1 /* 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/systm.h> 34 #include <sys/types.h> 35 #include <sys/malloc.h> 36 #include <sys/kernel.h> 37 #include <sys/time.h> 38 #include <sys/conf.h> 39 #include <sys/fcntl.h> 40 #include <sys/md5.h> 41 #include <sys/interrupt.h> 42 #include <sys/sbuf.h> 43 44 #ifdef PC98 45 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 46 #endif 47 48 #include <cam/cam.h> 49 #include <cam/cam_ccb.h> 50 #include <cam/cam_periph.h> 51 #include <cam/cam_sim.h> 52 #include <cam/cam_xpt.h> 53 #include <cam/cam_xpt_sim.h> 54 #include <cam/cam_xpt_periph.h> 55 #include <cam/cam_debug.h> 56 57 #include <cam/scsi/scsi_all.h> 58 #include <cam/scsi/scsi_message.h> 59 #include <cam/scsi/scsi_pass.h> 60 #include "opt_cam.h" 61 62 /* Datastructures internal to the xpt layer */ 63 64 /* 65 * Definition of an async handler callback block. These are used to add 66 * SIMs and peripherals to the async callback lists. 67 */ 68 struct async_node { 69 SLIST_ENTRY(async_node) links; 70 u_int32_t event_enable; /* Async Event enables */ 71 void (*callback)(void *arg, u_int32_t code, 72 struct cam_path *path, void *args); 73 void *callback_arg; 74 }; 75 76 SLIST_HEAD(async_list, async_node); 77 SLIST_HEAD(periph_list, cam_periph); 78 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 79 80 /* 81 * This is the maximum number of high powered commands (e.g. start unit) 82 * that can be outstanding at a particular time. 83 */ 84 #ifndef CAM_MAX_HIGHPOWER 85 #define CAM_MAX_HIGHPOWER 4 86 #endif 87 88 /* number of high powered commands that can go through right now */ 89 static int num_highpower = CAM_MAX_HIGHPOWER; 90 91 /* 92 * Structure for queueing a device in a run queue. 93 * There is one run queue for allocating new ccbs, 94 * and another for sending ccbs to the controller. 95 */ 96 struct cam_ed_qinfo { 97 cam_pinfo pinfo; 98 struct cam_ed *device; 99 }; 100 101 /* 102 * The CAM EDT (Existing Device Table) contains the device information for 103 * all devices for all busses in the system. The table contains a 104 * cam_ed structure for each device on the bus. 105 */ 106 struct cam_ed { 107 TAILQ_ENTRY(cam_ed) links; 108 struct cam_ed_qinfo alloc_ccb_entry; 109 struct cam_ed_qinfo send_ccb_entry; 110 struct cam_et *target; 111 lun_id_t lun_id; 112 struct camq drvq; /* 113 * Queue of type drivers wanting to do 114 * work on this device. 115 */ 116 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 117 struct async_list asyncs; /* Async callback info for this B/T/L */ 118 struct periph_list periphs; /* All attached devices */ 119 u_int generation; /* Generation number */ 120 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 121 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 122 /* Storage for the inquiry data */ 123 #ifdef CAM_NEW_TRAN_CODE 124 cam_proto protocol; 125 u_int protocol_version; 126 cam_xport transport; 127 u_int transport_version; 128 #endif /* CAM_NEW_TRAN_CODE */ 129 struct scsi_inquiry_data inq_data; 130 u_int8_t inq_flags; /* 131 * Current settings for inquiry flags. 132 * This allows us to override settings 133 * like disconnection and tagged 134 * queuing for a device. 135 */ 136 u_int8_t queue_flags; /* Queue flags from the control page */ 137 u_int8_t serial_num_len; 138 u_int8_t *serial_num; 139 u_int32_t qfrozen_cnt; 140 u_int32_t flags; 141 #define CAM_DEV_UNCONFIGURED 0x01 142 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 143 #define CAM_DEV_REL_ON_COMPLETE 0x04 144 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 145 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 146 #define CAM_DEV_TAG_AFTER_COUNT 0x20 147 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 148 u_int32_t tag_delay_count; 149 #define CAM_TAG_DELAY_COUNT 5 150 u_int32_t refcount; 151 struct callout_handle c_handle; 152 }; 153 154 /* 155 * Each target is represented by an ET (Existing Target). These 156 * entries are created when a target is successfully probed with an 157 * identify, and removed when a device fails to respond after a number 158 * of retries, or a bus rescan finds the device missing. 159 */ 160 struct cam_et { 161 TAILQ_HEAD(, cam_ed) ed_entries; 162 TAILQ_ENTRY(cam_et) links; 163 struct cam_eb *bus; 164 target_id_t target_id; 165 u_int32_t refcount; 166 u_int generation; 167 struct timeval last_reset; 168 }; 169 170 /* 171 * Each bus is represented by an EB (Existing Bus). These entries 172 * are created by calls to xpt_bus_register and deleted by calls to 173 * xpt_bus_deregister. 174 */ 175 struct cam_eb { 176 TAILQ_HEAD(, cam_et) et_entries; 177 TAILQ_ENTRY(cam_eb) links; 178 path_id_t path_id; 179 struct cam_sim *sim; 180 struct timeval last_reset; 181 u_int32_t flags; 182 #define CAM_EB_RUNQ_SCHEDULED 0x01 183 u_int32_t refcount; 184 u_int generation; 185 }; 186 187 struct cam_path { 188 struct cam_periph *periph; 189 struct cam_eb *bus; 190 struct cam_et *target; 191 struct cam_ed *device; 192 }; 193 194 struct xpt_quirk_entry { 195 struct scsi_inquiry_pattern inq_pat; 196 u_int8_t quirks; 197 #define CAM_QUIRK_NOLUNS 0x01 198 #define CAM_QUIRK_NOSERIAL 0x02 199 #define CAM_QUIRK_HILUNS 0x04 200 u_int mintags; 201 u_int maxtags; 202 }; 203 #define CAM_SCSI2_MAXLUN 8 204 205 typedef enum { 206 XPT_FLAG_OPEN = 0x01 207 } xpt_flags; 208 209 struct xpt_softc { 210 xpt_flags flags; 211 u_int32_t generation; 212 }; 213 214 static const char quantum[] = "QUANTUM"; 215 static const char sony[] = "SONY"; 216 static const char west_digital[] = "WDIGTL"; 217 static const char samsung[] = "SAMSUNG"; 218 static const char seagate[] = "SEAGATE"; 219 static const char microp[] = "MICROP"; 220 221 static struct xpt_quirk_entry xpt_quirk_table[] = 222 { 223 { 224 /* Reports QUEUE FULL for temporary resource shortages */ 225 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 226 /*quirks*/0, /*mintags*/24, /*maxtags*/32 227 }, 228 { 229 /* Reports QUEUE FULL for temporary resource shortages */ 230 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 231 /*quirks*/0, /*mintags*/24, /*maxtags*/32 232 }, 233 { 234 /* Reports QUEUE FULL for temporary resource shortages */ 235 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 236 /*quirks*/0, /*mintags*/24, /*maxtags*/32 237 }, 238 { 239 /* Broken tagged queuing drive */ 240 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 241 /*quirks*/0, /*mintags*/0, /*maxtags*/0 242 }, 243 { 244 /* Broken tagged queuing drive */ 245 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 246 /*quirks*/0, /*mintags*/0, /*maxtags*/0 247 }, 248 { 249 /* Broken tagged queuing drive */ 250 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 251 /*quirks*/0, /*mintags*/0, /*maxtags*/0 252 }, 253 { 254 /* 255 * Unfortunately, the Quantum Atlas III has the same 256 * problem as the Atlas II drives above. 257 * Reported by: "Johan Granlund" <johan@granlund.nu> 258 * 259 * For future reference, the drive with the problem was: 260 * QUANTUM QM39100TD-SW N1B0 261 * 262 * It's possible that Quantum will fix the problem in later 263 * firmware revisions. If that happens, the quirk entry 264 * will need to be made specific to the firmware revisions 265 * with the problem. 266 * 267 */ 268 /* Reports QUEUE FULL for temporary resource shortages */ 269 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 270 /*quirks*/0, /*mintags*/24, /*maxtags*/32 271 }, 272 { 273 /* 274 * 18 Gig Atlas III, same problem as the 9G version. 275 * Reported by: Andre Albsmeier 276 * <andre.albsmeier@mchp.siemens.de> 277 * 278 * For future reference, the drive with the problem was: 279 * QUANTUM QM318000TD-S N491 280 */ 281 /* Reports QUEUE FULL for temporary resource shortages */ 282 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 283 /*quirks*/0, /*mintags*/24, /*maxtags*/32 284 }, 285 { 286 /* 287 * Broken tagged queuing drive 288 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 289 * and: Martin Renters <martin@tdc.on.ca> 290 */ 291 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 292 /*quirks*/0, /*mintags*/0, /*maxtags*/0 293 }, 294 /* 295 * The Seagate Medalist Pro drives have very poor write 296 * performance with anything more than 2 tags. 297 * 298 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 299 * Drive: <SEAGATE ST36530N 1444> 300 * 301 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 302 * Drive: <SEAGATE ST34520W 1281> 303 * 304 * No one has actually reported that the 9G version 305 * (ST39140*) of the Medalist Pro has the same problem, but 306 * we're assuming that it does because the 4G and 6.5G 307 * versions of the drive are broken. 308 */ 309 { 310 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 311 /*quirks*/0, /*mintags*/2, /*maxtags*/2 312 }, 313 { 314 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 315 /*quirks*/0, /*mintags*/2, /*maxtags*/2 316 }, 317 { 318 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 319 /*quirks*/0, /*mintags*/2, /*maxtags*/2 320 }, 321 { 322 /* 323 * Slow when tagged queueing is enabled. Write performance 324 * steadily drops off with more and more concurrent 325 * transactions. Best sequential write performance with 326 * tagged queueing turned off and write caching turned on. 327 * 328 * PR: kern/10398 329 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 330 * Drive: DCAS-34330 w/ "S65A" firmware. 331 * 332 * The drive with the problem had the "S65A" firmware 333 * revision, and has also been reported (by Stephen J. 334 * Roznowski <sjr@home.net>) for a drive with the "S61A" 335 * firmware revision. 336 * 337 * Although no one has reported problems with the 2 gig 338 * version of the DCAS drive, the assumption is that it 339 * has the same problems as the 4 gig version. Therefore 340 * this quirk entries disables tagged queueing for all 341 * DCAS drives. 342 */ 343 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 344 /*quirks*/0, /*mintags*/0, /*maxtags*/0 345 }, 346 { 347 /* Broken tagged queuing drive */ 348 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 349 /*quirks*/0, /*mintags*/0, /*maxtags*/0 350 }, 351 { 352 /* Broken tagged queuing drive */ 353 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 354 /*quirks*/0, /*mintags*/0, /*maxtags*/0 355 }, 356 { 357 /* 358 * Broken tagged queuing drive. 359 * Submitted by: 360 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 361 * in PR kern/9535 362 */ 363 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 364 /*quirks*/0, /*mintags*/0, /*maxtags*/0 365 }, 366 { 367 /* 368 * Slow when tagged queueing is enabled. (1.5MB/sec versus 369 * 8MB/sec.) 370 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 371 * Best performance with these drives is achieved with 372 * tagged queueing turned off, and write caching turned on. 373 */ 374 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 375 /*quirks*/0, /*mintags*/0, /*maxtags*/0 376 }, 377 { 378 /* 379 * Slow when tagged queueing is enabled. (1.5MB/sec versus 380 * 8MB/sec.) 381 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 382 * Best performance with these drives is achieved with 383 * tagged queueing turned off, and write caching turned on. 384 */ 385 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 386 /*quirks*/0, /*mintags*/0, /*maxtags*/0 387 }, 388 { 389 /* 390 * Doesn't handle queue full condition correctly, 391 * so we need to limit maxtags to what the device 392 * can handle instead of determining this automatically. 393 */ 394 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 395 /*quirks*/0, /*mintags*/2, /*maxtags*/32 396 }, 397 { 398 /* Really only one LUN */ 399 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 400 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 401 }, 402 { 403 /* I can't believe we need a quirk for DPT volumes. */ 404 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 405 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 406 /*mintags*/0, /*maxtags*/255 407 }, 408 { 409 /* 410 * Many Sony CDROM drives don't like multi-LUN probing. 411 */ 412 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 413 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 414 }, 415 { 416 /* 417 * This drive doesn't like multiple LUN probing. 418 * Submitted by: Parag Patel <parag@cgt.com> 419 */ 420 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 421 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 422 }, 423 { 424 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 425 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 426 }, 427 { 428 /* 429 * The 8200 doesn't like multi-lun probing, and probably 430 * don't like serial number requests either. 431 */ 432 { 433 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 434 "EXB-8200*", "*" 435 }, 436 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 437 }, 438 { 439 /* 440 * Let's try the same as above, but for a drive that says 441 * it's an IPL-6860 but is actually an EXB 8200. 442 */ 443 { 444 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 445 "IPL-6860*", "*" 446 }, 447 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 448 }, 449 { 450 /* 451 * These Hitachi drives don't like multi-lun probing. 452 * The PR submitter has a DK319H, but says that the Linux 453 * kernel has a similar work-around for the DK312 and DK314, 454 * so all DK31* drives are quirked here. 455 * PR: misc/18793 456 * Submitted by: Paul Haddad <paul@pth.com> 457 */ 458 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 459 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 460 }, 461 { 462 /* 463 * The Hitachi CJ series with J8A8 firmware apparantly has 464 * problems with tagged commands. 465 * PR: 23536 466 * Reported by: amagai@nue.org 467 */ 468 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 469 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 470 }, 471 { 472 /* 473 * These are the large storage arrays. 474 * Submitted by: William Carrel <william.carrel@infospace.com> 475 */ 476 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 477 CAM_QUIRK_HILUNS, 2, 1024 478 }, 479 { 480 /* 481 * This old revision of the TDC3600 is also SCSI-1, and 482 * hangs upon serial number probing. 483 */ 484 { 485 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 486 " TDC 3600", "U07:" 487 }, 488 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 489 }, 490 { 491 /* 492 * Maxtor Personal Storage 3000XT (Firewire) 493 * hangs upon serial number probing. 494 */ 495 { 496 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 497 "1394 storage", "*" 498 }, 499 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 500 }, 501 { 502 /* 503 * Would repond to all LUNs if asked for. 504 */ 505 { 506 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 507 "CP150", "*" 508 }, 509 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 510 }, 511 { 512 /* 513 * Would repond to all LUNs if asked for. 514 */ 515 { 516 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 517 "96X2*", "*" 518 }, 519 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 520 }, 521 { 522 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 523 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 524 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 525 }, 526 { 527 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 528 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 529 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 530 }, 531 { 532 /* TeraSolutions special settings for TRC-22 RAID */ 533 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 534 /*quirks*/0, /*mintags*/55, /*maxtags*/255 535 }, 536 { 537 /* Veritas Storage Appliance */ 538 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 539 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 540 }, 541 { 542 /* 543 * Would respond to all LUNs. Device type and removable 544 * flag are jumper-selectable. 545 */ 546 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 547 "Tahiti 1", "*" 548 }, 549 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 550 }, 551 { 552 /* Default tagged queuing parameters for all devices */ 553 { 554 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 555 /*vendor*/"*", /*product*/"*", /*revision*/"*" 556 }, 557 /*quirks*/0, /*mintags*/2, /*maxtags*/255 558 }, 559 }; 560 561 static const int xpt_quirk_table_size = 562 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 563 564 typedef enum { 565 DM_RET_COPY = 0x01, 566 DM_RET_FLAG_MASK = 0x0f, 567 DM_RET_NONE = 0x00, 568 DM_RET_STOP = 0x10, 569 DM_RET_DESCEND = 0x20, 570 DM_RET_ERROR = 0x30, 571 DM_RET_ACTION_MASK = 0xf0 572 } dev_match_ret; 573 574 typedef enum { 575 XPT_DEPTH_BUS, 576 XPT_DEPTH_TARGET, 577 XPT_DEPTH_DEVICE, 578 XPT_DEPTH_PERIPH 579 } xpt_traverse_depth; 580 581 struct xpt_traverse_config { 582 xpt_traverse_depth depth; 583 void *tr_func; 584 void *tr_arg; 585 }; 586 587 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 588 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 589 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 590 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 591 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 592 593 /* Transport layer configuration information */ 594 static struct xpt_softc xsoftc; 595 596 /* Queues for our software interrupt handler */ 597 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 598 static cam_isrq_t cam_bioq; 599 static cam_isrq_t cam_netq; 600 601 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 602 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 603 static u_int xpt_max_ccbs; /* 604 * Maximum size of ccb pool. Modified as 605 * devices are added/removed or have their 606 * opening counts changed. 607 */ 608 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 609 610 struct cam_periph *xpt_periph; 611 612 static periph_init_t xpt_periph_init; 613 614 static periph_init_t probe_periph_init; 615 616 static struct periph_driver xpt_driver = 617 { 618 xpt_periph_init, "xpt", 619 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 620 }; 621 622 static struct periph_driver probe_driver = 623 { 624 probe_periph_init, "probe", 625 TAILQ_HEAD_INITIALIZER(probe_driver.units) 626 }; 627 628 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 629 PERIPHDRIVER_DECLARE(probe, probe_driver); 630 631 #define XPT_CDEV_MAJOR 104 632 633 static d_open_t xptopen; 634 static d_close_t xptclose; 635 static d_ioctl_t xptioctl; 636 637 static struct cdevsw xpt_cdevsw = { 638 .d_open = xptopen, 639 .d_close = xptclose, 640 .d_ioctl = xptioctl, 641 .d_name = "xpt", 642 .d_maj = XPT_CDEV_MAJOR, 643 }; 644 645 static struct intr_config_hook *xpt_config_hook; 646 647 /* Registered busses */ 648 static TAILQ_HEAD(,cam_eb) xpt_busses; 649 static u_int bus_generation; 650 651 /* Storage for debugging datastructures */ 652 #ifdef CAMDEBUG 653 struct cam_path *cam_dpath; 654 u_int32_t cam_dflags; 655 u_int32_t cam_debug_delay; 656 #endif 657 658 /* Pointers to software interrupt handlers */ 659 static void *camnet_ih; 660 static void *cambio_ih; 661 662 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 663 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 664 #endif 665 666 /* 667 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 668 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 669 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 670 */ 671 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 672 || defined(CAM_DEBUG_LUN) 673 #ifdef CAMDEBUG 674 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 675 || !defined(CAM_DEBUG_LUN) 676 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 677 and CAM_DEBUG_LUN" 678 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 679 #else /* !CAMDEBUG */ 680 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 681 #endif /* CAMDEBUG */ 682 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 683 684 /* Our boot-time initialization hook */ 685 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 686 687 static moduledata_t cam_moduledata = { 688 "cam", 689 cam_module_event_handler, 690 NULL 691 }; 692 693 static void xpt_init(void *); 694 695 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 696 MODULE_VERSION(cam, 1); 697 698 699 static cam_status xpt_compile_path(struct cam_path *new_path, 700 struct cam_periph *perph, 701 path_id_t path_id, 702 target_id_t target_id, 703 lun_id_t lun_id); 704 705 static void xpt_release_path(struct cam_path *path); 706 707 static void xpt_async_bcast(struct async_list *async_head, 708 u_int32_t async_code, 709 struct cam_path *path, 710 void *async_arg); 711 static void xpt_dev_async(u_int32_t async_code, 712 struct cam_eb *bus, 713 struct cam_et *target, 714 struct cam_ed *device, 715 void *async_arg); 716 static path_id_t xptnextfreepathid(void); 717 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 718 static union ccb *xpt_get_ccb(struct cam_ed *device); 719 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 720 u_int32_t new_priority); 721 static void xpt_run_dev_allocq(struct cam_eb *bus); 722 static void xpt_run_dev_sendq(struct cam_eb *bus); 723 static timeout_t xpt_release_devq_timeout; 724 static timeout_t xpt_release_simq_timeout; 725 static void xpt_release_bus(struct cam_eb *bus); 726 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 727 int run_queue); 728 static struct cam_et* 729 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 730 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 731 static struct cam_ed* 732 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 733 lun_id_t lun_id); 734 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 735 struct cam_ed *device); 736 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 737 static struct cam_eb* 738 xpt_find_bus(path_id_t path_id); 739 static struct cam_et* 740 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 741 static struct cam_ed* 742 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 743 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 744 static void xpt_scan_lun(struct cam_periph *periph, 745 struct cam_path *path, cam_flags flags, 746 union ccb *ccb); 747 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 748 static xpt_busfunc_t xptconfigbuscountfunc; 749 static xpt_busfunc_t xptconfigfunc; 750 static void xpt_config(void *arg); 751 static xpt_devicefunc_t xptpassannouncefunc; 752 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 753 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 754 static void xptpoll(struct cam_sim *sim); 755 static void camisr(void *); 756 #if 0 757 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 758 static void xptasync(struct cam_periph *periph, 759 u_int32_t code, cam_path *path); 760 #endif 761 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 762 u_int num_patterns, struct cam_eb *bus); 763 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 764 u_int num_patterns, 765 struct cam_ed *device); 766 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 767 u_int num_patterns, 768 struct cam_periph *periph); 769 static xpt_busfunc_t xptedtbusfunc; 770 static xpt_targetfunc_t xptedttargetfunc; 771 static xpt_devicefunc_t xptedtdevicefunc; 772 static xpt_periphfunc_t xptedtperiphfunc; 773 static xpt_pdrvfunc_t xptplistpdrvfunc; 774 static xpt_periphfunc_t xptplistperiphfunc; 775 static int xptedtmatch(struct ccb_dev_match *cdm); 776 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 777 static int xptbustraverse(struct cam_eb *start_bus, 778 xpt_busfunc_t *tr_func, void *arg); 779 static int xpttargettraverse(struct cam_eb *bus, 780 struct cam_et *start_target, 781 xpt_targetfunc_t *tr_func, void *arg); 782 static int xptdevicetraverse(struct cam_et *target, 783 struct cam_ed *start_device, 784 xpt_devicefunc_t *tr_func, void *arg); 785 static int xptperiphtraverse(struct cam_ed *device, 786 struct cam_periph *start_periph, 787 xpt_periphfunc_t *tr_func, void *arg); 788 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 789 xpt_pdrvfunc_t *tr_func, void *arg); 790 static int xptpdperiphtraverse(struct periph_driver **pdrv, 791 struct cam_periph *start_periph, 792 xpt_periphfunc_t *tr_func, 793 void *arg); 794 static xpt_busfunc_t xptdefbusfunc; 795 static xpt_targetfunc_t xptdeftargetfunc; 796 static xpt_devicefunc_t xptdefdevicefunc; 797 static xpt_periphfunc_t xptdefperiphfunc; 798 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 799 #ifdef notusedyet 800 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 801 void *arg); 802 #endif 803 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 804 void *arg); 805 #ifdef notusedyet 806 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 807 void *arg); 808 #endif 809 static xpt_devicefunc_t xptsetasyncfunc; 810 static xpt_busfunc_t xptsetasyncbusfunc; 811 static cam_status xptregister(struct cam_periph *periph, 812 void *arg); 813 static cam_status proberegister(struct cam_periph *periph, 814 void *arg); 815 static void probeschedule(struct cam_periph *probe_periph); 816 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 817 static void proberequestdefaultnegotiation(struct cam_periph *periph); 818 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 819 static void probecleanup(struct cam_periph *periph); 820 static void xpt_find_quirk(struct cam_ed *device); 821 #ifdef CAM_NEW_TRAN_CODE 822 static void xpt_devise_transport(struct cam_path *path); 823 #endif /* CAM_NEW_TRAN_CODE */ 824 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 825 struct cam_ed *device, 826 int async_update); 827 static void xpt_toggle_tags(struct cam_path *path); 828 static void xpt_start_tags(struct cam_path *path); 829 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 830 struct cam_ed *dev); 831 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 832 struct cam_ed *dev); 833 static __inline int periph_is_queued(struct cam_periph *periph); 834 static __inline int device_is_alloc_queued(struct cam_ed *device); 835 static __inline int device_is_send_queued(struct cam_ed *device); 836 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 837 838 static __inline int 839 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 840 { 841 int retval; 842 843 if (dev->ccbq.devq_openings > 0) { 844 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 845 cam_ccbq_resize(&dev->ccbq, 846 dev->ccbq.dev_openings 847 + dev->ccbq.dev_active); 848 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 849 } 850 /* 851 * The priority of a device waiting for CCB resources 852 * is that of the the highest priority peripheral driver 853 * enqueued. 