1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/sbuf.h> 44 #include <sys/taskqueue.h> 45 46 #include <sys/lock.h> 47 #include <sys/mutex.h> 48 #include <sys/sysctl.h> 49 #include <sys/kthread.h> 50 51 #ifdef PC98 52 #include <pc98/pc98/pc98_machdep.h> /* geometry translation */ 53 #endif 54 55 #include <cam/cam.h> 56 #include <cam/cam_ccb.h> 57 #include <cam/cam_periph.h> 58 #include <cam/cam_queue.h> 59 #include <cam/cam_sim.h> 60 #include <cam/cam_xpt.h> 61 #include <cam/cam_xpt_sim.h> 62 #include <cam/cam_xpt_periph.h> 63 #include <cam/cam_xpt_internal.h> 64 #include <cam/cam_debug.h> 65 66 #include <cam/scsi/scsi_all.h> 67 #include <cam/scsi/scsi_message.h> 68 #include <cam/scsi/scsi_pass.h> 69 #include <machine/stdarg.h> /* for xpt_print below */ 70 #include "opt_cam.h" 71 72 /* 73 * This is the maximum number of high powered commands (e.g. start unit) 74 * that can be outstanding at a particular time. 75 */ 76 #ifndef CAM_MAX_HIGHPOWER 77 #define CAM_MAX_HIGHPOWER 4 78 #endif 79 80 /* Datastructures internal to the xpt layer */ 81 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 82 83 /* Object for defering XPT actions to a taskqueue */ 84 struct xpt_task { 85 struct task task; 86 void *data1; 87 uintptr_t data2; 88 }; 89 90 typedef enum { 91 XPT_FLAG_OPEN = 0x01 92 } xpt_flags; 93 94 struct xpt_softc { 95 xpt_flags flags; 96 u_int32_t xpt_generation; 97 98 /* number of high powered commands that can go through right now */ 99 STAILQ_HEAD(highpowerlist, ccb_hdr) highpowerq; 100 int num_highpower; 101 102 /* queue for handling async rescan requests. */ 103 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 104 int buses_to_config; 105 int buses_config_done; 106 107 /* Registered busses */ 108 TAILQ_HEAD(,cam_eb) xpt_busses; 109 u_int bus_generation; 110 111 struct intr_config_hook *xpt_config_hook; 112 113 int boot_delay; 114 struct callout boot_callout; 115 116 struct mtx xpt_topo_lock; 117 struct mtx xpt_lock; 118 }; 119 120 typedef enum { 121 DM_RET_COPY = 0x01, 122 DM_RET_FLAG_MASK = 0x0f, 123 DM_RET_NONE = 0x00, 124 DM_RET_STOP = 0x10, 125 DM_RET_DESCEND = 0x20, 126 DM_RET_ERROR = 0x30, 127 DM_RET_ACTION_MASK = 0xf0 128 } dev_match_ret; 129 130 typedef enum { 131 XPT_DEPTH_BUS, 132 XPT_DEPTH_TARGET, 133 XPT_DEPTH_DEVICE, 134 XPT_DEPTH_PERIPH 135 } xpt_traverse_depth; 136 137 struct xpt_traverse_config { 138 xpt_traverse_depth depth; 139 void *tr_func; 140 void *tr_arg; 141 }; 142 143 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 144 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 145 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 146 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 147 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 148 149 /* Transport layer configuration information */ 150 static struct xpt_softc xsoftc; 151 152 TUNABLE_INT("kern.cam.boot_delay", &xsoftc.boot_delay); 153 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 154 &xsoftc.boot_delay, 0, "Bus registration wait time"); 155 156 /* Queues for our software interrupt handler */ 157 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t; 158 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t; 159 static cam_simq_t cam_simq; 160 static struct mtx cam_simq_lock; 161 162 /* Pointers to software interrupt handlers */ 163 static void *cambio_ih; 164 165 struct cam_periph *xpt_periph; 166 167 static periph_init_t xpt_periph_init; 168 169 static struct periph_driver xpt_driver = 170 { 171 xpt_periph_init, "xpt", 172 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 173 CAM_PERIPH_DRV_EARLY 174 }; 175 176 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 177 178 static d_open_t xptopen; 179 static d_close_t xptclose; 180 static d_ioctl_t xptioctl; 181 182 static struct cdevsw xpt_cdevsw = { 183 .d_version = D_VERSION, 184 .d_flags = 0, 185 .d_open = xptopen, 186 .d_close = xptclose, 187 .d_ioctl = xptioctl, 188 .d_name = "xpt", 189 }; 190 191 /* Storage for debugging datastructures */ 192 #ifdef CAMDEBUG 193 struct cam_path *cam_dpath; 194 #ifdef CAM_DEBUG_FLAGS 195 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 196 #else 197 u_int32_t cam_dflags = CAM_DEBUG_NONE; 198 #endif 199 TUNABLE_INT("kern.cam.dflags", &cam_dflags); 200 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RW, 201 &cam_dflags, 0, "Cam Debug Flags"); 202 u_int32_t cam_debug_delay; 203 TUNABLE_INT("kern.cam.debug_delay", &cam_debug_delay); 204 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RW, 205 &cam_debug_delay, 0, "Cam Debug Flags"); 206 #endif 207 208 /* Our boot-time initialization hook */ 209 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 210 211 static moduledata_t cam_moduledata = { 212 "cam", 213 cam_module_event_handler, 214 NULL 215 }; 216 217 static int xpt_init(void *); 218 219 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 220 MODULE_VERSION(cam, 1); 221 222 223 static void xpt_async_bcast(struct async_list *async_head, 224 u_int32_t async_code, 225 struct cam_path *path, 226 void *async_arg); 227 static path_id_t xptnextfreepathid(void); 228 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 229 static union ccb *xpt_get_ccb(struct cam_ed *device); 230 static void xpt_run_dev_allocq(struct cam_eb *bus); 231 static void xpt_run_dev_sendq(struct cam_eb *bus); 232 static timeout_t xpt_release_devq_timeout; 233 static void xpt_release_simq_timeout(void *arg) __unused; 234 static void xpt_release_bus(struct cam_eb *bus); 235 static void xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, 236 u_int count, int run_queue); 237 static struct cam_et* 238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 239 static void xpt_release_target(struct cam_et *target); 240 static struct cam_eb* 241 xpt_find_bus(path_id_t path_id); 242 static struct cam_et* 243 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 244 static struct cam_ed* 245 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 246 static void xpt_config(void *arg); 247 static xpt_devicefunc_t xptpassannouncefunc; 248 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 249 static void xptpoll(struct cam_sim *sim); 250 static void camisr(void *); 251 static void camisr_runqueue(void *); 252 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 253 u_int num_patterns, struct cam_eb *bus); 254 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 255 u_int num_patterns, 256 struct cam_ed *device); 257 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 258 u_int num_patterns, 259 struct cam_periph *periph); 260 static xpt_busfunc_t xptedtbusfunc; 261 static xpt_targetfunc_t xptedttargetfunc; 262 static xpt_devicefunc_t xptedtdevicefunc; 263 static xpt_periphfunc_t xptedtperiphfunc; 264 static xpt_pdrvfunc_t xptplistpdrvfunc; 265 static xpt_periphfunc_t xptplistperiphfunc; 266 static int xptedtmatch(struct ccb_dev_match *cdm); 267 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 268 static int xptbustraverse(struct cam_eb *start_bus, 269 xpt_busfunc_t *tr_func, void *arg); 270 static int xpttargettraverse(struct cam_eb *bus, 271 struct cam_et *start_target, 272 xpt_targetfunc_t *tr_func, void *arg); 273 static int xptdevicetraverse(struct cam_et *target, 274 struct cam_ed *start_device, 275 xpt_devicefunc_t *tr_func, void *arg); 276 static int xptperiphtraverse(struct cam_ed *device, 277 struct cam_periph *start_periph, 278 xpt_periphfunc_t *tr_func, void *arg); 279 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 280 xpt_pdrvfunc_t *tr_func, void *arg); 281 static int xptpdperiphtraverse(struct periph_driver **pdrv, 282 struct cam_periph *start_periph, 283 xpt_periphfunc_t *tr_func, 284 void *arg); 285 static xpt_busfunc_t xptdefbusfunc; 286 static xpt_targetfunc_t xptdeftargetfunc; 287 static xpt_devicefunc_t xptdefdevicefunc; 288 static xpt_periphfunc_t xptdefperiphfunc; 289 static void xpt_finishconfig_task(void *context, int pending); 290 static void xpt_dev_async_default(u_int32_t async_code, 291 struct cam_eb *bus, 292 struct cam_et *target, 293 struct cam_ed *device, 294 void *async_arg); 295 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 296 struct cam_et *target, 297 lun_id_t lun_id); 298 static xpt_devicefunc_t xptsetasyncfunc; 299 static xpt_busfunc_t xptsetasyncbusfunc; 300 static cam_status xptregister(struct cam_periph *periph, 301 void *arg); 302 static __inline int periph_is_queued(struct cam_periph *periph); 303 static __inline int device_is_alloc_queued(struct cam_ed *device); 304 static __inline int device_is_send_queued(struct cam_ed *device); 305 306 static __inline int 307 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev) 308 { 309 int retval; 310 311 if ((dev->drvq.entries > 0) && 312 (dev->ccbq.devq_openings > 0) && 313 (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 314 CAMQ_GET_PRIO(&dev->drvq))) == 0)) { 315 /* 316 * The priority of a device waiting for CCB resources 317 * is that of the highest priority peripheral driver 318 * enqueued. 319 */ 320 retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue, 321 &dev->alloc_ccb_entry.pinfo, 322 CAMQ_GET_PRIO(&dev->drvq)); 323 } else { 324 retval = 0; 325 } 326 327 return (retval); 328 } 329 330 static __inline int 331 xpt_schedule_dev_sendq(struct cam_eb *bus, struct cam_ed *dev) 332 { 333 int retval; 334 335 if ((dev->ccbq.queue.entries > 0) && 336 (dev->ccbq.dev_openings > 0) && 337 (cam_ccbq_frozen_top(&dev->ccbq) == 0)) { 338 /* 339 * The priority of a device waiting for controller 340 * resources is that of the highest priority CCB 341 * enqueued. 342 */ 343 retval = 344 xpt_schedule_dev(&bus->sim->devq->send_queue, 345 &dev->send_ccb_entry.pinfo, 346 CAMQ_GET_PRIO(&dev->ccbq.queue)); 347 } else { 348 retval = 0; 349 } 350 return (retval); 351 } 352 353 static __inline int 354 periph_is_queued(struct cam_periph *periph) 355 { 356 return (periph->pinfo.index != CAM_UNQUEUED_INDEX); 357 } 358 359 static __inline int 360 device_is_alloc_queued(struct cam_ed *device) 361 { 362 return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 363 } 364 365 static __inline int 366 device_is_send_queued(struct cam_ed *device) 367 { 368 return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX); 369 } 370 371 static void 372 xpt_periph_init() 373 { 374 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 375 } 376 377 static void 378 xptdone(struct cam_periph *periph, union ccb *done_ccb) 379 { 380 /* Caller will release the CCB */ 381 wakeup(&done_ccb->ccb_h.cbfcnp); 382 } 383 384 static int 385 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 386 { 387 388 /* 389 * Only allow read-write access. 390 */ 391 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 392 return(EPERM); 393 394 /* 395 * We don't allow nonblocking access. 396 */ 397 if ((flags & O_NONBLOCK) != 0) { 398 printf("%s: can't do nonblocking access\n", devtoname(dev)); 399 return(ENODEV); 400 } 401 402 /* Mark ourselves open */ 403 mtx_lock(&xsoftc.xpt_lock); 404 xsoftc.flags |= XPT_FLAG_OPEN; 405 mtx_unlock(&xsoftc.xpt_lock); 406 407 return(0); 408 } 409 410 static int 411 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 412 { 413 414 /* Mark ourselves closed */ 415 mtx_lock(&xsoftc.xpt_lock); 416 xsoftc.flags &= ~XPT_FLAG_OPEN; 417 mtx_unlock(&xsoftc.xpt_lock); 418 419 return(0); 420 } 421 422 /* 423 * Don't automatically grab the xpt softc lock here even though this is going 424 * through the xpt device. The xpt device is really just a back door for 425 * accessing other devices and SIMs, so the right thing to do is to grab 426 * the appropriate SIM lock once the bus/SIM is located. 427 */ 428 static int 429 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 430 { 431 int error; 432 433 error = 0; 434 435 switch(cmd) { 436 /* 437 * For the transport layer CAMIOCOMMAND ioctl, we really only want 438 * to accept CCB types that don't quite make sense to send through a 439 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 440 * in the CAM spec. 441 */ 442 case CAMIOCOMMAND: { 443 union ccb *ccb; 444 union ccb *inccb; 445 struct cam_eb *bus; 446 447 inccb = (union ccb *)addr; 448 449 bus = xpt_find_bus(inccb->ccb_h.path_id); 450 if (bus == NULL) 451 return (EINVAL); 452 453 switch (inccb->ccb_h.func_code) { 454 case XPT_SCAN_BUS: 455 case XPT_RESET_BUS: 456 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 457 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 458 xpt_release_bus(bus); 459 return (EINVAL); 460 } 461 break; 462 case XPT_SCAN_TGT: 463 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 464 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 465 xpt_release_bus(bus); 466 return (EINVAL); 467 } 468 break; 469 default: 470 break; 471 } 472 473 switch(inccb->ccb_h.func_code) { 474 case XPT_SCAN_BUS: 475 case XPT_RESET_BUS: 476 case XPT_PATH_INQ: 477 case XPT_ENG_INQ: 478 case XPT_SCAN_LUN: 479 case XPT_SCAN_TGT: 480 481 ccb = xpt_alloc_ccb(); 482 483 CAM_SIM_LOCK(bus->sim); 484 485 /* 486 * Create a path using the bus, target, and lun the 487 * user passed in. 488 */ 489 if (xpt_create_path(&ccb->ccb_h.path, xpt_periph, 490 inccb->ccb_h.path_id, 491 inccb->ccb_h.target_id, 492 inccb->ccb_h.target_lun) != 493 CAM_REQ_CMP){ 494 error = EINVAL; 495 CAM_SIM_UNLOCK(bus->sim); 496 xpt_free_ccb(ccb); 497 break; 498 } 499 /* Ensure all of our fields are correct */ 500 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 501 inccb->ccb_h.pinfo.priority); 502 xpt_merge_ccb(ccb, inccb); 503 ccb->ccb_h.cbfcnp = xptdone; 504 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 505 bcopy(ccb, inccb, sizeof(union ccb)); 506 xpt_free_path(ccb->ccb_h.path); 507 xpt_free_ccb(ccb); 508 CAM_SIM_UNLOCK(bus->sim); 509 break; 510 511 case XPT_DEBUG: { 512 union ccb ccb; 513 514 /* 515 * This is an immediate CCB, so it's okay to 516 * allocate it on the stack. 517 */ 518 519 CAM_SIM_LOCK(bus->sim); 520 521 /* 522 * Create a path using the bus, target, and lun the 523 * user passed in. 524 */ 525 if (xpt_create_path(&ccb.ccb_h.path, xpt_periph, 526 inccb->ccb_h.path_id, 527 inccb->ccb_h.target_id, 528 inccb->ccb_h.target_lun) != 529 CAM_REQ_CMP){ 530 error = EINVAL; 531 CAM_SIM_UNLOCK(bus->sim); 532 break; 533 } 534 /* Ensure all of our fields are correct */ 535 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 536 inccb->ccb_h.pinfo.priority); 537 xpt_merge_ccb(&ccb, inccb); 538 ccb.ccb_h.cbfcnp = xptdone; 539 xpt_action(&ccb); 540 CAM_SIM_UNLOCK(bus->sim); 541 bcopy(&ccb, inccb, sizeof(union ccb)); 542 xpt_free_path(ccb.ccb_h.path); 543 break; 544 545 } 546 case XPT_DEV_MATCH: { 547 struct cam_periph_map_info mapinfo; 548 struct cam_path *old_path; 549 550 /* 551 * We can't deal with physical addresses for this 552 * type of transaction. 553 */ 554 if (inccb->ccb_h.flags & CAM_DATA_PHYS) { 555 error = EINVAL; 556 break; 557 } 558 559 /* 560 * Save this in case the caller had it set to 561 * something in particular. 562 */ 563 old_path = inccb->ccb_h.path; 564 565 /* 566 * We really don't need a path for the matching 567 * code. The path is needed because of the 568 * debugging statements in xpt_action(). They 569 * assume that the CCB has a valid path. 570 */ 571 inccb->ccb_h.path = xpt_periph->path; 572 573 bzero(&mapinfo, sizeof(mapinfo)); 574 575 /* 576 * Map the pattern and match buffers into kernel 577 * virtual address space. 578 */ 579 error = cam_periph_mapmem(inccb, &mapinfo); 580 581 if (error) { 582 inccb->ccb_h.path = old_path; 583 break; 584 } 585 586 /* 587 * This is an immediate CCB, we can send it on directly. 588 */ 589 xpt_action(inccb); 590 591 /* 592 * Map the buffers back into user space. 593 */ 594 cam_periph_unmapmem(inccb, &mapinfo); 595 596 inccb->ccb_h.path = old_path; 597 598 error = 0; 599 break; 600 } 601 default: 602 error = ENOTSUP; 603 break; 604 } 605 xpt_release_bus(bus); 606 break; 607 } 608 /* 609 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 610 * with the periphal driver name and unit name filled in. The other 611 * fields don't really matter as input. The passthrough driver name 612 * ("pass"), and unit number are passed back in the ccb. The current 613 * device generation number, and the index into the device peripheral 614 * driver list, and the status are also passed back. Note that 615 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 616 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 617 * (or rather should be) impossible for the device peripheral driver 618 * list to change since we look at the whole thing in one pass, and 619 * we do it with lock protection. 620 * 621 */ 622 case CAMGETPASSTHRU: { 623 union ccb *ccb; 624 struct cam_periph *periph; 625 struct periph_driver **p_drv; 626 char *name; 627 u_int unit; 628 u_int cur_generation; 629 int base_periph_found; 630 int splbreaknum; 631 632 ccb = (union ccb *)addr; 633 unit = ccb->cgdl.unit_number; 634 name = ccb->cgdl.periph_name; 635 /* 636 * Every 100 devices, we want to drop our lock protection to 637 * give the software interrupt handler a chance to run. 638 * Most systems won't run into this check, but this should 639 * avoid starvation in the software interrupt handler in 640 * large systems. 