1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 /* number of high powered commands that can go through right now */ 97 struct mtx xpt_highpower_lock; 98 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 99 int num_highpower; 100 101 /* queue for handling async rescan requests. */ 102 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 103 int buses_to_config; 104 int buses_config_done; 105 106 /* Registered busses */ 107 TAILQ_HEAD(,cam_eb) xpt_busses; 108 u_int bus_generation; 109 110 struct intr_config_hook *xpt_config_hook; 111 112 int boot_delay; 113 struct callout boot_callout; 114 115 struct mtx xpt_topo_lock; 116 struct mtx xpt_lock; 117 struct taskqueue *xpt_taskq; 118 }; 119 120 typedef enum { 121 DM_RET_COPY = 0x01, 122 DM_RET_FLAG_MASK = 0x0f, 123 DM_RET_NONE = 0x00, 124 DM_RET_STOP = 0x10, 125 DM_RET_DESCEND = 0x20, 126 DM_RET_ERROR = 0x30, 127 DM_RET_ACTION_MASK = 0xf0 128 } dev_match_ret; 129 130 typedef enum { 131 XPT_DEPTH_BUS, 132 XPT_DEPTH_TARGET, 133 XPT_DEPTH_DEVICE, 134 XPT_DEPTH_PERIPH 135 } xpt_traverse_depth; 136 137 struct xpt_traverse_config { 138 xpt_traverse_depth depth; 139 void *tr_func; 140 void *tr_arg; 141 }; 142 143 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 144 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 145 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 146 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 147 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 148 149 /* Transport layer configuration information */ 150 static struct xpt_softc xsoftc; 151 152 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 153 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 154 &xsoftc.boot_delay, 0, "Bus registration wait time"); 155 156 struct cam_doneq { 157 struct mtx_padalign cam_doneq_mtx; 158 STAILQ_HEAD(, ccb_hdr) cam_doneq; 159 int cam_doneq_sleep; 160 }; 161 162 static struct cam_doneq cam_doneqs[MAXCPU]; 163 static int cam_num_doneqs; 164 static struct proc *cam_proc; 165 166 TUNABLE_INT("kern.cam.num_doneqs", &cam_num_doneqs); 167 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 168 &cam_num_doneqs, 0, "Number of completion queues/threads"); 169 170 struct cam_periph *xpt_periph; 171 172 static periph_init_t xpt_periph_init; 173 174 static struct periph_driver xpt_driver = 175 { 176 xpt_periph_init, "xpt", 177 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 178 CAM_PERIPH_DRV_EARLY 179 }; 180 181 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 182 183 static d_open_t xptopen; 184 static d_close_t xptclose; 185 static d_ioctl_t xptioctl; 186 static d_ioctl_t xptdoioctl; 187 188 static struct cdevsw xpt_cdevsw = { 189 .d_version = D_VERSION, 190 .d_flags = 0, 191 .d_open = xptopen, 192 .d_close = xptclose, 193 .d_ioctl = xptioctl, 194 .d_name = "xpt", 195 }; 196 197 /* Storage for debugging datastructures */ 198 struct cam_path *cam_dpath; 199 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 200 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 201 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 202 &cam_dflags, 0, "Enabled debug flags"); 203 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 204 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 205 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 206 &cam_debug_delay, 0, "Delay in us after each debug message"); 207 208 /* Our boot-time initialization hook */ 209 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 210 211 static moduledata_t cam_moduledata = { 212 "cam", 213 cam_module_event_handler, 214 NULL 215 }; 216 217 static int xpt_init(void *); 218 219 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 220 MODULE_VERSION(cam, 1); 221 222 223 static void xpt_async_bcast(struct async_list *async_head, 224 u_int32_t async_code, 225 struct cam_path *path, 226 void *async_arg); 227 static path_id_t xptnextfreepathid(void); 228 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 229 static union ccb *xpt_get_ccb(struct cam_periph *periph); 230 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 231 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 232 static void xpt_run_allocq_task(void *context, int pending); 233 static void xpt_run_devq(struct cam_devq *devq); 234 static timeout_t xpt_release_devq_timeout; 235 static void xpt_release_simq_timeout(void *arg) __unused; 236 static void xpt_acquire_bus(struct cam_eb *bus); 237 static void xpt_release_bus(struct cam_eb *bus); 238 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 239 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 240 int run_queue); 241 static struct cam_et* 242 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 243 static void xpt_acquire_target(struct cam_et *target); 244 static void xpt_release_target(struct cam_et *target); 245 static struct cam_eb* 246 xpt_find_bus(path_id_t path_id); 247 static struct cam_et* 248 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 249 static struct cam_ed* 250 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 251 static void xpt_config(void *arg); 252 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 253 u_int32_t new_priority); 254 static xpt_devicefunc_t xptpassannouncefunc; 255 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 256 static void xptpoll(struct cam_sim *sim); 257 static void camisr_runqueue(void); 258 static void xpt_done_process(struct ccb_hdr *ccb_h); 259 static void xpt_done_td(void *); 260 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 261 u_int num_patterns, struct cam_eb *bus); 262 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 263 u_int num_patterns, 264 struct cam_ed *device); 265 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 266 u_int num_patterns, 267 struct cam_periph *periph); 268 static xpt_busfunc_t xptedtbusfunc; 269 static xpt_targetfunc_t xptedttargetfunc; 270 static xpt_devicefunc_t xptedtdevicefunc; 271 static xpt_periphfunc_t xptedtperiphfunc; 272 static xpt_pdrvfunc_t xptplistpdrvfunc; 273 static xpt_periphfunc_t xptplistperiphfunc; 274 static int xptedtmatch(struct ccb_dev_match *cdm); 275 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 276 static int xptbustraverse(struct cam_eb *start_bus, 277 xpt_busfunc_t *tr_func, void *arg); 278 static int xpttargettraverse(struct cam_eb *bus, 279 struct cam_et *start_target, 280 xpt_targetfunc_t *tr_func, void *arg); 281 static int xptdevicetraverse(struct cam_et *target, 282 struct cam_ed *start_device, 283 xpt_devicefunc_t *tr_func, void *arg); 284 static int xptperiphtraverse(struct cam_ed *device, 285 struct cam_periph *start_periph, 286 xpt_periphfunc_t *tr_func, void *arg); 287 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 288 xpt_pdrvfunc_t *tr_func, void *arg); 289 static int xptpdperiphtraverse(struct periph_driver **pdrv, 290 struct cam_periph *start_periph, 291 xpt_periphfunc_t *tr_func, 292 void *arg); 293 static xpt_busfunc_t xptdefbusfunc; 294 static xpt_targetfunc_t xptdeftargetfunc; 295 static xpt_devicefunc_t xptdefdevicefunc; 296 static xpt_periphfunc_t xptdefperiphfunc; 297 static void xpt_finishconfig_task(void *context, int pending); 298 static void xpt_dev_async_default(u_int32_t async_code, 299 struct cam_eb *bus, 300 struct cam_et *target, 301 struct cam_ed *device, 302 void *async_arg); 303 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 304 struct cam_et *target, 305 lun_id_t lun_id); 306 static xpt_devicefunc_t xptsetasyncfunc; 307 static xpt_busfunc_t xptsetasyncbusfunc; 308 static cam_status xptregister(struct cam_periph *periph, 309 void *arg); 310 static __inline int device_is_queued(struct cam_ed *device); 311 312 static __inline int 313 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 314 { 315 int retval; 316 317 mtx_assert(&devq->send_mtx, MA_OWNED); 318 if ((dev->ccbq.queue.entries > 0) && 319 (dev->ccbq.dev_openings > 0) && 320 (dev->ccbq.queue.qfrozen_cnt == 0)) { 321 /* 322 * The priority of a device waiting for controller 323 * resources is that of the highest priority CCB 324 * enqueued. 325 */ 326 retval = 327 xpt_schedule_dev(&devq->send_queue, 328 &dev->devq_entry, 329 CAMQ_GET_PRIO(&dev->ccbq.queue)); 330 } else { 331 retval = 0; 332 } 333 return (retval); 334 } 335 336 static __inline int 337 device_is_queued(struct cam_ed *device) 338 { 339 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 340 } 341 342 static void 343 xpt_periph_init() 344 { 345 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 346 } 347 348 static int 349 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 350 { 351 352 /* 353 * Only allow read-write access. 354 */ 355 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 356 return(EPERM); 357 358 /* 359 * We don't allow nonblocking access. 360 */ 361 if ((flags & O_NONBLOCK) != 0) { 362 printf("%s: can't do nonblocking access\n", devtoname(dev)); 363 return(ENODEV); 364 } 365 366 return(0); 367 } 368 369 static int 370 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 371 { 372 373 return(0); 374 } 375 376 /* 377 * Don't automatically grab the xpt softc lock here even though this is going 378 * through the xpt device. The xpt device is really just a back door for 379 * accessing other devices and SIMs, so the right thing to do is to grab 380 * the appropriate SIM lock once the bus/SIM is located. 381 */ 382 static int 383 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 384 { 385 int error; 386 387 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 388 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 389 } 390 return (error); 391 } 392 393 static int 394 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 395 { 396 int error; 397 398 error = 0; 399 400 switch(cmd) { 401 /* 402 * For the transport layer CAMIOCOMMAND ioctl, we really only want 403 * to accept CCB types that don't quite make sense to send through a 404 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 405 * in the CAM spec. 406 */ 407 case CAMIOCOMMAND: { 408 union ccb *ccb; 409 union ccb *inccb; 410 struct cam_eb *bus; 411 412 inccb = (union ccb *)addr; 413 414 bus = xpt_find_bus(inccb->ccb_h.path_id); 415 if (bus == NULL) 416 return (EINVAL); 417 418 switch (inccb->ccb_h.func_code) { 419 case XPT_SCAN_BUS: 420 case XPT_RESET_BUS: 421 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 422 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 423 xpt_release_bus(bus); 424 return (EINVAL); 425 } 426 break; 427 case XPT_SCAN_TGT: 428 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 429 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 430 xpt_release_bus(bus); 431 return (EINVAL); 432 } 433 break; 434 default: 435 break; 436 } 437 438 switch(inccb->ccb_h.func_code) { 439 case XPT_SCAN_BUS: 440 case XPT_RESET_BUS: 441 case XPT_PATH_INQ: 442 case XPT_ENG_INQ: 443 case XPT_SCAN_LUN: 444 case XPT_SCAN_TGT: 445 446 ccb = xpt_alloc_ccb(); 447 448 /* 449 * Create a path using the bus, target, and lun the 450 * user passed in. 451 */ 452 if (xpt_create_path(&ccb->ccb_h.path, NULL, 453 inccb->ccb_h.path_id, 454 inccb->ccb_h.target_id, 455 inccb->ccb_h.target_lun) != 456 CAM_REQ_CMP){ 457 error = EINVAL; 458 xpt_free_ccb(ccb); 459 break; 460 } 461 /* Ensure all of our fields are correct */ 462 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 463 inccb->ccb_h.pinfo.priority); 464 xpt_merge_ccb(ccb, inccb); 465 xpt_path_lock(ccb->ccb_h.path); 466 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 467 xpt_path_unlock(ccb->ccb_h.path); 468 bcopy(ccb, inccb, sizeof(union ccb)); 469 xpt_free_path(ccb->ccb_h.path); 470 xpt_free_ccb(ccb); 471 break; 472 473 case XPT_DEBUG: { 474 union ccb ccb; 475 476 /* 477 * This is an immediate CCB, so it's okay to 478 * allocate it on the stack. 479 */ 480 481 /* 482 * Create a path using the bus, target, and lun the 483 * user passed in. 484 */ 485 if (xpt_create_path(&ccb.ccb_h.path, NULL, 486 inccb->ccb_h.path_id, 487 inccb->ccb_h.target_id, 488 inccb->ccb_h.target_lun) != 489 CAM_REQ_CMP){ 490 error = EINVAL; 491 break; 492 } 493 /* Ensure all of our fields are correct */ 494 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 495 inccb->ccb_h.pinfo.priority); 496 xpt_merge_ccb(&ccb, inccb); 497 xpt_action(&ccb); 498 bcopy(&ccb, inccb, sizeof(union ccb)); 499 xpt_free_path(ccb.ccb_h.path); 500 break; 501 502 } 503 case XPT_DEV_MATCH: { 504 struct cam_periph_map_info mapinfo; 505 struct cam_path *old_path; 506 507 /* 508 * We can't deal with physical addresses for this 509 * type of transaction. 510 */ 511 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 512 CAM_DATA_VADDR) { 513 error = EINVAL; 514 break; 515 } 516 517 /* 518 * Save this in case the caller had it set to 519 * something in particular. 520 */ 521 old_path = inccb->ccb_h.path; 522 523 /* 524 * We really don't need a path for the matching 525 * code. The path is needed because of the 526 * debugging statements in xpt_action(). They 527 * assume that the CCB has a valid path. 528 */ 529 inccb->ccb_h.path = xpt_periph->path; 530 531 bzero(&mapinfo, sizeof(mapinfo)); 532 533 /* 534 * Map the pattern and match buffers into kernel 535 * virtual address space. 536 */ 537 error = cam_periph_mapmem(inccb, &mapinfo); 538 539 if (error) { 540 inccb->ccb_h.path = old_path; 541 break; 542 } 543 544 /* 545 * This is an immediate CCB, we can send it on directly. 546 */ 547 xpt_action(inccb); 548 549 /* 550 * Map the buffers back into user space. 551 */ 552 cam_periph_unmapmem(inccb, &mapinfo); 553 554 inccb->ccb_h.path = old_path; 555 556 error = 0; 557 break; 558 } 559 default: 560 error = ENOTSUP; 561 break; 562 } 563 xpt_release_bus(bus); 564 break; 565 } 566 /* 567 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 568 * with the periphal driver name and unit name filled in. The other 569 * fields don't really matter as input. The passthrough driver name 570 * ("pass"), and unit number are passed back in the ccb. The current 571 * device generation number, and the index into the device peripheral 572 * driver list, and the status are also passed back. Note that 573 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 574 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 575 * (or rather should be) impossible for the device peripheral driver 576 * list to change since we look at the whole thing in one pass, and 577 * we do it with lock protection. 578 * 579 */ 580 case CAMGETPASSTHRU: { 581 union ccb *ccb; 582 struct cam_periph *periph; 583 struct periph_driver **p_drv; 584 char *name; 585 u_int unit; 586 int base_periph_found; 587 588 ccb = (union ccb *)addr; 589 unit = ccb->cgdl.unit_number; 590 name = ccb->cgdl.periph_name; 591 base_periph_found = 0; 592 593 /* 594 * Sanity check -- make sure we don't get a null peripheral 595 * driver name. 596 */ 597 if (*ccb->cgdl.periph_name == '\0') { 598 error = EINVAL; 599 break; 600 } 601 602 /* Keep the list from changing while we traverse it */ 603 xpt_lock_buses(); 604 605 /* first find our driver in the list of drivers */ 606 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 607 if (strcmp((*p_drv)->driver_name, name) == 0) 608 break; 609 610 if (*p_drv == NULL) { 611 xpt_unlock_buses(); 612 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 613 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 614 *ccb->cgdl.periph_name = '\0'; 615 ccb->cgdl.unit_number = 0; 616 error = ENOENT; 617 break; 618 } 619 620 /* 621 * Run through every peripheral instance of this driver 622 * and check to see whether it matches the unit passed 623 * in by the user. If it does, get out of the loops and 624 * find the passthrough driver associated with that 625 * peripheral driver. 626 */ 627 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 628 periph = TAILQ_NEXT(periph, unit_links)) { 629 630 if (periph->unit_number == unit) 631 break; 632 } 633 /* 634 * If we found the peripheral driver that the user passed 635 * in, go through all of the peripheral drivers for that 636 * particular device and look for a passthrough driver. 637 */ 638 if (periph != NULL) { 639 struct cam_ed *device; 640 int i; 641 642 base_periph_found = 1; 643 device = periph->path->device; 644 for (i = 0, periph = SLIST_FIRST(&device->periphs); 645 periph != NULL; 646 periph = SLIST_NEXT(periph, periph_links), i++) { 647 /* 648 * Check to see whether we have a 649 * passthrough device or not. 650 */ 651 if (strcmp(periph->periph_name, "pass") == 0) { 652 /* 653 * Fill in the getdevlist fields. 654 */ 655 strcpy(ccb->cgdl.periph_name, 656 periph->periph_name); 657 ccb->cgdl.unit_number = 658 periph->unit_number; 659 if (SLIST_NEXT(periph, periph_links)) 660 ccb->cgdl.status = 661 CAM_GDEVLIST_MORE_DEVS; 662 else 663 ccb->cgdl.status = 664 CAM_GDEVLIST_LAST_DEVICE; 665 ccb->cgdl.generation = 666 device->generation; 667 ccb->cgdl.index = i; 668 /* 669 * Fill in some CCB header fields 670 * that the user may want. 671 */ 672 ccb->ccb_h.path_id = 673 periph->path->bus->path_id; 674 ccb->ccb_h.target_id = 675 periph->path->target->target_id; 676 ccb->ccb_h.target_lun = 677 periph->path->device->lun_id; 678 ccb->ccb_h.status = CAM_REQ_CMP; 679 break; 680 } 681 } 682 } 683 684 /* 685 * If the periph is null here, one of two things has 686 * happened. The first possibility is that we couldn't 687 * find the unit number of the particular peripheral driver 688 * that the user is asking about. e.g. the user asks for 689 * the passthrough driver for "da11". We find the list of 690 * "da" peripherals all right, but there is no unit 11. 691 * The other possibility is that we went through the list 692 * of peripheral drivers attached to the device structure, 693 * but didn't find one with the name "pass". Either way, 694 * we return ENOENT, since we couldn't find something. 695 */ 696 if (periph == NULL) { 697 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 698 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 699 *ccb->cgdl.periph_name = '\0'; 700 ccb->cgdl.unit_number = 0; 701 error = ENOENT; 702 /* 703 * It is unfortunate that this is even necessary, 704 * but there are many, many clueless users out there. 705 * If this is true, the user is looking for the 706 * passthrough driver, but doesn't have one in his 707 * kernel. 