396 path_id_t pathid; 4397 int i, dunit, val; 4398 char buf[32]; 4399 const char *dname; 4400 4401 pathid = CAM_XPT_PATH_ID; 4402 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4403 i = 0; 4404 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4405 if (strcmp(dname, "scbus")) { 4406 /* Avoid a bit of foot shooting. */ 4407 continue; 4408 } 4409 if (dunit < 0) /* unwired?! */ 4410 continue; 4411 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4412 if (sim_bus == val) { 4413 pathid = dunit; 4414 break; 4415 } 4416 } else if (sim_bus == 0) { 4417 /* Unspecified matches bus 0 */ 4418 pathid = dunit; 4419 break; 4420 } else { 4421 printf("Ambiguous scbus configuration for %s%d " 4422 "bus %d, cannot wire down. The kernel " 4423 "config entry for scbus%d should " 4424 "specify a controller bus.\n" 4425 "Scbus will be assigned dynamically.\n", 4426 sim_name, sim_unit, sim_bus, dunit); 4427 break; 4428 } 4429 } 4430 4431 if (pathid == CAM_XPT_PATH_ID) 4432 pathid = xptnextfreepathid(); 4433 return (pathid); 4434 } 4435 4436 void 4437 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4438 { 4439 struct cam_eb *bus; 4440 struct cam_et *target, *next_target; 4441 struct cam_ed *device, *next_device; 4442 4443 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4444 4445 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4446 4447 /* 4448 * Most async events come from a CAM interrupt context. In 4449 * a few cases, the error recovery code at the peripheral layer, 4450 * which may run from our SWI or a process context, may signal 4451 * deferred events with a call to xpt_async. 4452 */ 4453 4454 bus = path->bus; 4455 4456 if (async_code == AC_BUS_RESET) { 4457 /* Update our notion of when the last reset occurred */ 4458 microtime(&bus->last_reset); 4459 } 4460 4461 for (target = TAILQ_FIRST(&bus->et_entries); 4462 target != NULL; 4463 target = next_target) { 4464 4465 next_target = TAILQ_NEXT(target, links); 4466 4467 if (path->target != target 4468 && path->target->target_id != CAM_TARGET_WILDCARD 4469 && target->target_id != CAM_TARGET_WILDCARD) 4470 continue; 4471 4472 if (async_code == AC_SENT_BDR) { 4473 /* Update our notion of when the last reset occurred */ 4474 microtime(&path->target->last_reset); 4475 } 4476 4477 for (device = TAILQ_FIRST(&target->ed_entries); 4478 device != NULL; 4479 device = next_device) { 4480 4481 next_device = TAILQ_NEXT(device, links); 4482 4483 if (path->device != device 4484 && path->device->lun_id != CAM_LUN_WILDCARD 4485 && device->lun_id != CAM_LUN_WILDCARD) 4486 continue; 4487 4488 xpt_dev_async(async_code, bus, target, 4489 device, async_arg); 4490 4491 xpt_async_bcast(&device->asyncs, async_code, 4492 path, async_arg); 4493 } 4494 } 4495 4496 /* 4497 * If this wasn't a fully wildcarded async, tell all 4498 * clients that want all async events. 4499 */ 4500 if (bus != xpt_periph->path->bus) 4501 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4502 path, async_arg); 4503 } 4504 4505 static void 4506 xpt_async_bcast(struct async_list *async_head, 4507 u_int32_t async_code, 4508 struct cam_path *path, void *async_arg) 4509 { 4510 struct async_node *cur_entry; 4511 4512 cur_entry = SLIST_FIRST(async_head); 4513 while (cur_entry != NULL) { 4514 struct async_node *next_entry; 4515 /* 4516 * Grab the next list entry before we call the current 4517 * entry's callback. This is because the callback function 4518 * can delete its async callback entry. 4519 */ 4520 next_entry = SLIST_NEXT(cur_entry, links); 4521 if ((cur_entry->event_enable & async_code) != 0) 4522 cur_entry->callback(cur_entry->callback_arg, 4523 async_code, path, 4524 async_arg); 4525 cur_entry = next_entry; 4526 } 4527 } 4528 4529 /* 4530 * Handle any per-device event notifications that require action by the XPT. 4531 */ 4532 static void 4533 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4534 struct cam_ed *device, void *async_arg) 4535 { 4536 cam_status status; 4537 struct cam_path newpath; 4538 4539 /* 4540 * We only need to handle events for real devices. 4541 */ 4542 if (target->target_id == CAM_TARGET_WILDCARD 4543 || device->lun_id == CAM_LUN_WILDCARD) 4544 return; 4545 4546 /* 4547 * We need our own path with wildcards expanded to 4548 * handle certain types of events. 4549 */ 4550 if ((async_code == AC_SENT_BDR) 4551 || (async_code == AC_BUS_RESET) 4552 || (async_code == AC_INQ_CHANGED)) 4553 status = xpt_compile_path(&newpath, NULL, 4554 bus->path_id, 4555 target->target_id, 4556 device->lun_id); 4557 else 4558 status = CAM_REQ_CMP_ERR; 4559 4560 if (status == CAM_REQ_CMP) { 4561 4562 /* 4563 * Allow transfer negotiation to occur in a 4564 * tag free environment. 4565 */ 4566 if (async_code == AC_SENT_BDR 4567 || async_code == AC_BUS_RESET) 4568 xpt_toggle_tags(&newpath); 4569 4570 if (async_code == AC_INQ_CHANGED) { 4571 /* 4572 * We've sent a start unit command, or 4573 * something similar to a device that 4574 * may have caused its inquiry data to 4575 * change. So we re-scan the device to 4576 * refresh the inquiry data for it. 4577 */ 4578 xpt_scan_lun(newpath.periph, &newpath, 4579 CAM_EXPECT_INQ_CHANGE, NULL); 4580 } 4581 xpt_release_path(&newpath); 4582 } else if (async_code == AC_LOST_DEVICE) { 4583 device->flags |= CAM_DEV_UNCONFIGURED; 4584 } else if (async_code == AC_TRANSFER_NEG) { 4585 struct ccb_trans_settings *settings; 4586 4587 settings = (struct ccb_trans_settings *)async_arg; 4588 xpt_set_transfer_settings(settings, device, 4589 /*async_update*/TRUE); 4590 } 4591 } 4592 4593 u_int32_t 4594 xpt_freeze_devq(struct cam_path *path, u_int count) 4595 { 4596 struct ccb_hdr *ccbh; 4597 4598 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4599 4600 path->device->qfrozen_cnt += count; 4601 4602 /* 4603 * Mark the last CCB in the queue as needing 4604 * to be requeued if the driver hasn't 4605 * changed it's state yet. This fixes a race 4606 * where a ccb is just about to be queued to 4607 * a controller driver when it's interrupt routine 4608 * freezes the queue. To completly close the 4609 * hole, controller drives must check to see 4610 * if a ccb's status is still CAM_REQ_INPROG 4611 * just before they queue 4612 * the CCB. See ahc_action/ahc_freeze_devq for 4613 * an example. 4614 */ 4615 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4616 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4617 ccbh->status = CAM_REQUEUE_REQ; 4618 return (path->device->qfrozen_cnt); 4619 } 4620 4621 u_int32_t 4622 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4623 { 4624 mtx_assert(sim->mtx, MA_OWNED); 4625 4626 sim->devq->send_queue.qfrozen_cnt += count; 4627 if (sim->devq->active_dev != NULL) { 4628 struct ccb_hdr *ccbh; 4629 4630 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4631 ccb_hdr_tailq); 4632 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4633 ccbh->status = CAM_REQUEUE_REQ; 4634 } 4635 return (sim->devq->send_queue.qfrozen_cnt); 4636 } 4637 4638 static void 4639 xpt_release_devq_timeout(void *arg) 4640 { 4641 struct cam_ed *device; 4642 4643 device = (struct cam_ed *)arg; 4644 4645 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4646 } 4647 4648 void 4649 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4650 { 4651 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4652 4653 xpt_release_devq_device(path->device, count, run_queue); 4654 } 4655 4656 static void 4657 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4658 { 4659 int rundevq; 4660 4661 rundevq = 0; 4662 if (dev->qfrozen_cnt > 0) { 4663 4664 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4665 dev->qfrozen_cnt -= count; 4666 if (dev->qfrozen_cnt == 0) { 4667 4668 /* 4669 * No longer need to wait for a successful 4670 * command completion. 4671 */ 4672 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4673 4674 /* 4675 * Remove any timeouts that might be scheduled 4676 * to release this queue. 4677 */ 4678 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4679 callout_stop(&dev->callout); 4680 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4681 } 4682 4683 /* 4684 * Now that we are unfrozen schedule the 4685 * device so any pending transactions are 4686 * run. 4687 */ 4688 if ((dev->ccbq.queue.entries > 0) 4689 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4690 && (run_queue != 0)) { 4691 rundevq = 1; 4692 } 4693 } 4694 } 4695 if (rundevq != 0) 4696 xpt_run_dev_sendq(dev->target->bus); 4697 } 4698 4699 void 4700 xpt_release_simq(struct cam_sim *sim, int run_queue) 4701 { 4702 struct camq *sendq; 4703 4704 mtx_assert(sim->mtx, MA_OWNED); 4705 4706 sendq = &(sim->devq->send_queue); 4707 if (sendq->qfrozen_cnt > 0) { 4708 4709 sendq->qfrozen_cnt--; 4710 if (sendq->qfrozen_cnt == 0) { 4711 struct cam_eb *bus; 4712 4713 /* 4714 * If there is a timeout scheduled to release this 4715 * sim queue, remove it. The queue frozen count is 4716 * already at 0. 4717 */ 4718 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4719 callout_stop(&sim->callout); 4720 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4721 } 4722 bus = xpt_find_bus(sim->path_id); 4723 4724 if (run_queue) { 4725 /* 4726 * Now that we are unfrozen run the send queue. 4727 */ 4728 xpt_run_dev_sendq(bus); 4729 } 4730 xpt_release_bus(bus); 4731 } 4732 } 4733 } 4734 4735 /* 4736 * XXX Appears to be unused. 