641 */ 642 splbreaknum = 100; 643 644 ccb = (union ccb *)addr; 645 646 base_periph_found = 0; 647 648 /* 649 * Sanity check -- make sure we don't get a null peripheral 650 * driver name. 651 */ 652 if (*ccb->cgdl.periph_name == '\0') { 653 error = EINVAL; 654 break; 655 } 656 657 /* Keep the list from changing while we traverse it */ 658 mtx_lock(&xsoftc.xpt_topo_lock); 659 ptstartover: 660 cur_generation = xsoftc.xpt_generation; 661 662 /* first find our driver in the list of drivers */ 663 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 664 if (strcmp((*p_drv)->driver_name, name) == 0) 665 break; 666 667 if (*p_drv == NULL) { 668 mtx_unlock(&xsoftc.xpt_topo_lock); 669 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 670 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 671 *ccb->cgdl.periph_name = '\0'; 672 ccb->cgdl.unit_number = 0; 673 error = ENOENT; 674 break; 675 } 676 677 /* 678 * Run through every peripheral instance of this driver 679 * and check to see whether it matches the unit passed 680 * in by the user. If it does, get out of the loops and 681 * find the passthrough driver associated with that 682 * peripheral driver. 683 */ 684 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 685 periph = TAILQ_NEXT(periph, unit_links)) { 686 687 if (periph->unit_number == unit) { 688 break; 689 } else if (--splbreaknum == 0) { 690 mtx_unlock(&xsoftc.xpt_topo_lock); 691 mtx_lock(&xsoftc.xpt_topo_lock); 692 splbreaknum = 100; 693 if (cur_generation != xsoftc.xpt_generation) 694 goto ptstartover; 695 } 696 } 697 /* 698 * If we found the peripheral driver that the user passed 699 * in, go through all of the peripheral drivers for that 700 * particular device and look for a passthrough driver. 701 */ 702 if (periph != NULL) { 703 struct cam_ed *device; 704 int i; 705 706 base_periph_found = 1; 707 device = periph->path->device; 708 for (i = 0, periph = SLIST_FIRST(&device->periphs); 709 periph != NULL; 710 periph = SLIST_NEXT(periph, periph_links), i++) { 711 /* 712 * Check to see whether we have a 713 * passthrough device or not. 714 */ 715 if (strcmp(periph->periph_name, "pass") == 0) { 716 /* 717 * Fill in the getdevlist fields. 718 */ 719 strcpy(ccb->cgdl.periph_name, 720 periph->periph_name); 721 ccb->cgdl.unit_number = 722 periph->unit_number; 723 if (SLIST_NEXT(periph, periph_links)) 724 ccb->cgdl.status = 725 CAM_GDEVLIST_MORE_DEVS; 726 else 727 ccb->cgdl.status = 728 CAM_GDEVLIST_LAST_DEVICE; 729 ccb->cgdl.generation = 730 device->generation; 731 ccb->cgdl.index = i; 732 /* 733 * Fill in some CCB header fields 734 * that the user may want. 735 */ 736 ccb->ccb_h.path_id = 737 periph->path->bus->path_id; 738 ccb->ccb_h.target_id = 739 periph->path->target->target_id; 740 ccb->ccb_h.target_lun = 741 periph->path->device->lun_id; 742 ccb->ccb_h.status = CAM_REQ_CMP; 743 break; 744 } 745 } 746 } 747 748 /* 749 * If the periph is null here, one of two things has 750 * happened. The first possibility is that we couldn't 751 * find the unit number of the particular peripheral driver 752 * that the user is asking about. e.g. the user asks for 753 * the passthrough driver for "da11". We find the list of 754 * "da" peripherals all right, but there is no unit 11. 755 * The other possibility is that we went through the list 756 * of peripheral drivers attached to the device structure, 757 * but didn't find one with the name "pass". Either way, 758 * we return ENOENT, since we couldn't find something. 759 */ 760 if (periph == NULL) { 761 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 762 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 763 *ccb->cgdl.periph_name = '\0'; 764 ccb->cgdl.unit_number = 0; 765 error = ENOENT; 766 /* 767 * It is unfortunate that this is even necessary, 768 * but there are many, many clueless users out there. 769 * If this is true, the user is looking for the 770 * passthrough driver, but doesn't have one in his 771 * kernel. 772 */ 773 if (base_periph_found == 1) { 774 printf("xptioctl: pass driver is not in the " 775 "kernel\n"); 776 printf("xptioctl: put \"device pass\" in " 777 "your kernel config file\n"); 778 } 779 } 780 mtx_unlock(&xsoftc.xpt_topo_lock); 781 break; 782 } 783 default: 784 error = ENOTTY; 785 break; 786 } 787 788 return(error); 789 } 790 791 static int 792 cam_module_event_handler(module_t mod, int what, void *arg) 793 { 794 int error; 795 796 switch (what) { 797 case MOD_LOAD: 798 if ((error = xpt_init(NULL)) != 0) 799 return (error); 800 break; 801 case MOD_UNLOAD: 802 return EBUSY; 803 default: 804 return EOPNOTSUPP; 805 } 806 807 return 0; 808 } 809 810 static void 811 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 812 { 813 814 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 815 xpt_free_path(done_ccb->ccb_h.path); 816 xpt_free_ccb(done_ccb); 817 } else { 818 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 819 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 820 } 821 xpt_release_boot(); 822 } 823 824 /* thread to handle bus rescans */ 825 static void 826 xpt_scanner_thread(void *dummy) 827 { 828 union ccb *ccb; 829 struct cam_sim *sim; 830 831 xpt_lock_buses(); 832 for (;;) { 833 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 834 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 835 "ccb_scanq", 0); 836 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 837 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 838 xpt_unlock_buses(); 839 840 sim = ccb->ccb_h.path->bus->sim; 841 CAM_SIM_LOCK(sim); 842 xpt_action(ccb); 843 CAM_SIM_UNLOCK(sim); 844 845 xpt_lock_buses(); 846 } 847 } 848 } 849 850 void 851 xpt_rescan(union ccb *ccb) 852 { 853 struct ccb_hdr *hdr; 854 855 /* Prepare request */ 856 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 857 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 858 ccb->ccb_h.func_code = XPT_SCAN_BUS; 859 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 860 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 861 ccb->ccb_h.func_code = XPT_SCAN_TGT; 862 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 863 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 864 ccb->ccb_h.func_code = XPT_SCAN_LUN; 865 else { 866 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 867 xpt_free_path(ccb->ccb_h.path); 868 xpt_free_ccb(ccb); 869 return; 870 } 871 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 872 ccb->ccb_h.cbfcnp = xpt_rescan_done; 873 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 874 /* Don't make duplicate entries for the same paths. */ 875 xpt_lock_buses(); 876 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 877 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 878 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 879 wakeup(&xsoftc.ccb_scanq); 880 xpt_unlock_buses(); 881 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 882 xpt_free_path(ccb->ccb_h.path); 883 xpt_free_ccb(ccb); 884 return; 885 } 886 } 887 } 888 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 889 xsoftc.buses_to_config++; 890 wakeup(&xsoftc.ccb_scanq); 891 xpt_unlock_buses(); 892 } 893 894 /* Functions accessed by the peripheral drivers */ 895 static int 896 xpt_init(void *dummy) 897 { 898 struct cam_sim *xpt_sim; 899 struct cam_path *path; 900 struct cam_devq *devq; 901 cam_status status; 902 903 TAILQ_INIT(&xsoftc.xpt_busses); 904 TAILQ_INIT(&cam_simq); 905 TAILQ_INIT(&xsoftc.ccb_scanq); 906 STAILQ_INIT(&xsoftc.highpowerq); 907 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 908 909 mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF); 910 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 911 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 912 913 /* 914 * The xpt layer is, itself, the equivelent of a SIM. 915 * Allow 16 ccbs in the ccb pool for it. This should 916 * give decent parallelism when we probe busses and 917 * perform other XPT functions. 918 */ 919 devq = cam_simq_alloc(16); 920 xpt_sim = cam_sim_alloc(xptaction, 921 xptpoll, 922 "xpt", 923 /*softc*/NULL, 924 /*unit*/0, 925 /*mtx*/&xsoftc.xpt_lock, 926 /*max_dev_transactions*/0, 927 /*max_tagged_dev_transactions*/0, 928 devq); 929 if (xpt_sim == NULL) 930 return (ENOMEM); 931 932 mtx_lock(&xsoftc.xpt_lock); 933 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 934 mtx_unlock(&xsoftc.xpt_lock); 935 printf("xpt_init: xpt_bus_register failed with status %#x," 936 " failing attach\n", status); 937 return (EINVAL); 938 } 939 940 /* 941 * Looking at the XPT from the SIM layer, the XPT is 942 * the equivelent of a peripheral driver. Allocate 943 * a peripheral driver entry for us. 944 */ 945 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 946 CAM_TARGET_WILDCARD, 947 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 948 mtx_unlock(&xsoftc.xpt_lock); 949 printf("xpt_init: xpt_create_path failed with status %#x," 950 " failing attach\n", status); 951 return (EINVAL); 952 } 953 954 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 955 path, NULL, 0, xpt_sim); 956 xpt_free_path(path); 957 mtx_unlock(&xsoftc.xpt_lock); 958 /* Install our software interrupt handlers */ 959 swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih); 960 /* 961 * Register a callback for when interrupts are enabled. 962 */ 963 xsoftc.xpt_config_hook = 964 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 965 M_CAMXPT, M_NOWAIT | M_ZERO); 966 if (xsoftc.xpt_config_hook == NULL) { 967 printf("xpt_init: Cannot malloc config hook " 968 "- failing attach\n"); 969 return (ENOMEM); 970 } 971 xsoftc.xpt_config_hook->ich_func = xpt_config; 972 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 973 free (xsoftc.xpt_config_hook, M_CAMXPT); 974 printf("xpt_init: config_intrhook_establish failed " 975 "- failing attach\n"); 976 } 977 978 return (0); 979 } 980 981 static cam_status 982 xptregister(struct cam_periph *periph, void *arg) 983 { 984 struct cam_sim *xpt_sim; 985 986 if (periph == NULL) { 987 printf("xptregister: periph was NULL!!\n"); 988 return(CAM_REQ_CMP_ERR); 989 } 990 991 xpt_sim = (struct cam_sim *)arg; 992 xpt_sim->softc = periph; 993 xpt_periph = periph; 994 periph->softc = NULL; 995 996 return(CAM_REQ_CMP); 997 } 998 999 int32_t 1000 xpt_add_periph(struct cam_periph *periph) 1001 { 1002 struct cam_ed *device; 1003 int32_t status; 1004 struct periph_list *periph_head; 1005 1006 mtx_assert(periph->sim->mtx, MA_OWNED); 1007 1008 device = periph->path->device; 1009 1010 periph_head = &device->periphs; 1011 1012 status = CAM_REQ_CMP; 1013 1014 if (device != NULL) { 1015 /* 1016 * Make room for this peripheral 1017 * so it will fit in the queue 1018 * when it's scheduled to run 1019 */ 1020 status = camq_resize(&device->drvq, 1021 device->drvq.array_size + 1); 1022 1023 device->generation++; 1024 1025 SLIST_INSERT_HEAD(periph_head, periph, periph_links); 1026 } 1027 1028 mtx_lock(&xsoftc.xpt_topo_lock); 1029 xsoftc.xpt_generation++; 1030 mtx_unlock(&xsoftc.xpt_topo_lock); 1031 1032 return (status); 1033 } 1034 1035 void 1036 xpt_remove_periph(struct cam_periph *periph) 1037 { 1038 struct cam_ed *device; 1039 1040 mtx_assert(periph->sim->mtx, MA_OWNED); 1041 1042 device = periph->path->device; 1043 1044 if (device != NULL) { 1045 struct periph_list *periph_head; 1046 1047 periph_head = &device->periphs; 1048 1049 /* Release the slot for this peripheral */ 1050 camq_resize(&device->drvq, device->drvq.array_size - 1); 1051 1052 device->generation++; 1053 1054 SLIST_REMOVE(periph_head, periph, cam_periph, periph_links); 1055 } 1056 1057 mtx_lock(&xsoftc.xpt_topo_lock); 1058 xsoftc.xpt_generation++; 1059 mtx_unlock(&xsoftc.xpt_topo_lock); 1060 } 1061 1062 1063 void 1064 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1065 { 1066 struct cam_path *path = periph->path; 1067 1068 mtx_assert(periph->sim->mtx, MA_OWNED); 1069 1070 printf("%s%d at %s%d bus %d scbus%d target %d lun %d\n", 1071 periph->periph_name, periph->unit_number, 1072 path->bus->sim->sim_name, 1073 path->bus->sim->unit_number, 1074 path->bus->sim->bus_id, 1075 path->bus->path_id, 1076 path->target->target_id, 1077 path->device->lun_id); 1078 printf("%s%d: ", periph->periph_name, periph->unit_number); 1079 if (path->device->protocol == PROTO_SCSI) 1080 scsi_print_inquiry(&path->device->inq_data); 1081 else if (path->device->protocol == PROTO_ATA || 1082 path->device->protocol == PROTO_SATAPM) 1083 ata_print_ident(&path->device->ident_data); 1084 else 1085 printf("Unknown protocol device\n"); 1086 if (bootverbose && path->device->serial_num_len > 0) { 1087 /* Don't wrap the screen - print only the first 60 chars */ 1088 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1089 periph->unit_number, path->device->serial_num); 1090 } 1091 /* Announce transport details. */ 1092 (*(path->bus->xport->announce))(periph); 1093 /* Announce command queueing. */ 1094 if (path->device->inq_flags & SID_CmdQue 1095 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1096 printf("%s%d: Command Queueing enabled\n", 1097 periph->periph_name, periph->unit_number); 1098 } 1099 /* Announce caller's details if they've passed in. */ 1100 if (announce_string != NULL) 1101 printf("%s%d: %s\n", periph->periph_name, 1102 periph->unit_number, announce_string); 1103 } 1104 1105 int 1106 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1107 { 1108 int ret = -1; 1109 struct ccb_dev_advinfo cdai; 1110 1111 memset(&cdai, 0, sizeof(cdai)); 1112 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1113 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1114 cdai.bufsiz = len; 1115 1116 if (!strcmp(attr, "GEOM::ident")) 1117 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1118 else if (!strcmp(attr, "GEOM::physpath")) 1119 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1120 else 1121 goto out; 1122 1123 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1124 if (cdai.buf == NULL) { 1125 ret = ENOMEM; 1126 goto out; 1127 } 1128 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1129 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1130 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1131 if (cdai.provsiz == 0) 1132 goto out; 1133 ret = 0; 1134 if (strlcpy(buf, cdai.buf, len) >= len) 1135 ret = EFAULT; 1136 1137 out: 1138 if (cdai.buf != NULL) 1139 free(cdai.buf, M_CAMXPT); 1140 return ret; 1141 } 1142 1143 static dev_match_ret 1144 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1145 struct cam_eb *bus) 1146 { 1147 dev_match_ret retval; 1148 int i; 1149 1150 retval = DM_RET_NONE; 1151 1152 /* 1153 * If we aren't given something to match against, that's an error. 1154 */ 1155 if (bus == NULL) 1156 return(DM_RET_ERROR); 1157 1158 /* 1159 * If there are no match entries, then this bus matches no 1160 * matter what. 1161 */ 1162 if ((patterns == NULL) || (num_patterns == 0)) 1163 return(DM_RET_DESCEND | DM_RET_COPY); 1164 1165 for (i = 0; i < num_patterns; i++) { 1166 struct bus_match_pattern *cur_pattern; 1167 1168 /* 1169 * If the pattern in question isn't for a bus node, we 1170 * aren't interested. However, we do indicate to the 1171 * calling routine that we should continue descending the 1172 * tree, since the user wants to match against lower-level 1173 * EDT elements. 1174 */ 1175 if (patterns[i].type != DEV_MATCH_BUS) { 1176 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1177 retval |= DM_RET_DESCEND; 1178 continue; 1179 } 1180 1181 cur_pattern = &patterns[i].pattern.bus_pattern; 1182 1183 /* 1184 * If they want to match any bus node, we give them any 1185 * device node. 1186 */ 1187 if (cur_pattern->flags == BUS_MATCH_ANY) { 1188 /* set the copy flag */ 1189 retval |= DM_RET_COPY; 1190 1191 /* 1192 * If we've already decided on an action, go ahead 1193 * and return. 1194 */ 1195 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1196 return(retval); 1197 } 1198 1199 /* 1200 * Not sure why someone would do this... 1201 */ 1202 if (cur_pattern->flags == BUS_MATCH_NONE) 1203 continue; 1204 1205 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1206 && (cur_pattern->path_id != bus->path_id)) 1207 continue; 1208 1209 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1210 && (cur_pattern->bus_id != bus->sim->bus_id)) 1211 continue; 1212 1213 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1214 && (cur_pattern->unit_number != bus->sim->unit_number)) 1215 continue; 1216 1217 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1218 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1219 DEV_IDLEN) != 0)) 1220 continue; 1221 1222 /* 1223 * If we get to this point, the user definitely wants 1224 * information on this bus. So tell the caller to copy the 1225 * data out. 1226 */ 1227 retval |= DM_RET_COPY; 1228 1229 /* 1230 * If the return action has been set to descend, then we 1231 * know that we've already seen a non-bus matching 1232 * expression, therefore we need to further descend the tree. 1233 * This won't change by continuing around the loop, so we 1234 * go ahead and return. If we haven't seen a non-bus 1235 * matching expression, we keep going around the loop until 1236 * we exhaust the matching expressions. We'll set the stop 1237 * flag once we fall out of the loop. 1238 */ 1239 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1240 return(retval); 1241 } 1242 1243 /* 1244 * If the return action hasn't been set to descend yet, that means 1245 * we haven't seen anything other than bus matching patterns. So 1246 * tell the caller to stop descending the tree -- the user doesn't 1247 * want to match against lower level tree elements. 1248 */ 1249 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1250 retval |= DM_RET_STOP; 1251 1252 return(retval); 1253 } 1254 1255 static dev_match_ret 1256 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1257 struct cam_ed *device) 1258 { 1259 dev_match_ret retval; 1260 int i; 1261 1262 retval = DM_RET_NONE; 1263 1264 /* 1265 * If we aren't given something to match against, that's an error. 