708 */ 709 if (base_periph_found == 1) { 710 printf("xptioctl: pass driver is not in the " 711 "kernel\n"); 712 printf("xptioctl: put \"device pass\" in " 713 "your kernel config file\n"); 714 } 715 } 716 xpt_unlock_buses(); 717 break; 718 } 719 default: 720 error = ENOTTY; 721 break; 722 } 723 724 return(error); 725 } 726 727 static int 728 cam_module_event_handler(module_t mod, int what, void *arg) 729 { 730 int error; 731 732 switch (what) { 733 case MOD_LOAD: 734 if ((error = xpt_init(NULL)) != 0) 735 return (error); 736 break; 737 case MOD_UNLOAD: 738 return EBUSY; 739 default: 740 return EOPNOTSUPP; 741 } 742 743 return 0; 744 } 745 746 static void 747 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 748 { 749 750 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 751 xpt_free_path(done_ccb->ccb_h.path); 752 xpt_free_ccb(done_ccb); 753 } else { 754 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 755 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 756 } 757 xpt_release_boot(); 758 } 759 760 /* thread to handle bus rescans */ 761 static void 762 xpt_scanner_thread(void *dummy) 763 { 764 union ccb *ccb; 765 struct cam_path path; 766 767 xpt_lock_buses(); 768 for (;;) { 769 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 770 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 771 "ccb_scanq", 0); 772 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 773 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 774 xpt_unlock_buses(); 775 776 /* 777 * Since lock can be dropped inside and path freed 778 * by completion callback even before return here, 779 * take our own path copy for reference. 780 */ 781 xpt_copy_path(&path, ccb->ccb_h.path); 782 xpt_path_lock(&path); 783 xpt_action(ccb); 784 xpt_path_unlock(&path); 785 xpt_release_path(&path); 786 787 xpt_lock_buses(); 788 } 789 } 790 } 791 792 void 793 xpt_rescan(union ccb *ccb) 794 { 795 struct ccb_hdr *hdr; 796 797 /* Prepare request */ 798 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 799 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 800 ccb->ccb_h.func_code = XPT_SCAN_BUS; 801 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 802 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 803 ccb->ccb_h.func_code = XPT_SCAN_TGT; 804 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 805 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 806 ccb->ccb_h.func_code = XPT_SCAN_LUN; 807 else { 808 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 809 xpt_free_path(ccb->ccb_h.path); 810 xpt_free_ccb(ccb); 811 return; 812 } 813 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 814 ccb->ccb_h.cbfcnp = xpt_rescan_done; 815 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 816 /* Don't make duplicate entries for the same paths. */ 817 xpt_lock_buses(); 818 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 819 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 820 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 821 wakeup(&xsoftc.ccb_scanq); 822 xpt_unlock_buses(); 823 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 824 xpt_free_path(ccb->ccb_h.path); 825 xpt_free_ccb(ccb); 826 return; 827 } 828 } 829 } 830 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 831 xsoftc.buses_to_config++; 832 wakeup(&xsoftc.ccb_scanq); 833 xpt_unlock_buses(); 834 } 835 836 /* Functions accessed by the peripheral drivers */ 837 static int 838 xpt_init(void *dummy) 839 { 840 struct cam_sim *xpt_sim; 841 struct cam_path *path; 842 struct cam_devq *devq; 843 cam_status status; 844 int error, i; 845 846 TAILQ_INIT(&xsoftc.xpt_busses); 847 TAILQ_INIT(&xsoftc.ccb_scanq); 848 STAILQ_INIT(&xsoftc.highpowerq); 849 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 850 851 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 852 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 853 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 854 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 855 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 856 857 #ifdef CAM_BOOT_DELAY 858 /* 859 * Override this value at compile time to assist our users 860 * who don't use loader to boot a kernel. 861 */ 862 xsoftc.boot_delay = CAM_BOOT_DELAY; 863 #endif 864 /* 865 * The xpt layer is, itself, the equivelent of a SIM. 866 * Allow 16 ccbs in the ccb pool for it. This should 867 * give decent parallelism when we probe busses and 868 * perform other XPT functions. 869 */ 870 devq = cam_simq_alloc(16); 871 xpt_sim = cam_sim_alloc(xptaction, 872 xptpoll, 873 "xpt", 874 /*softc*/NULL, 875 /*unit*/0, 876 /*mtx*/&xsoftc.xpt_lock, 877 /*max_dev_transactions*/0, 878 /*max_tagged_dev_transactions*/0, 879 devq); 880 if (xpt_sim == NULL) 881 return (ENOMEM); 882 883 mtx_lock(&xsoftc.xpt_lock); 884 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 885 mtx_unlock(&xsoftc.xpt_lock); 886 printf("xpt_init: xpt_bus_register failed with status %#x," 887 " failing attach\n", status); 888 return (EINVAL); 889 } 890 mtx_unlock(&xsoftc.xpt_lock); 891 892 /* 893 * Looking at the XPT from the SIM layer, the XPT is 894 * the equivelent of a peripheral driver. Allocate 895 * a peripheral driver entry for us. 896 */ 897 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 898 CAM_TARGET_WILDCARD, 899 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 900 mtx_unlock(&xsoftc.xpt_lock); 901 printf("xpt_init: xpt_create_path failed with status %#x," 902 " failing attach\n", status); 903 return (EINVAL); 904 } 905 xpt_path_lock(path); 906 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 907 path, NULL, 0, xpt_sim); 908 xpt_path_unlock(path); 909 xpt_free_path(path); 910 911 if (cam_num_doneqs < 1) 912 cam_num_doneqs = 1 + mp_ncpus / 6; 913 else if (cam_num_doneqs > MAXCPU) 914 cam_num_doneqs = MAXCPU; 915 for (i = 0; i < cam_num_doneqs; i++) { 916 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 917 MTX_DEF); 918 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 919 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 920 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 921 if (error != 0) { 922 cam_num_doneqs = i; 923 break; 924 } 925 } 926 if (cam_num_doneqs < 1) { 927 printf("xpt_init: Cannot init completion queues " 928 "- failing attach\n"); 929 return (ENOMEM); 930 } 931 /* 932 * Register a callback for when interrupts are enabled. 933 */ 934 xsoftc.xpt_config_hook = 935 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 936 M_CAMXPT, M_NOWAIT | M_ZERO); 937 if (xsoftc.xpt_config_hook == NULL) { 938 printf("xpt_init: Cannot malloc config hook " 939 "- failing attach\n"); 940 return (ENOMEM); 941 } 942 xsoftc.xpt_config_hook->ich_func = xpt_config; 943 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 944 free (xsoftc.xpt_config_hook, M_CAMXPT); 945 printf("xpt_init: config_intrhook_establish failed " 946 "- failing attach\n"); 947 } 948 949 return (0); 950 } 951 952 static cam_status 953 xptregister(struct cam_periph *periph, void *arg) 954 { 955 struct cam_sim *xpt_sim; 956 957 if (periph == NULL) { 958 printf("xptregister: periph was NULL!!\n"); 959 return(CAM_REQ_CMP_ERR); 960 } 961 962 xpt_sim = (struct cam_sim *)arg; 963 xpt_sim->softc = periph; 964 xpt_periph = periph; 965 periph->softc = NULL; 966 967 return(CAM_REQ_CMP); 968 } 969 970 int32_t 971 xpt_add_periph(struct cam_periph *periph) 972 { 973 struct cam_ed *device; 974 int32_t status; 975 976 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 977 device = periph->path->device; 978 status = CAM_REQ_CMP; 979 if (device != NULL) { 980 mtx_lock(&device->target->bus->eb_mtx); 981 device->generation++; 982 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 983 mtx_unlock(&device->target->bus->eb_mtx); 984 } 985 986 return (status); 987 } 988 989 void 990 xpt_remove_periph(struct cam_periph *periph) 991 { 992 struct cam_ed *device; 993 994 device = periph->path->device; 995 if (device != NULL) { 996 mtx_lock(&device->target->bus->eb_mtx); 997 device->generation++; 998 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 999 mtx_unlock(&device->target->bus->eb_mtx); 1000 } 1001 } 1002 1003 1004 void 1005 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1006 { 1007 struct cam_path *path = periph->path; 1008 1009 cam_periph_assert(periph, MA_OWNED); 1010 periph->flags |= CAM_PERIPH_ANNOUNCED; 1011 1012 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1013 periph->periph_name, periph->unit_number, 1014 path->bus->sim->sim_name, 1015 path->bus->sim->unit_number, 1016 path->bus->sim->bus_id, 1017 path->bus->path_id, 1018 path->target->target_id, 1019 (uintmax_t)path->device->lun_id); 1020 printf("%s%d: ", periph->periph_name, periph->unit_number); 1021 if (path->device->protocol == PROTO_SCSI) 1022 scsi_print_inquiry(&path->device->inq_data); 1023 else if (path->device->protocol == PROTO_ATA || 1024 path->device->protocol == PROTO_SATAPM) 1025 ata_print_ident(&path->device->ident_data); 1026 else if (path->device->protocol == PROTO_SEMB) 1027 semb_print_ident( 1028 (struct sep_identify_data *)&path->device->ident_data); 1029 else 1030 printf("Unknown protocol device\n"); 1031 if (path->device->serial_num_len > 0) { 1032 /* Don't wrap the screen - print only the first 60 chars */ 1033 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1034 periph->unit_number, path->device->serial_num); 1035 } 1036 /* Announce transport details. */ 1037 (*(path->bus->xport->announce))(periph); 1038 /* Announce command queueing. */ 1039 if (path->device->inq_flags & SID_CmdQue 1040 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1041 printf("%s%d: Command Queueing enabled\n", 1042 periph->periph_name, periph->unit_number); 1043 } 1044 /* Announce caller's details if they've passed in. */ 1045 if (announce_string != NULL) 1046 printf("%s%d: %s\n", periph->periph_name, 1047 periph->unit_number, announce_string); 1048 } 1049 1050 void 1051 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1052 { 1053 if (quirks != 0) { 1054 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1055 periph->unit_number, quirks, bit_string); 1056 } 1057 } 1058 1059 void 1060 xpt_denounce_periph(struct cam_periph *periph) 1061 { 1062 struct cam_path *path = periph->path; 1063 1064 cam_periph_assert(periph, MA_OWNED); 1065 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1066 periph->periph_name, periph->unit_number, 1067 path->bus->sim->sim_name, 1068 path->bus->sim->unit_number, 1069 path->bus->sim->bus_id, 1070 path->bus->path_id, 1071 path->target->target_id, 1072 (uintmax_t)path->device->lun_id); 1073 printf("%s%d: ", periph->periph_name, periph->unit_number); 1074 if (path->device->protocol == PROTO_SCSI) 1075 scsi_print_inquiry_short(&path->device->inq_data); 1076 else if (path->device->protocol == PROTO_ATA || 1077 path->device->protocol == PROTO_SATAPM) 1078 ata_print_ident_short(&path->device->ident_data); 1079 else if (path->device->protocol == PROTO_SEMB) 1080 semb_print_ident_short( 1081 (struct sep_identify_data *)&path->device->ident_data); 1082 else 1083 printf("Unknown protocol device"); 1084 if (path->device->serial_num_len > 0) 1085 printf(" s/n %.60s", path->device->serial_num); 1086 printf(" detached\n"); 1087 } 1088 1089 1090 int 1091 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1092 { 1093 int ret = -1, l; 1094 struct ccb_dev_advinfo cdai; 1095 struct scsi_vpd_id_descriptor *idd; 1096 1097 xpt_path_assert(path, MA_OWNED); 1098 1099 memset(&cdai, 0, sizeof(cdai)); 1100 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1101 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1102 cdai.bufsiz = len; 1103 1104 if (!strcmp(attr, "GEOM::ident")) 1105 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1106 else if (!strcmp(attr, "GEOM::physpath")) 1107 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1108 else if (strcmp(attr, "GEOM::lunid") == 0 || 1109 strcmp(attr, "GEOM::lunname") == 0) { 1110 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1111 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1112 } else 1113 goto out; 1114 1115 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1116 if (cdai.buf == NULL) { 1117 ret = ENOMEM; 1118 goto out; 1119 } 1120 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1121 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1122 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1123 if (cdai.provsiz == 0) 1124 goto out; 1125 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1126 if (strcmp(attr, "GEOM::lunid") == 0) { 1127 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1128 cdai.provsiz, scsi_devid_is_lun_naa); 1129 if (idd == NULL) 1130 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1131 cdai.provsiz, scsi_devid_is_lun_eui64); 1132 } else 1133 idd = NULL; 1134 if (idd == NULL) 1135 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1136 cdai.provsiz, scsi_devid_is_lun_t10); 1137 if (idd == NULL) 1138 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1139 cdai.provsiz, scsi_devid_is_lun_name); 1140 if (idd == NULL) 1141 goto out; 1142 ret = 0; 1143 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII || 1144 (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1145 l = strnlen(idd->identifier, idd->length); 1146 if (l < len) { 1147 bcopy(idd->identifier, buf, l); 1148 buf[l] = 0; 1149 } else 1150 ret = EFAULT; 1151 } else { 1152 if (idd->length * 2 < len) { 1153 for (l = 0; l < idd->length; l++) 1154 sprintf(buf + l * 2, "%02x", 1155 idd->identifier[l]); 1156 } else 1157 ret = EFAULT; 1158 } 1159 } else { 1160 ret = 0; 1161 if (strlcpy(buf, cdai.buf, len) >= len) 1162 ret = EFAULT; 1163 } 1164 1165 out: 1166 if (cdai.buf != NULL) 1167 free(cdai.buf, M_CAMXPT); 1168 return ret; 1169 } 1170 1171 static dev_match_ret 1172 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1173 struct cam_eb *bus) 1174 { 1175 dev_match_ret retval; 1176 int i; 1177 1178 retval = DM_RET_NONE; 1179 1180 /* 1181 * If we aren't given something to match against, that's an error. 1182 */ 1183 if (bus == NULL) 1184 return(DM_RET_ERROR); 1185 1186 /* 1187 * If there are no match entries, then this bus matches no 1188 * matter what. 1189 */ 1190 if ((patterns == NULL) || (num_patterns == 0)) 1191 return(DM_RET_DESCEND | DM_RET_COPY); 1192 1193 for (i = 0; i < num_patterns; i++) { 1194 struct bus_match_pattern *cur_pattern; 1195 1196 /* 1197 * If the pattern in question isn't for a bus node, we 1198 * aren't interested. However, we do indicate to the 1199 * calling routine that we should continue descending the 1200 * tree, since the user wants to match against lower-level 1201 * EDT elements. 1202 */ 1203 if (patterns[i].type != DEV_MATCH_BUS) { 1204 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1205 retval |= DM_RET_DESCEND; 1206 continue; 1207 } 1208 1209 cur_pattern = &patterns[i].pattern.bus_pattern; 1210 1211 /* 1212 * If they want to match any bus node, we give them any 1213 * device node. 1214 */ 1215 if (cur_pattern->flags == BUS_MATCH_ANY) { 1216 /* set the copy flag */ 1217 retval |= DM_RET_COPY; 1218 1219 /* 1220 * If we've already decided on an action, go ahead 1221 * and return. 1222 */ 1223 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1224 return(retval); 1225 } 1226 1227 /* 1228 * Not sure why someone would do this... 1229 */ 1230 if (cur_pattern->flags == BUS_MATCH_NONE) 1231 continue; 1232 1233 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1234 && (cur_pattern->path_id != bus->path_id)) 1235 continue; 1236 1237 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1238 && (cur_pattern->bus_id != bus->sim->bus_id)) 1239 continue; 1240 1241 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1242 && (cur_pattern->unit_number != bus->sim->unit_number)) 1243 continue; 1244 1245 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1246 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1247 DEV_IDLEN) != 0)) 1248 continue; 1249 1250 /* 1251 * If we get to this point, the user definitely wants 1252 * information on this bus. So tell the caller to copy the 1253 * data out. 1254 */ 1255 retval |= DM_RET_COPY; 1256 1257 /* 1258 * If the return action has been set to descend, then we 1259 * know that we've already seen a non-bus matching 1260 * expression, therefore we need to further descend the tree. 1261 * This won't change by continuing around the loop, so we 1262 * go ahead and return. If we haven't seen a non-bus 1263 * matching expression, we keep going around the loop until 1264 * we exhaust the matching expressions. We'll set the stop 1265 * flag once we fall out of the loop. 1266 */ 1267 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1268 return(retval); 1269 } 1270 1271 /* 1272 * If the return action hasn't been set to descend yet, that means 1273 * we haven't seen anything other than bus matching patterns. So 1274 * tell the caller to stop descending the tree -- the user doesn't 1275 * want to match against lower level tree elements. 1276 */ 1277 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1278 retval |= DM_RET_STOP; 1279 1280 return(retval); 1281 } 1282 1283 static dev_match_ret 1284 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1285 struct cam_ed *device) 1286 { 1287 dev_match_ret retval; 1288 int i; 1289 1290 retval = DM_RET_NONE; 1291 1292 /* 1293 * If we aren't given something to match against, that's an error. 1294 */ 1295 if (device == NULL) 1296 return(DM_RET_ERROR); 1297 1298 /* 1299 * If there are no match entries, then this device matches no 1300 * matter what. 1301 */ 1302 if ((patterns == NULL) || (num_patterns == 0)) 1303 return(DM_RET_DESCEND | DM_RET_COPY); 1304 1305 for (i = 0; i < num_patterns; i++) { 1306 struct device_match_pattern *cur_pattern; 1307 struct scsi_vpd_device_id *device_id_page; 1308 1309 /* 1310 * If the pattern in question isn't for a device node, we 1311 * aren't interested. 1312 */ 1313 if (patterns[i].type != DEV_MATCH_DEVICE) { 1314 if ((patterns[i].type == DEV_MATCH_PERIPH) 1315 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1316 retval |= DM_RET_DESCEND; 1317 continue; 1318 } 1319 1320 cur_pattern = &patterns[i].pattern.device_pattern; 1321 1322 /* Error out if mutually exclusive options are specified. */ 1323 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1324 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1325 return(DM_RET_ERROR); 1326 1327 /* 1328 * If they want to match any device node, we give them any 1329 * device node. 1330 */ 1331 if (cur_pattern->flags == DEV_MATCH_ANY) 1332 goto copy_dev_node; 1333 1334 /* 1335 * Not sure why someone would do this... 1336 */ 1337 if (cur_pattern->flags == DEV_MATCH_NONE) 1338 continue; 1339 1340 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1341 && (cur_pattern->path_id != device->target->bus->path_id)) 1342 continue; 1343 1344 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1345 && (cur_pattern->target_id != device->target->target_id)) 1346 continue; 1347 1348 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1349 && (cur_pattern->target_lun != device->lun_id)) 1350 continue; 1351 1352 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1353 && (cam_quirkmatch((caddr_t)&device->inq_data, 1354 (caddr_t)&cur_pattern->data.inq_pat, 1355 1, sizeof(cur_pattern->data.inq_pat), 1356 scsi_static_inquiry_match) == NULL)) 1357 continue; 1358 1359 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1360 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1361 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1362 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1363 device->device_id_len 1364 - SVPD_DEVICE_ID_HDR_LEN, 1365 cur_pattern->data.devid_pat.id, 1366 cur_pattern->data.devid_pat.id_len) != 0)) 1367 continue; 1368 1369 copy_dev_node: 1370 /* 1371 * If we get to this point, the user definitely wants 1372 * information on this device. So tell the caller to copy 1373 * the data out. 1374 */ 1375 retval |= DM_RET_COPY; 1376 1377 /* 1378 * If the return action has been set to descend, then we 1379 * know that we've already seen a peripheral matching 1380 * expression, therefore we need to further descend the tree. 1381 * This won't change by continuing around the loop, so we 1382 * go ahead and return. If we haven't seen a peripheral 1383 * matching expression, we keep going around the loop until 1384 * we exhaust the matching expressions. We'll set the stop 1385 * flag once we fall out of the loop. 1386 */ 1387 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1388 return(retval); 1389 } 1390 1391 /* 1392 * If the return action hasn't been set to descend yet, that means 1393 * we haven't seen any peripheral matching patterns. So tell the 1394 * caller to stop descending the tree -- the user doesn't want to 1395 * match against lower level tree elements. 