1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/md5.h> 43 #include <sys/interrupt.h> 44 #include <sys/sbuf.h> 45 #include <sys/taskqueue.h> 46 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/sysctl.h> 50 #include <sys/kthread.h> 51 52 #ifdef PC98 53 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 54 #endif 55 56 #include <cam/cam.h> 57 #include <cam/cam_ccb.h> 58 #include <cam/cam_periph.h> 59 #include <cam/cam_sim.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_sim.h> 62 #include <cam/cam_xpt_periph.h> 63 #include <cam/cam_debug.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 #include <machine/stdarg.h> /* for xpt_print below */ 69 #include "opt_cam.h" 70 71 /* Datastructures internal to the xpt layer */ 72 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 73 74 /* Object for defering XPT actions to a taskqueue */ 75 struct xpt_task { 76 struct task task; 77 void *data1; 78 uintptr_t data2; 79 }; 80 81 /* 82 * Definition of an async handler callback block. These are used to add 83 * SIMs and peripherals to the async callback lists. 84 */ 85 struct async_node { 86 SLIST_ENTRY(async_node) links; 87 u_int32_t event_enable; /* Async Event enables */ 88 void (*callback)(void *arg, u_int32_t code, 89 struct cam_path *path, void *args); 90 void *callback_arg; 91 }; 92 93 SLIST_HEAD(async_list, async_node); 94 SLIST_HEAD(periph_list, cam_periph); 95 96 /* 97 * This is the maximum number of high powered commands (e.g. start unit) 98 * that can be outstanding at a particular time. 99 */ 100 #ifndef CAM_MAX_HIGHPOWER 101 #define CAM_MAX_HIGHPOWER 4 102 #endif 103 104 /* 105 * Structure for queueing a device in a run queue. 106 * There is one run queue for allocating new ccbs, 107 * and another for sending ccbs to the controller. 108 */ 109 struct cam_ed_qinfo { 110 cam_pinfo pinfo; 111 struct cam_ed *device; 112 }; 113 114 /* 115 * The CAM EDT (Existing Device Table) contains the device information for 116 * all devices for all busses in the system. The table contains a 117 * cam_ed structure for each device on the bus. 118 */ 119 struct cam_ed { 120 TAILQ_ENTRY(cam_ed) links; 121 struct cam_ed_qinfo alloc_ccb_entry; 122 struct cam_ed_qinfo send_ccb_entry; 123 struct cam_et *target; 124 struct cam_sim *sim; 125 lun_id_t lun_id; 126 struct camq drvq; /* 127 * Queue of type drivers wanting to do 128 * work on this device. 129 */ 130 struct cam_ccbq ccbq; /* Queue of pending ccbs */ 131 struct async_list asyncs; /* Async callback info for this B/T/L */ 132 struct periph_list periphs; /* All attached devices */ 133 u_int generation; /* Generation number */ 134 struct cam_periph *owner; /* Peripheral driver's ownership tag */ 135 struct xpt_quirk_entry *quirk; /* Oddities about this device */ 136 /* Storage for the inquiry data */ 137 cam_proto protocol; 138 u_int protocol_version; 139 cam_xport transport; 140 u_int transport_version; 141 struct scsi_inquiry_data inq_data; 142 u_int8_t inq_flags; /* 143 * Current settings for inquiry flags. 144 * This allows us to override settings 145 * like disconnection and tagged 146 * queuing for a device. 147 */ 148 u_int8_t queue_flags; /* Queue flags from the control page */ 149 u_int8_t serial_num_len; 150 u_int8_t *serial_num; 151 u_int32_t qfrozen_cnt; 152 u_int32_t flags; 153 #define CAM_DEV_UNCONFIGURED 0x01 154 #define CAM_DEV_REL_TIMEOUT_PENDING 0x02 155 #define CAM_DEV_REL_ON_COMPLETE 0x04 156 #define CAM_DEV_REL_ON_QUEUE_EMPTY 0x08 157 #define CAM_DEV_RESIZE_QUEUE_NEEDED 0x10 158 #define CAM_DEV_TAG_AFTER_COUNT 0x20 159 #define CAM_DEV_INQUIRY_DATA_VALID 0x40 160 #define CAM_DEV_IN_DV 0x80 161 #define CAM_DEV_DV_HIT_BOTTOM 0x100 162 u_int32_t tag_delay_count; 163 #define CAM_TAG_DELAY_COUNT 5 164 u_int32_t tag_saved_openings; 165 u_int32_t refcount; 166 struct callout callout; 167 }; 168 169 /* 170 * Each target is represented by an ET (Existing Target). These 171 * entries are created when a target is successfully probed with an 172 * identify, and removed when a device fails to respond after a number 173 * of retries, or a bus rescan finds the device missing. 174 */ 175 struct cam_et { 176 TAILQ_HEAD(, cam_ed) ed_entries; 177 TAILQ_ENTRY(cam_et) links; 178 struct cam_eb *bus; 179 target_id_t target_id; 180 u_int32_t refcount; 181 u_int generation; 182 struct timeval last_reset; 183 }; 184 185 /* 186 * Each bus is represented by an EB (Existing Bus). These entries 187 * are created by calls to xpt_bus_register and deleted by calls to 188 * xpt_bus_deregister. 189 */ 190 struct cam_eb { 191 TAILQ_HEAD(, cam_et) et_entries; 192 TAILQ_ENTRY(cam_eb) links; 193 path_id_t path_id; 194 struct cam_sim *sim; 195 struct timeval last_reset; 196 u_int32_t flags; 197 #define CAM_EB_RUNQ_SCHEDULED 0x01 198 u_int32_t refcount; 199 u_int generation; 200 device_t parent_dev; 201 }; 202 203 struct cam_path { 204 struct cam_periph *periph; 205 struct cam_eb *bus; 206 struct cam_et *target; 207 struct cam_ed *device; 208 }; 209 210 struct xpt_quirk_entry { 211 struct scsi_inquiry_pattern inq_pat; 212 u_int8_t quirks; 213 #define CAM_QUIRK_NOLUNS 0x01 214 #define CAM_QUIRK_NOSERIAL 0x02 215 #define CAM_QUIRK_HILUNS 0x04 216 #define CAM_QUIRK_NOHILUNS 0x08 217 u_int mintags; 218 u_int maxtags; 219 }; 220 221 static int cam_srch_hi = 0; 222 TUNABLE_INT("kern.cam.cam_srch_hi", &cam_srch_hi); 223 static int sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS); 224 SYSCTL_PROC(_kern_cam, OID_AUTO, cam_srch_hi, CTLTYPE_INT|CTLFLAG_RW, 0, 0, 225 sysctl_cam_search_luns, "I", 226 "allow search above LUN 7 for SCSI3 and greater devices"); 227 228 #define CAM_SCSI2_MAXLUN 8 229 /* 230 * If we're not quirked to search <= the first 8 luns 231 * and we are either quirked to search above lun 8, 232 * or we're > SCSI-2 and we've enabled hilun searching, 233 * or we're > SCSI-2 and the last lun was a success, 234 * we can look for luns above lun 8. 235 */ 236 #define CAN_SRCH_HI_SPARSE(dv) \ 237 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 238 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 239 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2 && cam_srch_hi))) 240 241 #define CAN_SRCH_HI_DENSE(dv) \ 242 (((dv->quirk->quirks & CAM_QUIRK_NOHILUNS) == 0) \ 243 && ((dv->quirk->quirks & CAM_QUIRK_HILUNS) \ 244 || (SID_ANSI_REV(&dv->inq_data) > SCSI_REV_2))) 245 246 typedef enum { 247 XPT_FLAG_OPEN = 0x01 248 } xpt_flags; 249 250 struct xpt_softc { 251 xpt_flags flags; 252 u_int32_t xpt_generation; 253 254 /* number of high powered commands that can go through right now */ 255 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 256 int num_highpower; 257 258 /* queue for handling async rescan requests. */ 259 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 260 261 /* Registered busses */ 262 TAILQ_HEAD(,cam_eb) xpt_busses; 263 u_int bus_generation; 264 265 struct intr_config_hook *xpt_config_hook; 266 267 struct mtx xpt_topo_lock; 268 struct mtx xpt_lock; 269 }; 270 271 static const char quantum[] = "QUANTUM"; 272 static const char sony[] = "SONY"; 273 static const char west_digital[] = "WDIGTL"; 274 static const char samsung[] = "SAMSUNG"; 275 static const char seagate[] = "SEAGATE"; 276 static const char microp[] = "MICROP"; 277 278 static struct xpt_quirk_entry xpt_quirk_table[] = 279 { 280 { 281 /* Reports QUEUE FULL for temporary resource shortages */ 282 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP39100*", "*" }, 283 /*quirks*/0, /*mintags*/24, /*maxtags*/32 284 }, 285 { 286 /* Reports QUEUE FULL for temporary resource shortages */ 287 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP34550*", "*" }, 288 /*quirks*/0, /*mintags*/24, /*maxtags*/32 289 }, 290 { 291 /* Reports QUEUE FULL for temporary resource shortages */ 292 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "XP32275*", "*" }, 293 /*quirks*/0, /*mintags*/24, /*maxtags*/32 294 }, 295 { 296 /* Broken tagged queuing drive */ 297 { T_DIRECT, SIP_MEDIA_FIXED, microp, "4421-07*", "*" }, 298 /*quirks*/0, /*mintags*/0, /*maxtags*/0 299 }, 300 { 301 /* Broken tagged queuing drive */ 302 { T_DIRECT, SIP_MEDIA_FIXED, "HP", "C372*", "*" }, 303 /*quirks*/0, /*mintags*/0, /*maxtags*/0 304 }, 305 { 306 /* Broken tagged queuing drive */ 307 { T_DIRECT, SIP_MEDIA_FIXED, microp, "3391*", "x43h" }, 308 /*quirks*/0, /*mintags*/0, /*maxtags*/0 309 }, 310 { 311 /* 312 * Unfortunately, the Quantum Atlas III has the same 313 * problem as the Atlas II drives above. 314 * Reported by: "Johan Granlund" <johan@granlund.nu> 315 * 316 * For future reference, the drive with the problem was: 317 * QUANTUM QM39100TD-SW N1B0 318 * 319 * It's possible that Quantum will fix the problem in later 320 * firmware revisions. If that happens, the quirk entry 321 * will need to be made specific to the firmware revisions 322 * with the problem. 323 * 324 */ 325 /* Reports QUEUE FULL for temporary resource shortages */ 326 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM39100*", "*" }, 327 /*quirks*/0, /*mintags*/24, /*maxtags*/32 328 }, 329 { 330 /* 331 * 18 Gig Atlas III, same problem as the 9G version. 332 * Reported by: Andre Albsmeier 333 * <andre.albsmeier@mchp.siemens.de> 334 * 335 * For future reference, the drive with the problem was: 336 * QUANTUM QM318000TD-S N491 337 */ 338 /* Reports QUEUE FULL for temporary resource shortages */ 339 { T_DIRECT, SIP_MEDIA_FIXED, quantum, "QM318000*", "*" }, 340 /*quirks*/0, /*mintags*/24, /*maxtags*/32 341 }, 342 { 343 /* 344 * Broken tagged queuing drive 345 * Reported by: Bret Ford <bford@uop.cs.uop.edu> 346 * and: Martin Renters <martin@tdc.on.ca> 347 */ 348 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST410800*", "71*" }, 349 /*quirks*/0, /*mintags*/0, /*maxtags*/0 350 }, 351 /* 352 * The Seagate Medalist Pro drives have very poor write 353 * performance with anything more than 2 tags. 354 * 355 * Reported by: Paul van der Zwan <paulz@trantor.xs4all.nl> 356 * Drive: <SEAGATE ST36530N 1444> 357 * 358 * Reported by: Jeremy Lea <reg@shale.csir.co.za> 359 * Drive: <SEAGATE ST34520W 1281> 360 * 361 * No one has actually reported that the 9G version 362 * (ST39140*) of the Medalist Pro has the same problem, but 363 * we're assuming that it does because the 4G and 6.5G 364 * versions of the drive are broken. 365 */ 366 { 367 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST34520*", "*"}, 368 /*quirks*/0, /*mintags*/2, /*maxtags*/2 369 }, 370 { 371 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST36530*", "*"}, 372 /*quirks*/0, /*mintags*/2, /*maxtags*/2 373 }, 374 { 375 { T_DIRECT, SIP_MEDIA_FIXED, seagate, "ST39140*", "*"}, 376 /*quirks*/0, /*mintags*/2, /*maxtags*/2 377 }, 378 { 379 /* 380 * Slow when tagged queueing is enabled. Write performance 381 * steadily drops off with more and more concurrent 382 * transactions. Best sequential write performance with 383 * tagged queueing turned off and write caching turned on. 384 * 385 * PR: kern/10398 386 * Submitted by: Hideaki Okada <hokada@isl.melco.co.jp> 387 * Drive: DCAS-34330 w/ "S65A" firmware. 388 * 389 * The drive with the problem had the "S65A" firmware 390 * revision, and has also been reported (by Stephen J. 391 * Roznowski <sjr@home.net>) for a drive with the "S61A" 392 * firmware revision. 393 * 394 * Although no one has reported problems with the 2 gig 395 * version of the DCAS drive, the assumption is that it 396 * has the same problems as the 4 gig version. Therefore 397 * this quirk entries disables tagged queueing for all 398 * DCAS drives. 399 */ 400 { T_DIRECT, SIP_MEDIA_FIXED, "IBM", "DCAS*", "*" }, 401 /*quirks*/0, /*mintags*/0, /*maxtags*/0 402 }, 403 { 404 /* Broken tagged queuing drive */ 405 { T_DIRECT, SIP_MEDIA_REMOVABLE, "iomega", "jaz*", "*" }, 406 /*quirks*/0, /*mintags*/0, /*maxtags*/0 407 }, 408 { 409 /* Broken tagged queuing drive */ 410 { T_DIRECT, SIP_MEDIA_FIXED, "CONNER", "CFP2107*", "*" }, 411 /*quirks*/0, /*mintags*/0, /*maxtags*/0 412 }, 413 { 414 /* This does not support other than LUN 0 */ 415 { T_DIRECT, SIP_MEDIA_FIXED, "VMware*", "*", "*" }, 416 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 417 }, 418 { 419 /* 420 * Broken tagged queuing drive. 421 * Submitted by: 422 * NAKAJI Hiroyuki <nakaji@zeisei.dpri.kyoto-u.ac.jp> 423 * in PR kern/9535 424 */ 425 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN34324U*", "*" }, 426 /*quirks*/0, /*mintags*/0, /*maxtags*/0 427 }, 428 { 429 /* 430 * Slow when tagged queueing is enabled. (1.5MB/sec versus 431 * 8MB/sec.) 432 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 433 * Best performance with these drives is achieved with 434 * tagged queueing turned off, and write caching turned on. 435 */ 436 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "WDE*", "*" }, 437 /*quirks*/0, /*mintags*/0, /*maxtags*/0 438 }, 439 { 440 /* 441 * Slow when tagged queueing is enabled. (1.5MB/sec versus 442 * 8MB/sec.) 443 * Submitted by: Andrew Gallatin <gallatin@cs.duke.edu> 444 * Best performance with these drives is achieved with 445 * tagged queueing turned off, and write caching turned on. 446 */ 447 { T_DIRECT, SIP_MEDIA_FIXED, west_digital, "ENTERPRISE", "*" }, 448 /*quirks*/0, /*mintags*/0, /*maxtags*/0 449 }, 450 { 451 /* 452 * Doesn't handle queue full condition correctly, 453 * so we need to limit maxtags to what the device 454 * can handle instead of determining this automatically. 455 */ 456 { T_DIRECT, SIP_MEDIA_FIXED, samsung, "WN321010S*", "*" }, 457 /*quirks*/0, /*mintags*/2, /*maxtags*/32 458 }, 459 { 460 /* Really only one LUN */ 461 { T_ENCLOSURE, SIP_MEDIA_FIXED, "SUN", "SENA", "*" }, 462 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 463 }, 464 { 465 /* I can't believe we need a quirk for DPT volumes. */ 466 { T_ANY, SIP_MEDIA_FIXED|SIP_MEDIA_REMOVABLE, "DPT", "*", "*" }, 467 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, 468 /*mintags*/0, /*maxtags*/255 469 }, 470 { 471 /* 472 * Many Sony CDROM drives don't like multi-LUN probing. 473 */ 474 { T_CDROM, SIP_MEDIA_REMOVABLE, sony, "CD-ROM CDU*", "*" }, 475 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 476 }, 477 { 478 /* 479 * This drive doesn't like multiple LUN probing. 480 * Submitted by: Parag Patel <parag@cgt.com> 481 */ 482 { T_WORM, SIP_MEDIA_REMOVABLE, sony, "CD-R CDU9*", "*" }, 483 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 484 }, 485 { 486 { T_WORM, SIP_MEDIA_REMOVABLE, "YAMAHA", "CDR100*", "*" }, 487 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 488 }, 489 { 490 /* 491 * The 8200 doesn't like multi-lun probing, and probably 492 * don't like serial number requests either. 493 */ 494 { 495 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 496 "EXB-8200*", "*" 497 }, 498 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 499 }, 500 { 501 /* 502 * Let's try the same as above, but for a drive that says 503 * it's an IPL-6860 but is actually an EXB 8200. 504 */ 505 { 506 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "EXABYTE", 507 "IPL-6860*", "*" 508 }, 509 CAM_QUIRK_NOSERIAL|CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 510 }, 511 { 512 /* 513 * These Hitachi drives don't like multi-lun probing. 514 * The PR submitter has a DK319H, but says that the Linux 515 * kernel has a similar work-around for the DK312 and DK314, 516 * so all DK31* drives are quirked here. 517 * PR: misc/18793 518 * Submitted by: Paul Haddad <paul@pth.com> 519 */ 520 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK31*", "*" }, 521 CAM_QUIRK_NOLUNS, /*mintags*/2, /*maxtags*/255 522 }, 523 { 524 /* 525 * The Hitachi CJ series with J8A8 firmware apparantly has 526 * problems with tagged commands. 527 * PR: 23536 528 * Reported by: amagai@nue.org 529 */ 530 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "DK32CJ*", "J8A8" }, 531 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 532 }, 533 { 534 /* 535 * These are the large storage arrays. 536 * Submitted by: William Carrel <william.carrel@infospace.com> 537 */ 538 { T_DIRECT, SIP_MEDIA_FIXED, "HITACHI", "OPEN*", "*" }, 539 CAM_QUIRK_HILUNS, 2, 1024 540 }, 541 { 542 /* 543 * This old revision of the TDC3600 is also SCSI-1, and 544 * hangs upon serial number probing. 545 */ 546 { 547 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "TANDBERG", 548 " TDC 3600", "U07:" 549 }, 550 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 551 }, 552 { 553 /* 554 * Maxtor Personal Storage 3000XT (Firewire) 555 * hangs upon serial number probing. 556 */ 557 { 558 T_DIRECT, SIP_MEDIA_FIXED, "Maxtor", 559 "1394 storage", "*" 560 }, 561 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 562 }, 563 { 564 /* 565 * Would repond to all LUNs if asked for. 566 */ 567 { 568 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "CALIPER", 569 "CP150", "*" 570 }, 571 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 572 }, 573 { 574 /* 575 * Would repond to all LUNs if asked for. 576 */ 577 { 578 T_SEQUENTIAL, SIP_MEDIA_REMOVABLE, "KENNEDY", 579 "96X2*", "*" 580 }, 581 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 582 }, 583 { 584 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 585 { T_PROCESSOR, SIP_MEDIA_FIXED, "Cabletrn", "EA41*", "*" }, 586 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 587 }, 588 { 589 /* Submitted by: Matthew Dodd <winter@jurai.net> */ 590 { T_PROCESSOR, SIP_MEDIA_FIXED, "CABLETRN", "EA41*", "*" }, 591 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 592 }, 593 { 594 /* TeraSolutions special settings for TRC-22 RAID */ 595 { T_DIRECT, SIP_MEDIA_FIXED, "TERASOLU", "TRC-22", "*" }, 596 /*quirks*/0, /*mintags*/55, /*maxtags*/255 597 }, 598 { 599 /* Veritas Storage Appliance */ 600 { T_DIRECT, SIP_MEDIA_FIXED, "VERITAS", "*", "*" }, 601 CAM_QUIRK_HILUNS, /*mintags*/2, /*maxtags*/1024 602 }, 603 { 604 /* 605 * Would respond to all LUNs. Device type and removable 606 * flag are jumper-selectable. 607 */ 608 { T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, "MaxOptix", 609 "Tahiti 1", "*" 610 }, 611 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 612 }, 613 { 614 /* EasyRAID E5A aka. areca ARC-6010 */ 615 { T_DIRECT, SIP_MEDIA_FIXED, "easyRAID", "*", "*" }, 616 CAM_QUIRK_NOHILUNS, /*mintags*/2, /*maxtags*/255 617 }, 618 { 619 { T_ENCLOSURE, SIP_MEDIA_FIXED, "DP", "BACKPLANE", "*" }, 620 CAM_QUIRK_NOLUNS, /*mintags*/0, /*maxtags*/0 621 }, 622 { 623 /* 624 * Western Digital My Book 250GB (USB) 625 * hangs upon serial number probing. 626 * PR: 107495 627 */ 628 { 629 T_DIRECT, SIP_MEDIA_FIXED, "WD", 630 "2500JB External", "*" 631 }, 632 CAM_QUIRK_NOSERIAL, /*mintags*/0, /*maxtags*/0 633 }, 634 { 635 /* Default tagged queuing parameters for all devices */ 636 { 637 T_ANY, SIP_MEDIA_REMOVABLE|SIP_MEDIA_FIXED, 638 /*vendor*/"*", /*product*/"*", /*revision*/"*" 639 }, 640 /*quirks*/0, /*mintags*/2, /*maxtags*/255 641 }, 642 }; 643 644 static const int xpt_quirk_table_size = 645 sizeof(xpt_quirk_table) / sizeof(*xpt_quirk_table); 646 647 typedef enum { 648 DM_RET_COPY = 0x01, 649 DM_RET_FLAG_MASK = 0x0f, 650 DM_RET_NONE = 0x00, 651 DM_RET_STOP = 0x10, 652 DM_RET_DESCEND = 0x20, 653 DM_RET_ERROR = 0x30, 654 DM_RET_ACTION_MASK = 0xf0 655 } dev_match_ret; 656 657 typedef enum { 658 XPT_DEPTH_BUS, 659 XPT_DEPTH_TARGET, 660 XPT_DEPTH_DEVICE, 661 XPT_DEPTH_PERIPH 662 } xpt_traverse_depth; 663 664 struct xpt_traverse_config { 665 xpt_traverse_depth depth; 666 void *tr_func; 667 void *tr_arg; 668 }; 669 670 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 671 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 672 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 673 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 674 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 675 676 /* Transport layer configuration information */ 677 static struct xpt_softc xsoftc; 678 679 /* Queues for our software interrupt handler */ 680 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 681 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 682 static cam_simq_t cam_simq; 683 static struct mtx cam_simq_lock; 684 685 /* Pointers to software interrupt handlers */ 686 static void *cambio_ih; 687 688 struct cam_periph *xpt_periph; 689 690 static periph_init_t xpt_periph_init; 691 692 static periph_init_t probe_periph_init; 693 694 static struct periph_driver xpt_driver = 695 { 696 xpt_periph_init, "xpt", 697 TAILQ_HEAD_INITIALIZER(xpt_driver.units) 698 }; 699 700 static struct periph_driver probe_driver = 701 { 702 probe_periph_init, "probe", 703 TAILQ_HEAD_INITIALIZER(probe_driver.units) 704 }; 705 706 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 707 PERIPHDRIVER_DECLARE(probe, probe_driver); 708 709 710 static d_open_t xptopen; 711 static d_close_t xptclose; 712 static d_ioctl_t xptioctl; 713 714 static struct cdevsw xpt_cdevsw = { 715 .d_version = D_VERSION, 716 .d_flags = 0, 717 .d_open = xptopen, 718 .d_close = xptclose, 719 .d_ioctl = xptioctl, 720 .d_name = "xpt", 721 }; 722 723 724 static void dead_sim_action(struct cam_sim *sim, union ccb *ccb); 725 static void dead_sim_poll(struct cam_sim *sim); 726 727 /* Dummy SIM that is used when the real one has gone. */ 728 static struct cam_sim cam_dead_sim = { 729 .sim_action = dead_sim_action, 730 .sim_poll = dead_sim_poll, 731 .sim_name = "dead_sim", 732 }; 733 734 #define SIM_DEAD(sim) ((sim) == &cam_dead_sim) 735 736 737 /* Storage for debugging datastructures */ 738 #ifdef CAMDEBUG 739 struct cam_path *cam_dpath; 740 u_int32_t cam_dflags; 741 u_int32_t cam_debug_delay; 742 #endif 743 744 #if defined(CAM_DEBUG_FLAGS) && !defined(CAMDEBUG) 745 #error "You must have options CAMDEBUG to use options CAM_DEBUG_FLAGS" 746 #endif 747 748 /* 749 * In order to enable the CAM_DEBUG_* options, the user must have CAMDEBUG 750 * enabled. Also, the user must have either none, or all of CAM_DEBUG_BUS, 751 * CAM_DEBUG_TARGET, and CAM_DEBUG_LUN specified. 752 */ 753 #if defined(CAM_DEBUG_BUS) || defined(CAM_DEBUG_TARGET) \ 754 || defined(CAM_DEBUG_LUN) 755 #ifdef CAMDEBUG 756 #if !defined(CAM_DEBUG_BUS) || !defined(CAM_DEBUG_TARGET) \ 757 || !defined(CAM_DEBUG_LUN) 758 #error "You must define all or none of CAM_DEBUG_BUS, CAM_DEBUG_TARGET \ 759 and CAM_DEBUG_LUN" 760 #endif /* !CAM_DEBUG_BUS || !CAM_DEBUG_TARGET || !CAM_DEBUG_LUN */ 761 #else /* !CAMDEBUG */ 762 #error "You must use options CAMDEBUG if you use the CAM_DEBUG_* options" 763 #endif /* CAMDEBUG */ 764 #endif /* CAM_DEBUG_BUS || CAM_DEBUG_TARGET || CAM_DEBUG_LUN */ 765 766 /* Our boot-time initialization hook */ 767 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 768 769 static moduledata_t cam_moduledata = { 770 "cam", 771 cam_module_event_handler, 772 NULL 773 }; 774 775 static int xpt_init(void *); 776 777 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 778 MODULE_VERSION(cam, 1); 779 780 781 static cam_status xpt_compile_path(struct cam_path *new_path, 782 struct cam_periph *perph, 783 path_id_t path_id, 784 target_id_t target_id, 785 lun_id_t lun_id); 786 787 static void xpt_release_path(struct cam_path *path); 788 789 static void xpt_async_bcast(struct async_list *async_head, 790 u_int32_t async_code, 791 struct cam_path *path, 792 void *async_arg); 793 static void xpt_dev_async(u_int32_t async_code, 794 struct cam_eb *bus, 795 struct cam_et *target, 796 struct cam_ed *device, 797 void *async_arg); 798 static path_id_t xptnextfreepathid(void); 799 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 800 static union ccb *xpt_get_ccb(struct cam_ed *device); 801 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 802 u_int32_t new_priority); 803 static void xpt_run_dev_allocq(struct cam_eb *bus); 804 static void xpt_run_dev_sendq(struct cam_eb *bus); 805 static timeout_t xpt_release_devq_timeout; 806 static void xpt_release_simq_timeout(void *arg) __unused; 807 static void xpt_release_bus(struct cam_eb *bus); 808 static void xpt_release_devq_device(struct cam_ed *dev, u_int count, 809 int run_queue); 810 static struct cam_et* 811 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 812 static void xpt_release_target(struct cam_eb *bus, struct cam_et *target); 813 static struct cam_ed* 814 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, 815 lun_id_t lun_id); 816 static void xpt_release_device(struct cam_eb *bus, struct cam_et *target, 817 struct cam_ed *device); 818 static u_int32_t xpt_dev_ccbq_resize(struct cam_path *path, int newopenings); 819 static struct cam_eb* 820 xpt_find_bus(path_id_t path_id); 821 static struct cam_et* 822 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 823 static struct cam_ed* 824 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 825 static void xpt_scan_bus(struct cam_periph *periph, union ccb *ccb); 826 static void xpt_scan_lun(struct cam_periph *periph, 827 struct cam_path *path, cam_flags flags, 828 union ccb *ccb); 829 static void xptscandone(struct cam_periph *periph, union ccb *done_ccb); 830 static xpt_busfunc_t xptconfigbuscountfunc; 831 static xpt_busfunc_t xptconfigfunc; 832 static void xpt_config(void *arg); 833 static xpt_devicefunc_t xptpassannouncefunc; 834 static void xpt_finishconfig(struct cam_periph *periph, union ccb *ccb); 835 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 836 static void xptpoll(struct cam_sim *sim); 837 static void camisr(void *); 838 static void camisr_runqueue(void *); 839 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 840 u_int num_patterns, struct cam_eb *bus); 841 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 842 u_int num_patterns, 843 struct cam_ed *device); 844 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 845 u_int num_patterns, 846 struct cam_periph *periph); 847 static xpt_busfunc_t xptedtbusfunc; 848 static xpt_targetfunc_t xptedttargetfunc; 849 static xpt_devicefunc_t xptedtdevicefunc; 850 static xpt_periphfunc_t xptedtperiphfunc; 851 static xpt_pdrvfunc_t xptplistpdrvfunc; 852 static xpt_periphfunc_t xptplistperiphfunc; 853 static int xptedtmatch(struct ccb_dev_match *cdm); 854 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 855 static int xptbustraverse(struct cam_eb *start_bus, 856 xpt_busfunc_t *tr_func, void *arg); 857 static int xpttargettraverse(struct cam_eb *bus, 858 struct cam_et *start_target, 859 xpt_targetfunc_t *tr_func, void *arg); 860 static int xptdevicetraverse(struct cam_et *target, 861 struct cam_ed *start_device, 862 xpt_devicefunc_t *tr_func, void *arg); 863 static int xptperiphtraverse(struct cam_ed *device, 864 struct cam_periph *start_periph, 865 xpt_periphfunc_t *tr_func, void *arg); 866 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 867 xpt_pdrvfunc_t *tr_func, void *arg); 868 static int xptpdperiphtraverse(struct periph_driver **pdrv, 869 struct cam_periph *start_periph, 870 xpt_periphfunc_t *tr_func, 871 void *arg); 872 static xpt_busfunc_t xptdefbusfunc; 873 static xpt_targetfunc_t xptdeftargetfunc; 874 static xpt_devicefunc_t xptdefdevicefunc; 875 static xpt_periphfunc_t xptdefperiphfunc; 876 static int xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg); 877 static int xpt_for_all_devices(xpt_devicefunc_t *tr_func, 878 void *arg); 879 static xpt_devicefunc_t xptsetasyncfunc; 880 static xpt_busfunc_t xptsetasyncbusfunc; 881 static cam_status xptregister(struct cam_periph *periph, 882 void *arg); 883 static cam_status proberegister(struct cam_periph *periph, 884 void *arg); 885 static void probeschedule(struct cam_periph *probe_periph); 886 static void probestart(struct cam_periph *periph, union ccb *start_ccb); 887 static void proberequestdefaultnegotiation(struct cam_periph *periph); 888 static int proberequestbackoff(struct cam_periph *periph, 889 struct cam_ed *device); 890 static void probedone(struct cam_periph *periph, union ccb *done_ccb); 891 static void probecleanup(struct cam_periph *periph); 892 static void xpt_find_quirk(struct cam_ed *device); 893 static void xpt_devise_transport(struct cam_path *path); 894 static void xpt_set_transfer_settings(struct ccb_trans_settings *cts, 895 struct cam_ed *device, 896 int async_update); 897 static void xpt_toggle_tags(struct cam_path *path); 898 static void xpt_start_tags(struct cam_path *path); 899 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus, 900 struct cam_ed *dev); 901 static __inline int xpt_schedule_dev_sendq(struct cam_eb *bus, 902 struct cam_ed *dev); 903 static __inline int periph_is_queued(struct cam_periph *periph); 904 static __inline int device_is_alloc_queued(struct cam_ed *device); 905 static __inline int device_is_send_queued(struct cam_ed *device); 906 static __inline int dev_allocq_is_runnable(struct cam_devq *devq); 907 908 static __inline int 909 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 910 { 911 int retval; 912 913 if (dev->ccbq.devq_openings > 0) { 914 if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) { 915 cam_ccbq_resize(&dev->ccbq, 916 dev->ccbq.dev_openings 917 + dev->ccbq.dev_active); 918 dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 919 } 920 /* 921 * The priority of a device waiting for CCB resources 922 * is that of the the highest priority peripheral driver 923 * enqueued. 