xref: /freebsd/sys/cam/cam_xpt.c (revision 7138c819c484e71e2a21344bc3f91c66ca7b610a)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/bio.h>
39 #include <sys/bus.h>
40 #include <sys/systm.h>
41 #include <sys/types.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/time.h>
45 #include <sys/conf.h>
46 #include <sys/fcntl.h>
47 #include <sys/proc.h>
48 #include <sys/sbuf.h>
49 #include <sys/smp.h>
50 #include <sys/taskqueue.h>
51 
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/sysctl.h>
55 #include <sys/kthread.h>
56 
57 #include <cam/cam.h>
58 #include <cam/cam_ccb.h>
59 #include <cam/cam_iosched.h>
60 #include <cam/cam_periph.h>
61 #include <cam/cam_queue.h>
62 #include <cam/cam_sim.h>
63 #include <cam/cam_xpt.h>
64 #include <cam/cam_xpt_sim.h>
65 #include <cam/cam_xpt_periph.h>
66 #include <cam/cam_xpt_internal.h>
67 #include <cam/cam_debug.h>
68 #include <cam/cam_compat.h>
69 
70 #include <cam/scsi/scsi_all.h>
71 #include <cam/scsi/scsi_message.h>
72 #include <cam/scsi/scsi_pass.h>
73 
74 #include <machine/md_var.h>	/* geometry translation */
75 #include <machine/stdarg.h>	/* for xpt_print below */
76 
77 #include "opt_cam.h"
78 
79 /* Wild guess based on not wanting to grow the stack too much */
80 #define XPT_PRINT_MAXLEN	512
81 #ifdef PRINTF_BUFR_SIZE
82 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
83 #else
84 #define XPT_PRINT_LEN	128
85 #endif
86 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
87 
88 /*
89  * This is the maximum number of high powered commands (e.g. start unit)
90  * that can be outstanding at a particular time.
91  */
92 #ifndef CAM_MAX_HIGHPOWER
93 #define CAM_MAX_HIGHPOWER  4
94 #endif
95 
96 /* Datastructures internal to the xpt layer */
97 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
98 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
99 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
100 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
101 
102 /* Object for defering XPT actions to a taskqueue */
103 struct xpt_task {
104 	struct task	task;
105 	void		*data1;
106 	uintptr_t	data2;
107 };
108 
109 struct xpt_softc {
110 	uint32_t		xpt_generation;
111 
112 	/* number of high powered commands that can go through right now */
113 	struct mtx		xpt_highpower_lock;
114 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
115 	int			num_highpower;
116 
117 	/* queue for handling async rescan requests. */
118 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
119 	int buses_to_config;
120 	int buses_config_done;
121 	int announce_nosbuf;
122 
123 	/*
124 	 * Registered buses
125 	 *
126 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
127 	 * "buses" is preferred.
128 	 */
129 	TAILQ_HEAD(,cam_eb)	xpt_busses;
130 	u_int			bus_generation;
131 
132 	struct intr_config_hook	*xpt_config_hook;
133 
134 	int			boot_delay;
135 	struct callout 		boot_callout;
136 
137 	struct mtx		xpt_topo_lock;
138 	struct mtx		xpt_lock;
139 	struct taskqueue	*xpt_taskq;
140 };
141 
142 typedef enum {
143 	DM_RET_COPY		= 0x01,
144 	DM_RET_FLAG_MASK	= 0x0f,
145 	DM_RET_NONE		= 0x00,
146 	DM_RET_STOP		= 0x10,
147 	DM_RET_DESCEND		= 0x20,
148 	DM_RET_ERROR		= 0x30,
149 	DM_RET_ACTION_MASK	= 0xf0
150 } dev_match_ret;
151 
152 typedef enum {
153 	XPT_DEPTH_BUS,
154 	XPT_DEPTH_TARGET,
155 	XPT_DEPTH_DEVICE,
156 	XPT_DEPTH_PERIPH
157 } xpt_traverse_depth;
158 
159 struct xpt_traverse_config {
160 	xpt_traverse_depth	depth;
161 	void			*tr_func;
162 	void			*tr_arg;
163 };
164 
165 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
166 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
167 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
168 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
169 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
170 
171 /* Transport layer configuration information */
172 static struct xpt_softc xsoftc;
173 
174 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
175 
176 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
177            &xsoftc.boot_delay, 0, "Bus registration wait time");
178 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
179 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
180 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN,
181 	    &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements");
182 
183 struct cam_doneq {
184 	struct mtx_padalign	cam_doneq_mtx;
185 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
186 	int			cam_doneq_sleep;
187 };
188 
189 static struct cam_doneq cam_doneqs[MAXCPU];
190 static int cam_num_doneqs;
191 static struct proc *cam_proc;
192 
193 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
194            &cam_num_doneqs, 0, "Number of completion queues/threads");
195 
196 struct cam_periph *xpt_periph;
197 
198 static periph_init_t xpt_periph_init;
199 
200 static struct periph_driver xpt_driver =
201 {
202 	xpt_periph_init, "xpt",
203 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
204 	CAM_PERIPH_DRV_EARLY
205 };
206 
207 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
208 
209 static d_open_t xptopen;
210 static d_close_t xptclose;
211 static d_ioctl_t xptioctl;
212 static d_ioctl_t xptdoioctl;
213 
214 static struct cdevsw xpt_cdevsw = {
215 	.d_version =	D_VERSION,
216 	.d_flags =	0,
217 	.d_open =	xptopen,
218 	.d_close =	xptclose,
219 	.d_ioctl =	xptioctl,
220 	.d_name =	"xpt",
221 };
222 
223 /* Storage for debugging datastructures */
224 struct cam_path *cam_dpath;
225 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
226 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
227 	&cam_dflags, 0, "Enabled debug flags");
228 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
229 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
230 	&cam_debug_delay, 0, "Delay in us after each debug message");
231 
232 /* Our boot-time initialization hook */
233 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
234 
235 static moduledata_t cam_moduledata = {
236 	"cam",
237 	cam_module_event_handler,
238 	NULL
239 };
240 
241 static int	xpt_init(void *);
242 
243 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
244 MODULE_VERSION(cam, 1);
245 
246 
247 static void		xpt_async_bcast(struct async_list *async_head,
248 					u_int32_t async_code,
249 					struct cam_path *path,
250 					void *async_arg);
251 static path_id_t xptnextfreepathid(void);
252 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
253 static union ccb *xpt_get_ccb(struct cam_periph *periph);
254 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
255 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
256 static void	 xpt_run_allocq_task(void *context, int pending);
257 static void	 xpt_run_devq(struct cam_devq *devq);
258 static timeout_t xpt_release_devq_timeout;
259 static void	 xpt_release_simq_timeout(void *arg) __unused;
260 static void	 xpt_acquire_bus(struct cam_eb *bus);
261 static void	 xpt_release_bus(struct cam_eb *bus);
262 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
263 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
264 		    int run_queue);
265 static struct cam_et*
266 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
267 static void	 xpt_acquire_target(struct cam_et *target);
268 static void	 xpt_release_target(struct cam_et *target);
269 static struct cam_eb*
270 		 xpt_find_bus(path_id_t path_id);
271 static struct cam_et*
272 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
273 static struct cam_ed*
274 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
275 static void	 xpt_config(void *arg);
276 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
277 				 u_int32_t new_priority);
278 static xpt_devicefunc_t xptpassannouncefunc;
279 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
280 static void	 xptpoll(struct cam_sim *sim);
281 static void	 camisr_runqueue(void);
282 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
283 static void	 xpt_done_td(void *);
284 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
285 				    u_int num_patterns, struct cam_eb *bus);
286 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
287 				       u_int num_patterns,
288 				       struct cam_ed *device);
289 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
290 				       u_int num_patterns,
291 				       struct cam_periph *periph);
292 static xpt_busfunc_t	xptedtbusfunc;
293 static xpt_targetfunc_t	xptedttargetfunc;
294 static xpt_devicefunc_t	xptedtdevicefunc;
295 static xpt_periphfunc_t	xptedtperiphfunc;
296 static xpt_pdrvfunc_t	xptplistpdrvfunc;
297 static xpt_periphfunc_t	xptplistperiphfunc;
298 static int		xptedtmatch(struct ccb_dev_match *cdm);
299 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
300 static int		xptbustraverse(struct cam_eb *start_bus,
301 				       xpt_busfunc_t *tr_func, void *arg);
302 static int		xpttargettraverse(struct cam_eb *bus,
303 					  struct cam_et *start_target,
304 					  xpt_targetfunc_t *tr_func, void *arg);
305 static int		xptdevicetraverse(struct cam_et *target,
306 					  struct cam_ed *start_device,
307 					  xpt_devicefunc_t *tr_func, void *arg);
308 static int		xptperiphtraverse(struct cam_ed *device,
309 					  struct cam_periph *start_periph,
310 					  xpt_periphfunc_t *tr_func, void *arg);
311 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
312 					xpt_pdrvfunc_t *tr_func, void *arg);
313 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
314 					    struct cam_periph *start_periph,
315 					    xpt_periphfunc_t *tr_func,
316 					    void *arg);
317 static xpt_busfunc_t	xptdefbusfunc;
318 static xpt_targetfunc_t	xptdeftargetfunc;
319 static xpt_devicefunc_t	xptdefdevicefunc;
320 static xpt_periphfunc_t	xptdefperiphfunc;
321 static void		xpt_finishconfig_task(void *context, int pending);
322 static void		xpt_dev_async_default(u_int32_t async_code,
323 					      struct cam_eb *bus,
324 					      struct cam_et *target,
325 					      struct cam_ed *device,
326 					      void *async_arg);
327 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
328 						 struct cam_et *target,
329 						 lun_id_t lun_id);
330 static xpt_devicefunc_t	xptsetasyncfunc;
331 static xpt_busfunc_t	xptsetasyncbusfunc;
332 static cam_status	xptregister(struct cam_periph *periph,
333 				    void *arg);
334 static __inline int device_is_queued(struct cam_ed *device);
335 
336 static __inline int
337 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
338 {
339 	int	retval;
340 
341 	mtx_assert(&devq->send_mtx, MA_OWNED);
342 	if ((dev->ccbq.queue.entries > 0) &&
343 	    (dev->ccbq.dev_openings > 0) &&
344 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
345 		/*
346 		 * The priority of a device waiting for controller
347 		 * resources is that of the highest priority CCB
348 		 * enqueued.
349 		 */
350 		retval =
351 		    xpt_schedule_dev(&devq->send_queue,
352 				     &dev->devq_entry,
353 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
354 	} else {
355 		retval = 0;
356 	}
357 	return (retval);
358 }
359 
360 static __inline int
361 device_is_queued(struct cam_ed *device)
362 {
363 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
364 }
365 
366 static void
367 xpt_periph_init()
368 {
369 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
370 }
371 
372 static int
373 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
374 {
375 
376 	/*
377 	 * Only allow read-write access.
378 	 */
379 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
380 		return(EPERM);
381 
382 	/*
383 	 * We don't allow nonblocking access.
384 	 */
385 	if ((flags & O_NONBLOCK) != 0) {
386 		printf("%s: can't do nonblocking access\n", devtoname(dev));
387 		return(ENODEV);
388 	}
389 
390 	return(0);
391 }
392 
393 static int
394 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
395 {
396 
397 	return(0);
398 }
399 
400 /*
401  * Don't automatically grab the xpt softc lock here even though this is going
402  * through the xpt device.  The xpt device is really just a back door for
403  * accessing other devices and SIMs, so the right thing to do is to grab
404  * the appropriate SIM lock once the bus/SIM is located.
405  */
406 static int
407 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
408 {
409 	int error;
410 
411 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
412 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
413 	}
414 	return (error);
415 }
416 
417 static int
418 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
419 {
420 	int error;
421 
422 	error = 0;
423 
424 	switch(cmd) {
425 	/*
426 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
427 	 * to accept CCB types that don't quite make sense to send through a
428 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
429 	 * in the CAM spec.
430 	 */
431 	case CAMIOCOMMAND: {
432 		union ccb *ccb;
433 		union ccb *inccb;
434 		struct cam_eb *bus;
435 
436 		inccb = (union ccb *)addr;
437 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
438 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
439 			inccb->csio.bio = NULL;
440 #endif
441 
442 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
443 			return (EINVAL);
444 
445 		bus = xpt_find_bus(inccb->ccb_h.path_id);
446 		if (bus == NULL)
447 			return (EINVAL);
448 
449 		switch (inccb->ccb_h.func_code) {
450 		case XPT_SCAN_BUS:
451 		case XPT_RESET_BUS:
452 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
453 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
454 				xpt_release_bus(bus);
455 				return (EINVAL);
456 			}
457 			break;
458 		case XPT_SCAN_TGT:
459 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
460 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
461 				xpt_release_bus(bus);
462 				return (EINVAL);
463 			}
464 			break;
465 		default:
466 			break;
467 		}
468 
469 		switch(inccb->ccb_h.func_code) {
470 		case XPT_SCAN_BUS:
471 		case XPT_RESET_BUS:
472 		case XPT_PATH_INQ:
473 		case XPT_ENG_INQ:
474 		case XPT_SCAN_LUN:
475 		case XPT_SCAN_TGT:
476 
477 			ccb = xpt_alloc_ccb();
478 
479 			/*
480 			 * Create a path using the bus, target, and lun the
481 			 * user passed in.
482 			 */
483 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
484 					    inccb->ccb_h.path_id,
485 					    inccb->ccb_h.target_id,
486 					    inccb->ccb_h.target_lun) !=
487 					    CAM_REQ_CMP){
488 				error = EINVAL;
489 				xpt_free_ccb(ccb);
490 				break;
491 			}
492 			/* Ensure all of our fields are correct */
493 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
494 				      inccb->ccb_h.pinfo.priority);
495 			xpt_merge_ccb(ccb, inccb);
496 			xpt_path_lock(ccb->ccb_h.path);
497 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
498 			xpt_path_unlock(ccb->ccb_h.path);
499 			bcopy(ccb, inccb, sizeof(union ccb));
500 			xpt_free_path(ccb->ccb_h.path);
501 			xpt_free_ccb(ccb);
502 			break;
503 
504 		case XPT_DEBUG: {
505 			union ccb ccb;
506 
507 			/*
508 			 * This is an immediate CCB, so it's okay to
509 			 * allocate it on the stack.
510 			 */
511 
512 			/*
513 			 * Create a path using the bus, target, and lun the
514 			 * user passed in.
515 			 */
516 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
517 					    inccb->ccb_h.path_id,
518 					    inccb->ccb_h.target_id,
519 					    inccb->ccb_h.target_lun) !=
520 					    CAM_REQ_CMP){
521 				error = EINVAL;
522 				break;
523 			}
524 			/* Ensure all of our fields are correct */
525 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
526 				      inccb->ccb_h.pinfo.priority);
527 			xpt_merge_ccb(&ccb, inccb);
528 			xpt_action(&ccb);
529 			bcopy(&ccb, inccb, sizeof(union ccb));
530 			xpt_free_path(ccb.ccb_h.path);
531 			break;
532 
533 		}
534 		case XPT_DEV_MATCH: {
535 			struct cam_periph_map_info mapinfo;
536 			struct cam_path *old_path;
537 
538 			/*
539 			 * We can't deal with physical addresses for this
540 			 * type of transaction.
541 			 */
542 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
543 			    CAM_DATA_VADDR) {
544 				error = EINVAL;
545 				break;
546 			}
547 
548 			/*
549 			 * Save this in case the caller had it set to
550 			 * something in particular.
551 			 */
552 			old_path = inccb->ccb_h.path;
553 
554 			/*
555 			 * We really don't need a path for the matching
556 			 * code.  The path is needed because of the
557 			 * debugging statements in xpt_action().  They
558 			 * assume that the CCB has a valid path.
559 			 */
560 			inccb->ccb_h.path = xpt_periph->path;
561 
562 			bzero(&mapinfo, sizeof(mapinfo));
563 
564 			/*
565 			 * Map the pattern and match buffers into kernel
566 			 * virtual address space.
567 			 */
568 			error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS);
569 
570 			if (error) {
571 				inccb->ccb_h.path = old_path;
572 				break;
573 			}
574 
575 			/*
576 			 * This is an immediate CCB, we can send it on directly.
577 			 */
578 			xpt_action(inccb);
579 
580 			/*
581 			 * Map the buffers back into user space.
582 			 */
583 			cam_periph_unmapmem(inccb, &mapinfo);
584 
585 			inccb->ccb_h.path = old_path;
586 
587 			error = 0;
588 			break;
589 		}
590 		default:
591 			error = ENOTSUP;
592 			break;
593 		}
594 		xpt_release_bus(bus);
595 		break;
596 	}
597 	/*
598 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
599 	 * with the periphal driver name and unit name filled in.  The other
600 	 * fields don't really matter as input.  The passthrough driver name
601 	 * ("pass"), and unit number are passed back in the ccb.  The current
602 	 * device generation number, and the index into the device peripheral
603 	 * driver list, and the status are also passed back.  Note that
604 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
605 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
606 	 * (or rather should be) impossible for the device peripheral driver
607 	 * list to change since we look at the whole thing in one pass, and
608 	 * we do it with lock protection.
609 	 *
610 	 */
611 	case CAMGETPASSTHRU: {
612 		union ccb *ccb;
613 		struct cam_periph *periph;
614 		struct periph_driver **p_drv;
615 		char   *name;
616 		u_int unit;
617 		int base_periph_found;
618 
619 		ccb = (union ccb *)addr;
620 		unit = ccb->cgdl.unit_number;
621 		name = ccb->cgdl.periph_name;
622 		base_periph_found = 0;
623 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
624 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
625 			ccb->csio.bio = NULL;
626 #endif
627 
628 		/*
629 		 * Sanity check -- make sure we don't get a null peripheral
630 		 * driver name.
631 		 */
632 		if (*ccb->cgdl.periph_name == '\0') {
633 			error = EINVAL;
634 			break;
635 		}
636 
637 		/* Keep the list from changing while we traverse it */
638 		xpt_lock_buses();
639 
640 		/* first find our driver in the list of drivers */
641 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
642 			if (strcmp((*p_drv)->driver_name, name) == 0)
643 				break;
644 
645 		if (*p_drv == NULL) {
646 			xpt_unlock_buses();
647 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
648 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
649 			*ccb->cgdl.periph_name = '\0';
650 			ccb->cgdl.unit_number = 0;
651 			error = ENOENT;
652 			break;
653 		}
654 
655 		/*
656 		 * Run through every peripheral instance of this driver
657 		 * and check to see whether it matches the unit passed
658 		 * in by the user.  If it does, get out of the loops and
659 		 * find the passthrough driver associated with that
660 		 * peripheral driver.
661 		 */
662 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
663 		     periph = TAILQ_NEXT(periph, unit_links)) {
664 
665 			if (periph->unit_number == unit)
666 				break;
667 		}
668 		/*
669 		 * If we found the peripheral driver that the user passed
670 		 * in, go through all of the peripheral drivers for that
671 		 * particular device and look for a passthrough driver.
672 		 */
673 		if (periph != NULL) {
674 			struct cam_ed *device;
675 			int i;
676 
677 			base_periph_found = 1;
678 			device = periph->path->device;
679 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
680 			     periph != NULL;
681 			     periph = SLIST_NEXT(periph, periph_links), i++) {
682 				/*
683 				 * Check to see whether we have a
684 				 * passthrough device or not.
685 				 */
686 				if (strcmp(periph->periph_name, "pass") == 0) {
687 					/*
688 					 * Fill in the getdevlist fields.
689 					 */
690 					strlcpy(ccb->cgdl.periph_name,
691 					       periph->periph_name,
692 					       sizeof(ccb->cgdl.periph_name));
693 					ccb->cgdl.unit_number =
694 						periph->unit_number;
695 					if (SLIST_NEXT(periph, periph_links))
696 						ccb->cgdl.status =
697 							CAM_GDEVLIST_MORE_DEVS;
698 					else
699 						ccb->cgdl.status =
700 						       CAM_GDEVLIST_LAST_DEVICE;
701 					ccb->cgdl.generation =
702 						device->generation;
703 					ccb->cgdl.index = i;
704 					/*
705 					 * Fill in some CCB header fields
706 					 * that the user may want.
707 					 */
708 					ccb->ccb_h.path_id =
709 						periph->path->bus->path_id;
710 					ccb->ccb_h.target_id =
711 						periph->path->target->target_id;
712 					ccb->ccb_h.target_lun =
713 						periph->path->device->lun_id;
714 					ccb->ccb_h.status = CAM_REQ_CMP;
715 					break;
716 				}
717 			}
718 		}
719 
720 		/*
721 		 * If the periph is null here, one of two things has
722 		 * happened.  The first possibility is that we couldn't
723 		 * find the unit number of the particular peripheral driver
724 		 * that the user is asking about.  e.g. the user asks for
725 		 * the passthrough driver for "da11".  We find the list of
726 		 * "da" peripherals all right, but there is no unit 11.
727 		 * The other possibility is that we went through the list
728 		 * of peripheral drivers attached to the device structure,
729 		 * but didn't find one with the name "pass".  Either way,
730 		 * we return ENOENT, since we couldn't find something.