4737 */ 4738 static void 4739 xpt_release_simq_timeout(void *arg) 4740 { 4741 struct cam_sim *sim; 4742 4743 sim = (struct cam_sim *)arg; 4744 xpt_release_simq(sim, /* run_queue */ TRUE); 4745 } 4746 4747 void 4748 xpt_done(union ccb *done_ccb) 4749 { 4750 struct cam_sim *sim; 4751 4752 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4753 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4754 /* 4755 * Queue up the request for handling by our SWI handler 4756 * any of the "non-immediate" type of ccbs. 4757 */ 4758 sim = done_ccb->ccb_h.path->bus->sim; 4759 switch (done_ccb->ccb_h.path->periph->type) { 4760 case CAM_PERIPH_BIO: 4761 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4762 sim_links.tqe); 4763 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4764 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4765 mtx_lock(&cam_simq_lock); 4766 TAILQ_INSERT_TAIL(&cam_simq, sim, 4767 links); 4768 sim->flags |= CAM_SIM_ON_DONEQ; 4769 mtx_unlock(&cam_simq_lock); 4770 } 4771 if ((done_ccb->ccb_h.path->periph->flags & 4772 CAM_PERIPH_POLLED) == 0) 4773 swi_sched(cambio_ih, 0); 4774 break; 4775 default: 4776 panic("unknown periph type %d", 4777 done_ccb->ccb_h.path->periph->type); 4778 } 4779 } 4780 } 4781 4782 union ccb * 4783 xpt_alloc_ccb() 4784 { 4785 union ccb *new_ccb; 4786 4787 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4788 return (new_ccb); 4789 } 4790 4791 union ccb * 4792 xpt_alloc_ccb_nowait() 4793 { 4794 union ccb *new_ccb; 4795 4796 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4797 return (new_ccb); 4798 } 4799 4800 void 4801 xpt_free_ccb(union ccb *free_ccb) 4802 { 4803 free(free_ccb, M_CAMXPT); 4804 } 4805 4806 4807 4808 /* Private XPT functions */ 4809 4810 /* 4811 * Get a CAM control block for the caller. Charge the structure to the device 4812 * referenced by the path. If the this device has no 'credits' then the 4813 * device already has the maximum number of outstanding operations under way 4814 * and we return NULL. If we don't have sufficient resources to allocate more 4815 * ccbs, we also return NULL. 4816 */ 4817 static union ccb * 4818 xpt_get_ccb(struct cam_ed *device) 4819 { 4820 union ccb *new_ccb; 4821 struct cam_sim *sim; 4822 4823 sim = device->sim; 4824 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4825 new_ccb = xpt_alloc_ccb_nowait(); 4826 if (new_ccb == NULL) { 4827 return (NULL); 4828 } 4829 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4830 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4831 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4832 xpt_links.sle); 4833 sim->ccb_count++; 4834 } 4835 cam_ccbq_take_opening(&device->ccbq); 4836 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4837 return (new_ccb); 4838 } 4839 4840 static void 4841 xpt_release_bus(struct cam_eb *bus) 4842 { 4843 4844 if ((--bus->refcount == 0) 4845 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4846 mtx_lock(&xsoftc.xpt_topo_lock); 4847 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4848 xsoftc.bus_generation++; 4849 mtx_unlock(&xsoftc.xpt_topo_lock); 4850 cam_sim_release(bus->sim); 4851 free(bus, M_CAMXPT); 4852 } 4853 } 4854 4855 static struct cam_et * 4856 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4857 { 4858 struct cam_et *target; 4859 4860 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4861 if (target != NULL) { 4862 struct cam_et *cur_target; 4863 4864 TAILQ_INIT(&target->ed_entries); 4865 target->bus = bus; 4866 target->target_id = target_id; 4867 target->refcount = 1; 4868 target->generation = 0; 4869 timevalclear(&target->last_reset); 4870 /* 4871 * Hold a reference to our parent bus so it 4872 * will not go away before we do. 4873 */ 4874 bus->refcount++; 4875 4876 /* Insertion sort into our bus's target list */ 4877 cur_target = TAILQ_FIRST(&bus->et_entries); 4878 while (cur_target != NULL && cur_target->target_id < target_id) 4879 cur_target = TAILQ_NEXT(cur_target, links); 4880 4881 if (cur_target != NULL) { 4882 TAILQ_INSERT_BEFORE(cur_target, target, links); 4883 } else { 4884 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4885 } 4886 bus->generation++; 4887 } 4888 return (target); 4889 } 4890 4891 static void 4892 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4893 { 4894 4895 if ((--target->refcount == 0) 4896 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4897 TAILQ_REMOVE(&bus->et_entries, target, links); 4898 bus->generation++; 4899 free(target, M_CAMXPT); 4900 xpt_release_bus(bus); 4901 } 4902 } 4903 4904 static struct cam_ed * 4905 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4906 { 4907 struct cam_path path; 4908 struct cam_ed *device; 4909 struct cam_devq *devq; 4910 cam_status status; 4911 4912 /* Make space for us in the device queue on our bus */ 4913 devq = bus->sim->devq; 4914 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4915 4916 if (status != CAM_REQ_CMP) { 4917 device = NULL; 4918 } else { 4919 device = (struct cam_ed *)malloc(sizeof(*device), 4920 M_CAMXPT, M_NOWAIT); 4921 } 4922 4923 if (device != NULL) { 4924 struct cam_ed *cur_device; 4925 4926 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4927 device->alloc_ccb_entry.device = device; 4928 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4929 device->send_ccb_entry.device = device; 4930 device->target = target; 4931 device->lun_id = lun_id; 4932 device->sim = bus->sim; 4933 /* Initialize our queues */ 4934 if (camq_init(&device->drvq, 0) != 0) { 4935 free(device, M_CAMXPT); 4936 return (NULL); 4937 } 4938 if (cam_ccbq_init(&device->ccbq, 4939 bus->sim->max_dev_openings) != 0) { 4940 camq_fini(&device->drvq); 4941 free(device, M_CAMXPT); 4942 return (NULL); 4943 } 4944 SLIST_INIT(&device->asyncs); 4945 SLIST_INIT(&device->periphs); 4946 device->generation = 0; 4947 device->owner = NULL; 4948 /* 4949 * Take the default quirk entry until we have inquiry 4950 * data and can determine a better quirk to use. 4951 */ 4952 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 4953 bzero(&device->inq_data, sizeof(device->inq_data)); 4954 device->inq_flags = 0; 4955 device->queue_flags = 0; 4956 device->serial_num = NULL; 4957 device->serial_num_len = 0; 4958 device->qfrozen_cnt = 0; 4959 device->flags = CAM_DEV_UNCONFIGURED; 4960 device->tag_delay_count = 0; 4961 device->tag_saved_openings = 0; 4962 device->refcount = 1; 4963 if (bus->sim->flags & CAM_SIM_MPSAFE) 4964 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4965 else 4966 callout_init_mtx(&device->callout, &Giant, 0); 4967 4968 /* 4969 * Hold a reference to our parent target so it 4970 * will not go away before we do. 4971 */ 4972 target->refcount++; 4973 4974 /* 4975 * XXX should be limited by number of CCBs this bus can 4976 * do. 4977 */ 4978 bus->sim->max_ccbs += device->ccbq.devq_openings; 4979 /* Insertion sort into our target's device list */ 4980 cur_device = TAILQ_FIRST(&target->ed_entries); 4981 while (cur_device != NULL && cur_device->lun_id < lun_id) 4982 cur_device = TAILQ_NEXT(cur_device, links); 4983 if (cur_device != NULL) { 4984 TAILQ_INSERT_BEFORE(cur_device, device, links); 4985 } else { 4986 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4987 } 4988 target->generation++; 4989 if (lun_id != CAM_LUN_WILDCARD) { 4990 xpt_compile_path(&path, 4991 NULL, 4992 bus->path_id, 4993 target->target_id, 4994 lun_id); 4995 xpt_devise_transport(&path); 4996 xpt_release_path(&path); 4997 } 4998 } 4999 return (device); 5000 } 5001 5002 static void 5003 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5004 struct cam_ed *device) 5005 { 5006 5007 if ((--device->refcount == 0) 5008 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5009 struct cam_devq *devq; 5010 5011 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5012 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5013 panic("Removing device while still queued for ccbs"); 5014 5015 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5016 callout_stop(&device->callout); 5017 5018 TAILQ_REMOVE(&target->ed_entries, device,links); 5019 target->generation++; 5020 bus->sim->max_ccbs -= device->ccbq.devq_openings; 5021 /* Release our slot in the devq */ 5022 devq = bus->sim->devq; 5023 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5024 camq_fini(&device->drvq); 5025 camq_fini(&device->ccbq.queue); 5026 free(device, M_CAMXPT); 5027 xpt_release_target(bus, target); 5028 } 5029 } 5030 5031 static u_int32_t 5032 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5033 { 5034 int diff; 5035 int result; 5036 struct cam_ed *dev; 5037 5038 dev = path->device; 5039 5040 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5041 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5042 if (result == CAM_REQ_CMP && (diff < 0)) { 5043 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5044 } 5045 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5046 || (dev->inq_flags & SID_CmdQue) != 0) 5047 dev->tag_saved_openings = newopenings; 5048 /* Adjust the global limit */ 5049 dev->sim->max_ccbs += diff; 5050 return (result); 5051 } 5052 5053 static struct cam_eb * 5054 xpt_find_bus(path_id_t path_id) 5055 { 5056 struct cam_eb *bus; 5057 5058 mtx_lock(&xsoftc.xpt_topo_lock); 5059 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5060 bus != NULL; 5061 bus = TAILQ_NEXT(bus, links)) { 5062 if (bus->path_id == path_id) { 5063 bus->refcount++; 5064 break; 5065 } 5066 } 5067 mtx_unlock(&xsoftc.xpt_topo_lock); 5068 return (bus); 5069 } 5070 5071 static struct cam_et * 5072 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5073 { 5074 struct cam_et *target; 5075 5076 for (target = TAILQ_FIRST(&bus->et_entries); 5077 target != NULL; 5078 target = TAILQ_NEXT(target, links)) { 5079 if (target->target_id == target_id) { 5080 target->refcount++; 5081 break; 5082 } 5083 } 5084 return (target); 5085 } 5086 5087 static struct cam_ed * 5088 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5089 { 5090 struct cam_ed *device; 5091 5092 for (device = TAILQ_FIRST(&target->ed_entries); 5093 device != NULL; 5094 device = TAILQ_NEXT(device, links)) { 5095 if (device->lun_id == lun_id) { 5096 device->refcount++; 5097 break; 5098 } 5099 } 5100 return (device); 5101 } 5102 5103 typedef struct { 5104 union ccb *request_ccb; 5105 struct ccb_pathinq *cpi; 5106 int counter; 5107 } xpt_scan_bus_info; 5108 5109 /* 5110 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5111 * As the scan progresses, xpt_scan_bus is used as the 5112 * callback on completion function. 5113 */ 5114 static void 5115 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5116 { 5117 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5118 ("xpt_scan_bus\n")); 5119 switch (request_ccb->ccb_h.func_code) { 5120 case XPT_SCAN_BUS: 5121 { 5122 xpt_scan_bus_info *scan_info; 5123 union ccb *work_ccb; 5124 struct cam_path *path; 5125 u_int i; 5126 u_int max_target; 5127 u_int initiator_id; 5128 5129 /* Find out the characteristics of the bus */ 5130 work_ccb = xpt_alloc_ccb_nowait(); 5131 if (work_ccb == NULL) { 5132 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5133 xpt_done(request_ccb); 5134 return; 5135 } 5136 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5137 request_ccb->ccb_h.pinfo.priority); 5138 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5139 xpt_action(work_ccb); 5140 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5141 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5142 xpt_free_ccb(work_ccb); 5143 xpt_done(request_ccb); 5144 return; 5145 } 5146 5147 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5148 /* 5149 * Can't scan the bus on an adapter that 5150 * cannot perform the initiator role. 5151 */ 5152 request_ccb->ccb_h.status = CAM_REQ_CMP; 5153 xpt_free_ccb(work_ccb); 5154 xpt_done(request_ccb); 5155 return; 5156 } 5157 5158 /* Save some state for use while we probe for devices */ 5159 scan_info = (xpt_scan_bus_info *) 5160 malloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_NOWAIT); 5161 scan_info->request_ccb = request_ccb; 5162 scan_info->cpi = &work_ccb->cpi; 5163 5164 /* Cache on our stack so we can work asynchronously */ 5165 max_target = scan_info->cpi->max_target; 5166 initiator_id = scan_info->cpi->initiator_id; 5167 5168 5169 /* 5170 * We can scan all targets in parallel, or do it sequentially. 