854 */ 855 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 856 &dev->alloc_ccb_entry.pinfo, 857 CAMQ_GET_HEAD(&dev->drvq)->priority); 858 } else { 859 retval = 0; 860 } 861 862 return (retval); 863 } 864 865 static __inline int 866 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 867 { 868 int retval; 869 870 if (dev->ccbq.dev_openings > 0) { 871 /* 872 * The priority of a device waiting for controller 873 * resources is that of the the highest priority CCB 874 * enqueued. 875 */ 876 retval = 877 xpt_schedule_dev(&bus->sim->devq->send_queue, 878 &dev->send_ccb_entry.pinfo, 879 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 880 } else { 881 retval = 0; 882 } 883 return (retval); 884 } 885 886 static __inline int 887 periph_is_queued(struct cam_periph *periph) 888 { 889 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 890 } 891 892 static __inline int 893 device_is_alloc_queued(struct cam_ed *device) 894 { 895 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 896 } 897 898 static __inline int 899 device_is_send_queued(struct cam_ed *device) 900 { 901 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 902 } 903 904 static __inline int 905 dev_allocq_is_runnable(struct cam_devq *devq) 906 { 907 /* 908 * Have work to do. 909 * Have space to do more work. 910 * Allowed to do work. 911 */ 912 return ((devq->alloc_queue.qfrozen_cnt == 0) 913 && (devq->alloc_queue.entries > 0) 914 && (devq->alloc_openings > 0)); 915 } 916 917 static void 918 xpt_periph_init() 919 { 920 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 921 } 922 923 static void 924 probe_periph_init() 925 { 926 } 927 928 929 static void 930 xptdone(struct cam_periph *periph, union ccb *done_ccb) 931 { 932 /* Caller will release the CCB */ 933 wakeup(&done_ccb->ccb_h.cbfcnp); 934 } 935 936 static int 937 xptopen(dev_t dev, int flags, int fmt, struct thread *td) 938 { 939 int unit; 940 941 unit = minor(dev) & 0xff; 942 943 /* 944 * Only allow read-write access. 945 */ 946 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 947 return(EPERM); 948 949 /* 950 * We don't allow nonblocking access. 951 */ 952 if ((flags & O_NONBLOCK) != 0) { 953 printf("xpt%d: can't do nonblocking access\n", unit); 954 return(ENODEV); 955 } 956 957 /* 958 * We only have one transport layer right now. If someone accesses 959 * us via something other than minor number 1, point out their 960 * mistake. 961 */ 962 if (unit != 0) { 963 printf("xptopen: got invalid xpt unit %d\n", unit); 964 return(ENXIO); 965 } 966 967 /* Mark ourselves open */ 968 xsoftc.flags |= XPT_FLAG_OPEN; 969 970 return(0); 971 } 972 973 static int 974 xptclose(dev_t dev, int flag, int fmt, struct thread *td) 975 { 976 int unit; 977 978 unit = minor(dev) & 0xff; 979 980 /* 981 * We only have one transport layer right now. If someone accesses 982 * us via something other than minor number 1, point out their 983 * mistake. 984 */ 985 if (unit != 0) { 986 printf("xptclose: got invalid xpt unit %d\n", unit); 987 return(ENXIO); 988 } 989 990 /* Mark ourselves closed */ 991 xsoftc.flags &= ~XPT_FLAG_OPEN; 992 993 return(0); 994 } 995 996 static int 997 xptioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 998 { 999 int unit, error; 1000 1001 error = 0; 1002 unit = minor(dev) & 0xff; 1003 1004 /* 1005 * We only have one transport layer right now. If someone accesses 1006 * us via something other than minor number 1, point out their 1007 * mistake. 1008 */ 1009 if (unit != 0) { 1010 printf("xptioctl: got invalid xpt unit %d\n", unit); 1011 return(ENXIO); 1012 } 1013 1014 switch(cmd) { 1015 /* 1016 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1017 * to accept CCB types that don't quite make sense to send through a 1018 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1019 * in the CAM spec. 1020 */ 1021 case CAMIOCOMMAND: { 1022 union ccb *ccb; 1023 union ccb *inccb; 1024 1025 inccb = (union ccb *)addr; 1026 1027 switch(inccb->ccb_h.func_code) { 1028 case XPT_SCAN_BUS: 1029 case XPT_RESET_BUS: 1030 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1031 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1032 error = EINVAL; 1033 break; 1034 } 1035 /* FALLTHROUGH */ 1036 case XPT_PATH_INQ: 1037 case XPT_ENG_INQ: 1038 case XPT_SCAN_LUN: 1039 1040 ccb = xpt_alloc_ccb(); 1041 1042 /* 1043 * Create a path using the bus, target, and lun the 1044 * user passed in. 1045 */ 1046 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1047 inccb->ccb_h.path_id, 1048 inccb->ccb_h.target_id, 1049 inccb->ccb_h.target_lun) != 1050 CAM_REQ_CMP){ 1051 error = EINVAL; 1052 xpt_free_ccb(ccb); 1053 break; 1054 } 1055 /* Ensure all of our fields are correct */ 1056 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1057 inccb->ccb_h.pinfo.priority); 1058 xpt_merge_ccb(ccb, inccb); 1059 ccb->ccb_h.cbfcnp = xptdone; 1060 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1061 bcopy(ccb, inccb, sizeof(union ccb)); 1062 xpt_free_path(ccb->ccb_h.path); 1063 xpt_free_ccb(ccb); 1064 break; 1065 1066 case XPT_DEBUG: { 1067 union ccb ccb; 1068 1069 /* 1070 * This is an immediate CCB, so it's okay to 1071 * allocate it on the stack. 1072 */ 1073 1074 /* 1075 * Create a path using the bus, target, and lun the 1076 * user passed in. 1077 */ 1078 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1079 inccb->ccb_h.path_id, 1080 inccb->ccb_h.target_id, 1081 inccb->ccb_h.target_lun) != 1082 CAM_REQ_CMP){ 1083 error = EINVAL; 1084 break; 1085 } 1086 /* Ensure all of our fields are correct */ 1087 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1088 inccb->ccb_h.pinfo.priority); 1089 xpt_merge_ccb(&ccb, inccb); 1090 ccb.ccb_h.cbfcnp = xptdone; 1091 xpt_action(&ccb); 1092 bcopy(&ccb, inccb, sizeof(union ccb)); 1093 xpt_free_path(ccb.ccb_h.path); 1094 break; 1095 1096 } 1097 case XPT_DEV_MATCH: { 1098 struct cam_periph_map_info mapinfo; 1099 struct cam_path *old_path; 1100 1101 /* 1102 * We can't deal with physical addresses for this 1103 * type of transaction. 1104 */ 1105 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1106 error = EINVAL; 1107 break; 1108 } 1109 1110 /* 1111 * Save this in case the caller had it set to 1112 * something in particular. 1113 */ 1114 old_path = inccb->ccb_h.path; 1115 1116 /* 1117 * We really don't need a path for the matching 1118 * code. The path is needed because of the 1119 * debugging statements in xpt_action(). They 1120 * assume that the CCB has a valid path. 1121 */ 1122 inccb->ccb_h.path = xpt_periph->path; 1123 1124 bzero(&mapinfo, sizeof(mapinfo)); 1125 1126 /* 1127 * Map the pattern and match buffers into kernel 1128 * virtual address space. 1129 */ 1130 error = cam_periph_mapmem(inccb, &mapinfo); 1131 1132 if (error) { 1133 inccb->ccb_h.path = old_path; 1134 break; 1135 } 1136 1137 /* 1138 * This is an immediate CCB, we can send it on directly. 1139 */ 1140 xpt_action(inccb); 1141 1142 /* 1143 * Map the buffers back into user space. 1144 */ 1145 cam_periph_unmapmem(inccb, &mapinfo); 1146 1147 inccb->ccb_h.path = old_path; 1148 1149 error = 0; 1150 break; 1151 } 1152 default: 1153 error = ENOTSUP; 1154 break; 1155 } 1156 break; 1157 } 1158 /* 1159 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1160 * with the periphal driver name and unit name filled in. The other 1161 * fields don't really matter as input. The passthrough driver name 1162 * ("pass"), and unit number are passed back in the ccb. The current 1163 * device generation number, and the index into the device peripheral 1164 * driver list, and the status are also passed back. Note that 1165 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1166 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1167 * (or rather should be) impossible for the device peripheral driver 1168 * list to change since we look at the whole thing in one pass, and 1169 * we do it with splcam protection. 1170 * 1171 */ 1172 case CAMGETPASSTHRU: { 1173 union ccb *ccb; 1174 struct cam_periph *periph; 1175 struct periph_driver **p_drv; 1176 char *name; 1177 u_int unit; 1178 u_int cur_generation; 1179 int base_periph_found; 1180 int splbreaknum; 1181 int s; 1182 1183 ccb = (union ccb *)addr; 1184 unit = ccb->cgdl.unit_number; 1185 name = ccb->cgdl.periph_name; 1186 /* 1187 * Every 100 devices, we want to drop our spl protection to 1188 * give the software interrupt handler a chance to run. 1189 * Most systems won't run into this check, but this should 1190 * avoid starvation in the software interrupt handler in 1191 * large systems. 1192 */ 1193 splbreaknum = 100; 1194 1195 ccb = (union ccb *)addr; 1196 1197 base_periph_found = 0; 1198 1199 /* 1200 * Sanity check -- make sure we don't get a null peripheral 1201 * driver name. 1202 */ 1203 if (*ccb->cgdl.periph_name == '\0') { 1204 error = EINVAL; 1205 break; 1206 } 1207 1208 /* Keep the list from changing while we traverse it */ 1209 s = splcam(); 1210 ptstartover: 1211 cur_generation = xsoftc.generation; 1212 1213 /* first find our driver in the list of drivers */ 1214 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1215 if (strcmp((*p_drv)->driver_name, name) == 0) 1216 break; 1217 1218 if (*p_drv == NULL) { 1219 splx(s); 1220 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1221 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1222 *ccb->cgdl.periph_name = '\0'; 1223 ccb->cgdl.unit_number = 0; 1224 error = ENOENT; 1225 break; 1226 } 1227 1228 /* 1229 * Run through every peripheral instance of this driver 1230 * and check to see whether it matches the unit passed 1231 * in by the user. If it does, get out of the loops and 1232 * find the passthrough driver associated with that 1233 * peripheral driver. 1234 */ 1235 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1236 periph = TAILQ_NEXT(periph, unit_links)) { 1237 1238 if (periph->unit_number == unit) { 1239 break; 1240 } else if (--splbreaknum == 0) { 1241 splx(s); 1242 s = splcam(); 1243 splbreaknum = 100; 1244 if (cur_generation != xsoftc.generation) 1245 goto ptstartover; 1246 } 1247 } 1248 /* 1249 * If we found the peripheral driver that the user passed 1250 * in, go through all of the peripheral drivers for that 1251 * particular device and look for a passthrough driver. 1252 */ 1253 if (periph != NULL) { 1254 struct cam_ed *device; 1255 int i; 1256 1257 base_periph_found = 1; 1258 device = periph->path->device; 1259 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1260 periph != NULL; 1261 periph = SLIST_NEXT(periph, periph_links), i++) { 1262 /* 1263 * Check to see whether we have a 1264 * passthrough device or not. 1265 */ 1266 if (strcmp(periph->periph_name, "pass") == 0) { 1267 /* 1268 * Fill in the getdevlist fields. 1269 */ 1270 strcpy(ccb->cgdl.periph_name, 1271 periph->periph_name); 1272 ccb->cgdl.unit_number = 1273 periph->unit_number; 1274 if (SLIST_NEXT(periph, periph_links)) 1275 ccb->cgdl.status = 1276 CAM_GDEVLIST_MORE_DEVS; 1277 else 1278 ccb->cgdl.status = 1279 CAM_GDEVLIST_LAST_DEVICE; 1280 ccb->cgdl.generation = 1281 device->generation; 1282 ccb->cgdl.index = i; 1283 /* 1284 * Fill in some CCB header fields 1285 * that the user may want. 1286 */ 1287 ccb->ccb_h.path_id = 1288 periph->path->bus->path_id; 1289 ccb->ccb_h.target_id = 1290 periph->path->target->target_id; 1291 ccb->ccb_h.target_lun = 1292 periph->path->device->lun_id; 1293 ccb->ccb_h.status = CAM_REQ_CMP; 1294 break; 1295 } 1296 } 1297 } 1298 1299 /* 1300 * If the periph is null here, one of two things has 1301 * happened. The first possibility is that we couldn't 1302 * find the unit number of the particular peripheral driver 1303 * that the user is asking about. e.g. the user asks for 1304 * the passthrough driver for "da11". We find the list of 1305 * "da" peripherals all right, but there is no unit 11. 1306 * The other possibility is that we went through the list 1307 * of peripheral drivers attached to the device structure, 1308 * but didn't find one with the name "pass". Either way, 1309 * we return ENOENT, since we couldn't find something. 1310 */ 1311 if (periph == NULL) { 1312 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1313 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1314 *ccb->cgdl.periph_name = '\0'; 1315 ccb->cgdl.unit_number = 0; 1316 error = ENOENT; 1317 /* 1318 * It is unfortunate that this is even necessary, 1319 * but there are many, many clueless users out there. 1320 * If this is true, the user is looking for the 1321 * passthrough driver, but doesn't have one in his 1322 * kernel. 1323 */ 1324 if (base_periph_found == 1) { 1325 printf("xptioctl: pass driver is not in the " 1326 "kernel\n"); 1327 printf("xptioctl: put \"device pass0\" in " 1328 "your kernel config file\n"); 1329 } 1330 } 1331 splx(s); 1332 break; 1333 } 1334 default: 1335 error = ENOTTY; 1336 break; 1337 } 1338 1339 return(error); 1340 } 1341 1342 static int 1343 cam_module_event_handler(module_t mod, int what, void *arg) 1344 { 1345 if (what == MOD_LOAD) { 1346 xpt_init(NULL); 1347 } else if (what == MOD_UNLOAD) { 1348 return EBUSY; 1349 } 1350 1351 return 0; 1352 } 1353 1354 /* Functions accessed by the peripheral drivers */ 1355 static void 1356 xpt_init(dummy) 1357 void *dummy; 1358 { 1359 struct cam_sim *xpt_sim; 1360 struct cam_path *path; 1361 struct cam_devq *devq; 1362 cam_status status; 1363 1364 TAILQ_INIT(&xpt_busses); 1365 TAILQ_INIT(&cam_bioq); 1366 TAILQ_INIT(&cam_netq); 1367 SLIST_INIT(&ccb_freeq); 1368 STAILQ_INIT(&highpowerq); 1369 1370 /* 1371 * The xpt layer is, itself, the equivelent of a SIM. 1372 * Allow 16 ccbs in the ccb pool for it. This should 1373 * give decent parallelism when we probe busses and 1374 * perform other XPT functions. 1375 */ 1376 devq = cam_simq_alloc(16); 1377 xpt_sim = cam_sim_alloc(xptaction, 1378 xptpoll, 1379 "xpt", 1380 /*softc*/NULL, 1381 /*unit*/0, 1382 /*max_dev_transactions*/0, 1383 /*max_tagged_dev_transactions*/0, 1384 devq); 1385 xpt_max_ccbs = 16; 1386 1387 xpt_bus_register(xpt_sim, /*bus #*/0); 1388 1389 /* 1390 * Looking at the XPT from the SIM layer, the XPT is 1391 * the equivelent of a peripheral driver. Allocate 1392 * a peripheral driver entry for us. 1393 */ 1394 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1395 CAM_TARGET_WILDCARD, 1396 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1397 printf("xpt_init: xpt_create_path failed with status %#x," 1398 " failing attach\n", status); 1399 return; 1400 } 1401 1402 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1403 path, NULL, 0, NULL); 1404 xpt_free_path(path); 1405 1406 xpt_sim->softc = xpt_periph; 1407 1408 /* 1409 * Register a callback for when interrupts are enabled. 1410 */ 1411 xpt_config_hook = 1412 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1413 M_TEMP, M_NOWAIT | M_ZERO); 1414 if (xpt_config_hook == NULL) { 1415 printf("xpt_init: Cannot malloc config hook " 1416 "- failing attach\n"); 1417 return; 1418 } 1419 1420 xpt_config_hook->ich_func = xpt_config; 1421 if (config_intrhook_establish(xpt_config_hook) != 0) { 1422 free (xpt_config_hook, M_TEMP); 1423 printf("xpt_init: config_intrhook_establish failed " 1424 "- failing attach\n"); 1425 } 1426 1427 /* Install our software interrupt handlers */ 1428 swi_add(NULL, "camnet", camisr, &cam_netq, SWI_CAMNET, 0, &camnet_ih); 1429 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1430 } 1431 1432 static cam_status 1433 xptregister(struct cam_periph *periph, void *arg) 1434 { 1435 if (periph == NULL) { 1436 printf("xptregister: periph was NULL!!\n"); 1437 return(CAM_REQ_CMP_ERR); 1438 } 1439 1440 periph->softc = NULL; 1441 1442 xpt_periph = periph; 1443 1444 return(CAM_REQ_CMP); 1445 } 1446 1447 int32_t 1448 xpt_add_periph(struct cam_periph *periph) 1449 { 1450 struct cam_ed *device; 1451 int32_t status; 1452 struct periph_list *periph_head; 1453 1454 device = periph->path->device; 1455 1456 periph_head = &device->periphs; 1457 1458 status = CAM_REQ_CMP; 1459 1460 if (device != NULL) { 1461 int s; 1462 1463 /* 1464 * Make room for this peripheral 1465 * so it will fit in the queue 1466 * when it's scheduled to run 1467 */ 1468 s = splsoftcam(); 1469 status = camq_resize(&device->drvq, 1470 device->drvq.array_size + 1); 1471 1472 device->generation++; 1473 1474 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1475 1476 splx(s); 1477 } 1478 1479 xsoftc.generation++; 1480 1481 return (status); 1482 } 1483 1484 void 1485 xpt_remove_periph(struct cam_periph *periph) 1486 { 1487 struct cam_ed *device; 1488 1489 device = periph->path->device; 1490 1491 if (device != NULL) { 1492 int s; 1493 struct periph_list *periph_head; 1494 1495 periph_head = &device->periphs; 1496 1497 /* Release the slot for this peripheral */ 1498 s = splsoftcam(); 1499 camq_resize(&device->drvq, device->drvq.array_size - 1); 1500 1501 device->generation++; 1502 1503 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1504 1505 splx(s); 1506 } 1507 1508 xsoftc.generation++; 1509 1510 } 1511 1512 #ifdef CAM_NEW_TRAN_CODE 1513 1514 void 1515 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1516 { 1517 struct ccb_pathinq cpi; 1518 struct ccb_trans_settings cts; 1519 struct cam_path *path; 1520 u_int speed; 1521 u_int freq; 1522 u_int mb; 1523 int s; 1524 1525 path = periph->path; 1526 /* 1527 * To ensure that this is printed in one piece, 1528 * mask out CAM interrupts. 1529 */ 1530 s = splsoftcam(); 1531 printf("%s%d at %s%d bus %d target %d lun %d\n", 1532 periph->periph_name, periph->unit_number, 1533 path->bus->sim->sim_name, 1534 path->bus->sim->unit_number, 1535 path->bus->sim->bus_id, 1536 path->target->target_id, 1537 path->device->lun_id); 1538 printf("%s%d: ", periph->periph_name, periph->unit_number); 1539 scsi_print_inquiry(&path->device->inq_data); 1540 if (bootverbose && path->device->serial_num_len > 0) { 1541 /* Don't wrap the screen - print only the first 60 chars */ 1542 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1543 periph->unit_number, path->device->serial_num); 1544 } 1545 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1546 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1547 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1548 xpt_action((union ccb*)&cts); 1549 1550 /* Ask the SIM for its base transfer speed */ 1551 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1552 cpi.ccb_h.func_code = XPT_PATH_INQ; 1553 xpt_action((union ccb *)&cpi); 1554 1555 speed = cpi.base_transfer_speed; 1556 freq = 0; 1557 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1558 struct ccb_trans_settings_spi *spi; 1559 1560 spi = &cts.xport_specific.spi; 1561 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1562 && spi->sync_offset != 0) { 1563 freq = scsi_calc_syncsrate(spi->sync_period); 1564 speed = freq; 1565 } 1566 1567 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1568 speed *= (0x01 << spi->bus_width); 1569 } 1570 1571 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1572 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1573 if (fc->valid & CTS_FC_VALID_SPEED) { 1574 speed = fc->bitrate; 1575 } 1576 } 1577 1578 mb = speed / 1000; 1579 if (mb > 0) 1580 printf("%s%d: %d.%03dMB/s transfers", 1581 periph->periph_name, periph->unit_number, 1582 mb, speed % 1000); 1583 else 1584 printf("%s%d: %dKB/s transfers", periph->periph_name, 1585 periph->unit_number, speed); 1586 /* Report additional information about SPI connections */ 1587 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1588 struct ccb_trans_settings_spi *spi; 1589 1590 spi = &cts.xport_specific.spi; 1591 if (freq != 0) { 1592 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1593 freq % 1000, 1594 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1595 ? " DT" : "", 1596 spi->sync_offset); 1597 } 1598 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1599 && spi->bus_width > 0) { 1600 if (freq != 0) { 1601 printf(", "); 1602 } else { 1603 printf(" ("); 1604 } 1605 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1606 } else if (freq != 0) { 1607 printf(")"); 1608 } 1609 } 1610 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1611 struct ccb_trans_settings_fc *fc; 1612 1613 fc = &cts.xport_specific.fc; 1614 if (fc->valid & CTS_FC_VALID_WWNN) 1615 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1616 if (fc->valid & CTS_FC_VALID_WWPN) 1617 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1618 if (fc->valid & CTS_FC_VALID_PORT) 1619 printf(" PortID 0x%x", fc->port); 1620 } 1621 1622 if (path->device->inq_flags & SID_CmdQue 1623 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1624 printf("\n%s%d: Tagged Queueing Enabled", 1625 periph->periph_name, periph->unit_number); 1626 } 1627 printf("\n"); 1628 1629 /* 1630 * We only want to print the caller's announce string if they've 1631 * passed one in.. 1632 */ 1633 if (announce_string != NULL) 1634 printf("%s%d: %s\n", periph->periph_name, 1635 periph->unit_number, announce_string); 1636 splx(s); 1637 } 1638 #else /* CAM_NEW_TRAN_CODE */ 1639 void 1640 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1641 { 1642 int s; 1643 u_int mb; 1644 struct cam_path *path; 1645 struct ccb_trans_settings cts; 1646 1647 path = periph->path; 1648 /* 1649 * To ensure that this is printed in one piece, 1650 * mask out CAM interrupts. 1651 */ 1652 s = splsoftcam(); 1653 printf("%s%d at %s%d bus %d target %d lun %d\n", 1654 periph->periph_name, periph->unit_number, 1655 path->bus->sim->sim_name, 1656 path->bus->sim->unit_number, 1657 path->bus->sim->bus_id, 1658 path->target->target_id, 1659 path->device->lun_id); 1660 printf("%s%d: ", periph->periph_name, periph->unit_number); 1661 scsi_print_inquiry(&path->device->inq_data); 1662 if ((bootverbose) 1663 && (path->device->serial_num_len > 0)) { 1664 /* Don't wrap the screen - print only the first 60 chars */ 1665 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1666 periph->unit_number, path->device->serial_num); 1667 } 1668 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1669 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1670 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1671 xpt_action((union ccb*)&cts); 1672 if (cts.ccb_h.status == CAM_REQ_CMP) { 1673 u_int speed; 1674 u_int freq; 1675 1676 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1677 && cts.sync_offset != 0) { 1678 freq = scsi_calc_syncsrate(cts.sync_period); 1679 speed = freq; 1680 } else { 1681 struct ccb_pathinq cpi; 1682 1683 /* Ask the SIM for its base transfer speed */ 1684 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1685 cpi.ccb_h.func_code = XPT_PATH_INQ; 1686 xpt_action((union ccb *)&cpi); 1687 1688 speed = cpi.base_transfer_speed; 1689 freq = 0; 1690 } 1691 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1692 speed *= (0x01 << cts.bus_width); 1693 mb = speed / 1000; 1694 if (mb > 0) 1695 printf("%s%d: %d.%03dMB/s transfers", 1696 periph->periph_name, periph->unit_number, 1697 mb, speed % 1000); 1698 else 1699 printf("%s%d: %dKB/s transfers", periph->periph_name, 1700 periph->unit_number, speed); 1701 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1702 && cts.sync_offset != 0) { 1703 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1704 freq % 1000, cts.sync_offset); 1705 } 1706 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1707 && cts.bus_width > 0) { 1708 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1709 && cts.sync_offset != 0) { 1710 printf(", "); 1711 } else { 1712 printf(" ("); 1713 } 1714 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1715 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1716 && cts.sync_offset != 0) { 1717 printf(")"); 1718 } 1719 1720 if (path->device->inq_flags & SID_CmdQue 1721 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1722 printf(", Tagged Queueing Enabled"); 1723 } 1724 1725 printf("\n"); 1726 } else if (path->device->inq_flags & SID_CmdQue 1727 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1728 printf("%s%d: Tagged Queueing Enabled\n", 1729 periph->periph_name, periph->unit_number); 1730 } 1731 1732 /* 1733 * We only want to print the caller's announce string if they've 1734 * passed one in.. 1735 */ 1736 if (announce_string != NULL) 1737 printf("%s%d: %s\n", periph->periph_name, 1738 periph->unit_number, announce_string); 1739 splx(s); 1740 } 1741 1742 #endif /* CAM_NEW_TRAN_CODE */ 1743 1744 static dev_match_ret 1745 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1746 struct cam_eb *bus) 1747 { 1748 dev_match_ret retval; 1749 int i; 1750 1751 retval = DM_RET_NONE; 1752 1753 /* 1754 * If we aren't given something to match against, that's an error. 