xref: /freebsd/sys/cam/cam_xpt.c (revision 718cf2ccb9956613756ab15d7a0e28f2c8e91cab)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include "opt_printf.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/bio.h>
37 #include <sys/bus.h>
38 #include <sys/systm.h>
39 #include <sys/types.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/time.h>
43 #include <sys/conf.h>
44 #include <sys/fcntl.h>
45 #include <sys/interrupt.h>
46 #include <sys/proc.h>
47 #include <sys/sbuf.h>
48 #include <sys/smp.h>
49 #include <sys/taskqueue.h>
50 
51 #include <sys/lock.h>
52 #include <sys/mutex.h>
53 #include <sys/sysctl.h>
54 #include <sys/kthread.h>
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_iosched.h>
59 #include <cam/cam_periph.h>
60 #include <cam/cam_queue.h>
61 #include <cam/cam_sim.h>
62 #include <cam/cam_xpt.h>
63 #include <cam/cam_xpt_sim.h>
64 #include <cam/cam_xpt_periph.h>
65 #include <cam/cam_xpt_internal.h>
66 #include <cam/cam_debug.h>
67 #include <cam/cam_compat.h>
68 
69 #include <cam/scsi/scsi_all.h>
70 #include <cam/scsi/scsi_message.h>
71 #include <cam/scsi/scsi_pass.h>
72 
73 #include <machine/md_var.h>	/* geometry translation */
74 #include <machine/stdarg.h>	/* for xpt_print below */
75 
76 #include "opt_cam.h"
77 
78 /* Wild guess based on not wanting to grow the stack too much */
79 #define XPT_PRINT_MAXLEN	512
80 #ifdef PRINTF_BUFR_SIZE
81 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
82 #else
83 #define XPT_PRINT_LEN	128
84 #endif
85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
86 
87 /*
88  * This is the maximum number of high powered commands (e.g. start unit)
89  * that can be outstanding at a particular time.
90  */
91 #ifndef CAM_MAX_HIGHPOWER
92 #define CAM_MAX_HIGHPOWER  4
93 #endif
94 
95 /* Datastructures internal to the xpt layer */
96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
100 
101 /* Object for defering XPT actions to a taskqueue */
102 struct xpt_task {
103 	struct task	task;
104 	void		*data1;
105 	uintptr_t	data2;
106 };
107 
108 struct xpt_softc {
109 	uint32_t		xpt_generation;
110 
111 	/* number of high powered commands that can go through right now */
112 	struct mtx		xpt_highpower_lock;
113 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
114 	int			num_highpower;
115 
116 	/* queue for handling async rescan requests. */
117 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
118 	int buses_to_config;
119 	int buses_config_done;
120 	int announce_nosbuf;
121 
122 	/*
123 	 * Registered buses
124 	 *
125 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
126 	 * "buses" is preferred.
127 	 */
128 	TAILQ_HEAD(,cam_eb)	xpt_busses;
129 	u_int			bus_generation;
130 
131 	struct intr_config_hook	*xpt_config_hook;
132 
133 	int			boot_delay;
134 	struct callout 		boot_callout;
135 
136 	struct mtx		xpt_topo_lock;
137 	struct mtx		xpt_lock;
138 	struct taskqueue	*xpt_taskq;
139 };
140 
141 typedef enum {
142 	DM_RET_COPY		= 0x01,
143 	DM_RET_FLAG_MASK	= 0x0f,
144 	DM_RET_NONE		= 0x00,
145 	DM_RET_STOP		= 0x10,
146 	DM_RET_DESCEND		= 0x20,
147 	DM_RET_ERROR		= 0x30,
148 	DM_RET_ACTION_MASK	= 0xf0
149 } dev_match_ret;
150 
151 typedef enum {
152 	XPT_DEPTH_BUS,
153 	XPT_DEPTH_TARGET,
154 	XPT_DEPTH_DEVICE,
155 	XPT_DEPTH_PERIPH
156 } xpt_traverse_depth;
157 
158 struct xpt_traverse_config {
159 	xpt_traverse_depth	depth;
160 	void			*tr_func;
161 	void			*tr_arg;
162 };
163 
164 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
165 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
166 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
167 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
168 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
169 
170 /* Transport layer configuration information */
171 static struct xpt_softc xsoftc;
172 
173 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
174 
175 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
176            &xsoftc.boot_delay, 0, "Bus registration wait time");
177 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
178 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
179 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
180 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
181 
182 struct cam_doneq {
183 	struct mtx_padalign	cam_doneq_mtx;
184 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
185 	int			cam_doneq_sleep;
186 };
187 
188 static struct cam_doneq cam_doneqs[MAXCPU];
189 static int cam_num_doneqs;
190 static struct proc *cam_proc;
191 
192 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
193            &cam_num_doneqs, 0, "Number of completion queues/threads");
194 
195 struct cam_periph *xpt_periph;
196 
197 static periph_init_t xpt_periph_init;
198 
199 static struct periph_driver xpt_driver =
200 {
201 	xpt_periph_init, "xpt",
202 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
203 	CAM_PERIPH_DRV_EARLY
204 };
205 
206 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
207 
208 static d_open_t xptopen;
209 static d_close_t xptclose;
210 static d_ioctl_t xptioctl;
211 static d_ioctl_t xptdoioctl;
212 
213 static struct cdevsw xpt_cdevsw = {
214 	.d_version =	D_VERSION,
215 	.d_flags =	0,
216 	.d_open =	xptopen,
217 	.d_close =	xptclose,
218 	.d_ioctl =	xptioctl,
219 	.d_name =	"xpt",
220 };
221 
222 /* Storage for debugging datastructures */
223 struct cam_path *cam_dpath;
224 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
225 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
226 	&cam_dflags, 0, "Enabled debug flags");
227 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
228 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
229 	&cam_debug_delay, 0, "Delay in us after each debug message");
230 
231 /* Our boot-time initialization hook */
232 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
233 
234 static moduledata_t cam_moduledata = {
235 	"cam",
236 	cam_module_event_handler,
237 	NULL
238 };
239 
240 static int	xpt_init(void *);
241 
242 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
243 MODULE_VERSION(cam, 1);
244 
245 
246 static void		xpt_async_bcast(struct async_list *async_head,
247 					u_int32_t async_code,
248 					struct cam_path *path,
249 					void *async_arg);
250 static path_id_t xptnextfreepathid(void);
251 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
252 static union ccb *xpt_get_ccb(struct cam_periph *periph);
253 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
254 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
255 static void	 xpt_run_allocq_task(void *context, int pending);
256 static void	 xpt_run_devq(struct cam_devq *devq);
257 static timeout_t xpt_release_devq_timeout;
258 static void	 xpt_release_simq_timeout(void *arg) __unused;
259 static void	 xpt_acquire_bus(struct cam_eb *bus);
260 static void	 xpt_release_bus(struct cam_eb *bus);
261 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
262 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
263 		    int run_queue);
264 static struct cam_et*
265 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
266 static void	 xpt_acquire_target(struct cam_et *target);
267 static void	 xpt_release_target(struct cam_et *target);
268 static struct cam_eb*
269 		 xpt_find_bus(path_id_t path_id);
270 static struct cam_et*
271 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
272 static struct cam_ed*
273 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
274 static void	 xpt_config(void *arg);
275 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
276 				 u_int32_t new_priority);
277 static xpt_devicefunc_t xptpassannouncefunc;
278 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
279 static void	 xptpoll(struct cam_sim *sim);
280 static void	 camisr_runqueue(void);
281 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
282 static void	 xpt_done_td(void *);
283 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
284 				    u_int num_patterns, struct cam_eb *bus);
285 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
286 				       u_int num_patterns,
287 				       struct cam_ed *device);
288 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
289 				       u_int num_patterns,
290 				       struct cam_periph *periph);
291 static xpt_busfunc_t	xptedtbusfunc;
292 static xpt_targetfunc_t	xptedttargetfunc;
293 static xpt_devicefunc_t	xptedtdevicefunc;
294 static xpt_periphfunc_t	xptedtperiphfunc;
295 static xpt_pdrvfunc_t	xptplistpdrvfunc;
296 static xpt_periphfunc_t	xptplistperiphfunc;
297 static int		xptedtmatch(struct ccb_dev_match *cdm);
298 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
299 static int		xptbustraverse(struct cam_eb *start_bus,
300 				       xpt_busfunc_t *tr_func, void *arg);
301 static int		xpttargettraverse(struct cam_eb *bus,
302 					  struct cam_et *start_target,
303 					  xpt_targetfunc_t *tr_func, void *arg);
304 static int		xptdevicetraverse(struct cam_et *target,
305 					  struct cam_ed *start_device,
306 					  xpt_devicefunc_t *tr_func, void *arg);
307 static int		xptperiphtraverse(struct cam_ed *device,
308 					  struct cam_periph *start_periph,
309 					  xpt_periphfunc_t *tr_func, void *arg);
310 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
311 					xpt_pdrvfunc_t *tr_func, void *arg);
312 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
313 					    struct cam_periph *start_periph,
314 					    xpt_periphfunc_t *tr_func,
315 					    void *arg);
316 static xpt_busfunc_t	xptdefbusfunc;
317 static xpt_targetfunc_t	xptdeftargetfunc;
318 static xpt_devicefunc_t	xptdefdevicefunc;
319 static xpt_periphfunc_t	xptdefperiphfunc;
320 static void		xpt_finishconfig_task(void *context, int pending);
321 static void		xpt_dev_async_default(u_int32_t async_code,
322 					      struct cam_eb *bus,
323 					      struct cam_et *target,
324 					      struct cam_ed *device,
325 					      void *async_arg);
326 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
327 						 struct cam_et *target,
328 						 lun_id_t lun_id);
329 static xpt_devicefunc_t	xptsetasyncfunc;
330 static xpt_busfunc_t	xptsetasyncbusfunc;
331 static cam_status	xptregister(struct cam_periph *periph,
332 				    void *arg);
333 static __inline int device_is_queued(struct cam_ed *device);
334 
335 static __inline int
336 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
337 {
338 	int	retval;
339 
340 	mtx_assert(&devq->send_mtx, MA_OWNED);
341 	if ((dev->ccbq.queue.entries > 0) &&
342 	    (dev->ccbq.dev_openings > 0) &&
343 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
344 		/*
345 		 * The priority of a device waiting for controller
346 		 * resources is that of the highest priority CCB
347 		 * enqueued.
348 		 */
349 		retval =
350 		    xpt_schedule_dev(&devq->send_queue,
351 				     &dev->devq_entry,
352 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
353 	} else {
354 		retval = 0;
355 	}
356 	return (retval);
357 }
358 
359 static __inline int
360 device_is_queued(struct cam_ed *device)
361 {
362 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
363 }
364 
365 static void
366 xpt_periph_init()
367 {
368 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
369 }
370 
371 static int
372 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
373 {
374 
375 	/*
376 	 * Only allow read-write access.
377 	 */
378 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
379 		return(EPERM);
380 
381 	/*
382 	 * We don't allow nonblocking access.
383 	 */
384 	if ((flags & O_NONBLOCK) != 0) {
385 		printf("%s: can't do nonblocking access\n", devtoname(dev));
386 		return(ENODEV);
387 	}
388 
389 	return(0);
390 }
391 
392 static int
393 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
394 {
395 
396 	return(0);
397 }
398 
399 /*
400  * Don't automatically grab the xpt softc lock here even though this is going
401  * through the xpt device.  The xpt device is really just a back door for
402  * accessing other devices and SIMs, so the right thing to do is to grab
403  * the appropriate SIM lock once the bus/SIM is located.
404  */
405 static int
406 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
407 {
408 	int error;
409 
410 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
411 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
412 	}
413 	return (error);
414 }
415 
416 static int
417 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
418 {
419 	int error;
420 
421 	error = 0;
422 
423 	switch(cmd) {
424 	/*
425 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
426 	 * to accept CCB types that don't quite make sense to send through a
427 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
428 	 * in the CAM spec.
429 	 */
430 	case CAMIOCOMMAND: {
431 		union ccb *ccb;
432 		union ccb *inccb;
433 		struct cam_eb *bus;
434 
435 		inccb = (union ccb *)addr;
436 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
437 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
438 			inccb->csio.bio = NULL;
439 #endif
440 
441 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
442 			return (EINVAL);
443 
444 		bus = xpt_find_bus(inccb->ccb_h.path_id);
445 		if (bus == NULL)
446 			return (EINVAL);
447 
448 		switch (inccb->ccb_h.func_code) {
449 		case XPT_SCAN_BUS:
450 		case XPT_RESET_BUS:
451 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
452 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
453 				xpt_release_bus(bus);
454 				return (EINVAL);
455 			}
456 			break;
457 		case XPT_SCAN_TGT:
458 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
459 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
460 				xpt_release_bus(bus);
461 				return (EINVAL);
462 			}
463 			break;
464 		default:
465 			break;
466 		}
467 
468 		switch(inccb->ccb_h.func_code) {
469 		case XPT_SCAN_BUS:
470 		case XPT_RESET_BUS:
471 		case XPT_PATH_INQ:
472 		case XPT_ENG_INQ:
473 		case XPT_SCAN_LUN:
474 		case XPT_SCAN_TGT:
475 
476 			ccb = xpt_alloc_ccb();
477 
478 			/*
479 			 * Create a path using the bus, target, and lun the
480 			 * user passed in.
481 			 */
482 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
483 					    inccb->ccb_h.path_id,
484 					    inccb->ccb_h.target_id,
485 					    inccb->ccb_h.target_lun) !=
486 					    CAM_REQ_CMP){
487 				error = EINVAL;
488 				xpt_free_ccb(ccb);
489 				break;
490 			}
491 			/* Ensure all of our fields are correct */
492 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
493 				      inccb->ccb_h.pinfo.priority);
494 			xpt_merge_ccb(ccb, inccb);
495 			xpt_path_lock(ccb->ccb_h.path);
496 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
497 			xpt_path_unlock(ccb->ccb_h.path);
498 			bcopy(ccb, inccb, sizeof(union ccb));
499 			xpt_free_path(ccb->ccb_h.path);
500 			xpt_free_ccb(ccb);
501 			break;
502 
503 		case XPT_DEBUG: {
504 			union ccb ccb;
505 
506 			/*
507 			 * This is an immediate CCB, so it's okay to
508 			 * allocate it on the stack.
509 			 */
510 
511 			/*
512 			 * Create a path using the bus, target, and lun the
513 			 * user passed in.
514 			 */
515 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
516 					    inccb->ccb_h.path_id,
517 					    inccb->ccb_h.target_id,
518 					    inccb->ccb_h.target_lun) !=
519 					    CAM_REQ_CMP){
520 				error = EINVAL;
521 				break;
522 			}
523 			/* Ensure all of our fields are correct */
524 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
525 				      inccb->ccb_h.pinfo.priority);
526 			xpt_merge_ccb(&ccb, inccb);
527 			xpt_action(&ccb);
528 			bcopy(&ccb, inccb, sizeof(union ccb));
529 			xpt_free_path(ccb.ccb_h.path);
530 			break;
531 
532 		}
533 		case XPT_DEV_MATCH: {
534 			struct cam_periph_map_info mapinfo;
535 			struct cam_path *old_path;
536 
537 			/*
538 			 * We can't deal with physical addresses for this
539 			 * type of transaction.
540 			 */
541 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
542 			    CAM_DATA_VADDR) {
543 				error = EINVAL;
544 				break;
545 			}
546 
547 			/*
548 			 * Save this in case the caller had it set to
549 			 * something in particular.
550 			 */
551 			old_path = inccb->ccb_h.path;
552 
553 			/*
554 			 * We really don't need a path for the matching
555 			 * code.  The path is needed because of the
556 			 * debugging statements in xpt_action().  They
557 			 * assume that the CCB has a valid path.
558 			 */
559 			inccb->ccb_h.path = xpt_periph->path;
560 
561 			bzero(&mapinfo, sizeof(mapinfo));
562 
563 			/*
564 			 * Map the pattern and match buffers into kernel
565 			 * virtual address space.
566 			 */
567 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
568 
569 			if (error) {
570 				inccb->ccb_h.path = old_path;
571 				break;
572 			}
573 
574 			/*
575 			 * This is an immediate CCB, we can send it on directly.
576 			 */
577 			xpt_action(inccb);
578 
579 			/*
580 			 * Map the buffers back into user space.
581 			 */
582 			cam_periph_unmapmem(inccb, &mapinfo);
583 
584 			inccb->ccb_h.path = old_path;
585 
586 			error = 0;
587 			break;
588 		}
589 		default:
590 			error = ENOTSUP;
591 			break;
592 		}
593 		xpt_release_bus(bus);
594 		break;
595 	}
596 	/*
597 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
598 	 * with the periphal driver name and unit name filled in.  The other
599 	 * fields don't really matter as input.  The passthrough driver name
600 	 * ("pass"), and unit number are passed back in the ccb.  The current
601 	 * device generation number, and the index into the device peripheral
602 	 * driver list, and the status are also passed back.  Note that
603 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
604 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
605 	 * (or rather should be) impossible for the device peripheral driver
606 	 * list to change since we look at the whole thing in one pass, and
607 	 * we do it with lock protection.
608 	 *
609 	 */
610 	case CAMGETPASSTHRU: {
611 		union ccb *ccb;
612 		struct cam_periph *periph;
613 		struct periph_driver **p_drv;
614 		char   *name;
615 		u_int unit;
616 		int base_periph_found;
617 
618 		ccb = (union ccb *)addr;
619 		unit = ccb->cgdl.unit_number;
620 		name = ccb->cgdl.periph_name;
621 		base_periph_found = 0;
622 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
623 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
624 			ccb->csio.bio = NULL;
625 #endif
626 
627 		/*
628 		 * Sanity check -- make sure we don't get a null peripheral
629 		 * driver name.
630 		 */
631 		if (*ccb->cgdl.periph_name == '\0') {
632 			error = EINVAL;
633 			break;
634 		}
635 
636 		/* Keep the list from changing while we traverse it */
637 		xpt_lock_buses();
638 
639 		/* first find our driver in the list of drivers */
640 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
641 			if (strcmp((*p_drv)->driver_name, name) == 0)
642 				break;
643 
644 		if (*p_drv == NULL) {
645 			xpt_unlock_buses();
646 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
647 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
648 			*ccb->cgdl.periph_name = '\0';
649 			ccb->cgdl.unit_number = 0;
650 			error = ENOENT;
651 			break;
652 		}
653 
654 		/*
655 		 * Run through every peripheral instance of this driver
656 		 * and check to see whether it matches the unit passed
657 		 * in by the user.  If it does, get out of the loops and
658 		 * find the passthrough driver associated with that
659 		 * peripheral driver.
660 		 */
661 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
662 		     periph = TAILQ_NEXT(periph, unit_links)) {
663 
664 			if (periph->unit_number == unit)
665 				break;
666 		}
667 		/*
668 		 * If we found the peripheral driver that the user passed
669 		 * in, go through all of the peripheral drivers for that
670 		 * particular device and look for a passthrough driver.
671 		 */
672 		if (periph != NULL) {
673 			struct cam_ed *device;
674 			int i;
675 
676 			base_periph_found = 1;
677 			device = periph->path->device;
678 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
679 			     periph != NULL;
680 			     periph = SLIST_NEXT(periph, periph_links), i++) {
681 				/*
682 				 * Check to see whether we have a
683 				 * passthrough device or not.
684 				 */
685 				if (strcmp(periph->periph_name, "pass") == 0) {
686 					/*
687 					 * Fill in the getdevlist fields.
688 					 */
689 					strlcpy(ccb->cgdl.periph_name,
690 					       periph->periph_name,
691 					       sizeof(ccb->cgdl.periph_name));
692 					ccb->cgdl.unit_number =
693 						periph->unit_number;
694 					if (SLIST_NEXT(periph, periph_links))
695 						ccb->cgdl.status =
696 							CAM_GDEVLIST_MORE_DEVS;
697 					else
698 						ccb->cgdl.status =
699 						       CAM_GDEVLIST_LAST_DEVICE;
700 					ccb->cgdl.generation =
701 						device->generation;
702 					ccb->cgdl.index = i;
703 					/*
704 					 * Fill in some CCB header fields
705 					 * that the user may want.
706 					 */
707 					ccb->ccb_h.path_id =
708 						periph->path->bus->path_id;
709 					ccb->ccb_h.target_id =
710 						periph->path->target->target_id;
711 					ccb->ccb_h.target_lun =
712 						periph->path->device->lun_id;
713 					ccb->ccb_h.status = CAM_REQ_CMP;
714 					break;
715 				}
716 			}
717 		}
718 
719 		/*
720 		 * If the periph is null here, one of two things has
721 		 * happened.  The first possibility is that we couldn't
722 		 * find the unit number of the particular peripheral driver
723 		 * that the user is asking about.  e.g. the user asks for
724 		 * the passthrough driver for "da11".  We find the list of
725 		 * "da" peripherals all right, but there is no unit 11.