5171 */ 5172 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5173 max_target = 0; 5174 scan_info->counter = 0; 5175 } else { 5176 scan_info->counter = scan_info->cpi->max_target + 1; 5177 if (scan_info->cpi->initiator_id < scan_info->counter) { 5178 scan_info->counter--; 5179 } 5180 } 5181 5182 for (i = 0; i <= max_target; i++) { 5183 cam_status status; 5184 if (i == initiator_id) 5185 continue; 5186 5187 status = xpt_create_path(&path, xpt_periph, 5188 request_ccb->ccb_h.path_id, 5189 i, 0); 5190 if (status != CAM_REQ_CMP) { 5191 printf("xpt_scan_bus: xpt_create_path failed" 5192 " with status %#x, bus scan halted\n", 5193 status); 5194 free(scan_info, M_CAMXPT); 5195 request_ccb->ccb_h.status = status; 5196 xpt_free_ccb(work_ccb); 5197 xpt_done(request_ccb); 5198 break; 5199 } 5200 work_ccb = xpt_alloc_ccb_nowait(); 5201 if (work_ccb == NULL) { 5202 free(scan_info, M_CAMXPT); 5203 xpt_free_path(path); 5204 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5205 xpt_done(request_ccb); 5206 break; 5207 } 5208 xpt_setup_ccb(&work_ccb->ccb_h, path, 5209 request_ccb->ccb_h.pinfo.priority); 5210 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5211 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5212 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5213 work_ccb->crcn.flags = request_ccb->crcn.flags; 5214 xpt_action(work_ccb); 5215 } 5216 break; 5217 } 5218 case XPT_SCAN_LUN: 5219 { 5220 cam_status status; 5221 struct cam_path *path; 5222 xpt_scan_bus_info *scan_info; 5223 path_id_t path_id; 5224 target_id_t target_id; 5225 lun_id_t lun_id; 5226 5227 /* Reuse the same CCB to query if a device was really found */ 5228 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5229 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5230 request_ccb->ccb_h.pinfo.priority); 5231 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5232 5233 path_id = request_ccb->ccb_h.path_id; 5234 target_id = request_ccb->ccb_h.target_id; 5235 lun_id = request_ccb->ccb_h.target_lun; 5236 xpt_action(request_ccb); 5237 5238 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5239 struct cam_ed *device; 5240 struct cam_et *target; 5241 int phl; 5242 5243 /* 5244 * If we already probed lun 0 successfully, or 5245 * we have additional configured luns on this 5246 * target that might have "gone away", go onto 5247 * the next lun. 5248 */ 5249 target = request_ccb->ccb_h.path->target; 5250 /* 5251 * We may touch devices that we don't 5252 * hold references too, so ensure they 5253 * don't disappear out from under us. 5254 * The target above is referenced by the 5255 * path in the request ccb. 5256 */ 5257 phl = 0; 5258 device = TAILQ_FIRST(&target->ed_entries); 5259 if (device != NULL) { 5260 phl = CAN_SRCH_HI_SPARSE(device); 5261 if (device->lun_id == 0) 5262 device = TAILQ_NEXT(device, links); 5263 } 5264 if ((lun_id != 0) || (device != NULL)) { 5265 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5266 lun_id++; 5267 } 5268 } else { 5269 struct cam_ed *device; 5270 5271 device = request_ccb->ccb_h.path->device; 5272 5273 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5274 /* Try the next lun */ 5275 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5276 || CAN_SRCH_HI_DENSE(device)) 5277 lun_id++; 5278 } 5279 } 5280 5281 /* 5282 * Free the current request path- we're done with it. 5283 */ 5284 xpt_free_path(request_ccb->ccb_h.path); 5285 5286 /* 5287 * Check to see if we scan any further luns. 5288 */ 5289 if (lun_id == request_ccb->ccb_h.target_lun 5290 || lun_id > scan_info->cpi->max_lun) { 5291 int done; 5292 5293 hop_again: 5294 done = 0; 5295 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5296 scan_info->counter++; 5297 if (scan_info->counter == 5298 scan_info->cpi->initiator_id) { 5299 scan_info->counter++; 5300 } 5301 if (scan_info->counter >= 5302 scan_info->cpi->max_target+1) { 5303 done = 1; 5304 } 5305 } else { 5306 scan_info->counter--; 5307 if (scan_info->counter == 0) { 5308 done = 1; 5309 } 5310 } 5311 if (done) { 5312 xpt_free_ccb(request_ccb); 5313 xpt_free_ccb((union ccb *)scan_info->cpi); 5314 request_ccb = scan_info->request_ccb; 5315 free(scan_info, M_CAMXPT); 5316 request_ccb->ccb_h.status = CAM_REQ_CMP; 5317 xpt_done(request_ccb); 5318 break; 5319 } 5320 5321 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) { 5322 break; 5323 } 5324 status = xpt_create_path(&path, xpt_periph, 5325 scan_info->request_ccb->ccb_h.path_id, 5326 scan_info->counter, 0); 5327 if (status != CAM_REQ_CMP) { 5328 printf("xpt_scan_bus: xpt_create_path failed" 5329 " with status %#x, bus scan halted\n", 5330 status); 5331 xpt_free_ccb(request_ccb); 5332 xpt_free_ccb((union ccb *)scan_info->cpi); 5333 request_ccb = scan_info->request_ccb; 5334 free(scan_info, M_CAMXPT); 5335 request_ccb->ccb_h.status = status; 5336 xpt_done(request_ccb); 5337 break; 5338 } 5339 xpt_setup_ccb(&request_ccb->ccb_h, path, 5340 request_ccb->ccb_h.pinfo.priority); 5341 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5342 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5343 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5344 request_ccb->crcn.flags = 5345 scan_info->request_ccb->crcn.flags; 5346 } else { 5347 status = xpt_create_path(&path, xpt_periph, 5348 path_id, target_id, lun_id); 5349 if (status != CAM_REQ_CMP) { 5350 printf("xpt_scan_bus: xpt_create_path failed " 5351 "with status %#x, halting LUN scan\n", 5352 status); 5353 goto hop_again; 5354 } 5355 xpt_setup_ccb(&request_ccb->ccb_h, path, 5356 request_ccb->ccb_h.pinfo.priority); 5357 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5358 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5359 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5360 request_ccb->crcn.flags = 5361 scan_info->request_ccb->crcn.flags; 5362 } 5363 xpt_action(request_ccb); 5364 break; 5365 } 5366 default: 5367 break; 5368 } 5369 } 5370 5371 typedef enum { 5372 PROBE_TUR, 5373 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */ 5374 PROBE_FULL_INQUIRY, 5375 PROBE_MODE_SENSE, 5376 PROBE_SERIAL_NUM_0, 5377 PROBE_SERIAL_NUM_1, 5378 PROBE_TUR_FOR_NEGOTIATION, 5379 PROBE_INQUIRY_BASIC_DV1, 5380 PROBE_INQUIRY_BASIC_DV2, 5381 PROBE_DV_EXIT 5382 } probe_action; 5383 5384 typedef enum { 5385 PROBE_INQUIRY_CKSUM = 0x01, 5386 PROBE_SERIAL_CKSUM = 0x02, 5387 PROBE_NO_ANNOUNCE = 0x04 5388 } probe_flags; 5389 5390 typedef struct { 5391 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5392 probe_action action; 5393 union ccb saved_ccb; 5394 probe_flags flags; 5395 MD5_CTX context; 5396 u_int8_t digest[16]; 5397 } probe_softc; 5398 5399 static void 5400 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5401 cam_flags flags, union ccb *request_ccb) 5402 { 5403 struct ccb_pathinq cpi; 5404 cam_status status; 5405 struct cam_path *new_path; 5406 struct cam_periph *old_periph; 5407 5408 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5409 ("xpt_scan_lun\n")); 5410 5411 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5412 cpi.ccb_h.func_code = XPT_PATH_INQ; 5413 xpt_action((union ccb *)&cpi); 5414 5415 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5416 if (request_ccb != NULL) { 5417 request_ccb->ccb_h.status = cpi.ccb_h.status; 5418 xpt_done(request_ccb); 5419 } 5420 return; 5421 } 5422 5423 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5424 /* 5425 * Can't scan the bus on an adapter that 5426 * cannot perform the initiator role. 5427 */ 5428 if (request_ccb != NULL) { 5429 request_ccb->ccb_h.status = CAM_REQ_CMP; 5430 xpt_done(request_ccb); 5431 } 5432 return; 5433 } 5434 5435 if (request_ccb == NULL) { 5436 request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT); 5437 if (request_ccb == NULL) { 5438 xpt_print(path, "xpt_scan_lun: can't allocate CCB, " 5439 "can't continue\n"); 5440 return; 5441 } 5442 new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT); 5443 if (new_path == NULL) { 5444 xpt_print(path, "xpt_scan_lun: can't allocate path, " 5445 "can't continue\n"); 5446 free(request_ccb, M_CAMXPT); 5447 return; 5448 } 5449 status = xpt_compile_path(new_path, xpt_periph, 5450 path->bus->path_id, 5451 path->target->target_id, 5452 path->device->lun_id); 5453 5454 if (status != CAM_REQ_CMP) { 5455 xpt_print(path, "xpt_scan_lun: can't compile path, " 5456 "can't continue\n"); 5457 free(request_ccb, M_CAMXPT); 5458 free(new_path, M_CAMXPT); 5459 return; 5460 } 5461 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5462 request_ccb->ccb_h.cbfcnp = xptscandone; 5463 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5464 request_ccb->crcn.flags = flags; 5465 } 5466 5467 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5468 probe_softc *softc; 5469 5470 softc = (probe_softc *)old_periph->softc; 5471 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5472 periph_links.tqe); 5473 } else { 5474 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5475 probestart, "probe", 5476 CAM_PERIPH_BIO, 5477 request_ccb->ccb_h.path, NULL, 0, 5478 request_ccb); 5479 5480 if (status != CAM_REQ_CMP) { 5481 xpt_print(path, "xpt_scan_lun: cam_alloc_periph " 5482 "returned an error, can't continue probe\n"); 5483 request_ccb->ccb_h.status = status; 5484 xpt_done(request_ccb); 5485 } 5486 } 5487 } 5488 5489 static void 5490 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5491 { 5492 xpt_release_path(done_ccb->ccb_h.path); 5493 free(done_ccb->ccb_h.path, M_CAMXPT); 5494 free(done_ccb, M_CAMXPT); 5495 } 5496 5497 static cam_status 5498 proberegister(struct cam_periph *periph, void *arg) 5499 { 5500 union ccb *request_ccb; /* CCB representing the probe request */ 5501 cam_status status; 5502 probe_softc *softc; 5503 5504 request_ccb = (union ccb *)arg; 5505 if (periph == NULL) { 5506 printf("proberegister: periph was NULL!!