xref: /freebsd/sys/cam/cam_xpt.c (revision 6ab38b8e25f31df8140b99c09160d0207f912ef3)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/sbuf.h>
44 #include <sys/taskqueue.h>
45 
46 #include <sys/lock.h>
47 #include <sys/mutex.h>
48 #include <sys/sysctl.h>
49 #include <sys/kthread.h>
50 
51 #include <cam/cam.h>
52 #include <cam/cam_ccb.h>
53 #include <cam/cam_periph.h>
54 #include <cam/cam_queue.h>
55 #include <cam/cam_sim.h>
56 #include <cam/cam_xpt.h>
57 #include <cam/cam_xpt_sim.h>
58 #include <cam/cam_xpt_periph.h>
59 #include <cam/cam_xpt_internal.h>
60 #include <cam/cam_debug.h>
61 #include <cam/cam_compat.h>
62 
63 #include <cam/scsi/scsi_all.h>
64 #include <cam/scsi/scsi_message.h>
65 #include <cam/scsi/scsi_pass.h>
66 
67 #include <machine/md_var.h>	/* geometry translation */
68 #include <machine/stdarg.h>	/* for xpt_print below */
69 
70 #include "opt_cam.h"
71 
72 /*
73  * This is the maximum number of high powered commands (e.g. start unit)
74  * that can be outstanding at a particular time.
75  */
76 #ifndef CAM_MAX_HIGHPOWER
77 #define CAM_MAX_HIGHPOWER  4
78 #endif
79 
80 /* Datastructures internal to the xpt layer */
81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
82 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
83 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
84 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
85 
86 /* Object for defering XPT actions to a taskqueue */
87 struct xpt_task {
88 	struct task	task;
89 	void		*data1;
90 	uintptr_t	data2;
91 };
92 
93 typedef enum {
94 	XPT_FLAG_OPEN		= 0x01
95 } xpt_flags;
96 
97 struct xpt_softc {
98 	xpt_flags		flags;
99 
100 	/* number of high powered commands that can go through right now */
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/* Registered busses */
110 	TAILQ_HEAD(,cam_eb)	xpt_busses;
111 	u_int			bus_generation;
112 
113 	struct intr_config_hook	*xpt_config_hook;
114 
115 	int			boot_delay;
116 	struct callout 		boot_callout;
117 
118 	struct mtx		xpt_topo_lock;
119 	struct mtx		xpt_lock;
120 };
121 
122 typedef enum {
123 	DM_RET_COPY		= 0x01,
124 	DM_RET_FLAG_MASK	= 0x0f,
125 	DM_RET_NONE		= 0x00,
126 	DM_RET_STOP		= 0x10,
127 	DM_RET_DESCEND		= 0x20,
128 	DM_RET_ERROR		= 0x30,
129 	DM_RET_ACTION_MASK	= 0xf0
130 } dev_match_ret;
131 
132 typedef enum {
133 	XPT_DEPTH_BUS,
134 	XPT_DEPTH_TARGET,
135 	XPT_DEPTH_DEVICE,
136 	XPT_DEPTH_PERIPH
137 } xpt_traverse_depth;
138 
139 struct xpt_traverse_config {
140 	xpt_traverse_depth	depth;
141 	void			*tr_func;
142 	void			*tr_arg;
143 };
144 
145 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
146 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
147 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
148 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
149 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
150 
151 /* Transport layer configuration information */
152 static struct xpt_softc xsoftc;
153 
154 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay);
155 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
156            &xsoftc.boot_delay, 0, "Bus registration wait time");
157 
158 /* Queues for our software interrupt handler */
159 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
160 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
161 static cam_simq_t cam_simq;
162 static struct mtx cam_simq_lock;
163 
164 /* Pointers to software interrupt handlers */
165 static void *cambio_ih;
166 
167 struct cam_periph *xpt_periph;
168 
169 static periph_init_t xpt_periph_init;
170 
171 static struct periph_driver xpt_driver =
172 {
173 	xpt_periph_init, "xpt",
174 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
175 	CAM_PERIPH_DRV_EARLY
176 };
177 
178 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
179 
180 static d_open_t xptopen;
181 static d_close_t xptclose;
182 static d_ioctl_t xptioctl;
183 static d_ioctl_t xptdoioctl;
184 
185 static struct cdevsw xpt_cdevsw = {
186 	.d_version =	D_VERSION,
187 	.d_flags =	0,
188 	.d_open =	xptopen,
189 	.d_close =	xptclose,
190 	.d_ioctl =	xptioctl,
191 	.d_name =	"xpt",
192 };
193 
194 /* Storage for debugging datastructures */
195 struct cam_path *cam_dpath;
196 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
197 TUNABLE_INT("kern.cam.dflags", &cam_dflags);
198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW,
199 	&cam_dflags, 0, "Enabled debug flags");
200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
201 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay);
202 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW,
203 	&cam_debug_delay, 0, "Delay in us after each debug message");
204 
205 /* Our boot-time initialization hook */
206 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
207 
208 static moduledata_t cam_moduledata = {
209 	"cam",
210 	cam_module_event_handler,
211 	NULL
212 };
213 
214 static int	xpt_init(void *);
215 
216 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
217 MODULE_VERSION(cam, 1);
218 
219 
220 static void		xpt_async_bcast(struct async_list *async_head,
221 					u_int32_t async_code,
222 					struct cam_path *path,
223 					void *async_arg);
224 static path_id_t xptnextfreepathid(void);
225 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
226 static union ccb *xpt_get_ccb(struct cam_ed *device);
227 static void	 xpt_run_dev_allocq(struct cam_ed *device);
228 static void	 xpt_run_devq(struct cam_devq *devq);
229 static timeout_t xpt_release_devq_timeout;
230 static void	 xpt_release_simq_timeout(void *arg) __unused;
231 static void	 xpt_release_bus(struct cam_eb *bus);
232 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
233 		    int run_queue);
234 static struct cam_et*
235 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
236 static void	 xpt_release_target(struct cam_et *target);
237 static struct cam_eb*
238 		 xpt_find_bus(path_id_t path_id);
239 static struct cam_et*
240 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
241 static struct cam_ed*
242 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
243 static void	 xpt_config(void *arg);
244 static xpt_devicefunc_t xptpassannouncefunc;
245 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
246 static void	 xptpoll(struct cam_sim *sim);
247 static void	 camisr(void *);
248 static void	 camisr_runqueue(struct cam_sim *);
249 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
250 				    u_int num_patterns, struct cam_eb *bus);
251 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
252 				       u_int num_patterns,
253 				       struct cam_ed *device);
254 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
255 				       u_int num_patterns,
256 				       struct cam_periph *periph);
257 static xpt_busfunc_t	xptedtbusfunc;
258 static xpt_targetfunc_t	xptedttargetfunc;
259 static xpt_devicefunc_t	xptedtdevicefunc;
260 static xpt_periphfunc_t	xptedtperiphfunc;
261 static xpt_pdrvfunc_t	xptplistpdrvfunc;
262 static xpt_periphfunc_t	xptplistperiphfunc;
263 static int		xptedtmatch(struct ccb_dev_match *cdm);
264 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
265 static int		xptbustraverse(struct cam_eb *start_bus,
266 				       xpt_busfunc_t *tr_func, void *arg);
267 static int		xpttargettraverse(struct cam_eb *bus,
268 					  struct cam_et *start_target,
269 					  xpt_targetfunc_t *tr_func, void *arg);
270 static int		xptdevicetraverse(struct cam_et *target,
271 					  struct cam_ed *start_device,
272 					  xpt_devicefunc_t *tr_func, void *arg);
273 static int		xptperiphtraverse(struct cam_ed *device,
274 					  struct cam_periph *start_periph,
275 					  xpt_periphfunc_t *tr_func, void *arg);
276 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
277 					xpt_pdrvfunc_t *tr_func, void *arg);
278 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
279 					    struct cam_periph *start_periph,
280 					    xpt_periphfunc_t *tr_func,
281 					    void *arg);
282 static xpt_busfunc_t	xptdefbusfunc;
283 static xpt_targetfunc_t	xptdeftargetfunc;
284 static xpt_devicefunc_t	xptdefdevicefunc;
285 static xpt_periphfunc_t	xptdefperiphfunc;
286 static void		xpt_finishconfig_task(void *context, int pending);
287 static void		xpt_dev_async_default(u_int32_t async_code,
288 					      struct cam_eb *bus,
289 					      struct cam_et *target,
290 					      struct cam_ed *device,
291 					      void *async_arg);
292 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
293 						 struct cam_et *target,
294 						 lun_id_t lun_id);
295 static xpt_devicefunc_t	xptsetasyncfunc;
296 static xpt_busfunc_t	xptsetasyncbusfunc;
297 static cam_status	xptregister(struct cam_periph *periph,
298 				    void *arg);
299 static __inline int periph_is_queued(struct cam_periph *periph);
300 static __inline int device_is_queued(struct cam_ed *device);
301 
302 static __inline int
303 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
304 {
305 	int	retval;
306 
307 	if ((dev->ccbq.queue.entries > 0) &&
308 	    (dev->ccbq.dev_openings > 0) &&
309 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
310 		/*
311 		 * The priority of a device waiting for controller
312 		 * resources is that of the highest priority CCB
313 		 * enqueued.
314 		 */
315 		retval =
316 		    xpt_schedule_dev(&devq->send_queue,
317 				     &dev->devq_entry.pinfo,
318 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
319 	} else {
320 		retval = 0;
321 	}
322 	return (retval);
323 }
324 
325 static __inline int
326 periph_is_queued(struct cam_periph *periph)
327 {
328 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
329 }
330 
331 static __inline int
332 device_is_queued(struct cam_ed *device)
333 {
334 	return (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX);
335 }
336 
337 static void
338 xpt_periph_init()
339 {
340 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
341 }
342 
343 static void
344 xptdone(struct cam_periph *periph, union ccb *done_ccb)
345 {
346 	/* Caller will release the CCB */
347 	wakeup(&done_ccb->ccb_h.cbfcnp);
348 }
349 
350 static int
351 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
352 {
353 
354 	/*
355 	 * Only allow read-write access.
356 	 */
357 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
358 		return(EPERM);
359 
360 	/*
361 	 * We don't allow nonblocking access.
362 	 */
363 	if ((flags & O_NONBLOCK) != 0) {
364 		printf("%s: can't do nonblocking access\n", devtoname(dev));
365 		return(ENODEV);
366 	}
367 
368 	/* Mark ourselves open */
369 	mtx_lock(&xsoftc.xpt_lock);
370 	xsoftc.flags |= XPT_FLAG_OPEN;
371 	mtx_unlock(&xsoftc.xpt_lock);
372 
373 	return(0);
374 }
375 
376 static int
377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379 
380 	/* Mark ourselves closed */
381 	mtx_lock(&xsoftc.xpt_lock);
382 	xsoftc.flags &= ~XPT_FLAG_OPEN;
383 	mtx_unlock(&xsoftc.xpt_lock);
384 
385 	return(0);
386 }
387 
388 /*
389  * Don't automatically grab the xpt softc lock here even though this is going
390  * through the xpt device.  The xpt device is really just a back door for
391  * accessing other devices and SIMs, so the right thing to do is to grab
392  * the appropriate SIM lock once the bus/SIM is located.
393  */
394 static int
395 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
396 {
397 	int error;
398 
399 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
400 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
401 	}
402 	return (error);
403 }
404 
405 static int
406 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
407 {
408 	int error;
409 
410 	error = 0;
411 
412 	switch(cmd) {
413 	/*
414 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
415 	 * to accept CCB types that don't quite make sense to send through a
416 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
417 	 * in the CAM spec.
418 	 */
419 	case CAMIOCOMMAND: {
420 		union ccb *ccb;
421 		union ccb *inccb;
422 		struct cam_eb *bus;
423 
424 		inccb = (union ccb *)addr;
425 
426 		bus = xpt_find_bus(inccb->ccb_h.path_id);
427 		if (bus == NULL)
428 			return (EINVAL);
429 
430 		switch (inccb->ccb_h.func_code) {
431 		case XPT_SCAN_BUS:
432 		case XPT_RESET_BUS:
433 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
434 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
435 				xpt_release_bus(bus);
436 				return (EINVAL);
437 			}
438 			break;
439 		case XPT_SCAN_TGT:
440 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
441 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
442 				xpt_release_bus(bus);
443 				return (EINVAL);
444 			}
445 			break;
446 		default:
447 			break;
448 		}
449 
450 		switch(inccb->ccb_h.func_code) {
451 		case XPT_SCAN_BUS:
452 		case XPT_RESET_BUS:
453 		case XPT_PATH_INQ:
454 		case XPT_ENG_INQ:
455 		case XPT_SCAN_LUN:
456 		case XPT_SCAN_TGT:
457 
458 			ccb = xpt_alloc_ccb();
459 
460 			CAM_SIM_LOCK(bus->sim);
461 
462 			/*
463 			 * Create a path using the bus, target, and lun the
464 			 * user passed in.
465 			 */
466 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 					    inccb->ccb_h.path_id,
468 					    inccb->ccb_h.target_id,
469 					    inccb->ccb_h.target_lun) !=
470 					    CAM_REQ_CMP){
471 				error = EINVAL;
472 				CAM_SIM_UNLOCK(bus->sim);
473 				xpt_free_ccb(ccb);
474 				break;
475 			}
476 			/* Ensure all of our fields are correct */
477 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
478 				      inccb->ccb_h.pinfo.priority);
479 			xpt_merge_ccb(ccb, inccb);
480 			ccb->ccb_h.cbfcnp = xptdone;
481 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
482 			bcopy(ccb, inccb, sizeof(union ccb));
483 			xpt_free_path(ccb->ccb_h.path);
484 			xpt_free_ccb(ccb);
485 			CAM_SIM_UNLOCK(bus->sim);
486 			break;
487 
488 		case XPT_DEBUG: {
489 			union ccb ccb;
490 
491 			/*
492 			 * This is an immediate CCB, so it's okay to
493 			 * allocate it on the stack.
494 			 */
495 
496 			CAM_SIM_LOCK(bus->sim);
497 
498 			/*
499 			 * Create a path using the bus, target, and lun the
500 			 * user passed in.
501 			 */
502 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
503 					    inccb->ccb_h.path_id,
504 					    inccb->ccb_h.target_id,
505 					    inccb->ccb_h.target_lun) !=
506 					    CAM_REQ_CMP){
507 				error = EINVAL;
508 				CAM_SIM_UNLOCK(bus->sim);
509 				break;
510 			}
511 			/* Ensure all of our fields are correct */
512 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
513 				      inccb->ccb_h.pinfo.priority);
514 			xpt_merge_ccb(&ccb, inccb);
515 			ccb.ccb_h.cbfcnp = xptdone;
516 			xpt_action(&ccb);
517 			bcopy(&ccb, inccb, sizeof(union ccb));
518 			xpt_free_path(ccb.ccb_h.path);
519 			CAM_SIM_UNLOCK(bus->sim);
520 			break;
521 
522 		}
523 		case XPT_DEV_MATCH: {
524 			struct cam_periph_map_info mapinfo;
525 			struct cam_path *old_path;
526 
527 			/*
528 			 * We can't deal with physical addresses for this
529 			 * type of transaction.
530 			 */
531 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
532 			    CAM_DATA_VADDR) {
533 				error = EINVAL;
534 				break;
535 			}
536 
537 			/*
538 			 * Save this in case the caller had it set to
539 			 * something in particular.
540 			 */
541 			old_path = inccb->ccb_h.path;
542 
543 			/*
544 			 * We really don't need a path for the matching
545 			 * code.  The path is needed because of the
546 			 * debugging statements in xpt_action().  They
547 			 * assume that the CCB has a valid path.
548 			 */
549 			inccb->ccb_h.path = xpt_periph->path;
550 
551 			bzero(&mapinfo, sizeof(mapinfo));
552 
553 			/*
554 			 * Map the pattern and match buffers into kernel
555 			 * virtual address space.
556 			 */
557 			error = cam_periph_mapmem(inccb, &mapinfo);
558 
559 			if (error) {
560 				inccb->ccb_h.path = old_path;
561 				break;
562 			}
563 
564 			/*
565 			 * This is an immediate CCB, we can send it on directly.
566 			 */
567 			CAM_SIM_LOCK(xpt_path_sim(xpt_periph->path));
568 			xpt_action(inccb);
569 			CAM_SIM_UNLOCK(xpt_path_sim(xpt_periph->path));
570 
571 			/*
572 			 * Map the buffers back into user space.
573 			 */
574 			cam_periph_unmapmem(inccb, &mapinfo);
575 
576 			inccb->ccb_h.path = old_path;
577 
578 			error = 0;
579 			break;
580 		}
581 		default:
582 			error = ENOTSUP;
583 			break;
584 		}
585 		xpt_release_bus(bus);
586 		break;
587 	}
588 	/*
589 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
590 	 * with the periphal driver name and unit name filled in.  The other
591 	 * fields don't really matter as input.  The passthrough driver name
592 	 * ("pass"), and unit number are passed back in the ccb.  The current
593 	 * device generation number, and the index into the device peripheral
594 	 * driver list, and the status are also passed back.  Note that
595 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
596 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
597 	 * (or rather should be) impossible for the device peripheral driver
598 	 * list to change since we look at the whole thing in one pass, and
599 	 * we do it with lock protection.
600 	 *
601 	 */
602 	case CAMGETPASSTHRU: {
603 		union ccb *ccb;
604 		struct cam_periph *periph;
605 		struct periph_driver **p_drv;
606 		char   *name;
607 		u_int unit;
608 		int base_periph_found;
609 
610 		ccb = (union ccb *)addr;
611 		unit = ccb->cgdl.unit_number;
612 		name = ccb->cgdl.periph_name;
613 		base_periph_found = 0;
614 
615 		/*
616 		 * Sanity check -- make sure we don't get a null peripheral
617 		 * driver name.
618 		 */
619 		if (*ccb->cgdl.periph_name == '\0') {
620 			error = EINVAL;
621 			break;
622 		}
623 
624 		/* Keep the list from changing while we traverse it */
625 		xpt_lock_buses();
626 
627 		/* first find our driver in the list of drivers */
628 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
629 			if (strcmp((*p_drv)->driver_name, name) == 0)
630 				break;
631 
632 		if (*p_drv == NULL) {
633 			xpt_unlock_buses();
634 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
635 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
636 			*ccb->cgdl.periph_name = '\0';
637 			ccb->cgdl.unit_number = 0;
638 			error = ENOENT;
639 			break;
640 		}
641 
642 		/*
643 		 * Run through every peripheral instance of this driver
644 		 * and check to see whether it matches the unit passed
645 		 * in by the user.  If it does, get out of the loops and
646 		 * find the passthrough driver associated with that
647 		 * peripheral driver.
648 		 */
649 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
650 		     periph = TAILQ_NEXT(periph, unit_links)) {
651 
652 			if (periph->unit_number == unit)
653 				break;
654 		}
655 		/*
656 		 * If we found the peripheral driver that the user passed
657 		 * in, go through all of the peripheral drivers for that
658 		 * particular device and look for a passthrough driver.
