1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/systm.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/time.h> 45 #include <sys/conf.h> 46 #include <sys/fcntl.h> 47 #include <sys/proc.h> 48 #include <sys/sbuf.h> 49 #include <sys/smp.h> 50 #include <sys/taskqueue.h> 51 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/sysctl.h> 55 #include <sys/kthread.h> 56 57 #include <cam/cam.h> 58 #include <cam/cam_ccb.h> 59 #include <cam/cam_iosched.h> 60 #include <cam/cam_periph.h> 61 #include <cam/cam_queue.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt.h> 64 #include <cam/cam_xpt_sim.h> 65 #include <cam/cam_xpt_periph.h> 66 #include <cam/cam_xpt_internal.h> 67 #include <cam/cam_debug.h> 68 #include <cam/cam_compat.h> 69 70 #include <cam/scsi/scsi_all.h> 71 #include <cam/scsi/scsi_message.h> 72 #include <cam/scsi/scsi_pass.h> 73 74 #include <machine/md_var.h> /* geometry translation */ 75 #include <machine/stdarg.h> /* for xpt_print below */ 76 77 #include "opt_cam.h" 78 79 /* Wild guess based on not wanting to grow the stack too much */ 80 #define XPT_PRINT_MAXLEN 512 81 #ifdef PRINTF_BUFR_SIZE 82 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 83 #else 84 #define XPT_PRINT_LEN 128 85 #endif 86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 87 88 /* 89 * This is the maximum number of high powered commands (e.g. start unit) 90 * that can be outstanding at a particular time. 91 */ 92 #ifndef CAM_MAX_HIGHPOWER 93 #define CAM_MAX_HIGHPOWER 4 94 #endif 95 96 /* Datastructures internal to the xpt layer */ 97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 101 102 /* Object for defering XPT actions to a taskqueue */ 103 struct xpt_task { 104 struct task task; 105 void *data1; 106 uintptr_t data2; 107 }; 108 109 struct xpt_softc { 110 uint32_t xpt_generation; 111 112 /* number of high powered commands that can go through right now */ 113 struct mtx xpt_highpower_lock; 114 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 115 int num_highpower; 116 117 /* queue for handling async rescan requests. */ 118 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 119 int buses_to_config; 120 int buses_config_done; 121 int announce_nosbuf; 122 123 /* 124 * Registered buses 125 * 126 * N.B., "busses" is an archaic spelling of "buses". In new code 127 * "buses" is preferred. 128 */ 129 TAILQ_HEAD(,cam_eb) xpt_busses; 130 u_int bus_generation; 131 132 struct intr_config_hook *xpt_config_hook; 133 134 int boot_delay; 135 struct callout boot_callout; 136 137 struct mtx xpt_topo_lock; 138 struct mtx xpt_lock; 139 struct taskqueue *xpt_taskq; 140 }; 141 142 typedef enum { 143 DM_RET_COPY = 0x01, 144 DM_RET_FLAG_MASK = 0x0f, 145 DM_RET_NONE = 0x00, 146 DM_RET_STOP = 0x10, 147 DM_RET_DESCEND = 0x20, 148 DM_RET_ERROR = 0x30, 149 DM_RET_ACTION_MASK = 0xf0 150 } dev_match_ret; 151 152 typedef enum { 153 XPT_DEPTH_BUS, 154 XPT_DEPTH_TARGET, 155 XPT_DEPTH_DEVICE, 156 XPT_DEPTH_PERIPH 157 } xpt_traverse_depth; 158 159 struct xpt_traverse_config { 160 xpt_traverse_depth depth; 161 void *tr_func; 162 void *tr_arg; 163 }; 164 165 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 166 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 167 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 168 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 169 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 170 171 /* Transport layer configuration information */ 172 static struct xpt_softc xsoftc; 173 174 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 175 176 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 177 &xsoftc.boot_delay, 0, "Bus registration wait time"); 178 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 179 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 180 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 181 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 182 183 struct cam_doneq { 184 struct mtx_padalign cam_doneq_mtx; 185 STAILQ_HEAD(, ccb_hdr) cam_doneq; 186 int cam_doneq_sleep; 187 }; 188 189 static struct cam_doneq cam_doneqs[MAXCPU]; 190 static int cam_num_doneqs; 191 static struct proc *cam_proc; 192 193 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 194 &cam_num_doneqs, 0, "Number of completion queues/threads"); 195 196 struct cam_periph *xpt_periph; 197 198 static periph_init_t xpt_periph_init; 199 200 static struct periph_driver xpt_driver = 201 { 202 xpt_periph_init, "xpt", 203 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 204 CAM_PERIPH_DRV_EARLY 205 }; 206 207 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 208 209 static d_open_t xptopen; 210 static d_close_t xptclose; 211 static d_ioctl_t xptioctl; 212 static d_ioctl_t xptdoioctl; 213 214 static struct cdevsw xpt_cdevsw = { 215 .d_version = D_VERSION, 216 .d_flags = 0, 217 .d_open = xptopen, 218 .d_close = xptclose, 219 .d_ioctl = xptioctl, 220 .d_name = "xpt", 221 }; 222 223 /* Storage for debugging datastructures */ 224 struct cam_path *cam_dpath; 225 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 226 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 227 &cam_dflags, 0, "Enabled debug flags"); 228 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 229 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 230 &cam_debug_delay, 0, "Delay in us after each debug message"); 231 232 /* Our boot-time initialization hook */ 233 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 234 235 static moduledata_t cam_moduledata = { 236 "cam", 237 cam_module_event_handler, 238 NULL 239 }; 240 241 static int xpt_init(void *); 242 243 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 244 MODULE_VERSION(cam, 1); 245 246 247 static void xpt_async_bcast(struct async_list *async_head, 248 u_int32_t async_code, 249 struct cam_path *path, 250 void *async_arg); 251 static path_id_t xptnextfreepathid(void); 252 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 253 static union ccb *xpt_get_ccb(struct cam_periph *periph); 254 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 255 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 256 static void xpt_run_allocq_task(void *context, int pending); 257 static void xpt_run_devq(struct cam_devq *devq); 258 static timeout_t xpt_release_devq_timeout; 259 static void xpt_release_simq_timeout(void *arg) __unused; 260 static void xpt_acquire_bus(struct cam_eb *bus); 261 static void xpt_release_bus(struct cam_eb *bus); 262 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 263 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 264 int run_queue); 265 static struct cam_et* 266 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 267 static void xpt_acquire_target(struct cam_et *target); 268 static void xpt_release_target(struct cam_et *target); 269 static struct cam_eb* 270 xpt_find_bus(path_id_t path_id); 271 static struct cam_et* 272 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 273 static struct cam_ed* 274 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 275 static void xpt_config(void *arg); 276 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 277 u_int32_t new_priority); 278 static xpt_devicefunc_t xptpassannouncefunc; 279 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 280 static void xptpoll(struct cam_sim *sim); 281 static void camisr_runqueue(void); 282 static void xpt_done_process(struct ccb_hdr *ccb_h); 283 static void xpt_done_td(void *); 284 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 285 u_int num_patterns, struct cam_eb *bus); 286 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 287 u_int num_patterns, 288 struct cam_ed *device); 289 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 290 u_int num_patterns, 291 struct cam_periph *periph); 292 static xpt_busfunc_t xptedtbusfunc; 293 static xpt_targetfunc_t xptedttargetfunc; 294 static xpt_devicefunc_t xptedtdevicefunc; 295 static xpt_periphfunc_t xptedtperiphfunc; 296 static xpt_pdrvfunc_t xptplistpdrvfunc; 297 static xpt_periphfunc_t xptplistperiphfunc; 298 static int xptedtmatch(struct ccb_dev_match *cdm); 299 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 300 static int xptbustraverse(struct cam_eb *start_bus, 301 xpt_busfunc_t *tr_func, void *arg); 302 static int xpttargettraverse(struct cam_eb *bus, 303 struct cam_et *start_target, 304 xpt_targetfunc_t *tr_func, void *arg); 305 static int xptdevicetraverse(struct cam_et *target, 306 struct cam_ed *start_device, 307 xpt_devicefunc_t *tr_func, void *arg); 308 static int xptperiphtraverse(struct cam_ed *device, 309 struct cam_periph *start_periph, 310 xpt_periphfunc_t *tr_func, void *arg); 311 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 312 xpt_pdrvfunc_t *tr_func, void *arg); 313 static int xptpdperiphtraverse(struct periph_driver **pdrv, 314 struct cam_periph *start_periph, 315 xpt_periphfunc_t *tr_func, 316 void *arg); 317 static xpt_busfunc_t xptdefbusfunc; 318 static xpt_targetfunc_t xptdeftargetfunc; 319 static xpt_devicefunc_t xptdefdevicefunc; 320 static xpt_periphfunc_t xptdefperiphfunc; 321 static void xpt_finishconfig_task(void *context, int pending); 322 static void xpt_dev_async_default(u_int32_t async_code, 323 struct cam_eb *bus, 324 struct cam_et *target, 325 struct cam_ed *device, 326 void *async_arg); 327 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 328 struct cam_et *target, 329 lun_id_t lun_id); 330 static xpt_devicefunc_t xptsetasyncfunc; 331 static xpt_busfunc_t xptsetasyncbusfunc; 332 static cam_status xptregister(struct cam_periph *periph, 333 void *arg); 334 static __inline int device_is_queued(struct cam_ed *device); 335 336 static __inline int 337 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 338 { 339 int retval; 340 341 mtx_assert(&devq->send_mtx, MA_OWNED); 342 if ((dev->ccbq.queue.entries > 0) && 343 (dev->ccbq.dev_openings > 0) && 344 (dev->ccbq.queue.qfrozen_cnt == 0)) { 345 /* 346 * The priority of a device waiting for controller 347 * resources is that of the highest priority CCB 348 * enqueued. 349 */ 350 retval = 351 xpt_schedule_dev(&devq->send_queue, 352 &dev->devq_entry, 353 CAMQ_GET_PRIO(&dev->ccbq.queue)); 354 } else { 355 retval = 0; 356 } 357 return (retval); 358 } 359 360 static __inline int 361 device_is_queued(struct cam_ed *device) 362 { 363 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 364 } 365 366 static void 367 xpt_periph_init() 368 { 369 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 370 } 371 372 static int 373 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 374 { 375 376 /* 377 * Only allow read-write access. 378 */ 379 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 380 return(EPERM); 381 382 /* 383 * We don't allow nonblocking access. 384 */ 385 if ((flags & O_NONBLOCK) != 0) { 386 printf("%s: can't do nonblocking access\n", devtoname(dev)); 387 return(ENODEV); 388 } 389 390 return(0); 391 } 392 393 static int 394 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 395 { 396 397 return(0); 398 } 399 400 /* 401 * Don't automatically grab the xpt softc lock here even though this is going 402 * through the xpt device. The xpt device is really just a back door for 403 * accessing other devices and SIMs, so the right thing to do is to grab 404 * the appropriate SIM lock once the bus/SIM is located. 405 */ 406 static int 407 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 408 { 409 int error; 410 411 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 412 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 413 } 414 return (error); 415 } 416 417 static int 418 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 419 { 420 int error; 421 422 error = 0; 423 424 switch(cmd) { 425 /* 426 * For the transport layer CAMIOCOMMAND ioctl, we really only want 427 * to accept CCB types that don't quite make sense to send through a 428 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 429 * in the CAM spec. 430 */ 431 case CAMIOCOMMAND: { 432 union ccb *ccb; 433 union ccb *inccb; 434 struct cam_eb *bus; 435 436 inccb = (union ccb *)addr; 437 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 438 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 439 inccb->csio.bio = NULL; 440 #endif 441 442 if (inccb->ccb_h.flags & CAM_UNLOCKED) 443 return (EINVAL); 444 445 bus = xpt_find_bus(inccb->ccb_h.path_id); 446 if (bus == NULL) 447 return (EINVAL); 448 449 switch (inccb->ccb_h.func_code) { 450 case XPT_SCAN_BUS: 451 case XPT_RESET_BUS: 452 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 453 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 454 xpt_release_bus(bus); 455 return (EINVAL); 456 } 457 break; 458 case XPT_SCAN_TGT: 459 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 460 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 461 xpt_release_bus(bus); 462 return (EINVAL); 463 } 464 break; 465 default: 466 break; 467 } 468 469 switch(inccb->ccb_h.func_code) { 470 case XPT_SCAN_BUS: 471 case XPT_RESET_BUS: 472 case XPT_PATH_INQ: 473 case XPT_ENG_INQ: 474 case XPT_SCAN_LUN: 475 case XPT_SCAN_TGT: 476 477 ccb = xpt_alloc_ccb(); 478 479 /* 480 * Create a path using the bus, target, and lun the 481 * user passed in. 482 */ 483 if (xpt_create_path(&ccb->ccb_h.path, NULL, 484 inccb->ccb_h.path_id, 485 inccb->ccb_h.target_id, 486 inccb->ccb_h.target_lun) != 487 CAM_REQ_CMP){ 488 error = EINVAL; 489 xpt_free_ccb(ccb); 490 break; 491 } 492 /* Ensure all of our fields are correct */ 493 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 494 inccb->ccb_h.pinfo.priority); 495 xpt_merge_ccb(ccb, inccb); 496 xpt_path_lock(ccb->ccb_h.path); 497 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 498 xpt_path_unlock(ccb->ccb_h.path); 499 bcopy(ccb, inccb, sizeof(union ccb)); 500 xpt_free_path(ccb->ccb_h.path); 501 xpt_free_ccb(ccb); 502 break; 503 504 case XPT_DEBUG: { 505 union ccb ccb; 506 507 /* 508 * This is an immediate CCB, so it's okay to 509 * allocate it on the stack. 510 */ 511 512 /* 513 * Create a path using the bus, target, and lun the 514 * user passed in. 515 */ 516 if (xpt_create_path(&ccb.ccb_h.path, NULL, 517 inccb->ccb_h.path_id, 518 inccb->ccb_h.target_id, 519 inccb->ccb_h.target_lun) != 520 CAM_REQ_CMP){ 521 error = EINVAL; 522 break; 523 } 524 /* Ensure all of our fields are correct */ 525 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 526 inccb->ccb_h.pinfo.priority); 527 xpt_merge_ccb(&ccb, inccb); 528 xpt_action(&ccb); 529 bcopy(&ccb, inccb, sizeof(union ccb)); 530 xpt_free_path(ccb.ccb_h.path); 531 break; 532 533 } 534 case XPT_DEV_MATCH: { 535 struct cam_periph_map_info mapinfo; 536 struct cam_path *old_path; 537 538 /* 539 * We can't deal with physical addresses for this 540 * type of transaction. 541 */ 542 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 543 CAM_DATA_VADDR) { 544 error = EINVAL; 545 break; 546 } 547 548 /* 549 * Save this in case the caller had it set to 550 * something in particular. 551 */ 552 old_path = inccb->ccb_h.path; 553 554 /* 555 * We really don't need a path for the matching 556 * code. The path is needed because of the 557 * debugging statements in xpt_action(). They 558 * assume that the CCB has a valid path. 559 */ 560 inccb->ccb_h.path = xpt_periph->path; 561 562 bzero(&mapinfo, sizeof(mapinfo)); 563 564 /* 565 * Map the pattern and match buffers into kernel 566 * virtual address space. 567 */ 568 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 569 570 if (error) { 571 inccb->ccb_h.path = old_path; 572 break; 573 } 574 575 /* 576 * This is an immediate CCB, we can send it on directly. 577 */ 578 xpt_action(inccb); 579 580 /* 581 * Map the buffers back into user space. 582 */ 583 cam_periph_unmapmem(inccb, &mapinfo); 584 585 inccb->ccb_h.path = old_path; 586 587 error = 0; 588 break; 589 } 590 default: 591 error = ENOTSUP; 592 break; 593 } 594 xpt_release_bus(bus); 595 break; 596 } 597 /* 598 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 599 * with the periphal driver name and unit name filled in. The other 600 * fields don't really matter as input. The passthrough driver name 601 * ("pass"), and unit number are passed back in the ccb. The current 602 * device generation number, and the index into the device peripheral 603 * driver list, and the status are also passed back. Note that 604 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 605 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 606 * (or rather should be) impossible for the device peripheral driver 607 * list to change since we look at the whole thing in one pass, and 608 * we do it with lock protection. 609 * 610 */ 611 case CAMGETPASSTHRU: { 612 union ccb *ccb; 613 struct cam_periph *periph; 614 struct periph_driver **p_drv; 615 char *name; 616 u_int unit; 617 int base_periph_found; 618 619 ccb = (union ccb *)addr; 620 unit = ccb->cgdl.unit_number; 621 name = ccb->cgdl.periph_name; 622 base_periph_found = 0; 623 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 624 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 625 ccb->csio.bio = NULL; 626 #endif 627 628 /* 629 * Sanity check -- make sure we don't get a null peripheral 630 * driver name. 631 */ 632 if (*ccb->cgdl.periph_name == '\0') { 633 error = EINVAL; 634 break; 635 } 636 637 /* Keep the list from changing while we traverse it */ 638 xpt_lock_buses(); 639 640 /* first find our driver in the list of drivers */ 641 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 642 if (strcmp((*p_drv)->driver_name, name) == 0) 643 break; 644 645 if (*p_drv == NULL) { 646 xpt_unlock_buses(); 647 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 648 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 649 *ccb->cgdl.periph_name = '\0'; 650 ccb->cgdl.unit_number = 0; 651 error = ENOENT; 652 break; 653 } 654 655 /* 656 * Run through every peripheral instance of this driver 657 * and check to see whether it matches the unit passed 658 * in by the user. If it does, get out of the loops and 659 * find the passthrough driver associated with that 660 * peripheral driver. 661 */ 662 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 663 periph = TAILQ_NEXT(periph, unit_links)) { 664 665 if (periph->unit_number == unit) 666 break; 667 } 668 /* 669 * If we found the peripheral driver that the user passed 670 * in, go through all of the peripheral drivers for that 671 * particular device and look for a passthrough driver. 672 */ 673 if (periph != NULL) { 674 struct cam_ed *device; 675 int i; 676 677 base_periph_found = 1; 678 device = periph->path->device; 679 for (i = 0, periph = SLIST_FIRST(&device->periphs); 680 periph != NULL; 681 periph = SLIST_NEXT(periph, periph_links), i++) { 682 /* 683 * Check to see whether we have a 684 * passthrough device or not. 685 */ 686 if (strcmp(periph->periph_name, "pass") == 0) { 687 /* 688 * Fill in the getdevlist fields. 689 */ 690 strlcpy(ccb->cgdl.periph_name, 691 periph->periph_name, 692 sizeof(ccb->cgdl.periph_name)); 693 ccb->cgdl.unit_number = 694 periph->unit_number; 695 if (SLIST_NEXT(periph, periph_links)) 696 ccb->cgdl.status = 697 CAM_GDEVLIST_MORE_DEVS; 698 else 699 ccb->cgdl.status = 700 CAM_GDEVLIST_LAST_DEVICE; 701 ccb->cgdl.generation = 702 device->generation; 703 ccb->cgdl.index = i; 704 /* 705 * Fill in some CCB header fields 706 * that the user may want. 707 */ 708 ccb->ccb_h.path_id = 709 periph->path->bus->path_id; 710 ccb->ccb_h.target_id = 711 periph->path->target->target_id; 712 ccb->ccb_h.target_lun = 713 periph->path->device->lun_id; 714 ccb->ccb_h.status = CAM_REQ_CMP; 715 break; 716 } 717 } 718 } 719 720 /* 721 * If the periph is null here, one of two things has 722 * happened. The first possibility is that we couldn't 723 * find the unit number of the particular peripheral driver 724 * that the user is asking about. e.g. the user asks for 725 * the passthrough driver for "da11". We find the list of 726 * "da" peripherals all right, but there is no unit 11. 727 * The other possibility is that we went through the list 728 * of peripheral drivers attached to the device structure, 729 * but didn't find one with the name "pass". Either way, 730 * we return ENOENT, since we couldn't find something. 