1396 */ 1397 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1398 retval |= DM_RET_STOP; 1399 1400 return(retval); 1401 } 1402 1403 /* 1404 * Match a single peripheral against any number of match patterns. 1405 */ 1406 static dev_match_ret 1407 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1408 struct cam_periph *periph) 1409 { 1410 dev_match_ret retval; 1411 int i; 1412 1413 /* 1414 * If we aren't given something to match against, that's an error. 1415 */ 1416 if (periph == NULL) 1417 return(DM_RET_ERROR); 1418 1419 /* 1420 * If there are no match entries, then this peripheral matches no 1421 * matter what. 1422 */ 1423 if ((patterns == NULL) || (num_patterns == 0)) 1424 return(DM_RET_STOP | DM_RET_COPY); 1425 1426 /* 1427 * There aren't any nodes below a peripheral node, so there's no 1428 * reason to descend the tree any further. 1429 */ 1430 retval = DM_RET_STOP; 1431 1432 for (i = 0; i < num_patterns; i++) { 1433 struct periph_match_pattern *cur_pattern; 1434 1435 /* 1436 * If the pattern in question isn't for a peripheral, we 1437 * aren't interested. 1438 */ 1439 if (patterns[i].type != DEV_MATCH_PERIPH) 1440 continue; 1441 1442 cur_pattern = &patterns[i].pattern.periph_pattern; 1443 1444 /* 1445 * If they want to match on anything, then we will do so. 1446 */ 1447 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1448 /* set the copy flag */ 1449 retval |= DM_RET_COPY; 1450 1451 /* 1452 * We've already set the return action to stop, 1453 * since there are no nodes below peripherals in 1454 * the tree. 1455 */ 1456 return(retval); 1457 } 1458 1459 /* 1460 * Not sure why someone would do this... 1461 */ 1462 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1463 continue; 1464 1465 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1466 && (cur_pattern->path_id != periph->path->bus->path_id)) 1467 continue; 1468 1469 /* 1470 * For the target and lun id's, we have to make sure the 1471 * target and lun pointers aren't NULL. The xpt peripheral 1472 * has a wildcard target and device. 1473 */ 1474 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1475 && ((periph->path->target == NULL) 1476 ||(cur_pattern->target_id != periph->path->target->target_id))) 1477 continue; 1478 1479 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1480 && ((periph->path->device == NULL) 1481 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1482 continue; 1483 1484 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1485 && (cur_pattern->unit_number != periph->unit_number)) 1486 continue; 1487 1488 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1489 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1490 DEV_IDLEN) != 0)) 1491 continue; 1492 1493 /* 1494 * If we get to this point, the user definitely wants 1495 * information on this peripheral. So tell the caller to 1496 * copy the data out. 1497 */ 1498 retval |= DM_RET_COPY; 1499 1500 /* 1501 * The return action has already been set to stop, since 1502 * peripherals don't have any nodes below them in the EDT. 1503 */ 1504 return(retval); 1505 } 1506 1507 /* 1508 * If we get to this point, the peripheral that was passed in 1509 * doesn't match any of the patterns. 1510 */ 1511 return(retval); 1512 } 1513 1514 static int 1515 xptedtbusfunc(struct cam_eb *bus, void *arg) 1516 { 1517 struct ccb_dev_match *cdm; 1518 struct cam_et *target; 1519 dev_match_ret retval; 1520 1521 cdm = (struct ccb_dev_match *)arg; 1522 1523 /* 1524 * If our position is for something deeper in the tree, that means 1525 * that we've already seen this node. So, we keep going down. 1526 */ 1527 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1528 && (cdm->pos.cookie.bus == bus) 1529 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1530 && (cdm->pos.cookie.target != NULL)) 1531 retval = DM_RET_DESCEND; 1532 else 1533 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1534 1535 /* 1536 * If we got an error, bail out of the search. 1537 */ 1538 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1539 cdm->status = CAM_DEV_MATCH_ERROR; 1540 return(0); 1541 } 1542 1543 /* 1544 * If the copy flag is set, copy this bus out. 1545 */ 1546 if (retval & DM_RET_COPY) { 1547 int spaceleft, j; 1548 1549 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1550 sizeof(struct dev_match_result)); 1551 1552 /* 1553 * If we don't have enough space to put in another 1554 * match result, save our position and tell the 1555 * user there are more devices to check. 1556 */ 1557 if (spaceleft < sizeof(struct dev_match_result)) { 1558 bzero(&cdm->pos, sizeof(cdm->pos)); 1559 cdm->pos.position_type = 1560 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1561 1562 cdm->pos.cookie.bus = bus; 1563 cdm->pos.generations[CAM_BUS_GENERATION]= 1564 xsoftc.bus_generation; 1565 cdm->status = CAM_DEV_MATCH_MORE; 1566 return(0); 1567 } 1568 j = cdm->num_matches; 1569 cdm->num_matches++; 1570 cdm->matches[j].type = DEV_MATCH_BUS; 1571 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1572 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1573 cdm->matches[j].result.bus_result.unit_number = 1574 bus->sim->unit_number; 1575 strncpy(cdm->matches[j].result.bus_result.dev_name, 1576 bus->sim->sim_name, DEV_IDLEN); 1577 } 1578 1579 /* 1580 * If the user is only interested in busses, there's no 1581 * reason to descend to the next level in the tree. 1582 */ 1583 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1584 return(1); 1585 1586 /* 1587 * If there is a target generation recorded, check it to 1588 * make sure the target list hasn't changed. 1589 */ 1590 mtx_lock(&bus->eb_mtx); 1591 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1592 && (cdm->pos.cookie.bus == bus) 1593 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1594 && (cdm->pos.cookie.target != NULL)) { 1595 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1596 bus->generation)) { 1597 mtx_unlock(&bus->eb_mtx); 1598 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1599 return (0); 1600 } 1601 target = (struct cam_et *)cdm->pos.cookie.target; 1602 target->refcount++; 1603 } else 1604 target = NULL; 1605 mtx_unlock(&bus->eb_mtx); 1606 1607 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1608 } 1609 1610 static int 1611 xptedttargetfunc(struct cam_et *target, void *arg) 1612 { 1613 struct ccb_dev_match *cdm; 1614 struct cam_eb *bus; 1615 struct cam_ed *device; 1616 1617 cdm = (struct ccb_dev_match *)arg; 1618 bus = target->bus; 1619 1620 /* 1621 * If there is a device list generation recorded, check it to 1622 * make sure the device list hasn't changed. 1623 */ 1624 mtx_lock(&bus->eb_mtx); 1625 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1626 && (cdm->pos.cookie.bus == bus) 1627 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1628 && (cdm->pos.cookie.target == target) 1629 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1630 && (cdm->pos.cookie.device != NULL)) { 1631 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1632 target->generation) { 1633 mtx_unlock(&bus->eb_mtx); 1634 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1635 return(0); 1636 } 1637 device = (struct cam_ed *)cdm->pos.cookie.device; 1638 device->refcount++; 1639 } else 1640 device = NULL; 1641 mtx_unlock(&bus->eb_mtx); 1642 1643 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1644 } 1645 1646 static int 1647 xptedtdevicefunc(struct cam_ed *device, void *arg) 1648 { 1649 struct cam_eb *bus; 1650 struct cam_periph *periph; 1651 struct ccb_dev_match *cdm; 1652 dev_match_ret retval; 1653 1654 cdm = (struct ccb_dev_match *)arg; 1655 bus = device->target->bus; 1656 1657 /* 1658 * If our position is for something deeper in the tree, that means 1659 * that we've already seen this node. So, we keep going down. 1660 */ 1661 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1662 && (cdm->pos.cookie.device == device) 1663 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1664 && (cdm->pos.cookie.periph != NULL)) 1665 retval = DM_RET_DESCEND; 1666 else 1667 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1668 device); 1669 1670 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1671 cdm->status = CAM_DEV_MATCH_ERROR; 1672 return(0); 1673 } 1674 1675 /* 1676 * If the copy flag is set, copy this device out. 1677 */ 1678 if (retval & DM_RET_COPY) { 1679 int spaceleft, j; 1680 1681 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1682 sizeof(struct dev_match_result)); 1683 1684 /* 1685 * If we don't have enough space to put in another 1686 * match result, save our position and tell the 1687 * user there are more devices to check. 1688 */ 1689 if (spaceleft < sizeof(struct dev_match_result)) { 1690 bzero(&cdm->pos, sizeof(cdm->pos)); 1691 cdm->pos.position_type = 1692 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1693 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1694 1695 cdm->pos.cookie.bus = device->target->bus; 1696 cdm->pos.generations[CAM_BUS_GENERATION]= 1697 xsoftc.bus_generation; 1698 cdm->pos.cookie.target = device->target; 1699 cdm->pos.generations[CAM_TARGET_GENERATION] = 1700 device->target->bus->generation; 1701 cdm->pos.cookie.device = device; 1702 cdm->pos.generations[CAM_DEV_GENERATION] = 1703 device->target->generation; 1704 cdm->status = CAM_DEV_MATCH_MORE; 1705 return(0); 1706 } 1707 j = cdm->num_matches; 1708 cdm->num_matches++; 1709 cdm->matches[j].type = DEV_MATCH_DEVICE; 1710 cdm->matches[j].result.device_result.path_id = 1711 device->target->bus->path_id; 1712 cdm->matches[j].result.device_result.target_id = 1713 device->target->target_id; 1714 cdm->matches[j].result.device_result.target_lun = 1715 device->lun_id; 1716 cdm->matches[j].result.device_result.protocol = 1717 device->protocol; 1718 bcopy(&device->inq_data, 1719 &cdm->matches[j].result.device_result.inq_data, 1720 sizeof(struct scsi_inquiry_data)); 1721 bcopy(&device->ident_data, 1722 &cdm->matches[j].result.device_result.ident_data, 1723 sizeof(struct ata_params)); 1724 1725 /* Let the user know whether this device is unconfigured */ 1726 if (device->flags & CAM_DEV_UNCONFIGURED) 1727 cdm->matches[j].result.device_result.flags = 1728 DEV_RESULT_UNCONFIGURED; 1729 else 1730 cdm->matches[j].result.device_result.flags = 1731 DEV_RESULT_NOFLAG; 1732 } 1733 1734 /* 1735 * If the user isn't interested in peripherals, don't descend 1736 * the tree any further. 1737 */ 1738 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1739 return(1); 1740 1741 /* 1742 * If there is a peripheral list generation recorded, make sure 1743 * it hasn't changed. 1744 */ 1745 xpt_lock_buses(); 1746 mtx_lock(&bus->eb_mtx); 1747 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1748 && (cdm->pos.cookie.bus == bus) 1749 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1750 && (cdm->pos.cookie.target == device->target) 1751 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1752 && (cdm->pos.cookie.device == device) 1753 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1754 && (cdm->pos.cookie.periph != NULL)) { 1755 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1756 device->generation) { 1757 mtx_unlock(&bus->eb_mtx); 1758 xpt_unlock_buses(); 1759 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1760 return(0); 1761 } 1762 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1763 periph->refcount++; 1764 } else 1765 periph = NULL; 1766 mtx_unlock(&bus->eb_mtx); 1767 xpt_unlock_buses(); 1768 1769 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1770 } 1771 1772 static int 1773 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1774 { 1775 struct ccb_dev_match *cdm; 1776 dev_match_ret retval; 1777 1778 cdm = (struct ccb_dev_match *)arg; 1779 1780 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1781 1782 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1783 cdm->status = CAM_DEV_MATCH_ERROR; 1784 return(0); 1785 } 1786 1787 /* 1788 * If the copy flag is set, copy this peripheral out. 1789 */ 1790 if (retval & DM_RET_COPY) { 1791 int spaceleft, j; 1792 1793 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1794 sizeof(struct dev_match_result)); 1795 1796 /* 1797 * If we don't have enough space to put in another 1798 * match result, save our position and tell the 1799 * user there are more devices to check. 1800 */ 1801 if (spaceleft < sizeof(struct dev_match_result)) { 1802 bzero(&cdm->pos, sizeof(cdm->pos)); 1803 cdm->pos.position_type = 1804 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1805 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1806 CAM_DEV_POS_PERIPH; 1807 1808 cdm->pos.cookie.bus = periph->path->bus; 1809 cdm->pos.generations[CAM_BUS_GENERATION]= 1810 xsoftc.bus_generation; 1811 cdm->pos.cookie.target = periph->path->target; 1812 cdm->pos.generations[CAM_TARGET_GENERATION] = 1813 periph->path->bus->generation; 1814 cdm->pos.cookie.device = periph->path->device; 1815 cdm->pos.generations[CAM_DEV_GENERATION] = 1816 periph->path->target->generation; 1817 cdm->pos.cookie.periph = periph; 1818 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1819 periph->path->device->generation; 1820 cdm->status = CAM_DEV_MATCH_MORE; 1821 return(0); 1822 } 1823 1824 j = cdm->num_matches; 1825 cdm->num_matches++; 1826 cdm->matches[j].type = DEV_MATCH_PERIPH; 1827 cdm->matches[j].result.periph_result.path_id = 1828 periph->path->bus->path_id; 1829 cdm->matches[j].result.periph_result.target_id = 1830 periph->path->target->target_id; 1831 cdm->matches[j].result.periph_result.target_lun = 1832 periph->path->device->lun_id; 1833 cdm->matches[j].result.periph_result.unit_number = 1834 periph->unit_number; 1835 strncpy(cdm->matches[j].result.periph_result.periph_name, 1836 periph->periph_name, DEV_IDLEN); 1837 } 1838 1839 return(1); 1840 } 1841 1842 static int 1843 xptedtmatch(struct ccb_dev_match *cdm) 1844 { 1845 struct cam_eb *bus; 1846 int ret; 1847 1848 cdm->num_matches = 0; 1849 1850 /* 1851 * Check the bus list generation. If it has changed, the user 1852 * needs to reset everything and start over. 1853 */ 1854 xpt_lock_buses(); 1855 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1856 && (cdm->pos.cookie.bus != NULL)) { 1857 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1858 xsoftc.bus_generation) { 1859 xpt_unlock_buses(); 1860 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1861 return(0); 1862 } 1863 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1864 bus->refcount++; 1865 } else 1866 bus = NULL; 1867 xpt_unlock_buses(); 1868 1869 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1870 1871 /* 1872 * If we get back 0, that means that we had to stop before fully 1873 * traversing the EDT. It also means that one of the subroutines 1874 * has set the status field to the proper value. If we get back 1, 1875 * we've fully traversed the EDT and copied out any matching entries. 1876 */ 1877 if (ret == 1) 1878 cdm->status = CAM_DEV_MATCH_LAST; 1879 1880 return(ret); 1881 } 1882 1883 static int 1884 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1885 { 1886 struct cam_periph *periph; 1887 struct ccb_dev_match *cdm; 1888 1889 cdm = (struct ccb_dev_match *)arg; 1890 1891 xpt_lock_buses(); 1892 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1893 && (cdm->pos.cookie.pdrv == pdrv) 1894 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1895 && (cdm->pos.cookie.periph != NULL)) { 1896 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1897 (*pdrv)->generation) { 1898 xpt_unlock_buses(); 1899 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1900 return(0); 1901 } 1902 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1903 periph->refcount++; 1904 } else 1905 periph = NULL; 1906 xpt_unlock_buses(); 1907 1908 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1909 } 1910 1911 static int 1912 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1913 { 1914 struct ccb_dev_match *cdm; 1915 dev_match_ret retval; 1916 1917 cdm = (struct ccb_dev_match *)arg; 1918 1919 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1920 1921 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1922 cdm->status = CAM_DEV_MATCH_ERROR; 1923 return(0); 1924 } 1925 1926 /* 1927 * If the copy flag is set, copy this peripheral out. 1928 */ 1929 if (retval & DM_RET_COPY) { 1930 int spaceleft, j; 1931 1932 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1933 sizeof(struct dev_match_result)); 1934 1935 /* 1936 * If we don't have enough space to put in another 1937 * match result, save our position and tell the 1938 * user there are more devices to check. 1939 */ 1940 if (spaceleft < sizeof(struct dev_match_result)) { 1941 struct periph_driver **pdrv; 1942 1943 pdrv = NULL; 1944 bzero(&cdm->pos, sizeof(cdm->pos)); 1945 cdm->pos.position_type = 1946 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1947 CAM_DEV_POS_PERIPH; 1948 1949 /* 1950 * This may look a bit non-sensical, but it is 1951 * actually quite logical. There are very few 1952 * peripheral drivers, and bloating every peripheral 1953 * structure with a pointer back to its parent 1954 * peripheral driver linker set entry would cost 1955 * more in the long run than doing this quick lookup. 