xref: /freebsd/sys/cam/cam_xpt.c (revision 78007886c995898a9494648343e5236bca1cbba3)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/md5.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 
52 #ifdef PC98
53 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_sim.h>
60 #include <cam/cam_xpt.h>
61 #include <cam/cam_xpt_sim.h>
62 #include <cam/cam_xpt_periph.h>
63 #include <cam/cam_debug.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 #include <machine/stdarg.h>	/* for xpt_print below */
69 #include "opt_cam.h"
70 
71 /* Datastructures internal to the xpt layer */
72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
73 
74 /* Object for defering XPT actions to a taskqueue */
75 struct xpt_task {
76 	struct task	task;
77 	void		*data1;
78 	uintptr_t	data2;
79 };
80 
81 /*
82  * Definition of an async handler callback block.  These are used to add
83  * SIMs and peripherals to the async callback lists.
84  */
85 struct async_node {
86 	SLIST_ENTRY(async_node)	links;
87 	u_int32_t	event_enable;	/* Async Event enables */
88 	void		(*callback)(void *arg, u_int32_t code,
89 				    struct cam_path *path, void *args);
90 	void		*callback_arg;
91 };
92 
93 SLIST_HEAD(async_list, async_node);
94 SLIST_HEAD(periph_list, cam_periph);
95 
96 /*
97  * This is the maximum number of high powered commands (e.g. start unit)
98  * that can be outstanding at a particular time.
99  */
100 #ifndef CAM_MAX_HIGHPOWER
101 #define CAM_MAX_HIGHPOWER  4
102 #endif
103 
104 /*
105  * Structure for queueing a device in a run queue.
106  * There is one run queue for allocating new ccbs,
107  * and another for sending ccbs to the controller.
108  */
109 struct cam_ed_qinfo {
110 	cam_pinfo pinfo;
111 	struct	  cam_ed *device;
112 };
113 
114 /*
115  * The CAM EDT (Existing Device Table) contains the device information for
116  * all devices for all busses in the system.  The table contains a
117  * cam_ed structure for each device on the bus.
118  */
119 struct cam_ed {
120 	TAILQ_ENTRY(cam_ed) links;
121 	struct	cam_ed_qinfo alloc_ccb_entry;
122 	struct	cam_ed_qinfo send_ccb_entry;
123 	struct	cam_et	 *target;
124 	struct	cam_sim  *sim;
125 	lun_id_t	 lun_id;
126 	struct	camq drvq;		/*
127 					 * Queue of type drivers wanting to do
128 					 * work on this device.
129 					 */
130 	struct	cam_ccbq ccbq;		/* Queue of pending ccbs */
131 	struct	async_list asyncs;	/* Async callback info for this B/T/L */
132 	struct	periph_list periphs;	/* All attached devices */
133 	u_int	generation;		/* Generation number */
134 	struct	cam_periph *owner;	/* Peripheral driver's ownership tag */
135 	struct	xpt_quirk_entry *quirk;	/* Oddities about this device */
136 					/* Storage for the inquiry data */
137 	cam_proto	 protocol;
138 	u_int		 protocol_version;
139 	cam_xport	 transport;
140 	u_int		 transport_version;
141 	struct		 scsi_inquiry_data inq_data;
142 	u_int8_t	 inq_flags;	/*
143 					 * Current settings for inquiry flags.
144 					 * This allows us to override settings
145 					 * like disconnection and tagged
146 					 * queuing for a device.
147 					 */
148 	u_int8_t	 queue_flags;	/* Queue flags from the control page */
149 	u_int8_t	 serial_num_len;
150 	u_int8_t	*serial_num;
151 	u_int32_t	 qfrozen_cnt;
152 	u_int32_t	 flags;
153 #define CAM_DEV_UNCONFIGURED	 	0x01
154 #define CAM_DEV_REL_TIMEOUT_PENDING	0x02
155 #define CAM_DEV_REL_ON_COMPLETE		0x04
156 #define CAM_DEV_REL_ON_QUEUE_EMPTY	0x08
157 #define CAM_DEV_RESIZE_QUEUE_NEEDED	0x10
158 #define CAM_DEV_TAG_AFTER_COUNT		0x20
159 #define CAM_DEV_INQUIRY_DATA_VALID	0x40
160 #define	CAM_DEV_IN_DV			0x80
161 #define	CAM_DEV_DV_HIT_BOTTOM		0x100
162 	u_int32_t	 tag_delay_count;
163 #define	CAM_TAG_DELAY_COUNT		5
164 	u_int32_t	 tag_saved_openings;
165 	u_int32_t	 refcount;
166 	struct callout	 callout;
167 };
168 
169 /*
170  * Each target is represented by an ET (Existing Target).  These
171  * entries are created when a target is successfully probed with an
172  * identify, and removed when a device fails to respond after a number
173  * of retries, or a bus rescan finds the device missing.
174  */
175 struct cam_et {
176 	TAILQ_HEAD(, cam_ed) ed_entries;
177 	TAILQ_ENTRY(cam_et) links;
178 	struct	cam_eb	*bus;
179 	target_id_t	target_id;
180 	u_int32_t	refcount;
181 	u_int		generation;
182 	struct		timeval last_reset;
183 };
184 
185 /*
186  * Each bus is represented by an EB (Existing Bus).  These entries
187  * are created by calls to xpt_bus_register and deleted by calls to
188  * xpt_bus_deregister.
189  */
190 struct cam_eb {
191 	TAILQ_HEAD(, cam_et) et_entries;
192 	TAILQ_ENTRY(cam_eb)  links;
193 	path_id_t	     path_id;
194 	struct cam_sim	     *sim;
195 	struct timeval	     last_reset;
196 	u_int32_t	     flags;
197 #define	CAM_EB_RUNQ_SCHEDULED	0x01
198 	u_int32_t	     refcount;
199 	u_int		     generation;
200 };
201 
202 struct cam_path {
203 	struct cam_periph *periph;
204 	struct cam_eb	  *bus;
205 	struct cam_et	  *target;
206 	struct cam_ed	  *device;
207 };
208 
209 struct xpt_quirk_entry {
210 	struct scsi_inquiry_pattern inq_pat;
211 	u_int8_t quirks;
212 #define	CAM_QUIRK_NOLUNS	0x01
213 #define	CAM_QUIRK_NOSERIAL	0x02
214 #define	CAM_QUIRK_HILUNS	0x04
215 #define	CAM_QUIRK_NOHILUNS	0x08
216 	u_int mintags;
217 	u_int maxtags;
218 };
219 
220 static int cam_srch_hi = 0;
221 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi);
222 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS);
223 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0,
224     sysctl_cam_search_luns, "I",
225     "allow search above LUN 7 for SCSI3 and greater devices");
226 
227 #define	CAM_SCSI2_MAXLUN	8
228 /*
229  * If we're not quirked to search <= the first 8 luns
230  * and we are either quirked to search above lun 8,
231  * or we're > SCSI-2 and we've enabled hilun searching,
232  * or we're > SCSI-2 and the last lun was a success,
233  * we can look for luns above lun 8.
234  */
235 #define	CAN_SRCH_HI_SPARSE(dv)				\
236   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
237   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
238   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi)))
239 
240 #define	CAN_SRCH_HI_DENSE(dv)				\
241   (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) 	\
242   && ((dv->quirk->quirks & CAM_QUIRK_HILUNS)		\
243   || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2)))
244 
245 typedef enum {
246 	XPT_FLAG_OPEN		= 0x01
247 } xpt_flags;
248 
249 struct xpt_softc {
250 	xpt_flags		flags;
251 	u_int32_t		xpt_generation;
252 
253 	/* number of high powered commands that can go through right now */
254 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
255 	int			num_highpower;
256 
257 	/* queue for handling async rescan requests. */
258 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
259 
260 	/* Registered busses */
261 	TAILQ_HEAD(,cam_eb)	xpt_busses;
262 	u_int			bus_generation;
263 
264 	struct intr_config_hook	*xpt_config_hook;
265 
266 	struct mtx		xpt_topo_lock;
267 	struct mtx		xpt_lock;
268 };
269 
270 static const char quantum[] = "QUANTUM";
271 static const char sony[] = "SONY";
272 static const char west_digital[] = "WDIGTL";
273 static const char samsung[] = "SAMSUNG";
274 static const char seagate[] = "SEAGATE";
275 static const char microp[] = "MICROP";
276 
277 static struct xpt_quirk_entry xpt_quirk_table[] =
278 {
279 	{
280 		/* Reports QUEUE FULL for temporary resource shortages */
281 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" },
282 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
283 	},
284 	{
285 		/* Reports QUEUE FULL for temporary resource shortages */
286 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" },
287 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
288 	},
289 	{
290 		/* Reports QUEUE FULL for temporary resource shortages */
291 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" },
292 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
293 	},
294 	{
295 		/* Broken tagged queuing drive */
296 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" },
297 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
298 	},
299 	{
300 		/* Broken tagged queuing drive */
301 		{ T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" },
302 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
303 	},
304 	{
305 		/* Broken tagged queuing drive */
306 		{ T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" },
307 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
308 	},
309 	{
310 		/*
311 		 * Unfortunately, the Quantum Atlas III has the same
312 		 * problem as the Atlas II drives above.
313 		 * Reported by: "Johan Granlund" <johan@granlund.nu>
314 		 *
315 		 * For future reference, the drive with the problem was:
316 		 * QUANTUM QM39100TD-SW N1B0
317 		 *
318 		 * It's possible that Quantum will fix the problem in later
319 		 * firmware revisions.  If that happens, the quirk entry
320 		 * will need to be made specific to the firmware revisions
321 		 * with the problem.
322 		 *
323 		 */
324 		/* Reports QUEUE FULL for temporary resource shortages */
325 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" },
326 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
327 	},
328 	{
329 		/*
330 		 * 18 Gig Atlas III, same problem as the 9G version.
331 		 * Reported by: Andre Albsmeier
332 		 *		<andre.albsmeier@mchp.siemens.de>
333 		 *
334 		 * For future reference, the drive with the problem was:
335 		 * QUANTUM QM318000TD-S N491
336 		 */
337 		/* Reports QUEUE FULL for temporary resource shortages */
338 		{ T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" },
339 		/*quirks*/0, /*mintags*/24, /*maxtags*/32
340 	},
341 	{
342 		/*
343 		 * Broken tagged queuing drive
344 		 * Reported by: Bret Ford <bford@uop.cs.uop.edu>
345 		 *         and: Martin Renters <martin@tdc.on.ca>
346 		 */
347 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" },
348 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
349 	},
350 		/*
351 		 * The Seagate Medalist Pro drives have very poor write
352 		 * performance with anything more than 2 tags.
353 		 *
354 		 * Reported by:  Paul van der Zwan <paulz@trantor.xs4all.nl>
355 		 * Drive:  <SEAGATE ST36530N 1444>
356 		 *
357 		 * Reported by:  Jeremy Lea <reg@shale.csir.co.za>
358 		 * Drive:  <SEAGATE ST34520W 1281>
359 		 *
360 		 * No one has actually reported that the 9G version
361 		 * (ST39140*) of the Medalist Pro has the same problem, but
362 		 * we're assuming that it does because the 4G and 6.5G
363 		 * versions of the drive are broken.
364 		 */
365 	{
366 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"},
367 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
368 	},
369 	{
370 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"},
371 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
372 	},
373 	{
374 		{ T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"},
375 		/*quirks*/0, /*mintags*/2, /*maxtags*/2
376 	},
377 	{
378 		/*
379 		 * Slow when tagged queueing is enabled.  Write performance
380 		 * steadily drops off with more and more concurrent
381 		 * transactions.  Best sequential write performance with
382 		 * tagged queueing turned off and write caching turned on.
383 		 *
384 		 * PR:  kern/10398
385 		 * Submitted by:  Hideaki Okada <hokada@isl.melco.co.jp>
386 		 * Drive:  DCAS-34330 w/ "S65A" firmware.
387 		 *
388 		 * The drive with the problem had the "S65A" firmware
389 		 * revision, and has also been reported (by Stephen J.
390 		 * Roznowski <sjr@home.net>) for a drive with the "S61A"
391 		 * firmware revision.
392 		 *
393 		 * Although no one has reported problems with the 2 gig
394 		 * version of the DCAS drive, the assumption is that it
395 		 * has the same problems as the 4 gig version.  Therefore
396 		 * this quirk entries disables tagged queueing for all
397 		 * DCAS drives.
398 		 */
399 		{ T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" },
400 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
401 	},
402 	{
403 		/* Broken tagged queuing drive */
404 		{ T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" },
405 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
406 	},
407 	{
408 		/* Broken tagged queuing drive */
409 		{ T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" },
410 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
411 	},
412 	{
413 		/* This does not support other than LUN 0 */
414 		{ T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" },
415 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
416 	},
417 	{
418 		/*
419 		 * Broken tagged queuing drive.
420 		 * Submitted by:
421 		 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp>
422 		 * in PR kern/9535
423 		 */
424 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" },
425 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
426 	},
427         {
428 		/*
429 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
430 		 * 8MB/sec.)
431 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
432 		 * Best performance with these drives is achieved with
433 		 * tagged queueing turned off, and write caching turned on.
434 		 */
435 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" },
436 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
437         },
438         {
439 		/*
440 		 * Slow when tagged queueing is enabled. (1.5MB/sec versus
441 		 * 8MB/sec.)
442 		 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
443 		 * Best performance with these drives is achieved with
444 		 * tagged queueing turned off, and write caching turned on.
445 		 */
446 		{ T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" },
447 		/*quirks*/0, /*mintags*/0, /*maxtags*/0
448         },
449 	{
450 		/*
451 		 * Doesn't handle queue full condition correctly,
452 		 * so we need to limit maxtags to what the device
453 		 * can handle instead of determining this automatically.
454 		 */
455 		{ T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" },
456 		/*quirks*/0, /*mintags*/2, /*maxtags*/32
457 	},
458 	{
459 		/* Really only one LUN */
460 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" },
461 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
462 	},
463 	{
464 		/* I can't believe we need a quirk for DPT volumes. */
465 		{ T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" },
466 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS,
467 		/*mintags*/0, /*maxtags*/255
468 	},
469 	{
470 		/*
471 		 * Many Sony CDROM drives don't like multi-LUN probing.
472 		 */
473 		{ T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" },
474 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
475 	},
476 	{
477 		/*
478 		 * This drive doesn't like multiple LUN probing.
479 		 * Submitted by:  Parag Patel <parag@cgt.com>
480 		 */
481 		{ T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R   CDU9*", "*" },
482 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
483 	},
484 	{
485 		{ T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" },
486 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
487 	},
488 	{
489 		/*
490 		 * The 8200 doesn't like multi-lun probing, and probably
491 		 * don't like serial number requests either.
492 		 */
493 		{
494 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
495 			"EXB-8200*", "*"
496 		},
497 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
498 	},
499 	{
500 		/*
501 		 * Let's try the same as above, but for a drive that says
502 		 * it's an IPL-6860 but is actually an EXB 8200.
503 		 */
504 		{
505 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE",
506 			"IPL-6860*", "*"
507 		},
508 		CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
509 	},
510 	{
511 		/*
512 		 * These Hitachi drives don't like multi-lun probing.
513 		 * The PR submitter has a DK319H, but says that the Linux
514 		 * kernel has a similar work-around for the DK312 and DK314,
515 		 * so all DK31* drives are quirked here.
516 		 * PR:            misc/18793
517 		 * Submitted by:  Paul Haddad <paul@pth.com>
518 		 */
519 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" },
520 		CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255
521 	},
522 	{
523 		/*
524 		 * The Hitachi CJ series with J8A8 firmware apparantly has
525 		 * problems with tagged commands.
526 		 * PR: 23536
527 		 * Reported by: amagai@nue.org
528 		 */
529 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" },
530 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
531 	},
532 	{
533 		/*
534 		 * These are the large storage arrays.
535 		 * Submitted by:  William Carrel <william.carrel@infospace.com>
536 		 */
537 		{ T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" },
538 		CAM_QUIRK_HILUNS, 2, 1024
539 	},
540 	{
541 		/*
542 		 * This old revision of the TDC3600 is also SCSI-1, and
543 		 * hangs upon serial number probing.
544 		 */
545 		{
546 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG",
547 			" TDC 3600", "U07:"
548 		},
549 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
550 	},
551 	{
552 		/*
553 		 * Maxtor Personal Storage 3000XT (Firewire)
554 		 * hangs upon serial number probing.
555 		 */
556 		{
557 			T_DIRECT, SIP_MEDIA_FIXED, "Maxtor",
558 			"1394 storage", "*"
559 		},
560 		CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0
561 	},
562 	{
563 		/*
564 		 * Would repond to all LUNs if asked for.
565 		 */
566 		{
567 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER",
568 			"CP150", "*"
569 		},
570 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
571 	},
572 	{
573 		/*
574 		 * Would repond to all LUNs if asked for.
575 		 */
576 		{
577 			T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY",
578 			"96X2*", "*"
579 		},
580 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
581 	},
582 	{
583 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
584 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" },
585 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
586 	},
587 	{
588 		/* Submitted by: Matthew Dodd <winter@jurai.net> */
589 		{ T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" },
590 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
591 	},
592 	{
593 		/* TeraSolutions special settings for TRC-22 RAID */
594 		{ T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" },
595 		  /*quirks*/0, /*mintags*/55, /*maxtags*/255
596 	},
597 	{
598 		/* Veritas Storage Appliance */
599 		{ T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" },
600 		  CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024
601 	},
602 	{
603 		/*
604 		 * Would respond to all LUNs.  Device type and removable
605 		 * flag are jumper-selectable.
606 		 */
607 		{ T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix",
608 		  "Tahiti 1", "*"
609 		},
610 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
611 	},
612 	{
613 		/* EasyRAID E5A aka. areca ARC-6010 */
614 		{ T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" },
615 		  CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255
616 	},
617 	{
618 		{ T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" },
619 		CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0
620 	},
621 	{
622 		/* Default tagged queuing parameters for all devices */
623 		{
624 		  T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED,
625 		  /*vendor*/"*", /*product*/"*", /*revision*/"*"
626 		},
627 		/*quirks*/0, /*mintags*/2, /*maxtags*/255
628 	},
629 };
630 
631 static const int xpt_quirk_table_size =
632 	sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table);
633 
634 typedef enum {
635 	DM_RET_COPY		= 0x01,
636 	DM_RET_FLAG_MASK	= 0x0f,
637 	DM_RET_NONE		= 0x00,
638 	DM_RET_STOP		= 0x10,
639 	DM_RET_DESCEND		= 0x20,
640 	DM_RET_ERROR		= 0x30,
641 	DM_RET_ACTION_MASK	= 0xf0
642 } dev_match_ret;
643 
644 typedef enum {
645 	XPT_DEPTH_BUS,
646 	XPT_DEPTH_TARGET,
647 	XPT_DEPTH_DEVICE,
648 	XPT_DEPTH_PERIPH
649 } xpt_traverse_depth;
650 
651 struct xpt_traverse_config {
652 	xpt_traverse_depth	depth;
653 	void			*tr_func;
654 	void			*tr_arg;
655 };
656 
657 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
658 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
659 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
660 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
661 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
662 
663 /* Transport layer configuration information */
664 static struct xpt_softc xsoftc;
665 
666 /* Queues for our software interrupt handler */
667 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
668 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
669 static cam_simq_t cam_simq;
670 static struct mtx cam_simq_lock;
671 
672 /* Pointers to software interrupt handlers */
673 static void *cambio_ih;
674 
675 struct cam_periph *xpt_periph;
676 
677 static periph_init_t xpt_periph_init;
678 
679 static periph_init_t probe_periph_init;
680 
681 static struct periph_driver xpt_driver =
682 {
683 	xpt_periph_init, "xpt",
684 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
685 };
686 
687 static struct periph_driver probe_driver =
688 {
689 	probe_periph_init, "probe",
690 	TAILQ_HEAD_INITIALIZER(probe_driver.units)
691 };
692 
693 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
694 PERIPHDRIVER_DECLARE(probe, probe_driver);
695 
696 
697 static d_open_t xptopen;
698 static d_close_t xptclose;
699 static d_ioctl_t xptioctl;
700 
701 static struct cdevsw xpt_cdevsw = {
702 	.d_version =	D_VERSION,
703 	.d_flags =	0,
704 	.d_open =	xptopen,
705 	.d_close =	xptclose,
706 	.d_ioctl =	xptioctl,
707 	.d_name =	"xpt",
708 };
709 
710 
711 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb);
712 static void dead_sim_poll(struct cam_sim *sim);
713 
714 /* Dummy SIM that is used when the real one has gone. */
715 static struct cam_sim cam_dead_sim = {
716 	.sim_action =	dead_sim_action,
717 	.sim_poll =	dead_sim_poll,
718 	.sim_name =	"dead_sim",
719 };
720 
721 #define SIM_DEAD(sim)	((sim) == &cam_dead_sim)
722 
723 
724 /* Storage for debugging datastructures */
725 #ifdef	CAMDEBUG
726 struct cam_path *cam_dpath;
727 u_int32_t cam_dflags;
728 u_int32_t cam_debug_delay;
729 #endif
730 
731 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG)
732 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS"
733 #endif
734 
735 /*
736  * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG
737  * enabled.  Also, the user must have either none, or all of CAM_DEBUG_BUS,
738  * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified.
739  */
740 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \
741     || defined(CAM_DEBUG_LUN)
742 #ifdef CAMDEBUG
743 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \
744     || !defined(CAM_DEBUG_LUN)
745 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \
746         and CAM_DEBUG_LUN"
747 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */
748 #else /* !CAMDEBUG */
749 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options"
750 #endif /* CAMDEBUG */
751 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */
752 
753 /* Our boot-time initialization hook */
754 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
755 
756 static moduledata_t cam_moduledata = {
757 	"cam",
758 	cam_module_event_handler,
759 	NULL
760 };
761 
762 static int	xpt_init(void *);
763 
764 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
765 MODULE_VERSION(cam, 1);
766 
767 
768 static cam_status	xpt_compile_path(struct cam_path *new_path,
769 					 struct cam_periph *perph,
770 					 path_id_t path_id,
771 					 target_id_t target_id,
772 					 lun_id_t lun_id);
773 
774 static void		xpt_release_path(struct cam_path *path);
775 
776 static void		xpt_async_bcast(struct async_list *async_head,
777 					u_int32_t async_code,
778 					struct cam_path *path,
779 					void *async_arg);
780 static void		xpt_dev_async(u_int32_t async_code,
781 				      struct cam_eb *bus,
782 				      struct cam_et *target,
783 				      struct cam_ed *device,
784 				      void *async_arg);
785 static path_id_t xptnextfreepathid(void);
786 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
787 static union ccb *xpt_get_ccb(struct cam_ed *device);
788 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
789 				  u_int32_t new_priority);
790 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
791 static void	 xpt_run_dev_sendq(struct cam_eb *bus);
792 static timeout_t xpt_release_devq_timeout;
793 static void	 xpt_release_simq_timeout(void *arg) __unused;
794 static void	 xpt_release_bus(struct cam_eb *bus);
795 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
796 					 int run_queue);
797 static struct cam_et*
798 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
799 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
800 static struct cam_ed*
801 		 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target,
802 				  lun_id_t lun_id);
803 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
804 				    struct cam_ed *device);
805 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings);
806 static struct cam_eb*
807 		 xpt_find_bus(path_id_t path_id);
808 static struct cam_et*
809 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
810 static struct cam_ed*
811 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
812 static void	 xpt_scan_bus(struct cam_periph *periph, union ccb *ccb);
813 static void	 xpt_scan_lun(struct cam_periph *periph,
814 			      struct cam_path *path, cam_flags flags,
815 			      union ccb *ccb);
816 static void	 xptscandone(struct cam_periph *periph, union ccb *done_ccb);
817 static xpt_busfunc_t	xptconfigbuscountfunc;
818 static xpt_busfunc_t	xptconfigfunc;
819 static void	 xpt_config(void *arg);
820 static xpt_devicefunc_t xptpassannouncefunc;
821 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
822 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
823 static void	 xptpoll(struct cam_sim *sim);
824 static void	 camisr(void *);
825 static void	 camisr_runqueue(void *);
826 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
827 				    u_int num_patterns, struct cam_eb *bus);
828 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
829 				       u_int num_patterns,
830 				       struct cam_ed *device);
831 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
832 				       u_int num_patterns,
833 				       struct cam_periph *periph);
834 static xpt_busfunc_t	xptedtbusfunc;
835 static xpt_targetfunc_t	xptedttargetfunc;
836 static xpt_devicefunc_t	xptedtdevicefunc;
837 static xpt_periphfunc_t	xptedtperiphfunc;
838 static xpt_pdrvfunc_t	xptplistpdrvfunc;
839 static xpt_periphfunc_t	xptplistperiphfunc;
840 static int		xptedtmatch(struct ccb_dev_match *cdm);
841 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
842 static int		xptbustraverse(struct cam_eb *start_bus,
843 				       xpt_busfunc_t *tr_func, void *arg);
844 static int		xpttargettraverse(struct cam_eb *bus,
845 					  struct cam_et *start_target,
846 					  xpt_targetfunc_t *tr_func, void *arg);
847 static int		xptdevicetraverse(struct cam_et *target,
848 					  struct cam_ed *start_device,
849 					  xpt_devicefunc_t *tr_func, void *arg);
850 static int		xptperiphtraverse(struct cam_ed *device,
851 					  struct cam_periph *start_periph,
852 					  xpt_periphfunc_t *tr_func, void *arg);
853 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
854 					xpt_pdrvfunc_t *tr_func, void *arg);
855 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
856 					    struct cam_periph *start_periph,
857 					    xpt_periphfunc_t *tr_func,
858 					    void *arg);
859 static xpt_busfunc_t	xptdefbusfunc;
860 static xpt_targetfunc_t	xptdeftargetfunc;
861 static xpt_devicefunc_t	xptdefdevicefunc;
862 static xpt_periphfunc_t	xptdefperiphfunc;
863 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
864 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
865 					    void *arg);
866 static xpt_devicefunc_t	xptsetasyncfunc;
867 static xpt_busfunc_t	xptsetasyncbusfunc;
868 static cam_status	xptregister(struct cam_periph *periph,
869 				    void *arg);
870 static cam_status	proberegister(struct cam_periph *periph,
871 				      void *arg);
872 static void	 probeschedule(struct cam_periph *probe_periph);
873 static void	 probestart(struct cam_periph *periph, union ccb *start_ccb);
874 static void	 proberequestdefaultnegotiation(struct cam_periph *periph);
875 static int       proberequestbackoff(struct cam_periph *periph,
876 				     struct cam_ed *device);
877 static void	 probedone(struct cam_periph *periph, union ccb *done_ccb);
878 static void	 probecleanup(struct cam_periph *periph);
879 static void	 xpt_find_quirk(struct cam_ed *device);
880 static void	 xpt_devise_transport(struct cam_path *path);
881 static void	 xpt_set_transfer_settings(struct ccb_trans_settings *cts,
882 					   struct cam_ed *device,
883 					   int async_update);
884 static void	 xpt_toggle_tags(struct cam_path *path);
885 static void	 xpt_start_tags(struct cam_path *path);
886 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
887 					    struct cam_ed *dev);
888 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus,
889 					   struct cam_ed *dev);
890 static __inline int periph_is_queued(struct cam_periph *periph);
891 static __inline int device_is_alloc_queued(struct cam_ed *device);
892 static __inline int device_is_send_queued(struct cam_ed *device);
893 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
894 
895 static __inline int
896 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
897 {
898 	int retval;
899 
900 	if (dev->ccbq.devq_openings > 0) {
901 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
902 			cam_ccbq_resize(&dev->ccbq,
903 					dev->ccbq.dev_openings
904 					+ dev->ccbq.dev_active);
905 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
906 		}
907 		/*
908 		 * The priority of a device waiting for CCB resources
909 		 * is that of the the highest priority peripheral driver
910 		 * enqueued.
911 		 */
912 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
913 					  &dev->alloc_ccb_entry.pinfo,
914 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
915 	} else {
916 		retval = 0;
917 	}
918 
919 	return (retval);
920 }
921 
922 static __inline int
923 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev)
924 {
925 	int	retval;
926 
927 	if (dev->ccbq.dev_openings > 0) {
928 		/*
929 		 * The priority of a device waiting for controller
930 		 * resources is that of the the highest priority CCB
931 		 * enqueued.
932 		 */
933 		retval =
934 		    xpt_schedule_dev(&bus->sim->devq->send_queue,
935 				     &dev->send_ccb_entry.pinfo,
936 				     CAMQ_GET_HEAD(&dev->ccbq.queue)->priority);
937 	} else {
938 		retval = 0;
939 	}
940 	return (retval);
941 }
942 
943 static __inline int
944 periph_is_queued(struct cam_periph *periph)
945 {
946 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
947 }
948 
949 static __inline int
950 device_is_alloc_queued(struct cam_ed *device)
951 {
952 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
953 }
954 
955 static __inline int
956 device_is_send_queued(struct cam_ed *device)
957 {
958 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
959 }
960 
961 static __inline int
962 dev_allocq_is_runnable(struct cam_devq *devq)
963 {
964 	/*
965 	 * Have work to do.