924 */ 925 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 926 &dev->alloc_ccb_entry.pinfo, 927 CAMQ_GET_HEAD(&dev->drvq)->priority); 928 } else { 929 retval = 0; 930 } 931 932 return (retval); 933 } 934 935 static __inline int 936 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 937 { 938 int retval; 939 940 if (dev->ccbq.dev_openings > 0) { 941 /* 942 * The priority of a device waiting for controller 943 * resources is that of the the highest priority CCB 944 * enqueued. 945 */ 946 retval = 947 xpt_schedule_dev(&bus->sim->devq->send_queue, 948 &dev->send_ccb_entry.pinfo, 949 CAMQ_GET_HEAD(&dev->ccbq.queue)->priority); 950 } else { 951 retval = 0; 952 } 953 return (retval); 954 } 955 956 static __inline int 957 periph_is_queued(struct cam_periph *periph) 958 { 959 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 960 } 961 962 static __inline int 963 device_is_alloc_queued(struct cam_ed *device) 964 { 965 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 966 } 967 968 static __inline int 969 device_is_send_queued(struct cam_ed *device) 970 { 971 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 972 } 973 974 static __inline int 975 dev_allocq_is_runnable(struct cam_devq *devq) 976 { 977 /* 978 * Have work to do. 979 * Have space to do more work. 980 * Allowed to do work. 981 */ 982 return ((devq->alloc_queue.qfrozen_cnt == 0) 983 && (devq->alloc_queue.entries > 0) 984 && (devq->alloc_openings > 0)); 985 } 986 987 static void 988 xpt_periph_init() 989 { 990 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 991 } 992 993 static void 994 probe_periph_init() 995 { 996 } 997 998 999 static void 1000 xptdone(struct cam_periph *periph, union ccb *done_ccb) 1001 { 1002 /* Caller will release the CCB */ 1003 wakeup(&done_ccb->ccb_h.cbfcnp); 1004 } 1005 1006 static int 1007 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 1008 { 1009 1010 /* 1011 * Only allow read-write access. 1012 */ 1013 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 1014 return(EPERM); 1015 1016 /* 1017 * We don't allow nonblocking access. 1018 */ 1019 if ((flags & O_NONBLOCK) != 0) { 1020 printf("%s: can't do nonblocking access\n", devtoname(dev)); 1021 return(ENODEV); 1022 } 1023 1024 /* Mark ourselves open */ 1025 mtx_lock(&xsoftc.xpt_lock); 1026 xsoftc.flags |= XPT_FLAG_OPEN; 1027 mtx_unlock(&xsoftc.xpt_lock); 1028 1029 return(0); 1030 } 1031 1032 static int 1033 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 1034 { 1035 1036 /* Mark ourselves closed */ 1037 mtx_lock(&xsoftc.xpt_lock); 1038 xsoftc.flags &= ~XPT_FLAG_OPEN; 1039 mtx_unlock(&xsoftc.xpt_lock); 1040 1041 return(0); 1042 } 1043 1044 /* 1045 * Don't automatically grab the xpt softc lock here even though this is going 1046 * through the xpt device. The xpt device is really just a back door for 1047 * accessing other devices and SIMs, so the right thing to do is to grab 1048 * the appropriate SIM lock once the bus/SIM is located. 1049 */ 1050 static int 1051 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 1052 { 1053 int error; 1054 1055 error = 0; 1056 1057 switch(cmd) { 1058 /* 1059 * For the transport layer CAMIOCOMMAND ioctl, we really only want 1060 * to accept CCB types that don't quite make sense to send through a 1061 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 1062 * in the CAM spec. 1063 */ 1064 case CAMIOCOMMAND: { 1065 union ccb *ccb; 1066 union ccb *inccb; 1067 struct cam_eb *bus; 1068 1069 inccb = (union ccb *)addr; 1070 1071 bus = xpt_find_bus(inccb->ccb_h.path_id); 1072 if (bus == NULL) { 1073 error = EINVAL; 1074 break; 1075 } 1076 1077 switch(inccb->ccb_h.func_code) { 1078 case XPT_SCAN_BUS: 1079 case XPT_RESET_BUS: 1080 if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD) 1081 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) { 1082 error = EINVAL; 1083 break; 1084 } 1085 /* FALLTHROUGH */ 1086 case XPT_PATH_INQ: 1087 case XPT_ENG_INQ: 1088 case XPT_SCAN_LUN: 1089 1090 ccb = xpt_alloc_ccb(); 1091 1092 CAM_SIM_LOCK(bus->sim); 1093 1094 /* 1095 * Create a path using the bus, target, and lun the 1096 * user passed in. 1097 */ 1098 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 1099 inccb->ccb_h.path_id, 1100 inccb->ccb_h.target_id, 1101 inccb->ccb_h.target_lun) != 1102 CAM_REQ_CMP){ 1103 error = EINVAL; 1104 CAM_SIM_UNLOCK(bus->sim); 1105 xpt_free_ccb(ccb); 1106 break; 1107 } 1108 /* Ensure all of our fields are correct */ 1109 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 1110 inccb->ccb_h.pinfo.priority); 1111 xpt_merge_ccb(ccb, inccb); 1112 ccb->ccb_h.cbfcnp = xptdone; 1113 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1114 bcopy(ccb, inccb, sizeof(union ccb)); 1115 xpt_free_path(ccb->ccb_h.path); 1116 xpt_free_ccb(ccb); 1117 CAM_SIM_UNLOCK(bus->sim); 1118 break; 1119 1120 case XPT_DEBUG: { 1121 union ccb ccb; 1122 1123 /* 1124 * This is an immediate CCB, so it's okay to 1125 * allocate it on the stack. 1126 */ 1127 1128 CAM_SIM_LOCK(bus->sim); 1129 1130 /* 1131 * Create a path using the bus, target, and lun the 1132 * user passed in. 1133 */ 1134 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 1135 inccb->ccb_h.path_id, 1136 inccb->ccb_h.target_id, 1137 inccb->ccb_h.target_lun) != 1138 CAM_REQ_CMP){ 1139 error = EINVAL; 1140 break; 1141 } 1142 /* Ensure all of our fields are correct */ 1143 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 1144 inccb->ccb_h.pinfo.priority); 1145 xpt_merge_ccb(&ccb, inccb); 1146 ccb.ccb_h.cbfcnp = xptdone; 1147 xpt_action(&ccb); 1148 CAM_SIM_UNLOCK(bus->sim); 1149 bcopy(&ccb, inccb, sizeof(union ccb)); 1150 xpt_free_path(ccb.ccb_h.path); 1151 break; 1152 1153 } 1154 case XPT_DEV_MATCH: { 1155 struct cam_periph_map_info mapinfo; 1156 struct cam_path *old_path; 1157 1158 /* 1159 * We can't deal with physical addresses for this 1160 * type of transaction. 1161 */ 1162 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 1163 error = EINVAL; 1164 break; 1165 } 1166 1167 /* 1168 * Save this in case the caller had it set to 1169 * something in particular. 1170 */ 1171 old_path = inccb->ccb_h.path; 1172 1173 /* 1174 * We really don't need a path for the matching 1175 * code. The path is needed because of the 1176 * debugging statements in xpt_action(). They 1177 * assume that the CCB has a valid path. 1178 */ 1179 inccb->ccb_h.path = xpt_periph->path; 1180 1181 bzero(&mapinfo, sizeof(mapinfo)); 1182 1183 /* 1184 * Map the pattern and match buffers into kernel 1185 * virtual address space. 1186 */ 1187 error = cam_periph_mapmem(inccb, &mapinfo); 1188 1189 if (error) { 1190 inccb->ccb_h.path = old_path; 1191 break; 1192 } 1193 1194 /* 1195 * This is an immediate CCB, we can send it on directly. 1196 */ 1197 xpt_action(inccb); 1198 1199 /* 1200 * Map the buffers back into user space. 1201 */ 1202 cam_periph_unmapmem(inccb, &mapinfo); 1203 1204 inccb->ccb_h.path = old_path; 1205 1206 error = 0; 1207 break; 1208 } 1209 default: 1210 error = ENOTSUP; 1211 break; 1212 } 1213 xpt_release_bus(bus); 1214 break; 1215 } 1216 /* 1217 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 1218 * with the periphal driver name and unit name filled in. The other 1219 * fields don't really matter as input. The passthrough driver name 1220 * ("pass"), and unit number are passed back in the ccb. The current 1221 * device generation number, and the index into the device peripheral 1222 * driver list, and the status are also passed back. Note that 1223 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 1224 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 1225 * (or rather should be) impossible for the device peripheral driver 1226 * list to change since we look at the whole thing in one pass, and 1227 * we do it with lock protection. 1228 * 1229 */ 1230 case CAMGETPASSTHRU: { 1231 union ccb *ccb; 1232 struct cam_periph *periph; 1233 struct periph_driver **p_drv; 1234 char *name; 1235 u_int unit; 1236 u_int cur_generation; 1237 int base_periph_found; 1238 int splbreaknum; 1239 1240 ccb = (union ccb *)addr; 1241 unit = ccb->cgdl.unit_number; 1242 name = ccb->cgdl.periph_name; 1243 /* 1244 * Every 100 devices, we want to drop our lock protection to 1245 * give the software interrupt handler a chance to run. 1246 * Most systems won't run into this check, but this should 1247 * avoid starvation in the software interrupt handler in 1248 * large systems. 1249 */ 1250 splbreaknum = 100; 1251 1252 ccb = (union ccb *)addr; 1253 1254 base_periph_found = 0; 1255 1256 /* 1257 * Sanity check -- make sure we don't get a null peripheral 1258 * driver name. 1259 */ 1260 if (*ccb->cgdl.periph_name == '\0') { 1261 error = EINVAL; 1262 break; 1263 } 1264 1265 /* Keep the list from changing while we traverse it */ 1266 mtx_lock(&xsoftc.xpt_topo_lock); 1267 ptstartover: 1268 cur_generation = xsoftc.xpt_generation; 1269 1270 /* first find our driver in the list of drivers */ 1271 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 1272 if (strcmp((*p_drv)->driver_name, name) == 0) 1273 break; 1274 1275 if (*p_drv == NULL) { 1276 mtx_unlock(&xsoftc.xpt_topo_lock); 1277 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1278 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1279 *ccb->cgdl.periph_name = '\0'; 1280 ccb->cgdl.unit_number = 0; 1281 error = ENOENT; 1282 break; 1283 } 1284 1285 /* 1286 * Run through every peripheral instance of this driver 1287 * and check to see whether it matches the unit passed 1288 * in by the user. If it does, get out of the loops and 1289 * find the passthrough driver associated with that 1290 * peripheral driver. 1291 */ 1292 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 1293 periph = TAILQ_NEXT(periph, unit_links)) { 1294 1295 if (periph->unit_number == unit) { 1296 break; 1297 } else if (--splbreaknum == 0) { 1298 mtx_unlock(&xsoftc.xpt_topo_lock); 1299 mtx_lock(&xsoftc.xpt_topo_lock); 1300 splbreaknum = 100; 1301 if (cur_generation != xsoftc.xpt_generation) 1302 goto ptstartover; 1303 } 1304 } 1305 /* 1306 * If we found the peripheral driver that the user passed 1307 * in, go through all of the peripheral drivers for that 1308 * particular device and look for a passthrough driver. 1309 */ 1310 if (periph != NULL) { 1311 struct cam_ed *device; 1312 int i; 1313 1314 base_periph_found = 1; 1315 device = periph->path->device; 1316 for (i = 0, periph = SLIST_FIRST(&device->periphs); 1317 periph != NULL; 1318 periph = SLIST_NEXT(periph, periph_links), i++) { 1319 /* 1320 * Check to see whether we have a 1321 * passthrough device or not. 1322 */ 1323 if (strcmp(periph->periph_name, "pass") == 0) { 1324 /* 1325 * Fill in the getdevlist fields. 1326 */ 1327 strcpy(ccb->cgdl.periph_name, 1328 periph->periph_name); 1329 ccb->cgdl.unit_number = 1330 periph->unit_number; 1331 if (SLIST_NEXT(periph, periph_links)) 1332 ccb->cgdl.status = 1333 CAM_GDEVLIST_MORE_DEVS; 1334 else 1335 ccb->cgdl.status = 1336 CAM_GDEVLIST_LAST_DEVICE; 1337 ccb->cgdl.generation = 1338 device->generation; 1339 ccb->cgdl.index = i; 1340 /* 1341 * Fill in some CCB header fields 1342 * that the user may want. 1343 */ 1344 ccb->ccb_h.path_id = 1345 periph->path->bus->path_id; 1346 ccb->ccb_h.target_id = 1347 periph->path->target->target_id; 1348 ccb->ccb_h.target_lun = 1349 periph->path->device->lun_id; 1350 ccb->ccb_h.status = CAM_REQ_CMP; 1351 break; 1352 } 1353 } 1354 } 1355 1356 /* 1357 * If the periph is null here, one of two things has 1358 * happened. The first possibility is that we couldn't 1359 * find the unit number of the particular peripheral driver 1360 * that the user is asking about. e.g. the user asks for 1361 * the passthrough driver for "da11". We find the list of 1362 * "da" peripherals all right, but there is no unit 11. 1363 * The other possibility is that we went through the list 1364 * of peripheral drivers attached to the device structure, 1365 * but didn't find one with the name "pass". Either way, 1366 * we return ENOENT, since we couldn't find something. 1367 */ 1368 if (periph == NULL) { 1369 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 1370 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 1371 *ccb->cgdl.periph_name = '\0'; 1372 ccb->cgdl.unit_number = 0; 1373 error = ENOENT; 1374 /* 1375 * It is unfortunate that this is even necessary, 1376 * but there are many, many clueless users out there. 1377 * If this is true, the user is looking for the 1378 * passthrough driver, but doesn't have one in his 1379 * kernel. 1380 */ 1381 if (base_periph_found == 1) { 1382 printf("xptioctl: pass driver is not in the " 1383 "kernel\n"); 1384 printf("xptioctl: put \"device pass0\" in " 1385 "your kernel config file\n"); 1386 } 1387 } 1388 mtx_unlock(&xsoftc.xpt_topo_lock); 1389 break; 1390 } 1391 default: 1392 error = ENOTTY; 1393 break; 1394 } 1395 1396 return(error); 1397 } 1398 1399 static int 1400 cam_module_event_handler(module_t mod, int what, void *arg) 1401 { 1402 int error; 1403 1404 switch (what) { 1405 case MOD_LOAD: 1406 if ((error = xpt_init(NULL)) != 0) 1407 return (error); 1408 break; 1409 case MOD_UNLOAD: 1410 return EBUSY; 1411 default: 1412 return EOPNOTSUPP; 1413 } 1414 1415 return 0; 1416 } 1417 1418 /* thread to handle bus rescans */ 1419 static void 1420 xpt_scanner_thread(void *dummy) 1421 { 1422 cam_isrq_t queue; 1423 union ccb *ccb; 1424 struct cam_sim *sim; 1425 1426 for (;;) { 1427 /* 1428 * Wait for a rescan request to come in. When it does, splice 1429 * it onto a queue from local storage so that the xpt lock 1430 * doesn't need to be held while the requests are being 1431 * processed. 1432 */ 1433 xpt_lock_buses(); 1434 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 1435 "ccb_scanq", 0); 1436 TAILQ_INIT(&queue); 1437 TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe); 1438 xpt_unlock_buses(); 1439 1440 while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) { 1441 TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe); 1442 1443 sim = ccb->ccb_h.path->bus->sim; 1444 CAM_SIM_LOCK(sim); 1445 1446 ccb->ccb_h.func_code = XPT_SCAN_BUS; 1447 ccb->ccb_h.cbfcnp = xptdone; 1448 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5); 1449 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 1450 xpt_free_path(ccb->ccb_h.path); 1451 xpt_free_ccb(ccb); 1452 CAM_SIM_UNLOCK(sim); 1453 } 1454 } 1455 } 1456 1457 void 1458 xpt_rescan(union ccb *ccb) 1459 { 1460 struct ccb_hdr *hdr; 1461 1462 /* 1463 * Don't make duplicate entries for the same paths. 1464 */ 1465 xpt_lock_buses(); 1466 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 1467 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 1468 xpt_unlock_buses(); 1469 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 1470 xpt_free_path(ccb->ccb_h.path); 1471 xpt_free_ccb(ccb); 1472 return; 1473 } 1474 } 1475 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 1476 wakeup(&xsoftc.ccb_scanq); 1477 xpt_unlock_buses(); 1478 } 1479 1480 /* Functions accessed by the peripheral drivers */ 1481 static int 1482 xpt_init(void *dummy) 1483 { 1484 struct cam_sim *xpt_sim; 1485 struct cam_path *path; 1486 struct cam_devq *devq; 1487 cam_status status; 1488 1489 TAILQ_INIT(&xsoftc.xpt_busses); 1490 TAILQ_INIT(&cam_simq); 1491 TAILQ_INIT(&xsoftc.ccb_scanq); 1492 STAILQ_INIT(&xsoftc.highpowerq); 1493 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 1494 1495 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 1496 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 1497 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 1498 1499 /* 1500 * The xpt layer is, itself, the equivelent of a SIM. 1501 * Allow 16 ccbs in the ccb pool for it. This should 1502 * give decent parallelism when we probe busses and 1503 * perform other XPT functions. 1504 */ 1505 devq = cam_simq_alloc(16); 1506 xpt_sim = cam_sim_alloc(xptaction, 1507 xptpoll, 1508 "xpt", 1509 /*softc*/NULL, 1510 /*unit*/0, 1511 /*mtx*/&xsoftc.xpt_lock, 1512 /*max_dev_transactions*/0, 1513 /*max_tagged_dev_transactions*/0, 1514 devq); 1515 if (xpt_sim == NULL) 1516 return (ENOMEM); 1517 1518 xpt_sim->max_ccbs = 16; 1519 1520 mtx_lock(&xsoftc.xpt_lock); 1521 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 1522 printf("xpt_init: xpt_bus_register failed with status %#x," 1523 " failing attach\n", status); 1524 return (EINVAL); 1525 } 1526 1527 /* 1528 * Looking at the XPT from the SIM layer, the XPT is 1529 * the equivelent of a peripheral driver. Allocate 1530 * a peripheral driver entry for us. 1531 */ 1532 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 1533 CAM_TARGET_WILDCARD, 1534 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 1535 printf("xpt_init: xpt_create_path failed with status %#x," 1536 " failing attach\n", status); 1537 return (EINVAL); 1538 } 1539 1540 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 1541 path, NULL, 0, xpt_sim); 1542 xpt_free_path(path); 1543 mtx_unlock(&xsoftc.xpt_lock); 1544 1545 /* 1546 * Register a callback for when interrupts are enabled. 1547 */ 1548 xsoftc.xpt_config_hook = 1549 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 1550 M_CAMXPT, M_NOWAIT | M_ZERO); 1551 if (xsoftc.xpt_config_hook == NULL) { 1552 printf("xpt_init: Cannot malloc config hook " 1553 "- failing attach\n"); 1554 return (ENOMEM); 1555 } 1556 1557 xsoftc.xpt_config_hook->ich_func = xpt_config; 1558 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 1559 free (xsoftc.xpt_config_hook, M_CAMXPT); 1560 printf("xpt_init: config_intrhook_establish failed " 1561 "- failing attach\n"); 1562 } 1563 1564 /* fire up rescan thread */ 1565 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 1566 printf("xpt_init: failed to create rescan thread\n"); 1567 } 1568 /* Install our software interrupt handlers */ 1569 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 1570 1571 return (0); 1572 } 1573 1574 static cam_status 1575 xptregister(struct cam_periph *periph, void *arg) 1576 { 1577 struct cam_sim *xpt_sim; 1578 1579 if (periph == NULL) { 1580 printf("xptregister: periph was NULL!!\n"); 1581 return(CAM_REQ_CMP_ERR); 1582 } 1583 1584 xpt_sim = (struct cam_sim *)arg; 1585 xpt_sim->softc = periph; 1586 xpt_periph = periph; 1587 periph->softc = NULL; 1588 1589 return(CAM_REQ_CMP); 1590 } 1591 1592 int32_t 1593 xpt_add_periph(struct cam_periph *periph) 1594 { 1595 struct cam_ed *device; 1596 int32_t status; 1597 struct periph_list *periph_head; 1598 1599 mtx_assert(periph->sim->mtx, MA_OWNED); 1600 1601 device = periph->path->device; 1602 1603 periph_head = &device->periphs; 1604 1605 status = CAM_REQ_CMP; 1606 1607 if (device != NULL) { 1608 /* 1609 * Make room for this peripheral 1610 * so it will fit in the queue 1611 * when it's scheduled to run 1612 */ 1613 status = camq_resize(&device->drvq, 1614 device->drvq.array_size + 1); 1615 1616 device->generation++; 1617 1618 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1619 } 1620 1621 mtx_lock(&xsoftc.xpt_topo_lock); 1622 xsoftc.xpt_generation++; 1623 mtx_unlock(&xsoftc.xpt_topo_lock); 1624 1625 return (status); 1626 } 1627 1628 void 1629 xpt_remove_periph(struct cam_periph *periph) 1630 { 1631 struct cam_ed *device; 1632 1633 mtx_assert(periph->sim->mtx, MA_OWNED); 1634 1635 device = periph->path->device; 1636 1637 if (device != NULL) { 1638 struct periph_list *periph_head; 1639 1640 periph_head = &device->periphs; 1641 1642 /* Release the slot for this peripheral */ 1643 camq_resize(&device->drvq, device->drvq.array_size - 1); 1644 1645 device->generation++; 1646 1647 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1648 } 1649 1650 mtx_lock(&xsoftc.xpt_topo_lock); 1651 xsoftc.xpt_generation++; 1652 mtx_unlock(&xsoftc.xpt_topo_lock); 1653 } 1654 1655 1656 void 1657 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1658 { 1659 struct ccb_pathinq cpi; 1660 struct ccb_trans_settings cts; 1661 struct cam_path *path; 1662 u_int speed; 1663 u_int freq; 1664 u_int mb; 1665 1666 mtx_assert(periph->sim->mtx, MA_OWNED); 1667 1668 path = periph->path; 1669 /* 1670 * To ensure that this is printed in one piece, 1671 * mask out CAM interrupts. 1672 */ 1673 printf("%s%d at %s%d bus %d target %d lun %d\n", 1674 periph->periph_name, periph->unit_number, 1675 path->bus->sim->sim_name, 1676 path->bus->sim->unit_number, 1677 path->bus->sim->bus_id, 1678 path->target->target_id, 1679 path->device->lun_id); 1680 printf("%s%d: ", periph->periph_name, periph->unit_number); 1681 scsi_print_inquiry(&path->device->inq_data); 1682 if (bootverbose && path->device->serial_num_len > 0) { 1683 /* Don't wrap the screen - print only the first 60 chars */ 1684 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1685 periph->unit_number, path->device->serial_num); 1686 } 1687 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 1688 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 1689 cts.type = CTS_TYPE_CURRENT_SETTINGS; 1690 xpt_action((union ccb*)&cts); 1691 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 1692 return; 1693 } 1694 1695 /* Ask the SIM for its base transfer speed */ 1696 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 1697 cpi.ccb_h.func_code = XPT_PATH_INQ; 1698 xpt_action((union ccb *)&cpi); 1699 1700 speed = cpi.base_transfer_speed; 1701 freq = 0; 1702 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1703 struct ccb_trans_settings_spi *spi; 1704 1705 spi = &cts.xport_specific.spi; 1706 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0 1707 && spi->sync_offset != 0) { 1708 freq = scsi_calc_syncsrate(spi->sync_period); 1709 speed = freq; 1710 } 1711 1712 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) 1713 speed *= (0x01 << spi->bus_width); 1714 } 1715 1716 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1717 struct ccb_trans_settings_fc *fc = &cts.xport_specific.fc; 1718 if (fc->valid & CTS_FC_VALID_SPEED) { 1719 speed = fc->bitrate; 1720 } 1721 } 1722 1723 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) { 1724 struct ccb_trans_settings_sas *sas = &cts.xport_specific.sas; 1725 if (sas->valid & CTS_SAS_VALID_SPEED) { 1726 speed = sas->bitrate; 1727 } 1728 } 1729 1730 mb = speed / 1000; 1731 if (mb > 0) 1732 printf("%s%d: %d.%03dMB/s transfers", 1733 periph->periph_name, periph->unit_number, 1734 mb, speed % 1000); 1735 else 1736 printf("%s%d: %dKB/s transfers", periph->periph_name, 1737 periph->unit_number, speed); 1738 /* Report additional information about SPI connections */ 1739 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) { 1740 struct ccb_trans_settings_spi *spi; 1741 1742 spi = &cts.xport_specific.spi; 1743 if (freq != 0) { 1744 printf(" (%d.%03dMHz%s, offset %d", freq / 1000, 1745 freq % 1000, 1746 (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0 1747 ? " DT" : "", 1748 spi->sync_offset); 1749 } 1750 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0 1751 && spi->bus_width > 0) { 1752 if (freq != 0) { 1753 printf(", "); 1754 } else { 1755 printf(" ("); 1756 } 1757 printf("%dbit)", 8 * (0x01 << spi->bus_width)); 1758 } else if (freq != 0) { 1759 printf(")"); 1760 } 1761 } 1762 if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) { 1763 struct ccb_trans_settings_fc *fc; 1764 1765 fc = &cts.xport_specific.fc; 1766 if (fc->valid & CTS_FC_VALID_WWNN) 1767 printf(" WWNN 0x%llx", (long long) fc->wwnn); 1768 if (fc->valid & CTS_FC_VALID_WWPN) 1769 printf(" WWPN 0x%llx", (long long) fc->wwpn); 1770 if (fc->valid & CTS_FC_VALID_PORT) 1771 printf(" PortID 0x%x", fc->port); 1772 } 1773 1774 if (path->device->inq_flags & SID_CmdQue 1775 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1776 printf("\n%s%d: Command Queueing Enabled", 1777 periph->periph_name, periph->unit_number); 1778 } 1779 printf("\n"); 1780 1781 /* 1782 * We only want to print the caller's announce string if they've 1783 * passed one in.. 1784 */ 1785 if (announce_string != NULL) 1786 printf("%s%d: %s\n", periph->periph_name, 1787 periph->unit_number, announce_string); 1788 } 1789 1790 static dev_match_ret 1791 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1792 struct cam_eb *bus) 1793 { 1794 dev_match_ret retval; 1795 int i; 1796 1797 retval = DM_RET_NONE; 1798 1799 /* 1800 * If we aren't given something to match against, that's an error. 