726 		 * The other possibility is that we went through the list
727 		 * of peripheral drivers attached to the device structure,
728 		 * but didn't find one with the name "pass".  Either way,
729 		 * we return ENOENT, since we couldn't find something.
730 		 */
731 		if (periph == NULL) {
732 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
733 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
734 			*ccb->cgdl.periph_name = '\0';
735 			ccb->cgdl.unit_number = 0;
736 			error = ENOENT;
737 			/*
738 			 * It is unfortunate that this is even necessary,
739 			 * but there are many, many clueless users out there.
740 			 * If this is true, the user is looking for the
741 			 * passthrough driver, but doesn't have one in his
742 			 * kernel.
743 			 */
744 			if (base_periph_found == 1) {
745 				printf("xptioctl: pass driver is not in the "
746 				       "kernel\n");
747 				printf("xptioctl: put \"device pass\" in "
748 				       "your kernel config file\n");
749 			}
750 		}
751 		xpt_unlock_buses();
752 		break;
753 		}
754 	default:
755 		error = ENOTTY;
756 		break;
757 	}
758 
759 	return(error);
760 }
761 
762 static int
763 cam_module_event_handler(module_t mod, int what, void *arg)
764 {
765 	int error;
766 
767 	switch (what) {
768 	case MOD_LOAD:
769 		if ((error = xpt_init(NULL)) != 0)
770 			return (error);
771 		break;
772 	case MOD_UNLOAD:
773 		return EBUSY;
774 	default:
775 		return EOPNOTSUPP;
776 	}
777 
778 	return 0;
779 }
780 
781 static struct xpt_proto *
782 xpt_proto_find(cam_proto proto)
783 {
784 	struct xpt_proto **pp;
785 
786 	SET_FOREACH(pp, cam_xpt_proto_set) {
787 		if ((*pp)->proto == proto)
788 			return *pp;
789 	}
790 
791 	return NULL;
792 }
793 
794 static void
795 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
796 {
797 
798 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
799 		xpt_free_path(done_ccb->ccb_h.path);
800 		xpt_free_ccb(done_ccb);
801 	} else {
802 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
803 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
804 	}
805 	xpt_release_boot();
806 }
807 
808 /* thread to handle bus rescans */
809 static void
810 xpt_scanner_thread(void *dummy)
811 {
812 	union ccb	*ccb;
813 	struct cam_path	 path;
814 
815 	xpt_lock_buses();
816 	for (;;) {
817 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
818 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
819 			       "-", 0);
820 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
821 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
822 			xpt_unlock_buses();
823 
824 			/*
825 			 * Since lock can be dropped inside and path freed
826 			 * by completion callback even before return here,
827 			 * take our own path copy for reference.
828 			 */
829 			xpt_copy_path(&path, ccb->ccb_h.path);
830 			xpt_path_lock(&path);
831 			xpt_action(ccb);
832 			xpt_path_unlock(&path);
833 			xpt_release_path(&path);
834 
835 			xpt_lock_buses();
836 		}
837 	}
838 }
839 
840 void
841 xpt_rescan(union ccb *ccb)
842 {
843 	struct ccb_hdr *hdr;
844 
845 	/* Prepare request */
846 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
847 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
848 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
849 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
850 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
851 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
852 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
853 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
854 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
855 	else {
856 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
857 		xpt_free_path(ccb->ccb_h.path);
858 		xpt_free_ccb(ccb);
859 		return;
860 	}
861 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
862 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
863  		xpt_action_name(ccb->ccb_h.func_code)));
864 
865 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
866 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
867 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
868 	/* Don't make duplicate entries for the same paths. */
869 	xpt_lock_buses();
870 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
871 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
872 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
873 				wakeup(&xsoftc.ccb_scanq);
874 				xpt_unlock_buses();
875 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
876 				xpt_free_path(ccb->ccb_h.path);
877 				xpt_free_ccb(ccb);
878 				return;
879 			}
880 		}
881 	}
882 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
883 	xsoftc.buses_to_config++;
884 	wakeup(&xsoftc.ccb_scanq);
885 	xpt_unlock_buses();
886 }
887 
888 /* Functions accessed by the peripheral drivers */
889 static int
890 xpt_init(void *dummy)
891 {
892 	struct cam_sim *xpt_sim;
893 	struct cam_path *path;
894 	struct cam_devq *devq;
895 	cam_status status;
896 	int error, i;
897 
898 	TAILQ_INIT(&xsoftc.xpt_busses);
899 	TAILQ_INIT(&xsoftc.ccb_scanq);
900 	STAILQ_INIT(&xsoftc.highpowerq);
901 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
902 
903 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
904 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
905 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
906 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
907 
908 #ifdef CAM_BOOT_DELAY
909 	/*
910 	 * Override this value at compile time to assist our users
911 	 * who don't use loader to boot a kernel.
912 	 */
913 	xsoftc.boot_delay = CAM_BOOT_DELAY;
914 #endif
915 	/*
916 	 * The xpt layer is, itself, the equivalent of a SIM.
917 	 * Allow 16 ccbs in the ccb pool for it.  This should
918 	 * give decent parallelism when we probe buses and
919 	 * perform other XPT functions.
920 	 */
921 	devq = cam_simq_alloc(16);
922 	xpt_sim = cam_sim_alloc(xptaction,
923 				xptpoll,
924 				"xpt",
925 				/*softc*/NULL,
926 				/*unit*/0,
927 				/*mtx*/&xsoftc.xpt_lock,
928 				/*max_dev_transactions*/0,
929 				/*max_tagged_dev_transactions*/0,
930 				devq);
931 	if (xpt_sim == NULL)
932 		return (ENOMEM);
933 
934 	mtx_lock(&xsoftc.xpt_lock);
935 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
936 		mtx_unlock(&xsoftc.xpt_lock);
937 		printf("xpt_init: xpt_bus_register failed with status %#x,"
938 		       " failing attach\n", status);
939 		return (EINVAL);
940 	}
941 	mtx_unlock(&xsoftc.xpt_lock);
942 
943 	/*
944 	 * Looking at the XPT from the SIM layer, the XPT is
945 	 * the equivalent of a peripheral driver.  Allocate
946 	 * a peripheral driver entry for us.
947 	 */
948 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
949 				      CAM_TARGET_WILDCARD,
950 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
951 		printf("xpt_init: xpt_create_path failed with status %#x,"
952 		       " failing attach\n", status);
953 		return (EINVAL);
954 	}
955 	xpt_path_lock(path);
956 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
957 			 path, NULL, 0, xpt_sim);
958 	xpt_path_unlock(path);
959 	xpt_free_path(path);
960 
961 	if (cam_num_doneqs < 1)
962 		cam_num_doneqs = 1 + mp_ncpus / 6;
963 	else if (cam_num_doneqs > MAXCPU)
964 		cam_num_doneqs = MAXCPU;
965 	for (i = 0; i < cam_num_doneqs; i++) {
966 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
967 		    MTX_DEF);
968 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
969 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
970 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
971 		if (error != 0) {
972 			cam_num_doneqs = i;
973 			break;
974 		}
975 	}
976 	if (cam_num_doneqs < 1) {
977 		printf("xpt_init: Cannot init completion queues "
978 		       "- failing attach\n");
979 		return (ENOMEM);
980 	}
981 	/*
982 	 * Register a callback for when interrupts are enabled.
983 	 */
984 	xsoftc.xpt_config_hook =
985 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
986 					      M_CAMXPT, M_NOWAIT | M_ZERO);
987 	if (xsoftc.xpt_config_hook == NULL) {
988 		printf("xpt_init: Cannot malloc config hook "
989 		       "- failing attach\n");
990 		return (ENOMEM);
991 	}
992 	xsoftc.xpt_config_hook->ich_func = xpt_config;
993 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
994 		free (xsoftc.xpt_config_hook, M_CAMXPT);
995 		printf("xpt_init: config_intrhook_establish failed "
996 		       "- failing attach\n");
997 	}
998 
999 	return (0);
1000 }
1001 
1002 static cam_status
1003 xptregister(struct cam_periph *periph, void *arg)
1004 {
1005 	struct cam_sim *xpt_sim;
1006 
1007 	if (periph == NULL) {
1008 		printf("xptregister: periph was NULL!!\n");
1009 		return(CAM_REQ_CMP_ERR);
1010 	}
1011 
1012 	xpt_sim = (struct cam_sim *)arg;
1013 	xpt_sim->softc = periph;
1014 	xpt_periph = periph;
1015 	periph->softc = NULL;
1016 
1017 	return(CAM_REQ_CMP);
1018 }
1019 
1020 int32_t
1021 xpt_add_periph(struct cam_periph *periph)
1022 {
1023 	struct cam_ed *device;
1024 	int32_t	 status;
1025 
1026 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1027 	device = periph->path->device;
1028 	status = CAM_REQ_CMP;
1029 	if (device != NULL) {
1030 		mtx_lock(&device->target->bus->eb_mtx);
1031 		device->generation++;
1032 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1033 		mtx_unlock(&device->target->bus->eb_mtx);
1034 		atomic_add_32(&xsoftc.xpt_generation, 1);
1035 	}
1036 
1037 	return (status);
1038 }
1039 
1040 void
1041 xpt_remove_periph(struct cam_periph *periph)
1042 {
1043 	struct cam_ed *device;
1044 
1045 	device = periph->path->device;
1046 	if (device != NULL) {
1047 		mtx_lock(&device->target->bus->eb_mtx);
1048 		device->generation++;
1049 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1050 		mtx_unlock(&device->target->bus->eb_mtx);
1051 		atomic_add_32(&xsoftc.xpt_generation, 1);
1052 	}
1053 }
1054 
1055 
1056 void
1057 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1058 {
1059 	struct	cam_path *path = periph->path;
1060 	struct  xpt_proto *proto;
1061 
1062 	cam_periph_assert(periph, MA_OWNED);
1063 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1064 
1065 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1066 	       periph->periph_name, periph->unit_number,
1067 	       path->bus->sim->sim_name,
1068 	       path->bus->sim->unit_number,
1069 	       path->bus->sim->bus_id,
1070 	       path->bus->path_id,
1071 	       path->target->target_id,
1072 	       (uintmax_t)path->device->lun_id);
1073 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1074 	proto = xpt_proto_find(path->device->protocol);
1075 	if (proto)
1076 		proto->ops->announce(path->device);
1077 	else
1078 		printf("%s%d: Unknown protocol device %d\n",
1079 		    periph->periph_name, periph->unit_number,
1080 		    path->device->protocol);
1081 	if (path->device->serial_num_len > 0) {
1082 		/* Don't wrap the screen  - print only the first 60 chars */
1083 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1084 		       periph->unit_number, path->device->serial_num);
1085 	}
1086 	/* Announce transport details. */
1087 	path->bus->xport->ops->announce(periph);
1088 	/* Announce command queueing. */
1089 	if (path->device->inq_flags & SID_CmdQue
1090 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1091 		printf("%s%d: Command Queueing enabled\n",
1092 		       periph->periph_name, periph->unit_number);
1093 	}
1094 	/* Announce caller's details if they've passed in. */
1095 	if (announce_string != NULL)
1096 		printf("%s%d: %s\n", periph->periph_name,
1097 		       periph->unit_number, announce_string);
1098 }
1099 
1100 void
1101 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1102     char *announce_string)
1103 {
1104 	struct	cam_path *path = periph->path;
1105 	struct  xpt_proto *proto;
1106 
1107 	cam_periph_assert(periph, MA_OWNED);
1108 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1109 
1110 	/* Fall back to the non-sbuf method if necessary */
1111 	if (xsoftc.announce_nosbuf != 0) {
1112 		xpt_announce_periph(periph, announce_string);
1113 		return;
1114 	}
1115 	proto = xpt_proto_find(path->device->protocol);
1116 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1117 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1118 		xpt_announce_periph(periph, announce_string);
1119 		return;
1120 	}
1121 
1122 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1123 	    periph->periph_name, periph->unit_number,
1124 	    path->bus->sim->sim_name,
1125 	    path->bus->sim->unit_number,
1126 	    path->bus->sim->bus_id,
1127 	    path->bus->path_id,
1128 	    path->target->target_id,
1129 	    (uintmax_t)path->device->lun_id);
1130 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1131 
1132 	if (proto)
1133 		proto->ops->announce_sbuf(path->device, sb);
1134 	else
1135 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1136 		    periph->periph_name, periph->unit_number,
1137 		    path->device->protocol);
1138 	if (path->device->serial_num_len > 0) {
1139 		/* Don't wrap the screen  - print only the first 60 chars */
1140 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1141 		    periph->periph_name, periph->unit_number,
1142 		    path->device->serial_num);
1143 	}
1144 	/* Announce transport details. */
1145 	path->bus->xport->ops->announce_sbuf(periph, sb);
1146 	/* Announce command queueing. */
1147 	if (path->device->inq_flags & SID_CmdQue
1148 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1149 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1150 		    periph->periph_name, periph->unit_number);
1151 	}
1152 	/* Announce caller's details if they've passed in. */
1153 	if (announce_string != NULL)
1154 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1155 		    periph->unit_number, announce_string);
1156 }
1157 
1158 void
1159 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1160 {
1161 	if (quirks != 0) {
1162 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1163 		    periph->unit_number, quirks, bit_string);
1164 	}
1165 }
1166 
1167 void
1168 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1169 			 int quirks, char *bit_string)
1170 {
1171 	if (xsoftc.announce_nosbuf != 0) {
1172 		xpt_announce_quirks(periph, quirks, bit_string);
1173 		return;
1174 	}
1175 
1176 	if (quirks != 0) {
1177 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1178 		    periph->unit_number, quirks, bit_string);
1179 	}
1180 }
1181 
1182 void
1183 xpt_denounce_periph(struct cam_periph *periph)
1184 {
1185 	struct	cam_path *path = periph->path;
1186 	struct  xpt_proto *proto;
1187 
1188 	cam_periph_assert(periph, MA_OWNED);
1189 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1190 	       periph->periph_name, periph->unit_number,
1191 	       path->bus->sim->sim_name,
1192 	       path->bus->sim->unit_number,
1193 	       path->bus->sim->bus_id,
1194 	       path->bus->path_id,
1195 	       path->target->target_id,
1196 	       (uintmax_t)path->device->lun_id);
1197 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1198 	proto = xpt_proto_find(path->device->protocol);
1199 	if (proto)
1200 		proto->ops->denounce(path->device);
1201 	else
1202 		printf("%s%d: Unknown protocol device %d\n",
1203 		    periph->periph_name, periph->unit_number,
1204 		    path->device->protocol);
1205 	if (path->device->serial_num_len > 0)
1206 		printf(" s/n %.60s", path->device->serial_num);
1207 	printf(" detached\n");
1208 }
1209 
1210 void
1211 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1212 {
1213 	struct cam_path *path = periph->path;
1214 	struct xpt_proto *proto;
1215 
1216 	cam_periph_assert(periph, MA_OWNED);
1217 
1218 	/* Fall back to the non-sbuf method if necessary */
1219 	if (xsoftc.announce_nosbuf != 0) {
1220 		xpt_denounce_periph(periph);
1221 		return;
1222 	}
1223 	proto = xpt_proto_find(path->device->protocol);
1224 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1225 		xpt_denounce_periph(periph);
1226 		return;
1227 	}
1228 
1229 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1230 	    periph->periph_name, periph->unit_number,
1231 	    path->bus->sim->sim_name,
1232 	    path->bus->sim->unit_number,
1233 	    path->bus->sim->bus_id,
1234 	    path->bus->path_id,
1235 	    path->target->target_id,
1236 	    (uintmax_t)path->device->lun_id);
1237 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1238 
1239 	if (proto)
1240 		proto->ops->denounce_sbuf(path->device, sb);
1241 	else
1242 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1243 		    periph->periph_name, periph->unit_number,
1244 		    path->device->protocol);
1245 	if (path->device->serial_num_len > 0)
1246 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1247 	sbuf_printf(sb, " detached\n");
1248 }
1249 
1250 int
1251 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1252 {
1253 	int ret = -1, l, o;
1254 	struct ccb_dev_advinfo cdai;
1255 	struct scsi_vpd_id_descriptor *idd;
1256 
1257 	xpt_path_assert(path, MA_OWNED);
1258 
1259 	memset(&cdai, 0, sizeof(cdai));
1260 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1261 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1262 	cdai.flags = CDAI_FLAG_NONE;
1263 	cdai.bufsiz = len;
1264 
1265 	if (!strcmp(attr, "GEOM::ident"))
1266 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1267 	else if (!strcmp(attr, "GEOM::physpath"))
1268 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1269 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1270 		 strcmp(attr, "GEOM::lunname") == 0) {
1271 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1272 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1273 	} else
1274 		goto out;
1275 
1276 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1277 	if (cdai.buf == NULL) {
1278 		ret = ENOMEM;
1279 		goto out;
1280 	}
1281 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1282 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1283 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1284 	if (cdai.provsiz == 0)
1285 		goto out;
1286 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1287 		if (strcmp(attr, "GEOM::lunid") == 0) {
1288 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1289 			    cdai.provsiz, scsi_devid_is_lun_naa);
1290 			if (idd == NULL)
1291 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1292 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1293 			if (idd == NULL)
1294 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1295 				    cdai.provsiz, scsi_devid_is_lun_uuid);
1296 			if (idd == NULL)
1297 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1298 				    cdai.provsiz, scsi_devid_is_lun_md5);
1299 		} else
1300 			idd = NULL;
1301 		if (idd == NULL)
1302 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1303 			    cdai.provsiz, scsi_devid_is_lun_t10);
1304 		if (idd == NULL)
1305 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1306 			    cdai.provsiz, scsi_devid_is_lun_name);
1307 		if (idd == NULL)
1308 			goto out;
1309 		ret = 0;
1310 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1311 			if (idd->length < len) {
1312 				for (l = 0; l < idd->length; l++)
1313 					buf[l] = idd->identifier[l] ?
1314 					    idd->identifier[l] : ' ';
1315 				buf[l] = 0;
1316 			} else
1317 				ret = EFAULT;
1318 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1319 			l = strnlen(idd->identifier, idd->length);
1320 			if (l < len) {
1321 				bcopy(idd->identifier, buf, l);
1322 				buf[l] = 0;
1323 			} else
1324 				ret = EFAULT;
1325 		} else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
1326 		    && idd->identifier[0] == 0x10) {
1327 			if ((idd->length - 2) * 2 + 4 < len) {
1328 				for (l = 2, o = 0; l < idd->length; l++) {
1329 					if (l == 6 || l == 8 || l == 10 || l == 12)
1330 					    o += sprintf(buf + o, "-");
1331 					o += sprintf(buf + o, "%02x",
1332 					    idd->identifier[l]);
1333 				}
1334 			} else
1335 				ret = EFAULT;
1336 		} else {
1337 			if (idd->length * 2 < len) {
1338 				for (l = 0; l < idd->length; l++)
1339 					sprintf(buf + l * 2, "%02x",
1340 					    idd->identifier[l]);
1341 			} else
1342 				ret = EFAULT;
1343 		}
1344 	} else {
1345 		ret = 0;
1346 		if (strlcpy(buf, cdai.buf, len) >= len)
1347 			ret = EFAULT;
1348 	}
1349 
1350 out:
1351 	if (cdai.buf != NULL)
1352 		free(cdai.buf, M_CAMXPT);
1353 	return ret;
1354 }
1355 
1356 static dev_match_ret
1357 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1358 	    struct cam_eb *bus)
1359 {
1360 	dev_match_ret retval;
1361 	u_int i;
1362 
1363 	retval = DM_RET_NONE;
1364 
1365 	/*
1366 	 * If we aren't given something to match against, that's an error.
1367 	 */
1368 	if (bus == NULL)
1369 		return(DM_RET_ERROR);
1370 
1371 	/*
1372 	 * If there are no match entries, then this bus matches no
1373 	 * matter what.
1374 	 */
1375 	if ((patterns == NULL) || (num_patterns == 0))
1376 		return(DM_RET_DESCEND | DM_RET_COPY);
1377 
1378 	for (i = 0; i < num_patterns; i++) {
1379 		struct bus_match_pattern *cur_pattern;
1380 
1381 		/*
1382 		 * If the pattern in question isn't for a bus node, we
1383 		 * aren't interested.  However, we do indicate to the
1384 		 * calling routine that we should continue descending the
1385 		 * tree, since the user wants to match against lower-level
1386 		 * EDT elements.
1387 		 */
1388 		if (patterns[i].type != DEV_MATCH_BUS) {
1389 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1390 				retval |= DM_RET_DESCEND;
1391 			continue;
1392 		}
1393 
1394 		cur_pattern = &patterns[i].pattern.bus_pattern;
1395 
1396 		/*
1397 		 * If they want to match any bus node, we give them any
1398 		 * device node.
1399 		 */
1400 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1401 			/* set the copy flag */
1402 			retval |= DM_RET_COPY;
1403 
1404 			/*
1405 			 * If we've already decided on an action, go ahead
1406 			 * and return.