1755 */ 1756 if (bus == NULL) 1757 return(DM_RET_ERROR); 1758 1759 /* 1760 * If there are no match entries, then this bus matches no 1761 * matter what. 1762 */ 1763 if ((patterns == NULL) || (num_patterns == 0)) 1764 return(DM_RET_DESCEND | DM_RET_COPY); 1765 1766 for (i = 0; i < num_patterns; i++) { 1767 struct bus_match_pattern *cur_pattern; 1768 1769 /* 1770 * If the pattern in question isn't for a bus node, we 1771 * aren't interested. However, we do indicate to the 1772 * calling routine that we should continue descending the 1773 * tree, since the user wants to match against lower-level 1774 * EDT elements. 1775 */ 1776 if (patterns[i].type != DEV_MATCH_BUS) { 1777 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1778 retval |= DM_RET_DESCEND; 1779 continue; 1780 } 1781 1782 cur_pattern = &patterns[i].pattern.bus_pattern; 1783 1784 /* 1785 * If they want to match any bus node, we give them any 1786 * device node. 1787 */ 1788 if (cur_pattern->flags == BUS_MATCH_ANY) { 1789 /* set the copy flag */ 1790 retval |= DM_RET_COPY; 1791 1792 /* 1793 * If we've already decided on an action, go ahead 1794 * and return. 1795 */ 1796 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1797 return(retval); 1798 } 1799 1800 /* 1801 * Not sure why someone would do this... 1802 */ 1803 if (cur_pattern->flags == BUS_MATCH_NONE) 1804 continue; 1805 1806 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1807 && (cur_pattern->path_id != bus->path_id)) 1808 continue; 1809 1810 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1811 && (cur_pattern->bus_id != bus->sim->bus_id)) 1812 continue; 1813 1814 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1815 && (cur_pattern->unit_number != bus->sim->unit_number)) 1816 continue; 1817 1818 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1819 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1820 DEV_IDLEN) != 0)) 1821 continue; 1822 1823 /* 1824 * If we get to this point, the user definitely wants 1825 * information on this bus. So tell the caller to copy the 1826 * data out. 1827 */ 1828 retval |= DM_RET_COPY; 1829 1830 /* 1831 * If the return action has been set to descend, then we 1832 * know that we've already seen a non-bus matching 1833 * expression, therefore we need to further descend the tree. 1834 * This won't change by continuing around the loop, so we 1835 * go ahead and return. If we haven't seen a non-bus 1836 * matching expression, we keep going around the loop until 1837 * we exhaust the matching expressions. We'll set the stop 1838 * flag once we fall out of the loop. 1839 */ 1840 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1841 return(retval); 1842 } 1843 1844 /* 1845 * If the return action hasn't been set to descend yet, that means 1846 * we haven't seen anything other than bus matching patterns. So 1847 * tell the caller to stop descending the tree -- the user doesn't 1848 * want to match against lower level tree elements. 1849 */ 1850 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1851 retval |= DM_RET_STOP; 1852 1853 return(retval); 1854 } 1855 1856 static dev_match_ret 1857 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1858 struct cam_ed *device) 1859 { 1860 dev_match_ret retval; 1861 int i; 1862 1863 retval = DM_RET_NONE; 1864 1865 /* 1866 * If we aren't given something to match against, that's an error. 1867 */ 1868 if (device == NULL) 1869 return(DM_RET_ERROR); 1870 1871 /* 1872 * If there are no match entries, then this device matches no 1873 * matter what. 1874 */ 1875 if ((patterns == NULL) || (patterns == 0)) 1876 return(DM_RET_DESCEND | DM_RET_COPY); 1877 1878 for (i = 0; i < num_patterns; i++) { 1879 struct device_match_pattern *cur_pattern; 1880 1881 /* 1882 * If the pattern in question isn't for a device node, we 1883 * aren't interested. 1884 */ 1885 if (patterns[i].type != DEV_MATCH_DEVICE) { 1886 if ((patterns[i].type == DEV_MATCH_PERIPH) 1887 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1888 retval |= DM_RET_DESCEND; 1889 continue; 1890 } 1891 1892 cur_pattern = &patterns[i].pattern.device_pattern; 1893 1894 /* 1895 * If they want to match any device node, we give them any 1896 * device node. 1897 */ 1898 if (cur_pattern->flags == DEV_MATCH_ANY) { 1899 /* set the copy flag */ 1900 retval |= DM_RET_COPY; 1901 1902 1903 /* 1904 * If we've already decided on an action, go ahead 1905 * and return. 1906 */ 1907 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1908 return(retval); 1909 } 1910 1911 /* 1912 * Not sure why someone would do this... 1913 */ 1914 if (cur_pattern->flags == DEV_MATCH_NONE) 1915 continue; 1916 1917 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1918 && (cur_pattern->path_id != device->target->bus->path_id)) 1919 continue; 1920 1921 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1922 && (cur_pattern->target_id != device->target->target_id)) 1923 continue; 1924 1925 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1926 && (cur_pattern->target_lun != device->lun_id)) 1927 continue; 1928 1929 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1930 && (cam_quirkmatch((caddr_t)&device->inq_data, 1931 (caddr_t)&cur_pattern->inq_pat, 1932 1, sizeof(cur_pattern->inq_pat), 1933 scsi_static_inquiry_match) == NULL)) 1934 continue; 1935 1936 /* 1937 * If we get to this point, the user definitely wants 1938 * information on this device. So tell the caller to copy 1939 * the data out. 1940 */ 1941 retval |= DM_RET_COPY; 1942 1943 /* 1944 * If the return action has been set to descend, then we 1945 * know that we've already seen a peripheral matching 1946 * expression, therefore we need to further descend the tree. 1947 * This won't change by continuing around the loop, so we 1948 * go ahead and return. If we haven't seen a peripheral 1949 * matching expression, we keep going around the loop until 1950 * we exhaust the matching expressions. We'll set the stop 1951 * flag once we fall out of the loop. 1952 */ 1953 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1954 return(retval); 1955 } 1956 1957 /* 1958 * If the return action hasn't been set to descend yet, that means 1959 * we haven't seen any peripheral matching patterns. So tell the 1960 * caller to stop descending the tree -- the user doesn't want to 1961 * match against lower level tree elements. 1962 */ 1963 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1964 retval |= DM_RET_STOP; 1965 1966 return(retval); 1967 } 1968 1969 /* 1970 * Match a single peripheral against any number of match patterns. 1971 */ 1972 static dev_match_ret 1973 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1974 struct cam_periph *periph) 1975 { 1976 dev_match_ret retval; 1977 int i; 1978 1979 /* 1980 * If we aren't given something to match against, that's an error. 1981 */ 1982 if (periph == NULL) 1983 return(DM_RET_ERROR); 1984 1985 /* 1986 * If there are no match entries, then this peripheral matches no 1987 * matter what. 1988 */ 1989 if ((patterns == NULL) || (num_patterns == 0)) 1990 return(DM_RET_STOP | DM_RET_COPY); 1991 1992 /* 1993 * There aren't any nodes below a peripheral node, so there's no 1994 * reason to descend the tree any further. 1995 */ 1996 retval = DM_RET_STOP; 1997 1998 for (i = 0; i < num_patterns; i++) { 1999 struct periph_match_pattern *cur_pattern; 2000 2001 /* 2002 * If the pattern in question isn't for a peripheral, we 2003 * aren't interested. 2004 */ 2005 if (patterns[i].type != DEV_MATCH_PERIPH) 2006 continue; 2007 2008 cur_pattern = &patterns[i].pattern.periph_pattern; 2009 2010 /* 2011 * If they want to match on anything, then we will do so. 2012 */ 2013 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2014 /* set the copy flag */ 2015 retval |= DM_RET_COPY; 2016 2017 /* 2018 * We've already set the return action to stop, 2019 * since there are no nodes below peripherals in 2020 * the tree. 2021 */ 2022 return(retval); 2023 } 2024 2025 /* 2026 * Not sure why someone would do this... 2027 */ 2028 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2029 continue; 2030 2031 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2032 && (cur_pattern->path_id != periph->path->bus->path_id)) 2033 continue; 2034 2035 /* 2036 * For the target and lun id's, we have to make sure the 2037 * target and lun pointers aren't NULL. The xpt peripheral 2038 * has a wildcard target and device. 2039 */ 2040 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2041 && ((periph->path->target == NULL) 2042 ||(cur_pattern->target_id != periph->path->target->target_id))) 2043 continue; 2044 2045 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2046 && ((periph->path->device == NULL) 2047 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2048 continue; 2049 2050 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2051 && (cur_pattern->unit_number != periph->unit_number)) 2052 continue; 2053 2054 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2055 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2056 DEV_IDLEN) != 0)) 2057 continue; 2058 2059 /* 2060 * If we get to this point, the user definitely wants 2061 * information on this peripheral. So tell the caller to 2062 * copy the data out. 2063 */ 2064 retval |= DM_RET_COPY; 2065 2066 /* 2067 * The return action has already been set to stop, since 2068 * peripherals don't have any nodes below them in the EDT. 2069 */ 2070 return(retval); 2071 } 2072 2073 /* 2074 * If we get to this point, the peripheral that was passed in 2075 * doesn't match any of the patterns. 2076 */ 2077 return(retval); 2078 } 2079 2080 static int 2081 xptedtbusfunc(struct cam_eb *bus, void *arg) 2082 { 2083 struct ccb_dev_match *cdm; 2084 dev_match_ret retval; 2085 2086 cdm = (struct ccb_dev_match *)arg; 2087 2088 /* 2089 * If our position is for something deeper in the tree, that means 2090 * that we've already seen this node. So, we keep going down. 2091 */ 2092 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2093 && (cdm->pos.cookie.bus == bus) 2094 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2095 && (cdm->pos.cookie.target != NULL)) 2096 retval = DM_RET_DESCEND; 2097 else 2098 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2099 2100 /* 2101 * If we got an error, bail out of the search. 2102 */ 2103 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2104 cdm->status = CAM_DEV_MATCH_ERROR; 2105 return(0); 2106 } 2107 2108 /* 2109 * If the copy flag is set, copy this bus out. 2110 */ 2111 if (retval & DM_RET_COPY) { 2112 int spaceleft, j; 2113 2114 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2115 sizeof(struct dev_match_result)); 2116 2117 /* 2118 * If we don't have enough space to put in another 2119 * match result, save our position and tell the 2120 * user there are more devices to check. 2121 */ 2122 if (spaceleft < sizeof(struct dev_match_result)) { 2123 bzero(&cdm->pos, sizeof(cdm->pos)); 2124 cdm->pos.position_type = 2125 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2126 2127 cdm->pos.cookie.bus = bus; 2128 cdm->pos.generations[CAM_BUS_GENERATION]= 2129 bus_generation; 2130 cdm->status = CAM_DEV_MATCH_MORE; 2131 return(0); 2132 } 2133 j = cdm->num_matches; 2134 cdm->num_matches++; 2135 cdm->matches[j].type = DEV_MATCH_BUS; 2136 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2137 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2138 cdm->matches[j].result.bus_result.unit_number = 2139 bus->sim->unit_number; 2140 strncpy(cdm->matches[j].result.bus_result.dev_name, 2141 bus->sim->sim_name, DEV_IDLEN); 2142 } 2143 2144 /* 2145 * If the user is only interested in busses, there's no 2146 * reason to descend to the next level in the tree. 2147 */ 2148 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2149 return(1); 2150 2151 /* 2152 * If there is a target generation recorded, check it to 2153 * make sure the target list hasn't changed. 2154 */ 2155 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2156 && (bus == cdm->pos.cookie.bus) 2157 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2158 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2159 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2160 bus->generation)) { 2161 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2162 return(0); 2163 } 2164 2165 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2166 && (cdm->pos.cookie.bus == bus) 2167 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2168 && (cdm->pos.cookie.target != NULL)) 2169 return(xpttargettraverse(bus, 2170 (struct cam_et *)cdm->pos.cookie.target, 2171 xptedttargetfunc, arg)); 2172 else 2173 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2174 } 2175 2176 static int 2177 xptedttargetfunc(struct cam_et *target, void *arg) 2178 { 2179 struct ccb_dev_match *cdm; 2180 2181 cdm = (struct ccb_dev_match *)arg; 2182 2183 /* 2184 * If there is a device list generation recorded, check it to 2185 * make sure the device list hasn't changed. 2186 */ 2187 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2188 && (cdm->pos.cookie.bus == target->bus) 2189 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2190 && (cdm->pos.cookie.target == target) 2191 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2192 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2193 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2194 target->generation)) { 2195 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2196 return(0); 2197 } 2198 2199 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2200 && (cdm->pos.cookie.bus == target->bus) 2201 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2202 && (cdm->pos.cookie.target == target) 2203 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2204 && (cdm->pos.cookie.device != NULL)) 2205 return(xptdevicetraverse(target, 2206 (struct cam_ed *)cdm->pos.cookie.device, 2207 xptedtdevicefunc, arg)); 2208 else 2209 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2210 } 2211 2212 static int 2213 xptedtdevicefunc(struct cam_ed *device, void *arg) 2214 { 2215 2216 struct ccb_dev_match *cdm; 2217 dev_match_ret retval; 2218 2219 cdm = (struct ccb_dev_match *)arg; 2220 2221 /* 2222 * If our position is for something deeper in the tree, that means 2223 * that we've already seen this node. So, we keep going down. 2224 */ 2225 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2226 && (cdm->pos.cookie.device == device) 2227 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2228 && (cdm->pos.cookie.periph != NULL)) 2229 retval = DM_RET_DESCEND; 2230 else 2231 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2232 device); 2233 2234 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2235 cdm->status = CAM_DEV_MATCH_ERROR; 2236 return(0); 2237 } 2238 2239 /* 2240 * If the copy flag is set, copy this device out. 2241 */ 2242 if (retval & DM_RET_COPY) { 2243 int spaceleft, j; 2244 2245 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2246 sizeof(struct dev_match_result)); 2247 2248 /* 2249 * If we don't have enough space to put in another 2250 * match result, save our position and tell the 2251 * user there are more devices to check. 2252 */ 2253 if (spaceleft < sizeof(struct dev_match_result)) { 2254 bzero(&cdm->pos, sizeof(cdm->pos)); 2255 cdm->pos.position_type = 2256 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2257 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2258 2259 cdm->pos.cookie.bus = device->target->bus; 2260 cdm->pos.generations[CAM_BUS_GENERATION]= 2261 bus_generation; 2262 cdm->pos.cookie.target = device->target; 2263 cdm->pos.generations[CAM_TARGET_GENERATION] = 2264 device->target->bus->generation; 2265 cdm->pos.cookie.device = device; 2266 cdm->pos.generations[CAM_DEV_GENERATION] = 2267 device->target->generation; 2268 cdm->status = CAM_DEV_MATCH_MORE; 2269 return(0); 2270 } 2271 j = cdm->num_matches; 2272 cdm->num_matches++; 2273 cdm->matches[j].type = DEV_MATCH_DEVICE; 2274 cdm->matches[j].result.device_result.path_id = 2275 device->target->bus->path_id; 2276 cdm->matches[j].result.device_result.target_id = 2277 device->target->target_id; 2278 cdm->matches[j].result.device_result.target_lun = 2279 device->lun_id; 2280 bcopy(&device->inq_data, 2281 &cdm->matches[j].result.device_result.inq_data, 2282 sizeof(struct scsi_inquiry_data)); 2283 2284 /* Let the user know whether this device is unconfigured */ 2285 if (device->flags & CAM_DEV_UNCONFIGURED) 2286 cdm->matches[j].result.device_result.flags = 2287 DEV_RESULT_UNCONFIGURED; 2288 else 2289 cdm->matches[j].result.device_result.flags = 2290 DEV_RESULT_NOFLAG; 2291 } 2292 2293 /* 2294 * If the user isn't interested in peripherals, don't descend 2295 * the tree any further. 2296 */ 2297 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2298 return(1); 2299 2300 /* 2301 * If there is a peripheral list generation recorded, make sure 2302 * it hasn't changed. 2303 */ 2304 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2305 && (device->target->bus == cdm->pos.cookie.bus) 2306 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2307 && (device->target == cdm->pos.cookie.target) 2308 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2309 && (device == cdm->pos.cookie.device) 2310 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2311 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2312 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2313 device->generation)){ 2314 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2315 return(0); 2316 } 2317 2318 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2319 && (cdm->pos.cookie.bus == device->target->bus) 2320 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2321 && (cdm->pos.cookie.target == device->target) 2322 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2323 && (cdm->pos.cookie.device == device) 2324 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2325 && (cdm->pos.cookie.periph != NULL)) 2326 return(xptperiphtraverse(device, 2327 (struct cam_periph *)cdm->pos.cookie.periph, 2328 xptedtperiphfunc, arg)); 2329 else 2330 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2331 } 2332 2333 static int 2334 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2335 { 2336 struct ccb_dev_match *cdm; 2337 dev_match_ret retval; 2338 2339 cdm = (struct ccb_dev_match *)arg; 2340 2341 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2342 2343 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2344 cdm->status = CAM_DEV_MATCH_ERROR; 2345 return(0); 2346 } 2347 2348 /* 2349 * If the copy flag is set, copy this peripheral out. 2350 */ 2351 if (retval & DM_RET_COPY) { 2352 int spaceleft, j; 2353 2354 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2355 sizeof(struct dev_match_result)); 2356 2357 /* 2358 * If we don't have enough space to put in another 2359 * match result, save our position and tell the 2360 * user there are more devices to check. 2361 */ 2362 if (spaceleft < sizeof(struct dev_match_result)) { 2363 bzero(&cdm->pos, sizeof(cdm->pos)); 2364 cdm->pos.position_type = 2365 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2366 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2367 CAM_DEV_POS_PERIPH; 2368 2369 cdm->pos.cookie.bus = periph->path->bus; 2370 cdm->pos.generations[CAM_BUS_GENERATION]= 2371 bus_generation; 2372 cdm->pos.cookie.target = periph->path->target; 2373 cdm->pos.generations[CAM_TARGET_GENERATION] = 2374 periph->path->bus->generation; 2375 cdm->pos.cookie.device = periph->path->device; 2376 cdm->pos.generations[CAM_DEV_GENERATION] = 2377 periph->path->target->generation; 2378 cdm->pos.cookie.periph = periph; 2379 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2380 periph->path->device->generation; 2381 cdm->status = CAM_DEV_MATCH_MORE; 2382 return(0); 2383 } 2384 2385 j = cdm->num_matches; 2386 cdm->num_matches++; 2387 cdm->matches[j].type = DEV_MATCH_PERIPH; 2388 cdm->matches[j].result.periph_result.path_id = 2389 periph->path->bus->path_id; 2390 cdm->matches[j].result.periph_result.target_id = 2391 periph->path->target->target_id; 2392 cdm->matches[j].result.periph_result.target_lun = 2393 periph->path->device->lun_id; 2394 cdm->matches[j].result.periph_result.unit_number = 2395 periph->unit_number; 2396 strncpy(cdm->matches[j].result.periph_result.periph_name, 2397 periph->periph_name, DEV_IDLEN); 2398 } 2399 2400 return(1); 2401 } 2402 2403 static int 2404 xptedtmatch(struct ccb_dev_match *cdm) 2405 { 2406 int ret; 2407 2408 cdm->num_matches = 0; 2409 2410 /* 2411 * Check the bus list generation. If it has changed, the user 2412 * needs to reset everything and start over. 2413 */ 2414 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2415 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2416 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2417 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2418 return(0); 2419 } 2420 2421 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2422 && (cdm->pos.cookie.bus != NULL)) 2423 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2424 xptedtbusfunc, cdm); 2425 else 2426 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2427 2428 /* 2429 * If we get back 0, that means that we had to stop before fully 2430 * traversing the EDT. It also means that one of the subroutines 2431 * has set the status field to the proper value. If we get back 1, 2432 * we've fully traversed the EDT and copied out any matching entries. 2433 */ 2434 if (ret == 1) 2435 cdm->status = CAM_DEV_MATCH_LAST; 2436 2437 return(ret); 2438 } 2439 2440 static int 2441 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2442 { 2443 struct ccb_dev_match *cdm; 2444 2445 cdm = (struct ccb_dev_match *)arg; 2446 2447 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2448 && (cdm->pos.cookie.pdrv == pdrv) 2449 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2450 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2451 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2452 (*pdrv)->generation)) { 2453 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2454 return(0); 2455 } 2456 2457 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2458 && (cdm->pos.cookie.pdrv == pdrv) 2459 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2460 && (cdm->pos.cookie.periph != NULL)) 2461 return(xptpdperiphtraverse(pdrv, 2462 (struct cam_periph *)cdm->pos.cookie.periph, 2463 xptplistperiphfunc, arg)); 2464 else 2465 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2466 } 2467 2468 static int 2469 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2470 { 2471 struct ccb_dev_match *cdm; 2472 dev_match_ret retval; 2473 2474 cdm = (struct ccb_dev_match *)arg; 2475 2476 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2477 2478 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2479 cdm->status = CAM_DEV_MATCH_ERROR; 2480 return(0); 2481 } 2482 2483 /* 2484 * If the copy flag is set, copy this peripheral out. 2485 */ 2486 if (retval & DM_RET_COPY) { 2487 int spaceleft, j; 2488 2489 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2490 sizeof(struct dev_match_result)); 2491 2492 /* 2493 * If we don't have enough space to put in another 2494 * match result, save our position and tell the 2495 * user there are more devices to check. 2496 */ 2497 if (spaceleft < sizeof(struct dev_match_result)) { 2498 struct periph_driver **pdrv; 2499 2500 pdrv = NULL; 2501 bzero(&cdm->pos, sizeof(cdm->pos)); 2502 cdm->pos.position_type = 2503 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2504 CAM_DEV_POS_PERIPH; 2505 2506 /* 2507 * This may look a bit non-sensical, but it is 2508 * actually quite logical. There are very few 2509 * peripheral drivers, and bloating every peripheral 2510 * structure with a pointer back to its parent 2511 * peripheral driver linker set entry would cost 2512 * more in the long run than doing this quick lookup. 2513 */ 2514 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2515 if (strcmp((*pdrv)->driver_name, 2516 periph->periph_name) == 0) 2517 break; 2518 } 2519 2520 if (pdrv == NULL) { 2521 cdm->status = CAM_DEV_MATCH_ERROR; 2522 return(0); 2523 } 2524 2525 cdm->pos.cookie.pdrv = pdrv; 2526 /* 2527 * The periph generation slot does double duty, as 2528 * does the periph pointer slot. They are used for 2529 * both edt and pdrv lookups and positioning. 2530 */ 2531 cdm->pos.cookie.periph = periph; 2532 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2533 (*pdrv)->generation; 2534 cdm->status = CAM_DEV_MATCH_MORE; 2535 return(0); 2536 } 2537 2538 j = cdm->num_matches; 2539 cdm->num_matches++; 2540 cdm->matches[j].type = DEV_MATCH_PERIPH; 2541 cdm->matches[j].result.periph_result.path_id = 2542 periph->path->bus->path_id; 2543 2544 /* 2545 * The transport layer peripheral doesn't have a target or 2546 * lun. 2547 */ 2548 if (periph->path->target) 2549 cdm->matches[j].result.periph_result.target_id = 2550 periph->path->target->target_id; 2551 else 2552 cdm->matches[j].result.periph_result.target_id = -1; 2553 2554 if (periph->path->device) 2555 cdm->matches[j].result.periph_result.target_lun = 2556 periph->path->device->lun_id; 2557 else 2558 cdm->matches[j].result.periph_result.target_lun = -1; 2559 2560 cdm->matches[j].result.periph_result.unit_number = 2561 periph->unit_number; 2562 strncpy(cdm->matches[j].result.periph_result.periph_name, 2563 periph->periph_name, DEV_IDLEN); 2564 } 2565 2566 return(1); 2567 } 2568 2569 static int 2570 xptperiphlistmatch(struct ccb_dev_match *cdm) 2571 { 2572 int ret; 2573 2574 cdm->num_matches = 0; 2575 2576 /* 2577 * At this point in the edt traversal function, we check the bus 2578 * list generation to make sure that no busses have been added or 2579 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2580 * For the peripheral driver list traversal function, however, we 2581 * don't have to worry about new peripheral driver types coming or 2582 * going; they're in a linker set, and therefore can't change 2583 * without a recompile. 