1956 */ 1957 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1958 if (strcmp((*pdrv)->driver_name, 1959 periph->periph_name) == 0) 1960 break; 1961 } 1962 1963 if (*pdrv == NULL) { 1964 cdm->status = CAM_DEV_MATCH_ERROR; 1965 return(0); 1966 } 1967 1968 cdm->pos.cookie.pdrv = pdrv; 1969 /* 1970 * The periph generation slot does double duty, as 1971 * does the periph pointer slot. They are used for 1972 * both edt and pdrv lookups and positioning. 1973 */ 1974 cdm->pos.cookie.periph = periph; 1975 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1976 (*pdrv)->generation; 1977 cdm->status = CAM_DEV_MATCH_MORE; 1978 return(0); 1979 } 1980 1981 j = cdm->num_matches; 1982 cdm->num_matches++; 1983 cdm->matches[j].type = DEV_MATCH_PERIPH; 1984 cdm->matches[j].result.periph_result.path_id = 1985 periph->path->bus->path_id; 1986 1987 /* 1988 * The transport layer peripheral doesn't have a target or 1989 * lun. 1990 */ 1991 if (periph->path->target) 1992 cdm->matches[j].result.periph_result.target_id = 1993 periph->path->target->target_id; 1994 else 1995 cdm->matches[j].result.periph_result.target_id = 1996 CAM_TARGET_WILDCARD; 1997 1998 if (periph->path->device) 1999 cdm->matches[j].result.periph_result.target_lun = 2000 periph->path->device->lun_id; 2001 else 2002 cdm->matches[j].result.periph_result.target_lun = 2003 CAM_LUN_WILDCARD; 2004 2005 cdm->matches[j].result.periph_result.unit_number = 2006 periph->unit_number; 2007 strncpy(cdm->matches[j].result.periph_result.periph_name, 2008 periph->periph_name, DEV_IDLEN); 2009 } 2010 2011 return(1); 2012 } 2013 2014 static int 2015 xptperiphlistmatch(struct ccb_dev_match *cdm) 2016 { 2017 int ret; 2018 2019 cdm->num_matches = 0; 2020 2021 /* 2022 * At this point in the edt traversal function, we check the bus 2023 * list generation to make sure that no busses have been added or 2024 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2025 * For the peripheral driver list traversal function, however, we 2026 * don't have to worry about new peripheral driver types coming or 2027 * going; they're in a linker set, and therefore can't change 2028 * without a recompile. 2029 */ 2030 2031 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2032 && (cdm->pos.cookie.pdrv != NULL)) 2033 ret = xptpdrvtraverse( 2034 (struct periph_driver **)cdm->pos.cookie.pdrv, 2035 xptplistpdrvfunc, cdm); 2036 else 2037 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2038 2039 /* 2040 * If we get back 0, that means that we had to stop before fully 2041 * traversing the peripheral driver tree. It also means that one of 2042 * the subroutines has set the status field to the proper value. If 2043 * we get back 1, we've fully traversed the EDT and copied out any 2044 * matching entries. 2045 */ 2046 if (ret == 1) 2047 cdm->status = CAM_DEV_MATCH_LAST; 2048 2049 return(ret); 2050 } 2051 2052 static int 2053 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2054 { 2055 struct cam_eb *bus, *next_bus; 2056 int retval; 2057 2058 retval = 1; 2059 if (start_bus) 2060 bus = start_bus; 2061 else { 2062 xpt_lock_buses(); 2063 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2064 if (bus == NULL) { 2065 xpt_unlock_buses(); 2066 return (retval); 2067 } 2068 bus->refcount++; 2069 xpt_unlock_buses(); 2070 } 2071 for (; bus != NULL; bus = next_bus) { 2072 retval = tr_func(bus, arg); 2073 if (retval == 0) { 2074 xpt_release_bus(bus); 2075 break; 2076 } 2077 xpt_lock_buses(); 2078 next_bus = TAILQ_NEXT(bus, links); 2079 if (next_bus) 2080 next_bus->refcount++; 2081 xpt_unlock_buses(); 2082 xpt_release_bus(bus); 2083 } 2084 return(retval); 2085 } 2086 2087 static int 2088 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2089 xpt_targetfunc_t *tr_func, void *arg) 2090 { 2091 struct cam_et *target, *next_target; 2092 int retval; 2093 2094 retval = 1; 2095 if (start_target) 2096 target = start_target; 2097 else { 2098 mtx_lock(&bus->eb_mtx); 2099 target = TAILQ_FIRST(&bus->et_entries); 2100 if (target == NULL) { 2101 mtx_unlock(&bus->eb_mtx); 2102 return (retval); 2103 } 2104 target->refcount++; 2105 mtx_unlock(&bus->eb_mtx); 2106 } 2107 for (; target != NULL; target = next_target) { 2108 retval = tr_func(target, arg); 2109 if (retval == 0) { 2110 xpt_release_target(target); 2111 break; 2112 } 2113 mtx_lock(&bus->eb_mtx); 2114 next_target = TAILQ_NEXT(target, links); 2115 if (next_target) 2116 next_target->refcount++; 2117 mtx_unlock(&bus->eb_mtx); 2118 xpt_release_target(target); 2119 } 2120 return(retval); 2121 } 2122 2123 static int 2124 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2125 xpt_devicefunc_t *tr_func, void *arg) 2126 { 2127 struct cam_eb *bus; 2128 struct cam_ed *device, *next_device; 2129 int retval; 2130 2131 retval = 1; 2132 bus = target->bus; 2133 if (start_device) 2134 device = start_device; 2135 else { 2136 mtx_lock(&bus->eb_mtx); 2137 device = TAILQ_FIRST(&target->ed_entries); 2138 if (device == NULL) { 2139 mtx_unlock(&bus->eb_mtx); 2140 return (retval); 2141 } 2142 device->refcount++; 2143 mtx_unlock(&bus->eb_mtx); 2144 } 2145 for (; device != NULL; device = next_device) { 2146 mtx_lock(&device->device_mtx); 2147 retval = tr_func(device, arg); 2148 mtx_unlock(&device->device_mtx); 2149 if (retval == 0) { 2150 xpt_release_device(device); 2151 break; 2152 } 2153 mtx_lock(&bus->eb_mtx); 2154 next_device = TAILQ_NEXT(device, links); 2155 if (next_device) 2156 next_device->refcount++; 2157 mtx_unlock(&bus->eb_mtx); 2158 xpt_release_device(device); 2159 } 2160 return(retval); 2161 } 2162 2163 static int 2164 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2165 xpt_periphfunc_t *tr_func, void *arg) 2166 { 2167 struct cam_eb *bus; 2168 struct cam_periph *periph, *next_periph; 2169 int retval; 2170 2171 retval = 1; 2172 2173 bus = device->target->bus; 2174 if (start_periph) 2175 periph = start_periph; 2176 else { 2177 xpt_lock_buses(); 2178 mtx_lock(&bus->eb_mtx); 2179 periph = SLIST_FIRST(&device->periphs); 2180 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2181 periph = SLIST_NEXT(periph, periph_links); 2182 if (periph == NULL) { 2183 mtx_unlock(&bus->eb_mtx); 2184 xpt_unlock_buses(); 2185 return (retval); 2186 } 2187 periph->refcount++; 2188 mtx_unlock(&bus->eb_mtx); 2189 xpt_unlock_buses(); 2190 } 2191 for (; periph != NULL; periph = next_periph) { 2192 retval = tr_func(periph, arg); 2193 if (retval == 0) { 2194 cam_periph_release_locked(periph); 2195 break; 2196 } 2197 xpt_lock_buses(); 2198 mtx_lock(&bus->eb_mtx); 2199 next_periph = SLIST_NEXT(periph, periph_links); 2200 while (next_periph != NULL && 2201 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2202 next_periph = SLIST_NEXT(periph, periph_links); 2203 if (next_periph) 2204 next_periph->refcount++; 2205 mtx_unlock(&bus->eb_mtx); 2206 xpt_unlock_buses(); 2207 cam_periph_release_locked(periph); 2208 } 2209 return(retval); 2210 } 2211 2212 static int 2213 xptpdrvtraverse(struct periph_driver **start_pdrv, 2214 xpt_pdrvfunc_t *tr_func, void *arg) 2215 { 2216 struct periph_driver **pdrv; 2217 int retval; 2218 2219 retval = 1; 2220 2221 /* 2222 * We don't traverse the peripheral driver list like we do the 2223 * other lists, because it is a linker set, and therefore cannot be 2224 * changed during runtime. If the peripheral driver list is ever 2225 * re-done to be something other than a linker set (i.e. it can 2226 * change while the system is running), the list traversal should 2227 * be modified to work like the other traversal functions. 2228 */ 2229 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2230 *pdrv != NULL; pdrv++) { 2231 retval = tr_func(pdrv, arg); 2232 2233 if (retval == 0) 2234 return(retval); 2235 } 2236 2237 return(retval); 2238 } 2239 2240 static int 2241 xptpdperiphtraverse(struct periph_driver **pdrv, 2242 struct cam_periph *start_periph, 2243 xpt_periphfunc_t *tr_func, void *arg) 2244 { 2245 struct cam_periph *periph, *next_periph; 2246 int retval; 2247 2248 retval = 1; 2249 2250 if (start_periph) 2251 periph = start_periph; 2252 else { 2253 xpt_lock_buses(); 2254 periph = TAILQ_FIRST(&(*pdrv)->units); 2255 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2256 periph = TAILQ_NEXT(periph, unit_links); 2257 if (periph == NULL) { 2258 xpt_unlock_buses(); 2259 return (retval); 2260 } 2261 periph->refcount++; 2262 xpt_unlock_buses(); 2263 } 2264 for (; periph != NULL; periph = next_periph) { 2265 cam_periph_lock(periph); 2266 retval = tr_func(periph, arg); 2267 cam_periph_unlock(periph); 2268 if (retval == 0) { 2269 cam_periph_release(periph); 2270 break; 2271 } 2272 xpt_lock_buses(); 2273 next_periph = TAILQ_NEXT(periph, unit_links); 2274 while (next_periph != NULL && 2275 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2276 next_periph = TAILQ_NEXT(periph, unit_links); 2277 if (next_periph) 2278 next_periph->refcount++; 2279 xpt_unlock_buses(); 2280 cam_periph_release(periph); 2281 } 2282 return(retval); 2283 } 2284 2285 static int 2286 xptdefbusfunc(struct cam_eb *bus, void *arg) 2287 { 2288 struct xpt_traverse_config *tr_config; 2289 2290 tr_config = (struct xpt_traverse_config *)arg; 2291 2292 if (tr_config->depth == XPT_DEPTH_BUS) { 2293 xpt_busfunc_t *tr_func; 2294 2295 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2296 2297 return(tr_func(bus, tr_config->tr_arg)); 2298 } else 2299 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2300 } 2301 2302 static int 2303 xptdeftargetfunc(struct cam_et *target, void *arg) 2304 { 2305 struct xpt_traverse_config *tr_config; 2306 2307 tr_config = (struct xpt_traverse_config *)arg; 2308 2309 if (tr_config->depth == XPT_DEPTH_TARGET) { 2310 xpt_targetfunc_t *tr_func; 2311 2312 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2313 2314 return(tr_func(target, tr_config->tr_arg)); 2315 } else 2316 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2317 } 2318 2319 static int 2320 xptdefdevicefunc(struct cam_ed *device, void *arg) 2321 { 2322 struct xpt_traverse_config *tr_config; 2323 2324 tr_config = (struct xpt_traverse_config *)arg; 2325 2326 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2327 xpt_devicefunc_t *tr_func; 2328 2329 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2330 2331 return(tr_func(device, tr_config->tr_arg)); 2332 } else 2333 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2334 } 2335 2336 static int 2337 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2338 { 2339 struct xpt_traverse_config *tr_config; 2340 xpt_periphfunc_t *tr_func; 2341 2342 tr_config = (struct xpt_traverse_config *)arg; 2343 2344 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2345 2346 /* 2347 * Unlike the other default functions, we don't check for depth 2348 * here. The peripheral driver level is the last level in the EDT, 2349 * so if we're here, we should execute the function in question. 2350 */ 2351 return(tr_func(periph, tr_config->tr_arg)); 2352 } 2353 2354 /* 2355 * Execute the given function for every bus in the EDT. 2356 */ 2357 static int 2358 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2359 { 2360 struct xpt_traverse_config tr_config; 2361 2362 tr_config.depth = XPT_DEPTH_BUS; 2363 tr_config.tr_func = tr_func; 2364 tr_config.tr_arg = arg; 2365 2366 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2367 } 2368 2369 /* 2370 * Execute the given function for every device in the EDT. 2371 */ 2372 static int 2373 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2374 { 2375 struct xpt_traverse_config tr_config; 2376 2377 tr_config.depth = XPT_DEPTH_DEVICE; 2378 tr_config.tr_func = tr_func; 2379 tr_config.tr_arg = arg; 2380 2381 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2382 } 2383 2384 static int 2385 xptsetasyncfunc(struct cam_ed *device, void *arg) 2386 { 2387 struct cam_path path; 2388 struct ccb_getdev cgd; 2389 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2390 2391 /* 2392 * Don't report unconfigured devices (Wildcard devs, 2393 * devices only for target mode, device instances 2394 * that have been invalidated but are waiting for 2395 * their last reference count to be released). 2396 */ 2397 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2398 return (1); 2399 2400 xpt_compile_path(&path, 2401 NULL, 2402 device->target->bus->path_id, 2403 device->target->target_id, 2404 device->lun_id); 2405 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2406 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2407 xpt_action((union ccb *)&cgd); 2408 csa->callback(csa->callback_arg, 2409 AC_FOUND_DEVICE, 2410 &path, &cgd); 2411 xpt_release_path(&path); 2412 2413 return(1); 2414 } 2415 2416 static int 2417 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2418 { 2419 struct cam_path path; 2420 struct ccb_pathinq cpi; 2421 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2422 2423 xpt_compile_path(&path, /*periph*/NULL, 2424 bus->path_id, 2425 CAM_TARGET_WILDCARD, 2426 CAM_LUN_WILDCARD); 2427 xpt_path_lock(&path); 2428 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2429 cpi.ccb_h.func_code = XPT_PATH_INQ; 2430 xpt_action((union ccb *)&cpi); 2431 csa->callback(csa->callback_arg, 2432 AC_PATH_REGISTERED, 2433 &path, &cpi); 2434 xpt_path_unlock(&path); 2435 xpt_release_path(&path); 2436 2437 return(1); 2438 } 2439 2440 void 2441 xpt_action(union ccb *start_ccb) 2442 { 2443 2444 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2445 2446 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2447 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2448 } 2449 2450 void 2451 xpt_action_default(union ccb *start_ccb) 2452 { 2453 struct cam_path *path; 2454 struct cam_sim *sim; 2455 int lock; 2456 2457 path = start_ccb->ccb_h.path; 2458 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2459 2460 switch (start_ccb->ccb_h.func_code) { 2461 case XPT_SCSI_IO: 2462 { 2463 struct cam_ed *device; 2464 2465 /* 2466 * For the sake of compatibility with SCSI-1 2467 * devices that may not understand the identify 2468 * message, we include lun information in the 2469 * second byte of all commands. SCSI-1 specifies 2470 * that luns are a 3 bit value and reserves only 3 2471 * bits for lun information in the CDB. Later 2472 * revisions of the SCSI spec allow for more than 8 2473 * luns, but have deprecated lun information in the 2474 * CDB. So, if the lun won't fit, we must omit. 2475 * 2476 * Also be aware that during initial probing for devices, 2477 * the inquiry information is unknown but initialized to 0. 2478 * This means that this code will be exercised while probing 2479 * devices with an ANSI revision greater than 2. 2480 */ 2481 device = path->device; 2482 if (device->protocol_version <= SCSI_REV_2 2483 && start_ccb->ccb_h.target_lun < 8 2484 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2485 2486 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2487 start_ccb->ccb_h.target_lun << 5; 2488 } 2489 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2490 } 2491 /* FALLTHROUGH */ 2492 case XPT_TARGET_IO: 2493 case XPT_CONT_TARGET_IO: 2494 start_ccb->csio.sense_resid = 0; 2495 start_ccb->csio.resid = 0; 2496 /* FALLTHROUGH */ 2497 case XPT_ATA_IO: 2498 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2499 start_ccb->ataio.resid = 0; 2500 /* FALLTHROUGH */ 2501 case XPT_RESET_DEV: 2502 case XPT_ENG_EXEC: 2503 case XPT_SMP_IO: 2504 { 2505 struct cam_devq *devq; 2506 2507 devq = path->bus->sim->devq; 2508 mtx_lock(&devq->send_mtx); 2509 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2510 if (xpt_schedule_devq(devq, path->device) != 0) 2511 xpt_run_devq(devq); 2512 mtx_unlock(&devq->send_mtx); 2513 break; 2514 } 2515 case XPT_CALC_GEOMETRY: 2516 /* Filter out garbage */ 2517 if (start_ccb->ccg.block_size == 0 2518 || start_ccb->ccg.volume_size == 0) { 2519 start_ccb->ccg.cylinders = 0; 2520 start_ccb->ccg.heads = 0; 2521 start_ccb->ccg.secs_per_track = 0; 2522 start_ccb->ccb_h.status = CAM_REQ_CMP; 2523 break; 2524 } 2525 #if defined(PC98) || defined(__sparc64__) 2526 /* 2527 * In a PC-98 system, geometry translation depens on 2528 * the "real" device geometry obtained from mode page 4. 2529 * SCSI geometry translation is performed in the 2530 * initialization routine of the SCSI BIOS and the result 2531 * stored in host memory. If the translation is available 2532 * in host memory, use it. If not, rely on the default 2533 * translation the device driver performs. 2534 * For sparc64, we may need adjust the geometry of large 2535 * disks in order to fit the limitations of the 16-bit 2536 * fields of the VTOC8 disk label. 2537 */ 2538 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2539 start_ccb->ccb_h.status = CAM_REQ_CMP; 2540 break; 2541 } 2542 #endif 2543 goto call_sim; 2544 case XPT_ABORT: 2545 { 2546 union ccb* abort_ccb; 2547 2548 abort_ccb = start_ccb->cab.abort_ccb; 2549 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2550 2551 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2552 struct cam_ccbq *ccbq; 2553 struct cam_ed *device; 2554 2555 device = abort_ccb->ccb_h.path->device; 2556 ccbq = &device->ccbq; 2557 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2558 abort_ccb->ccb_h.status = 2559 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2560 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2561 xpt_done(abort_ccb); 2562 start_ccb->ccb_h.status = CAM_REQ_CMP; 2563 break; 2564 } 2565 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2566 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2567 /* 2568 * We've caught this ccb en route to 2569 * the SIM. Flag it for abort and the 2570 * SIM will do so just before starting 2571 * real work on the CCB. 2572 */ 2573 abort_ccb->ccb_h.status = 2574 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2575 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2576 start_ccb->ccb_h.status = CAM_REQ_CMP; 2577 break; 2578 } 2579 } 2580 if (XPT_FC_IS_QUEUED(abort_ccb) 2581 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2582 /* 2583 * It's already completed but waiting 2584 * for our SWI to get to it. 2585 */ 2586 start_ccb->ccb_h.status = CAM_UA_ABORT; 2587 break; 2588 } 2589 /* 2590 * If we weren't able to take care of the abort request 2591 * in the XPT, pass the request down to the SIM for processing. 