xref: /freebsd/sys/cam/cam_xpt.c (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/time.h>
42 #include <sys/conf.h>
43 #include <sys/fcntl.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/taskqueue.h>
48 
49 #include <sys/lock.h>
50 #include <sys/mutex.h>
51 #include <sys/sysctl.h>
52 #include <sys/kthread.h>
53 
54 #include <cam/cam.h>
55 #include <cam/cam_ccb.h>
56 #include <cam/cam_iosched.h>
57 #include <cam/cam_periph.h>
58 #include <cam/cam_queue.h>
59 #include <cam/cam_sim.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_sim.h>
62 #include <cam/cam_xpt_periph.h>
63 #include <cam/cam_xpt_internal.h>
64 #include <cam/cam_debug.h>
65 #include <cam/cam_compat.h>
66 
67 #include <cam/scsi/scsi_all.h>
68 #include <cam/scsi/scsi_message.h>
69 #include <cam/scsi/scsi_pass.h>
70 
71 #include <machine/stdarg.h>	/* for xpt_print below */
72 
73 /* Wild guess based on not wanting to grow the stack too much */
74 #define XPT_PRINT_MAXLEN	512
75 #ifdef PRINTF_BUFR_SIZE
76 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
77 #else
78 #define XPT_PRINT_LEN	128
79 #endif
80 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
81 
82 /*
83  * This is the maximum number of high powered commands (e.g. start unit)
84  * that can be outstanding at a particular time.
85  */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER  4
88 #endif
89 
90 /* Datastructures internal to the xpt layer */
91 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
92 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
93 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
94 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
95 
96 struct xpt_softc {
97 	uint32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	struct mtx		xpt_highpower_lock;
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/*
110 	 * Registered buses
111 	 *
112 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
113 	 * "buses" is preferred.
114 	 */
115 	TAILQ_HEAD(,cam_eb)	xpt_busses;
116 	u_int			bus_generation;
117 
118 	int			boot_delay;
119 	struct callout 		boot_callout;
120 	struct task		boot_task;
121 	struct root_hold_token	xpt_rootmount;
122 
123 	struct mtx		xpt_topo_lock;
124 	struct taskqueue	*xpt_taskq;
125 };
126 
127 typedef enum {
128 	DM_RET_COPY		= 0x01,
129 	DM_RET_FLAG_MASK	= 0x0f,
130 	DM_RET_NONE		= 0x00,
131 	DM_RET_STOP		= 0x10,
132 	DM_RET_DESCEND		= 0x20,
133 	DM_RET_ERROR		= 0x30,
134 	DM_RET_ACTION_MASK	= 0xf0
135 } dev_match_ret;
136 
137 typedef enum {
138 	XPT_DEPTH_BUS,
139 	XPT_DEPTH_TARGET,
140 	XPT_DEPTH_DEVICE,
141 	XPT_DEPTH_PERIPH
142 } xpt_traverse_depth;
143 
144 struct xpt_traverse_config {
145 	xpt_traverse_depth	depth;
146 	void			*tr_func;
147 	void			*tr_arg;
148 };
149 
150 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
151 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
152 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
153 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
154 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
155 
156 /* Transport layer configuration information */
157 static struct xpt_softc xsoftc;
158 
159 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
160 
161 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
162            &xsoftc.boot_delay, 0, "Bus registration wait time");
163 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
164 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
165 
166 struct cam_doneq {
167 	struct mtx_padalign	cam_doneq_mtx;
168 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
169 	int			cam_doneq_sleep;
170 };
171 
172 static struct cam_doneq cam_doneqs[MAXCPU];
173 static u_int __read_mostly cam_num_doneqs;
174 static struct proc *cam_proc;
175 static struct cam_doneq cam_async;
176 
177 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
178            &cam_num_doneqs, 0, "Number of completion queues/threads");
179 
180 struct cam_periph *xpt_periph;
181 
182 static periph_init_t xpt_periph_init;
183 
184 static struct periph_driver xpt_driver =
185 {
186 	xpt_periph_init, "xpt",
187 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
188 	CAM_PERIPH_DRV_EARLY
189 };
190 
191 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
192 
193 static d_open_t xptopen;
194 static d_close_t xptclose;
195 static d_ioctl_t xptioctl;
196 static d_ioctl_t xptdoioctl;
197 
198 static struct cdevsw xpt_cdevsw = {
199 	.d_version =	D_VERSION,
200 	.d_flags =	0,
201 	.d_open =	xptopen,
202 	.d_close =	xptclose,
203 	.d_ioctl =	xptioctl,
204 	.d_name =	"xpt",
205 };
206 
207 /* Storage for debugging datastructures */
208 struct cam_path *cam_dpath;
209 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
210 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
211 	&cam_dflags, 0, "Enabled debug flags");
212 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
213 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
214 	&cam_debug_delay, 0, "Delay in us after each debug message");
215 
216 /* Our boot-time initialization hook */
217 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
218 
219 static moduledata_t cam_moduledata = {
220 	"cam",
221 	cam_module_event_handler,
222 	NULL
223 };
224 
225 static int	xpt_init(void *);
226 
227 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
228 MODULE_VERSION(cam, 1);
229 
230 static void		xpt_async_bcast(struct async_list *async_head,
231 					uint32_t async_code,
232 					struct cam_path *path,
233 					void *async_arg);
234 static path_id_t xptnextfreepathid(void);
235 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
236 static union ccb *xpt_get_ccb(struct cam_periph *periph);
237 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
238 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
239 static void	 xpt_run_allocq_task(void *context, int pending);
240 static void	 xpt_run_devq(struct cam_devq *devq);
241 static callout_func_t xpt_release_devq_timeout;
242 static void	 xpt_acquire_bus(struct cam_eb *bus);
243 static void	 xpt_release_bus(struct cam_eb *bus);
244 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
245 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
246 		    int run_queue);
247 static struct cam_et*
248 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
249 static void	 xpt_acquire_target(struct cam_et *target);
250 static void	 xpt_release_target(struct cam_et *target);
251 static struct cam_eb*
252 		 xpt_find_bus(path_id_t path_id);
253 static struct cam_et*
254 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
255 static struct cam_ed*
256 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
257 static void	 xpt_config(void *arg);
258 static void	 xpt_hold_boot_locked(void);
259 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
260 				 uint32_t new_priority);
261 static xpt_devicefunc_t xptpassannouncefunc;
262 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
263 static void	 xptpoll(struct cam_sim *sim);
264 static void	 camisr_runqueue(void);
265 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
266 static void	 xpt_done_td(void *);
267 static void	 xpt_async_td(void *);
268 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
269 				    u_int num_patterns, struct cam_eb *bus);
270 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
271 				       u_int num_patterns,
272 				       struct cam_ed *device);
273 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
274 				       u_int num_patterns,
275 				       struct cam_periph *periph);
276 static xpt_busfunc_t	xptedtbusfunc;
277 static xpt_targetfunc_t	xptedttargetfunc;
278 static xpt_devicefunc_t	xptedtdevicefunc;
279 static xpt_periphfunc_t	xptedtperiphfunc;
280 static xpt_pdrvfunc_t	xptplistpdrvfunc;
281 static xpt_periphfunc_t	xptplistperiphfunc;
282 static int		xptedtmatch(struct ccb_dev_match *cdm);
283 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
284 static int		xptbustraverse(struct cam_eb *start_bus,
285 				       xpt_busfunc_t *tr_func, void *arg);
286 static int		xpttargettraverse(struct cam_eb *bus,
287 					  struct cam_et *start_target,
288 					  xpt_targetfunc_t *tr_func, void *arg);
289 static int		xptdevicetraverse(struct cam_et *target,
290 					  struct cam_ed *start_device,
291 					  xpt_devicefunc_t *tr_func, void *arg);
292 static int		xptperiphtraverse(struct cam_ed *device,
293 					  struct cam_periph *start_periph,
294 					  xpt_periphfunc_t *tr_func, void *arg);
295 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
296 					xpt_pdrvfunc_t *tr_func, void *arg);
297 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
298 					    struct cam_periph *start_periph,
299 					    xpt_periphfunc_t *tr_func,
300 					    void *arg);
301 static xpt_busfunc_t	xptdefbusfunc;
302 static xpt_targetfunc_t	xptdeftargetfunc;
303 static xpt_devicefunc_t	xptdefdevicefunc;
304 static xpt_periphfunc_t	xptdefperiphfunc;
305 static void		xpt_finishconfig_task(void *context, int pending);
306 static void		xpt_dev_async_default(uint32_t async_code,
307 					      struct cam_eb *bus,
308 					      struct cam_et *target,
309 					      struct cam_ed *device,
310 					      void *async_arg);
311 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
312 						 struct cam_et *target,
313 						 lun_id_t lun_id);
314 static xpt_devicefunc_t	xptsetasyncfunc;
315 static xpt_busfunc_t	xptsetasyncbusfunc;
316 static cam_status	xptregister(struct cam_periph *periph,
317 				    void *arg);
318 
319 static __inline int
320 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
321 {
322 	int	retval;
323 
324 	mtx_assert(&devq->send_mtx, MA_OWNED);
325 	if ((dev->ccbq.queue.entries > 0) &&
326 	    (dev->ccbq.dev_openings > 0) &&
327 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
328 		/*
329 		 * The priority of a device waiting for controller
330 		 * resources is that of the highest priority CCB
331 		 * enqueued.
332 		 */
333 		retval =
334 		    xpt_schedule_dev(&devq->send_queue,
335 				     &dev->devq_entry,
336 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
337 	} else {
338 		retval = 0;
339 	}
340 	return (retval);
341 }
342 
343 static __inline int
344 device_is_queued(struct cam_ed *device)
345 {
346 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
347 }
348 
349 static void
350 xpt_periph_init(void)
351 {
352 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
353 }
354 
355 static int
356 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
357 {
358 
359 	/*
360 	 * Only allow read-write access.
361 	 */
362 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
363 		return(EPERM);
364 
365 	/*
366 	 * We don't allow nonblocking access.
367 	 */
368 	if ((flags & O_NONBLOCK) != 0) {
369 		printf("%s: can't do nonblocking access\n", devtoname(dev));
370 		return(ENODEV);
371 	}
372 
373 	return(0);
374 }
375 
376 static int
377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379 
380 	return(0);
381 }
382 
383 /*
384  * Don't automatically grab the xpt softc lock here even though this is going
385  * through the xpt device.  The xpt device is really just a back door for
386  * accessing other devices and SIMs, so the right thing to do is to grab
387  * the appropriate SIM lock once the bus/SIM is located.
388  */
389 static int
390 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
391 {
392 	int error;
393 
394 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
395 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
396 	}
397 	return (error);
398 }
399 
400 static int
401 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
402 {
403 	int error;
404 
405 	error = 0;
406 
407 	switch(cmd) {
408 	/*
409 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
410 	 * to accept CCB types that don't quite make sense to send through a
411 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
412 	 * in the CAM spec.
413 	 */
414 	case CAMIOCOMMAND: {
415 		union ccb *ccb;
416 		union ccb *inccb;
417 		struct cam_eb *bus;
418 
419 		inccb = (union ccb *)addr;
420 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
421 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
422 			inccb->csio.bio = NULL;
423 #endif
424 
425 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
426 			return (EINVAL);
427 
428 		bus = xpt_find_bus(inccb->ccb_h.path_id);
429 		if (bus == NULL)
430 			return (EINVAL);
431 
432 		switch (inccb->ccb_h.func_code) {
433 		case XPT_SCAN_BUS:
434 		case XPT_RESET_BUS:
435 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 				xpt_release_bus(bus);
438 				return (EINVAL);
439 			}
440 			break;
441 		case XPT_SCAN_TGT:
442 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 				xpt_release_bus(bus);
445 				return (EINVAL);
446 			}
447 			break;
448 		default:
449 			break;
450 		}
451 
452 		switch(inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 		case XPT_PATH_INQ:
456 		case XPT_ENG_INQ:
457 		case XPT_SCAN_LUN:
458 		case XPT_SCAN_TGT:
459 
460 			ccb = xpt_alloc_ccb();
461 
462 			/*
463 			 * Create a path using the bus, target, and lun the
464 			 * user passed in.
465 			 */
466 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 					    inccb->ccb_h.path_id,
468 					    inccb->ccb_h.target_id,
469 					    inccb->ccb_h.target_lun) !=
470 					    CAM_REQ_CMP){
471 				error = EINVAL;
472 				xpt_free_ccb(ccb);
473 				break;
474 			}
475 			/* Ensure all of our fields are correct */
476 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477 				      inccb->ccb_h.pinfo.priority);
478 			xpt_merge_ccb(ccb, inccb);
479 			xpt_path_lock(ccb->ccb_h.path);
480 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481 			xpt_path_unlock(ccb->ccb_h.path);
482 			bcopy(ccb, inccb, sizeof(union ccb));
483 			xpt_free_path(ccb->ccb_h.path);
484 			xpt_free_ccb(ccb);
485 			break;
486 
487 		case XPT_DEBUG: {
488 			union ccb ccb;
489 
490 			/*
491 			 * This is an immediate CCB, so it's okay to
492 			 * allocate it on the stack.
493 			 */
494 			memset(&ccb, 0, sizeof(ccb));
495 
496 			/*
497 			 * Create a path using the bus, target, and lun the
498 			 * user passed in.
499 			 */
500 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
501 					    inccb->ccb_h.path_id,
502 					    inccb->ccb_h.target_id,
503 					    inccb->ccb_h.target_lun) !=
504 					    CAM_REQ_CMP){
505 				error = EINVAL;
506 				break;
507 			}
508 			/* Ensure all of our fields are correct */
509 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
510 				      inccb->ccb_h.pinfo.priority);
511 			xpt_merge_ccb(&ccb, inccb);
512 			xpt_action(&ccb);
513 			bcopy(&ccb, inccb, sizeof(union ccb));
514 			xpt_free_path(ccb.ccb_h.path);
515 			break;
516 		}
517 		case XPT_DEV_MATCH: {
518 			struct cam_periph_map_info mapinfo;
519 			struct cam_path *old_path;
520 
521 			/*
522 			 * We can't deal with physical addresses for this
523 			 * type of transaction.
524 			 */
525 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526 			    CAM_DATA_VADDR) {
527 				error = EINVAL;
528 				break;
529 			}
530 
531 			/*
532 			 * Save this in case the caller had it set to
533 			 * something in particular.
534 			 */
535 			old_path = inccb->ccb_h.path;
536 
537 			/*
538 			 * We really don't need a path for the matching
539 			 * code.  The path is needed because of the
540 			 * debugging statements in xpt_action().  They
541 			 * assume that the CCB has a valid path.
542 			 */
543 			inccb->ccb_h.path = xpt_periph->path;
544 
545 			bzero(&mapinfo, sizeof(mapinfo));
546 
547 			/*
548 			 * Map the pattern and match buffers into kernel
549 			 * virtual address space.
550 			 */
551 			error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
552 
553 			if (error) {
554 				inccb->ccb_h.path = old_path;
555 				break;
556 			}
557 
558 			/*
559 			 * This is an immediate CCB, we can send it on directly.
560 			 */
561 			xpt_action(inccb);
562 
563 			/*
564 			 * Map the buffers back into user space.
565 			 */
566 			error = cam_periph_unmapmem(inccb, &mapinfo);
567 
568 			inccb->ccb_h.path = old_path;
569 			break;
570 		}
571 		default:
572 			error = ENOTSUP;
573 			break;
574 		}
575 		xpt_release_bus(bus);
576 		break;
577 	}
578 	/*
579 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
580 	 * with the periphal driver name and unit name filled in.  The other
581 	 * fields don't really matter as input.  The passthrough driver name
582 	 * ("pass"), and unit number are passed back in the ccb.  The current
583 	 * device generation number, and the index into the device peripheral
584 	 * driver list, and the status are also passed back.  Note that
585 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
586 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
587 	 * (or rather should be) impossible for the device peripheral driver
588 	 * list to change since we look at the whole thing in one pass, and
589 	 * we do it with lock protection.
590 	 *
591 	 */
592 	case CAMGETPASSTHRU: {
593 		union ccb *ccb;
594 		struct cam_periph *periph;
595 		struct periph_driver **p_drv;
596 		char   *name;
597 		u_int unit;
598 		bool base_periph_found;
599 
600 		ccb = (union ccb *)addr;
601 		unit = ccb->cgdl.unit_number;
602 		name = ccb->cgdl.periph_name;
603 		base_periph_found = false;
604 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
605 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
606 			ccb->csio.bio = NULL;
607 #endif
608 
609 		/*
610 		 * Sanity check -- make sure we don't get a null peripheral
611 		 * driver name.
612 		 */
613 		if (*ccb->cgdl.periph_name == '\0') {
614 			error = EINVAL;
615 			break;
616 		}
617 
618 		/* Keep the list from changing while we traverse it */
619 		xpt_lock_buses();
620 
621 		/* first find our driver in the list of drivers */
622 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
623 			if (strcmp((*p_drv)->driver_name, name) == 0)
624 				break;
625 
626 		if (*p_drv == NULL) {
627 			xpt_unlock_buses();
628 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
629 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
630 			*ccb->cgdl.periph_name = '\0';
631 			ccb->cgdl.unit_number = 0;
632 			error = ENOENT;
633 			break;
634 		}
635 
636 		/*
637 		 * Run through every peripheral instance of this driver
638 		 * and check to see whether it matches the unit passed
639 		 * in by the user.  If it does, get out of the loops and
640 		 * find the passthrough driver associated with that
641 		 * peripheral driver.
642 		 */
643 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
644 		     periph = TAILQ_NEXT(periph, unit_links)) {
645 			if (periph->unit_number == unit)
646 				break;
647 		}
648 		/*
649 		 * If we found the peripheral driver that the user passed
650 		 * in, go through all of the peripheral drivers for that
651 		 * particular device and look for a passthrough driver.
652 		 */
653 		if (periph != NULL) {
654 			struct cam_ed *device;
655 			int i;
656 
657 			base_periph_found = true;
658 			device = periph->path->device;
659 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
660 			     periph != NULL;
661 			     periph = SLIST_NEXT(periph, periph_links), i++) {
662 				/*
663 				 * Check to see whether we have a
664 				 * passthrough device or not.
665 				 */
666 				if (strcmp(periph->periph_name, "pass") == 0) {
667 					/*
668 					 * Fill in the getdevlist fields.
669 					 */
670 					strlcpy(ccb->cgdl.periph_name,
671 					       periph->periph_name,
672 					       sizeof(ccb->cgdl.periph_name));
673 					ccb->cgdl.unit_number =
674 						periph->unit_number;
675 					if (SLIST_NEXT(periph, periph_links))
676 						ccb->cgdl.status =
677 							CAM_GDEVLIST_MORE_DEVS;
678 					else
679 						ccb->cgdl.status =
680 						       CAM_GDEVLIST_LAST_DEVICE;
681 					ccb->cgdl.generation =
682 						device->generation;
683 					ccb->cgdl.index = i;
684 					/*
685 					 * Fill in some CCB header fields
686 					 * that the user may want.
687 					 */
688 					ccb->ccb_h.path_id =
689 						periph->path->bus->path_id;
690 					ccb->ccb_h.target_id =
691 						periph->path->target->target_id;
692 					ccb->ccb_h.target_lun =
693 						periph->path->device->lun_id;
694 					ccb->ccb_h.status = CAM_REQ_CMP;
695 					break;
696 				}
697 			}
698 		}
699 
700 		/*
701 		 * If the periph is null here, one of two things has
702 		 * happened.  The first possibility is that we couldn't
703 		 * find the unit number of the particular peripheral driver
704 		 * that the user is asking about.  e.g. the user asks for
705 		 * the passthrough driver for "da11".  We find the list of
706 		 * "da" peripherals all right, but there is no unit 11.
707 		 * The other possibility is that we went through the list
708 		 * of peripheral drivers attached to the device structure,
709 		 * but didn't find one with the name "pass".  Either way,
710 		 * we return ENOENT, since we couldn't find something.
711 		 */
712 		if (periph == NULL) {
713 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
714 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
715 			*ccb->cgdl.periph_name = '\0';
716 			ccb->cgdl.unit_number = 0;
717 			error = ENOENT;
718 			/*
719 			 * It is unfortunate that this is even necessary,
720 			 * but there are many, many clueless users out there.
721 			 * If this is true, the user is looking for the
722 			 * passthrough driver, but doesn't have one in his
723 			 * kernel.