2584 */ 2585 2586 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2587 && (cdm->pos.cookie.pdrv != NULL)) 2588 ret = xptpdrvtraverse( 2589 (struct periph_driver **)cdm->pos.cookie.pdrv, 2590 xptplistpdrvfunc, cdm); 2591 else 2592 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2593 2594 /* 2595 * If we get back 0, that means that we had to stop before fully 2596 * traversing the peripheral driver tree. It also means that one of 2597 * the subroutines has set the status field to the proper value. If 2598 * we get back 1, we've fully traversed the EDT and copied out any 2599 * matching entries. 2600 */ 2601 if (ret == 1) 2602 cdm->status = CAM_DEV_MATCH_LAST; 2603 2604 return(ret); 2605 } 2606 2607 static int 2608 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2609 { 2610 struct cam_eb *bus, *next_bus; 2611 int retval; 2612 2613 retval = 1; 2614 2615 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2616 bus != NULL; 2617 bus = next_bus) { 2618 next_bus = TAILQ_NEXT(bus, links); 2619 2620 retval = tr_func(bus, arg); 2621 if (retval == 0) 2622 return(retval); 2623 } 2624 2625 return(retval); 2626 } 2627 2628 static int 2629 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2630 xpt_targetfunc_t *tr_func, void *arg) 2631 { 2632 struct cam_et *target, *next_target; 2633 int retval; 2634 2635 retval = 1; 2636 for (target = (start_target ? start_target : 2637 TAILQ_FIRST(&bus->et_entries)); 2638 target != NULL; target = next_target) { 2639 2640 next_target = TAILQ_NEXT(target, links); 2641 2642 retval = tr_func(target, arg); 2643 2644 if (retval == 0) 2645 return(retval); 2646 } 2647 2648 return(retval); 2649 } 2650 2651 static int 2652 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2653 xpt_devicefunc_t *tr_func, void *arg) 2654 { 2655 struct cam_ed *device, *next_device; 2656 int retval; 2657 2658 retval = 1; 2659 for (device = (start_device ? start_device : 2660 TAILQ_FIRST(&target->ed_entries)); 2661 device != NULL; 2662 device = next_device) { 2663 2664 next_device = TAILQ_NEXT(device, links); 2665 2666 retval = tr_func(device, arg); 2667 2668 if (retval == 0) 2669 return(retval); 2670 } 2671 2672 return(retval); 2673 } 2674 2675 static int 2676 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2677 xpt_periphfunc_t *tr_func, void *arg) 2678 { 2679 struct cam_periph *periph, *next_periph; 2680 int retval; 2681 2682 retval = 1; 2683 2684 for (periph = (start_periph ? start_periph : 2685 SLIST_FIRST(&device->periphs)); 2686 periph != NULL; 2687 periph = next_periph) { 2688 2689 next_periph = SLIST_NEXT(periph, periph_links); 2690 2691 retval = tr_func(periph, arg); 2692 if (retval == 0) 2693 return(retval); 2694 } 2695 2696 return(retval); 2697 } 2698 2699 static int 2700 xptpdrvtraverse(struct periph_driver **start_pdrv, 2701 xpt_pdrvfunc_t *tr_func, void *arg) 2702 { 2703 struct periph_driver **pdrv; 2704 int retval; 2705 2706 retval = 1; 2707 2708 /* 2709 * We don't traverse the peripheral driver list like we do the 2710 * other lists, because it is a linker set, and therefore cannot be 2711 * changed during runtime. If the peripheral driver list is ever 2712 * re-done to be something other than a linker set (i.e. it can 2713 * change while the system is running), the list traversal should 2714 * be modified to work like the other traversal functions. 2715 */ 2716 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2717 *pdrv != NULL; pdrv++) { 2718 retval = tr_func(pdrv, arg); 2719 2720 if (retval == 0) 2721 return(retval); 2722 } 2723 2724 return(retval); 2725 } 2726 2727 static int 2728 xptpdperiphtraverse(struct periph_driver **pdrv, 2729 struct cam_periph *start_periph, 2730 xpt_periphfunc_t *tr_func, void *arg) 2731 { 2732 struct cam_periph *periph, *next_periph; 2733 int retval; 2734 2735 retval = 1; 2736 2737 for (periph = (start_periph ? start_periph : 2738 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2739 periph = next_periph) { 2740 2741 next_periph = TAILQ_NEXT(periph, unit_links); 2742 2743 retval = tr_func(periph, arg); 2744 if (retval == 0) 2745 return(retval); 2746 } 2747 return(retval); 2748 } 2749 2750 static int 2751 xptdefbusfunc(struct cam_eb *bus, void *arg) 2752 { 2753 struct xpt_traverse_config *tr_config; 2754 2755 tr_config = (struct xpt_traverse_config *)arg; 2756 2757 if (tr_config->depth == XPT_DEPTH_BUS) { 2758 xpt_busfunc_t *tr_func; 2759 2760 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2761 2762 return(tr_func(bus, tr_config->tr_arg)); 2763 } else 2764 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2765 } 2766 2767 static int 2768 xptdeftargetfunc(struct cam_et *target, void *arg) 2769 { 2770 struct xpt_traverse_config *tr_config; 2771 2772 tr_config = (struct xpt_traverse_config *)arg; 2773 2774 if (tr_config->depth == XPT_DEPTH_TARGET) { 2775 xpt_targetfunc_t *tr_func; 2776 2777 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2778 2779 return(tr_func(target, tr_config->tr_arg)); 2780 } else 2781 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2782 } 2783 2784 static int 2785 xptdefdevicefunc(struct cam_ed *device, void *arg) 2786 { 2787 struct xpt_traverse_config *tr_config; 2788 2789 tr_config = (struct xpt_traverse_config *)arg; 2790 2791 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2792 xpt_devicefunc_t *tr_func; 2793 2794 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2795 2796 return(tr_func(device, tr_config->tr_arg)); 2797 } else 2798 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2799 } 2800 2801 static int 2802 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2803 { 2804 struct xpt_traverse_config *tr_config; 2805 xpt_periphfunc_t *tr_func; 2806 2807 tr_config = (struct xpt_traverse_config *)arg; 2808 2809 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2810 2811 /* 2812 * Unlike the other default functions, we don't check for depth 2813 * here. The peripheral driver level is the last level in the EDT, 2814 * so if we're here, we should execute the function in question. 2815 */ 2816 return(tr_func(periph, tr_config->tr_arg)); 2817 } 2818 2819 /* 2820 * Execute the given function for every bus in the EDT. 2821 */ 2822 static int 2823 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2824 { 2825 struct xpt_traverse_config tr_config; 2826 2827 tr_config.depth = XPT_DEPTH_BUS; 2828 tr_config.tr_func = tr_func; 2829 tr_config.tr_arg = arg; 2830 2831 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2832 } 2833 2834 #ifdef notusedyet 2835 /* 2836 * Execute the given function for every target in the EDT. 2837 */ 2838 static int 2839 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2840 { 2841 struct xpt_traverse_config tr_config; 2842 2843 tr_config.depth = XPT_DEPTH_TARGET; 2844 tr_config.tr_func = tr_func; 2845 tr_config.tr_arg = arg; 2846 2847 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2848 } 2849 #endif /* notusedyet */ 2850 2851 /* 2852 * Execute the given function for every device in the EDT. 2853 */ 2854 static int 2855 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2856 { 2857 struct xpt_traverse_config tr_config; 2858 2859 tr_config.depth = XPT_DEPTH_DEVICE; 2860 tr_config.tr_func = tr_func; 2861 tr_config.tr_arg = arg; 2862 2863 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2864 } 2865 2866 #ifdef notusedyet 2867 /* 2868 * Execute the given function for every peripheral in the EDT. 2869 */ 2870 static int 2871 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2872 { 2873 struct xpt_traverse_config tr_config; 2874 2875 tr_config.depth = XPT_DEPTH_PERIPH; 2876 tr_config.tr_func = tr_func; 2877 tr_config.tr_arg = arg; 2878 2879 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2880 } 2881 #endif /* notusedyet */ 2882 2883 static int 2884 xptsetasyncfunc(struct cam_ed *device, void *arg) 2885 { 2886 struct cam_path path; 2887 struct ccb_getdev cgd; 2888 struct async_node *cur_entry; 2889 2890 cur_entry = (struct async_node *)arg; 2891 2892 /* 2893 * Don't report unconfigured devices (Wildcard devs, 2894 * devices only for target mode, device instances 2895 * that have been invalidated but are waiting for 2896 * their last reference count to be released). 2897 */ 2898 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2899 return (1); 2900 2901 xpt_compile_path(&path, 2902 NULL, 2903 device->target->bus->path_id, 2904 device->target->target_id, 2905 device->lun_id); 2906 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2907 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2908 xpt_action((union ccb *)&cgd); 2909 cur_entry->callback(cur_entry->callback_arg, 2910 AC_FOUND_DEVICE, 2911 &path, &cgd); 2912 xpt_release_path(&path); 2913 2914 return(1); 2915 } 2916 2917 static int 2918 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2919 { 2920 struct cam_path path; 2921 struct ccb_pathinq cpi; 2922 struct async_node *cur_entry; 2923 2924 cur_entry = (struct async_node *)arg; 2925 2926 xpt_compile_path(&path, /*periph*/NULL, 2927 bus->sim->path_id, 2928 CAM_TARGET_WILDCARD, 2929 CAM_LUN_WILDCARD); 2930 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2931 cpi.ccb_h.func_code = XPT_PATH_INQ; 2932 xpt_action((union ccb *)&cpi); 2933 cur_entry->callback(cur_entry->callback_arg, 2934 AC_PATH_REGISTERED, 2935 &path, &cpi); 2936 xpt_release_path(&path); 2937 2938 return(1); 2939 } 2940 2941 void 2942 xpt_action(union ccb *start_ccb) 2943 { 2944 int iopl; 2945 2946 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2947 2948 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2949 2950 iopl = splsoftcam(); 2951 switch (start_ccb->ccb_h.func_code) { 2952 case XPT_SCSI_IO: 2953 { 2954 #ifdef CAM_NEW_TRAN_CODE 2955 struct cam_ed *device; 2956 #endif /* CAM_NEW_TRAN_CODE */ 2957 #ifdef CAMDEBUG 2958 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2959 struct cam_path *path; 2960 2961 path = start_ccb->ccb_h.path; 2962 #endif 2963 2964 /* 2965 * For the sake of compatibility with SCSI-1 2966 * devices that may not understand the identify 2967 * message, we include lun information in the 2968 * second byte of all commands. SCSI-1 specifies 2969 * that luns are a 3 bit value and reserves only 3 2970 * bits for lun information in the CDB. Later 2971 * revisions of the SCSI spec allow for more than 8 2972 * luns, but have deprecated lun information in the 2973 * CDB. So, if the lun won't fit, we must omit. 2974 * 2975 * Also be aware that during initial probing for devices, 2976 * the inquiry information is unknown but initialized to 0. 2977 * This means that this code will be exercised while probing 2978 * devices with an ANSI revision greater than 2. 2979 */ 2980 #ifdef CAM_NEW_TRAN_CODE 2981 device = start_ccb->ccb_h.path->device; 2982 if (device->protocol_version <= SCSI_REV_2 2983 #else /* CAM_NEW_TRAN_CODE */ 2984 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 2985 #endif /* CAM_NEW_TRAN_CODE */ 2986 && start_ccb->ccb_h.target_lun < 8 2987 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2988 2989 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2990 start_ccb->ccb_h.target_lun << 5; 2991 } 2992 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2993 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2994 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2995 &path->device->inq_data), 2996 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2997 cdb_str, sizeof(cdb_str)))); 2998 /* FALLTHROUGH */ 2999 } 3000 case XPT_TARGET_IO: 3001 case XPT_CONT_TARGET_IO: 3002 start_ccb->csio.sense_resid = 0; 3003 start_ccb->csio.resid = 0; 3004 /* FALLTHROUGH */ 3005 case XPT_RESET_DEV: 3006 case XPT_ENG_EXEC: 3007 { 3008 struct cam_path *path; 3009 int s; 3010 int runq; 3011 3012 path = start_ccb->ccb_h.path; 3013 s = splsoftcam(); 3014 3015 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3016 if (path->device->qfrozen_cnt == 0) 3017 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3018 else 3019 runq = 0; 3020 splx(s); 3021 if (runq != 0) 3022 xpt_run_dev_sendq(path->bus); 3023 break; 3024 } 3025 case XPT_SET_TRAN_SETTINGS: 3026 { 3027 xpt_set_transfer_settings(&start_ccb->cts, 3028 start_ccb->ccb_h.path->device, 3029 /*async_update*/FALSE); 3030 break; 3031 } 3032 case XPT_CALC_GEOMETRY: 3033 { 3034 struct cam_sim *sim; 3035 3036 /* Filter out garbage */ 3037 if (start_ccb->ccg.block_size == 0 3038 || start_ccb->ccg.volume_size == 0) { 3039 start_ccb->ccg.cylinders = 0; 3040 start_ccb->ccg.heads = 0; 3041 start_ccb->ccg.secs_per_track = 0; 3042 start_ccb->ccb_h.status = CAM_REQ_CMP; 3043 break; 3044 } 3045 #ifdef PC98 3046 /* 3047 * In a PC-98 system, geometry translation depens on 3048 * the "real" device geometry obtained from mode page 4. 3049 * SCSI geometry translation is performed in the 3050 * initialization routine of the SCSI BIOS and the result 3051 * stored in host memory. If the translation is available 3052 * in host memory, use it. If not, rely on the default 3053 * translation the device driver performs. 3054 */ 3055 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3056 start_ccb->ccb_h.status = CAM_REQ_CMP; 3057 break; 3058 } 3059 #endif 3060 sim = start_ccb->ccb_h.path->bus->sim; 3061 (*(sim->sim_action))(sim, start_ccb); 3062 break; 3063 } 3064 case XPT_ABORT: 3065 { 3066 union ccb* abort_ccb; 3067 int s; 3068 3069 abort_ccb = start_ccb->cab.abort_ccb; 3070 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3071 3072 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3073 struct cam_ccbq *ccbq; 3074 3075 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3076 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3077 abort_ccb->ccb_h.status = 3078 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3079 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3080 s = splcam(); 3081 xpt_done(abort_ccb); 3082 splx(s); 3083 start_ccb->ccb_h.status = CAM_REQ_CMP; 3084 break; 3085 } 3086 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3087 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3088 /* 3089 * We've caught this ccb en route to 3090 * the SIM. Flag it for abort and the 3091 * SIM will do so just before starting 3092 * real work on the CCB. 3093 */ 3094 abort_ccb->ccb_h.status = 3095 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3096 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3097 start_ccb->ccb_h.status = CAM_REQ_CMP; 3098 break; 3099 } 3100 } 3101 if (XPT_FC_IS_QUEUED(abort_ccb) 3102 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3103 /* 3104 * It's already completed but waiting 3105 * for our SWI to get to it. 3106 */ 3107 start_ccb->ccb_h.status = CAM_UA_ABORT; 3108 break; 3109 } 3110 /* 3111 * If we weren't able to take care of the abort request 3112 * in the XPT, pass the request down to the SIM for processing. 3113 */ 3114 /* FALLTHROUGH */ 3115 } 3116 case XPT_ACCEPT_TARGET_IO: 3117 case XPT_EN_LUN: 3118 case XPT_IMMED_NOTIFY: 3119 case XPT_NOTIFY_ACK: 3120 case XPT_GET_TRAN_SETTINGS: 3121 case XPT_RESET_BUS: 3122 { 3123 struct cam_sim *sim; 3124 3125 sim = start_ccb->ccb_h.path->bus->sim; 3126 (*(sim->sim_action))(sim, start_ccb); 3127 break; 3128 } 3129 case XPT_PATH_INQ: 3130 { 3131 struct cam_sim *sim; 3132 3133 sim = start_ccb->ccb_h.path->bus->sim; 3134 (*(sim->sim_action))(sim, start_ccb); 3135 break; 3136 } 3137 case XPT_PATH_STATS: 3138 start_ccb->cpis.last_reset = 3139 start_ccb->ccb_h.path->bus->last_reset; 3140 start_ccb->ccb_h.status = CAM_REQ_CMP; 3141 break; 3142 case XPT_GDEV_TYPE: 3143 { 3144 struct cam_ed *dev; 3145 int s; 3146 3147 dev = start_ccb->ccb_h.path->device; 3148 s = splcam(); 3149 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3150 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3151 } else { 3152 struct ccb_getdev *cgd; 3153 struct cam_eb *bus; 3154 struct cam_et *tar; 3155 3156 cgd = &start_ccb->cgd; 3157 bus = cgd->ccb_h.path->bus; 3158 tar = cgd->ccb_h.path->target; 3159 cgd->inq_data = dev->inq_data; 3160 cgd->ccb_h.status = CAM_REQ_CMP; 3161 cgd->serial_num_len = dev->serial_num_len; 3162 if ((dev->serial_num_len > 0) 3163 && (dev->serial_num != NULL)) 3164 bcopy(dev->serial_num, cgd->serial_num, 3165 dev->serial_num_len); 3166 } 3167 splx(s); 3168 break; 3169 } 3170 case XPT_GDEV_STATS: 3171 { 3172 struct cam_ed *dev; 3173 int s; 3174 3175 dev = start_ccb->ccb_h.path->device; 3176 s = splcam(); 3177 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3178 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3179 } else { 3180 struct ccb_getdevstats *cgds; 3181 struct cam_eb *bus; 3182 struct cam_et *tar; 3183 3184 cgds = &start_ccb->cgds; 3185 bus = cgds->ccb_h.path->bus; 3186 tar = cgds->ccb_h.path->target; 3187 cgds->dev_openings = dev->ccbq.dev_openings; 3188 cgds->dev_active = dev->ccbq.dev_active; 3189 cgds->devq_openings = dev->ccbq.devq_openings; 3190 cgds->devq_queued = dev->ccbq.queue.entries; 3191 cgds->held = dev->ccbq.held; 3192 cgds->last_reset = tar->last_reset; 3193 cgds->maxtags = dev->quirk->maxtags; 3194 cgds->mintags = dev->quirk->mintags; 3195 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3196 cgds->last_reset = bus->last_reset; 3197 cgds->ccb_h.status = CAM_REQ_CMP; 3198 } 3199 splx(s); 3200 break; 3201 } 3202 case XPT_GDEVLIST: 3203 { 3204 struct cam_periph *nperiph; 3205 struct periph_list *periph_head; 3206 struct ccb_getdevlist *cgdl; 3207 u_int i; 3208 int s; 3209 struct cam_ed *device; 3210 int found; 3211 3212 3213 found = 0; 3214 3215 /* 3216 * Don't want anyone mucking with our data. 3217 */ 3218 s = splcam(); 3219 device = start_ccb->ccb_h.path->device; 3220 periph_head = &device->periphs; 3221 cgdl = &start_ccb->cgdl; 3222 3223 /* 3224 * Check and see if the list has changed since the user 3225 * last requested a list member. If so, tell them that the 3226 * list has changed, and therefore they need to start over 3227 * from the beginning. 3228 */ 3229 if ((cgdl->index != 0) && 3230 (cgdl->generation != device->generation)) { 3231 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3232 splx(s); 3233 break; 3234 } 3235 3236 /* 3237 * Traverse the list of peripherals and attempt to find 3238 * the requested peripheral. 3239 */ 3240 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3241 (nperiph != NULL) && (i <= cgdl->index); 3242 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3243 if (i == cgdl->index) { 3244 strncpy(cgdl->periph_name, 3245 nperiph->periph_name, 3246 DEV_IDLEN); 3247 cgdl->unit_number = nperiph->unit_number; 3248 found = 1; 3249 } 3250 } 3251 if (found == 0) { 3252 cgdl->status = CAM_GDEVLIST_ERROR; 3253 splx(s); 3254 break; 3255 } 3256 3257 if (nperiph == NULL) 3258 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3259 else 3260 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3261 3262 cgdl->index++; 3263 cgdl->generation = device->generation; 3264 3265 splx(s); 3266 cgdl->ccb_h.status = CAM_REQ_CMP; 3267 break; 3268 } 3269 case XPT_DEV_MATCH: 3270 { 3271 int s; 3272 dev_pos_type position_type; 3273 struct ccb_dev_match *cdm; 3274 int ret; 3275 3276 cdm = &start_ccb->cdm; 3277 3278 /* 3279 * Prevent EDT changes while we traverse it. 3280 */ 3281 s = splcam(); 3282 /* 3283 * There are two ways of getting at information in the EDT. 3284 * The first way is via the primary EDT tree. It starts 3285 * with a list of busses, then a list of targets on a bus, 3286 * then devices/luns on a target, and then peripherals on a 3287 * device/lun. The "other" way is by the peripheral driver 3288 * lists. The peripheral driver lists are organized by 3289 * peripheral driver. (obviously) So it makes sense to 3290 * use the peripheral driver list if the user is looking 3291 * for something like "da1", or all "da" devices. If the 3292 * user is looking for something on a particular bus/target 3293 * or lun, it's generally better to go through the EDT tree. 3294 */ 3295 3296 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3297 position_type = cdm->pos.position_type; 3298 else { 3299 u_int i; 3300 3301 position_type = CAM_DEV_POS_NONE; 3302 3303 for (i = 0; i < cdm->num_patterns; i++) { 3304 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3305 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3306 position_type = CAM_DEV_POS_EDT; 3307 break; 3308 } 3309 } 3310 3311 if (cdm->num_patterns == 0) 3312 position_type = CAM_DEV_POS_EDT; 3313 else if (position_type == CAM_DEV_POS_NONE) 3314 position_type = CAM_DEV_POS_PDRV; 3315 } 3316 3317 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3318 case CAM_DEV_POS_EDT: 3319 ret = xptedtmatch(cdm); 3320 break; 3321 case CAM_DEV_POS_PDRV: 3322 ret = xptperiphlistmatch(cdm); 3323 break; 3324 default: 3325 cdm->status = CAM_DEV_MATCH_ERROR; 3326 break; 3327 } 3328 3329 splx(s); 3330 3331 if (cdm->status == CAM_DEV_MATCH_ERROR) 3332 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3333 else 3334 start_ccb->ccb_h.status = CAM_REQ_CMP; 3335 3336 break; 3337 } 3338 case XPT_SASYNC_CB: 3339 { 3340 struct ccb_setasync *csa; 3341 struct async_node *cur_entry; 3342 struct async_list *async_head; 3343 u_int32_t added; 3344 int s; 3345 3346 csa = &start_ccb->csa; 3347 added = csa->event_enable; 3348 async_head = &csa->ccb_h.path->device->asyncs; 3349 3350 /* 3351 * If there is already an entry for us, simply 3352 * update it. 3353 */ 3354 s = splcam(); 3355 cur_entry = SLIST_FIRST(async_head); 3356 while (cur_entry != NULL) { 3357 if ((cur_entry->callback_arg == csa->callback_arg) 3358 && (cur_entry->callback == csa->callback)) 3359 break; 3360 cur_entry = SLIST_NEXT(cur_entry, links); 3361 } 3362 3363 if (cur_entry != NULL) { 3364 /* 3365 * If the request has no flags set, 3366 * remove the entry. 3367 */ 3368 added &= ~cur_entry->event_enable; 3369 if (csa->event_enable == 0) { 3370 SLIST_REMOVE(async_head, cur_entry, 3371 async_node, links); 3372 csa->ccb_h.path->device->refcount--; 3373 free(cur_entry, M_DEVBUF); 3374 } else { 3375 cur_entry->event_enable = csa->event_enable; 3376 } 3377 } else { 3378 cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF, 3379 M_NOWAIT); 3380 if (cur_entry == NULL) { 3381 splx(s); 3382 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3383 break; 3384 } 3385 cur_entry->event_enable = csa->event_enable; 3386 cur_entry->callback_arg = csa->callback_arg; 3387 cur_entry->callback = csa->callback; 3388 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3389 csa->ccb_h.path->device->refcount++; 3390 } 3391 3392 if ((added & AC_FOUND_DEVICE) != 0) { 3393 /* 3394 * Get this peripheral up to date with all 3395 * the currently existing devices. 3396 */ 3397 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3398 } 3399 if ((added & AC_PATH_REGISTERED) != 0) { 3400 /* 3401 * Get this peripheral up to date with all 3402 * the currently existing busses. 3403 */ 3404 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3405 } 3406 splx(s); 3407 start_ccb->ccb_h.status = CAM_REQ_CMP; 3408 break; 3409 } 3410 case XPT_REL_SIMQ: 3411 { 3412 struct ccb_relsim *crs; 3413 struct cam_ed *dev; 3414 int s; 3415 3416 crs = &start_ccb->crs; 3417 dev = crs->ccb_h.path->device; 3418 if (dev == NULL) { 3419 3420 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3421 break; 3422 } 3423 3424 s = splcam(); 3425 3426 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3427 3428 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3429 3430 /* Don't ever go below one opening */ 3431 if (crs->openings > 0) { 3432 xpt_dev_ccbq_resize(crs->ccb_h.path, 3433 crs->openings); 3434 3435 if (bootverbose) { 3436 xpt_print_path(crs->ccb_h.path); 3437 printf("tagged openings " 3438 "now %d\n", 3439 crs->openings); 3440 } 3441 } 3442 } 3443 } 3444 3445 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3446 3447 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3448 3449 /* 3450 * Just extend the old timeout and decrement 3451 * the freeze count so that a single timeout 3452 * is sufficient for releasing the queue. 3453 */ 3454 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3455 untimeout(xpt_release_devq_timeout, 3456 dev, dev->c_handle); 3457 } else { 3458 3459 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3460 } 3461 3462 dev->c_handle = 3463 timeout(xpt_release_devq_timeout, 3464 dev, 3465 (crs->release_timeout * hz) / 1000); 3466 3467 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3468 3469 } 3470 3471 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3472 3473 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3474 /* 3475 * Decrement the freeze count so that a single 3476 * completion is still sufficient to unfreeze 3477 * the queue. 