731 */ 732 if (periph == NULL) { 733 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 734 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 735 *ccb->cgdl.periph_name = '\0'; 736 ccb->cgdl.unit_number = 0; 737 error = ENOENT; 738 /* 739 * It is unfortunate that this is even necessary, 740 * but there are many, many clueless users out there. 741 * If this is true, the user is looking for the 742 * passthrough driver, but doesn't have one in his 743 * kernel. 744 */ 745 if (base_periph_found == 1) { 746 printf("xptioctl: pass driver is not in the " 747 "kernel\n"); 748 printf("xptioctl: put \"device pass\" in " 749 "your kernel config file\n"); 750 } 751 } 752 xpt_unlock_buses(); 753 break; 754 } 755 default: 756 error = ENOTTY; 757 break; 758 } 759 760 return(error); 761 } 762 763 static int 764 cam_module_event_handler(module_t mod, int what, void *arg) 765 { 766 int error; 767 768 switch (what) { 769 case MOD_LOAD: 770 if ((error = xpt_init(NULL)) != 0) 771 return (error); 772 break; 773 case MOD_UNLOAD: 774 return EBUSY; 775 default: 776 return EOPNOTSUPP; 777 } 778 779 return 0; 780 } 781 782 static struct xpt_proto * 783 xpt_proto_find(cam_proto proto) 784 { 785 struct xpt_proto **pp; 786 787 SET_FOREACH(pp, cam_xpt_proto_set) { 788 if ((*pp)->proto == proto) 789 return *pp; 790 } 791 792 return NULL; 793 } 794 795 static void 796 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 797 { 798 799 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 800 xpt_free_path(done_ccb->ccb_h.path); 801 xpt_free_ccb(done_ccb); 802 } else { 803 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 804 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 805 } 806 xpt_release_boot(); 807 } 808 809 /* thread to handle bus rescans */ 810 static void 811 xpt_scanner_thread(void *dummy) 812 { 813 union ccb *ccb; 814 struct cam_path path; 815 816 xpt_lock_buses(); 817 for (;;) { 818 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 819 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 820 "-", 0); 821 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 822 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 823 xpt_unlock_buses(); 824 825 /* 826 * Since lock can be dropped inside and path freed 827 * by completion callback even before return here, 828 * take our own path copy for reference. 829 */ 830 xpt_copy_path(&path, ccb->ccb_h.path); 831 xpt_path_lock(&path); 832 xpt_action(ccb); 833 xpt_path_unlock(&path); 834 xpt_release_path(&path); 835 836 xpt_lock_buses(); 837 } 838 } 839 } 840 841 void 842 xpt_rescan(union ccb *ccb) 843 { 844 struct ccb_hdr *hdr; 845 846 /* Prepare request */ 847 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 848 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 849 ccb->ccb_h.func_code = XPT_SCAN_BUS; 850 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 851 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 852 ccb->ccb_h.func_code = XPT_SCAN_TGT; 853 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 854 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 855 ccb->ccb_h.func_code = XPT_SCAN_LUN; 856 else { 857 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 858 xpt_free_path(ccb->ccb_h.path); 859 xpt_free_ccb(ccb); 860 return; 861 } 862 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 863 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 864 xpt_action_name(ccb->ccb_h.func_code))); 865 866 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 867 ccb->ccb_h.cbfcnp = xpt_rescan_done; 868 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 869 /* Don't make duplicate entries for the same paths. */ 870 xpt_lock_buses(); 871 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 872 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 873 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 874 wakeup(&xsoftc.ccb_scanq); 875 xpt_unlock_buses(); 876 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 877 xpt_free_path(ccb->ccb_h.path); 878 xpt_free_ccb(ccb); 879 return; 880 } 881 } 882 } 883 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 884 xsoftc.buses_to_config++; 885 wakeup(&xsoftc.ccb_scanq); 886 xpt_unlock_buses(); 887 } 888 889 /* Functions accessed by the peripheral drivers */ 890 static int 891 xpt_init(void *dummy) 892 { 893 struct cam_sim *xpt_sim; 894 struct cam_path *path; 895 struct cam_devq *devq; 896 cam_status status; 897 int error, i; 898 899 TAILQ_INIT(&xsoftc.xpt_busses); 900 TAILQ_INIT(&xsoftc.ccb_scanq); 901 STAILQ_INIT(&xsoftc.highpowerq); 902 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 903 904 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 905 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 906 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 907 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 908 909 #ifdef CAM_BOOT_DELAY 910 /* 911 * Override this value at compile time to assist our users 912 * who don't use loader to boot a kernel. 913 */ 914 xsoftc.boot_delay = CAM_BOOT_DELAY; 915 #endif 916 /* 917 * The xpt layer is, itself, the equivalent of a SIM. 918 * Allow 16 ccbs in the ccb pool for it. This should 919 * give decent parallelism when we probe buses and 920 * perform other XPT functions. 921 */ 922 devq = cam_simq_alloc(16); 923 xpt_sim = cam_sim_alloc(xptaction, 924 xptpoll, 925 "xpt", 926 /*softc*/NULL, 927 /*unit*/0, 928 /*mtx*/&xsoftc.xpt_lock, 929 /*max_dev_transactions*/0, 930 /*max_tagged_dev_transactions*/0, 931 devq); 932 if (xpt_sim == NULL) 933 return (ENOMEM); 934 935 mtx_lock(&xsoftc.xpt_lock); 936 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 937 mtx_unlock(&xsoftc.xpt_lock); 938 printf("xpt_init: xpt_bus_register failed with status %#x," 939 " failing attach\n", status); 940 return (EINVAL); 941 } 942 mtx_unlock(&xsoftc.xpt_lock); 943 944 /* 945 * Looking at the XPT from the SIM layer, the XPT is 946 * the equivalent of a peripheral driver. Allocate 947 * a peripheral driver entry for us. 948 */ 949 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 950 CAM_TARGET_WILDCARD, 951 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 952 printf("xpt_init: xpt_create_path failed with status %#x," 953 " failing attach\n", status); 954 return (EINVAL); 955 } 956 xpt_path_lock(path); 957 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 958 path, NULL, 0, xpt_sim); 959 xpt_path_unlock(path); 960 xpt_free_path(path); 961 962 if (cam_num_doneqs < 1) 963 cam_num_doneqs = 1 + mp_ncpus / 6; 964 else if (cam_num_doneqs > MAXCPU) 965 cam_num_doneqs = MAXCPU; 966 for (i = 0; i < cam_num_doneqs; i++) { 967 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 968 MTX_DEF); 969 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 970 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 971 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 972 if (error != 0) { 973 cam_num_doneqs = i; 974 break; 975 } 976 } 977 if (cam_num_doneqs < 1) { 978 printf("xpt_init: Cannot init completion queues " 979 "- failing attach\n"); 980 return (ENOMEM); 981 } 982 /* 983 * Register a callback for when interrupts are enabled. 984 */ 985 xsoftc.xpt_config_hook = 986 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 987 M_CAMXPT, M_NOWAIT | M_ZERO); 988 if (xsoftc.xpt_config_hook == NULL) { 989 printf("xpt_init: Cannot malloc config hook " 990 "- failing attach\n"); 991 return (ENOMEM); 992 } 993 xsoftc.xpt_config_hook->ich_func = xpt_config; 994 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 995 free (xsoftc.xpt_config_hook, M_CAMXPT); 996 printf("xpt_init: config_intrhook_establish failed " 997 "- failing attach\n"); 998 } 999 1000 return (0); 1001 } 1002 1003 static cam_status 1004 xptregister(struct cam_periph *periph, void *arg) 1005 { 1006 struct cam_sim *xpt_sim; 1007 1008 if (periph == NULL) { 1009 printf("xptregister: periph was NULL!!\n"); 1010 return(CAM_REQ_CMP_ERR); 1011 } 1012 1013 xpt_sim = (struct cam_sim *)arg; 1014 xpt_sim->softc = periph; 1015 xpt_periph = periph; 1016 periph->softc = NULL; 1017 1018 return(CAM_REQ_CMP); 1019 } 1020 1021 int32_t 1022 xpt_add_periph(struct cam_periph *periph) 1023 { 1024 struct cam_ed *device; 1025 int32_t status; 1026 1027 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1028 device = periph->path->device; 1029 status = CAM_REQ_CMP; 1030 if (device != NULL) { 1031 mtx_lock(&device->target->bus->eb_mtx); 1032 device->generation++; 1033 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1034 mtx_unlock(&device->target->bus->eb_mtx); 1035 atomic_add_32(&xsoftc.xpt_generation, 1); 1036 } 1037 1038 return (status); 1039 } 1040 1041 void 1042 xpt_remove_periph(struct cam_periph *periph) 1043 { 1044 struct cam_ed *device; 1045 1046 device = periph->path->device; 1047 if (device != NULL) { 1048 mtx_lock(&device->target->bus->eb_mtx); 1049 device->generation++; 1050 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1051 mtx_unlock(&device->target->bus->eb_mtx); 1052 atomic_add_32(&xsoftc.xpt_generation, 1); 1053 } 1054 } 1055 1056 1057 void 1058 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1059 { 1060 struct cam_path *path = periph->path; 1061 struct xpt_proto *proto; 1062 1063 cam_periph_assert(periph, MA_OWNED); 1064 periph->flags |= CAM_PERIPH_ANNOUNCED; 1065 1066 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1067 periph->periph_name, periph->unit_number, 1068 path->bus->sim->sim_name, 1069 path->bus->sim->unit_number, 1070 path->bus->sim->bus_id, 1071 path->bus->path_id, 1072 path->target->target_id, 1073 (uintmax_t)path->device->lun_id); 1074 printf("%s%d: ", periph->periph_name, periph->unit_number); 1075 proto = xpt_proto_find(path->device->protocol); 1076 if (proto) 1077 proto->ops->announce(path->device); 1078 else 1079 printf("%s%d: Unknown protocol device %d\n", 1080 periph->periph_name, periph->unit_number, 1081 path->device->protocol); 1082 if (path->device->serial_num_len > 0) { 1083 /* Don't wrap the screen - print only the first 60 chars */ 1084 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1085 periph->unit_number, path->device->serial_num); 1086 } 1087 /* Announce transport details. */ 1088 path->bus->xport->ops->announce(periph); 1089 /* Announce command queueing. */ 1090 if (path->device->inq_flags & SID_CmdQue 1091 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1092 printf("%s%d: Command Queueing enabled\n", 1093 periph->periph_name, periph->unit_number); 1094 } 1095 /* Announce caller's details if they've passed in. */ 1096 if (announce_string != NULL) 1097 printf("%s%d: %s\n", periph->periph_name, 1098 periph->unit_number, announce_string); 1099 } 1100 1101 void 1102 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1103 char *announce_string) 1104 { 1105 struct cam_path *path = periph->path; 1106 struct xpt_proto *proto; 1107 1108 cam_periph_assert(periph, MA_OWNED); 1109 periph->flags |= CAM_PERIPH_ANNOUNCED; 1110 1111 /* Fall back to the non-sbuf method if necessary */ 1112 if (xsoftc.announce_nosbuf != 0) { 1113 xpt_announce_periph(periph, announce_string); 1114 return; 1115 } 1116 proto = xpt_proto_find(path->device->protocol); 1117 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1118 (path->bus->xport->ops->announce_sbuf == NULL)) { 1119 xpt_announce_periph(periph, announce_string); 1120 return; 1121 } 1122 1123 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1124 periph->periph_name, periph->unit_number, 1125 path->bus->sim->sim_name, 1126 path->bus->sim->unit_number, 1127 path->bus->sim->bus_id, 1128 path->bus->path_id, 1129 path->target->target_id, 1130 (uintmax_t)path->device->lun_id); 1131 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1132 1133 if (proto) 1134 proto->ops->announce_sbuf(path->device, sb); 1135 else 1136 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1137 periph->periph_name, periph->unit_number, 1138 path->device->protocol); 1139 if (path->device->serial_num_len > 0) { 1140 /* Don't wrap the screen - print only the first 60 chars */ 1141 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1142 periph->periph_name, periph->unit_number, 1143 path->device->serial_num); 1144 } 1145 /* Announce transport details. */ 1146 path->bus->xport->ops->announce_sbuf(periph, sb); 1147 /* Announce command queueing. */ 1148 if (path->device->inq_flags & SID_CmdQue 1149 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1150 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1151 periph->periph_name, periph->unit_number); 1152 } 1153 /* Announce caller's details if they've passed in. */ 1154 if (announce_string != NULL) 1155 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1156 periph->unit_number, announce_string); 1157 } 1158 1159 void 1160 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1161 { 1162 if (quirks != 0) { 1163 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1164 periph->unit_number, quirks, bit_string); 1165 } 1166 } 1167 1168 void 1169 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1170 int quirks, char *bit_string) 1171 { 1172 if (xsoftc.announce_nosbuf != 0) { 1173 xpt_announce_quirks(periph, quirks, bit_string); 1174 return; 1175 } 1176 1177 if (quirks != 0) { 1178 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1179 periph->unit_number, quirks, bit_string); 1180 } 1181 } 1182 1183 void 1184 xpt_denounce_periph(struct cam_periph *periph) 1185 { 1186 struct cam_path *path = periph->path; 1187 struct xpt_proto *proto; 1188 1189 cam_periph_assert(periph, MA_OWNED); 1190 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1191 periph->periph_name, periph->unit_number, 1192 path->bus->sim->sim_name, 1193 path->bus->sim->unit_number, 1194 path->bus->sim->bus_id, 1195 path->bus->path_id, 1196 path->target->target_id, 1197 (uintmax_t)path->device->lun_id); 1198 printf("%s%d: ", periph->periph_name, periph->unit_number); 1199 proto = xpt_proto_find(path->device->protocol); 1200 if (proto) 1201 proto->ops->denounce(path->device); 1202 else 1203 printf("%s%d: Unknown protocol device %d\n", 1204 periph->periph_name, periph->unit_number, 1205 path->device->protocol); 1206 if (path->device->serial_num_len > 0) 1207 printf(" s/n %.60s", path->device->serial_num); 1208 printf(" detached\n"); 1209 } 1210 1211 void 1212 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1213 { 1214 struct cam_path *path = periph->path; 1215 struct xpt_proto *proto; 1216 1217 cam_periph_assert(periph, MA_OWNED); 1218 1219 /* Fall back to the non-sbuf method if necessary */ 1220 if (xsoftc.announce_nosbuf != 0) { 1221 xpt_denounce_periph(periph); 1222 return; 1223 } 1224 proto = xpt_proto_find(path->device->protocol); 1225 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1226 xpt_denounce_periph(periph); 1227 return; 1228 } 1229 1230 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1231 periph->periph_name, periph->unit_number, 1232 path->bus->sim->sim_name, 1233 path->bus->sim->unit_number, 1234 path->bus->sim->bus_id, 1235 path->bus->path_id, 1236 path->target->target_id, 1237 (uintmax_t)path->device->lun_id); 1238 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1239 1240 if (proto) 1241 proto->ops->denounce_sbuf(path->device, sb); 1242 else 1243 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1244 periph->periph_name, periph->unit_number, 1245 path->device->protocol); 1246 if (path->device->serial_num_len > 0) 1247 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1248 sbuf_printf(sb, " detached\n"); 1249 } 1250 1251 int 1252 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1253 { 1254 int ret = -1, l, o; 1255 struct ccb_dev_advinfo cdai; 1256 struct scsi_vpd_id_descriptor *idd; 1257 1258 xpt_path_assert(path, MA_OWNED); 1259 1260 memset(&cdai, 0, sizeof(cdai)); 1261 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1262 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1263 cdai.flags = CDAI_FLAG_NONE; 1264 cdai.bufsiz = len; 1265 1266 if (!strcmp(attr, "GEOM::ident")) 1267 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1268 else if (!strcmp(attr, "GEOM::physpath")) 1269 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1270 else if (strcmp(attr, "GEOM::lunid") == 0 || 1271 strcmp(attr, "GEOM::lunname") == 0) { 1272 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1273 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1274 } else 1275 goto out; 1276 1277 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1278 if (cdai.buf == NULL) { 1279 ret = ENOMEM; 1280 goto out; 1281 } 1282 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1283 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1284 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1285 if (cdai.provsiz == 0) 1286 goto out; 1287 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1288 if (strcmp(attr, "GEOM::lunid") == 0) { 1289 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1290 cdai.provsiz, scsi_devid_is_lun_naa); 1291 if (idd == NULL) 1292 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1293 cdai.provsiz, scsi_devid_is_lun_eui64); 1294 if (idd == NULL) 1295 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1296 cdai.provsiz, scsi_devid_is_lun_uuid); 1297 if (idd == NULL) 1298 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1299 cdai.provsiz, scsi_devid_is_lun_md5); 1300 } else 1301 idd = NULL; 1302 if (idd == NULL) 1303 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1304 cdai.provsiz, scsi_devid_is_lun_t10); 1305 if (idd == NULL) 1306 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1307 cdai.provsiz, scsi_devid_is_lun_name); 1308 if (idd == NULL) 1309 goto out; 1310 ret = 0; 1311 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1312 if (idd->length < len) { 1313 for (l = 0; l < idd->length; l++) 1314 buf[l] = idd->identifier[l] ? 1315 idd->identifier[l] : ' '; 1316 buf[l] = 0; 1317 } else 1318 ret = EFAULT; 1319 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1320 l = strnlen(idd->identifier, idd->length); 1321 if (l < len) { 1322 bcopy(idd->identifier, buf, l); 1323 buf[l] = 0; 1324 } else 1325 ret = EFAULT; 1326 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1327 && idd->identifier[0] == 0x10) { 1328 if ((idd->length - 2) * 2 + 4 < len) { 1329 for (l = 2, o = 0; l < idd->length; l++) { 1330 if (l == 6 || l == 8 || l == 10 || l == 12) 1331 o += sprintf(buf + o, "-"); 1332 o += sprintf(buf + o, "%02x", 1333 idd->identifier[l]); 1334 } 1335 } else 1336 ret = EFAULT; 1337 } else { 1338 if (idd->length * 2 < len) { 1339 for (l = 0; l < idd->length; l++) 1340 sprintf(buf + l * 2, "%02x", 1341 idd->identifier[l]); 1342 } else 1343 ret = EFAULT; 1344 } 1345 } else { 1346 ret = 0; 1347 if (strlcpy(buf, cdai.buf, len) >= len) 1348 ret = EFAULT; 1349 } 1350 1351 out: 1352 if (cdai.buf != NULL) 1353 free(cdai.buf, M_CAMXPT); 1354 return ret; 1355 } 1356 1357 static dev_match_ret 1358 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1359 struct cam_eb *bus) 1360 { 1361 dev_match_ret retval; 1362 u_int i; 1363 1364 retval = DM_RET_NONE; 1365 1366 /* 1367 * If we aren't given something to match against, that's an error. 1368 */ 1369 if (bus == NULL) 1370 return(DM_RET_ERROR); 1371 1372 /* 1373 * If there are no match entries, then this bus matches no 1374 * matter what. 1375 */ 1376 if ((patterns == NULL) || (num_patterns == 0)) 1377 return(DM_RET_DESCEND | DM_RET_COPY); 1378 1379 for (i = 0; i < num_patterns; i++) { 1380 struct bus_match_pattern *cur_pattern; 1381 1382 /* 1383 * If the pattern in question isn't for a bus node, we 1384 * aren't interested. However, we do indicate to the 1385 * calling routine that we should continue descending the 1386 * tree, since the user wants to match against lower-level 1387 * EDT elements. 1388 */ 1389 if (patterns[i].type != DEV_MATCH_BUS) { 1390 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1391 retval |= DM_RET_DESCEND; 1392 continue; 1393 } 1394 1395 cur_pattern = &patterns[i].pattern.bus_pattern; 1396 1397 /* 1398 * If they want to match any bus node, we give them any 1399 * device node. 1400 */ 1401 if (cur_pattern->flags == BUS_MATCH_ANY) { 1402 /* set the copy flag */ 1403 retval |= DM_RET_COPY; 1404 1405 /* 1406 * If we've already decided on an action, go ahead 1407 * and return. 