1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/systm.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/time.h> 45 #include <sys/conf.h> 46 #include <sys/fcntl.h> 47 #include <sys/proc.h> 48 #include <sys/sbuf.h> 49 #include <sys/smp.h> 50 #include <sys/taskqueue.h> 51 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/sysctl.h> 55 #include <sys/kthread.h> 56 57 #include <cam/cam.h> 58 #include <cam/cam_ccb.h> 59 #include <cam/cam_iosched.h> 60 #include <cam/cam_periph.h> 61 #include <cam/cam_queue.h> 62 #include <cam/cam_sim.h> 63 #include <cam/cam_xpt.h> 64 #include <cam/cam_xpt_sim.h> 65 #include <cam/cam_xpt_periph.h> 66 #include <cam/cam_xpt_internal.h> 67 #include <cam/cam_debug.h> 68 #include <cam/cam_compat.h> 69 70 #include <cam/scsi/scsi_all.h> 71 #include <cam/scsi/scsi_message.h> 72 #include <cam/scsi/scsi_pass.h> 73 74 #include <machine/stdarg.h> /* for xpt_print below */ 75 76 #include "opt_cam.h" 77 78 /* Wild guess based on not wanting to grow the stack too much */ 79 #define XPT_PRINT_MAXLEN 512 80 #ifdef PRINTF_BUFR_SIZE 81 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 82 #else 83 #define XPT_PRINT_LEN 128 84 #endif 85 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 86 87 /* 88 * This is the maximum number of high powered commands (e.g. start unit) 89 * that can be outstanding at a particular time. 90 */ 91 #ifndef CAM_MAX_HIGHPOWER 92 #define CAM_MAX_HIGHPOWER 4 93 #endif 94 95 /* Datastructures internal to the xpt layer */ 96 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 97 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 98 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 99 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 100 101 struct xpt_softc { 102 uint32_t xpt_generation; 103 104 /* number of high powered commands that can go through right now */ 105 struct mtx xpt_highpower_lock; 106 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 107 int num_highpower; 108 109 /* queue for handling async rescan requests. */ 110 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 111 int buses_to_config; 112 int buses_config_done; 113 int announce_nosbuf; 114 115 /* 116 * Registered buses 117 * 118 * N.B., "busses" is an archaic spelling of "buses". In new code 119 * "buses" is preferred. 120 */ 121 TAILQ_HEAD(,cam_eb) xpt_busses; 122 u_int bus_generation; 123 124 int boot_delay; 125 struct callout boot_callout; 126 struct task boot_task; 127 struct root_hold_token xpt_rootmount; 128 129 struct mtx xpt_topo_lock; 130 struct taskqueue *xpt_taskq; 131 }; 132 133 typedef enum { 134 DM_RET_COPY = 0x01, 135 DM_RET_FLAG_MASK = 0x0f, 136 DM_RET_NONE = 0x00, 137 DM_RET_STOP = 0x10, 138 DM_RET_DESCEND = 0x20, 139 DM_RET_ERROR = 0x30, 140 DM_RET_ACTION_MASK = 0xf0 141 } dev_match_ret; 142 143 typedef enum { 144 XPT_DEPTH_BUS, 145 XPT_DEPTH_TARGET, 146 XPT_DEPTH_DEVICE, 147 XPT_DEPTH_PERIPH 148 } xpt_traverse_depth; 149 150 struct xpt_traverse_config { 151 xpt_traverse_depth depth; 152 void *tr_func; 153 void *tr_arg; 154 }; 155 156 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 157 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 158 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 159 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 160 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 161 162 /* Transport layer configuration information */ 163 static struct xpt_softc xsoftc; 164 165 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 166 167 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 168 &xsoftc.boot_delay, 0, "Bus registration wait time"); 169 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 170 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 171 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 172 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 173 174 struct cam_doneq { 175 struct mtx_padalign cam_doneq_mtx; 176 STAILQ_HEAD(, ccb_hdr) cam_doneq; 177 int cam_doneq_sleep; 178 }; 179 180 static struct cam_doneq cam_doneqs[MAXCPU]; 181 static int cam_num_doneqs; 182 static struct proc *cam_proc; 183 184 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 185 &cam_num_doneqs, 0, "Number of completion queues/threads"); 186 187 struct cam_periph *xpt_periph; 188 189 static periph_init_t xpt_periph_init; 190 191 static struct periph_driver xpt_driver = 192 { 193 xpt_periph_init, "xpt", 194 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 195 CAM_PERIPH_DRV_EARLY 196 }; 197 198 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 199 200 static d_open_t xptopen; 201 static d_close_t xptclose; 202 static d_ioctl_t xptioctl; 203 static d_ioctl_t xptdoioctl; 204 205 static struct cdevsw xpt_cdevsw = { 206 .d_version = D_VERSION, 207 .d_flags = 0, 208 .d_open = xptopen, 209 .d_close = xptclose, 210 .d_ioctl = xptioctl, 211 .d_name = "xpt", 212 }; 213 214 /* Storage for debugging datastructures */ 215 struct cam_path *cam_dpath; 216 u_int32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS; 217 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 218 &cam_dflags, 0, "Enabled debug flags"); 219 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 220 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 221 &cam_debug_delay, 0, "Delay in us after each debug message"); 222 223 /* Our boot-time initialization hook */ 224 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 225 226 static moduledata_t cam_moduledata = { 227 "cam", 228 cam_module_event_handler, 229 NULL 230 }; 231 232 static int xpt_init(void *); 233 234 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 235 MODULE_VERSION(cam, 1); 236 237 238 static void xpt_async_bcast(struct async_list *async_head, 239 u_int32_t async_code, 240 struct cam_path *path, 241 void *async_arg); 242 static path_id_t xptnextfreepathid(void); 243 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 244 static union ccb *xpt_get_ccb(struct cam_periph *periph); 245 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 246 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 247 static void xpt_run_allocq_task(void *context, int pending); 248 static void xpt_run_devq(struct cam_devq *devq); 249 static callout_func_t xpt_release_devq_timeout; 250 static void xpt_acquire_bus(struct cam_eb *bus); 251 static void xpt_release_bus(struct cam_eb *bus); 252 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 253 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 254 int run_queue); 255 static struct cam_et* 256 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 257 static void xpt_acquire_target(struct cam_et *target); 258 static void xpt_release_target(struct cam_et *target); 259 static struct cam_eb* 260 xpt_find_bus(path_id_t path_id); 261 static struct cam_et* 262 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 263 static struct cam_ed* 264 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 265 static void xpt_config(void *arg); 266 static void xpt_hold_boot_locked(void); 267 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 268 u_int32_t new_priority); 269 static xpt_devicefunc_t xptpassannouncefunc; 270 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 271 static void xptpoll(struct cam_sim *sim); 272 static void camisr_runqueue(void); 273 static void xpt_done_process(struct ccb_hdr *ccb_h); 274 static void xpt_done_td(void *); 275 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 276 u_int num_patterns, struct cam_eb *bus); 277 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 278 u_int num_patterns, 279 struct cam_ed *device); 280 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 281 u_int num_patterns, 282 struct cam_periph *periph); 283 static xpt_busfunc_t xptedtbusfunc; 284 static xpt_targetfunc_t xptedttargetfunc; 285 static xpt_devicefunc_t xptedtdevicefunc; 286 static xpt_periphfunc_t xptedtperiphfunc; 287 static xpt_pdrvfunc_t xptplistpdrvfunc; 288 static xpt_periphfunc_t xptplistperiphfunc; 289 static int xptedtmatch(struct ccb_dev_match *cdm); 290 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 291 static int xptbustraverse(struct cam_eb *start_bus, 292 xpt_busfunc_t *tr_func, void *arg); 293 static int xpttargettraverse(struct cam_eb *bus, 294 struct cam_et *start_target, 295 xpt_targetfunc_t *tr_func, void *arg); 296 static int xptdevicetraverse(struct cam_et *target, 297 struct cam_ed *start_device, 298 xpt_devicefunc_t *tr_func, void *arg); 299 static int xptperiphtraverse(struct cam_ed *device, 300 struct cam_periph *start_periph, 301 xpt_periphfunc_t *tr_func, void *arg); 302 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 303 xpt_pdrvfunc_t *tr_func, void *arg); 304 static int xptpdperiphtraverse(struct periph_driver **pdrv, 305 struct cam_periph *start_periph, 306 xpt_periphfunc_t *tr_func, 307 void *arg); 308 static xpt_busfunc_t xptdefbusfunc; 309 static xpt_targetfunc_t xptdeftargetfunc; 310 static xpt_devicefunc_t xptdefdevicefunc; 311 static xpt_periphfunc_t xptdefperiphfunc; 312 static void xpt_finishconfig_task(void *context, int pending); 313 static void xpt_dev_async_default(u_int32_t async_code, 314 struct cam_eb *bus, 315 struct cam_et *target, 316 struct cam_ed *device, 317 void *async_arg); 318 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 319 struct cam_et *target, 320 lun_id_t lun_id); 321 static xpt_devicefunc_t xptsetasyncfunc; 322 static xpt_busfunc_t xptsetasyncbusfunc; 323 static cam_status xptregister(struct cam_periph *periph, 324 void *arg); 325 326 static __inline int 327 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 328 { 329 int retval; 330 331 mtx_assert(&devq->send_mtx, MA_OWNED); 332 if ((dev->ccbq.queue.entries > 0) && 333 (dev->ccbq.dev_openings > 0) && 334 (dev->ccbq.queue.qfrozen_cnt == 0)) { 335 /* 336 * The priority of a device waiting for controller 337 * resources is that of the highest priority CCB 338 * enqueued. 339 */ 340 retval = 341 xpt_schedule_dev(&devq->send_queue, 342 &dev->devq_entry, 343 CAMQ_GET_PRIO(&dev->ccbq.queue)); 344 } else { 345 retval = 0; 346 } 347 return (retval); 348 } 349 350 static __inline int 351 device_is_queued(struct cam_ed *device) 352 { 353 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 354 } 355 356 static void 357 xpt_periph_init() 358 { 359 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 360 } 361 362 static int 363 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 364 { 365 366 /* 367 * Only allow read-write access. 368 */ 369 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 370 return(EPERM); 371 372 /* 373 * We don't allow nonblocking access. 374 */ 375 if ((flags & O_NONBLOCK) != 0) { 376 printf("%s: can't do nonblocking access\n", devtoname(dev)); 377 return(ENODEV); 378 } 379 380 return(0); 381 } 382 383 static int 384 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 385 { 386 387 return(0); 388 } 389 390 /* 391 * Don't automatically grab the xpt softc lock here even though this is going 392 * through the xpt device. The xpt device is really just a back door for 393 * accessing other devices and SIMs, so the right thing to do is to grab 394 * the appropriate SIM lock once the bus/SIM is located. 395 */ 396 static int 397 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 398 { 399 int error; 400 401 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 402 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 403 } 404 return (error); 405 } 406 407 static int 408 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 409 { 410 int error; 411 412 error = 0; 413 414 switch(cmd) { 415 /* 416 * For the transport layer CAMIOCOMMAND ioctl, we really only want 417 * to accept CCB types that don't quite make sense to send through a 418 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 419 * in the CAM spec. 420 */ 421 case CAMIOCOMMAND: { 422 union ccb *ccb; 423 union ccb *inccb; 424 struct cam_eb *bus; 425 426 inccb = (union ccb *)addr; 427 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 428 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 429 inccb->csio.bio = NULL; 430 #endif 431 432 if (inccb->ccb_h.flags & CAM_UNLOCKED) 433 return (EINVAL); 434 435 bus = xpt_find_bus(inccb->ccb_h.path_id); 436 if (bus == NULL) 437 return (EINVAL); 438 439 switch (inccb->ccb_h.func_code) { 440 case XPT_SCAN_BUS: 441 case XPT_RESET_BUS: 442 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 443 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 444 xpt_release_bus(bus); 445 return (EINVAL); 446 } 447 break; 448 case XPT_SCAN_TGT: 449 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 450 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 451 xpt_release_bus(bus); 452 return (EINVAL); 453 } 454 break; 455 default: 456 break; 457 } 458 459 switch(inccb->ccb_h.func_code) { 460 case XPT_SCAN_BUS: 461 case XPT_RESET_BUS: 462 case XPT_PATH_INQ: 463 case XPT_ENG_INQ: 464 case XPT_SCAN_LUN: 465 case XPT_SCAN_TGT: 466 467 ccb = xpt_alloc_ccb(); 468 469 /* 470 * Create a path using the bus, target, and lun the 471 * user passed in. 472 */ 473 if (xpt_create_path(&ccb->ccb_h.path, NULL, 474 inccb->ccb_h.path_id, 475 inccb->ccb_h.target_id, 476 inccb->ccb_h.target_lun) != 477 CAM_REQ_CMP){ 478 error = EINVAL; 479 xpt_free_ccb(ccb); 480 break; 481 } 482 /* Ensure all of our fields are correct */ 483 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 484 inccb->ccb_h.pinfo.priority); 485 xpt_merge_ccb(ccb, inccb); 486 xpt_path_lock(ccb->ccb_h.path); 487 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 488 xpt_path_unlock(ccb->ccb_h.path); 489 bcopy(ccb, inccb, sizeof(union ccb)); 490 xpt_free_path(ccb->ccb_h.path); 491 xpt_free_ccb(ccb); 492 break; 493 494 case XPT_DEBUG: { 495 union ccb ccb; 496 497 /* 498 * This is an immediate CCB, so it's okay to 499 * allocate it on the stack. 500 */ 501 502 /* 503 * Create a path using the bus, target, and lun the 504 * user passed in. 505 */ 506 if (xpt_create_path(&ccb.ccb_h.path, NULL, 507 inccb->ccb_h.path_id, 508 inccb->ccb_h.target_id, 509 inccb->ccb_h.target_lun) != 510 CAM_REQ_CMP){ 511 error = EINVAL; 512 break; 513 } 514 /* Ensure all of our fields are correct */ 515 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 516 inccb->ccb_h.pinfo.priority); 517 xpt_merge_ccb(&ccb, inccb); 518 xpt_action(&ccb); 519 bcopy(&ccb, inccb, sizeof(union ccb)); 520 xpt_free_path(ccb.ccb_h.path); 521 break; 522 523 } 524 case XPT_DEV_MATCH: { 525 struct cam_periph_map_info mapinfo; 526 struct cam_path *old_path; 527 528 /* 529 * We can't deal with physical addresses for this 530 * type of transaction. 531 */ 532 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 533 CAM_DATA_VADDR) { 534 error = EINVAL; 535 break; 536 } 537 538 /* 539 * Save this in case the caller had it set to 540 * something in particular. 541 */ 542 old_path = inccb->ccb_h.path; 543 544 /* 545 * We really don't need a path for the matching 546 * code. The path is needed because of the 547 * debugging statements in xpt_action(). They 548 * assume that the CCB has a valid path. 549 */ 550 inccb->ccb_h.path = xpt_periph->path; 551 552 bzero(&mapinfo, sizeof(mapinfo)); 553 554 /* 555 * Map the pattern and match buffers into kernel 556 * virtual address space. 557 */ 558 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 559 560 if (error) { 561 inccb->ccb_h.path = old_path; 562 break; 563 } 564 565 /* 566 * This is an immediate CCB, we can send it on directly. 567 */ 568 xpt_action(inccb); 569 570 /* 571 * Map the buffers back into user space. 572 */ 573 cam_periph_unmapmem(inccb, &mapinfo); 574 575 inccb->ccb_h.path = old_path; 576 577 error = 0; 578 break; 579 } 580 default: 581 error = ENOTSUP; 582 break; 583 } 584 xpt_release_bus(bus); 585 break; 586 } 587 /* 588 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 589 * with the periphal driver name and unit name filled in. The other 590 * fields don't really matter as input. The passthrough driver name 591 * ("pass"), and unit number are passed back in the ccb. The current 592 * device generation number, and the index into the device peripheral 593 * driver list, and the status are also passed back. Note that 594 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 595 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 596 * (or rather should be) impossible for the device peripheral driver 597 * list to change since we look at the whole thing in one pass, and 598 * we do it with lock protection. 599 * 600 */ 601 case CAMGETPASSTHRU: { 602 union ccb *ccb; 603 struct cam_periph *periph; 604 struct periph_driver **p_drv; 605 char *name; 606 u_int unit; 607 int base_periph_found; 608 609 ccb = (union ccb *)addr; 610 unit = ccb->cgdl.unit_number; 611 name = ccb->cgdl.periph_name; 612 base_periph_found = 0; 613 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 614 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 615 ccb->csio.bio = NULL; 616 #endif 617 618 /* 619 * Sanity check -- make sure we don't get a null peripheral 620 * driver name. 621 */ 622 if (*ccb->cgdl.periph_name == '\0') { 623 error = EINVAL; 624 break; 625 } 626 627 /* Keep the list from changing while we traverse it */ 628 xpt_lock_buses(); 629 630 /* first find our driver in the list of drivers */ 631 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 632 if (strcmp((*p_drv)->driver_name, name) == 0) 633 break; 634 635 if (*p_drv == NULL) { 636 xpt_unlock_buses(); 637 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 638 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 639 *ccb->cgdl.periph_name = '\0'; 640 ccb->cgdl.unit_number = 0; 641 error = ENOENT; 642 break; 643 } 644 645 /* 646 * Run through every peripheral instance of this driver 647 * and check to see whether it matches the unit passed 648 * in by the user. If it does, get out of the loops and 649 * find the passthrough driver associated with that 650 * peripheral driver. 651 */ 652 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 653 periph = TAILQ_NEXT(periph, unit_links)) { 654 655 if (periph->unit_number == unit) 656 break; 657 } 658 /* 659 * If we found the peripheral driver that the user passed 660 * in, go through all of the peripheral drivers for that 661 * particular device and look for a passthrough driver. 662 */ 663 if (periph != NULL) { 664 struct cam_ed *device; 665 int i; 666 667 base_periph_found = 1; 668 device = periph->path->device; 669 for (i = 0, periph = SLIST_FIRST(&device->periphs); 670 periph != NULL; 671 periph = SLIST_NEXT(periph, periph_links), i++) { 672 /* 673 * Check to see whether we have a 674 * passthrough device or not. 675 */ 676 if (strcmp(periph->periph_name, "pass") == 0) { 677 /* 678 * Fill in the getdevlist fields. 679 */ 680 strlcpy(ccb->cgdl.periph_name, 681 periph->periph_name, 682 sizeof(ccb->cgdl.periph_name)); 683 ccb->cgdl.unit_number = 684 periph->unit_number; 685 if (SLIST_NEXT(periph, periph_links)) 686 ccb->cgdl.status = 687 CAM_GDEVLIST_MORE_DEVS; 688 else 689 ccb->cgdl.status = 690 CAM_GDEVLIST_LAST_DEVICE; 691 ccb->cgdl.generation = 692 device->generation; 693 ccb->cgdl.index = i; 694 /* 695 * Fill in some CCB header fields 696 * that the user may want. 697 */ 698 ccb->ccb_h.path_id = 699 periph->path->bus->path_id; 700 ccb->ccb_h.target_id = 701 periph->path->target->target_id; 702 ccb->ccb_h.target_lun = 703 periph->path->device->lun_id; 704 ccb->ccb_h.status = CAM_REQ_CMP; 705 break; 706 } 707 } 708 } 709 710 /* 711 * If the periph is null here, one of two things has 712 * happened. The first possibility is that we couldn't 713 * find the unit number of the particular peripheral driver 714 * that the user is asking about. e.g. the user asks for 715 * the passthrough driver for "da11". We find the list of 716 * "da" peripherals all right, but there is no unit 11. 717 * The other possibility is that we went through the list 718 * of peripheral drivers attached to the device structure, 719 * but didn't find one with the name "pass". Either way, 720 * we return ENOENT, since we couldn't find something. 