3478 */ 3479 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3480 } else { 3481 3482 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3483 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3484 } 3485 } 3486 3487 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3488 3489 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3490 || (dev->ccbq.dev_active == 0)) { 3491 3492 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3493 } else { 3494 3495 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3496 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3497 } 3498 } 3499 splx(s); 3500 3501 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3502 3503 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3504 /*run_queue*/TRUE); 3505 } 3506 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3507 start_ccb->ccb_h.status = CAM_REQ_CMP; 3508 break; 3509 } 3510 case XPT_SCAN_BUS: 3511 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3512 break; 3513 case XPT_SCAN_LUN: 3514 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3515 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3516 start_ccb); 3517 break; 3518 case XPT_DEBUG: { 3519 #ifdef CAMDEBUG 3520 int s; 3521 3522 s = splcam(); 3523 #ifdef CAM_DEBUG_DELAY 3524 cam_debug_delay = CAM_DEBUG_DELAY; 3525 #endif 3526 cam_dflags = start_ccb->cdbg.flags; 3527 if (cam_dpath != NULL) { 3528 xpt_free_path(cam_dpath); 3529 cam_dpath = NULL; 3530 } 3531 3532 if (cam_dflags != CAM_DEBUG_NONE) { 3533 if (xpt_create_path(&cam_dpath, xpt_periph, 3534 start_ccb->ccb_h.path_id, 3535 start_ccb->ccb_h.target_id, 3536 start_ccb->ccb_h.target_lun) != 3537 CAM_REQ_CMP) { 3538 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3539 cam_dflags = CAM_DEBUG_NONE; 3540 } else { 3541 start_ccb->ccb_h.status = CAM_REQ_CMP; 3542 xpt_print_path(cam_dpath); 3543 printf("debugging flags now %x\n", cam_dflags); 3544 } 3545 } else { 3546 cam_dpath = NULL; 3547 start_ccb->ccb_h.status = CAM_REQ_CMP; 3548 } 3549 splx(s); 3550 #else /* !CAMDEBUG */ 3551 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3552 #endif /* CAMDEBUG */ 3553 break; 3554 } 3555 case XPT_NOOP: 3556 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3557 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3558 start_ccb->ccb_h.status = CAM_REQ_CMP; 3559 break; 3560 default: 3561 case XPT_SDEV_TYPE: 3562 case XPT_TERM_IO: 3563 case XPT_ENG_INQ: 3564 /* XXX Implement */ 3565 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3566 break; 3567 } 3568 splx(iopl); 3569 } 3570 3571 void 3572 xpt_polled_action(union ccb *start_ccb) 3573 { 3574 int s; 3575 u_int32_t timeout; 3576 struct cam_sim *sim; 3577 struct cam_devq *devq; 3578 struct cam_ed *dev; 3579 3580 timeout = start_ccb->ccb_h.timeout; 3581 sim = start_ccb->ccb_h.path->bus->sim; 3582 devq = sim->devq; 3583 dev = start_ccb->ccb_h.path->device; 3584 3585 s = splcam(); 3586 3587 /* 3588 * Steal an opening so that no other queued requests 3589 * can get it before us while we simulate interrupts. 3590 */ 3591 dev->ccbq.devq_openings--; 3592 dev->ccbq.dev_openings--; 3593 3594 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) 3595 && (--timeout > 0)) { 3596 DELAY(1000); 3597 (*(sim->sim_poll))(sim); 3598 camisr(&cam_netq); 3599 camisr(&cam_bioq); 3600 } 3601 3602 dev->ccbq.devq_openings++; 3603 dev->ccbq.dev_openings++; 3604 3605 if (timeout != 0) { 3606 xpt_action(start_ccb); 3607 while(--timeout > 0) { 3608 (*(sim->sim_poll))(sim); 3609 camisr(&cam_netq); 3610 camisr(&cam_bioq); 3611 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3612 != CAM_REQ_INPROG) 3613 break; 3614 DELAY(1000); 3615 } 3616 if (timeout == 0) { 3617 /* 3618 * XXX Is it worth adding a sim_timeout entry 3619 * point so we can attempt recovery? If 3620 * this is only used for dumps, I don't think 3621 * it is. 3622 */ 3623 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3624 } 3625 } else { 3626 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3627 } 3628 splx(s); 3629 } 3630 3631 /* 3632 * Schedule a peripheral driver to receive a ccb when it's 3633 * target device has space for more transactions. 3634 */ 3635 void 3636 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3637 { 3638 struct cam_ed *device; 3639 int s; 3640 int runq; 3641 3642 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3643 device = perph->path->device; 3644 s = splsoftcam(); 3645 if (periph_is_queued(perph)) { 3646 /* Simply reorder based on new priority */ 3647 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3648 (" change priority to %d\n", new_priority)); 3649 if (new_priority < perph->pinfo.priority) { 3650 camq_change_priority(&device->drvq, 3651 perph->pinfo.index, 3652 new_priority); 3653 } 3654 runq = 0; 3655 } else { 3656 /* New entry on the queue */ 3657 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3658 (" added periph to queue\n")); 3659 perph->pinfo.priority = new_priority; 3660 perph->pinfo.generation = ++device->drvq.generation; 3661 camq_insert(&device->drvq, &perph->pinfo); 3662 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3663 } 3664 splx(s); 3665 if (runq != 0) { 3666 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3667 (" calling xpt_run_devq\n")); 3668 xpt_run_dev_allocq(perph->path->bus); 3669 } 3670 } 3671 3672 3673 /* 3674 * Schedule a device to run on a given queue. 3675 * If the device was inserted as a new entry on the queue, 3676 * return 1 meaning the device queue should be run. If we 3677 * were already queued, implying someone else has already 3678 * started the queue, return 0 so the caller doesn't attempt 3679 * to run the queue. Must be run at either splsoftcam 3680 * (or splcam since that encompases splsoftcam). 3681 */ 3682 static int 3683 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3684 u_int32_t new_priority) 3685 { 3686 int retval; 3687 u_int32_t old_priority; 3688 3689 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3690 3691 old_priority = pinfo->priority; 3692 3693 /* 3694 * Are we already queued? 3695 */ 3696 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3697 /* Simply reorder based on new priority */ 3698 if (new_priority < old_priority) { 3699 camq_change_priority(queue, pinfo->index, 3700 new_priority); 3701 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3702 ("changed priority to %d\n", 3703 new_priority)); 3704 } 3705 retval = 0; 3706 } else { 3707 /* New entry on the queue */ 3708 if (new_priority < old_priority) 3709 pinfo->priority = new_priority; 3710 3711 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3712 ("Inserting onto queue\n")); 3713 pinfo->generation = ++queue->generation; 3714 camq_insert(queue, pinfo); 3715 retval = 1; 3716 } 3717 return (retval); 3718 } 3719 3720 static void 3721 xpt_run_dev_allocq(struct cam_eb *bus) 3722 { 3723 struct cam_devq *devq; 3724 int s; 3725 3726 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3727 devq = bus->sim->devq; 3728 3729 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3730 (" qfrozen_cnt == 0x%x, entries == %d, " 3731 "openings == %d, active == %d\n", 3732 devq->alloc_queue.qfrozen_cnt, 3733 devq->alloc_queue.entries, 3734 devq->alloc_openings, 3735 devq->alloc_active)); 3736 3737 s = splsoftcam(); 3738 devq->alloc_queue.qfrozen_cnt++; 3739 while ((devq->alloc_queue.entries > 0) 3740 && (devq->alloc_openings > 0) 3741 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3742 struct cam_ed_qinfo *qinfo; 3743 struct cam_ed *device; 3744 union ccb *work_ccb; 3745 struct cam_periph *drv; 3746 struct camq *drvq; 3747 3748 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3749 CAMQ_HEAD); 3750 device = qinfo->device; 3751 3752 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3753 ("running device %p\n", device)); 3754 3755 drvq = &device->drvq; 3756 3757 #ifdef CAMDEBUG 3758 if (drvq->entries <= 0) { 3759 panic("xpt_run_dev_allocq: " 3760 "Device on queue without any work to do"); 3761 } 3762 #endif 3763 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3764 devq->alloc_openings--; 3765 devq->alloc_active++; 3766 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3767 splx(s); 3768 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3769 drv->pinfo.priority); 3770 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3771 ("calling periph start\n")); 3772 drv->periph_start(drv, work_ccb); 3773 } else { 3774 /* 3775 * Malloc failure in alloc_ccb 3776 */ 3777 /* 3778 * XXX add us to a list to be run from free_ccb 3779 * if we don't have any ccbs active on this 3780 * device queue otherwise we may never get run 3781 * again. 3782 */ 3783 break; 3784 } 3785 3786 /* Raise IPL for possible insertion and test at top of loop */ 3787 s = splsoftcam(); 3788 3789 if (drvq->entries > 0) { 3790 /* We have more work. Attempt to reschedule */ 3791 xpt_schedule_dev_allocq(bus, device); 3792 } 3793 } 3794 devq->alloc_queue.qfrozen_cnt--; 3795 splx(s); 3796 } 3797 3798 static void 3799 xpt_run_dev_sendq(struct cam_eb *bus) 3800 { 3801 struct cam_devq *devq; 3802 int s; 3803 3804 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3805 3806 devq = bus->sim->devq; 3807 3808 s = splcam(); 3809 devq->send_queue.qfrozen_cnt++; 3810 splx(s); 3811 s = splsoftcam(); 3812 while ((devq->send_queue.entries > 0) 3813 && (devq->send_openings > 0)) { 3814 struct cam_ed_qinfo *qinfo; 3815 struct cam_ed *device; 3816 union ccb *work_ccb; 3817 struct cam_sim *sim; 3818 int ospl; 3819 3820 ospl = splcam(); 3821 if (devq->send_queue.qfrozen_cnt > 1) { 3822 splx(ospl); 3823 break; 3824 } 3825 3826 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3827 CAMQ_HEAD); 3828 device = qinfo->device; 3829 3830 /* 3831 * If the device has been "frozen", don't attempt 3832 * to run it. 3833 */ 3834 if (device->qfrozen_cnt > 0) { 3835 splx(ospl); 3836 continue; 3837 } 3838 3839 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3840 ("running device %p\n", device)); 3841 3842 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3843 if (work_ccb == NULL) { 3844 printf("device on run queue with no ccbs???\n"); 3845 splx(ospl); 3846 continue; 3847 } 3848 3849 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3850 3851 if (num_highpower <= 0) { 3852 /* 3853 * We got a high power command, but we 3854 * don't have any available slots. Freeze 3855 * the device queue until we have a slot 3856 * available. 3857 */ 3858 device->qfrozen_cnt++; 3859 STAILQ_INSERT_TAIL(&highpowerq, 3860 &work_ccb->ccb_h, 3861 xpt_links.stqe); 3862 3863 splx(ospl); 3864 continue; 3865 } else { 3866 /* 3867 * Consume a high power slot while 3868 * this ccb runs. 3869 */ 3870 num_highpower--; 3871 } 3872 } 3873 devq->active_dev = device; 3874 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3875 3876 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3877 splx(ospl); 3878 3879 devq->send_openings--; 3880 devq->send_active++; 3881 3882 if (device->ccbq.queue.entries > 0) 3883 xpt_schedule_dev_sendq(bus, device); 3884 3885 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3886 /* 3887 * The client wants to freeze the queue 3888 * after this CCB is sent. 3889 */ 3890 ospl = splcam(); 3891 device->qfrozen_cnt++; 3892 splx(ospl); 3893 } 3894 3895 splx(s); 3896 3897 /* In Target mode, the peripheral driver knows best... */ 3898 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3899 if ((device->inq_flags & SID_CmdQue) != 0 3900 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3901 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3902 else 3903 /* 3904 * Clear this in case of a retried CCB that 3905 * failed due to a rejected tag. 3906 */ 3907 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3908 } 3909 3910 /* 3911 * Device queues can be shared among multiple sim instances 3912 * that reside on different busses. Use the SIM in the queue 3913 * CCB's path, rather than the one in the bus that was passed 3914 * into this function. 3915 */ 3916 sim = work_ccb->ccb_h.path->bus->sim; 3917 (*(sim->sim_action))(sim, work_ccb); 3918 3919 ospl = splcam(); 3920 devq->active_dev = NULL; 3921 splx(ospl); 3922 /* Raise IPL for possible insertion and test at top of loop */ 3923 s = splsoftcam(); 3924 } 3925 splx(s); 3926 s = splcam(); 3927 devq->send_queue.qfrozen_cnt--; 3928 splx(s); 3929 } 3930 3931 /* 3932 * This function merges stuff from the slave ccb into the master ccb, while 3933 * keeping important fields in the master ccb constant. 3934 */ 3935 void 3936 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3937 { 3938 /* 3939 * Pull fields that are valid for peripheral drivers to set 3940 * into the master CCB along with the CCB "payload". 3941 */ 3942 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3943 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3944 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3945 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3946 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3947 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3948 } 3949 3950 void 3951 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3952 { 3953 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3954 ccb_h->pinfo.priority = priority; 3955 ccb_h->path = path; 3956 ccb_h->path_id = path->bus->path_id; 3957 if (path->target) 3958 ccb_h->target_id = path->target->target_id; 3959 else 3960 ccb_h->target_id = CAM_TARGET_WILDCARD; 3961 if (path->device) { 3962 ccb_h->target_lun = path->device->lun_id; 3963 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3964 } else { 3965 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3966 } 3967 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3968 ccb_h->flags = 0; 3969 } 3970 3971 /* Path manipulation functions */ 3972 cam_status 3973 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3974 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3975 { 3976 struct cam_path *path; 3977 cam_status status; 3978 3979 path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT); 3980 3981 if (path == NULL) { 3982 status = CAM_RESRC_UNAVAIL; 3983 return(status); 3984 } 3985 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3986 if (status != CAM_REQ_CMP) { 3987 free(path, M_DEVBUF); 3988 path = NULL; 3989 } 3990 *new_path_ptr = path; 3991 return (status); 3992 } 3993 3994 static cam_status 3995 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3996 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3997 { 3998 struct cam_eb *bus; 3999 struct cam_et *target; 4000 struct cam_ed *device; 4001 cam_status status; 4002 int s; 4003 4004 status = CAM_REQ_CMP; /* Completed without error */ 4005 target = NULL; /* Wildcarded */ 4006 device = NULL; /* Wildcarded */ 4007 4008 /* 4009 * We will potentially modify the EDT, so block interrupts 4010 * that may attempt to create cam paths. 4011 */ 4012 s = splcam(); 4013 bus = xpt_find_bus(path_id); 4014 if (bus == NULL) { 4015 status = CAM_PATH_INVALID; 4016 } else { 4017 target = xpt_find_target(bus, target_id); 4018 if (target == NULL) { 4019 /* Create one */ 4020 struct cam_et *new_target; 4021 4022 new_target = xpt_alloc_target(bus, target_id); 4023 if (new_target == NULL) { 4024 status = CAM_RESRC_UNAVAIL; 4025 } else { 4026 target = new_target; 4027 } 4028 } 4029 if (target != NULL) { 4030 device = xpt_find_device(target, lun_id); 4031 if (device == NULL) { 4032 /* Create one */ 4033 struct cam_ed *new_device; 4034 4035 new_device = xpt_alloc_device(bus, 4036 target, 4037 lun_id); 4038 if (new_device == NULL) { 4039 status = CAM_RESRC_UNAVAIL; 4040 } else { 4041 device = new_device; 4042 } 4043 } 4044 } 4045 } 4046 splx(s); 4047 4048 /* 4049 * Only touch the user's data if we are successful. 4050 */ 4051 if (status == CAM_REQ_CMP) { 4052 new_path->periph = perph; 4053 new_path->bus = bus; 4054 new_path->target = target; 4055 new_path->device = device; 4056 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4057 } else { 4058 if (device != NULL) 4059 xpt_release_device(bus, target, device); 4060 if (target != NULL) 4061 xpt_release_target(bus, target); 4062 if (bus != NULL) 4063 xpt_release_bus(bus); 4064 } 4065 return (status); 4066 } 4067 4068 static void 4069 xpt_release_path(struct cam_path *path) 4070 { 4071 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4072 if (path->device != NULL) { 4073 xpt_release_device(path->bus, path->target, path->device); 4074 path->device = NULL; 4075 } 4076 if (path->target != NULL) { 4077 xpt_release_target(path->bus, path->target); 4078 path->target = NULL; 4079 } 4080 if (path->bus != NULL) { 4081 xpt_release_bus(path->bus); 4082 path->bus = NULL; 4083 } 4084 } 4085 4086 void 4087 xpt_free_path(struct cam_path *path) 4088 { 4089 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4090 xpt_release_path(path); 4091 free(path, M_DEVBUF); 4092 } 4093 4094 4095 /* 4096 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4097 * in path1, 2 for match with wildcards in path2. 4098 */ 4099 int 4100 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4101 { 4102 int retval = 0; 4103 4104 if (path1->bus != path2->bus) { 4105 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4106 retval = 1; 4107 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4108 retval = 2; 4109 else 4110 return (-1); 4111 } 4112 if (path1->target != path2->target) { 4113 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4114 if (retval == 0) 4115 retval = 1; 4116 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4117 retval = 2; 4118 else 4119 return (-1); 4120 } 4121 if (path1->device != path2->device) { 4122 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4123 if (retval == 0) 4124 retval = 1; 4125 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4126 retval = 2; 4127 else 4128 return (-1); 4129 } 4130 return (retval); 4131 } 4132 4133 void 4134 xpt_print_path(struct cam_path *path) 4135 { 4136 if (path == NULL) 4137 printf("(nopath): "); 4138 else { 4139 if (path->periph != NULL) 4140 printf("(%s%d:", path->periph->periph_name, 4141 path->periph->unit_number); 4142 else 4143 printf("(noperiph:"); 4144 4145 if (path->bus != NULL) 4146 printf("%s%d:%d:", path->bus->sim->sim_name, 4147 path->bus->sim->unit_number, 4148 path->bus->sim->bus_id); 4149 else 4150 printf("nobus:"); 4151 4152 if (path->target != NULL) 4153 printf("%d:", path->target->target_id); 4154 else 4155 printf("X:"); 4156 4157 if (path->device != NULL) 4158 printf("%d): ", path->device->lun_id); 4159 else 4160 printf("X): "); 4161 } 4162 } 4163 4164 int 4165 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4166 { 4167 struct sbuf sb; 4168 4169 sbuf_new(&sb, str, str_len, 0); 4170 4171 if (path == NULL) 4172 sbuf_printf(&sb, "(nopath): "); 4173 else { 4174 if (path->periph != NULL) 4175 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4176 path->periph->unit_number); 4177 else 4178 sbuf_printf(&sb, "(noperiph:"); 4179 4180 if (path->bus != NULL) 4181 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4182 path->bus->sim->unit_number, 4183 path->bus->sim->bus_id); 4184 else 4185 sbuf_printf(&sb, "nobus:"); 4186 4187 if (path->target != NULL) 4188 sbuf_printf(&sb, "%d:", path->target->target_id); 4189 else 4190 sbuf_printf(&sb, "X:"); 4191 4192 if (path->device != NULL) 4193 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4194 else 4195 sbuf_printf(&sb, "X): "); 4196 } 4197 sbuf_finish(&sb); 4198 4199 return(sbuf_len(&sb)); 4200 } 4201 4202 path_id_t 4203 xpt_path_path_id(struct cam_path *path) 4204 { 4205 return(path->bus->path_id); 4206 } 4207 4208 target_id_t 4209 xpt_path_target_id(struct cam_path *path) 4210 { 4211 if (path->target != NULL) 4212 return (path->target->target_id); 4213 else 4214 return (CAM_TARGET_WILDCARD); 4215 } 4216 4217 lun_id_t 4218 xpt_path_lun_id(struct cam_path *path) 4219 { 4220 if (path->device != NULL) 4221 return (path->device->lun_id); 4222 else 4223 return (CAM_LUN_WILDCARD); 4224 } 4225 4226 struct cam_sim * 4227 xpt_path_sim(struct cam_path *path) 4228 { 4229 return (path->bus->sim); 4230 } 4231 4232 struct cam_periph* 4233 xpt_path_periph(struct cam_path *path) 4234 { 4235 return (path->periph); 4236 } 4237 4238 /* 4239 * Release a CAM control block for the caller. Remit the cost of the structure 4240 * to the device referenced by the path. If the this device had no 'credits' 4241 * and peripheral drivers have registered async callbacks for this notification 4242 * call them now. 4243 */ 4244 void 4245 xpt_release_ccb(union ccb *free_ccb) 4246 { 4247 int s; 4248 struct cam_path *path; 4249 struct cam_ed *device; 4250 struct cam_eb *bus; 4251 4252 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4253 path = free_ccb->ccb_h.path; 4254 device = path->device; 4255 bus = path->bus; 4256 s = splsoftcam(); 4257 cam_ccbq_release_opening(&device->ccbq); 4258 if (xpt_ccb_count > xpt_max_ccbs) { 4259 xpt_free_ccb(free_ccb); 4260 xpt_ccb_count--; 4261 } else { 4262 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4263 } 4264 bus->sim->devq->alloc_openings++; 4265 bus->sim->devq->alloc_active--; 4266 /* XXX Turn this into an inline function - xpt_run_device?? */ 4267 if ((device_is_alloc_queued(device) == 0) 4268 && (device->drvq.entries > 0)) { 4269 xpt_schedule_dev_allocq(bus, device); 4270 } 4271 splx(s); 4272 if (dev_allocq_is_runnable(bus->sim->devq)) 4273 xpt_run_dev_allocq(bus); 4274 } 4275 4276 /* Functions accessed by SIM drivers */ 4277 4278 /* 4279 * A sim structure, listing the SIM entry points and instance 4280 * identification info is passed to xpt_bus_register to hook the SIM 4281 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4282 * for this new bus and places it in the array of busses and assigns 4283 * it a path_id. The path_id may be influenced by "hard wiring" 4284 * information specified by the user. Once interrupt services are 4285 * availible, the bus will be probed. 4286 */ 4287 int32_t 4288 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4289 { 4290 struct cam_eb *new_bus; 4291 struct cam_eb *old_bus; 4292 struct ccb_pathinq cpi; 4293 int s; 4294 4295 sim->bus_id = bus; 4296 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4297 M_DEVBUF, M_NOWAIT); 4298 if (new_bus == NULL) { 4299 /* Couldn't satisfy request */ 4300 return (CAM_RESRC_UNAVAIL); 4301 } 4302 4303 if (strcmp(sim->sim_name, "xpt") != 0) { 4304 4305 sim->path_id = 4306 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4307 } 4308 4309 TAILQ_INIT(&new_bus->et_entries); 4310 new_bus->path_id = sim->path_id; 4311 new_bus->sim = sim; 4312 timevalclear(&new_bus->last_reset); 4313 new_bus->flags = 0; 4314 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4315 new_bus->generation = 0; 4316 s = splcam(); 4317 old_bus = TAILQ_FIRST(&xpt_busses); 4318 while (old_bus != NULL 4319 && old_bus->path_id < new_bus->path_id) 4320 old_bus = TAILQ_NEXT(old_bus, links); 4321 if (old_bus != NULL) 4322 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4323 else 4324 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4325 bus_generation++; 4326 splx(s); 4327 4328 /* Notify interested parties */ 4329 if (sim->path_id != CAM_XPT_PATH_ID) { 4330 struct cam_path path; 4331 4332 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4333 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4334 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4335 cpi.ccb_h.func_code = XPT_PATH_INQ; 4336 xpt_action((union ccb *)&cpi); 4337 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4338 xpt_release_path(&path); 4339 } 4340 return (CAM_SUCCESS); 4341 } 4342 4343 int32_t 4344 xpt_bus_deregister(path_id_t pathid) 4345 { 4346 struct cam_path bus_path; 4347 cam_status status; 4348 4349 status = xpt_compile_path(&bus_path, NULL, pathid, 4350 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4351 if (status != CAM_REQ_CMP) 4352 return (status); 4353 4354 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4355 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4356 4357 /* Release the reference count held while registered. */ 4358 xpt_release_bus(bus_path.bus); 4359 xpt_release_path(&bus_path); 4360 4361 return (CAM_REQ_CMP); 4362 } 4363 4364 static path_id_t 4365 xptnextfreepathid(void) 4366 { 4367 struct cam_eb *bus; 4368 path_id_t pathid; 4369 const char *strval; 4370 4371 pathid = 0; 4372 bus = TAILQ_FIRST(&xpt_busses); 4373 retry: 4374 /* Find an unoccupied pathid */ 4375 while (bus != NULL 4376 && bus->path_id <= pathid) { 4377 if (bus->path_id == pathid) 4378 pathid++; 4379 bus = TAILQ_NEXT(bus, links); 4380 } 4381 4382 /* 4383 * Ensure that this pathid is not reserved for 4384 * a bus that may be registered in the future. 4385 */ 4386 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4387 ++pathid; 4388 /* Start the search over */ 4389 goto retry; 4390 } 4391 return (pathid); 4392 } 4393 4394 static path_id_t 4395 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4396 { 4397 path_id_t pathid; 4398 int i, dunit, val; 4399 char buf[32]; 4400 const char *dname; 4401 4402 pathid = CAM_XPT_PATH_ID; 4403 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4404 i = 0; 4405 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4406 if (strcmp(dname, "scbus")) { 4407 /* Avoid a bit of foot shooting. */ 4408 continue; 4409 } 4410 if (dunit < 0) /* unwired?! */ 4411 continue; 4412 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4413 if (sim_bus == val) { 4414 pathid = dunit; 4415 break; 4416 } 4417 } else if (sim_bus == 0) { 4418 /* Unspecified matches bus 0 */ 4419 pathid = dunit; 4420 break; 4421 } else { 4422 printf("Ambiguous scbus configuration for %s%d " 4423 "bus %d, cannot wire down. The kernel " 4424 "config entry for scbus%d should " 4425 "specify a controller bus.\n" 4426 "Scbus will be assigned dynamically.