1 /* 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 46 #ifdef PC98 47 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 48 #endif 49 50 #include <cam/cam.h> 51 #include <cam/cam_ccb.h> 52 #include <cam/cam_periph.h> 53 #include <cam/cam_sim.h> 54 #include <cam/cam_xpt.h> 55 #include <cam/cam_xpt_sim.h> 56 #include <cam/cam_xpt_periph.h> 57 #include <cam/cam_debug.h> 58 59 #include <cam/scsi/scsi_all.h> 60 #include <cam/scsi/scsi_message.h> 61 #include <cam/scsi/scsi_pass.h> 62 #include "opt_cam.h" 63 64 /* Datastructures internal to the xpt layer */ 65 66 /* 67 * Definition of an async handler callback block. These are used to add 68 * SIMs and peripherals to the async callback lists. 69 */ 70 struct async_node { 71 SLIST_ENTRY(async_node) links; 72 u_int32_t event_enable; /* Async Event enables */ 73 void (*callback)(void *arg, u_int32_t code, 74 struct cam_path *path, void *args); 75 void *callback_arg; 76 }; 77 78 SLIST_HEAD(async_list, async_node); 79 SLIST_HEAD(periph_list, cam_periph); 80 static STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 81 82 /* 83 * This is the maximum number of high powered commands (e.g. start unit) 84 * that can be outstanding at a particular time. 85 */ 86 #ifndef CAM_MAX_HIGHPOWER 87 #define CAM_MAX_HIGHPOWER 4 88 #endif 89 90 /* number of high powered commands that can go through right now */ 91 static int num_highpower = CAM_MAX_HIGHPOWER; 92 93 /* 94 * Structure for queueing a device in a run queue. 95 * There is one run queue for allocating new ccbs, 96 * and another for sending ccbs to the controller. 97 */ 98 struct cam_ed_qinfo { 99 cam_pinfo pinfo; 100 struct cam_ed *device; 101 }; 102 103 /* 104 * The CAM EDT (Existing Device Table) contains the device information for 105 * all devices for all busses in the system. The table contains a 106 * cam_ed structure for each device on the bus. 107 */ 108 struct cam_ed { 109 TAILQ_ENTRY(cam_ed) links; 110 struct cam_ed_qinfo alloc_ccb_entry; 111 struct cam_ed_qinfo send_ccb_entry; 112 struct cam_et *target; 113 lun_id_t lun_id; 114 struct camq drvq; /* 115 * Queue of type drivers wanting to do 116 * work on this device. 117 */ 118 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 119 struct async_list asyncs; /* Async callback info for this B/T/L */ 120 struct periph_list periphs; /* All attached devices */ 121 u_int generation; /* Generation number */ 122 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 123 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 124 /* Storage for the inquiry data */ 125 #ifdef CAM_NEW_TRAN_CODE 126 cam_proto protocol; 127 u_int protocol_version; 128 cam_xport transport; 129 u_int transport_version; 130 #endif /* CAM_NEW_TRAN_CODE */ 131 struct scsi_inquiry_data inq_data; 132 u_int8_t inq_flags; /* 133 * Current settings for inquiry flags. 134 * This allows us to override settings 135 * like disconnection and tagged 136 * queuing for a device. 137 */ 138 u_int8_t queue_flags; /* Queue flags from the control page */ 139 u_int8_t serial_num_len; 140 u_int8_t *serial_num; 141 u_int32_t qfrozen_cnt; 142 u_int32_t flags; 143 #define CAM_DEV_UNCONFIGURED 0x01 144 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 145 #define CAM_DEV_REL_ON_COMPLETE 0x04 146 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 147 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 148 #define CAM_DEV_TAG_AFTER_COUNT 0x20 149 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 150 u_int32_t tag_delay_count; 151 #define CAM_TAG_DELAY_COUNT 5 152 u_int32_t refcount; 153 struct callout_handle c_handle; 154 }; 155 156 /* 157 * Each target is represented by an ET (Existing Target). These 158 * entries are created when a target is successfully probed with an 159 * identify, and removed when a device fails to respond after a number 160 * of retries, or a bus rescan finds the device missing. 161 */ 162 struct cam_et { 163 TAILQ_HEAD(, cam_ed) ed_entries; 164 TAILQ_ENTRY(cam_et) links; 165 struct cam_eb *bus; 166 target_id_t target_id; 167 u_int32_t refcount; 168 u_int generation; 169 struct timeval last_reset; 170 }; 171 172 /* 173 * Each bus is represented by an EB (Existing Bus). These entries 174 * are created by calls to xpt_bus_register and deleted by calls to 175 * xpt_bus_deregister. 176 */ 177 struct cam_eb { 178 TAILQ_HEAD(, cam_et) et_entries; 179 TAILQ_ENTRY(cam_eb) links; 180 path_id_t path_id; 181 struct cam_sim *sim; 182 struct timeval last_reset; 183 u_int32_t flags; 184 #define CAM_EB_RUNQ_SCHEDULED 0x01 185 u_int32_t refcount; 186 u_int generation; 187 }; 188 189 struct cam_path { 190 struct cam_periph *periph; 191 struct cam_eb *bus; 192 struct cam_et *target; 193 struct cam_ed *device; 194 }; 195 196 struct xpt_quirk_entry { 197 struct scsi_inquiry_pattern inq_pat; 198 u_int8_t quirks; 199 #define CAM_QUIRK_NOLUNS 0x01 200 #define CAM_QUIRK_NOSERIAL 0x02 201 #define CAM_QUIRK_HILUNS 0x04 202 u_int mintags; 203 u_int maxtags; 204 }; 205 #define CAM_SCSI2_MAXLUN 8 206 207 typedef enum { 208 XPT_FLAG_OPEN = 0x01 209 } xpt_flags; 210 211 struct xpt_softc { 212 xpt_flags flags; 213 u_int32_t generation; 214 }; 215 216 static const char quantum[] = "QUANTUM"; 217 static const char sony[] = "SONY"; 218 static const char west_digital[] = "WDIGTL"; 219 static const char samsung[] = "SAMSUNG"; 220 static const char seagate[] = "SEAGATE"; 221 static const char microp[] = "MICROP"; 222 223 static struct xpt_quirk_entry xpt_quirk_table[] = 224 { 225 { 226 /* Reports QUEUE FULL for temporary resource shortages */ 227 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 228 /*quirks*/0, /*mintags*/24, /*maxtags*/32 229 }, 230 { 231 /* Reports QUEUE FULL for temporary resource shortages */ 232 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 233 /*quirks*/0, /*mintags*/24, /*maxtags*/32 234 }, 235 { 236 /* Reports QUEUE FULL for temporary resource shortages */ 237 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 238 /*quirks*/0, /*mintags*/24, /*maxtags*/32 239 }, 240 { 241 /* Broken tagged queuing drive */ 242 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 243 /*quirks*/0, /*mintags*/0, /*maxtags*/0 244 }, 245 { 246 /* Broken tagged queuing drive */ 247 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 248 /*quirks*/0, /*mintags*/0, /*maxtags*/0 249 }, 250 { 251 /* Broken tagged queuing drive */ 252 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 253 /*quirks*/0, /*mintags*/0, /*maxtags*/0 254 }, 255 { 256 /* 257 * Unfortunately, the Quantum Atlas III has the same 258 * problem as the Atlas II drives above. 259 * Reported by: "Johan Granlund" <johan@granlund.nu> 260 * 261 * For future reference, the drive with the problem was: 262 * QUANTUM QM39100TD-SW N1B0 263 * 264 * It's possible that Quantum will fix the problem in later 265 * firmware revisions. If that happens, the quirk entry 266 * will need to be made specific to the firmware revisions 267 * with the problem. 268 * 269 */ 270 /* Reports QUEUE FULL for temporary resource shortages */ 271 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 272 /*quirks*/0, /*mintags*/24, /*maxtags*/32 273 }, 274 { 275 /* 276 * 18 Gig Atlas III, same problem as the 9G version. 277 * Reported by: Andre Albsmeier 278 * <andre.albsmeier@mchp.siemens.de> 279 * 280 * For future reference, the drive with the problem was: 281 * QUANTUM QM318000TD-S N491 282 */ 283 /* Reports QUEUE FULL for temporary resource shortages */ 284 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 285 /*quirks*/0, /*mintags*/24, /*maxtags*/32 286 }, 287 { 288 /* 289 * Broken tagged queuing drive 290 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 291 * and: Martin Renters <martin@tdc.on.ca> 292 */ 293 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 294 /*quirks*/0, /*mintags*/0, /*maxtags*/0 295 }, 296 /* 297 * The Seagate Medalist Pro drives have very poor write 298 * performance with anything more than 2 tags. 299 * 300 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 301 * Drive: <SEAGATE ST36530N 1444> 302 * 303 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 304 * Drive: <SEAGATE ST34520W 1281> 305 * 306 * No one has actually reported that the 9G version 307 * (ST39140*) of the Medalist Pro has the same problem, but 308 * we're assuming that it does because the 4G and 6.5G 309 * versions of the drive are broken. 310 */ 311 { 312 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 313 /*quirks*/0, /*mintags*/2, /*maxtags*/2 314 }, 315 { 316 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 317 /*quirks*/0, /*mintags*/2, /*maxtags*/2 318 }, 319 { 320 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 321 /*quirks*/0, /*mintags*/2, /*maxtags*/2 322 }, 323 { 324 /* 325 * Slow when tagged queueing is enabled. Write performance 326 * steadily drops off with more and more concurrent 327 * transactions. Best sequential write performance with 328 * tagged queueing turned off and write caching turned on. 329 * 330 * PR: kern/10398 331 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 332 * Drive: DCAS-34330 w/ "S65A" firmware. 333 * 334 * The drive with the problem had the "S65A" firmware 335 * revision, and has also been reported (by Stephen J. 336 * Roznowski <sjr@home.net>) for a drive with the "S61A" 337 * firmware revision. 338 * 339 * Although no one has reported problems with the 2 gig 340 * version of the DCAS drive, the assumption is that it 341 * has the same problems as the 4 gig version. Therefore 342 * this quirk entries disables tagged queueing for all 343 * DCAS drives. 344 */ 345 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 346 /*quirks*/0, /*mintags*/0, /*maxtags*/0 347 }, 348 { 349 /* Broken tagged queuing drive */ 350 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 351 /*quirks*/0, /*mintags*/0, /*maxtags*/0 352 }, 353 { 354 /* Broken tagged queuing drive */ 355 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 356 /*quirks*/0, /*mintags*/0, /*maxtags*/0 357 }, 358 { 359 /* 360 * Broken tagged queuing drive. 361 * Submitted by: 362 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 363 * in PR kern/9535 364 */ 365 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 366 /*quirks*/0, /*mintags*/0, /*maxtags*/0 367 }, 368 { 369 /* 370 * Slow when tagged queueing is enabled. (1.5MB/sec versus 371 * 8MB/sec.) 372 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 373 * Best performance with these drives is achieved with 374 * tagged queueing turned off, and write caching turned on. 375 */ 376 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 377 /*quirks*/0, /*mintags*/0, /*maxtags*/0 378 }, 379 { 380 /* 381 * Slow when tagged queueing is enabled. (1.5MB/sec versus 382 * 8MB/sec.) 383 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 384 * Best performance with these drives is achieved with 385 * tagged queueing turned off, and write caching turned on. 386 */ 387 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 388 /*quirks*/0, /*mintags*/0, /*maxtags*/0 389 }, 390 { 391 /* 392 * Doesn't handle queue full condition correctly, 393 * so we need to limit maxtags to what the device 394 * can handle instead of determining this automatically. 395 */ 396 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 397 /*quirks*/0, /*mintags*/2, /*maxtags*/32 398 }, 399 { 400 /* Really only one LUN */ 401 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 402 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 403 }, 404 { 405 /* I can't believe we need a quirk for DPT volumes. */ 406 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 407 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 408 /*mintags*/0, /*maxtags*/255 409 }, 410 { 411 /* 412 * Many Sony CDROM drives don't like multi-LUN probing. 413 */ 414 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 415 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 416 }, 417 { 418 /* 419 * This drive doesn't like multiple LUN probing. 420 * Submitted by: Parag Patel <parag@cgt.com> 421 */ 422 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 423 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 424 }, 425 { 426 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 427 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 428 }, 429 { 430 /* 431 * The 8200 doesn't like multi-lun probing, and probably 432 * don't like serial number requests either. 433 */ 434 { 435 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 436 "EXB-8200*", "*" 437 }, 438 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 439 }, 440 { 441 /* 442 * Let's try the same as above, but for a drive that says 443 * it's an IPL-6860 but is actually an EXB 8200. 444 */ 445 { 446 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 447 "IPL-6860*", "*" 448 }, 449 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 450 }, 451 { 452 /* 453 * These Hitachi drives don't like multi-lun probing. 454 * The PR submitter has a DK319H, but says that the Linux 455 * kernel has a similar work-around for the DK312 and DK314, 456 * so all DK31* drives are quirked here. 457 * PR: misc/18793 458 * Submitted by: Paul Haddad <paul@pth.com> 459 */ 460 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 461 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 462 }, 463 { 464 /* 465 * The Hitachi CJ series with J8A8 firmware apparantly has 466 * problems with tagged commands. 467 * PR: 23536 468 * Reported by: amagai@nue.org 469 */ 470 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 471 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 472 }, 473 { 474 /* 475 * These are the large storage arrays. 476 * Submitted by: William Carrel <william.carrel@infospace.com> 477 */ 478 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 479 CAM_QUIRK_HILUNS, 2, 1024 480 }, 481 { 482 /* 483 * This old revision of the TDC3600 is also SCSI-1, and 484 * hangs upon serial number probing. 485 */ 486 { 487 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 488 " TDC 3600", "U07:" 489 }, 490 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 491 }, 492 { 493 /* 494 * Maxtor Personal Storage 3000XT (Firewire) 495 * hangs upon serial number probing. 496 */ 497 { 498 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 499 "1394 storage", "*" 500 }, 501 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 502 }, 503 { 504 /* 505 * Would repond to all LUNs if asked for. 506 */ 507 { 508 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 509 "CP150", "*" 510 }, 511 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 512 }, 513 { 514 /* 515 * Would repond to all LUNs if asked for. 516 */ 517 { 518 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 519 "96X2*", "*" 520 }, 521 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 522 }, 523 { 524 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 525 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 526 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 527 }, 528 { 529 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 530 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 531 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 532 }, 533 { 534 /* TeraSolutions special settings for TRC-22 RAID */ 535 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 536 /*quirks*/0, /*mintags*/55, /*maxtags*/255 537 }, 538 { 539 /* Veritas Storage Appliance */ 540 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 541 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 542 }, 543 { 544 /* 545 * Would respond to all LUNs. Device type and removable 546 * flag are jumper-selectable. 547 */ 548 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 549 "Tahiti 1", "*" 550 }, 551 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 552 }, 553 { 554 /* Default tagged queuing parameters for all devices */ 555 { 556 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 557 /*vendor*/"*", /*product*/"*", /*revision*/"*" 558 }, 559 /*quirks*/0, /*mintags*/2, /*maxtags*/255 560 }, 561 }; 562 563 static const int xpt_quirk_table_size = 564 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 565 566 typedef enum { 567 DM_RET_COPY = 0x01, 568 DM_RET_FLAG_MASK = 0x0f, 569 DM_RET_NONE = 0x00, 570 DM_RET_STOP = 0x10, 571 DM_RET_DESCEND = 0x20, 572 DM_RET_ERROR = 0x30, 573 DM_RET_ACTION_MASK = 0xf0 574 } dev_match_ret; 575 576 typedef enum { 577 XPT_DEPTH_BUS, 578 XPT_DEPTH_TARGET, 579 XPT_DEPTH_DEVICE, 580 XPT_DEPTH_PERIPH 581 } xpt_traverse_depth; 582 583 struct xpt_traverse_config { 584 xpt_traverse_depth depth; 585 void *tr_func; 586 void *tr_arg; 587 }; 588 589 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 590 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 591 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 592 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 593 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 594 595 /* Transport layer configuration information */ 596 static struct xpt_softc xsoftc; 597 598 /* Queues for our software interrupt handler */ 599 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 600 static cam_isrq_t cam_bioq; 601 static cam_isrq_t cam_netq; 602 603 /* "Pool" of inactive ccbs managed by xpt_alloc_ccb and xpt_free_ccb */ 604 static SLIST_HEAD(,ccb_hdr) ccb_freeq; 605 static u_int xpt_max_ccbs; /* 606 * Maximum size of ccb pool. Modified as 607 * devices are added/removed or have their 608 * opening counts changed. 609 */ 610 static u_int xpt_ccb_count; /* Current count of allocated ccbs */ 611 612 struct cam_periph *xpt_periph; 613 614 static periph_init_t xpt_periph_init; 615 616 static periph_init_t probe_periph_init; 617 618 static struct periph_driver xpt_driver = 619 { 620 xpt_periph_init, "xpt", 621 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 622 }; 623 624 static struct periph_driver probe_driver = 625 { 626 probe_periph_init, "probe", 627 TAILQ_HEAD_INITIALIZER(probe_driver.units) 628 }; 629 630 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 631 PERIPHDRIVER_DECLARE(probe, probe_driver); 632 633 634 static d_open_t xptopen; 635 static d_close_t xptclose; 636 static d_ioctl_t xptioctl; 637 638 static struct cdevsw xpt_cdevsw = { 639 .d_version = D_VERSION, 640 .d_flags = D_NEEDGIANT, 641 .d_open = xptopen, 642 .d_close = xptclose, 643 .d_ioctl = xptioctl, 644 .d_name = "xpt", 645 }; 646 647 static struct intr_config_hook *xpt_config_hook; 648 649 /* Registered busses */ 650 static TAILQ_HEAD(,cam_eb) xpt_busses; 651 static u_int bus_generation; 652 653 /* Storage for debugging datastructures */ 654 #ifdef CAMDEBUG 655 struct cam_path *cam_dpath; 656 u_int32_t cam_dflags; 657 u_int32_t cam_debug_delay; 658 #endif 659 660 /* Pointers to software interrupt handlers */ 661 static void *camnet_ih; 662 static void *cambio_ih; 663 664 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 665 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 666 #endif 667 668 /* 669 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 670 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 671 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 672 */ 673 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 674 || defined(CAM_DEBUG_LUN) 675 #ifdef CAMDEBUG 676 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 677 || !defined(CAM_DEBUG_LUN) 678 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 679 and CAM_DEBUG_LUN" 680 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 681 #else /* !CAMDEBUG */ 682 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 683 #endif /* CAMDEBUG */ 684 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 685 686 /* Our boot-time initialization hook */ 687 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 688 689 static moduledata_t cam_moduledata = { 690 "cam", 691 cam_module_event_handler, 692 NULL 693 }; 694 695 static void xpt_init(void *); 696 697 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 698 MODULE_VERSION(cam, 1); 699 700 701 static cam_status xpt_compile_path(struct cam_path *new_path, 702 struct cam_periph *perph, 703 path_id_t path_id, 704 target_id_t target_id, 705 lun_id_t lun_id); 706 707 static void xpt_release_path(struct cam_path *path); 708 709 static void xpt_async_bcast(struct async_list *async_head, 710 u_int32_t async_code, 711 struct cam_path *path, 712 void *async_arg); 713 static void xpt_dev_async(u_int32_t async_code, 714 struct cam_eb *bus, 715 struct cam_et *target, 716 struct cam_ed *device, 717 void *async_arg); 718 static path_id_t xptnextfreepathid(void); 719 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 720 static union ccb *xpt_get_ccb(struct cam_ed *device); 721 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 722 u_int32_t new_priority); 723 static void xpt_run_dev_allocq(struct cam_eb *bus); 724 static void xpt_run_dev_sendq(struct cam_eb *bus); 725 static timeout_t xpt_release_devq_timeout; 726 static timeout_t xpt_release_simq_timeout; 727 static void xpt_release_bus(struct cam_eb *bus); 728 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 729 int run_queue); 730 static struct cam_et* 731 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 732 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 733 static struct cam_ed* 734 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 735 lun_id_t lun_id); 736 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 737 struct cam_ed *device); 738 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 739 static struct cam_eb* 740 xpt_find_bus(path_id_t path_id); 741 static struct cam_et* 742 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 743 static struct cam_ed* 744 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 745 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 746 static void xpt_scan_lun(struct cam_periph *periph, 747 struct cam_path *path, cam_flags flags, 748 union ccb *ccb); 749 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 750 static xpt_busfunc_t xptconfigbuscountfunc; 751 static xpt_busfunc_t xptconfigfunc; 752 static void xpt_config(void *arg); 753 static xpt_devicefunc_t xptpassannouncefunc; 754 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 755 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 756 static void xptpoll(struct cam_sim *sim); 757 static void camisr(void *); 758 #if 0 759 static void xptstart(struct cam_periph *periph, union ccb *work_ccb); 760 static void xptasync(struct cam_periph *periph, 761 u_int32_t code, cam_path *path); 762 #endif 763 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 764 u_int num_patterns, struct cam_eb *bus); 765 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 766 u_int num_patterns, 767 struct cam_ed *device); 768 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 769 u_int num_patterns, 770 struct cam_periph *periph); 771 static xpt_busfunc_t xptedtbusfunc; 772 static xpt_targetfunc_t xptedttargetfunc; 773 static xpt_devicefunc_t xptedtdevicefunc; 774 static xpt_periphfunc_t xptedtperiphfunc; 775 static xpt_pdrvfunc_t xptplistpdrvfunc; 776 static xpt_periphfunc_t xptplistperiphfunc; 777 static int xptedtmatch(struct ccb_dev_match *cdm); 778 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 779 static int xptbustraverse(struct cam_eb *start_bus, 780 xpt_busfunc_t *tr_func, void *arg); 781 static int xpttargettraverse(struct cam_eb *bus, 782 struct cam_et *start_target, 783 xpt_targetfunc_t *tr_func, void *arg); 784 static int xptdevicetraverse(struct cam_et *target, 785 struct cam_ed *start_device, 786 xpt_devicefunc_t *tr_func, void *arg); 787 static int xptperiphtraverse(struct cam_ed *device, 788 struct cam_periph *start_periph, 789 xpt_periphfunc_t *tr_func, void *arg); 790 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 791 xpt_pdrvfunc_t *tr_func, void *arg); 792 static int xptpdperiphtraverse(struct periph_driver **pdrv, 793 struct cam_periph *start_periph, 794 xpt_periphfunc_t *tr_func, 795 void *arg); 796 static xpt_busfunc_t xptdefbusfunc; 797 static xpt_targetfunc_t xptdeftargetfunc; 798 static xpt_devicefunc_t xptdefdevicefunc; 799 static xpt_periphfunc_t xptdefperiphfunc; 800 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 801 #ifdef notusedyet 802 static int xpt_for_all_targets(xpt_targetfunc_t *tr_func, 803 void *arg); 804 #endif 805 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 806 void *arg); 807 #ifdef notusedyet 808 static int xpt_for_all_periphs(xpt_periphfunc_t *tr_func, 809 void *arg); 810 #endif 811 static xpt_devicefunc_t xptsetasyncfunc; 812 static xpt_busfunc_t xptsetasyncbusfunc; 813 static cam_status xptregister(struct cam_periph *periph, 814 void *arg); 815 static cam_status proberegister(struct cam_periph *periph, 816 void *arg); 817 static void probeschedule(struct cam_periph *probe_periph); 818 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 819 static void proberequestdefaultnegotiation(struct cam_periph *periph); 820 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 821 static void probecleanup(struct cam_periph *periph); 822 static void xpt_find_quirk(struct cam_ed *device); 823 #ifdef CAM_NEW_TRAN_CODE 824 static void xpt_devise_transport(struct cam_path *path); 825 #endif /* CAM_NEW_TRAN_CODE */ 826 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 827 struct cam_ed *device, 828 int async_update); 829 static void xpt_toggle_tags(struct cam_path *path); 830 static void xpt_start_tags(struct cam_path *path); 831 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 832 struct cam_ed *dev); 833 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 834 struct cam_ed *dev); 835 static __inline int periph_is_queued(struct cam_periph *periph); 836 static __inline int device_is_alloc_queued(struct cam_ed *device); 837 static __inline int device_is_send_queued(struct cam_ed *device); 838 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 839 840 static __inline int 841 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 842 { 843 int retval; 844 845 if (dev->ccbq.devq_openings > 0) { 846 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 847 cam_ccbq_resize(&dev->ccbq, 848 dev->ccbq.dev_openings 849 + dev->ccbq.dev_active); 850 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 851 } 852 /* 853 * The priority of a device waiting for CCB resources 854 * is that of the the highest priority peripheral driver 855 * enqueued. 