1801 */ 1802 if (bus == NULL) 1803 return(DM_RET_ERROR); 1804 1805 /* 1806 * If there are no match entries, then this bus matches no 1807 * matter what. 1808 */ 1809 if ((patterns == NULL) || (num_patterns == 0)) 1810 return(DM_RET_DESCEND | DM_RET_COPY); 1811 1812 for (i = 0; i < num_patterns; i++) { 1813 struct bus_match_pattern *cur_pattern; 1814 1815 /* 1816 * If the pattern in question isn't for a bus node, we 1817 * aren't interested. However, we do indicate to the 1818 * calling routine that we should continue descending the 1819 * tree, since the user wants to match against lower-level 1820 * EDT elements. 1821 */ 1822 if (patterns[i].type != DEV_MATCH_BUS) { 1823 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1824 retval |= DM_RET_DESCEND; 1825 continue; 1826 } 1827 1828 cur_pattern = &patterns[i].pattern.bus_pattern; 1829 1830 /* 1831 * If they want to match any bus node, we give them any 1832 * device node. 1833 */ 1834 if (cur_pattern->flags == BUS_MATCH_ANY) { 1835 /* set the copy flag */ 1836 retval |= DM_RET_COPY; 1837 1838 /* 1839 * If we've already decided on an action, go ahead 1840 * and return. 1841 */ 1842 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1843 return(retval); 1844 } 1845 1846 /* 1847 * Not sure why someone would do this... 1848 */ 1849 if (cur_pattern->flags == BUS_MATCH_NONE) 1850 continue; 1851 1852 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1853 && (cur_pattern->path_id != bus->path_id)) 1854 continue; 1855 1856 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1857 && (cur_pattern->bus_id != bus->sim->bus_id)) 1858 continue; 1859 1860 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1861 && (cur_pattern->unit_number != bus->sim->unit_number)) 1862 continue; 1863 1864 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1865 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1866 DEV_IDLEN) != 0)) 1867 continue; 1868 1869 /* 1870 * If we get to this point, the user definitely wants 1871 * information on this bus. So tell the caller to copy the 1872 * data out. 1873 */ 1874 retval |= DM_RET_COPY; 1875 1876 /* 1877 * If the return action has been set to descend, then we 1878 * know that we've already seen a non-bus matching 1879 * expression, therefore we need to further descend the tree. 1880 * This won't change by continuing around the loop, so we 1881 * go ahead and return. If we haven't seen a non-bus 1882 * matching expression, we keep going around the loop until 1883 * we exhaust the matching expressions. We'll set the stop 1884 * flag once we fall out of the loop. 1885 */ 1886 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1887 return(retval); 1888 } 1889 1890 /* 1891 * If the return action hasn't been set to descend yet, that means 1892 * we haven't seen anything other than bus matching patterns. So 1893 * tell the caller to stop descending the tree -- the user doesn't 1894 * want to match against lower level tree elements. 1895 */ 1896 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1897 retval |= DM_RET_STOP; 1898 1899 return(retval); 1900 } 1901 1902 static dev_match_ret 1903 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1904 struct cam_ed *device) 1905 { 1906 dev_match_ret retval; 1907 int i; 1908 1909 retval = DM_RET_NONE; 1910 1911 /* 1912 * If we aren't given something to match against, that's an error. 1913 */ 1914 if (device == NULL) 1915 return(DM_RET_ERROR); 1916 1917 /* 1918 * If there are no match entries, then this device matches no 1919 * matter what. 1920 */ 1921 if ((patterns == NULL) || (num_patterns == 0)) 1922 return(DM_RET_DESCEND | DM_RET_COPY); 1923 1924 for (i = 0; i < num_patterns; i++) { 1925 struct device_match_pattern *cur_pattern; 1926 1927 /* 1928 * If the pattern in question isn't for a device node, we 1929 * aren't interested. 1930 */ 1931 if (patterns[i].type != DEV_MATCH_DEVICE) { 1932 if ((patterns[i].type == DEV_MATCH_PERIPH) 1933 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1934 retval |= DM_RET_DESCEND; 1935 continue; 1936 } 1937 1938 cur_pattern = &patterns[i].pattern.device_pattern; 1939 1940 /* 1941 * If they want to match any device node, we give them any 1942 * device node. 1943 */ 1944 if (cur_pattern->flags == DEV_MATCH_ANY) { 1945 /* set the copy flag */ 1946 retval |= DM_RET_COPY; 1947 1948 1949 /* 1950 * If we've already decided on an action, go ahead 1951 * and return. 1952 */ 1953 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1954 return(retval); 1955 } 1956 1957 /* 1958 * Not sure why someone would do this... 1959 */ 1960 if (cur_pattern->flags == DEV_MATCH_NONE) 1961 continue; 1962 1963 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1964 && (cur_pattern->path_id != device->target->bus->path_id)) 1965 continue; 1966 1967 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1968 && (cur_pattern->target_id != device->target->target_id)) 1969 continue; 1970 1971 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1972 && (cur_pattern->target_lun != device->lun_id)) 1973 continue; 1974 1975 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1976 && (cam_quirkmatch((caddr_t)&device->inq_data, 1977 (caddr_t)&cur_pattern->inq_pat, 1978 1, sizeof(cur_pattern->inq_pat), 1979 scsi_static_inquiry_match) == NULL)) 1980 continue; 1981 1982 /* 1983 * If we get to this point, the user definitely wants 1984 * information on this device. So tell the caller to copy 1985 * the data out. 1986 */ 1987 retval |= DM_RET_COPY; 1988 1989 /* 1990 * If the return action has been set to descend, then we 1991 * know that we've already seen a peripheral matching 1992 * expression, therefore we need to further descend the tree. 1993 * This won't change by continuing around the loop, so we 1994 * go ahead and return. If we haven't seen a peripheral 1995 * matching expression, we keep going around the loop until 1996 * we exhaust the matching expressions. We'll set the stop 1997 * flag once we fall out of the loop. 1998 */ 1999 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 2000 return(retval); 2001 } 2002 2003 /* 2004 * If the return action hasn't been set to descend yet, that means 2005 * we haven't seen any peripheral matching patterns. So tell the 2006 * caller to stop descending the tree -- the user doesn't want to 2007 * match against lower level tree elements. 2008 */ 2009 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 2010 retval |= DM_RET_STOP; 2011 2012 return(retval); 2013 } 2014 2015 /* 2016 * Match a single peripheral against any number of match patterns. 2017 */ 2018 static dev_match_ret 2019 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 2020 struct cam_periph *periph) 2021 { 2022 dev_match_ret retval; 2023 int i; 2024 2025 /* 2026 * If we aren't given something to match against, that's an error. 2027 */ 2028 if (periph == NULL) 2029 return(DM_RET_ERROR); 2030 2031 /* 2032 * If there are no match entries, then this peripheral matches no 2033 * matter what. 2034 */ 2035 if ((patterns == NULL) || (num_patterns == 0)) 2036 return(DM_RET_STOP | DM_RET_COPY); 2037 2038 /* 2039 * There aren't any nodes below a peripheral node, so there's no 2040 * reason to descend the tree any further. 2041 */ 2042 retval = DM_RET_STOP; 2043 2044 for (i = 0; i < num_patterns; i++) { 2045 struct periph_match_pattern *cur_pattern; 2046 2047 /* 2048 * If the pattern in question isn't for a peripheral, we 2049 * aren't interested. 2050 */ 2051 if (patterns[i].type != DEV_MATCH_PERIPH) 2052 continue; 2053 2054 cur_pattern = &patterns[i].pattern.periph_pattern; 2055 2056 /* 2057 * If they want to match on anything, then we will do so. 2058 */ 2059 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 2060 /* set the copy flag */ 2061 retval |= DM_RET_COPY; 2062 2063 /* 2064 * We've already set the return action to stop, 2065 * since there are no nodes below peripherals in 2066 * the tree. 2067 */ 2068 return(retval); 2069 } 2070 2071 /* 2072 * Not sure why someone would do this... 2073 */ 2074 if (cur_pattern->flags == PERIPH_MATCH_NONE) 2075 continue; 2076 2077 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 2078 && (cur_pattern->path_id != periph->path->bus->path_id)) 2079 continue; 2080 2081 /* 2082 * For the target and lun id's, we have to make sure the 2083 * target and lun pointers aren't NULL. The xpt peripheral 2084 * has a wildcard target and device. 2085 */ 2086 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 2087 && ((periph->path->target == NULL) 2088 ||(cur_pattern->target_id != periph->path->target->target_id))) 2089 continue; 2090 2091 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 2092 && ((periph->path->device == NULL) 2093 || (cur_pattern->target_lun != periph->path->device->lun_id))) 2094 continue; 2095 2096 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 2097 && (cur_pattern->unit_number != periph->unit_number)) 2098 continue; 2099 2100 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 2101 && (strncmp(cur_pattern->periph_name, periph->periph_name, 2102 DEV_IDLEN) != 0)) 2103 continue; 2104 2105 /* 2106 * If we get to this point, the user definitely wants 2107 * information on this peripheral. So tell the caller to 2108 * copy the data out. 2109 */ 2110 retval |= DM_RET_COPY; 2111 2112 /* 2113 * The return action has already been set to stop, since 2114 * peripherals don't have any nodes below them in the EDT. 2115 */ 2116 return(retval); 2117 } 2118 2119 /* 2120 * If we get to this point, the peripheral that was passed in 2121 * doesn't match any of the patterns. 2122 */ 2123 return(retval); 2124 } 2125 2126 static int 2127 xptedtbusfunc(struct cam_eb *bus, void *arg) 2128 { 2129 struct ccb_dev_match *cdm; 2130 dev_match_ret retval; 2131 2132 cdm = (struct ccb_dev_match *)arg; 2133 2134 /* 2135 * If our position is for something deeper in the tree, that means 2136 * that we've already seen this node. So, we keep going down. 2137 */ 2138 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2139 && (cdm->pos.cookie.bus == bus) 2140 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2141 && (cdm->pos.cookie.target != NULL)) 2142 retval = DM_RET_DESCEND; 2143 else 2144 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 2145 2146 /* 2147 * If we got an error, bail out of the search. 2148 */ 2149 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2150 cdm->status = CAM_DEV_MATCH_ERROR; 2151 return(0); 2152 } 2153 2154 /* 2155 * If the copy flag is set, copy this bus out. 2156 */ 2157 if (retval & DM_RET_COPY) { 2158 int spaceleft, j; 2159 2160 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2161 sizeof(struct dev_match_result)); 2162 2163 /* 2164 * If we don't have enough space to put in another 2165 * match result, save our position and tell the 2166 * user there are more devices to check. 2167 */ 2168 if (spaceleft < sizeof(struct dev_match_result)) { 2169 bzero(&cdm->pos, sizeof(cdm->pos)); 2170 cdm->pos.position_type = 2171 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 2172 2173 cdm->pos.cookie.bus = bus; 2174 cdm->pos.generations[CAM_BUS_GENERATION]= 2175 xsoftc.bus_generation; 2176 cdm->status = CAM_DEV_MATCH_MORE; 2177 return(0); 2178 } 2179 j = cdm->num_matches; 2180 cdm->num_matches++; 2181 cdm->matches[j].type = DEV_MATCH_BUS; 2182 cdm->matches[j].result.bus_result.path_id = bus->path_id; 2183 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 2184 cdm->matches[j].result.bus_result.unit_number = 2185 bus->sim->unit_number; 2186 strncpy(cdm->matches[j].result.bus_result.dev_name, 2187 bus->sim->sim_name, DEV_IDLEN); 2188 } 2189 2190 /* 2191 * If the user is only interested in busses, there's no 2192 * reason to descend to the next level in the tree. 2193 */ 2194 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2195 return(1); 2196 2197 /* 2198 * If there is a target generation recorded, check it to 2199 * make sure the target list hasn't changed. 2200 */ 2201 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2202 && (bus == cdm->pos.cookie.bus) 2203 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2204 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 2205 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 2206 bus->generation)) { 2207 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2208 return(0); 2209 } 2210 2211 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2212 && (cdm->pos.cookie.bus == bus) 2213 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2214 && (cdm->pos.cookie.target != NULL)) 2215 return(xpttargettraverse(bus, 2216 (struct cam_et *)cdm->pos.cookie.target, 2217 xptedttargetfunc, arg)); 2218 else 2219 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 2220 } 2221 2222 static int 2223 xptedttargetfunc(struct cam_et *target, void *arg) 2224 { 2225 struct ccb_dev_match *cdm; 2226 2227 cdm = (struct ccb_dev_match *)arg; 2228 2229 /* 2230 * If there is a device list generation recorded, check it to 2231 * make sure the device list hasn't changed. 2232 */ 2233 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2234 && (cdm->pos.cookie.bus == target->bus) 2235 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2236 && (cdm->pos.cookie.target == target) 2237 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2238 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 2239 && (cdm->pos.generations[CAM_DEV_GENERATION] != 2240 target->generation)) { 2241 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2242 return(0); 2243 } 2244 2245 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2246 && (cdm->pos.cookie.bus == target->bus) 2247 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2248 && (cdm->pos.cookie.target == target) 2249 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2250 && (cdm->pos.cookie.device != NULL)) 2251 return(xptdevicetraverse(target, 2252 (struct cam_ed *)cdm->pos.cookie.device, 2253 xptedtdevicefunc, arg)); 2254 else 2255 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 2256 } 2257 2258 static int 2259 xptedtdevicefunc(struct cam_ed *device, void *arg) 2260 { 2261 2262 struct ccb_dev_match *cdm; 2263 dev_match_ret retval; 2264 2265 cdm = (struct ccb_dev_match *)arg; 2266 2267 /* 2268 * If our position is for something deeper in the tree, that means 2269 * that we've already seen this node. So, we keep going down. 2270 */ 2271 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2272 && (cdm->pos.cookie.device == device) 2273 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2274 && (cdm->pos.cookie.periph != NULL)) 2275 retval = DM_RET_DESCEND; 2276 else 2277 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 2278 device); 2279 2280 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2281 cdm->status = CAM_DEV_MATCH_ERROR; 2282 return(0); 2283 } 2284 2285 /* 2286 * If the copy flag is set, copy this device out. 2287 */ 2288 if (retval & DM_RET_COPY) { 2289 int spaceleft, j; 2290 2291 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2292 sizeof(struct dev_match_result)); 2293 2294 /* 2295 * If we don't have enough space to put in another 2296 * match result, save our position and tell the 2297 * user there are more devices to check. 2298 */ 2299 if (spaceleft < sizeof(struct dev_match_result)) { 2300 bzero(&cdm->pos, sizeof(cdm->pos)); 2301 cdm->pos.position_type = 2302 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2303 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 2304 2305 cdm->pos.cookie.bus = device->target->bus; 2306 cdm->pos.generations[CAM_BUS_GENERATION]= 2307 xsoftc.bus_generation; 2308 cdm->pos.cookie.target = device->target; 2309 cdm->pos.generations[CAM_TARGET_GENERATION] = 2310 device->target->bus->generation; 2311 cdm->pos.cookie.device = device; 2312 cdm->pos.generations[CAM_DEV_GENERATION] = 2313 device->target->generation; 2314 cdm->status = CAM_DEV_MATCH_MORE; 2315 return(0); 2316 } 2317 j = cdm->num_matches; 2318 cdm->num_matches++; 2319 cdm->matches[j].type = DEV_MATCH_DEVICE; 2320 cdm->matches[j].result.device_result.path_id = 2321 device->target->bus->path_id; 2322 cdm->matches[j].result.device_result.target_id = 2323 device->target->target_id; 2324 cdm->matches[j].result.device_result.target_lun = 2325 device->lun_id; 2326 bcopy(&device->inq_data, 2327 &cdm->matches[j].result.device_result.inq_data, 2328 sizeof(struct scsi_inquiry_data)); 2329 2330 /* Let the user know whether this device is unconfigured */ 2331 if (device->flags & CAM_DEV_UNCONFIGURED) 2332 cdm->matches[j].result.device_result.flags = 2333 DEV_RESULT_UNCONFIGURED; 2334 else 2335 cdm->matches[j].result.device_result.flags = 2336 DEV_RESULT_NOFLAG; 2337 } 2338 2339 /* 2340 * If the user isn't interested in peripherals, don't descend 2341 * the tree any further. 2342 */ 2343 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 2344 return(1); 2345 2346 /* 2347 * If there is a peripheral list generation recorded, make sure 2348 * it hasn't changed. 2349 */ 2350 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2351 && (device->target->bus == cdm->pos.cookie.bus) 2352 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2353 && (device->target == cdm->pos.cookie.target) 2354 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2355 && (device == cdm->pos.cookie.device) 2356 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2357 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2358 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2359 device->generation)){ 2360 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2361 return(0); 2362 } 2363 2364 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2365 && (cdm->pos.cookie.bus == device->target->bus) 2366 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 2367 && (cdm->pos.cookie.target == device->target) 2368 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 2369 && (cdm->pos.cookie.device == device) 2370 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2371 && (cdm->pos.cookie.periph != NULL)) 2372 return(xptperiphtraverse(device, 2373 (struct cam_periph *)cdm->pos.cookie.periph, 2374 xptedtperiphfunc, arg)); 2375 else 2376 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 2377 } 2378 2379 static int 2380 xptedtperiphfunc(struct cam_periph *periph, void *arg) 2381 { 2382 struct ccb_dev_match *cdm; 2383 dev_match_ret retval; 2384 2385 cdm = (struct ccb_dev_match *)arg; 2386 2387 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2388 2389 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2390 cdm->status = CAM_DEV_MATCH_ERROR; 2391 return(0); 2392 } 2393 2394 /* 2395 * If the copy flag is set, copy this peripheral out. 2396 */ 2397 if (retval & DM_RET_COPY) { 2398 int spaceleft, j; 2399 2400 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2401 sizeof(struct dev_match_result)); 2402 2403 /* 2404 * If we don't have enough space to put in another 2405 * match result, save our position and tell the 2406 * user there are more devices to check. 2407 */ 2408 if (spaceleft < sizeof(struct dev_match_result)) { 2409 bzero(&cdm->pos, sizeof(cdm->pos)); 2410 cdm->pos.position_type = 2411 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 2412 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 2413 CAM_DEV_POS_PERIPH; 2414 2415 cdm->pos.cookie.bus = periph->path->bus; 2416 cdm->pos.generations[CAM_BUS_GENERATION]= 2417 xsoftc.bus_generation; 2418 cdm->pos.cookie.target = periph->path->target; 2419 cdm->pos.generations[CAM_TARGET_GENERATION] = 2420 periph->path->bus->generation; 2421 cdm->pos.cookie.device = periph->path->device; 2422 cdm->pos.generations[CAM_DEV_GENERATION] = 2423 periph->path->target->generation; 2424 cdm->pos.cookie.periph = periph; 2425 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2426 periph->path->device->generation; 2427 cdm->status = CAM_DEV_MATCH_MORE; 2428 return(0); 2429 } 2430 2431 j = cdm->num_matches; 2432 cdm->num_matches++; 2433 cdm->matches[j].type = DEV_MATCH_PERIPH; 2434 cdm->matches[j].result.periph_result.path_id = 2435 periph->path->bus->path_id; 2436 cdm->matches[j].result.periph_result.target_id = 2437 periph->path->target->target_id; 2438 cdm->matches[j].result.periph_result.target_lun = 2439 periph->path->device->lun_id; 2440 cdm->matches[j].result.periph_result.unit_number = 2441 periph->unit_number; 2442 strncpy(cdm->matches[j].result.periph_result.periph_name, 2443 periph->periph_name, DEV_IDLEN); 2444 } 2445 2446 return(1); 2447 } 2448 2449 static int 2450 xptedtmatch(struct ccb_dev_match *cdm) 2451 { 2452 int ret; 2453 2454 cdm->num_matches = 0; 2455 2456 /* 2457 * Check the bus list generation. If it has changed, the user 2458 * needs to reset everything and start over. 2459 */ 2460 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2461 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 2462 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 2463 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2464 return(0); 2465 } 2466 2467 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2468 && (cdm->pos.cookie.bus != NULL)) 2469 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 2470 xptedtbusfunc, cdm); 2471 else 2472 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 2473 2474 /* 2475 * If we get back 0, that means that we had to stop before fully 2476 * traversing the EDT. It also means that one of the subroutines 2477 * has set the status field to the proper value. If we get back 1, 2478 * we've fully traversed the EDT and copied out any matching entries. 2479 */ 2480 if (ret == 1) 2481 cdm->status = CAM_DEV_MATCH_LAST; 2482 2483 return(ret); 2484 } 2485 2486 static int 2487 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2488 { 2489 struct ccb_dev_match *cdm; 2490 2491 cdm = (struct ccb_dev_match *)arg; 2492 2493 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2494 && (cdm->pos.cookie.pdrv == pdrv) 2495 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2496 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 2497 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2498 (*pdrv)->generation)) { 2499 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2500 return(0); 2501 } 2502 2503 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2504 && (cdm->pos.cookie.pdrv == pdrv) 2505 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2506 && (cdm->pos.cookie.periph != NULL)) 2507 return(xptpdperiphtraverse(pdrv, 2508 (struct cam_periph *)cdm->pos.cookie.periph, 2509 xptplistperiphfunc, arg)); 2510 else 2511 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 2512 } 2513 2514 static int 2515 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2516 { 2517 struct ccb_dev_match *cdm; 2518 dev_match_ret retval; 2519 2520 cdm = (struct ccb_dev_match *)arg; 2521 2522 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2523 2524 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2525 cdm->status = CAM_DEV_MATCH_ERROR; 2526 return(0); 2527 } 2528 2529 /* 2530 * If the copy flag is set, copy this peripheral out. 2531 */ 2532 if (retval & DM_RET_COPY) { 2533 int spaceleft, j; 2534 2535 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2536 sizeof(struct dev_match_result)); 2537 2538 /* 2539 * If we don't have enough space to put in another 2540 * match result, save our position and tell the 2541 * user there are more devices to check. 2542 */ 2543 if (spaceleft < sizeof(struct dev_match_result)) { 2544 struct periph_driver **pdrv; 2545 2546 pdrv = NULL; 2547 bzero(&cdm->pos, sizeof(cdm->pos)); 2548 cdm->pos.position_type = 2549 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2550 CAM_DEV_POS_PERIPH; 2551 2552 /* 2553 * This may look a bit non-sensical, but it is 2554 * actually quite logical. There are very few 2555 * peripheral drivers, and bloating every peripheral 2556 * structure with a pointer back to its parent 2557 * peripheral driver linker set entry would cost 2558 * more in the long run than doing this quick lookup. 2559 */ 2560 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2561 if (strcmp((*pdrv)->driver_name, 2562 periph->periph_name) == 0) 2563 break; 2564 } 2565 2566 if (*pdrv == NULL) { 2567 cdm->status = CAM_DEV_MATCH_ERROR; 2568 return(0); 2569 } 2570 2571 cdm->pos.cookie.pdrv = pdrv; 2572 /* 2573 * The periph generation slot does double duty, as 2574 * does the periph pointer slot. They are used for 2575 * both edt and pdrv lookups and positioning. 2576 */ 2577 cdm->pos.cookie.periph = periph; 2578 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2579 (*pdrv)->generation; 2580 cdm->status = CAM_DEV_MATCH_MORE; 2581 return(0); 2582 } 2583 2584 j = cdm->num_matches; 2585 cdm->num_matches++; 2586 cdm->matches[j].type = DEV_MATCH_PERIPH; 2587 cdm->matches[j].result.periph_result.path_id = 2588 periph->path->bus->path_id; 2589 2590 /* 2591 * The transport layer peripheral doesn't have a target or 2592 * lun. 2593 */ 2594 if (periph->path->target) 2595 cdm->matches[j].result.periph_result.target_id = 2596 periph->path->target->target_id; 2597 else 2598 cdm->matches[j].result.periph_result.target_id = -1; 2599 2600 if (periph->path->device) 2601 cdm->matches[j].result.periph_result.target_lun = 2602 periph->path->device->lun_id; 2603 else 2604 cdm->matches[j].result.periph_result.target_lun = -1; 2605 2606 cdm->matches[j].result.periph_result.unit_number = 2607 periph->unit_number; 2608 strncpy(cdm->matches[j].result.periph_result.periph_name, 2609 periph->periph_name, DEV_IDLEN); 2610 } 2611 2612 return(1); 2613 } 2614 2615 static int 2616 xptperiphlistmatch(struct ccb_dev_match *cdm) 2617 { 2618 int ret; 2619 2620 cdm->num_matches = 0; 2621 2622 /* 2623 * At this point in the edt traversal function, we check the bus 2624 * list generation to make sure that no busses have been added or 2625 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2626 * For the peripheral driver list traversal function, however, we 2627 * don't have to worry about new peripheral driver types coming or 2628 * going; they're in a linker set, and therefore can't change 2629 * without a recompile. 2630 */ 2631 2632 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2633 && (cdm->pos.cookie.pdrv != NULL)) 2634 ret = xptpdrvtraverse( 2635 (struct periph_driver **)cdm->pos.cookie.pdrv, 2636 xptplistpdrvfunc, cdm); 2637 else 2638 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2639 2640 /* 2641 * If we get back 0, that means that we had to stop before fully 2642 * traversing the peripheral driver tree. It also means that one of 2643 * the subroutines has set the status field to the proper value. If 2644 * we get back 1, we've fully traversed the EDT and copied out any 2645 * matching entries. 