721 */ 722 if (periph == NULL) { 723 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 724 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 725 *ccb->cgdl.periph_name = '\0'; 726 ccb->cgdl.unit_number = 0; 727 error = ENOENT; 728 /* 729 * It is unfortunate that this is even necessary, 730 * but there are many, many clueless users out there. 731 * If this is true, the user is looking for the 732 * passthrough driver, but doesn't have one in his 733 * kernel. 734 */ 735 if (base_periph_found == 1) { 736 printf("xptioctl: pass driver is not in the " 737 "kernel\n"); 738 printf("xptioctl: put \"device pass\" in " 739 "your kernel config file\n"); 740 } 741 } 742 xpt_unlock_buses(); 743 break; 744 } 745 default: 746 error = ENOTTY; 747 break; 748 } 749 750 return(error); 751 } 752 753 static int 754 cam_module_event_handler(module_t mod, int what, void *arg) 755 { 756 int error; 757 758 switch (what) { 759 case MOD_LOAD: 760 if ((error = xpt_init(NULL)) != 0) 761 return (error); 762 break; 763 case MOD_UNLOAD: 764 return EBUSY; 765 default: 766 return EOPNOTSUPP; 767 } 768 769 return 0; 770 } 771 772 static struct xpt_proto * 773 xpt_proto_find(cam_proto proto) 774 { 775 struct xpt_proto **pp; 776 777 SET_FOREACH(pp, cam_xpt_proto_set) { 778 if ((*pp)->proto == proto) 779 return *pp; 780 } 781 782 return NULL; 783 } 784 785 static void 786 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 787 { 788 789 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 790 xpt_free_path(done_ccb->ccb_h.path); 791 xpt_free_ccb(done_ccb); 792 } else { 793 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 794 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 795 } 796 xpt_release_boot(); 797 } 798 799 /* thread to handle bus rescans */ 800 static void 801 xpt_scanner_thread(void *dummy) 802 { 803 union ccb *ccb; 804 struct mtx *mtx; 805 struct cam_ed *device; 806 807 xpt_lock_buses(); 808 for (;;) { 809 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 810 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 811 "-", 0); 812 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 813 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 814 xpt_unlock_buses(); 815 816 /* 817 * We need to lock the device's mutex which we use as 818 * the path mutex. We can't do it directly because the 819 * cam_path in the ccb may wind up going away because 820 * the path lock may be dropped and the path retired in 821 * the completion callback. We do this directly to keep 822 * the reference counts in cam_path sane. We also have 823 * to copy the device pointer because ccb_h.path may 824 * be freed in the callback. 825 */ 826 mtx = xpt_path_mtx(ccb->ccb_h.path); 827 device = ccb->ccb_h.path->device; 828 xpt_acquire_device(device); 829 mtx_lock(mtx); 830 xpt_action(ccb); 831 mtx_unlock(mtx); 832 xpt_release_device(device); 833 834 xpt_lock_buses(); 835 } 836 } 837 } 838 839 void 840 xpt_rescan(union ccb *ccb) 841 { 842 struct ccb_hdr *hdr; 843 844 /* Prepare request */ 845 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 846 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 847 ccb->ccb_h.func_code = XPT_SCAN_BUS; 848 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_TGT; 851 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 852 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 853 ccb->ccb_h.func_code = XPT_SCAN_LUN; 854 else { 855 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 856 xpt_free_path(ccb->ccb_h.path); 857 xpt_free_ccb(ccb); 858 return; 859 } 860 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 861 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 862 xpt_action_name(ccb->ccb_h.func_code))); 863 864 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 865 ccb->ccb_h.cbfcnp = xpt_rescan_done; 866 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 867 /* Don't make duplicate entries for the same paths. */ 868 xpt_lock_buses(); 869 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 870 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 871 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 872 wakeup(&xsoftc.ccb_scanq); 873 xpt_unlock_buses(); 874 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 875 xpt_free_path(ccb->ccb_h.path); 876 xpt_free_ccb(ccb); 877 return; 878 } 879 } 880 } 881 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 882 xpt_hold_boot_locked(); 883 wakeup(&xsoftc.ccb_scanq); 884 xpt_unlock_buses(); 885 } 886 887 /* Functions accessed by the peripheral drivers */ 888 static int 889 xpt_init(void *dummy) 890 { 891 struct cam_sim *xpt_sim; 892 struct cam_path *path; 893 struct cam_devq *devq; 894 cam_status status; 895 int error, i; 896 897 TAILQ_INIT(&xsoftc.xpt_busses); 898 TAILQ_INIT(&xsoftc.ccb_scanq); 899 STAILQ_INIT(&xsoftc.highpowerq); 900 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 901 902 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 903 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 904 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 905 906 #ifdef CAM_BOOT_DELAY 907 /* 908 * Override this value at compile time to assist our users 909 * who don't use loader to boot a kernel. 910 */ 911 xsoftc.boot_delay = CAM_BOOT_DELAY; 912 #endif 913 914 /* 915 * The xpt layer is, itself, the equivalent of a SIM. 916 * Allow 16 ccbs in the ccb pool for it. This should 917 * give decent parallelism when we probe buses and 918 * perform other XPT functions. 919 */ 920 devq = cam_simq_alloc(16); 921 xpt_sim = cam_sim_alloc(xptaction, 922 xptpoll, 923 "xpt", 924 /*softc*/NULL, 925 /*unit*/0, 926 /*mtx*/NULL, 927 /*max_dev_transactions*/0, 928 /*max_tagged_dev_transactions*/0, 929 devq); 930 if (xpt_sim == NULL) 931 return (ENOMEM); 932 933 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 934 printf("xpt_init: xpt_bus_register failed with status %#x," 935 " failing attach\n", status); 936 return (EINVAL); 937 } 938 939 /* 940 * Looking at the XPT from the SIM layer, the XPT is 941 * the equivalent of a peripheral driver. Allocate 942 * a peripheral driver entry for us. 943 */ 944 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 945 CAM_TARGET_WILDCARD, 946 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 947 printf("xpt_init: xpt_create_path failed with status %#x," 948 " failing attach\n", status); 949 return (EINVAL); 950 } 951 xpt_path_lock(path); 952 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 953 path, NULL, 0, xpt_sim); 954 xpt_path_unlock(path); 955 xpt_free_path(path); 956 957 if (cam_num_doneqs < 1) 958 cam_num_doneqs = 1 + mp_ncpus / 6; 959 else if (cam_num_doneqs > MAXCPU) 960 cam_num_doneqs = MAXCPU; 961 for (i = 0; i < cam_num_doneqs; i++) { 962 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 963 MTX_DEF); 964 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 965 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 966 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 967 if (error != 0) { 968 cam_num_doneqs = i; 969 break; 970 } 971 } 972 if (cam_num_doneqs < 1) { 973 printf("xpt_init: Cannot init completion queues " 974 "- failing attach\n"); 975 return (ENOMEM); 976 } 977 978 /* 979 * Register a callback for when interrupts are enabled. 980 */ 981 config_intrhook_oneshot(xpt_config, NULL); 982 983 return (0); 984 } 985 986 static cam_status 987 xptregister(struct cam_periph *periph, void *arg) 988 { 989 struct cam_sim *xpt_sim; 990 991 if (periph == NULL) { 992 printf("xptregister: periph was NULL!!\n"); 993 return(CAM_REQ_CMP_ERR); 994 } 995 996 xpt_sim = (struct cam_sim *)arg; 997 xpt_sim->softc = periph; 998 xpt_periph = periph; 999 periph->softc = NULL; 1000 1001 return(CAM_REQ_CMP); 1002 } 1003 1004 int32_t 1005 xpt_add_periph(struct cam_periph *periph) 1006 { 1007 struct cam_ed *device; 1008 int32_t status; 1009 1010 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1011 device = periph->path->device; 1012 status = CAM_REQ_CMP; 1013 if (device != NULL) { 1014 mtx_lock(&device->target->bus->eb_mtx); 1015 device->generation++; 1016 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1017 mtx_unlock(&device->target->bus->eb_mtx); 1018 atomic_add_32(&xsoftc.xpt_generation, 1); 1019 } 1020 1021 return (status); 1022 } 1023 1024 void 1025 xpt_remove_periph(struct cam_periph *periph) 1026 { 1027 struct cam_ed *device; 1028 1029 device = periph->path->device; 1030 if (device != NULL) { 1031 mtx_lock(&device->target->bus->eb_mtx); 1032 device->generation++; 1033 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1034 mtx_unlock(&device->target->bus->eb_mtx); 1035 atomic_add_32(&xsoftc.xpt_generation, 1); 1036 } 1037 } 1038 1039 1040 void 1041 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1042 { 1043 struct cam_path *path = periph->path; 1044 struct xpt_proto *proto; 1045 1046 cam_periph_assert(periph, MA_OWNED); 1047 periph->flags |= CAM_PERIPH_ANNOUNCED; 1048 1049 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1050 periph->periph_name, periph->unit_number, 1051 path->bus->sim->sim_name, 1052 path->bus->sim->unit_number, 1053 path->bus->sim->bus_id, 1054 path->bus->path_id, 1055 path->target->target_id, 1056 (uintmax_t)path->device->lun_id); 1057 printf("%s%d: ", periph->periph_name, periph->unit_number); 1058 proto = xpt_proto_find(path->device->protocol); 1059 if (proto) 1060 proto->ops->announce(path->device); 1061 else 1062 printf("%s%d: Unknown protocol device %d\n", 1063 periph->periph_name, periph->unit_number, 1064 path->device->protocol); 1065 if (path->device->serial_num_len > 0) { 1066 /* Don't wrap the screen - print only the first 60 chars */ 1067 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1068 periph->unit_number, path->device->serial_num); 1069 } 1070 /* Announce transport details. */ 1071 path->bus->xport->ops->announce(periph); 1072 /* Announce command queueing. */ 1073 if (path->device->inq_flags & SID_CmdQue 1074 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1075 printf("%s%d: Command Queueing enabled\n", 1076 periph->periph_name, periph->unit_number); 1077 } 1078 /* Announce caller's details if they've passed in. */ 1079 if (announce_string != NULL) 1080 printf("%s%d: %s\n", periph->periph_name, 1081 periph->unit_number, announce_string); 1082 } 1083 1084 void 1085 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1086 char *announce_string) 1087 { 1088 struct cam_path *path = periph->path; 1089 struct xpt_proto *proto; 1090 1091 cam_periph_assert(periph, MA_OWNED); 1092 periph->flags |= CAM_PERIPH_ANNOUNCED; 1093 1094 /* Fall back to the non-sbuf method if necessary */ 1095 if (xsoftc.announce_nosbuf != 0) { 1096 xpt_announce_periph(periph, announce_string); 1097 return; 1098 } 1099 proto = xpt_proto_find(path->device->protocol); 1100 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1101 (path->bus->xport->ops->announce_sbuf == NULL)) { 1102 xpt_announce_periph(periph, announce_string); 1103 return; 1104 } 1105 1106 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1107 periph->periph_name, periph->unit_number, 1108 path->bus->sim->sim_name, 1109 path->bus->sim->unit_number, 1110 path->bus->sim->bus_id, 1111 path->bus->path_id, 1112 path->target->target_id, 1113 (uintmax_t)path->device->lun_id); 1114 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1115 1116 if (proto) 1117 proto->ops->announce_sbuf(path->device, sb); 1118 else 1119 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1120 periph->periph_name, periph->unit_number, 1121 path->device->protocol); 1122 if (path->device->serial_num_len > 0) { 1123 /* Don't wrap the screen - print only the first 60 chars */ 1124 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1125 periph->periph_name, periph->unit_number, 1126 path->device->serial_num); 1127 } 1128 /* Announce transport details. */ 1129 path->bus->xport->ops->announce_sbuf(periph, sb); 1130 /* Announce command queueing. */ 1131 if (path->device->inq_flags & SID_CmdQue 1132 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1133 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1134 periph->periph_name, periph->unit_number); 1135 } 1136 /* Announce caller's details if they've passed in. */ 1137 if (announce_string != NULL) 1138 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1139 periph->unit_number, announce_string); 1140 } 1141 1142 void 1143 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1144 { 1145 if (quirks != 0) { 1146 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1147 periph->unit_number, quirks, bit_string); 1148 } 1149 } 1150 1151 void 1152 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1153 int quirks, char *bit_string) 1154 { 1155 if (xsoftc.announce_nosbuf != 0) { 1156 xpt_announce_quirks(periph, quirks, bit_string); 1157 return; 1158 } 1159 1160 if (quirks != 0) { 1161 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1162 periph->unit_number, quirks, bit_string); 1163 } 1164 } 1165 1166 void 1167 xpt_denounce_periph(struct cam_periph *periph) 1168 { 1169 struct cam_path *path = periph->path; 1170 struct xpt_proto *proto; 1171 1172 cam_periph_assert(periph, MA_OWNED); 1173 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1174 periph->periph_name, periph->unit_number, 1175 path->bus->sim->sim_name, 1176 path->bus->sim->unit_number, 1177 path->bus->sim->bus_id, 1178 path->bus->path_id, 1179 path->target->target_id, 1180 (uintmax_t)path->device->lun_id); 1181 printf("%s%d: ", periph->periph_name, periph->unit_number); 1182 proto = xpt_proto_find(path->device->protocol); 1183 if (proto) 1184 proto->ops->denounce(path->device); 1185 else 1186 printf("%s%d: Unknown protocol device %d\n", 1187 periph->periph_name, periph->unit_number, 1188 path->device->protocol); 1189 if (path->device->serial_num_len > 0) 1190 printf(" s/n %.60s", path->device->serial_num); 1191 printf(" detached\n"); 1192 } 1193 1194 void 1195 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1196 { 1197 struct cam_path *path = periph->path; 1198 struct xpt_proto *proto; 1199 1200 cam_periph_assert(periph, MA_OWNED); 1201 1202 /* Fall back to the non-sbuf method if necessary */ 1203 if (xsoftc.announce_nosbuf != 0) { 1204 xpt_denounce_periph(periph); 1205 return; 1206 } 1207 proto = xpt_proto_find(path->device->protocol); 1208 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1209 xpt_denounce_periph(periph); 1210 return; 1211 } 1212 1213 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1214 periph->periph_name, periph->unit_number, 1215 path->bus->sim->sim_name, 1216 path->bus->sim->unit_number, 1217 path->bus->sim->bus_id, 1218 path->bus->path_id, 1219 path->target->target_id, 1220 (uintmax_t)path->device->lun_id); 1221 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1222 1223 if (proto) 1224 proto->ops->denounce_sbuf(path->device, sb); 1225 else 1226 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1227 periph->periph_name, periph->unit_number, 1228 path->device->protocol); 1229 if (path->device->serial_num_len > 0) 1230 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1231 sbuf_printf(sb, " detached\n"); 1232 } 1233 1234 int 1235 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1236 { 1237 int ret = -1, l, o; 1238 struct ccb_dev_advinfo cdai; 1239 struct scsi_vpd_device_id *did; 1240 struct scsi_vpd_id_descriptor *idd; 1241 1242 xpt_path_assert(path, MA_OWNED); 1243 1244 memset(&cdai, 0, sizeof(cdai)); 1245 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1246 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1247 cdai.flags = CDAI_FLAG_NONE; 1248 cdai.bufsiz = len; 1249 cdai.buf = buf; 1250 1251 if (!strcmp(attr, "GEOM::ident")) 1252 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1253 else if (!strcmp(attr, "GEOM::physpath")) 1254 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1255 else if (strcmp(attr, "GEOM::lunid") == 0 || 1256 strcmp(attr, "GEOM::lunname") == 0) { 1257 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1258 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1259 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT); 1260 if (cdai.buf == NULL) { 1261 ret = ENOMEM; 1262 goto out; 1263 } 1264 } else 1265 goto out; 1266 1267 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1268 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1269 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1270 if (cdai.provsiz == 0) 1271 goto out; 1272 switch(cdai.buftype) { 1273 case CDAI_TYPE_SCSI_DEVID: 1274 did = (struct scsi_vpd_device_id *)cdai.buf; 1275 if (strcmp(attr, "GEOM::lunid") == 0) { 1276 idd = scsi_get_devid(did, cdai.provsiz, 1277 scsi_devid_is_lun_naa); 1278 if (idd == NULL) 1279 idd = scsi_get_devid(did, cdai.provsiz, 1280 scsi_devid_is_lun_eui64); 1281 if (idd == NULL) 1282 idd = scsi_get_devid(did, cdai.provsiz, 1283 scsi_devid_is_lun_uuid); 1284 if (idd == NULL) 1285 idd = scsi_get_devid(did, cdai.provsiz, 1286 scsi_devid_is_lun_md5); 1287 } else 1288 idd = NULL; 1289 1290 if (idd == NULL) 1291 idd = scsi_get_devid(did, cdai.provsiz, 1292 scsi_devid_is_lun_t10); 1293 if (idd == NULL) 1294 idd = scsi_get_devid(did, cdai.provsiz, 1295 scsi_devid_is_lun_name); 1296 if (idd == NULL) 1297 break; 1298 1299 ret = 0; 1300 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1301 SVPD_ID_CODESET_ASCII) { 1302 if (idd->length < len) { 1303 for (l = 0; l < idd->length; l++) 1304 buf[l] = idd->identifier[l] ? 1305 idd->identifier[l] : ' '; 1306 buf[l] = 0; 1307 } else 1308 ret = EFAULT; 1309 break; 1310 } 1311 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == 1312 SVPD_ID_CODESET_UTF8) { 1313 l = strnlen(idd->identifier, idd->length); 1314 if (l < len) { 1315 bcopy(idd->identifier, buf, l); 1316 buf[l] = 0; 1317 } else 1318 ret = EFAULT; 1319 break; 1320 } 1321 if ((idd->id_type & SVPD_ID_TYPE_MASK) == 1322 SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) { 1323 if ((idd->length - 2) * 2 + 4 >= len) { 1324 ret = EFAULT; 1325 break; 1326 } 1327 for (l = 2, o = 0; l < idd->length; l++) { 1328 if (l == 6 || l == 8 || l == 10 || l == 12) 1329 o += sprintf(buf + o, "-"); 1330 o += sprintf(buf + o, "%02x", 1331 idd->identifier[l]); 1332 } 1333 break; 1334 } 1335 if (idd->length * 2 < len) { 1336 for (l = 0; l < idd->length; l++) 1337 sprintf(buf + l * 2, "%02x", 1338 idd->identifier[l]); 1339 } else 1340 ret = EFAULT; 1341 break; 1342 default: 1343 if (cdai.provsiz < len) { 1344 cdai.buf[cdai.provsiz] = 0; 1345 ret = 0; 1346 } else 1347 ret = EFAULT; 1348 break; 1349 } 1350 1351 out: 1352 if ((char *)cdai.buf != buf) 1353 free(cdai.buf, M_CAMXPT); 1354 return ret; 1355 } 1356 1357 static dev_match_ret 1358 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1359 struct cam_eb *bus) 1360 { 1361 dev_match_ret retval; 1362 u_int i; 1363 1364 retval = DM_RET_NONE; 1365 1366 /* 1367 * If we aren't given something to match against, that's an error. 1368 */ 1369 if (bus == NULL) 1370 return(DM_RET_ERROR); 1371 1372 /* 1373 * If there are no match entries, then this bus matches no 1374 * matter what. 1375 */ 1376 if ((patterns == NULL) || (num_patterns == 0)) 1377 return(DM_RET_DESCEND | DM_RET_COPY); 1378 1379 for (i = 0; i < num_patterns; i++) { 1380 struct bus_match_pattern *cur_pattern; 1381 1382 /* 1383 * If the pattern in question isn't for a bus node, we 1384 * aren't interested. However, we do indicate to the 1385 * calling routine that we should continue descending the 1386 * tree, since the user wants to match against lower-level 1387 * EDT elements. 1388 */ 1389 if (patterns[i].type != DEV_MATCH_BUS) { 1390 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1391 retval |= DM_RET_DESCEND; 1392 continue; 1393 } 1394 1395 cur_pattern = &patterns[i].pattern.bus_pattern; 1396 1397 /* 1398 * If they want to match any bus node, we give them any 1399 * device node. 1400 */ 1401 if (cur_pattern->flags == BUS_MATCH_ANY) { 1402 /* set the copy flag */ 1403 retval |= DM_RET_COPY; 1404 1405 /* 1406 * If we've already decided on an action, go ahead 1407 * and return. 