1 /* 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/systm.h> 34 #include <sys/types.h> 35 #include <sys/malloc.h> 36 #include <sys/kernel.h> 37 #include <sys/time.h> 38 #include <sys/conf.h> 39 #include <sys/fcntl.h> 40 #include <sys/md5.h> 41 #include <sys/devicestat.h> 42 #include <sys/interrupt.h> 43 44 #ifdef PC98 45 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 46 #endif 47 48 #include <sys/ipl.h> 49 50 #include <cam/cam.h> 51 #include <cam/cam_ccb.h> 52 #include <cam/cam_periph.h> 53 #include <cam/cam_sim.h> 54 #include <cam/cam_xpt.h> 55 #include <cam/cam_xpt_sim.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_debug.h> 58 59 #include <cam/scsi/scsi_all.h> 60 #include <cam/scsi/scsi_message.h> 61 #include <cam/scsi/scsi_pass.h> 62 #include "opt_cam.h" 63 64 /* Datastructures internal to the xpt layer */ 65 66 /* 67 * Definition of an async handler callback block. These are used to add 68 * SIMs and peripherals to the async callback lists. 69 */ 70 struct async_node { 71 SLIST_ENTRY(async_node) links; 72 u_int32_t event_enable; /* Async Event enables */ 73 void (*callback)(void *arg, u_int32_t code, 74 struct cam_path *path, void *args); 75 void *callback_arg; 76 }; 77 78 SLIST_HEAD(async_list, async_node); 79 SLIST_HEAD(periph_list, cam_periph); 80 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 81 82 /* 83 * This is the maximum number of high powered commands (e.g. start unit) 84 * that can be outstanding at a particular time. 85 */ 86 #ifndef CAM_MAX_HIGHPOWER 87 #define CAM_MAX_HIGHPOWER 4 88 #endif 89 90 /* number of high powered commands that can go through right now */ 91 static int num_highpower = CAM_MAX_HIGHPOWER; 92 93 /* 94 * Structure for queueing a device in a run queue. 95 * There is one run queue for allocating new ccbs, 96 * and another for sending ccbs to the controller. 97 */ 98 struct cam_ed_qinfo { 99 cam_pinfo pinfo; 100 struct cam_ed *device; 101 }; 102 103 /* 104 * The CAM EDT (Existing Device Table) contains the device information for 105 * all devices for all busses in the system. The table contains a 106 * cam_ed structure for each device on the bus. 107 */ 108 struct cam_ed { 109 TAILQ_ENTRY(cam_ed) links; 110 struct cam_ed_qinfo alloc_ccb_entry; 111 struct cam_ed_qinfo send_ccb_entry; 112 struct cam_et *target; 113 lun_id_t lun_id; 114 struct camq drvq; /* 115 * Queue of type drivers wanting to do 116 * work on this device. 117 */ 118 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 119 struct async_list asyncs; /* Async callback info for this B/T/L */ 120 struct periph_list periphs; /* All attached devices */ 121 u_int generation; /* Generation number */ 122 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 123 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 124 /* Storage for the inquiry data */ 125 struct scsi_inquiry_data inq_data; 126 u_int8_t inq_flags; /* 127 * Current settings for inquiry flags. 128 * This allows us to override settings 129 * like disconnection and tagged 130 * queuing for a device. 131 */ 132 u_int8_t queue_flags; /* Queue flags from the control page */ 133 u_int8_t serial_num_len; 134 u_int8_t *serial_num; 135 u_int32_t qfrozen_cnt; 136 u_int32_t flags; 137 #define CAM_DEV_UNCONFIGURED 0x01 138 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 139 #define CAM_DEV_REL_ON_COMPLETE 0x04 140 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 141 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 142 #define CAM_DEV_TAG_AFTER_COUNT 0x20 143 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 144 u_int32_t tag_delay_count; 145 #define CAM_TAG_DELAY_COUNT 5 146 u_int32_t refcount; 147 struct callout_handle c_handle; 148 }; 149 150 /* 151 * Each target is represented by an ET (Existing Target). These 152 * entries are created when a target is successfully probed with an 153 * identify, and removed when a device fails to respond after a number 154 * of retries, or a bus rescan finds the device missing. 155 */ 156 struct cam_et { 157 TAILQ_HEAD(, cam_ed) ed_entries; 158 TAILQ_ENTRY(cam_et) links; 159 struct cam_eb *bus; 160 target_id_t target_id; 161 u_int32_t refcount; 162 u_int generation; 163 struct timeval last_reset; 164 }; 165 166 /* 167 * Each bus is represented by an EB (Existing Bus). These entries 168 * are created by calls to xpt_bus_register and deleted by calls to 169 * xpt_bus_deregister. 170 */ 171 struct cam_eb { 172 TAILQ_HEAD(, cam_et) et_entries; 173 TAILQ_ENTRY(cam_eb) links; 174 path_id_t path_id; 175 struct cam_sim *sim; 176 struct timeval last_reset; 177 u_int32_t flags; 178 #define CAM_EB_RUNQ_SCHEDULED 0x01 179 u_int32_t refcount; 180 u_int generation; 181 }; 182 183 struct cam_path { 184 struct cam_periph *periph; 185 struct cam_eb *bus; 186 struct cam_et *target; 187 struct cam_ed *device; 188 }; 189 190 struct xpt_quirk_entry { 191 struct scsi_inquiry_pattern inq_pat; 192 u_int8_t quirks; 193 #define CAM_QUIRK_NOLUNS 0x01 194 #define CAM_QUIRK_NOSERIAL 0x02 195 #define CAM_QUIRK_HILUNS 0x04 196 u_int mintags; 197 u_int maxtags; 198 }; 199 #define CAM_SCSI2_MAXLUN 8 200 201 typedef enum { 202 XPT_FLAG_OPEN = 0x01 203 } xpt_flags; 204 205 struct xpt_softc { 206 xpt_flags flags; 207 u_int32_t generation; 208 }; 209 210 static const char quantum[] = "QUANTUM"; 211 static const char sony[] = "SONY"; 212 static const char west_digital[] = "WDIGTL"; 213 static const char samsung[] = "SAMSUNG"; 214 static const char seagate[] = "SEAGATE"; 215 static const char microp[] = "MICROP"; 216 217 static struct xpt_quirk_entry xpt_quirk_table[] = 218 { 219 { 220 /* Reports QUEUE FULL for temporary resource shortages */ 221 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 222 /*quirks*/0, /*mintags*/24, /*maxtags*/32 223 }, 224 { 225 /* Reports QUEUE FULL for temporary resource shortages */ 226 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 227 /*quirks*/0, /*mintags*/24, /*maxtags*/32 228 }, 229 { 230 /* Reports QUEUE FULL for temporary resource shortages */ 231 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 232 /*quirks*/0, /*mintags*/24, /*maxtags*/32 233 }, 234 { 235 /* Broken tagged queuing drive */ 236 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 237 /*quirks*/0, /*mintags*/0, /*maxtags*/0 238 }, 239 { 240 /* Broken tagged queuing drive */ 241 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 242 /*quirks*/0, /*mintags*/0, /*maxtags*/0 243 }, 244 { 245 /* Broken tagged queuing drive */ 246 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 247 /*quirks*/0, /*mintags*/0, /*maxtags*/0 248 }, 249 { 250 /* 251 * Unfortunately, the Quantum Atlas III has the same 252 * problem as the Atlas II drives above. 253 * Reported by: "Johan Granlund" <johan@granlund.nu> 254 * 255 * For future reference, the drive with the problem was: 256 * QUANTUM QM39100TD-SW N1B0 257 * 258 * It's possible that Quantum will fix the problem in later 259 * firmware revisions. If that happens, the quirk entry 260 * will need to be made specific to the firmware revisions 261 * with the problem. 262 * 263 */ 264 /* Reports QUEUE FULL for temporary resource shortages */ 265 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 266 /*quirks*/0, /*mintags*/24, /*maxtags*/32 267 }, 268 { 269 /* 270 * 18 Gig Atlas III, same problem as the 9G version. 271 * Reported by: Andre Albsmeier 272 * <andre.albsmeier@mchp.siemens.de> 273 * 274 * For future reference, the drive with the problem was: 275 * QUANTUM QM318000TD-S N491 276 */ 277 /* Reports QUEUE FULL for temporary resource shortages */ 278 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 279 /*quirks*/0, /*mintags*/24, /*maxtags*/32 280 }, 281 { 282 /* 283 * Broken tagged queuing drive 284 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 285 * and: Martin Renters <martin@tdc.on.ca> 286 */ 287 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 288 /*quirks*/0, /*mintags*/0, /*maxtags*/0 289 }, 290 /* 291 * The Seagate Medalist Pro drives have very poor write 292 * performance with anything more than 2 tags. 293 * 294 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 295 * Drive: <SEAGATE ST36530N 1444> 296 * 297 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 298 * Drive: <SEAGATE ST34520W 1281> 299 * 300 * No one has actually reported that the 9G version 301 * (ST39140*) of the Medalist Pro has the same problem, but 302 * we're assuming that it does because the 4G and 6.5G 303 * versions of the drive are broken. 304 */ 305 { 306 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 307 /*quirks*/0, /*mintags*/2, /*maxtags*/2 308 }, 309 { 310 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 311 /*quirks*/0, /*mintags*/2, /*maxtags*/2 312 }, 313 { 314 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 315 /*quirks*/0, /*mintags*/2, /*maxtags*/2 316 }, 317 { 318 /* 319 * Slow when tagged queueing is enabled. Write performance 320 * steadily drops off with more and more concurrent 321 * transactions. Best sequential write performance with 322 * tagged queueing turned off and write caching turned on. 323 * 324 * PR: kern/10398 325 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 326 * Drive: DCAS-34330 w/ "S65A" firmware. 327 * 328 * The drive with the problem had the "S65A" firmware 329 * revision, and has also been reported (by Stephen J. 330 * Roznowski <sjr@home.net>) for a drive with the "S61A" 331 * firmware revision. 332 * 333 * Although no one has reported problems with the 2 gig 334 * version of the DCAS drive, the assumption is that it 335 * has the same problems as the 4 gig version. Therefore 336 * this quirk entries disables tagged queueing for all 337 * DCAS drives. 338 */ 339 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 340 /*quirks*/0, /*mintags*/0, /*maxtags*/0 341 }, 342 { 343 /* Broken tagged queuing drive */ 344 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 345 /*quirks*/0, /*mintags*/0, /*maxtags*/0 346 }, 347 { 348 /* Broken tagged queuing drive */ 349 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 350 /*quirks*/0, /*mintags*/0, /*maxtags*/0 351 }, 352 { 353 /* 354 * Broken tagged queuing drive. 355 * Submitted by: 356 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 357 * in PR kern/9535 358 */ 359 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 360 /*quirks*/0, /*mintags*/0, /*maxtags*/0 361 }, 362 { 363 /* 364 * Slow when tagged queueing is enabled. (1.5MB/sec versus 365 * 8MB/sec.) 366 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 367 * Best performance with these drives is achieved with 368 * tagged queueing turned off, and write caching turned on. 369 */ 370 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 371 /*quirks*/0, /*mintags*/0, /*maxtags*/0 372 }, 373 { 374 /* 375 * Slow when tagged queueing is enabled. (1.5MB/sec versus 376 * 8MB/sec.) 377 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 378 * Best performance with these drives is achieved with 379 * tagged queueing turned off, and write caching turned on. 380 */ 381 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 382 /*quirks*/0, /*mintags*/0, /*maxtags*/0 383 }, 384 { 385 /* 386 * Doesn't handle queue full condition correctly, 387 * so we need to limit maxtags to what the device 388 * can handle instead of determining this automatically. 389 */ 390 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 391 /*quirks*/0, /*mintags*/2, /*maxtags*/32 392 }, 393 { 394 /* Really only one LUN */ 395 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA*", "*" }, 396 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 397 }, 398 { 399 /* I can't believe we need a quirk for DPT volumes. */ 400 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 401 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 402 /*mintags*/0, /*maxtags*/255 403 }, 404 { 405 /* 406 * Many Sony CDROM drives don't like multi-LUN probing. 407 */ 408 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 409 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 410 }, 411 { 412 /* 413 * This drive doesn't like multiple LUN probing. 414 * Submitted by: Parag Patel <parag@cgt.com> 415 */ 416 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 417 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 418 }, 419 { 420 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 421 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 422 }, 423 { 424 /* 425 * The 8200 doesn't like multi-lun probing, and probably 426 * don't like serial number requests either. 427 */ 428 { 429 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 430 "EXB-8200*", "*" 431 }, 432 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 433 }, 434 { 435 /* 436 * These Hitachi drives don't like multi-lun probing. 437 * The PR submitter has a DK319H, but says that the Linux 438 * kernel has a similar work-around for the DK312 and DK314, 439 * so all DK31* drives are quirked here. 440 * PR: misc/18793 441 * Submitted by: Paul Haddad <paul@pth.com> 442 */ 443 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 444 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 445 }, 446 { 447 /* 448 * This old revision of the TDC3600 is also SCSI-1, and 449 * hangs upon serial number probing. 450 */ 451 { 452 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 453 " TDC 3600", "U07:" 454 }, 455 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 456 }, 457 { 458 /* 459 * Would repond to all LUNs if asked for. 460 */ 461 { 462 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 463 "CP150", "*" 464 }, 465 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 466 }, 467 { 468 /* 469 * Would repond to all LUNs if asked for. 470 */ 471 { 472 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 473 "96X2*", "*" 474 }, 475 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 476 }, 477 { 478 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 479 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 480 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 481 }, 482 { 483 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 484 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 485 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 486 }, 487 { 488 /* TeraSolutions special settings for TRC-22 RAID */ 489 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 490 /*quirks*/0, /*mintags*/55, /*maxtags*/255 491 }, 492 { 493 /* Default tagged queuing parameters for all devices */ 494 { 495 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 496 /*vendor*/"*", /*product*/"*", /*revision*/"*" 497 }, 498 /*quirks*/0, /*mintags*/2, /*maxtags*/255 499 }, 500 }; 501 502 static const int xpt_quirk_table_size = 503 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 504 505 typedef enum { 506 DM_RET_COPY = 0x01, 507 DM_RET_FLAG_MASK = 0x0f, 508 DM_RET_NONE = 0x00, 509 DM_RET_STOP = 0x10, 510 DM_RET_DESCEND = 0x20, 511 DM_RET_ERROR = 0x30, 512 DM_RET_ACTION_MASK = 0xf0 513 } dev_match_ret; 514 515 typedef enum { 516 XPT_DEPTH_BUS, 517 XPT_DEPTH_TARGET, 518 XPT_DEPTH_DEVICE, 519 XPT_DEPTH_PERIPH 520 } xpt_traverse_depth; 521 522 struct xpt_traverse_config { 523 xpt_traverse_depth depth; 524 void *tr_func; 525 void *tr_arg; 526 }; 527 528 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 529 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 530 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 531 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 532 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 533 534 /* Transport layer configuration information */ 535 static struct xpt_softc xsoftc; 536 537 /* Queues for our software interrupt handler */ 538 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 539 static cam_isrq_t cam_bioq; 540 static cam_isrq_t cam_netq; 541 542 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 543 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 544 static u_int xpt_max_ccbs; /* 545 * Maximum size of ccb pool. Modified as 546 * devices are added/removed or have their 547 * opening counts changed. 548 */ 549 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 550 551 struct cam_periph *xpt_periph; 552 553 static periph_init_t xpt_periph_init; 554 555 static periph_init_t probe_periph_init; 556 557 static struct periph_driver xpt_driver = 558 { 559 xpt_periph_init, "xpt", 560 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 561 }; 562 563 static struct periph_driver probe_driver = 564 { 565 probe_periph_init, "probe", 566 TAILQ_HEAD_INITIALIZER(probe_driver.units) 567 }; 568 569 DATA_SET(periphdriver_set, xpt_driver); 570 DATA_SET(periphdriver_set, probe_driver); 571 572 #define XPT_CDEV_MAJOR 104 573 574 static d_open_t xptopen; 575 static d_close_t xptclose; 576 static d_ioctl_t xptioctl; 577 578 static struct cdevsw xpt_cdevsw = { 579 /* open */ xptopen, 580 /* close */ xptclose, 581 /* read */ noread, 582 /* write */ nowrite, 583 /* ioctl */ xptioctl, 584 /* poll */ nopoll, 585 /* mmap */ nommap, 586 /* strategy */ nostrategy, 587 /* name */ "xpt", 588 /* maj */ XPT_CDEV_MAJOR, 589 /* dump */ nodump, 590 /* psize */ nopsize, 591 /* flags */ 0, 592 /* bmaj */ -1 593 }; 594 595 static struct intr_config_hook *xpt_config_hook; 596 597 /* Registered busses */ 598 static TAILQ_HEAD(,cam_eb) xpt_busses; 599 static u_int bus_generation; 600 601 /* Storage for debugging datastructures */ 602 #ifdef CAMDEBUG 603 struct cam_path *cam_dpath; 604 u_int32_t cam_dflags; 605 u_int32_t cam_debug_delay; 606 #endif 607 608 /* Pointers to software interrupt handlers */ 609 struct intrhand *camnet_ih; 610 struct intrhand *cambio_ih; 611 612 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 613 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 614 #endif 615 616 /* 617 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 618 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 619 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 620 */ 621 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 622 || defined(CAM_DEBUG_LUN) 623 #ifdef CAMDEBUG 624 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 625 || !defined(CAM_DEBUG_LUN) 626 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 627 and CAM_DEBUG_LUN" 628 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 629 #else /* !CAMDEBUG */ 630 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 631 #endif /* CAMDEBUG */ 632 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 633 634 /* Our boot-time initialization hook */ 635 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 636 637 static moduledata_t cam_moduledata = { 638 "cam", 639 cam_module_event_handler, 640 NULL 641 }; 642 643 static void xpt_init(void *); 644 645 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 646 MODULE_VERSION(cam, 1); 647 648 649 static cam_status xpt_compile_path(struct cam_path *new_path, 650 struct cam_periph *perph, 651 path_id_t path_id, 652 target_id_t target_id, 653 lun_id_t lun_id); 654 655 static void xpt_release_path(struct cam_path *path); 656 657 static void xpt_async_bcast(struct async_list *async_head, 658 u_int32_t async_code, 659 struct cam_path *path, 660 void *async_arg); 661 static void xpt_dev_async(u_int32_t async_code, 662 struct cam_eb *bus, 663 struct cam_et *target, 664 struct cam_ed *device, 665 void *async_arg); 666 static path_id_t xptnextfreepathid(void); 667 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 668 static union ccb *xpt_get_ccb(struct cam_ed *device); 669 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 670 u_int32_t new_priority); 671 static void xpt_run_dev_allocq(struct cam_eb *bus); 672 static void xpt_run_dev_sendq(struct cam_eb *bus); 673 static timeout_t xpt_release_devq_timeout; 674 static timeout_t xpt_release_simq_timeout; 675 static void xpt_release_bus(struct cam_eb *bus); 676 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 677 int run_queue); 678 static struct cam_et* 679 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 680 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 681 static struct cam_ed* 682 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 683 lun_id_t lun_id); 684 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 685 struct cam_ed *device); 686 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 687 static struct cam_eb* 688 xpt_find_bus(path_id_t path_id); 689 static struct cam_et* 690 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 691 static struct cam_ed* 692 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 693 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 694 static void xpt_scan_lun(struct cam_periph *periph, 695 struct cam_path *path, cam_flags flags, 696 union ccb *ccb); 697 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 698 static xpt_busfunc_t xptconfigbuscountfunc; 699 static xpt_busfunc_t xptconfigfunc; 700 static void xpt_config(void *arg); 701 static xpt_devicefunc_t xptpassannouncefunc; 702 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 703 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 704 static void xptpoll(struct cam_sim *sim); 705 static void camisr(void *); 706 #if 0 707 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 708 static void xptasync(struct cam_periph *periph, 709 u_int32_t code, cam_path *path); 710 #endif 711 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 712 int num_patterns, struct cam_eb *bus); 713 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 714 int num_patterns, struct cam_ed *device); 715 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 716 int num_patterns, 717 struct cam_periph *periph); 718 static xpt_busfunc_t xptedtbusfunc; 719 static xpt_targetfunc_t xptedttargetfunc; 720 static xpt_devicefunc_t xptedtdevicefunc; 721 static xpt_periphfunc_t xptedtperiphfunc; 722 static xpt_pdrvfunc_t xptplistpdrvfunc; 723 static xpt_periphfunc_t xptplistperiphfunc; 724 static int xptedtmatch(struct ccb_dev_match *cdm); 725 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 726 static int xptbustraverse(struct cam_eb *start_bus, 727 xpt_busfunc_t *tr_func, void *arg); 728 static int xpttargettraverse(struct cam_eb *bus, 729 struct cam_et *start_target, 730 xpt_targetfunc_t *tr_func, void *arg); 731 static int xptdevicetraverse(struct cam_et *target, 732 struct cam_ed *start_device, 733 xpt_devicefunc_t *tr_func, void *arg); 734 static int xptperiphtraverse(struct cam_ed *device, 735 struct cam_periph *start_periph, 736 xpt_periphfunc_t *tr_func, void *arg); 737 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 738 xpt_pdrvfunc_t *tr_func, void *arg); 739 static int xptpdperiphtraverse(struct periph_driver **pdrv, 740 struct cam_periph *start_periph, 741 xpt_periphfunc_t *tr_func, 742 void *arg); 743 static xpt_busfunc_t xptdefbusfunc; 744 static xpt_targetfunc_t xptdeftargetfunc; 745 static xpt_devicefunc_t xptdefdevicefunc; 746 static xpt_periphfunc_t xptdefperiphfunc; 747 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 748 #ifdef notusedyet 749 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 750 void *arg); 751 #endif 752 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 753 void *arg); 754 #ifdef notusedyet 755 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 756 void *arg); 757 #endif 758 static xpt_devicefunc_t xptsetasyncfunc; 759 static xpt_busfunc_t xptsetasyncbusfunc; 760 static cam_status xptregister(struct cam_periph *periph, 761 void *arg); 762 static cam_status proberegister(struct cam_periph *periph, 763 void *arg); 764 static void probeschedule(struct cam_periph *probe_periph); 765 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 766 static void proberequestdefaultnegotiation(struct cam_periph *periph); 767 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 768 static void probecleanup(struct cam_periph *periph); 769 static void xpt_find_quirk(struct cam_ed *device); 770 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 771 struct cam_ed *device, 772 int async_update); 773 static void xpt_toggle_tags(struct cam_path *path); 774 static void xpt_start_tags(struct cam_path *path); 775 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 776 struct cam_ed *dev); 777 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 778 struct cam_ed *dev); 779 static __inline int periph_is_queued(struct cam_periph *periph); 780 static __inline int device_is_alloc_queued(struct cam_ed *device); 781 static __inline int device_is_send_queued(struct cam_ed *device); 782 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 783 784 static __inline int 785 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 786 { 787 int retval; 788 789 if (dev->ccbq.devq_openings > 0) { 790 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 791 cam_ccbq_resize(&dev->ccbq, 792 dev->ccbq.dev_openings 793 + dev->ccbq.dev_active); 794 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 795 } 796 /* 797 * The priority of a device waiting for CCB resources 798 * is that of the the highest priority peripheral driver 799 * enqueued. 