\n"); 5507 return(CAM_REQ_CMP_ERR); 5508 } 5509 5510 if (request_ccb == NULL) { 5511 printf("proberegister: no probe CCB, " 5512 "can't register device\n"); 5513 return(CAM_REQ_CMP_ERR); 5514 } 5515 5516 softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT); 5517 5518 if (softc == NULL) { 5519 printf("proberegister: Unable to probe new device. " 5520 "Unable to allocate softc\n"); 5521 return(CAM_REQ_CMP_ERR); 5522 } 5523 TAILQ_INIT(&softc->request_ccbs); 5524 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5525 periph_links.tqe); 5526 softc->flags = 0; 5527 periph->softc = softc; 5528 status = cam_periph_acquire(periph); 5529 if (status != CAM_REQ_CMP) { 5530 return (status); 5531 } 5532 5533 5534 /* 5535 * Ensure we've waited at least a bus settle 5536 * delay before attempting to probe the device. 5537 * For HBAs that don't do bus resets, this won't make a difference. 5538 */ 5539 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5540 scsi_delay); 5541 probeschedule(periph); 5542 return(CAM_REQ_CMP); 5543 } 5544 5545 static void 5546 probeschedule(struct cam_periph *periph) 5547 { 5548 struct ccb_pathinq cpi; 5549 union ccb *ccb; 5550 probe_softc *softc; 5551 5552 softc = (probe_softc *)periph->softc; 5553 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5554 5555 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5556 cpi.ccb_h.func_code = XPT_PATH_INQ; 5557 xpt_action((union ccb *)&cpi); 5558 5559 /* 5560 * If a device has gone away and another device, or the same one, 5561 * is back in the same place, it should have a unit attention 5562 * condition pending. It will not report the unit attention in 5563 * response to an inquiry, which may leave invalid transfer 5564 * negotiations in effect. The TUR will reveal the unit attention 5565 * condition. Only send the TUR for lun 0, since some devices 5566 * will get confused by commands other than inquiry to non-existent 5567 * luns. If you think a device has gone away start your scan from 5568 * lun 0. This will insure that any bogus transfer settings are 5569 * invalidated. 5570 * 5571 * If we haven't seen the device before and the controller supports 5572 * some kind of transfer negotiation, negotiate with the first 5573 * sent command if no bus reset was performed at startup. This 5574 * ensures that the device is not confused by transfer negotiation 5575 * settings left over by loader or BIOS action. 5576 */ 5577 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5578 && (ccb->ccb_h.target_lun == 0)) { 5579 softc->action = PROBE_TUR; 5580 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5581 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5582 proberequestdefaultnegotiation(periph); 5583 softc->action = PROBE_INQUIRY; 5584 } else { 5585 softc->action = PROBE_INQUIRY; 5586 } 5587 5588 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5589 softc->flags |= PROBE_NO_ANNOUNCE; 5590 else 5591 softc->flags &= ~PROBE_NO_ANNOUNCE; 5592 5593 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5594 } 5595 5596 static void 5597 probestart(struct cam_periph *periph, union ccb *start_ccb) 5598 { 5599 /* Probe the device that our peripheral driver points to */ 5600 struct ccb_scsiio *csio; 5601 probe_softc *softc; 5602 5603 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5604 5605 softc = (probe_softc *)periph->softc; 5606 csio = &start_ccb->csio; 5607 5608 switch (softc->action) { 5609 case PROBE_TUR: 5610 case PROBE_TUR_FOR_NEGOTIATION: 5611 case PROBE_DV_EXIT: 5612 { 5613 scsi_test_unit_ready(csio, 5614 /*retries*/4, 5615 probedone, 5616 MSG_SIMPLE_Q_TAG, 5617 SSD_FULL_SIZE, 5618 /*timeout*/60000); 5619 break; 5620 } 5621 case PROBE_INQUIRY: 5622 case PROBE_FULL_INQUIRY: 5623 case PROBE_INQUIRY_BASIC_DV1: 5624 case PROBE_INQUIRY_BASIC_DV2: 5625 { 5626 u_int inquiry_len; 5627 struct scsi_inquiry_data *inq_buf; 5628 5629 inq_buf = &periph->path->device->inq_data; 5630 5631 /* 5632 * If the device is currently configured, we calculate an 5633 * MD5 checksum of the inquiry data, and if the serial number 5634 * length is greater than 0, add the serial number data 5635 * into the checksum as well. Once the inquiry and the 5636 * serial number check finish, we attempt to figure out 5637 * whether we still have the same device. 5638 */ 5639 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5640 5641 MD5Init(&softc->context); 5642 MD5Update(&softc->context, (unsigned char *)inq_buf, 5643 sizeof(struct scsi_inquiry_data)); 5644 softc->flags |= PROBE_INQUIRY_CKSUM; 5645 if (periph->path->device->serial_num_len > 0) { 5646 MD5Update(&softc->context, 5647 periph->path->device->serial_num, 5648 periph->path->device->serial_num_len); 5649 softc->flags |= PROBE_SERIAL_CKSUM; 5650 } 5651 MD5Final(softc->digest, &softc->context); 5652 } 5653 5654 if (softc->action == PROBE_INQUIRY) 5655 inquiry_len = SHORT_INQUIRY_LENGTH; 5656 else 5657 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf); 5658 5659 /* 5660 * Some parallel SCSI devices fail to send an 5661 * ignore wide residue message when dealing with 5662 * odd length inquiry requests. Round up to be 5663 * safe. 5664 */ 5665 inquiry_len = roundup2(inquiry_len, 2); 5666 5667 if (softc->action == PROBE_INQUIRY_BASIC_DV1 5668 || softc->action == PROBE_INQUIRY_BASIC_DV2) { 5669 inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT); 5670 } 5671 if (inq_buf == NULL) { 5672 xpt_print(periph->path, "malloc failure- skipping Basic" 5673 "Domain Validation\n"); 5674 softc->action = PROBE_DV_EXIT; 5675 scsi_test_unit_ready(csio, 5676 /*retries*/4, 5677 probedone, 5678 MSG_SIMPLE_Q_TAG, 5679 SSD_FULL_SIZE, 5680 /*timeout*/60000); 5681 break; 5682 } 5683 scsi_inquiry(csio, 5684 /*retries*/4, 5685 probedone, 5686 MSG_SIMPLE_Q_TAG, 5687 (u_int8_t *)inq_buf, 5688 inquiry_len, 5689 /*evpd*/FALSE, 5690 /*page_code*/0, 5691 SSD_MIN_SIZE, 5692 /*timeout*/60 * 1000); 5693 break; 5694 } 5695 case PROBE_MODE_SENSE: 5696 { 5697 void *mode_buf; 5698 int mode_buf_len; 5699 5700 mode_buf_len = sizeof(struct scsi_mode_header_6) 5701 + sizeof(struct scsi_mode_blk_desc) 5702 + sizeof(struct scsi_control_page); 5703 mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT); 5704 if (mode_buf != NULL) { 5705 scsi_mode_sense(csio, 5706 /*retries*/4, 5707 probedone, 5708 MSG_SIMPLE_Q_TAG, 5709 /*dbd*/FALSE, 5710 SMS_PAGE_CTRL_CURRENT, 5711 SMS_CONTROL_MODE_PAGE, 5712 mode_buf, 5713 mode_buf_len, 5714 SSD_FULL_SIZE, 5715 /*timeout*/60000); 5716 break; 5717 } 5718 xpt_print(periph->path, "Unable to mode sense control page - " 5719 "malloc failure\n"); 5720 softc->action = PROBE_SERIAL_NUM_0; 5721 } 5722 /* FALLTHROUGH */ 5723 case PROBE_SERIAL_NUM_0: 5724 { 5725 struct scsi_vpd_supported_page_list *vpd_list = NULL; 5726 struct cam_ed *device; 5727 5728 device = periph->path->device; 5729 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) { 5730 vpd_list = malloc(sizeof(*vpd_list), M_CAMXPT, 5731 M_NOWAIT | M_ZERO); 5732 } 5733 5734 if (vpd_list != NULL) { 5735 scsi_inquiry(csio, 5736 /*retries*/4, 5737 probedone, 5738 MSG_SIMPLE_Q_TAG, 5739 (u_int8_t *)vpd_list, 5740 sizeof(*vpd_list), 5741 /*evpd*/TRUE, 5742 SVPD_SUPPORTED_PAGE_LIST, 5743 SSD_MIN_SIZE, 5744 /*timeout*/60 * 1000); 5745 break; 5746 } 5747 /* 5748 * We'll have to do without, let our probedone 5749 * routine finish up for us. 5750 */ 5751 start_ccb->csio.data_ptr = NULL; 5752 probedone(periph, start_ccb); 5753 return; 5754 } 5755 case PROBE_SERIAL_NUM_1: 5756 { 5757 struct scsi_vpd_unit_serial_number *serial_buf; 5758 struct cam_ed* device; 5759 5760 serial_buf = NULL; 5761 device = periph->path->device; 5762 device->serial_num = NULL; 5763 device->serial_num_len = 0; 5764 5765 serial_buf = (struct scsi_vpd_unit_serial_number *) 5766 malloc(sizeof(*serial_buf), M_CAMXPT, M_NOWAIT|M_ZERO); 5767 5768 if (serial_buf != NULL) { 5769 scsi_inquiry(csio, 5770 /*retries*/4, 5771 probedone, 5772 MSG_SIMPLE_Q_TAG, 5773 (u_int8_t *)serial_buf, 5774 sizeof(*serial_buf), 5775 /*evpd*/TRUE, 5776 SVPD_UNIT_SERIAL_NUMBER, 5777 SSD_MIN_SIZE, 5778 /*timeout*/60 * 1000); 5779 break; 5780 } 5781 /* 5782 * We'll have to do without, let our probedone 5783 * routine finish up for us. 5784 */ 5785 start_ccb->csio.data_ptr = NULL; 5786 probedone(periph, start_ccb); 5787 return; 5788 } 5789 } 5790 xpt_action(start_ccb); 5791 } 5792 5793 static void 5794 proberequestdefaultnegotiation(struct cam_periph *periph) 5795 { 5796 struct ccb_trans_settings cts; 5797 5798 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5799 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5800 cts.type = CTS_TYPE_USER_SETTINGS; 5801 xpt_action((union ccb *)&cts); 5802 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5803 return; 5804 } 5805 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5806 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5807 xpt_action((union ccb *)&cts); 5808 } 5809 5810 /* 5811 * Backoff Negotiation Code- only pertinent for SPI devices. 5812 */ 5813 static int 5814 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device) 5815 { 5816 struct ccb_trans_settings cts; 5817 struct ccb_trans_settings_spi *spi; 5818 5819 memset(&cts, 0, sizeof (cts)); 5820 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5821 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5822 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5823 xpt_action((union ccb *)&cts); 5824 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5825 if (bootverbose) { 5826 xpt_print(periph->path, 5827 "failed to get current device settings\n"); 5828 } 5829 return (0); 5830 } 5831 if (cts.transport != XPORT_SPI) { 5832 if (bootverbose) { 5833 xpt_print(periph->path, "not SPI transport\n"); 5834 } 5835 return (0); 5836 } 5837 spi = &cts.xport_specific.spi; 5838 5839 /* 5840 * We cannot renegotiate sync rate if we don't have one. 5841 */ 5842 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { 5843 if (bootverbose) { 5844 xpt_print(periph->path, "no sync rate known\n"); 5845 } 5846 return (0); 5847 } 5848 5849 /* 5850 * We'll assert that we don't have to touch PPR options- the 5851 * SIM will see what we do with period and offset and adjust 5852 * the PPR options as appropriate. 5853 */ 5854 5855 /* 5856 * A sync rate with unknown or zero offset is nonsensical. 5857 * A sync period of zero means Async. 5858 */ 5859 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0 5860 || spi->sync_offset == 0 || spi->sync_period == 0) { 5861 if (bootverbose) { 5862 xpt_print(periph->path, "no sync rate available\n"); 5863 } 5864 return (0); 5865 } 5866 5867 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) { 5868 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5869 ("hit async: giving up on DV\n")); 5870 return (0); 5871 } 5872 5873 5874 /* 5875 * Jump sync_period up by one, but stop at 5MHz and fall back to Async. 