966 	 * Have space to do more work.
967 	 * Allowed to do work.
968 	 */
969 	return ((devq->alloc_queue.qfrozen_cnt == 0)
970 	     && (devq->alloc_queue.entries > 0)
971 	     && (devq->alloc_openings > 0));
972 }
973 
974 static void
975 xpt_periph_init()
976 {
977 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
978 }
979 
980 static void
981 probe_periph_init()
982 {
983 }
984 
985 
986 static void
987 xptdone(struct cam_periph *periph, union ccb *done_ccb)
988 {
989 	/* Caller will release the CCB */
990 	wakeup(&done_ccb->ccb_h.cbfcnp);
991 }
992 
993 static int
994 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
995 {
996 
997 	/*
998 	 * Only allow read-write access.
999 	 */
1000 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
1001 		return(EPERM);
1002 
1003 	/*
1004 	 * We don't allow nonblocking access.
1005 	 */
1006 	if ((flags & O_NONBLOCK) != 0) {
1007 		printf("%s: can't do nonblocking access\n", devtoname(dev));
1008 		return(ENODEV);
1009 	}
1010 
1011 	/* Mark ourselves open */
1012 	mtx_lock(&xsoftc.xpt_lock);
1013 	xsoftc.flags |= XPT_FLAG_OPEN;
1014 	mtx_unlock(&xsoftc.xpt_lock);
1015 
1016 	return(0);
1017 }
1018 
1019 static int
1020 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
1021 {
1022 
1023 	/* Mark ourselves closed */
1024 	mtx_lock(&xsoftc.xpt_lock);
1025 	xsoftc.flags &= ~XPT_FLAG_OPEN;
1026 	mtx_unlock(&xsoftc.xpt_lock);
1027 
1028 	return(0);
1029 }
1030 
1031 /*
1032  * Don't automatically grab the xpt softc lock here even though this is going
1033  * through the xpt device.  The xpt device is really just a back door for
1034  * accessing other devices and SIMs, so the right thing to do is to grab
1035  * the appropriate SIM lock once the bus/SIM is located.
1036  */
1037 static int
1038 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
1039 {
1040 	int error;
1041 
1042 	error = 0;
1043 
1044 	switch(cmd) {
1045 	/*
1046 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
1047 	 * to accept CCB types that don't quite make sense to send through a
1048 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
1049 	 * in the CAM spec.
1050 	 */
1051 	case CAMIOCOMMAND: {
1052 		union ccb *ccb;
1053 		union ccb *inccb;
1054 		struct cam_eb *bus;
1055 
1056 		inccb = (union ccb *)addr;
1057 
1058 		bus = xpt_find_bus(inccb->ccb_h.path_id);
1059 		if (bus == NULL) {
1060 			error = EINVAL;
1061 			break;
1062 		}
1063 
1064 		switch(inccb->ccb_h.func_code) {
1065 		case XPT_SCAN_BUS:
1066 		case XPT_RESET_BUS:
1067 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
1068 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
1069 				error = EINVAL;
1070 				break;
1071 			}
1072 			/* FALLTHROUGH */
1073 		case XPT_PATH_INQ:
1074 		case XPT_ENG_INQ:
1075 		case XPT_SCAN_LUN:
1076 
1077 			ccb = xpt_alloc_ccb();
1078 
1079 			CAM_SIM_LOCK(bus->sim);
1080 
1081 			/*
1082 			 * Create a path using the bus, target, and lun the
1083 			 * user passed in.
1084 			 */
1085 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
1086 					    inccb->ccb_h.path_id,
1087 					    inccb->ccb_h.target_id,
1088 					    inccb->ccb_h.target_lun) !=
1089 					    CAM_REQ_CMP){
1090 				error = EINVAL;
1091 				CAM_SIM_UNLOCK(bus->sim);
1092 				xpt_free_ccb(ccb);
1093 				break;
1094 			}
1095 			/* Ensure all of our fields are correct */
1096 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
1097 				      inccb->ccb_h.pinfo.priority);
1098 			xpt_merge_ccb(ccb, inccb);
1099 			ccb->ccb_h.cbfcnp = xptdone;
1100 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1101 			bcopy(ccb, inccb, sizeof(union ccb));
1102 			xpt_free_path(ccb->ccb_h.path);
1103 			xpt_free_ccb(ccb);
1104 			CAM_SIM_UNLOCK(bus->sim);
1105 			break;
1106 
1107 		case XPT_DEBUG: {
1108 			union ccb ccb;
1109 
1110 			/*
1111 			 * This is an immediate CCB, so it's okay to
1112 			 * allocate it on the stack.
1113 			 */
1114 
1115 			CAM_SIM_LOCK(bus->sim);
1116 
1117 			/*
1118 			 * Create a path using the bus, target, and lun the
1119 			 * user passed in.
1120 			 */
1121 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
1122 					    inccb->ccb_h.path_id,
1123 					    inccb->ccb_h.target_id,
1124 					    inccb->ccb_h.target_lun) !=
1125 					    CAM_REQ_CMP){
1126 				error = EINVAL;
1127 				break;
1128 			}
1129 			/* Ensure all of our fields are correct */
1130 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
1131 				      inccb->ccb_h.pinfo.priority);
1132 			xpt_merge_ccb(&ccb, inccb);
1133 			ccb.ccb_h.cbfcnp = xptdone;
1134 			xpt_action(&ccb);
1135 			CAM_SIM_UNLOCK(bus->sim);
1136 			bcopy(&ccb, inccb, sizeof(union ccb));
1137 			xpt_free_path(ccb.ccb_h.path);
1138 			break;
1139 
1140 		}
1141 		case XPT_DEV_MATCH: {
1142 			struct cam_periph_map_info mapinfo;
1143 			struct cam_path *old_path;
1144 
1145 			/*
1146 			 * We can't deal with physical addresses for this
1147 			 * type of transaction.
1148 			 */
1149 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
1150 				error = EINVAL;
1151 				break;
1152 			}
1153 
1154 			/*
1155 			 * Save this in case the caller had it set to
1156 			 * something in particular.
1157 			 */
1158 			old_path = inccb->ccb_h.path;
1159 
1160 			/*
1161 			 * We really don't need a path for the matching
1162 			 * code.  The path is needed because of the
1163 			 * debugging statements in xpt_action().  They
1164 			 * assume that the CCB has a valid path.
1165 			 */
1166 			inccb->ccb_h.path = xpt_periph->path;
1167 
1168 			bzero(&mapinfo, sizeof(mapinfo));
1169 
1170 			/*
1171 			 * Map the pattern and match buffers into kernel
1172 			 * virtual address space.
1173 			 */
1174 			error = cam_periph_mapmem(inccb, &mapinfo);
1175 
1176 			if (error) {
1177 				inccb->ccb_h.path = old_path;
1178 				break;
1179 			}
1180 
1181 			/*
1182 			 * This is an immediate CCB, we can send it on directly.
1183 			 */
1184 			xpt_action(inccb);
1185 
1186 			/*
1187 			 * Map the buffers back into user space.
1188 			 */
1189 			cam_periph_unmapmem(inccb, &mapinfo);
1190 
1191 			inccb->ccb_h.path = old_path;
1192 
1193 			error = 0;
1194 			break;
1195 		}
1196 		default:
1197 			error = ENOTSUP;
1198 			break;
1199 		}
1200 		break;
1201 	}
1202 	/*
1203 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
1204 	 * with the periphal driver name and unit name filled in.  The other
1205 	 * fields don't really matter as input.  The passthrough driver name
1206 	 * ("pass"), and unit number are passed back in the ccb.  The current
1207 	 * device generation number, and the index into the device peripheral
1208 	 * driver list, and the status are also passed back.  Note that
1209 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
1210 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
1211 	 * (or rather should be) impossible for the device peripheral driver
1212 	 * list to change since we look at the whole thing in one pass, and
1213 	 * we do it with lock protection.
1214 	 *
1215 	 */
1216 	case CAMGETPASSTHRU: {
1217 		union ccb *ccb;
1218 		struct cam_periph *periph;
1219 		struct periph_driver **p_drv;
1220 		char   *name;
1221 		u_int unit;
1222 		u_int cur_generation;
1223 		int base_periph_found;
1224 		int splbreaknum;
1225 
1226 		ccb = (union ccb *)addr;
1227 		unit = ccb->cgdl.unit_number;
1228 		name = ccb->cgdl.periph_name;
1229 		/*
1230 		 * Every 100 devices, we want to drop our lock protection to
1231 		 * give the software interrupt handler a chance to run.
1232 		 * Most systems won't run into this check, but this should
1233 		 * avoid starvation in the software interrupt handler in
1234 		 * large systems.
1235 		 */
1236 		splbreaknum = 100;
1237 
1238 		ccb = (union ccb *)addr;
1239 
1240 		base_periph_found = 0;
1241 
1242 		/*
1243 		 * Sanity check -- make sure we don't get a null peripheral
1244 		 * driver name.
1245 		 */
1246 		if (*ccb->cgdl.periph_name == '\0') {
1247 			error = EINVAL;
1248 			break;
1249 		}
1250 
1251 		/* Keep the list from changing while we traverse it */
1252 		mtx_lock(&xsoftc.xpt_topo_lock);
1253 ptstartover:
1254 		cur_generation = xsoftc.xpt_generation;
1255 
1256 		/* first find our driver in the list of drivers */
1257 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
1258 			if (strcmp((*p_drv)->driver_name, name) == 0)
1259 				break;
1260 
1261 		if (*p_drv == NULL) {
1262 			mtx_unlock(&xsoftc.xpt_topo_lock);
1263 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1264 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1265 			*ccb->cgdl.periph_name = '\0';
1266 			ccb->cgdl.unit_number = 0;
1267 			error = ENOENT;
1268 			break;
1269 		}
1270 
1271 		/*
1272 		 * Run through every peripheral instance of this driver
1273 		 * and check to see whether it matches the unit passed
1274 		 * in by the user.  If it does, get out of the loops and
1275 		 * find the passthrough driver associated with that
1276 		 * peripheral driver.
1277 		 */
1278 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
1279 		     periph = TAILQ_NEXT(periph, unit_links)) {
1280 
1281 			if (periph->unit_number == unit) {
1282 				break;
1283 			} else if (--splbreaknum == 0) {
1284 				mtx_unlock(&xsoftc.xpt_topo_lock);
1285 				mtx_lock(&xsoftc.xpt_topo_lock);
1286 				splbreaknum = 100;
1287 				if (cur_generation != xsoftc.xpt_generation)
1288 				       goto ptstartover;
1289 			}
1290 		}
1291 		/*
1292 		 * If we found the peripheral driver that the user passed
1293 		 * in, go through all of the peripheral drivers for that
1294 		 * particular device and look for a passthrough driver.
1295 		 */
1296 		if (periph != NULL) {
1297 			struct cam_ed *device;
1298 			int i;
1299 
1300 			base_periph_found = 1;
1301 			device = periph->path->device;
1302 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
1303 			     periph != NULL;
1304 			     periph = SLIST_NEXT(periph, periph_links), i++) {
1305 				/*
1306 				 * Check to see whether we have a
1307 				 * passthrough device or not.
1308 				 */
1309 				if (strcmp(periph->periph_name, "pass") == 0) {
1310 					/*
1311 					 * Fill in the getdevlist fields.
1312 					 */
1313 					strcpy(ccb->cgdl.periph_name,
1314 					       periph->periph_name);
1315 					ccb->cgdl.unit_number =
1316 						periph->unit_number;
1317 					if (SLIST_NEXT(periph, periph_links))
1318 						ccb->cgdl.status =
1319 							CAM_GDEVLIST_MORE_DEVS;
1320 					else
1321 						ccb->cgdl.status =
1322 						       CAM_GDEVLIST_LAST_DEVICE;
1323 					ccb->cgdl.generation =
1324 						device->generation;
1325 					ccb->cgdl.index = i;
1326 					/*
1327 					 * Fill in some CCB header fields
1328 					 * that the user may want.
1329 					 */
1330 					ccb->ccb_h.path_id =
1331 						periph->path->bus->path_id;
1332 					ccb->ccb_h.target_id =
1333 						periph->path->target->target_id;
1334 					ccb->ccb_h.target_lun =
1335 						periph->path->device->lun_id;
1336 					ccb->ccb_h.status = CAM_REQ_CMP;
1337 					break;
1338 				}
1339 			}
1340 		}
1341 
1342 		/*
1343 		 * If the periph is null here, one of two things has
1344 		 * happened.  The first possibility is that we couldn't
1345 		 * find the unit number of the particular peripheral driver
1346 		 * that the user is asking about.  e.g. the user asks for
1347 		 * the passthrough driver for "da11".  We find the list of
1348 		 * "da" peripherals all right, but there is no unit 11.
1349 		 * The other possibility is that we went through the list
1350 		 * of peripheral drivers attached to the device structure,
1351 		 * but didn't find one with the name "pass".  Either way,
1352 		 * we return ENOENT, since we couldn't find something.
1353 		 */
1354 		if (periph == NULL) {
1355 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
1356 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
1357 			*ccb->cgdl.periph_name = '\0';
1358 			ccb->cgdl.unit_number = 0;
1359 			error = ENOENT;
1360 			/*
1361 			 * It is unfortunate that this is even necessary,
1362 			 * but there are many, many clueless users out there.
1363 			 * If this is true, the user is looking for the
1364 			 * passthrough driver, but doesn't have one in his
1365 			 * kernel.
1366 			 */
1367 			if (base_periph_found == 1) {
1368 				printf("xptioctl: pass driver is not in the "
1369 				       "kernel\n");
1370 				printf("xptioctl: put \"device pass0\" in "
1371 				       "your kernel config file\n");
1372 			}
1373 		}
1374 		mtx_unlock(&xsoftc.xpt_topo_lock);
1375 		break;
1376 		}
1377 	default:
1378 		error = ENOTTY;
1379 		break;
1380 	}
1381 
1382 	return(error);
1383 }
1384 
1385 static int
1386 cam_module_event_handler(module_t mod, int what, void *arg)
1387 {
1388 	int error;
1389 
1390 	switch (what) {
1391 	case MOD_LOAD:
1392 		if ((error = xpt_init(NULL)) != 0)
1393 			return (error);
1394 		break;
1395 	case MOD_UNLOAD:
1396 		return EBUSY;
1397 	default:
1398 		return EOPNOTSUPP;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 /* thread to handle bus rescans */
1405 static void
1406 xpt_scanner_thread(void *dummy)
1407 {
1408 	cam_isrq_t	queue;
1409 	union ccb	*ccb;
1410 	struct cam_sim	*sim;
1411 
1412 	for (;;) {
1413 		/*
1414 		 * Wait for a rescan request to come in.  When it does, splice
1415 		 * it onto a queue from local storage so that the xpt lock
1416 		 * doesn't need to be held while the requests are being
1417 		 * processed.
1418 		 */
1419 		xpt_lock_buses();
1420 		msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
1421 		    "ccb_scanq", 0);
1422 		TAILQ_INIT(&queue);
1423 		TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
1424 		xpt_unlock_buses();
1425 
1426 		while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
1427 			TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
1428 
1429 			sim = ccb->ccb_h.path->bus->sim;
1430 			CAM_SIM_LOCK(sim);
1431 
1432 			ccb->ccb_h.func_code = XPT_SCAN_BUS;
1433 			ccb->ccb_h.cbfcnp = xptdone;
1434 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
1435 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
1436 			xpt_free_path(ccb->ccb_h.path);
1437 			xpt_free_ccb(ccb);
1438 			CAM_SIM_UNLOCK(sim);
1439 		}
1440 	}
1441 }
1442 
1443 void
1444 xpt_rescan(union ccb *ccb)
1445 {
1446 	struct ccb_hdr *hdr;
1447 
1448 	/*
1449 	 * Don't make duplicate entries for the same paths.
1450 	 */
1451 	xpt_lock_buses();
1452 	TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
1453 		if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
1454 			xpt_unlock_buses();
1455 			xpt_print(ccb->ccb_h.path, "rescan already queued\n");
1456 			xpt_free_path(ccb->ccb_h.path);
1457 			xpt_free_ccb(ccb);
1458 			return;
1459 		}
1460 	}
1461 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
1462 	wakeup(&xsoftc.ccb_scanq);
1463 	xpt_unlock_buses();
1464 }
1465 
1466 /* Functions accessed by the peripheral drivers */
1467 static int
1468 xpt_init(void *dummy)
1469 {
1470 	struct cam_sim *xpt_sim;
1471 	struct cam_path *path;
1472 	struct cam_devq *devq;
1473 	cam_status status;
1474 
1475 	TAILQ_INIT(&xsoftc.xpt_busses);
1476 	TAILQ_INIT(&cam_simq);
1477 	TAILQ_INIT(&xsoftc.ccb_scanq);
1478 	STAILQ_INIT(&xsoftc.highpowerq);
1479 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
1480 
1481 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
1482 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
1483 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
1484 
1485 	/*
1486 	 * The xpt layer is, itself, the equivelent of a SIM.
1487 	 * Allow 16 ccbs in the ccb pool for it.  This should
1488 	 * give decent parallelism when we probe busses and
1489 	 * perform other XPT functions.
1490 	 */
1491 	devq = cam_simq_alloc(16);
1492 	xpt_sim = cam_sim_alloc(xptaction,
1493 				xptpoll,
1494 				"xpt",
1495 				/*softc*/NULL,
1496 				/*unit*/0,
1497 				/*mtx*/&xsoftc.xpt_lock,
1498 				/*max_dev_transactions*/0,
1499 				/*max_tagged_dev_transactions*/0,
1500 				devq);
1501 	if (xpt_sim == NULL)
1502 		return (ENOMEM);
1503 
1504 	xpt_sim->max_ccbs = 16;
1505 
1506 	mtx_lock(&xsoftc.xpt_lock);
1507 	if ((status = xpt_bus_register(xpt_sim, /*bus #*/0)) != CAM_SUCCESS) {
1508 		printf("xpt_init: xpt_bus_register failed with status %#x,"
1509 		       " failing attach\n", status);
1510 		return (EINVAL);
1511 	}
1512 
1513 	/*
1514 	 * Looking at the XPT from the SIM layer, the XPT is
1515 	 * the equivelent of a peripheral driver.  Allocate
1516 	 * a peripheral driver entry for us.
1517 	 */
1518 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
1519 				      CAM_TARGET_WILDCARD,
1520 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
1521 		printf("xpt_init: xpt_create_path failed with status %#x,"
1522 		       " failing attach\n", status);
1523 		return (EINVAL);
1524 	}
1525 
1526 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
1527 			 path, NULL, 0, xpt_sim);
1528 	xpt_free_path(path);
1529 	mtx_unlock(&xsoftc.xpt_lock);
1530 
1531 	/*
1532 	 * Register a callback for when interrupts are enabled.
1533 	 */
1534 	xsoftc.xpt_config_hook =
1535 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
1536 					      M_TEMP, M_NOWAIT | M_ZERO);
1537 	if (xsoftc.xpt_config_hook == NULL) {
1538 		printf("xpt_init: Cannot malloc config hook "
1539 		       "- failing attach\n");
1540 		return (ENOMEM);
1541 	}
1542 
1543 	xsoftc.xpt_config_hook->ich_func = xpt_config;
1544 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
1545 		free (xsoftc.xpt_config_hook, M_TEMP);
1546 		printf("xpt_init: config_intrhook_establish failed "
1547 		       "- failing attach\n");
1548 	}
1549 
1550 	/* fire up rescan thread */
1551 	if (kthread_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
1552 		printf("xpt_init: failed to create rescan thread\n");
1553 	}
1554 	/* Install our software interrupt handlers */
1555 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
1556 
1557 	return (0);
1558 }
1559 
1560 static cam_status
1561 xptregister(struct cam_periph *periph, void *arg)
1562 {
1563 	struct cam_sim *xpt_sim;
1564 
1565 	if (periph == NULL) {
1566 		printf("xptregister: periph was NULL!!\n");
1567 		return(CAM_REQ_CMP_ERR);
1568 	}
1569 
1570 	xpt_sim = (struct cam_sim *)arg;
1571 	xpt_sim->softc = periph;
1572 	xpt_periph = periph;
1573 	periph->softc = NULL;
1574 
1575 	return(CAM_REQ_CMP);
1576 }
1577 
1578 int32_t
1579 xpt_add_periph(struct cam_periph *periph)
1580 {
1581 	struct cam_ed *device;
1582 	int32_t	 status;
1583 	struct periph_list *periph_head;
1584 
1585 	mtx_assert(periph->sim->mtx, MA_OWNED);
1586 
1587 	device = periph->path->device;
1588 
1589 	periph_head = &device->periphs;
1590 
1591 	status = CAM_REQ_CMP;
1592 
1593 	if (device != NULL) {
1594 		/*
1595 		 * Make room for this peripheral
1596 		 * so it will fit in the queue
1597 		 * when it's scheduled to run
1598 		 */
1599 		status = camq_resize(&device->drvq,
1600 				     device->drvq.array_size + 1);
1601 
1602 		device->generation++;
1603 
1604 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
1605 	}
1606 
1607 	mtx_lock(&xsoftc.xpt_topo_lock);
1608 	xsoftc.xpt_generation++;
1609 	mtx_unlock(&xsoftc.xpt_topo_lock);
1610 
1611 	return (status);
1612 }
1613 
1614 void
1615 xpt_remove_periph(struct cam_periph *periph)
1616 {
1617 	struct cam_ed *device;
1618 
1619 	mtx_assert(periph->sim->mtx, MA_OWNED);
1620 
1621 	device = periph->path->device;
1622 
1623 	if (device != NULL) {
1624 		struct periph_list *periph_head;
1625 
1626 		periph_head = &device->periphs;
1627 
1628 		/* Release the slot for this peripheral */
1629 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1630 
1631 		device->generation++;
1632 
1633 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1634 	}
1635 
1636 	mtx_lock(&xsoftc.xpt_topo_lock);
1637 	xsoftc.xpt_generation++;
1638 	mtx_unlock(&xsoftc.xpt_topo_lock);
1639 }
1640 
1641 
1642 void
1643 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1644 {
1645 	struct	ccb_pathinq cpi;
1646 	struct	ccb_trans_settings cts;
1647 	struct	cam_path *path;
1648 	u_int	speed;
1649 	u_int	freq;
1650 	u_int	mb;
1651 
1652 	mtx_assert(periph->sim->mtx, MA_OWNED);
1653 
1654 	path = periph->path;
1655 	/*
1656 	 * To ensure that this is printed in one piece,
1657 	 * mask out CAM interrupts.
1658 	 */
1659 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1660 	       periph->periph_name, periph->unit_number,
1661 	       path->bus->sim->sim_name,
1662 	       path->bus->sim->unit_number,
1663 	       path->bus->sim->bus_id,
1664 	       path->target->target_id,
1665 	       path->device->lun_id);
1666 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1667 	scsi_print_inquiry(&path->device->inq_data);
1668 	if (bootverbose && path->device->serial_num_len > 0) {
1669 		/* Don't wrap the screen  - print only the first 60 chars */
1670 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1671 		       periph->unit_number, path->device->serial_num);
1672 	}
1673 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1674 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1675 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1676 	xpt_action((union ccb*)&cts);
1677 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1678 		return;
1679 	}
1680 
1681 	/* Ask the SIM for its base transfer speed */
1682 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1683 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1684 	xpt_action((union ccb *)&cpi);
1685 
1686 	speed = cpi.base_transfer_speed;
1687 	freq = 0;
1688 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1689 		struct	ccb_trans_settings_spi *spi;
1690 
1691 		spi = &cts.xport_specific.spi;
1692 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1693 		  && spi->sync_offset != 0) {
1694 			freq = scsi_calc_syncsrate(spi->sync_period);
1695 			speed = freq;
1696 		}
1697 
1698 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1699 			speed *= (0x01 << spi->bus_width);
1700 	}
1701 
1702 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1703 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1704 		if (fc->valid & CTS_FC_VALID_SPEED) {
1705 			speed = fc->bitrate;
1706 		}
1707 	}
1708 
1709 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1710 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1711 		if (sas->valid & CTS_SAS_VALID_SPEED) {
1712 			speed = sas->bitrate;
1713 		}
1714 	}
1715 
1716 	mb = speed / 1000;
1717 	if (mb > 0)
1718 		printf("%s%d: %d.%03dMB/s transfers",
1719 		       periph->periph_name, periph->unit_number,
1720 		       mb, speed % 1000);
1721 	else
1722 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1723 		       periph->unit_number, speed);
1724 	/* Report additional information about SPI connections */
1725 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1726 		struct	ccb_trans_settings_spi *spi;
1727 
1728 		spi = &cts.xport_specific.spi;
1729 		if (freq != 0) {
1730 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1731 			       freq % 1000,
1732 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1733 			     ? " DT" : "",
1734 			       spi->sync_offset);
1735 		}
1736 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1737 		 && spi->bus_width > 0) {
1738 			if (freq != 0) {
1739 				printf(", ");
1740 			} else {
1741 				printf(" (");
1742 			}
1743 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1744 		} else if (freq != 0) {
1745 			printf(")");
1746 		}
1747 	}
1748 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1749 		struct	ccb_trans_settings_fc *fc;
1750 
1751 		fc = &cts.xport_specific.fc;
1752 		if (fc->valid & CTS_FC_VALID_WWNN)
1753 			printf(" WWNN 0x%llx", (long long) fc->wwnn);
1754 		if (fc->valid & CTS_FC_VALID_WWPN)
1755 			printf(" WWPN 0x%llx", (long long) fc->wwpn);
1756 		if (fc->valid & CTS_FC_VALID_PORT)
1757 			printf(" PortID 0x%x", fc->port);
1758 	}
1759 
1760 	if (path->device->inq_flags & SID_CmdQue
1761 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1762 		printf("\n%s%d: Command Queueing Enabled",
1763 		       periph->periph_name, periph->unit_number);
1764 	}
1765 	printf("\n");
1766 
1767 	/*
1768 	 * We only want to print the caller's announce string if they've
1769 	 * passed one in..
1770 	 */
1771 	if (announce_string != NULL)
1772 		printf("%s%d: %s\n", periph->periph_name,
1773 		       periph->unit_number, announce_string);
1774 }
1775 
1776 static dev_match_ret
1777 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1778 	    struct cam_eb *bus)
1779 {
1780 	dev_match_ret retval;
1781 	int i;
1782 
1783 	retval = DM_RET_NONE;
1784 
1785 	/*
1786 	 * If we aren't given something to match against, that's an error.
1787 	 */
1788 	if (bus == NULL)
1789 		return(DM_RET_ERROR);
1790 
1791 	/*
1792 	 * If there are no match entries, then this bus matches no
1793 	 * matter what.
1794 	 */
1795 	if ((patterns == NULL) || (num_patterns == 0))
1796 		return(DM_RET_DESCEND | DM_RET_COPY);
1797 
1798 	for (i = 0; i < num_patterns; i++) {
1799 		struct bus_match_pattern *cur_pattern;
1800 
1801 		/*
1802 		 * If the pattern in question isn't for a bus node, we
1803 		 * aren't interested.  However, we do indicate to the
1804 		 * calling routine that we should continue descending the
1805 		 * tree, since the user wants to match against lower-level
1806 		 * EDT elements.
1807 		 */
1808 		if (patterns[i].type != DEV_MATCH_BUS) {
1809 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1810 				retval |= DM_RET_DESCEND;
1811 			continue;
1812 		}
1813 
1814 		cur_pattern = &patterns[i].pattern.bus_pattern;
1815 
1816 		/*
1817 		 * If they want to match any bus node, we give them any
1818 		 * device node.
1819 		 */
1820 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1821 			/* set the copy flag */
1822 			retval |= DM_RET_COPY;
1823 
1824 			/*
1825 			 * If we've already decided on an action, go ahead
1826 			 * and return.
1827 			 */
1828 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1829 				return(retval);
1830 		}
1831 
1832 		/*
1833 		 * Not sure why someone would do this...
1834 		 */
1835 		if (cur_pattern->flags == BUS_MATCH_NONE)
1836 			continue;
1837 
1838 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1839 		 && (cur_pattern->path_id != bus->path_id))
1840 			continue;
1841 
1842 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1843 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1844 			continue;
1845 
1846 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1847 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1848 			continue;
1849 
1850 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1851 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1852 			     DEV_IDLEN) != 0))
1853 			continue;
1854 
1855 		/*
1856 		 * If we get to this point, the user definitely wants
1857 		 * information on this bus.  So tell the caller to copy the
1858 		 * data out.
1859 		 */
1860 		retval |= DM_RET_COPY;
1861 
1862 		/*
1863 		 * If the return action has been set to descend, then we
1864 		 * know that we've already seen a non-bus matching
1865 		 * expression, therefore we need to further descend the tree.