731 		 */
732 		if (periph == NULL) {
733 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
734 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
735 			*ccb->cgdl.periph_name = '\0';
736 			ccb->cgdl.unit_number = 0;
737 			error = ENOENT;
738 			/*
739 			 * It is unfortunate that this is even necessary,
740 			 * but there are many, many clueless users out there.
741 			 * If this is true, the user is looking for the
742 			 * passthrough driver, but doesn't have one in his
743 			 * kernel.
744 			 */
745 			if (base_periph_found == 1) {
746 				printf("xptioctl: pass driver is not in the "
747 				       "kernel\n");
748 				printf("xptioctl: put \"device pass\" in "
749 				       "your kernel config file\n");
750 			}
751 		}
752 		xpt_unlock_buses();
753 		break;
754 		}
755 	default:
756 		error = ENOTTY;
757 		break;
758 	}
759 
760 	return(error);
761 }
762 
763 static int
764 cam_module_event_handler(module_t mod, int what, void *arg)
765 {
766 	int error;
767 
768 	switch (what) {
769 	case MOD_LOAD:
770 		if ((error = xpt_init(NULL)) != 0)
771 			return (error);
772 		break;
773 	case MOD_UNLOAD:
774 		return EBUSY;
775 	default:
776 		return EOPNOTSUPP;
777 	}
778 
779 	return 0;
780 }
781 
782 static struct xpt_proto *
783 xpt_proto_find(cam_proto proto)
784 {
785 	struct xpt_proto **pp;
786 
787 	SET_FOREACH(pp, cam_xpt_proto_set) {
788 		if ((*pp)->proto == proto)
789 			return *pp;
790 	}
791 
792 	return NULL;
793 }
794 
795 static void
796 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
797 {
798 
799 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
800 		xpt_free_path(done_ccb->ccb_h.path);
801 		xpt_free_ccb(done_ccb);
802 	} else {
803 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
804 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
805 	}
806 	xpt_release_boot();
807 }
808 
809 /* thread to handle bus rescans */
810 static void
811 xpt_scanner_thread(void *dummy)
812 {
813 	union ccb	*ccb;
814 	struct cam_path	 path;
815 
816 	xpt_lock_buses();
817 	for (;;) {
818 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
819 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
820 			       "-", 0);
821 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
822 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
823 			xpt_unlock_buses();
824 
825 			/*
826 			 * Since lock can be dropped inside and path freed
827 			 * by completion callback even before return here,
828 			 * take our own path copy for reference.
829 			 */
830 			xpt_copy_path(&path, ccb->ccb_h.path);
831 			xpt_path_lock(&path);
832 			xpt_action(ccb);
833 			xpt_path_unlock(&path);
834 			xpt_release_path(&path);
835 
836 			xpt_lock_buses();
837 		}
838 	}
839 }
840 
841 void
842 xpt_rescan(union ccb *ccb)
843 {
844 	struct ccb_hdr *hdr;
845 
846 	/* Prepare request */
847 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
848 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
849 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
850 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
851 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
852 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
853 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
854 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
855 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
856 	else {
857 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
858 		xpt_free_path(ccb->ccb_h.path);
859 		xpt_free_ccb(ccb);
860 		return;
861 	}
862 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
863 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
864  		xpt_action_name(ccb->ccb_h.func_code)));
865 
866 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
867 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
868 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
869 	/* Don't make duplicate entries for the same paths. */
870 	xpt_lock_buses();
871 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
872 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
873 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
874 				wakeup(&xsoftc.ccb_scanq);
875 				xpt_unlock_buses();
876 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
877 				xpt_free_path(ccb->ccb_h.path);
878 				xpt_free_ccb(ccb);
879 				return;
880 			}
881 		}
882 	}
883 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
884 	xsoftc.buses_to_config++;
885 	wakeup(&xsoftc.ccb_scanq);
886 	xpt_unlock_buses();
887 }
888 
889 /* Functions accessed by the peripheral drivers */
890 static int
891 xpt_init(void *dummy)
892 {
893 	struct cam_sim *xpt_sim;
894 	struct cam_path *path;
895 	struct cam_devq *devq;
896 	cam_status status;
897 	int error, i;
898 
899 	TAILQ_INIT(&xsoftc.xpt_busses);
900 	TAILQ_INIT(&xsoftc.ccb_scanq);
901 	STAILQ_INIT(&xsoftc.highpowerq);
902 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
903 
904 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
905 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
906 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
907 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
908 
909 #ifdef CAM_BOOT_DELAY
910 	/*
911 	 * Override this value at compile time to assist our users
912 	 * who don't use loader to boot a kernel.
913 	 */
914 	xsoftc.boot_delay = CAM_BOOT_DELAY;
915 #endif
916 	/*
917 	 * The xpt layer is, itself, the equivalent of a SIM.
918 	 * Allow 16 ccbs in the ccb pool for it.  This should
919 	 * give decent parallelism when we probe buses and
920 	 * perform other XPT functions.
921 	 */
922 	devq = cam_simq_alloc(16);
923 	xpt_sim = cam_sim_alloc(xptaction,
924 				xptpoll,
925 				"xpt",
926 				/*softc*/NULL,
927 				/*unit*/0,
928 				/*mtx*/&xsoftc.xpt_lock,
929 				/*max_dev_transactions*/0,
930 				/*max_tagged_dev_transactions*/0,
931 				devq);
932 	if (xpt_sim == NULL)
933 		return (ENOMEM);
934 
935 	mtx_lock(&xsoftc.xpt_lock);
936 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
937 		mtx_unlock(&xsoftc.xpt_lock);
938 		printf("xpt_init: xpt_bus_register failed with status %#x,"
939 		       " failing attach\n", status);
940 		return (EINVAL);
941 	}
942 	mtx_unlock(&xsoftc.xpt_lock);
943 
944 	/*
945 	 * Looking at the XPT from the SIM layer, the XPT is
946 	 * the equivalent of a peripheral driver.  Allocate
947 	 * a peripheral driver entry for us.
948 	 */
949 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
950 				      CAM_TARGET_WILDCARD,
951 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
952 		printf("xpt_init: xpt_create_path failed with status %#x,"
953 		       " failing attach\n", status);
954 		return (EINVAL);
955 	}
956 	xpt_path_lock(path);
957 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
958 			 path, NULL, 0, xpt_sim);
959 	xpt_path_unlock(path);
960 	xpt_free_path(path);
961 
962 	if (cam_num_doneqs < 1)
963 		cam_num_doneqs = 1 + mp_ncpus / 6;
964 	else if (cam_num_doneqs > MAXCPU)
965 		cam_num_doneqs = MAXCPU;
966 	for (i = 0; i < cam_num_doneqs; i++) {
967 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
968 		    MTX_DEF);
969 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
970 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
971 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
972 		if (error != 0) {
973 			cam_num_doneqs = i;
974 			break;
975 		}
976 	}
977 	if (cam_num_doneqs < 1) {
978 		printf("xpt_init: Cannot init completion queues "
979 		       "- failing attach\n");
980 		return (ENOMEM);
981 	}
982 	/*
983 	 * Register a callback for when interrupts are enabled.
984 	 */
985 	xsoftc.xpt_config_hook =
986 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
987 					      M_CAMXPT, M_NOWAIT | M_ZERO);
988 	if (xsoftc.xpt_config_hook == NULL) {
989 		printf("xpt_init: Cannot malloc config hook "
990 		       "- failing attach\n");
991 		return (ENOMEM);
992 	}
993 	xsoftc.xpt_config_hook->ich_func = xpt_config;
994 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
995 		free (xsoftc.xpt_config_hook, M_CAMXPT);
996 		printf("xpt_init: config_intrhook_establish failed "
997 		       "- failing attach\n");
998 	}
999 
1000 	return (0);
1001 }
1002 
1003 static cam_status
1004 xptregister(struct cam_periph *periph, void *arg)
1005 {
1006 	struct cam_sim *xpt_sim;
1007 
1008 	if (periph == NULL) {
1009 		printf("xptregister: periph was NULL!!\n");
1010 		return(CAM_REQ_CMP_ERR);
1011 	}
1012 
1013 	xpt_sim = (struct cam_sim *)arg;
1014 	xpt_sim->softc = periph;
1015 	xpt_periph = periph;
1016 	periph->softc = NULL;
1017 
1018 	return(CAM_REQ_CMP);
1019 }
1020 
1021 int32_t
1022 xpt_add_periph(struct cam_periph *periph)
1023 {
1024 	struct cam_ed *device;
1025 	int32_t	 status;
1026 
1027 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1028 	device = periph->path->device;
1029 	status = CAM_REQ_CMP;
1030 	if (device != NULL) {
1031 		mtx_lock(&device->target->bus->eb_mtx);
1032 		device->generation++;
1033 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1034 		mtx_unlock(&device->target->bus->eb_mtx);
1035 		atomic_add_32(&xsoftc.xpt_generation, 1);
1036 	}
1037 
1038 	return (status);
1039 }
1040 
1041 void
1042 xpt_remove_periph(struct cam_periph *periph)
1043 {
1044 	struct cam_ed *device;
1045 
1046 	device = periph->path->device;
1047 	if (device != NULL) {
1048 		mtx_lock(&device->target->bus->eb_mtx);
1049 		device->generation++;
1050 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1051 		mtx_unlock(&device->target->bus->eb_mtx);
1052 		atomic_add_32(&xsoftc.xpt_generation, 1);
1053 	}
1054 }
1055 
1056 
1057 void
1058 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1059 {
1060 	struct	cam_path *path = periph->path;
1061 	struct  xpt_proto *proto;
1062 
1063 	cam_periph_assert(periph, MA_OWNED);
1064 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1065 
1066 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1067 	       periph->periph_name, periph->unit_number,
1068 	       path->bus->sim->sim_name,
1069 	       path->bus->sim->unit_number,
1070 	       path->bus->sim->bus_id,
1071 	       path->bus->path_id,
1072 	       path->target->target_id,
1073 	       (uintmax_t)path->device->lun_id);
1074 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1075 	proto = xpt_proto_find(path->device->protocol);
1076 	if (proto)
1077 		proto->ops->announce(path->device);
1078 	else
1079 		printf("%s%d: Unknown protocol device %d\n",
1080 		    periph->periph_name, periph->unit_number,
1081 		    path->device->protocol);
1082 	if (path->device->serial_num_len > 0) {
1083 		/* Don't wrap the screen  - print only the first 60 chars */
1084 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1085 		       periph->unit_number, path->device->serial_num);
1086 	}
1087 	/* Announce transport details. */
1088 	path->bus->xport->ops->announce(periph);
1089 	/* Announce command queueing. */
1090 	if (path->device->inq_flags & SID_CmdQue
1091 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1092 		printf("%s%d: Command Queueing enabled\n",
1093 		       periph->periph_name, periph->unit_number);
1094 	}
1095 	/* Announce caller's details if they've passed in. */
1096 	if (announce_string != NULL)
1097 		printf("%s%d: %s\n", periph->periph_name,
1098 		       periph->unit_number, announce_string);
1099 }
1100 
1101 void
1102 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1103     char *announce_string)
1104 {
1105 	struct	cam_path *path = periph->path;
1106 	struct  xpt_proto *proto;
1107 
1108 	cam_periph_assert(periph, MA_OWNED);
1109 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1110 
1111 	/* Fall back to the non-sbuf method if necessary */
1112 	if (xsoftc.announce_nosbuf != 0) {
1113 		xpt_announce_periph(periph, announce_string);
1114 		return;
1115 	}
1116 	proto = xpt_proto_find(path->device->protocol);
1117 	if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) ||
1118 	    (path->bus->xport->ops->announce_sbuf == NULL)) {
1119 		xpt_announce_periph(periph, announce_string);
1120 		return;
1121 	}
1122 
1123 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1124 	    periph->periph_name, periph->unit_number,
1125 	    path->bus->sim->sim_name,
1126 	    path->bus->sim->unit_number,
1127 	    path->bus->sim->bus_id,
1128 	    path->bus->path_id,
1129 	    path->target->target_id,
1130 	    (uintmax_t)path->device->lun_id);
1131 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1132 
1133 	if (proto)
1134 		proto->ops->announce_sbuf(path->device, sb);
1135 	else
1136 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1137 		    periph->periph_name, periph->unit_number,
1138 		    path->device->protocol);
1139 	if (path->device->serial_num_len > 0) {
1140 		/* Don't wrap the screen  - print only the first 60 chars */
1141 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1142 		    periph->periph_name, periph->unit_number,
1143 		    path->device->serial_num);
1144 	}
1145 	/* Announce transport details. */
1146 	path->bus->xport->ops->announce_sbuf(periph, sb);
1147 	/* Announce command queueing. */
1148 	if (path->device->inq_flags & SID_CmdQue
1149 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1150 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1151 		    periph->periph_name, periph->unit_number);
1152 	}
1153 	/* Announce caller's details if they've passed in. */
1154 	if (announce_string != NULL)
1155 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1156 		    periph->unit_number, announce_string);
1157 }
1158 
1159 void
1160 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1161 {
1162 	if (quirks != 0) {
1163 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1164 		    periph->unit_number, quirks, bit_string);
1165 	}
1166 }
1167 
1168 void
1169 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1170 			 int quirks, char *bit_string)
1171 {
1172 	if (xsoftc.announce_nosbuf != 0) {
1173 		xpt_announce_quirks(periph, quirks, bit_string);
1174 		return;
1175 	}
1176 
1177 	if (quirks != 0) {
1178 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1179 		    periph->unit_number, quirks, bit_string);
1180 	}
1181 }
1182 
1183 void
1184 xpt_denounce_periph(struct cam_periph *periph)
1185 {
1186 	struct	cam_path *path = periph->path;
1187 	struct  xpt_proto *proto;
1188 
1189 	cam_periph_assert(periph, MA_OWNED);
1190 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1191 	       periph->periph_name, periph->unit_number,
1192 	       path->bus->sim->sim_name,
1193 	       path->bus->sim->unit_number,
1194 	       path->bus->sim->bus_id,
1195 	       path->bus->path_id,
1196 	       path->target->target_id,
1197 	       (uintmax_t)path->device->lun_id);
1198 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1199 	proto = xpt_proto_find(path->device->protocol);
1200 	if (proto)
1201 		proto->ops->denounce(path->device);
1202 	else
1203 		printf("%s%d: Unknown protocol device %d\n",
1204 		    periph->periph_name, periph->unit_number,
1205 		    path->device->protocol);
1206 	if (path->device->serial_num_len > 0)
1207 		printf(" s/n %.60s", path->device->serial_num);
1208 	printf(" detached\n");
1209 }
1210 
1211 void
1212 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1213 {
1214 	struct cam_path *path = periph->path;
1215 	struct xpt_proto *proto;
1216 
1217 	cam_periph_assert(periph, MA_OWNED);
1218 
1219 	/* Fall back to the non-sbuf method if necessary */
1220 	if (xsoftc.announce_nosbuf != 0) {
1221 		xpt_denounce_periph(periph);
1222 		return;
1223 	}
1224 	proto = xpt_proto_find(path->device->protocol);
1225 	if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) {
1226 		xpt_denounce_periph(periph);
1227 		return;
1228 	}
1229 
1230 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1231 	    periph->periph_name, periph->unit_number,
1232 	    path->bus->sim->sim_name,
1233 	    path->bus->sim->unit_number,
1234 	    path->bus->sim->bus_id,
1235 	    path->bus->path_id,
1236 	    path->target->target_id,
1237 	    (uintmax_t)path->device->lun_id);
1238 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1239 
1240 	if (proto)
1241 		proto->ops->denounce_sbuf(path->device, sb);
1242 	else
1243 		sbuf_printf(sb, "%s%d: Unknown protocol device %d\n",
1244 		    periph->periph_name, periph->unit_number,
1245 		    path->device->protocol);
1246 	if (path->device->serial_num_len > 0)
1247 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1248 	sbuf_printf(sb, " detached\n");
1249 }
1250 
1251 int
1252 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1253 {
1254 	int ret = -1, l, o;
1255 	struct ccb_dev_advinfo cdai;
1256 	struct scsi_vpd_id_descriptor *idd;
1257 
1258 	xpt_path_assert(path, MA_OWNED);
1259 
1260 	memset(&cdai, 0, sizeof(cdai));
1261 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1262 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1263 	cdai.flags = CDAI_FLAG_NONE;
1264 	cdai.bufsiz = len;
1265 
1266 	if (!strcmp(attr, "GEOM::ident"))
1267 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1268 	else if (!strcmp(attr, "GEOM::physpath"))
1269 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1270 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1271 		 strcmp(attr, "GEOM::lunname") == 0) {
1272 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1273 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1274 	} else
1275 		goto out;
1276 
1277 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1278 	if (cdai.buf == NULL) {
1279 		ret = ENOMEM;
1280 		goto out;
1281 	}
1282 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1283 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1284 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1285 	if (cdai.provsiz == 0)
1286 		goto out;
1287 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1288 		if (strcmp(attr, "GEOM::lunid") == 0) {
1289 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1290 			    cdai.provsiz, scsi_devid_is_lun_naa);
1291 			if (idd == NULL)
1292 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1293 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1294 			if (idd == NULL)
1295 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1296 				    cdai.provsiz, scsi_devid_is_lun_uuid);
1297 			if (idd == NULL)
1298 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1299 				    cdai.provsiz, scsi_devid_is_lun_md5);
1300 		} else
1301 			idd = NULL;
1302 		if (idd == NULL)
1303 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1304 			    cdai.provsiz, scsi_devid_is_lun_t10);
1305 		if (idd == NULL)
1306 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1307 			    cdai.provsiz, scsi_devid_is_lun_name);
1308 		if (idd == NULL)
1309 			goto out;
1310 		ret = 0;
1311 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1312 			if (idd->length < len) {
1313 				for (l = 0; l < idd->length; l++)
1314 					buf[l] = idd->identifier[l] ?
1315 					    idd->identifier[l] : ' ';
1316 				buf[l] = 0;
1317 			} else
1318 				ret = EFAULT;
1319 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1320 			l = strnlen(idd->identifier, idd->length);
1321 			if (l < len) {
1322 				bcopy(idd->identifier, buf, l);
1323 				buf[l] = 0;
1324 			} else
1325 				ret = EFAULT;
1326 		} else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID
1327 		    && idd->identifier[0] == 0x10) {
1328 			if ((idd->length - 2) * 2 + 4 < len) {
1329 				for (l = 2, o = 0; l < idd->length; l++) {
1330 					if (l == 6 || l == 8 || l == 10 || l == 12)
1331 					    o += sprintf(buf + o, "-");
1332 					o += sprintf(buf + o, "%02x",
1333 					    idd->identifier[l]);
1334 				}
1335 			} else
1336 				ret = EFAULT;
1337 		} else {
1338 			if (idd->length * 2 < len) {
1339 				for (l = 0; l < idd->length; l++)
1340 					sprintf(buf + l * 2, "%02x",
1341 					    idd->identifier[l]);
1342 			} else
1343 				ret = EFAULT;
1344 		}
1345 	} else {
1346 		ret = 0;
1347 		if (strlcpy(buf, cdai.buf, len) >= len)
1348 			ret = EFAULT;
1349 	}
1350 
1351 out:
1352 	if (cdai.buf != NULL)
1353 		free(cdai.buf, M_CAMXPT);
1354 	return ret;
1355 }
1356 
1357 static dev_match_ret
1358 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1359 	    struct cam_eb *bus)
1360 {
1361 	dev_match_ret retval;
1362 	u_int i;
1363 
1364 	retval = DM_RET_NONE;
1365 
1366 	/*
1367 	 * If we aren't given something to match against, that's an error.
1368 	 */
1369 	if (bus == NULL)
1370 		return(DM_RET_ERROR);
1371 
1372 	/*
1373 	 * If there are no match entries, then this bus matches no
1374 	 * matter what.
1375 	 */
1376 	if ((patterns == NULL) || (num_patterns == 0))
1377 		return(DM_RET_DESCEND | DM_RET_COPY);
1378 
1379 	for (i = 0; i < num_patterns; i++) {
1380 		struct bus_match_pattern *cur_pattern;
1381 
1382 		/*
1383 		 * If the pattern in question isn't for a bus node, we
1384 		 * aren't interested.  However, we do indicate to the
1385 		 * calling routine that we should continue descending the
1386 		 * tree, since the user wants to match against lower-level
1387 		 * EDT elements.
1388 		 */
1389 		if (patterns[i].type != DEV_MATCH_BUS) {
1390 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1391 				retval |= DM_RET_DESCEND;
1392 			continue;
1393 		}
1394 
1395 		cur_pattern = &patterns[i].pattern.bus_pattern;
1396 
1397 		/*
1398 		 * If they want to match any bus node, we give them any
1399 		 * device node.
1400 		 */
1401 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1402 			/* set the copy flag */
1403 			retval |= DM_RET_COPY;
1404 
1405 			/*
1406 			 * If we've already decided on an action, go ahead
1407 			 * and return.
1408 			 */
1409 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1410 				return(retval);
1411 		}
1412 
1413 		/*
1414 		 * Not sure why someone would do this...