2592 */ 2593 } 2594 /* FALLTHROUGH */ 2595 case XPT_ACCEPT_TARGET_IO: 2596 case XPT_EN_LUN: 2597 case XPT_IMMED_NOTIFY: 2598 case XPT_NOTIFY_ACK: 2599 case XPT_RESET_BUS: 2600 case XPT_IMMEDIATE_NOTIFY: 2601 case XPT_NOTIFY_ACKNOWLEDGE: 2602 case XPT_GET_SIM_KNOB: 2603 case XPT_SET_SIM_KNOB: 2604 case XPT_GET_TRAN_SETTINGS: 2605 case XPT_SET_TRAN_SETTINGS: 2606 case XPT_PATH_INQ: 2607 call_sim: 2608 sim = path->bus->sim; 2609 lock = (mtx_owned(sim->mtx) == 0); 2610 if (lock) 2611 CAM_SIM_LOCK(sim); 2612 (*(sim->sim_action))(sim, start_ccb); 2613 if (lock) 2614 CAM_SIM_UNLOCK(sim); 2615 break; 2616 case XPT_PATH_STATS: 2617 start_ccb->cpis.last_reset = path->bus->last_reset; 2618 start_ccb->ccb_h.status = CAM_REQ_CMP; 2619 break; 2620 case XPT_GDEV_TYPE: 2621 { 2622 struct cam_ed *dev; 2623 2624 dev = path->device; 2625 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2626 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2627 } else { 2628 struct ccb_getdev *cgd; 2629 2630 cgd = &start_ccb->cgd; 2631 cgd->protocol = dev->protocol; 2632 cgd->inq_data = dev->inq_data; 2633 cgd->ident_data = dev->ident_data; 2634 cgd->inq_flags = dev->inq_flags; 2635 cgd->ccb_h.status = CAM_REQ_CMP; 2636 cgd->serial_num_len = dev->serial_num_len; 2637 if ((dev->serial_num_len > 0) 2638 && (dev->serial_num != NULL)) 2639 bcopy(dev->serial_num, cgd->serial_num, 2640 dev->serial_num_len); 2641 } 2642 break; 2643 } 2644 case XPT_GDEV_STATS: 2645 { 2646 struct cam_ed *dev; 2647 2648 dev = path->device; 2649 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2650 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2651 } else { 2652 struct ccb_getdevstats *cgds; 2653 struct cam_eb *bus; 2654 struct cam_et *tar; 2655 2656 cgds = &start_ccb->cgds; 2657 bus = path->bus; 2658 tar = path->target; 2659 cgds->dev_openings = dev->ccbq.dev_openings; 2660 cgds->dev_active = dev->ccbq.dev_active; 2661 cgds->devq_openings = dev->ccbq.devq_openings; 2662 cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2663 cgds->held = dev->ccbq.held; 2664 cgds->last_reset = tar->last_reset; 2665 cgds->maxtags = dev->maxtags; 2666 cgds->mintags = dev->mintags; 2667 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2668 cgds->last_reset = bus->last_reset; 2669 cgds->ccb_h.status = CAM_REQ_CMP; 2670 } 2671 break; 2672 } 2673 case XPT_GDEVLIST: 2674 { 2675 struct cam_periph *nperiph; 2676 struct periph_list *periph_head; 2677 struct ccb_getdevlist *cgdl; 2678 u_int i; 2679 struct cam_ed *device; 2680 int found; 2681 2682 2683 found = 0; 2684 2685 /* 2686 * Don't want anyone mucking with our data. 2687 */ 2688 device = path->device; 2689 periph_head = &device->periphs; 2690 cgdl = &start_ccb->cgdl; 2691 2692 /* 2693 * Check and see if the list has changed since the user 2694 * last requested a list member. If so, tell them that the 2695 * list has changed, and therefore they need to start over 2696 * from the beginning. 2697 */ 2698 if ((cgdl->index != 0) && 2699 (cgdl->generation != device->generation)) { 2700 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2701 break; 2702 } 2703 2704 /* 2705 * Traverse the list of peripherals and attempt to find 2706 * the requested peripheral. 2707 */ 2708 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2709 (nperiph != NULL) && (i <= cgdl->index); 2710 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2711 if (i == cgdl->index) { 2712 strncpy(cgdl->periph_name, 2713 nperiph->periph_name, 2714 DEV_IDLEN); 2715 cgdl->unit_number = nperiph->unit_number; 2716 found = 1; 2717 } 2718 } 2719 if (found == 0) { 2720 cgdl->status = CAM_GDEVLIST_ERROR; 2721 break; 2722 } 2723 2724 if (nperiph == NULL) 2725 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2726 else 2727 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2728 2729 cgdl->index++; 2730 cgdl->generation = device->generation; 2731 2732 cgdl->ccb_h.status = CAM_REQ_CMP; 2733 break; 2734 } 2735 case XPT_DEV_MATCH: 2736 { 2737 dev_pos_type position_type; 2738 struct ccb_dev_match *cdm; 2739 2740 cdm = &start_ccb->cdm; 2741 2742 /* 2743 * There are two ways of getting at information in the EDT. 2744 * The first way is via the primary EDT tree. It starts 2745 * with a list of busses, then a list of targets on a bus, 2746 * then devices/luns on a target, and then peripherals on a 2747 * device/lun. The "other" way is by the peripheral driver 2748 * lists. The peripheral driver lists are organized by 2749 * peripheral driver. (obviously) So it makes sense to 2750 * use the peripheral driver list if the user is looking 2751 * for something like "da1", or all "da" devices. If the 2752 * user is looking for something on a particular bus/target 2753 * or lun, it's generally better to go through the EDT tree. 2754 */ 2755 2756 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2757 position_type = cdm->pos.position_type; 2758 else { 2759 u_int i; 2760 2761 position_type = CAM_DEV_POS_NONE; 2762 2763 for (i = 0; i < cdm->num_patterns; i++) { 2764 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2765 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2766 position_type = CAM_DEV_POS_EDT; 2767 break; 2768 } 2769 } 2770 2771 if (cdm->num_patterns == 0) 2772 position_type = CAM_DEV_POS_EDT; 2773 else if (position_type == CAM_DEV_POS_NONE) 2774 position_type = CAM_DEV_POS_PDRV; 2775 } 2776 2777 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2778 case CAM_DEV_POS_EDT: 2779 xptedtmatch(cdm); 2780 break; 2781 case CAM_DEV_POS_PDRV: 2782 xptperiphlistmatch(cdm); 2783 break; 2784 default: 2785 cdm->status = CAM_DEV_MATCH_ERROR; 2786 break; 2787 } 2788 2789 if (cdm->status == CAM_DEV_MATCH_ERROR) 2790 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2791 else 2792 start_ccb->ccb_h.status = CAM_REQ_CMP; 2793 2794 break; 2795 } 2796 case XPT_SASYNC_CB: 2797 { 2798 struct ccb_setasync *csa; 2799 struct async_node *cur_entry; 2800 struct async_list *async_head; 2801 u_int32_t added; 2802 2803 csa = &start_ccb->csa; 2804 added = csa->event_enable; 2805 async_head = &path->device->asyncs; 2806 2807 /* 2808 * If there is already an entry for us, simply 2809 * update it. 2810 */ 2811 cur_entry = SLIST_FIRST(async_head); 2812 while (cur_entry != NULL) { 2813 if ((cur_entry->callback_arg == csa->callback_arg) 2814 && (cur_entry->callback == csa->callback)) 2815 break; 2816 cur_entry = SLIST_NEXT(cur_entry, links); 2817 } 2818 2819 if (cur_entry != NULL) { 2820 /* 2821 * If the request has no flags set, 2822 * remove the entry. 2823 */ 2824 added &= ~cur_entry->event_enable; 2825 if (csa->event_enable == 0) { 2826 SLIST_REMOVE(async_head, cur_entry, 2827 async_node, links); 2828 xpt_release_device(path->device); 2829 free(cur_entry, M_CAMXPT); 2830 } else { 2831 cur_entry->event_enable = csa->event_enable; 2832 } 2833 csa->event_enable = added; 2834 } else { 2835 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2836 M_NOWAIT); 2837 if (cur_entry == NULL) { 2838 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2839 break; 2840 } 2841 cur_entry->event_enable = csa->event_enable; 2842 cur_entry->event_lock = 2843 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2844 cur_entry->callback_arg = csa->callback_arg; 2845 cur_entry->callback = csa->callback; 2846 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2847 xpt_acquire_device(path->device); 2848 } 2849 start_ccb->ccb_h.status = CAM_REQ_CMP; 2850 break; 2851 } 2852 case XPT_REL_SIMQ: 2853 { 2854 struct ccb_relsim *crs; 2855 struct cam_ed *dev; 2856 2857 crs = &start_ccb->crs; 2858 dev = path->device; 2859 if (dev == NULL) { 2860 2861 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2862 break; 2863 } 2864 2865 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2866 2867 /* Don't ever go below one opening */ 2868 if (crs->openings > 0) { 2869 xpt_dev_ccbq_resize(path, crs->openings); 2870 if (bootverbose) { 2871 xpt_print(path, 2872 "number of openings is now %d\n", 2873 crs->openings); 2874 } 2875 } 2876 } 2877 2878 mtx_lock(&dev->sim->devq->send_mtx); 2879 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2880 2881 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2882 2883 /* 2884 * Just extend the old timeout and decrement 2885 * the freeze count so that a single timeout 2886 * is sufficient for releasing the queue. 2887 */ 2888 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2889 callout_stop(&dev->callout); 2890 } else { 2891 2892 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2893 } 2894 2895 callout_reset(&dev->callout, 2896 (crs->release_timeout * hz) / 1000, 2897 xpt_release_devq_timeout, dev); 2898 2899 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2900 2901 } 2902 2903 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2904 2905 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2906 /* 2907 * Decrement the freeze count so that a single 2908 * completion is still sufficient to unfreeze 2909 * the queue. 2910 */ 2911 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2912 } else { 2913 2914 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2915 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2916 } 2917 } 2918 2919 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2920 2921 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2922 || (dev->ccbq.dev_active == 0)) { 2923 2924 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2925 } else { 2926 2927 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2928 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2929 } 2930 } 2931 mtx_unlock(&dev->sim->devq->send_mtx); 2932 2933 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2934 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2935 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2936 start_ccb->ccb_h.status = CAM_REQ_CMP; 2937 break; 2938 } 2939 case XPT_DEBUG: { 2940 struct cam_path *oldpath; 2941 2942 /* Check that all request bits are supported. */ 2943 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2944 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2945 break; 2946 } 2947 2948 cam_dflags = CAM_DEBUG_NONE; 2949 if (cam_dpath != NULL) { 2950 oldpath = cam_dpath; 2951 cam_dpath = NULL; 2952 xpt_free_path(oldpath); 2953 } 2954 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2955 if (xpt_create_path(&cam_dpath, NULL, 2956 start_ccb->ccb_h.path_id, 2957 start_ccb->ccb_h.target_id, 2958 start_ccb->ccb_h.target_lun) != 2959 CAM_REQ_CMP) { 2960 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2961 } else { 2962 cam_dflags = start_ccb->cdbg.flags; 2963 start_ccb->ccb_h.status = CAM_REQ_CMP; 2964 xpt_print(cam_dpath, "debugging flags now %x\n", 2965 cam_dflags); 2966 } 2967 } else 2968 start_ccb->ccb_h.status = CAM_REQ_CMP; 2969 break; 2970 } 2971 case XPT_NOOP: 2972 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2973 xpt_freeze_devq(path, 1); 2974 start_ccb->ccb_h.status = CAM_REQ_CMP; 2975 break; 2976 default: 2977 case XPT_SDEV_TYPE: 2978 case XPT_TERM_IO: 2979 case XPT_ENG_INQ: 2980 /* XXX Implement */ 2981 printf("%s: CCB type %#x not supported\n", __func__, 2982 start_ccb->ccb_h.func_code); 2983 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2984 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2985 xpt_done(start_ccb); 2986 } 2987 break; 2988 } 2989 } 2990 2991 void 2992 xpt_polled_action(union ccb *start_ccb) 2993 { 2994 u_int32_t timeout; 2995 struct cam_sim *sim; 2996 struct cam_devq *devq; 2997 struct cam_ed *dev; 2998 2999 timeout = start_ccb->ccb_h.timeout * 10; 3000 sim = start_ccb->ccb_h.path->bus->sim; 3001 devq = sim->devq; 3002 dev = start_ccb->ccb_h.path->device; 3003 3004 mtx_unlock(&dev->device_mtx); 3005 3006 /* 3007 * Steal an opening so that no other queued requests 3008 * can get it before us while we simulate interrupts. 3009 */ 3010 mtx_lock(&devq->send_mtx); 3011 dev->ccbq.devq_openings--; 3012 dev->ccbq.dev_openings--; 3013 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3014 (--timeout > 0)) { 3015 mtx_unlock(&devq->send_mtx); 3016 DELAY(100); 3017 CAM_SIM_LOCK(sim); 3018 (*(sim->sim_poll))(sim); 3019 CAM_SIM_UNLOCK(sim); 3020 camisr_runqueue(); 3021 mtx_lock(&devq->send_mtx); 3022 } 3023 dev->ccbq.devq_openings++; 3024 dev->ccbq.dev_openings++; 3025 mtx_unlock(&devq->send_mtx); 3026 3027 if (timeout != 0) { 3028 xpt_action(start_ccb); 3029 while(--timeout > 0) { 3030 CAM_SIM_LOCK(sim); 3031 (*(sim->sim_poll))(sim); 3032 CAM_SIM_UNLOCK(sim); 3033 camisr_runqueue(); 3034 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3035 != CAM_REQ_INPROG) 3036 break; 3037 DELAY(100); 3038 } 3039 if (timeout == 0) { 3040 /* 3041 * XXX Is it worth adding a sim_timeout entry 3042 * point so we can attempt recovery? If 3043 * this is only used for dumps, I don't think 3044 * it is. 3045 */ 3046 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3047 } 3048 } else { 3049 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3050 } 3051 3052 mtx_lock(&dev->device_mtx); 3053 } 3054 3055 /* 3056 * Schedule a peripheral driver to receive a ccb when it's 3057 * target device has space for more transactions. 3058 */ 3059 void 3060 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3061 { 3062 3063 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3064 cam_periph_assert(periph, MA_OWNED); 3065 if (new_priority < periph->scheduled_priority) { 3066 periph->scheduled_priority = new_priority; 3067 xpt_run_allocq(periph, 0); 3068 } 3069 } 3070 3071 3072 /* 3073 * Schedule a device to run on a given queue. 3074 * If the device was inserted as a new entry on the queue, 3075 * return 1 meaning the device queue should be run. If we 3076 * were already queued, implying someone else has already 3077 * started the queue, return 0 so the caller doesn't attempt 3078 * to run the queue. 3079 */ 3080 static int 3081 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3082 u_int32_t new_priority) 3083 { 3084 int retval; 3085 u_int32_t old_priority; 3086 3087 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3088 3089 old_priority = pinfo->priority; 3090 3091 /* 3092 * Are we already queued? 3093 */ 3094 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3095 /* Simply reorder based on new priority */ 3096 if (new_priority < old_priority) { 3097 camq_change_priority(queue, pinfo->index, 3098 new_priority); 3099 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3100 ("changed priority to %d\n", 3101 new_priority)); 3102 retval = 1; 3103 } else 3104 retval = 0; 3105 } else { 3106 /* New entry on the queue */ 3107 if (new_priority < old_priority) 3108 pinfo->priority = new_priority; 3109 3110 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3111 ("Inserting onto queue\n")); 3112 pinfo->generation = ++queue->generation; 3113 camq_insert(queue, pinfo); 3114 retval = 1; 3115 } 3116 return (retval); 3117 } 3118 3119 static void 3120 xpt_run_allocq_task(void *context, int pending) 3121 { 3122 struct cam_periph *periph = context; 3123 3124 cam_periph_lock(periph); 3125 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3126 xpt_run_allocq(periph, 1); 3127 cam_periph_unlock(periph); 3128 cam_periph_release(periph); 3129 } 3130 3131 static void 3132 xpt_run_allocq(struct cam_periph *periph, int sleep) 3133 { 3134 struct cam_ed *device; 3135 union ccb *ccb; 3136 uint32_t prio; 3137 3138 cam_periph_assert(periph, MA_OWNED); 3139 if (periph->periph_allocating) 3140 return; 3141 periph->periph_allocating = 1; 3142 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3143 device = periph->path->device; 3144 ccb = NULL; 3145 restart: 3146 while ((prio = min(periph->scheduled_priority, 3147 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3148 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3149 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3150 3151 if (ccb == NULL && 3152 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3153 if (sleep) { 3154 ccb = xpt_get_ccb(periph); 3155 goto restart; 3156 } 3157 if (periph->flags & CAM_PERIPH_RUN_TASK) 3158 break; 3159 cam_periph_doacquire(periph); 3160 periph->flags |= CAM_PERIPH_RUN_TASK; 3161 taskqueue_enqueue(xsoftc.xpt_taskq, 3162 &periph->periph_run_task); 3163 break; 3164 } 3165 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3166 if (prio == periph->immediate_priority) { 3167 periph->immediate_priority = CAM_PRIORITY_NONE; 3168 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3169 ("waking cam_periph_getccb()\n")); 3170 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3171 periph_links.sle); 3172 wakeup(&periph->ccb_list); 3173 } else { 3174 periph->scheduled_priority = CAM_PRIORITY_NONE; 3175 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3176 ("calling periph_start()\n")); 3177 periph->periph_start(periph, ccb); 3178 } 3179 ccb = NULL; 3180 } 3181 if (ccb != NULL) 3182 xpt_release_ccb(ccb); 3183 periph->periph_allocating = 0; 3184 } 3185 3186 static void 3187 xpt_run_devq(struct cam_devq *devq) 3188 { 3189 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3190 int lock; 3191 3192 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3193 3194 devq->send_queue.qfrozen_cnt++; 3195 while ((devq->send_queue.entries > 0) 3196 && (devq->send_openings > 0) 3197 && (devq->send_queue.qfrozen_cnt <= 1)) { 3198 struct cam_ed *device; 3199 union ccb *work_ccb; 3200 struct cam_sim *sim; 3201 3202 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3203 CAMQ_HEAD); 3204 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3205 ("running device %p\n", device)); 3206 3207 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3208 if (work_ccb == NULL) { 3209 printf("device on run queue with no ccbs???\n"); 3210 continue; 3211 } 3212 3213 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3214 3215 mtx_lock(&xsoftc.xpt_highpower_lock); 3216 if (xsoftc.num_highpower <= 0) { 3217 /* 3218 * We got a high power command, but we 3219 * don't have any available slots. Freeze 3220 * the device queue until we have a slot 3221 * available. 3222 */ 3223 xpt_freeze_devq_device(device, 1); 3224 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3225 highpowerq_entry); 3226 3227 mtx_unlock(&xsoftc.xpt_highpower_lock); 3228 continue; 3229 } else { 3230 /* 3231 * Consume a high power slot while 3232 * this ccb runs. 3233 */ 3234 xsoftc.num_highpower--; 3235 } 3236 mtx_unlock(&xsoftc.xpt_highpower_lock); 3237 } 3238 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3239 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3240 devq->send_openings--; 3241 devq->send_active++; 3242 xpt_schedule_devq(devq, device); 3243 mtx_unlock(&devq->send_mtx); 3244 3245 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3246 /* 3247 * The client wants to freeze the queue 3248 * after this CCB is sent. 3249 */ 3250 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3251 } 3252 3253 /* In Target mode, the peripheral driver knows best... */ 3254 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3255 if ((device->inq_flags & SID_CmdQue) != 0 3256 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3257 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3258 else 3259 /* 3260 * Clear this in case of a retried CCB that 3261 * failed due to a rejected tag. 3262 */ 3263 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3264 } 3265 3266 switch (work_ccb->ccb_h.func_code) { 3267 case XPT_SCSI_IO: 3268 CAM_DEBUG(work_ccb->ccb_h.path, 3269 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3270 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3271 &device->inq_data), 3272 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3273 cdb_str, sizeof(cdb_str)))); 3274 break; 3275 case XPT_ATA_IO: 3276 CAM_DEBUG(work_ccb->ccb_h.path, 3277 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3278 ata_op_string(&work_ccb->ataio.cmd), 3279 ata_cmd_string(&work_ccb->ataio.cmd, 3280 cdb_str, sizeof(cdb_str)))); 3281 break; 3282 default: 3283 break; 3284 } 3285 3286 /* 3287 * Device queues can be shared among multiple SIM instances 3288 * that reside on different busses. Use the SIM from the 3289 * queued device, rather than the one from the calling bus. 3290 */ 3291 sim = device->sim; 3292 lock = (mtx_owned(sim->mtx) == 0); 3293 if (lock) 3294 CAM_SIM_LOCK(sim); 3295 (*(sim->sim_action))(sim, work_ccb); 3296 if (lock) 3297 CAM_SIM_UNLOCK(sim); 3298 mtx_lock(&devq->send_mtx); 3299 } 3300 devq->send_queue.qfrozen_cnt--; 3301 } 3302 3303 /* 3304 * This function merges stuff from the slave ccb into the master ccb, while 3305 * keeping important fields in the master ccb constant. 