1266 */ 1267 if (device == NULL) 1268 return(DM_RET_ERROR); 1269 1270 /* 1271 * If there are no match entries, then this device matches no 1272 * matter what. 1273 */ 1274 if ((patterns == NULL) || (num_patterns == 0)) 1275 return(DM_RET_DESCEND | DM_RET_COPY); 1276 1277 for (i = 0; i < num_patterns; i++) { 1278 struct device_match_pattern *cur_pattern; 1279 struct scsi_vpd_device_id *device_id_page; 1280 1281 /* 1282 * If the pattern in question isn't for a device node, we 1283 * aren't interested. 1284 */ 1285 if (patterns[i].type != DEV_MATCH_DEVICE) { 1286 if ((patterns[i].type == DEV_MATCH_PERIPH) 1287 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1288 retval |= DM_RET_DESCEND; 1289 continue; 1290 } 1291 1292 cur_pattern = &patterns[i].pattern.device_pattern; 1293 1294 /* Error out if mutually exclusive options are specified. */ 1295 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1296 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1297 return(DM_RET_ERROR); 1298 1299 /* 1300 * If they want to match any device node, we give them any 1301 * device node. 1302 */ 1303 if (cur_pattern->flags == DEV_MATCH_ANY) 1304 goto copy_dev_node; 1305 1306 /* 1307 * Not sure why someone would do this... 1308 */ 1309 if (cur_pattern->flags == DEV_MATCH_NONE) 1310 continue; 1311 1312 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1313 && (cur_pattern->path_id != device->target->bus->path_id)) 1314 continue; 1315 1316 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1317 && (cur_pattern->target_id != device->target->target_id)) 1318 continue; 1319 1320 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1321 && (cur_pattern->target_lun != device->lun_id)) 1322 continue; 1323 1324 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1325 && (cam_quirkmatch((caddr_t)&device->inq_data, 1326 (caddr_t)&cur_pattern->data.inq_pat, 1327 1, sizeof(cur_pattern->data.inq_pat), 1328 scsi_static_inquiry_match) == NULL)) 1329 continue; 1330 1331 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1332 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1333 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1334 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1335 device->device_id_len 1336 - SVPD_DEVICE_ID_HDR_LEN, 1337 cur_pattern->data.devid_pat.id, 1338 cur_pattern->data.devid_pat.id_len) != 0)) 1339 continue; 1340 1341 copy_dev_node: 1342 /* 1343 * If we get to this point, the user definitely wants 1344 * information on this device. So tell the caller to copy 1345 * the data out. 1346 */ 1347 retval |= DM_RET_COPY; 1348 1349 /* 1350 * If the return action has been set to descend, then we 1351 * know that we've already seen a peripheral matching 1352 * expression, therefore we need to further descend the tree. 1353 * This won't change by continuing around the loop, so we 1354 * go ahead and return. If we haven't seen a peripheral 1355 * matching expression, we keep going around the loop until 1356 * we exhaust the matching expressions. We'll set the stop 1357 * flag once we fall out of the loop. 1358 */ 1359 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1360 return(retval); 1361 } 1362 1363 /* 1364 * If the return action hasn't been set to descend yet, that means 1365 * we haven't seen any peripheral matching patterns. So tell the 1366 * caller to stop descending the tree -- the user doesn't want to 1367 * match against lower level tree elements. 1368 */ 1369 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1370 retval |= DM_RET_STOP; 1371 1372 return(retval); 1373 } 1374 1375 /* 1376 * Match a single peripheral against any number of match patterns. 1377 */ 1378 static dev_match_ret 1379 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1380 struct cam_periph *periph) 1381 { 1382 dev_match_ret retval; 1383 int i; 1384 1385 /* 1386 * If we aren't given something to match against, that's an error. 1387 */ 1388 if (periph == NULL) 1389 return(DM_RET_ERROR); 1390 1391 /* 1392 * If there are no match entries, then this peripheral matches no 1393 * matter what. 1394 */ 1395 if ((patterns == NULL) || (num_patterns == 0)) 1396 return(DM_RET_STOP | DM_RET_COPY); 1397 1398 /* 1399 * There aren't any nodes below a peripheral node, so there's no 1400 * reason to descend the tree any further. 1401 */ 1402 retval = DM_RET_STOP; 1403 1404 for (i = 0; i < num_patterns; i++) { 1405 struct periph_match_pattern *cur_pattern; 1406 1407 /* 1408 * If the pattern in question isn't for a peripheral, we 1409 * aren't interested. 1410 */ 1411 if (patterns[i].type != DEV_MATCH_PERIPH) 1412 continue; 1413 1414 cur_pattern = &patterns[i].pattern.periph_pattern; 1415 1416 /* 1417 * If they want to match on anything, then we will do so. 1418 */ 1419 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1420 /* set the copy flag */ 1421 retval |= DM_RET_COPY; 1422 1423 /* 1424 * We've already set the return action to stop, 1425 * since there are no nodes below peripherals in 1426 * the tree. 1427 */ 1428 return(retval); 1429 } 1430 1431 /* 1432 * Not sure why someone would do this... 1433 */ 1434 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1435 continue; 1436 1437 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1438 && (cur_pattern->path_id != periph->path->bus->path_id)) 1439 continue; 1440 1441 /* 1442 * For the target and lun id's, we have to make sure the 1443 * target and lun pointers aren't NULL. The xpt peripheral 1444 * has a wildcard target and device. 1445 */ 1446 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1447 && ((periph->path->target == NULL) 1448 ||(cur_pattern->target_id != periph->path->target->target_id))) 1449 continue; 1450 1451 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1452 && ((periph->path->device == NULL) 1453 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1454 continue; 1455 1456 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1457 && (cur_pattern->unit_number != periph->unit_number)) 1458 continue; 1459 1460 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1461 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1462 DEV_IDLEN) != 0)) 1463 continue; 1464 1465 /* 1466 * If we get to this point, the user definitely wants 1467 * information on this peripheral. So tell the caller to 1468 * copy the data out. 1469 */ 1470 retval |= DM_RET_COPY; 1471 1472 /* 1473 * The return action has already been set to stop, since 1474 * peripherals don't have any nodes below them in the EDT. 1475 */ 1476 return(retval); 1477 } 1478 1479 /* 1480 * If we get to this point, the peripheral that was passed in 1481 * doesn't match any of the patterns. 1482 */ 1483 return(retval); 1484 } 1485 1486 static int 1487 xptedtbusfunc(struct cam_eb *bus, void *arg) 1488 { 1489 struct ccb_dev_match *cdm; 1490 dev_match_ret retval; 1491 1492 cdm = (struct ccb_dev_match *)arg; 1493 1494 /* 1495 * If our position is for something deeper in the tree, that means 1496 * that we've already seen this node. So, we keep going down. 1497 */ 1498 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1499 && (cdm->pos.cookie.bus == bus) 1500 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1501 && (cdm->pos.cookie.target != NULL)) 1502 retval = DM_RET_DESCEND; 1503 else 1504 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1505 1506 /* 1507 * If we got an error, bail out of the search. 1508 */ 1509 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1510 cdm->status = CAM_DEV_MATCH_ERROR; 1511 return(0); 1512 } 1513 1514 /* 1515 * If the copy flag is set, copy this bus out. 1516 */ 1517 if (retval & DM_RET_COPY) { 1518 int spaceleft, j; 1519 1520 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1521 sizeof(struct dev_match_result)); 1522 1523 /* 1524 * If we don't have enough space to put in another 1525 * match result, save our position and tell the 1526 * user there are more devices to check. 1527 */ 1528 if (spaceleft < sizeof(struct dev_match_result)) { 1529 bzero(&cdm->pos, sizeof(cdm->pos)); 1530 cdm->pos.position_type = 1531 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1532 1533 cdm->pos.cookie.bus = bus; 1534 cdm->pos.generations[CAM_BUS_GENERATION]= 1535 xsoftc.bus_generation; 1536 cdm->status = CAM_DEV_MATCH_MORE; 1537 return(0); 1538 } 1539 j = cdm->num_matches; 1540 cdm->num_matches++; 1541 cdm->matches[j].type = DEV_MATCH_BUS; 1542 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1543 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1544 cdm->matches[j].result.bus_result.unit_number = 1545 bus->sim->unit_number; 1546 strncpy(cdm->matches[j].result.bus_result.dev_name, 1547 bus->sim->sim_name, DEV_IDLEN); 1548 } 1549 1550 /* 1551 * If the user is only interested in busses, there's no 1552 * reason to descend to the next level in the tree. 1553 */ 1554 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1555 return(1); 1556 1557 /* 1558 * If there is a target generation recorded, check it to 1559 * make sure the target list hasn't changed. 1560 */ 1561 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1562 && (bus == cdm->pos.cookie.bus) 1563 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1564 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0) 1565 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 1566 bus->generation)) { 1567 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1568 return(0); 1569 } 1570 1571 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1572 && (cdm->pos.cookie.bus == bus) 1573 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1574 && (cdm->pos.cookie.target != NULL)) 1575 return(xpttargettraverse(bus, 1576 (struct cam_et *)cdm->pos.cookie.target, 1577 xptedttargetfunc, arg)); 1578 else 1579 return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg)); 1580 } 1581 1582 static int 1583 xptedttargetfunc(struct cam_et *target, void *arg) 1584 { 1585 struct ccb_dev_match *cdm; 1586 1587 cdm = (struct ccb_dev_match *)arg; 1588 1589 /* 1590 * If there is a device list generation recorded, check it to 1591 * make sure the device list hasn't changed. 1592 */ 1593 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1594 && (cdm->pos.cookie.bus == target->bus) 1595 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1596 && (cdm->pos.cookie.target == target) 1597 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1598 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0) 1599 && (cdm->pos.generations[CAM_DEV_GENERATION] != 1600 target->generation)) { 1601 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1602 return(0); 1603 } 1604 1605 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1606 && (cdm->pos.cookie.bus == target->bus) 1607 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1608 && (cdm->pos.cookie.target == target) 1609 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1610 && (cdm->pos.cookie.device != NULL)) 1611 return(xptdevicetraverse(target, 1612 (struct cam_ed *)cdm->pos.cookie.device, 1613 xptedtdevicefunc, arg)); 1614 else 1615 return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg)); 1616 } 1617 1618 static int 1619 xptedtdevicefunc(struct cam_ed *device, void *arg) 1620 { 1621 1622 struct ccb_dev_match *cdm; 1623 dev_match_ret retval; 1624 1625 cdm = (struct ccb_dev_match *)arg; 1626 1627 /* 1628 * If our position is for something deeper in the tree, that means 1629 * that we've already seen this node. So, we keep going down. 1630 */ 1631 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1632 && (cdm->pos.cookie.device == device) 1633 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1634 && (cdm->pos.cookie.periph != NULL)) 1635 retval = DM_RET_DESCEND; 1636 else 1637 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1638 device); 1639 1640 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1641 cdm->status = CAM_DEV_MATCH_ERROR; 1642 return(0); 1643 } 1644 1645 /* 1646 * If the copy flag is set, copy this device out. 1647 */ 1648 if (retval & DM_RET_COPY) { 1649 int spaceleft, j; 1650 1651 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1652 sizeof(struct dev_match_result)); 1653 1654 /* 1655 * If we don't have enough space to put in another 1656 * match result, save our position and tell the 1657 * user there are more devices to check. 1658 */ 1659 if (spaceleft < sizeof(struct dev_match_result)) { 1660 bzero(&cdm->pos, sizeof(cdm->pos)); 1661 cdm->pos.position_type = 1662 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1663 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1664 1665 cdm->pos.cookie.bus = device->target->bus; 1666 cdm->pos.generations[CAM_BUS_GENERATION]= 1667 xsoftc.bus_generation; 1668 cdm->pos.cookie.target = device->target; 1669 cdm->pos.generations[CAM_TARGET_GENERATION] = 1670 device->target->bus->generation; 1671 cdm->pos.cookie.device = device; 1672 cdm->pos.generations[CAM_DEV_GENERATION] = 1673 device->target->generation; 1674 cdm->status = CAM_DEV_MATCH_MORE; 1675 return(0); 1676 } 1677 j = cdm->num_matches; 1678 cdm->num_matches++; 1679 cdm->matches[j].type = DEV_MATCH_DEVICE; 1680 cdm->matches[j].result.device_result.path_id = 1681 device->target->bus->path_id; 1682 cdm->matches[j].result.device_result.target_id = 1683 device->target->target_id; 1684 cdm->matches[j].result.device_result.target_lun = 1685 device->lun_id; 1686 cdm->matches[j].result.device_result.protocol = 1687 device->protocol; 1688 bcopy(&device->inq_data, 1689 &cdm->matches[j].result.device_result.inq_data, 1690 sizeof(struct scsi_inquiry_data)); 1691 bcopy(&device->ident_data, 1692 &cdm->matches[j].result.device_result.ident_data, 1693 sizeof(struct ata_params)); 1694 1695 /* Let the user know whether this device is unconfigured */ 1696 if (device->flags & CAM_DEV_UNCONFIGURED) 1697 cdm->matches[j].result.device_result.flags = 1698 DEV_RESULT_UNCONFIGURED; 1699 else 1700 cdm->matches[j].result.device_result.flags = 1701 DEV_RESULT_NOFLAG; 1702 } 1703 1704 /* 1705 * If the user isn't interested in peripherals, don't descend 1706 * the tree any further. 1707 */ 1708 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1709 return(1); 1710 1711 /* 1712 * If there is a peripheral list generation recorded, make sure 1713 * it hasn't changed. 1714 */ 1715 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1716 && (device->target->bus == cdm->pos.cookie.bus) 1717 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1718 && (device->target == cdm->pos.cookie.target) 1719 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1720 && (device == cdm->pos.cookie.device) 1721 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1722 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1723 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1724 device->generation)){ 1725 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1726 return(0); 1727 } 1728 1729 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1730 && (cdm->pos.cookie.bus == device->target->bus) 1731 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1732 && (cdm->pos.cookie.target == device->target) 1733 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1734 && (cdm->pos.cookie.device == device) 1735 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1736 && (cdm->pos.cookie.periph != NULL)) 1737 return(xptperiphtraverse(device, 1738 (struct cam_periph *)cdm->pos.cookie.periph, 1739 xptedtperiphfunc, arg)); 1740 else 1741 return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg)); 1742 } 1743 1744 static int 1745 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1746 { 1747 struct ccb_dev_match *cdm; 1748 dev_match_ret retval; 1749 1750 cdm = (struct ccb_dev_match *)arg; 1751 1752 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1753 1754 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1755 cdm->status = CAM_DEV_MATCH_ERROR; 1756 return(0); 1757 } 1758 1759 /* 1760 * If the copy flag is set, copy this peripheral out. 1761 */ 1762 if (retval & DM_RET_COPY) { 1763 int spaceleft, j; 1764 1765 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1766 sizeof(struct dev_match_result)); 1767 1768 /* 1769 * If we don't have enough space to put in another 1770 * match result, save our position and tell the 1771 * user there are more devices to check. 1772 */ 1773 if (spaceleft < sizeof(struct dev_match_result)) { 1774 bzero(&cdm->pos, sizeof(cdm->pos)); 1775 cdm->pos.position_type = 1776 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1777 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1778 CAM_DEV_POS_PERIPH; 1779 1780 cdm->pos.cookie.bus = periph->path->bus; 1781 cdm->pos.generations[CAM_BUS_GENERATION]= 1782 xsoftc.bus_generation; 1783 cdm->pos.cookie.target = periph->path->target; 1784 cdm->pos.generations[CAM_TARGET_GENERATION] = 1785 periph->path->bus->generation; 1786 cdm->pos.cookie.device = periph->path->device; 1787 cdm->pos.generations[CAM_DEV_GENERATION] = 1788 periph->path->target->generation; 1789 cdm->pos.cookie.periph = periph; 1790 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1791 periph->path->device->generation; 1792 cdm->status = CAM_DEV_MATCH_MORE; 1793 return(0); 1794 } 1795 1796 j = cdm->num_matches; 1797 cdm->num_matches++; 1798 cdm->matches[j].type = DEV_MATCH_PERIPH; 1799 cdm->matches[j].result.periph_result.path_id = 1800 periph->path->bus->path_id; 1801 cdm->matches[j].result.periph_result.target_id = 1802 periph->path->target->target_id; 1803 cdm->matches[j].result.periph_result.target_lun = 1804 periph->path->device->lun_id; 1805 cdm->matches[j].result.periph_result.unit_number = 1806 periph->unit_number; 1807 strncpy(cdm->matches[j].result.periph_result.periph_name, 1808 periph->periph_name, DEV_IDLEN); 1809 } 1810 1811 return(1); 1812 } 1813 1814 static int 1815 xptedtmatch(struct ccb_dev_match *cdm) 1816 { 1817 int ret; 1818 1819 cdm->num_matches = 0; 1820 1821 /* 1822 * Check the bus list generation. If it has changed, the user 1823 * needs to reset everything and start over. 1824 */ 1825 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1826 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0) 1827 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) { 1828 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1829 return(0); 1830 } 1831 1832 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1833 && (cdm->pos.cookie.bus != NULL)) 1834 ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus, 1835 xptedtbusfunc, cdm); 1836 else 1837 ret = xptbustraverse(NULL, xptedtbusfunc, cdm); 1838 1839 /* 1840 * If we get back 0, that means that we had to stop before fully 1841 * traversing the EDT. It also means that one of the subroutines 1842 * has set the status field to the proper value. If we get back 1, 1843 * we've fully traversed the EDT and copied out any matching entries. 