1866 		 * This won't change by continuing around the loop, so we
1867 		 * go ahead and return.  If we haven't seen a non-bus
1868 		 * matching expression, we keep going around the loop until
1869 		 * we exhaust the matching expressions.  We'll set the stop
1870 		 * flag once we fall out of the loop.
1871 		 */
1872 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1873 			return(retval);
1874 	}
1875 
1876 	/*
1877 	 * If the return action hasn't been set to descend yet, that means
1878 	 * we haven't seen anything other than bus matching patterns.  So
1879 	 * tell the caller to stop descending the tree -- the user doesn't
1880 	 * want to match against lower level tree elements.
1881 	 */
1882 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1883 		retval |= DM_RET_STOP;
1884 
1885 	return(retval);
1886 }
1887 
1888 static dev_match_ret
1889 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1890 	       struct cam_ed *device)
1891 {
1892 	dev_match_ret retval;
1893 	int i;
1894 
1895 	retval = DM_RET_NONE;
1896 
1897 	/*
1898 	 * If we aren't given something to match against, that's an error.
1899 	 */
1900 	if (device == NULL)
1901 		return(DM_RET_ERROR);
1902 
1903 	/*
1904 	 * If there are no match entries, then this device matches no
1905 	 * matter what.
1906 	 */
1907 	if ((patterns == NULL) || (num_patterns == 0))
1908 		return(DM_RET_DESCEND | DM_RET_COPY);
1909 
1910 	for (i = 0; i < num_patterns; i++) {
1911 		struct device_match_pattern *cur_pattern;
1912 
1913 		/*
1914 		 * If the pattern in question isn't for a device node, we
1915 		 * aren't interested.
1916 		 */
1917 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1918 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1919 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1920 				retval |= DM_RET_DESCEND;
1921 			continue;
1922 		}
1923 
1924 		cur_pattern = &patterns[i].pattern.device_pattern;
1925 
1926 		/*
1927 		 * If they want to match any device node, we give them any
1928 		 * device node.
1929 		 */
1930 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1931 			/* set the copy flag */
1932 			retval |= DM_RET_COPY;
1933 
1934 
1935 			/*
1936 			 * If we've already decided on an action, go ahead
1937 			 * and return.
1938 			 */
1939 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1940 				return(retval);
1941 		}
1942 
1943 		/*
1944 		 * Not sure why someone would do this...
1945 		 */
1946 		if (cur_pattern->flags == DEV_MATCH_NONE)
1947 			continue;
1948 
1949 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1950 		 && (cur_pattern->path_id != device->target->bus->path_id))
1951 			continue;
1952 
1953 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1954 		 && (cur_pattern->target_id != device->target->target_id))
1955 			continue;
1956 
1957 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1958 		 && (cur_pattern->target_lun != device->lun_id))
1959 			continue;
1960 
1961 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1962 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1963 				    (caddr_t)&cur_pattern->inq_pat,
1964 				    1, sizeof(cur_pattern->inq_pat),
1965 				    scsi_static_inquiry_match) == NULL))
1966 			continue;
1967 
1968 		/*
1969 		 * If we get to this point, the user definitely wants
1970 		 * information on this device.  So tell the caller to copy
1971 		 * the data out.
1972 		 */
1973 		retval |= DM_RET_COPY;
1974 
1975 		/*
1976 		 * If the return action has been set to descend, then we
1977 		 * know that we've already seen a peripheral matching
1978 		 * expression, therefore we need to further descend the tree.
1979 		 * This won't change by continuing around the loop, so we
1980 		 * go ahead and return.  If we haven't seen a peripheral
1981 		 * matching expression, we keep going around the loop until
1982 		 * we exhaust the matching expressions.  We'll set the stop
1983 		 * flag once we fall out of the loop.
1984 		 */
1985 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1986 			return(retval);
1987 	}
1988 
1989 	/*
1990 	 * If the return action hasn't been set to descend yet, that means
1991 	 * we haven't seen any peripheral matching patterns.  So tell the
1992 	 * caller to stop descending the tree -- the user doesn't want to
1993 	 * match against lower level tree elements.
1994 	 */
1995 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1996 		retval |= DM_RET_STOP;
1997 
1998 	return(retval);
1999 }
2000 
2001 /*
2002  * Match a single peripheral against any number of match patterns.
2003  */
2004 static dev_match_ret
2005 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
2006 	       struct cam_periph *periph)
2007 {
2008 	dev_match_ret retval;
2009 	int i;
2010 
2011 	/*
2012 	 * If we aren't given something to match against, that's an error.
2013 	 */
2014 	if (periph == NULL)
2015 		return(DM_RET_ERROR);
2016 
2017 	/*
2018 	 * If there are no match entries, then this peripheral matches no
2019 	 * matter what.
2020 	 */
2021 	if ((patterns == NULL) || (num_patterns == 0))
2022 		return(DM_RET_STOP | DM_RET_COPY);
2023 
2024 	/*
2025 	 * There aren't any nodes below a peripheral node, so there's no
2026 	 * reason to descend the tree any further.
2027 	 */
2028 	retval = DM_RET_STOP;
2029 
2030 	for (i = 0; i < num_patterns; i++) {
2031 		struct periph_match_pattern *cur_pattern;
2032 
2033 		/*
2034 		 * If the pattern in question isn't for a peripheral, we
2035 		 * aren't interested.
2036 		 */
2037 		if (patterns[i].type != DEV_MATCH_PERIPH)
2038 			continue;
2039 
2040 		cur_pattern = &patterns[i].pattern.periph_pattern;
2041 
2042 		/*
2043 		 * If they want to match on anything, then we will do so.
2044 		 */
2045 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
2046 			/* set the copy flag */
2047 			retval |= DM_RET_COPY;
2048 
2049 			/*
2050 			 * We've already set the return action to stop,
2051 			 * since there are no nodes below peripherals in
2052 			 * the tree.
2053 			 */
2054 			return(retval);
2055 		}
2056 
2057 		/*
2058 		 * Not sure why someone would do this...
2059 		 */
2060 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
2061 			continue;
2062 
2063 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
2064 		 && (cur_pattern->path_id != periph->path->bus->path_id))
2065 			continue;
2066 
2067 		/*
2068 		 * For the target and lun id's, we have to make sure the
2069 		 * target and lun pointers aren't NULL.  The xpt peripheral
2070 		 * has a wildcard target and device.
2071 		 */
2072 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
2073 		 && ((periph->path->target == NULL)
2074 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
2075 			continue;
2076 
2077 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
2078 		 && ((periph->path->device == NULL)
2079 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
2080 			continue;
2081 
2082 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
2083 		 && (cur_pattern->unit_number != periph->unit_number))
2084 			continue;
2085 
2086 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
2087 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
2088 			     DEV_IDLEN) != 0))
2089 			continue;
2090 
2091 		/*
2092 		 * If we get to this point, the user definitely wants
2093 		 * information on this peripheral.  So tell the caller to
2094 		 * copy the data out.
2095 		 */
2096 		retval |= DM_RET_COPY;
2097 
2098 		/*
2099 		 * The return action has already been set to stop, since
2100 		 * peripherals don't have any nodes below them in the EDT.
2101 		 */
2102 		return(retval);
2103 	}
2104 
2105 	/*
2106 	 * If we get to this point, the peripheral that was passed in
2107 	 * doesn't match any of the patterns.
2108 	 */
2109 	return(retval);
2110 }
2111 
2112 static int
2113 xptedtbusfunc(struct cam_eb *bus, void *arg)
2114 {
2115 	struct ccb_dev_match *cdm;
2116 	dev_match_ret retval;
2117 
2118 	cdm = (struct ccb_dev_match *)arg;
2119 
2120 	/*
2121 	 * If our position is for something deeper in the tree, that means
2122 	 * that we've already seen this node.  So, we keep going down.
2123 	 */
2124 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2125 	 && (cdm->pos.cookie.bus == bus)
2126 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2127 	 && (cdm->pos.cookie.target != NULL))
2128 		retval = DM_RET_DESCEND;
2129 	else
2130 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
2131 
2132 	/*
2133 	 * If we got an error, bail out of the search.
2134 	 */
2135 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2136 		cdm->status = CAM_DEV_MATCH_ERROR;
2137 		return(0);
2138 	}
2139 
2140 	/*
2141 	 * If the copy flag is set, copy this bus out.
2142 	 */
2143 	if (retval & DM_RET_COPY) {
2144 		int spaceleft, j;
2145 
2146 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2147 			sizeof(struct dev_match_result));
2148 
2149 		/*
2150 		 * If we don't have enough space to put in another
2151 		 * match result, save our position and tell the
2152 		 * user there are more devices to check.
2153 		 */
2154 		if (spaceleft < sizeof(struct dev_match_result)) {
2155 			bzero(&cdm->pos, sizeof(cdm->pos));
2156 			cdm->pos.position_type =
2157 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
2158 
2159 			cdm->pos.cookie.bus = bus;
2160 			cdm->pos.generations[CAM_BUS_GENERATION]=
2161 				xsoftc.bus_generation;
2162 			cdm->status = CAM_DEV_MATCH_MORE;
2163 			return(0);
2164 		}
2165 		j = cdm->num_matches;
2166 		cdm->num_matches++;
2167 		cdm->matches[j].type = DEV_MATCH_BUS;
2168 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
2169 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
2170 		cdm->matches[j].result.bus_result.unit_number =
2171 			bus->sim->unit_number;
2172 		strncpy(cdm->matches[j].result.bus_result.dev_name,
2173 			bus->sim->sim_name, DEV_IDLEN);
2174 	}
2175 
2176 	/*
2177 	 * If the user is only interested in busses, there's no
2178 	 * reason to descend to the next level in the tree.
2179 	 */
2180 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2181 		return(1);
2182 
2183 	/*
2184 	 * If there is a target generation recorded, check it to
2185 	 * make sure the target list hasn't changed.
2186 	 */
2187 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2188 	 && (bus == cdm->pos.cookie.bus)
2189 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2190 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
2191 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
2192 	     bus->generation)) {
2193 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2194 		return(0);
2195 	}
2196 
2197 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2198 	 && (cdm->pos.cookie.bus == bus)
2199 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2200 	 && (cdm->pos.cookie.target != NULL))
2201 		return(xpttargettraverse(bus,
2202 					(struct cam_et *)cdm->pos.cookie.target,
2203 					 xptedttargetfunc, arg));
2204 	else
2205 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
2206 }
2207 
2208 static int
2209 xptedttargetfunc(struct cam_et *target, void *arg)
2210 {
2211 	struct ccb_dev_match *cdm;
2212 
2213 	cdm = (struct ccb_dev_match *)arg;
2214 
2215 	/*
2216 	 * If there is a device list generation recorded, check it to
2217 	 * make sure the device list hasn't changed.
2218 	 */
2219 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2220 	 && (cdm->pos.cookie.bus == target->bus)
2221 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2222 	 && (cdm->pos.cookie.target == target)
2223 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2224 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
2225 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
2226 	     target->generation)) {
2227 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2228 		return(0);
2229 	}
2230 
2231 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2232 	 && (cdm->pos.cookie.bus == target->bus)
2233 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2234 	 && (cdm->pos.cookie.target == target)
2235 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2236 	 && (cdm->pos.cookie.device != NULL))
2237 		return(xptdevicetraverse(target,
2238 					(struct cam_ed *)cdm->pos.cookie.device,
2239 					 xptedtdevicefunc, arg));
2240 	else
2241 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
2242 }
2243 
2244 static int
2245 xptedtdevicefunc(struct cam_ed *device, void *arg)
2246 {
2247 
2248 	struct ccb_dev_match *cdm;
2249 	dev_match_ret retval;
2250 
2251 	cdm = (struct ccb_dev_match *)arg;
2252 
2253 	/*
2254 	 * If our position is for something deeper in the tree, that means
2255 	 * that we've already seen this node.  So, we keep going down.
2256 	 */
2257 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2258 	 && (cdm->pos.cookie.device == device)
2259 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2260 	 && (cdm->pos.cookie.periph != NULL))
2261 		retval = DM_RET_DESCEND;
2262 	else
2263 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
2264 					device);
2265 
2266 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2267 		cdm->status = CAM_DEV_MATCH_ERROR;
2268 		return(0);
2269 	}
2270 
2271 	/*
2272 	 * If the copy flag is set, copy this device out.
2273 	 */
2274 	if (retval & DM_RET_COPY) {
2275 		int spaceleft, j;
2276 
2277 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2278 			sizeof(struct dev_match_result));
2279 
2280 		/*
2281 		 * If we don't have enough space to put in another
2282 		 * match result, save our position and tell the
2283 		 * user there are more devices to check.
2284 		 */
2285 		if (spaceleft < sizeof(struct dev_match_result)) {
2286 			bzero(&cdm->pos, sizeof(cdm->pos));
2287 			cdm->pos.position_type =
2288 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2289 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
2290 
2291 			cdm->pos.cookie.bus = device->target->bus;
2292 			cdm->pos.generations[CAM_BUS_GENERATION]=
2293 				xsoftc.bus_generation;
2294 			cdm->pos.cookie.target = device->target;
2295 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2296 				device->target->bus->generation;
2297 			cdm->pos.cookie.device = device;
2298 			cdm->pos.generations[CAM_DEV_GENERATION] =
2299 				device->target->generation;
2300 			cdm->status = CAM_DEV_MATCH_MORE;
2301 			return(0);
2302 		}
2303 		j = cdm->num_matches;
2304 		cdm->num_matches++;
2305 		cdm->matches[j].type = DEV_MATCH_DEVICE;
2306 		cdm->matches[j].result.device_result.path_id =
2307 			device->target->bus->path_id;
2308 		cdm->matches[j].result.device_result.target_id =
2309 			device->target->target_id;
2310 		cdm->matches[j].result.device_result.target_lun =
2311 			device->lun_id;
2312 		bcopy(&device->inq_data,
2313 		      &cdm->matches[j].result.device_result.inq_data,
2314 		      sizeof(struct scsi_inquiry_data));
2315 
2316 		/* Let the user know whether this device is unconfigured */
2317 		if (device->flags & CAM_DEV_UNCONFIGURED)
2318 			cdm->matches[j].result.device_result.flags =
2319 				DEV_RESULT_UNCONFIGURED;
2320 		else
2321 			cdm->matches[j].result.device_result.flags =
2322 				DEV_RESULT_NOFLAG;
2323 	}
2324 
2325 	/*
2326 	 * If the user isn't interested in peripherals, don't descend
2327 	 * the tree any further.
2328 	 */
2329 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
2330 		return(1);
2331 
2332 	/*
2333 	 * If there is a peripheral list generation recorded, make sure
2334 	 * it hasn't changed.
2335 	 */
2336 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2337 	 && (device->target->bus == cdm->pos.cookie.bus)
2338 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2339 	 && (device->target == cdm->pos.cookie.target)
2340 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2341 	 && (device == cdm->pos.cookie.device)
2342 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2343 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2344 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2345 	     device->generation)){
2346 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2347 		return(0);
2348 	}
2349 
2350 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2351 	 && (cdm->pos.cookie.bus == device->target->bus)
2352 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
2353 	 && (cdm->pos.cookie.target == device->target)
2354 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
2355 	 && (cdm->pos.cookie.device == device)
2356 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2357 	 && (cdm->pos.cookie.periph != NULL))
2358 		return(xptperiphtraverse(device,
2359 				(struct cam_periph *)cdm->pos.cookie.periph,
2360 				xptedtperiphfunc, arg));
2361 	else
2362 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
2363 }
2364 
2365 static int
2366 xptedtperiphfunc(struct cam_periph *periph, void *arg)
2367 {
2368 	struct ccb_dev_match *cdm;
2369 	dev_match_ret retval;
2370 
2371 	cdm = (struct ccb_dev_match *)arg;
2372 
2373 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2374 
2375 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2376 		cdm->status = CAM_DEV_MATCH_ERROR;
2377 		return(0);
2378 	}
2379 
2380 	/*
2381 	 * If the copy flag is set, copy this peripheral out.
2382 	 */
2383 	if (retval & DM_RET_COPY) {
2384 		int spaceleft, j;
2385 
2386 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2387 			sizeof(struct dev_match_result));
2388 
2389 		/*
2390 		 * If we don't have enough space to put in another
2391 		 * match result, save our position and tell the
2392 		 * user there are more devices to check.
2393 		 */
2394 		if (spaceleft < sizeof(struct dev_match_result)) {
2395 			bzero(&cdm->pos, sizeof(cdm->pos));
2396 			cdm->pos.position_type =
2397 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
2398 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
2399 				CAM_DEV_POS_PERIPH;
2400 
2401 			cdm->pos.cookie.bus = periph->path->bus;
2402 			cdm->pos.generations[CAM_BUS_GENERATION]=
2403 				xsoftc.bus_generation;
2404 			cdm->pos.cookie.target = periph->path->target;
2405 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2406 				periph->path->bus->generation;
2407 			cdm->pos.cookie.device = periph->path->device;
2408 			cdm->pos.generations[CAM_DEV_GENERATION] =
2409 				periph->path->target->generation;
2410 			cdm->pos.cookie.periph = periph;
2411 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2412 				periph->path->device->generation;
2413 			cdm->status = CAM_DEV_MATCH_MORE;
2414 			return(0);
2415 		}
2416 
2417 		j = cdm->num_matches;
2418 		cdm->num_matches++;
2419 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2420 		cdm->matches[j].result.periph_result.path_id =
2421 			periph->path->bus->path_id;
2422 		cdm->matches[j].result.periph_result.target_id =
2423 			periph->path->target->target_id;
2424 		cdm->matches[j].result.periph_result.target_lun =
2425 			periph->path->device->lun_id;
2426 		cdm->matches[j].result.periph_result.unit_number =
2427 			periph->unit_number;
2428 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2429 			periph->periph_name, DEV_IDLEN);
2430 	}
2431 
2432 	return(1);
2433 }
2434 
2435 static int
2436 xptedtmatch(struct ccb_dev_match *cdm)
2437 {
2438 	int ret;
2439 
2440 	cdm->num_matches = 0;
2441 
2442 	/*
2443 	 * Check the bus list generation.  If it has changed, the user
2444 	 * needs to reset everything and start over.
2445 	 */
2446 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2447 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
2448 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
2449 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2450 		return(0);
2451 	}
2452 
2453 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2454 	 && (cdm->pos.cookie.bus != NULL))
2455 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
2456 				     xptedtbusfunc, cdm);
2457 	else
2458 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
2459 
2460 	/*
2461 	 * If we get back 0, that means that we had to stop before fully
2462 	 * traversing the EDT.  It also means that one of the subroutines
2463 	 * has set the status field to the proper value.  If we get back 1,
2464 	 * we've fully traversed the EDT and copied out any matching entries.
2465 	 */
2466 	if (ret == 1)
2467 		cdm->status = CAM_DEV_MATCH_LAST;
2468 
2469 	return(ret);
2470 }
2471 
2472 static int
2473 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2474 {
2475 	struct ccb_dev_match *cdm;
2476 
2477 	cdm = (struct ccb_dev_match *)arg;
2478 
2479 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2480 	 && (cdm->pos.cookie.pdrv == pdrv)
2481 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2482 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
2483 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2484 	     (*pdrv)->generation)) {
2485 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2486 		return(0);
2487 	}
2488 
2489 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2490 	 && (cdm->pos.cookie.pdrv == pdrv)
2491 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2492 	 && (cdm->pos.cookie.periph != NULL))
2493 		return(xptpdperiphtraverse(pdrv,
2494 				(struct cam_periph *)cdm->pos.cookie.periph,
2495 				xptplistperiphfunc, arg));
2496 	else
2497 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
2498 }
2499 
2500 static int
2501 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2502 {
2503 	struct ccb_dev_match *cdm;
2504 	dev_match_ret retval;
2505 
2506 	cdm = (struct ccb_dev_match *)arg;
2507 
2508 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2509 
2510 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2511 		cdm->status = CAM_DEV_MATCH_ERROR;
2512 		return(0);
2513 	}
2514 
2515 	/*
2516 	 * If the copy flag is set, copy this peripheral out.
2517 	 */
2518 	if (retval & DM_RET_COPY) {
2519 		int spaceleft, j;
2520 
2521 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2522 			sizeof(struct dev_match_result));
2523 
2524 		/*
2525 		 * If we don't have enough space to put in another
2526 		 * match result, save our position and tell the
2527 		 * user there are more devices to check.
2528 		 */
2529 		if (spaceleft < sizeof(struct dev_match_result)) {
2530 			struct periph_driver **pdrv;
2531 
2532 			pdrv = NULL;
2533 			bzero(&cdm->pos, sizeof(cdm->pos));
2534 			cdm->pos.position_type =
2535 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2536 				CAM_DEV_POS_PERIPH;
2537 
2538 			/*
2539 			 * This may look a bit non-sensical, but it is
2540 			 * actually quite logical.  There are very few
2541 			 * peripheral drivers, and bloating every peripheral
2542 			 * structure with a pointer back to its parent
2543 			 * peripheral driver linker set entry would cost
2544 			 * more in the long run than doing this quick lookup.
2545 			 */
2546 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2547 				if (strcmp((*pdrv)->driver_name,
2548 				    periph->periph_name) == 0)
2549 					break;
2550 			}
2551 
2552 			if (*pdrv == NULL) {
2553 				cdm->status = CAM_DEV_MATCH_ERROR;
2554 				return(0);
2555 			}
2556 
2557 			cdm->pos.cookie.pdrv = pdrv;
2558 			/*
2559 			 * The periph generation slot does double duty, as
2560 			 * does the periph pointer slot.  They are used for
2561 			 * both edt and pdrv lookups and positioning.
2562 			 */
2563 			cdm->pos.cookie.periph = periph;
2564 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2565 				(*pdrv)->generation;
2566 			cdm->status = CAM_DEV_MATCH_MORE;
2567 			return(0);
2568 		}
2569 
2570 		j = cdm->num_matches;
2571 		cdm->num_matches++;
2572 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2573 		cdm->matches[j].result.periph_result.path_id =
2574 			periph->path->bus->path_id;
2575 
2576 		/*
2577 		 * The transport layer peripheral doesn't have a target or
2578 		 * lun.
2579 		 */
2580 		if (periph->path->target)
2581 			cdm->matches[j].result.periph_result.target_id =
2582 				periph->path->target->target_id;
2583 		else
2584 			cdm->matches[j].result.periph_result.target_id = -1;
2585 
2586 		if (periph->path->device)
2587 			cdm->matches[j].result.periph_result.target_lun =
2588 				periph->path->device->lun_id;
2589 		else
2590 			cdm->matches[j].result.periph_result.target_lun = -1;
2591 
2592 		cdm->matches[j].result.periph_result.unit_number =
2593 			periph->unit_number;
2594 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2595 			periph->periph_name, DEV_IDLEN);
2596 	}
2597 
2598 	return(1);
2599 }
2600 
2601 static int
2602 xptperiphlistmatch(struct ccb_dev_match *cdm)
2603 {
2604 	int ret;
2605 
2606 	cdm->num_matches = 0;
2607 
2608 	/*
2609 	 * At this point in the edt traversal function, we check the bus
2610 	 * list generation to make sure that no busses have been added or
2611 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2612 	 * For the peripheral driver list traversal function, however, we
2613 	 * don't have to worry about new peripheral driver types coming or
2614 	 * going; they're in a linker set, and therefore can't change
2615 	 * without a recompile.
2616 	 */
2617 
2618 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2619 	 && (cdm->pos.cookie.pdrv != NULL))
2620 		ret = xptpdrvtraverse(
2621 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2622 				xptplistpdrvfunc, cdm);
2623 	else
2624 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2625 
2626 	/*
2627 	 * If we get back 0, that means that we had to stop before fully
2628 	 * traversing the peripheral driver tree.  It also means that one of
2629 	 * the subroutines has set the status field to the proper value.  If
2630 	 * we get back 1, we've fully traversed the EDT and copied out any
2631 	 * matching entries.
2632 	 */
2633 	if (ret == 1)
2634 		cdm->status = CAM_DEV_MATCH_LAST;
2635 
2636 	return(ret);
2637 }
2638 
2639 static int
2640 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2641 {
2642 	struct cam_eb *bus, *next_bus;
2643 	int retval;
2644 
2645 	retval = 1;
2646 
2647 	mtx_lock(&xsoftc.xpt_topo_lock);
2648 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2649 	     bus != NULL;
2650 	     bus = next_bus) {
2651 		next_bus = TAILQ_NEXT(bus, links);
2652 
2653 		mtx_unlock(&xsoftc.xpt_topo_lock);
2654 		CAM_SIM_LOCK(bus->sim);
2655 		retval = tr_func(bus, arg);
2656 		CAM_SIM_UNLOCK(bus->sim);
2657 		if (retval == 0)
2658 			return(retval);
2659 		mtx_lock(&xsoftc.xpt_topo_lock);
2660 	}
2661 	mtx_unlock(&xsoftc.xpt_topo_lock);
2662 
2663 	return(retval);
2664 }
2665 
2666 static int
2667 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2668 		  xpt_targetfunc_t *tr_func, void *arg)
2669 {
2670 	struct cam_et *target, *next_target;
2671 	int retval;
2672 
2673 	retval = 1;
2674 	for (target = (start_target ? start_target :
2675 		       TAILQ_FIRST(&bus->et_entries));
2676 	     target != NULL; target = next_target) {
2677 
2678 		next_target = TAILQ_NEXT(target, links);
2679 
2680 		retval = tr_func(target, arg);
2681 
2682 		if (retval == 0)
2683 			return(retval);
2684 	}
2685 
2686 	return(retval);
2687 }
2688 
2689 static int
2690 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2691 		  xpt_devicefunc_t *tr_func, void *arg)
2692 {
2693 	struct cam_ed *device, *next_device;
2694 	int retval;
2695 
2696 	retval = 1;
2697 	for (device = (start_device ? start_device :
2698 		       TAILQ_FIRST(&target->ed_entries));
2699 	     device != NULL;
2700 	     device = next_device) {
2701 
2702 		next_device = TAILQ_NEXT(device, links);
2703 
2704 		retval = tr_func(device, arg);
2705 
2706 		if (retval == 0)
2707 			return(retval);
2708 	}
2709 
2710 	return(retval);
2711 }
2712 
2713 static int
2714 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2715 		  xpt_periphfunc_t *tr_func, void *arg)
2716 {
2717 	struct cam_periph *periph, *next_periph;
2718 	int retval;
2719 
2720 	retval = 1;
2721 
2722 	for (periph = (start_periph ? start_periph :
2723 		       SLIST_FIRST(&device->periphs));
2724 	     periph != NULL;
2725 	     periph = next_periph) {
2726 
2727 		next_periph = SLIST_NEXT(periph, periph_links);
2728 
2729 		retval = tr_func(periph, arg);
2730 		if (retval == 0)
2731 			return(retval);
2732 	}
2733 
2734 	return(retval);
2735 }
2736 
2737 static int
2738 xptpdrvtraverse(struct periph_driver **start_pdrv,
2739 		xpt_pdrvfunc_t *tr_func, void *arg)
2740 {
2741 	struct periph_driver **pdrv;
2742 	int retval;
2743 
2744 	retval = 1;
2745 
2746 	/*
2747 	 * We don't traverse the peripheral driver list like we do the
2748 	 * other lists, because it is a linker set, and therefore cannot be
2749 	 * changed during runtime.  If the peripheral driver list is ever
2750 	 * re-done to be something other than a linker set (i.e. it can
2751 	 * change while the system is running), the list traversal should
2752 	 * be modified to work like the other traversal functions.
2753 	 */
2754 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2755 	     *pdrv != NULL; pdrv++) {
2756 		retval = tr_func(pdrv, arg);
2757 
2758 		if (retval == 0)
2759 			return(retval);
2760 	}
2761 
2762 	return(retval);
2763 }
2764 
2765 static int
2766 xptpdperiphtraverse(struct periph_driver **pdrv,
2767 		    struct cam_periph *start_periph,
2768 		    xpt_periphfunc_t *tr_func, void *arg)
2769 {
2770 	struct cam_periph *periph, *next_periph;
2771 	int retval;
2772 
2773 	retval = 1;
2774 
2775 	for (periph = (start_periph ? start_periph :
2776 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2777 	     periph = next_periph) {
2778 
2779 		next_periph = TAILQ_NEXT(periph, unit_links);
2780 
2781 		retval = tr_func(periph, arg);
2782 		if (retval == 0)
2783 			return(retval);
2784 	}
2785 	return(retval);
2786 }
2787 
2788 static int
2789 xptdefbusfunc(struct cam_eb *bus, void *arg)
2790 {
2791 	struct xpt_traverse_config *tr_config;
2792 
2793 	tr_config = (struct xpt_traverse_config *)arg;
2794 
2795 	if (tr_config->depth == XPT_DEPTH_BUS) {
2796 		xpt_busfunc_t *tr_func;
2797 
2798 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2799 
2800 		return(tr_func(bus, tr_config->tr_arg));
2801 	} else
2802 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2803 }
2804 
2805 static int
2806 xptdeftargetfunc(struct cam_et *target, void *arg)
2807 {
2808 	struct xpt_traverse_config *tr_config;
2809 
2810 	tr_config = (struct xpt_traverse_config *)arg;
2811 
2812 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2813 		xpt_targetfunc_t *tr_func;
2814 
2815 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2816 
2817 		return(tr_func(target, tr_config->tr_arg));
2818 	} else
2819 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2820 }
2821 
2822 static int
2823 xptdefdevicefunc(struct cam_ed *device, void *arg)
2824 {
2825 	struct xpt_traverse_config *tr_config;
2826 
2827 	tr_config = (struct xpt_traverse_config *)arg;
2828 
2829 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2830 		xpt_devicefunc_t *tr_func;
2831 
2832 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2833 
2834 		return(tr_func(device, tr_config->tr_arg));
2835 	} else
2836 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2837 }
2838 
2839 static int
2840 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2841 {
2842 	struct xpt_traverse_config *tr_config;
2843 	xpt_periphfunc_t *tr_func;
2844 
2845 	tr_config = (struct xpt_traverse_config *)arg;
2846 
2847 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2848 
2849 	/*
2850 	 * Unlike the other default functions, we don't check for depth
2851 	 * here.  The peripheral driver level is the last level in the EDT,
2852 	 * so if we're here, we should execute the function in question.