856 */ 857 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 858 &dev->alloc_ccb_entry.pinfo, 859 CAMQ_GET_HEAD(&dev->drvq)->priority); 860 } else { 861 retval = 0; 862 } 863 864 return (retval); 865 } 866 867 static __inline int 868 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 869 { 870 int retval; 871 872 if (dev->ccbq.dev_openings > 0) { 873 /* 874 * The priority of a device waiting for controller 875 * resources is that of the the highest priority CCB 876 * enqueued. 877 */ 878 retval = 879 xpt_schedule_dev(&bus->sim->devq->send_queue, 880 &dev->send_ccb_entry.pinfo, 881 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 882 } else { 883 retval = 0; 884 } 885 return (retval); 886 } 887 888 static __inline int 889 periph_is_queued(struct cam_periph *periph) 890 { 891 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 892 } 893 894 static __inline int 895 device_is_alloc_queued(struct cam_ed *device) 896 { 897 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 898 } 899 900 static __inline int 901 device_is_send_queued(struct cam_ed *device) 902 { 903 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 904 } 905 906 static __inline int 907 dev_allocq_is_runnable(struct cam_devq *devq) 908 { 909 /* 910 * Have work to do. 911 * Have space to do more work. 912 * Allowed to do work. 913 */ 914 return ((devq->alloc_queue.qfrozen_cnt == 0) 915 && (devq->alloc_queue.entries > 0) 916 && (devq->alloc_openings > 0)); 917 } 918 919 static void 920 xpt_periph_init() 921 { 922 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 923 } 924 925 static void 926 probe_periph_init() 927 { 928 } 929 930 931 static void 932 xptdone(struct cam_periph *periph, union ccb *done_ccb) 933 { 934 /* Caller will release the CCB */ 935 wakeup(&done_ccb->ccb_h.cbfcnp); 936 } 937 938 static int 939 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 940 { 941 int unit; 942 943 unit = minor(dev) & 0xff; 944 945 /* 946 * Only allow read-write access. 947 */ 948 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 949 return(EPERM); 950 951 /* 952 * We don't allow nonblocking access. 953 */ 954 if ((flags & O_NONBLOCK) != 0) { 955 printf("xpt%d: can't do nonblocking access\n", unit); 956 return(ENODEV); 957 } 958 959 /* 960 * We only have one transport layer right now. If someone accesses 961 * us via something other than minor number 1, point out their 962 * mistake. 963 */ 964 if (unit != 0) { 965 printf("xptopen: got invalid xpt unit %d\n", unit); 966 return(ENXIO); 967 } 968 969 /* Mark ourselves open */ 970 xsoftc.flags |= XPT_FLAG_OPEN; 971 972 return(0); 973 } 974 975 static int 976 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 977 { 978 int unit; 979 980 unit = minor(dev) & 0xff; 981 982 /* 983 * We only have one transport layer right now. If someone accesses 984 * us via something other than minor number 1, point out their 985 * mistake. 986 */ 987 if (unit != 0) { 988 printf("xptclose: got invalid xpt unit %d\n", unit); 989 return(ENXIO); 990 } 991 992 /* Mark ourselves closed */ 993 xsoftc.flags &= ~XPT_FLAG_OPEN; 994 995 return(0); 996 } 997 998 static int 999 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1000 { 1001 int unit, error; 1002 1003 error = 0; 1004 unit = minor(dev) & 0xff; 1005 1006 /* 1007 * We only have one transport layer right now. If someone accesses 1008 * us via something other than minor number 1, point out their 1009 * mistake. 1010 */ 1011 if (unit != 0) { 1012 printf("xptioctl: got invalid xpt unit %d\n", unit); 1013 return(ENXIO); 1014 } 1015 1016 switch(cmd) { 1017 /* 1018 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1019 * to accept CCB types that don't quite make sense to send through a 1020 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1021 * in the CAM spec. 1022 */ 1023 case CAMIOCOMMAND: { 1024 union ccb *ccb; 1025 union ccb *inccb; 1026 1027 inccb = (union ccb *)addr; 1028 1029 switch(inccb->ccb_h.func_code) { 1030 case XPT_SCAN_BUS: 1031 case XPT_RESET_BUS: 1032 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1033 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1034 error = EINVAL; 1035 break; 1036 } 1037 /* FALLTHROUGH */ 1038 case XPT_PATH_INQ: 1039 case XPT_ENG_INQ: 1040 case XPT_SCAN_LUN: 1041 1042 ccb = xpt_alloc_ccb(); 1043 1044 /* 1045 * Create a path using the bus, target, and lun the 1046 * user passed in. 1047 */ 1048 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1049 inccb->ccb_h.path_id, 1050 inccb->ccb_h.target_id, 1051 inccb->ccb_h.target_lun) != 1052 CAM_REQ_CMP){ 1053 error = EINVAL; 1054 xpt_free_ccb(ccb); 1055 break; 1056 } 1057 /* Ensure all of our fields are correct */ 1058 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1059 inccb->ccb_h.pinfo.priority); 1060 xpt_merge_ccb(ccb, inccb); 1061 ccb->ccb_h.cbfcnp = xptdone; 1062 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1063 bcopy(ccb, inccb, sizeof(union ccb)); 1064 xpt_free_path(ccb->ccb_h.path); 1065 xpt_free_ccb(ccb); 1066 break; 1067 1068 case XPT_DEBUG: { 1069 union ccb ccb; 1070 1071 /* 1072 * This is an immediate CCB, so it's okay to 1073 * allocate it on the stack. 1074 */ 1075 1076 /* 1077 * Create a path using the bus, target, and lun the 1078 * user passed in. 1079 */ 1080 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1081 inccb->ccb_h.path_id, 1082 inccb->ccb_h.target_id, 1083 inccb->ccb_h.target_lun) != 1084 CAM_REQ_CMP){ 1085 error = EINVAL; 1086 break; 1087 } 1088 /* Ensure all of our fields are correct */ 1089 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1090 inccb->ccb_h.pinfo.priority); 1091 xpt_merge_ccb(&ccb, inccb); 1092 ccb.ccb_h.cbfcnp = xptdone; 1093 xpt_action(&ccb); 1094 bcopy(&ccb, inccb, sizeof(union ccb)); 1095 xpt_free_path(ccb.ccb_h.path); 1096 break; 1097 1098 } 1099 case XPT_DEV_MATCH: { 1100 struct cam_periph_map_info mapinfo; 1101 struct cam_path *old_path; 1102 1103 /* 1104 * We can't deal with physical addresses for this 1105 * type of transaction. 1106 */ 1107 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1108 error = EINVAL; 1109 break; 1110 } 1111 1112 /* 1113 * Save this in case the caller had it set to 1114 * something in particular. 1115 */ 1116 old_path = inccb->ccb_h.path; 1117 1118 /* 1119 * We really don't need a path for the matching 1120 * code. The path is needed because of the 1121 * debugging statements in xpt_action(). They 1122 * assume that the CCB has a valid path. 1123 */ 1124 inccb->ccb_h.path = xpt_periph->path; 1125 1126 bzero(&mapinfo, sizeof(mapinfo)); 1127 1128 /* 1129 * Map the pattern and match buffers into kernel 1130 * virtual address space. 1131 */ 1132 error = cam_periph_mapmem(inccb, &mapinfo); 1133 1134 if (error) { 1135 inccb->ccb_h.path = old_path; 1136 break; 1137 } 1138 1139 /* 1140 * This is an immediate CCB, we can send it on directly. 1141 */ 1142 xpt_action(inccb); 1143 1144 /* 1145 * Map the buffers back into user space. 1146 */ 1147 cam_periph_unmapmem(inccb, &mapinfo); 1148 1149 inccb->ccb_h.path = old_path; 1150 1151 error = 0; 1152 break; 1153 } 1154 default: 1155 error = ENOTSUP; 1156 break; 1157 } 1158 break; 1159 } 1160 /* 1161 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1162 * with the periphal driver name and unit name filled in. The other 1163 * fields don't really matter as input. The passthrough driver name 1164 * ("pass"), and unit number are passed back in the ccb. The current 1165 * device generation number, and the index into the device peripheral 1166 * driver list, and the status are also passed back. Note that 1167 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1168 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1169 * (or rather should be) impossible for the device peripheral driver 1170 * list to change since we look at the whole thing in one pass, and 1171 * we do it with splcam protection. 1172 * 1173 */ 1174 case CAMGETPASSTHRU: { 1175 union ccb *ccb; 1176 struct cam_periph *periph; 1177 struct periph_driver **p_drv; 1178 char *name; 1179 u_int unit; 1180 u_int cur_generation; 1181 int base_periph_found; 1182 int splbreaknum; 1183 int s; 1184 1185 ccb = (union ccb *)addr; 1186 unit = ccb->cgdl.unit_number; 1187 name = ccb->cgdl.periph_name; 1188 /* 1189 * Every 100 devices, we want to drop our spl protection to 1190 * give the software interrupt handler a chance to run. 1191 * Most systems won't run into this check, but this should 1192 * avoid starvation in the software interrupt handler in 1193 * large systems. 1194 */ 1195 splbreaknum = 100; 1196 1197 ccb = (union ccb *)addr; 1198 1199 base_periph_found = 0; 1200 1201 /* 1202 * Sanity check -- make sure we don't get a null peripheral 1203 * driver name. 1204 */ 1205 if (*ccb->cgdl.periph_name == '\0') { 1206 error = EINVAL; 1207 break; 1208 } 1209 1210 /* Keep the list from changing while we traverse it */ 1211 s = splcam(); 1212 ptstartover: 1213 cur_generation = xsoftc.generation; 1214 1215 /* first find our driver in the list of drivers */ 1216 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1217 if (strcmp((*p_drv)->driver_name, name) == 0) 1218 break; 1219 1220 if (*p_drv == NULL) { 1221 splx(s); 1222 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1223 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1224 *ccb->cgdl.periph_name = '\0'; 1225 ccb->cgdl.unit_number = 0; 1226 error = ENOENT; 1227 break; 1228 } 1229 1230 /* 1231 * Run through every peripheral instance of this driver 1232 * and check to see whether it matches the unit passed 1233 * in by the user. If it does, get out of the loops and 1234 * find the passthrough driver associated with that 1235 * peripheral driver. 1236 */ 1237 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1238 periph = TAILQ_NEXT(periph, unit_links)) { 1239 1240 if (periph->unit_number == unit) { 1241 break; 1242 } else if (--splbreaknum == 0) { 1243 splx(s); 1244 s = splcam(); 1245 splbreaknum = 100; 1246 if (cur_generation != xsoftc.generation) 1247 goto ptstartover; 1248 } 1249 } 1250 /* 1251 * If we found the peripheral driver that the user passed 1252 * in, go through all of the peripheral drivers for that 1253 * particular device and look for a passthrough driver. 1254 */ 1255 if (periph != NULL) { 1256 struct cam_ed *device; 1257 int i; 1258 1259 base_periph_found = 1; 1260 device = periph->path->device; 1261 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1262 periph != NULL; 1263 periph = SLIST_NEXT(periph, periph_links), i++) { 1264 /* 1265 * Check to see whether we have a 1266 * passthrough device or not. 1267 */ 1268 if (strcmp(periph->periph_name, "pass") == 0) { 1269 /* 1270 * Fill in the getdevlist fields. 1271 */ 1272 strcpy(ccb->cgdl.periph_name, 1273 periph->periph_name); 1274 ccb->cgdl.unit_number = 1275 periph->unit_number; 1276 if (SLIST_NEXT(periph, periph_links)) 1277 ccb->cgdl.status = 1278 CAM_GDEVLIST_MORE_DEVS; 1279 else 1280 ccb->cgdl.status = 1281 CAM_GDEVLIST_LAST_DEVICE; 1282 ccb->cgdl.generation = 1283 device->generation; 1284 ccb->cgdl.index = i; 1285 /* 1286 * Fill in some CCB header fields 1287 * that the user may want. 1288 */ 1289 ccb->ccb_h.path_id = 1290 periph->path->bus->path_id; 1291 ccb->ccb_h.target_id = 1292 periph->path->target->target_id; 1293 ccb->ccb_h.target_lun = 1294 periph->path->device->lun_id; 1295 ccb->ccb_h.status = CAM_REQ_CMP; 1296 break; 1297 } 1298 } 1299 } 1300 1301 /* 1302 * If the periph is null here, one of two things has 1303 * happened. The first possibility is that we couldn't 1304 * find the unit number of the particular peripheral driver 1305 * that the user is asking about. e.g. the user asks for 1306 * the passthrough driver for "da11". We find the list of 1307 * "da" peripherals all right, but there is no unit 11. 1308 * The other possibility is that we went through the list 1309 * of peripheral drivers attached to the device structure, 1310 * but didn't find one with the name "pass". Either way, 1311 * we return ENOENT, since we couldn't find something. 1312 */ 1313 if (periph == NULL) { 1314 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1315 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1316 *ccb->cgdl.periph_name = '\0'; 1317 ccb->cgdl.unit_number = 0; 1318 error = ENOENT; 1319 /* 1320 * It is unfortunate that this is even necessary, 1321 * but there are many, many clueless users out there. 1322 * If this is true, the user is looking for the 1323 * passthrough driver, but doesn't have one in his 1324 * kernel. 1325 */ 1326 if (base_periph_found == 1) { 1327 printf("xptioctl: pass driver is not in the " 1328 "kernel\n"); 1329 printf("xptioctl: put \"device pass0\" in " 1330 "your kernel config file\n"); 1331 } 1332 } 1333 splx(s); 1334 break; 1335 } 1336 default: 1337 error = ENOTTY; 1338 break; 1339 } 1340 1341 return(error); 1342 } 1343 1344 static int 1345 cam_module_event_handler(module_t mod, int what, void *arg) 1346 { 1347 if (what == MOD_LOAD) { 1348 xpt_init(NULL); 1349 } else if (what == MOD_UNLOAD) { 1350 return EBUSY; 1351 } else { 1352 return EOPNOTSUPP; 1353 } 1354 1355 return 0; 1356 } 1357 1358 /* Functions accessed by the peripheral drivers */ 1359 static void 1360 xpt_init(dummy) 1361 void *dummy; 1362 { 1363 struct cam_sim *xpt_sim; 1364 struct cam_path *path; 1365 struct cam_devq *devq; 1366 cam_status status; 1367 1368 TAILQ_INIT(&xpt_busses); 1369 TAILQ_INIT(&cam_bioq); 1370 TAILQ_INIT(&cam_netq); 1371 SLIST_INIT(&ccb_freeq); 1372 STAILQ_INIT(&highpowerq); 1373 1374 /* 1375 * The xpt layer is, itself, the equivelent of a SIM. 1376 * Allow 16 ccbs in the ccb pool for it. This should 1377 * give decent parallelism when we probe busses and 1378 * perform other XPT functions. 1379 */ 1380 devq = cam_simq_alloc(16); 1381 xpt_sim = cam_sim_alloc(xptaction, 1382 xptpoll, 1383 "xpt", 1384 /*softc*/NULL, 1385 /*unit*/0, 1386 /*max_dev_transactions*/0, 1387 /*max_tagged_dev_transactions*/0, 1388 devq); 1389 xpt_max_ccbs = 16; 1390 1391 xpt_bus_register(xpt_sim, /*bus #*/0); 1392 1393 /* 1394 * Looking at the XPT from the SIM layer, the XPT is 1395 * the equivelent of a peripheral driver. Allocate 1396 * a peripheral driver entry for us. 1397 */ 1398 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1399 CAM_TARGET_WILDCARD, 1400 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1401 printf("xpt_init: xpt_create_path failed with status %#x," 1402 " failing attach\n", status); 1403 return; 1404 } 1405 1406 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1407 path, NULL, 0, NULL); 1408 xpt_free_path(path); 1409 1410 xpt_sim->softc = xpt_periph; 1411 1412 /* 1413 * Register a callback for when interrupts are enabled. 1414 */ 1415 xpt_config_hook = 1416 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1417 M_TEMP, M_NOWAIT | M_ZERO); 1418 if (xpt_config_hook == NULL) { 1419 printf("xpt_init: Cannot malloc config hook " 1420 "- failing attach\n"); 1421 return; 1422 } 1423 1424 xpt_config_hook->ich_func = xpt_config; 1425 if (config_intrhook_establish(xpt_config_hook) != 0) { 1426 free (xpt_config_hook, M_TEMP); 1427 printf("xpt_init: config_intrhook_establish failed " 1428 "- failing attach\n"); 1429 } 1430 1431 /* Install our software interrupt handlers */ 1432 swi_add(NULL, "camnet", camisr, &cam_netq, SWI_CAMNET, 0, &camnet_ih); 1433 swi_add(NULL, "cambio", camisr, &cam_bioq, SWI_CAMBIO, 0, &cambio_ih); 1434 } 1435 1436 static cam_status 1437 xptregister(struct cam_periph *periph, void *arg) 1438 { 1439 if (periph == NULL) { 1440 printf("xptregister: periph was NULL!!\n"); 1441 return(CAM_REQ_CMP_ERR); 1442 } 1443 1444 periph->softc = NULL; 1445 1446 xpt_periph = periph; 1447 1448 return(CAM_REQ_CMP); 1449 } 1450 1451 int32_t 1452 xpt_add_periph(struct cam_periph *periph) 1453 { 1454 struct cam_ed *device; 1455 int32_t status; 1456 struct periph_list *periph_head; 1457 1458 GIANT_REQUIRED; 1459 1460 device = periph->path->device; 1461 1462 periph_head = &device->periphs; 1463 1464 status = CAM_REQ_CMP; 1465 1466 if (device != NULL) { 1467 int s; 1468 1469 /* 1470 * Make room for this peripheral 1471 * so it will fit in the queue 1472 * when it's scheduled to run 1473 */ 1474 s = splsoftcam(); 1475 status = camq_resize(&device->drvq, 1476 device->drvq.array_size + 1); 1477 1478 device->generation++; 1479 1480 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1481 1482 splx(s); 1483 } 1484 1485 xsoftc.generation++; 1486 1487 return (status); 1488 } 1489 1490 void 1491 xpt_remove_periph(struct cam_periph *periph) 1492 { 1493 struct cam_ed *device; 1494 1495 GIANT_REQUIRED; 1496 1497 device = periph->path->device; 1498 1499 if (device != NULL) { 1500 int s; 1501 struct periph_list *periph_head; 1502 1503 periph_head = &device->periphs; 1504 1505 /* Release the slot for this peripheral */ 1506 s = splsoftcam(); 1507 camq_resize(&device->drvq, device->drvq.array_size - 1); 1508 1509 device->generation++; 1510 1511 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1512 1513 splx(s); 1514 } 1515 1516 xsoftc.generation++; 1517 1518 } 1519 1520 #ifdef CAM_NEW_TRAN_CODE 1521 1522 void 1523 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1524 { 1525 struct ccb_pathinq cpi; 1526 struct ccb_trans_settings cts; 1527 struct cam_path *path; 1528 u_int speed; 1529 u_int freq; 1530 u_int mb; 1531 int s; 1532 1533 GIANT_REQUIRED; 1534 1535 path = periph->path; 1536 /* 1537 * To ensure that this is printed in one piece, 1538 * mask out CAM interrupts. 1539 */ 1540 s = splsoftcam(); 1541 printf("%s%d at %s%d bus %d target %d lun %d\n", 1542 periph->periph_name, periph->unit_number, 1543 path->bus->sim->sim_name, 1544 path->bus->sim->unit_number, 1545 path->bus->sim->bus_id, 1546 path->target->target_id, 1547 path->device->lun_id); 1548 printf("%s%d: ", periph->periph_name, periph->unit_number); 1549 scsi_print_inquiry(&path->device->inq_data); 1550 if (bootverbose && path->device->serial_num_len > 0) { 1551 /* Don't wrap the screen - print only the first 60 chars */ 1552 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1553 periph->unit_number, path->device->serial_num); 1554 } 1555 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1556 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1557 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1558 xpt_action((union ccb*)&cts); 1559 1560 /* Ask the SIM for its base transfer speed */ 1561 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1562 cpi.ccb_h.func_code = XPT_PATH_INQ; 1563 xpt_action((union ccb *)&cpi); 1564 1565 speed = cpi.base_transfer_speed; 1566 freq = 0; 1567 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1568 struct ccb_trans_settings_spi *spi; 1569 1570 spi = &cts.xport_specific.spi; 1571 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1572 && spi->sync_offset != 0) { 1573 freq = scsi_calc_syncsrate(spi->sync_period); 1574 speed = freq; 1575 } 1576 1577 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1578 speed *= (0x01 << spi->bus_width); 1579 } 1580 1581 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1582 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1583 if (fc->valid & CTS_FC_VALID_SPEED) { 1584 speed = fc->bitrate; 1585 } 1586 } 1587 1588 mb = speed / 1000; 1589 if (mb > 0) 1590 printf("%s%d: %d.%03dMB/s transfers", 1591 periph->periph_name, periph->unit_number, 1592 mb, speed % 1000); 1593 else 1594 printf("%s%d: %dKB/s transfers", periph->periph_name, 1595 periph->unit_number, speed); 1596 /* Report additional information about SPI connections */ 1597 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1598 struct ccb_trans_settings_spi *spi; 1599 1600 spi = &cts.xport_specific.spi; 1601 if (freq != 0) { 1602 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1603 freq % 1000, 1604 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1605 ? " DT" : "", 1606 spi->sync_offset); 1607 } 1608 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1609 && spi->bus_width > 0) { 1610 if (freq != 0) { 1611 printf(", "); 1612 } else { 1613 printf(" ("); 1614 } 1615 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1616 } else if (freq != 0) { 1617 printf(")"); 1618 } 1619 } 1620 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1621 struct ccb_trans_settings_fc *fc; 1622 1623 fc = &cts.xport_specific.fc; 1624 if (fc->valid & CTS_FC_VALID_WWNN) 1625 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1626 if (fc->valid & CTS_FC_VALID_WWPN) 1627 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1628 if (fc->valid & CTS_FC_VALID_PORT) 1629 printf(" PortID 0x%x", fc->port); 1630 } 1631 1632 if (path->device->inq_flags & SID_CmdQue 1633 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1634 printf("\n%s%d: Tagged Queueing Enabled", 1635 periph->periph_name, periph->unit_number); 1636 } 1637 printf("\n"); 1638 1639 /* 1640 * We only want to print the caller's announce string if they've 1641 * passed one in.. 1642 */ 1643 if (announce_string != NULL) 1644 printf("%s%d: %s\n", periph->periph_name, 1645 periph->unit_number, announce_string); 1646 splx(s); 1647 } 1648 #else /* CAM_NEW_TRAN_CODE */ 1649 void 1650 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1651 { 1652 int s; 1653 u_int mb; 1654 struct cam_path *path; 1655 struct ccb_trans_settings cts; 1656 1657 GIANT_REQUIRED; 1658 1659 path = periph->path; 1660 /* 1661 * To ensure that this is printed in one piece, 1662 * mask out CAM interrupts. 1663 */ 1664 s = splsoftcam(); 1665 printf("%s%d at %s%d bus %d target %d lun %d\n", 1666 periph->periph_name, periph->unit_number, 1667 path->bus->sim->sim_name, 1668 path->bus->sim->unit_number, 1669 path->bus->sim->bus_id, 1670 path->target->target_id, 1671 path->device->lun_id); 1672 printf("%s%d: ", periph->periph_name, periph->unit_number); 1673 scsi_print_inquiry(&path->device->inq_data); 1674 if ((bootverbose) 1675 && (path->device->serial_num_len > 0)) { 1676 /* Don't wrap the screen - print only the first 60 chars */ 1677 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1678 periph->unit_number, path->device->serial_num); 1679 } 1680 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1681 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1682 cts.flags = CCB_TRANS_CURRENT_SETTINGS; 1683 xpt_action((union ccb*)&cts); 1684 if (cts.ccb_h.status == CAM_REQ_CMP) { 1685 u_int speed; 1686 u_int freq; 1687 1688 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1689 && cts.sync_offset != 0) { 1690 freq = scsi_calc_syncsrate(cts.sync_period); 1691 speed = freq; 1692 } else { 1693 struct ccb_pathinq cpi; 1694 1695 /* Ask the SIM for its base transfer speed */ 1696 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1697 cpi.ccb_h.func_code = XPT_PATH_INQ; 1698 xpt_action((union ccb *)&cpi); 1699 1700 speed = cpi.base_transfer_speed; 1701 freq = 0; 1702 } 1703 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0) 1704 speed *= (0x01 << cts.bus_width); 1705 mb = speed / 1000; 1706 if (mb > 0) 1707 printf("%s%d: %d.%03dMB/s transfers", 1708 periph->periph_name, periph->unit_number, 1709 mb, speed % 1000); 1710 else 1711 printf("%s%d: %dKB/s transfers", periph->periph_name, 1712 periph->unit_number, speed); 1713 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1714 && cts.sync_offset != 0) { 1715 printf(" (%d.%03dMHz, offset %d", freq / 1000, 1716 freq % 1000, cts.sync_offset); 1717 } 1718 if ((cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0 1719 && cts.bus_width > 0) { 1720 if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1721 && cts.sync_offset != 0) { 1722 printf(", "); 1723 } else { 1724 printf(" ("); 1725 } 1726 printf("%dbit)", 8 * (0x01 << cts.bus_width)); 1727 } else if ((cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0 1728 && cts.sync_offset != 0) { 1729 printf(")"); 1730 } 1731 1732 if (path->device->inq_flags & SID_CmdQue 1733 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1734 printf(", Tagged Queueing Enabled"); 1735 } 1736 1737 printf("\n"); 1738 } else if (path->device->inq_flags & SID_CmdQue 1739 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1740 printf("%s%d: Tagged Queueing Enabled\n", 1741 periph->periph_name, periph->unit_number); 1742 } 1743 1744 /* 1745 * We only want to print the caller's announce string if they've 1746 * passed one in.. 1747 */ 1748 if (announce_string != NULL) 1749 printf("%s%d: %s\n", periph->periph_name, 1750 periph->unit_number, announce_string); 1751 splx(s); 1752 } 1753 1754 #endif /* CAM_NEW_TRAN_CODE */ 1755 1756 static dev_match_ret 1757 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1758 struct cam_eb *bus) 1759 { 1760 dev_match_ret retval; 1761 int i; 1762 1763 retval = DM_RET_NONE; 1764 1765 /* 1766 * If we aren't given something to match against, that's an error. 