800 */ 801 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 802 &dev->alloc_ccb_entry.pinfo, 803 CAMQ_GET_HEAD(&dev->drvq)->priority); 804 } else { 805 retval = 0; 806 } 807 808 return (retval); 809 } 810 811 static __inline int 812 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 813 { 814 int retval; 815 816 if (dev->ccbq.dev_openings > 0) { 817 /* 818 * The priority of a device waiting for controller 819 * resources is that of the the highest priority CCB 820 * enqueued. 821 */ 822 retval = 823 xpt_schedule_dev(&bus->sim->devq->send_queue, 824 &dev->send_ccb_entry.pinfo, 825 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 826 } else { 827 retval = 0; 828 } 829 return (retval); 830 } 831 832 static __inline int 833 periph_is_queued(struct cam_periph *periph) 834 { 835 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 836 } 837 838 static __inline int 839 device_is_alloc_queued(struct cam_ed *device) 840 { 841 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 842 } 843 844 static __inline int 845 device_is_send_queued(struct cam_ed *device) 846 { 847 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 848 } 849 850 static __inline int 851 dev_allocq_is_runnable(struct cam_devq *devq) 852 { 853 /* 854 * Have work to do. 855 * Have space to do more work. 856 * Allowed to do work. 857 */ 858 return ((devq->alloc_queue.qfrozen_cnt == 0) 859 && (devq->alloc_queue.entries > 0) 860 && (devq->alloc_openings > 0)); 861 } 862 863 static void 864 xpt_periph_init() 865 { 866 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 867 } 868 869 static void 870 probe_periph_init() 871 { 872 } 873 874 875 static void 876 xptdone(struct cam_periph *periph, union ccb *done_ccb) 877 { 878 /* Caller will release the CCB */ 879 wakeup(&done_ccb->ccb_h.cbfcnp); 880 } 881 882 static int 883 xptopen(dev_t dev, int flags, int fmt, struct proc *p) 884 { 885 int unit; 886 887 unit = minor(dev) & 0xff; 888 889 /* 890 * Only allow read-write access. 891 */ 892 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 893 return(EPERM); 894 895 /* 896 * We don't allow nonblocking access. 897 */ 898 if ((flags & O_NONBLOCK) != 0) { 899 printf("xpt%d: can't do nonblocking accesss\n", unit); 900 return(ENODEV); 901 } 902 903 /* 904 * We only have one transport layer right now. If someone accesses 905 * us via something other than minor number 1, point out their 906 * mistake. 907 */ 908 if (unit != 0) { 909 printf("xptopen: got invalid xpt unit %d\n", unit); 910 return(ENXIO); 911 } 912 913 /* Mark ourselves open */ 914 xsoftc.flags |= XPT_FLAG_OPEN; 915 916 return(0); 917 } 918 919 static int 920 xptclose(dev_t dev, int flag, int fmt, struct proc *p) 921 { 922 int unit; 923 924 unit = minor(dev) & 0xff; 925 926 /* 927 * We only have one transport layer right now. If someone accesses 928 * us via something other than minor number 1, point out their 929 * mistake. 930 */ 931 if (unit != 0) { 932 printf("xptclose: got invalid xpt unit %d\n", unit); 933 return(ENXIO); 934 } 935 936 /* Mark ourselves closed */ 937 xsoftc.flags &= ~XPT_FLAG_OPEN; 938 939 return(0); 940 } 941 942 static int 943 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p) 944 { 945 int unit, error; 946 947 error = 0; 948 unit = minor(dev) & 0xff; 949 950 /* 951 * We only have one transport layer right now. If someone accesses 952 * us via something other than minor number 1, point out their 953 * mistake. 954 */ 955 if (unit != 0) { 956 printf("xptioctl: got invalid xpt unit %d\n", unit); 957 return(ENXIO); 958 } 959 960 switch(cmd) { 961 /* 962 * For the transport layer CAMIOCOMMAND ioctl, we really only want 963 * to accept CCB types that don't quite make sense to send through a 964 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 965 * in the CAM spec. 966 */ 967 case CAMIOCOMMAND: { 968 union ccb *ccb; 969 union ccb *inccb; 970 971 inccb = (union ccb *)addr; 972 973 switch(inccb->ccb_h.func_code) { 974 case XPT_SCAN_BUS: 975 case XPT_RESET_BUS: 976 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 977 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 978 error = EINVAL; 979 break; 980 } 981 /* FALLTHROUGH */ 982 case XPT_PATH_INQ: 983 case XPT_ENG_INQ: 984 case XPT_SCAN_LUN: 985 986 ccb = xpt_alloc_ccb(); 987 988 /* 989 * Create a path using the bus, target, and lun the 990 * user passed in. 991 */ 992 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 993 inccb->ccb_h.path_id, 994 inccb->ccb_h.target_id, 995 inccb->ccb_h.target_lun) != 996 CAM_REQ_CMP){ 997 error = EINVAL; 998 xpt_free_ccb(ccb); 999 break; 1000 } 1001 /* Ensure all of our fields are correct */ 1002 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1003 inccb->ccb_h.pinfo.priority); 1004 xpt_merge_ccb(ccb, inccb); 1005 ccb->ccb_h.cbfcnp = xptdone; 1006 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1007 bcopy(ccb, inccb, sizeof(union ccb)); 1008 xpt_free_path(ccb->ccb_h.path); 1009 xpt_free_ccb(ccb); 1010 break; 1011 1012 case XPT_DEBUG: { 1013 union ccb ccb; 1014 1015 /* 1016 * This is an immediate CCB, so it's okay to 1017 * allocate it on the stack. 1018 */ 1019 1020 /* 1021 * Create a path using the bus, target, and lun the 1022 * user passed in. 1023 */ 1024 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1025 inccb->ccb_h.path_id, 1026 inccb->ccb_h.target_id, 1027 inccb->ccb_h.target_lun) != 1028 CAM_REQ_CMP){ 1029 error = EINVAL; 1030 break; 1031 } 1032 /* Ensure all of our fields are correct */ 1033 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1034 inccb->ccb_h.pinfo.priority); 1035 xpt_merge_ccb(&ccb, inccb); 1036 ccb.ccb_h.cbfcnp = xptdone; 1037 xpt_action(&ccb); 1038 bcopy(&ccb, inccb, sizeof(union ccb)); 1039 xpt_free_path(ccb.ccb_h.path); 1040 break; 1041 1042 } 1043 case XPT_DEV_MATCH: { 1044 struct cam_periph_map_info mapinfo; 1045 struct cam_path *old_path; 1046 1047 /* 1048 * We can't deal with physical addresses for this 1049 * type of transaction. 1050 */ 1051 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1052 error = EINVAL; 1053 break; 1054 } 1055 1056 /* 1057 * Save this in case the caller had it set to 1058 * something in particular. 1059 */ 1060 old_path = inccb->ccb_h.path; 1061 1062 /* 1063 * We really don't need a path for the matching 1064 * code. The path is needed because of the 1065 * debugging statements in xpt_action(). They 1066 * assume that the CCB has a valid path. 1067 */ 1068 inccb->ccb_h.path = xpt_periph->path; 1069 1070 bzero(&mapinfo, sizeof(mapinfo)); 1071 1072 /* 1073 * Map the pattern and match buffers into kernel 1074 * virtual address space. 1075 */ 1076 error = cam_periph_mapmem(inccb, &mapinfo); 1077 1078 if (error) { 1079 inccb->ccb_h.path = old_path; 1080 break; 1081 } 1082 1083 /* 1084 * This is an immediate CCB, we can send it on directly. 1085 */ 1086 xpt_action(inccb); 1087 1088 /* 1089 * Map the buffers back into user space. 1090 */ 1091 cam_periph_unmapmem(inccb, &mapinfo); 1092 1093 inccb->ccb_h.path = old_path; 1094 1095 error = 0; 1096 break; 1097 } 1098 default: 1099 error = ENOTSUP; 1100 break; 1101 } 1102 break; 1103 } 1104 /* 1105 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1106 * with the periphal driver name and unit name filled in. The other 1107 * fields don't really matter as input. The passthrough driver name 1108 * ("pass"), and unit number are passed back in the ccb. The current 1109 * device generation number, and the index into the device peripheral 1110 * driver list, and the status are also passed back. Note that 1111 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1112 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1113 * (or rather should be) impossible for the device peripheral driver 1114 * list to change since we look at the whole thing in one pass, and 1115 * we do it with splcam protection. 1116 * 1117 */ 1118 case CAMGETPASSTHRU: { 1119 union ccb *ccb; 1120 struct cam_periph *periph; 1121 struct periph_driver **p_drv; 1122 char *name; 1123 int unit; 1124 int cur_generation; 1125 int base_periph_found; 1126 int splbreaknum; 1127 int s; 1128 1129 ccb = (union ccb *)addr; 1130 unit = ccb->cgdl.unit_number; 1131 name = ccb->cgdl.periph_name; 1132 /* 1133 * Every 100 devices, we want to drop our spl protection to 1134 * give the software interrupt handler a chance to run. 1135 * Most systems won't run into this check, but this should 1136 * avoid starvation in the software interrupt handler in 1137 * large systems. 1138 */ 1139 splbreaknum = 100; 1140 1141 ccb = (union ccb *)addr; 1142 1143 base_periph_found = 0; 1144 1145 /* 1146 * Sanity check -- make sure we don't get a null peripheral 1147 * driver name. 1148 */ 1149 if (*ccb->cgdl.periph_name == '\0') { 1150 error = EINVAL; 1151 break; 1152 } 1153 1154 /* Keep the list from changing while we traverse it */ 1155 s = splcam(); 1156 ptstartover: 1157 cur_generation = xsoftc.generation; 1158 1159 /* first find our driver in the list of drivers */ 1160 for (p_drv = (struct periph_driver **)periphdriver_set.ls_items; 1161 *p_drv != NULL; p_drv++) 1162 if (strcmp((*p_drv)->driver_name, name) == 0) 1163 break; 1164 1165 if (*p_drv == NULL) { 1166 splx(s); 1167 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1168 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1169 *ccb->cgdl.periph_name = '\0'; 1170 ccb->cgdl.unit_number = 0; 1171 error = ENOENT; 1172 break; 1173 } 1174 1175 /* 1176 * Run through every peripheral instance of this driver 1177 * and check to see whether it matches the unit passed 1178 * in by the user. If it does, get out of the loops and 1179 * find the passthrough driver associated with that 1180 * peripheral driver. 1181 */ 1182 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1183 periph = TAILQ_NEXT(periph, unit_links)) { 1184 1185 if (periph->unit_number == unit) { 1186 break; 1187 } else if (--splbreaknum == 0) { 1188 splx(s); 1189 s = splcam(); 1190 splbreaknum = 100; 1191 if (cur_generation != xsoftc.generation) 1192 goto ptstartover; 1193 } 1194 } 1195 /* 1196 * If we found the peripheral driver that the user passed 1197 * in, go through all of the peripheral drivers for that 1198 * particular device and look for a passthrough driver. 1199 */ 1200 if (periph != NULL) { 1201 struct cam_ed *device; 1202 int i; 1203 1204 base_periph_found = 1; 1205 device = periph->path->device; 1206 for (i = 0, periph = device->periphs.slh_first; 1207 periph != NULL; 1208 periph = periph->periph_links.sle_next, i++) { 1209 /* 1210 * Check to see whether we have a 1211 * passthrough device or not. 1212 */ 1213 if (strcmp(periph->periph_name, "pass") == 0) { 1214 /* 1215 * Fill in the getdevlist fields. 1216 */ 1217 strcpy(ccb->cgdl.periph_name, 1218 periph->periph_name); 1219 ccb->cgdl.unit_number = 1220 periph->unit_number; 1221 if (periph->periph_links.sle_next) 1222 ccb->cgdl.status = 1223 CAM_GDEVLIST_MORE_DEVS; 1224 else 1225 ccb->cgdl.status = 1226 CAM_GDEVLIST_LAST_DEVICE; 1227 ccb->cgdl.generation = 1228 device->generation; 1229 ccb->cgdl.index = i; 1230 /* 1231 * Fill in some CCB header fields 1232 * that the user may want. 1233 */ 1234 ccb->ccb_h.path_id = 1235 periph->path->bus->path_id; 1236 ccb->ccb_h.target_id = 1237 periph->path->target->target_id; 1238 ccb->ccb_h.target_lun = 1239 periph->path->device->lun_id; 1240 ccb->ccb_h.status = CAM_REQ_CMP; 1241 break; 1242 } 1243 } 1244 } 1245 1246 /* 1247 * If the periph is null here, one of two things has 1248 * happened. The first possibility is that we couldn't 1249 * find the unit number of the particular peripheral driver 1250 * that the user is asking about. e.g. the user asks for 1251 * the passthrough driver for "da11". We find the list of 1252 * "da" peripherals all right, but there is no unit 11. 1253 * The other possibility is that we went through the list 1254 * of peripheral drivers attached to the device structure, 1255 * but didn't find one with the name "pass". Either way, 1256 * we return ENOENT, since we couldn't find something. 1257 */ 1258 if (periph == NULL) { 1259 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1260 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1261 *ccb->cgdl.periph_name = '\0'; 1262 ccb->cgdl.unit_number = 0; 1263 error = ENOENT; 1264 /* 1265 * It is unfortunate that this is even necessary, 1266 * but there are many, many clueless users out there. 1267 * If this is true, the user is looking for the 1268 * passthrough driver, but doesn't have one in his 1269 * kernel. 1270 */ 1271 if (base_periph_found == 1) { 1272 printf("xptioctl: pass driver is not in the " 1273 "kernel\n"); 1274 printf("xptioctl: put \"device pass0\" in " 1275 "your kernel config file\n"); 1276 } 1277 } 1278 splx(s); 1279 break; 1280 } 1281 default: 1282 error = ENOTTY; 1283 break; 1284 } 1285 1286 return(error); 1287 } 1288 1289 static int 1290 cam_module_event_handler(module_t mod, int what, void *arg) 1291 { 1292 if (what == MOD_LOAD) { 1293 xpt_init(NULL); 1294 } else if (what == MOD_UNLOAD) { 1295 return EBUSY; 1296 } 1297 1298 return 0; 1299 } 1300 1301 /* Functions accessed by the peripheral drivers */ 1302 static void 1303 xpt_init(dummy) 1304 void *dummy; 1305 { 1306 struct cam_sim *xpt_sim; 1307 struct cam_path *path; 1308 struct cam_devq *devq; 1309 cam_status status; 1310 1311 TAILQ_INIT(&xpt_busses); 1312 TAILQ_INIT(&cam_bioq); 1313 TAILQ_INIT(&cam_netq); 1314 SLIST_INIT(&ccb_freeq); 1315 STAILQ_INIT(&highpowerq); 1316 1317 /* 1318 * The xpt layer is, itself, the equivelent of a SIM. 1319 * Allow 16 ccbs in the ccb pool for it. This should 1320 * give decent parallelism when we probe busses and 1321 * perform other XPT functions. 1322 */ 1323 devq = cam_simq_alloc(16); 1324 xpt_sim = cam_sim_alloc(xptaction, 1325 xptpoll, 1326 "xpt", 1327 /*softc*/NULL, 1328 /*unit*/0, 1329 /*max_dev_transactions*/0, 1330 /*max_tagged_dev_transactions*/0, 1331 devq); 1332 xpt_max_ccbs = 16; 1333 1334 xpt_bus_register(xpt_sim, /*bus #*/0); 1335 1336 /* 1337 * Looking at the XPT from the SIM layer, the XPT is 1338 * the equivelent of a peripheral driver. Allocate 1339 * a peripheral driver entry for us. 1340 */ 1341 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1342 CAM_TARGET_WILDCARD, 1343 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1344 printf("xpt_init: xpt_create_path failed with status %#x," 1345 " failing attach\n", status); 1346 return; 1347 } 1348 1349 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1350 path, NULL, 0, NULL); 1351 xpt_free_path(path); 1352 1353 xpt_sim->softc = xpt_periph; 1354 1355 /* 1356 * Register a callback for when interrupts are enabled. 1357 */ 1358 xpt_config_hook = 1359 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1360 M_TEMP, M_NOWAIT | M_ZERO); 1361 if (xpt_config_hook == NULL) { 1362 printf("xpt_init: Cannot malloc config hook " 1363 "- failing attach\n"); 1364 return; 1365 } 1366 1367 xpt_config_hook->ich_func = xpt_config; 1368 if (config_intrhook_establish(xpt_config_hook) != 0) { 1369 free (xpt_config_hook, M_TEMP); 1370 printf("xpt_init: config_intrhook_establish failed " 1371 "- failing attach\n"); 1372 } 1373 1374 /* Install our software interrupt handlers */ 1375 camnet_ih = sinthand_add("camnet", NULL, camisr, &cam_netq, 1376 SWI_CAMNET, 0); 1377 cambio_ih = sinthand_add("cambio", NULL, camisr, &cam_bioq, 1378 SWI_CAMBIO, 0); 1379 } 1380 1381 static cam_status 1382 xptregister(struct cam_periph *periph, void *arg) 1383 { 1384 if (periph == NULL) { 1385 printf("xptregister: periph was NULL!!\n"); 1386 return(CAM_REQ_CMP_ERR); 1387 } 1388 1389 periph->softc = NULL; 1390 1391 xpt_periph = periph; 1392 1393 return(CAM_REQ_CMP); 1394 } 1395 1396 int32_t 1397 xpt_add_periph(struct cam_periph *periph) 1398 { 1399 struct cam_ed *device; 1400 int32_t status; 1401 struct periph_list *periph_head; 1402 1403 device = periph->path->device; 1404 1405 periph_head = &device->periphs; 1406 1407 status = CAM_REQ_CMP; 1408 1409 if (device != NULL) { 1410 int s; 1411 1412 /* 1413 * Make room for this peripheral 1414 * so it will fit in the queue 1415 * when it's scheduled to run 1416 */ 1417 s = splsoftcam(); 1418 status = camq_resize(&device->drvq, 1419 device->drvq.array_size + 1); 1420 1421 device->generation++; 1422 1423 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1424 1425 splx(s); 1426 } 1427 1428 xsoftc.generation++; 1429 1430 return (status); 1431 } 1432 1433 void 1434 xpt_remove_periph(struct cam_periph *periph) 1435 { 1436 struct cam_ed *device; 1437 1438 device = periph->path->device; 1439 1440 if (device != NULL) { 1441 int s; 1442 struct periph_list *periph_head; 1443 1444 periph_head = &device->periphs; 1445 1446 /* Release the slot for this peripheral */ 1447 s = splsoftcam(); 1448 camq_resize(&device->drvq, device->drvq.array_size - 1); 1449 1450 device->generation++; 1451 1452 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1453 1454 splx(s); 1455 } 1456 1457 xsoftc.generation++; 1458 1459 } 1460 1461 void 1462 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1463 { 1464 int s; 1465 u_int mb; 1466 struct cam_path *path; 1467 struct ccb_trans_settings cts; 1468 1469 path = periph->path; 1470 /* 1471 * To ensure that this is printed in one piece, 1472 * mask out CAM interrupts. 1473 */ 1474 s = splsoftcam(); 1475 printf("%s%d at %s%d bus %d target %d lun %d\n", 1476 periph->periph_name, periph->unit_number, 1477 path->bus->sim->sim_name, 1478 path->bus->sim->unit_number, 1479 path->bus->sim->bus_id, 1480 path->target->target_id, 1481 path->device->lun_id); 1482 printf("%s%d: ", periph->periph_name, periph->unit_number); 1483 scsi_print_inquiry(&path->device->inq_data); 1484 if ((bootverbose) 1485 && (path->device->serial_num_len > 0)) { 1486 /* Don't wrap the screen - print only the first 60 chars */ 1487 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1488 periph->unit_number, path->device->serial_num); 1489 } 1490 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1491 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1492 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1493 xpt_action((union ccb*)&cts); 1494 if (cts.ccb_h.status == CAM_REQ_CMP) { 1495 u_int speed; 1496 u_int freq; 1497 1498 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1499 && cts.sync_offset != 0) { 1500 freq = scsi_calc_syncsrate(cts.sync_period); 1501 speed = freq; 1502 } else { 1503 struct ccb_pathinq cpi; 1504 1505 /* Ask the SIM for its base transfer speed */ 1506 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1507 cpi.ccb_h.func_code = XPT_PATH_INQ; 1508 xpt_action((union ccb *)&cpi); 1509 1510 speed = cpi.base_transfer_speed; 1511 freq = 0; 1512 } 1513 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1514 speed *= (0x01 << cts.bus_width); 1515 mb = speed / 1000; 1516 if (mb > 0) 1517 printf("%s%d: %d.%03dMB/s transfers", 1518 periph->periph_name, periph->unit_number, 1519 mb, speed % 1000); 1520 else 1521 printf("%s%d: %dKB/s transfers", periph->periph_name, 1522 periph->unit_number, speed); 1523 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1524 && cts.sync_offset != 0) { 1525 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1526 freq % 1000, cts.sync_offset); 1527 } 1528 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1529 && cts.bus_width > 0) { 1530 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1531 && cts.sync_offset != 0) { 1532 printf(", "); 1533 } else { 1534 printf(" ("); 1535 } 1536 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1537 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1538 && cts.sync_offset != 0) { 1539 printf(")"); 1540 } 1541 1542 if (path->device->inq_flags & SID_CmdQue 1543 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1544 printf(", Tagged Queueing Enabled"); 1545 } 1546 1547 printf("\n"); 1548 } else if (path->device->inq_flags & SID_CmdQue 1549 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1550 printf("%s%d: Tagged Queueing Enabled\n", 1551 periph->periph_name, periph->unit_number); 1552 } 1553 1554 /* 1555 * We only want to print the caller's announce string if they've 1556 * passed one in.. 1557 */ 1558 if (announce_string != NULL) 1559 printf("%s%d: %s\n", periph->periph_name, 1560 periph->unit_number, announce_string); 1561 splx(s); 1562 } 1563 1564 1565 static dev_match_ret 1566 xptbusmatch(struct dev_match_pattern *patterns, int num_patterns, 1567 struct cam_eb *bus) 1568 { 1569 dev_match_ret retval; 1570 int i; 1571 1572 retval = DM_RET_NONE; 1573 1574 /* 1575 * If we aren't given something to match against, that's an error. 