1844 */ 1845 if (ret == 1) 1846 cdm->status = CAM_DEV_MATCH_LAST; 1847 1848 return(ret); 1849 } 1850 1851 static int 1852 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1853 { 1854 struct ccb_dev_match *cdm; 1855 1856 cdm = (struct ccb_dev_match *)arg; 1857 1858 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1859 && (cdm->pos.cookie.pdrv == pdrv) 1860 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1861 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0) 1862 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1863 (*pdrv)->generation)) { 1864 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1865 return(0); 1866 } 1867 1868 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1869 && (cdm->pos.cookie.pdrv == pdrv) 1870 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1871 && (cdm->pos.cookie.periph != NULL)) 1872 return(xptpdperiphtraverse(pdrv, 1873 (struct cam_periph *)cdm->pos.cookie.periph, 1874 xptplistperiphfunc, arg)); 1875 else 1876 return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg)); 1877 } 1878 1879 static int 1880 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1881 { 1882 struct ccb_dev_match *cdm; 1883 dev_match_ret retval; 1884 1885 cdm = (struct ccb_dev_match *)arg; 1886 1887 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1888 1889 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1890 cdm->status = CAM_DEV_MATCH_ERROR; 1891 return(0); 1892 } 1893 1894 /* 1895 * If the copy flag is set, copy this peripheral out. 1896 */ 1897 if (retval & DM_RET_COPY) { 1898 int spaceleft, j; 1899 1900 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1901 sizeof(struct dev_match_result)); 1902 1903 /* 1904 * If we don't have enough space to put in another 1905 * match result, save our position and tell the 1906 * user there are more devices to check. 1907 */ 1908 if (spaceleft < sizeof(struct dev_match_result)) { 1909 struct periph_driver **pdrv; 1910 1911 pdrv = NULL; 1912 bzero(&cdm->pos, sizeof(cdm->pos)); 1913 cdm->pos.position_type = 1914 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1915 CAM_DEV_POS_PERIPH; 1916 1917 /* 1918 * This may look a bit non-sensical, but it is 1919 * actually quite logical. There are very few 1920 * peripheral drivers, and bloating every peripheral 1921 * structure with a pointer back to its parent 1922 * peripheral driver linker set entry would cost 1923 * more in the long run than doing this quick lookup. 1924 */ 1925 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1926 if (strcmp((*pdrv)->driver_name, 1927 periph->periph_name) == 0) 1928 break; 1929 } 1930 1931 if (*pdrv == NULL) { 1932 cdm->status = CAM_DEV_MATCH_ERROR; 1933 return(0); 1934 } 1935 1936 cdm->pos.cookie.pdrv = pdrv; 1937 /* 1938 * The periph generation slot does double duty, as 1939 * does the periph pointer slot. They are used for 1940 * both edt and pdrv lookups and positioning. 1941 */ 1942 cdm->pos.cookie.periph = periph; 1943 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1944 (*pdrv)->generation; 1945 cdm->status = CAM_DEV_MATCH_MORE; 1946 return(0); 1947 } 1948 1949 j = cdm->num_matches; 1950 cdm->num_matches++; 1951 cdm->matches[j].type = DEV_MATCH_PERIPH; 1952 cdm->matches[j].result.periph_result.path_id = 1953 periph->path->bus->path_id; 1954 1955 /* 1956 * The transport layer peripheral doesn't have a target or 1957 * lun. 1958 */ 1959 if (periph->path->target) 1960 cdm->matches[j].result.periph_result.target_id = 1961 periph->path->target->target_id; 1962 else 1963 cdm->matches[j].result.periph_result.target_id = -1; 1964 1965 if (periph->path->device) 1966 cdm->matches[j].result.periph_result.target_lun = 1967 periph->path->device->lun_id; 1968 else 1969 cdm->matches[j].result.periph_result.target_lun = -1; 1970 1971 cdm->matches[j].result.periph_result.unit_number = 1972 periph->unit_number; 1973 strncpy(cdm->matches[j].result.periph_result.periph_name, 1974 periph->periph_name, DEV_IDLEN); 1975 } 1976 1977 return(1); 1978 } 1979 1980 static int 1981 xptperiphlistmatch(struct ccb_dev_match *cdm) 1982 { 1983 int ret; 1984 1985 cdm->num_matches = 0; 1986 1987 /* 1988 * At this point in the edt traversal function, we check the bus 1989 * list generation to make sure that no busses have been added or 1990 * removed since the user last sent a XPT_DEV_MATCH ccb through. 1991 * For the peripheral driver list traversal function, however, we 1992 * don't have to worry about new peripheral driver types coming or 1993 * going; they're in a linker set, and therefore can't change 1994 * without a recompile. 1995 */ 1996 1997 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1998 && (cdm->pos.cookie.pdrv != NULL)) 1999 ret = xptpdrvtraverse( 2000 (struct periph_driver **)cdm->pos.cookie.pdrv, 2001 xptplistpdrvfunc, cdm); 2002 else 2003 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2004 2005 /* 2006 * If we get back 0, that means that we had to stop before fully 2007 * traversing the peripheral driver tree. It also means that one of 2008 * the subroutines has set the status field to the proper value. If 2009 * we get back 1, we've fully traversed the EDT and copied out any 2010 * matching entries. 2011 */ 2012 if (ret == 1) 2013 cdm->status = CAM_DEV_MATCH_LAST; 2014 2015 return(ret); 2016 } 2017 2018 static int 2019 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2020 { 2021 struct cam_eb *bus, *next_bus; 2022 int retval; 2023 2024 retval = 1; 2025 2026 mtx_lock(&xsoftc.xpt_topo_lock); 2027 for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses)); 2028 bus != NULL; 2029 bus = next_bus) { 2030 next_bus = TAILQ_NEXT(bus, links); 2031 2032 mtx_unlock(&xsoftc.xpt_topo_lock); 2033 CAM_SIM_LOCK(bus->sim); 2034 retval = tr_func(bus, arg); 2035 CAM_SIM_UNLOCK(bus->sim); 2036 if (retval == 0) 2037 return(retval); 2038 mtx_lock(&xsoftc.xpt_topo_lock); 2039 } 2040 mtx_unlock(&xsoftc.xpt_topo_lock); 2041 2042 return(retval); 2043 } 2044 2045 int 2046 xpt_sim_opened(struct cam_sim *sim) 2047 { 2048 struct cam_eb *bus; 2049 struct cam_et *target; 2050 struct cam_ed *device; 2051 struct cam_periph *periph; 2052 2053 KASSERT(sim->refcount >= 1, ("sim->refcount >= 1")); 2054 mtx_assert(sim->mtx, MA_OWNED); 2055 2056 mtx_lock(&xsoftc.xpt_topo_lock); 2057 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 2058 if (bus->sim != sim) 2059 continue; 2060 2061 TAILQ_FOREACH(target, &bus->et_entries, links) { 2062 TAILQ_FOREACH(device, &target->ed_entries, links) { 2063 SLIST_FOREACH(periph, &device->periphs, 2064 periph_links) { 2065 if (periph->refcount > 0) { 2066 mtx_unlock(&xsoftc.xpt_topo_lock); 2067 return (1); 2068 } 2069 } 2070 } 2071 } 2072 } 2073 2074 mtx_unlock(&xsoftc.xpt_topo_lock); 2075 return (0); 2076 } 2077 2078 static int 2079 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2080 xpt_targetfunc_t *tr_func, void *arg) 2081 { 2082 struct cam_et *target, *next_target; 2083 int retval; 2084 2085 retval = 1; 2086 for (target = (start_target ? start_target : 2087 TAILQ_FIRST(&bus->et_entries)); 2088 target != NULL; target = next_target) { 2089 2090 next_target = TAILQ_NEXT(target, links); 2091 2092 retval = tr_func(target, arg); 2093 2094 if (retval == 0) 2095 return(retval); 2096 } 2097 2098 return(retval); 2099 } 2100 2101 static int 2102 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2103 xpt_devicefunc_t *tr_func, void *arg) 2104 { 2105 struct cam_ed *device, *next_device; 2106 int retval; 2107 2108 retval = 1; 2109 for (device = (start_device ? start_device : 2110 TAILQ_FIRST(&target->ed_entries)); 2111 device != NULL; 2112 device = next_device) { 2113 2114 next_device = TAILQ_NEXT(device, links); 2115 2116 retval = tr_func(device, arg); 2117 2118 if (retval == 0) 2119 return(retval); 2120 } 2121 2122 return(retval); 2123 } 2124 2125 static int 2126 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2127 xpt_periphfunc_t *tr_func, void *arg) 2128 { 2129 struct cam_periph *periph, *next_periph; 2130 int retval; 2131 2132 retval = 1; 2133 2134 for (periph = (start_periph ? start_periph : 2135 SLIST_FIRST(&device->periphs)); 2136 periph != NULL; 2137 periph = next_periph) { 2138 2139 next_periph = SLIST_NEXT(periph, periph_links); 2140 2141 retval = tr_func(periph, arg); 2142 if (retval == 0) 2143 return(retval); 2144 } 2145 2146 return(retval); 2147 } 2148 2149 static int 2150 xptpdrvtraverse(struct periph_driver **start_pdrv, 2151 xpt_pdrvfunc_t *tr_func, void *arg) 2152 { 2153 struct periph_driver **pdrv; 2154 int retval; 2155 2156 retval = 1; 2157 2158 /* 2159 * We don't traverse the peripheral driver list like we do the 2160 * other lists, because it is a linker set, and therefore cannot be 2161 * changed during runtime. If the peripheral driver list is ever 2162 * re-done to be something other than a linker set (i.e. it can 2163 * change while the system is running), the list traversal should 2164 * be modified to work like the other traversal functions. 2165 */ 2166 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2167 *pdrv != NULL; pdrv++) { 2168 retval = tr_func(pdrv, arg); 2169 2170 if (retval == 0) 2171 return(retval); 2172 } 2173 2174 return(retval); 2175 } 2176 2177 static int 2178 xptpdperiphtraverse(struct periph_driver **pdrv, 2179 struct cam_periph *start_periph, 2180 xpt_periphfunc_t *tr_func, void *arg) 2181 { 2182 struct cam_periph *periph, *next_periph; 2183 int retval; 2184 2185 retval = 1; 2186 2187 xpt_lock_buses(); 2188 for (periph = (start_periph ? start_periph : 2189 TAILQ_FIRST(&(*pdrv)->units)); periph != NULL; 2190 periph = next_periph) { 2191 2192 next_periph = TAILQ_NEXT(periph, unit_links); 2193 2194 retval = tr_func(periph, arg); 2195 if (retval == 0) { 2196 xpt_unlock_buses(); 2197 return(retval); 2198 } 2199 } 2200 xpt_unlock_buses(); 2201 return(retval); 2202 } 2203 2204 static int 2205 xptdefbusfunc(struct cam_eb *bus, void *arg) 2206 { 2207 struct xpt_traverse_config *tr_config; 2208 2209 tr_config = (struct xpt_traverse_config *)arg; 2210 2211 if (tr_config->depth == XPT_DEPTH_BUS) { 2212 xpt_busfunc_t *tr_func; 2213 2214 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2215 2216 return(tr_func(bus, tr_config->tr_arg)); 2217 } else 2218 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2219 } 2220 2221 static int 2222 xptdeftargetfunc(struct cam_et *target, void *arg) 2223 { 2224 struct xpt_traverse_config *tr_config; 2225 2226 tr_config = (struct xpt_traverse_config *)arg; 2227 2228 if (tr_config->depth == XPT_DEPTH_TARGET) { 2229 xpt_targetfunc_t *tr_func; 2230 2231 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2232 2233 return(tr_func(target, tr_config->tr_arg)); 2234 } else 2235 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2236 } 2237 2238 static int 2239 xptdefdevicefunc(struct cam_ed *device, void *arg) 2240 { 2241 struct xpt_traverse_config *tr_config; 2242 2243 tr_config = (struct xpt_traverse_config *)arg; 2244 2245 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2246 xpt_devicefunc_t *tr_func; 2247 2248 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2249 2250 return(tr_func(device, tr_config->tr_arg)); 2251 } else 2252 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2253 } 2254 2255 static int 2256 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2257 { 2258 struct xpt_traverse_config *tr_config; 2259 xpt_periphfunc_t *tr_func; 2260 2261 tr_config = (struct xpt_traverse_config *)arg; 2262 2263 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2264 2265 /* 2266 * Unlike the other default functions, we don't check for depth 2267 * here. The peripheral driver level is the last level in the EDT, 2268 * so if we're here, we should execute the function in question. 2269 */ 2270 return(tr_func(periph, tr_config->tr_arg)); 2271 } 2272 2273 /* 2274 * Execute the given function for every bus in the EDT. 2275 */ 2276 static int 2277 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2278 { 2279 struct xpt_traverse_config tr_config; 2280 2281 tr_config.depth = XPT_DEPTH_BUS; 2282 tr_config.tr_func = tr_func; 2283 tr_config.tr_arg = arg; 2284 2285 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2286 } 2287 2288 /* 2289 * Execute the given function for every device in the EDT. 2290 */ 2291 static int 2292 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2293 { 2294 struct xpt_traverse_config tr_config; 2295 2296 tr_config.depth = XPT_DEPTH_DEVICE; 2297 tr_config.tr_func = tr_func; 2298 tr_config.tr_arg = arg; 2299 2300 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2301 } 2302 2303 static int 2304 xptsetasyncfunc(struct cam_ed *device, void *arg) 2305 { 2306 struct cam_path path; 2307 struct ccb_getdev cgd; 2308 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2309 2310 /* 2311 * Don't report unconfigured devices (Wildcard devs, 2312 * devices only for target mode, device instances 2313 * that have been invalidated but are waiting for 2314 * their last reference count to be released). 2315 */ 2316 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2317 return (1); 2318 2319 xpt_compile_path(&path, 2320 NULL, 2321 device->target->bus->path_id, 2322 device->target->target_id, 2323 device->lun_id); 2324 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2325 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2326 xpt_action((union ccb *)&cgd); 2327 csa->callback(csa->callback_arg, 2328 AC_FOUND_DEVICE, 2329 &path, &cgd); 2330 xpt_release_path(&path); 2331 2332 return(1); 2333 } 2334 2335 static int 2336 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2337 { 2338 struct cam_path path; 2339 struct ccb_pathinq cpi; 2340 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2341 2342 xpt_compile_path(&path, /*periph*/NULL, 2343 bus->sim->path_id, 2344 CAM_TARGET_WILDCARD, 2345 CAM_LUN_WILDCARD); 2346 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2347 cpi.ccb_h.func_code = XPT_PATH_INQ; 2348 xpt_action((union ccb *)&cpi); 2349 csa->callback(csa->callback_arg, 2350 AC_PATH_REGISTERED, 2351 &path, &cpi); 2352 xpt_release_path(&path); 2353 2354 return(1); 2355 } 2356 2357 void 2358 xpt_action(union ccb *start_ccb) 2359 { 2360 2361 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2362 2363 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2364 /* Compatibility for RL-unaware code. */ 2365 if (CAM_PRIORITY_TO_RL(start_ccb->ccb_h.pinfo.priority) == 0) 2366 start_ccb->ccb_h.pinfo.priority += CAM_PRIORITY_NORMAL - 1; 2367 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2368 } 2369 2370 void 2371 xpt_action_default(union ccb *start_ccb) 2372 { 2373 #ifdef CAMDEBUG 2374 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 2375 #endif 2376 struct cam_path *path; 2377 2378 path = start_ccb->ccb_h.path; 2379 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2380 2381 switch (start_ccb->ccb_h.func_code) { 2382 case XPT_SCSI_IO: 2383 { 2384 struct cam_ed *device; 2385 2386 /* 2387 * For the sake of compatibility with SCSI-1 2388 * devices that may not understand the identify 2389 * message, we include lun information in the 2390 * second byte of all commands. SCSI-1 specifies 2391 * that luns are a 3 bit value and reserves only 3 2392 * bits for lun information in the CDB. Later 2393 * revisions of the SCSI spec allow for more than 8 2394 * luns, but have deprecated lun information in the 2395 * CDB. So, if the lun won't fit, we must omit. 2396 * 2397 * Also be aware that during initial probing for devices, 2398 * the inquiry information is unknown but initialized to 0. 2399 * This means that this code will be exercised while probing 2400 * devices with an ANSI revision greater than 2. 2401 */ 2402 device = path->device; 2403 if (device->protocol_version <= SCSI_REV_2 2404 && start_ccb->ccb_h.target_lun < 8 2405 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2406 2407 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2408 start_ccb->ccb_h.target_lun << 5; 2409 } 2410 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2411 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n", 2412 scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0], 2413 &path->device->inq_data), 2414 scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes, 2415 cdb_str, sizeof(cdb_str)))); 2416 } 2417 /* FALLTHROUGH */ 2418 case XPT_TARGET_IO: 2419 case XPT_CONT_TARGET_IO: 2420 start_ccb->csio.sense_resid = 0; 2421 start_ccb->csio.resid = 0; 2422 /* FALLTHROUGH */ 2423 case XPT_ATA_IO: 2424 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) { 2425 start_ccb->ataio.resid = 0; 2426 CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. ACB: %s\n", 2427 ata_op_string(&start_ccb->ataio.cmd), 2428 ata_cmd_string(&start_ccb->ataio.cmd, 2429 cdb_str, sizeof(cdb_str)))); 2430 } 2431 /* FALLTHROUGH */ 2432 case XPT_RESET_DEV: 2433 case XPT_ENG_EXEC: 2434 case XPT_SMP_IO: 2435 { 2436 int frozen; 2437 2438 frozen = cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2439 path->device->sim->devq->alloc_openings += frozen; 2440 if (frozen > 0) 2441 xpt_run_dev_allocq(path->bus); 2442 if (xpt_schedule_dev_sendq(path->bus, path->device)) 2443 xpt_run_dev_sendq(path->bus); 2444 break; 2445 } 2446 case XPT_CALC_GEOMETRY: 2447 { 2448 struct cam_sim *sim; 2449 2450 /* Filter out garbage */ 2451 if (start_ccb->ccg.block_size == 0 2452 || start_ccb->ccg.volume_size == 0) { 2453 start_ccb->ccg.cylinders = 0; 2454 start_ccb->ccg.heads = 0; 2455 start_ccb->ccg.secs_per_track = 0; 2456 start_ccb->ccb_h.status = CAM_REQ_CMP; 2457 break; 2458 } 2459 #ifdef PC98 2460 /* 2461 * In a PC-98 system, geometry translation depens on 2462 * the "real" device geometry obtained from mode page 4. 