5876 * We don't try to remember 'last' settings to see if the SIM actually 5877 * gets into the speed we want to set. We check on the SIM telling 5878 * us that a requested speed is bad, but otherwise don't try and 5879 * check the speed due to the asynchronous and handshake nature 5880 * of speed setting. 5881 */ 5882 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET; 5883 for (;;) { 5884 spi->sync_period++; 5885 if (spi->sync_period >= 0xf) { 5886 spi->sync_period = 0; 5887 spi->sync_offset = 0; 5888 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5889 ("setting to async for DV\n")); 5890 /* 5891 * Once we hit async, we don't want to try 5892 * any more settings. 5893 */ 5894 device->flags |= CAM_DEV_DV_HIT_BOTTOM; 5895 } else if (bootverbose) { 5896 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5897 ("DV: period 0x%x\n", spi->sync_period)); 5898 printf("setting period to 0x%x\n", spi->sync_period); 5899 } 5900 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5901 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5902 xpt_action((union ccb *)&cts); 5903 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5904 break; 5905 } 5906 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5907 ("DV: failed to set period 0x%x\n", spi->sync_period)); 5908 if (spi->sync_period == 0) { 5909 return (0); 5910 } 5911 } 5912 return (1); 5913 } 5914 5915 static void 5916 probedone(struct cam_periph *periph, union ccb *done_ccb) 5917 { 5918 probe_softc *softc; 5919 struct cam_path *path; 5920 u_int32_t priority; 5921 5922 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5923 5924 softc = (probe_softc *)periph->softc; 5925 path = done_ccb->ccb_h.path; 5926 priority = done_ccb->ccb_h.pinfo.priority; 5927 5928 switch (softc->action) { 5929 case PROBE_TUR: 5930 { 5931 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5932 5933 if (cam_periph_error(done_ccb, 0, 5934 SF_NO_PRINT, NULL) == ERESTART) 5935 return; 5936 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5937 /* Don't wedge the queue */ 5938 xpt_release_devq(done_ccb->ccb_h.path, 5939 /*count*/1, 5940 /*run_queue*/TRUE); 5941 } 5942 softc->action = PROBE_INQUIRY; 5943 xpt_release_ccb(done_ccb); 5944 xpt_schedule(periph, priority); 5945 return; 5946 } 5947 case PROBE_INQUIRY: 5948 case PROBE_FULL_INQUIRY: 5949 { 5950 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5951 struct scsi_inquiry_data *inq_buf; 5952 u_int8_t periph_qual; 5953 5954 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5955 inq_buf = &path->device->inq_data; 5956 5957 periph_qual = SID_QUAL(inq_buf); 5958 5959 switch(periph_qual) { 5960 case SID_QUAL_LU_CONNECTED: 5961 { 5962 u_int8_t len; 5963 5964 /* 5965 * We conservatively request only 5966 * SHORT_INQUIRY_LEN bytes of inquiry 5967 * information during our first try 5968 * at sending an INQUIRY. If the device 5969 * has more information to give, 5970 * perform a second request specifying 5971 * the amount of information the device 5972 * is willing to give. 5973 */ 5974 len = inq_buf->additional_length 5975 + offsetof(struct scsi_inquiry_data, 5976 additional_length) + 1; 5977 if (softc->action == PROBE_INQUIRY 5978 && len > SHORT_INQUIRY_LENGTH) { 5979 softc->action = PROBE_FULL_INQUIRY; 5980 xpt_release_ccb(done_ccb); 5981 xpt_schedule(periph, priority); 5982 return; 5983 } 5984 5985 xpt_find_quirk(path->device); 5986 5987 xpt_devise_transport(path); 5988 if (INQ_DATA_TQ_ENABLED(inq_buf)) 5989 softc->action = PROBE_MODE_SENSE; 5990 else 5991 softc->action = PROBE_SERIAL_NUM_0; 5992 5993 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5994 5995 xpt_release_ccb(done_ccb); 5996 xpt_schedule(periph, priority); 5997 return; 5998 } 5999 default: 6000 break; 6001 } 6002 } else if (cam_periph_error(done_ccb, 0, 6003 done_ccb->ccb_h.target_lun > 0 6004 ? SF_RETRY_UA|SF_QUIET_IR 6005 : SF_RETRY_UA, 6006 &softc->saved_ccb) == ERESTART) { 6007 return; 6008 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6009 /* Don't wedge the queue */ 6010 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6011 /*run_queue*/TRUE); 6012 } 6013 /* 6014 * If we get to this point, we got an error status back 6015 * from the inquiry and the error status doesn't require 6016 * automatically retrying the command. Therefore, the 6017 * inquiry failed. If we had inquiry information before 6018 * for this device, but this latest inquiry command failed, 6019 * the device has probably gone away. If this device isn't 6020 * already marked unconfigured, notify the peripheral 6021 * drivers that this device is no more. 6022 */ 6023 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 6024 /* Send the async notification. */ 6025 xpt_async(AC_LOST_DEVICE, path, NULL); 6026 6027 xpt_release_ccb(done_ccb); 6028 break; 6029 } 6030 case PROBE_MODE_SENSE: 6031 { 6032 struct ccb_scsiio *csio; 6033 struct scsi_mode_header_6 *mode_hdr; 6034 6035 csio = &done_ccb->csio; 6036 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 6037 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6038 struct scsi_control_page *page; 6039 u_int8_t *offset; 6040 6041 offset = ((u_int8_t *)&mode_hdr[1]) 6042 + mode_hdr->blk_desc_len; 6043 page = (struct scsi_control_page *)offset; 6044 path->device->queue_flags = page->queue_flags; 6045 } else if (cam_periph_error(done_ccb, 0, 6046 SF_RETRY_UA|SF_NO_PRINT, 6047 &softc->saved_ccb) == ERESTART) { 6048 return; 6049 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6050 /* Don't wedge the queue */ 6051 xpt_release_devq(done_ccb->ccb_h.path, 6052 /*count*/1, /*run_queue*/TRUE); 6053 } 6054 xpt_release_ccb(done_ccb); 6055 free(mode_hdr, M_CAMXPT); 6056 softc->action = PROBE_SERIAL_NUM_0; 6057 xpt_schedule(periph, priority); 6058 return; 6059 } 6060 case PROBE_SERIAL_NUM_0: 6061 { 6062 struct ccb_scsiio *csio; 6063 struct scsi_vpd_supported_page_list *page_list; 6064 int length, serialnum_supported, i; 6065 6066 serialnum_supported = 0; 6067 csio = &done_ccb->csio; 6068 page_list = 6069 (struct scsi_vpd_supported_page_list *)csio->data_ptr; 6070 6071 if (page_list == NULL) { 6072 /* 6073 * Don't process the command as it was never sent 6074 */ 6075 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6076 && (page_list->length > 0)) { 6077 length = min(page_list->length, 6078 SVPD_SUPPORTED_PAGES_SIZE); 6079 for (i = 0; i < length; i++) { 6080 if (page_list->list[i] == 6081 SVPD_UNIT_SERIAL_NUMBER) { 6082 serialnum_supported = 1; 6083 break; 6084 } 6085 } 6086 } else if (cam_periph_error(done_ccb, 0, 6087 SF_RETRY_UA|SF_NO_PRINT, 6088 &softc->saved_ccb) == ERESTART) { 6089 return; 6090 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6091 /* Don't wedge the queue */ 6092 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6093 /*run_queue*/TRUE); 6094 } 6095 6096 if (page_list != NULL) 6097 free(page_list, M_DEVBUF); 6098 6099 if (serialnum_supported) { 6100 xpt_release_ccb(done_ccb); 6101 softc->action = PROBE_SERIAL_NUM_1; 6102 xpt_schedule(periph, priority); 6103 return; 6104 } 6105 xpt_release_ccb(done_ccb); 6106 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6107 xpt_schedule(periph, done_ccb->ccb_h.pinfo.priority); 6108 return; 6109 } 6110 6111 case PROBE_SERIAL_NUM_1: 6112 { 6113 struct ccb_scsiio *csio; 6114 struct scsi_vpd_unit_serial_number *serial_buf; 6115 u_int32_t priority; 6116 int changed; 6117 int have_serialnum; 6118 6119 changed = 1; 6120 have_serialnum = 0; 6121 csio = &done_ccb->csio; 6122 priority = done_ccb->ccb_h.pinfo.priority; 6123 serial_buf = 6124 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 6125 6126 /* Clean up from previous instance of this device */ 6127 if (path->device->serial_num != NULL) { 6128 free(path->device->serial_num, M_CAMXPT); 6129 path->device->serial_num = NULL; 6130 path->device->serial_num_len = 0; 6131 } 6132 6133 if (serial_buf == NULL) { 6134 /* 6135 * Don't process the command as it was never sent 6136 */ 6137 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6138 && (serial_buf->length > 0)) { 6139 6140 have_serialnum = 1; 6141 path->device->serial_num = 6142 (u_int8_t *)malloc((serial_buf->length + 1), 6143 M_CAMXPT, M_NOWAIT); 6144 if (path->device->serial_num != NULL) { 6145 bcopy(serial_buf->serial_num, 6146 path->device->serial_num, 6147 serial_buf->length); 6148 path->device->serial_num_len = 6149 serial_buf->length; 6150 path->device->serial_num[serial_buf->length] 6151 = '\0'; 6152 } 6153 } else if (cam_periph_error(done_ccb, 0, 6154 SF_RETRY_UA|SF_NO_PRINT, 6155 &softc->saved_ccb) == ERESTART) { 6156 return; 6157 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6158 /* Don't wedge the queue */ 6159 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6160 /*run_queue*/TRUE); 6161 } 6162 6163 /* 6164 * Let's see if we have seen this device before. 6165 */ 6166 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6167 MD5_CTX context; 6168 u_int8_t digest[16]; 6169 6170 MD5Init(&context); 6171 6172 MD5Update(&context, 6173 (unsigned char *)&path->device->inq_data, 6174 sizeof(struct scsi_inquiry_data)); 6175 6176 if (have_serialnum) 6177 MD5Update(&context, serial_buf->serial_num, 6178 serial_buf->length); 6179 6180 MD5Final(digest, &context); 6181 if (bcmp(softc->digest, digest, 16) == 0) 6182 changed = 0; 6183 6184 /* 6185 * XXX Do we need to do a TUR in order to ensure 6186 * that the device really hasn't changed??? 6187 */ 6188 if ((changed != 0) 6189 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6190 xpt_async(AC_LOST_DEVICE, path, NULL); 6191 } 6192 if (serial_buf != NULL) 6193 free(serial_buf, M_CAMXPT); 6194 6195 if (changed != 0) { 6196 /* 6197 * Now that we have all the necessary 6198 * information to safely perform transfer 6199 * negotiations... Controllers don't perform 6200 * any negotiation or tagged queuing until 6201 * after the first XPT_SET_TRAN_SETTINGS ccb is 6202 * received. So, on a new device, just retrieve 6203 * the user settings, and set them as the current 6204 * settings to set the device up. 6205 */ 6206 proberequestdefaultnegotiation(periph); 6207 xpt_release_ccb(done_ccb); 6208 6209 /* 6210 * Perform a TUR to allow the controller to 6211 * perform any necessary transfer negotiation. 6212 */ 6213 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6214 xpt_schedule(periph, priority); 6215 return; 6216 } 6217 xpt_release_ccb(done_ccb); 6218 break; 6219 } 6220 case PROBE_TUR_FOR_NEGOTIATION: 6221 case PROBE_DV_EXIT: 6222 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6223 /* Don't wedge the queue */ 6224 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6225 /*run_queue*/TRUE); 6226 } 6227 /* 6228 * Do Domain Validation for lun 0 on devices that claim 6229 * to support Synchronous Transfer modes. 