1407 			 */
1408 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1409 				return(retval);
1410 		}
1411 
1412 		/*
1413 		 * Not sure why someone would do this...
1414 		 */
1415 		if (cur_pattern->flags == BUS_MATCH_NONE)
1416 			continue;
1417 
1418 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1419 		 && (cur_pattern->path_id != bus->path_id))
1420 			continue;
1421 
1422 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1423 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1424 			continue;
1425 
1426 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1427 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1428 			continue;
1429 
1430 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1431 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1432 			     DEV_IDLEN) != 0))
1433 			continue;
1434 
1435 		/*
1436 		 * If we get to this point, the user definitely wants
1437 		 * information on this bus.  So tell the caller to copy the
1438 		 * data out.
1439 		 */
1440 		retval |= DM_RET_COPY;
1441 
1442 		/*
1443 		 * If the return action has been set to descend, then we
1444 		 * know that we've already seen a non-bus matching
1445 		 * expression, therefore we need to further descend the tree.
1446 		 * This won't change by continuing around the loop, so we
1447 		 * go ahead and return.  If we haven't seen a non-bus
1448 		 * matching expression, we keep going around the loop until
1449 		 * we exhaust the matching expressions.  We'll set the stop
1450 		 * flag once we fall out of the loop.
1451 		 */
1452 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1453 			return(retval);
1454 	}
1455 
1456 	/*
1457 	 * If the return action hasn't been set to descend yet, that means
1458 	 * we haven't seen anything other than bus matching patterns.  So
1459 	 * tell the caller to stop descending the tree -- the user doesn't
1460 	 * want to match against lower level tree elements.
1461 	 */
1462 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1463 		retval |= DM_RET_STOP;
1464 
1465 	return(retval);
1466 }
1467 
1468 static dev_match_ret
1469 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1470 	       struct cam_ed *device)
1471 {
1472 	dev_match_ret retval;
1473 	u_int i;
1474 
1475 	retval = DM_RET_NONE;
1476 
1477 	/*
1478 	 * If we aren't given something to match against, that's an error.
1479 	 */
1480 	if (device == NULL)
1481 		return(DM_RET_ERROR);
1482 
1483 	/*
1484 	 * If there are no match entries, then this device matches no
1485 	 * matter what.
1486 	 */
1487 	if ((patterns == NULL) || (num_patterns == 0))
1488 		return(DM_RET_DESCEND | DM_RET_COPY);
1489 
1490 	for (i = 0; i < num_patterns; i++) {
1491 		struct device_match_pattern *cur_pattern;
1492 		struct scsi_vpd_device_id *device_id_page;
1493 
1494 		/*
1495 		 * If the pattern in question isn't for a device node, we
1496 		 * aren't interested.
1497 		 */
1498 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1499 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1500 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1501 				retval |= DM_RET_DESCEND;
1502 			continue;
1503 		}
1504 
1505 		cur_pattern = &patterns[i].pattern.device_pattern;
1506 
1507 		/* Error out if mutually exclusive options are specified. */
1508 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1509 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1510 			return(DM_RET_ERROR);
1511 
1512 		/*
1513 		 * If they want to match any device node, we give them any
1514 		 * device node.
1515 		 */
1516 		if (cur_pattern->flags == DEV_MATCH_ANY)
1517 			goto copy_dev_node;
1518 
1519 		/*
1520 		 * Not sure why someone would do this...
1521 		 */
1522 		if (cur_pattern->flags == DEV_MATCH_NONE)
1523 			continue;
1524 
1525 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1526 		 && (cur_pattern->path_id != device->target->bus->path_id))
1527 			continue;
1528 
1529 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1530 		 && (cur_pattern->target_id != device->target->target_id))
1531 			continue;
1532 
1533 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1534 		 && (cur_pattern->target_lun != device->lun_id))
1535 			continue;
1536 
1537 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1538 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1539 				    (caddr_t)&cur_pattern->data.inq_pat,
1540 				    1, sizeof(cur_pattern->data.inq_pat),
1541 				    scsi_static_inquiry_match) == NULL))
1542 			continue;
1543 
1544 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1545 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1546 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1547 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1548 				      device->device_id_len
1549 				    - SVPD_DEVICE_ID_HDR_LEN,
1550 				      cur_pattern->data.devid_pat.id,
1551 				      cur_pattern->data.devid_pat.id_len) != 0))
1552 			continue;
1553 
1554 copy_dev_node:
1555 		/*
1556 		 * If we get to this point, the user definitely wants
1557 		 * information on this device.  So tell the caller to copy
1558 		 * the data out.
1559 		 */
1560 		retval |= DM_RET_COPY;
1561 
1562 		/*
1563 		 * If the return action has been set to descend, then we
1564 		 * know that we've already seen a peripheral matching
1565 		 * expression, therefore we need to further descend the tree.
1566 		 * This won't change by continuing around the loop, so we
1567 		 * go ahead and return.  If we haven't seen a peripheral
1568 		 * matching expression, we keep going around the loop until
1569 		 * we exhaust the matching expressions.  We'll set the stop
1570 		 * flag once we fall out of the loop.
1571 		 */
1572 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1573 			return(retval);
1574 	}
1575 
1576 	/*
1577 	 * If the return action hasn't been set to descend yet, that means
1578 	 * we haven't seen any peripheral matching patterns.  So tell the
1579 	 * caller to stop descending the tree -- the user doesn't want to
1580 	 * match against lower level tree elements.
1581 	 */
1582 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1583 		retval |= DM_RET_STOP;
1584 
1585 	return(retval);
1586 }
1587 
1588 /*
1589  * Match a single peripheral against any number of match patterns.
1590  */
1591 static dev_match_ret
1592 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1593 	       struct cam_periph *periph)
1594 {
1595 	dev_match_ret retval;
1596 	u_int i;
1597 
1598 	/*
1599 	 * If we aren't given something to match against, that's an error.
1600 	 */
1601 	if (periph == NULL)
1602 		return(DM_RET_ERROR);
1603 
1604 	/*
1605 	 * If there are no match entries, then this peripheral matches no
1606 	 * matter what.
1607 	 */
1608 	if ((patterns == NULL) || (num_patterns == 0))
1609 		return(DM_RET_STOP | DM_RET_COPY);
1610 
1611 	/*
1612 	 * There aren't any nodes below a peripheral node, so there's no
1613 	 * reason to descend the tree any further.
1614 	 */
1615 	retval = DM_RET_STOP;
1616 
1617 	for (i = 0; i < num_patterns; i++) {
1618 		struct periph_match_pattern *cur_pattern;
1619 
1620 		/*
1621 		 * If the pattern in question isn't for a peripheral, we
1622 		 * aren't interested.
1623 		 */
1624 		if (patterns[i].type != DEV_MATCH_PERIPH)
1625 			continue;
1626 
1627 		cur_pattern = &patterns[i].pattern.periph_pattern;
1628 
1629 		/*
1630 		 * If they want to match on anything, then we will do so.
1631 		 */
1632 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1633 			/* set the copy flag */
1634 			retval |= DM_RET_COPY;
1635 
1636 			/*
1637 			 * We've already set the return action to stop,
1638 			 * since there are no nodes below peripherals in
1639 			 * the tree.
1640 			 */
1641 			return(retval);
1642 		}
1643 
1644 		/*
1645 		 * Not sure why someone would do this...
1646 		 */
1647 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1648 			continue;
1649 
1650 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1651 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1652 			continue;
1653 
1654 		/*
1655 		 * For the target and lun id's, we have to make sure the
1656 		 * target and lun pointers aren't NULL.  The xpt peripheral
1657 		 * has a wildcard target and device.
1658 		 */
1659 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1660 		 && ((periph->path->target == NULL)
1661 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1662 			continue;
1663 
1664 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1665 		 && ((periph->path->device == NULL)
1666 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1667 			continue;
1668 
1669 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1670 		 && (cur_pattern->unit_number != periph->unit_number))
1671 			continue;
1672 
1673 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1674 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1675 			     DEV_IDLEN) != 0))
1676 			continue;
1677 
1678 		/*
1679 		 * If we get to this point, the user definitely wants
1680 		 * information on this peripheral.  So tell the caller to
1681 		 * copy the data out.
1682 		 */
1683 		retval |= DM_RET_COPY;
1684 
1685 		/*
1686 		 * The return action has already been set to stop, since
1687 		 * peripherals don't have any nodes below them in the EDT.
1688 		 */
1689 		return(retval);
1690 	}
1691 
1692 	/*
1693 	 * If we get to this point, the peripheral that was passed in
1694 	 * doesn't match any of the patterns.
1695 	 */
1696 	return(retval);
1697 }
1698 
1699 static int
1700 xptedtbusfunc(struct cam_eb *bus, void *arg)
1701 {
1702 	struct ccb_dev_match *cdm;
1703 	struct cam_et *target;
1704 	dev_match_ret retval;
1705 
1706 	cdm = (struct ccb_dev_match *)arg;
1707 
1708 	/*
1709 	 * If our position is for something deeper in the tree, that means
1710 	 * that we've already seen this node.  So, we keep going down.
1711 	 */
1712 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1713 	 && (cdm->pos.cookie.bus == bus)
1714 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1715 	 && (cdm->pos.cookie.target != NULL))
1716 		retval = DM_RET_DESCEND;
1717 	else
1718 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1719 
1720 	/*
1721 	 * If we got an error, bail out of the search.
1722 	 */
1723 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1724 		cdm->status = CAM_DEV_MATCH_ERROR;
1725 		return(0);
1726 	}
1727 
1728 	/*
1729 	 * If the copy flag is set, copy this bus out.
1730 	 */
1731 	if (retval & DM_RET_COPY) {
1732 		int spaceleft, j;
1733 
1734 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1735 			sizeof(struct dev_match_result));
1736 
1737 		/*
1738 		 * If we don't have enough space to put in another
1739 		 * match result, save our position and tell the
1740 		 * user there are more devices to check.
1741 		 */
1742 		if (spaceleft < sizeof(struct dev_match_result)) {
1743 			bzero(&cdm->pos, sizeof(cdm->pos));
1744 			cdm->pos.position_type =
1745 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1746 
1747 			cdm->pos.cookie.bus = bus;
1748 			cdm->pos.generations[CAM_BUS_GENERATION]=
1749 				xsoftc.bus_generation;
1750 			cdm->status = CAM_DEV_MATCH_MORE;
1751 			return(0);
1752 		}
1753 		j = cdm->num_matches;
1754 		cdm->num_matches++;
1755 		cdm->matches[j].type = DEV_MATCH_BUS;
1756 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1757 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1758 		cdm->matches[j].result.bus_result.unit_number =
1759 			bus->sim->unit_number;
1760 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1761 			bus->sim->sim_name,
1762 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1763 	}
1764 
1765 	/*
1766 	 * If the user is only interested in buses, there's no
1767 	 * reason to descend to the next level in the tree.
1768 	 */
1769 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1770 		return(1);
1771 
1772 	/*
1773 	 * If there is a target generation recorded, check it to
1774 	 * make sure the target list hasn't changed.
1775 	 */
1776 	mtx_lock(&bus->eb_mtx);
1777 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1778 	 && (cdm->pos.cookie.bus == bus)
1779 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1780 	 && (cdm->pos.cookie.target != NULL)) {
1781 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1782 		    bus->generation)) {
1783 			mtx_unlock(&bus->eb_mtx);
1784 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1785 			return (0);
1786 		}
1787 		target = (struct cam_et *)cdm->pos.cookie.target;
1788 		target->refcount++;
1789 	} else
1790 		target = NULL;
1791 	mtx_unlock(&bus->eb_mtx);
1792 
1793 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1794 }
1795 
1796 static int
1797 xptedttargetfunc(struct cam_et *target, void *arg)
1798 {
1799 	struct ccb_dev_match *cdm;
1800 	struct cam_eb *bus;
1801 	struct cam_ed *device;
1802 
1803 	cdm = (struct ccb_dev_match *)arg;
1804 	bus = target->bus;
1805 
1806 	/*
1807 	 * If there is a device list generation recorded, check it to
1808 	 * make sure the device list hasn't changed.
1809 	 */
1810 	mtx_lock(&bus->eb_mtx);
1811 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1812 	 && (cdm->pos.cookie.bus == bus)
1813 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1814 	 && (cdm->pos.cookie.target == target)
1815 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1816 	 && (cdm->pos.cookie.device != NULL)) {
1817 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1818 		    target->generation) {
1819 			mtx_unlock(&bus->eb_mtx);
1820 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1821 			return(0);
1822 		}
1823 		device = (struct cam_ed *)cdm->pos.cookie.device;
1824 		device->refcount++;
1825 	} else
1826 		device = NULL;
1827 	mtx_unlock(&bus->eb_mtx);
1828 
1829 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1830 }
1831 
1832 static int
1833 xptedtdevicefunc(struct cam_ed *device, void *arg)
1834 {
1835 	struct cam_eb *bus;
1836 	struct cam_periph *periph;
1837 	struct ccb_dev_match *cdm;
1838 	dev_match_ret retval;
1839 
1840 	cdm = (struct ccb_dev_match *)arg;
1841 	bus = device->target->bus;
1842 
1843 	/*
1844 	 * If our position is for something deeper in the tree, that means
1845 	 * that we've already seen this node.  So, we keep going down.
1846 	 */
1847 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1848 	 && (cdm->pos.cookie.device == device)
1849 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1850 	 && (cdm->pos.cookie.periph != NULL))
1851 		retval = DM_RET_DESCEND;
1852 	else
1853 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1854 					device);
1855 
1856 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1857 		cdm->status = CAM_DEV_MATCH_ERROR;
1858 		return(0);
1859 	}
1860 
1861 	/*
1862 	 * If the copy flag is set, copy this device out.
1863 	 */
1864 	if (retval & DM_RET_COPY) {
1865 		int spaceleft, j;
1866 
1867 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1868 			sizeof(struct dev_match_result));
1869 
1870 		/*
1871 		 * If we don't have enough space to put in another
1872 		 * match result, save our position and tell the
1873 		 * user there are more devices to check.
1874 		 */
1875 		if (spaceleft < sizeof(struct dev_match_result)) {
1876 			bzero(&cdm->pos, sizeof(cdm->pos));
1877 			cdm->pos.position_type =
1878 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1879 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1880 
1881 			cdm->pos.cookie.bus = device->target->bus;
1882 			cdm->pos.generations[CAM_BUS_GENERATION]=
1883 				xsoftc.bus_generation;
1884 			cdm->pos.cookie.target = device->target;
1885 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1886 				device->target->bus->generation;
1887 			cdm->pos.cookie.device = device;
1888 			cdm->pos.generations[CAM_DEV_GENERATION] =
1889 				device->target->generation;
1890 			cdm->status = CAM_DEV_MATCH_MORE;
1891 			return(0);
1892 		}
1893 		j = cdm->num_matches;
1894 		cdm->num_matches++;
1895 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1896 		cdm->matches[j].result.device_result.path_id =
1897 			device->target->bus->path_id;
1898 		cdm->matches[j].result.device_result.target_id =
1899 			device->target->target_id;
1900 		cdm->matches[j].result.device_result.target_lun =
1901 			device->lun_id;
1902 		cdm->matches[j].result.device_result.protocol =
1903 			device->protocol;
1904 		bcopy(&device->inq_data,
1905 		      &cdm->matches[j].result.device_result.inq_data,
1906 		      sizeof(struct scsi_inquiry_data));
1907 		bcopy(&device->ident_data,
1908 		      &cdm->matches[j].result.device_result.ident_data,
1909 		      sizeof(struct ata_params));
1910 		bcopy(&device->mmc_ident_data,
1911 		      &cdm->matches[j].result.device_result.mmc_ident_data,
1912 		      sizeof(struct mmc_params));
1913 
1914 		/* Let the user know whether this device is unconfigured */
1915 		if (device->flags & CAM_DEV_UNCONFIGURED)
1916 			cdm->matches[j].result.device_result.flags =
1917 				DEV_RESULT_UNCONFIGURED;
1918 		else
1919 			cdm->matches[j].result.device_result.flags =
1920 				DEV_RESULT_NOFLAG;
1921 	}
1922 
1923 	/*
1924 	 * If the user isn't interested in peripherals, don't descend
1925 	 * the tree any further.
1926 	 */
1927 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1928 		return(1);
1929 
1930 	/*
1931 	 * If there is a peripheral list generation recorded, make sure
1932 	 * it hasn't changed.
1933 	 */
1934 	xpt_lock_buses();
1935 	mtx_lock(&bus->eb_mtx);
1936 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1937 	 && (cdm->pos.cookie.bus == bus)
1938 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1939 	 && (cdm->pos.cookie.target == device->target)
1940 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1941 	 && (cdm->pos.cookie.device == device)
1942 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1943 	 && (cdm->pos.cookie.periph != NULL)) {
1944 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1945 		    device->generation) {
1946 			mtx_unlock(&bus->eb_mtx);
1947 			xpt_unlock_buses();
1948 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1949 			return(0);
1950 		}
1951 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1952 		periph->refcount++;
1953 	} else
1954 		periph = NULL;
1955 	mtx_unlock(&bus->eb_mtx);
1956 	xpt_unlock_buses();
1957 
1958 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1959 }
1960 
1961 static int
1962 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1963 {
1964 	struct ccb_dev_match *cdm;
1965 	dev_match_ret retval;
1966 
1967 	cdm = (struct ccb_dev_match *)arg;
1968 
1969 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1970 
1971 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1972 		cdm->status = CAM_DEV_MATCH_ERROR;
1973 		return(0);
1974 	}
1975 
1976 	/*
1977 	 * If the copy flag is set, copy this peripheral out.
1978 	 */
1979 	if (retval & DM_RET_COPY) {
1980 		int spaceleft, j;
1981 		size_t l;
1982 
1983 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1984 			sizeof(struct dev_match_result));
1985 
1986 		/*
1987 		 * If we don't have enough space to put in another
1988 		 * match result, save our position and tell the
1989 		 * user there are more devices to check.
1990 		 */
1991 		if (spaceleft < sizeof(struct dev_match_result)) {
1992 			bzero(&cdm->pos, sizeof(cdm->pos));
1993 			cdm->pos.position_type =
1994 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1995 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1996 				CAM_DEV_POS_PERIPH;
1997 
1998 			cdm->pos.cookie.bus = periph->path->bus;
1999 			cdm->pos.generations[CAM_BUS_GENERATION]=
2000 				xsoftc.bus_generation;
2001 			cdm->pos.cookie.target = periph->path->target;
2002 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2003 				periph->path->bus->generation;
2004 			cdm->pos.cookie.device = periph->path->device;
2005 			cdm->pos.generations[CAM_DEV_GENERATION] =
2006 				periph->path->target->generation;
2007 			cdm->pos.cookie.periph = periph;
2008 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2009 				periph->path->device->generation;
2010 			cdm->status = CAM_DEV_MATCH_MORE;
2011 			return(0);
2012 		}
2013 
2014 		j = cdm->num_matches;
2015 		cdm->num_matches++;
2016 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2017 		cdm->matches[j].result.periph_result.path_id =
2018 			periph->path->bus->path_id;
2019 		cdm->matches[j].result.periph_result.target_id =
2020 			periph->path->target->target_id;
2021 		cdm->matches[j].result.periph_result.target_lun =
2022 			periph->path->device->lun_id;
2023 		cdm->matches[j].result.periph_result.unit_number =
2024 			periph->unit_number;
2025 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2026 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2027 			periph->periph_name, l);
2028 	}
2029 
2030 	return(1);
2031 }
2032 
2033 static int
2034 xptedtmatch(struct ccb_dev_match *cdm)
2035 {
2036 	struct cam_eb *bus;
2037 	int ret;
2038 
2039 	cdm->num_matches = 0;
2040 
2041 	/*
2042 	 * Check the bus list generation.  If it has changed, the user
2043 	 * needs to reset everything and start over.
2044 	 */
2045 	xpt_lock_buses();
2046 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2047 	 && (cdm->pos.cookie.bus != NULL)) {
2048 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2049 		    xsoftc.bus_generation) {
2050 			xpt_unlock_buses();
2051 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2052 			return(0);
2053 		}
2054 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2055 		bus->refcount++;
2056 	} else
2057 		bus = NULL;
2058 	xpt_unlock_buses();
2059 
2060 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2061 
2062 	/*
2063 	 * If we get back 0, that means that we had to stop before fully
2064 	 * traversing the EDT.  It also means that one of the subroutines
2065 	 * has set the status field to the proper value.  If we get back 1,
2066 	 * we've fully traversed the EDT and copied out any matching entries.