2646 */ 2647 if (ret == 1) 2648 cdm->status = CAM_DEV_MATCH_LAST; 2649 2650 return(ret); 2651 } 2652 2653 static int 2654 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2655 { 2656 struct cam_eb *bus, *next_bus; 2657 int retval; 2658 2659 retval = 1; 2660 2661 mtx_lock(&xsoftc.xpt_topo_lock); 2662 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2663 bus != NULL; 2664 bus = next_bus) { 2665 next_bus = TAILQ_NEXT(bus, links); 2666 2667 mtx_unlock(&xsoftc.xpt_topo_lock); 2668 CAM_SIM_LOCK(bus->sim); 2669 retval = tr_func(bus, arg); 2670 CAM_SIM_UNLOCK(bus->sim); 2671 if (retval == 0) 2672 return(retval); 2673 mtx_lock(&xsoftc.xpt_topo_lock); 2674 } 2675 mtx_unlock(&xsoftc.xpt_topo_lock); 2676 2677 return(retval); 2678 } 2679 2680 static int 2681 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2682 xpt_targetfunc_t *tr_func, void *arg) 2683 { 2684 struct cam_et *target, *next_target; 2685 int retval; 2686 2687 retval = 1; 2688 for (target = (start_target ? start_target : 2689 TAILQ_FIRST(&bus->et_entries)); 2690 target != NULL; target = next_target) { 2691 2692 next_target = TAILQ_NEXT(target, links); 2693 2694 retval = tr_func(target, arg); 2695 2696 if (retval == 0) 2697 return(retval); 2698 } 2699 2700 return(retval); 2701 } 2702 2703 static int 2704 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2705 xpt_devicefunc_t *tr_func, void *arg) 2706 { 2707 struct cam_ed *device, *next_device; 2708 int retval; 2709 2710 retval = 1; 2711 for (device = (start_device ? start_device : 2712 TAILQ_FIRST(&target->ed_entries)); 2713 device != NULL; 2714 device = next_device) { 2715 2716 next_device = TAILQ_NEXT(device, links); 2717 2718 retval = tr_func(device, arg); 2719 2720 if (retval == 0) 2721 return(retval); 2722 } 2723 2724 return(retval); 2725 } 2726 2727 static int 2728 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2729 xpt_periphfunc_t *tr_func, void *arg) 2730 { 2731 struct cam_periph *periph, *next_periph; 2732 int retval; 2733 2734 retval = 1; 2735 2736 for (periph = (start_periph ? start_periph : 2737 SLIST_FIRST(&device->periphs)); 2738 periph != NULL; 2739 periph = next_periph) { 2740 2741 next_periph = SLIST_NEXT(periph, periph_links); 2742 2743 retval = tr_func(periph, arg); 2744 if (retval == 0) 2745 return(retval); 2746 } 2747 2748 return(retval); 2749 } 2750 2751 static int 2752 xptpdrvtraverse(struct periph_driver **start_pdrv, 2753 xpt_pdrvfunc_t *tr_func, void *arg) 2754 { 2755 struct periph_driver **pdrv; 2756 int retval; 2757 2758 retval = 1; 2759 2760 /* 2761 * We don't traverse the peripheral driver list like we do the 2762 * other lists, because it is a linker set, and therefore cannot be 2763 * changed during runtime. If the peripheral driver list is ever 2764 * re-done to be something other than a linker set (i.e. it can 2765 * change while the system is running), the list traversal should 2766 * be modified to work like the other traversal functions. 2767 */ 2768 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2769 *pdrv != NULL; pdrv++) { 2770 retval = tr_func(pdrv, arg); 2771 2772 if (retval == 0) 2773 return(retval); 2774 } 2775 2776 return(retval); 2777 } 2778 2779 static int 2780 xptpdperiphtraverse(struct periph_driver **pdrv, 2781 struct cam_periph *start_periph, 2782 xpt_periphfunc_t *tr_func, void *arg) 2783 { 2784 struct cam_periph *periph, *next_periph; 2785 int retval; 2786 2787 retval = 1; 2788 2789 for (periph = (start_periph ? start_periph : 2790 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2791 periph = next_periph) { 2792 2793 next_periph = TAILQ_NEXT(periph, unit_links); 2794 2795 retval = tr_func(periph, arg); 2796 if (retval == 0) 2797 return(retval); 2798 } 2799 return(retval); 2800 } 2801 2802 static int 2803 xptdefbusfunc(struct cam_eb *bus, void *arg) 2804 { 2805 struct xpt_traverse_config *tr_config; 2806 2807 tr_config = (struct xpt_traverse_config *)arg; 2808 2809 if (tr_config->depth == XPT_DEPTH_BUS) { 2810 xpt_busfunc_t *tr_func; 2811 2812 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2813 2814 return(tr_func(bus, tr_config->tr_arg)); 2815 } else 2816 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2817 } 2818 2819 static int 2820 xptdeftargetfunc(struct cam_et *target, void *arg) 2821 { 2822 struct xpt_traverse_config *tr_config; 2823 2824 tr_config = (struct xpt_traverse_config *)arg; 2825 2826 if (tr_config->depth == XPT_DEPTH_TARGET) { 2827 xpt_targetfunc_t *tr_func; 2828 2829 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2830 2831 return(tr_func(target, tr_config->tr_arg)); 2832 } else 2833 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2834 } 2835 2836 static int 2837 xptdefdevicefunc(struct cam_ed *device, void *arg) 2838 { 2839 struct xpt_traverse_config *tr_config; 2840 2841 tr_config = (struct xpt_traverse_config *)arg; 2842 2843 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2844 xpt_devicefunc_t *tr_func; 2845 2846 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2847 2848 return(tr_func(device, tr_config->tr_arg)); 2849 } else 2850 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2851 } 2852 2853 static int 2854 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2855 { 2856 struct xpt_traverse_config *tr_config; 2857 xpt_periphfunc_t *tr_func; 2858 2859 tr_config = (struct xpt_traverse_config *)arg; 2860 2861 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2862 2863 /* 2864 * Unlike the other default functions, we don't check for depth 2865 * here. The peripheral driver level is the last level in the EDT, 2866 * so if we're here, we should execute the function in question. 2867 */ 2868 return(tr_func(periph, tr_config->tr_arg)); 2869 } 2870 2871 /* 2872 * Execute the given function for every bus in the EDT. 2873 */ 2874 static int 2875 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2876 { 2877 struct xpt_traverse_config tr_config; 2878 2879 tr_config.depth = XPT_DEPTH_BUS; 2880 tr_config.tr_func = tr_func; 2881 tr_config.tr_arg = arg; 2882 2883 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2884 } 2885 2886 /* 2887 * Execute the given function for every device in the EDT. 2888 */ 2889 static int 2890 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2891 { 2892 struct xpt_traverse_config tr_config; 2893 2894 tr_config.depth = XPT_DEPTH_DEVICE; 2895 tr_config.tr_func = tr_func; 2896 tr_config.tr_arg = arg; 2897 2898 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2899 } 2900 2901 static int 2902 xptsetasyncfunc(struct cam_ed *device, void *arg) 2903 { 2904 struct cam_path path; 2905 struct ccb_getdev cgd; 2906 struct async_node *cur_entry; 2907 2908 cur_entry = (struct async_node *)arg; 2909 2910 /* 2911 * Don't report unconfigured devices (Wildcard devs, 2912 * devices only for target mode, device instances 2913 * that have been invalidated but are waiting for 2914 * their last reference count to be released). 2915 */ 2916 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2917 return (1); 2918 2919 xpt_compile_path(&path, 2920 NULL, 2921 device->target->bus->path_id, 2922 device->target->target_id, 2923 device->lun_id); 2924 xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1); 2925 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2926 xpt_action((union ccb *)&cgd); 2927 cur_entry->callback(cur_entry->callback_arg, 2928 AC_FOUND_DEVICE, 2929 &path, &cgd); 2930 xpt_release_path(&path); 2931 2932 return(1); 2933 } 2934 2935 static int 2936 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2937 { 2938 struct cam_path path; 2939 struct ccb_pathinq cpi; 2940 struct async_node *cur_entry; 2941 2942 cur_entry = (struct async_node *)arg; 2943 2944 xpt_compile_path(&path, /*periph*/NULL, 2945 bus->sim->path_id, 2946 CAM_TARGET_WILDCARD, 2947 CAM_LUN_WILDCARD); 2948 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 2949 cpi.ccb_h.func_code = XPT_PATH_INQ; 2950 xpt_action((union ccb *)&cpi); 2951 cur_entry->callback(cur_entry->callback_arg, 2952 AC_PATH_REGISTERED, 2953 &path, &cpi); 2954 xpt_release_path(&path); 2955 2956 return(1); 2957 } 2958 2959 static void 2960 xpt_action_sasync_cb(void *context, int pending) 2961 { 2962 struct async_node *cur_entry; 2963 struct xpt_task *task; 2964 uint32_t added; 2965 2966 task = (struct xpt_task *)context; 2967 cur_entry = (struct async_node *)task->data1; 2968 added = task->data2; 2969 2970 if ((added & AC_FOUND_DEVICE) != 0) { 2971 /* 2972 * Get this peripheral up to date with all 2973 * the currently existing devices. 2974 */ 2975 xpt_for_all_devices(xptsetasyncfunc, cur_entry); 2976 } 2977 if ((added & AC_PATH_REGISTERED) != 0) { 2978 /* 2979 * Get this peripheral up to date with all 2980 * the currently existing busses. 2981 */ 2982 xpt_for_all_busses(xptsetasyncbusfunc, cur_entry); 2983 } 2984 2985 free(task, M_CAMXPT); 2986 } 2987 2988 void 2989 xpt_action(union ccb *start_ccb) 2990 { 2991 2992 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2993 2994 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2995 2996 switch (start_ccb->ccb_h.func_code) { 2997 case XPT_SCSI_IO: 2998 { 2999 struct cam_ed *device; 3000 #ifdef CAMDEBUG 3001 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3002 struct cam_path *path; 3003 3004 path = start_ccb->ccb_h.path; 3005 #endif 3006 3007 /* 3008 * For the sake of compatibility with SCSI-1 3009 * devices that may not understand the identify 3010 * message, we include lun information in the 3011 * second byte of all commands. SCSI-1 specifies 3012 * that luns are a 3 bit value and reserves only 3 3013 * bits for lun information in the CDB. Later 3014 * revisions of the SCSI spec allow for more than 8 3015 * luns, but have deprecated lun information in the 3016 * CDB. So, if the lun won't fit, we must omit. 3017 * 3018 * Also be aware that during initial probing for devices, 3019 * the inquiry information is unknown but initialized to 0. 3020 * This means that this code will be exercised while probing 3021 * devices with an ANSI revision greater than 2. 3022 */ 3023 device = start_ccb->ccb_h.path->device; 3024 if (device->protocol_version <= SCSI_REV_2 3025 && start_ccb->ccb_h.target_lun < 8 3026 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 3027 3028 start_ccb->csio.cdb_io.cdb_bytes[1] |= 3029 start_ccb->ccb_h.target_lun << 5; 3030 } 3031 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 3032 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 3033 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 3034 &path->device->inq_data), 3035 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 3036 cdb_str, sizeof(cdb_str)))); 3037 } 3038 /* FALLTHROUGH */ 3039 case XPT_TARGET_IO: 3040 case XPT_CONT_TARGET_IO: 3041 start_ccb->csio.sense_resid = 0; 3042 start_ccb->csio.resid = 0; 3043 /* FALLTHROUGH */ 3044 case XPT_RESET_DEV: 3045 case XPT_ENG_EXEC: 3046 { 3047 struct cam_path *path; 3048 struct cam_sim *sim; 3049 int runq; 3050 3051 path = start_ccb->ccb_h.path; 3052 3053 sim = path->bus->sim; 3054 if (SIM_DEAD(sim)) { 3055 /* The SIM has gone; just execute the CCB directly. */ 3056 cam_ccbq_send_ccb(&path->device->ccbq, start_ccb); 3057 (*(sim->sim_action))(sim, start_ccb); 3058 break; 3059 } 3060 3061 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 3062 if (path->device->qfrozen_cnt == 0) 3063 runq = xpt_schedule_dev_sendq(path->bus, path->device); 3064 else 3065 runq = 0; 3066 if (runq != 0) 3067 xpt_run_dev_sendq(path->bus); 3068 break; 3069 } 3070 case XPT_SET_TRAN_SETTINGS: 3071 { 3072 xpt_set_transfer_settings(&start_ccb->cts, 3073 start_ccb->ccb_h.path->device, 3074 /*async_update*/FALSE); 3075 break; 3076 } 3077 case XPT_CALC_GEOMETRY: 3078 { 3079 struct cam_sim *sim; 3080 3081 /* Filter out garbage */ 3082 if (start_ccb->ccg.block_size == 0 3083 || start_ccb->ccg.volume_size == 0) { 3084 start_ccb->ccg.cylinders = 0; 3085 start_ccb->ccg.heads = 0; 3086 start_ccb->ccg.secs_per_track = 0; 3087 start_ccb->ccb_h.status = CAM_REQ_CMP; 3088 break; 3089 } 3090 #ifdef PC98 3091 /* 3092 * In a PC-98 system, geometry translation depens on 3093 * the "real" device geometry obtained from mode page 4. 3094 * SCSI geometry translation is performed in the 3095 * initialization routine of the SCSI BIOS and the result 3096 * stored in host memory. If the translation is available 3097 * in host memory, use it. If not, rely on the default 3098 * translation the device driver performs. 3099 */ 3100 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 3101 start_ccb->ccb_h.status = CAM_REQ_CMP; 3102 break; 3103 } 3104 #endif 3105 sim = start_ccb->ccb_h.path->bus->sim; 3106 (*(sim->sim_action))(sim, start_ccb); 3107 break; 3108 } 3109 case XPT_ABORT: 3110 { 3111 union ccb* abort_ccb; 3112 3113 abort_ccb = start_ccb->cab.abort_ccb; 3114 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 3115 3116 if (abort_ccb->ccb_h.pinfo.index >= 0) { 3117 struct cam_ccbq *ccbq; 3118 3119 ccbq = &abort_ccb->ccb_h.path->device->ccbq; 3120 cam_ccbq_remove_ccb(ccbq, abort_ccb); 3121 abort_ccb->ccb_h.status = 3122 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3123 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3124 xpt_done(abort_ccb); 3125 start_ccb->ccb_h.status = CAM_REQ_CMP; 3126 break; 3127 } 3128 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 3129 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 3130 /* 3131 * We've caught this ccb en route to 3132 * the SIM. Flag it for abort and the 3133 * SIM will do so just before starting 3134 * real work on the CCB. 3135 */ 3136 abort_ccb->ccb_h.status = 3137 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 3138 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 3139 start_ccb->ccb_h.status = CAM_REQ_CMP; 3140 break; 3141 } 3142 } 3143 if (XPT_FC_IS_QUEUED(abort_ccb) 3144 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 3145 /* 3146 * It's already completed but waiting 3147 * for our SWI to get to it. 3148 */ 3149 start_ccb->ccb_h.status = CAM_UA_ABORT; 3150 break; 3151 } 3152 /* 3153 * If we weren't able to take care of the abort request 3154 * in the XPT, pass the request down to the SIM for processing. 3155 */ 3156 } 3157 /* FALLTHROUGH */ 3158 case XPT_ACCEPT_TARGET_IO: 3159 case XPT_EN_LUN: 3160 case XPT_IMMED_NOTIFY: 3161 case XPT_NOTIFY_ACK: 3162 case XPT_GET_TRAN_SETTINGS: 3163 case XPT_RESET_BUS: 3164 { 3165 struct cam_sim *sim; 3166 3167 sim = start_ccb->ccb_h.path->bus->sim; 3168 (*(sim->sim_action))(sim, start_ccb); 3169 break; 3170 } 3171 case XPT_PATH_INQ: 3172 { 3173 struct cam_sim *sim; 3174 3175 sim = start_ccb->ccb_h.path->bus->sim; 3176 (*(sim->sim_action))(sim, start_ccb); 3177 break; 3178 } 3179 case XPT_PATH_STATS: 3180 start_ccb->cpis.last_reset = 3181 start_ccb->ccb_h.path->bus->last_reset; 3182 start_ccb->ccb_h.status = CAM_REQ_CMP; 3183 break; 3184 case XPT_GDEV_TYPE: 3185 { 3186 struct cam_ed *dev; 3187 3188 dev = start_ccb->ccb_h.path->device; 3189 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3190 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3191 } else { 3192 struct ccb_getdev *cgd; 3193 struct cam_eb *bus; 3194 struct cam_et *tar; 3195 3196 cgd = &start_ccb->cgd; 3197 bus = cgd->ccb_h.path->bus; 3198 tar = cgd->ccb_h.path->target; 3199 cgd->inq_data = dev->inq_data; 3200 cgd->ccb_h.status = CAM_REQ_CMP; 3201 cgd->serial_num_len = dev->serial_num_len; 3202 if ((dev->serial_num_len > 0) 3203 && (dev->serial_num != NULL)) 3204 bcopy(dev->serial_num, cgd->serial_num, 3205 dev->serial_num_len); 3206 } 3207 break; 3208 } 3209 case XPT_GDEV_STATS: 3210 { 3211 struct cam_ed *dev; 3212 3213 dev = start_ccb->ccb_h.path->device; 3214 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 3215 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 3216 } else { 3217 struct ccb_getdevstats *cgds; 3218 struct cam_eb *bus; 3219 struct cam_et *tar; 3220 3221 cgds = &start_ccb->cgds; 3222 bus = cgds->ccb_h.path->bus; 3223 tar = cgds->ccb_h.path->target; 3224 cgds->dev_openings = dev->ccbq.dev_openings; 3225 cgds->dev_active = dev->ccbq.dev_active; 3226 cgds->devq_openings = dev->ccbq.devq_openings; 3227 cgds->devq_queued = dev->ccbq.queue.entries; 3228 cgds->held = dev->ccbq.held; 3229 cgds->last_reset = tar->last_reset; 3230 cgds->maxtags = dev->quirk->maxtags; 3231 cgds->mintags = dev->quirk->mintags; 3232 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 3233 cgds->last_reset = bus->last_reset; 3234 cgds->ccb_h.status = CAM_REQ_CMP; 3235 } 3236 break; 3237 } 3238 case XPT_GDEVLIST: 3239 { 3240 struct cam_periph *nperiph; 3241 struct periph_list *periph_head; 3242 struct ccb_getdevlist *cgdl; 3243 u_int i; 3244 struct cam_ed *device; 3245 int found; 3246 3247 3248 found = 0; 3249 3250 /* 3251 * Don't want anyone mucking with our data. 3252 */ 3253 device = start_ccb->ccb_h.path->device; 3254 periph_head = &device->periphs; 3255 cgdl = &start_ccb->cgdl; 3256 3257 /* 3258 * Check and see if the list has changed since the user 3259 * last requested a list member. If so, tell them that the 3260 * list has changed, and therefore they need to start over 3261 * from the beginning. 3262 */ 3263 if ((cgdl->index != 0) && 3264 (cgdl->generation != device->generation)) { 3265 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 3266 break; 3267 } 3268 3269 /* 3270 * Traverse the list of peripherals and attempt to find 3271 * the requested peripheral. 3272 */ 3273 for (nperiph = SLIST_FIRST(periph_head), i = 0; 3274 (nperiph != NULL) && (i <= cgdl->index); 3275 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 3276 if (i == cgdl->index) { 3277 strncpy(cgdl->periph_name, 3278 nperiph->periph_name, 3279 DEV_IDLEN); 3280 cgdl->unit_number = nperiph->unit_number; 3281 found = 1; 3282 } 3283 } 3284 if (found == 0) { 3285 cgdl->status = CAM_GDEVLIST_ERROR; 3286 break; 3287 } 3288 3289 if (nperiph == NULL) 3290 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 3291 else 3292 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 3293 3294 cgdl->index++; 3295 cgdl->generation = device->generation; 3296 3297 cgdl->ccb_h.status = CAM_REQ_CMP; 3298 break; 3299 } 3300 case XPT_DEV_MATCH: 3301 { 3302 dev_pos_type position_type; 3303 struct ccb_dev_match *cdm; 3304 3305 cdm = &start_ccb->cdm; 3306 3307 /* 3308 * There are two ways of getting at information in the EDT. 3309 * The first way is via the primary EDT tree. It starts 3310 * with a list of busses, then a list of targets on a bus, 3311 * then devices/luns on a target, and then peripherals on a 3312 * device/lun. The "other" way is by the peripheral driver 3313 * lists. The peripheral driver lists are organized by 3314 * peripheral driver. (obviously) So it makes sense to 3315 * use the peripheral driver list if the user is looking 3316 * for something like "da1", or all "da" devices. If the 3317 * user is looking for something on a particular bus/target 3318 * or lun, it's generally better to go through the EDT tree. 3319 */ 3320 3321 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 3322 position_type = cdm->pos.position_type; 3323 else { 3324 u_int i; 3325 3326 position_type = CAM_DEV_POS_NONE; 3327 3328 for (i = 0; i < cdm->num_patterns; i++) { 3329 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 3330 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 3331 position_type = CAM_DEV_POS_EDT; 3332 break; 3333 } 3334 } 3335 3336 if (cdm->num_patterns == 0) 3337 position_type = CAM_DEV_POS_EDT; 3338 else if (position_type == CAM_DEV_POS_NONE) 3339 position_type = CAM_DEV_POS_PDRV; 3340 } 3341 3342 switch(position_type & CAM_DEV_POS_TYPEMASK) { 3343 case CAM_DEV_POS_EDT: 3344 xptedtmatch(cdm); 3345 break; 3346 case CAM_DEV_POS_PDRV: 3347 xptperiphlistmatch(cdm); 3348 break; 3349 default: 3350 cdm->status = CAM_DEV_MATCH_ERROR; 3351 break; 3352 } 3353 3354 if (cdm->status == CAM_DEV_MATCH_ERROR) 3355 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 3356 else 3357 start_ccb->ccb_h.status = CAM_REQ_CMP; 3358 3359 break; 3360 } 3361 case XPT_SASYNC_CB: 3362 { 3363 struct ccb_setasync *csa; 3364 struct async_node *cur_entry; 3365 struct async_list *async_head; 3366 u_int32_t added; 3367 3368 csa = &start_ccb->csa; 3369 added = csa->event_enable; 3370 async_head = &csa->ccb_h.path->device->asyncs; 3371 3372 /* 3373 * If there is already an entry for us, simply 3374 * update it. 3375 */ 3376 cur_entry = SLIST_FIRST(async_head); 3377 while (cur_entry != NULL) { 3378 if ((cur_entry->callback_arg == csa->callback_arg) 3379 && (cur_entry->callback == csa->callback)) 3380 break; 3381 cur_entry = SLIST_NEXT(cur_entry, links); 3382 } 3383 3384 if (cur_entry != NULL) { 3385 /* 3386 * If the request has no flags set, 3387 * remove the entry. 3388 */ 3389 added &= ~cur_entry->event_enable; 3390 if (csa->event_enable == 0) { 3391 SLIST_REMOVE(async_head, cur_entry, 3392 async_node, links); 3393 csa->ccb_h.path->device->refcount--; 3394 free(cur_entry, M_CAMXPT); 3395 } else { 3396 cur_entry->event_enable = csa->event_enable; 3397 } 3398 } else { 3399 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3400 M_NOWAIT); 3401 if (cur_entry == NULL) { 3402 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3403 break; 3404 } 3405 cur_entry->event_enable = csa->event_enable; 3406 cur_entry->callback_arg = csa->callback_arg; 3407 cur_entry->callback = csa->callback; 3408 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3409 csa->ccb_h.path->device->refcount++; 3410 } 3411 3412 /* 3413 * Need to decouple this operation via a taqskqueue so that 3414 * the locking doesn't become a mess. 3415 */ 3416 if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) { 3417 struct xpt_task *task; 3418 3419 task = malloc(sizeof(struct xpt_task), M_CAMXPT, 3420 M_NOWAIT); 3421 if (task == NULL) { 3422 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3423 break; 3424 } 3425 3426 TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task); 3427 task->data1 = cur_entry; 3428 task->data2 = added; 3429 taskqueue_enqueue(taskqueue_thread, &task->task); 3430 } 3431 3432 start_ccb->ccb_h.status = CAM_REQ_CMP; 3433 break; 3434 } 3435 case XPT_REL_SIMQ: 3436 { 3437 struct ccb_relsim *crs; 3438 struct cam_ed *dev; 3439 3440 crs = &start_ccb->crs; 3441 dev = crs->ccb_h.path->device; 3442 if (dev == NULL) { 3443 3444 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3445 break; 3446 } 3447 3448 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3449 3450 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 3451 /* Don't ever go below one opening */ 3452 if (crs->openings > 0) { 3453 xpt_dev_ccbq_resize(crs->ccb_h.path, 3454 crs->openings); 3455 3456 if (bootverbose) { 3457 xpt_print(crs->ccb_h.path, 3458 "tagged openings now %d\n", 3459 crs->openings); 3460 } 3461 } 3462 } 3463 } 3464 3465 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3466 3467 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3468 3469 /* 3470 * Just extend the old timeout and decrement 3471 * the freeze count so that a single timeout 3472 * is sufficient for releasing the queue. 3473 */ 3474 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3475 callout_stop(&dev->callout); 3476 } else { 3477 3478 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3479 } 3480 3481 callout_reset(&dev->callout, 3482 (crs->release_timeout * hz) / 1000, 3483 xpt_release_devq_timeout, dev); 3484 3485 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3486 3487 } 3488 3489 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3490 3491 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3492 /* 3493 * Decrement the freeze count so that a single 3494 * completion is still sufficient to unfreeze 3495 * the queue. 3496 */ 3497 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3498 } else { 3499 3500 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3501 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3502 } 3503 } 3504 3505 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3506 3507 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3508 || (dev->ccbq.dev_active == 0)) { 3509 3510 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3511 } else { 3512 3513 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3514 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3515 } 3516 } 3517 3518 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 3519 3520 xpt_release_devq(crs->ccb_h.path, /*count*/1, 3521 /*run_queue*/TRUE); 3522 } 3523 start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt; 3524 start_ccb->ccb_h.status = CAM_REQ_CMP; 3525 break; 3526 } 3527 case XPT_SCAN_BUS: 3528 xpt_scan_bus(start_ccb->ccb_h.path->periph, start_ccb); 3529 break; 3530 case XPT_SCAN_LUN: 3531 xpt_scan_lun(start_ccb->ccb_h.path->periph, 3532 start_ccb->ccb_h.path, start_ccb->crcn.flags, 3533 start_ccb); 3534 break; 3535 case XPT_DEBUG: { 3536 #ifdef CAMDEBUG 3537 #ifdef CAM_DEBUG_DELAY 3538 cam_debug_delay = CAM_DEBUG_DELAY; 3539 #endif 3540 cam_dflags = start_ccb->cdbg.flags; 3541 if (cam_dpath != NULL) { 3542 xpt_free_path(cam_dpath); 3543 cam_dpath = NULL; 3544 } 3545 3546 if (cam_dflags != CAM_DEBUG_NONE) { 3547 if (xpt_create_path(&cam_dpath, xpt_periph, 3548 start_ccb->ccb_h.path_id, 3549 start_ccb->ccb_h.target_id, 3550 start_ccb->ccb_h.target_lun) != 3551 CAM_REQ_CMP) { 3552 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3553 cam_dflags = CAM_DEBUG_NONE; 3554 } else { 3555 start_ccb->ccb_h.status = CAM_REQ_CMP; 3556 xpt_print(cam_dpath, "debugging flags now %x\n", 3557 cam_dflags); 3558 } 3559 } else { 3560 cam_dpath = NULL; 3561 start_ccb->ccb_h.status = CAM_REQ_CMP; 3562 } 3563 #else /* !CAMDEBUG */ 3564 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3565 #endif /* CAMDEBUG */ 3566 break; 3567 } 3568 case XPT_NOOP: 3569 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3570 xpt_freeze_devq(start_ccb->ccb_h.path, 1); 3571 start_ccb->ccb_h.status = CAM_REQ_CMP; 3572 break; 3573 default: 3574 case XPT_SDEV_TYPE: 3575 case XPT_TERM_IO: 3576 case XPT_ENG_INQ: 3577 /* XXX Implement */ 3578 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3579 break; 3580 } 3581 } 3582 3583 void 3584 xpt_polled_action(union ccb *start_ccb) 3585 { 3586 u_int32_t timeout; 3587 struct cam_sim *sim; 3588 struct cam_devq *devq; 3589 struct cam_ed *dev; 3590 3591 3592 timeout = start_ccb->ccb_h.timeout; 3593 sim = start_ccb->ccb_h.path->bus->sim; 3594 devq = sim->devq; 3595 dev = start_ccb->ccb_h.path->device; 3596 3597 mtx_assert(sim->mtx, MA_OWNED); 3598 3599 /* 3600 * Steal an opening so that no other queued requests 3601 * can get it before us while we simulate interrupts. 3602 */ 3603 dev->ccbq.devq_openings--; 3604 dev->ccbq.dev_openings--; 3605 3606 while(((devq != NULL && devq->send_openings <= 0) || 3607 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 3608 DELAY(1000); 3609 (*(sim->sim_poll))(sim); 3610 camisr_runqueue(&sim->sim_doneq); 3611 } 3612 3613 dev->ccbq.devq_openings++; 3614 dev->ccbq.dev_openings++; 3615 3616 if (timeout != 0) { 3617 xpt_action(start_ccb); 3618 while(--timeout > 0) { 3619 (*(sim->sim_poll))(sim); 3620 camisr_runqueue(&sim->sim_doneq); 3621 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3622 != CAM_REQ_INPROG) 3623 break; 3624 DELAY(1000); 3625 } 3626 if (timeout == 0) { 3627 /* 3628 * XXX Is it worth adding a sim_timeout entry 3629 * point so we can attempt recovery? If 3630 * this is only used for dumps, I don't think 3631 * it is. 3632 */ 3633 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3634 } 3635 } else { 3636 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3637 } 3638 } 3639 3640 /* 3641 * Schedule a peripheral driver to receive a ccb when it's 3642 * target device has space for more transactions. 