1576 */ 1577 if (bus == NULL) 1578 return(DM_RET_ERROR); 1579 1580 /* 1581 * If there are no match entries, then this bus matches no 1582 * matter what. 1583 */ 1584 if ((patterns == NULL) || (num_patterns == 0)) 1585 return(DM_RET_DESCEND | DM_RET_COPY); 1586 1587 for (i = 0; i < num_patterns; i++) { 1588 struct bus_match_pattern *cur_pattern; 1589 1590 /* 1591 * If the pattern in question isn't for a bus node, we 1592 * aren't interested. However, we do indicate to the 1593 * calling routine that we should continue descending the 1594 * tree, since the user wants to match against lower-level 1595 * EDT elements. 1596 */ 1597 if (patterns[i].type != DEV_MATCH_BUS) { 1598 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1599 retval |= DM_RET_DESCEND; 1600 continue; 1601 } 1602 1603 cur_pattern = &patterns[i].pattern.bus_pattern; 1604 1605 /* 1606 * If they want to match any bus node, we give them any 1607 * device node. 1608 */ 1609 if (cur_pattern->flags == BUS_MATCH_ANY) { 1610 /* set the copy flag */ 1611 retval |= DM_RET_COPY; 1612 1613 /* 1614 * If we've already decided on an action, go ahead 1615 * and return. 1616 */ 1617 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1618 return(retval); 1619 } 1620 1621 /* 1622 * Not sure why someone would do this... 1623 */ 1624 if (cur_pattern->flags == BUS_MATCH_NONE) 1625 continue; 1626 1627 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1628 && (cur_pattern->path_id != bus->path_id)) 1629 continue; 1630 1631 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1632 && (cur_pattern->bus_id != bus->sim->bus_id)) 1633 continue; 1634 1635 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1636 && (cur_pattern->unit_number != bus->sim->unit_number)) 1637 continue; 1638 1639 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1640 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1641 DEV_IDLEN) != 0)) 1642 continue; 1643 1644 /* 1645 * If we get to this point, the user definitely wants 1646 * information on this bus. So tell the caller to copy the 1647 * data out. 1648 */ 1649 retval |= DM_RET_COPY; 1650 1651 /* 1652 * If the return action has been set to descend, then we 1653 * know that we've already seen a non-bus matching 1654 * expression, therefore we need to further descend the tree. 1655 * This won't change by continuing around the loop, so we 1656 * go ahead and return. If we haven't seen a non-bus 1657 * matching expression, we keep going around the loop until 1658 * we exhaust the matching expressions. We'll set the stop 1659 * flag once we fall out of the loop. 1660 */ 1661 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1662 return(retval); 1663 } 1664 1665 /* 1666 * If the return action hasn't been set to descend yet, that means 1667 * we haven't seen anything other than bus matching patterns. So 1668 * tell the caller to stop descending the tree -- the user doesn't 1669 * want to match against lower level tree elements. 1670 */ 1671 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1672 retval |= DM_RET_STOP; 1673 1674 return(retval); 1675 } 1676 1677 static dev_match_ret 1678 xptdevicematch(struct dev_match_pattern *patterns, int num_patterns, 1679 struct cam_ed *device) 1680 { 1681 dev_match_ret retval; 1682 int i; 1683 1684 retval = DM_RET_NONE; 1685 1686 /* 1687 * If we aren't given something to match against, that's an error. 1688 */ 1689 if (device == NULL) 1690 return(DM_RET_ERROR); 1691 1692 /* 1693 * If there are no match entries, then this device matches no 1694 * matter what. 1695 */ 1696 if ((patterns == NULL) || (patterns == 0)) 1697 return(DM_RET_DESCEND | DM_RET_COPY); 1698 1699 for (i = 0; i < num_patterns; i++) { 1700 struct device_match_pattern *cur_pattern; 1701 1702 /* 1703 * If the pattern in question isn't for a device node, we 1704 * aren't interested. 1705 */ 1706 if (patterns[i].type != DEV_MATCH_DEVICE) { 1707 if ((patterns[i].type == DEV_MATCH_PERIPH) 1708 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1709 retval |= DM_RET_DESCEND; 1710 continue; 1711 } 1712 1713 cur_pattern = &patterns[i].pattern.device_pattern; 1714 1715 /* 1716 * If they want to match any device node, we give them any 1717 * device node. 1718 */ 1719 if (cur_pattern->flags == DEV_MATCH_ANY) { 1720 /* set the copy flag */ 1721 retval |= DM_RET_COPY; 1722 1723 1724 /* 1725 * If we've already decided on an action, go ahead 1726 * and return. 1727 */ 1728 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1729 return(retval); 1730 } 1731 1732 /* 1733 * Not sure why someone would do this... 1734 */ 1735 if (cur_pattern->flags == DEV_MATCH_NONE) 1736 continue; 1737 1738 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1739 && (cur_pattern->path_id != device->target->bus->path_id)) 1740 continue; 1741 1742 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1743 && (cur_pattern->target_id != device->target->target_id)) 1744 continue; 1745 1746 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1747 && (cur_pattern->target_lun != device->lun_id)) 1748 continue; 1749 1750 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1751 && (cam_quirkmatch((caddr_t)&device->inq_data, 1752 (caddr_t)&cur_pattern->inq_pat, 1753 1, sizeof(cur_pattern->inq_pat), 1754 scsi_static_inquiry_match) == NULL)) 1755 continue; 1756 1757 /* 1758 * If we get to this point, the user definitely wants 1759 * information on this device. So tell the caller to copy 1760 * the data out. 1761 */ 1762 retval |= DM_RET_COPY; 1763 1764 /* 1765 * If the return action has been set to descend, then we 1766 * know that we've already seen a peripheral matching 1767 * expression, therefore we need to further descend the tree. 1768 * This won't change by continuing around the loop, so we 1769 * go ahead and return. If we haven't seen a peripheral 1770 * matching expression, we keep going around the loop until 1771 * we exhaust the matching expressions. We'll set the stop 1772 * flag once we fall out of the loop. 1773 */ 1774 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1775 return(retval); 1776 } 1777 1778 /* 1779 * If the return action hasn't been set to descend yet, that means 1780 * we haven't seen any peripheral matching patterns. So tell the 1781 * caller to stop descending the tree -- the user doesn't want to 1782 * match against lower level tree elements. 1783 */ 1784 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1785 retval |= DM_RET_STOP; 1786 1787 return(retval); 1788 } 1789 1790 /* 1791 * Match a single peripheral against any number of match patterns. 1792 */ 1793 static dev_match_ret 1794 xptperiphmatch(struct dev_match_pattern *patterns, int num_patterns, 1795 struct cam_periph *periph) 1796 { 1797 dev_match_ret retval; 1798 int i; 1799 1800 /* 1801 * If we aren't given something to match against, that's an error. 1802 */ 1803 if (periph == NULL) 1804 return(DM_RET_ERROR); 1805 1806 /* 1807 * If there are no match entries, then this peripheral matches no 1808 * matter what. 1809 */ 1810 if ((patterns == NULL) || (num_patterns == 0)) 1811 return(DM_RET_STOP | DM_RET_COPY); 1812 1813 /* 1814 * There aren't any nodes below a peripheral node, so there's no 1815 * reason to descend the tree any further. 1816 */ 1817 retval = DM_RET_STOP; 1818 1819 for (i = 0; i < num_patterns; i++) { 1820 struct periph_match_pattern *cur_pattern; 1821 1822 /* 1823 * If the pattern in question isn't for a peripheral, we 1824 * aren't interested. 1825 */ 1826 if (patterns[i].type != DEV_MATCH_PERIPH) 1827 continue; 1828 1829 cur_pattern = &patterns[i].pattern.periph_pattern; 1830 1831 /* 1832 * If they want to match on anything, then we will do so. 1833 */ 1834 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1835 /* set the copy flag */ 1836 retval |= DM_RET_COPY; 1837 1838 /* 1839 * We've already set the return action to stop, 1840 * since there are no nodes below peripherals in 1841 * the tree. 1842 */ 1843 return(retval); 1844 } 1845 1846 /* 1847 * Not sure why someone would do this... 1848 */ 1849 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1850 continue; 1851 1852 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1853 && (cur_pattern->path_id != periph->path->bus->path_id)) 1854 continue; 1855 1856 /* 1857 * For the target and lun id's, we have to make sure the 1858 * target and lun pointers aren't NULL. The xpt peripheral 1859 * has a wildcard target and device. 1860 */ 1861 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1862 && ((periph->path->target == NULL) 1863 ||(cur_pattern->target_id != periph->path->target->target_id))) 1864 continue; 1865 1866 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1867 && ((periph->path->device == NULL) 1868 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1869 continue; 1870 1871 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1872 && (cur_pattern->unit_number != periph->unit_number)) 1873 continue; 1874 1875 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1876 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1877 DEV_IDLEN) != 0)) 1878 continue; 1879 1880 /* 1881 * If we get to this point, the user definitely wants 1882 * information on this peripheral. So tell the caller to 1883 * copy the data out. 1884 */ 1885 retval |= DM_RET_COPY; 1886 1887 /* 1888 * The return action has already been set to stop, since 1889 * peripherals don't have any nodes below them in the EDT. 1890 */ 1891 return(retval); 1892 } 1893 1894 /* 1895 * If we get to this point, the peripheral that was passed in 1896 * doesn't match any of the patterns. 1897 */ 1898 return(retval); 1899 } 1900 1901 static int 1902 xptedtbusfunc(struct cam_eb *bus, void *arg) 1903 { 1904 struct ccb_dev_match *cdm; 1905 dev_match_ret retval; 1906 1907 cdm = (struct ccb_dev_match *)arg; 1908 1909 /* 1910 * If our position is for something deeper in the tree, that means 1911 * that we've already seen this node. So, we keep going down. 1912 */ 1913 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1914 && (cdm->pos.cookie.bus == bus) 1915 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1916 && (cdm->pos.cookie.target != NULL)) 1917 retval = DM_RET_DESCEND; 1918 else 1919 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1920 1921 /* 1922 * If we got an error, bail out of the search. 1923 */ 1924 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1925 cdm->status = CAM_DEV_MATCH_ERROR; 1926 return(0); 1927 } 1928 1929 /* 1930 * If the copy flag is set, copy this bus out. 1931 */ 1932 if (retval & DM_RET_COPY) { 1933 int spaceleft, j; 1934 1935 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1936 sizeof(struct dev_match_result)); 1937 1938 /* 1939 * If we don't have enough space to put in another 1940 * match result, save our position and tell the 1941 * user there are more devices to check. 1942 */ 1943 if (spaceleft < sizeof(struct dev_match_result)) { 1944 bzero(&cdm->pos, sizeof(cdm->pos)); 1945 cdm->pos.position_type = 1946 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1947 1948 cdm->pos.cookie.bus = bus; 1949 cdm->pos.generations[CAM_BUS_GENERATION]= 1950 bus_generation; 1951 cdm->status = CAM_DEV_MATCH_MORE; 1952 return(0); 1953 } 1954 j = cdm->num_matches; 1955 cdm->num_matches++; 1956 cdm->matches[j].type = DEV_MATCH_BUS; 1957 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1958 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1959 cdm->matches[j].result.bus_result.unit_number = 1960 bus->sim->unit_number; 1961 strncpy(cdm->matches[j].result.bus_result.dev_name, 1962 bus->sim->sim_name, DEV_IDLEN); 1963 } 1964 1965 /* 1966 * If the user is only interested in busses, there's no 1967 * reason to descend to the next level in the tree. 1968 */ 1969 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1970 return(1); 1971 1972 /* 1973 * If there is a target generation recorded, check it to 1974 * make sure the target list hasn't changed. 1975 */ 1976 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1977 && (bus == cdm->pos.cookie.bus) 1978 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1979 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1980 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1981 bus->generation)) { 1982 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1983 return(0); 1984 } 1985 1986 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1987 && (cdm->pos.cookie.bus == bus) 1988 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1989 && (cdm->pos.cookie.target != NULL)) 1990 return(xpttargettraverse(bus, 1991 (struct cam_et *)cdm->pos.cookie.target, 1992 xptedttargetfunc, arg)); 1993 else 1994 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1995 } 1996 1997 static int 1998 xptedttargetfunc(struct cam_et *target, void *arg) 1999 { 2000 struct ccb_dev_match *cdm; 2001 2002 cdm = (struct ccb_dev_match *)arg; 2003 2004 /* 2005 * If there is a device list generation recorded, check it to 2006 * make sure the device list hasn't changed. 2007 */ 2008 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2009 && (cdm->pos.cookie.bus == target->bus) 2010 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2011 && (cdm->pos.cookie.target == target) 2012 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2013 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2014 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2015 target->generation)) { 2016 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2017 return(0); 2018 } 2019 2020 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2021 && (cdm->pos.cookie.bus == target->bus) 2022 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2023 && (cdm->pos.cookie.target == target) 2024 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2025 && (cdm->pos.cookie.device != NULL)) 2026 return(xptdevicetraverse(target, 2027 (struct cam_ed *)cdm->pos.cookie.device, 2028 xptedtdevicefunc, arg)); 2029 else 2030 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2031 } 2032 2033 static int 2034 xptedtdevicefunc(struct cam_ed *device, void *arg) 2035 { 2036 2037 struct ccb_dev_match *cdm; 2038 dev_match_ret retval; 2039 2040 cdm = (struct ccb_dev_match *)arg; 2041 2042 /* 2043 * If our position is for something deeper in the tree, that means 2044 * that we've already seen this node. So, we keep going down. 2045 */ 2046 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2047 && (cdm->pos.cookie.device == device) 2048 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2049 && (cdm->pos.cookie.periph != NULL)) 2050 retval = DM_RET_DESCEND; 2051 else 2052 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2053 device); 2054 2055 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2056 cdm->status = CAM_DEV_MATCH_ERROR; 2057 return(0); 2058 } 2059 2060 /* 2061 * If the copy flag is set, copy this device out. 2062 */ 2063 if (retval & DM_RET_COPY) { 2064 int spaceleft, j; 2065 2066 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2067 sizeof(struct dev_match_result)); 2068 2069 /* 2070 * If we don't have enough space to put in another 2071 * match result, save our position and tell the 2072 * user there are more devices to check. 2073 */ 2074 if (spaceleft < sizeof(struct dev_match_result)) { 2075 bzero(&cdm->pos, sizeof(cdm->pos)); 2076 cdm->pos.position_type = 2077 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2078 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2079 2080 cdm->pos.cookie.bus = device->target->bus; 2081 cdm->pos.generations[CAM_BUS_GENERATION]= 2082 bus_generation; 2083 cdm->pos.cookie.target = device->target; 2084 cdm->pos.generations[CAM_TARGET_GENERATION] = 2085 device->target->bus->generation; 2086 cdm->pos.cookie.device = device; 2087 cdm->pos.generations[CAM_DEV_GENERATION] = 2088 device->target->generation; 2089 cdm->status = CAM_DEV_MATCH_MORE; 2090 return(0); 2091 } 2092 j = cdm->num_matches; 2093 cdm->num_matches++; 2094 cdm->matches[j].type = DEV_MATCH_DEVICE; 2095 cdm->matches[j].result.device_result.path_id = 2096 device->target->bus->path_id; 2097 cdm->matches[j].result.device_result.target_id = 2098 device->target->target_id; 2099 cdm->matches[j].result.device_result.target_lun = 2100 device->lun_id; 2101 bcopy(&device->inq_data, 2102 &cdm->matches[j].result.device_result.inq_data, 2103 sizeof(struct scsi_inquiry_data)); 2104 2105 /* Let the user know whether this device is unconfigured */ 2106 if (device->flags & CAM_DEV_UNCONFIGURED) 2107 cdm->matches[j].result.device_result.flags = 2108 DEV_RESULT_UNCONFIGURED; 2109 else 2110 cdm->matches[j].result.device_result.flags = 2111 DEV_RESULT_NOFLAG; 2112 } 2113 2114 /* 2115 * If the user isn't interested in peripherals, don't descend 2116 * the tree any further. 2117 */ 2118 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2119 return(1); 2120 2121 /* 2122 * If there is a peripheral list generation recorded, make sure 2123 * it hasn't changed. 2124 */ 2125 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2126 && (device->target->bus == cdm->pos.cookie.bus) 2127 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2128 && (device->target == cdm->pos.cookie.target) 2129 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2130 && (device == cdm->pos.cookie.device) 2131 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2132 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2133 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2134 device->generation)){ 2135 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2136 return(0); 2137 } 2138 2139 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2140 && (cdm->pos.cookie.bus == device->target->bus) 2141 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2142 && (cdm->pos.cookie.target == device->target) 2143 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2144 && (cdm->pos.cookie.device == device) 2145 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2146 && (cdm->pos.cookie.periph != NULL)) 2147 return(xptperiphtraverse(device, 2148 (struct cam_periph *)cdm->pos.cookie.periph, 2149 xptedtperiphfunc, arg)); 2150 else 2151 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2152 } 2153 2154 static int 2155 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2156 { 2157 struct ccb_dev_match *cdm; 2158 dev_match_ret retval; 2159 2160 cdm = (struct ccb_dev_match *)arg; 2161 2162 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2163 2164 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2165 cdm->status = CAM_DEV_MATCH_ERROR; 2166 return(0); 2167 } 2168 2169 /* 2170 * If the copy flag is set, copy this peripheral out. 2171 */ 2172 if (retval & DM_RET_COPY) { 2173 int spaceleft, j; 2174 2175 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2176 sizeof(struct dev_match_result)); 2177 2178 /* 2179 * If we don't have enough space to put in another 2180 * match result, save our position and tell the 2181 * user there are more devices to check. 2182 */ 2183 if (spaceleft < sizeof(struct dev_match_result)) { 2184 bzero(&cdm->pos, sizeof(cdm->pos)); 2185 cdm->pos.position_type = 2186 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2187 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2188 CAM_DEV_POS_PERIPH; 2189 2190 cdm->pos.cookie.bus = periph->path->bus; 2191 cdm->pos.generations[CAM_BUS_GENERATION]= 2192 bus_generation; 2193 cdm->pos.cookie.target = periph->path->target; 2194 cdm->pos.generations[CAM_TARGET_GENERATION] = 2195 periph->path->bus->generation; 2196 cdm->pos.cookie.device = periph->path->device; 2197 cdm->pos.generations[CAM_DEV_GENERATION] = 2198 periph->path->target->generation; 2199 cdm->pos.cookie.periph = periph; 2200 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2201 periph->path->device->generation; 2202 cdm->status = CAM_DEV_MATCH_MORE; 2203 return(0); 2204 } 2205 2206 j = cdm->num_matches; 2207 cdm->num_matches++; 2208 cdm->matches[j].type = DEV_MATCH_PERIPH; 2209 cdm->matches[j].result.periph_result.path_id = 2210 periph->path->bus->path_id; 2211 cdm->matches[j].result.periph_result.target_id = 2212 periph->path->target->target_id; 2213 cdm->matches[j].result.periph_result.target_lun = 2214 periph->path->device->lun_id; 2215 cdm->matches[j].result.periph_result.unit_number = 2216 periph->unit_number; 2217 strncpy(cdm->matches[j].result.periph_result.periph_name, 2218 periph->periph_name, DEV_IDLEN); 2219 } 2220 2221 return(1); 2222 } 2223 2224 static int 2225 xptedtmatch(struct ccb_dev_match *cdm) 2226 { 2227 int ret; 2228 2229 cdm->num_matches = 0; 2230 2231 /* 2232 * Check the bus list generation. If it has changed, the user 2233 * needs to reset everything and start over. 2234 */ 2235 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2236 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2237 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2238 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2239 return(0); 2240 } 2241 2242 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2243 && (cdm->pos.cookie.bus != NULL)) 2244 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2245 xptedtbusfunc, cdm); 2246 else 2247 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2248 2249 /* 2250 * If we get back 0, that means that we had to stop before fully 2251 * traversing the EDT. It also means that one of the subroutines 2252 * has set the status field to the proper value. If we get back 1, 2253 * we've fully traversed the EDT and copied out any matching entries. 2254 */ 2255 if (ret == 1) 2256 cdm->status = CAM_DEV_MATCH_LAST; 2257 2258 return(ret); 2259 } 2260 2261 static int 2262 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2263 { 2264 struct ccb_dev_match *cdm; 2265 2266 cdm = (struct ccb_dev_match *)arg; 2267 2268 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2269 && (cdm->pos.cookie.pdrv == pdrv) 2270 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2271 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2272 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2273 (*pdrv)->generation)) { 2274 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2275 return(0); 2276 } 2277 2278 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2279 && (cdm->pos.cookie.pdrv == pdrv) 2280 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2281 && (cdm->pos.cookie.periph != NULL)) 2282 return(xptpdperiphtraverse(pdrv, 2283 (struct cam_periph *)cdm->pos.cookie.periph, 2284 xptplistperiphfunc, arg)); 2285 else 2286 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2287 } 2288 2289 static int 2290 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2291 { 2292 struct ccb_dev_match *cdm; 2293 dev_match_ret retval; 2294 2295 cdm = (struct ccb_dev_match *)arg; 2296 2297 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2298 2299 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2300 cdm->status = CAM_DEV_MATCH_ERROR; 2301 return(0); 2302 } 2303 2304 /* 2305 * If the copy flag is set, copy this peripheral out. 2306 */ 2307 if (retval & DM_RET_COPY) { 2308 int spaceleft, j; 2309 2310 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2311 sizeof(struct dev_match_result)); 2312 2313 /* 2314 * If we don't have enough space to put in another 2315 * match result, save our position and tell the 2316 * user there are more devices to check. 