1767 */ 1768 if (bus == NULL) 1769 return(DM_RET_ERROR); 1770 1771 /* 1772 * If there are no match entries, then this bus matches no 1773 * matter what. 1774 */ 1775 if ((patterns == NULL) || (num_patterns == 0)) 1776 return(DM_RET_DESCEND | DM_RET_COPY); 1777 1778 for (i = 0; i < num_patterns; i++) { 1779 struct bus_match_pattern *cur_pattern; 1780 1781 /* 1782 * If the pattern in question isn't for a bus node, we 1783 * aren't interested. However, we do indicate to the 1784 * calling routine that we should continue descending the 1785 * tree, since the user wants to match against lower-level 1786 * EDT elements. 1787 */ 1788 if (patterns[i].type != DEV_MATCH_BUS) { 1789 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1790 retval |= DM_RET_DESCEND; 1791 continue; 1792 } 1793 1794 cur_pattern = &patterns[i].pattern.bus_pattern; 1795 1796 /* 1797 * If they want to match any bus node, we give them any 1798 * device node. 1799 */ 1800 if (cur_pattern->flags == BUS_MATCH_ANY) { 1801 /* set the copy flag */ 1802 retval |= DM_RET_COPY; 1803 1804 /* 1805 * If we've already decided on an action, go ahead 1806 * and return. 1807 */ 1808 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1809 return(retval); 1810 } 1811 1812 /* 1813 * Not sure why someone would do this... 1814 */ 1815 if (cur_pattern->flags == BUS_MATCH_NONE) 1816 continue; 1817 1818 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1819 && (cur_pattern->path_id != bus->path_id)) 1820 continue; 1821 1822 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1823 && (cur_pattern->bus_id != bus->sim->bus_id)) 1824 continue; 1825 1826 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1827 && (cur_pattern->unit_number != bus->sim->unit_number)) 1828 continue; 1829 1830 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1831 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1832 DEV_IDLEN) != 0)) 1833 continue; 1834 1835 /* 1836 * If we get to this point, the user definitely wants 1837 * information on this bus. So tell the caller to copy the 1838 * data out. 1839 */ 1840 retval |= DM_RET_COPY; 1841 1842 /* 1843 * If the return action has been set to descend, then we 1844 * know that we've already seen a non-bus matching 1845 * expression, therefore we need to further descend the tree. 1846 * This won't change by continuing around the loop, so we 1847 * go ahead and return. If we haven't seen a non-bus 1848 * matching expression, we keep going around the loop until 1849 * we exhaust the matching expressions. We'll set the stop 1850 * flag once we fall out of the loop. 1851 */ 1852 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1853 return(retval); 1854 } 1855 1856 /* 1857 * If the return action hasn't been set to descend yet, that means 1858 * we haven't seen anything other than bus matching patterns. So 1859 * tell the caller to stop descending the tree -- the user doesn't 1860 * want to match against lower level tree elements. 1861 */ 1862 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1863 retval |= DM_RET_STOP; 1864 1865 return(retval); 1866 } 1867 1868 static dev_match_ret 1869 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1870 struct cam_ed *device) 1871 { 1872 dev_match_ret retval; 1873 int i; 1874 1875 retval = DM_RET_NONE; 1876 1877 /* 1878 * If we aren't given something to match against, that's an error. 1879 */ 1880 if (device == NULL) 1881 return(DM_RET_ERROR); 1882 1883 /* 1884 * If there are no match entries, then this device matches no 1885 * matter what. 1886 */ 1887 if ((patterns == NULL) || (num_patterns == 0)) 1888 return(DM_RET_DESCEND | DM_RET_COPY); 1889 1890 for (i = 0; i < num_patterns; i++) { 1891 struct device_match_pattern *cur_pattern; 1892 1893 /* 1894 * If the pattern in question isn't for a device node, we 1895 * aren't interested. 1896 */ 1897 if (patterns[i].type != DEV_MATCH_DEVICE) { 1898 if ((patterns[i].type == DEV_MATCH_PERIPH) 1899 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1900 retval |= DM_RET_DESCEND; 1901 continue; 1902 } 1903 1904 cur_pattern = &patterns[i].pattern.device_pattern; 1905 1906 /* 1907 * If they want to match any device node, we give them any 1908 * device node. 1909 */ 1910 if (cur_pattern->flags == DEV_MATCH_ANY) { 1911 /* set the copy flag */ 1912 retval |= DM_RET_COPY; 1913 1914 1915 /* 1916 * If we've already decided on an action, go ahead 1917 * and return. 1918 */ 1919 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1920 return(retval); 1921 } 1922 1923 /* 1924 * Not sure why someone would do this... 1925 */ 1926 if (cur_pattern->flags == DEV_MATCH_NONE) 1927 continue; 1928 1929 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1930 && (cur_pattern->path_id != device->target->bus->path_id)) 1931 continue; 1932 1933 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1934 && (cur_pattern->target_id != device->target->target_id)) 1935 continue; 1936 1937 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1938 && (cur_pattern->target_lun != device->lun_id)) 1939 continue; 1940 1941 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1942 && (cam_quirkmatch((caddr_t)&device->inq_data, 1943 (caddr_t)&cur_pattern->inq_pat, 1944 1, sizeof(cur_pattern->inq_pat), 1945 scsi_static_inquiry_match) == NULL)) 1946 continue; 1947 1948 /* 1949 * If we get to this point, the user definitely wants 1950 * information on this device. So tell the caller to copy 1951 * the data out. 1952 */ 1953 retval |= DM_RET_COPY; 1954 1955 /* 1956 * If the return action has been set to descend, then we 1957 * know that we've already seen a peripheral matching 1958 * expression, therefore we need to further descend the tree. 1959 * This won't change by continuing around the loop, so we 1960 * go ahead and return. If we haven't seen a peripheral 1961 * matching expression, we keep going around the loop until 1962 * we exhaust the matching expressions. We'll set the stop 1963 * flag once we fall out of the loop. 1964 */ 1965 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1966 return(retval); 1967 } 1968 1969 /* 1970 * If the return action hasn't been set to descend yet, that means 1971 * we haven't seen any peripheral matching patterns. So tell the 1972 * caller to stop descending the tree -- the user doesn't want to 1973 * match against lower level tree elements. 1974 */ 1975 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1976 retval |= DM_RET_STOP; 1977 1978 return(retval); 1979 } 1980 1981 /* 1982 * Match a single peripheral against any number of match patterns. 1983 */ 1984 static dev_match_ret 1985 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1986 struct cam_periph *periph) 1987 { 1988 dev_match_ret retval; 1989 int i; 1990 1991 /* 1992 * If we aren't given something to match against, that's an error. 1993 */ 1994 if (periph == NULL) 1995 return(DM_RET_ERROR); 1996 1997 /* 1998 * If there are no match entries, then this peripheral matches no 1999 * matter what. 2000 */ 2001 if ((patterns == NULL) || (num_patterns == 0)) 2002 return(DM_RET_STOP | DM_RET_COPY); 2003 2004 /* 2005 * There aren't any nodes below a peripheral node, so there's no 2006 * reason to descend the tree any further. 2007 */ 2008 retval = DM_RET_STOP; 2009 2010 for (i = 0; i < num_patterns; i++) { 2011 struct periph_match_pattern *cur_pattern; 2012 2013 /* 2014 * If the pattern in question isn't for a peripheral, we 2015 * aren't interested. 2016 */ 2017 if (patterns[i].type != DEV_MATCH_PERIPH) 2018 continue; 2019 2020 cur_pattern = &patterns[i].pattern.periph_pattern; 2021 2022 /* 2023 * If they want to match on anything, then we will do so. 2024 */ 2025 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2026 /* set the copy flag */ 2027 retval |= DM_RET_COPY; 2028 2029 /* 2030 * We've already set the return action to stop, 2031 * since there are no nodes below peripherals in 2032 * the tree. 2033 */ 2034 return(retval); 2035 } 2036 2037 /* 2038 * Not sure why someone would do this... 2039 */ 2040 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2041 continue; 2042 2043 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2044 && (cur_pattern->path_id != periph->path->bus->path_id)) 2045 continue; 2046 2047 /* 2048 * For the target and lun id's, we have to make sure the 2049 * target and lun pointers aren't NULL. The xpt peripheral 2050 * has a wildcard target and device. 2051 */ 2052 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2053 && ((periph->path->target == NULL) 2054 ||(cur_pattern->target_id != periph->path->target->target_id))) 2055 continue; 2056 2057 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2058 && ((periph->path->device == NULL) 2059 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2060 continue; 2061 2062 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2063 && (cur_pattern->unit_number != periph->unit_number)) 2064 continue; 2065 2066 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2067 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2068 DEV_IDLEN) != 0)) 2069 continue; 2070 2071 /* 2072 * If we get to this point, the user definitely wants 2073 * information on this peripheral. So tell the caller to 2074 * copy the data out. 2075 */ 2076 retval |= DM_RET_COPY; 2077 2078 /* 2079 * The return action has already been set to stop, since 2080 * peripherals don't have any nodes below them in the EDT. 2081 */ 2082 return(retval); 2083 } 2084 2085 /* 2086 * If we get to this point, the peripheral that was passed in 2087 * doesn't match any of the patterns. 2088 */ 2089 return(retval); 2090 } 2091 2092 static int 2093 xptedtbusfunc(struct cam_eb *bus, void *arg) 2094 { 2095 struct ccb_dev_match *cdm; 2096 dev_match_ret retval; 2097 2098 cdm = (struct ccb_dev_match *)arg; 2099 2100 /* 2101 * If our position is for something deeper in the tree, that means 2102 * that we've already seen this node. So, we keep going down. 2103 */ 2104 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2105 && (cdm->pos.cookie.bus == bus) 2106 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2107 && (cdm->pos.cookie.target != NULL)) 2108 retval = DM_RET_DESCEND; 2109 else 2110 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2111 2112 /* 2113 * If we got an error, bail out of the search. 2114 */ 2115 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2116 cdm->status = CAM_DEV_MATCH_ERROR; 2117 return(0); 2118 } 2119 2120 /* 2121 * If the copy flag is set, copy this bus out. 2122 */ 2123 if (retval & DM_RET_COPY) { 2124 int spaceleft, j; 2125 2126 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2127 sizeof(struct dev_match_result)); 2128 2129 /* 2130 * If we don't have enough space to put in another 2131 * match result, save our position and tell the 2132 * user there are more devices to check. 2133 */ 2134 if (spaceleft < sizeof(struct dev_match_result)) { 2135 bzero(&cdm->pos, sizeof(cdm->pos)); 2136 cdm->pos.position_type = 2137 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2138 2139 cdm->pos.cookie.bus = bus; 2140 cdm->pos.generations[CAM_BUS_GENERATION]= 2141 bus_generation; 2142 cdm->status = CAM_DEV_MATCH_MORE; 2143 return(0); 2144 } 2145 j = cdm->num_matches; 2146 cdm->num_matches++; 2147 cdm->matches[j].type = DEV_MATCH_BUS; 2148 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2149 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2150 cdm->matches[j].result.bus_result.unit_number = 2151 bus->sim->unit_number; 2152 strncpy(cdm->matches[j].result.bus_result.dev_name, 2153 bus->sim->sim_name, DEV_IDLEN); 2154 } 2155 2156 /* 2157 * If the user is only interested in busses, there's no 2158 * reason to descend to the next level in the tree. 2159 */ 2160 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2161 return(1); 2162 2163 /* 2164 * If there is a target generation recorded, check it to 2165 * make sure the target list hasn't changed. 2166 */ 2167 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2168 && (bus == cdm->pos.cookie.bus) 2169 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2170 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2171 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2172 bus->generation)) { 2173 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2174 return(0); 2175 } 2176 2177 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2178 && (cdm->pos.cookie.bus == bus) 2179 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2180 && (cdm->pos.cookie.target != NULL)) 2181 return(xpttargettraverse(bus, 2182 (struct cam_et *)cdm->pos.cookie.target, 2183 xptedttargetfunc, arg)); 2184 else 2185 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2186 } 2187 2188 static int 2189 xptedttargetfunc(struct cam_et *target, void *arg) 2190 { 2191 struct ccb_dev_match *cdm; 2192 2193 cdm = (struct ccb_dev_match *)arg; 2194 2195 /* 2196 * If there is a device list generation recorded, check it to 2197 * make sure the device list hasn't changed. 2198 */ 2199 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2200 && (cdm->pos.cookie.bus == target->bus) 2201 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2202 && (cdm->pos.cookie.target == target) 2203 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2204 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2205 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2206 target->generation)) { 2207 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2208 return(0); 2209 } 2210 2211 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2212 && (cdm->pos.cookie.bus == target->bus) 2213 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2214 && (cdm->pos.cookie.target == target) 2215 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2216 && (cdm->pos.cookie.device != NULL)) 2217 return(xptdevicetraverse(target, 2218 (struct cam_ed *)cdm->pos.cookie.device, 2219 xptedtdevicefunc, arg)); 2220 else 2221 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2222 } 2223 2224 static int 2225 xptedtdevicefunc(struct cam_ed *device, void *arg) 2226 { 2227 2228 struct ccb_dev_match *cdm; 2229 dev_match_ret retval; 2230 2231 cdm = (struct ccb_dev_match *)arg; 2232 2233 /* 2234 * If our position is for something deeper in the tree, that means 2235 * that we've already seen this node. So, we keep going down. 2236 */ 2237 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2238 && (cdm->pos.cookie.device == device) 2239 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2240 && (cdm->pos.cookie.periph != NULL)) 2241 retval = DM_RET_DESCEND; 2242 else 2243 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2244 device); 2245 2246 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2247 cdm->status = CAM_DEV_MATCH_ERROR; 2248 return(0); 2249 } 2250 2251 /* 2252 * If the copy flag is set, copy this device out. 2253 */ 2254 if (retval & DM_RET_COPY) { 2255 int spaceleft, j; 2256 2257 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2258 sizeof(struct dev_match_result)); 2259 2260 /* 2261 * If we don't have enough space to put in another 2262 * match result, save our position and tell the 2263 * user there are more devices to check. 2264 */ 2265 if (spaceleft < sizeof(struct dev_match_result)) { 2266 bzero(&cdm->pos, sizeof(cdm->pos)); 2267 cdm->pos.position_type = 2268 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2269 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2270 2271 cdm->pos.cookie.bus = device->target->bus; 2272 cdm->pos.generations[CAM_BUS_GENERATION]= 2273 bus_generation; 2274 cdm->pos.cookie.target = device->target; 2275 cdm->pos.generations[CAM_TARGET_GENERATION] = 2276 device->target->bus->generation; 2277 cdm->pos.cookie.device = device; 2278 cdm->pos.generations[CAM_DEV_GENERATION] = 2279 device->target->generation; 2280 cdm->status = CAM_DEV_MATCH_MORE; 2281 return(0); 2282 } 2283 j = cdm->num_matches; 2284 cdm->num_matches++; 2285 cdm->matches[j].type = DEV_MATCH_DEVICE; 2286 cdm->matches[j].result.device_result.path_id = 2287 device->target->bus->path_id; 2288 cdm->matches[j].result.device_result.target_id = 2289 device->target->target_id; 2290 cdm->matches[j].result.device_result.target_lun = 2291 device->lun_id; 2292 bcopy(&device->inq_data, 2293 &cdm->matches[j].result.device_result.inq_data, 2294 sizeof(struct scsi_inquiry_data)); 2295 2296 /* Let the user know whether this device is unconfigured */ 2297 if (device->flags & CAM_DEV_UNCONFIGURED) 2298 cdm->matches[j].result.device_result.flags = 2299 DEV_RESULT_UNCONFIGURED; 2300 else 2301 cdm->matches[j].result.device_result.flags = 2302 DEV_RESULT_NOFLAG; 2303 } 2304 2305 /* 2306 * If the user isn't interested in peripherals, don't descend 2307 * the tree any further. 2308 */ 2309 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2310 return(1); 2311 2312 /* 2313 * If there is a peripheral list generation recorded, make sure 2314 * it hasn't changed. 2315 */ 2316 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2317 && (device->target->bus == cdm->pos.cookie.bus) 2318 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2319 && (device->target == cdm->pos.cookie.target) 2320 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2321 && (device == cdm->pos.cookie.device) 2322 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2323 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2324 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2325 device->generation)){ 2326 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2327 return(0); 2328 } 2329 2330 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2331 && (cdm->pos.cookie.bus == device->target->bus) 2332 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2333 && (cdm->pos.cookie.target == device->target) 2334 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2335 && (cdm->pos.cookie.device == device) 2336 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2337 && (cdm->pos.cookie.periph != NULL)) 2338 return(xptperiphtraverse(device, 2339 (struct cam_periph *)cdm->pos.cookie.periph, 2340 xptedtperiphfunc, arg)); 2341 else 2342 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2343 } 2344 2345 static int 2346 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2347 { 2348 struct ccb_dev_match *cdm; 2349 dev_match_ret retval; 2350 2351 cdm = (struct ccb_dev_match *)arg; 2352 2353 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2354 2355 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2356 cdm->status = CAM_DEV_MATCH_ERROR; 2357 return(0); 2358 } 2359 2360 /* 2361 * If the copy flag is set, copy this peripheral out. 2362 */ 2363 if (retval & DM_RET_COPY) { 2364 int spaceleft, j; 2365 2366 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2367 sizeof(struct dev_match_result)); 2368 2369 /* 2370 * If we don't have enough space to put in another 2371 * match result, save our position and tell the 2372 * user there are more devices to check. 2373 */ 2374 if (spaceleft < sizeof(struct dev_match_result)) { 2375 bzero(&cdm->pos, sizeof(cdm->pos)); 2376 cdm->pos.position_type = 2377 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2378 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2379 CAM_DEV_POS_PERIPH; 2380 2381 cdm->pos.cookie.bus = periph->path->bus; 2382 cdm->pos.generations[CAM_BUS_GENERATION]= 2383 bus_generation; 2384 cdm->pos.cookie.target = periph->path->target; 2385 cdm->pos.generations[CAM_TARGET_GENERATION] = 2386 periph->path->bus->generation; 2387 cdm->pos.cookie.device = periph->path->device; 2388 cdm->pos.generations[CAM_DEV_GENERATION] = 2389 periph->path->target->generation; 2390 cdm->pos.cookie.periph = periph; 2391 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2392 periph->path->device->generation; 2393 cdm->status = CAM_DEV_MATCH_MORE; 2394 return(0); 2395 } 2396 2397 j = cdm->num_matches; 2398 cdm->num_matches++; 2399 cdm->matches[j].type = DEV_MATCH_PERIPH; 2400 cdm->matches[j].result.periph_result.path_id = 2401 periph->path->bus->path_id; 2402 cdm->matches[j].result.periph_result.target_id = 2403 periph->path->target->target_id; 2404 cdm->matches[j].result.periph_result.target_lun = 2405 periph->path->device->lun_id; 2406 cdm->matches[j].result.periph_result.unit_number = 2407 periph->unit_number; 2408 strncpy(cdm->matches[j].result.periph_result.periph_name, 2409 periph->periph_name, DEV_IDLEN); 2410 } 2411 2412 return(1); 2413 } 2414 2415 static int 2416 xptedtmatch(struct ccb_dev_match *cdm) 2417 { 2418 int ret; 2419 2420 cdm->num_matches = 0; 2421 2422 /* 2423 * Check the bus list generation. If it has changed, the user 2424 * needs to reset everything and start over. 2425 */ 2426 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2427 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2428 && (cdm->pos.generations[CAM_BUS_GENERATION] != bus_generation)) { 2429 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2430 return(0); 2431 } 2432 2433 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2434 && (cdm->pos.cookie.bus != NULL)) 2435 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2436 xptedtbusfunc, cdm); 2437 else 2438 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2439 2440 /* 2441 * If we get back 0, that means that we had to stop before fully 2442 * traversing the EDT. It also means that one of the subroutines 2443 * has set the status field to the proper value. If we get back 1, 2444 * we've fully traversed the EDT and copied out any matching entries. 2445 */ 2446 if (ret == 1) 2447 cdm->status = CAM_DEV_MATCH_LAST; 2448 2449 return(ret); 2450 } 2451 2452 static int 2453 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2454 { 2455 struct ccb_dev_match *cdm; 2456 2457 cdm = (struct ccb_dev_match *)arg; 2458 2459 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2460 && (cdm->pos.cookie.pdrv == pdrv) 2461 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2462 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2463 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2464 (*pdrv)->generation)) { 2465 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2466 return(0); 2467 } 2468 2469 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2470 && (cdm->pos.cookie.pdrv == pdrv) 2471 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2472 && (cdm->pos.cookie.periph != NULL)) 2473 return(xptpdperiphtraverse(pdrv, 2474 (struct cam_periph *)cdm->pos.cookie.periph, 2475 xptplistperiphfunc, arg)); 2476 else 2477 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2478 } 2479 2480 static int 2481 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2482 { 2483 struct ccb_dev_match *cdm; 2484 dev_match_ret retval; 2485 2486 cdm = (struct ccb_dev_match *)arg; 2487 2488 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2489 2490 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2491 cdm->status = CAM_DEV_MATCH_ERROR; 2492 return(0); 2493 } 2494 2495 /* 2496 * If the copy flag is set, copy this peripheral out. 2497 */ 2498 if (retval & DM_RET_COPY) { 2499 int spaceleft, j; 2500 2501 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2502 sizeof(struct dev_match_result)); 2503 2504 /* 2505 * If we don't have enough space to put in another 2506 * match result, save our position and tell the 2507 * user there are more devices to check. 2508 */ 2509 if (spaceleft < sizeof(struct dev_match_result)) { 2510 struct periph_driver **pdrv; 2511 2512 pdrv = NULL; 2513 bzero(&cdm->pos, sizeof(cdm->pos)); 2514 cdm->pos.position_type = 2515 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2516 CAM_DEV_POS_PERIPH; 2517 2518 /* 2519 * This may look a bit non-sensical, but it is 2520 * actually quite logical. There are very few 2521 * peripheral drivers, and bloating every peripheral 2522 * structure with a pointer back to its parent 2523 * peripheral driver linker set entry would cost 2524 * more in the long run than doing this quick lookup. 2525 */ 2526 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2527 if (strcmp((*pdrv)->driver_name, 2528 periph->periph_name) == 0) 2529 break; 2530 } 2531 2532 if (pdrv == NULL) { 2533 cdm->status = CAM_DEV_MATCH_ERROR; 2534 return(0); 2535 } 2536 2537 cdm->pos.cookie.pdrv = pdrv; 2538 /* 2539 * The periph generation slot does double duty, as 2540 * does the periph pointer slot. They are used for 2541 * both edt and pdrv lookups and positioning. 2542 */ 2543 cdm->pos.cookie.periph = periph; 2544 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2545 (*pdrv)->generation; 2546 cdm->status = CAM_DEV_MATCH_MORE; 2547 return(0); 2548 } 2549 2550 j = cdm->num_matches; 2551 cdm->num_matches++; 2552 cdm->matches[j].type = DEV_MATCH_PERIPH; 2553 cdm->matches[j].result.periph_result.path_id = 2554 periph->path->bus->path_id; 2555 2556 /* 2557 * The transport layer peripheral doesn't have a target or 2558 * lun. 2559 */ 2560 if (periph->path->target) 2561 cdm->matches[j].result.periph_result.target_id = 2562 periph->path->target->target_id; 2563 else 2564 cdm->matches[j].result.periph_result.target_id = -1; 2565 2566 if (periph->path->device) 2567 cdm->matches[j].result.periph_result.target_lun = 2568 periph->path->device->lun_id; 2569 else 2570 cdm->matches[j].result.periph_result.target_lun = -1; 2571 2572 cdm->matches[j].result.periph_result.unit_number = 2573 periph->unit_number; 2574 strncpy(cdm->matches[j].result.periph_result.periph_name, 2575 periph->periph_name, DEV_IDLEN); 2576 } 2577 2578 return(1); 2579 } 2580 2581 static int 2582 xptperiphlistmatch(struct ccb_dev_match *cdm) 2583 { 2584 int ret; 2585 2586 cdm->num_matches = 0; 2587 2588 /* 2589 * At this point in the edt traversal function, we check the bus 2590 * list generation to make sure that no busses have been added or 2591 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2592 * For the peripheral driver list traversal function, however, we 2593 * don't have to worry about new peripheral driver types coming or 2594 * going; they're in a linker set, and therefore can't change 2595 * without a recompile. 