724 			 */
725 			if (base_periph_found) {
726 				printf("xptioctl: pass driver is not in the "
727 				       "kernel\n");
728 				printf("xptioctl: put \"device pass\" in "
729 				       "your kernel config file\n");
730 			}
731 		}
732 		xpt_unlock_buses();
733 		break;
734 		}
735 	default:
736 		error = ENOTTY;
737 		break;
738 	}
739 
740 	return(error);
741 }
742 
743 static int
744 cam_module_event_handler(module_t mod, int what, void *arg)
745 {
746 	int error;
747 
748 	switch (what) {
749 	case MOD_LOAD:
750 		if ((error = xpt_init(NULL)) != 0)
751 			return (error);
752 		break;
753 	case MOD_UNLOAD:
754 		return EBUSY;
755 	default:
756 		return EOPNOTSUPP;
757 	}
758 
759 	return 0;
760 }
761 
762 static struct xpt_proto *
763 xpt_proto_find(cam_proto proto)
764 {
765 	struct xpt_proto **pp;
766 
767 	SET_FOREACH(pp, cam_xpt_proto_set) {
768 		if ((*pp)->proto == proto)
769 			return *pp;
770 	}
771 
772 	return NULL;
773 }
774 
775 static void
776 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
777 {
778 
779 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
780 		xpt_free_path(done_ccb->ccb_h.path);
781 		xpt_free_ccb(done_ccb);
782 	} else {
783 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
784 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
785 	}
786 	xpt_release_boot();
787 }
788 
789 /* thread to handle bus rescans */
790 static void
791 xpt_scanner_thread(void *dummy)
792 {
793 	union ccb	*ccb;
794 	struct mtx	*mtx;
795 	struct cam_ed	*device;
796 
797 	xpt_lock_buses();
798 	for (;;) {
799 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
800 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
801 			       "-", 0);
802 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
803 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
804 			xpt_unlock_buses();
805 
806 			/*
807 			 * We need to lock the device's mutex which we use as
808 			 * the path mutex. We can't do it directly because the
809 			 * cam_path in the ccb may wind up going away because
810 			 * the path lock may be dropped and the path retired in
811 			 * the completion callback. We do this directly to keep
812 			 * the reference counts in cam_path sane. We also have
813 			 * to copy the device pointer because ccb_h.path may
814 			 * be freed in the callback.
815 			 */
816 			mtx = xpt_path_mtx(ccb->ccb_h.path);
817 			device = ccb->ccb_h.path->device;
818 			xpt_acquire_device(device);
819 			mtx_lock(mtx);
820 			xpt_action(ccb);
821 			mtx_unlock(mtx);
822 			xpt_release_device(device);
823 
824 			xpt_lock_buses();
825 		}
826 	}
827 }
828 
829 void
830 xpt_rescan(union ccb *ccb)
831 {
832 	struct ccb_hdr *hdr;
833 
834 	/* Prepare request */
835 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
836 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
837 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
838 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
839 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
840 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
841 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
842 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
843 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
844 	else {
845 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
846 		xpt_free_path(ccb->ccb_h.path);
847 		xpt_free_ccb(ccb);
848 		return;
849 	}
850 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
851 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
852  		xpt_action_name(ccb->ccb_h.func_code)));
853 
854 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
855 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
856 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
857 	/* Don't make duplicate entries for the same paths. */
858 	xpt_lock_buses();
859 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
860 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
861 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
862 				wakeup(&xsoftc.ccb_scanq);
863 				xpt_unlock_buses();
864 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
865 				xpt_free_path(ccb->ccb_h.path);
866 				xpt_free_ccb(ccb);
867 				return;
868 			}
869 		}
870 	}
871 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
872 	xpt_hold_boot_locked();
873 	wakeup(&xsoftc.ccb_scanq);
874 	xpt_unlock_buses();
875 }
876 
877 /* Functions accessed by the peripheral drivers */
878 static int
879 xpt_init(void *dummy)
880 {
881 	struct cam_sim *xpt_sim;
882 	struct cam_path *path;
883 	struct cam_devq *devq;
884 	cam_status status;
885 	int error, i;
886 
887 	TAILQ_INIT(&xsoftc.xpt_busses);
888 	TAILQ_INIT(&xsoftc.ccb_scanq);
889 	STAILQ_INIT(&xsoftc.highpowerq);
890 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
891 
892 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
893 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
894 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
895 
896 #ifdef CAM_BOOT_DELAY
897 	/*
898 	 * Override this value at compile time to assist our users
899 	 * who don't use loader to boot a kernel.
900 	 */
901 	xsoftc.boot_delay = CAM_BOOT_DELAY;
902 #endif
903 
904 	/*
905 	 * The xpt layer is, itself, the equivalent of a SIM.
906 	 * Allow 16 ccbs in the ccb pool for it.  This should
907 	 * give decent parallelism when we probe buses and
908 	 * perform other XPT functions.
909 	 */
910 	devq = cam_simq_alloc(16);
911 	xpt_sim = cam_sim_alloc(xptaction,
912 				xptpoll,
913 				"xpt",
914 				/*softc*/NULL,
915 				/*unit*/0,
916 				/*mtx*/NULL,
917 				/*max_dev_transactions*/0,
918 				/*max_tagged_dev_transactions*/0,
919 				devq);
920 	if (xpt_sim == NULL)
921 		return (ENOMEM);
922 
923 	if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
924 		printf("xpt_init: xpt_bus_register failed with errno %d,"
925 		       " failing attach\n", error);
926 		return (EINVAL);
927 	}
928 
929 	/*
930 	 * Looking at the XPT from the SIM layer, the XPT is
931 	 * the equivalent of a peripheral driver.  Allocate
932 	 * a peripheral driver entry for us.
933 	 */
934 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
935 				      CAM_TARGET_WILDCARD,
936 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
937 		printf("xpt_init: xpt_create_path failed with status %#x,"
938 		       " failing attach\n", status);
939 		return (EINVAL);
940 	}
941 	xpt_path_lock(path);
942 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
943 			 path, NULL, 0, xpt_sim);
944 	xpt_path_unlock(path);
945 	xpt_free_path(path);
946 
947 	if (cam_num_doneqs < 1)
948 		cam_num_doneqs = 1 + mp_ncpus / 6;
949 	else if (cam_num_doneqs > MAXCPU)
950 		cam_num_doneqs = MAXCPU;
951 	for (i = 0; i < cam_num_doneqs; i++) {
952 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
953 		    MTX_DEF);
954 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
955 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
956 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
957 		if (error != 0) {
958 			cam_num_doneqs = i;
959 			break;
960 		}
961 	}
962 	if (cam_num_doneqs < 1) {
963 		printf("xpt_init: Cannot init completion queues "
964 		       "- failing attach\n");
965 		return (ENOMEM);
966 	}
967 
968 	mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
969 	STAILQ_INIT(&cam_async.cam_doneq);
970 	if (kproc_kthread_add(xpt_async_td, &cam_async,
971 		&cam_proc, NULL, 0, 0, "cam", "async") != 0) {
972 		printf("xpt_init: Cannot init async thread "
973 		       "- failing attach\n");
974 		return (ENOMEM);
975 	}
976 
977 	/*
978 	 * Register a callback for when interrupts are enabled.
979 	 */
980 	config_intrhook_oneshot(xpt_config, NULL);
981 
982 	return (0);
983 }
984 
985 static cam_status
986 xptregister(struct cam_periph *periph, void *arg)
987 {
988 	struct cam_sim *xpt_sim;
989 
990 	if (periph == NULL) {
991 		printf("xptregister: periph was NULL!!\n");
992 		return(CAM_REQ_CMP_ERR);
993 	}
994 
995 	xpt_sim = (struct cam_sim *)arg;
996 	xpt_sim->softc = periph;
997 	xpt_periph = periph;
998 	periph->softc = NULL;
999 
1000 	return(CAM_REQ_CMP);
1001 }
1002 
1003 int32_t
1004 xpt_add_periph(struct cam_periph *periph)
1005 {
1006 	struct cam_ed *device;
1007 	int32_t	 status;
1008 
1009 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1010 	device = periph->path->device;
1011 	status = CAM_REQ_CMP;
1012 	if (device != NULL) {
1013 		mtx_lock(&device->target->bus->eb_mtx);
1014 		device->generation++;
1015 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1016 		mtx_unlock(&device->target->bus->eb_mtx);
1017 		atomic_add_32(&xsoftc.xpt_generation, 1);
1018 	}
1019 
1020 	return (status);
1021 }
1022 
1023 void
1024 xpt_remove_periph(struct cam_periph *periph)
1025 {
1026 	struct cam_ed *device;
1027 
1028 	device = periph->path->device;
1029 	if (device != NULL) {
1030 		mtx_lock(&device->target->bus->eb_mtx);
1031 		device->generation++;
1032 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1033 		mtx_unlock(&device->target->bus->eb_mtx);
1034 		atomic_add_32(&xsoftc.xpt_generation, 1);
1035 	}
1036 }
1037 
1038 void
1039 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1040 {
1041 	char buf[128];
1042 	struct sbuf sb;
1043 
1044 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1045 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1046 	xpt_announce_periph_sbuf(periph, &sb, announce_string);
1047 	(void)sbuf_finish(&sb);
1048 }
1049 
1050 void
1051 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1052     char *announce_string)
1053 {
1054 	struct	cam_path *path = periph->path;
1055 	struct  xpt_proto *proto;
1056 
1057 	cam_periph_assert(periph, MA_OWNED);
1058 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1059 
1060 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1061 	    periph->periph_name, periph->unit_number,
1062 	    path->bus->sim->sim_name,
1063 	    path->bus->sim->unit_number,
1064 	    path->bus->sim->bus_id,
1065 	    path->bus->path_id,
1066 	    path->target->target_id,
1067 	    (uintmax_t)path->device->lun_id);
1068 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1069 	proto = xpt_proto_find(path->device->protocol);
1070 	if (proto)
1071 		proto->ops->announce_sbuf(path->device, sb);
1072 	else
1073 		sbuf_printf(sb, "Unknown protocol device %d\n",
1074 		    path->device->protocol);
1075 	if (path->device->serial_num_len > 0) {
1076 		/* Don't wrap the screen  - print only the first 60 chars */
1077 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1078 		    periph->periph_name, periph->unit_number,
1079 		    path->device->serial_num);
1080 	}
1081 	/* Announce transport details. */
1082 	path->bus->xport->ops->announce_sbuf(periph, sb);
1083 	/* Announce command queueing. */
1084 	if (path->device->inq_flags & SID_CmdQue
1085 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1086 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1087 		    periph->periph_name, periph->unit_number);
1088 	}
1089 	/* Announce caller's details if they've passed in. */
1090 	if (announce_string != NULL)
1091 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1092 		    periph->unit_number, announce_string);
1093 }
1094 
1095 void
1096 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1097 {
1098 	if (quirks != 0) {
1099 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1100 		    periph->unit_number, quirks, bit_string);
1101 	}
1102 }
1103 
1104 void
1105 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1106 			 int quirks, char *bit_string)
1107 {
1108 	if (quirks != 0) {
1109 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1110 		    periph->unit_number, quirks, bit_string);
1111 	}
1112 }
1113 
1114 void
1115 xpt_denounce_periph(struct cam_periph *periph)
1116 {
1117 	char buf[128];
1118 	struct sbuf sb;
1119 
1120 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1121 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1122 	xpt_denounce_periph_sbuf(periph, &sb);
1123 	(void)sbuf_finish(&sb);
1124 }
1125 
1126 void
1127 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1128 {
1129 	struct cam_path *path = periph->path;
1130 	struct xpt_proto *proto;
1131 
1132 	cam_periph_assert(periph, MA_OWNED);
1133 
1134 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1135 	    periph->periph_name, periph->unit_number,
1136 	    path->bus->sim->sim_name,
1137 	    path->bus->sim->unit_number,
1138 	    path->bus->sim->bus_id,
1139 	    path->bus->path_id,
1140 	    path->target->target_id,
1141 	    (uintmax_t)path->device->lun_id);
1142 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1143 	proto = xpt_proto_find(path->device->protocol);
1144 	if (proto)
1145 		proto->ops->denounce_sbuf(path->device, sb);
1146 	else
1147 		sbuf_printf(sb, "Unknown protocol device %d",
1148 		    path->device->protocol);
1149 	if (path->device->serial_num_len > 0)
1150 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1151 	sbuf_cat(sb, " detached\n");
1152 }
1153 
1154 int
1155 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1156 {
1157 	int ret = -1, l, o;
1158 	struct ccb_dev_advinfo cdai;
1159 	struct scsi_vpd_device_id *did;
1160 	struct scsi_vpd_id_descriptor *idd;
1161 
1162 	xpt_path_assert(path, MA_OWNED);
1163 
1164 	memset(&cdai, 0, sizeof(cdai));
1165 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1166 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1167 	cdai.flags = CDAI_FLAG_NONE;
1168 	cdai.bufsiz = len;
1169 	cdai.buf = buf;
1170 
1171 	if (!strcmp(attr, "GEOM::ident"))
1172 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1173 	else if (!strcmp(attr, "GEOM::physpath"))
1174 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1175 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1176 		 strcmp(attr, "GEOM::lunname") == 0) {
1177 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1178 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1179 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1180 		if (cdai.buf == NULL) {
1181 			ret = ENOMEM;
1182 			goto out;
1183 		}
1184 	} else
1185 		goto out;
1186 
1187 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1188 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1189 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1190 	if (cdai.provsiz == 0)
1191 		goto out;
1192 	switch(cdai.buftype) {
1193 	case CDAI_TYPE_SCSI_DEVID:
1194 		did = (struct scsi_vpd_device_id *)cdai.buf;
1195 		if (strcmp(attr, "GEOM::lunid") == 0) {
1196 			idd = scsi_get_devid(did, cdai.provsiz,
1197 			    scsi_devid_is_lun_naa);
1198 			if (idd == NULL)
1199 				idd = scsi_get_devid(did, cdai.provsiz,
1200 				    scsi_devid_is_lun_eui64);
1201 			if (idd == NULL)
1202 				idd = scsi_get_devid(did, cdai.provsiz,
1203 				    scsi_devid_is_lun_uuid);
1204 			if (idd == NULL)
1205 				idd = scsi_get_devid(did, cdai.provsiz,
1206 				    scsi_devid_is_lun_md5);
1207 		} else
1208 			idd = NULL;
1209 
1210 		if (idd == NULL)
1211 			idd = scsi_get_devid(did, cdai.provsiz,
1212 			    scsi_devid_is_lun_t10);
1213 		if (idd == NULL)
1214 			idd = scsi_get_devid(did, cdai.provsiz,
1215 			    scsi_devid_is_lun_name);
1216 		if (idd == NULL)
1217 			break;
1218 
1219 		ret = 0;
1220 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1221 		    SVPD_ID_CODESET_ASCII) {
1222 			if (idd->length < len) {
1223 				for (l = 0; l < idd->length; l++)
1224 					buf[l] = idd->identifier[l] ?
1225 					    idd->identifier[l] : ' ';
1226 				buf[l] = 0;
1227 			} else
1228 				ret = EFAULT;
1229 			break;
1230 		}
1231 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1232 		    SVPD_ID_CODESET_UTF8) {
1233 			l = strnlen(idd->identifier, idd->length);
1234 			if (l < len) {
1235 				bcopy(idd->identifier, buf, l);
1236 				buf[l] = 0;
1237 			} else
1238 				ret = EFAULT;
1239 			break;
1240 		}
1241 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1242 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1243 			if ((idd->length - 2) * 2 + 4 >= len) {
1244 				ret = EFAULT;
1245 				break;
1246 			}
1247 			for (l = 2, o = 0; l < idd->length; l++) {
1248 				if (l == 6 || l == 8 || l == 10 || l == 12)
1249 				    o += sprintf(buf + o, "-");
1250 				o += sprintf(buf + o, "%02x",
1251 				    idd->identifier[l]);
1252 			}
1253 			break;
1254 		}
1255 		if (idd->length * 2 < len) {
1256 			for (l = 0; l < idd->length; l++)
1257 				sprintf(buf + l * 2, "%02x",
1258 				    idd->identifier[l]);
1259 		} else
1260 				ret = EFAULT;
1261 		break;
1262 	default:
1263 		if (cdai.provsiz < len) {
1264 			cdai.buf[cdai.provsiz] = 0;
1265 			ret = 0;
1266 		} else
1267 			ret = EFAULT;
1268 		break;
1269 	}
1270 
1271 out:
1272 	if ((char *)cdai.buf != buf)
1273 		free(cdai.buf, M_CAMXPT);
1274 	return ret;
1275 }
1276 
1277 static dev_match_ret
1278 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1279 	    struct cam_eb *bus)
1280 {
1281 	dev_match_ret retval;
1282 	u_int i;
1283 
1284 	retval = DM_RET_NONE;
1285 
1286 	/*
1287 	 * If we aren't given something to match against, that's an error.
1288 	 */
1289 	if (bus == NULL)
1290 		return(DM_RET_ERROR);
1291 
1292 	/*
1293 	 * If there are no match entries, then this bus matches no
1294 	 * matter what.
1295 	 */
1296 	if ((patterns == NULL) || (num_patterns == 0))
1297 		return(DM_RET_DESCEND | DM_RET_COPY);
1298 
1299 	for (i = 0; i < num_patterns; i++) {
1300 		struct bus_match_pattern *cur_pattern;
1301 		struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1302 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1303 
1304 		/*
1305 		 * If the pattern in question isn't for a bus node, we
1306 		 * aren't interested.  However, we do indicate to the
1307 		 * calling routine that we should continue descending the
1308 		 * tree, since the user wants to match against lower-level
1309 		 * EDT elements.
1310 		 */
1311 		if (patterns[i].type == DEV_MATCH_DEVICE &&
1312 		    (dp->flags & DEV_MATCH_PATH) != 0 &&
1313 		    dp->path_id != bus->path_id)
1314 			continue;
1315 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1316 		    (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1317 		    pp->path_id != bus->path_id)
1318 			continue;
1319 		if (patterns[i].type != DEV_MATCH_BUS) {
1320 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1321 				retval |= DM_RET_DESCEND;
1322 			continue;
1323 		}
1324 
1325 		cur_pattern = &patterns[i].pattern.bus_pattern;
1326 
1327 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1328 		 && (cur_pattern->path_id != bus->path_id))
1329 			continue;
1330 
1331 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1332 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1333 			continue;
1334 
1335 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1336 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1337 			continue;
1338 
1339 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1340 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1341 			     DEV_IDLEN) != 0))
1342 			continue;
1343 
1344 		/*
1345 		 * If we get to this point, the user definitely wants
1346 		 * information on this bus.  So tell the caller to copy the
1347 		 * data out.
1348 		 */
1349 		retval |= DM_RET_COPY;
1350 
1351 		/*
1352 		 * If the return action has been set to descend, then we
1353 		 * know that we've already seen a non-bus matching
1354 		 * expression, therefore we need to further descend the tree.
1355 		 * This won't change by continuing around the loop, so we
1356 		 * go ahead and return.  If we haven't seen a non-bus
1357 		 * matching expression, we keep going around the loop until
1358 		 * we exhaust the matching expressions.  We'll set the stop
1359 		 * flag once we fall out of the loop.
1360 		 */
1361 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1362 			return(retval);
1363 	}
1364 
1365 	/*
1366 	 * If the return action hasn't been set to descend yet, that means
1367 	 * we haven't seen anything other than bus matching patterns.  So
1368 	 * tell the caller to stop descending the tree -- the user doesn't
1369 	 * want to match against lower level tree elements.
1370 	 */
1371 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1372 		retval |= DM_RET_STOP;
1373 
1374 	return(retval);
1375 }
1376 
1377 static dev_match_ret
1378 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1379 	       struct cam_ed *device)
1380 {
1381 	dev_match_ret retval;
1382 	u_int i;
1383 
1384 	retval = DM_RET_NONE;
1385 
1386 	/*
1387 	 * If we aren't given something to match against, that's an error.
1388 	 */
1389 	if (device == NULL)
1390 		return(DM_RET_ERROR);
1391 
1392 	/*
1393 	 * If there are no match entries, then this device matches no
1394 	 * matter what.
1395 	 */
1396 	if ((patterns == NULL) || (num_patterns == 0))
1397 		return(DM_RET_DESCEND | DM_RET_COPY);
1398 
1399 	for (i = 0; i < num_patterns; i++) {
1400 		struct device_match_pattern *cur_pattern;
1401 		struct scsi_vpd_device_id *device_id_page;
1402 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1403 
1404 		/*
1405 		 * If the pattern in question isn't for a device node, we
1406 		 * aren't interested.
1407 		 */
1408 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1409 		    (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1410 		    pp->target_id != device->target->target_id)
1411 			continue;
1412 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1413 		    (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1414 		    pp->target_lun != device->lun_id)
1415 			continue;
1416 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1417 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1418 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1419 				retval |= DM_RET_DESCEND;
1420 			continue;
1421 		}
1422 
1423 		cur_pattern = &patterns[i].pattern.device_pattern;
1424 
1425 		/* Error out if mutually exclusive options are specified. */
1426 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1427 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1428 			return(DM_RET_ERROR);
1429 
1430 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1431 		 && (cur_pattern->path_id != device->target->bus->path_id))
1432 			continue;
1433 
1434 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1435 		 && (cur_pattern->target_id != device->target->target_id))
1436 			continue;
1437 
1438 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1439 		 && (cur_pattern->target_lun != device->lun_id))
1440 			continue;
1441 
1442 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1443 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1444 				    (caddr_t)&cur_pattern->data.inq_pat,
1445 				    1, sizeof(cur_pattern->data.inq_pat),
1446 				    scsi_static_inquiry_match) == NULL))
1447 			continue;
1448 
1449 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1450 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1451 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1452 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1453 				      device->device_id_len
1454 				    - SVPD_DEVICE_ID_HDR_LEN,
1455 				      cur_pattern->data.devid_pat.id,
1456 				      cur_pattern->data.devid_pat.id_len) != 0))
1457 			continue;
1458 
1459 		/*
1460 		 * If we get to this point, the user definitely wants
1461 		 * information on this device.  So tell the caller to copy
1462 		 * the data out.