659 		 */
660 		if (periph != NULL) {
661 			struct cam_ed *device;
662 			int i;
663 
664 			base_periph_found = 1;
665 			device = periph->path->device;
666 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
667 			     periph != NULL;
668 			     periph = SLIST_NEXT(periph, periph_links), i++) {
669 				/*
670 				 * Check to see whether we have a
671 				 * passthrough device or not.
672 				 */
673 				if (strcmp(periph->periph_name, "pass") == 0) {
674 					/*
675 					 * Fill in the getdevlist fields.
676 					 */
677 					strcpy(ccb->cgdl.periph_name,
678 					       periph->periph_name);
679 					ccb->cgdl.unit_number =
680 						periph->unit_number;
681 					if (SLIST_NEXT(periph, periph_links))
682 						ccb->cgdl.status =
683 							CAM_GDEVLIST_MORE_DEVS;
684 					else
685 						ccb->cgdl.status =
686 						       CAM_GDEVLIST_LAST_DEVICE;
687 					ccb->cgdl.generation =
688 						device->generation;
689 					ccb->cgdl.index = i;
690 					/*
691 					 * Fill in some CCB header fields
692 					 * that the user may want.
693 					 */
694 					ccb->ccb_h.path_id =
695 						periph->path->bus->path_id;
696 					ccb->ccb_h.target_id =
697 						periph->path->target->target_id;
698 					ccb->ccb_h.target_lun =
699 						periph->path->device->lun_id;
700 					ccb->ccb_h.status = CAM_REQ_CMP;
701 					break;
702 				}
703 			}
704 		}
705 
706 		/*
707 		 * If the periph is null here, one of two things has
708 		 * happened.  The first possibility is that we couldn't
709 		 * find the unit number of the particular peripheral driver
710 		 * that the user is asking about.  e.g. the user asks for
711 		 * the passthrough driver for "da11".  We find the list of
712 		 * "da" peripherals all right, but there is no unit 11.
713 		 * The other possibility is that we went through the list
714 		 * of peripheral drivers attached to the device structure,
715 		 * but didn't find one with the name "pass".  Either way,
716 		 * we return ENOENT, since we couldn't find something.
717 		 */
718 		if (periph == NULL) {
719 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
720 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
721 			*ccb->cgdl.periph_name = '\0';
722 			ccb->cgdl.unit_number = 0;
723 			error = ENOENT;
724 			/*
725 			 * It is unfortunate that this is even necessary,
726 			 * but there are many, many clueless users out there.
727 			 * If this is true, the user is looking for the
728 			 * passthrough driver, but doesn't have one in his
729 			 * kernel.
730 			 */
731 			if (base_periph_found == 1) {
732 				printf("xptioctl: pass driver is not in the "
733 				       "kernel\n");
734 				printf("xptioctl: put \"device pass\" in "
735 				       "your kernel config file\n");
736 			}
737 		}
738 		xpt_unlock_buses();
739 		break;
740 		}
741 	default:
742 		error = ENOTTY;
743 		break;
744 	}
745 
746 	return(error);
747 }
748 
749 static int
750 cam_module_event_handler(module_t mod, int what, void *arg)
751 {
752 	int error;
753 
754 	switch (what) {
755 	case MOD_LOAD:
756 		if ((error = xpt_init(NULL)) != 0)
757 			return (error);
758 		break;
759 	case MOD_UNLOAD:
760 		return EBUSY;
761 	default:
762 		return EOPNOTSUPP;
763 	}
764 
765 	return 0;
766 }
767 
768 static void
769 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
770 {
771 
772 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
773 		xpt_free_path(done_ccb->ccb_h.path);
774 		xpt_free_ccb(done_ccb);
775 	} else {
776 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
777 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
778 	}
779 	xpt_release_boot();
780 }
781 
782 /* thread to handle bus rescans */
783 static void
784 xpt_scanner_thread(void *dummy)
785 {
786 	union ccb	*ccb;
787 	struct cam_sim	*sim;
788 
789 	xpt_lock_buses();
790 	for (;;) {
791 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
792 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
793 			       "ccb_scanq", 0);
794 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
795 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
796 			xpt_unlock_buses();
797 
798 			sim = ccb->ccb_h.path->bus->sim;
799 			CAM_SIM_LOCK(sim);
800 			xpt_action(ccb);
801 			CAM_SIM_UNLOCK(sim);
802 
803 			xpt_lock_buses();
804 		}
805 	}
806 }
807 
808 void
809 xpt_rescan(union ccb *ccb)
810 {
811 	struct ccb_hdr *hdr;
812 
813 	/* Prepare request */
814 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
815 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
816 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
817 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
818 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
819 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
820 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
821 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
822 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
823 	else {
824 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
825 		xpt_free_path(ccb->ccb_h.path);
826 		xpt_free_ccb(ccb);
827 		return;
828 	}
829 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
830 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
831 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
832 	/* Don't make duplicate entries for the same paths. */
833 	xpt_lock_buses();
834 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
835 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
836 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
837 				wakeup(&xsoftc.ccb_scanq);
838 				xpt_unlock_buses();
839 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
840 				xpt_free_path(ccb->ccb_h.path);
841 				xpt_free_ccb(ccb);
842 				return;
843 			}
844 		}
845 	}
846 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
847 	xsoftc.buses_to_config++;
848 	wakeup(&xsoftc.ccb_scanq);
849 	xpt_unlock_buses();
850 }
851 
852 /* Functions accessed by the peripheral drivers */
853 static int
854 xpt_init(void *dummy)
855 {
856 	struct cam_sim *xpt_sim;
857 	struct cam_path *path;
858 	struct cam_devq *devq;
859 	cam_status status;
860 
861 	TAILQ_INIT(&xsoftc.xpt_busses);
862 	TAILQ_INIT(&cam_simq);
863 	TAILQ_INIT(&xsoftc.ccb_scanq);
864 	STAILQ_INIT(&xsoftc.highpowerq);
865 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
866 
867 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
868 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
869 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
870 
871 #ifdef CAM_BOOT_DELAY
872 	/*
873 	 * Override this value at compile time to assist our users
874 	 * who don't use loader to boot a kernel.
875 	 */
876 	xsoftc.boot_delay = CAM_BOOT_DELAY;
877 #endif
878 	/*
879 	 * The xpt layer is, itself, the equivelent of a SIM.
880 	 * Allow 16 ccbs in the ccb pool for it.  This should
881 	 * give decent parallelism when we probe busses and
882 	 * perform other XPT functions.
883 	 */
884 	devq = cam_simq_alloc(16);
885 	xpt_sim = cam_sim_alloc(xptaction,
886 				xptpoll,
887 				"xpt",
888 				/*softc*/NULL,
889 				/*unit*/0,
890 				/*mtx*/&xsoftc.xpt_lock,
891 				/*max_dev_transactions*/0,
892 				/*max_tagged_dev_transactions*/0,
893 				devq);
894 	if (xpt_sim == NULL)
895 		return (ENOMEM);
896 
897 	mtx_lock(&xsoftc.xpt_lock);
898 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
899 		mtx_unlock(&xsoftc.xpt_lock);
900 		printf("xpt_init: xpt_bus_register failed with status %#x,"
901 		       " failing attach\n", status);
902 		return (EINVAL);
903 	}
904 
905 	/*
906 	 * Looking at the XPT from the SIM layer, the XPT is
907 	 * the equivelent of a peripheral driver.  Allocate
908 	 * a peripheral driver entry for us.
909 	 */
910 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
911 				      CAM_TARGET_WILDCARD,
912 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
913 		mtx_unlock(&xsoftc.xpt_lock);
914 		printf("xpt_init: xpt_create_path failed with status %#x,"
915 		       " failing attach\n", status);
916 		return (EINVAL);
917 	}
918 
919 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
920 			 path, NULL, 0, xpt_sim);
921 	xpt_free_path(path);
922 	mtx_unlock(&xsoftc.xpt_lock);
923 	/* Install our software interrupt handlers */
924 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
925 	/*
926 	 * Register a callback for when interrupts are enabled.
927 	 */
928 	xsoftc.xpt_config_hook =
929 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
930 					      M_CAMXPT, M_NOWAIT | M_ZERO);
931 	if (xsoftc.xpt_config_hook == NULL) {
932 		printf("xpt_init: Cannot malloc config hook "
933 		       "- failing attach\n");
934 		return (ENOMEM);
935 	}
936 	xsoftc.xpt_config_hook->ich_func = xpt_config;
937 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
938 		free (xsoftc.xpt_config_hook, M_CAMXPT);
939 		printf("xpt_init: config_intrhook_establish failed "
940 		       "- failing attach\n");
941 	}
942 
943 	return (0);
944 }
945 
946 static cam_status
947 xptregister(struct cam_periph *periph, void *arg)
948 {
949 	struct cam_sim *xpt_sim;
950 
951 	if (periph == NULL) {
952 		printf("xptregister: periph was NULL!!\n");
953 		return(CAM_REQ_CMP_ERR);
954 	}
955 
956 	xpt_sim = (struct cam_sim *)arg;
957 	xpt_sim->softc = periph;
958 	xpt_periph = periph;
959 	periph->softc = NULL;
960 
961 	return(CAM_REQ_CMP);
962 }
963 
964 int32_t
965 xpt_add_periph(struct cam_periph *periph)
966 {
967 	struct cam_ed *device;
968 	int32_t	 status;
969 	struct periph_list *periph_head;
970 
971 	mtx_assert(periph->sim->mtx, MA_OWNED);
972 
973 	device = periph->path->device;
974 
975 	periph_head = &device->periphs;
976 
977 	status = CAM_REQ_CMP;
978 
979 	if (device != NULL) {
980 		/*
981 		 * Make room for this peripheral
982 		 * so it will fit in the queue
983 		 * when it's scheduled to run
984 		 */
985 		status = camq_resize(&device->drvq,
986 				     device->drvq.array_size + 1);
987 
988 		device->generation++;
989 
990 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
991 	}
992 
993 	return (status);
994 }
995 
996 void
997 xpt_remove_periph(struct cam_periph *periph)
998 {
999 	struct cam_ed *device;
1000 
1001 	mtx_assert(periph->sim->mtx, MA_OWNED);
1002 
1003 	device = periph->path->device;
1004 
1005 	if (device != NULL) {
1006 		struct periph_list *periph_head;
1007 
1008 		periph_head = &device->periphs;
1009 
1010 		/* Release the slot for this peripheral */
1011 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1012 
1013 		device->generation++;
1014 
1015 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1016 	}
1017 }
1018 
1019 
1020 void
1021 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1022 {
1023 	struct	cam_path *path = periph->path;
1024 
1025 	mtx_assert(periph->sim->mtx, MA_OWNED);
1026 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1027 
1028 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1029 	       periph->periph_name, periph->unit_number,
1030 	       path->bus->sim->sim_name,
1031 	       path->bus->sim->unit_number,
1032 	       path->bus->sim->bus_id,
1033 	       path->bus->path_id,
1034 	       path->target->target_id,
1035 	       path->device->lun_id);
1036 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1037 	if (path->device->protocol == PROTO_SCSI)
1038 		scsi_print_inquiry(&path->device->inq_data);
1039 	else if (path->device->protocol == PROTO_ATA ||
1040 	    path->device->protocol == PROTO_SATAPM)
1041 		ata_print_ident(&path->device->ident_data);
1042 	else if (path->device->protocol == PROTO_SEMB)
1043 		semb_print_ident(
1044 		    (struct sep_identify_data *)&path->device->ident_data);
1045 	else
1046 		printf("Unknown protocol device\n");
1047 	if (path->device->serial_num_len > 0) {
1048 		/* Don't wrap the screen  - print only the first 60 chars */
1049 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1050 		       periph->unit_number, path->device->serial_num);
1051 	}
1052 	/* Announce transport details. */
1053 	(*(path->bus->xport->announce))(periph);
1054 	/* Announce command queueing. */
1055 	if (path->device->inq_flags & SID_CmdQue
1056 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1057 		printf("%s%d: Command Queueing enabled\n",
1058 		       periph->periph_name, periph->unit_number);
1059 	}
1060 	/* Announce caller's details if they've passed in. */
1061 	if (announce_string != NULL)
1062 		printf("%s%d: %s\n", periph->periph_name,
1063 		       periph->unit_number, announce_string);
1064 }
1065 
1066 void
1067 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1068 {
1069 	if (quirks != 0) {
1070 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1071 		    periph->unit_number, quirks, bit_string);
1072 	}
1073 }
1074 
1075 void
1076 xpt_denounce_periph(struct cam_periph *periph)
1077 {
1078 	struct	cam_path *path = periph->path;
1079 
1080 	mtx_assert(periph->sim->mtx, MA_OWNED);
1081 	printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n",
1082 	       periph->periph_name, periph->unit_number,
1083 	       path->bus->sim->sim_name,
1084 	       path->bus->sim->unit_number,
1085 	       path->bus->sim->bus_id,
1086 	       path->bus->path_id,
1087 	       path->target->target_id,
1088 	       path->device->lun_id);
1089 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1090 	if (path->device->protocol == PROTO_SCSI)
1091 		scsi_print_inquiry_short(&path->device->inq_data);
1092 	else if (path->device->protocol == PROTO_ATA ||
1093 	    path->device->protocol == PROTO_SATAPM)
1094 		ata_print_ident_short(&path->device->ident_data);
1095 	else if (path->device->protocol == PROTO_SEMB)
1096 		semb_print_ident_short(
1097 		    (struct sep_identify_data *)&path->device->ident_data);
1098 	else
1099 		printf("Unknown protocol device");
1100 	if (path->device->serial_num_len > 0)
1101 		printf(" s/n %.60s", path->device->serial_num);
1102 	printf(" detached\n");
1103 }
1104 
1105 
1106 int
1107 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1108 {
1109 	int ret = -1, l;
1110 	struct ccb_dev_advinfo cdai;
1111 	struct scsi_vpd_id_descriptor *idd;
1112 
1113 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
1114 
1115 	memset(&cdai, 0, sizeof(cdai));
1116 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1117 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1118 	cdai.bufsiz = len;
1119 
1120 	if (!strcmp(attr, "GEOM::ident"))
1121 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1122 	else if (!strcmp(attr, "GEOM::physpath"))
1123 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1124 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1125 		 strcmp(attr, "GEOM::lunname") == 0) {
1126 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1127 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1128 	} else
1129 		goto out;
1130 
1131 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1132 	if (cdai.buf == NULL) {
1133 		ret = ENOMEM;
1134 		goto out;
1135 	}
1136 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1137 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1138 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1139 	if (cdai.provsiz == 0)
1140 		goto out;
1141 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1142 		if (strcmp(attr, "GEOM::lunid") == 0) {
1143 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1144 			    cdai.provsiz, scsi_devid_is_lun_naa);
1145 			if (idd == NULL)
1146 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1147 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1148 		} else
1149 			idd = NULL;
1150 		if (idd == NULL)
1151 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1152 			    cdai.provsiz, scsi_devid_is_lun_t10);
1153 		if (idd == NULL)
1154 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1155 			    cdai.provsiz, scsi_devid_is_lun_name);
1156 		if (idd == NULL)
1157 			goto out;
1158 		ret = 0;
1159 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII ||
1160 		    (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1161 			l = strnlen(idd->identifier, idd->length);
1162 			if (l < len) {
1163 				bcopy(idd->identifier, buf, l);
1164 				buf[l] = 0;
1165 			} else
1166 				ret = EFAULT;
1167 		} else {
1168 			if (idd->length * 2 < len) {
1169 				for (l = 0; l < idd->length; l++)
1170 					sprintf(buf + l * 2, "%02x",
1171 					    idd->identifier[l]);
1172 			} else
1173 				ret = EFAULT;
1174 		}
1175 	} else {
1176 		ret = 0;
1177 		if (strlcpy(buf, cdai.buf, len) >= len)
1178 			ret = EFAULT;
1179 	}
1180 
1181 out:
1182 	if (cdai.buf != NULL)
1183 		free(cdai.buf, M_CAMXPT);
1184 	return ret;
1185 }
1186 
1187 static dev_match_ret
1188 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1189 	    struct cam_eb *bus)
1190 {
1191 	dev_match_ret retval;
1192 	int i;
1193 
1194 	retval = DM_RET_NONE;
1195 
1196 	/*
1197 	 * If we aren't given something to match against, that's an error.
1198 	 */
1199 	if (bus == NULL)
1200 		return(DM_RET_ERROR);
1201 
1202 	/*
1203 	 * If there are no match entries, then this bus matches no
1204 	 * matter what.
1205 	 */
1206 	if ((patterns == NULL) || (num_patterns == 0))
1207 		return(DM_RET_DESCEND | DM_RET_COPY);
1208 
1209 	for (i = 0; i < num_patterns; i++) {
1210 		struct bus_match_pattern *cur_pattern;
1211 
1212 		/*
1213 		 * If the pattern in question isn't for a bus node, we
1214 		 * aren't interested.  However, we do indicate to the
1215 		 * calling routine that we should continue descending the
1216 		 * tree, since the user wants to match against lower-level
1217 		 * EDT elements.
1218 		 */
1219 		if (patterns[i].type != DEV_MATCH_BUS) {
1220 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1221 				retval |= DM_RET_DESCEND;
1222 			continue;
1223 		}
1224 
1225 		cur_pattern = &patterns[i].pattern.bus_pattern;
1226 
1227 		/*
1228 		 * If they want to match any bus node, we give them any
1229 		 * device node.
1230 		 */
1231 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1232 			/* set the copy flag */
1233 			retval |= DM_RET_COPY;
1234 
1235 			/*
1236 			 * If we've already decided on an action, go ahead
1237 			 * and return.
1238 			 */
1239 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1240 				return(retval);
1241 		}
1242 
1243 		/*
1244 		 * Not sure why someone would do this...
1245 		 */
1246 		if (cur_pattern->flags == BUS_MATCH_NONE)
1247 			continue;
1248 
1249 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1250 		 && (cur_pattern->path_id != bus->path_id))
1251 			continue;
1252 
1253 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1254 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1255 			continue;
1256 
1257 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1258 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1259 			continue;
1260 
1261 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1262 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1263 			     DEV_IDLEN) != 0))
1264 			continue;
1265 
1266 		/*
1267 		 * If we get to this point, the user definitely wants
1268 		 * information on this bus.  So tell the caller to copy the
1269 		 * data out.
1270 		 */
1271 		retval |= DM_RET_COPY;
1272 
1273 		/*
1274 		 * If the return action has been set to descend, then we
1275 		 * know that we've already seen a non-bus matching
1276 		 * expression, therefore we need to further descend the tree.
1277 		 * This won't change by continuing around the loop, so we
1278 		 * go ahead and return.  If we haven't seen a non-bus
1279 		 * matching expression, we keep going around the loop until
1280 		 * we exhaust the matching expressions.  We'll set the stop
1281 		 * flag once we fall out of the loop.
1282 		 */
1283 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1284 			return(retval);
1285 	}
1286 
1287 	/*
1288 	 * If the return action hasn't been set to descend yet, that means
1289 	 * we haven't seen anything other than bus matching patterns.  So
1290 	 * tell the caller to stop descending the tree -- the user doesn't
1291 	 * want to match against lower level tree elements.