2853 	 */
2854 	return(tr_func(periph, tr_config->tr_arg));
2855 }
2856 
2857 /*
2858  * Execute the given function for every bus in the EDT.
2859  */
2860 static int
2861 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2862 {
2863 	struct xpt_traverse_config tr_config;
2864 
2865 	tr_config.depth = XPT_DEPTH_BUS;
2866 	tr_config.tr_func = tr_func;
2867 	tr_config.tr_arg = arg;
2868 
2869 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2870 }
2871 
2872 /*
2873  * Execute the given function for every device in the EDT.
2874  */
2875 static int
2876 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2877 {
2878 	struct xpt_traverse_config tr_config;
2879 
2880 	tr_config.depth = XPT_DEPTH_DEVICE;
2881 	tr_config.tr_func = tr_func;
2882 	tr_config.tr_arg = arg;
2883 
2884 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2885 }
2886 
2887 static int
2888 xptsetasyncfunc(struct cam_ed *device, void *arg)
2889 {
2890 	struct cam_path path;
2891 	struct ccb_getdev cgd;
2892 	struct async_node *cur_entry;
2893 
2894 	cur_entry = (struct async_node *)arg;
2895 
2896 	/*
2897 	 * Don't report unconfigured devices (Wildcard devs,
2898 	 * devices only for target mode, device instances
2899 	 * that have been invalidated but are waiting for
2900 	 * their last reference count to be released).
2901 	 */
2902 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2903 		return (1);
2904 
2905 	xpt_compile_path(&path,
2906 			 NULL,
2907 			 device->target->bus->path_id,
2908 			 device->target->target_id,
2909 			 device->lun_id);
2910 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2911 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2912 	xpt_action((union ccb *)&cgd);
2913 	cur_entry->callback(cur_entry->callback_arg,
2914 			    AC_FOUND_DEVICE,
2915 			    &path, &cgd);
2916 	xpt_release_path(&path);
2917 
2918 	return(1);
2919 }
2920 
2921 static int
2922 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2923 {
2924 	struct cam_path path;
2925 	struct ccb_pathinq cpi;
2926 	struct async_node *cur_entry;
2927 
2928 	cur_entry = (struct async_node *)arg;
2929 
2930 	xpt_compile_path(&path, /*periph*/NULL,
2931 			 bus->sim->path_id,
2932 			 CAM_TARGET_WILDCARD,
2933 			 CAM_LUN_WILDCARD);
2934 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2935 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2936 	xpt_action((union ccb *)&cpi);
2937 	cur_entry->callback(cur_entry->callback_arg,
2938 			    AC_PATH_REGISTERED,
2939 			    &path, &cpi);
2940 	xpt_release_path(&path);
2941 
2942 	return(1);
2943 }
2944 
2945 static void
2946 xpt_action_sasync_cb(void *context, int pending)
2947 {
2948 	struct async_node *cur_entry;
2949 	struct xpt_task *task;
2950 	uint32_t added;
2951 
2952 	task = (struct xpt_task *)context;
2953 	cur_entry = (struct async_node *)task->data1;
2954 	added = task->data2;
2955 
2956 	if ((added & AC_FOUND_DEVICE) != 0) {
2957 		/*
2958 		 * Get this peripheral up to date with all
2959 		 * the currently existing devices.
2960 		 */
2961 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2962 	}
2963 	if ((added & AC_PATH_REGISTERED) != 0) {
2964 		/*
2965 		 * Get this peripheral up to date with all
2966 		 * the currently existing busses.
2967 		 */
2968 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2969 		}
2970 
2971 	free(task, M_CAMXPT);
2972 }
2973 
2974 void
2975 xpt_action(union ccb *start_ccb)
2976 {
2977 
2978 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2979 
2980 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2981 
2982 	switch (start_ccb->ccb_h.func_code) {
2983 	case XPT_SCSI_IO:
2984 	{
2985 		struct cam_ed *device;
2986 #ifdef CAMDEBUG
2987 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2988 		struct cam_path *path;
2989 
2990 		path = start_ccb->ccb_h.path;
2991 #endif
2992 
2993 		/*
2994 		 * For the sake of compatibility with SCSI-1
2995 		 * devices that may not understand the identify
2996 		 * message, we include lun information in the
2997 		 * second byte of all commands.  SCSI-1 specifies
2998 		 * that luns are a 3 bit value and reserves only 3
2999 		 * bits for lun information in the CDB.  Later
3000 		 * revisions of the SCSI spec allow for more than 8
3001 		 * luns, but have deprecated lun information in the
3002 		 * CDB.  So, if the lun won't fit, we must omit.
3003 		 *
3004 		 * Also be aware that during initial probing for devices,
3005 		 * the inquiry information is unknown but initialized to 0.
3006 		 * This means that this code will be exercised while probing
3007 		 * devices with an ANSI revision greater than 2.
3008 		 */
3009 		device = start_ccb->ccb_h.path->device;
3010 		if (device->protocol_version <= SCSI_REV_2
3011 		 && start_ccb->ccb_h.target_lun < 8
3012 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
3013 
3014 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
3015 			    start_ccb->ccb_h.target_lun << 5;
3016 		}
3017 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
3018 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
3019 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
3020 			  	       &path->device->inq_data),
3021 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
3022 					  cdb_str, sizeof(cdb_str))));
3023 	}
3024 	/* FALLTHROUGH */
3025 	case XPT_TARGET_IO:
3026 	case XPT_CONT_TARGET_IO:
3027 		start_ccb->csio.sense_resid = 0;
3028 		start_ccb->csio.resid = 0;
3029 		/* FALLTHROUGH */
3030 	case XPT_RESET_DEV:
3031 	case XPT_ENG_EXEC:
3032 	{
3033 		struct cam_path *path;
3034 		struct cam_sim *sim;
3035 		int runq;
3036 
3037 		path = start_ccb->ccb_h.path;
3038 
3039 		sim = path->bus->sim;
3040 		if (SIM_DEAD(sim)) {
3041 			/* The SIM has gone; just execute the CCB directly. */
3042 			cam_ccbq_send_ccb(&path->device->ccbq, start_ccb);
3043 			(*(sim->sim_action))(sim, start_ccb);
3044 			break;
3045 		}
3046 
3047 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
3048 		if (path->device->qfrozen_cnt == 0)
3049 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
3050 		else
3051 			runq = 0;
3052 		if (runq != 0)
3053 			xpt_run_dev_sendq(path->bus);
3054 		break;
3055 	}
3056 	case XPT_SET_TRAN_SETTINGS:
3057 	{
3058 		xpt_set_transfer_settings(&start_ccb->cts,
3059 					  start_ccb->ccb_h.path->device,
3060 					  /*async_update*/FALSE);
3061 		break;
3062 	}
3063 	case XPT_CALC_GEOMETRY:
3064 	{
3065 		struct cam_sim *sim;
3066 
3067 		/* Filter out garbage */
3068 		if (start_ccb->ccg.block_size == 0
3069 		 || start_ccb->ccg.volume_size == 0) {
3070 			start_ccb->ccg.cylinders = 0;
3071 			start_ccb->ccg.heads = 0;
3072 			start_ccb->ccg.secs_per_track = 0;
3073 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3074 			break;
3075 		}
3076 #ifdef PC98
3077 		/*
3078 		 * In a PC-98 system, geometry translation depens on
3079 		 * the "real" device geometry obtained from mode page 4.
3080 		 * SCSI geometry translation is performed in the
3081 		 * initialization routine of the SCSI BIOS and the result
3082 		 * stored in host memory.  If the translation is available
3083 		 * in host memory, use it.  If not, rely on the default
3084 		 * translation the device driver performs.
3085 		 */
3086 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
3087 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3088 			break;
3089 		}
3090 #endif
3091 		sim = start_ccb->ccb_h.path->bus->sim;
3092 		(*(sim->sim_action))(sim, start_ccb);
3093 		break;
3094 	}
3095 	case XPT_ABORT:
3096 	{
3097 		union ccb* abort_ccb;
3098 
3099 		abort_ccb = start_ccb->cab.abort_ccb;
3100 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
3101 
3102 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
3103 				struct cam_ccbq *ccbq;
3104 
3105 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
3106 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
3107 				abort_ccb->ccb_h.status =
3108 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3109 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3110 				xpt_done(abort_ccb);
3111 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3112 				break;
3113 			}
3114 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
3115 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
3116 				/*
3117 				 * We've caught this ccb en route to
3118 				 * the SIM.  Flag it for abort and the
3119 				 * SIM will do so just before starting
3120 				 * real work on the CCB.
3121 				 */
3122 				abort_ccb->ccb_h.status =
3123 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
3124 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
3125 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3126 				break;
3127 			}
3128 		}
3129 		if (XPT_FC_IS_QUEUED(abort_ccb)
3130 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
3131 			/*
3132 			 * It's already completed but waiting
3133 			 * for our SWI to get to it.
3134 			 */
3135 			start_ccb->ccb_h.status = CAM_UA_ABORT;
3136 			break;
3137 		}
3138 		/*
3139 		 * If we weren't able to take care of the abort request
3140 		 * in the XPT, pass the request down to the SIM for processing.
3141 		 */
3142 	}
3143 	/* FALLTHROUGH */
3144 	case XPT_ACCEPT_TARGET_IO:
3145 	case XPT_EN_LUN:
3146 	case XPT_IMMED_NOTIFY:
3147 	case XPT_NOTIFY_ACK:
3148 	case XPT_GET_TRAN_SETTINGS:
3149 	case XPT_RESET_BUS:
3150 	{
3151 		struct cam_sim *sim;
3152 
3153 		sim = start_ccb->ccb_h.path->bus->sim;
3154 		(*(sim->sim_action))(sim, start_ccb);
3155 		break;
3156 	}
3157 	case XPT_PATH_INQ:
3158 	{
3159 		struct cam_sim *sim;
3160 
3161 		sim = start_ccb->ccb_h.path->bus->sim;
3162 		(*(sim->sim_action))(sim, start_ccb);
3163 		break;
3164 	}
3165 	case XPT_PATH_STATS:
3166 		start_ccb->cpis.last_reset =
3167 			start_ccb->ccb_h.path->bus->last_reset;
3168 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3169 		break;
3170 	case XPT_GDEV_TYPE:
3171 	{
3172 		struct cam_ed *dev;
3173 
3174 		dev = start_ccb->ccb_h.path->device;
3175 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3176 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3177 		} else {
3178 			struct ccb_getdev *cgd;
3179 			struct cam_eb *bus;
3180 			struct cam_et *tar;
3181 
3182 			cgd = &start_ccb->cgd;
3183 			bus = cgd->ccb_h.path->bus;
3184 			tar = cgd->ccb_h.path->target;
3185 			cgd->inq_data = dev->inq_data;
3186 			cgd->ccb_h.status = CAM_REQ_CMP;
3187 			cgd->serial_num_len = dev->serial_num_len;
3188 			if ((dev->serial_num_len > 0)
3189 			 && (dev->serial_num != NULL))
3190 				bcopy(dev->serial_num, cgd->serial_num,
3191 				      dev->serial_num_len);
3192 		}
3193 		break;
3194 	}
3195 	case XPT_GDEV_STATS:
3196 	{
3197 		struct cam_ed *dev;
3198 
3199 		dev = start_ccb->ccb_h.path->device;
3200 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
3201 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
3202 		} else {
3203 			struct ccb_getdevstats *cgds;
3204 			struct cam_eb *bus;
3205 			struct cam_et *tar;
3206 
3207 			cgds = &start_ccb->cgds;
3208 			bus = cgds->ccb_h.path->bus;
3209 			tar = cgds->ccb_h.path->target;
3210 			cgds->dev_openings = dev->ccbq.dev_openings;
3211 			cgds->dev_active = dev->ccbq.dev_active;
3212 			cgds->devq_openings = dev->ccbq.devq_openings;
3213 			cgds->devq_queued = dev->ccbq.queue.entries;
3214 			cgds->held = dev->ccbq.held;
3215 			cgds->last_reset = tar->last_reset;
3216 			cgds->maxtags = dev->quirk->maxtags;
3217 			cgds->mintags = dev->quirk->mintags;
3218 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
3219 				cgds->last_reset = bus->last_reset;
3220 			cgds->ccb_h.status = CAM_REQ_CMP;
3221 		}
3222 		break;
3223 	}
3224 	case XPT_GDEVLIST:
3225 	{
3226 		struct cam_periph	*nperiph;
3227 		struct periph_list	*periph_head;
3228 		struct ccb_getdevlist	*cgdl;
3229 		u_int			i;
3230 		struct cam_ed		*device;
3231 		int			found;
3232 
3233 
3234 		found = 0;
3235 
3236 		/*
3237 		 * Don't want anyone mucking with our data.
3238 		 */
3239 		device = start_ccb->ccb_h.path->device;
3240 		periph_head = &device->periphs;
3241 		cgdl = &start_ccb->cgdl;
3242 
3243 		/*
3244 		 * Check and see if the list has changed since the user
3245 		 * last requested a list member.  If so, tell them that the
3246 		 * list has changed, and therefore they need to start over
3247 		 * from the beginning.
3248 		 */
3249 		if ((cgdl->index != 0) &&
3250 		    (cgdl->generation != device->generation)) {
3251 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
3252 			break;
3253 		}
3254 
3255 		/*
3256 		 * Traverse the list of peripherals and attempt to find
3257 		 * the requested peripheral.
3258 		 */
3259 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
3260 		     (nperiph != NULL) && (i <= cgdl->index);
3261 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
3262 			if (i == cgdl->index) {
3263 				strncpy(cgdl->periph_name,
3264 					nperiph->periph_name,
3265 					DEV_IDLEN);
3266 				cgdl->unit_number = nperiph->unit_number;
3267 				found = 1;
3268 			}
3269 		}
3270 		if (found == 0) {
3271 			cgdl->status = CAM_GDEVLIST_ERROR;
3272 			break;
3273 		}
3274 
3275 		if (nperiph == NULL)
3276 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
3277 		else
3278 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
3279 
3280 		cgdl->index++;
3281 		cgdl->generation = device->generation;
3282 
3283 		cgdl->ccb_h.status = CAM_REQ_CMP;
3284 		break;
3285 	}
3286 	case XPT_DEV_MATCH:
3287 	{
3288 		dev_pos_type position_type;
3289 		struct ccb_dev_match *cdm;
3290 
3291 		cdm = &start_ccb->cdm;
3292 
3293 		/*
3294 		 * There are two ways of getting at information in the EDT.
3295 		 * The first way is via the primary EDT tree.  It starts
3296 		 * with a list of busses, then a list of targets on a bus,
3297 		 * then devices/luns on a target, and then peripherals on a
3298 		 * device/lun.  The "other" way is by the peripheral driver
3299 		 * lists.  The peripheral driver lists are organized by
3300 		 * peripheral driver.  (obviously)  So it makes sense to
3301 		 * use the peripheral driver list if the user is looking
3302 		 * for something like "da1", or all "da" devices.  If the
3303 		 * user is looking for something on a particular bus/target
3304 		 * or lun, it's generally better to go through the EDT tree.
3305 		 */
3306 
3307 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
3308 			position_type = cdm->pos.position_type;
3309 		else {
3310 			u_int i;
3311 
3312 			position_type = CAM_DEV_POS_NONE;
3313 
3314 			for (i = 0; i < cdm->num_patterns; i++) {
3315 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
3316 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
3317 					position_type = CAM_DEV_POS_EDT;
3318 					break;
3319 				}
3320 			}
3321 
3322 			if (cdm->num_patterns == 0)
3323 				position_type = CAM_DEV_POS_EDT;
3324 			else if (position_type == CAM_DEV_POS_NONE)
3325 				position_type = CAM_DEV_POS_PDRV;
3326 		}
3327 
3328 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
3329 		case CAM_DEV_POS_EDT:
3330 			xptedtmatch(cdm);
3331 			break;
3332 		case CAM_DEV_POS_PDRV:
3333 			xptperiphlistmatch(cdm);
3334 			break;
3335 		default:
3336 			cdm->status = CAM_DEV_MATCH_ERROR;
3337 			break;
3338 		}
3339 
3340 		if (cdm->status == CAM_DEV_MATCH_ERROR)
3341 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
3342 		else
3343 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3344 
3345 		break;
3346 	}
3347 	case XPT_SASYNC_CB:
3348 	{
3349 		struct ccb_setasync *csa;
3350 		struct async_node *cur_entry;
3351 		struct async_list *async_head;
3352 		u_int32_t added;
3353 
3354 		csa = &start_ccb->csa;
3355 		added = csa->event_enable;
3356 		async_head = &csa->ccb_h.path->device->asyncs;
3357 
3358 		/*
3359 		 * If there is already an entry for us, simply
3360 		 * update it.
3361 		 */
3362 		cur_entry = SLIST_FIRST(async_head);
3363 		while (cur_entry != NULL) {
3364 			if ((cur_entry->callback_arg == csa->callback_arg)
3365 			 && (cur_entry->callback == csa->callback))
3366 				break;
3367 			cur_entry = SLIST_NEXT(cur_entry, links);
3368 		}
3369 
3370 		if (cur_entry != NULL) {
3371 		 	/*
3372 			 * If the request has no flags set,
3373 			 * remove the entry.
3374 			 */
3375 			added &= ~cur_entry->event_enable;
3376 			if (csa->event_enable == 0) {
3377 				SLIST_REMOVE(async_head, cur_entry,
3378 					     async_node, links);
3379 				csa->ccb_h.path->device->refcount--;
3380 				free(cur_entry, M_CAMXPT);
3381 			} else {
3382 				cur_entry->event_enable = csa->event_enable;
3383 			}
3384 		} else {
3385 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3386 					   M_NOWAIT);
3387 			if (cur_entry == NULL) {
3388 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3389 				break;
3390 			}
3391 			cur_entry->event_enable = csa->event_enable;
3392 			cur_entry->callback_arg = csa->callback_arg;
3393 			cur_entry->callback = csa->callback;
3394 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3395 			csa->ccb_h.path->device->refcount++;
3396 		}
3397 
3398 		/*
3399 		 * Need to decouple this operation via a taqskqueue so that
3400 		 * the locking doesn't become a mess.
3401 		 */
3402 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
3403 			struct xpt_task *task;
3404 
3405 			task = malloc(sizeof(struct xpt_task), M_CAMXPT,
3406 				      M_NOWAIT);
3407 			if (task == NULL) {
3408 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3409 				break;
3410 			}
3411 
3412 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
3413 			task->data1 = cur_entry;
3414 			task->data2 = added;
3415 			taskqueue_enqueue(taskqueue_thread, &task->task);
3416 		}
3417 
3418 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3419 		break;
3420 	}
3421 	case XPT_REL_SIMQ:
3422 	{
3423 		struct ccb_relsim *crs;
3424 		struct cam_ed *dev;
3425 
3426 		crs = &start_ccb->crs;
3427 		dev = crs->ccb_h.path->device;
3428 		if (dev == NULL) {
3429 
3430 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3431 			break;
3432 		}
3433 
3434 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3435 
3436  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
3437 				/* Don't ever go below one opening */
3438 				if (crs->openings > 0) {
3439 					xpt_dev_ccbq_resize(crs->ccb_h.path,
3440 							    crs->openings);
3441 
3442 					if (bootverbose) {
3443 						xpt_print(crs->ccb_h.path,
3444 						    "tagged openings now %d\n",
3445 						    crs->openings);
3446 					}
3447 				}
3448 			}
3449 		}
3450 
3451 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3452 
3453 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3454 
3455 				/*
3456 				 * Just extend the old timeout and decrement
3457 				 * the freeze count so that a single timeout
3458 				 * is sufficient for releasing the queue.
3459 				 */
3460 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3461 				callout_stop(&dev->callout);
3462 			} else {
3463 
3464 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3465 			}
3466 
3467 			callout_reset(&dev->callout,
3468 			    (crs->release_timeout * hz) / 1000,
3469 			    xpt_release_devq_timeout, dev);
3470 
3471 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3472 
3473 		}
3474 
3475 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3476 
3477 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3478 				/*
3479 				 * Decrement the freeze count so that a single
3480 				 * completion is still sufficient to unfreeze
3481 				 * the queue.
3482 				 */
3483 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3484 			} else {
3485 
3486 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3487 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3488 			}
3489 		}
3490 
3491 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3492 
3493 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3494 			 || (dev->ccbq.dev_active == 0)) {
3495 
3496 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3497 			} else {
3498 
3499 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3500 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3501 			}
3502 		}
3503 
3504 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
3505 
3506 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
3507 					 /*run_queue*/TRUE);
3508 		}
3509 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
3510 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3511 		break;
3512 	}
3513 	case XPT_SCAN_BUS:
3514 		xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb);
3515 		break;
3516 	case XPT_SCAN_LUN:
3517 		xpt_scan_lun(start_ccb->ccb_h.path->periph,
3518 			     start_ccb->ccb_h.path, start_ccb->crcn.flags,
3519 			     start_ccb);
3520 		break;
3521 	case XPT_DEBUG: {
3522 #ifdef CAMDEBUG
3523 #ifdef CAM_DEBUG_DELAY
3524 		cam_debug_delay = CAM_DEBUG_DELAY;
3525 #endif
3526 		cam_dflags = start_ccb->cdbg.flags;
3527 		if (cam_dpath != NULL) {
3528 			xpt_free_path(cam_dpath);
3529 			cam_dpath = NULL;
3530 		}
3531 
3532 		if (cam_dflags != CAM_DEBUG_NONE) {
3533 			if (xpt_create_path(&cam_dpath, xpt_periph,
3534 					    start_ccb->ccb_h.path_id,
3535 					    start_ccb->ccb_h.target_id,
3536 					    start_ccb->ccb_h.target_lun) !=
3537 					    CAM_REQ_CMP) {
3538 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3539 				cam_dflags = CAM_DEBUG_NONE;
3540 			} else {
3541 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3542 				xpt_print(cam_dpath, "debugging flags now %x\n",
3543 				    cam_dflags);
3544 			}
3545 		} else {
3546 			cam_dpath = NULL;
3547 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3548 		}
3549 #else /* !CAMDEBUG */
3550 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3551 #endif /* CAMDEBUG */
3552 		break;
3553 	}
3554 	case XPT_NOOP:
3555 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3556 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
3557 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3558 		break;
3559 	default:
3560 	case XPT_SDEV_TYPE:
3561 	case XPT_TERM_IO:
3562 	case XPT_ENG_INQ:
3563 		/* XXX Implement */
3564 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3565 		break;
3566 	}
3567 }
3568 
3569 void
3570 xpt_polled_action(union ccb *start_ccb)
3571 {
3572 	u_int32_t timeout;
3573 	struct	  cam_sim *sim;
3574 	struct	  cam_devq *devq;
3575 	struct	  cam_ed *dev;
3576 
3577 
3578 	timeout = start_ccb->ccb_h.timeout;
3579 	sim = start_ccb->ccb_h.path->bus->sim;
3580 	devq = sim->devq;
3581 	dev = start_ccb->ccb_h.path->device;
3582 
3583 	mtx_assert(sim->mtx, MA_OWNED);
3584 
3585 	/*
3586 	 * Steal an opening so that no other queued requests
3587 	 * can get it before us while we simulate interrupts.
3588 	 */
3589 	dev->ccbq.devq_openings--;
3590 	dev->ccbq.dev_openings--;
3591 
3592 	while(((devq != NULL && devq->send_openings <= 0) ||
3593 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3594 		DELAY(1000);
3595 		(*(sim->sim_poll))(sim);
3596 		camisr_runqueue(&sim->sim_doneq);
3597 	}
3598 
3599 	dev->ccbq.devq_openings++;
3600 	dev->ccbq.dev_openings++;
3601 
3602 	if (timeout != 0) {
3603 		xpt_action(start_ccb);
3604 		while(--timeout > 0) {
3605 			(*(sim->sim_poll))(sim);
3606 			camisr_runqueue(&sim->sim_doneq);
3607 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3608 			    != CAM_REQ_INPROG)
3609 				break;
3610 			DELAY(1000);
3611 		}
3612 		if (timeout == 0) {
3613 			/*
3614 			 * XXX Is it worth adding a sim_timeout entry
3615 			 * point so we can attempt recovery?  If
3616 			 * this is only used for dumps, I don't think
3617 			 * it is.
3618 			 */
3619 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3620 		}
3621 	} else {
3622 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3623 	}
3624 }
3625 
3626 /*
3627  * Schedule a peripheral driver to receive a ccb when it's
3628  * target device has space for more transactions.
3629  */
3630 void
3631 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3632 {
3633 	struct cam_ed *device;
3634 	union ccb *work_ccb;
3635 	int runq;
3636 
3637 	mtx_assert(perph->sim->mtx, MA_OWNED);
3638 
3639 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3640 	device = perph->path->device;
3641 	if (periph_is_queued(perph)) {
3642 		/* Simply reorder based on new priority */
3643 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3644 			  ("   change priority to %d\n", new_priority));
3645 		if (new_priority < perph->pinfo.priority) {
3646 			camq_change_priority(&device->drvq,
3647 					     perph->pinfo.index,
3648 					     new_priority);
3649 		}
3650 		runq = 0;
3651 	} else if (SIM_DEAD(perph->path->bus->sim)) {
3652 		/* The SIM is gone so just call periph_start directly. */
3653 		work_ccb = xpt_get_ccb(perph->path->device);
3654 		if (work_ccb == NULL)
3655 			return; /* XXX */
3656 		xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority);
3657 		perph->pinfo.priority = new_priority;
3658 		perph->periph_start(perph, work_ccb);
3659 		return;
3660 	} else {
3661 		/* New entry on the queue */
3662 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3663 			  ("   added periph to queue\n"));
3664 		perph->pinfo.priority = new_priority;
3665 		perph->pinfo.generation = ++device->drvq.generation;
3666 		camq_insert(&device->drvq, &perph->pinfo);
3667 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3668 	}
3669 	if (runq != 0) {
3670 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3671 			  ("   calling xpt_run_devq\n"));
3672 		xpt_run_dev_allocq(perph->path->bus);
3673 	}
3674 }
3675 
3676 
3677 /*
3678  * Schedule a device to run on a given queue.
3679  * If the device was inserted as a new entry on the queue,
3680  * return 1 meaning the device queue should be run. If we
3681  * were already queued, implying someone else has already
3682  * started the queue, return 0 so the caller doesn't attempt
3683  * to run the queue.
3684  */
3685 static int
3686 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3687 		 u_int32_t new_priority)
3688 {
3689 	int retval;
3690 	u_int32_t old_priority;
3691 
3692 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3693 
3694 	old_priority = pinfo->priority;
3695 
3696 	/*
3697 	 * Are we already queued?