2317 */ 2318 if (spaceleft < sizeof(struct dev_match_result)) { 2319 struct periph_driver **pdrv; 2320 2321 pdrv = NULL; 2322 bzero(&cdm->pos, sizeof(cdm->pos)); 2323 cdm->pos.position_type = 2324 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2325 CAM_DEV_POS_PERIPH; 2326 2327 /* 2328 * This may look a bit non-sensical, but it is 2329 * actually quite logical. There are very few 2330 * peripheral drivers, and bloating every peripheral 2331 * structure with a pointer back to its parent 2332 * peripheral driver linker set entry would cost 2333 * more in the long run than doing this quick lookup. 2334 */ 2335 for (pdrv = 2336 (struct periph_driver **)periphdriver_set.ls_items; 2337 *pdrv != NULL; pdrv++) { 2338 if (strcmp((*pdrv)->driver_name, 2339 periph->periph_name) == 0) 2340 break; 2341 } 2342 2343 if (pdrv == NULL) { 2344 cdm->status = CAM_DEV_MATCH_ERROR; 2345 return(0); 2346 } 2347 2348 cdm->pos.cookie.pdrv = pdrv; 2349 /* 2350 * The periph generation slot does double duty, as 2351 * does the periph pointer slot. They are used for 2352 * both edt and pdrv lookups and positioning. 2353 */ 2354 cdm->pos.cookie.periph = periph; 2355 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2356 (*pdrv)->generation; 2357 cdm->status = CAM_DEV_MATCH_MORE; 2358 return(0); 2359 } 2360 2361 j = cdm->num_matches; 2362 cdm->num_matches++; 2363 cdm->matches[j].type = DEV_MATCH_PERIPH; 2364 cdm->matches[j].result.periph_result.path_id = 2365 periph->path->bus->path_id; 2366 2367 /* 2368 * The transport layer peripheral doesn't have a target or 2369 * lun. 2370 */ 2371 if (periph->path->target) 2372 cdm->matches[j].result.periph_result.target_id = 2373 periph->path->target->target_id; 2374 else 2375 cdm->matches[j].result.periph_result.target_id = -1; 2376 2377 if (periph->path->device) 2378 cdm->matches[j].result.periph_result.target_lun = 2379 periph->path->device->lun_id; 2380 else 2381 cdm->matches[j].result.periph_result.target_lun = -1; 2382 2383 cdm->matches[j].result.periph_result.unit_number = 2384 periph->unit_number; 2385 strncpy(cdm->matches[j].result.periph_result.periph_name, 2386 periph->periph_name, DEV_IDLEN); 2387 } 2388 2389 return(1); 2390 } 2391 2392 static int 2393 xptperiphlistmatch(struct ccb_dev_match *cdm) 2394 { 2395 int ret; 2396 2397 cdm->num_matches = 0; 2398 2399 /* 2400 * At this point in the edt traversal function, we check the bus 2401 * list generation to make sure that no busses have been added or 2402 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2403 * For the peripheral driver list traversal function, however, we 2404 * don't have to worry about new peripheral driver types coming or 2405 * going; they're in a linker set, and therefore can't change 2406 * without a recompile. 2407 */ 2408 2409 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2410 && (cdm->pos.cookie.pdrv != NULL)) 2411 ret = xptpdrvtraverse( 2412 (struct periph_driver **)cdm->pos.cookie.pdrv, 2413 xptplistpdrvfunc, cdm); 2414 else 2415 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2416 2417 /* 2418 * If we get back 0, that means that we had to stop before fully 2419 * traversing the peripheral driver tree. It also means that one of 2420 * the subroutines has set the status field to the proper value. If 2421 * we get back 1, we've fully traversed the EDT and copied out any 2422 * matching entries. 2423 */ 2424 if (ret == 1) 2425 cdm->status = CAM_DEV_MATCH_LAST; 2426 2427 return(ret); 2428 } 2429 2430 static int 2431 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2432 { 2433 struct cam_eb *bus, *next_bus; 2434 int retval; 2435 2436 retval = 1; 2437 2438 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2439 bus != NULL; 2440 bus = next_bus) { 2441 next_bus = TAILQ_NEXT(bus, links); 2442 2443 retval = tr_func(bus, arg); 2444 if (retval == 0) 2445 return(retval); 2446 } 2447 2448 return(retval); 2449 } 2450 2451 static int 2452 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2453 xpt_targetfunc_t *tr_func, void *arg) 2454 { 2455 struct cam_et *target, *next_target; 2456 int retval; 2457 2458 retval = 1; 2459 for (target = (start_target ? start_target : 2460 TAILQ_FIRST(&bus->et_entries)); 2461 target != NULL; target = next_target) { 2462 2463 next_target = TAILQ_NEXT(target, links); 2464 2465 retval = tr_func(target, arg); 2466 2467 if (retval == 0) 2468 return(retval); 2469 } 2470 2471 return(retval); 2472 } 2473 2474 static int 2475 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2476 xpt_devicefunc_t *tr_func, void *arg) 2477 { 2478 struct cam_ed *device, *next_device; 2479 int retval; 2480 2481 retval = 1; 2482 for (device = (start_device ? start_device : 2483 TAILQ_FIRST(&target->ed_entries)); 2484 device != NULL; 2485 device = next_device) { 2486 2487 next_device = TAILQ_NEXT(device, links); 2488 2489 retval = tr_func(device, arg); 2490 2491 if (retval == 0) 2492 return(retval); 2493 } 2494 2495 return(retval); 2496 } 2497 2498 static int 2499 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2500 xpt_periphfunc_t *tr_func, void *arg) 2501 { 2502 struct cam_periph *periph, *next_periph; 2503 int retval; 2504 2505 retval = 1; 2506 2507 for (periph = (start_periph ? start_periph : 2508 SLIST_FIRST(&device->periphs)); 2509 periph != NULL; 2510 periph = next_periph) { 2511 2512 next_periph = SLIST_NEXT(periph, periph_links); 2513 2514 retval = tr_func(periph, arg); 2515 if (retval == 0) 2516 return(retval); 2517 } 2518 2519 return(retval); 2520 } 2521 2522 static int 2523 xptpdrvtraverse(struct periph_driver **start_pdrv, 2524 xpt_pdrvfunc_t *tr_func, void *arg) 2525 { 2526 struct periph_driver **pdrv; 2527 int retval; 2528 2529 retval = 1; 2530 2531 /* 2532 * We don't traverse the peripheral driver list like we do the 2533 * other lists, because it is a linker set, and therefore cannot be 2534 * changed during runtime. If the peripheral driver list is ever 2535 * re-done to be something other than a linker set (i.e. it can 2536 * change while the system is running), the list traversal should 2537 * be modified to work like the other traversal functions. 2538 */ 2539 for (pdrv = (start_pdrv ? start_pdrv : 2540 (struct periph_driver **)periphdriver_set.ls_items); 2541 *pdrv != NULL; pdrv++) { 2542 retval = tr_func(pdrv, arg); 2543 2544 if (retval == 0) 2545 return(retval); 2546 } 2547 2548 return(retval); 2549 } 2550 2551 static int 2552 xptpdperiphtraverse(struct periph_driver **pdrv, 2553 struct cam_periph *start_periph, 2554 xpt_periphfunc_t *tr_func, void *arg) 2555 { 2556 struct cam_periph *periph, *next_periph; 2557 int retval; 2558 2559 retval = 1; 2560 2561 for (periph = (start_periph ? start_periph : 2562 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2563 periph = next_periph) { 2564 2565 next_periph = TAILQ_NEXT(periph, unit_links); 2566 2567 retval = tr_func(periph, arg); 2568 if (retval == 0) 2569 return(retval); 2570 } 2571 return(retval); 2572 } 2573 2574 static int 2575 xptdefbusfunc(struct cam_eb *bus, void *arg) 2576 { 2577 struct xpt_traverse_config *tr_config; 2578 2579 tr_config = (struct xpt_traverse_config *)arg; 2580 2581 if (tr_config->depth == XPT_DEPTH_BUS) { 2582 xpt_busfunc_t *tr_func; 2583 2584 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2585 2586 return(tr_func(bus, tr_config->tr_arg)); 2587 } else 2588 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2589 } 2590 2591 static int 2592 xptdeftargetfunc(struct cam_et *target, void *arg) 2593 { 2594 struct xpt_traverse_config *tr_config; 2595 2596 tr_config = (struct xpt_traverse_config *)arg; 2597 2598 if (tr_config->depth == XPT_DEPTH_TARGET) { 2599 xpt_targetfunc_t *tr_func; 2600 2601 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2602 2603 return(tr_func(target, tr_config->tr_arg)); 2604 } else 2605 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2606 } 2607 2608 static int 2609 xptdefdevicefunc(struct cam_ed *device, void *arg) 2610 { 2611 struct xpt_traverse_config *tr_config; 2612 2613 tr_config = (struct xpt_traverse_config *)arg; 2614 2615 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2616 xpt_devicefunc_t *tr_func; 2617 2618 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2619 2620 return(tr_func(device, tr_config->tr_arg)); 2621 } else 2622 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2623 } 2624 2625 static int 2626 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2627 { 2628 struct xpt_traverse_config *tr_config; 2629 xpt_periphfunc_t *tr_func; 2630 2631 tr_config = (struct xpt_traverse_config *)arg; 2632 2633 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2634 2635 /* 2636 * Unlike the other default functions, we don't check for depth 2637 * here. The peripheral driver level is the last level in the EDT, 2638 * so if we're here, we should execute the function in question. 2639 */ 2640 return(tr_func(periph, tr_config->tr_arg)); 2641 } 2642 2643 /* 2644 * Execute the given function for every bus in the EDT. 2645 */ 2646 static int 2647 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2648 { 2649 struct xpt_traverse_config tr_config; 2650 2651 tr_config.depth = XPT_DEPTH_BUS; 2652 tr_config.tr_func = tr_func; 2653 tr_config.tr_arg = arg; 2654 2655 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2656 } 2657 2658 #ifdef notusedyet 2659 /* 2660 * Execute the given function for every target in the EDT. 2661 */ 2662 static int 2663 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2664 { 2665 struct xpt_traverse_config tr_config; 2666 2667 tr_config.depth = XPT_DEPTH_TARGET; 2668 tr_config.tr_func = tr_func; 2669 tr_config.tr_arg = arg; 2670 2671 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2672 } 2673 #endif /* notusedyet */ 2674 2675 /* 2676 * Execute the given function for every device in the EDT. 2677 */ 2678 static int 2679 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2680 { 2681 struct xpt_traverse_config tr_config; 2682 2683 tr_config.depth = XPT_DEPTH_DEVICE; 2684 tr_config.tr_func = tr_func; 2685 tr_config.tr_arg = arg; 2686 2687 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2688 } 2689 2690 #ifdef notusedyet 2691 /* 2692 * Execute the given function for every peripheral in the EDT. 2693 */ 2694 static int 2695 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2696 { 2697 struct xpt_traverse_config tr_config; 2698 2699 tr_config.depth = XPT_DEPTH_PERIPH; 2700 tr_config.tr_func = tr_func; 2701 tr_config.tr_arg = arg; 2702 2703 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2704 } 2705 #endif /* notusedyet */ 2706 2707 static int 2708 xptsetasyncfunc(struct cam_ed *device, void *arg) 2709 { 2710 struct cam_path path; 2711 struct ccb_getdev cgd; 2712 struct async_node *cur_entry; 2713 2714 cur_entry = (struct async_node *)arg; 2715 2716 /* 2717 * Don't report unconfigured devices (Wildcard devs, 2718 * devices only for target mode, device instances 2719 * that have been invalidated but are waiting for 2720 * their last reference count to be released). 2721 */ 2722 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2723 return (1); 2724 2725 xpt_compile_path(&path, 2726 NULL, 2727 device->target->bus->path_id, 2728 device->target->target_id, 2729 device->lun_id); 2730 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2731 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2732 xpt_action((union ccb *)&cgd); 2733 cur_entry->callback(cur_entry->callback_arg, 2734 AC_FOUND_DEVICE, 2735 &path, &cgd); 2736 xpt_release_path(&path); 2737 2738 return(1); 2739 } 2740 2741 static int 2742 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2743 { 2744 struct cam_path path; 2745 struct ccb_pathinq cpi; 2746 struct async_node *cur_entry; 2747 2748 cur_entry = (struct async_node *)arg; 2749 2750 xpt_compile_path(&path, /*periph*/NULL, 2751 bus->sim->path_id, 2752 CAM_TARGET_WILDCARD, 2753 CAM_LUN_WILDCARD); 2754 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2755 cpi.ccb_h.func_code = XPT_PATH_INQ; 2756 xpt_action((union ccb *)&cpi); 2757 cur_entry->callback(cur_entry->callback_arg, 2758 AC_PATH_REGISTERED, 2759 &path, &cpi); 2760 xpt_release_path(&path); 2761 2762 return(1); 2763 } 2764 2765 void 2766 xpt_action(union ccb *start_ccb) 2767 { 2768 int iopl; 2769 2770 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2771 2772 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2773 2774 iopl = splsoftcam(); 2775 switch (start_ccb->ccb_h.func_code) { 2776 case XPT_SCSI_IO: 2777 { 2778 #ifdef CAMDEBUG 2779 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2780 struct cam_path *path; 2781 2782 path = start_ccb->ccb_h.path; 2783 #endif 2784 2785 /* 2786 * For the sake of compatibility with SCSI-1 2787 * devices that may not understand the identify 2788 * message, we include lun information in the 2789 * second byte of all commands. SCSI-1 specifies 2790 * that luns are a 3 bit value and reserves only 3 2791 * bits for lun information in the CDB. Later 2792 * revisions of the SCSI spec allow for more than 8 2793 * luns, but have deprecated lun information in the 2794 * CDB. So, if the lun won't fit, we must omit. 2795 * 2796 * Also be aware that during initial probing for devices, 2797 * the inquiry information is unknown but initialized to 0. 2798 * This means that this code will be exercised while probing 2799 * devices with an ANSI revision greater than 2. 2800 */ 2801 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 2802 && start_ccb->ccb_h.target_lun < 8 2803 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2804 2805 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2806 start_ccb->ccb_h.target_lun << 5; 2807 } 2808 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2809 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2810 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2811 &path->device->inq_data), 2812 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2813 cdb_str, sizeof(cdb_str)))); 2814 /* FALLTHROUGH */ 2815 } 2816 case XPT_TARGET_IO: 2817 case XPT_CONT_TARGET_IO: 2818 start_ccb->csio.sense_resid = 0; 2819 start_ccb->csio.resid = 0; 2820 /* FALLTHROUGH */ 2821 case XPT_RESET_DEV: 2822 case XPT_ENG_EXEC: 2823 { 2824 struct cam_path *path; 2825 int s; 2826 int runq; 2827 2828 path = start_ccb->ccb_h.path; 2829 s = splsoftcam(); 2830 2831 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2832 if (path->device->qfrozen_cnt == 0) 2833 runq = xpt_schedule_dev_sendq(path->bus, path->device); 2834 else 2835 runq = 0; 2836 splx(s); 2837 if (runq != 0) 2838 xpt_run_dev_sendq(path->bus); 2839 break; 2840 } 2841 case XPT_SET_TRAN_SETTINGS: 2842 { 2843 xpt_set_transfer_settings(&start_ccb->cts, 2844 start_ccb->ccb_h.path->device, 2845 /*async_update*/FALSE); 2846 break; 2847 } 2848 case XPT_CALC_GEOMETRY: 2849 { 2850 struct cam_sim *sim; 2851 2852 /* Filter out garbage */ 2853 if (start_ccb->ccg.block_size == 0 2854 || start_ccb->ccg.volume_size == 0) { 2855 start_ccb->ccg.cylinders = 0; 2856 start_ccb->ccg.heads = 0; 2857 start_ccb->ccg.secs_per_track = 0; 2858 start_ccb->ccb_h.status = CAM_REQ_CMP; 2859 break; 2860 } 2861 #ifdef PC98 2862 /* 2863 * In a PC-98 system, geometry translation depens on 2864 * the "real" device geometry obtained from mode page 4. 2865 * SCSI geometry translation is performed in the 2866 * initialization routine of the SCSI BIOS and the result 2867 * stored in host memory. If the translation is available 2868 * in host memory, use it. If not, rely on the default 2869 * translation the device driver performs. 2870 */ 2871 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2872 start_ccb->ccb_h.status = CAM_REQ_CMP; 2873 break; 2874 } 2875 #endif 2876 sim = start_ccb->ccb_h.path->bus->sim; 2877 (*(sim->sim_action))(sim, start_ccb); 2878 break; 2879 } 2880 case XPT_ABORT: 2881 { 2882 union ccb* abort_ccb; 2883 int s; 2884 2885 abort_ccb = start_ccb->cab.abort_ccb; 2886 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2887 2888 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2889 struct cam_ccbq *ccbq; 2890 2891 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 2892 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2893 abort_ccb->ccb_h.status = 2894 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2895 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2896 s = splcam(); 2897 xpt_done(abort_ccb); 2898 splx(s); 2899 start_ccb->ccb_h.status = CAM_REQ_CMP; 2900 break; 2901 } 2902 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2903 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2904 /* 2905 * We've caught this ccb en route to 2906 * the SIM. Flag it for abort and the 2907 * SIM will do so just before starting 2908 * real work on the CCB. 2909 */ 2910 abort_ccb->ccb_h.status = 2911 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2912 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2913 start_ccb->ccb_h.status = CAM_REQ_CMP; 2914 break; 2915 } 2916 } 2917 if (XPT_FC_IS_QUEUED(abort_ccb) 2918 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2919 /* 2920 * It's already completed but waiting 2921 * for our SWI to get to it. 2922 */ 2923 start_ccb->ccb_h.status = CAM_UA_ABORT; 2924 break; 2925 } 2926 /* 2927 * If we weren't able to take care of the abort request 2928 * in the XPT, pass the request down to the SIM for processing. 2929 */ 2930 /* FALLTHROUGH */ 2931 } 2932 case XPT_ACCEPT_TARGET_IO: 2933 case XPT_EN_LUN: 2934 case XPT_IMMED_NOTIFY: 2935 case XPT_NOTIFY_ACK: 2936 case XPT_GET_TRAN_SETTINGS: 2937 case XPT_RESET_BUS: 2938 { 2939 struct cam_sim *sim; 2940 2941 sim = start_ccb->ccb_h.path->bus->sim; 2942 (*(sim->sim_action))(sim, start_ccb); 2943 break; 2944 } 2945 case XPT_PATH_INQ: 2946 { 2947 struct cam_sim *sim; 2948 2949 sim = start_ccb->ccb_h.path->bus->sim; 2950 (*(sim->sim_action))(sim, start_ccb); 2951 break; 2952 } 2953 case XPT_PATH_STATS: 2954 start_ccb->cpis.last_reset = 2955 start_ccb->ccb_h.path->bus->last_reset; 2956 start_ccb->ccb_h.status = CAM_REQ_CMP; 2957 break; 2958 case XPT_GDEV_TYPE: 2959 { 2960 struct cam_ed *dev; 2961 int s; 2962 2963 dev = start_ccb->ccb_h.path->device; 2964 s = splcam(); 2965 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2966 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2967 } else { 2968 struct ccb_getdev *cgd; 2969 struct cam_eb *bus; 2970 struct cam_et *tar; 2971 2972 cgd = &start_ccb->cgd; 2973 bus = cgd->ccb_h.path->bus; 2974 tar = cgd->ccb_h.path->target; 2975 cgd->inq_data = dev->inq_data; 2976 cgd->ccb_h.status = CAM_REQ_CMP; 2977 cgd->serial_num_len = dev->serial_num_len; 2978 if ((dev->serial_num_len > 0) 2979 && (dev->serial_num != NULL)) 2980 bcopy(dev->serial_num, cgd->serial_num, 2981 dev->serial_num_len); 2982 } 2983 splx(s); 2984 break; 2985 } 2986 case XPT_GDEV_STATS: 2987 { 2988 struct cam_ed *dev; 2989 int s; 2990 2991 dev = start_ccb->ccb_h.path->device; 2992 s = splcam(); 2993 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2994 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2995 } else { 2996 struct ccb_getdevstats *cgds; 2997 struct cam_eb *bus; 2998 struct cam_et *tar; 2999 3000 cgds = &start_ccb->cgds; 3001 bus = cgds->ccb_h.path->bus; 3002 tar = cgds->ccb_h.path->target; 3003 cgds->dev_openings = dev->ccbq.dev_openings; 3004 cgds->dev_active = dev->ccbq.dev_active; 3005 cgds->devq_openings = dev->ccbq.devq_openings; 3006 cgds->devq_queued = dev->ccbq.queue.entries; 3007 cgds->held = dev->ccbq.held; 3008 cgds->last_reset = tar->last_reset; 3009 cgds->maxtags = dev->quirk->maxtags; 3010 cgds->mintags = dev->quirk->mintags; 3011 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3012 cgds->last_reset = bus->last_reset; 3013 cgds->ccb_h.status = CAM_REQ_CMP; 3014 } 3015 splx(s); 3016 break; 3017 } 3018 case XPT_GDEVLIST: 3019 { 3020 struct cam_periph *nperiph; 3021 struct periph_list *periph_head; 3022 struct ccb_getdevlist *cgdl; 3023 int i; 3024 int s; 3025 struct cam_ed *device; 3026 int found; 3027 3028 3029 found = 0; 3030 3031 /* 3032 * Don't want anyone mucking with our data. 3033 */ 3034 s = splcam(); 3035 device = start_ccb->ccb_h.path->device; 3036 periph_head = &device->periphs; 3037 cgdl = &start_ccb->cgdl; 3038 3039 /* 3040 * Check and see if the list has changed since the user 3041 * last requested a list member. If so, tell them that the 3042 * list has changed, and therefore they need to start over 3043 * from the beginning. 3044 */ 3045 if ((cgdl->index != 0) && 3046 (cgdl->generation != device->generation)) { 3047 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3048 splx(s); 3049 break; 3050 } 3051 3052 /* 3053 * Traverse the list of peripherals and attempt to find 3054 * the requested peripheral. 3055 */ 3056 for (nperiph = periph_head->slh_first, i = 0; 3057 (nperiph != NULL) && (i <= cgdl->index); 3058 nperiph = nperiph->periph_links.sle_next, i++) { 3059 if (i == cgdl->index) { 3060 strncpy(cgdl->periph_name, 3061 nperiph->periph_name, 3062 DEV_IDLEN); 3063 cgdl->unit_number = nperiph->unit_number; 3064 found = 1; 3065 } 3066 } 3067 if (found == 0) { 3068 cgdl->status = CAM_GDEVLIST_ERROR; 3069 splx(s); 3070 break; 3071 } 3072 3073 if (nperiph == NULL) 3074 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3075 else 3076 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3077 3078 cgdl->index++; 3079 cgdl->generation = device->generation; 3080 3081 splx(s); 3082 cgdl->ccb_h.status = CAM_REQ_CMP; 3083 break; 3084 } 3085 case XPT_DEV_MATCH: 3086 { 3087 int s; 3088 dev_pos_type position_type; 3089 struct ccb_dev_match *cdm; 3090 int ret; 3091 3092 cdm = &start_ccb->cdm; 3093 3094 /* 3095 * Prevent EDT changes while we traverse it. 3096 */ 3097 s = splcam(); 3098 /* 3099 * There are two ways of getting at information in the EDT. 3100 * The first way is via the primary EDT tree. It starts 3101 * with a list of busses, then a list of targets on a bus, 3102 * then devices/luns on a target, and then peripherals on a 3103 * device/lun. The "other" way is by the peripheral driver 3104 * lists. The peripheral driver lists are organized by 3105 * peripheral driver. (obviously) So it makes sense to 3106 * use the peripheral driver list if the user is looking 3107 * for something like "da1", or all "da" devices. If the 3108 * user is looking for something on a particular bus/target 3109 * or lun, it's generally better to go through the EDT tree. 3110 */ 3111 3112 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3113 position_type = cdm->pos.position_type; 3114 else { 3115 int i; 3116 3117 position_type = CAM_DEV_POS_NONE; 3118 3119 for (i = 0; i < cdm->num_patterns; i++) { 3120 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3121 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3122 position_type = CAM_DEV_POS_EDT; 3123 break; 3124 } 3125 } 3126 3127 if (cdm->num_patterns == 0) 3128 position_type = CAM_DEV_POS_EDT; 3129 else if (position_type == CAM_DEV_POS_NONE) 3130 position_type = CAM_DEV_POS_PDRV; 3131 } 3132 3133 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3134 case CAM_DEV_POS_EDT: 3135 ret = xptedtmatch(cdm); 3136 break; 3137 case CAM_DEV_POS_PDRV: 3138 ret = xptperiphlistmatch(cdm); 3139 break; 3140 default: 3141 cdm->status = CAM_DEV_MATCH_ERROR; 3142 break; 3143 } 3144 3145 splx(s); 3146 3147 if (cdm->status == CAM_DEV_MATCH_ERROR) 3148 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3149 else 3150 start_ccb->ccb_h.status = CAM_REQ_CMP; 3151 3152 break; 3153 } 3154 case XPT_SASYNC_CB: 3155 { 3156 struct ccb_setasync *csa; 3157 struct async_node *cur_entry; 3158 struct async_list *async_head; 3159 u_int32_t added; 3160 int s; 3161 3162 csa = &start_ccb->csa; 3163 added = csa->event_enable; 3164 async_head = &csa->ccb_h.path->device->asyncs; 3165 3166 /* 3167 * If there is already an entry for us, simply 3168 * update it. 3169 */ 3170 s = splcam(); 3171 cur_entry = SLIST_FIRST(async_head); 3172 while (cur_entry != NULL) { 3173 if ((cur_entry->callback_arg == csa->callback_arg) 3174 && (cur_entry->callback == csa->callback)) 3175 break; 3176 cur_entry = SLIST_NEXT(cur_entry, links); 3177 } 3178 3179 if (cur_entry != NULL) { 3180 /* 3181 * If the request has no flags set, 3182 * remove the entry. 