2596 */ 2597 2598 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2599 && (cdm->pos.cookie.pdrv != NULL)) 2600 ret = xptpdrvtraverse( 2601 (struct periph_driver **)cdm->pos.cookie.pdrv, 2602 xptplistpdrvfunc, cdm); 2603 else 2604 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2605 2606 /* 2607 * If we get back 0, that means that we had to stop before fully 2608 * traversing the peripheral driver tree. It also means that one of 2609 * the subroutines has set the status field to the proper value. If 2610 * we get back 1, we've fully traversed the EDT and copied out any 2611 * matching entries. 2612 */ 2613 if (ret == 1) 2614 cdm->status = CAM_DEV_MATCH_LAST; 2615 2616 return(ret); 2617 } 2618 2619 static int 2620 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2621 { 2622 struct cam_eb *bus, *next_bus; 2623 int retval; 2624 2625 retval = 1; 2626 2627 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xpt_busses)); 2628 bus != NULL; 2629 bus = next_bus) { 2630 next_bus = TAILQ_NEXT(bus, links); 2631 2632 retval = tr_func(bus, arg); 2633 if (retval == 0) 2634 return(retval); 2635 } 2636 2637 return(retval); 2638 } 2639 2640 static int 2641 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2642 xpt_targetfunc_t *tr_func, void *arg) 2643 { 2644 struct cam_et *target, *next_target; 2645 int retval; 2646 2647 retval = 1; 2648 for (target = (start_target ? start_target : 2649 TAILQ_FIRST(&bus->et_entries)); 2650 target != NULL; target = next_target) { 2651 2652 next_target = TAILQ_NEXT(target, links); 2653 2654 retval = tr_func(target, arg); 2655 2656 if (retval == 0) 2657 return(retval); 2658 } 2659 2660 return(retval); 2661 } 2662 2663 static int 2664 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2665 xpt_devicefunc_t *tr_func, void *arg) 2666 { 2667 struct cam_ed *device, *next_device; 2668 int retval; 2669 2670 retval = 1; 2671 for (device = (start_device ? start_device : 2672 TAILQ_FIRST(&target->ed_entries)); 2673 device != NULL; 2674 device = next_device) { 2675 2676 next_device = TAILQ_NEXT(device, links); 2677 2678 retval = tr_func(device, arg); 2679 2680 if (retval == 0) 2681 return(retval); 2682 } 2683 2684 return(retval); 2685 } 2686 2687 static int 2688 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2689 xpt_periphfunc_t *tr_func, void *arg) 2690 { 2691 struct cam_periph *periph, *next_periph; 2692 int retval; 2693 2694 retval = 1; 2695 2696 for (periph = (start_periph ? start_periph : 2697 SLIST_FIRST(&device->periphs)); 2698 periph != NULL; 2699 periph = next_periph) { 2700 2701 next_periph = SLIST_NEXT(periph, periph_links); 2702 2703 retval = tr_func(periph, arg); 2704 if (retval == 0) 2705 return(retval); 2706 } 2707 2708 return(retval); 2709 } 2710 2711 static int 2712 xptpdrvtraverse(struct periph_driver **start_pdrv, 2713 xpt_pdrvfunc_t *tr_func, void *arg) 2714 { 2715 struct periph_driver **pdrv; 2716 int retval; 2717 2718 retval = 1; 2719 2720 /* 2721 * We don't traverse the peripheral driver list like we do the 2722 * other lists, because it is a linker set, and therefore cannot be 2723 * changed during runtime. If the peripheral driver list is ever 2724 * re-done to be something other than a linker set (i.e. it can 2725 * change while the system is running), the list traversal should 2726 * be modified to work like the other traversal functions. 2727 */ 2728 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2729 *pdrv != NULL; pdrv++) { 2730 retval = tr_func(pdrv, arg); 2731 2732 if (retval == 0) 2733 return(retval); 2734 } 2735 2736 return(retval); 2737 } 2738 2739 static int 2740 xptpdperiphtraverse(struct periph_driver **pdrv, 2741 struct cam_periph *start_periph, 2742 xpt_periphfunc_t *tr_func, void *arg) 2743 { 2744 struct cam_periph *periph, *next_periph; 2745 int retval; 2746 2747 retval = 1; 2748 2749 for (periph = (start_periph ? start_periph : 2750 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2751 periph = next_periph) { 2752 2753 next_periph = TAILQ_NEXT(periph, unit_links); 2754 2755 retval = tr_func(periph, arg); 2756 if (retval == 0) 2757 return(retval); 2758 } 2759 return(retval); 2760 } 2761 2762 static int 2763 xptdefbusfunc(struct cam_eb *bus, void *arg) 2764 { 2765 struct xpt_traverse_config *tr_config; 2766 2767 tr_config = (struct xpt_traverse_config *)arg; 2768 2769 if (tr_config->depth == XPT_DEPTH_BUS) { 2770 xpt_busfunc_t *tr_func; 2771 2772 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2773 2774 return(tr_func(bus, tr_config->tr_arg)); 2775 } else 2776 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2777 } 2778 2779 static int 2780 xptdeftargetfunc(struct cam_et *target, void *arg) 2781 { 2782 struct xpt_traverse_config *tr_config; 2783 2784 tr_config = (struct xpt_traverse_config *)arg; 2785 2786 if (tr_config->depth == XPT_DEPTH_TARGET) { 2787 xpt_targetfunc_t *tr_func; 2788 2789 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2790 2791 return(tr_func(target, tr_config->tr_arg)); 2792 } else 2793 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2794 } 2795 2796 static int 2797 xptdefdevicefunc(struct cam_ed *device, void *arg) 2798 { 2799 struct xpt_traverse_config *tr_config; 2800 2801 tr_config = (struct xpt_traverse_config *)arg; 2802 2803 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2804 xpt_devicefunc_t *tr_func; 2805 2806 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2807 2808 return(tr_func(device, tr_config->tr_arg)); 2809 } else 2810 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2811 } 2812 2813 static int 2814 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2815 { 2816 struct xpt_traverse_config *tr_config; 2817 xpt_periphfunc_t *tr_func; 2818 2819 tr_config = (struct xpt_traverse_config *)arg; 2820 2821 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2822 2823 /* 2824 * Unlike the other default functions, we don't check for depth 2825 * here. The peripheral driver level is the last level in the EDT, 2826 * so if we're here, we should execute the function in question. 2827 */ 2828 return(tr_func(periph, tr_config->tr_arg)); 2829 } 2830 2831 /* 2832 * Execute the given function for every bus in the EDT. 2833 */ 2834 static int 2835 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2836 { 2837 struct xpt_traverse_config tr_config; 2838 2839 tr_config.depth = XPT_DEPTH_BUS; 2840 tr_config.tr_func = tr_func; 2841 tr_config.tr_arg = arg; 2842 2843 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2844 } 2845 2846 #ifdef notusedyet 2847 /* 2848 * Execute the given function for every target in the EDT. 2849 */ 2850 static int 2851 xpt_for_all_targets(xpt_targetfunc_t *tr_func, void *arg) 2852 { 2853 struct xpt_traverse_config tr_config; 2854 2855 tr_config.depth = XPT_DEPTH_TARGET; 2856 tr_config.tr_func = tr_func; 2857 tr_config.tr_arg = arg; 2858 2859 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2860 } 2861 #endif /* notusedyet */ 2862 2863 /* 2864 * Execute the given function for every device in the EDT. 2865 */ 2866 static int 2867 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2868 { 2869 struct xpt_traverse_config tr_config; 2870 2871 tr_config.depth = XPT_DEPTH_DEVICE; 2872 tr_config.tr_func = tr_func; 2873 tr_config.tr_arg = arg; 2874 2875 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2876 } 2877 2878 #ifdef notusedyet 2879 /* 2880 * Execute the given function for every peripheral in the EDT. 2881 */ 2882 static int 2883 xpt_for_all_periphs(xpt_periphfunc_t *tr_func, void *arg) 2884 { 2885 struct xpt_traverse_config tr_config; 2886 2887 tr_config.depth = XPT_DEPTH_PERIPH; 2888 tr_config.tr_func = tr_func; 2889 tr_config.tr_arg = arg; 2890 2891 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2892 } 2893 #endif /* notusedyet */ 2894 2895 static int 2896 xptsetasyncfunc(struct cam_ed *device, void *arg) 2897 { 2898 struct cam_path path; 2899 struct ccb_getdev cgd; 2900 struct async_node *cur_entry; 2901 2902 cur_entry = (struct async_node *)arg; 2903 2904 /* 2905 * Don't report unconfigured devices (Wildcard devs, 2906 * devices only for target mode, device instances 2907 * that have been invalidated but are waiting for 2908 * their last reference count to be released). 2909 */ 2910 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2911 return (1); 2912 2913 xpt_compile_path(&path, 2914 NULL, 2915 device->target->bus->path_id, 2916 device->target->target_id, 2917 device->lun_id); 2918 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2919 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2920 xpt_action((union ccb *)&cgd); 2921 cur_entry->callback(cur_entry->callback_arg, 2922 AC_FOUND_DEVICE, 2923 &path, &cgd); 2924 xpt_release_path(&path); 2925 2926 return(1); 2927 } 2928 2929 static int 2930 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2931 { 2932 struct cam_path path; 2933 struct ccb_pathinq cpi; 2934 struct async_node *cur_entry; 2935 2936 cur_entry = (struct async_node *)arg; 2937 2938 xpt_compile_path(&path, /*periph*/NULL, 2939 bus->sim->path_id, 2940 CAM_TARGET_WILDCARD, 2941 CAM_LUN_WILDCARD); 2942 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2943 cpi.ccb_h.func_code = XPT_PATH_INQ; 2944 xpt_action((union ccb *)&cpi); 2945 cur_entry->callback(cur_entry->callback_arg, 2946 AC_PATH_REGISTERED, 2947 &path, &cpi); 2948 xpt_release_path(&path); 2949 2950 return(1); 2951 } 2952 2953 void 2954 xpt_action(union ccb *start_ccb) 2955 { 2956 int iopl; 2957 2958 GIANT_REQUIRED; 2959 2960 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2961 2962 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2963 2964 iopl = splsoftcam(); 2965 switch (start_ccb->ccb_h.func_code) { 2966 case XPT_SCSI_IO: 2967 { 2968 #ifdef CAM_NEW_TRAN_CODE 2969 struct cam_ed *device; 2970 #endif /* CAM_NEW_TRAN_CODE */ 2971 #ifdef CAMDEBUG 2972 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2973 struct cam_path *path; 2974 2975 path = start_ccb->ccb_h.path; 2976 #endif 2977 2978 /* 2979 * For the sake of compatibility with SCSI-1 2980 * devices that may not understand the identify 2981 * message, we include lun information in the 2982 * second byte of all commands. SCSI-1 specifies 2983 * that luns are a 3 bit value and reserves only 3 2984 * bits for lun information in the CDB. Later 2985 * revisions of the SCSI spec allow for more than 8 2986 * luns, but have deprecated lun information in the 2987 * CDB. So, if the lun won't fit, we must omit. 2988 * 2989 * Also be aware that during initial probing for devices, 2990 * the inquiry information is unknown but initialized to 0. 2991 * This means that this code will be exercised while probing 2992 * devices with an ANSI revision greater than 2. 2993 */ 2994 #ifdef CAM_NEW_TRAN_CODE 2995 device = start_ccb->ccb_h.path->device; 2996 if (device->protocol_version <= SCSI_REV_2 2997 #else /* CAM_NEW_TRAN_CODE */ 2998 if (SID_ANSI_REV(&start_ccb->ccb_h.path->device->inq_data) <= 2 2999 #endif /* CAM_NEW_TRAN_CODE */ 3000 && start_ccb->ccb_h.target_lun < 8 3001 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3002 3003 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3004 start_ccb->ccb_h.target_lun << 5; 3005 } 3006 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3007 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3008 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3009 &path->device->inq_data), 3010 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3011 cdb_str, sizeof(cdb_str)))); 3012 } 3013 /* FALLTHROUGH */ 3014 case XPT_TARGET_IO: 3015 case XPT_CONT_TARGET_IO: 3016 start_ccb->csio.sense_resid = 0; 3017 start_ccb->csio.resid = 0; 3018 /* FALLTHROUGH */ 3019 case XPT_RESET_DEV: 3020 case XPT_ENG_EXEC: 3021 { 3022 struct cam_path *path; 3023 int s; 3024 int runq; 3025 3026 path = start_ccb->ccb_h.path; 3027 s = splsoftcam(); 3028 3029 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3030 if (path->device->qfrozen_cnt == 0) 3031 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3032 else 3033 runq = 0; 3034 splx(s); 3035 if (runq != 0) 3036 xpt_run_dev_sendq(path->bus); 3037 break; 3038 } 3039 case XPT_SET_TRAN_SETTINGS: 3040 { 3041 xpt_set_transfer_settings(&start_ccb->cts, 3042 start_ccb->ccb_h.path->device, 3043 /*async_update*/FALSE); 3044 break; 3045 } 3046 case XPT_CALC_GEOMETRY: 3047 { 3048 struct cam_sim *sim; 3049 3050 /* Filter out garbage */ 3051 if (start_ccb->ccg.block_size == 0 3052 || start_ccb->ccg.volume_size == 0) { 3053 start_ccb->ccg.cylinders = 0; 3054 start_ccb->ccg.heads = 0; 3055 start_ccb->ccg.secs_per_track = 0; 3056 start_ccb->ccb_h.status = CAM_REQ_CMP; 3057 break; 3058 } 3059 #ifdef PC98 3060 /* 3061 * In a PC-98 system, geometry translation depens on 3062 * the "real" device geometry obtained from mode page 4. 3063 * SCSI geometry translation is performed in the 3064 * initialization routine of the SCSI BIOS and the result 3065 * stored in host memory. If the translation is available 3066 * in host memory, use it. If not, rely on the default 3067 * translation the device driver performs. 3068 */ 3069 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3070 start_ccb->ccb_h.status = CAM_REQ_CMP; 3071 break; 3072 } 3073 #endif 3074 sim = start_ccb->ccb_h.path->bus->sim; 3075 (*(sim->sim_action))(sim, start_ccb); 3076 break; 3077 } 3078 case XPT_ABORT: 3079 { 3080 union ccb* abort_ccb; 3081 int s; 3082 3083 abort_ccb = start_ccb->cab.abort_ccb; 3084 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3085 3086 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3087 struct cam_ccbq *ccbq; 3088 3089 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3090 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3091 abort_ccb->ccb_h.status = 3092 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3093 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3094 s = splcam(); 3095 xpt_done(abort_ccb); 3096 splx(s); 3097 start_ccb->ccb_h.status = CAM_REQ_CMP; 3098 break; 3099 } 3100 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3101 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3102 /* 3103 * We've caught this ccb en route to 3104 * the SIM. Flag it for abort and the 3105 * SIM will do so just before starting 3106 * real work on the CCB. 3107 */ 3108 abort_ccb->ccb_h.status = 3109 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3110 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3111 start_ccb->ccb_h.status = CAM_REQ_CMP; 3112 break; 3113 } 3114 } 3115 if (XPT_FC_IS_QUEUED(abort_ccb) 3116 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3117 /* 3118 * It's already completed but waiting 3119 * for our SWI to get to it. 3120 */ 3121 start_ccb->ccb_h.status = CAM_UA_ABORT; 3122 break; 3123 } 3124 /* 3125 * If we weren't able to take care of the abort request 3126 * in the XPT, pass the request down to the SIM for processing. 3127 */ 3128 } 3129 /* FALLTHROUGH */ 3130 case XPT_ACCEPT_TARGET_IO: 3131 case XPT_EN_LUN: 3132 case XPT_IMMED_NOTIFY: 3133 case XPT_NOTIFY_ACK: 3134 case XPT_GET_TRAN_SETTINGS: 3135 case XPT_RESET_BUS: 3136 { 3137 struct cam_sim *sim; 3138 3139 sim = start_ccb->ccb_h.path->bus->sim; 3140 (*(sim->sim_action))(sim, start_ccb); 3141 break; 3142 } 3143 case XPT_PATH_INQ: 3144 { 3145 struct cam_sim *sim; 3146 3147 sim = start_ccb->ccb_h.path->bus->sim; 3148 (*(sim->sim_action))(sim, start_ccb); 3149 break; 3150 } 3151 case XPT_PATH_STATS: 3152 start_ccb->cpis.last_reset = 3153 start_ccb->ccb_h.path->bus->last_reset; 3154 start_ccb->ccb_h.status = CAM_REQ_CMP; 3155 break; 3156 case XPT_GDEV_TYPE: 3157 { 3158 struct cam_ed *dev; 3159 int s; 3160 3161 dev = start_ccb->ccb_h.path->device; 3162 s = splcam(); 3163 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3164 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3165 } else { 3166 struct ccb_getdev *cgd; 3167 struct cam_eb *bus; 3168 struct cam_et *tar; 3169 3170 cgd = &start_ccb->cgd; 3171 bus = cgd->ccb_h.path->bus; 3172 tar = cgd->ccb_h.path->target; 3173 cgd->inq_data = dev->inq_data; 3174 cgd->ccb_h.status = CAM_REQ_CMP; 3175 cgd->serial_num_len = dev->serial_num_len; 3176 if ((dev->serial_num_len > 0) 3177 && (dev->serial_num != NULL)) 3178 bcopy(dev->serial_num, cgd->serial_num, 3179 dev->serial_num_len); 3180 } 3181 splx(s); 3182 break; 3183 } 3184 case XPT_GDEV_STATS: 3185 { 3186 struct cam_ed *dev; 3187 int s; 3188 3189 dev = start_ccb->ccb_h.path->device; 3190 s = splcam(); 3191 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3192 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3193 } else { 3194 struct ccb_getdevstats *cgds; 3195 struct cam_eb *bus; 3196 struct cam_et *tar; 3197 3198 cgds = &start_ccb->cgds; 3199 bus = cgds->ccb_h.path->bus; 3200 tar = cgds->ccb_h.path->target; 3201 cgds->dev_openings = dev->ccbq.dev_openings; 3202 cgds->dev_active = dev->ccbq.dev_active; 3203 cgds->devq_openings = dev->ccbq.devq_openings; 3204 cgds->devq_queued = dev->ccbq.queue.entries; 3205 cgds->held = dev->ccbq.held; 3206 cgds->last_reset = tar->last_reset; 3207 cgds->maxtags = dev->quirk->maxtags; 3208 cgds->mintags = dev->quirk->mintags; 3209 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3210 cgds->last_reset = bus->last_reset; 3211 cgds->ccb_h.status = CAM_REQ_CMP; 3212 } 3213 splx(s); 3214 break; 3215 } 3216 case XPT_GDEVLIST: 3217 { 3218 struct cam_periph *nperiph; 3219 struct periph_list *periph_head; 3220 struct ccb_getdevlist *cgdl; 3221 u_int i; 3222 int s; 3223 struct cam_ed *device; 3224 int found; 3225 3226 3227 found = 0; 3228 3229 /* 3230 * Don't want anyone mucking with our data. 3231 */ 3232 s = splcam(); 3233 device = start_ccb->ccb_h.path->device; 3234 periph_head = &device->periphs; 3235 cgdl = &start_ccb->cgdl; 3236 3237 /* 3238 * Check and see if the list has changed since the user 3239 * last requested a list member. If so, tell them that the 3240 * list has changed, and therefore they need to start over 3241 * from the beginning. 3242 */ 3243 if ((cgdl->index != 0) && 3244 (cgdl->generation != device->generation)) { 3245 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3246 splx(s); 3247 break; 3248 } 3249 3250 /* 3251 * Traverse the list of peripherals and attempt to find 3252 * the requested peripheral. 3253 */ 3254 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3255 (nperiph != NULL) && (i <= cgdl->index); 3256 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3257 if (i == cgdl->index) { 3258 strncpy(cgdl->periph_name, 3259 nperiph->periph_name, 3260 DEV_IDLEN); 3261 cgdl->unit_number = nperiph->unit_number; 3262 found = 1; 3263 } 3264 } 3265 if (found == 0) { 3266 cgdl->status = CAM_GDEVLIST_ERROR; 3267 splx(s); 3268 break; 3269 } 3270 3271 if (nperiph == NULL) 3272 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3273 else 3274 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3275 3276 cgdl->index++; 3277 cgdl->generation = device->generation; 3278 3279 splx(s); 3280 cgdl->ccb_h.status = CAM_REQ_CMP; 3281 break; 3282 } 3283 case XPT_DEV_MATCH: 3284 { 3285 int s; 3286 dev_pos_type position_type; 3287 struct ccb_dev_match *cdm; 3288 3289 cdm = &start_ccb->cdm; 3290 3291 /* 3292 * Prevent EDT changes while we traverse it. 3293 */ 3294 s = splcam(); 3295 /* 3296 * There are two ways of getting at information in the EDT. 3297 * The first way is via the primary EDT tree. It starts 3298 * with a list of busses, then a list of targets on a bus, 3299 * then devices/luns on a target, and then peripherals on a 3300 * device/lun. The "other" way is by the peripheral driver 3301 * lists. The peripheral driver lists are organized by 3302 * peripheral driver. (obviously) So it makes sense to 3303 * use the peripheral driver list if the user is looking 3304 * for something like "da1", or all "da" devices. If the 3305 * user is looking for something on a particular bus/target 3306 * or lun, it's generally better to go through the EDT tree. 3307 */ 3308 3309 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3310 position_type = cdm->pos.position_type; 3311 else { 3312 u_int i; 3313 3314 position_type = CAM_DEV_POS_NONE; 3315 3316 for (i = 0; i < cdm->num_patterns; i++) { 3317 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3318 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3319 position_type = CAM_DEV_POS_EDT; 3320 break; 3321 } 3322 } 3323 3324 if (cdm->num_patterns == 0) 3325 position_type = CAM_DEV_POS_EDT; 3326 else if (position_type == CAM_DEV_POS_NONE) 3327 position_type = CAM_DEV_POS_PDRV; 3328 } 3329 3330 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3331 case CAM_DEV_POS_EDT: 3332 xptedtmatch(cdm); 3333 break; 3334 case CAM_DEV_POS_PDRV: 3335 xptperiphlistmatch(cdm); 3336 break; 3337 default: 3338 cdm->status = CAM_DEV_MATCH_ERROR; 3339 break; 3340 } 3341 3342 splx(s); 3343 3344 if (cdm->status == CAM_DEV_MATCH_ERROR) 3345 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3346 else 3347 start_ccb->ccb_h.status = CAM_REQ_CMP; 3348 3349 break; 3350 } 3351 case XPT_SASYNC_CB: 3352 { 3353 struct ccb_setasync *csa; 3354 struct async_node *cur_entry; 3355 struct async_list *async_head; 3356 u_int32_t added; 3357 int s; 3358 3359 csa = &start_ccb->csa; 3360 added = csa->event_enable; 3361 async_head = &csa->ccb_h.path->device->asyncs; 3362 3363 /* 3364 * If there is already an entry for us, simply 3365 * update it. 3366 */ 3367 s = splcam(); 3368 cur_entry = SLIST_FIRST(async_head); 3369 while (cur_entry != NULL) { 3370 if ((cur_entry->callback_arg == csa->callback_arg) 3371 && (cur_entry->callback == csa->callback)) 3372 break; 3373 cur_entry = SLIST_NEXT(cur_entry, links); 3374 } 3375 3376 if (cur_entry != NULL) { 3377 /* 3378 * If the request has no flags set, 3379 * remove the entry. 3380 */ 3381 added &= ~cur_entry->event_enable; 3382 if (csa->event_enable == 0) { 3383 SLIST_REMOVE(async_head, cur_entry, 3384 async_node, links); 3385 csa->ccb_h.path->device->refcount--; 3386 free(cur_entry, M_DEVBUF); 3387 } else { 3388 cur_entry->event_enable = csa->event_enable; 3389 } 3390 } else { 3391 cur_entry = malloc(sizeof(*cur_entry), M_DEVBUF, 3392 M_NOWAIT); 3393 if (cur_entry == NULL) { 3394 splx(s); 3395 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3396 break; 3397 } 3398 cur_entry->event_enable = csa->event_enable; 3399 cur_entry->callback_arg = csa->callback_arg; 3400 cur_entry->callback = csa->callback; 3401 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3402 csa->ccb_h.path->device->refcount++; 3403 } 3404 3405 if ((added & AC_FOUND_DEVICE) != 0) { 3406 /* 3407 * Get this peripheral up to date with all 3408 * the currently existing devices. 3409 */ 3410 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 3411 } 3412 if ((added & AC_PATH_REGISTERED) != 0) { 3413 /* 3414 * Get this peripheral up to date with all 3415 * the currently existing busses. 3416 */ 3417 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 3418 } 3419 splx(s); 3420 start_ccb->ccb_h.status = CAM_REQ_CMP; 3421 break; 3422 } 3423 case XPT_REL_SIMQ: 3424 { 3425 struct ccb_relsim *crs; 3426 struct cam_ed *dev; 3427 int s; 3428 3429 crs = &start_ccb->crs; 3430 dev = crs->ccb_h.path->device; 3431 if (dev == NULL) { 3432 3433 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3434 break; 3435 } 3436 3437 s = splcam(); 3438 3439 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3440 3441 if ((dev->inq_data.flags & SID_CmdQue) != 0) { 3442 3443 /* Don't ever go below one opening */ 3444 if (crs->openings > 0) { 3445 xpt_dev_ccbq_resize(crs->ccb_h.path, 3446 crs->openings); 3447 3448 if (bootverbose) { 3449 xpt_print_path(crs->ccb_h.path); 3450 printf("tagged openings " 3451 "now %d\n", 3452 crs->openings); 3453 } 3454 } 3455 } 3456 } 3457 3458 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3459 3460 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3461 3462 /* 3463 * Just extend the old timeout and decrement 3464 * the freeze count so that a single timeout 3465 * is sufficient for releasing the queue. 3466 */ 3467 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3468 untimeout(xpt_release_devq_timeout, 3469 dev, dev->c_handle); 3470 } else { 3471 3472 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3473 } 3474 3475 dev->c_handle = 3476 timeout(xpt_release_devq_timeout, 3477 dev, 3478 (crs->release_timeout * hz) / 1000); 3479 3480 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3481 3482 } 3483 3484 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3485 3486 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3487 /* 3488 * Decrement the freeze count so that a single 3489 * completion is still sufficient to unfreeze 3490 * the queue. 