3698 	 */
3699 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3700 		/* Simply reorder based on new priority */
3701 		if (new_priority < old_priority) {
3702 			camq_change_priority(queue, pinfo->index,
3703 					     new_priority);
3704 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3705 					("changed priority to %d\n",
3706 					 new_priority));
3707 		}
3708 		retval = 0;
3709 	} else {
3710 		/* New entry on the queue */
3711 		if (new_priority < old_priority)
3712 			pinfo->priority = new_priority;
3713 
3714 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3715 				("Inserting onto queue\n"));
3716 		pinfo->generation = ++queue->generation;
3717 		camq_insert(queue, pinfo);
3718 		retval = 1;
3719 	}
3720 	return (retval);
3721 }
3722 
3723 static void
3724 xpt_run_dev_allocq(struct cam_eb *bus)
3725 {
3726 	struct	cam_devq *devq;
3727 
3728 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3729 	devq = bus->sim->devq;
3730 
3731 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3732 			("   qfrozen_cnt == 0x%x, entries == %d, "
3733 			 "openings == %d, active == %d\n",
3734 			 devq->alloc_queue.qfrozen_cnt,
3735 			 devq->alloc_queue.entries,
3736 			 devq->alloc_openings,
3737 			 devq->alloc_active));
3738 
3739 	devq->alloc_queue.qfrozen_cnt++;
3740 	while ((devq->alloc_queue.entries > 0)
3741 	    && (devq->alloc_openings > 0)
3742 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3743 		struct	cam_ed_qinfo *qinfo;
3744 		struct	cam_ed *device;
3745 		union	ccb *work_ccb;
3746 		struct	cam_periph *drv;
3747 		struct	camq *drvq;
3748 
3749 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3750 							   CAMQ_HEAD);
3751 		device = qinfo->device;
3752 
3753 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3754 				("running device %p\n", device));
3755 
3756 		drvq = &device->drvq;
3757 
3758 #ifdef CAMDEBUG
3759 		if (drvq->entries <= 0) {
3760 			panic("xpt_run_dev_allocq: "
3761 			      "Device on queue without any work to do");
3762 		}
3763 #endif
3764 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3765 			devq->alloc_openings--;
3766 			devq->alloc_active++;
3767 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3768 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3769 				      drv->pinfo.priority);
3770 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3771 					("calling periph start\n"));
3772 			drv->periph_start(drv, work_ccb);
3773 		} else {
3774 			/*
3775 			 * Malloc failure in alloc_ccb
3776 			 */
3777 			/*
3778 			 * XXX add us to a list to be run from free_ccb
3779 			 * if we don't have any ccbs active on this
3780 			 * device queue otherwise we may never get run
3781 			 * again.
3782 			 */
3783 			break;
3784 		}
3785 
3786 		if (drvq->entries > 0) {
3787 			/* We have more work.  Attempt to reschedule */
3788 			xpt_schedule_dev_allocq(bus, device);
3789 		}
3790 	}
3791 	devq->alloc_queue.qfrozen_cnt--;
3792 }
3793 
3794 static void
3795 xpt_run_dev_sendq(struct cam_eb *bus)
3796 {
3797 	struct	cam_devq *devq;
3798 
3799 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3800 
3801 	devq = bus->sim->devq;
3802 
3803 	devq->send_queue.qfrozen_cnt++;
3804 	while ((devq->send_queue.entries > 0)
3805 	    && (devq->send_openings > 0)) {
3806 		struct	cam_ed_qinfo *qinfo;
3807 		struct	cam_ed *device;
3808 		union ccb *work_ccb;
3809 		struct	cam_sim *sim;
3810 
3811 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3812 			break;
3813 		}
3814 
3815 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3816 							   CAMQ_HEAD);
3817 		device = qinfo->device;
3818 
3819 		/*
3820 		 * If the device has been "frozen", don't attempt
3821 		 * to run it.
3822 		 */
3823 		if (device->qfrozen_cnt > 0) {
3824 			continue;
3825 		}
3826 
3827 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3828 				("running device %p\n", device));
3829 
3830 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3831 		if (work_ccb == NULL) {
3832 			printf("device on run queue with no ccbs???\n");
3833 			continue;
3834 		}
3835 
3836 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3837 
3838 			mtx_lock(&xsoftc.xpt_lock);
3839 		 	if (xsoftc.num_highpower <= 0) {
3840 				/*
3841 				 * We got a high power command, but we
3842 				 * don't have any available slots.  Freeze
3843 				 * the device queue until we have a slot
3844 				 * available.
3845 				 */
3846 				device->qfrozen_cnt++;
3847 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3848 						   &work_ccb->ccb_h,
3849 						   xpt_links.stqe);
3850 
3851 				continue;
3852 			} else {
3853 				/*
3854 				 * Consume a high power slot while
3855 				 * this ccb runs.
3856 				 */
3857 				xsoftc.num_highpower--;
3858 			}
3859 			mtx_unlock(&xsoftc.xpt_lock);
3860 		}
3861 		devq->active_dev = device;
3862 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3863 
3864 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3865 
3866 		devq->send_openings--;
3867 		devq->send_active++;
3868 
3869 		if (device->ccbq.queue.entries > 0)
3870 			xpt_schedule_dev_sendq(bus, device);
3871 
3872 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3873 			/*
3874 			 * The client wants to freeze the queue
3875 			 * after this CCB is sent.
3876 			 */
3877 			device->qfrozen_cnt++;
3878 		}
3879 
3880 		/* In Target mode, the peripheral driver knows best... */
3881 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3882 			if ((device->inq_flags & SID_CmdQue) != 0
3883 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3884 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3885 			else
3886 				/*
3887 				 * Clear this in case of a retried CCB that
3888 				 * failed due to a rejected tag.
3889 				 */
3890 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3891 		}
3892 
3893 		/*
3894 		 * Device queues can be shared among multiple sim instances
3895 		 * that reside on different busses.  Use the SIM in the queue
3896 		 * CCB's path, rather than the one in the bus that was passed
3897 		 * into this function.
3898 		 */
3899 		sim = work_ccb->ccb_h.path->bus->sim;
3900 		(*(sim->sim_action))(sim, work_ccb);
3901 
3902 		devq->active_dev = NULL;
3903 	}
3904 	devq->send_queue.qfrozen_cnt--;
3905 }
3906 
3907 /*
3908  * This function merges stuff from the slave ccb into the master ccb, while
3909  * keeping important fields in the master ccb constant.
3910  */
3911 void
3912 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3913 {
3914 
3915 	/*
3916 	 * Pull fields that are valid for peripheral drivers to set
3917 	 * into the master CCB along with the CCB "payload".
3918 	 */
3919 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3920 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3921 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3922 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3923 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3924 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3925 }
3926 
3927 void
3928 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3929 {
3930 
3931 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3932 	ccb_h->pinfo.priority = priority;
3933 	ccb_h->path = path;
3934 	ccb_h->path_id = path->bus->path_id;
3935 	if (path->target)
3936 		ccb_h->target_id = path->target->target_id;
3937 	else
3938 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3939 	if (path->device) {
3940 		ccb_h->target_lun = path->device->lun_id;
3941 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3942 	} else {
3943 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3944 	}
3945 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3946 	ccb_h->flags = 0;
3947 }
3948 
3949 /* Path manipulation functions */
3950 cam_status
3951 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3952 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3953 {
3954 	struct	   cam_path *path;
3955 	cam_status status;
3956 
3957 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3958 
3959 	if (path == NULL) {
3960 		status = CAM_RESRC_UNAVAIL;
3961 		return(status);
3962 	}
3963 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3964 	if (status != CAM_REQ_CMP) {
3965 		free(path, M_CAMXPT);
3966 		path = NULL;
3967 	}
3968 	*new_path_ptr = path;
3969 	return (status);
3970 }
3971 
3972 cam_status
3973 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3974 			 struct cam_periph *periph, path_id_t path_id,
3975 			 target_id_t target_id, lun_id_t lun_id)
3976 {
3977 	struct	   cam_path *path;
3978 	struct	   cam_eb *bus = NULL;
3979 	cam_status status;
3980 	int	   need_unlock = 0;
3981 
3982 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3983 
3984 	if (path_id != CAM_BUS_WILDCARD) {
3985 		bus = xpt_find_bus(path_id);
3986 		if (bus != NULL) {
3987 			need_unlock = 1;
3988 			CAM_SIM_LOCK(bus->sim);
3989 		}
3990 	}
3991 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3992 	if (need_unlock)
3993 		CAM_SIM_UNLOCK(bus->sim);
3994 	if (status != CAM_REQ_CMP) {
3995 		free(path, M_CAMXPT);
3996 		path = NULL;
3997 	}
3998 	*new_path_ptr = path;
3999 	return (status);
4000 }
4001 
4002 static cam_status
4003 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
4004 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
4005 {
4006 	struct	     cam_eb *bus;
4007 	struct	     cam_et *target;
4008 	struct	     cam_ed *device;
4009 	cam_status   status;
4010 
4011 	status = CAM_REQ_CMP;	/* Completed without error */
4012 	target = NULL;		/* Wildcarded */
4013 	device = NULL;		/* Wildcarded */
4014 
4015 	/*
4016 	 * We will potentially modify the EDT, so block interrupts
4017 	 * that may attempt to create cam paths.
4018 	 */
4019 	bus = xpt_find_bus(path_id);
4020 	if (bus == NULL) {
4021 		status = CAM_PATH_INVALID;
4022 	} else {
4023 		target = xpt_find_target(bus, target_id);
4024 		if (target == NULL) {
4025 			/* Create one */
4026 			struct cam_et *new_target;
4027 
4028 			new_target = xpt_alloc_target(bus, target_id);
4029 			if (new_target == NULL) {
4030 				status = CAM_RESRC_UNAVAIL;
4031 			} else {
4032 				target = new_target;
4033 			}
4034 		}
4035 		if (target != NULL) {
4036 			device = xpt_find_device(target, lun_id);
4037 			if (device == NULL) {
4038 				/* Create one */
4039 				struct cam_ed *new_device;
4040 
4041 				new_device = xpt_alloc_device(bus,
4042 							      target,
4043 							      lun_id);
4044 				if (new_device == NULL) {
4045 					status = CAM_RESRC_UNAVAIL;
4046 				} else {
4047 					device = new_device;
4048 				}
4049 			}
4050 		}
4051 	}
4052 
4053 	/*
4054 	 * Only touch the user's data if we are successful.
4055 	 */
4056 	if (status == CAM_REQ_CMP) {
4057 		new_path->periph = perph;
4058 		new_path->bus = bus;
4059 		new_path->target = target;
4060 		new_path->device = device;
4061 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
4062 	} else {
4063 		if (device != NULL)
4064 			xpt_release_device(bus, target, device);
4065 		if (target != NULL)
4066 			xpt_release_target(bus, target);
4067 		if (bus != NULL)
4068 			xpt_release_bus(bus);
4069 	}
4070 	return (status);
4071 }
4072 
4073 static void
4074 xpt_release_path(struct cam_path *path)
4075 {
4076 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
4077 	if (path->device != NULL) {
4078 		xpt_release_device(path->bus, path->target, path->device);
4079 		path->device = NULL;
4080 	}
4081 	if (path->target != NULL) {
4082 		xpt_release_target(path->bus, path->target);
4083 		path->target = NULL;
4084 	}
4085 	if (path->bus != NULL) {
4086 		xpt_release_bus(path->bus);
4087 		path->bus = NULL;
4088 	}
4089 }
4090 
4091 void
4092 xpt_free_path(struct cam_path *path)
4093 {
4094 
4095 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
4096 	xpt_release_path(path);
4097 	free(path, M_CAMXPT);
4098 }
4099 
4100 
4101 /*
4102  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
4103  * in path1, 2 for match with wildcards in path2.
4104  */
4105 int
4106 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
4107 {
4108 	int retval = 0;
4109 
4110 	if (path1->bus != path2->bus) {
4111 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
4112 			retval = 1;
4113 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
4114 			retval = 2;
4115 		else
4116 			return (-1);
4117 	}
4118 	if (path1->target != path2->target) {
4119 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
4120 			if (retval == 0)
4121 				retval = 1;
4122 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
4123 			retval = 2;
4124 		else
4125 			return (-1);
4126 	}
4127 	if (path1->device != path2->device) {
4128 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
4129 			if (retval == 0)
4130 				retval = 1;
4131 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
4132 			retval = 2;
4133 		else
4134 			return (-1);
4135 	}
4136 	return (retval);
4137 }
4138 
4139 void
4140 xpt_print_path(struct cam_path *path)
4141 {
4142 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4143 
4144 	if (path == NULL)
4145 		printf("(nopath): ");
4146 	else {
4147 		if (path->periph != NULL)
4148 			printf("(%s%d:", path->periph->periph_name,
4149 			       path->periph->unit_number);
4150 		else
4151 			printf("(noperiph:");
4152 
4153 		if (path->bus != NULL)
4154 			printf("%s%d:%d:", path->bus->sim->sim_name,
4155 			       path->bus->sim->unit_number,
4156 			       path->bus->sim->bus_id);
4157 		else
4158 			printf("nobus:");
4159 
4160 		if (path->target != NULL)
4161 			printf("%d:", path->target->target_id);
4162 		else
4163 			printf("X:");
4164 
4165 		if (path->device != NULL)
4166 			printf("%d): ", path->device->lun_id);
4167 		else
4168 			printf("X): ");
4169 	}
4170 }
4171 
4172 void
4173 xpt_print(struct cam_path *path, const char *fmt, ...)
4174 {
4175 	va_list ap;
4176 	xpt_print_path(path);
4177 	va_start(ap, fmt);
4178 	vprintf(fmt, ap);
4179 	va_end(ap);
4180 }
4181 
4182 int
4183 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
4184 {
4185 	struct sbuf sb;
4186 
4187 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4188 
4189 	sbuf_new(&sb, str, str_len, 0);
4190 
4191 	if (path == NULL)
4192 		sbuf_printf(&sb, "(nopath): ");
4193 	else {
4194 		if (path->periph != NULL)
4195 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
4196 				    path->periph->unit_number);
4197 		else
4198 			sbuf_printf(&sb, "(noperiph:");
4199 
4200 		if (path->bus != NULL)
4201 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
4202 				    path->bus->sim->unit_number,
4203 				    path->bus->sim->bus_id);
4204 		else
4205 			sbuf_printf(&sb, "nobus:");
4206 
4207 		if (path->target != NULL)
4208 			sbuf_printf(&sb, "%d:", path->target->target_id);
4209 		else
4210 			sbuf_printf(&sb, "X:");
4211 
4212 		if (path->device != NULL)
4213 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
4214 		else
4215 			sbuf_printf(&sb, "X): ");
4216 	}
4217 	sbuf_finish(&sb);
4218 
4219 	return(sbuf_len(&sb));
4220 }
4221 
4222 path_id_t
4223 xpt_path_path_id(struct cam_path *path)
4224 {
4225 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4226 
4227 	return(path->bus->path_id);
4228 }
4229 
4230 target_id_t
4231 xpt_path_target_id(struct cam_path *path)
4232 {
4233 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4234 
4235 	if (path->target != NULL)
4236 		return (path->target->target_id);
4237 	else
4238 		return (CAM_TARGET_WILDCARD);
4239 }
4240 
4241 lun_id_t
4242 xpt_path_lun_id(struct cam_path *path)
4243 {
4244 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4245 
4246 	if (path->device != NULL)
4247 		return (path->device->lun_id);
4248 	else
4249 		return (CAM_LUN_WILDCARD);
4250 }
4251 
4252 struct cam_sim *
4253 xpt_path_sim(struct cam_path *path)
4254 {
4255 
4256 	return (path->bus->sim);
4257 }
4258 
4259 struct cam_periph*
4260 xpt_path_periph(struct cam_path *path)
4261 {
4262 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4263 
4264 	return (path->periph);
4265 }
4266 
4267 /*
4268  * Release a CAM control block for the caller.  Remit the cost of the structure
4269  * to the device referenced by the path.  If the this device had no 'credits'
4270  * and peripheral drivers have registered async callbacks for this notification
4271  * call them now.
4272  */
4273 void
4274 xpt_release_ccb(union ccb *free_ccb)
4275 {
4276 	struct	 cam_path *path;
4277 	struct	 cam_ed *device;
4278 	struct	 cam_eb *bus;
4279 	struct   cam_sim *sim;
4280 
4281 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
4282 	path = free_ccb->ccb_h.path;
4283 	device = path->device;
4284 	bus = path->bus;
4285 	sim = bus->sim;
4286 
4287 	mtx_assert(sim->mtx, MA_OWNED);
4288 
4289 	cam_ccbq_release_opening(&device->ccbq);
4290 	if (sim->ccb_count > sim->max_ccbs) {
4291 		xpt_free_ccb(free_ccb);
4292 		sim->ccb_count--;
4293 	} else {
4294 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
4295 		    xpt_links.sle);
4296 	}
4297 	if (sim->devq == NULL) {
4298 		return;
4299 	}
4300 	sim->devq->alloc_openings++;
4301 	sim->devq->alloc_active--;
4302 	/* XXX Turn this into an inline function - xpt_run_device?? */
4303 	if ((device_is_alloc_queued(device) == 0)
4304 	 && (device->drvq.entries > 0)) {
4305 		xpt_schedule_dev_allocq(bus, device);
4306 	}
4307 	if (dev_allocq_is_runnable(sim->devq))
4308 		xpt_run_dev_allocq(bus);
4309 }
4310 
4311 /* Functions accessed by SIM drivers */
4312 
4313 /*
4314  * A sim structure, listing the SIM entry points and instance
4315  * identification info is passed to xpt_bus_register to hook the SIM
4316  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4317  * for this new bus and places it in the array of busses and assigns
4318  * it a path_id.  The path_id may be influenced by "hard wiring"
4319  * information specified by the user.  Once interrupt services are
4320  * availible, the bus will be probed.
4321  */
4322 int32_t
4323 xpt_bus_register(struct cam_sim *sim, u_int32_t bus)
4324 {
4325 	struct cam_eb *new_bus;
4326 	struct cam_eb *old_bus;
4327 	struct ccb_pathinq cpi;
4328 
4329 	mtx_assert(sim->mtx, MA_OWNED);
4330 
4331 	sim->bus_id = bus;
4332 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4333 					  M_CAMXPT, M_NOWAIT);
4334 	if (new_bus == NULL) {
4335 		/* Couldn't satisfy request */
4336 		return (CAM_RESRC_UNAVAIL);
4337 	}
4338 
4339 	if (strcmp(sim->sim_name, "xpt") != 0) {
4340 
4341 		sim->path_id =
4342 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4343 	}
4344 
4345 	TAILQ_INIT(&new_bus->et_entries);
4346 	new_bus->path_id = sim->path_id;
4347 	new_bus->sim = sim;
4348 	timevalclear(&new_bus->last_reset);
4349 	new_bus->flags = 0;
4350 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4351 	new_bus->generation = 0;
4352 	mtx_lock(&xsoftc.xpt_topo_lock);
4353 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4354 	while (old_bus != NULL
4355 	    && old_bus->path_id < new_bus->path_id)
4356 		old_bus = TAILQ_NEXT(old_bus, links);
4357 	if (old_bus != NULL)
4358 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4359 	else
4360 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4361 	xsoftc.bus_generation++;
4362 	mtx_unlock(&xsoftc.xpt_topo_lock);
4363 
4364 	/* Notify interested parties */
4365 	if (sim->path_id != CAM_XPT_PATH_ID) {
4366 		struct cam_path path;
4367 
4368 		xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
4369 			         CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4370 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4371 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4372 		xpt_action((union ccb *)&cpi);
4373 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
4374 		xpt_release_path(&path);
4375 	}
4376 	return (CAM_SUCCESS);
4377 }
4378 
4379 int32_t
4380 xpt_bus_deregister(path_id_t pathid)
4381 {
4382 	struct cam_path bus_path;
4383 	struct cam_ed *device;
4384 	struct cam_ed_qinfo *qinfo;
4385 	struct cam_devq *devq;
4386 	struct cam_periph *periph;
4387 	struct cam_sim *ccbsim;
4388 	union ccb *work_ccb;
4389 	cam_status status;
4390 
4391 
4392 	status = xpt_compile_path(&bus_path, NULL, pathid,
4393 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4394 	if (status != CAM_REQ_CMP)
4395 		return (status);
4396 
4397 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4398 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4399 
4400 	/* The SIM may be gone, so use a dummy SIM for any stray operations. */
4401 	devq = bus_path.bus->sim->devq;
4402 	ccbsim = bus_path.bus->sim;
4403 	bus_path.bus->sim = &cam_dead_sim;
4404 
4405 	/* Execute any pending operations now. */
4406 	while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
4407 	    CAMQ_HEAD)) != NULL ||
4408 	    (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
4409 	    CAMQ_HEAD)) != NULL) {
4410 		do {
4411 			device = qinfo->device;
4412 			work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
4413 			if (work_ccb != NULL) {
4414 				devq->active_dev = device;
4415 				cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
4416 				cam_ccbq_send_ccb(&device->ccbq, work_ccb);
4417 				(*(ccbsim->sim_action))(ccbsim, work_ccb);
4418 			}
4419 
4420 			periph = (struct cam_periph *)camq_remove(&device->drvq,
4421 			    CAMQ_HEAD);
4422 			if (periph != NULL)
4423 				xpt_schedule(periph, periph->pinfo.priority);
4424 		} while (work_ccb != NULL || periph != NULL);
4425 	}
4426 
4427 	/* Make sure all completed CCBs are processed. */
4428 	while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) {
4429 		camisr_runqueue(&ccbsim->sim_doneq);
4430 
4431 		/* Repeat the async's for the benefit of any new devices. */
4432 		xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4433 		xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4434 	}
4435 
4436 	/* Release the reference count held while registered. */
4437 	xpt_release_bus(bus_path.bus);
4438 	xpt_release_path(&bus_path);
4439 
4440 	return (CAM_REQ_CMP);
4441 }
4442 
4443 static path_id_t
4444 xptnextfreepathid(void)
4445 {
4446 	struct cam_eb *bus;
4447 	path_id_t pathid;
4448 	const char *strval;
4449 
4450 	pathid = 0;
4451 	mtx_lock(&xsoftc.xpt_topo_lock);
4452 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4453 retry:
4454 	/* Find an unoccupied pathid */
4455 	while (bus != NULL && bus->path_id <= pathid) {
4456 		if (bus->path_id == pathid)
4457 			pathid++;
4458 		bus = TAILQ_NEXT(bus, links);
4459 	}
4460 	mtx_unlock(&xsoftc.xpt_topo_lock);
4461 
4462 	/*
4463 	 * Ensure that this pathid is not reserved for
4464 	 * a bus that may be registered in the future.
4465 	 */
4466 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4467 		++pathid;
4468 		/* Start the search over */
4469 		mtx_lock(&xsoftc.xpt_topo_lock);
4470 		goto retry;
4471 	}
4472 	return (pathid);
4473 }
4474 
4475 static path_id_t
4476 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4477 {
4478 	path_id_t pathid;
4479 	int i, dunit, val;
4480 	char buf[32];
4481 	const char *dname;
4482 
4483 	pathid = CAM_XPT_PATH_ID;
4484 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4485 	i = 0;
4486 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4487 		if (strcmp(dname, "scbus")) {
4488 			/* Avoid a bit of foot shooting. */
4489 			continue;
4490 		}
4491 		if (dunit < 0)		/* unwired?! */
4492 			continue;
4493 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4494 			if (sim_bus == val) {
4495 				pathid = dunit;
4496 				break;
4497 			}
4498 		} else if (sim_bus == 0) {
4499 			/* Unspecified matches bus 0 */
4500 			pathid = dunit;
4501 			break;
4502 		} else {
4503 			printf("Ambiguous scbus configuration for %s%d "
4504 			       "bus %d, cannot wire down.  The kernel "
4505 			       "config entry for scbus%d should "
4506 			       "specify a controller bus.\n"
4507 			       "Scbus will be assigned dynamically.\n",
4508 			       sim_name, sim_unit, sim_bus, dunit);
4509 			break;
4510 		}
4511 	}
4512 
4513 	if (pathid == CAM_XPT_PATH_ID)
4514 		pathid = xptnextfreepathid();
4515 	return (pathid);
4516 }
4517 
4518 void
4519 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4520 {
4521 	struct cam_eb *bus;
4522 	struct cam_et *target, *next_target;
4523 	struct cam_ed *device, *next_device;
4524 
4525 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4526 
4527 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
4528 
4529 	/*
4530 	 * Most async events come from a CAM interrupt context.  In
4531 	 * a few cases, the error recovery code at the peripheral layer,
4532 	 * which may run from our SWI or a process context, may signal
4533 	 * deferred events with a call to xpt_async.
4534 	 */
4535 
4536 	bus = path->bus;
4537 
4538 	if (async_code == AC_BUS_RESET) {
4539 		/* Update our notion of when the last reset occurred */
4540 		microtime(&bus->last_reset);
4541 	}
4542 
4543 	for (target = TAILQ_FIRST(&bus->et_entries);
4544 	     target != NULL;
4545 	     target = next_target) {
4546 
4547 		next_target = TAILQ_NEXT(target, links);
4548 
4549 		if (path->target != target
4550 		 && path->target->target_id != CAM_TARGET_WILDCARD
4551 		 && target->target_id != CAM_TARGET_WILDCARD)
4552 			continue;
4553 
4554 		if (async_code == AC_SENT_BDR) {
4555 			/* Update our notion of when the last reset occurred */
4556 			microtime(&path->target->last_reset);
4557 		}
4558 
4559 		for (device = TAILQ_FIRST(&target->ed_entries);
4560 		     device != NULL;
4561 		     device = next_device) {
4562 
4563 			next_device = TAILQ_NEXT(device, links);
4564 
4565 			if (path->device != device
4566 			 && path->device->lun_id != CAM_LUN_WILDCARD
4567 			 && device->lun_id != CAM_LUN_WILDCARD)
4568 				continue;
4569 
4570 			xpt_dev_async(async_code, bus, target,
4571 				      device, async_arg);
4572 
4573 			xpt_async_bcast(&device->asyncs, async_code,
4574 					path, async_arg);
4575 		}
4576 	}
4577 
4578 	/*
4579 	 * If this wasn't a fully wildcarded async, tell all
4580 	 * clients that want all async events.
4581 	 */
4582 	if (bus != xpt_periph->path->bus)
4583 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4584 				path, async_arg);
4585 }
4586 
4587 static void
4588 xpt_async_bcast(struct async_list *async_head,
4589 		u_int32_t async_code,
4590 		struct cam_path *path, void *async_arg)
4591 {
4592 	struct async_node *cur_entry;
4593 
4594 	cur_entry = SLIST_FIRST(async_head);
4595 	while (cur_entry != NULL) {
4596 		struct async_node *next_entry;
4597 		/*
4598 		 * Grab the next list entry before we call the current
4599 		 * entry's callback.  This is because the callback function
4600 		 * can delete its async callback entry.
4601 		 */
4602 		next_entry = SLIST_NEXT(cur_entry, links);
4603 		if ((cur_entry->event_enable & async_code) != 0)
4604 			cur_entry->callback(cur_entry->callback_arg,
4605 					    async_code, path,
4606 					    async_arg);
4607 		cur_entry = next_entry;
4608 	}
4609 }
4610 
4611 /*
4612  * Handle any per-device event notifications that require action by the XPT.
4613  */
4614 static void
4615 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target,
4616 	      struct cam_ed *device, void *async_arg)
4617 {
4618 	cam_status status;
4619 	struct cam_path newpath;
4620 
4621 	/*
4622 	 * We only need to handle events for real devices.
4623 	 */
4624 	if (target->target_id == CAM_TARGET_WILDCARD
4625 	 || device->lun_id == CAM_LUN_WILDCARD)
4626 		return;
4627 
4628 	/*
4629 	 * We need our own path with wildcards expanded to
4630 	 * handle certain types of events.
4631 	 */
4632 	if ((async_code == AC_SENT_BDR)
4633 	 || (async_code == AC_BUS_RESET)
4634 	 || (async_code == AC_INQ_CHANGED))
4635 		status = xpt_compile_path(&newpath, NULL,
4636 					  bus->path_id,
4637 					  target->target_id,
4638 					  device->lun_id);
4639 	else
4640 		status = CAM_REQ_CMP_ERR;
4641 
4642 	if (status == CAM_REQ_CMP) {
4643 
4644 		/*
4645 		 * Allow transfer negotiation to occur in a
4646 		 * tag free environment.
4647 		 */
4648 		if (async_code == AC_SENT_BDR
4649 		 || async_code == AC_BUS_RESET)
4650 			xpt_toggle_tags(&newpath);
4651 
4652 		if (async_code == AC_INQ_CHANGED) {
4653 			/*
4654 			 * We've sent a start unit command, or
4655 			 * something similar to a device that
4656 			 * may have caused its inquiry data to
4657 			 * change. So we re-scan the device to
4658 			 * refresh the inquiry data for it.
4659 			 */
4660 			xpt_scan_lun(newpath.periph, &newpath,
4661 				     CAM_EXPECT_INQ_CHANGE, NULL);
4662 		}
4663 		xpt_release_path(&newpath);
4664 	} else if (async_code == AC_LOST_DEVICE) {
4665 		device->flags |= CAM_DEV_UNCONFIGURED;
4666 	} else if (async_code == AC_TRANSFER_NEG) {
4667 		struct ccb_trans_settings *settings;
4668 
4669 		settings = (struct ccb_trans_settings *)async_arg;
4670 		xpt_set_transfer_settings(settings, device,
4671 					  /*async_update*/TRUE);
4672 	}
4673 }
4674 
4675 u_int32_t
4676 xpt_freeze_devq(struct cam_path *path, u_int count)
4677 {
4678 	struct ccb_hdr *ccbh;
4679 
4680 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4681 
4682 	path->device->qfrozen_cnt += count;
4683 
4684 	/*
4685 	 * Mark the last CCB in the queue as needing
4686 	 * to be requeued if the driver hasn't
4687 	 * changed it's state yet.  This fixes a race
4688 	 * where a ccb is just about to be queued to
4689 	 * a controller driver when it's interrupt routine
4690 	 * freezes the queue.  To completly close the
4691 	 * hole, controller drives must check to see
4692 	 * if a ccb's status is still CAM_REQ_INPROG
4693 	 * just before they queue
4694 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4695 	 * an example.