1408 */ 1409 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1410 return(retval); 1411 } 1412 1413 /* 1414 * Not sure why someone would do this... 1415 */ 1416 if (cur_pattern->flags == BUS_MATCH_NONE) 1417 continue; 1418 1419 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1420 && (cur_pattern->path_id != bus->path_id)) 1421 continue; 1422 1423 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1424 && (cur_pattern->bus_id != bus->sim->bus_id)) 1425 continue; 1426 1427 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1428 && (cur_pattern->unit_number != bus->sim->unit_number)) 1429 continue; 1430 1431 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1432 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1433 DEV_IDLEN) != 0)) 1434 continue; 1435 1436 /* 1437 * If we get to this point, the user definitely wants 1438 * information on this bus. So tell the caller to copy the 1439 * data out. 1440 */ 1441 retval |= DM_RET_COPY; 1442 1443 /* 1444 * If the return action has been set to descend, then we 1445 * know that we've already seen a non-bus matching 1446 * expression, therefore we need to further descend the tree. 1447 * This won't change by continuing around the loop, so we 1448 * go ahead and return. If we haven't seen a non-bus 1449 * matching expression, we keep going around the loop until 1450 * we exhaust the matching expressions. We'll set the stop 1451 * flag once we fall out of the loop. 1452 */ 1453 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1454 return(retval); 1455 } 1456 1457 /* 1458 * If the return action hasn't been set to descend yet, that means 1459 * we haven't seen anything other than bus matching patterns. So 1460 * tell the caller to stop descending the tree -- the user doesn't 1461 * want to match against lower level tree elements. 1462 */ 1463 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1464 retval |= DM_RET_STOP; 1465 1466 return(retval); 1467 } 1468 1469 static dev_match_ret 1470 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1471 struct cam_ed *device) 1472 { 1473 dev_match_ret retval; 1474 u_int i; 1475 1476 retval = DM_RET_NONE; 1477 1478 /* 1479 * If we aren't given something to match against, that's an error. 1480 */ 1481 if (device == NULL) 1482 return(DM_RET_ERROR); 1483 1484 /* 1485 * If there are no match entries, then this device matches no 1486 * matter what. 1487 */ 1488 if ((patterns == NULL) || (num_patterns == 0)) 1489 return(DM_RET_DESCEND | DM_RET_COPY); 1490 1491 for (i = 0; i < num_patterns; i++) { 1492 struct device_match_pattern *cur_pattern; 1493 struct scsi_vpd_device_id *device_id_page; 1494 1495 /* 1496 * If the pattern in question isn't for a device node, we 1497 * aren't interested. 1498 */ 1499 if (patterns[i].type != DEV_MATCH_DEVICE) { 1500 if ((patterns[i].type == DEV_MATCH_PERIPH) 1501 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1502 retval |= DM_RET_DESCEND; 1503 continue; 1504 } 1505 1506 cur_pattern = &patterns[i].pattern.device_pattern; 1507 1508 /* Error out if mutually exclusive options are specified. */ 1509 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1510 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1511 return(DM_RET_ERROR); 1512 1513 /* 1514 * If they want to match any device node, we give them any 1515 * device node. 1516 */ 1517 if (cur_pattern->flags == DEV_MATCH_ANY) 1518 goto copy_dev_node; 1519 1520 /* 1521 * Not sure why someone would do this... 1522 */ 1523 if (cur_pattern->flags == DEV_MATCH_NONE) 1524 continue; 1525 1526 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1527 && (cur_pattern->path_id != device->target->bus->path_id)) 1528 continue; 1529 1530 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1531 && (cur_pattern->target_id != device->target->target_id)) 1532 continue; 1533 1534 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1535 && (cur_pattern->target_lun != device->lun_id)) 1536 continue; 1537 1538 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1539 && (cam_quirkmatch((caddr_t)&device->inq_data, 1540 (caddr_t)&cur_pattern->data.inq_pat, 1541 1, sizeof(cur_pattern->data.inq_pat), 1542 scsi_static_inquiry_match) == NULL)) 1543 continue; 1544 1545 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1546 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1547 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1548 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1549 device->device_id_len 1550 - SVPD_DEVICE_ID_HDR_LEN, 1551 cur_pattern->data.devid_pat.id, 1552 cur_pattern->data.devid_pat.id_len) != 0)) 1553 continue; 1554 1555 copy_dev_node: 1556 /* 1557 * If we get to this point, the user definitely wants 1558 * information on this device. So tell the caller to copy 1559 * the data out. 1560 */ 1561 retval |= DM_RET_COPY; 1562 1563 /* 1564 * If the return action has been set to descend, then we 1565 * know that we've already seen a peripheral matching 1566 * expression, therefore we need to further descend the tree. 1567 * This won't change by continuing around the loop, so we 1568 * go ahead and return. If we haven't seen a peripheral 1569 * matching expression, we keep going around the loop until 1570 * we exhaust the matching expressions. We'll set the stop 1571 * flag once we fall out of the loop. 1572 */ 1573 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1574 return(retval); 1575 } 1576 1577 /* 1578 * If the return action hasn't been set to descend yet, that means 1579 * we haven't seen any peripheral matching patterns. So tell the 1580 * caller to stop descending the tree -- the user doesn't want to 1581 * match against lower level tree elements. 1582 */ 1583 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1584 retval |= DM_RET_STOP; 1585 1586 return(retval); 1587 } 1588 1589 /* 1590 * Match a single peripheral against any number of match patterns. 1591 */ 1592 static dev_match_ret 1593 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1594 struct cam_periph *periph) 1595 { 1596 dev_match_ret retval; 1597 u_int i; 1598 1599 /* 1600 * If we aren't given something to match against, that's an error. 1601 */ 1602 if (periph == NULL) 1603 return(DM_RET_ERROR); 1604 1605 /* 1606 * If there are no match entries, then this peripheral matches no 1607 * matter what. 1608 */ 1609 if ((patterns == NULL) || (num_patterns == 0)) 1610 return(DM_RET_STOP | DM_RET_COPY); 1611 1612 /* 1613 * There aren't any nodes below a peripheral node, so there's no 1614 * reason to descend the tree any further. 1615 */ 1616 retval = DM_RET_STOP; 1617 1618 for (i = 0; i < num_patterns; i++) { 1619 struct periph_match_pattern *cur_pattern; 1620 1621 /* 1622 * If the pattern in question isn't for a peripheral, we 1623 * aren't interested. 1624 */ 1625 if (patterns[i].type != DEV_MATCH_PERIPH) 1626 continue; 1627 1628 cur_pattern = &patterns[i].pattern.periph_pattern; 1629 1630 /* 1631 * If they want to match on anything, then we will do so. 1632 */ 1633 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1634 /* set the copy flag */ 1635 retval |= DM_RET_COPY; 1636 1637 /* 1638 * We've already set the return action to stop, 1639 * since there are no nodes below peripherals in 1640 * the tree. 1641 */ 1642 return(retval); 1643 } 1644 1645 /* 1646 * Not sure why someone would do this... 1647 */ 1648 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1649 continue; 1650 1651 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1652 && (cur_pattern->path_id != periph->path->bus->path_id)) 1653 continue; 1654 1655 /* 1656 * For the target and lun id's, we have to make sure the 1657 * target and lun pointers aren't NULL. The xpt peripheral 1658 * has a wildcard target and device. 1659 */ 1660 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1661 && ((periph->path->target == NULL) 1662 ||(cur_pattern->target_id != periph->path->target->target_id))) 1663 continue; 1664 1665 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1666 && ((periph->path->device == NULL) 1667 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1668 continue; 1669 1670 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1671 && (cur_pattern->unit_number != periph->unit_number)) 1672 continue; 1673 1674 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1675 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1676 DEV_IDLEN) != 0)) 1677 continue; 1678 1679 /* 1680 * If we get to this point, the user definitely wants 1681 * information on this peripheral. So tell the caller to 1682 * copy the data out. 1683 */ 1684 retval |= DM_RET_COPY; 1685 1686 /* 1687 * The return action has already been set to stop, since 1688 * peripherals don't have any nodes below them in the EDT. 1689 */ 1690 return(retval); 1691 } 1692 1693 /* 1694 * If we get to this point, the peripheral that was passed in 1695 * doesn't match any of the patterns. 1696 */ 1697 return(retval); 1698 } 1699 1700 static int 1701 xptedtbusfunc(struct cam_eb *bus, void *arg) 1702 { 1703 struct ccb_dev_match *cdm; 1704 struct cam_et *target; 1705 dev_match_ret retval; 1706 1707 cdm = (struct ccb_dev_match *)arg; 1708 1709 /* 1710 * If our position is for something deeper in the tree, that means 1711 * that we've already seen this node. So, we keep going down. 1712 */ 1713 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1714 && (cdm->pos.cookie.bus == bus) 1715 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1716 && (cdm->pos.cookie.target != NULL)) 1717 retval = DM_RET_DESCEND; 1718 else 1719 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1720 1721 /* 1722 * If we got an error, bail out of the search. 1723 */ 1724 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1725 cdm->status = CAM_DEV_MATCH_ERROR; 1726 return(0); 1727 } 1728 1729 /* 1730 * If the copy flag is set, copy this bus out. 1731 */ 1732 if (retval & DM_RET_COPY) { 1733 int spaceleft, j; 1734 1735 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1736 sizeof(struct dev_match_result)); 1737 1738 /* 1739 * If we don't have enough space to put in another 1740 * match result, save our position and tell the 1741 * user there are more devices to check. 1742 */ 1743 if (spaceleft < sizeof(struct dev_match_result)) { 1744 bzero(&cdm->pos, sizeof(cdm->pos)); 1745 cdm->pos.position_type = 1746 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1747 1748 cdm->pos.cookie.bus = bus; 1749 cdm->pos.generations[CAM_BUS_GENERATION]= 1750 xsoftc.bus_generation; 1751 cdm->status = CAM_DEV_MATCH_MORE; 1752 return(0); 1753 } 1754 j = cdm->num_matches; 1755 cdm->num_matches++; 1756 cdm->matches[j].type = DEV_MATCH_BUS; 1757 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1758 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1759 cdm->matches[j].result.bus_result.unit_number = 1760 bus->sim->unit_number; 1761 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1762 bus->sim->sim_name, 1763 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1764 } 1765 1766 /* 1767 * If the user is only interested in buses, there's no 1768 * reason to descend to the next level in the tree. 1769 */ 1770 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1771 return(1); 1772 1773 /* 1774 * If there is a target generation recorded, check it to 1775 * make sure the target list hasn't changed. 1776 */ 1777 mtx_lock(&bus->eb_mtx); 1778 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1779 && (cdm->pos.cookie.bus == bus) 1780 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1781 && (cdm->pos.cookie.target != NULL)) { 1782 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1783 bus->generation)) { 1784 mtx_unlock(&bus->eb_mtx); 1785 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1786 return (0); 1787 } 1788 target = (struct cam_et *)cdm->pos.cookie.target; 1789 target->refcount++; 1790 } else 1791 target = NULL; 1792 mtx_unlock(&bus->eb_mtx); 1793 1794 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1795 } 1796 1797 static int 1798 xptedttargetfunc(struct cam_et *target, void *arg) 1799 { 1800 struct ccb_dev_match *cdm; 1801 struct cam_eb *bus; 1802 struct cam_ed *device; 1803 1804 cdm = (struct ccb_dev_match *)arg; 1805 bus = target->bus; 1806 1807 /* 1808 * If there is a device list generation recorded, check it to 1809 * make sure the device list hasn't changed. 1810 */ 1811 mtx_lock(&bus->eb_mtx); 1812 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1813 && (cdm->pos.cookie.bus == bus) 1814 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1815 && (cdm->pos.cookie.target == target) 1816 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1817 && (cdm->pos.cookie.device != NULL)) { 1818 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1819 target->generation) { 1820 mtx_unlock(&bus->eb_mtx); 1821 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1822 return(0); 1823 } 1824 device = (struct cam_ed *)cdm->pos.cookie.device; 1825 device->refcount++; 1826 } else 1827 device = NULL; 1828 mtx_unlock(&bus->eb_mtx); 1829 1830 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1831 } 1832 1833 static int 1834 xptedtdevicefunc(struct cam_ed *device, void *arg) 1835 { 1836 struct cam_eb *bus; 1837 struct cam_periph *periph; 1838 struct ccb_dev_match *cdm; 1839 dev_match_ret retval; 1840 1841 cdm = (struct ccb_dev_match *)arg; 1842 bus = device->target->bus; 1843 1844 /* 1845 * If our position is for something deeper in the tree, that means 1846 * that we've already seen this node. So, we keep going down. 1847 */ 1848 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1849 && (cdm->pos.cookie.device == device) 1850 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1851 && (cdm->pos.cookie.periph != NULL)) 1852 retval = DM_RET_DESCEND; 1853 else 1854 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1855 device); 1856 1857 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1858 cdm->status = CAM_DEV_MATCH_ERROR; 1859 return(0); 1860 } 1861 1862 /* 1863 * If the copy flag is set, copy this device out. 1864 */ 1865 if (retval & DM_RET_COPY) { 1866 int spaceleft, j; 1867 1868 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1869 sizeof(struct dev_match_result)); 1870 1871 /* 1872 * If we don't have enough space to put in another 1873 * match result, save our position and tell the 1874 * user there are more devices to check. 1875 */ 1876 if (spaceleft < sizeof(struct dev_match_result)) { 1877 bzero(&cdm->pos, sizeof(cdm->pos)); 1878 cdm->pos.position_type = 1879 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1880 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1881 1882 cdm->pos.cookie.bus = device->target->bus; 1883 cdm->pos.generations[CAM_BUS_GENERATION]= 1884 xsoftc.bus_generation; 1885 cdm->pos.cookie.target = device->target; 1886 cdm->pos.generations[CAM_TARGET_GENERATION] = 1887 device->target->bus->generation; 1888 cdm->pos.cookie.device = device; 1889 cdm->pos.generations[CAM_DEV_GENERATION] = 1890 device->target->generation; 1891 cdm->status = CAM_DEV_MATCH_MORE; 1892 return(0); 1893 } 1894 j = cdm->num_matches; 1895 cdm->num_matches++; 1896 cdm->matches[j].type = DEV_MATCH_DEVICE; 1897 cdm->matches[j].result.device_result.path_id = 1898 device->target->bus->path_id; 1899 cdm->matches[j].result.device_result.target_id = 1900 device->target->target_id; 1901 cdm->matches[j].result.device_result.target_lun = 1902 device->lun_id; 1903 cdm->matches[j].result.device_result.protocol = 1904 device->protocol; 1905 bcopy(&device->inq_data, 1906 &cdm->matches[j].result.device_result.inq_data, 1907 sizeof(struct scsi_inquiry_data)); 1908 bcopy(&device->ident_data, 1909 &cdm->matches[j].result.device_result.ident_data, 1910 sizeof(struct ata_params)); 1911 1912 /* Let the user know whether this device is unconfigured */ 1913 if (device->flags & CAM_DEV_UNCONFIGURED) 1914 cdm->matches[j].result.device_result.flags = 1915 DEV_RESULT_UNCONFIGURED; 1916 else 1917 cdm->matches[j].result.device_result.flags = 1918 DEV_RESULT_NOFLAG; 1919 } 1920 1921 /* 1922 * If the user isn't interested in peripherals, don't descend 1923 * the tree any further. 1924 */ 1925 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1926 return(1); 1927 1928 /* 1929 * If there is a peripheral list generation recorded, make sure 1930 * it hasn't changed. 1931 */ 1932 xpt_lock_buses(); 1933 mtx_lock(&bus->eb_mtx); 1934 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1935 && (cdm->pos.cookie.bus == bus) 1936 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1937 && (cdm->pos.cookie.target == device->target) 1938 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1939 && (cdm->pos.cookie.device == device) 1940 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1941 && (cdm->pos.cookie.periph != NULL)) { 1942 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1943 device->generation) { 1944 mtx_unlock(&bus->eb_mtx); 1945 xpt_unlock_buses(); 1946 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1947 return(0); 1948 } 1949 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1950 periph->refcount++; 1951 } else 1952 periph = NULL; 1953 mtx_unlock(&bus->eb_mtx); 1954 xpt_unlock_buses(); 1955 1956 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1957 } 1958 1959 static int 1960 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1961 { 1962 struct ccb_dev_match *cdm; 1963 dev_match_ret retval; 1964 1965 cdm = (struct ccb_dev_match *)arg; 1966 1967 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1968 1969 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1970 cdm->status = CAM_DEV_MATCH_ERROR; 1971 return(0); 1972 } 1973 1974 /* 1975 * If the copy flag is set, copy this peripheral out. 1976 */ 1977 if (retval & DM_RET_COPY) { 1978 int spaceleft, j; 1979 size_t l; 1980 1981 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1982 sizeof(struct dev_match_result)); 1983 1984 /* 1985 * If we don't have enough space to put in another 1986 * match result, save our position and tell the 1987 * user there are more devices to check. 1988 */ 1989 if (spaceleft < sizeof(struct dev_match_result)) { 1990 bzero(&cdm->pos, sizeof(cdm->pos)); 1991 cdm->pos.position_type = 1992 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1993 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1994 CAM_DEV_POS_PERIPH; 1995 1996 cdm->pos.cookie.bus = periph->path->bus; 1997 cdm->pos.generations[CAM_BUS_GENERATION]= 1998 xsoftc.bus_generation; 1999 cdm->pos.cookie.target = periph->path->target; 2000 cdm->pos.generations[CAM_TARGET_GENERATION] = 2001 periph->path->bus->generation; 2002 cdm->pos.cookie.device = periph->path->device; 2003 cdm->pos.generations[CAM_DEV_GENERATION] = 2004 periph->path->target->generation; 2005 cdm->pos.cookie.periph = periph; 2006 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2007 periph->path->device->generation; 2008 cdm->status = CAM_DEV_MATCH_MORE; 2009 return(0); 2010 } 2011 2012 j = cdm->num_matches; 2013 cdm->num_matches++; 2014 cdm->matches[j].type = DEV_MATCH_PERIPH; 2015 cdm->matches[j].result.periph_result.path_id = 2016 periph->path->bus->path_id; 2017 cdm->matches[j].result.periph_result.target_id = 2018 periph->path->target->target_id; 2019 cdm->matches[j].result.periph_result.target_lun = 2020 periph->path->device->lun_id; 2021 cdm->matches[j].result.periph_result.unit_number = 2022 periph->unit_number; 2023 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2024 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2025 periph->periph_name, l); 2026 } 2027 2028 return(1); 2029 } 2030 2031 static int 2032 xptedtmatch(struct ccb_dev_match *cdm) 2033 { 2034 struct cam_eb *bus; 2035 int ret; 2036 2037 cdm->num_matches = 0; 2038 2039 /* 2040 * Check the bus list generation. If it has changed, the user 2041 * needs to reset everything and start over. 2042 */ 2043 xpt_lock_buses(); 2044 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2045 && (cdm->pos.cookie.bus != NULL)) { 2046 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2047 xsoftc.bus_generation) { 2048 xpt_unlock_buses(); 2049 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2050 return(0); 2051 } 2052 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2053 bus->refcount++; 2054 } else 2055 bus = NULL; 2056 xpt_unlock_buses(); 2057 2058 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2059 2060 /* 2061 * If we get back 0, that means that we had to stop before fully 2062 * traversing the EDT. It also means that one of the subroutines 2063 * has set the status field to the proper value. If we get back 1, 2064 * we've fully traversed the EDT and copied out any matching entries. 