1292 	 */
1293 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1294 		retval |= DM_RET_STOP;
1295 
1296 	return(retval);
1297 }
1298 
1299 static dev_match_ret
1300 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1301 	       struct cam_ed *device)
1302 {
1303 	dev_match_ret retval;
1304 	int i;
1305 
1306 	retval = DM_RET_NONE;
1307 
1308 	/*
1309 	 * If we aren't given something to match against, that's an error.
1310 	 */
1311 	if (device == NULL)
1312 		return(DM_RET_ERROR);
1313 
1314 	/*
1315 	 * If there are no match entries, then this device matches no
1316 	 * matter what.
1317 	 */
1318 	if ((patterns == NULL) || (num_patterns == 0))
1319 		return(DM_RET_DESCEND | DM_RET_COPY);
1320 
1321 	for (i = 0; i < num_patterns; i++) {
1322 		struct device_match_pattern *cur_pattern;
1323 		struct scsi_vpd_device_id *device_id_page;
1324 
1325 		/*
1326 		 * If the pattern in question isn't for a device node, we
1327 		 * aren't interested.
1328 		 */
1329 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1330 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1331 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1332 				retval |= DM_RET_DESCEND;
1333 			continue;
1334 		}
1335 
1336 		cur_pattern = &patterns[i].pattern.device_pattern;
1337 
1338 		/* Error out if mutually exclusive options are specified. */
1339 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1340 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1341 			return(DM_RET_ERROR);
1342 
1343 		/*
1344 		 * If they want to match any device node, we give them any
1345 		 * device node.
1346 		 */
1347 		if (cur_pattern->flags == DEV_MATCH_ANY)
1348 			goto copy_dev_node;
1349 
1350 		/*
1351 		 * Not sure why someone would do this...
1352 		 */
1353 		if (cur_pattern->flags == DEV_MATCH_NONE)
1354 			continue;
1355 
1356 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1357 		 && (cur_pattern->path_id != device->target->bus->path_id))
1358 			continue;
1359 
1360 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1361 		 && (cur_pattern->target_id != device->target->target_id))
1362 			continue;
1363 
1364 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1365 		 && (cur_pattern->target_lun != device->lun_id))
1366 			continue;
1367 
1368 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1369 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1370 				    (caddr_t)&cur_pattern->data.inq_pat,
1371 				    1, sizeof(cur_pattern->data.inq_pat),
1372 				    scsi_static_inquiry_match) == NULL))
1373 			continue;
1374 
1375 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1376 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1377 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1378 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1379 				      device->device_id_len
1380 				    - SVPD_DEVICE_ID_HDR_LEN,
1381 				      cur_pattern->data.devid_pat.id,
1382 				      cur_pattern->data.devid_pat.id_len) != 0))
1383 			continue;
1384 
1385 copy_dev_node:
1386 		/*
1387 		 * If we get to this point, the user definitely wants
1388 		 * information on this device.  So tell the caller to copy
1389 		 * the data out.
1390 		 */
1391 		retval |= DM_RET_COPY;
1392 
1393 		/*
1394 		 * If the return action has been set to descend, then we
1395 		 * know that we've already seen a peripheral matching
1396 		 * expression, therefore we need to further descend the tree.
1397 		 * This won't change by continuing around the loop, so we
1398 		 * go ahead and return.  If we haven't seen a peripheral
1399 		 * matching expression, we keep going around the loop until
1400 		 * we exhaust the matching expressions.  We'll set the stop
1401 		 * flag once we fall out of the loop.
1402 		 */
1403 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1404 			return(retval);
1405 	}
1406 
1407 	/*
1408 	 * If the return action hasn't been set to descend yet, that means
1409 	 * we haven't seen any peripheral matching patterns.  So tell the
1410 	 * caller to stop descending the tree -- the user doesn't want to
1411 	 * match against lower level tree elements.
1412 	 */
1413 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1414 		retval |= DM_RET_STOP;
1415 
1416 	return(retval);
1417 }
1418 
1419 /*
1420  * Match a single peripheral against any number of match patterns.
1421  */
1422 static dev_match_ret
1423 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1424 	       struct cam_periph *periph)
1425 {
1426 	dev_match_ret retval;
1427 	int i;
1428 
1429 	/*
1430 	 * If we aren't given something to match against, that's an error.
1431 	 */
1432 	if (periph == NULL)
1433 		return(DM_RET_ERROR);
1434 
1435 	/*
1436 	 * If there are no match entries, then this peripheral matches no
1437 	 * matter what.
1438 	 */
1439 	if ((patterns == NULL) || (num_patterns == 0))
1440 		return(DM_RET_STOP | DM_RET_COPY);
1441 
1442 	/*
1443 	 * There aren't any nodes below a peripheral node, so there's no
1444 	 * reason to descend the tree any further.
1445 	 */
1446 	retval = DM_RET_STOP;
1447 
1448 	for (i = 0; i < num_patterns; i++) {
1449 		struct periph_match_pattern *cur_pattern;
1450 
1451 		/*
1452 		 * If the pattern in question isn't for a peripheral, we
1453 		 * aren't interested.
1454 		 */
1455 		if (patterns[i].type != DEV_MATCH_PERIPH)
1456 			continue;
1457 
1458 		cur_pattern = &patterns[i].pattern.periph_pattern;
1459 
1460 		/*
1461 		 * If they want to match on anything, then we will do so.
1462 		 */
1463 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1464 			/* set the copy flag */
1465 			retval |= DM_RET_COPY;
1466 
1467 			/*
1468 			 * We've already set the return action to stop,
1469 			 * since there are no nodes below peripherals in
1470 			 * the tree.
1471 			 */
1472 			return(retval);
1473 		}
1474 
1475 		/*
1476 		 * Not sure why someone would do this...
1477 		 */
1478 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1479 			continue;
1480 
1481 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1482 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1483 			continue;
1484 
1485 		/*
1486 		 * For the target and lun id's, we have to make sure the
1487 		 * target and lun pointers aren't NULL.  The xpt peripheral
1488 		 * has a wildcard target and device.
1489 		 */
1490 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1491 		 && ((periph->path->target == NULL)
1492 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1493 			continue;
1494 
1495 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1496 		 && ((periph->path->device == NULL)
1497 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1498 			continue;
1499 
1500 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1501 		 && (cur_pattern->unit_number != periph->unit_number))
1502 			continue;
1503 
1504 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1505 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1506 			     DEV_IDLEN) != 0))
1507 			continue;
1508 
1509 		/*
1510 		 * If we get to this point, the user definitely wants
1511 		 * information on this peripheral.  So tell the caller to
1512 		 * copy the data out.
1513 		 */
1514 		retval |= DM_RET_COPY;
1515 
1516 		/*
1517 		 * The return action has already been set to stop, since
1518 		 * peripherals don't have any nodes below them in the EDT.
1519 		 */
1520 		return(retval);
1521 	}
1522 
1523 	/*
1524 	 * If we get to this point, the peripheral that was passed in
1525 	 * doesn't match any of the patterns.
1526 	 */
1527 	return(retval);
1528 }
1529 
1530 static int
1531 xptedtbusfunc(struct cam_eb *bus, void *arg)
1532 {
1533 	struct ccb_dev_match *cdm;
1534 	dev_match_ret retval;
1535 
1536 	cdm = (struct ccb_dev_match *)arg;
1537 
1538 	/*
1539 	 * If our position is for something deeper in the tree, that means
1540 	 * that we've already seen this node.  So, we keep going down.
1541 	 */
1542 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1543 	 && (cdm->pos.cookie.bus == bus)
1544 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1545 	 && (cdm->pos.cookie.target != NULL))
1546 		retval = DM_RET_DESCEND;
1547 	else
1548 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1549 
1550 	/*
1551 	 * If we got an error, bail out of the search.
1552 	 */
1553 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1554 		cdm->status = CAM_DEV_MATCH_ERROR;
1555 		return(0);
1556 	}
1557 
1558 	/*
1559 	 * If the copy flag is set, copy this bus out.
1560 	 */
1561 	if (retval & DM_RET_COPY) {
1562 		int spaceleft, j;
1563 
1564 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1565 			sizeof(struct dev_match_result));
1566 
1567 		/*
1568 		 * If we don't have enough space to put in another
1569 		 * match result, save our position and tell the
1570 		 * user there are more devices to check.
1571 		 */
1572 		if (spaceleft < sizeof(struct dev_match_result)) {
1573 			bzero(&cdm->pos, sizeof(cdm->pos));
1574 			cdm->pos.position_type =
1575 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1576 
1577 			cdm->pos.cookie.bus = bus;
1578 			cdm->pos.generations[CAM_BUS_GENERATION]=
1579 				xsoftc.bus_generation;
1580 			cdm->status = CAM_DEV_MATCH_MORE;
1581 			return(0);
1582 		}
1583 		j = cdm->num_matches;
1584 		cdm->num_matches++;
1585 		cdm->matches[j].type = DEV_MATCH_BUS;
1586 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1587 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1588 		cdm->matches[j].result.bus_result.unit_number =
1589 			bus->sim->unit_number;
1590 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1591 			bus->sim->sim_name, DEV_IDLEN);
1592 	}
1593 
1594 	/*
1595 	 * If the user is only interested in busses, there's no
1596 	 * reason to descend to the next level in the tree.
1597 	 */
1598 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1599 		return(1);
1600 
1601 	/*
1602 	 * If there is a target generation recorded, check it to
1603 	 * make sure the target list hasn't changed.
1604 	 */
1605 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1606 	 && (bus == cdm->pos.cookie.bus)
1607 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1608 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1609 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1610 	     bus->generation)) {
1611 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1612 		return(0);
1613 	}
1614 
1615 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1616 	 && (cdm->pos.cookie.bus == bus)
1617 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1618 	 && (cdm->pos.cookie.target != NULL))
1619 		return(xpttargettraverse(bus,
1620 					(struct cam_et *)cdm->pos.cookie.target,
1621 					 xptedttargetfunc, arg));
1622 	else
1623 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1624 }
1625 
1626 static int
1627 xptedttargetfunc(struct cam_et *target, void *arg)
1628 {
1629 	struct ccb_dev_match *cdm;
1630 
1631 	cdm = (struct ccb_dev_match *)arg;
1632 
1633 	/*
1634 	 * If there is a device list generation recorded, check it to
1635 	 * make sure the device list hasn't changed.
1636 	 */
1637 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1638 	 && (cdm->pos.cookie.bus == target->bus)
1639 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1640 	 && (cdm->pos.cookie.target == target)
1641 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1642 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1643 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1644 	     target->generation)) {
1645 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1646 		return(0);
1647 	}
1648 
1649 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1650 	 && (cdm->pos.cookie.bus == target->bus)
1651 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1652 	 && (cdm->pos.cookie.target == target)
1653 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1654 	 && (cdm->pos.cookie.device != NULL))
1655 		return(xptdevicetraverse(target,
1656 					(struct cam_ed *)cdm->pos.cookie.device,
1657 					 xptedtdevicefunc, arg));
1658 	else
1659 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1660 }
1661 
1662 static int
1663 xptedtdevicefunc(struct cam_ed *device, void *arg)
1664 {
1665 
1666 	struct ccb_dev_match *cdm;
1667 	dev_match_ret retval;
1668 
1669 	cdm = (struct ccb_dev_match *)arg;
1670 
1671 	/*
1672 	 * If our position is for something deeper in the tree, that means
1673 	 * that we've already seen this node.  So, we keep going down.
1674 	 */
1675 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1676 	 && (cdm->pos.cookie.device == device)
1677 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1678 	 && (cdm->pos.cookie.periph != NULL))
1679 		retval = DM_RET_DESCEND;
1680 	else
1681 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1682 					device);
1683 
1684 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1685 		cdm->status = CAM_DEV_MATCH_ERROR;
1686 		return(0);
1687 	}
1688 
1689 	/*
1690 	 * If the copy flag is set, copy this device out.
1691 	 */
1692 	if (retval & DM_RET_COPY) {
1693 		int spaceleft, j;
1694 
1695 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1696 			sizeof(struct dev_match_result));
1697 
1698 		/*
1699 		 * If we don't have enough space to put in another
1700 		 * match result, save our position and tell the
1701 		 * user there are more devices to check.
1702 		 */
1703 		if (spaceleft < sizeof(struct dev_match_result)) {
1704 			bzero(&cdm->pos, sizeof(cdm->pos));
1705 			cdm->pos.position_type =
1706 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1707 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1708 
1709 			cdm->pos.cookie.bus = device->target->bus;
1710 			cdm->pos.generations[CAM_BUS_GENERATION]=
1711 				xsoftc.bus_generation;
1712 			cdm->pos.cookie.target = device->target;
1713 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1714 				device->target->bus->generation;
1715 			cdm->pos.cookie.device = device;
1716 			cdm->pos.generations[CAM_DEV_GENERATION] =
1717 				device->target->generation;
1718 			cdm->status = CAM_DEV_MATCH_MORE;
1719 			return(0);
1720 		}
1721 		j = cdm->num_matches;
1722 		cdm->num_matches++;
1723 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1724 		cdm->matches[j].result.device_result.path_id =
1725 			device->target->bus->path_id;
1726 		cdm->matches[j].result.device_result.target_id =
1727 			device->target->target_id;
1728 		cdm->matches[j].result.device_result.target_lun =
1729 			device->lun_id;
1730 		cdm->matches[j].result.device_result.protocol =
1731 			device->protocol;
1732 		bcopy(&device->inq_data,
1733 		      &cdm->matches[j].result.device_result.inq_data,
1734 		      sizeof(struct scsi_inquiry_data));
1735 		bcopy(&device->ident_data,
1736 		      &cdm->matches[j].result.device_result.ident_data,
1737 		      sizeof(struct ata_params));
1738 
1739 		/* Let the user know whether this device is unconfigured */
1740 		if (device->flags & CAM_DEV_UNCONFIGURED)
1741 			cdm->matches[j].result.device_result.flags =
1742 				DEV_RESULT_UNCONFIGURED;
1743 		else
1744 			cdm->matches[j].result.device_result.flags =
1745 				DEV_RESULT_NOFLAG;
1746 	}
1747 
1748 	/*
1749 	 * If the user isn't interested in peripherals, don't descend
1750 	 * the tree any further.
1751 	 */
1752 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1753 		return(1);
1754 
1755 	/*
1756 	 * If there is a peripheral list generation recorded, make sure
1757 	 * it hasn't changed.
1758 	 */
1759 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1760 	 && (device->target->bus == cdm->pos.cookie.bus)
1761 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1762 	 && (device->target == cdm->pos.cookie.target)
1763 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1764 	 && (device == cdm->pos.cookie.device)
1765 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1766 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1767 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1768 	     device->generation)){
1769 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1770 		return(0);
1771 	}
1772 
1773 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1774 	 && (cdm->pos.cookie.bus == device->target->bus)
1775 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1776 	 && (cdm->pos.cookie.target == device->target)
1777 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1778 	 && (cdm->pos.cookie.device == device)
1779 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1780 	 && (cdm->pos.cookie.periph != NULL))
1781 		return(xptperiphtraverse(device,
1782 				(struct cam_periph *)cdm->pos.cookie.periph,
1783 				xptedtperiphfunc, arg));
1784 	else
1785 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1786 }
1787 
1788 static int
1789 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1790 {
1791 	struct ccb_dev_match *cdm;
1792 	dev_match_ret retval;
1793 
1794 	cdm = (struct ccb_dev_match *)arg;
1795 
1796 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1797 
1798 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1799 		cdm->status = CAM_DEV_MATCH_ERROR;
1800 		return(0);
1801 	}
1802 
1803 	/*
1804 	 * If the copy flag is set, copy this peripheral out.
1805 	 */
1806 	if (retval & DM_RET_COPY) {
1807 		int spaceleft, j;
1808 
1809 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1810 			sizeof(struct dev_match_result));
1811 
1812 		/*
1813 		 * If we don't have enough space to put in another
1814 		 * match result, save our position and tell the
1815 		 * user there are more devices to check.
1816 		 */
1817 		if (spaceleft < sizeof(struct dev_match_result)) {
1818 			bzero(&cdm->pos, sizeof(cdm->pos));
1819 			cdm->pos.position_type =
1820 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1821 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1822 				CAM_DEV_POS_PERIPH;
1823 
1824 			cdm->pos.cookie.bus = periph->path->bus;
1825 			cdm->pos.generations[CAM_BUS_GENERATION]=
1826 				xsoftc.bus_generation;
1827 			cdm->pos.cookie.target = periph->path->target;
1828 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1829 				periph->path->bus->generation;
1830 			cdm->pos.cookie.device = periph->path->device;
1831 			cdm->pos.generations[CAM_DEV_GENERATION] =
1832 				periph->path->target->generation;
1833 			cdm->pos.cookie.periph = periph;
1834 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1835 				periph->path->device->generation;
1836 			cdm->status = CAM_DEV_MATCH_MORE;
1837 			return(0);
1838 		}
1839 
1840 		j = cdm->num_matches;
1841 		cdm->num_matches++;
1842 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1843 		cdm->matches[j].result.periph_result.path_id =
1844 			periph->path->bus->path_id;
1845 		cdm->matches[j].result.periph_result.target_id =
1846 			periph->path->target->target_id;
1847 		cdm->matches[j].result.periph_result.target_lun =
1848 			periph->path->device->lun_id;
1849 		cdm->matches[j].result.periph_result.unit_number =
1850 			periph->unit_number;
1851 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1852 			periph->periph_name, DEV_IDLEN);
1853 	}
1854 
1855 	return(1);
1856 }
1857 
1858 static int
1859 xptedtmatch(struct ccb_dev_match *cdm)
1860 {
1861 	int ret;
1862 
1863 	cdm->num_matches = 0;
1864 
1865 	/*
1866 	 * Check the bus list generation.  If it has changed, the user
1867 	 * needs to reset everything and start over.
1868 	 */
1869 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1870 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1871 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1872 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1873 		return(0);
1874 	}
1875 
1876 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1877 	 && (cdm->pos.cookie.bus != NULL))
1878 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1879 				     xptedtbusfunc, cdm);
1880 	else
1881 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1882 
1883 	/*
1884 	 * If we get back 0, that means that we had to stop before fully
1885 	 * traversing the EDT.  It also means that one of the subroutines
1886 	 * has set the status field to the proper value.  If we get back 1,
1887 	 * we've fully traversed the EDT and copied out any matching entries.
1888 	 */
1889 	if (ret == 1)
1890 		cdm->status = CAM_DEV_MATCH_LAST;
1891 
1892 	return(ret);
1893 }
1894 
1895 static int
1896 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1897 {
1898 	struct ccb_dev_match *cdm;
1899 
1900 	cdm = (struct ccb_dev_match *)arg;
1901 
1902 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1903 	 && (cdm->pos.cookie.pdrv == pdrv)
1904 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1905 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1906 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1907 	     (*pdrv)->generation)) {
1908 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1909 		return(0);
1910 	}
1911 
1912 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1913 	 && (cdm->pos.cookie.pdrv == pdrv)
1914 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1915 	 && (cdm->pos.cookie.periph != NULL))
1916 		return(xptpdperiphtraverse(pdrv,
1917 				(struct cam_periph *)cdm->pos.cookie.periph,
1918 				xptplistperiphfunc, arg));
1919 	else
1920 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1921 }
1922 
1923 static int
1924 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1925 {
1926 	struct ccb_dev_match *cdm;
1927 	dev_match_ret retval;
1928 
1929 	cdm = (struct ccb_dev_match *)arg;
1930 
1931 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1932 
1933 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1934 		cdm->status = CAM_DEV_MATCH_ERROR;
1935 		return(0);
1936 	}
1937 
1938 	/*
1939 	 * If the copy flag is set, copy this peripheral out.