4696 	 */
4697 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4698 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4699 		ccbh->status = CAM_REQUEUE_REQ;
4700 	return (path->device->qfrozen_cnt);
4701 }
4702 
4703 u_int32_t
4704 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4705 {
4706 	mtx_assert(sim->mtx, MA_OWNED);
4707 
4708 	sim->devq->send_queue.qfrozen_cnt += count;
4709 	if (sim->devq->active_dev != NULL) {
4710 		struct ccb_hdr *ccbh;
4711 
4712 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4713 				  ccb_hdr_tailq);
4714 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4715 			ccbh->status = CAM_REQUEUE_REQ;
4716 	}
4717 	return (sim->devq->send_queue.qfrozen_cnt);
4718 }
4719 
4720 static void
4721 xpt_release_devq_timeout(void *arg)
4722 {
4723 	struct cam_ed *device;
4724 
4725 	device = (struct cam_ed *)arg;
4726 
4727 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4728 }
4729 
4730 void
4731 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4732 {
4733 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4734 
4735 	xpt_release_devq_device(path->device, count, run_queue);
4736 }
4737 
4738 static void
4739 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4740 {
4741 	int	rundevq;
4742 
4743 	rundevq = 0;
4744 	if (dev->qfrozen_cnt > 0) {
4745 
4746 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4747 		dev->qfrozen_cnt -= count;
4748 		if (dev->qfrozen_cnt == 0) {
4749 
4750 			/*
4751 			 * No longer need to wait for a successful
4752 			 * command completion.
4753 			 */
4754 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4755 
4756 			/*
4757 			 * Remove any timeouts that might be scheduled
4758 			 * to release this queue.
4759 			 */
4760 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4761 				callout_stop(&dev->callout);
4762 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4763 			}
4764 
4765 			/*
4766 			 * Now that we are unfrozen schedule the
4767 			 * device so any pending transactions are
4768 			 * run.
4769 			 */
4770 			if ((dev->ccbq.queue.entries > 0)
4771 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4772 			 && (run_queue != 0)) {
4773 				rundevq = 1;
4774 			}
4775 		}
4776 	}
4777 	if (rundevq != 0)
4778 		xpt_run_dev_sendq(dev->target->bus);
4779 }
4780 
4781 void
4782 xpt_release_simq(struct cam_sim *sim, int run_queue)
4783 {
4784 	struct	camq *sendq;
4785 
4786 	mtx_assert(sim->mtx, MA_OWNED);
4787 
4788 	sendq = &(sim->devq->send_queue);
4789 	if (sendq->qfrozen_cnt > 0) {
4790 
4791 		sendq->qfrozen_cnt--;
4792 		if (sendq->qfrozen_cnt == 0) {
4793 			struct cam_eb *bus;
4794 
4795 			/*
4796 			 * If there is a timeout scheduled to release this
4797 			 * sim queue, remove it.  The queue frozen count is
4798 			 * already at 0.
4799 			 */
4800 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4801 				callout_stop(&sim->callout);
4802 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4803 			}
4804 			bus = xpt_find_bus(sim->path_id);
4805 
4806 			if (run_queue) {
4807 				/*
4808 				 * Now that we are unfrozen run the send queue.
4809 				 */
4810 				xpt_run_dev_sendq(bus);
4811 			}
4812 			xpt_release_bus(bus);
4813 		}
4814 	}
4815 }
4816 
4817 /*
4818  * XXX Appears to be unused.
4819  */
4820 static void
4821 xpt_release_simq_timeout(void *arg)
4822 {
4823 	struct cam_sim *sim;
4824 
4825 	sim = (struct cam_sim *)arg;
4826 	xpt_release_simq(sim, /* run_queue */ TRUE);
4827 }
4828 
4829 void
4830 xpt_done(union ccb *done_ccb)
4831 {
4832 	struct cam_sim *sim;
4833 
4834 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4835 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4836 		/*
4837 		 * Queue up the request for handling by our SWI handler
4838 		 * any of the "non-immediate" type of ccbs.
4839 		 */
4840 		sim = done_ccb->ccb_h.path->bus->sim;
4841 		switch (done_ccb->ccb_h.path->periph->type) {
4842 		case CAM_PERIPH_BIO:
4843 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4844 					  sim_links.tqe);
4845 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4846 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4847 				mtx_lock(&cam_simq_lock);
4848 				TAILQ_INSERT_TAIL(&cam_simq, sim,
4849 						  links);
4850 				sim->flags |= CAM_SIM_ON_DONEQ;
4851 				mtx_unlock(&cam_simq_lock);
4852 			}
4853 			if ((done_ccb->ccb_h.path->periph->flags &
4854 			    CAM_PERIPH_POLLED) == 0)
4855 				swi_sched(cambio_ih, 0);
4856 			break;
4857 		default:
4858 			panic("unknown periph type %d",
4859 			    done_ccb->ccb_h.path->periph->type);
4860 		}
4861 	}
4862 }
4863 
4864 union ccb *
4865 xpt_alloc_ccb()
4866 {
4867 	union ccb *new_ccb;
4868 
4869 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4870 	return (new_ccb);
4871 }
4872 
4873 union ccb *
4874 xpt_alloc_ccb_nowait()
4875 {
4876 	union ccb *new_ccb;
4877 
4878 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4879 	return (new_ccb);
4880 }
4881 
4882 void
4883 xpt_free_ccb(union ccb *free_ccb)
4884 {
4885 	free(free_ccb, M_CAMXPT);
4886 }
4887 
4888 
4889 
4890 /* Private XPT functions */
4891 
4892 /*
4893  * Get a CAM control block for the caller. Charge the structure to the device
4894  * referenced by the path.  If the this device has no 'credits' then the
4895  * device already has the maximum number of outstanding operations under way
4896  * and we return NULL. If we don't have sufficient resources to allocate more
4897  * ccbs, we also return NULL.
4898  */
4899 static union ccb *
4900 xpt_get_ccb(struct cam_ed *device)
4901 {
4902 	union ccb *new_ccb;
4903 	struct cam_sim *sim;
4904 
4905 	sim = device->sim;
4906 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4907 		new_ccb = xpt_alloc_ccb_nowait();
4908                 if (new_ccb == NULL) {
4909 			return (NULL);
4910 		}
4911 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4912 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4913 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4914 				  xpt_links.sle);
4915 		sim->ccb_count++;
4916 	}
4917 	cam_ccbq_take_opening(&device->ccbq);
4918 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4919 	return (new_ccb);
4920 }
4921 
4922 static void
4923 xpt_release_bus(struct cam_eb *bus)
4924 {
4925 
4926 	if ((--bus->refcount == 0)
4927 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4928 		mtx_lock(&xsoftc.xpt_topo_lock);
4929 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4930 		xsoftc.bus_generation++;
4931 		mtx_unlock(&xsoftc.xpt_topo_lock);
4932 		free(bus, M_CAMXPT);
4933 	}
4934 }
4935 
4936 static struct cam_et *
4937 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4938 {
4939 	struct cam_et *target;
4940 
4941 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4942 	if (target != NULL) {
4943 		struct cam_et *cur_target;
4944 
4945 		TAILQ_INIT(&target->ed_entries);
4946 		target->bus = bus;
4947 		target->target_id = target_id;
4948 		target->refcount = 1;
4949 		target->generation = 0;
4950 		timevalclear(&target->last_reset);
4951 		/*
4952 		 * Hold a reference to our parent bus so it
4953 		 * will not go away before we do.
4954 		 */
4955 		bus->refcount++;
4956 
4957 		/* Insertion sort into our bus's target list */
4958 		cur_target = TAILQ_FIRST(&bus->et_entries);
4959 		while (cur_target != NULL && cur_target->target_id < target_id)
4960 			cur_target = TAILQ_NEXT(cur_target, links);
4961 
4962 		if (cur_target != NULL) {
4963 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4964 		} else {
4965 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4966 		}
4967 		bus->generation++;
4968 	}
4969 	return (target);
4970 }
4971 
4972 static void
4973 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4974 {
4975 
4976 	if ((--target->refcount == 0)
4977 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4978 		TAILQ_REMOVE(&bus->et_entries, target, links);
4979 		bus->generation++;
4980 		free(target, M_CAMXPT);
4981 		xpt_release_bus(bus);
4982 	}
4983 }
4984 
4985 static struct cam_ed *
4986 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4987 {
4988 	struct	   cam_path path;
4989 	struct	   cam_ed *device;
4990 	struct	   cam_devq *devq;
4991 	cam_status status;
4992 
4993 	if (SIM_DEAD(bus->sim))
4994 		return (NULL);
4995 
4996 	/* Make space for us in the device queue on our bus */
4997 	devq = bus->sim->devq;
4998 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4999 
5000 	if (status != CAM_REQ_CMP) {
5001 		device = NULL;
5002 	} else {
5003 		device = (struct cam_ed *)malloc(sizeof(*device),
5004 						 M_CAMXPT, M_NOWAIT);
5005 	}
5006 
5007 	if (device != NULL) {
5008 		struct cam_ed *cur_device;
5009 
5010 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
5011 		device->alloc_ccb_entry.device = device;
5012 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
5013 		device->send_ccb_entry.device = device;
5014 		device->target = target;
5015 		device->lun_id = lun_id;
5016 		device->sim = bus->sim;
5017 		/* Initialize our queues */
5018 		if (camq_init(&device->drvq, 0) != 0) {
5019 			free(device, M_CAMXPT);
5020 			return (NULL);
5021 		}
5022 		if (cam_ccbq_init(&device->ccbq,
5023 				  bus->sim->max_dev_openings) != 0) {
5024 			camq_fini(&device->drvq);
5025 			free(device, M_CAMXPT);
5026 			return (NULL);
5027 		}
5028 		SLIST_INIT(&device->asyncs);
5029 		SLIST_INIT(&device->periphs);
5030 		device->generation = 0;
5031 		device->owner = NULL;
5032 		/*
5033 		 * Take the default quirk entry until we have inquiry
5034 		 * data and can determine a better quirk to use.
5035 		 */
5036 		device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1];
5037 		bzero(&device->inq_data, sizeof(device->inq_data));
5038 		device->inq_flags = 0;
5039 		device->queue_flags = 0;
5040 		device->serial_num = NULL;
5041 		device->serial_num_len = 0;
5042 		device->qfrozen_cnt = 0;
5043 		device->flags = CAM_DEV_UNCONFIGURED;
5044 		device->tag_delay_count = 0;
5045 		device->tag_saved_openings = 0;
5046 		device->refcount = 1;
5047 		if (bus->sim->flags & CAM_SIM_MPSAFE)
5048 			callout_init_mtx(&device->callout, bus->sim->mtx, 0);
5049 		else
5050 			callout_init_mtx(&device->callout, &Giant, 0);
5051 
5052 		/*
5053 		 * Hold a reference to our parent target so it
5054 		 * will not go away before we do.
5055 		 */
5056 		target->refcount++;
5057 
5058 		/*
5059 		 * XXX should be limited by number of CCBs this bus can
5060 		 * do.
5061 		 */
5062 		bus->sim->max_ccbs += device->ccbq.devq_openings;
5063 		/* Insertion sort into our target's device list */
5064 		cur_device = TAILQ_FIRST(&target->ed_entries);
5065 		while (cur_device != NULL && cur_device->lun_id < lun_id)
5066 			cur_device = TAILQ_NEXT(cur_device, links);
5067 		if (cur_device != NULL) {
5068 			TAILQ_INSERT_BEFORE(cur_device, device, links);
5069 		} else {
5070 			TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
5071 		}
5072 		target->generation++;
5073 		if (lun_id != CAM_LUN_WILDCARD) {
5074 			xpt_compile_path(&path,
5075 					 NULL,
5076 					 bus->path_id,
5077 					 target->target_id,
5078 					 lun_id);
5079 			xpt_devise_transport(&path);
5080 			xpt_release_path(&path);
5081 		}
5082 	}
5083 	return (device);
5084 }
5085 
5086 static void
5087 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
5088 		   struct cam_ed *device)
5089 {
5090 
5091 	if ((--device->refcount == 0)
5092 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
5093 		struct cam_devq *devq;
5094 
5095 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
5096 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
5097 			panic("Removing device while still queued for ccbs");
5098 
5099 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
5100 				callout_stop(&device->callout);
5101 
5102 		TAILQ_REMOVE(&target->ed_entries, device,links);
5103 		target->generation++;
5104 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
5105 		if (!SIM_DEAD(bus->sim)) {
5106 			/* Release our slot in the devq */
5107 			devq = bus->sim->devq;
5108 			cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
5109 		}
5110 		camq_fini(&device->drvq);
5111 		camq_fini(&device->ccbq.queue);
5112 		free(device, M_CAMXPT);
5113 		xpt_release_target(bus, target);
5114 	}
5115 }
5116 
5117 static u_int32_t
5118 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5119 {
5120 	int	diff;
5121 	int	result;
5122 	struct	cam_ed *dev;
5123 
5124 	dev = path->device;
5125 
5126 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
5127 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5128 	if (result == CAM_REQ_CMP && (diff < 0)) {
5129 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
5130 	}
5131 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5132 	 || (dev->inq_flags & SID_CmdQue) != 0)
5133 		dev->tag_saved_openings = newopenings;
5134 	/* Adjust the global limit */
5135 	dev->sim->max_ccbs += diff;
5136 	return (result);
5137 }
5138 
5139 static struct cam_eb *
5140 xpt_find_bus(path_id_t path_id)
5141 {
5142 	struct cam_eb *bus;
5143 
5144 	mtx_lock(&xsoftc.xpt_topo_lock);
5145 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5146 	     bus != NULL;
5147 	     bus = TAILQ_NEXT(bus, links)) {
5148 		if (bus->path_id == path_id) {
5149 			bus->refcount++;
5150 			break;
5151 		}
5152 	}
5153 	mtx_unlock(&xsoftc.xpt_topo_lock);
5154 	return (bus);
5155 }
5156 
5157 static struct cam_et *
5158 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5159 {
5160 	struct cam_et *target;
5161 
5162 	for (target = TAILQ_FIRST(&bus->et_entries);
5163 	     target != NULL;
5164 	     target = TAILQ_NEXT(target, links)) {
5165 		if (target->target_id == target_id) {
5166 			target->refcount++;
5167 			break;
5168 		}
5169 	}
5170 	return (target);
5171 }
5172 
5173 static struct cam_ed *
5174 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5175 {
5176 	struct cam_ed *device;
5177 
5178 	for (device = TAILQ_FIRST(&target->ed_entries);
5179 	     device != NULL;
5180 	     device = TAILQ_NEXT(device, links)) {
5181 		if (device->lun_id == lun_id) {
5182 			device->refcount++;
5183 			break;
5184 		}
5185 	}
5186 	return (device);
5187 }
5188 
5189 typedef struct {
5190 	union	ccb *request_ccb;
5191 	struct 	ccb_pathinq *cpi;
5192 	int	counter;
5193 } xpt_scan_bus_info;
5194 
5195 /*
5196  * To start a scan, request_ccb is an XPT_SCAN_BUS ccb.
5197  * As the scan progresses, xpt_scan_bus is used as the
5198  * callback on completion function.
5199  */
5200 static void
5201 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb)
5202 {
5203 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5204 		  ("xpt_scan_bus\n"));
5205 	switch (request_ccb->ccb_h.func_code) {
5206 	case XPT_SCAN_BUS:
5207 	{
5208 		xpt_scan_bus_info *scan_info;
5209 		union	ccb *work_ccb;
5210 		struct	cam_path *path;
5211 		u_int	i;
5212 		u_int	max_target;
5213 		u_int	initiator_id;
5214 
5215 		/* Find out the characteristics of the bus */
5216 		work_ccb = xpt_alloc_ccb_nowait();
5217 		if (work_ccb == NULL) {
5218 			request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
5219 			xpt_done(request_ccb);
5220 			return;
5221 		}
5222 		xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path,
5223 			      request_ccb->ccb_h.pinfo.priority);
5224 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
5225 		xpt_action(work_ccb);
5226 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
5227 			request_ccb->ccb_h.status = work_ccb->ccb_h.status;
5228 			xpt_free_ccb(work_ccb);
5229 			xpt_done(request_ccb);
5230 			return;
5231 		}
5232 
5233 		if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5234 			/*
5235 			 * Can't scan the bus on an adapter that
5236 			 * cannot perform the initiator role.
5237 			 */
5238 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5239 			xpt_free_ccb(work_ccb);
5240 			xpt_done(request_ccb);
5241 			return;
5242 		}
5243 
5244 		/* Save some state for use while we probe for devices */
5245 		scan_info = (xpt_scan_bus_info *)
5246 		    malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_NOWAIT);
5247 		scan_info->request_ccb = request_ccb;
5248 		scan_info->cpi = &work_ccb->cpi;
5249 
5250 		/* Cache on our stack so we can work asynchronously */
5251 		max_target = scan_info->cpi->max_target;
5252 		initiator_id = scan_info->cpi->initiator_id;
5253 
5254 
5255 		/*
5256 		 * We can scan all targets in parallel, or do it sequentially.
5257 		 */
5258 		if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5259 			max_target = 0;
5260 			scan_info->counter = 0;
5261 		} else {
5262 			scan_info->counter = scan_info->cpi->max_target + 1;
5263 			if (scan_info->cpi->initiator_id < scan_info->counter) {
5264 				scan_info->counter--;
5265 			}
5266 		}
5267 
5268 		for (i = 0; i <= max_target; i++) {
5269 			cam_status status;
5270 			if (i == initiator_id)
5271 				continue;
5272 
5273 			status = xpt_create_path(&path, xpt_periph,
5274 						 request_ccb->ccb_h.path_id,
5275 						 i, 0);
5276 			if (status != CAM_REQ_CMP) {
5277 				printf("xpt_scan_bus: xpt_create_path failed"
5278 				       " with status %#x, bus scan halted\n",
5279 				       status);
5280 				free(scan_info, M_TEMP);
5281 				request_ccb->ccb_h.status = status;
5282 				xpt_free_ccb(work_ccb);
5283 				xpt_done(request_ccb);
5284 				break;
5285 			}
5286 			work_ccb = xpt_alloc_ccb_nowait();
5287 			if (work_ccb == NULL) {
5288 				free(scan_info, M_TEMP);
5289 				xpt_free_path(path);
5290 				request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
5291 				xpt_done(request_ccb);
5292 				break;
5293 			}
5294 			xpt_setup_ccb(&work_ccb->ccb_h, path,
5295 				      request_ccb->ccb_h.pinfo.priority);
5296 			work_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5297 			work_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5298 			work_ccb->ccb_h.ppriv_ptr0 = scan_info;
5299 			work_ccb->crcn.flags = request_ccb->crcn.flags;
5300 			xpt_action(work_ccb);
5301 		}
5302 		break;
5303 	}
5304 	case XPT_SCAN_LUN:
5305 	{
5306 		cam_status status;
5307 		struct cam_path *path;
5308 		xpt_scan_bus_info *scan_info;
5309 		path_id_t path_id;
5310 		target_id_t target_id;
5311 		lun_id_t lun_id;
5312 
5313 		/* Reuse the same CCB to query if a device was really found */
5314 		scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0;
5315 		xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path,
5316 			      request_ccb->ccb_h.pinfo.priority);
5317 		request_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
5318 
5319 		path_id = request_ccb->ccb_h.path_id;
5320 		target_id = request_ccb->ccb_h.target_id;
5321 		lun_id = request_ccb->ccb_h.target_lun;
5322 		xpt_action(request_ccb);
5323 
5324 		if (request_ccb->ccb_h.status != CAM_REQ_CMP) {
5325 			struct cam_ed *device;
5326 			struct cam_et *target;
5327 			int phl;
5328 
5329 			/*
5330 			 * If we already probed lun 0 successfully, or
5331 			 * we have additional configured luns on this
5332 			 * target that might have "gone away", go onto
5333 			 * the next lun.
5334 			 */
5335 			target = request_ccb->ccb_h.path->target;
5336 			/*
5337 			 * We may touch devices that we don't
5338 			 * hold references too, so ensure they
5339 			 * don't disappear out from under us.
5340 			 * The target above is referenced by the
5341 			 * path in the request ccb.
5342 			 */
5343 			phl = 0;
5344 			device = TAILQ_FIRST(&target->ed_entries);
5345 			if (device != NULL) {
5346 				phl = CAN_SRCH_HI_SPARSE(device);
5347 				if (device->lun_id == 0)
5348 					device = TAILQ_NEXT(device, links);
5349 			}
5350 			if ((lun_id != 0) || (device != NULL)) {
5351 				if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl)
5352 					lun_id++;
5353 			}
5354 		} else {
5355 			struct cam_ed *device;
5356 
5357 			device = request_ccb->ccb_h.path->device;
5358 
5359 			if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) {
5360 				/* Try the next lun */
5361 				if (lun_id < (CAM_SCSI2_MAXLUN-1)
5362 				  || CAN_SRCH_HI_DENSE(device))
5363 					lun_id++;
5364 			}
5365 		}
5366 
5367 		/*
5368 		 * Free the current request path- we're done with it.
5369 		 */
5370 		xpt_free_path(request_ccb->ccb_h.path);
5371 
5372 		/*
5373 		 * Check to see if we scan any further luns.
5374 		 */
5375 		if (lun_id == request_ccb->ccb_h.target_lun
5376                  || lun_id > scan_info->cpi->max_lun) {
5377 			int done;
5378 
5379  hop_again:
5380 			done = 0;
5381 			if (scan_info->cpi->hba_misc & PIM_SEQSCAN) {
5382 				scan_info->counter++;
5383 				if (scan_info->counter ==
5384 				    scan_info->cpi->initiator_id) {
5385 					scan_info->counter++;
5386 				}
5387 				if (scan_info->counter >=
5388 				    scan_info->cpi->max_target+1) {
5389 					done = 1;
5390 				}
5391 			} else {
5392 				scan_info->counter--;
5393 				if (scan_info->counter == 0) {
5394 					done = 1;
5395 				}
5396 			}
5397 			if (done) {
5398 				xpt_free_ccb(request_ccb);
5399 				xpt_free_ccb((union ccb *)scan_info->cpi);
5400 				request_ccb = scan_info->request_ccb;
5401 				free(scan_info, M_TEMP);
5402 				request_ccb->ccb_h.status = CAM_REQ_CMP;
5403 				xpt_done(request_ccb);
5404 				break;
5405 			}
5406 
5407 			if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) {
5408 				break;
5409 			}
5410 			status = xpt_create_path(&path, xpt_periph,
5411 			    scan_info->request_ccb->ccb_h.path_id,
5412 			    scan_info->counter, 0);
5413 			if (status != CAM_REQ_CMP) {
5414 				printf("xpt_scan_bus: xpt_create_path failed"
5415 				    " with status %#x, bus scan halted\n",
5416 			       	    status);
5417 				xpt_free_ccb(request_ccb);
5418 				xpt_free_ccb((union ccb *)scan_info->cpi);
5419 				request_ccb = scan_info->request_ccb;
5420 				free(scan_info, M_TEMP);
5421 				request_ccb->ccb_h.status = status;
5422 				xpt_done(request_ccb);
5423 				break;
5424 			}
5425 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5426 			    request_ccb->ccb_h.pinfo.priority);
5427 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5428 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5429 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5430 			request_ccb->crcn.flags =
5431 			    scan_info->request_ccb->crcn.flags;
5432 		} else {
5433 			status = xpt_create_path(&path, xpt_periph,
5434 						 path_id, target_id, lun_id);
5435 			if (status != CAM_REQ_CMP) {
5436 				printf("xpt_scan_bus: xpt_create_path failed "
5437 				       "with status %#x, halting LUN scan\n",
5438 			 	       status);
5439 				goto hop_again;
5440 			}
5441 			xpt_setup_ccb(&request_ccb->ccb_h, path,
5442 				      request_ccb->ccb_h.pinfo.priority);
5443 			request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5444 			request_ccb->ccb_h.cbfcnp = xpt_scan_bus;
5445 			request_ccb->ccb_h.ppriv_ptr0 = scan_info;
5446 			request_ccb->crcn.flags =
5447 				scan_info->request_ccb->crcn.flags;
5448 		}
5449 		xpt_action(request_ccb);
5450 		break;
5451 	}
5452 	default:
5453 		break;
5454 	}
5455 }
5456 
5457 typedef enum {
5458 	PROBE_TUR,
5459 	PROBE_INQUIRY,	/* this counts as DV0 for Basic Domain Validation */
5460 	PROBE_FULL_INQUIRY,
5461 	PROBE_MODE_SENSE,
5462 	PROBE_SERIAL_NUM,
5463 	PROBE_TUR_FOR_NEGOTIATION,
5464 	PROBE_INQUIRY_BASIC_DV1,
5465 	PROBE_INQUIRY_BASIC_DV2,
5466 	PROBE_DV_EXIT
5467 } probe_action;
5468 
5469 typedef enum {
5470 	PROBE_INQUIRY_CKSUM	= 0x01,
5471 	PROBE_SERIAL_CKSUM	= 0x02,
5472 	PROBE_NO_ANNOUNCE	= 0x04
5473 } probe_flags;
5474 
5475 typedef struct {
5476 	TAILQ_HEAD(, ccb_hdr) request_ccbs;
5477 	probe_action	action;
5478 	union ccb	saved_ccb;
5479 	probe_flags	flags;
5480 	MD5_CTX		context;
5481 	u_int8_t	digest[16];
5482 } probe_softc;
5483 
5484 static void
5485 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path,
5486 	     cam_flags flags, union ccb *request_ccb)
5487 {
5488 	struct ccb_pathinq cpi;
5489 	cam_status status;
5490 	struct cam_path *new_path;
5491 	struct cam_periph *old_periph;
5492 
5493 	CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE,
5494 		  ("xpt_scan_lun\n"));
5495 
5496 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
5497 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5498 	xpt_action((union ccb *)&cpi);
5499 
5500 	if (cpi.ccb_h.status != CAM_REQ_CMP) {
5501 		if (request_ccb != NULL) {
5502 			request_ccb->ccb_h.status = cpi.ccb_h.status;
5503 			xpt_done(request_ccb);
5504 		}
5505 		return;
5506 	}
5507 
5508 	if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) {
5509 		/*
5510 		 * Can't scan the bus on an adapter that
5511 		 * cannot perform the initiator role.
5512 		 */
5513 		if (request_ccb != NULL) {
5514 			request_ccb->ccb_h.status = CAM_REQ_CMP;
5515 			xpt_done(request_ccb);
5516 		}
5517 		return;
5518 	}
5519 
5520 	if (request_ccb == NULL) {
5521 		request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT);
5522 		if (request_ccb == NULL) {
5523 			xpt_print(path, "xpt_scan_lun: can't allocate CCB, "
5524 			    "can't continue\n");
5525 			return;
5526 		}
5527 		new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT);
5528 		if (new_path == NULL) {
5529 			xpt_print(path, "xpt_scan_lun: can't allocate path, "
5530 			    "can't continue\n");
5531 			free(request_ccb, M_TEMP);
5532 			return;
5533 		}
5534 		status = xpt_compile_path(new_path, xpt_periph,
5535 					  path->bus->path_id,
5536 					  path->target->target_id,
5537 					  path->device->lun_id);
5538 
5539 		if (status != CAM_REQ_CMP) {
5540 			xpt_print(path, "xpt_scan_lun: can't compile path, "
5541 			    "can't continue\n");
5542 			free(request_ccb, M_TEMP);
5543 			free(new_path, M_TEMP);
5544 			return;
5545 		}
5546 		xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1);
5547 		request_ccb->ccb_h.cbfcnp = xptscandone;
5548 		request_ccb->ccb_h.func_code = XPT_SCAN_LUN;
5549 		request_ccb->crcn.flags = flags;
5550 	}
5551 
5552 	if ((old_periph = cam_periph_find(path, "probe")) != NULL) {
5553 		probe_softc *softc;
5554 
5555 		softc = (probe_softc *)old_periph->softc;
5556 		TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5557 				  periph_links.tqe);
5558 	} else {
5559 		status = cam_periph_alloc(proberegister, NULL, probecleanup,
5560 					  probestart, "probe",
5561 					  CAM_PERIPH_BIO,
5562 					  request_ccb->ccb_h.path, NULL, 0,
5563 					  request_ccb);
5564 
5565 		if (status != CAM_REQ_CMP) {
5566 			xpt_print(path, "xpt_scan_lun: cam_alloc_periph "
5567 			    "returned an error, can't continue probe\n");
5568 			request_ccb->ccb_h.status = status;
5569 			xpt_done(request_ccb);
5570 		}
5571 	}
5572 }
5573 
5574 static void
5575 xptscandone(struct cam_periph *periph, union ccb *done_ccb)
5576 {
5577 	xpt_release_path(done_ccb->ccb_h.path);
5578 	free(done_ccb->ccb_h.path, M_TEMP);
5579 	free(done_ccb, M_TEMP);
5580 }
5581 
5582 static cam_status
5583 proberegister(struct cam_periph *periph, void *arg)
5584 {
5585 	union ccb *request_ccb;	/* CCB representing the probe request */
5586 	cam_status status;
5587 	probe_softc *softc;
5588 
5589 	request_ccb = (union ccb *)arg;
5590 	if (periph == NULL) {
5591 		printf("proberegister: periph was NULL!!\n");
5592 		return(CAM_REQ_CMP_ERR);
5593 	}
5594 
5595 	if (request_ccb == NULL) {
5596 		printf("proberegister: no probe CCB, "
5597 		       "can't register device\n");
5598 		return(CAM_REQ_CMP_ERR);
5599 	}
5600 
5601 	softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT);
5602 
5603 	if (softc == NULL) {
5604 		printf("proberegister: Unable to probe new device. "
5605 		       "Unable to allocate softc\n");
5606 		return(CAM_REQ_CMP_ERR);
5607 	}
5608 	TAILQ_INIT(&softc->request_ccbs);
5609 	TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h,
5610 			  periph_links.tqe);
5611 	softc->flags = 0;
5612 	periph->softc = softc;
5613 	status = cam_periph_acquire(periph);
5614 	if (status != CAM_REQ_CMP) {
5615 		return (status);
5616 	}
5617 
5618 
5619 	/*
5620 	 * Ensure we've waited at least a bus settle
5621 	 * delay before attempting to probe the device.