2067 	 */
2068 	if (ret == 1)
2069 		cdm->status = CAM_DEV_MATCH_LAST;
2070 
2071 	return(ret);
2072 }
2073 
2074 static int
2075 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2076 {
2077 	struct cam_periph *periph;
2078 	struct ccb_dev_match *cdm;
2079 
2080 	cdm = (struct ccb_dev_match *)arg;
2081 
2082 	xpt_lock_buses();
2083 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2084 	 && (cdm->pos.cookie.pdrv == pdrv)
2085 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2086 	 && (cdm->pos.cookie.periph != NULL)) {
2087 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2088 		    (*pdrv)->generation) {
2089 			xpt_unlock_buses();
2090 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2091 			return(0);
2092 		}
2093 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2094 		periph->refcount++;
2095 	} else
2096 		periph = NULL;
2097 	xpt_unlock_buses();
2098 
2099 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2100 }
2101 
2102 static int
2103 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2104 {
2105 	struct ccb_dev_match *cdm;
2106 	dev_match_ret retval;
2107 
2108 	cdm = (struct ccb_dev_match *)arg;
2109 
2110 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2111 
2112 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2113 		cdm->status = CAM_DEV_MATCH_ERROR;
2114 		return(0);
2115 	}
2116 
2117 	/*
2118 	 * If the copy flag is set, copy this peripheral out.
2119 	 */
2120 	if (retval & DM_RET_COPY) {
2121 		int spaceleft, j;
2122 		size_t l;
2123 
2124 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2125 			sizeof(struct dev_match_result));
2126 
2127 		/*
2128 		 * If we don't have enough space to put in another
2129 		 * match result, save our position and tell the
2130 		 * user there are more devices to check.
2131 		 */
2132 		if (spaceleft < sizeof(struct dev_match_result)) {
2133 			struct periph_driver **pdrv;
2134 
2135 			pdrv = NULL;
2136 			bzero(&cdm->pos, sizeof(cdm->pos));
2137 			cdm->pos.position_type =
2138 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2139 				CAM_DEV_POS_PERIPH;
2140 
2141 			/*
2142 			 * This may look a bit non-sensical, but it is
2143 			 * actually quite logical.  There are very few
2144 			 * peripheral drivers, and bloating every peripheral
2145 			 * structure with a pointer back to its parent
2146 			 * peripheral driver linker set entry would cost
2147 			 * more in the long run than doing this quick lookup.
2148 			 */
2149 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2150 				if (strcmp((*pdrv)->driver_name,
2151 				    periph->periph_name) == 0)
2152 					break;
2153 			}
2154 
2155 			if (*pdrv == NULL) {
2156 				cdm->status = CAM_DEV_MATCH_ERROR;
2157 				return(0);
2158 			}
2159 
2160 			cdm->pos.cookie.pdrv = pdrv;
2161 			/*
2162 			 * The periph generation slot does double duty, as
2163 			 * does the periph pointer slot.  They are used for
2164 			 * both edt and pdrv lookups and positioning.
2165 			 */
2166 			cdm->pos.cookie.periph = periph;
2167 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2168 				(*pdrv)->generation;
2169 			cdm->status = CAM_DEV_MATCH_MORE;
2170 			return(0);
2171 		}
2172 
2173 		j = cdm->num_matches;
2174 		cdm->num_matches++;
2175 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2176 		cdm->matches[j].result.periph_result.path_id =
2177 			periph->path->bus->path_id;
2178 
2179 		/*
2180 		 * The transport layer peripheral doesn't have a target or
2181 		 * lun.
2182 		 */
2183 		if (periph->path->target)
2184 			cdm->matches[j].result.periph_result.target_id =
2185 				periph->path->target->target_id;
2186 		else
2187 			cdm->matches[j].result.periph_result.target_id =
2188 				CAM_TARGET_WILDCARD;
2189 
2190 		if (periph->path->device)
2191 			cdm->matches[j].result.periph_result.target_lun =
2192 				periph->path->device->lun_id;
2193 		else
2194 			cdm->matches[j].result.periph_result.target_lun =
2195 				CAM_LUN_WILDCARD;
2196 
2197 		cdm->matches[j].result.periph_result.unit_number =
2198 			periph->unit_number;
2199 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2200 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2201 			periph->periph_name, l);
2202 	}
2203 
2204 	return(1);
2205 }
2206 
2207 static int
2208 xptperiphlistmatch(struct ccb_dev_match *cdm)
2209 {
2210 	int ret;
2211 
2212 	cdm->num_matches = 0;
2213 
2214 	/*
2215 	 * At this point in the edt traversal function, we check the bus
2216 	 * list generation to make sure that no buses have been added or
2217 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2218 	 * For the peripheral driver list traversal function, however, we
2219 	 * don't have to worry about new peripheral driver types coming or
2220 	 * going; they're in a linker set, and therefore can't change
2221 	 * without a recompile.
2222 	 */
2223 
2224 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2225 	 && (cdm->pos.cookie.pdrv != NULL))
2226 		ret = xptpdrvtraverse(
2227 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2228 				xptplistpdrvfunc, cdm);
2229 	else
2230 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2231 
2232 	/*
2233 	 * If we get back 0, that means that we had to stop before fully
2234 	 * traversing the peripheral driver tree.  It also means that one of
2235 	 * the subroutines has set the status field to the proper value.  If
2236 	 * we get back 1, we've fully traversed the EDT and copied out any
2237 	 * matching entries.
2238 	 */
2239 	if (ret == 1)
2240 		cdm->status = CAM_DEV_MATCH_LAST;
2241 
2242 	return(ret);
2243 }
2244 
2245 static int
2246 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2247 {
2248 	struct cam_eb *bus, *next_bus;
2249 	int retval;
2250 
2251 	retval = 1;
2252 	if (start_bus)
2253 		bus = start_bus;
2254 	else {
2255 		xpt_lock_buses();
2256 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2257 		if (bus == NULL) {
2258 			xpt_unlock_buses();
2259 			return (retval);
2260 		}
2261 		bus->refcount++;
2262 		xpt_unlock_buses();
2263 	}
2264 	for (; bus != NULL; bus = next_bus) {
2265 		retval = tr_func(bus, arg);
2266 		if (retval == 0) {
2267 			xpt_release_bus(bus);
2268 			break;
2269 		}
2270 		xpt_lock_buses();
2271 		next_bus = TAILQ_NEXT(bus, links);
2272 		if (next_bus)
2273 			next_bus->refcount++;
2274 		xpt_unlock_buses();
2275 		xpt_release_bus(bus);
2276 	}
2277 	return(retval);
2278 }
2279 
2280 static int
2281 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2282 		  xpt_targetfunc_t *tr_func, void *arg)
2283 {
2284 	struct cam_et *target, *next_target;
2285 	int retval;
2286 
2287 	retval = 1;
2288 	if (start_target)
2289 		target = start_target;
2290 	else {
2291 		mtx_lock(&bus->eb_mtx);
2292 		target = TAILQ_FIRST(&bus->et_entries);
2293 		if (target == NULL) {
2294 			mtx_unlock(&bus->eb_mtx);
2295 			return (retval);
2296 		}
2297 		target->refcount++;
2298 		mtx_unlock(&bus->eb_mtx);
2299 	}
2300 	for (; target != NULL; target = next_target) {
2301 		retval = tr_func(target, arg);
2302 		if (retval == 0) {
2303 			xpt_release_target(target);
2304 			break;
2305 		}
2306 		mtx_lock(&bus->eb_mtx);
2307 		next_target = TAILQ_NEXT(target, links);
2308 		if (next_target)
2309 			next_target->refcount++;
2310 		mtx_unlock(&bus->eb_mtx);
2311 		xpt_release_target(target);
2312 	}
2313 	return(retval);
2314 }
2315 
2316 static int
2317 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2318 		  xpt_devicefunc_t *tr_func, void *arg)
2319 {
2320 	struct cam_eb *bus;
2321 	struct cam_ed *device, *next_device;
2322 	int retval;
2323 
2324 	retval = 1;
2325 	bus = target->bus;
2326 	if (start_device)
2327 		device = start_device;
2328 	else {
2329 		mtx_lock(&bus->eb_mtx);
2330 		device = TAILQ_FIRST(&target->ed_entries);
2331 		if (device == NULL) {
2332 			mtx_unlock(&bus->eb_mtx);
2333 			return (retval);
2334 		}
2335 		device->refcount++;
2336 		mtx_unlock(&bus->eb_mtx);
2337 	}
2338 	for (; device != NULL; device = next_device) {
2339 		mtx_lock(&device->device_mtx);
2340 		retval = tr_func(device, arg);
2341 		mtx_unlock(&device->device_mtx);
2342 		if (retval == 0) {
2343 			xpt_release_device(device);
2344 			break;
2345 		}
2346 		mtx_lock(&bus->eb_mtx);
2347 		next_device = TAILQ_NEXT(device, links);
2348 		if (next_device)
2349 			next_device->refcount++;
2350 		mtx_unlock(&bus->eb_mtx);
2351 		xpt_release_device(device);
2352 	}
2353 	return(retval);
2354 }
2355 
2356 static int
2357 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2358 		  xpt_periphfunc_t *tr_func, void *arg)
2359 {
2360 	struct cam_eb *bus;
2361 	struct cam_periph *periph, *next_periph;
2362 	int retval;
2363 
2364 	retval = 1;
2365 
2366 	bus = device->target->bus;
2367 	if (start_periph)
2368 		periph = start_periph;
2369 	else {
2370 		xpt_lock_buses();
2371 		mtx_lock(&bus->eb_mtx);
2372 		periph = SLIST_FIRST(&device->periphs);
2373 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2374 			periph = SLIST_NEXT(periph, periph_links);
2375 		if (periph == NULL) {
2376 			mtx_unlock(&bus->eb_mtx);
2377 			xpt_unlock_buses();
2378 			return (retval);
2379 		}
2380 		periph->refcount++;
2381 		mtx_unlock(&bus->eb_mtx);
2382 		xpt_unlock_buses();
2383 	}
2384 	for (; periph != NULL; periph = next_periph) {
2385 		retval = tr_func(periph, arg);
2386 		if (retval == 0) {
2387 			cam_periph_release_locked(periph);
2388 			break;
2389 		}
2390 		xpt_lock_buses();
2391 		mtx_lock(&bus->eb_mtx);
2392 		next_periph = SLIST_NEXT(periph, periph_links);
2393 		while (next_periph != NULL &&
2394 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2395 			next_periph = SLIST_NEXT(next_periph, periph_links);
2396 		if (next_periph)
2397 			next_periph->refcount++;
2398 		mtx_unlock(&bus->eb_mtx);
2399 		xpt_unlock_buses();
2400 		cam_periph_release_locked(periph);
2401 	}
2402 	return(retval);
2403 }
2404 
2405 static int
2406 xptpdrvtraverse(struct periph_driver **start_pdrv,
2407 		xpt_pdrvfunc_t *tr_func, void *arg)
2408 {
2409 	struct periph_driver **pdrv;
2410 	int retval;
2411 
2412 	retval = 1;
2413 
2414 	/*
2415 	 * We don't traverse the peripheral driver list like we do the
2416 	 * other lists, because it is a linker set, and therefore cannot be
2417 	 * changed during runtime.  If the peripheral driver list is ever
2418 	 * re-done to be something other than a linker set (i.e. it can
2419 	 * change while the system is running), the list traversal should
2420 	 * be modified to work like the other traversal functions.
2421 	 */
2422 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2423 	     *pdrv != NULL; pdrv++) {
2424 		retval = tr_func(pdrv, arg);
2425 
2426 		if (retval == 0)
2427 			return(retval);
2428 	}
2429 
2430 	return(retval);
2431 }
2432 
2433 static int
2434 xptpdperiphtraverse(struct periph_driver **pdrv,
2435 		    struct cam_periph *start_periph,
2436 		    xpt_periphfunc_t *tr_func, void *arg)
2437 {
2438 	struct cam_periph *periph, *next_periph;
2439 	int retval;
2440 
2441 	retval = 1;
2442 
2443 	if (start_periph)
2444 		periph = start_periph;
2445 	else {
2446 		xpt_lock_buses();
2447 		periph = TAILQ_FIRST(&(*pdrv)->units);
2448 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2449 			periph = TAILQ_NEXT(periph, unit_links);
2450 		if (periph == NULL) {
2451 			xpt_unlock_buses();
2452 			return (retval);
2453 		}
2454 		periph->refcount++;
2455 		xpt_unlock_buses();
2456 	}
2457 	for (; periph != NULL; periph = next_periph) {
2458 		cam_periph_lock(periph);
2459 		retval = tr_func(periph, arg);
2460 		cam_periph_unlock(periph);
2461 		if (retval == 0) {
2462 			cam_periph_release(periph);
2463 			break;
2464 		}
2465 		xpt_lock_buses();
2466 		next_periph = TAILQ_NEXT(periph, unit_links);
2467 		while (next_periph != NULL &&
2468 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2469 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2470 		if (next_periph)
2471 			next_periph->refcount++;
2472 		xpt_unlock_buses();
2473 		cam_periph_release(periph);
2474 	}
2475 	return(retval);
2476 }
2477 
2478 static int
2479 xptdefbusfunc(struct cam_eb *bus, void *arg)
2480 {
2481 	struct xpt_traverse_config *tr_config;
2482 
2483 	tr_config = (struct xpt_traverse_config *)arg;
2484 
2485 	if (tr_config->depth == XPT_DEPTH_BUS) {
2486 		xpt_busfunc_t *tr_func;
2487 
2488 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2489 
2490 		return(tr_func(bus, tr_config->tr_arg));
2491 	} else
2492 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2493 }
2494 
2495 static int
2496 xptdeftargetfunc(struct cam_et *target, void *arg)
2497 {
2498 	struct xpt_traverse_config *tr_config;
2499 
2500 	tr_config = (struct xpt_traverse_config *)arg;
2501 
2502 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2503 		xpt_targetfunc_t *tr_func;
2504 
2505 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2506 
2507 		return(tr_func(target, tr_config->tr_arg));
2508 	} else
2509 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2510 }
2511 
2512 static int
2513 xptdefdevicefunc(struct cam_ed *device, void *arg)
2514 {
2515 	struct xpt_traverse_config *tr_config;
2516 
2517 	tr_config = (struct xpt_traverse_config *)arg;
2518 
2519 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2520 		xpt_devicefunc_t *tr_func;
2521 
2522 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2523 
2524 		return(tr_func(device, tr_config->tr_arg));
2525 	} else
2526 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2527 }
2528 
2529 static int
2530 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2531 {
2532 	struct xpt_traverse_config *tr_config;
2533 	xpt_periphfunc_t *tr_func;
2534 
2535 	tr_config = (struct xpt_traverse_config *)arg;
2536 
2537 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2538 
2539 	/*
2540 	 * Unlike the other default functions, we don't check for depth
2541 	 * here.  The peripheral driver level is the last level in the EDT,
2542 	 * so if we're here, we should execute the function in question.
2543 	 */
2544 	return(tr_func(periph, tr_config->tr_arg));
2545 }
2546 
2547 /*
2548  * Execute the given function for every bus in the EDT.
2549  */
2550 static int
2551 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2552 {
2553 	struct xpt_traverse_config tr_config;
2554 
2555 	tr_config.depth = XPT_DEPTH_BUS;
2556 	tr_config.tr_func = tr_func;
2557 	tr_config.tr_arg = arg;
2558 
2559 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2560 }
2561 
2562 /*
2563  * Execute the given function for every device in the EDT.
2564  */
2565 static int
2566 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2567 {
2568 	struct xpt_traverse_config tr_config;
2569 
2570 	tr_config.depth = XPT_DEPTH_DEVICE;
2571 	tr_config.tr_func = tr_func;
2572 	tr_config.tr_arg = arg;
2573 
2574 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2575 }
2576 
2577 static int
2578 xptsetasyncfunc(struct cam_ed *device, void *arg)
2579 {
2580 	struct cam_path path;
2581 	struct ccb_getdev cgd;
2582 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2583 
2584 	/*
2585 	 * Don't report unconfigured devices (Wildcard devs,
2586 	 * devices only for target mode, device instances
2587 	 * that have been invalidated but are waiting for
2588 	 * their last reference count to be released).
2589 	 */
2590 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2591 		return (1);
2592 
2593 	xpt_compile_path(&path,
2594 			 NULL,
2595 			 device->target->bus->path_id,
2596 			 device->target->target_id,
2597 			 device->lun_id);
2598 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2599 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2600 	xpt_action((union ccb *)&cgd);
2601 	csa->callback(csa->callback_arg,
2602 			    AC_FOUND_DEVICE,
2603 			    &path, &cgd);
2604 	xpt_release_path(&path);
2605 
2606 	return(1);
2607 }
2608 
2609 static int
2610 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2611 {
2612 	struct cam_path path;
2613 	struct ccb_pathinq cpi;
2614 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2615 
2616 	xpt_compile_path(&path, /*periph*/NULL,
2617 			 bus->path_id,
2618 			 CAM_TARGET_WILDCARD,
2619 			 CAM_LUN_WILDCARD);
2620 	xpt_path_lock(&path);
2621 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2622 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2623 	xpt_action((union ccb *)&cpi);
2624 	csa->callback(csa->callback_arg,
2625 			    AC_PATH_REGISTERED,
2626 			    &path, &cpi);
2627 	xpt_path_unlock(&path);
2628 	xpt_release_path(&path);
2629 
2630 	return(1);
2631 }
2632 
2633 void
2634 xpt_action(union ccb *start_ccb)
2635 {
2636 
2637 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2638 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2639 		xpt_action_name(start_ccb->ccb_h.func_code)));
2640 
2641 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2642 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2643 }
2644 
2645 void
2646 xpt_action_default(union ccb *start_ccb)
2647 {
2648 	struct cam_path *path;
2649 	struct cam_sim *sim;
2650 	struct mtx *mtx;
2651 
2652 	path = start_ccb->ccb_h.path;
2653 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2654 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2655 		xpt_action_name(start_ccb->ccb_h.func_code)));
2656 
2657 	switch (start_ccb->ccb_h.func_code) {
2658 	case XPT_SCSI_IO:
2659 	{
2660 		struct cam_ed *device;
2661 
2662 		/*
2663 		 * For the sake of compatibility with SCSI-1
2664 		 * devices that may not understand the identify
2665 		 * message, we include lun information in the
2666 		 * second byte of all commands.  SCSI-1 specifies
2667 		 * that luns are a 3 bit value and reserves only 3
2668 		 * bits for lun information in the CDB.  Later
2669 		 * revisions of the SCSI spec allow for more than 8
2670 		 * luns, but have deprecated lun information in the
2671 		 * CDB.  So, if the lun won't fit, we must omit.
2672 		 *
2673 		 * Also be aware that during initial probing for devices,
2674 		 * the inquiry information is unknown but initialized to 0.
2675 		 * This means that this code will be exercised while probing
2676 		 * devices with an ANSI revision greater than 2.
2677 		 */
2678 		device = path->device;
2679 		if (device->protocol_version <= SCSI_REV_2
2680 		 && start_ccb->ccb_h.target_lun < 8
2681 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2682 
2683 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2684 			    start_ccb->ccb_h.target_lun << 5;
2685 		}
2686 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2687 	}
2688 	/* FALLTHROUGH */
2689 	case XPT_TARGET_IO:
2690 	case XPT_CONT_TARGET_IO:
2691 		start_ccb->csio.sense_resid = 0;
2692 		start_ccb->csio.resid = 0;
2693 		/* FALLTHROUGH */
2694 	case XPT_ATA_IO:
2695 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2696 			start_ccb->ataio.resid = 0;
2697 		/* FALLTHROUGH */
2698 	case XPT_NVME_IO:
2699 		/* FALLTHROUGH */
2700 	case XPT_NVME_ADMIN:
2701 		/* FALLTHROUGH */
2702 	case XPT_MMC_IO:
2703 		/* XXX just like nmve_io? */
2704 	case XPT_RESET_DEV:
2705 	case XPT_ENG_EXEC:
2706 	case XPT_SMP_IO:
2707 	{
2708 		struct cam_devq *devq;
2709 
2710 		devq = path->bus->sim->devq;
2711 		mtx_lock(&devq->send_mtx);
2712 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2713 		if (xpt_schedule_devq(devq, path->device) != 0)
2714 			xpt_run_devq(devq);
2715 		mtx_unlock(&devq->send_mtx);
2716 		break;
2717 	}
2718 	case XPT_CALC_GEOMETRY:
2719 		/* Filter out garbage */
2720 		if (start_ccb->ccg.block_size == 0
2721 		 || start_ccb->ccg.volume_size == 0) {
2722 			start_ccb->ccg.cylinders = 0;
2723 			start_ccb->ccg.heads = 0;
2724 			start_ccb->ccg.secs_per_track = 0;
2725 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2726 			break;
2727 		}
2728 #if defined(__sparc64__)
2729 		/*
2730 		 * For sparc64, we may need adjust the geometry of large
2731 		 * disks in order to fit the limitations of the 16-bit
2732 		 * fields of the VTOC8 disk label.