1463 		 */
1464 		retval |= DM_RET_COPY;
1465 
1466 		/*
1467 		 * If the return action has been set to descend, then we
1468 		 * know that we've already seen a peripheral matching
1469 		 * expression, therefore we need to further descend the tree.
1470 		 * This won't change by continuing around the loop, so we
1471 		 * go ahead and return.  If we haven't seen a peripheral
1472 		 * matching expression, we keep going around the loop until
1473 		 * we exhaust the matching expressions.  We'll set the stop
1474 		 * flag once we fall out of the loop.
1475 		 */
1476 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1477 			return(retval);
1478 	}
1479 
1480 	/*
1481 	 * If the return action hasn't been set to descend yet, that means
1482 	 * we haven't seen any peripheral matching patterns.  So tell the
1483 	 * caller to stop descending the tree -- the user doesn't want to
1484 	 * match against lower level tree elements.
1485 	 */
1486 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1487 		retval |= DM_RET_STOP;
1488 
1489 	return(retval);
1490 }
1491 
1492 /*
1493  * Match a single peripheral against any number of match patterns.
1494  */
1495 static dev_match_ret
1496 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1497 	       struct cam_periph *periph)
1498 {
1499 	dev_match_ret retval;
1500 	u_int i;
1501 
1502 	/*
1503 	 * If we aren't given something to match against, that's an error.
1504 	 */
1505 	if (periph == NULL)
1506 		return(DM_RET_ERROR);
1507 
1508 	/*
1509 	 * If there are no match entries, then this peripheral matches no
1510 	 * matter what.
1511 	 */
1512 	if ((patterns == NULL) || (num_patterns == 0))
1513 		return(DM_RET_STOP | DM_RET_COPY);
1514 
1515 	/*
1516 	 * There aren't any nodes below a peripheral node, so there's no
1517 	 * reason to descend the tree any further.
1518 	 */
1519 	retval = DM_RET_STOP;
1520 
1521 	for (i = 0; i < num_patterns; i++) {
1522 		struct periph_match_pattern *cur_pattern;
1523 
1524 		/*
1525 		 * If the pattern in question isn't for a peripheral, we
1526 		 * aren't interested.
1527 		 */
1528 		if (patterns[i].type != DEV_MATCH_PERIPH)
1529 			continue;
1530 
1531 		cur_pattern = &patterns[i].pattern.periph_pattern;
1532 
1533 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1534 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1535 			continue;
1536 
1537 		/*
1538 		 * For the target and lun id's, we have to make sure the
1539 		 * target and lun pointers aren't NULL.  The xpt peripheral
1540 		 * has a wildcard target and device.
1541 		 */
1542 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1543 		 && ((periph->path->target == NULL)
1544 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1545 			continue;
1546 
1547 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1548 		 && ((periph->path->device == NULL)
1549 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1550 			continue;
1551 
1552 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1553 		 && (cur_pattern->unit_number != periph->unit_number))
1554 			continue;
1555 
1556 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1557 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1558 			     DEV_IDLEN) != 0))
1559 			continue;
1560 
1561 		/*
1562 		 * If we get to this point, the user definitely wants
1563 		 * information on this peripheral.  So tell the caller to
1564 		 * copy the data out.
1565 		 */
1566 		retval |= DM_RET_COPY;
1567 
1568 		/*
1569 		 * The return action has already been set to stop, since
1570 		 * peripherals don't have any nodes below them in the EDT.
1571 		 */
1572 		return(retval);
1573 	}
1574 
1575 	/*
1576 	 * If we get to this point, the peripheral that was passed in
1577 	 * doesn't match any of the patterns.
1578 	 */
1579 	return(retval);
1580 }
1581 
1582 static int
1583 xptedtbusfunc(struct cam_eb *bus, void *arg)
1584 {
1585 	struct ccb_dev_match *cdm;
1586 	struct cam_et *target;
1587 	dev_match_ret retval;
1588 
1589 	cdm = (struct ccb_dev_match *)arg;
1590 
1591 	/*
1592 	 * If our position is for something deeper in the tree, that means
1593 	 * that we've already seen this node.  So, we keep going down.
1594 	 */
1595 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1596 	 && (cdm->pos.cookie.bus == bus)
1597 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1598 	 && (cdm->pos.cookie.target != NULL))
1599 		retval = DM_RET_DESCEND;
1600 	else
1601 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1602 
1603 	/*
1604 	 * If we got an error, bail out of the search.
1605 	 */
1606 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1607 		cdm->status = CAM_DEV_MATCH_ERROR;
1608 		return(0);
1609 	}
1610 
1611 	/*
1612 	 * If the copy flag is set, copy this bus out.
1613 	 */
1614 	if (retval & DM_RET_COPY) {
1615 		int spaceleft, j;
1616 
1617 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1618 			sizeof(struct dev_match_result));
1619 
1620 		/*
1621 		 * If we don't have enough space to put in another
1622 		 * match result, save our position and tell the
1623 		 * user there are more devices to check.
1624 		 */
1625 		if (spaceleft < sizeof(struct dev_match_result)) {
1626 			bzero(&cdm->pos, sizeof(cdm->pos));
1627 			cdm->pos.position_type =
1628 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1629 
1630 			cdm->pos.cookie.bus = bus;
1631 			cdm->pos.generations[CAM_BUS_GENERATION]=
1632 				xsoftc.bus_generation;
1633 			cdm->status = CAM_DEV_MATCH_MORE;
1634 			return(0);
1635 		}
1636 		j = cdm->num_matches;
1637 		cdm->num_matches++;
1638 		cdm->matches[j].type = DEV_MATCH_BUS;
1639 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1640 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1641 		cdm->matches[j].result.bus_result.unit_number =
1642 			bus->sim->unit_number;
1643 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1644 			bus->sim->sim_name,
1645 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1646 	}
1647 
1648 	/*
1649 	 * If the user is only interested in buses, there's no
1650 	 * reason to descend to the next level in the tree.
1651 	 */
1652 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1653 		return(1);
1654 
1655 	/*
1656 	 * If there is a target generation recorded, check it to
1657 	 * make sure the target list hasn't changed.
1658 	 */
1659 	mtx_lock(&bus->eb_mtx);
1660 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1661 	 && (cdm->pos.cookie.bus == bus)
1662 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1663 	 && (cdm->pos.cookie.target != NULL)) {
1664 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1665 		    bus->generation)) {
1666 			mtx_unlock(&bus->eb_mtx);
1667 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1668 			return (0);
1669 		}
1670 		target = (struct cam_et *)cdm->pos.cookie.target;
1671 		target->refcount++;
1672 	} else
1673 		target = NULL;
1674 	mtx_unlock(&bus->eb_mtx);
1675 
1676 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1677 }
1678 
1679 static int
1680 xptedttargetfunc(struct cam_et *target, void *arg)
1681 {
1682 	struct ccb_dev_match *cdm;
1683 	struct cam_eb *bus;
1684 	struct cam_ed *device;
1685 
1686 	cdm = (struct ccb_dev_match *)arg;
1687 	bus = target->bus;
1688 
1689 	/*
1690 	 * If there is a device list generation recorded, check it to
1691 	 * make sure the device list hasn't changed.
1692 	 */
1693 	mtx_lock(&bus->eb_mtx);
1694 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1695 	 && (cdm->pos.cookie.bus == bus)
1696 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1697 	 && (cdm->pos.cookie.target == target)
1698 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1699 	 && (cdm->pos.cookie.device != NULL)) {
1700 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1701 		    target->generation) {
1702 			mtx_unlock(&bus->eb_mtx);
1703 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1704 			return(0);
1705 		}
1706 		device = (struct cam_ed *)cdm->pos.cookie.device;
1707 		device->refcount++;
1708 	} else
1709 		device = NULL;
1710 	mtx_unlock(&bus->eb_mtx);
1711 
1712 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1713 }
1714 
1715 static int
1716 xptedtdevicefunc(struct cam_ed *device, void *arg)
1717 {
1718 	struct cam_eb *bus;
1719 	struct cam_periph *periph;
1720 	struct ccb_dev_match *cdm;
1721 	dev_match_ret retval;
1722 
1723 	cdm = (struct ccb_dev_match *)arg;
1724 	bus = device->target->bus;
1725 
1726 	/*
1727 	 * If our position is for something deeper in the tree, that means
1728 	 * that we've already seen this node.  So, we keep going down.
1729 	 */
1730 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1731 	 && (cdm->pos.cookie.device == device)
1732 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1733 	 && (cdm->pos.cookie.periph != NULL))
1734 		retval = DM_RET_DESCEND;
1735 	else
1736 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1737 					device);
1738 
1739 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1740 		cdm->status = CAM_DEV_MATCH_ERROR;
1741 		return(0);
1742 	}
1743 
1744 	/*
1745 	 * If the copy flag is set, copy this device out.
1746 	 */
1747 	if (retval & DM_RET_COPY) {
1748 		int spaceleft, j;
1749 
1750 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1751 			sizeof(struct dev_match_result));
1752 
1753 		/*
1754 		 * If we don't have enough space to put in another
1755 		 * match result, save our position and tell the
1756 		 * user there are more devices to check.
1757 		 */
1758 		if (spaceleft < sizeof(struct dev_match_result)) {
1759 			bzero(&cdm->pos, sizeof(cdm->pos));
1760 			cdm->pos.position_type =
1761 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1762 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1763 
1764 			cdm->pos.cookie.bus = device->target->bus;
1765 			cdm->pos.generations[CAM_BUS_GENERATION]=
1766 				xsoftc.bus_generation;
1767 			cdm->pos.cookie.target = device->target;
1768 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1769 				device->target->bus->generation;
1770 			cdm->pos.cookie.device = device;
1771 			cdm->pos.generations[CAM_DEV_GENERATION] =
1772 				device->target->generation;
1773 			cdm->status = CAM_DEV_MATCH_MORE;
1774 			return(0);
1775 		}
1776 		j = cdm->num_matches;
1777 		cdm->num_matches++;
1778 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1779 		cdm->matches[j].result.device_result.path_id =
1780 			device->target->bus->path_id;
1781 		cdm->matches[j].result.device_result.target_id =
1782 			device->target->target_id;
1783 		cdm->matches[j].result.device_result.target_lun =
1784 			device->lun_id;
1785 		cdm->matches[j].result.device_result.protocol =
1786 			device->protocol;
1787 		bcopy(&device->inq_data,
1788 		      &cdm->matches[j].result.device_result.inq_data,
1789 		      sizeof(struct scsi_inquiry_data));
1790 		bcopy(&device->ident_data,
1791 		      &cdm->matches[j].result.device_result.ident_data,
1792 		      sizeof(struct ata_params));
1793 
1794 		/* Let the user know whether this device is unconfigured */
1795 		if (device->flags & CAM_DEV_UNCONFIGURED)
1796 			cdm->matches[j].result.device_result.flags =
1797 				DEV_RESULT_UNCONFIGURED;
1798 		else
1799 			cdm->matches[j].result.device_result.flags =
1800 				DEV_RESULT_NOFLAG;
1801 	}
1802 
1803 	/*
1804 	 * If the user isn't interested in peripherals, don't descend
1805 	 * the tree any further.
1806 	 */
1807 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1808 		return(1);
1809 
1810 	/*
1811 	 * If there is a peripheral list generation recorded, make sure
1812 	 * it hasn't changed.
1813 	 */
1814 	xpt_lock_buses();
1815 	mtx_lock(&bus->eb_mtx);
1816 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1817 	 && (cdm->pos.cookie.bus == bus)
1818 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1819 	 && (cdm->pos.cookie.target == device->target)
1820 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1821 	 && (cdm->pos.cookie.device == device)
1822 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1823 	 && (cdm->pos.cookie.periph != NULL)) {
1824 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1825 		    device->generation) {
1826 			mtx_unlock(&bus->eb_mtx);
1827 			xpt_unlock_buses();
1828 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1829 			return(0);
1830 		}
1831 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1832 		periph->refcount++;
1833 	} else
1834 		periph = NULL;
1835 	mtx_unlock(&bus->eb_mtx);
1836 	xpt_unlock_buses();
1837 
1838 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1839 }
1840 
1841 static int
1842 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1843 {
1844 	struct ccb_dev_match *cdm;
1845 	dev_match_ret retval;
1846 
1847 	cdm = (struct ccb_dev_match *)arg;
1848 
1849 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1850 
1851 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1852 		cdm->status = CAM_DEV_MATCH_ERROR;
1853 		return(0);
1854 	}
1855 
1856 	/*
1857 	 * If the copy flag is set, copy this peripheral out.
1858 	 */
1859 	if (retval & DM_RET_COPY) {
1860 		int spaceleft, j;
1861 		size_t l;
1862 
1863 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1864 			sizeof(struct dev_match_result));
1865 
1866 		/*
1867 		 * If we don't have enough space to put in another
1868 		 * match result, save our position and tell the
1869 		 * user there are more devices to check.
1870 		 */
1871 		if (spaceleft < sizeof(struct dev_match_result)) {
1872 			bzero(&cdm->pos, sizeof(cdm->pos));
1873 			cdm->pos.position_type =
1874 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1875 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1876 				CAM_DEV_POS_PERIPH;
1877 
1878 			cdm->pos.cookie.bus = periph->path->bus;
1879 			cdm->pos.generations[CAM_BUS_GENERATION]=
1880 				xsoftc.bus_generation;
1881 			cdm->pos.cookie.target = periph->path->target;
1882 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1883 				periph->path->bus->generation;
1884 			cdm->pos.cookie.device = periph->path->device;
1885 			cdm->pos.generations[CAM_DEV_GENERATION] =
1886 				periph->path->target->generation;
1887 			cdm->pos.cookie.periph = periph;
1888 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1889 				periph->path->device->generation;
1890 			cdm->status = CAM_DEV_MATCH_MORE;
1891 			return(0);
1892 		}
1893 
1894 		j = cdm->num_matches;
1895 		cdm->num_matches++;
1896 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1897 		cdm->matches[j].result.periph_result.path_id =
1898 			periph->path->bus->path_id;
1899 		cdm->matches[j].result.periph_result.target_id =
1900 			periph->path->target->target_id;
1901 		cdm->matches[j].result.periph_result.target_lun =
1902 			periph->path->device->lun_id;
1903 		cdm->matches[j].result.periph_result.unit_number =
1904 			periph->unit_number;
1905 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1906 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
1907 			periph->periph_name, l);
1908 	}
1909 
1910 	return(1);
1911 }
1912 
1913 static int
1914 xptedtmatch(struct ccb_dev_match *cdm)
1915 {
1916 	struct cam_eb *bus;
1917 	int ret;
1918 
1919 	cdm->num_matches = 0;
1920 
1921 	/*
1922 	 * Check the bus list generation.  If it has changed, the user
1923 	 * needs to reset everything and start over.
1924 	 */
1925 	xpt_lock_buses();
1926 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1927 	 && (cdm->pos.cookie.bus != NULL)) {
1928 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1929 		    xsoftc.bus_generation) {
1930 			xpt_unlock_buses();
1931 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1932 			return(0);
1933 		}
1934 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1935 		bus->refcount++;
1936 	} else
1937 		bus = NULL;
1938 	xpt_unlock_buses();
1939 
1940 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1941 
1942 	/*
1943 	 * If we get back 0, that means that we had to stop before fully
1944 	 * traversing the EDT.  It also means that one of the subroutines
1945 	 * has set the status field to the proper value.  If we get back 1,
1946 	 * we've fully traversed the EDT and copied out any matching entries.
1947 	 */
1948 	if (ret == 1)
1949 		cdm->status = CAM_DEV_MATCH_LAST;
1950 
1951 	return(ret);
1952 }
1953 
1954 static int
1955 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1956 {
1957 	struct cam_periph *periph;
1958 	struct ccb_dev_match *cdm;
1959 
1960 	cdm = (struct ccb_dev_match *)arg;
1961 
1962 	xpt_lock_buses();
1963 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1964 	 && (cdm->pos.cookie.pdrv == pdrv)
1965 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1966 	 && (cdm->pos.cookie.periph != NULL)) {
1967 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1968 		    (*pdrv)->generation) {
1969 			xpt_unlock_buses();
1970 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1971 			return(0);
1972 		}
1973 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1974 		periph->refcount++;
1975 	} else
1976 		periph = NULL;
1977 	xpt_unlock_buses();
1978 
1979 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1980 }
1981 
1982 static int
1983 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1984 {
1985 	struct ccb_dev_match *cdm;
1986 	dev_match_ret retval;
1987 
1988 	cdm = (struct ccb_dev_match *)arg;
1989 
1990 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1991 
1992 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1993 		cdm->status = CAM_DEV_MATCH_ERROR;
1994 		return(0);
1995 	}
1996 
1997 	/*
1998 	 * If the copy flag is set, copy this peripheral out.
1999 	 */
2000 	if (retval & DM_RET_COPY) {
2001 		int spaceleft, j;
2002 		size_t l;
2003 
2004 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2005 			sizeof(struct dev_match_result));
2006 
2007 		/*
2008 		 * If we don't have enough space to put in another
2009 		 * match result, save our position and tell the
2010 		 * user there are more devices to check.
2011 		 */
2012 		if (spaceleft < sizeof(struct dev_match_result)) {
2013 			struct periph_driver **pdrv;
2014 
2015 			pdrv = NULL;
2016 			bzero(&cdm->pos, sizeof(cdm->pos));
2017 			cdm->pos.position_type =
2018 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2019 				CAM_DEV_POS_PERIPH;
2020 
2021 			/*
2022 			 * This may look a bit non-sensical, but it is
2023 			 * actually quite logical.  There are very few
2024 			 * peripheral drivers, and bloating every peripheral
2025 			 * structure with a pointer back to its parent
2026 			 * peripheral driver linker set entry would cost
2027 			 * more in the long run than doing this quick lookup.
2028 			 */
2029 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2030 				if (strcmp((*pdrv)->driver_name,
2031 				    periph->periph_name) == 0)
2032 					break;
2033 			}
2034 
2035 			if (*pdrv == NULL) {
2036 				cdm->status = CAM_DEV_MATCH_ERROR;
2037 				return(0);
2038 			}
2039 
2040 			cdm->pos.cookie.pdrv = pdrv;
2041 			/*
2042 			 * The periph generation slot does double duty, as
2043 			 * does the periph pointer slot.  They are used for
2044 			 * both edt and pdrv lookups and positioning.
2045 			 */
2046 			cdm->pos.cookie.periph = periph;
2047 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2048 				(*pdrv)->generation;
2049 			cdm->status = CAM_DEV_MATCH_MORE;
2050 			return(0);
2051 		}
2052 
2053 		j = cdm->num_matches;
2054 		cdm->num_matches++;
2055 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2056 		cdm->matches[j].result.periph_result.path_id =
2057 			periph->path->bus->path_id;
2058 
2059 		/*
2060 		 * The transport layer peripheral doesn't have a target or
2061 		 * lun.
2062 		 */
2063 		if (periph->path->target)
2064 			cdm->matches[j].result.periph_result.target_id =
2065 				periph->path->target->target_id;
2066 		else
2067 			cdm->matches[j].result.periph_result.target_id =
2068 				CAM_TARGET_WILDCARD;
2069 
2070 		if (periph->path->device)
2071 			cdm->matches[j].result.periph_result.target_lun =
2072 				periph->path->device->lun_id;
2073 		else
2074 			cdm->matches[j].result.periph_result.target_lun =
2075 				CAM_LUN_WILDCARD;
2076 
2077 		cdm->matches[j].result.periph_result.unit_number =
2078 			periph->unit_number;
2079 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2080 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2081 			periph->periph_name, l);
2082 	}
2083 
2084 	return(1);
2085 }
2086 
2087 static int
2088 xptperiphlistmatch(struct ccb_dev_match *cdm)
2089 {
2090 	int ret;
2091 
2092 	cdm->num_matches = 0;
2093 
2094 	/*
2095 	 * At this point in the edt traversal function, we check the bus
2096 	 * list generation to make sure that no buses have been added or
2097 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2098 	 * For the peripheral driver list traversal function, however, we
2099 	 * don't have to worry about new peripheral driver types coming or
2100 	 * going; they're in a linker set, and therefore can't change
2101 	 * without a recompile.