\n", 4427 sim_name, sim_unit, sim_bus, dunit); 4428 break; 4429 } 4430 } 4431 4432 if (pathid == CAM_XPT_PATH_ID) 4433 pathid = xptnextfreepathid(); 4434 return (pathid); 4435 } 4436 4437 void 4438 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4439 { 4440 struct cam_eb *bus; 4441 struct cam_et *target, *next_target; 4442 struct cam_ed *device, *next_device; 4443 int s; 4444 4445 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4446 4447 /* 4448 * Most async events come from a CAM interrupt context. In 4449 * a few cases, the error recovery code at the peripheral layer, 4450 * which may run from our SWI or a process context, may signal 4451 * deferred events with a call to xpt_async. Ensure async 4452 * notifications are serialized by blocking cam interrupts. 4453 */ 4454 s = splcam(); 4455 4456 bus = path->bus; 4457 4458 if (async_code == AC_BUS_RESET) { 4459 int s; 4460 4461 s = splclock(); 4462 /* Update our notion of when the last reset occurred */ 4463 microtime(&bus->last_reset); 4464 splx(s); 4465 } 4466 4467 for (target = TAILQ_FIRST(&bus->et_entries); 4468 target != NULL; 4469 target = next_target) { 4470 4471 next_target = TAILQ_NEXT(target, links); 4472 4473 if (path->target != target 4474 && path->target->target_id != CAM_TARGET_WILDCARD 4475 && target->target_id != CAM_TARGET_WILDCARD) 4476 continue; 4477 4478 if (async_code == AC_SENT_BDR) { 4479 int s; 4480 4481 /* Update our notion of when the last reset occurred */ 4482 s = splclock(); 4483 microtime(&path->target->last_reset); 4484 splx(s); 4485 } 4486 4487 for (device = TAILQ_FIRST(&target->ed_entries); 4488 device != NULL; 4489 device = next_device) { 4490 4491 next_device = TAILQ_NEXT(device, links); 4492 4493 if (path->device != device 4494 && path->device->lun_id != CAM_LUN_WILDCARD 4495 && device->lun_id != CAM_LUN_WILDCARD) 4496 continue; 4497 4498 xpt_dev_async(async_code, bus, target, 4499 device, async_arg); 4500 4501 xpt_async_bcast(&device->asyncs, async_code, 4502 path, async_arg); 4503 } 4504 } 4505 4506 /* 4507 * If this wasn't a fully wildcarded async, tell all 4508 * clients that want all async events. 4509 */ 4510 if (bus != xpt_periph->path->bus) 4511 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4512 path, async_arg); 4513 splx(s); 4514 } 4515 4516 static void 4517 xpt_async_bcast(struct async_list *async_head, 4518 u_int32_t async_code, 4519 struct cam_path *path, void *async_arg) 4520 { 4521 struct async_node *cur_entry; 4522 4523 cur_entry = SLIST_FIRST(async_head); 4524 while (cur_entry != NULL) { 4525 struct async_node *next_entry; 4526 /* 4527 * Grab the next list entry before we call the current 4528 * entry's callback. This is because the callback function 4529 * can delete its async callback entry. 4530 */ 4531 next_entry = SLIST_NEXT(cur_entry, links); 4532 if ((cur_entry->event_enable & async_code) != 0) 4533 cur_entry->callback(cur_entry->callback_arg, 4534 async_code, path, 4535 async_arg); 4536 cur_entry = next_entry; 4537 } 4538 } 4539 4540 /* 4541 * Handle any per-device event notifications that require action by the XPT. 4542 */ 4543 static void 4544 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4545 struct cam_ed *device, void *async_arg) 4546 { 4547 cam_status status; 4548 struct cam_path newpath; 4549 4550 /* 4551 * We only need to handle events for real devices. 4552 */ 4553 if (target->target_id == CAM_TARGET_WILDCARD 4554 || device->lun_id == CAM_LUN_WILDCARD) 4555 return; 4556 4557 /* 4558 * We need our own path with wildcards expanded to 4559 * handle certain types of events. 4560 */ 4561 if ((async_code == AC_SENT_BDR) 4562 || (async_code == AC_BUS_RESET) 4563 || (async_code == AC_INQ_CHANGED)) 4564 status = xpt_compile_path(&newpath, NULL, 4565 bus->path_id, 4566 target->target_id, 4567 device->lun_id); 4568 else 4569 status = CAM_REQ_CMP_ERR; 4570 4571 if (status == CAM_REQ_CMP) { 4572 4573 /* 4574 * Allow transfer negotiation to occur in a 4575 * tag free environment. 4576 */ 4577 if (async_code == AC_SENT_BDR 4578 || async_code == AC_BUS_RESET) 4579 xpt_toggle_tags(&newpath); 4580 4581 if (async_code == AC_INQ_CHANGED) { 4582 /* 4583 * We've sent a start unit command, or 4584 * something similar to a device that 4585 * may have caused its inquiry data to 4586 * change. So we re-scan the device to 4587 * refresh the inquiry data for it. 4588 */ 4589 xpt_scan_lun(newpath.periph, &newpath, 4590 CAM_EXPECT_INQ_CHANGE, NULL); 4591 } 4592 xpt_release_path(&newpath); 4593 } else if (async_code == AC_LOST_DEVICE) { 4594 device->flags |= CAM_DEV_UNCONFIGURED; 4595 } else if (async_code == AC_TRANSFER_NEG) { 4596 struct ccb_trans_settings *settings; 4597 4598 settings = (struct ccb_trans_settings *)async_arg; 4599 xpt_set_transfer_settings(settings, device, 4600 /*async_update*/TRUE); 4601 } 4602 } 4603 4604 u_int32_t 4605 xpt_freeze_devq(struct cam_path *path, u_int count) 4606 { 4607 int s; 4608 struct ccb_hdr *ccbh; 4609 4610 s = splcam(); 4611 path->device->qfrozen_cnt += count; 4612 4613 /* 4614 * Mark the last CCB in the queue as needing 4615 * to be requeued if the driver hasn't 4616 * changed it's state yet. This fixes a race 4617 * where a ccb is just about to be queued to 4618 * a controller driver when it's interrupt routine 4619 * freezes the queue. To completly close the 4620 * hole, controller drives must check to see 4621 * if a ccb's status is still CAM_REQ_INPROG 4622 * under spl protection just before they queue 4623 * the CCB. See ahc_action/ahc_freeze_devq for 4624 * an example. 4625 */ 4626 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4627 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4628 ccbh->status = CAM_REQUEUE_REQ; 4629 splx(s); 4630 return (path->device->qfrozen_cnt); 4631 } 4632 4633 u_int32_t 4634 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4635 { 4636 sim->devq->send_queue.qfrozen_cnt += count; 4637 if (sim->devq->active_dev != NULL) { 4638 struct ccb_hdr *ccbh; 4639 4640 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4641 ccb_hdr_tailq); 4642 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4643 ccbh->status = CAM_REQUEUE_REQ; 4644 } 4645 return (sim->devq->send_queue.qfrozen_cnt); 4646 } 4647 4648 static void 4649 xpt_release_devq_timeout(void *arg) 4650 { 4651 struct cam_ed *device; 4652 4653 device = (struct cam_ed *)arg; 4654 4655 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4656 } 4657 4658 void 4659 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4660 { 4661 xpt_release_devq_device(path->device, count, run_queue); 4662 } 4663 4664 static void 4665 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4666 { 4667 int rundevq; 4668 int s0, s1; 4669 4670 rundevq = 0; 4671 s0 = splsoftcam(); 4672 s1 = splcam(); 4673 if (dev->qfrozen_cnt > 0) { 4674 4675 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4676 dev->qfrozen_cnt -= count; 4677 if (dev->qfrozen_cnt == 0) { 4678 4679 /* 4680 * No longer need to wait for a successful 4681 * command completion. 4682 */ 4683 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4684 4685 /* 4686 * Remove any timeouts that might be scheduled 4687 * to release this queue. 4688 */ 4689 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4690 untimeout(xpt_release_devq_timeout, dev, 4691 dev->c_handle); 4692 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4693 } 4694 4695 /* 4696 * Now that we are unfrozen schedule the 4697 * device so any pending transactions are 4698 * run. 4699 */ 4700 if ((dev->ccbq.queue.entries > 0) 4701 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4702 && (run_queue != 0)) { 4703 rundevq = 1; 4704 } 4705 } 4706 } 4707 splx(s1); 4708 if (rundevq != 0) 4709 xpt_run_dev_sendq(dev->target->bus); 4710 splx(s0); 4711 } 4712 4713 void 4714 xpt_release_simq(struct cam_sim *sim, int run_queue) 4715 { 4716 int s; 4717 struct camq *sendq; 4718 4719 sendq = &(sim->devq->send_queue); 4720 s = splcam(); 4721 if (sendq->qfrozen_cnt > 0) { 4722 4723 sendq->qfrozen_cnt--; 4724 if (sendq->qfrozen_cnt == 0) { 4725 struct cam_eb *bus; 4726 4727 /* 4728 * If there is a timeout scheduled to release this 4729 * sim queue, remove it. The queue frozen count is 4730 * already at 0. 4731 */ 4732 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4733 untimeout(xpt_release_simq_timeout, sim, 4734 sim->c_handle); 4735 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4736 } 4737 bus = xpt_find_bus(sim->path_id); 4738 splx(s); 4739 4740 if (run_queue) { 4741 /* 4742 * Now that we are unfrozen run the send queue. 4743 */ 4744 xpt_run_dev_sendq(bus); 4745 } 4746 xpt_release_bus(bus); 4747 } else 4748 splx(s); 4749 } else 4750 splx(s); 4751 } 4752 4753 static void 4754 xpt_release_simq_timeout(void *arg) 4755 { 4756 struct cam_sim *sim; 4757 4758 sim = (struct cam_sim *)arg; 4759 xpt_release_simq(sim, /* run_queue */ TRUE); 4760 } 4761 4762 void 4763 xpt_done(union ccb *done_ccb) 4764 { 4765 int s; 4766 4767 s = splcam(); 4768 4769 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4770 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4771 /* 4772 * Queue up the request for handling by our SWI handler 4773 * any of the "non-immediate" type of ccbs. 4774 */ 4775 switch (done_ccb->ccb_h.path->periph->type) { 4776 case CAM_PERIPH_BIO: 4777 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4778 sim_links.tqe); 4779 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4780 swi_sched(cambio_ih, 0); 4781 break; 4782 case CAM_PERIPH_NET: 4783 TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h, 4784 sim_links.tqe); 4785 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4786 swi_sched(camnet_ih, 0); 4787 break; 4788 } 4789 } 4790 splx(s); 4791 } 4792 4793 union ccb * 4794 xpt_alloc_ccb() 4795 { 4796 union ccb *new_ccb; 4797 4798 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK); 4799 return (new_ccb); 4800 } 4801 4802 void 4803 xpt_free_ccb(union ccb *free_ccb) 4804 { 4805 free(free_ccb, M_DEVBUF); 4806 } 4807 4808 4809 4810 /* Private XPT functions */ 4811 4812 /* 4813 * Get a CAM control block for the caller. Charge the structure to the device 4814 * referenced by the path. If the this device has no 'credits' then the 4815 * device already has the maximum number of outstanding operations under way 4816 * and we return NULL. If we don't have sufficient resources to allocate more 4817 * ccbs, we also return NULL. 4818 */ 4819 static union ccb * 4820 xpt_get_ccb(struct cam_ed *device) 4821 { 4822 union ccb *new_ccb; 4823 int s; 4824 4825 s = splsoftcam(); 4826 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 4827 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT); 4828 if (new_ccb == NULL) { 4829 splx(s); 4830 return (NULL); 4831 } 4832 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4833 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4834 xpt_links.sle); 4835 xpt_ccb_count++; 4836 } 4837 cam_ccbq_take_opening(&device->ccbq); 4838 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4839 splx(s); 4840 return (new_ccb); 4841 } 4842 4843 static void 4844 xpt_release_bus(struct cam_eb *bus) 4845 { 4846 int s; 4847 4848 s = splcam(); 4849 if ((--bus->refcount == 0) 4850 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4851 TAILQ_REMOVE(&xpt_busses, bus, links); 4852 bus_generation++; 4853 splx(s); 4854 free(bus, M_DEVBUF); 4855 } else 4856 splx(s); 4857 } 4858 4859 static struct cam_et * 4860 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4861 { 4862 struct cam_et *target; 4863 4864 target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT); 4865 if (target != NULL) { 4866 struct cam_et *cur_target; 4867 4868 TAILQ_INIT(&target->ed_entries); 4869 target->bus = bus; 4870 target->target_id = target_id; 4871 target->refcount = 1; 4872 target->generation = 0; 4873 timevalclear(&target->last_reset); 4874 /* 4875 * Hold a reference to our parent bus so it 4876 * will not go away before we do. 4877 */ 4878 bus->refcount++; 4879 4880 /* Insertion sort into our bus's target list */ 4881 cur_target = TAILQ_FIRST(&bus->et_entries); 4882 while (cur_target != NULL && cur_target->target_id < target_id) 4883 cur_target = TAILQ_NEXT(cur_target, links); 4884 4885 if (cur_target != NULL) { 4886 TAILQ_INSERT_BEFORE(cur_target, target, links); 4887 } else { 4888 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4889 } 4890 bus->generation++; 4891 } 4892 return (target); 4893 } 4894 4895 static void 4896 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4897 { 4898 int s; 4899 4900 s = splcam(); 4901 if ((--target->refcount == 0) 4902 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4903 TAILQ_REMOVE(&bus->et_entries, target, links); 4904 bus->generation++; 4905 splx(s); 4906 free(target, M_DEVBUF); 4907 xpt_release_bus(bus); 4908 } else 4909 splx(s); 4910 } 4911 4912 static struct cam_ed * 4913 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4914 { 4915 #ifdef CAM_NEW_TRAN_CODE 4916 struct cam_path path; 4917 #endif /* CAM_NEW_TRAN_CODE */ 4918 struct cam_ed *device; 4919 struct cam_devq *devq; 4920 cam_status status; 4921 4922 /* Make space for us in the device queue on our bus */ 4923 devq = bus->sim->devq; 4924 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4925 4926 if (status != CAM_REQ_CMP) { 4927 device = NULL; 4928 } else { 4929 device = (struct cam_ed *)malloc(sizeof(*device), 4930 M_DEVBUF, M_NOWAIT); 4931 } 4932 4933 if (device != NULL) { 4934 struct cam_ed *cur_device; 4935 4936 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4937 device->alloc_ccb_entry.device = device; 4938 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4939 device->send_ccb_entry.device = device; 4940 device->target = target; 4941 device->lun_id = lun_id; 4942 /* Initialize our queues */ 4943 if (camq_init(&device->drvq, 0) != 0) { 4944 free(device, M_DEVBUF); 4945 return (NULL); 4946 } 4947 if (cam_ccbq_init(&device->ccbq, 4948 bus->sim->max_dev_openings) != 0) { 4949 camq_fini(&device->drvq); 4950 free(device, M_DEVBUF); 4951 return (NULL); 4952 } 4953 SLIST_INIT(&device->asyncs); 4954 SLIST_INIT(&device->periphs); 4955 device->generation = 0; 4956 device->owner = NULL; 4957 /* 4958 * Take the default quirk entry until we have inquiry 4959 * data and can determine a better quirk to use. 4960 */ 4961 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 4962 bzero(&device->inq_data, sizeof(device->inq_data)); 4963 device->inq_flags = 0; 4964 device->queue_flags = 0; 4965 device->serial_num = NULL; 4966 device->serial_num_len = 0; 4967 device->qfrozen_cnt = 0; 4968 device->flags = CAM_DEV_UNCONFIGURED; 4969 device->tag_delay_count = 0; 4970 device->refcount = 1; 4971 callout_handle_init(&device->c_handle); 4972 4973 /* 4974 * Hold a reference to our parent target so it 4975 * will not go away before we do. 4976 */ 4977 target->refcount++; 4978 4979 /* 4980 * XXX should be limited by number of CCBs this bus can 4981 * do. 4982 */ 4983 xpt_max_ccbs += device->ccbq.devq_openings; 4984 /* Insertion sort into our target's device list */ 4985 cur_device = TAILQ_FIRST(&target->ed_entries); 4986 while (cur_device != NULL && cur_device->lun_id < lun_id) 4987 cur_device = TAILQ_NEXT(cur_device, links); 4988 if (cur_device != NULL) { 4989 TAILQ_INSERT_BEFORE(cur_device, device, links); 4990 } else { 4991 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4992 } 4993 target->generation++; 4994 #ifdef CAM_NEW_TRAN_CODE 4995 if (lun_id != CAM_LUN_WILDCARD) { 4996 xpt_compile_path(&path, 4997 NULL, 4998 bus->path_id, 4999 target->target_id, 5000 lun_id); 5001 xpt_devise_transport(&path); 5002 xpt_release_path(&path); 5003 } 5004 #endif /* CAM_NEW_TRAN_CODE */ 5005 } 5006 return (device); 5007 } 5008 5009 static void 5010 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5011 struct cam_ed *device) 5012 { 5013 int s; 5014 5015 s = splcam(); 5016 if ((--device->refcount == 0) 5017 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5018 struct cam_devq *devq; 5019 5020 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5021 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5022 panic("Removing device while still queued for ccbs"); 5023 5024 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5025 untimeout(xpt_release_devq_timeout, device, 5026 device->c_handle); 5027 5028 TAILQ_REMOVE(&target->ed_entries, device,links); 5029 target->generation++; 5030 xpt_max_ccbs -= device->ccbq.devq_openings; 5031 /* Release our slot in the devq */ 5032 devq = bus->sim->devq; 5033 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5034 splx(s); 5035 free(device, M_DEVBUF); 5036 xpt_release_target(bus, target); 5037 } else 5038 splx(s); 5039 } 5040 5041 static u_int32_t 5042 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5043 { 5044 int s; 5045 int diff; 5046 int result; 5047 struct cam_ed *dev; 5048 5049 dev = path->device; 5050 s = splsoftcam(); 5051 5052 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5053 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5054 if (result == CAM_REQ_CMP && (diff < 0)) { 5055 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5056 } 5057 /* Adjust the global limit */ 5058 xpt_max_ccbs += diff; 5059 splx(s); 5060 return (result); 5061 } 5062 5063 static struct cam_eb * 5064 xpt_find_bus(path_id_t path_id) 5065 { 5066 struct cam_eb *bus; 5067 5068 for (bus = TAILQ_FIRST(&xpt_busses); 5069 bus != NULL; 5070 bus = TAILQ_NEXT(bus, links)) { 5071 if (bus->path_id == path_id) { 5072 bus->refcount++; 5073 break; 5074 } 5075 } 5076 return (bus); 5077 } 5078 5079 static struct cam_et * 5080 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5081 { 5082 struct cam_et *target; 5083 5084 for (target = TAILQ_FIRST(&bus->et_entries); 5085 target != NULL; 5086 target = TAILQ_NEXT(target, links)) { 5087 if (target->target_id == target_id) { 5088 target->refcount++; 5089 break; 5090 } 5091 } 5092 return (target); 5093 } 5094 5095 static struct cam_ed * 5096 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5097 { 5098 struct cam_ed *device; 5099 5100 for (device = TAILQ_FIRST(&target->ed_entries); 5101 device != NULL; 5102 device = TAILQ_NEXT(device, links)) { 5103 if (device->lun_id == lun_id) { 5104 device->refcount++; 5105 break; 5106 } 5107 } 5108 return (device); 5109 } 5110 5111 typedef struct { 5112 union ccb *request_ccb; 5113 struct ccb_pathinq *cpi; 5114 int pending_count; 5115 } xpt_scan_bus_info; 5116 5117 /* 5118 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5119 * As the scan progresses, xpt_scan_bus is used as the 5120 * callback on completion function. 5121 */ 5122 static void 5123 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5124 { 5125 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5126 ("xpt_scan_bus\n")); 5127 switch (request_ccb->ccb_h.func_code) { 5128 case XPT_SCAN_BUS: 5129 { 5130 xpt_scan_bus_info *scan_info; 5131 union ccb *work_ccb; 5132 struct cam_path *path; 5133 u_int i; 5134 u_int max_target; 5135 u_int initiator_id; 5136 5137 /* Find out the characteristics of the bus */ 5138 work_ccb = xpt_alloc_ccb(); 5139 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5140 request_ccb->ccb_h.pinfo.priority); 5141 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5142 xpt_action(work_ccb); 5143 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5144 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5145 xpt_free_ccb(work_ccb); 5146 xpt_done(request_ccb); 5147 return; 5148 } 5149 5150 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5151 /* 5152 * Can't scan the bus on an adapter that 5153 * cannot perform the initiator role. 5154 */ 5155 request_ccb->ccb_h.status = CAM_REQ_CMP; 5156 xpt_free_ccb(work_ccb); 5157 xpt_done(request_ccb); 5158 return; 5159 } 5160 5161 /* Save some state for use while we probe for devices */ 5162 scan_info = (xpt_scan_bus_info *) 5163 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5164 scan_info->request_ccb = request_ccb; 5165 scan_info->cpi = &work_ccb->cpi; 5166 5167 /* Cache on our stack so we can work asynchronously */ 5168 max_target = scan_info->cpi->max_target; 5169 initiator_id = scan_info->cpi->initiator_id; 5170 5171 /* 5172 * Don't count the initiator if the 5173 * initiator is addressable. 5174 */ 5175 scan_info->pending_count = max_target + 1; 5176 if (initiator_id <= max_target) 5177 scan_info->pending_count--; 5178 5179 for (i = 0; i <= max_target; i++) { 5180 cam_status status; 5181 if (i == initiator_id) 5182 continue; 5183 5184 status = xpt_create_path(&path, xpt_periph, 5185 request_ccb->ccb_h.path_id, 5186 i, 0); 5187 if (status != CAM_REQ_CMP) { 5188 printf("xpt_scan_bus: xpt_create_path failed" 5189 " with status %#x, bus scan halted\n", 5190 status); 5191 break; 5192 } 5193 work_ccb = xpt_alloc_ccb(); 5194 xpt_setup_ccb(&work_ccb->ccb_h, path, 5195 request_ccb->ccb_h.pinfo.priority); 5196 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5197 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5198 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5199 work_ccb->crcn.flags = request_ccb->crcn.flags; 5200 xpt_action(work_ccb); 5201 } 5202 break; 5203 } 5204 case XPT_SCAN_LUN: 5205 { 5206 xpt_scan_bus_info *scan_info; 5207 path_id_t path_id; 5208 target_id_t target_id; 5209 lun_id_t lun_id; 5210 5211 /* Reuse the same CCB to query if a device was really found */ 5212 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5213 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5214 request_ccb->ccb_h.pinfo.priority); 5215 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5216 5217 path_id = request_ccb->ccb_h.path_id; 5218 target_id = request_ccb->ccb_h.target_id; 5219 lun_id = request_ccb->ccb_h.target_lun; 5220 xpt_action(request_ccb); 5221 5222 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5223 struct cam_ed *device; 5224 struct cam_et *target; 5225 int s, phl; 5226 5227 /* 5228 * If we already probed lun 0 successfully, or 5229 * we have additional configured luns on this 5230 * target that might have "gone away", go onto 5231 * the next lun. 5232 */ 5233 target = request_ccb->ccb_h.path->target; 5234 /* 5235 * We may touch devices that we don't 5236 * hold references too, so ensure they 5237 * don't disappear out from under us. 5238 * The target above is referenced by the 5239 * path in the request ccb. 5240 */ 5241 phl = 0; 5242 s = splcam(); 5243 device = TAILQ_FIRST(&target->ed_entries); 5244 if (device != NULL) { 5245 phl = device->quirk->quirks & CAM_QUIRK_HILUNS; 5246 if (device->lun_id == 0) 5247 device = TAILQ_NEXT(device, links); 5248 } 5249 splx(s); 5250 if ((lun_id != 0) || (device != NULL)) { 5251 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5252 lun_id++; 5253 } 5254 } else { 5255 struct cam_ed *device; 5256 5257 device = request_ccb->ccb_h.path->device; 5258 5259 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5260 /* Try the next lun */ 5261 if (lun_id < (CAM_SCSI2_MAXLUN-1) || 5262 (device->quirk->quirks & CAM_QUIRK_HILUNS)) 5263 lun_id++; 5264 } 5265 } 5266 5267 xpt_free_path(request_ccb->ccb_h.path); 5268 5269 /* Check Bounds */ 5270 if ((lun_id == request_ccb->ccb_h.target_lun) 5271 || lun_id > scan_info->cpi->max_lun) { 5272 /* We're done */ 5273 5274 xpt_free_ccb(request_ccb); 5275 scan_info->pending_count--; 5276 if (scan_info->pending_count == 0) { 5277 xpt_free_ccb((union ccb *)scan_info->cpi); 5278 request_ccb = scan_info->request_ccb; 5279 free(scan_info, M_TEMP); 5280 request_ccb->ccb_h.status = CAM_REQ_CMP; 5281 xpt_done(request_ccb); 5282 } 5283 } else { 5284 /* Try the next device */ 5285 struct cam_path *path; 5286 cam_status status; 5287 5288 path = request_ccb->ccb_h.path; 5289 status = xpt_create_path(&path, xpt_periph, 5290 path_id, target_id, lun_id); 5291 if (status != CAM_REQ_CMP) { 5292 printf("xpt_scan_bus: xpt_create_path failed " 5293 "with status %#x, halting LUN scan\n", 5294 status); 5295 xpt_free_ccb(request_ccb); 5296 scan_info->pending_count--; 5297 if (scan_info->pending_count == 0) { 5298 xpt_free_ccb( 5299 (union ccb *)scan_info->cpi); 5300 request_ccb = scan_info->request_ccb; 5301 free(scan_info, M_TEMP); 5302 request_ccb->ccb_h.status = CAM_REQ_CMP; 5303 xpt_done(request_ccb); 5304 break; 5305 } 5306 } 5307 xpt_setup_ccb(&request_ccb->ccb_h, path, 5308 request_ccb->ccb_h.pinfo.priority); 5309 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5310 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5311 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5312 request_ccb->crcn.flags = 5313 scan_info->request_ccb->crcn.flags; 5314 xpt_action(request_ccb); 5315 } 5316 break; 5317 } 5318 default: 5319 break; 5320 } 5321 } 5322 5323 typedef enum { 5324 PROBE_TUR, 5325 PROBE_INQUIRY, 5326 PROBE_FULL_INQUIRY, 5327 PROBE_MODE_SENSE, 5328 PROBE_SERIAL_NUM, 5329 PROBE_TUR_FOR_NEGOTIATION 5330 } probe_action; 5331 5332 typedef enum { 5333 PROBE_INQUIRY_CKSUM = 0x01, 5334 PROBE_SERIAL_CKSUM = 0x02, 5335 PROBE_NO_ANNOUNCE = 0x04 5336 } probe_flags; 5337 5338 typedef struct { 5339 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5340 probe_action action; 5341 union ccb saved_ccb; 5342 probe_flags flags; 5343 MD5_CTX context; 5344 u_int8_t digest[16]; 5345 } probe_softc; 5346 5347 static void 5348 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5349 cam_flags flags, union ccb *request_ccb) 5350 { 5351 struct ccb_pathinq cpi; 5352 cam_status status; 5353 struct cam_path *new_path; 5354 struct cam_periph *old_periph; 5355 int s; 5356 5357 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5358 ("xpt_scan_lun\n")); 5359 5360 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5361 cpi.ccb_h.func_code = XPT_PATH_INQ; 5362 xpt_action((union ccb *)&cpi); 5363 5364 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5365 if (request_ccb != NULL) { 5366 request_ccb->ccb_h.status = cpi.ccb_h.status; 5367 xpt_done(request_ccb); 5368 } 5369 return; 5370 } 5371 5372 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5373 /* 5374 * Can't scan the bus on an adapter that 5375 * cannot perform the initiator role. 5376 */ 5377 if (request_ccb != NULL) { 5378 request_ccb->ccb_h.status = CAM_REQ_CMP; 5379 xpt_done(request_ccb); 5380 } 5381 return; 5382 } 5383 5384 if (request_ccb == NULL) { 5385 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5386 if (request_ccb == NULL) { 5387 xpt_print_path(path); 5388 printf("xpt_scan_lun: can't allocate CCB, can't " 5389 "continue\n"); 5390 return; 5391 } 5392 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5393 if (new_path == NULL) { 5394 xpt_print_path(path); 5395 printf("xpt_scan_lun: can't allocate path, can't " 5396 "continue\n"); 5397 free(request_ccb, M_TEMP); 5398 return; 5399 } 5400 status = xpt_compile_path(new_path, xpt_periph, 5401 path->bus->path_id, 5402 path->target->target_id, 5403 path->device->lun_id); 5404 5405 if (status != CAM_REQ_CMP) { 5406 xpt_print_path(path); 5407 printf("xpt_scan_lun: can't compile path, can't " 5408 "continue\n"); 5409 free(request_ccb, M_TEMP); 5410 free(new_path, M_TEMP); 5411 return; 5412 } 5413 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5414 request_ccb->ccb_h.cbfcnp = xptscandone; 5415 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5416 request_ccb->crcn.flags = flags; 5417 } 5418 5419 s = splsoftcam(); 5420 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5421 probe_softc *softc; 5422 5423 softc = (probe_softc *)old_periph->softc; 5424 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5425 periph_links.tqe); 5426 } else { 5427 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5428 probestart, "probe", 5429 CAM_PERIPH_BIO, 5430 request_ccb->ccb_h.path, NULL, 0, 5431 request_ccb); 5432 5433 if (status != CAM_REQ_CMP) { 5434 xpt_print_path(path); 5435 printf("xpt_scan_lun: cam_alloc_periph returned an " 5436 "error, can't continue probe\n"); 5437 request_ccb->ccb_h.status = status; 5438 xpt_done(request_ccb); 5439 } 5440 } 5441 splx(s); 5442 } 5443 5444 static void 5445 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5446 { 5447 xpt_release_path(done_ccb->ccb_h.path); 5448 free(done_ccb->ccb_h.path, M_TEMP); 5449 free(done_ccb, M_TEMP); 5450 } 5451 5452 static cam_status 5453 proberegister(struct cam_periph *periph, void *arg) 5454 { 5455 union ccb *request_ccb; /* CCB representing the probe request */ 5456 probe_softc *softc; 5457 5458 request_ccb = (union ccb *)arg; 5459 if (periph == NULL) { 5460 printf("proberegister: periph was NULL!!