6230 */ 6231 if (softc->action == PROBE_TUR_FOR_NEGOTIATION 6232 && done_ccb->ccb_h.target_lun == 0 6233 && (path->device->inq_data.flags & SID_Sync) != 0 6234 && (path->device->flags & CAM_DEV_IN_DV) == 0) { 6235 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6236 ("Begin Domain Validation\n")); 6237 path->device->flags |= CAM_DEV_IN_DV; 6238 xpt_release_ccb(done_ccb); 6239 softc->action = PROBE_INQUIRY_BASIC_DV1; 6240 xpt_schedule(periph, priority); 6241 return; 6242 } 6243 if (softc->action == PROBE_DV_EXIT) { 6244 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6245 ("Leave Domain Validation\n")); 6246 } 6247 path->device->flags &= 6248 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6249 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6250 /* Inform the XPT that a new device has been found */ 6251 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6252 xpt_action(done_ccb); 6253 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6254 done_ccb); 6255 } 6256 xpt_release_ccb(done_ccb); 6257 break; 6258 case PROBE_INQUIRY_BASIC_DV1: 6259 case PROBE_INQUIRY_BASIC_DV2: 6260 { 6261 struct scsi_inquiry_data *nbuf; 6262 struct ccb_scsiio *csio; 6263 6264 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6265 /* Don't wedge the queue */ 6266 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6267 /*run_queue*/TRUE); 6268 } 6269 csio = &done_ccb->csio; 6270 nbuf = (struct scsi_inquiry_data *)csio->data_ptr; 6271 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) { 6272 xpt_print(path, 6273 "inquiry data fails comparison at DV%d step\n", 6274 softc->action == PROBE_INQUIRY_BASIC_DV1 ? 1 : 2); 6275 if (proberequestbackoff(periph, path->device)) { 6276 path->device->flags &= ~CAM_DEV_IN_DV; 6277 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6278 } else { 6279 /* give up */ 6280 softc->action = PROBE_DV_EXIT; 6281 } 6282 free(nbuf, M_CAMXPT); 6283 xpt_release_ccb(done_ccb); 6284 xpt_schedule(periph, priority); 6285 return; 6286 } 6287 free(nbuf, M_CAMXPT); 6288 if (softc->action == PROBE_INQUIRY_BASIC_DV1) { 6289 softc->action = PROBE_INQUIRY_BASIC_DV2; 6290 xpt_release_ccb(done_ccb); 6291 xpt_schedule(periph, priority); 6292 return; 6293 } 6294 if (softc->action == PROBE_DV_EXIT) { 6295 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6296 ("Leave Domain Validation Successfully\n")); 6297 } 6298 path->device->flags &= 6299 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6300 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6301 /* Inform the XPT that a new device has been found */ 6302 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6303 xpt_action(done_ccb); 6304 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6305 done_ccb); 6306 } 6307 xpt_release_ccb(done_ccb); 6308 break; 6309 } 6310 } 6311 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6312 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6313 done_ccb->ccb_h.status = CAM_REQ_CMP; 6314 xpt_done(done_ccb); 6315 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6316 cam_periph_invalidate(periph); 6317 cam_periph_release_locked(periph); 6318 } else { 6319 probeschedule(periph); 6320 } 6321 } 6322 6323 static void 6324 probecleanup(struct cam_periph *periph) 6325 { 6326 free(periph->softc, M_CAMXPT); 6327 } 6328 6329 static void 6330 xpt_find_quirk(struct cam_ed *device) 6331 { 6332 caddr_t match; 6333 6334 match = cam_quirkmatch((caddr_t)&device->inq_data, 6335 (caddr_t)xpt_quirk_table, 6336 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6337 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6338 6339 if (match == NULL) 6340 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6341 6342 device->quirk = (struct xpt_quirk_entry *)match; 6343 } 6344 6345 static int 6346 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6347 { 6348 int error, bool; 6349 6350 bool = cam_srch_hi; 6351 error = sysctl_handle_int(oidp, &bool, 0, req); 6352 if (error != 0 || req->newptr == NULL) 6353 return (error); 6354 if (bool == 0 || bool == 1) { 6355 cam_srch_hi = bool; 6356 return (0); 6357 } else { 6358 return (EINVAL); 6359 } 6360 } 6361 6362 6363 static void 6364 xpt_devise_transport(struct cam_path *path) 6365 { 6366 struct ccb_pathinq cpi; 6367 struct ccb_trans_settings cts; 6368 struct scsi_inquiry_data *inq_buf; 6369 6370 /* Get transport information from the SIM */ 6371 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6372 cpi.ccb_h.func_code = XPT_PATH_INQ; 6373 xpt_action((union ccb *)&cpi); 6374 6375 inq_buf = NULL; 6376 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6377 inq_buf = &path->device->inq_data; 6378 path->device->protocol = PROTO_SCSI; 6379 path->device->protocol_version = 6380 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6381 path->device->transport = cpi.transport; 6382 path->device->transport_version = cpi.transport_version; 6383 6384 /* 6385 * Any device not using SPI3 features should 6386 * be considered SPI2 or lower. 6387 */ 6388 if (inq_buf != NULL) { 6389 if (path->device->transport == XPORT_SPI 6390 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6391 && path->device->transport_version > 2) 6392 path->device->transport_version = 2; 6393 } else { 6394 struct cam_ed* otherdev; 6395 6396 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6397 otherdev != NULL; 6398 otherdev = TAILQ_NEXT(otherdev, links)) { 6399 if (otherdev != path->device) 6400 break; 6401 } 6402 6403 if (otherdev != NULL) { 6404 /* 6405 * Initially assume the same versioning as 6406 * prior luns for this target. 6407 */ 6408 path->device->protocol_version = 6409 otherdev->protocol_version; 6410 path->device->transport_version = 6411 otherdev->transport_version; 6412 } else { 6413 /* Until we know better, opt for safty */ 6414 path->device->protocol_version = 2; 6415 if (path->device->transport == XPORT_SPI) 6416 path->device->transport_version = 2; 6417 else 6418 path->device->transport_version = 0; 6419 } 6420 } 6421 6422 /* 6423 * XXX 6424 * For a device compliant with SPC-2 we should be able 6425 * to determine the transport version supported by 6426 * scrutinizing the version descriptors in the 6427 * inquiry buffer. 6428 */ 6429 6430 /* Tell the controller what we think */ 6431 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6432 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6433 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6434 cts.transport = path->device->transport; 6435 cts.transport_version = path->device->transport_version; 6436 cts.protocol = path->device->protocol; 6437 cts.protocol_version = path->device->protocol_version; 6438 cts.proto_specific.valid = 0; 6439 cts.xport_specific.valid = 0; 6440 xpt_action((union ccb *)&cts); 6441 } 6442 6443 static void 6444 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6445 int async_update) 6446 { 6447 struct ccb_pathinq cpi; 6448 struct ccb_trans_settings cur_cts; 6449 struct ccb_trans_settings_scsi *scsi; 6450 struct ccb_trans_settings_scsi *cur_scsi; 6451 struct cam_sim *sim; 6452 struct scsi_inquiry_data *inq_data; 6453 6454 if (device == NULL) { 6455 cts->ccb_h.status = CAM_PATH_INVALID; 6456 xpt_done((union ccb *)cts); 6457 return; 6458 } 6459 6460 if (cts->protocol == PROTO_UNKNOWN 6461 || cts->protocol == PROTO_UNSPECIFIED) { 6462 cts->protocol = device->protocol; 6463 cts->protocol_version = device->protocol_version; 6464 } 6465 6466 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6467 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6468 cts->protocol_version = device->protocol_version; 6469 6470 if (cts->protocol != device->protocol) { 6471 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n", 6472 cts->protocol, device->protocol); 6473 cts->protocol = device->protocol; 6474 } 6475 6476 if (cts->protocol_version > device->protocol_version) { 6477 if (bootverbose) { 6478 xpt_print(cts->ccb_h.path, "Down reving Protocol " 6479 "Version from %d to %d?\n", cts->protocol_version, 6480 device->protocol_version); 6481 } 6482 cts->protocol_version = device->protocol_version; 6483 } 6484 6485 if (cts->transport == XPORT_UNKNOWN 6486 || cts->transport == XPORT_UNSPECIFIED) { 6487 cts->transport = device->transport; 6488 cts->transport_version = device->transport_version; 6489 } 6490 6491 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6492 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6493 cts->transport_version = device->transport_version; 6494 6495 if (cts->transport != device->transport) { 6496 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n", 6497 cts->transport, device->transport); 6498 cts->transport = device->transport; 6499 } 6500 6501 if (cts->transport_version > device->transport_version) { 6502 if (bootverbose) { 6503 xpt_print(cts->ccb_h.path, "Down reving Transport " 6504 "Version from %d to %d?\n", cts->transport_version, 6505 device->transport_version); 6506 } 6507 cts->transport_version = device->transport_version; 6508 } 6509 6510 sim = cts->ccb_h.path->bus->sim; 6511 6512 /* 6513 * Nothing more of interest to do unless 6514 * this is a device connected via the 6515 * SCSI protocol. 6516 */ 6517 if (cts->protocol != PROTO_SCSI) { 6518 if (async_update == FALSE) 6519 (*(sim->sim_action))(sim, (union ccb *)cts); 6520 return; 6521 } 6522 6523 inq_data = &device->inq_data; 6524 scsi = &cts->proto_specific.scsi; 6525 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6526 cpi.ccb_h.func_code = XPT_PATH_INQ; 6527 xpt_action((union ccb *)&cpi); 6528 6529 /* SCSI specific sanity checking */ 6530 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6531 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 6532 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6533 || (device->quirk->mintags == 0)) { 6534 /* 6535 * Can't tag on hardware that doesn't support tags, 6536 * doesn't have it enabled, or has broken tag support. 