xref: /freebsd/sys/cam/cam_xpt.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/md5.h>
43 #include <sys/interrupt.h>
44 #include <sys/sbuf.h>
45 #include <sys/taskqueue.h>
46 
47 #include <sys/lock.h>
48 #include <sys/mutex.h>
49 #include <sys/sysctl.h>
50 #include <sys/kthread.h>
51 
52 #ifdef PC98
53 #include <pc98/pc98/pc98_machdep.h>	/* geometry translation */
54 #endif
55 
56 #include <cam/cam.h>
57 #include <cam/cam_ccb.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 
67 #include <cam/scsi/scsi_all.h>
68 #include <cam/scsi/scsi_message.h>
69 #include <cam/scsi/scsi_pass.h>
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 #include "opt_cam.h"
72 
73 /*
74  * This is the maximum number of high powered commands (e.g. start unit)
75  * that can be outstanding at a particular time.
76  */
77 #ifndef CAM_MAX_HIGHPOWER
78 #define CAM_MAX_HIGHPOWER  4
79 #endif
80 
81 /* Datastructures internal to the xpt layer */
82 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
83 
84 /* Object for defering XPT actions to a taskqueue */
85 struct xpt_task {
86 	struct task	task;
87 	void		*data1;
88 	uintptr_t	data2;
89 };
90 
91 typedef enum {
92 	XPT_FLAG_OPEN		= 0x01
93 } xpt_flags;
94 
95 struct xpt_softc {
96 	xpt_flags		flags;
97 	u_int32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	STAILQ_HEAD(highpowerlist, ccb_hdr)	highpowerq;
101 	int			num_highpower;
102 
103 	/* queue for handling async rescan requests. */
104 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
105 
106 	/* Registered busses */
107 	TAILQ_HEAD(,cam_eb)	xpt_busses;
108 	u_int			bus_generation;
109 
110 	struct intr_config_hook	*xpt_config_hook;
111 
112 	struct mtx		xpt_topo_lock;
113 	struct mtx		xpt_lock;
114 };
115 
116 typedef enum {
117 	DM_RET_COPY		= 0x01,
118 	DM_RET_FLAG_MASK	= 0x0f,
119 	DM_RET_NONE		= 0x00,
120 	DM_RET_STOP		= 0x10,
121 	DM_RET_DESCEND		= 0x20,
122 	DM_RET_ERROR		= 0x30,
123 	DM_RET_ACTION_MASK	= 0xf0
124 } dev_match_ret;
125 
126 typedef enum {
127 	XPT_DEPTH_BUS,
128 	XPT_DEPTH_TARGET,
129 	XPT_DEPTH_DEVICE,
130 	XPT_DEPTH_PERIPH
131 } xpt_traverse_depth;
132 
133 struct xpt_traverse_config {
134 	xpt_traverse_depth	depth;
135 	void			*tr_func;
136 	void			*tr_arg;
137 };
138 
139 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
140 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
141 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
142 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
143 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
144 
145 /* Transport layer configuration information */
146 static struct xpt_softc xsoftc;
147 
148 /* Queues for our software interrupt handler */
149 typedef TAILQ_HEAD(cam_isrq, ccb_hdr) cam_isrq_t;
150 typedef TAILQ_HEAD(cam_simq, cam_sim) cam_simq_t;
151 static cam_simq_t cam_simq;
152 static struct mtx cam_simq_lock;
153 
154 /* Pointers to software interrupt handlers */
155 static void *cambio_ih;
156 
157 struct cam_periph *xpt_periph;
158 
159 static periph_init_t xpt_periph_init;
160 
161 static struct periph_driver xpt_driver =
162 {
163 	xpt_periph_init, "xpt",
164 	TAILQ_HEAD_INITIALIZER(xpt_driver.units)
165 };
166 
167 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
168 
169 static d_open_t xptopen;
170 static d_close_t xptclose;
171 static d_ioctl_t xptioctl;
172 
173 static struct cdevsw xpt_cdevsw = {
174 	.d_version =	D_VERSION,
175 	.d_flags =	0,
176 	.d_open =	xptopen,
177 	.d_close =	xptclose,
178 	.d_ioctl =	xptioctl,
179 	.d_name =	"xpt",
180 };
181 
182 /* Storage for debugging datastructures */
183 #ifdef	CAMDEBUG
184 struct cam_path *cam_dpath;
185 u_int32_t cam_dflags;
186 u_int32_t cam_debug_delay;
187 #endif
188 
189 /* Our boot-time initialization hook */
190 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
191 
192 static moduledata_t cam_moduledata = {
193 	"cam",
194 	cam_module_event_handler,
195 	NULL
196 };
197 
198 static int	xpt_init(void *);
199 
200 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
201 MODULE_VERSION(cam, 1);
202 
203 
204 static void		xpt_async_bcast(struct async_list *async_head,
205 					u_int32_t async_code,
206 					struct cam_path *path,
207 					void *async_arg);
208 static path_id_t xptnextfreepathid(void);
209 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
210 static union ccb *xpt_get_ccb(struct cam_ed *device);
211 static void	 xpt_run_dev_allocq(struct cam_eb *bus);
212 static timeout_t xpt_release_devq_timeout;
213 static void	 xpt_release_simq_timeout(void *arg) __unused;
214 static void	 xpt_release_bus(struct cam_eb *bus);
215 static void	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
216 					 int run_queue);
217 static struct cam_et*
218 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
219 static void	 xpt_release_target(struct cam_eb *bus, struct cam_et *target);
220 static void	 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
221 				    struct cam_ed *device);
222 static struct cam_eb*
223 		 xpt_find_bus(path_id_t path_id);
224 static struct cam_et*
225 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
226 static struct cam_ed*
227 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
228 static xpt_busfunc_t	xptconfigbuscountfunc;
229 static xpt_busfunc_t	xptconfigfunc;
230 static void	 xpt_config(void *arg);
231 static xpt_devicefunc_t xptpassannouncefunc;
232 static void	 xpt_finishconfig(struct cam_periph *periph, union ccb *ccb);
233 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
234 static void	 xptpoll(struct cam_sim *sim);
235 static void	 camisr(void *);
236 static void	 camisr_runqueue(void *);
237 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
238 				    u_int num_patterns, struct cam_eb *bus);
239 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
240 				       u_int num_patterns,
241 				       struct cam_ed *device);
242 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
243 				       u_int num_patterns,
244 				       struct cam_periph *periph);
245 static xpt_busfunc_t	xptedtbusfunc;
246 static xpt_targetfunc_t	xptedttargetfunc;
247 static xpt_devicefunc_t	xptedtdevicefunc;
248 static xpt_periphfunc_t	xptedtperiphfunc;
249 static xpt_pdrvfunc_t	xptplistpdrvfunc;
250 static xpt_periphfunc_t	xptplistperiphfunc;
251 static int		xptedtmatch(struct ccb_dev_match *cdm);
252 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
253 static int		xptbustraverse(struct cam_eb *start_bus,
254 				       xpt_busfunc_t *tr_func, void *arg);
255 static int		xpttargettraverse(struct cam_eb *bus,
256 					  struct cam_et *start_target,
257 					  xpt_targetfunc_t *tr_func, void *arg);
258 static int		xptdevicetraverse(struct cam_et *target,
259 					  struct cam_ed *start_device,
260 					  xpt_devicefunc_t *tr_func, void *arg);
261 static int		xptperiphtraverse(struct cam_ed *device,
262 					  struct cam_periph *start_periph,
263 					  xpt_periphfunc_t *tr_func, void *arg);
264 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
265 					xpt_pdrvfunc_t *tr_func, void *arg);
266 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
267 					    struct cam_periph *start_periph,
268 					    xpt_periphfunc_t *tr_func,
269 					    void *arg);
270 static xpt_busfunc_t	xptdefbusfunc;
271 static xpt_targetfunc_t	xptdeftargetfunc;
272 static xpt_devicefunc_t	xptdefdevicefunc;
273 static xpt_periphfunc_t	xptdefperiphfunc;
274 static int		xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg);
275 static int		xpt_for_all_devices(xpt_devicefunc_t *tr_func,
276 					    void *arg);
277 static void		xpt_dev_async_default(u_int32_t async_code,
278 					      struct cam_eb *bus,
279 					      struct cam_et *target,
280 					      struct cam_ed *device,
281 					      void *async_arg);
282 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
283 						 struct cam_et *target,
284 						 lun_id_t lun_id);
285 static xpt_devicefunc_t	xptsetasyncfunc;
286 static xpt_busfunc_t	xptsetasyncbusfunc;
287 static cam_status	xptregister(struct cam_periph *periph,
288 				    void *arg);
289 static void	 xpt_start_tags(struct cam_path *path);
290 static __inline int xpt_schedule_dev_allocq(struct cam_eb *bus,
291 					    struct cam_ed *dev);
292 static __inline int periph_is_queued(struct cam_periph *periph);
293 static __inline int device_is_alloc_queued(struct cam_ed *device);
294 static __inline int device_is_send_queued(struct cam_ed *device);
295 static __inline int dev_allocq_is_runnable(struct cam_devq *devq);
296 
297 static __inline int
298 xpt_schedule_dev_allocq(struct cam_eb *bus, struct cam_ed *dev)
299 {
300 	int retval;
301 
302 	if (dev->ccbq.devq_openings > 0) {
303 		if ((dev->flags & CAM_DEV_RESIZE_QUEUE_NEEDED) != 0) {
304 			cam_ccbq_resize(&dev->ccbq,
305 					dev->ccbq.dev_openings
306 					+ dev->ccbq.dev_active);
307 			dev->flags &= ~CAM_DEV_RESIZE_QUEUE_NEEDED;
308 		}
309 		/*
310 		 * The priority of a device waiting for CCB resources
311 		 * is that of the the highest priority peripheral driver
312 		 * enqueued.
313 		 */
314 		retval = xpt_schedule_dev(&bus->sim->devq->alloc_queue,
315 					  &dev->alloc_ccb_entry.pinfo,
316 					  CAMQ_GET_HEAD(&dev->drvq)->priority);
317 	} else {
318 		retval = 0;
319 	}
320 
321 	return (retval);
322 }
323 
324 static __inline int
325 periph_is_queued(struct cam_periph *periph)
326 {
327 	return (periph->pinfo.index != CAM_UNQUEUED_INDEX);
328 }
329 
330 static __inline int
331 device_is_alloc_queued(struct cam_ed *device)
332 {
333 	return (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
334 }
335 
336 static __inline int
337 device_is_send_queued(struct cam_ed *device)
338 {
339 	return (device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX);
340 }
341 
342 static __inline int
343 dev_allocq_is_runnable(struct cam_devq *devq)
344 {
345 	/*
346 	 * Have work to do.
347 	 * Have space to do more work.
348 	 * Allowed to do work.
349 	 */
350 	return ((devq->alloc_queue.qfrozen_cnt == 0)
351 	     && (devq->alloc_queue.entries > 0)
352 	     && (devq->alloc_openings > 0));
353 }
354 
355 static void
356 xpt_periph_init()
357 {
358 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
359 }
360 
361 static void
362 xptdone(struct cam_periph *periph, union ccb *done_ccb)
363 {
364 	/* Caller will release the CCB */
365 	wakeup(&done_ccb->ccb_h.cbfcnp);
366 }
367 
368 static int
369 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
370 {
371 
372 	/*
373 	 * Only allow read-write access.
374 	 */
375 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
376 		return(EPERM);
377 
378 	/*
379 	 * We don't allow nonblocking access.
380 	 */
381 	if ((flags & O_NONBLOCK) != 0) {
382 		printf("%s: can't do nonblocking access\n", devtoname(dev));
383 		return(ENODEV);
384 	}
385 
386 	/* Mark ourselves open */
387 	mtx_lock(&xsoftc.xpt_lock);
388 	xsoftc.flags |= XPT_FLAG_OPEN;
389 	mtx_unlock(&xsoftc.xpt_lock);
390 
391 	return(0);
392 }
393 
394 static int
395 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
396 {
397 
398 	/* Mark ourselves closed */
399 	mtx_lock(&xsoftc.xpt_lock);
400 	xsoftc.flags &= ~XPT_FLAG_OPEN;
401 	mtx_unlock(&xsoftc.xpt_lock);
402 
403 	return(0);
404 }
405 
406 /*
407  * Don't automatically grab the xpt softc lock here even though this is going
408  * through the xpt device.  The xpt device is really just a back door for
409  * accessing other devices and SIMs, so the right thing to do is to grab
410  * the appropriate SIM lock once the bus/SIM is located.
411  */
412 static int
413 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
414 {
415 	int error;
416 
417 	error = 0;
418 
419 	switch(cmd) {
420 	/*
421 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
422 	 * to accept CCB types that don't quite make sense to send through a
423 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
424 	 * in the CAM spec.
425 	 */
426 	case CAMIOCOMMAND: {
427 		union ccb *ccb;
428 		union ccb *inccb;
429 		struct cam_eb *bus;
430 
431 		inccb = (union ccb *)addr;
432 
433 		bus = xpt_find_bus(inccb->ccb_h.path_id);
434 		if (bus == NULL) {
435 			error = EINVAL;
436 			break;
437 		}
438 
439 		switch(inccb->ccb_h.func_code) {
440 		case XPT_SCAN_BUS:
441 		case XPT_RESET_BUS:
442 			if ((inccb->ccb_h.target_id != CAM_TARGET_WILDCARD)
443 			 || (inccb->ccb_h.target_lun != CAM_LUN_WILDCARD)) {
444 				error = EINVAL;
445 				break;
446 			}
447 			/* FALLTHROUGH */
448 		case XPT_PATH_INQ:
449 		case XPT_ENG_INQ:
450 		case XPT_SCAN_LUN:
451 
452 			ccb = xpt_alloc_ccb();
453 
454 			CAM_SIM_LOCK(bus->sim);
455 
456 			/*
457 			 * Create a path using the bus, target, and lun the
458 			 * user passed in.
459 			 */
460 			if (xpt_create_path(&ccb->ccb_h.path, xpt_periph,
461 					    inccb->ccb_h.path_id,
462 					    inccb->ccb_h.target_id,
463 					    inccb->ccb_h.target_lun) !=
464 					    CAM_REQ_CMP){
465 				error = EINVAL;
466 				CAM_SIM_UNLOCK(bus->sim);
467 				xpt_free_ccb(ccb);
468 				break;
469 			}
470 			/* Ensure all of our fields are correct */
471 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
472 				      inccb->ccb_h.pinfo.priority);
473 			xpt_merge_ccb(ccb, inccb);
474 			ccb->ccb_h.cbfcnp = xptdone;
475 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
476 			bcopy(ccb, inccb, sizeof(union ccb));
477 			xpt_free_path(ccb->ccb_h.path);
478 			xpt_free_ccb(ccb);
479 			CAM_SIM_UNLOCK(bus->sim);
480 			break;
481 
482 		case XPT_DEBUG: {
483 			union ccb ccb;
484 
485 			/*
486 			 * This is an immediate CCB, so it's okay to
487 			 * allocate it on the stack.
488 			 */
489 
490 			CAM_SIM_LOCK(bus->sim);
491 
492 			/*
493 			 * Create a path using the bus, target, and lun the
494 			 * user passed in.
495 			 */
496 			if (xpt_create_path(&ccb.ccb_h.path, xpt_periph,
497 					    inccb->ccb_h.path_id,
498 					    inccb->ccb_h.target_id,
499 					    inccb->ccb_h.target_lun) !=
500 					    CAM_REQ_CMP){
501 				error = EINVAL;
502 				CAM_SIM_UNLOCK(bus->sim);
503 				break;
504 			}
505 			/* Ensure all of our fields are correct */
506 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
507 				      inccb->ccb_h.pinfo.priority);
508 			xpt_merge_ccb(&ccb, inccb);
509 			ccb.ccb_h.cbfcnp = xptdone;
510 			xpt_action(&ccb);
511 			CAM_SIM_UNLOCK(bus->sim);
512 			bcopy(&ccb, inccb, sizeof(union ccb));
513 			xpt_free_path(ccb.ccb_h.path);
514 			break;
515 
516 		}
517 		case XPT_DEV_MATCH: {
518 			struct cam_periph_map_info mapinfo;
519 			struct cam_path *old_path;
520 
521 			/*
522 			 * We can't deal with physical addresses for this
523 			 * type of transaction.
524 			 */
525 			if (inccb->ccb_h.flags & CAM_DATA_PHYS) {
526 				error = EINVAL;
527 				break;
528 			}
529 
530 			/*
531 			 * Save this in case the caller had it set to
532 			 * something in particular.
533 			 */
534 			old_path = inccb->ccb_h.path;
535 
536 			/*
537 			 * We really don't need a path for the matching
538 			 * code.  The path is needed because of the
539 			 * debugging statements in xpt_action().  They
540 			 * assume that the CCB has a valid path.
541 			 */
542 			inccb->ccb_h.path = xpt_periph->path;
543 
544 			bzero(&mapinfo, sizeof(mapinfo));
545 
546 			/*
547 			 * Map the pattern and match buffers into kernel
548 			 * virtual address space.
549 			 */
550 			error = cam_periph_mapmem(inccb, &mapinfo);
551 
552 			if (error) {
553 				inccb->ccb_h.path = old_path;
554 				break;
555 			}
556 
557 			/*
558 			 * This is an immediate CCB, we can send it on directly.
559 			 */
560 			xpt_action(inccb);
561 
562 			/*
563 			 * Map the buffers back into user space.
564 			 */
565 			cam_periph_unmapmem(inccb, &mapinfo);
566 
567 			inccb->ccb_h.path = old_path;
568 
569 			error = 0;
570 			break;
571 		}
572 		default:
573 			error = ENOTSUP;
574 			break;
575 		}
576 		xpt_release_bus(bus);
577 		break;
578 	}
579 	/*
580 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
581 	 * with the periphal driver name and unit name filled in.  The other
582 	 * fields don't really matter as input.  The passthrough driver name
583 	 * ("pass"), and unit number are passed back in the ccb.  The current
584 	 * device generation number, and the index into the device peripheral
585 	 * driver list, and the status are also passed back.  Note that
586 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
587 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
588 	 * (or rather should be) impossible for the device peripheral driver
589 	 * list to change since we look at the whole thing in one pass, and
590 	 * we do it with lock protection.
591 	 *
592 	 */
593 	case CAMGETPASSTHRU: {
594 		union ccb *ccb;
595 		struct cam_periph *periph;
596 		struct periph_driver **p_drv;
597 		char   *name;
598 		u_int unit;
599 		u_int cur_generation;
600 		int base_periph_found;
601 		int splbreaknum;
602 
603 		ccb = (union ccb *)addr;
604 		unit = ccb->cgdl.unit_number;
605 		name = ccb->cgdl.periph_name;
606 		/*
607 		 * Every 100 devices, we want to drop our lock protection to
608 		 * give the software interrupt handler a chance to run.