2102 	 */
2103 
2104 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2105 	 && (cdm->pos.cookie.pdrv != NULL))
2106 		ret = xptpdrvtraverse(
2107 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2108 				xptplistpdrvfunc, cdm);
2109 	else
2110 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2111 
2112 	/*
2113 	 * If we get back 0, that means that we had to stop before fully
2114 	 * traversing the peripheral driver tree.  It also means that one of
2115 	 * the subroutines has set the status field to the proper value.  If
2116 	 * we get back 1, we've fully traversed the EDT and copied out any
2117 	 * matching entries.
2118 	 */
2119 	if (ret == 1)
2120 		cdm->status = CAM_DEV_MATCH_LAST;
2121 
2122 	return(ret);
2123 }
2124 
2125 static int
2126 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2127 {
2128 	struct cam_eb *bus, *next_bus;
2129 	int retval;
2130 
2131 	retval = 1;
2132 	if (start_bus)
2133 		bus = start_bus;
2134 	else {
2135 		xpt_lock_buses();
2136 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2137 		if (bus == NULL) {
2138 			xpt_unlock_buses();
2139 			return (retval);
2140 		}
2141 		bus->refcount++;
2142 		xpt_unlock_buses();
2143 	}
2144 	for (; bus != NULL; bus = next_bus) {
2145 		retval = tr_func(bus, arg);
2146 		if (retval == 0) {
2147 			xpt_release_bus(bus);
2148 			break;
2149 		}
2150 		xpt_lock_buses();
2151 		next_bus = TAILQ_NEXT(bus, links);
2152 		if (next_bus)
2153 			next_bus->refcount++;
2154 		xpt_unlock_buses();
2155 		xpt_release_bus(bus);
2156 	}
2157 	return(retval);
2158 }
2159 
2160 static int
2161 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2162 		  xpt_targetfunc_t *tr_func, void *arg)
2163 {
2164 	struct cam_et *target, *next_target;
2165 	int retval;
2166 
2167 	retval = 1;
2168 	if (start_target)
2169 		target = start_target;
2170 	else {
2171 		mtx_lock(&bus->eb_mtx);
2172 		target = TAILQ_FIRST(&bus->et_entries);
2173 		if (target == NULL) {
2174 			mtx_unlock(&bus->eb_mtx);
2175 			return (retval);
2176 		}
2177 		target->refcount++;
2178 		mtx_unlock(&bus->eb_mtx);
2179 	}
2180 	for (; target != NULL; target = next_target) {
2181 		retval = tr_func(target, arg);
2182 		if (retval == 0) {
2183 			xpt_release_target(target);
2184 			break;
2185 		}
2186 		mtx_lock(&bus->eb_mtx);
2187 		next_target = TAILQ_NEXT(target, links);
2188 		if (next_target)
2189 			next_target->refcount++;
2190 		mtx_unlock(&bus->eb_mtx);
2191 		xpt_release_target(target);
2192 	}
2193 	return(retval);
2194 }
2195 
2196 static int
2197 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2198 		  xpt_devicefunc_t *tr_func, void *arg)
2199 {
2200 	struct cam_eb *bus;
2201 	struct cam_ed *device, *next_device;
2202 	int retval;
2203 
2204 	retval = 1;
2205 	bus = target->bus;
2206 	if (start_device)
2207 		device = start_device;
2208 	else {
2209 		mtx_lock(&bus->eb_mtx);
2210 		device = TAILQ_FIRST(&target->ed_entries);
2211 		if (device == NULL) {
2212 			mtx_unlock(&bus->eb_mtx);
2213 			return (retval);
2214 		}
2215 		device->refcount++;
2216 		mtx_unlock(&bus->eb_mtx);
2217 	}
2218 	for (; device != NULL; device = next_device) {
2219 		mtx_lock(&device->device_mtx);
2220 		retval = tr_func(device, arg);
2221 		mtx_unlock(&device->device_mtx);
2222 		if (retval == 0) {
2223 			xpt_release_device(device);
2224 			break;
2225 		}
2226 		mtx_lock(&bus->eb_mtx);
2227 		next_device = TAILQ_NEXT(device, links);
2228 		if (next_device)
2229 			next_device->refcount++;
2230 		mtx_unlock(&bus->eb_mtx);
2231 		xpt_release_device(device);
2232 	}
2233 	return(retval);
2234 }
2235 
2236 static int
2237 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2238 		  xpt_periphfunc_t *tr_func, void *arg)
2239 {
2240 	struct cam_eb *bus;
2241 	struct cam_periph *periph, *next_periph;
2242 	int retval;
2243 
2244 	retval = 1;
2245 
2246 	bus = device->target->bus;
2247 	if (start_periph)
2248 		periph = start_periph;
2249 	else {
2250 		xpt_lock_buses();
2251 		mtx_lock(&bus->eb_mtx);
2252 		periph = SLIST_FIRST(&device->periphs);
2253 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2254 			periph = SLIST_NEXT(periph, periph_links);
2255 		if (periph == NULL) {
2256 			mtx_unlock(&bus->eb_mtx);
2257 			xpt_unlock_buses();
2258 			return (retval);
2259 		}
2260 		periph->refcount++;
2261 		mtx_unlock(&bus->eb_mtx);
2262 		xpt_unlock_buses();
2263 	}
2264 	for (; periph != NULL; periph = next_periph) {
2265 		retval = tr_func(periph, arg);
2266 		if (retval == 0) {
2267 			cam_periph_release_locked(periph);
2268 			break;
2269 		}
2270 		xpt_lock_buses();
2271 		mtx_lock(&bus->eb_mtx);
2272 		next_periph = SLIST_NEXT(periph, periph_links);
2273 		while (next_periph != NULL &&
2274 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2275 			next_periph = SLIST_NEXT(next_periph, periph_links);
2276 		if (next_periph)
2277 			next_periph->refcount++;
2278 		mtx_unlock(&bus->eb_mtx);
2279 		xpt_unlock_buses();
2280 		cam_periph_release_locked(periph);
2281 	}
2282 	return(retval);
2283 }
2284 
2285 static int
2286 xptpdrvtraverse(struct periph_driver **start_pdrv,
2287 		xpt_pdrvfunc_t *tr_func, void *arg)
2288 {
2289 	struct periph_driver **pdrv;
2290 	int retval;
2291 
2292 	retval = 1;
2293 
2294 	/*
2295 	 * We don't traverse the peripheral driver list like we do the
2296 	 * other lists, because it is a linker set, and therefore cannot be
2297 	 * changed during runtime.  If the peripheral driver list is ever
2298 	 * re-done to be something other than a linker set (i.e. it can
2299 	 * change while the system is running), the list traversal should
2300 	 * be modified to work like the other traversal functions.
2301 	 */
2302 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2303 	     *pdrv != NULL; pdrv++) {
2304 		retval = tr_func(pdrv, arg);
2305 
2306 		if (retval == 0)
2307 			return(retval);
2308 	}
2309 
2310 	return(retval);
2311 }
2312 
2313 static int
2314 xptpdperiphtraverse(struct periph_driver **pdrv,
2315 		    struct cam_periph *start_periph,
2316 		    xpt_periphfunc_t *tr_func, void *arg)
2317 {
2318 	struct cam_periph *periph, *next_periph;
2319 	int retval;
2320 
2321 	retval = 1;
2322 
2323 	if (start_periph)
2324 		periph = start_periph;
2325 	else {
2326 		xpt_lock_buses();
2327 		periph = TAILQ_FIRST(&(*pdrv)->units);
2328 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2329 			periph = TAILQ_NEXT(periph, unit_links);
2330 		if (periph == NULL) {
2331 			xpt_unlock_buses();
2332 			return (retval);
2333 		}
2334 		periph->refcount++;
2335 		xpt_unlock_buses();
2336 	}
2337 	for (; periph != NULL; periph = next_periph) {
2338 		cam_periph_lock(periph);
2339 		retval = tr_func(periph, arg);
2340 		cam_periph_unlock(periph);
2341 		if (retval == 0) {
2342 			cam_periph_release(periph);
2343 			break;
2344 		}
2345 		xpt_lock_buses();
2346 		next_periph = TAILQ_NEXT(periph, unit_links);
2347 		while (next_periph != NULL &&
2348 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2349 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2350 		if (next_periph)
2351 			next_periph->refcount++;
2352 		xpt_unlock_buses();
2353 		cam_periph_release(periph);
2354 	}
2355 	return(retval);
2356 }
2357 
2358 static int
2359 xptdefbusfunc(struct cam_eb *bus, void *arg)
2360 {
2361 	struct xpt_traverse_config *tr_config;
2362 
2363 	tr_config = (struct xpt_traverse_config *)arg;
2364 
2365 	if (tr_config->depth == XPT_DEPTH_BUS) {
2366 		xpt_busfunc_t *tr_func;
2367 
2368 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2369 
2370 		return(tr_func(bus, tr_config->tr_arg));
2371 	} else
2372 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2373 }
2374 
2375 static int
2376 xptdeftargetfunc(struct cam_et *target, void *arg)
2377 {
2378 	struct xpt_traverse_config *tr_config;
2379 
2380 	tr_config = (struct xpt_traverse_config *)arg;
2381 
2382 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2383 		xpt_targetfunc_t *tr_func;
2384 
2385 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2386 
2387 		return(tr_func(target, tr_config->tr_arg));
2388 	} else
2389 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2390 }
2391 
2392 static int
2393 xptdefdevicefunc(struct cam_ed *device, void *arg)
2394 {
2395 	struct xpt_traverse_config *tr_config;
2396 
2397 	tr_config = (struct xpt_traverse_config *)arg;
2398 
2399 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2400 		xpt_devicefunc_t *tr_func;
2401 
2402 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2403 
2404 		return(tr_func(device, tr_config->tr_arg));
2405 	} else
2406 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2407 }
2408 
2409 static int
2410 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2411 {
2412 	struct xpt_traverse_config *tr_config;
2413 	xpt_periphfunc_t *tr_func;
2414 
2415 	tr_config = (struct xpt_traverse_config *)arg;
2416 
2417 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2418 
2419 	/*
2420 	 * Unlike the other default functions, we don't check for depth
2421 	 * here.  The peripheral driver level is the last level in the EDT,
2422 	 * so if we're here, we should execute the function in question.
2423 	 */
2424 	return(tr_func(periph, tr_config->tr_arg));
2425 }
2426 
2427 /*
2428  * Execute the given function for every bus in the EDT.
2429  */
2430 static int
2431 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2432 {
2433 	struct xpt_traverse_config tr_config;
2434 
2435 	tr_config.depth = XPT_DEPTH_BUS;
2436 	tr_config.tr_func = tr_func;
2437 	tr_config.tr_arg = arg;
2438 
2439 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2440 }
2441 
2442 /*
2443  * Execute the given function for every device in the EDT.
2444  */
2445 static int
2446 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2447 {
2448 	struct xpt_traverse_config tr_config;
2449 
2450 	tr_config.depth = XPT_DEPTH_DEVICE;
2451 	tr_config.tr_func = tr_func;
2452 	tr_config.tr_arg = arg;
2453 
2454 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2455 }
2456 
2457 static int
2458 xptsetasyncfunc(struct cam_ed *device, void *arg)
2459 {
2460 	struct cam_path path;
2461 	struct ccb_getdev cgd;
2462 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2463 
2464 	/*
2465 	 * Don't report unconfigured devices (Wildcard devs,
2466 	 * devices only for target mode, device instances
2467 	 * that have been invalidated but are waiting for
2468 	 * their last reference count to be released).
2469 	 */
2470 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2471 		return (1);
2472 
2473 	memset(&cgd, 0, sizeof(cgd));
2474 	xpt_compile_path(&path,
2475 			 NULL,
2476 			 device->target->bus->path_id,
2477 			 device->target->target_id,
2478 			 device->lun_id);
2479 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2480 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2481 	xpt_action((union ccb *)&cgd);
2482 	csa->callback(csa->callback_arg,
2483 			    AC_FOUND_DEVICE,
2484 			    &path, &cgd);
2485 	xpt_release_path(&path);
2486 
2487 	return(1);
2488 }
2489 
2490 static int
2491 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2492 {
2493 	struct cam_path path;
2494 	struct ccb_pathinq cpi;
2495 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2496 
2497 	xpt_compile_path(&path, /*periph*/NULL,
2498 			 bus->path_id,
2499 			 CAM_TARGET_WILDCARD,
2500 			 CAM_LUN_WILDCARD);
2501 	xpt_path_lock(&path);
2502 	xpt_path_inq(&cpi, &path);
2503 	csa->callback(csa->callback_arg,
2504 			    AC_PATH_REGISTERED,
2505 			    &path, &cpi);
2506 	xpt_path_unlock(&path);
2507 	xpt_release_path(&path);
2508 
2509 	return(1);
2510 }
2511 
2512 void
2513 xpt_action(union ccb *start_ccb)
2514 {
2515 
2516 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2517 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2518 		xpt_action_name(start_ccb->ccb_h.func_code)));
2519 
2520 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2521 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2522 }
2523 
2524 void
2525 xpt_action_default(union ccb *start_ccb)
2526 {
2527 	struct cam_path *path;
2528 	struct cam_sim *sim;
2529 	struct mtx *mtx;
2530 
2531 	path = start_ccb->ccb_h.path;
2532 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2533 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2534 		xpt_action_name(start_ccb->ccb_h.func_code)));
2535 
2536 	switch (start_ccb->ccb_h.func_code) {
2537 	case XPT_SCSI_IO:
2538 	{
2539 		struct cam_ed *device;
2540 
2541 		/*
2542 		 * For the sake of compatibility with SCSI-1
2543 		 * devices that may not understand the identify
2544 		 * message, we include lun information in the
2545 		 * second byte of all commands.  SCSI-1 specifies
2546 		 * that luns are a 3 bit value and reserves only 3
2547 		 * bits for lun information in the CDB.  Later
2548 		 * revisions of the SCSI spec allow for more than 8
2549 		 * luns, but have deprecated lun information in the
2550 		 * CDB.  So, if the lun won't fit, we must omit.
2551 		 *
2552 		 * Also be aware that during initial probing for devices,
2553 		 * the inquiry information is unknown but initialized to 0.
2554 		 * This means that this code will be exercised while probing
2555 		 * devices with an ANSI revision greater than 2.
2556 		 */
2557 		device = path->device;
2558 		if (device->protocol_version <= SCSI_REV_2
2559 		 && start_ccb->ccb_h.target_lun < 8
2560 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2561 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2562 			    start_ccb->ccb_h.target_lun << 5;
2563 		}
2564 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2565 	}
2566 	/* FALLTHROUGH */
2567 	case XPT_TARGET_IO:
2568 	case XPT_CONT_TARGET_IO:
2569 		start_ccb->csio.sense_resid = 0;
2570 		start_ccb->csio.resid = 0;
2571 		/* FALLTHROUGH */
2572 	case XPT_ATA_IO:
2573 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2574 			start_ccb->ataio.resid = 0;
2575 		/* FALLTHROUGH */
2576 	case XPT_NVME_IO:
2577 	case XPT_NVME_ADMIN:
2578 	case XPT_MMC_IO:
2579 	case XPT_MMC_GET_TRAN_SETTINGS:
2580 	case XPT_MMC_SET_TRAN_SETTINGS:
2581 	case XPT_RESET_DEV:
2582 	case XPT_ENG_EXEC:
2583 	case XPT_SMP_IO:
2584 	{
2585 		struct cam_devq *devq;
2586 
2587 		devq = path->bus->sim->devq;
2588 		mtx_lock(&devq->send_mtx);
2589 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2590 		if (xpt_schedule_devq(devq, path->device) != 0)
2591 			xpt_run_devq(devq);
2592 		mtx_unlock(&devq->send_mtx);
2593 		break;
2594 	}
2595 	case XPT_CALC_GEOMETRY:
2596 		/* Filter out garbage */
2597 		if (start_ccb->ccg.block_size == 0
2598 		 || start_ccb->ccg.volume_size == 0) {
2599 			start_ccb->ccg.cylinders = 0;
2600 			start_ccb->ccg.heads = 0;
2601 			start_ccb->ccg.secs_per_track = 0;
2602 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2603 			break;
2604 		}
2605 		goto call_sim;
2606 	case XPT_ABORT:
2607 	{
2608 		union ccb* abort_ccb;
2609 
2610 		abort_ccb = start_ccb->cab.abort_ccb;
2611 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2612 			struct cam_ed *device;
2613 			struct cam_devq *devq;
2614 
2615 			device = abort_ccb->ccb_h.path->device;
2616 			devq = device->sim->devq;
2617 
2618 			mtx_lock(&devq->send_mtx);
2619 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2620 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2621 				abort_ccb->ccb_h.status =
2622 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2623 				xpt_freeze_devq_device(device, 1);
2624 				mtx_unlock(&devq->send_mtx);
2625 				xpt_done(abort_ccb);
2626 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2627 				break;
2628 			}
2629 			mtx_unlock(&devq->send_mtx);
2630 
2631 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2632 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2633 				/*
2634 				 * We've caught this ccb en route to
2635 				 * the SIM.  Flag it for abort and the
2636 				 * SIM will do so just before starting
2637 				 * real work on the CCB.
2638 				 */
2639 				abort_ccb->ccb_h.status =
2640 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2641 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2642 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2643 				break;
2644 			}
2645 		}
2646 		if (XPT_FC_IS_QUEUED(abort_ccb)
2647 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2648 			/*
2649 			 * It's already completed but waiting
2650 			 * for our SWI to get to it.
2651 			 */
2652 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2653 			break;
2654 		}
2655 		/*
2656 		 * If we weren't able to take care of the abort request
2657 		 * in the XPT, pass the request down to the SIM for processing.
2658 		 */
2659 	}
2660 	/* FALLTHROUGH */
2661 	case XPT_ACCEPT_TARGET_IO:
2662 	case XPT_EN_LUN:
2663 	case XPT_IMMED_NOTIFY:
2664 	case XPT_NOTIFY_ACK:
2665 	case XPT_RESET_BUS:
2666 	case XPT_IMMEDIATE_NOTIFY:
2667 	case XPT_NOTIFY_ACKNOWLEDGE:
2668 	case XPT_GET_SIM_KNOB_OLD:
2669 	case XPT_GET_SIM_KNOB:
2670 	case XPT_SET_SIM_KNOB:
2671 	case XPT_GET_TRAN_SETTINGS:
2672 	case XPT_SET_TRAN_SETTINGS:
2673 	case XPT_PATH_INQ:
2674 call_sim:
2675 		sim = path->bus->sim;
2676 		mtx = sim->mtx;
2677 		if (mtx && !mtx_owned(mtx))
2678 			mtx_lock(mtx);
2679 		else
2680 			mtx = NULL;
2681 
2682 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2683 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2684 		(*(sim->sim_action))(sim, start_ccb);
2685 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2686 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2687 		if (mtx)
2688 			mtx_unlock(mtx);
2689 		break;
2690 	case XPT_PATH_STATS:
2691 		start_ccb->cpis.last_reset = path->bus->last_reset;
2692 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2693 		break;
2694 	case XPT_GDEV_TYPE:
2695 	{
2696 		struct cam_ed *dev;
2697 
2698 		dev = path->device;
2699 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2700 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2701 		} else {
2702 			struct ccb_getdev *cgd;
2703 
2704 			cgd = &start_ccb->cgd;
2705 			cgd->protocol = dev->protocol;
2706 			cgd->inq_data = dev->inq_data;
2707 			cgd->ident_data = dev->ident_data;
2708 			cgd->inq_flags = dev->inq_flags;
2709 			cgd->ccb_h.status = CAM_REQ_CMP;
2710 			cgd->serial_num_len = dev->serial_num_len;
2711 			if ((dev->serial_num_len > 0)
2712 			 && (dev->serial_num != NULL))
2713 				bcopy(dev->serial_num, cgd->serial_num,
2714 				      dev->serial_num_len);
2715 		}
2716 		break;
2717 	}
2718 	case XPT_GDEV_STATS:
2719 	{
2720 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2721 		struct cam_ed *dev = path->device;
2722 		struct cam_eb *bus = path->bus;
2723 		struct cam_et *tar = path->target;
2724 		struct cam_devq *devq = bus->sim->devq;
2725 
2726 		mtx_lock(&devq->send_mtx);
2727 		cgds->dev_openings = dev->ccbq.dev_openings;
2728 		cgds->dev_active = dev->ccbq.dev_active;
2729 		cgds->allocated = dev->ccbq.allocated;
2730 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2731 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2732 		cgds->last_reset = tar->last_reset;
2733 		cgds->maxtags = dev->maxtags;
2734 		cgds->mintags = dev->mintags;
2735 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2736 			cgds->last_reset = bus->last_reset;
2737 		mtx_unlock(&devq->send_mtx);
2738 		cgds->ccb_h.status = CAM_REQ_CMP;
2739 		break;
2740 	}
2741 	case XPT_GDEVLIST:
2742 	{
2743 		struct cam_periph	*nperiph;
2744 		struct periph_list	*periph_head;
2745 		struct ccb_getdevlist	*cgdl;
2746 		u_int			i;
2747 		struct cam_ed		*device;
2748 		bool			found;
2749 
2750 		found = false;
2751 
2752 		/*
2753 		 * Don't want anyone mucking with our data.