2463 * SCSI geometry translation is performed in the 2464 * initialization routine of the SCSI BIOS and the result 2465 * stored in host memory. If the translation is available 2466 * in host memory, use it. If not, rely on the default 2467 * translation the device driver performs. 2468 */ 2469 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2470 start_ccb->ccb_h.status = CAM_REQ_CMP; 2471 break; 2472 } 2473 #endif 2474 sim = path->bus->sim; 2475 (*(sim->sim_action))(sim, start_ccb); 2476 break; 2477 } 2478 case XPT_ABORT: 2479 { 2480 union ccb* abort_ccb; 2481 2482 abort_ccb = start_ccb->cab.abort_ccb; 2483 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2484 2485 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2486 struct cam_ccbq *ccbq; 2487 struct cam_ed *device; 2488 2489 device = abort_ccb->ccb_h.path->device; 2490 ccbq = &device->ccbq; 2491 device->sim->devq->alloc_openings -= 2492 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2493 abort_ccb->ccb_h.status = 2494 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2495 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2496 xpt_done(abort_ccb); 2497 start_ccb->ccb_h.status = CAM_REQ_CMP; 2498 break; 2499 } 2500 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2501 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2502 /* 2503 * We've caught this ccb en route to 2504 * the SIM. Flag it for abort and the 2505 * SIM will do so just before starting 2506 * real work on the CCB. 2507 */ 2508 abort_ccb->ccb_h.status = 2509 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2510 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2511 start_ccb->ccb_h.status = CAM_REQ_CMP; 2512 break; 2513 } 2514 } 2515 if (XPT_FC_IS_QUEUED(abort_ccb) 2516 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2517 /* 2518 * It's already completed but waiting 2519 * for our SWI to get to it. 2520 */ 2521 start_ccb->ccb_h.status = CAM_UA_ABORT; 2522 break; 2523 } 2524 /* 2525 * If we weren't able to take care of the abort request 2526 * in the XPT, pass the request down to the SIM for processing. 2527 */ 2528 } 2529 /* FALLTHROUGH */ 2530 case XPT_ACCEPT_TARGET_IO: 2531 case XPT_EN_LUN: 2532 case XPT_IMMED_NOTIFY: 2533 case XPT_NOTIFY_ACK: 2534 case XPT_RESET_BUS: 2535 case XPT_IMMEDIATE_NOTIFY: 2536 case XPT_NOTIFY_ACKNOWLEDGE: 2537 case XPT_GET_SIM_KNOB: 2538 case XPT_SET_SIM_KNOB: 2539 { 2540 struct cam_sim *sim; 2541 2542 sim = path->bus->sim; 2543 (*(sim->sim_action))(sim, start_ccb); 2544 break; 2545 } 2546 case XPT_PATH_INQ: 2547 { 2548 struct cam_sim *sim; 2549 2550 sim = path->bus->sim; 2551 (*(sim->sim_action))(sim, start_ccb); 2552 break; 2553 } 2554 case XPT_PATH_STATS: 2555 start_ccb->cpis.last_reset = path->bus->last_reset; 2556 start_ccb->ccb_h.status = CAM_REQ_CMP; 2557 break; 2558 case XPT_GDEV_TYPE: 2559 { 2560 struct cam_ed *dev; 2561 2562 dev = path->device; 2563 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2564 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2565 } else { 2566 struct ccb_getdev *cgd; 2567 2568 cgd = &start_ccb->cgd; 2569 cgd->protocol = dev->protocol; 2570 cgd->inq_data = dev->inq_data; 2571 cgd->ident_data = dev->ident_data; 2572 cgd->inq_flags = dev->inq_flags; 2573 cgd->ccb_h.status = CAM_REQ_CMP; 2574 cgd->serial_num_len = dev->serial_num_len; 2575 if ((dev->serial_num_len > 0) 2576 && (dev->serial_num != NULL)) 2577 bcopy(dev->serial_num, cgd->serial_num, 2578 dev->serial_num_len); 2579 } 2580 break; 2581 } 2582 case XPT_GDEV_STATS: 2583 { 2584 struct cam_ed *dev; 2585 2586 dev = path->device; 2587 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2588 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2589 } else { 2590 struct ccb_getdevstats *cgds; 2591 struct cam_eb *bus; 2592 struct cam_et *tar; 2593 2594 cgds = &start_ccb->cgds; 2595 bus = path->bus; 2596 tar = path->target; 2597 cgds->dev_openings = dev->ccbq.dev_openings; 2598 cgds->dev_active = dev->ccbq.dev_active; 2599 cgds->devq_openings = dev->ccbq.devq_openings; 2600 cgds->devq_queued = dev->ccbq.queue.entries; 2601 cgds->held = dev->ccbq.held; 2602 cgds->last_reset = tar->last_reset; 2603 cgds->maxtags = dev->maxtags; 2604 cgds->mintags = dev->mintags; 2605 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2606 cgds->last_reset = bus->last_reset; 2607 cgds->ccb_h.status = CAM_REQ_CMP; 2608 } 2609 break; 2610 } 2611 case XPT_GDEVLIST: 2612 { 2613 struct cam_periph *nperiph; 2614 struct periph_list *periph_head; 2615 struct ccb_getdevlist *cgdl; 2616 u_int i; 2617 struct cam_ed *device; 2618 int found; 2619 2620 2621 found = 0; 2622 2623 /* 2624 * Don't want anyone mucking with our data. 2625 */ 2626 device = path->device; 2627 periph_head = &device->periphs; 2628 cgdl = &start_ccb->cgdl; 2629 2630 /* 2631 * Check and see if the list has changed since the user 2632 * last requested a list member. If so, tell them that the 2633 * list has changed, and therefore they need to start over 2634 * from the beginning. 2635 */ 2636 if ((cgdl->index != 0) && 2637 (cgdl->generation != device->generation)) { 2638 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2639 break; 2640 } 2641 2642 /* 2643 * Traverse the list of peripherals and attempt to find 2644 * the requested peripheral. 2645 */ 2646 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2647 (nperiph != NULL) && (i <= cgdl->index); 2648 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2649 if (i == cgdl->index) { 2650 strncpy(cgdl->periph_name, 2651 nperiph->periph_name, 2652 DEV_IDLEN); 2653 cgdl->unit_number = nperiph->unit_number; 2654 found = 1; 2655 } 2656 } 2657 if (found == 0) { 2658 cgdl->status = CAM_GDEVLIST_ERROR; 2659 break; 2660 } 2661 2662 if (nperiph == NULL) 2663 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2664 else 2665 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2666 2667 cgdl->index++; 2668 cgdl->generation = device->generation; 2669 2670 cgdl->ccb_h.status = CAM_REQ_CMP; 2671 break; 2672 } 2673 case XPT_DEV_MATCH: 2674 { 2675 dev_pos_type position_type; 2676 struct ccb_dev_match *cdm; 2677 2678 cdm = &start_ccb->cdm; 2679 2680 /* 2681 * There are two ways of getting at information in the EDT. 2682 * The first way is via the primary EDT tree. It starts 2683 * with a list of busses, then a list of targets on a bus, 2684 * then devices/luns on a target, and then peripherals on a 2685 * device/lun. The "other" way is by the peripheral driver 2686 * lists. The peripheral driver lists are organized by 2687 * peripheral driver. (obviously) So it makes sense to 2688 * use the peripheral driver list if the user is looking 2689 * for something like "da1", or all "da" devices. If the 2690 * user is looking for something on a particular bus/target 2691 * or lun, it's generally better to go through the EDT tree. 2692 */ 2693 2694 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2695 position_type = cdm->pos.position_type; 2696 else { 2697 u_int i; 2698 2699 position_type = CAM_DEV_POS_NONE; 2700 2701 for (i = 0; i < cdm->num_patterns; i++) { 2702 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2703 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2704 position_type = CAM_DEV_POS_EDT; 2705 break; 2706 } 2707 } 2708 2709 if (cdm->num_patterns == 0) 2710 position_type = CAM_DEV_POS_EDT; 2711 else if (position_type == CAM_DEV_POS_NONE) 2712 position_type = CAM_DEV_POS_PDRV; 2713 } 2714 2715 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2716 case CAM_DEV_POS_EDT: 2717 xptedtmatch(cdm); 2718 break; 2719 case CAM_DEV_POS_PDRV: 2720 xptperiphlistmatch(cdm); 2721 break; 2722 default: 2723 cdm->status = CAM_DEV_MATCH_ERROR; 2724 break; 2725 } 2726 2727 if (cdm->status == CAM_DEV_MATCH_ERROR) 2728 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2729 else 2730 start_ccb->ccb_h.status = CAM_REQ_CMP; 2731 2732 break; 2733 } 2734 case XPT_SASYNC_CB: 2735 { 2736 struct ccb_setasync *csa; 2737 struct async_node *cur_entry; 2738 struct async_list *async_head; 2739 u_int32_t added; 2740 2741 csa = &start_ccb->csa; 2742 added = csa->event_enable; 2743 async_head = &path->device->asyncs; 2744 2745 /* 2746 * If there is already an entry for us, simply 2747 * update it. 2748 */ 2749 cur_entry = SLIST_FIRST(async_head); 2750 while (cur_entry != NULL) { 2751 if ((cur_entry->callback_arg == csa->callback_arg) 2752 && (cur_entry->callback == csa->callback)) 2753 break; 2754 cur_entry = SLIST_NEXT(cur_entry, links); 2755 } 2756 2757 if (cur_entry != NULL) { 2758 /* 2759 * If the request has no flags set, 2760 * remove the entry. 2761 */ 2762 added &= ~cur_entry->event_enable; 2763 if (csa->event_enable == 0) { 2764 SLIST_REMOVE(async_head, cur_entry, 2765 async_node, links); 2766 xpt_release_device(path->device); 2767 free(cur_entry, M_CAMXPT); 2768 } else { 2769 cur_entry->event_enable = csa->event_enable; 2770 } 2771 csa->event_enable = added; 2772 } else { 2773 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2774 M_NOWAIT); 2775 if (cur_entry == NULL) { 2776 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2777 break; 2778 } 2779 cur_entry->event_enable = csa->event_enable; 2780 cur_entry->callback_arg = csa->callback_arg; 2781 cur_entry->callback = csa->callback; 2782 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2783 xpt_acquire_device(path->device); 2784 } 2785 start_ccb->ccb_h.status = CAM_REQ_CMP; 2786 break; 2787 } 2788 case XPT_REL_SIMQ: 2789 { 2790 struct ccb_relsim *crs; 2791 struct cam_ed *dev; 2792 2793 crs = &start_ccb->crs; 2794 dev = path->device; 2795 if (dev == NULL) { 2796 2797 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2798 break; 2799 } 2800 2801 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2802 2803 if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) { 2804 /* Don't ever go below one opening */ 2805 if (crs->openings > 0) { 2806 xpt_dev_ccbq_resize(path, 2807 crs->openings); 2808 2809 if (bootverbose) { 2810 xpt_print(path, 2811 "tagged openings now %d\n", 2812 crs->openings); 2813 } 2814 } 2815 } 2816 } 2817 2818 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2819 2820 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2821 2822 /* 2823 * Just extend the old timeout and decrement 2824 * the freeze count so that a single timeout 2825 * is sufficient for releasing the queue. 2826 */ 2827 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2828 callout_stop(&dev->callout); 2829 } else { 2830 2831 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2832 } 2833 2834 callout_reset(&dev->callout, 2835 (crs->release_timeout * hz) / 1000, 2836 xpt_release_devq_timeout, dev); 2837 2838 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2839 2840 } 2841 2842 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2843 2844 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2845 /* 2846 * Decrement the freeze count so that a single 2847 * completion is still sufficient to unfreeze 2848 * the queue. 2849 */ 2850 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2851 } else { 2852 2853 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2854 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2855 } 2856 } 2857 2858 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2859 2860 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2861 || (dev->ccbq.dev_active == 0)) { 2862 2863 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2864 } else { 2865 2866 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2867 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2868 } 2869 } 2870 2871 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) { 2872 xpt_release_devq_rl(path, /*runlevel*/ 2873 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2874 crs->release_timeout : 0, 2875 /*count*/1, /*run_queue*/TRUE); 2876 } 2877 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt[0]; 2878 start_ccb->ccb_h.status = CAM_REQ_CMP; 2879 break; 2880 } 2881 case XPT_DEBUG: { 2882 #ifdef CAMDEBUG 2883 #ifdef CAM_DEBUG_DELAY 2884 cam_debug_delay = CAM_DEBUG_DELAY; 2885 #endif 2886 cam_dflags = start_ccb->cdbg.flags; 2887 if (cam_dpath != NULL) { 2888 xpt_free_path(cam_dpath); 2889 cam_dpath = NULL; 2890 } 2891 2892 if (cam_dflags != CAM_DEBUG_NONE) { 2893 if (xpt_create_path(&cam_dpath, xpt_periph, 2894 start_ccb->ccb_h.path_id, 2895 start_ccb->ccb_h.target_id, 2896 start_ccb->ccb_h.target_lun) != 2897 CAM_REQ_CMP) { 2898 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2899 cam_dflags = CAM_DEBUG_NONE; 2900 } else { 2901 start_ccb->ccb_h.status = CAM_REQ_CMP; 2902 xpt_print(cam_dpath, "debugging flags now %x\n", 2903 cam_dflags); 2904 } 2905 } else { 2906 cam_dpath = NULL; 2907 start_ccb->ccb_h.status = CAM_REQ_CMP; 2908 } 2909 #else /* !CAMDEBUG */ 2910 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2911 #endif /* CAMDEBUG */ 2912 break; 2913 } 2914 case XPT_FREEZE_QUEUE: 2915 { 2916 struct ccb_relsim *crs = &start_ccb->crs; 2917 2918 xpt_freeze_devq_rl(path, /*runlevel*/ 2919 (crs->release_flags & RELSIM_RELEASE_RUNLEVEL) ? 2920 crs->release_timeout : 0, /*count*/1); 2921 start_ccb->ccb_h.status = CAM_REQ_CMP; 2922 break; 2923 } 2924 case XPT_NOOP: 2925 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2926 xpt_freeze_devq(path, 1); 2927 start_ccb->ccb_h.status = CAM_REQ_CMP; 2928 break; 2929 default: 2930 case XPT_SDEV_TYPE: 2931 case XPT_TERM_IO: 2932 case XPT_ENG_INQ: 2933 /* XXX Implement */ 2934 printf("%s: CCB type %#x not supported\n", __func__, 2935 start_ccb->ccb_h.func_code); 2936 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2937 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2938 xpt_done(start_ccb); 2939 } 2940 break; 2941 } 2942 } 2943 2944 void 2945 xpt_polled_action(union ccb *start_ccb) 2946 { 2947 u_int32_t timeout; 2948 struct cam_sim *sim; 2949 struct cam_devq *devq; 2950 struct cam_ed *dev; 2951 2952 2953 timeout = start_ccb->ccb_h.timeout * 10; 2954 sim = start_ccb->ccb_h.path->bus->sim; 2955 devq = sim->devq; 2956 dev = start_ccb->ccb_h.path->device; 2957 2958 mtx_assert(sim->mtx, MA_OWNED); 2959 2960 /* 2961 * Steal an opening so that no other queued requests 2962 * can get it before us while we simulate interrupts. 2963 */ 2964 dev->ccbq.devq_openings--; 2965 dev->ccbq.dev_openings--; 2966 2967 while(((devq != NULL && devq->send_openings <= 0) || 2968 dev->ccbq.dev_openings < 0) && (--timeout > 0)) { 2969 DELAY(100); 2970 (*(sim->sim_poll))(sim); 2971 camisr_runqueue(&sim->sim_doneq); 2972 } 2973 2974 dev->ccbq.devq_openings++; 2975 dev->ccbq.dev_openings++; 2976 2977 if (timeout != 0) { 2978 xpt_action(start_ccb); 2979 while(--timeout > 0) { 2980 (*(sim->sim_poll))(sim); 2981 camisr_runqueue(&sim->sim_doneq); 2982 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 2983 != CAM_REQ_INPROG) 2984 break; 2985 DELAY(100); 2986 } 2987 if (timeout == 0) { 2988 /* 2989 * XXX Is it worth adding a sim_timeout entry 2990 * point so we can attempt recovery? If 2991 * this is only used for dumps, I don't think 2992 * it is. 2993 */ 2994 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 2995 } 2996 } else { 2997 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2998 } 2999 } 3000 3001 /* 3002 * Schedule a peripheral driver to receive a ccb when it's 3003 * target device has space for more transactions. 3004 */ 3005 void 3006 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority) 3007 { 3008 struct cam_ed *device; 3009 int runq = 0; 3010 3011 mtx_assert(perph->sim->mtx, MA_OWNED); 3012 3013 CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3014 device = perph->path->device; 3015 if (periph_is_queued(perph)) { 3016 /* Simply reorder based on new priority */ 3017 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3018 (" change priority to %d\n", new_priority)); 3019 if (new_priority < perph->pinfo.priority) { 3020 camq_change_priority(&device->drvq, 3021 perph->pinfo.index, 3022 new_priority); 3023 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3024 } 3025 } else { 3026 /* New entry on the queue */ 3027 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3028 (" added periph to queue\n")); 3029 perph->pinfo.priority = new_priority; 3030 perph->pinfo.generation = ++device->drvq.generation; 3031 camq_insert(&device->drvq, &perph->pinfo); 3032 runq = xpt_schedule_dev_allocq(perph->path->bus, device); 3033 } 3034 if (runq != 0) { 3035 CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE, 3036 (" calling xpt_run_devq\n")); 3037 xpt_run_dev_allocq(perph->path->bus); 3038 } 3039 } 3040 3041 3042 /* 3043 * Schedule a device to run on a given queue. 3044 * If the device was inserted as a new entry on the queue, 3045 * return 1 meaning the device queue should be run. If we 3046 * were already queued, implying someone else has already 3047 * started the queue, return 0 so the caller doesn't attempt 3048 * to run the queue. 