1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 5 * 6 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 7 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions, and the following disclaimer, 15 * without modification, immediately at the beginning of the file. 16 * 2. The name of the author may not be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include "opt_printf.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/bio.h> 39 #include <sys/bus.h> 40 #include <sys/systm.h> 41 #include <sys/types.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/time.h> 45 #include <sys/conf.h> 46 #include <sys/fcntl.h> 47 #include <sys/interrupt.h> 48 #include <sys/proc.h> 49 #include <sys/sbuf.h> 50 #include <sys/smp.h> 51 #include <sys/taskqueue.h> 52 53 #include <sys/lock.h> 54 #include <sys/mutex.h> 55 #include <sys/sysctl.h> 56 #include <sys/kthread.h> 57 58 #include <cam/cam.h> 59 #include <cam/cam_ccb.h> 60 #include <cam/cam_iosched.h> 61 #include <cam/cam_periph.h> 62 #include <cam/cam_queue.h> 63 #include <cam/cam_sim.h> 64 #include <cam/cam_xpt.h> 65 #include <cam/cam_xpt_sim.h> 66 #include <cam/cam_xpt_periph.h> 67 #include <cam/cam_xpt_internal.h> 68 #include <cam/cam_debug.h> 69 #include <cam/cam_compat.h> 70 71 #include <cam/scsi/scsi_all.h> 72 #include <cam/scsi/scsi_message.h> 73 #include <cam/scsi/scsi_pass.h> 74 75 #include <machine/md_var.h> /* geometry translation */ 76 #include <machine/stdarg.h> /* for xpt_print below */ 77 78 #include "opt_cam.h" 79 80 /* Wild guess based on not wanting to grow the stack too much */ 81 #define XPT_PRINT_MAXLEN 512 82 #ifdef PRINTF_BUFR_SIZE 83 #define XPT_PRINT_LEN PRINTF_BUFR_SIZE 84 #else 85 #define XPT_PRINT_LEN 128 86 #endif 87 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large"); 88 89 /* 90 * This is the maximum number of high powered commands (e.g. start unit) 91 * that can be outstanding at a particular time. 92 */ 93 #ifndef CAM_MAX_HIGHPOWER 94 #define CAM_MAX_HIGHPOWER 4 95 #endif 96 97 /* Datastructures internal to the xpt layer */ 98 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 99 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 100 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 101 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 102 103 /* Object for defering XPT actions to a taskqueue */ 104 struct xpt_task { 105 struct task task; 106 void *data1; 107 uintptr_t data2; 108 }; 109 110 struct xpt_softc { 111 uint32_t xpt_generation; 112 113 /* number of high powered commands that can go through right now */ 114 struct mtx xpt_highpower_lock; 115 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 116 int num_highpower; 117 118 /* queue for handling async rescan requests. */ 119 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 120 int buses_to_config; 121 int buses_config_done; 122 int announce_nosbuf; 123 124 /* 125 * Registered buses 126 * 127 * N.B., "busses" is an archaic spelling of "buses". In new code 128 * "buses" is preferred. 129 */ 130 TAILQ_HEAD(,cam_eb) xpt_busses; 131 u_int bus_generation; 132 133 struct intr_config_hook *xpt_config_hook; 134 135 int boot_delay; 136 struct callout boot_callout; 137 138 struct mtx xpt_topo_lock; 139 struct mtx xpt_lock; 140 struct taskqueue *xpt_taskq; 141 }; 142 143 typedef enum { 144 DM_RET_COPY = 0x01, 145 DM_RET_FLAG_MASK = 0x0f, 146 DM_RET_NONE = 0x00, 147 DM_RET_STOP = 0x10, 148 DM_RET_DESCEND = 0x20, 149 DM_RET_ERROR = 0x30, 150 DM_RET_ACTION_MASK = 0xf0 151 } dev_match_ret; 152 153 typedef enum { 154 XPT_DEPTH_BUS, 155 XPT_DEPTH_TARGET, 156 XPT_DEPTH_DEVICE, 157 XPT_DEPTH_PERIPH 158 } xpt_traverse_depth; 159 160 struct xpt_traverse_config { 161 xpt_traverse_depth depth; 162 void *tr_func; 163 void *tr_arg; 164 }; 165 166 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 167 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 168 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 169 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 170 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 171 172 /* Transport layer configuration information */ 173 static struct xpt_softc xsoftc; 174 175 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF); 176 177 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 178 &xsoftc.boot_delay, 0, "Bus registration wait time"); 179 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD, 180 &xsoftc.xpt_generation, 0, "CAM peripheral generation count"); 181 SYSCTL_INT(_kern_cam, OID_AUTO, announce_nosbuf, CTLFLAG_RWTUN, 182 &xsoftc.announce_nosbuf, 0, "Don't use sbuf for announcements"); 183 184 struct cam_doneq { 185 struct mtx_padalign cam_doneq_mtx; 186 STAILQ_HEAD(, ccb_hdr) cam_doneq; 187 int cam_doneq_sleep; 188 }; 189 190 static struct cam_doneq cam_doneqs[MAXCPU]; 191 static int cam_num_doneqs; 192 static struct proc *cam_proc; 193 194 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 195 &cam_num_doneqs, 0, "Number of completion queues/threads"); 196 197 struct cam_periph *xpt_periph; 198 199 static periph_init_t xpt_periph_init; 200 201 static struct periph_driver xpt_driver = 202 { 203 xpt_periph_init, "xpt", 204 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 205 CAM_PERIPH_DRV_EARLY 206 }; 207 208 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 209 210 static d_open_t xptopen; 211 static d_close_t xptclose; 212 static d_ioctl_t xptioctl; 213 static d_ioctl_t xptdoioctl; 214 215 static struct cdevsw xpt_cdevsw = { 216 .d_version = D_VERSION, 217 .d_flags = 0, 218 .d_open = xptopen, 219 .d_close = xptclose, 220 .d_ioctl = xptioctl, 221 .d_name = "xpt", 222 }; 223 224 /* Storage for debugging datastructures */ 225 struct cam_path *cam_dpath; 226 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 227 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 228 &cam_dflags, 0, "Enabled debug flags"); 229 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 230 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 231 &cam_debug_delay, 0, "Delay in us after each debug message"); 232 233 /* Our boot-time initialization hook */ 234 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 235 236 static moduledata_t cam_moduledata = { 237 "cam", 238 cam_module_event_handler, 239 NULL 240 }; 241 242 static int xpt_init(void *); 243 244 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 245 MODULE_VERSION(cam, 1); 246 247 248 static void xpt_async_bcast(struct async_list *async_head, 249 u_int32_t async_code, 250 struct cam_path *path, 251 void *async_arg); 252 static path_id_t xptnextfreepathid(void); 253 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 254 static union ccb *xpt_get_ccb(struct cam_periph *periph); 255 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 256 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 257 static void xpt_run_allocq_task(void *context, int pending); 258 static void xpt_run_devq(struct cam_devq *devq); 259 static timeout_t xpt_release_devq_timeout; 260 static void xpt_release_simq_timeout(void *arg) __unused; 261 static void xpt_acquire_bus(struct cam_eb *bus); 262 static void xpt_release_bus(struct cam_eb *bus); 263 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 264 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 265 int run_queue); 266 static struct cam_et* 267 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 268 static void xpt_acquire_target(struct cam_et *target); 269 static void xpt_release_target(struct cam_et *target); 270 static struct cam_eb* 271 xpt_find_bus(path_id_t path_id); 272 static struct cam_et* 273 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 274 static struct cam_ed* 275 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 276 static void xpt_config(void *arg); 277 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 278 u_int32_t new_priority); 279 static xpt_devicefunc_t xptpassannouncefunc; 280 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 281 static void xptpoll(struct cam_sim *sim); 282 static void camisr_runqueue(void); 283 static void xpt_done_process(struct ccb_hdr *ccb_h); 284 static void xpt_done_td(void *); 285 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 286 u_int num_patterns, struct cam_eb *bus); 287 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 288 u_int num_patterns, 289 struct cam_ed *device); 290 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 291 u_int num_patterns, 292 struct cam_periph *periph); 293 static xpt_busfunc_t xptedtbusfunc; 294 static xpt_targetfunc_t xptedttargetfunc; 295 static xpt_devicefunc_t xptedtdevicefunc; 296 static xpt_periphfunc_t xptedtperiphfunc; 297 static xpt_pdrvfunc_t xptplistpdrvfunc; 298 static xpt_periphfunc_t xptplistperiphfunc; 299 static int xptedtmatch(struct ccb_dev_match *cdm); 300 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 301 static int xptbustraverse(struct cam_eb *start_bus, 302 xpt_busfunc_t *tr_func, void *arg); 303 static int xpttargettraverse(struct cam_eb *bus, 304 struct cam_et *start_target, 305 xpt_targetfunc_t *tr_func, void *arg); 306 static int xptdevicetraverse(struct cam_et *target, 307 struct cam_ed *start_device, 308 xpt_devicefunc_t *tr_func, void *arg); 309 static int xptperiphtraverse(struct cam_ed *device, 310 struct cam_periph *start_periph, 311 xpt_periphfunc_t *tr_func, void *arg); 312 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 313 xpt_pdrvfunc_t *tr_func, void *arg); 314 static int xptpdperiphtraverse(struct periph_driver **pdrv, 315 struct cam_periph *start_periph, 316 xpt_periphfunc_t *tr_func, 317 void *arg); 318 static xpt_busfunc_t xptdefbusfunc; 319 static xpt_targetfunc_t xptdeftargetfunc; 320 static xpt_devicefunc_t xptdefdevicefunc; 321 static xpt_periphfunc_t xptdefperiphfunc; 322 static void xpt_finishconfig_task(void *context, int pending); 323 static void xpt_dev_async_default(u_int32_t async_code, 324 struct cam_eb *bus, 325 struct cam_et *target, 326 struct cam_ed *device, 327 void *async_arg); 328 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 329 struct cam_et *target, 330 lun_id_t lun_id); 331 static xpt_devicefunc_t xptsetasyncfunc; 332 static xpt_busfunc_t xptsetasyncbusfunc; 333 static cam_status xptregister(struct cam_periph *periph, 334 void *arg); 335 static __inline int device_is_queued(struct cam_ed *device); 336 337 static __inline int 338 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 339 { 340 int retval; 341 342 mtx_assert(&devq->send_mtx, MA_OWNED); 343 if ((dev->ccbq.queue.entries > 0) && 344 (dev->ccbq.dev_openings > 0) && 345 (dev->ccbq.queue.qfrozen_cnt == 0)) { 346 /* 347 * The priority of a device waiting for controller 348 * resources is that of the highest priority CCB 349 * enqueued. 350 */ 351 retval = 352 xpt_schedule_dev(&devq->send_queue, 353 &dev->devq_entry, 354 CAMQ_GET_PRIO(&dev->ccbq.queue)); 355 } else { 356 retval = 0; 357 } 358 return (retval); 359 } 360 361 static __inline int 362 device_is_queued(struct cam_ed *device) 363 { 364 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 365 } 366 367 static void 368 xpt_periph_init() 369 { 370 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 371 } 372 373 static int 374 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 375 { 376 377 /* 378 * Only allow read-write access. 379 */ 380 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 381 return(EPERM); 382 383 /* 384 * We don't allow nonblocking access. 385 */ 386 if ((flags & O_NONBLOCK) != 0) { 387 printf("%s: can't do nonblocking access\n", devtoname(dev)); 388 return(ENODEV); 389 } 390 391 return(0); 392 } 393 394 static int 395 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 396 { 397 398 return(0); 399 } 400 401 /* 402 * Don't automatically grab the xpt softc lock here even though this is going 403 * through the xpt device. The xpt device is really just a back door for 404 * accessing other devices and SIMs, so the right thing to do is to grab 405 * the appropriate SIM lock once the bus/SIM is located. 406 */ 407 static int 408 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 409 { 410 int error; 411 412 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 413 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 414 } 415 return (error); 416 } 417 418 static int 419 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 420 { 421 int error; 422 423 error = 0; 424 425 switch(cmd) { 426 /* 427 * For the transport layer CAMIOCOMMAND ioctl, we really only want 428 * to accept CCB types that don't quite make sense to send through a 429 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 430 * in the CAM spec. 431 */ 432 case CAMIOCOMMAND: { 433 union ccb *ccb; 434 union ccb *inccb; 435 struct cam_eb *bus; 436 437 inccb = (union ccb *)addr; 438 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 439 if (inccb->ccb_h.func_code == XPT_SCSI_IO) 440 inccb->csio.bio = NULL; 441 #endif 442 443 if (inccb->ccb_h.flags & CAM_UNLOCKED) 444 return (EINVAL); 445 446 bus = xpt_find_bus(inccb->ccb_h.path_id); 447 if (bus == NULL) 448 return (EINVAL); 449 450 switch (inccb->ccb_h.func_code) { 451 case XPT_SCAN_BUS: 452 case XPT_RESET_BUS: 453 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 454 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 455 xpt_release_bus(bus); 456 return (EINVAL); 457 } 458 break; 459 case XPT_SCAN_TGT: 460 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 461 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 462 xpt_release_bus(bus); 463 return (EINVAL); 464 } 465 break; 466 default: 467 break; 468 } 469 470 switch(inccb->ccb_h.func_code) { 471 case XPT_SCAN_BUS: 472 case XPT_RESET_BUS: 473 case XPT_PATH_INQ: 474 case XPT_ENG_INQ: 475 case XPT_SCAN_LUN: 476 case XPT_SCAN_TGT: 477 478 ccb = xpt_alloc_ccb(); 479 480 /* 481 * Create a path using the bus, target, and lun the 482 * user passed in. 483 */ 484 if (xpt_create_path(&ccb->ccb_h.path, NULL, 485 inccb->ccb_h.path_id, 486 inccb->ccb_h.target_id, 487 inccb->ccb_h.target_lun) != 488 CAM_REQ_CMP){ 489 error = EINVAL; 490 xpt_free_ccb(ccb); 491 break; 492 } 493 /* Ensure all of our fields are correct */ 494 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 495 inccb->ccb_h.pinfo.priority); 496 xpt_merge_ccb(ccb, inccb); 497 xpt_path_lock(ccb->ccb_h.path); 498 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 499 xpt_path_unlock(ccb->ccb_h.path); 500 bcopy(ccb, inccb, sizeof(union ccb)); 501 xpt_free_path(ccb->ccb_h.path); 502 xpt_free_ccb(ccb); 503 break; 504 505 case XPT_DEBUG: { 506 union ccb ccb; 507 508 /* 509 * This is an immediate CCB, so it's okay to 510 * allocate it on the stack. 511 */ 512 513 /* 514 * Create a path using the bus, target, and lun the 515 * user passed in. 516 */ 517 if (xpt_create_path(&ccb.ccb_h.path, NULL, 518 inccb->ccb_h.path_id, 519 inccb->ccb_h.target_id, 520 inccb->ccb_h.target_lun) != 521 CAM_REQ_CMP){ 522 error = EINVAL; 523 break; 524 } 525 /* Ensure all of our fields are correct */ 526 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 527 inccb->ccb_h.pinfo.priority); 528 xpt_merge_ccb(&ccb, inccb); 529 xpt_action(&ccb); 530 bcopy(&ccb, inccb, sizeof(union ccb)); 531 xpt_free_path(ccb.ccb_h.path); 532 break; 533 534 } 535 case XPT_DEV_MATCH: { 536 struct cam_periph_map_info mapinfo; 537 struct cam_path *old_path; 538 539 /* 540 * We can't deal with physical addresses for this 541 * type of transaction. 542 */ 543 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 544 CAM_DATA_VADDR) { 545 error = EINVAL; 546 break; 547 } 548 549 /* 550 * Save this in case the caller had it set to 551 * something in particular. 552 */ 553 old_path = inccb->ccb_h.path; 554 555 /* 556 * We really don't need a path for the matching 557 * code. The path is needed because of the 558 * debugging statements in xpt_action(). They 559 * assume that the CCB has a valid path. 560 */ 561 inccb->ccb_h.path = xpt_periph->path; 562 563 bzero(&mapinfo, sizeof(mapinfo)); 564 565 /* 566 * Map the pattern and match buffers into kernel 567 * virtual address space. 568 */ 569 error = cam_periph_mapmem(inccb, &mapinfo, MAXPHYS); 570 571 if (error) { 572 inccb->ccb_h.path = old_path; 573 break; 574 } 575 576 /* 577 * This is an immediate CCB, we can send it on directly. 578 */ 579 xpt_action(inccb); 580 581 /* 582 * Map the buffers back into user space. 583 */ 584 cam_periph_unmapmem(inccb, &mapinfo); 585 586 inccb->ccb_h.path = old_path; 587 588 error = 0; 589 break; 590 } 591 default: 592 error = ENOTSUP; 593 break; 594 } 595 xpt_release_bus(bus); 596 break; 597 } 598 /* 599 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 600 * with the periphal driver name and unit name filled in. The other 601 * fields don't really matter as input. The passthrough driver name 602 * ("pass"), and unit number are passed back in the ccb. The current 603 * device generation number, and the index into the device peripheral 604 * driver list, and the status are also passed back. Note that 605 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 606 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 607 * (or rather should be) impossible for the device peripheral driver 608 * list to change since we look at the whole thing in one pass, and 609 * we do it with lock protection. 610 * 611 */ 612 case CAMGETPASSTHRU: { 613 union ccb *ccb; 614 struct cam_periph *periph; 615 struct periph_driver **p_drv; 616 char *name; 617 u_int unit; 618 int base_periph_found; 619 620 ccb = (union ccb *)addr; 621 unit = ccb->cgdl.unit_number; 622 name = ccb->cgdl.periph_name; 623 base_periph_found = 0; 624 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 625 if (ccb->ccb_h.func_code == XPT_SCSI_IO) 626 ccb->csio.bio = NULL; 627 #endif 628 629 /* 630 * Sanity check -- make sure we don't get a null peripheral 631 * driver name. 632 */ 633 if (*ccb->cgdl.periph_name == '\0') { 634 error = EINVAL; 635 break; 636 } 637 638 /* Keep the list from changing while we traverse it */ 639 xpt_lock_buses(); 640 641 /* first find our driver in the list of drivers */ 642 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 643 if (strcmp((*p_drv)->driver_name, name) == 0) 644 break; 645 646 if (*p_drv == NULL) { 647 xpt_unlock_buses(); 648 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 649 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 650 *ccb->cgdl.periph_name = '\0'; 651 ccb->cgdl.unit_number = 0; 652 error = ENOENT; 653 break; 654 } 655 656 /* 657 * Run through every peripheral instance of this driver 658 * and check to see whether it matches the unit passed 659 * in by the user. If it does, get out of the loops and 660 * find the passthrough driver associated with that 661 * peripheral driver. 662 */ 663 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 664 periph = TAILQ_NEXT(periph, unit_links)) { 665 666 if (periph->unit_number == unit) 667 break; 668 } 669 /* 670 * If we found the peripheral driver that the user passed 671 * in, go through all of the peripheral drivers for that 672 * particular device and look for a passthrough driver. 673 */ 674 if (periph != NULL) { 675 struct cam_ed *device; 676 int i; 677 678 base_periph_found = 1; 679 device = periph->path->device; 680 for (i = 0, periph = SLIST_FIRST(&device->periphs); 681 periph != NULL; 682 periph = SLIST_NEXT(periph, periph_links), i++) { 683 /* 684 * Check to see whether we have a 685 * passthrough device or not. 686 */ 687 if (strcmp(periph->periph_name, "pass") == 0) { 688 /* 689 * Fill in the getdevlist fields. 690 */ 691 strlcpy(ccb->cgdl.periph_name, 692 periph->periph_name, 693 sizeof(ccb->cgdl.periph_name)); 694 ccb->cgdl.unit_number = 695 periph->unit_number; 696 if (SLIST_NEXT(periph, periph_links)) 697 ccb->cgdl.status = 698 CAM_GDEVLIST_MORE_DEVS; 699 else 700 ccb->cgdl.status = 701 CAM_GDEVLIST_LAST_DEVICE; 702 ccb->cgdl.generation = 703 device->generation; 704 ccb->cgdl.index = i; 705 /* 706 * Fill in some CCB header fields 707 * that the user may want. 708 */ 709 ccb->ccb_h.path_id = 710 periph->path->bus->path_id; 711 ccb->ccb_h.target_id = 712 periph->path->target->target_id; 713 ccb->ccb_h.target_lun = 714 periph->path->device->lun_id; 715 ccb->ccb_h.status = CAM_REQ_CMP; 716 break; 717 } 718 } 719 } 720 721 /* 722 * If the periph is null here, one of two things has 723 * happened. The first possibility is that we couldn't 724 * find the unit number of the particular peripheral driver 725 * that the user is asking about. e.g. the user asks for 726 * the passthrough driver for "da11". We find the list of 727 * "da" peripherals all right, but there is no unit 11. 