2754 		 */
2755 		device = path->device;
2756 		periph_head = &device->periphs;
2757 		cgdl = &start_ccb->cgdl;
2758 
2759 		/*
2760 		 * Check and see if the list has changed since the user
2761 		 * last requested a list member.  If so, tell them that the
2762 		 * list has changed, and therefore they need to start over
2763 		 * from the beginning.
2764 		 */
2765 		if ((cgdl->index != 0) &&
2766 		    (cgdl->generation != device->generation)) {
2767 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2768 			break;
2769 		}
2770 
2771 		/*
2772 		 * Traverse the list of peripherals and attempt to find
2773 		 * the requested peripheral.
2774 		 */
2775 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2776 		     (nperiph != NULL) && (i <= cgdl->index);
2777 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2778 			if (i == cgdl->index) {
2779 				strlcpy(cgdl->periph_name,
2780 					nperiph->periph_name,
2781 					sizeof(cgdl->periph_name));
2782 				cgdl->unit_number = nperiph->unit_number;
2783 				found = true;
2784 			}
2785 		}
2786 		if (!found) {
2787 			cgdl->status = CAM_GDEVLIST_ERROR;
2788 			break;
2789 		}
2790 
2791 		if (nperiph == NULL)
2792 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2793 		else
2794 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2795 
2796 		cgdl->index++;
2797 		cgdl->generation = device->generation;
2798 
2799 		cgdl->ccb_h.status = CAM_REQ_CMP;
2800 		break;
2801 	}
2802 	case XPT_DEV_MATCH:
2803 	{
2804 		dev_pos_type position_type;
2805 		struct ccb_dev_match *cdm;
2806 
2807 		cdm = &start_ccb->cdm;
2808 
2809 		/*
2810 		 * There are two ways of getting at information in the EDT.
2811 		 * The first way is via the primary EDT tree.  It starts
2812 		 * with a list of buses, then a list of targets on a bus,
2813 		 * then devices/luns on a target, and then peripherals on a
2814 		 * device/lun.  The "other" way is by the peripheral driver
2815 		 * lists.  The peripheral driver lists are organized by
2816 		 * peripheral driver.  (obviously)  So it makes sense to
2817 		 * use the peripheral driver list if the user is looking
2818 		 * for something like "da1", or all "da" devices.  If the
2819 		 * user is looking for something on a particular bus/target
2820 		 * or lun, it's generally better to go through the EDT tree.
2821 		 */
2822 
2823 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2824 			position_type = cdm->pos.position_type;
2825 		else {
2826 			u_int i;
2827 
2828 			position_type = CAM_DEV_POS_NONE;
2829 
2830 			for (i = 0; i < cdm->num_patterns; i++) {
2831 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2832 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2833 					position_type = CAM_DEV_POS_EDT;
2834 					break;
2835 				}
2836 			}
2837 
2838 			if (cdm->num_patterns == 0)
2839 				position_type = CAM_DEV_POS_EDT;
2840 			else if (position_type == CAM_DEV_POS_NONE)
2841 				position_type = CAM_DEV_POS_PDRV;
2842 		}
2843 
2844 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2845 		case CAM_DEV_POS_EDT:
2846 			xptedtmatch(cdm);
2847 			break;
2848 		case CAM_DEV_POS_PDRV:
2849 			xptperiphlistmatch(cdm);
2850 			break;
2851 		default:
2852 			cdm->status = CAM_DEV_MATCH_ERROR;
2853 			break;
2854 		}
2855 
2856 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2857 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2858 		else
2859 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2860 
2861 		break;
2862 	}
2863 	case XPT_SASYNC_CB:
2864 	{
2865 		struct ccb_setasync *csa;
2866 		struct async_node *cur_entry;
2867 		struct async_list *async_head;
2868 		uint32_t added;
2869 
2870 		csa = &start_ccb->csa;
2871 		added = csa->event_enable;
2872 		async_head = &path->device->asyncs;
2873 
2874 		/*
2875 		 * If there is already an entry for us, simply
2876 		 * update it.
2877 		 */
2878 		cur_entry = SLIST_FIRST(async_head);
2879 		while (cur_entry != NULL) {
2880 			if ((cur_entry->callback_arg == csa->callback_arg)
2881 			 && (cur_entry->callback == csa->callback))
2882 				break;
2883 			cur_entry = SLIST_NEXT(cur_entry, links);
2884 		}
2885 
2886 		if (cur_entry != NULL) {
2887 		 	/*
2888 			 * If the request has no flags set,
2889 			 * remove the entry.
2890 			 */
2891 			added &= ~cur_entry->event_enable;
2892 			if (csa->event_enable == 0) {
2893 				SLIST_REMOVE(async_head, cur_entry,
2894 					     async_node, links);
2895 				xpt_release_device(path->device);
2896 				free(cur_entry, M_CAMXPT);
2897 			} else {
2898 				cur_entry->event_enable = csa->event_enable;
2899 			}
2900 			csa->event_enable = added;
2901 		} else {
2902 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2903 					   M_NOWAIT);
2904 			if (cur_entry == NULL) {
2905 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2906 				break;
2907 			}
2908 			cur_entry->event_enable = csa->event_enable;
2909 			cur_entry->event_lock = (path->bus->sim->mtx &&
2910 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2911 			cur_entry->callback_arg = csa->callback_arg;
2912 			cur_entry->callback = csa->callback;
2913 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2914 			xpt_acquire_device(path->device);
2915 		}
2916 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2917 		break;
2918 	}
2919 	case XPT_REL_SIMQ:
2920 	{
2921 		struct ccb_relsim *crs;
2922 		struct cam_ed *dev;
2923 
2924 		crs = &start_ccb->crs;
2925 		dev = path->device;
2926 		if (dev == NULL) {
2927 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2928 			break;
2929 		}
2930 
2931 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2932 			/* Don't ever go below one opening */
2933 			if (crs->openings > 0) {
2934 				xpt_dev_ccbq_resize(path, crs->openings);
2935 				if (bootverbose) {
2936 					xpt_print(path,
2937 					    "number of openings is now %d\n",
2938 					    crs->openings);
2939 				}
2940 			}
2941 		}
2942 
2943 		mtx_lock(&dev->sim->devq->send_mtx);
2944 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2945 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2946 				/*
2947 				 * Just extend the old timeout and decrement
2948 				 * the freeze count so that a single timeout
2949 				 * is sufficient for releasing the queue.
2950 				 */
2951 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2952 				callout_stop(&dev->callout);
2953 			} else {
2954 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2955 			}
2956 
2957 			callout_reset_sbt(&dev->callout,
2958 			    SBT_1MS * crs->release_timeout, SBT_1MS,
2959 			    xpt_release_devq_timeout, dev, 0);
2960 
2961 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2962 		}
2963 
2964 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2965 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2966 				/*
2967 				 * Decrement the freeze count so that a single
2968 				 * completion is still sufficient to unfreeze
2969 				 * the queue.
2970 				 */
2971 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2972 			} else {
2973 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2974 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2975 			}
2976 		}
2977 
2978 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2979 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2980 			 || (dev->ccbq.dev_active == 0)) {
2981 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2982 			} else {
2983 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2984 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2985 			}
2986 		}
2987 		mtx_unlock(&dev->sim->devq->send_mtx);
2988 
2989 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2990 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2991 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2992 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2993 		break;
2994 	}
2995 	case XPT_DEBUG: {
2996 		struct cam_path *oldpath;
2997 
2998 		/* Check that all request bits are supported. */
2999 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3000 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3001 			break;
3002 		}
3003 
3004 		cam_dflags = CAM_DEBUG_NONE;
3005 		if (cam_dpath != NULL) {
3006 			oldpath = cam_dpath;
3007 			cam_dpath = NULL;
3008 			xpt_free_path(oldpath);
3009 		}
3010 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3011 			if (xpt_create_path(&cam_dpath, NULL,
3012 					    start_ccb->ccb_h.path_id,
3013 					    start_ccb->ccb_h.target_id,
3014 					    start_ccb->ccb_h.target_lun) !=
3015 					    CAM_REQ_CMP) {
3016 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3017 			} else {
3018 				cam_dflags = start_ccb->cdbg.flags;
3019 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3020 				xpt_print(cam_dpath, "debugging flags now %x\n",
3021 				    cam_dflags);
3022 			}
3023 		} else
3024 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3025 		break;
3026 	}
3027 	case XPT_NOOP:
3028 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3029 			xpt_freeze_devq(path, 1);
3030 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3031 		break;
3032 	case XPT_REPROBE_LUN:
3033 		xpt_async(AC_INQ_CHANGED, path, NULL);
3034 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3035 		xpt_done(start_ccb);
3036 		break;
3037 	case XPT_ASYNC:
3038 		/*
3039 		 * Queue the async operation so it can be run from a sleepable
3040 		 * context.
3041 		 */
3042 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3043 		mtx_lock(&cam_async.cam_doneq_mtx);
3044 		STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3045 		start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3046 		mtx_unlock(&cam_async.cam_doneq_mtx);
3047 		wakeup(&cam_async.cam_doneq);
3048 		break;
3049 	default:
3050 	case XPT_SDEV_TYPE:
3051 	case XPT_TERM_IO:
3052 	case XPT_ENG_INQ:
3053 		/* XXX Implement */
3054 		xpt_print(start_ccb->ccb_h.path,
3055 		    "%s: CCB type %#x %s not supported\n", __func__,
3056 		    start_ccb->ccb_h.func_code,
3057 		    xpt_action_name(start_ccb->ccb_h.func_code));
3058 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3059 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3060 			xpt_done(start_ccb);
3061 		}
3062 		break;
3063 	}
3064 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3065 	    ("xpt_action_default: func= %#x %s status %#x\n",
3066 		start_ccb->ccb_h.func_code,
3067  		xpt_action_name(start_ccb->ccb_h.func_code),
3068 		start_ccb->ccb_h.status));
3069 }
3070 
3071 /*
3072  * Call the sim poll routine to allow the sim to complete
3073  * any inflight requests, then call camisr_runqueue to
3074  * complete any CCB that the polling completed.
3075  */
3076 void
3077 xpt_sim_poll(struct cam_sim *sim)
3078 {
3079 	struct mtx *mtx;
3080 
3081 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3082 	mtx = sim->mtx;
3083 	if (mtx)
3084 		mtx_lock(mtx);
3085 	(*(sim->sim_poll))(sim);
3086 	if (mtx)
3087 		mtx_unlock(mtx);
3088 	camisr_runqueue();
3089 }
3090 
3091 uint32_t
3092 xpt_poll_setup(union ccb *start_ccb)
3093 {
3094 	uint32_t timeout;
3095 	struct	  cam_sim *sim;
3096 	struct	  cam_devq *devq;
3097 	struct	  cam_ed *dev;
3098 
3099 	timeout = start_ccb->ccb_h.timeout * 10;
3100 	sim = start_ccb->ccb_h.path->bus->sim;
3101 	devq = sim->devq;
3102 	dev = start_ccb->ccb_h.path->device;
3103 
3104 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3105 
3106 	/*
3107 	 * Steal an opening so that no other queued requests
3108 	 * can get it before us while we simulate interrupts.
3109 	 */
3110 	mtx_lock(&devq->send_mtx);
3111 	dev->ccbq.dev_openings--;
3112 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3113 	    (--timeout > 0)) {
3114 		mtx_unlock(&devq->send_mtx);
3115 		DELAY(100);
3116 		xpt_sim_poll(sim);
3117 		mtx_lock(&devq->send_mtx);
3118 	}
3119 	dev->ccbq.dev_openings++;
3120 	mtx_unlock(&devq->send_mtx);
3121 
3122 	return (timeout);
3123 }
3124 
3125 void
3126 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3127 {
3128 
3129 	KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3130 	    ("%s: non-pollable sim", __func__));
3131 	while (--timeout > 0) {
3132 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3133 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3134 		    != CAM_REQ_INPROG)
3135 			break;
3136 		DELAY(100);
3137 	}
3138 
3139 	if (timeout == 0) {
3140 		/*
3141 		 * XXX Is it worth adding a sim_timeout entry
3142 		 * point so we can attempt recovery?  If
3143 		 * this is only used for dumps, I don't think
3144 		 * it is.
3145 		 */
3146 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3147 	}
3148 }
3149 
3150 /*
3151  * Schedule a peripheral driver to receive a ccb when its
3152  * target device has space for more transactions.
3153  */
3154 void
3155 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3156 {
3157 
3158 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3159 	cam_periph_assert(periph, MA_OWNED);
3160 	if (new_priority < periph->scheduled_priority) {
3161 		periph->scheduled_priority = new_priority;
3162 		xpt_run_allocq(periph, 0);
3163 	}
3164 }
3165 
3166 /*
3167  * Schedule a device to run on a given queue.
3168  * If the device was inserted as a new entry on the queue,
3169  * return 1 meaning the device queue should be run. If we
3170  * were already queued, implying someone else has already
3171  * started the queue, return 0 so the caller doesn't attempt
3172  * to run the queue.
3173  */
3174 static int
3175 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3176 		 uint32_t new_priority)
3177 {
3178 	int retval;
3179 	uint32_t old_priority;
3180 
3181 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3182 
3183 	old_priority = pinfo->priority;
3184 
3185 	/*
3186 	 * Are we already queued?
3187 	 */
3188 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3189 		/* Simply reorder based on new priority */
3190 		if (new_priority < old_priority) {
3191 			camq_change_priority(queue, pinfo->index,
3192 					     new_priority);
3193 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3194 					("changed priority to %d\n",
3195 					 new_priority));
3196 			retval = 1;
3197 		} else
3198 			retval = 0;
3199 	} else {
3200 		/* New entry on the queue */
3201 		if (new_priority < old_priority)
3202 			pinfo->priority = new_priority;
3203 
3204 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3205 				("Inserting onto queue\n"));
3206 		pinfo->generation = ++queue->generation;
3207 		camq_insert(queue, pinfo);
3208 		retval = 1;
3209 	}
3210 	return (retval);
3211 }
3212 
3213 static void
3214 xpt_run_allocq_task(void *context, int pending)
3215 {
3216 	struct cam_periph *periph = context;
3217 
3218 	cam_periph_lock(periph);
3219 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3220 	xpt_run_allocq(periph, 1);
3221 	cam_periph_unlock(periph);
3222 	cam_periph_release(periph);
3223 }
3224 
3225 static void
3226 xpt_run_allocq(struct cam_periph *periph, int sleep)
3227 {
3228 	struct cam_ed	*device;
3229 	union ccb	*ccb;
3230 	uint32_t	 prio;
3231 
3232 	cam_periph_assert(periph, MA_OWNED);
3233 	if (periph->periph_allocating)
3234 		return;
3235 	cam_periph_doacquire(periph);
3236 	periph->periph_allocating = 1;
3237 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3238 	device = periph->path->device;
3239 	ccb = NULL;
3240 restart:
3241 	while ((prio = min(periph->scheduled_priority,
3242 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3243 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3244 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3245 		if (ccb == NULL &&
3246 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3247 			if (sleep) {
3248 				ccb = xpt_get_ccb(periph);
3249 				goto restart;
3250 			}
3251 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3252 				break;
3253 			cam_periph_doacquire(periph);
3254 			periph->flags |= CAM_PERIPH_RUN_TASK;
3255 			taskqueue_enqueue(xsoftc.xpt_taskq,
3256 			    &periph->periph_run_task);
3257 			break;
3258 		}
3259 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3260 		if (prio == periph->immediate_priority) {
3261 			periph->immediate_priority = CAM_PRIORITY_NONE;
3262 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3263 					("waking cam_periph_getccb()\n"));
3264 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3265 					  periph_links.sle);
3266 			wakeup(&periph->ccb_list);
3267 		} else {
3268 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3269 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3270 					("calling periph_start()\n"));
3271 			periph->periph_start(periph, ccb);
3272 		}
3273 		ccb = NULL;
3274 	}
3275 	if (ccb != NULL)
3276 		xpt_release_ccb(ccb);
3277 	periph->periph_allocating = 0;
3278 	cam_periph_release_locked(periph);
3279 }
3280 
3281 static void
3282 xpt_run_devq(struct cam_devq *devq)
3283 {
3284 	struct mtx *mtx;
3285 
3286 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3287 
3288 	devq->send_queue.qfrozen_cnt++;
3289 	while ((devq->send_queue.entries > 0)
3290 	    && (devq->send_openings > 0)
3291 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3292 		struct	cam_ed *device;
3293 		union ccb *work_ccb;
3294 		struct	cam_sim *sim;
3295 		struct xpt_proto *proto;
3296 
3297 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3298 							   CAMQ_HEAD);
3299 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3300 				("running device %p\n", device));
3301 
3302 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3303 		if (work_ccb == NULL) {
3304 			printf("device on run queue with no ccbs???\n");
3305 			continue;
3306 		}
3307 
3308 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3309 			mtx_lock(&xsoftc.xpt_highpower_lock);
3310 		 	if (xsoftc.num_highpower <= 0) {
3311 				/*
3312 				 * We got a high power command, but we
3313 				 * don't have any available slots.  Freeze
3314 				 * the device queue until we have a slot
3315 				 * available.
3316 				 */
3317 				xpt_freeze_devq_device(device, 1);
3318 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3319 						   highpowerq_entry);
3320 
3321 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3322 				continue;
3323 			} else {
3324 				/*
3325 				 * Consume a high power slot while
3326 				 * this ccb runs.
3327 				 */
3328 				xsoftc.num_highpower--;
3329 			}
3330 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3331 		}
3332 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3333 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3334 		devq->send_openings--;
3335 		devq->send_active++;
3336 		xpt_schedule_devq(devq, device);
3337 		mtx_unlock(&devq->send_mtx);
3338 
3339 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3340 			/*
3341 			 * The client wants to freeze the queue
3342 			 * after this CCB is sent.
3343 			 */
3344 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3345 		}
3346 
3347 		/* In Target mode, the peripheral driver knows best... */
3348 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3349 			if ((device->inq_flags & SID_CmdQue) != 0
3350 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3351 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3352 			else
3353 				/*
3354 				 * Clear this in case of a retried CCB that
3355 				 * failed due to a rejected tag.
3356 				 */
3357 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3358 		}
3359 
3360 		KASSERT(device == work_ccb->ccb_h.path->device,
3361 		    ("device (%p) / path->device (%p) mismatch",
3362 			device, work_ccb->ccb_h.path->device));
3363 		proto = xpt_proto_find(device->protocol);
3364 		if (proto && proto->ops->debug_out)
3365 			proto->ops->debug_out(work_ccb);
3366 
3367 		/*
3368 		 * Device queues can be shared among multiple SIM instances
3369 		 * that reside on different buses.  Use the SIM from the
3370 		 * queued device, rather than the one from the calling bus.
3371 		 */
3372 		sim = device->sim;
3373 		mtx = sim->mtx;
3374 		if (mtx && !mtx_owned(mtx))
3375 			mtx_lock(mtx);
3376 		else
3377 			mtx = NULL;
3378 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3379 		(*(sim->sim_action))(sim, work_ccb);
3380 		if (mtx)
3381 			mtx_unlock(mtx);
3382 		mtx_lock(&devq->send_mtx);
3383 	}
3384 	devq->send_queue.qfrozen_cnt--;
3385 }
3386 
3387 /*
3388  * This function merges stuff from the src ccb into the dst ccb, while keeping
3389  * important fields in the dst ccb constant.
3390  */
3391 void
3392 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3393 {
3394 
3395 	/*
3396 	 * Pull fields that are valid for peripheral drivers to set
3397 	 * into the dst CCB along with the CCB "payload".
3398 	 */
3399 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3400 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3401 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3402 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3403 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3404 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3405 }
3406 
3407 void
3408 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3409 		    uint32_t priority, uint32_t flags)
3410 {
3411 
3412 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3413 	ccb_h->pinfo.priority = priority;
3414 	ccb_h->path = path;
3415 	ccb_h->path_id = path->bus->path_id;
3416 	if (path->target)
3417 		ccb_h->target_id = path->target->target_id;
3418 	else
3419 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3420 	if (path->device) {
3421 		ccb_h->target_lun = path->device->lun_id;
3422 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3423 	} else {
3424 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3425 	}
3426 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3427 	ccb_h->flags = flags;
3428 	ccb_h->xflags = 0;
3429 }
3430 
3431 void
3432 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3433 {
3434 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3435 }
3436 
3437 /* Path manipulation functions */
3438 cam_status
3439 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3440 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3441 {
3442 	struct	   cam_path *path;
3443 	cam_status status;
3444 
3445 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3446 
3447 	if (path == NULL) {
3448 		status = CAM_RESRC_UNAVAIL;
3449 		return(status);
3450 	}
3451 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3452 	if (status != CAM_REQ_CMP) {
3453 		free(path, M_CAMPATH);
3454 		path = NULL;
3455 	}
3456 	*new_path_ptr = path;
3457 	return (status);
3458 }
3459 
3460 cam_status
3461 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3462 			 struct cam_periph *periph, path_id_t path_id,
3463 			 target_id_t target_id, lun_id_t lun_id)
3464 {
3465 
3466 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3467 	    lun_id));
3468 }
3469 
3470 cam_status
3471 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3472 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3473 {
3474 	struct	     cam_eb *bus;
3475 	struct	     cam_et *target;
3476 	struct	     cam_ed *device;
3477 	cam_status   status;
3478 
3479 	status = CAM_REQ_CMP;	/* Completed without error */
3480 	target = NULL;		/* Wildcarded */
3481 	device = NULL;		/* Wildcarded */
3482 
3483 	/*
3484 	 * We will potentially modify the EDT, so block interrupts
3485 	 * that may attempt to create cam paths.