3049 */ 3050 int 3051 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3052 u_int32_t new_priority) 3053 { 3054 int retval; 3055 u_int32_t old_priority; 3056 3057 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3058 3059 old_priority = pinfo->priority; 3060 3061 /* 3062 * Are we already queued? 3063 */ 3064 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3065 /* Simply reorder based on new priority */ 3066 if (new_priority < old_priority) { 3067 camq_change_priority(queue, pinfo->index, 3068 new_priority); 3069 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3070 ("changed priority to %d\n", 3071 new_priority)); 3072 retval = 1; 3073 } else 3074 retval = 0; 3075 } else { 3076 /* New entry on the queue */ 3077 if (new_priority < old_priority) 3078 pinfo->priority = new_priority; 3079 3080 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3081 ("Inserting onto queue\n")); 3082 pinfo->generation = ++queue->generation; 3083 camq_insert(queue, pinfo); 3084 retval = 1; 3085 } 3086 return (retval); 3087 } 3088 3089 static void 3090 xpt_run_dev_allocq(struct cam_eb *bus) 3091 { 3092 struct cam_devq *devq; 3093 3094 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n")); 3095 devq = bus->sim->devq; 3096 3097 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3098 (" qfrozen_cnt == 0x%x, entries == %d, " 3099 "openings == %d, active == %d\n", 3100 devq->alloc_queue.qfrozen_cnt[0], 3101 devq->alloc_queue.entries, 3102 devq->alloc_openings, 3103 devq->alloc_active)); 3104 3105 devq->alloc_queue.qfrozen_cnt[0]++; 3106 while ((devq->alloc_queue.entries > 0) 3107 && (devq->alloc_openings > 0) 3108 && (devq->alloc_queue.qfrozen_cnt[0] <= 1)) { 3109 struct cam_ed_qinfo *qinfo; 3110 struct cam_ed *device; 3111 union ccb *work_ccb; 3112 struct cam_periph *drv; 3113 struct camq *drvq; 3114 3115 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue, 3116 CAMQ_HEAD); 3117 device = qinfo->device; 3118 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3119 ("running device %p\n", device)); 3120 3121 drvq = &device->drvq; 3122 3123 #ifdef CAMDEBUG 3124 if (drvq->entries <= 0) { 3125 panic("xpt_run_dev_allocq: " 3126 "Device on queue without any work to do"); 3127 } 3128 #endif 3129 if ((work_ccb = xpt_get_ccb(device)) != NULL) { 3130 devq->alloc_openings--; 3131 devq->alloc_active++; 3132 drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD); 3133 xpt_setup_ccb(&work_ccb->ccb_h, drv->path, 3134 drv->pinfo.priority); 3135 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3136 ("calling periph start\n")); 3137 drv->periph_start(drv, work_ccb); 3138 } else { 3139 /* 3140 * Malloc failure in alloc_ccb 3141 */ 3142 /* 3143 * XXX add us to a list to be run from free_ccb 3144 * if we don't have any ccbs active on this 3145 * device queue otherwise we may never get run 3146 * again. 3147 */ 3148 break; 3149 } 3150 3151 /* We may have more work. Attempt to reschedule. */ 3152 xpt_schedule_dev_allocq(bus, device); 3153 } 3154 devq->alloc_queue.qfrozen_cnt[0]--; 3155 } 3156 3157 static void 3158 xpt_run_dev_sendq(struct cam_eb *bus) 3159 { 3160 struct cam_devq *devq; 3161 3162 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n")); 3163 3164 devq = bus->sim->devq; 3165 3166 devq->send_queue.qfrozen_cnt[0]++; 3167 while ((devq->send_queue.entries > 0) 3168 && (devq->send_openings > 0) 3169 && (devq->send_queue.qfrozen_cnt[0] <= 1)) { 3170 struct cam_ed_qinfo *qinfo; 3171 struct cam_ed *device; 3172 union ccb *work_ccb; 3173 struct cam_sim *sim; 3174 3175 qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue, 3176 CAMQ_HEAD); 3177 device = qinfo->device; 3178 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3179 ("running device %p\n", device)); 3180 3181 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3182 if (work_ccb == NULL) { 3183 printf("device on run queue with no ccbs???\n"); 3184 continue; 3185 } 3186 3187 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3188 3189 mtx_lock(&xsoftc.xpt_lock); 3190 if (xsoftc.num_highpower <= 0) { 3191 /* 3192 * We got a high power command, but we 3193 * don't have any available slots. Freeze 3194 * the device queue until we have a slot 3195 * available. 3196 */ 3197 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3198 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, 3199 &work_ccb->ccb_h, 3200 xpt_links.stqe); 3201 3202 mtx_unlock(&xsoftc.xpt_lock); 3203 continue; 3204 } else { 3205 /* 3206 * Consume a high power slot while 3207 * this ccb runs. 3208 */ 3209 xsoftc.num_highpower--; 3210 } 3211 mtx_unlock(&xsoftc.xpt_lock); 3212 } 3213 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3214 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3215 3216 devq->send_openings--; 3217 devq->send_active++; 3218 3219 xpt_schedule_dev_sendq(bus, device); 3220 3221 if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){ 3222 /* 3223 * The client wants to freeze the queue 3224 * after this CCB is sent. 3225 */ 3226 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3227 } 3228 3229 /* In Target mode, the peripheral driver knows best... */ 3230 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3231 if ((device->inq_flags & SID_CmdQue) != 0 3232 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3233 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3234 else 3235 /* 3236 * Clear this in case of a retried CCB that 3237 * failed due to a rejected tag. 3238 */ 3239 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3240 } 3241 3242 /* 3243 * Device queues can be shared among multiple sim instances 3244 * that reside on different busses. Use the SIM in the queue 3245 * CCB's path, rather than the one in the bus that was passed 3246 * into this function. 3247 */ 3248 sim = work_ccb->ccb_h.path->bus->sim; 3249 (*(sim->sim_action))(sim, work_ccb); 3250 } 3251 devq->send_queue.qfrozen_cnt[0]--; 3252 } 3253 3254 /* 3255 * This function merges stuff from the slave ccb into the master ccb, while 3256 * keeping important fields in the master ccb constant. 3257 */ 3258 void 3259 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3260 { 3261 3262 /* 3263 * Pull fields that are valid for peripheral drivers to set 3264 * into the master CCB along with the CCB "payload". 3265 */ 3266 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3267 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3268 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3269 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3270 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3271 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3272 } 3273 3274 void 3275 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3276 { 3277 3278 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3279 ccb_h->pinfo.priority = priority; 3280 ccb_h->path = path; 3281 ccb_h->path_id = path->bus->path_id; 3282 if (path->target) 3283 ccb_h->target_id = path->target->target_id; 3284 else 3285 ccb_h->target_id = CAM_TARGET_WILDCARD; 3286 if (path->device) { 3287 ccb_h->target_lun = path->device->lun_id; 3288 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3289 } else { 3290 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3291 } 3292 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3293 ccb_h->flags = 0; 3294 } 3295 3296 /* Path manipulation functions */ 3297 cam_status 3298 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3299 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3300 { 3301 struct cam_path *path; 3302 cam_status status; 3303 3304 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3305 3306 if (path == NULL) { 3307 status = CAM_RESRC_UNAVAIL; 3308 return(status); 3309 } 3310 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3311 if (status != CAM_REQ_CMP) { 3312 free(path, M_CAMXPT); 3313 path = NULL; 3314 } 3315 *new_path_ptr = path; 3316 return (status); 3317 } 3318 3319 cam_status 3320 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3321 struct cam_periph *periph, path_id_t path_id, 3322 target_id_t target_id, lun_id_t lun_id) 3323 { 3324 struct cam_path *path; 3325 struct cam_eb *bus = NULL; 3326 cam_status status; 3327 int need_unlock = 0; 3328 3329 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK); 3330 3331 if (path_id != CAM_BUS_WILDCARD) { 3332 bus = xpt_find_bus(path_id); 3333 if (bus != NULL) { 3334 need_unlock = 1; 3335 CAM_SIM_LOCK(bus->sim); 3336 } 3337 } 3338 status = xpt_compile_path(path, periph, path_id, target_id, lun_id); 3339 if (need_unlock) { 3340 CAM_SIM_UNLOCK(bus->sim); 3341 xpt_release_bus(bus); 3342 } 3343 if (status != CAM_REQ_CMP) { 3344 free(path, M_CAMXPT); 3345 path = NULL; 3346 } 3347 *new_path_ptr = path; 3348 return (status); 3349 } 3350 3351 cam_status 3352 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3353 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3354 { 3355 struct cam_eb *bus; 3356 struct cam_et *target; 3357 struct cam_ed *device; 3358 cam_status status; 3359 3360 status = CAM_REQ_CMP; /* Completed without error */ 3361 target = NULL; /* Wildcarded */ 3362 device = NULL; /* Wildcarded */ 3363 3364 /* 3365 * We will potentially modify the EDT, so block interrupts 3366 * that may attempt to create cam paths. 3367 */ 3368 bus = xpt_find_bus(path_id); 3369 if (bus == NULL) { 3370 status = CAM_PATH_INVALID; 3371 } else { 3372 target = xpt_find_target(bus, target_id); 3373 if (target == NULL) { 3374 /* Create one */ 3375 struct cam_et *new_target; 3376 3377 new_target = xpt_alloc_target(bus, target_id); 3378 if (new_target == NULL) { 3379 status = CAM_RESRC_UNAVAIL; 3380 } else { 3381 target = new_target; 3382 } 3383 } 3384 if (target != NULL) { 3385 device = xpt_find_device(target, lun_id); 3386 if (device == NULL) { 3387 /* Create one */ 3388 struct cam_ed *new_device; 3389 3390 new_device = 3391 (*(bus->xport->alloc_device))(bus, 3392 target, 3393 lun_id); 3394 if (new_device == NULL) { 3395 status = CAM_RESRC_UNAVAIL; 3396 } else { 3397 device = new_device; 3398 } 3399 } 3400 } 3401 } 3402 3403 /* 3404 * Only touch the user's data if we are successful. 3405 */ 3406 if (status == CAM_REQ_CMP) { 3407 new_path->periph = perph; 3408 new_path->bus = bus; 3409 new_path->target = target; 3410 new_path->device = device; 3411 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3412 } else { 3413 if (device != NULL) 3414 xpt_release_device(device); 3415 if (target != NULL) 3416 xpt_release_target(target); 3417 if (bus != NULL) 3418 xpt_release_bus(bus); 3419 } 3420 return (status); 3421 } 3422 3423 void 3424 xpt_release_path(struct cam_path *path) 3425 { 3426 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3427 if (path->device != NULL) { 3428 xpt_release_device(path->device); 3429 path->device = NULL; 3430 } 3431 if (path->target != NULL) { 3432 xpt_release_target(path->target); 3433 path->target = NULL; 3434 } 3435 if (path->bus != NULL) { 3436 xpt_release_bus(path->bus); 3437 path->bus = NULL; 3438 } 3439 } 3440 3441 void 3442 xpt_free_path(struct cam_path *path) 3443 { 3444 3445 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3446 xpt_release_path(path); 3447 free(path, M_CAMXPT); 3448 } 3449 3450 void 3451 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3452 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3453 { 3454 3455 mtx_lock(&xsoftc.xpt_topo_lock); 3456 if (bus_ref) { 3457 if (path->bus) 3458 *bus_ref = path->bus->refcount; 3459 else 3460 *bus_ref = 0; 3461 } 3462 mtx_unlock(&xsoftc.xpt_topo_lock); 3463 if (periph_ref) { 3464 if (path->periph) 3465 *periph_ref = path->periph->refcount; 3466 else 3467 *periph_ref = 0; 3468 } 3469 if (target_ref) { 3470 if (path->target) 3471 *target_ref = path->target->refcount; 3472 else 3473 *target_ref = 0; 3474 } 3475 if (device_ref) { 3476 if (path->device) 3477 *device_ref = path->device->refcount; 3478 else 3479 *device_ref = 0; 3480 } 3481 } 3482 3483 /* 3484 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3485 * in path1, 2 for match with wildcards in path2. 3486 */ 3487 int 3488 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3489 { 3490 int retval = 0; 3491 3492 if (path1->bus != path2->bus) { 3493 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3494 retval = 1; 3495 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3496 retval = 2; 3497 else 3498 return (-1); 3499 } 3500 if (path1->target != path2->target) { 3501 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3502 if (retval == 0) 3503 retval = 1; 3504 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3505 retval = 2; 3506 else 3507 return (-1); 3508 } 3509 if (path1->device != path2->device) { 3510 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3511 if (retval == 0) 3512 retval = 1; 3513 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3514 retval = 2; 3515 else 3516 return (-1); 3517 } 3518 return (retval); 3519 } 3520 3521 void 3522 xpt_print_path(struct cam_path *path) 3523 { 3524 3525 if (path == NULL) 3526 printf("(nopath): "); 3527 else { 3528 if (path->periph != NULL) 3529 printf("(%s%d:", path->periph->periph_name, 3530 path->periph->unit_number); 3531 else 3532 printf("(noperiph:"); 3533 3534 if (path->bus != NULL) 3535 printf("%s%d:%d:", path->bus->sim->sim_name, 3536 path->bus->sim->unit_number, 3537 path->bus->sim->bus_id); 3538 else 3539 printf("nobus:"); 3540 3541 if (path->target != NULL) 3542 printf("%d:", path->target->target_id); 3543 else 3544 printf("X:"); 3545 3546 if (path->device != NULL) 3547 printf("%d): ", path->device->lun_id); 3548 else 3549 printf("X): "); 3550 } 3551 } 3552 3553 void 3554 xpt_print(struct cam_path *path, const char *fmt, ...) 3555 { 3556 va_list ap; 3557 xpt_print_path(path); 3558 va_start(ap, fmt); 3559 vprintf(fmt, ap); 3560 va_end(ap); 3561 } 3562 3563 int 3564 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3565 { 3566 struct sbuf sb; 3567 3568 #ifdef INVARIANTS 3569 if (path != NULL && path->bus != NULL) 3570 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3571 #endif 3572 3573 sbuf_new(&sb, str, str_len, 0); 3574 3575 if (path == NULL) 3576 sbuf_printf(&sb, "(nopath): "); 3577 else { 3578 if (path->periph != NULL) 3579 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3580 path->periph->unit_number); 3581 else 3582 sbuf_printf(&sb, "(noperiph:"); 3583 3584 if (path->bus != NULL) 3585 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3586 path->bus->sim->unit_number, 3587 path->bus->sim->bus_id); 3588 else 3589 sbuf_printf(&sb, "nobus:"); 3590 3591 if (path->target != NULL) 3592 sbuf_printf(&sb, "%d:", path->target->target_id); 3593 else 3594 sbuf_printf(&sb, "X:"); 3595 3596 if (path->device != NULL) 3597 sbuf_printf(&sb, "%d): ", path->device->lun_id); 3598 else 3599 sbuf_printf(&sb, "X): "); 3600 } 3601 sbuf_finish(&sb); 3602 3603 return(sbuf_len(&sb)); 3604 } 3605 3606 path_id_t 3607 xpt_path_path_id(struct cam_path *path) 3608 { 3609 return(path->bus->path_id); 3610 } 3611 3612 target_id_t 3613 xpt_path_target_id(struct cam_path *path) 3614 { 3615 if (path->target != NULL) 3616 return (path->target->target_id); 3617 else 3618 return (CAM_TARGET_WILDCARD); 3619 } 3620 3621 lun_id_t 3622 xpt_path_lun_id(struct cam_path *path) 3623 { 3624 if (path->device != NULL) 3625 return (path->device->lun_id); 3626 else 3627 return (CAM_LUN_WILDCARD); 3628 } 3629 3630 struct cam_sim * 3631 xpt_path_sim(struct cam_path *path) 3632 { 3633 3634 return (path->bus->sim); 3635 } 3636 3637 struct cam_periph* 3638 xpt_path_periph(struct cam_path *path) 3639 { 3640 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3641 3642 return (path->periph); 3643 } 3644 3645 int 3646 xpt_path_legacy_ata_id(struct cam_path *path) 3647 { 3648 struct cam_eb *bus; 3649 int bus_id; 3650 3651 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3652 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3653 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3654 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3655 return (-1); 3656 3657 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3658 path->bus->sim->unit_number < 2) { 3659 bus_id = path->bus->sim->unit_number; 3660 } else { 3661 bus_id = 2; 3662 xpt_lock_buses(); 3663 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3664 if (bus == path->bus) 3665 break; 3666 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3667 bus->sim->unit_number >= 2) || 3668 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3669 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3670 strcmp(bus->sim->sim_name, "siisch") == 0) 3671 bus_id++; 3672 } 3673 xpt_unlock_buses(); 3674 } 3675 if (path->target != NULL) { 3676 if (path->target->target_id < 2) 3677 return (bus_id * 2 + path->target->target_id); 3678 else 3679 return (-1); 3680 } else 3681 return (bus_id * 2); 3682 } 3683 3684 /* 3685 * Release a CAM control block for the caller. Remit the cost of the structure 3686 * to the device referenced by the path. If the this device had no 'credits' 3687 * and peripheral drivers have registered async callbacks for this notification 3688 * call them now. 3689 */ 3690 void 3691 xpt_release_ccb(union ccb *free_ccb) 3692 { 3693 struct cam_path *path; 3694 struct cam_ed *device; 3695 struct cam_eb *bus; 3696 struct cam_sim *sim; 3697 3698 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3699 path = free_ccb->ccb_h.path; 3700 device = path->device; 3701 bus = path->bus; 3702 sim = bus->sim; 3703 3704 mtx_assert(sim->mtx, MA_OWNED); 3705 3706 cam_ccbq_release_opening(&device->ccbq); 3707 if (device->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) { 3708 device->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED; 3709 cam_ccbq_resize(&device->ccbq, 3710 device->ccbq.dev_openings + device->ccbq.dev_active); 3711 } 3712 if (sim->ccb_count > sim->max_ccbs) { 3713 xpt_free_ccb(free_ccb); 3714 sim->ccb_count--; 3715 } else { 3716 SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h, 3717 xpt_links.sle); 3718 } 3719 if (sim->devq == NULL) { 3720 return; 3721 } 3722 sim->devq->alloc_openings++; 3723 sim->devq->alloc_active--; 3724 if (device_is_alloc_queued(device) == 0) 3725 xpt_schedule_dev_allocq(bus, device); 3726 xpt_run_dev_allocq(bus); 3727 } 3728 3729 /* Functions accessed by SIM drivers */ 3730 3731 static struct xpt_xport xport_default = { 3732 .alloc_device = xpt_alloc_device_default, 3733 .action = xpt_action_default, 3734 .async = xpt_dev_async_default, 3735 }; 3736 3737 /* 3738 * A sim structure, listing the SIM entry points and instance 3739 * identification info is passed to xpt_bus_register to hook the SIM 3740 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3741 * for this new bus and places it in the array of busses and assigns 3742 * it a path_id. The path_id may be influenced by "hard wiring" 3743 * information specified by the user. Once interrupt services are 3744 * available, the bus will be probed. 