3491 */ 3492 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3493 } else { 3494 3495 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3496 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3497 } 3498 } 3499 3500 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3501 3502 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3503 || (dev->ccbq.dev_active == 0)) { 3504 3505 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3506 } else { 3507 3508 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3509 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3510 } 3511 } 3512 splx(s); 3513 3514 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3515 3516 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3517 /*run_queue*/TRUE); 3518 } 3519 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3520 start_ccb->ccb_h.status = CAM_REQ_CMP; 3521 break; 3522 } 3523 case XPT_SCAN_BUS: 3524 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3525 break; 3526 case XPT_SCAN_LUN: 3527 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3528 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3529 start_ccb); 3530 break; 3531 case XPT_DEBUG: { 3532 #ifdef CAMDEBUG 3533 int s; 3534 3535 s = splcam(); 3536 #ifdef CAM_DEBUG_DELAY 3537 cam_debug_delay = CAM_DEBUG_DELAY; 3538 #endif 3539 cam_dflags = start_ccb->cdbg.flags; 3540 if (cam_dpath != NULL) { 3541 xpt_free_path(cam_dpath); 3542 cam_dpath = NULL; 3543 } 3544 3545 if (cam_dflags != CAM_DEBUG_NONE) { 3546 if (xpt_create_path(&cam_dpath, xpt_periph, 3547 start_ccb->ccb_h.path_id, 3548 start_ccb->ccb_h.target_id, 3549 start_ccb->ccb_h.target_lun) != 3550 CAM_REQ_CMP) { 3551 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3552 cam_dflags = CAM_DEBUG_NONE; 3553 } else { 3554 start_ccb->ccb_h.status = CAM_REQ_CMP; 3555 xpt_print_path(cam_dpath); 3556 printf("debugging flags now %x\n", cam_dflags); 3557 } 3558 } else { 3559 cam_dpath = NULL; 3560 start_ccb->ccb_h.status = CAM_REQ_CMP; 3561 } 3562 splx(s); 3563 #else /* !CAMDEBUG */ 3564 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3565 #endif /* CAMDEBUG */ 3566 break; 3567 } 3568 case XPT_NOOP: 3569 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3570 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3571 start_ccb->ccb_h.status = CAM_REQ_CMP; 3572 break; 3573 default: 3574 case XPT_SDEV_TYPE: 3575 case XPT_TERM_IO: 3576 case XPT_ENG_INQ: 3577 /* XXX Implement */ 3578 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3579 break; 3580 } 3581 splx(iopl); 3582 } 3583 3584 void 3585 xpt_polled_action(union ccb *start_ccb) 3586 { 3587 int s; 3588 u_int32_t timeout; 3589 struct cam_sim *sim; 3590 struct cam_devq *devq; 3591 struct cam_ed *dev; 3592 3593 GIANT_REQUIRED; 3594 3595 timeout = start_ccb->ccb_h.timeout; 3596 sim = start_ccb->ccb_h.path->bus->sim; 3597 devq = sim->devq; 3598 dev = start_ccb->ccb_h.path->device; 3599 3600 s = splcam(); 3601 3602 /* 3603 * Steal an opening so that no other queued requests 3604 * can get it before us while we simulate interrupts. 3605 */ 3606 dev->ccbq.devq_openings--; 3607 dev->ccbq.dev_openings--; 3608 3609 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) 3610 && (--timeout > 0)) { 3611 DELAY(1000); 3612 (*(sim->sim_poll))(sim); 3613 camisr(&cam_netq); 3614 camisr(&cam_bioq); 3615 } 3616 3617 dev->ccbq.devq_openings++; 3618 dev->ccbq.dev_openings++; 3619 3620 if (timeout != 0) { 3621 xpt_action(start_ccb); 3622 while(--timeout > 0) { 3623 (*(sim->sim_poll))(sim); 3624 camisr(&cam_netq); 3625 camisr(&cam_bioq); 3626 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3627 != CAM_REQ_INPROG) 3628 break; 3629 DELAY(1000); 3630 } 3631 if (timeout == 0) { 3632 /* 3633 * XXX Is it worth adding a sim_timeout entry 3634 * point so we can attempt recovery? If 3635 * this is only used for dumps, I don't think 3636 * it is. 3637 */ 3638 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3639 } 3640 } else { 3641 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3642 } 3643 splx(s); 3644 } 3645 3646 /* 3647 * Schedule a peripheral driver to receive a ccb when it's 3648 * target device has space for more transactions. 3649 */ 3650 void 3651 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3652 { 3653 struct cam_ed *device; 3654 int s; 3655 int runq; 3656 3657 GIANT_REQUIRED; 3658 3659 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3660 device = perph->path->device; 3661 s = splsoftcam(); 3662 if (periph_is_queued(perph)) { 3663 /* Simply reorder based on new priority */ 3664 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3665 (" change priority to %d\n", new_priority)); 3666 if (new_priority < perph->pinfo.priority) { 3667 camq_change_priority(&device->drvq, 3668 perph->pinfo.index, 3669 new_priority); 3670 } 3671 runq = 0; 3672 } else { 3673 /* New entry on the queue */ 3674 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3675 (" added periph to queue\n")); 3676 perph->pinfo.priority = new_priority; 3677 perph->pinfo.generation = ++device->drvq.generation; 3678 camq_insert(&device->drvq, &perph->pinfo); 3679 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3680 } 3681 splx(s); 3682 if (runq != 0) { 3683 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3684 (" calling xpt_run_devq\n")); 3685 xpt_run_dev_allocq(perph->path->bus); 3686 } 3687 } 3688 3689 3690 /* 3691 * Schedule a device to run on a given queue. 3692 * If the device was inserted as a new entry on the queue, 3693 * return 1 meaning the device queue should be run. If we 3694 * were already queued, implying someone else has already 3695 * started the queue, return 0 so the caller doesn't attempt 3696 * to run the queue. Must be run at either splsoftcam 3697 * (or splcam since that encompases splsoftcam). 3698 */ 3699 static int 3700 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3701 u_int32_t new_priority) 3702 { 3703 int retval; 3704 u_int32_t old_priority; 3705 3706 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3707 3708 old_priority = pinfo->priority; 3709 3710 /* 3711 * Are we already queued? 3712 */ 3713 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3714 /* Simply reorder based on new priority */ 3715 if (new_priority < old_priority) { 3716 camq_change_priority(queue, pinfo->index, 3717 new_priority); 3718 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3719 ("changed priority to %d\n", 3720 new_priority)); 3721 } 3722 retval = 0; 3723 } else { 3724 /* New entry on the queue */ 3725 if (new_priority < old_priority) 3726 pinfo->priority = new_priority; 3727 3728 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3729 ("Inserting onto queue\n")); 3730 pinfo->generation = ++queue->generation; 3731 camq_insert(queue, pinfo); 3732 retval = 1; 3733 } 3734 return (retval); 3735 } 3736 3737 static void 3738 xpt_run_dev_allocq(struct cam_eb *bus) 3739 { 3740 struct cam_devq *devq; 3741 int s; 3742 3743 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3744 devq = bus->sim->devq; 3745 3746 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3747 (" qfrozen_cnt == 0x%x, entries == %d, " 3748 "openings == %d, active == %d\n", 3749 devq->alloc_queue.qfrozen_cnt, 3750 devq->alloc_queue.entries, 3751 devq->alloc_openings, 3752 devq->alloc_active)); 3753 3754 s = splsoftcam(); 3755 devq->alloc_queue.qfrozen_cnt++; 3756 while ((devq->alloc_queue.entries > 0) 3757 && (devq->alloc_openings > 0) 3758 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3759 struct cam_ed_qinfo *qinfo; 3760 struct cam_ed *device; 3761 union ccb *work_ccb; 3762 struct cam_periph *drv; 3763 struct camq *drvq; 3764 3765 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3766 CAMQ_HEAD); 3767 device = qinfo->device; 3768 3769 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3770 ("running device %p\n", device)); 3771 3772 drvq = &device->drvq; 3773 3774 #ifdef CAMDEBUG 3775 if (drvq->entries <= 0) { 3776 panic("xpt_run_dev_allocq: " 3777 "Device on queue without any work to do"); 3778 } 3779 #endif 3780 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3781 devq->alloc_openings--; 3782 devq->alloc_active++; 3783 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3784 splx(s); 3785 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3786 drv->pinfo.priority); 3787 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3788 ("calling periph start\n")); 3789 drv->periph_start(drv, work_ccb); 3790 } else { 3791 /* 3792 * Malloc failure in alloc_ccb 3793 */ 3794 /* 3795 * XXX add us to a list to be run from free_ccb 3796 * if we don't have any ccbs active on this 3797 * device queue otherwise we may never get run 3798 * again. 3799 */ 3800 break; 3801 } 3802 3803 /* Raise IPL for possible insertion and test at top of loop */ 3804 s = splsoftcam(); 3805 3806 if (drvq->entries > 0) { 3807 /* We have more work. Attempt to reschedule */ 3808 xpt_schedule_dev_allocq(bus, device); 3809 } 3810 } 3811 devq->alloc_queue.qfrozen_cnt--; 3812 splx(s); 3813 } 3814 3815 static void 3816 xpt_run_dev_sendq(struct cam_eb *bus) 3817 { 3818 struct cam_devq *devq; 3819 int s; 3820 3821 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3822 3823 devq = bus->sim->devq; 3824 3825 s = splcam(); 3826 devq->send_queue.qfrozen_cnt++; 3827 splx(s); 3828 s = splsoftcam(); 3829 while ((devq->send_queue.entries > 0) 3830 && (devq->send_openings > 0)) { 3831 struct cam_ed_qinfo *qinfo; 3832 struct cam_ed *device; 3833 union ccb *work_ccb; 3834 struct cam_sim *sim; 3835 int ospl; 3836 3837 ospl = splcam(); 3838 if (devq->send_queue.qfrozen_cnt > 1) { 3839 splx(ospl); 3840 break; 3841 } 3842 3843 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3844 CAMQ_HEAD); 3845 device = qinfo->device; 3846 3847 /* 3848 * If the device has been "frozen", don't attempt 3849 * to run it. 3850 */ 3851 if (device->qfrozen_cnt > 0) { 3852 splx(ospl); 3853 continue; 3854 } 3855 3856 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3857 ("running device %p\n", device)); 3858 3859 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3860 if (work_ccb == NULL) { 3861 printf("device on run queue with no ccbs???\n"); 3862 splx(ospl); 3863 continue; 3864 } 3865 3866 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3867 3868 if (num_highpower <= 0) { 3869 /* 3870 * We got a high power command, but we 3871 * don't have any available slots. Freeze 3872 * the device queue until we have a slot 3873 * available. 3874 */ 3875 device->qfrozen_cnt++; 3876 STAILQ_INSERT_TAIL(&highpowerq, 3877 &work_ccb->ccb_h, 3878 xpt_links.stqe); 3879 3880 splx(ospl); 3881 continue; 3882 } else { 3883 /* 3884 * Consume a high power slot while 3885 * this ccb runs. 3886 */ 3887 num_highpower--; 3888 } 3889 } 3890 devq->active_dev = device; 3891 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3892 3893 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3894 splx(ospl); 3895 3896 devq->send_openings--; 3897 devq->send_active++; 3898 3899 if (device->ccbq.queue.entries > 0) 3900 xpt_schedule_dev_sendq(bus, device); 3901 3902 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3903 /* 3904 * The client wants to freeze the queue 3905 * after this CCB is sent. 3906 */ 3907 ospl = splcam(); 3908 device->qfrozen_cnt++; 3909 splx(ospl); 3910 } 3911 3912 splx(s); 3913 3914 /* In Target mode, the peripheral driver knows best... */ 3915 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3916 if ((device->inq_flags & SID_CmdQue) != 0 3917 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3918 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3919 else 3920 /* 3921 * Clear this in case of a retried CCB that 3922 * failed due to a rejected tag. 3923 */ 3924 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3925 } 3926 3927 /* 3928 * Device queues can be shared among multiple sim instances 3929 * that reside on different busses. Use the SIM in the queue 3930 * CCB's path, rather than the one in the bus that was passed 3931 * into this function. 3932 */ 3933 sim = work_ccb->ccb_h.path->bus->sim; 3934 (*(sim->sim_action))(sim, work_ccb); 3935 3936 ospl = splcam(); 3937 devq->active_dev = NULL; 3938 splx(ospl); 3939 /* Raise IPL for possible insertion and test at top of loop */ 3940 s = splsoftcam(); 3941 } 3942 splx(s); 3943 s = splcam(); 3944 devq->send_queue.qfrozen_cnt--; 3945 splx(s); 3946 } 3947 3948 /* 3949 * This function merges stuff from the slave ccb into the master ccb, while 3950 * keeping important fields in the master ccb constant. 3951 */ 3952 void 3953 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3954 { 3955 GIANT_REQUIRED; 3956 3957 /* 3958 * Pull fields that are valid for peripheral drivers to set 3959 * into the master CCB along with the CCB "payload". 3960 */ 3961 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3962 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3963 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3964 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3965 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3966 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3967 } 3968 3969 void 3970 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3971 { 3972 GIANT_REQUIRED; 3973 3974 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3975 ccb_h->pinfo.priority = priority; 3976 ccb_h->path = path; 3977 ccb_h->path_id = path->bus->path_id; 3978 if (path->target) 3979 ccb_h->target_id = path->target->target_id; 3980 else 3981 ccb_h->target_id = CAM_TARGET_WILDCARD; 3982 if (path->device) { 3983 ccb_h->target_lun = path->device->lun_id; 3984 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3985 } else { 3986 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3987 } 3988 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3989 ccb_h->flags = 0; 3990 } 3991 3992 /* Path manipulation functions */ 3993 cam_status 3994 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3995 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3996 { 3997 struct cam_path *path; 3998 cam_status status; 3999 4000 GIANT_REQUIRED; 4001 4002 path = (struct cam_path *)malloc(sizeof(*path), M_DEVBUF, M_NOWAIT); 4003 4004 if (path == NULL) { 4005 status = CAM_RESRC_UNAVAIL; 4006 return(status); 4007 } 4008 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 4009 if (status != CAM_REQ_CMP) { 4010 free(path, M_DEVBUF); 4011 path = NULL; 4012 } 4013 *new_path_ptr = path; 4014 return (status); 4015 } 4016 4017 static cam_status 4018 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 4019 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4020 { 4021 struct cam_eb *bus; 4022 struct cam_et *target; 4023 struct cam_ed *device; 4024 cam_status status; 4025 int s; 4026 4027 status = CAM_REQ_CMP; /* Completed without error */ 4028 target = NULL; /* Wildcarded */ 4029 device = NULL; /* Wildcarded */ 4030 4031 /* 4032 * We will potentially modify the EDT, so block interrupts 4033 * that may attempt to create cam paths. 4034 */ 4035 s = splcam(); 4036 bus = xpt_find_bus(path_id); 4037 if (bus == NULL) { 4038 status = CAM_PATH_INVALID; 4039 } else { 4040 target = xpt_find_target(bus, target_id); 4041 if (target == NULL) { 4042 /* Create one */ 4043 struct cam_et *new_target; 4044 4045 new_target = xpt_alloc_target(bus, target_id); 4046 if (new_target == NULL) { 4047 status = CAM_RESRC_UNAVAIL; 4048 } else { 4049 target = new_target; 4050 } 4051 } 4052 if (target != NULL) { 4053 device = xpt_find_device(target, lun_id); 4054 if (device == NULL) { 4055 /* Create one */ 4056 struct cam_ed *new_device; 4057 4058 new_device = xpt_alloc_device(bus, 4059 target, 4060 lun_id); 4061 if (new_device == NULL) { 4062 status = CAM_RESRC_UNAVAIL; 4063 } else { 4064 device = new_device; 4065 } 4066 } 4067 } 4068 } 4069 splx(s); 4070 4071 /* 4072 * Only touch the user's data if we are successful. 4073 */ 4074 if (status == CAM_REQ_CMP) { 4075 new_path->periph = perph; 4076 new_path->bus = bus; 4077 new_path->target = target; 4078 new_path->device = device; 4079 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4080 } else { 4081 if (device != NULL) 4082 xpt_release_device(bus, target, device); 4083 if (target != NULL) 4084 xpt_release_target(bus, target); 4085 if (bus != NULL) 4086 xpt_release_bus(bus); 4087 } 4088 return (status); 4089 } 4090 4091 static void 4092 xpt_release_path(struct cam_path *path) 4093 { 4094 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4095 if (path->device != NULL) { 4096 xpt_release_device(path->bus, path->target, path->device); 4097 path->device = NULL; 4098 } 4099 if (path->target != NULL) { 4100 xpt_release_target(path->bus, path->target); 4101 path->target = NULL; 4102 } 4103 if (path->bus != NULL) { 4104 xpt_release_bus(path->bus); 4105 path->bus = NULL; 4106 } 4107 } 4108 4109 void 4110 xpt_free_path(struct cam_path *path) 4111 { 4112 GIANT_REQUIRED; 4113 4114 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4115 xpt_release_path(path); 4116 free(path, M_DEVBUF); 4117 } 4118 4119 4120 /* 4121 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4122 * in path1, 2 for match with wildcards in path2. 4123 */ 4124 int 4125 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4126 { 4127 GIANT_REQUIRED; 4128 4129 int retval = 0; 4130 4131 if (path1->bus != path2->bus) { 4132 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4133 retval = 1; 4134 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4135 retval = 2; 4136 else 4137 return (-1); 4138 } 4139 if (path1->target != path2->target) { 4140 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4141 if (retval == 0) 4142 retval = 1; 4143 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4144 retval = 2; 4145 else 4146 return (-1); 4147 } 4148 if (path1->device != path2->device) { 4149 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4150 if (retval == 0) 4151 retval = 1; 4152 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4153 retval = 2; 4154 else 4155 return (-1); 4156 } 4157 return (retval); 4158 } 4159 4160 void 4161 xpt_print_path(struct cam_path *path) 4162 { 4163 GIANT_REQUIRED; 4164 4165 if (path == NULL) 4166 printf("(nopath): "); 4167 else { 4168 if (path->periph != NULL) 4169 printf("(%s%d:", path->periph->periph_name, 4170 path->periph->unit_number); 4171 else 4172 printf("(noperiph:"); 4173 4174 if (path->bus != NULL) 4175 printf("%s%d:%d:", path->bus->sim->sim_name, 4176 path->bus->sim->unit_number, 4177 path->bus->sim->bus_id); 4178 else 4179 printf("nobus:"); 4180 4181 if (path->target != NULL) 4182 printf("%d:", path->target->target_id); 4183 else 4184 printf("X:"); 4185 4186 if (path->device != NULL) 4187 printf("%d): ", path->device->lun_id); 4188 else 4189 printf("X): "); 4190 } 4191 } 4192 4193 int 4194 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4195 { 4196 struct sbuf sb; 4197 4198 GIANT_REQUIRED; 4199 4200 sbuf_new(&sb, str, str_len, 0); 4201 4202 if (path == NULL) 4203 sbuf_printf(&sb, "(nopath): "); 4204 else { 4205 if (path->periph != NULL) 4206 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4207 path->periph->unit_number); 4208 else 4209 sbuf_printf(&sb, "(noperiph:"); 4210 4211 if (path->bus != NULL) 4212 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4213 path->bus->sim->unit_number, 4214 path->bus->sim->bus_id); 4215 else 4216 sbuf_printf(&sb, "nobus:"); 4217 4218 if (path->target != NULL) 4219 sbuf_printf(&sb, "%d:", path->target->target_id); 4220 else 4221 sbuf_printf(&sb, "X:"); 4222 4223 if (path->device != NULL) 4224 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4225 else 4226 sbuf_printf(&sb, "X): "); 4227 } 4228 sbuf_finish(&sb); 4229 4230 return(sbuf_len(&sb)); 4231 } 4232 4233 path_id_t 4234 xpt_path_path_id(struct cam_path *path) 4235 { 4236 GIANT_REQUIRED; 4237 4238 return(path->bus->path_id); 4239 } 4240 4241 target_id_t 4242 xpt_path_target_id(struct cam_path *path) 4243 { 4244 GIANT_REQUIRED; 4245 4246 if (path->target != NULL) 4247 return (path->target->target_id); 4248 else 4249 return (CAM_TARGET_WILDCARD); 4250 } 4251 4252 lun_id_t 4253 xpt_path_lun_id(struct cam_path *path) 4254 { 4255 GIANT_REQUIRED; 4256 4257 if (path->device != NULL) 4258 return (path->device->lun_id); 4259 else 4260 return (CAM_LUN_WILDCARD); 4261 } 4262 4263 struct cam_sim * 4264 xpt_path_sim(struct cam_path *path) 4265 { 4266 GIANT_REQUIRED; 4267 4268 return (path->bus->sim); 4269 } 4270 4271 struct cam_periph* 4272 xpt_path_periph(struct cam_path *path) 4273 { 4274 GIANT_REQUIRED; 4275 4276 return (path->periph); 4277 } 4278 4279 /* 4280 * Release a CAM control block for the caller. Remit the cost of the structure 4281 * to the device referenced by the path. If the this device had no 'credits' 4282 * and peripheral drivers have registered async callbacks for this notification 4283 * call them now. 4284 */ 4285 void 4286 xpt_release_ccb(union ccb *free_ccb) 4287 { 4288 int s; 4289 struct cam_path *path; 4290 struct cam_ed *device; 4291 struct cam_eb *bus; 4292 4293 GIANT_REQUIRED; 4294 4295 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4296 path = free_ccb->ccb_h.path; 4297 device = path->device; 4298 bus = path->bus; 4299 s = splsoftcam(); 4300 cam_ccbq_release_opening(&device->ccbq); 4301 if (xpt_ccb_count > xpt_max_ccbs) { 4302 xpt_free_ccb(free_ccb); 4303 xpt_ccb_count--; 4304 } else { 4305 SLIST_INSERT_HEAD(&ccb_freeq, &free_ccb->ccb_h, xpt_links.sle); 4306 } 4307 bus->sim->devq->alloc_openings++; 4308 bus->sim->devq->alloc_active--; 4309 /* XXX Turn this into an inline function - xpt_run_device?? */ 4310 if ((device_is_alloc_queued(device) == 0) 4311 && (device->drvq.entries > 0)) { 4312 xpt_schedule_dev_allocq(bus, device); 4313 } 4314 splx(s); 4315 if (dev_allocq_is_runnable(bus->sim->devq)) 4316 xpt_run_dev_allocq(bus); 4317 } 4318 4319 /* Functions accessed by SIM drivers */ 4320 4321 /* 4322 * A sim structure, listing the SIM entry points and instance 4323 * identification info is passed to xpt_bus_register to hook the SIM 4324 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4325 * for this new bus and places it in the array of busses and assigns 4326 * it a path_id. The path_id may be influenced by "hard wiring" 4327 * information specified by the user. Once interrupt services are 4328 * availible, the bus will be probed. 4329 */ 4330 int32_t 4331 xpt_bus_register(struct cam_sim *sim, u_int32_t bus) 4332 { 4333 struct cam_eb *new_bus; 4334 struct cam_eb *old_bus; 4335 struct ccb_pathinq cpi; 4336 int s; 4337 4338 GIANT_REQUIRED; 4339 4340 sim->bus_id = bus; 4341 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4342 M_DEVBUF, M_NOWAIT); 4343 if (new_bus == NULL) { 4344 /* Couldn't satisfy request */ 4345 return (CAM_RESRC_UNAVAIL); 4346 } 4347 4348 if (strcmp(sim->sim_name, "xpt") != 0) { 4349 4350 sim->path_id = 4351 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4352 } 4353 4354 TAILQ_INIT(&new_bus->et_entries); 4355 new_bus->path_id = sim->path_id; 4356 new_bus->sim = sim; 4357 timevalclear(&new_bus->last_reset); 4358 new_bus->flags = 0; 4359 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4360 new_bus->generation = 0; 4361 s = splcam(); 4362 old_bus = TAILQ_FIRST(&xpt_busses); 4363 while (old_bus != NULL 4364 && old_bus->path_id < new_bus->path_id) 4365 old_bus = TAILQ_NEXT(old_bus, links); 4366 if (old_bus != NULL) 4367 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4368 else 4369 TAILQ_INSERT_TAIL(&xpt_busses, new_bus, links); 4370 bus_generation++; 4371 splx(s); 4372 4373 /* Notify interested parties */ 4374 if (sim->path_id != CAM_XPT_PATH_ID) { 4375 struct cam_path path; 4376 4377 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4378 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4379 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4380 cpi.ccb_h.func_code = XPT_PATH_INQ; 4381 xpt_action((union ccb *)&cpi); 4382 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4383 xpt_release_path(&path); 4384 } 4385 return (CAM_SUCCESS); 4386 } 4387 4388 int32_t 4389 xpt_bus_deregister(path_id_t pathid) 4390 { 4391 struct cam_path bus_path; 4392 cam_status status; 4393 4394 GIANT_REQUIRED; 4395 4396 status = xpt_compile_path(&bus_path, NULL, pathid, 4397 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4398 if (status != CAM_REQ_CMP) 4399 return (status); 4400 4401 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4402 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4403 4404 /* Release the reference count held while registered. */ 4405 xpt_release_bus(bus_path.bus); 4406 xpt_release_path(&bus_path); 4407 4408 return (CAM_REQ_CMP); 4409 } 4410 4411 static path_id_t 4412 xptnextfreepathid(void) 4413 { 4414 struct cam_eb *bus; 4415 path_id_t pathid; 4416 const char *strval; 4417 4418 pathid = 0; 4419 bus = TAILQ_FIRST(&xpt_busses); 4420 retry: 4421 /* Find an unoccupied pathid */ 4422 while (bus != NULL 4423 && bus->path_id <= pathid) { 4424 if (bus->path_id == pathid) 4425 pathid++; 4426 bus = TAILQ_NEXT(bus, links); 4427 } 4428 4429 /* 4430 * Ensure that this pathid is not reserved for 4431 * a bus that may be registered in the future. 4432 */ 4433 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4434 ++pathid; 4435 /* Start the search over */ 4436 goto retry; 4437 } 4438 return (pathid); 4439 } 4440 4441 static path_id_t 4442 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4443 { 4444 path_id_t pathid; 4445 int i, dunit, val; 4446 char buf[32]; 4447 const char *dname; 4448 4449 pathid = CAM_XPT_PATH_ID; 4450 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4451 i = 0; 4452 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4453 if (strcmp(dname, "scbus")) { 4454 /* Avoid a bit of foot shooting. */ 4455 continue; 4456 } 4457 if (dunit < 0) /* unwired?! */ 4458 continue; 4459 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4460 if (sim_bus == val) { 4461 pathid = dunit; 4462 break; 4463 } 4464 } else if (sim_bus == 0) { 4465 /* Unspecified matches bus 0 */ 4466 pathid = dunit; 4467 break; 4468 } else { 4469 printf("Ambiguous scbus configuration for %s%d " 4470 "bus %d, cannot wire down. The kernel " 4471 "config entry for scbus%d should " 4472 "specify a controller bus.\n" 4473 "Scbus will be assigned dynamically.