2065 */ 2066 if (ret == 1) 2067 cdm->status = CAM_DEV_MATCH_LAST; 2068 2069 return(ret); 2070 } 2071 2072 static int 2073 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2074 { 2075 struct cam_periph *periph; 2076 struct ccb_dev_match *cdm; 2077 2078 cdm = (struct ccb_dev_match *)arg; 2079 2080 xpt_lock_buses(); 2081 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2082 && (cdm->pos.cookie.pdrv == pdrv) 2083 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2084 && (cdm->pos.cookie.periph != NULL)) { 2085 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2086 (*pdrv)->generation) { 2087 xpt_unlock_buses(); 2088 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2089 return(0); 2090 } 2091 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2092 periph->refcount++; 2093 } else 2094 periph = NULL; 2095 xpt_unlock_buses(); 2096 2097 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2098 } 2099 2100 static int 2101 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2102 { 2103 struct ccb_dev_match *cdm; 2104 dev_match_ret retval; 2105 2106 cdm = (struct ccb_dev_match *)arg; 2107 2108 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2109 2110 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2111 cdm->status = CAM_DEV_MATCH_ERROR; 2112 return(0); 2113 } 2114 2115 /* 2116 * If the copy flag is set, copy this peripheral out. 2117 */ 2118 if (retval & DM_RET_COPY) { 2119 int spaceleft, j; 2120 size_t l; 2121 2122 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2123 sizeof(struct dev_match_result)); 2124 2125 /* 2126 * If we don't have enough space to put in another 2127 * match result, save our position and tell the 2128 * user there are more devices to check. 2129 */ 2130 if (spaceleft < sizeof(struct dev_match_result)) { 2131 struct periph_driver **pdrv; 2132 2133 pdrv = NULL; 2134 bzero(&cdm->pos, sizeof(cdm->pos)); 2135 cdm->pos.position_type = 2136 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2137 CAM_DEV_POS_PERIPH; 2138 2139 /* 2140 * This may look a bit non-sensical, but it is 2141 * actually quite logical. There are very few 2142 * peripheral drivers, and bloating every peripheral 2143 * structure with a pointer back to its parent 2144 * peripheral driver linker set entry would cost 2145 * more in the long run than doing this quick lookup. 2146 */ 2147 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2148 if (strcmp((*pdrv)->driver_name, 2149 periph->periph_name) == 0) 2150 break; 2151 } 2152 2153 if (*pdrv == NULL) { 2154 cdm->status = CAM_DEV_MATCH_ERROR; 2155 return(0); 2156 } 2157 2158 cdm->pos.cookie.pdrv = pdrv; 2159 /* 2160 * The periph generation slot does double duty, as 2161 * does the periph pointer slot. They are used for 2162 * both edt and pdrv lookups and positioning. 2163 */ 2164 cdm->pos.cookie.periph = periph; 2165 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2166 (*pdrv)->generation; 2167 cdm->status = CAM_DEV_MATCH_MORE; 2168 return(0); 2169 } 2170 2171 j = cdm->num_matches; 2172 cdm->num_matches++; 2173 cdm->matches[j].type = DEV_MATCH_PERIPH; 2174 cdm->matches[j].result.periph_result.path_id = 2175 periph->path->bus->path_id; 2176 2177 /* 2178 * The transport layer peripheral doesn't have a target or 2179 * lun. 2180 */ 2181 if (periph->path->target) 2182 cdm->matches[j].result.periph_result.target_id = 2183 periph->path->target->target_id; 2184 else 2185 cdm->matches[j].result.periph_result.target_id = 2186 CAM_TARGET_WILDCARD; 2187 2188 if (periph->path->device) 2189 cdm->matches[j].result.periph_result.target_lun = 2190 periph->path->device->lun_id; 2191 else 2192 cdm->matches[j].result.periph_result.target_lun = 2193 CAM_LUN_WILDCARD; 2194 2195 cdm->matches[j].result.periph_result.unit_number = 2196 periph->unit_number; 2197 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2198 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2199 periph->periph_name, l); 2200 } 2201 2202 return(1); 2203 } 2204 2205 static int 2206 xptperiphlistmatch(struct ccb_dev_match *cdm) 2207 { 2208 int ret; 2209 2210 cdm->num_matches = 0; 2211 2212 /* 2213 * At this point in the edt traversal function, we check the bus 2214 * list generation to make sure that no buses have been added or 2215 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2216 * For the peripheral driver list traversal function, however, we 2217 * don't have to worry about new peripheral driver types coming or 2218 * going; they're in a linker set, and therefore can't change 2219 * without a recompile. 2220 */ 2221 2222 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2223 && (cdm->pos.cookie.pdrv != NULL)) 2224 ret = xptpdrvtraverse( 2225 (struct periph_driver **)cdm->pos.cookie.pdrv, 2226 xptplistpdrvfunc, cdm); 2227 else 2228 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2229 2230 /* 2231 * If we get back 0, that means that we had to stop before fully 2232 * traversing the peripheral driver tree. It also means that one of 2233 * the subroutines has set the status field to the proper value. If 2234 * we get back 1, we've fully traversed the EDT and copied out any 2235 * matching entries. 2236 */ 2237 if (ret == 1) 2238 cdm->status = CAM_DEV_MATCH_LAST; 2239 2240 return(ret); 2241 } 2242 2243 static int 2244 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2245 { 2246 struct cam_eb *bus, *next_bus; 2247 int retval; 2248 2249 retval = 1; 2250 if (start_bus) 2251 bus = start_bus; 2252 else { 2253 xpt_lock_buses(); 2254 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2255 if (bus == NULL) { 2256 xpt_unlock_buses(); 2257 return (retval); 2258 } 2259 bus->refcount++; 2260 xpt_unlock_buses(); 2261 } 2262 for (; bus != NULL; bus = next_bus) { 2263 retval = tr_func(bus, arg); 2264 if (retval == 0) { 2265 xpt_release_bus(bus); 2266 break; 2267 } 2268 xpt_lock_buses(); 2269 next_bus = TAILQ_NEXT(bus, links); 2270 if (next_bus) 2271 next_bus->refcount++; 2272 xpt_unlock_buses(); 2273 xpt_release_bus(bus); 2274 } 2275 return(retval); 2276 } 2277 2278 static int 2279 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2280 xpt_targetfunc_t *tr_func, void *arg) 2281 { 2282 struct cam_et *target, *next_target; 2283 int retval; 2284 2285 retval = 1; 2286 if (start_target) 2287 target = start_target; 2288 else { 2289 mtx_lock(&bus->eb_mtx); 2290 target = TAILQ_FIRST(&bus->et_entries); 2291 if (target == NULL) { 2292 mtx_unlock(&bus->eb_mtx); 2293 return (retval); 2294 } 2295 target->refcount++; 2296 mtx_unlock(&bus->eb_mtx); 2297 } 2298 for (; target != NULL; target = next_target) { 2299 retval = tr_func(target, arg); 2300 if (retval == 0) { 2301 xpt_release_target(target); 2302 break; 2303 } 2304 mtx_lock(&bus->eb_mtx); 2305 next_target = TAILQ_NEXT(target, links); 2306 if (next_target) 2307 next_target->refcount++; 2308 mtx_unlock(&bus->eb_mtx); 2309 xpt_release_target(target); 2310 } 2311 return(retval); 2312 } 2313 2314 static int 2315 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2316 xpt_devicefunc_t *tr_func, void *arg) 2317 { 2318 struct cam_eb *bus; 2319 struct cam_ed *device, *next_device; 2320 int retval; 2321 2322 retval = 1; 2323 bus = target->bus; 2324 if (start_device) 2325 device = start_device; 2326 else { 2327 mtx_lock(&bus->eb_mtx); 2328 device = TAILQ_FIRST(&target->ed_entries); 2329 if (device == NULL) { 2330 mtx_unlock(&bus->eb_mtx); 2331 return (retval); 2332 } 2333 device->refcount++; 2334 mtx_unlock(&bus->eb_mtx); 2335 } 2336 for (; device != NULL; device = next_device) { 2337 mtx_lock(&device->device_mtx); 2338 retval = tr_func(device, arg); 2339 mtx_unlock(&device->device_mtx); 2340 if (retval == 0) { 2341 xpt_release_device(device); 2342 break; 2343 } 2344 mtx_lock(&bus->eb_mtx); 2345 next_device = TAILQ_NEXT(device, links); 2346 if (next_device) 2347 next_device->refcount++; 2348 mtx_unlock(&bus->eb_mtx); 2349 xpt_release_device(device); 2350 } 2351 return(retval); 2352 } 2353 2354 static int 2355 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2356 xpt_periphfunc_t *tr_func, void *arg) 2357 { 2358 struct cam_eb *bus; 2359 struct cam_periph *periph, *next_periph; 2360 int retval; 2361 2362 retval = 1; 2363 2364 bus = device->target->bus; 2365 if (start_periph) 2366 periph = start_periph; 2367 else { 2368 xpt_lock_buses(); 2369 mtx_lock(&bus->eb_mtx); 2370 periph = SLIST_FIRST(&device->periphs); 2371 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2372 periph = SLIST_NEXT(periph, periph_links); 2373 if (periph == NULL) { 2374 mtx_unlock(&bus->eb_mtx); 2375 xpt_unlock_buses(); 2376 return (retval); 2377 } 2378 periph->refcount++; 2379 mtx_unlock(&bus->eb_mtx); 2380 xpt_unlock_buses(); 2381 } 2382 for (; periph != NULL; periph = next_periph) { 2383 retval = tr_func(periph, arg); 2384 if (retval == 0) { 2385 cam_periph_release_locked(periph); 2386 break; 2387 } 2388 xpt_lock_buses(); 2389 mtx_lock(&bus->eb_mtx); 2390 next_periph = SLIST_NEXT(periph, periph_links); 2391 while (next_periph != NULL && 2392 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2393 next_periph = SLIST_NEXT(next_periph, periph_links); 2394 if (next_periph) 2395 next_periph->refcount++; 2396 mtx_unlock(&bus->eb_mtx); 2397 xpt_unlock_buses(); 2398 cam_periph_release_locked(periph); 2399 } 2400 return(retval); 2401 } 2402 2403 static int 2404 xptpdrvtraverse(struct periph_driver **start_pdrv, 2405 xpt_pdrvfunc_t *tr_func, void *arg) 2406 { 2407 struct periph_driver **pdrv; 2408 int retval; 2409 2410 retval = 1; 2411 2412 /* 2413 * We don't traverse the peripheral driver list like we do the 2414 * other lists, because it is a linker set, and therefore cannot be 2415 * changed during runtime. If the peripheral driver list is ever 2416 * re-done to be something other than a linker set (i.e. it can 2417 * change while the system is running), the list traversal should 2418 * be modified to work like the other traversal functions. 2419 */ 2420 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2421 *pdrv != NULL; pdrv++) { 2422 retval = tr_func(pdrv, arg); 2423 2424 if (retval == 0) 2425 return(retval); 2426 } 2427 2428 return(retval); 2429 } 2430 2431 static int 2432 xptpdperiphtraverse(struct periph_driver **pdrv, 2433 struct cam_periph *start_periph, 2434 xpt_periphfunc_t *tr_func, void *arg) 2435 { 2436 struct cam_periph *periph, *next_periph; 2437 int retval; 2438 2439 retval = 1; 2440 2441 if (start_periph) 2442 periph = start_periph; 2443 else { 2444 xpt_lock_buses(); 2445 periph = TAILQ_FIRST(&(*pdrv)->units); 2446 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2447 periph = TAILQ_NEXT(periph, unit_links); 2448 if (periph == NULL) { 2449 xpt_unlock_buses(); 2450 return (retval); 2451 } 2452 periph->refcount++; 2453 xpt_unlock_buses(); 2454 } 2455 for (; periph != NULL; periph = next_periph) { 2456 cam_periph_lock(periph); 2457 retval = tr_func(periph, arg); 2458 cam_periph_unlock(periph); 2459 if (retval == 0) { 2460 cam_periph_release(periph); 2461 break; 2462 } 2463 xpt_lock_buses(); 2464 next_periph = TAILQ_NEXT(periph, unit_links); 2465 while (next_periph != NULL && 2466 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2467 next_periph = TAILQ_NEXT(next_periph, unit_links); 2468 if (next_periph) 2469 next_periph->refcount++; 2470 xpt_unlock_buses(); 2471 cam_periph_release(periph); 2472 } 2473 return(retval); 2474 } 2475 2476 static int 2477 xptdefbusfunc(struct cam_eb *bus, void *arg) 2478 { 2479 struct xpt_traverse_config *tr_config; 2480 2481 tr_config = (struct xpt_traverse_config *)arg; 2482 2483 if (tr_config->depth == XPT_DEPTH_BUS) { 2484 xpt_busfunc_t *tr_func; 2485 2486 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2487 2488 return(tr_func(bus, tr_config->tr_arg)); 2489 } else 2490 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2491 } 2492 2493 static int 2494 xptdeftargetfunc(struct cam_et *target, void *arg) 2495 { 2496 struct xpt_traverse_config *tr_config; 2497 2498 tr_config = (struct xpt_traverse_config *)arg; 2499 2500 if (tr_config->depth == XPT_DEPTH_TARGET) { 2501 xpt_targetfunc_t *tr_func; 2502 2503 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2504 2505 return(tr_func(target, tr_config->tr_arg)); 2506 } else 2507 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2508 } 2509 2510 static int 2511 xptdefdevicefunc(struct cam_ed *device, void *arg) 2512 { 2513 struct xpt_traverse_config *tr_config; 2514 2515 tr_config = (struct xpt_traverse_config *)arg; 2516 2517 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2518 xpt_devicefunc_t *tr_func; 2519 2520 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2521 2522 return(tr_func(device, tr_config->tr_arg)); 2523 } else 2524 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2525 } 2526 2527 static int 2528 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2529 { 2530 struct xpt_traverse_config *tr_config; 2531 xpt_periphfunc_t *tr_func; 2532 2533 tr_config = (struct xpt_traverse_config *)arg; 2534 2535 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2536 2537 /* 2538 * Unlike the other default functions, we don't check for depth 2539 * here. The peripheral driver level is the last level in the EDT, 2540 * so if we're here, we should execute the function in question. 2541 */ 2542 return(tr_func(periph, tr_config->tr_arg)); 2543 } 2544 2545 /* 2546 * Execute the given function for every bus in the EDT. 2547 */ 2548 static int 2549 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2550 { 2551 struct xpt_traverse_config tr_config; 2552 2553 tr_config.depth = XPT_DEPTH_BUS; 2554 tr_config.tr_func = tr_func; 2555 tr_config.tr_arg = arg; 2556 2557 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2558 } 2559 2560 /* 2561 * Execute the given function for every device in the EDT. 2562 */ 2563 static int 2564 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2565 { 2566 struct xpt_traverse_config tr_config; 2567 2568 tr_config.depth = XPT_DEPTH_DEVICE; 2569 tr_config.tr_func = tr_func; 2570 tr_config.tr_arg = arg; 2571 2572 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2573 } 2574 2575 static int 2576 xptsetasyncfunc(struct cam_ed *device, void *arg) 2577 { 2578 struct cam_path path; 2579 struct ccb_getdev cgd; 2580 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2581 2582 /* 2583 * Don't report unconfigured devices (Wildcard devs, 2584 * devices only for target mode, device instances 2585 * that have been invalidated but are waiting for 2586 * their last reference count to be released). 2587 */ 2588 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2589 return (1); 2590 2591 xpt_compile_path(&path, 2592 NULL, 2593 device->target->bus->path_id, 2594 device->target->target_id, 2595 device->lun_id); 2596 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2597 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2598 xpt_action((union ccb *)&cgd); 2599 csa->callback(csa->callback_arg, 2600 AC_FOUND_DEVICE, 2601 &path, &cgd); 2602 xpt_release_path(&path); 2603 2604 return(1); 2605 } 2606 2607 static int 2608 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2609 { 2610 struct cam_path path; 2611 struct ccb_pathinq cpi; 2612 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2613 2614 xpt_compile_path(&path, /*periph*/NULL, 2615 bus->path_id, 2616 CAM_TARGET_WILDCARD, 2617 CAM_LUN_WILDCARD); 2618 xpt_path_lock(&path); 2619 xpt_path_inq(&cpi, &path); 2620 csa->callback(csa->callback_arg, 2621 AC_PATH_REGISTERED, 2622 &path, &cpi); 2623 xpt_path_unlock(&path); 2624 xpt_release_path(&path); 2625 2626 return(1); 2627 } 2628 2629 void 2630 xpt_action(union ccb *start_ccb) 2631 { 2632 2633 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2634 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2635 xpt_action_name(start_ccb->ccb_h.func_code))); 2636 2637 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2638 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2639 } 2640 2641 void 2642 xpt_action_default(union ccb *start_ccb) 2643 { 2644 struct cam_path *path; 2645 struct cam_sim *sim; 2646 struct mtx *mtx; 2647 2648 path = start_ccb->ccb_h.path; 2649 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2650 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2651 xpt_action_name(start_ccb->ccb_h.func_code))); 2652 2653 switch (start_ccb->ccb_h.func_code) { 2654 case XPT_SCSI_IO: 2655 { 2656 struct cam_ed *device; 2657 2658 /* 2659 * For the sake of compatibility with SCSI-1 2660 * devices that may not understand the identify 2661 * message, we include lun information in the 2662 * second byte of all commands. SCSI-1 specifies 2663 * that luns are a 3 bit value and reserves only 3 2664 * bits for lun information in the CDB. Later 2665 * revisions of the SCSI spec allow for more than 8 2666 * luns, but have deprecated lun information in the 2667 * CDB. So, if the lun won't fit, we must omit. 2668 * 2669 * Also be aware that during initial probing for devices, 2670 * the inquiry information is unknown but initialized to 0. 2671 * This means that this code will be exercised while probing 2672 * devices with an ANSI revision greater than 2. 2673 */ 2674 device = path->device; 2675 if (device->protocol_version <= SCSI_REV_2 2676 && start_ccb->ccb_h.target_lun < 8 2677 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2678 2679 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2680 start_ccb->ccb_h.target_lun << 5; 2681 } 2682 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2683 } 2684 /* FALLTHROUGH */ 2685 case XPT_TARGET_IO: 2686 case XPT_CONT_TARGET_IO: 2687 start_ccb->csio.sense_resid = 0; 2688 start_ccb->csio.resid = 0; 2689 /* FALLTHROUGH */ 2690 case XPT_ATA_IO: 2691 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2692 start_ccb->ataio.resid = 0; 2693 /* FALLTHROUGH */ 2694 case XPT_NVME_IO: 2695 case XPT_NVME_ADMIN: 2696 case XPT_MMC_IO: 2697 case XPT_RESET_DEV: 2698 case XPT_ENG_EXEC: 2699 case XPT_SMP_IO: 2700 { 2701 struct cam_devq *devq; 2702 2703 devq = path->bus->sim->devq; 2704 mtx_lock(&devq->send_mtx); 2705 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2706 if (xpt_schedule_devq(devq, path->device) != 0) 2707 xpt_run_devq(devq); 2708 mtx_unlock(&devq->send_mtx); 2709 break; 2710 } 2711 case XPT_CALC_GEOMETRY: 2712 /* Filter out garbage */ 2713 if (start_ccb->ccg.block_size == 0 2714 || start_ccb->ccg.volume_size == 0) { 2715 start_ccb->ccg.cylinders = 0; 2716 start_ccb->ccg.heads = 0; 2717 start_ccb->ccg.secs_per_track = 0; 2718 start_ccb->ccb_h.status = CAM_REQ_CMP; 2719 break; 2720 } 2721 goto call_sim; 2722 case XPT_ABORT: 2723 { 2724 union ccb* abort_ccb; 2725 2726 abort_ccb = start_ccb->cab.abort_ccb; 2727 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2728 struct cam_ed *device; 2729 struct cam_devq *devq; 2730 2731 device = abort_ccb->ccb_h.path->device; 2732 devq = device->sim->devq; 2733 2734 mtx_lock(&devq->send_mtx); 2735 if (abort_ccb->ccb_h.pinfo.index > 0) { 2736 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2737 abort_ccb->ccb_h.status = 2738 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2739 xpt_freeze_devq_device(device, 1); 2740 mtx_unlock(&devq->send_mtx); 2741 xpt_done(abort_ccb); 2742 start_ccb->ccb_h.status = CAM_REQ_CMP; 2743 break; 2744 } 2745 mtx_unlock(&devq->send_mtx); 2746 2747 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2748 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2749 /* 2750 * We've caught this ccb en route to 2751 * the SIM. Flag it for abort and the 2752 * SIM will do so just before starting 2753 * real work on the CCB. 2754 */ 2755 abort_ccb->ccb_h.status = 2756 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2757 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2758 start_ccb->ccb_h.status = CAM_REQ_CMP; 2759 break; 2760 } 2761 } 2762 if (XPT_FC_IS_QUEUED(abort_ccb) 2763 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2764 /* 2765 * It's already completed but waiting 2766 * for our SWI to get to it. 2767 */ 2768 start_ccb->ccb_h.status = CAM_UA_ABORT; 2769 break; 2770 } 2771 /* 2772 * If we weren't able to take care of the abort request 2773 * in the XPT, pass the request down to the SIM for processing. 