1415 		 */
1416 		if (cur_pattern->flags == BUS_MATCH_NONE)
1417 			continue;
1418 
1419 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1420 		 && (cur_pattern->path_id != bus->path_id))
1421 			continue;
1422 
1423 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1424 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1425 			continue;
1426 
1427 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1428 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1429 			continue;
1430 
1431 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1432 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1433 			     DEV_IDLEN) != 0))
1434 			continue;
1435 
1436 		/*
1437 		 * If we get to this point, the user definitely wants
1438 		 * information on this bus.  So tell the caller to copy the
1439 		 * data out.
1440 		 */
1441 		retval |= DM_RET_COPY;
1442 
1443 		/*
1444 		 * If the return action has been set to descend, then we
1445 		 * know that we've already seen a non-bus matching
1446 		 * expression, therefore we need to further descend the tree.
1447 		 * This won't change by continuing around the loop, so we
1448 		 * go ahead and return.  If we haven't seen a non-bus
1449 		 * matching expression, we keep going around the loop until
1450 		 * we exhaust the matching expressions.  We'll set the stop
1451 		 * flag once we fall out of the loop.
1452 		 */
1453 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1454 			return(retval);
1455 	}
1456 
1457 	/*
1458 	 * If the return action hasn't been set to descend yet, that means
1459 	 * we haven't seen anything other than bus matching patterns.  So
1460 	 * tell the caller to stop descending the tree -- the user doesn't
1461 	 * want to match against lower level tree elements.
1462 	 */
1463 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1464 		retval |= DM_RET_STOP;
1465 
1466 	return(retval);
1467 }
1468 
1469 static dev_match_ret
1470 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1471 	       struct cam_ed *device)
1472 {
1473 	dev_match_ret retval;
1474 	u_int i;
1475 
1476 	retval = DM_RET_NONE;
1477 
1478 	/*
1479 	 * If we aren't given something to match against, that's an error.
1480 	 */
1481 	if (device == NULL)
1482 		return(DM_RET_ERROR);
1483 
1484 	/*
1485 	 * If there are no match entries, then this device matches no
1486 	 * matter what.
1487 	 */
1488 	if ((patterns == NULL) || (num_patterns == 0))
1489 		return(DM_RET_DESCEND | DM_RET_COPY);
1490 
1491 	for (i = 0; i < num_patterns; i++) {
1492 		struct device_match_pattern *cur_pattern;
1493 		struct scsi_vpd_device_id *device_id_page;
1494 
1495 		/*
1496 		 * If the pattern in question isn't for a device node, we
1497 		 * aren't interested.
1498 		 */
1499 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1500 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1501 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1502 				retval |= DM_RET_DESCEND;
1503 			continue;
1504 		}
1505 
1506 		cur_pattern = &patterns[i].pattern.device_pattern;
1507 
1508 		/* Error out if mutually exclusive options are specified. */
1509 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1510 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1511 			return(DM_RET_ERROR);
1512 
1513 		/*
1514 		 * If they want to match any device node, we give them any
1515 		 * device node.
1516 		 */
1517 		if (cur_pattern->flags == DEV_MATCH_ANY)
1518 			goto copy_dev_node;
1519 
1520 		/*
1521 		 * Not sure why someone would do this...
1522 		 */
1523 		if (cur_pattern->flags == DEV_MATCH_NONE)
1524 			continue;
1525 
1526 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1527 		 && (cur_pattern->path_id != device->target->bus->path_id))
1528 			continue;
1529 
1530 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1531 		 && (cur_pattern->target_id != device->target->target_id))
1532 			continue;
1533 
1534 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1535 		 && (cur_pattern->target_lun != device->lun_id))
1536 			continue;
1537 
1538 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1539 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1540 				    (caddr_t)&cur_pattern->data.inq_pat,
1541 				    1, sizeof(cur_pattern->data.inq_pat),
1542 				    scsi_static_inquiry_match) == NULL))
1543 			continue;
1544 
1545 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1546 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1547 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1548 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1549 				      device->device_id_len
1550 				    - SVPD_DEVICE_ID_HDR_LEN,
1551 				      cur_pattern->data.devid_pat.id,
1552 				      cur_pattern->data.devid_pat.id_len) != 0))
1553 			continue;
1554 
1555 copy_dev_node:
1556 		/*
1557 		 * If we get to this point, the user definitely wants
1558 		 * information on this device.  So tell the caller to copy
1559 		 * the data out.
1560 		 */
1561 		retval |= DM_RET_COPY;
1562 
1563 		/*
1564 		 * If the return action has been set to descend, then we
1565 		 * know that we've already seen a peripheral matching
1566 		 * expression, therefore we need to further descend the tree.
1567 		 * This won't change by continuing around the loop, so we
1568 		 * go ahead and return.  If we haven't seen a peripheral
1569 		 * matching expression, we keep going around the loop until
1570 		 * we exhaust the matching expressions.  We'll set the stop
1571 		 * flag once we fall out of the loop.
1572 		 */
1573 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1574 			return(retval);
1575 	}
1576 
1577 	/*
1578 	 * If the return action hasn't been set to descend yet, that means
1579 	 * we haven't seen any peripheral matching patterns.  So tell the
1580 	 * caller to stop descending the tree -- the user doesn't want to
1581 	 * match against lower level tree elements.
1582 	 */
1583 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1584 		retval |= DM_RET_STOP;
1585 
1586 	return(retval);
1587 }
1588 
1589 /*
1590  * Match a single peripheral against any number of match patterns.
1591  */
1592 static dev_match_ret
1593 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1594 	       struct cam_periph *periph)
1595 {
1596 	dev_match_ret retval;
1597 	u_int i;
1598 
1599 	/*
1600 	 * If we aren't given something to match against, that's an error.
1601 	 */
1602 	if (periph == NULL)
1603 		return(DM_RET_ERROR);
1604 
1605 	/*
1606 	 * If there are no match entries, then this peripheral matches no
1607 	 * matter what.
1608 	 */
1609 	if ((patterns == NULL) || (num_patterns == 0))
1610 		return(DM_RET_STOP | DM_RET_COPY);
1611 
1612 	/*
1613 	 * There aren't any nodes below a peripheral node, so there's no
1614 	 * reason to descend the tree any further.
1615 	 */
1616 	retval = DM_RET_STOP;
1617 
1618 	for (i = 0; i < num_patterns; i++) {
1619 		struct periph_match_pattern *cur_pattern;
1620 
1621 		/*
1622 		 * If the pattern in question isn't for a peripheral, we
1623 		 * aren't interested.
1624 		 */
1625 		if (patterns[i].type != DEV_MATCH_PERIPH)
1626 			continue;
1627 
1628 		cur_pattern = &patterns[i].pattern.periph_pattern;
1629 
1630 		/*
1631 		 * If they want to match on anything, then we will do so.
1632 		 */
1633 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1634 			/* set the copy flag */
1635 			retval |= DM_RET_COPY;
1636 
1637 			/*
1638 			 * We've already set the return action to stop,
1639 			 * since there are no nodes below peripherals in
1640 			 * the tree.
1641 			 */
1642 			return(retval);
1643 		}
1644 
1645 		/*
1646 		 * Not sure why someone would do this...
1647 		 */
1648 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1649 			continue;
1650 
1651 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1652 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1653 			continue;
1654 
1655 		/*
1656 		 * For the target and lun id's, we have to make sure the
1657 		 * target and lun pointers aren't NULL.  The xpt peripheral
1658 		 * has a wildcard target and device.
1659 		 */
1660 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1661 		 && ((periph->path->target == NULL)
1662 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1663 			continue;
1664 
1665 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1666 		 && ((periph->path->device == NULL)
1667 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1668 			continue;
1669 
1670 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1671 		 && (cur_pattern->unit_number != periph->unit_number))
1672 			continue;
1673 
1674 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1675 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1676 			     DEV_IDLEN) != 0))
1677 			continue;
1678 
1679 		/*
1680 		 * If we get to this point, the user definitely wants
1681 		 * information on this peripheral.  So tell the caller to
1682 		 * copy the data out.
1683 		 */
1684 		retval |= DM_RET_COPY;
1685 
1686 		/*
1687 		 * The return action has already been set to stop, since
1688 		 * peripherals don't have any nodes below them in the EDT.
1689 		 */
1690 		return(retval);
1691 	}
1692 
1693 	/*
1694 	 * If we get to this point, the peripheral that was passed in
1695 	 * doesn't match any of the patterns.
1696 	 */
1697 	return(retval);
1698 }
1699 
1700 static int
1701 xptedtbusfunc(struct cam_eb *bus, void *arg)
1702 {
1703 	struct ccb_dev_match *cdm;
1704 	struct cam_et *target;
1705 	dev_match_ret retval;
1706 
1707 	cdm = (struct ccb_dev_match *)arg;
1708 
1709 	/*
1710 	 * If our position is for something deeper in the tree, that means
1711 	 * that we've already seen this node.  So, we keep going down.
1712 	 */
1713 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1714 	 && (cdm->pos.cookie.bus == bus)
1715 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1716 	 && (cdm->pos.cookie.target != NULL))
1717 		retval = DM_RET_DESCEND;
1718 	else
1719 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1720 
1721 	/*
1722 	 * If we got an error, bail out of the search.
1723 	 */
1724 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1725 		cdm->status = CAM_DEV_MATCH_ERROR;
1726 		return(0);
1727 	}
1728 
1729 	/*
1730 	 * If the copy flag is set, copy this bus out.
1731 	 */
1732 	if (retval & DM_RET_COPY) {
1733 		int spaceleft, j;
1734 
1735 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1736 			sizeof(struct dev_match_result));
1737 
1738 		/*
1739 		 * If we don't have enough space to put in another
1740 		 * match result, save our position and tell the
1741 		 * user there are more devices to check.
1742 		 */
1743 		if (spaceleft < sizeof(struct dev_match_result)) {
1744 			bzero(&cdm->pos, sizeof(cdm->pos));
1745 			cdm->pos.position_type =
1746 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1747 
1748 			cdm->pos.cookie.bus = bus;
1749 			cdm->pos.generations[CAM_BUS_GENERATION]=
1750 				xsoftc.bus_generation;
1751 			cdm->status = CAM_DEV_MATCH_MORE;
1752 			return(0);
1753 		}
1754 		j = cdm->num_matches;
1755 		cdm->num_matches++;
1756 		cdm->matches[j].type = DEV_MATCH_BUS;
1757 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1758 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1759 		cdm->matches[j].result.bus_result.unit_number =
1760 			bus->sim->unit_number;
1761 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1762 			bus->sim->sim_name,
1763 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1764 	}
1765 
1766 	/*
1767 	 * If the user is only interested in buses, there's no
1768 	 * reason to descend to the next level in the tree.
1769 	 */
1770 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1771 		return(1);
1772 
1773 	/*
1774 	 * If there is a target generation recorded, check it to
1775 	 * make sure the target list hasn't changed.
1776 	 */
1777 	mtx_lock(&bus->eb_mtx);
1778 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1779 	 && (cdm->pos.cookie.bus == bus)
1780 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1781 	 && (cdm->pos.cookie.target != NULL)) {
1782 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1783 		    bus->generation)) {
1784 			mtx_unlock(&bus->eb_mtx);
1785 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1786 			return (0);
1787 		}
1788 		target = (struct cam_et *)cdm->pos.cookie.target;
1789 		target->refcount++;
1790 	} else
1791 		target = NULL;
1792 	mtx_unlock(&bus->eb_mtx);
1793 
1794 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1795 }
1796 
1797 static int
1798 xptedttargetfunc(struct cam_et *target, void *arg)
1799 {
1800 	struct ccb_dev_match *cdm;
1801 	struct cam_eb *bus;
1802 	struct cam_ed *device;
1803 
1804 	cdm = (struct ccb_dev_match *)arg;
1805 	bus = target->bus;
1806 
1807 	/*
1808 	 * If there is a device list generation recorded, check it to
1809 	 * make sure the device list hasn't changed.
1810 	 */
1811 	mtx_lock(&bus->eb_mtx);
1812 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1813 	 && (cdm->pos.cookie.bus == bus)
1814 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1815 	 && (cdm->pos.cookie.target == target)
1816 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1817 	 && (cdm->pos.cookie.device != NULL)) {
1818 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1819 		    target->generation) {
1820 			mtx_unlock(&bus->eb_mtx);
1821 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1822 			return(0);
1823 		}
1824 		device = (struct cam_ed *)cdm->pos.cookie.device;
1825 		device->refcount++;
1826 	} else
1827 		device = NULL;
1828 	mtx_unlock(&bus->eb_mtx);
1829 
1830 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1831 }
1832 
1833 static int
1834 xptedtdevicefunc(struct cam_ed *device, void *arg)
1835 {
1836 	struct cam_eb *bus;
1837 	struct cam_periph *periph;
1838 	struct ccb_dev_match *cdm;
1839 	dev_match_ret retval;
1840 
1841 	cdm = (struct ccb_dev_match *)arg;
1842 	bus = device->target->bus;
1843 
1844 	/*
1845 	 * If our position is for something deeper in the tree, that means
1846 	 * that we've already seen this node.  So, we keep going down.
1847 	 */
1848 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1849 	 && (cdm->pos.cookie.device == device)
1850 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1851 	 && (cdm->pos.cookie.periph != NULL))
1852 		retval = DM_RET_DESCEND;
1853 	else
1854 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1855 					device);
1856 
1857 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1858 		cdm->status = CAM_DEV_MATCH_ERROR;
1859 		return(0);
1860 	}
1861 
1862 	/*
1863 	 * If the copy flag is set, copy this device out.
1864 	 */
1865 	if (retval & DM_RET_COPY) {
1866 		int spaceleft, j;
1867 
1868 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1869 			sizeof(struct dev_match_result));
1870 
1871 		/*
1872 		 * If we don't have enough space to put in another
1873 		 * match result, save our position and tell the
1874 		 * user there are more devices to check.
1875 		 */
1876 		if (spaceleft < sizeof(struct dev_match_result)) {
1877 			bzero(&cdm->pos, sizeof(cdm->pos));
1878 			cdm->pos.position_type =
1879 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1880 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1881 
1882 			cdm->pos.cookie.bus = device->target->bus;
1883 			cdm->pos.generations[CAM_BUS_GENERATION]=
1884 				xsoftc.bus_generation;
1885 			cdm->pos.cookie.target = device->target;
1886 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1887 				device->target->bus->generation;
1888 			cdm->pos.cookie.device = device;
1889 			cdm->pos.generations[CAM_DEV_GENERATION] =
1890 				device->target->generation;
1891 			cdm->status = CAM_DEV_MATCH_MORE;
1892 			return(0);
1893 		}
1894 		j = cdm->num_matches;
1895 		cdm->num_matches++;
1896 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1897 		cdm->matches[j].result.device_result.path_id =
1898 			device->target->bus->path_id;
1899 		cdm->matches[j].result.device_result.target_id =
1900 			device->target->target_id;
1901 		cdm->matches[j].result.device_result.target_lun =
1902 			device->lun_id;
1903 		cdm->matches[j].result.device_result.protocol =
1904 			device->protocol;
1905 		bcopy(&device->inq_data,
1906 		      &cdm->matches[j].result.device_result.inq_data,
1907 		      sizeof(struct scsi_inquiry_data));
1908 		bcopy(&device->ident_data,
1909 		      &cdm->matches[j].result.device_result.ident_data,
1910 		      sizeof(struct ata_params));
1911 
1912 		/* Let the user know whether this device is unconfigured */
1913 		if (device->flags & CAM_DEV_UNCONFIGURED)
1914 			cdm->matches[j].result.device_result.flags =
1915 				DEV_RESULT_UNCONFIGURED;
1916 		else
1917 			cdm->matches[j].result.device_result.flags =
1918 				DEV_RESULT_NOFLAG;
1919 	}
1920 
1921 	/*
1922 	 * If the user isn't interested in peripherals, don't descend
1923 	 * the tree any further.
1924 	 */
1925 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1926 		return(1);
1927 
1928 	/*
1929 	 * If there is a peripheral list generation recorded, make sure
1930 	 * it hasn't changed.
1931 	 */
1932 	xpt_lock_buses();
1933 	mtx_lock(&bus->eb_mtx);
1934 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1935 	 && (cdm->pos.cookie.bus == bus)
1936 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1937 	 && (cdm->pos.cookie.target == device->target)
1938 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1939 	 && (cdm->pos.cookie.device == device)
1940 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1941 	 && (cdm->pos.cookie.periph != NULL)) {
1942 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1943 		    device->generation) {
1944 			mtx_unlock(&bus->eb_mtx);
1945 			xpt_unlock_buses();
1946 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1947 			return(0);
1948 		}
1949 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1950 		periph->refcount++;
1951 	} else
1952 		periph = NULL;
1953 	mtx_unlock(&bus->eb_mtx);
1954 	xpt_unlock_buses();
1955 
1956 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1957 }
1958 
1959 static int
1960 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1961 {
1962 	struct ccb_dev_match *cdm;
1963 	dev_match_ret retval;
1964 
1965 	cdm = (struct ccb_dev_match *)arg;
1966 
1967 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1968 
1969 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1970 		cdm->status = CAM_DEV_MATCH_ERROR;
1971 		return(0);
1972 	}
1973 
1974 	/*
1975 	 * If the copy flag is set, copy this peripheral out.
1976 	 */
1977 	if (retval & DM_RET_COPY) {
1978 		int spaceleft, j;
1979 		size_t l;
1980 
1981 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1982 			sizeof(struct dev_match_result));
1983 
1984 		/*
1985 		 * If we don't have enough space to put in another
1986 		 * match result, save our position and tell the
1987 		 * user there are more devices to check.
1988 		 */
1989 		if (spaceleft < sizeof(struct dev_match_result)) {
1990 			bzero(&cdm->pos, sizeof(cdm->pos));
1991 			cdm->pos.position_type =
1992 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1993 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1994 				CAM_DEV_POS_PERIPH;
1995 
1996 			cdm->pos.cookie.bus = periph->path->bus;
1997 			cdm->pos.generations[CAM_BUS_GENERATION]=
1998 				xsoftc.bus_generation;
1999 			cdm->pos.cookie.target = periph->path->target;
2000 			cdm->pos.generations[CAM_TARGET_GENERATION] =
2001 				periph->path->bus->generation;
2002 			cdm->pos.cookie.device = periph->path->device;
2003 			cdm->pos.generations[CAM_DEV_GENERATION] =
2004 				periph->path->target->generation;
2005 			cdm->pos.cookie.periph = periph;
2006 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2007 				periph->path->device->generation;
2008 			cdm->status = CAM_DEV_MATCH_MORE;
2009 			return(0);
2010 		}
2011 
2012 		j = cdm->num_matches;
2013 		cdm->num_matches++;
2014 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2015 		cdm->matches[j].result.periph_result.path_id =
2016 			periph->path->bus->path_id;
2017 		cdm->matches[j].result.periph_result.target_id =
2018 			periph->path->target->target_id;
2019 		cdm->matches[j].result.periph_result.target_lun =
2020 			periph->path->device->lun_id;
2021 		cdm->matches[j].result.periph_result.unit_number =
2022 			periph->unit_number;
2023 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2024 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2025 			periph->periph_name, l);
2026 	}
2027 
2028 	return(1);
2029 }
2030 
2031 static int
2032 xptedtmatch(struct ccb_dev_match *cdm)
2033 {
2034 	struct cam_eb *bus;
2035 	int ret;
2036 
2037 	cdm->num_matches = 0;
2038 
2039 	/*
2040 	 * Check the bus list generation.  If it has changed, the user
2041 	 * needs to reset everything and start over.
2042 	 */
2043 	xpt_lock_buses();
2044 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
2045 	 && (cdm->pos.cookie.bus != NULL)) {
2046 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
2047 		    xsoftc.bus_generation) {
2048 			xpt_unlock_buses();
2049 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2050 			return(0);
2051 		}
2052 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
2053 		bus->refcount++;
2054 	} else
2055 		bus = NULL;
2056 	xpt_unlock_buses();
2057 
2058 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
2059 
2060 	/*
2061 	 * If we get back 0, that means that we had to stop before fully
2062 	 * traversing the EDT.  It also means that one of the subroutines
2063 	 * has set the status field to the proper value.  If we get back 1,
2064 	 * we've fully traversed the EDT and copied out any matching entries.
2065 	 */
2066 	if (ret == 1)
2067 		cdm->status = CAM_DEV_MATCH_LAST;
2068 
2069 	return(ret);
2070 }
2071 
2072 static int
2073 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
2074 {
2075 	struct cam_periph *periph;
2076 	struct ccb_dev_match *cdm;
2077 
2078 	cdm = (struct ccb_dev_match *)arg;
2079 
2080 	xpt_lock_buses();
2081 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2082 	 && (cdm->pos.cookie.pdrv == pdrv)
2083 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
2084 	 && (cdm->pos.cookie.periph != NULL)) {
2085 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
2086 		    (*pdrv)->generation) {
2087 			xpt_unlock_buses();
2088 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
2089 			return(0);
2090 		}
2091 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
2092 		periph->refcount++;
2093 	} else
2094 		periph = NULL;
2095 	xpt_unlock_buses();
2096 
2097 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
2098 }
2099 
2100 static int
2101 xptplistperiphfunc(struct cam_periph *periph, void *arg)
2102 {
2103 	struct ccb_dev_match *cdm;
2104 	dev_match_ret retval;
2105 
2106 	cdm = (struct ccb_dev_match *)arg;
2107 
2108 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
2109 
2110 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
2111 		cdm->status = CAM_DEV_MATCH_ERROR;
2112 		return(0);
2113 	}
2114 
2115 	/*
2116 	 * If the copy flag is set, copy this peripheral out.