3745 */ 3746 int32_t 3747 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3748 { 3749 struct cam_eb *new_bus; 3750 struct cam_eb *old_bus; 3751 struct ccb_pathinq cpi; 3752 struct cam_path *path; 3753 cam_status status; 3754 3755 mtx_assert(sim->mtx, MA_OWNED); 3756 3757 sim->bus_id = bus; 3758 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3759 M_CAMXPT, M_NOWAIT); 3760 if (new_bus == NULL) { 3761 /* Couldn't satisfy request */ 3762 return (CAM_RESRC_UNAVAIL); 3763 } 3764 path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT); 3765 if (path == NULL) { 3766 free(new_bus, M_CAMXPT); 3767 return (CAM_RESRC_UNAVAIL); 3768 } 3769 3770 if (strcmp(sim->sim_name, "xpt") != 0) { 3771 sim->path_id = 3772 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3773 } 3774 3775 TAILQ_INIT(&new_bus->et_entries); 3776 new_bus->path_id = sim->path_id; 3777 cam_sim_hold(sim); 3778 new_bus->sim = sim; 3779 timevalclear(&new_bus->last_reset); 3780 new_bus->flags = 0; 3781 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3782 new_bus->generation = 0; 3783 3784 mtx_lock(&xsoftc.xpt_topo_lock); 3785 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3786 while (old_bus != NULL 3787 && old_bus->path_id < new_bus->path_id) 3788 old_bus = TAILQ_NEXT(old_bus, links); 3789 if (old_bus != NULL) 3790 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3791 else 3792 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3793 xsoftc.bus_generation++; 3794 mtx_unlock(&xsoftc.xpt_topo_lock); 3795 3796 /* 3797 * Set a default transport so that a PATH_INQ can be issued to 3798 * the SIM. This will then allow for probing and attaching of 3799 * a more appropriate transport. 3800 */ 3801 new_bus->xport = &xport_default; 3802 3803 status = xpt_compile_path(path, /*periph*/NULL, sim->path_id, 3804 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3805 if (status != CAM_REQ_CMP) 3806 printf("xpt_compile_path returned %d\n", status); 3807 3808 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3809 cpi.ccb_h.func_code = XPT_PATH_INQ; 3810 xpt_action((union ccb *)&cpi); 3811 3812 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3813 switch (cpi.transport) { 3814 case XPORT_SPI: 3815 case XPORT_SAS: 3816 case XPORT_FC: 3817 case XPORT_USB: 3818 case XPORT_ISCSI: 3819 case XPORT_PPB: 3820 new_bus->xport = scsi_get_xport(); 3821 break; 3822 case XPORT_ATA: 3823 case XPORT_SATA: 3824 new_bus->xport = ata_get_xport(); 3825 break; 3826 default: 3827 new_bus->xport = &xport_default; 3828 break; 3829 } 3830 } 3831 3832 /* Notify interested parties */ 3833 if (sim->path_id != CAM_XPT_PATH_ID) { 3834 union ccb *scan_ccb; 3835 3836 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3837 /* Initiate bus rescan. */ 3838 scan_ccb = xpt_alloc_ccb_nowait(); 3839 scan_ccb->ccb_h.path = path; 3840 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3841 scan_ccb->crcn.flags = 0; 3842 xpt_rescan(scan_ccb); 3843 } else 3844 xpt_free_path(path); 3845 return (CAM_SUCCESS); 3846 } 3847 3848 int32_t 3849 xpt_bus_deregister(path_id_t pathid) 3850 { 3851 struct cam_path bus_path; 3852 cam_status status; 3853 3854 status = xpt_compile_path(&bus_path, NULL, pathid, 3855 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3856 if (status != CAM_REQ_CMP) 3857 return (status); 3858 3859 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3860 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3861 3862 /* Release the reference count held while registered. */ 3863 xpt_release_bus(bus_path.bus); 3864 xpt_release_path(&bus_path); 3865 3866 return (CAM_REQ_CMP); 3867 } 3868 3869 static path_id_t 3870 xptnextfreepathid(void) 3871 { 3872 struct cam_eb *bus; 3873 path_id_t pathid; 3874 const char *strval; 3875 3876 pathid = 0; 3877 mtx_lock(&xsoftc.xpt_topo_lock); 3878 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3879 retry: 3880 /* Find an unoccupied pathid */ 3881 while (bus != NULL && bus->path_id <= pathid) { 3882 if (bus->path_id == pathid) 3883 pathid++; 3884 bus = TAILQ_NEXT(bus, links); 3885 } 3886 mtx_unlock(&xsoftc.xpt_topo_lock); 3887 3888 /* 3889 * Ensure that this pathid is not reserved for 3890 * a bus that may be registered in the future. 3891 */ 3892 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3893 ++pathid; 3894 /* Start the search over */ 3895 mtx_lock(&xsoftc.xpt_topo_lock); 3896 goto retry; 3897 } 3898 return (pathid); 3899 } 3900 3901 static path_id_t 3902 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3903 { 3904 path_id_t pathid; 3905 int i, dunit, val; 3906 char buf[32]; 3907 const char *dname; 3908 3909 pathid = CAM_XPT_PATH_ID; 3910 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3911 i = 0; 3912 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3913 if (strcmp(dname, "scbus")) { 3914 /* Avoid a bit of foot shooting. */ 3915 continue; 3916 } 3917 if (dunit < 0) /* unwired?! */ 3918 continue; 3919 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 3920 if (sim_bus == val) { 3921 pathid = dunit; 3922 break; 3923 } 3924 } else if (sim_bus == 0) { 3925 /* Unspecified matches bus 0 */ 3926 pathid = dunit; 3927 break; 3928 } else { 3929 printf("Ambiguous scbus configuration for %s%d " 3930 "bus %d, cannot wire down. The kernel " 3931 "config entry for scbus%d should " 3932 "specify a controller bus.\n" 3933 "Scbus will be assigned dynamically.\n", 3934 sim_name, sim_unit, sim_bus, dunit); 3935 break; 3936 } 3937 } 3938 3939 if (pathid == CAM_XPT_PATH_ID) 3940 pathid = xptnextfreepathid(); 3941 return (pathid); 3942 } 3943 3944 void 3945 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 3946 { 3947 struct cam_eb *bus; 3948 struct cam_et *target, *next_target; 3949 struct cam_ed *device, *next_device; 3950 3951 mtx_assert(path->bus->sim->mtx, MA_OWNED); 3952 3953 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n")); 3954 3955 /* 3956 * Most async events come from a CAM interrupt context. In 3957 * a few cases, the error recovery code at the peripheral layer, 3958 * which may run from our SWI or a process context, may signal 3959 * deferred events with a call to xpt_async. 3960 */ 3961 3962 bus = path->bus; 3963 3964 if (async_code == AC_BUS_RESET) { 3965 /* Update our notion of when the last reset occurred */ 3966 microtime(&bus->last_reset); 3967 } 3968 3969 for (target = TAILQ_FIRST(&bus->et_entries); 3970 target != NULL; 3971 target = next_target) { 3972 3973 next_target = TAILQ_NEXT(target, links); 3974 3975 if (path->target != target 3976 && path->target->target_id != CAM_TARGET_WILDCARD 3977 && target->target_id != CAM_TARGET_WILDCARD) 3978 continue; 3979 3980 if (async_code == AC_SENT_BDR) { 3981 /* Update our notion of when the last reset occurred */ 3982 microtime(&path->target->last_reset); 3983 } 3984 3985 for (device = TAILQ_FIRST(&target->ed_entries); 3986 device != NULL; 3987 device = next_device) { 3988 3989 next_device = TAILQ_NEXT(device, links); 3990 3991 if (path->device != device 3992 && path->device->lun_id != CAM_LUN_WILDCARD 3993 && device->lun_id != CAM_LUN_WILDCARD) 3994 continue; 3995 /* 3996 * The async callback could free the device. 3997 * If it is a broadcast async, it doesn't hold 3998 * device reference, so take our own reference. 3999 */ 4000 xpt_acquire_device(device); 4001 (*(bus->xport->async))(async_code, bus, 4002 target, device, 4003 async_arg); 4004 4005 xpt_async_bcast(&device->asyncs, async_code, 4006 path, async_arg); 4007 xpt_release_device(device); 4008 } 4009 } 4010 4011 /* 4012 * If this wasn't a fully wildcarded async, tell all 4013 * clients that want all async events. 4014 */ 4015 if (bus != xpt_periph->path->bus) 4016 xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code, 4017 path, async_arg); 4018 } 4019 4020 static void 4021 xpt_async_bcast(struct async_list *async_head, 4022 u_int32_t async_code, 4023 struct cam_path *path, void *async_arg) 4024 { 4025 struct async_node *cur_entry; 4026 4027 cur_entry = SLIST_FIRST(async_head); 4028 while (cur_entry != NULL) { 4029 struct async_node *next_entry; 4030 /* 4031 * Grab the next list entry before we call the current 4032 * entry's callback. This is because the callback function 4033 * can delete its async callback entry. 4034 */ 4035 next_entry = SLIST_NEXT(cur_entry, links); 4036 if ((cur_entry->event_enable & async_code) != 0) 4037 cur_entry->callback(cur_entry->callback_arg, 4038 async_code, path, 4039 async_arg); 4040 cur_entry = next_entry; 4041 } 4042 } 4043 4044 static void 4045 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4046 struct cam_et *target, struct cam_ed *device, 4047 void *async_arg) 4048 { 4049 printf("%s called\n", __func__); 4050 } 4051 4052 u_int32_t 4053 xpt_freeze_devq_rl(struct cam_path *path, cam_rl rl, u_int count) 4054 { 4055 struct cam_ed *dev = path->device; 4056 4057 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4058 dev->sim->devq->alloc_openings += 4059 cam_ccbq_freeze(&dev->ccbq, rl, count); 4060 /* Remove frozen device from allocq. */ 4061 if (device_is_alloc_queued(dev) && 4062 cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4063 CAMQ_GET_PRIO(&dev->drvq)))) { 4064 camq_remove(&dev->sim->devq->alloc_queue, 4065 dev->alloc_ccb_entry.pinfo.index); 4066 } 4067 /* Remove frozen device from sendq. */ 4068 if (device_is_send_queued(dev) && 4069 cam_ccbq_frozen_top(&dev->ccbq)) { 4070 camq_remove(&dev->sim->devq->send_queue, 4071 dev->send_ccb_entry.pinfo.index); 4072 } 4073 return (dev->ccbq.queue.qfrozen_cnt[rl]); 4074 } 4075 4076 u_int32_t 4077 xpt_freeze_devq(struct cam_path *path, u_int count) 4078 { 4079 4080 return (xpt_freeze_devq_rl(path, 0, count)); 4081 } 4082 4083 u_int32_t 4084 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4085 { 4086 4087 mtx_assert(sim->mtx, MA_OWNED); 4088 sim->devq->send_queue.qfrozen_cnt[0] += count; 4089 return (sim->devq->send_queue.qfrozen_cnt[0]); 4090 } 4091 4092 static void 4093 xpt_release_devq_timeout(void *arg) 4094 { 4095 struct cam_ed *device; 4096 4097 device = (struct cam_ed *)arg; 4098 4099 xpt_release_devq_device(device, /*rl*/0, /*count*/1, /*run_queue*/TRUE); 4100 } 4101 4102 void 4103 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4104 { 4105 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4106 4107 xpt_release_devq_device(path->device, /*rl*/0, count, run_queue); 4108 } 4109 4110 void 4111 xpt_release_devq_rl(struct cam_path *path, cam_rl rl, u_int count, int run_queue) 4112 { 4113 mtx_assert(path->bus->sim->mtx, MA_OWNED); 4114 4115 xpt_release_devq_device(path->device, rl, count, run_queue); 4116 } 4117 4118 static void 4119 xpt_release_devq_device(struct cam_ed *dev, cam_rl rl, u_int count, int run_queue) 4120 { 4121 4122 if (count > dev->ccbq.queue.qfrozen_cnt[rl]) { 4123 #ifdef INVARIANTS 4124 printf("xpt_release_devq(%d): requested %u > present %u\n", 4125 rl, count, dev->ccbq.queue.qfrozen_cnt[rl]); 4126 #endif 4127 count = dev->ccbq.queue.qfrozen_cnt[rl]; 4128 } 4129 dev->sim->devq->alloc_openings -= 4130 cam_ccbq_release(&dev->ccbq, rl, count); 4131 if (cam_ccbq_frozen(&dev->ccbq, CAM_PRIORITY_TO_RL( 4132 CAMQ_GET_PRIO(&dev->drvq))) == 0) { 4133 if (xpt_schedule_dev_allocq(dev->target->bus, dev)) 4134 xpt_run_dev_allocq(dev->target->bus); 4135 } 4136 if (cam_ccbq_frozen_top(&dev->ccbq) == 0) { 4137 /* 4138 * No longer need to wait for a successful 4139 * command completion. 4140 */ 4141 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4142 /* 4143 * Remove any timeouts that might be scheduled 4144 * to release this queue. 4145 */ 4146 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4147 callout_stop(&dev->callout); 4148 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4149 } 4150 if (run_queue == 0) 4151 return; 4152 /* 4153 * Now that we are unfrozen schedule the 4154 * device so any pending transactions are 4155 * run. 4156 */ 4157 if (xpt_schedule_dev_sendq(dev->target->bus, dev)) 4158 xpt_run_dev_sendq(dev->target->bus); 4159 } 4160 } 4161 4162 void 4163 xpt_release_simq(struct cam_sim *sim, int run_queue) 4164 { 4165 struct camq *sendq; 4166 4167 mtx_assert(sim->mtx, MA_OWNED); 4168 sendq = &(sim->devq->send_queue); 4169 if (sendq->qfrozen_cnt[0] <= 0) { 4170 #ifdef INVARIANTS 4171 printf("xpt_release_simq: requested 1 > present %u\n", 4172 sendq->qfrozen_cnt[0]); 4173 #endif 4174 } else 4175 sendq->qfrozen_cnt[0]--; 4176 if (sendq->qfrozen_cnt[0] == 0) { 4177 /* 4178 * If there is a timeout scheduled to release this 4179 * sim queue, remove it. The queue frozen count is 4180 * already at 0. 4181 */ 4182 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4183 callout_stop(&sim->callout); 4184 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4185 } 4186 if (run_queue) { 4187 struct cam_eb *bus; 4188 4189 /* 4190 * Now that we are unfrozen run the send queue. 4191 */ 4192 bus = xpt_find_bus(sim->path_id); 4193 xpt_run_dev_sendq(bus); 4194 xpt_release_bus(bus); 4195 } 4196 } 4197 } 4198 4199 /* 4200 * XXX Appears to be unused. 4201 */ 4202 static void 4203 xpt_release_simq_timeout(void *arg) 4204 { 4205 struct cam_sim *sim; 4206 4207 sim = (struct cam_sim *)arg; 4208 xpt_release_simq(sim, /* run_queue */ TRUE); 4209 } 4210 4211 void 4212 xpt_done(union ccb *done_ccb) 4213 { 4214 struct cam_sim *sim; 4215 int first; 4216 4217 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4218 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) { 4219 /* 4220 * Queue up the request for handling by our SWI handler 4221 * any of the "non-immediate" type of ccbs. 4222 */ 4223 sim = done_ccb->ccb_h.path->bus->sim; 4224 TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h, 4225 sim_links.tqe); 4226 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4227 if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) { 4228 mtx_lock(&cam_simq_lock); 4229 first = TAILQ_EMPTY(&cam_simq); 4230 TAILQ_INSERT_TAIL(&cam_simq, sim, links); 4231 mtx_unlock(&cam_simq_lock); 4232 sim->flags |= CAM_SIM_ON_DONEQ; 4233 if (first) 4234 swi_sched(cambio_ih, 0); 4235 } 4236 } 4237 } 4238 4239 union ccb * 4240 xpt_alloc_ccb() 4241 { 4242 union ccb *new_ccb; 4243 4244 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK); 4245 return (new_ccb); 4246 } 4247 4248 union ccb * 4249 xpt_alloc_ccb_nowait() 4250 { 4251 union ccb *new_ccb; 4252 4253 new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT); 4254 return (new_ccb); 4255 } 4256 4257 void 4258 xpt_free_ccb(union ccb *free_ccb) 4259 { 4260 free(free_ccb, M_CAMXPT); 4261 } 4262 4263 4264 4265 /* Private XPT functions */ 4266 4267 /* 4268 * Get a CAM control block for the caller. Charge the structure to the device 4269 * referenced by the path. If the this device has no 'credits' then the 4270 * device already has the maximum number of outstanding operations under way 4271 * and we return NULL. If we don't have sufficient resources to allocate more 4272 * ccbs, we also return NULL. 4273 */ 4274 static union ccb * 4275 xpt_get_ccb(struct cam_ed *device) 4276 { 4277 union ccb *new_ccb; 4278 struct cam_sim *sim; 4279 4280 sim = device->sim; 4281 if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) { 4282 new_ccb = xpt_alloc_ccb_nowait(); 4283 if (new_ccb == NULL) { 4284 return (NULL); 4285 } 4286 if ((sim->flags & CAM_SIM_MPSAFE) == 0) 4287 callout_handle_init(&new_ccb->ccb_h.timeout_ch); 4288 SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h, 4289 xpt_links.sle); 4290 sim->ccb_count++; 4291 } 4292 cam_ccbq_take_opening(&device->ccbq); 4293 SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle); 4294 return (new_ccb); 4295 } 4296 4297 static void 4298 xpt_release_bus(struct cam_eb *bus) 4299 { 4300 4301 mtx_lock(&xsoftc.xpt_topo_lock); 4302 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4303 if ((--bus->refcount == 0) 4304 && (TAILQ_FIRST(&bus->et_entries) == NULL)) { 4305 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4306 xsoftc.bus_generation++; 4307 mtx_unlock(&xsoftc.xpt_topo_lock); 4308 cam_sim_release(bus->sim); 4309 free(bus, M_CAMXPT); 4310 } else 4311 mtx_unlock(&xsoftc.xpt_topo_lock); 4312 } 4313 4314 static struct cam_et * 4315 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4316 { 4317 struct cam_et *target; 4318 4319 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4320 M_NOWAIT|M_ZERO); 4321 if (target != NULL) { 4322 struct cam_et *cur_target; 4323 4324 