2774 */ 2775 } 2776 /* FALLTHROUGH */ 2777 case XPT_ACCEPT_TARGET_IO: 2778 case XPT_EN_LUN: 2779 case XPT_IMMED_NOTIFY: 2780 case XPT_NOTIFY_ACK: 2781 case XPT_RESET_BUS: 2782 case XPT_IMMEDIATE_NOTIFY: 2783 case XPT_NOTIFY_ACKNOWLEDGE: 2784 case XPT_GET_SIM_KNOB_OLD: 2785 case XPT_GET_SIM_KNOB: 2786 case XPT_SET_SIM_KNOB: 2787 case XPT_GET_TRAN_SETTINGS: 2788 case XPT_SET_TRAN_SETTINGS: 2789 case XPT_PATH_INQ: 2790 call_sim: 2791 sim = path->bus->sim; 2792 mtx = sim->mtx; 2793 if (mtx && !mtx_owned(mtx)) 2794 mtx_lock(mtx); 2795 else 2796 mtx = NULL; 2797 2798 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2799 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2800 (*(sim->sim_action))(sim, start_ccb); 2801 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2802 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2803 if (mtx) 2804 mtx_unlock(mtx); 2805 break; 2806 case XPT_PATH_STATS: 2807 start_ccb->cpis.last_reset = path->bus->last_reset; 2808 start_ccb->ccb_h.status = CAM_REQ_CMP; 2809 break; 2810 case XPT_GDEV_TYPE: 2811 { 2812 struct cam_ed *dev; 2813 2814 dev = path->device; 2815 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2816 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2817 } else { 2818 struct ccb_getdev *cgd; 2819 2820 cgd = &start_ccb->cgd; 2821 cgd->protocol = dev->protocol; 2822 cgd->inq_data = dev->inq_data; 2823 cgd->ident_data = dev->ident_data; 2824 cgd->inq_flags = dev->inq_flags; 2825 cgd->ccb_h.status = CAM_REQ_CMP; 2826 cgd->serial_num_len = dev->serial_num_len; 2827 if ((dev->serial_num_len > 0) 2828 && (dev->serial_num != NULL)) 2829 bcopy(dev->serial_num, cgd->serial_num, 2830 dev->serial_num_len); 2831 } 2832 break; 2833 } 2834 case XPT_GDEV_STATS: 2835 { 2836 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2837 struct cam_ed *dev = path->device; 2838 struct cam_eb *bus = path->bus; 2839 struct cam_et *tar = path->target; 2840 struct cam_devq *devq = bus->sim->devq; 2841 2842 mtx_lock(&devq->send_mtx); 2843 cgds->dev_openings = dev->ccbq.dev_openings; 2844 cgds->dev_active = dev->ccbq.dev_active; 2845 cgds->allocated = dev->ccbq.allocated; 2846 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2847 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2848 cgds->last_reset = tar->last_reset; 2849 cgds->maxtags = dev->maxtags; 2850 cgds->mintags = dev->mintags; 2851 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2852 cgds->last_reset = bus->last_reset; 2853 mtx_unlock(&devq->send_mtx); 2854 cgds->ccb_h.status = CAM_REQ_CMP; 2855 break; 2856 } 2857 case XPT_GDEVLIST: 2858 { 2859 struct cam_periph *nperiph; 2860 struct periph_list *periph_head; 2861 struct ccb_getdevlist *cgdl; 2862 u_int i; 2863 struct cam_ed *device; 2864 int found; 2865 2866 2867 found = 0; 2868 2869 /* 2870 * Don't want anyone mucking with our data. 2871 */ 2872 device = path->device; 2873 periph_head = &device->periphs; 2874 cgdl = &start_ccb->cgdl; 2875 2876 /* 2877 * Check and see if the list has changed since the user 2878 * last requested a list member. If so, tell them that the 2879 * list has changed, and therefore they need to start over 2880 * from the beginning. 2881 */ 2882 if ((cgdl->index != 0) && 2883 (cgdl->generation != device->generation)) { 2884 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2885 break; 2886 } 2887 2888 /* 2889 * Traverse the list of peripherals and attempt to find 2890 * the requested peripheral. 2891 */ 2892 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2893 (nperiph != NULL) && (i <= cgdl->index); 2894 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2895 if (i == cgdl->index) { 2896 strlcpy(cgdl->periph_name, 2897 nperiph->periph_name, 2898 sizeof(cgdl->periph_name)); 2899 cgdl->unit_number = nperiph->unit_number; 2900 found = 1; 2901 } 2902 } 2903 if (found == 0) { 2904 cgdl->status = CAM_GDEVLIST_ERROR; 2905 break; 2906 } 2907 2908 if (nperiph == NULL) 2909 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2910 else 2911 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2912 2913 cgdl->index++; 2914 cgdl->generation = device->generation; 2915 2916 cgdl->ccb_h.status = CAM_REQ_CMP; 2917 break; 2918 } 2919 case XPT_DEV_MATCH: 2920 { 2921 dev_pos_type position_type; 2922 struct ccb_dev_match *cdm; 2923 2924 cdm = &start_ccb->cdm; 2925 2926 /* 2927 * There are two ways of getting at information in the EDT. 2928 * The first way is via the primary EDT tree. It starts 2929 * with a list of buses, then a list of targets on a bus, 2930 * then devices/luns on a target, and then peripherals on a 2931 * device/lun. The "other" way is by the peripheral driver 2932 * lists. The peripheral driver lists are organized by 2933 * peripheral driver. (obviously) So it makes sense to 2934 * use the peripheral driver list if the user is looking 2935 * for something like "da1", or all "da" devices. If the 2936 * user is looking for something on a particular bus/target 2937 * or lun, it's generally better to go through the EDT tree. 2938 */ 2939 2940 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2941 position_type = cdm->pos.position_type; 2942 else { 2943 u_int i; 2944 2945 position_type = CAM_DEV_POS_NONE; 2946 2947 for (i = 0; i < cdm->num_patterns; i++) { 2948 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2949 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2950 position_type = CAM_DEV_POS_EDT; 2951 break; 2952 } 2953 } 2954 2955 if (cdm->num_patterns == 0) 2956 position_type = CAM_DEV_POS_EDT; 2957 else if (position_type == CAM_DEV_POS_NONE) 2958 position_type = CAM_DEV_POS_PDRV; 2959 } 2960 2961 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2962 case CAM_DEV_POS_EDT: 2963 xptedtmatch(cdm); 2964 break; 2965 case CAM_DEV_POS_PDRV: 2966 xptperiphlistmatch(cdm); 2967 break; 2968 default: 2969 cdm->status = CAM_DEV_MATCH_ERROR; 2970 break; 2971 } 2972 2973 if (cdm->status == CAM_DEV_MATCH_ERROR) 2974 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2975 else 2976 start_ccb->ccb_h.status = CAM_REQ_CMP; 2977 2978 break; 2979 } 2980 case XPT_SASYNC_CB: 2981 { 2982 struct ccb_setasync *csa; 2983 struct async_node *cur_entry; 2984 struct async_list *async_head; 2985 u_int32_t added; 2986 2987 csa = &start_ccb->csa; 2988 added = csa->event_enable; 2989 async_head = &path->device->asyncs; 2990 2991 /* 2992 * If there is already an entry for us, simply 2993 * update it. 2994 */ 2995 cur_entry = SLIST_FIRST(async_head); 2996 while (cur_entry != NULL) { 2997 if ((cur_entry->callback_arg == csa->callback_arg) 2998 && (cur_entry->callback == csa->callback)) 2999 break; 3000 cur_entry = SLIST_NEXT(cur_entry, links); 3001 } 3002 3003 if (cur_entry != NULL) { 3004 /* 3005 * If the request has no flags set, 3006 * remove the entry. 3007 */ 3008 added &= ~cur_entry->event_enable; 3009 if (csa->event_enable == 0) { 3010 SLIST_REMOVE(async_head, cur_entry, 3011 async_node, links); 3012 xpt_release_device(path->device); 3013 free(cur_entry, M_CAMXPT); 3014 } else { 3015 cur_entry->event_enable = csa->event_enable; 3016 } 3017 csa->event_enable = added; 3018 } else { 3019 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3020 M_NOWAIT); 3021 if (cur_entry == NULL) { 3022 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3023 break; 3024 } 3025 cur_entry->event_enable = csa->event_enable; 3026 cur_entry->event_lock = (path->bus->sim->mtx && 3027 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3028 cur_entry->callback_arg = csa->callback_arg; 3029 cur_entry->callback = csa->callback; 3030 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3031 xpt_acquire_device(path->device); 3032 } 3033 start_ccb->ccb_h.status = CAM_REQ_CMP; 3034 break; 3035 } 3036 case XPT_REL_SIMQ: 3037 { 3038 struct ccb_relsim *crs; 3039 struct cam_ed *dev; 3040 3041 crs = &start_ccb->crs; 3042 dev = path->device; 3043 if (dev == NULL) { 3044 3045 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3046 break; 3047 } 3048 3049 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3050 3051 /* Don't ever go below one opening */ 3052 if (crs->openings > 0) { 3053 xpt_dev_ccbq_resize(path, crs->openings); 3054 if (bootverbose) { 3055 xpt_print(path, 3056 "number of openings is now %d\n", 3057 crs->openings); 3058 } 3059 } 3060 } 3061 3062 mtx_lock(&dev->sim->devq->send_mtx); 3063 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3064 3065 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3066 3067 /* 3068 * Just extend the old timeout and decrement 3069 * the freeze count so that a single timeout 3070 * is sufficient for releasing the queue. 3071 */ 3072 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3073 callout_stop(&dev->callout); 3074 } else { 3075 3076 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3077 } 3078 3079 callout_reset_sbt(&dev->callout, 3080 SBT_1MS * crs->release_timeout, 0, 3081 xpt_release_devq_timeout, dev, 0); 3082 3083 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3084 3085 } 3086 3087 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3088 3089 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3090 /* 3091 * Decrement the freeze count so that a single 3092 * completion is still sufficient to unfreeze 3093 * the queue. 3094 */ 3095 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3096 } else { 3097 3098 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3099 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3100 } 3101 } 3102 3103 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3104 3105 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3106 || (dev->ccbq.dev_active == 0)) { 3107 3108 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3109 } else { 3110 3111 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3112 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3113 } 3114 } 3115 mtx_unlock(&dev->sim->devq->send_mtx); 3116 3117 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3118 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3119 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3120 start_ccb->ccb_h.status = CAM_REQ_CMP; 3121 break; 3122 } 3123 case XPT_DEBUG: { 3124 struct cam_path *oldpath; 3125 3126 /* Check that all request bits are supported. */ 3127 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3128 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3129 break; 3130 } 3131 3132 cam_dflags = CAM_DEBUG_NONE; 3133 if (cam_dpath != NULL) { 3134 oldpath = cam_dpath; 3135 cam_dpath = NULL; 3136 xpt_free_path(oldpath); 3137 } 3138 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3139 if (xpt_create_path(&cam_dpath, NULL, 3140 start_ccb->ccb_h.path_id, 3141 start_ccb->ccb_h.target_id, 3142 start_ccb->ccb_h.target_lun) != 3143 CAM_REQ_CMP) { 3144 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3145 } else { 3146 cam_dflags = start_ccb->cdbg.flags; 3147 start_ccb->ccb_h.status = CAM_REQ_CMP; 3148 xpt_print(cam_dpath, "debugging flags now %x\n", 3149 cam_dflags); 3150 } 3151 } else 3152 start_ccb->ccb_h.status = CAM_REQ_CMP; 3153 break; 3154 } 3155 case XPT_NOOP: 3156 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3157 xpt_freeze_devq(path, 1); 3158 start_ccb->ccb_h.status = CAM_REQ_CMP; 3159 break; 3160 case XPT_REPROBE_LUN: 3161 xpt_async(AC_INQ_CHANGED, path, NULL); 3162 start_ccb->ccb_h.status = CAM_REQ_CMP; 3163 xpt_done(start_ccb); 3164 break; 3165 case XPT_ASYNC: 3166 start_ccb->ccb_h.status = CAM_REQ_CMP; 3167 xpt_done(start_ccb); 3168 break; 3169 default: 3170 case XPT_SDEV_TYPE: 3171 case XPT_TERM_IO: 3172 case XPT_ENG_INQ: 3173 /* XXX Implement */ 3174 xpt_print(start_ccb->ccb_h.path, 3175 "%s: CCB type %#x %s not supported\n", __func__, 3176 start_ccb->ccb_h.func_code, 3177 xpt_action_name(start_ccb->ccb_h.func_code)); 3178 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3179 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3180 xpt_done(start_ccb); 3181 } 3182 break; 3183 } 3184 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3185 ("xpt_action_default: func= %#x %s status %#x\n", 3186 start_ccb->ccb_h.func_code, 3187 xpt_action_name(start_ccb->ccb_h.func_code), 3188 start_ccb->ccb_h.status)); 3189 } 3190 3191 /* 3192 * Call the sim poll routine to allow the sim to complete 3193 * any inflight requests, then call camisr_runqueue to 3194 * complete any CCB that the polling completed. 3195 */ 3196 void 3197 xpt_sim_poll(struct cam_sim *sim) 3198 { 3199 struct mtx *mtx; 3200 3201 mtx = sim->mtx; 3202 if (mtx) 3203 mtx_lock(mtx); 3204 (*(sim->sim_poll))(sim); 3205 if (mtx) 3206 mtx_unlock(mtx); 3207 camisr_runqueue(); 3208 } 3209 3210 uint32_t 3211 xpt_poll_setup(union ccb *start_ccb) 3212 { 3213 u_int32_t timeout; 3214 struct cam_sim *sim; 3215 struct cam_devq *devq; 3216 struct cam_ed *dev; 3217 3218 timeout = start_ccb->ccb_h.timeout * 10; 3219 sim = start_ccb->ccb_h.path->bus->sim; 3220 devq = sim->devq; 3221 dev = start_ccb->ccb_h.path->device; 3222 3223 /* 3224 * Steal an opening so that no other queued requests 3225 * can get it before us while we simulate interrupts. 3226 */ 3227 mtx_lock(&devq->send_mtx); 3228 dev->ccbq.dev_openings--; 3229 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3230 (--timeout > 0)) { 3231 mtx_unlock(&devq->send_mtx); 3232 DELAY(100); 3233 xpt_sim_poll(sim); 3234 mtx_lock(&devq->send_mtx); 3235 } 3236 dev->ccbq.dev_openings++; 3237 mtx_unlock(&devq->send_mtx); 3238 3239 return (timeout); 3240 } 3241 3242 void 3243 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3244 { 3245 3246 while (--timeout > 0) { 3247 xpt_sim_poll(start_ccb->ccb_h.path->bus->sim); 3248 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3249 != CAM_REQ_INPROG) 3250 break; 3251 DELAY(100); 3252 } 3253 3254 if (timeout == 0) { 3255 /* 3256 * XXX Is it worth adding a sim_timeout entry 3257 * point so we can attempt recovery? If 3258 * this is only used for dumps, I don't think 3259 * it is. 3260 */ 3261 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3262 } 3263 } 3264 3265 void 3266 xpt_polled_action(union ccb *start_ccb) 3267 { 3268 uint32_t timeout; 3269 struct cam_ed *dev; 3270 3271 timeout = start_ccb->ccb_h.timeout * 10; 3272 dev = start_ccb->ccb_h.path->device; 3273 3274 mtx_unlock(&dev->device_mtx); 3275 3276 timeout = xpt_poll_setup(start_ccb); 3277 if (timeout > 0) { 3278 xpt_action(start_ccb); 3279 xpt_pollwait(start_ccb, timeout); 3280 } else { 3281 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3282 } 3283 3284 mtx_lock(&dev->device_mtx); 3285 } 3286 3287 /* 3288 * Schedule a peripheral driver to receive a ccb when its 3289 * target device has space for more transactions. 3290 */ 3291 void 3292 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3293 { 3294 3295 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3296 cam_periph_assert(periph, MA_OWNED); 3297 if (new_priority < periph->scheduled_priority) { 3298 periph->scheduled_priority = new_priority; 3299 xpt_run_allocq(periph, 0); 3300 } 3301 } 3302 3303 3304 /* 3305 * Schedule a device to run on a given queue. 3306 * If the device was inserted as a new entry on the queue, 3307 * return 1 meaning the device queue should be run. If we 3308 * were already queued, implying someone else has already 3309 * started the queue, return 0 so the caller doesn't attempt 3310 * to run the queue. 3311 */ 3312 static int 3313 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3314 u_int32_t new_priority) 3315 { 3316 int retval; 3317 u_int32_t old_priority; 3318 3319 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3320 3321 3322 old_priority = pinfo->priority; 3323 3324 /* 3325 * Are we already queued? 3326 */ 3327 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3328 /* Simply reorder based on new priority */ 3329 if (new_priority < old_priority) { 3330 camq_change_priority(queue, pinfo->index, 3331 new_priority); 3332 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3333 ("changed priority to %d\n", 3334 new_priority)); 3335 retval = 1; 3336 } else 3337 retval = 0; 3338 } else { 3339 /* New entry on the queue */ 3340 if (new_priority < old_priority) 3341 pinfo->priority = new_priority; 3342 3343 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3344 ("Inserting onto queue\n")); 3345 pinfo->generation = ++queue->generation; 3346 camq_insert(queue, pinfo); 3347 retval = 1; 3348 } 3349 return (retval); 3350 } 3351 3352 static void 3353 xpt_run_allocq_task(void *context, int pending) 3354 { 3355 struct cam_periph *periph = context; 3356 3357 cam_periph_lock(periph); 3358 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3359 xpt_run_allocq(periph, 1); 3360 cam_periph_unlock(periph); 3361 cam_periph_release(periph); 3362 } 3363 3364 static void 3365 xpt_run_allocq(struct cam_periph *periph, int sleep) 3366 { 3367 struct cam_ed *device; 3368 union ccb *ccb; 3369 uint32_t prio; 3370 3371 cam_periph_assert(periph, MA_OWNED); 3372 if (periph->periph_allocating) 3373 return; 3374 cam_periph_doacquire(periph); 3375 periph->periph_allocating = 1; 3376 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3377 device = periph->path->device; 3378 ccb = NULL; 3379 restart: 3380 while ((prio = min(periph->scheduled_priority, 3381 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3382 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3383 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3384 3385 if (ccb == NULL && 3386 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3387 if (sleep) { 3388 ccb = xpt_get_ccb(periph); 3389 goto restart; 3390 } 3391 if (periph->flags & CAM_PERIPH_RUN_TASK) 3392 break; 3393 cam_periph_doacquire(periph); 3394 periph->flags |= CAM_PERIPH_RUN_TASK; 3395 taskqueue_enqueue(xsoftc.xpt_taskq, 3396 &periph->periph_run_task); 3397 break; 3398 } 3399 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3400 if (prio == periph->immediate_priority) { 3401 periph->immediate_priority = CAM_PRIORITY_NONE; 3402 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3403 ("waking cam_periph_getccb()\n")); 3404 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3405 periph_links.sle); 3406 wakeup(&periph->ccb_list); 3407 } else { 3408 periph->scheduled_priority = CAM_PRIORITY_NONE; 3409 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3410 ("calling periph_start()\n")); 3411 periph->periph_start(periph, ccb); 3412 } 3413 ccb = NULL; 3414 } 3415 if (ccb != NULL) 3416 xpt_release_ccb(ccb); 3417 periph->periph_allocating = 0; 3418 cam_periph_release_locked(periph); 3419 } 3420 3421 static void 3422 xpt_run_devq(struct cam_devq *devq) 3423 { 3424 struct mtx *mtx; 3425 3426 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3427 3428 devq->send_queue.qfrozen_cnt++; 3429 while ((devq->send_queue.entries > 0) 3430 && (devq->send_openings > 0) 3431 && (devq->send_queue.qfrozen_cnt <= 1)) { 3432 struct cam_ed *device; 3433 union ccb *work_ccb; 3434 struct cam_sim *sim; 3435 struct xpt_proto *proto; 3436 3437 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3438 CAMQ_HEAD); 3439 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3440 ("running device %p\n", device)); 3441 3442 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3443 if (work_ccb == NULL) { 3444 printf("device on run queue with no ccbs???\n"); 3445 continue; 3446 } 3447 3448 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3449 3450 mtx_lock(&xsoftc.xpt_highpower_lock); 3451 if (xsoftc.num_highpower <= 0) { 3452 /* 3453 * We got a high power command, but we 3454 * don't have any available slots. Freeze 3455 * the device queue until we have a slot 3456 * available. 