609 		 * Most systems won't run into this check, but this should
610 		 * avoid starvation in the software interrupt handler in
611 		 * large systems.
612 		 */
613 		splbreaknum = 100;
614 
615 		ccb = (union ccb *)addr;
616 
617 		base_periph_found = 0;
618 
619 		/*
620 		 * Sanity check -- make sure we don't get a null peripheral
621 		 * driver name.
622 		 */
623 		if (*ccb->cgdl.periph_name == '\0') {
624 			error = EINVAL;
625 			break;
626 		}
627 
628 		/* Keep the list from changing while we traverse it */
629 		mtx_lock(&xsoftc.xpt_topo_lock);
630 ptstartover:
631 		cur_generation = xsoftc.xpt_generation;
632 
633 		/* first find our driver in the list of drivers */
634 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
635 			if (strcmp((*p_drv)->driver_name, name) == 0)
636 				break;
637 
638 		if (*p_drv == NULL) {
639 			mtx_unlock(&xsoftc.xpt_topo_lock);
640 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
641 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
642 			*ccb->cgdl.periph_name = '\0';
643 			ccb->cgdl.unit_number = 0;
644 			error = ENOENT;
645 			break;
646 		}
647 
648 		/*
649 		 * Run through every peripheral instance of this driver
650 		 * and check to see whether it matches the unit passed
651 		 * in by the user.  If it does, get out of the loops and
652 		 * find the passthrough driver associated with that
653 		 * peripheral driver.
654 		 */
655 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
656 		     periph = TAILQ_NEXT(periph, unit_links)) {
657 
658 			if (periph->unit_number == unit) {
659 				break;
660 			} else if (--splbreaknum == 0) {
661 				mtx_unlock(&xsoftc.xpt_topo_lock);
662 				mtx_lock(&xsoftc.xpt_topo_lock);
663 				splbreaknum = 100;
664 				if (cur_generation != xsoftc.xpt_generation)
665 				       goto ptstartover;
666 			}
667 		}
668 		/*
669 		 * If we found the peripheral driver that the user passed
670 		 * in, go through all of the peripheral drivers for that
671 		 * particular device and look for a passthrough driver.
672 		 */
673 		if (periph != NULL) {
674 			struct cam_ed *device;
675 			int i;
676 
677 			base_periph_found = 1;
678 			device = periph->path->device;
679 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
680 			     periph != NULL;
681 			     periph = SLIST_NEXT(periph, periph_links), i++) {
682 				/*
683 				 * Check to see whether we have a
684 				 * passthrough device or not.
685 				 */
686 				if (strcmp(periph->periph_name, "pass") == 0) {
687 					/*
688 					 * Fill in the getdevlist fields.
689 					 */
690 					strcpy(ccb->cgdl.periph_name,
691 					       periph->periph_name);
692 					ccb->cgdl.unit_number =
693 						periph->unit_number;
694 					if (SLIST_NEXT(periph, periph_links))
695 						ccb->cgdl.status =
696 							CAM_GDEVLIST_MORE_DEVS;
697 					else
698 						ccb->cgdl.status =
699 						       CAM_GDEVLIST_LAST_DEVICE;
700 					ccb->cgdl.generation =
701 						device->generation;
702 					ccb->cgdl.index = i;
703 					/*
704 					 * Fill in some CCB header fields
705 					 * that the user may want.
706 					 */
707 					ccb->ccb_h.path_id =
708 						periph->path->bus->path_id;
709 					ccb->ccb_h.target_id =
710 						periph->path->target->target_id;
711 					ccb->ccb_h.target_lun =
712 						periph->path->device->lun_id;
713 					ccb->ccb_h.status = CAM_REQ_CMP;
714 					break;
715 				}
716 			}
717 		}
718 
719 		/*
720 		 * If the periph is null here, one of two things has
721 		 * happened.  The first possibility is that we couldn't
722 		 * find the unit number of the particular peripheral driver
723 		 * that the user is asking about.  e.g. the user asks for
724 		 * the passthrough driver for "da11".  We find the list of
725 		 * "da" peripherals all right, but there is no unit 11.
726 		 * The other possibility is that we went through the list
727 		 * of peripheral drivers attached to the device structure,
728 		 * but didn't find one with the name "pass".  Either way,
729 		 * we return ENOENT, since we couldn't find something.
730 		 */
731 		if (periph == NULL) {
732 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
733 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
734 			*ccb->cgdl.periph_name = '\0';
735 			ccb->cgdl.unit_number = 0;
736 			error = ENOENT;
737 			/*
738 			 * It is unfortunate that this is even necessary,
739 			 * but there are many, many clueless users out there.
740 			 * If this is true, the user is looking for the
741 			 * passthrough driver, but doesn't have one in his
742 			 * kernel.
743 			 */
744 			if (base_periph_found == 1) {
745 				printf("xptioctl: pass driver is not in the "
746 				       "kernel\n");
747 				printf("xptioctl: put \"device pass\" in "
748 				       "your kernel config file\n");
749 			}
750 		}
751 		mtx_unlock(&xsoftc.xpt_topo_lock);
752 		break;
753 		}
754 	default:
755 		error = ENOTTY;
756 		break;
757 	}
758 
759 	return(error);
760 }
761 
762 static int
763 cam_module_event_handler(module_t mod, int what, void *arg)
764 {
765 	int error;
766 
767 	switch (what) {
768 	case MOD_LOAD:
769 		if ((error = xpt_init(NULL)) != 0)
770 			return (error);
771 		break;
772 	case MOD_UNLOAD:
773 		return EBUSY;
774 	default:
775 		return EOPNOTSUPP;
776 	}
777 
778 	return 0;
779 }
780 
781 /* thread to handle bus rescans */
782 static void
783 xpt_scanner_thread(void *dummy)
784 {
785 	cam_isrq_t	queue;
786 	union ccb	*ccb;
787 	struct cam_sim	*sim;
788 
789 	for (;;) {
790 		/*
791 		 * Wait for a rescan request to come in.  When it does, splice
792 		 * it onto a queue from local storage so that the xpt lock
793 		 * doesn't need to be held while the requests are being
794 		 * processed.
795 		 */
796 		xpt_lock_buses();
797 		msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
798 		    "ccb_scanq", 0);
799 		TAILQ_INIT(&queue);
800 		TAILQ_CONCAT(&queue, &xsoftc.ccb_scanq, sim_links.tqe);
801 		xpt_unlock_buses();
802 
803 		while ((ccb = (union ccb *)TAILQ_FIRST(&queue)) != NULL) {
804 			TAILQ_REMOVE(&queue, &ccb->ccb_h, sim_links.tqe);
805 
806 			sim = ccb->ccb_h.path->bus->sim;
807 			CAM_SIM_LOCK(sim);
808 
809 			ccb->ccb_h.func_code = XPT_SCAN_BUS;
810 			ccb->ccb_h.cbfcnp = xptdone;
811 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 5);
812 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
813 			xpt_free_path(ccb->ccb_h.path);
814 			xpt_free_ccb(ccb);
815 			CAM_SIM_UNLOCK(sim);
816 		}
817 	}
818 }
819 
820 void
821 xpt_rescan(union ccb *ccb)
822 {
823 	struct ccb_hdr *hdr;
824 
825 	/*
826 	 * Don't make duplicate entries for the same paths.
827 	 */
828 	xpt_lock_buses();
829 	TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
830 		if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
831 			xpt_unlock_buses();
832 			xpt_print(ccb->ccb_h.path, "rescan already queued\n");
833 			xpt_free_path(ccb->ccb_h.path);
834 			xpt_free_ccb(ccb);
835 			return;
836 		}
837 	}
838 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
839 	wakeup(&xsoftc.ccb_scanq);
840 	xpt_unlock_buses();
841 }
842 
843 /* Functions accessed by the peripheral drivers */
844 static int
845 xpt_init(void *dummy)
846 {
847 	struct cam_sim *xpt_sim;
848 	struct cam_path *path;
849 	struct cam_devq *devq;
850 	cam_status status;
851 
852 	TAILQ_INIT(&xsoftc.xpt_busses);
853 	TAILQ_INIT(&cam_simq);
854 	TAILQ_INIT(&xsoftc.ccb_scanq);
855 	STAILQ_INIT(&xsoftc.highpowerq);
856 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
857 
858 	mtx_init(&cam_simq_lock, "CAM SIMQ lock", NULL, MTX_DEF);
859 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
860 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
861 
862 	/*
863 	 * The xpt layer is, itself, the equivelent of a SIM.
864 	 * Allow 16 ccbs in the ccb pool for it.  This should
865 	 * give decent parallelism when we probe busses and
866 	 * perform other XPT functions.
867 	 */
868 	devq = cam_simq_alloc(16);
869 	xpt_sim = cam_sim_alloc(xptaction,
870 				xptpoll,
871 				"xpt",
872 				/*softc*/NULL,
873 				/*unit*/0,
874 				/*mtx*/&xsoftc.xpt_lock,
875 				/*max_dev_transactions*/0,
876 				/*max_tagged_dev_transactions*/0,
877 				devq);
878 	if (xpt_sim == NULL)
879 		return (ENOMEM);
880 
881 	xpt_sim->max_ccbs = 16;
882 
883 	mtx_lock(&xsoftc.xpt_lock);
884 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
885 		printf("xpt_init: xpt_bus_register failed with status %#x,"
886 		       " failing attach\n", status);
887 		return (EINVAL);
888 	}
889 
890 	/*
891 	 * Looking at the XPT from the SIM layer, the XPT is
892 	 * the equivelent of a peripheral driver.  Allocate
893 	 * a peripheral driver entry for us.
894 	 */
895 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
896 				      CAM_TARGET_WILDCARD,
897 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
898 		printf("xpt_init: xpt_create_path failed with status %#x,"
899 		       " failing attach\n", status);
900 		return (EINVAL);
901 	}
902 
903 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
904 			 path, NULL, 0, xpt_sim);
905 	xpt_free_path(path);
906 	mtx_unlock(&xsoftc.xpt_lock);
907 
908 	/*
909 	 * Register a callback for when interrupts are enabled.
910 	 */
911 	xsoftc.xpt_config_hook =
912 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
913 					      M_CAMXPT, M_NOWAIT | M_ZERO);
914 	if (xsoftc.xpt_config_hook == NULL) {
915 		printf("xpt_init: Cannot malloc config hook "
916 		       "- failing attach\n");
917 		return (ENOMEM);
918 	}
919 
920 	xsoftc.xpt_config_hook->ich_func = xpt_config;
921 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
922 		free (xsoftc.xpt_config_hook, M_CAMXPT);
923 		printf("xpt_init: config_intrhook_establish failed "
924 		       "- failing attach\n");
925 	}
926 
927 	/* fire up rescan thread */
928 	if (kproc_create(xpt_scanner_thread, NULL, NULL, 0, 0, "xpt_thrd")) {
929 		printf("xpt_init: failed to create rescan thread\n");
930 	}
931 	/* Install our software interrupt handlers */
932 	swi_add(NULL, "cambio", camisr, NULL, SWI_CAMBIO, INTR_MPSAFE, &cambio_ih);
933 
934 	return (0);
935 }
936 
937 static cam_status
938 xptregister(struct cam_periph *periph, void *arg)
939 {
940 	struct cam_sim *xpt_sim;
941 
942 	if (periph == NULL) {
943 		printf("xptregister: periph was NULL!!\n");
944 		return(CAM_REQ_CMP_ERR);
945 	}
946 
947 	xpt_sim = (struct cam_sim *)arg;
948 	xpt_sim->softc = periph;
949 	xpt_periph = periph;
950 	periph->softc = NULL;
951 
952 	return(CAM_REQ_CMP);
953 }
954 
955 int32_t
956 xpt_add_periph(struct cam_periph *periph)
957 {
958 	struct cam_ed *device;
959 	int32_t	 status;
960 	struct periph_list *periph_head;
961 
962 	mtx_assert(periph->sim->mtx, MA_OWNED);
963 
964 	device = periph->path->device;
965 
966 	periph_head = &device->periphs;
967 
968 	status = CAM_REQ_CMP;
969 
970 	if (device != NULL) {
971 		/*
972 		 * Make room for this peripheral
973 		 * so it will fit in the queue
974 		 * when it's scheduled to run
975 		 */
976 		status = camq_resize(&device->drvq,
977 				     device->drvq.array_size + 1);
978 
979 		device->generation++;
980 
981 		SLIST_INSERT_HEAD(periph_head, periph, periph_links);
982 	}
983 
984 	mtx_lock(&xsoftc.xpt_topo_lock);
985 	xsoftc.xpt_generation++;
986 	mtx_unlock(&xsoftc.xpt_topo_lock);
987 
988 	return (status);
989 }
990 
991 void
992 xpt_remove_periph(struct cam_periph *periph)
993 {
994 	struct cam_ed *device;
995 
996 	mtx_assert(periph->sim->mtx, MA_OWNED);
997 
998 	device = periph->path->device;
999 
1000 	if (device != NULL) {
1001 		struct periph_list *periph_head;
1002 
1003 		periph_head = &device->periphs;
1004 
1005 		/* Release the slot for this peripheral */
1006 		camq_resize(&device->drvq, device->drvq.array_size - 1);
1007 
1008 		device->generation++;
1009 
1010 		SLIST_REMOVE(periph_head, periph, cam_periph, periph_links);
1011 	}
1012 
1013 	mtx_lock(&xsoftc.xpt_topo_lock);
1014 	xsoftc.xpt_generation++;
1015 	mtx_unlock(&xsoftc.xpt_topo_lock);
1016 }
1017 
1018 
1019 void
1020 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1021 {
1022 	struct	ccb_pathinq cpi;
1023 	struct	ccb_trans_settings cts;
1024 	struct	cam_path *path;
1025 	u_int	speed;
1026 	u_int	freq;
1027 	u_int	mb;
1028 
1029 	mtx_assert(periph->sim->mtx, MA_OWNED);
1030 
1031 	path = periph->path;
1032 	/*
1033 	 * To ensure that this is printed in one piece,
1034 	 * mask out CAM interrupts.
1035 	 */
1036 	printf("%s%d at %s%d bus %d target %d lun %d\n",
1037 	       periph->periph_name, periph->unit_number,
1038 	       path->bus->sim->sim_name,
1039 	       path->bus->sim->unit_number,
1040 	       path->bus->sim->bus_id,
1041 	       path->target->target_id,
1042 	       path->device->lun_id);
1043 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1044 	if (path->device->protocol == PROTO_SCSI)
1045 	    scsi_print_inquiry(&path->device->inq_data);
1046 	else if (path->device->protocol == PROTO_ATA ||
1047 	    path->device->protocol == PROTO_SATAPM)
1048 		ata_print_ident(&path->device->ident_data);
1049 	else
1050 	    printf("Unknown protocol device\n");
1051 	if (bootverbose && path->device->serial_num_len > 0) {
1052 		/* Don't wrap the screen  - print only the first 60 chars */
1053 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1054 		       periph->unit_number, path->device->serial_num);
1055 	}
1056 	xpt_setup_ccb(&cts.ccb_h, path, /*priority*/1);
1057 	cts.ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
1058 	cts.type = CTS_TYPE_CURRENT_SETTINGS;
1059 	xpt_action((union ccb*)&cts);
1060 	if ((cts.ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
1061 		return;
1062 	}
1063 
1064 	/* Ask the SIM for its base transfer speed */
1065 	xpt_setup_ccb(&cpi.ccb_h, path, /*priority*/1);
1066 	cpi.ccb_h.func_code = XPT_PATH_INQ;
1067 	xpt_action((union ccb *)&cpi);
1068 
1069 	speed = cpi.base_transfer_speed;
1070 	freq = 0;
1071 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1072 		struct	ccb_trans_settings_spi *spi;
1073 
1074 		spi = &cts.xport_specific.spi;
1075 		if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0
1076 		  && spi->sync_offset != 0) {
1077 			freq = scsi_calc_syncsrate(spi->sync_period);
1078 			speed = freq;
1079 		}
1080 
1081 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0)
1082 			speed *= (0x01 << spi->bus_width);
1083 	}
1084 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1085 		struct	ccb_trans_settings_fc *fc = &cts.xport_specific.fc;
1086 		if (fc->valid & CTS_FC_VALID_SPEED)
1087 			speed = fc->bitrate;
1088 	}
1089 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SAS) {
1090 		struct	ccb_trans_settings_sas *sas = &cts.xport_specific.sas;
1091 		if (sas->valid & CTS_SAS_VALID_SPEED)
1092 			speed = sas->bitrate;
1093 	}
1094 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SATA) {
1095 		struct	ccb_trans_settings_sata *sata = &cts.xport_specific.sata;
1096 		if (sata->valid & CTS_SATA_VALID_SPEED)
1097 			speed = sata->bitrate;
1098 	}
1099 
1100 	mb = speed / 1000;
1101 	if (mb > 0)
1102 		printf("%s%d: %d.%03dMB/s transfers",
1103 		       periph->periph_name, periph->unit_number,
1104 		       mb, speed % 1000);
1105 	else
1106 		printf("%s%d: %dKB/s transfers", periph->periph_name,
1107 		       periph->unit_number, speed);
1108 	/* Report additional information about SPI connections */
1109 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_SPI) {
1110 		struct	ccb_trans_settings_spi *spi;
1111 
1112 		spi = &cts.xport_specific.spi;
1113 		if (freq != 0) {
1114 			printf(" (%d.%03dMHz%s, offset %d", freq / 1000,
1115 			       freq % 1000,
1116 			       (spi->ppr_options & MSG_EXT_PPR_DT_REQ) != 0
1117 			     ? " DT" : "",
1118 			       spi->sync_offset);
1119 		}
1120 		if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0
1121 		 && spi->bus_width > 0) {
1122 			if (freq != 0) {
1123 				printf(", ");
1124 			} else {
1125 				printf(" (");
1126 			}
1127 			printf("%dbit)", 8 * (0x01 << spi->bus_width));
1128 		} else if (freq != 0) {
1129 			printf(")");
1130 		}
1131 	}
1132 	if (cts.ccb_h.status == CAM_REQ_CMP && cts.transport == XPORT_FC) {
1133 		struct	ccb_trans_settings_fc *fc;
1134 
1135 		fc = &cts.xport_specific.fc;
1136 		if (fc->valid & CTS_FC_VALID_WWNN)
1137 			printf(" WWNN 0x%llx", (long long) fc->wwnn);
1138 		if (fc->valid & CTS_FC_VALID_WWPN)
1139 			printf(" WWPN 0x%llx", (long long) fc->wwpn);
1140 		if (fc->valid & CTS_FC_VALID_PORT)
1141 			printf(" PortID 0x%x", fc->port);
1142 	}
1143 
1144 	if (path->device->inq_flags & SID_CmdQue
1145 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1146 		printf("\n%s%d: Command Queueing enabled",
1147 		       periph->periph_name, periph->unit_number);
1148 	}
1149 	printf("\n");
1150 
1151 	/*
1152 	 * We only want to print the caller's announce string if they've
1153 	 * passed one in..