2733 		 */
2734 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2735 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2736 			break;
2737 		}
2738 #endif
2739 		goto call_sim;
2740 	case XPT_ABORT:
2741 	{
2742 		union ccb* abort_ccb;
2743 
2744 		abort_ccb = start_ccb->cab.abort_ccb;
2745 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2746 			struct cam_ed *device;
2747 			struct cam_devq *devq;
2748 
2749 			device = abort_ccb->ccb_h.path->device;
2750 			devq = device->sim->devq;
2751 
2752 			mtx_lock(&devq->send_mtx);
2753 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2754 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2755 				abort_ccb->ccb_h.status =
2756 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2757 				xpt_freeze_devq_device(device, 1);
2758 				mtx_unlock(&devq->send_mtx);
2759 				xpt_done(abort_ccb);
2760 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2761 				break;
2762 			}
2763 			mtx_unlock(&devq->send_mtx);
2764 
2765 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2766 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2767 				/*
2768 				 * We've caught this ccb en route to
2769 				 * the SIM.  Flag it for abort and the
2770 				 * SIM will do so just before starting
2771 				 * real work on the CCB.
2772 				 */
2773 				abort_ccb->ccb_h.status =
2774 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2775 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2776 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2777 				break;
2778 			}
2779 		}
2780 		if (XPT_FC_IS_QUEUED(abort_ccb)
2781 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2782 			/*
2783 			 * It's already completed but waiting
2784 			 * for our SWI to get to it.
2785 			 */
2786 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2787 			break;
2788 		}
2789 		/*
2790 		 * If we weren't able to take care of the abort request
2791 		 * in the XPT, pass the request down to the SIM for processing.
2792 		 */
2793 	}
2794 	/* FALLTHROUGH */
2795 	case XPT_ACCEPT_TARGET_IO:
2796 	case XPT_EN_LUN:
2797 	case XPT_IMMED_NOTIFY:
2798 	case XPT_NOTIFY_ACK:
2799 	case XPT_RESET_BUS:
2800 	case XPT_IMMEDIATE_NOTIFY:
2801 	case XPT_NOTIFY_ACKNOWLEDGE:
2802 	case XPT_GET_SIM_KNOB_OLD:
2803 	case XPT_GET_SIM_KNOB:
2804 	case XPT_SET_SIM_KNOB:
2805 	case XPT_GET_TRAN_SETTINGS:
2806 	case XPT_SET_TRAN_SETTINGS:
2807 	case XPT_PATH_INQ:
2808 call_sim:
2809 		sim = path->bus->sim;
2810 		mtx = sim->mtx;
2811 		if (mtx && !mtx_owned(mtx))
2812 			mtx_lock(mtx);
2813 		else
2814 			mtx = NULL;
2815 
2816 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2817 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2818 		(*(sim->sim_action))(sim, start_ccb);
2819 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2820 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2821 		if (mtx)
2822 			mtx_unlock(mtx);
2823 		break;
2824 	case XPT_PATH_STATS:
2825 		start_ccb->cpis.last_reset = path->bus->last_reset;
2826 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2827 		break;
2828 	case XPT_GDEV_TYPE:
2829 	{
2830 		struct cam_ed *dev;
2831 
2832 		dev = path->device;
2833 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2834 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2835 		} else {
2836 			struct ccb_getdev *cgd;
2837 
2838 			cgd = &start_ccb->cgd;
2839 			cgd->protocol = dev->protocol;
2840 			cgd->inq_data = dev->inq_data;
2841 			cgd->ident_data = dev->ident_data;
2842 			cgd->inq_flags = dev->inq_flags;
2843 			cgd->ccb_h.status = CAM_REQ_CMP;
2844 			cgd->serial_num_len = dev->serial_num_len;
2845 			if ((dev->serial_num_len > 0)
2846 			 && (dev->serial_num != NULL))
2847 				bcopy(dev->serial_num, cgd->serial_num,
2848 				      dev->serial_num_len);
2849 		}
2850 		break;
2851 	}
2852 	case XPT_GDEV_STATS:
2853 	{
2854 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2855 		struct cam_ed *dev = path->device;
2856 		struct cam_eb *bus = path->bus;
2857 		struct cam_et *tar = path->target;
2858 		struct cam_devq *devq = bus->sim->devq;
2859 
2860 		mtx_lock(&devq->send_mtx);
2861 		cgds->dev_openings = dev->ccbq.dev_openings;
2862 		cgds->dev_active = dev->ccbq.dev_active;
2863 		cgds->allocated = dev->ccbq.allocated;
2864 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2865 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2866 		cgds->last_reset = tar->last_reset;
2867 		cgds->maxtags = dev->maxtags;
2868 		cgds->mintags = dev->mintags;
2869 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2870 			cgds->last_reset = bus->last_reset;
2871 		mtx_unlock(&devq->send_mtx);
2872 		cgds->ccb_h.status = CAM_REQ_CMP;
2873 		break;
2874 	}
2875 	case XPT_GDEVLIST:
2876 	{
2877 		struct cam_periph	*nperiph;
2878 		struct periph_list	*periph_head;
2879 		struct ccb_getdevlist	*cgdl;
2880 		u_int			i;
2881 		struct cam_ed		*device;
2882 		int			found;
2883 
2884 
2885 		found = 0;
2886 
2887 		/*
2888 		 * Don't want anyone mucking with our data.
2889 		 */
2890 		device = path->device;
2891 		periph_head = &device->periphs;
2892 		cgdl = &start_ccb->cgdl;
2893 
2894 		/*
2895 		 * Check and see if the list has changed since the user
2896 		 * last requested a list member.  If so, tell them that the
2897 		 * list has changed, and therefore they need to start over
2898 		 * from the beginning.
2899 		 */
2900 		if ((cgdl->index != 0) &&
2901 		    (cgdl->generation != device->generation)) {
2902 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2903 			break;
2904 		}
2905 
2906 		/*
2907 		 * Traverse the list of peripherals and attempt to find
2908 		 * the requested peripheral.
2909 		 */
2910 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2911 		     (nperiph != NULL) && (i <= cgdl->index);
2912 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2913 			if (i == cgdl->index) {
2914 				strlcpy(cgdl->periph_name,
2915 					nperiph->periph_name,
2916 					sizeof(cgdl->periph_name));
2917 				cgdl->unit_number = nperiph->unit_number;
2918 				found = 1;
2919 			}
2920 		}
2921 		if (found == 0) {
2922 			cgdl->status = CAM_GDEVLIST_ERROR;
2923 			break;
2924 		}
2925 
2926 		if (nperiph == NULL)
2927 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2928 		else
2929 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2930 
2931 		cgdl->index++;
2932 		cgdl->generation = device->generation;
2933 
2934 		cgdl->ccb_h.status = CAM_REQ_CMP;
2935 		break;
2936 	}
2937 	case XPT_DEV_MATCH:
2938 	{
2939 		dev_pos_type position_type;
2940 		struct ccb_dev_match *cdm;
2941 
2942 		cdm = &start_ccb->cdm;
2943 
2944 		/*
2945 		 * There are two ways of getting at information in the EDT.
2946 		 * The first way is via the primary EDT tree.  It starts
2947 		 * with a list of buses, then a list of targets on a bus,
2948 		 * then devices/luns on a target, and then peripherals on a
2949 		 * device/lun.  The "other" way is by the peripheral driver
2950 		 * lists.  The peripheral driver lists are organized by
2951 		 * peripheral driver.  (obviously)  So it makes sense to
2952 		 * use the peripheral driver list if the user is looking
2953 		 * for something like "da1", or all "da" devices.  If the
2954 		 * user is looking for something on a particular bus/target
2955 		 * or lun, it's generally better to go through the EDT tree.
2956 		 */
2957 
2958 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2959 			position_type = cdm->pos.position_type;
2960 		else {
2961 			u_int i;
2962 
2963 			position_type = CAM_DEV_POS_NONE;
2964 
2965 			for (i = 0; i < cdm->num_patterns; i++) {
2966 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2967 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2968 					position_type = CAM_DEV_POS_EDT;
2969 					break;
2970 				}
2971 			}
2972 
2973 			if (cdm->num_patterns == 0)
2974 				position_type = CAM_DEV_POS_EDT;
2975 			else if (position_type == CAM_DEV_POS_NONE)
2976 				position_type = CAM_DEV_POS_PDRV;
2977 		}
2978 
2979 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2980 		case CAM_DEV_POS_EDT:
2981 			xptedtmatch(cdm);
2982 			break;
2983 		case CAM_DEV_POS_PDRV:
2984 			xptperiphlistmatch(cdm);
2985 			break;
2986 		default:
2987 			cdm->status = CAM_DEV_MATCH_ERROR;
2988 			break;
2989 		}
2990 
2991 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2992 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2993 		else
2994 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2995 
2996 		break;
2997 	}
2998 	case XPT_SASYNC_CB:
2999 	{
3000 		struct ccb_setasync *csa;
3001 		struct async_node *cur_entry;
3002 		struct async_list *async_head;
3003 		u_int32_t added;
3004 
3005 		csa = &start_ccb->csa;
3006 		added = csa->event_enable;
3007 		async_head = &path->device->asyncs;
3008 
3009 		/*
3010 		 * If there is already an entry for us, simply
3011 		 * update it.
3012 		 */
3013 		cur_entry = SLIST_FIRST(async_head);
3014 		while (cur_entry != NULL) {
3015 			if ((cur_entry->callback_arg == csa->callback_arg)
3016 			 && (cur_entry->callback == csa->callback))
3017 				break;
3018 			cur_entry = SLIST_NEXT(cur_entry, links);
3019 		}
3020 
3021 		if (cur_entry != NULL) {
3022 		 	/*
3023 			 * If the request has no flags set,
3024 			 * remove the entry.
3025 			 */
3026 			added &= ~cur_entry->event_enable;
3027 			if (csa->event_enable == 0) {
3028 				SLIST_REMOVE(async_head, cur_entry,
3029 					     async_node, links);
3030 				xpt_release_device(path->device);
3031 				free(cur_entry, M_CAMXPT);
3032 			} else {
3033 				cur_entry->event_enable = csa->event_enable;
3034 			}
3035 			csa->event_enable = added;
3036 		} else {
3037 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3038 					   M_NOWAIT);
3039 			if (cur_entry == NULL) {
3040 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3041 				break;
3042 			}
3043 			cur_entry->event_enable = csa->event_enable;
3044 			cur_entry->event_lock = (path->bus->sim->mtx &&
3045 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3046 			cur_entry->callback_arg = csa->callback_arg;
3047 			cur_entry->callback = csa->callback;
3048 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3049 			xpt_acquire_device(path->device);
3050 		}
3051 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3052 		break;
3053 	}
3054 	case XPT_REL_SIMQ:
3055 	{
3056 		struct ccb_relsim *crs;
3057 		struct cam_ed *dev;
3058 
3059 		crs = &start_ccb->crs;
3060 		dev = path->device;
3061 		if (dev == NULL) {
3062 
3063 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3064 			break;
3065 		}
3066 
3067 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3068 
3069 			/* Don't ever go below one opening */
3070 			if (crs->openings > 0) {
3071 				xpt_dev_ccbq_resize(path, crs->openings);
3072 				if (bootverbose) {
3073 					xpt_print(path,
3074 					    "number of openings is now %d\n",
3075 					    crs->openings);
3076 				}
3077 			}
3078 		}
3079 
3080 		mtx_lock(&dev->sim->devq->send_mtx);
3081 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3082 
3083 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3084 
3085 				/*
3086 				 * Just extend the old timeout and decrement
3087 				 * the freeze count so that a single timeout
3088 				 * is sufficient for releasing the queue.
3089 				 */
3090 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3091 				callout_stop(&dev->callout);
3092 			} else {
3093 
3094 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3095 			}
3096 
3097 			callout_reset_sbt(&dev->callout,
3098 			    SBT_1MS * crs->release_timeout, 0,
3099 			    xpt_release_devq_timeout, dev, 0);
3100 
3101 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3102 
3103 		}
3104 
3105 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3106 
3107 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3108 				/*
3109 				 * Decrement the freeze count so that a single
3110 				 * completion is still sufficient to unfreeze
3111 				 * the queue.
3112 				 */
3113 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3114 			} else {
3115 
3116 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3117 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3118 			}
3119 		}
3120 
3121 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3122 
3123 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3124 			 || (dev->ccbq.dev_active == 0)) {
3125 
3126 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3127 			} else {
3128 
3129 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3130 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3131 			}
3132 		}
3133 		mtx_unlock(&dev->sim->devq->send_mtx);
3134 
3135 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3136 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3137 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3138 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3139 		break;
3140 	}
3141 	case XPT_DEBUG: {
3142 		struct cam_path *oldpath;
3143 
3144 		/* Check that all request bits are supported. */
3145 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3146 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3147 			break;
3148 		}
3149 
3150 		cam_dflags = CAM_DEBUG_NONE;
3151 		if (cam_dpath != NULL) {
3152 			oldpath = cam_dpath;
3153 			cam_dpath = NULL;
3154 			xpt_free_path(oldpath);
3155 		}
3156 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3157 			if (xpt_create_path(&cam_dpath, NULL,
3158 					    start_ccb->ccb_h.path_id,
3159 					    start_ccb->ccb_h.target_id,
3160 					    start_ccb->ccb_h.target_lun) !=
3161 					    CAM_REQ_CMP) {
3162 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3163 			} else {
3164 				cam_dflags = start_ccb->cdbg.flags;
3165 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3166 				xpt_print(cam_dpath, "debugging flags now %x\n",
3167 				    cam_dflags);
3168 			}
3169 		} else
3170 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3171 		break;
3172 	}
3173 	case XPT_NOOP:
3174 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3175 			xpt_freeze_devq(path, 1);
3176 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3177 		break;
3178 	case XPT_REPROBE_LUN:
3179 		xpt_async(AC_INQ_CHANGED, path, NULL);
3180 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3181 		xpt_done(start_ccb);
3182 		break;
3183 	default:
3184 	case XPT_SDEV_TYPE:
3185 	case XPT_TERM_IO:
3186 	case XPT_ENG_INQ:
3187 		/* XXX Implement */
3188 		xpt_print(start_ccb->ccb_h.path,
3189 		    "%s: CCB type %#x %s not supported\n", __func__,
3190 		    start_ccb->ccb_h.func_code,
3191 		    xpt_action_name(start_ccb->ccb_h.func_code));
3192 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3193 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3194 			xpt_done(start_ccb);
3195 		}
3196 		break;
3197 	}
3198 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3199 	    ("xpt_action_default: func= %#x %s status %#x\n",
3200 		start_ccb->ccb_h.func_code,
3201  		xpt_action_name(start_ccb->ccb_h.func_code),
3202 		start_ccb->ccb_h.status));
3203 }
3204 
3205 void
3206 xpt_polled_action(union ccb *start_ccb)
3207 {
3208 	u_int32_t timeout;
3209 	struct	  cam_sim *sim;
3210 	struct	  cam_devq *devq;
3211 	struct	  cam_ed *dev;
3212 	struct mtx *mtx;
3213 
3214 	timeout = start_ccb->ccb_h.timeout * 10;
3215 	sim = start_ccb->ccb_h.path->bus->sim;
3216 	devq = sim->devq;
3217 	mtx = sim->mtx;
3218 	dev = start_ccb->ccb_h.path->device;
3219 
3220 	mtx_unlock(&dev->device_mtx);
3221 
3222 	/*
3223 	 * Steal an opening so that no other queued requests
3224 	 * can get it before us while we simulate interrupts.
3225 	 */
3226 	mtx_lock(&devq->send_mtx);
3227 	dev->ccbq.dev_openings--;
3228 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3229 	    (--timeout > 0)) {
3230 		mtx_unlock(&devq->send_mtx);
3231 		DELAY(100);
3232 		if (mtx)
3233 			mtx_lock(mtx);
3234 		(*(sim->sim_poll))(sim);
3235 		if (mtx)
3236 			mtx_unlock(mtx);
3237 		camisr_runqueue();
3238 		mtx_lock(&devq->send_mtx);
3239 	}
3240 	dev->ccbq.dev_openings++;
3241 	mtx_unlock(&devq->send_mtx);
3242 
3243 	if (timeout != 0) {
3244 		xpt_action(start_ccb);
3245 		while(--timeout > 0) {
3246 			if (mtx)
3247 				mtx_lock(mtx);
3248 			(*(sim->sim_poll))(sim);
3249 			if (mtx)
3250 				mtx_unlock(mtx);
3251 			camisr_runqueue();
3252 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3253 			    != CAM_REQ_INPROG)
3254 				break;
3255 			DELAY(100);
3256 		}
3257 		if (timeout == 0) {
3258 			/*
3259 			 * XXX Is it worth adding a sim_timeout entry
3260 			 * point so we can attempt recovery?  If
3261 			 * this is only used for dumps, I don't think
3262 			 * it is.
3263 			 */
3264 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3265 		}
3266 	} else {
3267 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3268 	}
3269 
3270 	mtx_lock(&dev->device_mtx);
3271 }
3272 
3273 /*
3274  * Schedule a peripheral driver to receive a ccb when its
3275  * target device has space for more transactions.
3276  */
3277 void
3278 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3279 {
3280 
3281 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3282 	cam_periph_assert(periph, MA_OWNED);
3283 	if (new_priority < periph->scheduled_priority) {
3284 		periph->scheduled_priority = new_priority;
3285 		xpt_run_allocq(periph, 0);
3286 	}
3287 }
3288 
3289 
3290 /*
3291  * Schedule a device to run on a given queue.
3292  * If the device was inserted as a new entry on the queue,
3293  * return 1 meaning the device queue should be run. If we
3294  * were already queued, implying someone else has already
3295  * started the queue, return 0 so the caller doesn't attempt
3296  * to run the queue.
3297  */
3298 static int
3299 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3300 		 u_int32_t new_priority)
3301 {
3302 	int retval;
3303 	u_int32_t old_priority;
3304 
3305 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3306 
3307 	old_priority = pinfo->priority;
3308 
3309 	/*
3310 	 * Are we already queued?
3311 	 */
3312 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3313 		/* Simply reorder based on new priority */
3314 		if (new_priority < old_priority) {
3315 			camq_change_priority(queue, pinfo->index,
3316 					     new_priority);
3317 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3318 					("changed priority to %d\n",
3319 					 new_priority));
3320 			retval = 1;
3321 		} else
3322 			retval = 0;
3323 	} else {
3324 		/* New entry on the queue */
3325 		if (new_priority < old_priority)
3326 			pinfo->priority = new_priority;
3327 
3328 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3329 				("Inserting onto queue\n"));
3330 		pinfo->generation = ++queue->generation;
3331 		camq_insert(queue, pinfo);
3332 		retval = 1;
3333 	}
3334 	return (retval);
3335 }
3336 
3337 static void
3338 xpt_run_allocq_task(void *context, int pending)
3339 {
3340 	struct cam_periph *periph = context;
3341 
3342 	cam_periph_lock(periph);
3343 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3344 	xpt_run_allocq(periph, 1);
3345 	cam_periph_unlock(periph);
3346 	cam_periph_release(periph);
3347 }
3348 
3349 static void
3350 xpt_run_allocq(struct cam_periph *periph, int sleep)
3351 {
3352 	struct cam_ed	*device;
3353 	union ccb	*ccb;
3354 	uint32_t	 prio;
3355 
3356 	cam_periph_assert(periph, MA_OWNED);
3357 	if (periph->periph_allocating)
3358 		return;
3359 	periph->periph_allocating = 1;
3360 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3361 	device = periph->path->device;
3362 	ccb = NULL;
3363 restart:
3364 	while ((prio = min(periph->scheduled_priority,
3365 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3366 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3367 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3368 
3369 		if (ccb == NULL &&
3370 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3371 			if (sleep) {
3372 				ccb = xpt_get_ccb(periph);
3373 				goto restart;
3374 			}
3375 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3376 				break;
3377 			cam_periph_doacquire(periph);
3378 			periph->flags |= CAM_PERIPH_RUN_TASK;
3379 			taskqueue_enqueue(xsoftc.xpt_taskq,
3380 			    &periph->periph_run_task);
3381 			break;
3382 		}
3383 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3384 		if (prio == periph->immediate_priority) {
3385 			periph->immediate_priority = CAM_PRIORITY_NONE;
3386 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3387 					("waking cam_periph_getccb()\n"));
3388 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3389 					  periph_links.sle);
3390 			wakeup(&periph->ccb_list);
3391 		} else {
3392 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3393 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3394 					("calling periph_start()\n"));
3395 			periph->periph_start(periph, ccb);
3396 		}
3397 		ccb = NULL;
3398 	}
3399 	if (ccb != NULL)
3400 		xpt_release_ccb(ccb);
3401 	periph->periph_allocating = 0;
3402 }
3403 
3404 static void
3405 xpt_run_devq(struct cam_devq *devq)
3406 {
3407 	struct mtx *mtx;
3408 
3409 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3410 
3411 	devq->send_queue.qfrozen_cnt++;
3412 	while ((devq->send_queue.entries > 0)
3413 	    && (devq->send_openings > 0)
3414 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3415 		struct	cam_ed *device;
3416 		union ccb *work_ccb;
3417 		struct	cam_sim *sim;
3418 		struct xpt_proto *proto;
3419 
3420 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3421 							   CAMQ_HEAD);
3422 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3423 				("running device %p\n", device));
3424 
3425 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3426 		if (work_ccb == NULL) {
3427 			printf("device on run queue with no ccbs???\n");
3428 			continue;
3429 		}
3430 
3431 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3432 
3433 			mtx_lock(&xsoftc.xpt_highpower_lock);
3434 		 	if (xsoftc.num_highpower <= 0) {
3435 				/*
3436 				 * We got a high power command, but we
3437 				 * don't have any available slots.  Freeze
3438 				 * the device queue until we have a slot
3439 				 * available.