\n", 4474 sim_name, sim_unit, sim_bus, dunit); 4475 break; 4476 } 4477 } 4478 4479 if (pathid == CAM_XPT_PATH_ID) 4480 pathid = xptnextfreepathid(); 4481 return (pathid); 4482 } 4483 4484 void 4485 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4486 { 4487 struct cam_eb *bus; 4488 struct cam_et *target, *next_target; 4489 struct cam_ed *device, *next_device; 4490 int s; 4491 4492 GIANT_REQUIRED; 4493 4494 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4495 4496 /* 4497 * Most async events come from a CAM interrupt context. In 4498 * a few cases, the error recovery code at the peripheral layer, 4499 * which may run from our SWI or a process context, may signal 4500 * deferred events with a call to xpt_async. Ensure async 4501 * notifications are serialized by blocking cam interrupts. 4502 */ 4503 s = splcam(); 4504 4505 bus = path->bus; 4506 4507 if (async_code == AC_BUS_RESET) { 4508 int s; 4509 4510 s = splclock(); 4511 /* Update our notion of when the last reset occurred */ 4512 microtime(&bus->last_reset); 4513 splx(s); 4514 } 4515 4516 for (target = TAILQ_FIRST(&bus->et_entries); 4517 target != NULL; 4518 target = next_target) { 4519 4520 next_target = TAILQ_NEXT(target, links); 4521 4522 if (path->target != target 4523 && path->target->target_id != CAM_TARGET_WILDCARD 4524 && target->target_id != CAM_TARGET_WILDCARD) 4525 continue; 4526 4527 if (async_code == AC_SENT_BDR) { 4528 int s; 4529 4530 /* Update our notion of when the last reset occurred */ 4531 s = splclock(); 4532 microtime(&path->target->last_reset); 4533 splx(s); 4534 } 4535 4536 for (device = TAILQ_FIRST(&target->ed_entries); 4537 device != NULL; 4538 device = next_device) { 4539 4540 next_device = TAILQ_NEXT(device, links); 4541 4542 if (path->device != device 4543 && path->device->lun_id != CAM_LUN_WILDCARD 4544 && device->lun_id != CAM_LUN_WILDCARD) 4545 continue; 4546 4547 xpt_dev_async(async_code, bus, target, 4548 device, async_arg); 4549 4550 xpt_async_bcast(&device->asyncs, async_code, 4551 path, async_arg); 4552 } 4553 } 4554 4555 /* 4556 * If this wasn't a fully wildcarded async, tell all 4557 * clients that want all async events. 4558 */ 4559 if (bus != xpt_periph->path->bus) 4560 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4561 path, async_arg); 4562 splx(s); 4563 } 4564 4565 static void 4566 xpt_async_bcast(struct async_list *async_head, 4567 u_int32_t async_code, 4568 struct cam_path *path, void *async_arg) 4569 { 4570 struct async_node *cur_entry; 4571 4572 cur_entry = SLIST_FIRST(async_head); 4573 while (cur_entry != NULL) { 4574 struct async_node *next_entry; 4575 /* 4576 * Grab the next list entry before we call the current 4577 * entry's callback. This is because the callback function 4578 * can delete its async callback entry. 4579 */ 4580 next_entry = SLIST_NEXT(cur_entry, links); 4581 if ((cur_entry->event_enable & async_code) != 0) 4582 cur_entry->callback(cur_entry->callback_arg, 4583 async_code, path, 4584 async_arg); 4585 cur_entry = next_entry; 4586 } 4587 } 4588 4589 /* 4590 * Handle any per-device event notifications that require action by the XPT. 4591 */ 4592 static void 4593 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4594 struct cam_ed *device, void *async_arg) 4595 { 4596 cam_status status; 4597 struct cam_path newpath; 4598 4599 /* 4600 * We only need to handle events for real devices. 4601 */ 4602 if (target->target_id == CAM_TARGET_WILDCARD 4603 || device->lun_id == CAM_LUN_WILDCARD) 4604 return; 4605 4606 /* 4607 * We need our own path with wildcards expanded to 4608 * handle certain types of events. 4609 */ 4610 if ((async_code == AC_SENT_BDR) 4611 || (async_code == AC_BUS_RESET) 4612 || (async_code == AC_INQ_CHANGED)) 4613 status = xpt_compile_path(&newpath, NULL, 4614 bus->path_id, 4615 target->target_id, 4616 device->lun_id); 4617 else 4618 status = CAM_REQ_CMP_ERR; 4619 4620 if (status == CAM_REQ_CMP) { 4621 4622 /* 4623 * Allow transfer negotiation to occur in a 4624 * tag free environment. 4625 */ 4626 if (async_code == AC_SENT_BDR 4627 || async_code == AC_BUS_RESET) 4628 xpt_toggle_tags(&newpath); 4629 4630 if (async_code == AC_INQ_CHANGED) { 4631 /* 4632 * We've sent a start unit command, or 4633 * something similar to a device that 4634 * may have caused its inquiry data to 4635 * change. So we re-scan the device to 4636 * refresh the inquiry data for it. 4637 */ 4638 xpt_scan_lun(newpath.periph, &newpath, 4639 CAM_EXPECT_INQ_CHANGE, NULL); 4640 } 4641 xpt_release_path(&newpath); 4642 } else if (async_code == AC_LOST_DEVICE) { 4643 device->flags |= CAM_DEV_UNCONFIGURED; 4644 } else if (async_code == AC_TRANSFER_NEG) { 4645 struct ccb_trans_settings *settings; 4646 4647 settings = (struct ccb_trans_settings *)async_arg; 4648 xpt_set_transfer_settings(settings, device, 4649 /*async_update*/TRUE); 4650 } 4651 } 4652 4653 u_int32_t 4654 xpt_freeze_devq(struct cam_path *path, u_int count) 4655 { 4656 int s; 4657 struct ccb_hdr *ccbh; 4658 4659 GIANT_REQUIRED; 4660 4661 s = splcam(); 4662 path->device->qfrozen_cnt += count; 4663 4664 /* 4665 * Mark the last CCB in the queue as needing 4666 * to be requeued if the driver hasn't 4667 * changed it's state yet. This fixes a race 4668 * where a ccb is just about to be queued to 4669 * a controller driver when it's interrupt routine 4670 * freezes the queue. To completly close the 4671 * hole, controller drives must check to see 4672 * if a ccb's status is still CAM_REQ_INPROG 4673 * under spl protection just before they queue 4674 * the CCB. See ahc_action/ahc_freeze_devq for 4675 * an example. 4676 */ 4677 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4678 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4679 ccbh->status = CAM_REQUEUE_REQ; 4680 splx(s); 4681 return (path->device->qfrozen_cnt); 4682 } 4683 4684 u_int32_t 4685 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4686 { 4687 GIANT_REQUIRED; 4688 4689 sim->devq->send_queue.qfrozen_cnt += count; 4690 if (sim->devq->active_dev != NULL) { 4691 struct ccb_hdr *ccbh; 4692 4693 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4694 ccb_hdr_tailq); 4695 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4696 ccbh->status = CAM_REQUEUE_REQ; 4697 } 4698 return (sim->devq->send_queue.qfrozen_cnt); 4699 } 4700 4701 static void 4702 xpt_release_devq_timeout(void *arg) 4703 { 4704 struct cam_ed *device; 4705 4706 device = (struct cam_ed *)arg; 4707 4708 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4709 } 4710 4711 void 4712 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4713 { 4714 GIANT_REQUIRED; 4715 4716 xpt_release_devq_device(path->device, count, run_queue); 4717 } 4718 4719 static void 4720 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4721 { 4722 int rundevq; 4723 int s0, s1; 4724 4725 rundevq = 0; 4726 s0 = splsoftcam(); 4727 s1 = splcam(); 4728 if (dev->qfrozen_cnt > 0) { 4729 4730 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4731 dev->qfrozen_cnt -= count; 4732 if (dev->qfrozen_cnt == 0) { 4733 4734 /* 4735 * No longer need to wait for a successful 4736 * command completion. 4737 */ 4738 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4739 4740 /* 4741 * Remove any timeouts that might be scheduled 4742 * to release this queue. 4743 */ 4744 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4745 untimeout(xpt_release_devq_timeout, dev, 4746 dev->c_handle); 4747 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4748 } 4749 4750 /* 4751 * Now that we are unfrozen schedule the 4752 * device so any pending transactions are 4753 * run. 4754 */ 4755 if ((dev->ccbq.queue.entries > 0) 4756 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4757 && (run_queue != 0)) { 4758 rundevq = 1; 4759 } 4760 } 4761 } 4762 splx(s1); 4763 if (rundevq != 0) 4764 xpt_run_dev_sendq(dev->target->bus); 4765 splx(s0); 4766 } 4767 4768 void 4769 xpt_release_simq(struct cam_sim *sim, int run_queue) 4770 { 4771 int s; 4772 struct camq *sendq; 4773 4774 GIANT_REQUIRED; 4775 4776 sendq = &(sim->devq->send_queue); 4777 s = splcam(); 4778 if (sendq->qfrozen_cnt > 0) { 4779 4780 sendq->qfrozen_cnt--; 4781 if (sendq->qfrozen_cnt == 0) { 4782 struct cam_eb *bus; 4783 4784 /* 4785 * If there is a timeout scheduled to release this 4786 * sim queue, remove it. The queue frozen count is 4787 * already at 0. 4788 */ 4789 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4790 untimeout(xpt_release_simq_timeout, sim, 4791 sim->c_handle); 4792 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4793 } 4794 bus = xpt_find_bus(sim->path_id); 4795 splx(s); 4796 4797 if (run_queue) { 4798 /* 4799 * Now that we are unfrozen run the send queue. 4800 */ 4801 xpt_run_dev_sendq(bus); 4802 } 4803 xpt_release_bus(bus); 4804 } else 4805 splx(s); 4806 } else 4807 splx(s); 4808 } 4809 4810 static void 4811 xpt_release_simq_timeout(void *arg) 4812 { 4813 struct cam_sim *sim; 4814 4815 sim = (struct cam_sim *)arg; 4816 xpt_release_simq(sim, /* run_queue */ TRUE); 4817 } 4818 4819 void 4820 xpt_done(union ccb *done_ccb) 4821 { 4822 int s; 4823 4824 GIANT_REQUIRED; 4825 4826 s = splcam(); 4827 4828 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4829 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4830 /* 4831 * Queue up the request for handling by our SWI handler 4832 * any of the "non-immediate" type of ccbs. 4833 */ 4834 switch (done_ccb->ccb_h.path->periph->type) { 4835 case CAM_PERIPH_BIO: 4836 TAILQ_INSERT_TAIL(&cam_bioq, &done_ccb->ccb_h, 4837 sim_links.tqe); 4838 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4839 swi_sched(cambio_ih, 0); 4840 break; 4841 case CAM_PERIPH_NET: 4842 TAILQ_INSERT_TAIL(&cam_netq, &done_ccb->ccb_h, 4843 sim_links.tqe); 4844 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4845 swi_sched(camnet_ih, 0); 4846 break; 4847 } 4848 } 4849 splx(s); 4850 } 4851 4852 union ccb * 4853 xpt_alloc_ccb() 4854 { 4855 union ccb *new_ccb; 4856 4857 GIANT_REQUIRED; 4858 4859 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_WAITOK); 4860 return (new_ccb); 4861 } 4862 4863 void 4864 xpt_free_ccb(union ccb *free_ccb) 4865 { 4866 free(free_ccb, M_DEVBUF); 4867 } 4868 4869 4870 4871 /* Private XPT functions */ 4872 4873 /* 4874 * Get a CAM control block for the caller. Charge the structure to the device 4875 * referenced by the path. If the this device has no 'credits' then the 4876 * device already has the maximum number of outstanding operations under way 4877 * and we return NULL. If we don't have sufficient resources to allocate more 4878 * ccbs, we also return NULL. 4879 */ 4880 static union ccb * 4881 xpt_get_ccb(struct cam_ed *device) 4882 { 4883 union ccb *new_ccb; 4884 int s; 4885 4886 s = splsoftcam(); 4887 if ((new_ccb = (union ccb *)SLIST_FIRST(&ccb_freeq)) == NULL) { 4888 new_ccb = malloc(sizeof(*new_ccb), M_DEVBUF, M_NOWAIT); 4889 if (new_ccb == NULL) { 4890 splx(s); 4891 return (NULL); 4892 } 4893 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4894 SLIST_INSERT_HEAD(&ccb_freeq, &new_ccb->ccb_h, 4895 xpt_links.sle); 4896 xpt_ccb_count++; 4897 } 4898 cam_ccbq_take_opening(&device->ccbq); 4899 SLIST_REMOVE_HEAD(&ccb_freeq, xpt_links.sle); 4900 splx(s); 4901 return (new_ccb); 4902 } 4903 4904 static void 4905 xpt_release_bus(struct cam_eb *bus) 4906 { 4907 int s; 4908 4909 s = splcam(); 4910 if ((--bus->refcount == 0) 4911 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4912 TAILQ_REMOVE(&xpt_busses, bus, links); 4913 bus_generation++; 4914 splx(s); 4915 free(bus, M_DEVBUF); 4916 } else 4917 splx(s); 4918 } 4919 4920 static struct cam_et * 4921 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4922 { 4923 struct cam_et *target; 4924 4925 target = (struct cam_et *)malloc(sizeof(*target), M_DEVBUF, M_NOWAIT); 4926 if (target != NULL) { 4927 struct cam_et *cur_target; 4928 4929 TAILQ_INIT(&target->ed_entries); 4930 target->bus = bus; 4931 target->target_id = target_id; 4932 target->refcount = 1; 4933 target->generation = 0; 4934 timevalclear(&target->last_reset); 4935 /* 4936 * Hold a reference to our parent bus so it 4937 * will not go away before we do. 4938 */ 4939 bus->refcount++; 4940 4941 /* Insertion sort into our bus's target list */ 4942 cur_target = TAILQ_FIRST(&bus->et_entries); 4943 while (cur_target != NULL && cur_target->target_id < target_id) 4944 cur_target = TAILQ_NEXT(cur_target, links); 4945 4946 if (cur_target != NULL) { 4947 TAILQ_INSERT_BEFORE(cur_target, target, links); 4948 } else { 4949 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4950 } 4951 bus->generation++; 4952 } 4953 return (target); 4954 } 4955 4956 static void 4957 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4958 { 4959 int s; 4960 4961 s = splcam(); 4962 if ((--target->refcount == 0) 4963 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4964 TAILQ_REMOVE(&bus->et_entries, target, links); 4965 bus->generation++; 4966 splx(s); 4967 free(target, M_DEVBUF); 4968 xpt_release_bus(bus); 4969 } else 4970 splx(s); 4971 } 4972 4973 static struct cam_ed * 4974 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4975 { 4976 #ifdef CAM_NEW_TRAN_CODE 4977 struct cam_path path; 4978 #endif /* CAM_NEW_TRAN_CODE */ 4979 struct cam_ed *device; 4980 struct cam_devq *devq; 4981 cam_status status; 4982 4983 /* Make space for us in the device queue on our bus */ 4984 devq = bus->sim->devq; 4985 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4986 4987 if (status != CAM_REQ_CMP) { 4988 device = NULL; 4989 } else { 4990 device = (struct cam_ed *)malloc(sizeof(*device), 4991 M_DEVBUF, M_NOWAIT); 4992 } 4993 4994 if (device != NULL) { 4995 struct cam_ed *cur_device; 4996 4997 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4998 device->alloc_ccb_entry.device = device; 4999 cam_init_pinfo(&device->send_ccb_entry.pinfo); 5000 device->send_ccb_entry.device = device; 5001 device->target = target; 5002 device->lun_id = lun_id; 5003 /* Initialize our queues */ 5004 if (camq_init(&device->drvq, 0) != 0) { 5005 free(device, M_DEVBUF); 5006 return (NULL); 5007 } 5008 if (cam_ccbq_init(&device->ccbq, 5009 bus->sim->max_dev_openings) != 0) { 5010 camq_fini(&device->drvq); 5011 free(device, M_DEVBUF); 5012 return (NULL); 5013 } 5014 SLIST_INIT(&device->asyncs); 5015 SLIST_INIT(&device->periphs); 5016 device->generation = 0; 5017 device->owner = NULL; 5018 /* 5019 * Take the default quirk entry until we have inquiry 5020 * data and can determine a better quirk to use. 5021 */ 5022 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5023 bzero(&device->inq_data, sizeof(device->inq_data)); 5024 device->inq_flags = 0; 5025 device->queue_flags = 0; 5026 device->serial_num = NULL; 5027 device->serial_num_len = 0; 5028 device->qfrozen_cnt = 0; 5029 device->flags = CAM_DEV_UNCONFIGURED; 5030 device->tag_delay_count = 0; 5031 device->refcount = 1; 5032 callout_handle_init(&device->c_handle); 5033 5034 /* 5035 * Hold a reference to our parent target so it 5036 * will not go away before we do. 5037 */ 5038 target->refcount++; 5039 5040 /* 5041 * XXX should be limited by number of CCBs this bus can 5042 * do. 5043 */ 5044 xpt_max_ccbs += device->ccbq.devq_openings; 5045 /* Insertion sort into our target's device list */ 5046 cur_device = TAILQ_FIRST(&target->ed_entries); 5047 while (cur_device != NULL && cur_device->lun_id < lun_id) 5048 cur_device = TAILQ_NEXT(cur_device, links); 5049 if (cur_device != NULL) { 5050 TAILQ_INSERT_BEFORE(cur_device, device, links); 5051 } else { 5052 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5053 } 5054 target->generation++; 5055 #ifdef CAM_NEW_TRAN_CODE 5056 if (lun_id != CAM_LUN_WILDCARD) { 5057 xpt_compile_path(&path, 5058 NULL, 5059 bus->path_id, 5060 target->target_id, 5061 lun_id); 5062 xpt_devise_transport(&path); 5063 xpt_release_path(&path); 5064 } 5065 #endif /* CAM_NEW_TRAN_CODE */ 5066 } 5067 return (device); 5068 } 5069 5070 static void 5071 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5072 struct cam_ed *device) 5073 { 5074 int s; 5075 5076 s = splcam(); 5077 if ((--device->refcount == 0) 5078 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5079 struct cam_devq *devq; 5080 5081 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5082 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5083 panic("Removing device while still queued for ccbs"); 5084 5085 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5086 untimeout(xpt_release_devq_timeout, device, 5087 device->c_handle); 5088 5089 TAILQ_REMOVE(&target->ed_entries, device,links); 5090 target->generation++; 5091 xpt_max_ccbs -= device->ccbq.devq_openings; 5092 /* Release our slot in the devq */ 5093 devq = bus->sim->devq; 5094 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5095 splx(s); 5096 free(device, M_DEVBUF); 5097 xpt_release_target(bus, target); 5098 } else 5099 splx(s); 5100 } 5101 5102 static u_int32_t 5103 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5104 { 5105 int s; 5106 int diff; 5107 int result; 5108 struct cam_ed *dev; 5109 5110 dev = path->device; 5111 s = splsoftcam(); 5112 5113 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5114 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5115 if (result == CAM_REQ_CMP && (diff < 0)) { 5116 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5117 } 5118 /* Adjust the global limit */ 5119 xpt_max_ccbs += diff; 5120 splx(s); 5121 return (result); 5122 } 5123 5124 static struct cam_eb * 5125 xpt_find_bus(path_id_t path_id) 5126 { 5127 struct cam_eb *bus; 5128 5129 for (bus = TAILQ_FIRST(&xpt_busses); 5130 bus != NULL; 5131 bus = TAILQ_NEXT(bus, links)) { 5132 if (bus->path_id == path_id) { 5133 bus->refcount++; 5134 break; 5135 } 5136 } 5137 return (bus); 5138 } 5139 5140 static struct cam_et * 5141 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5142 { 5143 struct cam_et *target; 5144 5145 for (target = TAILQ_FIRST(&bus->et_entries); 5146 target != NULL; 5147 target = TAILQ_NEXT(target, links)) { 5148 if (target->target_id == target_id) { 5149 target->refcount++; 5150 break; 5151 } 5152 } 5153 return (target); 5154 } 5155 5156 static struct cam_ed * 5157 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5158 { 5159 struct cam_ed *device; 5160 5161 for (device = TAILQ_FIRST(&target->ed_entries); 5162 device != NULL; 5163 device = TAILQ_NEXT(device, links)) { 5164 if (device->lun_id == lun_id) { 5165 device->refcount++; 5166 break; 5167 } 5168 } 5169 return (device); 5170 } 5171 5172 typedef struct { 5173 union ccb *request_ccb; 5174 struct ccb_pathinq *cpi; 5175 int pending_count; 5176 } xpt_scan_bus_info; 5177 5178 /* 5179 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5180 * As the scan progresses, xpt_scan_bus is used as the 5181 * callback on completion function. 5182 */ 5183 static void 5184 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5185 { 5186 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5187 ("xpt_scan_bus\n")); 5188 switch (request_ccb->ccb_h.func_code) { 5189 case XPT_SCAN_BUS: 5190 { 5191 xpt_scan_bus_info *scan_info; 5192 union ccb *work_ccb; 5193 struct cam_path *path; 5194 u_int i; 5195 u_int max_target; 5196 u_int initiator_id; 5197 5198 /* Find out the characteristics of the bus */ 5199 work_ccb = xpt_alloc_ccb(); 5200 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5201 request_ccb->ccb_h.pinfo.priority); 5202 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5203 xpt_action(work_ccb); 5204 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5205 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5206 xpt_free_ccb(work_ccb); 5207 xpt_done(request_ccb); 5208 return; 5209 } 5210 5211 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5212 /* 5213 * Can't scan the bus on an adapter that 5214 * cannot perform the initiator role. 5215 */ 5216 request_ccb->ccb_h.status = CAM_REQ_CMP; 5217 xpt_free_ccb(work_ccb); 5218 xpt_done(request_ccb); 5219 return; 5220 } 5221 5222 /* Save some state for use while we probe for devices */ 5223 scan_info = (xpt_scan_bus_info *) 5224 malloc(sizeof(xpt_scan_bus_info), M_TEMP, M_WAITOK); 5225 scan_info->request_ccb = request_ccb; 5226 scan_info->cpi = &work_ccb->cpi; 5227 5228 /* Cache on our stack so we can work asynchronously */ 5229 max_target = scan_info->cpi->max_target; 5230 initiator_id = scan_info->cpi->initiator_id; 5231 5232 /* 5233 * Don't count the initiator if the 5234 * initiator is addressable. 5235 */ 5236 scan_info->pending_count = max_target + 1; 5237 if (initiator_id <= max_target) 5238 scan_info->pending_count--; 5239 5240 for (i = 0; i <= max_target; i++) { 5241 cam_status status; 5242 if (i == initiator_id) 5243 continue; 5244 5245 status = xpt_create_path(&path, xpt_periph, 5246 request_ccb->ccb_h.path_id, 5247 i, 0); 5248 if (status != CAM_REQ_CMP) { 5249 printf("xpt_scan_bus: xpt_create_path failed" 5250 " with status %#x, bus scan halted\n", 5251 status); 5252 break; 5253 } 5254 work_ccb = xpt_alloc_ccb(); 5255 xpt_setup_ccb(&work_ccb->ccb_h, path, 5256 request_ccb->ccb_h.pinfo.priority); 5257 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5258 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5259 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5260 work_ccb->crcn.flags = request_ccb->crcn.flags; 5261 xpt_action(work_ccb); 5262 } 5263 break; 5264 } 5265 case XPT_SCAN_LUN: 5266 { 5267 xpt_scan_bus_info *scan_info; 5268 path_id_t path_id; 5269 target_id_t target_id; 5270 lun_id_t lun_id; 5271 5272 /* Reuse the same CCB to query if a device was really found */ 5273 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5274 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5275 request_ccb->ccb_h.pinfo.priority); 5276 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5277 5278 path_id = request_ccb->ccb_h.path_id; 5279 target_id = request_ccb->ccb_h.target_id; 5280 lun_id = request_ccb->ccb_h.target_lun; 5281 xpt_action(request_ccb); 5282 5283 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5284 struct cam_ed *device; 5285 struct cam_et *target; 5286 int s, phl; 5287 5288 /* 5289 * If we already probed lun 0 successfully, or 5290 * we have additional configured luns on this 5291 * target that might have "gone away", go onto 5292 * the next lun. 5293 */ 5294 target = request_ccb->ccb_h.path->target; 5295 /* 5296 * We may touch devices that we don't 5297 * hold references too, so ensure they 5298 * don't disappear out from under us. 5299 * The target above is referenced by the 5300 * path in the request ccb. 5301 */ 5302 phl = 0; 5303 s = splcam(); 5304 device = TAILQ_FIRST(&target->ed_entries); 5305 if (device != NULL) { 5306 phl = device->quirk->quirks & CAM_QUIRK_HILUNS; 5307 if (device->lun_id == 0) 5308 device = TAILQ_NEXT(device, links); 5309 } 5310 splx(s); 5311 if ((lun_id != 0) || (device != NULL)) { 5312 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5313 lun_id++; 5314 } 5315 } else { 5316 struct cam_ed *device; 5317 5318 device = request_ccb->ccb_h.path->device; 5319 5320 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5321 /* Try the next lun */ 5322 if (lun_id < (CAM_SCSI2_MAXLUN-1) || 5323 (device->quirk->quirks & CAM_QUIRK_HILUNS)) 5324 lun_id++; 5325 } 5326 } 5327 5328 xpt_free_path(request_ccb->ccb_h.path); 5329 5330 /* Check Bounds */ 5331 if ((lun_id == request_ccb->ccb_h.target_lun) 5332 || lun_id > scan_info->cpi->max_lun) { 5333 /* We're done */ 5334 5335 xpt_free_ccb(request_ccb); 5336 scan_info->pending_count--; 5337 if (scan_info->pending_count == 0) { 5338 xpt_free_ccb((union ccb *)scan_info->cpi); 5339 request_ccb = scan_info->request_ccb; 5340 free(scan_info, M_TEMP); 5341 request_ccb->ccb_h.status = CAM_REQ_CMP; 5342 xpt_done(request_ccb); 5343 } 5344 } else { 5345 /* Try the next device */ 5346 struct cam_path *path; 5347 cam_status status; 5348 5349 path = request_ccb->ccb_h.path; 5350 status = xpt_create_path(&path, xpt_periph, 5351 path_id, target_id, lun_id); 5352 if (status != CAM_REQ_CMP) { 5353 printf("xpt_scan_bus: xpt_create_path failed " 5354 "with status %#x, halting LUN scan\n", 5355 status); 5356 xpt_free_ccb(request_ccb); 5357 scan_info->pending_count--; 5358 if (scan_info->pending_count == 0) { 5359 xpt_free_ccb( 5360 (union ccb *)scan_info->cpi); 5361 request_ccb = scan_info->request_ccb; 5362 free(scan_info, M_TEMP); 5363 request_ccb->ccb_h.status = CAM_REQ_CMP; 5364 xpt_done(request_ccb); 5365 break; 5366 } 5367 } 5368 xpt_setup_ccb(&request_ccb->ccb_h, path, 5369 request_ccb->ccb_h.pinfo.priority); 5370 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5371 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5372 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5373 request_ccb->crcn.flags = 5374 scan_info->request_ccb->crcn.flags; 5375 xpt_action(request_ccb); 5376 } 5377 break; 5378 } 5379 default: 5380 break; 5381 } 5382 } 5383 5384 typedef enum { 5385 PROBE_TUR, 5386 PROBE_INQUIRY, 5387 PROBE_FULL_INQUIRY, 5388 PROBE_MODE_SENSE, 5389 PROBE_SERIAL_NUM, 5390 PROBE_TUR_FOR_NEGOTIATION 5391 } probe_action; 5392 5393 typedef enum { 5394 PROBE_INQUIRY_CKSUM = 0x01, 5395 PROBE_SERIAL_CKSUM = 0x02, 5396 PROBE_NO_ANNOUNCE = 0x04 5397 } probe_flags; 5398 5399 typedef struct { 5400 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5401 probe_action action; 5402 union ccb saved_ccb; 5403 probe_flags flags; 5404 MD5_CTX context; 5405 u_int8_t digest[16]; 5406 } probe_softc; 5407 5408 static void 5409 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5410 cam_flags flags, union ccb *request_ccb) 5411 { 5412 struct ccb_pathinq cpi; 5413 cam_status status; 5414 struct cam_path *new_path; 5415 struct cam_periph *old_periph; 5416 int s; 5417 5418 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5419 ("xpt_scan_lun\n")); 5420 5421 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5422 cpi.ccb_h.func_code = XPT_PATH_INQ; 5423 xpt_action((union ccb *)&cpi); 5424 5425 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5426 if (request_ccb != NULL) { 5427 request_ccb->ccb_h.status = cpi.ccb_h.status; 5428 xpt_done(request_ccb); 5429 } 5430 return; 5431 } 5432 5433 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5434 /* 5435 * Can't scan the bus on an adapter that 5436 * cannot perform the initiator role. 5437 */ 5438 if (request_ccb != NULL) { 5439 request_ccb->ccb_h.status = CAM_REQ_CMP; 5440 xpt_done(request_ccb); 5441 } 5442 return; 5443 } 5444 5445 if (request_ccb == NULL) { 5446 request_ccb = malloc(sizeof(union ccb), M_TEMP, M_NOWAIT); 5447 if (request_ccb == NULL) { 5448 xpt_print_path(path); 5449 printf("xpt_scan_lun: can't allocate CCB, can't " 5450 "continue\n"); 5451 return; 5452 } 5453 new_path = malloc(sizeof(*new_path), M_TEMP, M_NOWAIT); 5454 if (new_path == NULL) { 5455 xpt_print_path(path); 5456 printf("xpt_scan_lun: can't allocate path, can't " 5457 "continue\n"); 5458 free(request_ccb, M_TEMP); 5459 return; 5460 } 5461 status = xpt_compile_path(new_path, xpt_periph, 5462 path->bus->path_id, 5463 path->target->target_id, 5464 path->device->lun_id); 5465 5466 if (status != CAM_REQ_CMP) { 5467 xpt_print_path(path); 5468 printf("xpt_scan_lun: can't compile path, can't " 5469 "continue\n"); 5470 free(request_ccb, M_TEMP); 5471 free(new_path, M_TEMP); 5472 return; 5473 } 5474 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5475 request_ccb->ccb_h.cbfcnp = xptscandone; 5476 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5477 request_ccb->crcn.flags = flags; 5478 } 5479 5480 s = splsoftcam(); 5481 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5482 probe_softc *softc; 5483 5484 softc = (probe_softc *)old_periph->softc; 5485 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5486 periph_links.tqe); 5487 } else { 5488 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5489 probestart, "probe", 5490 CAM_PERIPH_BIO, 5491 request_ccb->ccb_h.path, NULL, 0, 5492 request_ccb); 5493 5494 if (status != CAM_REQ_CMP) { 5495 xpt_print_path(path); 5496 printf("xpt_scan_lun: cam_alloc_periph returned an " 5497 "error, can't continue probe\n"); 5498 request_ccb->ccb_h.status = status; 5499 xpt_done(request_ccb); 5500 } 5501 } 5502 splx(s); 5503 } 5504 5505 static void 5506 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5507 { 5508 xpt_release_path(done_ccb->ccb_h.path); 5509 free(done_ccb->ccb_h.path, M_TEMP); 5510 free(done_ccb, M_TEMP); 5511 } 5512 5513 static cam_status 5514 proberegister(struct cam_periph *periph, void *arg) 5515 { 5516 union ccb *request_ccb; /* CCB representing the probe request */ 5517 probe_softc *softc; 5518 5519 request_ccb = (union ccb *)arg; 5520 if (periph == NULL) { 5521 printf("proberegister: periph was NULL!!