1154 	 */
1155 	if (announce_string != NULL)
1156 		printf("%s%d: %s\n", periph->periph_name,
1157 		       periph->unit_number, announce_string);
1158 }
1159 
1160 static dev_match_ret
1161 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1162 	    struct cam_eb *bus)
1163 {
1164 	dev_match_ret retval;
1165 	int i;
1166 
1167 	retval = DM_RET_NONE;
1168 
1169 	/*
1170 	 * If we aren't given something to match against, that's an error.
1171 	 */
1172 	if (bus == NULL)
1173 		return(DM_RET_ERROR);
1174 
1175 	/*
1176 	 * If there are no match entries, then this bus matches no
1177 	 * matter what.
1178 	 */
1179 	if ((patterns == NULL) || (num_patterns == 0))
1180 		return(DM_RET_DESCEND | DM_RET_COPY);
1181 
1182 	for (i = 0; i < num_patterns; i++) {
1183 		struct bus_match_pattern *cur_pattern;
1184 
1185 		/*
1186 		 * If the pattern in question isn't for a bus node, we
1187 		 * aren't interested.  However, we do indicate to the
1188 		 * calling routine that we should continue descending the
1189 		 * tree, since the user wants to match against lower-level
1190 		 * EDT elements.
1191 		 */
1192 		if (patterns[i].type != DEV_MATCH_BUS) {
1193 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1194 				retval |= DM_RET_DESCEND;
1195 			continue;
1196 		}
1197 
1198 		cur_pattern = &patterns[i].pattern.bus_pattern;
1199 
1200 		/*
1201 		 * If they want to match any bus node, we give them any
1202 		 * device node.
1203 		 */
1204 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1205 			/* set the copy flag */
1206 			retval |= DM_RET_COPY;
1207 
1208 			/*
1209 			 * If we've already decided on an action, go ahead
1210 			 * and return.
1211 			 */
1212 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1213 				return(retval);
1214 		}
1215 
1216 		/*
1217 		 * Not sure why someone would do this...
1218 		 */
1219 		if (cur_pattern->flags == BUS_MATCH_NONE)
1220 			continue;
1221 
1222 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1223 		 && (cur_pattern->path_id != bus->path_id))
1224 			continue;
1225 
1226 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1227 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1228 			continue;
1229 
1230 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1231 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1232 			continue;
1233 
1234 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1235 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1236 			     DEV_IDLEN) != 0))
1237 			continue;
1238 
1239 		/*
1240 		 * If we get to this point, the user definitely wants
1241 		 * information on this bus.  So tell the caller to copy the
1242 		 * data out.
1243 		 */
1244 		retval |= DM_RET_COPY;
1245 
1246 		/*
1247 		 * If the return action has been set to descend, then we
1248 		 * know that we've already seen a non-bus matching
1249 		 * expression, therefore we need to further descend the tree.
1250 		 * This won't change by continuing around the loop, so we
1251 		 * go ahead and return.  If we haven't seen a non-bus
1252 		 * matching expression, we keep going around the loop until
1253 		 * we exhaust the matching expressions.  We'll set the stop
1254 		 * flag once we fall out of the loop.
1255 		 */
1256 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1257 			return(retval);
1258 	}
1259 
1260 	/*
1261 	 * If the return action hasn't been set to descend yet, that means
1262 	 * we haven't seen anything other than bus matching patterns.  So
1263 	 * tell the caller to stop descending the tree -- the user doesn't
1264 	 * want to match against lower level tree elements.
1265 	 */
1266 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1267 		retval |= DM_RET_STOP;
1268 
1269 	return(retval);
1270 }
1271 
1272 static dev_match_ret
1273 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1274 	       struct cam_ed *device)
1275 {
1276 	dev_match_ret retval;
1277 	int i;
1278 
1279 	retval = DM_RET_NONE;
1280 
1281 	/*
1282 	 * If we aren't given something to match against, that's an error.
1283 	 */
1284 	if (device == NULL)
1285 		return(DM_RET_ERROR);
1286 
1287 	/*
1288 	 * If there are no match entries, then this device matches no
1289 	 * matter what.
1290 	 */
1291 	if ((patterns == NULL) || (num_patterns == 0))
1292 		return(DM_RET_DESCEND | DM_RET_COPY);
1293 
1294 	for (i = 0; i < num_patterns; i++) {
1295 		struct device_match_pattern *cur_pattern;
1296 
1297 		/*
1298 		 * If the pattern in question isn't for a device node, we
1299 		 * aren't interested.
1300 		 */
1301 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1302 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1303 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1304 				retval |= DM_RET_DESCEND;
1305 			continue;
1306 		}
1307 
1308 		cur_pattern = &patterns[i].pattern.device_pattern;
1309 
1310 		/*
1311 		 * If they want to match any device node, we give them any
1312 		 * device node.
1313 		 */
1314 		if (cur_pattern->flags == DEV_MATCH_ANY) {
1315 			/* set the copy flag */
1316 			retval |= DM_RET_COPY;
1317 
1318 
1319 			/*
1320 			 * If we've already decided on an action, go ahead
1321 			 * and return.
1322 			 */
1323 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1324 				return(retval);
1325 		}
1326 
1327 		/*
1328 		 * Not sure why someone would do this...
1329 		 */
1330 		if (cur_pattern->flags == DEV_MATCH_NONE)
1331 			continue;
1332 
1333 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1334 		 && (cur_pattern->path_id != device->target->bus->path_id))
1335 			continue;
1336 
1337 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1338 		 && (cur_pattern->target_id != device->target->target_id))
1339 			continue;
1340 
1341 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1342 		 && (cur_pattern->target_lun != device->lun_id))
1343 			continue;
1344 
1345 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1346 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1347 				    (caddr_t)&cur_pattern->inq_pat,
1348 				    1, sizeof(cur_pattern->inq_pat),
1349 				    scsi_static_inquiry_match) == NULL))
1350 			continue;
1351 
1352 		/*
1353 		 * If we get to this point, the user definitely wants
1354 		 * information on this device.  So tell the caller to copy
1355 		 * the data out.
1356 		 */
1357 		retval |= DM_RET_COPY;
1358 
1359 		/*
1360 		 * If the return action has been set to descend, then we
1361 		 * know that we've already seen a peripheral matching
1362 		 * expression, therefore we need to further descend the tree.
1363 		 * This won't change by continuing around the loop, so we
1364 		 * go ahead and return.  If we haven't seen a peripheral
1365 		 * matching expression, we keep going around the loop until
1366 		 * we exhaust the matching expressions.  We'll set the stop
1367 		 * flag once we fall out of the loop.
1368 		 */
1369 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1370 			return(retval);
1371 	}
1372 
1373 	/*
1374 	 * If the return action hasn't been set to descend yet, that means
1375 	 * we haven't seen any peripheral matching patterns.  So tell the
1376 	 * caller to stop descending the tree -- the user doesn't want to
1377 	 * match against lower level tree elements.
1378 	 */
1379 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1380 		retval |= DM_RET_STOP;
1381 
1382 	return(retval);
1383 }
1384 
1385 /*
1386  * Match a single peripheral against any number of match patterns.
1387  */
1388 static dev_match_ret
1389 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1390 	       struct cam_periph *periph)
1391 {
1392 	dev_match_ret retval;
1393 	int i;
1394 
1395 	/*
1396 	 * If we aren't given something to match against, that's an error.
1397 	 */
1398 	if (periph == NULL)
1399 		return(DM_RET_ERROR);
1400 
1401 	/*
1402 	 * If there are no match entries, then this peripheral matches no
1403 	 * matter what.
1404 	 */
1405 	if ((patterns == NULL) || (num_patterns == 0))
1406 		return(DM_RET_STOP | DM_RET_COPY);
1407 
1408 	/*
1409 	 * There aren't any nodes below a peripheral node, so there's no
1410 	 * reason to descend the tree any further.
1411 	 */
1412 	retval = DM_RET_STOP;
1413 
1414 	for (i = 0; i < num_patterns; i++) {
1415 		struct periph_match_pattern *cur_pattern;
1416 
1417 		/*
1418 		 * If the pattern in question isn't for a peripheral, we
1419 		 * aren't interested.
1420 		 */
1421 		if (patterns[i].type != DEV_MATCH_PERIPH)
1422 			continue;
1423 
1424 		cur_pattern = &patterns[i].pattern.periph_pattern;
1425 
1426 		/*
1427 		 * If they want to match on anything, then we will do so.
1428 		 */
1429 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1430 			/* set the copy flag */
1431 			retval |= DM_RET_COPY;
1432 
1433 			/*
1434 			 * We've already set the return action to stop,
1435 			 * since there are no nodes below peripherals in
1436 			 * the tree.
1437 			 */
1438 			return(retval);
1439 		}
1440 
1441 		/*
1442 		 * Not sure why someone would do this...
1443 		 */
1444 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1445 			continue;
1446 
1447 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1448 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1449 			continue;
1450 
1451 		/*
1452 		 * For the target and lun id's, we have to make sure the
1453 		 * target and lun pointers aren't NULL.  The xpt peripheral
1454 		 * has a wildcard target and device.
1455 		 */
1456 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1457 		 && ((periph->path->target == NULL)
1458 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1459 			continue;
1460 
1461 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1462 		 && ((periph->path->device == NULL)
1463 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1464 			continue;
1465 
1466 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1467 		 && (cur_pattern->unit_number != periph->unit_number))
1468 			continue;
1469 
1470 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1471 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1472 			     DEV_IDLEN) != 0))
1473 			continue;
1474 
1475 		/*
1476 		 * If we get to this point, the user definitely wants
1477 		 * information on this peripheral.  So tell the caller to
1478 		 * copy the data out.
1479 		 */
1480 		retval |= DM_RET_COPY;
1481 
1482 		/*
1483 		 * The return action has already been set to stop, since
1484 		 * peripherals don't have any nodes below them in the EDT.
1485 		 */
1486 		return(retval);
1487 	}
1488 
1489 	/*
1490 	 * If we get to this point, the peripheral that was passed in
1491 	 * doesn't match any of the patterns.
1492 	 */
1493 	return(retval);
1494 }
1495 
1496 static int
1497 xptedtbusfunc(struct cam_eb *bus, void *arg)
1498 {
1499 	struct ccb_dev_match *cdm;
1500 	dev_match_ret retval;
1501 
1502 	cdm = (struct ccb_dev_match *)arg;
1503 
1504 	/*
1505 	 * If our position is for something deeper in the tree, that means
1506 	 * that we've already seen this node.  So, we keep going down.
1507 	 */
1508 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1509 	 && (cdm->pos.cookie.bus == bus)
1510 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1511 	 && (cdm->pos.cookie.target != NULL))
1512 		retval = DM_RET_DESCEND;
1513 	else
1514 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1515 
1516 	/*
1517 	 * If we got an error, bail out of the search.
1518 	 */
1519 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1520 		cdm->status = CAM_DEV_MATCH_ERROR;
1521 		return(0);
1522 	}
1523 
1524 	/*
1525 	 * If the copy flag is set, copy this bus out.
1526 	 */
1527 	if (retval & DM_RET_COPY) {
1528 		int spaceleft, j;
1529 
1530 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1531 			sizeof(struct dev_match_result));
1532 
1533 		/*
1534 		 * If we don't have enough space to put in another
1535 		 * match result, save our position and tell the
1536 		 * user there are more devices to check.
1537 		 */
1538 		if (spaceleft < sizeof(struct dev_match_result)) {
1539 			bzero(&cdm->pos, sizeof(cdm->pos));
1540 			cdm->pos.position_type =
1541 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1542 
1543 			cdm->pos.cookie.bus = bus;
1544 			cdm->pos.generations[CAM_BUS_GENERATION]=
1545 				xsoftc.bus_generation;
1546 			cdm->status = CAM_DEV_MATCH_MORE;
1547 			return(0);
1548 		}
1549 		j = cdm->num_matches;
1550 		cdm->num_matches++;
1551 		cdm->matches[j].type = DEV_MATCH_BUS;
1552 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1553 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1554 		cdm->matches[j].result.bus_result.unit_number =
1555 			bus->sim->unit_number;
1556 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1557 			bus->sim->sim_name, DEV_IDLEN);
1558 	}
1559 
1560 	/*
1561 	 * If the user is only interested in busses, there's no
1562 	 * reason to descend to the next level in the tree.
1563 	 */
1564 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1565 		return(1);
1566 
1567 	/*
1568 	 * If there is a target generation recorded, check it to
1569 	 * make sure the target list hasn't changed.
1570 	 */
1571 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1572 	 && (bus == cdm->pos.cookie.bus)
1573 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1574 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] != 0)
1575 	 && (cdm->pos.generations[CAM_TARGET_GENERATION] !=
1576 	     bus->generation)) {
1577 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1578 		return(0);
1579 	}
1580 
1581 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1582 	 && (cdm->pos.cookie.bus == bus)
1583 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1584 	 && (cdm->pos.cookie.target != NULL))
1585 		return(xpttargettraverse(bus,
1586 					(struct cam_et *)cdm->pos.cookie.target,
1587 					 xptedttargetfunc, arg));
1588 	else
1589 		return(xpttargettraverse(bus, NULL, xptedttargetfunc, arg));
1590 }
1591 
1592 static int
1593 xptedttargetfunc(struct cam_et *target, void *arg)
1594 {
1595 	struct ccb_dev_match *cdm;
1596 
1597 	cdm = (struct ccb_dev_match *)arg;
1598 
1599 	/*
1600 	 * If there is a device list generation recorded, check it to
1601 	 * make sure the device list hasn't changed.
1602 	 */
1603 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1604 	 && (cdm->pos.cookie.bus == target->bus)
1605 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1606 	 && (cdm->pos.cookie.target == target)
1607 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1608 	 && (cdm->pos.generations[CAM_DEV_GENERATION] != 0)
1609 	 && (cdm->pos.generations[CAM_DEV_GENERATION] !=
1610 	     target->generation)) {
1611 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1612 		return(0);
1613 	}
1614 
1615 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1616 	 && (cdm->pos.cookie.bus == target->bus)
1617 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1618 	 && (cdm->pos.cookie.target == target)
1619 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1620 	 && (cdm->pos.cookie.device != NULL))
1621 		return(xptdevicetraverse(target,
1622 					(struct cam_ed *)cdm->pos.cookie.device,
1623 					 xptedtdevicefunc, arg));
1624 	else
1625 		return(xptdevicetraverse(target, NULL, xptedtdevicefunc, arg));
1626 }
1627 
1628 static int
1629 xptedtdevicefunc(struct cam_ed *device, void *arg)
1630 {
1631 
1632 	struct ccb_dev_match *cdm;
1633 	dev_match_ret retval;
1634 
1635 	cdm = (struct ccb_dev_match *)arg;
1636 
1637 	/*
1638 	 * If our position is for something deeper in the tree, that means
1639 	 * that we've already seen this node.  So, we keep going down.
1640 	 */
1641 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1642 	 && (cdm->pos.cookie.device == device)
1643 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1644 	 && (cdm->pos.cookie.periph != NULL))
1645 		retval = DM_RET_DESCEND;
1646 	else
1647 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1648 					device);
1649 
1650 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1651 		cdm->status = CAM_DEV_MATCH_ERROR;
1652 		return(0);
1653 	}
1654 
1655 	/*
1656 	 * If the copy flag is set, copy this device out.
1657 	 */
1658 	if (retval & DM_RET_COPY) {
1659 		int spaceleft, j;
1660 
1661 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1662 			sizeof(struct dev_match_result));
1663 
1664 		/*
1665 		 * If we don't have enough space to put in another
1666 		 * match result, save our position and tell the
1667 		 * user there are more devices to check.
1668 		 */
1669 		if (spaceleft < sizeof(struct dev_match_result)) {
1670 			bzero(&cdm->pos, sizeof(cdm->pos));
1671 			cdm->pos.position_type =
1672 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1673 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1674 
1675 			cdm->pos.cookie.bus = device->target->bus;
1676 			cdm->pos.generations[CAM_BUS_GENERATION]=
1677 				xsoftc.bus_generation;
1678 			cdm->pos.cookie.target = device->target;
1679 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1680 				device->target->bus->generation;
1681 			cdm->pos.cookie.device = device;
1682 			cdm->pos.generations[CAM_DEV_GENERATION] =
1683 				device->target->generation;
1684 			cdm->status = CAM_DEV_MATCH_MORE;
1685 			return(0);
1686 		}
1687 		j = cdm->num_matches;
1688 		cdm->num_matches++;
1689 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1690 		cdm->matches[j].result.device_result.path_id =
1691 			device->target->bus->path_id;
1692 		cdm->matches[j].result.device_result.target_id =
1693 			device->target->target_id;
1694 		cdm->matches[j].result.device_result.target_lun =
1695 			device->lun_id;
1696 		cdm->matches[j].result.device_result.protocol =
1697 			device->protocol;
1698 		bcopy(&device->inq_data,
1699 		      &cdm->matches[j].result.device_result.inq_data,
1700 		      sizeof(struct scsi_inquiry_data));
1701 		bcopy(&device->ident_data,
1702 		      &cdm->matches[j].result.device_result.ident_data,
1703 		      sizeof(struct ata_params));
1704 
1705 		/* Let the user know whether this device is unconfigured */
1706 		if (device->flags & CAM_DEV_UNCONFIGURED)
1707 			cdm->matches[j].result.device_result.flags =
1708 				DEV_RESULT_UNCONFIGURED;
1709 		else
1710 			cdm->matches[j].result.device_result.flags =
1711 				DEV_RESULT_NOFLAG;
1712 	}
1713 
1714 	/*
1715 	 * If the user isn't interested in peripherals, don't descend
1716 	 * the tree any further.
1717 	 */
1718 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1719 		return(1);
1720 
1721 	/*
1722 	 * If there is a peripheral list generation recorded, make sure
1723 	 * it hasn't changed.