1408 */ 1409 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1410 return(retval); 1411 } 1412 1413 /* 1414 * Not sure why someone would do this... 1415 */ 1416 if (cur_pattern->flags == BUS_MATCH_NONE) 1417 continue; 1418 1419 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1420 && (cur_pattern->path_id != bus->path_id)) 1421 continue; 1422 1423 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1424 && (cur_pattern->bus_id != bus->sim->bus_id)) 1425 continue; 1426 1427 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1428 && (cur_pattern->unit_number != bus->sim->unit_number)) 1429 continue; 1430 1431 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1432 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1433 DEV_IDLEN) != 0)) 1434 continue; 1435 1436 /* 1437 * If we get to this point, the user definitely wants 1438 * information on this bus. So tell the caller to copy the 1439 * data out. 1440 */ 1441 retval |= DM_RET_COPY; 1442 1443 /* 1444 * If the return action has been set to descend, then we 1445 * know that we've already seen a non-bus matching 1446 * expression, therefore we need to further descend the tree. 1447 * This won't change by continuing around the loop, so we 1448 * go ahead and return. If we haven't seen a non-bus 1449 * matching expression, we keep going around the loop until 1450 * we exhaust the matching expressions. We'll set the stop 1451 * flag once we fall out of the loop. 1452 */ 1453 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1454 return(retval); 1455 } 1456 1457 /* 1458 * If the return action hasn't been set to descend yet, that means 1459 * we haven't seen anything other than bus matching patterns. So 1460 * tell the caller to stop descending the tree -- the user doesn't 1461 * want to match against lower level tree elements. 1462 */ 1463 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1464 retval |= DM_RET_STOP; 1465 1466 return(retval); 1467 } 1468 1469 static dev_match_ret 1470 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1471 struct cam_ed *device) 1472 { 1473 dev_match_ret retval; 1474 u_int i; 1475 1476 retval = DM_RET_NONE; 1477 1478 /* 1479 * If we aren't given something to match against, that's an error. 1480 */ 1481 if (device == NULL) 1482 return(DM_RET_ERROR); 1483 1484 /* 1485 * If there are no match entries, then this device matches no 1486 * matter what. 1487 */ 1488 if ((patterns == NULL) || (num_patterns == 0)) 1489 return(DM_RET_DESCEND | DM_RET_COPY); 1490 1491 for (i = 0; i < num_patterns; i++) { 1492 struct device_match_pattern *cur_pattern; 1493 struct scsi_vpd_device_id *device_id_page; 1494 1495 /* 1496 * If the pattern in question isn't for a device node, we 1497 * aren't interested. 1498 */ 1499 if (patterns[i].type != DEV_MATCH_DEVICE) { 1500 if ((patterns[i].type == DEV_MATCH_PERIPH) 1501 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1502 retval |= DM_RET_DESCEND; 1503 continue; 1504 } 1505 1506 cur_pattern = &patterns[i].pattern.device_pattern; 1507 1508 /* Error out if mutually exclusive options are specified. */ 1509 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1510 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1511 return(DM_RET_ERROR); 1512 1513 /* 1514 * If they want to match any device node, we give them any 1515 * device node. 1516 */ 1517 if (cur_pattern->flags == DEV_MATCH_ANY) 1518 goto copy_dev_node; 1519 1520 /* 1521 * Not sure why someone would do this... 1522 */ 1523 if (cur_pattern->flags == DEV_MATCH_NONE) 1524 continue; 1525 1526 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1527 && (cur_pattern->path_id != device->target->bus->path_id)) 1528 continue; 1529 1530 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1531 && (cur_pattern->target_id != device->target->target_id)) 1532 continue; 1533 1534 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1535 && (cur_pattern->target_lun != device->lun_id)) 1536 continue; 1537 1538 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1539 && (cam_quirkmatch((caddr_t)&device->inq_data, 1540 (caddr_t)&cur_pattern->data.inq_pat, 1541 1, sizeof(cur_pattern->data.inq_pat), 1542 scsi_static_inquiry_match) == NULL)) 1543 continue; 1544 1545 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1546 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1547 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1548 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1549 device->device_id_len 1550 - SVPD_DEVICE_ID_HDR_LEN, 1551 cur_pattern->data.devid_pat.id, 1552 cur_pattern->data.devid_pat.id_len) != 0)) 1553 continue; 1554 1555 copy_dev_node: 1556 /* 1557 * If we get to this point, the user definitely wants 1558 * information on this device. So tell the caller to copy 1559 * the data out. 1560 */ 1561 retval |= DM_RET_COPY; 1562 1563 /* 1564 * If the return action has been set to descend, then we 1565 * know that we've already seen a peripheral matching 1566 * expression, therefore we need to further descend the tree. 1567 * This won't change by continuing around the loop, so we 1568 * go ahead and return. If we haven't seen a peripheral 1569 * matching expression, we keep going around the loop until 1570 * we exhaust the matching expressions. We'll set the stop 1571 * flag once we fall out of the loop. 1572 */ 1573 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1574 return(retval); 1575 } 1576 1577 /* 1578 * If the return action hasn't been set to descend yet, that means 1579 * we haven't seen any peripheral matching patterns. So tell the 1580 * caller to stop descending the tree -- the user doesn't want to 1581 * match against lower level tree elements. 1582 */ 1583 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1584 retval |= DM_RET_STOP; 1585 1586 return(retval); 1587 } 1588 1589 /* 1590 * Match a single peripheral against any number of match patterns. 1591 */ 1592 static dev_match_ret 1593 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1594 struct cam_periph *periph) 1595 { 1596 dev_match_ret retval; 1597 u_int i; 1598 1599 /* 1600 * If we aren't given something to match against, that's an error. 1601 */ 1602 if (periph == NULL) 1603 return(DM_RET_ERROR); 1604 1605 /* 1606 * If there are no match entries, then this peripheral matches no 1607 * matter what. 1608 */ 1609 if ((patterns == NULL) || (num_patterns == 0)) 1610 return(DM_RET_STOP | DM_RET_COPY); 1611 1612 /* 1613 * There aren't any nodes below a peripheral node, so there's no 1614 * reason to descend the tree any further. 1615 */ 1616 retval = DM_RET_STOP; 1617 1618 for (i = 0; i < num_patterns; i++) { 1619 struct periph_match_pattern *cur_pattern; 1620 1621 /* 1622 * If the pattern in question isn't for a peripheral, we 1623 * aren't interested. 1624 */ 1625 if (patterns[i].type != DEV_MATCH_PERIPH) 1626 continue; 1627 1628 cur_pattern = &patterns[i].pattern.periph_pattern; 1629 1630 /* 1631 * If they want to match on anything, then we will do so. 1632 */ 1633 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1634 /* set the copy flag */ 1635 retval |= DM_RET_COPY; 1636 1637 /* 1638 * We've already set the return action to stop, 1639 * since there are no nodes below peripherals in 1640 * the tree. 1641 */ 1642 return(retval); 1643 } 1644 1645 /* 1646 * Not sure why someone would do this... 1647 */ 1648 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1649 continue; 1650 1651 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1652 && (cur_pattern->path_id != periph->path->bus->path_id)) 1653 continue; 1654 1655 /* 1656 * For the target and lun id's, we have to make sure the 1657 * target and lun pointers aren't NULL. The xpt peripheral 1658 * has a wildcard target and device. 1659 */ 1660 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1661 && ((periph->path->target == NULL) 1662 ||(cur_pattern->target_id != periph->path->target->target_id))) 1663 continue; 1664 1665 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1666 && ((periph->path->device == NULL) 1667 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1668 continue; 1669 1670 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1671 && (cur_pattern->unit_number != periph->unit_number)) 1672 continue; 1673 1674 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1675 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1676 DEV_IDLEN) != 0)) 1677 continue; 1678 1679 /* 1680 * If we get to this point, the user definitely wants 1681 * information on this peripheral. So tell the caller to 1682 * copy the data out. 1683 */ 1684 retval |= DM_RET_COPY; 1685 1686 /* 1687 * The return action has already been set to stop, since 1688 * peripherals don't have any nodes below them in the EDT. 1689 */ 1690 return(retval); 1691 } 1692 1693 /* 1694 * If we get to this point, the peripheral that was passed in 1695 * doesn't match any of the patterns. 1696 */ 1697 return(retval); 1698 } 1699 1700 static int 1701 xptedtbusfunc(struct cam_eb *bus, void *arg) 1702 { 1703 struct ccb_dev_match *cdm; 1704 struct cam_et *target; 1705 dev_match_ret retval; 1706 1707 cdm = (struct ccb_dev_match *)arg; 1708 1709 /* 1710 * If our position is for something deeper in the tree, that means 1711 * that we've already seen this node. So, we keep going down. 1712 */ 1713 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1714 && (cdm->pos.cookie.bus == bus) 1715 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1716 && (cdm->pos.cookie.target != NULL)) 1717 retval = DM_RET_DESCEND; 1718 else 1719 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1720 1721 /* 1722 * If we got an error, bail out of the search. 1723 */ 1724 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1725 cdm->status = CAM_DEV_MATCH_ERROR; 1726 return(0); 1727 } 1728 1729 /* 1730 * If the copy flag is set, copy this bus out. 1731 */ 1732 if (retval & DM_RET_COPY) { 1733 int spaceleft, j; 1734 1735 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1736 sizeof(struct dev_match_result)); 1737 1738 /* 1739 * If we don't have enough space to put in another 1740 * match result, save our position and tell the 1741 * user there are more devices to check. 1742 */ 1743 if (spaceleft < sizeof(struct dev_match_result)) { 1744 bzero(&cdm->pos, sizeof(cdm->pos)); 1745 cdm->pos.position_type = 1746 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1747 1748 cdm->pos.cookie.bus = bus; 1749 cdm->pos.generations[CAM_BUS_GENERATION]= 1750 xsoftc.bus_generation; 1751 cdm->status = CAM_DEV_MATCH_MORE; 1752 return(0); 1753 } 1754 j = cdm->num_matches; 1755 cdm->num_matches++; 1756 cdm->matches[j].type = DEV_MATCH_BUS; 1757 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1758 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1759 cdm->matches[j].result.bus_result.unit_number = 1760 bus->sim->unit_number; 1761 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1762 bus->sim->sim_name, 1763 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1764 } 1765 1766 /* 1767 * If the user is only interested in buses, there's no 1768 * reason to descend to the next level in the tree. 1769 */ 1770 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1771 return(1); 1772 1773 /* 1774 * If there is a target generation recorded, check it to 1775 * make sure the target list hasn't changed. 1776 */ 1777 mtx_lock(&bus->eb_mtx); 1778 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1779 && (cdm->pos.cookie.bus == bus) 1780 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1781 && (cdm->pos.cookie.target != NULL)) { 1782 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1783 bus->generation)) { 1784 mtx_unlock(&bus->eb_mtx); 1785 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1786 return (0); 1787 } 1788 target = (struct cam_et *)cdm->pos.cookie.target; 1789 target->refcount++; 1790 } else 1791 target = NULL; 1792 mtx_unlock(&bus->eb_mtx); 1793 1794 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1795 } 1796 1797 static int 1798 xptedttargetfunc(struct cam_et *target, void *arg) 1799 { 1800 struct ccb_dev_match *cdm; 1801 struct cam_eb *bus; 1802 struct cam_ed *device; 1803 1804 cdm = (struct ccb_dev_match *)arg; 1805 bus = target->bus; 1806 1807 /* 1808 * If there is a device list generation recorded, check it to 1809 * make sure the device list hasn't changed. 1810 */ 1811 mtx_lock(&bus->eb_mtx); 1812 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1813 && (cdm->pos.cookie.bus == bus) 1814 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1815 && (cdm->pos.cookie.target == target) 1816 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1817 && (cdm->pos.cookie.device != NULL)) { 1818 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1819 target->generation) { 1820 mtx_unlock(&bus->eb_mtx); 1821 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1822 return(0); 1823 } 1824 device = (struct cam_ed *)cdm->pos.cookie.device; 1825 device->refcount++; 1826 } else 1827 device = NULL; 1828 mtx_unlock(&bus->eb_mtx); 1829 1830 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1831 } 1832 1833 static int 1834 xptedtdevicefunc(struct cam_ed *device, void *arg) 1835 { 1836 struct cam_eb *bus; 1837 struct cam_periph *periph; 1838 struct ccb_dev_match *cdm; 1839 dev_match_ret retval; 1840 1841 cdm = (struct ccb_dev_match *)arg; 1842 bus = device->target->bus; 1843 1844 /* 1845 * If our position is for something deeper in the tree, that means 1846 * that we've already seen this node. So, we keep going down. 1847 */ 1848 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1849 && (cdm->pos.cookie.device == device) 1850 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1851 && (cdm->pos.cookie.periph != NULL)) 1852 retval = DM_RET_DESCEND; 1853 else 1854 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1855 device); 1856 1857 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1858 cdm->status = CAM_DEV_MATCH_ERROR; 1859 return(0); 1860 } 1861 1862 /* 1863 * If the copy flag is set, copy this device out. 1864 */ 1865 if (retval & DM_RET_COPY) { 1866 int spaceleft, j; 1867 1868 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1869 sizeof(struct dev_match_result)); 1870 1871 /* 1872 * If we don't have enough space to put in another 1873 * match result, save our position and tell the 1874 * user there are more devices to check. 1875 */ 1876 if (spaceleft < sizeof(struct dev_match_result)) { 1877 bzero(&cdm->pos, sizeof(cdm->pos)); 1878 cdm->pos.position_type = 1879 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1880 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1881 1882 cdm->pos.cookie.bus = device->target->bus; 1883 cdm->pos.generations[CAM_BUS_GENERATION]= 1884 xsoftc.bus_generation; 1885 cdm->pos.cookie.target = device->target; 1886 cdm->pos.generations[CAM_TARGET_GENERATION] = 1887 device->target->bus->generation; 1888 cdm->pos.cookie.device = device; 1889 cdm->pos.generations[CAM_DEV_GENERATION] = 1890 device->target->generation; 1891 cdm->status = CAM_DEV_MATCH_MORE; 1892 return(0); 1893 } 1894 j = cdm->num_matches; 1895 cdm->num_matches++; 1896 cdm->matches[j].type = DEV_MATCH_DEVICE; 1897 cdm->matches[j].result.device_result.path_id = 1898 device->target->bus->path_id; 1899 cdm->matches[j].result.device_result.target_id = 1900 device->target->target_id; 1901 cdm->matches[j].result.device_result.target_lun = 1902 device->lun_id; 1903 cdm->matches[j].result.device_result.protocol = 1904 device->protocol; 1905 bcopy(&device->inq_data, 1906 &cdm->matches[j].result.device_result.inq_data, 1907 sizeof(struct scsi_inquiry_data)); 1908 bcopy(&device->ident_data, 1909 &cdm->matches[j].result.device_result.ident_data, 1910 sizeof(struct ata_params)); 1911 1912 /* Let the user know whether this device is unconfigured */ 1913 if (device->flags & CAM_DEV_UNCONFIGURED) 1914 cdm->matches[j].result.device_result.flags = 1915 DEV_RESULT_UNCONFIGURED; 1916 else 1917 cdm->matches[j].result.device_result.flags = 1918 DEV_RESULT_NOFLAG; 1919 } 1920 1921 /* 1922 * If the user isn't interested in peripherals, don't descend 1923 * the tree any further. 1924 */ 1925 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1926 return(1); 1927 1928 /* 1929 * If there is a peripheral list generation recorded, make sure 1930 * it hasn't changed. 1931 */ 1932 xpt_lock_buses(); 1933 mtx_lock(&bus->eb_mtx); 1934 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1935 && (cdm->pos.cookie.bus == bus) 1936 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1937 && (cdm->pos.cookie.target == device->target) 1938 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1939 && (cdm->pos.cookie.device == device) 1940 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1941 && (cdm->pos.cookie.periph != NULL)) { 1942 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1943 device->generation) { 1944 mtx_unlock(&bus->eb_mtx); 1945 xpt_unlock_buses(); 1946 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1947 return(0); 1948 } 1949 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1950 periph->refcount++; 1951 } else 1952 periph = NULL; 1953 mtx_unlock(&bus->eb_mtx); 1954 xpt_unlock_buses(); 1955 1956 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1957 } 1958 1959 static int 1960 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1961 { 1962 struct ccb_dev_match *cdm; 1963 dev_match_ret retval; 1964 1965 cdm = (struct ccb_dev_match *)arg; 1966 1967 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1968 1969 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1970 cdm->status = CAM_DEV_MATCH_ERROR; 1971 return(0); 1972 } 1973 1974 /* 1975 * If the copy flag is set, copy this peripheral out. 1976 */ 1977 if (retval & DM_RET_COPY) { 1978 int spaceleft, j; 1979 size_t l; 1980 1981 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1982 sizeof(struct dev_match_result)); 1983 1984 /* 1985 * If we don't have enough space to put in another 1986 * match result, save our position and tell the 1987 * user there are more devices to check. 1988 */ 1989 if (spaceleft < sizeof(struct dev_match_result)) { 1990 bzero(&cdm->pos, sizeof(cdm->pos)); 1991 cdm->pos.position_type = 1992 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1993 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1994 CAM_DEV_POS_PERIPH; 1995 1996 cdm->pos.cookie.bus = periph->path->bus; 1997 cdm->pos.generations[CAM_BUS_GENERATION]= 1998 xsoftc.bus_generation; 1999 cdm->pos.cookie.target = periph->path->target; 2000 cdm->pos.generations[CAM_TARGET_GENERATION] = 2001 periph->path->bus->generation; 2002 cdm->pos.cookie.device = periph->path->device; 2003 cdm->pos.generations[CAM_DEV_GENERATION] = 2004 periph->path->target->generation; 2005 cdm->pos.cookie.periph = periph; 2006 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2007 periph->path->device->generation; 2008 cdm->status = CAM_DEV_MATCH_MORE; 2009 return(0); 2010 } 2011 2012 j = cdm->num_matches; 2013 cdm->num_matches++; 2014 cdm->matches[j].type = DEV_MATCH_PERIPH; 2015 cdm->matches[j].result.periph_result.path_id = 2016 periph->path->bus->path_id; 2017 cdm->matches[j].result.periph_result.target_id = 2018 periph->path->target->target_id; 2019 cdm->matches[j].result.periph_result.target_lun = 2020 periph->path->device->lun_id; 2021 cdm->matches[j].result.periph_result.unit_number = 2022 periph->unit_number; 2023 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2024 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2025 periph->periph_name, l); 2026 } 2027 2028 return(1); 2029 } 2030 2031 static int 2032 xptedtmatch(struct ccb_dev_match *cdm) 2033 { 2034 struct cam_eb *bus; 2035 int ret; 2036 2037 cdm->num_matches = 0; 2038 2039 /* 2040 * Check the bus list generation. If it has changed, the user 2041 * needs to reset everything and start over. 2042 */ 2043 xpt_lock_buses(); 2044 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2045 && (cdm->pos.cookie.bus != NULL)) { 2046 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2047 xsoftc.bus_generation) { 2048 xpt_unlock_buses(); 2049 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2050 return(0); 2051 } 2052 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2053 bus->refcount++; 2054 } else 2055 bus = NULL; 2056 xpt_unlock_buses(); 2057 2058 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2059 2060 /* 2061 * If we get back 0, that means that we had to stop before fully 2062 * traversing the EDT. It also means that one of the subroutines 2063 * has set the status field to the proper value. If we get back 1, 2064 * we've fully traversed the EDT and copied out any matching entries. 