3457 */ 3458 xpt_freeze_devq_device(device, 1); 3459 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3460 highpowerq_entry); 3461 3462 mtx_unlock(&xsoftc.xpt_highpower_lock); 3463 continue; 3464 } else { 3465 /* 3466 * Consume a high power slot while 3467 * this ccb runs. 3468 */ 3469 xsoftc.num_highpower--; 3470 } 3471 mtx_unlock(&xsoftc.xpt_highpower_lock); 3472 } 3473 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3474 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3475 devq->send_openings--; 3476 devq->send_active++; 3477 xpt_schedule_devq(devq, device); 3478 mtx_unlock(&devq->send_mtx); 3479 3480 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3481 /* 3482 * The client wants to freeze the queue 3483 * after this CCB is sent. 3484 */ 3485 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3486 } 3487 3488 /* In Target mode, the peripheral driver knows best... */ 3489 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3490 if ((device->inq_flags & SID_CmdQue) != 0 3491 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3492 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3493 else 3494 /* 3495 * Clear this in case of a retried CCB that 3496 * failed due to a rejected tag. 3497 */ 3498 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3499 } 3500 3501 KASSERT(device == work_ccb->ccb_h.path->device, 3502 ("device (%p) / path->device (%p) mismatch", 3503 device, work_ccb->ccb_h.path->device)); 3504 proto = xpt_proto_find(device->protocol); 3505 if (proto && proto->ops->debug_out) 3506 proto->ops->debug_out(work_ccb); 3507 3508 /* 3509 * Device queues can be shared among multiple SIM instances 3510 * that reside on different buses. Use the SIM from the 3511 * queued device, rather than the one from the calling bus. 3512 */ 3513 sim = device->sim; 3514 mtx = sim->mtx; 3515 if (mtx && !mtx_owned(mtx)) 3516 mtx_lock(mtx); 3517 else 3518 mtx = NULL; 3519 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3520 (*(sim->sim_action))(sim, work_ccb); 3521 if (mtx) 3522 mtx_unlock(mtx); 3523 mtx_lock(&devq->send_mtx); 3524 } 3525 devq->send_queue.qfrozen_cnt--; 3526 } 3527 3528 /* 3529 * This function merges stuff from the slave ccb into the master ccb, while 3530 * keeping important fields in the master ccb constant. 3531 */ 3532 void 3533 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3534 { 3535 3536 /* 3537 * Pull fields that are valid for peripheral drivers to set 3538 * into the master CCB along with the CCB "payload". 3539 */ 3540 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3541 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3542 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3543 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3544 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3545 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3546 } 3547 3548 void 3549 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3550 u_int32_t priority, u_int32_t flags) 3551 { 3552 3553 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3554 ccb_h->pinfo.priority = priority; 3555 ccb_h->path = path; 3556 ccb_h->path_id = path->bus->path_id; 3557 if (path->target) 3558 ccb_h->target_id = path->target->target_id; 3559 else 3560 ccb_h->target_id = CAM_TARGET_WILDCARD; 3561 if (path->device) { 3562 ccb_h->target_lun = path->device->lun_id; 3563 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3564 } else { 3565 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3566 } 3567 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3568 ccb_h->flags = flags; 3569 ccb_h->xflags = 0; 3570 } 3571 3572 void 3573 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3574 { 3575 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3576 } 3577 3578 /* Path manipulation functions */ 3579 cam_status 3580 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3581 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3582 { 3583 struct cam_path *path; 3584 cam_status status; 3585 3586 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3587 3588 if (path == NULL) { 3589 status = CAM_RESRC_UNAVAIL; 3590 return(status); 3591 } 3592 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3593 if (status != CAM_REQ_CMP) { 3594 free(path, M_CAMPATH); 3595 path = NULL; 3596 } 3597 *new_path_ptr = path; 3598 return (status); 3599 } 3600 3601 cam_status 3602 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3603 struct cam_periph *periph, path_id_t path_id, 3604 target_id_t target_id, lun_id_t lun_id) 3605 { 3606 3607 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3608 lun_id)); 3609 } 3610 3611 cam_status 3612 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3613 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3614 { 3615 struct cam_eb *bus; 3616 struct cam_et *target; 3617 struct cam_ed *device; 3618 cam_status status; 3619 3620 status = CAM_REQ_CMP; /* Completed without error */ 3621 target = NULL; /* Wildcarded */ 3622 device = NULL; /* Wildcarded */ 3623 3624 /* 3625 * We will potentially modify the EDT, so block interrupts 3626 * that may attempt to create cam paths. 3627 */ 3628 bus = xpt_find_bus(path_id); 3629 if (bus == NULL) { 3630 status = CAM_PATH_INVALID; 3631 } else { 3632 xpt_lock_buses(); 3633 mtx_lock(&bus->eb_mtx); 3634 target = xpt_find_target(bus, target_id); 3635 if (target == NULL) { 3636 /* Create one */ 3637 struct cam_et *new_target; 3638 3639 new_target = xpt_alloc_target(bus, target_id); 3640 if (new_target == NULL) { 3641 status = CAM_RESRC_UNAVAIL; 3642 } else { 3643 target = new_target; 3644 } 3645 } 3646 xpt_unlock_buses(); 3647 if (target != NULL) { 3648 device = xpt_find_device(target, lun_id); 3649 if (device == NULL) { 3650 /* Create one */ 3651 struct cam_ed *new_device; 3652 3653 new_device = 3654 (*(bus->xport->ops->alloc_device))(bus, 3655 target, 3656 lun_id); 3657 if (new_device == NULL) { 3658 status = CAM_RESRC_UNAVAIL; 3659 } else { 3660 device = new_device; 3661 } 3662 } 3663 } 3664 mtx_unlock(&bus->eb_mtx); 3665 } 3666 3667 /* 3668 * Only touch the user's data if we are successful. 3669 */ 3670 if (status == CAM_REQ_CMP) { 3671 new_path->periph = perph; 3672 new_path->bus = bus; 3673 new_path->target = target; 3674 new_path->device = device; 3675 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3676 } else { 3677 if (device != NULL) 3678 xpt_release_device(device); 3679 if (target != NULL) 3680 xpt_release_target(target); 3681 if (bus != NULL) 3682 xpt_release_bus(bus); 3683 } 3684 return (status); 3685 } 3686 3687 cam_status 3688 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3689 { 3690 struct cam_path *new_path; 3691 3692 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3693 if (new_path == NULL) 3694 return(CAM_RESRC_UNAVAIL); 3695 *new_path = *path; 3696 if (path->bus != NULL) 3697 xpt_acquire_bus(path->bus); 3698 if (path->target != NULL) 3699 xpt_acquire_target(path->target); 3700 if (path->device != NULL) 3701 xpt_acquire_device(path->device); 3702 *new_path_ptr = new_path; 3703 return (CAM_REQ_CMP); 3704 } 3705 3706 void 3707 xpt_release_path(struct cam_path *path) 3708 { 3709 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3710 if (path->device != NULL) { 3711 xpt_release_device(path->device); 3712 path->device = NULL; 3713 } 3714 if (path->target != NULL) { 3715 xpt_release_target(path->target); 3716 path->target = NULL; 3717 } 3718 if (path->bus != NULL) { 3719 xpt_release_bus(path->bus); 3720 path->bus = NULL; 3721 } 3722 } 3723 3724 void 3725 xpt_free_path(struct cam_path *path) 3726 { 3727 3728 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3729 xpt_release_path(path); 3730 free(path, M_CAMPATH); 3731 } 3732 3733 void 3734 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3735 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3736 { 3737 3738 xpt_lock_buses(); 3739 if (bus_ref) { 3740 if (path->bus) 3741 *bus_ref = path->bus->refcount; 3742 else 3743 *bus_ref = 0; 3744 } 3745 if (periph_ref) { 3746 if (path->periph) 3747 *periph_ref = path->periph->refcount; 3748 else 3749 *periph_ref = 0; 3750 } 3751 xpt_unlock_buses(); 3752 if (target_ref) { 3753 if (path->target) 3754 *target_ref = path->target->refcount; 3755 else 3756 *target_ref = 0; 3757 } 3758 if (device_ref) { 3759 if (path->device) 3760 *device_ref = path->device->refcount; 3761 else 3762 *device_ref = 0; 3763 } 3764 } 3765 3766 /* 3767 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3768 * in path1, 2 for match with wildcards in path2. 3769 */ 3770 int 3771 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3772 { 3773 int retval = 0; 3774 3775 if (path1->bus != path2->bus) { 3776 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3777 retval = 1; 3778 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3779 retval = 2; 3780 else 3781 return (-1); 3782 } 3783 if (path1->target != path2->target) { 3784 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3785 if (retval == 0) 3786 retval = 1; 3787 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3788 retval = 2; 3789 else 3790 return (-1); 3791 } 3792 if (path1->device != path2->device) { 3793 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3794 if (retval == 0) 3795 retval = 1; 3796 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3797 retval = 2; 3798 else 3799 return (-1); 3800 } 3801 return (retval); 3802 } 3803 3804 int 3805 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3806 { 3807 int retval = 0; 3808 3809 if (path->bus != dev->target->bus) { 3810 if (path->bus->path_id == CAM_BUS_WILDCARD) 3811 retval = 1; 3812 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3813 retval = 2; 3814 else 3815 return (-1); 3816 } 3817 if (path->target != dev->target) { 3818 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3819 if (retval == 0) 3820 retval = 1; 3821 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3822 retval = 2; 3823 else 3824 return (-1); 3825 } 3826 if (path->device != dev) { 3827 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3828 if (retval == 0) 3829 retval = 1; 3830 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3831 retval = 2; 3832 else 3833 return (-1); 3834 } 3835 return (retval); 3836 } 3837 3838 void 3839 xpt_print_path(struct cam_path *path) 3840 { 3841 struct sbuf sb; 3842 char buffer[XPT_PRINT_LEN]; 3843 3844 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3845 xpt_path_sbuf(path, &sb); 3846 sbuf_finish(&sb); 3847 printf("%s", sbuf_data(&sb)); 3848 sbuf_delete(&sb); 3849 } 3850 3851 void 3852 xpt_print_device(struct cam_ed *device) 3853 { 3854 3855 if (device == NULL) 3856 printf("(nopath): "); 3857 else { 3858 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3859 device->sim->unit_number, 3860 device->sim->bus_id, 3861 device->target->target_id, 3862 (uintmax_t)device->lun_id); 3863 } 3864 } 3865 3866 void 3867 xpt_print(struct cam_path *path, const char *fmt, ...) 3868 { 3869 va_list ap; 3870 struct sbuf sb; 3871 char buffer[XPT_PRINT_LEN]; 3872 3873 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3874 3875 xpt_path_sbuf(path, &sb); 3876 va_start(ap, fmt); 3877 sbuf_vprintf(&sb, fmt, ap); 3878 va_end(ap); 3879 3880 sbuf_finish(&sb); 3881 printf("%s", sbuf_data(&sb)); 3882 sbuf_delete(&sb); 3883 } 3884 3885 int 3886 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3887 { 3888 struct sbuf sb; 3889 int len; 3890 3891 sbuf_new(&sb, str, str_len, 0); 3892 len = xpt_path_sbuf(path, &sb); 3893 sbuf_finish(&sb); 3894 return (len); 3895 } 3896 3897 int 3898 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3899 { 3900 3901 if (path == NULL) 3902 sbuf_printf(sb, "(nopath): "); 3903 else { 3904 if (path->periph != NULL) 3905 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3906 path->periph->unit_number); 3907 else 3908 sbuf_printf(sb, "(noperiph:"); 3909 3910 if (path->bus != NULL) 3911 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3912 path->bus->sim->unit_number, 3913 path->bus->sim->bus_id); 3914 else 3915 sbuf_printf(sb, "nobus:"); 3916 3917 if (path->target != NULL) 3918 sbuf_printf(sb, "%d:", path->target->target_id); 3919 else 3920 sbuf_printf(sb, "X:"); 3921 3922 if (path->device != NULL) 3923 sbuf_printf(sb, "%jx): ", 3924 (uintmax_t)path->device->lun_id); 3925 else 3926 sbuf_printf(sb, "X): "); 3927 } 3928 3929 return(sbuf_len(sb)); 3930 } 3931 3932 path_id_t 3933 xpt_path_path_id(struct cam_path *path) 3934 { 3935 return(path->bus->path_id); 3936 } 3937 3938 target_id_t 3939 xpt_path_target_id(struct cam_path *path) 3940 { 3941 if (path->target != NULL) 3942 return (path->target->target_id); 3943 else 3944 return (CAM_TARGET_WILDCARD); 3945 } 3946 3947 lun_id_t 3948 xpt_path_lun_id(struct cam_path *path) 3949 { 3950 if (path->device != NULL) 3951 return (path->device->lun_id); 3952 else 3953 return (CAM_LUN_WILDCARD); 3954 } 3955 3956 struct cam_sim * 3957 xpt_path_sim(struct cam_path *path) 3958 { 3959 3960 return (path->bus->sim); 3961 } 3962 3963 struct cam_periph* 3964 xpt_path_periph(struct cam_path *path) 3965 { 3966 3967 return (path->periph); 3968 } 3969 3970 /* 3971 * Release a CAM control block for the caller. Remit the cost of the structure 3972 * to the device referenced by the path. If the this device had no 'credits' 3973 * and peripheral drivers have registered async callbacks for this notification 3974 * call them now. 3975 */ 3976 void 3977 xpt_release_ccb(union ccb *free_ccb) 3978 { 3979 struct cam_ed *device; 3980 struct cam_periph *periph; 3981 3982 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3983 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3984 device = free_ccb->ccb_h.path->device; 3985 periph = free_ccb->ccb_h.path->periph; 3986 3987 xpt_free_ccb(free_ccb); 3988 periph->periph_allocated--; 3989 cam_ccbq_release_opening(&device->ccbq); 3990 xpt_run_allocq(periph, 0); 3991 } 3992 3993 /* Functions accessed by SIM drivers */ 3994 3995 static struct xpt_xport_ops xport_default_ops = { 3996 .alloc_device = xpt_alloc_device_default, 3997 .action = xpt_action_default, 3998 .async = xpt_dev_async_default, 3999 }; 4000 static struct xpt_xport xport_default = { 4001 .xport = XPORT_UNKNOWN, 4002 .name = "unknown", 4003 .ops = &xport_default_ops, 4004 }; 4005 4006 CAM_XPT_XPORT(xport_default); 4007 4008 /* 4009 * A sim structure, listing the SIM entry points and instance 4010 * identification info is passed to xpt_bus_register to hook the SIM 4011 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4012 * for this new bus and places it in the array of buses and assigns 4013 * it a path_id. The path_id may be influenced by "hard wiring" 4014 * information specified by the user. Once interrupt services are 4015 * available, the bus will be probed. 4016 */ 4017 int32_t 4018 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4019 { 4020 struct cam_eb *new_bus; 4021 struct cam_eb *old_bus; 4022 struct ccb_pathinq cpi; 4023 struct cam_path *path; 4024 cam_status status; 4025 4026 sim->bus_id = bus; 4027 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4028 M_CAMXPT, M_NOWAIT|M_ZERO); 4029 if (new_bus == NULL) { 4030 /* Couldn't satisfy request */ 4031 return (CAM_RESRC_UNAVAIL); 4032 } 4033 4034 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4035 TAILQ_INIT(&new_bus->et_entries); 4036 cam_sim_hold(sim); 4037 new_bus->sim = sim; 4038 timevalclear(&new_bus->last_reset); 4039 new_bus->flags = 0; 4040 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4041 new_bus->generation = 0; 4042 4043 xpt_lock_buses(); 4044 sim->path_id = new_bus->path_id = 4045 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4046 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4047 while (old_bus != NULL 4048 && old_bus->path_id < new_bus->path_id) 4049 old_bus = TAILQ_NEXT(old_bus, links); 4050 if (old_bus != NULL) 4051 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4052 else 4053 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4054 xsoftc.bus_generation++; 4055 xpt_unlock_buses(); 4056 4057 /* 4058 * Set a default transport so that a PATH_INQ can be issued to 4059 * the SIM. This will then allow for probing and attaching of 4060 * a more appropriate transport. 4061 */ 4062 new_bus->xport = &xport_default; 4063 4064 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4065 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4066 if (status != CAM_REQ_CMP) { 4067 xpt_release_bus(new_bus); 4068 return (CAM_RESRC_UNAVAIL); 4069 } 4070 4071 xpt_path_inq(&cpi, path); 4072 4073 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4074 struct xpt_xport **xpt; 4075 4076 SET_FOREACH(xpt, cam_xpt_xport_set) { 4077 if ((*xpt)->xport == cpi.transport) { 4078 new_bus->xport = *xpt; 4079 break; 4080 } 4081 } 4082 if (new_bus->xport == NULL) { 4083 xpt_print(path, 4084 "No transport found for %d\n", cpi.transport); 4085 xpt_release_bus(new_bus); 4086 free(path, M_CAMXPT); 4087 return (CAM_RESRC_UNAVAIL); 4088 } 4089 } 4090 4091 /* Notify interested parties */ 4092 if (sim->path_id != CAM_XPT_PATH_ID) { 4093 4094 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4095 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4096 union ccb *scan_ccb; 4097 4098 /* Initiate bus rescan. */ 4099 scan_ccb = xpt_alloc_ccb_nowait(); 4100 if (scan_ccb != NULL) { 4101 scan_ccb->ccb_h.path = path; 4102 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4103 scan_ccb->crcn.flags = 0; 4104 xpt_rescan(scan_ccb); 4105 } else { 4106 xpt_print(path, 4107 "Can't allocate CCB to scan bus\n"); 4108 xpt_free_path(path); 4109 } 4110 } else 4111 xpt_free_path(path); 4112 } else 4113 xpt_free_path(path); 4114 return (CAM_SUCCESS); 4115 } 4116 4117 int32_t 4118 xpt_bus_deregister(path_id_t pathid) 4119 { 4120 struct cam_path bus_path; 4121 cam_status status; 4122 4123 status = xpt_compile_path(&bus_path, NULL, pathid, 4124 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4125 if (status != CAM_REQ_CMP) 4126 return (status); 4127 4128 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4129 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4130 4131 /* Release the reference count held while registered. */ 4132 xpt_release_bus(bus_path.bus); 4133 xpt_release_path(&bus_path); 4134 4135 return (CAM_REQ_CMP); 4136 } 4137 4138 static path_id_t 4139 xptnextfreepathid(void) 4140 { 4141 struct cam_eb *bus; 4142 path_id_t pathid; 4143 const char *strval; 4144 4145 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4146 pathid = 0; 4147 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4148 retry: 4149 /* Find an unoccupied pathid */ 4150 while (bus != NULL && bus->path_id <= pathid) { 4151 if (bus->path_id == pathid) 4152 pathid++; 4153 bus = TAILQ_NEXT(bus, links); 4154 } 4155 4156 /* 4157 * Ensure that this pathid is not reserved for 4158 * a bus that may be registered in the future. 4159 */ 4160 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4161 ++pathid; 4162 /* Start the search over */ 4163 goto retry; 4164 } 4165 return (pathid); 4166 } 4167 4168 static path_id_t 4169 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4170 { 4171 path_id_t pathid; 4172 int i, dunit, val; 4173 char buf[32]; 4174 const char *dname; 4175 4176 pathid = CAM_XPT_PATH_ID; 4177 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4178 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4179 return (pathid); 4180 i = 0; 4181 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4182 if (strcmp(dname, "scbus")) { 4183 /* Avoid a bit of foot shooting. */ 4184 continue; 4185 } 4186 if (dunit < 0) /* unwired?! */ 4187 continue; 4188 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4189 if (sim_bus == val) { 4190 pathid = dunit; 4191 break; 4192 } 4193 } else if (sim_bus == 0) { 4194 /* Unspecified matches bus 0 */ 4195 pathid = dunit; 4196 break; 4197 } else { 4198 printf("Ambiguous scbus configuration for %s%d " 4199 "bus %d, cannot wire down. The kernel " 4200 "config entry for scbus%d should " 4201 "specify a controller bus.\n" 4202 "Scbus will be assigned dynamically.