1940 	 */
1941 	if (retval & DM_RET_COPY) {
1942 		int spaceleft, j;
1943 
1944 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1945 			sizeof(struct dev_match_result));
1946 
1947 		/*
1948 		 * If we don't have enough space to put in another
1949 		 * match result, save our position and tell the
1950 		 * user there are more devices to check.
1951 		 */
1952 		if (spaceleft < sizeof(struct dev_match_result)) {
1953 			struct periph_driver **pdrv;
1954 
1955 			pdrv = NULL;
1956 			bzero(&cdm->pos, sizeof(cdm->pos));
1957 			cdm->pos.position_type =
1958 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1959 				CAM_DEV_POS_PERIPH;
1960 
1961 			/*
1962 			 * This may look a bit non-sensical, but it is
1963 			 * actually quite logical.  There are very few
1964 			 * peripheral drivers, and bloating every peripheral
1965 			 * structure with a pointer back to its parent
1966 			 * peripheral driver linker set entry would cost
1967 			 * more in the long run than doing this quick lookup.
1968 			 */
1969 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1970 				if (strcmp((*pdrv)->driver_name,
1971 				    periph->periph_name) == 0)
1972 					break;
1973 			}
1974 
1975 			if (*pdrv == NULL) {
1976 				cdm->status = CAM_DEV_MATCH_ERROR;
1977 				return(0);
1978 			}
1979 
1980 			cdm->pos.cookie.pdrv = pdrv;
1981 			/*
1982 			 * The periph generation slot does double duty, as
1983 			 * does the periph pointer slot.  They are used for
1984 			 * both edt and pdrv lookups and positioning.
1985 			 */
1986 			cdm->pos.cookie.periph = periph;
1987 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1988 				(*pdrv)->generation;
1989 			cdm->status = CAM_DEV_MATCH_MORE;
1990 			return(0);
1991 		}
1992 
1993 		j = cdm->num_matches;
1994 		cdm->num_matches++;
1995 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1996 		cdm->matches[j].result.periph_result.path_id =
1997 			periph->path->bus->path_id;
1998 
1999 		/*
2000 		 * The transport layer peripheral doesn't have a target or
2001 		 * lun.
2002 		 */
2003 		if (periph->path->target)
2004 			cdm->matches[j].result.periph_result.target_id =
2005 				periph->path->target->target_id;
2006 		else
2007 			cdm->matches[j].result.periph_result.target_id = -1;
2008 
2009 		if (periph->path->device)
2010 			cdm->matches[j].result.periph_result.target_lun =
2011 				periph->path->device->lun_id;
2012 		else
2013 			cdm->matches[j].result.periph_result.target_lun = -1;
2014 
2015 		cdm->matches[j].result.periph_result.unit_number =
2016 			periph->unit_number;
2017 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2018 			periph->periph_name, DEV_IDLEN);
2019 	}
2020 
2021 	return(1);
2022 }
2023 
2024 static int
2025 xptperiphlistmatch(struct ccb_dev_match *cdm)
2026 {
2027 	int ret;
2028 
2029 	cdm->num_matches = 0;
2030 
2031 	/*
2032 	 * At this point in the edt traversal function, we check the bus
2033 	 * list generation to make sure that no busses have been added or
2034 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2035 	 * For the peripheral driver list traversal function, however, we
2036 	 * don't have to worry about new peripheral driver types coming or
2037 	 * going; they're in a linker set, and therefore can't change
2038 	 * without a recompile.
2039 	 */
2040 
2041 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2042 	 && (cdm->pos.cookie.pdrv != NULL))
2043 		ret = xptpdrvtraverse(
2044 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2045 				xptplistpdrvfunc, cdm);
2046 	else
2047 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2048 
2049 	/*
2050 	 * If we get back 0, that means that we had to stop before fully
2051 	 * traversing the peripheral driver tree.  It also means that one of
2052 	 * the subroutines has set the status field to the proper value.  If
2053 	 * we get back 1, we've fully traversed the EDT and copied out any
2054 	 * matching entries.
2055 	 */
2056 	if (ret == 1)
2057 		cdm->status = CAM_DEV_MATCH_LAST;
2058 
2059 	return(ret);
2060 }
2061 
2062 static int
2063 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2064 {
2065 	struct cam_eb *bus, *next_bus;
2066 	int retval;
2067 
2068 	retval = 1;
2069 
2070 	xpt_lock_buses();
2071 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2072 	     bus != NULL;
2073 	     bus = next_bus) {
2074 
2075 		bus->refcount++;
2076 
2077 		/*
2078 		 * XXX The locking here is obviously very complex.  We
2079 		 * should work to simplify it.
2080 		 */
2081 		xpt_unlock_buses();
2082 		CAM_SIM_LOCK(bus->sim);
2083 		retval = tr_func(bus, arg);
2084 		CAM_SIM_UNLOCK(bus->sim);
2085 
2086 		xpt_lock_buses();
2087 		next_bus = TAILQ_NEXT(bus, links);
2088 		xpt_unlock_buses();
2089 
2090 		xpt_release_bus(bus);
2091 
2092 		if (retval == 0)
2093 			return(retval);
2094 		xpt_lock_buses();
2095 	}
2096 	xpt_unlock_buses();
2097 
2098 	return(retval);
2099 }
2100 
2101 static int
2102 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2103 		  xpt_targetfunc_t *tr_func, void *arg)
2104 {
2105 	struct cam_et *target, *next_target;
2106 	int retval;
2107 
2108 	mtx_assert(bus->sim->mtx, MA_OWNED);
2109 	retval = 1;
2110 	for (target = (start_target ? start_target :
2111 		       TAILQ_FIRST(&bus->et_entries));
2112 	     target != NULL; target = next_target) {
2113 
2114 		target->refcount++;
2115 
2116 		retval = tr_func(target, arg);
2117 
2118 		next_target = TAILQ_NEXT(target, links);
2119 
2120 		xpt_release_target(target);
2121 
2122 		if (retval == 0)
2123 			return(retval);
2124 	}
2125 
2126 	return(retval);
2127 }
2128 
2129 static int
2130 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2131 		  xpt_devicefunc_t *tr_func, void *arg)
2132 {
2133 	struct cam_ed *device, *next_device;
2134 	int retval;
2135 
2136 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
2137 	retval = 1;
2138 	for (device = (start_device ? start_device :
2139 		       TAILQ_FIRST(&target->ed_entries));
2140 	     device != NULL;
2141 	     device = next_device) {
2142 
2143 		/*
2144 		 * Hold a reference so the current device does not go away
2145 		 * on us.
2146 		 */
2147 		device->refcount++;
2148 
2149 		retval = tr_func(device, arg);
2150 
2151 		/*
2152 		 * Grab our next pointer before we release the current
2153 		 * device.
2154 		 */
2155 		next_device = TAILQ_NEXT(device, links);
2156 
2157 		xpt_release_device(device);
2158 
2159 		if (retval == 0)
2160 			return(retval);
2161 	}
2162 
2163 	return(retval);
2164 }
2165 
2166 static int
2167 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2168 		  xpt_periphfunc_t *tr_func, void *arg)
2169 {
2170 	struct cam_periph *periph, *next_periph;
2171 	int retval;
2172 
2173 	retval = 1;
2174 
2175 	mtx_assert(device->sim->mtx, MA_OWNED);
2176 	xpt_lock_buses();
2177 	for (periph = (start_periph ? start_periph :
2178 		       SLIST_FIRST(&device->periphs));
2179 	     periph != NULL;
2180 	     periph = next_periph) {
2181 
2182 
2183 		/*
2184 		 * In this case, we want to show peripherals that have been
2185 		 * invalidated, but not peripherals that are scheduled to
2186 		 * be freed.  So instead of calling cam_periph_acquire(),
2187 		 * which will fail if the periph has been invalidated, we
2188 		 * just check for the free flag here.  If it is in the
2189 		 * process of being freed, we skip to the next periph.
2190 		 */
2191 		if (periph->flags & CAM_PERIPH_FREE) {
2192 			next_periph = SLIST_NEXT(periph, periph_links);
2193 			continue;
2194 		}
2195 
2196 		/*
2197 		 * Acquire a reference to this periph while we call the
2198 		 * traversal function, so it can't go away.
2199 		 */
2200 		periph->refcount++;
2201 
2202 		retval = tr_func(periph, arg);
2203 
2204 		/*
2205 		 * Grab the next peripheral before we release this one, so
2206 		 * our next pointer is still valid.
2207 		 */
2208 		next_periph = SLIST_NEXT(periph, periph_links);
2209 
2210 		cam_periph_release_locked_buses(periph);
2211 
2212 		if (retval == 0)
2213 			goto bailout_done;
2214 	}
2215 
2216 bailout_done:
2217 
2218 	xpt_unlock_buses();
2219 
2220 	return(retval);
2221 }
2222 
2223 static int
2224 xptpdrvtraverse(struct periph_driver **start_pdrv,
2225 		xpt_pdrvfunc_t *tr_func, void *arg)
2226 {
2227 	struct periph_driver **pdrv;
2228 	int retval;
2229 
2230 	retval = 1;
2231 
2232 	/*
2233 	 * We don't traverse the peripheral driver list like we do the
2234 	 * other lists, because it is a linker set, and therefore cannot be
2235 	 * changed during runtime.  If the peripheral driver list is ever
2236 	 * re-done to be something other than a linker set (i.e. it can
2237 	 * change while the system is running), the list traversal should
2238 	 * be modified to work like the other traversal functions.
2239 	 */
2240 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2241 	     *pdrv != NULL; pdrv++) {
2242 		retval = tr_func(pdrv, arg);
2243 
2244 		if (retval == 0)
2245 			return(retval);
2246 	}
2247 
2248 	return(retval);
2249 }
2250 
2251 static int
2252 xptpdperiphtraverse(struct periph_driver **pdrv,
2253 		    struct cam_periph *start_periph,
2254 		    xpt_periphfunc_t *tr_func, void *arg)
2255 {
2256 	struct cam_periph *periph, *next_periph;
2257 	struct cam_sim *sim;
2258 	int retval;
2259 
2260 	retval = 1;
2261 
2262 	xpt_lock_buses();
2263 	for (periph = (start_periph ? start_periph :
2264 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2265 	     periph = next_periph) {
2266 
2267 
2268 		/*
2269 		 * In this case, we want to show peripherals that have been
2270 		 * invalidated, but not peripherals that are scheduled to
2271 		 * be freed.  So instead of calling cam_periph_acquire(),
2272 		 * which will fail if the periph has been invalidated, we
2273 		 * just check for the free flag here.  If it is free, we
2274 		 * skip to the next periph.
2275 		 */
2276 		if (periph->flags & CAM_PERIPH_FREE) {
2277 			next_periph = TAILQ_NEXT(periph, unit_links);
2278 			continue;
2279 		}
2280 
2281 		/*
2282 		 * Acquire a reference to this periph while we call the
2283 		 * traversal function, so it can't go away.
2284 		 */
2285 		periph->refcount++;
2286 		sim = periph->sim;
2287 		xpt_unlock_buses();
2288 		CAM_SIM_LOCK(sim);
2289 		xpt_lock_buses();
2290 		retval = tr_func(periph, arg);
2291 
2292 		/*
2293 		 * Grab the next peripheral before we release this one, so
2294 		 * our next pointer is still valid.
2295 		 */
2296 		next_periph = TAILQ_NEXT(periph, unit_links);
2297 
2298 		cam_periph_release_locked_buses(periph);
2299 		CAM_SIM_UNLOCK(sim);
2300 
2301 		if (retval == 0)
2302 			goto bailout_done;
2303 	}
2304 bailout_done:
2305 
2306 	xpt_unlock_buses();
2307 
2308 	return(retval);
2309 }
2310 
2311 static int
2312 xptdefbusfunc(struct cam_eb *bus, void *arg)
2313 {
2314 	struct xpt_traverse_config *tr_config;
2315 
2316 	tr_config = (struct xpt_traverse_config *)arg;
2317 
2318 	if (tr_config->depth == XPT_DEPTH_BUS) {
2319 		xpt_busfunc_t *tr_func;
2320 
2321 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2322 
2323 		return(tr_func(bus, tr_config->tr_arg));
2324 	} else
2325 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2326 }
2327 
2328 static int
2329 xptdeftargetfunc(struct cam_et *target, void *arg)
2330 {
2331 	struct xpt_traverse_config *tr_config;
2332 
2333 	tr_config = (struct xpt_traverse_config *)arg;
2334 
2335 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2336 		xpt_targetfunc_t *tr_func;
2337 
2338 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2339 
2340 		return(tr_func(target, tr_config->tr_arg));
2341 	} else
2342 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2343 }
2344 
2345 static int
2346 xptdefdevicefunc(struct cam_ed *device, void *arg)
2347 {
2348 	struct xpt_traverse_config *tr_config;
2349 
2350 	tr_config = (struct xpt_traverse_config *)arg;
2351 
2352 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2353 		xpt_devicefunc_t *tr_func;
2354 
2355 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2356 
2357 		return(tr_func(device, tr_config->tr_arg));
2358 	} else
2359 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2360 }
2361 
2362 static int
2363 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2364 {
2365 	struct xpt_traverse_config *tr_config;
2366 	xpt_periphfunc_t *tr_func;
2367 
2368 	tr_config = (struct xpt_traverse_config *)arg;
2369 
2370 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2371 
2372 	/*
2373 	 * Unlike the other default functions, we don't check for depth
2374 	 * here.  The peripheral driver level is the last level in the EDT,
2375 	 * so if we're here, we should execute the function in question.
2376 	 */
2377 	return(tr_func(periph, tr_config->tr_arg));
2378 }
2379 
2380 /*
2381  * Execute the given function for every bus in the EDT.
2382  */
2383 static int
2384 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2385 {
2386 	struct xpt_traverse_config tr_config;
2387 
2388 	tr_config.depth = XPT_DEPTH_BUS;
2389 	tr_config.tr_func = tr_func;
2390 	tr_config.tr_arg = arg;
2391 
2392 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2393 }
2394 
2395 /*
2396  * Execute the given function for every device in the EDT.
2397  */
2398 static int
2399 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2400 {
2401 	struct xpt_traverse_config tr_config;
2402 
2403 	tr_config.depth = XPT_DEPTH_DEVICE;
2404 	tr_config.tr_func = tr_func;
2405 	tr_config.tr_arg = arg;
2406 
2407 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2408 }
2409 
2410 static int
2411 xptsetasyncfunc(struct cam_ed *device, void *arg)
2412 {
2413 	struct cam_path path;
2414 	struct ccb_getdev cgd;
2415 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2416 
2417 	/*
2418 	 * Don't report unconfigured devices (Wildcard devs,
2419 	 * devices only for target mode, device instances
2420 	 * that have been invalidated but are waiting for
2421 	 * their last reference count to be released).
2422 	 */
2423 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2424 		return (1);
2425 
2426 	xpt_compile_path(&path,
2427 			 NULL,
2428 			 device->target->bus->path_id,
2429 			 device->target->target_id,
2430 			 device->lun_id);
2431 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2432 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2433 	xpt_action((union ccb *)&cgd);
2434 	csa->callback(csa->callback_arg,
2435 			    AC_FOUND_DEVICE,
2436 			    &path, &cgd);
2437 	xpt_release_path(&path);
2438 
2439 	return(1);
2440 }
2441 
2442 static int
2443 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2444 {
2445 	struct cam_path path;
2446 	struct ccb_pathinq cpi;
2447 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2448 
2449 	xpt_compile_path(&path, /*periph*/NULL,
2450 			 bus->path_id,
2451 			 CAM_TARGET_WILDCARD,
2452 			 CAM_LUN_WILDCARD);
2453 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2454 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2455 	xpt_action((union ccb *)&cpi);
2456 	csa->callback(csa->callback_arg,
2457 			    AC_PATH_REGISTERED,
2458 			    &path, &cpi);
2459 	xpt_release_path(&path);
2460 
2461 	return(1);
2462 }
2463 
2464 void
2465 xpt_action(union ccb *start_ccb)
2466 {
2467 
2468 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2469 
2470 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2471 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2472 }
2473 
2474 void
2475 xpt_action_default(union ccb *start_ccb)
2476 {
2477 	struct cam_path *path;
2478 
2479 	path = start_ccb->ccb_h.path;
2480 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2481 
2482 	switch (start_ccb->ccb_h.func_code) {
2483 	case XPT_SCSI_IO:
2484 	{
2485 		struct cam_ed *device;
2486 
2487 		/*
2488 		 * For the sake of compatibility with SCSI-1
2489 		 * devices that may not understand the identify
2490 		 * message, we include lun information in the
2491 		 * second byte of all commands.  SCSI-1 specifies
2492 		 * that luns are a 3 bit value and reserves only 3
2493 		 * bits for lun information in the CDB.  Later
2494 		 * revisions of the SCSI spec allow for more than 8
2495 		 * luns, but have deprecated lun information in the
2496 		 * CDB.  So, if the lun won't fit, we must omit.
2497 		 *
2498 		 * Also be aware that during initial probing for devices,
2499 		 * the inquiry information is unknown but initialized to 0.
2500 		 * This means that this code will be exercised while probing
2501 		 * devices with an ANSI revision greater than 2.
2502 		 */
2503 		device = path->device;
2504 		if (device->protocol_version <= SCSI_REV_2
2505 		 && start_ccb->ccb_h.target_lun < 8
2506 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2507 
2508 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2509 			    start_ccb->ccb_h.target_lun << 5;
2510 		}
2511 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2512 	}
2513 	/* FALLTHROUGH */
2514 	case XPT_TARGET_IO:
2515 	case XPT_CONT_TARGET_IO:
2516 		start_ccb->csio.sense_resid = 0;
2517 		start_ccb->csio.resid = 0;
2518 		/* FALLTHROUGH */
2519 	case XPT_ATA_IO:
2520 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2521 			start_ccb->ataio.resid = 0;
2522 		/* FALLTHROUGH */
2523 	case XPT_RESET_DEV:
2524 	case XPT_ENG_EXEC:
2525 	case XPT_SMP_IO:
2526 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2527 		if (xpt_schedule_devq(path->bus->sim->devq, path->device))
2528 			xpt_run_devq(path->bus->sim->devq);
2529 		break;
2530 	case XPT_CALC_GEOMETRY:
2531 	{
2532 		struct cam_sim *sim;
2533 
2534 		/* Filter out garbage */
2535 		if (start_ccb->ccg.block_size == 0
2536 		 || start_ccb->ccg.volume_size == 0) {
2537 			start_ccb->ccg.cylinders = 0;
2538 			start_ccb->ccg.heads = 0;
2539 			start_ccb->ccg.secs_per_track = 0;
2540 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2541 			break;
2542 		}
2543 #if defined(PC98) || defined(__sparc64__)
2544 		/*
2545 		 * In a PC-98 system, geometry translation depens on
2546 		 * the "real" device geometry obtained from mode page 4.