3486 	 */
3487 	bus = xpt_find_bus(path_id);
3488 	if (bus == NULL) {
3489 		status = CAM_PATH_INVALID;
3490 	} else {
3491 		xpt_lock_buses();
3492 		mtx_lock(&bus->eb_mtx);
3493 		target = xpt_find_target(bus, target_id);
3494 		if (target == NULL) {
3495 			/* Create one */
3496 			struct cam_et *new_target;
3497 
3498 			new_target = xpt_alloc_target(bus, target_id);
3499 			if (new_target == NULL) {
3500 				status = CAM_RESRC_UNAVAIL;
3501 			} else {
3502 				target = new_target;
3503 			}
3504 		}
3505 		xpt_unlock_buses();
3506 		if (target != NULL) {
3507 			device = xpt_find_device(target, lun_id);
3508 			if (device == NULL) {
3509 				/* Create one */
3510 				struct cam_ed *new_device;
3511 
3512 				new_device =
3513 				    (*(bus->xport->ops->alloc_device))(bus,
3514 								       target,
3515 								       lun_id);
3516 				if (new_device == NULL) {
3517 					status = CAM_RESRC_UNAVAIL;
3518 				} else {
3519 					device = new_device;
3520 				}
3521 			}
3522 		}
3523 		mtx_unlock(&bus->eb_mtx);
3524 	}
3525 
3526 	/*
3527 	 * Only touch the user's data if we are successful.
3528 	 */
3529 	if (status == CAM_REQ_CMP) {
3530 		new_path->periph = perph;
3531 		new_path->bus = bus;
3532 		new_path->target = target;
3533 		new_path->device = device;
3534 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3535 	} else {
3536 		if (device != NULL)
3537 			xpt_release_device(device);
3538 		if (target != NULL)
3539 			xpt_release_target(target);
3540 		if (bus != NULL)
3541 			xpt_release_bus(bus);
3542 	}
3543 	return (status);
3544 }
3545 
3546 int
3547 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3548 {
3549 	struct	   cam_path *new_path;
3550 
3551 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3552 	if (new_path == NULL)
3553 		return (ENOMEM);
3554 	*new_path = *path;
3555 	if (path->bus != NULL)
3556 		xpt_acquire_bus(path->bus);
3557 	if (path->target != NULL)
3558 		xpt_acquire_target(path->target);
3559 	if (path->device != NULL)
3560 		xpt_acquire_device(path->device);
3561 	*new_path_ptr = new_path;
3562 	return (0);
3563 }
3564 
3565 void
3566 xpt_release_path(struct cam_path *path)
3567 {
3568 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3569 	if (path->device != NULL) {
3570 		xpt_release_device(path->device);
3571 		path->device = NULL;
3572 	}
3573 	if (path->target != NULL) {
3574 		xpt_release_target(path->target);
3575 		path->target = NULL;
3576 	}
3577 	if (path->bus != NULL) {
3578 		xpt_release_bus(path->bus);
3579 		path->bus = NULL;
3580 	}
3581 }
3582 
3583 void
3584 xpt_free_path(struct cam_path *path)
3585 {
3586 
3587 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3588 	xpt_release_path(path);
3589 	free(path, M_CAMPATH);
3590 }
3591 
3592 void
3593 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3594     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3595 {
3596 
3597 	xpt_lock_buses();
3598 	if (bus_ref) {
3599 		if (path->bus)
3600 			*bus_ref = path->bus->refcount;
3601 		else
3602 			*bus_ref = 0;
3603 	}
3604 	if (periph_ref) {
3605 		if (path->periph)
3606 			*periph_ref = path->periph->refcount;
3607 		else
3608 			*periph_ref = 0;
3609 	}
3610 	xpt_unlock_buses();
3611 	if (target_ref) {
3612 		if (path->target)
3613 			*target_ref = path->target->refcount;
3614 		else
3615 			*target_ref = 0;
3616 	}
3617 	if (device_ref) {
3618 		if (path->device)
3619 			*device_ref = path->device->refcount;
3620 		else
3621 			*device_ref = 0;
3622 	}
3623 }
3624 
3625 /*
3626  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3627  * in path1, 2 for match with wildcards in path2.
3628  */
3629 int
3630 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3631 {
3632 	int retval = 0;
3633 
3634 	if (path1->bus != path2->bus) {
3635 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3636 			retval = 1;
3637 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3638 			retval = 2;
3639 		else
3640 			return (-1);
3641 	}
3642 	if (path1->target != path2->target) {
3643 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3644 			if (retval == 0)
3645 				retval = 1;
3646 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3647 			retval = 2;
3648 		else
3649 			return (-1);
3650 	}
3651 	if (path1->device != path2->device) {
3652 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3653 			if (retval == 0)
3654 				retval = 1;
3655 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3656 			retval = 2;
3657 		else
3658 			return (-1);
3659 	}
3660 	return (retval);
3661 }
3662 
3663 int
3664 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3665 {
3666 	int retval = 0;
3667 
3668 	if (path->bus != dev->target->bus) {
3669 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3670 			retval = 1;
3671 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3672 			retval = 2;
3673 		else
3674 			return (-1);
3675 	}
3676 	if (path->target != dev->target) {
3677 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3678 			if (retval == 0)
3679 				retval = 1;
3680 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3681 			retval = 2;
3682 		else
3683 			return (-1);
3684 	}
3685 	if (path->device != dev) {
3686 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3687 			if (retval == 0)
3688 				retval = 1;
3689 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3690 			retval = 2;
3691 		else
3692 			return (-1);
3693 	}
3694 	return (retval);
3695 }
3696 
3697 void
3698 xpt_print_path(struct cam_path *path)
3699 {
3700 	struct sbuf sb;
3701 	char buffer[XPT_PRINT_LEN];
3702 
3703 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3704 	xpt_path_sbuf(path, &sb);
3705 	sbuf_finish(&sb);
3706 	printf("%s", sbuf_data(&sb));
3707 	sbuf_delete(&sb);
3708 }
3709 
3710 static void
3711 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb)
3712 {
3713 	if (device == NULL)
3714 		sbuf_cat(sb, "(nopath): ");
3715 	else {
3716 		sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ",
3717 		    device->sim->sim_name,
3718 		    device->sim->unit_number,
3719 		    device->sim->bus_id,
3720 		    device->target->target_id,
3721 		    (uintmax_t)device->lun_id);
3722 	}
3723 }
3724 
3725 void
3726 xpt_print(struct cam_path *path, const char *fmt, ...)
3727 {
3728 	va_list ap;
3729 	struct sbuf sb;
3730 	char buffer[XPT_PRINT_LEN];
3731 
3732 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3733 
3734 	xpt_path_sbuf(path, &sb);
3735 	va_start(ap, fmt);
3736 	sbuf_vprintf(&sb, fmt, ap);
3737 	va_end(ap);
3738 
3739 	sbuf_finish(&sb);
3740 	printf("%s", sbuf_data(&sb));
3741 	sbuf_delete(&sb);
3742 }
3743 
3744 char *
3745 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3746 {
3747 	struct sbuf sb;
3748 
3749 	sbuf_new(&sb, str, str_len, 0);
3750 	xpt_path_sbuf(path, &sb);
3751 	sbuf_finish(&sb);
3752 	return (str);
3753 }
3754 
3755 void
3756 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3757 {
3758 
3759 	if (path == NULL)
3760 		sbuf_cat(sb, "(nopath): ");
3761 	else {
3762 		if (path->periph != NULL)
3763 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3764 				    path->periph->unit_number);
3765 		else
3766 			sbuf_cat(sb, "(noperiph:");
3767 
3768 		if (path->bus != NULL)
3769 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3770 				    path->bus->sim->unit_number,
3771 				    path->bus->sim->bus_id);
3772 		else
3773 			sbuf_cat(sb, "nobus:");
3774 
3775 		if (path->target != NULL)
3776 			sbuf_printf(sb, "%d:", path->target->target_id);
3777 		else
3778 			sbuf_cat(sb, "X:");
3779 
3780 		if (path->device != NULL)
3781 			sbuf_printf(sb, "%jx): ",
3782 			    (uintmax_t)path->device->lun_id);
3783 		else
3784 			sbuf_cat(sb, "X): ");
3785 	}
3786 }
3787 
3788 path_id_t
3789 xpt_path_path_id(struct cam_path *path)
3790 {
3791 	return(path->bus->path_id);
3792 }
3793 
3794 target_id_t
3795 xpt_path_target_id(struct cam_path *path)
3796 {
3797 	if (path->target != NULL)
3798 		return (path->target->target_id);
3799 	else
3800 		return (CAM_TARGET_WILDCARD);
3801 }
3802 
3803 lun_id_t
3804 xpt_path_lun_id(struct cam_path *path)
3805 {
3806 	if (path->device != NULL)
3807 		return (path->device->lun_id);
3808 	else
3809 		return (CAM_LUN_WILDCARD);
3810 }
3811 
3812 struct cam_sim *
3813 xpt_path_sim(struct cam_path *path)
3814 {
3815 
3816 	return (path->bus->sim);
3817 }
3818 
3819 struct cam_periph*
3820 xpt_path_periph(struct cam_path *path)
3821 {
3822 
3823 	return (path->periph);
3824 }
3825 
3826 /*
3827  * Release a CAM control block for the caller.  Remit the cost of the structure
3828  * to the device referenced by the path.  If the this device had no 'credits'
3829  * and peripheral drivers have registered async callbacks for this notification
3830  * call them now.
3831  */
3832 void
3833 xpt_release_ccb(union ccb *free_ccb)
3834 {
3835 	struct	 cam_ed *device;
3836 	struct	 cam_periph *periph;
3837 
3838 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3839 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3840 	device = free_ccb->ccb_h.path->device;
3841 	periph = free_ccb->ccb_h.path->periph;
3842 
3843 	xpt_free_ccb(free_ccb);
3844 	periph->periph_allocated--;
3845 	cam_ccbq_release_opening(&device->ccbq);
3846 	xpt_run_allocq(periph, 0);
3847 }
3848 
3849 /* Functions accessed by SIM drivers */
3850 
3851 static struct xpt_xport_ops xport_default_ops = {
3852 	.alloc_device = xpt_alloc_device_default,
3853 	.action = xpt_action_default,
3854 	.async = xpt_dev_async_default,
3855 };
3856 static struct xpt_xport xport_default = {
3857 	.xport = XPORT_UNKNOWN,
3858 	.name = "unknown",
3859 	.ops = &xport_default_ops,
3860 };
3861 
3862 CAM_XPT_XPORT(xport_default);
3863 
3864 /*
3865  * A sim structure, listing the SIM entry points and instance
3866  * identification info is passed to xpt_bus_register to hook the SIM
3867  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3868  * for this new bus and places it in the array of buses and assigns
3869  * it a path_id.  The path_id may be influenced by "hard wiring"
3870  * information specified by the user.  Once interrupt services are
3871  * available, the bus will be probed.
3872  */
3873 int
3874 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3875 {
3876 	struct cam_eb *new_bus;
3877 	struct cam_eb *old_bus;
3878 	struct ccb_pathinq cpi;
3879 	struct cam_path *path;
3880 	cam_status status;
3881 
3882 	sim->bus_id = bus;
3883 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3884 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3885 	if (new_bus == NULL) {
3886 		/* Couldn't satisfy request */
3887 		return (ENOMEM);
3888 	}
3889 
3890 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3891 	TAILQ_INIT(&new_bus->et_entries);
3892 	cam_sim_hold(sim);
3893 	new_bus->sim = sim;
3894 	timevalclear(&new_bus->last_reset);
3895 	new_bus->flags = 0;
3896 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3897 	new_bus->generation = 0;
3898 	new_bus->parent_dev = parent;
3899 
3900 	xpt_lock_buses();
3901 	sim->path_id = new_bus->path_id =
3902 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3903 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3904 	while (old_bus != NULL
3905 	    && old_bus->path_id < new_bus->path_id)
3906 		old_bus = TAILQ_NEXT(old_bus, links);
3907 	if (old_bus != NULL)
3908 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3909 	else
3910 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3911 	xsoftc.bus_generation++;
3912 	xpt_unlock_buses();
3913 
3914 	/*
3915 	 * Set a default transport so that a PATH_INQ can be issued to
3916 	 * the SIM.  This will then allow for probing and attaching of
3917 	 * a more appropriate transport.
3918 	 */
3919 	new_bus->xport = &xport_default;
3920 
3921 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3922 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3923 	if (status != CAM_REQ_CMP) {
3924 		xpt_release_bus(new_bus);
3925 		return (ENOMEM);
3926 	}
3927 
3928 	xpt_path_inq(&cpi, path);
3929 
3930 	/*
3931 	 * Use the results of PATH_INQ to pick a transport.  Note that
3932 	 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3933 	 * xport_default instead of a transport from
3934 	 * cam_xpt_port_set.
3935 	 */
3936 	if (cam_ccb_success((union ccb *)&cpi) &&
3937 	    cpi.transport != XPORT_UNSPECIFIED) {
3938 		struct xpt_xport **xpt;
3939 
3940 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3941 			if ((*xpt)->xport == cpi.transport) {
3942 				new_bus->xport = *xpt;
3943 				break;
3944 			}
3945 		}
3946 		if (new_bus->xport == &xport_default) {
3947 			xpt_print(path,
3948 			    "No transport found for %d\n", cpi.transport);
3949 			xpt_release_bus(new_bus);
3950 			xpt_free_path(path);
3951 			return (EINVAL);
3952 		}
3953 	}
3954 
3955 	/* Notify interested parties */
3956 	if (sim->path_id != CAM_XPT_PATH_ID) {
3957 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3958 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3959 			union	ccb *scan_ccb;
3960 
3961 			/* Initiate bus rescan. */
3962 			scan_ccb = xpt_alloc_ccb_nowait();
3963 			if (scan_ccb != NULL) {
3964 				scan_ccb->ccb_h.path = path;
3965 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3966 				scan_ccb->crcn.flags = 0;
3967 				xpt_rescan(scan_ccb);
3968 			} else {
3969 				xpt_print(path,
3970 					  "Can't allocate CCB to scan bus\n");
3971 				xpt_free_path(path);
3972 			}
3973 		} else
3974 			xpt_free_path(path);
3975 	} else
3976 		xpt_free_path(path);
3977 	return (CAM_SUCCESS);
3978 }
3979 
3980 int
3981 xpt_bus_deregister(path_id_t pathid)
3982 {
3983 	struct cam_path bus_path;
3984 	cam_status status;
3985 
3986 	status = xpt_compile_path(&bus_path, NULL, pathid,
3987 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3988 	if (status != CAM_REQ_CMP)
3989 		return (ENOMEM);
3990 
3991 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3992 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3993 
3994 	/* Release the reference count held while registered. */
3995 	xpt_release_bus(bus_path.bus);
3996 	xpt_release_path(&bus_path);
3997 
3998 	return (CAM_SUCCESS);
3999 }
4000 
4001 static path_id_t
4002 xptnextfreepathid(void)
4003 {
4004 	struct cam_eb *bus;
4005 	path_id_t pathid;
4006 	const char *strval;
4007 
4008 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4009 	pathid = 0;
4010 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4011 retry:
4012 	/* Find an unoccupied pathid */
4013 	while (bus != NULL && bus->path_id <= pathid) {
4014 		if (bus->path_id == pathid)
4015 			pathid++;
4016 		bus = TAILQ_NEXT(bus, links);
4017 	}
4018 
4019 	/*
4020 	 * Ensure that this pathid is not reserved for
4021 	 * a bus that may be registered in the future.
4022 	 */
4023 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4024 		++pathid;
4025 		/* Start the search over */
4026 		goto retry;
4027 	}
4028 	return (pathid);
4029 }
4030 
4031 static path_id_t
4032 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4033 {
4034 	path_id_t pathid;
4035 	int i, dunit, val;
4036 	char buf[32];
4037 	const char *dname;
4038 
4039 	pathid = CAM_XPT_PATH_ID;
4040 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4041 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4042 		return (pathid);
4043 	i = 0;
4044 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4045 		if (strcmp(dname, "scbus")) {
4046 			/* Avoid a bit of foot shooting. */
4047 			continue;
4048 		}
4049 		if (dunit < 0)		/* unwired?! */
4050 			continue;
4051 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4052 			if (sim_bus == val) {
4053 				pathid = dunit;
4054 				break;
4055 			}
4056 		} else if (sim_bus == 0) {
4057 			/* Unspecified matches bus 0 */
4058 			pathid = dunit;
4059 			break;
4060 		} else {
4061 			printf("Ambiguous scbus configuration for %s%d "
4062 			       "bus %d, cannot wire down.  The kernel "
4063 			       "config entry for scbus%d should "
4064 			       "specify a controller bus.\n"
4065 			       "Scbus will be assigned dynamically.\n",
4066 			       sim_name, sim_unit, sim_bus, dunit);
4067 			break;
4068 		}
4069 	}
4070 
4071 	if (pathid == CAM_XPT_PATH_ID)
4072 		pathid = xptnextfreepathid();
4073 	return (pathid);
4074 }
4075 
4076 static const char *
4077 xpt_async_string(uint32_t async_code)
4078 {
4079 
4080 	switch (async_code) {
4081 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4082 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4083 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4084 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4085 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4086 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4087 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4088 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4089 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4090 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4091 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4092 	case AC_CONTRACT: return ("AC_CONTRACT");
4093 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4094 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4095 	}
4096 	return ("AC_UNKNOWN");
4097 }
4098 
4099 static int
4100 xpt_async_size(uint32_t async_code)
4101 {
4102 
4103 	switch (async_code) {
4104 	case AC_BUS_RESET: return (0);
4105 	case AC_UNSOL_RESEL: return (0);
4106 	case AC_SCSI_AEN: return (0);
4107 	case AC_SENT_BDR: return (0);
4108 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4109 	case AC_PATH_DEREGISTERED: return (0);
4110 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4111 	case AC_LOST_DEVICE: return (0);
4112 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4113 	case AC_INQ_CHANGED: return (0);
4114 	case AC_GETDEV_CHANGED: return (0);
4115 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4116 	case AC_ADVINFO_CHANGED: return (-1);
4117 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4118 	}
4119 	return (0);
4120 }
4121 
4122 static int
4123 xpt_async_process_dev(struct cam_ed *device, void *arg)
4124 {
4125 	union ccb *ccb = arg;
4126 	struct cam_path *path = ccb->ccb_h.path;
4127 	void *async_arg = ccb->casync.async_arg_ptr;
4128 	uint32_t async_code = ccb->casync.async_code;
4129 	bool relock;
4130 
4131 	if (path->device != device
4132 	 && path->device->lun_id != CAM_LUN_WILDCARD
4133 	 && device->lun_id != CAM_LUN_WILDCARD)
4134 		return (1);
4135 
4136 	/*
4137 	 * The async callback could free the device.
4138 	 * If it is a broadcast async, it doesn't hold
4139 	 * device reference, so take our own reference.
4140 	 */
4141 	xpt_acquire_device(device);
4142 
4143 	/*
4144 	 * If async for specific device is to be delivered to
4145 	 * the wildcard client, take the specific device lock.
4146 	 * XXX: We may need a way for client to specify it.