2117 	 */
2118 	if (retval & DM_RET_COPY) {
2119 		int spaceleft, j;
2120 		size_t l;
2121 
2122 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2123 			sizeof(struct dev_match_result));
2124 
2125 		/*
2126 		 * If we don't have enough space to put in another
2127 		 * match result, save our position and tell the
2128 		 * user there are more devices to check.
2129 		 */
2130 		if (spaceleft < sizeof(struct dev_match_result)) {
2131 			struct periph_driver **pdrv;
2132 
2133 			pdrv = NULL;
2134 			bzero(&cdm->pos, sizeof(cdm->pos));
2135 			cdm->pos.position_type =
2136 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2137 				CAM_DEV_POS_PERIPH;
2138 
2139 			/*
2140 			 * This may look a bit non-sensical, but it is
2141 			 * actually quite logical.  There are very few
2142 			 * peripheral drivers, and bloating every peripheral
2143 			 * structure with a pointer back to its parent
2144 			 * peripheral driver linker set entry would cost
2145 			 * more in the long run than doing this quick lookup.
2146 			 */
2147 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2148 				if (strcmp((*pdrv)->driver_name,
2149 				    periph->periph_name) == 0)
2150 					break;
2151 			}
2152 
2153 			if (*pdrv == NULL) {
2154 				cdm->status = CAM_DEV_MATCH_ERROR;
2155 				return(0);
2156 			}
2157 
2158 			cdm->pos.cookie.pdrv = pdrv;
2159 			/*
2160 			 * The periph generation slot does double duty, as
2161 			 * does the periph pointer slot.  They are used for
2162 			 * both edt and pdrv lookups and positioning.
2163 			 */
2164 			cdm->pos.cookie.periph = periph;
2165 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2166 				(*pdrv)->generation;
2167 			cdm->status = CAM_DEV_MATCH_MORE;
2168 			return(0);
2169 		}
2170 
2171 		j = cdm->num_matches;
2172 		cdm->num_matches++;
2173 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2174 		cdm->matches[j].result.periph_result.path_id =
2175 			periph->path->bus->path_id;
2176 
2177 		/*
2178 		 * The transport layer peripheral doesn't have a target or
2179 		 * lun.
2180 		 */
2181 		if (periph->path->target)
2182 			cdm->matches[j].result.periph_result.target_id =
2183 				periph->path->target->target_id;
2184 		else
2185 			cdm->matches[j].result.periph_result.target_id =
2186 				CAM_TARGET_WILDCARD;
2187 
2188 		if (periph->path->device)
2189 			cdm->matches[j].result.periph_result.target_lun =
2190 				periph->path->device->lun_id;
2191 		else
2192 			cdm->matches[j].result.periph_result.target_lun =
2193 				CAM_LUN_WILDCARD;
2194 
2195 		cdm->matches[j].result.periph_result.unit_number =
2196 			periph->unit_number;
2197 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2198 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2199 			periph->periph_name, l);
2200 	}
2201 
2202 	return(1);
2203 }
2204 
2205 static int
2206 xptperiphlistmatch(struct ccb_dev_match *cdm)
2207 {
2208 	int ret;
2209 
2210 	cdm->num_matches = 0;
2211 
2212 	/*
2213 	 * At this point in the edt traversal function, we check the bus
2214 	 * list generation to make sure that no buses have been added or
2215 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2216 	 * For the peripheral driver list traversal function, however, we
2217 	 * don't have to worry about new peripheral driver types coming or
2218 	 * going; they're in a linker set, and therefore can't change
2219 	 * without a recompile.
2220 	 */
2221 
2222 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2223 	 && (cdm->pos.cookie.pdrv != NULL))
2224 		ret = xptpdrvtraverse(
2225 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2226 				xptplistpdrvfunc, cdm);
2227 	else
2228 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2229 
2230 	/*
2231 	 * If we get back 0, that means that we had to stop before fully
2232 	 * traversing the peripheral driver tree.  It also means that one of
2233 	 * the subroutines has set the status field to the proper value.  If
2234 	 * we get back 1, we've fully traversed the EDT and copied out any
2235 	 * matching entries.
2236 	 */
2237 	if (ret == 1)
2238 		cdm->status = CAM_DEV_MATCH_LAST;
2239 
2240 	return(ret);
2241 }
2242 
2243 static int
2244 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2245 {
2246 	struct cam_eb *bus, *next_bus;
2247 	int retval;
2248 
2249 	retval = 1;
2250 	if (start_bus)
2251 		bus = start_bus;
2252 	else {
2253 		xpt_lock_buses();
2254 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2255 		if (bus == NULL) {
2256 			xpt_unlock_buses();
2257 			return (retval);
2258 		}
2259 		bus->refcount++;
2260 		xpt_unlock_buses();
2261 	}
2262 	for (; bus != NULL; bus = next_bus) {
2263 		retval = tr_func(bus, arg);
2264 		if (retval == 0) {
2265 			xpt_release_bus(bus);
2266 			break;
2267 		}
2268 		xpt_lock_buses();
2269 		next_bus = TAILQ_NEXT(bus, links);
2270 		if (next_bus)
2271 			next_bus->refcount++;
2272 		xpt_unlock_buses();
2273 		xpt_release_bus(bus);
2274 	}
2275 	return(retval);
2276 }
2277 
2278 static int
2279 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2280 		  xpt_targetfunc_t *tr_func, void *arg)
2281 {
2282 	struct cam_et *target, *next_target;
2283 	int retval;
2284 
2285 	retval = 1;
2286 	if (start_target)
2287 		target = start_target;
2288 	else {
2289 		mtx_lock(&bus->eb_mtx);
2290 		target = TAILQ_FIRST(&bus->et_entries);
2291 		if (target == NULL) {
2292 			mtx_unlock(&bus->eb_mtx);
2293 			return (retval);
2294 		}
2295 		target->refcount++;
2296 		mtx_unlock(&bus->eb_mtx);
2297 	}
2298 	for (; target != NULL; target = next_target) {
2299 		retval = tr_func(target, arg);
2300 		if (retval == 0) {
2301 			xpt_release_target(target);
2302 			break;
2303 		}
2304 		mtx_lock(&bus->eb_mtx);
2305 		next_target = TAILQ_NEXT(target, links);
2306 		if (next_target)
2307 			next_target->refcount++;
2308 		mtx_unlock(&bus->eb_mtx);
2309 		xpt_release_target(target);
2310 	}
2311 	return(retval);
2312 }
2313 
2314 static int
2315 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2316 		  xpt_devicefunc_t *tr_func, void *arg)
2317 {
2318 	struct cam_eb *bus;
2319 	struct cam_ed *device, *next_device;
2320 	int retval;
2321 
2322 	retval = 1;
2323 	bus = target->bus;
2324 	if (start_device)
2325 		device = start_device;
2326 	else {
2327 		mtx_lock(&bus->eb_mtx);
2328 		device = TAILQ_FIRST(&target->ed_entries);
2329 		if (device == NULL) {
2330 			mtx_unlock(&bus->eb_mtx);
2331 			return (retval);
2332 		}
2333 		device->refcount++;
2334 		mtx_unlock(&bus->eb_mtx);
2335 	}
2336 	for (; device != NULL; device = next_device) {
2337 		mtx_lock(&device->device_mtx);
2338 		retval = tr_func(device, arg);
2339 		mtx_unlock(&device->device_mtx);
2340 		if (retval == 0) {
2341 			xpt_release_device(device);
2342 			break;
2343 		}
2344 		mtx_lock(&bus->eb_mtx);
2345 		next_device = TAILQ_NEXT(device, links);
2346 		if (next_device)
2347 			next_device->refcount++;
2348 		mtx_unlock(&bus->eb_mtx);
2349 		xpt_release_device(device);
2350 	}
2351 	return(retval);
2352 }
2353 
2354 static int
2355 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2356 		  xpt_periphfunc_t *tr_func, void *arg)
2357 {
2358 	struct cam_eb *bus;
2359 	struct cam_periph *periph, *next_periph;
2360 	int retval;
2361 
2362 	retval = 1;
2363 
2364 	bus = device->target->bus;
2365 	if (start_periph)
2366 		periph = start_periph;
2367 	else {
2368 		xpt_lock_buses();
2369 		mtx_lock(&bus->eb_mtx);
2370 		periph = SLIST_FIRST(&device->periphs);
2371 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2372 			periph = SLIST_NEXT(periph, periph_links);
2373 		if (periph == NULL) {
2374 			mtx_unlock(&bus->eb_mtx);
2375 			xpt_unlock_buses();
2376 			return (retval);
2377 		}
2378 		periph->refcount++;
2379 		mtx_unlock(&bus->eb_mtx);
2380 		xpt_unlock_buses();
2381 	}
2382 	for (; periph != NULL; periph = next_periph) {
2383 		retval = tr_func(periph, arg);
2384 		if (retval == 0) {
2385 			cam_periph_release_locked(periph);
2386 			break;
2387 		}
2388 		xpt_lock_buses();
2389 		mtx_lock(&bus->eb_mtx);
2390 		next_periph = SLIST_NEXT(periph, periph_links);
2391 		while (next_periph != NULL &&
2392 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2393 			next_periph = SLIST_NEXT(next_periph, periph_links);
2394 		if (next_periph)
2395 			next_periph->refcount++;
2396 		mtx_unlock(&bus->eb_mtx);
2397 		xpt_unlock_buses();
2398 		cam_periph_release_locked(periph);
2399 	}
2400 	return(retval);
2401 }
2402 
2403 static int
2404 xptpdrvtraverse(struct periph_driver **start_pdrv,
2405 		xpt_pdrvfunc_t *tr_func, void *arg)
2406 {
2407 	struct periph_driver **pdrv;
2408 	int retval;
2409 
2410 	retval = 1;
2411 
2412 	/*
2413 	 * We don't traverse the peripheral driver list like we do the
2414 	 * other lists, because it is a linker set, and therefore cannot be
2415 	 * changed during runtime.  If the peripheral driver list is ever
2416 	 * re-done to be something other than a linker set (i.e. it can
2417 	 * change while the system is running), the list traversal should
2418 	 * be modified to work like the other traversal functions.
2419 	 */
2420 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2421 	     *pdrv != NULL; pdrv++) {
2422 		retval = tr_func(pdrv, arg);
2423 
2424 		if (retval == 0)
2425 			return(retval);
2426 	}
2427 
2428 	return(retval);
2429 }
2430 
2431 static int
2432 xptpdperiphtraverse(struct periph_driver **pdrv,
2433 		    struct cam_periph *start_periph,
2434 		    xpt_periphfunc_t *tr_func, void *arg)
2435 {
2436 	struct cam_periph *periph, *next_periph;
2437 	int retval;
2438 
2439 	retval = 1;
2440 
2441 	if (start_periph)
2442 		periph = start_periph;
2443 	else {
2444 		xpt_lock_buses();
2445 		periph = TAILQ_FIRST(&(*pdrv)->units);
2446 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2447 			periph = TAILQ_NEXT(periph, unit_links);
2448 		if (periph == NULL) {
2449 			xpt_unlock_buses();
2450 			return (retval);
2451 		}
2452 		periph->refcount++;
2453 		xpt_unlock_buses();
2454 	}
2455 	for (; periph != NULL; periph = next_periph) {
2456 		cam_periph_lock(periph);
2457 		retval = tr_func(periph, arg);
2458 		cam_periph_unlock(periph);
2459 		if (retval == 0) {
2460 			cam_periph_release(periph);
2461 			break;
2462 		}
2463 		xpt_lock_buses();
2464 		next_periph = TAILQ_NEXT(periph, unit_links);
2465 		while (next_periph != NULL &&
2466 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2467 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2468 		if (next_periph)
2469 			next_periph->refcount++;
2470 		xpt_unlock_buses();
2471 		cam_periph_release(periph);
2472 	}
2473 	return(retval);
2474 }
2475 
2476 static int
2477 xptdefbusfunc(struct cam_eb *bus, void *arg)
2478 {
2479 	struct xpt_traverse_config *tr_config;
2480 
2481 	tr_config = (struct xpt_traverse_config *)arg;
2482 
2483 	if (tr_config->depth == XPT_DEPTH_BUS) {
2484 		xpt_busfunc_t *tr_func;
2485 
2486 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2487 
2488 		return(tr_func(bus, tr_config->tr_arg));
2489 	} else
2490 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2491 }
2492 
2493 static int
2494 xptdeftargetfunc(struct cam_et *target, void *arg)
2495 {
2496 	struct xpt_traverse_config *tr_config;
2497 
2498 	tr_config = (struct xpt_traverse_config *)arg;
2499 
2500 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2501 		xpt_targetfunc_t *tr_func;
2502 
2503 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2504 
2505 		return(tr_func(target, tr_config->tr_arg));
2506 	} else
2507 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2508 }
2509 
2510 static int
2511 xptdefdevicefunc(struct cam_ed *device, void *arg)
2512 {
2513 	struct xpt_traverse_config *tr_config;
2514 
2515 	tr_config = (struct xpt_traverse_config *)arg;
2516 
2517 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2518 		xpt_devicefunc_t *tr_func;
2519 
2520 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2521 
2522 		return(tr_func(device, tr_config->tr_arg));
2523 	} else
2524 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2525 }
2526 
2527 static int
2528 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2529 {
2530 	struct xpt_traverse_config *tr_config;
2531 	xpt_periphfunc_t *tr_func;
2532 
2533 	tr_config = (struct xpt_traverse_config *)arg;
2534 
2535 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2536 
2537 	/*
2538 	 * Unlike the other default functions, we don't check for depth
2539 	 * here.  The peripheral driver level is the last level in the EDT,
2540 	 * so if we're here, we should execute the function in question.
2541 	 */
2542 	return(tr_func(periph, tr_config->tr_arg));
2543 }
2544 
2545 /*
2546  * Execute the given function for every bus in the EDT.
2547  */
2548 static int
2549 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2550 {
2551 	struct xpt_traverse_config tr_config;
2552 
2553 	tr_config.depth = XPT_DEPTH_BUS;
2554 	tr_config.tr_func = tr_func;
2555 	tr_config.tr_arg = arg;
2556 
2557 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2558 }
2559 
2560 /*
2561  * Execute the given function for every device in the EDT.
2562  */
2563 static int
2564 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2565 {
2566 	struct xpt_traverse_config tr_config;
2567 
2568 	tr_config.depth = XPT_DEPTH_DEVICE;
2569 	tr_config.tr_func = tr_func;
2570 	tr_config.tr_arg = arg;
2571 
2572 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2573 }
2574 
2575 static int
2576 xptsetasyncfunc(struct cam_ed *device, void *arg)
2577 {
2578 	struct cam_path path;
2579 	struct ccb_getdev cgd;
2580 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2581 
2582 	/*
2583 	 * Don't report unconfigured devices (Wildcard devs,
2584 	 * devices only for target mode, device instances
2585 	 * that have been invalidated but are waiting for
2586 	 * their last reference count to be released).
2587 	 */
2588 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2589 		return (1);
2590 
2591 	xpt_compile_path(&path,
2592 			 NULL,
2593 			 device->target->bus->path_id,
2594 			 device->target->target_id,
2595 			 device->lun_id);
2596 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2597 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2598 	xpt_action((union ccb *)&cgd);
2599 	csa->callback(csa->callback_arg,
2600 			    AC_FOUND_DEVICE,
2601 			    &path, &cgd);
2602 	xpt_release_path(&path);
2603 
2604 	return(1);
2605 }
2606 
2607 static int
2608 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2609 {
2610 	struct cam_path path;
2611 	struct ccb_pathinq cpi;
2612 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2613 
2614 	xpt_compile_path(&path, /*periph*/NULL,
2615 			 bus->path_id,
2616 			 CAM_TARGET_WILDCARD,
2617 			 CAM_LUN_WILDCARD);
2618 	xpt_path_lock(&path);
2619 	xpt_path_inq(&cpi, &path);
2620 	csa->callback(csa->callback_arg,
2621 			    AC_PATH_REGISTERED,
2622 			    &path, &cpi);
2623 	xpt_path_unlock(&path);
2624 	xpt_release_path(&path);
2625 
2626 	return(1);
2627 }
2628 
2629 void
2630 xpt_action(union ccb *start_ccb)
2631 {
2632 
2633 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2634 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2635 		xpt_action_name(start_ccb->ccb_h.func_code)));
2636 
2637 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2638 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2639 }
2640 
2641 void
2642 xpt_action_default(union ccb *start_ccb)
2643 {
2644 	struct cam_path *path;
2645 	struct cam_sim *sim;
2646 	struct mtx *mtx;
2647 
2648 	path = start_ccb->ccb_h.path;
2649 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2650 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2651 		xpt_action_name(start_ccb->ccb_h.func_code)));
2652 
2653 	switch (start_ccb->ccb_h.func_code) {
2654 	case XPT_SCSI_IO:
2655 	{
2656 		struct cam_ed *device;
2657 
2658 		/*
2659 		 * For the sake of compatibility with SCSI-1
2660 		 * devices that may not understand the identify
2661 		 * message, we include lun information in the
2662 		 * second byte of all commands.  SCSI-1 specifies
2663 		 * that luns are a 3 bit value and reserves only 3
2664 		 * bits for lun information in the CDB.  Later
2665 		 * revisions of the SCSI spec allow for more than 8
2666 		 * luns, but have deprecated lun information in the
2667 		 * CDB.  So, if the lun won't fit, we must omit.
2668 		 *
2669 		 * Also be aware that during initial probing for devices,
2670 		 * the inquiry information is unknown but initialized to 0.
2671 		 * This means that this code will be exercised while probing
2672 		 * devices with an ANSI revision greater than 2.
2673 		 */
2674 		device = path->device;
2675 		if (device->protocol_version <= SCSI_REV_2
2676 		 && start_ccb->ccb_h.target_lun < 8
2677 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2678 
2679 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2680 			    start_ccb->ccb_h.target_lun << 5;
2681 		}
2682 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2683 	}
2684 	/* FALLTHROUGH */
2685 	case XPT_TARGET_IO:
2686 	case XPT_CONT_TARGET_IO:
2687 		start_ccb->csio.sense_resid = 0;
2688 		start_ccb->csio.resid = 0;
2689 		/* FALLTHROUGH */
2690 	case XPT_ATA_IO:
2691 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2692 			start_ccb->ataio.resid = 0;
2693 		/* FALLTHROUGH */
2694 	case XPT_NVME_IO:
2695 		/* FALLTHROUGH */
2696 	case XPT_NVME_ADMIN:
2697 		/* FALLTHROUGH */
2698 	case XPT_MMC_IO:
2699 		/* XXX just like nmve_io? */
2700 	case XPT_RESET_DEV:
2701 	case XPT_ENG_EXEC:
2702 	case XPT_SMP_IO:
2703 	{
2704 		struct cam_devq *devq;
2705 
2706 		devq = path->bus->sim->devq;
2707 		mtx_lock(&devq->send_mtx);
2708 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2709 		if (xpt_schedule_devq(devq, path->device) != 0)
2710 			xpt_run_devq(devq);
2711 		mtx_unlock(&devq->send_mtx);
2712 		break;
2713 	}
2714 	case XPT_CALC_GEOMETRY:
2715 		/* Filter out garbage */
2716 		if (start_ccb->ccg.block_size == 0
2717 		 || start_ccb->ccg.volume_size == 0) {
2718 			start_ccb->ccg.cylinders = 0;
2719 			start_ccb->ccg.heads = 0;
2720 			start_ccb->ccg.secs_per_track = 0;
2721 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2722 			break;
2723 		}
2724 #if defined(__sparc64__)
2725 		/*
2726 		 * For sparc64, we may need adjust the geometry of large
2727 		 * disks in order to fit the limitations of the 16-bit
2728 		 * fields of the VTOC8 disk label.
2729 		 */
2730 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2731 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2732 			break;
2733 		}
2734 #endif
2735 		goto call_sim;
2736 	case XPT_ABORT:
2737 	{
2738 		union ccb* abort_ccb;
2739 
2740 		abort_ccb = start_ccb->cab.abort_ccb;
2741 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2742 			struct cam_ed *device;
2743 			struct cam_devq *devq;
2744 
2745 			device = abort_ccb->ccb_h.path->device;
2746 			devq = device->sim->devq;
2747 
2748 			mtx_lock(&devq->send_mtx);
2749 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2750 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2751 				abort_ccb->ccb_h.status =
2752 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2753 				xpt_freeze_devq_device(device, 1);
2754 				mtx_unlock(&devq->send_mtx);
2755 				xpt_done(abort_ccb);
2756 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2757 				break;
2758 			}
2759 			mtx_unlock(&devq->send_mtx);
2760 
2761 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2762 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2763 				/*
2764 				 * We've caught this ccb en route to
2765 				 * the SIM.  Flag it for abort and the
2766 				 * SIM will do so just before starting
2767 				 * real work on the CCB.