\n"); 5522 return(CAM_REQ_CMP_ERR); 5523 } 5524 5525 if (request_ccb == NULL) { 5526 printf("proberegister: no probe CCB, " 5527 "can't register device\n"); 5528 return(CAM_REQ_CMP_ERR); 5529 } 5530 5531 softc = (probe_softc *)malloc(sizeof(*softc), M_TEMP, M_NOWAIT); 5532 5533 if (softc == NULL) { 5534 printf("proberegister: Unable to probe new device. " 5535 "Unable to allocate softc\n"); 5536 return(CAM_REQ_CMP_ERR); 5537 } 5538 TAILQ_INIT(&softc->request_ccbs); 5539 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5540 periph_links.tqe); 5541 softc->flags = 0; 5542 periph->softc = softc; 5543 cam_periph_acquire(periph); 5544 /* 5545 * Ensure we've waited at least a bus settle 5546 * delay before attempting to probe the device. 5547 * For HBAs that don't do bus resets, this won't make a difference. 5548 */ 5549 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5550 scsi_delay); 5551 probeschedule(periph); 5552 return(CAM_REQ_CMP); 5553 } 5554 5555 static void 5556 probeschedule(struct cam_periph *periph) 5557 { 5558 struct ccb_pathinq cpi; 5559 union ccb *ccb; 5560 probe_softc *softc; 5561 5562 softc = (probe_softc *)periph->softc; 5563 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5564 5565 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5566 cpi.ccb_h.func_code = XPT_PATH_INQ; 5567 xpt_action((union ccb *)&cpi); 5568 5569 /* 5570 * If a device has gone away and another device, or the same one, 5571 * is back in the same place, it should have a unit attention 5572 * condition pending. It will not report the unit attention in 5573 * response to an inquiry, which may leave invalid transfer 5574 * negotiations in effect. The TUR will reveal the unit attention 5575 * condition. Only send the TUR for lun 0, since some devices 5576 * will get confused by commands other than inquiry to non-existent 5577 * luns. If you think a device has gone away start your scan from 5578 * lun 0. This will insure that any bogus transfer settings are 5579 * invalidated. 5580 * 5581 * If we haven't seen the device before and the controller supports 5582 * some kind of transfer negotiation, negotiate with the first 5583 * sent command if no bus reset was performed at startup. This 5584 * ensures that the device is not confused by transfer negotiation 5585 * settings left over by loader or BIOS action. 5586 */ 5587 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5588 && (ccb->ccb_h.target_lun == 0)) { 5589 softc->action = PROBE_TUR; 5590 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5591 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5592 proberequestdefaultnegotiation(periph); 5593 softc->action = PROBE_INQUIRY; 5594 } else { 5595 softc->action = PROBE_INQUIRY; 5596 } 5597 5598 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5599 softc->flags |= PROBE_NO_ANNOUNCE; 5600 else 5601 softc->flags &= ~PROBE_NO_ANNOUNCE; 5602 5603 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5604 } 5605 5606 static void 5607 probestart(struct cam_periph *periph, union ccb *start_ccb) 5608 { 5609 /* Probe the device that our peripheral driver points to */ 5610 struct ccb_scsiio *csio; 5611 probe_softc *softc; 5612 5613 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5614 5615 softc = (probe_softc *)periph->softc; 5616 csio = &start_ccb->csio; 5617 5618 switch (softc->action) { 5619 case PROBE_TUR: 5620 case PROBE_TUR_FOR_NEGOTIATION: 5621 { 5622 scsi_test_unit_ready(csio, 5623 /*retries*/4, 5624 probedone, 5625 MSG_SIMPLE_Q_TAG, 5626 SSD_FULL_SIZE, 5627 /*timeout*/60000); 5628 break; 5629 } 5630 case PROBE_INQUIRY: 5631 case PROBE_FULL_INQUIRY: 5632 { 5633 u_int inquiry_len; 5634 struct scsi_inquiry_data *inq_buf; 5635 5636 inq_buf = &periph->path->device->inq_data; 5637 /* 5638 * If the device is currently configured, we calculate an 5639 * MD5 checksum of the inquiry data, and if the serial number 5640 * length is greater than 0, add the serial number data 5641 * into the checksum as well. Once the inquiry and the 5642 * serial number check finish, we attempt to figure out 5643 * whether we still have the same device. 5644 */ 5645 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5646 5647 MD5Init(&softc->context); 5648 MD5Update(&softc->context, (unsigned char *)inq_buf, 5649 sizeof(struct scsi_inquiry_data)); 5650 softc->flags |= PROBE_INQUIRY_CKSUM; 5651 if (periph->path->device->serial_num_len > 0) { 5652 MD5Update(&softc->context, 5653 periph->path->device->serial_num, 5654 periph->path->device->serial_num_len); 5655 softc->flags |= PROBE_SERIAL_CKSUM; 5656 } 5657 MD5Final(softc->digest, &softc->context); 5658 } 5659 5660 if (softc->action == PROBE_INQUIRY) 5661 inquiry_len = SHORT_INQUIRY_LENGTH; 5662 else 5663 inquiry_len = inq_buf->additional_length + 4; 5664 5665 scsi_inquiry(csio, 5666 /*retries*/4, 5667 probedone, 5668 MSG_SIMPLE_Q_TAG, 5669 (u_int8_t *)inq_buf, 5670 inquiry_len, 5671 /*evpd*/FALSE, 5672 /*page_code*/0, 5673 SSD_MIN_SIZE, 5674 /*timeout*/60 * 1000); 5675 break; 5676 } 5677 case PROBE_MODE_SENSE: 5678 { 5679 void *mode_buf; 5680 int mode_buf_len; 5681 5682 mode_buf_len = sizeof(struct scsi_mode_header_6) 5683 + sizeof(struct scsi_mode_blk_desc) 5684 + sizeof(struct scsi_control_page); 5685 mode_buf = malloc(mode_buf_len, M_TEMP, M_NOWAIT); 5686 if (mode_buf != NULL) { 5687 scsi_mode_sense(csio, 5688 /*retries*/4, 5689 probedone, 5690 MSG_SIMPLE_Q_TAG, 5691 /*dbd*/FALSE, 5692 SMS_PAGE_CTRL_CURRENT, 5693 SMS_CONTROL_MODE_PAGE, 5694 mode_buf, 5695 mode_buf_len, 5696 SSD_FULL_SIZE, 5697 /*timeout*/60000); 5698 break; 5699 } 5700 xpt_print_path(periph->path); 5701 printf("Unable to mode sense control page - malloc failure\n"); 5702 softc->action = PROBE_SERIAL_NUM; 5703 } 5704 /* FALLTHROUGH */ 5705 case PROBE_SERIAL_NUM: 5706 { 5707 struct scsi_vpd_unit_serial_number *serial_buf; 5708 struct cam_ed* device; 5709 5710 serial_buf = NULL; 5711 device = periph->path->device; 5712 device->serial_num = NULL; 5713 device->serial_num_len = 0; 5714 5715 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5716 serial_buf = (struct scsi_vpd_unit_serial_number *) 5717 malloc(sizeof(*serial_buf), M_TEMP, 5718 M_NOWAIT | M_ZERO); 5719 5720 if (serial_buf != NULL) { 5721 scsi_inquiry(csio, 5722 /*retries*/4, 5723 probedone, 5724 MSG_SIMPLE_Q_TAG, 5725 (u_int8_t *)serial_buf, 5726 sizeof(*serial_buf), 5727 /*evpd*/TRUE, 5728 SVPD_UNIT_SERIAL_NUMBER, 5729 SSD_MIN_SIZE, 5730 /*timeout*/60 * 1000); 5731 break; 5732 } 5733 /* 5734 * We'll have to do without, let our probedone 5735 * routine finish up for us. 5736 */ 5737 start_ccb->csio.data_ptr = NULL; 5738 probedone(periph, start_ccb); 5739 return; 5740 } 5741 } 5742 xpt_action(start_ccb); 5743 } 5744 5745 static void 5746 proberequestdefaultnegotiation(struct cam_periph *periph) 5747 { 5748 struct ccb_trans_settings cts; 5749 5750 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5751 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5752 #ifdef CAM_NEW_TRAN_CODE 5753 cts.type = CTS_TYPE_USER_SETTINGS; 5754 #else /* CAM_NEW_TRAN_CODE */ 5755 cts.flags = CCB_TRANS_USER_SETTINGS; 5756 #endif /* CAM_NEW_TRAN_CODE */ 5757 xpt_action((union ccb *)&cts); 5758 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5759 #ifdef CAM_NEW_TRAN_CODE 5760 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5761 #else /* CAM_NEW_TRAN_CODE */ 5762 cts.flags &= ~CCB_TRANS_USER_SETTINGS; 5763 cts.flags |= CCB_TRANS_CURRENT_SETTINGS; 5764 #endif /* CAM_NEW_TRAN_CODE */ 5765 xpt_action((union ccb *)&cts); 5766 } 5767 5768 static void 5769 probedone(struct cam_periph *periph, union ccb *done_ccb) 5770 { 5771 probe_softc *softc; 5772 struct cam_path *path; 5773 u_int32_t priority; 5774 5775 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5776 5777 softc = (probe_softc *)periph->softc; 5778 path = done_ccb->ccb_h.path; 5779 priority = done_ccb->ccb_h.pinfo.priority; 5780 5781 switch (softc->action) { 5782 case PROBE_TUR: 5783 { 5784 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5785 5786 if (cam_periph_error(done_ccb, 0, 5787 SF_NO_PRINT, NULL) == ERESTART) 5788 return; 5789 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 5790 /* Don't wedge the queue */ 5791 xpt_release_devq(done_ccb->ccb_h.path, 5792 /*count*/1, 5793 /*run_queue*/TRUE); 5794 } 5795 softc->action = PROBE_INQUIRY; 5796 xpt_release_ccb(done_ccb); 5797 xpt_schedule(periph, priority); 5798 return; 5799 } 5800 case PROBE_INQUIRY: 5801 case PROBE_FULL_INQUIRY: 5802 { 5803 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5804 struct scsi_inquiry_data *inq_buf; 5805 u_int8_t periph_qual; 5806 5807 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 5808 inq_buf = &path->device->inq_data; 5809 5810 periph_qual = SID_QUAL(inq_buf); 5811 5812 switch(periph_qual) { 5813 case SID_QUAL_LU_CONNECTED: 5814 { 5815 u_int8_t alen; 5816 5817 /* 5818 * We conservatively request only 5819 * SHORT_INQUIRY_LEN bytes of inquiry 5820 * information during our first try 5821 * at sending an INQUIRY. If the device 5822 * has more information to give, 5823 * perform a second request specifying 5824 * the amount of information the device 5825 * is willing to give. 5826 */ 5827 alen = inq_buf->additional_length; 5828 if (softc->action == PROBE_INQUIRY 5829 && alen > (SHORT_INQUIRY_LENGTH - 4)) { 5830 softc->action = PROBE_FULL_INQUIRY; 5831 xpt_release_ccb(done_ccb); 5832 xpt_schedule(periph, priority); 5833 return; 5834 } 5835 5836 xpt_find_quirk(path->device); 5837 5838 #ifdef CAM_NEW_TRAN_CODE 5839 xpt_devise_transport(path); 5840 #endif /* CAM_NEW_TRAN_CODE */ 5841 if ((inq_buf->flags & SID_CmdQue) != 0) 5842 softc->action = PROBE_MODE_SENSE; 5843 else 5844 softc->action = PROBE_SERIAL_NUM; 5845 5846 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 5847 5848 xpt_release_ccb(done_ccb); 5849 xpt_schedule(periph, priority); 5850 return; 5851 } 5852 default: 5853 break; 5854 } 5855 } else if (cam_periph_error(done_ccb, 0, 5856 done_ccb->ccb_h.target_lun > 0 5857 ? SF_RETRY_UA|SF_QUIET_IR 5858 : SF_RETRY_UA, 5859 &softc->saved_ccb) == ERESTART) { 5860 return; 5861 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5862 /* Don't wedge the queue */ 5863 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5864 /*run_queue*/TRUE); 5865 } 5866 /* 5867 * If we get to this point, we got an error status back 5868 * from the inquiry and the error status doesn't require 5869 * automatically retrying the command. Therefore, the 5870 * inquiry failed. If we had inquiry information before 5871 * for this device, but this latest inquiry command failed, 5872 * the device has probably gone away. If this device isn't 5873 * already marked unconfigured, notify the peripheral 5874 * drivers that this device is no more. 5875 */ 5876 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5877 /* Send the async notification. */ 5878 xpt_async(AC_LOST_DEVICE, path, NULL); 5879 5880 xpt_release_ccb(done_ccb); 5881 break; 5882 } 5883 case PROBE_MODE_SENSE: 5884 { 5885 struct ccb_scsiio *csio; 5886 struct scsi_mode_header_6 *mode_hdr; 5887 5888 csio = &done_ccb->csio; 5889 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 5890 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5891 struct scsi_control_page *page; 5892 u_int8_t *offset; 5893 5894 offset = ((u_int8_t *)&mode_hdr[1]) 5895 + mode_hdr->blk_desc_len; 5896 page = (struct scsi_control_page *)offset; 5897 path->device->queue_flags = page->queue_flags; 5898 } else if (cam_periph_error(done_ccb, 0, 5899 SF_RETRY_UA|SF_NO_PRINT, 5900 &softc->saved_ccb) == ERESTART) { 5901 return; 5902 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5903 /* Don't wedge the queue */ 5904 xpt_release_devq(done_ccb->ccb_h.path, 5905 /*count*/1, /*run_queue*/TRUE); 5906 } 5907 xpt_release_ccb(done_ccb); 5908 free(mode_hdr, M_TEMP); 5909 softc->action = PROBE_SERIAL_NUM; 5910 xpt_schedule(periph, priority); 5911 return; 5912 } 5913 case PROBE_SERIAL_NUM: 5914 { 5915 struct ccb_scsiio *csio; 5916 struct scsi_vpd_unit_serial_number *serial_buf; 5917 u_int32_t priority; 5918 int changed; 5919 int have_serialnum; 5920 5921 changed = 1; 5922 have_serialnum = 0; 5923 csio = &done_ccb->csio; 5924 priority = done_ccb->ccb_h.pinfo.priority; 5925 serial_buf = 5926 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 5927 5928 /* Clean up from previous instance of this device */ 5929 if (path->device->serial_num != NULL) { 5930 free(path->device->serial_num, M_DEVBUF); 5931 path->device->serial_num = NULL; 5932 path->device->serial_num_len = 0; 5933 } 5934 5935 if (serial_buf == NULL) { 5936 /* 5937 * Don't process the command as it was never sent 5938 */ 5939 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 5940 && (serial_buf->length > 0)) { 5941 5942 have_serialnum = 1; 5943 path->device->serial_num = 5944 (u_int8_t *)malloc((serial_buf->length + 1), 5945 M_DEVBUF, M_NOWAIT); 5946 if (path->device->serial_num != NULL) { 5947 bcopy(serial_buf->serial_num, 5948 path->device->serial_num, 5949 serial_buf->length); 5950 path->device->serial_num_len = 5951 serial_buf->length; 5952 path->device->serial_num[serial_buf->length] 5953 = '\0'; 5954 } 5955 } else if (cam_periph_error(done_ccb, 0, 5956 SF_RETRY_UA|SF_NO_PRINT, 5957 &softc->saved_ccb) == ERESTART) { 5958 return; 5959 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 5960 /* Don't wedge the queue */ 5961 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 5962 /*run_queue*/TRUE); 5963 } 5964 5965 /* 5966 * Let's see if we have seen this device before. 5967 */ 5968 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 5969 MD5_CTX context; 5970 u_int8_t digest[16]; 5971 5972 MD5Init(&context); 5973 5974 MD5Update(&context, 5975 (unsigned char *)&path->device->inq_data, 5976 sizeof(struct scsi_inquiry_data)); 5977 5978 if (have_serialnum) 5979 MD5Update(&context, serial_buf->serial_num, 5980 serial_buf->length); 5981 5982 MD5Final(digest, &context); 5983 if (bcmp(softc->digest, digest, 16) == 0) 5984 changed = 0; 5985 5986 /* 5987 * XXX Do we need to do a TUR in order to ensure 5988 * that the device really hasn't changed??? 5989 */ 5990 if ((changed != 0) 5991 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 5992 xpt_async(AC_LOST_DEVICE, path, NULL); 5993 } 5994 if (serial_buf != NULL) 5995 free(serial_buf, M_TEMP); 5996 5997 if (changed != 0) { 5998 /* 5999 * Now that we have all the necessary 6000 * information to safely perform transfer 6001 * negotiations... Controllers don't perform 6002 * any negotiation or tagged queuing until 6003 * after the first XPT_SET_TRAN_SETTINGS ccb is 6004 * received. So, on a new device, just retreive 6005 * the user settings, and set them as the current 6006 * settings to set the device up. 6007 */ 6008 proberequestdefaultnegotiation(periph); 6009 xpt_release_ccb(done_ccb); 6010 6011 /* 6012 * Perform a TUR to allow the controller to 6013 * perform any necessary transfer negotiation. 6014 */ 6015 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6016 xpt_schedule(periph, priority); 6017 return; 6018 } 6019 xpt_release_ccb(done_ccb); 6020 break; 6021 } 6022 case PROBE_TUR_FOR_NEGOTIATION: 6023 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6024 /* Don't wedge the queue */ 6025 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6026 /*run_queue*/TRUE); 6027 } 6028 6029 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6030 6031 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6032 /* Inform the XPT that a new device has been found */ 6033 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6034 xpt_action(done_ccb); 6035 6036 xpt_async(AC_FOUND_DEVICE, xpt_periph->path, done_ccb); 6037 } 6038 xpt_release_ccb(done_ccb); 6039 break; 6040 } 6041 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6042 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6043 done_ccb->ccb_h.status = CAM_REQ_CMP; 6044 xpt_done(done_ccb); 6045 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6046 cam_periph_invalidate(periph); 6047 cam_periph_release(periph); 6048 } else { 6049 probeschedule(periph); 6050 } 6051 } 6052 6053 static void 6054 probecleanup(struct cam_periph *periph) 6055 { 6056 free(periph->softc, M_TEMP); 6057 } 6058 6059 static void 6060 xpt_find_quirk(struct cam_ed *device) 6061 { 6062 caddr_t match; 6063 6064 match = cam_quirkmatch((caddr_t)&device->inq_data, 6065 (caddr_t)xpt_quirk_table, 6066 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6067 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6068 6069 if (match == NULL) 6070 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6071 6072 device->quirk = (struct xpt_quirk_entry *)match; 6073 } 6074 6075 #ifdef CAM_NEW_TRAN_CODE 6076 6077 static void 6078 xpt_devise_transport(struct cam_path *path) 6079 { 6080 struct ccb_pathinq cpi; 6081 struct ccb_trans_settings cts; 6082 struct scsi_inquiry_data *inq_buf; 6083 6084 /* Get transport information from the SIM */ 6085 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6086 cpi.ccb_h.func_code = XPT_PATH_INQ; 6087 xpt_action((union ccb *)&cpi); 6088 6089 inq_buf = NULL; 6090 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6091 inq_buf = &path->device->inq_data; 6092 path->device->protocol = PROTO_SCSI; 6093 path->device->protocol_version = 6094 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6095 path->device->transport = cpi.transport; 6096 path->device->transport_version = cpi.transport_version; 6097 6098 /* 6099 * Any device not using SPI3 features should 6100 * be considered SPI2 or lower. 6101 */ 6102 if (inq_buf != NULL) { 6103 if (path->device->transport == XPORT_SPI 6104 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6105 && path->device->transport_version > 2) 6106 path->device->transport_version = 2; 6107 } else { 6108 struct cam_ed* otherdev; 6109 6110 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6111 otherdev != NULL; 6112 otherdev = TAILQ_NEXT(otherdev, links)) { 6113 if (otherdev != path->device) 6114 break; 6115 } 6116 6117 if (otherdev != NULL) { 6118 /* 6119 * Initially assume the same versioning as 6120 * prior luns for this target. 6121 */ 6122 path->device->protocol_version = 6123 otherdev->protocol_version; 6124 path->device->transport_version = 6125 otherdev->transport_version; 6126 } else { 6127 /* Until we know better, opt for safty */ 6128 path->device->protocol_version = 2; 6129 if (path->device->transport == XPORT_SPI) 6130 path->device->transport_version = 2; 6131 else 6132 path->device->transport_version = 0; 6133 } 6134 } 6135 6136 /* 6137 * XXX 6138 * For a device compliant with SPC-2 we should be able 6139 * to determine the transport version supported by 6140 * scrutinizing the version descriptors in the 6141 * inquiry buffer. 6142 */ 6143 6144 /* Tell the controller what we think */ 6145 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6146 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6147 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6148 cts.transport = path->device->transport; 6149 cts.transport_version = path->device->transport_version; 6150 cts.protocol = path->device->protocol; 6151 cts.protocol_version = path->device->protocol_version; 6152 cts.proto_specific.valid = 0; 6153 cts.xport_specific.valid = 0; 6154 xpt_action((union ccb *)&cts); 6155 } 6156 6157 static void 6158 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6159 int async_update) 6160 { 6161 struct ccb_pathinq cpi; 6162 struct ccb_trans_settings cur_cts; 6163 struct ccb_trans_settings_scsi *scsi; 6164 struct ccb_trans_settings_scsi *cur_scsi; 6165 struct cam_sim *sim; 6166 struct scsi_inquiry_data *inq_data; 6167 6168 if (device == NULL) { 6169 cts->ccb_h.status = CAM_PATH_INVALID; 6170 xpt_done((union ccb *)cts); 6171 return; 6172 } 6173 6174 if (cts->protocol == PROTO_UNKNOWN 6175 || cts->protocol == PROTO_UNSPECIFIED) { 6176 cts->protocol = device->protocol; 6177 cts->protocol_version = device->protocol_version; 6178 } 6179 6180 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6181 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6182 cts->protocol_version = device->protocol_version; 6183 6184 if (cts->protocol != device->protocol) { 6185 xpt_print_path(cts->ccb_h.path); 6186 printf("Uninitialized Protocol %x:%x?\n", 6187 cts->protocol, device->protocol); 6188 cts->protocol = device->protocol; 6189 } 6190 6191 if (cts->protocol_version > device->protocol_version) { 6192 if (bootverbose) { 6193 xpt_print_path(cts->ccb_h.path); 6194 printf("Down reving Protocol Version from %d to %d?\n", 6195 cts->protocol_version, device->protocol_version); 6196 } 6197 cts->protocol_version = device->protocol_version; 6198 } 6199 6200 if (cts->transport == XPORT_UNKNOWN 6201 || cts->transport == XPORT_UNSPECIFIED) { 6202 cts->transport = device->transport; 6203 cts->transport_version = device->transport_version; 6204 } 6205 6206 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6207 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6208 cts->transport_version = device->transport_version; 6209 6210 if (cts->transport != device->transport) { 6211 xpt_print_path(cts->ccb_h.path); 6212 printf("Uninitialized Transport %x:%x?\n", 6213 cts->transport, device->transport); 6214 cts->transport = device->transport; 6215 } 6216 6217 if (cts->transport_version > device->transport_version) { 6218 if (bootverbose) { 6219 xpt_print_path(cts->ccb_h.path); 6220 printf("Down reving Transport Version from %d to %d?\n", 6221 cts->transport_version, 6222 device->transport_version); 6223 } 6224 cts->transport_version = device->transport_version; 6225 } 6226 6227 sim = cts->ccb_h.path->bus->sim; 6228 6229 /* 6230 * Nothing more of interest to do unless 6231 * this is a device connected via the 6232 * SCSI protocol. 6233 */ 6234 if (cts->protocol != PROTO_SCSI) { 6235 if (async_update == FALSE) 6236 (*(sim->sim_action))(sim, (union ccb *)cts); 6237 return; 6238 } 6239 6240 inq_data = &device->inq_data; 6241 scsi = &cts->proto_specific.scsi; 6242 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6243 cpi.ccb_h.func_code = XPT_PATH_INQ; 6244 xpt_action((union ccb *)&cpi); 6245 6246 /* SCSI specific sanity checking */ 6247 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6248 || (inq_data->flags & SID_CmdQue) == 0 6249 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6250 || (device->quirk->mintags == 0)) { 6251 /* 6252 * Can't tag on hardware that doesn't support tags, 6253 * doesn't have it enabled, or has broken tag support. 