3643 */ 3644 void 3645 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3646 { 3647 struct cam_ed *device; 3648 union ccb *work_ccb; 3649 int runq; 3650 3651 mtx_assert(perph->sim->mtx, MA_OWNED); 3652 3653 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3654 device = perph->path->device; 3655 if (periph_is_queued(perph)) { 3656 /* Simply reorder based on new priority */ 3657 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3658 (" change priority to %d\n", new_priority)); 3659 if (new_priority < perph->pinfo.priority) { 3660 camq_change_priority(&device->drvq, 3661 perph->pinfo.index, 3662 new_priority); 3663 } 3664 runq = 0; 3665 } else if (SIM_DEAD(perph->path->bus->sim)) { 3666 /* The SIM is gone so just call periph_start directly. */ 3667 work_ccb = xpt_get_ccb(perph->path->device); 3668 if (work_ccb == NULL) 3669 return; /* XXX */ 3670 xpt_setup_ccb(&work_ccb->ccb_h, perph->path, new_priority); 3671 perph->pinfo.priority = new_priority; 3672 perph->periph_start(perph, work_ccb); 3673 return; 3674 } else { 3675 /* New entry on the queue */ 3676 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3677 (" added periph to queue\n")); 3678 perph->pinfo.priority = new_priority; 3679 perph->pinfo.generation = ++device->drvq.generation; 3680 camq_insert(&device->drvq, &perph->pinfo); 3681 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3682 } 3683 if (runq != 0) { 3684 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3685 (" calling xpt_run_devq\n")); 3686 xpt_run_dev_allocq(perph->path->bus); 3687 } 3688 } 3689 3690 3691 /* 3692 * Schedule a device to run on a given queue. 3693 * If the device was inserted as a new entry on the queue, 3694 * return 1 meaning the device queue should be run. If we 3695 * were already queued, implying someone else has already 3696 * started the queue, return 0 so the caller doesn't attempt 3697 * to run the queue. 3698 */ 3699 static int 3700 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3701 u_int32_t new_priority) 3702 { 3703 int retval; 3704 u_int32_t old_priority; 3705 3706 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3707 3708 old_priority = pinfo->priority; 3709 3710 /* 3711 * Are we already queued? 3712 */ 3713 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3714 /* Simply reorder based on new priority */ 3715 if (new_priority < old_priority) { 3716 camq_change_priority(queue, pinfo->index, 3717 new_priority); 3718 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3719 ("changed priority to %d\n", 3720 new_priority)); 3721 } 3722 retval = 0; 3723 } else { 3724 /* New entry on the queue */ 3725 if (new_priority < old_priority) 3726 pinfo->priority = new_priority; 3727 3728 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3729 ("Inserting onto queue\n")); 3730 pinfo->generation = ++queue->generation; 3731 camq_insert(queue, pinfo); 3732 retval = 1; 3733 } 3734 return (retval); 3735 } 3736 3737 static void 3738 xpt_run_dev_allocq(struct cam_eb *bus) 3739 { 3740 struct cam_devq *devq; 3741 3742 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3743 devq = bus->sim->devq; 3744 3745 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3746 (" qfrozen_cnt == 0x%x, entries == %d, " 3747 "openings == %d, active == %d\n", 3748 devq->alloc_queue.qfrozen_cnt, 3749 devq->alloc_queue.entries, 3750 devq->alloc_openings, 3751 devq->alloc_active)); 3752 3753 devq->alloc_queue.qfrozen_cnt++; 3754 while ((devq->alloc_queue.entries > 0) 3755 && (devq->alloc_openings > 0) 3756 && (devq->alloc_queue.qfrozen_cnt <= 1)) { 3757 struct cam_ed_qinfo *qinfo; 3758 struct cam_ed *device; 3759 union ccb *work_ccb; 3760 struct cam_periph *drv; 3761 struct camq *drvq; 3762 3763 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3764 CAMQ_HEAD); 3765 device = qinfo->device; 3766 3767 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3768 ("running device %p\n", device)); 3769 3770 drvq = &device->drvq; 3771 3772 #ifdef CAMDEBUG 3773 if (drvq->entries <= 0) { 3774 panic("xpt_run_dev_allocq: " 3775 "Device on queue without any work to do"); 3776 } 3777 #endif 3778 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3779 devq->alloc_openings--; 3780 devq->alloc_active++; 3781 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3782 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3783 drv->pinfo.priority); 3784 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3785 ("calling periph start\n")); 3786 drv->periph_start(drv, work_ccb); 3787 } else { 3788 /* 3789 * Malloc failure in alloc_ccb 3790 */ 3791 /* 3792 * XXX add us to a list to be run from free_ccb 3793 * if we don't have any ccbs active on this 3794 * device queue otherwise we may never get run 3795 * again. 3796 */ 3797 break; 3798 } 3799 3800 if (drvq->entries > 0) { 3801 /* We have more work. Attempt to reschedule */ 3802 xpt_schedule_dev_allocq(bus, device); 3803 } 3804 } 3805 devq->alloc_queue.qfrozen_cnt--; 3806 } 3807 3808 static void 3809 xpt_run_dev_sendq(struct cam_eb *bus) 3810 { 3811 struct cam_devq *devq; 3812 3813 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3814 3815 devq = bus->sim->devq; 3816 3817 devq->send_queue.qfrozen_cnt++; 3818 while ((devq->send_queue.entries > 0) 3819 && (devq->send_openings > 0)) { 3820 struct cam_ed_qinfo *qinfo; 3821 struct cam_ed *device; 3822 union ccb *work_ccb; 3823 struct cam_sim *sim; 3824 3825 if (devq->send_queue.qfrozen_cnt > 1) { 3826 break; 3827 } 3828 3829 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3830 CAMQ_HEAD); 3831 device = qinfo->device; 3832 3833 /* 3834 * If the device has been "frozen", don't attempt 3835 * to run it. 3836 */ 3837 if (device->qfrozen_cnt > 0) { 3838 continue; 3839 } 3840 3841 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3842 ("running device %p\n", device)); 3843 3844 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3845 if (work_ccb == NULL) { 3846 printf("device on run queue with no ccbs???\n"); 3847 continue; 3848 } 3849 3850 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3851 3852 mtx_lock(&xsoftc.xpt_lock); 3853 if (xsoftc.num_highpower <= 0) { 3854 /* 3855 * We got a high power command, but we 3856 * don't have any available slots. Freeze 3857 * the device queue until we have a slot 3858 * available. 3859 */ 3860 device->qfrozen_cnt++; 3861 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3862 &work_ccb->ccb_h, 3863 xpt_links.stqe); 3864 3865 continue; 3866 } else { 3867 /* 3868 * Consume a high power slot while 3869 * this ccb runs. 3870 */ 3871 xsoftc.num_highpower--; 3872 } 3873 mtx_unlock(&xsoftc.xpt_lock); 3874 } 3875 devq->active_dev = device; 3876 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3877 3878 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3879 3880 devq->send_openings--; 3881 devq->send_active++; 3882 3883 if (device->ccbq.queue.entries > 0) 3884 xpt_schedule_dev_sendq(bus, device); 3885 3886 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3887 /* 3888 * The client wants to freeze the queue 3889 * after this CCB is sent. 3890 */ 3891 device->qfrozen_cnt++; 3892 } 3893 3894 /* In Target mode, the peripheral driver knows best... */ 3895 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3896 if ((device->inq_flags & SID_CmdQue) != 0 3897 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3898 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3899 else 3900 /* 3901 * Clear this in case of a retried CCB that 3902 * failed due to a rejected tag. 3903 */ 3904 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3905 } 3906 3907 /* 3908 * Device queues can be shared among multiple sim instances 3909 * that reside on different busses. Use the SIM in the queue 3910 * CCB's path, rather than the one in the bus that was passed 3911 * into this function. 3912 */ 3913 sim = work_ccb->ccb_h.path->bus->sim; 3914 (*(sim->sim_action))(sim, work_ccb); 3915 3916 devq->active_dev = NULL; 3917 } 3918 devq->send_queue.qfrozen_cnt--; 3919 } 3920 3921 /* 3922 * This function merges stuff from the slave ccb into the master ccb, while 3923 * keeping important fields in the master ccb constant. 3924 */ 3925 void 3926 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3927 { 3928 3929 /* 3930 * Pull fields that are valid for peripheral drivers to set 3931 * into the master CCB along with the CCB "payload". 3932 */ 3933 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3934 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3935 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3936 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3937 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3938 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3939 } 3940 3941 void 3942 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3943 { 3944 3945 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3946 ccb_h->pinfo.priority = priority; 3947 ccb_h->path = path; 3948 ccb_h->path_id = path->bus->path_id; 3949 if (path->target) 3950 ccb_h->target_id = path->target->target_id; 3951 else 3952 ccb_h->target_id = CAM_TARGET_WILDCARD; 3953 if (path->device) { 3954 ccb_h->target_lun = path->device->lun_id; 3955 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3956 } else { 3957 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3958 } 3959 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3960 ccb_h->flags = 0; 3961 } 3962 3963 /* Path manipulation functions */ 3964 cam_status 3965 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3966 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3967 { 3968 struct cam_path *path; 3969 cam_status status; 3970 3971 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3972 3973 if (path == NULL) { 3974 status = CAM_RESRC_UNAVAIL; 3975 return(status); 3976 } 3977 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3978 if (status != CAM_REQ_CMP) { 3979 free(path, M_CAMXPT); 3980 path = NULL; 3981 } 3982 *new_path_ptr = path; 3983 return (status); 3984 } 3985 3986 cam_status 3987 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3988 struct cam_periph *periph, path_id_t path_id, 3989 target_id_t target_id, lun_id_t lun_id) 3990 { 3991 struct cam_path *path; 3992 struct cam_eb *bus = NULL; 3993 cam_status status; 3994 int need_unlock = 0; 3995 3996 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3997 3998 if (path_id != CAM_BUS_WILDCARD) { 3999 bus = xpt_find_bus(path_id); 4000 if (bus != NULL) { 4001 need_unlock = 1; 4002 CAM_SIM_LOCK(bus->sim); 4003 } 4004 } 4005 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 4006 if (need_unlock) 4007 CAM_SIM_UNLOCK(bus->sim); 4008 if (status != CAM_REQ_CMP) { 4009 free(path, M_CAMXPT); 4010 path = NULL; 4011 } 4012 *new_path_ptr = path; 4013 return (status); 4014 } 4015 4016 static cam_status 4017 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 4018 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 4019 { 4020 struct cam_eb *bus; 4021 struct cam_et *target; 4022 struct cam_ed *device; 4023 cam_status status; 4024 4025 status = CAM_REQ_CMP; /* Completed without error */ 4026 target = NULL; /* Wildcarded */ 4027 device = NULL; /* Wildcarded */ 4028 4029 /* 4030 * We will potentially modify the EDT, so block interrupts 4031 * that may attempt to create cam paths. 4032 */ 4033 bus = xpt_find_bus(path_id); 4034 if (bus == NULL) { 4035 status = CAM_PATH_INVALID; 4036 } else { 4037 target = xpt_find_target(bus, target_id); 4038 if (target == NULL) { 4039 /* Create one */ 4040 struct cam_et *new_target; 4041 4042 new_target = xpt_alloc_target(bus, target_id); 4043 if (new_target == NULL) { 4044 status = CAM_RESRC_UNAVAIL; 4045 } else { 4046 target = new_target; 4047 } 4048 } 4049 if (target != NULL) { 4050 device = xpt_find_device(target, lun_id); 4051 if (device == NULL) { 4052 /* Create one */ 4053 struct cam_ed *new_device; 4054 4055 new_device = xpt_alloc_device(bus, 4056 target, 4057 lun_id); 4058 if (new_device == NULL) { 4059 status = CAM_RESRC_UNAVAIL; 4060 } else { 4061 device = new_device; 4062 } 4063 } 4064 } 4065 } 4066 4067 /* 4068 * Only touch the user's data if we are successful. 4069 */ 4070 if (status == CAM_REQ_CMP) { 4071 new_path->periph = perph; 4072 new_path->bus = bus; 4073 new_path->target = target; 4074 new_path->device = device; 4075 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 4076 } else { 4077 if (device != NULL) 4078 xpt_release_device(bus, target, device); 4079 if (target != NULL) 4080 xpt_release_target(bus, target); 4081 if (bus != NULL) 4082 xpt_release_bus(bus); 4083 } 4084 return (status); 4085 } 4086 4087 static void 4088 xpt_release_path(struct cam_path *path) 4089 { 4090 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 4091 if (path->device != NULL) { 4092 xpt_release_device(path->bus, path->target, path->device); 4093 path->device = NULL; 4094 } 4095 if (path->target != NULL) { 4096 xpt_release_target(path->bus, path->target); 4097 path->target = NULL; 4098 } 4099 if (path->bus != NULL) { 4100 xpt_release_bus(path->bus); 4101 path->bus = NULL; 4102 } 4103 } 4104 4105 void 4106 xpt_free_path(struct cam_path *path) 4107 { 4108 4109 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 4110 xpt_release_path(path); 4111 free(path, M_CAMXPT); 4112 } 4113 4114 4115 /* 4116 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 4117 * in path1, 2 for match with wildcards in path2. 4118 */ 4119 int 4120 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 4121 { 4122 int retval = 0; 4123 4124 if (path1->bus != path2->bus) { 4125 if (path1->bus->path_id == CAM_BUS_WILDCARD) 4126 retval = 1; 4127 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 4128 retval = 2; 4129 else 4130 return (-1); 4131 } 4132 if (path1->target != path2->target) { 4133 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 4134 if (retval == 0) 4135 retval = 1; 4136 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 4137 retval = 2; 4138 else 4139 return (-1); 4140 } 4141 if (path1->device != path2->device) { 4142 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 4143 if (retval == 0) 4144 retval = 1; 4145 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 4146 retval = 2; 4147 else 4148 return (-1); 4149 } 4150 return (retval); 4151 } 4152 4153 void 4154 xpt_print_path(struct cam_path *path) 4155 { 4156 4157 if (path == NULL) 4158 printf("(nopath): "); 4159 else { 4160 if (path->periph != NULL) 4161 printf("(%s%d:", path->periph->periph_name, 4162 path->periph->unit_number); 4163 else 4164 printf("(noperiph:"); 4165 4166 if (path->bus != NULL) 4167 printf("%s%d:%d:", path->bus->sim->sim_name, 4168 path->bus->sim->unit_number, 4169 path->bus->sim->bus_id); 4170 else 4171 printf("nobus:"); 4172 4173 if (path->target != NULL) 4174 printf("%d:", path->target->target_id); 4175 else 4176 printf("X:"); 4177 4178 if (path->device != NULL) 4179 printf("%d): ", path->device->lun_id); 4180 else 4181 printf("X): "); 4182 } 4183 } 4184 4185 void 4186 xpt_print(struct cam_path *path, const char *fmt, ...) 4187 { 4188 va_list ap; 4189 xpt_print_path(path); 4190 va_start(ap, fmt); 4191 vprintf(fmt, ap); 4192 va_end(ap); 4193 } 4194 4195 int 4196 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 4197 { 4198 struct sbuf sb; 4199 4200 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4201 4202 sbuf_new(&sb, str, str_len, 0); 4203 4204 if (path == NULL) 4205 sbuf_printf(&sb, "(nopath): "); 4206 else { 4207 if (path->periph != NULL) 4208 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 4209 path->periph->unit_number); 4210 else 4211 sbuf_printf(&sb, "(noperiph:"); 4212 4213 if (path->bus != NULL) 4214 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 4215 path->bus->sim->unit_number, 4216 path->bus->sim->bus_id); 4217 else 4218 sbuf_printf(&sb, "nobus:"); 4219 4220 if (path->target != NULL) 4221 sbuf_printf(&sb, "%d:", path->target->target_id); 4222 else 4223 sbuf_printf(&sb, "X:"); 4224 4225 if (path->device != NULL) 4226 sbuf_printf(&sb, "%d): ", path->device->lun_id); 4227 else 4228 sbuf_printf(&sb, "X): "); 4229 } 4230 sbuf_finish(&sb); 4231 4232 return(sbuf_len(&sb)); 4233 } 4234 4235 path_id_t 4236 xpt_path_path_id(struct cam_path *path) 4237 { 4238 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4239 4240 return(path->bus->path_id); 4241 } 4242 4243 target_id_t 4244 xpt_path_target_id(struct cam_path *path) 4245 { 4246 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4247 4248 if (path->target != NULL) 4249 return (path->target->target_id); 4250 else 4251 return (CAM_TARGET_WILDCARD); 4252 } 4253 4254 lun_id_t 4255 xpt_path_lun_id(struct cam_path *path) 4256 { 4257 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4258 4259 if (path->device != NULL) 4260 return (path->device->lun_id); 4261 else 4262 return (CAM_LUN_WILDCARD); 4263 } 4264 4265 struct cam_sim * 4266 xpt_path_sim(struct cam_path *path) 4267 { 4268 4269 return (path->bus->sim); 4270 } 4271 4272 struct cam_periph* 4273 xpt_path_periph(struct cam_path *path) 4274 { 4275 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4276 4277 return (path->periph); 4278 } 4279 4280 /* 4281 * Release a CAM control block for the caller. Remit the cost of the structure 4282 * to the device referenced by the path. If the this device had no 'credits' 4283 * and peripheral drivers have registered async callbacks for this notification 4284 * call them now. 4285 */ 4286 void 4287 xpt_release_ccb(union ccb *free_ccb) 4288 { 4289 struct cam_path *path; 4290 struct cam_ed *device; 4291 struct cam_eb *bus; 4292 struct cam_sim *sim; 4293 4294 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4295 path = free_ccb->ccb_h.path; 4296 device = path->device; 4297 bus = path->bus; 4298 sim = bus->sim; 4299 4300 mtx_assert(sim->mtx, MA_OWNED); 4301 4302 cam_ccbq_release_opening(&device->ccbq); 4303 if (sim->ccb_count > sim->max_ccbs) { 4304 xpt_free_ccb(free_ccb); 4305 sim->ccb_count--; 4306 } else { 4307 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 4308 xpt_links.sle); 4309 } 4310 if (sim->devq == NULL) { 4311 return; 4312 } 4313 sim->devq->alloc_openings++; 4314 sim->devq->alloc_active--; 4315 /* XXX Turn this into an inline function - xpt_run_device?? */ 4316 if ((device_is_alloc_queued(device) == 0) 4317 && (device->drvq.entries > 0)) { 4318 xpt_schedule_dev_allocq(bus, device); 4319 } 4320 if (dev_allocq_is_runnable(sim->devq)) 4321 xpt_run_dev_allocq(bus); 4322 } 4323 4324 /* Functions accessed by SIM drivers */ 4325 4326 /* 4327 * A sim structure, listing the SIM entry points and instance 4328 * identification info is passed to xpt_bus_register to hook the SIM 4329 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4330 * for this new bus and places it in the array of busses and assigns 4331 * it a path_id. The path_id may be influenced by "hard wiring" 4332 * information specified by the user. Once interrupt services are 4333 * availible, the bus will be probed. 4334 */ 4335 int32_t 4336 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4337 { 4338 struct cam_eb *new_bus; 4339 struct cam_eb *old_bus; 4340 struct ccb_pathinq cpi; 4341 4342 mtx_assert(sim->mtx, MA_OWNED); 4343 4344 sim->bus_id = bus; 4345 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4346 M_CAMXPT, M_NOWAIT); 4347 if (new_bus == NULL) { 4348 /* Couldn't satisfy request */ 4349 return (CAM_RESRC_UNAVAIL); 4350 } 4351 4352 if (strcmp(sim->sim_name, "xpt") != 0) { 4353 4354 sim->path_id = 4355 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4356 } 4357 4358 TAILQ_INIT(&new_bus->et_entries); 4359 new_bus->path_id = sim->path_id; 4360 new_bus->sim = sim; 4361 timevalclear(&new_bus->last_reset); 4362 new_bus->flags = 0; 4363 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4364 new_bus->generation = 0; 4365 mtx_lock(&xsoftc.xpt_topo_lock); 4366 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4367 while (old_bus != NULL 4368 && old_bus->path_id < new_bus->path_id) 4369 old_bus = TAILQ_NEXT(old_bus, links); 4370 if (old_bus != NULL) 4371 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4372 else 4373 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4374 xsoftc.bus_generation++; 4375 mtx_unlock(&xsoftc.xpt_topo_lock); 4376 4377 /* Notify interested parties */ 4378 if (sim->path_id != CAM_XPT_PATH_ID) { 4379 struct cam_path path; 4380 4381 xpt_compile_path(&path, /*periph*/NULL, sim->path_id, 4382 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4383 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 4384 cpi.ccb_h.func_code = XPT_PATH_INQ; 4385 xpt_action((union ccb *)&cpi); 4386 xpt_async(AC_PATH_REGISTERED, &path, &cpi); 4387 xpt_release_path(&path); 4388 } 4389 return (CAM_SUCCESS); 4390 } 4391 4392 int32_t 4393 xpt_bus_deregister(path_id_t pathid) 4394 { 4395 struct cam_path bus_path; 4396 struct cam_ed *device; 4397 struct cam_ed_qinfo *qinfo; 4398 struct cam_devq *devq; 4399 struct cam_periph *periph; 4400 struct cam_sim *ccbsim; 4401 union ccb *work_ccb; 4402 cam_status status; 4403 4404 4405 status = xpt_compile_path(&bus_path, NULL, pathid, 4406 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4407 if (status != CAM_REQ_CMP) 4408 return (status); 4409 4410 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4411 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4412 4413 /* The SIM may be gone, so use a dummy SIM for any stray operations. */ 4414 devq = bus_path.bus->sim->devq; 4415 ccbsim = bus_path.bus->sim; 4416 bus_path.bus->sim = &cam_dead_sim; 4417 4418 /* Execute any pending operations now. */ 4419 while ((qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 4420 CAMQ_HEAD)) != NULL || 4421 (qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 4422 CAMQ_HEAD)) != NULL) { 4423 do { 4424 device = qinfo->device; 4425 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 4426 if (work_ccb != NULL) { 4427 devq->active_dev = device; 4428 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 4429 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 4430 (*(ccbsim->sim_action))(ccbsim, work_ccb); 4431 } 4432 4433 periph = (struct cam_periph *)camq_remove(&device->drvq, 4434 CAMQ_HEAD); 4435 if (periph != NULL) 4436 xpt_schedule(periph, periph->pinfo.priority); 4437 } while (work_ccb != NULL || periph != NULL); 4438 } 4439 4440 /* Make sure all completed CCBs are processed. */ 4441 while (!TAILQ_EMPTY(&ccbsim->sim_doneq)) { 4442 camisr_runqueue(&ccbsim->sim_doneq); 4443 4444 /* Repeat the async's for the benefit of any new devices. */ 4445 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4446 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4447 } 4448 4449 /* Release the reference count held while registered. */ 4450 xpt_release_bus(bus_path.bus); 4451 xpt_release_path(&bus_path); 4452 4453 return (CAM_REQ_CMP); 4454 } 4455 4456 static path_id_t 4457 xptnextfreepathid(void) 4458 { 4459 struct cam_eb *bus; 4460 path_id_t pathid; 4461 const char *strval; 4462 4463 pathid = 0; 4464 mtx_lock(&xsoftc.xpt_topo_lock); 4465 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4466 retry: 4467 /* Find an unoccupied pathid */ 4468 while (bus != NULL && bus->path_id <= pathid) { 4469 if (bus->path_id == pathid) 4470 pathid++; 4471 bus = TAILQ_NEXT(bus, links); 4472 } 4473 mtx_unlock(&xsoftc.xpt_topo_lock); 4474 4475 /* 4476 * Ensure that this pathid is not reserved for 4477 * a bus that may be registered in the future. 4478 */ 4479 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4480 ++pathid; 4481 /* Start the search over */ 4482 mtx_lock(&xsoftc.xpt_topo_lock); 4483 goto retry; 4484 } 4485 return (pathid); 4486 } 4487 4488 static path_id_t 4489 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4490 { 4491 path_id_t pathid; 4492 int i, dunit, val; 4493 char buf[32]; 4494 const char *dname; 4495 4496 pathid = CAM_XPT_PATH_ID; 4497 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4498 i = 0; 4499 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4500 if (strcmp(dname, "scbus")) { 4501 /* Avoid a bit of foot shooting. */ 4502 continue; 4503 } 4504 if (dunit < 0) /* unwired?! */ 4505 continue; 4506 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4507 if (sim_bus == val) { 4508 pathid = dunit; 4509 break; 4510 } 4511 } else if (sim_bus == 0) { 4512 /* Unspecified matches bus 0 */ 4513 pathid = dunit; 4514 break; 4515 } else { 4516 printf("Ambiguous scbus configuration for %s%d " 4517 "bus %d, cannot wire down. The kernel " 4518 "config entry for scbus%d should " 4519 "specify a controller bus.\n" 4520 "Scbus will be assigned dynamically.\n", 4521 sim_name, sim_unit, sim_bus, dunit); 4522 break; 4523 } 4524 } 4525 4526 if (pathid == CAM_XPT_PATH_ID) 4527 pathid = xptnextfreepathid(); 4528 return (pathid); 4529 } 4530 4531 void 4532 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4533 { 4534 struct cam_eb *bus; 4535 struct cam_et *target, *next_target; 4536 struct cam_ed *device, *next_device; 4537 4538 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4539 4540 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 4541 4542 /* 4543 * Most async events come from a CAM interrupt context. In 4544 * a few cases, the error recovery code at the peripheral layer, 4545 * which may run from our SWI or a process context, may signal 4546 * deferred events with a call to xpt_async. 4547 */ 4548 4549 bus = path->bus; 4550 4551 if (async_code == AC_BUS_RESET) { 4552 /* Update our notion of when the last reset occurred */ 4553 microtime(&bus->last_reset); 4554 } 4555 4556 for (target = TAILQ_FIRST(&bus->et_entries); 4557 target != NULL; 4558 target = next_target) { 4559 4560 next_target = TAILQ_NEXT(target, links); 4561 4562 if (path->target != target 4563 && path->target->target_id != CAM_TARGET_WILDCARD 4564 && target->target_id != CAM_TARGET_WILDCARD) 4565 continue; 4566 4567 if (async_code == AC_SENT_BDR) { 4568 /* Update our notion of when the last reset occurred */ 4569 microtime(&path->target->last_reset); 4570 } 4571 4572 for (device = TAILQ_FIRST(&target->ed_entries); 4573 device != NULL; 4574 device = next_device) { 4575 4576 next_device = TAILQ_NEXT(device, links); 4577 4578 if (path->device != device 4579 && path->device->lun_id != CAM_LUN_WILDCARD 4580 && device->lun_id != CAM_LUN_WILDCARD) 4581 continue; 4582 4583 xpt_dev_async(async_code, bus, target, 4584 device, async_arg); 4585 4586 xpt_async_bcast(&device->asyncs, async_code, 4587 path, async_arg); 4588 } 4589 } 4590 4591 /* 4592 * If this wasn't a fully wildcarded async, tell all 4593 * clients that want all async events. 