2768 				 */
2769 				abort_ccb->ccb_h.status =
2770 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2771 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2772 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2773 				break;
2774 			}
2775 		}
2776 		if (XPT_FC_IS_QUEUED(abort_ccb)
2777 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2778 			/*
2779 			 * It's already completed but waiting
2780 			 * for our SWI to get to it.
2781 			 */
2782 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2783 			break;
2784 		}
2785 		/*
2786 		 * If we weren't able to take care of the abort request
2787 		 * in the XPT, pass the request down to the SIM for processing.
2788 		 */
2789 	}
2790 	/* FALLTHROUGH */
2791 	case XPT_ACCEPT_TARGET_IO:
2792 	case XPT_EN_LUN:
2793 	case XPT_IMMED_NOTIFY:
2794 	case XPT_NOTIFY_ACK:
2795 	case XPT_RESET_BUS:
2796 	case XPT_IMMEDIATE_NOTIFY:
2797 	case XPT_NOTIFY_ACKNOWLEDGE:
2798 	case XPT_GET_SIM_KNOB_OLD:
2799 	case XPT_GET_SIM_KNOB:
2800 	case XPT_SET_SIM_KNOB:
2801 	case XPT_GET_TRAN_SETTINGS:
2802 	case XPT_SET_TRAN_SETTINGS:
2803 	case XPT_PATH_INQ:
2804 call_sim:
2805 		sim = path->bus->sim;
2806 		mtx = sim->mtx;
2807 		if (mtx && !mtx_owned(mtx))
2808 			mtx_lock(mtx);
2809 		else
2810 			mtx = NULL;
2811 
2812 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2813 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2814 		(*(sim->sim_action))(sim, start_ccb);
2815 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2816 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2817 		if (mtx)
2818 			mtx_unlock(mtx);
2819 		break;
2820 	case XPT_PATH_STATS:
2821 		start_ccb->cpis.last_reset = path->bus->last_reset;
2822 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2823 		break;
2824 	case XPT_GDEV_TYPE:
2825 	{
2826 		struct cam_ed *dev;
2827 
2828 		dev = path->device;
2829 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2830 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2831 		} else {
2832 			struct ccb_getdev *cgd;
2833 
2834 			cgd = &start_ccb->cgd;
2835 			cgd->protocol = dev->protocol;
2836 			cgd->inq_data = dev->inq_data;
2837 			cgd->ident_data = dev->ident_data;
2838 			cgd->inq_flags = dev->inq_flags;
2839 			cgd->ccb_h.status = CAM_REQ_CMP;
2840 			cgd->serial_num_len = dev->serial_num_len;
2841 			if ((dev->serial_num_len > 0)
2842 			 && (dev->serial_num != NULL))
2843 				bcopy(dev->serial_num, cgd->serial_num,
2844 				      dev->serial_num_len);
2845 		}
2846 		break;
2847 	}
2848 	case XPT_GDEV_STATS:
2849 	{
2850 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2851 		struct cam_ed *dev = path->device;
2852 		struct cam_eb *bus = path->bus;
2853 		struct cam_et *tar = path->target;
2854 		struct cam_devq *devq = bus->sim->devq;
2855 
2856 		mtx_lock(&devq->send_mtx);
2857 		cgds->dev_openings = dev->ccbq.dev_openings;
2858 		cgds->dev_active = dev->ccbq.dev_active;
2859 		cgds->allocated = dev->ccbq.allocated;
2860 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2861 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2862 		cgds->last_reset = tar->last_reset;
2863 		cgds->maxtags = dev->maxtags;
2864 		cgds->mintags = dev->mintags;
2865 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2866 			cgds->last_reset = bus->last_reset;
2867 		mtx_unlock(&devq->send_mtx);
2868 		cgds->ccb_h.status = CAM_REQ_CMP;
2869 		break;
2870 	}
2871 	case XPT_GDEVLIST:
2872 	{
2873 		struct cam_periph	*nperiph;
2874 		struct periph_list	*periph_head;
2875 		struct ccb_getdevlist	*cgdl;
2876 		u_int			i;
2877 		struct cam_ed		*device;
2878 		int			found;
2879 
2880 
2881 		found = 0;
2882 
2883 		/*
2884 		 * Don't want anyone mucking with our data.
2885 		 */
2886 		device = path->device;
2887 		periph_head = &device->periphs;
2888 		cgdl = &start_ccb->cgdl;
2889 
2890 		/*
2891 		 * Check and see if the list has changed since the user
2892 		 * last requested a list member.  If so, tell them that the
2893 		 * list has changed, and therefore they need to start over
2894 		 * from the beginning.
2895 		 */
2896 		if ((cgdl->index != 0) &&
2897 		    (cgdl->generation != device->generation)) {
2898 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2899 			break;
2900 		}
2901 
2902 		/*
2903 		 * Traverse the list of peripherals and attempt to find
2904 		 * the requested peripheral.
2905 		 */
2906 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2907 		     (nperiph != NULL) && (i <= cgdl->index);
2908 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2909 			if (i == cgdl->index) {
2910 				strlcpy(cgdl->periph_name,
2911 					nperiph->periph_name,
2912 					sizeof(cgdl->periph_name));
2913 				cgdl->unit_number = nperiph->unit_number;
2914 				found = 1;
2915 			}
2916 		}
2917 		if (found == 0) {
2918 			cgdl->status = CAM_GDEVLIST_ERROR;
2919 			break;
2920 		}
2921 
2922 		if (nperiph == NULL)
2923 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2924 		else
2925 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2926 
2927 		cgdl->index++;
2928 		cgdl->generation = device->generation;
2929 
2930 		cgdl->ccb_h.status = CAM_REQ_CMP;
2931 		break;
2932 	}
2933 	case XPT_DEV_MATCH:
2934 	{
2935 		dev_pos_type position_type;
2936 		struct ccb_dev_match *cdm;
2937 
2938 		cdm = &start_ccb->cdm;
2939 
2940 		/*
2941 		 * There are two ways of getting at information in the EDT.
2942 		 * The first way is via the primary EDT tree.  It starts
2943 		 * with a list of buses, then a list of targets on a bus,
2944 		 * then devices/luns on a target, and then peripherals on a
2945 		 * device/lun.  The "other" way is by the peripheral driver
2946 		 * lists.  The peripheral driver lists are organized by
2947 		 * peripheral driver.  (obviously)  So it makes sense to
2948 		 * use the peripheral driver list if the user is looking
2949 		 * for something like "da1", or all "da" devices.  If the
2950 		 * user is looking for something on a particular bus/target
2951 		 * or lun, it's generally better to go through the EDT tree.
2952 		 */
2953 
2954 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2955 			position_type = cdm->pos.position_type;
2956 		else {
2957 			u_int i;
2958 
2959 			position_type = CAM_DEV_POS_NONE;
2960 
2961 			for (i = 0; i < cdm->num_patterns; i++) {
2962 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2963 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2964 					position_type = CAM_DEV_POS_EDT;
2965 					break;
2966 				}
2967 			}
2968 
2969 			if (cdm->num_patterns == 0)
2970 				position_type = CAM_DEV_POS_EDT;
2971 			else if (position_type == CAM_DEV_POS_NONE)
2972 				position_type = CAM_DEV_POS_PDRV;
2973 		}
2974 
2975 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2976 		case CAM_DEV_POS_EDT:
2977 			xptedtmatch(cdm);
2978 			break;
2979 		case CAM_DEV_POS_PDRV:
2980 			xptperiphlistmatch(cdm);
2981 			break;
2982 		default:
2983 			cdm->status = CAM_DEV_MATCH_ERROR;
2984 			break;
2985 		}
2986 
2987 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2988 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2989 		else
2990 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2991 
2992 		break;
2993 	}
2994 	case XPT_SASYNC_CB:
2995 	{
2996 		struct ccb_setasync *csa;
2997 		struct async_node *cur_entry;
2998 		struct async_list *async_head;
2999 		u_int32_t added;
3000 
3001 		csa = &start_ccb->csa;
3002 		added = csa->event_enable;
3003 		async_head = &path->device->asyncs;
3004 
3005 		/*
3006 		 * If there is already an entry for us, simply
3007 		 * update it.
3008 		 */
3009 		cur_entry = SLIST_FIRST(async_head);
3010 		while (cur_entry != NULL) {
3011 			if ((cur_entry->callback_arg == csa->callback_arg)
3012 			 && (cur_entry->callback == csa->callback))
3013 				break;
3014 			cur_entry = SLIST_NEXT(cur_entry, links);
3015 		}
3016 
3017 		if (cur_entry != NULL) {
3018 		 	/*
3019 			 * If the request has no flags set,
3020 			 * remove the entry.
3021 			 */
3022 			added &= ~cur_entry->event_enable;
3023 			if (csa->event_enable == 0) {
3024 				SLIST_REMOVE(async_head, cur_entry,
3025 					     async_node, links);
3026 				xpt_release_device(path->device);
3027 				free(cur_entry, M_CAMXPT);
3028 			} else {
3029 				cur_entry->event_enable = csa->event_enable;
3030 			}
3031 			csa->event_enable = added;
3032 		} else {
3033 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
3034 					   M_NOWAIT);
3035 			if (cur_entry == NULL) {
3036 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
3037 				break;
3038 			}
3039 			cur_entry->event_enable = csa->event_enable;
3040 			cur_entry->event_lock = (path->bus->sim->mtx &&
3041 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
3042 			cur_entry->callback_arg = csa->callback_arg;
3043 			cur_entry->callback = csa->callback;
3044 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
3045 			xpt_acquire_device(path->device);
3046 		}
3047 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3048 		break;
3049 	}
3050 	case XPT_REL_SIMQ:
3051 	{
3052 		struct ccb_relsim *crs;
3053 		struct cam_ed *dev;
3054 
3055 		crs = &start_ccb->crs;
3056 		dev = path->device;
3057 		if (dev == NULL) {
3058 
3059 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
3060 			break;
3061 		}
3062 
3063 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
3064 
3065 			/* Don't ever go below one opening */
3066 			if (crs->openings > 0) {
3067 				xpt_dev_ccbq_resize(path, crs->openings);
3068 				if (bootverbose) {
3069 					xpt_print(path,
3070 					    "number of openings is now %d\n",
3071 					    crs->openings);
3072 				}
3073 			}
3074 		}
3075 
3076 		mtx_lock(&dev->sim->devq->send_mtx);
3077 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
3078 
3079 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
3080 
3081 				/*
3082 				 * Just extend the old timeout and decrement
3083 				 * the freeze count so that a single timeout
3084 				 * is sufficient for releasing the queue.
3085 				 */
3086 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3087 				callout_stop(&dev->callout);
3088 			} else {
3089 
3090 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3091 			}
3092 
3093 			callout_reset_sbt(&dev->callout,
3094 			    SBT_1MS * crs->release_timeout, 0,
3095 			    xpt_release_devq_timeout, dev, 0);
3096 
3097 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
3098 
3099 		}
3100 
3101 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
3102 
3103 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
3104 				/*
3105 				 * Decrement the freeze count so that a single
3106 				 * completion is still sufficient to unfreeze
3107 				 * the queue.
3108 				 */
3109 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3110 			} else {
3111 
3112 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
3113 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3114 			}
3115 		}
3116 
3117 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
3118 
3119 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
3120 			 || (dev->ccbq.dev_active == 0)) {
3121 
3122 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
3123 			} else {
3124 
3125 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
3126 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
3127 			}
3128 		}
3129 		mtx_unlock(&dev->sim->devq->send_mtx);
3130 
3131 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
3132 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3133 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3134 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3135 		break;
3136 	}
3137 	case XPT_DEBUG: {
3138 		struct cam_path *oldpath;
3139 
3140 		/* Check that all request bits are supported. */
3141 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3142 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3143 			break;
3144 		}
3145 
3146 		cam_dflags = CAM_DEBUG_NONE;
3147 		if (cam_dpath != NULL) {
3148 			oldpath = cam_dpath;
3149 			cam_dpath = NULL;
3150 			xpt_free_path(oldpath);
3151 		}
3152 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3153 			if (xpt_create_path(&cam_dpath, NULL,
3154 					    start_ccb->ccb_h.path_id,
3155 					    start_ccb->ccb_h.target_id,
3156 					    start_ccb->ccb_h.target_lun) !=
3157 					    CAM_REQ_CMP) {
3158 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3159 			} else {
3160 				cam_dflags = start_ccb->cdbg.flags;
3161 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3162 				xpt_print(cam_dpath, "debugging flags now %x\n",
3163 				    cam_dflags);
3164 			}
3165 		} else
3166 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3167 		break;
3168 	}
3169 	case XPT_NOOP:
3170 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3171 			xpt_freeze_devq(path, 1);
3172 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3173 		break;
3174 	case XPT_REPROBE_LUN:
3175 		xpt_async(AC_INQ_CHANGED, path, NULL);
3176 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3177 		xpt_done(start_ccb);
3178 		break;
3179 	default:
3180 	case XPT_SDEV_TYPE:
3181 	case XPT_TERM_IO:
3182 	case XPT_ENG_INQ:
3183 		/* XXX Implement */
3184 		xpt_print(start_ccb->ccb_h.path,
3185 		    "%s: CCB type %#x %s not supported\n", __func__,
3186 		    start_ccb->ccb_h.func_code,
3187 		    xpt_action_name(start_ccb->ccb_h.func_code));
3188 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3189 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3190 			xpt_done(start_ccb);
3191 		}
3192 		break;
3193 	}
3194 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3195 	    ("xpt_action_default: func= %#x %s status %#x\n",
3196 		start_ccb->ccb_h.func_code,
3197  		xpt_action_name(start_ccb->ccb_h.func_code),
3198 		start_ccb->ccb_h.status));
3199 }
3200 
3201 uint32_t
3202 xpt_poll_setup(union ccb *start_ccb)
3203 {
3204 	u_int32_t timeout;
3205 	struct	  cam_sim *sim;
3206 	struct	  cam_devq *devq;
3207 	struct	  cam_ed *dev;
3208 	struct mtx *mtx;
3209 
3210 	timeout = start_ccb->ccb_h.timeout * 10;
3211 	sim = start_ccb->ccb_h.path->bus->sim;
3212 	devq = sim->devq;
3213 	mtx = sim->mtx;
3214 	dev = start_ccb->ccb_h.path->device;
3215 
3216 	/*
3217 	 * Steal an opening so that no other queued requests
3218 	 * can get it before us while we simulate interrupts.
3219 	 */
3220 	mtx_lock(&devq->send_mtx);
3221 	dev->ccbq.dev_openings--;
3222 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3223 	    (--timeout > 0)) {
3224 		mtx_unlock(&devq->send_mtx);
3225 		DELAY(100);
3226 		if (mtx)
3227 			mtx_lock(mtx);
3228 		(*(sim->sim_poll))(sim);
3229 		if (mtx)
3230 			mtx_unlock(mtx);
3231 		camisr_runqueue();
3232 		mtx_lock(&devq->send_mtx);
3233 	}
3234 	dev->ccbq.dev_openings++;
3235 	mtx_unlock(&devq->send_mtx);
3236 
3237 	return (timeout);
3238 }
3239 
3240 void
3241 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3242 {
3243 	struct cam_sim	*sim;
3244 	struct mtx	*mtx;
3245 
3246 	sim = start_ccb->ccb_h.path->bus->sim;
3247 	mtx = sim->mtx;
3248 
3249 	while (--timeout > 0) {
3250 		if (mtx)
3251 			mtx_lock(mtx);
3252 		(*(sim->sim_poll))(sim);
3253 		if (mtx)
3254 			mtx_unlock(mtx);
3255 		camisr_runqueue();
3256 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3257 		    != CAM_REQ_INPROG)
3258 			break;
3259 		DELAY(100);
3260 	}
3261 
3262 	if (timeout == 0) {
3263 		/*
3264 		 * XXX Is it worth adding a sim_timeout entry
3265 		 * point so we can attempt recovery?  If
3266 		 * this is only used for dumps, I don't think
3267 		 * it is.
3268 		 */
3269 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3270 	}
3271 }
3272 
3273 void
3274 xpt_polled_action(union ccb *start_ccb)
3275 {
3276 	uint32_t	timeout;
3277 	struct cam_ed	*dev;
3278 
3279 	timeout = start_ccb->ccb_h.timeout * 10;
3280 	dev = start_ccb->ccb_h.path->device;
3281 
3282 	mtx_unlock(&dev->device_mtx);
3283 
3284 	timeout = xpt_poll_setup(start_ccb);
3285 	if (timeout > 0) {
3286 		xpt_action(start_ccb);
3287 		xpt_pollwait(start_ccb, timeout);
3288 	} else {
3289 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3290 	}
3291 
3292 	mtx_lock(&dev->device_mtx);
3293 }
3294 
3295 /*
3296  * Schedule a peripheral driver to receive a ccb when its
3297  * target device has space for more transactions.
3298  */
3299 void
3300 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3301 {
3302 
3303 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3304 	cam_periph_assert(periph, MA_OWNED);
3305 	if (new_priority < periph->scheduled_priority) {
3306 		periph->scheduled_priority = new_priority;
3307 		xpt_run_allocq(periph, 0);
3308 	}
3309 }
3310 
3311 
3312 /*
3313  * Schedule a device to run on a given queue.
3314  * If the device was inserted as a new entry on the queue,
3315  * return 1 meaning the device queue should be run. If we
3316  * were already queued, implying someone else has already
3317  * started the queue, return 0 so the caller doesn't attempt
3318  * to run the queue.
3319  */
3320 static int
3321 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3322 		 u_int32_t new_priority)
3323 {
3324 	int retval;
3325 	u_int32_t old_priority;
3326 
3327 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3328 
3329 
3330 	old_priority = pinfo->priority;
3331 
3332 	/*
3333 	 * Are we already queued?
3334 	 */
3335 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3336 		/* Simply reorder based on new priority */
3337 		if (new_priority < old_priority) {
3338 			camq_change_priority(queue, pinfo->index,
3339 					     new_priority);
3340 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3341 					("changed priority to %d\n",
3342 					 new_priority));
3343 			retval = 1;
3344 		} else
3345 			retval = 0;
3346 	} else {
3347 		/* New entry on the queue */
3348 		if (new_priority < old_priority)
3349 			pinfo->priority = new_priority;
3350 
3351 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3352 				("Inserting onto queue\n"));
3353 		pinfo->generation = ++queue->generation;
3354 		camq_insert(queue, pinfo);
3355 		retval = 1;
3356 	}
3357 	return (retval);
3358 }
3359 
3360 static void
3361 xpt_run_allocq_task(void *context, int pending)
3362 {
3363 	struct cam_periph *periph = context;
3364 
3365 	cam_periph_lock(periph);
3366 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3367 	xpt_run_allocq(periph, 1);
3368 	cam_periph_unlock(periph);
3369 	cam_periph_release(periph);
3370 }
3371 
3372 static void
3373 xpt_run_allocq(struct cam_periph *periph, int sleep)
3374 {
3375 	struct cam_ed	*device;
3376 	union ccb	*ccb;
3377 	uint32_t	 prio;
3378 
3379 	cam_periph_assert(periph, MA_OWNED);
3380 	if (periph->periph_allocating)
3381 		return;
3382 	cam_periph_doacquire(periph);
3383 	periph->periph_allocating = 1;
3384 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3385 	device = periph->path->device;
3386 	ccb = NULL;
3387 restart:
3388 	while ((prio = min(periph->scheduled_priority,
3389 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3390 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3391 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3392 
3393 		if (ccb == NULL &&
3394 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3395 			if (sleep) {
3396 				ccb = xpt_get_ccb(periph);
3397 				goto restart;
3398 			}
3399 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3400 				break;
3401 			cam_periph_doacquire(periph);
3402 			periph->flags |= CAM_PERIPH_RUN_TASK;
3403 			taskqueue_enqueue(xsoftc.xpt_taskq,
3404 			    &periph->periph_run_task);
3405 			break;
3406 		}
3407 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3408 		if (prio == periph->immediate_priority) {
3409 			periph->immediate_priority = CAM_PRIORITY_NONE;
3410 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3411 					("waking cam_periph_getccb()\n"));
3412 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3413 					  periph_links.sle);
3414 			wakeup(&periph->ccb_list);
3415 		} else {
3416 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3417 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3418 					("calling periph_start()\n"));
3419 			periph->periph_start(periph, ccb);
3420 		}
3421 		ccb = NULL;
3422 	}
3423 	if (ccb != NULL)
3424 		xpt_release_ccb(ccb);
3425 	periph->periph_allocating = 0;
3426 	cam_periph_release_locked(periph);
3427 }
3428 
3429 static void
3430 xpt_run_devq(struct cam_devq *devq)
3431 {
3432 	struct mtx *mtx;
3433 
3434 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3435 
3436 	devq->send_queue.qfrozen_cnt++;
3437 	while ((devq->send_queue.entries > 0)
3438 	    && (devq->send_openings > 0)
3439 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3440 		struct	cam_ed *device;
3441 		union ccb *work_ccb;
3442 		struct	cam_sim *sim;
3443 		struct xpt_proto *proto;
3444 
3445 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3446 							   CAMQ_HEAD);
3447 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3448 				("running device %p\n", device));
3449 
3450 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3451 		if (work_ccb == NULL) {
3452 			printf("device on run queue with no ccbs???\n");
3453 			continue;
3454 		}
3455 
3456 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3457 
3458 			mtx_lock(&xsoftc.xpt_highpower_lock);
3459 		 	if (xsoftc.num_highpower <= 0) {
3460 				/*
3461 				 * We got a high power command, but we
3462 				 * don't have any available slots.  Freeze
3463 				 * the device queue until we have a slot
3464 				 * available.