\n", 4203 sim_name, sim_unit, sim_bus, dunit); 4204 break; 4205 } 4206 } 4207 4208 if (pathid == CAM_XPT_PATH_ID) 4209 pathid = xptnextfreepathid(); 4210 return (pathid); 4211 } 4212 4213 static const char * 4214 xpt_async_string(u_int32_t async_code) 4215 { 4216 4217 switch (async_code) { 4218 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4219 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4220 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4221 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4222 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4223 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4224 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4225 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4226 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4227 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4228 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4229 case AC_CONTRACT: return ("AC_CONTRACT"); 4230 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4231 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4232 } 4233 return ("AC_UNKNOWN"); 4234 } 4235 4236 static int 4237 xpt_async_size(u_int32_t async_code) 4238 { 4239 4240 switch (async_code) { 4241 case AC_BUS_RESET: return (0); 4242 case AC_UNSOL_RESEL: return (0); 4243 case AC_SCSI_AEN: return (0); 4244 case AC_SENT_BDR: return (0); 4245 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4246 case AC_PATH_DEREGISTERED: return (0); 4247 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4248 case AC_LOST_DEVICE: return (0); 4249 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4250 case AC_INQ_CHANGED: return (0); 4251 case AC_GETDEV_CHANGED: return (0); 4252 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4253 case AC_ADVINFO_CHANGED: return (-1); 4254 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4255 } 4256 return (0); 4257 } 4258 4259 static int 4260 xpt_async_process_dev(struct cam_ed *device, void *arg) 4261 { 4262 union ccb *ccb = arg; 4263 struct cam_path *path = ccb->ccb_h.path; 4264 void *async_arg = ccb->casync.async_arg_ptr; 4265 u_int32_t async_code = ccb->casync.async_code; 4266 int relock; 4267 4268 if (path->device != device 4269 && path->device->lun_id != CAM_LUN_WILDCARD 4270 && device->lun_id != CAM_LUN_WILDCARD) 4271 return (1); 4272 4273 /* 4274 * The async callback could free the device. 4275 * If it is a broadcast async, it doesn't hold 4276 * device reference, so take our own reference. 4277 */ 4278 xpt_acquire_device(device); 4279 4280 /* 4281 * If async for specific device is to be delivered to 4282 * the wildcard client, take the specific device lock. 4283 * XXX: We may need a way for client to specify it. 4284 */ 4285 if ((device->lun_id == CAM_LUN_WILDCARD && 4286 path->device->lun_id != CAM_LUN_WILDCARD) || 4287 (device->target->target_id == CAM_TARGET_WILDCARD && 4288 path->target->target_id != CAM_TARGET_WILDCARD) || 4289 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4290 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4291 mtx_unlock(&device->device_mtx); 4292 xpt_path_lock(path); 4293 relock = 1; 4294 } else 4295 relock = 0; 4296 4297 (*(device->target->bus->xport->ops->async))(async_code, 4298 device->target->bus, device->target, device, async_arg); 4299 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4300 4301 if (relock) { 4302 xpt_path_unlock(path); 4303 mtx_lock(&device->device_mtx); 4304 } 4305 xpt_release_device(device); 4306 return (1); 4307 } 4308 4309 static int 4310 xpt_async_process_tgt(struct cam_et *target, void *arg) 4311 { 4312 union ccb *ccb = arg; 4313 struct cam_path *path = ccb->ccb_h.path; 4314 4315 if (path->target != target 4316 && path->target->target_id != CAM_TARGET_WILDCARD 4317 && target->target_id != CAM_TARGET_WILDCARD) 4318 return (1); 4319 4320 if (ccb->casync.async_code == AC_SENT_BDR) { 4321 /* Update our notion of when the last reset occurred */ 4322 microtime(&target->last_reset); 4323 } 4324 4325 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4326 } 4327 4328 static void 4329 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4330 { 4331 struct cam_eb *bus; 4332 struct cam_path *path; 4333 void *async_arg; 4334 u_int32_t async_code; 4335 4336 path = ccb->ccb_h.path; 4337 async_code = ccb->casync.async_code; 4338 async_arg = ccb->casync.async_arg_ptr; 4339 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4340 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4341 bus = path->bus; 4342 4343 if (async_code == AC_BUS_RESET) { 4344 /* Update our notion of when the last reset occurred */ 4345 microtime(&bus->last_reset); 4346 } 4347 4348 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4349 4350 /* 4351 * If this wasn't a fully wildcarded async, tell all 4352 * clients that want all async events. 4353 */ 4354 if (bus != xpt_periph->path->bus) { 4355 xpt_path_lock(xpt_periph->path); 4356 xpt_async_process_dev(xpt_periph->path->device, ccb); 4357 xpt_path_unlock(xpt_periph->path); 4358 } 4359 4360 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4361 xpt_release_devq(path, 1, TRUE); 4362 else 4363 xpt_release_simq(path->bus->sim, TRUE); 4364 if (ccb->casync.async_arg_size > 0) 4365 free(async_arg, M_CAMXPT); 4366 xpt_free_path(path); 4367 xpt_free_ccb(ccb); 4368 } 4369 4370 static void 4371 xpt_async_bcast(struct async_list *async_head, 4372 u_int32_t async_code, 4373 struct cam_path *path, void *async_arg) 4374 { 4375 struct async_node *cur_entry; 4376 struct mtx *mtx; 4377 4378 cur_entry = SLIST_FIRST(async_head); 4379 while (cur_entry != NULL) { 4380 struct async_node *next_entry; 4381 /* 4382 * Grab the next list entry before we call the current 4383 * entry's callback. This is because the callback function 4384 * can delete its async callback entry. 4385 */ 4386 next_entry = SLIST_NEXT(cur_entry, links); 4387 if ((cur_entry->event_enable & async_code) != 0) { 4388 mtx = cur_entry->event_lock ? 4389 path->device->sim->mtx : NULL; 4390 if (mtx) 4391 mtx_lock(mtx); 4392 cur_entry->callback(cur_entry->callback_arg, 4393 async_code, path, 4394 async_arg); 4395 if (mtx) 4396 mtx_unlock(mtx); 4397 } 4398 cur_entry = next_entry; 4399 } 4400 } 4401 4402 void 4403 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4404 { 4405 union ccb *ccb; 4406 int size; 4407 4408 ccb = xpt_alloc_ccb_nowait(); 4409 if (ccb == NULL) { 4410 xpt_print(path, "Can't allocate CCB to send %s\n", 4411 xpt_async_string(async_code)); 4412 return; 4413 } 4414 4415 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4416 xpt_print(path, "Can't allocate path to send %s\n", 4417 xpt_async_string(async_code)); 4418 xpt_free_ccb(ccb); 4419 return; 4420 } 4421 ccb->ccb_h.path->periph = NULL; 4422 ccb->ccb_h.func_code = XPT_ASYNC; 4423 ccb->ccb_h.cbfcnp = xpt_async_process; 4424 ccb->ccb_h.flags |= CAM_UNLOCKED; 4425 ccb->casync.async_code = async_code; 4426 ccb->casync.async_arg_size = 0; 4427 size = xpt_async_size(async_code); 4428 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4429 ("xpt_async: func %#x %s aync_code %d %s\n", 4430 ccb->ccb_h.func_code, 4431 xpt_action_name(ccb->ccb_h.func_code), 4432 async_code, 4433 xpt_async_string(async_code))); 4434 if (size > 0 && async_arg != NULL) { 4435 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4436 if (ccb->casync.async_arg_ptr == NULL) { 4437 xpt_print(path, "Can't allocate argument to send %s\n", 4438 xpt_async_string(async_code)); 4439 xpt_free_path(ccb->ccb_h.path); 4440 xpt_free_ccb(ccb); 4441 return; 4442 } 4443 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4444 ccb->casync.async_arg_size = size; 4445 } else if (size < 0) { 4446 ccb->casync.async_arg_ptr = async_arg; 4447 ccb->casync.async_arg_size = size; 4448 } 4449 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4450 xpt_freeze_devq(path, 1); 4451 else 4452 xpt_freeze_simq(path->bus->sim, 1); 4453 xpt_action(ccb); 4454 } 4455 4456 static void 4457 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4458 struct cam_et *target, struct cam_ed *device, 4459 void *async_arg) 4460 { 4461 4462 /* 4463 * We only need to handle events for real devices. 4464 */ 4465 if (target->target_id == CAM_TARGET_WILDCARD 4466 || device->lun_id == CAM_LUN_WILDCARD) 4467 return; 4468 4469 printf("%s called\n", __func__); 4470 } 4471 4472 static uint32_t 4473 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4474 { 4475 struct cam_devq *devq; 4476 uint32_t freeze; 4477 4478 devq = dev->sim->devq; 4479 mtx_assert(&devq->send_mtx, MA_OWNED); 4480 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4481 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4482 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4483 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4484 /* Remove frozen device from sendq. */ 4485 if (device_is_queued(dev)) 4486 camq_remove(&devq->send_queue, dev->devq_entry.index); 4487 return (freeze); 4488 } 4489 4490 u_int32_t 4491 xpt_freeze_devq(struct cam_path *path, u_int count) 4492 { 4493 struct cam_ed *dev = path->device; 4494 struct cam_devq *devq; 4495 uint32_t freeze; 4496 4497 devq = dev->sim->devq; 4498 mtx_lock(&devq->send_mtx); 4499 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4500 freeze = xpt_freeze_devq_device(dev, count); 4501 mtx_unlock(&devq->send_mtx); 4502 return (freeze); 4503 } 4504 4505 u_int32_t 4506 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4507 { 4508 struct cam_devq *devq; 4509 uint32_t freeze; 4510 4511 devq = sim->devq; 4512 mtx_lock(&devq->send_mtx); 4513 freeze = (devq->send_queue.qfrozen_cnt += count); 4514 mtx_unlock(&devq->send_mtx); 4515 return (freeze); 4516 } 4517 4518 static void 4519 xpt_release_devq_timeout(void *arg) 4520 { 4521 struct cam_ed *dev; 4522 struct cam_devq *devq; 4523 4524 dev = (struct cam_ed *)arg; 4525 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4526 devq = dev->sim->devq; 4527 mtx_assert(&devq->send_mtx, MA_OWNED); 4528 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4529 xpt_run_devq(devq); 4530 } 4531 4532 void 4533 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4534 { 4535 struct cam_ed *dev; 4536 struct cam_devq *devq; 4537 4538 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4539 count, run_queue)); 4540 dev = path->device; 4541 devq = dev->sim->devq; 4542 mtx_lock(&devq->send_mtx); 4543 if (xpt_release_devq_device(dev, count, run_queue)) 4544 xpt_run_devq(dev->sim->devq); 4545 mtx_unlock(&devq->send_mtx); 4546 } 4547 4548 static int 4549 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4550 { 4551 4552 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4553 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4554 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4555 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4556 if (count > dev->ccbq.queue.qfrozen_cnt) { 4557 #ifdef INVARIANTS 4558 printf("xpt_release_devq(): requested %u > present %u\n", 4559 count, dev->ccbq.queue.qfrozen_cnt); 4560 #endif 4561 count = dev->ccbq.queue.qfrozen_cnt; 4562 } 4563 dev->ccbq.queue.qfrozen_cnt -= count; 4564 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4565 /* 4566 * No longer need to wait for a successful 4567 * command completion. 4568 */ 4569 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4570 /* 4571 * Remove any timeouts that might be scheduled 4572 * to release this queue. 4573 */ 4574 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4575 callout_stop(&dev->callout); 4576 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4577 } 4578 /* 4579 * Now that we are unfrozen schedule the 4580 * device so any pending transactions are 4581 * run. 4582 */ 4583 xpt_schedule_devq(dev->sim->devq, dev); 4584 } else 4585 run_queue = 0; 4586 return (run_queue); 4587 } 4588 4589 void 4590 xpt_release_simq(struct cam_sim *sim, int run_queue) 4591 { 4592 struct cam_devq *devq; 4593 4594 devq = sim->devq; 4595 mtx_lock(&devq->send_mtx); 4596 if (devq->send_queue.qfrozen_cnt <= 0) { 4597 #ifdef INVARIANTS 4598 printf("xpt_release_simq: requested 1 > present %u\n", 4599 devq->send_queue.qfrozen_cnt); 4600 #endif 4601 } else 4602 devq->send_queue.qfrozen_cnt--; 4603 if (devq->send_queue.qfrozen_cnt == 0) { 4604 /* 4605 * If there is a timeout scheduled to release this 4606 * sim queue, remove it. The queue frozen count is 4607 * already at 0. 4608 */ 4609 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4610 callout_stop(&sim->callout); 4611 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4612 } 4613 if (run_queue) { 4614 /* 4615 * Now that we are unfrozen run the send queue. 4616 */ 4617 xpt_run_devq(sim->devq); 4618 } 4619 } 4620 mtx_unlock(&devq->send_mtx); 4621 } 4622 4623 void 4624 xpt_done(union ccb *done_ccb) 4625 { 4626 struct cam_doneq *queue; 4627 int run, hash; 4628 4629 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4630 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4631 done_ccb->csio.bio != NULL) 4632 biotrack(done_ccb->csio.bio, __func__); 4633 #endif 4634 4635 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4636 ("xpt_done: func= %#x %s status %#x\n", 4637 done_ccb->ccb_h.func_code, 4638 xpt_action_name(done_ccb->ccb_h.func_code), 4639 done_ccb->ccb_h.status)); 4640 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4641 return; 4642 4643 /* Store the time the ccb was in the sim */ 4644 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4645 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4646 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4647 queue = &cam_doneqs[hash]; 4648 mtx_lock(&queue->cam_doneq_mtx); 4649 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4650 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4651 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4652 mtx_unlock(&queue->cam_doneq_mtx); 4653 if (run) 4654 wakeup(&queue->cam_doneq); 4655 } 4656 4657 void 4658 xpt_done_direct(union ccb *done_ccb) 4659 { 4660 4661 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4662 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4663 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4664 return; 4665 4666 /* Store the time the ccb was in the sim */ 4667 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4668 xpt_done_process(&done_ccb->ccb_h); 4669 } 4670 4671 union ccb * 4672 xpt_alloc_ccb() 4673 { 4674 union ccb *new_ccb; 4675 4676 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4677 return (new_ccb); 4678 } 4679 4680 union ccb * 4681 xpt_alloc_ccb_nowait() 4682 { 4683 union ccb *new_ccb; 4684 4685 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4686 return (new_ccb); 4687 } 4688 4689 void 4690 xpt_free_ccb(union ccb *free_ccb) 4691 { 4692 free(free_ccb, M_CAMCCB); 4693 } 4694 4695 4696 4697 /* Private XPT functions */ 4698 4699 /* 4700 * Get a CAM control block for the caller. Charge the structure to the device 4701 * referenced by the path. If we don't have sufficient resources to allocate 4702 * more ccbs, we return NULL. 4703 */ 4704 static union ccb * 4705 xpt_get_ccb_nowait(struct cam_periph *periph) 4706 { 4707 union ccb *new_ccb; 4708 4709 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4710 if (new_ccb == NULL) 4711 return (NULL); 4712 periph->periph_allocated++; 4713 cam_ccbq_take_opening(&periph->path->device->ccbq); 4714 return (new_ccb); 4715 } 4716 4717 static union ccb * 4718 xpt_get_ccb(struct cam_periph *periph) 4719 { 4720 union ccb *new_ccb; 4721 4722 cam_periph_unlock(periph); 4723 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4724 cam_periph_lock(periph); 4725 periph->periph_allocated++; 4726 cam_ccbq_take_opening(&periph->path->device->ccbq); 4727 return (new_ccb); 4728 } 4729 4730 union ccb * 4731 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4732 { 4733 struct ccb_hdr *ccb_h; 4734 4735 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4736 cam_periph_assert(periph, MA_OWNED); 4737 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4738 ccb_h->pinfo.priority != priority) { 4739 if (priority < periph->immediate_priority) { 4740 periph->immediate_priority = priority; 4741 xpt_run_allocq(periph, 0); 4742 } else 4743 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4744 "cgticb", 0); 4745 } 4746 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4747 return ((union ccb *)ccb_h); 4748 } 4749 4750 static void 4751 xpt_acquire_bus(struct cam_eb *bus) 4752 { 4753 4754 xpt_lock_buses(); 4755 bus->refcount++; 4756 xpt_unlock_buses(); 4757 } 4758 4759 static void 4760 xpt_release_bus(struct cam_eb *bus) 4761 { 4762 4763 xpt_lock_buses(); 4764 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4765 if (--bus->refcount > 0) { 4766 xpt_unlock_buses(); 4767 return; 4768 } 4769 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4770 xsoftc.bus_generation++; 4771 xpt_unlock_buses(); 4772 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4773 ("destroying bus, but target list is not empty")); 4774 cam_sim_release(bus->sim); 4775 mtx_destroy(&bus->eb_mtx); 4776 free(bus, M_CAMXPT); 4777 } 4778 4779 static struct cam_et * 4780 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4781 { 4782 struct cam_et *cur_target, *target; 4783 4784 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4785 mtx_assert(&bus->eb_mtx, MA_OWNED); 4786 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4787 M_NOWAIT|M_ZERO); 4788 if (target == NULL) 4789 return (NULL); 4790 4791 TAILQ_INIT(&target->ed_entries); 4792 target->bus = bus; 4793 target->target_id = target_id; 4794 target->refcount = 1; 4795 target->generation = 0; 4796 target->luns = NULL; 4797 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4798 timevalclear(&target->last_reset); 4799 /* 4800 * Hold a reference to our parent bus so it 4801 * will not go away before we do. 4802 */ 4803 bus->refcount++; 4804 4805 /* Insertion sort into our bus's target list */ 4806 cur_target = TAILQ_FIRST(&bus->et_entries); 4807 while (cur_target != NULL && cur_target->target_id < target_id) 4808 cur_target = TAILQ_NEXT(cur_target, links); 4809 if (cur_target != NULL) { 4810 TAILQ_INSERT_BEFORE(cur_target, target, links); 4811 } else { 4812 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4813 } 4814 bus->generation++; 4815 return (target); 4816 } 4817 4818 static void 4819 xpt_acquire_target(struct cam_et *target) 4820 { 4821 struct cam_eb *bus = target->bus; 4822 4823 mtx_lock(&bus->eb_mtx); 4824 target->refcount++; 4825 mtx_unlock(&bus->eb_mtx); 4826 } 4827 4828 static void 4829 xpt_release_target(struct cam_et *target) 4830 { 4831 struct cam_eb *bus = target->bus; 4832 4833 mtx_lock(&bus->eb_mtx); 4834 if (--target->refcount > 0) { 4835 mtx_unlock(&bus->eb_mtx); 4836 return; 4837 } 4838 TAILQ_REMOVE(&bus->et_entries, target, links); 4839 bus->generation++; 4840 mtx_unlock(&bus->eb_mtx); 4841 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4842 ("destroying target, but device list is not empty")); 4843 xpt_release_bus(bus); 4844 mtx_destroy(&target->luns_mtx); 4845 if (target->luns) 4846 free(target->luns, M_CAMXPT); 4847 free(target, M_CAMXPT); 4848 } 4849 4850 static struct cam_ed * 4851 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4852 lun_id_t lun_id) 4853 { 4854 struct cam_ed *device; 4855 4856 device = xpt_alloc_device(bus, target, lun_id); 4857 if (device == NULL) 4858 return (NULL); 4859 4860 device->mintags = 1; 4861 device->maxtags = 1; 4862 return (device); 4863 } 4864 4865 static void 4866 xpt_destroy_device(void *context, int pending) 4867 { 4868 struct cam_ed *device = context; 4869 4870 mtx_lock(&device->device_mtx); 4871 mtx_destroy(&device->device_mtx); 4872 free(device, M_CAMDEV); 4873 } 4874 4875 struct cam_ed * 4876 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4877 { 4878 struct cam_ed *cur_device, *device; 4879 struct cam_devq *devq; 4880 cam_status status; 4881 4882 mtx_assert(&bus->eb_mtx, MA_OWNED); 4883 /* Make space for us in the device queue on our bus */ 4884 devq = bus->sim->devq; 4885 mtx_lock(&devq->send_mtx); 4886 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4887 mtx_unlock(&devq->send_mtx); 4888 if (status != CAM_REQ_CMP) 4889 return (NULL); 4890 4891 device = (struct cam_ed *)malloc(sizeof(*device), 4892 M_CAMDEV, M_NOWAIT|M_ZERO); 4893 if (device == NULL) 4894 return (NULL); 4895 4896 cam_init_pinfo(&device->devq_entry); 4897 device->target = target; 4898 device->lun_id = lun_id; 4899 device->sim = bus->sim; 4900 if (cam_ccbq_init(&device->ccbq, 4901 bus->sim->max_dev_openings) != 0) { 4902 free(device, M_CAMDEV); 4903 return (NULL); 4904 } 4905 SLIST_INIT(&device->asyncs); 4906 SLIST_INIT(&device->periphs); 4907 device->generation = 0; 4908 device->flags = CAM_DEV_UNCONFIGURED; 4909 device->tag_delay_count = 0; 4910 device->tag_saved_openings = 0; 4911 device->refcount = 1; 4912 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4913 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4914 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4915 /* 4916 * Hold a reference to our parent bus so it 4917 * will not go away before we do. 4918 */ 4919 target->refcount++; 4920 4921 cur_device = TAILQ_FIRST(&target->ed_entries); 4922 while (cur_device != NULL && cur_device->lun_id < lun_id) 4923 cur_device = TAILQ_NEXT(cur_device, links); 4924 if (cur_device != NULL) 4925 TAILQ_INSERT_BEFORE(cur_device, device, links); 4926 else 4927 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4928 target->generation++; 4929 return (device); 4930 } 4931 4932 void 4933 xpt_acquire_device(struct cam_ed *device) 4934 { 4935 struct cam_eb *bus = device->target->bus; 4936 4937 mtx_lock(&bus->eb_mtx); 4938 device->refcount++; 4939 mtx_unlock(&bus->eb_mtx); 4940 } 4941 4942 void 4943 xpt_release_device(struct cam_ed *device) 4944 { 4945 struct cam_eb *bus = device->target->bus; 4946 struct cam_devq *devq; 4947 4948 mtx_lock(&bus->eb_mtx); 4949 if (--device->refcount > 0) { 4950 mtx_unlock(&bus->eb_mtx); 4951 return; 4952 } 4953 4954 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4955 device->target->generation++; 4956 mtx_unlock(&bus->eb_mtx); 4957 4958 /* Release our slot in the devq */ 4959 devq = bus->sim->devq; 4960 mtx_lock(&devq->send_mtx); 4961 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4962 mtx_unlock(&devq->send_mtx); 4963 4964 KASSERT(SLIST_EMPTY(&device->periphs), 4965 ("destroying device, but periphs list is not empty")); 4966 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4967 ("destroying device while still queued for ccbs")); 4968 4969 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4970 callout_stop(&device->callout); 4971 4972 xpt_release_target(device->target); 4973 4974 cam_ccbq_fini(&device->ccbq); 4975 /* 4976 * Free allocated memory. free(9) does nothing if the 4977 * supplied pointer is NULL, so it is safe to call without 4978 * checking. 