4594 */ 4595 if (bus != xpt_periph->path->bus) 4596 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4597 path, async_arg); 4598 } 4599 4600 static void 4601 xpt_async_bcast(struct async_list *async_head, 4602 u_int32_t async_code, 4603 struct cam_path *path, void *async_arg) 4604 { 4605 struct async_node *cur_entry; 4606 4607 cur_entry = SLIST_FIRST(async_head); 4608 while (cur_entry != NULL) { 4609 struct async_node *next_entry; 4610 /* 4611 * Grab the next list entry before we call the current 4612 * entry's callback. This is because the callback function 4613 * can delete its async callback entry. 4614 */ 4615 next_entry = SLIST_NEXT(cur_entry, links); 4616 if ((cur_entry->event_enable & async_code) != 0) 4617 cur_entry->callback(cur_entry->callback_arg, 4618 async_code, path, 4619 async_arg); 4620 cur_entry = next_entry; 4621 } 4622 } 4623 4624 /* 4625 * Handle any per-device event notifications that require action by the XPT. 4626 */ 4627 static void 4628 xpt_dev_async(u_int32_t async_code, struct cam_eb *bus, struct cam_et *target, 4629 struct cam_ed *device, void *async_arg) 4630 { 4631 cam_status status; 4632 struct cam_path newpath; 4633 4634 /* 4635 * We only need to handle events for real devices. 4636 */ 4637 if (target->target_id == CAM_TARGET_WILDCARD 4638 || device->lun_id == CAM_LUN_WILDCARD) 4639 return; 4640 4641 /* 4642 * We need our own path with wildcards expanded to 4643 * handle certain types of events. 4644 */ 4645 if ((async_code == AC_SENT_BDR) 4646 || (async_code == AC_BUS_RESET) 4647 || (async_code == AC_INQ_CHANGED)) 4648 status = xpt_compile_path(&newpath, NULL, 4649 bus->path_id, 4650 target->target_id, 4651 device->lun_id); 4652 else 4653 status = CAM_REQ_CMP_ERR; 4654 4655 if (status == CAM_REQ_CMP) { 4656 4657 /* 4658 * Allow transfer negotiation to occur in a 4659 * tag free environment. 4660 */ 4661 if (async_code == AC_SENT_BDR 4662 || async_code == AC_BUS_RESET) 4663 xpt_toggle_tags(&newpath); 4664 4665 if (async_code == AC_INQ_CHANGED) { 4666 /* 4667 * We've sent a start unit command, or 4668 * something similar to a device that 4669 * may have caused its inquiry data to 4670 * change. So we re-scan the device to 4671 * refresh the inquiry data for it. 4672 */ 4673 xpt_scan_lun(newpath.periph, &newpath, 4674 CAM_EXPECT_INQ_CHANGE, NULL); 4675 } 4676 xpt_release_path(&newpath); 4677 } else if (async_code == AC_LOST_DEVICE) { 4678 device->flags |= CAM_DEV_UNCONFIGURED; 4679 } else if (async_code == AC_TRANSFER_NEG) { 4680 struct ccb_trans_settings *settings; 4681 4682 settings = (struct ccb_trans_settings *)async_arg; 4683 xpt_set_transfer_settings(settings, device, 4684 /*async_update*/TRUE); 4685 } 4686 } 4687 4688 u_int32_t 4689 xpt_freeze_devq(struct cam_path *path, u_int count) 4690 { 4691 struct ccb_hdr *ccbh; 4692 4693 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4694 4695 path->device->qfrozen_cnt += count; 4696 4697 /* 4698 * Mark the last CCB in the queue as needing 4699 * to be requeued if the driver hasn't 4700 * changed it's state yet. This fixes a race 4701 * where a ccb is just about to be queued to 4702 * a controller driver when it's interrupt routine 4703 * freezes the queue. To completly close the 4704 * hole, controller drives must check to see 4705 * if a ccb's status is still CAM_REQ_INPROG 4706 * just before they queue 4707 * the CCB. See ahc_action/ahc_freeze_devq for 4708 * an example. 4709 */ 4710 ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq); 4711 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4712 ccbh->status = CAM_REQUEUE_REQ; 4713 return (path->device->qfrozen_cnt); 4714 } 4715 4716 u_int32_t 4717 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4718 { 4719 mtx_assert(sim->mtx, MA_OWNED); 4720 4721 sim->devq->send_queue.qfrozen_cnt += count; 4722 if (sim->devq->active_dev != NULL) { 4723 struct ccb_hdr *ccbh; 4724 4725 ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs, 4726 ccb_hdr_tailq); 4727 if (ccbh && ccbh->status == CAM_REQ_INPROG) 4728 ccbh->status = CAM_REQUEUE_REQ; 4729 } 4730 return (sim->devq->send_queue.qfrozen_cnt); 4731 } 4732 4733 static void 4734 xpt_release_devq_timeout(void *arg) 4735 { 4736 struct cam_ed *device; 4737 4738 device = (struct cam_ed *)arg; 4739 4740 xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE); 4741 } 4742 4743 void 4744 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4745 { 4746 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4747 4748 xpt_release_devq_device(path->device, count, run_queue); 4749 } 4750 4751 static void 4752 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4753 { 4754 int rundevq; 4755 4756 rundevq = 0; 4757 if (dev->qfrozen_cnt > 0) { 4758 4759 count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count; 4760 dev->qfrozen_cnt -= count; 4761 if (dev->qfrozen_cnt == 0) { 4762 4763 /* 4764 * No longer need to wait for a successful 4765 * command completion. 4766 */ 4767 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4768 4769 /* 4770 * Remove any timeouts that might be scheduled 4771 * to release this queue. 4772 */ 4773 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4774 callout_stop(&dev->callout); 4775 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4776 } 4777 4778 /* 4779 * Now that we are unfrozen schedule the 4780 * device so any pending transactions are 4781 * run. 4782 */ 4783 if ((dev->ccbq.queue.entries > 0) 4784 && (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4785 && (run_queue != 0)) { 4786 rundevq = 1; 4787 } 4788 } 4789 } 4790 if (rundevq != 0) 4791 xpt_run_dev_sendq(dev->target->bus); 4792 } 4793 4794 void 4795 xpt_release_simq(struct cam_sim *sim, int run_queue) 4796 { 4797 struct camq *sendq; 4798 4799 mtx_assert(sim->mtx, MA_OWNED); 4800 4801 sendq = &(sim->devq->send_queue); 4802 if (sendq->qfrozen_cnt > 0) { 4803 4804 sendq->qfrozen_cnt--; 4805 if (sendq->qfrozen_cnt == 0) { 4806 struct cam_eb *bus; 4807 4808 /* 4809 * If there is a timeout scheduled to release this 4810 * sim queue, remove it. The queue frozen count is 4811 * already at 0. 4812 */ 4813 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4814 callout_stop(&sim->callout); 4815 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4816 } 4817 bus = xpt_find_bus(sim->path_id); 4818 4819 if (run_queue) { 4820 /* 4821 * Now that we are unfrozen run the send queue. 4822 */ 4823 xpt_run_dev_sendq(bus); 4824 } 4825 xpt_release_bus(bus); 4826 } 4827 } 4828 } 4829 4830 /* 4831 * XXX Appears to be unused. 4832 */ 4833 static void 4834 xpt_release_simq_timeout(void *arg) 4835 { 4836 struct cam_sim *sim; 4837 4838 sim = (struct cam_sim *)arg; 4839 xpt_release_simq(sim, /* run_queue */ TRUE); 4840 } 4841 4842 void 4843 xpt_done(union ccb *done_ccb) 4844 { 4845 struct cam_sim *sim; 4846 4847 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4848 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4849 /* 4850 * Queue up the request for handling by our SWI handler 4851 * any of the "non-immediate" type of ccbs. 4852 */ 4853 sim = done_ccb->ccb_h.path->bus->sim; 4854 switch (done_ccb->ccb_h.path->periph->type) { 4855 case CAM_PERIPH_BIO: 4856 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4857 sim_links.tqe); 4858 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4859 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4860 mtx_lock(&cam_simq_lock); 4861 TAILQ_INSERT_TAIL(&cam_simq, sim, 4862 links); 4863 sim->flags |= CAM_SIM_ON_DONEQ; 4864 mtx_unlock(&cam_simq_lock); 4865 } 4866 if ((done_ccb->ccb_h.path->periph->flags & 4867 CAM_PERIPH_POLLED) == 0) 4868 swi_sched(cambio_ih, 0); 4869 break; 4870 default: 4871 panic("unknown periph type %d", 4872 done_ccb->ccb_h.path->periph->type); 4873 } 4874 } 4875 } 4876 4877 union ccb * 4878 xpt_alloc_ccb() 4879 { 4880 union ccb *new_ccb; 4881 4882 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4883 return (new_ccb); 4884 } 4885 4886 union ccb * 4887 xpt_alloc_ccb_nowait() 4888 { 4889 union ccb *new_ccb; 4890 4891 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4892 return (new_ccb); 4893 } 4894 4895 void 4896 xpt_free_ccb(union ccb *free_ccb) 4897 { 4898 free(free_ccb, M_CAMXPT); 4899 } 4900 4901 4902 4903 /* Private XPT functions */ 4904 4905 /* 4906 * Get a CAM control block for the caller. Charge the structure to the device 4907 * referenced by the path. If the this device has no 'credits' then the 4908 * device already has the maximum number of outstanding operations under way 4909 * and we return NULL. If we don't have sufficient resources to allocate more 4910 * ccbs, we also return NULL. 4911 */ 4912 static union ccb * 4913 xpt_get_ccb(struct cam_ed *device) 4914 { 4915 union ccb *new_ccb; 4916 struct cam_sim *sim; 4917 4918 sim = device->sim; 4919 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4920 new_ccb = xpt_alloc_ccb_nowait(); 4921 if (new_ccb == NULL) { 4922 return (NULL); 4923 } 4924 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4925 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4926 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4927 xpt_links.sle); 4928 sim->ccb_count++; 4929 } 4930 cam_ccbq_take_opening(&device->ccbq); 4931 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4932 return (new_ccb); 4933 } 4934 4935 static void 4936 xpt_release_bus(struct cam_eb *bus) 4937 { 4938 4939 if ((--bus->refcount == 0) 4940 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4941 mtx_lock(&xsoftc.xpt_topo_lock); 4942 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4943 xsoftc.bus_generation++; 4944 mtx_unlock(&xsoftc.xpt_topo_lock); 4945 free(bus, M_CAMXPT); 4946 } 4947 } 4948 4949 static struct cam_et * 4950 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4951 { 4952 struct cam_et *target; 4953 4954 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT); 4955 if (target != NULL) { 4956 struct cam_et *cur_target; 4957 4958 TAILQ_INIT(&target->ed_entries); 4959 target->bus = bus; 4960 target->target_id = target_id; 4961 target->refcount = 1; 4962 target->generation = 0; 4963 timevalclear(&target->last_reset); 4964 /* 4965 * Hold a reference to our parent bus so it 4966 * will not go away before we do. 4967 */ 4968 bus->refcount++; 4969 4970 /* Insertion sort into our bus's target list */ 4971 cur_target = TAILQ_FIRST(&bus->et_entries); 4972 while (cur_target != NULL && cur_target->target_id < target_id) 4973 cur_target = TAILQ_NEXT(cur_target, links); 4974 4975 if (cur_target != NULL) { 4976 TAILQ_INSERT_BEFORE(cur_target, target, links); 4977 } else { 4978 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4979 } 4980 bus->generation++; 4981 } 4982 return (target); 4983 } 4984 4985 static void 4986 xpt_release_target(struct cam_eb *bus, struct cam_et *target) 4987 { 4988 4989 if ((--target->refcount == 0) 4990 && (TAILQ_FIRST(&target->ed_entries) == NULL)) { 4991 TAILQ_REMOVE(&bus->et_entries, target, links); 4992 bus->generation++; 4993 free(target, M_CAMXPT); 4994 xpt_release_bus(bus); 4995 } 4996 } 4997 4998 static struct cam_ed * 4999 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 5000 { 5001 struct cam_path path; 5002 struct cam_ed *device; 5003 struct cam_devq *devq; 5004 cam_status status; 5005 5006 if (SIM_DEAD(bus->sim)) 5007 return (NULL); 5008 5009 /* Make space for us in the device queue on our bus */ 5010 devq = bus->sim->devq; 5011 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 5012 5013 if (status != CAM_REQ_CMP) { 5014 device = NULL; 5015 } else { 5016 device = (struct cam_ed *)malloc(sizeof(*device), 5017 M_CAMXPT, M_NOWAIT); 5018 } 5019 5020 if (device != NULL) { 5021 struct cam_ed *cur_device; 5022 5023 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 5024 device->alloc_ccb_entry.device = device; 5025 cam_init_pinfo(&device->send_ccb_entry.pinfo); 5026 device->send_ccb_entry.device = device; 5027 device->target = target; 5028 device->lun_id = lun_id; 5029 device->sim = bus->sim; 5030 /* Initialize our queues */ 5031 if (camq_init(&device->drvq, 0) != 0) { 5032 free(device, M_CAMXPT); 5033 return (NULL); 5034 } 5035 if (cam_ccbq_init(&device->ccbq, 5036 bus->sim->max_dev_openings) != 0) { 5037 camq_fini(&device->drvq); 5038 free(device, M_CAMXPT); 5039 return (NULL); 5040 } 5041 SLIST_INIT(&device->asyncs); 5042 SLIST_INIT(&device->periphs); 5043 device->generation = 0; 5044 device->owner = NULL; 5045 /* 5046 * Take the default quirk entry until we have inquiry 5047 * data and can determine a better quirk to use. 5048 */ 5049 device->quirk = &xpt_quirk_table[xpt_quirk_table_size - 1]; 5050 bzero(&device->inq_data, sizeof(device->inq_data)); 5051 device->inq_flags = 0; 5052 device->queue_flags = 0; 5053 device->serial_num = NULL; 5054 device->serial_num_len = 0; 5055 device->qfrozen_cnt = 0; 5056 device->flags = CAM_DEV_UNCONFIGURED; 5057 device->tag_delay_count = 0; 5058 device->tag_saved_openings = 0; 5059 device->refcount = 1; 5060 if (bus->sim->flags & CAM_SIM_MPSAFE) 5061 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 5062 else 5063 callout_init_mtx(&device->callout, &Giant, 0); 5064 5065 /* 5066 * Hold a reference to our parent target so it 5067 * will not go away before we do. 5068 */ 5069 target->refcount++; 5070 5071 /* 5072 * XXX should be limited by number of CCBs this bus can 5073 * do. 5074 */ 5075 bus->sim->max_ccbs += device->ccbq.devq_openings; 5076 /* Insertion sort into our target's device list */ 5077 cur_device = TAILQ_FIRST(&target->ed_entries); 5078 while (cur_device != NULL && cur_device->lun_id < lun_id) 5079 cur_device = TAILQ_NEXT(cur_device, links); 5080 if (cur_device != NULL) { 5081 TAILQ_INSERT_BEFORE(cur_device, device, links); 5082 } else { 5083 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 5084 } 5085 target->generation++; 5086 if (lun_id != CAM_LUN_WILDCARD) { 5087 xpt_compile_path(&path, 5088 NULL, 5089 bus->path_id, 5090 target->target_id, 5091 lun_id); 5092 xpt_devise_transport(&path); 5093 xpt_release_path(&path); 5094 } 5095 } 5096 return (device); 5097 } 5098 5099 static void 5100 xpt_release_device(struct cam_eb *bus, struct cam_et *target, 5101 struct cam_ed *device) 5102 { 5103 5104 if ((--device->refcount == 0) 5105 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) { 5106 struct cam_devq *devq; 5107 5108 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 5109 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 5110 panic("Removing device while still queued for ccbs"); 5111 5112 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5113 callout_stop(&device->callout); 5114 5115 TAILQ_REMOVE(&target->ed_entries, device,links); 5116 target->generation++; 5117 bus->sim->max_ccbs -= device->ccbq.devq_openings; 5118 if (!SIM_DEAD(bus->sim)) { 5119 /* Release our slot in the devq */ 5120 devq = bus->sim->devq; 5121 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 5122 } 5123 camq_fini(&device->drvq); 5124 camq_fini(&device->ccbq.queue); 5125 free(device, M_CAMXPT); 5126 xpt_release_target(bus, target); 5127 } 5128 } 5129 5130 static u_int32_t 5131 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5132 { 5133 int diff; 5134 int result; 5135 struct cam_ed *dev; 5136 5137 dev = path->device; 5138 5139 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 5140 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5141 if (result == CAM_REQ_CMP && (diff < 0)) { 5142 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 5143 } 5144 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5145 || (dev->inq_flags & SID_CmdQue) != 0) 5146 dev->tag_saved_openings = newopenings; 5147 /* Adjust the global limit */ 5148 dev->sim->max_ccbs += diff; 5149 return (result); 5150 } 5151 5152 static struct cam_eb * 5153 xpt_find_bus(path_id_t path_id) 5154 { 5155 struct cam_eb *bus; 5156 5157 mtx_lock(&xsoftc.xpt_topo_lock); 5158 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5159 bus != NULL; 5160 bus = TAILQ_NEXT(bus, links)) { 5161 if (bus->path_id == path_id) { 5162 bus->refcount++; 5163 break; 5164 } 5165 } 5166 mtx_unlock(&xsoftc.xpt_topo_lock); 5167 return (bus); 5168 } 5169 5170 static struct cam_et * 5171 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5172 { 5173 struct cam_et *target; 5174 5175 for (target = TAILQ_FIRST(&bus->et_entries); 5176 target != NULL; 5177 target = TAILQ_NEXT(target, links)) { 5178 if (target->target_id == target_id) { 5179 target->refcount++; 5180 break; 5181 } 5182 } 5183 return (target); 5184 } 5185 5186 static struct cam_ed * 5187 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5188 { 5189 struct cam_ed *device; 5190 5191 for (device = TAILQ_FIRST(&target->ed_entries); 5192 device != NULL; 5193 device = TAILQ_NEXT(device, links)) { 5194 if (device->lun_id == lun_id) { 5195 device->refcount++; 5196 break; 5197 } 5198 } 5199 return (device); 5200 } 5201 5202 typedef struct { 5203 union ccb *request_ccb; 5204 struct ccb_pathinq *cpi; 5205 int counter; 5206 } xpt_scan_bus_info; 5207 5208 /* 5209 * To start a scan, request_ccb is an XPT_SCAN_BUS ccb. 5210 * As the scan progresses, xpt_scan_bus is used as the 5211 * callback on completion function. 5212 */ 5213 static void 5214 xpt_scan_bus(struct cam_periph *periph, union ccb *request_ccb) 5215 { 5216 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5217 ("xpt_scan_bus\n")); 5218 switch (request_ccb->ccb_h.func_code) { 5219 case XPT_SCAN_BUS: 5220 { 5221 xpt_scan_bus_info *scan_info; 5222 union ccb *work_ccb; 5223 struct cam_path *path; 5224 u_int i; 5225 u_int max_target; 5226 u_int initiator_id; 5227 5228 /* Find out the characteristics of the bus */ 5229 work_ccb = xpt_alloc_ccb_nowait(); 5230 if (work_ccb == NULL) { 5231 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5232 xpt_done(request_ccb); 5233 return; 5234 } 5235 xpt_setup_ccb(&work_ccb->ccb_h, request_ccb->ccb_h.path, 5236 request_ccb->ccb_h.pinfo.priority); 5237 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 5238 xpt_action(work_ccb); 5239 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 5240 request_ccb->ccb_h.status = work_ccb->ccb_h.status; 5241 xpt_free_ccb(work_ccb); 5242 xpt_done(request_ccb); 5243 return; 5244 } 5245 5246 if ((work_ccb->cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5247 /* 5248 * Can't scan the bus on an adapter that 5249 * cannot perform the initiator role. 5250 */ 5251 request_ccb->ccb_h.status = CAM_REQ_CMP; 5252 xpt_free_ccb(work_ccb); 5253 xpt_done(request_ccb); 5254 return; 5255 } 5256 5257 /* Save some state for use while we probe for devices */ 5258 scan_info = (xpt_scan_bus_info *) 5259 malloc(sizeof(xpt_scan_bus_info), M_CAMXPT, M_NOWAIT); 5260 scan_info->request_ccb = request_ccb; 5261 scan_info->cpi = &work_ccb->cpi; 5262 5263 /* Cache on our stack so we can work asynchronously */ 5264 max_target = scan_info->cpi->max_target; 5265 initiator_id = scan_info->cpi->initiator_id; 5266 5267 5268 /* 5269 * We can scan all targets in parallel, or do it sequentially. 5270 */ 5271 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5272 max_target = 0; 5273 scan_info->counter = 0; 5274 } else { 5275 scan_info->counter = scan_info->cpi->max_target + 1; 5276 if (scan_info->cpi->initiator_id < scan_info->counter) { 5277 scan_info->counter--; 5278 } 5279 } 5280 5281 for (i = 0; i <= max_target; i++) { 5282 cam_status status; 5283 if (i == initiator_id) 5284 continue; 5285 5286 status = xpt_create_path(&path, xpt_periph, 5287 request_ccb->ccb_h.path_id, 5288 i, 0); 5289 if (status != CAM_REQ_CMP) { 5290 printf("xpt_scan_bus: xpt_create_path failed" 5291 " with status %#x, bus scan halted\n", 5292 status); 5293 free(scan_info, M_CAMXPT); 5294 request_ccb->ccb_h.status = status; 5295 xpt_free_ccb(work_ccb); 5296 xpt_done(request_ccb); 5297 break; 5298 } 5299 work_ccb = xpt_alloc_ccb_nowait(); 5300 if (work_ccb == NULL) { 5301 free(scan_info, M_CAMXPT); 5302 xpt_free_path(path); 5303 request_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 5304 xpt_done(request_ccb); 5305 break; 5306 } 5307 xpt_setup_ccb(&work_ccb->ccb_h, path, 5308 request_ccb->ccb_h.pinfo.priority); 5309 work_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5310 work_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5311 work_ccb->ccb_h.ppriv_ptr0 = scan_info; 5312 work_ccb->crcn.flags = request_ccb->crcn.flags; 5313 xpt_action(work_ccb); 5314 } 5315 break; 5316 } 5317 case XPT_SCAN_LUN: 5318 { 5319 cam_status status; 5320 struct cam_path *path; 5321 xpt_scan_bus_info *scan_info; 5322 path_id_t path_id; 5323 target_id_t target_id; 5324 lun_id_t lun_id; 5325 5326 /* Reuse the same CCB to query if a device was really found */ 5327 scan_info = (xpt_scan_bus_info *)request_ccb->ccb_h.ppriv_ptr0; 5328 xpt_setup_ccb(&request_ccb->ccb_h, request_ccb->ccb_h.path, 5329 request_ccb->ccb_h.pinfo.priority); 5330 request_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 5331 5332 path_id = request_ccb->ccb_h.path_id; 5333 target_id = request_ccb->ccb_h.target_id; 5334 lun_id = request_ccb->ccb_h.target_lun; 5335 xpt_action(request_ccb); 5336 5337 if (request_ccb->ccb_h.status != CAM_REQ_CMP) { 5338 struct cam_ed *device; 5339 struct cam_et *target; 5340 int phl; 5341 5342 /* 5343 * If we already probed lun 0 successfully, or 5344 * we have additional configured luns on this 5345 * target that might have "gone away", go onto 5346 * the next lun. 5347 */ 5348 target = request_ccb->ccb_h.path->target; 5349 /* 5350 * We may touch devices that we don't 5351 * hold references too, so ensure they 5352 * don't disappear out from under us. 5353 * The target above is referenced by the 5354 * path in the request ccb. 5355 */ 5356 phl = 0; 5357 device = TAILQ_FIRST(&target->ed_entries); 5358 if (device != NULL) { 5359 phl = CAN_SRCH_HI_SPARSE(device); 5360 if (device->lun_id == 0) 5361 device = TAILQ_NEXT(device, links); 5362 } 5363 if ((lun_id != 0) || (device != NULL)) { 5364 if (lun_id < (CAM_SCSI2_MAXLUN-1) || phl) 5365 lun_id++; 5366 } 5367 } else { 5368 struct cam_ed *device; 5369 5370 device = request_ccb->ccb_h.path->device; 5371 5372 if ((device->quirk->quirks & CAM_QUIRK_NOLUNS) == 0) { 5373 /* Try the next lun */ 5374 if (lun_id < (CAM_SCSI2_MAXLUN-1) 5375 || CAN_SRCH_HI_DENSE(device)) 5376 lun_id++; 5377 } 5378 } 5379 5380 /* 5381 * Free the current request path- we're done with it. 5382 */ 5383 xpt_free_path(request_ccb->ccb_h.path); 5384 5385 /* 5386 * Check to see if we scan any further luns. 5387 */ 5388 if (lun_id == request_ccb->ccb_h.target_lun 5389 || lun_id > scan_info->cpi->max_lun) { 5390 int done; 5391 5392 hop_again: 5393 done = 0; 5394 if (scan_info->cpi->hba_misc & PIM_SEQSCAN) { 5395 scan_info->counter++; 5396 if (scan_info->counter == 5397 scan_info->cpi->initiator_id) { 5398 scan_info->counter++; 5399 } 5400 if (scan_info->counter >= 5401 scan_info->cpi->max_target+1) { 5402 done = 1; 5403 } 5404 } else { 5405 scan_info->counter--; 5406 if (scan_info->counter == 0) { 5407 done = 1; 5408 } 5409 } 5410 if (done) { 5411 xpt_free_ccb(request_ccb); 5412 xpt_free_ccb((union ccb *)scan_info->cpi); 5413 request_ccb = scan_info->request_ccb; 5414 free(scan_info, M_CAMXPT); 5415 request_ccb->ccb_h.status = CAM_REQ_CMP; 5416 xpt_done(request_ccb); 5417 break; 5418 } 5419 5420 if ((scan_info->cpi->hba_misc & PIM_SEQSCAN) == 0) { 5421 break; 5422 } 5423 status = xpt_create_path(&path, xpt_periph, 5424 scan_info->request_ccb->ccb_h.path_id, 5425 scan_info->counter, 0); 5426 if (status != CAM_REQ_CMP) { 5427 printf("xpt_scan_bus: xpt_create_path failed" 5428 " with status %#x, bus scan halted\n", 5429 status); 5430 xpt_free_ccb(request_ccb); 5431 xpt_free_ccb((union ccb *)scan_info->cpi); 5432 request_ccb = scan_info->request_ccb; 5433 free(scan_info, M_CAMXPT); 5434 request_ccb->ccb_h.status = status; 5435 xpt_done(request_ccb); 5436 break; 5437 } 5438 xpt_setup_ccb(&request_ccb->ccb_h, path, 5439 request_ccb->ccb_h.pinfo.priority); 5440 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5441 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5442 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5443 request_ccb->crcn.flags = 5444 scan_info->request_ccb->crcn.flags; 5445 } else { 5446 status = xpt_create_path(&path, xpt_periph, 5447 path_id, target_id, lun_id); 5448 if (status != CAM_REQ_CMP) { 5449 printf("xpt_scan_bus: xpt_create_path failed " 5450 "with status %#x, halting LUN scan\n", 5451 status); 5452 goto hop_again; 5453 } 5454 xpt_setup_ccb(&request_ccb->ccb_h, path, 5455 request_ccb->ccb_h.pinfo.priority); 5456 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5457 request_ccb->ccb_h.cbfcnp = xpt_scan_bus; 5458 request_ccb->ccb_h.ppriv_ptr0 = scan_info; 5459 request_ccb->crcn.flags = 5460 scan_info->request_ccb->crcn.flags; 5461 } 5462 xpt_action(request_ccb); 5463 break; 5464 } 5465 default: 5466 break; 5467 } 5468 } 5469 5470 typedef enum { 5471 PROBE_TUR, 5472 PROBE_INQUIRY, /* this counts as DV0 for Basic Domain Validation */ 5473 PROBE_FULL_INQUIRY, 5474 PROBE_MODE_SENSE, 5475 PROBE_SERIAL_NUM, 5476 PROBE_TUR_FOR_NEGOTIATION, 5477 PROBE_INQUIRY_BASIC_DV1, 5478 PROBE_INQUIRY_BASIC_DV2, 5479 PROBE_DV_EXIT 5480 } probe_action; 5481 5482 typedef enum { 5483 PROBE_INQUIRY_CKSUM = 0x01, 5484 PROBE_SERIAL_CKSUM = 0x02, 5485 PROBE_NO_ANNOUNCE = 0x04 5486 } probe_flags; 5487 5488 typedef struct { 5489 TAILQ_HEAD(, ccb_hdr) request_ccbs; 5490 probe_action action; 5491 union ccb saved_ccb; 5492 probe_flags flags; 5493 MD5_CTX context; 5494 u_int8_t digest[16]; 5495 } probe_softc; 5496 5497 static void 5498 xpt_scan_lun(struct cam_periph *periph, struct cam_path *path, 5499 cam_flags flags, union ccb *request_ccb) 5500 { 5501 struct ccb_pathinq cpi; 5502 cam_status status; 5503 struct cam_path *new_path; 5504 struct cam_periph *old_periph; 5505 5506 CAM_DEBUG(request_ccb->ccb_h.path, CAM_DEBUG_TRACE, 5507 ("xpt_scan_lun\n")); 5508 5509 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 5510 cpi.ccb_h.func_code = XPT_PATH_INQ; 5511 xpt_action((union ccb *)&cpi); 5512 5513 if (cpi.ccb_h.status != CAM_REQ_CMP) { 5514 if (request_ccb != NULL) { 5515 request_ccb->ccb_h.status = cpi.ccb_h.status; 5516 xpt_done(request_ccb); 5517 } 5518 return; 5519 } 5520 5521 if ((cpi.hba_misc & PIM_NOINITIATOR) != 0) { 5522 /* 5523 * Can't scan the bus on an adapter that 5524 * cannot perform the initiator role. 5525 */ 5526 if (request_ccb != NULL) { 5527 request_ccb->ccb_h.status = CAM_REQ_CMP; 5528 xpt_done(request_ccb); 5529 } 5530 return; 5531 } 5532 5533 if (request_ccb == NULL) { 5534 request_ccb = malloc(sizeof(union ccb), M_CAMXPT, M_NOWAIT); 5535 if (request_ccb == NULL) { 5536 xpt_print(path, "xpt_scan_lun: can't allocate CCB, " 5537 "can't continue\n"); 5538 return; 5539 } 5540 new_path = malloc(sizeof(*new_path), M_CAMXPT, M_NOWAIT); 5541 if (new_path == NULL) { 5542 xpt_print(path, "xpt_scan_lun: can't allocate path, " 5543 "can't continue\n"); 5544 free(request_ccb, M_CAMXPT); 5545 return; 5546 } 5547 status = xpt_compile_path(new_path, xpt_periph, 5548 path->bus->path_id, 5549 path->target->target_id, 5550 path->device->lun_id); 5551 5552 if (status != CAM_REQ_CMP) { 5553 xpt_print(path, "xpt_scan_lun: can't compile path, " 5554 "can't continue\n"); 5555 free(request_ccb, M_CAMXPT); 5556 free(new_path, M_CAMXPT); 5557 return; 5558 } 5559 xpt_setup_ccb(&request_ccb->ccb_h, new_path, /*priority*/ 1); 5560 request_ccb->ccb_h.cbfcnp = xptscandone; 5561 request_ccb->ccb_h.func_code = XPT_SCAN_LUN; 5562 request_ccb->crcn.flags = flags; 5563 } 5564 5565 if ((old_periph = cam_periph_find(path, "probe")) != NULL) { 5566 probe_softc *softc; 5567 5568 softc = (probe_softc *)old_periph->softc; 5569 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5570 periph_links.tqe); 5571 } else { 5572 status = cam_periph_alloc(proberegister, NULL, probecleanup, 5573 probestart, "probe", 5574 CAM_PERIPH_BIO, 5575 request_ccb->ccb_h.path, NULL, 0, 5576 request_ccb); 5577 5578 if (status != CAM_REQ_CMP) { 5579 xpt_print(path, "xpt_scan_lun: cam_alloc_periph " 5580 "returned an error, can't continue probe\n"); 5581 request_ccb->ccb_h.status = status; 5582 xpt_done(request_ccb); 5583 } 5584 } 5585 } 5586 5587 static void 5588 xptscandone(struct cam_periph *periph, union ccb *done_ccb) 5589 { 5590 xpt_release_path(done_ccb->ccb_h.path); 5591 free(done_ccb->ccb_h.path, M_CAMXPT); 5592 free(done_ccb, M_CAMXPT); 5593 } 5594 5595 static cam_status 5596 proberegister(struct cam_periph *periph, void *arg) 5597 { 5598 union ccb *request_ccb; /* CCB representing the probe request */ 5599 cam_status status; 5600 probe_softc *softc; 5601 5602 request_ccb = (union ccb *)arg; 5603 if (periph == NULL) { 5604 printf("proberegister: periph was NULL!!