3440 				 */
3441 				xpt_freeze_devq_device(device, 1);
3442 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3443 						   highpowerq_entry);
3444 
3445 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3446 				continue;
3447 			} else {
3448 				/*
3449 				 * Consume a high power slot while
3450 				 * this ccb runs.
3451 				 */
3452 				xsoftc.num_highpower--;
3453 			}
3454 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3455 		}
3456 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3457 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3458 		devq->send_openings--;
3459 		devq->send_active++;
3460 		xpt_schedule_devq(devq, device);
3461 		mtx_unlock(&devq->send_mtx);
3462 
3463 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3464 			/*
3465 			 * The client wants to freeze the queue
3466 			 * after this CCB is sent.
3467 			 */
3468 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3469 		}
3470 
3471 		/* In Target mode, the peripheral driver knows best... */
3472 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3473 			if ((device->inq_flags & SID_CmdQue) != 0
3474 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3475 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3476 			else
3477 				/*
3478 				 * Clear this in case of a retried CCB that
3479 				 * failed due to a rejected tag.
3480 				 */
3481 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3482 		}
3483 
3484 		KASSERT(device == work_ccb->ccb_h.path->device,
3485 		    ("device (%p) / path->device (%p) mismatch",
3486 			device, work_ccb->ccb_h.path->device));
3487 		proto = xpt_proto_find(device->protocol);
3488 		if (proto && proto->ops->debug_out)
3489 			proto->ops->debug_out(work_ccb);
3490 
3491 		/*
3492 		 * Device queues can be shared among multiple SIM instances
3493 		 * that reside on different buses.  Use the SIM from the
3494 		 * queued device, rather than the one from the calling bus.
3495 		 */
3496 		sim = device->sim;
3497 		mtx = sim->mtx;
3498 		if (mtx && !mtx_owned(mtx))
3499 			mtx_lock(mtx);
3500 		else
3501 			mtx = NULL;
3502 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3503 		(*(sim->sim_action))(sim, work_ccb);
3504 		if (mtx)
3505 			mtx_unlock(mtx);
3506 		mtx_lock(&devq->send_mtx);
3507 	}
3508 	devq->send_queue.qfrozen_cnt--;
3509 }
3510 
3511 /*
3512  * This function merges stuff from the slave ccb into the master ccb, while
3513  * keeping important fields in the master ccb constant.
3514  */
3515 void
3516 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3517 {
3518 
3519 	/*
3520 	 * Pull fields that are valid for peripheral drivers to set
3521 	 * into the master CCB along with the CCB "payload".
3522 	 */
3523 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3524 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3525 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3526 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3527 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3528 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3529 }
3530 
3531 void
3532 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3533 		    u_int32_t priority, u_int32_t flags)
3534 {
3535 
3536 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3537 	ccb_h->pinfo.priority = priority;
3538 	ccb_h->path = path;
3539 	ccb_h->path_id = path->bus->path_id;
3540 	if (path->target)
3541 		ccb_h->target_id = path->target->target_id;
3542 	else
3543 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3544 	if (path->device) {
3545 		ccb_h->target_lun = path->device->lun_id;
3546 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3547 	} else {
3548 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3549 	}
3550 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3551 	ccb_h->flags = flags;
3552 	ccb_h->xflags = 0;
3553 }
3554 
3555 void
3556 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3557 {
3558 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3559 }
3560 
3561 /* Path manipulation functions */
3562 cam_status
3563 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3564 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3565 {
3566 	struct	   cam_path *path;
3567 	cam_status status;
3568 
3569 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3570 
3571 	if (path == NULL) {
3572 		status = CAM_RESRC_UNAVAIL;
3573 		return(status);
3574 	}
3575 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3576 	if (status != CAM_REQ_CMP) {
3577 		free(path, M_CAMPATH);
3578 		path = NULL;
3579 	}
3580 	*new_path_ptr = path;
3581 	return (status);
3582 }
3583 
3584 cam_status
3585 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3586 			 struct cam_periph *periph, path_id_t path_id,
3587 			 target_id_t target_id, lun_id_t lun_id)
3588 {
3589 
3590 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3591 	    lun_id));
3592 }
3593 
3594 cam_status
3595 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3596 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3597 {
3598 	struct	     cam_eb *bus;
3599 	struct	     cam_et *target;
3600 	struct	     cam_ed *device;
3601 	cam_status   status;
3602 
3603 	status = CAM_REQ_CMP;	/* Completed without error */
3604 	target = NULL;		/* Wildcarded */
3605 	device = NULL;		/* Wildcarded */
3606 
3607 	/*
3608 	 * We will potentially modify the EDT, so block interrupts
3609 	 * that may attempt to create cam paths.
3610 	 */
3611 	bus = xpt_find_bus(path_id);
3612 	if (bus == NULL) {
3613 		status = CAM_PATH_INVALID;
3614 	} else {
3615 		xpt_lock_buses();
3616 		mtx_lock(&bus->eb_mtx);
3617 		target = xpt_find_target(bus, target_id);
3618 		if (target == NULL) {
3619 			/* Create one */
3620 			struct cam_et *new_target;
3621 
3622 			new_target = xpt_alloc_target(bus, target_id);
3623 			if (new_target == NULL) {
3624 				status = CAM_RESRC_UNAVAIL;
3625 			} else {
3626 				target = new_target;
3627 			}
3628 		}
3629 		xpt_unlock_buses();
3630 		if (target != NULL) {
3631 			device = xpt_find_device(target, lun_id);
3632 			if (device == NULL) {
3633 				/* Create one */
3634 				struct cam_ed *new_device;
3635 
3636 				new_device =
3637 				    (*(bus->xport->ops->alloc_device))(bus,
3638 								       target,
3639 								       lun_id);
3640 				if (new_device == NULL) {
3641 					status = CAM_RESRC_UNAVAIL;
3642 				} else {
3643 					device = new_device;
3644 				}
3645 			}
3646 		}
3647 		mtx_unlock(&bus->eb_mtx);
3648 	}
3649 
3650 	/*
3651 	 * Only touch the user's data if we are successful.
3652 	 */
3653 	if (status == CAM_REQ_CMP) {
3654 		new_path->periph = perph;
3655 		new_path->bus = bus;
3656 		new_path->target = target;
3657 		new_path->device = device;
3658 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3659 	} else {
3660 		if (device != NULL)
3661 			xpt_release_device(device);
3662 		if (target != NULL)
3663 			xpt_release_target(target);
3664 		if (bus != NULL)
3665 			xpt_release_bus(bus);
3666 	}
3667 	return (status);
3668 }
3669 
3670 cam_status
3671 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3672 {
3673 	struct	   cam_path *new_path;
3674 
3675 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3676 	if (new_path == NULL)
3677 		return(CAM_RESRC_UNAVAIL);
3678 	xpt_copy_path(new_path, path);
3679 	*new_path_ptr = new_path;
3680 	return (CAM_REQ_CMP);
3681 }
3682 
3683 void
3684 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3685 {
3686 
3687 	*new_path = *path;
3688 	if (path->bus != NULL)
3689 		xpt_acquire_bus(path->bus);
3690 	if (path->target != NULL)
3691 		xpt_acquire_target(path->target);
3692 	if (path->device != NULL)
3693 		xpt_acquire_device(path->device);
3694 }
3695 
3696 void
3697 xpt_release_path(struct cam_path *path)
3698 {
3699 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3700 	if (path->device != NULL) {
3701 		xpt_release_device(path->device);
3702 		path->device = NULL;
3703 	}
3704 	if (path->target != NULL) {
3705 		xpt_release_target(path->target);
3706 		path->target = NULL;
3707 	}
3708 	if (path->bus != NULL) {
3709 		xpt_release_bus(path->bus);
3710 		path->bus = NULL;
3711 	}
3712 }
3713 
3714 void
3715 xpt_free_path(struct cam_path *path)
3716 {
3717 
3718 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3719 	xpt_release_path(path);
3720 	free(path, M_CAMPATH);
3721 }
3722 
3723 void
3724 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3725     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3726 {
3727 
3728 	xpt_lock_buses();
3729 	if (bus_ref) {
3730 		if (path->bus)
3731 			*bus_ref = path->bus->refcount;
3732 		else
3733 			*bus_ref = 0;
3734 	}
3735 	if (periph_ref) {
3736 		if (path->periph)
3737 			*periph_ref = path->periph->refcount;
3738 		else
3739 			*periph_ref = 0;
3740 	}
3741 	xpt_unlock_buses();
3742 	if (target_ref) {
3743 		if (path->target)
3744 			*target_ref = path->target->refcount;
3745 		else
3746 			*target_ref = 0;
3747 	}
3748 	if (device_ref) {
3749 		if (path->device)
3750 			*device_ref = path->device->refcount;
3751 		else
3752 			*device_ref = 0;
3753 	}
3754 }
3755 
3756 /*
3757  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3758  * in path1, 2 for match with wildcards in path2.
3759  */
3760 int
3761 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3762 {
3763 	int retval = 0;
3764 
3765 	if (path1->bus != path2->bus) {
3766 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3767 			retval = 1;
3768 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3769 			retval = 2;
3770 		else
3771 			return (-1);
3772 	}
3773 	if (path1->target != path2->target) {
3774 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3775 			if (retval == 0)
3776 				retval = 1;
3777 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3778 			retval = 2;
3779 		else
3780 			return (-1);
3781 	}
3782 	if (path1->device != path2->device) {
3783 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3784 			if (retval == 0)
3785 				retval = 1;
3786 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3787 			retval = 2;
3788 		else
3789 			return (-1);
3790 	}
3791 	return (retval);
3792 }
3793 
3794 int
3795 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3796 {
3797 	int retval = 0;
3798 
3799 	if (path->bus != dev->target->bus) {
3800 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3801 			retval = 1;
3802 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3803 			retval = 2;
3804 		else
3805 			return (-1);
3806 	}
3807 	if (path->target != dev->target) {
3808 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3809 			if (retval == 0)
3810 				retval = 1;
3811 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3812 			retval = 2;
3813 		else
3814 			return (-1);
3815 	}
3816 	if (path->device != dev) {
3817 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3818 			if (retval == 0)
3819 				retval = 1;
3820 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3821 			retval = 2;
3822 		else
3823 			return (-1);
3824 	}
3825 	return (retval);
3826 }
3827 
3828 void
3829 xpt_print_path(struct cam_path *path)
3830 {
3831 	struct sbuf sb;
3832 	char buffer[XPT_PRINT_LEN];
3833 
3834 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3835 	xpt_path_sbuf(path, &sb);
3836 	sbuf_finish(&sb);
3837 	printf("%s", sbuf_data(&sb));
3838 	sbuf_delete(&sb);
3839 }
3840 
3841 void
3842 xpt_print_device(struct cam_ed *device)
3843 {
3844 
3845 	if (device == NULL)
3846 		printf("(nopath): ");
3847 	else {
3848 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3849 		       device->sim->unit_number,
3850 		       device->sim->bus_id,
3851 		       device->target->target_id,
3852 		       (uintmax_t)device->lun_id);
3853 	}
3854 }
3855 
3856 void
3857 xpt_print(struct cam_path *path, const char *fmt, ...)
3858 {
3859 	va_list ap;
3860 	struct sbuf sb;
3861 	char buffer[XPT_PRINT_LEN];
3862 
3863 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3864 
3865 	xpt_path_sbuf(path, &sb);
3866 	va_start(ap, fmt);
3867 	sbuf_vprintf(&sb, fmt, ap);
3868 	va_end(ap);
3869 
3870 	sbuf_finish(&sb);
3871 	printf("%s", sbuf_data(&sb));
3872 	sbuf_delete(&sb);
3873 }
3874 
3875 int
3876 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3877 {
3878 	struct sbuf sb;
3879 	int len;
3880 
3881 	sbuf_new(&sb, str, str_len, 0);
3882 	len = xpt_path_sbuf(path, &sb);
3883 	sbuf_finish(&sb);
3884 	return (len);
3885 }
3886 
3887 int
3888 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3889 {
3890 
3891 	if (path == NULL)
3892 		sbuf_printf(sb, "(nopath): ");
3893 	else {
3894 		if (path->periph != NULL)
3895 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3896 				    path->periph->unit_number);
3897 		else
3898 			sbuf_printf(sb, "(noperiph:");
3899 
3900 		if (path->bus != NULL)
3901 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3902 				    path->bus->sim->unit_number,
3903 				    path->bus->sim->bus_id);
3904 		else
3905 			sbuf_printf(sb, "nobus:");
3906 
3907 		if (path->target != NULL)
3908 			sbuf_printf(sb, "%d:", path->target->target_id);
3909 		else
3910 			sbuf_printf(sb, "X:");
3911 
3912 		if (path->device != NULL)
3913 			sbuf_printf(sb, "%jx): ",
3914 			    (uintmax_t)path->device->lun_id);
3915 		else
3916 			sbuf_printf(sb, "X): ");
3917 	}
3918 
3919 	return(sbuf_len(sb));
3920 }
3921 
3922 path_id_t
3923 xpt_path_path_id(struct cam_path *path)
3924 {
3925 	return(path->bus->path_id);
3926 }
3927 
3928 target_id_t
3929 xpt_path_target_id(struct cam_path *path)
3930 {
3931 	if (path->target != NULL)
3932 		return (path->target->target_id);
3933 	else
3934 		return (CAM_TARGET_WILDCARD);
3935 }
3936 
3937 lun_id_t
3938 xpt_path_lun_id(struct cam_path *path)
3939 {
3940 	if (path->device != NULL)
3941 		return (path->device->lun_id);
3942 	else
3943 		return (CAM_LUN_WILDCARD);
3944 }
3945 
3946 struct cam_sim *
3947 xpt_path_sim(struct cam_path *path)
3948 {
3949 
3950 	return (path->bus->sim);
3951 }
3952 
3953 struct cam_periph*
3954 xpt_path_periph(struct cam_path *path)
3955 {
3956 
3957 	return (path->periph);
3958 }
3959 
3960 /*
3961  * Release a CAM control block for the caller.  Remit the cost of the structure
3962  * to the device referenced by the path.  If the this device had no 'credits'
3963  * and peripheral drivers have registered async callbacks for this notification
3964  * call them now.
3965  */
3966 void
3967 xpt_release_ccb(union ccb *free_ccb)
3968 {
3969 	struct	 cam_ed *device;
3970 	struct	 cam_periph *periph;
3971 
3972 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3973 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3974 	device = free_ccb->ccb_h.path->device;
3975 	periph = free_ccb->ccb_h.path->periph;
3976 
3977 	xpt_free_ccb(free_ccb);
3978 	periph->periph_allocated--;
3979 	cam_ccbq_release_opening(&device->ccbq);
3980 	xpt_run_allocq(periph, 0);
3981 }
3982 
3983 /* Functions accessed by SIM drivers */
3984 
3985 static struct xpt_xport_ops xport_default_ops = {
3986 	.alloc_device = xpt_alloc_device_default,
3987 	.action = xpt_action_default,
3988 	.async = xpt_dev_async_default,
3989 };
3990 static struct xpt_xport xport_default = {
3991 	.xport = XPORT_UNKNOWN,
3992 	.name = "unknown",
3993 	.ops = &xport_default_ops,
3994 };
3995 
3996 CAM_XPT_XPORT(xport_default);
3997 
3998 /*
3999  * A sim structure, listing the SIM entry points and instance
4000  * identification info is passed to xpt_bus_register to hook the SIM
4001  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4002  * for this new bus and places it in the array of buses and assigns
4003  * it a path_id.  The path_id may be influenced by "hard wiring"
4004  * information specified by the user.  Once interrupt services are
4005  * available, the bus will be probed.
4006  */
4007 int32_t
4008 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4009 {
4010 	struct cam_eb *new_bus;
4011 	struct cam_eb *old_bus;
4012 	struct ccb_pathinq cpi;
4013 	struct cam_path *path;
4014 	cam_status status;
4015 
4016 	sim->bus_id = bus;
4017 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4018 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4019 	if (new_bus == NULL) {
4020 		/* Couldn't satisfy request */
4021 		return (CAM_RESRC_UNAVAIL);
4022 	}
4023 
4024 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4025 	TAILQ_INIT(&new_bus->et_entries);
4026 	cam_sim_hold(sim);
4027 	new_bus->sim = sim;
4028 	timevalclear(&new_bus->last_reset);
4029 	new_bus->flags = 0;
4030 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4031 	new_bus->generation = 0;
4032 
4033 	xpt_lock_buses();
4034 	sim->path_id = new_bus->path_id =
4035 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4036 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4037 	while (old_bus != NULL
4038 	    && old_bus->path_id < new_bus->path_id)
4039 		old_bus = TAILQ_NEXT(old_bus, links);
4040 	if (old_bus != NULL)
4041 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4042 	else
4043 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4044 	xsoftc.bus_generation++;
4045 	xpt_unlock_buses();
4046 
4047 	/*
4048 	 * Set a default transport so that a PATH_INQ can be issued to
4049 	 * the SIM.  This will then allow for probing and attaching of
4050 	 * a more appropriate transport.
4051 	 */
4052 	new_bus->xport = &xport_default;
4053 
4054 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4055 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4056 	if (status != CAM_REQ_CMP) {
4057 		xpt_release_bus(new_bus);
4058 		return (CAM_RESRC_UNAVAIL);
4059 	}
4060 
4061 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
4062 	cpi.ccb_h.func_code = XPT_PATH_INQ;
4063 	xpt_action((union ccb *)&cpi);
4064 
4065 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4066 		struct xpt_xport **xpt;
4067 
4068 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4069 			if ((*xpt)->xport == cpi.transport) {
4070 				new_bus->xport = *xpt;
4071 				break;
4072 			}
4073 		}
4074 		if (new_bus->xport == NULL) {
4075 			xpt_print(path,
4076 			    "No transport found for %d\n", cpi.transport);
4077 			xpt_release_bus(new_bus);
4078 			free(path, M_CAMXPT);
4079 			return (CAM_RESRC_UNAVAIL);
4080 		}
4081 	}
4082 
4083 	/* Notify interested parties */
4084 	if (sim->path_id != CAM_XPT_PATH_ID) {
4085 
4086 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4087 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4088 			union	ccb *scan_ccb;
4089 
4090 			/* Initiate bus rescan. */
4091 			scan_ccb = xpt_alloc_ccb_nowait();
4092 			if (scan_ccb != NULL) {
4093 				scan_ccb->ccb_h.path = path;
4094 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4095 				scan_ccb->crcn.flags = 0;
4096 				xpt_rescan(scan_ccb);
4097 			} else {
4098 				xpt_print(path,
4099 					  "Can't allocate CCB to scan bus\n");
4100 				xpt_free_path(path);
4101 			}
4102 		} else
4103 			xpt_free_path(path);
4104 	} else
4105 		xpt_free_path(path);
4106 	return (CAM_SUCCESS);
4107 }
4108 
4109 int32_t
4110 xpt_bus_deregister(path_id_t pathid)
4111 {
4112 	struct cam_path bus_path;
4113 	cam_status status;
4114 
4115 	status = xpt_compile_path(&bus_path, NULL, pathid,
4116 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4117 	if (status != CAM_REQ_CMP)
4118 		return (status);
4119 
4120 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4121 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4122 
4123 	/* Release the reference count held while registered. */
4124 	xpt_release_bus(bus_path.bus);
4125 	xpt_release_path(&bus_path);
4126 
4127 	return (CAM_REQ_CMP);
4128 }
4129 
4130 static path_id_t
4131 xptnextfreepathid(void)
4132 {
4133 	struct cam_eb *bus;
4134 	path_id_t pathid;
4135 	const char *strval;
4136 
4137 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4138 	pathid = 0;
4139 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4140 retry:
4141 	/* Find an unoccupied pathid */
4142 	while (bus != NULL && bus->path_id <= pathid) {
4143 		if (bus->path_id == pathid)
4144 			pathid++;
4145 		bus = TAILQ_NEXT(bus, links);
4146 	}
4147 
4148 	/*
4149 	 * Ensure that this pathid is not reserved for
4150 	 * a bus that may be registered in the future.