2547 		 * SCSI geometry translation is performed in the
2548 		 * initialization routine of the SCSI BIOS and the result
2549 		 * stored in host memory.  If the translation is available
2550 		 * in host memory, use it.  If not, rely on the default
2551 		 * translation the device driver performs.
2552 		 * For sparc64, we may need adjust the geometry of large
2553 		 * disks in order to fit the limitations of the 16-bit
2554 		 * fields of the VTOC8 disk label.
2555 		 */
2556 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2557 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2558 			break;
2559 		}
2560 #endif
2561 		sim = path->bus->sim;
2562 		(*(sim->sim_action))(sim, start_ccb);
2563 		break;
2564 	}
2565 	case XPT_ABORT:
2566 	{
2567 		union ccb* abort_ccb;
2568 
2569 		abort_ccb = start_ccb->cab.abort_ccb;
2570 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2571 
2572 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2573 				struct cam_ccbq *ccbq;
2574 				struct cam_ed *device;
2575 
2576 				device = abort_ccb->ccb_h.path->device;
2577 				ccbq = &device->ccbq;
2578 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2579 				abort_ccb->ccb_h.status =
2580 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2581 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2582 				xpt_done(abort_ccb);
2583 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2584 				break;
2585 			}
2586 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2587 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2588 				/*
2589 				 * We've caught this ccb en route to
2590 				 * the SIM.  Flag it for abort and the
2591 				 * SIM will do so just before starting
2592 				 * real work on the CCB.
2593 				 */
2594 				abort_ccb->ccb_h.status =
2595 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2596 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2597 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2598 				break;
2599 			}
2600 		}
2601 		if (XPT_FC_IS_QUEUED(abort_ccb)
2602 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2603 			/*
2604 			 * It's already completed but waiting
2605 			 * for our SWI to get to it.
2606 			 */
2607 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2608 			break;
2609 		}
2610 		/*
2611 		 * If we weren't able to take care of the abort request
2612 		 * in the XPT, pass the request down to the SIM for processing.
2613 		 */
2614 	}
2615 	/* FALLTHROUGH */
2616 	case XPT_ACCEPT_TARGET_IO:
2617 	case XPT_EN_LUN:
2618 	case XPT_IMMED_NOTIFY:
2619 	case XPT_NOTIFY_ACK:
2620 	case XPT_RESET_BUS:
2621 	case XPT_IMMEDIATE_NOTIFY:
2622 	case XPT_NOTIFY_ACKNOWLEDGE:
2623 	case XPT_GET_SIM_KNOB:
2624 	case XPT_SET_SIM_KNOB:
2625 	{
2626 		struct cam_sim *sim;
2627 
2628 		sim = path->bus->sim;
2629 		(*(sim->sim_action))(sim, start_ccb);
2630 		break;
2631 	}
2632 	case XPT_PATH_INQ:
2633 	{
2634 		struct cam_sim *sim;
2635 
2636 		sim = path->bus->sim;
2637 		(*(sim->sim_action))(sim, start_ccb);
2638 		break;
2639 	}
2640 	case XPT_PATH_STATS:
2641 		start_ccb->cpis.last_reset = path->bus->last_reset;
2642 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2643 		break;
2644 	case XPT_GDEV_TYPE:
2645 	{
2646 		struct cam_ed *dev;
2647 
2648 		dev = path->device;
2649 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2650 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2651 		} else {
2652 			struct ccb_getdev *cgd;
2653 
2654 			cgd = &start_ccb->cgd;
2655 			cgd->protocol = dev->protocol;
2656 			cgd->inq_data = dev->inq_data;
2657 			cgd->ident_data = dev->ident_data;
2658 			cgd->inq_flags = dev->inq_flags;
2659 			cgd->ccb_h.status = CAM_REQ_CMP;
2660 			cgd->serial_num_len = dev->serial_num_len;
2661 			if ((dev->serial_num_len > 0)
2662 			 && (dev->serial_num != NULL))
2663 				bcopy(dev->serial_num, cgd->serial_num,
2664 				      dev->serial_num_len);
2665 		}
2666 		break;
2667 	}
2668 	case XPT_GDEV_STATS:
2669 	{
2670 		struct cam_ed *dev;
2671 
2672 		dev = path->device;
2673 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2674 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2675 		} else {
2676 			struct ccb_getdevstats *cgds;
2677 			struct cam_eb *bus;
2678 			struct cam_et *tar;
2679 
2680 			cgds = &start_ccb->cgds;
2681 			bus = path->bus;
2682 			tar = path->target;
2683 			cgds->dev_openings = dev->ccbq.dev_openings;
2684 			cgds->dev_active = dev->ccbq.dev_active;
2685 			cgds->devq_openings = dev->ccbq.devq_openings;
2686 			cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2687 			cgds->held = dev->ccbq.held;
2688 			cgds->last_reset = tar->last_reset;
2689 			cgds->maxtags = dev->maxtags;
2690 			cgds->mintags = dev->mintags;
2691 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2692 				cgds->last_reset = bus->last_reset;
2693 			cgds->ccb_h.status = CAM_REQ_CMP;
2694 		}
2695 		break;
2696 	}
2697 	case XPT_GDEVLIST:
2698 	{
2699 		struct cam_periph	*nperiph;
2700 		struct periph_list	*periph_head;
2701 		struct ccb_getdevlist	*cgdl;
2702 		u_int			i;
2703 		struct cam_ed		*device;
2704 		int			found;
2705 
2706 
2707 		found = 0;
2708 
2709 		/*
2710 		 * Don't want anyone mucking with our data.
2711 		 */
2712 		device = path->device;
2713 		periph_head = &device->periphs;
2714 		cgdl = &start_ccb->cgdl;
2715 
2716 		/*
2717 		 * Check and see if the list has changed since the user
2718 		 * last requested a list member.  If so, tell them that the
2719 		 * list has changed, and therefore they need to start over
2720 		 * from the beginning.
2721 		 */
2722 		if ((cgdl->index != 0) &&
2723 		    (cgdl->generation != device->generation)) {
2724 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2725 			break;
2726 		}
2727 
2728 		/*
2729 		 * Traverse the list of peripherals and attempt to find
2730 		 * the requested peripheral.
2731 		 */
2732 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2733 		     (nperiph != NULL) && (i <= cgdl->index);
2734 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2735 			if (i == cgdl->index) {
2736 				strncpy(cgdl->periph_name,
2737 					nperiph->periph_name,
2738 					DEV_IDLEN);
2739 				cgdl->unit_number = nperiph->unit_number;
2740 				found = 1;
2741 			}
2742 		}
2743 		if (found == 0) {
2744 			cgdl->status = CAM_GDEVLIST_ERROR;
2745 			break;
2746 		}
2747 
2748 		if (nperiph == NULL)
2749 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2750 		else
2751 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2752 
2753 		cgdl->index++;
2754 		cgdl->generation = device->generation;
2755 
2756 		cgdl->ccb_h.status = CAM_REQ_CMP;
2757 		break;
2758 	}
2759 	case XPT_DEV_MATCH:
2760 	{
2761 		dev_pos_type position_type;
2762 		struct ccb_dev_match *cdm;
2763 
2764 		cdm = &start_ccb->cdm;
2765 
2766 		/*
2767 		 * There are two ways of getting at information in the EDT.
2768 		 * The first way is via the primary EDT tree.  It starts
2769 		 * with a list of busses, then a list of targets on a bus,
2770 		 * then devices/luns on a target, and then peripherals on a
2771 		 * device/lun.  The "other" way is by the peripheral driver
2772 		 * lists.  The peripheral driver lists are organized by
2773 		 * peripheral driver.  (obviously)  So it makes sense to
2774 		 * use the peripheral driver list if the user is looking
2775 		 * for something like "da1", or all "da" devices.  If the
2776 		 * user is looking for something on a particular bus/target
2777 		 * or lun, it's generally better to go through the EDT tree.
2778 		 */
2779 
2780 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2781 			position_type = cdm->pos.position_type;
2782 		else {
2783 			u_int i;
2784 
2785 			position_type = CAM_DEV_POS_NONE;
2786 
2787 			for (i = 0; i < cdm->num_patterns; i++) {
2788 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2789 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2790 					position_type = CAM_DEV_POS_EDT;
2791 					break;
2792 				}
2793 			}
2794 
2795 			if (cdm->num_patterns == 0)
2796 				position_type = CAM_DEV_POS_EDT;
2797 			else if (position_type == CAM_DEV_POS_NONE)
2798 				position_type = CAM_DEV_POS_PDRV;
2799 		}
2800 
2801 		/*
2802 		 * Note that we drop the SIM lock here, because the EDT
2803 		 * traversal code needs to do its own locking.
2804 		 */
2805 		CAM_SIM_UNLOCK(xpt_path_sim(cdm->ccb_h.path));
2806 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2807 		case CAM_DEV_POS_EDT:
2808 			xptedtmatch(cdm);
2809 			break;
2810 		case CAM_DEV_POS_PDRV:
2811 			xptperiphlistmatch(cdm);
2812 			break;
2813 		default:
2814 			cdm->status = CAM_DEV_MATCH_ERROR;
2815 			break;
2816 		}
2817 		CAM_SIM_LOCK(xpt_path_sim(cdm->ccb_h.path));
2818 
2819 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2820 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2821 		else
2822 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2823 
2824 		break;
2825 	}
2826 	case XPT_SASYNC_CB:
2827 	{
2828 		struct ccb_setasync *csa;
2829 		struct async_node *cur_entry;
2830 		struct async_list *async_head;
2831 		u_int32_t added;
2832 
2833 		csa = &start_ccb->csa;
2834 		added = csa->event_enable;
2835 		async_head = &path->device->asyncs;
2836 
2837 		/*
2838 		 * If there is already an entry for us, simply
2839 		 * update it.
2840 		 */
2841 		cur_entry = SLIST_FIRST(async_head);
2842 		while (cur_entry != NULL) {
2843 			if ((cur_entry->callback_arg == csa->callback_arg)
2844 			 && (cur_entry->callback == csa->callback))
2845 				break;
2846 			cur_entry = SLIST_NEXT(cur_entry, links);
2847 		}
2848 
2849 		if (cur_entry != NULL) {
2850 		 	/*
2851 			 * If the request has no flags set,
2852 			 * remove the entry.
2853 			 */
2854 			added &= ~cur_entry->event_enable;
2855 			if (csa->event_enable == 0) {
2856 				SLIST_REMOVE(async_head, cur_entry,
2857 					     async_node, links);
2858 				xpt_release_device(path->device);
2859 				free(cur_entry, M_CAMXPT);
2860 			} else {
2861 				cur_entry->event_enable = csa->event_enable;
2862 			}
2863 			csa->event_enable = added;
2864 		} else {
2865 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2866 					   M_NOWAIT);
2867 			if (cur_entry == NULL) {
2868 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2869 				break;
2870 			}
2871 			cur_entry->event_enable = csa->event_enable;
2872 			cur_entry->callback_arg = csa->callback_arg;
2873 			cur_entry->callback = csa->callback;
2874 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2875 			xpt_acquire_device(path->device);
2876 		}
2877 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2878 		break;
2879 	}
2880 	case XPT_REL_SIMQ:
2881 	{
2882 		struct ccb_relsim *crs;
2883 		struct cam_ed *dev;
2884 
2885 		crs = &start_ccb->crs;
2886 		dev = path->device;
2887 		if (dev == NULL) {
2888 
2889 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2890 			break;
2891 		}
2892 
2893 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2894 
2895 			/* Don't ever go below one opening */
2896 			if (crs->openings > 0) {
2897 				xpt_dev_ccbq_resize(path, crs->openings);
2898 				if (bootverbose) {
2899 					xpt_print(path,
2900 					    "number of openings is now %d\n",
2901 					    crs->openings);
2902 				}
2903 			}
2904 		}
2905 
2906 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2907 
2908 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2909 
2910 				/*
2911 				 * Just extend the old timeout and decrement
2912 				 * the freeze count so that a single timeout
2913 				 * is sufficient for releasing the queue.
2914 				 */
2915 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2916 				callout_stop(&dev->callout);
2917 			} else {
2918 
2919 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2920 			}
2921 
2922 			callout_reset(&dev->callout,
2923 			    (crs->release_timeout * hz) / 1000,
2924 			    xpt_release_devq_timeout, dev);
2925 
2926 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2927 
2928 		}
2929 
2930 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2931 
2932 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2933 				/*
2934 				 * Decrement the freeze count so that a single
2935 				 * completion is still sufficient to unfreeze
2936 				 * the queue.
2937 				 */
2938 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2939 			} else {
2940 
2941 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2942 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2943 			}
2944 		}
2945 
2946 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2947 
2948 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2949 			 || (dev->ccbq.dev_active == 0)) {
2950 
2951 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2952 			} else {
2953 
2954 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2955 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2956 			}
2957 		}
2958 
2959 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2960 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2961 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2962 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2963 		break;
2964 	}
2965 	case XPT_DEBUG: {
2966 		struct cam_path *oldpath;
2967 		struct cam_sim *oldsim;
2968 
2969 		/* Check that all request bits are supported. */
2970 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2971 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2972 			break;
2973 		}
2974 
2975 		cam_dflags = CAM_DEBUG_NONE;
2976 		if (cam_dpath != NULL) {
2977 			/* To release the old path we must hold proper lock. */
2978 			oldpath = cam_dpath;
2979 			cam_dpath = NULL;
2980 			oldsim = xpt_path_sim(oldpath);
2981 			CAM_SIM_UNLOCK(xpt_path_sim(start_ccb->ccb_h.path));
2982 			CAM_SIM_LOCK(oldsim);
2983 			xpt_free_path(oldpath);
2984 			CAM_SIM_UNLOCK(oldsim);
2985 			CAM_SIM_LOCK(xpt_path_sim(start_ccb->ccb_h.path));
2986 		}
2987 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2988 			if (xpt_create_path(&cam_dpath, NULL,
2989 					    start_ccb->ccb_h.path_id,
2990 					    start_ccb->ccb_h.target_id,
2991 					    start_ccb->ccb_h.target_lun) !=
2992 					    CAM_REQ_CMP) {
2993 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2994 			} else {
2995 				cam_dflags = start_ccb->cdbg.flags;
2996 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2997 				xpt_print(cam_dpath, "debugging flags now %x\n",
2998 				    cam_dflags);
2999 			}
3000 		} else
3001 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3002 		break;
3003 	}
3004 	case XPT_NOOP:
3005 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3006 			xpt_freeze_devq(path, 1);
3007 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3008 		break;
3009 	default:
3010 	case XPT_SDEV_TYPE:
3011 	case XPT_TERM_IO:
3012 	case XPT_ENG_INQ:
3013 		/* XXX Implement */
3014 		printf("%s: CCB type %#x not supported\n", __func__,
3015 		       start_ccb->ccb_h.func_code);
3016 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3017 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3018 			xpt_done(start_ccb);
3019 		}
3020 		break;
3021 	}
3022 }
3023 
3024 void
3025 xpt_polled_action(union ccb *start_ccb)
3026 {
3027 	u_int32_t timeout;
3028 	struct	  cam_sim *sim;
3029 	struct	  cam_devq *devq;
3030 	struct	  cam_ed *dev;
3031 
3032 
3033 	timeout = start_ccb->ccb_h.timeout * 10;
3034 	sim = start_ccb->ccb_h.path->bus->sim;
3035 	devq = sim->devq;
3036 	dev = start_ccb->ccb_h.path->device;
3037 
3038 	mtx_assert(sim->mtx, MA_OWNED);
3039 
3040 	/* Don't use ISR for this SIM while polling. */
3041 	sim->flags |= CAM_SIM_POLLED;
3042 
3043 	/*
3044 	 * Steal an opening so that no other queued requests
3045 	 * can get it before us while we simulate interrupts.
3046 	 */
3047 	dev->ccbq.devq_openings--;
3048 	dev->ccbq.dev_openings--;
3049 
3050 	while(((devq != NULL && devq->send_openings <= 0) ||
3051 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3052 		DELAY(100);
3053 		(*(sim->sim_poll))(sim);
3054 		camisr_runqueue(sim);
3055 	}
3056 
3057 	dev->ccbq.devq_openings++;
3058 	dev->ccbq.dev_openings++;
3059 
3060 	if (timeout != 0) {
3061 		xpt_action(start_ccb);
3062 		while(--timeout > 0) {
3063 			(*(sim->sim_poll))(sim);
3064 			camisr_runqueue(sim);
3065 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3066 			    != CAM_REQ_INPROG)
3067 				break;
3068 			DELAY(100);
3069 		}
3070 		if (timeout == 0) {
3071 			/*
3072 			 * XXX Is it worth adding a sim_timeout entry
3073 			 * point so we can attempt recovery?  If
3074 			 * this is only used for dumps, I don't think
3075 			 * it is.
3076 			 */
3077 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3078 		}
3079 	} else {
3080 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3081 	}
3082 
3083 	/* We will use CAM ISR for this SIM again. */
3084 	sim->flags &= ~CAM_SIM_POLLED;
3085 }
3086 
3087 /*
3088  * Schedule a peripheral driver to receive a ccb when it's
3089  * target device has space for more transactions.
3090  */
3091 void
3092 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3093 {
3094 	struct cam_ed *device;
3095 	int runq = 0;
3096 
3097 	mtx_assert(perph->sim->mtx, MA_OWNED);
3098 
3099 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3100 	device = perph->path->device;
3101 	if (periph_is_queued(perph)) {
3102 		/* Simply reorder based on new priority */
3103 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3104 			  ("   change priority to %d\n", new_priority));
3105 		if (new_priority < perph->pinfo.priority) {
3106 			camq_change_priority(&device->drvq,
3107 					     perph->pinfo.index,
3108 					     new_priority);
3109 			runq = 1;
3110 		}
3111 	} else {
3112 		/* New entry on the queue */
3113 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3114 			  ("   added periph to queue\n"));
3115 		perph->pinfo.priority = new_priority;
3116 		perph->pinfo.generation = ++device->drvq.generation;
3117 		camq_insert(&device->drvq, &perph->pinfo);
3118 		runq = 1;
3119 	}
3120 	if (runq != 0) {
3121 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3122 			  ("   calling xpt_run_dev_allocq\n"));
3123 		xpt_run_dev_allocq(device);
3124 	}
3125 }
3126 
3127 
3128 /*
3129  * Schedule a device to run on a given queue.
3130  * If the device was inserted as a new entry on the queue,
3131  * return 1 meaning the device queue should be run. If we
3132  * were already queued, implying someone else has already
3133  * started the queue, return 0 so the caller doesn't attempt
3134  * to run the queue.
3135  */
3136 int
3137 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3138 		 u_int32_t new_priority)
3139 {
3140 	int retval;
3141 	u_int32_t old_priority;
3142 
3143 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3144 
3145 	old_priority = pinfo->priority;
3146 
3147 	/*
3148 	 * Are we already queued?