\n"); 5605 return(CAM_REQ_CMP_ERR); 5606 } 5607 5608 if (request_ccb == NULL) { 5609 printf("proberegister: no probe CCB, " 5610 "can't register device\n"); 5611 return(CAM_REQ_CMP_ERR); 5612 } 5613 5614 softc = (probe_softc *)malloc(sizeof(*softc), M_CAMXPT, M_NOWAIT); 5615 5616 if (softc == NULL) { 5617 printf("proberegister: Unable to probe new device. " 5618 "Unable to allocate softc\n"); 5619 return(CAM_REQ_CMP_ERR); 5620 } 5621 TAILQ_INIT(&softc->request_ccbs); 5622 TAILQ_INSERT_TAIL(&softc->request_ccbs, &request_ccb->ccb_h, 5623 periph_links.tqe); 5624 softc->flags = 0; 5625 periph->softc = softc; 5626 status = cam_periph_acquire(periph); 5627 if (status != CAM_REQ_CMP) { 5628 return (status); 5629 } 5630 5631 5632 /* 5633 * Ensure we've waited at least a bus settle 5634 * delay before attempting to probe the device. 5635 * For HBAs that don't do bus resets, this won't make a difference. 5636 */ 5637 cam_periph_freeze_after_event(periph, &periph->path->bus->last_reset, 5638 scsi_delay); 5639 probeschedule(periph); 5640 return(CAM_REQ_CMP); 5641 } 5642 5643 static void 5644 probeschedule(struct cam_periph *periph) 5645 { 5646 struct ccb_pathinq cpi; 5647 union ccb *ccb; 5648 probe_softc *softc; 5649 5650 softc = (probe_softc *)periph->softc; 5651 ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 5652 5653 xpt_setup_ccb(&cpi.ccb_h, periph->path, /*priority*/1); 5654 cpi.ccb_h.func_code = XPT_PATH_INQ; 5655 xpt_action((union ccb *)&cpi); 5656 5657 /* 5658 * If a device has gone away and another device, or the same one, 5659 * is back in the same place, it should have a unit attention 5660 * condition pending. It will not report the unit attention in 5661 * response to an inquiry, which may leave invalid transfer 5662 * negotiations in effect. The TUR will reveal the unit attention 5663 * condition. Only send the TUR for lun 0, since some devices 5664 * will get confused by commands other than inquiry to non-existent 5665 * luns. If you think a device has gone away start your scan from 5666 * lun 0. This will insure that any bogus transfer settings are 5667 * invalidated. 5668 * 5669 * If we haven't seen the device before and the controller supports 5670 * some kind of transfer negotiation, negotiate with the first 5671 * sent command if no bus reset was performed at startup. This 5672 * ensures that the device is not confused by transfer negotiation 5673 * settings left over by loader or BIOS action. 5674 */ 5675 if (((ccb->ccb_h.path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 5676 && (ccb->ccb_h.target_lun == 0)) { 5677 softc->action = PROBE_TUR; 5678 } else if ((cpi.hba_inquiry & (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE)) != 0 5679 && (cpi.hba_misc & PIM_NOBUSRESET) != 0) { 5680 proberequestdefaultnegotiation(periph); 5681 softc->action = PROBE_INQUIRY; 5682 } else { 5683 softc->action = PROBE_INQUIRY; 5684 } 5685 5686 if (ccb->crcn.flags & CAM_EXPECT_INQ_CHANGE) 5687 softc->flags |= PROBE_NO_ANNOUNCE; 5688 else 5689 softc->flags &= ~PROBE_NO_ANNOUNCE; 5690 5691 xpt_schedule(periph, ccb->ccb_h.pinfo.priority); 5692 } 5693 5694 static void 5695 probestart(struct cam_periph *periph, union ccb *start_ccb) 5696 { 5697 /* Probe the device that our peripheral driver points to */ 5698 struct ccb_scsiio *csio; 5699 probe_softc *softc; 5700 5701 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probestart\n")); 5702 5703 softc = (probe_softc *)periph->softc; 5704 csio = &start_ccb->csio; 5705 5706 switch (softc->action) { 5707 case PROBE_TUR: 5708 case PROBE_TUR_FOR_NEGOTIATION: 5709 case PROBE_DV_EXIT: 5710 { 5711 scsi_test_unit_ready(csio, 5712 /*retries*/4, 5713 probedone, 5714 MSG_SIMPLE_Q_TAG, 5715 SSD_FULL_SIZE, 5716 /*timeout*/60000); 5717 break; 5718 } 5719 case PROBE_INQUIRY: 5720 case PROBE_FULL_INQUIRY: 5721 case PROBE_INQUIRY_BASIC_DV1: 5722 case PROBE_INQUIRY_BASIC_DV2: 5723 { 5724 u_int inquiry_len; 5725 struct scsi_inquiry_data *inq_buf; 5726 5727 inq_buf = &periph->path->device->inq_data; 5728 5729 /* 5730 * If the device is currently configured, we calculate an 5731 * MD5 checksum of the inquiry data, and if the serial number 5732 * length is greater than 0, add the serial number data 5733 * into the checksum as well. Once the inquiry and the 5734 * serial number check finish, we attempt to figure out 5735 * whether we still have the same device. 5736 */ 5737 if ((periph->path->device->flags & CAM_DEV_UNCONFIGURED) == 0) { 5738 5739 MD5Init(&softc->context); 5740 MD5Update(&softc->context, (unsigned char *)inq_buf, 5741 sizeof(struct scsi_inquiry_data)); 5742 softc->flags |= PROBE_INQUIRY_CKSUM; 5743 if (periph->path->device->serial_num_len > 0) { 5744 MD5Update(&softc->context, 5745 periph->path->device->serial_num, 5746 periph->path->device->serial_num_len); 5747 softc->flags |= PROBE_SERIAL_CKSUM; 5748 } 5749 MD5Final(softc->digest, &softc->context); 5750 } 5751 5752 if (softc->action == PROBE_INQUIRY) 5753 inquiry_len = SHORT_INQUIRY_LENGTH; 5754 else 5755 inquiry_len = SID_ADDITIONAL_LENGTH(inq_buf); 5756 5757 /* 5758 * Some parallel SCSI devices fail to send an 5759 * ignore wide residue message when dealing with 5760 * odd length inquiry requests. Round up to be 5761 * safe. 5762 */ 5763 inquiry_len = roundup2(inquiry_len, 2); 5764 5765 if (softc->action == PROBE_INQUIRY_BASIC_DV1 5766 || softc->action == PROBE_INQUIRY_BASIC_DV2) { 5767 inq_buf = malloc(inquiry_len, M_CAMXPT, M_NOWAIT); 5768 } 5769 if (inq_buf == NULL) { 5770 xpt_print(periph->path, "malloc failure- skipping Basic" 5771 "Domain Validation\n"); 5772 softc->action = PROBE_DV_EXIT; 5773 scsi_test_unit_ready(csio, 5774 /*retries*/4, 5775 probedone, 5776 MSG_SIMPLE_Q_TAG, 5777 SSD_FULL_SIZE, 5778 /*timeout*/60000); 5779 break; 5780 } 5781 scsi_inquiry(csio, 5782 /*retries*/4, 5783 probedone, 5784 MSG_SIMPLE_Q_TAG, 5785 (u_int8_t *)inq_buf, 5786 inquiry_len, 5787 /*evpd*/FALSE, 5788 /*page_code*/0, 5789 SSD_MIN_SIZE, 5790 /*timeout*/60 * 1000); 5791 break; 5792 } 5793 case PROBE_MODE_SENSE: 5794 { 5795 void *mode_buf; 5796 int mode_buf_len; 5797 5798 mode_buf_len = sizeof(struct scsi_mode_header_6) 5799 + sizeof(struct scsi_mode_blk_desc) 5800 + sizeof(struct scsi_control_page); 5801 mode_buf = malloc(mode_buf_len, M_CAMXPT, M_NOWAIT); 5802 if (mode_buf != NULL) { 5803 scsi_mode_sense(csio, 5804 /*retries*/4, 5805 probedone, 5806 MSG_SIMPLE_Q_TAG, 5807 /*dbd*/FALSE, 5808 SMS_PAGE_CTRL_CURRENT, 5809 SMS_CONTROL_MODE_PAGE, 5810 mode_buf, 5811 mode_buf_len, 5812 SSD_FULL_SIZE, 5813 /*timeout*/60000); 5814 break; 5815 } 5816 xpt_print(periph->path, "Unable to mode sense control page - " 5817 "malloc failure\n"); 5818 softc->action = PROBE_SERIAL_NUM; 5819 } 5820 /* FALLTHROUGH */ 5821 case PROBE_SERIAL_NUM: 5822 { 5823 struct scsi_vpd_unit_serial_number *serial_buf; 5824 struct cam_ed* device; 5825 5826 serial_buf = NULL; 5827 device = periph->path->device; 5828 device->serial_num = NULL; 5829 device->serial_num_len = 0; 5830 5831 if ((device->quirk->quirks & CAM_QUIRK_NOSERIAL) == 0) 5832 serial_buf = (struct scsi_vpd_unit_serial_number *) 5833 malloc(sizeof(*serial_buf), M_CAMXPT, 5834 M_NOWAIT | M_ZERO); 5835 5836 if (serial_buf != NULL) { 5837 scsi_inquiry(csio, 5838 /*retries*/4, 5839 probedone, 5840 MSG_SIMPLE_Q_TAG, 5841 (u_int8_t *)serial_buf, 5842 sizeof(*serial_buf), 5843 /*evpd*/TRUE, 5844 SVPD_UNIT_SERIAL_NUMBER, 5845 SSD_MIN_SIZE, 5846 /*timeout*/60 * 1000); 5847 break; 5848 } 5849 /* 5850 * We'll have to do without, let our probedone 5851 * routine finish up for us. 5852 */ 5853 start_ccb->csio.data_ptr = NULL; 5854 probedone(periph, start_ccb); 5855 return; 5856 } 5857 } 5858 xpt_action(start_ccb); 5859 } 5860 5861 static void 5862 proberequestdefaultnegotiation(struct cam_periph *periph) 5863 { 5864 struct ccb_trans_settings cts; 5865 5866 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5867 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5868 cts.type = CTS_TYPE_USER_SETTINGS; 5869 xpt_action((union ccb *)&cts); 5870 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5871 return; 5872 } 5873 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5874 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5875 xpt_action((union ccb *)&cts); 5876 } 5877 5878 /* 5879 * Backoff Negotiation Code- only pertinent for SPI devices. 5880 */ 5881 static int 5882 proberequestbackoff(struct cam_periph *periph, struct cam_ed *device) 5883 { 5884 struct ccb_trans_settings cts; 5885 struct ccb_trans_settings_spi *spi; 5886 5887 memset(&cts, 0, sizeof (cts)); 5888 xpt_setup_ccb(&cts.ccb_h, periph->path, /*priority*/1); 5889 cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 5890 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5891 xpt_action((union ccb *)&cts); 5892 if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 5893 if (bootverbose) { 5894 xpt_print(periph->path, 5895 "failed to get current device settings\n"); 5896 } 5897 return (0); 5898 } 5899 if (cts.transport != XPORT_SPI) { 5900 if (bootverbose) { 5901 xpt_print(periph->path, "not SPI transport\n"); 5902 } 5903 return (0); 5904 } 5905 spi = &cts.xport_specific.spi; 5906 5907 /* 5908 * We cannot renegotiate sync rate if we don't have one. 5909 */ 5910 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) { 5911 if (bootverbose) { 5912 xpt_print(periph->path, "no sync rate known\n"); 5913 } 5914 return (0); 5915 } 5916 5917 /* 5918 * We'll assert that we don't have to touch PPR options- the 5919 * SIM will see what we do with period and offset and adjust 5920 * the PPR options as appropriate. 5921 */ 5922 5923 /* 5924 * A sync rate with unknown or zero offset is nonsensical. 5925 * A sync period of zero means Async. 5926 */ 5927 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0 5928 || spi->sync_offset == 0 || spi->sync_period == 0) { 5929 if (bootverbose) { 5930 xpt_print(periph->path, "no sync rate available\n"); 5931 } 5932 return (0); 5933 } 5934 5935 if (device->flags & CAM_DEV_DV_HIT_BOTTOM) { 5936 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5937 ("hit async: giving up on DV\n")); 5938 return (0); 5939 } 5940 5941 5942 /* 5943 * Jump sync_period up by one, but stop at 5MHz and fall back to Async. 5944 * We don't try to remember 'last' settings to see if the SIM actually 5945 * gets into the speed we want to set. We check on the SIM telling 5946 * us that a requested speed is bad, but otherwise don't try and 5947 * check the speed due to the asynchronous and handshake nature 5948 * of speed setting. 5949 */ 5950 spi->valid = CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_SYNC_OFFSET; 5951 for (;;) { 5952 spi->sync_period++; 5953 if (spi->sync_period >= 0xf) { 5954 spi->sync_period = 0; 5955 spi->sync_offset = 0; 5956 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5957 ("setting to async for DV\n")); 5958 /* 5959 * Once we hit async, we don't want to try 5960 * any more settings. 5961 */ 5962 device->flags |= CAM_DEV_DV_HIT_BOTTOM; 5963 } else if (bootverbose) { 5964 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5965 ("DV: period 0x%x\n", spi->sync_period)); 5966 printf("setting period to 0x%x\n", spi->sync_period); 5967 } 5968 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 5969 cts.type = CTS_TYPE_CURRENT_SETTINGS; 5970 xpt_action((union ccb *)&cts); 5971 if ((cts.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 5972 break; 5973 } 5974 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 5975 ("DV: failed to set period 0x%x\n", spi->sync_period)); 5976 if (spi->sync_period == 0) { 5977 return (0); 5978 } 5979 } 5980 return (1); 5981 } 5982 5983 static void 5984 probedone(struct cam_periph *periph, union ccb *done_ccb) 5985 { 5986 probe_softc *softc; 5987 struct cam_path *path; 5988 u_int32_t priority; 5989 5990 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("probedone\n")); 5991 5992 softc = (probe_softc *)periph->softc; 5993 path = done_ccb->ccb_h.path; 5994 priority = done_ccb->ccb_h.pinfo.priority; 5995 5996 switch (softc->action) { 5997 case PROBE_TUR: 5998 { 5999 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6000 6001 if (cam_periph_error(done_ccb, 0, 6002 SF_NO_PRINT, NULL) == ERESTART) 6003 return; 6004 else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) 6005 /* Don't wedge the queue */ 6006 xpt_release_devq(done_ccb->ccb_h.path, 6007 /*count*/1, 6008 /*run_queue*/TRUE); 6009 } 6010 softc->action = PROBE_INQUIRY; 6011 xpt_release_ccb(done_ccb); 6012 xpt_schedule(periph, priority); 6013 return; 6014 } 6015 case PROBE_INQUIRY: 6016 case PROBE_FULL_INQUIRY: 6017 { 6018 if ((done_ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6019 struct scsi_inquiry_data *inq_buf; 6020 u_int8_t periph_qual; 6021 6022 path->device->flags |= CAM_DEV_INQUIRY_DATA_VALID; 6023 inq_buf = &path->device->inq_data; 6024 6025 periph_qual = SID_QUAL(inq_buf); 6026 6027 switch(periph_qual) { 6028 case SID_QUAL_LU_CONNECTED: 6029 { 6030 u_int8_t len; 6031 6032 /* 6033 * We conservatively request only 6034 * SHORT_INQUIRY_LEN bytes of inquiry 6035 * information during our first try 6036 * at sending an INQUIRY. If the device 6037 * has more information to give, 6038 * perform a second request specifying 6039 * the amount of information the device 6040 * is willing to give. 6041 */ 6042 len = inq_buf->additional_length 6043 + offsetof(struct scsi_inquiry_data, 6044 additional_length) + 1; 6045 if (softc->action == PROBE_INQUIRY 6046 && len > SHORT_INQUIRY_LENGTH) { 6047 softc->action = PROBE_FULL_INQUIRY; 6048 xpt_release_ccb(done_ccb); 6049 xpt_schedule(periph, priority); 6050 return; 6051 } 6052 6053 xpt_find_quirk(path->device); 6054 6055 xpt_devise_transport(path); 6056 if (INQ_DATA_TQ_ENABLED(inq_buf)) 6057 softc->action = PROBE_MODE_SENSE; 6058 else 6059 softc->action = PROBE_SERIAL_NUM; 6060 6061 path->device->flags &= ~CAM_DEV_UNCONFIGURED; 6062 6063 xpt_release_ccb(done_ccb); 6064 xpt_schedule(periph, priority); 6065 return; 6066 } 6067 default: 6068 break; 6069 } 6070 } else if (cam_periph_error(done_ccb, 0, 6071 done_ccb->ccb_h.target_lun > 0 6072 ? SF_RETRY_UA|SF_QUIET_IR 6073 : SF_RETRY_UA, 6074 &softc->saved_ccb) == ERESTART) { 6075 return; 6076 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6077 /* Don't wedge the queue */ 6078 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6079 /*run_queue*/TRUE); 6080 } 6081 /* 6082 * If we get to this point, we got an error status back 6083 * from the inquiry and the error status doesn't require 6084 * automatically retrying the command. Therefore, the 6085 * inquiry failed. If we had inquiry information before 6086 * for this device, but this latest inquiry command failed, 6087 * the device has probably gone away. If this device isn't 6088 * already marked unconfigured, notify the peripheral 6089 * drivers that this device is no more. 6090 */ 6091 if ((path->device->flags & CAM_DEV_UNCONFIGURED) == 0) 6092 /* Send the async notification. */ 6093 xpt_async(AC_LOST_DEVICE, path, NULL); 6094 6095 xpt_release_ccb(done_ccb); 6096 break; 6097 } 6098 case PROBE_MODE_SENSE: 6099 { 6100 struct ccb_scsiio *csio; 6101 struct scsi_mode_header_6 *mode_hdr; 6102 6103 csio = &done_ccb->csio; 6104 mode_hdr = (struct scsi_mode_header_6 *)csio->data_ptr; 6105 if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) { 6106 struct scsi_control_page *page; 6107 u_int8_t *offset; 6108 6109 offset = ((u_int8_t *)&mode_hdr[1]) 6110 + mode_hdr->blk_desc_len; 6111 page = (struct scsi_control_page *)offset; 6112 path->device->queue_flags = page->queue_flags; 6113 } else if (cam_periph_error(done_ccb, 0, 6114 SF_RETRY_UA|SF_NO_PRINT, 6115 &softc->saved_ccb) == ERESTART) { 6116 return; 6117 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6118 /* Don't wedge the queue */ 6119 xpt_release_devq(done_ccb->ccb_h.path, 6120 /*count*/1, /*run_queue*/TRUE); 6121 } 6122 xpt_release_ccb(done_ccb); 6123 free(mode_hdr, M_CAMXPT); 6124 softc->action = PROBE_SERIAL_NUM; 6125 xpt_schedule(periph, priority); 6126 return; 6127 } 6128 case PROBE_SERIAL_NUM: 6129 { 6130 struct ccb_scsiio *csio; 6131 struct scsi_vpd_unit_serial_number *serial_buf; 6132 u_int32_t priority; 6133 int changed; 6134 int have_serialnum; 6135 6136 changed = 1; 6137 have_serialnum = 0; 6138 csio = &done_ccb->csio; 6139 priority = done_ccb->ccb_h.pinfo.priority; 6140 serial_buf = 6141 (struct scsi_vpd_unit_serial_number *)csio->data_ptr; 6142 6143 /* Clean up from previous instance of this device */ 6144 if (path->device->serial_num != NULL) { 6145 free(path->device->serial_num, M_CAMXPT); 6146 path->device->serial_num = NULL; 6147 path->device->serial_num_len = 0; 6148 } 6149 6150 if (serial_buf == NULL) { 6151 /* 6152 * Don't process the command as it was never sent 6153 */ 6154 } else if ((csio->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP 6155 && (serial_buf->length > 0)) { 6156 6157 have_serialnum = 1; 6158 path->device->serial_num = 6159 (u_int8_t *)malloc((serial_buf->length + 1), 6160 M_CAMXPT, M_NOWAIT); 6161 if (path->device->serial_num != NULL) { 6162 bcopy(serial_buf->serial_num, 6163 path->device->serial_num, 6164 serial_buf->length); 6165 path->device->serial_num_len = 6166 serial_buf->length; 6167 path->device->serial_num[serial_buf->length] 6168 = '\0'; 6169 } 6170 } else if (cam_periph_error(done_ccb, 0, 6171 SF_RETRY_UA|SF_NO_PRINT, 6172 &softc->saved_ccb) == ERESTART) { 6173 return; 6174 } else if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6175 /* Don't wedge the queue */ 6176 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6177 /*run_queue*/TRUE); 6178 } 6179 6180 /* 6181 * Let's see if we have seen this device before. 6182 */ 6183 if ((softc->flags & PROBE_INQUIRY_CKSUM) != 0) { 6184 MD5_CTX context; 6185 u_int8_t digest[16]; 6186 6187 MD5Init(&context); 6188 6189 MD5Update(&context, 6190 (unsigned char *)&path->device->inq_data, 6191 sizeof(struct scsi_inquiry_data)); 6192 6193 if (have_serialnum) 6194 MD5Update(&context, serial_buf->serial_num, 6195 serial_buf->length); 6196 6197 MD5Final(digest, &context); 6198 if (bcmp(softc->digest, digest, 16) == 0) 6199 changed = 0; 6200 6201 /* 6202 * XXX Do we need to do a TUR in order to ensure 6203 * that the device really hasn't changed??? 6204 */ 6205 if ((changed != 0) 6206 && ((softc->flags & PROBE_NO_ANNOUNCE) == 0)) 6207 xpt_async(AC_LOST_DEVICE, path, NULL); 6208 } 6209 if (serial_buf != NULL) 6210 free(serial_buf, M_CAMXPT); 6211 6212 if (changed != 0) { 6213 /* 6214 * Now that we have all the necessary 6215 * information to safely perform transfer 6216 * negotiations... Controllers don't perform 6217 * any negotiation or tagged queuing until 6218 * after the first XPT_SET_TRAN_SETTINGS ccb is 6219 * received. So, on a new device, just retrieve 6220 * the user settings, and set them as the current 6221 * settings to set the device up. 6222 */ 6223 proberequestdefaultnegotiation(periph); 6224 xpt_release_ccb(done_ccb); 6225 6226 /* 6227 * Perform a TUR to allow the controller to 6228 * perform any necessary transfer negotiation. 6229 */ 6230 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6231 xpt_schedule(periph, priority); 6232 return; 6233 } 6234 xpt_release_ccb(done_ccb); 6235 break; 6236 } 6237 case PROBE_TUR_FOR_NEGOTIATION: 6238 case PROBE_DV_EXIT: 6239 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6240 /* Don't wedge the queue */ 6241 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6242 /*run_queue*/TRUE); 6243 } 6244 /* 6245 * Do Domain Validation for lun 0 on devices that claim 6246 * to support Synchronous Transfer modes. 6247 */ 6248 if (softc->action == PROBE_TUR_FOR_NEGOTIATION 6249 && done_ccb->ccb_h.target_lun == 0 6250 && (path->device->inq_data.flags & SID_Sync) != 0 6251 && (path->device->flags & CAM_DEV_IN_DV) == 0) { 6252 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6253 ("Begin Domain Validation\n")); 6254 path->device->flags |= CAM_DEV_IN_DV; 6255 xpt_release_ccb(done_ccb); 6256 softc->action = PROBE_INQUIRY_BASIC_DV1; 6257 xpt_schedule(periph, priority); 6258 return; 6259 } 6260 if (softc->action == PROBE_DV_EXIT) { 6261 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6262 ("Leave Domain Validation\n")); 6263 } 6264 path->device->flags &= 6265 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6266 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6267 /* Inform the XPT that a new device has been found */ 6268 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6269 xpt_action(done_ccb); 6270 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6271 done_ccb); 6272 } 6273 xpt_release_ccb(done_ccb); 6274 break; 6275 case PROBE_INQUIRY_BASIC_DV1: 6276 case PROBE_INQUIRY_BASIC_DV2: 6277 { 6278 struct scsi_inquiry_data *nbuf; 6279 struct ccb_scsiio *csio; 6280 6281 if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0) { 6282 /* Don't wedge the queue */ 6283 xpt_release_devq(done_ccb->ccb_h.path, /*count*/1, 6284 /*run_queue*/TRUE); 6285 } 6286 csio = &done_ccb->csio; 6287 nbuf = (struct scsi_inquiry_data *)csio->data_ptr; 6288 if (bcmp(nbuf, &path->device->inq_data, SHORT_INQUIRY_LENGTH)) { 6289 xpt_print(path, 6290 "inquiry data fails comparison at DV%d step\n", 6291 softc->action == PROBE_INQUIRY_BASIC_DV1? 1 : 2); 6292 if (proberequestbackoff(periph, path->device)) { 6293 path->device->flags &= ~CAM_DEV_IN_DV; 6294 softc->action = PROBE_TUR_FOR_NEGOTIATION; 6295 } else { 6296 /* give up */ 6297 softc->action = PROBE_DV_EXIT; 6298 } 6299 free(nbuf, M_CAMXPT); 6300 xpt_release_ccb(done_ccb); 6301 xpt_schedule(periph, priority); 6302 return; 6303 } 6304 free(nbuf, M_CAMXPT); 6305 if (softc->action == PROBE_INQUIRY_BASIC_DV1) { 6306 softc->action = PROBE_INQUIRY_BASIC_DV2; 6307 xpt_release_ccb(done_ccb); 6308 xpt_schedule(periph, priority); 6309 return; 6310 } 6311 if (softc->action == PROBE_DV_EXIT) { 6312 CAM_DEBUG(periph->path, CAM_DEBUG_INFO, 6313 ("Leave Domain Validation Successfully\n")); 6314 } 6315 path->device->flags &= 6316 ~(CAM_DEV_UNCONFIGURED|CAM_DEV_IN_DV|CAM_DEV_DV_HIT_BOTTOM); 6317 if ((softc->flags & PROBE_NO_ANNOUNCE) == 0) { 6318 /* Inform the XPT that a new device has been found */ 6319 done_ccb->ccb_h.func_code = XPT_GDEV_TYPE; 6320 xpt_action(done_ccb); 6321 xpt_async(AC_FOUND_DEVICE, done_ccb->ccb_h.path, 6322 done_ccb); 6323 } 6324 xpt_release_ccb(done_ccb); 6325 break; 6326 } 6327 } 6328 done_ccb = (union ccb *)TAILQ_FIRST(&softc->request_ccbs); 6329 TAILQ_REMOVE(&softc->request_ccbs, &done_ccb->ccb_h, periph_links.tqe); 6330 done_ccb->ccb_h.status = CAM_REQ_CMP; 6331 xpt_done(done_ccb); 6332 if (TAILQ_FIRST(&softc->request_ccbs) == NULL) { 6333 cam_periph_invalidate(periph); 6334 cam_periph_release(periph); 6335 } else { 6336 probeschedule(periph); 6337 } 6338 } 6339 6340 static void 6341 probecleanup(struct cam_periph *periph) 6342 { 6343 free(periph->softc, M_CAMXPT); 6344 } 6345 6346 static void 6347 xpt_find_quirk(struct cam_ed *device) 6348 { 6349 caddr_t match; 6350 6351 match = cam_quirkmatch((caddr_t)&device->inq_data, 6352 (caddr_t)xpt_quirk_table, 6353 sizeof(xpt_quirk_table)/sizeof(*xpt_quirk_table), 6354 sizeof(*xpt_quirk_table), scsi_inquiry_match); 6355 6356 if (match == NULL) 6357 panic("xpt_find_quirk: device didn't match wildcard entry!!"); 6358 6359 device->quirk = (struct xpt_quirk_entry *)match; 6360 } 6361 6362 static int 6363 sysctl_cam_search_luns(SYSCTL_HANDLER_ARGS) 6364 { 6365 int error, bool; 6366 6367 bool = cam_srch_hi; 6368 error = sysctl_handle_int(oidp, &bool, 0, req); 6369 if (error != 0 || req->newptr == NULL) 6370 return (error); 6371 if (bool == 0 || bool == 1) { 6372 cam_srch_hi = bool; 6373 return (0); 6374 } else { 6375 return (EINVAL); 6376 } 6377 } 6378 6379 6380 static void 6381 xpt_devise_transport(struct cam_path *path) 6382 { 6383 struct ccb_pathinq cpi; 6384 struct ccb_trans_settings cts; 6385 struct scsi_inquiry_data *inq_buf; 6386 6387 /* Get transport information from the SIM */ 6388 xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1); 6389 cpi.ccb_h.func_code = XPT_PATH_INQ; 6390 xpt_action((union ccb *)&cpi); 6391 6392 inq_buf = NULL; 6393 if ((path->device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0) 6394 inq_buf = &path->device->inq_data; 6395 path->device->protocol = PROTO_SCSI; 6396 path->device->protocol_version = 6397 inq_buf != NULL ? SID_ANSI_REV(inq_buf) : cpi.protocol_version; 6398 path->device->transport = cpi.transport; 6399 path->device->transport_version = cpi.transport_version; 6400 6401 /* 6402 * Any device not using SPI3 features should 6403 * be considered SPI2 or lower. 