5622 	 * For HBAs that don't do bus resets, this won't make a difference.
5623 	 */
5624 	cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset,
5625 				      scsi_delay);
5626 	probeschedule(periph);
5627 	return(CAM_REQ_CMP);
5628 }
5629 
5630 static void
5631 probeschedule(struct cam_periph *periph)
5632 {
5633 	struct ccb_pathinq cpi;
5634 	union ccb *ccb;
5635 	probe_softc *softc;
5636 
5637 	softc = (probe_softc *)periph->softc;
5638 	ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
5639 
5640 	xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1);
5641 	cpi.ccb_h.func_code = XPT_PATH_INQ;
5642 	xpt_action((union ccb *)&cpi);
5643 
5644 	/*
5645 	 * If a device has gone away and another device, or the same one,
5646 	 * is back in the same place, it should have a unit attention
5647 	 * condition pending.  It will not report the unit attention in
5648 	 * response to an inquiry, which may leave invalid transfer
5649 	 * negotiations in effect.  The TUR will reveal the unit attention
5650 	 * condition.  Only send the TUR for lun 0, since some devices
5651 	 * will get confused by commands other than inquiry to non-existent
5652 	 * luns.  If you think a device has gone away start your scan from
5653 	 * lun 0.  This will insure that any bogus transfer settings are
5654 	 * invalidated.
5655 	 *
5656 	 * If we haven't seen the device before and the controller supports
5657 	 * some kind of transfer negotiation, negotiate with the first
5658 	 * sent command if no bus reset was performed at startup.  This
5659 	 * ensures that the device is not confused by transfer negotiation
5660 	 * settings left over by loader or BIOS action.
5661 	 */
5662 	if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
5663 	 && (ccb->ccb_h.target_lun == 0)) {
5664 		softc->action = PROBE_TUR;
5665 	} else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0
5666 	      && (cpi.hba_misc & PIM_NOBUSRESET) != 0) {
5667 		proberequestdefaultnegotiation(periph);
5668 		softc->action = PROBE_INQUIRY;
5669 	} else {
5670 		softc->action = PROBE_INQUIRY;
5671 	}
5672 
5673 	if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE)
5674 		softc->flags |= PROBE_NO_ANNOUNCE;
5675 	else
5676 		softc->flags &= ~PROBE_NO_ANNOUNCE;
5677 
5678 	xpt_schedule(periph, ccb->ccb_h.pinfo.priority);
5679 }
5680 
5681 static void
5682 probestart(struct cam_periph *periph, union ccb *start_ccb)
5683 {
5684 	/* Probe the device that our peripheral driver points to */
5685 	struct ccb_scsiio *csio;
5686 	probe_softc *softc;
5687 
5688 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n"));
5689 
5690 	softc = (probe_softc *)periph->softc;
5691 	csio = &start_ccb->csio;
5692 
5693 	switch (softc->action) {
5694 	case PROBE_TUR:
5695 	case PROBE_TUR_FOR_NEGOTIATION:
5696 	case PROBE_DV_EXIT:
5697 	{
5698 		scsi_test_unit_ready(csio,
5699 				     /*retries*/4,
5700 				     probedone,
5701 				     MSG_SIMPLE_Q_TAG,
5702 				     SSD_FULL_SIZE,
5703 				     /*timeout*/60000);
5704 		break;
5705 	}
5706 	case PROBE_INQUIRY:
5707 	case PROBE_FULL_INQUIRY:
5708 	case PROBE_INQUIRY_BASIC_DV1:
5709 	case PROBE_INQUIRY_BASIC_DV2:
5710 	{
5711 		u_int inquiry_len;
5712 		struct scsi_inquiry_data *inq_buf;
5713 
5714 		inq_buf = &periph->path->device->inq_data;
5715 
5716 		/*
5717 		 * If the device is currently configured, we calculate an
5718 		 * MD5 checksum of the inquiry data, and if the serial number
5719 		 * length is greater than 0, add the serial number data
5720 		 * into the checksum as well.  Once the inquiry and the
5721 		 * serial number check finish, we attempt to figure out
5722 		 * whether we still have the same device.
5723 		 */
5724 		if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) {
5725 
5726 			MD5Init(&softc->context);
5727 			MD5Update(&softc->context, (unsigned char *)inq_buf,
5728 				  sizeof(struct scsi_inquiry_data));
5729 			softc->flags |= PROBE_INQUIRY_CKSUM;
5730 			if (periph->path->device->serial_num_len > 0) {
5731 				MD5Update(&softc->context,
5732 					  periph->path->device->serial_num,
5733 					  periph->path->device->serial_num_len);
5734 				softc->flags |= PROBE_SERIAL_CKSUM;
5735 			}
5736 			MD5Final(softc->digest, &softc->context);
5737 		}
5738 
5739 		if (softc->action == PROBE_INQUIRY)
5740 			inquiry_len = SHORT_INQUIRY_LENGTH;
5741 		else
5742 			inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf);
5743 
5744 		/*
5745 		 * Some parallel SCSI devices fail to send an
5746 		 * ignore wide residue message when dealing with
5747 		 * odd length inquiry requests.  Round up to be
5748 		 * safe.
5749 		 */
5750 		inquiry_len = roundup2(inquiry_len, 2);
5751 
5752 		if (softc->action == PROBE_INQUIRY_BASIC_DV1
5753 		 || softc->action == PROBE_INQUIRY_BASIC_DV2) {
5754 			inq_buf = malloc(inquiry_len, M_TEMP, M_NOWAIT);
5755 		}
5756 		if (inq_buf == NULL) {
5757 			xpt_print(periph->path, "malloc failure- skipping Basic"
5758 			    "Domain Validation\n");
5759 			softc->action = PROBE_DV_EXIT;
5760 			scsi_test_unit_ready(csio,
5761 					     /*retries*/4,
5762 					     probedone,
5763 					     MSG_SIMPLE_Q_TAG,
5764 					     SSD_FULL_SIZE,
5765 					     /*timeout*/60000);
5766 			break;
5767 		}
5768 		scsi_inquiry(csio,
5769 			     /*retries*/4,
5770 			     probedone,
5771 			     MSG_SIMPLE_Q_TAG,
5772 			     (u_int8_t *)inq_buf,
5773 			     inquiry_len,
5774 			     /*evpd*/FALSE,
5775 			     /*page_code*/0,
5776 			     SSD_MIN_SIZE,
5777 			     /*timeout*/60 * 1000);
5778 		break;
5779 	}
5780 	case PROBE_MODE_SENSE:
5781 	{
5782 		void  *mode_buf;
5783 		int    mode_buf_len;
5784 
5785 		mode_buf_len = sizeof(struct scsi_mode_header_6)
5786 			     + sizeof(struct scsi_mode_blk_desc)
5787 			     + sizeof(struct scsi_control_page);
5788 		mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT);
5789 		if (mode_buf != NULL) {
5790 	                scsi_mode_sense(csio,
5791 					/*retries*/4,
5792 					probedone,
5793 					MSG_SIMPLE_Q_TAG,
5794 					/*dbd*/FALSE,
5795 					SMS_PAGE_CTRL_CURRENT,
5796 					SMS_CONTROL_MODE_PAGE,
5797 					mode_buf,
5798 					mode_buf_len,
5799 					SSD_FULL_SIZE,
5800 					/*timeout*/60000);
5801 			break;
5802 		}
5803 		xpt_print(periph->path, "Unable to mode sense control page - "
5804 		    "malloc failure\n");
5805 		softc->action = PROBE_SERIAL_NUM;
5806 	}
5807 	/* FALLTHROUGH */
5808 	case PROBE_SERIAL_NUM:
5809 	{
5810 		struct scsi_vpd_unit_serial_number *serial_buf;
5811 		struct cam_ed* device;
5812 
5813 		serial_buf = NULL;
5814 		device = periph->path->device;
5815 		device->serial_num = NULL;
5816 		device->serial_num_len = 0;
5817 
5818 		if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0)
5819 			serial_buf = (struct scsi_vpd_unit_serial_number *)
5820 				malloc(sizeof(*serial_buf), M_TEMP,
5821 					M_NOWAIT | M_ZERO);
5822 
5823 		if (serial_buf != NULL) {
5824 			scsi_inquiry(csio,
5825 				     /*retries*/4,
5826 				     probedone,
5827 				     MSG_SIMPLE_Q_TAG,
5828 				     (u_int8_t *)serial_buf,
5829 				     sizeof(*serial_buf),
5830 				     /*evpd*/TRUE,
5831 				     SVPD_UNIT_SERIAL_NUMBER,
5832 				     SSD_MIN_SIZE,
5833 				     /*timeout*/60 * 1000);
5834 			break;
5835 		}
5836 		/*
5837 		 * We'll have to do without, let our probedone
5838 		 * routine finish up for us.
5839 		 */
5840 		start_ccb->csio.data_ptr = NULL;
5841 		probedone(periph, start_ccb);
5842 		return;
5843 	}
5844 	}
5845 	xpt_action(start_ccb);
5846 }
5847 
5848 static void
5849 proberequestdefaultnegotiation(struct cam_periph *periph)
5850 {
5851 	struct ccb_trans_settings cts;
5852 
5853 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5854 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5855 	cts.type = CTS_TYPE_USER_SETTINGS;
5856 	xpt_action((union ccb *)&cts);
5857 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5858 		return;
5859 	}
5860 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5861 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5862 	xpt_action((union ccb *)&cts);
5863 }
5864 
5865 /*
5866  * Backoff Negotiation Code- only pertinent for SPI devices.
5867  */
5868 static int
5869 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device)
5870 {
5871 	struct ccb_trans_settings cts;
5872 	struct ccb_trans_settings_spi *spi;
5873 
5874 	memset(&cts, 0, sizeof (cts));
5875 	xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1);
5876 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
5877 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
5878 	xpt_action((union ccb *)&cts);
5879 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5880 		if (bootverbose) {
5881 			xpt_print(periph->path,
5882 			    "failed to get current device settings\n");
5883 		}
5884 		return (0);
5885 	}
5886 	if (cts.transport != XPORT_SPI) {
5887 		if (bootverbose) {
5888 			xpt_print(periph->path, "not SPI transport\n");
5889 		}
5890 		return (0);
5891 	}
5892 	spi = &cts.xport_specific.spi;
5893 
5894 	/*
5895 	 * We cannot renegotiate sync rate if we don't have one.
5896 	 */
5897 	if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
5898 		if (bootverbose) {
5899 			xpt_print(periph->path, "no sync rate known\n");
5900 		}
5901 		return (0);
5902 	}
5903 
5904 	/*
5905 	 * We'll assert that we don't have to touch PPR options- the
5906 	 * SIM will see what we do with period and offset and adjust
5907 	 * the PPR options as appropriate.
5908 	 */
5909 
5910 	/*
5911 	 * A sync rate with unknown or zero offset is nonsensical.
5912 	 * A sync period of zero means Async.
5913 	 */
5914 	if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0
5915 	 || spi->sync_offset == 0 || spi->sync_period == 0) {
5916 		if (bootverbose) {
5917 			xpt_print(periph->path, "no sync rate available\n");
5918 		}
5919 		return (0);
5920 	}
5921 
5922 	if (device->flags & CAM_DEV_DV_HIT_BOTTOM) {
5923 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5924 		    ("hit async: giving up on DV\n"));
5925 		return (0);
5926 	}
5927 
5928 
5929 	/*
5930 	 * Jump sync_period up by one, but stop at 5MHz and fall back to Async.
5931 	 * We don't try to remember 'last' settings to see if the SIM actually
5932 	 * gets into the speed we want to set. We check on the SIM telling
5933 	 * us that a requested speed is bad, but otherwise don't try and
5934 	 * check the speed due to the asynchronous and handshake nature
5935 	 * of speed setting.
5936 	 */
5937 	spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET;
5938 	for (;;) {
5939 		spi->sync_period++;
5940 		if (spi->sync_period >= 0xf) {
5941 			spi->sync_period = 0;
5942 			spi->sync_offset = 0;
5943 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5944 			    ("setting to async for DV\n"));
5945 			/*
5946 			 * Once we hit async, we don't want to try
5947 			 * any more settings.
5948 			 */
5949 			device->flags |= CAM_DEV_DV_HIT_BOTTOM;
5950 		} else if (bootverbose) {
5951 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5952 			    ("DV: period 0x%x\n", spi->sync_period));
5953 			printf("setting period to 0x%x\n", spi->sync_period);
5954 		}
5955 		cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
5956 		cts.type = CTS_TYPE_CURRENT_SETTINGS;
5957 		xpt_action((union ccb *)&cts);
5958 		if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
5959 			break;
5960 		}
5961 		CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
5962 		    ("DV: failed to set period 0x%x\n", spi->sync_period));
5963 		if (spi->sync_period == 0) {
5964 			return (0);
5965 		}
5966 	}
5967 	return (1);
5968 }
5969 
5970 static void
5971 probedone(struct cam_periph *periph, union ccb *done_ccb)
5972 {
5973 	probe_softc *softc;
5974 	struct cam_path *path;
5975 	u_int32_t  priority;
5976 
5977 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n"));
5978 
5979 	softc = (probe_softc *)periph->softc;
5980 	path = done_ccb->ccb_h.path;
5981 	priority = done_ccb->ccb_h.pinfo.priority;
5982 
5983 	switch (softc->action) {
5984 	case PROBE_TUR:
5985 	{
5986 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
5987 
5988 			if (cam_periph_error(done_ccb, 0,
5989 					     SF_NO_PRINT, NULL) == ERESTART)
5990 				return;
5991 			else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
5992 				/* Don't wedge the queue */
5993 				xpt_release_devq(done_ccb->ccb_h.path,
5994 						 /*count*/1,
5995 						 /*run_queue*/TRUE);
5996 		}
5997 		softc->action = PROBE_INQUIRY;
5998 		xpt_release_ccb(done_ccb);
5999 		xpt_schedule(periph, priority);
6000 		return;
6001 	}
6002 	case PROBE_INQUIRY:
6003 	case PROBE_FULL_INQUIRY:
6004 	{
6005 		if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6006 			struct scsi_inquiry_data *inq_buf;
6007 			u_int8_t periph_qual;
6008 
6009 			path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID;
6010 			inq_buf = &path->device->inq_data;
6011 
6012 			periph_qual = SID_QUAL(inq_buf);
6013 
6014 			switch(periph_qual) {
6015 			case SID_QUAL_LU_CONNECTED:
6016 			{
6017 				u_int8_t len;
6018 
6019 				/*
6020 				 * We conservatively request only
6021 				 * SHORT_INQUIRY_LEN bytes of inquiry
6022 				 * information during our first try
6023 				 * at sending an INQUIRY. If the device
6024 				 * has more information to give,
6025 				 * perform a second request specifying
6026 				 * the amount of information the device
6027 				 * is willing to give.
6028 				 */
6029 				len = inq_buf->additional_length
6030 				    + offsetof(struct scsi_inquiry_data,
6031                                                additional_length) + 1;
6032 				if (softc->action == PROBE_INQUIRY
6033 				 && len > SHORT_INQUIRY_LENGTH) {
6034 					softc->action = PROBE_FULL_INQUIRY;
6035 					xpt_release_ccb(done_ccb);
6036 					xpt_schedule(periph, priority);
6037 					return;
6038 				}
6039 
6040 				xpt_find_quirk(path->device);
6041 
6042 				xpt_devise_transport(path);
6043 				if (INQ_DATA_TQ_ENABLED(inq_buf))
6044 					softc->action = PROBE_MODE_SENSE;
6045 				else
6046 					softc->action = PROBE_SERIAL_NUM;
6047 
6048 				path->device->flags &= ~CAM_DEV_UNCONFIGURED;
6049 
6050 				xpt_release_ccb(done_ccb);
6051 				xpt_schedule(periph, priority);
6052 				return;
6053 			}
6054 			default:
6055 				break;
6056 			}
6057 		} else if (cam_periph_error(done_ccb, 0,
6058 					    done_ccb->ccb_h.target_lun > 0
6059 					    ? SF_RETRY_UA|SF_QUIET_IR
6060 					    : SF_RETRY_UA,
6061 					    &softc->saved_ccb) == ERESTART) {
6062 			return;
6063 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6064 			/* Don't wedge the queue */
6065 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6066 					 /*run_queue*/TRUE);
6067 		}
6068 		/*
6069 		 * If we get to this point, we got an error status back
6070 		 * from the inquiry and the error status doesn't require
6071 		 * automatically retrying the command.  Therefore, the
6072 		 * inquiry failed.  If we had inquiry information before
6073 		 * for this device, but this latest inquiry command failed,
6074 		 * the device has probably gone away.  If this device isn't
6075 		 * already marked unconfigured, notify the peripheral
6076 		 * drivers that this device is no more.
6077 		 */
6078 		if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0)
6079 			/* Send the async notification. */
6080 			xpt_async(AC_LOST_DEVICE, path, NULL);
6081 
6082 		xpt_release_ccb(done_ccb);
6083 		break;
6084 	}
6085 	case PROBE_MODE_SENSE:
6086 	{
6087 		struct ccb_scsiio *csio;
6088 		struct scsi_mode_header_6 *mode_hdr;
6089 
6090 		csio = &done_ccb->csio;
6091 		mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr;
6092 		if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
6093 			struct scsi_control_page *page;
6094 			u_int8_t *offset;
6095 
6096 			offset = ((u_int8_t *)&mode_hdr[1])
6097 			    + mode_hdr->blk_desc_len;
6098 			page = (struct scsi_control_page *)offset;
6099 			path->device->queue_flags = page->queue_flags;
6100 		} else if (cam_periph_error(done_ccb, 0,
6101 					    SF_RETRY_UA|SF_NO_PRINT,
6102 					    &softc->saved_ccb) == ERESTART) {
6103 			return;
6104 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6105 			/* Don't wedge the queue */
6106 			xpt_release_devq(done_ccb->ccb_h.path,
6107 					 /*count*/1, /*run_queue*/TRUE);
6108 		}
6109 		xpt_release_ccb(done_ccb);
6110 		free(mode_hdr, M_TEMP);
6111 		softc->action = PROBE_SERIAL_NUM;
6112 		xpt_schedule(periph, priority);
6113 		return;
6114 	}
6115 	case PROBE_SERIAL_NUM:
6116 	{
6117 		struct ccb_scsiio *csio;
6118 		struct scsi_vpd_unit_serial_number *serial_buf;
6119 		u_int32_t  priority;
6120 		int changed;
6121 		int have_serialnum;
6122 
6123 		changed = 1;
6124 		have_serialnum = 0;
6125 		csio = &done_ccb->csio;
6126 		priority = done_ccb->ccb_h.pinfo.priority;
6127 		serial_buf =
6128 		    (struct scsi_vpd_unit_serial_number *)csio->data_ptr;
6129 
6130 		/* Clean up from previous instance of this device */
6131 		if (path->device->serial_num != NULL) {
6132 			free(path->device->serial_num, M_CAMXPT);
6133 			path->device->serial_num = NULL;
6134 			path->device->serial_num_len = 0;
6135 		}
6136 
6137 		if (serial_buf == NULL) {
6138 			/*
6139 			 * Don't process the command as it was never sent
6140 			 */
6141 		} else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP
6142 			&& (serial_buf->length > 0)) {
6143 
6144 			have_serialnum = 1;
6145 			path->device->serial_num =
6146 				(u_int8_t *)malloc((serial_buf->length + 1),
6147 						   M_CAMXPT, M_NOWAIT);
6148 			if (path->device->serial_num != NULL) {
6149 				bcopy(serial_buf->serial_num,
6150 				      path->device->serial_num,
6151 				      serial_buf->length);
6152 				path->device->serial_num_len =
6153 				    serial_buf->length;
6154 				path->device->serial_num[serial_buf->length]
6155 				    = '\0';
6156 			}
6157 		} else if (cam_periph_error(done_ccb, 0,
6158 					    SF_RETRY_UA|SF_NO_PRINT,
6159 					    &softc->saved_ccb) == ERESTART) {
6160 			return;
6161 		} else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6162 			/* Don't wedge the queue */
6163 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6164 					 /*run_queue*/TRUE);
6165 		}
6166 
6167 		/*
6168 		 * Let's see if we have seen this device before.
6169 		 */
6170 		if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) {
6171 			MD5_CTX context;
6172 			u_int8_t digest[16];
6173 
6174 			MD5Init(&context);
6175 
6176 			MD5Update(&context,
6177 				  (unsigned char *)&path->device->inq_data,
6178 				  sizeof(struct scsi_inquiry_data));
6179 
6180 			if (have_serialnum)
6181 				MD5Update(&context, serial_buf->serial_num,
6182 					  serial_buf->length);
6183 
6184 			MD5Final(digest, &context);
6185 			if (bcmp(softc->digest, digest, 16) == 0)
6186 				changed = 0;
6187 
6188 			/*
6189 			 * XXX Do we need to do a TUR in order to ensure
6190 			 *     that the device really hasn't changed???
6191 			 */
6192 			if ((changed != 0)
6193 			 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0))
6194 				xpt_async(AC_LOST_DEVICE, path, NULL);
6195 		}
6196 		if (serial_buf != NULL)
6197 			free(serial_buf, M_TEMP);
6198 
6199 		if (changed != 0) {
6200 			/*
6201 			 * Now that we have all the necessary
6202 			 * information to safely perform transfer
6203 			 * negotiations... Controllers don't perform
6204 			 * any negotiation or tagged queuing until
6205 			 * after the first XPT_SET_TRAN_SETTINGS ccb is
6206 			 * received.  So, on a new device, just retrieve
6207 			 * the user settings, and set them as the current
6208 			 * settings to set the device up.
6209 			 */
6210 			proberequestdefaultnegotiation(periph);
6211 			xpt_release_ccb(done_ccb);
6212 
6213 			/*
6214 			 * Perform a TUR to allow the controller to
6215 			 * perform any necessary transfer negotiation.
6216 			 */
6217 			softc->action = PROBE_TUR_FOR_NEGOTIATION;
6218 			xpt_schedule(periph, priority);
6219 			return;
6220 		}
6221 		xpt_release_ccb(done_ccb);
6222 		break;
6223 	}
6224 	case PROBE_TUR_FOR_NEGOTIATION:
6225 	case PROBE_DV_EXIT:
6226 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6227 			/* Don't wedge the queue */
6228 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6229 					 /*run_queue*/TRUE);
6230 		}
6231 		/*
6232 		 * Do Domain Validation for lun 0 on devices that claim
6233 		 * to support Synchronous Transfer modes.
6234 		 */
6235 	 	if (softc->action == PROBE_TUR_FOR_NEGOTIATION
6236 		 && done_ccb->ccb_h.target_lun == 0
6237 		 && (path->device->inq_data.flags & SID_Sync) != 0
6238                  && (path->device->flags & CAM_DEV_IN_DV) == 0) {
6239 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6240 			    ("Begin Domain Validation\n"));
6241 			path->device->flags |= CAM_DEV_IN_DV;
6242 			xpt_release_ccb(done_ccb);
6243 			softc->action = PROBE_INQUIRY_BASIC_DV1;
6244 			xpt_schedule(periph, priority);
6245 			return;
6246 		}
6247 		if (softc->action == PROBE_DV_EXIT) {
6248 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6249 			    ("Leave Domain Validation\n"));
6250 		}
6251 		path->device->flags &=
6252 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6253 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6254 			/* Inform the XPT that a new device has been found */
6255 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6256 			xpt_action(done_ccb);
6257 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6258 				  done_ccb);
6259 		}
6260 		xpt_release_ccb(done_ccb);
6261 		break;
6262 	case PROBE_INQUIRY_BASIC_DV1:
6263 	case PROBE_INQUIRY_BASIC_DV2:
6264 	{
6265 		struct scsi_inquiry_data *nbuf;
6266 		struct ccb_scsiio *csio;
6267 
6268 		if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) {
6269 			/* Don't wedge the queue */
6270 			xpt_release_devq(done_ccb->ccb_h.path, /*count*/1,
6271 					 /*run_queue*/TRUE);
6272 		}
6273 		csio = &done_ccb->csio;
6274 		nbuf = (struct scsi_inquiry_data *)csio->data_ptr;
6275 		if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) {
6276 			xpt_print(path,
6277 			    "inquiry data fails comparison at DV%d step\n",
6278 			    softc->action == PROBE_INQUIRY_BASIC_DV1? 1 : 2);
6279 			if (proberequestbackoff(periph, path->device)) {
6280 				path->device->flags &= ~CAM_DEV_IN_DV;
6281 				softc->action = PROBE_TUR_FOR_NEGOTIATION;
6282 			} else {
6283 				/* give up */
6284 				softc->action = PROBE_DV_EXIT;
6285 			}
6286 			free(nbuf, M_TEMP);
6287 			xpt_release_ccb(done_ccb);
6288 			xpt_schedule(periph, priority);
6289 			return;
6290 		}
6291 		free(nbuf, M_TEMP);
6292 		if (softc->action == PROBE_INQUIRY_BASIC_DV1) {
6293 			softc->action = PROBE_INQUIRY_BASIC_DV2;
6294 			xpt_release_ccb(done_ccb);
6295 			xpt_schedule(periph, priority);
6296 			return;
6297 		}
6298 		if (softc->action == PROBE_DV_EXIT) {
6299 			CAM_DEBUG(periph->path, CAM_DEBUG_INFO,
6300 			    ("Leave Domain Validation Successfully\n"));
6301 		}
6302 		path->device->flags &=
6303 		    ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM);
6304 		if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) {
6305 			/* Inform the XPT that a new device has been found */
6306 			done_ccb->ccb_h.func_code = XPT_GDEV_TYPE;
6307 			xpt_action(done_ccb);
6308 			xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path,
6309 				  done_ccb);
6310 		}
6311 		xpt_release_ccb(done_ccb);
6312 		break;
6313 	}
6314 	}
6315 	done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs);
6316 	TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe);
6317 	done_ccb->ccb_h.status = CAM_REQ_CMP;
6318 	xpt_done(done_ccb);
6319 	if (TAILQ_FIRST(&softc->request_ccbs) == NULL) {
6320 		cam_periph_invalidate(periph);
6321 		cam_periph_release(periph);
6322 	} else {
6323 		probeschedule(periph);
6324 	}
6325 }
6326 
6327 static void
6328 probecleanup(struct cam_periph *periph)
6329 {
6330 	free(periph->softc, M_TEMP);
6331 }
6332 
6333 static void
6334 xpt_find_quirk(struct cam_ed *device)
6335 {
6336 	caddr_t	match;
6337 
6338 	match = cam_quirkmatch((caddr_t)&device->inq_data,
6339 			       (caddr_t)xpt_quirk_table,
6340 			       sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table),
6341 			       sizeof(*xpt_quirk_table), scsi_inquiry_match);
6342 
6343 	if (match == NULL)
6344 		panic("xpt_find_quirk: device didn't match wildcard entry!!");
6345 
6346 	device->quirk = (struct xpt_quirk_entry *)match;
6347 }
6348 
6349 static int
6350 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS)
6351 {
6352 	int error, bool;
6353 
6354 	bool = cam_srch_hi;
6355 	error = sysctl_handle_int(oidp, &bool, sizeof(bool), req);
6356 	if (error != 0 || req->newptr == NULL)
6357 		return (error);
6358 	if (bool == 0 || bool == 1) {
6359 		cam_srch_hi = bool;
6360 		return (0);
6361 	} else {
6362 		return (EINVAL);
6363 	}
6364 }
6365 
6366 
6367 static void
6368 xpt_devise_transport(struct cam_path *path)
6369 {
6370 	struct ccb_pathinq cpi;
6371 	struct ccb_trans_settings cts;
6372 	struct scsi_inquiry_data *inq_buf;
6373 
6374 	/* Get transport information from the SIM */
6375 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
6376 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6377 	xpt_action((union ccb *)&cpi);
6378 
6379 	inq_buf = NULL;
6380 	if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0)
6381 		inq_buf = &path->device->inq_data;
6382 	path->device->protocol = PROTO_SCSI;
6383 	path->device->protocol_version =
6384 	    inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version;
6385 	path->device->transport = cpi.transport;
6386 	path->device->transport_version = cpi.transport_version;
6387 
6388 	/*
6389 	 * Any device not using SPI3 features should
6390 	 * be considered SPI2 or lower.