4151 	 */
4152 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4153 		++pathid;
4154 		/* Start the search over */
4155 		goto retry;
4156 	}
4157 	return (pathid);
4158 }
4159 
4160 static path_id_t
4161 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4162 {
4163 	path_id_t pathid;
4164 	int i, dunit, val;
4165 	char buf[32];
4166 	const char *dname;
4167 
4168 	pathid = CAM_XPT_PATH_ID;
4169 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4170 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4171 		return (pathid);
4172 	i = 0;
4173 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4174 		if (strcmp(dname, "scbus")) {
4175 			/* Avoid a bit of foot shooting. */
4176 			continue;
4177 		}
4178 		if (dunit < 0)		/* unwired?! */
4179 			continue;
4180 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4181 			if (sim_bus == val) {
4182 				pathid = dunit;
4183 				break;
4184 			}
4185 		} else if (sim_bus == 0) {
4186 			/* Unspecified matches bus 0 */
4187 			pathid = dunit;
4188 			break;
4189 		} else {
4190 			printf("Ambiguous scbus configuration for %s%d "
4191 			       "bus %d, cannot wire down.  The kernel "
4192 			       "config entry for scbus%d should "
4193 			       "specify a controller bus.\n"
4194 			       "Scbus will be assigned dynamically.\n",
4195 			       sim_name, sim_unit, sim_bus, dunit);
4196 			break;
4197 		}
4198 	}
4199 
4200 	if (pathid == CAM_XPT_PATH_ID)
4201 		pathid = xptnextfreepathid();
4202 	return (pathid);
4203 }
4204 
4205 static const char *
4206 xpt_async_string(u_int32_t async_code)
4207 {
4208 
4209 	switch (async_code) {
4210 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4211 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4212 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4213 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4214 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4215 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4216 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4217 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4218 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4219 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4220 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4221 	case AC_CONTRACT: return ("AC_CONTRACT");
4222 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4223 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4224 	}
4225 	return ("AC_UNKNOWN");
4226 }
4227 
4228 static int
4229 xpt_async_size(u_int32_t async_code)
4230 {
4231 
4232 	switch (async_code) {
4233 	case AC_BUS_RESET: return (0);
4234 	case AC_UNSOL_RESEL: return (0);
4235 	case AC_SCSI_AEN: return (0);
4236 	case AC_SENT_BDR: return (0);
4237 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4238 	case AC_PATH_DEREGISTERED: return (0);
4239 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4240 	case AC_LOST_DEVICE: return (0);
4241 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4242 	case AC_INQ_CHANGED: return (0);
4243 	case AC_GETDEV_CHANGED: return (0);
4244 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4245 	case AC_ADVINFO_CHANGED: return (-1);
4246 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4247 	}
4248 	return (0);
4249 }
4250 
4251 static int
4252 xpt_async_process_dev(struct cam_ed *device, void *arg)
4253 {
4254 	union ccb *ccb = arg;
4255 	struct cam_path *path = ccb->ccb_h.path;
4256 	void *async_arg = ccb->casync.async_arg_ptr;
4257 	u_int32_t async_code = ccb->casync.async_code;
4258 	int relock;
4259 
4260 	if (path->device != device
4261 	 && path->device->lun_id != CAM_LUN_WILDCARD
4262 	 && device->lun_id != CAM_LUN_WILDCARD)
4263 		return (1);
4264 
4265 	/*
4266 	 * The async callback could free the device.
4267 	 * If it is a broadcast async, it doesn't hold
4268 	 * device reference, so take our own reference.
4269 	 */
4270 	xpt_acquire_device(device);
4271 
4272 	/*
4273 	 * If async for specific device is to be delivered to
4274 	 * the wildcard client, take the specific device lock.
4275 	 * XXX: We may need a way for client to specify it.
4276 	 */
4277 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4278 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4279 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4280 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4281 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4282 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4283 		mtx_unlock(&device->device_mtx);
4284 		xpt_path_lock(path);
4285 		relock = 1;
4286 	} else
4287 		relock = 0;
4288 
4289 	(*(device->target->bus->xport->ops->async))(async_code,
4290 	    device->target->bus, device->target, device, async_arg);
4291 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4292 
4293 	if (relock) {
4294 		xpt_path_unlock(path);
4295 		mtx_lock(&device->device_mtx);
4296 	}
4297 	xpt_release_device(device);
4298 	return (1);
4299 }
4300 
4301 static int
4302 xpt_async_process_tgt(struct cam_et *target, void *arg)
4303 {
4304 	union ccb *ccb = arg;
4305 	struct cam_path *path = ccb->ccb_h.path;
4306 
4307 	if (path->target != target
4308 	 && path->target->target_id != CAM_TARGET_WILDCARD
4309 	 && target->target_id != CAM_TARGET_WILDCARD)
4310 		return (1);
4311 
4312 	if (ccb->casync.async_code == AC_SENT_BDR) {
4313 		/* Update our notion of when the last reset occurred */
4314 		microtime(&target->last_reset);
4315 	}
4316 
4317 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4318 }
4319 
4320 static void
4321 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4322 {
4323 	struct cam_eb *bus;
4324 	struct cam_path *path;
4325 	void *async_arg;
4326 	u_int32_t async_code;
4327 
4328 	path = ccb->ccb_h.path;
4329 	async_code = ccb->casync.async_code;
4330 	async_arg = ccb->casync.async_arg_ptr;
4331 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4332 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4333 	bus = path->bus;
4334 
4335 	if (async_code == AC_BUS_RESET) {
4336 		/* Update our notion of when the last reset occurred */
4337 		microtime(&bus->last_reset);
4338 	}
4339 
4340 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4341 
4342 	/*
4343 	 * If this wasn't a fully wildcarded async, tell all
4344 	 * clients that want all async events.
4345 	 */
4346 	if (bus != xpt_periph->path->bus) {
4347 		xpt_path_lock(xpt_periph->path);
4348 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4349 		xpt_path_unlock(xpt_periph->path);
4350 	}
4351 
4352 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4353 		xpt_release_devq(path, 1, TRUE);
4354 	else
4355 		xpt_release_simq(path->bus->sim, TRUE);
4356 	if (ccb->casync.async_arg_size > 0)
4357 		free(async_arg, M_CAMXPT);
4358 	xpt_free_path(path);
4359 	xpt_free_ccb(ccb);
4360 }
4361 
4362 static void
4363 xpt_async_bcast(struct async_list *async_head,
4364 		u_int32_t async_code,
4365 		struct cam_path *path, void *async_arg)
4366 {
4367 	struct async_node *cur_entry;
4368 	struct mtx *mtx;
4369 
4370 	cur_entry = SLIST_FIRST(async_head);
4371 	while (cur_entry != NULL) {
4372 		struct async_node *next_entry;
4373 		/*
4374 		 * Grab the next list entry before we call the current
4375 		 * entry's callback.  This is because the callback function
4376 		 * can delete its async callback entry.
4377 		 */
4378 		next_entry = SLIST_NEXT(cur_entry, links);
4379 		if ((cur_entry->event_enable & async_code) != 0) {
4380 			mtx = cur_entry->event_lock ?
4381 			    path->device->sim->mtx : NULL;
4382 			if (mtx)
4383 				mtx_lock(mtx);
4384 			cur_entry->callback(cur_entry->callback_arg,
4385 					    async_code, path,
4386 					    async_arg);
4387 			if (mtx)
4388 				mtx_unlock(mtx);
4389 		}
4390 		cur_entry = next_entry;
4391 	}
4392 }
4393 
4394 void
4395 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4396 {
4397 	union ccb *ccb;
4398 	int size;
4399 
4400 	ccb = xpt_alloc_ccb_nowait();
4401 	if (ccb == NULL) {
4402 		xpt_print(path, "Can't allocate CCB to send %s\n",
4403 		    xpt_async_string(async_code));
4404 		return;
4405 	}
4406 
4407 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4408 		xpt_print(path, "Can't allocate path to send %s\n",
4409 		    xpt_async_string(async_code));
4410 		xpt_free_ccb(ccb);
4411 		return;
4412 	}
4413 	ccb->ccb_h.path->periph = NULL;
4414 	ccb->ccb_h.func_code = XPT_ASYNC;
4415 	ccb->ccb_h.cbfcnp = xpt_async_process;
4416 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4417 	ccb->casync.async_code = async_code;
4418 	ccb->casync.async_arg_size = 0;
4419 	size = xpt_async_size(async_code);
4420 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4421 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4422 		ccb->ccb_h.func_code,
4423 		xpt_action_name(ccb->ccb_h.func_code),
4424 		async_code,
4425 		xpt_async_string(async_code)));
4426 	if (size > 0 && async_arg != NULL) {
4427 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4428 		if (ccb->casync.async_arg_ptr == NULL) {
4429 			xpt_print(path, "Can't allocate argument to send %s\n",
4430 			    xpt_async_string(async_code));
4431 			xpt_free_path(ccb->ccb_h.path);
4432 			xpt_free_ccb(ccb);
4433 			return;
4434 		}
4435 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4436 		ccb->casync.async_arg_size = size;
4437 	} else if (size < 0) {
4438 		ccb->casync.async_arg_ptr = async_arg;
4439 		ccb->casync.async_arg_size = size;
4440 	}
4441 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4442 		xpt_freeze_devq(path, 1);
4443 	else
4444 		xpt_freeze_simq(path->bus->sim, 1);
4445 	xpt_done(ccb);
4446 }
4447 
4448 static void
4449 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4450 		      struct cam_et *target, struct cam_ed *device,
4451 		      void *async_arg)
4452 {
4453 
4454 	/*
4455 	 * We only need to handle events for real devices.
4456 	 */
4457 	if (target->target_id == CAM_TARGET_WILDCARD
4458 	 || device->lun_id == CAM_LUN_WILDCARD)
4459 		return;
4460 
4461 	printf("%s called\n", __func__);
4462 }
4463 
4464 static uint32_t
4465 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4466 {
4467 	struct cam_devq	*devq;
4468 	uint32_t freeze;
4469 
4470 	devq = dev->sim->devq;
4471 	mtx_assert(&devq->send_mtx, MA_OWNED);
4472 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4473 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4474 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4475 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4476 	/* Remove frozen device from sendq. */
4477 	if (device_is_queued(dev))
4478 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4479 	return (freeze);
4480 }
4481 
4482 u_int32_t
4483 xpt_freeze_devq(struct cam_path *path, u_int count)
4484 {
4485 	struct cam_ed	*dev = path->device;
4486 	struct cam_devq	*devq;
4487 	uint32_t	 freeze;
4488 
4489 	devq = dev->sim->devq;
4490 	mtx_lock(&devq->send_mtx);
4491 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4492 	freeze = xpt_freeze_devq_device(dev, count);
4493 	mtx_unlock(&devq->send_mtx);
4494 	return (freeze);
4495 }
4496 
4497 u_int32_t
4498 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4499 {
4500 	struct cam_devq	*devq;
4501 	uint32_t	 freeze;
4502 
4503 	devq = sim->devq;
4504 	mtx_lock(&devq->send_mtx);
4505 	freeze = (devq->send_queue.qfrozen_cnt += count);
4506 	mtx_unlock(&devq->send_mtx);
4507 	return (freeze);
4508 }
4509 
4510 static void
4511 xpt_release_devq_timeout(void *arg)
4512 {
4513 	struct cam_ed *dev;
4514 	struct cam_devq *devq;
4515 
4516 	dev = (struct cam_ed *)arg;
4517 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4518 	devq = dev->sim->devq;
4519 	mtx_assert(&devq->send_mtx, MA_OWNED);
4520 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4521 		xpt_run_devq(devq);
4522 }
4523 
4524 void
4525 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4526 {
4527 	struct cam_ed *dev;
4528 	struct cam_devq *devq;
4529 
4530 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4531 	    count, run_queue));
4532 	dev = path->device;
4533 	devq = dev->sim->devq;
4534 	mtx_lock(&devq->send_mtx);
4535 	if (xpt_release_devq_device(dev, count, run_queue))
4536 		xpt_run_devq(dev->sim->devq);
4537 	mtx_unlock(&devq->send_mtx);
4538 }
4539 
4540 static int
4541 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4542 {
4543 
4544 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4545 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4546 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4547 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4548 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4549 #ifdef INVARIANTS
4550 		printf("xpt_release_devq(): requested %u > present %u\n",
4551 		    count, dev->ccbq.queue.qfrozen_cnt);
4552 #endif
4553 		count = dev->ccbq.queue.qfrozen_cnt;
4554 	}
4555 	dev->ccbq.queue.qfrozen_cnt -= count;
4556 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4557 		/*
4558 		 * No longer need to wait for a successful
4559 		 * command completion.
4560 		 */
4561 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4562 		/*
4563 		 * Remove any timeouts that might be scheduled
4564 		 * to release this queue.
4565 		 */
4566 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4567 			callout_stop(&dev->callout);
4568 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4569 		}
4570 		/*
4571 		 * Now that we are unfrozen schedule the
4572 		 * device so any pending transactions are
4573 		 * run.
4574 		 */
4575 		xpt_schedule_devq(dev->sim->devq, dev);
4576 	} else
4577 		run_queue = 0;
4578 	return (run_queue);
4579 }
4580 
4581 void
4582 xpt_release_simq(struct cam_sim *sim, int run_queue)
4583 {
4584 	struct cam_devq	*devq;
4585 
4586 	devq = sim->devq;
4587 	mtx_lock(&devq->send_mtx);
4588 	if (devq->send_queue.qfrozen_cnt <= 0) {
4589 #ifdef INVARIANTS
4590 		printf("xpt_release_simq: requested 1 > present %u\n",
4591 		    devq->send_queue.qfrozen_cnt);
4592 #endif
4593 	} else
4594 		devq->send_queue.qfrozen_cnt--;
4595 	if (devq->send_queue.qfrozen_cnt == 0) {
4596 		/*
4597 		 * If there is a timeout scheduled to release this
4598 		 * sim queue, remove it.  The queue frozen count is
4599 		 * already at 0.
4600 		 */
4601 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4602 			callout_stop(&sim->callout);
4603 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4604 		}
4605 		if (run_queue) {
4606 			/*
4607 			 * Now that we are unfrozen run the send queue.
4608 			 */
4609 			xpt_run_devq(sim->devq);
4610 		}
4611 	}
4612 	mtx_unlock(&devq->send_mtx);
4613 }
4614 
4615 /*
4616  * XXX Appears to be unused.
4617  */
4618 static void
4619 xpt_release_simq_timeout(void *arg)
4620 {
4621 	struct cam_sim *sim;
4622 
4623 	sim = (struct cam_sim *)arg;
4624 	xpt_release_simq(sim, /* run_queue */ TRUE);
4625 }
4626 
4627 void
4628 xpt_done(union ccb *done_ccb)
4629 {
4630 	struct cam_doneq *queue;
4631 	int	run, hash;
4632 
4633 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4634 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4635 	    done_ccb->csio.bio != NULL)
4636 		biotrack(done_ccb->csio.bio, __func__);
4637 #endif
4638 
4639 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4640 	    ("xpt_done: func= %#x %s status %#x\n",
4641 		done_ccb->ccb_h.func_code,
4642 		xpt_action_name(done_ccb->ccb_h.func_code),
4643 		done_ccb->ccb_h.status));
4644 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4645 		return;
4646 
4647 	/* Store the time the ccb was in the sim */
4648 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4649 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4650 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4651 	queue = &cam_doneqs[hash];
4652 	mtx_lock(&queue->cam_doneq_mtx);
4653 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4654 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4655 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4656 	mtx_unlock(&queue->cam_doneq_mtx);
4657 	if (run)
4658 		wakeup(&queue->cam_doneq);
4659 }
4660 
4661 void
4662 xpt_done_direct(union ccb *done_ccb)
4663 {
4664 
4665 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4666 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4667 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4668 		return;
4669 
4670 	/* Store the time the ccb was in the sim */
4671 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4672 	xpt_done_process(&done_ccb->ccb_h);
4673 }
4674 
4675 union ccb *
4676 xpt_alloc_ccb()
4677 {
4678 	union ccb *new_ccb;
4679 
4680 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4681 	return (new_ccb);
4682 }
4683 
4684 union ccb *
4685 xpt_alloc_ccb_nowait()
4686 {
4687 	union ccb *new_ccb;
4688 
4689 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4690 	return (new_ccb);
4691 }
4692 
4693 void
4694 xpt_free_ccb(union ccb *free_ccb)
4695 {
4696 	free(free_ccb, M_CAMCCB);
4697 }
4698 
4699 
4700 
4701 /* Private XPT functions */
4702 
4703 /*
4704  * Get a CAM control block for the caller. Charge the structure to the device
4705  * referenced by the path.  If we don't have sufficient resources to allocate
4706  * more ccbs, we return NULL.
4707  */
4708 static union ccb *
4709 xpt_get_ccb_nowait(struct cam_periph *periph)
4710 {
4711 	union ccb *new_ccb;
4712 
4713 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4714 	if (new_ccb == NULL)
4715 		return (NULL);
4716 	periph->periph_allocated++;
4717 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4718 	return (new_ccb);
4719 }
4720 
4721 static union ccb *
4722 xpt_get_ccb(struct cam_periph *periph)
4723 {
4724 	union ccb *new_ccb;
4725 
4726 	cam_periph_unlock(periph);
4727 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4728 	cam_periph_lock(periph);
4729 	periph->periph_allocated++;
4730 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4731 	return (new_ccb);
4732 }
4733 
4734 union ccb *
4735 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4736 {
4737 	struct ccb_hdr *ccb_h;
4738 
4739 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4740 	cam_periph_assert(periph, MA_OWNED);
4741 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4742 	    ccb_h->pinfo.priority != priority) {
4743 		if (priority < periph->immediate_priority) {
4744 			periph->immediate_priority = priority;
4745 			xpt_run_allocq(periph, 0);
4746 		} else
4747 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4748 			    "cgticb", 0);
4749 	}
4750 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4751 	return ((union ccb *)ccb_h);
4752 }
4753 
4754 static void
4755 xpt_acquire_bus(struct cam_eb *bus)
4756 {
4757 
4758 	xpt_lock_buses();
4759 	bus->refcount++;
4760 	xpt_unlock_buses();
4761 }
4762 
4763 static void
4764 xpt_release_bus(struct cam_eb *bus)
4765 {
4766 
4767 	xpt_lock_buses();
4768 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4769 	if (--bus->refcount > 0) {
4770 		xpt_unlock_buses();
4771 		return;
4772 	}
4773 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4774 	xsoftc.bus_generation++;
4775 	xpt_unlock_buses();
4776 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4777 	    ("destroying bus, but target list is not empty"));
4778 	cam_sim_release(bus->sim);
4779 	mtx_destroy(&bus->eb_mtx);
4780 	free(bus, M_CAMXPT);
4781 }
4782 
4783 static struct cam_et *
4784 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4785 {
4786 	struct cam_et *cur_target, *target;
4787 
4788 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4789 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4790 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4791 					 M_NOWAIT|M_ZERO);
4792 	if (target == NULL)
4793 		return (NULL);
4794 
4795 	TAILQ_INIT(&target->ed_entries);
4796 	target->bus = bus;
4797 	target->target_id = target_id;
4798 	target->refcount = 1;
4799 	target->generation = 0;
4800 	target->luns = NULL;
4801 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4802 	timevalclear(&target->last_reset);
4803 	/*
4804 	 * Hold a reference to our parent bus so it
4805 	 * will not go away before we do.