3306 */ 3307 void 3308 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3309 { 3310 3311 /* 3312 * Pull fields that are valid for peripheral drivers to set 3313 * into the master CCB along with the CCB "payload". 3314 */ 3315 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3316 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3317 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3318 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3319 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3320 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3321 } 3322 3323 void 3324 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3325 { 3326 3327 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3328 ccb_h->pinfo.priority = priority; 3329 ccb_h->path = path; 3330 ccb_h->path_id = path->bus->path_id; 3331 if (path->target) 3332 ccb_h->target_id = path->target->target_id; 3333 else 3334 ccb_h->target_id = CAM_TARGET_WILDCARD; 3335 if (path->device) { 3336 ccb_h->target_lun = path->device->lun_id; 3337 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3338 } else { 3339 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3340 } 3341 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3342 ccb_h->flags = 0; 3343 ccb_h->xflags = 0; 3344 } 3345 3346 /* Path manipulation functions */ 3347 cam_status 3348 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3349 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3350 { 3351 struct cam_path *path; 3352 cam_status status; 3353 3354 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3355 3356 if (path == NULL) { 3357 status = CAM_RESRC_UNAVAIL; 3358 return(status); 3359 } 3360 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3361 if (status != CAM_REQ_CMP) { 3362 free(path, M_CAMPATH); 3363 path = NULL; 3364 } 3365 *new_path_ptr = path; 3366 return (status); 3367 } 3368 3369 cam_status 3370 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3371 struct cam_periph *periph, path_id_t path_id, 3372 target_id_t target_id, lun_id_t lun_id) 3373 { 3374 3375 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3376 lun_id)); 3377 } 3378 3379 cam_status 3380 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3381 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3382 { 3383 struct cam_eb *bus; 3384 struct cam_et *target; 3385 struct cam_ed *device; 3386 cam_status status; 3387 3388 status = CAM_REQ_CMP; /* Completed without error */ 3389 target = NULL; /* Wildcarded */ 3390 device = NULL; /* Wildcarded */ 3391 3392 /* 3393 * We will potentially modify the EDT, so block interrupts 3394 * that may attempt to create cam paths. 3395 */ 3396 bus = xpt_find_bus(path_id); 3397 if (bus == NULL) { 3398 status = CAM_PATH_INVALID; 3399 } else { 3400 xpt_lock_buses(); 3401 mtx_lock(&bus->eb_mtx); 3402 target = xpt_find_target(bus, target_id); 3403 if (target == NULL) { 3404 /* Create one */ 3405 struct cam_et *new_target; 3406 3407 new_target = xpt_alloc_target(bus, target_id); 3408 if (new_target == NULL) { 3409 status = CAM_RESRC_UNAVAIL; 3410 } else { 3411 target = new_target; 3412 } 3413 } 3414 xpt_unlock_buses(); 3415 if (target != NULL) { 3416 device = xpt_find_device(target, lun_id); 3417 if (device == NULL) { 3418 /* Create one */ 3419 struct cam_ed *new_device; 3420 3421 new_device = 3422 (*(bus->xport->alloc_device))(bus, 3423 target, 3424 lun_id); 3425 if (new_device == NULL) { 3426 status = CAM_RESRC_UNAVAIL; 3427 } else { 3428 device = new_device; 3429 } 3430 } 3431 } 3432 mtx_unlock(&bus->eb_mtx); 3433 } 3434 3435 /* 3436 * Only touch the user's data if we are successful. 3437 */ 3438 if (status == CAM_REQ_CMP) { 3439 new_path->periph = perph; 3440 new_path->bus = bus; 3441 new_path->target = target; 3442 new_path->device = device; 3443 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3444 } else { 3445 if (device != NULL) 3446 xpt_release_device(device); 3447 if (target != NULL) 3448 xpt_release_target(target); 3449 if (bus != NULL) 3450 xpt_release_bus(bus); 3451 } 3452 return (status); 3453 } 3454 3455 cam_status 3456 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3457 { 3458 struct cam_path *new_path; 3459 3460 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3461 if (new_path == NULL) 3462 return(CAM_RESRC_UNAVAIL); 3463 xpt_copy_path(new_path, path); 3464 *new_path_ptr = new_path; 3465 return (CAM_REQ_CMP); 3466 } 3467 3468 void 3469 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3470 { 3471 3472 *new_path = *path; 3473 if (path->bus != NULL) 3474 xpt_acquire_bus(path->bus); 3475 if (path->target != NULL) 3476 xpt_acquire_target(path->target); 3477 if (path->device != NULL) 3478 xpt_acquire_device(path->device); 3479 } 3480 3481 void 3482 xpt_release_path(struct cam_path *path) 3483 { 3484 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3485 if (path->device != NULL) { 3486 xpt_release_device(path->device); 3487 path->device = NULL; 3488 } 3489 if (path->target != NULL) { 3490 xpt_release_target(path->target); 3491 path->target = NULL; 3492 } 3493 if (path->bus != NULL) { 3494 xpt_release_bus(path->bus); 3495 path->bus = NULL; 3496 } 3497 } 3498 3499 void 3500 xpt_free_path(struct cam_path *path) 3501 { 3502 3503 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3504 xpt_release_path(path); 3505 free(path, M_CAMPATH); 3506 } 3507 3508 void 3509 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3510 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3511 { 3512 3513 xpt_lock_buses(); 3514 if (bus_ref) { 3515 if (path->bus) 3516 *bus_ref = path->bus->refcount; 3517 else 3518 *bus_ref = 0; 3519 } 3520 if (periph_ref) { 3521 if (path->periph) 3522 *periph_ref = path->periph->refcount; 3523 else 3524 *periph_ref = 0; 3525 } 3526 xpt_unlock_buses(); 3527 if (target_ref) { 3528 if (path->target) 3529 *target_ref = path->target->refcount; 3530 else 3531 *target_ref = 0; 3532 } 3533 if (device_ref) { 3534 if (path->device) 3535 *device_ref = path->device->refcount; 3536 else 3537 *device_ref = 0; 3538 } 3539 } 3540 3541 /* 3542 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3543 * in path1, 2 for match with wildcards in path2. 3544 */ 3545 int 3546 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3547 { 3548 int retval = 0; 3549 3550 if (path1->bus != path2->bus) { 3551 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3552 retval = 1; 3553 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3554 retval = 2; 3555 else 3556 return (-1); 3557 } 3558 if (path1->target != path2->target) { 3559 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3560 if (retval == 0) 3561 retval = 1; 3562 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3563 retval = 2; 3564 else 3565 return (-1); 3566 } 3567 if (path1->device != path2->device) { 3568 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3569 if (retval == 0) 3570 retval = 1; 3571 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3572 retval = 2; 3573 else 3574 return (-1); 3575 } 3576 return (retval); 3577 } 3578 3579 int 3580 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3581 { 3582 int retval = 0; 3583 3584 if (path->bus != dev->target->bus) { 3585 if (path->bus->path_id == CAM_BUS_WILDCARD) 3586 retval = 1; 3587 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3588 retval = 2; 3589 else 3590 return (-1); 3591 } 3592 if (path->target != dev->target) { 3593 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3594 if (retval == 0) 3595 retval = 1; 3596 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3597 retval = 2; 3598 else 3599 return (-1); 3600 } 3601 if (path->device != dev) { 3602 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3603 if (retval == 0) 3604 retval = 1; 3605 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3606 retval = 2; 3607 else 3608 return (-1); 3609 } 3610 return (retval); 3611 } 3612 3613 void 3614 xpt_print_path(struct cam_path *path) 3615 { 3616 3617 if (path == NULL) 3618 printf("(nopath): "); 3619 else { 3620 if (path->periph != NULL) 3621 printf("(%s%d:", path->periph->periph_name, 3622 path->periph->unit_number); 3623 else 3624 printf("(noperiph:"); 3625 3626 if (path->bus != NULL) 3627 printf("%s%d:%d:", path->bus->sim->sim_name, 3628 path->bus->sim->unit_number, 3629 path->bus->sim->bus_id); 3630 else 3631 printf("nobus:"); 3632 3633 if (path->target != NULL) 3634 printf("%d:", path->target->target_id); 3635 else 3636 printf("X:"); 3637 3638 if (path->device != NULL) 3639 printf("%jx): ", (uintmax_t)path->device->lun_id); 3640 else 3641 printf("X): "); 3642 } 3643 } 3644 3645 void 3646 xpt_print_device(struct cam_ed *device) 3647 { 3648 3649 if (device == NULL) 3650 printf("(nopath): "); 3651 else { 3652 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3653 device->sim->unit_number, 3654 device->sim->bus_id, 3655 device->target->target_id, 3656 (uintmax_t)device->lun_id); 3657 } 3658 } 3659 3660 void 3661 xpt_print(struct cam_path *path, const char *fmt, ...) 3662 { 3663 va_list ap; 3664 xpt_print_path(path); 3665 va_start(ap, fmt); 3666 vprintf(fmt, ap); 3667 va_end(ap); 3668 } 3669 3670 int 3671 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3672 { 3673 struct sbuf sb; 3674 3675 sbuf_new(&sb, str, str_len, 0); 3676 3677 if (path == NULL) 3678 sbuf_printf(&sb, "(nopath): "); 3679 else { 3680 if (path->periph != NULL) 3681 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3682 path->periph->unit_number); 3683 else 3684 sbuf_printf(&sb, "(noperiph:"); 3685 3686 if (path->bus != NULL) 3687 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3688 path->bus->sim->unit_number, 3689 path->bus->sim->bus_id); 3690 else 3691 sbuf_printf(&sb, "nobus:"); 3692 3693 if (path->target != NULL) 3694 sbuf_printf(&sb, "%d:", path->target->target_id); 3695 else 3696 sbuf_printf(&sb, "X:"); 3697 3698 if (path->device != NULL) 3699 sbuf_printf(&sb, "%jx): ", 3700 (uintmax_t)path->device->lun_id); 3701 else 3702 sbuf_printf(&sb, "X): "); 3703 } 3704 sbuf_finish(&sb); 3705 3706 return(sbuf_len(&sb)); 3707 } 3708 3709 path_id_t 3710 xpt_path_path_id(struct cam_path *path) 3711 { 3712 return(path->bus->path_id); 3713 } 3714 3715 target_id_t 3716 xpt_path_target_id(struct cam_path *path) 3717 { 3718 if (path->target != NULL) 3719 return (path->target->target_id); 3720 else 3721 return (CAM_TARGET_WILDCARD); 3722 } 3723 3724 lun_id_t 3725 xpt_path_lun_id(struct cam_path *path) 3726 { 3727 if (path->device != NULL) 3728 return (path->device->lun_id); 3729 else 3730 return (CAM_LUN_WILDCARD); 3731 } 3732 3733 struct cam_sim * 3734 xpt_path_sim(struct cam_path *path) 3735 { 3736 3737 return (path->bus->sim); 3738 } 3739 3740 struct cam_periph* 3741 xpt_path_periph(struct cam_path *path) 3742 { 3743 3744 return (path->periph); 3745 } 3746 3747 int 3748 xpt_path_legacy_ata_id(struct cam_path *path) 3749 { 3750 struct cam_eb *bus; 3751 int bus_id; 3752 3753 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3754 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3755 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3756 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3757 return (-1); 3758 3759 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3760 path->bus->sim->unit_number < 2) { 3761 bus_id = path->bus->sim->unit_number; 3762 } else { 3763 bus_id = 2; 3764 xpt_lock_buses(); 3765 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3766 if (bus == path->bus) 3767 break; 3768 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3769 bus->sim->unit_number >= 2) || 3770 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3771 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3772 strcmp(bus->sim->sim_name, "siisch") == 0) 3773 bus_id++; 3774 } 3775 xpt_unlock_buses(); 3776 } 3777 if (path->target != NULL) { 3778 if (path->target->target_id < 2) 3779 return (bus_id * 2 + path->target->target_id); 3780 else 3781 return (-1); 3782 } else 3783 return (bus_id * 2); 3784 } 3785 3786 /* 3787 * Release a CAM control block for the caller. Remit the cost of the structure 3788 * to the device referenced by the path. If the this device had no 'credits' 3789 * and peripheral drivers have registered async callbacks for this notification 3790 * call them now. 3791 */ 3792 void 3793 xpt_release_ccb(union ccb *free_ccb) 3794 { 3795 struct cam_ed *device; 3796 struct cam_periph *periph; 3797 3798 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3799 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3800 device = free_ccb->ccb_h.path->device; 3801 periph = free_ccb->ccb_h.path->periph; 3802 3803 xpt_free_ccb(free_ccb); 3804 periph->periph_allocated--; 3805 cam_ccbq_release_opening(&device->ccbq); 3806 xpt_run_allocq(periph, 0); 3807 } 3808 3809 /* Functions accessed by SIM drivers */ 3810 3811 static struct xpt_xport xport_default = { 3812 .alloc_device = xpt_alloc_device_default, 3813 .action = xpt_action_default, 3814 .async = xpt_dev_async_default, 3815 }; 3816 3817 /* 3818 * A sim structure, listing the SIM entry points and instance 3819 * identification info is passed to xpt_bus_register to hook the SIM 3820 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3821 * for this new bus and places it in the array of busses and assigns 3822 * it a path_id. The path_id may be influenced by "hard wiring" 3823 * information specified by the user. Once interrupt services are 3824 * available, the bus will be probed. 3825 */ 3826 int32_t 3827 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3828 { 3829 struct cam_eb *new_bus; 3830 struct cam_eb *old_bus; 3831 struct ccb_pathinq cpi; 3832 struct cam_path *path; 3833 cam_status status; 3834 3835 mtx_assert(sim->mtx, MA_OWNED); 3836 3837 sim->bus_id = bus; 3838 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3839 M_CAMXPT, M_NOWAIT|M_ZERO); 3840 if (new_bus == NULL) { 3841 /* Couldn't satisfy request */ 3842 return (CAM_RESRC_UNAVAIL); 3843 } 3844 3845 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3846 TAILQ_INIT(&new_bus->et_entries); 3847 cam_sim_hold(sim); 3848 new_bus->sim = sim; 3849 timevalclear(&new_bus->last_reset); 3850 new_bus->flags = 0; 3851 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3852 new_bus->generation = 0; 3853 3854 xpt_lock_buses(); 3855 sim->path_id = new_bus->path_id = 3856 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3857 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3858 while (old_bus != NULL 3859 && old_bus->path_id < new_bus->path_id) 3860 old_bus = TAILQ_NEXT(old_bus, links); 3861 if (old_bus != NULL) 3862 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3863 else 3864 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3865 xsoftc.bus_generation++; 3866 xpt_unlock_buses(); 3867 3868 /* 3869 * Set a default transport so that a PATH_INQ can be issued to 3870 * the SIM. This will then allow for probing and attaching of 3871 * a more appropriate transport. 3872 */ 3873 new_bus->xport = &xport_default; 3874 3875 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3876 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3877 if (status != CAM_REQ_CMP) { 3878 xpt_release_bus(new_bus); 3879 free(path, M_CAMXPT); 3880 return (CAM_RESRC_UNAVAIL); 3881 } 3882 3883 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3884 cpi.ccb_h.func_code = XPT_PATH_INQ; 3885 xpt_action((union ccb *)&cpi); 3886 3887 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3888 switch (cpi.transport) { 3889 case XPORT_SPI: 3890 case XPORT_SAS: 3891 case XPORT_FC: 3892 case XPORT_USB: 3893 case XPORT_ISCSI: 3894 case XPORT_SRP: 3895 case XPORT_PPB: 3896 new_bus->xport = scsi_get_xport(); 3897 break; 3898 case XPORT_ATA: 3899 case XPORT_SATA: 3900 new_bus->xport = ata_get_xport(); 3901 break; 3902 default: 3903 new_bus->xport = &xport_default; 3904 break; 3905 } 3906 } 3907 3908 /* Notify interested parties */ 3909 if (sim->path_id != CAM_XPT_PATH_ID) { 3910 3911 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3912 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3913 union ccb *scan_ccb; 3914 3915 /* Initiate bus rescan. */ 3916 scan_ccb = xpt_alloc_ccb_nowait(); 3917 if (scan_ccb != NULL) { 3918 scan_ccb->ccb_h.path = path; 3919 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3920 scan_ccb->crcn.flags = 0; 3921 xpt_rescan(scan_ccb); 3922 } else { 3923 xpt_print(path, 3924 "Can't allocate CCB to scan bus\n"); 3925 xpt_free_path(path); 3926 } 3927 } else 3928 xpt_free_path(path); 3929 } else 3930 xpt_free_path(path); 3931 return (CAM_SUCCESS); 3932 } 3933 3934 int32_t 3935 xpt_bus_deregister(path_id_t pathid) 3936 { 3937 struct cam_path bus_path; 3938 cam_status status; 3939 3940 status = xpt_compile_path(&bus_path, NULL, pathid, 3941 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3942 if (status != CAM_REQ_CMP) 3943 return (status); 3944 3945 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3946 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3947 3948 /* Release the reference count held while registered. */ 3949 xpt_release_bus(bus_path.bus); 3950 xpt_release_path(&bus_path); 3951 3952 return (CAM_REQ_CMP); 3953 } 3954 3955 static path_id_t 3956 xptnextfreepathid(void) 3957 { 3958 struct cam_eb *bus; 3959 path_id_t pathid; 3960 const char *strval; 3961 3962 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3963 pathid = 0; 3964 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3965 retry: 3966 /* Find an unoccupied pathid */ 3967 while (bus != NULL && bus->path_id <= pathid) { 3968 if (bus->path_id == pathid) 3969 pathid++; 3970 bus = TAILQ_NEXT(bus, links); 3971 } 3972 3973 /* 3974 * Ensure that this pathid is not reserved for 3975 * a bus that may be registered in the future. 