3149 	 */
3150 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3151 		/* Simply reorder based on new priority */
3152 		if (new_priority < old_priority) {
3153 			camq_change_priority(queue, pinfo->index,
3154 					     new_priority);
3155 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3156 					("changed priority to %d\n",
3157 					 new_priority));
3158 			retval = 1;
3159 		} else
3160 			retval = 0;
3161 	} else {
3162 		/* New entry on the queue */
3163 		if (new_priority < old_priority)
3164 			pinfo->priority = new_priority;
3165 
3166 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3167 				("Inserting onto queue\n"));
3168 		pinfo->generation = ++queue->generation;
3169 		camq_insert(queue, pinfo);
3170 		retval = 1;
3171 	}
3172 	return (retval);
3173 }
3174 
3175 static void
3176 xpt_run_dev_allocq(struct cam_ed *device)
3177 {
3178 	struct camq	*drvq;
3179 
3180 	if (device->ccbq.devq_allocating)
3181 		return;
3182 	device->ccbq.devq_allocating = 1;
3183 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq(%p)\n", device));
3184 	drvq = &device->drvq;
3185 	while ((drvq->entries > 0) &&
3186 	    (device->ccbq.devq_openings > 0 ||
3187 	     CAMQ_GET_PRIO(drvq) <= CAM_PRIORITY_OOB) &&
3188 	    (device->ccbq.queue.qfrozen_cnt == 0)) {
3189 		union	ccb *work_ccb;
3190 		struct	cam_periph *drv;
3191 
3192 		KASSERT(drvq->entries > 0, ("xpt_run_dev_allocq: "
3193 		    "Device on queue without any work to do"));
3194 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3195 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3196 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3197 				      drv->pinfo.priority);
3198 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3199 					("calling periph start\n"));
3200 			drv->periph_start(drv, work_ccb);
3201 		} else {
3202 			/*
3203 			 * Malloc failure in alloc_ccb
3204 			 */
3205 			/*
3206 			 * XXX add us to a list to be run from free_ccb
3207 			 * if we don't have any ccbs active on this
3208 			 * device queue otherwise we may never get run
3209 			 * again.
3210 			 */
3211 			break;
3212 		}
3213 	}
3214 	device->ccbq.devq_allocating = 0;
3215 }
3216 
3217 static void
3218 xpt_run_devq(struct cam_devq *devq)
3219 {
3220 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3221 
3222 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3223 
3224 	devq->send_queue.qfrozen_cnt++;
3225 	while ((devq->send_queue.entries > 0)
3226 	    && (devq->send_openings > 0)
3227 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3228 		struct	cam_ed_qinfo *qinfo;
3229 		struct	cam_ed *device;
3230 		union ccb *work_ccb;
3231 		struct	cam_sim *sim;
3232 
3233 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3234 							   CAMQ_HEAD);
3235 		device = qinfo->device;
3236 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3237 				("running device %p\n", device));
3238 
3239 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3240 		if (work_ccb == NULL) {
3241 			printf("device on run queue with no ccbs???\n");
3242 			continue;
3243 		}
3244 
3245 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3246 
3247 			mtx_lock(&xsoftc.xpt_lock);
3248 		 	if (xsoftc.num_highpower <= 0) {
3249 				/*
3250 				 * We got a high power command, but we
3251 				 * don't have any available slots.  Freeze
3252 				 * the device queue until we have a slot
3253 				 * available.
3254 				 */
3255 				xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3256 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3257 						   work_ccb->ccb_h.path->device,
3258 						   highpowerq_entry);
3259 
3260 				mtx_unlock(&xsoftc.xpt_lock);
3261 				continue;
3262 			} else {
3263 				/*
3264 				 * Consume a high power slot while
3265 				 * this ccb runs.
3266 				 */
3267 				xsoftc.num_highpower--;
3268 			}
3269 			mtx_unlock(&xsoftc.xpt_lock);
3270 		}
3271 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3272 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3273 
3274 		devq->send_openings--;
3275 		devq->send_active++;
3276 
3277 		xpt_schedule_devq(devq, device);
3278 
3279 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3280 			/*
3281 			 * The client wants to freeze the queue
3282 			 * after this CCB is sent.
3283 			 */
3284 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3285 		}
3286 
3287 		/* In Target mode, the peripheral driver knows best... */
3288 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3289 			if ((device->inq_flags & SID_CmdQue) != 0
3290 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3291 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3292 			else
3293 				/*
3294 				 * Clear this in case of a retried CCB that
3295 				 * failed due to a rejected tag.
3296 				 */
3297 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3298 		}
3299 
3300 		switch (work_ccb->ccb_h.func_code) {
3301 		case XPT_SCSI_IO:
3302 			CAM_DEBUG(work_ccb->ccb_h.path,
3303 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3304 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3305 					  &device->inq_data),
3306 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3307 					     cdb_str, sizeof(cdb_str))));
3308 			break;
3309 		case XPT_ATA_IO:
3310 			CAM_DEBUG(work_ccb->ccb_h.path,
3311 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3312 			     ata_op_string(&work_ccb->ataio.cmd),
3313 			     ata_cmd_string(&work_ccb->ataio.cmd,
3314 					    cdb_str, sizeof(cdb_str))));
3315 			break;
3316 		default:
3317 			break;
3318 		}
3319 
3320 		/*
3321 		 * Device queues can be shared among multiple sim instances
3322 		 * that reside on different busses.  Use the SIM in the queue
3323 		 * CCB's path, rather than the one in the bus that was passed
3324 		 * into this function.
3325 		 */
3326 		sim = work_ccb->ccb_h.path->bus->sim;
3327 		(*(sim->sim_action))(sim, work_ccb);
3328 	}
3329 	devq->send_queue.qfrozen_cnt--;
3330 }
3331 
3332 /*
3333  * This function merges stuff from the slave ccb into the master ccb, while
3334  * keeping important fields in the master ccb constant.
3335  */
3336 void
3337 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3338 {
3339 
3340 	/*
3341 	 * Pull fields that are valid for peripheral drivers to set
3342 	 * into the master CCB along with the CCB "payload".
3343 	 */
3344 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3345 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3346 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3347 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3348 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3349 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3350 }
3351 
3352 void
3353 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3354 {
3355 
3356 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3357 	ccb_h->pinfo.priority = priority;
3358 	ccb_h->path = path;
3359 	ccb_h->path_id = path->bus->path_id;
3360 	if (path->target)
3361 		ccb_h->target_id = path->target->target_id;
3362 	else
3363 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3364 	if (path->device) {
3365 		ccb_h->target_lun = path->device->lun_id;
3366 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3367 	} else {
3368 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3369 	}
3370 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3371 	ccb_h->flags = 0;
3372 	ccb_h->xflags = 0;
3373 }
3374 
3375 /* Path manipulation functions */
3376 cam_status
3377 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3378 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3379 {
3380 	struct	   cam_path *path;
3381 	cam_status status;
3382 
3383 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3384 
3385 	if (path == NULL) {
3386 		status = CAM_RESRC_UNAVAIL;
3387 		return(status);
3388 	}
3389 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3390 	if (status != CAM_REQ_CMP) {
3391 		free(path, M_CAMPATH);
3392 		path = NULL;
3393 	}
3394 	*new_path_ptr = path;
3395 	return (status);
3396 }
3397 
3398 cam_status
3399 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3400 			 struct cam_periph *periph, path_id_t path_id,
3401 			 target_id_t target_id, lun_id_t lun_id)
3402 {
3403 	struct	   cam_path *path;
3404 	struct	   cam_eb *bus = NULL;
3405 	cam_status status;
3406 
3407 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_WAITOK);
3408 
3409 	bus = xpt_find_bus(path_id);
3410 	if (bus != NULL)
3411 		CAM_SIM_LOCK(bus->sim);
3412 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3413 	if (bus != NULL) {
3414 		CAM_SIM_UNLOCK(bus->sim);
3415 		xpt_release_bus(bus);
3416 	}
3417 	if (status != CAM_REQ_CMP) {
3418 		free(path, M_CAMPATH);
3419 		path = NULL;
3420 	}
3421 	*new_path_ptr = path;
3422 	return (status);
3423 }
3424 
3425 cam_status
3426 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3427 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3428 {
3429 	struct	     cam_eb *bus;
3430 	struct	     cam_et *target;
3431 	struct	     cam_ed *device;
3432 	cam_status   status;
3433 
3434 	status = CAM_REQ_CMP;	/* Completed without error */
3435 	target = NULL;		/* Wildcarded */
3436 	device = NULL;		/* Wildcarded */
3437 
3438 	/*
3439 	 * We will potentially modify the EDT, so block interrupts
3440 	 * that may attempt to create cam paths.
3441 	 */
3442 	bus = xpt_find_bus(path_id);
3443 	if (bus == NULL) {
3444 		status = CAM_PATH_INVALID;
3445 	} else {
3446 		target = xpt_find_target(bus, target_id);
3447 		if (target == NULL) {
3448 			/* Create one */
3449 			struct cam_et *new_target;
3450 
3451 			new_target = xpt_alloc_target(bus, target_id);
3452 			if (new_target == NULL) {
3453 				status = CAM_RESRC_UNAVAIL;
3454 			} else {
3455 				target = new_target;
3456 			}
3457 		}
3458 		if (target != NULL) {
3459 			device = xpt_find_device(target, lun_id);
3460 			if (device == NULL) {
3461 				/* Create one */
3462 				struct cam_ed *new_device;
3463 
3464 				new_device =
3465 				    (*(bus->xport->alloc_device))(bus,
3466 								      target,
3467 								      lun_id);
3468 				if (new_device == NULL) {
3469 					status = CAM_RESRC_UNAVAIL;
3470 				} else {
3471 					device = new_device;
3472 				}
3473 			}
3474 		}
3475 	}
3476 
3477 	/*
3478 	 * Only touch the user's data if we are successful.
3479 	 */
3480 	if (status == CAM_REQ_CMP) {
3481 		new_path->periph = perph;
3482 		new_path->bus = bus;
3483 		new_path->target = target;
3484 		new_path->device = device;
3485 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3486 	} else {
3487 		if (device != NULL)
3488 			xpt_release_device(device);
3489 		if (target != NULL)
3490 			xpt_release_target(target);
3491 		if (bus != NULL)
3492 			xpt_release_bus(bus);
3493 	}
3494 	return (status);
3495 }
3496 
3497 void
3498 xpt_release_path(struct cam_path *path)
3499 {
3500 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3501 	if (path->device != NULL) {
3502 		xpt_release_device(path->device);
3503 		path->device = NULL;
3504 	}
3505 	if (path->target != NULL) {
3506 		xpt_release_target(path->target);
3507 		path->target = NULL;
3508 	}
3509 	if (path->bus != NULL) {
3510 		xpt_release_bus(path->bus);
3511 		path->bus = NULL;
3512 	}
3513 }
3514 
3515 void
3516 xpt_free_path(struct cam_path *path)
3517 {
3518 
3519 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3520 	xpt_release_path(path);
3521 	free(path, M_CAMPATH);
3522 }
3523 
3524 void
3525 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3526     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3527 {
3528 
3529 	xpt_lock_buses();
3530 	if (bus_ref) {
3531 		if (path->bus)
3532 			*bus_ref = path->bus->refcount;
3533 		else
3534 			*bus_ref = 0;
3535 	}
3536 	if (periph_ref) {
3537 		if (path->periph)
3538 			*periph_ref = path->periph->refcount;
3539 		else
3540 			*periph_ref = 0;
3541 	}
3542 	xpt_unlock_buses();
3543 	if (target_ref) {
3544 		if (path->target)
3545 			*target_ref = path->target->refcount;
3546 		else
3547 			*target_ref = 0;
3548 	}
3549 	if (device_ref) {
3550 		if (path->device)
3551 			*device_ref = path->device->refcount;
3552 		else
3553 			*device_ref = 0;
3554 	}
3555 }
3556 
3557 /*
3558  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3559  * in path1, 2 for match with wildcards in path2.
3560  */
3561 int
3562 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3563 {
3564 	int retval = 0;
3565 
3566 	if (path1->bus != path2->bus) {
3567 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3568 			retval = 1;
3569 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3570 			retval = 2;
3571 		else
3572 			return (-1);
3573 	}
3574 	if (path1->target != path2->target) {
3575 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3576 			if (retval == 0)
3577 				retval = 1;
3578 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3579 			retval = 2;
3580 		else
3581 			return (-1);
3582 	}
3583 	if (path1->device != path2->device) {
3584 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3585 			if (retval == 0)
3586 				retval = 1;
3587 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3588 			retval = 2;
3589 		else
3590 			return (-1);
3591 	}
3592 	return (retval);
3593 }
3594 
3595 int
3596 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3597 {
3598 	int retval = 0;
3599 
3600 	if (path->bus != dev->target->bus) {
3601 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3602 			retval = 1;
3603 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3604 			retval = 2;
3605 		else
3606 			return (-1);
3607 	}
3608 	if (path->target != dev->target) {
3609 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3610 			if (retval == 0)
3611 				retval = 1;
3612 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3613 			retval = 2;
3614 		else
3615 			return (-1);
3616 	}
3617 	if (path->device != dev) {
3618 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3619 			if (retval == 0)
3620 				retval = 1;
3621 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3622 			retval = 2;
3623 		else
3624 			return (-1);
3625 	}
3626 	return (retval);
3627 }
3628 
3629 void
3630 xpt_print_path(struct cam_path *path)
3631 {
3632 
3633 	if (path == NULL)
3634 		printf("(nopath): ");
3635 	else {
3636 		if (path->periph != NULL)
3637 			printf("(%s%d:", path->periph->periph_name,
3638 			       path->periph->unit_number);
3639 		else
3640 			printf("(noperiph:");
3641 
3642 		if (path->bus != NULL)
3643 			printf("%s%d:%d:", path->bus->sim->sim_name,
3644 			       path->bus->sim->unit_number,
3645 			       path->bus->sim->bus_id);
3646 		else
3647 			printf("nobus:");
3648 
3649 		if (path->target != NULL)
3650 			printf("%d:", path->target->target_id);
3651 		else
3652 			printf("X:");
3653 
3654 		if (path->device != NULL)
3655 			printf("%d): ", path->device->lun_id);
3656 		else
3657 			printf("X): ");
3658 	}
3659 }
3660 
3661 void
3662 xpt_print_device(struct cam_ed *device)
3663 {
3664 
3665 	if (device == NULL)
3666 		printf("(nopath): ");
3667 	else {
3668 		printf("(noperiph:%s%d:%d:%d:%d): ", device->sim->sim_name,
3669 		       device->sim->unit_number,
3670 		       device->sim->bus_id,
3671 		       device->target->target_id,
3672 		       device->lun_id);
3673 	}
3674 }
3675 
3676 void
3677 xpt_print(struct cam_path *path, const char *fmt, ...)
3678 {
3679 	va_list ap;
3680 	xpt_print_path(path);
3681 	va_start(ap, fmt);
3682 	vprintf(fmt, ap);
3683 	va_end(ap);
3684 }
3685 
3686 int
3687 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3688 {
3689 	struct sbuf sb;
3690 
3691 #ifdef INVARIANTS
3692 	if (path != NULL && path->bus != NULL)
3693 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3694 #endif
3695 
3696 	sbuf_new(&sb, str, str_len, 0);
3697 
3698 	if (path == NULL)
3699 		sbuf_printf(&sb, "(nopath): ");
3700 	else {
3701 		if (path->periph != NULL)
3702 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3703 				    path->periph->unit_number);
3704 		else
3705 			sbuf_printf(&sb, "(noperiph:");
3706 
3707 		if (path->bus != NULL)
3708 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3709 				    path->bus->sim->unit_number,
3710 				    path->bus->sim->bus_id);
3711 		else
3712 			sbuf_printf(&sb, "nobus:");
3713 
3714 		if (path->target != NULL)
3715 			sbuf_printf(&sb, "%d:", path->target->target_id);
3716 		else
3717 			sbuf_printf(&sb, "X:");
3718 
3719 		if (path->device != NULL)
3720 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3721 		else
3722 			sbuf_printf(&sb, "X): ");
3723 	}
3724 	sbuf_finish(&sb);
3725 
3726 	return(sbuf_len(&sb));
3727 }
3728 
3729 path_id_t
3730 xpt_path_path_id(struct cam_path *path)
3731 {
3732 	return(path->bus->path_id);
3733 }
3734 
3735 target_id_t
3736 xpt_path_target_id(struct cam_path *path)
3737 {
3738 	if (path->target != NULL)
3739 		return (path->target->target_id);
3740 	else
3741 		return (CAM_TARGET_WILDCARD);
3742 }
3743 
3744 lun_id_t
3745 xpt_path_lun_id(struct cam_path *path)
3746 {
3747 	if (path->device != NULL)
3748 		return (path->device->lun_id);
3749 	else
3750 		return (CAM_LUN_WILDCARD);
3751 }
3752 
3753 struct cam_sim *
3754 xpt_path_sim(struct cam_path *path)
3755 {
3756 
3757 	return (path->bus->sim);
3758 }
3759 
3760 struct cam_periph*
3761 xpt_path_periph(struct cam_path *path)
3762 {
3763 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3764 
3765 	return (path->periph);
3766 }
3767 
3768 int
3769 xpt_path_legacy_ata_id(struct cam_path *path)
3770 {
3771 	struct cam_eb *bus;
3772 	int bus_id;
3773 
3774 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3775 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3776 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3777 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3778 		return (-1);
3779 
3780 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3781 	    path->bus->sim->unit_number < 2) {
3782 		bus_id = path->bus->sim->unit_number;
3783 	} else {
3784 		bus_id = 2;
3785 		xpt_lock_buses();
3786 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3787 			if (bus == path->bus)
3788 				break;
3789 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3790 			     bus->sim->unit_number >= 2) ||
3791 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3792 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3793 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3794 				bus_id++;
3795 		}
3796 		xpt_unlock_buses();
3797 	}
3798 	if (path->target != NULL) {
3799 		if (path->target->target_id < 2)
3800 			return (bus_id * 2 + path->target->target_id);
3801 		else
3802 			return (-1);
3803 	} else
3804 		return (bus_id * 2);
3805 }
3806 
3807 /*
3808  * Release a CAM control block for the caller.  Remit the cost of the structure
3809  * to the device referenced by the path.  If the this device had no 'credits'
3810  * and peripheral drivers have registered async callbacks for this notification
3811  * call them now.
3812  */
3813 void
3814 xpt_release_ccb(union ccb *free_ccb)
3815 {
3816 	struct	 cam_path *path;
3817 	struct	 cam_ed *device;
3818 	struct	 cam_eb *bus;
3819 	struct   cam_sim *sim;
3820 
3821 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3822 	path = free_ccb->ccb_h.path;
3823 	device = path->device;
3824 	bus = path->bus;
3825 	sim = bus->sim;
3826 
3827 	mtx_assert(sim->mtx, MA_OWNED);
3828 
3829 	cam_ccbq_release_opening(&device->ccbq);
3830 	if (sim->ccb_count > sim->max_ccbs) {
3831 		xpt_free_ccb(free_ccb);
3832 		sim->ccb_count--;
3833 	} else {
3834 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3835 		    xpt_links.sle);
3836 	}
3837 	xpt_run_dev_allocq(device);
3838 }
3839 
3840 /* Functions accessed by SIM drivers */
3841 
3842 static struct xpt_xport xport_default = {
3843 	.alloc_device = xpt_alloc_device_default,
3844 	.action = xpt_action_default,
3845 	.async = xpt_dev_async_default,
3846 };
3847 
3848 /*
3849  * A sim structure, listing the SIM entry points and instance
3850  * identification info is passed to xpt_bus_register to hook the SIM
3851  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3852  * for this new bus and places it in the array of busses and assigns
3853  * it a path_id.  The path_id may be influenced by "hard wiring"
3854  * information specified by the user.  Once interrupt services are
3855  * available, the bus will be probed.