6404 */ 6405 if (inq_buf != NULL) { 6406 if (path->device->transport == XPORT_SPI 6407 && (inq_buf->spi3data & SID_SPI_MASK) == 0 6408 && path->device->transport_version > 2) 6409 path->device->transport_version = 2; 6410 } else { 6411 struct cam_ed* otherdev; 6412 6413 for (otherdev = TAILQ_FIRST(&path->target->ed_entries); 6414 otherdev != NULL; 6415 otherdev = TAILQ_NEXT(otherdev, links)) { 6416 if (otherdev != path->device) 6417 break; 6418 } 6419 6420 if (otherdev != NULL) { 6421 /* 6422 * Initially assume the same versioning as 6423 * prior luns for this target. 6424 */ 6425 path->device->protocol_version = 6426 otherdev->protocol_version; 6427 path->device->transport_version = 6428 otherdev->transport_version; 6429 } else { 6430 /* Until we know better, opt for safty */ 6431 path->device->protocol_version = 2; 6432 if (path->device->transport == XPORT_SPI) 6433 path->device->transport_version = 2; 6434 else 6435 path->device->transport_version = 0; 6436 } 6437 } 6438 6439 /* 6440 * XXX 6441 * For a device compliant with SPC-2 we should be able 6442 * to determine the transport version supported by 6443 * scrutinizing the version descriptors in the 6444 * inquiry buffer. 6445 */ 6446 6447 /* Tell the controller what we think */ 6448 xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1); 6449 cts.ccb_h.func_code = XPT_SET_TRAN_SETTINGS; 6450 cts.type = CTS_TYPE_CURRENT_SETTINGS; 6451 cts.transport = path->device->transport; 6452 cts.transport_version = path->device->transport_version; 6453 cts.protocol = path->device->protocol; 6454 cts.protocol_version = path->device->protocol_version; 6455 cts.proto_specific.valid = 0; 6456 cts.xport_specific.valid = 0; 6457 xpt_action((union ccb *)&cts); 6458 } 6459 6460 static void 6461 xpt_set_transfer_settings(struct ccb_trans_settings *cts, struct cam_ed *device, 6462 int async_update) 6463 { 6464 struct ccb_pathinq cpi; 6465 struct ccb_trans_settings cur_cts; 6466 struct ccb_trans_settings_scsi *scsi; 6467 struct ccb_trans_settings_scsi *cur_scsi; 6468 struct cam_sim *sim; 6469 struct scsi_inquiry_data *inq_data; 6470 6471 if (device == NULL) { 6472 cts->ccb_h.status = CAM_PATH_INVALID; 6473 xpt_done((union ccb *)cts); 6474 return; 6475 } 6476 6477 if (cts->protocol == PROTO_UNKNOWN 6478 || cts->protocol == PROTO_UNSPECIFIED) { 6479 cts->protocol = device->protocol; 6480 cts->protocol_version = device->protocol_version; 6481 } 6482 6483 if (cts->protocol_version == PROTO_VERSION_UNKNOWN 6484 || cts->protocol_version == PROTO_VERSION_UNSPECIFIED) 6485 cts->protocol_version = device->protocol_version; 6486 6487 if (cts->protocol != device->protocol) { 6488 xpt_print(cts->ccb_h.path, "Uninitialized Protocol %x:%x?\n", 6489 cts->protocol, device->protocol); 6490 cts->protocol = device->protocol; 6491 } 6492 6493 if (cts->protocol_version > device->protocol_version) { 6494 if (bootverbose) { 6495 xpt_print(cts->ccb_h.path, "Down reving Protocol " 6496 "Version from %d to %d?\n", cts->protocol_version, 6497 device->protocol_version); 6498 } 6499 cts->protocol_version = device->protocol_version; 6500 } 6501 6502 if (cts->transport == XPORT_UNKNOWN 6503 || cts->transport == XPORT_UNSPECIFIED) { 6504 cts->transport = device->transport; 6505 cts->transport_version = device->transport_version; 6506 } 6507 6508 if (cts->transport_version == XPORT_VERSION_UNKNOWN 6509 || cts->transport_version == XPORT_VERSION_UNSPECIFIED) 6510 cts->transport_version = device->transport_version; 6511 6512 if (cts->transport != device->transport) { 6513 xpt_print(cts->ccb_h.path, "Uninitialized Transport %x:%x?\n", 6514 cts->transport, device->transport); 6515 cts->transport = device->transport; 6516 } 6517 6518 if (cts->transport_version > device->transport_version) { 6519 if (bootverbose) { 6520 xpt_print(cts->ccb_h.path, "Down reving Transport " 6521 "Version from %d to %d?\n", cts->transport_version, 6522 device->transport_version); 6523 } 6524 cts->transport_version = device->transport_version; 6525 } 6526 6527 sim = cts->ccb_h.path->bus->sim; 6528 6529 /* 6530 * Nothing more of interest to do unless 6531 * this is a device connected via the 6532 * SCSI protocol. 6533 */ 6534 if (cts->protocol != PROTO_SCSI) { 6535 if (async_update == FALSE) 6536 (*(sim->sim_action))(sim, (union ccb *)cts); 6537 return; 6538 } 6539 6540 inq_data = &device->inq_data; 6541 scsi = &cts->proto_specific.scsi; 6542 xpt_setup_ccb(&cpi.ccb_h, cts->ccb_h.path, /*priority*/1); 6543 cpi.ccb_h.func_code = XPT_PATH_INQ; 6544 xpt_action((union ccb *)&cpi); 6545 6546 /* SCSI specific sanity checking */ 6547 if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0 6548 || (INQ_DATA_TQ_ENABLED(inq_data)) == 0 6549 || (device->queue_flags & SCP_QUEUE_DQUE) != 0 6550 || (device->quirk->mintags == 0)) { 6551 /* 6552 * Can't tag on hardware that doesn't support tags, 6553 * doesn't have it enabled, or has broken tag support. 6554 */ 6555 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6556 } 6557 6558 if (async_update == FALSE) { 6559 /* 6560 * Perform sanity checking against what the 6561 * controller and device can do. 6562 */ 6563 xpt_setup_ccb(&cur_cts.ccb_h, cts->ccb_h.path, /*priority*/1); 6564 cur_cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS; 6565 cur_cts.type = cts->type; 6566 xpt_action((union ccb *)&cur_cts); 6567 if ((cur_cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) { 6568 return; 6569 } 6570 cur_scsi = &cur_cts.proto_specific.scsi; 6571 if ((scsi->valid & CTS_SCSI_VALID_TQ) == 0) { 6572 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6573 scsi->flags |= cur_scsi->flags & CTS_SCSI_FLAGS_TAG_ENB; 6574 } 6575 if ((cur_scsi->valid & CTS_SCSI_VALID_TQ) == 0) 6576 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6577 } 6578 6579 /* SPI specific sanity checking */ 6580 if (cts->transport == XPORT_SPI && async_update == FALSE) { 6581 u_int spi3caps; 6582 struct ccb_trans_settings_spi *spi; 6583 struct ccb_trans_settings_spi *cur_spi; 6584 6585 spi = &cts->xport_specific.spi; 6586 6587 cur_spi = &cur_cts.xport_specific.spi; 6588 6589 /* Fill in any gaps in what the user gave us */ 6590 if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6591 spi->sync_period = cur_spi->sync_period; 6592 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) 6593 spi->sync_period = 0; 6594 if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6595 spi->sync_offset = cur_spi->sync_offset; 6596 if ((cur_spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) 6597 spi->sync_offset = 0; 6598 if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6599 spi->ppr_options = cur_spi->ppr_options; 6600 if ((cur_spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) 6601 spi->ppr_options = 0; 6602 if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6603 spi->bus_width = cur_spi->bus_width; 6604 if ((cur_spi->valid & CTS_SPI_VALID_BUS_WIDTH) == 0) 6605 spi->bus_width = 0; 6606 if ((spi->valid & CTS_SPI_VALID_DISC) == 0) { 6607 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6608 spi->flags |= cur_spi->flags & CTS_SPI_FLAGS_DISC_ENB; 6609 } 6610 if ((cur_spi->valid & CTS_SPI_VALID_DISC) == 0) 6611 spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB; 6612 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6613 && (inq_data->flags & SID_Sync) == 0 6614 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6615 || ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) 6616 || (spi->sync_offset == 0) 6617 || (spi->sync_period == 0)) { 6618 /* Force async */ 6619 spi->sync_period = 0; 6620 spi->sync_offset = 0; 6621 } 6622 6623 switch (spi->bus_width) { 6624 case MSG_EXT_WDTR_BUS_32_BIT: 6625 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6626 || (inq_data->flags & SID_WBus32) != 0 6627 || cts->type == CTS_TYPE_USER_SETTINGS) 6628 && (cpi.hba_inquiry & PI_WIDE_32) != 0) 6629 break; 6630 /* Fall Through to 16-bit */ 6631 case MSG_EXT_WDTR_BUS_16_BIT: 6632 if (((device->flags & CAM_DEV_INQUIRY_DATA_VALID) == 0 6633 || (inq_data->flags & SID_WBus16) != 0 6634 || cts->type == CTS_TYPE_USER_SETTINGS) 6635 && (cpi.hba_inquiry & PI_WIDE_16) != 0) { 6636 spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT; 6637 break; 6638 } 6639 /* Fall Through to 8-bit */ 6640 default: /* New bus width?? */ 6641 case MSG_EXT_WDTR_BUS_8_BIT: 6642 /* All targets can do this */ 6643 spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT; 6644 break; 6645 } 6646 6647 spi3caps = cpi.xport_specific.spi.ppr_options; 6648 if ((device->flags & CAM_DEV_INQUIRY_DATA_VALID) != 0 6649 && cts->type == CTS_TYPE_CURRENT_SETTINGS) 6650 spi3caps &= inq_data->spi3data; 6651 6652 if ((spi3caps & SID_SPI_CLOCK_DT) == 0) 6653 spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ; 6654 6655 if ((spi3caps & SID_SPI_IUS) == 0) 6656 spi->ppr_options &= ~MSG_EXT_PPR_IU_REQ; 6657 6658 if ((spi3caps & SID_SPI_QAS) == 0) 6659 spi->ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 6660 6661 /* No SPI Transfer settings are allowed unless we are wide */ 6662 if (spi->bus_width == 0) 6663 spi->ppr_options = 0; 6664 6665 if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) == 0) { 6666 /* 6667 * Can't tag queue without disconnection. 6668 */ 6669 scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB; 6670 scsi->valid |= CTS_SCSI_VALID_TQ; 6671 } 6672 6673 /* 6674 * If we are currently performing tagged transactions to 6675 * this device and want to change its negotiation parameters, 6676 * go non-tagged for a bit to give the controller a chance to 6677 * negotiate unhampered by tag messages. 6678 */ 6679 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6680 && (device->inq_flags & SID_CmdQue) != 0 6681 && (scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6682 && (spi->flags & (CTS_SPI_VALID_SYNC_RATE| 6683 CTS_SPI_VALID_SYNC_OFFSET| 6684 CTS_SPI_VALID_BUS_WIDTH)) != 0) 6685 xpt_toggle_tags(cts->ccb_h.path); 6686 } 6687 6688 if (cts->type == CTS_TYPE_CURRENT_SETTINGS 6689 && (scsi->valid & CTS_SCSI_VALID_TQ) != 0) { 6690 int device_tagenb; 6691 6692 /* 6693 * If we are transitioning from tags to no-tags or 6694 * vice-versa, we need to carefully freeze and restart 6695 * the queue so that we don't overlap tagged and non-tagged 6696 * commands. We also temporarily stop tags if there is 6697 * a change in transfer negotiation settings to allow 6698 * "tag-less" negotiation. 6699 */ 6700 if ((device->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6701 || (device->inq_flags & SID_CmdQue) != 0) 6702 device_tagenb = TRUE; 6703 else 6704 device_tagenb = FALSE; 6705 6706 if (((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0 6707 && device_tagenb == FALSE) 6708 || ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) == 0 6709 && device_tagenb == TRUE)) { 6710 6711 if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0) { 6712 /* 6713 * Delay change to use tags until after a 6714 * few commands have gone to this device so 6715 * the controller has time to perform transfer 6716 * negotiations without tagged messages getting 6717 * in the way. 6718 */ 6719 device->tag_delay_count = CAM_TAG_DELAY_COUNT; 6720 device->flags |= CAM_DEV_TAG_AFTER_COUNT; 6721 } else { 6722 struct ccb_relsim crs; 6723 6724 xpt_freeze_devq(cts->ccb_h.path, /*count*/1); 6725 device->inq_flags &= ~SID_CmdQue; 6726 xpt_dev_ccbq_resize(cts->ccb_h.path, 6727 sim->max_dev_openings); 6728 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6729 device->tag_delay_count = 0; 6730 6731 xpt_setup_ccb(&crs.ccb_h, cts->ccb_h.path, 6732 /*priority*/1); 6733 crs.ccb_h.func_code = XPT_REL_SIMQ; 6734 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6735 crs.openings 6736 = crs.release_timeout 6737 = crs.qfrozen_cnt 6738 = 0; 6739 xpt_action((union ccb *)&crs); 6740 } 6741 } 6742 } 6743 if (async_update == FALSE) 6744 (*(sim->sim_action))(sim, (union ccb *)cts); 6745 } 6746 6747 6748 static void 6749 xpt_toggle_tags(struct cam_path *path) 6750 { 6751 struct cam_ed *dev; 6752 6753 /* 6754 * Give controllers a chance to renegotiate 6755 * before starting tag operations. We 6756 * "toggle" tagged queuing off then on 6757 * which causes the tag enable command delay 6758 * counter to come into effect. 6759 */ 6760 dev = path->device; 6761 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 6762 || ((dev->inq_flags & SID_CmdQue) != 0 6763 && (dev->inq_flags & (SID_Sync|SID_WBus16|SID_WBus32)) != 0)) { 6764 struct ccb_trans_settings cts; 6765 6766 xpt_setup_ccb(&cts.ccb_h, path, 1); 6767 cts.protocol = PROTO_SCSI; 6768 cts.protocol_version = PROTO_VERSION_UNSPECIFIED; 6769 cts.transport = XPORT_UNSPECIFIED; 6770 cts.transport_version = XPORT_VERSION_UNSPECIFIED; 6771 cts.proto_specific.scsi.flags = 0; 6772 cts.proto_specific.scsi.valid = CTS_SCSI_VALID_TQ; 6773 xpt_set_transfer_settings(&cts, path->device, 6774 /*async_update*/TRUE); 6775 cts.proto_specific.scsi.flags = CTS_SCSI_FLAGS_TAG_ENB; 6776 xpt_set_transfer_settings(&cts, path->device, 6777 /*async_update*/TRUE); 6778 } 6779 } 6780 6781 static void 6782 xpt_start_tags(struct cam_path *path) 6783 { 6784 struct ccb_relsim crs; 6785 struct cam_ed *device; 6786 struct cam_sim *sim; 6787 int newopenings; 6788 6789 device = path->device; 6790 sim = path->bus->sim; 6791 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 6792 xpt_freeze_devq(path, /*count*/1); 6793 device->inq_flags |= SID_CmdQue; 6794 if (device->tag_saved_openings != 0) 6795 newopenings = device->tag_saved_openings; 6796 else 6797 newopenings = min(device->quirk->maxtags, 6798 sim->max_tagged_dev_openings); 6799 xpt_dev_ccbq_resize(path, newopenings); 6800 xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1); 6801 crs.ccb_h.func_code = XPT_REL_SIMQ; 6802 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 6803 crs.openings 6804 = crs.release_timeout 6805 = crs.qfrozen_cnt 6806 = 0; 6807 xpt_action((union ccb *)&crs); 6808 } 6809 6810 static int busses_to_config; 6811 static int busses_to_reset; 6812 6813 static int 6814 xptconfigbuscountfunc(struct cam_eb *bus, void *arg) 6815 { 6816 6817 mtx_assert(bus->sim->mtx, MA_OWNED); 6818 6819 if (bus->path_id != CAM_XPT_PATH_ID) { 6820 struct cam_path path; 6821 struct ccb_pathinq cpi; 6822 int can_negotiate; 6823 6824 busses_to_config++; 6825 xpt_compile_path(&path, NULL, bus->path_id, 6826 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 6827 xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1); 6828 cpi.ccb_h.func_code = XPT_PATH_INQ; 6829 xpt_action((union ccb *)&cpi); 6830 can_negotiate = cpi.hba_inquiry; 6831 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6832 if ((cpi.hba_misc & PIM_NOBUSRESET) == 0 6833 && can_negotiate) 6834 busses_to_reset++; 6835 xpt_release_path(&path); 6836 } 6837 6838 return(1); 6839 } 6840 6841 static int 6842 xptconfigfunc(struct cam_eb *bus, void *arg) 6843 { 6844 struct cam_path *path; 6845 union ccb *work_ccb; 6846 6847 mtx_assert(bus->sim->mtx, MA_OWNED); 6848 6849 if (bus->path_id != CAM_XPT_PATH_ID) { 6850 cam_status status; 6851 int can_negotiate; 6852 6853 work_ccb = xpt_alloc_ccb_nowait(); 6854 if (work_ccb == NULL) { 6855 busses_to_config--; 6856 xpt_finishconfig(xpt_periph, NULL); 6857 return(0); 6858 } 6859 if ((status = xpt_create_path(&path, xpt_periph, bus->path_id, 6860 CAM_TARGET_WILDCARD, 6861 CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){ 6862 printf("xptconfigfunc: xpt_create_path failed with " 6863 "status %#x for bus %d\n", status, bus->path_id); 6864 printf("xptconfigfunc: halting bus configuration\n"); 6865 xpt_free_ccb(work_ccb); 6866 busses_to_config--; 6867 xpt_finishconfig(xpt_periph, NULL); 6868 return(0); 6869 } 6870 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6871 work_ccb->ccb_h.func_code = XPT_PATH_INQ; 6872 xpt_action(work_ccb); 6873 if (work_ccb->ccb_h.status != CAM_REQ_CMP) { 6874 printf("xptconfigfunc: CPI failed on bus %d " 6875 "with status %d\n", bus->path_id, 6876 work_ccb->ccb_h.status); 6877 xpt_finishconfig(xpt_periph, work_ccb); 6878 return(1); 6879 } 6880 6881 can_negotiate = work_ccb->cpi.hba_inquiry; 6882 can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE); 6883 if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0 6884 && (can_negotiate != 0)) { 6885 xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1); 6886 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6887 work_ccb->ccb_h.cbfcnp = NULL; 6888 CAM_DEBUG(path, CAM_DEBUG_SUBTRACE, 6889 ("Resetting Bus\n")); 6890 xpt_action(work_ccb); 6891 xpt_finishconfig(xpt_periph, work_ccb); 6892 } else { 6893 /* Act as though we performed a successful BUS RESET */ 6894 work_ccb->ccb_h.func_code = XPT_RESET_BUS; 6895 xpt_finishconfig(xpt_periph, work_ccb); 6896 } 6897 } 6898 6899 return(1); 6900 } 6901 6902 static void 6903 xpt_config(void *arg) 6904 { 6905 /* 6906 * Now that interrupts are enabled, go find our devices 6907 */ 6908 6909 #ifdef CAMDEBUG 6910 /* Setup debugging flags and path */ 6911 #ifdef CAM_DEBUG_FLAGS 6912 cam_dflags = CAM_DEBUG_FLAGS; 6913 #else /* !CAM_DEBUG_FLAGS */ 6914 cam_dflags = CAM_DEBUG_NONE; 6915 #endif /* CAM_DEBUG_FLAGS */ 6916 #ifdef CAM_DEBUG_BUS 6917 if (cam_dflags != CAM_DEBUG_NONE) { 6918 /* 6919 * Locking is specifically omitted here. No SIMs have 6920 * registered yet, so xpt_create_path will only be searching 6921 * empty lists of targets and devices. 6922 */ 6923 if (xpt_create_path(&cam_dpath, xpt_periph, 6924 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 6925 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 6926 printf("xpt_config: xpt_create_path() failed for debug" 6927 " target %d:%d:%d, debugging disabled\n", 6928 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 6929 cam_dflags = CAM_DEBUG_NONE; 6930 } 6931 } else 6932 cam_dpath = NULL; 6933 #else /* !CAM_DEBUG_BUS */ 6934 cam_dpath = NULL; 6935 #endif /* CAM_DEBUG_BUS */ 6936 #endif /* CAMDEBUG */ 6937 6938 /* 6939 * Scan all installed busses. 6940 */ 6941 xpt_for_all_busses(xptconfigbuscountfunc, NULL); 6942 6943 if (busses_to_config == 0) { 6944 /* Call manually because we don't have any busses */ 6945 xpt_finishconfig(xpt_periph, NULL); 6946 } else { 6947 if (busses_to_reset > 0 && scsi_delay >= 2000) { 6948 printf("Waiting %d seconds for SCSI " 6949 "devices to settle\n", scsi_delay/1000); 6950 } 6951 xpt_for_all_busses(xptconfigfunc, NULL); 6952 } 6953 } 6954 6955 /* 6956 * If the given device only has one peripheral attached to it, and if that 6957 * peripheral is the passthrough driver, announce it. This insures that the 6958 * user sees some sort of announcement for every peripheral in their system. 6959 */ 6960 static int 6961 xptpassannouncefunc(struct cam_ed *device, void *arg) 6962 { 6963 struct cam_periph *periph; 6964 int i; 6965 6966 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 6967 periph = SLIST_NEXT(periph, periph_links), i++); 6968 6969 periph = SLIST_FIRST(&device->periphs); 6970 if ((i == 1) 6971 && (strncmp(periph->periph_name, "pass", 4) == 0)) 6972 xpt_announce_periph(periph, NULL); 6973 6974 return(1); 6975 } 6976 6977 static void 6978 xpt_finishconfig_task(void *context, int pending) 6979 { 6980 struct periph_driver **p_drv; 6981 int i; 6982 6983 if (busses_to_config == 0) { 6984 /* Register all the peripheral drivers */ 6985 /* XXX This will have to change when we have loadable modules */ 6986 p_drv = periph_drivers; 6987 for (i = 0; p_drv[i] != NULL; i++) { 6988 (*p_drv[i]->init)(); 6989 } 6990 6991 /* 6992 * Check for devices with no "standard" peripheral driver 6993 * attached. For any devices like that, announce the 6994 * passthrough driver so the user will see something. 6995 */ 6996 xpt_for_all_devices(xptpassannouncefunc, NULL); 6997 6998 /* Release our hook so that the boot can continue. */ 6999 config_intrhook_disestablish(xsoftc.xpt_config_hook); 7000 free(xsoftc.xpt_config_hook, M_CAMXPT); 7001 xsoftc.xpt_config_hook = NULL; 7002 } 7003 7004 free(context, M_CAMXPT); 7005 } 7006 7007 static void 7008 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb) 7009 { 7010 struct xpt_task *task; 7011 7012 if (done_ccb != NULL) { 7013 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 7014 ("xpt_finishconfig\n")); 7015 switch(done_ccb->ccb_h.func_code) { 7016 case XPT_RESET_BUS: 7017 if (done_ccb->ccb_h.status == CAM_REQ_CMP) { 7018 done_ccb->ccb_h.func_code = XPT_SCAN_BUS; 7019 done_ccb->ccb_h.cbfcnp = xpt_finishconfig; 7020 done_ccb->crcn.flags = 0; 7021 xpt_action(done_ccb); 7022 return; 7023 } 7024 /* FALLTHROUGH */ 7025 case XPT_SCAN_BUS: 7026 default: 7027 xpt_free_path(done_ccb->ccb_h.path); 7028 busses_to_config--; 7029 break; 7030 } 7031 } 7032 7033 if (busses_to_config == 0) { 7034 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 7035 if (task != NULL) { 7036 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 7037 taskqueue_enqueue(taskqueue_thread, &task->task); 7038 } 7039 } 7040 7041 if (done_ccb != NULL) 7042 xpt_free_ccb(done_ccb); 7043 } 7044 7045 cam_status 7046 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 7047 struct cam_path *path) 7048 { 7049 struct ccb_setasync csa; 7050 cam_status status; 7051 int xptpath = 0; 7052 7053 if (path == NULL) { 7054 mtx_lock(&xsoftc.xpt_lock); 7055 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 7056 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 7057 if (status != CAM_REQ_CMP) { 7058 mtx_unlock(&xsoftc.xpt_lock); 7059 return (status); 7060 } 7061 xptpath = 1; 7062 } 7063 7064 xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5); 7065 csa.ccb_h.func_code = XPT_SASYNC_CB; 7066 csa.event_enable = event; 7067 csa.callback = cbfunc; 7068 csa.callback_arg = cbarg; 7069 xpt_action((union ccb *)&csa); 7070 status = csa.ccb_h.status; 7071 if (xptpath) { 7072 xpt_free_path(path); 7073 mtx_unlock(&xsoftc.xpt_lock); 7074 } 7075 return (status); 7076 } 7077 7078 static void 7079 xptaction(struct cam_sim *sim, union ccb *work_ccb) 7080 { 7081 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 7082 7083 switch (work_ccb->ccb_h.func_code) { 7084 /* Common cases first */ 7085 case XPT_PATH_INQ: /* Path routing inquiry */ 7086 { 7087 struct ccb_pathinq *cpi; 7088 7089 cpi = &work_ccb->cpi; 7090 cpi->version_num = 1; /* XXX??? */ 7091 cpi->hba_inquiry = 0; 7092 cpi->target_sprt = 0; 7093 cpi->hba_misc = 0; 7094 cpi->hba_eng_cnt = 0; 7095 cpi->max_target = 0; 7096 cpi->max_lun = 0; 7097 cpi->initiator_id = 0; 7098 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 7099 strncpy(cpi->hba_vid, "", HBA_IDLEN); 7100 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 7101 cpi->unit_number = sim->unit_number; 7102 cpi->bus_id = sim->bus_id; 7103 cpi->base_transfer_speed = 0; 7104 cpi->protocol = PROTO_UNSPECIFIED; 7105 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 7106 cpi->transport = XPORT_UNSPECIFIED; 7107 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 7108 cpi->ccb_h.status = CAM_REQ_CMP; 7109 xpt_done(work_ccb); 7110 break; 7111 } 7112 default: 7113 work_ccb->ccb_h.status = CAM_REQ_INVALID; 7114 xpt_done(work_ccb); 7115 break; 7116 } 7117 } 7118 7119 /* 7120 * The xpt as a "controller" has no interrupt sources, so polling 7121 * is a no-op. 7122 */ 7123 static void 7124 xptpoll(struct cam_sim *sim) 7125 { 7126 } 7127 7128 void 7129 xpt_lock_buses(void) 7130 { 7131 mtx_lock(&xsoftc.xpt_topo_lock); 7132 } 7133 7134 void 7135 xpt_unlock_buses(void) 7136 { 7137 mtx_unlock(&xsoftc.xpt_topo_lock); 7138 } 7139 7140 static void 7141 camisr(void *dummy) 7142 { 7143 cam_simq_t queue; 7144 struct cam_sim *sim; 7145 7146 mtx_lock(&cam_simq_lock); 7147 TAILQ_INIT(&queue); 7148 TAILQ_CONCAT(&queue, &cam_simq, links); 7149 mtx_unlock(&cam_simq_lock); 7150 7151 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 7152 TAILQ_REMOVE(&queue, sim, links); 7153 CAM_SIM_LOCK(sim); 7154 sim->flags &= ~CAM_SIM_ON_DONEQ; 7155 camisr_runqueue(&sim->sim_doneq); 7156 CAM_SIM_UNLOCK(sim); 7157 } 7158 } 7159 7160 static void 7161 camisr_runqueue(void *V_queue) 7162 { 7163 cam_isrq_t *queue = V_queue; 7164 struct ccb_hdr *ccb_h; 7165 7166 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 7167 int runq; 7168 7169 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 7170 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 7171 7172 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 7173 ("camisr\n")); 7174 7175 runq = FALSE; 7176 7177 if (ccb_h->flags & CAM_HIGH_POWER) { 7178 struct highpowerlist *hphead; 7179 union ccb *send_ccb; 7180 7181 mtx_lock(&xsoftc.xpt_lock); 7182 hphead = &xsoftc.highpowerq; 7183 7184 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 7185 7186 /* 7187 * Increment the count since this command is done. 7188 */ 7189 xsoftc.num_highpower++; 7190 7191 /* 7192 * Any high powered commands queued up? 7193 */ 7194 if (send_ccb != NULL) { 7195 7196 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 7197 mtx_unlock(&xsoftc.xpt_lock); 7198 7199 xpt_release_devq(send_ccb->ccb_h.path, 7200 /*count*/1, /*runqueue*/TRUE); 7201 } else 7202 mtx_unlock(&xsoftc.xpt_lock); 7203 } 7204 7205 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 7206 struct cam_ed *dev; 7207 7208 dev = ccb_h->path->device; 7209 7210 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 7211 7212 if (!SIM_DEAD(ccb_h->path->bus->sim)) { 7213 ccb_h->path->bus->sim->devq->send_active--; 7214 ccb_h->path->bus->sim->devq->send_openings++; 7215 } 7216 7217 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 7218 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 7219 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 7220 && (dev->ccbq.dev_active == 0))) { 7221 7222 xpt_release_devq(ccb_h->path, /*count*/1, 7223 /*run_queue*/TRUE); 7224 } 7225 7226 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 7227 && (--dev->tag_delay_count == 0)) 7228 xpt_start_tags(ccb_h->path); 7229 7230 if ((dev->ccbq.queue.entries > 0) 7231 && (dev->qfrozen_cnt == 0) 7232 && (device_is_send_queued(dev) == 0)) { 7233 runq = xpt_schedule_dev_sendq(ccb_h->path->bus, 7234 dev); 7235 } 7236 } 7237 7238 if (ccb_h->status & CAM_RELEASE_SIMQ) { 7239 xpt_release_simq(ccb_h->path->bus->sim, 7240 /*run_queue*/TRUE); 7241 ccb_h->status &= ~CAM_RELEASE_SIMQ; 7242 runq = FALSE; 7243 } 7244 7245 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 7246 && (ccb_h->status & CAM_DEV_QFRZN)) { 7247 xpt_release_devq(ccb_h->path, /*count*/1, 7248 /*run_queue*/TRUE); 7249 ccb_h->status &= ~CAM_DEV_QFRZN; 7250 } else if (runq) { 7251 xpt_run_dev_sendq(ccb_h->path->bus); 7252 } 7253 7254 /* Call the peripheral driver's callback */ 7255 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 7256 } 7257 } 7258 7259 static void 7260 dead_sim_action(struct cam_sim *sim, union ccb *ccb) 7261 { 7262 7263 ccb->ccb_h.status = CAM_DEV_NOT_THERE; 7264 xpt_done(ccb); 7265 } 7266 7267 static void 7268 dead_sim_poll(struct cam_sim *sim) 7269 { 7270 } 7271