2065 */ 2066 if (ret == 1) 2067 cdm->status = CAM_DEV_MATCH_LAST; 2068 2069 return(ret); 2070 } 2071 2072 static int 2073 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2074 { 2075 struct cam_periph *periph; 2076 struct ccb_dev_match *cdm; 2077 2078 cdm = (struct ccb_dev_match *)arg; 2079 2080 xpt_lock_buses(); 2081 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2082 && (cdm->pos.cookie.pdrv == pdrv) 2083 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2084 && (cdm->pos.cookie.periph != NULL)) { 2085 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2086 (*pdrv)->generation) { 2087 xpt_unlock_buses(); 2088 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2089 return(0); 2090 } 2091 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2092 periph->refcount++; 2093 } else 2094 periph = NULL; 2095 xpt_unlock_buses(); 2096 2097 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2098 } 2099 2100 static int 2101 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2102 { 2103 struct ccb_dev_match *cdm; 2104 dev_match_ret retval; 2105 2106 cdm = (struct ccb_dev_match *)arg; 2107 2108 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2109 2110 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2111 cdm->status = CAM_DEV_MATCH_ERROR; 2112 return(0); 2113 } 2114 2115 /* 2116 * If the copy flag is set, copy this peripheral out. 2117 */ 2118 if (retval & DM_RET_COPY) { 2119 int spaceleft, j; 2120 size_t l; 2121 2122 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2123 sizeof(struct dev_match_result)); 2124 2125 /* 2126 * If we don't have enough space to put in another 2127 * match result, save our position and tell the 2128 * user there are more devices to check. 2129 */ 2130 if (spaceleft < sizeof(struct dev_match_result)) { 2131 struct periph_driver **pdrv; 2132 2133 pdrv = NULL; 2134 bzero(&cdm->pos, sizeof(cdm->pos)); 2135 cdm->pos.position_type = 2136 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2137 CAM_DEV_POS_PERIPH; 2138 2139 /* 2140 * This may look a bit non-sensical, but it is 2141 * actually quite logical. There are very few 2142 * peripheral drivers, and bloating every peripheral 2143 * structure with a pointer back to its parent 2144 * peripheral driver linker set entry would cost 2145 * more in the long run than doing this quick lookup. 2146 */ 2147 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2148 if (strcmp((*pdrv)->driver_name, 2149 periph->periph_name) == 0) 2150 break; 2151 } 2152 2153 if (*pdrv == NULL) { 2154 cdm->status = CAM_DEV_MATCH_ERROR; 2155 return(0); 2156 } 2157 2158 cdm->pos.cookie.pdrv = pdrv; 2159 /* 2160 * The periph generation slot does double duty, as 2161 * does the periph pointer slot. They are used for 2162 * both edt and pdrv lookups and positioning. 2163 */ 2164 cdm->pos.cookie.periph = periph; 2165 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2166 (*pdrv)->generation; 2167 cdm->status = CAM_DEV_MATCH_MORE; 2168 return(0); 2169 } 2170 2171 j = cdm->num_matches; 2172 cdm->num_matches++; 2173 cdm->matches[j].type = DEV_MATCH_PERIPH; 2174 cdm->matches[j].result.periph_result.path_id = 2175 periph->path->bus->path_id; 2176 2177 /* 2178 * The transport layer peripheral doesn't have a target or 2179 * lun. 2180 */ 2181 if (periph->path->target) 2182 cdm->matches[j].result.periph_result.target_id = 2183 periph->path->target->target_id; 2184 else 2185 cdm->matches[j].result.periph_result.target_id = 2186 CAM_TARGET_WILDCARD; 2187 2188 if (periph->path->device) 2189 cdm->matches[j].result.periph_result.target_lun = 2190 periph->path->device->lun_id; 2191 else 2192 cdm->matches[j].result.periph_result.target_lun = 2193 CAM_LUN_WILDCARD; 2194 2195 cdm->matches[j].result.periph_result.unit_number = 2196 periph->unit_number; 2197 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2198 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2199 periph->periph_name, l); 2200 } 2201 2202 return(1); 2203 } 2204 2205 static int 2206 xptperiphlistmatch(struct ccb_dev_match *cdm) 2207 { 2208 int ret; 2209 2210 cdm->num_matches = 0; 2211 2212 /* 2213 * At this point in the edt traversal function, we check the bus 2214 * list generation to make sure that no buses have been added or 2215 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2216 * For the peripheral driver list traversal function, however, we 2217 * don't have to worry about new peripheral driver types coming or 2218 * going; they're in a linker set, and therefore can't change 2219 * without a recompile. 2220 */ 2221 2222 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2223 && (cdm->pos.cookie.pdrv != NULL)) 2224 ret = xptpdrvtraverse( 2225 (struct periph_driver **)cdm->pos.cookie.pdrv, 2226 xptplistpdrvfunc, cdm); 2227 else 2228 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2229 2230 /* 2231 * If we get back 0, that means that we had to stop before fully 2232 * traversing the peripheral driver tree. It also means that one of 2233 * the subroutines has set the status field to the proper value. If 2234 * we get back 1, we've fully traversed the EDT and copied out any 2235 * matching entries. 2236 */ 2237 if (ret == 1) 2238 cdm->status = CAM_DEV_MATCH_LAST; 2239 2240 return(ret); 2241 } 2242 2243 static int 2244 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2245 { 2246 struct cam_eb *bus, *next_bus; 2247 int retval; 2248 2249 retval = 1; 2250 if (start_bus) 2251 bus = start_bus; 2252 else { 2253 xpt_lock_buses(); 2254 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2255 if (bus == NULL) { 2256 xpt_unlock_buses(); 2257 return (retval); 2258 } 2259 bus->refcount++; 2260 xpt_unlock_buses(); 2261 } 2262 for (; bus != NULL; bus = next_bus) { 2263 retval = tr_func(bus, arg); 2264 if (retval == 0) { 2265 xpt_release_bus(bus); 2266 break; 2267 } 2268 xpt_lock_buses(); 2269 next_bus = TAILQ_NEXT(bus, links); 2270 if (next_bus) 2271 next_bus->refcount++; 2272 xpt_unlock_buses(); 2273 xpt_release_bus(bus); 2274 } 2275 return(retval); 2276 } 2277 2278 static int 2279 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2280 xpt_targetfunc_t *tr_func, void *arg) 2281 { 2282 struct cam_et *target, *next_target; 2283 int retval; 2284 2285 retval = 1; 2286 if (start_target) 2287 target = start_target; 2288 else { 2289 mtx_lock(&bus->eb_mtx); 2290 target = TAILQ_FIRST(&bus->et_entries); 2291 if (target == NULL) { 2292 mtx_unlock(&bus->eb_mtx); 2293 return (retval); 2294 } 2295 target->refcount++; 2296 mtx_unlock(&bus->eb_mtx); 2297 } 2298 for (; target != NULL; target = next_target) { 2299 retval = tr_func(target, arg); 2300 if (retval == 0) { 2301 xpt_release_target(target); 2302 break; 2303 } 2304 mtx_lock(&bus->eb_mtx); 2305 next_target = TAILQ_NEXT(target, links); 2306 if (next_target) 2307 next_target->refcount++; 2308 mtx_unlock(&bus->eb_mtx); 2309 xpt_release_target(target); 2310 } 2311 return(retval); 2312 } 2313 2314 static int 2315 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2316 xpt_devicefunc_t *tr_func, void *arg) 2317 { 2318 struct cam_eb *bus; 2319 struct cam_ed *device, *next_device; 2320 int retval; 2321 2322 retval = 1; 2323 bus = target->bus; 2324 if (start_device) 2325 device = start_device; 2326 else { 2327 mtx_lock(&bus->eb_mtx); 2328 device = TAILQ_FIRST(&target->ed_entries); 2329 if (device == NULL) { 2330 mtx_unlock(&bus->eb_mtx); 2331 return (retval); 2332 } 2333 device->refcount++; 2334 mtx_unlock(&bus->eb_mtx); 2335 } 2336 for (; device != NULL; device = next_device) { 2337 mtx_lock(&device->device_mtx); 2338 retval = tr_func(device, arg); 2339 mtx_unlock(&device->device_mtx); 2340 if (retval == 0) { 2341 xpt_release_device(device); 2342 break; 2343 } 2344 mtx_lock(&bus->eb_mtx); 2345 next_device = TAILQ_NEXT(device, links); 2346 if (next_device) 2347 next_device->refcount++; 2348 mtx_unlock(&bus->eb_mtx); 2349 xpt_release_device(device); 2350 } 2351 return(retval); 2352 } 2353 2354 static int 2355 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2356 xpt_periphfunc_t *tr_func, void *arg) 2357 { 2358 struct cam_eb *bus; 2359 struct cam_periph *periph, *next_periph; 2360 int retval; 2361 2362 retval = 1; 2363 2364 bus = device->target->bus; 2365 if (start_periph) 2366 periph = start_periph; 2367 else { 2368 xpt_lock_buses(); 2369 mtx_lock(&bus->eb_mtx); 2370 periph = SLIST_FIRST(&device->periphs); 2371 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2372 periph = SLIST_NEXT(periph, periph_links); 2373 if (periph == NULL) { 2374 mtx_unlock(&bus->eb_mtx); 2375 xpt_unlock_buses(); 2376 return (retval); 2377 } 2378 periph->refcount++; 2379 mtx_unlock(&bus->eb_mtx); 2380 xpt_unlock_buses(); 2381 } 2382 for (; periph != NULL; periph = next_periph) { 2383 retval = tr_func(periph, arg); 2384 if (retval == 0) { 2385 cam_periph_release_locked(periph); 2386 break; 2387 } 2388 xpt_lock_buses(); 2389 mtx_lock(&bus->eb_mtx); 2390 next_periph = SLIST_NEXT(periph, periph_links); 2391 while (next_periph != NULL && 2392 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2393 next_periph = SLIST_NEXT(next_periph, periph_links); 2394 if (next_periph) 2395 next_periph->refcount++; 2396 mtx_unlock(&bus->eb_mtx); 2397 xpt_unlock_buses(); 2398 cam_periph_release_locked(periph); 2399 } 2400 return(retval); 2401 } 2402 2403 static int 2404 xptpdrvtraverse(struct periph_driver **start_pdrv, 2405 xpt_pdrvfunc_t *tr_func, void *arg) 2406 { 2407 struct periph_driver **pdrv; 2408 int retval; 2409 2410 retval = 1; 2411 2412 /* 2413 * We don't traverse the peripheral driver list like we do the 2414 * other lists, because it is a linker set, and therefore cannot be 2415 * changed during runtime. If the peripheral driver list is ever 2416 * re-done to be something other than a linker set (i.e. it can 2417 * change while the system is running), the list traversal should 2418 * be modified to work like the other traversal functions. 2419 */ 2420 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2421 *pdrv != NULL; pdrv++) { 2422 retval = tr_func(pdrv, arg); 2423 2424 if (retval == 0) 2425 return(retval); 2426 } 2427 2428 return(retval); 2429 } 2430 2431 static int 2432 xptpdperiphtraverse(struct periph_driver **pdrv, 2433 struct cam_periph *start_periph, 2434 xpt_periphfunc_t *tr_func, void *arg) 2435 { 2436 struct cam_periph *periph, *next_periph; 2437 int retval; 2438 2439 retval = 1; 2440 2441 if (start_periph) 2442 periph = start_periph; 2443 else { 2444 xpt_lock_buses(); 2445 periph = TAILQ_FIRST(&(*pdrv)->units); 2446 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2447 periph = TAILQ_NEXT(periph, unit_links); 2448 if (periph == NULL) { 2449 xpt_unlock_buses(); 2450 return (retval); 2451 } 2452 periph->refcount++; 2453 xpt_unlock_buses(); 2454 } 2455 for (; periph != NULL; periph = next_periph) { 2456 cam_periph_lock(periph); 2457 retval = tr_func(periph, arg); 2458 cam_periph_unlock(periph); 2459 if (retval == 0) { 2460 cam_periph_release(periph); 2461 break; 2462 } 2463 xpt_lock_buses(); 2464 next_periph = TAILQ_NEXT(periph, unit_links); 2465 while (next_periph != NULL && 2466 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2467 next_periph = TAILQ_NEXT(next_periph, unit_links); 2468 if (next_periph) 2469 next_periph->refcount++; 2470 xpt_unlock_buses(); 2471 cam_periph_release(periph); 2472 } 2473 return(retval); 2474 } 2475 2476 static int 2477 xptdefbusfunc(struct cam_eb *bus, void *arg) 2478 { 2479 struct xpt_traverse_config *tr_config; 2480 2481 tr_config = (struct xpt_traverse_config *)arg; 2482 2483 if (tr_config->depth == XPT_DEPTH_BUS) { 2484 xpt_busfunc_t *tr_func; 2485 2486 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2487 2488 return(tr_func(bus, tr_config->tr_arg)); 2489 } else 2490 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2491 } 2492 2493 static int 2494 xptdeftargetfunc(struct cam_et *target, void *arg) 2495 { 2496 struct xpt_traverse_config *tr_config; 2497 2498 tr_config = (struct xpt_traverse_config *)arg; 2499 2500 if (tr_config->depth == XPT_DEPTH_TARGET) { 2501 xpt_targetfunc_t *tr_func; 2502 2503 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2504 2505 return(tr_func(target, tr_config->tr_arg)); 2506 } else 2507 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2508 } 2509 2510 static int 2511 xptdefdevicefunc(struct cam_ed *device, void *arg) 2512 { 2513 struct xpt_traverse_config *tr_config; 2514 2515 tr_config = (struct xpt_traverse_config *)arg; 2516 2517 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2518 xpt_devicefunc_t *tr_func; 2519 2520 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2521 2522 return(tr_func(device, tr_config->tr_arg)); 2523 } else 2524 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2525 } 2526 2527 static int 2528 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2529 { 2530 struct xpt_traverse_config *tr_config; 2531 xpt_periphfunc_t *tr_func; 2532 2533 tr_config = (struct xpt_traverse_config *)arg; 2534 2535 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2536 2537 /* 2538 * Unlike the other default functions, we don't check for depth 2539 * here. The peripheral driver level is the last level in the EDT, 2540 * so if we're here, we should execute the function in question. 2541 */ 2542 return(tr_func(periph, tr_config->tr_arg)); 2543 } 2544 2545 /* 2546 * Execute the given function for every bus in the EDT. 2547 */ 2548 static int 2549 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2550 { 2551 struct xpt_traverse_config tr_config; 2552 2553 tr_config.depth = XPT_DEPTH_BUS; 2554 tr_config.tr_func = tr_func; 2555 tr_config.tr_arg = arg; 2556 2557 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2558 } 2559 2560 /* 2561 * Execute the given function for every device in the EDT. 2562 */ 2563 static int 2564 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2565 { 2566 struct xpt_traverse_config tr_config; 2567 2568 tr_config.depth = XPT_DEPTH_DEVICE; 2569 tr_config.tr_func = tr_func; 2570 tr_config.tr_arg = arg; 2571 2572 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2573 } 2574 2575 static int 2576 xptsetasyncfunc(struct cam_ed *device, void *arg) 2577 { 2578 struct cam_path path; 2579 struct ccb_getdev cgd; 2580 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2581 2582 /* 2583 * Don't report unconfigured devices (Wildcard devs, 2584 * devices only for target mode, device instances 2585 * that have been invalidated but are waiting for 2586 * their last reference count to be released). 2587 */ 2588 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2589 return (1); 2590 2591 xpt_compile_path(&path, 2592 NULL, 2593 device->target->bus->path_id, 2594 device->target->target_id, 2595 device->lun_id); 2596 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2597 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2598 xpt_action((union ccb *)&cgd); 2599 csa->callback(csa->callback_arg, 2600 AC_FOUND_DEVICE, 2601 &path, &cgd); 2602 xpt_release_path(&path); 2603 2604 return(1); 2605 } 2606 2607 static int 2608 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2609 { 2610 struct cam_path path; 2611 struct ccb_pathinq cpi; 2612 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2613 2614 xpt_compile_path(&path, /*periph*/NULL, 2615 bus->path_id, 2616 CAM_TARGET_WILDCARD, 2617 CAM_LUN_WILDCARD); 2618 xpt_path_lock(&path); 2619 xpt_path_inq(&cpi, &path); 2620 csa->callback(csa->callback_arg, 2621 AC_PATH_REGISTERED, 2622 &path, &cpi); 2623 xpt_path_unlock(&path); 2624 xpt_release_path(&path); 2625 2626 return(1); 2627 } 2628 2629 void 2630 xpt_action(union ccb *start_ccb) 2631 { 2632 2633 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2634 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2635 xpt_action_name(start_ccb->ccb_h.func_code))); 2636 2637 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2638 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2639 } 2640 2641 void 2642 xpt_action_default(union ccb *start_ccb) 2643 { 2644 struct cam_path *path; 2645 struct cam_sim *sim; 2646 struct mtx *mtx; 2647 2648 path = start_ccb->ccb_h.path; 2649 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2650 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2651 xpt_action_name(start_ccb->ccb_h.func_code))); 2652 2653 switch (start_ccb->ccb_h.func_code) { 2654 case XPT_SCSI_IO: 2655 { 2656 struct cam_ed *device; 2657 2658 /* 2659 * For the sake of compatibility with SCSI-1 2660 * devices that may not understand the identify 2661 * message, we include lun information in the 2662 * second byte of all commands. SCSI-1 specifies 2663 * that luns are a 3 bit value and reserves only 3 2664 * bits for lun information in the CDB. Later 2665 * revisions of the SCSI spec allow for more than 8 2666 * luns, but have deprecated lun information in the 2667 * CDB. So, if the lun won't fit, we must omit. 2668 * 2669 * Also be aware that during initial probing for devices, 2670 * the inquiry information is unknown but initialized to 0. 2671 * This means that this code will be exercised while probing 2672 * devices with an ANSI revision greater than 2. 2673 */ 2674 device = path->device; 2675 if (device->protocol_version <= SCSI_REV_2 2676 && start_ccb->ccb_h.target_lun < 8 2677 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2678 2679 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2680 start_ccb->ccb_h.target_lun << 5; 2681 } 2682 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2683 } 2684 /* FALLTHROUGH */ 2685 case XPT_TARGET_IO: 2686 case XPT_CONT_TARGET_IO: 2687 start_ccb->csio.sense_resid = 0; 2688 start_ccb->csio.resid = 0; 2689 /* FALLTHROUGH */ 2690 case XPT_ATA_IO: 2691 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2692 start_ccb->ataio.resid = 0; 2693 /* FALLTHROUGH */ 2694 case XPT_NVME_IO: 2695 /* FALLTHROUGH */ 2696 case XPT_NVME_ADMIN: 2697 /* FALLTHROUGH */ 2698 case XPT_MMC_IO: 2699 /* XXX just like nmve_io? */ 2700 case XPT_RESET_DEV: 2701 case XPT_ENG_EXEC: 2702 case XPT_SMP_IO: 2703 { 2704 struct cam_devq *devq; 2705 2706 devq = path->bus->sim->devq; 2707 mtx_lock(&devq->send_mtx); 2708 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2709 if (xpt_schedule_devq(devq, path->device) != 0) 2710 xpt_run_devq(devq); 2711 mtx_unlock(&devq->send_mtx); 2712 break; 2713 } 2714 case XPT_CALC_GEOMETRY: 2715 /* Filter out garbage */ 2716 if (start_ccb->ccg.block_size == 0 2717 || start_ccb->ccg.volume_size == 0) { 2718 start_ccb->ccg.cylinders = 0; 2719 start_ccb->ccg.heads = 0; 2720 start_ccb->ccg.secs_per_track = 0; 2721 start_ccb->ccb_h.status = CAM_REQ_CMP; 2722 break; 2723 } 2724 #if defined(__sparc64__) 2725 /* 2726 * For sparc64, we may need adjust the geometry of large 2727 * disks in order to fit the limitations of the 16-bit 2728 * fields of the VTOC8 disk label. 2729 */ 2730 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2731 start_ccb->ccb_h.status = CAM_REQ_CMP; 2732 break; 2733 } 2734 #endif 2735 goto call_sim; 2736 case XPT_ABORT: 2737 { 2738 union ccb* abort_ccb; 2739 2740 abort_ccb = start_ccb->cab.abort_ccb; 2741 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2742 struct cam_ed *device; 2743 struct cam_devq *devq; 2744 2745 device = abort_ccb->ccb_h.path->device; 2746 devq = device->sim->devq; 2747 2748 mtx_lock(&devq->send_mtx); 2749 if (abort_ccb->ccb_h.pinfo.index > 0) { 2750 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2751 abort_ccb->ccb_h.status = 2752 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2753 xpt_freeze_devq_device(device, 1); 2754 mtx_unlock(&devq->send_mtx); 2755 xpt_done(abort_ccb); 2756 start_ccb->ccb_h.status = CAM_REQ_CMP; 2757 break; 2758 } 2759 mtx_unlock(&devq->send_mtx); 2760 2761 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2762 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2763 /* 2764 * We've caught this ccb en route to 2765 * the SIM. Flag it for abort and the 2766 * SIM will do so just before starting 2767 * real work on the CCB. 2768 */ 2769 abort_ccb->ccb_h.status = 2770 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2771 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2772 start_ccb->ccb_h.status = CAM_REQ_CMP; 2773 break; 2774 } 2775 } 2776 if (XPT_FC_IS_QUEUED(abort_ccb) 2777 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2778 /* 2779 * It's already completed but waiting 2780 * for our SWI to get to it. 2781 */ 2782 start_ccb->ccb_h.status = CAM_UA_ABORT; 2783 break; 2784 } 2785 /* 2786 * If we weren't able to take care of the abort request 2787 * in the XPT, pass the request down to the SIM for processing. 