4979 */ 4980 free(device->supported_vpds, M_CAMXPT); 4981 free(device->device_id, M_CAMXPT); 4982 free(device->ext_inq, M_CAMXPT); 4983 free(device->physpath, M_CAMXPT); 4984 free(device->rcap_buf, M_CAMXPT); 4985 free(device->serial_num, M_CAMXPT); 4986 free(device->nvme_data, M_CAMXPT); 4987 free(device->nvme_cdata, M_CAMXPT); 4988 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4989 } 4990 4991 u_int32_t 4992 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4993 { 4994 int result; 4995 struct cam_ed *dev; 4996 4997 dev = path->device; 4998 mtx_lock(&dev->sim->devq->send_mtx); 4999 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5000 mtx_unlock(&dev->sim->devq->send_mtx); 5001 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5002 || (dev->inq_flags & SID_CmdQue) != 0) 5003 dev->tag_saved_openings = newopenings; 5004 return (result); 5005 } 5006 5007 static struct cam_eb * 5008 xpt_find_bus(path_id_t path_id) 5009 { 5010 struct cam_eb *bus; 5011 5012 xpt_lock_buses(); 5013 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5014 bus != NULL; 5015 bus = TAILQ_NEXT(bus, links)) { 5016 if (bus->path_id == path_id) { 5017 bus->refcount++; 5018 break; 5019 } 5020 } 5021 xpt_unlock_buses(); 5022 return (bus); 5023 } 5024 5025 static struct cam_et * 5026 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5027 { 5028 struct cam_et *target; 5029 5030 mtx_assert(&bus->eb_mtx, MA_OWNED); 5031 for (target = TAILQ_FIRST(&bus->et_entries); 5032 target != NULL; 5033 target = TAILQ_NEXT(target, links)) { 5034 if (target->target_id == target_id) { 5035 target->refcount++; 5036 break; 5037 } 5038 } 5039 return (target); 5040 } 5041 5042 static struct cam_ed * 5043 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5044 { 5045 struct cam_ed *device; 5046 5047 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5048 for (device = TAILQ_FIRST(&target->ed_entries); 5049 device != NULL; 5050 device = TAILQ_NEXT(device, links)) { 5051 if (device->lun_id == lun_id) { 5052 device->refcount++; 5053 break; 5054 } 5055 } 5056 return (device); 5057 } 5058 5059 void 5060 xpt_start_tags(struct cam_path *path) 5061 { 5062 struct ccb_relsim crs; 5063 struct cam_ed *device; 5064 struct cam_sim *sim; 5065 int newopenings; 5066 5067 device = path->device; 5068 sim = path->bus->sim; 5069 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5070 xpt_freeze_devq(path, /*count*/1); 5071 device->inq_flags |= SID_CmdQue; 5072 if (device->tag_saved_openings != 0) 5073 newopenings = device->tag_saved_openings; 5074 else 5075 newopenings = min(device->maxtags, 5076 sim->max_tagged_dev_openings); 5077 xpt_dev_ccbq_resize(path, newopenings); 5078 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5079 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5080 crs.ccb_h.func_code = XPT_REL_SIMQ; 5081 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5082 crs.openings 5083 = crs.release_timeout 5084 = crs.qfrozen_cnt 5085 = 0; 5086 xpt_action((union ccb *)&crs); 5087 } 5088 5089 void 5090 xpt_stop_tags(struct cam_path *path) 5091 { 5092 struct ccb_relsim crs; 5093 struct cam_ed *device; 5094 struct cam_sim *sim; 5095 5096 device = path->device; 5097 sim = path->bus->sim; 5098 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5099 device->tag_delay_count = 0; 5100 xpt_freeze_devq(path, /*count*/1); 5101 device->inq_flags &= ~SID_CmdQue; 5102 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5103 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5104 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5105 crs.ccb_h.func_code = XPT_REL_SIMQ; 5106 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5107 crs.openings 5108 = crs.release_timeout 5109 = crs.qfrozen_cnt 5110 = 0; 5111 xpt_action((union ccb *)&crs); 5112 } 5113 5114 /* 5115 * Assume all possible buses are detected by this time, so allow boot 5116 * as soon as they all are scanned. 5117 */ 5118 static void 5119 xpt_boot_delay(void *arg) 5120 { 5121 5122 xpt_release_boot(); 5123 } 5124 5125 /* 5126 * Now that all config hooks have completed, start boot_delay timer, 5127 * waiting for possibly still undetected buses (USB) to appear. 5128 */ 5129 static void 5130 xpt_ch_done(void *arg) 5131 { 5132 5133 callout_init(&xsoftc.boot_callout, 1); 5134 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5135 xpt_boot_delay, NULL, 0); 5136 } 5137 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL); 5138 5139 /* 5140 * Now that interrupts are enabled, go find our devices 5141 */ 5142 static void 5143 xpt_config(void *arg) 5144 { 5145 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5146 printf("xpt_config: failed to create taskqueue thread.\n"); 5147 5148 /* Setup debugging path */ 5149 if (cam_dflags != CAM_DEBUG_NONE) { 5150 if (xpt_create_path(&cam_dpath, NULL, 5151 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5152 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5153 printf("xpt_config: xpt_create_path() failed for debug" 5154 " target %d:%d:%d, debugging disabled\n", 5155 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5156 cam_dflags = CAM_DEBUG_NONE; 5157 } 5158 } else 5159 cam_dpath = NULL; 5160 5161 periphdriver_init(1); 5162 xpt_hold_boot(); 5163 5164 /* Fire up rescan thread. */ 5165 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5166 "cam", "scanner")) { 5167 printf("xpt_config: failed to create rescan thread.\n"); 5168 } 5169 } 5170 5171 void 5172 xpt_hold_boot_locked(void) 5173 { 5174 5175 if (xsoftc.buses_to_config++ == 0) 5176 root_mount_hold_token("CAM", &xsoftc.xpt_rootmount); 5177 } 5178 5179 void 5180 xpt_hold_boot(void) 5181 { 5182 5183 xpt_lock_buses(); 5184 xpt_hold_boot_locked(); 5185 xpt_unlock_buses(); 5186 } 5187 5188 void 5189 xpt_release_boot(void) 5190 { 5191 5192 xpt_lock_buses(); 5193 if (--xsoftc.buses_to_config == 0) { 5194 if (xsoftc.buses_config_done == 0) { 5195 xsoftc.buses_config_done = 1; 5196 xsoftc.buses_to_config++; 5197 TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task, 5198 NULL); 5199 taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task); 5200 } else 5201 root_mount_rel(&xsoftc.xpt_rootmount); 5202 } 5203 xpt_unlock_buses(); 5204 } 5205 5206 /* 5207 * If the given device only has one peripheral attached to it, and if that 5208 * peripheral is the passthrough driver, announce it. This insures that the 5209 * user sees some sort of announcement for every peripheral in their system. 5210 */ 5211 static int 5212 xptpassannouncefunc(struct cam_ed *device, void *arg) 5213 { 5214 struct cam_periph *periph; 5215 int i; 5216 5217 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5218 periph = SLIST_NEXT(periph, periph_links), i++); 5219 5220 periph = SLIST_FIRST(&device->periphs); 5221 if ((i == 1) 5222 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5223 xpt_announce_periph(periph, NULL); 5224 5225 return(1); 5226 } 5227 5228 static void 5229 xpt_finishconfig_task(void *context, int pending) 5230 { 5231 5232 periphdriver_init(2); 5233 /* 5234 * Check for devices with no "standard" peripheral driver 5235 * attached. For any devices like that, announce the 5236 * passthrough driver so the user will see something. 5237 */ 5238 if (!bootverbose) 5239 xpt_for_all_devices(xptpassannouncefunc, NULL); 5240 5241 xpt_release_boot(); 5242 } 5243 5244 cam_status 5245 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5246 struct cam_path *path) 5247 { 5248 struct ccb_setasync csa; 5249 cam_status status; 5250 int xptpath = 0; 5251 5252 if (path == NULL) { 5253 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5254 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5255 if (status != CAM_REQ_CMP) 5256 return (status); 5257 xpt_path_lock(path); 5258 xptpath = 1; 5259 } 5260 5261 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5262 csa.ccb_h.func_code = XPT_SASYNC_CB; 5263 csa.event_enable = event; 5264 csa.callback = cbfunc; 5265 csa.callback_arg = cbarg; 5266 xpt_action((union ccb *)&csa); 5267 status = csa.ccb_h.status; 5268 5269 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5270 ("xpt_register_async: func %p\n", cbfunc)); 5271 5272 if (xptpath) { 5273 xpt_path_unlock(path); 5274 xpt_free_path(path); 5275 } 5276 5277 if ((status == CAM_REQ_CMP) && 5278 (csa.event_enable & AC_FOUND_DEVICE)) { 5279 /* 5280 * Get this peripheral up to date with all 5281 * the currently existing devices. 5282 */ 5283 xpt_for_all_devices(xptsetasyncfunc, &csa); 5284 } 5285 if ((status == CAM_REQ_CMP) && 5286 (csa.event_enable & AC_PATH_REGISTERED)) { 5287 /* 5288 * Get this peripheral up to date with all 5289 * the currently existing buses. 5290 */ 5291 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5292 } 5293 5294 return (status); 5295 } 5296 5297 static void 5298 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5299 { 5300 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5301 5302 switch (work_ccb->ccb_h.func_code) { 5303 /* Common cases first */ 5304 case XPT_PATH_INQ: /* Path routing inquiry */ 5305 { 5306 struct ccb_pathinq *cpi; 5307 5308 cpi = &work_ccb->cpi; 5309 cpi->version_num = 1; /* XXX??? */ 5310 cpi->hba_inquiry = 0; 5311 cpi->target_sprt = 0; 5312 cpi->hba_misc = 0; 5313 cpi->hba_eng_cnt = 0; 5314 cpi->max_target = 0; 5315 cpi->max_lun = 0; 5316 cpi->initiator_id = 0; 5317 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5318 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5319 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5320 cpi->unit_number = sim->unit_number; 5321 cpi->bus_id = sim->bus_id; 5322 cpi->base_transfer_speed = 0; 5323 cpi->protocol = PROTO_UNSPECIFIED; 5324 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5325 cpi->transport = XPORT_UNSPECIFIED; 5326 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5327 cpi->ccb_h.status = CAM_REQ_CMP; 5328 break; 5329 } 5330 default: 5331 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5332 break; 5333 } 5334 xpt_done(work_ccb); 5335 } 5336 5337 /* 5338 * The xpt as a "controller" has no interrupt sources, so polling 5339 * is a no-op. 5340 */ 5341 static void 5342 xptpoll(struct cam_sim *sim) 5343 { 5344 } 5345 5346 void 5347 xpt_lock_buses(void) 5348 { 5349 mtx_lock(&xsoftc.xpt_topo_lock); 5350 } 5351 5352 void 5353 xpt_unlock_buses(void) 5354 { 5355 mtx_unlock(&xsoftc.xpt_topo_lock); 5356 } 5357 5358 struct mtx * 5359 xpt_path_mtx(struct cam_path *path) 5360 { 5361 5362 return (&path->device->device_mtx); 5363 } 5364 5365 static void 5366 xpt_done_process(struct ccb_hdr *ccb_h) 5367 { 5368 struct cam_sim *sim = NULL; 5369 struct cam_devq *devq = NULL; 5370 struct mtx *mtx = NULL; 5371 5372 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5373 struct ccb_scsiio *csio; 5374 5375 if (ccb_h->func_code == XPT_SCSI_IO) { 5376 csio = &((union ccb *)ccb_h)->csio; 5377 if (csio->bio != NULL) 5378 biotrack(csio->bio, __func__); 5379 } 5380 #endif 5381 5382 if (ccb_h->flags & CAM_HIGH_POWER) { 5383 struct highpowerlist *hphead; 5384 struct cam_ed *device; 5385 5386 mtx_lock(&xsoftc.xpt_highpower_lock); 5387 hphead = &xsoftc.highpowerq; 5388 5389 device = STAILQ_FIRST(hphead); 5390 5391 /* 5392 * Increment the count since this command is done. 5393 */ 5394 xsoftc.num_highpower++; 5395 5396 /* 5397 * Any high powered commands queued up? 5398 */ 5399 if (device != NULL) { 5400 5401 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5402 mtx_unlock(&xsoftc.xpt_highpower_lock); 5403 5404 mtx_lock(&device->sim->devq->send_mtx); 5405 xpt_release_devq_device(device, 5406 /*count*/1, /*runqueue*/TRUE); 5407 mtx_unlock(&device->sim->devq->send_mtx); 5408 } else 5409 mtx_unlock(&xsoftc.xpt_highpower_lock); 5410 } 5411 5412 /* 5413 * Insulate against a race where the periph is destroyed but CCBs are 5414 * still not all processed. This shouldn't happen, but allows us better 5415 * bug diagnostic when it does. 5416 */ 5417 if (ccb_h->path->bus) 5418 sim = ccb_h->path->bus->sim; 5419 5420 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5421 KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request")); 5422 xpt_release_simq(sim, /*run_queue*/FALSE); 5423 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5424 } 5425 5426 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5427 && (ccb_h->status & CAM_DEV_QFRZN)) { 5428 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5429 ccb_h->status &= ~CAM_DEV_QFRZN; 5430 } 5431 5432 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5433 struct cam_ed *dev = ccb_h->path->device; 5434 5435 if (sim) 5436 devq = sim->devq; 5437 KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.", 5438 ccb_h, xpt_action_name(ccb_h->func_code))); 5439 5440 mtx_lock(&devq->send_mtx); 5441 devq->send_active--; 5442 devq->send_openings++; 5443 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5444 5445 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5446 && (dev->ccbq.dev_active == 0))) { 5447 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5448 xpt_release_devq_device(dev, /*count*/1, 5449 /*run_queue*/FALSE); 5450 } 5451 5452 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5453 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5454 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5455 xpt_release_devq_device(dev, /*count*/1, 5456 /*run_queue*/FALSE); 5457 } 5458 5459 if (!device_is_queued(dev)) 5460 (void)xpt_schedule_devq(devq, dev); 5461 xpt_run_devq(devq); 5462 mtx_unlock(&devq->send_mtx); 5463 5464 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5465 mtx = xpt_path_mtx(ccb_h->path); 5466 mtx_lock(mtx); 5467 5468 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5469 && (--dev->tag_delay_count == 0)) 5470 xpt_start_tags(ccb_h->path); 5471 } 5472 } 5473 5474 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5475 if (mtx == NULL) { 5476 mtx = xpt_path_mtx(ccb_h->path); 5477 mtx_lock(mtx); 5478 } 5479 } else { 5480 if (mtx != NULL) { 5481 mtx_unlock(mtx); 5482 mtx = NULL; 5483 } 5484 } 5485 5486 /* Call the peripheral driver's callback */ 5487 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5488 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5489 if (mtx != NULL) 5490 mtx_unlock(mtx); 5491 } 5492 5493 void 5494 xpt_done_td(void *arg) 5495 { 5496 struct cam_doneq *queue = arg; 5497 struct ccb_hdr *ccb_h; 5498 STAILQ_HEAD(, ccb_hdr) doneq; 5499 5500 STAILQ_INIT(&doneq); 5501 mtx_lock(&queue->cam_doneq_mtx); 5502 while (1) { 5503 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5504 queue->cam_doneq_sleep = 1; 5505 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5506 PRIBIO, "-", 0); 5507 queue->cam_doneq_sleep = 0; 5508 } 5509 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5510 mtx_unlock(&queue->cam_doneq_mtx); 5511 5512 THREAD_NO_SLEEPING(); 5513 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5514 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5515 xpt_done_process(ccb_h); 5516 } 5517 THREAD_SLEEPING_OK(); 5518 5519 mtx_lock(&queue->cam_doneq_mtx); 5520 } 5521 } 5522 5523 static void 5524 camisr_runqueue(void) 5525 { 5526 struct ccb_hdr *ccb_h; 5527 struct cam_doneq *queue; 5528 int i; 5529 5530 /* Process global queues. */ 5531 for (i = 0; i < cam_num_doneqs; i++) { 5532 queue = &cam_doneqs[i]; 5533 mtx_lock(&queue->cam_doneq_mtx); 5534 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5535 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5536 mtx_unlock(&queue->cam_doneq_mtx); 5537 xpt_done_process(ccb_h); 5538 mtx_lock(&queue->cam_doneq_mtx); 5539 } 5540 mtx_unlock(&queue->cam_doneq_mtx); 5541 } 5542 } 5543 5544 struct kv 5545 { 5546 uint32_t v; 5547 const char *name; 5548 }; 5549 5550 static struct kv map[] = { 5551 { XPT_NOOP, "XPT_NOOP" }, 5552 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5553 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5554 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5555 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5556 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5557 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5558 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5559 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5560 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5561 { XPT_DEBUG, "XPT_DEBUG" }, 5562 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5563 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5564 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5565 { XPT_ASYNC, "XPT_ASYNC" }, 5566 { XPT_ABORT, "XPT_ABORT" }, 5567 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5568 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5569 { XPT_TERM_IO, "XPT_TERM_IO" }, 5570 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5571 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5572 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5573 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5574 { XPT_ATA_IO, "XPT_ATA_IO" }, 5575 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5576 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5577 { XPT_NVME_IO, "XPT_NVME_IO" }, 5578 { XPT_MMC_IO, "XPT_MMC_IO" }, 5579 { XPT_SMP_IO, "XPT_SMP_IO" }, 5580 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5581 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5582 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5583 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5584 { XPT_EN_LUN, "XPT_EN_LUN" }, 5585 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5586 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5587 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5588 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5589 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5590 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5591 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5592 { 0, 0 } 5593 }; 5594 5595 const char * 5596 xpt_action_name(uint32_t action) 5597 { 5598 static char buffer[32]; /* Only for unknown messages -- racy */ 5599 struct kv *walker = map; 5600 5601 while (walker->name != NULL) { 5602 if (walker->v == action) 5603 return (walker->name); 5604 walker++; 5605 } 5606 5607 snprintf(buffer, sizeof(buffer), "%#x", action); 5608 return (buffer); 5609 } 5610