4806 	 */
4807 	bus->refcount++;
4808 
4809 	/* Insertion sort into our bus's target list */
4810 	cur_target = TAILQ_FIRST(&bus->et_entries);
4811 	while (cur_target != NULL && cur_target->target_id < target_id)
4812 		cur_target = TAILQ_NEXT(cur_target, links);
4813 	if (cur_target != NULL) {
4814 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4815 	} else {
4816 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4817 	}
4818 	bus->generation++;
4819 	return (target);
4820 }
4821 
4822 static void
4823 xpt_acquire_target(struct cam_et *target)
4824 {
4825 	struct cam_eb *bus = target->bus;
4826 
4827 	mtx_lock(&bus->eb_mtx);
4828 	target->refcount++;
4829 	mtx_unlock(&bus->eb_mtx);
4830 }
4831 
4832 static void
4833 xpt_release_target(struct cam_et *target)
4834 {
4835 	struct cam_eb *bus = target->bus;
4836 
4837 	mtx_lock(&bus->eb_mtx);
4838 	if (--target->refcount > 0) {
4839 		mtx_unlock(&bus->eb_mtx);
4840 		return;
4841 	}
4842 	TAILQ_REMOVE(&bus->et_entries, target, links);
4843 	bus->generation++;
4844 	mtx_unlock(&bus->eb_mtx);
4845 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4846 	    ("destroying target, but device list is not empty"));
4847 	xpt_release_bus(bus);
4848 	mtx_destroy(&target->luns_mtx);
4849 	if (target->luns)
4850 		free(target->luns, M_CAMXPT);
4851 	free(target, M_CAMXPT);
4852 }
4853 
4854 static struct cam_ed *
4855 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4856 			 lun_id_t lun_id)
4857 {
4858 	struct cam_ed *device;
4859 
4860 	device = xpt_alloc_device(bus, target, lun_id);
4861 	if (device == NULL)
4862 		return (NULL);
4863 
4864 	device->mintags = 1;
4865 	device->maxtags = 1;
4866 	return (device);
4867 }
4868 
4869 static void
4870 xpt_destroy_device(void *context, int pending)
4871 {
4872 	struct cam_ed	*device = context;
4873 
4874 	mtx_lock(&device->device_mtx);
4875 	mtx_destroy(&device->device_mtx);
4876 	free(device, M_CAMDEV);
4877 }
4878 
4879 struct cam_ed *
4880 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4881 {
4882 	struct cam_ed	*cur_device, *device;
4883 	struct cam_devq	*devq;
4884 	cam_status status;
4885 
4886 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4887 	/* Make space for us in the device queue on our bus */
4888 	devq = bus->sim->devq;
4889 	mtx_lock(&devq->send_mtx);
4890 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4891 	mtx_unlock(&devq->send_mtx);
4892 	if (status != CAM_REQ_CMP)
4893 		return (NULL);
4894 
4895 	device = (struct cam_ed *)malloc(sizeof(*device),
4896 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4897 	if (device == NULL)
4898 		return (NULL);
4899 
4900 	cam_init_pinfo(&device->devq_entry);
4901 	device->target = target;
4902 	device->lun_id = lun_id;
4903 	device->sim = bus->sim;
4904 	if (cam_ccbq_init(&device->ccbq,
4905 			  bus->sim->max_dev_openings) != 0) {
4906 		free(device, M_CAMDEV);
4907 		return (NULL);
4908 	}
4909 	SLIST_INIT(&device->asyncs);
4910 	SLIST_INIT(&device->periphs);
4911 	device->generation = 0;
4912 	device->flags = CAM_DEV_UNCONFIGURED;
4913 	device->tag_delay_count = 0;
4914 	device->tag_saved_openings = 0;
4915 	device->refcount = 1;
4916 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4917 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4918 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4919 	/*
4920 	 * Hold a reference to our parent bus so it
4921 	 * will not go away before we do.
4922 	 */
4923 	target->refcount++;
4924 
4925 	cur_device = TAILQ_FIRST(&target->ed_entries);
4926 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4927 		cur_device = TAILQ_NEXT(cur_device, links);
4928 	if (cur_device != NULL)
4929 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4930 	else
4931 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4932 	target->generation++;
4933 	return (device);
4934 }
4935 
4936 void
4937 xpt_acquire_device(struct cam_ed *device)
4938 {
4939 	struct cam_eb *bus = device->target->bus;
4940 
4941 	mtx_lock(&bus->eb_mtx);
4942 	device->refcount++;
4943 	mtx_unlock(&bus->eb_mtx);
4944 }
4945 
4946 void
4947 xpt_release_device(struct cam_ed *device)
4948 {
4949 	struct cam_eb *bus = device->target->bus;
4950 	struct cam_devq *devq;
4951 
4952 	mtx_lock(&bus->eb_mtx);
4953 	if (--device->refcount > 0) {
4954 		mtx_unlock(&bus->eb_mtx);
4955 		return;
4956 	}
4957 
4958 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4959 	device->target->generation++;
4960 	mtx_unlock(&bus->eb_mtx);
4961 
4962 	/* Release our slot in the devq */
4963 	devq = bus->sim->devq;
4964 	mtx_lock(&devq->send_mtx);
4965 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4966 	mtx_unlock(&devq->send_mtx);
4967 
4968 	KASSERT(SLIST_EMPTY(&device->periphs),
4969 	    ("destroying device, but periphs list is not empty"));
4970 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4971 	    ("destroying device while still queued for ccbs"));
4972 
4973 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4974 		callout_stop(&device->callout);
4975 
4976 	xpt_release_target(device->target);
4977 
4978 	cam_ccbq_fini(&device->ccbq);
4979 	/*
4980 	 * Free allocated memory.  free(9) does nothing if the
4981 	 * supplied pointer is NULL, so it is safe to call without
4982 	 * checking.
4983 	 */
4984 	free(device->supported_vpds, M_CAMXPT);
4985 	free(device->device_id, M_CAMXPT);
4986 	free(device->ext_inq, M_CAMXPT);
4987 	free(device->physpath, M_CAMXPT);
4988 	free(device->rcap_buf, M_CAMXPT);
4989 	free(device->serial_num, M_CAMXPT);
4990 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4991 }
4992 
4993 u_int32_t
4994 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4995 {
4996 	int	result;
4997 	struct	cam_ed *dev;
4998 
4999 	dev = path->device;
5000 	mtx_lock(&dev->sim->devq->send_mtx);
5001 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5002 	mtx_unlock(&dev->sim->devq->send_mtx);
5003 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5004 	 || (dev->inq_flags & SID_CmdQue) != 0)
5005 		dev->tag_saved_openings = newopenings;
5006 	return (result);
5007 }
5008 
5009 static struct cam_eb *
5010 xpt_find_bus(path_id_t path_id)
5011 {
5012 	struct cam_eb *bus;
5013 
5014 	xpt_lock_buses();
5015 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5016 	     bus != NULL;
5017 	     bus = TAILQ_NEXT(bus, links)) {
5018 		if (bus->path_id == path_id) {
5019 			bus->refcount++;
5020 			break;
5021 		}
5022 	}
5023 	xpt_unlock_buses();
5024 	return (bus);
5025 }
5026 
5027 static struct cam_et *
5028 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5029 {
5030 	struct cam_et *target;
5031 
5032 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5033 	for (target = TAILQ_FIRST(&bus->et_entries);
5034 	     target != NULL;
5035 	     target = TAILQ_NEXT(target, links)) {
5036 		if (target->target_id == target_id) {
5037 			target->refcount++;
5038 			break;
5039 		}
5040 	}
5041 	return (target);
5042 }
5043 
5044 static struct cam_ed *
5045 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5046 {
5047 	struct cam_ed *device;
5048 
5049 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5050 	for (device = TAILQ_FIRST(&target->ed_entries);
5051 	     device != NULL;
5052 	     device = TAILQ_NEXT(device, links)) {
5053 		if (device->lun_id == lun_id) {
5054 			device->refcount++;
5055 			break;
5056 		}
5057 	}
5058 	return (device);
5059 }
5060 
5061 void
5062 xpt_start_tags(struct cam_path *path)
5063 {
5064 	struct ccb_relsim crs;
5065 	struct cam_ed *device;
5066 	struct cam_sim *sim;
5067 	int    newopenings;
5068 
5069 	device = path->device;
5070 	sim = path->bus->sim;
5071 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5072 	xpt_freeze_devq(path, /*count*/1);
5073 	device->inq_flags |= SID_CmdQue;
5074 	if (device->tag_saved_openings != 0)
5075 		newopenings = device->tag_saved_openings;
5076 	else
5077 		newopenings = min(device->maxtags,
5078 				  sim->max_tagged_dev_openings);
5079 	xpt_dev_ccbq_resize(path, newopenings);
5080 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5081 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5082 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5083 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5084 	crs.openings
5085 	    = crs.release_timeout
5086 	    = crs.qfrozen_cnt
5087 	    = 0;
5088 	xpt_action((union ccb *)&crs);
5089 }
5090 
5091 void
5092 xpt_stop_tags(struct cam_path *path)
5093 {
5094 	struct ccb_relsim crs;
5095 	struct cam_ed *device;
5096 	struct cam_sim *sim;
5097 
5098 	device = path->device;
5099 	sim = path->bus->sim;
5100 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5101 	device->tag_delay_count = 0;
5102 	xpt_freeze_devq(path, /*count*/1);
5103 	device->inq_flags &= ~SID_CmdQue;
5104 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5105 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5106 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5107 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5108 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5109 	crs.openings
5110 	    = crs.release_timeout
5111 	    = crs.qfrozen_cnt
5112 	    = 0;
5113 	xpt_action((union ccb *)&crs);
5114 }
5115 
5116 static void
5117 xpt_boot_delay(void *arg)
5118 {
5119 
5120 	xpt_release_boot();
5121 }
5122 
5123 static void
5124 xpt_config(void *arg)
5125 {
5126 	/*
5127 	 * Now that interrupts are enabled, go find our devices
5128 	 */
5129 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5130 		printf("xpt_config: failed to create taskqueue thread.\n");
5131 
5132 	/* Setup debugging path */
5133 	if (cam_dflags != CAM_DEBUG_NONE) {
5134 		if (xpt_create_path(&cam_dpath, NULL,
5135 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5136 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5137 			printf("xpt_config: xpt_create_path() failed for debug"
5138 			       " target %d:%d:%d, debugging disabled\n",
5139 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5140 			cam_dflags = CAM_DEBUG_NONE;
5141 		}
5142 	} else
5143 		cam_dpath = NULL;
5144 
5145 	periphdriver_init(1);
5146 	xpt_hold_boot();
5147 	callout_init(&xsoftc.boot_callout, 1);
5148 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5149 	    xpt_boot_delay, NULL, 0);
5150 	/* Fire up rescan thread. */
5151 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5152 	    "cam", "scanner")) {
5153 		printf("xpt_config: failed to create rescan thread.\n");
5154 	}
5155 }
5156 
5157 void
5158 xpt_hold_boot(void)
5159 {
5160 	xpt_lock_buses();
5161 	xsoftc.buses_to_config++;
5162 	xpt_unlock_buses();
5163 }
5164 
5165 void
5166 xpt_release_boot(void)
5167 {
5168 	xpt_lock_buses();
5169 	xsoftc.buses_to_config--;
5170 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5171 		struct	xpt_task *task;
5172 
5173 		xsoftc.buses_config_done = 1;
5174 		xpt_unlock_buses();
5175 		/* Call manually because we don't have any buses */
5176 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5177 		if (task != NULL) {
5178 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5179 			taskqueue_enqueue(taskqueue_thread, &task->task);
5180 		}
5181 	} else
5182 		xpt_unlock_buses();
5183 }
5184 
5185 /*
5186  * If the given device only has one peripheral attached to it, and if that
5187  * peripheral is the passthrough driver, announce it.  This insures that the
5188  * user sees some sort of announcement for every peripheral in their system.
5189  */
5190 static int
5191 xptpassannouncefunc(struct cam_ed *device, void *arg)
5192 {
5193 	struct cam_periph *periph;
5194 	int i;
5195 
5196 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5197 	     periph = SLIST_NEXT(periph, periph_links), i++);
5198 
5199 	periph = SLIST_FIRST(&device->periphs);
5200 	if ((i == 1)
5201 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5202 		xpt_announce_periph(periph, NULL);
5203 
5204 	return(1);
5205 }
5206 
5207 static void
5208 xpt_finishconfig_task(void *context, int pending)
5209 {
5210 
5211 	periphdriver_init(2);
5212 	/*
5213 	 * Check for devices with no "standard" peripheral driver
5214 	 * attached.  For any devices like that, announce the
5215 	 * passthrough driver so the user will see something.
5216 	 */
5217 	if (!bootverbose)
5218 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5219 
5220 	/* Release our hook so that the boot can continue. */
5221 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5222 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5223 	xsoftc.xpt_config_hook = NULL;
5224 
5225 	free(context, M_CAMXPT);
5226 }
5227 
5228 cam_status
5229 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5230 		   struct cam_path *path)
5231 {
5232 	struct ccb_setasync csa;
5233 	cam_status status;
5234 	int xptpath = 0;
5235 
5236 	if (path == NULL) {
5237 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5238 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5239 		if (status != CAM_REQ_CMP)
5240 			return (status);
5241 		xpt_path_lock(path);
5242 		xptpath = 1;
5243 	}
5244 
5245 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5246 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5247 	csa.event_enable = event;
5248 	csa.callback = cbfunc;
5249 	csa.callback_arg = cbarg;
5250 	xpt_action((union ccb *)&csa);
5251 	status = csa.ccb_h.status;
5252 
5253 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5254 	    ("xpt_register_async: func %p\n", cbfunc));
5255 
5256 	if (xptpath) {
5257 		xpt_path_unlock(path);
5258 		xpt_free_path(path);
5259 	}
5260 
5261 	if ((status == CAM_REQ_CMP) &&
5262 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5263 		/*
5264 		 * Get this peripheral up to date with all
5265 		 * the currently existing devices.
5266 		 */
5267 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5268 	}
5269 	if ((status == CAM_REQ_CMP) &&
5270 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5271 		/*
5272 		 * Get this peripheral up to date with all
5273 		 * the currently existing buses.
5274 		 */
5275 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5276 	}
5277 
5278 	return (status);
5279 }
5280 
5281 static void
5282 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5283 {
5284 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5285 
5286 	switch (work_ccb->ccb_h.func_code) {
5287 	/* Common cases first */
5288 	case XPT_PATH_INQ:		/* Path routing inquiry */
5289 	{
5290 		struct ccb_pathinq *cpi;
5291 
5292 		cpi = &work_ccb->cpi;
5293 		cpi->version_num = 1; /* XXX??? */
5294 		cpi->hba_inquiry = 0;
5295 		cpi->target_sprt = 0;
5296 		cpi->hba_misc = 0;
5297 		cpi->hba_eng_cnt = 0;
5298 		cpi->max_target = 0;
5299 		cpi->max_lun = 0;
5300 		cpi->initiator_id = 0;
5301 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5302 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5303 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5304 		cpi->unit_number = sim->unit_number;
5305 		cpi->bus_id = sim->bus_id;
5306 		cpi->base_transfer_speed = 0;
5307 		cpi->protocol = PROTO_UNSPECIFIED;
5308 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5309 		cpi->transport = XPORT_UNSPECIFIED;
5310 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5311 		cpi->ccb_h.status = CAM_REQ_CMP;
5312 		xpt_done(work_ccb);
5313 		break;
5314 	}
5315 	default:
5316 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5317 		xpt_done(work_ccb);
5318 		break;
5319 	}
5320 }
5321 
5322 /*
5323  * The xpt as a "controller" has no interrupt sources, so polling
5324  * is a no-op.
5325  */
5326 static void
5327 xptpoll(struct cam_sim *sim)
5328 {
5329 }
5330 
5331 void
5332 xpt_lock_buses(void)
5333 {
5334 	mtx_lock(&xsoftc.xpt_topo_lock);
5335 }
5336 
5337 void
5338 xpt_unlock_buses(void)
5339 {
5340 	mtx_unlock(&xsoftc.xpt_topo_lock);
5341 }
5342 
5343 struct mtx *
5344 xpt_path_mtx(struct cam_path *path)
5345 {
5346 
5347 	return (&path->device->device_mtx);
5348 }
5349 
5350 static void
5351 xpt_done_process(struct ccb_hdr *ccb_h)
5352 {
5353 	struct cam_sim *sim;
5354 	struct cam_devq *devq;
5355 	struct mtx *mtx = NULL;
5356 
5357 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5358 	struct ccb_scsiio *csio;
5359 
5360 	if (ccb_h->func_code == XPT_SCSI_IO) {
5361 		csio = &((union ccb *)ccb_h)->csio;
5362 		if (csio->bio != NULL)
5363 			biotrack(csio->bio, __func__);
5364 	}
5365 #endif
5366 
5367 	if (ccb_h->flags & CAM_HIGH_POWER) {
5368 		struct highpowerlist	*hphead;
5369 		struct cam_ed		*device;
5370 
5371 		mtx_lock(&xsoftc.xpt_highpower_lock);
5372 		hphead = &xsoftc.highpowerq;
5373 
5374 		device = STAILQ_FIRST(hphead);
5375 
5376 		/*
5377 		 * Increment the count since this command is done.
5378 		 */
5379 		xsoftc.num_highpower++;
5380 
5381 		/*
5382 		 * Any high powered commands queued up?
5383 		 */
5384 		if (device != NULL) {
5385 
5386 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5387 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5388 
5389 			mtx_lock(&device->sim->devq->send_mtx);
5390 			xpt_release_devq_device(device,
5391 					 /*count*/1, /*runqueue*/TRUE);
5392 			mtx_unlock(&device->sim->devq->send_mtx);
5393 		} else
5394 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5395 	}
5396 
5397 	sim = ccb_h->path->bus->sim;
5398 
5399 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5400 		xpt_release_simq(sim, /*run_queue*/FALSE);
5401 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5402 	}
5403 
5404 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5405 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5406 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5407 		ccb_h->status &= ~CAM_DEV_QFRZN;
5408 	}
5409 
5410 	devq = sim->devq;
5411 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5412 		struct cam_ed *dev = ccb_h->path->device;
5413 
5414 		mtx_lock(&devq->send_mtx);
5415 		devq->send_active--;
5416 		devq->send_openings++;
5417 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5418 
5419 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5420 		  && (dev->ccbq.dev_active == 0))) {
5421 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5422 			xpt_release_devq_device(dev, /*count*/1,
5423 					 /*run_queue*/FALSE);
5424 		}
5425 
5426 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5427 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5428 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5429 			xpt_release_devq_device(dev, /*count*/1,
5430 					 /*run_queue*/FALSE);
5431 		}
5432 
5433 		if (!device_is_queued(dev))
5434 			(void)xpt_schedule_devq(devq, dev);
5435 		xpt_run_devq(devq);
5436 		mtx_unlock(&devq->send_mtx);
5437 
5438 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5439 			mtx = xpt_path_mtx(ccb_h->path);
5440 			mtx_lock(mtx);
5441 
5442 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5443 			 && (--dev->tag_delay_count == 0))
5444 				xpt_start_tags(ccb_h->path);
5445 		}
5446 	}
5447 
5448 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5449 		if (mtx == NULL) {
5450 			mtx = xpt_path_mtx(ccb_h->path);
5451 			mtx_lock(mtx);
5452 		}
5453 	} else {
5454 		if (mtx != NULL) {
5455 			mtx_unlock(mtx);
5456 			mtx = NULL;
5457 		}
5458 	}
5459 
5460 	/* Call the peripheral driver's callback */
5461 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5462 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5463 	if (mtx != NULL)
5464 		mtx_unlock(mtx);
5465 }
5466 
5467 void
5468 xpt_done_td(void *arg)
5469 {
5470 	struct cam_doneq *queue = arg;
5471 	struct ccb_hdr *ccb_h;
5472 	STAILQ_HEAD(, ccb_hdr)	doneq;
5473 
5474 	STAILQ_INIT(&doneq);
5475 	mtx_lock(&queue->cam_doneq_mtx);
5476 	while (1) {
5477 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5478 			queue->cam_doneq_sleep = 1;
5479 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5480 			    PRIBIO, "-", 0);
5481 			queue->cam_doneq_sleep = 0;
5482 		}
5483 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5484 		mtx_unlock(&queue->cam_doneq_mtx);
5485 
5486 		THREAD_NO_SLEEPING();
5487 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5488 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5489 			xpt_done_process(ccb_h);
5490 		}
5491 		THREAD_SLEEPING_OK();
5492 
5493 		mtx_lock(&queue->cam_doneq_mtx);
5494 	}
5495 }
5496 
5497 static void
5498 camisr_runqueue(void)
5499 {
5500 	struct	ccb_hdr *ccb_h;
5501 	struct cam_doneq *queue;
5502 	int i;
5503 
5504 	/* Process global queues. */
5505 	for (i = 0; i < cam_num_doneqs; i++) {
5506 		queue = &cam_doneqs[i];
5507 		mtx_lock(&queue->cam_doneq_mtx);
5508 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5509 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5510 			mtx_unlock(&queue->cam_doneq_mtx);
5511 			xpt_done_process(ccb_h);
5512 			mtx_lock(&queue->cam_doneq_mtx);
5513 		}
5514 		mtx_unlock(&queue->cam_doneq_mtx);
5515 	}
5516 }
5517 
5518 struct kv
5519 {
5520 	uint32_t v;
5521 	const char *name;
5522 };
5523 
5524 static struct kv map[] = {
5525 	{ XPT_NOOP, "XPT_NOOP" },
5526 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5527 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5528 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5529 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5530 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5531 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5532 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5533 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5534 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5535 	{ XPT_DEBUG, "XPT_DEBUG" },
5536 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5537 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5538 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5539 	{ XPT_ASYNC, "XPT_ASYNC" },
5540 	{ XPT_ABORT, "XPT_ABORT" },
5541 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5542 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5543 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5544 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5545 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5546 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5547 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5548 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5549 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5550 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5551 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5552 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5553 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5554 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5555 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5556 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5557 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5558 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5559 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5560 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5561 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5562 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5563 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5564 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5565 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5566 	{ 0, 0 }
5567 };
5568 
5569 const char *
5570 xpt_action_name(uint32_t action)
5571 {
5572 	static char buffer[32];	/* Only for unknown messages -- racy */
5573 	struct kv *walker = map;
5574 
5575 	while (walker->name != NULL) {
5576 		if (walker->v == action)
5577 			return (walker->name);
5578 		walker++;
5579 	}
5580 
5581 	snprintf(buffer, sizeof(buffer), "%#x", action);
5582 	return (buffer);
5583 }
5584