2788 */ 2789 } 2790 /* FALLTHROUGH */ 2791 case XPT_ACCEPT_TARGET_IO: 2792 case XPT_EN_LUN: 2793 case XPT_IMMED_NOTIFY: 2794 case XPT_NOTIFY_ACK: 2795 case XPT_RESET_BUS: 2796 case XPT_IMMEDIATE_NOTIFY: 2797 case XPT_NOTIFY_ACKNOWLEDGE: 2798 case XPT_GET_SIM_KNOB_OLD: 2799 case XPT_GET_SIM_KNOB: 2800 case XPT_SET_SIM_KNOB: 2801 case XPT_GET_TRAN_SETTINGS: 2802 case XPT_SET_TRAN_SETTINGS: 2803 case XPT_PATH_INQ: 2804 call_sim: 2805 sim = path->bus->sim; 2806 mtx = sim->mtx; 2807 if (mtx && !mtx_owned(mtx)) 2808 mtx_lock(mtx); 2809 else 2810 mtx = NULL; 2811 2812 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2813 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2814 (*(sim->sim_action))(sim, start_ccb); 2815 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2816 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2817 if (mtx) 2818 mtx_unlock(mtx); 2819 break; 2820 case XPT_PATH_STATS: 2821 start_ccb->cpis.last_reset = path->bus->last_reset; 2822 start_ccb->ccb_h.status = CAM_REQ_CMP; 2823 break; 2824 case XPT_GDEV_TYPE: 2825 { 2826 struct cam_ed *dev; 2827 2828 dev = path->device; 2829 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2830 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2831 } else { 2832 struct ccb_getdev *cgd; 2833 2834 cgd = &start_ccb->cgd; 2835 cgd->protocol = dev->protocol; 2836 cgd->inq_data = dev->inq_data; 2837 cgd->ident_data = dev->ident_data; 2838 cgd->inq_flags = dev->inq_flags; 2839 cgd->ccb_h.status = CAM_REQ_CMP; 2840 cgd->serial_num_len = dev->serial_num_len; 2841 if ((dev->serial_num_len > 0) 2842 && (dev->serial_num != NULL)) 2843 bcopy(dev->serial_num, cgd->serial_num, 2844 dev->serial_num_len); 2845 } 2846 break; 2847 } 2848 case XPT_GDEV_STATS: 2849 { 2850 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2851 struct cam_ed *dev = path->device; 2852 struct cam_eb *bus = path->bus; 2853 struct cam_et *tar = path->target; 2854 struct cam_devq *devq = bus->sim->devq; 2855 2856 mtx_lock(&devq->send_mtx); 2857 cgds->dev_openings = dev->ccbq.dev_openings; 2858 cgds->dev_active = dev->ccbq.dev_active; 2859 cgds->allocated = dev->ccbq.allocated; 2860 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2861 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2862 cgds->last_reset = tar->last_reset; 2863 cgds->maxtags = dev->maxtags; 2864 cgds->mintags = dev->mintags; 2865 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2866 cgds->last_reset = bus->last_reset; 2867 mtx_unlock(&devq->send_mtx); 2868 cgds->ccb_h.status = CAM_REQ_CMP; 2869 break; 2870 } 2871 case XPT_GDEVLIST: 2872 { 2873 struct cam_periph *nperiph; 2874 struct periph_list *periph_head; 2875 struct ccb_getdevlist *cgdl; 2876 u_int i; 2877 struct cam_ed *device; 2878 int found; 2879 2880 2881 found = 0; 2882 2883 /* 2884 * Don't want anyone mucking with our data. 2885 */ 2886 device = path->device; 2887 periph_head = &device->periphs; 2888 cgdl = &start_ccb->cgdl; 2889 2890 /* 2891 * Check and see if the list has changed since the user 2892 * last requested a list member. If so, tell them that the 2893 * list has changed, and therefore they need to start over 2894 * from the beginning. 2895 */ 2896 if ((cgdl->index != 0) && 2897 (cgdl->generation != device->generation)) { 2898 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2899 break; 2900 } 2901 2902 /* 2903 * Traverse the list of peripherals and attempt to find 2904 * the requested peripheral. 2905 */ 2906 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2907 (nperiph != NULL) && (i <= cgdl->index); 2908 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2909 if (i == cgdl->index) { 2910 strlcpy(cgdl->periph_name, 2911 nperiph->periph_name, 2912 sizeof(cgdl->periph_name)); 2913 cgdl->unit_number = nperiph->unit_number; 2914 found = 1; 2915 } 2916 } 2917 if (found == 0) { 2918 cgdl->status = CAM_GDEVLIST_ERROR; 2919 break; 2920 } 2921 2922 if (nperiph == NULL) 2923 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2924 else 2925 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2926 2927 cgdl->index++; 2928 cgdl->generation = device->generation; 2929 2930 cgdl->ccb_h.status = CAM_REQ_CMP; 2931 break; 2932 } 2933 case XPT_DEV_MATCH: 2934 { 2935 dev_pos_type position_type; 2936 struct ccb_dev_match *cdm; 2937 2938 cdm = &start_ccb->cdm; 2939 2940 /* 2941 * There are two ways of getting at information in the EDT. 2942 * The first way is via the primary EDT tree. It starts 2943 * with a list of buses, then a list of targets on a bus, 2944 * then devices/luns on a target, and then peripherals on a 2945 * device/lun. The "other" way is by the peripheral driver 2946 * lists. The peripheral driver lists are organized by 2947 * peripheral driver. (obviously) So it makes sense to 2948 * use the peripheral driver list if the user is looking 2949 * for something like "da1", or all "da" devices. If the 2950 * user is looking for something on a particular bus/target 2951 * or lun, it's generally better to go through the EDT tree. 2952 */ 2953 2954 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2955 position_type = cdm->pos.position_type; 2956 else { 2957 u_int i; 2958 2959 position_type = CAM_DEV_POS_NONE; 2960 2961 for (i = 0; i < cdm->num_patterns; i++) { 2962 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2963 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2964 position_type = CAM_DEV_POS_EDT; 2965 break; 2966 } 2967 } 2968 2969 if (cdm->num_patterns == 0) 2970 position_type = CAM_DEV_POS_EDT; 2971 else if (position_type == CAM_DEV_POS_NONE) 2972 position_type = CAM_DEV_POS_PDRV; 2973 } 2974 2975 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2976 case CAM_DEV_POS_EDT: 2977 xptedtmatch(cdm); 2978 break; 2979 case CAM_DEV_POS_PDRV: 2980 xptperiphlistmatch(cdm); 2981 break; 2982 default: 2983 cdm->status = CAM_DEV_MATCH_ERROR; 2984 break; 2985 } 2986 2987 if (cdm->status == CAM_DEV_MATCH_ERROR) 2988 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2989 else 2990 start_ccb->ccb_h.status = CAM_REQ_CMP; 2991 2992 break; 2993 } 2994 case XPT_SASYNC_CB: 2995 { 2996 struct ccb_setasync *csa; 2997 struct async_node *cur_entry; 2998 struct async_list *async_head; 2999 u_int32_t added; 3000 3001 csa = &start_ccb->csa; 3002 added = csa->event_enable; 3003 async_head = &path->device->asyncs; 3004 3005 /* 3006 * If there is already an entry for us, simply 3007 * update it. 3008 */ 3009 cur_entry = SLIST_FIRST(async_head); 3010 while (cur_entry != NULL) { 3011 if ((cur_entry->callback_arg == csa->callback_arg) 3012 && (cur_entry->callback == csa->callback)) 3013 break; 3014 cur_entry = SLIST_NEXT(cur_entry, links); 3015 } 3016 3017 if (cur_entry != NULL) { 3018 /* 3019 * If the request has no flags set, 3020 * remove the entry. 3021 */ 3022 added &= ~cur_entry->event_enable; 3023 if (csa->event_enable == 0) { 3024 SLIST_REMOVE(async_head, cur_entry, 3025 async_node, links); 3026 xpt_release_device(path->device); 3027 free(cur_entry, M_CAMXPT); 3028 } else { 3029 cur_entry->event_enable = csa->event_enable; 3030 } 3031 csa->event_enable = added; 3032 } else { 3033 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3034 M_NOWAIT); 3035 if (cur_entry == NULL) { 3036 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3037 break; 3038 } 3039 cur_entry->event_enable = csa->event_enable; 3040 cur_entry->event_lock = (path->bus->sim->mtx && 3041 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3042 cur_entry->callback_arg = csa->callback_arg; 3043 cur_entry->callback = csa->callback; 3044 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3045 xpt_acquire_device(path->device); 3046 } 3047 start_ccb->ccb_h.status = CAM_REQ_CMP; 3048 break; 3049 } 3050 case XPT_REL_SIMQ: 3051 { 3052 struct ccb_relsim *crs; 3053 struct cam_ed *dev; 3054 3055 crs = &start_ccb->crs; 3056 dev = path->device; 3057 if (dev == NULL) { 3058 3059 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3060 break; 3061 } 3062 3063 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3064 3065 /* Don't ever go below one opening */ 3066 if (crs->openings > 0) { 3067 xpt_dev_ccbq_resize(path, crs->openings); 3068 if (bootverbose) { 3069 xpt_print(path, 3070 "number of openings is now %d\n", 3071 crs->openings); 3072 } 3073 } 3074 } 3075 3076 mtx_lock(&dev->sim->devq->send_mtx); 3077 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3078 3079 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3080 3081 /* 3082 * Just extend the old timeout and decrement 3083 * the freeze count so that a single timeout 3084 * is sufficient for releasing the queue. 3085 */ 3086 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3087 callout_stop(&dev->callout); 3088 } else { 3089 3090 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3091 } 3092 3093 callout_reset_sbt(&dev->callout, 3094 SBT_1MS * crs->release_timeout, 0, 3095 xpt_release_devq_timeout, dev, 0); 3096 3097 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3098 3099 } 3100 3101 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3102 3103 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3104 /* 3105 * Decrement the freeze count so that a single 3106 * completion is still sufficient to unfreeze 3107 * the queue. 3108 */ 3109 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3110 } else { 3111 3112 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3113 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3114 } 3115 } 3116 3117 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3118 3119 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3120 || (dev->ccbq.dev_active == 0)) { 3121 3122 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3123 } else { 3124 3125 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3126 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3127 } 3128 } 3129 mtx_unlock(&dev->sim->devq->send_mtx); 3130 3131 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3132 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3133 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3134 start_ccb->ccb_h.status = CAM_REQ_CMP; 3135 break; 3136 } 3137 case XPT_DEBUG: { 3138 struct cam_path *oldpath; 3139 3140 /* Check that all request bits are supported. */ 3141 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3142 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3143 break; 3144 } 3145 3146 cam_dflags = CAM_DEBUG_NONE; 3147 if (cam_dpath != NULL) { 3148 oldpath = cam_dpath; 3149 cam_dpath = NULL; 3150 xpt_free_path(oldpath); 3151 } 3152 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3153 if (xpt_create_path(&cam_dpath, NULL, 3154 start_ccb->ccb_h.path_id, 3155 start_ccb->ccb_h.target_id, 3156 start_ccb->ccb_h.target_lun) != 3157 CAM_REQ_CMP) { 3158 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3159 } else { 3160 cam_dflags = start_ccb->cdbg.flags; 3161 start_ccb->ccb_h.status = CAM_REQ_CMP; 3162 xpt_print(cam_dpath, "debugging flags now %x\n", 3163 cam_dflags); 3164 } 3165 } else 3166 start_ccb->ccb_h.status = CAM_REQ_CMP; 3167 break; 3168 } 3169 case XPT_NOOP: 3170 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3171 xpt_freeze_devq(path, 1); 3172 start_ccb->ccb_h.status = CAM_REQ_CMP; 3173 break; 3174 case XPT_REPROBE_LUN: 3175 xpt_async(AC_INQ_CHANGED, path, NULL); 3176 start_ccb->ccb_h.status = CAM_REQ_CMP; 3177 xpt_done(start_ccb); 3178 break; 3179 default: 3180 case XPT_SDEV_TYPE: 3181 case XPT_TERM_IO: 3182 case XPT_ENG_INQ: 3183 /* XXX Implement */ 3184 xpt_print(start_ccb->ccb_h.path, 3185 "%s: CCB type %#x %s not supported\n", __func__, 3186 start_ccb->ccb_h.func_code, 3187 xpt_action_name(start_ccb->ccb_h.func_code)); 3188 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3189 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3190 xpt_done(start_ccb); 3191 } 3192 break; 3193 } 3194 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3195 ("xpt_action_default: func= %#x %s status %#x\n", 3196 start_ccb->ccb_h.func_code, 3197 xpt_action_name(start_ccb->ccb_h.func_code), 3198 start_ccb->ccb_h.status)); 3199 } 3200 3201 /* 3202 * Call the sim poll routine to allow the sim to complete 3203 * any inflight requests, then call camisr_runqueue to 3204 * complete any CCB that the polling completed. 3205 */ 3206 void 3207 xpt_sim_poll(struct cam_sim *sim) 3208 { 3209 struct mtx *mtx; 3210 3211 mtx = sim->mtx; 3212 if (mtx) 3213 mtx_lock(mtx); 3214 (*(sim->sim_poll))(sim); 3215 if (mtx) 3216 mtx_unlock(mtx); 3217 camisr_runqueue(); 3218 } 3219 3220 uint32_t 3221 xpt_poll_setup(union ccb *start_ccb) 3222 { 3223 u_int32_t timeout; 3224 struct cam_sim *sim; 3225 struct cam_devq *devq; 3226 struct cam_ed *dev; 3227 3228 timeout = start_ccb->ccb_h.timeout * 10; 3229 sim = start_ccb->ccb_h.path->bus->sim; 3230 devq = sim->devq; 3231 dev = start_ccb->ccb_h.path->device; 3232 3233 /* 3234 * Steal an opening so that no other queued requests 3235 * can get it before us while we simulate interrupts. 3236 */ 3237 mtx_lock(&devq->send_mtx); 3238 dev->ccbq.dev_openings--; 3239 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3240 (--timeout > 0)) { 3241 mtx_unlock(&devq->send_mtx); 3242 DELAY(100); 3243 xpt_sim_poll(sim); 3244 mtx_lock(&devq->send_mtx); 3245 } 3246 dev->ccbq.dev_openings++; 3247 mtx_unlock(&devq->send_mtx); 3248 3249 return (timeout); 3250 } 3251 3252 void 3253 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3254 { 3255 3256 while (--timeout > 0) { 3257 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); 3258 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3259 != CAM_REQ_INPROG) 3260 break; 3261 DELAY(100); 3262 } 3263 3264 if (timeout == 0) { 3265 /* 3266 * XXX Is it worth adding a sim_timeout entry 3267 * point so we can attempt recovery? If 3268 * this is only used for dumps, I don't think 3269 * it is. 3270 */ 3271 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3272 } 3273 } 3274 3275 void 3276 xpt_polled_action(union ccb *start_ccb) 3277 { 3278 uint32_t timeout; 3279 struct cam_ed *dev; 3280 3281 timeout = start_ccb->ccb_h.timeout * 10; 3282 dev = start_ccb->ccb_h.path->device; 3283 3284 mtx_unlock(&dev->device_mtx); 3285 3286 timeout = xpt_poll_setup(start_ccb); 3287 if (timeout > 0) { 3288 xpt_action(start_ccb); 3289 xpt_pollwait(start_ccb, timeout); 3290 } else { 3291 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3292 } 3293 3294 mtx_lock(&dev->device_mtx); 3295 } 3296 3297 /* 3298 * Schedule a peripheral driver to receive a ccb when its 3299 * target device has space for more transactions. 3300 */ 3301 void 3302 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3303 { 3304 3305 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3306 cam_periph_assert(periph, MA_OWNED); 3307 if (new_priority < periph->scheduled_priority) { 3308 periph->scheduled_priority = new_priority; 3309 xpt_run_allocq(periph, 0); 3310 } 3311 } 3312 3313 3314 /* 3315 * Schedule a device to run on a given queue. 3316 * If the device was inserted as a new entry on the queue, 3317 * return 1 meaning the device queue should be run. If we 3318 * were already queued, implying someone else has already 3319 * started the queue, return 0 so the caller doesn't attempt 3320 * to run the queue. 3321 */ 3322 static int 3323 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3324 u_int32_t new_priority) 3325 { 3326 int retval; 3327 u_int32_t old_priority; 3328 3329 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3330 3331 3332 old_priority = pinfo->priority; 3333 3334 /* 3335 * Are we already queued? 3336 */ 3337 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3338 /* Simply reorder based on new priority */ 3339 if (new_priority < old_priority) { 3340 camq_change_priority(queue, pinfo->index, 3341 new_priority); 3342 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3343 ("changed priority to %d\n", 3344 new_priority)); 3345 retval = 1; 3346 } else 3347 retval = 0; 3348 } else { 3349 /* New entry on the queue */ 3350 if (new_priority < old_priority) 3351 pinfo->priority = new_priority; 3352 3353 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3354 ("Inserting onto queue\n")); 3355 pinfo->generation = ++queue->generation; 3356 camq_insert(queue, pinfo); 3357 retval = 1; 3358 } 3359 return (retval); 3360 } 3361 3362 static void 3363 xpt_run_allocq_task(void *context, int pending) 3364 { 3365 struct cam_periph *periph = context; 3366 3367 cam_periph_lock(periph); 3368 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3369 xpt_run_allocq(periph, 1); 3370 cam_periph_unlock(periph); 3371 cam_periph_release(periph); 3372 } 3373 3374 static void 3375 xpt_run_allocq(struct cam_periph *periph, int sleep) 3376 { 3377 struct cam_ed *device; 3378 union ccb *ccb; 3379 uint32_t prio; 3380 3381 cam_periph_assert(periph, MA_OWNED); 3382 if (periph->periph_allocating) 3383 return; 3384 cam_periph_doacquire(periph); 3385 periph->periph_allocating = 1; 3386 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3387 device = periph->path->device; 3388 ccb = NULL; 3389 restart: 3390 while ((prio = min(periph->scheduled_priority, 3391 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3392 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3393 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3394 3395 if (ccb == NULL && 3396 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3397 if (sleep) { 3398 ccb = xpt_get_ccb(periph); 3399 goto restart; 3400 } 3401 if (periph->flags & CAM_PERIPH_RUN_TASK) 3402 break; 3403 cam_periph_doacquire(periph); 3404 periph->flags |= CAM_PERIPH_RUN_TASK; 3405 taskqueue_enqueue(xsoftc.xpt_taskq, 3406 &periph->periph_run_task); 3407 break; 3408 } 3409 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3410 if (prio == periph->immediate_priority) { 3411 periph->immediate_priority = CAM_PRIORITY_NONE; 3412 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3413 ("waking cam_periph_getccb()\n")); 3414 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3415 periph_links.sle); 3416 wakeup(&periph->ccb_list); 3417 } else { 3418 periph->scheduled_priority = CAM_PRIORITY_NONE; 3419 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3420 ("calling periph_start()\n")); 3421 periph->periph_start(periph, ccb); 3422 } 3423 ccb = NULL; 3424 } 3425 if (ccb != NULL) 3426 xpt_release_ccb(ccb); 3427 periph->periph_allocating = 0; 3428 cam_periph_release_locked(periph); 3429 } 3430 3431 static void 3432 xpt_run_devq(struct cam_devq *devq) 3433 { 3434 struct mtx *mtx; 3435 3436 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3437 3438 devq->send_queue.qfrozen_cnt++; 3439 while ((devq->send_queue.entries > 0) 3440 && (devq->send_openings > 0) 3441 && (devq->send_queue.qfrozen_cnt <= 1)) { 3442 struct cam_ed *device; 3443 union ccb *work_ccb; 3444 struct cam_sim *sim; 3445 struct xpt_proto *proto; 3446 3447 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3448 CAMQ_HEAD); 3449 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3450 ("running device %p\n", device)); 3451 3452 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3453 if (work_ccb == NULL) { 3454 printf("device on run queue with no ccbs???\n"); 3455 continue; 3456 } 3457 3458 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3459 3460 mtx_lock(&xsoftc.xpt_highpower_lock); 3461 if (xsoftc.num_highpower <= 0) { 3462 /* 3463 * We got a high power command, but we 3464 * don't have any available slots. Freeze 3465 * the device queue until we have a slot 3466 * available. 