6537 */ 6538 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6539 } 6540 6541 if (async_update == FALSE) { 6542 /* 6543 * Perform sanity checking against what the 6544 * controller and device can do. 6545 */ 6546 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6547 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6548 cur_cts.type = cts->type; 6549 xpt_action((union ccb *)&cur_cts); 6550 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6551 return; 6552 } 6553 cur_scsi = &cur_cts.proto_specific.scsi; 6554 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6555 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6556 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6557 } 6558 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6559 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6560 } 6561 6562 /* SPI specific sanity checking */ 6563 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6564 u_int spi3caps; 6565 struct ccb_trans_settings_spi *spi; 6566 struct ccb_trans_settings_spi *cur_spi; 6567 6568 spi = &cts->xport_specific.spi; 6569 6570 cur_spi = &cur_cts.xport_specific.spi; 6571 6572 /* Fill in any gaps in what the user gave us */ 6573 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6574 spi->sync_period = cur_spi->sync_period; 6575 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6576 spi->sync_period = 0; 6577 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6578 spi->sync_offset = cur_spi->sync_offset; 6579 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6580 spi->sync_offset = 0; 6581 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6582 spi->ppr_options = cur_spi->ppr_options; 6583 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6584 spi->ppr_options = 0; 6585 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6586 spi->bus_width = cur_spi->bus_width; 6587 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6588 spi->bus_width = 0; 6589 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6590 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6591 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6592 } 6593 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6594 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6595 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6596 && (inq_data->flags & SID_Sync) == 0 6597 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6598 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6599 || (spi->sync_offset == 0) 6600 || (spi->sync_period == 0)) { 6601 /* Force async */ 6602 spi->sync_period = 0; 6603 spi->sync_offset = 0; 6604 } 6605 6606 switch (spi->bus_width) { 6607 case MSG_EXT_WDTR_BUS_32_BIT: 6608 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6609 || (inq_data->flags & SID_WBus32) != 0 6610 || cts->type == CTS_TYPE_USER_SETTINGS) 6611 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6612 break; 6613 /* Fall Through to 16-bit */ 6614 case MSG_EXT_WDTR_BUS_16_BIT: 6615 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6616 || (inq_data->flags & SID_WBus16) != 0 6617 || cts->type == CTS_TYPE_USER_SETTINGS) 6618 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6619 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6620 break; 6621 } 6622 /* Fall Through to 8-bit */ 6623 default: /* New bus width?? */ 6624 case MSG_EXT_WDTR_BUS_8_BIT: 6625 /* All targets can do this */ 6626 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6627 break; 6628 } 6629 6630 spi3caps = cpi.xport_specific.spi.ppr_options; 6631 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6632 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6633 spi3caps &= inq_data->spi3data; 6634 6635 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6636 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6637 6638 if ((spi3caps & SID_SPI_IUS) == 0) 6639 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6640 6641 if ((spi3caps & SID_SPI_QAS) == 0) 6642 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6643 6644 /* No SPI Transfer settings are allowed unless we are wide */ 6645 if (spi->bus_width == 0) 6646 spi->ppr_options = 0; 6647 6648 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6649 /* 6650 * Can't tag queue without disconnection. 6651 */ 6652 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6653 scsi->valid |= CTS_SCSI_VALID_TQ; 6654 } 6655 6656 /* 6657 * If we are currently performing tagged transactions to 6658 * this device and want to change its negotiation parameters, 6659 * go non-tagged for a bit to give the controller a chance to 6660 * negotiate unhampered by tag messages. 6661 */ 6662 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6663 && (device->inq_flags & SID_CmdQue) != 0 6664 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6665 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6666 CTS_SPI_VALID_SYNC_OFFSET| 6667 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6668 xpt_toggle_tags(cts->ccb_h.path); 6669 } 6670 6671 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6672 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6673 int device_tagenb; 6674 6675 /* 6676 * If we are transitioning from tags to no-tags or 6677 * vice-versa, we need to carefully freeze and restart 6678 * the queue so that we don't overlap tagged and non-tagged 6679 * commands. We also temporarily stop tags if there is 6680 * a change in transfer negotiation settings to allow 6681 * "tag-less" negotiation. 6682 */ 6683 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6684 || (device->inq_flags & SID_CmdQue) != 0) 6685 device_tagenb = TRUE; 6686 else 6687 device_tagenb = FALSE; 6688 6689 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6690 && device_tagenb == FALSE) 6691 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6692 && device_tagenb == TRUE)) { 6693 6694 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6695 /* 6696 * Delay change to use tags until after a 6697 * few commands have gone to this device so 6698 * the controller has time to perform transfer 6699 * negotiations without tagged messages getting 6700 * in the way. 6701 */ 6702 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6703 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6704 } else { 6705 struct ccb_relsim crs; 6706 6707 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6708 device->inq_flags &= ~SID_CmdQue; 6709 xpt_dev_ccbq_resize(cts->ccb_h.path, 6710 sim->max_dev_openings); 6711 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6712 device->tag_delay_count = 0; 6713 6714 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6715 /*priority*/1); 6716 crs.ccb_h.func_code = XPT_REL_SIMQ; 6717 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6718 crs.openings 6719 = crs.release_timeout 6720 = crs.qfrozen_cnt 6721 = 0; 6722 xpt_action((union ccb *)&crs); 6723 } 6724 } 6725 } 6726 if (async_update == FALSE) 6727 (*(sim->sim_action))(sim, (union ccb *)cts); 6728 } 6729 6730 6731 static void 6732 xpt_toggle_tags(struct cam_path *path) 6733 { 6734 struct cam_ed *dev; 6735 6736 /* 6737 * Give controllers a chance to renegotiate 6738 * before starting tag operations. We 6739 * "toggle" tagged queuing off then on 6740 * which causes the tag enable command delay 6741 * counter to come into effect. 6742 */ 6743 dev = path->device; 6744 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6745 || ((dev->inq_flags & SID_CmdQue) != 0 6746 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6747 struct ccb_trans_settings cts; 6748 6749 xpt_setup_ccb(&cts.ccb_h, path, 1); 6750 cts.protocol = PROTO_SCSI; 6751 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6752 cts.transport = XPORT_UNSPECIFIED; 6753 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6754 cts.proto_specific.scsi.flags = 0; 6755 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6756 xpt_set_transfer_settings(&cts, path->device, 6757 /*async_update*/TRUE); 6758 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6759 xpt_set_transfer_settings(&cts, path->device, 6760 /*async_update*/TRUE); 6761 } 6762 } 6763 6764 static void 6765 xpt_start_tags(struct cam_path *path) 6766 { 6767 struct ccb_relsim crs; 6768 struct cam_ed *device; 6769 struct cam_sim *sim; 6770 int newopenings; 6771 6772 device = path->device; 6773 sim = path->bus->sim; 6774 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6775 xpt_freeze_devq(path, /*count*/1); 6776 device->inq_flags |= SID_CmdQue; 6777 if (device->tag_saved_openings != 0) 6778 newopenings = device->tag_saved_openings; 6779 else 6780 newopenings = min(device->quirk->maxtags, 6781 sim->max_tagged_dev_openings); 6782 xpt_dev_ccbq_resize(path, newopenings); 6783 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6784 crs.ccb_h.func_code = XPT_REL_SIMQ; 6785 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6786 crs.openings 6787 = crs.release_timeout 6788 = crs.qfrozen_cnt 6789 = 0; 6790 xpt_action((union ccb *)&crs); 6791 } 6792 6793 static int busses_to_config; 6794 static int busses_to_reset; 6795 6796 static int 6797 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6798 { 6799 6800 mtx_assert(bus->sim->mtx, MA_OWNED); 6801 6802 if (bus->path_id != CAM_XPT_PATH_ID) { 6803 struct cam_path path; 6804 struct ccb_pathinq cpi; 6805 int can_negotiate; 6806 6807 busses_to_config++; 6808 xpt_compile_path(&path, NULL, bus->path_id, 6809 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6810 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6811 cpi.ccb_h.func_code = XPT_PATH_INQ; 6812 xpt_action((union ccb *)&cpi); 6813 can_negotiate = cpi.hba_inquiry; 6814 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6815 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6816 && can_negotiate) 6817 busses_to_reset++; 6818 xpt_release_path(&path); 6819 } 6820 6821 return(1); 6822 } 6823 6824 static int 6825 xptconfigfunc(struct cam_eb *bus, void *arg) 6826 { 6827 struct cam_path *path; 6828 union ccb *work_ccb; 6829 6830 mtx_assert(bus->sim->mtx, MA_OWNED); 6831 6832 if (bus->path_id != CAM_XPT_PATH_ID) { 6833 cam_status status; 6834 int can_negotiate; 6835 6836 work_ccb = xpt_alloc_ccb_nowait(); 6837 if (work_ccb == NULL) { 6838 busses_to_config--; 6839 xpt_finishconfig(xpt_periph, NULL); 6840 return(0); 6841 } 6842 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6843 CAM_TARGET_WILDCARD, 6844 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6845 printf("xptconfigfunc: xpt_create_path failed with " 6846 "status %#x for bus %d\n", status, bus->path_id); 6847 printf("xptconfigfunc: halting bus configuration\n"); 6848 xpt_free_ccb(work_ccb); 6849 busses_to_config--; 6850 xpt_finishconfig(xpt_periph, NULL); 6851 return(0); 6852 } 6853 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6854 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6855 xpt_action(work_ccb); 6856 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6857 printf("xptconfigfunc: CPI failed on bus %d " 6858 "with status %d\n", bus->path_id, 6859 work_ccb->ccb_h.status); 6860 xpt_finishconfig(xpt_periph, work_ccb); 6861 return(1); 6862 } 6863 6864 can_negotiate = work_ccb->cpi.hba_inquiry; 6865 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6866 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6867 && (can_negotiate != 0)) { 6868 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6869 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6870 work_ccb->ccb_h.cbfcnp = NULL; 6871 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6872 ("Resetting Bus\n")); 6873 xpt_action(work_ccb); 6874 xpt_finishconfig(xpt_periph, work_ccb); 6875 } else { 6876 /* Act as though we performed a successful BUS RESET */ 6877 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6878 xpt_finishconfig(xpt_periph, work_ccb); 6879 } 6880 } 6881 6882 return(1); 6883 } 6884 6885 static void 6886 xpt_config(void *arg) 6887 { 6888 /* 6889 * Now that interrupts are enabled, go find our devices 6890 */ 6891 6892 #ifdef CAMDEBUG 6893 /* Setup debugging flags and path */ 6894 #ifdef CAM_DEBUG_FLAGS 6895 cam_dflags = CAM_DEBUG_FLAGS; 6896 #else /* !CAM_DEBUG_FLAGS */ 6897 cam_dflags = CAM_DEBUG_NONE; 6898 #endif /* CAM_DEBUG_FLAGS */ 6899 #ifdef CAM_DEBUG_BUS 6900 if (cam_dflags != CAM_DEBUG_NONE) { 6901 /* 6902 * Locking is specifically omitted here. No SIMs have 6903 * registered yet, so xpt_create_path will only be searching 6904 * empty lists of targets and devices. 