728 * The other possibility is that we went through the list 729 * of peripheral drivers attached to the device structure, 730 * but didn't find one with the name "pass". Either way, 731 * we return ENOENT, since we couldn't find something. 732 */ 733 if (periph == NULL) { 734 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 735 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 736 *ccb->cgdl.periph_name = '\0'; 737 ccb->cgdl.unit_number = 0; 738 error = ENOENT; 739 /* 740 * It is unfortunate that this is even necessary, 741 * but there are many, many clueless users out there. 742 * If this is true, the user is looking for the 743 * passthrough driver, but doesn't have one in his 744 * kernel. 745 */ 746 if (base_periph_found == 1) { 747 printf("xptioctl: pass driver is not in the " 748 "kernel\n"); 749 printf("xptioctl: put \"device pass\" in " 750 "your kernel config file\n"); 751 } 752 } 753 xpt_unlock_buses(); 754 break; 755 } 756 default: 757 error = ENOTTY; 758 break; 759 } 760 761 return(error); 762 } 763 764 static int 765 cam_module_event_handler(module_t mod, int what, void *arg) 766 { 767 int error; 768 769 switch (what) { 770 case MOD_LOAD: 771 if ((error = xpt_init(NULL)) != 0) 772 return (error); 773 break; 774 case MOD_UNLOAD: 775 return EBUSY; 776 default: 777 return EOPNOTSUPP; 778 } 779 780 return 0; 781 } 782 783 static struct xpt_proto * 784 xpt_proto_find(cam_proto proto) 785 { 786 struct xpt_proto **pp; 787 788 SET_FOREACH(pp, cam_xpt_proto_set) { 789 if ((*pp)->proto == proto) 790 return *pp; 791 } 792 793 return NULL; 794 } 795 796 static void 797 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 798 { 799 800 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 801 xpt_free_path(done_ccb->ccb_h.path); 802 xpt_free_ccb(done_ccb); 803 } else { 804 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 805 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 806 } 807 xpt_release_boot(); 808 } 809 810 /* thread to handle bus rescans */ 811 static void 812 xpt_scanner_thread(void *dummy) 813 { 814 union ccb *ccb; 815 struct cam_path path; 816 817 xpt_lock_buses(); 818 for (;;) { 819 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 820 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 821 "-", 0); 822 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 823 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 824 xpt_unlock_buses(); 825 826 /* 827 * Since lock can be dropped inside and path freed 828 * by completion callback even before return here, 829 * take our own path copy for reference. 830 */ 831 xpt_copy_path(&path, ccb->ccb_h.path); 832 xpt_path_lock(&path); 833 xpt_action(ccb); 834 xpt_path_unlock(&path); 835 xpt_release_path(&path); 836 837 xpt_lock_buses(); 838 } 839 } 840 } 841 842 void 843 xpt_rescan(union ccb *ccb) 844 { 845 struct ccb_hdr *hdr; 846 847 /* Prepare request */ 848 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 849 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 850 ccb->ccb_h.func_code = XPT_SCAN_BUS; 851 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 852 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 853 ccb->ccb_h.func_code = XPT_SCAN_TGT; 854 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 855 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 856 ccb->ccb_h.func_code = XPT_SCAN_LUN; 857 else { 858 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 859 xpt_free_path(ccb->ccb_h.path); 860 xpt_free_ccb(ccb); 861 return; 862 } 863 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 864 ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code, 865 xpt_action_name(ccb->ccb_h.func_code))); 866 867 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 868 ccb->ccb_h.cbfcnp = xpt_rescan_done; 869 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 870 /* Don't make duplicate entries for the same paths. */ 871 xpt_lock_buses(); 872 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 873 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 874 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 875 wakeup(&xsoftc.ccb_scanq); 876 xpt_unlock_buses(); 877 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 878 xpt_free_path(ccb->ccb_h.path); 879 xpt_free_ccb(ccb); 880 return; 881 } 882 } 883 } 884 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 885 xsoftc.buses_to_config++; 886 wakeup(&xsoftc.ccb_scanq); 887 xpt_unlock_buses(); 888 } 889 890 /* Functions accessed by the peripheral drivers */ 891 static int 892 xpt_init(void *dummy) 893 { 894 struct cam_sim *xpt_sim; 895 struct cam_path *path; 896 struct cam_devq *devq; 897 cam_status status; 898 int error, i; 899 900 TAILQ_INIT(&xsoftc.xpt_busses); 901 TAILQ_INIT(&xsoftc.ccb_scanq); 902 STAILQ_INIT(&xsoftc.highpowerq); 903 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 904 905 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 906 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 907 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 908 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 909 910 #ifdef CAM_BOOT_DELAY 911 /* 912 * Override this value at compile time to assist our users 913 * who don't use loader to boot a kernel. 914 */ 915 xsoftc.boot_delay = CAM_BOOT_DELAY; 916 #endif 917 /* 918 * The xpt layer is, itself, the equivalent of a SIM. 919 * Allow 16 ccbs in the ccb pool for it. This should 920 * give decent parallelism when we probe buses and 921 * perform other XPT functions. 922 */ 923 devq = cam_simq_alloc(16); 924 xpt_sim = cam_sim_alloc(xptaction, 925 xptpoll, 926 "xpt", 927 /*softc*/NULL, 928 /*unit*/0, 929 /*mtx*/&xsoftc.xpt_lock, 930 /*max_dev_transactions*/0, 931 /*max_tagged_dev_transactions*/0, 932 devq); 933 if (xpt_sim == NULL) 934 return (ENOMEM); 935 936 mtx_lock(&xsoftc.xpt_lock); 937 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 938 mtx_unlock(&xsoftc.xpt_lock); 939 printf("xpt_init: xpt_bus_register failed with status %#x," 940 " failing attach\n", status); 941 return (EINVAL); 942 } 943 mtx_unlock(&xsoftc.xpt_lock); 944 945 /* 946 * Looking at the XPT from the SIM layer, the XPT is 947 * the equivalent of a peripheral driver. Allocate 948 * a peripheral driver entry for us. 949 */ 950 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 951 CAM_TARGET_WILDCARD, 952 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 953 printf("xpt_init: xpt_create_path failed with status %#x," 954 " failing attach\n", status); 955 return (EINVAL); 956 } 957 xpt_path_lock(path); 958 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 959 path, NULL, 0, xpt_sim); 960 xpt_path_unlock(path); 961 xpt_free_path(path); 962 963 if (cam_num_doneqs < 1) 964 cam_num_doneqs = 1 + mp_ncpus / 6; 965 else if (cam_num_doneqs > MAXCPU) 966 cam_num_doneqs = MAXCPU; 967 for (i = 0; i < cam_num_doneqs; i++) { 968 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 969 MTX_DEF); 970 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 971 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 972 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 973 if (error != 0) { 974 cam_num_doneqs = i; 975 break; 976 } 977 } 978 if (cam_num_doneqs < 1) { 979 printf("xpt_init: Cannot init completion queues " 980 "- failing attach\n"); 981 return (ENOMEM); 982 } 983 /* 984 * Register a callback for when interrupts are enabled. 985 */ 986 xsoftc.xpt_config_hook = 987 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 988 M_CAMXPT, M_NOWAIT | M_ZERO); 989 if (xsoftc.xpt_config_hook == NULL) { 990 printf("xpt_init: Cannot malloc config hook " 991 "- failing attach\n"); 992 return (ENOMEM); 993 } 994 xsoftc.xpt_config_hook->ich_func = xpt_config; 995 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 996 free (xsoftc.xpt_config_hook, M_CAMXPT); 997 printf("xpt_init: config_intrhook_establish failed " 998 "- failing attach\n"); 999 } 1000 1001 return (0); 1002 } 1003 1004 static cam_status 1005 xptregister(struct cam_periph *periph, void *arg) 1006 { 1007 struct cam_sim *xpt_sim; 1008 1009 if (periph == NULL) { 1010 printf("xptregister: periph was NULL!!\n"); 1011 return(CAM_REQ_CMP_ERR); 1012 } 1013 1014 xpt_sim = (struct cam_sim *)arg; 1015 xpt_sim->softc = periph; 1016 xpt_periph = periph; 1017 periph->softc = NULL; 1018 1019 return(CAM_REQ_CMP); 1020 } 1021 1022 int32_t 1023 xpt_add_periph(struct cam_periph *periph) 1024 { 1025 struct cam_ed *device; 1026 int32_t status; 1027 1028 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 1029 device = periph->path->device; 1030 status = CAM_REQ_CMP; 1031 if (device != NULL) { 1032 mtx_lock(&device->target->bus->eb_mtx); 1033 device->generation++; 1034 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 1035 mtx_unlock(&device->target->bus->eb_mtx); 1036 atomic_add_32(&xsoftc.xpt_generation, 1); 1037 } 1038 1039 return (status); 1040 } 1041 1042 void 1043 xpt_remove_periph(struct cam_periph *periph) 1044 { 1045 struct cam_ed *device; 1046 1047 device = periph->path->device; 1048 if (device != NULL) { 1049 mtx_lock(&device->target->bus->eb_mtx); 1050 device->generation++; 1051 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 1052 mtx_unlock(&device->target->bus->eb_mtx); 1053 atomic_add_32(&xsoftc.xpt_generation, 1); 1054 } 1055 } 1056 1057 1058 void 1059 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1060 { 1061 struct cam_path *path = periph->path; 1062 struct xpt_proto *proto; 1063 1064 cam_periph_assert(periph, MA_OWNED); 1065 periph->flags |= CAM_PERIPH_ANNOUNCED; 1066 1067 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1068 periph->periph_name, periph->unit_number, 1069 path->bus->sim->sim_name, 1070 path->bus->sim->unit_number, 1071 path->bus->sim->bus_id, 1072 path->bus->path_id, 1073 path->target->target_id, 1074 (uintmax_t)path->device->lun_id); 1075 printf("%s%d: ", periph->periph_name, periph->unit_number); 1076 proto = xpt_proto_find(path->device->protocol); 1077 if (proto) 1078 proto->ops->announce(path->device); 1079 else 1080 printf("%s%d: Unknown protocol device %d\n", 1081 periph->periph_name, periph->unit_number, 1082 path->device->protocol); 1083 if (path->device->serial_num_len > 0) { 1084 /* Don't wrap the screen - print only the first 60 chars */ 1085 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1086 periph->unit_number, path->device->serial_num); 1087 } 1088 /* Announce transport details. */ 1089 path->bus->xport->ops->announce(periph); 1090 /* Announce command queueing. */ 1091 if (path->device->inq_flags & SID_CmdQue 1092 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1093 printf("%s%d: Command Queueing enabled\n", 1094 periph->periph_name, periph->unit_number); 1095 } 1096 /* Announce caller's details if they've passed in. */ 1097 if (announce_string != NULL) 1098 printf("%s%d: %s\n", periph->periph_name, 1099 periph->unit_number, announce_string); 1100 } 1101 1102 void 1103 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb, 1104 char *announce_string) 1105 { 1106 struct cam_path *path = periph->path; 1107 struct xpt_proto *proto; 1108 1109 cam_periph_assert(periph, MA_OWNED); 1110 periph->flags |= CAM_PERIPH_ANNOUNCED; 1111 1112 /* Fall back to the non-sbuf method if necessary */ 1113 if (xsoftc.announce_nosbuf != 0) { 1114 xpt_announce_periph(periph, announce_string); 1115 return; 1116 } 1117 proto = xpt_proto_find(path->device->protocol); 1118 if (((proto != NULL) && (proto->ops->announce_sbuf == NULL)) || 1119 (path->bus->xport->ops->announce_sbuf == NULL)) { 1120 xpt_announce_periph(periph, announce_string); 1121 return; 1122 } 1123 1124 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1125 periph->periph_name, periph->unit_number, 1126 path->bus->sim->sim_name, 1127 path->bus->sim->unit_number, 1128 path->bus->sim->bus_id, 1129 path->bus->path_id, 1130 path->target->target_id, 1131 (uintmax_t)path->device->lun_id); 1132 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1133 1134 if (proto) 1135 proto->ops->announce_sbuf(path->device, sb); 1136 else 1137 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1138 periph->periph_name, periph->unit_number, 1139 path->device->protocol); 1140 if (path->device->serial_num_len > 0) { 1141 /* Don't wrap the screen - print only the first 60 chars */ 1142 sbuf_printf(sb, "%s%d: Serial Number %.60s\n", 1143 periph->periph_name, periph->unit_number, 1144 path->device->serial_num); 1145 } 1146 /* Announce transport details. */ 1147 path->bus->xport->ops->announce_sbuf(periph, sb); 1148 /* Announce command queueing. */ 1149 if (path->device->inq_flags & SID_CmdQue 1150 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1151 sbuf_printf(sb, "%s%d: Command Queueing enabled\n", 1152 periph->periph_name, periph->unit_number); 1153 } 1154 /* Announce caller's details if they've passed in. */ 1155 if (announce_string != NULL) 1156 sbuf_printf(sb, "%s%d: %s\n", periph->periph_name, 1157 periph->unit_number, announce_string); 1158 } 1159 1160 void 1161 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1162 { 1163 if (quirks != 0) { 1164 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1165 periph->unit_number, quirks, bit_string); 1166 } 1167 } 1168 1169 void 1170 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb, 1171 int quirks, char *bit_string) 1172 { 1173 if (xsoftc.announce_nosbuf != 0) { 1174 xpt_announce_quirks(periph, quirks, bit_string); 1175 return; 1176 } 1177 1178 if (quirks != 0) { 1179 sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name, 1180 periph->unit_number, quirks, bit_string); 1181 } 1182 } 1183 1184 void 1185 xpt_denounce_periph(struct cam_periph *periph) 1186 { 1187 struct cam_path *path = periph->path; 1188 struct xpt_proto *proto; 1189 1190 cam_periph_assert(periph, MA_OWNED); 1191 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1192 periph->periph_name, periph->unit_number, 1193 path->bus->sim->sim_name, 1194 path->bus->sim->unit_number, 1195 path->bus->sim->bus_id, 1196 path->bus->path_id, 1197 path->target->target_id, 1198 (uintmax_t)path->device->lun_id); 1199 printf("%s%d: ", periph->periph_name, periph->unit_number); 1200 proto = xpt_proto_find(path->device->protocol); 1201 if (proto) 1202 proto->ops->denounce(path->device); 1203 else 1204 printf("%s%d: Unknown protocol device %d\n", 1205 periph->periph_name, periph->unit_number, 1206 path->device->protocol); 1207 if (path->device->serial_num_len > 0) 1208 printf(" s/n %.60s", path->device->serial_num); 1209 printf(" detached\n"); 1210 } 1211 1212 void 1213 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb) 1214 { 1215 struct cam_path *path = periph->path; 1216 struct xpt_proto *proto; 1217 1218 cam_periph_assert(periph, MA_OWNED); 1219 1220 /* Fall back to the non-sbuf method if necessary */ 1221 if (xsoftc.announce_nosbuf != 0) { 1222 xpt_denounce_periph(periph); 1223 return; 1224 } 1225 proto = xpt_proto_find(path->device->protocol); 1226 if ((proto != NULL) && (proto->ops->denounce_sbuf == NULL)) { 1227 xpt_denounce_periph(periph); 1228 return; 1229 } 1230 1231 sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1232 periph->periph_name, periph->unit_number, 1233 path->bus->sim->sim_name, 1234 path->bus->sim->unit_number, 1235 path->bus->sim->bus_id, 1236 path->bus->path_id, 1237 path->target->target_id, 1238 (uintmax_t)path->device->lun_id); 1239 sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number); 1240 1241 if (proto) 1242 proto->ops->denounce_sbuf(path->device, sb); 1243 else 1244 sbuf_printf(sb, "%s%d: Unknown protocol device %d\n", 1245 periph->periph_name, periph->unit_number, 1246 path->device->protocol); 1247 if (path->device->serial_num_len > 0) 1248 sbuf_printf(sb, " s/n %.60s", path->device->serial_num); 1249 sbuf_printf(sb, " detached\n"); 1250 } 1251 1252 int 1253 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1254 { 1255 int ret = -1, l, o; 1256 struct ccb_dev_advinfo cdai; 1257 struct scsi_vpd_id_descriptor *idd; 1258 1259 xpt_path_assert(path, MA_OWNED); 1260 1261 memset(&cdai, 0, sizeof(cdai)); 1262 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1263 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1264 cdai.flags = CDAI_FLAG_NONE; 1265 cdai.bufsiz = len; 1266 1267 if (!strcmp(attr, "GEOM::ident")) 1268 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1269 else if (!strcmp(attr, "GEOM::physpath")) 1270 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1271 else if (strcmp(attr, "GEOM::lunid") == 0 || 1272 strcmp(attr, "GEOM::lunname") == 0) { 1273 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1274 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1275 } else 1276 goto out; 1277 1278 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1279 if (cdai.buf == NULL) { 1280 ret = ENOMEM; 1281 goto out; 1282 } 1283 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1284 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1285 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1286 if (cdai.provsiz == 0) 1287 goto out; 1288 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1289 if (strcmp(attr, "GEOM::lunid") == 0) { 1290 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1291 cdai.provsiz, scsi_devid_is_lun_naa); 1292 if (idd == NULL) 1293 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1294 cdai.provsiz, scsi_devid_is_lun_eui64); 1295 if (idd == NULL) 1296 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1297 cdai.provsiz, scsi_devid_is_lun_uuid); 1298 if (idd == NULL) 1299 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1300 cdai.provsiz, scsi_devid_is_lun_md5); 1301 } else 1302 idd = NULL; 1303 if (idd == NULL) 1304 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1305 cdai.provsiz, scsi_devid_is_lun_t10); 1306 if (idd == NULL) 1307 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1308 cdai.provsiz, scsi_devid_is_lun_name); 1309 if (idd == NULL) 1310 goto out; 1311 ret = 0; 1312 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1313 if (idd->length < len) { 1314 for (l = 0; l < idd->length; l++) 1315 buf[l] = idd->identifier[l] ? 1316 idd->identifier[l] : ' '; 1317 buf[l] = 0; 1318 } else 1319 ret = EFAULT; 1320 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1321 l = strnlen(idd->identifier, idd->length); 1322 if (l < len) { 1323 bcopy(idd->identifier, buf, l); 1324 buf[l] = 0; 1325 } else 1326 ret = EFAULT; 1327 } else if ((idd->id_type & SVPD_ID_TYPE_MASK) == SVPD_ID_TYPE_UUID 1328 && idd->identifier[0] == 0x10) { 1329 if ((idd->length - 2) * 2 + 4 < len) { 1330 for (l = 2, o = 0; l < idd->length; l++) { 1331 if (l == 6 || l == 8 || l == 10 || l == 12) 1332 o += sprintf(buf + o, "-"); 1333 o += sprintf(buf + o, "%02x", 1334 idd->identifier[l]); 1335 } 1336 } else 1337 ret = EFAULT; 1338 } else { 1339 if (idd->length * 2 < len) { 1340 for (l = 0; l < idd->length; l++) 1341 sprintf(buf + l * 2, "%02x", 1342 idd->identifier[l]); 1343 } else 1344 ret = EFAULT; 1345 } 1346 } else { 1347 ret = 0; 1348 if (strlcpy(buf, cdai.buf, len) >= len) 1349 ret = EFAULT; 1350 } 1351 1352 out: 1353 if (cdai.buf != NULL) 1354 free(cdai.buf, M_CAMXPT); 1355 return ret; 1356 } 1357 1358 static dev_match_ret 1359 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1360 struct cam_eb *bus) 1361 { 1362 dev_match_ret retval; 1363 u_int i; 1364 1365 retval = DM_RET_NONE; 1366 1367 /* 1368 * If we aren't given something to match against, that's an error. 1369 */ 1370 if (bus == NULL) 1371 return(DM_RET_ERROR); 1372 1373 /* 1374 * If there are no match entries, then this bus matches no 1375 * matter what. 1376 */ 1377 if ((patterns == NULL) || (num_patterns == 0)) 1378 return(DM_RET_DESCEND | DM_RET_COPY); 1379 1380 for (i = 0; i < num_patterns; i++) { 1381 struct bus_match_pattern *cur_pattern; 1382 1383 /* 1384 * If the pattern in question isn't for a bus node, we 1385 * aren't interested. However, we do indicate to the 1386 * calling routine that we should continue descending the 1387 * tree, since the user wants to match against lower-level 1388 * EDT elements. 