3467 */ 3468 xpt_freeze_devq_device(device, 1); 3469 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3470 highpowerq_entry); 3471 3472 mtx_unlock(&xsoftc.xpt_highpower_lock); 3473 continue; 3474 } else { 3475 /* 3476 * Consume a high power slot while 3477 * this ccb runs. 3478 */ 3479 xsoftc.num_highpower--; 3480 } 3481 mtx_unlock(&xsoftc.xpt_highpower_lock); 3482 } 3483 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3484 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3485 devq->send_openings--; 3486 devq->send_active++; 3487 xpt_schedule_devq(devq, device); 3488 mtx_unlock(&devq->send_mtx); 3489 3490 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3491 /* 3492 * The client wants to freeze the queue 3493 * after this CCB is sent. 3494 */ 3495 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3496 } 3497 3498 /* In Target mode, the peripheral driver knows best... */ 3499 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3500 if ((device->inq_flags & SID_CmdQue) != 0 3501 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3502 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3503 else 3504 /* 3505 * Clear this in case of a retried CCB that 3506 * failed due to a rejected tag. 3507 */ 3508 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3509 } 3510 3511 KASSERT(device == work_ccb->ccb_h.path->device, 3512 ("device (%p) / path->device (%p) mismatch", 3513 device, work_ccb->ccb_h.path->device)); 3514 proto = xpt_proto_find(device->protocol); 3515 if (proto && proto->ops->debug_out) 3516 proto->ops->debug_out(work_ccb); 3517 3518 /* 3519 * Device queues can be shared among multiple SIM instances 3520 * that reside on different buses. Use the SIM from the 3521 * queued device, rather than the one from the calling bus. 3522 */ 3523 sim = device->sim; 3524 mtx = sim->mtx; 3525 if (mtx && !mtx_owned(mtx)) 3526 mtx_lock(mtx); 3527 else 3528 mtx = NULL; 3529 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3530 (*(sim->sim_action))(sim, work_ccb); 3531 if (mtx) 3532 mtx_unlock(mtx); 3533 mtx_lock(&devq->send_mtx); 3534 } 3535 devq->send_queue.qfrozen_cnt--; 3536 } 3537 3538 /* 3539 * This function merges stuff from the slave ccb into the master ccb, while 3540 * keeping important fields in the master ccb constant. 3541 */ 3542 void 3543 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3544 { 3545 3546 /* 3547 * Pull fields that are valid for peripheral drivers to set 3548 * into the master CCB along with the CCB "payload". 3549 */ 3550 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3551 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3552 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3553 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3554 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3555 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3556 } 3557 3558 void 3559 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3560 u_int32_t priority, u_int32_t flags) 3561 { 3562 3563 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3564 ccb_h->pinfo.priority = priority; 3565 ccb_h->path = path; 3566 ccb_h->path_id = path->bus->path_id; 3567 if (path->target) 3568 ccb_h->target_id = path->target->target_id; 3569 else 3570 ccb_h->target_id = CAM_TARGET_WILDCARD; 3571 if (path->device) { 3572 ccb_h->target_lun = path->device->lun_id; 3573 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3574 } else { 3575 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3576 } 3577 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3578 ccb_h->flags = flags; 3579 ccb_h->xflags = 0; 3580 } 3581 3582 void 3583 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3584 { 3585 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3586 } 3587 3588 /* Path manipulation functions */ 3589 cam_status 3590 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3591 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3592 { 3593 struct cam_path *path; 3594 cam_status status; 3595 3596 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3597 3598 if (path == NULL) { 3599 status = CAM_RESRC_UNAVAIL; 3600 return(status); 3601 } 3602 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3603 if (status != CAM_REQ_CMP) { 3604 free(path, M_CAMPATH); 3605 path = NULL; 3606 } 3607 *new_path_ptr = path; 3608 return (status); 3609 } 3610 3611 cam_status 3612 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3613 struct cam_periph *periph, path_id_t path_id, 3614 target_id_t target_id, lun_id_t lun_id) 3615 { 3616 3617 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3618 lun_id)); 3619 } 3620 3621 cam_status 3622 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3623 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3624 { 3625 struct cam_eb *bus; 3626 struct cam_et *target; 3627 struct cam_ed *device; 3628 cam_status status; 3629 3630 status = CAM_REQ_CMP; /* Completed without error */ 3631 target = NULL; /* Wildcarded */ 3632 device = NULL; /* Wildcarded */ 3633 3634 /* 3635 * We will potentially modify the EDT, so block interrupts 3636 * that may attempt to create cam paths. 3637 */ 3638 bus = xpt_find_bus(path_id); 3639 if (bus == NULL) { 3640 status = CAM_PATH_INVALID; 3641 } else { 3642 xpt_lock_buses(); 3643 mtx_lock(&bus->eb_mtx); 3644 target = xpt_find_target(bus, target_id); 3645 if (target == NULL) { 3646 /* Create one */ 3647 struct cam_et *new_target; 3648 3649 new_target = xpt_alloc_target(bus, target_id); 3650 if (new_target == NULL) { 3651 status = CAM_RESRC_UNAVAIL; 3652 } else { 3653 target = new_target; 3654 } 3655 } 3656 xpt_unlock_buses(); 3657 if (target != NULL) { 3658 device = xpt_find_device(target, lun_id); 3659 if (device == NULL) { 3660 /* Create one */ 3661 struct cam_ed *new_device; 3662 3663 new_device = 3664 (*(bus->xport->ops->alloc_device))(bus, 3665 target, 3666 lun_id); 3667 if (new_device == NULL) { 3668 status = CAM_RESRC_UNAVAIL; 3669 } else { 3670 device = new_device; 3671 } 3672 } 3673 } 3674 mtx_unlock(&bus->eb_mtx); 3675 } 3676 3677 /* 3678 * Only touch the user's data if we are successful. 3679 */ 3680 if (status == CAM_REQ_CMP) { 3681 new_path->periph = perph; 3682 new_path->bus = bus; 3683 new_path->target = target; 3684 new_path->device = device; 3685 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3686 } else { 3687 if (device != NULL) 3688 xpt_release_device(device); 3689 if (target != NULL) 3690 xpt_release_target(target); 3691 if (bus != NULL) 3692 xpt_release_bus(bus); 3693 } 3694 return (status); 3695 } 3696 3697 cam_status 3698 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3699 { 3700 struct cam_path *new_path; 3701 3702 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3703 if (new_path == NULL) 3704 return(CAM_RESRC_UNAVAIL); 3705 xpt_copy_path(new_path, path); 3706 *new_path_ptr = new_path; 3707 return (CAM_REQ_CMP); 3708 } 3709 3710 void 3711 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3712 { 3713 3714 *new_path = *path; 3715 if (path->bus != NULL) 3716 xpt_acquire_bus(path->bus); 3717 if (path->target != NULL) 3718 xpt_acquire_target(path->target); 3719 if (path->device != NULL) 3720 xpt_acquire_device(path->device); 3721 } 3722 3723 void 3724 xpt_release_path(struct cam_path *path) 3725 { 3726 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3727 if (path->device != NULL) { 3728 xpt_release_device(path->device); 3729 path->device = NULL; 3730 } 3731 if (path->target != NULL) { 3732 xpt_release_target(path->target); 3733 path->target = NULL; 3734 } 3735 if (path->bus != NULL) { 3736 xpt_release_bus(path->bus); 3737 path->bus = NULL; 3738 } 3739 } 3740 3741 void 3742 xpt_free_path(struct cam_path *path) 3743 { 3744 3745 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3746 xpt_release_path(path); 3747 free(path, M_CAMPATH); 3748 } 3749 3750 void 3751 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3752 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3753 { 3754 3755 xpt_lock_buses(); 3756 if (bus_ref) { 3757 if (path->bus) 3758 *bus_ref = path->bus->refcount; 3759 else 3760 *bus_ref = 0; 3761 } 3762 if (periph_ref) { 3763 if (path->periph) 3764 *periph_ref = path->periph->refcount; 3765 else 3766 *periph_ref = 0; 3767 } 3768 xpt_unlock_buses(); 3769 if (target_ref) { 3770 if (path->target) 3771 *target_ref = path->target->refcount; 3772 else 3773 *target_ref = 0; 3774 } 3775 if (device_ref) { 3776 if (path->device) 3777 *device_ref = path->device->refcount; 3778 else 3779 *device_ref = 0; 3780 } 3781 } 3782 3783 /* 3784 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3785 * in path1, 2 for match with wildcards in path2. 3786 */ 3787 int 3788 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3789 { 3790 int retval = 0; 3791 3792 if (path1->bus != path2->bus) { 3793 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3794 retval = 1; 3795 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3796 retval = 2; 3797 else 3798 return (-1); 3799 } 3800 if (path1->target != path2->target) { 3801 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3802 if (retval == 0) 3803 retval = 1; 3804 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3805 retval = 2; 3806 else 3807 return (-1); 3808 } 3809 if (path1->device != path2->device) { 3810 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3811 if (retval == 0) 3812 retval = 1; 3813 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3814 retval = 2; 3815 else 3816 return (-1); 3817 } 3818 return (retval); 3819 } 3820 3821 int 3822 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3823 { 3824 int retval = 0; 3825 3826 if (path->bus != dev->target->bus) { 3827 if (path->bus->path_id == CAM_BUS_WILDCARD) 3828 retval = 1; 3829 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3830 retval = 2; 3831 else 3832 return (-1); 3833 } 3834 if (path->target != dev->target) { 3835 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3836 if (retval == 0) 3837 retval = 1; 3838 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3839 retval = 2; 3840 else 3841 return (-1); 3842 } 3843 if (path->device != dev) { 3844 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3845 if (retval == 0) 3846 retval = 1; 3847 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3848 retval = 2; 3849 else 3850 return (-1); 3851 } 3852 return (retval); 3853 } 3854 3855 void 3856 xpt_print_path(struct cam_path *path) 3857 { 3858 struct sbuf sb; 3859 char buffer[XPT_PRINT_LEN]; 3860 3861 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3862 xpt_path_sbuf(path, &sb); 3863 sbuf_finish(&sb); 3864 printf("%s", sbuf_data(&sb)); 3865 sbuf_delete(&sb); 3866 } 3867 3868 void 3869 xpt_print_device(struct cam_ed *device) 3870 { 3871 3872 if (device == NULL) 3873 printf("(nopath): "); 3874 else { 3875 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3876 device->sim->unit_number, 3877 device->sim->bus_id, 3878 device->target->target_id, 3879 (uintmax_t)device->lun_id); 3880 } 3881 } 3882 3883 void 3884 xpt_print(struct cam_path *path, const char *fmt, ...) 3885 { 3886 va_list ap; 3887 struct sbuf sb; 3888 char buffer[XPT_PRINT_LEN]; 3889 3890 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3891 3892 xpt_path_sbuf(path, &sb); 3893 va_start(ap, fmt); 3894 sbuf_vprintf(&sb, fmt, ap); 3895 va_end(ap); 3896 3897 sbuf_finish(&sb); 3898 printf("%s", sbuf_data(&sb)); 3899 sbuf_delete(&sb); 3900 } 3901 3902 int 3903 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3904 { 3905 struct sbuf sb; 3906 int len; 3907 3908 sbuf_new(&sb, str, str_len, 0); 3909 len = xpt_path_sbuf(path, &sb); 3910 sbuf_finish(&sb); 3911 return (len); 3912 } 3913 3914 int 3915 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3916 { 3917 3918 if (path == NULL) 3919 sbuf_printf(sb, "(nopath): "); 3920 else { 3921 if (path->periph != NULL) 3922 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3923 path->periph->unit_number); 3924 else 3925 sbuf_printf(sb, "(noperiph:"); 3926 3927 if (path->bus != NULL) 3928 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3929 path->bus->sim->unit_number, 3930 path->bus->sim->bus_id); 3931 else 3932 sbuf_printf(sb, "nobus:"); 3933 3934 if (path->target != NULL) 3935 sbuf_printf(sb, "%d:", path->target->target_id); 3936 else 3937 sbuf_printf(sb, "X:"); 3938 3939 if (path->device != NULL) 3940 sbuf_printf(sb, "%jx): ", 3941 (uintmax_t)path->device->lun_id); 3942 else 3943 sbuf_printf(sb, "X): "); 3944 } 3945 3946 return(sbuf_len(sb)); 3947 } 3948 3949 path_id_t 3950 xpt_path_path_id(struct cam_path *path) 3951 { 3952 return(path->bus->path_id); 3953 } 3954 3955 target_id_t 3956 xpt_path_target_id(struct cam_path *path) 3957 { 3958 if (path->target != NULL) 3959 return (path->target->target_id); 3960 else 3961 return (CAM_TARGET_WILDCARD); 3962 } 3963 3964 lun_id_t 3965 xpt_path_lun_id(struct cam_path *path) 3966 { 3967 if (path->device != NULL) 3968 return (path->device->lun_id); 3969 else 3970 return (CAM_LUN_WILDCARD); 3971 } 3972 3973 struct cam_sim * 3974 xpt_path_sim(struct cam_path *path) 3975 { 3976 3977 return (path->bus->sim); 3978 } 3979 3980 struct cam_periph* 3981 xpt_path_periph(struct cam_path *path) 3982 { 3983 3984 return (path->periph); 3985 } 3986 3987 /* 3988 * Release a CAM control block for the caller. Remit the cost of the structure 3989 * to the device referenced by the path. If the this device had no 'credits' 3990 * and peripheral drivers have registered async callbacks for this notification 3991 * call them now. 3992 */ 3993 void 3994 xpt_release_ccb(union ccb *free_ccb) 3995 { 3996 struct cam_ed *device; 3997 struct cam_periph *periph; 3998 3999 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4000 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 4001 device = free_ccb->ccb_h.path->device; 4002 periph = free_ccb->ccb_h.path->periph; 4003 4004 xpt_free_ccb(free_ccb); 4005 periph->periph_allocated--; 4006 cam_ccbq_release_opening(&device->ccbq); 4007 xpt_run_allocq(periph, 0); 4008 } 4009 4010 /* Functions accessed by SIM drivers */ 4011 4012 static struct xpt_xport_ops xport_default_ops = { 4013 .alloc_device = xpt_alloc_device_default, 4014 .action = xpt_action_default, 4015 .async = xpt_dev_async_default, 4016 }; 4017 static struct xpt_xport xport_default = { 4018 .xport = XPORT_UNKNOWN, 4019 .name = "unknown", 4020 .ops = &xport_default_ops, 4021 }; 4022 4023 CAM_XPT_XPORT(xport_default); 4024 4025 /* 4026 * A sim structure, listing the SIM entry points and instance 4027 * identification info is passed to xpt_bus_register to hook the SIM 4028 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4029 * for this new bus and places it in the array of buses and assigns 4030 * it a path_id. The path_id may be influenced by "hard wiring" 4031 * information specified by the user. Once interrupt services are 4032 * available, the bus will be probed. 4033 */ 4034 int32_t 4035 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4036 { 4037 struct cam_eb *new_bus; 4038 struct cam_eb *old_bus; 4039 struct ccb_pathinq cpi; 4040 struct cam_path *path; 4041 cam_status status; 4042 4043 sim->bus_id = bus; 4044 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4045 M_CAMXPT, M_NOWAIT|M_ZERO); 4046 if (new_bus == NULL) { 4047 /* Couldn't satisfy request */ 4048 return (CAM_RESRC_UNAVAIL); 4049 } 4050 4051 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4052 TAILQ_INIT(&new_bus->et_entries); 4053 cam_sim_hold(sim); 4054 new_bus->sim = sim; 4055 timevalclear(&new_bus->last_reset); 4056 new_bus->flags = 0; 4057 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4058 new_bus->generation = 0; 4059 4060 xpt_lock_buses(); 4061 sim->path_id = new_bus->path_id = 4062 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4063 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4064 while (old_bus != NULL 4065 && old_bus->path_id < new_bus->path_id) 4066 old_bus = TAILQ_NEXT(old_bus, links); 4067 if (old_bus != NULL) 4068 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4069 else 4070 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4071 xsoftc.bus_generation++; 4072 xpt_unlock_buses(); 4073 4074 /* 4075 * Set a default transport so that a PATH_INQ can be issued to 4076 * the SIM. This will then allow for probing and attaching of 4077 * a more appropriate transport. 4078 */ 4079 new_bus->xport = &xport_default; 4080 4081 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4082 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4083 if (status != CAM_REQ_CMP) { 4084 xpt_release_bus(new_bus); 4085 return (CAM_RESRC_UNAVAIL); 4086 } 4087 4088 xpt_path_inq(&cpi, path); 4089 4090 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4091 struct xpt_xport **xpt; 4092 4093 SET_FOREACH(xpt, cam_xpt_xport_set) { 4094 if ((*xpt)->xport == cpi.transport) { 4095 new_bus->xport = *xpt; 4096 break; 4097 } 4098 } 4099 if (new_bus->xport == NULL) { 4100 xpt_print(path, 4101 "No transport found for %d\n", cpi.transport); 4102 xpt_release_bus(new_bus); 4103 free(path, M_CAMXPT); 4104 return (CAM_RESRC_UNAVAIL); 4105 } 4106 } 4107 4108 /* Notify interested parties */ 4109 if (sim->path_id != CAM_XPT_PATH_ID) { 4110 4111 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4112 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4113 union ccb *scan_ccb; 4114 4115 /* Initiate bus rescan. */ 4116 scan_ccb = xpt_alloc_ccb_nowait(); 4117 if (scan_ccb != NULL) { 4118 scan_ccb->ccb_h.path = path; 4119 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4120 scan_ccb->crcn.flags = 0; 4121 xpt_rescan(scan_ccb); 4122 } else { 4123 xpt_print(path, 4124 "Can't allocate CCB to scan bus\n"); 4125 xpt_free_path(path); 4126 } 4127 } else 4128 xpt_free_path(path); 4129 } else 4130 xpt_free_path(path); 4131 return (CAM_SUCCESS); 4132 } 4133 4134 int32_t 4135 xpt_bus_deregister(path_id_t pathid) 4136 { 4137 struct cam_path bus_path; 4138 cam_status status; 4139 4140 status = xpt_compile_path(&bus_path, NULL, pathid, 4141 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4142 if (status != CAM_REQ_CMP) 4143 return (status); 4144 4145 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4146 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4147 4148 /* Release the reference count held while registered. */ 4149 xpt_release_bus(bus_path.bus); 4150 xpt_release_path(&bus_path); 4151 4152 return (CAM_REQ_CMP); 4153 } 4154 4155 static path_id_t 4156 xptnextfreepathid(void) 4157 { 4158 struct cam_eb *bus; 4159 path_id_t pathid; 4160 const char *strval; 4161 4162 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4163 pathid = 0; 4164 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4165 retry: 4166 /* Find an unoccupied pathid */ 4167 while (bus != NULL && bus->path_id <= pathid) { 4168 if (bus->path_id == pathid) 4169 pathid++; 4170 bus = TAILQ_NEXT(bus, links); 4171 } 4172 4173 /* 4174 * Ensure that this pathid is not reserved for 4175 * a bus that may be registered in the future. 4176 */ 4177 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4178 ++pathid; 4179 /* Start the search over */ 4180 goto retry; 4181 } 4182 return (pathid); 4183 } 4184 4185 static path_id_t 4186 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4187 { 4188 path_id_t pathid; 4189 int i, dunit, val; 4190 char buf[32]; 4191 const char *dname; 4192 4193 pathid = CAM_XPT_PATH_ID; 4194 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4195 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4196 return (pathid); 4197 i = 0; 4198 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4199 if (strcmp(dname, "scbus")) { 4200 /* Avoid a bit of foot shooting. */ 4201 continue; 4202 } 4203 if (dunit < 0) /* unwired?! */ 4204 continue; 4205 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4206 if (sim_bus == val) { 4207 pathid = dunit; 4208 break; 4209 } 4210 } else if (sim_bus == 0) { 4211 /* Unspecified matches bus 0 */ 4212 pathid = dunit; 4213 break; 4214 } else { 4215 printf("Ambiguous scbus configuration for %s%d " 4216 "bus %d, cannot wire down. The kernel " 4217 "config entry for scbus%d should " 4218 "specify a controller bus.\n" 4219 "Scbus will be assigned dynamically.