3183 */ 3184 added &= ~cur_entry->event_enable; 3185 if (csa->event_enable == 0) { 3186 SLIST_REMOVE(async_head, cur_entry, 3187 async_node, links); 3188 csa->ccb_h.path->device->refcount--; 3189 free(cur_entry, M_DEVBUF); 3190 } else { 3191 cur_entry->event_enable = csa->event_enable; 3192 } 3193 } else { 3194 cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF, 3195 M_NOWAIT); 3196 if (cur_entry == NULL) { 3197 splx(s); 3198 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3199 break; 3200 } 3201 cur_entry->event_enable = csa->event_enable; 3202 cur_entry->callback_arg = csa->callback_arg; 3203 cur_entry->callback = csa->callback; 3204 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3205 csa->ccb_h.path->device->refcount++; 3206 } 3207 3208 if ((added & AC_FOUND_DEVICE) != 0) { 3209 /* 3210 * Get this peripheral up to date with all 3211 * the currently existing devices. 3212 */ 3213 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3214 } 3215 if ((added & AC_PATH_REGISTERED) != 0) { 3216 /* 3217 * Get this peripheral up to date with all 3218 * the currently existing busses. 3219 */ 3220 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3221 } 3222 splx(s); 3223 start_ccb->ccb_h.status = CAM_REQ_CMP; 3224 break; 3225 } 3226 case XPT_REL_SIMQ: 3227 { 3228 struct ccb_relsim *crs; 3229 struct cam_ed *dev; 3230 int s; 3231 3232 crs = &start_ccb->crs; 3233 dev = crs->ccb_h.path->device; 3234 if (dev == NULL) { 3235 3236 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3237 break; 3238 } 3239 3240 s = splcam(); 3241 3242 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3243 3244 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3245 3246 /* Don't ever go below one opening */ 3247 if (crs->openings > 0) { 3248 xpt_dev_ccbq_resize(crs->ccb_h.path, 3249 crs->openings); 3250 3251 if (bootverbose) { 3252 xpt_print_path(crs->ccb_h.path); 3253 printf("tagged openings " 3254 "now %d\n", 3255 crs->openings); 3256 } 3257 } 3258 } 3259 } 3260 3261 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3262 3263 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3264 3265 /* 3266 * Just extend the old timeout and decrement 3267 * the freeze count so that a single timeout 3268 * is sufficient for releasing the queue. 3269 */ 3270 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3271 untimeout(xpt_release_devq_timeout, 3272 dev, dev->c_handle); 3273 } else { 3274 3275 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3276 } 3277 3278 dev->c_handle = 3279 timeout(xpt_release_devq_timeout, 3280 dev, 3281 (crs->release_timeout * hz) / 1000); 3282 3283 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3284 3285 } 3286 3287 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3288 3289 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3290 /* 3291 * Decrement the freeze count so that a single 3292 * completion is still sufficient to unfreeze 3293 * the queue. 3294 */ 3295 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3296 } else { 3297 3298 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3299 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3300 } 3301 } 3302 3303 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3304 3305 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3306 || (dev->ccbq.dev_active == 0)) { 3307 3308 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3309 } else { 3310 3311 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3312 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3313 } 3314 } 3315 splx(s); 3316 3317 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3318 3319 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3320 /*run_queue*/TRUE); 3321 } 3322 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3323 start_ccb->ccb_h.status = CAM_REQ_CMP; 3324 break; 3325 } 3326 case XPT_SCAN_BUS: 3327 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3328 break; 3329 case XPT_SCAN_LUN: 3330 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3331 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3332 start_ccb); 3333 break; 3334 case XPT_DEBUG: { 3335 #ifdef CAMDEBUG 3336 int s; 3337 3338 s = splcam(); 3339 #ifdef CAM_DEBUG_DELAY 3340 cam_debug_delay = CAM_DEBUG_DELAY; 3341 #endif 3342 cam_dflags = start_ccb->cdbg.flags; 3343 if (cam_dpath != NULL) { 3344 xpt_free_path(cam_dpath); 3345 cam_dpath = NULL; 3346 } 3347 3348 if (cam_dflags != CAM_DEBUG_NONE) { 3349 if (xpt_create_path(&cam_dpath, xpt_periph, 3350 start_ccb->ccb_h.path_id, 3351 start_ccb->ccb_h.target_id, 3352 start_ccb->ccb_h.target_lun) != 3353 CAM_REQ_CMP) { 3354 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3355 cam_dflags = CAM_DEBUG_NONE; 3356 } else { 3357 start_ccb->ccb_h.status = CAM_REQ_CMP; 3358 xpt_print_path(cam_dpath); 3359 printf("debugging flags now %x\n", cam_dflags); 3360 } 3361 } else { 3362 cam_dpath = NULL; 3363 start_ccb->ccb_h.status = CAM_REQ_CMP; 3364 } 3365 splx(s); 3366 #else /* !CAMDEBUG */ 3367 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3368 #endif /* CAMDEBUG */ 3369 break; 3370 } 3371 case XPT_NOOP: 3372 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3373 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3374 start_ccb->ccb_h.status = CAM_REQ_CMP; 3375 break; 3376 default: 3377 case XPT_SDEV_TYPE: 3378 case XPT_TERM_IO: 3379 case XPT_ENG_INQ: 3380 /* XXX Implement */ 3381 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3382 break; 3383 } 3384 splx(iopl); 3385 } 3386 3387 void 3388 xpt_polled_action(union ccb *start_ccb) 3389 { 3390 int s; 3391 u_int32_t timeout; 3392 struct cam_sim *sim; 3393 struct cam_devq *devq; 3394 struct cam_ed *dev; 3395 3396 timeout = start_ccb->ccb_h.timeout; 3397 sim = start_ccb->ccb_h.path->bus->sim; 3398 devq = sim->devq; 3399 dev = start_ccb->ccb_h.path->device; 3400 3401 s = splcam(); 3402 3403 /* 3404 * Steal an opening so that no other queued requests 3405 * can get it before us while we simulate interrupts. 3406 */ 3407 dev->ccbq.devq_openings--; 3408 dev->ccbq.dev_openings--; 3409 3410 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) 3411 && (--timeout > 0)) { 3412 DELAY(1000); 3413 (*(sim->sim_poll))(sim); 3414 camisr(&cam_netq); 3415 camisr(&cam_bioq); 3416 } 3417 3418 dev->ccbq.devq_openings++; 3419 dev->ccbq.dev_openings++; 3420 3421 if (timeout != 0) { 3422 xpt_action(start_ccb); 3423 while(--timeout > 0) { 3424 (*(sim->sim_poll))(sim); 3425 camisr(&cam_netq); 3426 camisr(&cam_bioq); 3427 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3428 != CAM_REQ_INPROG) 3429 break; 3430 DELAY(1000); 3431 } 3432 if (timeout == 0) { 3433 /* 3434 * XXX Is it worth adding a sim_timeout entry 3435 * point so we can attempt recovery? If 3436 * this is only used for dumps, I don't think 3437 * it is. 3438 */ 3439 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3440 } 3441 } else { 3442 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3443 } 3444 splx(s); 3445 } 3446 3447 /* 3448 * Schedule a peripheral driver to receive a ccb when it's 3449 * target device has space for more transactions. 3450 */ 3451 void 3452 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3453 { 3454 struct cam_ed *device; 3455 int s; 3456 int runq; 3457 3458 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3459 device = perph->path->device; 3460 s = splsoftcam(); 3461 if (periph_is_queued(perph)) { 3462 /* Simply reorder based on new priority */ 3463 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3464 (" change priority to %d\n", new_priority)); 3465 if (new_priority < perph->pinfo.priority) { 3466 camq_change_priority(&device->drvq, 3467 perph->pinfo.index, 3468 new_priority); 3469 } 3470 runq = 0; 3471 } else { 3472 /* New entry on the queue */ 3473 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3474 (" added periph to queue\n")); 3475 perph->pinfo.priority = new_priority; 3476 perph->pinfo.generation = ++device->drvq.generation; 3477 camq_insert(&device->drvq, &perph->pinfo); 3478 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3479 } 3480 splx(s); 3481 if (runq != 0) { 3482 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3483 (" calling xpt_run_devq\n")); 3484 xpt_run_dev_allocq(perph->path->bus); 3485 } 3486 } 3487 3488 3489 /* 3490 * Schedule a device to run on a given queue. 3491 * If the device was inserted as a new entry on the queue, 3492 * return 1 meaning the device queue should be run. If we 3493 * were already queued, implying someone else has already 3494 * started the queue, return 0 so the caller doesn't attempt 3495 * to run the queue. Must be run at either splsoftcam 3496 * (or splcam since that encompases splsoftcam). 3497 */ 3498 static int 3499 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3500 u_int32_t new_priority) 3501 { 3502 int retval; 3503 u_int32_t old_priority; 3504 3505 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3506 3507 old_priority = pinfo->priority; 3508 3509 /* 3510 * Are we already queued? 3511 */ 3512 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3513 /* Simply reorder based on new priority */ 3514 if (new_priority < old_priority) { 3515 camq_change_priority(queue, pinfo->index, 3516 new_priority); 3517 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3518 ("changed priority to %d\n", 3519 new_priority)); 3520 } 3521 retval = 0; 3522 } else { 3523 /* New entry on the queue */ 3524 if (new_priority < old_priority) 3525 pinfo->priority = new_priority; 3526 3527 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3528 ("Inserting onto queue\n")); 3529 pinfo->generation = ++queue->generation; 3530 camq_insert(queue, pinfo); 3531 retval = 1; 3532 } 3533 return (retval); 3534 } 3535 3536 static void 3537 xpt_run_dev_allocq(struct cam_eb *bus) 3538 { 3539 struct cam_devq *devq; 3540 int s; 3541 3542 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3543 devq = bus->sim->devq; 3544 3545 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3546 (" qfrozen_cnt == 0x%x, entries == %d, " 3547 "openings == %d, active == %d\n", 3548 devq->alloc_queue.qfrozen_cnt, 3549 devq->alloc_queue.entries, 3550 devq->alloc_openings, 3551 devq->alloc_active)); 3552 3553 s = splsoftcam(); 3554 devq->alloc_queue.qfrozen_cnt++; 3555 while ((devq->alloc_queue.entries > 0) 3556 && (devq->alloc_openings > 0) 3557 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3558 struct cam_ed_qinfo *qinfo; 3559 struct cam_ed *device; 3560 union ccb *work_ccb; 3561 struct cam_periph *drv; 3562 struct camq *drvq; 3563 3564 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3565 CAMQ_HEAD); 3566 device = qinfo->device; 3567 3568 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3569 ("running device %p\n", device)); 3570 3571 drvq = &device->drvq; 3572 3573 #ifdef CAMDEBUG 3574 if (drvq->entries <= 0) { 3575 panic("xpt_run_dev_allocq: " 3576 "Device on queue without any work to do"); 3577 } 3578 #endif 3579 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3580 devq->alloc_openings--; 3581 devq->alloc_active++; 3582 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3583 splx(s); 3584 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3585 drv->pinfo.priority); 3586 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3587 ("calling periph start\n")); 3588 drv->periph_start(drv, work_ccb); 3589 } else { 3590 /* 3591 * Malloc failure in alloc_ccb 3592 */ 3593 /* 3594 * XXX add us to a list to be run from free_ccb 3595 * if we don't have any ccbs active on this 3596 * device queue otherwise we may never get run 3597 * again. 3598 */ 3599 break; 3600 } 3601 3602 /* Raise IPL for possible insertion and test at top of loop */ 3603 s = splsoftcam(); 3604 3605 if (drvq->entries > 0) { 3606 /* We have more work. Attempt to reschedule */ 3607 xpt_schedule_dev_allocq(bus, device); 3608 } 3609 } 3610 devq->alloc_queue.qfrozen_cnt--; 3611 splx(s); 3612 } 3613 3614 static void 3615 xpt_run_dev_sendq(struct cam_eb *bus) 3616 { 3617 struct cam_devq *devq; 3618 int s; 3619 3620 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3621 3622 devq = bus->sim->devq; 3623 3624 s = splcam(); 3625 devq->send_queue.qfrozen_cnt++; 3626 splx(s); 3627 s = splsoftcam(); 3628 while ((devq->send_queue.entries > 0) 3629 && (devq->send_openings > 0)) { 3630 struct cam_ed_qinfo *qinfo; 3631 struct cam_ed *device; 3632 union ccb *work_ccb; 3633 struct cam_sim *sim; 3634 int ospl; 3635 3636 ospl = splcam(); 3637 if (devq->send_queue.qfrozen_cnt > 1) { 3638 splx(ospl); 3639 break; 3640 } 3641 3642 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3643 CAMQ_HEAD); 3644 device = qinfo->device; 3645 3646 /* 3647 * If the device has been "frozen", don't attempt 3648 * to run it. 3649 */ 3650 if (device->qfrozen_cnt > 0) { 3651 splx(ospl); 3652 continue; 3653 } 3654 3655 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3656 ("running device %p\n", device)); 3657 3658 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3659 if (work_ccb == NULL) { 3660 printf("device on run queue with no ccbs???"); 3661 splx(ospl); 3662 continue; 3663 } 3664 3665 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3666 3667 if (num_highpower <= 0) { 3668 /* 3669 * We got a high power command, but we 3670 * don't have any available slots. Freeze 3671 * the device queue until we have a slot 3672 * available. 3673 */ 3674 device->qfrozen_cnt++; 3675 STAILQ_INSERT_TAIL(&highpowerq, 3676 &work_ccb->ccb_h, 3677 xpt_links.stqe); 3678 3679 splx(ospl); 3680 continue; 3681 } else { 3682 /* 3683 * Consume a high power slot while 3684 * this ccb runs. 3685 */ 3686 num_highpower--; 3687 } 3688 } 3689 devq->active_dev = device; 3690 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3691 3692 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3693 splx(ospl); 3694 3695 devq->send_openings--; 3696 devq->send_active++; 3697 3698 if (device->ccbq.queue.entries > 0) 3699 xpt_schedule_dev_sendq(bus, device); 3700 3701 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3702 /* 3703 * The client wants to freeze the queue 3704 * after this CCB is sent. 3705 */ 3706 ospl = splcam(); 3707 device->qfrozen_cnt++; 3708 splx(ospl); 3709 } 3710 3711 splx(s); 3712 3713 /* In Target mode, the peripheral driver knows best... */ 3714 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3715 if ((device->inq_flags & SID_CmdQue) != 0 3716 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3717 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3718 else 3719 /* 3720 * Clear this in case of a retried CCB that 3721 * failed due to a rejected tag. 3722 */ 3723 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3724 } 3725 3726 /* 3727 * Device queues can be shared among multiple sim instances 3728 * that reside on different busses. Use the SIM in the queue 3729 * CCB's path, rather than the one in the bus that was passed 3730 * into this function. 3731 */ 3732 sim = work_ccb->ccb_h.path->bus->sim; 3733 (*(sim->sim_action))(sim, work_ccb); 3734 3735 ospl = splcam(); 3736 devq->active_dev = NULL; 3737 splx(ospl); 3738 /* Raise IPL for possible insertion and test at top of loop */ 3739 s = splsoftcam(); 3740 } 3741 splx(s); 3742 s = splcam(); 3743 devq->send_queue.qfrozen_cnt--; 3744 splx(s); 3745 } 3746 3747 /* 3748 * This function merges stuff from the slave ccb into the master ccb, while 3749 * keeping important fields in the master ccb constant. 3750 */ 3751 void 3752 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3753 { 3754 /* 3755 * Pull fields that are valid for peripheral drivers to set 3756 * into the master CCB along with the CCB "payload". 3757 */ 3758 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3759 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3760 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3761 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3762 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3763 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3764 } 3765 3766 void 3767 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3768 { 3769 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3770 ccb_h->pinfo.priority = priority; 3771 ccb_h->path = path; 3772 ccb_h->path_id = path->bus->path_id; 3773 if (path->target) 3774 ccb_h->target_id = path->target->target_id; 3775 else 3776 ccb_h->target_id = CAM_TARGET_WILDCARD; 3777 if (path->device) { 3778 ccb_h->target_lun = path->device->lun_id; 3779 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3780 } else { 3781 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3782 } 3783 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3784 ccb_h->flags = 0; 3785 } 3786 3787 /* Path manipulation functions */ 3788 cam_status 3789 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3790 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3791 { 3792 struct cam_path *path; 3793 cam_status status; 3794 3795 path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT); 3796 3797 if (path == NULL) { 3798 status = CAM_RESRC_UNAVAIL; 3799 return(status); 3800 } 3801 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3802 if (status != CAM_REQ_CMP) { 3803 free(path, M_DEVBUF); 3804 path = NULL; 3805 } 3806 *new_path_ptr = path; 3807 return (status); 3808 } 3809 3810 static cam_status 3811 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3812 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3813 { 3814 struct cam_eb *bus; 3815 struct cam_et *target; 3816 struct cam_ed *device; 3817 cam_status status; 3818 int s; 3819 3820 status = CAM_REQ_CMP; /* Completed without error */ 3821 target = NULL; /* Wildcarded */ 3822 device = NULL; /* Wildcarded */ 3823 3824 /* 3825 * We will potentially modify the EDT, so block interrupts 3826 * that may attempt to create cam paths. 3827 */ 3828 s = splcam(); 3829 bus = xpt_find_bus(path_id); 3830 if (bus == NULL) { 3831 status = CAM_PATH_INVALID; 3832 } else { 3833 target = xpt_find_target(bus, target_id); 3834 if (target == NULL) { 3835 /* Create one */ 3836 struct cam_et *new_target; 3837 3838 new_target = xpt_alloc_target(bus, target_id); 3839 if (new_target == NULL) { 3840 status = CAM_RESRC_UNAVAIL; 3841 } else { 3842 target = new_target; 3843 } 3844 } 3845 if (target != NULL) { 3846 device = xpt_find_device(target, lun_id); 3847 if (device == NULL) { 3848 /* Create one */ 3849 struct cam_ed *new_device; 3850 3851 new_device = xpt_alloc_device(bus, 3852 target, 3853 lun_id); 3854 if (new_device == NULL) { 3855 status = CAM_RESRC_UNAVAIL; 3856 } else { 3857 device = new_device; 3858 } 3859 } 3860 } 3861 } 3862 splx(s); 3863 3864 /* 3865 * Only touch the user's data if we are successful. 3866 */ 3867 if (status == CAM_REQ_CMP) { 3868 new_path->periph = perph; 3869 new_path->bus = bus; 3870 new_path->target = target; 3871 new_path->device = device; 3872 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3873 } else { 3874 if (device != NULL) 3875 xpt_release_device(bus, target, device); 3876 if (target != NULL) 3877 xpt_release_target(bus, target); 3878 if (bus != NULL) 3879 xpt_release_bus(bus); 3880 } 3881 return (status); 3882 } 3883 3884 static void 3885 xpt_release_path(struct cam_path *path) 3886 { 3887 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3888 if (path->device != NULL) { 3889 xpt_release_device(path->bus, path->target, path->device); 3890 path->device = NULL; 3891 } 3892 if (path->target != NULL) { 3893 xpt_release_target(path->bus, path->target); 3894 path->target = NULL; 3895 } 3896 if (path->bus != NULL) { 3897 xpt_release_bus(path->bus); 3898 path->bus = NULL; 3899 } 3900 } 3901 3902 void 3903 xpt_free_path(struct cam_path *path) 3904 { 3905 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3906 xpt_release_path(path); 3907 free(path, M_DEVBUF); 3908 } 3909 3910 3911 /* 3912 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3913 * in path1, 2 for match with wildcards in path2. 