1724 	 */
1725 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1726 	 && (device->target->bus == cdm->pos.cookie.bus)
1727 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1728 	 && (device->target == cdm->pos.cookie.target)
1729 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1730 	 && (device == cdm->pos.cookie.device)
1731 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1732 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1733 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1734 	     device->generation)){
1735 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1736 		return(0);
1737 	}
1738 
1739 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1740 	 && (cdm->pos.cookie.bus == device->target->bus)
1741 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1742 	 && (cdm->pos.cookie.target == device->target)
1743 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1744 	 && (cdm->pos.cookie.device == device)
1745 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1746 	 && (cdm->pos.cookie.periph != NULL))
1747 		return(xptperiphtraverse(device,
1748 				(struct cam_periph *)cdm->pos.cookie.periph,
1749 				xptedtperiphfunc, arg));
1750 	else
1751 		return(xptperiphtraverse(device, NULL, xptedtperiphfunc, arg));
1752 }
1753 
1754 static int
1755 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1756 {
1757 	struct ccb_dev_match *cdm;
1758 	dev_match_ret retval;
1759 
1760 	cdm = (struct ccb_dev_match *)arg;
1761 
1762 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1763 
1764 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1765 		cdm->status = CAM_DEV_MATCH_ERROR;
1766 		return(0);
1767 	}
1768 
1769 	/*
1770 	 * If the copy flag is set, copy this peripheral out.
1771 	 */
1772 	if (retval & DM_RET_COPY) {
1773 		int spaceleft, j;
1774 
1775 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1776 			sizeof(struct dev_match_result));
1777 
1778 		/*
1779 		 * If we don't have enough space to put in another
1780 		 * match result, save our position and tell the
1781 		 * user there are more devices to check.
1782 		 */
1783 		if (spaceleft < sizeof(struct dev_match_result)) {
1784 			bzero(&cdm->pos, sizeof(cdm->pos));
1785 			cdm->pos.position_type =
1786 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1787 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1788 				CAM_DEV_POS_PERIPH;
1789 
1790 			cdm->pos.cookie.bus = periph->path->bus;
1791 			cdm->pos.generations[CAM_BUS_GENERATION]=
1792 				xsoftc.bus_generation;
1793 			cdm->pos.cookie.target = periph->path->target;
1794 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1795 				periph->path->bus->generation;
1796 			cdm->pos.cookie.device = periph->path->device;
1797 			cdm->pos.generations[CAM_DEV_GENERATION] =
1798 				periph->path->target->generation;
1799 			cdm->pos.cookie.periph = periph;
1800 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1801 				periph->path->device->generation;
1802 			cdm->status = CAM_DEV_MATCH_MORE;
1803 			return(0);
1804 		}
1805 
1806 		j = cdm->num_matches;
1807 		cdm->num_matches++;
1808 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1809 		cdm->matches[j].result.periph_result.path_id =
1810 			periph->path->bus->path_id;
1811 		cdm->matches[j].result.periph_result.target_id =
1812 			periph->path->target->target_id;
1813 		cdm->matches[j].result.periph_result.target_lun =
1814 			periph->path->device->lun_id;
1815 		cdm->matches[j].result.periph_result.unit_number =
1816 			periph->unit_number;
1817 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1818 			periph->periph_name, DEV_IDLEN);
1819 	}
1820 
1821 	return(1);
1822 }
1823 
1824 static int
1825 xptedtmatch(struct ccb_dev_match *cdm)
1826 {
1827 	int ret;
1828 
1829 	cdm->num_matches = 0;
1830 
1831 	/*
1832 	 * Check the bus list generation.  If it has changed, the user
1833 	 * needs to reset everything and start over.
1834 	 */
1835 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1836 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != 0)
1837 	 && (cdm->pos.generations[CAM_BUS_GENERATION] != xsoftc.bus_generation)) {
1838 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1839 		return(0);
1840 	}
1841 
1842 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1843 	 && (cdm->pos.cookie.bus != NULL))
1844 		ret = xptbustraverse((struct cam_eb *)cdm->pos.cookie.bus,
1845 				     xptedtbusfunc, cdm);
1846 	else
1847 		ret = xptbustraverse(NULL, xptedtbusfunc, cdm);
1848 
1849 	/*
1850 	 * If we get back 0, that means that we had to stop before fully
1851 	 * traversing the EDT.  It also means that one of the subroutines
1852 	 * has set the status field to the proper value.  If we get back 1,
1853 	 * we've fully traversed the EDT and copied out any matching entries.
1854 	 */
1855 	if (ret == 1)
1856 		cdm->status = CAM_DEV_MATCH_LAST;
1857 
1858 	return(ret);
1859 }
1860 
1861 static int
1862 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1863 {
1864 	struct ccb_dev_match *cdm;
1865 
1866 	cdm = (struct ccb_dev_match *)arg;
1867 
1868 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1869 	 && (cdm->pos.cookie.pdrv == pdrv)
1870 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1871 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] != 0)
1872 	 && (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1873 	     (*pdrv)->generation)) {
1874 		cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1875 		return(0);
1876 	}
1877 
1878 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1879 	 && (cdm->pos.cookie.pdrv == pdrv)
1880 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1881 	 && (cdm->pos.cookie.periph != NULL))
1882 		return(xptpdperiphtraverse(pdrv,
1883 				(struct cam_periph *)cdm->pos.cookie.periph,
1884 				xptplistperiphfunc, arg));
1885 	else
1886 		return(xptpdperiphtraverse(pdrv, NULL,xptplistperiphfunc, arg));
1887 }
1888 
1889 static int
1890 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1891 {
1892 	struct ccb_dev_match *cdm;
1893 	dev_match_ret retval;
1894 
1895 	cdm = (struct ccb_dev_match *)arg;
1896 
1897 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1898 
1899 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1900 		cdm->status = CAM_DEV_MATCH_ERROR;
1901 		return(0);
1902 	}
1903 
1904 	/*
1905 	 * If the copy flag is set, copy this peripheral out.
1906 	 */
1907 	if (retval & DM_RET_COPY) {
1908 		int spaceleft, j;
1909 
1910 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1911 			sizeof(struct dev_match_result));
1912 
1913 		/*
1914 		 * If we don't have enough space to put in another
1915 		 * match result, save our position and tell the
1916 		 * user there are more devices to check.
1917 		 */
1918 		if (spaceleft < sizeof(struct dev_match_result)) {
1919 			struct periph_driver **pdrv;
1920 
1921 			pdrv = NULL;
1922 			bzero(&cdm->pos, sizeof(cdm->pos));
1923 			cdm->pos.position_type =
1924 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1925 				CAM_DEV_POS_PERIPH;
1926 
1927 			/*
1928 			 * This may look a bit non-sensical, but it is
1929 			 * actually quite logical.  There are very few
1930 			 * peripheral drivers, and bloating every peripheral
1931 			 * structure with a pointer back to its parent
1932 			 * peripheral driver linker set entry would cost
1933 			 * more in the long run than doing this quick lookup.
1934 			 */
1935 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1936 				if (strcmp((*pdrv)->driver_name,
1937 				    periph->periph_name) == 0)
1938 					break;
1939 			}
1940 
1941 			if (*pdrv == NULL) {
1942 				cdm->status = CAM_DEV_MATCH_ERROR;
1943 				return(0);
1944 			}
1945 
1946 			cdm->pos.cookie.pdrv = pdrv;
1947 			/*
1948 			 * The periph generation slot does double duty, as
1949 			 * does the periph pointer slot.  They are used for
1950 			 * both edt and pdrv lookups and positioning.
1951 			 */
1952 			cdm->pos.cookie.periph = periph;
1953 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1954 				(*pdrv)->generation;
1955 			cdm->status = CAM_DEV_MATCH_MORE;
1956 			return(0);
1957 		}
1958 
1959 		j = cdm->num_matches;
1960 		cdm->num_matches++;
1961 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1962 		cdm->matches[j].result.periph_result.path_id =
1963 			periph->path->bus->path_id;
1964 
1965 		/*
1966 		 * The transport layer peripheral doesn't have a target or
1967 		 * lun.
1968 		 */
1969 		if (periph->path->target)
1970 			cdm->matches[j].result.periph_result.target_id =
1971 				periph->path->target->target_id;
1972 		else
1973 			cdm->matches[j].result.periph_result.target_id = -1;
1974 
1975 		if (periph->path->device)
1976 			cdm->matches[j].result.periph_result.target_lun =
1977 				periph->path->device->lun_id;
1978 		else
1979 			cdm->matches[j].result.periph_result.target_lun = -1;
1980 
1981 		cdm->matches[j].result.periph_result.unit_number =
1982 			periph->unit_number;
1983 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1984 			periph->periph_name, DEV_IDLEN);
1985 	}
1986 
1987 	return(1);
1988 }
1989 
1990 static int
1991 xptperiphlistmatch(struct ccb_dev_match *cdm)
1992 {
1993 	int ret;
1994 
1995 	cdm->num_matches = 0;
1996 
1997 	/*
1998 	 * At this point in the edt traversal function, we check the bus
1999 	 * list generation to make sure that no busses have been added or
2000 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2001 	 * For the peripheral driver list traversal function, however, we
2002 	 * don't have to worry about new peripheral driver types coming or
2003 	 * going; they're in a linker set, and therefore can't change
2004 	 * without a recompile.
2005 	 */
2006 
2007 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2008 	 && (cdm->pos.cookie.pdrv != NULL))
2009 		ret = xptpdrvtraverse(
2010 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2011 				xptplistpdrvfunc, cdm);
2012 	else
2013 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2014 
2015 	/*
2016 	 * If we get back 0, that means that we had to stop before fully
2017 	 * traversing the peripheral driver tree.  It also means that one of
2018 	 * the subroutines has set the status field to the proper value.  If
2019 	 * we get back 1, we've fully traversed the EDT and copied out any
2020 	 * matching entries.
2021 	 */
2022 	if (ret == 1)
2023 		cdm->status = CAM_DEV_MATCH_LAST;
2024 
2025 	return(ret);
2026 }
2027 
2028 static int
2029 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2030 {
2031 	struct cam_eb *bus, *next_bus;
2032 	int retval;
2033 
2034 	retval = 1;
2035 
2036 	mtx_lock(&xsoftc.xpt_topo_lock);
2037 	for (bus = (start_bus ? start_bus : TAILQ_FIRST(&xsoftc.xpt_busses));
2038 	     bus != NULL;
2039 	     bus = next_bus) {
2040 		next_bus = TAILQ_NEXT(bus, links);
2041 
2042 		mtx_unlock(&xsoftc.xpt_topo_lock);
2043 		CAM_SIM_LOCK(bus->sim);
2044 		retval = tr_func(bus, arg);
2045 		CAM_SIM_UNLOCK(bus->sim);
2046 		if (retval == 0)
2047 			return(retval);
2048 		mtx_lock(&xsoftc.xpt_topo_lock);
2049 	}
2050 	mtx_unlock(&xsoftc.xpt_topo_lock);
2051 
2052 	return(retval);
2053 }
2054 
2055 int
2056 xpt_sim_opened(struct cam_sim *sim)
2057 {
2058 	struct cam_eb *bus;
2059 	struct cam_et *target;
2060 	struct cam_ed *device;
2061 	struct cam_periph *periph;
2062 
2063 	KASSERT(sim->refcount >= 1, ("sim->refcount >= 1"));
2064 	mtx_assert(sim->mtx, MA_OWNED);
2065 
2066 	mtx_lock(&xsoftc.xpt_topo_lock);
2067 	TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
2068 		if (bus->sim != sim)
2069 			continue;
2070 
2071 		TAILQ_FOREACH(target, &bus->et_entries, links) {
2072 			TAILQ_FOREACH(device, &target->ed_entries, links) {
2073 				SLIST_FOREACH(periph, &device->periphs,
2074 				    periph_links) {
2075 					if (periph->refcount > 0) {
2076 						mtx_unlock(&xsoftc.xpt_topo_lock);
2077 						return (1);
2078 					}
2079 				}
2080 			}
2081 		}
2082 	}
2083 
2084 	mtx_unlock(&xsoftc.xpt_topo_lock);
2085 	return (0);
2086 }
2087 
2088 static int
2089 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2090 		  xpt_targetfunc_t *tr_func, void *arg)
2091 {
2092 	struct cam_et *target, *next_target;
2093 	int retval;
2094 
2095 	retval = 1;
2096 	for (target = (start_target ? start_target :
2097 		       TAILQ_FIRST(&bus->et_entries));
2098 	     target != NULL; target = next_target) {
2099 
2100 		next_target = TAILQ_NEXT(target, links);
2101 
2102 		retval = tr_func(target, arg);
2103 
2104 		if (retval == 0)
2105 			return(retval);
2106 	}
2107 
2108 	return(retval);
2109 }
2110 
2111 static int
2112 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2113 		  xpt_devicefunc_t *tr_func, void *arg)
2114 {
2115 	struct cam_ed *device, *next_device;
2116 	int retval;
2117 
2118 	retval = 1;
2119 	for (device = (start_device ? start_device :
2120 		       TAILQ_FIRST(&target->ed_entries));
2121 	     device != NULL;
2122 	     device = next_device) {
2123 
2124 		next_device = TAILQ_NEXT(device, links);
2125 
2126 		retval = tr_func(device, arg);
2127 
2128 		if (retval == 0)
2129 			return(retval);
2130 	}
2131 
2132 	return(retval);
2133 }
2134 
2135 static int
2136 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2137 		  xpt_periphfunc_t *tr_func, void *arg)
2138 {
2139 	struct cam_periph *periph, *next_periph;
2140 	int retval;
2141 
2142 	retval = 1;
2143 
2144 	for (periph = (start_periph ? start_periph :
2145 		       SLIST_FIRST(&device->periphs));
2146 	     periph != NULL;
2147 	     periph = next_periph) {
2148 
2149 		next_periph = SLIST_NEXT(periph, periph_links);
2150 
2151 		retval = tr_func(periph, arg);
2152 		if (retval == 0)
2153 			return(retval);
2154 	}
2155 
2156 	return(retval);
2157 }
2158 
2159 static int
2160 xptpdrvtraverse(struct periph_driver **start_pdrv,
2161 		xpt_pdrvfunc_t *tr_func, void *arg)
2162 {
2163 	struct periph_driver **pdrv;
2164 	int retval;
2165 
2166 	retval = 1;
2167 
2168 	/*
2169 	 * We don't traverse the peripheral driver list like we do the
2170 	 * other lists, because it is a linker set, and therefore cannot be
2171 	 * changed during runtime.  If the peripheral driver list is ever
2172 	 * re-done to be something other than a linker set (i.e. it can
2173 	 * change while the system is running), the list traversal should
2174 	 * be modified to work like the other traversal functions.
2175 	 */
2176 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2177 	     *pdrv != NULL; pdrv++) {
2178 		retval = tr_func(pdrv, arg);
2179 
2180 		if (retval == 0)
2181 			return(retval);
2182 	}
2183 
2184 	return(retval);
2185 }
2186 
2187 static int
2188 xptpdperiphtraverse(struct periph_driver **pdrv,
2189 		    struct cam_periph *start_periph,
2190 		    xpt_periphfunc_t *tr_func, void *arg)
2191 {
2192 	struct cam_periph *periph, *next_periph;
2193 	int retval;
2194 
2195 	retval = 1;
2196 
2197 	for (periph = (start_periph ? start_periph :
2198 	     TAILQ_FIRST(&(*pdrv)->units)); periph != NULL;
2199 	     periph = next_periph) {
2200 
2201 		next_periph = TAILQ_NEXT(periph, unit_links);
2202 
2203 		retval = tr_func(periph, arg);
2204 		if (retval == 0)
2205 			return(retval);
2206 	}
2207 	return(retval);
2208 }
2209 
2210 static int
2211 xptdefbusfunc(struct cam_eb *bus, void *arg)
2212 {
2213 	struct xpt_traverse_config *tr_config;
2214 
2215 	tr_config = (struct xpt_traverse_config *)arg;
2216 
2217 	if (tr_config->depth == XPT_DEPTH_BUS) {
2218 		xpt_busfunc_t *tr_func;
2219 
2220 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2221 
2222 		return(tr_func(bus, tr_config->tr_arg));
2223 	} else
2224 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2225 }
2226 
2227 static int
2228 xptdeftargetfunc(struct cam_et *target, void *arg)
2229 {
2230 	struct xpt_traverse_config *tr_config;
2231 
2232 	tr_config = (struct xpt_traverse_config *)arg;
2233 
2234 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2235 		xpt_targetfunc_t *tr_func;
2236 
2237 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2238 
2239 		return(tr_func(target, tr_config->tr_arg));
2240 	} else
2241 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2242 }
2243 
2244 static int
2245 xptdefdevicefunc(struct cam_ed *device, void *arg)
2246 {
2247 	struct xpt_traverse_config *tr_config;
2248 
2249 	tr_config = (struct xpt_traverse_config *)arg;
2250 
2251 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2252 		xpt_devicefunc_t *tr_func;
2253 
2254 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2255 
2256 		return(tr_func(device, tr_config->tr_arg));
2257 	} else
2258 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2259 }
2260 
2261 static int
2262 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2263 {
2264 	struct xpt_traverse_config *tr_config;
2265 	xpt_periphfunc_t *tr_func;
2266 
2267 	tr_config = (struct xpt_traverse_config *)arg;
2268 
2269 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2270 
2271 	/*
2272 	 * Unlike the other default functions, we don't check for depth
2273 	 * here.  The peripheral driver level is the last level in the EDT,
2274 	 * so if we're here, we should execute the function in question.
2275 	 */
2276 	return(tr_func(periph, tr_config->tr_arg));
2277 }
2278 
2279 /*
2280  * Execute the given function for every bus in the EDT.
2281  */
2282 static int
2283 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2284 {
2285 	struct xpt_traverse_config tr_config;
2286 
2287 	tr_config.depth = XPT_DEPTH_BUS;
2288 	tr_config.tr_func = tr_func;
2289 	tr_config.tr_arg = arg;
2290 
2291 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2292 }
2293 
2294 /*
2295  * Execute the given function for every device in the EDT.
2296  */
2297 static int
2298 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2299 {
2300 	struct xpt_traverse_config tr_config;
2301 
2302 	tr_config.depth = XPT_DEPTH_DEVICE;
2303 	tr_config.tr_func = tr_func;
2304 	tr_config.tr_arg = arg;
2305 
2306 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2307 }
2308 
2309 static int
2310 xptsetasyncfunc(struct cam_ed *device, void *arg)
2311 {
2312 	struct cam_path path;
2313 	struct ccb_getdev cgd;
2314 	struct async_node *cur_entry;
2315 
2316 	cur_entry = (struct async_node *)arg;
2317 
2318 	/*
2319 	 * Don't report unconfigured devices (Wildcard devs,
2320 	 * devices only for target mode, device instances
2321 	 * that have been invalidated but are waiting for
2322 	 * their last reference count to be released).