3465 				 */
3466 				xpt_freeze_devq_device(device, 1);
3467 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3468 						   highpowerq_entry);
3469 
3470 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3471 				continue;
3472 			} else {
3473 				/*
3474 				 * Consume a high power slot while
3475 				 * this ccb runs.
3476 				 */
3477 				xsoftc.num_highpower--;
3478 			}
3479 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3480 		}
3481 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3482 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3483 		devq->send_openings--;
3484 		devq->send_active++;
3485 		xpt_schedule_devq(devq, device);
3486 		mtx_unlock(&devq->send_mtx);
3487 
3488 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3489 			/*
3490 			 * The client wants to freeze the queue
3491 			 * after this CCB is sent.
3492 			 */
3493 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3494 		}
3495 
3496 		/* In Target mode, the peripheral driver knows best... */
3497 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3498 			if ((device->inq_flags & SID_CmdQue) != 0
3499 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3500 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3501 			else
3502 				/*
3503 				 * Clear this in case of a retried CCB that
3504 				 * failed due to a rejected tag.
3505 				 */
3506 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3507 		}
3508 
3509 		KASSERT(device == work_ccb->ccb_h.path->device,
3510 		    ("device (%p) / path->device (%p) mismatch",
3511 			device, work_ccb->ccb_h.path->device));
3512 		proto = xpt_proto_find(device->protocol);
3513 		if (proto && proto->ops->debug_out)
3514 			proto->ops->debug_out(work_ccb);
3515 
3516 		/*
3517 		 * Device queues can be shared among multiple SIM instances
3518 		 * that reside on different buses.  Use the SIM from the
3519 		 * queued device, rather than the one from the calling bus.
3520 		 */
3521 		sim = device->sim;
3522 		mtx = sim->mtx;
3523 		if (mtx && !mtx_owned(mtx))
3524 			mtx_lock(mtx);
3525 		else
3526 			mtx = NULL;
3527 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3528 		(*(sim->sim_action))(sim, work_ccb);
3529 		if (mtx)
3530 			mtx_unlock(mtx);
3531 		mtx_lock(&devq->send_mtx);
3532 	}
3533 	devq->send_queue.qfrozen_cnt--;
3534 }
3535 
3536 /*
3537  * This function merges stuff from the slave ccb into the master ccb, while
3538  * keeping important fields in the master ccb constant.
3539  */
3540 void
3541 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3542 {
3543 
3544 	/*
3545 	 * Pull fields that are valid for peripheral drivers to set
3546 	 * into the master CCB along with the CCB "payload".
3547 	 */
3548 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3549 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3550 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3551 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3552 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3553 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3554 }
3555 
3556 void
3557 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3558 		    u_int32_t priority, u_int32_t flags)
3559 {
3560 
3561 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3562 	ccb_h->pinfo.priority = priority;
3563 	ccb_h->path = path;
3564 	ccb_h->path_id = path->bus->path_id;
3565 	if (path->target)
3566 		ccb_h->target_id = path->target->target_id;
3567 	else
3568 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3569 	if (path->device) {
3570 		ccb_h->target_lun = path->device->lun_id;
3571 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3572 	} else {
3573 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3574 	}
3575 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3576 	ccb_h->flags = flags;
3577 	ccb_h->xflags = 0;
3578 }
3579 
3580 void
3581 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3582 {
3583 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3584 }
3585 
3586 /* Path manipulation functions */
3587 cam_status
3588 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3589 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3590 {
3591 	struct	   cam_path *path;
3592 	cam_status status;
3593 
3594 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3595 
3596 	if (path == NULL) {
3597 		status = CAM_RESRC_UNAVAIL;
3598 		return(status);
3599 	}
3600 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3601 	if (status != CAM_REQ_CMP) {
3602 		free(path, M_CAMPATH);
3603 		path = NULL;
3604 	}
3605 	*new_path_ptr = path;
3606 	return (status);
3607 }
3608 
3609 cam_status
3610 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3611 			 struct cam_periph *periph, path_id_t path_id,
3612 			 target_id_t target_id, lun_id_t lun_id)
3613 {
3614 
3615 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3616 	    lun_id));
3617 }
3618 
3619 cam_status
3620 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3621 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3622 {
3623 	struct	     cam_eb *bus;
3624 	struct	     cam_et *target;
3625 	struct	     cam_ed *device;
3626 	cam_status   status;
3627 
3628 	status = CAM_REQ_CMP;	/* Completed without error */
3629 	target = NULL;		/* Wildcarded */
3630 	device = NULL;		/* Wildcarded */
3631 
3632 	/*
3633 	 * We will potentially modify the EDT, so block interrupts
3634 	 * that may attempt to create cam paths.
3635 	 */
3636 	bus = xpt_find_bus(path_id);
3637 	if (bus == NULL) {
3638 		status = CAM_PATH_INVALID;
3639 	} else {
3640 		xpt_lock_buses();
3641 		mtx_lock(&bus->eb_mtx);
3642 		target = xpt_find_target(bus, target_id);
3643 		if (target == NULL) {
3644 			/* Create one */
3645 			struct cam_et *new_target;
3646 
3647 			new_target = xpt_alloc_target(bus, target_id);
3648 			if (new_target == NULL) {
3649 				status = CAM_RESRC_UNAVAIL;
3650 			} else {
3651 				target = new_target;
3652 			}
3653 		}
3654 		xpt_unlock_buses();
3655 		if (target != NULL) {
3656 			device = xpt_find_device(target, lun_id);
3657 			if (device == NULL) {
3658 				/* Create one */
3659 				struct cam_ed *new_device;
3660 
3661 				new_device =
3662 				    (*(bus->xport->ops->alloc_device))(bus,
3663 								       target,
3664 								       lun_id);
3665 				if (new_device == NULL) {
3666 					status = CAM_RESRC_UNAVAIL;
3667 				} else {
3668 					device = new_device;
3669 				}
3670 			}
3671 		}
3672 		mtx_unlock(&bus->eb_mtx);
3673 	}
3674 
3675 	/*
3676 	 * Only touch the user's data if we are successful.
3677 	 */
3678 	if (status == CAM_REQ_CMP) {
3679 		new_path->periph = perph;
3680 		new_path->bus = bus;
3681 		new_path->target = target;
3682 		new_path->device = device;
3683 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3684 	} else {
3685 		if (device != NULL)
3686 			xpt_release_device(device);
3687 		if (target != NULL)
3688 			xpt_release_target(target);
3689 		if (bus != NULL)
3690 			xpt_release_bus(bus);
3691 	}
3692 	return (status);
3693 }
3694 
3695 cam_status
3696 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3697 {
3698 	struct	   cam_path *new_path;
3699 
3700 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3701 	if (new_path == NULL)
3702 		return(CAM_RESRC_UNAVAIL);
3703 	xpt_copy_path(new_path, path);
3704 	*new_path_ptr = new_path;
3705 	return (CAM_REQ_CMP);
3706 }
3707 
3708 void
3709 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3710 {
3711 
3712 	*new_path = *path;
3713 	if (path->bus != NULL)
3714 		xpt_acquire_bus(path->bus);
3715 	if (path->target != NULL)
3716 		xpt_acquire_target(path->target);
3717 	if (path->device != NULL)
3718 		xpt_acquire_device(path->device);
3719 }
3720 
3721 void
3722 xpt_release_path(struct cam_path *path)
3723 {
3724 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3725 	if (path->device != NULL) {
3726 		xpt_release_device(path->device);
3727 		path->device = NULL;
3728 	}
3729 	if (path->target != NULL) {
3730 		xpt_release_target(path->target);
3731 		path->target = NULL;
3732 	}
3733 	if (path->bus != NULL) {
3734 		xpt_release_bus(path->bus);
3735 		path->bus = NULL;
3736 	}
3737 }
3738 
3739 void
3740 xpt_free_path(struct cam_path *path)
3741 {
3742 
3743 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3744 	xpt_release_path(path);
3745 	free(path, M_CAMPATH);
3746 }
3747 
3748 void
3749 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3750     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3751 {
3752 
3753 	xpt_lock_buses();
3754 	if (bus_ref) {
3755 		if (path->bus)
3756 			*bus_ref = path->bus->refcount;
3757 		else
3758 			*bus_ref = 0;
3759 	}
3760 	if (periph_ref) {
3761 		if (path->periph)
3762 			*periph_ref = path->periph->refcount;
3763 		else
3764 			*periph_ref = 0;
3765 	}
3766 	xpt_unlock_buses();
3767 	if (target_ref) {
3768 		if (path->target)
3769 			*target_ref = path->target->refcount;
3770 		else
3771 			*target_ref = 0;
3772 	}
3773 	if (device_ref) {
3774 		if (path->device)
3775 			*device_ref = path->device->refcount;
3776 		else
3777 			*device_ref = 0;
3778 	}
3779 }
3780 
3781 /*
3782  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3783  * in path1, 2 for match with wildcards in path2.
3784  */
3785 int
3786 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3787 {
3788 	int retval = 0;
3789 
3790 	if (path1->bus != path2->bus) {
3791 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3792 			retval = 1;
3793 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3794 			retval = 2;
3795 		else
3796 			return (-1);
3797 	}
3798 	if (path1->target != path2->target) {
3799 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3800 			if (retval == 0)
3801 				retval = 1;
3802 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3803 			retval = 2;
3804 		else
3805 			return (-1);
3806 	}
3807 	if (path1->device != path2->device) {
3808 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3809 			if (retval == 0)
3810 				retval = 1;
3811 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3812 			retval = 2;
3813 		else
3814 			return (-1);
3815 	}
3816 	return (retval);
3817 }
3818 
3819 int
3820 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3821 {
3822 	int retval = 0;
3823 
3824 	if (path->bus != dev->target->bus) {
3825 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3826 			retval = 1;
3827 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3828 			retval = 2;
3829 		else
3830 			return (-1);
3831 	}
3832 	if (path->target != dev->target) {
3833 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3834 			if (retval == 0)
3835 				retval = 1;
3836 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3837 			retval = 2;
3838 		else
3839 			return (-1);
3840 	}
3841 	if (path->device != dev) {
3842 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3843 			if (retval == 0)
3844 				retval = 1;
3845 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3846 			retval = 2;
3847 		else
3848 			return (-1);
3849 	}
3850 	return (retval);
3851 }
3852 
3853 void
3854 xpt_print_path(struct cam_path *path)
3855 {
3856 	struct sbuf sb;
3857 	char buffer[XPT_PRINT_LEN];
3858 
3859 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3860 	xpt_path_sbuf(path, &sb);
3861 	sbuf_finish(&sb);
3862 	printf("%s", sbuf_data(&sb));
3863 	sbuf_delete(&sb);
3864 }
3865 
3866 void
3867 xpt_print_device(struct cam_ed *device)
3868 {
3869 
3870 	if (device == NULL)
3871 		printf("(nopath): ");
3872 	else {
3873 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3874 		       device->sim->unit_number,
3875 		       device->sim->bus_id,
3876 		       device->target->target_id,
3877 		       (uintmax_t)device->lun_id);
3878 	}
3879 }
3880 
3881 void
3882 xpt_print(struct cam_path *path, const char *fmt, ...)
3883 {
3884 	va_list ap;
3885 	struct sbuf sb;
3886 	char buffer[XPT_PRINT_LEN];
3887 
3888 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3889 
3890 	xpt_path_sbuf(path, &sb);
3891 	va_start(ap, fmt);
3892 	sbuf_vprintf(&sb, fmt, ap);
3893 	va_end(ap);
3894 
3895 	sbuf_finish(&sb);
3896 	printf("%s", sbuf_data(&sb));
3897 	sbuf_delete(&sb);
3898 }
3899 
3900 int
3901 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3902 {
3903 	struct sbuf sb;
3904 	int len;
3905 
3906 	sbuf_new(&sb, str, str_len, 0);
3907 	len = xpt_path_sbuf(path, &sb);
3908 	sbuf_finish(&sb);
3909 	return (len);
3910 }
3911 
3912 int
3913 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3914 {
3915 
3916 	if (path == NULL)
3917 		sbuf_printf(sb, "(nopath): ");
3918 	else {
3919 		if (path->periph != NULL)
3920 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3921 				    path->periph->unit_number);
3922 		else
3923 			sbuf_printf(sb, "(noperiph:");
3924 
3925 		if (path->bus != NULL)
3926 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3927 				    path->bus->sim->unit_number,
3928 				    path->bus->sim->bus_id);
3929 		else
3930 			sbuf_printf(sb, "nobus:");
3931 
3932 		if (path->target != NULL)
3933 			sbuf_printf(sb, "%d:", path->target->target_id);
3934 		else
3935 			sbuf_printf(sb, "X:");
3936 
3937 		if (path->device != NULL)
3938 			sbuf_printf(sb, "%jx): ",
3939 			    (uintmax_t)path->device->lun_id);
3940 		else
3941 			sbuf_printf(sb, "X): ");
3942 	}
3943 
3944 	return(sbuf_len(sb));
3945 }
3946 
3947 path_id_t
3948 xpt_path_path_id(struct cam_path *path)
3949 {
3950 	return(path->bus->path_id);
3951 }
3952 
3953 target_id_t
3954 xpt_path_target_id(struct cam_path *path)
3955 {
3956 	if (path->target != NULL)
3957 		return (path->target->target_id);
3958 	else
3959 		return (CAM_TARGET_WILDCARD);
3960 }
3961 
3962 lun_id_t
3963 xpt_path_lun_id(struct cam_path *path)
3964 {
3965 	if (path->device != NULL)
3966 		return (path->device->lun_id);
3967 	else
3968 		return (CAM_LUN_WILDCARD);
3969 }
3970 
3971 struct cam_sim *
3972 xpt_path_sim(struct cam_path *path)
3973 {
3974 
3975 	return (path->bus->sim);
3976 }
3977 
3978 struct cam_periph*
3979 xpt_path_periph(struct cam_path *path)
3980 {
3981 
3982 	return (path->periph);
3983 }
3984 
3985 /*
3986  * Release a CAM control block for the caller.  Remit the cost of the structure
3987  * to the device referenced by the path.  If the this device had no 'credits'
3988  * and peripheral drivers have registered async callbacks for this notification
3989  * call them now.
3990  */
3991 void
3992 xpt_release_ccb(union ccb *free_ccb)
3993 {
3994 	struct	 cam_ed *device;
3995 	struct	 cam_periph *periph;
3996 
3997 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3998 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3999 	device = free_ccb->ccb_h.path->device;
4000 	periph = free_ccb->ccb_h.path->periph;
4001 
4002 	xpt_free_ccb(free_ccb);
4003 	periph->periph_allocated--;
4004 	cam_ccbq_release_opening(&device->ccbq);
4005 	xpt_run_allocq(periph, 0);
4006 }
4007 
4008 /* Functions accessed by SIM drivers */
4009 
4010 static struct xpt_xport_ops xport_default_ops = {
4011 	.alloc_device = xpt_alloc_device_default,
4012 	.action = xpt_action_default,
4013 	.async = xpt_dev_async_default,
4014 };
4015 static struct xpt_xport xport_default = {
4016 	.xport = XPORT_UNKNOWN,
4017 	.name = "unknown",
4018 	.ops = &xport_default_ops,
4019 };
4020 
4021 CAM_XPT_XPORT(xport_default);
4022 
4023 /*
4024  * A sim structure, listing the SIM entry points and instance
4025  * identification info is passed to xpt_bus_register to hook the SIM
4026  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
4027  * for this new bus and places it in the array of buses and assigns
4028  * it a path_id.  The path_id may be influenced by "hard wiring"
4029  * information specified by the user.  Once interrupt services are
4030  * available, the bus will be probed.
4031  */
4032 int32_t
4033 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
4034 {
4035 	struct cam_eb *new_bus;
4036 	struct cam_eb *old_bus;
4037 	struct ccb_pathinq cpi;
4038 	struct cam_path *path;
4039 	cam_status status;
4040 
4041 	sim->bus_id = bus;
4042 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
4043 					  M_CAMXPT, M_NOWAIT|M_ZERO);
4044 	if (new_bus == NULL) {
4045 		/* Couldn't satisfy request */
4046 		return (CAM_RESRC_UNAVAIL);
4047 	}
4048 
4049 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
4050 	TAILQ_INIT(&new_bus->et_entries);
4051 	cam_sim_hold(sim);
4052 	new_bus->sim = sim;
4053 	timevalclear(&new_bus->last_reset);
4054 	new_bus->flags = 0;
4055 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
4056 	new_bus->generation = 0;
4057 
4058 	xpt_lock_buses();
4059 	sim->path_id = new_bus->path_id =
4060 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
4061 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4062 	while (old_bus != NULL
4063 	    && old_bus->path_id < new_bus->path_id)
4064 		old_bus = TAILQ_NEXT(old_bus, links);
4065 	if (old_bus != NULL)
4066 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
4067 	else
4068 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
4069 	xsoftc.bus_generation++;
4070 	xpt_unlock_buses();
4071 
4072 	/*
4073 	 * Set a default transport so that a PATH_INQ can be issued to
4074 	 * the SIM.  This will then allow for probing and attaching of
4075 	 * a more appropriate transport.
4076 	 */
4077 	new_bus->xport = &xport_default;
4078 
4079 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
4080 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4081 	if (status != CAM_REQ_CMP) {
4082 		xpt_release_bus(new_bus);
4083 		return (CAM_RESRC_UNAVAIL);
4084 	}
4085 
4086 	xpt_path_inq(&cpi, path);
4087 
4088 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
4089 		struct xpt_xport **xpt;
4090 
4091 		SET_FOREACH(xpt, cam_xpt_xport_set) {
4092 			if ((*xpt)->xport == cpi.transport) {
4093 				new_bus->xport = *xpt;
4094 				break;
4095 			}
4096 		}
4097 		if (new_bus->xport == NULL) {
4098 			xpt_print(path,
4099 			    "No transport found for %d\n", cpi.transport);
4100 			xpt_release_bus(new_bus);
4101 			free(path, M_CAMXPT);
4102 			return (CAM_RESRC_UNAVAIL);
4103 		}
4104 	}
4105 
4106 	/* Notify interested parties */
4107 	if (sim->path_id != CAM_XPT_PATH_ID) {
4108 
4109 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
4110 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
4111 			union	ccb *scan_ccb;
4112 
4113 			/* Initiate bus rescan. */
4114 			scan_ccb = xpt_alloc_ccb_nowait();
4115 			if (scan_ccb != NULL) {
4116 				scan_ccb->ccb_h.path = path;
4117 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4118 				scan_ccb->crcn.flags = 0;
4119 				xpt_rescan(scan_ccb);
4120 			} else {
4121 				xpt_print(path,
4122 					  "Can't allocate CCB to scan bus\n");
4123 				xpt_free_path(path);
4124 			}
4125 		} else
4126 			xpt_free_path(path);
4127 	} else
4128 		xpt_free_path(path);
4129 	return (CAM_SUCCESS);
4130 }
4131 
4132 int32_t
4133 xpt_bus_deregister(path_id_t pathid)
4134 {
4135 	struct cam_path bus_path;
4136 	cam_status status;
4137 
4138 	status = xpt_compile_path(&bus_path, NULL, pathid,
4139 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4140 	if (status != CAM_REQ_CMP)
4141 		return (status);
4142 
4143 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4144 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4145 
4146 	/* Release the reference count held while registered. */
4147 	xpt_release_bus(bus_path.bus);
4148 	xpt_release_path(&bus_path);
4149 
4150 	return (CAM_REQ_CMP);
4151 }
4152 
4153 static path_id_t
4154 xptnextfreepathid(void)
4155 {
4156 	struct cam_eb *bus;
4157 	path_id_t pathid;
4158 	const char *strval;
4159 
4160 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4161 	pathid = 0;
4162 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4163 retry:
4164 	/* Find an unoccupied pathid */
4165 	while (bus != NULL && bus->path_id <= pathid) {
4166 		if (bus->path_id == pathid)
4167 			pathid++;
4168 		bus = TAILQ_NEXT(bus, links);
4169 	}
4170 
4171 	/*
4172 	 * Ensure that this pathid is not reserved for
4173 	 * a bus that may be registered in the future.