1389 */ 1390 if (patterns[i].type != DEV_MATCH_BUS) { 1391 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1392 retval |= DM_RET_DESCEND; 1393 continue; 1394 } 1395 1396 cur_pattern = &patterns[i].pattern.bus_pattern; 1397 1398 /* 1399 * If they want to match any bus node, we give them any 1400 * device node. 1401 */ 1402 if (cur_pattern->flags == BUS_MATCH_ANY) { 1403 /* set the copy flag */ 1404 retval |= DM_RET_COPY; 1405 1406 /* 1407 * If we've already decided on an action, go ahead 1408 * and return. 1409 */ 1410 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1411 return(retval); 1412 } 1413 1414 /* 1415 * Not sure why someone would do this... 1416 */ 1417 if (cur_pattern->flags == BUS_MATCH_NONE) 1418 continue; 1419 1420 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1421 && (cur_pattern->path_id != bus->path_id)) 1422 continue; 1423 1424 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1425 && (cur_pattern->bus_id != bus->sim->bus_id)) 1426 continue; 1427 1428 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1429 && (cur_pattern->unit_number != bus->sim->unit_number)) 1430 continue; 1431 1432 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1433 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1434 DEV_IDLEN) != 0)) 1435 continue; 1436 1437 /* 1438 * If we get to this point, the user definitely wants 1439 * information on this bus. So tell the caller to copy the 1440 * data out. 1441 */ 1442 retval |= DM_RET_COPY; 1443 1444 /* 1445 * If the return action has been set to descend, then we 1446 * know that we've already seen a non-bus matching 1447 * expression, therefore we need to further descend the tree. 1448 * This won't change by continuing around the loop, so we 1449 * go ahead and return. If we haven't seen a non-bus 1450 * matching expression, we keep going around the loop until 1451 * we exhaust the matching expressions. We'll set the stop 1452 * flag once we fall out of the loop. 1453 */ 1454 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1455 return(retval); 1456 } 1457 1458 /* 1459 * If the return action hasn't been set to descend yet, that means 1460 * we haven't seen anything other than bus matching patterns. So 1461 * tell the caller to stop descending the tree -- the user doesn't 1462 * want to match against lower level tree elements. 1463 */ 1464 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1465 retval |= DM_RET_STOP; 1466 1467 return(retval); 1468 } 1469 1470 static dev_match_ret 1471 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1472 struct cam_ed *device) 1473 { 1474 dev_match_ret retval; 1475 u_int i; 1476 1477 retval = DM_RET_NONE; 1478 1479 /* 1480 * If we aren't given something to match against, that's an error. 1481 */ 1482 if (device == NULL) 1483 return(DM_RET_ERROR); 1484 1485 /* 1486 * If there are no match entries, then this device matches no 1487 * matter what. 1488 */ 1489 if ((patterns == NULL) || (num_patterns == 0)) 1490 return(DM_RET_DESCEND | DM_RET_COPY); 1491 1492 for (i = 0; i < num_patterns; i++) { 1493 struct device_match_pattern *cur_pattern; 1494 struct scsi_vpd_device_id *device_id_page; 1495 1496 /* 1497 * If the pattern in question isn't for a device node, we 1498 * aren't interested. 1499 */ 1500 if (patterns[i].type != DEV_MATCH_DEVICE) { 1501 if ((patterns[i].type == DEV_MATCH_PERIPH) 1502 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1503 retval |= DM_RET_DESCEND; 1504 continue; 1505 } 1506 1507 cur_pattern = &patterns[i].pattern.device_pattern; 1508 1509 /* Error out if mutually exclusive options are specified. */ 1510 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1511 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1512 return(DM_RET_ERROR); 1513 1514 /* 1515 * If they want to match any device node, we give them any 1516 * device node. 1517 */ 1518 if (cur_pattern->flags == DEV_MATCH_ANY) 1519 goto copy_dev_node; 1520 1521 /* 1522 * Not sure why someone would do this... 1523 */ 1524 if (cur_pattern->flags == DEV_MATCH_NONE) 1525 continue; 1526 1527 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1528 && (cur_pattern->path_id != device->target->bus->path_id)) 1529 continue; 1530 1531 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1532 && (cur_pattern->target_id != device->target->target_id)) 1533 continue; 1534 1535 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1536 && (cur_pattern->target_lun != device->lun_id)) 1537 continue; 1538 1539 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1540 && (cam_quirkmatch((caddr_t)&device->inq_data, 1541 (caddr_t)&cur_pattern->data.inq_pat, 1542 1, sizeof(cur_pattern->data.inq_pat), 1543 scsi_static_inquiry_match) == NULL)) 1544 continue; 1545 1546 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1547 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1548 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1549 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1550 device->device_id_len 1551 - SVPD_DEVICE_ID_HDR_LEN, 1552 cur_pattern->data.devid_pat.id, 1553 cur_pattern->data.devid_pat.id_len) != 0)) 1554 continue; 1555 1556 copy_dev_node: 1557 /* 1558 * If we get to this point, the user definitely wants 1559 * information on this device. So tell the caller to copy 1560 * the data out. 1561 */ 1562 retval |= DM_RET_COPY; 1563 1564 /* 1565 * If the return action has been set to descend, then we 1566 * know that we've already seen a peripheral matching 1567 * expression, therefore we need to further descend the tree. 1568 * This won't change by continuing around the loop, so we 1569 * go ahead and return. If we haven't seen a peripheral 1570 * matching expression, we keep going around the loop until 1571 * we exhaust the matching expressions. We'll set the stop 1572 * flag once we fall out of the loop. 1573 */ 1574 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1575 return(retval); 1576 } 1577 1578 /* 1579 * If the return action hasn't been set to descend yet, that means 1580 * we haven't seen any peripheral matching patterns. So tell the 1581 * caller to stop descending the tree -- the user doesn't want to 1582 * match against lower level tree elements. 1583 */ 1584 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1585 retval |= DM_RET_STOP; 1586 1587 return(retval); 1588 } 1589 1590 /* 1591 * Match a single peripheral against any number of match patterns. 1592 */ 1593 static dev_match_ret 1594 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1595 struct cam_periph *periph) 1596 { 1597 dev_match_ret retval; 1598 u_int i; 1599 1600 /* 1601 * If we aren't given something to match against, that's an error. 1602 */ 1603 if (periph == NULL) 1604 return(DM_RET_ERROR); 1605 1606 /* 1607 * If there are no match entries, then this peripheral matches no 1608 * matter what. 1609 */ 1610 if ((patterns == NULL) || (num_patterns == 0)) 1611 return(DM_RET_STOP | DM_RET_COPY); 1612 1613 /* 1614 * There aren't any nodes below a peripheral node, so there's no 1615 * reason to descend the tree any further. 1616 */ 1617 retval = DM_RET_STOP; 1618 1619 for (i = 0; i < num_patterns; i++) { 1620 struct periph_match_pattern *cur_pattern; 1621 1622 /* 1623 * If the pattern in question isn't for a peripheral, we 1624 * aren't interested. 1625 */ 1626 if (patterns[i].type != DEV_MATCH_PERIPH) 1627 continue; 1628 1629 cur_pattern = &patterns[i].pattern.periph_pattern; 1630 1631 /* 1632 * If they want to match on anything, then we will do so. 1633 */ 1634 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1635 /* set the copy flag */ 1636 retval |= DM_RET_COPY; 1637 1638 /* 1639 * We've already set the return action to stop, 1640 * since there are no nodes below peripherals in 1641 * the tree. 1642 */ 1643 return(retval); 1644 } 1645 1646 /* 1647 * Not sure why someone would do this... 1648 */ 1649 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1650 continue; 1651 1652 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1653 && (cur_pattern->path_id != periph->path->bus->path_id)) 1654 continue; 1655 1656 /* 1657 * For the target and lun id's, we have to make sure the 1658 * target and lun pointers aren't NULL. The xpt peripheral 1659 * has a wildcard target and device. 1660 */ 1661 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1662 && ((periph->path->target == NULL) 1663 ||(cur_pattern->target_id != periph->path->target->target_id))) 1664 continue; 1665 1666 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1667 && ((periph->path->device == NULL) 1668 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1669 continue; 1670 1671 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1672 && (cur_pattern->unit_number != periph->unit_number)) 1673 continue; 1674 1675 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1676 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1677 DEV_IDLEN) != 0)) 1678 continue; 1679 1680 /* 1681 * If we get to this point, the user definitely wants 1682 * information on this peripheral. So tell the caller to 1683 * copy the data out. 1684 */ 1685 retval |= DM_RET_COPY; 1686 1687 /* 1688 * The return action has already been set to stop, since 1689 * peripherals don't have any nodes below them in the EDT. 1690 */ 1691 return(retval); 1692 } 1693 1694 /* 1695 * If we get to this point, the peripheral that was passed in 1696 * doesn't match any of the patterns. 1697 */ 1698 return(retval); 1699 } 1700 1701 static int 1702 xptedtbusfunc(struct cam_eb *bus, void *arg) 1703 { 1704 struct ccb_dev_match *cdm; 1705 struct cam_et *target; 1706 dev_match_ret retval; 1707 1708 cdm = (struct ccb_dev_match *)arg; 1709 1710 /* 1711 * If our position is for something deeper in the tree, that means 1712 * that we've already seen this node. So, we keep going down. 1713 */ 1714 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1715 && (cdm->pos.cookie.bus == bus) 1716 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1717 && (cdm->pos.cookie.target != NULL)) 1718 retval = DM_RET_DESCEND; 1719 else 1720 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1721 1722 /* 1723 * If we got an error, bail out of the search. 1724 */ 1725 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1726 cdm->status = CAM_DEV_MATCH_ERROR; 1727 return(0); 1728 } 1729 1730 /* 1731 * If the copy flag is set, copy this bus out. 1732 */ 1733 if (retval & DM_RET_COPY) { 1734 int spaceleft, j; 1735 1736 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1737 sizeof(struct dev_match_result)); 1738 1739 /* 1740 * If we don't have enough space to put in another 1741 * match result, save our position and tell the 1742 * user there are more devices to check. 1743 */ 1744 if (spaceleft < sizeof(struct dev_match_result)) { 1745 bzero(&cdm->pos, sizeof(cdm->pos)); 1746 cdm->pos.position_type = 1747 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1748 1749 cdm->pos.cookie.bus = bus; 1750 cdm->pos.generations[CAM_BUS_GENERATION]= 1751 xsoftc.bus_generation; 1752 cdm->status = CAM_DEV_MATCH_MORE; 1753 return(0); 1754 } 1755 j = cdm->num_matches; 1756 cdm->num_matches++; 1757 cdm->matches[j].type = DEV_MATCH_BUS; 1758 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1759 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1760 cdm->matches[j].result.bus_result.unit_number = 1761 bus->sim->unit_number; 1762 strlcpy(cdm->matches[j].result.bus_result.dev_name, 1763 bus->sim->sim_name, 1764 sizeof(cdm->matches[j].result.bus_result.dev_name)); 1765 } 1766 1767 /* 1768 * If the user is only interested in buses, there's no 1769 * reason to descend to the next level in the tree. 1770 */ 1771 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1772 return(1); 1773 1774 /* 1775 * If there is a target generation recorded, check it to 1776 * make sure the target list hasn't changed. 1777 */ 1778 mtx_lock(&bus->eb_mtx); 1779 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1780 && (cdm->pos.cookie.bus == bus) 1781 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1782 && (cdm->pos.cookie.target != NULL)) { 1783 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1784 bus->generation)) { 1785 mtx_unlock(&bus->eb_mtx); 1786 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1787 return (0); 1788 } 1789 target = (struct cam_et *)cdm->pos.cookie.target; 1790 target->refcount++; 1791 } else 1792 target = NULL; 1793 mtx_unlock(&bus->eb_mtx); 1794 1795 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1796 } 1797 1798 static int 1799 xptedttargetfunc(struct cam_et *target, void *arg) 1800 { 1801 struct ccb_dev_match *cdm; 1802 struct cam_eb *bus; 1803 struct cam_ed *device; 1804 1805 cdm = (struct ccb_dev_match *)arg; 1806 bus = target->bus; 1807 1808 /* 1809 * If there is a device list generation recorded, check it to 1810 * make sure the device list hasn't changed. 1811 */ 1812 mtx_lock(&bus->eb_mtx); 1813 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1814 && (cdm->pos.cookie.bus == bus) 1815 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1816 && (cdm->pos.cookie.target == target) 1817 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1818 && (cdm->pos.cookie.device != NULL)) { 1819 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1820 target->generation) { 1821 mtx_unlock(&bus->eb_mtx); 1822 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1823 return(0); 1824 } 1825 device = (struct cam_ed *)cdm->pos.cookie.device; 1826 device->refcount++; 1827 } else 1828 device = NULL; 1829 mtx_unlock(&bus->eb_mtx); 1830 1831 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1832 } 1833 1834 static int 1835 xptedtdevicefunc(struct cam_ed *device, void *arg) 1836 { 1837 struct cam_eb *bus; 1838 struct cam_periph *periph; 1839 struct ccb_dev_match *cdm; 1840 dev_match_ret retval; 1841 1842 cdm = (struct ccb_dev_match *)arg; 1843 bus = device->target->bus; 1844 1845 /* 1846 * If our position is for something deeper in the tree, that means 1847 * that we've already seen this node. So, we keep going down. 1848 */ 1849 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1850 && (cdm->pos.cookie.device == device) 1851 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1852 && (cdm->pos.cookie.periph != NULL)) 1853 retval = DM_RET_DESCEND; 1854 else 1855 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1856 device); 1857 1858 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1859 cdm->status = CAM_DEV_MATCH_ERROR; 1860 return(0); 1861 } 1862 1863 /* 1864 * If the copy flag is set, copy this device out. 1865 */ 1866 if (retval & DM_RET_COPY) { 1867 int spaceleft, j; 1868 1869 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1870 sizeof(struct dev_match_result)); 1871 1872 /* 1873 * If we don't have enough space to put in another 1874 * match result, save our position and tell the 1875 * user there are more devices to check. 1876 */ 1877 if (spaceleft < sizeof(struct dev_match_result)) { 1878 bzero(&cdm->pos, sizeof(cdm->pos)); 1879 cdm->pos.position_type = 1880 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1881 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1882 1883 cdm->pos.cookie.bus = device->target->bus; 1884 cdm->pos.generations[CAM_BUS_GENERATION]= 1885 xsoftc.bus_generation; 1886 cdm->pos.cookie.target = device->target; 1887 cdm->pos.generations[CAM_TARGET_GENERATION] = 1888 device->target->bus->generation; 1889 cdm->pos.cookie.device = device; 1890 cdm->pos.generations[CAM_DEV_GENERATION] = 1891 device->target->generation; 1892 cdm->status = CAM_DEV_MATCH_MORE; 1893 return(0); 1894 } 1895 j = cdm->num_matches; 1896 cdm->num_matches++; 1897 cdm->matches[j].type = DEV_MATCH_DEVICE; 1898 cdm->matches[j].result.device_result.path_id = 1899 device->target->bus->path_id; 1900 cdm->matches[j].result.device_result.target_id = 1901 device->target->target_id; 1902 cdm->matches[j].result.device_result.target_lun = 1903 device->lun_id; 1904 cdm->matches[j].result.device_result.protocol = 1905 device->protocol; 1906 bcopy(&device->inq_data, 1907 &cdm->matches[j].result.device_result.inq_data, 1908 sizeof(struct scsi_inquiry_data)); 1909 bcopy(&device->ident_data, 1910 &cdm->matches[j].result.device_result.ident_data, 1911 sizeof(struct ata_params)); 1912 bcopy(&device->mmc_ident_data, 1913 &cdm->matches[j].result.device_result.mmc_ident_data, 1914 sizeof(struct mmc_params)); 1915 1916 /* Let the user know whether this device is unconfigured */ 1917 if (device->flags & CAM_DEV_UNCONFIGURED) 1918 cdm->matches[j].result.device_result.flags = 1919 DEV_RESULT_UNCONFIGURED; 1920 else 1921 cdm->matches[j].result.device_result.flags = 1922 DEV_RESULT_NOFLAG; 1923 } 1924 1925 /* 1926 * If the user isn't interested in peripherals, don't descend 1927 * the tree any further. 1928 */ 1929 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1930 return(1); 1931 1932 /* 1933 * If there is a peripheral list generation recorded, make sure 1934 * it hasn't changed. 1935 */ 1936 xpt_lock_buses(); 1937 mtx_lock(&bus->eb_mtx); 1938 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1939 && (cdm->pos.cookie.bus == bus) 1940 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1941 && (cdm->pos.cookie.target == device->target) 1942 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1943 && (cdm->pos.cookie.device == device) 1944 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1945 && (cdm->pos.cookie.periph != NULL)) { 1946 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1947 device->generation) { 1948 mtx_unlock(&bus->eb_mtx); 1949 xpt_unlock_buses(); 1950 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1951 return(0); 1952 } 1953 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1954 periph->refcount++; 1955 } else 1956 periph = NULL; 1957 mtx_unlock(&bus->eb_mtx); 1958 xpt_unlock_buses(); 1959 1960 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1961 } 1962 1963 static int 1964 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1965 { 1966 struct ccb_dev_match *cdm; 1967 dev_match_ret retval; 1968 1969 cdm = (struct ccb_dev_match *)arg; 1970 1971 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1972 1973 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1974 cdm->status = CAM_DEV_MATCH_ERROR; 1975 return(0); 1976 } 1977 1978 /* 1979 * If the copy flag is set, copy this peripheral out. 1980 */ 1981 if (retval & DM_RET_COPY) { 1982 int spaceleft, j; 1983 size_t l; 1984 1985 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1986 sizeof(struct dev_match_result)); 1987 1988 /* 1989 * If we don't have enough space to put in another 1990 * match result, save our position and tell the 1991 * user there are more devices to check. 1992 */ 1993 if (spaceleft < sizeof(struct dev_match_result)) { 1994 bzero(&cdm->pos, sizeof(cdm->pos)); 1995 cdm->pos.position_type = 1996 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1997 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1998 CAM_DEV_POS_PERIPH; 1999 2000 cdm->pos.cookie.bus = periph->path->bus; 2001 cdm->pos.generations[CAM_BUS_GENERATION]= 2002 xsoftc.bus_generation; 2003 cdm->pos.cookie.target = periph->path->target; 2004 cdm->pos.generations[CAM_TARGET_GENERATION] = 2005 periph->path->bus->generation; 2006 cdm->pos.cookie.device = periph->path->device; 2007 cdm->pos.generations[CAM_DEV_GENERATION] = 2008 periph->path->target->generation; 2009 cdm->pos.cookie.periph = periph; 2010 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2011 periph->path->device->generation; 2012 cdm->status = CAM_DEV_MATCH_MORE; 2013 return(0); 2014 } 2015 2016 j = cdm->num_matches; 2017 cdm->num_matches++; 2018 cdm->matches[j].type = DEV_MATCH_PERIPH; 2019 cdm->matches[j].result.periph_result.path_id = 2020 periph->path->bus->path_id; 2021 cdm->matches[j].result.periph_result.target_id = 2022 periph->path->target->target_id; 2023 cdm->matches[j].result.periph_result.target_lun = 2024 periph->path->device->lun_id; 2025 cdm->matches[j].result.periph_result.unit_number = 2026 periph->unit_number; 2027 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2028 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2029 periph->periph_name, l); 2030 } 2031 2032 return(1); 2033 } 2034 2035 static int 2036 xptedtmatch(struct ccb_dev_match *cdm) 2037 { 2038 struct cam_eb *bus; 2039 int ret; 2040 2041 cdm->num_matches = 0; 2042 2043 /* 2044 * Check the bus list generation. If it has changed, the user 2045 * needs to reset everything and start over. 2046 */ 2047 xpt_lock_buses(); 2048 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 2049 && (cdm->pos.cookie.bus != NULL)) { 2050 if (cdm->pos.generations[CAM_BUS_GENERATION] != 2051 xsoftc.bus_generation) { 2052 xpt_unlock_buses(); 2053 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2054 return(0); 2055 } 2056 bus = (struct cam_eb *)cdm->pos.cookie.bus; 2057 bus->refcount++; 2058 } else 2059 bus = NULL; 2060 xpt_unlock_buses(); 2061 2062 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 2063 2064 /* 2065 * If we get back 0, that means that we had to stop before fully 2066 * traversing the EDT. It also means that one of the subroutines 2067 * has set the status field to the proper value. If we get back 1, 2068 * we've fully traversed the EDT and copied out any matching entries. 