2323 	 */
2324 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2325 		return (1);
2326 
2327 	xpt_compile_path(&path,
2328 			 NULL,
2329 			 device->target->bus->path_id,
2330 			 device->target->target_id,
2331 			 device->lun_id);
2332 	xpt_setup_ccb(&cgd.ccb_h, &path, /*priority*/1);
2333 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2334 	xpt_action((union ccb *)&cgd);
2335 	cur_entry->callback(cur_entry->callback_arg,
2336 			    AC_FOUND_DEVICE,
2337 			    &path, &cgd);
2338 	xpt_release_path(&path);
2339 
2340 	return(1);
2341 }
2342 
2343 static int
2344 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2345 {
2346 	struct cam_path path;
2347 	struct ccb_pathinq cpi;
2348 	struct async_node *cur_entry;
2349 
2350 	cur_entry = (struct async_node *)arg;
2351 
2352 	xpt_compile_path(&path, /*periph*/NULL,
2353 			 bus->sim->path_id,
2354 			 CAM_TARGET_WILDCARD,
2355 			 CAM_LUN_WILDCARD);
2356 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
2357 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2358 	xpt_action((union ccb *)&cpi);
2359 	cur_entry->callback(cur_entry->callback_arg,
2360 			    AC_PATH_REGISTERED,
2361 			    &path, &cpi);
2362 	xpt_release_path(&path);
2363 
2364 	return(1);
2365 }
2366 
2367 static void
2368 xpt_action_sasync_cb(void *context, int pending)
2369 {
2370 	struct async_node *cur_entry;
2371 	struct xpt_task *task;
2372 	uint32_t added;
2373 
2374 	task = (struct xpt_task *)context;
2375 	cur_entry = (struct async_node *)task->data1;
2376 	added = task->data2;
2377 
2378 	if ((added & AC_FOUND_DEVICE) != 0) {
2379 		/*
2380 		 * Get this peripheral up to date with all
2381 		 * the currently existing devices.
2382 		 */
2383 		xpt_for_all_devices(xptsetasyncfunc, cur_entry);
2384 	}
2385 	if ((added & AC_PATH_REGISTERED) != 0) {
2386 		/*
2387 		 * Get this peripheral up to date with all
2388 		 * the currently existing busses.
2389 		 */
2390 		xpt_for_all_busses(xptsetasyncbusfunc, cur_entry);
2391 	}
2392 
2393 	free(task, M_CAMXPT);
2394 }
2395 
2396 void
2397 xpt_action(union ccb *start_ccb)
2398 {
2399 
2400 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2401 
2402 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2403 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2404 }
2405 
2406 void
2407 xpt_action_default(union ccb *start_ccb)
2408 {
2409 
2410 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2411 
2412 
2413 	switch (start_ccb->ccb_h.func_code) {
2414 	case XPT_SCSI_IO:
2415 	{
2416 		struct cam_ed *device;
2417 #ifdef CAMDEBUG
2418 		char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
2419 		struct cam_path *path;
2420 
2421 		path = start_ccb->ccb_h.path;
2422 #endif
2423 
2424 		/*
2425 		 * For the sake of compatibility with SCSI-1
2426 		 * devices that may not understand the identify
2427 		 * message, we include lun information in the
2428 		 * second byte of all commands.  SCSI-1 specifies
2429 		 * that luns are a 3 bit value and reserves only 3
2430 		 * bits for lun information in the CDB.  Later
2431 		 * revisions of the SCSI spec allow for more than 8
2432 		 * luns, but have deprecated lun information in the
2433 		 * CDB.  So, if the lun won't fit, we must omit.
2434 		 *
2435 		 * Also be aware that during initial probing for devices,
2436 		 * the inquiry information is unknown but initialized to 0.
2437 		 * This means that this code will be exercised while probing
2438 		 * devices with an ANSI revision greater than 2.
2439 		 */
2440 		device = start_ccb->ccb_h.path->device;
2441 		if (device->protocol_version <= SCSI_REV_2
2442 		 && start_ccb->ccb_h.target_lun < 8
2443 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2444 
2445 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2446 			    start_ccb->ccb_h.target_lun << 5;
2447 		}
2448 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2449 		CAM_DEBUG(path, CAM_DEBUG_CDB,("%s. CDB: %s\n",
2450 			  scsi_op_desc(start_ccb->csio.cdb_io.cdb_bytes[0],
2451 			  	       &path->device->inq_data),
2452 			  scsi_cdb_string(start_ccb->csio.cdb_io.cdb_bytes,
2453 					  cdb_str, sizeof(cdb_str))));
2454 	}
2455 	/* FALLTHROUGH */
2456 	case XPT_TARGET_IO:
2457 	case XPT_CONT_TARGET_IO:
2458 		start_ccb->csio.sense_resid = 0;
2459 		start_ccb->csio.resid = 0;
2460 		/* FALLTHROUGH */
2461 	case XPT_ATA_IO:
2462 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO) {
2463 			start_ccb->ataio.resid = 0;
2464 		}
2465 	case XPT_RESET_DEV:
2466 	case XPT_ENG_EXEC:
2467 	{
2468 		struct cam_path *path;
2469 		int runq;
2470 
2471 		path = start_ccb->ccb_h.path;
2472 
2473 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2474 		if (path->device->qfrozen_cnt == 0)
2475 			runq = xpt_schedule_dev_sendq(path->bus, path->device);
2476 		else
2477 			runq = 0;
2478 		if (runq != 0)
2479 			xpt_run_dev_sendq(path->bus);
2480 		break;
2481 	}
2482 	case XPT_CALC_GEOMETRY:
2483 	{
2484 		struct cam_sim *sim;
2485 
2486 		/* Filter out garbage */
2487 		if (start_ccb->ccg.block_size == 0
2488 		 || start_ccb->ccg.volume_size == 0) {
2489 			start_ccb->ccg.cylinders = 0;
2490 			start_ccb->ccg.heads = 0;
2491 			start_ccb->ccg.secs_per_track = 0;
2492 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2493 			break;
2494 		}
2495 #ifdef PC98
2496 		/*
2497 		 * In a PC-98 system, geometry translation depens on
2498 		 * the "real" device geometry obtained from mode page 4.
2499 		 * SCSI geometry translation is performed in the
2500 		 * initialization routine of the SCSI BIOS and the result
2501 		 * stored in host memory.  If the translation is available
2502 		 * in host memory, use it.  If not, rely on the default
2503 		 * translation the device driver performs.
2504 		 */
2505 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2506 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2507 			break;
2508 		}
2509 #endif
2510 		sim = start_ccb->ccb_h.path->bus->sim;
2511 		(*(sim->sim_action))(sim, start_ccb);
2512 		break;
2513 	}
2514 	case XPT_ABORT:
2515 	{
2516 		union ccb* abort_ccb;
2517 
2518 		abort_ccb = start_ccb->cab.abort_ccb;
2519 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2520 
2521 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2522 				struct cam_ccbq *ccbq;
2523 
2524 				ccbq = &abort_ccb->ccb_h.path->device->ccbq;
2525 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2526 				abort_ccb->ccb_h.status =
2527 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2528 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2529 				xpt_done(abort_ccb);
2530 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2531 				break;
2532 			}
2533 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2534 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2535 				/*
2536 				 * We've caught this ccb en route to
2537 				 * the SIM.  Flag it for abort and the
2538 				 * SIM will do so just before starting
2539 				 * real work on the CCB.
2540 				 */
2541 				abort_ccb->ccb_h.status =
2542 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2543 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2544 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2545 				break;
2546 			}
2547 		}
2548 		if (XPT_FC_IS_QUEUED(abort_ccb)
2549 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2550 			/*
2551 			 * It's already completed but waiting
2552 			 * for our SWI to get to it.
2553 			 */
2554 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2555 			break;
2556 		}
2557 		/*
2558 		 * If we weren't able to take care of the abort request
2559 		 * in the XPT, pass the request down to the SIM for processing.
2560 		 */
2561 	}
2562 	/* FALLTHROUGH */
2563 	case XPT_ACCEPT_TARGET_IO:
2564 	case XPT_EN_LUN:
2565 	case XPT_IMMED_NOTIFY:
2566 	case XPT_NOTIFY_ACK:
2567 	case XPT_RESET_BUS:
2568 	{
2569 		struct cam_sim *sim;
2570 
2571 		sim = start_ccb->ccb_h.path->bus->sim;
2572 		(*(sim->sim_action))(sim, start_ccb);
2573 		break;
2574 	}
2575 	case XPT_PATH_INQ:
2576 	{
2577 		struct cam_sim *sim;
2578 
2579 		sim = start_ccb->ccb_h.path->bus->sim;
2580 		(*(sim->sim_action))(sim, start_ccb);
2581 		break;
2582 	}
2583 	case XPT_PATH_STATS:
2584 		start_ccb->cpis.last_reset =
2585 			start_ccb->ccb_h.path->bus->last_reset;
2586 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2587 		break;
2588 	case XPT_GDEV_TYPE:
2589 	{
2590 		struct cam_ed *dev;
2591 
2592 		dev = start_ccb->ccb_h.path->device;
2593 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2594 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2595 		} else {
2596 			struct ccb_getdev *cgd;
2597 			struct cam_eb *bus;
2598 			struct cam_et *tar;
2599 
2600 			cgd = &start_ccb->cgd;
2601 			bus = cgd->ccb_h.path->bus;
2602 			tar = cgd->ccb_h.path->target;
2603 			cgd->protocol = dev->protocol;
2604 			cgd->inq_data = dev->inq_data;
2605 			cgd->ident_data = dev->ident_data;
2606 			cgd->ccb_h.status = CAM_REQ_CMP;
2607 			cgd->serial_num_len = dev->serial_num_len;
2608 			if ((dev->serial_num_len > 0)
2609 			 && (dev->serial_num != NULL))
2610 				bcopy(dev->serial_num, cgd->serial_num,
2611 				      dev->serial_num_len);
2612 		}
2613 		break;
2614 	}
2615 	case XPT_GDEV_STATS:
2616 	{
2617 		struct cam_ed *dev;
2618 
2619 		dev = start_ccb->ccb_h.path->device;
2620 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2621 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2622 		} else {
2623 			struct ccb_getdevstats *cgds;
2624 			struct cam_eb *bus;
2625 			struct cam_et *tar;
2626 
2627 			cgds = &start_ccb->cgds;
2628 			bus = cgds->ccb_h.path->bus;
2629 			tar = cgds->ccb_h.path->target;
2630 			cgds->dev_openings = dev->ccbq.dev_openings;
2631 			cgds->dev_active = dev->ccbq.dev_active;
2632 			cgds->devq_openings = dev->ccbq.devq_openings;
2633 			cgds->devq_queued = dev->ccbq.queue.entries;
2634 			cgds->held = dev->ccbq.held;
2635 			cgds->last_reset = tar->last_reset;
2636 			cgds->maxtags = dev->maxtags;
2637 			cgds->mintags = dev->mintags;
2638 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2639 				cgds->last_reset = bus->last_reset;
2640 			cgds->ccb_h.status = CAM_REQ_CMP;
2641 		}
2642 		break;
2643 	}
2644 	case XPT_GDEVLIST:
2645 	{
2646 		struct cam_periph	*nperiph;
2647 		struct periph_list	*periph_head;
2648 		struct ccb_getdevlist	*cgdl;
2649 		u_int			i;
2650 		struct cam_ed		*device;
2651 		int			found;
2652 
2653 
2654 		found = 0;
2655 
2656 		/*
2657 		 * Don't want anyone mucking with our data.
2658 		 */
2659 		device = start_ccb->ccb_h.path->device;
2660 		periph_head = &device->periphs;
2661 		cgdl = &start_ccb->cgdl;
2662 
2663 		/*
2664 		 * Check and see if the list has changed since the user
2665 		 * last requested a list member.  If so, tell them that the
2666 		 * list has changed, and therefore they need to start over
2667 		 * from the beginning.
2668 		 */
2669 		if ((cgdl->index != 0) &&
2670 		    (cgdl->generation != device->generation)) {
2671 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2672 			break;
2673 		}
2674 
2675 		/*
2676 		 * Traverse the list of peripherals and attempt to find
2677 		 * the requested peripheral.
2678 		 */
2679 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2680 		     (nperiph != NULL) && (i <= cgdl->index);
2681 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2682 			if (i == cgdl->index) {
2683 				strncpy(cgdl->periph_name,
2684 					nperiph->periph_name,
2685 					DEV_IDLEN);
2686 				cgdl->unit_number = nperiph->unit_number;
2687 				found = 1;
2688 			}
2689 		}
2690 		if (found == 0) {
2691 			cgdl->status = CAM_GDEVLIST_ERROR;
2692 			break;
2693 		}
2694 
2695 		if (nperiph == NULL)
2696 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2697 		else
2698 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2699 
2700 		cgdl->index++;
2701 		cgdl->generation = device->generation;
2702 
2703 		cgdl->ccb_h.status = CAM_REQ_CMP;
2704 		break;
2705 	}
2706 	case XPT_DEV_MATCH:
2707 	{
2708 		dev_pos_type position_type;
2709 		struct ccb_dev_match *cdm;
2710 
2711 		cdm = &start_ccb->cdm;
2712 
2713 		/*
2714 		 * There are two ways of getting at information in the EDT.
2715 		 * The first way is via the primary EDT tree.  It starts
2716 		 * with a list of busses, then a list of targets on a bus,
2717 		 * then devices/luns on a target, and then peripherals on a
2718 		 * device/lun.  The "other" way is by the peripheral driver
2719 		 * lists.  The peripheral driver lists are organized by
2720 		 * peripheral driver.  (obviously)  So it makes sense to
2721 		 * use the peripheral driver list if the user is looking
2722 		 * for something like "da1", or all "da" devices.  If the
2723 		 * user is looking for something on a particular bus/target
2724 		 * or lun, it's generally better to go through the EDT tree.
2725 		 */
2726 
2727 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2728 			position_type = cdm->pos.position_type;
2729 		else {
2730 			u_int i;
2731 
2732 			position_type = CAM_DEV_POS_NONE;
2733 
2734 			for (i = 0; i < cdm->num_patterns; i++) {
2735 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2736 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2737 					position_type = CAM_DEV_POS_EDT;
2738 					break;
2739 				}
2740 			}
2741 
2742 			if (cdm->num_patterns == 0)
2743 				position_type = CAM_DEV_POS_EDT;
2744 			else if (position_type == CAM_DEV_POS_NONE)
2745 				position_type = CAM_DEV_POS_PDRV;
2746 		}
2747 
2748 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2749 		case CAM_DEV_POS_EDT:
2750 			xptedtmatch(cdm);
2751 			break;
2752 		case CAM_DEV_POS_PDRV:
2753 			xptperiphlistmatch(cdm);
2754 			break;
2755 		default:
2756 			cdm->status = CAM_DEV_MATCH_ERROR;
2757 			break;
2758 		}
2759 
2760 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2761 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2762 		else
2763 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2764 
2765 		break;
2766 	}
2767 	case XPT_SASYNC_CB:
2768 	{
2769 		struct ccb_setasync *csa;
2770 		struct async_node *cur_entry;
2771 		struct async_list *async_head;
2772 		u_int32_t added;
2773 
2774 		csa = &start_ccb->csa;
2775 		added = csa->event_enable;
2776 		async_head = &csa->ccb_h.path->device->asyncs;
2777 
2778 		/*
2779 		 * If there is already an entry for us, simply
2780 		 * update it.
2781 		 */
2782 		cur_entry = SLIST_FIRST(async_head);
2783 		while (cur_entry != NULL) {
2784 			if ((cur_entry->callback_arg == csa->callback_arg)
2785 			 && (cur_entry->callback == csa->callback))
2786 				break;
2787 			cur_entry = SLIST_NEXT(cur_entry, links);
2788 		}
2789 
2790 		if (cur_entry != NULL) {
2791 		 	/*
2792 			 * If the request has no flags set,
2793 			 * remove the entry.
2794 			 */
2795 			added &= ~cur_entry->event_enable;
2796 			if (csa->event_enable == 0) {
2797 				SLIST_REMOVE(async_head, cur_entry,
2798 					     async_node, links);
2799 				csa->ccb_h.path->device->refcount--;
2800 				free(cur_entry, M_CAMXPT);
2801 			} else {
2802 				cur_entry->event_enable = csa->event_enable;
2803 			}
2804 		} else {
2805 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2806 					   M_NOWAIT);
2807 			if (cur_entry == NULL) {
2808 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2809 				break;
2810 			}
2811 			cur_entry->event_enable = csa->event_enable;
2812 			cur_entry->callback_arg = csa->callback_arg;
2813 			cur_entry->callback = csa->callback;
2814 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2815 			csa->ccb_h.path->device->refcount++;
2816 		}
2817 
2818 		/*
2819 		 * Need to decouple this operation via a taqskqueue so that
2820 		 * the locking doesn't become a mess.
2821 		 */
2822 		if ((added & (AC_FOUND_DEVICE | AC_PATH_REGISTERED)) != 0) {
2823 			struct xpt_task *task;
2824 
2825 			task = malloc(sizeof(struct xpt_task), M_CAMXPT,
2826 				      M_NOWAIT);
2827 			if (task == NULL) {
2828 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2829 				break;
2830 			}
2831 
2832 			TASK_INIT(&task->task, 0, xpt_action_sasync_cb, task);
2833 			task->data1 = cur_entry;
2834 			task->data2 = added;
2835 			taskqueue_enqueue(taskqueue_thread, &task->task);
2836 		}
2837 
2838 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2839 		break;
2840 	}
2841 	case XPT_REL_SIMQ:
2842 	{
2843 		struct ccb_relsim *crs;
2844 		struct cam_ed *dev;
2845 
2846 		crs = &start_ccb->crs;
2847 		dev = crs->ccb_h.path->device;
2848 		if (dev == NULL) {
2849 
2850 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2851 			break;
2852 		}
2853 
2854 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2855 
2856  			if (INQ_DATA_TQ_ENABLED(&dev->inq_data)) {
2857 				/* Don't ever go below one opening */
2858 				if (crs->openings > 0) {
2859 					xpt_dev_ccbq_resize(crs->ccb_h.path,
2860 							    crs->openings);
2861 
2862 					if (bootverbose) {
2863 						xpt_print(crs->ccb_h.path,
2864 						    "tagged openings now %d\n",
2865 						    crs->openings);
2866 					}
2867 				}
2868 			}
2869 		}
2870 
2871 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2872 
2873 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2874 
2875 				/*
2876 				 * Just extend the old timeout and decrement
2877 				 * the freeze count so that a single timeout
2878 				 * is sufficient for releasing the queue.