6391 	 */
6392 	if (inq_buf != NULL) {
6393 		if (path->device->transport == XPORT_SPI
6394 		 && (inq_buf->spi3data & SID_SPI_MASK) == 0
6395 		 && path->device->transport_version > 2)
6396 			path->device->transport_version = 2;
6397 	} else {
6398 		struct cam_ed* otherdev;
6399 
6400 		for (otherdev = TAILQ_FIRST(&path->target->ed_entries);
6401 		     otherdev != NULL;
6402 		     otherdev = TAILQ_NEXT(otherdev, links)) {
6403 			if (otherdev != path->device)
6404 				break;
6405 		}
6406 
6407 		if (otherdev != NULL) {
6408 			/*
6409 			 * Initially assume the same versioning as
6410 			 * prior luns for this target.
6411 			 */
6412 			path->device->protocol_version =
6413 			    otherdev->protocol_version;
6414 			path->device->transport_version =
6415 			    otherdev->transport_version;
6416 		} else {
6417 			/* Until we know better, opt for safty */
6418 			path->device->protocol_version = 2;
6419 			if (path->device->transport == XPORT_SPI)
6420 				path->device->transport_version = 2;
6421 			else
6422 				path->device->transport_version = 0;
6423 		}
6424 	}
6425 
6426 	/*
6427 	 * XXX
6428 	 * For a device compliant with SPC-2 we should be able
6429 	 * to determine the transport version supported by
6430 	 * scrutinizing the version descriptors in the
6431 	 * inquiry buffer.
6432 	 */
6433 
6434 	/* Tell the controller what we think */
6435 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
6436 	cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS;
6437 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
6438 	cts.transport = path->device->transport;
6439 	cts.transport_version = path->device->transport_version;
6440 	cts.protocol = path->device->protocol;
6441 	cts.protocol_version = path->device->protocol_version;
6442 	cts.proto_specific.valid = 0;
6443 	cts.xport_specific.valid = 0;
6444 	xpt_action((union ccb *)&cts);
6445 }
6446 
6447 static void
6448 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device,
6449 			  int async_update)
6450 {
6451 	struct	ccb_pathinq cpi;
6452 	struct	ccb_trans_settings cur_cts;
6453 	struct	ccb_trans_settings_scsi *scsi;
6454 	struct	ccb_trans_settings_scsi *cur_scsi;
6455 	struct	cam_sim *sim;
6456 	struct	scsi_inquiry_data *inq_data;
6457 
6458 	if (device == NULL) {
6459 		cts->ccb_h.status = CAM_PATH_INVALID;
6460 		xpt_done((union ccb *)cts);
6461 		return;
6462 	}
6463 
6464 	if (cts->protocol == PROTO_UNKNOWN
6465 	 || cts->protocol == PROTO_UNSPECIFIED) {
6466 		cts->protocol = device->protocol;
6467 		cts->protocol_version = device->protocol_version;
6468 	}
6469 
6470 	if (cts->protocol_version == PROTO_VERSION_UNKNOWN
6471 	 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED)
6472 		cts->protocol_version = device->protocol_version;
6473 
6474 	if (cts->protocol != device->protocol) {
6475 		xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n",
6476 		       cts->protocol, device->protocol);
6477 		cts->protocol = device->protocol;
6478 	}
6479 
6480 	if (cts->protocol_version > device->protocol_version) {
6481 		if (bootverbose) {
6482 			xpt_print(cts->ccb_h.path, "Down reving Protocol "
6483 			    "Version from %d to %d?\n", cts->protocol_version,
6484 			    device->protocol_version);
6485 		}
6486 		cts->protocol_version = device->protocol_version;
6487 	}
6488 
6489 	if (cts->transport == XPORT_UNKNOWN
6490 	 || cts->transport == XPORT_UNSPECIFIED) {
6491 		cts->transport = device->transport;
6492 		cts->transport_version = device->transport_version;
6493 	}
6494 
6495 	if (cts->transport_version == XPORT_VERSION_UNKNOWN
6496 	 || cts->transport_version == XPORT_VERSION_UNSPECIFIED)
6497 		cts->transport_version = device->transport_version;
6498 
6499 	if (cts->transport != device->transport) {
6500 		xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n",
6501 		    cts->transport, device->transport);
6502 		cts->transport = device->transport;
6503 	}
6504 
6505 	if (cts->transport_version > device->transport_version) {
6506 		if (bootverbose) {
6507 			xpt_print(cts->ccb_h.path, "Down reving Transport "
6508 			    "Version from %d to %d?\n", cts->transport_version,
6509 			    device->transport_version);
6510 		}
6511 		cts->transport_version = device->transport_version;
6512 	}
6513 
6514 	sim = cts->ccb_h.path->bus->sim;
6515 
6516 	/*
6517 	 * Nothing more of interest to do unless
6518 	 * this is a device connected via the
6519 	 * SCSI protocol.
6520 	 */
6521 	if (cts->protocol != PROTO_SCSI) {
6522 		if (async_update == FALSE)
6523 			(*(sim->sim_action))(sim, (union ccb *)cts);
6524 		return;
6525 	}
6526 
6527 	inq_data = &device->inq_data;
6528 	scsi = &cts->proto_specific.scsi;
6529 	xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1);
6530 	cpi.ccb_h.func_code = XPT_PATH_INQ;
6531 	xpt_action((union ccb *)&cpi);
6532 
6533 	/* SCSI specific sanity checking */
6534 	if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0
6535 	 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0
6536 	 || (device->queue_flags & SCP_QUEUE_DQUE) != 0
6537 	 || (device->quirk->mintags == 0)) {
6538 		/*
6539 		 * Can't tag on hardware that doesn't support tags,
6540 		 * doesn't have it enabled, or has broken tag support.
6541 		 */
6542 		scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6543 	}
6544 
6545 	if (async_update == FALSE) {
6546 		/*
6547 		 * Perform sanity checking against what the
6548 		 * controller and device can do.
6549 		 */
6550 		xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1);
6551 		cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
6552 		cur_cts.type = cts->type;
6553 		xpt_action((union ccb *)&cur_cts);
6554 		if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
6555 			return;
6556 		}
6557 		cur_scsi = &cur_cts.proto_specific.scsi;
6558 		if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) {
6559 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6560 			scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB;
6561 		}
6562 		if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0)
6563 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6564 	}
6565 
6566 	/* SPI specific sanity checking */
6567 	if (cts->transport == XPORT_SPI && async_update == FALSE) {
6568 		u_int spi3caps;
6569 		struct ccb_trans_settings_spi *spi;
6570 		struct ccb_trans_settings_spi *cur_spi;
6571 
6572 		spi = &cts->xport_specific.spi;
6573 
6574 		cur_spi = &cur_cts.xport_specific.spi;
6575 
6576 		/* Fill in any gaps in what the user gave us */
6577 		if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6578 			spi->sync_period = cur_spi->sync_period;
6579 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0)
6580 			spi->sync_period = 0;
6581 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6582 			spi->sync_offset = cur_spi->sync_offset;
6583 		if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0)
6584 			spi->sync_offset = 0;
6585 		if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6586 			spi->ppr_options = cur_spi->ppr_options;
6587 		if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0)
6588 			spi->ppr_options = 0;
6589 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6590 			spi->bus_width = cur_spi->bus_width;
6591 		if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0)
6592 			spi->bus_width = 0;
6593 		if ((spi->valid & CTS_SPI_VALID_DISC) == 0) {
6594 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6595 			spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB;
6596 		}
6597 		if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0)
6598 			spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
6599 		if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6600 		  && (inq_data->flags & SID_Sync) == 0
6601 		  && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6602 		 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0)
6603 		 || (spi->sync_offset == 0)
6604 		 || (spi->sync_period == 0)) {
6605 			/* Force async */
6606 			spi->sync_period = 0;
6607 			spi->sync_offset = 0;
6608 		}
6609 
6610 		switch (spi->bus_width) {
6611 		case MSG_EXT_WDTR_BUS_32_BIT:
6612 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6613 			  || (inq_data->flags & SID_WBus32) != 0
6614 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6615 			 && (cpi.hba_inquiry & PI_WIDE_32) != 0)
6616 				break;
6617 			/* Fall Through to 16-bit */
6618 		case MSG_EXT_WDTR_BUS_16_BIT:
6619 			if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0
6620 			  || (inq_data->flags & SID_WBus16) != 0
6621 			  || cts->type == CTS_TYPE_USER_SETTINGS)
6622 			 && (cpi.hba_inquiry & PI_WIDE_16) != 0) {
6623 				spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
6624 				break;
6625 			}
6626 			/* Fall Through to 8-bit */
6627 		default: /* New bus width?? */
6628 		case MSG_EXT_WDTR_BUS_8_BIT:
6629 			/* All targets can do this */
6630 			spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
6631 			break;
6632 		}
6633 
6634 		spi3caps = cpi.xport_specific.spi.ppr_options;
6635 		if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0
6636 		 && cts->type == CTS_TYPE_CURRENT_SETTINGS)
6637 			spi3caps &= inq_data->spi3data;
6638 
6639 		if ((spi3caps & SID_SPI_CLOCK_DT) == 0)
6640 			spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
6641 
6642 		if ((spi3caps & SID_SPI_IUS) == 0)
6643 			spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ;
6644 
6645 		if ((spi3caps & SID_SPI_QAS) == 0)
6646 			spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ;
6647 
6648 		/* No SPI Transfer settings are allowed unless we are wide */
6649 		if (spi->bus_width == 0)
6650 			spi->ppr_options = 0;
6651 
6652 		if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) {
6653 			/*
6654 			 * Can't tag queue without disconnection.
6655 			 */
6656 			scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
6657 			scsi->valid |= CTS_SCSI_VALID_TQ;
6658 		}
6659 
6660 		/*
6661 		 * If we are currently performing tagged transactions to
6662 		 * this device and want to change its negotiation parameters,
6663 		 * go non-tagged for a bit to give the controller a chance to
6664 		 * negotiate unhampered by tag messages.
6665 		 */
6666 		if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6667 		 && (device->inq_flags & SID_CmdQue) != 0
6668 		 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6669 		 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE|
6670 				   CTS_SPI_VALID_SYNC_OFFSET|
6671 				   CTS_SPI_VALID_BUS_WIDTH)) != 0)
6672 			xpt_toggle_tags(cts->ccb_h.path);
6673 	}
6674 
6675 	if (cts->type == CTS_TYPE_CURRENT_SETTINGS
6676 	 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
6677 		int device_tagenb;
6678 
6679 		/*
6680 		 * If we are transitioning from tags to no-tags or
6681 		 * vice-versa, we need to carefully freeze and restart
6682 		 * the queue so that we don't overlap tagged and non-tagged
6683 		 * commands.  We also temporarily stop tags if there is
6684 		 * a change in transfer negotiation settings to allow
6685 		 * "tag-less" negotiation.
6686 		 */
6687 		if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6688 		 || (device->inq_flags & SID_CmdQue) != 0)
6689 			device_tagenb = TRUE;
6690 		else
6691 			device_tagenb = FALSE;
6692 
6693 		if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0
6694 		  && device_tagenb == FALSE)
6695 		 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0
6696 		  && device_tagenb == TRUE)) {
6697 
6698 			if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) {
6699 				/*
6700 				 * Delay change to use tags until after a
6701 				 * few commands have gone to this device so
6702 				 * the controller has time to perform transfer
6703 				 * negotiations without tagged messages getting
6704 				 * in the way.
6705 				 */
6706 				device->tag_delay_count = CAM_TAG_DELAY_COUNT;
6707 				device->flags |= CAM_DEV_TAG_AFTER_COUNT;
6708 			} else {
6709 				struct ccb_relsim crs;
6710 
6711 				xpt_freeze_devq(cts->ccb_h.path, /*count*/1);
6712 		  		device->inq_flags &= ~SID_CmdQue;
6713 				xpt_dev_ccbq_resize(cts->ccb_h.path,
6714 						    sim->max_dev_openings);
6715 				device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6716 				device->tag_delay_count = 0;
6717 
6718 				xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path,
6719 					      /*priority*/1);
6720 				crs.ccb_h.func_code = XPT_REL_SIMQ;
6721 				crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6722 				crs.openings
6723 				    = crs.release_timeout
6724 				    = crs.qfrozen_cnt
6725 				    = 0;
6726 				xpt_action((union ccb *)&crs);
6727 			}
6728 		}
6729 	}
6730 	if (async_update == FALSE)
6731 		(*(sim->sim_action))(sim, (union ccb *)cts);
6732 }
6733 
6734 
6735 static void
6736 xpt_toggle_tags(struct cam_path *path)
6737 {
6738 	struct cam_ed *dev;
6739 
6740 	/*
6741 	 * Give controllers a chance to renegotiate
6742 	 * before starting tag operations.  We
6743 	 * "toggle" tagged queuing off then on
6744 	 * which causes the tag enable command delay
6745 	 * counter to come into effect.
6746 	 */
6747 	dev = path->device;
6748 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
6749 	 || ((dev->inq_flags & SID_CmdQue) != 0
6750  	  && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) {
6751 		struct ccb_trans_settings cts;
6752 
6753 		xpt_setup_ccb(&cts.ccb_h, path, 1);
6754 		cts.protocol = PROTO_SCSI;
6755 		cts.protocol_version = PROTO_VERSION_UNSPECIFIED;
6756 		cts.transport = XPORT_UNSPECIFIED;
6757 		cts.transport_version = XPORT_VERSION_UNSPECIFIED;
6758 		cts.proto_specific.scsi.flags = 0;
6759 		cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ;
6760 		xpt_set_transfer_settings(&cts, path->device,
6761 					  /*async_update*/TRUE);
6762 		cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB;
6763 		xpt_set_transfer_settings(&cts, path->device,
6764 					  /*async_update*/TRUE);
6765 	}
6766 }
6767 
6768 static void
6769 xpt_start_tags(struct cam_path *path)
6770 {
6771 	struct ccb_relsim crs;
6772 	struct cam_ed *device;
6773 	struct cam_sim *sim;
6774 	int    newopenings;
6775 
6776 	device = path->device;
6777 	sim = path->bus->sim;
6778 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
6779 	xpt_freeze_devq(path, /*count*/1);
6780 	device->inq_flags |= SID_CmdQue;
6781 	if (device->tag_saved_openings != 0)
6782 		newopenings = device->tag_saved_openings;
6783 	else
6784 		newopenings = min(device->quirk->maxtags,
6785 				  sim->max_tagged_dev_openings);
6786 	xpt_dev_ccbq_resize(path, newopenings);
6787 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
6788 	crs.ccb_h.func_code = XPT_REL_SIMQ;
6789 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
6790 	crs.openings
6791 	    = crs.release_timeout
6792 	    = crs.qfrozen_cnt
6793 	    = 0;
6794 	xpt_action((union ccb *)&crs);
6795 }
6796 
6797 static int busses_to_config;
6798 static int busses_to_reset;
6799 
6800 static int
6801 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
6802 {
6803 
6804 	mtx_assert(bus->sim->mtx, MA_OWNED);
6805 
6806 	if (bus->path_id != CAM_XPT_PATH_ID) {
6807 		struct cam_path path;
6808 		struct ccb_pathinq cpi;
6809 		int can_negotiate;
6810 
6811 		busses_to_config++;
6812 		xpt_compile_path(&path, NULL, bus->path_id,
6813 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
6814 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
6815 		cpi.ccb_h.func_code = XPT_PATH_INQ;
6816 		xpt_action((union ccb *)&cpi);
6817 		can_negotiate = cpi.hba_inquiry;
6818 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6819 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
6820 		 && can_negotiate)
6821 			busses_to_reset++;
6822 		xpt_release_path(&path);
6823 	}
6824 
6825 	return(1);
6826 }
6827 
6828 static int
6829 xptconfigfunc(struct cam_eb *bus, void *arg)
6830 {
6831 	struct	cam_path *path;
6832 	union	ccb *work_ccb;
6833 
6834 	mtx_assert(bus->sim->mtx, MA_OWNED);
6835 
6836 	if (bus->path_id != CAM_XPT_PATH_ID) {
6837 		cam_status status;
6838 		int can_negotiate;
6839 
6840 		work_ccb = xpt_alloc_ccb_nowait();
6841 		if (work_ccb == NULL) {
6842 			busses_to_config--;
6843 			xpt_finishconfig(xpt_periph, NULL);
6844 			return(0);
6845 		}
6846 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
6847 					      CAM_TARGET_WILDCARD,
6848 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
6849 			printf("xptconfigfunc: xpt_create_path failed with "
6850 			       "status %#x for bus %d\n", status, bus->path_id);
6851 			printf("xptconfigfunc: halting bus configuration\n");
6852 			xpt_free_ccb(work_ccb);
6853 			busses_to_config--;
6854 			xpt_finishconfig(xpt_periph, NULL);
6855 			return(0);
6856 		}
6857 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6858 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
6859 		xpt_action(work_ccb);
6860 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
6861 			printf("xptconfigfunc: CPI failed on bus %d "
6862 			       "with status %d\n", bus->path_id,
6863 			       work_ccb->ccb_h.status);
6864 			xpt_finishconfig(xpt_periph, work_ccb);
6865 			return(1);
6866 		}
6867 
6868 		can_negotiate = work_ccb->cpi.hba_inquiry;
6869 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
6870 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
6871 		 && (can_negotiate != 0)) {
6872 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
6873 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6874 			work_ccb->ccb_h.cbfcnp = NULL;
6875 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
6876 				  ("Resetting Bus\n"));
6877 			xpt_action(work_ccb);
6878 			xpt_finishconfig(xpt_periph, work_ccb);
6879 		} else {
6880 			/* Act as though we performed a successful BUS RESET */
6881 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
6882 			xpt_finishconfig(xpt_periph, work_ccb);
6883 		}
6884 	}
6885 
6886 	return(1);
6887 }
6888 
6889 static void
6890 xpt_config(void *arg)
6891 {
6892 	/*
6893 	 * Now that interrupts are enabled, go find our devices
6894 	 */
6895 
6896 #ifdef CAMDEBUG
6897 	/* Setup debugging flags and path */
6898 #ifdef CAM_DEBUG_FLAGS
6899 	cam_dflags = CAM_DEBUG_FLAGS;
6900 #else /* !CAM_DEBUG_FLAGS */
6901 	cam_dflags = CAM_DEBUG_NONE;
6902 #endif /* CAM_DEBUG_FLAGS */
6903 #ifdef CAM_DEBUG_BUS
6904 	if (cam_dflags != CAM_DEBUG_NONE) {
6905 		/*
6906 		 * Locking is specifically omitted here.  No SIMs have
6907 		 * registered yet, so xpt_create_path will only be searching
6908 		 * empty lists of targets and devices.
6909 		 */
6910 		if (xpt_create_path(&cam_dpath, xpt_periph,
6911 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
6912 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
6913 			printf("xpt_config: xpt_create_path() failed for debug"
6914 			       " target %d:%d:%d, debugging disabled\n",
6915 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
6916 			cam_dflags = CAM_DEBUG_NONE;
6917 		}
6918 	} else
6919 		cam_dpath = NULL;
6920 #else /* !CAM_DEBUG_BUS */
6921 	cam_dpath = NULL;
6922 #endif /* CAM_DEBUG_BUS */
6923 #endif /* CAMDEBUG */
6924 
6925 	/*
6926 	 * Scan all installed busses.
6927 	 */
6928 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
6929 
6930 	if (busses_to_config == 0) {
6931 		/* Call manually because we don't have any busses */
6932 		xpt_finishconfig(xpt_periph, NULL);
6933 	} else  {
6934 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
6935 			printf("Waiting %d seconds for SCSI "
6936 			       "devices to settle\n", scsi_delay/1000);
6937 		}
6938 		xpt_for_all_busses(xptconfigfunc, NULL);
6939 	}
6940 }
6941 
6942 /*
6943  * If the given device only has one peripheral attached to it, and if that
6944  * peripheral is the passthrough driver, announce it.  This insures that the
6945  * user sees some sort of announcement for every peripheral in their system.
6946  */
6947 static int
6948 xptpassannouncefunc(struct cam_ed *device, void *arg)
6949 {
6950 	struct cam_periph *periph;
6951 	int i;
6952 
6953 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
6954 	     periph = SLIST_NEXT(periph, periph_links), i++);
6955 
6956 	periph = SLIST_FIRST(&device->periphs);
6957 	if ((i == 1)
6958 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
6959 		xpt_announce_periph(periph, NULL);
6960 
6961 	return(1);
6962 }
6963 
6964 static void
6965 xpt_finishconfig_task(void *context, int pending)
6966 {
6967 	struct	periph_driver **p_drv;
6968 	int	i;
6969 
6970 	if (busses_to_config == 0) {
6971 		/* Register all the peripheral drivers */
6972 		/* XXX This will have to change when we have loadable modules */
6973 		p_drv = periph_drivers;
6974 		for (i = 0; p_drv[i] != NULL; i++) {
6975 			(*p_drv[i]->init)();
6976 		}
6977 
6978 		/*
6979 		 * Check for devices with no "standard" peripheral driver
6980 		 * attached.  For any devices like that, announce the
6981 		 * passthrough driver so the user will see something.
6982 		 */
6983 		xpt_for_all_devices(xptpassannouncefunc, NULL);
6984 
6985 		/* Release our hook so that the boot can continue. */
6986 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
6987 		free(xsoftc.xpt_config_hook, M_TEMP);
6988 		xsoftc.xpt_config_hook = NULL;
6989 	}
6990 
6991 	free(context, M_CAMXPT);
6992 }
6993 
6994 static void
6995 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
6996 {
6997 	struct	xpt_task *task;
6998 
6999 	if (done_ccb != NULL) {
7000 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
7001 			  ("xpt_finishconfig\n"));
7002 		switch(done_ccb->ccb_h.func_code) {
7003 		case XPT_RESET_BUS:
7004 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
7005 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
7006 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
7007 				done_ccb->crcn.flags = 0;
7008 				xpt_action(done_ccb);
7009 				return;
7010 			}
7011 			/* FALLTHROUGH */
7012 		case XPT_SCAN_BUS:
7013 		default:
7014 			xpt_free_path(done_ccb->ccb_h.path);
7015 			busses_to_config--;
7016 			break;
7017 		}
7018 	}
7019 
7020 	task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
7021 	if (task != NULL) {
7022 		TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
7023 		taskqueue_enqueue(taskqueue_thread, &task->task);
7024 	}
7025 
7026 	if (done_ccb != NULL)
7027 		xpt_free_ccb(done_ccb);
7028 }
7029 
7030 static void
7031 xptaction(struct cam_sim *sim, union ccb *work_ccb)
7032 {
7033 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
7034 
7035 	switch (work_ccb->ccb_h.func_code) {
7036 	/* Common cases first */
7037 	case XPT_PATH_INQ:		/* Path routing inquiry */
7038 	{
7039 		struct ccb_pathinq *cpi;
7040 
7041 		cpi = &work_ccb->cpi;
7042 		cpi->version_num = 1; /* XXX??? */
7043 		cpi->hba_inquiry = 0;
7044 		cpi->target_sprt = 0;
7045 		cpi->hba_misc = 0;
7046 		cpi->hba_eng_cnt = 0;
7047 		cpi->max_target = 0;
7048 		cpi->max_lun = 0;
7049 		cpi->initiator_id = 0;
7050 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
7051 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
7052 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
7053 		cpi->unit_number = sim->unit_number;
7054 		cpi->bus_id = sim->bus_id;
7055 		cpi->base_transfer_speed = 0;
7056 		cpi->protocol = PROTO_UNSPECIFIED;
7057 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
7058 		cpi->transport = XPORT_UNSPECIFIED;
7059 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
7060 		cpi->ccb_h.status = CAM_REQ_CMP;
7061 		xpt_done(work_ccb);
7062 		break;
7063 	}
7064 	default:
7065 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
7066 		xpt_done(work_ccb);
7067 		break;
7068 	}
7069 }
7070 
7071 /*
7072  * The xpt as a "controller" has no interrupt sources, so polling
7073  * is a no-op.
7074  */
7075 static void
7076 xptpoll(struct cam_sim *sim)
7077 {
7078 }
7079 
7080 void
7081 xpt_lock_buses(void)
7082 {
7083 	mtx_lock(&xsoftc.xpt_topo_lock);
7084 }
7085 
7086 void
7087 xpt_unlock_buses(void)
7088 {
7089 	mtx_unlock(&xsoftc.xpt_topo_lock);
7090 }
7091 
7092 static void
7093 camisr(void *dummy)
7094 {
7095 	cam_simq_t queue;
7096 	struct cam_sim *sim;
7097 
7098 	mtx_lock(&cam_simq_lock);
7099 	TAILQ_INIT(&queue);
7100 	TAILQ_CONCAT(&queue, &cam_simq, links);
7101 	mtx_unlock(&cam_simq_lock);
7102 
7103 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
7104 		TAILQ_REMOVE(&queue, sim, links);
7105 		CAM_SIM_LOCK(sim);
7106 		sim->flags &= ~CAM_SIM_ON_DONEQ;
7107 		camisr_runqueue(&sim->sim_doneq);
7108 		CAM_SIM_UNLOCK(sim);
7109 	}
7110 }
7111 
7112 static void
7113 camisr_runqueue(void *V_queue)
7114 {
7115 	cam_isrq_t *queue = V_queue;
7116 	struct	ccb_hdr *ccb_h;
7117 
7118 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
7119 		int	runq;
7120 
7121 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
7122 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
7123 
7124 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
7125 			  ("camisr\n"));
7126 
7127 		runq = FALSE;
7128 
7129 		if (ccb_h->flags & CAM_HIGH_POWER) {
7130 			struct highpowerlist	*hphead;
7131 			union ccb		*send_ccb;
7132 
7133 			mtx_lock(&xsoftc.xpt_lock);
7134 			hphead = &xsoftc.highpowerq;
7135 
7136 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
7137 
7138 			/*
7139 			 * Increment the count since this command is done.
7140 			 */
7141 			xsoftc.num_highpower++;
7142 
7143 			/*
7144 			 * Any high powered commands queued up?
7145 			 */
7146 			if (send_ccb != NULL) {
7147 
7148 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
7149 				mtx_unlock(&xsoftc.xpt_lock);
7150 
7151 				xpt_release_devq(send_ccb->ccb_h.path,
7152 						 /*count*/1, /*runqueue*/TRUE);
7153 			} else
7154 				mtx_unlock(&xsoftc.xpt_lock);
7155 		}
7156 
7157 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
7158 			struct cam_ed *dev;
7159 
7160 			dev = ccb_h->path->device;
7161 
7162 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
7163 
7164 			if (!SIM_DEAD(ccb_h->path->bus->sim)) {
7165 				ccb_h->path->bus->sim->devq->send_active--;
7166 				ccb_h->path->bus->sim->devq->send_openings++;
7167 			}
7168 
7169 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
7170 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
7171 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
7172 			  && (dev->ccbq.dev_active == 0))) {
7173 
7174 				xpt_release_devq(ccb_h->path, /*count*/1,
7175 						 /*run_queue*/TRUE);
7176 			}
7177 
7178 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
7179 			 && (--dev->tag_delay_count == 0))
7180 				xpt_start_tags(ccb_h->path);
7181 
7182 			if ((dev->ccbq.queue.entries > 0)
7183 			 && (dev->qfrozen_cnt == 0)
7184 			 && (device_is_send_queued(dev) == 0)) {
7185 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
7186 							      dev);
7187 			}
7188 		}
7189 
7190 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
7191 			xpt_release_simq(ccb_h->path->bus->sim,
7192 					 /*run_queue*/TRUE);
7193 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
7194 			runq = FALSE;
7195 		}
7196 
7197 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
7198 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
7199 			xpt_release_devq(ccb_h->path, /*count*/1,
7200 					 /*run_queue*/TRUE);
7201 			ccb_h->status &= ~CAM_DEV_QFRZN;
7202 		} else if (runq) {
7203 			xpt_run_dev_sendq(ccb_h->path->bus);
7204 		}
7205 
7206 		/* Call the peripheral driver's callback */
7207 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
7208 	}
7209 }
7210 
7211 static void
7212 dead_sim_action(struct cam_sim *sim, union ccb *ccb)
7213 {
7214 
7215 	ccb->ccb_h.status = CAM_DEV_NOT_THERE;
7216 	xpt_done(ccb);
7217 }
7218 
7219 static void
7220 dead_sim_poll(struct cam_sim *sim)
7221 {
7222 }
7223