6254 */ 6255 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6256 } 6257 6258 if (async_update == FALSE) { 6259 /* 6260 * Perform sanity checking against what the 6261 * controller and device can do. 6262 */ 6263 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6264 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6265 cur_cts.type = cts->type; 6266 xpt_action((union ccb *)&cur_cts); 6267 6268 cur_scsi = &cur_cts.proto_specific.scsi; 6269 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6270 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6271 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6272 } 6273 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6274 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6275 } 6276 6277 /* SPI specific sanity checking */ 6278 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6279 u_int spi3caps; 6280 struct ccb_trans_settings_spi *spi; 6281 struct ccb_trans_settings_spi *cur_spi; 6282 6283 spi = &cts->xport_specific.spi; 6284 6285 cur_spi = &cur_cts.xport_specific.spi; 6286 6287 /* Fill in any gaps in what the user gave us */ 6288 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6289 spi->sync_period = cur_spi->sync_period; 6290 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6291 spi->sync_period = 0; 6292 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6293 spi->sync_offset = cur_spi->sync_offset; 6294 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6295 spi->sync_offset = 0; 6296 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6297 spi->ppr_options = cur_spi->ppr_options; 6298 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6299 spi->ppr_options = 0; 6300 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6301 spi->bus_width = cur_spi->bus_width; 6302 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6303 spi->bus_width = 0; 6304 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6305 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6306 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6307 } 6308 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6309 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6310 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6311 && (inq_data->flags & SID_Sync) == 0 6312 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6313 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6314 || (cur_spi->sync_offset == 0) 6315 || (cur_spi->sync_period == 0)) { 6316 /* Force async */ 6317 spi->sync_period = 0; 6318 spi->sync_offset = 0; 6319 } 6320 6321 switch (spi->bus_width) { 6322 case MSG_EXT_WDTR_BUS_32_BIT: 6323 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6324 || (inq_data->flags & SID_WBus32) != 0 6325 || cts->type == CTS_TYPE_USER_SETTINGS) 6326 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6327 break; 6328 /* Fall Through to 16-bit */ 6329 case MSG_EXT_WDTR_BUS_16_BIT: 6330 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6331 || (inq_data->flags & SID_WBus16) != 0 6332 || cts->type == CTS_TYPE_USER_SETTINGS) 6333 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6334 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6335 break; 6336 } 6337 /* Fall Through to 8-bit */ 6338 default: /* New bus width?? */ 6339 case MSG_EXT_WDTR_BUS_8_BIT: 6340 /* All targets can do this */ 6341 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6342 break; 6343 } 6344 6345 spi3caps = cpi.xport_specific.spi.ppr_options; 6346 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6347 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6348 spi3caps &= inq_data->spi3data; 6349 6350 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6351 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6352 6353 if ((spi3caps & SID_SPI_IUS) == 0) 6354 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6355 6356 if ((spi3caps & SID_SPI_QAS) == 0) 6357 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6358 6359 /* No SPI Transfer settings are allowed unless we are wide */ 6360 if (spi->bus_width == 0) 6361 spi->ppr_options = 0; 6362 6363 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6364 /* 6365 * Can't tag queue without disconnection. 6366 */ 6367 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6368 scsi->valid |= CTS_SCSI_VALID_TQ; 6369 } 6370 6371 /* 6372 * If we are currently performing tagged transactions to 6373 * this device and want to change its negotiation parameters, 6374 * go non-tagged for a bit to give the controller a chance to 6375 * negotiate unhampered by tag messages. 6376 */ 6377 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6378 && (device->inq_flags & SID_CmdQue) != 0 6379 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6380 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6381 CTS_SPI_VALID_SYNC_OFFSET| 6382 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6383 xpt_toggle_tags(cts->ccb_h.path); 6384 } 6385 6386 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6387 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6388 int device_tagenb; 6389 6390 /* 6391 * If we are transitioning from tags to no-tags or 6392 * vice-versa, we need to carefully freeze and restart 6393 * the queue so that we don't overlap tagged and non-tagged 6394 * commands. We also temporarily stop tags if there is 6395 * a change in transfer negotiation settings to allow 6396 * "tag-less" negotiation. 6397 */ 6398 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6399 || (device->inq_flags & SID_CmdQue) != 0) 6400 device_tagenb = TRUE; 6401 else 6402 device_tagenb = FALSE; 6403 6404 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6405 && device_tagenb == FALSE) 6406 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6407 && device_tagenb == TRUE)) { 6408 6409 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6410 /* 6411 * Delay change to use tags until after a 6412 * few commands have gone to this device so 6413 * the controller has time to perform transfer 6414 * negotiations without tagged messages getting 6415 * in the way. 6416 */ 6417 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6418 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6419 } else { 6420 struct ccb_relsim crs; 6421 6422 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6423 device->inq_flags &= ~SID_CmdQue; 6424 xpt_dev_ccbq_resize(cts->ccb_h.path, 6425 sim->max_dev_openings); 6426 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6427 device->tag_delay_count = 0; 6428 6429 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6430 /*priority*/1); 6431 crs.ccb_h.func_code = XPT_REL_SIMQ; 6432 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6433 crs.openings 6434 = crs.release_timeout 6435 = crs.qfrozen_cnt 6436 = 0; 6437 xpt_action((union ccb *)&crs); 6438 } 6439 } 6440 } 6441 if (async_update == FALSE) 6442 (*(sim->sim_action))(sim, (union ccb *)cts); 6443 } 6444 6445 #else /* CAM_NEW_TRAN_CODE */ 6446 6447 static void 6448 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6449 int async_update) 6450 { 6451 struct cam_sim *sim; 6452 int qfrozen; 6453 6454 sim = cts->ccb_h.path->bus->sim; 6455 if (async_update == FALSE) { 6456 struct scsi_inquiry_data *inq_data; 6457 struct ccb_pathinq cpi; 6458 struct ccb_trans_settings cur_cts; 6459 6460 if (device == NULL) { 6461 cts->ccb_h.status = CAM_PATH_INVALID; 6462 xpt_done((union ccb *)cts); 6463 return; 6464 } 6465 6466 /* 6467 * Perform sanity checking against what the 6468 * controller and device can do. 6469 */ 6470 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6471 cpi.ccb_h.func_code = XPT_PATH_INQ; 6472 xpt_action((union ccb *)&cpi); 6473 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6474 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6475 cur_cts.flags = CCB_TRANS_CURRENT_SETTINGS; 6476 xpt_action((union ccb *)&cur_cts); 6477 inq_data = &device->inq_data; 6478 6479 /* Fill in any gaps in what the user gave us */ 6480 if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0) 6481 cts->sync_period = cur_cts.sync_period; 6482 if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0) 6483 cts->sync_offset = cur_cts.sync_offset; 6484 if ((cts->valid & CCB_TRANS_BUS_WIDTH_VALID) == 0) 6485 cts->bus_width = cur_cts.bus_width; 6486 if ((cts->valid & CCB_TRANS_DISC_VALID) == 0) { 6487 cts->flags &= ~CCB_TRANS_DISC_ENB; 6488 cts->flags |= cur_cts.flags & CCB_TRANS_DISC_ENB; 6489 } 6490 if ((cts->valid & CCB_TRANS_TQ_VALID) == 0) { 6491 cts->flags &= ~CCB_TRANS_TAG_ENB; 6492 cts->flags |= cur_cts.flags & CCB_TRANS_TAG_ENB; 6493 } 6494 6495 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6496 && (inq_data->flags & SID_Sync) == 0) 6497 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6498 || (cts->sync_offset == 0) 6499 || (cts->sync_period == 0)) { 6500 /* Force async */ 6501 cts->sync_period = 0; 6502 cts->sync_offset = 0; 6503 } else if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6504 && (inq_data->spi3data & SID_SPI_CLOCK_DT) == 0 6505 && cts->sync_period <= 0x9) { 6506 /* 6507 * Don't allow DT transmission rates if the 6508 * device does not support it. 6509 */ 6510 cts->sync_period = 0xa; 6511 } 6512 6513 switch (cts->bus_width) { 6514 case MSG_EXT_WDTR_BUS_32_BIT: 6515 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6516 || (inq_data->flags & SID_WBus32) != 0) 6517 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6518 break; 6519 /* FALLTHROUGH to 16-bit */ 6520 case MSG_EXT_WDTR_BUS_16_BIT: 6521 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6522 || (inq_data->flags & SID_WBus16) != 0) 6523 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6524 cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6525 break; 6526 } 6527 /* FALLTHROUGH to 8-bit */ 6528 default: /* New bus width?? */ 6529 case MSG_EXT_WDTR_BUS_8_BIT: 6530 /* All targets can do this */ 6531 cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6532 break; 6533 } 6534 6535 if ((cts->flags & CCB_TRANS_DISC_ENB) == 0) { 6536 /* 6537 * Can't tag queue without disconnection. 6538 */ 6539 cts->flags &= ~CCB_TRANS_TAG_ENB; 6540 cts->valid |= CCB_TRANS_TQ_VALID; 6541 } 6542 6543 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6544 || (inq_data->flags & SID_CmdQue) == 0 6545 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6546 || (device->quirk->mintags == 0)) { 6547 /* 6548 * Can't tag on hardware that doesn't support, 6549 * doesn't have it enabled, or has broken tag support. 6550 */ 6551 cts->flags &= ~CCB_TRANS_TAG_ENB; 6552 } 6553 } 6554 6555 qfrozen = FALSE; 6556 if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) { 6557 int device_tagenb; 6558 6559 /* 6560 * If we are transitioning from tags to no-tags or 6561 * vice-versa, we need to carefully freeze and restart 6562 * the queue so that we don't overlap tagged and non-tagged 6563 * commands. We also temporarily stop tags if there is 6564 * a change in transfer negotiation settings to allow 6565 * "tag-less" negotiation. 6566 */ 6567 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6568 || (device->inq_flags & SID_CmdQue) != 0) 6569 device_tagenb = TRUE; 6570 else 6571 device_tagenb = FALSE; 6572 6573 if (((cts->flags & CCB_TRANS_TAG_ENB) != 0 6574 && device_tagenb == FALSE) 6575 || ((cts->flags & CCB_TRANS_TAG_ENB) == 0 6576 && device_tagenb == TRUE)) { 6577 6578 if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) { 6579 /* 6580 * Delay change to use tags until after a 6581 * few commands have gone to this device so 6582 * the controller has time to perform transfer 6583 * negotiations without tagged messages getting 6584 * in the way. 6585 */ 6586 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6587 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6588 } else { 6589 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6590 qfrozen = TRUE; 6591 device->inq_flags &= ~SID_CmdQue; 6592 xpt_dev_ccbq_resize(cts->ccb_h.path, 6593 sim->max_dev_openings); 6594 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6595 device->tag_delay_count = 0; 6596 } 6597 } 6598 } 6599 6600 if (async_update == FALSE) { 6601 /* 6602 * If we are currently performing tagged transactions to 6603 * this device and want to change its negotiation parameters, 6604 * go non-tagged for a bit to give the controller a chance to 6605 * negotiate unhampered by tag messages. 6606 */ 6607 if ((device->inq_flags & SID_CmdQue) != 0 6608 && (cts->flags & (CCB_TRANS_SYNC_RATE_VALID| 6609 CCB_TRANS_SYNC_OFFSET_VALID| 6610 CCB_TRANS_BUS_WIDTH_VALID)) != 0) 6611 xpt_toggle_tags(cts->ccb_h.path); 6612 6613 (*(sim->sim_action))(sim, (union ccb *)cts); 6614 } 6615 6616 if (qfrozen) { 6617 struct ccb_relsim crs; 6618 6619 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6620 /*priority*/1); 6621 crs.ccb_h.func_code = XPT_REL_SIMQ; 6622 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6623 crs.openings 6624 = crs.release_timeout 6625 = crs.qfrozen_cnt 6626 = 0; 6627 xpt_action((union ccb *)&crs); 6628 } 6629 } 6630 6631 6632 #endif /* CAM_NEW_TRAN_CODE */ 6633 6634 static void 6635 xpt_toggle_tags(struct cam_path *path) 6636 { 6637 struct cam_ed *dev; 6638 6639 /* 6640 * Give controllers a chance to renegotiate 6641 * before starting tag operations. We 6642 * "toggle" tagged queuing off then on 6643 * which causes the tag enable command delay 6644 * counter to come into effect. 6645 */ 6646 dev = path->device; 6647 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6648 || ((dev->inq_flags & SID_CmdQue) != 0 6649 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6650 struct ccb_trans_settings cts; 6651 6652 xpt_setup_ccb(&cts.ccb_h, path, 1); 6653 #ifdef CAM_NEW_TRAN_CODE 6654 cts.protocol = PROTO_SCSI; 6655 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6656 cts.transport = XPORT_UNSPECIFIED; 6657 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6658 cts.proto_specific.scsi.flags = 0; 6659 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6660 #else /* CAM_NEW_TRAN_CODE */ 6661 cts.flags = 0; 6662 cts.valid = CCB_TRANS_TQ_VALID; 6663 #endif /* CAM_NEW_TRAN_CODE */ 6664 xpt_set_transfer_settings(&cts, path->device, 6665 /*async_update*/TRUE); 6666 #ifdef CAM_NEW_TRAN_CODE 6667 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6668 #else /* CAM_NEW_TRAN_CODE */ 6669 cts.flags = CCB_TRANS_TAG_ENB; 6670 #endif /* CAM_NEW_TRAN_CODE */ 6671 xpt_set_transfer_settings(&cts, path->device, 6672 /*async_update*/TRUE); 6673 } 6674 } 6675 6676 static void 6677 xpt_start_tags(struct cam_path *path) 6678 { 6679 struct ccb_relsim crs; 6680 struct cam_ed *device; 6681 struct cam_sim *sim; 6682 int newopenings; 6683 6684 device = path->device; 6685 sim = path->bus->sim; 6686 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6687 xpt_freeze_devq(path, /*count*/1); 6688 device->inq_flags |= SID_CmdQue; 6689 newopenings = min(device->quirk->maxtags, sim->max_tagged_dev_openings); 6690 xpt_dev_ccbq_resize(path, newopenings); 6691 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6692 crs.ccb_h.func_code = XPT_REL_SIMQ; 6693 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6694 crs.openings 6695 = crs.release_timeout 6696 = crs.qfrozen_cnt 6697 = 0; 6698 xpt_action((union ccb *)&crs); 6699 } 6700 6701 static int busses_to_config; 6702 static int busses_to_reset; 6703 6704 static int 6705 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6706 { 6707 if (bus->path_id != CAM_XPT_PATH_ID) { 6708 struct cam_path path; 6709 struct ccb_pathinq cpi; 6710 int can_negotiate; 6711 6712 busses_to_config++; 6713 xpt_compile_path(&path, NULL, bus->path_id, 6714 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6715 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6716 cpi.ccb_h.func_code = XPT_PATH_INQ; 6717 xpt_action((union ccb *)&cpi); 6718 can_negotiate = cpi.hba_inquiry; 6719 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6720 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6721 && can_negotiate) 6722 busses_to_reset++; 6723 xpt_release_path(&path); 6724 } 6725 6726 return(1); 6727 } 6728 6729 static int 6730 xptconfigfunc(struct cam_eb *bus, void *arg) 6731 { 6732 struct cam_path *path; 6733 union ccb *work_ccb; 6734 6735 if (bus->path_id != CAM_XPT_PATH_ID) { 6736 cam_status status; 6737 int can_negotiate; 6738 6739 work_ccb = xpt_alloc_ccb(); 6740 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6741 CAM_TARGET_WILDCARD, 6742 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6743 printf("xptconfigfunc: xpt_create_path failed with " 6744 "status %#x for bus %d\n", status, bus->path_id); 6745 printf("xptconfigfunc: halting bus configuration\n"); 6746 xpt_free_ccb(work_ccb); 6747 busses_to_config--; 6748 xpt_finishconfig(xpt_periph, NULL); 6749 return(0); 6750 } 6751 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6752 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6753 xpt_action(work_ccb); 6754 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6755 printf("xptconfigfunc: CPI failed on bus %d " 6756 "with status %d\n", bus->path_id, 6757 work_ccb->ccb_h.status); 6758 xpt_finishconfig(xpt_periph, work_ccb); 6759 return(1); 6760 } 6761 6762 can_negotiate = work_ccb->cpi.hba_inquiry; 6763 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6764 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6765 && (can_negotiate != 0)) { 6766 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6767 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6768 work_ccb->ccb_h.cbfcnp = NULL; 6769 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6770 ("Resetting Bus\n")); 6771 xpt_action(work_ccb); 6772 xpt_finishconfig(xpt_periph, work_ccb); 6773 } else { 6774 /* Act as though we performed a successful BUS RESET */ 6775 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6776 xpt_finishconfig(xpt_periph, work_ccb); 6777 } 6778 } 6779 6780 return(1); 6781 } 6782 6783 static void 6784 xpt_config(void *arg) 6785 { 6786 /* 6787 * Now that interrupts are enabled, go find our devices 6788 */ 6789 6790 #ifdef CAMDEBUG 6791 /* Setup debugging flags and path */ 6792 #ifdef CAM_DEBUG_FLAGS 6793 cam_dflags = CAM_DEBUG_FLAGS; 6794 #else /* !CAM_DEBUG_FLAGS */ 6795 cam_dflags = CAM_DEBUG_NONE; 6796 #endif /* CAM_DEBUG_FLAGS */ 6797 #ifdef CAM_DEBUG_BUS 6798 if (cam_dflags != CAM_DEBUG_NONE) { 6799 if (xpt_create_path(&cam_dpath, xpt_periph, 6800 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6801 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6802 printf("xpt_config: xpt_create_path() failed for debug" 6803 " target %d:%d:%d, debugging disabled\n", 6804 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6805 cam_dflags = CAM_DEBUG_NONE; 6806 } 6807 } else 6808 cam_dpath = NULL; 6809 #else /* !CAM_DEBUG_BUS */ 6810 cam_dpath = NULL; 6811 #endif /* CAM_DEBUG_BUS */ 6812 #endif /* CAMDEBUG */ 6813 6814 /* 6815 * Scan all installed busses. 6816 */ 6817 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6818 6819 if (busses_to_config == 0) { 6820 /* Call manually because we don't have any busses */ 6821 xpt_finishconfig(xpt_periph, NULL); 6822 } else { 6823 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6824 printf("Waiting %d seconds for SCSI " 6825 "devices to settle\n", scsi_delay/1000); 6826 } 6827 xpt_for_all_busses(xptconfigfunc, NULL); 6828 } 6829 } 6830 6831 /* 6832 * If the given device only has one peripheral attached to it, and if that 6833 * peripheral is the passthrough driver, announce it. This insures that the 6834 * user sees some sort of announcement for every peripheral in their system. 6835 */ 6836 static int 6837 xptpassannouncefunc(struct cam_ed *device, void *arg) 6838 { 6839 struct cam_periph *periph; 6840 int i; 6841 6842 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6843 periph = SLIST_NEXT(periph, periph_links), i++); 6844 6845 periph = SLIST_FIRST(&device->periphs); 6846 if ((i == 1) 6847 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6848 xpt_announce_periph(periph, NULL); 6849 6850 return(1); 6851 } 6852 6853 static void 6854 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 6855 { 6856 struct periph_driver **p_drv; 6857 int i; 6858 6859 if (done_ccb != NULL) { 6860 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 6861 ("xpt_finishconfig\n")); 6862 switch(done_ccb->ccb_h.func_code) { 6863 case XPT_RESET_BUS: 6864 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 6865 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 6866 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 6867 xpt_action(done_ccb); 6868 return; 6869 } 6870 /* FALLTHROUGH */ 6871 case XPT_SCAN_BUS: 6872 default: 6873 xpt_free_path(done_ccb->ccb_h.path); 6874 busses_to_config--; 6875 break; 6876 } 6877 } 6878 6879 if (busses_to_config == 0) { 6880 /* Register all the peripheral drivers */ 6881 /* XXX This will have to change when we have loadable modules */ 6882 p_drv = periph_drivers; 6883 for (i = 0; p_drv[i] != NULL; i++) { 6884 (*p_drv[i]->init)(); 6885 } 6886 6887 /* 6888 * Check for devices with no "standard" peripheral driver 6889 * attached. For any devices like that, announce the 6890 * passthrough driver so the user will see something. 6891 */ 6892 xpt_for_all_devices(xptpassannouncefunc, NULL); 6893 6894 /* Release our hook so that the boot can continue. */ 6895 config_intrhook_disestablish(xpt_config_hook); 6896 free(xpt_config_hook, M_TEMP); 6897 xpt_config_hook = NULL; 6898 } 6899 if (done_ccb != NULL) 6900 xpt_free_ccb(done_ccb); 6901 } 6902 6903 static void 6904 xptaction(struct cam_sim *sim, union ccb *work_ccb) 6905 { 6906 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 6907 6908 switch (work_ccb->ccb_h.func_code) { 6909 /* Common cases first */ 6910 case XPT_PATH_INQ: /* Path routing inquiry */ 6911 { 6912 struct ccb_pathinq *cpi; 6913 6914 cpi = &work_ccb->cpi; 6915 cpi->version_num = 1; /* XXX??? */ 6916 cpi->hba_inquiry = 0; 6917 cpi->target_sprt = 0; 6918 cpi->hba_misc = 0; 6919 cpi->hba_eng_cnt = 0; 6920 cpi->max_target = 0; 6921 cpi->max_lun = 0; 6922 cpi->initiator_id = 0; 6923 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 6924 strncpy(cpi->hba_vid, "", HBA_IDLEN); 6925 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 6926 cpi->unit_number = sim->unit_number; 6927 cpi->bus_id = sim->bus_id; 6928 cpi->base_transfer_speed = 0; 6929 #ifdef CAM_NEW_TRAN_CODE 6930 cpi->protocol = PROTO_UNSPECIFIED; 6931 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 6932 cpi->transport = XPORT_UNSPECIFIED; 6933 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 6934 #endif /* CAM_NEW_TRAN_CODE */ 6935 cpi->ccb_h.status = CAM_REQ_CMP; 6936 xpt_done(work_ccb); 6937 break; 6938 } 6939 default: 6940 work_ccb->ccb_h.status = CAM_REQ_INVALID; 6941 xpt_done(work_ccb); 6942 break; 6943 } 6944 } 6945 6946 /* 6947 * The xpt as a "controller" has no interrupt sources, so polling 6948 * is a no-op. 6949 */ 6950 static void 6951 xptpoll(struct cam_sim *sim) 6952 { 6953 } 6954 6955 static void 6956 camisr(void *V_queue) 6957 { 6958 cam_isrq_t *queue = V_queue; 6959 int s; 6960 struct ccb_hdr *ccb_h; 6961 6962 s = splcam(); 6963 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 6964 int runq; 6965 6966 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 6967 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 6968 splx(s); 6969 6970 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 6971 ("camisr\n")); 6972 6973 runq = FALSE; 6974 6975 if (ccb_h->flags & CAM_HIGH_POWER) { 6976 struct highpowerlist *hphead; 6977 union ccb *send_ccb; 6978 6979 hphead = &highpowerq; 6980 6981 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 6982 6983 /* 6984 * Increment the count since this command is done. 6985 */ 6986 num_highpower++; 6987 6988 /* 6989 * Any high powered commands queued up? 6990 */ 6991 if (send_ccb != NULL) { 6992 6993 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 6994 6995 xpt_release_devq(send_ccb->ccb_h.path, 6996 /*count*/1, /*runqueue*/TRUE); 6997 } 6998 } 6999 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7000 struct cam_ed *dev; 7001 7002 dev = ccb_h->path->device; 7003 7004 s = splcam(); 7005 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7006 7007 ccb_h->path->bus->sim->devq->send_active--; 7008 ccb_h->path->bus->sim->devq->send_openings++; 7009 splx(s); 7010 7011 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7012 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7013 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7014 && (dev->ccbq.dev_active == 0))) { 7015 7016 xpt_release_devq(ccb_h->path, /*count*/1, 7017 /*run_queue*/TRUE); 7018 } 7019 7020 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7021 && (--dev->tag_delay_count == 0)) 7022 xpt_start_tags(ccb_h->path); 7023 7024 if ((dev->ccbq.queue.entries > 0) 7025 && (dev->qfrozen_cnt == 0) 7026 && (device_is_send_queued(dev) == 0)) { 7027 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7028 dev); 7029 } 7030 } 7031 7032 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7033 xpt_release_simq(ccb_h->path->bus->sim, 7034 /*run_queue*/TRUE); 7035 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7036 runq = FALSE; 7037 } 7038 7039 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7040 && (ccb_h->status & CAM_DEV_QFRZN)) { 7041 xpt_release_devq(ccb_h->path, /*count*/1, 7042 /*run_queue*/TRUE); 7043 ccb_h->status &= ~CAM_DEV_QFRZN; 7044 } else if (runq) { 7045 xpt_run_dev_sendq(ccb_h->path->bus); 7046 } 7047 7048 /* Call the peripheral driver's callback */ 7049 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7050 7051 /* Raise IPL for while test */ 7052 s = splcam(); 7053 } 7054 splx(s); 7055 } 7056