6905 */ 6906 if (xpt_create_path(&cam_dpath, xpt_periph, 6907 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6908 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6909 printf("xpt_config: xpt_create_path() failed for debug" 6910 " target %d:%d:%d, debugging disabled\n", 6911 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6912 cam_dflags = CAM_DEBUG_NONE; 6913 } 6914 } else 6915 cam_dpath = NULL; 6916 #else /* !CAM_DEBUG_BUS */ 6917 cam_dpath = NULL; 6918 #endif /* CAM_DEBUG_BUS */ 6919 #endif /* CAMDEBUG */ 6920 6921 /* 6922 * Scan all installed busses. 6923 */ 6924 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6925 6926 if (busses_to_config == 0) { 6927 /* Call manually because we don't have any busses */ 6928 xpt_finishconfig(xpt_periph, NULL); 6929 } else { 6930 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6931 printf("Waiting %d seconds for SCSI " 6932 "devices to settle\n", scsi_delay/1000); 6933 } 6934 xpt_for_all_busses(xptconfigfunc, NULL); 6935 } 6936 } 6937 6938 /* 6939 * If the given device only has one peripheral attached to it, and if that 6940 * peripheral is the passthrough driver, announce it. This insures that the 6941 * user sees some sort of announcement for every peripheral in their system. 6942 */ 6943 static int 6944 xptpassannouncefunc(struct cam_ed *device, void *arg) 6945 { 6946 struct cam_periph *periph; 6947 int i; 6948 6949 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6950 periph = SLIST_NEXT(periph, periph_links), i++); 6951 6952 periph = SLIST_FIRST(&device->periphs); 6953 if ((i == 1) 6954 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6955 xpt_announce_periph(periph, NULL); 6956 6957 return(1); 6958 } 6959 6960 static void 6961 xpt_finishconfig_task(void *context, int pending) 6962 { 6963 struct periph_driver **p_drv; 6964 int i; 6965 6966 if (busses_to_config == 0) { 6967 /* Register all the peripheral drivers */ 6968 /* XXX This will have to change when we have loadable modules */ 6969 p_drv = periph_drivers; 6970 for (i = 0; p_drv[i] != NULL; i++) { 6971 (*p_drv[i]->init)(); 6972 } 6973 6974 /* 6975 * Check for devices with no "standard" peripheral driver 6976 * attached. For any devices like that, announce the 6977 * passthrough driver so the user will see something. 6978 */ 6979 xpt_for_all_devices(xptpassannouncefunc, NULL); 6980 6981 /* Release our hook so that the boot can continue. */ 6982 config_intrhook_disestablish(xsoftc.xpt_config_hook); 6983 free(xsoftc.xpt_config_hook, M_CAMXPT); 6984 xsoftc.xpt_config_hook = NULL; 6985 } 6986 6987 free(context, M_CAMXPT); 6988 } 6989 6990 static void 6991 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6992 { 6993 struct xpt_task *task; 6994 6995 if (done_ccb != NULL) { 6996 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6997 ("xpt_finishconfig\n")); 6998 switch(done_ccb->ccb_h.func_code) { 6999 case XPT_RESET_BUS: 7000 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 7001 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 7002 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 7003 done_ccb->crcn.flags = 0; 7004 xpt_action(done_ccb); 7005 return; 7006 } 7007 /* FALLTHROUGH */ 7008 case XPT_SCAN_BUS: 7009 default: 7010 xpt_free_path(done_ccb->ccb_h.path); 7011 busses_to_config--; 7012 break; 7013 } 7014 } 7015 7016 if (busses_to_config == 0) { 7017 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 7018 if (task != NULL) { 7019 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 7020 taskqueue_enqueue(taskqueue_thread, &task->task); 7021 } 7022 } 7023 7024 if (done_ccb != NULL) 7025 xpt_free_ccb(done_ccb); 7026 } 7027 7028 cam_status 7029 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 7030 struct cam_path *path) 7031 { 7032 struct ccb_setasync csa; 7033 cam_status status; 7034 int xptpath = 0; 7035 7036 if (path == NULL) { 7037 mtx_lock(&xsoftc.xpt_lock); 7038 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 7039 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 7040 if (status != CAM_REQ_CMP) { 7041 mtx_unlock(&xsoftc.xpt_lock); 7042 return (status); 7043 } 7044 xptpath = 1; 7045 } 7046 7047 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5); 7048 csa.ccb_h.func_code = XPT_SASYNC_CB; 7049 csa.event_enable = event; 7050 csa.callback = cbfunc; 7051 csa.callback_arg = cbarg; 7052 xpt_action((union ccb *)&csa); 7053 status = csa.ccb_h.status; 7054 if (xptpath) { 7055 xpt_free_path(path); 7056 mtx_unlock(&xsoftc.xpt_lock); 7057 } 7058 return (status); 7059 } 7060 7061 static void 7062 xptaction(struct cam_sim *sim, union ccb *work_ccb) 7063 { 7064 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 7065 7066 switch (work_ccb->ccb_h.func_code) { 7067 /* Common cases first */ 7068 case XPT_PATH_INQ: /* Path routing inquiry */ 7069 { 7070 struct ccb_pathinq *cpi; 7071 7072 cpi = &work_ccb->cpi; 7073 cpi->version_num = 1; /* XXX??? */ 7074 cpi->hba_inquiry = 0; 7075 cpi->target_sprt = 0; 7076 cpi->hba_misc = 0; 7077 cpi->hba_eng_cnt = 0; 7078 cpi->max_target = 0; 7079 cpi->max_lun = 0; 7080 cpi->initiator_id = 0; 7081 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7082 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7083 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7084 cpi->unit_number = sim->unit_number; 7085 cpi->bus_id = sim->bus_id; 7086 cpi->base_transfer_speed = 0; 7087 cpi->protocol = PROTO_UNSPECIFIED; 7088 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7089 cpi->transport = XPORT_UNSPECIFIED; 7090 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7091 cpi->ccb_h.status = CAM_REQ_CMP; 7092 xpt_done(work_ccb); 7093 break; 7094 } 7095 default: 7096 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7097 xpt_done(work_ccb); 7098 break; 7099 } 7100 } 7101 7102 /* 7103 * The xpt as a "controller" has no interrupt sources, so polling 7104 * is a no-op. 7105 */ 7106 static void 7107 xptpoll(struct cam_sim *sim) 7108 { 7109 } 7110 7111 void 7112 xpt_lock_buses(void) 7113 { 7114 mtx_lock(&xsoftc.xpt_topo_lock); 7115 } 7116 7117 void 7118 xpt_unlock_buses(void) 7119 { 7120 mtx_unlock(&xsoftc.xpt_topo_lock); 7121 } 7122 7123 static void 7124 camisr(void *dummy) 7125 { 7126 cam_simq_t queue; 7127 struct cam_sim *sim; 7128 7129 mtx_lock(&cam_simq_lock); 7130 TAILQ_INIT(&queue); 7131 TAILQ_CONCAT(&queue, &cam_simq, links); 7132 mtx_unlock(&cam_simq_lock); 7133 7134 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 7135 TAILQ_REMOVE(&queue, sim, links); 7136 CAM_SIM_LOCK(sim); 7137 sim->flags &= ~CAM_SIM_ON_DONEQ; 7138 camisr_runqueue(&sim->sim_doneq); 7139 CAM_SIM_UNLOCK(sim); 7140 } 7141 } 7142 7143 static void 7144 camisr_runqueue(void *V_queue) 7145 { 7146 cam_isrq_t *queue = V_queue; 7147 struct ccb_hdr *ccb_h; 7148 7149 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 7150 int runq; 7151 7152 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 7153 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7154 7155 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7156 ("camisr\n")); 7157 7158 runq = FALSE; 7159 7160 if (ccb_h->flags & CAM_HIGH_POWER) { 7161 struct highpowerlist *hphead; 7162 union ccb *send_ccb; 7163 7164 mtx_lock(&xsoftc.xpt_lock); 7165 hphead = &xsoftc.highpowerq; 7166 7167 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7168 7169 /* 7170 * Increment the count since this command is done. 7171 */ 7172 xsoftc.num_highpower++; 7173 7174 /* 7175 * Any high powered commands queued up? 7176 */ 7177 if (send_ccb != NULL) { 7178 7179 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7180 mtx_unlock(&xsoftc.xpt_lock); 7181 7182 xpt_release_devq(send_ccb->ccb_h.path, 7183 /*count*/1, /*runqueue*/TRUE); 7184 } else 7185 mtx_unlock(&xsoftc.xpt_lock); 7186 } 7187 7188 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7189 struct cam_ed *dev; 7190 7191 dev = ccb_h->path->device; 7192 7193 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7194 ccb_h->path->bus->sim->devq->send_active--; 7195 ccb_h->path->bus->sim->devq->send_openings++; 7196 7197 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7198 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7199 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7200 && (dev->ccbq.dev_active == 0))) { 7201 7202 xpt_release_devq(ccb_h->path, /*count*/1, 7203 /*run_queue*/TRUE); 7204 } 7205 7206 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7207 && (--dev->tag_delay_count == 0)) 7208 xpt_start_tags(ccb_h->path); 7209 7210 if ((dev->ccbq.queue.entries > 0) 7211 && (dev->qfrozen_cnt == 0) 7212 && (device_is_send_queued(dev) == 0)) { 7213 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7214 dev); 7215 } 7216 } 7217 7218 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7219 xpt_release_simq(ccb_h->path->bus->sim, 7220 /*run_queue*/TRUE); 7221 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7222 runq = FALSE; 7223 } 7224 7225 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7226 && (ccb_h->status & CAM_DEV_QFRZN)) { 7227 xpt_release_devq(ccb_h->path, /*count*/1, 7228 /*run_queue*/TRUE); 7229 ccb_h->status &= ~CAM_DEV_QFRZN; 7230 } else if (runq) { 7231 xpt_run_dev_sendq(ccb_h->path->bus); 7232 } 7233 7234 /* Call the peripheral driver's callback */ 7235 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7236 } 7237 } 7238 7239