2879 				 */
2880 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2881 				callout_stop(&dev->callout);
2882 			} else {
2883 
2884 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2885 			}
2886 
2887 			callout_reset(&dev->callout,
2888 			    (crs->release_timeout * hz) / 1000,
2889 			    xpt_release_devq_timeout, dev);
2890 
2891 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2892 
2893 		}
2894 
2895 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2896 
2897 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2898 				/*
2899 				 * Decrement the freeze count so that a single
2900 				 * completion is still sufficient to unfreeze
2901 				 * the queue.
2902 				 */
2903 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2904 			} else {
2905 
2906 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2907 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2908 			}
2909 		}
2910 
2911 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2912 
2913 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2914 			 || (dev->ccbq.dev_active == 0)) {
2915 
2916 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2917 			} else {
2918 
2919 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2920 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2921 			}
2922 		}
2923 
2924 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) {
2925 
2926 			xpt_release_devq(crs->ccb_h.path, /*count*/1,
2927 					 /*run_queue*/TRUE);
2928 		}
2929 		start_ccb->crs.qfrozen_cnt = dev->qfrozen_cnt;
2930 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2931 		break;
2932 	}
2933 	case XPT_DEBUG: {
2934 #ifdef CAMDEBUG
2935 #ifdef CAM_DEBUG_DELAY
2936 		cam_debug_delay = CAM_DEBUG_DELAY;
2937 #endif
2938 		cam_dflags = start_ccb->cdbg.flags;
2939 		if (cam_dpath != NULL) {
2940 			xpt_free_path(cam_dpath);
2941 			cam_dpath = NULL;
2942 		}
2943 
2944 		if (cam_dflags != CAM_DEBUG_NONE) {
2945 			if (xpt_create_path(&cam_dpath, xpt_periph,
2946 					    start_ccb->ccb_h.path_id,
2947 					    start_ccb->ccb_h.target_id,
2948 					    start_ccb->ccb_h.target_lun) !=
2949 					    CAM_REQ_CMP) {
2950 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2951 				cam_dflags = CAM_DEBUG_NONE;
2952 			} else {
2953 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2954 				xpt_print(cam_dpath, "debugging flags now %x\n",
2955 				    cam_dflags);
2956 			}
2957 		} else {
2958 			cam_dpath = NULL;
2959 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2960 		}
2961 #else /* !CAMDEBUG */
2962 		start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2963 #endif /* CAMDEBUG */
2964 		break;
2965 	}
2966 	case XPT_NOOP:
2967 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2968 			xpt_freeze_devq(start_ccb->ccb_h.path, 1);
2969 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2970 		break;
2971 	default:
2972 	case XPT_SDEV_TYPE:
2973 	case XPT_TERM_IO:
2974 	case XPT_ENG_INQ:
2975 		/* XXX Implement */
2976 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2977 		break;
2978 	}
2979 }
2980 
2981 void
2982 xpt_polled_action(union ccb *start_ccb)
2983 {
2984 	u_int32_t timeout;
2985 	struct	  cam_sim *sim;
2986 	struct	  cam_devq *devq;
2987 	struct	  cam_ed *dev;
2988 
2989 
2990 	timeout = start_ccb->ccb_h.timeout;
2991 	sim = start_ccb->ccb_h.path->bus->sim;
2992 	devq = sim->devq;
2993 	dev = start_ccb->ccb_h.path->device;
2994 
2995 	mtx_assert(sim->mtx, MA_OWNED);
2996 
2997 	/*
2998 	 * Steal an opening so that no other queued requests
2999 	 * can get it before us while we simulate interrupts.
3000 	 */
3001 	dev->ccbq.devq_openings--;
3002 	dev->ccbq.dev_openings--;
3003 
3004 	while(((devq != NULL && devq->send_openings <= 0) ||
3005 	   dev->ccbq.dev_openings < 0) && (--timeout > 0)) {
3006 		DELAY(1000);
3007 		(*(sim->sim_poll))(sim);
3008 		camisr_runqueue(&sim->sim_doneq);
3009 	}
3010 
3011 	dev->ccbq.devq_openings++;
3012 	dev->ccbq.dev_openings++;
3013 
3014 	if (timeout != 0) {
3015 		xpt_action(start_ccb);
3016 		while(--timeout > 0) {
3017 			(*(sim->sim_poll))(sim);
3018 			camisr_runqueue(&sim->sim_doneq);
3019 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3020 			    != CAM_REQ_INPROG)
3021 				break;
3022 			DELAY(1000);
3023 		}
3024 		if (timeout == 0) {
3025 			/*
3026 			 * XXX Is it worth adding a sim_timeout entry
3027 			 * point so we can attempt recovery?  If
3028 			 * this is only used for dumps, I don't think
3029 			 * it is.
3030 			 */
3031 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3032 		}
3033 	} else {
3034 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3035 	}
3036 }
3037 
3038 /*
3039  * Schedule a peripheral driver to receive a ccb when it's
3040  * target device has space for more transactions.
3041  */
3042 void
3043 xpt_schedule(struct cam_periph *perph, u_int32_t new_priority)
3044 {
3045 	struct cam_ed *device;
3046 	int runq;
3047 
3048 	mtx_assert(perph->sim->mtx, MA_OWNED);
3049 
3050 	CAM_DEBUG(perph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3051 	device = perph->path->device;
3052 	if (periph_is_queued(perph)) {
3053 		/* Simply reorder based on new priority */
3054 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3055 			  ("   change priority to %d\n", new_priority));
3056 		if (new_priority < perph->pinfo.priority) {
3057 			camq_change_priority(&device->drvq,
3058 					     perph->pinfo.index,
3059 					     new_priority);
3060 		}
3061 		runq = 0;
3062 	} else {
3063 		/* New entry on the queue */
3064 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3065 			  ("   added periph to queue\n"));
3066 		perph->pinfo.priority = new_priority;
3067 		perph->pinfo.generation = ++device->drvq.generation;
3068 		camq_insert(&device->drvq, &perph->pinfo);
3069 		runq = xpt_schedule_dev_allocq(perph->path->bus, device);
3070 	}
3071 	if (runq != 0) {
3072 		CAM_DEBUG(perph->path, CAM_DEBUG_SUBTRACE,
3073 			  ("   calling xpt_run_devq\n"));
3074 		xpt_run_dev_allocq(perph->path->bus);
3075 	}
3076 }
3077 
3078 
3079 /*
3080  * Schedule a device to run on a given queue.
3081  * If the device was inserted as a new entry on the queue,
3082  * return 1 meaning the device queue should be run. If we
3083  * were already queued, implying someone else has already
3084  * started the queue, return 0 so the caller doesn't attempt
3085  * to run the queue.
3086  */
3087 int
3088 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3089 		 u_int32_t new_priority)
3090 {
3091 	int retval;
3092 	u_int32_t old_priority;
3093 
3094 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3095 
3096 	old_priority = pinfo->priority;
3097 
3098 	/*
3099 	 * Are we already queued?
3100 	 */
3101 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3102 		/* Simply reorder based on new priority */
3103 		if (new_priority < old_priority) {
3104 			camq_change_priority(queue, pinfo->index,
3105 					     new_priority);
3106 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3107 					("changed priority to %d\n",
3108 					 new_priority));
3109 		}
3110 		retval = 0;
3111 	} else {
3112 		/* New entry on the queue */
3113 		if (new_priority < old_priority)
3114 			pinfo->priority = new_priority;
3115 
3116 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3117 				("Inserting onto queue\n"));
3118 		pinfo->generation = ++queue->generation;
3119 		camq_insert(queue, pinfo);
3120 		retval = 1;
3121 	}
3122 	return (retval);
3123 }
3124 
3125 static void
3126 xpt_run_dev_allocq(struct cam_eb *bus)
3127 {
3128 	struct	cam_devq *devq;
3129 
3130 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_allocq\n"));
3131 	devq = bus->sim->devq;
3132 
3133 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3134 			("   qfrozen_cnt == 0x%x, entries == %d, "
3135 			 "openings == %d, active == %d\n",
3136 			 devq->alloc_queue.qfrozen_cnt,
3137 			 devq->alloc_queue.entries,
3138 			 devq->alloc_openings,
3139 			 devq->alloc_active));
3140 
3141 	devq->alloc_queue.qfrozen_cnt++;
3142 	while ((devq->alloc_queue.entries > 0)
3143 	    && (devq->alloc_openings > 0)
3144 	    && (devq->alloc_queue.qfrozen_cnt <= 1)) {
3145 		struct	cam_ed_qinfo *qinfo;
3146 		struct	cam_ed *device;
3147 		union	ccb *work_ccb;
3148 		struct	cam_periph *drv;
3149 		struct	camq *drvq;
3150 
3151 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->alloc_queue,
3152 							   CAMQ_HEAD);
3153 		device = qinfo->device;
3154 
3155 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3156 				("running device %p\n", device));
3157 
3158 		drvq = &device->drvq;
3159 
3160 #ifdef CAMDEBUG
3161 		if (drvq->entries <= 0) {
3162 			panic("xpt_run_dev_allocq: "
3163 			      "Device on queue without any work to do");
3164 		}
3165 #endif
3166 		if ((work_ccb = xpt_get_ccb(device)) != NULL) {
3167 			devq->alloc_openings--;
3168 			devq->alloc_active++;
3169 			drv = (struct cam_periph*)camq_remove(drvq, CAMQ_HEAD);
3170 			xpt_setup_ccb(&work_ccb->ccb_h, drv->path,
3171 				      drv->pinfo.priority);
3172 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3173 					("calling periph start\n"));
3174 			drv->periph_start(drv, work_ccb);
3175 		} else {
3176 			/*
3177 			 * Malloc failure in alloc_ccb
3178 			 */
3179 			/*
3180 			 * XXX add us to a list to be run from free_ccb
3181 			 * if we don't have any ccbs active on this
3182 			 * device queue otherwise we may never get run
3183 			 * again.
3184 			 */
3185 			break;
3186 		}
3187 
3188 		if (drvq->entries > 0) {
3189 			/* We have more work.  Attempt to reschedule */
3190 			xpt_schedule_dev_allocq(bus, device);
3191 		}
3192 	}
3193 	devq->alloc_queue.qfrozen_cnt--;
3194 }
3195 
3196 void
3197 xpt_run_dev_sendq(struct cam_eb *bus)
3198 {
3199 	struct	cam_devq *devq;
3200 
3201 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_dev_sendq\n"));
3202 
3203 	devq = bus->sim->devq;
3204 
3205 	devq->send_queue.qfrozen_cnt++;
3206 	while ((devq->send_queue.entries > 0)
3207 	    && (devq->send_openings > 0)) {
3208 		struct	cam_ed_qinfo *qinfo;
3209 		struct	cam_ed *device;
3210 		union ccb *work_ccb;
3211 		struct	cam_sim *sim;
3212 
3213 	    	if (devq->send_queue.qfrozen_cnt > 1) {
3214 			break;
3215 		}
3216 
3217 		qinfo = (struct cam_ed_qinfo *)camq_remove(&devq->send_queue,
3218 							   CAMQ_HEAD);
3219 		device = qinfo->device;
3220 
3221 		/*
3222 		 * If the device has been "frozen", don't attempt
3223 		 * to run it.
3224 		 */
3225 		if (device->qfrozen_cnt > 0) {
3226 			continue;
3227 		}
3228 
3229 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3230 				("running device %p\n", device));
3231 
3232 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3233 		if (work_ccb == NULL) {
3234 			printf("device on run queue with no ccbs???\n");
3235 			continue;
3236 		}
3237 
3238 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3239 
3240 			mtx_lock(&xsoftc.xpt_lock);
3241 		 	if (xsoftc.num_highpower <= 0) {
3242 				/*
3243 				 * We got a high power command, but we
3244 				 * don't have any available slots.  Freeze
3245 				 * the device queue until we have a slot
3246 				 * available.
3247 				 */
3248 				device->qfrozen_cnt++;
3249 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq,
3250 						   &work_ccb->ccb_h,
3251 						   xpt_links.stqe);
3252 
3253 				mtx_unlock(&xsoftc.xpt_lock);
3254 				continue;
3255 			} else {
3256 				/*
3257 				 * Consume a high power slot while
3258 				 * this ccb runs.
3259 				 */
3260 				xsoftc.num_highpower--;
3261 			}
3262 			mtx_unlock(&xsoftc.xpt_lock);
3263 		}
3264 		devq->active_dev = device;
3265 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3266 
3267 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3268 
3269 		devq->send_openings--;
3270 		devq->send_active++;
3271 
3272 		if (device->ccbq.queue.entries > 0)
3273 			xpt_schedule_dev_sendq(bus, device);
3274 
3275 		if (work_ccb && (work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0){
3276 			/*
3277 			 * The client wants to freeze the queue
3278 			 * after this CCB is sent.
3279 			 */
3280 			device->qfrozen_cnt++;
3281 		}
3282 
3283 		/* In Target mode, the peripheral driver knows best... */
3284 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3285 			if ((device->inq_flags & SID_CmdQue) != 0
3286 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3287 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3288 			else
3289 				/*
3290 				 * Clear this in case of a retried CCB that
3291 				 * failed due to a rejected tag.
3292 				 */
3293 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3294 		}
3295 
3296 		/*
3297 		 * Device queues can be shared among multiple sim instances
3298 		 * that reside on different busses.  Use the SIM in the queue
3299 		 * CCB's path, rather than the one in the bus that was passed
3300 		 * into this function.
3301 		 */
3302 		sim = work_ccb->ccb_h.path->bus->sim;
3303 		(*(sim->sim_action))(sim, work_ccb);
3304 
3305 		devq->active_dev = NULL;
3306 	}
3307 	devq->send_queue.qfrozen_cnt--;
3308 }
3309 
3310 /*
3311  * This function merges stuff from the slave ccb into the master ccb, while
3312  * keeping important fields in the master ccb constant.
3313  */
3314 void
3315 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3316 {
3317 
3318 	/*
3319 	 * Pull fields that are valid for peripheral drivers to set
3320 	 * into the master CCB along with the CCB "payload".
3321 	 */
3322 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3323 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3324 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3325 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3326 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3327 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3328 }
3329 
3330 void
3331 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3332 {
3333 
3334 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3335 	ccb_h->pinfo.priority = priority;
3336 	ccb_h->path = path;
3337 	ccb_h->path_id = path->bus->path_id;
3338 	if (path->target)
3339 		ccb_h->target_id = path->target->target_id;
3340 	else
3341 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3342 	if (path->device) {
3343 		ccb_h->target_lun = path->device->lun_id;
3344 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3345 	} else {
3346 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3347 	}
3348 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3349 	ccb_h->flags = 0;
3350 }
3351 
3352 /* Path manipulation functions */
3353 cam_status
3354 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3355 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3356 {
3357 	struct	   cam_path *path;
3358 	cam_status status;
3359 
3360 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_NOWAIT);
3361 
3362 	if (path == NULL) {
3363 		status = CAM_RESRC_UNAVAIL;
3364 		return(status);
3365 	}
3366 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3367 	if (status != CAM_REQ_CMP) {
3368 		free(path, M_CAMXPT);
3369 		path = NULL;
3370 	}
3371 	*new_path_ptr = path;
3372 	return (status);
3373 }
3374 
3375 cam_status
3376 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3377 			 struct cam_periph *periph, path_id_t path_id,
3378 			 target_id_t target_id, lun_id_t lun_id)
3379 {
3380 	struct	   cam_path *path;
3381 	struct	   cam_eb *bus = NULL;
3382 	cam_status status;
3383 	int	   need_unlock = 0;
3384 
3385 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMXPT, M_WAITOK);
3386 
3387 	if (path_id != CAM_BUS_WILDCARD) {
3388 		bus = xpt_find_bus(path_id);
3389 		if (bus != NULL) {
3390 			need_unlock = 1;
3391 			CAM_SIM_LOCK(bus->sim);
3392 		}
3393 	}
3394 	status = xpt_compile_path(path, periph, path_id, target_id, lun_id);
3395 	if (need_unlock)
3396 		CAM_SIM_UNLOCK(bus->sim);
3397 	if (status != CAM_REQ_CMP) {
3398 		free(path, M_CAMXPT);
3399 		path = NULL;
3400 	}
3401 	*new_path_ptr = path;
3402 	return (status);
3403 }
3404 
3405 cam_status
3406 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3407 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3408 {
3409 	struct	     cam_eb *bus;
3410 	struct	     cam_et *target;
3411 	struct	     cam_ed *device;
3412 	cam_status   status;
3413 
3414 	status = CAM_REQ_CMP;	/* Completed without error */
3415 	target = NULL;		/* Wildcarded */
3416 	device = NULL;		/* Wildcarded */
3417 
3418 	/*
3419 	 * We will potentially modify the EDT, so block interrupts
3420 	 * that may attempt to create cam paths.
3421 	 */
3422 	bus = xpt_find_bus(path_id);
3423 	if (bus == NULL) {
3424 		status = CAM_PATH_INVALID;
3425 	} else {
3426 		target = xpt_find_target(bus, target_id);
3427 		if (target == NULL) {
3428 			/* Create one */
3429 			struct cam_et *new_target;
3430 
3431 			new_target = xpt_alloc_target(bus, target_id);
3432 			if (new_target == NULL) {
3433 				status = CAM_RESRC_UNAVAIL;
3434 			} else {
3435 				target = new_target;
3436 			}
3437 		}
3438 		if (target != NULL) {
3439 			device = xpt_find_device(target, lun_id);
3440 			if (device == NULL) {
3441 				/* Create one */
3442 				struct cam_ed *new_device;
3443 
3444 				new_device =
3445 				    (*(bus->xport->alloc_device))(bus,
3446 								      target,
3447 								      lun_id);
3448 				if (new_device == NULL) {
3449 					status = CAM_RESRC_UNAVAIL;
3450 				} else {
3451 					device = new_device;
3452 				}
3453 			}
3454 		}
3455 	}
3456 
3457 	/*
3458 	 * Only touch the user's data if we are successful.