3914 */ 3915 int 3916 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3917 { 3918 int retval = 0; 3919 3920 if (path1->bus != path2->bus) { 3921 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3922 retval = 1; 3923 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3924 retval = 2; 3925 else 3926 return (-1); 3927 } 3928 if (path1->target != path2->target) { 3929 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3930 if (retval == 0) 3931 retval = 1; 3932 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3933 retval = 2; 3934 else 3935 return (-1); 3936 } 3937 if (path1->device != path2->device) { 3938 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3939 if (retval == 0) 3940 retval = 1; 3941 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3942 retval = 2; 3943 else 3944 return (-1); 3945 } 3946 return (retval); 3947 } 3948 3949 void 3950 xpt_print_path(struct cam_path *path) 3951 { 3952 if (path == NULL) 3953 printf("(nopath): "); 3954 else { 3955 if (path->periph != NULL) 3956 printf("(%s%d:", path->periph->periph_name, 3957 path->periph->unit_number); 3958 else 3959 printf("(noperiph:"); 3960 3961 if (path->bus != NULL) 3962 printf("%s%d:%d:", path->bus->sim->sim_name, 3963 path->bus->sim->unit_number, 3964 path->bus->sim->bus_id); 3965 else 3966 printf("nobus:"); 3967 3968 if (path->target != NULL) 3969 printf("%d:", path->target->target_id); 3970 else 3971 printf("X:"); 3972 3973 if (path->device != NULL) 3974 printf("%d): ", path->device->lun_id); 3975 else 3976 printf("X): "); 3977 } 3978 } 3979 3980 path_id_t 3981 xpt_path_path_id(struct cam_path *path) 3982 { 3983 return(path->bus->path_id); 3984 } 3985 3986 target_id_t 3987 xpt_path_target_id(struct cam_path *path) 3988 { 3989 if (path->target != NULL) 3990 return (path->target->target_id); 3991 else 3992 return (CAM_TARGET_WILDCARD); 3993 } 3994 3995 lun_id_t 3996 xpt_path_lun_id(struct cam_path *path) 3997 { 3998 if (path->device != NULL) 3999 return (path->device->lun_id); 4000 else 4001 return (CAM_LUN_WILDCARD); 4002 } 4003 4004 struct cam_sim * 4005 xpt_path_sim(struct cam_path *path) 4006 { 4007 return (path->bus->sim); 4008 } 4009 4010 struct cam_periph* 4011 xpt_path_periph(struct cam_path *path) 4012 { 4013 return (path->periph); 4014 } 4015 4016 /* 4017 * Release a CAM control block for the caller. Remit the cost of the structure 4018 * to the device referenced by the path. If the this device had no 'credits' 4019 * and peripheral drivers have registered async callbacks for this notification 4020 * call them now. 4021 */ 4022 void 4023 xpt_release_ccb(union ccb *free_ccb) 4024 { 4025 int s; 4026 struct cam_path *path; 4027 struct cam_ed *device; 4028 struct cam_eb *bus; 4029 4030 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4031 path = free_ccb->ccb_h.path; 4032 device = path->device; 4033 bus = path->bus; 4034 s = splsoftcam(); 4035 cam_ccbq_release_opening(&device->ccbq); 4036 if (xpt_ccb_count > xpt_max_ccbs) { 4037 xpt_free_ccb(free_ccb); 4038 xpt_ccb_count--; 4039 } else { 4040 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4041 } 4042 bus->sim->devq->alloc_openings++; 4043 bus->sim->devq->alloc_active--; 4044 /* XXX Turn this into an inline function - xpt_run_device?? */ 4045 if ((device_is_alloc_queued(device) == 0) 4046 && (device->drvq.entries > 0)) { 4047 xpt_schedule_dev_allocq(bus, device); 4048 } 4049 splx(s); 4050 if (dev_allocq_is_runnable(bus->sim->devq)) 4051 xpt_run_dev_allocq(bus); 4052 } 4053 4054 /* Functions accessed by SIM drivers */ 4055 4056 /* 4057 * A sim structure, listing the SIM entry points and instance 4058 * identification info is passed to xpt_bus_register to hook the SIM 4059 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4060 * for this new bus and places it in the array of busses and assigns 4061 * it a path_id. The path_id may be influenced by "hard wiring" 4062 * information specified by the user. Once interrupt services are 4063 * availible, the bus will be probed. 4064 */ 4065 int32_t 4066 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4067 { 4068 struct cam_eb *new_bus; 4069 struct cam_eb *old_bus; 4070 struct ccb_pathinq cpi; 4071 int s; 4072 4073 sim->bus_id = bus; 4074 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4075 M_DEVBUF, M_NOWAIT); 4076 if (new_bus == NULL) { 4077 /* Couldn't satisfy request */ 4078 return (CAM_RESRC_UNAVAIL); 4079 } 4080 4081 if (strcmp(sim->sim_name, "xpt") != 0) { 4082 4083 sim->path_id = 4084 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4085 } 4086 4087 TAILQ_INIT(&new_bus->et_entries); 4088 new_bus->path_id = sim->path_id; 4089 new_bus->sim = sim; 4090 timevalclear(&new_bus->last_reset); 4091 new_bus->flags = 0; 4092 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4093 new_bus->generation = 0; 4094 s = splcam(); 4095 old_bus = TAILQ_FIRST(&xpt_busses); 4096 while (old_bus != NULL 4097 && old_bus->path_id < new_bus->path_id) 4098 old_bus = TAILQ_NEXT(old_bus, links); 4099 if (old_bus != NULL) 4100 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4101 else 4102 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4103 bus_generation++; 4104 splx(s); 4105 4106 /* Notify interested parties */ 4107 if (sim->path_id != CAM_XPT_PATH_ID) { 4108 struct cam_path path; 4109 4110 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4111 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4112 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4113 cpi.ccb_h.func_code = XPT_PATH_INQ; 4114 xpt_action((union ccb *)&cpi); 4115 xpt_async(AC_PATH_REGISTERED, xpt_periph->path, &cpi); 4116 xpt_release_path(&path); 4117 } 4118 return (CAM_SUCCESS); 4119 } 4120 4121 int32_t 4122 xpt_bus_deregister(path_id_t pathid) 4123 { 4124 struct cam_path bus_path; 4125 cam_status status; 4126 4127 status = xpt_compile_path(&bus_path, NULL, pathid, 4128 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4129 if (status != CAM_REQ_CMP) 4130 return (status); 4131 4132 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4133 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4134 4135 /* Release the reference count held while registered. */ 4136 xpt_release_bus(bus_path.bus); 4137 xpt_release_path(&bus_path); 4138 4139 return (CAM_REQ_CMP); 4140 } 4141 4142 static path_id_t 4143 xptnextfreepathid(void) 4144 { 4145 struct cam_eb *bus; 4146 path_id_t pathid; 4147 char *strval; 4148 4149 pathid = 0; 4150 bus = TAILQ_FIRST(&xpt_busses); 4151 retry: 4152 /* Find an unoccupied pathid */ 4153 while (bus != NULL 4154 && bus->path_id <= pathid) { 4155 if (bus->path_id == pathid) 4156 pathid++; 4157 bus = TAILQ_NEXT(bus, links); 4158 } 4159 4160 /* 4161 * Ensure that this pathid is not reserved for 4162 * a bus that may be registered in the future. 4163 */ 4164 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4165 ++pathid; 4166 /* Start the search over */ 4167 goto retry; 4168 } 4169 return (pathid); 4170 } 4171 4172 static path_id_t 4173 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4174 { 4175 path_id_t pathid; 4176 int i, dunit, val; 4177 char buf[32]; 4178 4179 pathid = CAM_XPT_PATH_ID; 4180 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4181 i = -1; 4182 while ((i = resource_query_string(i, "at", buf)) != -1) { 4183 if (strcmp(resource_query_name(i), "scbus")) { 4184 /* Avoid a bit of foot shooting. */ 4185 continue; 4186 } 4187 dunit = resource_query_unit(i); 4188 if (dunit < 0) /* unwired?! */ 4189 continue; 4190 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4191 if (sim_bus == val) { 4192 pathid = dunit; 4193 break; 4194 } 4195 } else if (sim_bus == 0) { 4196 /* Unspecified matches bus 0 */ 4197 pathid = dunit; 4198 break; 4199 } else { 4200 printf("Ambiguous scbus configuration for %s%d " 4201 "bus %d, cannot wire down. The kernel " 4202 "config entry for scbus%d should " 4203 "specify a controller bus.\n" 4204 "Scbus will be assigned dynamically.\n", 4205 sim_name, sim_unit, sim_bus, dunit); 4206 break; 4207 } 4208 } 4209 4210 if (pathid == CAM_XPT_PATH_ID) 4211 pathid = xptnextfreepathid(); 4212 return (pathid); 4213 } 4214 4215 void 4216 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4217 { 4218 struct cam_eb *bus; 4219 struct cam_et *target, *next_target; 4220 struct cam_ed *device, *next_device; 4221 int s; 4222 4223 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4224 4225 /* 4226 * Most async events come from a CAM interrupt context. In 4227 * a few cases, the error recovery code at the peripheral layer, 4228 * which may run from our SWI or a process context, may signal 4229 * deferred events with a call to xpt_async. Ensure async 4230 * notifications are serialized by blocking cam interrupts. 4231 */ 4232 s = splcam(); 4233 4234 bus = path->bus; 4235 4236 if (async_code == AC_BUS_RESET) { 4237 int s; 4238 4239 s = splclock(); 4240 /* Update our notion of when the last reset occurred */ 4241 microtime(&bus->last_reset); 4242 splx(s); 4243 } 4244 4245 for (target = TAILQ_FIRST(&bus->et_entries); 4246 target != NULL; 4247 target = next_target) { 4248 4249 next_target = TAILQ_NEXT(target, links); 4250 4251 if (path->target != target 4252 && path->target->target_id != CAM_TARGET_WILDCARD 4253 && target->target_id != CAM_TARGET_WILDCARD) 4254 continue; 4255 4256 if (async_code == AC_SENT_BDR) { 4257 int s; 4258 4259 /* Update our notion of when the last reset occurred */ 4260 s = splclock(); 4261 microtime(&path->target->last_reset); 4262 splx(s); 4263 } 4264 4265 for (device = TAILQ_FIRST(&target->ed_entries); 4266 device != NULL; 4267 device = next_device) { 4268 4269 next_device = TAILQ_NEXT(device, links); 4270 4271 if (path->device != device 4272 && path->device->lun_id != CAM_LUN_WILDCARD 4273 && device->lun_id != CAM_LUN_WILDCARD) 4274 continue; 4275 4276 xpt_dev_async(async_code, bus, target, 4277 device, async_arg); 4278 4279 xpt_async_bcast(&device->asyncs, async_code, 4280 path, async_arg); 4281 } 4282 } 4283 4284 /* 4285 * If this wasn't a fully wildcarded async, tell all 4286 * clients that want all async events. 4287 */ 4288 if (bus != xpt_periph->path->bus) 4289 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4290 path, async_arg); 4291 splx(s); 4292 } 4293 4294 static void 4295 xpt_async_bcast(struct async_list *async_head, 4296 u_int32_t async_code, 4297 struct cam_path *path, void *async_arg) 4298 { 4299 struct async_node *cur_entry; 4300 4301 cur_entry = SLIST_FIRST(async_head); 4302 while (cur_entry != NULL) { 4303 struct async_node *next_entry; 4304 /* 4305 * Grab the next list entry before we call the current 4306 * entry's callback. This is because the callback function 4307 * can delete its async callback entry. 4308 */ 4309 next_entry = SLIST_NEXT(cur_entry, links); 4310 if ((cur_entry->event_enable & async_code) != 0) 4311 cur_entry->callback(cur_entry->callback_arg, 4312 async_code, path, 4313 async_arg); 4314 cur_entry = next_entry; 4315 } 4316 } 4317 4318 /* 4319 * Handle any per-device event notifications that require action by the XPT. 4320 */ 4321 static void 4322 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4323 struct cam_ed *device, void *async_arg) 4324 { 4325 cam_status status; 4326 struct cam_path newpath; 4327 4328 /* 4329 * We only need to handle events for real devices. 4330 */ 4331 if (target->target_id == CAM_TARGET_WILDCARD 4332 || device->lun_id == CAM_LUN_WILDCARD) 4333 return; 4334 4335 /* 4336 * We need our own path with wildcards expanded to 4337 * handle certain types of events. 4338 */ 4339 if ((async_code == AC_SENT_BDR) 4340 || (async_code == AC_BUS_RESET) 4341 || (async_code == AC_INQ_CHANGED)) 4342 status = xpt_compile_path(&newpath, NULL, 4343 bus->path_id, 4344 target->target_id, 4345 device->lun_id); 4346 else 4347 status = CAM_REQ_CMP_ERR; 4348 4349 if (status == CAM_REQ_CMP) { 4350 4351 /* 4352 * Allow transfer negotiation to occur in a 4353 * tag free environment. 4354 */ 4355 if (async_code == AC_SENT_BDR 4356 || async_code == AC_BUS_RESET) 4357 xpt_toggle_tags(&newpath); 4358 4359 if (async_code == AC_INQ_CHANGED) { 4360 /* 4361 * We've sent a start unit command, or 4362 * something similar to a device that 4363 * may have caused its inquiry data to 4364 * change. So we re-scan the device to 4365 * refresh the inquiry data for it. 4366 */ 4367 xpt_scan_lun(newpath.periph, &newpath, 4368 CAM_EXPECT_INQ_CHANGE, NULL); 4369 } 4370 xpt_release_path(&newpath); 4371 } else if (async_code == AC_LOST_DEVICE) { 4372 device->flags |= CAM_DEV_UNCONFIGURED; 4373 } else if (async_code == AC_TRANSFER_NEG) { 4374 struct ccb_trans_settings *settings; 4375 4376 settings = (struct ccb_trans_settings *)async_arg; 4377 xpt_set_transfer_settings(settings, device, 4378 /*async_update*/TRUE); 4379 } 4380 } 4381 4382 u_int32_t 4383 xpt_freeze_devq(struct cam_path *path, u_int count) 4384 { 4385 int s; 4386 struct ccb_hdr *ccbh; 4387 4388 s = splcam(); 4389 path->device->qfrozen_cnt += count; 4390 4391 /* 4392 * Mark the last CCB in the queue as needing 4393 * to be requeued if the driver hasn't 4394 * changed it's state yet. This fixes a race 4395 * where a ccb is just about to be queued to 4396 * a controller driver when it's interrupt routine 4397 * freezes the queue. To completly close the 4398 * hole, controller drives must check to see 4399 * if a ccb's status is still CAM_REQ_INPROG 4400 * under spl protection just before they queue 4401 * the CCB. See ahc_action/ahc_freeze_devq for 4402 * an example. 4403 */ 4404 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4405 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4406 ccbh->status = CAM_REQUEUE_REQ; 4407 splx(s); 4408 return (path->device->qfrozen_cnt); 4409 } 4410 4411 u_int32_t 4412 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4413 { 4414 sim->devq->send_queue.qfrozen_cnt += count; 4415 if (sim->devq->active_dev != NULL) { 4416 struct ccb_hdr *ccbh; 4417 4418 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4419 ccb_hdr_tailq); 4420 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4421 ccbh->status = CAM_REQUEUE_REQ; 4422 } 4423 return (sim->devq->send_queue.qfrozen_cnt); 4424 } 4425 4426 static void 4427 xpt_release_devq_timeout(void *arg) 4428 { 4429 struct cam_ed *device; 4430 4431 device = (struct cam_ed *)arg; 4432 4433 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4434 } 4435 4436 void 4437 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4438 { 4439 xpt_release_devq_device(path->device, count, run_queue); 4440 } 4441 4442 static void 4443 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4444 { 4445 int rundevq; 4446 int s0, s1; 4447 4448 rundevq = 0; 4449 s0 = splsoftcam(); 4450 s1 = splcam(); 4451 if (dev->qfrozen_cnt > 0) { 4452 4453 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4454 dev->qfrozen_cnt -= count; 4455 if (dev->qfrozen_cnt == 0) { 4456 4457 /* 4458 * No longer need to wait for a successful 4459 * command completion. 4460 */ 4461 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4462 4463 /* 4464 * Remove any timeouts that might be scheduled 4465 * to release this queue. 4466 */ 4467 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4468 untimeout(xpt_release_devq_timeout, dev, 4469 dev->c_handle); 4470 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4471 } 4472 4473 /* 4474 * Now that we are unfrozen schedule the 4475 * device so any pending transactions are 4476 * run. 4477 */ 4478 if ((dev->ccbq.queue.entries > 0) 4479 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4480 && (run_queue != 0)) { 4481 rundevq = 1; 4482 } 4483 } 4484 } 4485 splx(s1); 4486 if (rundevq != 0) 4487 xpt_run_dev_sendq(dev->target->bus); 4488 splx(s0); 4489 } 4490 4491 void 4492 xpt_release_simq(struct cam_sim *sim, int run_queue) 4493 { 4494 int s; 4495 struct camq *sendq; 4496 4497 sendq = &(sim->devq->send_queue); 4498 s = splcam(); 4499 if (sendq->qfrozen_cnt > 0) { 4500 4501 sendq->qfrozen_cnt--; 4502 if (sendq->qfrozen_cnt == 0) { 4503 struct cam_eb *bus; 4504 4505 /* 4506 * If there is a timeout scheduled to release this 4507 * sim queue, remove it. The queue frozen count is 4508 * already at 0. 4509 */ 4510 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4511 untimeout(xpt_release_simq_timeout, sim, 4512 sim->c_handle); 4513 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4514 } 4515 bus = xpt_find_bus(sim->path_id); 4516 splx(s); 4517 4518 if (run_queue) { 4519 /* 4520 * Now that we are unfrozen run the send queue. 4521 */ 4522 xpt_run_dev_sendq(bus); 4523 } 4524 xpt_release_bus(bus); 4525 } else 4526 splx(s); 4527 } else 4528 splx(s); 4529 } 4530 4531 static void 4532 xpt_release_simq_timeout(void *arg) 4533 { 4534 struct cam_sim *sim; 4535 4536 sim = (struct cam_sim *)arg; 4537 xpt_release_simq(sim, /* run_queue */ TRUE); 4538 } 4539 4540 void 4541 xpt_done(union ccb *done_ccb) 4542 { 4543 int s; 4544 4545 s = splcam(); 4546 4547 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4548 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4549 /* 4550 * Queue up the request for handling by our SWI handler 4551 * any of the "non-immediate" type of ccbs. 4552 */ 4553 switch (done_ccb->ccb_h.path->periph->type) { 4554 case CAM_PERIPH_BIO: 4555 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4556 sim_links.tqe); 4557 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4558 sched_swi(cambio_ih, SWI_NOSWITCH); 4559 break; 4560 case CAM_PERIPH_NET: 4561 TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h, 4562 sim_links.tqe); 4563 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4564 sched_swi(camnet_ih, SWI_NOSWITCH); 4565 break; 4566 } 4567 } 4568 splx(s); 4569 } 4570 4571 union ccb * 4572 xpt_alloc_ccb() 4573 { 4574 union ccb *new_ccb; 4575 4576 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK); 4577 return (new_ccb); 4578 } 4579 4580 void 4581 xpt_free_ccb(union ccb *free_ccb) 4582 { 4583 free(free_ccb, M_DEVBUF); 4584 } 4585 4586 4587 4588 /* Private XPT functions */ 4589 4590 /* 4591 * Get a CAM control block for the caller. Charge the structure to the device 4592 * referenced by the path. If the this device has no 'credits' then the 4593 * device already has the maximum number of outstanding operations under way 4594 * and we return NULL. If we don't have sufficient resources to allocate more 4595 * ccbs, we also return NULL. 4596 */ 4597 static union ccb * 4598 xpt_get_ccb(struct cam_ed *device) 4599 { 4600 union ccb *new_ccb; 4601 int s; 4602 4603 s = splsoftcam(); 4604 if ((new_ccb = (union ccb *)ccb_freeq.slh_first) == NULL) { 4605 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT); 4606 if (new_ccb == NULL) { 4607 splx(s); 4608 return (NULL); 4609 } 4610 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4611 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4612 xpt_links.sle); 4613 xpt_ccb_count++; 4614 } 4615 cam_ccbq_take_opening(&device->ccbq); 4616 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4617 splx(s); 4618 return (new_ccb); 4619 } 4620 4621 static void 4622 xpt_release_bus(struct cam_eb *bus) 4623 { 4624 int s; 4625 4626 s = splcam(); 4627 if ((--bus->refcount == 0) 4628 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4629 TAILQ_REMOVE(&xpt_busses, bus, links); 4630 bus_generation++; 4631 splx(s); 4632 free(bus, M_DEVBUF); 4633 } else 4634 splx(s); 4635 } 4636 4637 static struct cam_et * 4638 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4639 { 4640 struct cam_et *target; 4641 4642 target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT); 4643 if (target != NULL) { 4644 struct cam_et *cur_target; 4645 4646 TAILQ_INIT(&target->ed_entries); 4647 target->bus = bus; 4648 target->target_id = target_id; 4649 target->refcount = 1; 4650 target->generation = 0; 4651 timevalclear(&target->last_reset); 4652 /* 4653 * Hold a reference to our parent bus so it 4654 * will not go away before we do. 4655 */ 4656 bus->refcount++; 4657 4658 /* Insertion sort into our bus's target list */ 4659 cur_target = TAILQ_FIRST(&bus->et_entries); 4660 while (cur_target != NULL && cur_target->target_id < target_id) 4661 cur_target = TAILQ_NEXT(cur_target, links); 4662 4663 if (cur_target != NULL) { 4664 TAILQ_INSERT_BEFORE(cur_target, target, links); 4665 } else { 4666 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4667 } 4668 bus->generation++; 4669 } 4670 return (target); 4671 } 4672 4673 static void 4674 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4675 { 4676 int s; 4677 4678 s = splcam(); 4679 if ((--target->refcount == 0) 4680 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4681 TAILQ_REMOVE(&bus->et_entries, target, links); 4682 bus->generation++; 4683 splx(s); 4684 free(target, M_DEVBUF); 4685 xpt_release_bus(bus); 4686 } else 4687 splx(s); 4688 } 4689 4690 static struct cam_ed * 4691 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4692 { 4693 struct cam_ed *device; 4694 struct cam_devq *devq; 4695 cam_status status; 4696 4697 /* Make space for us in the device queue on our bus */ 4698 devq = bus->sim->devq; 4699 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4700 4701 if (status != CAM_REQ_CMP) { 4702 device = NULL; 4703 } else { 4704 device = (struct cam_ed *)malloc(sizeof(*device), 4705 M_DEVBUF, M_NOWAIT); 4706 } 4707 4708 if (device != NULL) { 4709 struct cam_ed *cur_device; 4710 4711 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4712 device->alloc_ccb_entry.device = device; 4713 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4714 device->send_ccb_entry.device = device; 4715 device->target = target; 4716 device->lun_id = lun_id; 4717 /* Initialize our queues */ 4718 if (camq_init(&device->drvq, 0) != 0) { 4719 free(device, M_DEVBUF); 4720 return (NULL); 4721 } 4722 if (cam_ccbq_init(&device->ccbq, 4723 bus->sim->max_dev_openings) != 0) { 4724 camq_fini(&device->drvq); 4725 free(device, M_DEVBUF); 4726 return (NULL); 4727 } 4728 SLIST_INIT(&device->asyncs); 4729 SLIST_INIT(&device->periphs); 4730 device->generation = 0; 4731 device->owner = NULL; 4732 /* 4733 * Take the default quirk entry until we have inquiry 4734 * data and can determine a better quirk to use. 4735 */ 4736 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 4737 bzero(&device->inq_data, sizeof(device->inq_data)); 4738 device->inq_flags = 0; 4739 device->queue_flags = 0; 4740 device->serial_num = NULL; 4741 device->serial_num_len = 0; 4742 device->qfrozen_cnt = 0; 4743 device->flags = CAM_DEV_UNCONFIGURED; 4744 device->tag_delay_count = 0; 4745 device->refcount = 1; 4746 callout_handle_init(&device->c_handle); 4747 4748 /* 4749 * Hold a reference to our parent target so it 4750 * will not go away before we do. 4751 */ 4752 target->refcount++; 4753 4754 /* 4755 * XXX should be limited by number of CCBs this bus can 4756 * do. 4757 */ 4758 xpt_max_ccbs += device->ccbq.devq_openings; 4759 /* Insertion sort into our target's device list */ 4760 cur_device = TAILQ_FIRST(&target->ed_entries); 4761 while (cur_device != NULL && cur_device->lun_id < lun_id) 4762 cur_device = TAILQ_NEXT(cur_device, links); 4763 if (cur_device != NULL) { 4764 TAILQ_INSERT_BEFORE(cur_device, device, links); 4765 } else { 4766 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4767 } 4768 target->generation++; 4769 } 4770 return (device); 4771 } 4772 4773 static void 4774 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 4775 struct cam_ed *device) 4776 { 4777 int s; 4778 4779 s = splcam(); 4780 if ((--device->refcount == 0) 4781 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 4782 struct cam_devq *devq; 4783 4784 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4785 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4786 panic("Removing device while still queued for ccbs"); 4787 4788 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4789 untimeout(xpt_release_devq_timeout, device, 4790 device->c_handle); 4791 4792 TAILQ_REMOVE(&target->ed_entries, device,links); 4793 target->generation++; 4794 xpt_max_ccbs -= device->ccbq.devq_openings; 4795 /* Release our slot in the devq */ 4796 devq = bus->sim->devq; 4797 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4798 splx(s); 4799 free(device, M_DEVBUF); 4800 xpt_release_target(bus, target); 4801 } else 4802 splx(s); 4803 } 4804 4805 static u_int32_t 4806 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4807 { 4808 int s; 4809 int diff; 4810 int result; 4811 struct cam_ed *dev; 4812 4813 dev = path->device; 4814 s = splsoftcam(); 4815 4816 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4817 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4818 if (result == CAM_REQ_CMP && (diff < 0)) { 4819 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4820 } 4821 /* Adjust the global limit */ 4822 xpt_max_ccbs += diff; 4823 splx(s); 4824 return (result); 4825 } 4826 4827 static struct cam_eb * 4828 xpt_find_bus(path_id_t path_id) 4829 { 4830 struct cam_eb *bus; 4831 4832 for (bus = TAILQ_FIRST(&xpt_busses); 4833 bus != NULL; 4834 bus = TAILQ_NEXT(bus, links)) { 4835 if (bus->path_id == path_id) { 4836 bus->refcount++; 4837 break; 4838 } 4839 } 4840 return (bus); 4841 } 4842 4843 static struct cam_et * 4844 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4845 { 4846 struct cam_et *target; 4847 4848 for (target = TAILQ_FIRST(&bus->et_entries); 4849 target != NULL; 4850 target = TAILQ_NEXT(target, links)) { 4851 if (target->target_id == target_id) { 4852 target->refcount++; 4853 break; 4854 } 4855 } 4856 return (target); 4857 } 4858 4859 static struct cam_ed * 4860 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4861 { 4862 struct cam_ed *device; 4863 4864 for (device = TAILQ_FIRST(&target->ed_entries); 4865 device != NULL; 4866 device = TAILQ_NEXT(device, links)) { 4867 if (device->lun_id == lun_id) { 4868 device->refcount++; 4869 break; 4870 } 4871 } 4872 return (device); 4873 } 4874 4875 typedef struct { 4876 union ccb *request_ccb; 4877 struct ccb_pathinq *cpi; 4878 int pending_count; 4879 } xpt_scan_bus_info; 4880 4881 /* 4882 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 4883 * As the scan progresses, xpt_scan_bus is used as the 4884 * callback on completion function. 