2069 */ 2070 if (ret == 1) 2071 cdm->status = CAM_DEV_MATCH_LAST; 2072 2073 return(ret); 2074 } 2075 2076 static int 2077 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 2078 { 2079 struct cam_periph *periph; 2080 struct ccb_dev_match *cdm; 2081 2082 cdm = (struct ccb_dev_match *)arg; 2083 2084 xpt_lock_buses(); 2085 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2086 && (cdm->pos.cookie.pdrv == pdrv) 2087 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 2088 && (cdm->pos.cookie.periph != NULL)) { 2089 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 2090 (*pdrv)->generation) { 2091 xpt_unlock_buses(); 2092 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 2093 return(0); 2094 } 2095 periph = (struct cam_periph *)cdm->pos.cookie.periph; 2096 periph->refcount++; 2097 } else 2098 periph = NULL; 2099 xpt_unlock_buses(); 2100 2101 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 2102 } 2103 2104 static int 2105 xptplistperiphfunc(struct cam_periph *periph, void *arg) 2106 { 2107 struct ccb_dev_match *cdm; 2108 dev_match_ret retval; 2109 2110 cdm = (struct ccb_dev_match *)arg; 2111 2112 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 2113 2114 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 2115 cdm->status = CAM_DEV_MATCH_ERROR; 2116 return(0); 2117 } 2118 2119 /* 2120 * If the copy flag is set, copy this peripheral out. 2121 */ 2122 if (retval & DM_RET_COPY) { 2123 int spaceleft, j; 2124 size_t l; 2125 2126 spaceleft = cdm->match_buf_len - (cdm->num_matches * 2127 sizeof(struct dev_match_result)); 2128 2129 /* 2130 * If we don't have enough space to put in another 2131 * match result, save our position and tell the 2132 * user there are more devices to check. 2133 */ 2134 if (spaceleft < sizeof(struct dev_match_result)) { 2135 struct periph_driver **pdrv; 2136 2137 pdrv = NULL; 2138 bzero(&cdm->pos, sizeof(cdm->pos)); 2139 cdm->pos.position_type = 2140 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 2141 CAM_DEV_POS_PERIPH; 2142 2143 /* 2144 * This may look a bit non-sensical, but it is 2145 * actually quite logical. There are very few 2146 * peripheral drivers, and bloating every peripheral 2147 * structure with a pointer back to its parent 2148 * peripheral driver linker set entry would cost 2149 * more in the long run than doing this quick lookup. 2150 */ 2151 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 2152 if (strcmp((*pdrv)->driver_name, 2153 periph->periph_name) == 0) 2154 break; 2155 } 2156 2157 if (*pdrv == NULL) { 2158 cdm->status = CAM_DEV_MATCH_ERROR; 2159 return(0); 2160 } 2161 2162 cdm->pos.cookie.pdrv = pdrv; 2163 /* 2164 * The periph generation slot does double duty, as 2165 * does the periph pointer slot. They are used for 2166 * both edt and pdrv lookups and positioning. 2167 */ 2168 cdm->pos.cookie.periph = periph; 2169 cdm->pos.generations[CAM_PERIPH_GENERATION] = 2170 (*pdrv)->generation; 2171 cdm->status = CAM_DEV_MATCH_MORE; 2172 return(0); 2173 } 2174 2175 j = cdm->num_matches; 2176 cdm->num_matches++; 2177 cdm->matches[j].type = DEV_MATCH_PERIPH; 2178 cdm->matches[j].result.periph_result.path_id = 2179 periph->path->bus->path_id; 2180 2181 /* 2182 * The transport layer peripheral doesn't have a target or 2183 * lun. 2184 */ 2185 if (periph->path->target) 2186 cdm->matches[j].result.periph_result.target_id = 2187 periph->path->target->target_id; 2188 else 2189 cdm->matches[j].result.periph_result.target_id = 2190 CAM_TARGET_WILDCARD; 2191 2192 if (periph->path->device) 2193 cdm->matches[j].result.periph_result.target_lun = 2194 periph->path->device->lun_id; 2195 else 2196 cdm->matches[j].result.periph_result.target_lun = 2197 CAM_LUN_WILDCARD; 2198 2199 cdm->matches[j].result.periph_result.unit_number = 2200 periph->unit_number; 2201 l = sizeof(cdm->matches[j].result.periph_result.periph_name); 2202 strlcpy(cdm->matches[j].result.periph_result.periph_name, 2203 periph->periph_name, l); 2204 } 2205 2206 return(1); 2207 } 2208 2209 static int 2210 xptperiphlistmatch(struct ccb_dev_match *cdm) 2211 { 2212 int ret; 2213 2214 cdm->num_matches = 0; 2215 2216 /* 2217 * At this point in the edt traversal function, we check the bus 2218 * list generation to make sure that no buses have been added or 2219 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2220 * For the peripheral driver list traversal function, however, we 2221 * don't have to worry about new peripheral driver types coming or 2222 * going; they're in a linker set, and therefore can't change 2223 * without a recompile. 2224 */ 2225 2226 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2227 && (cdm->pos.cookie.pdrv != NULL)) 2228 ret = xptpdrvtraverse( 2229 (struct periph_driver **)cdm->pos.cookie.pdrv, 2230 xptplistpdrvfunc, cdm); 2231 else 2232 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2233 2234 /* 2235 * If we get back 0, that means that we had to stop before fully 2236 * traversing the peripheral driver tree. It also means that one of 2237 * the subroutines has set the status field to the proper value. If 2238 * we get back 1, we've fully traversed the EDT and copied out any 2239 * matching entries. 2240 */ 2241 if (ret == 1) 2242 cdm->status = CAM_DEV_MATCH_LAST; 2243 2244 return(ret); 2245 } 2246 2247 static int 2248 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2249 { 2250 struct cam_eb *bus, *next_bus; 2251 int retval; 2252 2253 retval = 1; 2254 if (start_bus) 2255 bus = start_bus; 2256 else { 2257 xpt_lock_buses(); 2258 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2259 if (bus == NULL) { 2260 xpt_unlock_buses(); 2261 return (retval); 2262 } 2263 bus->refcount++; 2264 xpt_unlock_buses(); 2265 } 2266 for (; bus != NULL; bus = next_bus) { 2267 retval = tr_func(bus, arg); 2268 if (retval == 0) { 2269 xpt_release_bus(bus); 2270 break; 2271 } 2272 xpt_lock_buses(); 2273 next_bus = TAILQ_NEXT(bus, links); 2274 if (next_bus) 2275 next_bus->refcount++; 2276 xpt_unlock_buses(); 2277 xpt_release_bus(bus); 2278 } 2279 return(retval); 2280 } 2281 2282 static int 2283 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2284 xpt_targetfunc_t *tr_func, void *arg) 2285 { 2286 struct cam_et *target, *next_target; 2287 int retval; 2288 2289 retval = 1; 2290 if (start_target) 2291 target = start_target; 2292 else { 2293 mtx_lock(&bus->eb_mtx); 2294 target = TAILQ_FIRST(&bus->et_entries); 2295 if (target == NULL) { 2296 mtx_unlock(&bus->eb_mtx); 2297 return (retval); 2298 } 2299 target->refcount++; 2300 mtx_unlock(&bus->eb_mtx); 2301 } 2302 for (; target != NULL; target = next_target) { 2303 retval = tr_func(target, arg); 2304 if (retval == 0) { 2305 xpt_release_target(target); 2306 break; 2307 } 2308 mtx_lock(&bus->eb_mtx); 2309 next_target = TAILQ_NEXT(target, links); 2310 if (next_target) 2311 next_target->refcount++; 2312 mtx_unlock(&bus->eb_mtx); 2313 xpt_release_target(target); 2314 } 2315 return(retval); 2316 } 2317 2318 static int 2319 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2320 xpt_devicefunc_t *tr_func, void *arg) 2321 { 2322 struct cam_eb *bus; 2323 struct cam_ed *device, *next_device; 2324 int retval; 2325 2326 retval = 1; 2327 bus = target->bus; 2328 if (start_device) 2329 device = start_device; 2330 else { 2331 mtx_lock(&bus->eb_mtx); 2332 device = TAILQ_FIRST(&target->ed_entries); 2333 if (device == NULL) { 2334 mtx_unlock(&bus->eb_mtx); 2335 return (retval); 2336 } 2337 device->refcount++; 2338 mtx_unlock(&bus->eb_mtx); 2339 } 2340 for (; device != NULL; device = next_device) { 2341 mtx_lock(&device->device_mtx); 2342 retval = tr_func(device, arg); 2343 mtx_unlock(&device->device_mtx); 2344 if (retval == 0) { 2345 xpt_release_device(device); 2346 break; 2347 } 2348 mtx_lock(&bus->eb_mtx); 2349 next_device = TAILQ_NEXT(device, links); 2350 if (next_device) 2351 next_device->refcount++; 2352 mtx_unlock(&bus->eb_mtx); 2353 xpt_release_device(device); 2354 } 2355 return(retval); 2356 } 2357 2358 static int 2359 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2360 xpt_periphfunc_t *tr_func, void *arg) 2361 { 2362 struct cam_eb *bus; 2363 struct cam_periph *periph, *next_periph; 2364 int retval; 2365 2366 retval = 1; 2367 2368 bus = device->target->bus; 2369 if (start_periph) 2370 periph = start_periph; 2371 else { 2372 xpt_lock_buses(); 2373 mtx_lock(&bus->eb_mtx); 2374 periph = SLIST_FIRST(&device->periphs); 2375 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2376 periph = SLIST_NEXT(periph, periph_links); 2377 if (periph == NULL) { 2378 mtx_unlock(&bus->eb_mtx); 2379 xpt_unlock_buses(); 2380 return (retval); 2381 } 2382 periph->refcount++; 2383 mtx_unlock(&bus->eb_mtx); 2384 xpt_unlock_buses(); 2385 } 2386 for (; periph != NULL; periph = next_periph) { 2387 retval = tr_func(periph, arg); 2388 if (retval == 0) { 2389 cam_periph_release_locked(periph); 2390 break; 2391 } 2392 xpt_lock_buses(); 2393 mtx_lock(&bus->eb_mtx); 2394 next_periph = SLIST_NEXT(periph, periph_links); 2395 while (next_periph != NULL && 2396 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2397 next_periph = SLIST_NEXT(next_periph, periph_links); 2398 if (next_periph) 2399 next_periph->refcount++; 2400 mtx_unlock(&bus->eb_mtx); 2401 xpt_unlock_buses(); 2402 cam_periph_release_locked(periph); 2403 } 2404 return(retval); 2405 } 2406 2407 static int 2408 xptpdrvtraverse(struct periph_driver **start_pdrv, 2409 xpt_pdrvfunc_t *tr_func, void *arg) 2410 { 2411 struct periph_driver **pdrv; 2412 int retval; 2413 2414 retval = 1; 2415 2416 /* 2417 * We don't traverse the peripheral driver list like we do the 2418 * other lists, because it is a linker set, and therefore cannot be 2419 * changed during runtime. If the peripheral driver list is ever 2420 * re-done to be something other than a linker set (i.e. it can 2421 * change while the system is running), the list traversal should 2422 * be modified to work like the other traversal functions. 2423 */ 2424 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2425 *pdrv != NULL; pdrv++) { 2426 retval = tr_func(pdrv, arg); 2427 2428 if (retval == 0) 2429 return(retval); 2430 } 2431 2432 return(retval); 2433 } 2434 2435 static int 2436 xptpdperiphtraverse(struct periph_driver **pdrv, 2437 struct cam_periph *start_periph, 2438 xpt_periphfunc_t *tr_func, void *arg) 2439 { 2440 struct cam_periph *periph, *next_periph; 2441 int retval; 2442 2443 retval = 1; 2444 2445 if (start_periph) 2446 periph = start_periph; 2447 else { 2448 xpt_lock_buses(); 2449 periph = TAILQ_FIRST(&(*pdrv)->units); 2450 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2451 periph = TAILQ_NEXT(periph, unit_links); 2452 if (periph == NULL) { 2453 xpt_unlock_buses(); 2454 return (retval); 2455 } 2456 periph->refcount++; 2457 xpt_unlock_buses(); 2458 } 2459 for (; periph != NULL; periph = next_periph) { 2460 cam_periph_lock(periph); 2461 retval = tr_func(periph, arg); 2462 cam_periph_unlock(periph); 2463 if (retval == 0) { 2464 cam_periph_release(periph); 2465 break; 2466 } 2467 xpt_lock_buses(); 2468 next_periph = TAILQ_NEXT(periph, unit_links); 2469 while (next_periph != NULL && 2470 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2471 next_periph = TAILQ_NEXT(next_periph, unit_links); 2472 if (next_periph) 2473 next_periph->refcount++; 2474 xpt_unlock_buses(); 2475 cam_periph_release(periph); 2476 } 2477 return(retval); 2478 } 2479 2480 static int 2481 xptdefbusfunc(struct cam_eb *bus, void *arg) 2482 { 2483 struct xpt_traverse_config *tr_config; 2484 2485 tr_config = (struct xpt_traverse_config *)arg; 2486 2487 if (tr_config->depth == XPT_DEPTH_BUS) { 2488 xpt_busfunc_t *tr_func; 2489 2490 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2491 2492 return(tr_func(bus, tr_config->tr_arg)); 2493 } else 2494 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2495 } 2496 2497 static int 2498 xptdeftargetfunc(struct cam_et *target, void *arg) 2499 { 2500 struct xpt_traverse_config *tr_config; 2501 2502 tr_config = (struct xpt_traverse_config *)arg; 2503 2504 if (tr_config->depth == XPT_DEPTH_TARGET) { 2505 xpt_targetfunc_t *tr_func; 2506 2507 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2508 2509 return(tr_func(target, tr_config->tr_arg)); 2510 } else 2511 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2512 } 2513 2514 static int 2515 xptdefdevicefunc(struct cam_ed *device, void *arg) 2516 { 2517 struct xpt_traverse_config *tr_config; 2518 2519 tr_config = (struct xpt_traverse_config *)arg; 2520 2521 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2522 xpt_devicefunc_t *tr_func; 2523 2524 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2525 2526 return(tr_func(device, tr_config->tr_arg)); 2527 } else 2528 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2529 } 2530 2531 static int 2532 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2533 { 2534 struct xpt_traverse_config *tr_config; 2535 xpt_periphfunc_t *tr_func; 2536 2537 tr_config = (struct xpt_traverse_config *)arg; 2538 2539 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2540 2541 /* 2542 * Unlike the other default functions, we don't check for depth 2543 * here. The peripheral driver level is the last level in the EDT, 2544 * so if we're here, we should execute the function in question. 2545 */ 2546 return(tr_func(periph, tr_config->tr_arg)); 2547 } 2548 2549 /* 2550 * Execute the given function for every bus in the EDT. 2551 */ 2552 static int 2553 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2554 { 2555 struct xpt_traverse_config tr_config; 2556 2557 tr_config.depth = XPT_DEPTH_BUS; 2558 tr_config.tr_func = tr_func; 2559 tr_config.tr_arg = arg; 2560 2561 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2562 } 2563 2564 /* 2565 * Execute the given function for every device in the EDT. 2566 */ 2567 static int 2568 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2569 { 2570 struct xpt_traverse_config tr_config; 2571 2572 tr_config.depth = XPT_DEPTH_DEVICE; 2573 tr_config.tr_func = tr_func; 2574 tr_config.tr_arg = arg; 2575 2576 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2577 } 2578 2579 static int 2580 xptsetasyncfunc(struct cam_ed *device, void *arg) 2581 { 2582 struct cam_path path; 2583 struct ccb_getdev cgd; 2584 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2585 2586 /* 2587 * Don't report unconfigured devices (Wildcard devs, 2588 * devices only for target mode, device instances 2589 * that have been invalidated but are waiting for 2590 * their last reference count to be released). 2591 */ 2592 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2593 return (1); 2594 2595 xpt_compile_path(&path, 2596 NULL, 2597 device->target->bus->path_id, 2598 device->target->target_id, 2599 device->lun_id); 2600 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2601 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2602 xpt_action((union ccb *)&cgd); 2603 csa->callback(csa->callback_arg, 2604 AC_FOUND_DEVICE, 2605 &path, &cgd); 2606 xpt_release_path(&path); 2607 2608 return(1); 2609 } 2610 2611 static int 2612 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2613 { 2614 struct cam_path path; 2615 struct ccb_pathinq cpi; 2616 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2617 2618 xpt_compile_path(&path, /*periph*/NULL, 2619 bus->path_id, 2620 CAM_TARGET_WILDCARD, 2621 CAM_LUN_WILDCARD); 2622 xpt_path_lock(&path); 2623 xpt_path_inq(&cpi, &path); 2624 csa->callback(csa->callback_arg, 2625 AC_PATH_REGISTERED, 2626 &path, &cpi); 2627 xpt_path_unlock(&path); 2628 xpt_release_path(&path); 2629 2630 return(1); 2631 } 2632 2633 void 2634 xpt_action(union ccb *start_ccb) 2635 { 2636 2637 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, 2638 ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code, 2639 xpt_action_name(start_ccb->ccb_h.func_code))); 2640 2641 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2642 (*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb); 2643 } 2644 2645 void 2646 xpt_action_default(union ccb *start_ccb) 2647 { 2648 struct cam_path *path; 2649 struct cam_sim *sim; 2650 struct mtx *mtx; 2651 2652 path = start_ccb->ccb_h.path; 2653 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2654 ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code, 2655 xpt_action_name(start_ccb->ccb_h.func_code))); 2656 2657 switch (start_ccb->ccb_h.func_code) { 2658 case XPT_SCSI_IO: 2659 { 2660 struct cam_ed *device; 2661 2662 /* 2663 * For the sake of compatibility with SCSI-1 2664 * devices that may not understand the identify 2665 * message, we include lun information in the 2666 * second byte of all commands. SCSI-1 specifies 2667 * that luns are a 3 bit value and reserves only 3 2668 * bits for lun information in the CDB. Later 2669 * revisions of the SCSI spec allow for more than 8 2670 * luns, but have deprecated lun information in the 2671 * CDB. So, if the lun won't fit, we must omit. 2672 * 2673 * Also be aware that during initial probing for devices, 2674 * the inquiry information is unknown but initialized to 0. 2675 * This means that this code will be exercised while probing 2676 * devices with an ANSI revision greater than 2. 2677 */ 2678 device = path->device; 2679 if (device->protocol_version <= SCSI_REV_2 2680 && start_ccb->ccb_h.target_lun < 8 2681 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2682 2683 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2684 start_ccb->ccb_h.target_lun << 5; 2685 } 2686 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2687 } 2688 /* FALLTHROUGH */ 2689 case XPT_TARGET_IO: 2690 case XPT_CONT_TARGET_IO: 2691 start_ccb->csio.sense_resid = 0; 2692 start_ccb->csio.resid = 0; 2693 /* FALLTHROUGH */ 2694 case XPT_ATA_IO: 2695 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2696 start_ccb->ataio.resid = 0; 2697 /* FALLTHROUGH */ 2698 case XPT_NVME_IO: 2699 /* FALLTHROUGH */ 2700 case XPT_NVME_ADMIN: 2701 /* FALLTHROUGH */ 2702 case XPT_MMC_IO: 2703 /* XXX just like nmve_io? */ 2704 case XPT_RESET_DEV: 2705 case XPT_ENG_EXEC: 2706 case XPT_SMP_IO: 2707 { 2708 struct cam_devq *devq; 2709 2710 devq = path->bus->sim->devq; 2711 mtx_lock(&devq->send_mtx); 2712 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2713 if (xpt_schedule_devq(devq, path->device) != 0) 2714 xpt_run_devq(devq); 2715 mtx_unlock(&devq->send_mtx); 2716 break; 2717 } 2718 case XPT_CALC_GEOMETRY: 2719 /* Filter out garbage */ 2720 if (start_ccb->ccg.block_size == 0 2721 || start_ccb->ccg.volume_size == 0) { 2722 start_ccb->ccg.cylinders = 0; 2723 start_ccb->ccg.heads = 0; 2724 start_ccb->ccg.secs_per_track = 0; 2725 start_ccb->ccb_h.status = CAM_REQ_CMP; 2726 break; 2727 } 2728 #if defined(__sparc64__) 2729 /* 2730 * For sparc64, we may need adjust the geometry of large 2731 * disks in order to fit the limitations of the 16-bit 2732 * fields of the VTOC8 disk label. 