3459 	 */
3460 	if (status == CAM_REQ_CMP) {
3461 		new_path->periph = perph;
3462 		new_path->bus = bus;
3463 		new_path->target = target;
3464 		new_path->device = device;
3465 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3466 	} else {
3467 		if (device != NULL)
3468 			xpt_release_device(bus, target, device);
3469 		if (target != NULL)
3470 			xpt_release_target(bus, target);
3471 		if (bus != NULL)
3472 			xpt_release_bus(bus);
3473 	}
3474 	return (status);
3475 }
3476 
3477 void
3478 xpt_release_path(struct cam_path *path)
3479 {
3480 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3481 	if (path->device != NULL) {
3482 		xpt_release_device(path->bus, path->target, path->device);
3483 		path->device = NULL;
3484 	}
3485 	if (path->target != NULL) {
3486 		xpt_release_target(path->bus, path->target);
3487 		path->target = NULL;
3488 	}
3489 	if (path->bus != NULL) {
3490 		xpt_release_bus(path->bus);
3491 		path->bus = NULL;
3492 	}
3493 }
3494 
3495 void
3496 xpt_free_path(struct cam_path *path)
3497 {
3498 
3499 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3500 	xpt_release_path(path);
3501 	free(path, M_CAMXPT);
3502 }
3503 
3504 
3505 /*
3506  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3507  * in path1, 2 for match with wildcards in path2.
3508  */
3509 int
3510 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3511 {
3512 	int retval = 0;
3513 
3514 	if (path1->bus != path2->bus) {
3515 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3516 			retval = 1;
3517 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3518 			retval = 2;
3519 		else
3520 			return (-1);
3521 	}
3522 	if (path1->target != path2->target) {
3523 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3524 			if (retval == 0)
3525 				retval = 1;
3526 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3527 			retval = 2;
3528 		else
3529 			return (-1);
3530 	}
3531 	if (path1->device != path2->device) {
3532 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3533 			if (retval == 0)
3534 				retval = 1;
3535 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3536 			retval = 2;
3537 		else
3538 			return (-1);
3539 	}
3540 	return (retval);
3541 }
3542 
3543 void
3544 xpt_print_path(struct cam_path *path)
3545 {
3546 
3547 	if (path == NULL)
3548 		printf("(nopath): ");
3549 	else {
3550 		if (path->periph != NULL)
3551 			printf("(%s%d:", path->periph->periph_name,
3552 			       path->periph->unit_number);
3553 		else
3554 			printf("(noperiph:");
3555 
3556 		if (path->bus != NULL)
3557 			printf("%s%d:%d:", path->bus->sim->sim_name,
3558 			       path->bus->sim->unit_number,
3559 			       path->bus->sim->bus_id);
3560 		else
3561 			printf("nobus:");
3562 
3563 		if (path->target != NULL)
3564 			printf("%d:", path->target->target_id);
3565 		else
3566 			printf("X:");
3567 
3568 		if (path->device != NULL)
3569 			printf("%d): ", path->device->lun_id);
3570 		else
3571 			printf("X): ");
3572 	}
3573 }
3574 
3575 void
3576 xpt_print(struct cam_path *path, const char *fmt, ...)
3577 {
3578 	va_list ap;
3579 	xpt_print_path(path);
3580 	va_start(ap, fmt);
3581 	vprintf(fmt, ap);
3582 	va_end(ap);
3583 }
3584 
3585 int
3586 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3587 {
3588 	struct sbuf sb;
3589 
3590 #ifdef INVARIANTS
3591 	if (path != NULL && path->bus != NULL)
3592 		mtx_assert(path->bus->sim->mtx, MA_OWNED);
3593 #endif
3594 
3595 	sbuf_new(&sb, str, str_len, 0);
3596 
3597 	if (path == NULL)
3598 		sbuf_printf(&sb, "(nopath): ");
3599 	else {
3600 		if (path->periph != NULL)
3601 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3602 				    path->periph->unit_number);
3603 		else
3604 			sbuf_printf(&sb, "(noperiph:");
3605 
3606 		if (path->bus != NULL)
3607 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3608 				    path->bus->sim->unit_number,
3609 				    path->bus->sim->bus_id);
3610 		else
3611 			sbuf_printf(&sb, "nobus:");
3612 
3613 		if (path->target != NULL)
3614 			sbuf_printf(&sb, "%d:", path->target->target_id);
3615 		else
3616 			sbuf_printf(&sb, "X:");
3617 
3618 		if (path->device != NULL)
3619 			sbuf_printf(&sb, "%d): ", path->device->lun_id);
3620 		else
3621 			sbuf_printf(&sb, "X): ");
3622 	}
3623 	sbuf_finish(&sb);
3624 
3625 	return(sbuf_len(&sb));
3626 }
3627 
3628 path_id_t
3629 xpt_path_path_id(struct cam_path *path)
3630 {
3631 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3632 
3633 	return(path->bus->path_id);
3634 }
3635 
3636 target_id_t
3637 xpt_path_target_id(struct cam_path *path)
3638 {
3639 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3640 
3641 	if (path->target != NULL)
3642 		return (path->target->target_id);
3643 	else
3644 		return (CAM_TARGET_WILDCARD);
3645 }
3646 
3647 lun_id_t
3648 xpt_path_lun_id(struct cam_path *path)
3649 {
3650 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3651 
3652 	if (path->device != NULL)
3653 		return (path->device->lun_id);
3654 	else
3655 		return (CAM_LUN_WILDCARD);
3656 }
3657 
3658 struct cam_sim *
3659 xpt_path_sim(struct cam_path *path)
3660 {
3661 
3662 	return (path->bus->sim);
3663 }
3664 
3665 struct cam_periph*
3666 xpt_path_periph(struct cam_path *path)
3667 {
3668 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3669 
3670 	return (path->periph);
3671 }
3672 
3673 /*
3674  * Release a CAM control block for the caller.  Remit the cost of the structure
3675  * to the device referenced by the path.  If the this device had no 'credits'
3676  * and peripheral drivers have registered async callbacks for this notification
3677  * call them now.
3678  */
3679 void
3680 xpt_release_ccb(union ccb *free_ccb)
3681 {
3682 	struct	 cam_path *path;
3683 	struct	 cam_ed *device;
3684 	struct	 cam_eb *bus;
3685 	struct   cam_sim *sim;
3686 
3687 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3688 	path = free_ccb->ccb_h.path;
3689 	device = path->device;
3690 	bus = path->bus;
3691 	sim = bus->sim;
3692 
3693 	mtx_assert(sim->mtx, MA_OWNED);
3694 
3695 	cam_ccbq_release_opening(&device->ccbq);
3696 	if (sim->ccb_count > sim->max_ccbs) {
3697 		xpt_free_ccb(free_ccb);
3698 		sim->ccb_count--;
3699 	} else {
3700 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &free_ccb->ccb_h,
3701 		    xpt_links.sle);
3702 	}
3703 	if (sim->devq == NULL) {
3704 		return;
3705 	}
3706 	sim->devq->alloc_openings++;
3707 	sim->devq->alloc_active--;
3708 	/* XXX Turn this into an inline function - xpt_run_device?? */
3709 	if ((device_is_alloc_queued(device) == 0)
3710 	 && (device->drvq.entries > 0)) {
3711 		xpt_schedule_dev_allocq(bus, device);
3712 	}
3713 	if (dev_allocq_is_runnable(sim->devq))
3714 		xpt_run_dev_allocq(bus);
3715 }
3716 
3717 /* Functions accessed by SIM drivers */
3718 
3719 static struct xpt_xport xport_default = {
3720 	.alloc_device = xpt_alloc_device_default,
3721 	.action = xpt_action_default,
3722 	.async = xpt_dev_async_default,
3723 };
3724 
3725 /*
3726  * A sim structure, listing the SIM entry points and instance
3727  * identification info is passed to xpt_bus_register to hook the SIM
3728  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3729  * for this new bus and places it in the array of busses and assigns
3730  * it a path_id.  The path_id may be influenced by "hard wiring"
3731  * information specified by the user.  Once interrupt services are
3732  * available, the bus will be probed.
3733  */
3734 int32_t
3735 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3736 {
3737 	struct cam_eb *new_bus;
3738 	struct cam_eb *old_bus;
3739 	struct ccb_pathinq cpi;
3740 	struct cam_path path;
3741 	cam_status status;
3742 
3743 	mtx_assert(sim->mtx, MA_OWNED);
3744 
3745 	sim->bus_id = bus;
3746 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3747 					  M_CAMXPT, M_NOWAIT);
3748 	if (new_bus == NULL) {
3749 		/* Couldn't satisfy request */
3750 		return (CAM_RESRC_UNAVAIL);
3751 	}
3752 
3753 	if (strcmp(sim->sim_name, "xpt") != 0) {
3754 		sim->path_id =
3755 		    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3756 	}
3757 
3758 	TAILQ_INIT(&new_bus->et_entries);
3759 	new_bus->path_id = sim->path_id;
3760 	cam_sim_hold(sim);
3761 	new_bus->sim = sim;
3762 	timevalclear(&new_bus->last_reset);
3763 	new_bus->flags = 0;
3764 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3765 	new_bus->generation = 0;
3766 
3767 	mtx_lock(&xsoftc.xpt_topo_lock);
3768 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3769 	while (old_bus != NULL
3770 	    && old_bus->path_id < new_bus->path_id)
3771 		old_bus = TAILQ_NEXT(old_bus, links);
3772 	if (old_bus != NULL)
3773 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3774 	else
3775 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3776 	xsoftc.bus_generation++;
3777 	mtx_unlock(&xsoftc.xpt_topo_lock);
3778 
3779 	/*
3780 	 * Set a default transport so that a PATH_INQ can be issued to
3781 	 * the SIM.  This will then allow for probing and attaching of
3782 	 * a more appropriate transport.
3783 	 */
3784 	new_bus->xport = &xport_default;
3785 
3786 	bzero(&path, sizeof(path));
3787 	status = xpt_compile_path(&path, /*periph*/NULL, sim->path_id,
3788 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3789 	if (status != CAM_REQ_CMP)
3790 		printf("xpt_compile_path returned %d\n", status);
3791 
3792 	xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
3793 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3794 	xpt_action((union ccb *)&cpi);
3795 
3796 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3797 		switch (cpi.transport) {
3798 		case XPORT_SPI:
3799 		case XPORT_SAS:
3800 		case XPORT_FC:
3801 		case XPORT_USB:
3802 			new_bus->xport = scsi_get_xport();
3803 			break;
3804 		case XPORT_ATA:
3805 		case XPORT_SATA:
3806 			new_bus->xport = ata_get_xport();
3807 			break;
3808 		default:
3809 			new_bus->xport = &xport_default;
3810 			break;
3811 		}
3812 	}
3813 
3814 	/* Notify interested parties */
3815 	if (sim->path_id != CAM_XPT_PATH_ID) {
3816 		xpt_async(AC_PATH_REGISTERED, &path, &cpi);
3817 	}
3818 	xpt_release_path(&path);
3819 	return (CAM_SUCCESS);
3820 }
3821 
3822 int32_t
3823 xpt_bus_deregister(path_id_t pathid)
3824 {
3825 	struct cam_path bus_path;
3826 	cam_status status;
3827 
3828 	status = xpt_compile_path(&bus_path, NULL, pathid,
3829 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3830 	if (status != CAM_REQ_CMP)
3831 		return (status);
3832 
3833 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3834 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3835 
3836 	/* Release the reference count held while registered. */
3837 	xpt_release_bus(bus_path.bus);
3838 	xpt_release_path(&bus_path);
3839 
3840 	return (CAM_REQ_CMP);
3841 }
3842 
3843 static path_id_t
3844 xptnextfreepathid(void)
3845 {
3846 	struct cam_eb *bus;
3847 	path_id_t pathid;
3848 	const char *strval;
3849 
3850 	pathid = 0;
3851 	mtx_lock(&xsoftc.xpt_topo_lock);
3852 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3853 retry:
3854 	/* Find an unoccupied pathid */
3855 	while (bus != NULL && bus->path_id <= pathid) {
3856 		if (bus->path_id == pathid)
3857 			pathid++;
3858 		bus = TAILQ_NEXT(bus, links);
3859 	}
3860 	mtx_unlock(&xsoftc.xpt_topo_lock);
3861 
3862 	/*
3863 	 * Ensure that this pathid is not reserved for
3864 	 * a bus that may be registered in the future.
3865 	 */
3866 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3867 		++pathid;
3868 		/* Start the search over */
3869 		mtx_lock(&xsoftc.xpt_topo_lock);
3870 		goto retry;
3871 	}
3872 	return (pathid);
3873 }
3874 
3875 static path_id_t
3876 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3877 {
3878 	path_id_t pathid;
3879 	int i, dunit, val;
3880 	char buf[32];
3881 	const char *dname;
3882 
3883 	pathid = CAM_XPT_PATH_ID;
3884 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
3885 	i = 0;
3886 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
3887 		if (strcmp(dname, "scbus")) {
3888 			/* Avoid a bit of foot shooting. */
3889 			continue;
3890 		}
3891 		if (dunit < 0)		/* unwired?! */
3892 			continue;
3893 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
3894 			if (sim_bus == val) {
3895 				pathid = dunit;
3896 				break;
3897 			}
3898 		} else if (sim_bus == 0) {
3899 			/* Unspecified matches bus 0 */
3900 			pathid = dunit;
3901 			break;
3902 		} else {
3903 			printf("Ambiguous scbus configuration for %s%d "
3904 			       "bus %d, cannot wire down.  The kernel "
3905 			       "config entry for scbus%d should "
3906 			       "specify a controller bus.\n"
3907 			       "Scbus will be assigned dynamically.\n",
3908 			       sim_name, sim_unit, sim_bus, dunit);
3909 			break;
3910 		}
3911 	}
3912 
3913 	if (pathid == CAM_XPT_PATH_ID)
3914 		pathid = xptnextfreepathid();
3915 	return (pathid);
3916 }
3917 
3918 void
3919 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
3920 {
3921 	struct cam_eb *bus;
3922 	struct cam_et *target, *next_target;
3923 	struct cam_ed *device, *next_device;
3924 
3925 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
3926 
3927 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_async\n"));
3928 
3929 	/*
3930 	 * Most async events come from a CAM interrupt context.  In
3931 	 * a few cases, the error recovery code at the peripheral layer,
3932 	 * which may run from our SWI or a process context, may signal
3933 	 * deferred events with a call to xpt_async.
3934 	 */
3935 
3936 	bus = path->bus;
3937 
3938 	if (async_code == AC_BUS_RESET) {
3939 		/* Update our notion of when the last reset occurred */
3940 		microtime(&bus->last_reset);
3941 	}
3942 
3943 	for (target = TAILQ_FIRST(&bus->et_entries);
3944 	     target != NULL;
3945 	     target = next_target) {
3946 
3947 		next_target = TAILQ_NEXT(target, links);
3948 
3949 		if (path->target != target
3950 		 && path->target->target_id != CAM_TARGET_WILDCARD
3951 		 && target->target_id != CAM_TARGET_WILDCARD)
3952 			continue;
3953 
3954 		if (async_code == AC_SENT_BDR) {
3955 			/* Update our notion of when the last reset occurred */
3956 			microtime(&path->target->last_reset);
3957 		}
3958 
3959 		for (device = TAILQ_FIRST(&target->ed_entries);
3960 		     device != NULL;
3961 		     device = next_device) {
3962 
3963 			next_device = TAILQ_NEXT(device, links);
3964 
3965 			if (path->device != device
3966 			 && path->device->lun_id != CAM_LUN_WILDCARD
3967 			 && device->lun_id != CAM_LUN_WILDCARD)
3968 				continue;
3969 
3970 			(*(bus->xport->async))(async_code, bus,
3971 					       target, device,
3972 					       async_arg);
3973 
3974 			xpt_async_bcast(&device->asyncs, async_code,
3975 					path, async_arg);
3976 		}
3977 	}
3978 
3979 	/*
3980 	 * If this wasn't a fully wildcarded async, tell all
3981 	 * clients that want all async events.
3982 	 */
3983 	if (bus != xpt_periph->path->bus)
3984 		xpt_async_bcast(&xpt_periph->path->device->asyncs, async_code,
3985 				path, async_arg);
3986 }
3987 
3988 static void
3989 xpt_async_bcast(struct async_list *async_head,
3990 		u_int32_t async_code,
3991 		struct cam_path *path, void *async_arg)
3992 {
3993 	struct async_node *cur_entry;
3994 
3995 	cur_entry = SLIST_FIRST(async_head);
3996 	while (cur_entry != NULL) {
3997 		struct async_node *next_entry;
3998 		/*
3999 		 * Grab the next list entry before we call the current
4000 		 * entry's callback.  This is because the callback function
4001 		 * can delete its async callback entry.
4002 		 */
4003 		next_entry = SLIST_NEXT(cur_entry, links);
4004 		if ((cur_entry->event_enable & async_code) != 0)
4005 			cur_entry->callback(cur_entry->callback_arg,
4006 					    async_code, path,
4007 					    async_arg);
4008 		cur_entry = next_entry;
4009 	}
4010 }
4011 
4012 static void
4013 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4014 		      struct cam_et *target, struct cam_ed *device,
4015 		      void *async_arg)
4016 {
4017 	printf("xpt_dev_async called\n");
4018 }
4019 
4020 u_int32_t
4021 xpt_freeze_devq(struct cam_path *path, u_int count)
4022 {
4023 	struct ccb_hdr *ccbh;
4024 
4025 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4026 
4027 	path->device->qfrozen_cnt += count;
4028 
4029 	/*
4030 	 * Mark the last CCB in the queue as needing
4031 	 * to be requeued if the driver hasn't
4032 	 * changed it's state yet.  This fixes a race
4033 	 * where a ccb is just about to be queued to
4034 	 * a controller driver when it's interrupt routine
4035 	 * freezes the queue.  To completly close the
4036 	 * hole, controller drives must check to see
4037 	 * if a ccb's status is still CAM_REQ_INPROG
4038 	 * just before they queue
4039 	 * the CCB.  See ahc_action/ahc_freeze_devq for
4040 	 * an example.
4041 	 */
4042 	ccbh = TAILQ_LAST(&path->device->ccbq.active_ccbs, ccb_hdr_tailq);
4043 	if (ccbh && ccbh->status == CAM_REQ_INPROG)
4044 		ccbh->status = CAM_REQUEUE_REQ;
4045 	return (path->device->qfrozen_cnt);
4046 }
4047 
4048 u_int32_t
4049 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4050 {
4051 	mtx_assert(sim->mtx, MA_OWNED);
4052 
4053 	sim->devq->send_queue.qfrozen_cnt += count;
4054 	if (sim->devq->active_dev != NULL) {
4055 		struct ccb_hdr *ccbh;
4056 
4057 		ccbh = TAILQ_LAST(&sim->devq->active_dev->ccbq.active_ccbs,
4058 				  ccb_hdr_tailq);
4059 		if (ccbh && ccbh->status == CAM_REQ_INPROG)
4060 			ccbh->status = CAM_REQUEUE_REQ;
4061 	}
4062 	return (sim->devq->send_queue.qfrozen_cnt);
4063 }
4064 
4065 static void
4066 xpt_release_devq_timeout(void *arg)
4067 {
4068 	struct cam_ed *device;
4069 
4070 	device = (struct cam_ed *)arg;
4071 
4072 	xpt_release_devq_device(device, /*count*/1, /*run_queue*/TRUE);
4073 }
4074 
4075 void
4076 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4077 {
4078 	mtx_assert(path->bus->sim->mtx, MA_OWNED);
4079 
4080 	xpt_release_devq_device(path->device, count, run_queue);
4081 }
4082 
4083 static void
4084 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4085 {
4086 	int	rundevq;
4087 
4088 	rundevq = 0;
4089 	if (dev->qfrozen_cnt > 0) {
4090 
4091 		count = (count > dev->qfrozen_cnt) ? dev->qfrozen_cnt : count;
4092 		dev->qfrozen_cnt -= count;
4093 		if (dev->qfrozen_cnt == 0) {
4094 
4095 			/*
4096 			 * No longer need to wait for a successful
4097 			 * command completion.