4174 	 */
4175 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4176 		++pathid;
4177 		/* Start the search over */
4178 		goto retry;
4179 	}
4180 	return (pathid);
4181 }
4182 
4183 static path_id_t
4184 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4185 {
4186 	path_id_t pathid;
4187 	int i, dunit, val;
4188 	char buf[32];
4189 	const char *dname;
4190 
4191 	pathid = CAM_XPT_PATH_ID;
4192 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4193 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4194 		return (pathid);
4195 	i = 0;
4196 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4197 		if (strcmp(dname, "scbus")) {
4198 			/* Avoid a bit of foot shooting. */
4199 			continue;
4200 		}
4201 		if (dunit < 0)		/* unwired?! */
4202 			continue;
4203 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4204 			if (sim_bus == val) {
4205 				pathid = dunit;
4206 				break;
4207 			}
4208 		} else if (sim_bus == 0) {
4209 			/* Unspecified matches bus 0 */
4210 			pathid = dunit;
4211 			break;
4212 		} else {
4213 			printf("Ambiguous scbus configuration for %s%d "
4214 			       "bus %d, cannot wire down.  The kernel "
4215 			       "config entry for scbus%d should "
4216 			       "specify a controller bus.\n"
4217 			       "Scbus will be assigned dynamically.\n",
4218 			       sim_name, sim_unit, sim_bus, dunit);
4219 			break;
4220 		}
4221 	}
4222 
4223 	if (pathid == CAM_XPT_PATH_ID)
4224 		pathid = xptnextfreepathid();
4225 	return (pathid);
4226 }
4227 
4228 static const char *
4229 xpt_async_string(u_int32_t async_code)
4230 {
4231 
4232 	switch (async_code) {
4233 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4234 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4235 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4236 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4237 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4238 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4239 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4240 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4241 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4242 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4243 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4244 	case AC_CONTRACT: return ("AC_CONTRACT");
4245 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4246 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4247 	}
4248 	return ("AC_UNKNOWN");
4249 }
4250 
4251 static int
4252 xpt_async_size(u_int32_t async_code)
4253 {
4254 
4255 	switch (async_code) {
4256 	case AC_BUS_RESET: return (0);
4257 	case AC_UNSOL_RESEL: return (0);
4258 	case AC_SCSI_AEN: return (0);
4259 	case AC_SENT_BDR: return (0);
4260 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4261 	case AC_PATH_DEREGISTERED: return (0);
4262 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4263 	case AC_LOST_DEVICE: return (0);
4264 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4265 	case AC_INQ_CHANGED: return (0);
4266 	case AC_GETDEV_CHANGED: return (0);
4267 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4268 	case AC_ADVINFO_CHANGED: return (-1);
4269 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4270 	}
4271 	return (0);
4272 }
4273 
4274 static int
4275 xpt_async_process_dev(struct cam_ed *device, void *arg)
4276 {
4277 	union ccb *ccb = arg;
4278 	struct cam_path *path = ccb->ccb_h.path;
4279 	void *async_arg = ccb->casync.async_arg_ptr;
4280 	u_int32_t async_code = ccb->casync.async_code;
4281 	int relock;
4282 
4283 	if (path->device != device
4284 	 && path->device->lun_id != CAM_LUN_WILDCARD
4285 	 && device->lun_id != CAM_LUN_WILDCARD)
4286 		return (1);
4287 
4288 	/*
4289 	 * The async callback could free the device.
4290 	 * If it is a broadcast async, it doesn't hold
4291 	 * device reference, so take our own reference.
4292 	 */
4293 	xpt_acquire_device(device);
4294 
4295 	/*
4296 	 * If async for specific device is to be delivered to
4297 	 * the wildcard client, take the specific device lock.
4298 	 * XXX: We may need a way for client to specify it.
4299 	 */
4300 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4301 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4302 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4303 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4304 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4305 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4306 		mtx_unlock(&device->device_mtx);
4307 		xpt_path_lock(path);
4308 		relock = 1;
4309 	} else
4310 		relock = 0;
4311 
4312 	(*(device->target->bus->xport->ops->async))(async_code,
4313 	    device->target->bus, device->target, device, async_arg);
4314 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4315 
4316 	if (relock) {
4317 		xpt_path_unlock(path);
4318 		mtx_lock(&device->device_mtx);
4319 	}
4320 	xpt_release_device(device);
4321 	return (1);
4322 }
4323 
4324 static int
4325 xpt_async_process_tgt(struct cam_et *target, void *arg)
4326 {
4327 	union ccb *ccb = arg;
4328 	struct cam_path *path = ccb->ccb_h.path;
4329 
4330 	if (path->target != target
4331 	 && path->target->target_id != CAM_TARGET_WILDCARD
4332 	 && target->target_id != CAM_TARGET_WILDCARD)
4333 		return (1);
4334 
4335 	if (ccb->casync.async_code == AC_SENT_BDR) {
4336 		/* Update our notion of when the last reset occurred */
4337 		microtime(&target->last_reset);
4338 	}
4339 
4340 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4341 }
4342 
4343 static void
4344 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4345 {
4346 	struct cam_eb *bus;
4347 	struct cam_path *path;
4348 	void *async_arg;
4349 	u_int32_t async_code;
4350 
4351 	path = ccb->ccb_h.path;
4352 	async_code = ccb->casync.async_code;
4353 	async_arg = ccb->casync.async_arg_ptr;
4354 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4355 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4356 	bus = path->bus;
4357 
4358 	if (async_code == AC_BUS_RESET) {
4359 		/* Update our notion of when the last reset occurred */
4360 		microtime(&bus->last_reset);
4361 	}
4362 
4363 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4364 
4365 	/*
4366 	 * If this wasn't a fully wildcarded async, tell all
4367 	 * clients that want all async events.
4368 	 */
4369 	if (bus != xpt_periph->path->bus) {
4370 		xpt_path_lock(xpt_periph->path);
4371 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4372 		xpt_path_unlock(xpt_periph->path);
4373 	}
4374 
4375 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4376 		xpt_release_devq(path, 1, TRUE);
4377 	else
4378 		xpt_release_simq(path->bus->sim, TRUE);
4379 	if (ccb->casync.async_arg_size > 0)
4380 		free(async_arg, M_CAMXPT);
4381 	xpt_free_path(path);
4382 	xpt_free_ccb(ccb);
4383 }
4384 
4385 static void
4386 xpt_async_bcast(struct async_list *async_head,
4387 		u_int32_t async_code,
4388 		struct cam_path *path, void *async_arg)
4389 {
4390 	struct async_node *cur_entry;
4391 	struct mtx *mtx;
4392 
4393 	cur_entry = SLIST_FIRST(async_head);
4394 	while (cur_entry != NULL) {
4395 		struct async_node *next_entry;
4396 		/*
4397 		 * Grab the next list entry before we call the current
4398 		 * entry's callback.  This is because the callback function
4399 		 * can delete its async callback entry.
4400 		 */
4401 		next_entry = SLIST_NEXT(cur_entry, links);
4402 		if ((cur_entry->event_enable & async_code) != 0) {
4403 			mtx = cur_entry->event_lock ?
4404 			    path->device->sim->mtx : NULL;
4405 			if (mtx)
4406 				mtx_lock(mtx);
4407 			cur_entry->callback(cur_entry->callback_arg,
4408 					    async_code, path,
4409 					    async_arg);
4410 			if (mtx)
4411 				mtx_unlock(mtx);
4412 		}
4413 		cur_entry = next_entry;
4414 	}
4415 }
4416 
4417 void
4418 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4419 {
4420 	union ccb *ccb;
4421 	int size;
4422 
4423 	ccb = xpt_alloc_ccb_nowait();
4424 	if (ccb == NULL) {
4425 		xpt_print(path, "Can't allocate CCB to send %s\n",
4426 		    xpt_async_string(async_code));
4427 		return;
4428 	}
4429 
4430 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4431 		xpt_print(path, "Can't allocate path to send %s\n",
4432 		    xpt_async_string(async_code));
4433 		xpt_free_ccb(ccb);
4434 		return;
4435 	}
4436 	ccb->ccb_h.path->periph = NULL;
4437 	ccb->ccb_h.func_code = XPT_ASYNC;
4438 	ccb->ccb_h.cbfcnp = xpt_async_process;
4439 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4440 	ccb->casync.async_code = async_code;
4441 	ccb->casync.async_arg_size = 0;
4442 	size = xpt_async_size(async_code);
4443 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4444 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4445 		ccb->ccb_h.func_code,
4446 		xpt_action_name(ccb->ccb_h.func_code),
4447 		async_code,
4448 		xpt_async_string(async_code)));
4449 	if (size > 0 && async_arg != NULL) {
4450 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4451 		if (ccb->casync.async_arg_ptr == NULL) {
4452 			xpt_print(path, "Can't allocate argument to send %s\n",
4453 			    xpt_async_string(async_code));
4454 			xpt_free_path(ccb->ccb_h.path);
4455 			xpt_free_ccb(ccb);
4456 			return;
4457 		}
4458 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4459 		ccb->casync.async_arg_size = size;
4460 	} else if (size < 0) {
4461 		ccb->casync.async_arg_ptr = async_arg;
4462 		ccb->casync.async_arg_size = size;
4463 	}
4464 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4465 		xpt_freeze_devq(path, 1);
4466 	else
4467 		xpt_freeze_simq(path->bus->sim, 1);
4468 	xpt_done(ccb);
4469 }
4470 
4471 static void
4472 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4473 		      struct cam_et *target, struct cam_ed *device,
4474 		      void *async_arg)
4475 {
4476 
4477 	/*
4478 	 * We only need to handle events for real devices.
4479 	 */
4480 	if (target->target_id == CAM_TARGET_WILDCARD
4481 	 || device->lun_id == CAM_LUN_WILDCARD)
4482 		return;
4483 
4484 	printf("%s called\n", __func__);
4485 }
4486 
4487 static uint32_t
4488 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4489 {
4490 	struct cam_devq	*devq;
4491 	uint32_t freeze;
4492 
4493 	devq = dev->sim->devq;
4494 	mtx_assert(&devq->send_mtx, MA_OWNED);
4495 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4496 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4497 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4498 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4499 	/* Remove frozen device from sendq. */
4500 	if (device_is_queued(dev))
4501 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4502 	return (freeze);
4503 }
4504 
4505 u_int32_t
4506 xpt_freeze_devq(struct cam_path *path, u_int count)
4507 {
4508 	struct cam_ed	*dev = path->device;
4509 	struct cam_devq	*devq;
4510 	uint32_t	 freeze;
4511 
4512 	devq = dev->sim->devq;
4513 	mtx_lock(&devq->send_mtx);
4514 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4515 	freeze = xpt_freeze_devq_device(dev, count);
4516 	mtx_unlock(&devq->send_mtx);
4517 	return (freeze);
4518 }
4519 
4520 u_int32_t
4521 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4522 {
4523 	struct cam_devq	*devq;
4524 	uint32_t	 freeze;
4525 
4526 	devq = sim->devq;
4527 	mtx_lock(&devq->send_mtx);
4528 	freeze = (devq->send_queue.qfrozen_cnt += count);
4529 	mtx_unlock(&devq->send_mtx);
4530 	return (freeze);
4531 }
4532 
4533 static void
4534 xpt_release_devq_timeout(void *arg)
4535 {
4536 	struct cam_ed *dev;
4537 	struct cam_devq *devq;
4538 
4539 	dev = (struct cam_ed *)arg;
4540 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4541 	devq = dev->sim->devq;
4542 	mtx_assert(&devq->send_mtx, MA_OWNED);
4543 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4544 		xpt_run_devq(devq);
4545 }
4546 
4547 void
4548 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4549 {
4550 	struct cam_ed *dev;
4551 	struct cam_devq *devq;
4552 
4553 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4554 	    count, run_queue));
4555 	dev = path->device;
4556 	devq = dev->sim->devq;
4557 	mtx_lock(&devq->send_mtx);
4558 	if (xpt_release_devq_device(dev, count, run_queue))
4559 		xpt_run_devq(dev->sim->devq);
4560 	mtx_unlock(&devq->send_mtx);
4561 }
4562 
4563 static int
4564 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4565 {
4566 
4567 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4568 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4569 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4570 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4571 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4572 #ifdef INVARIANTS
4573 		printf("xpt_release_devq(): requested %u > present %u\n",
4574 		    count, dev->ccbq.queue.qfrozen_cnt);
4575 #endif
4576 		count = dev->ccbq.queue.qfrozen_cnt;
4577 	}
4578 	dev->ccbq.queue.qfrozen_cnt -= count;
4579 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4580 		/*
4581 		 * No longer need to wait for a successful
4582 		 * command completion.
4583 		 */
4584 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4585 		/*
4586 		 * Remove any timeouts that might be scheduled
4587 		 * to release this queue.
4588 		 */
4589 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4590 			callout_stop(&dev->callout);
4591 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4592 		}
4593 		/*
4594 		 * Now that we are unfrozen schedule the
4595 		 * device so any pending transactions are
4596 		 * run.
4597 		 */
4598 		xpt_schedule_devq(dev->sim->devq, dev);
4599 	} else
4600 		run_queue = 0;
4601 	return (run_queue);
4602 }
4603 
4604 void
4605 xpt_release_simq(struct cam_sim *sim, int run_queue)
4606 {
4607 	struct cam_devq	*devq;
4608 
4609 	devq = sim->devq;
4610 	mtx_lock(&devq->send_mtx);
4611 	if (devq->send_queue.qfrozen_cnt <= 0) {
4612 #ifdef INVARIANTS
4613 		printf("xpt_release_simq: requested 1 > present %u\n",
4614 		    devq->send_queue.qfrozen_cnt);
4615 #endif
4616 	} else
4617 		devq->send_queue.qfrozen_cnt--;
4618 	if (devq->send_queue.qfrozen_cnt == 0) {
4619 		/*
4620 		 * If there is a timeout scheduled to release this
4621 		 * sim queue, remove it.  The queue frozen count is
4622 		 * already at 0.
4623 		 */
4624 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4625 			callout_stop(&sim->callout);
4626 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4627 		}
4628 		if (run_queue) {
4629 			/*
4630 			 * Now that we are unfrozen run the send queue.
4631 			 */
4632 			xpt_run_devq(sim->devq);
4633 		}
4634 	}
4635 	mtx_unlock(&devq->send_mtx);
4636 }
4637 
4638 /*
4639  * XXX Appears to be unused.
4640  */
4641 static void
4642 xpt_release_simq_timeout(void *arg)
4643 {
4644 	struct cam_sim *sim;
4645 
4646 	sim = (struct cam_sim *)arg;
4647 	xpt_release_simq(sim, /* run_queue */ TRUE);
4648 }
4649 
4650 void
4651 xpt_done(union ccb *done_ccb)
4652 {
4653 	struct cam_doneq *queue;
4654 	int	run, hash;
4655 
4656 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4657 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4658 	    done_ccb->csio.bio != NULL)
4659 		biotrack(done_ccb->csio.bio, __func__);
4660 #endif
4661 
4662 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4663 	    ("xpt_done: func= %#x %s status %#x\n",
4664 		done_ccb->ccb_h.func_code,
4665 		xpt_action_name(done_ccb->ccb_h.func_code),
4666 		done_ccb->ccb_h.status));
4667 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4668 		return;
4669 
4670 	/* Store the time the ccb was in the sim */
4671 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4672 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4673 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4674 	queue = &cam_doneqs[hash];
4675 	mtx_lock(&queue->cam_doneq_mtx);
4676 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4677 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4678 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4679 	mtx_unlock(&queue->cam_doneq_mtx);
4680 	if (run)
4681 		wakeup(&queue->cam_doneq);
4682 }
4683 
4684 void
4685 xpt_done_direct(union ccb *done_ccb)
4686 {
4687 
4688 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4689 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4690 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4691 		return;
4692 
4693 	/* Store the time the ccb was in the sim */
4694 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4695 	xpt_done_process(&done_ccb->ccb_h);
4696 }
4697 
4698 union ccb *
4699 xpt_alloc_ccb()
4700 {
4701 	union ccb *new_ccb;
4702 
4703 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4704 	return (new_ccb);
4705 }
4706 
4707 union ccb *
4708 xpt_alloc_ccb_nowait()
4709 {
4710 	union ccb *new_ccb;
4711 
4712 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4713 	return (new_ccb);
4714 }
4715 
4716 void
4717 xpt_free_ccb(union ccb *free_ccb)
4718 {
4719 	free(free_ccb, M_CAMCCB);
4720 }
4721 
4722 
4723 
4724 /* Private XPT functions */
4725 
4726 /*
4727  * Get a CAM control block for the caller. Charge the structure to the device
4728  * referenced by the path.  If we don't have sufficient resources to allocate
4729  * more ccbs, we return NULL.
4730  */
4731 static union ccb *
4732 xpt_get_ccb_nowait(struct cam_periph *periph)
4733 {
4734 	union ccb *new_ccb;
4735 
4736 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4737 	if (new_ccb == NULL)
4738 		return (NULL);
4739 	periph->periph_allocated++;
4740 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4741 	return (new_ccb);
4742 }
4743 
4744 static union ccb *
4745 xpt_get_ccb(struct cam_periph *periph)
4746 {
4747 	union ccb *new_ccb;
4748 
4749 	cam_periph_unlock(periph);
4750 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4751 	cam_periph_lock(periph);
4752 	periph->periph_allocated++;
4753 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4754 	return (new_ccb);
4755 }
4756 
4757 union ccb *
4758 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4759 {
4760 	struct ccb_hdr *ccb_h;
4761 
4762 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4763 	cam_periph_assert(periph, MA_OWNED);
4764 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4765 	    ccb_h->pinfo.priority != priority) {
4766 		if (priority < periph->immediate_priority) {
4767 			periph->immediate_priority = priority;
4768 			xpt_run_allocq(periph, 0);
4769 		} else
4770 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4771 			    "cgticb", 0);
4772 	}
4773 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4774 	return ((union ccb *)ccb_h);
4775 }
4776 
4777 static void
4778 xpt_acquire_bus(struct cam_eb *bus)
4779 {
4780 
4781 	xpt_lock_buses();
4782 	bus->refcount++;
4783 	xpt_unlock_buses();
4784 }
4785 
4786 static void
4787 xpt_release_bus(struct cam_eb *bus)
4788 {
4789 
4790 	xpt_lock_buses();
4791 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4792 	if (--bus->refcount > 0) {
4793 		xpt_unlock_buses();
4794 		return;
4795 	}
4796 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4797 	xsoftc.bus_generation++;
4798 	xpt_unlock_buses();
4799 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4800 	    ("destroying bus, but target list is not empty"));
4801 	cam_sim_release(bus->sim);
4802 	mtx_destroy(&bus->eb_mtx);
4803 	free(bus, M_CAMXPT);
4804 }
4805 
4806 static struct cam_et *
4807 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4808 {
4809 	struct cam_et *cur_target, *target;
4810 
4811 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4812 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4813 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4814 					 M_NOWAIT|M_ZERO);
4815 	if (target == NULL)
4816 		return (NULL);
4817 
4818 	TAILQ_INIT(&target->ed_entries);
4819 	target->bus = bus;
4820 	target->target_id = target_id;
4821 	target->refcount = 1;
4822 	target->generation = 0;
4823 	target->luns = NULL;
4824 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4825 	timevalclear(&target->last_reset);
4826 	/*
4827 	 * Hold a reference to our parent bus so it
4828 	 * will not go away before we do.
4829 	 */
4830 	bus->refcount++;
4831 
4832 	/* Insertion sort into our bus's target list */
4833 	cur_target = TAILQ_FIRST(&bus->et_entries);
4834 	while (cur_target != NULL && cur_target->target_id < target_id)
4835 		cur_target = TAILQ_NEXT(cur_target, links);
4836 	if (cur_target != NULL) {
4837 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4838 	} else {
4839 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4840 	}
4841 	bus->generation++;
4842 	return (target);
4843 }
4844 
4845 static void
4846 xpt_acquire_target(struct cam_et *target)
4847 {
4848 	struct cam_eb *bus = target->bus;
4849 
4850 	mtx_lock(&bus->eb_mtx);
4851 	target->refcount++;
4852 	mtx_unlock(&bus->eb_mtx);
4853 }
4854 
4855 static void
4856 xpt_release_target(struct cam_et *target)
4857 {
4858 	struct cam_eb *bus = target->bus;
4859 
4860 	mtx_lock(&bus->eb_mtx);
4861 	if (--target->refcount > 0) {
4862 		mtx_unlock(&bus->eb_mtx);
4863 		return;
4864 	}
4865 	TAILQ_REMOVE(&bus->et_entries, target, links);
4866 	bus->generation++;
4867 	mtx_unlock(&bus->eb_mtx);
4868 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4869 	    ("destroying target, but device list is not empty"));
4870 	xpt_release_bus(bus);
4871 	mtx_destroy(&target->luns_mtx);
4872 	if (target->luns)
4873 		free(target->luns, M_CAMXPT);
4874 	free(target, M_CAMXPT);
4875 }
4876 
4877 static struct cam_ed *
4878 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4879 			 lun_id_t lun_id)
4880 {
4881 	struct cam_ed *device;
4882 
4883 	device = xpt_alloc_device(bus, target, lun_id);
4884 	if (device == NULL)
4885 		return (NULL);
4886 
4887 	device->mintags = 1;
4888 	device->maxtags = 1;
4889 	return (device);
4890 }
4891 
4892 static void
4893 xpt_destroy_device(void *context, int pending)
4894 {
4895 	struct cam_ed	*device = context;
4896 
4897 	mtx_lock(&device->device_mtx);
4898 	mtx_destroy(&device->device_mtx);
4899 	free(device, M_CAMDEV);
4900 }
4901 
4902 struct cam_ed *
4903 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4904 {
4905 	struct cam_ed	*cur_device, *device;
4906 	struct cam_devq	*devq;
4907 	cam_status status;
4908 
4909 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4910 	/* Make space for us in the device queue on our bus */
4911 	devq = bus->sim->devq;
4912 	mtx_lock(&devq->send_mtx);
4913 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4914 	mtx_unlock(&devq->send_mtx);
4915 	if (status != CAM_REQ_CMP)
4916 		return (NULL);
4917 
4918 	device = (struct cam_ed *)malloc(sizeof(*device),
4919 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4920 	if (device == NULL)
4921 		return (NULL);
4922 
4923 	cam_init_pinfo(&device->devq_entry);
4924 	device->target = target;
4925 	device->lun_id = lun_id;
4926 	device->sim = bus->sim;
4927 	if (cam_ccbq_init(&device->ccbq,
4928 			  bus->sim->max_dev_openings) != 0) {
4929 		free(device, M_CAMDEV);
4930 		return (NULL);
4931 	}
4932 	SLIST_INIT(&device->asyncs);
4933 	SLIST_INIT(&device->periphs);
4934 	device->generation = 0;
4935 	device->flags = CAM_DEV_UNCONFIGURED;
4936 	device->tag_delay_count = 0;
4937 	device->tag_saved_openings = 0;
4938 	device->refcount = 1;
4939 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4940 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4941 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4942 	/*
4943 	 * Hold a reference to our parent bus so it
4944 	 * will not go away before we do.