2733 */ 2734 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2735 start_ccb->ccb_h.status = CAM_REQ_CMP; 2736 break; 2737 } 2738 #endif 2739 goto call_sim; 2740 case XPT_ABORT: 2741 { 2742 union ccb* abort_ccb; 2743 2744 abort_ccb = start_ccb->cab.abort_ccb; 2745 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2746 struct cam_ed *device; 2747 struct cam_devq *devq; 2748 2749 device = abort_ccb->ccb_h.path->device; 2750 devq = device->sim->devq; 2751 2752 mtx_lock(&devq->send_mtx); 2753 if (abort_ccb->ccb_h.pinfo.index > 0) { 2754 cam_ccbq_remove_ccb(&device->ccbq, abort_ccb); 2755 abort_ccb->ccb_h.status = 2756 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2757 xpt_freeze_devq_device(device, 1); 2758 mtx_unlock(&devq->send_mtx); 2759 xpt_done(abort_ccb); 2760 start_ccb->ccb_h.status = CAM_REQ_CMP; 2761 break; 2762 } 2763 mtx_unlock(&devq->send_mtx); 2764 2765 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2766 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2767 /* 2768 * We've caught this ccb en route to 2769 * the SIM. Flag it for abort and the 2770 * SIM will do so just before starting 2771 * real work on the CCB. 2772 */ 2773 abort_ccb->ccb_h.status = 2774 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2775 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2776 start_ccb->ccb_h.status = CAM_REQ_CMP; 2777 break; 2778 } 2779 } 2780 if (XPT_FC_IS_QUEUED(abort_ccb) 2781 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2782 /* 2783 * It's already completed but waiting 2784 * for our SWI to get to it. 2785 */ 2786 start_ccb->ccb_h.status = CAM_UA_ABORT; 2787 break; 2788 } 2789 /* 2790 * If we weren't able to take care of the abort request 2791 * in the XPT, pass the request down to the SIM for processing. 2792 */ 2793 } 2794 /* FALLTHROUGH */ 2795 case XPT_ACCEPT_TARGET_IO: 2796 case XPT_EN_LUN: 2797 case XPT_IMMED_NOTIFY: 2798 case XPT_NOTIFY_ACK: 2799 case XPT_RESET_BUS: 2800 case XPT_IMMEDIATE_NOTIFY: 2801 case XPT_NOTIFY_ACKNOWLEDGE: 2802 case XPT_GET_SIM_KNOB_OLD: 2803 case XPT_GET_SIM_KNOB: 2804 case XPT_SET_SIM_KNOB: 2805 case XPT_GET_TRAN_SETTINGS: 2806 case XPT_SET_TRAN_SETTINGS: 2807 case XPT_PATH_INQ: 2808 call_sim: 2809 sim = path->bus->sim; 2810 mtx = sim->mtx; 2811 if (mtx && !mtx_owned(mtx)) 2812 mtx_lock(mtx); 2813 else 2814 mtx = NULL; 2815 2816 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2817 ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code)); 2818 (*(sim->sim_action))(sim, start_ccb); 2819 CAM_DEBUG(path, CAM_DEBUG_TRACE, 2820 ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status)); 2821 if (mtx) 2822 mtx_unlock(mtx); 2823 break; 2824 case XPT_PATH_STATS: 2825 start_ccb->cpis.last_reset = path->bus->last_reset; 2826 start_ccb->ccb_h.status = CAM_REQ_CMP; 2827 break; 2828 case XPT_GDEV_TYPE: 2829 { 2830 struct cam_ed *dev; 2831 2832 dev = path->device; 2833 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2834 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2835 } else { 2836 struct ccb_getdev *cgd; 2837 2838 cgd = &start_ccb->cgd; 2839 cgd->protocol = dev->protocol; 2840 cgd->inq_data = dev->inq_data; 2841 cgd->ident_data = dev->ident_data; 2842 cgd->inq_flags = dev->inq_flags; 2843 cgd->ccb_h.status = CAM_REQ_CMP; 2844 cgd->serial_num_len = dev->serial_num_len; 2845 if ((dev->serial_num_len > 0) 2846 && (dev->serial_num != NULL)) 2847 bcopy(dev->serial_num, cgd->serial_num, 2848 dev->serial_num_len); 2849 } 2850 break; 2851 } 2852 case XPT_GDEV_STATS: 2853 { 2854 struct ccb_getdevstats *cgds = &start_ccb->cgds; 2855 struct cam_ed *dev = path->device; 2856 struct cam_eb *bus = path->bus; 2857 struct cam_et *tar = path->target; 2858 struct cam_devq *devq = bus->sim->devq; 2859 2860 mtx_lock(&devq->send_mtx); 2861 cgds->dev_openings = dev->ccbq.dev_openings; 2862 cgds->dev_active = dev->ccbq.dev_active; 2863 cgds->allocated = dev->ccbq.allocated; 2864 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2865 cgds->held = cgds->allocated - cgds->dev_active - cgds->queued; 2866 cgds->last_reset = tar->last_reset; 2867 cgds->maxtags = dev->maxtags; 2868 cgds->mintags = dev->mintags; 2869 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2870 cgds->last_reset = bus->last_reset; 2871 mtx_unlock(&devq->send_mtx); 2872 cgds->ccb_h.status = CAM_REQ_CMP; 2873 break; 2874 } 2875 case XPT_GDEVLIST: 2876 { 2877 struct cam_periph *nperiph; 2878 struct periph_list *periph_head; 2879 struct ccb_getdevlist *cgdl; 2880 u_int i; 2881 struct cam_ed *device; 2882 int found; 2883 2884 2885 found = 0; 2886 2887 /* 2888 * Don't want anyone mucking with our data. 2889 */ 2890 device = path->device; 2891 periph_head = &device->periphs; 2892 cgdl = &start_ccb->cgdl; 2893 2894 /* 2895 * Check and see if the list has changed since the user 2896 * last requested a list member. If so, tell them that the 2897 * list has changed, and therefore they need to start over 2898 * from the beginning. 2899 */ 2900 if ((cgdl->index != 0) && 2901 (cgdl->generation != device->generation)) { 2902 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2903 break; 2904 } 2905 2906 /* 2907 * Traverse the list of peripherals and attempt to find 2908 * the requested peripheral. 2909 */ 2910 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2911 (nperiph != NULL) && (i <= cgdl->index); 2912 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2913 if (i == cgdl->index) { 2914 strlcpy(cgdl->periph_name, 2915 nperiph->periph_name, 2916 sizeof(cgdl->periph_name)); 2917 cgdl->unit_number = nperiph->unit_number; 2918 found = 1; 2919 } 2920 } 2921 if (found == 0) { 2922 cgdl->status = CAM_GDEVLIST_ERROR; 2923 break; 2924 } 2925 2926 if (nperiph == NULL) 2927 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2928 else 2929 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2930 2931 cgdl->index++; 2932 cgdl->generation = device->generation; 2933 2934 cgdl->ccb_h.status = CAM_REQ_CMP; 2935 break; 2936 } 2937 case XPT_DEV_MATCH: 2938 { 2939 dev_pos_type position_type; 2940 struct ccb_dev_match *cdm; 2941 2942 cdm = &start_ccb->cdm; 2943 2944 /* 2945 * There are two ways of getting at information in the EDT. 2946 * The first way is via the primary EDT tree. It starts 2947 * with a list of buses, then a list of targets on a bus, 2948 * then devices/luns on a target, and then peripherals on a 2949 * device/lun. The "other" way is by the peripheral driver 2950 * lists. The peripheral driver lists are organized by 2951 * peripheral driver. (obviously) So it makes sense to 2952 * use the peripheral driver list if the user is looking 2953 * for something like "da1", or all "da" devices. If the 2954 * user is looking for something on a particular bus/target 2955 * or lun, it's generally better to go through the EDT tree. 2956 */ 2957 2958 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2959 position_type = cdm->pos.position_type; 2960 else { 2961 u_int i; 2962 2963 position_type = CAM_DEV_POS_NONE; 2964 2965 for (i = 0; i < cdm->num_patterns; i++) { 2966 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2967 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2968 position_type = CAM_DEV_POS_EDT; 2969 break; 2970 } 2971 } 2972 2973 if (cdm->num_patterns == 0) 2974 position_type = CAM_DEV_POS_EDT; 2975 else if (position_type == CAM_DEV_POS_NONE) 2976 position_type = CAM_DEV_POS_PDRV; 2977 } 2978 2979 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2980 case CAM_DEV_POS_EDT: 2981 xptedtmatch(cdm); 2982 break; 2983 case CAM_DEV_POS_PDRV: 2984 xptperiphlistmatch(cdm); 2985 break; 2986 default: 2987 cdm->status = CAM_DEV_MATCH_ERROR; 2988 break; 2989 } 2990 2991 if (cdm->status == CAM_DEV_MATCH_ERROR) 2992 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2993 else 2994 start_ccb->ccb_h.status = CAM_REQ_CMP; 2995 2996 break; 2997 } 2998 case XPT_SASYNC_CB: 2999 { 3000 struct ccb_setasync *csa; 3001 struct async_node *cur_entry; 3002 struct async_list *async_head; 3003 u_int32_t added; 3004 3005 csa = &start_ccb->csa; 3006 added = csa->event_enable; 3007 async_head = &path->device->asyncs; 3008 3009 /* 3010 * If there is already an entry for us, simply 3011 * update it. 3012 */ 3013 cur_entry = SLIST_FIRST(async_head); 3014 while (cur_entry != NULL) { 3015 if ((cur_entry->callback_arg == csa->callback_arg) 3016 && (cur_entry->callback == csa->callback)) 3017 break; 3018 cur_entry = SLIST_NEXT(cur_entry, links); 3019 } 3020 3021 if (cur_entry != NULL) { 3022 /* 3023 * If the request has no flags set, 3024 * remove the entry. 3025 */ 3026 added &= ~cur_entry->event_enable; 3027 if (csa->event_enable == 0) { 3028 SLIST_REMOVE(async_head, cur_entry, 3029 async_node, links); 3030 xpt_release_device(path->device); 3031 free(cur_entry, M_CAMXPT); 3032 } else { 3033 cur_entry->event_enable = csa->event_enable; 3034 } 3035 csa->event_enable = added; 3036 } else { 3037 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 3038 M_NOWAIT); 3039 if (cur_entry == NULL) { 3040 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 3041 break; 3042 } 3043 cur_entry->event_enable = csa->event_enable; 3044 cur_entry->event_lock = (path->bus->sim->mtx && 3045 mtx_owned(path->bus->sim->mtx)) ? 1 : 0; 3046 cur_entry->callback_arg = csa->callback_arg; 3047 cur_entry->callback = csa->callback; 3048 SLIST_INSERT_HEAD(async_head, cur_entry, links); 3049 xpt_acquire_device(path->device); 3050 } 3051 start_ccb->ccb_h.status = CAM_REQ_CMP; 3052 break; 3053 } 3054 case XPT_REL_SIMQ: 3055 { 3056 struct ccb_relsim *crs; 3057 struct cam_ed *dev; 3058 3059 crs = &start_ccb->crs; 3060 dev = path->device; 3061 if (dev == NULL) { 3062 3063 crs->ccb_h.status = CAM_DEV_NOT_THERE; 3064 break; 3065 } 3066 3067 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 3068 3069 /* Don't ever go below one opening */ 3070 if (crs->openings > 0) { 3071 xpt_dev_ccbq_resize(path, crs->openings); 3072 if (bootverbose) { 3073 xpt_print(path, 3074 "number of openings is now %d\n", 3075 crs->openings); 3076 } 3077 } 3078 } 3079 3080 mtx_lock(&dev->sim->devq->send_mtx); 3081 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 3082 3083 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 3084 3085 /* 3086 * Just extend the old timeout and decrement 3087 * the freeze count so that a single timeout 3088 * is sufficient for releasing the queue. 3089 */ 3090 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3091 callout_stop(&dev->callout); 3092 } else { 3093 3094 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3095 } 3096 3097 callout_reset_sbt(&dev->callout, 3098 SBT_1MS * crs->release_timeout, 0, 3099 xpt_release_devq_timeout, dev, 0); 3100 3101 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 3102 3103 } 3104 3105 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 3106 3107 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 3108 /* 3109 * Decrement the freeze count so that a single 3110 * completion is still sufficient to unfreeze 3111 * the queue. 3112 */ 3113 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3114 } else { 3115 3116 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 3117 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3118 } 3119 } 3120 3121 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 3122 3123 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 3124 || (dev->ccbq.dev_active == 0)) { 3125 3126 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 3127 } else { 3128 3129 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 3130 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 3131 } 3132 } 3133 mtx_unlock(&dev->sim->devq->send_mtx); 3134 3135 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 3136 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 3137 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 3138 start_ccb->ccb_h.status = CAM_REQ_CMP; 3139 break; 3140 } 3141 case XPT_DEBUG: { 3142 struct cam_path *oldpath; 3143 3144 /* Check that all request bits are supported. */ 3145 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 3146 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 3147 break; 3148 } 3149 3150 cam_dflags = CAM_DEBUG_NONE; 3151 if (cam_dpath != NULL) { 3152 oldpath = cam_dpath; 3153 cam_dpath = NULL; 3154 xpt_free_path(oldpath); 3155 } 3156 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 3157 if (xpt_create_path(&cam_dpath, NULL, 3158 start_ccb->ccb_h.path_id, 3159 start_ccb->ccb_h.target_id, 3160 start_ccb->ccb_h.target_lun) != 3161 CAM_REQ_CMP) { 3162 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3163 } else { 3164 cam_dflags = start_ccb->cdbg.flags; 3165 start_ccb->ccb_h.status = CAM_REQ_CMP; 3166 xpt_print(cam_dpath, "debugging flags now %x\n", 3167 cam_dflags); 3168 } 3169 } else 3170 start_ccb->ccb_h.status = CAM_REQ_CMP; 3171 break; 3172 } 3173 case XPT_NOOP: 3174 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 3175 xpt_freeze_devq(path, 1); 3176 start_ccb->ccb_h.status = CAM_REQ_CMP; 3177 break; 3178 case XPT_REPROBE_LUN: 3179 xpt_async(AC_INQ_CHANGED, path, NULL); 3180 start_ccb->ccb_h.status = CAM_REQ_CMP; 3181 xpt_done(start_ccb); 3182 break; 3183 default: 3184 case XPT_SDEV_TYPE: 3185 case XPT_TERM_IO: 3186 case XPT_ENG_INQ: 3187 /* XXX Implement */ 3188 xpt_print(start_ccb->ccb_h.path, 3189 "%s: CCB type %#x %s not supported\n", __func__, 3190 start_ccb->ccb_h.func_code, 3191 xpt_action_name(start_ccb->ccb_h.func_code)); 3192 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 3193 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 3194 xpt_done(start_ccb); 3195 } 3196 break; 3197 } 3198 CAM_DEBUG(path, CAM_DEBUG_TRACE, 3199 ("xpt_action_default: func= %#x %s status %#x\n", 3200 start_ccb->ccb_h.func_code, 3201 xpt_action_name(start_ccb->ccb_h.func_code), 3202 start_ccb->ccb_h.status)); 3203 } 3204 3205 uint32_t 3206 xpt_poll_setup(union ccb *start_ccb) 3207 { 3208 u_int32_t timeout; 3209 struct cam_sim *sim; 3210 struct cam_devq *devq; 3211 struct cam_ed *dev; 3212 struct mtx *mtx; 3213 3214 timeout = start_ccb->ccb_h.timeout * 10; 3215 sim = start_ccb->ccb_h.path->bus->sim; 3216 devq = sim->devq; 3217 mtx = sim->mtx; 3218 dev = start_ccb->ccb_h.path->device; 3219 3220 /* 3221 * Steal an opening so that no other queued requests 3222 * can get it before us while we simulate interrupts. 3223 */ 3224 mtx_lock(&devq->send_mtx); 3225 dev->ccbq.dev_openings--; 3226 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3227 (--timeout > 0)) { 3228 mtx_unlock(&devq->send_mtx); 3229 DELAY(100); 3230 if (mtx) 3231 mtx_lock(mtx); 3232 (*(sim->sim_poll))(sim); 3233 if (mtx) 3234 mtx_unlock(mtx); 3235 camisr_runqueue(); 3236 mtx_lock(&devq->send_mtx); 3237 } 3238 dev->ccbq.dev_openings++; 3239 mtx_unlock(&devq->send_mtx); 3240 3241 return (timeout); 3242 } 3243 3244 void 3245 xpt_pollwait(union ccb *start_ccb, uint32_t timeout) 3246 { 3247 struct cam_sim *sim; 3248 struct mtx *mtx; 3249 3250 sim = start_ccb->ccb_h.path->bus->sim; 3251 mtx = sim->mtx; 3252 3253 while (--timeout > 0) { 3254 if (mtx) 3255 mtx_lock(mtx); 3256 (*(sim->sim_poll))(sim); 3257 if (mtx) 3258 mtx_unlock(mtx); 3259 camisr_runqueue(); 3260 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3261 != CAM_REQ_INPROG) 3262 break; 3263 DELAY(100); 3264 } 3265 3266 if (timeout == 0) { 3267 /* 3268 * XXX Is it worth adding a sim_timeout entry 3269 * point so we can attempt recovery? If 3270 * this is only used for dumps, I don't think 3271 * it is. 3272 */ 3273 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3274 } 3275 } 3276 3277 void 3278 xpt_polled_action(union ccb *start_ccb) 3279 { 3280 uint32_t timeout; 3281 struct cam_ed *dev; 3282 3283 timeout = start_ccb->ccb_h.timeout * 10; 3284 dev = start_ccb->ccb_h.path->device; 3285 3286 mtx_unlock(&dev->device_mtx); 3287 3288 timeout = xpt_poll_setup(start_ccb); 3289 if (timeout > 0) { 3290 xpt_action(start_ccb); 3291 xpt_pollwait(start_ccb, timeout); 3292 } else { 3293 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3294 } 3295 3296 mtx_lock(&dev->device_mtx); 3297 } 3298 3299 /* 3300 * Schedule a peripheral driver to receive a ccb when its 3301 * target device has space for more transactions. 3302 */ 3303 void 3304 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3305 { 3306 3307 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3308 cam_periph_assert(periph, MA_OWNED); 3309 if (new_priority < periph->scheduled_priority) { 3310 periph->scheduled_priority = new_priority; 3311 xpt_run_allocq(periph, 0); 3312 } 3313 } 3314 3315 3316 /* 3317 * Schedule a device to run on a given queue. 3318 * If the device was inserted as a new entry on the queue, 3319 * return 1 meaning the device queue should be run. If we 3320 * were already queued, implying someone else has already 3321 * started the queue, return 0 so the caller doesn't attempt 3322 * to run the queue. 3323 */ 3324 static int 3325 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3326 u_int32_t new_priority) 3327 { 3328 int retval; 3329 u_int32_t old_priority; 3330 3331 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3332 3333 3334 old_priority = pinfo->priority; 3335 3336 /* 3337 * Are we already queued? 3338 */ 3339 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3340 /* Simply reorder based on new priority */ 3341 if (new_priority < old_priority) { 3342 camq_change_priority(queue, pinfo->index, 3343 new_priority); 3344 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3345 ("changed priority to %d\n", 3346 new_priority)); 3347 retval = 1; 3348 } else 3349 retval = 0; 3350 } else { 3351 /* New entry on the queue */ 3352 if (new_priority < old_priority) 3353 pinfo->priority = new_priority; 3354 3355 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3356 ("Inserting onto queue\n")); 3357 pinfo->generation = ++queue->generation; 3358 camq_insert(queue, pinfo); 3359 retval = 1; 3360 } 3361 return (retval); 3362 } 3363 3364 static void 3365 xpt_run_allocq_task(void *context, int pending) 3366 { 3367 struct cam_periph *periph = context; 3368 3369 cam_periph_lock(periph); 3370 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3371 xpt_run_allocq(periph, 1); 3372 cam_periph_unlock(periph); 3373 cam_periph_release(periph); 3374 } 3375 3376 static void 3377 xpt_run_allocq(struct cam_periph *periph, int sleep) 3378 { 3379 struct cam_ed *device; 3380 union ccb *ccb; 3381 uint32_t prio; 3382 3383 cam_periph_assert(periph, MA_OWNED); 3384 if (periph->periph_allocating) 3385 return; 3386 cam_periph_doacquire(periph); 3387 periph->periph_allocating = 1; 3388 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3389 device = periph->path->device; 3390 ccb = NULL; 3391 restart: 3392 while ((prio = min(periph->scheduled_priority, 3393 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3394 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3395 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3396 3397 if (ccb == NULL && 3398 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3399 if (sleep) { 3400 ccb = xpt_get_ccb(periph); 3401 goto restart; 3402 } 3403 if (periph->flags & CAM_PERIPH_RUN_TASK) 3404 break; 3405 cam_periph_doacquire(periph); 3406 periph->flags |= CAM_PERIPH_RUN_TASK; 3407 taskqueue_enqueue(xsoftc.xpt_taskq, 3408 &periph->periph_run_task); 3409 break; 3410 } 3411 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3412 if (prio == periph->immediate_priority) { 3413 periph->immediate_priority = CAM_PRIORITY_NONE; 3414 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3415 ("waking cam_periph_getccb()\n")); 3416 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3417 periph_links.sle); 3418 wakeup(&periph->ccb_list); 3419 } else { 3420 periph->scheduled_priority = CAM_PRIORITY_NONE; 3421 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3422 ("calling periph_start()\n")); 3423 periph->periph_start(periph, ccb); 3424 } 3425 ccb = NULL; 3426 } 3427 if (ccb != NULL) 3428 xpt_release_ccb(ccb); 3429 periph->periph_allocating = 0; 3430 cam_periph_release_locked(periph); 3431 } 3432 3433 static void 3434 xpt_run_devq(struct cam_devq *devq) 3435 { 3436 struct mtx *mtx; 3437 3438 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3439 3440 devq->send_queue.qfrozen_cnt++; 3441 while ((devq->send_queue.entries > 0) 3442 && (devq->send_openings > 0) 3443 && (devq->send_queue.qfrozen_cnt <= 1)) { 3444 struct cam_ed *device; 3445 union ccb *work_ccb; 3446 struct cam_sim *sim; 3447 struct xpt_proto *proto; 3448 3449 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3450 CAMQ_HEAD); 3451 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3452 ("running device %p\n", device)); 3453 3454 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3455 if (work_ccb == NULL) { 3456 printf("device on run queue with no ccbs???