3976 */ 3977 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3978 ++pathid; 3979 /* Start the search over */ 3980 goto retry; 3981 } 3982 return (pathid); 3983 } 3984 3985 static path_id_t 3986 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3987 { 3988 path_id_t pathid; 3989 int i, dunit, val; 3990 char buf[32]; 3991 const char *dname; 3992 3993 pathid = CAM_XPT_PATH_ID; 3994 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3995 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 3996 return (pathid); 3997 i = 0; 3998 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3999 if (strcmp(dname, "scbus")) { 4000 /* Avoid a bit of foot shooting. */ 4001 continue; 4002 } 4003 if (dunit < 0) /* unwired?! */ 4004 continue; 4005 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4006 if (sim_bus == val) { 4007 pathid = dunit; 4008 break; 4009 } 4010 } else if (sim_bus == 0) { 4011 /* Unspecified matches bus 0 */ 4012 pathid = dunit; 4013 break; 4014 } else { 4015 printf("Ambiguous scbus configuration for %s%d " 4016 "bus %d, cannot wire down. The kernel " 4017 "config entry for scbus%d should " 4018 "specify a controller bus.\n" 4019 "Scbus will be assigned dynamically.\n", 4020 sim_name, sim_unit, sim_bus, dunit); 4021 break; 4022 } 4023 } 4024 4025 if (pathid == CAM_XPT_PATH_ID) 4026 pathid = xptnextfreepathid(); 4027 return (pathid); 4028 } 4029 4030 static const char * 4031 xpt_async_string(u_int32_t async_code) 4032 { 4033 4034 switch (async_code) { 4035 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4036 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4037 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4038 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4039 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4040 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4041 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4042 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4043 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4044 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4045 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4046 case AC_CONTRACT: return ("AC_CONTRACT"); 4047 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4048 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4049 } 4050 return ("AC_UNKNOWN"); 4051 } 4052 4053 static int 4054 xpt_async_size(u_int32_t async_code) 4055 { 4056 4057 switch (async_code) { 4058 case AC_BUS_RESET: return (0); 4059 case AC_UNSOL_RESEL: return (0); 4060 case AC_SCSI_AEN: return (0); 4061 case AC_SENT_BDR: return (0); 4062 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4063 case AC_PATH_DEREGISTERED: return (0); 4064 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4065 case AC_LOST_DEVICE: return (0); 4066 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4067 case AC_INQ_CHANGED: return (0); 4068 case AC_GETDEV_CHANGED: return (0); 4069 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4070 case AC_ADVINFO_CHANGED: return (-1); 4071 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4072 } 4073 return (0); 4074 } 4075 4076 static int 4077 xpt_async_process_dev(struct cam_ed *device, void *arg) 4078 { 4079 union ccb *ccb = arg; 4080 struct cam_path *path = ccb->ccb_h.path; 4081 void *async_arg = ccb->casync.async_arg_ptr; 4082 u_int32_t async_code = ccb->casync.async_code; 4083 int relock; 4084 4085 if (path->device != device 4086 && path->device->lun_id != CAM_LUN_WILDCARD 4087 && device->lun_id != CAM_LUN_WILDCARD) 4088 return (1); 4089 4090 /* 4091 * The async callback could free the device. 4092 * If it is a broadcast async, it doesn't hold 4093 * device reference, so take our own reference. 4094 */ 4095 xpt_acquire_device(device); 4096 4097 /* 4098 * If async for specific device is to be delivered to 4099 * the wildcard client, take the specific device lock. 4100 * XXX: We may need a way for client to specify it. 4101 */ 4102 if ((device->lun_id == CAM_LUN_WILDCARD && 4103 path->device->lun_id != CAM_LUN_WILDCARD) || 4104 (device->target->target_id == CAM_TARGET_WILDCARD && 4105 path->target->target_id != CAM_TARGET_WILDCARD) || 4106 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4107 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4108 mtx_unlock(&device->device_mtx); 4109 xpt_path_lock(path); 4110 relock = 1; 4111 } else 4112 relock = 0; 4113 4114 (*(device->target->bus->xport->async))(async_code, 4115 device->target->bus, device->target, device, async_arg); 4116 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4117 4118 if (relock) { 4119 xpt_path_unlock(path); 4120 mtx_lock(&device->device_mtx); 4121 } 4122 xpt_release_device(device); 4123 return (1); 4124 } 4125 4126 static int 4127 xpt_async_process_tgt(struct cam_et *target, void *arg) 4128 { 4129 union ccb *ccb = arg; 4130 struct cam_path *path = ccb->ccb_h.path; 4131 4132 if (path->target != target 4133 && path->target->target_id != CAM_TARGET_WILDCARD 4134 && target->target_id != CAM_TARGET_WILDCARD) 4135 return (1); 4136 4137 if (ccb->casync.async_code == AC_SENT_BDR) { 4138 /* Update our notion of when the last reset occurred */ 4139 microtime(&target->last_reset); 4140 } 4141 4142 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4143 } 4144 4145 static void 4146 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4147 { 4148 struct cam_eb *bus; 4149 struct cam_path *path; 4150 void *async_arg; 4151 u_int32_t async_code; 4152 4153 path = ccb->ccb_h.path; 4154 async_code = ccb->casync.async_code; 4155 async_arg = ccb->casync.async_arg_ptr; 4156 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4157 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4158 bus = path->bus; 4159 4160 if (async_code == AC_BUS_RESET) { 4161 /* Update our notion of when the last reset occurred */ 4162 microtime(&bus->last_reset); 4163 } 4164 4165 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4166 4167 /* 4168 * If this wasn't a fully wildcarded async, tell all 4169 * clients that want all async events. 4170 */ 4171 if (bus != xpt_periph->path->bus) { 4172 xpt_path_lock(xpt_periph->path); 4173 xpt_async_process_dev(xpt_periph->path->device, ccb); 4174 xpt_path_unlock(xpt_periph->path); 4175 } 4176 4177 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4178 xpt_release_devq(path, 1, TRUE); 4179 else 4180 xpt_release_simq(path->bus->sim, TRUE); 4181 if (ccb->casync.async_arg_size > 0) 4182 free(async_arg, M_CAMXPT); 4183 xpt_free_path(path); 4184 xpt_free_ccb(ccb); 4185 } 4186 4187 static void 4188 xpt_async_bcast(struct async_list *async_head, 4189 u_int32_t async_code, 4190 struct cam_path *path, void *async_arg) 4191 { 4192 struct async_node *cur_entry; 4193 int lock; 4194 4195 cur_entry = SLIST_FIRST(async_head); 4196 while (cur_entry != NULL) { 4197 struct async_node *next_entry; 4198 /* 4199 * Grab the next list entry before we call the current 4200 * entry's callback. This is because the callback function 4201 * can delete its async callback entry. 4202 */ 4203 next_entry = SLIST_NEXT(cur_entry, links); 4204 if ((cur_entry->event_enable & async_code) != 0) { 4205 lock = cur_entry->event_lock; 4206 if (lock) 4207 CAM_SIM_LOCK(path->device->sim); 4208 cur_entry->callback(cur_entry->callback_arg, 4209 async_code, path, 4210 async_arg); 4211 if (lock) 4212 CAM_SIM_UNLOCK(path->device->sim); 4213 } 4214 cur_entry = next_entry; 4215 } 4216 } 4217 4218 void 4219 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4220 { 4221 union ccb *ccb; 4222 int size; 4223 4224 ccb = xpt_alloc_ccb_nowait(); 4225 if (ccb == NULL) { 4226 xpt_print(path, "Can't allocate CCB to send %s\n", 4227 xpt_async_string(async_code)); 4228 return; 4229 } 4230 4231 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4232 xpt_print(path, "Can't allocate path to send %s\n", 4233 xpt_async_string(async_code)); 4234 xpt_free_ccb(ccb); 4235 return; 4236 } 4237 ccb->ccb_h.path->periph = NULL; 4238 ccb->ccb_h.func_code = XPT_ASYNC; 4239 ccb->ccb_h.cbfcnp = xpt_async_process; 4240 ccb->ccb_h.flags |= CAM_UNLOCKED; 4241 ccb->casync.async_code = async_code; 4242 ccb->casync.async_arg_size = 0; 4243 size = xpt_async_size(async_code); 4244 if (size > 0 && async_arg != NULL) { 4245 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4246 if (ccb->casync.async_arg_ptr == NULL) { 4247 xpt_print(path, "Can't allocate argument to send %s\n", 4248 xpt_async_string(async_code)); 4249 xpt_free_path(ccb->ccb_h.path); 4250 xpt_free_ccb(ccb); 4251 return; 4252 } 4253 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4254 ccb->casync.async_arg_size = size; 4255 } else if (size < 0) 4256 ccb->casync.async_arg_size = size; 4257 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4258 xpt_freeze_devq(path, 1); 4259 else 4260 xpt_freeze_simq(path->bus->sim, 1); 4261 xpt_done(ccb); 4262 } 4263 4264 static void 4265 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4266 struct cam_et *target, struct cam_ed *device, 4267 void *async_arg) 4268 { 4269 4270 /* 4271 * We only need to handle events for real devices. 4272 */ 4273 if (target->target_id == CAM_TARGET_WILDCARD 4274 || device->lun_id == CAM_LUN_WILDCARD) 4275 return; 4276 4277 printf("%s called\n", __func__); 4278 } 4279 4280 static uint32_t 4281 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4282 { 4283 struct cam_devq *devq; 4284 uint32_t freeze; 4285 4286 devq = dev->sim->devq; 4287 mtx_assert(&devq->send_mtx, MA_OWNED); 4288 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4289 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4290 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4291 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4292 /* Remove frozen device from sendq. */ 4293 if (device_is_queued(dev)) 4294 camq_remove(&devq->send_queue, dev->devq_entry.index); 4295 return (freeze); 4296 } 4297 4298 u_int32_t 4299 xpt_freeze_devq(struct cam_path *path, u_int count) 4300 { 4301 struct cam_ed *dev = path->device; 4302 struct cam_devq *devq; 4303 uint32_t freeze; 4304 4305 devq = dev->sim->devq; 4306 mtx_lock(&devq->send_mtx); 4307 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4308 freeze = xpt_freeze_devq_device(dev, count); 4309 mtx_unlock(&devq->send_mtx); 4310 return (freeze); 4311 } 4312 4313 u_int32_t 4314 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4315 { 4316 struct cam_devq *devq; 4317 uint32_t freeze; 4318 4319 devq = sim->devq; 4320 mtx_lock(&devq->send_mtx); 4321 freeze = (devq->send_queue.qfrozen_cnt += count); 4322 mtx_unlock(&devq->send_mtx); 4323 return (freeze); 4324 } 4325 4326 static void 4327 xpt_release_devq_timeout(void *arg) 4328 { 4329 struct cam_ed *dev; 4330 struct cam_devq *devq; 4331 4332 dev = (struct cam_ed *)arg; 4333 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4334 devq = dev->sim->devq; 4335 mtx_assert(&devq->send_mtx, MA_OWNED); 4336 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4337 xpt_run_devq(devq); 4338 } 4339 4340 void 4341 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4342 { 4343 struct cam_ed *dev; 4344 struct cam_devq *devq; 4345 4346 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4347 count, run_queue)); 4348 dev = path->device; 4349 devq = dev->sim->devq; 4350 mtx_lock(&devq->send_mtx); 4351 if (xpt_release_devq_device(dev, count, run_queue)) 4352 xpt_run_devq(dev->sim->devq); 4353 mtx_unlock(&devq->send_mtx); 4354 } 4355 4356 static int 4357 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4358 { 4359 4360 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4361 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4362 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4363 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4364 if (count > dev->ccbq.queue.qfrozen_cnt) { 4365 #ifdef INVARIANTS 4366 printf("xpt_release_devq(): requested %u > present %u\n", 4367 count, dev->ccbq.queue.qfrozen_cnt); 4368 #endif 4369 count = dev->ccbq.queue.qfrozen_cnt; 4370 } 4371 dev->ccbq.queue.qfrozen_cnt -= count; 4372 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4373 /* 4374 * No longer need to wait for a successful 4375 * command completion. 4376 */ 4377 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4378 /* 4379 * Remove any timeouts that might be scheduled 4380 * to release this queue. 4381 */ 4382 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4383 callout_stop(&dev->callout); 4384 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4385 } 4386 /* 4387 * Now that we are unfrozen schedule the 4388 * device so any pending transactions are 4389 * run. 4390 */ 4391 xpt_schedule_devq(dev->sim->devq, dev); 4392 } else 4393 run_queue = 0; 4394 return (run_queue); 4395 } 4396 4397 void 4398 xpt_release_simq(struct cam_sim *sim, int run_queue) 4399 { 4400 struct cam_devq *devq; 4401 4402 devq = sim->devq; 4403 mtx_lock(&devq->send_mtx); 4404 if (devq->send_queue.qfrozen_cnt <= 0) { 4405 #ifdef INVARIANTS 4406 printf("xpt_release_simq: requested 1 > present %u\n", 4407 devq->send_queue.qfrozen_cnt); 4408 #endif 4409 } else 4410 devq->send_queue.qfrozen_cnt--; 4411 if (devq->send_queue.qfrozen_cnt == 0) { 4412 /* 4413 * If there is a timeout scheduled to release this 4414 * sim queue, remove it. The queue frozen count is 4415 * already at 0. 4416 */ 4417 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4418 callout_stop(&sim->callout); 4419 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4420 } 4421 if (run_queue) { 4422 /* 4423 * Now that we are unfrozen run the send queue. 4424 */ 4425 xpt_run_devq(sim->devq); 4426 } 4427 } 4428 mtx_unlock(&devq->send_mtx); 4429 } 4430 4431 /* 4432 * XXX Appears to be unused. 4433 */ 4434 static void 4435 xpt_release_simq_timeout(void *arg) 4436 { 4437 struct cam_sim *sim; 4438 4439 sim = (struct cam_sim *)arg; 4440 xpt_release_simq(sim, /* run_queue */ TRUE); 4441 } 4442 4443 void 4444 xpt_done(union ccb *done_ccb) 4445 { 4446 struct cam_doneq *queue; 4447 int run, hash; 4448 4449 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4450 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4451 return; 4452 4453 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4454 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4455 queue = &cam_doneqs[hash]; 4456 mtx_lock(&queue->cam_doneq_mtx); 4457 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4458 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4459 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4460 mtx_unlock(&queue->cam_doneq_mtx); 4461 if (run) 4462 wakeup(&queue->cam_doneq); 4463 } 4464 4465 void 4466 xpt_done_direct(union ccb *done_ccb) 4467 { 4468 4469 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); 4470 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4471 return; 4472 4473 xpt_done_process(&done_ccb->ccb_h); 4474 } 4475 4476 union ccb * 4477 xpt_alloc_ccb() 4478 { 4479 union ccb *new_ccb; 4480 4481 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4482 return (new_ccb); 4483 } 4484 4485 union ccb * 4486 xpt_alloc_ccb_nowait() 4487 { 4488 union ccb *new_ccb; 4489 4490 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4491 return (new_ccb); 4492 } 4493 4494 void 4495 xpt_free_ccb(union ccb *free_ccb) 4496 { 4497 free(free_ccb, M_CAMCCB); 4498 } 4499 4500 4501 4502 /* Private XPT functions */ 4503 4504 /* 4505 * Get a CAM control block for the caller. Charge the structure to the device 4506 * referenced by the path. If we don't have sufficient resources to allocate 4507 * more ccbs, we return NULL. 4508 */ 4509 static union ccb * 4510 xpt_get_ccb_nowait(struct cam_periph *periph) 4511 { 4512 union ccb *new_ccb; 4513 4514 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_NOWAIT); 4515 if (new_ccb == NULL) 4516 return (NULL); 4517 periph->periph_allocated++; 4518 cam_ccbq_take_opening(&periph->path->device->ccbq); 4519 return (new_ccb); 4520 } 4521 4522 static union ccb * 4523 xpt_get_ccb(struct cam_periph *periph) 4524 { 4525 union ccb *new_ccb; 4526 4527 cam_periph_unlock(periph); 4528 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_WAITOK); 4529 cam_periph_lock(periph); 4530 periph->periph_allocated++; 4531 cam_ccbq_take_opening(&periph->path->device->ccbq); 4532 return (new_ccb); 4533 } 4534 4535 union ccb * 4536 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4537 { 4538 struct ccb_hdr *ccb_h; 4539 4540 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4541 cam_periph_assert(periph, MA_OWNED); 4542 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4543 ccb_h->pinfo.priority != priority) { 4544 if (priority < periph->immediate_priority) { 4545 periph->immediate_priority = priority; 4546 xpt_run_allocq(periph, 0); 4547 } else 4548 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4549 "cgticb", 0); 4550 } 4551 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4552 return ((union ccb *)ccb_h); 4553 } 4554 4555 static void 4556 xpt_acquire_bus(struct cam_eb *bus) 4557 { 4558 4559 xpt_lock_buses(); 4560 bus->refcount++; 4561 xpt_unlock_buses(); 4562 } 4563 4564 static void 4565 xpt_release_bus(struct cam_eb *bus) 4566 { 4567 4568 xpt_lock_buses(); 4569 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4570 if (--bus->refcount > 0) { 4571 xpt_unlock_buses(); 4572 return; 4573 } 4574 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4575 xsoftc.bus_generation++; 4576 xpt_unlock_buses(); 4577 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4578 ("destroying bus, but target list is not empty")); 4579 cam_sim_release(bus->sim); 4580 mtx_destroy(&bus->eb_mtx); 4581 free(bus, M_CAMXPT); 4582 } 4583 4584 static struct cam_et * 4585 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4586 { 4587 struct cam_et *cur_target, *target; 4588 4589 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4590 mtx_assert(&bus->eb_mtx, MA_OWNED); 4591 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4592 M_NOWAIT|M_ZERO); 4593 if (target == NULL) 4594 return (NULL); 4595 4596 TAILQ_INIT(&target->ed_entries); 4597 target->bus = bus; 4598 target->target_id = target_id; 4599 target->refcount = 1; 4600 target->generation = 0; 4601 target->luns = NULL; 4602 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4603 timevalclear(&target->last_reset); 4604 /* 4605 * Hold a reference to our parent bus so it 4606 * will not go away before we do. 4607 */ 4608 bus->refcount++; 4609 4610 /* Insertion sort into our bus's target list */ 4611 cur_target = TAILQ_FIRST(&bus->et_entries); 4612 while (cur_target != NULL && cur_target->target_id < target_id) 4613 cur_target = TAILQ_NEXT(cur_target, links); 4614 if (cur_target != NULL) { 4615 TAILQ_INSERT_BEFORE(cur_target, target, links); 4616 } else { 4617 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4618 } 4619 bus->generation++; 4620 return (target); 4621 } 4622 4623 static void 4624 xpt_acquire_target(struct cam_et *target) 4625 { 4626 struct cam_eb *bus = target->bus; 4627 4628 