4885 */ 4886 static void 4887 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 4888 { 4889 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4890 ("xpt_scan_bus\n")); 4891 switch (request_ccb->ccb_h.func_code) { 4892 case XPT_SCAN_BUS: 4893 { 4894 xpt_scan_bus_info *scan_info; 4895 union ccb *work_ccb; 4896 struct cam_path *path; 4897 u_int i; 4898 u_int max_target; 4899 u_int initiator_id; 4900 4901 /* Find out the characteristics of the bus */ 4902 work_ccb = xpt_alloc_ccb(); 4903 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 4904 request_ccb->ccb_h.pinfo.priority); 4905 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 4906 xpt_action(work_ccb); 4907 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 4908 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 4909 xpt_free_ccb(work_ccb); 4910 xpt_done(request_ccb); 4911 return; 4912 } 4913 4914 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 4915 /* 4916 * Can't scan the bus on an adapter that 4917 * cannot perform the initiator role. 4918 */ 4919 request_ccb->ccb_h.status = CAM_REQ_CMP; 4920 xpt_free_ccb(work_ccb); 4921 xpt_done(request_ccb); 4922 return; 4923 } 4924 4925 /* Save some state for use while we probe for devices */ 4926 scan_info = (xpt_scan_bus_info *) 4927 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 4928 scan_info->request_ccb = request_ccb; 4929 scan_info->cpi = &work_ccb->cpi; 4930 4931 /* Cache on our stack so we can work asynchronously */ 4932 max_target = scan_info->cpi->max_target; 4933 initiator_id = scan_info->cpi->initiator_id; 4934 4935 /* 4936 * Don't count the initiator if the 4937 * initiator is addressable. 4938 */ 4939 scan_info->pending_count = max_target + 1; 4940 if (initiator_id <= max_target) 4941 scan_info->pending_count--; 4942 4943 for (i = 0; i <= max_target; i++) { 4944 cam_status status; 4945 if (i == initiator_id) 4946 continue; 4947 4948 status = xpt_create_path(&path, xpt_periph, 4949 request_ccb->ccb_h.path_id, 4950 i, 0); 4951 if (status != CAM_REQ_CMP) { 4952 printf("xpt_scan_bus: xpt_create_path failed" 4953 " with status %#x, bus scan halted\n", 4954 status); 4955 break; 4956 } 4957 work_ccb = xpt_alloc_ccb(); 4958 xpt_setup_ccb(&work_ccb->ccb_h, path, 4959 request_ccb->ccb_h.pinfo.priority); 4960 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 4961 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 4962 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 4963 work_ccb->crcn.flags = request_ccb->crcn.flags; 4964 #if 0 4965 printf("xpt_scan_bus: probing %d:%d:%d\n", 4966 request_ccb->ccb_h.path_id, i, 0); 4967 #endif 4968 xpt_action(work_ccb); 4969 } 4970 break; 4971 } 4972 case XPT_SCAN_LUN: 4973 { 4974 xpt_scan_bus_info *scan_info; 4975 path_id_t path_id; 4976 target_id_t target_id; 4977 lun_id_t lun_id; 4978 4979 /* Reuse the same CCB to query if a device was really found */ 4980 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 4981 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 4982 request_ccb->ccb_h.pinfo.priority); 4983 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 4984 4985 path_id = request_ccb->ccb_h.path_id; 4986 target_id = request_ccb->ccb_h.target_id; 4987 lun_id = request_ccb->ccb_h.target_lun; 4988 xpt_action(request_ccb); 4989 4990 #if 0 4991 printf("xpt_scan_bus: got back probe from %d:%d:%d\n", 4992 path_id, target_id, lun_id); 4993 #endif 4994 4995 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 4996 struct cam_ed *device; 4997 struct cam_et *target; 4998 int s, phl; 4999 5000 /* 5001 * If we already probed lun 0 successfully, or 5002 * we have additional configured luns on this 5003 * target that might have "gone away", go onto 5004 * the next lun. 5005 */ 5006 target = request_ccb->ccb_h.path->target; 5007 /* 5008 * We may touch devices that we don't 5009 * hold references too, so ensure they 5010 * don't disappear out from under us. 5011 * The target above is referenced by the 5012 * path in the request ccb. 5013 */ 5014 phl = 0; 5015 s = splcam(); 5016 device = TAILQ_FIRST(&target->ed_entries); 5017 if (device != NULL) { 5018 phl = device->quirk->quirks & CAM_QUIRK_HILUNS; 5019 if (device->lun_id == 0) 5020 device = TAILQ_NEXT(device, links); 5021 } 5022 splx(s); 5023 if ((lun_id != 0) || (device != NULL)) { 5024 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5025 lun_id++; 5026 } 5027 } else { 5028 struct cam_ed *device; 5029 5030 device = request_ccb->ccb_h.path->device; 5031 5032 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5033 /* Try the next lun */ 5034 if (lun_id < (CAM_SCSI2_MAXLUN-1) || 5035 (device->quirk->quirks & CAM_QUIRK_HILUNS)) 5036 lun_id++; 5037 } 5038 } 5039 5040 xpt_free_path(request_ccb->ccb_h.path); 5041 5042 /* Check Bounds */ 5043 if ((lun_id == request_ccb->ccb_h.target_lun) 5044 || lun_id > scan_info->cpi->max_lun) { 5045 /* We're done */ 5046 5047 xpt_free_ccb(request_ccb); 5048 scan_info->pending_count--; 5049 if (scan_info->pending_count == 0) { 5050 xpt_free_ccb((union ccb *)scan_info->cpi); 5051 request_ccb = scan_info->request_ccb; 5052 free(scan_info, M_TEMP); 5053 request_ccb->ccb_h.status = CAM_REQ_CMP; 5054 xpt_done(request_ccb); 5055 } 5056 } else { 5057 /* Try the next device */ 5058 struct cam_path *path; 5059 cam_status status; 5060 5061 path = request_ccb->ccb_h.path; 5062 status = xpt_create_path(&path, xpt_periph, 5063 path_id, target_id, lun_id); 5064 if (status != CAM_REQ_CMP) { 5065 printf("xpt_scan_bus: xpt_create_path failed " 5066 "with status %#x, halting LUN scan\n", 5067 status); 5068 xpt_free_ccb(request_ccb); 5069 scan_info->pending_count--; 5070 if (scan_info->pending_count == 0) { 5071 xpt_free_ccb( 5072 (union ccb *)scan_info->cpi); 5073 request_ccb = scan_info->request_ccb; 5074 free(scan_info, M_TEMP); 5075 request_ccb->ccb_h.status = CAM_REQ_CMP; 5076 xpt_done(request_ccb); 5077 break; 5078 } 5079 } 5080 xpt_setup_ccb(&request_ccb->ccb_h, path, 5081 request_ccb->ccb_h.pinfo.priority); 5082 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5083 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5084 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5085 request_ccb->crcn.flags = 5086 scan_info->request_ccb->crcn.flags; 5087 #if 0 5088 xpt_print_path(path); 5089 printf("xpt_scan bus probing\n"); 5090 #endif 5091 xpt_action(request_ccb); 5092 } 5093 break; 5094 } 5095 default: 5096 break; 5097 } 5098 } 5099 5100 typedef enum { 5101 PROBE_TUR, 5102 PROBE_INQUIRY, 5103 PROBE_FULL_INQUIRY, 5104 PROBE_MODE_SENSE, 5105 PROBE_SERIAL_NUM, 5106 PROBE_TUR_FOR_NEGOTIATION 5107 } probe_action; 5108 5109 typedef enum { 5110 PROBE_INQUIRY_CKSUM = 0x01, 5111 PROBE_SERIAL_CKSUM = 0x02, 5112 PROBE_NO_ANNOUNCE = 0x04 5113 } probe_flags; 5114 5115 typedef struct { 5116 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5117 probe_action action; 5118 union ccb saved_ccb; 5119 probe_flags flags; 5120 MD5_CTX context; 5121 u_int8_t digest[16]; 5122 } probe_softc; 5123 5124 static void 5125 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5126 cam_flags flags, union ccb *request_ccb) 5127 { 5128 struct ccb_pathinq cpi; 5129 cam_status status; 5130 struct cam_path *new_path; 5131 struct cam_periph *old_periph; 5132 int s; 5133 5134 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5135 ("xpt_scan_lun\n")); 5136 5137 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5138 cpi.ccb_h.func_code = XPT_PATH_INQ; 5139 xpt_action((union ccb *)&cpi); 5140 5141 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5142 if (request_ccb != NULL) { 5143 request_ccb->ccb_h.status = cpi.ccb_h.status; 5144 xpt_done(request_ccb); 5145 } 5146 return; 5147 } 5148 5149 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5150 /* 5151 * Can't scan the bus on an adapter that 5152 * cannot perform the initiator role. 5153 */ 5154 if (request_ccb != NULL) { 5155 request_ccb->ccb_h.status = CAM_REQ_CMP; 5156 xpt_done(request_ccb); 5157 } 5158 return; 5159 } 5160 5161 if (request_ccb == NULL) { 5162 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5163 if (request_ccb == NULL) { 5164 xpt_print_path(path); 5165 printf("xpt_scan_lun: can't allocate CCB, can't " 5166 "continue\n"); 5167 return; 5168 } 5169 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5170 if (new_path == NULL) { 5171 xpt_print_path(path); 5172 printf("xpt_scan_lun: can't allocate path, can't " 5173 "continue\n"); 5174 free(request_ccb, M_TEMP); 5175 return; 5176 } 5177 status = xpt_compile_path(new_path, xpt_periph, 5178 path->bus->path_id, 5179 path->target->target_id, 5180 path->device->lun_id); 5181 5182 if (status != CAM_REQ_CMP) { 5183 xpt_print_path(path); 5184 printf("xpt_scan_lun: can't compile path, can't " 5185 "continue\n"); 5186 free(request_ccb, M_TEMP); 5187 free(new_path, M_TEMP); 5188 return; 5189 } 5190 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5191 request_ccb->ccb_h.cbfcnp = xptscandone; 5192 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5193 request_ccb->crcn.flags = flags; 5194 } 5195 5196 s = splsoftcam(); 5197 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5198 probe_softc *softc; 5199 5200 softc = (probe_softc *)old_periph->softc; 5201 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5202 periph_links.tqe); 5203 } else { 5204 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5205 probestart, "probe", 5206 CAM_PERIPH_BIO, 5207 request_ccb->ccb_h.path, NULL, 0, 5208 request_ccb); 5209 5210 if (status != CAM_REQ_CMP) { 5211 xpt_print_path(path); 5212 printf("xpt_scan_lun: cam_alloc_periph returned an " 5213 "error, can't continue probe\n"); 5214 request_ccb->ccb_h.status = status; 5215 xpt_done(request_ccb); 5216 } 5217 } 5218 splx(s); 5219 } 5220 5221 static void 5222 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5223 { 5224 xpt_release_path(done_ccb->ccb_h.path); 5225 free(done_ccb->ccb_h.path, M_TEMP); 5226 free(done_ccb, M_TEMP); 5227 } 5228 5229 static cam_status 5230 proberegister(struct cam_periph *periph, void *arg) 5231 { 5232 union ccb *request_ccb; /* CCB representing the probe request */ 5233 probe_softc *softc; 5234 5235 request_ccb = (union ccb *)arg; 5236 if (periph == NULL) { 5237 printf("proberegister: periph was NULL!!\n"); 5238 return(CAM_REQ_CMP_ERR); 5239 } 5240 5241 if (request_ccb == NULL) { 5242 printf("proberegister: no probe CCB, " 5243 "can't register device\n"); 5244 return(CAM_REQ_CMP_ERR); 5245 } 5246 5247 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5248 5249 if (softc == NULL) { 5250 printf("proberegister: Unable to probe new device. " 5251 "Unable to allocate softc\n"); 5252 return(CAM_REQ_CMP_ERR); 5253 } 5254 TAILQ_INIT(&softc->request_ccbs); 5255 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5256 periph_links.tqe); 5257 softc->flags = 0; 5258 periph->softc = softc; 5259 cam_periph_acquire(periph); 5260 /* 5261 * Ensure we've waited at least a bus settle 5262 * delay before attempting to probe the device. 5263 * For HBAs that don't do bus resets, this won't make a difference. 5264 */ 5265 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5266 SCSI_DELAY); 5267 probeschedule(periph); 5268 return(CAM_REQ_CMP); 5269 } 5270 5271 static void 5272 probeschedule(struct cam_periph *periph) 5273 { 5274 struct ccb_pathinq cpi; 5275 union ccb *ccb; 5276 probe_softc *softc; 5277 5278 softc = (probe_softc *)periph->softc; 5279 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5280 5281 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5282 cpi.ccb_h.func_code = XPT_PATH_INQ; 5283 xpt_action((union ccb *)&cpi); 5284 5285 /* 5286 * If a device has gone away and another device, or the same one, 5287 * is back in the same place, it should have a unit attention 5288 * condition pending. It will not report the unit attention in 5289 * response to an inquiry, which may leave invalid transfer 5290 * negotiations in effect. The TUR will reveal the unit attention 5291 * condition. Only send the TUR for lun 0, since some devices 5292 * will get confused by commands other than inquiry to non-existent 5293 * luns. If you think a device has gone away start your scan from 5294 * lun 0. This will insure that any bogus transfer settings are 5295 * invalidated. 5296 * 5297 * If we haven't seen the device before and the controller supports 5298 * some kind of transfer negotiation, negotiate with the first 5299 * sent command if no bus reset was performed at startup. This 5300 * ensures that the device is not confused by transfer negotiation 5301 * settings left over by loader or BIOS action. 5302 */ 5303 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5304 && (ccb->ccb_h.target_lun == 0)) { 5305 softc->action = PROBE_TUR; 5306 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5307 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5308 proberequestdefaultnegotiation(periph); 5309 softc->action = PROBE_INQUIRY; 5310 } else { 5311 softc->action = PROBE_INQUIRY; 5312 } 5313 5314 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5315 softc->flags |= PROBE_NO_ANNOUNCE; 5316 else 5317 softc->flags &= ~PROBE_NO_ANNOUNCE; 5318 5319 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5320 } 5321 5322 static void 5323 probestart(struct cam_periph *periph, union ccb *start_ccb) 5324 { 5325 /* Probe the device that our peripheral driver points to */ 5326 struct ccb_scsiio *csio; 5327 probe_softc *softc; 5328 5329 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5330 5331 softc = (probe_softc *)periph->softc; 5332 csio = &start_ccb->csio; 5333 5334 switch (softc->action) { 5335 case PROBE_TUR: 5336 case PROBE_TUR_FOR_NEGOTIATION: 5337 { 5338 scsi_test_unit_ready(csio, 5339 /*retries*/4, 5340 probedone, 5341 MSG_SIMPLE_Q_TAG, 5342 SSD_FULL_SIZE, 5343 /*timeout*/60000); 5344 break; 5345 } 5346 case PROBE_INQUIRY: 5347 case PROBE_FULL_INQUIRY: 5348 { 5349 u_int inquiry_len; 5350 struct scsi_inquiry_data *inq_buf; 5351 5352 inq_buf = &periph->path->device->inq_data; 5353 /* 5354 * If the device is currently configured, we calculate an 5355 * MD5 checksum of the inquiry data, and if the serial number 5356 * length is greater than 0, add the serial number data 5357 * into the checksum as well. Once the inquiry and the 5358 * serial number check finish, we attempt to figure out 5359 * whether we still have the same device. 5360 */ 5361 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5362 5363 MD5Init(&softc->context); 5364 MD5Update(&softc->context, (unsigned char *)inq_buf, 5365 sizeof(struct scsi_inquiry_data)); 5366 softc->flags |= PROBE_INQUIRY_CKSUM; 5367 if (periph->path->device->serial_num_len > 0) { 5368 MD5Update(&softc->context, 5369 periph->path->device->serial_num, 5370 periph->path->device->serial_num_len); 5371 softc->flags |= PROBE_SERIAL_CKSUM; 5372 } 5373 MD5Final(softc->digest, &softc->context); 5374 } 5375 5376 if (softc->action == PROBE_INQUIRY) 5377 inquiry_len = SHORT_INQUIRY_LENGTH; 5378 else 5379 inquiry_len = inq_buf->additional_length + 4; 5380 5381 scsi_inquiry(csio, 5382 /*retries*/4, 5383 probedone, 5384 MSG_SIMPLE_Q_TAG, 5385 (u_int8_t *)inq_buf, 5386 inquiry_len, 5387 /*evpd*/FALSE, 5388 /*page_code*/0, 5389 SSD_MIN_SIZE, 5390 /*timeout*/60 * 1000); 5391 break; 5392 } 5393 case PROBE_MODE_SENSE: 5394 { 5395 void *mode_buf; 5396 int mode_buf_len; 5397 5398 mode_buf_len = sizeof(struct scsi_mode_header_6) 5399 + sizeof(struct scsi_mode_blk_desc) 5400 + sizeof(struct scsi_control_page); 5401 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5402 if (mode_buf != NULL) { 5403 scsi_mode_sense(csio, 5404 /*retries*/4, 5405 probedone, 5406 MSG_SIMPLE_Q_TAG, 5407 /*dbd*/FALSE, 5408 SMS_PAGE_CTRL_CURRENT, 5409 SMS_CONTROL_MODE_PAGE, 5410 mode_buf, 5411 mode_buf_len, 5412 SSD_FULL_SIZE, 5413 /*timeout*/60000); 5414 break; 5415 } 5416 xpt_print_path(periph->path); 5417 printf("Unable to mode sense control page - malloc failure\n"); 5418 softc->action = PROBE_SERIAL_NUM; 5419 /* FALLTHROUGH */ 5420 } 5421 case PROBE_SERIAL_NUM: 5422 { 5423 struct scsi_vpd_unit_serial_number *serial_buf; 5424 struct cam_ed* device; 5425 5426 serial_buf = NULL; 5427 device = periph->path->device; 5428 device->serial_num = NULL; 5429 device->serial_num_len = 0; 5430 5431 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5432 serial_buf = (struct scsi_vpd_unit_serial_number *) 5433 malloc(sizeof(*serial_buf), M_TEMP, 5434 M_NOWAIT | M_ZERO); 5435 5436 if (serial_buf != NULL) { 5437 scsi_inquiry(csio, 5438 /*retries*/4, 5439 probedone, 5440 MSG_SIMPLE_Q_TAG, 5441 (u_int8_t *)serial_buf, 5442 sizeof(*serial_buf), 5443 /*evpd*/TRUE, 5444 SVPD_UNIT_SERIAL_NUMBER, 5445 SSD_MIN_SIZE, 5446 /*timeout*/60 * 1000); 5447 break; 5448 } 5449 /* 5450 * We'll have to do without, let our probedone 5451 * routine finish up for us. 5452 */ 5453 start_ccb->csio.data_ptr = NULL; 5454 probedone(periph, start_ccb); 5455 return; 5456 } 5457 } 5458 xpt_action(start_ccb); 5459 } 5460 5461 static void 5462 proberequestdefaultnegotiation(struct cam_periph *periph) 5463 { 5464 struct ccb_trans_settings cts; 5465 5466 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5467 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5468 cts.flags = CCB_TRANS_USER_SETTINGS; 5469 xpt_action((union ccb *)&cts); 5470 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5471 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5472 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5473 xpt_action((union ccb *)&cts); 5474 } 5475 5476 static void 5477 probedone(struct cam_periph *periph, union ccb *done_ccb) 5478 { 5479 probe_softc *softc; 5480 struct cam_path *path; 5481 u_int32_t priority; 5482 5483 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5484 5485 softc = (probe_softc *)periph->softc; 5486 path = done_ccb->ccb_h.path; 5487 priority = done_ccb->ccb_h.pinfo.priority; 5488 5489 switch (softc->action) { 5490 case PROBE_TUR: 5491 { 5492 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5493 5494 if (cam_periph_error(done_ccb, 0, 5495 SF_NO_PRINT, NULL) == ERESTART) 5496 return; 5497 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5498 /* Don't wedge the queue */ 5499 xpt_release_devq(done_ccb->ccb_h.path, 5500 /*count*/1, 5501 /*run_queue*/TRUE); 5502 } 5503 softc->action = PROBE_INQUIRY; 5504 xpt_release_ccb(done_ccb); 5505 xpt_schedule(periph, priority); 5506 return; 5507 } 5508 case PROBE_INQUIRY: 5509 case PROBE_FULL_INQUIRY: 5510 { 5511 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5512 struct scsi_inquiry_data *inq_buf; 5513 u_int8_t periph_qual; 5514 u_int8_t periph_dtype; 5515 5516 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5517 inq_buf = &path->device->inq_data; 5518 5519 periph_qual = SID_QUAL(inq_buf); 5520 periph_dtype = SID_TYPE(inq_buf); 5521 5522 if (periph_dtype != T_NODEVICE) { 5523 switch(periph_qual) { 5524 case SID_QUAL_LU_CONNECTED: 5525 { 5526 u_int8_t alen; 5527 5528 /* 5529 * We conservatively request only 5530 * SHORT_INQUIRY_LEN bytes of inquiry 5531 * information during our first try 5532 * at sending an INQUIRY. If the device 5533 * has more information to give, 5534 * perform a second request specifying 5535 * the amount of information the device 5536 * is willing to give. 5537 */ 5538 alen = inq_buf->additional_length; 5539 if (softc->action == PROBE_INQUIRY 5540 && alen > (SHORT_INQUIRY_LENGTH - 4)) { 5541 softc->action = 5542 PROBE_FULL_INQUIRY; 5543 xpt_release_ccb(done_ccb); 5544 xpt_schedule(periph, priority); 5545 return; 5546 } 5547 5548 xpt_find_quirk(path->device); 5549 5550 if ((inq_buf->flags & SID_CmdQue) != 0) 5551 softc->action = 5552 PROBE_MODE_SENSE; 5553 else 5554 softc->action = 5555 PROBE_SERIAL_NUM; 5556 5557 path->device->flags &= 5558 ~CAM_DEV_UNCONFIGURED; 5559 5560 xpt_release_ccb(done_ccb); 5561 xpt_schedule(periph, priority); 5562 return; 5563 } 5564 default: 5565 break; 5566 } 5567 } 5568 } else if (cam_periph_error(done_ccb, 0, 5569 done_ccb->ccb_h.target_lun > 0 5570 ? SF_RETRY_UA|SF_QUIET_IR 5571 : SF_RETRY_UA, 5572 &softc->saved_ccb) == ERESTART) { 5573 return; 5574 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5575 /* Don't wedge the queue */ 5576 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5577 /*run_queue*/TRUE); 5578 } 5579 /* 5580 * If we get to this point, we got an error status back 5581 * from the inquiry and the error status doesn't require 5582 * automatically retrying the command. Therefore, the 5583 * inquiry failed. If we had inquiry information before 5584 * for this device, but this latest inquiry command failed, 5585 * the device has probably gone away. If this device isn't 5586 * already marked unconfigured, notify the peripheral 5587 * drivers that this device is no more. 5588 */ 5589 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5590 /* Send the async notification. */ 5591 xpt_async(AC_LOST_DEVICE, path, NULL); 5592 5593 xpt_release_ccb(done_ccb); 5594 break; 5595 } 5596 case PROBE_MODE_SENSE: 5597 { 5598 struct ccb_scsiio *csio; 5599 struct scsi_mode_header_6 *mode_hdr; 5600 5601 csio = &done_ccb->csio; 5602 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 5603 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5604 struct scsi_control_page *page; 5605 u_int8_t *offset; 5606 5607 offset = ((u_int8_t *)&mode_hdr[1]) 5608 + mode_hdr->blk_desc_len; 5609 page = (struct scsi_control_page *)offset; 5610 path->device->queue_flags = page->queue_flags; 5611 } else if (cam_periph_error(done_ccb, 0, 5612 SF_RETRY_UA|SF_NO_PRINT, 5613 &softc->saved_ccb) == ERESTART) { 5614 return; 5615 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5616 /* Don't wedge the queue */ 5617 xpt_release_devq(done_ccb->ccb_h.path, 5618 /*count*/1, /*run_queue*/TRUE); 5619 } 5620 xpt_release_ccb(done_ccb); 5621 free(mode_hdr, M_TEMP); 5622 softc->action = PROBE_SERIAL_NUM; 5623 xpt_schedule(periph, priority); 5624 return; 5625 } 5626 case PROBE_SERIAL_NUM: 5627 { 5628 struct ccb_scsiio *csio; 5629 struct scsi_vpd_unit_serial_number *serial_buf; 5630 u_int32_t priority; 5631 int changed; 5632 int have_serialnum; 5633 5634 changed = 1; 5635 have_serialnum = 0; 5636 csio = &done_ccb->csio; 5637 priority = done_ccb->ccb_h.pinfo.priority; 5638 serial_buf = 5639 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 5640 5641 /* Clean up from previous instance of this device */ 5642 if (path->device->serial_num != NULL) { 5643 free(path->device->serial_num, M_DEVBUF); 5644 path->device->serial_num = NULL; 5645 path->device->serial_num_len = 0; 5646 } 5647 5648 if (serial_buf == NULL) { 5649 /* 5650 * Don't process the command as it was never sent 5651 */ 5652 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 5653 && (serial_buf->length > 0)) { 5654 5655 have_serialnum = 1; 5656 path->device->serial_num = 5657 (u_int8_t *)malloc((serial_buf->length + 1), 5658 M_DEVBUF, M_NOWAIT); 5659 if (path->device->serial_num != NULL) { 5660 bcopy(serial_buf->serial_num, 5661 path->device->serial_num, 5662 serial_buf->length); 5663 path->device->serial_num_len = 5664 serial_buf->length; 5665 path->device->serial_num[serial_buf->length] 5666 = '\0'; 5667 } 5668 } else if (cam_periph_error(done_ccb, 0, 5669 SF_RETRY_UA|SF_NO_PRINT, 5670 &softc->saved_ccb) == ERESTART) { 5671 return; 5672 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5673 /* Don't wedge the queue */ 5674 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5675 /*run_queue*/TRUE); 5676 } 5677 5678 /* 5679 * Let's see if we have seen this device before. 