\n", 4220 sim_name, sim_unit, sim_bus, dunit); 4221 break; 4222 } 4223 } 4224 4225 if (pathid == CAM_XPT_PATH_ID) 4226 pathid = xptnextfreepathid(); 4227 return (pathid); 4228 } 4229 4230 static const char * 4231 xpt_async_string(u_int32_t async_code) 4232 { 4233 4234 switch (async_code) { 4235 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4236 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4237 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4238 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4239 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4240 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4241 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4242 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4243 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4244 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4245 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4246 case AC_CONTRACT: return ("AC_CONTRACT"); 4247 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4248 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4249 } 4250 return ("AC_UNKNOWN"); 4251 } 4252 4253 static int 4254 xpt_async_size(u_int32_t async_code) 4255 { 4256 4257 switch (async_code) { 4258 case AC_BUS_RESET: return (0); 4259 case AC_UNSOL_RESEL: return (0); 4260 case AC_SCSI_AEN: return (0); 4261 case AC_SENT_BDR: return (0); 4262 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4263 case AC_PATH_DEREGISTERED: return (0); 4264 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4265 case AC_LOST_DEVICE: return (0); 4266 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4267 case AC_INQ_CHANGED: return (0); 4268 case AC_GETDEV_CHANGED: return (0); 4269 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4270 case AC_ADVINFO_CHANGED: return (-1); 4271 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4272 } 4273 return (0); 4274 } 4275 4276 static int 4277 xpt_async_process_dev(struct cam_ed *device, void *arg) 4278 { 4279 union ccb *ccb = arg; 4280 struct cam_path *path = ccb->ccb_h.path; 4281 void *async_arg = ccb->casync.async_arg_ptr; 4282 u_int32_t async_code = ccb->casync.async_code; 4283 int relock; 4284 4285 if (path->device != device 4286 && path->device->lun_id != CAM_LUN_WILDCARD 4287 && device->lun_id != CAM_LUN_WILDCARD) 4288 return (1); 4289 4290 /* 4291 * The async callback could free the device. 4292 * If it is a broadcast async, it doesn't hold 4293 * device reference, so take our own reference. 4294 */ 4295 xpt_acquire_device(device); 4296 4297 /* 4298 * If async for specific device is to be delivered to 4299 * the wildcard client, take the specific device lock. 4300 * XXX: We may need a way for client to specify it. 4301 */ 4302 if ((device->lun_id == CAM_LUN_WILDCARD && 4303 path->device->lun_id != CAM_LUN_WILDCARD) || 4304 (device->target->target_id == CAM_TARGET_WILDCARD && 4305 path->target->target_id != CAM_TARGET_WILDCARD) || 4306 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4307 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4308 mtx_unlock(&device->device_mtx); 4309 xpt_path_lock(path); 4310 relock = 1; 4311 } else 4312 relock = 0; 4313 4314 (*(device->target->bus->xport->ops->async))(async_code, 4315 device->target->bus, device->target, device, async_arg); 4316 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4317 4318 if (relock) { 4319 xpt_path_unlock(path); 4320 mtx_lock(&device->device_mtx); 4321 } 4322 xpt_release_device(device); 4323 return (1); 4324 } 4325 4326 static int 4327 xpt_async_process_tgt(struct cam_et *target, void *arg) 4328 { 4329 union ccb *ccb = arg; 4330 struct cam_path *path = ccb->ccb_h.path; 4331 4332 if (path->target != target 4333 && path->target->target_id != CAM_TARGET_WILDCARD 4334 && target->target_id != CAM_TARGET_WILDCARD) 4335 return (1); 4336 4337 if (ccb->casync.async_code == AC_SENT_BDR) { 4338 /* Update our notion of when the last reset occurred */ 4339 microtime(&target->last_reset); 4340 } 4341 4342 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4343 } 4344 4345 static void 4346 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4347 { 4348 struct cam_eb *bus; 4349 struct cam_path *path; 4350 void *async_arg; 4351 u_int32_t async_code; 4352 4353 path = ccb->ccb_h.path; 4354 async_code = ccb->casync.async_code; 4355 async_arg = ccb->casync.async_arg_ptr; 4356 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4357 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4358 bus = path->bus; 4359 4360 if (async_code == AC_BUS_RESET) { 4361 /* Update our notion of when the last reset occurred */ 4362 microtime(&bus->last_reset); 4363 } 4364 4365 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4366 4367 /* 4368 * If this wasn't a fully wildcarded async, tell all 4369 * clients that want all async events. 4370 */ 4371 if (bus != xpt_periph->path->bus) { 4372 xpt_path_lock(xpt_periph->path); 4373 xpt_async_process_dev(xpt_periph->path->device, ccb); 4374 xpt_path_unlock(xpt_periph->path); 4375 } 4376 4377 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4378 xpt_release_devq(path, 1, TRUE); 4379 else 4380 xpt_release_simq(path->bus->sim, TRUE); 4381 if (ccb->casync.async_arg_size > 0) 4382 free(async_arg, M_CAMXPT); 4383 xpt_free_path(path); 4384 xpt_free_ccb(ccb); 4385 } 4386 4387 static void 4388 xpt_async_bcast(struct async_list *async_head, 4389 u_int32_t async_code, 4390 struct cam_path *path, void *async_arg) 4391 { 4392 struct async_node *cur_entry; 4393 struct mtx *mtx; 4394 4395 cur_entry = SLIST_FIRST(async_head); 4396 while (cur_entry != NULL) { 4397 struct async_node *next_entry; 4398 /* 4399 * Grab the next list entry before we call the current 4400 * entry's callback. This is because the callback function 4401 * can delete its async callback entry. 4402 */ 4403 next_entry = SLIST_NEXT(cur_entry, links); 4404 if ((cur_entry->event_enable & async_code) != 0) { 4405 mtx = cur_entry->event_lock ? 4406 path->device->sim->mtx : NULL; 4407 if (mtx) 4408 mtx_lock(mtx); 4409 cur_entry->callback(cur_entry->callback_arg, 4410 async_code, path, 4411 async_arg); 4412 if (mtx) 4413 mtx_unlock(mtx); 4414 } 4415 cur_entry = next_entry; 4416 } 4417 } 4418 4419 void 4420 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4421 { 4422 union ccb *ccb; 4423 int size; 4424 4425 ccb = xpt_alloc_ccb_nowait(); 4426 if (ccb == NULL) { 4427 xpt_print(path, "Can't allocate CCB to send %s\n", 4428 xpt_async_string(async_code)); 4429 return; 4430 } 4431 4432 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4433 xpt_print(path, "Can't allocate path to send %s\n", 4434 xpt_async_string(async_code)); 4435 xpt_free_ccb(ccb); 4436 return; 4437 } 4438 ccb->ccb_h.path->periph = NULL; 4439 ccb->ccb_h.func_code = XPT_ASYNC; 4440 ccb->ccb_h.cbfcnp = xpt_async_process; 4441 ccb->ccb_h.flags |= CAM_UNLOCKED; 4442 ccb->casync.async_code = async_code; 4443 ccb->casync.async_arg_size = 0; 4444 size = xpt_async_size(async_code); 4445 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4446 ("xpt_async: func %#x %s aync_code %d %s\n", 4447 ccb->ccb_h.func_code, 4448 xpt_action_name(ccb->ccb_h.func_code), 4449 async_code, 4450 xpt_async_string(async_code))); 4451 if (size > 0 && async_arg != NULL) { 4452 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4453 if (ccb->casync.async_arg_ptr == NULL) { 4454 xpt_print(path, "Can't allocate argument to send %s\n", 4455 xpt_async_string(async_code)); 4456 xpt_free_path(ccb->ccb_h.path); 4457 xpt_free_ccb(ccb); 4458 return; 4459 } 4460 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4461 ccb->casync.async_arg_size = size; 4462 } else if (size < 0) { 4463 ccb->casync.async_arg_ptr = async_arg; 4464 ccb->casync.async_arg_size = size; 4465 } 4466 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4467 xpt_freeze_devq(path, 1); 4468 else 4469 xpt_freeze_simq(path->bus->sim, 1); 4470 xpt_done(ccb); 4471 } 4472 4473 static void 4474 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4475 struct cam_et *target, struct cam_ed *device, 4476 void *async_arg) 4477 { 4478 4479 /* 4480 * We only need to handle events for real devices. 4481 */ 4482 if (target->target_id == CAM_TARGET_WILDCARD 4483 || device->lun_id == CAM_LUN_WILDCARD) 4484 return; 4485 4486 printf("%s called\n", __func__); 4487 } 4488 4489 static uint32_t 4490 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4491 { 4492 struct cam_devq *devq; 4493 uint32_t freeze; 4494 4495 devq = dev->sim->devq; 4496 mtx_assert(&devq->send_mtx, MA_OWNED); 4497 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4498 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4499 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4500 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4501 /* Remove frozen device from sendq. */ 4502 if (device_is_queued(dev)) 4503 camq_remove(&devq->send_queue, dev->devq_entry.index); 4504 return (freeze); 4505 } 4506 4507 u_int32_t 4508 xpt_freeze_devq(struct cam_path *path, u_int count) 4509 { 4510 struct cam_ed *dev = path->device; 4511 struct cam_devq *devq; 4512 uint32_t freeze; 4513 4514 devq = dev->sim->devq; 4515 mtx_lock(&devq->send_mtx); 4516 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4517 freeze = xpt_freeze_devq_device(dev, count); 4518 mtx_unlock(&devq->send_mtx); 4519 return (freeze); 4520 } 4521 4522 u_int32_t 4523 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4524 { 4525 struct cam_devq *devq; 4526 uint32_t freeze; 4527 4528 devq = sim->devq; 4529 mtx_lock(&devq->send_mtx); 4530 freeze = (devq->send_queue.qfrozen_cnt += count); 4531 mtx_unlock(&devq->send_mtx); 4532 return (freeze); 4533 } 4534 4535 static void 4536 xpt_release_devq_timeout(void *arg) 4537 { 4538 struct cam_ed *dev; 4539 struct cam_devq *devq; 4540 4541 dev = (struct cam_ed *)arg; 4542 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4543 devq = dev->sim->devq; 4544 mtx_assert(&devq->send_mtx, MA_OWNED); 4545 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4546 xpt_run_devq(devq); 4547 } 4548 4549 void 4550 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4551 { 4552 struct cam_ed *dev; 4553 struct cam_devq *devq; 4554 4555 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4556 count, run_queue)); 4557 dev = path->device; 4558 devq = dev->sim->devq; 4559 mtx_lock(&devq->send_mtx); 4560 if (xpt_release_devq_device(dev, count, run_queue)) 4561 xpt_run_devq(dev->sim->devq); 4562 mtx_unlock(&devq->send_mtx); 4563 } 4564 4565 static int 4566 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4567 { 4568 4569 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4570 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4571 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4572 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4573 if (count > dev->ccbq.queue.qfrozen_cnt) { 4574 #ifdef INVARIANTS 4575 printf("xpt_release_devq(): requested %u > present %u\n", 4576 count, dev->ccbq.queue.qfrozen_cnt); 4577 #endif 4578 count = dev->ccbq.queue.qfrozen_cnt; 4579 } 4580 dev->ccbq.queue.qfrozen_cnt -= count; 4581 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4582 /* 4583 * No longer need to wait for a successful 4584 * command completion. 4585 */ 4586 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4587 /* 4588 * Remove any timeouts that might be scheduled 4589 * to release this queue. 4590 */ 4591 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4592 callout_stop(&dev->callout); 4593 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4594 } 4595 /* 4596 * Now that we are unfrozen schedule the 4597 * device so any pending transactions are 4598 * run. 4599 */ 4600 xpt_schedule_devq(dev->sim->devq, dev); 4601 } else 4602 run_queue = 0; 4603 return (run_queue); 4604 } 4605 4606 void 4607 xpt_release_simq(struct cam_sim *sim, int run_queue) 4608 { 4609 struct cam_devq *devq; 4610 4611 devq = sim->devq; 4612 mtx_lock(&devq->send_mtx); 4613 if (devq->send_queue.qfrozen_cnt <= 0) { 4614 #ifdef INVARIANTS 4615 printf("xpt_release_simq: requested 1 > present %u\n", 4616 devq->send_queue.qfrozen_cnt); 4617 #endif 4618 } else 4619 devq->send_queue.qfrozen_cnt--; 4620 if (devq->send_queue.qfrozen_cnt == 0) { 4621 /* 4622 * If there is a timeout scheduled to release this 4623 * sim queue, remove it. The queue frozen count is 4624 * already at 0. 4625 */ 4626 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4627 callout_stop(&sim->callout); 4628 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4629 } 4630 if (run_queue) { 4631 /* 4632 * Now that we are unfrozen run the send queue. 4633 */ 4634 xpt_run_devq(sim->devq); 4635 } 4636 } 4637 mtx_unlock(&devq->send_mtx); 4638 } 4639 4640 /* 4641 * XXX Appears to be unused. 4642 */ 4643 static void 4644 xpt_release_simq_timeout(void *arg) 4645 { 4646 struct cam_sim *sim; 4647 4648 sim = (struct cam_sim *)arg; 4649 xpt_release_simq(sim, /* run_queue */ TRUE); 4650 } 4651 4652 void 4653 xpt_done(union ccb *done_ccb) 4654 { 4655 struct cam_doneq *queue; 4656 int run, hash; 4657 4658 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4659 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4660 done_ccb->csio.bio != NULL) 4661 biotrack(done_ccb->csio.bio, __func__); 4662 #endif 4663 4664 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4665 ("xpt_done: func= %#x %s status %#x\n", 4666 done_ccb->ccb_h.func_code, 4667 xpt_action_name(done_ccb->ccb_h.func_code), 4668 done_ccb->ccb_h.status)); 4669 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4670 return; 4671 4672 /* Store the time the ccb was in the sim */ 4673 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4674 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4675 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4676 queue = &cam_doneqs[hash]; 4677 mtx_lock(&queue->cam_doneq_mtx); 4678 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4679 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4680 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4681 mtx_unlock(&queue->cam_doneq_mtx); 4682 if (run) 4683 wakeup(&queue->cam_doneq); 4684 } 4685 4686 void 4687 xpt_done_direct(union ccb *done_ccb) 4688 { 4689 4690 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4691 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4692 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4693 return; 4694 4695 /* Store the time the ccb was in the sim */ 4696 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4697 xpt_done_process(&done_ccb->ccb_h); 4698 } 4699 4700 union ccb * 4701 xpt_alloc_ccb() 4702 { 4703 union ccb *new_ccb; 4704 4705 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4706 return (new_ccb); 4707 } 4708 4709 union ccb * 4710 xpt_alloc_ccb_nowait() 4711 { 4712 union ccb *new_ccb; 4713 4714 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4715 return (new_ccb); 4716 } 4717 4718 void 4719 xpt_free_ccb(union ccb *free_ccb) 4720 { 4721 free(free_ccb, M_CAMCCB); 4722 } 4723 4724 4725 4726 /* Private XPT functions */ 4727 4728 /* 4729 * Get a CAM control block for the caller. Charge the structure to the device 4730 * referenced by the path. If we don't have sufficient resources to allocate 4731 * more ccbs, we return NULL. 4732 */ 4733 static union ccb * 4734 xpt_get_ccb_nowait(struct cam_periph *periph) 4735 { 4736 union ccb *new_ccb; 4737 4738 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4739 if (new_ccb == NULL) 4740 return (NULL); 4741 periph->periph_allocated++; 4742 cam_ccbq_take_opening(&periph->path->device->ccbq); 4743 return (new_ccb); 4744 } 4745 4746 static union ccb * 4747 xpt_get_ccb(struct cam_periph *periph) 4748 { 4749 union ccb *new_ccb; 4750 4751 cam_periph_unlock(periph); 4752 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4753 cam_periph_lock(periph); 4754 periph->periph_allocated++; 4755 cam_ccbq_take_opening(&periph->path->device->ccbq); 4756 return (new_ccb); 4757 } 4758 4759 union ccb * 4760 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4761 { 4762 struct ccb_hdr *ccb_h; 4763 4764 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4765 cam_periph_assert(periph, MA_OWNED); 4766 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4767 ccb_h->pinfo.priority != priority) { 4768 if (priority < periph->immediate_priority) { 4769 periph->immediate_priority = priority; 4770 xpt_run_allocq(periph, 0); 4771 } else 4772 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4773 "cgticb", 0); 4774 } 4775 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4776 return ((union ccb *)ccb_h); 4777 } 4778 4779 static void 4780 xpt_acquire_bus(struct cam_eb *bus) 4781 { 4782 4783 xpt_lock_buses(); 4784 bus->refcount++; 4785 xpt_unlock_buses(); 4786 } 4787 4788 static void 4789 xpt_release_bus(struct cam_eb *bus) 4790 { 4791 4792 xpt_lock_buses(); 4793 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4794 if (--bus->refcount > 0) { 4795 xpt_unlock_buses(); 4796 return; 4797 } 4798 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4799 xsoftc.bus_generation++; 4800 xpt_unlock_buses(); 4801 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4802 ("destroying bus, but target list is not empty")); 4803 cam_sim_release(bus->sim); 4804 mtx_destroy(&bus->eb_mtx); 4805 free(bus, M_CAMXPT); 4806 } 4807 4808 static struct cam_et * 4809 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4810 { 4811 struct cam_et *cur_target, *target; 4812 4813 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4814 mtx_assert(&bus->eb_mtx, MA_OWNED); 4815 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4816 M_NOWAIT|M_ZERO); 4817 if (target == NULL) 4818 return (NULL); 4819 4820 TAILQ_INIT(&target->ed_entries); 4821 target->bus = bus; 4822 target->target_id = target_id; 4823 target->refcount = 1; 4824 target->generation = 0; 4825 target->luns = NULL; 4826 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4827 timevalclear(&target->last_reset); 4828 /* 4829 * Hold a reference to our parent bus so it 4830 * will not go away before we do. 4831 */ 4832 bus->refcount++; 4833 4834 /* Insertion sort into our bus's target list */ 4835 cur_target = TAILQ_FIRST(&bus->et_entries); 4836 while (cur_target != NULL && cur_target->target_id < target_id) 4837 cur_target = TAILQ_NEXT(cur_target, links); 4838 if (cur_target != NULL) { 4839 TAILQ_INSERT_BEFORE(cur_target, target, links); 4840 } else { 4841 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4842 } 4843 bus->generation++; 4844 return (target); 4845 } 4846 4847 static void 4848 xpt_acquire_target(struct cam_et *target) 4849 { 4850 struct cam_eb *bus = target->bus; 4851 4852 mtx_lock(&bus->eb_mtx); 4853 target->refcount++; 4854 mtx_unlock(&bus->eb_mtx); 4855 } 4856 4857 static void 4858 xpt_release_target(struct cam_et *target) 4859 { 4860 struct cam_eb *bus = target->bus; 4861 4862 mtx_lock(&bus->eb_mtx); 4863 if (--target->refcount > 0) { 4864 mtx_unlock(&bus->eb_mtx); 4865 return; 4866 } 4867 TAILQ_REMOVE(&bus->et_entries, target, links); 4868 bus->generation++; 4869 mtx_unlock(&bus->eb_mtx); 4870 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4871 ("destroying target, but device list is not empty")); 4872 xpt_release_bus(bus); 4873 mtx_destroy(&target->luns_mtx); 4874 if (target->luns) 4875 free(target->luns, M_CAMXPT); 4876 free(target, M_CAMXPT); 4877 } 4878 4879 static struct cam_ed * 4880 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4881 lun_id_t lun_id) 4882 { 4883 struct cam_ed *device; 4884 4885 device = xpt_alloc_device(bus, target, lun_id); 4886 if (device == NULL) 4887 return (NULL); 4888 4889 device->mintags = 1; 4890 device->maxtags = 1; 4891 return (device); 4892 } 4893 4894 static void 4895 xpt_destroy_device(void *context, int pending) 4896 { 4897 struct cam_ed *device = context; 4898 4899 mtx_lock(&device->device_mtx); 4900 mtx_destroy(&device->device_mtx); 4901 free(device, M_CAMDEV); 4902 } 4903 4904 struct cam_ed * 4905 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4906 { 4907 struct cam_ed *cur_device, *device; 4908 struct cam_devq *devq; 4909 cam_status status; 4910 4911 mtx_assert(&bus->eb_mtx, MA_OWNED); 4912 /* Make space for us in the device queue on our bus */ 4913 devq = bus->sim->devq; 4914 mtx_lock(&devq->send_mtx); 4915 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4916 mtx_unlock(&devq->send_mtx); 4917 if (status != CAM_REQ_CMP) 4918 return (NULL); 4919 4920 device = (struct cam_ed *)malloc(sizeof(*device), 4921 M_CAMDEV, M_NOWAIT|M_ZERO); 4922 if (device == NULL) 4923 return (NULL); 4924 4925 cam_init_pinfo(&device->devq_entry); 4926 device->target = target; 4927 device->lun_id = lun_id; 4928 device->sim = bus->sim; 4929 if (cam_ccbq_init(&device->ccbq, 4930 bus->sim->max_dev_openings) != 0) { 4931 free(device, M_CAMDEV); 4932 return (NULL); 4933 } 4934 SLIST_INIT(&device->asyncs); 4935 SLIST_INIT(&device->periphs); 4936 device->generation = 0; 4937 device->flags = CAM_DEV_UNCONFIGURED; 4938 device->tag_delay_count = 0; 4939 device->tag_saved_openings = 0; 4940 device->refcount = 1; 4941 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4942 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4943 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4944 /* 4945 * Hold a reference to our parent bus so it 4946 * will not go away before we do. 4947 */ 4948 target->refcount++; 4949 4950 cur_device = TAILQ_FIRST(&target->ed_entries); 4951 while (cur_device != NULL && cur_device->lun_id < lun_id) 4952 cur_device = TAILQ_NEXT(cur_device, links); 4953 if (cur_device != NULL) 4954 TAILQ_INSERT_BEFORE(cur_device, device, links); 4955 else 4956 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4957 target->generation++; 4958 return (device); 4959 } 4960 4961 void 4962 xpt_acquire_device(struct cam_ed *device) 4963 { 4964 struct cam_eb *bus = device->target->bus; 4965 4966 mtx_lock(&bus->eb_mtx); 4967 device->refcount++; 4968 mtx_unlock(&bus->eb_mtx); 4969 } 4970 4971 void 4972 xpt_release_device(struct cam_ed *device) 4973 { 4974 struct cam_eb *bus = device->target->bus; 4975 struct cam_devq *devq; 4976 4977 mtx_lock(&bus->eb_mtx); 4978 if (--device->refcount > 0) { 4979 mtx_unlock(&bus->eb_mtx); 4980 return; 4981 } 4982 4983 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4984 device->target->generation++; 4985 mtx_unlock(&bus->eb_mtx); 4986 4987 /* Release our slot in the devq */ 4988 devq = bus->sim->devq; 4989 mtx_lock(&devq->send_mtx); 4990 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4991 mtx_unlock(&devq->send_mtx); 4992 4993 KASSERT(SLIST_EMPTY(&device->periphs), 4994 ("destroying device, but periphs list is not empty")); 4995 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4996 ("destroying device while still queued for ccbs")); 4997 4998 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4999 callout_stop(&device->callout); 5000 5001 xpt_release_target(device->target); 5002 5003 cam_ccbq_fini(&device->ccbq); 5004 /* 5005 * Free allocated memory. free(9) does nothing if the 5006 * supplied pointer is NULL, so it is safe to call without 5007 * checking. 