TAILQ_INIT(&target->ed_entries); 4325 target->bus = bus; 4326 target->target_id = target_id; 4327 target->refcount = 1; 4328 target->generation = 0; 4329 target->luns = NULL; 4330 timevalclear(&target->last_reset); 4331 /* 4332 * Hold a reference to our parent bus so it 4333 * will not go away before we do. 4334 */ 4335 mtx_lock(&xsoftc.xpt_topo_lock); 4336 bus->refcount++; 4337 mtx_unlock(&xsoftc.xpt_topo_lock); 4338 4339 /* Insertion sort into our bus's target list */ 4340 cur_target = TAILQ_FIRST(&bus->et_entries); 4341 while (cur_target != NULL && cur_target->target_id < target_id) 4342 cur_target = TAILQ_NEXT(cur_target, links); 4343 4344 if (cur_target != NULL) { 4345 TAILQ_INSERT_BEFORE(cur_target, target, links); 4346 } else { 4347 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4348 } 4349 bus->generation++; 4350 } 4351 return (target); 4352 } 4353 4354 static void 4355 xpt_release_target(struct cam_et *target) 4356 { 4357 4358 if (target->refcount == 1) { 4359 if (TAILQ_FIRST(&target->ed_entries) == NULL) { 4360 TAILQ_REMOVE(&target->bus->et_entries, target, links); 4361 target->bus->generation++; 4362 xpt_release_bus(target->bus); 4363 if (target->luns) 4364 free(target->luns, M_CAMXPT); 4365 free(target, M_CAMXPT); 4366 } 4367 } else 4368 target->refcount--; 4369 } 4370 4371 static struct cam_ed * 4372 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4373 lun_id_t lun_id) 4374 { 4375 struct cam_ed *device, *cur_device; 4376 4377 device = xpt_alloc_device(bus, target, lun_id); 4378 if (device == NULL) 4379 return (NULL); 4380 4381 device->mintags = 1; 4382 device->maxtags = 1; 4383 bus->sim->max_ccbs += device->ccbq.devq_openings; 4384 cur_device = TAILQ_FIRST(&target->ed_entries); 4385 while (cur_device != NULL && cur_device->lun_id < lun_id) 4386 cur_device = TAILQ_NEXT(cur_device, links); 4387 if (cur_device != NULL) { 4388 TAILQ_INSERT_BEFORE(cur_device, device, links); 4389 } else { 4390 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4391 } 4392 target->generation++; 4393 4394 return (device); 4395 } 4396 4397 struct cam_ed * 4398 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4399 { 4400 struct cam_ed *device; 4401 struct cam_devq *devq; 4402 cam_status status; 4403 4404 /* Make space for us in the device queue on our bus */ 4405 devq = bus->sim->devq; 4406 status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1); 4407 4408 if (status != CAM_REQ_CMP) { 4409 device = NULL; 4410 } else { 4411 device = (struct cam_ed *)malloc(sizeof(*device), 4412 M_CAMXPT, M_NOWAIT|M_ZERO); 4413 } 4414 4415 if (device != NULL) { 4416 cam_init_pinfo(&device->alloc_ccb_entry.pinfo); 4417 device->alloc_ccb_entry.device = device; 4418 cam_init_pinfo(&device->send_ccb_entry.pinfo); 4419 device->send_ccb_entry.device = device; 4420 device->target = target; 4421 device->lun_id = lun_id; 4422 device->sim = bus->sim; 4423 /* Initialize our queues */ 4424 if (camq_init(&device->drvq, 0) != 0) { 4425 free(device, M_CAMXPT); 4426 return (NULL); 4427 } 4428 if (cam_ccbq_init(&device->ccbq, 4429 bus->sim->max_dev_openings) != 0) { 4430 camq_fini(&device->drvq); 4431 free(device, M_CAMXPT); 4432 return (NULL); 4433 } 4434 SLIST_INIT(&device->asyncs); 4435 SLIST_INIT(&device->periphs); 4436 device->generation = 0; 4437 device->owner = NULL; 4438 device->flags = CAM_DEV_UNCONFIGURED; 4439 device->tag_delay_count = 0; 4440 device->tag_saved_openings = 0; 4441 device->refcount = 1; 4442 callout_init_mtx(&device->callout, bus->sim->mtx, 0); 4443 4444 /* 4445 * Hold a reference to our parent target so it 4446 * will not go away before we do. 4447 */ 4448 target->refcount++; 4449 4450 } 4451 return (device); 4452 } 4453 4454 void 4455 xpt_acquire_device(struct cam_ed *device) 4456 { 4457 4458 device->refcount++; 4459 } 4460 4461 void 4462 xpt_release_device(struct cam_ed *device) 4463 { 4464 4465 if (device->refcount == 1) { 4466 struct cam_devq *devq; 4467 4468 if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX 4469 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX) 4470 panic("Removing device while still queued for ccbs"); 4471 4472 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4473 callout_stop(&device->callout); 4474 4475 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4476 device->target->generation++; 4477 device->target->bus->sim->max_ccbs -= device->ccbq.devq_openings; 4478 /* Release our slot in the devq */ 4479 devq = device->target->bus->sim->devq; 4480 cam_devq_resize(devq, devq->alloc_queue.array_size - 1); 4481 camq_fini(&device->drvq); 4482 cam_ccbq_fini(&device->ccbq); 4483 xpt_release_target(device->target); 4484 free(device, M_CAMXPT); 4485 } else 4486 device->refcount--; 4487 } 4488 4489 u_int32_t 4490 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4491 { 4492 int diff; 4493 int result; 4494 struct cam_ed *dev; 4495 4496 dev = path->device; 4497 4498 diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings); 4499 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4500 if (result == CAM_REQ_CMP && (diff < 0)) { 4501 dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED; 4502 } 4503 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4504 || (dev->inq_flags & SID_CmdQue) != 0) 4505 dev->tag_saved_openings = newopenings; 4506 /* Adjust the global limit */ 4507 dev->sim->max_ccbs += diff; 4508 return (result); 4509 } 4510 4511 static struct cam_eb * 4512 xpt_find_bus(path_id_t path_id) 4513 { 4514 struct cam_eb *bus; 4515 4516 mtx_lock(&xsoftc.xpt_topo_lock); 4517 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4518 bus != NULL; 4519 bus = TAILQ_NEXT(bus, links)) { 4520 if (bus->path_id == path_id) { 4521 bus->refcount++; 4522 break; 4523 } 4524 } 4525 mtx_unlock(&xsoftc.xpt_topo_lock); 4526 return (bus); 4527 } 4528 4529 static struct cam_et * 4530 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4531 { 4532 struct cam_et *target; 4533 4534 for (target = TAILQ_FIRST(&bus->et_entries); 4535 target != NULL; 4536 target = TAILQ_NEXT(target, links)) { 4537 if (target->target_id == target_id) { 4538 target->refcount++; 4539 break; 4540 } 4541 } 4542 return (target); 4543 } 4544 4545 static struct cam_ed * 4546 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4547 { 4548 struct cam_ed *device; 4549 4550 for (device = TAILQ_FIRST(&target->ed_entries); 4551 device != NULL; 4552 device = TAILQ_NEXT(device, links)) { 4553 if (device->lun_id == lun_id) { 4554 device->refcount++; 4555 break; 4556 } 4557 } 4558 return (device); 4559 } 4560 4561 void 4562 xpt_start_tags(struct cam_path *path) 4563 { 4564 struct ccb_relsim crs; 4565 struct cam_ed *device; 4566 struct cam_sim *sim; 4567 int newopenings; 4568 4569 device = path->device; 4570 sim = path->bus->sim; 4571 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4572 xpt_freeze_devq(path, /*count*/1); 4573 device->inq_flags |= SID_CmdQue; 4574 if (device->tag_saved_openings != 0) 4575 newopenings = device->tag_saved_openings; 4576 else 4577 newopenings = min(device->maxtags, 4578 sim->max_tagged_dev_openings); 4579 xpt_dev_ccbq_resize(path, newopenings); 4580 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4581 crs.ccb_h.func_code = XPT_REL_SIMQ; 4582 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4583 crs.openings 4584 = crs.release_timeout 4585 = crs.qfrozen_cnt 4586 = 0; 4587 xpt_action((union ccb *)&crs); 4588 } 4589 4590 void 4591 xpt_stop_tags(struct cam_path *path) 4592 { 4593 struct ccb_relsim crs; 4594 struct cam_ed *device; 4595 struct cam_sim *sim; 4596 4597 device = path->device; 4598 sim = path->bus->sim; 4599 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4600 device->tag_delay_count = 0; 4601 xpt_freeze_devq(path, /*count*/1); 4602 device->inq_flags &= ~SID_CmdQue; 4603 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4604 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4605 crs.ccb_h.func_code = XPT_REL_SIMQ; 4606 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4607 crs.openings 4608 = crs.release_timeout 4609 = crs.qfrozen_cnt 4610 = 0; 4611 xpt_action((union ccb *)&crs); 4612 } 4613 4614 static void 4615 xpt_boot_delay(void *arg) 4616 { 4617 4618 xpt_release_boot(); 4619 } 4620 4621 static void 4622 xpt_config(void *arg) 4623 { 4624 /* 4625 * Now that interrupts are enabled, go find our devices 4626 */ 4627 4628 #ifdef CAMDEBUG 4629 /* Setup debugging flags and path */ 4630 #ifdef CAM_DEBUG_BUS 4631 if (cam_dflags != CAM_DEBUG_NONE) { 4632 /* 4633 * Locking is specifically omitted here. No SIMs have 4634 * registered yet, so xpt_create_path will only be searching 4635 * empty lists of targets and devices. 4636 */ 4637 if (xpt_create_path(&cam_dpath, xpt_periph, 4638 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4639 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4640 printf("xpt_config: xpt_create_path() failed for debug" 4641 " target %d:%d:%d, debugging disabled\n", 4642 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4643 cam_dflags = CAM_DEBUG_NONE; 4644 } 4645 } else 4646 cam_dpath = NULL; 4647 #else /* !CAM_DEBUG_BUS */ 4648 cam_dpath = NULL; 4649 #endif /* CAM_DEBUG_BUS */ 4650 #endif /* CAMDEBUG */ 4651 4652 periphdriver_init(1); 4653 xpt_hold_boot(); 4654 callout_init(&xsoftc.boot_callout, 1); 4655 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4656 xpt_boot_delay, NULL); 4657 /* Fire up rescan thread. */ 4658 if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) { 4659 printf("xpt_config: failed to create rescan thread.\n"); 4660 } 4661 } 4662 4663 void 4664 xpt_hold_boot(void) 4665 { 4666 xpt_lock_buses(); 4667 xsoftc.buses_to_config++; 4668 xpt_unlock_buses(); 4669 } 4670 4671 void 4672 xpt_release_boot(void) 4673 { 4674 xpt_lock_buses(); 4675 xsoftc.buses_to_config--; 4676 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4677 struct xpt_task *task; 4678 4679 xsoftc.buses_config_done = 1; 4680 xpt_unlock_buses(); 4681 /* Call manually because we don't have any busses */ 4682 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4683 if (task != NULL) { 4684 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4685 taskqueue_enqueue(taskqueue_thread, &task->task); 4686 } 4687 } else 4688 xpt_unlock_buses(); 4689 } 4690 4691 /* 4692 * If the given device only has one peripheral attached to it, and if that 4693 * peripheral is the passthrough driver, announce it. This insures that the 4694 * user sees some sort of announcement for every peripheral in their system. 4695 */ 4696 static int 4697 xptpassannouncefunc(struct cam_ed *device, void *arg) 4698 { 4699 struct cam_periph *periph; 4700 int i; 4701 4702 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4703 periph = SLIST_NEXT(periph, periph_links), i++); 4704 4705 periph = SLIST_FIRST(&device->periphs); 4706 if ((i == 1) 4707 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4708 xpt_announce_periph(periph, NULL); 4709 4710 return(1); 4711 } 4712 4713 static void 4714 xpt_finishconfig_task(void *context, int pending) 4715 { 4716 4717 periphdriver_init(2); 4718 /* 4719 * Check for devices with no "standard" peripheral driver 4720 * attached. For any devices like that, announce the 4721 * passthrough driver so the user will see something. 4722 */ 4723 xpt_for_all_devices(xptpassannouncefunc, NULL); 4724 4725 /* Release our hook so that the boot can continue. */ 4726 config_intrhook_disestablish(xsoftc.xpt_config_hook); 4727 free(xsoftc.xpt_config_hook, M_CAMXPT); 4728 xsoftc.xpt_config_hook = NULL; 4729 4730 free(context, M_CAMXPT); 4731 } 4732 4733 cam_status 4734 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 4735 struct cam_path *path) 4736 { 4737 struct ccb_setasync csa; 4738 cam_status status; 4739 int xptpath = 0; 4740 4741 if (path == NULL) { 4742 mtx_lock(&xsoftc.xpt_lock); 4743 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 4744 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4745 if (status != CAM_REQ_CMP) { 4746 mtx_unlock(&xsoftc.xpt_lock); 4747 return (status); 4748 } 4749 xptpath = 1; 4750 } 4751 4752 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 4753 csa.ccb_h.func_code = XPT_SASYNC_CB; 4754 csa.event_enable = event; 4755 csa.callback = cbfunc; 4756 csa.callback_arg = cbarg; 4757 xpt_action((union ccb *)&csa); 4758 status = csa.ccb_h.status; 4759 4760 if (xptpath) { 4761 xpt_free_path(path); 4762 mtx_unlock(&xsoftc.xpt_lock); 4763 } 4764 4765 if ((status == CAM_REQ_CMP) && 4766 (csa.event_enable & AC_FOUND_DEVICE)) { 4767 /* 4768 * Get this peripheral up to date with all 4769 * the currently existing devices. 4770 */ 4771 xpt_for_all_devices(xptsetasyncfunc, &csa); 4772 } 4773 if ((status == CAM_REQ_CMP) && 4774 (csa.event_enable & AC_PATH_REGISTERED)) { 4775 /* 4776 * Get this peripheral up to date with all 4777 * the currently existing busses. 4778 */ 4779 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 4780 } 4781 4782 return (status); 4783 } 4784 4785 static void 4786 xptaction(struct cam_sim *sim, union ccb *work_ccb) 4787 { 4788 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 4789 4790 switch (work_ccb->ccb_h.func_code) { 4791 /* Common cases first */ 4792 case XPT_PATH_INQ: /* Path routing inquiry */ 4793 { 4794 struct ccb_pathinq *cpi; 4795 4796 cpi = &work_ccb->cpi; 4797 cpi->version_num = 1; /* XXX??? */ 4798 cpi->hba_inquiry = 0; 4799 cpi->target_sprt = 0; 4800 cpi->hba_misc = 0; 4801 cpi->hba_eng_cnt = 0; 4802 cpi->max_target = 0; 4803 cpi->max_lun = 0; 4804 cpi->initiator_id = 0; 4805 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 4806 strncpy(cpi->hba_vid, "", HBA_IDLEN); 4807 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 4808 cpi->unit_number = sim->unit_number; 4809 cpi->bus_id = sim->bus_id; 4810 cpi->base_transfer_speed = 0; 4811 cpi->protocol = PROTO_UNSPECIFIED; 4812 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 4813 cpi->transport = XPORT_UNSPECIFIED; 4814 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 4815 cpi->ccb_h.status = CAM_REQ_CMP; 4816 xpt_done(work_ccb); 4817 break; 4818 } 4819 default: 4820 work_ccb->ccb_h.status = CAM_REQ_INVALID; 4821 xpt_done(work_ccb); 4822 break; 4823 } 4824 } 4825 4826 /* 4827 * The xpt as a "controller" has no interrupt sources, so polling 4828 * is a no-op. 4829 */ 4830 static void 4831 xptpoll(struct cam_sim *sim) 4832 { 4833 } 4834 4835 void 4836 xpt_lock_buses(void) 4837 { 4838 mtx_lock(&xsoftc.xpt_topo_lock); 4839 } 4840 4841 void 4842 xpt_unlock_buses(void) 4843 { 4844 mtx_unlock(&xsoftc.xpt_topo_lock); 4845 } 4846 4847 static void 4848 camisr(void *dummy) 4849 { 4850 cam_simq_t queue; 4851 struct cam_sim *sim; 4852 4853 mtx_lock(&cam_simq_lock); 4854 TAILQ_INIT(&queue); 4855 while (!TAILQ_EMPTY(&cam_simq)) { 4856 TAILQ_CONCAT(&queue, &cam_simq, links); 4857 mtx_unlock(&cam_simq_lock); 4858 4859 while ((sim = TAILQ_FIRST(&queue)) != NULL) { 4860 TAILQ_REMOVE(&queue, sim, links); 4861 CAM_SIM_LOCK(sim); 4862 sim->flags &= ~CAM_SIM_ON_DONEQ; 4863 camisr_runqueue(&sim->sim_doneq); 4864 CAM_SIM_UNLOCK(sim); 4865 } 4866 mtx_lock(&cam_simq_lock); 4867 } 4868 mtx_unlock(&cam_simq_lock); 4869 } 4870 4871 static void 4872 camisr_runqueue(void *V_queue) 4873 { 4874 cam_isrq_t *queue = V_queue; 4875 struct ccb_hdr *ccb_h; 4876 4877 while ((ccb_h = TAILQ_FIRST(queue)) != NULL) { 4878 int runq; 4879 4880 TAILQ_REMOVE(queue, ccb_h, sim_links.tqe); 4881 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 4882 4883 CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE, 4884 ("camisr\n")); 4885 4886 runq = FALSE; 4887 4888 if (ccb_h->flags & CAM_HIGH_POWER) { 4889 struct highpowerlist *hphead; 4890 union ccb *send_ccb; 4891 4892 mtx_lock(&xsoftc.xpt_lock); 4893 hphead = &xsoftc.highpowerq; 4894 4895 send_ccb = (union ccb *)STAILQ_FIRST(hphead); 4896 4897 /* 4898 * Increment the count since this command is done. 4899 */ 4900 xsoftc.num_highpower++; 4901 4902 /* 4903 * Any high powered commands queued up? 4904 */ 4905 if (send_ccb != NULL) { 4906 4907 STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe); 4908 mtx_unlock(&xsoftc.xpt_lock); 4909 4910 xpt_release_devq(send_ccb->ccb_h.path, 4911 /*count*/1, /*runqueue*/TRUE); 4912 } else 4913 mtx_unlock(&xsoftc.xpt_lock); 4914 } 4915 4916 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 4917 struct cam_ed *dev; 4918 4919 dev = ccb_h->path->device; 4920 4921 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 4922 ccb_h->path->bus->sim->devq->send_active--; 4923 ccb_h->path->bus->sim->devq->send_openings++; 4924 runq = TRUE; 4925 4926 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 4927 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ) 4928 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 4929 && (dev->ccbq.dev_active == 0))) { 4930 xpt_release_devq(ccb_h->path, /*count*/1, 4931 /*run_queue*/FALSE); 4932 } 4933 4934 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4935 && (--dev->tag_delay_count == 0)) 4936 xpt_start_tags(ccb_h->path); 4937 if (!device_is_send_queued(dev)) { 4938 (void)xpt_schedule_dev_sendq(ccb_h->path->bus, 4939 dev); 4940 } 4941 } 4942 4943 if (ccb_h->status & CAM_RELEASE_SIMQ) { 4944 xpt_release_simq(ccb_h->path->bus->sim, 4945 /*run_queue*/TRUE); 4946 ccb_h->status &= ~CAM_RELEASE_SIMQ; 4947 runq = FALSE; 4948 } 4949 4950 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 4951 && (ccb_h->status & CAM_DEV_QFRZN)) { 4952 xpt_release_devq(ccb_h->path, /*count*/1, 4953 /*run_queue*/TRUE); 4954 ccb_h->status &= ~CAM_DEV_QFRZN; 4955 } else if (runq) { 4956 xpt_run_dev_sendq(ccb_h->path->bus); 4957 } 4958 4959 /* Call the peripheral driver's callback */ 4960 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 4961 } 4962 } 4963