\n"); 3457 continue; 3458 } 3459 3460 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3461 3462 mtx_lock(&xsoftc.xpt_highpower_lock); 3463 if (xsoftc.num_highpower <= 0) { 3464 /* 3465 * We got a high power command, but we 3466 * don't have any available slots. Freeze 3467 * the device queue until we have a slot 3468 * available. 3469 */ 3470 xpt_freeze_devq_device(device, 1); 3471 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3472 highpowerq_entry); 3473 3474 mtx_unlock(&xsoftc.xpt_highpower_lock); 3475 continue; 3476 } else { 3477 /* 3478 * Consume a high power slot while 3479 * this ccb runs. 3480 */ 3481 xsoftc.num_highpower--; 3482 } 3483 mtx_unlock(&xsoftc.xpt_highpower_lock); 3484 } 3485 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3486 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3487 devq->send_openings--; 3488 devq->send_active++; 3489 xpt_schedule_devq(devq, device); 3490 mtx_unlock(&devq->send_mtx); 3491 3492 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3493 /* 3494 * The client wants to freeze the queue 3495 * after this CCB is sent. 3496 */ 3497 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3498 } 3499 3500 /* In Target mode, the peripheral driver knows best... */ 3501 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3502 if ((device->inq_flags & SID_CmdQue) != 0 3503 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3504 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3505 else 3506 /* 3507 * Clear this in case of a retried CCB that 3508 * failed due to a rejected tag. 3509 */ 3510 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3511 } 3512 3513 KASSERT(device == work_ccb->ccb_h.path->device, 3514 ("device (%p) / path->device (%p) mismatch", 3515 device, work_ccb->ccb_h.path->device)); 3516 proto = xpt_proto_find(device->protocol); 3517 if (proto && proto->ops->debug_out) 3518 proto->ops->debug_out(work_ccb); 3519 3520 /* 3521 * Device queues can be shared among multiple SIM instances 3522 * that reside on different buses. Use the SIM from the 3523 * queued device, rather than the one from the calling bus. 3524 */ 3525 sim = device->sim; 3526 mtx = sim->mtx; 3527 if (mtx && !mtx_owned(mtx)) 3528 mtx_lock(mtx); 3529 else 3530 mtx = NULL; 3531 work_ccb->ccb_h.qos.periph_data = cam_iosched_now(); 3532 (*(sim->sim_action))(sim, work_ccb); 3533 if (mtx) 3534 mtx_unlock(mtx); 3535 mtx_lock(&devq->send_mtx); 3536 } 3537 devq->send_queue.qfrozen_cnt--; 3538 } 3539 3540 /* 3541 * This function merges stuff from the slave ccb into the master ccb, while 3542 * keeping important fields in the master ccb constant. 3543 */ 3544 void 3545 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3546 { 3547 3548 /* 3549 * Pull fields that are valid for peripheral drivers to set 3550 * into the master CCB along with the CCB "payload". 3551 */ 3552 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3553 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3554 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3555 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3556 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3557 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3558 } 3559 3560 void 3561 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path, 3562 u_int32_t priority, u_int32_t flags) 3563 { 3564 3565 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3566 ccb_h->pinfo.priority = priority; 3567 ccb_h->path = path; 3568 ccb_h->path_id = path->bus->path_id; 3569 if (path->target) 3570 ccb_h->target_id = path->target->target_id; 3571 else 3572 ccb_h->target_id = CAM_TARGET_WILDCARD; 3573 if (path->device) { 3574 ccb_h->target_lun = path->device->lun_id; 3575 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3576 } else { 3577 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3578 } 3579 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3580 ccb_h->flags = flags; 3581 ccb_h->xflags = 0; 3582 } 3583 3584 void 3585 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3586 { 3587 xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0); 3588 } 3589 3590 /* Path manipulation functions */ 3591 cam_status 3592 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3593 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3594 { 3595 struct cam_path *path; 3596 cam_status status; 3597 3598 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3599 3600 if (path == NULL) { 3601 status = CAM_RESRC_UNAVAIL; 3602 return(status); 3603 } 3604 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3605 if (status != CAM_REQ_CMP) { 3606 free(path, M_CAMPATH); 3607 path = NULL; 3608 } 3609 *new_path_ptr = path; 3610 return (status); 3611 } 3612 3613 cam_status 3614 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3615 struct cam_periph *periph, path_id_t path_id, 3616 target_id_t target_id, lun_id_t lun_id) 3617 { 3618 3619 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3620 lun_id)); 3621 } 3622 3623 cam_status 3624 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3625 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3626 { 3627 struct cam_eb *bus; 3628 struct cam_et *target; 3629 struct cam_ed *device; 3630 cam_status status; 3631 3632 status = CAM_REQ_CMP; /* Completed without error */ 3633 target = NULL; /* Wildcarded */ 3634 device = NULL; /* Wildcarded */ 3635 3636 /* 3637 * We will potentially modify the EDT, so block interrupts 3638 * that may attempt to create cam paths. 3639 */ 3640 bus = xpt_find_bus(path_id); 3641 if (bus == NULL) { 3642 status = CAM_PATH_INVALID; 3643 } else { 3644 xpt_lock_buses(); 3645 mtx_lock(&bus->eb_mtx); 3646 target = xpt_find_target(bus, target_id); 3647 if (target == NULL) { 3648 /* Create one */ 3649 struct cam_et *new_target; 3650 3651 new_target = xpt_alloc_target(bus, target_id); 3652 if (new_target == NULL) { 3653 status = CAM_RESRC_UNAVAIL; 3654 } else { 3655 target = new_target; 3656 } 3657 } 3658 xpt_unlock_buses(); 3659 if (target != NULL) { 3660 device = xpt_find_device(target, lun_id); 3661 if (device == NULL) { 3662 /* Create one */ 3663 struct cam_ed *new_device; 3664 3665 new_device = 3666 (*(bus->xport->ops->alloc_device))(bus, 3667 target, 3668 lun_id); 3669 if (new_device == NULL) { 3670 status = CAM_RESRC_UNAVAIL; 3671 } else { 3672 device = new_device; 3673 } 3674 } 3675 } 3676 mtx_unlock(&bus->eb_mtx); 3677 } 3678 3679 /* 3680 * Only touch the user's data if we are successful. 3681 */ 3682 if (status == CAM_REQ_CMP) { 3683 new_path->periph = perph; 3684 new_path->bus = bus; 3685 new_path->target = target; 3686 new_path->device = device; 3687 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3688 } else { 3689 if (device != NULL) 3690 xpt_release_device(device); 3691 if (target != NULL) 3692 xpt_release_target(target); 3693 if (bus != NULL) 3694 xpt_release_bus(bus); 3695 } 3696 return (status); 3697 } 3698 3699 cam_status 3700 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3701 { 3702 struct cam_path *new_path; 3703 3704 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3705 if (new_path == NULL) 3706 return(CAM_RESRC_UNAVAIL); 3707 xpt_copy_path(new_path, path); 3708 *new_path_ptr = new_path; 3709 return (CAM_REQ_CMP); 3710 } 3711 3712 void 3713 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3714 { 3715 3716 *new_path = *path; 3717 if (path->bus != NULL) 3718 xpt_acquire_bus(path->bus); 3719 if (path->target != NULL) 3720 xpt_acquire_target(path->target); 3721 if (path->device != NULL) 3722 xpt_acquire_device(path->device); 3723 } 3724 3725 void 3726 xpt_release_path(struct cam_path *path) 3727 { 3728 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3729 if (path->device != NULL) { 3730 xpt_release_device(path->device); 3731 path->device = NULL; 3732 } 3733 if (path->target != NULL) { 3734 xpt_release_target(path->target); 3735 path->target = NULL; 3736 } 3737 if (path->bus != NULL) { 3738 xpt_release_bus(path->bus); 3739 path->bus = NULL; 3740 } 3741 } 3742 3743 void 3744 xpt_free_path(struct cam_path *path) 3745 { 3746 3747 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3748 xpt_release_path(path); 3749 free(path, M_CAMPATH); 3750 } 3751 3752 void 3753 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3754 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3755 { 3756 3757 xpt_lock_buses(); 3758 if (bus_ref) { 3759 if (path->bus) 3760 *bus_ref = path->bus->refcount; 3761 else 3762 *bus_ref = 0; 3763 } 3764 if (periph_ref) { 3765 if (path->periph) 3766 *periph_ref = path->periph->refcount; 3767 else 3768 *periph_ref = 0; 3769 } 3770 xpt_unlock_buses(); 3771 if (target_ref) { 3772 if (path->target) 3773 *target_ref = path->target->refcount; 3774 else 3775 *target_ref = 0; 3776 } 3777 if (device_ref) { 3778 if (path->device) 3779 *device_ref = path->device->refcount; 3780 else 3781 *device_ref = 0; 3782 } 3783 } 3784 3785 /* 3786 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3787 * in path1, 2 for match with wildcards in path2. 3788 */ 3789 int 3790 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3791 { 3792 int retval = 0; 3793 3794 if (path1->bus != path2->bus) { 3795 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3796 retval = 1; 3797 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3798 retval = 2; 3799 else 3800 return (-1); 3801 } 3802 if (path1->target != path2->target) { 3803 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3804 if (retval == 0) 3805 retval = 1; 3806 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3807 retval = 2; 3808 else 3809 return (-1); 3810 } 3811 if (path1->device != path2->device) { 3812 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3813 if (retval == 0) 3814 retval = 1; 3815 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3816 retval = 2; 3817 else 3818 return (-1); 3819 } 3820 return (retval); 3821 } 3822 3823 int 3824 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3825 { 3826 int retval = 0; 3827 3828 if (path->bus != dev->target->bus) { 3829 if (path->bus->path_id == CAM_BUS_WILDCARD) 3830 retval = 1; 3831 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3832 retval = 2; 3833 else 3834 return (-1); 3835 } 3836 if (path->target != dev->target) { 3837 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3838 if (retval == 0) 3839 retval = 1; 3840 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3841 retval = 2; 3842 else 3843 return (-1); 3844 } 3845 if (path->device != dev) { 3846 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3847 if (retval == 0) 3848 retval = 1; 3849 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3850 retval = 2; 3851 else 3852 return (-1); 3853 } 3854 return (retval); 3855 } 3856 3857 void 3858 xpt_print_path(struct cam_path *path) 3859 { 3860 struct sbuf sb; 3861 char buffer[XPT_PRINT_LEN]; 3862 3863 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3864 xpt_path_sbuf(path, &sb); 3865 sbuf_finish(&sb); 3866 printf("%s", sbuf_data(&sb)); 3867 sbuf_delete(&sb); 3868 } 3869 3870 void 3871 xpt_print_device(struct cam_ed *device) 3872 { 3873 3874 if (device == NULL) 3875 printf("(nopath): "); 3876 else { 3877 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3878 device->sim->unit_number, 3879 device->sim->bus_id, 3880 device->target->target_id, 3881 (uintmax_t)device->lun_id); 3882 } 3883 } 3884 3885 void 3886 xpt_print(struct cam_path *path, const char *fmt, ...) 3887 { 3888 va_list ap; 3889 struct sbuf sb; 3890 char buffer[XPT_PRINT_LEN]; 3891 3892 sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN); 3893 3894 xpt_path_sbuf(path, &sb); 3895 va_start(ap, fmt); 3896 sbuf_vprintf(&sb, fmt, ap); 3897 va_end(ap); 3898 3899 sbuf_finish(&sb); 3900 printf("%s", sbuf_data(&sb)); 3901 sbuf_delete(&sb); 3902 } 3903 3904 int 3905 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3906 { 3907 struct sbuf sb; 3908 int len; 3909 3910 sbuf_new(&sb, str, str_len, 0); 3911 len = xpt_path_sbuf(path, &sb); 3912 sbuf_finish(&sb); 3913 return (len); 3914 } 3915 3916 int 3917 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb) 3918 { 3919 3920 if (path == NULL) 3921 sbuf_printf(sb, "(nopath): "); 3922 else { 3923 if (path->periph != NULL) 3924 sbuf_printf(sb, "(%s%d:", path->periph->periph_name, 3925 path->periph->unit_number); 3926 else 3927 sbuf_printf(sb, "(noperiph:"); 3928 3929 if (path->bus != NULL) 3930 sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name, 3931 path->bus->sim->unit_number, 3932 path->bus->sim->bus_id); 3933 else 3934 sbuf_printf(sb, "nobus:"); 3935 3936 if (path->target != NULL) 3937 sbuf_printf(sb, "%d:", path->target->target_id); 3938 else 3939 sbuf_printf(sb, "X:"); 3940 3941 if (path->device != NULL) 3942 sbuf_printf(sb, "%jx): ", 3943 (uintmax_t)path->device->lun_id); 3944 else 3945 sbuf_printf(sb, "X): "); 3946 } 3947 3948 return(sbuf_len(sb)); 3949 } 3950 3951 path_id_t 3952 xpt_path_path_id(struct cam_path *path) 3953 { 3954 return(path->bus->path_id); 3955 } 3956 3957 target_id_t 3958 xpt_path_target_id(struct cam_path *path) 3959 { 3960 if (path->target != NULL) 3961 return (path->target->target_id); 3962 else 3963 return (CAM_TARGET_WILDCARD); 3964 } 3965 3966 lun_id_t 3967 xpt_path_lun_id(struct cam_path *path) 3968 { 3969 if (path->device != NULL) 3970 return (path->device->lun_id); 3971 else 3972 return (CAM_LUN_WILDCARD); 3973 } 3974 3975 struct cam_sim * 3976 xpt_path_sim(struct cam_path *path) 3977 { 3978 3979 return (path->bus->sim); 3980 } 3981 3982 struct cam_periph* 3983 xpt_path_periph(struct cam_path *path) 3984 { 3985 3986 return (path->periph); 3987 } 3988 3989 /* 3990 * Release a CAM control block for the caller. Remit the cost of the structure 3991 * to the device referenced by the path. If the this device had no 'credits' 3992 * and peripheral drivers have registered async callbacks for this notification 3993 * call them now. 3994 */ 3995 void 3996 xpt_release_ccb(union ccb *free_ccb) 3997 { 3998 struct cam_ed *device; 3999 struct cam_periph *periph; 4000 4001 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 4002 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 4003 device = free_ccb->ccb_h.path->device; 4004 periph = free_ccb->ccb_h.path->periph; 4005 4006 xpt_free_ccb(free_ccb); 4007 periph->periph_allocated--; 4008 cam_ccbq_release_opening(&device->ccbq); 4009 xpt_run_allocq(periph, 0); 4010 } 4011 4012 /* Functions accessed by SIM drivers */ 4013 4014 static struct xpt_xport_ops xport_default_ops = { 4015 .alloc_device = xpt_alloc_device_default, 4016 .action = xpt_action_default, 4017 .async = xpt_dev_async_default, 4018 }; 4019 static struct xpt_xport xport_default = { 4020 .xport = XPORT_UNKNOWN, 4021 .name = "unknown", 4022 .ops = &xport_default_ops, 4023 }; 4024 4025 CAM_XPT_XPORT(xport_default); 4026 4027 /* 4028 * A sim structure, listing the SIM entry points and instance 4029 * identification info is passed to xpt_bus_register to hook the SIM 4030 * into the CAM framework. xpt_bus_register creates a cam_eb entry 4031 * for this new bus and places it in the array of buses and assigns 4032 * it a path_id. The path_id may be influenced by "hard wiring" 4033 * information specified by the user. Once interrupt services are 4034 * available, the bus will be probed. 4035 */ 4036 int32_t 4037 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 4038 { 4039 struct cam_eb *new_bus; 4040 struct cam_eb *old_bus; 4041 struct ccb_pathinq cpi; 4042 struct cam_path *path; 4043 cam_status status; 4044 4045 sim->bus_id = bus; 4046 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 4047 M_CAMXPT, M_NOWAIT|M_ZERO); 4048 if (new_bus == NULL) { 4049 /* Couldn't satisfy request */ 4050 return (CAM_RESRC_UNAVAIL); 4051 } 4052 4053 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 4054 TAILQ_INIT(&new_bus->et_entries); 4055 cam_sim_hold(sim); 4056 new_bus->sim = sim; 4057 timevalclear(&new_bus->last_reset); 4058 new_bus->flags = 0; 4059 new_bus->refcount = 1; /* Held until a bus_deregister event */ 4060 new_bus->generation = 0; 4061 4062 xpt_lock_buses(); 4063 sim->path_id = new_bus->path_id = 4064 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 4065 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4066 while (old_bus != NULL 4067 && old_bus->path_id < new_bus->path_id) 4068 old_bus = TAILQ_NEXT(old_bus, links); 4069 if (old_bus != NULL) 4070 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 4071 else 4072 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 4073 xsoftc.bus_generation++; 4074 xpt_unlock_buses(); 4075 4076 /* 4077 * Set a default transport so that a PATH_INQ can be issued to 4078 * the SIM. This will then allow for probing and attaching of 4079 * a more appropriate transport. 4080 */ 4081 new_bus->xport = &xport_default; 4082 4083 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 4084 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4085 if (status != CAM_REQ_CMP) { 4086 xpt_release_bus(new_bus); 4087 return (CAM_RESRC_UNAVAIL); 4088 } 4089 4090 xpt_path_inq(&cpi, path); 4091 4092 if (cpi.ccb_h.status == CAM_REQ_CMP) { 4093 struct xpt_xport **xpt; 4094 4095 SET_FOREACH(xpt, cam_xpt_xport_set) { 4096 if ((*xpt)->xport == cpi.transport) { 4097 new_bus->xport = *xpt; 4098 break; 4099 } 4100 } 4101 if (new_bus->xport == NULL) { 4102 xpt_print(path, 4103 "No transport found for %d\n", cpi.transport); 4104 xpt_release_bus(new_bus); 4105 free(path, M_CAMXPT); 4106 return (CAM_RESRC_UNAVAIL); 4107 } 4108 } 4109 4110 /* Notify interested parties */ 4111 if (sim->path_id != CAM_XPT_PATH_ID) { 4112 4113 xpt_async(AC_PATH_REGISTERED, path, &cpi); 4114 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 4115 union ccb *scan_ccb; 4116 4117 /* Initiate bus rescan. */ 4118 scan_ccb = xpt_alloc_ccb_nowait(); 4119 if (scan_ccb != NULL) { 4120 scan_ccb->ccb_h.path = path; 4121 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 4122 scan_ccb->crcn.flags = 0; 4123 xpt_rescan(scan_ccb); 4124 } else { 4125 xpt_print(path, 4126 "Can't allocate CCB to scan bus\n"); 4127 xpt_free_path(path); 4128 } 4129 } else 4130 xpt_free_path(path); 4131 } else 4132 xpt_free_path(path); 4133 return (CAM_SUCCESS); 4134 } 4135 4136 int32_t 4137 xpt_bus_deregister(path_id_t pathid) 4138 { 4139 struct cam_path bus_path; 4140 cam_status status; 4141 4142 status = xpt_compile_path(&bus_path, NULL, pathid, 4143 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 4144 if (status != CAM_REQ_CMP) 4145 return (status); 4146 4147 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 4148 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 4149 4150 /* Release the reference count held while registered. */ 4151 xpt_release_bus(bus_path.bus); 4152 xpt_release_path(&bus_path); 4153 4154 return (CAM_REQ_CMP); 4155 } 4156 4157 static path_id_t 4158 xptnextfreepathid(void) 4159 { 4160 struct cam_eb *bus; 4161 path_id_t pathid; 4162 const char *strval; 4163 4164 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4165 pathid = 0; 4166 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4167 retry: 4168 /* Find an unoccupied pathid */ 4169 while (bus != NULL && bus->path_id <= pathid) { 4170 if (bus->path_id == pathid) 4171 pathid++; 4172 bus = TAILQ_NEXT(bus, links); 4173 } 4174 4175 /* 4176 * Ensure that this pathid is not reserved for 4177 * a bus that may be registered in the future. 4178 */ 4179 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 4180 ++pathid; 4181 /* Start the search over */ 4182 goto retry; 4183 } 4184 return (pathid); 4185 } 4186 4187 static path_id_t 4188 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 4189 { 4190 path_id_t pathid; 4191 int i, dunit, val; 4192 char buf[32]; 4193 const char *dname; 4194 4195 pathid = CAM_XPT_PATH_ID; 4196 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4197 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4198 return (pathid); 4199 i = 0; 4200 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4201 if (strcmp(dname, "scbus")) { 4202 /* Avoid a bit of foot shooting. */ 4203 continue; 4204 } 4205 if (dunit < 0) /* unwired?! */ 4206 continue; 4207 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4208 if (sim_bus == val) { 4209 pathid = dunit; 4210 break; 4211 } 4212 } else if (sim_bus == 0) { 4213 /* Unspecified matches bus 0 */ 4214 pathid = dunit; 4215 break; 4216 } else { 4217 printf("Ambiguous scbus configuration for %s%d " 4218 "bus %d, cannot wire down. The kernel " 4219 "config entry for scbus%d should " 4220 "specify a controller bus.