4147 	 */
4148 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4149 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4150 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4151 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4152 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4153 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4154 		mtx_unlock(&device->device_mtx);
4155 		xpt_path_lock(path);
4156 		relock = true;
4157 	} else
4158 		relock = false;
4159 
4160 	(*(device->target->bus->xport->ops->async))(async_code,
4161 	    device->target->bus, device->target, device, async_arg);
4162 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4163 
4164 	if (relock) {
4165 		xpt_path_unlock(path);
4166 		mtx_lock(&device->device_mtx);
4167 	}
4168 	xpt_release_device(device);
4169 	return (1);
4170 }
4171 
4172 static int
4173 xpt_async_process_tgt(struct cam_et *target, void *arg)
4174 {
4175 	union ccb *ccb = arg;
4176 	struct cam_path *path = ccb->ccb_h.path;
4177 
4178 	if (path->target != target
4179 	 && path->target->target_id != CAM_TARGET_WILDCARD
4180 	 && target->target_id != CAM_TARGET_WILDCARD)
4181 		return (1);
4182 
4183 	if (ccb->casync.async_code == AC_SENT_BDR) {
4184 		/* Update our notion of when the last reset occurred */
4185 		microtime(&target->last_reset);
4186 	}
4187 
4188 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4189 }
4190 
4191 static void
4192 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4193 {
4194 	struct cam_eb *bus;
4195 	struct cam_path *path;
4196 	void *async_arg;
4197 	uint32_t async_code;
4198 
4199 	path = ccb->ccb_h.path;
4200 	async_code = ccb->casync.async_code;
4201 	async_arg = ccb->casync.async_arg_ptr;
4202 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4203 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4204 	bus = path->bus;
4205 
4206 	if (async_code == AC_BUS_RESET) {
4207 		/* Update our notion of when the last reset occurred */
4208 		microtime(&bus->last_reset);
4209 	}
4210 
4211 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4212 
4213 	/*
4214 	 * If this wasn't a fully wildcarded async, tell all
4215 	 * clients that want all async events.
4216 	 */
4217 	if (bus != xpt_periph->path->bus) {
4218 		xpt_path_lock(xpt_periph->path);
4219 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4220 		xpt_path_unlock(xpt_periph->path);
4221 	}
4222 
4223 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4224 		xpt_release_devq(path, 1, TRUE);
4225 	else
4226 		xpt_release_simq(path->bus->sim, TRUE);
4227 	if (ccb->casync.async_arg_size > 0)
4228 		free(async_arg, M_CAMXPT);
4229 	xpt_free_path(path);
4230 	xpt_free_ccb(ccb);
4231 }
4232 
4233 static void
4234 xpt_async_bcast(struct async_list *async_head,
4235 		uint32_t async_code,
4236 		struct cam_path *path, void *async_arg)
4237 {
4238 	struct async_node *cur_entry;
4239 	struct mtx *mtx;
4240 
4241 	cur_entry = SLIST_FIRST(async_head);
4242 	while (cur_entry != NULL) {
4243 		struct async_node *next_entry;
4244 		/*
4245 		 * Grab the next list entry before we call the current
4246 		 * entry's callback.  This is because the callback function
4247 		 * can delete its async callback entry.
4248 		 */
4249 		next_entry = SLIST_NEXT(cur_entry, links);
4250 		if ((cur_entry->event_enable & async_code) != 0) {
4251 			mtx = cur_entry->event_lock ?
4252 			    path->device->sim->mtx : NULL;
4253 			if (mtx)
4254 				mtx_lock(mtx);
4255 			cur_entry->callback(cur_entry->callback_arg,
4256 					    async_code, path,
4257 					    async_arg);
4258 			if (mtx)
4259 				mtx_unlock(mtx);
4260 		}
4261 		cur_entry = next_entry;
4262 	}
4263 }
4264 
4265 void
4266 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4267 {
4268 	union ccb *ccb;
4269 	int size;
4270 
4271 	ccb = xpt_alloc_ccb_nowait();
4272 	if (ccb == NULL) {
4273 		xpt_print(path, "Can't allocate CCB to send %s\n",
4274 		    xpt_async_string(async_code));
4275 		return;
4276 	}
4277 
4278 	if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4279 		xpt_print(path, "Can't allocate path to send %s\n",
4280 		    xpt_async_string(async_code));
4281 		xpt_free_ccb(ccb);
4282 		return;
4283 	}
4284 	ccb->ccb_h.path->periph = NULL;
4285 	ccb->ccb_h.func_code = XPT_ASYNC;
4286 	ccb->ccb_h.cbfcnp = xpt_async_process;
4287 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4288 	ccb->casync.async_code = async_code;
4289 	ccb->casync.async_arg_size = 0;
4290 	size = xpt_async_size(async_code);
4291 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4292 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4293 		ccb->ccb_h.func_code,
4294 		xpt_action_name(ccb->ccb_h.func_code),
4295 		async_code,
4296 		xpt_async_string(async_code)));
4297 	if (size > 0 && async_arg != NULL) {
4298 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4299 		if (ccb->casync.async_arg_ptr == NULL) {
4300 			xpt_print(path, "Can't allocate argument to send %s\n",
4301 			    xpt_async_string(async_code));
4302 			xpt_free_path(ccb->ccb_h.path);
4303 			xpt_free_ccb(ccb);
4304 			return;
4305 		}
4306 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4307 		ccb->casync.async_arg_size = size;
4308 	} else if (size < 0) {
4309 		ccb->casync.async_arg_ptr = async_arg;
4310 		ccb->casync.async_arg_size = size;
4311 	}
4312 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4313 		xpt_freeze_devq(path, 1);
4314 	else
4315 		xpt_freeze_simq(path->bus->sim, 1);
4316 	xpt_action(ccb);
4317 }
4318 
4319 static void
4320 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4321 		      struct cam_et *target, struct cam_ed *device,
4322 		      void *async_arg)
4323 {
4324 
4325 	/*
4326 	 * We only need to handle events for real devices.
4327 	 */
4328 	if (target->target_id == CAM_TARGET_WILDCARD
4329 	 || device->lun_id == CAM_LUN_WILDCARD)
4330 		return;
4331 
4332 	printf("%s called\n", __func__);
4333 }
4334 
4335 static uint32_t
4336 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4337 {
4338 	struct cam_devq	*devq;
4339 	uint32_t freeze;
4340 
4341 	devq = dev->sim->devq;
4342 	mtx_assert(&devq->send_mtx, MA_OWNED);
4343 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4344 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4345 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4346 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4347 	/* Remove frozen device from sendq. */
4348 	if (device_is_queued(dev))
4349 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4350 	return (freeze);
4351 }
4352 
4353 uint32_t
4354 xpt_freeze_devq(struct cam_path *path, u_int count)
4355 {
4356 	struct cam_ed	*dev = path->device;
4357 	struct cam_devq	*devq;
4358 	uint32_t	 freeze;
4359 
4360 	devq = dev->sim->devq;
4361 	mtx_lock(&devq->send_mtx);
4362 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4363 	freeze = xpt_freeze_devq_device(dev, count);
4364 	mtx_unlock(&devq->send_mtx);
4365 	return (freeze);
4366 }
4367 
4368 uint32_t
4369 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4370 {
4371 	struct cam_devq	*devq;
4372 	uint32_t	 freeze;
4373 
4374 	devq = sim->devq;
4375 	mtx_lock(&devq->send_mtx);
4376 	freeze = (devq->send_queue.qfrozen_cnt += count);
4377 	mtx_unlock(&devq->send_mtx);
4378 	return (freeze);
4379 }
4380 
4381 static void
4382 xpt_release_devq_timeout(void *arg)
4383 {
4384 	struct cam_ed *dev;
4385 	struct cam_devq *devq;
4386 
4387 	dev = (struct cam_ed *)arg;
4388 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4389 	devq = dev->sim->devq;
4390 	mtx_assert(&devq->send_mtx, MA_OWNED);
4391 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4392 		xpt_run_devq(devq);
4393 }
4394 
4395 void
4396 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4397 {
4398 	struct cam_ed *dev;
4399 	struct cam_devq *devq;
4400 
4401 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4402 	    count, run_queue));
4403 	dev = path->device;
4404 	devq = dev->sim->devq;
4405 	mtx_lock(&devq->send_mtx);
4406 	if (xpt_release_devq_device(dev, count, run_queue))
4407 		xpt_run_devq(dev->sim->devq);
4408 	mtx_unlock(&devq->send_mtx);
4409 }
4410 
4411 static int
4412 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4413 {
4414 
4415 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4416 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4417 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4418 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4419 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4420 #ifdef INVARIANTS
4421 		printf("xpt_release_devq(): requested %u > present %u\n",
4422 		    count, dev->ccbq.queue.qfrozen_cnt);
4423 #endif
4424 		count = dev->ccbq.queue.qfrozen_cnt;
4425 	}
4426 	dev->ccbq.queue.qfrozen_cnt -= count;
4427 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4428 		/*
4429 		 * No longer need to wait for a successful
4430 		 * command completion.
4431 		 */
4432 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4433 		/*
4434 		 * Remove any timeouts that might be scheduled
4435 		 * to release this queue.
4436 		 */
4437 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4438 			callout_stop(&dev->callout);
4439 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4440 		}
4441 		/*
4442 		 * Now that we are unfrozen schedule the
4443 		 * device so any pending transactions are
4444 		 * run.
4445 		 */
4446 		xpt_schedule_devq(dev->sim->devq, dev);
4447 	} else
4448 		run_queue = 0;
4449 	return (run_queue);
4450 }
4451 
4452 void
4453 xpt_release_simq(struct cam_sim *sim, int run_queue)
4454 {
4455 	struct cam_devq	*devq;
4456 
4457 	devq = sim->devq;
4458 	mtx_lock(&devq->send_mtx);
4459 	if (devq->send_queue.qfrozen_cnt <= 0) {
4460 #ifdef INVARIANTS
4461 		printf("xpt_release_simq: requested 1 > present %u\n",
4462 		    devq->send_queue.qfrozen_cnt);
4463 #endif
4464 	} else
4465 		devq->send_queue.qfrozen_cnt--;
4466 	if (devq->send_queue.qfrozen_cnt == 0) {
4467 		if (run_queue) {
4468 			/*
4469 			 * Now that we are unfrozen run the send queue.
4470 			 */
4471 			xpt_run_devq(sim->devq);
4472 		}
4473 	}
4474 	mtx_unlock(&devq->send_mtx);
4475 }
4476 
4477 void
4478 xpt_done(union ccb *done_ccb)
4479 {
4480 	struct cam_doneq *queue;
4481 	int	run, hash;
4482 
4483 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4484 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4485 	    done_ccb->csio.bio != NULL)
4486 		biotrack(done_ccb->csio.bio, __func__);
4487 #endif
4488 
4489 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4490 	    ("xpt_done: func= %#x %s status %#x\n",
4491 		done_ccb->ccb_h.func_code,
4492 		xpt_action_name(done_ccb->ccb_h.func_code),
4493 		done_ccb->ccb_h.status));
4494 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4495 		return;
4496 
4497 	/* Store the time the ccb was in the sim */
4498 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4499 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4500 	hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4501 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4502 	queue = &cam_doneqs[hash];
4503 	mtx_lock(&queue->cam_doneq_mtx);
4504 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4505 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4506 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4507 	mtx_unlock(&queue->cam_doneq_mtx);
4508 	if (run && !dumping)
4509 		wakeup(&queue->cam_doneq);
4510 }
4511 
4512 void
4513 xpt_done_direct(union ccb *done_ccb)
4514 {
4515 
4516 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4517 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4518 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4519 		return;
4520 
4521 	/* Store the time the ccb was in the sim */
4522 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4523 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4524 	xpt_done_process(&done_ccb->ccb_h);
4525 }
4526 
4527 union ccb *
4528 xpt_alloc_ccb(void)
4529 {
4530 	union ccb *new_ccb;
4531 
4532 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4533 	return (new_ccb);
4534 }
4535 
4536 union ccb *
4537 xpt_alloc_ccb_nowait(void)
4538 {
4539 	union ccb *new_ccb;
4540 
4541 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4542 	return (new_ccb);
4543 }
4544 
4545 void
4546 xpt_free_ccb(union ccb *free_ccb)
4547 {
4548 	struct cam_periph *periph;
4549 
4550 	if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4551 		/*
4552 		 * Looks like a CCB allocated from a periph UMA zone.
4553 		 */
4554 		periph = free_ccb->ccb_h.path->periph;
4555 		uma_zfree(periph->ccb_zone, free_ccb);
4556 	} else {
4557 		free(free_ccb, M_CAMCCB);
4558 	}
4559 }
4560 
4561 /* Private XPT functions */
4562 
4563 /*
4564  * Get a CAM control block for the caller. Charge the structure to the device
4565  * referenced by the path.  If we don't have sufficient resources to allocate
4566  * more ccbs, we return NULL.
4567  */
4568 static union ccb *
4569 xpt_get_ccb_nowait(struct cam_periph *periph)
4570 {
4571 	union ccb *new_ccb;
4572 	int alloc_flags;
4573 
4574 	if (periph->ccb_zone != NULL) {
4575 		alloc_flags = CAM_CCB_FROM_UMA;
4576 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4577 	} else {
4578 		alloc_flags = 0;
4579 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4580 	}
4581 	if (new_ccb == NULL)
4582 		return (NULL);
4583 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4584 	periph->periph_allocated++;
4585 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4586 	return (new_ccb);
4587 }
4588 
4589 static union ccb *
4590 xpt_get_ccb(struct cam_periph *periph)
4591 {
4592 	union ccb *new_ccb;
4593 	int alloc_flags;
4594 
4595 	cam_periph_unlock(periph);
4596 	if (periph->ccb_zone != NULL) {
4597 		alloc_flags = CAM_CCB_FROM_UMA;
4598 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4599 	} else {
4600 		alloc_flags = 0;
4601 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4602 	}
4603 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4604 	cam_periph_lock(periph);
4605 	periph->periph_allocated++;
4606 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4607 	return (new_ccb);
4608 }
4609 
4610 union ccb *
4611 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4612 {
4613 	struct ccb_hdr *ccb_h;
4614 
4615 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4616 	cam_periph_assert(periph, MA_OWNED);
4617 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4618 	    ccb_h->pinfo.priority != priority) {
4619 		if (priority < periph->immediate_priority) {
4620 			periph->immediate_priority = priority;
4621 			xpt_run_allocq(periph, 0);
4622 		} else
4623 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4624 			    "cgticb", 0);
4625 	}
4626 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4627 	return ((union ccb *)ccb_h);
4628 }
4629 
4630 static void
4631 xpt_acquire_bus(struct cam_eb *bus)
4632 {
4633 
4634 	xpt_lock_buses();
4635 	bus->refcount++;
4636 	xpt_unlock_buses();
4637 }
4638 
4639 static void
4640 xpt_release_bus(struct cam_eb *bus)
4641 {
4642 
4643 	xpt_lock_buses();
4644 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4645 	if (--bus->refcount > 0) {
4646 		xpt_unlock_buses();
4647 		return;
4648 	}
4649 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4650 	xsoftc.bus_generation++;
4651 	xpt_unlock_buses();
4652 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4653 	    ("destroying bus, but target list is not empty"));
4654 	cam_sim_release(bus->sim);
4655 	mtx_destroy(&bus->eb_mtx);
4656 	free(bus, M_CAMXPT);
4657 }
4658 
4659 static struct cam_et *
4660 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4661 {
4662 	struct cam_et *cur_target, *target;
4663 
4664 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4665 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4666 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4667 					 M_NOWAIT|M_ZERO);
4668 	if (target == NULL)
4669 		return (NULL);
4670 
4671 	TAILQ_INIT(&target->ed_entries);
4672 	target->bus = bus;
4673 	target->target_id = target_id;
4674 	target->refcount = 1;
4675 	target->generation = 0;
4676 	target->luns = NULL;
4677 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4678 	timevalclear(&target->last_reset);
4679 	/*
4680 	 * Hold a reference to our parent bus so it
4681 	 * will not go away before we do.
4682 	 */
4683 	bus->refcount++;
4684 
4685 	/* Insertion sort into our bus's target list */
4686 	cur_target = TAILQ_FIRST(&bus->et_entries);
4687 	while (cur_target != NULL && cur_target->target_id < target_id)
4688 		cur_target = TAILQ_NEXT(cur_target, links);
4689 	if (cur_target != NULL) {
4690 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4691 	} else {
4692 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4693 	}
4694 	bus->generation++;
4695 	return (target);
4696 }
4697 
4698 static void
4699 xpt_acquire_target(struct cam_et *target)
4700 {
4701 	struct cam_eb *bus = target->bus;
4702 
4703 	mtx_lock(&bus->eb_mtx);
4704 	target->refcount++;
4705 	mtx_unlock(&bus->eb_mtx);
4706 }
4707 
4708 static void
4709 xpt_release_target(struct cam_et *target)
4710 {
4711 	struct cam_eb *bus = target->bus;
4712 
4713 	mtx_lock(&bus->eb_mtx);
4714 	if (--target->refcount > 0) {
4715 		mtx_unlock(&bus->eb_mtx);
4716 		return;
4717 	}
4718 	TAILQ_REMOVE(&bus->et_entries, target, links);
4719 	bus->generation++;
4720 	mtx_unlock(&bus->eb_mtx);
4721 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4722 	    ("destroying target, but device list is not empty"));
4723 	xpt_release_bus(bus);
4724 	mtx_destroy(&target->luns_mtx);
4725 	if (target->luns)
4726 		free(target->luns, M_CAMXPT);
4727 	free(target, M_CAMXPT);
4728 }
4729 
4730 static struct cam_ed *
4731 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4732 			 lun_id_t lun_id)
4733 {
4734 	struct cam_ed *device;
4735 
4736 	device = xpt_alloc_device(bus, target, lun_id);
4737 	if (device == NULL)
4738 		return (NULL);
4739 
4740 	device->mintags = 1;
4741 	device->maxtags = 1;
4742 	return (device);
4743 }
4744 
4745 static void
4746 xpt_destroy_device(void *context, int pending)
4747 {
4748 	struct cam_ed	*device = context;
4749 
4750 	mtx_lock(&device->device_mtx);
4751 	mtx_destroy(&device->device_mtx);
4752 	free(device, M_CAMDEV);
4753 }
4754 
4755 struct cam_ed *
4756 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4757 {
4758 	struct cam_ed	*cur_device, *device;
4759 	struct cam_devq	*devq;
4760 	cam_status status;
4761 
4762 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4763 	/* Make space for us in the device queue on our bus */
4764 	devq = bus->sim->devq;
4765 	mtx_lock(&devq->send_mtx);
4766 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4767 	mtx_unlock(&devq->send_mtx);
4768 	if (status != CAM_REQ_CMP)
4769 		return (NULL);
4770 
4771 	device = (struct cam_ed *)malloc(sizeof(*device),
4772 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4773 	if (device == NULL)
4774 		return (NULL);
4775 
4776 	cam_init_pinfo(&device->devq_entry);
4777 	device->target = target;
4778 	device->lun_id = lun_id;
4779 	device->sim = bus->sim;
4780 	if (cam_ccbq_init(&device->ccbq,
4781 			  bus->sim->max_dev_openings) != 0) {
4782 		free(device, M_CAMDEV);
4783 		return (NULL);
4784 	}
4785 	SLIST_INIT(&device->asyncs);
4786 	SLIST_INIT(&device->periphs);
4787 	device->generation = 0;
4788 	device->flags = CAM_DEV_UNCONFIGURED;
4789 	device->tag_delay_count = 0;
4790 	device->tag_saved_openings = 0;
4791 	device->refcount = 1;
4792 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4793 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4794 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4795 	/*
4796 	 * Hold a reference to our parent bus so it
4797 	 * will not go away before we do.
4798 	 */
4799 	target->refcount++;
4800 
4801 	cur_device = TAILQ_FIRST(&target->ed_entries);
4802 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4803 		cur_device = TAILQ_NEXT(cur_device, links);
4804 	if (cur_device != NULL)
4805 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4806 	else
4807 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4808 	target->generation++;
4809 	return (device);
4810 }
4811 
4812 void
4813 xpt_acquire_device(struct cam_ed *device)
4814 {
4815 	struct cam_eb *bus = device->target->bus;
4816 
4817 	mtx_lock(&bus->eb_mtx);
4818 	device->refcount++;
4819 	mtx_unlock(&bus->eb_mtx);
4820 }
4821 
4822 void
4823 xpt_release_device(struct cam_ed *device)
4824 {
4825 	struct cam_eb *bus = device->target->bus;
4826 	struct cam_devq *devq;
4827 
4828 	mtx_lock(&bus->eb_mtx);
4829 	if (--device->refcount > 0) {
4830 		mtx_unlock(&bus->eb_mtx);
4831 		return;
4832 	}
4833 
4834 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4835 	device->target->generation++;
4836 	mtx_unlock(&bus->eb_mtx);
4837 
4838 	/* Release our slot in the devq */
4839 	devq = bus->sim->devq;
4840 	mtx_lock(&devq->send_mtx);
4841 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4842 
4843 	KASSERT(SLIST_EMPTY(&device->periphs),
4844 	    ("destroying device, but periphs list is not empty"));
4845 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4846 	    ("destroying device while still queued for ccbs"));
4847 
4848 	/* The send_mtx must be held when accessing the callout */
4849 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4850 		callout_stop(&device->callout);
4851 
4852 	mtx_unlock(&devq->send_mtx);
4853 
4854 	xpt_release_target(device->target);
4855 
4856 	cam_ccbq_fini(&device->ccbq);
4857 	/*
4858 	 * Free allocated memory.  free(9) does nothing if the
4859 	 * supplied pointer is NULL, so it is safe to call without
4860 	 * checking.