4945 	 */
4946 	target->refcount++;
4947 
4948 	cur_device = TAILQ_FIRST(&target->ed_entries);
4949 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4950 		cur_device = TAILQ_NEXT(cur_device, links);
4951 	if (cur_device != NULL)
4952 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4953 	else
4954 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4955 	target->generation++;
4956 	return (device);
4957 }
4958 
4959 void
4960 xpt_acquire_device(struct cam_ed *device)
4961 {
4962 	struct cam_eb *bus = device->target->bus;
4963 
4964 	mtx_lock(&bus->eb_mtx);
4965 	device->refcount++;
4966 	mtx_unlock(&bus->eb_mtx);
4967 }
4968 
4969 void
4970 xpt_release_device(struct cam_ed *device)
4971 {
4972 	struct cam_eb *bus = device->target->bus;
4973 	struct cam_devq *devq;
4974 
4975 	mtx_lock(&bus->eb_mtx);
4976 	if (--device->refcount > 0) {
4977 		mtx_unlock(&bus->eb_mtx);
4978 		return;
4979 	}
4980 
4981 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4982 	device->target->generation++;
4983 	mtx_unlock(&bus->eb_mtx);
4984 
4985 	/* Release our slot in the devq */
4986 	devq = bus->sim->devq;
4987 	mtx_lock(&devq->send_mtx);
4988 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4989 	mtx_unlock(&devq->send_mtx);
4990 
4991 	KASSERT(SLIST_EMPTY(&device->periphs),
4992 	    ("destroying device, but periphs list is not empty"));
4993 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4994 	    ("destroying device while still queued for ccbs"));
4995 
4996 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4997 		callout_stop(&device->callout);
4998 
4999 	xpt_release_target(device->target);
5000 
5001 	cam_ccbq_fini(&device->ccbq);
5002 	/*
5003 	 * Free allocated memory.  free(9) does nothing if the
5004 	 * supplied pointer is NULL, so it is safe to call without
5005 	 * checking.
5006 	 */
5007 	free(device->supported_vpds, M_CAMXPT);
5008 	free(device->device_id, M_CAMXPT);
5009 	free(device->ext_inq, M_CAMXPT);
5010 	free(device->physpath, M_CAMXPT);
5011 	free(device->rcap_buf, M_CAMXPT);
5012 	free(device->serial_num, M_CAMXPT);
5013 	free(device->nvme_data, M_CAMXPT);
5014 	free(device->nvme_cdata, M_CAMXPT);
5015 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
5016 }
5017 
5018 u_int32_t
5019 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
5020 {
5021 	int	result;
5022 	struct	cam_ed *dev;
5023 
5024 	dev = path->device;
5025 	mtx_lock(&dev->sim->devq->send_mtx);
5026 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
5027 	mtx_unlock(&dev->sim->devq->send_mtx);
5028 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5029 	 || (dev->inq_flags & SID_CmdQue) != 0)
5030 		dev->tag_saved_openings = newopenings;
5031 	return (result);
5032 }
5033 
5034 static struct cam_eb *
5035 xpt_find_bus(path_id_t path_id)
5036 {
5037 	struct cam_eb *bus;
5038 
5039 	xpt_lock_buses();
5040 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
5041 	     bus != NULL;
5042 	     bus = TAILQ_NEXT(bus, links)) {
5043 		if (bus->path_id == path_id) {
5044 			bus->refcount++;
5045 			break;
5046 		}
5047 	}
5048 	xpt_unlock_buses();
5049 	return (bus);
5050 }
5051 
5052 static struct cam_et *
5053 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
5054 {
5055 	struct cam_et *target;
5056 
5057 	mtx_assert(&bus->eb_mtx, MA_OWNED);
5058 	for (target = TAILQ_FIRST(&bus->et_entries);
5059 	     target != NULL;
5060 	     target = TAILQ_NEXT(target, links)) {
5061 		if (target->target_id == target_id) {
5062 			target->refcount++;
5063 			break;
5064 		}
5065 	}
5066 	return (target);
5067 }
5068 
5069 static struct cam_ed *
5070 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
5071 {
5072 	struct cam_ed *device;
5073 
5074 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
5075 	for (device = TAILQ_FIRST(&target->ed_entries);
5076 	     device != NULL;
5077 	     device = TAILQ_NEXT(device, links)) {
5078 		if (device->lun_id == lun_id) {
5079 			device->refcount++;
5080 			break;
5081 		}
5082 	}
5083 	return (device);
5084 }
5085 
5086 void
5087 xpt_start_tags(struct cam_path *path)
5088 {
5089 	struct ccb_relsim crs;
5090 	struct cam_ed *device;
5091 	struct cam_sim *sim;
5092 	int    newopenings;
5093 
5094 	device = path->device;
5095 	sim = path->bus->sim;
5096 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5097 	xpt_freeze_devq(path, /*count*/1);
5098 	device->inq_flags |= SID_CmdQue;
5099 	if (device->tag_saved_openings != 0)
5100 		newopenings = device->tag_saved_openings;
5101 	else
5102 		newopenings = min(device->maxtags,
5103 				  sim->max_tagged_dev_openings);
5104 	xpt_dev_ccbq_resize(path, newopenings);
5105 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5106 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5107 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5108 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5109 	crs.openings
5110 	    = crs.release_timeout
5111 	    = crs.qfrozen_cnt
5112 	    = 0;
5113 	xpt_action((union ccb *)&crs);
5114 }
5115 
5116 void
5117 xpt_stop_tags(struct cam_path *path)
5118 {
5119 	struct ccb_relsim crs;
5120 	struct cam_ed *device;
5121 	struct cam_sim *sim;
5122 
5123 	device = path->device;
5124 	sim = path->bus->sim;
5125 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
5126 	device->tag_delay_count = 0;
5127 	xpt_freeze_devq(path, /*count*/1);
5128 	device->inq_flags &= ~SID_CmdQue;
5129 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
5130 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
5131 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
5132 	crs.ccb_h.func_code = XPT_REL_SIMQ;
5133 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
5134 	crs.openings
5135 	    = crs.release_timeout
5136 	    = crs.qfrozen_cnt
5137 	    = 0;
5138 	xpt_action((union ccb *)&crs);
5139 }
5140 
5141 static void
5142 xpt_boot_delay(void *arg)
5143 {
5144 
5145 	xpt_release_boot();
5146 }
5147 
5148 static void
5149 xpt_config(void *arg)
5150 {
5151 	/*
5152 	 * Now that interrupts are enabled, go find our devices
5153 	 */
5154 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5155 		printf("xpt_config: failed to create taskqueue thread.\n");
5156 
5157 	/* Setup debugging path */
5158 	if (cam_dflags != CAM_DEBUG_NONE) {
5159 		if (xpt_create_path(&cam_dpath, NULL,
5160 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5161 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5162 			printf("xpt_config: xpt_create_path() failed for debug"
5163 			       " target %d:%d:%d, debugging disabled\n",
5164 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5165 			cam_dflags = CAM_DEBUG_NONE;
5166 		}
5167 	} else
5168 		cam_dpath = NULL;
5169 
5170 	periphdriver_init(1);
5171 	xpt_hold_boot();
5172 	callout_init(&xsoftc.boot_callout, 1);
5173 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
5174 	    xpt_boot_delay, NULL, 0);
5175 	/* Fire up rescan thread. */
5176 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5177 	    "cam", "scanner")) {
5178 		printf("xpt_config: failed to create rescan thread.\n");
5179 	}
5180 }
5181 
5182 void
5183 xpt_hold_boot(void)
5184 {
5185 	xpt_lock_buses();
5186 	xsoftc.buses_to_config++;
5187 	xpt_unlock_buses();
5188 }
5189 
5190 void
5191 xpt_release_boot(void)
5192 {
5193 	xpt_lock_buses();
5194 	xsoftc.buses_to_config--;
5195 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
5196 		struct	xpt_task *task;
5197 
5198 		xsoftc.buses_config_done = 1;
5199 		xpt_unlock_buses();
5200 		/* Call manually because we don't have any buses */
5201 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
5202 		if (task != NULL) {
5203 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
5204 			taskqueue_enqueue(taskqueue_thread, &task->task);
5205 		}
5206 	} else
5207 		xpt_unlock_buses();
5208 }
5209 
5210 /*
5211  * If the given device only has one peripheral attached to it, and if that
5212  * peripheral is the passthrough driver, announce it.  This insures that the
5213  * user sees some sort of announcement for every peripheral in their system.
5214  */
5215 static int
5216 xptpassannouncefunc(struct cam_ed *device, void *arg)
5217 {
5218 	struct cam_periph *periph;
5219 	int i;
5220 
5221 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5222 	     periph = SLIST_NEXT(periph, periph_links), i++);
5223 
5224 	periph = SLIST_FIRST(&device->periphs);
5225 	if ((i == 1)
5226 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5227 		xpt_announce_periph(periph, NULL);
5228 
5229 	return(1);
5230 }
5231 
5232 static void
5233 xpt_finishconfig_task(void *context, int pending)
5234 {
5235 
5236 	periphdriver_init(2);
5237 	/*
5238 	 * Check for devices with no "standard" peripheral driver
5239 	 * attached.  For any devices like that, announce the
5240 	 * passthrough driver so the user will see something.
5241 	 */
5242 	if (!bootverbose)
5243 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5244 
5245 	/* Release our hook so that the boot can continue. */
5246 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5247 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5248 	xsoftc.xpt_config_hook = NULL;
5249 
5250 	free(context, M_CAMXPT);
5251 }
5252 
5253 cam_status
5254 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5255 		   struct cam_path *path)
5256 {
5257 	struct ccb_setasync csa;
5258 	cam_status status;
5259 	int xptpath = 0;
5260 
5261 	if (path == NULL) {
5262 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5263 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5264 		if (status != CAM_REQ_CMP)
5265 			return (status);
5266 		xpt_path_lock(path);
5267 		xptpath = 1;
5268 	}
5269 
5270 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5271 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5272 	csa.event_enable = event;
5273 	csa.callback = cbfunc;
5274 	csa.callback_arg = cbarg;
5275 	xpt_action((union ccb *)&csa);
5276 	status = csa.ccb_h.status;
5277 
5278 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5279 	    ("xpt_register_async: func %p\n", cbfunc));
5280 
5281 	if (xptpath) {
5282 		xpt_path_unlock(path);
5283 		xpt_free_path(path);
5284 	}
5285 
5286 	if ((status == CAM_REQ_CMP) &&
5287 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5288 		/*
5289 		 * Get this peripheral up to date with all
5290 		 * the currently existing devices.
5291 		 */
5292 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5293 	}
5294 	if ((status == CAM_REQ_CMP) &&
5295 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5296 		/*
5297 		 * Get this peripheral up to date with all
5298 		 * the currently existing buses.
5299 		 */
5300 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5301 	}
5302 
5303 	return (status);
5304 }
5305 
5306 static void
5307 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5308 {
5309 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5310 
5311 	switch (work_ccb->ccb_h.func_code) {
5312 	/* Common cases first */
5313 	case XPT_PATH_INQ:		/* Path routing inquiry */
5314 	{
5315 		struct ccb_pathinq *cpi;
5316 
5317 		cpi = &work_ccb->cpi;
5318 		cpi->version_num = 1; /* XXX??? */
5319 		cpi->hba_inquiry = 0;
5320 		cpi->target_sprt = 0;
5321 		cpi->hba_misc = 0;
5322 		cpi->hba_eng_cnt = 0;
5323 		cpi->max_target = 0;
5324 		cpi->max_lun = 0;
5325 		cpi->initiator_id = 0;
5326 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5327 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5328 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5329 		cpi->unit_number = sim->unit_number;
5330 		cpi->bus_id = sim->bus_id;
5331 		cpi->base_transfer_speed = 0;
5332 		cpi->protocol = PROTO_UNSPECIFIED;
5333 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5334 		cpi->transport = XPORT_UNSPECIFIED;
5335 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5336 		cpi->ccb_h.status = CAM_REQ_CMP;
5337 		xpt_done(work_ccb);
5338 		break;
5339 	}
5340 	default:
5341 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5342 		xpt_done(work_ccb);
5343 		break;
5344 	}
5345 }
5346 
5347 /*
5348  * The xpt as a "controller" has no interrupt sources, so polling
5349  * is a no-op.
5350  */
5351 static void
5352 xptpoll(struct cam_sim *sim)
5353 {
5354 }
5355 
5356 void
5357 xpt_lock_buses(void)
5358 {
5359 	mtx_lock(&xsoftc.xpt_topo_lock);
5360 }
5361 
5362 void
5363 xpt_unlock_buses(void)
5364 {
5365 	mtx_unlock(&xsoftc.xpt_topo_lock);
5366 }
5367 
5368 struct mtx *
5369 xpt_path_mtx(struct cam_path *path)
5370 {
5371 
5372 	return (&path->device->device_mtx);
5373 }
5374 
5375 static void
5376 xpt_done_process(struct ccb_hdr *ccb_h)
5377 {
5378 	struct cam_sim *sim = NULL;
5379 	struct cam_devq *devq = NULL;
5380 	struct mtx *mtx = NULL;
5381 
5382 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5383 	struct ccb_scsiio *csio;
5384 
5385 	if (ccb_h->func_code == XPT_SCSI_IO) {
5386 		csio = &((union ccb *)ccb_h)->csio;
5387 		if (csio->bio != NULL)
5388 			biotrack(csio->bio, __func__);
5389 	}
5390 #endif
5391 
5392 	if (ccb_h->flags & CAM_HIGH_POWER) {
5393 		struct highpowerlist	*hphead;
5394 		struct cam_ed		*device;
5395 
5396 		mtx_lock(&xsoftc.xpt_highpower_lock);
5397 		hphead = &xsoftc.highpowerq;
5398 
5399 		device = STAILQ_FIRST(hphead);
5400 
5401 		/*
5402 		 * Increment the count since this command is done.
5403 		 */
5404 		xsoftc.num_highpower++;
5405 
5406 		/*
5407 		 * Any high powered commands queued up?
5408 		 */
5409 		if (device != NULL) {
5410 
5411 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5412 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5413 
5414 			mtx_lock(&device->sim->devq->send_mtx);
5415 			xpt_release_devq_device(device,
5416 					 /*count*/1, /*runqueue*/TRUE);
5417 			mtx_unlock(&device->sim->devq->send_mtx);
5418 		} else
5419 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5420 	}
5421 
5422 	/*
5423 	 * Insulate against a race where the periph is destroyed
5424 	 * but CCBs are still not all processed.
5425 	 */
5426 	if (ccb_h->path->bus)
5427 		sim = ccb_h->path->bus->sim;
5428 
5429 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5430 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5431 		xpt_release_simq(sim, /*run_queue*/FALSE);
5432 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5433 	}
5434 
5435 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5436 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5437 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5438 		ccb_h->status &= ~CAM_DEV_QFRZN;
5439 	}
5440 
5441 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5442 		struct cam_ed *dev = ccb_h->path->device;
5443 
5444 		if (sim)
5445 			devq = sim->devq;
5446 		KASSERT(devq, ("sim missing for XPT_FC_USER_CCB request"));
5447 
5448 		mtx_lock(&devq->send_mtx);
5449 		devq->send_active--;
5450 		devq->send_openings++;
5451 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5452 
5453 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5454 		  && (dev->ccbq.dev_active == 0))) {
5455 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5456 			xpt_release_devq_device(dev, /*count*/1,
5457 					 /*run_queue*/FALSE);
5458 		}
5459 
5460 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5461 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5462 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5463 			xpt_release_devq_device(dev, /*count*/1,
5464 					 /*run_queue*/FALSE);
5465 		}
5466 
5467 		if (!device_is_queued(dev))
5468 			(void)xpt_schedule_devq(devq, dev);
5469 		xpt_run_devq(devq);
5470 		mtx_unlock(&devq->send_mtx);
5471 
5472 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5473 			mtx = xpt_path_mtx(ccb_h->path);
5474 			mtx_lock(mtx);
5475 
5476 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5477 			 && (--dev->tag_delay_count == 0))
5478 				xpt_start_tags(ccb_h->path);
5479 		}
5480 	}
5481 
5482 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5483 		if (mtx == NULL) {
5484 			mtx = xpt_path_mtx(ccb_h->path);
5485 			mtx_lock(mtx);
5486 		}
5487 	} else {
5488 		if (mtx != NULL) {
5489 			mtx_unlock(mtx);
5490 			mtx = NULL;
5491 		}
5492 	}
5493 
5494 	/* Call the peripheral driver's callback */
5495 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5496 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5497 	if (mtx != NULL)
5498 		mtx_unlock(mtx);
5499 }
5500 
5501 void
5502 xpt_done_td(void *arg)
5503 {
5504 	struct cam_doneq *queue = arg;
5505 	struct ccb_hdr *ccb_h;
5506 	STAILQ_HEAD(, ccb_hdr)	doneq;
5507 
5508 	STAILQ_INIT(&doneq);
5509 	mtx_lock(&queue->cam_doneq_mtx);
5510 	while (1) {
5511 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5512 			queue->cam_doneq_sleep = 1;
5513 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5514 			    PRIBIO, "-", 0);
5515 			queue->cam_doneq_sleep = 0;
5516 		}
5517 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5518 		mtx_unlock(&queue->cam_doneq_mtx);
5519 
5520 		THREAD_NO_SLEEPING();
5521 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5522 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5523 			xpt_done_process(ccb_h);
5524 		}
5525 		THREAD_SLEEPING_OK();
5526 
5527 		mtx_lock(&queue->cam_doneq_mtx);
5528 	}
5529 }
5530 
5531 static void
5532 camisr_runqueue(void)
5533 {
5534 	struct	ccb_hdr *ccb_h;
5535 	struct cam_doneq *queue;
5536 	int i;
5537 
5538 	/* Process global queues. */
5539 	for (i = 0; i < cam_num_doneqs; i++) {
5540 		queue = &cam_doneqs[i];
5541 		mtx_lock(&queue->cam_doneq_mtx);
5542 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5543 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5544 			mtx_unlock(&queue->cam_doneq_mtx);
5545 			xpt_done_process(ccb_h);
5546 			mtx_lock(&queue->cam_doneq_mtx);
5547 		}
5548 		mtx_unlock(&queue->cam_doneq_mtx);
5549 	}
5550 }
5551 
5552 struct kv
5553 {
5554 	uint32_t v;
5555 	const char *name;
5556 };
5557 
5558 static struct kv map[] = {
5559 	{ XPT_NOOP, "XPT_NOOP" },
5560 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5561 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5562 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5563 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5564 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5565 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5566 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5567 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5568 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5569 	{ XPT_DEBUG, "XPT_DEBUG" },
5570 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5571 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5572 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5573 	{ XPT_ASYNC, "XPT_ASYNC" },
5574 	{ XPT_ABORT, "XPT_ABORT" },
5575 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5576 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5577 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5578 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5579 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5580 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5581 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5582 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5583 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5584 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5585 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5586 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5587 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5588 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5589 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5590 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5591 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5592 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5593 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5594 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5595 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5596 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5597 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5598 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5599 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5600 	{ 0, 0 }
5601 };
5602 
5603 const char *
5604 xpt_action_name(uint32_t action)
5605 {
5606 	static char buffer[32];	/* Only for unknown messages -- racy */
5607 	struct kv *walker = map;
5608 
5609 	while (walker->name != NULL) {
5610 		if (walker->v == action)
5611 			return (walker->name);
5612 		walker++;
5613 	}
5614 
5615 	snprintf(buffer, sizeof(buffer), "%#x", action);
5616 	return (buffer);
5617 }
5618