\n" 4221 "Scbus will be assigned dynamically.\n", 4222 sim_name, sim_unit, sim_bus, dunit); 4223 break; 4224 } 4225 } 4226 4227 if (pathid == CAM_XPT_PATH_ID) 4228 pathid = xptnextfreepathid(); 4229 return (pathid); 4230 } 4231 4232 static const char * 4233 xpt_async_string(u_int32_t async_code) 4234 { 4235 4236 switch (async_code) { 4237 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4238 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4239 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4240 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4241 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4242 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4243 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4244 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4245 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4246 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4247 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4248 case AC_CONTRACT: return ("AC_CONTRACT"); 4249 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4250 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4251 } 4252 return ("AC_UNKNOWN"); 4253 } 4254 4255 static int 4256 xpt_async_size(u_int32_t async_code) 4257 { 4258 4259 switch (async_code) { 4260 case AC_BUS_RESET: return (0); 4261 case AC_UNSOL_RESEL: return (0); 4262 case AC_SCSI_AEN: return (0); 4263 case AC_SENT_BDR: return (0); 4264 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4265 case AC_PATH_DEREGISTERED: return (0); 4266 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4267 case AC_LOST_DEVICE: return (0); 4268 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4269 case AC_INQ_CHANGED: return (0); 4270 case AC_GETDEV_CHANGED: return (0); 4271 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4272 case AC_ADVINFO_CHANGED: return (-1); 4273 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4274 } 4275 return (0); 4276 } 4277 4278 static int 4279 xpt_async_process_dev(struct cam_ed *device, void *arg) 4280 { 4281 union ccb *ccb = arg; 4282 struct cam_path *path = ccb->ccb_h.path; 4283 void *async_arg = ccb->casync.async_arg_ptr; 4284 u_int32_t async_code = ccb->casync.async_code; 4285 int relock; 4286 4287 if (path->device != device 4288 && path->device->lun_id != CAM_LUN_WILDCARD 4289 && device->lun_id != CAM_LUN_WILDCARD) 4290 return (1); 4291 4292 /* 4293 * The async callback could free the device. 4294 * If it is a broadcast async, it doesn't hold 4295 * device reference, so take our own reference. 4296 */ 4297 xpt_acquire_device(device); 4298 4299 /* 4300 * If async for specific device is to be delivered to 4301 * the wildcard client, take the specific device lock. 4302 * XXX: We may need a way for client to specify it. 4303 */ 4304 if ((device->lun_id == CAM_LUN_WILDCARD && 4305 path->device->lun_id != CAM_LUN_WILDCARD) || 4306 (device->target->target_id == CAM_TARGET_WILDCARD && 4307 path->target->target_id != CAM_TARGET_WILDCARD) || 4308 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4309 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4310 mtx_unlock(&device->device_mtx); 4311 xpt_path_lock(path); 4312 relock = 1; 4313 } else 4314 relock = 0; 4315 4316 (*(device->target->bus->xport->ops->async))(async_code, 4317 device->target->bus, device->target, device, async_arg); 4318 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4319 4320 if (relock) { 4321 xpt_path_unlock(path); 4322 mtx_lock(&device->device_mtx); 4323 } 4324 xpt_release_device(device); 4325 return (1); 4326 } 4327 4328 static int 4329 xpt_async_process_tgt(struct cam_et *target, void *arg) 4330 { 4331 union ccb *ccb = arg; 4332 struct cam_path *path = ccb->ccb_h.path; 4333 4334 if (path->target != target 4335 && path->target->target_id != CAM_TARGET_WILDCARD 4336 && target->target_id != CAM_TARGET_WILDCARD) 4337 return (1); 4338 4339 if (ccb->casync.async_code == AC_SENT_BDR) { 4340 /* Update our notion of when the last reset occurred */ 4341 microtime(&target->last_reset); 4342 } 4343 4344 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4345 } 4346 4347 static void 4348 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4349 { 4350 struct cam_eb *bus; 4351 struct cam_path *path; 4352 void *async_arg; 4353 u_int32_t async_code; 4354 4355 path = ccb->ccb_h.path; 4356 async_code = ccb->casync.async_code; 4357 async_arg = ccb->casync.async_arg_ptr; 4358 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4359 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4360 bus = path->bus; 4361 4362 if (async_code == AC_BUS_RESET) { 4363 /* Update our notion of when the last reset occurred */ 4364 microtime(&bus->last_reset); 4365 } 4366 4367 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4368 4369 /* 4370 * If this wasn't a fully wildcarded async, tell all 4371 * clients that want all async events. 4372 */ 4373 if (bus != xpt_periph->path->bus) { 4374 xpt_path_lock(xpt_periph->path); 4375 xpt_async_process_dev(xpt_periph->path->device, ccb); 4376 xpt_path_unlock(xpt_periph->path); 4377 } 4378 4379 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4380 xpt_release_devq(path, 1, TRUE); 4381 else 4382 xpt_release_simq(path->bus->sim, TRUE); 4383 if (ccb->casync.async_arg_size > 0) 4384 free(async_arg, M_CAMXPT); 4385 xpt_free_path(path); 4386 xpt_free_ccb(ccb); 4387 } 4388 4389 static void 4390 xpt_async_bcast(struct async_list *async_head, 4391 u_int32_t async_code, 4392 struct cam_path *path, void *async_arg) 4393 { 4394 struct async_node *cur_entry; 4395 struct mtx *mtx; 4396 4397 cur_entry = SLIST_FIRST(async_head); 4398 while (cur_entry != NULL) { 4399 struct async_node *next_entry; 4400 /* 4401 * Grab the next list entry before we call the current 4402 * entry's callback. This is because the callback function 4403 * can delete its async callback entry. 4404 */ 4405 next_entry = SLIST_NEXT(cur_entry, links); 4406 if ((cur_entry->event_enable & async_code) != 0) { 4407 mtx = cur_entry->event_lock ? 4408 path->device->sim->mtx : NULL; 4409 if (mtx) 4410 mtx_lock(mtx); 4411 cur_entry->callback(cur_entry->callback_arg, 4412 async_code, path, 4413 async_arg); 4414 if (mtx) 4415 mtx_unlock(mtx); 4416 } 4417 cur_entry = next_entry; 4418 } 4419 } 4420 4421 void 4422 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4423 { 4424 union ccb *ccb; 4425 int size; 4426 4427 ccb = xpt_alloc_ccb_nowait(); 4428 if (ccb == NULL) { 4429 xpt_print(path, "Can't allocate CCB to send %s\n", 4430 xpt_async_string(async_code)); 4431 return; 4432 } 4433 4434 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4435 xpt_print(path, "Can't allocate path to send %s\n", 4436 xpt_async_string(async_code)); 4437 xpt_free_ccb(ccb); 4438 return; 4439 } 4440 ccb->ccb_h.path->periph = NULL; 4441 ccb->ccb_h.func_code = XPT_ASYNC; 4442 ccb->ccb_h.cbfcnp = xpt_async_process; 4443 ccb->ccb_h.flags |= CAM_UNLOCKED; 4444 ccb->casync.async_code = async_code; 4445 ccb->casync.async_arg_size = 0; 4446 size = xpt_async_size(async_code); 4447 CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, 4448 ("xpt_async: func %#x %s aync_code %d %s\n", 4449 ccb->ccb_h.func_code, 4450 xpt_action_name(ccb->ccb_h.func_code), 4451 async_code, 4452 xpt_async_string(async_code))); 4453 if (size > 0 && async_arg != NULL) { 4454 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4455 if (ccb->casync.async_arg_ptr == NULL) { 4456 xpt_print(path, "Can't allocate argument to send %s\n", 4457 xpt_async_string(async_code)); 4458 xpt_free_path(ccb->ccb_h.path); 4459 xpt_free_ccb(ccb); 4460 return; 4461 } 4462 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4463 ccb->casync.async_arg_size = size; 4464 } else if (size < 0) { 4465 ccb->casync.async_arg_ptr = async_arg; 4466 ccb->casync.async_arg_size = size; 4467 } 4468 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4469 xpt_freeze_devq(path, 1); 4470 else 4471 xpt_freeze_simq(path->bus->sim, 1); 4472 xpt_done(ccb); 4473 } 4474 4475 static void 4476 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4477 struct cam_et *target, struct cam_ed *device, 4478 void *async_arg) 4479 { 4480 4481 /* 4482 * We only need to handle events for real devices. 4483 */ 4484 if (target->target_id == CAM_TARGET_WILDCARD 4485 || device->lun_id == CAM_LUN_WILDCARD) 4486 return; 4487 4488 printf("%s called\n", __func__); 4489 } 4490 4491 static uint32_t 4492 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4493 { 4494 struct cam_devq *devq; 4495 uint32_t freeze; 4496 4497 devq = dev->sim->devq; 4498 mtx_assert(&devq->send_mtx, MA_OWNED); 4499 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4500 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4501 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4502 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4503 /* Remove frozen device from sendq. */ 4504 if (device_is_queued(dev)) 4505 camq_remove(&devq->send_queue, dev->devq_entry.index); 4506 return (freeze); 4507 } 4508 4509 u_int32_t 4510 xpt_freeze_devq(struct cam_path *path, u_int count) 4511 { 4512 struct cam_ed *dev = path->device; 4513 struct cam_devq *devq; 4514 uint32_t freeze; 4515 4516 devq = dev->sim->devq; 4517 mtx_lock(&devq->send_mtx); 4518 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4519 freeze = xpt_freeze_devq_device(dev, count); 4520 mtx_unlock(&devq->send_mtx); 4521 return (freeze); 4522 } 4523 4524 u_int32_t 4525 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4526 { 4527 struct cam_devq *devq; 4528 uint32_t freeze; 4529 4530 devq = sim->devq; 4531 mtx_lock(&devq->send_mtx); 4532 freeze = (devq->send_queue.qfrozen_cnt += count); 4533 mtx_unlock(&devq->send_mtx); 4534 return (freeze); 4535 } 4536 4537 static void 4538 xpt_release_devq_timeout(void *arg) 4539 { 4540 struct cam_ed *dev; 4541 struct cam_devq *devq; 4542 4543 dev = (struct cam_ed *)arg; 4544 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4545 devq = dev->sim->devq; 4546 mtx_assert(&devq->send_mtx, MA_OWNED); 4547 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4548 xpt_run_devq(devq); 4549 } 4550 4551 void 4552 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4553 { 4554 struct cam_ed *dev; 4555 struct cam_devq *devq; 4556 4557 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4558 count, run_queue)); 4559 dev = path->device; 4560 devq = dev->sim->devq; 4561 mtx_lock(&devq->send_mtx); 4562 if (xpt_release_devq_device(dev, count, run_queue)) 4563 xpt_run_devq(dev->sim->devq); 4564 mtx_unlock(&devq->send_mtx); 4565 } 4566 4567 static int 4568 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4569 { 4570 4571 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4572 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4573 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4574 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4575 if (count > dev->ccbq.queue.qfrozen_cnt) { 4576 #ifdef INVARIANTS 4577 printf("xpt_release_devq(): requested %u > present %u\n", 4578 count, dev->ccbq.queue.qfrozen_cnt); 4579 #endif 4580 count = dev->ccbq.queue.qfrozen_cnt; 4581 } 4582 dev->ccbq.queue.qfrozen_cnt -= count; 4583 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4584 /* 4585 * No longer need to wait for a successful 4586 * command completion. 4587 */ 4588 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4589 /* 4590 * Remove any timeouts that might be scheduled 4591 * to release this queue. 4592 */ 4593 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4594 callout_stop(&dev->callout); 4595 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4596 } 4597 /* 4598 * Now that we are unfrozen schedule the 4599 * device so any pending transactions are 4600 * run. 4601 */ 4602 xpt_schedule_devq(dev->sim->devq, dev); 4603 } else 4604 run_queue = 0; 4605 return (run_queue); 4606 } 4607 4608 void 4609 xpt_release_simq(struct cam_sim *sim, int run_queue) 4610 { 4611 struct cam_devq *devq; 4612 4613 devq = sim->devq; 4614 mtx_lock(&devq->send_mtx); 4615 if (devq->send_queue.qfrozen_cnt <= 0) { 4616 #ifdef INVARIANTS 4617 printf("xpt_release_simq: requested 1 > present %u\n", 4618 devq->send_queue.qfrozen_cnt); 4619 #endif 4620 } else 4621 devq->send_queue.qfrozen_cnt--; 4622 if (devq->send_queue.qfrozen_cnt == 0) { 4623 /* 4624 * If there is a timeout scheduled to release this 4625 * sim queue, remove it. The queue frozen count is 4626 * already at 0. 4627 */ 4628 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4629 callout_stop(&sim->callout); 4630 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4631 } 4632 if (run_queue) { 4633 /* 4634 * Now that we are unfrozen run the send queue. 4635 */ 4636 xpt_run_devq(sim->devq); 4637 } 4638 } 4639 mtx_unlock(&devq->send_mtx); 4640 } 4641 4642 /* 4643 * XXX Appears to be unused. 4644 */ 4645 static void 4646 xpt_release_simq_timeout(void *arg) 4647 { 4648 struct cam_sim *sim; 4649 4650 sim = (struct cam_sim *)arg; 4651 xpt_release_simq(sim, /* run_queue */ TRUE); 4652 } 4653 4654 void 4655 xpt_done(union ccb *done_ccb) 4656 { 4657 struct cam_doneq *queue; 4658 int run, hash; 4659 4660 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 4661 if (done_ccb->ccb_h.func_code == XPT_SCSI_IO && 4662 done_ccb->csio.bio != NULL) 4663 biotrack(done_ccb->csio.bio, __func__); 4664 #endif 4665 4666 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4667 ("xpt_done: func= %#x %s status %#x\n", 4668 done_ccb->ccb_h.func_code, 4669 xpt_action_name(done_ccb->ccb_h.func_code), 4670 done_ccb->ccb_h.status)); 4671 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4672 return; 4673 4674 /* Store the time the ccb was in the sim */ 4675 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4676 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4677 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4678 queue = &cam_doneqs[hash]; 4679 mtx_lock(&queue->cam_doneq_mtx); 4680 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4681 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4682 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4683 mtx_unlock(&queue->cam_doneq_mtx); 4684 if (run) 4685 wakeup(&queue->cam_doneq); 4686 } 4687 4688 void 4689 xpt_done_direct(union ccb *done_ccb) 4690 { 4691 4692 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, 4693 ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status)); 4694 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4695 return; 4696 4697 /* Store the time the ccb was in the sim */ 4698 done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data); 4699 xpt_done_process(&done_ccb->ccb_h); 4700 } 4701 4702 union ccb * 4703 xpt_alloc_ccb() 4704 { 4705 union ccb *new_ccb; 4706 4707 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4708 return (new_ccb); 4709 } 4710 4711 union ccb * 4712 xpt_alloc_ccb_nowait() 4713 { 4714 union ccb *new_ccb; 4715 4716 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4717 return (new_ccb); 4718 } 4719 4720 void 4721 xpt_free_ccb(union ccb *free_ccb) 4722 { 4723 free(free_ccb, M_CAMCCB); 4724 } 4725 4726 4727 4728 /* Private XPT functions */ 4729 4730 /* 4731 * Get a CAM control block for the caller. Charge the structure to the device 4732 * referenced by the path. If we don't have sufficient resources to allocate 4733 * more ccbs, we return NULL. 4734 */ 4735 static union ccb * 4736 xpt_get_ccb_nowait(struct cam_periph *periph) 4737 { 4738 union ccb *new_ccb; 4739 4740 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4741 if (new_ccb == NULL) 4742 return (NULL); 4743 periph->periph_allocated++; 4744 cam_ccbq_take_opening(&periph->path->device->ccbq); 4745 return (new_ccb); 4746 } 4747 4748 static union ccb * 4749 xpt_get_ccb(struct cam_periph *periph) 4750 { 4751 union ccb *new_ccb; 4752 4753 cam_periph_unlock(periph); 4754 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4755 cam_periph_lock(periph); 4756 periph->periph_allocated++; 4757 cam_ccbq_take_opening(&periph->path->device->ccbq); 4758 return (new_ccb); 4759 } 4760 4761 union ccb * 4762 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4763 { 4764 struct ccb_hdr *ccb_h; 4765 4766 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4767 cam_periph_assert(periph, MA_OWNED); 4768 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4769 ccb_h->pinfo.priority != priority) { 4770 if (priority < periph->immediate_priority) { 4771 periph->immediate_priority = priority; 4772 xpt_run_allocq(periph, 0); 4773 } else 4774 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4775 "cgticb", 0); 4776 } 4777 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4778 return ((union ccb *)ccb_h); 4779 } 4780 4781 static void 4782 xpt_acquire_bus(struct cam_eb *bus) 4783 { 4784 4785 xpt_lock_buses(); 4786 bus->refcount++; 4787 xpt_unlock_buses(); 4788 } 4789 4790 static void 4791 xpt_release_bus(struct cam_eb *bus) 4792 { 4793 4794 xpt_lock_buses(); 4795 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4796 if (--bus->refcount > 0) { 4797 xpt_unlock_buses(); 4798 return; 4799 } 4800 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4801 xsoftc.bus_generation++; 4802 xpt_unlock_buses(); 4803 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4804 ("destroying bus, but target list is not empty")); 4805 cam_sim_release(bus->sim); 4806 mtx_destroy(&bus->eb_mtx); 4807 free(bus, M_CAMXPT); 4808 } 4809 4810 static struct cam_et * 4811 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4812 { 4813 struct cam_et *cur_target, *target; 4814 4815 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4816 mtx_assert(&bus->eb_mtx, MA_OWNED); 4817 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4818 M_NOWAIT|M_ZERO); 4819 if (target == NULL) 4820 return (NULL); 4821 4822 TAILQ_INIT(&target->ed_entries); 4823 target->bus = bus; 4824 target->target_id = target_id; 4825 target->refcount = 1; 4826 target->generation = 0; 4827 target->luns = NULL; 4828 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4829 timevalclear(&target->last_reset); 4830 /* 4831 * Hold a reference to our parent bus so it 4832 * will not go away before we do. 4833 */ 4834 bus->refcount++; 4835 4836 /* Insertion sort into our bus's target list */ 4837 cur_target = TAILQ_FIRST(&bus->et_entries); 4838 while (cur_target != NULL && cur_target->target_id < target_id) 4839 cur_target = TAILQ_NEXT(cur_target, links); 4840 if (cur_target != NULL) { 4841 TAILQ_INSERT_BEFORE(cur_target, target, links); 4842 } else { 4843 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4844 } 4845 bus->generation++; 4846 return (target); 4847 } 4848 4849 static void 4850 xpt_acquire_target(struct cam_et *target) 4851 { 4852 struct cam_eb *bus = target->bus; 4853 4854 mtx_lock(&bus->eb_mtx); 4855 target->refcount++; 4856 mtx_unlock(&bus->eb_mtx); 4857 } 4858 4859 static void 4860 xpt_release_target(struct cam_et *target) 4861 { 4862 struct cam_eb *bus = target->bus; 4863 4864 mtx_lock(&bus->eb_mtx); 4865 if (--target->refcount > 0) { 4866 mtx_unlock(&bus->eb_mtx); 4867 return; 4868 } 4869 TAILQ_REMOVE(&bus->et_entries, target, links); 4870 bus->generation++; 4871 mtx_unlock(&bus->eb_mtx); 4872 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4873 ("destroying target, but device list is not empty")); 4874 xpt_release_bus(bus); 4875 mtx_destroy(&target->luns_mtx); 4876 if (target->luns) 4877 free(target->luns, M_CAMXPT); 4878 free(target, M_CAMXPT); 4879 } 4880 4881 static struct cam_ed * 4882 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4883 lun_id_t lun_id) 4884 { 4885 struct cam_ed *device; 4886 4887 device = xpt_alloc_device(bus, target, lun_id); 4888 if (device == NULL) 4889 return (NULL); 4890 4891 device->mintags = 1; 4892 device->maxtags = 1; 4893 return (device); 4894 } 4895 4896 static void 4897 xpt_destroy_device(void *context, int pending) 4898 { 4899 struct cam_ed *device = context; 4900 4901 mtx_lock(&device->device_mtx); 4902 mtx_destroy(&device->device_mtx); 4903 free(device, M_CAMDEV); 4904 } 4905 4906 struct cam_ed * 4907 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4908 { 4909 struct cam_ed *cur_device, *device; 4910 struct cam_devq *devq; 4911 cam_status status; 4912 4913 mtx_assert(&bus->eb_mtx, MA_OWNED); 4914 /* Make space for us in the device queue on our bus */ 4915 devq = bus->sim->devq; 4916 mtx_lock(&devq->send_mtx); 4917 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4918 mtx_unlock(&devq->send_mtx); 4919 if (status != CAM_REQ_CMP) 4920 return (NULL); 4921 4922 device = (struct cam_ed *)malloc(sizeof(*device), 4923 M_CAMDEV, M_NOWAIT|M_ZERO); 4924 if (device == NULL) 4925 return (NULL); 4926 4927 cam_init_pinfo(&device->devq_entry); 4928 device->target = target; 4929 device->lun_id = lun_id; 4930 device->sim = bus->sim; 4931 if (cam_ccbq_init(&device->ccbq, 4932 bus->sim->max_dev_openings) != 0) { 4933 free(device, M_CAMDEV); 4934 return (NULL); 4935 } 4936 SLIST_INIT(&device->asyncs); 4937 SLIST_INIT(&device->periphs); 4938 device->generation = 0; 4939 device->flags = CAM_DEV_UNCONFIGURED; 4940 device->tag_delay_count = 0; 4941 device->tag_saved_openings = 0; 4942 device->refcount = 1; 4943 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4944 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4945 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4946 /* 4947 * Hold a reference to our parent bus so it 4948 * will not go away before we do. 4949 */ 4950 target->refcount++; 4951 4952 cur_device = TAILQ_FIRST(&target->ed_entries); 4953 while (cur_device != NULL && cur_device->lun_id < lun_id) 4954 cur_device = TAILQ_NEXT(cur_device, links); 4955 if (cur_device != NULL) 4956 TAILQ_INSERT_BEFORE(cur_device, device, links); 4957 else 4958 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4959 target->generation++; 4960 return (device); 4961 } 4962 4963 void 4964 xpt_acquire_device(struct cam_ed *device) 4965 { 4966 struct cam_eb *bus = device->target->bus; 4967 4968 mtx_lock(&bus->eb_mtx); 4969 device->refcount++; 4970 mtx_unlock(&bus->eb_mtx); 4971 } 4972 4973 void 4974 xpt_release_device(struct cam_ed *device) 4975 { 4976 struct cam_eb *bus = device->target->bus; 4977 struct cam_devq *devq; 4978 4979 mtx_lock(&bus->eb_mtx); 4980 if (--device->refcount > 0) { 4981 mtx_unlock(&bus->eb_mtx); 4982 return; 4983 } 4984 4985 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4986 device->target->generation++; 4987 mtx_unlock(&bus->eb_mtx); 4988 4989 /* Release our slot in the devq */ 4990 devq = bus->sim->devq; 4991 mtx_lock(&devq->send_mtx); 4992 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4993 mtx_unlock(&devq->send_mtx); 4994 4995 KASSERT(SLIST_EMPTY(&device->periphs), 4996 ("destroying device, but periphs list is not empty")); 4997 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4998 ("destroying device while still queued for ccbs")); 4999 5000 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 5001 callout_stop(&device->callout); 5002 5003 xpt_release_target(device->target); 5004 5005 cam_ccbq_fini(&device->ccbq); 5006 /* 5007 * Free allocated memory. free(9) does nothing if the 5008 * supplied pointer is NULL, so it is safe to call without 5009 * checking. 5010 */ 5011 free(device->supported_vpds, M_CAMXPT); 5012 free(device->device_id, M_CAMXPT); 5013 free(device->ext_inq, M_CAMXPT); 5014 free(device->physpath, M_CAMXPT); 5015 free(device->rcap_buf, M_CAMXPT); 5016 free(device->serial_num, M_CAMXPT); 5017 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 5018 } 5019 5020 u_int32_t 5021 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 5022 { 5023 int result; 5024 struct cam_ed *dev; 5025 5026 dev = path->device; 5027 mtx_lock(&dev->sim->devq->send_mtx); 5028 result = cam_ccbq_resize(&dev->ccbq, newopenings); 5029 mtx_unlock(&dev->sim->devq->send_mtx); 5030 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5031 || (dev->inq_flags & SID_CmdQue) != 0) 5032 dev->tag_saved_openings = newopenings; 5033 return (result); 5034 } 5035 5036 static struct cam_eb * 5037 xpt_find_bus(path_id_t path_id) 5038 { 5039 struct cam_eb *bus; 5040 5041 xpt_lock_buses(); 5042 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 5043 bus != NULL; 5044 bus = TAILQ_NEXT(bus, links)) { 5045 if (bus->path_id == path_id) { 5046 bus->refcount++; 5047 break; 5048 } 5049 } 5050 xpt_unlock_buses(); 5051 return (bus); 5052 } 5053 5054 static struct cam_et * 5055 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 5056 { 5057 struct cam_et *target; 5058 5059 mtx_assert(&bus->eb_mtx, MA_OWNED); 5060 for (target = TAILQ_FIRST(&bus->et_entries); 5061 target != NULL; 5062 target = TAILQ_NEXT(target, links)) { 5063 if (target->target_id == target_id) { 5064 target->refcount++; 5065 break; 5066 } 5067 } 5068 return (target); 5069 } 5070 5071 static struct cam_ed * 5072 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 5073 { 5074 struct cam_ed *device; 5075 5076 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 5077 for (device = TAILQ_FIRST(&target->ed_entries); 5078 device != NULL; 5079 device = TAILQ_NEXT(device, links)) { 5080 if (device->lun_id == lun_id) { 5081 device->refcount++; 5082 break; 5083 } 5084 } 5085 return (device); 5086 } 5087 5088 void 5089 xpt_start_tags(struct cam_path *path) 5090 { 5091 struct ccb_relsim crs; 5092 struct cam_ed *device; 5093 struct cam_sim *sim; 5094 int newopenings; 5095 5096 device = path->device; 5097 sim = path->bus->sim; 5098 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5099 xpt_freeze_devq(path, /*count*/1); 5100 device->inq_flags |= SID_CmdQue; 5101 if (device->tag_saved_openings != 0) 5102 newopenings = device->tag_saved_openings; 5103 else 5104 newopenings = min(device->maxtags, 5105 sim->max_tagged_dev_openings); 5106 xpt_dev_ccbq_resize(path, newopenings); 5107 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5108 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5109 crs.ccb_h.func_code = XPT_REL_SIMQ; 5110 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5111 crs.openings 5112 = crs.release_timeout 5113 = crs.qfrozen_cnt 5114 = 0; 5115 xpt_action((union ccb *)&crs); 5116 } 5117 5118 void 5119 xpt_stop_tags(struct cam_path *path) 5120 { 5121 struct ccb_relsim crs; 5122 struct cam_ed *device; 5123 struct cam_sim *sim; 5124 5125 device = path->device; 5126 sim = path->bus->sim; 5127 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 5128 device->tag_delay_count = 0; 5129 xpt_freeze_devq(path, /*count*/1); 5130 device->inq_flags &= ~SID_CmdQue; 5131 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 5132 xpt_async(AC_GETDEV_CHANGED, path, NULL); 5133 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 5134 crs.ccb_h.func_code = XPT_REL_SIMQ; 5135 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 5136 crs.openings 5137 = crs.release_timeout 5138 = crs.qfrozen_cnt 5139 = 0; 5140 xpt_action((union ccb *)&crs); 5141 } 5142 5143 static void 5144 xpt_boot_delay(void *arg) 5145 { 5146 5147 xpt_release_boot(); 5148 } 5149 5150 static void 5151 xpt_config(void *arg) 5152 { 5153 /* 5154 * Now that interrupts are enabled, go find our devices 5155 */ 5156 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 5157 printf("xpt_config: failed to create taskqueue thread.\n"); 5158 5159 /* Setup debugging path */ 5160 if (cam_dflags != CAM_DEBUG_NONE) { 5161 if (xpt_create_path(&cam_dpath, NULL, 5162 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 5163 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 5164 printf("xpt_config: xpt_create_path() failed for debug" 5165 " target %d:%d:%d, debugging disabled\n", 5166 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 5167 cam_dflags = CAM_DEBUG_NONE; 5168 } 5169 } else 5170 cam_dpath = NULL; 5171 5172 periphdriver_init(1); 5173 xpt_hold_boot(); 5174 callout_init(&xsoftc.boot_callout, 1); 5175 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 5176 xpt_boot_delay, NULL, 0); 5177 /* Fire up rescan thread. */ 5178 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 5179 "cam", "scanner")) { 5180 printf("xpt_config: failed to create rescan thread.\n"); 5181 } 5182 } 5183 5184 void 5185 xpt_hold_boot(void) 5186 { 5187 xpt_lock_buses(); 5188 xsoftc.buses_to_config++; 5189 xpt_unlock_buses(); 5190 } 5191 5192 void 5193 xpt_release_boot(void) 5194 { 5195 xpt_lock_buses(); 5196 xsoftc.buses_to_config--; 5197 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 5198 struct xpt_task *task; 5199 5200 xsoftc.buses_config_done = 1; 5201 xpt_unlock_buses(); 5202 /* Call manually because we don't have any buses */ 5203 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 5204 if (task != NULL) { 5205 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 5206 taskqueue_enqueue(taskqueue_thread, &task->task); 5207 } 5208 } else 5209 xpt_unlock_buses(); 5210 } 5211 5212 /* 5213 * If the given device only has one peripheral attached to it, and if that 5214 * peripheral is the passthrough driver, announce it. This insures that the 5215 * user sees some sort of announcement for every peripheral in their system. 5216 */ 5217 static int 5218 xptpassannouncefunc(struct cam_ed *device, void *arg) 5219 { 5220 struct cam_periph *periph; 5221 int i; 5222 5223 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5224 periph = SLIST_NEXT(periph, periph_links), i++); 5225 5226 periph = SLIST_FIRST(&device->periphs); 5227 if ((i == 1) 5228 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5229 xpt_announce_periph(periph, NULL); 5230 5231 return(1); 5232 } 5233 5234 static void 5235 xpt_finishconfig_task(void *context, int pending) 5236 { 5237 5238 periphdriver_init(2); 5239 /* 5240 * Check for devices with no "standard" peripheral driver 5241 * attached. For any devices like that, announce the 5242 * passthrough driver so the user will see something. 5243 */ 5244 if (!bootverbose) 5245 xpt_for_all_devices(xptpassannouncefunc, NULL); 5246 5247 /* Release our hook so that the boot can continue. */ 5248 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5249 free(xsoftc.xpt_config_hook, M_CAMXPT); 5250 xsoftc.xpt_config_hook = NULL; 5251 5252 free(context, M_CAMXPT); 5253 } 5254 5255 cam_status 5256 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5257 struct cam_path *path) 5258 { 5259 struct ccb_setasync csa; 5260 cam_status status; 5261 int xptpath = 0; 5262 5263 if (path == NULL) { 5264 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5265 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5266 if (status != CAM_REQ_CMP) 5267 return (status); 5268 xpt_path_lock(path); 5269 xptpath = 1; 5270 } 5271 5272 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5273 csa.ccb_h.func_code = XPT_SASYNC_CB; 5274 csa.event_enable = event; 5275 csa.callback = cbfunc; 5276 csa.callback_arg = cbarg; 5277 xpt_action((union ccb *)&csa); 5278 status = csa.ccb_h.status; 5279 5280 CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE, 5281 ("xpt_register_async: func %p\n", cbfunc)); 5282 5283 if (xptpath) { 5284 xpt_path_unlock(path); 5285 xpt_free_path(path); 5286 } 5287 5288 if ((status == CAM_REQ_CMP) && 5289 (csa.event_enable & AC_FOUND_DEVICE)) { 5290 /* 5291 * Get this peripheral up to date with all 5292 * the currently existing devices. 5293 */ 5294 xpt_for_all_devices(xptsetasyncfunc, &csa); 5295 } 5296 if ((status == CAM_REQ_CMP) && 5297 (csa.event_enable & AC_PATH_REGISTERED)) { 5298 /* 5299 * Get this peripheral up to date with all 5300 * the currently existing buses. 5301 */ 5302 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5303 } 5304 5305 return (status); 5306 } 5307 5308 static void 5309 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5310 { 5311 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5312 5313 switch (work_ccb->ccb_h.func_code) { 5314 /* Common cases first */ 5315 case XPT_PATH_INQ: /* Path routing inquiry */ 5316 { 5317 struct ccb_pathinq *cpi; 5318 5319 cpi = &work_ccb->cpi; 5320 cpi->version_num = 1; /* XXX??? */ 5321 cpi->hba_inquiry = 0; 5322 cpi->target_sprt = 0; 5323 cpi->hba_misc = 0; 5324 cpi->hba_eng_cnt = 0; 5325 cpi->max_target = 0; 5326 cpi->max_lun = 0; 5327 cpi->initiator_id = 0; 5328 strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5329 strlcpy(cpi->hba_vid, "", HBA_IDLEN); 5330 strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5331 cpi->unit_number = sim->unit_number; 5332 cpi->bus_id = sim->bus_id; 5333 cpi->base_transfer_speed = 0; 5334 cpi->protocol = PROTO_UNSPECIFIED; 5335 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5336 cpi->transport = XPORT_UNSPECIFIED; 5337 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5338 cpi->ccb_h.status = CAM_REQ_CMP; 5339 xpt_done(work_ccb); 5340 break; 5341 } 5342 default: 5343 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5344 xpt_done(work_ccb); 5345 break; 5346 } 5347 } 5348 5349 /* 5350 * The xpt as a "controller" has no interrupt sources, so polling 5351 * is a no-op. 5352 */ 5353 static void 5354 xptpoll(struct cam_sim *sim) 5355 { 5356 } 5357 5358 void 5359 xpt_lock_buses(void) 5360 { 5361 mtx_lock(&xsoftc.xpt_topo_lock); 5362 } 5363 5364 void 5365 xpt_unlock_buses(void) 5366 { 5367 mtx_unlock(&xsoftc.xpt_topo_lock); 5368 } 5369 5370 struct mtx * 5371 xpt_path_mtx(struct cam_path *path) 5372 { 5373 5374 return (&path->device->device_mtx); 5375 } 5376 5377 static void 5378 xpt_done_process(struct ccb_hdr *ccb_h) 5379 { 5380 struct cam_sim *sim; 5381 struct cam_devq *devq; 5382 struct mtx *mtx = NULL; 5383 5384 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING) 5385 struct ccb_scsiio *csio; 5386 5387 if (ccb_h->func_code == XPT_SCSI_IO) { 5388 csio = &((union ccb *)ccb_h)->csio; 5389 if (csio->bio != NULL) 5390 biotrack(csio->bio, __func__); 5391 } 5392 #endif 5393 5394 if (ccb_h->flags & CAM_HIGH_POWER) { 5395 struct highpowerlist *hphead; 5396 struct cam_ed *device; 5397 5398 mtx_lock(&xsoftc.xpt_highpower_lock); 5399 hphead = &xsoftc.highpowerq; 5400 5401 device = STAILQ_FIRST(hphead); 5402 5403 /* 5404 * Increment the count since this command is done. 5405 */ 5406 xsoftc.num_highpower++; 5407 5408 /* 5409 * Any high powered commands queued up? 5410 */ 5411 if (device != NULL) { 5412 5413 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5414 mtx_unlock(&xsoftc.xpt_highpower_lock); 5415 5416 mtx_lock(&device->sim->devq->send_mtx); 5417 xpt_release_devq_device(device, 5418 /*count*/1, /*runqueue*/TRUE); 5419 mtx_unlock(&device->sim->devq->send_mtx); 5420 } else 5421 mtx_unlock(&xsoftc.xpt_highpower_lock); 5422 } 5423 5424 sim = ccb_h->path->bus->sim; 5425 5426 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5427 xpt_release_simq(sim, /*run_queue*/FALSE); 5428 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5429 } 5430 5431 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5432 && (ccb_h->status & CAM_DEV_QFRZN)) { 5433 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5434 ccb_h->status &= ~CAM_DEV_QFRZN; 5435 } 5436 5437 devq = sim->devq; 5438 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5439 struct cam_ed *dev = ccb_h->path->device; 5440 5441 mtx_lock(&devq->send_mtx); 5442 devq->send_active--; 5443 devq->send_openings++; 5444 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5445 5446 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5447 && (dev->ccbq.dev_active == 0))) { 5448 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5449 xpt_release_devq_device(dev, /*count*/1, 5450 /*run_queue*/FALSE); 5451 } 5452 5453 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5454 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5455 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5456 xpt_release_devq_device(dev, /*count*/1, 5457 /*run_queue*/FALSE); 5458 } 5459 5460 if (!device_is_queued(dev)) 5461 (void)xpt_schedule_devq(devq, dev); 5462 xpt_run_devq(devq); 5463 mtx_unlock(&devq->send_mtx); 5464 5465 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5466 mtx = xpt_path_mtx(ccb_h->path); 5467 mtx_lock(mtx); 5468 5469 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5470 && (--dev->tag_delay_count == 0)) 5471 xpt_start_tags(ccb_h->path); 5472 } 5473 } 5474 5475 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5476 if (mtx == NULL) { 5477 mtx = xpt_path_mtx(ccb_h->path); 5478 mtx_lock(mtx); 5479 } 5480 } else { 5481 if (mtx != NULL) { 5482 mtx_unlock(mtx); 5483 mtx = NULL; 5484 } 5485 } 5486 5487 /* Call the peripheral driver's callback */ 5488 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5489 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5490 if (mtx != NULL) 5491 mtx_unlock(mtx); 5492 } 5493 5494 void 5495 xpt_done_td(void *arg) 5496 { 5497 struct cam_doneq *queue = arg; 5498 struct ccb_hdr *ccb_h; 5499 STAILQ_HEAD(, ccb_hdr) doneq; 5500 5501 STAILQ_INIT(&doneq); 5502 mtx_lock(&queue->cam_doneq_mtx); 5503 while (1) { 5504 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5505 queue->cam_doneq_sleep = 1; 5506 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5507 PRIBIO, "-", 0); 5508 queue->cam_doneq_sleep = 0; 5509 } 5510 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5511 mtx_unlock(&queue->cam_doneq_mtx); 5512 5513 THREAD_NO_SLEEPING(); 5514 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5515 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5516 xpt_done_process(ccb_h); 5517 } 5518 THREAD_SLEEPING_OK(); 5519 5520 mtx_lock(&queue->cam_doneq_mtx); 5521 } 5522 } 5523 5524 static void 5525 camisr_runqueue(void) 5526 { 5527 struct ccb_hdr *ccb_h; 5528 struct cam_doneq *queue; 5529 int i; 5530 5531 /* Process global queues. */ 5532 for (i = 0; i < cam_num_doneqs; i++) { 5533 queue = &cam_doneqs[i]; 5534 mtx_lock(&queue->cam_doneq_mtx); 5535 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5536 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5537 mtx_unlock(&queue->cam_doneq_mtx); 5538 xpt_done_process(ccb_h); 5539 mtx_lock(&queue->cam_doneq_mtx); 5540 } 5541 mtx_unlock(&queue->cam_doneq_mtx); 5542 } 5543 } 5544 5545 struct kv 5546 { 5547 uint32_t v; 5548 const char *name; 5549 }; 5550 5551 static struct kv map[] = { 5552 { XPT_NOOP, "XPT_NOOP" }, 5553 { XPT_SCSI_IO, "XPT_SCSI_IO" }, 5554 { XPT_GDEV_TYPE, "XPT_GDEV_TYPE" }, 5555 { XPT_GDEVLIST, "XPT_GDEVLIST" }, 5556 { XPT_PATH_INQ, "XPT_PATH_INQ" }, 5557 { XPT_REL_SIMQ, "XPT_REL_SIMQ" }, 5558 { XPT_SASYNC_CB, "XPT_SASYNC_CB" }, 5559 { XPT_SDEV_TYPE, "XPT_SDEV_TYPE" }, 5560 { XPT_SCAN_BUS, "XPT_SCAN_BUS" }, 5561 { XPT_DEV_MATCH, "XPT_DEV_MATCH" }, 5562 { XPT_DEBUG, "XPT_DEBUG" }, 5563 { XPT_PATH_STATS, "XPT_PATH_STATS" }, 5564 { XPT_GDEV_STATS, "XPT_GDEV_STATS" }, 5565 { XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" }, 5566 { XPT_ASYNC, "XPT_ASYNC" }, 5567 { XPT_ABORT, "XPT_ABORT" }, 5568 { XPT_RESET_BUS, "XPT_RESET_BUS" }, 5569 { XPT_RESET_DEV, "XPT_RESET_DEV" }, 5570 { XPT_TERM_IO, "XPT_TERM_IO" }, 5571 { XPT_SCAN_LUN, "XPT_SCAN_LUN" }, 5572 { XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" }, 5573 { XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" }, 5574 { XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" }, 5575 { XPT_ATA_IO, "XPT_ATA_IO" }, 5576 { XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" }, 5577 { XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" }, 5578 { XPT_NVME_IO, "XPT_NVME_IO" }, 5579 { XPT_MMC_IO, "XPT_MMC_IO" }, 5580 { XPT_SMP_IO, "XPT_SMP_IO" }, 5581 { XPT_SCAN_TGT, "XPT_SCAN_TGT" }, 5582 { XPT_NVME_ADMIN, "XPT_NVME_ADMIN" }, 5583 { XPT_ENG_INQ, "XPT_ENG_INQ" }, 5584 { XPT_ENG_EXEC, "XPT_ENG_EXEC" }, 5585 { XPT_EN_LUN, "XPT_EN_LUN" }, 5586 { XPT_TARGET_IO, "XPT_TARGET_IO" }, 5587 { XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" }, 5588 { XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" }, 5589 { XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" }, 5590 { XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" }, 5591 { XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" }, 5592 { XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" }, 5593 { 0, 0 } 5594 }; 5595 5596 const char * 5597 xpt_action_name(uint32_t action) 5598 { 5599 static char buffer[32]; /* Only for unknown messages -- racy */ 5600 struct kv *walker = map; 5601 5602 while (walker->name != NULL) { 5603 if (walker->v == action) 5604 return (walker->name); 5605 walker++; 5606 } 5607 5608 snprintf(buffer, sizeof(buffer), "%#x", action); 5609 return (buffer); 5610 } 5611