4861 	 */
4862 	free(device->supported_vpds, M_CAMXPT);
4863 	free(device->device_id, M_CAMXPT);
4864 	free(device->ext_inq, M_CAMXPT);
4865 	free(device->physpath, M_CAMXPT);
4866 	free(device->rcap_buf, M_CAMXPT);
4867 	free(device->serial_num, M_CAMXPT);
4868 	free(device->nvme_data, M_CAMXPT);
4869 	free(device->nvme_cdata, M_CAMXPT);
4870 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4871 }
4872 
4873 uint32_t
4874 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4875 {
4876 	int	result;
4877 	struct	cam_ed *dev;
4878 
4879 	dev = path->device;
4880 	mtx_lock(&dev->sim->devq->send_mtx);
4881 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4882 	mtx_unlock(&dev->sim->devq->send_mtx);
4883 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4884 	 || (dev->inq_flags & SID_CmdQue) != 0)
4885 		dev->tag_saved_openings = newopenings;
4886 	return (result);
4887 }
4888 
4889 static struct cam_eb *
4890 xpt_find_bus(path_id_t path_id)
4891 {
4892 	struct cam_eb *bus;
4893 
4894 	xpt_lock_buses();
4895 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4896 	     bus != NULL;
4897 	     bus = TAILQ_NEXT(bus, links)) {
4898 		if (bus->path_id == path_id) {
4899 			bus->refcount++;
4900 			break;
4901 		}
4902 	}
4903 	xpt_unlock_buses();
4904 	return (bus);
4905 }
4906 
4907 static struct cam_et *
4908 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4909 {
4910 	struct cam_et *target;
4911 
4912 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4913 	for (target = TAILQ_FIRST(&bus->et_entries);
4914 	     target != NULL;
4915 	     target = TAILQ_NEXT(target, links)) {
4916 		if (target->target_id == target_id) {
4917 			target->refcount++;
4918 			break;
4919 		}
4920 	}
4921 	return (target);
4922 }
4923 
4924 static struct cam_ed *
4925 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4926 {
4927 	struct cam_ed *device;
4928 
4929 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4930 	for (device = TAILQ_FIRST(&target->ed_entries);
4931 	     device != NULL;
4932 	     device = TAILQ_NEXT(device, links)) {
4933 		if (device->lun_id == lun_id) {
4934 			device->refcount++;
4935 			break;
4936 		}
4937 	}
4938 	return (device);
4939 }
4940 
4941 void
4942 xpt_start_tags(struct cam_path *path)
4943 {
4944 	struct ccb_relsim crs;
4945 	struct cam_ed *device;
4946 	struct cam_sim *sim;
4947 	int    newopenings;
4948 
4949 	device = path->device;
4950 	sim = path->bus->sim;
4951 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4952 	xpt_freeze_devq(path, /*count*/1);
4953 	device->inq_flags |= SID_CmdQue;
4954 	if (device->tag_saved_openings != 0)
4955 		newopenings = device->tag_saved_openings;
4956 	else
4957 		newopenings = min(device->maxtags,
4958 				  sim->max_tagged_dev_openings);
4959 	xpt_dev_ccbq_resize(path, newopenings);
4960 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4961 	memset(&crs, 0, sizeof(crs));
4962 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4963 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4964 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4965 	crs.openings
4966 	    = crs.release_timeout
4967 	    = crs.qfrozen_cnt
4968 	    = 0;
4969 	xpt_action((union ccb *)&crs);
4970 }
4971 
4972 void
4973 xpt_stop_tags(struct cam_path *path)
4974 {
4975 	struct ccb_relsim crs;
4976 	struct cam_ed *device;
4977 	struct cam_sim *sim;
4978 
4979 	device = path->device;
4980 	sim = path->bus->sim;
4981 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4982 	device->tag_delay_count = 0;
4983 	xpt_freeze_devq(path, /*count*/1);
4984 	device->inq_flags &= ~SID_CmdQue;
4985 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4986 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4987 	memset(&crs, 0, sizeof(crs));
4988 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4989 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4990 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4991 	crs.openings
4992 	    = crs.release_timeout
4993 	    = crs.qfrozen_cnt
4994 	    = 0;
4995 	xpt_action((union ccb *)&crs);
4996 }
4997 
4998 /*
4999  * Assume all possible buses are detected by this time, so allow boot
5000  * as soon as they all are scanned.
5001  */
5002 static void
5003 xpt_boot_delay(void *arg)
5004 {
5005 
5006 	xpt_release_boot();
5007 }
5008 
5009 /*
5010  * Now that all config hooks have completed, start boot_delay timer,
5011  * waiting for possibly still undetected buses (USB) to appear.
5012  */
5013 static void
5014 xpt_ch_done(void *arg)
5015 {
5016 
5017 	callout_init(&xsoftc.boot_callout, 1);
5018 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5019 	    SBT_1MS, xpt_boot_delay, NULL, 0);
5020 }
5021 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5022 
5023 /*
5024  * Now that interrupts are enabled, go find our devices
5025  */
5026 static void
5027 xpt_config(void *arg)
5028 {
5029 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5030 		printf("xpt_config: failed to create taskqueue thread.\n");
5031 
5032 	/* Setup debugging path */
5033 	if (cam_dflags != CAM_DEBUG_NONE) {
5034 		if (xpt_create_path(&cam_dpath, NULL,
5035 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5036 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5037 			printf("xpt_config: xpt_create_path() failed for debug"
5038 			       " target %d:%d:%d, debugging disabled\n",
5039 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5040 			cam_dflags = CAM_DEBUG_NONE;
5041 		}
5042 	} else
5043 		cam_dpath = NULL;
5044 
5045 	periphdriver_init(1);
5046 	xpt_hold_boot();
5047 
5048 	/* Fire up rescan thread. */
5049 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5050 	    "cam", "scanner")) {
5051 		printf("xpt_config: failed to create rescan thread.\n");
5052 	}
5053 }
5054 
5055 void
5056 xpt_hold_boot_locked(void)
5057 {
5058 
5059 	if (xsoftc.buses_to_config++ == 0)
5060 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5061 }
5062 
5063 void
5064 xpt_hold_boot(void)
5065 {
5066 
5067 	xpt_lock_buses();
5068 	xpt_hold_boot_locked();
5069 	xpt_unlock_buses();
5070 }
5071 
5072 void
5073 xpt_release_boot(void)
5074 {
5075 
5076 	xpt_lock_buses();
5077 	if (--xsoftc.buses_to_config == 0) {
5078 		if (xsoftc.buses_config_done == 0) {
5079 			xsoftc.buses_config_done = 1;
5080 			xsoftc.buses_to_config++;
5081 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5082 			    NULL);
5083 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5084 		} else
5085 			root_mount_rel(&xsoftc.xpt_rootmount);
5086 	}
5087 	xpt_unlock_buses();
5088 }
5089 
5090 /*
5091  * If the given device only has one peripheral attached to it, and if that
5092  * peripheral is the passthrough driver, announce it.  This insures that the
5093  * user sees some sort of announcement for every peripheral in their system.
5094  */
5095 static int
5096 xptpassannouncefunc(struct cam_ed *device, void *arg)
5097 {
5098 	struct cam_periph *periph;
5099 	int i;
5100 
5101 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5102 	     periph = SLIST_NEXT(periph, periph_links), i++);
5103 
5104 	periph = SLIST_FIRST(&device->periphs);
5105 	if ((i == 1)
5106 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5107 		xpt_announce_periph(periph, NULL);
5108 
5109 	return(1);
5110 }
5111 
5112 static void
5113 xpt_finishconfig_task(void *context, int pending)
5114 {
5115 
5116 	periphdriver_init(2);
5117 	/*
5118 	 * Check for devices with no "standard" peripheral driver
5119 	 * attached.  For any devices like that, announce the
5120 	 * passthrough driver so the user will see something.
5121 	 */
5122 	if (!bootverbose)
5123 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5124 
5125 	xpt_release_boot();
5126 }
5127 
5128 cam_status
5129 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5130 		   struct cam_path *path)
5131 {
5132 	struct ccb_setasync csa;
5133 	cam_status status;
5134 	bool xptpath = false;
5135 
5136 	if (path == NULL) {
5137 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5138 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5139 		if (status != CAM_REQ_CMP)
5140 			return (status);
5141 		xpt_path_lock(path);
5142 		xptpath = true;
5143 	}
5144 
5145 	memset(&csa, 0, sizeof(csa));
5146 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5147 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5148 	csa.event_enable = event;
5149 	csa.callback = cbfunc;
5150 	csa.callback_arg = cbarg;
5151 	xpt_action((union ccb *)&csa);
5152 	status = csa.ccb_h.status;
5153 
5154 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5155 	    ("xpt_register_async: func %p\n", cbfunc));
5156 
5157 	if (xptpath) {
5158 		xpt_path_unlock(path);
5159 		xpt_free_path(path);
5160 	}
5161 
5162 	if ((status == CAM_REQ_CMP) &&
5163 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5164 		/*
5165 		 * Get this peripheral up to date with all
5166 		 * the currently existing devices.
5167 		 */
5168 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5169 	}
5170 	if ((status == CAM_REQ_CMP) &&
5171 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5172 		/*
5173 		 * Get this peripheral up to date with all
5174 		 * the currently existing buses.
5175 		 */
5176 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5177 	}
5178 
5179 	return (status);
5180 }
5181 
5182 static void
5183 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5184 {
5185 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5186 
5187 	switch (work_ccb->ccb_h.func_code) {
5188 	/* Common cases first */
5189 	case XPT_PATH_INQ:		/* Path routing inquiry */
5190 	{
5191 		struct ccb_pathinq *cpi;
5192 
5193 		cpi = &work_ccb->cpi;
5194 		cpi->version_num = 1; /* XXX??? */
5195 		cpi->hba_inquiry = 0;
5196 		cpi->target_sprt = 0;
5197 		cpi->hba_misc = 0;
5198 		cpi->hba_eng_cnt = 0;
5199 		cpi->max_target = 0;
5200 		cpi->max_lun = 0;
5201 		cpi->initiator_id = 0;
5202 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5203 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5204 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5205 		cpi->unit_number = sim->unit_number;
5206 		cpi->bus_id = sim->bus_id;
5207 		cpi->base_transfer_speed = 0;
5208 		cpi->protocol = PROTO_UNSPECIFIED;
5209 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5210 		cpi->transport = XPORT_UNSPECIFIED;
5211 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5212 		cpi->ccb_h.status = CAM_REQ_CMP;
5213 		break;
5214 	}
5215 	default:
5216 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5217 		break;
5218 	}
5219 	xpt_done(work_ccb);
5220 }
5221 
5222 /*
5223  * The xpt as a "controller" has no interrupt sources, so polling
5224  * is a no-op.
5225  */
5226 static void
5227 xptpoll(struct cam_sim *sim)
5228 {
5229 }
5230 
5231 void
5232 xpt_lock_buses(void)
5233 {
5234 	mtx_lock(&xsoftc.xpt_topo_lock);
5235 }
5236 
5237 void
5238 xpt_unlock_buses(void)
5239 {
5240 	mtx_unlock(&xsoftc.xpt_topo_lock);
5241 }
5242 
5243 struct mtx *
5244 xpt_path_mtx(struct cam_path *path)
5245 {
5246 
5247 	return (&path->device->device_mtx);
5248 }
5249 
5250 static void
5251 xpt_done_process(struct ccb_hdr *ccb_h)
5252 {
5253 	struct cam_sim *sim = NULL;
5254 	struct cam_devq *devq = NULL;
5255 	struct mtx *mtx = NULL;
5256 
5257 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5258 	struct ccb_scsiio *csio;
5259 
5260 	if (ccb_h->func_code == XPT_SCSI_IO) {
5261 		csio = &((union ccb *)ccb_h)->csio;
5262 		if (csio->bio != NULL)
5263 			biotrack(csio->bio, __func__);
5264 	}
5265 #endif
5266 
5267 	if (ccb_h->flags & CAM_HIGH_POWER) {
5268 		struct highpowerlist	*hphead;
5269 		struct cam_ed		*device;
5270 
5271 		mtx_lock(&xsoftc.xpt_highpower_lock);
5272 		hphead = &xsoftc.highpowerq;
5273 
5274 		device = STAILQ_FIRST(hphead);
5275 
5276 		/*
5277 		 * Increment the count since this command is done.
5278 		 */
5279 		xsoftc.num_highpower++;
5280 
5281 		/*
5282 		 * Any high powered commands queued up?
5283 		 */
5284 		if (device != NULL) {
5285 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5286 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5287 
5288 			mtx_lock(&device->sim->devq->send_mtx);
5289 			xpt_release_devq_device(device,
5290 					 /*count*/1, /*runqueue*/TRUE);
5291 			mtx_unlock(&device->sim->devq->send_mtx);
5292 		} else
5293 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5294 	}
5295 
5296 	/*
5297 	 * Insulate against a race where the periph is destroyed but CCBs are
5298 	 * still not all processed. This shouldn't happen, but allows us better
5299 	 * bug diagnostic when it does.
5300 	 */
5301 	if (ccb_h->path->bus)
5302 		sim = ccb_h->path->bus->sim;
5303 
5304 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5305 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5306 		xpt_release_simq(sim, /*run_queue*/FALSE);
5307 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5308 	}
5309 
5310 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5311 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5312 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5313 		ccb_h->status &= ~CAM_DEV_QFRZN;
5314 	}
5315 
5316 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5317 		struct cam_ed *dev = ccb_h->path->device;
5318 
5319 		if (sim)
5320 			devq = sim->devq;
5321 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5322 			ccb_h, xpt_action_name(ccb_h->func_code)));
5323 
5324 		mtx_lock(&devq->send_mtx);
5325 		devq->send_active--;
5326 		devq->send_openings++;
5327 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5328 
5329 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5330 		  && (dev->ccbq.dev_active == 0))) {
5331 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5332 			xpt_release_devq_device(dev, /*count*/1,
5333 					 /*run_queue*/FALSE);
5334 		}
5335 
5336 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5337 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5338 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5339 			xpt_release_devq_device(dev, /*count*/1,
5340 					 /*run_queue*/FALSE);
5341 		}
5342 
5343 		if (!device_is_queued(dev))
5344 			(void)xpt_schedule_devq(devq, dev);
5345 		xpt_run_devq(devq);
5346 		mtx_unlock(&devq->send_mtx);
5347 
5348 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5349 			mtx = xpt_path_mtx(ccb_h->path);
5350 			mtx_lock(mtx);
5351 
5352 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5353 			 && (--dev->tag_delay_count == 0))
5354 				xpt_start_tags(ccb_h->path);
5355 		}
5356 	}
5357 
5358 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5359 		if (mtx == NULL) {
5360 			mtx = xpt_path_mtx(ccb_h->path);
5361 			mtx_lock(mtx);
5362 		}
5363 	} else {
5364 		if (mtx != NULL) {
5365 			mtx_unlock(mtx);
5366 			mtx = NULL;
5367 		}
5368 	}
5369 
5370 	/* Call the peripheral driver's callback */
5371 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5372 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5373 	if (mtx != NULL)
5374 		mtx_unlock(mtx);
5375 }
5376 
5377 /*
5378  * Parameterize instead and use xpt_done_td?
5379  */
5380 static void
5381 xpt_async_td(void *arg)
5382 {
5383 	struct cam_doneq *queue = arg;
5384 	struct ccb_hdr *ccb_h;
5385 	STAILQ_HEAD(, ccb_hdr)	doneq;
5386 
5387 	STAILQ_INIT(&doneq);
5388 	mtx_lock(&queue->cam_doneq_mtx);
5389 	while (1) {
5390 		while (STAILQ_EMPTY(&queue->cam_doneq))
5391 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5392 			    PRIBIO, "-", 0);
5393 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5394 		mtx_unlock(&queue->cam_doneq_mtx);
5395 
5396 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5397 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5398 			xpt_done_process(ccb_h);
5399 		}
5400 
5401 		mtx_lock(&queue->cam_doneq_mtx);
5402 	}
5403 }
5404 
5405 void
5406 xpt_done_td(void *arg)
5407 {
5408 	struct cam_doneq *queue = arg;
5409 	struct ccb_hdr *ccb_h;
5410 	STAILQ_HEAD(, ccb_hdr)	doneq;
5411 
5412 	STAILQ_INIT(&doneq);
5413 	mtx_lock(&queue->cam_doneq_mtx);
5414 	while (1) {
5415 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5416 			queue->cam_doneq_sleep = 1;
5417 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5418 			    PRIBIO, "-", 0);
5419 			queue->cam_doneq_sleep = 0;
5420 		}
5421 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5422 		mtx_unlock(&queue->cam_doneq_mtx);
5423 
5424 		THREAD_NO_SLEEPING();
5425 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5426 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5427 			xpt_done_process(ccb_h);
5428 		}
5429 		THREAD_SLEEPING_OK();
5430 
5431 		mtx_lock(&queue->cam_doneq_mtx);
5432 	}
5433 }
5434 
5435 static void
5436 camisr_runqueue(void)
5437 {
5438 	struct	ccb_hdr *ccb_h;
5439 	struct cam_doneq *queue;
5440 	int i;
5441 
5442 	/* Process global queues. */
5443 	for (i = 0; i < cam_num_doneqs; i++) {
5444 		queue = &cam_doneqs[i];
5445 		mtx_lock(&queue->cam_doneq_mtx);
5446 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5447 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5448 			mtx_unlock(&queue->cam_doneq_mtx);
5449 			xpt_done_process(ccb_h);
5450 			mtx_lock(&queue->cam_doneq_mtx);
5451 		}
5452 		mtx_unlock(&queue->cam_doneq_mtx);
5453 	}
5454 }
5455 
5456 /**
5457  * @brief Return the device_t associated with the path
5458  *
5459  * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5460  * stored in the internal cam_eb bus structure. There is no guarnatee any given
5461  * path will have a @c device_t associated with it (it's legal to call @c
5462  * xpt_bus_register with a @c NULL @c device_t.
5463  *
5464  * @param path		Path to return the device_t for.
5465  */
5466 device_t
5467 xpt_path_sim_device(const struct cam_path *path)
5468 {
5469 	return (path->bus->parent_dev);
5470 }
5471 
5472 struct kv
5473 {
5474 	uint32_t v;
5475 	const char *name;
5476 };
5477 
5478 static struct kv map[] = {
5479 	{ XPT_NOOP, "XPT_NOOP" },
5480 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5481 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5482 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5483 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5484 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5485 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5486 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5487 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5488 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5489 	{ XPT_DEBUG, "XPT_DEBUG" },
5490 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5491 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5492 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5493 	{ XPT_ASYNC, "XPT_ASYNC" },
5494 	{ XPT_ABORT, "XPT_ABORT" },
5495 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5496 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5497 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5498 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5499 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5500 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5501 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5502 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5503 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5504 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5505 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5506 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5507 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5508 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5509 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5510 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5511 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5512 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5513 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5514 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5515 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5516 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5517 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5518 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5519 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5520 	{ 0, 0 }
5521 };
5522 
5523 const char *
5524 xpt_action_name(uint32_t action)
5525 {
5526 	static char buffer[32];	/* Only for unknown messages -- racy */
5527 	struct kv *walker = map;
5528 
5529 	while (walker->name != NULL) {
5530 		if (walker->v == action)
5531 			return (walker->name);
5532 		walker++;
5533 	}
5534 
5535 	snprintf(buffer, sizeof(buffer), "%#x", action);
5536 	return (buffer);
5537 }
5538 
5539 void
5540 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...)
5541 {
5542 	struct sbuf sbuf;
5543 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5544 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5545 	va_list ap;
5546 
5547 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5548 	xpt_path_sbuf(path, sb);
5549 	va_start(ap, fmt);
5550 	sbuf_vprintf(sb, fmt, ap);
5551 	va_end(ap);
5552 	sbuf_finish(sb);
5553 	sbuf_delete(sb);
5554 	if (cam_debug_delay != 0)
5555 		DELAY(cam_debug_delay);
5556 }
5557 
5558 void
5559 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...)
5560 {
5561 	struct sbuf sbuf;
5562 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5563 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5564 	va_list ap;
5565 
5566 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5567 	xpt_device_sbuf(dev, sb);
5568 	va_start(ap, fmt);
5569 	sbuf_vprintf(sb, fmt, ap);
5570 	va_end(ap);
5571 	sbuf_finish(sb);
5572 	sbuf_delete(sb);
5573 	if (cam_debug_delay != 0)
5574 		DELAY(cam_debug_delay);
5575 }
5576 
5577 void
5578 xpt_cam_debug(const char *fmt, ...)
5579 {
5580 	struct sbuf sbuf;
5581 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5582 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN);
5583 	va_list ap;
5584 
5585 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5586 	sbuf_cat(sb, "cam_debug: ");
5587 	va_start(ap, fmt);
5588 	sbuf_vprintf(sb, fmt, ap);
5589 	va_end(ap);
5590 	sbuf_finish(sb);
5591 	sbuf_delete(sb);
5592 	if (cam_debug_delay != 0)
5593 		DELAY(cam_debug_delay);
5594 }
5595