5008 */ 5009 free(device->supported_vpds, M_CAMXPT); 5010 free(device->device_id, M_CAMXPT); 5011 free(device->ext_inq, M_CAMXPT); 5012 free(device->physpath, M_CAMXPT); 5013 free(device->rcap_buf, M_CAMXPT); 5014 free(device->serial_num, M_CAMXPT); 5015 free(device->nvme_data, M_CAMXPT); 5016 free(device->nvme_cdata, M_CAMXPT); 5017 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 5018 } 5019 5020 u_int32_t 5021 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5022 { 5023 int result; 5024 struct cam_ed *dev; 5025 5026 dev = path->device; 5027 mtx_lock(&dev->sim->devq->send_mtx); 5028 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5029 mtx_unlock(&dev->sim->devq->send_mtx); 5030 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5031 || (dev->inq_flags & SID_CmdQue) != 0) 5032 dev->tag_saved_openings = newopenings; 5033 return (result); 5034 } 5035 5036 static struct cam_eb * 5037 xpt_find_bus(path_id_t path_id) 5038 { 5039 struct cam_eb *bus; 5040 5041 xpt_lock_buses(); 5042 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5043 bus != NULL; 5044 bus = TAILQ_NEXT(bus, links)) { 5045 if (bus->path_id == path_id) { 5046 bus->refcount++; 5047 break; 5048 } 5049 } 5050 xpt_unlock_buses(); 5051 return (bus); 5052 } 5053 5054 static struct cam_et * 5055 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5056 { 5057 struct cam_et *target; 5058 5059 mtx_assert(&bus->eb_mtx, MA_OWNED); 5060 for (target = TAILQ_FIRST(&bus->et_entries); 5061 target != NULL; 5062 target = TAILQ_NEXT(target, links)) { 5063 if (target->target_id == target_id) { 5064 target->refcount++; 5065 break; 5066 } 5067 } 5068 return (target); 5069 } 5070 5071 static struct cam_ed * 5072 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5073 { 5074 struct cam_ed *device; 5075 5076 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5077 for (device = TAILQ_FIRST(&target->ed_entries); 5078 device != NULL; 5079 device = TAILQ_NEXT(device, links)) { 5080 if (device->lun_id == lun_id) { 5081 device->refcount++; 5082 break; 5083 } 5084 } 5085 return (device); 5086 } 5087 5088 void 5089 xpt_start_tags(struct cam_path *path) 5090 { 5091 struct ccb_relsim crs; 5092 struct cam_ed *device; 5093 struct cam_sim *sim; 5094 int newopenings; 5095 5096 device = path->device; 5097 sim = path->bus->sim; 5098 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5099 xpt_freeze_devq(path, /*count*/1); 5100 device->inq_flags |= SID_CmdQue; 5101 if (device->tag_saved_openings != 0) 5102 newopenings = device->tag_saved_openings; 5103 else 5104 newopenings = min(device->maxtags, 5105 sim->max_tagged_dev_openings); 5106 xpt_dev_ccbq_resize(path, newopenings); 5107 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5108 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5109 crs.ccb_h.func_code = XPT_REL_SIMQ; 5110 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5111 crs.openings 5112 = crs.release_timeout 5113 = crs.qfrozen_cnt 5114 = 0; 5115 xpt_action((union ccb *)&crs); 5116 } 5117 5118 void 5119 xpt_stop_tags(struct cam_path *path) 5120 { 5121 struct ccb_relsim crs; 5122 struct cam_ed *device; 5123 struct cam_sim *sim; 5124 5125 device = path->device; 5126 sim = path->bus->sim; 5127 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5128 device->tag_delay_count = 0; 5129 xpt_freeze_devq(path, /*count*/1); 5130 device->inq_flags &= ~SID_CmdQue; 5131 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5132 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5133 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5134 crs.ccb_h.func_code = XPT_REL_SIMQ; 5135 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5136 crs.openings 5137 = crs.release_timeout 5138 = crs.qfrozen_cnt 5139 = 0; 5140 xpt_action((union ccb *)&crs); 5141 } 5142 5143 static void 5144 xpt_boot_delay(void *arg) 5145 { 5146 5147 xpt_release_boot(); 5148 } 5149 5150 static void 5151 xpt_config(void *arg) 5152 { 5153 /* 5154 * Now that interrupts are enabled, go find our devices 5155 */ 5156 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5157 printf("xpt_config: failed to create taskqueue thread.\n"); 5158 5159 /* Setup debugging path */ 5160 if (cam_dflags != CAM_DEBUG_NONE) { 5161 if (xpt_create_path(&cam_dpath, NULL, 5162 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5163 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5164 printf("xpt_config: xpt_create_path() failed for debug" 5165 " target %d:%d:%d, debugging disabled\n", 5166 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5167 cam_dflags = CAM_DEBUG_NONE; 5168 } 5169 } else 5170 cam_dpath = NULL; 5171 5172 periphdriver_init(1); 5173 xpt_hold_boot(); 5174 callout_init(&xsoftc.boot_callout, 1); 5175 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5176 xpt_boot_delay, NULL, 0); 5177 /* Fire up rescan thread. */ 5178 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5179 "cam", "scanner")) { 5180 printf("xpt_config: failed to create rescan thread.\n"); 5181 } 5182 } 5183 5184 void 5185 xpt_hold_boot(void) 5186 { 5187 xpt_lock_buses(); 5188 xsoftc.buses_to_config++; 5189 xpt_unlock_buses(); 5190 } 5191 5192 void 5193 xpt_release_boot(void) 5194 { 5195 xpt_lock_buses(); 5196 xsoftc.buses_to_config--; 5197 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5198 struct xpt_task *task; 5199 5200 xsoftc.buses_config_done = 1; 5201 xpt_unlock_buses(); 5202 /* Call manually because we don't have any buses */ 5203 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5204 if (task != NULL) { 5205 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5206 taskqueue_enqueue(taskqueue_thread, &task->task); 5207 } 5208 } else 5209 xpt_unlock_buses(); 5210 } 5211 5212 /* 5213 * If the given device only has one peripheral attached to it, and if that 5214 * peripheral is the passthrough driver, announce it. This insures that the 5215 * user sees some sort of announcement for every peripheral in their system. 5216 */ 5217 static int 5218 xptpassannouncefunc(struct cam_ed *device, void *arg) 5219 { 5220 struct cam_periph *periph; 5221 int i; 5222 5223 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5224 periph = SLIST_NEXT(periph, periph_links), i++); 5225 5226 periph = SLIST_FIRST(&device->periphs); 5227 if ((i == 1) 5228 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5229 xpt_announce_periph(periph, NULL); 5230 5231 return(1); 5232 } 5233 5234 static void 5235 xpt_finishconfig_task(void *context, int pending) 5236 { 5237 5238 periphdriver_init(2); 5239 /* 5240 * Check for devices with no "standard" peripheral driver 5241 * attached. For any devices like that, announce the 5242 * passthrough driver so the user will see something. 5243 */ 5244 if (!bootverbose) 5245 xpt_for_all_devices(xptpassannouncefunc, NULL); 5246 5247 /* Release our hook so that the boot can continue. */ 5248 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5249 free(xsoftc.xpt_config_hook, M_CAMXPT); 5250 xsoftc.xpt_config_hook = NULL; 5251 5252 free(context, M_CAMXPT); 5253 } 5254 5255 cam_status 5256 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5257 struct cam_path *path) 5258 { 5259 struct ccb_setasync csa; 5260 cam_status status; 5261 int xptpath = 0; 5262 5263 if (path == NULL) { 5264 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5265 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5266 if (status != CAM_REQ_CMP) 5267 return (status); 5268 xpt_path_lock(path); 5269 xptpath = 1; 5270 } 5271 5272 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5273 csa.ccb_h.func_code = XPT_SASYNC_CB; 5274 csa.event_enable = event; 5275 csa.callback = cbfunc; 5276 csa.callback_arg = cbarg; 5277 xpt_action((union ccb *)&csa); 5278 status = csa.ccb_h.status; 5279 5280 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5281 ("xpt_register_async: func %p\n", cbfunc)); 5282 5283 if (xptpath) { 5284 xpt_path_unlock(path); 5285 xpt_free_path(path); 5286 } 5287 5288 if ((status == CAM_REQ_CMP) && 5289 (csa.event_enable & AC_FOUND_DEVICE)) { 5290 /* 5291 * Get this peripheral up to date with all 5292 * the currently existing devices. 5293 */ 5294 xpt_for_all_devices(xptsetasyncfunc, &csa); 5295 } 5296 if ((status == CAM_REQ_CMP) && 5297 (csa.event_enable & AC_PATH_REGISTERED)) { 5298 /* 5299 * Get this peripheral up to date with all 5300 * the currently existing buses. 5301 */ 5302 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5303 } 5304 5305 return (status); 5306 } 5307 5308 static void 5309 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5310 { 5311 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5312 5313 switch (work_ccb->ccb_h.func_code) { 5314 /* Common cases first */ 5315 case XPT_PATH_INQ: /* Path routing inquiry */ 5316 { 5317 struct ccb_pathinq *cpi; 5318 5319 cpi = &work_ccb->cpi; 5320 cpi->version_num = 1; /* XXX??? */ 5321 cpi->hba_inquiry = 0; 5322 cpi->target_sprt = 0; 5323 cpi->hba_misc = 0; 5324 cpi->hba_eng_cnt = 0; 5325 cpi->max_target = 0; 5326 cpi->max_lun = 0; 5327 cpi->initiator_id = 0; 5328 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5329 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5330 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5331 cpi->unit_number = sim->unit_number; 5332 cpi->bus_id = sim->bus_id; 5333 cpi->base_transfer_speed = 0; 5334 cpi->protocol = PROTO_UNSPECIFIED; 5335 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5336 cpi->transport = XPORT_UNSPECIFIED; 5337 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5338 cpi->ccb_h.status = CAM_REQ_CMP; 5339 xpt_done(work_ccb); 5340 break; 5341 } 5342 default: 5343 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5344 xpt_done(work_ccb); 5345 break; 5346 } 5347 } 5348 5349 /* 5350 * The xpt as a "controller" has no interrupt sources, so polling 5351 * is a no-op. 5352 */ 5353 static void 5354 xptpoll(struct cam_sim *sim) 5355 { 5356 } 5357 5358 void 5359 xpt_lock_buses(void) 5360 { 5361 mtx_lock(&xsoftc.xpt_topo_lock); 5362 } 5363 5364 void 5365 xpt_unlock_buses(void) 5366 { 5367 mtx_unlock(&xsoftc.xpt_topo_lock); 5368 } 5369 5370 struct mtx * 5371 xpt_path_mtx(struct cam_path *path) 5372 { 5373 5374 return (&path->device->device_mtx); 5375 } 5376 5377 static void 5378 xpt_done_process(struct ccb_hdr *ccb_h) 5379 { 5380 struct cam_sim *sim = NULL; 5381 struct cam_devq *devq = NULL; 5382 struct mtx *mtx = NULL; 5383 5384 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5385 struct ccb_scsiio *csio; 5386 5387 if (ccb_h->func_code == XPT_SCSI_IO) { 5388 csio = &((union ccb *)ccb_h)->csio; 5389 if (csio->bio != NULL) 5390 biotrack(csio->bio, __func__); 5391 } 5392 #endif 5393 5394 if (ccb_h->flags & CAM_HIGH_POWER) { 5395 struct highpowerlist *hphead; 5396 struct cam_ed *device; 5397 5398 mtx_lock(&xsoftc.xpt_highpower_lock); 5399 hphead = &xsoftc.highpowerq; 5400 5401 device = STAILQ_FIRST(hphead); 5402 5403 /* 5404 * Increment the count since this command is done. 5405 */ 5406 xsoftc.num_highpower++; 5407 5408 /* 5409 * Any high powered commands queued up? 5410 */ 5411 if (device != NULL) { 5412 5413 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5414 mtx_unlock(&xsoftc.xpt_highpower_lock); 5415 5416 mtx_lock(&device->sim->devq->send_mtx); 5417 xpt_release_devq_device(device, 5418 /*count*/1, /*runqueue*/TRUE); 5419 mtx_unlock(&device->sim->devq->send_mtx); 5420 } else 5421 mtx_unlock(&xsoftc.xpt_highpower_lock); 5422 } 5423 5424 /* 5425 * Insulate against a race where the periph is destroyed 5426 * but CCBs are still not all processed. 5427 */ 5428 if (ccb_h->path->bus) 5429 sim = ccb_h->path->bus->sim; 5430 5431 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5432 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); 5433 xpt_release_simq(sim, /*run_queue*/FALSE); 5434 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5435 } 5436 5437 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5438 && (ccb_h->status & CAM_DEV_QFRZN)) { 5439 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5440 ccb_h->status &= ~CAM_DEV_QFRZN; 5441 } 5442 5443 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5444 struct cam_ed *dev = ccb_h->path->device; 5445 5446 if (sim) 5447 devq = sim->devq; 5448 KASSERT(devq, ("sim missing for XPT_FC_USER_CCB request")); 5449 5450 mtx_lock(&devq->send_mtx); 5451 devq->send_active--; 5452 devq->send_openings++; 5453 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5454 5455 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5456 && (dev->ccbq.dev_active == 0))) { 5457 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5458 xpt_release_devq_device(dev, /*count*/1, 5459 /*run_queue*/FALSE); 5460 } 5461 5462 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5463 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5464 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5465 xpt_release_devq_device(dev, /*count*/1, 5466 /*run_queue*/FALSE); 5467 } 5468 5469 if (!device_is_queued(dev)) 5470 (void)xpt_schedule_devq(devq, dev); 5471 xpt_run_devq(devq); 5472 mtx_unlock(&devq->send_mtx); 5473 5474 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5475 mtx = xpt_path_mtx(ccb_h->path); 5476 mtx_lock(mtx); 5477 5478 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5479 && (--dev->tag_delay_count == 0)) 5480 xpt_start_tags(ccb_h->path); 5481 } 5482 } 5483 5484 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5485 if (mtx == NULL) { 5486 mtx = xpt_path_mtx(ccb_h->path); 5487 mtx_lock(mtx); 5488 } 5489 } else { 5490 if (mtx != NULL) { 5491 mtx_unlock(mtx); 5492 mtx = NULL; 5493 } 5494 } 5495 5496 /* Call the peripheral driver's callback */ 5497 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5498 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5499 if (mtx != NULL) 5500 mtx_unlock(mtx); 5501 } 5502 5503 void 5504 xpt_done_td(void *arg) 5505 { 5506 struct cam_doneq *queue = arg; 5507 struct ccb_hdr *ccb_h; 5508 STAILQ_HEAD(, ccb_hdr) doneq; 5509 5510 STAILQ_INIT(&doneq); 5511 mtx_lock(&queue->cam_doneq_mtx); 5512 while (1) { 5513 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5514 queue->cam_doneq_sleep = 1; 5515 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5516 PRIBIO, "-", 0); 5517 queue->cam_doneq_sleep = 0; 5518 } 5519 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5520 mtx_unlock(&queue->cam_doneq_mtx); 5521 5522 THREAD_NO_SLEEPING(); 5523 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5524 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5525 xpt_done_process(ccb_h); 5526 } 5527 THREAD_SLEEPING_OK(); 5528 5529 mtx_lock(&queue->cam_doneq_mtx); 5530 } 5531 } 5532 5533 static void 5534 camisr_runqueue(void) 5535 { 5536 struct ccb_hdr *ccb_h; 5537 struct cam_doneq *queue; 5538 int i; 5539 5540 /* Process global queues. */ 5541 for (i = 0; i < cam_num_doneqs; i++) { 5542 queue = &cam_doneqs[i]; 5543 mtx_lock(&queue->cam_doneq_mtx); 5544 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5545 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5546 mtx_unlock(&queue->cam_doneq_mtx); 5547 xpt_done_process(ccb_h); 5548 mtx_lock(&queue->cam_doneq_mtx); 5549 } 5550 mtx_unlock(&queue->cam_doneq_mtx); 5551 } 5552 } 5553 5554 struct kv 5555 { 5556 uint32_t v; 5557 const char *name; 5558 }; 5559 5560 static struct kv map[] = { 5561 { XPT_NOOP, "XPT_NOOP" }, 5562 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5563 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5564 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5565 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5566 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5567 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5568 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5569 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5570 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5571 { XPT_DEBUG, "XPT_DEBUG" }, 5572 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5573 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5574 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5575 { XPT_ASYNC, "XPT_ASYNC" }, 5576 { XPT_ABORT, "XPT_ABORT" }, 5577 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5578 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5579 { XPT_TERM_IO, "XPT_TERM_IO" }, 5580 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5581 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5582 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5583 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5584 { XPT_ATA_IO, "XPT_ATA_IO" }, 5585 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5586 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5587 { XPT_NVME_IO, "XPT_NVME_IO" }, 5588 { XPT_MMC_IO, "XPT_MMC_IO" }, 5589 { XPT_SMP_IO, "XPT_SMP_IO" }, 5590 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5591 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5592 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5593 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5594 { XPT_EN_LUN, "XPT_EN_LUN" }, 5595 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5596 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5597 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5598 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5599 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5600 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5601 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5602 { 0, 0 } 5603 }; 5604 5605 const char * 5606 xpt_action_name(uint32_t action) 5607 { 5608 static char buffer[32]; /* Only for unknown messages -- racy */ 5609 struct kv *walker = map; 5610 5611 while (walker->name != NULL) { 5612 if (walker->v == action) 5613 return (walker->name); 5614 walker++; 5615 } 5616 5617 snprintf(buffer, sizeof(buffer), "%#x", action); 5618 return (buffer); 5619 } 5620