3856  */
3857 int32_t
3858 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3859 {
3860 	struct cam_eb *new_bus;
3861 	struct cam_eb *old_bus;
3862 	struct ccb_pathinq cpi;
3863 	struct cam_path *path;
3864 	cam_status status;
3865 
3866 	mtx_assert(sim->mtx, MA_OWNED);
3867 
3868 	sim->bus_id = bus;
3869 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3870 					  M_CAMXPT, M_NOWAIT);
3871 	if (new_bus == NULL) {
3872 		/* Couldn't satisfy request */
3873 		return (CAM_RESRC_UNAVAIL);
3874 	}
3875 
3876 	TAILQ_INIT(&new_bus->et_entries);
3877 	cam_sim_hold(sim);
3878 	new_bus->sim = sim;
3879 	timevalclear(&new_bus->last_reset);
3880 	new_bus->flags = 0;
3881 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3882 	new_bus->generation = 0;
3883 
3884 	xpt_lock_buses();
3885 	sim->path_id = new_bus->path_id =
3886 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3887 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3888 	while (old_bus != NULL
3889 	    && old_bus->path_id < new_bus->path_id)
3890 		old_bus = TAILQ_NEXT(old_bus, links);
3891 	if (old_bus != NULL)
3892 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3893 	else
3894 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3895 	xsoftc.bus_generation++;
3896 	xpt_unlock_buses();
3897 
3898 	/*
3899 	 * Set a default transport so that a PATH_INQ can be issued to
3900 	 * the SIM.  This will then allow for probing and attaching of
3901 	 * a more appropriate transport.
3902 	 */
3903 	new_bus->xport = &xport_default;
3904 
3905 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3906 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3907 	if (status != CAM_REQ_CMP) {
3908 		xpt_release_bus(new_bus);
3909 		free(path, M_CAMXPT);
3910 		return (CAM_RESRC_UNAVAIL);
3911 	}
3912 
3913 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3914 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3915 	xpt_action((union ccb *)&cpi);
3916 
3917 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3918 		switch (cpi.transport) {
3919 		case XPORT_SPI:
3920 		case XPORT_SAS:
3921 		case XPORT_FC:
3922 		case XPORT_USB:
3923 		case XPORT_ISCSI:
3924 		case XPORT_SRP:
3925 		case XPORT_PPB:
3926 			new_bus->xport = scsi_get_xport();
3927 			break;
3928 		case XPORT_ATA:
3929 		case XPORT_SATA:
3930 			new_bus->xport = ata_get_xport();
3931 			break;
3932 		default:
3933 			new_bus->xport = &xport_default;
3934 			break;
3935 		}
3936 	}
3937 
3938 	/* Notify interested parties */
3939 	if (sim->path_id != CAM_XPT_PATH_ID) {
3940 
3941 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3942 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3943 			union	ccb *scan_ccb;
3944 
3945 			/* Initiate bus rescan. */
3946 			scan_ccb = xpt_alloc_ccb_nowait();
3947 			if (scan_ccb != NULL) {
3948 				scan_ccb->ccb_h.path = path;
3949 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3950 				scan_ccb->crcn.flags = 0;
3951 				xpt_rescan(scan_ccb);
3952 			} else
3953 				xpt_print(path,
3954 					  "Can't allocate CCB to scan bus\n");
3955 		} else
3956 			xpt_free_path(path);
3957 	} else
3958 		xpt_free_path(path);
3959 	return (CAM_SUCCESS);
3960 }
3961 
3962 int32_t
3963 xpt_bus_deregister(path_id_t pathid)
3964 {
3965 	struct cam_path bus_path;
3966 	cam_status status;
3967 
3968 	status = xpt_compile_path(&bus_path, NULL, pathid,
3969 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3970 	if (status != CAM_REQ_CMP)
3971 		return (status);
3972 
3973 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3974 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3975 
3976 	/* Release the reference count held while registered. */
3977 	xpt_release_bus(bus_path.bus);
3978 	xpt_release_path(&bus_path);
3979 
3980 	return (CAM_REQ_CMP);
3981 }
3982 
3983 static path_id_t
3984 xptnextfreepathid(void)
3985 {
3986 	struct cam_eb *bus;
3987 	path_id_t pathid;
3988 	const char *strval;
3989 
3990 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3991 	pathid = 0;
3992 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3993 retry:
3994 	/* Find an unoccupied pathid */
3995 	while (bus != NULL && bus->path_id <= pathid) {
3996 		if (bus->path_id == pathid)
3997 			pathid++;
3998 		bus = TAILQ_NEXT(bus, links);
3999 	}
4000 
4001 	/*
4002 	 * Ensure that this pathid is not reserved for
4003 	 * a bus that may be registered in the future.
4004 	 */
4005 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4006 		++pathid;
4007 		/* Start the search over */
4008 		goto retry;
4009 	}
4010 	return (pathid);
4011 }
4012 
4013 static path_id_t
4014 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4015 {
4016 	path_id_t pathid;
4017 	int i, dunit, val;
4018 	char buf[32];
4019 	const char *dname;
4020 
4021 	pathid = CAM_XPT_PATH_ID;
4022 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4023 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4024 		return (pathid);
4025 	i = 0;
4026 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4027 		if (strcmp(dname, "scbus")) {
4028 			/* Avoid a bit of foot shooting. */
4029 			continue;
4030 		}
4031 		if (dunit < 0)		/* unwired?! */
4032 			continue;
4033 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4034 			if (sim_bus == val) {
4035 				pathid = dunit;
4036 				break;
4037 			}
4038 		} else if (sim_bus == 0) {
4039 			/* Unspecified matches bus 0 */
4040 			pathid = dunit;
4041 			break;
4042 		} else {
4043 			printf("Ambiguous scbus configuration for %s%d "
4044 			       "bus %d, cannot wire down.  The kernel "
4045 			       "config entry for scbus%d should "
4046 			       "specify a controller bus.\n"
4047 			       "Scbus will be assigned dynamically.\n",
4048 			       sim_name, sim_unit, sim_bus, dunit);
4049 			break;
4050 		}
4051 	}
4052 
4053 	if (pathid == CAM_XPT_PATH_ID)
4054 		pathid = xptnextfreepathid();
4055 	return (pathid);
4056 }
4057 
4058 static const char *
4059 xpt_async_string(u_int32_t async_code)
4060 {
4061 
4062 	switch (async_code) {
4063 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4064 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4065 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4066 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4067 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4068 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4069 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4070 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4071 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4072 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4073 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4074 	case AC_CONTRACT: return ("AC_CONTRACT");
4075 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4076 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4077 	}
4078 	return ("AC_UNKNOWN");
4079 }
4080 
4081 void
4082 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4083 {
4084 	struct cam_eb *bus;
4085 	struct cam_et *target, *next_target;
4086 	struct cam_ed *device, *next_device;
4087 
4088 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4089 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4090 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4091 
4092 	/*
4093 	 * Most async events come from a CAM interrupt context.  In
4094 	 * a few cases, the error recovery code at the peripheral layer,
4095 	 * which may run from our SWI or a process context, may signal
4096 	 * deferred events with a call to xpt_async.
4097 	 */
4098 
4099 	bus = path->bus;
4100 
4101 	if (async_code == AC_BUS_RESET) {
4102 		/* Update our notion of when the last reset occurred */
4103 		microtime(&bus->last_reset);
4104 	}
4105 
4106 	for (target = TAILQ_FIRST(&bus->et_entries);
4107 	     target != NULL;
4108 	     target = next_target) {
4109 
4110 		next_target = TAILQ_NEXT(target, links);
4111 
4112 		if (path->target != target
4113 		 && path->target->target_id != CAM_TARGET_WILDCARD
4114 		 && target->target_id != CAM_TARGET_WILDCARD)
4115 			continue;
4116 
4117 		if (async_code == AC_SENT_BDR) {
4118 			/* Update our notion of when the last reset occurred */
4119 			microtime(&path->target->last_reset);
4120 		}
4121 
4122 		for (device = TAILQ_FIRST(&target->ed_entries);
4123 		     device != NULL;
4124 		     device = next_device) {
4125 
4126 			next_device = TAILQ_NEXT(device, links);
4127 
4128 			if (path->device != device
4129 			 && path->device->lun_id != CAM_LUN_WILDCARD
4130 			 && device->lun_id != CAM_LUN_WILDCARD)
4131 				continue;
4132 			/*
4133 			 * The async callback could free the device.
4134 			 * If it is a broadcast async, it doesn't hold
4135 			 * device reference, so take our own reference.
4136 			 */
4137 			xpt_acquire_device(device);
4138 			(*(bus->xport->async))(async_code, bus,
4139 					       target, device,
4140 					       async_arg);
4141 
4142 			xpt_async_bcast(&device->asyncs, async_code,
4143 					path, async_arg);
4144 			xpt_release_device(device);
4145 		}
4146 	}
4147 
4148 	/*
4149 	 * If this wasn't a fully wildcarded async, tell all
4150 	 * clients that want all async events.
4151 	 */
4152 	if (bus != xpt_periph->path->bus)
4153 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
4154 				path, async_arg);
4155 }
4156 
4157 static void
4158 xpt_async_bcast(struct async_list *async_head,
4159 		u_int32_t async_code,
4160 		struct cam_path *path, void *async_arg)
4161 {
4162 	struct async_node *cur_entry;
4163 
4164 	cur_entry = SLIST_FIRST(async_head);
4165 	while (cur_entry != NULL) {
4166 		struct async_node *next_entry;
4167 		/*
4168 		 * Grab the next list entry before we call the current
4169 		 * entry's callback.  This is because the callback function
4170 		 * can delete its async callback entry.
4171 		 */
4172 		next_entry = SLIST_NEXT(cur_entry, links);
4173 		if ((cur_entry->event_enable & async_code) != 0)
4174 			cur_entry->callback(cur_entry->callback_arg,
4175 					    async_code, path,
4176 					    async_arg);
4177 		cur_entry = next_entry;
4178 	}
4179 }
4180 
4181 static void
4182 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4183 		      struct cam_et *target, struct cam_ed *device,
4184 		      void *async_arg)
4185 {
4186 	printf("%s called\n", __func__);
4187 }
4188 
4189 u_int32_t
4190 xpt_freeze_devq(struct cam_path *path, u_int count)
4191 {
4192 	struct cam_ed *dev = path->device;
4193 
4194 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4195 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq() %u->%u\n",
4196 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4197 	dev->ccbq.queue.qfrozen_cnt += count;
4198 	/* Remove frozen device from sendq. */
4199 	if (device_is_queued(dev)) {
4200 		camq_remove(&dev->sim->devq->send_queue,
4201 		    dev->devq_entry.pinfo.index);
4202 	}
4203 	return (dev->ccbq.queue.qfrozen_cnt);
4204 }
4205 
4206 u_int32_t
4207 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4208 {
4209 
4210 	mtx_assert(sim->mtx, MA_OWNED);
4211 	sim->devq->send_queue.qfrozen_cnt += count;
4212 	return (sim->devq->send_queue.qfrozen_cnt);
4213 }
4214 
4215 static void
4216 xpt_release_devq_timeout(void *arg)
4217 {
4218 	struct cam_ed *device;
4219 
4220 	device = (struct cam_ed *)arg;
4221 	CAM_DEBUG_DEV(device, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4222 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4223 }
4224 
4225 void
4226 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4227 {
4228 
4229 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4230 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4231 	    count, run_queue));
4232 	xpt_release_devq_device(path->device, count, run_queue);
4233 }
4234 
4235 void
4236 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4237 {
4238 
4239 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4240 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4241 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4242 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4243 #ifdef INVARIANTS
4244 		printf("xpt_release_devq(): requested %u > present %u\n",
4245 		    count, dev->ccbq.queue.qfrozen_cnt);
4246 #endif
4247 		count = dev->ccbq.queue.qfrozen_cnt;
4248 	}
4249 	dev->ccbq.queue.qfrozen_cnt -= count;
4250 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4251 		/*
4252 		 * No longer need to wait for a successful
4253 		 * command completion.
4254 		 */
4255 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4256 		/*
4257 		 * Remove any timeouts that might be scheduled
4258 		 * to release this queue.
4259 		 */
4260 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4261 			callout_stop(&dev->callout);
4262 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4263 		}
4264 		xpt_run_dev_allocq(dev);
4265 		if (run_queue == 0)
4266 			return;
4267 		/*
4268 		 * Now that we are unfrozen schedule the
4269 		 * device so any pending transactions are
4270 		 * run.
4271 		 */
4272 		if (xpt_schedule_devq(dev->sim->devq, dev))
4273 			xpt_run_devq(dev->sim->devq);
4274 	}
4275 }
4276 
4277 void
4278 xpt_release_simq(struct cam_sim *sim, int run_queue)
4279 {
4280 	struct	camq *sendq;
4281 
4282 	mtx_assert(sim->mtx, MA_OWNED);
4283 	sendq = &(sim->devq->send_queue);
4284 	if (sendq->qfrozen_cnt <= 0) {
4285 #ifdef INVARIANTS
4286 		printf("xpt_release_simq: requested 1 > present %u\n",
4287 		    sendq->qfrozen_cnt);
4288 #endif
4289 	} else
4290 		sendq->qfrozen_cnt--;
4291 	if (sendq->qfrozen_cnt == 0) {
4292 		/*
4293 		 * If there is a timeout scheduled to release this
4294 		 * sim queue, remove it.  The queue frozen count is
4295 		 * already at 0.
4296 		 */
4297 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4298 			callout_stop(&sim->callout);
4299 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4300 		}
4301 		if (run_queue) {
4302 			/*
4303 			 * Now that we are unfrozen run the send queue.
4304 			 */
4305 			xpt_run_devq(sim->devq);
4306 		}
4307 	}
4308 }
4309 
4310 /*
4311  * XXX Appears to be unused.
4312  */
4313 static void
4314 xpt_release_simq_timeout(void *arg)
4315 {
4316 	struct cam_sim *sim;
4317 
4318 	sim = (struct cam_sim *)arg;
4319 	xpt_release_simq(sim, /* run_queue */ TRUE);
4320 }
4321 
4322 void
4323 xpt_done(union ccb *done_ccb)
4324 {
4325 	struct cam_sim *sim;
4326 	int	first;
4327 
4328 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4329 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4330 		/*
4331 		 * Queue up the request for handling by our SWI handler
4332 		 * any of the "non-immediate" type of ccbs.
4333 		 */
4334 		sim = done_ccb->ccb_h.path->bus->sim;
4335 		TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4336 		    sim_links.tqe);
4337 		done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4338 		if ((sim->flags & (CAM_SIM_ON_DONEQ | CAM_SIM_POLLED |
4339 		    CAM_SIM_BATCH)) == 0) {
4340 			mtx_lock(&cam_simq_lock);
4341 			first = TAILQ_EMPTY(&cam_simq);
4342 			TAILQ_INSERT_TAIL(&cam_simq, sim, links);
4343 			mtx_unlock(&cam_simq_lock);
4344 			sim->flags |= CAM_SIM_ON_DONEQ;
4345 			if (first)
4346 				swi_sched(cambio_ih, 0);
4347 		}
4348 	}
4349 }
4350 
4351 void
4352 xpt_batch_start(struct cam_sim *sim)
4353 {
4354 
4355 	KASSERT((sim->flags & CAM_SIM_BATCH) == 0, ("Batch flag already set"));
4356 	sim->flags |= CAM_SIM_BATCH;
4357 }
4358 
4359 void
4360 xpt_batch_done(struct cam_sim *sim)
4361 {
4362 
4363 	KASSERT((sim->flags & CAM_SIM_BATCH) != 0, ("Batch flag was not set"));
4364 	sim->flags &= ~CAM_SIM_BATCH;
4365 	if (!TAILQ_EMPTY(&sim->sim_doneq) &&
4366 	    (sim->flags & CAM_SIM_ON_DONEQ) == 0)
4367 		camisr_runqueue(sim);
4368 }
4369 
4370 union ccb *
4371 xpt_alloc_ccb()
4372 {
4373 	union ccb *new_ccb;
4374 
4375 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4376 	return (new_ccb);
4377 }
4378 
4379 union ccb *
4380 xpt_alloc_ccb_nowait()
4381 {
4382 	union ccb *new_ccb;
4383 
4384 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4385 	return (new_ccb);
4386 }
4387 
4388 void
4389 xpt_free_ccb(union ccb *free_ccb)
4390 {
4391 	free(free_ccb, M_CAMCCB);
4392 }
4393 
4394 
4395 
4396 /* Private XPT functions */
4397 
4398 /*
4399  * Get a CAM control block for the caller. Charge the structure to the device
4400  * referenced by the path.  If the this device has no 'credits' then the
4401  * device already has the maximum number of outstanding operations under way
4402  * and we return NULL. If we don't have sufficient resources to allocate more
4403  * ccbs, we also return NULL.
4404  */
4405 static union ccb *
4406 xpt_get_ccb(struct cam_ed *device)
4407 {
4408 	union ccb *new_ccb;
4409 	struct cam_sim *sim;
4410 
4411 	sim = device->sim;
4412 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4413 		new_ccb = xpt_alloc_ccb_nowait();
4414                 if (new_ccb == NULL) {
4415 			return (NULL);
4416 		}
4417 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4418 				  xpt_links.sle);
4419 		sim->ccb_count++;
4420 	}
4421 	cam_ccbq_take_opening(&device->ccbq);
4422 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4423 	return (new_ccb);
4424 }
4425 
4426 static void
4427 xpt_release_bus(struct cam_eb *bus)
4428 {
4429 
4430 	xpt_lock_buses();
4431 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4432 	if (--bus->refcount > 0) {
4433 		xpt_unlock_buses();
4434 		return;
4435 	}
4436 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4437 	    ("refcount is zero, but target list is not empty"));
4438 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4439 	xsoftc.bus_generation++;
4440 	xpt_unlock_buses();
4441 	cam_sim_release(bus->sim);
4442 	free(bus, M_CAMXPT);
4443 }
4444 
4445 static struct cam_et *
4446 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4447 {
4448 	struct cam_et *cur_target, *target;
4449 
4450 	mtx_assert(bus->sim->mtx, MA_OWNED);
4451 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4452 					 M_NOWAIT|M_ZERO);
4453 	if (target == NULL)
4454 		return (NULL);
4455 
4456 	TAILQ_INIT(&target->ed_entries);
4457 	target->bus = bus;
4458 	target->target_id = target_id;
4459 	target->refcount = 1;
4460 	target->generation = 0;
4461 	target->luns = NULL;
4462 	timevalclear(&target->last_reset);
4463 	/*
4464 	 * Hold a reference to our parent bus so it
4465 	 * will not go away before we do.