\n"); 5461 return(CAM_REQ_CMP_ERR); 5462 } 5463 5464 if (request_ccb == NULL) { 5465 printf("proberegister: no probe CCB, " 5466 "can't register device\n"); 5467 return(CAM_REQ_CMP_ERR); 5468 } 5469 5470 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5471 5472 if (softc == NULL) { 5473 printf("proberegister: Unable to probe new device. " 5474 "Unable to allocate softc\n"); 5475 return(CAM_REQ_CMP_ERR); 5476 } 5477 TAILQ_INIT(&softc->request_ccbs); 5478 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5479 periph_links.tqe); 5480 softc->flags = 0; 5481 periph->softc = softc; 5482 cam_periph_acquire(periph); 5483 /* 5484 * Ensure we've waited at least a bus settle 5485 * delay before attempting to probe the device. 5486 * For HBAs that don't do bus resets, this won't make a difference. 5487 */ 5488 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5489 scsi_delay); 5490 probeschedule(periph); 5491 return(CAM_REQ_CMP); 5492 } 5493 5494 static void 5495 probeschedule(struct cam_periph *periph) 5496 { 5497 struct ccb_pathinq cpi; 5498 union ccb *ccb; 5499 probe_softc *softc; 5500 5501 softc = (probe_softc *)periph->softc; 5502 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5503 5504 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5505 cpi.ccb_h.func_code = XPT_PATH_INQ; 5506 xpt_action((union ccb *)&cpi); 5507 5508 /* 5509 * If a device has gone away and another device, or the same one, 5510 * is back in the same place, it should have a unit attention 5511 * condition pending. It will not report the unit attention in 5512 * response to an inquiry, which may leave invalid transfer 5513 * negotiations in effect. The TUR will reveal the unit attention 5514 * condition. Only send the TUR for lun 0, since some devices 5515 * will get confused by commands other than inquiry to non-existent 5516 * luns. If you think a device has gone away start your scan from 5517 * lun 0. This will insure that any bogus transfer settings are 5518 * invalidated. 5519 * 5520 * If we haven't seen the device before and the controller supports 5521 * some kind of transfer negotiation, negotiate with the first 5522 * sent command if no bus reset was performed at startup. This 5523 * ensures that the device is not confused by transfer negotiation 5524 * settings left over by loader or BIOS action. 5525 */ 5526 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5527 && (ccb->ccb_h.target_lun == 0)) { 5528 softc->action = PROBE_TUR; 5529 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5530 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5531 proberequestdefaultnegotiation(periph); 5532 softc->action = PROBE_INQUIRY; 5533 } else { 5534 softc->action = PROBE_INQUIRY; 5535 } 5536 5537 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5538 softc->flags |= PROBE_NO_ANNOUNCE; 5539 else 5540 softc->flags &= ~PROBE_NO_ANNOUNCE; 5541 5542 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5543 } 5544 5545 static void 5546 probestart(struct cam_periph *periph, union ccb *start_ccb) 5547 { 5548 /* Probe the device that our peripheral driver points to */ 5549 struct ccb_scsiio *csio; 5550 probe_softc *softc; 5551 5552 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5553 5554 softc = (probe_softc *)periph->softc; 5555 csio = &start_ccb->csio; 5556 5557 switch (softc->action) { 5558 case PROBE_TUR: 5559 case PROBE_TUR_FOR_NEGOTIATION: 5560 { 5561 scsi_test_unit_ready(csio, 5562 /*retries*/4, 5563 probedone, 5564 MSG_SIMPLE_Q_TAG, 5565 SSD_FULL_SIZE, 5566 /*timeout*/60000); 5567 break; 5568 } 5569 case PROBE_INQUIRY: 5570 case PROBE_FULL_INQUIRY: 5571 { 5572 u_int inquiry_len; 5573 struct scsi_inquiry_data *inq_buf; 5574 5575 inq_buf = &periph->path->device->inq_data; 5576 /* 5577 * If the device is currently configured, we calculate an 5578 * MD5 checksum of the inquiry data, and if the serial number 5579 * length is greater than 0, add the serial number data 5580 * into the checksum as well. Once the inquiry and the 5581 * serial number check finish, we attempt to figure out 5582 * whether we still have the same device. 5583 */ 5584 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5585 5586 MD5Init(&softc->context); 5587 MD5Update(&softc->context, (unsigned char *)inq_buf, 5588 sizeof(struct scsi_inquiry_data)); 5589 softc->flags |= PROBE_INQUIRY_CKSUM; 5590 if (periph->path->device->serial_num_len > 0) { 5591 MD5Update(&softc->context, 5592 periph->path->device->serial_num, 5593 periph->path->device->serial_num_len); 5594 softc->flags |= PROBE_SERIAL_CKSUM; 5595 } 5596 MD5Final(softc->digest, &softc->context); 5597 } 5598 5599 if (softc->action == PROBE_INQUIRY) 5600 inquiry_len = SHORT_INQUIRY_LENGTH; 5601 else 5602 inquiry_len = inq_buf->additional_length + 4; 5603 5604 scsi_inquiry(csio, 5605 /*retries*/4, 5606 probedone, 5607 MSG_SIMPLE_Q_TAG, 5608 (u_int8_t *)inq_buf, 5609 inquiry_len, 5610 /*evpd*/FALSE, 5611 /*page_code*/0, 5612 SSD_MIN_SIZE, 5613 /*timeout*/60 * 1000); 5614 break; 5615 } 5616 case PROBE_MODE_SENSE: 5617 { 5618 void *mode_buf; 5619 int mode_buf_len; 5620 5621 mode_buf_len = sizeof(struct scsi_mode_header_6) 5622 + sizeof(struct scsi_mode_blk_desc) 5623 + sizeof(struct scsi_control_page); 5624 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5625 if (mode_buf != NULL) { 5626 scsi_mode_sense(csio, 5627 /*retries*/4, 5628 probedone, 5629 MSG_SIMPLE_Q_TAG, 5630 /*dbd*/FALSE, 5631 SMS_PAGE_CTRL_CURRENT, 5632 SMS_CONTROL_MODE_PAGE, 5633 mode_buf, 5634 mode_buf_len, 5635 SSD_FULL_SIZE, 5636 /*timeout*/60000); 5637 break; 5638 } 5639 xpt_print_path(periph->path); 5640 printf("Unable to mode sense control page - malloc failure\n"); 5641 softc->action = PROBE_SERIAL_NUM; 5642 /* FALLTHROUGH */ 5643 } 5644 case PROBE_SERIAL_NUM: 5645 { 5646 struct scsi_vpd_unit_serial_number *serial_buf; 5647 struct cam_ed* device; 5648 5649 serial_buf = NULL; 5650 device = periph->path->device; 5651 device->serial_num = NULL; 5652 device->serial_num_len = 0; 5653 5654 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5655 serial_buf = (struct scsi_vpd_unit_serial_number *) 5656 malloc(sizeof(*serial_buf), M_TEMP, 5657 M_NOWAIT | M_ZERO); 5658 5659 if (serial_buf != NULL) { 5660 scsi_inquiry(csio, 5661 /*retries*/4, 5662 probedone, 5663 MSG_SIMPLE_Q_TAG, 5664 (u_int8_t *)serial_buf, 5665 sizeof(*serial_buf), 5666 /*evpd*/TRUE, 5667 SVPD_UNIT_SERIAL_NUMBER, 5668 SSD_MIN_SIZE, 5669 /*timeout*/60 * 1000); 5670 break; 5671 } 5672 /* 5673 * We'll have to do without, let our probedone 5674 * routine finish up for us. 5675 */ 5676 start_ccb->csio.data_ptr = NULL; 5677 probedone(periph, start_ccb); 5678 return; 5679 } 5680 } 5681 xpt_action(start_ccb); 5682 } 5683 5684 static void 5685 proberequestdefaultnegotiation(struct cam_periph *periph) 5686 { 5687 struct ccb_trans_settings cts; 5688 5689 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5690 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5691 #ifdef CAM_NEW_TRAN_CODE 5692 cts.type = CTS_TYPE_USER_SETTINGS; 5693 #else /* CAM_NEW_TRAN_CODE */ 5694 cts.flags = CCB_TRANS_USER_SETTINGS; 5695 #endif /* CAM_NEW_TRAN_CODE */ 5696 xpt_action((union ccb *)&cts); 5697 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5698 #ifdef CAM_NEW_TRAN_CODE 5699 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5700 #else /* CAM_NEW_TRAN_CODE */ 5701 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5702 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5703 #endif /* CAM_NEW_TRAN_CODE */ 5704 xpt_action((union ccb *)&cts); 5705 } 5706 5707 static void 5708 probedone(struct cam_periph *periph, union ccb *done_ccb) 5709 { 5710 probe_softc *softc; 5711 struct cam_path *path; 5712 u_int32_t priority; 5713 5714 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5715 5716 softc = (probe_softc *)periph->softc; 5717 path = done_ccb->ccb_h.path; 5718 priority = done_ccb->ccb_h.pinfo.priority; 5719 5720 switch (softc->action) { 5721 case PROBE_TUR: 5722 { 5723 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5724 5725 if (cam_periph_error(done_ccb, 0, 5726 SF_NO_PRINT, NULL) == ERESTART) 5727 return; 5728 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5729 /* Don't wedge the queue */ 5730 xpt_release_devq(done_ccb->ccb_h.path, 5731 /*count*/1, 5732 /*run_queue*/TRUE); 5733 } 5734 softc->action = PROBE_INQUIRY; 5735 xpt_release_ccb(done_ccb); 5736 xpt_schedule(periph, priority); 5737 return; 5738 } 5739 case PROBE_INQUIRY: 5740 case PROBE_FULL_INQUIRY: 5741 { 5742 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5743 struct scsi_inquiry_data *inq_buf; 5744 u_int8_t periph_qual; 5745 5746 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5747 inq_buf = &path->device->inq_data; 5748 5749 periph_qual = SID_QUAL(inq_buf); 5750 5751 switch(periph_qual) { 5752 case SID_QUAL_LU_CONNECTED: 5753 { 5754 u_int8_t alen; 5755 5756 /* 5757 * We conservatively request only 5758 * SHORT_INQUIRY_LEN bytes of inquiry 5759 * information during our first try 5760 * at sending an INQUIRY. If the device 5761 * has more information to give, 5762 * perform a second request specifying 5763 * the amount of information the device 5764 * is willing to give. 5765 */ 5766 alen = inq_buf->additional_length; 5767 if (softc->action == PROBE_INQUIRY 5768 && alen > (SHORT_INQUIRY_LENGTH - 4)) { 5769 softc->action = PROBE_FULL_INQUIRY; 5770 xpt_release_ccb(done_ccb); 5771 xpt_schedule(periph, priority); 5772 return; 5773 } 5774 5775 xpt_find_quirk(path->device); 5776 5777 #ifdef CAM_NEW_TRAN_CODE 5778 xpt_devise_transport(path); 5779 #endif /* CAM_NEW_TRAN_CODE */ 5780 if ((inq_buf->flags & SID_CmdQue) != 0) 5781 softc->action = PROBE_MODE_SENSE; 5782 else 5783 softc->action = PROBE_SERIAL_NUM; 5784 5785 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5786 5787 xpt_release_ccb(done_ccb); 5788 xpt_schedule(periph, priority); 5789 return; 5790 } 5791 default: 5792 break; 5793 } 5794 } else if (cam_periph_error(done_ccb, 0, 5795 done_ccb->ccb_h.target_lun > 0 5796 ? SF_RETRY_UA|SF_QUIET_IR 5797 : SF_RETRY_UA, 5798 &softc->saved_ccb) == ERESTART) { 5799 return; 5800 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5801 /* Don't wedge the queue */ 5802 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5803 /*run_queue*/TRUE); 5804 } 5805 /* 5806 * If we get to this point, we got an error status back 5807 * from the inquiry and the error status doesn't require 5808 * automatically retrying the command. Therefore, the 5809 * inquiry failed. If we had inquiry information before 5810 * for this device, but this latest inquiry command failed, 5811 * the device has probably gone away. If this device isn't 5812 * already marked unconfigured, notify the peripheral 5813 * drivers that this device is no more. 5814 */ 5815 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5816 /* Send the async notification. */ 5817 xpt_async(AC_LOST_DEVICE, path, NULL); 5818 5819 xpt_release_ccb(done_ccb); 5820 break; 5821 } 5822 case PROBE_MODE_SENSE: 5823 { 5824 struct ccb_scsiio *csio; 5825 struct scsi_mode_header_6 *mode_hdr; 5826 5827 csio = &done_ccb->csio; 5828 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 5829 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5830 struct scsi_control_page *page; 5831 u_int8_t *offset; 5832 5833 offset = ((u_int8_t *)&mode_hdr[1]) 5834 + mode_hdr->blk_desc_len; 5835 page = (struct scsi_control_page *)offset; 5836 path->device->queue_flags = page->queue_flags; 5837 } else if (cam_periph_error(done_ccb, 0, 5838 SF_RETRY_UA|SF_NO_PRINT, 5839 &softc->saved_ccb) == ERESTART) { 5840 return; 5841 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5842 /* Don't wedge the queue */ 5843 xpt_release_devq(done_ccb->ccb_h.path, 5844 /*count*/1, /*run_queue*/TRUE); 5845 } 5846 xpt_release_ccb(done_ccb); 5847 free(mode_hdr, M_TEMP); 5848 softc->action = PROBE_SERIAL_NUM; 5849 xpt_schedule(periph, priority); 5850 return; 5851 } 5852 case PROBE_SERIAL_NUM: 5853 { 5854 struct ccb_scsiio *csio; 5855 struct scsi_vpd_unit_serial_number *serial_buf; 5856 u_int32_t priority; 5857 int changed; 5858 int have_serialnum; 5859 5860 changed = 1; 5861 have_serialnum = 0; 5862 csio = &done_ccb->csio; 5863 priority = done_ccb->ccb_h.pinfo.priority; 5864 serial_buf = 5865 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 5866 5867 /* Clean up from previous instance of this device */ 5868 if (path->device->serial_num != NULL) { 5869 free(path->device->serial_num, M_DEVBUF); 5870 path->device->serial_num = NULL; 5871 path->device->serial_num_len = 0; 5872 } 5873 5874 if (serial_buf == NULL) { 5875 /* 5876 * Don't process the command as it was never sent 5877 */ 5878 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 5879 && (serial_buf->length > 0)) { 5880 5881 have_serialnum = 1; 5882 path->device->serial_num = 5883 (u_int8_t *)malloc((serial_buf->length + 1), 5884 M_DEVBUF, M_NOWAIT); 5885 if (path->device->serial_num != NULL) { 5886 bcopy(serial_buf->serial_num, 5887 path->device->serial_num, 5888 serial_buf->length); 5889 path->device->serial_num_len = 5890 serial_buf->length; 5891 path->device->serial_num[serial_buf->length] 5892 = '\0'; 5893 } 5894 } else if (cam_periph_error(done_ccb, 0, 5895 SF_RETRY_UA|SF_NO_PRINT, 5896 &softc->saved_ccb) == ERESTART) { 5897 return; 5898 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5899 /* Don't wedge the queue */ 5900 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5901 /*run_queue*/TRUE); 5902 } 5903 5904 /* 5905 * Let's see if we have seen this device before. 5906 */ 5907 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 5908 MD5_CTX context; 5909 u_int8_t digest[16]; 5910 5911 MD5Init(&context); 5912 5913 MD5Update(&context, 5914 (unsigned char *)&path->device->inq_data, 5915 sizeof(struct scsi_inquiry_data)); 5916 5917 if (have_serialnum) 5918 MD5Update(&context, serial_buf->serial_num, 5919 serial_buf->length); 5920 5921 MD5Final(digest, &context); 5922 if (bcmp(softc->digest, digest, 16) == 0) 5923 changed = 0; 5924 5925 /* 5926 * XXX Do we need to do a TUR in order to ensure 5927 * that the device really hasn't changed??? 5928 */ 5929 if ((changed != 0) 5930 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 5931 xpt_async(AC_LOST_DEVICE, path, NULL); 5932 } 5933 if (serial_buf != NULL) 5934 free(serial_buf, M_TEMP); 5935 5936 if (changed != 0) { 5937 /* 5938 * Now that we have all the necessary 5939 * information to safely perform transfer 5940 * negotiations... Controllers don't perform 5941 * any negotiation or tagged queuing until 5942 * after the first XPT_SET_TRAN_SETTINGS ccb is 5943 * received. So, on a new device, just retreive 5944 * the user settings, and set them as the current 5945 * settings to set the device up. 5946 */ 5947 proberequestdefaultnegotiation(periph); 5948 xpt_release_ccb(done_ccb); 5949 5950 /* 5951 * Perform a TUR to allow the controller to 5952 * perform any necessary transfer negotiation. 5953 */ 5954 softc->action = PROBE_TUR_FOR_NEGOTIATION; 5955 xpt_schedule(periph, priority); 5956 return; 5957 } 5958 xpt_release_ccb(done_ccb); 5959 break; 5960 } 5961 case PROBE_TUR_FOR_NEGOTIATION: 5962 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5963 /* Don't wedge the queue */ 5964 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5965 /*run_queue*/TRUE); 5966 } 5967 5968 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5969 5970 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 5971 /* Inform the XPT that a new device has been found */ 5972 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5973 xpt_action(done_ccb); 5974 5975 xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb); 5976 } 5977 xpt_release_ccb(done_ccb); 5978 break; 5979 } 5980 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5981 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 5982 done_ccb->ccb_h.status = CAM_REQ_CMP; 5983 xpt_done(done_ccb); 5984 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 5985 cam_periph_invalidate(periph); 5986 cam_periph_release(periph); 5987 } else { 5988 probeschedule(periph); 5989 } 5990 } 5991 5992 static void 5993 probecleanup(struct cam_periph *periph) 5994 { 5995 free(periph->softc, M_TEMP); 5996 } 5997 5998 static void 5999 xpt_find_quirk(struct cam_ed *device) 6000 { 6001 caddr_t match; 6002 6003 match = cam_quirkmatch((caddr_t)&device->inq_data, 6004 (caddr_t)xpt_quirk_table, 6005 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6006 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6007 6008 if (match == NULL) 6009 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6010 6011 device->quirk = (struct xpt_quirk_entry *)match; 6012 } 6013 6014 #ifdef CAM_NEW_TRAN_CODE 6015 6016 static void 6017 xpt_devise_transport(struct cam_path *path) 6018 { 6019 struct ccb_pathinq cpi; 6020 struct ccb_trans_settings cts; 6021 struct scsi_inquiry_data *inq_buf; 6022 6023 /* Get transport information from the SIM */ 6024 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6025 cpi.ccb_h.func_code = XPT_PATH_INQ; 6026 xpt_action((union ccb *)&cpi); 6027 6028 inq_buf = NULL; 6029 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6030 inq_buf = &path->device->inq_data; 6031 path->device->protocol = PROTO_SCSI; 6032 path->device->protocol_version = 6033 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6034 path->device->transport = cpi.transport; 6035 path->device->transport_version = cpi.transport_version; 6036 6037 /* 6038 * Any device not using SPI3 features should 6039 * be considered SPI2 or lower. 6040 */ 6041 if (inq_buf != NULL) { 6042 if (path->device->transport == XPORT_SPI 6043 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6044 && path->device->transport_version > 2) 6045 path->device->transport_version = 2; 6046 } else { 6047 struct cam_ed* otherdev; 6048 6049 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6050 otherdev != NULL; 6051 otherdev = TAILQ_NEXT(otherdev, links)) { 6052 if (otherdev != path->device) 6053 break; 6054 } 6055 6056 if (otherdev != NULL) { 6057 /* 6058 * Initially assume the same versioning as 6059 * prior luns for this target. 6060 */ 6061 path->device->protocol_version = 6062 otherdev->protocol_version; 6063 path->device->transport_version = 6064 otherdev->transport_version; 6065 } else { 6066 /* Until we know better, opt for safty */ 6067 path->device->protocol_version = 2; 6068 if (path->device->transport == XPORT_SPI) 6069 path->device->transport_version = 2; 6070 else 6071 path->device->transport_version = 0; 6072 } 6073 } 6074 6075 /* 6076 * XXX 6077 * For a device compliant with SPC-2 we should be able 6078 * to determine the transport version supported by 6079 * scrutinizing the version descriptors in the 6080 * inquiry buffer. 6081 */ 6082 6083 /* Tell the controller what we think */ 6084 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6085 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6086 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6087 cts.transport = path->device->transport; 6088 cts.transport_version = path->device->transport_version; 6089 cts.protocol = path->device->protocol; 6090 cts.protocol_version = path->device->protocol_version; 6091 cts.proto_specific.valid = 0; 6092 cts.xport_specific.valid = 0; 6093 xpt_action((union ccb *)&cts); 6094 } 6095 6096 static void 6097 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6098 int async_update) 6099 { 6100 struct ccb_pathinq cpi; 6101 struct ccb_trans_settings cur_cts; 6102 struct ccb_trans_settings_scsi *scsi; 6103 struct ccb_trans_settings_scsi *cur_scsi; 6104 struct cam_sim *sim; 6105 struct scsi_inquiry_data *inq_data; 6106 6107 if (device == NULL) { 6108 cts->ccb_h.status = CAM_PATH_INVALID; 6109 xpt_done((union ccb *)cts); 6110 return; 6111 } 6112 6113 if (cts->protocol == PROTO_UNKNOWN 6114 || cts->protocol == PROTO_UNSPECIFIED) { 6115 cts->protocol = device->protocol; 6116 cts->protocol_version = device->protocol_version; 6117 } 6118 6119 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6120 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6121 cts->protocol_version = device->protocol_version; 6122 6123 if (cts->protocol != device->protocol) { 6124 xpt_print_path(cts->ccb_h.path); 6125 printf("Uninitialized Protocol %x:%x?\n", 6126 cts->protocol, device->protocol); 6127 cts->protocol = device->protocol; 6128 } 6129 6130 if (cts->protocol_version > device->protocol_version) { 6131 if (bootverbose) { 6132 xpt_print_path(cts->ccb_h.path); 6133 printf("Down reving Protocol Version from %d to %d?\n", 6134 cts->protocol_version, device->protocol_version); 6135 } 6136 cts->protocol_version = device->protocol_version; 6137 } 6138 6139 if (cts->transport == XPORT_UNKNOWN 6140 || cts->transport == XPORT_UNSPECIFIED) { 6141 cts->transport = device->transport; 6142 cts->transport_version = device->transport_version; 6143 } 6144 6145 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6146 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6147 cts->transport_version = device->transport_version; 6148 6149 if (cts->transport != device->transport) { 6150 xpt_print_path(cts->ccb_h.path); 6151 printf("Uninitialized Transport %x:%x?\n", 6152 cts->transport, device->transport); 6153 cts->transport = device->transport; 6154 } 6155 6156 if (cts->transport_version > device->transport_version) { 6157 if (bootverbose) { 6158 xpt_print_path(cts->ccb_h.path); 6159 printf("Down reving Transport Version from %d to %d?\n", 6160 cts->transport_version, 6161 device->transport_version); 6162 } 6163 cts->transport_version = device->transport_version; 6164 } 6165 6166 sim = cts->ccb_h.path->bus->sim; 6167 6168 /* 6169 * Nothing more of interest to do unless 6170 * this is a device connected via the 6171 * SCSI protocol. 6172 */ 6173 if (cts->protocol != PROTO_SCSI) { 6174 if (async_update == FALSE) 6175 (*(sim->sim_action))(sim, (union ccb *)cts); 6176 return; 6177 } 6178 6179 inq_data = &device->inq_data; 6180 scsi = &cts->proto_specific.scsi; 6181 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6182 cpi.ccb_h.func_code = XPT_PATH_INQ; 6183 xpt_action((union ccb *)&cpi); 6184 6185 /* SCSI specific sanity checking */ 6186 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6187 || (inq_data->flags & SID_CmdQue) == 0 6188 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6189 || (device->quirk->mintags == 0)) { 6190 /* 6191 * Can't tag on hardware that doesn't support tags, 6192 * doesn't have it enabled, or has broken tag support. 