mtx_lock(&bus->eb_mtx); 4629 target->refcount++; 4630 mtx_unlock(&bus->eb_mtx); 4631 } 4632 4633 static void 4634 xpt_release_target(struct cam_et *target) 4635 { 4636 struct cam_eb *bus = target->bus; 4637 4638 mtx_lock(&bus->eb_mtx); 4639 if (--target->refcount > 0) { 4640 mtx_unlock(&bus->eb_mtx); 4641 return; 4642 } 4643 TAILQ_REMOVE(&bus->et_entries, target, links); 4644 bus->generation++; 4645 mtx_unlock(&bus->eb_mtx); 4646 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4647 ("destroying target, but device list is not empty")); 4648 xpt_release_bus(bus); 4649 mtx_destroy(&target->luns_mtx); 4650 if (target->luns) 4651 free(target->luns, M_CAMXPT); 4652 free(target, M_CAMXPT); 4653 } 4654 4655 static struct cam_ed * 4656 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4657 lun_id_t lun_id) 4658 { 4659 struct cam_ed *device; 4660 4661 device = xpt_alloc_device(bus, target, lun_id); 4662 if (device == NULL) 4663 return (NULL); 4664 4665 device->mintags = 1; 4666 device->maxtags = 1; 4667 return (device); 4668 } 4669 4670 static void 4671 xpt_destroy_device(void *context, int pending) 4672 { 4673 struct cam_ed *device = context; 4674 4675 mtx_lock(&device->device_mtx); 4676 mtx_destroy(&device->device_mtx); 4677 free(device, M_CAMDEV); 4678 } 4679 4680 struct cam_ed * 4681 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4682 { 4683 struct cam_ed *cur_device, *device; 4684 struct cam_devq *devq; 4685 cam_status status; 4686 4687 mtx_assert(&bus->eb_mtx, MA_OWNED); 4688 /* Make space for us in the device queue on our bus */ 4689 devq = bus->sim->devq; 4690 mtx_lock(&devq->send_mtx); 4691 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4692 mtx_unlock(&devq->send_mtx); 4693 if (status != CAM_REQ_CMP) 4694 return (NULL); 4695 4696 device = (struct cam_ed *)malloc(sizeof(*device), 4697 M_CAMDEV, M_NOWAIT|M_ZERO); 4698 if (device == NULL) 4699 return (NULL); 4700 4701 cam_init_pinfo(&device->devq_entry); 4702 device->target = target; 4703 device->lun_id = lun_id; 4704 device->sim = bus->sim; 4705 if (cam_ccbq_init(&device->ccbq, 4706 bus->sim->max_dev_openings) != 0) { 4707 free(device, M_CAMDEV); 4708 return (NULL); 4709 } 4710 SLIST_INIT(&device->asyncs); 4711 SLIST_INIT(&device->periphs); 4712 device->generation = 0; 4713 device->flags = CAM_DEV_UNCONFIGURED; 4714 device->tag_delay_count = 0; 4715 device->tag_saved_openings = 0; 4716 device->refcount = 1; 4717 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4718 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4719 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4720 /* 4721 * Hold a reference to our parent bus so it 4722 * will not go away before we do. 4723 */ 4724 target->refcount++; 4725 4726 cur_device = TAILQ_FIRST(&target->ed_entries); 4727 while (cur_device != NULL && cur_device->lun_id < lun_id) 4728 cur_device = TAILQ_NEXT(cur_device, links); 4729 if (cur_device != NULL) 4730 TAILQ_INSERT_BEFORE(cur_device, device, links); 4731 else 4732 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4733 target->generation++; 4734 return (device); 4735 } 4736 4737 void 4738 xpt_acquire_device(struct cam_ed *device) 4739 { 4740 struct cam_eb *bus = device->target->bus; 4741 4742 mtx_lock(&bus->eb_mtx); 4743 device->refcount++; 4744 mtx_unlock(&bus->eb_mtx); 4745 } 4746 4747 void 4748 xpt_release_device(struct cam_ed *device) 4749 { 4750 struct cam_eb *bus = device->target->bus; 4751 struct cam_devq *devq; 4752 4753 mtx_lock(&bus->eb_mtx); 4754 if (--device->refcount > 0) { 4755 mtx_unlock(&bus->eb_mtx); 4756 return; 4757 } 4758 4759 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4760 device->target->generation++; 4761 mtx_unlock(&bus->eb_mtx); 4762 4763 /* Release our slot in the devq */ 4764 devq = bus->sim->devq; 4765 mtx_lock(&devq->send_mtx); 4766 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4767 mtx_unlock(&devq->send_mtx); 4768 4769 KASSERT(SLIST_EMPTY(&device->periphs), 4770 ("destroying device, but periphs list is not empty")); 4771 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4772 ("destroying device while still queued for ccbs")); 4773 4774 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4775 callout_stop(&device->callout); 4776 4777 xpt_release_target(device->target); 4778 4779 cam_ccbq_fini(&device->ccbq); 4780 /* 4781 * Free allocated memory. free(9) does nothing if the 4782 * supplied pointer is NULL, so it is safe to call without 4783 * checking. 4784 */ 4785 free(device->supported_vpds, M_CAMXPT); 4786 free(device->device_id, M_CAMXPT); 4787 free(device->physpath, M_CAMXPT); 4788 free(device->rcap_buf, M_CAMXPT); 4789 free(device->serial_num, M_CAMXPT); 4790 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4791 } 4792 4793 u_int32_t 4794 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4795 { 4796 int result; 4797 struct cam_ed *dev; 4798 4799 dev = path->device; 4800 mtx_lock(&dev->sim->devq->send_mtx); 4801 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4802 mtx_unlock(&dev->sim->devq->send_mtx); 4803 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4804 || (dev->inq_flags & SID_CmdQue) != 0) 4805 dev->tag_saved_openings = newopenings; 4806 return (result); 4807 } 4808 4809 static struct cam_eb * 4810 xpt_find_bus(path_id_t path_id) 4811 { 4812 struct cam_eb *bus; 4813 4814 xpt_lock_buses(); 4815 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4816 bus != NULL; 4817 bus = TAILQ_NEXT(bus, links)) { 4818 if (bus->path_id == path_id) { 4819 bus->refcount++; 4820 break; 4821 } 4822 } 4823 xpt_unlock_buses(); 4824 return (bus); 4825 } 4826 4827 static struct cam_et * 4828 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4829 { 4830 struct cam_et *target; 4831 4832 mtx_assert(&bus->eb_mtx, MA_OWNED); 4833 for (target = TAILQ_FIRST(&bus->et_entries); 4834 target != NULL; 4835 target = TAILQ_NEXT(target, links)) { 4836 if (target->target_id == target_id) { 4837 target->refcount++; 4838 break; 4839 } 4840 } 4841 return (target); 4842 } 4843 4844 static struct cam_ed * 4845 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4846 { 4847 struct cam_ed *device; 4848 4849 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4850 for (device = TAILQ_FIRST(&target->ed_entries); 4851 device != NULL; 4852 device = TAILQ_NEXT(device, links)) { 4853 if (device->lun_id == lun_id) { 4854 device->refcount++; 4855 break; 4856 } 4857 } 4858 return (device); 4859 } 4860 4861 void 4862 xpt_start_tags(struct cam_path *path) 4863 { 4864 struct ccb_relsim crs; 4865 struct cam_ed *device; 4866 struct cam_sim *sim; 4867 int newopenings; 4868 4869 device = path->device; 4870 sim = path->bus->sim; 4871 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4872 xpt_freeze_devq(path, /*count*/1); 4873 device->inq_flags |= SID_CmdQue; 4874 if (device->tag_saved_openings != 0) 4875 newopenings = device->tag_saved_openings; 4876 else 4877 newopenings = min(device->maxtags, 4878 sim->max_tagged_dev_openings); 4879 xpt_dev_ccbq_resize(path, newopenings); 4880 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4881 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4882 crs.ccb_h.func_code = XPT_REL_SIMQ; 4883 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4884 crs.openings 4885 = crs.release_timeout 4886 = crs.qfrozen_cnt 4887 = 0; 4888 xpt_action((union ccb *)&crs); 4889 } 4890 4891 void 4892 xpt_stop_tags(struct cam_path *path) 4893 { 4894 struct ccb_relsim crs; 4895 struct cam_ed *device; 4896 struct cam_sim *sim; 4897 4898 device = path->device; 4899 sim = path->bus->sim; 4900 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4901 device->tag_delay_count = 0; 4902 xpt_freeze_devq(path, /*count*/1); 4903 device->inq_flags &= ~SID_CmdQue; 4904 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4905 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4906 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4907 crs.ccb_h.func_code = XPT_REL_SIMQ; 4908 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4909 crs.openings 4910 = crs.release_timeout 4911 = crs.qfrozen_cnt 4912 = 0; 4913 xpt_action((union ccb *)&crs); 4914 } 4915 4916 static void 4917 xpt_boot_delay(void *arg) 4918 { 4919 4920 xpt_release_boot(); 4921 } 4922 4923 static void 4924 xpt_config(void *arg) 4925 { 4926 /* 4927 * Now that interrupts are enabled, go find our devices 4928 */ 4929 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4930 printf("xpt_config: failed to create taskqueue thread.\n"); 4931 4932 /* Setup debugging path */ 4933 if (cam_dflags != CAM_DEBUG_NONE) { 4934 if (xpt_create_path(&cam_dpath, NULL, 4935 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4936 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4937 printf("xpt_config: xpt_create_path() failed for debug" 4938 " target %d:%d:%d, debugging disabled\n", 4939 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4940 cam_dflags = CAM_DEBUG_NONE; 4941 } 4942 } else 4943 cam_dpath = NULL; 4944 4945 periphdriver_init(1); 4946 xpt_hold_boot(); 4947 callout_init(&xsoftc.boot_callout, 1); 4948 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4949 xpt_boot_delay, NULL); 4950 /* Fire up rescan thread. */ 4951 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4952 "cam", "scanner")) { 4953 printf("xpt_config: failed to create rescan thread.\n"); 4954 } 4955 } 4956 4957 void 4958 xpt_hold_boot(void) 4959 { 4960 xpt_lock_buses(); 4961 xsoftc.buses_to_config++; 4962 xpt_unlock_buses(); 4963 } 4964 4965 void 4966 xpt_release_boot(void) 4967 { 4968 xpt_lock_buses(); 4969 xsoftc.buses_to_config--; 4970 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4971 struct xpt_task *task; 4972 4973 xsoftc.buses_config_done = 1; 4974 xpt_unlock_buses(); 4975 /* Call manually because we don't have any busses */ 4976 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4977 if (task != NULL) { 4978 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4979 taskqueue_enqueue(taskqueue_thread, &task->task); 4980 } 4981 } else 4982 xpt_unlock_buses(); 4983 } 4984 4985 /* 4986 * If the given device only has one peripheral attached to it, and if that 4987 * peripheral is the passthrough driver, announce it. This insures that the 4988 * user sees some sort of announcement for every peripheral in their system. 4989 */ 4990 static int 4991 xptpassannouncefunc(struct cam_ed *device, void *arg) 4992 { 4993 struct cam_periph *periph; 4994 int i; 4995 4996 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4997 periph = SLIST_NEXT(periph, periph_links), i++); 4998 4999 periph = SLIST_FIRST(&device->periphs); 5000 if ((i == 1) 5001 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5002 xpt_announce_periph(periph, NULL); 5003 5004 return(1); 5005 } 5006 5007 static void 5008 xpt_finishconfig_task(void *context, int pending) 5009 { 5010 5011 periphdriver_init(2); 5012 /* 5013 * Check for devices with no "standard" peripheral driver 5014 * attached. For any devices like that, announce the 5015 * passthrough driver so the user will see something. 5016 */ 5017 if (!bootverbose) 5018 xpt_for_all_devices(xptpassannouncefunc, NULL); 5019 5020 /* Release our hook so that the boot can continue. */ 5021 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5022 free(xsoftc.xpt_config_hook, M_CAMXPT); 5023 xsoftc.xpt_config_hook = NULL; 5024 5025 free(context, M_CAMXPT); 5026 } 5027 5028 cam_status 5029 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5030 struct cam_path *path) 5031 { 5032 struct ccb_setasync csa; 5033 cam_status status; 5034 int xptpath = 0; 5035 5036 if (path == NULL) { 5037 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5038 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5039 if (status != CAM_REQ_CMP) 5040 return (status); 5041 xpt_path_lock(path); 5042 xptpath = 1; 5043 } 5044 5045 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5046 csa.ccb_h.func_code = XPT_SASYNC_CB; 5047 csa.event_enable = event; 5048 csa.callback = cbfunc; 5049 csa.callback_arg = cbarg; 5050 xpt_action((union ccb *)&csa); 5051 status = csa.ccb_h.status; 5052 5053 if (xptpath) { 5054 xpt_path_unlock(path); 5055 xpt_free_path(path); 5056 } 5057 5058 if ((status == CAM_REQ_CMP) && 5059 (csa.event_enable & AC_FOUND_DEVICE)) { 5060 /* 5061 * Get this peripheral up to date with all 5062 * the currently existing devices. 5063 */ 5064 xpt_for_all_devices(xptsetasyncfunc, &csa); 5065 } 5066 if ((status == CAM_REQ_CMP) && 5067 (csa.event_enable & AC_PATH_REGISTERED)) { 5068 /* 5069 * Get this peripheral up to date with all 5070 * the currently existing busses. 5071 */ 5072 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5073 } 5074 5075 return (status); 5076 } 5077 5078 static void 5079 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5080 { 5081 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5082 5083 switch (work_ccb->ccb_h.func_code) { 5084 /* Common cases first */ 5085 case XPT_PATH_INQ: /* Path routing inquiry */ 5086 { 5087 struct ccb_pathinq *cpi; 5088 5089 cpi = &work_ccb->cpi; 5090 cpi->version_num = 1; /* XXX??? */ 5091 cpi->hba_inquiry = 0; 5092 cpi->target_sprt = 0; 5093 cpi->hba_misc = 0; 5094 cpi->hba_eng_cnt = 0; 5095 cpi->max_target = 0; 5096 cpi->max_lun = 0; 5097 cpi->initiator_id = 0; 5098 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5099 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5100 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5101 cpi->unit_number = sim->unit_number; 5102 cpi->bus_id = sim->bus_id; 5103 cpi->base_transfer_speed = 0; 5104 cpi->protocol = PROTO_UNSPECIFIED; 5105 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5106 cpi->transport = XPORT_UNSPECIFIED; 5107 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5108 cpi->ccb_h.status = CAM_REQ_CMP; 5109 xpt_done(work_ccb); 5110 break; 5111 } 5112 default: 5113 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5114 xpt_done(work_ccb); 5115 break; 5116 } 5117 } 5118 5119 /* 5120 * The xpt as a "controller" has no interrupt sources, so polling 5121 * is a no-op. 5122 */ 5123 static void 5124 xptpoll(struct cam_sim *sim) 5125 { 5126 } 5127 5128 void 5129 xpt_lock_buses(void) 5130 { 5131 mtx_lock(&xsoftc.xpt_topo_lock); 5132 } 5133 5134 void 5135 xpt_unlock_buses(void) 5136 { 5137 mtx_unlock(&xsoftc.xpt_topo_lock); 5138 } 5139 5140 struct mtx * 5141 xpt_path_mtx(struct cam_path *path) 5142 { 5143 5144 return (&path->device->device_mtx); 5145 } 5146 5147 static void 5148 xpt_done_process(struct ccb_hdr *ccb_h) 5149 { 5150 struct cam_sim *sim; 5151 struct cam_devq *devq; 5152 struct mtx *mtx = NULL; 5153 5154 if (ccb_h->flags & CAM_HIGH_POWER) { 5155 struct highpowerlist *hphead; 5156 struct cam_ed *device; 5157 5158 mtx_lock(&xsoftc.xpt_highpower_lock); 5159 hphead = &xsoftc.highpowerq; 5160 5161 device = STAILQ_FIRST(hphead); 5162 5163 /* 5164 * Increment the count since this command is done. 5165 */ 5166 xsoftc.num_highpower++; 5167 5168 /* 5169 * Any high powered commands queued up? 5170 */ 5171 if (device != NULL) { 5172 5173 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5174 mtx_unlock(&xsoftc.xpt_highpower_lock); 5175 5176 mtx_lock(&device->sim->devq->send_mtx); 5177 xpt_release_devq_device(device, 5178 /*count*/1, /*runqueue*/TRUE); 5179 mtx_unlock(&device->sim->devq->send_mtx); 5180 } else 5181 mtx_unlock(&xsoftc.xpt_highpower_lock); 5182 } 5183 5184 sim = ccb_h->path->bus->sim; 5185 5186 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5187 xpt_release_simq(sim, /*run_queue*/FALSE); 5188 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5189 } 5190 5191 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5192 && (ccb_h->status & CAM_DEV_QFRZN)) { 5193 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5194 ccb_h->status &= ~CAM_DEV_QFRZN; 5195 } 5196 5197 devq = sim->devq; 5198 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5199 struct cam_ed *dev = ccb_h->path->device; 5200 5201 mtx_lock(&devq->send_mtx); 5202 devq->send_active--; 5203 devq->send_openings++; 5204 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5205 5206 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5207 && (dev->ccbq.dev_active == 0))) { 5208 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5209 xpt_release_devq_device(dev, /*count*/1, 5210 /*run_queue*/FALSE); 5211 } 5212 5213 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5214 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5215 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5216 xpt_release_devq_device(dev, /*count*/1, 5217 /*run_queue*/FALSE); 5218 } 5219 5220 if (!device_is_queued(dev)) 5221 (void)xpt_schedule_devq(devq, dev); 5222 xpt_run_devq(devq); 5223 mtx_unlock(&devq->send_mtx); 5224 5225 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5226 mtx = xpt_path_mtx(ccb_h->path); 5227 mtx_lock(mtx); 5228 5229 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5230 && (--dev->tag_delay_count == 0)) 5231 xpt_start_tags(ccb_h->path); 5232 } 5233 } 5234 5235 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5236 if (mtx == NULL) { 5237 mtx = xpt_path_mtx(ccb_h->path); 5238 mtx_lock(mtx); 5239 } 5240 } else { 5241 if (mtx != NULL) { 5242 mtx_unlock(mtx); 5243 mtx = NULL; 5244 } 5245 } 5246 5247 /* Call the peripheral driver's callback */ 5248 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5249 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5250 if (mtx != NULL) 5251 mtx_unlock(mtx); 5252 } 5253 5254 void 5255 xpt_done_td(void *arg) 5256 { 5257 struct cam_doneq *queue = arg; 5258 struct ccb_hdr *ccb_h; 5259 STAILQ_HEAD(, ccb_hdr) doneq; 5260 5261 STAILQ_INIT(&doneq); 5262 mtx_lock(&queue->cam_doneq_mtx); 5263 while (1) { 5264 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5265 queue->cam_doneq_sleep = 1; 5266 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5267 PRIBIO, "-", 0); 5268 queue->cam_doneq_sleep = 0; 5269 } 5270 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5271 mtx_unlock(&queue->cam_doneq_mtx); 5272 5273 THREAD_NO_SLEEPING(); 5274 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5275 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5276 xpt_done_process(ccb_h); 5277 } 5278 THREAD_SLEEPING_OK(); 5279 5280 mtx_lock(&queue->cam_doneq_mtx); 5281 } 5282 } 5283 5284 static void 5285 camisr_runqueue(void) 5286 { 5287 struct ccb_hdr *ccb_h; 5288 struct cam_doneq *queue; 5289 int i; 5290 5291 /* Process global queues. */ 5292 for (i = 0; i < cam_num_doneqs; i++) { 5293 queue = &cam_doneqs[i]; 5294 mtx_lock(&queue->cam_doneq_mtx); 5295 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5296 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5297 mtx_unlock(&queue->cam_doneq_mtx); 5298 xpt_done_process(ccb_h); 5299 mtx_lock(&queue->cam_doneq_mtx); 5300 } 5301 mtx_unlock(&queue->cam_doneq_mtx); 5302 } 5303 } 5304