4466 	 */
4467 	xpt_lock_buses();
4468 	bus->refcount++;
4469 	xpt_unlock_buses();
4470 
4471 	/* Insertion sort into our bus's target list */
4472 	cur_target = TAILQ_FIRST(&bus->et_entries);
4473 	while (cur_target != NULL && cur_target->target_id < target_id)
4474 		cur_target = TAILQ_NEXT(cur_target, links);
4475 	if (cur_target != NULL) {
4476 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4477 	} else {
4478 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4479 	}
4480 	bus->generation++;
4481 	return (target);
4482 }
4483 
4484 static void
4485 xpt_release_target(struct cam_et *target)
4486 {
4487 
4488 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4489 	if (--target->refcount > 0)
4490 		return;
4491 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4492 	    ("refcount is zero, but device list is not empty"));
4493 	TAILQ_REMOVE(&target->bus->et_entries, target, links);
4494 	target->bus->generation++;
4495 	xpt_release_bus(target->bus);
4496 	if (target->luns)
4497 		free(target->luns, M_CAMXPT);
4498 	free(target, M_CAMXPT);
4499 }
4500 
4501 static struct cam_ed *
4502 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4503 			 lun_id_t lun_id)
4504 {
4505 	struct cam_ed *device;
4506 
4507 	device = xpt_alloc_device(bus, target, lun_id);
4508 	if (device == NULL)
4509 		return (NULL);
4510 
4511 	device->mintags = 1;
4512 	device->maxtags = 1;
4513 	bus->sim->max_ccbs += device->ccbq.devq_openings;
4514 	return (device);
4515 }
4516 
4517 struct cam_ed *
4518 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4519 {
4520 	struct cam_ed	*cur_device, *device;
4521 	struct cam_devq	*devq;
4522 	cam_status status;
4523 
4524 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4525 	/* Make space for us in the device queue on our bus */
4526 	devq = bus->sim->devq;
4527 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4528 	if (status != CAM_REQ_CMP)
4529 		return (NULL);
4530 
4531 	device = (struct cam_ed *)malloc(sizeof(*device),
4532 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4533 	if (device == NULL)
4534 		return (NULL);
4535 
4536 	cam_init_pinfo(&device->devq_entry.pinfo);
4537 	device->devq_entry.device = device;
4538 	device->target = target;
4539 	device->lun_id = lun_id;
4540 	device->sim = bus->sim;
4541 	/* Initialize our queues */
4542 	if (camq_init(&device->drvq, 0) != 0) {
4543 		free(device, M_CAMDEV);
4544 		return (NULL);
4545 	}
4546 	if (cam_ccbq_init(&device->ccbq,
4547 			  bus->sim->max_dev_openings) != 0) {
4548 		camq_fini(&device->drvq);
4549 		free(device, M_CAMDEV);
4550 		return (NULL);
4551 	}
4552 	SLIST_INIT(&device->asyncs);
4553 	SLIST_INIT(&device->periphs);
4554 	device->generation = 0;
4555 	device->flags = CAM_DEV_UNCONFIGURED;
4556 	device->tag_delay_count = 0;
4557 	device->tag_saved_openings = 0;
4558 	device->refcount = 1;
4559 	callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4560 
4561 	cur_device = TAILQ_FIRST(&target->ed_entries);
4562 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4563 		cur_device = TAILQ_NEXT(cur_device, links);
4564 	if (cur_device != NULL)
4565 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4566 	else
4567 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4568 	target->refcount++;
4569 	target->generation++;
4570 	return (device);
4571 }
4572 
4573 void
4574 xpt_acquire_device(struct cam_ed *device)
4575 {
4576 
4577 	mtx_assert(device->sim->mtx, MA_OWNED);
4578 	device->refcount++;
4579 }
4580 
4581 void
4582 xpt_release_device(struct cam_ed *device)
4583 {
4584 	struct cam_devq *devq;
4585 
4586 	mtx_assert(device->sim->mtx, MA_OWNED);
4587 	if (--device->refcount > 0)
4588 		return;
4589 
4590 	KASSERT(SLIST_EMPTY(&device->periphs),
4591 	    ("refcount is zero, but periphs list is not empty"));
4592 	if (device->devq_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4593 		panic("Removing device while still queued for ccbs");
4594 
4595 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4596 		callout_stop(&device->callout);
4597 
4598 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4599 	device->target->generation++;
4600 	device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings;
4601 	/* Release our slot in the devq */
4602 	devq = device->target->bus->sim->devq;
4603 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4604 	camq_fini(&device->drvq);
4605 	cam_ccbq_fini(&device->ccbq);
4606 	/*
4607 	 * Free allocated memory.  free(9) does nothing if the
4608 	 * supplied pointer is NULL, so it is safe to call without
4609 	 * checking.
4610 	 */
4611 	free(device->supported_vpds, M_CAMXPT);
4612 	free(device->device_id, M_CAMXPT);
4613 	free(device->physpath, M_CAMXPT);
4614 	free(device->rcap_buf, M_CAMXPT);
4615 	free(device->serial_num, M_CAMXPT);
4616 
4617 	xpt_release_target(device->target);
4618 	free(device, M_CAMDEV);
4619 }
4620 
4621 u_int32_t
4622 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4623 {
4624 	int	diff;
4625 	int	result;
4626 	struct	cam_ed *dev;
4627 
4628 	dev = path->device;
4629 
4630 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4631 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4632 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4633 	 || (dev->inq_flags & SID_CmdQue) != 0)
4634 		dev->tag_saved_openings = newopenings;
4635 	/* Adjust the global limit */
4636 	dev->sim->max_ccbs += diff;
4637 	return (result);
4638 }
4639 
4640 static struct cam_eb *
4641 xpt_find_bus(path_id_t path_id)
4642 {
4643 	struct cam_eb *bus;
4644 
4645 	xpt_lock_buses();
4646 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4647 	     bus != NULL;
4648 	     bus = TAILQ_NEXT(bus, links)) {
4649 		if (bus->path_id == path_id) {
4650 			bus->refcount++;
4651 			break;
4652 		}
4653 	}
4654 	xpt_unlock_buses();
4655 	return (bus);
4656 }
4657 
4658 static struct cam_et *
4659 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4660 {
4661 	struct cam_et *target;
4662 
4663 	mtx_assert(bus->sim->mtx, MA_OWNED);
4664 	for (target = TAILQ_FIRST(&bus->et_entries);
4665 	     target != NULL;
4666 	     target = TAILQ_NEXT(target, links)) {
4667 		if (target->target_id == target_id) {
4668 			target->refcount++;
4669 			break;
4670 		}
4671 	}
4672 	return (target);
4673 }
4674 
4675 static struct cam_ed *
4676 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4677 {
4678 	struct cam_ed *device;
4679 
4680 	mtx_assert(target->bus->sim->mtx, MA_OWNED);
4681 	for (device = TAILQ_FIRST(&target->ed_entries);
4682 	     device != NULL;
4683 	     device = TAILQ_NEXT(device, links)) {
4684 		if (device->lun_id == lun_id) {
4685 			device->refcount++;
4686 			break;
4687 		}
4688 	}
4689 	return (device);
4690 }
4691 
4692 void
4693 xpt_start_tags(struct cam_path *path)
4694 {
4695 	struct ccb_relsim crs;
4696 	struct cam_ed *device;
4697 	struct cam_sim *sim;
4698 	int    newopenings;
4699 
4700 	device = path->device;
4701 	sim = path->bus->sim;
4702 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4703 	xpt_freeze_devq(path, /*count*/1);
4704 	device->inq_flags |= SID_CmdQue;
4705 	if (device->tag_saved_openings != 0)
4706 		newopenings = device->tag_saved_openings;
4707 	else
4708 		newopenings = min(device->maxtags,
4709 				  sim->max_tagged_dev_openings);
4710 	xpt_dev_ccbq_resize(path, newopenings);
4711 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4712 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4713 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4714 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4715 	crs.openings
4716 	    = crs.release_timeout
4717 	    = crs.qfrozen_cnt
4718 	    = 0;
4719 	xpt_action((union ccb *)&crs);
4720 }
4721 
4722 void
4723 xpt_stop_tags(struct cam_path *path)
4724 {
4725 	struct ccb_relsim crs;
4726 	struct cam_ed *device;
4727 	struct cam_sim *sim;
4728 
4729 	device = path->device;
4730 	sim = path->bus->sim;
4731 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4732 	device->tag_delay_count = 0;
4733 	xpt_freeze_devq(path, /*count*/1);
4734 	device->inq_flags &= ~SID_CmdQue;
4735 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4736 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4737 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4738 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4739 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4740 	crs.openings
4741 	    = crs.release_timeout
4742 	    = crs.qfrozen_cnt
4743 	    = 0;
4744 	xpt_action((union ccb *)&crs);
4745 }
4746 
4747 static void
4748 xpt_boot_delay(void *arg)
4749 {
4750 
4751 	xpt_release_boot();
4752 }
4753 
4754 static void
4755 xpt_config(void *arg)
4756 {
4757 	/*
4758 	 * Now that interrupts are enabled, go find our devices
4759 	 */
4760 
4761 	/* Setup debugging path */
4762 	if (cam_dflags != CAM_DEBUG_NONE) {
4763 		if (xpt_create_path_unlocked(&cam_dpath, NULL,
4764 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4765 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4766 			printf("xpt_config: xpt_create_path() failed for debug"
4767 			       " target %d:%d:%d, debugging disabled\n",
4768 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4769 			cam_dflags = CAM_DEBUG_NONE;
4770 		}
4771 	} else
4772 		cam_dpath = NULL;
4773 
4774 	periphdriver_init(1);
4775 	xpt_hold_boot();
4776 	callout_init(&xsoftc.boot_callout, 1);
4777 	callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000,
4778 	    xpt_boot_delay, NULL);
4779 	/* Fire up rescan thread. */
4780 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
4781 		printf("xpt_config: failed to create rescan thread.\n");
4782 	}
4783 }
4784 
4785 void
4786 xpt_hold_boot(void)
4787 {
4788 	xpt_lock_buses();
4789 	xsoftc.buses_to_config++;
4790 	xpt_unlock_buses();
4791 }
4792 
4793 void
4794 xpt_release_boot(void)
4795 {
4796 	xpt_lock_buses();
4797 	xsoftc.buses_to_config--;
4798 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4799 		struct	xpt_task *task;
4800 
4801 		xsoftc.buses_config_done = 1;
4802 		xpt_unlock_buses();
4803 		/* Call manually because we don't have any busses */
4804 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4805 		if (task != NULL) {
4806 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4807 			taskqueue_enqueue(taskqueue_thread, &task->task);
4808 		}
4809 	} else
4810 		xpt_unlock_buses();
4811 }
4812 
4813 /*
4814  * If the given device only has one peripheral attached to it, and if that
4815  * peripheral is the passthrough driver, announce it.  This insures that the
4816  * user sees some sort of announcement for every peripheral in their system.
4817  */
4818 static int
4819 xptpassannouncefunc(struct cam_ed *device, void *arg)
4820 {
4821 	struct cam_periph *periph;
4822 	int i;
4823 
4824 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4825 	     periph = SLIST_NEXT(periph, periph_links), i++);
4826 
4827 	periph = SLIST_FIRST(&device->periphs);
4828 	if ((i == 1)
4829 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4830 		xpt_announce_periph(periph, NULL);
4831 
4832 	return(1);
4833 }
4834 
4835 static void
4836 xpt_finishconfig_task(void *context, int pending)
4837 {
4838 
4839 	periphdriver_init(2);
4840 	/*
4841 	 * Check for devices with no "standard" peripheral driver
4842 	 * attached.  For any devices like that, announce the
4843 	 * passthrough driver so the user will see something.
4844 	 */
4845 	if (!bootverbose)
4846 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4847 
4848 	/* Release our hook so that the boot can continue. */
4849 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
4850 	free(xsoftc.xpt_config_hook, M_CAMXPT);
4851 	xsoftc.xpt_config_hook = NULL;
4852 
4853 	free(context, M_CAMXPT);
4854 }
4855 
4856 cam_status
4857 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4858 		   struct cam_path *path)
4859 {
4860 	struct ccb_setasync csa;
4861 	cam_status status;
4862 	int xptpath = 0;
4863 
4864 	if (path == NULL) {
4865 		mtx_lock(&xsoftc.xpt_lock);
4866 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4867 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4868 		if (status != CAM_REQ_CMP) {
4869 			mtx_unlock(&xsoftc.xpt_lock);
4870 			return (status);
4871 		}
4872 		xptpath = 1;
4873 	}
4874 
4875 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
4876 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4877 	csa.event_enable = event;
4878 	csa.callback = cbfunc;
4879 	csa.callback_arg = cbarg;
4880 	xpt_action((union ccb *)&csa);
4881 	status = csa.ccb_h.status;
4882 
4883 	if (xptpath) {
4884 		xpt_free_path(path);
4885 		mtx_unlock(&xsoftc.xpt_lock);
4886 	}
4887 
4888 	if ((status == CAM_REQ_CMP) &&
4889 	    (csa.event_enable & AC_FOUND_DEVICE)) {
4890 		/*
4891 		 * Get this peripheral up to date with all
4892 		 * the currently existing devices.
4893 		 */
4894 		xpt_for_all_devices(xptsetasyncfunc, &csa);
4895 	}
4896 	if ((status == CAM_REQ_CMP) &&
4897 	    (csa.event_enable & AC_PATH_REGISTERED)) {
4898 		/*
4899 		 * Get this peripheral up to date with all
4900 		 * the currently existing busses.
4901 		 */
4902 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
4903 	}
4904 
4905 	return (status);
4906 }
4907 
4908 static void
4909 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4910 {
4911 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4912 
4913 	switch (work_ccb->ccb_h.func_code) {
4914 	/* Common cases first */
4915 	case XPT_PATH_INQ:		/* Path routing inquiry */
4916 	{
4917 		struct ccb_pathinq *cpi;
4918 
4919 		cpi = &work_ccb->cpi;
4920 		cpi->version_num = 1; /* XXX??? */
4921 		cpi->hba_inquiry = 0;
4922 		cpi->target_sprt = 0;
4923 		cpi->hba_misc = 0;
4924 		cpi->hba_eng_cnt = 0;
4925 		cpi->max_target = 0;
4926 		cpi->max_lun = 0;
4927 		cpi->initiator_id = 0;
4928 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4929 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4930 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4931 		cpi->unit_number = sim->unit_number;
4932 		cpi->bus_id = sim->bus_id;
4933 		cpi->base_transfer_speed = 0;
4934 		cpi->protocol = PROTO_UNSPECIFIED;
4935 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4936 		cpi->transport = XPORT_UNSPECIFIED;
4937 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4938 		cpi->ccb_h.status = CAM_REQ_CMP;
4939 		xpt_done(work_ccb);
4940 		break;
4941 	}
4942 	default:
4943 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4944 		xpt_done(work_ccb);
4945 		break;
4946 	}
4947 }
4948 
4949 /*
4950  * The xpt as a "controller" has no interrupt sources, so polling
4951  * is a no-op.
4952  */
4953 static void
4954 xptpoll(struct cam_sim *sim)
4955 {
4956 }
4957 
4958 void
4959 xpt_lock_buses(void)
4960 {
4961 	mtx_lock(&xsoftc.xpt_topo_lock);
4962 }
4963 
4964 void
4965 xpt_unlock_buses(void)
4966 {
4967 	mtx_unlock(&xsoftc.xpt_topo_lock);
4968 }
4969 
4970 static void
4971 camisr(void *dummy)
4972 {
4973 	cam_simq_t queue;
4974 	struct cam_sim *sim;
4975 
4976 	mtx_lock(&cam_simq_lock);
4977 	TAILQ_INIT(&queue);
4978 	while (!TAILQ_EMPTY(&cam_simq)) {
4979 		TAILQ_CONCAT(&queue, &cam_simq, links);
4980 		mtx_unlock(&cam_simq_lock);
4981 
4982 		while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4983 			TAILQ_REMOVE(&queue, sim, links);
4984 			CAM_SIM_LOCK(sim);
4985 			camisr_runqueue(sim);
4986 			sim->flags &= ~CAM_SIM_ON_DONEQ;
4987 			CAM_SIM_UNLOCK(sim);
4988 		}
4989 		mtx_lock(&cam_simq_lock);
4990 	}
4991 	mtx_unlock(&cam_simq_lock);
4992 }
4993 
4994 static void
4995 camisr_runqueue(struct cam_sim *sim)
4996 {
4997 	struct	ccb_hdr *ccb_h;
4998 
4999 	while ((ccb_h = TAILQ_FIRST(&sim->sim_doneq)) != NULL) {
5000 		int	runq;
5001 
5002 		TAILQ_REMOVE(&sim->sim_doneq, ccb_h, sim_links.tqe);
5003 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5004 
5005 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
5006 			  ("camisr\n"));
5007 
5008 		runq = FALSE;
5009 
5010 		if (ccb_h->flags & CAM_HIGH_POWER) {
5011 			struct highpowerlist	*hphead;
5012 			struct cam_ed		*device;
5013 
5014 			mtx_lock(&xsoftc.xpt_lock);
5015 			hphead = &xsoftc.highpowerq;
5016 
5017 			device = STAILQ_FIRST(hphead);
5018 
5019 			/*
5020 			 * Increment the count since this command is done.
5021 			 */
5022 			xsoftc.num_highpower++;
5023 
5024 			/*
5025 			 * Any high powered commands queued up?
5026 			 */
5027 			if (device != NULL) {
5028 
5029 				STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5030 				mtx_unlock(&xsoftc.xpt_lock);
5031 
5032 				xpt_release_devq_device(device,
5033 						 /*count*/1, /*runqueue*/TRUE);
5034 			} else
5035 				mtx_unlock(&xsoftc.xpt_lock);
5036 		}
5037 
5038 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5039 			struct cam_ed *dev;
5040 
5041 			dev = ccb_h->path->device;
5042 
5043 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5044 			sim->devq->send_active--;
5045 			sim->devq->send_openings++;
5046 			runq = TRUE;
5047 
5048 			if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5049 			  && (dev->ccbq.dev_active == 0))) {
5050 				dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5051 				xpt_release_devq(ccb_h->path, /*count*/1,
5052 						 /*run_queue*/FALSE);
5053 			}
5054 
5055 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5056 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5057 				dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5058 				xpt_release_devq(ccb_h->path, /*count*/1,
5059 						 /*run_queue*/FALSE);
5060 			}
5061 
5062 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5063 			 && (--dev->tag_delay_count == 0))
5064 				xpt_start_tags(ccb_h->path);
5065 			if (!device_is_queued(dev)) {
5066 				(void)xpt_schedule_devq(sim->devq, dev);
5067 			}
5068 		}
5069 
5070 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
5071 			xpt_release_simq(sim, /*run_queue*/TRUE);
5072 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
5073 			runq = FALSE;
5074 		}
5075 
5076 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5077 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
5078 			xpt_release_devq(ccb_h->path, /*count*/1,
5079 					 /*run_queue*/TRUE);
5080 			ccb_h->status &= ~CAM_DEV_QFRZN;
5081 		} else if (runq) {
5082 			xpt_run_devq(sim->devq);
5083 		}
5084 
5085 		/* Call the peripheral driver's callback */
5086 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5087 	}
5088 }
5089