6193 */ 6194 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6195 } 6196 6197 if (async_update == FALSE) { 6198 /* 6199 * Perform sanity checking against what the 6200 * controller and device can do. 6201 */ 6202 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6203 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6204 cur_cts.type = cts->type; 6205 xpt_action((union ccb *)&cur_cts); 6206 6207 cur_scsi = &cur_cts.proto_specific.scsi; 6208 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6209 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6210 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6211 } 6212 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6213 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6214 } 6215 6216 /* SPI specific sanity checking */ 6217 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6218 u_int spi3caps; 6219 struct ccb_trans_settings_spi *spi; 6220 struct ccb_trans_settings_spi *cur_spi; 6221 6222 spi = &cts->xport_specific.spi; 6223 6224 cur_spi = &cur_cts.xport_specific.spi; 6225 6226 /* Fill in any gaps in what the user gave us */ 6227 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6228 spi->sync_period = cur_spi->sync_period; 6229 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6230 spi->sync_period = 0; 6231 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6232 spi->sync_offset = cur_spi->sync_offset; 6233 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6234 spi->sync_offset = 0; 6235 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6236 spi->ppr_options = cur_spi->ppr_options; 6237 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6238 spi->ppr_options = 0; 6239 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6240 spi->bus_width = cur_spi->bus_width; 6241 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6242 spi->bus_width = 0; 6243 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6244 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6245 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6246 } 6247 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6248 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6249 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6250 && (inq_data->flags & SID_Sync) == 0 6251 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6252 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6253 || (cur_spi->sync_offset == 0) 6254 || (cur_spi->sync_period == 0)) { 6255 /* Force async */ 6256 spi->sync_period = 0; 6257 spi->sync_offset = 0; 6258 } 6259 6260 switch (spi->bus_width) { 6261 case MSG_EXT_WDTR_BUS_32_BIT: 6262 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6263 || (inq_data->flags & SID_WBus32) != 0 6264 || cts->type == CTS_TYPE_USER_SETTINGS) 6265 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6266 break; 6267 /* Fall Through to 16-bit */ 6268 case MSG_EXT_WDTR_BUS_16_BIT: 6269 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6270 || (inq_data->flags & SID_WBus16) != 0 6271 || cts->type == CTS_TYPE_USER_SETTINGS) 6272 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6273 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6274 break; 6275 } 6276 /* Fall Through to 8-bit */ 6277 default: /* New bus width?? */ 6278 case MSG_EXT_WDTR_BUS_8_BIT: 6279 /* All targets can do this */ 6280 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6281 break; 6282 } 6283 6284 spi3caps = cpi.xport_specific.spi.ppr_options; 6285 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6286 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6287 spi3caps &= inq_data->spi3data; 6288 6289 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6290 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6291 6292 if ((spi3caps & SID_SPI_IUS) == 0) 6293 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6294 6295 if ((spi3caps & SID_SPI_QAS) == 0) 6296 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6297 6298 /* No SPI Transfer settings are allowed unless we are wide */ 6299 if (spi->bus_width == 0) 6300 spi->ppr_options = 0; 6301 6302 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6303 /* 6304 * Can't tag queue without disconnection. 6305 */ 6306 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6307 scsi->valid |= CTS_SCSI_VALID_TQ; 6308 } 6309 6310 /* 6311 * If we are currently performing tagged transactions to 6312 * this device and want to change its negotiation parameters, 6313 * go non-tagged for a bit to give the controller a chance to 6314 * negotiate unhampered by tag messages. 6315 */ 6316 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6317 && (device->inq_flags & SID_CmdQue) != 0 6318 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6319 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6320 CTS_SPI_VALID_SYNC_OFFSET| 6321 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6322 xpt_toggle_tags(cts->ccb_h.path); 6323 } 6324 6325 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6326 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6327 int device_tagenb; 6328 6329 /* 6330 * If we are transitioning from tags to no-tags or 6331 * vice-versa, we need to carefully freeze and restart 6332 * the queue so that we don't overlap tagged and non-tagged 6333 * commands. We also temporarily stop tags if there is 6334 * a change in transfer negotiation settings to allow 6335 * "tag-less" negotiation. 6336 */ 6337 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6338 || (device->inq_flags & SID_CmdQue) != 0) 6339 device_tagenb = TRUE; 6340 else 6341 device_tagenb = FALSE; 6342 6343 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6344 && device_tagenb == FALSE) 6345 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6346 && device_tagenb == TRUE)) { 6347 6348 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6349 /* 6350 * Delay change to use tags until after a 6351 * few commands have gone to this device so 6352 * the controller has time to perform transfer 6353 * negotiations without tagged messages getting 6354 * in the way. 6355 */ 6356 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6357 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6358 } else { 6359 struct ccb_relsim crs; 6360 6361 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6362 device->inq_flags &= ~SID_CmdQue; 6363 xpt_dev_ccbq_resize(cts->ccb_h.path, 6364 sim->max_dev_openings); 6365 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6366 device->tag_delay_count = 0; 6367 6368 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6369 /*priority*/1); 6370 crs.ccb_h.func_code = XPT_REL_SIMQ; 6371 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6372 crs.openings 6373 = crs.release_timeout 6374 = crs.qfrozen_cnt 6375 = 0; 6376 xpt_action((union ccb *)&crs); 6377 } 6378 } 6379 } 6380 if (async_update == FALSE) 6381 (*(sim->sim_action))(sim, (union ccb *)cts); 6382 } 6383 6384 #else /* CAM_NEW_TRAN_CODE */ 6385 6386 static void 6387 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6388 int async_update) 6389 { 6390 struct cam_sim *sim; 6391 int qfrozen; 6392 6393 sim = cts->ccb_h.path->bus->sim; 6394 if (async_update == FALSE) { 6395 struct scsi_inquiry_data *inq_data; 6396 struct ccb_pathinq cpi; 6397 struct ccb_trans_settings cur_cts; 6398 6399 if (device == NULL) { 6400 cts->ccb_h.status = CAM_PATH_INVALID; 6401 xpt_done((union ccb *)cts); 6402 return; 6403 } 6404 6405 /* 6406 * Perform sanity checking against what the 6407 * controller and device can do. 6408 */ 6409 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6410 cpi.ccb_h.func_code = XPT_PATH_INQ; 6411 xpt_action((union ccb *)&cpi); 6412 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6413 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6414 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 6415 xpt_action((union ccb *)&cur_cts); 6416 inq_data = &device->inq_data; 6417 6418 /* Fill in any gaps in what the user gave us */ 6419 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 6420 cts->sync_period = cur_cts.sync_period; 6421 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 6422 cts->sync_offset = cur_cts.sync_offset; 6423 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 6424 cts->bus_width = cur_cts.bus_width; 6425 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 6426 cts->flags &= ~CCB_TRANS_DISC_ENB; 6427 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 6428 } 6429 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 6430 cts->flags &= ~CCB_TRANS_TAG_ENB; 6431 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 6432 } 6433 6434 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6435 && (inq_data->flags & SID_Sync) == 0) 6436 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6437 || (cts->sync_offset == 0) 6438 || (cts->sync_period == 0)) { 6439 /* Force async */ 6440 cts->sync_period = 0; 6441 cts->sync_offset = 0; 6442 } else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6443 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 6444 && cts->sync_period <= 0x9) { 6445 /* 6446 * Don't allow DT transmission rates if the 6447 * device does not support it. 6448 */ 6449 cts->sync_period = 0xa; 6450 } 6451 6452 switch (cts->bus_width) { 6453 case MSG_EXT_WDTR_BUS_32_BIT: 6454 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6455 || (inq_data->flags & SID_WBus32) != 0) 6456 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6457 break; 6458 /* FALLTHROUGH to 16-bit */ 6459 case MSG_EXT_WDTR_BUS_16_BIT: 6460 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6461 || (inq_data->flags & SID_WBus16) != 0) 6462 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6463 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6464 break; 6465 } 6466 /* FALLTHROUGH to 8-bit */ 6467 default: /* New bus width?? */ 6468 case MSG_EXT_WDTR_BUS_8_BIT: 6469 /* All targets can do this */ 6470 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6471 break; 6472 } 6473 6474 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 6475 /* 6476 * Can't tag queue without disconnection. 6477 */ 6478 cts->flags &= ~CCB_TRANS_TAG_ENB; 6479 cts->valid |= CCB_TRANS_TQ_VALID; 6480 } 6481 6482 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6483 || (inq_data->flags & SID_CmdQue) == 0 6484 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6485 || (device->quirk->mintags == 0)) { 6486 /* 6487 * Can't tag on hardware that doesn't support, 6488 * doesn't have it enabled, or has broken tag support. 6489 */ 6490 cts->flags &= ~CCB_TRANS_TAG_ENB; 6491 } 6492 } 6493 6494 qfrozen = FALSE; 6495 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 6496 int device_tagenb; 6497 6498 /* 6499 * If we are transitioning from tags to no-tags or 6500 * vice-versa, we need to carefully freeze and restart 6501 * the queue so that we don't overlap tagged and non-tagged 6502 * commands. We also temporarily stop tags if there is 6503 * a change in transfer negotiation settings to allow 6504 * "tag-less" negotiation. 6505 */ 6506 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6507 || (device->inq_flags & SID_CmdQue) != 0) 6508 device_tagenb = TRUE; 6509 else 6510 device_tagenb = FALSE; 6511 6512 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 6513 && device_tagenb == FALSE) 6514 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 6515 && device_tagenb == TRUE)) { 6516 6517 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 6518 /* 6519 * Delay change to use tags until after a 6520 * few commands have gone to this device so 6521 * the controller has time to perform transfer 6522 * negotiations without tagged messages getting 6523 * in the way. 6524 */ 6525 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6526 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6527 } else { 6528 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6529 qfrozen = TRUE; 6530 device->inq_flags &= ~SID_CmdQue; 6531 xpt_dev_ccbq_resize(cts->ccb_h.path, 6532 sim->max_dev_openings); 6533 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6534 device->tag_delay_count = 0; 6535 } 6536 } 6537 } 6538 6539 if (async_update == FALSE) { 6540 /* 6541 * If we are currently performing tagged transactions to 6542 * this device and want to change its negotiation parameters, 6543 * go non-tagged for a bit to give the controller a chance to 6544 * negotiate unhampered by tag messages. 6545 */ 6546 if ((device->inq_flags & SID_CmdQue) != 0 6547 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 6548 CCB_TRANS_SYNC_OFFSET_VALID| 6549 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 6550 xpt_toggle_tags(cts->ccb_h.path); 6551 6552 (*(sim->sim_action))(sim, (union ccb *)cts); 6553 } 6554 6555 if (qfrozen) { 6556 struct ccb_relsim crs; 6557 6558 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6559 /*priority*/1); 6560 crs.ccb_h.func_code = XPT_REL_SIMQ; 6561 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6562 crs.openings 6563 = crs.release_timeout 6564 = crs.qfrozen_cnt 6565 = 0; 6566 xpt_action((union ccb *)&crs); 6567 } 6568 } 6569 6570 6571 #endif /* CAM_NEW_TRAN_CODE */ 6572 6573 static void 6574 xpt_toggle_tags(struct cam_path *path) 6575 { 6576 struct cam_ed *dev; 6577 6578 /* 6579 * Give controllers a chance to renegotiate 6580 * before starting tag operations. We 6581 * "toggle" tagged queuing off then on 6582 * which causes the tag enable command delay 6583 * counter to come into effect. 6584 */ 6585 dev = path->device; 6586 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6587 || ((dev->inq_flags & SID_CmdQue) != 0 6588 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6589 struct ccb_trans_settings cts; 6590 6591 xpt_setup_ccb(&cts.ccb_h, path, 1); 6592 #ifdef CAM_NEW_TRAN_CODE 6593 cts.protocol = PROTO_SCSI; 6594 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6595 cts.transport = XPORT_UNSPECIFIED; 6596 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6597 cts.proto_specific.scsi.flags = 0; 6598 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6599 #else /* CAM_NEW_TRAN_CODE */ 6600 cts.flags = 0; 6601 cts.valid = CCB_TRANS_TQ_VALID; 6602 #endif /* CAM_NEW_TRAN_CODE */ 6603 xpt_set_transfer_settings(&cts, path->device, 6604 /*async_update*/TRUE); 6605 #ifdef CAM_NEW_TRAN_CODE 6606 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6607 #else /* CAM_NEW_TRAN_CODE */ 6608 cts.flags = CCB_TRANS_TAG_ENB; 6609 #endif /* CAM_NEW_TRAN_CODE */ 6610 xpt_set_transfer_settings(&cts, path->device, 6611 /*async_update*/TRUE); 6612 } 6613 } 6614 6615 static void 6616 xpt_start_tags(struct cam_path *path) 6617 { 6618 struct ccb_relsim crs; 6619 struct cam_ed *device; 6620 struct cam_sim *sim; 6621 int newopenings; 6622 6623 device = path->device; 6624 sim = path->bus->sim; 6625 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6626 xpt_freeze_devq(path, /*count*/1); 6627 device->inq_flags |= SID_CmdQue; 6628 newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings); 6629 xpt_dev_ccbq_resize(path, newopenings); 6630 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6631 crs.ccb_h.func_code = XPT_REL_SIMQ; 6632 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6633 crs.openings 6634 = crs.release_timeout 6635 = crs.qfrozen_cnt 6636 = 0; 6637 xpt_action((union ccb *)&crs); 6638 } 6639 6640 static int busses_to_config; 6641 static int busses_to_reset; 6642 6643 static int 6644 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6645 { 6646 if (bus->path_id != CAM_XPT_PATH_ID) { 6647 struct cam_path path; 6648 struct ccb_pathinq cpi; 6649 int can_negotiate; 6650 6651 busses_to_config++; 6652 xpt_compile_path(&path, NULL, bus->path_id, 6653 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6654 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6655 cpi.ccb_h.func_code = XPT_PATH_INQ; 6656 xpt_action((union ccb *)&cpi); 6657 can_negotiate = cpi.hba_inquiry; 6658 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6659 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6660 && can_negotiate) 6661 busses_to_reset++; 6662 xpt_release_path(&path); 6663 } 6664 6665 return(1); 6666 } 6667 6668 static int 6669 xptconfigfunc(struct cam_eb *bus, void *arg) 6670 { 6671 struct cam_path *path; 6672 union ccb *work_ccb; 6673 6674 if (bus->path_id != CAM_XPT_PATH_ID) { 6675 cam_status status; 6676 int can_negotiate; 6677 6678 work_ccb = xpt_alloc_ccb(); 6679 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6680 CAM_TARGET_WILDCARD, 6681 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6682 printf("xptconfigfunc: xpt_create_path failed with " 6683 "status %#x for bus %d\n", status, bus->path_id); 6684 printf("xptconfigfunc: halting bus configuration\n"); 6685 xpt_free_ccb(work_ccb); 6686 busses_to_config--; 6687 xpt_finishconfig(xpt_periph, NULL); 6688 return(0); 6689 } 6690 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6691 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6692 xpt_action(work_ccb); 6693 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6694 printf("xptconfigfunc: CPI failed on bus %d " 6695 "with status %d\n", bus->path_id, 6696 work_ccb->ccb_h.status); 6697 xpt_finishconfig(xpt_periph, work_ccb); 6698 return(1); 6699 } 6700 6701 can_negotiate = work_ccb->cpi.hba_inquiry; 6702 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6703 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6704 && (can_negotiate != 0)) { 6705 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6706 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6707 work_ccb->ccb_h.cbfcnp = NULL; 6708 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6709 ("Resetting Bus\n")); 6710 xpt_action(work_ccb); 6711 xpt_finishconfig(xpt_periph, work_ccb); 6712 } else { 6713 /* Act as though we performed a successful BUS RESET */ 6714 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6715 xpt_finishconfig(xpt_periph, work_ccb); 6716 } 6717 } 6718 6719 return(1); 6720 } 6721 6722 static void 6723 xpt_config(void *arg) 6724 { 6725 /* 6726 * Now that interrupts are enabled, go find our devices 6727 */ 6728 6729 #ifdef CAMDEBUG 6730 /* Setup debugging flags and path */ 6731 #ifdef CAM_DEBUG_FLAGS 6732 cam_dflags = CAM_DEBUG_FLAGS; 6733 #else /* !CAM_DEBUG_FLAGS */ 6734 cam_dflags = CAM_DEBUG_NONE; 6735 #endif /* CAM_DEBUG_FLAGS */ 6736 #ifdef CAM_DEBUG_BUS 6737 if (cam_dflags != CAM_DEBUG_NONE) { 6738 if (xpt_create_path(&cam_dpath, xpt_periph, 6739 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6740 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6741 printf("xpt_config: xpt_create_path() failed for debug" 6742 " target %d:%d:%d, debugging disabled\n", 6743 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6744 cam_dflags = CAM_DEBUG_NONE; 6745 } 6746 } else 6747 cam_dpath = NULL; 6748 #else /* !CAM_DEBUG_BUS */ 6749 cam_dpath = NULL; 6750 #endif /* CAM_DEBUG_BUS */ 6751 #endif /* CAMDEBUG */ 6752 6753 /* 6754 * Scan all installed busses. 6755 */ 6756 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6757 6758 if (busses_to_config == 0) { 6759 /* Call manually because we don't have any busses */ 6760 xpt_finishconfig(xpt_periph, NULL); 6761 } else { 6762 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6763 printf("Waiting %d seconds for SCSI " 6764 "devices to settle\n", scsi_delay/1000); 6765 } 6766 xpt_for_all_busses(xptconfigfunc, NULL); 6767 } 6768 } 6769 6770 /* 6771 * If the given device only has one peripheral attached to it, and if that 6772 * peripheral is the passthrough driver, announce it. This insures that the 6773 * user sees some sort of announcement for every peripheral in their system. 6774 */ 6775 static int 6776 xptpassannouncefunc(struct cam_ed *device, void *arg) 6777 { 6778 struct cam_periph *periph; 6779 int i; 6780 6781 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6782 periph = SLIST_NEXT(periph, periph_links), i++); 6783 6784 periph = SLIST_FIRST(&device->periphs); 6785 if ((i == 1) 6786 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6787 xpt_announce_periph(periph, NULL); 6788 6789 return(1); 6790 } 6791 6792 static void 6793 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6794 { 6795 struct periph_driver **p_drv; 6796 int i; 6797 6798 if (done_ccb != NULL) { 6799 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6800 ("xpt_finishconfig\n")); 6801 switch(done_ccb->ccb_h.func_code) { 6802 case XPT_RESET_BUS: 6803 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6804 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6805 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6806 xpt_action(done_ccb); 6807 return; 6808 } 6809 /* FALLTHROUGH */ 6810 case XPT_SCAN_BUS: 6811 default: 6812 xpt_free_path(done_ccb->ccb_h.path); 6813 busses_to_config--; 6814 break; 6815 } 6816 } 6817 6818 if (busses_to_config == 0) { 6819 /* Register all the peripheral drivers */ 6820 /* XXX This will have to change when we have loadable modules */ 6821 p_drv = periph_drivers; 6822 for (i = 0; p_drv[i] != NULL; i++) { 6823 (*p_drv[i]->init)(); 6824 } 6825 6826 /* 6827 * Check for devices with no "standard" peripheral driver 6828 * attached. For any devices like that, announce the 6829 * passthrough driver so the user will see something. 6830 */ 6831 xpt_for_all_devices(xptpassannouncefunc, NULL); 6832 6833 /* Release our hook so that the boot can continue. */ 6834 config_intrhook_disestablish(xpt_config_hook); 6835 free(xpt_config_hook, M_TEMP); 6836 xpt_config_hook = NULL; 6837 } 6838 if (done_ccb != NULL) 6839 xpt_free_ccb(done_ccb); 6840 } 6841 6842 static void 6843 xptaction(struct cam_sim *sim, union ccb *work_ccb) 6844 { 6845 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 6846 6847 switch (work_ccb->ccb_h.func_code) { 6848 /* Common cases first */ 6849 case XPT_PATH_INQ: /* Path routing inquiry */ 6850 { 6851 struct ccb_pathinq *cpi; 6852 6853 cpi = &work_ccb->cpi; 6854 cpi->version_num = 1; /* XXX??? */ 6855 cpi->hba_inquiry = 0; 6856 cpi->target_sprt = 0; 6857 cpi->hba_misc = 0; 6858 cpi->hba_eng_cnt = 0; 6859 cpi->max_target = 0; 6860 cpi->max_lun = 0; 6861 cpi->initiator_id = 0; 6862 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 6863 strncpy(cpi->hba_vid, "", HBA_IDLEN); 6864 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 6865 cpi->unit_number = sim->unit_number; 6866 cpi->bus_id = sim->bus_id; 6867 cpi->base_transfer_speed = 0; 6868 #ifdef CAM_NEW_TRAN_CODE 6869 cpi->protocol = PROTO_UNSPECIFIED; 6870 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 6871 cpi->transport = XPORT_UNSPECIFIED; 6872 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 6873 #endif /* CAM_NEW_TRAN_CODE */ 6874 cpi->ccb_h.status = CAM_REQ_CMP; 6875 xpt_done(work_ccb); 6876 break; 6877 } 6878 default: 6879 work_ccb->ccb_h.status = CAM_REQ_INVALID; 6880 xpt_done(work_ccb); 6881 break; 6882 } 6883 } 6884 6885 /* 6886 * The xpt as a "controller" has no interrupt sources, so polling 6887 * is a no-op. 6888 */ 6889 static void 6890 xptpoll(struct cam_sim *sim) 6891 { 6892 } 6893 6894 static void 6895 camisr(void *V_queue) 6896 { 6897 cam_isrq_t *queue = V_queue; 6898 int s; 6899 struct ccb_hdr *ccb_h; 6900 6901 s = splcam(); 6902 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 6903 int runq; 6904 6905 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 6906 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 6907 splx(s); 6908 6909 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 6910 ("camisr\n")); 6911 6912 runq = FALSE; 6913 6914 if (ccb_h->flags & CAM_HIGH_POWER) { 6915 struct highpowerlist *hphead; 6916 struct cam_ed *device; 6917 union ccb *send_ccb; 6918 6919 hphead = &highpowerq; 6920 6921 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 6922 6923 /* 6924 * Increment the count since this command is done. 6925 */ 6926 num_highpower++; 6927 6928 /* 6929 * Any high powered commands queued up? 6930 */ 6931 if (send_ccb != NULL) { 6932 device = send_ccb->ccb_h.path->device; 6933 6934 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 6935 6936 xpt_release_devq(send_ccb->ccb_h.path, 6937 /*count*/1, /*runqueue*/TRUE); 6938 } 6939 } 6940 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 6941 struct cam_ed *dev; 6942 6943 dev = ccb_h->path->device; 6944 6945 s = splcam(); 6946 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 6947 6948 ccb_h->path->bus->sim->devq->send_active--; 6949 ccb_h->path->bus->sim->devq->send_openings++; 6950 splx(s); 6951 6952 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 6953 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 6954 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 6955 && (dev->ccbq.dev_active == 0))) { 6956 6957 xpt_release_devq(ccb_h->path, /*count*/1, 6958 /*run_queue*/TRUE); 6959 } 6960 6961 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6962 && (--dev->tag_delay_count == 0)) 6963 xpt_start_tags(ccb_h->path); 6964 6965 if ((dev->ccbq.queue.entries > 0) 6966 && (dev->qfrozen_cnt == 0) 6967 && (device_is_send_queued(dev) == 0)) { 6968 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 6969 dev); 6970 } 6971 } 6972 6973 if (ccb_h->status & CAM_RELEASE_SIMQ) { 6974 xpt_release_simq(ccb_h->path->bus->sim, 6975 /*run_queue*/TRUE); 6976 ccb_h->status &= ~CAM_RELEASE_SIMQ; 6977 runq = FALSE; 6978 } 6979 6980 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 6981 && (ccb_h->status & CAM_DEV_QFRZN)) { 6982 xpt_release_devq(ccb_h->path, /*count*/1, 6983 /*run_queue*/TRUE); 6984 ccb_h->status &= ~CAM_DEV_QFRZN; 6985 } else if (runq) { 6986 xpt_run_dev_sendq(ccb_h->path->bus); 6987 } 6988 6989 /* Call the peripheral driver's callback */ 6990 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 6991 6992 /* Raise IPL for while test */ 6993 s = splcam(); 6994 } 6995 splx(s); 6996 } 6997