5680 */ 5681 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 5682 MD5_CTX context; 5683 u_int8_t digest[16]; 5684 5685 MD5Init(&context); 5686 5687 MD5Update(&context, 5688 (unsigned char *)&path->device->inq_data, 5689 sizeof(struct scsi_inquiry_data)); 5690 5691 if (have_serialnum) 5692 MD5Update(&context, serial_buf->serial_num, 5693 serial_buf->length); 5694 5695 MD5Final(digest, &context); 5696 if (bcmp(softc->digest, digest, 16) == 0) 5697 changed = 0; 5698 5699 /* 5700 * XXX Do we need to do a TUR in order to ensure 5701 * that the device really hasn't changed??? 5702 */ 5703 if ((changed != 0) 5704 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 5705 xpt_async(AC_LOST_DEVICE, path, NULL); 5706 } 5707 if (serial_buf != NULL) 5708 free(serial_buf, M_TEMP); 5709 5710 if (changed != 0) { 5711 /* 5712 * Now that we have all the necessary 5713 * information to safely perform transfer 5714 * negotiations... Controllers don't perform 5715 * any negotiation or tagged queuing until 5716 * after the first XPT_SET_TRAN_SETTINGS ccb is 5717 * received. So, on a new device, just retreive 5718 * the user settings, and set them as the current 5719 * settings to set the device up. 5720 */ 5721 proberequestdefaultnegotiation(periph); 5722 xpt_release_ccb(done_ccb); 5723 5724 /* 5725 * Perform a TUR to allow the controller to 5726 * perform any necessary transfer negotiation. 5727 */ 5728 softc->action = PROBE_TUR_FOR_NEGOTIATION; 5729 xpt_schedule(periph, priority); 5730 return; 5731 } 5732 xpt_release_ccb(done_ccb); 5733 break; 5734 } 5735 case PROBE_TUR_FOR_NEGOTIATION: 5736 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5737 /* Don't wedge the queue */ 5738 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5739 /*run_queue*/TRUE); 5740 } 5741 5742 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5743 5744 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 5745 /* Inform the XPT that a new device has been found */ 5746 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5747 xpt_action(done_ccb); 5748 5749 xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb); 5750 } 5751 xpt_release_ccb(done_ccb); 5752 break; 5753 } 5754 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5755 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 5756 done_ccb->ccb_h.status = CAM_REQ_CMP; 5757 xpt_done(done_ccb); 5758 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 5759 cam_periph_invalidate(periph); 5760 cam_periph_release(periph); 5761 } else { 5762 probeschedule(periph); 5763 } 5764 } 5765 5766 static void 5767 probecleanup(struct cam_periph *periph) 5768 { 5769 free(periph->softc, M_TEMP); 5770 } 5771 5772 static void 5773 xpt_find_quirk(struct cam_ed *device) 5774 { 5775 caddr_t match; 5776 5777 match = cam_quirkmatch((caddr_t)&device->inq_data, 5778 (caddr_t)xpt_quirk_table, 5779 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 5780 sizeof(*xpt_quirk_table), scsi_inquiry_match); 5781 5782 if (match == NULL) 5783 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 5784 5785 device->quirk = (struct xpt_quirk_entry *)match; 5786 } 5787 5788 static void 5789 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 5790 int async_update) 5791 { 5792 struct cam_sim *sim; 5793 int qfrozen; 5794 5795 sim = cts->ccb_h.path->bus->sim; 5796 if (async_update == FALSE) { 5797 struct scsi_inquiry_data *inq_data; 5798 struct ccb_pathinq cpi; 5799 struct ccb_trans_settings cur_cts; 5800 5801 if (device == NULL) { 5802 cts->ccb_h.status = CAM_PATH_INVALID; 5803 xpt_done((union ccb *)cts); 5804 return; 5805 } 5806 5807 /* 5808 * Perform sanity checking against what the 5809 * controller and device can do. 5810 */ 5811 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 5812 cpi.ccb_h.func_code = XPT_PATH_INQ; 5813 xpt_action((union ccb *)&cpi); 5814 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 5815 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5816 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 5817 xpt_action((union ccb *)&cur_cts); 5818 inq_data = &device->inq_data; 5819 5820 /* Fill in any gaps in what the user gave us */ 5821 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 5822 cts->sync_period = cur_cts.sync_period; 5823 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 5824 cts->sync_offset = cur_cts.sync_offset; 5825 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 5826 cts->bus_width = cur_cts.bus_width; 5827 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 5828 cts->flags &= ~CCB_TRANS_DISC_ENB; 5829 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 5830 } 5831 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 5832 cts->flags &= ~CCB_TRANS_TAG_ENB; 5833 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 5834 } 5835 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 5836 && (inq_data->flags & SID_Sync) == 0) 5837 || (cpi.hba_inquiry & PI_SDTR_ABLE) == 0) { 5838 /* Force async */ 5839 cts->sync_period = 0; 5840 cts->sync_offset = 0; 5841 } 5842 5843 /* 5844 * Don't allow DT transmission rates if the 5845 * device does not support it. 5846 */ 5847 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 5848 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 5849 && cts->sync_period <= 0x9) 5850 cts->sync_period = 0xa; 5851 5852 switch (cts->bus_width) { 5853 case MSG_EXT_WDTR_BUS_32_BIT: 5854 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 5855 || (inq_data->flags & SID_WBus32) != 0) 5856 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 5857 break; 5858 /* Fall Through to 16-bit */ 5859 case MSG_EXT_WDTR_BUS_16_BIT: 5860 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 5861 || (inq_data->flags & SID_WBus16) != 0) 5862 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 5863 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 5864 break; 5865 } 5866 /* Fall Through to 8-bit */ 5867 default: /* New bus width?? */ 5868 case MSG_EXT_WDTR_BUS_8_BIT: 5869 /* All targets can do this */ 5870 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 5871 break; 5872 } 5873 5874 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 5875 /* 5876 * Can't tag queue without disconnection. 5877 */ 5878 cts->flags &= ~CCB_TRANS_TAG_ENB; 5879 cts->valid |= CCB_TRANS_TQ_VALID; 5880 } 5881 5882 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 5883 || (inq_data->flags & SID_CmdQue) == 0 5884 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 5885 || (device->quirk->mintags == 0)) { 5886 /* 5887 * Can't tag on hardware that doesn't support, 5888 * doesn't have it enabled, or has broken tag support. 5889 */ 5890 cts->flags &= ~CCB_TRANS_TAG_ENB; 5891 } 5892 } 5893 5894 qfrozen = FALSE; 5895 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 5896 int device_tagenb; 5897 5898 /* 5899 * If we are transitioning from tags to no-tags or 5900 * vice-versa, we need to carefully freeze and restart 5901 * the queue so that we don't overlap tagged and non-tagged 5902 * commands. We also temporarily stop tags if there is 5903 * a change in transfer negotiation settings to allow 5904 * "tag-less" negotiation. 5905 */ 5906 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5907 || (device->inq_flags & SID_CmdQue) != 0) 5908 device_tagenb = TRUE; 5909 else 5910 device_tagenb = FALSE; 5911 5912 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 5913 && device_tagenb == FALSE) 5914 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 5915 && device_tagenb == TRUE)) { 5916 5917 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 5918 /* 5919 * Delay change to use tags until after a 5920 * few commands have gone to this device so 5921 * the controller has time to perform transfer 5922 * negotiations without tagged messages getting 5923 * in the way. 5924 */ 5925 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 5926 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 5927 } else { 5928 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 5929 qfrozen = TRUE; 5930 device->inq_flags &= ~SID_CmdQue; 5931 xpt_dev_ccbq_resize(cts->ccb_h.path, 5932 sim->max_dev_openings); 5933 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5934 device->tag_delay_count = 0; 5935 } 5936 } 5937 } 5938 5939 if (async_update == FALSE) { 5940 /* 5941 * If we are currently performing tagged transactions to 5942 * this device and want to change its negotiation parameters, 5943 * go non-tagged for a bit to give the controller a chance to 5944 * negotiate unhampered by tag messages. 5945 */ 5946 if ((device->inq_flags & SID_CmdQue) != 0 5947 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 5948 CCB_TRANS_SYNC_OFFSET_VALID| 5949 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 5950 xpt_toggle_tags(cts->ccb_h.path); 5951 5952 (*(sim->sim_action))(sim, (union ccb *)cts); 5953 } 5954 5955 if (qfrozen) { 5956 struct ccb_relsim crs; 5957 5958 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 5959 /*priority*/1); 5960 crs.ccb_h.func_code = XPT_REL_SIMQ; 5961 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5962 crs.openings 5963 = crs.release_timeout 5964 = crs.qfrozen_cnt 5965 = 0; 5966 xpt_action((union ccb *)&crs); 5967 } 5968 } 5969 5970 static void 5971 xpt_toggle_tags(struct cam_path *path) 5972 { 5973 struct cam_ed *dev; 5974 5975 /* 5976 * Give controllers a chance to renegotiate 5977 * before starting tag operations. We 5978 * "toggle" tagged queuing off then on 5979 * which causes the tag enable command delay 5980 * counter to come into effect. 5981 */ 5982 dev = path->device; 5983 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5984 || ((dev->inq_flags & SID_CmdQue) != 0 5985 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 5986 struct ccb_trans_settings cts; 5987 5988 xpt_setup_ccb(&cts.ccb_h, path, 1); 5989 cts.flags = 0; 5990 cts.valid = CCB_TRANS_TQ_VALID; 5991 xpt_set_transfer_settings(&cts, path->device, 5992 /*async_update*/TRUE); 5993 cts.flags = CCB_TRANS_TAG_ENB; 5994 xpt_set_transfer_settings(&cts, path->device, 5995 /*async_update*/TRUE); 5996 } 5997 } 5998 5999 static void 6000 xpt_start_tags(struct cam_path *path) 6001 { 6002 struct ccb_relsim crs; 6003 struct cam_ed *device; 6004 struct cam_sim *sim; 6005 int newopenings; 6006 6007 device = path->device; 6008 sim = path->bus->sim; 6009 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6010 xpt_freeze_devq(path, /*count*/1); 6011 device->inq_flags |= SID_CmdQue; 6012 newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings); 6013 xpt_dev_ccbq_resize(path, newopenings); 6014 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6015 crs.ccb_h.func_code = XPT_REL_SIMQ; 6016 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6017 crs.openings 6018 = crs.release_timeout 6019 = crs.qfrozen_cnt 6020 = 0; 6021 xpt_action((union ccb *)&crs); 6022 } 6023 6024 static int busses_to_config; 6025 static int busses_to_reset; 6026 6027 static int 6028 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6029 { 6030 if (bus->path_id != CAM_XPT_PATH_ID) { 6031 struct cam_path path; 6032 struct ccb_pathinq cpi; 6033 int can_negotiate; 6034 6035 busses_to_config++; 6036 xpt_compile_path(&path, NULL, bus->path_id, 6037 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6038 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6039 cpi.ccb_h.func_code = XPT_PATH_INQ; 6040 xpt_action((union ccb *)&cpi); 6041 can_negotiate = cpi.hba_inquiry; 6042 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6043 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6044 && can_negotiate) 6045 busses_to_reset++; 6046 xpt_release_path(&path); 6047 } 6048 6049 return(1); 6050 } 6051 6052 static int 6053 xptconfigfunc(struct cam_eb *bus, void *arg) 6054 { 6055 struct cam_path *path; 6056 union ccb *work_ccb; 6057 6058 if (bus->path_id != CAM_XPT_PATH_ID) { 6059 cam_status status; 6060 int can_negotiate; 6061 6062 work_ccb = xpt_alloc_ccb(); 6063 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6064 CAM_TARGET_WILDCARD, 6065 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6066 printf("xptconfigfunc: xpt_create_path failed with " 6067 "status %#x for bus %d\n", status, bus->path_id); 6068 printf("xptconfigfunc: halting bus configuration\n"); 6069 xpt_free_ccb(work_ccb); 6070 busses_to_config--; 6071 xpt_finishconfig(xpt_periph, NULL); 6072 return(0); 6073 } 6074 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6075 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6076 xpt_action(work_ccb); 6077 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6078 printf("xptconfigfunc: CPI failed on bus %d " 6079 "with status %d\n", bus->path_id, 6080 work_ccb->ccb_h.status); 6081 xpt_finishconfig(xpt_periph, work_ccb); 6082 return(1); 6083 } 6084 6085 can_negotiate = work_ccb->cpi.hba_inquiry; 6086 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6087 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6088 && (can_negotiate != 0)) { 6089 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6090 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6091 work_ccb->ccb_h.cbfcnp = NULL; 6092 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6093 ("Resetting Bus\n")); 6094 xpt_action(work_ccb); 6095 xpt_finishconfig(xpt_periph, work_ccb); 6096 } else { 6097 /* Act as though we performed a successful BUS RESET */ 6098 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6099 xpt_finishconfig(xpt_periph, work_ccb); 6100 } 6101 } 6102 6103 return(1); 6104 } 6105 6106 static void 6107 xpt_config(void *arg) 6108 { 6109 /* Now that interrupts are enabled, go find our devices */ 6110 6111 #ifdef CAMDEBUG 6112 /* Setup debugging flags and path */ 6113 #ifdef CAM_DEBUG_FLAGS 6114 cam_dflags = CAM_DEBUG_FLAGS; 6115 #else /* !CAM_DEBUG_FLAGS */ 6116 cam_dflags = CAM_DEBUG_NONE; 6117 #endif /* CAM_DEBUG_FLAGS */ 6118 #ifdef CAM_DEBUG_BUS 6119 if (cam_dflags != CAM_DEBUG_NONE) { 6120 if (xpt_create_path(&cam_dpath, xpt_periph, 6121 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6122 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6123 printf("xpt_config: xpt_create_path() failed for debug" 6124 " target %d:%d:%d, debugging disabled\n", 6125 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6126 cam_dflags = CAM_DEBUG_NONE; 6127 } 6128 } else 6129 cam_dpath = NULL; 6130 #else /* !CAM_DEBUG_BUS */ 6131 cam_dpath = NULL; 6132 #endif /* CAM_DEBUG_BUS */ 6133 #endif /* CAMDEBUG */ 6134 6135 /* 6136 * Scan all installed busses. 6137 */ 6138 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6139 6140 if (busses_to_config == 0) { 6141 /* Call manually because we don't have any busses */ 6142 xpt_finishconfig(xpt_periph, NULL); 6143 } else { 6144 if (busses_to_reset > 0 && SCSI_DELAY >= 2000) { 6145 printf("Waiting %d seconds for SCSI " 6146 "devices to settle\n", SCSI_DELAY/1000); 6147 } 6148 xpt_for_all_busses(xptconfigfunc, NULL); 6149 } 6150 } 6151 6152 /* 6153 * If the given device only has one peripheral attached to it, and if that 6154 * peripheral is the passthrough driver, announce it. This insures that the 6155 * user sees some sort of announcement for every peripheral in their system. 6156 */ 6157 static int 6158 xptpassannouncefunc(struct cam_ed *device, void *arg) 6159 { 6160 struct cam_periph *periph; 6161 int i; 6162 6163 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6164 periph = SLIST_NEXT(periph, periph_links), i++); 6165 6166 periph = SLIST_FIRST(&device->periphs); 6167 if ((i == 1) 6168 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6169 xpt_announce_periph(periph, NULL); 6170 6171 return(1); 6172 } 6173 6174 static void 6175 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6176 { 6177 struct periph_driver **p_drv; 6178 int i; 6179 6180 if (done_ccb != NULL) { 6181 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6182 ("xpt_finishconfig\n")); 6183 switch(done_ccb->ccb_h.func_code) { 6184 case XPT_RESET_BUS: 6185 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6186 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6187 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6188 xpt_action(done_ccb); 6189 return; 6190 } 6191 /* FALLTHROUGH */ 6192 case XPT_SCAN_BUS: 6193 default: 6194 xpt_free_path(done_ccb->ccb_h.path); 6195 busses_to_config--; 6196 break; 6197 } 6198 } 6199 6200 if (busses_to_config == 0) { 6201 /* Register all the peripheral drivers */ 6202 /* XXX This will have to change when we have loadable modules */ 6203 p_drv = (struct periph_driver **)periphdriver_set.ls_items; 6204 for (i = 0; p_drv[i] != NULL; i++) { 6205 (*p_drv[i]->init)(); 6206 } 6207 6208 /* 6209 * Check for devices with no "standard" peripheral driver 6210 * attached. For any devices like that, announce the 6211 * passthrough driver so the user will see something. 6212 */ 6213 xpt_for_all_devices(xptpassannouncefunc, NULL); 6214 6215 /* Release our hook so that the boot can continue. */ 6216 config_intrhook_disestablish(xpt_config_hook); 6217 free(xpt_config_hook, M_TEMP); 6218 xpt_config_hook = NULL; 6219 } 6220 if (done_ccb != NULL) 6221 xpt_free_ccb(done_ccb); 6222 } 6223 6224 static void 6225 xptaction(struct cam_sim *sim, union ccb *work_ccb) 6226 { 6227 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 6228 6229 switch (work_ccb->ccb_h.func_code) { 6230 /* Common cases first */ 6231 case XPT_PATH_INQ: /* Path routing inquiry */ 6232 { 6233 struct ccb_pathinq *cpi; 6234 6235 cpi = &work_ccb->cpi; 6236 cpi->version_num = 1; /* XXX??? */ 6237 cpi->hba_inquiry = 0; 6238 cpi->target_sprt = 0; 6239 cpi->hba_misc = 0; 6240 cpi->hba_eng_cnt = 0; 6241 cpi->max_target = 0; 6242 cpi->max_lun = 0; 6243 cpi->initiator_id = 0; 6244 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 6245 strncpy(cpi->hba_vid, "", HBA_IDLEN); 6246 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 6247 cpi->unit_number = sim->unit_number; 6248 cpi->bus_id = sim->bus_id; 6249 cpi->base_transfer_speed = 0; 6250 cpi->ccb_h.status = CAM_REQ_CMP; 6251 xpt_done(work_ccb); 6252 break; 6253 } 6254 default: 6255 work_ccb->ccb_h.status = CAM_REQ_INVALID; 6256 xpt_done(work_ccb); 6257 break; 6258 } 6259 } 6260 6261 /* 6262 * The xpt as a "controller" has no interrupt sources, so polling 6263 * is a no-op. 6264 */ 6265 static void 6266 xptpoll(struct cam_sim *sim) 6267 { 6268 } 6269 6270 static void 6271 camisr(void *V_queue) 6272 { 6273 cam_isrq_t *queue = V_queue; 6274 int s; 6275 struct ccb_hdr *ccb_h; 6276 6277 s = splcam(); 6278 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 6279 int runq; 6280 6281 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 6282 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 6283 splx(s); 6284 6285 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 6286 ("camisr")); 6287 6288 runq = FALSE; 6289 6290 if (ccb_h->flags & CAM_HIGH_POWER) { 6291 struct highpowerlist *hphead; 6292 struct cam_ed *device; 6293 union ccb *send_ccb; 6294 6295 hphead = &highpowerq; 6296 6297 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 6298 6299 /* 6300 * Increment the count since this command is done. 6301 */ 6302 num_highpower++; 6303 6304 /* 6305 * Any high powered commands queued up? 6306 */ 6307 if (send_ccb != NULL) { 6308 device = send_ccb->ccb_h.path->device; 6309 6310 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 6311 6312 xpt_release_devq(send_ccb->ccb_h.path, 6313 /*count*/1, /*runqueue*/TRUE); 6314 } 6315 } 6316 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 6317 struct cam_ed *dev; 6318 6319 dev = ccb_h->path->device; 6320 6321 s = splcam(); 6322 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 6323 6324 ccb_h->path->bus->sim->devq->send_active--; 6325 ccb_h->path->bus->sim->devq->send_openings++; 6326 splx(s); 6327 6328 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 6329 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 6330 && (dev->ccbq.dev_active == 0))) { 6331 6332 xpt_release_devq(ccb_h->path, /*count*/1, 6333 /*run_queue*/TRUE); 6334 } 6335 6336 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6337 && (--dev->tag_delay_count == 0)) 6338 xpt_start_tags(ccb_h->path); 6339 6340 if ((dev->ccbq.queue.entries > 0) 6341 && (dev->qfrozen_cnt == 0) 6342 && (device_is_send_queued(dev) == 0)) { 6343 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 6344 dev); 6345 } 6346 } 6347 6348 if (ccb_h->status & CAM_RELEASE_SIMQ) { 6349 xpt_release_simq(ccb_h->path->bus->sim, 6350 /*run_queue*/TRUE); 6351 ccb_h->status &= ~CAM_RELEASE_SIMQ; 6352 runq = FALSE; 6353 } 6354 6355 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 6356 && (ccb_h->status & CAM_DEV_QFRZN)) { 6357 xpt_release_devq(ccb_h->path, /*count*/1, 6358 /*run_queue*/TRUE); 6359 ccb_h->status &= ~CAM_DEV_QFRZN; 6360 } else if (runq) { 6361 xpt_run_dev_sendq(ccb_h->path->bus); 6362 } 6363 6364 /* Call the peripheral driver's callback */ 6365 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 6366 6367 /* Raise IPL for while test */ 6368 s = splcam(); 6369 } 6370 splx(s); 6371 } 6372