4098 			 */
4099 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4100 
4101 			/*
4102 			 * Remove any timeouts that might be scheduled
4103 			 * to release this queue.
4104 			 */
4105 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4106 				callout_stop(&dev->callout);
4107 				dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4108 			}
4109 
4110 			/*
4111 			 * Now that we are unfrozen schedule the
4112 			 * device so any pending transactions are
4113 			 * run.
4114 			 */
4115 			if ((dev->ccbq.queue.entries > 0)
4116 			 && (xpt_schedule_dev_sendq(dev->target->bus, dev))
4117 			 && (run_queue != 0)) {
4118 				rundevq = 1;
4119 			}
4120 		}
4121 	}
4122 	if (rundevq != 0)
4123 		xpt_run_dev_sendq(dev->target->bus);
4124 }
4125 
4126 void
4127 xpt_release_simq(struct cam_sim *sim, int run_queue)
4128 {
4129 	struct	camq *sendq;
4130 
4131 	mtx_assert(sim->mtx, MA_OWNED);
4132 
4133 	sendq = &(sim->devq->send_queue);
4134 	if (sendq->qfrozen_cnt > 0) {
4135 
4136 		sendq->qfrozen_cnt--;
4137 		if (sendq->qfrozen_cnt == 0) {
4138 			struct cam_eb *bus;
4139 
4140 			/*
4141 			 * If there is a timeout scheduled to release this
4142 			 * sim queue, remove it.  The queue frozen count is
4143 			 * already at 0.
4144 			 */
4145 			if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4146 				callout_stop(&sim->callout);
4147 				sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4148 			}
4149 			bus = xpt_find_bus(sim->path_id);
4150 
4151 			if (run_queue) {
4152 				/*
4153 				 * Now that we are unfrozen run the send queue.
4154 				 */
4155 				xpt_run_dev_sendq(bus);
4156 			}
4157 			xpt_release_bus(bus);
4158 		}
4159 	}
4160 }
4161 
4162 /*
4163  * XXX Appears to be unused.
4164  */
4165 static void
4166 xpt_release_simq_timeout(void *arg)
4167 {
4168 	struct cam_sim *sim;
4169 
4170 	sim = (struct cam_sim *)arg;
4171 	xpt_release_simq(sim, /* run_queue */ TRUE);
4172 }
4173 
4174 void
4175 xpt_done(union ccb *done_ccb)
4176 {
4177 	struct cam_sim *sim;
4178 
4179 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4180 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) != 0) {
4181 		/*
4182 		 * Queue up the request for handling by our SWI handler
4183 		 * any of the "non-immediate" type of ccbs.
4184 		 */
4185 		sim = done_ccb->ccb_h.path->bus->sim;
4186 		switch (done_ccb->ccb_h.path->periph->type) {
4187 		case CAM_PERIPH_BIO:
4188 			TAILQ_INSERT_TAIL(&sim->sim_doneq, &done_ccb->ccb_h,
4189 					  sim_links.tqe);
4190 			done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4191 			if ((sim->flags & CAM_SIM_ON_DONEQ) == 0) {
4192 				mtx_lock(&cam_simq_lock);
4193 				TAILQ_INSERT_TAIL(&cam_simq, sim,
4194 						  links);
4195 				sim->flags |= CAM_SIM_ON_DONEQ;
4196 				mtx_unlock(&cam_simq_lock);
4197 			}
4198 			if ((done_ccb->ccb_h.path->periph->flags &
4199 			    CAM_PERIPH_POLLED) == 0)
4200 				swi_sched(cambio_ih, 0);
4201 			break;
4202 		default:
4203 			panic("unknown periph type %d",
4204 			    done_ccb->ccb_h.path->periph->type);
4205 		}
4206 	}
4207 }
4208 
4209 union ccb *
4210 xpt_alloc_ccb()
4211 {
4212 	union ccb *new_ccb;
4213 
4214 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_WAITOK);
4215 	return (new_ccb);
4216 }
4217 
4218 union ccb *
4219 xpt_alloc_ccb_nowait()
4220 {
4221 	union ccb *new_ccb;
4222 
4223 	new_ccb = malloc(sizeof(*new_ccb), M_CAMXPT, M_ZERO|M_NOWAIT);
4224 	return (new_ccb);
4225 }
4226 
4227 void
4228 xpt_free_ccb(union ccb *free_ccb)
4229 {
4230 	free(free_ccb, M_CAMXPT);
4231 }
4232 
4233 
4234 
4235 /* Private XPT functions */
4236 
4237 /*
4238  * Get a CAM control block for the caller. Charge the structure to the device
4239  * referenced by the path.  If the this device has no 'credits' then the
4240  * device already has the maximum number of outstanding operations under way
4241  * and we return NULL. If we don't have sufficient resources to allocate more
4242  * ccbs, we also return NULL.
4243  */
4244 static union ccb *
4245 xpt_get_ccb(struct cam_ed *device)
4246 {
4247 	union ccb *new_ccb;
4248 	struct cam_sim *sim;
4249 
4250 	sim = device->sim;
4251 	if ((new_ccb = (union ccb *)SLIST_FIRST(&sim->ccb_freeq)) == NULL) {
4252 		new_ccb = xpt_alloc_ccb_nowait();
4253                 if (new_ccb == NULL) {
4254 			return (NULL);
4255 		}
4256 		if ((sim->flags & CAM_SIM_MPSAFE) == 0)
4257 			callout_handle_init(&new_ccb->ccb_h.timeout_ch);
4258 		SLIST_INSERT_HEAD(&sim->ccb_freeq, &new_ccb->ccb_h,
4259 				  xpt_links.sle);
4260 		sim->ccb_count++;
4261 	}
4262 	cam_ccbq_take_opening(&device->ccbq);
4263 	SLIST_REMOVE_HEAD(&sim->ccb_freeq, xpt_links.sle);
4264 	return (new_ccb);
4265 }
4266 
4267 static void
4268 xpt_release_bus(struct cam_eb *bus)
4269 {
4270 
4271 	if ((--bus->refcount == 0)
4272 	 && (TAILQ_FIRST(&bus->et_entries) == NULL)) {
4273 		mtx_lock(&xsoftc.xpt_topo_lock);
4274 		TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4275 		xsoftc.bus_generation++;
4276 		mtx_unlock(&xsoftc.xpt_topo_lock);
4277 		cam_sim_release(bus->sim);
4278 		free(bus, M_CAMXPT);
4279 	}
4280 }
4281 
4282 static struct cam_et *
4283 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4284 {
4285 	struct cam_et *target;
4286 
4287 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, M_NOWAIT);
4288 	if (target != NULL) {
4289 		struct cam_et *cur_target;
4290 
4291 		TAILQ_INIT(&target->ed_entries);
4292 		target->bus = bus;
4293 		target->target_id = target_id;
4294 		target->refcount = 1;
4295 		target->generation = 0;
4296 		timevalclear(&target->last_reset);
4297 		/*
4298 		 * Hold a reference to our parent bus so it
4299 		 * will not go away before we do.
4300 		 */
4301 		bus->refcount++;
4302 
4303 		/* Insertion sort into our bus's target list */
4304 		cur_target = TAILQ_FIRST(&bus->et_entries);
4305 		while (cur_target != NULL && cur_target->target_id < target_id)
4306 			cur_target = TAILQ_NEXT(cur_target, links);
4307 
4308 		if (cur_target != NULL) {
4309 			TAILQ_INSERT_BEFORE(cur_target, target, links);
4310 		} else {
4311 			TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4312 		}
4313 		bus->generation++;
4314 	}
4315 	return (target);
4316 }
4317 
4318 static void
4319 xpt_release_target(struct cam_eb *bus, struct cam_et *target)
4320 {
4321 
4322 	if ((--target->refcount == 0)
4323 	 && (TAILQ_FIRST(&target->ed_entries) == NULL)) {
4324 		TAILQ_REMOVE(&bus->et_entries, target, links);
4325 		bus->generation++;
4326 		free(target, M_CAMXPT);
4327 		xpt_release_bus(bus);
4328 	}
4329 }
4330 
4331 static struct cam_ed *
4332 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4333 			 lun_id_t lun_id)
4334 {
4335 	struct cam_ed *device, *cur_device;
4336 
4337 	device = xpt_alloc_device(bus, target, lun_id);
4338 	if (device == NULL)
4339 		return (NULL);
4340 
4341 	device->mintags = 1;
4342 	device->maxtags = 1;
4343 	bus->sim->max_ccbs = device->ccbq.devq_openings;
4344 	cur_device = TAILQ_FIRST(&target->ed_entries);
4345 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4346 		cur_device = TAILQ_NEXT(cur_device, links);
4347 	if (cur_device != NULL) {
4348 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4349 	} else {
4350 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4351 	}
4352 	target->generation++;
4353 
4354 	return (device);
4355 }
4356 
4357 struct cam_ed *
4358 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4359 {
4360 	struct	   cam_ed *device;
4361 	struct	   cam_devq *devq;
4362 	cam_status status;
4363 
4364 	/* Make space for us in the device queue on our bus */
4365 	devq = bus->sim->devq;
4366 	status = cam_devq_resize(devq, devq->alloc_queue.array_size + 1);
4367 
4368 	if (status != CAM_REQ_CMP) {
4369 		device = NULL;
4370 	} else {
4371 		device = (struct cam_ed *)malloc(sizeof(*device),
4372 						 M_CAMXPT, M_NOWAIT);
4373 	}
4374 
4375 	if (device != NULL) {
4376 		cam_init_pinfo(&device->alloc_ccb_entry.pinfo);
4377 		device->alloc_ccb_entry.device = device;
4378 		cam_init_pinfo(&device->send_ccb_entry.pinfo);
4379 		device->send_ccb_entry.device = device;
4380 		device->target = target;
4381 		device->lun_id = lun_id;
4382 		device->sim = bus->sim;
4383 		/* Initialize our queues */
4384 		if (camq_init(&device->drvq, 0) != 0) {
4385 			free(device, M_CAMXPT);
4386 			return (NULL);
4387 		}
4388 		if (cam_ccbq_init(&device->ccbq,
4389 				  bus->sim->max_dev_openings) != 0) {
4390 			camq_fini(&device->drvq);
4391 			free(device, M_CAMXPT);
4392 			return (NULL);
4393 		}
4394 		SLIST_INIT(&device->asyncs);
4395 		SLIST_INIT(&device->periphs);
4396 		device->generation = 0;
4397 		device->owner = NULL;
4398 		device->qfrozen_cnt = 0;
4399 		device->flags = CAM_DEV_UNCONFIGURED;
4400 		device->tag_delay_count = 0;
4401 		device->tag_saved_openings = 0;
4402 		device->refcount = 1;
4403 		if (bus->sim->flags & CAM_SIM_MPSAFE)
4404 			callout_init_mtx(&device->callout, bus->sim->mtx, 0);
4405 		else
4406 			callout_init_mtx(&device->callout, &Giant, 0);
4407 
4408 		/*
4409 		 * Hold a reference to our parent target so it
4410 		 * will not go away before we do.
4411 		 */
4412 		target->refcount++;
4413 
4414 	}
4415 	return (device);
4416 }
4417 
4418 static void
4419 xpt_release_device(struct cam_eb *bus, struct cam_et *target,
4420 		   struct cam_ed *device)
4421 {
4422 
4423 	if ((--device->refcount == 0)
4424 	 && ((device->flags & CAM_DEV_UNCONFIGURED) != 0)) {
4425 		struct cam_devq *devq;
4426 
4427 		if (device->alloc_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX
4428 		 || device->send_ccb_entry.pinfo.index != CAM_UNQUEUED_INDEX)
4429 			panic("Removing device while still queued for ccbs");
4430 
4431 		if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4432 				callout_stop(&device->callout);
4433 
4434 		TAILQ_REMOVE(&target->ed_entries, device,links);
4435 		target->generation++;
4436 		bus->sim->max_ccbs -= device->ccbq.devq_openings;
4437 		/* Release our slot in the devq */
4438 		devq = bus->sim->devq;
4439 		cam_devq_resize(devq, devq->alloc_queue.array_size - 1);
4440 		camq_fini(&device->drvq);
4441 		camq_fini(&device->ccbq.queue);
4442 		free(device, M_CAMXPT);
4443 		xpt_release_target(bus, target);
4444 	}
4445 }
4446 
4447 u_int32_t
4448 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4449 {
4450 	int	diff;
4451 	int	result;
4452 	struct	cam_ed *dev;
4453 
4454 	dev = path->device;
4455 
4456 	diff = newopenings - (dev->ccbq.dev_active + dev->ccbq.dev_openings);
4457 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4458 	if (result == CAM_REQ_CMP && (diff < 0)) {
4459 		dev->flags |= CAM_DEV_RESIZE_QUEUE_NEEDED;
4460 	}
4461 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4462 	 || (dev->inq_flags & SID_CmdQue) != 0)
4463 		dev->tag_saved_openings = newopenings;
4464 	/* Adjust the global limit */
4465 	dev->sim->max_ccbs += diff;
4466 	return (result);
4467 }
4468 
4469 static struct cam_eb *
4470 xpt_find_bus(path_id_t path_id)
4471 {
4472 	struct cam_eb *bus;
4473 
4474 	mtx_lock(&xsoftc.xpt_topo_lock);
4475 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4476 	     bus != NULL;
4477 	     bus = TAILQ_NEXT(bus, links)) {
4478 		if (bus->path_id == path_id) {
4479 			bus->refcount++;
4480 			break;
4481 		}
4482 	}
4483 	mtx_unlock(&xsoftc.xpt_topo_lock);
4484 	return (bus);
4485 }
4486 
4487 static struct cam_et *
4488 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4489 {
4490 	struct cam_et *target;
4491 
4492 	for (target = TAILQ_FIRST(&bus->et_entries);
4493 	     target != NULL;
4494 	     target = TAILQ_NEXT(target, links)) {
4495 		if (target->target_id == target_id) {
4496 			target->refcount++;
4497 			break;
4498 		}
4499 	}
4500 	return (target);
4501 }
4502 
4503 static struct cam_ed *
4504 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4505 {
4506 	struct cam_ed *device;
4507 
4508 	for (device = TAILQ_FIRST(&target->ed_entries);
4509 	     device != NULL;
4510 	     device = TAILQ_NEXT(device, links)) {
4511 		if (device->lun_id == lun_id) {
4512 			device->refcount++;
4513 			break;
4514 		}
4515 	}
4516 	return (device);
4517 }
4518 
4519 static void
4520 xpt_start_tags(struct cam_path *path)
4521 {
4522 	struct ccb_relsim crs;
4523 	struct cam_ed *device;
4524 	struct cam_sim *sim;
4525 	int    newopenings;
4526 
4527 	device = path->device;
4528 	sim = path->bus->sim;
4529 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4530 	xpt_freeze_devq(path, /*count*/1);
4531 	device->inq_flags |= SID_CmdQue;
4532 	if (device->tag_saved_openings != 0)
4533 		newopenings = device->tag_saved_openings;
4534 	else
4535 		newopenings = min(device->maxtags,
4536 				  sim->max_tagged_dev_openings);
4537 	xpt_dev_ccbq_resize(path, newopenings);
4538 	xpt_setup_ccb(&crs.ccb_h, path, /*priority*/1);
4539 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4540 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4541 	crs.openings
4542 	    = crs.release_timeout
4543 	    = crs.qfrozen_cnt
4544 	    = 0;
4545 	xpt_action((union ccb *)&crs);
4546 }
4547 
4548 static int busses_to_config;
4549 static int busses_to_reset;
4550 
4551 static int
4552 xptconfigbuscountfunc(struct cam_eb *bus, void *arg)
4553 {
4554 
4555 	mtx_assert(bus->sim->mtx, MA_OWNED);
4556 
4557 	if (bus->path_id != CAM_XPT_PATH_ID) {
4558 		struct cam_path path;
4559 		struct ccb_pathinq cpi;
4560 		int can_negotiate;
4561 
4562 		busses_to_config++;
4563 		xpt_compile_path(&path, NULL, bus->path_id,
4564 				 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4565 		xpt_setup_ccb(&cpi.ccb_h, &path, /*priority*/1);
4566 		cpi.ccb_h.func_code = XPT_PATH_INQ;
4567 		xpt_action((union ccb *)&cpi);
4568 		can_negotiate = cpi.hba_inquiry;
4569 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
4570 		if ((cpi.hba_misc & PIM_NOBUSRESET) == 0
4571 		 && can_negotiate)
4572 			busses_to_reset++;
4573 		xpt_release_path(&path);
4574 	}
4575 
4576 	return(1);
4577 }
4578 
4579 static int
4580 xptconfigfunc(struct cam_eb *bus, void *arg)
4581 {
4582 	struct	cam_path *path;
4583 	union	ccb *work_ccb;
4584 
4585 	mtx_assert(bus->sim->mtx, MA_OWNED);
4586 
4587 	if (bus->path_id != CAM_XPT_PATH_ID) {
4588 		cam_status status;
4589 		int can_negotiate;
4590 
4591 		work_ccb = xpt_alloc_ccb_nowait();
4592 		if (work_ccb == NULL) {
4593 			busses_to_config--;
4594 			xpt_finishconfig(xpt_periph, NULL);
4595 			return(0);
4596 		}
4597 		if ((status = xpt_create_path(&path, xpt_periph, bus->path_id,
4598 					      CAM_TARGET_WILDCARD,
4599 					      CAM_LUN_WILDCARD)) !=CAM_REQ_CMP){
4600 			printf("xptconfigfunc: xpt_create_path failed with "
4601 			       "status %#x for bus %d\n", status, bus->path_id);
4602 			printf("xptconfigfunc: halting bus configuration\n");
4603 			xpt_free_ccb(work_ccb);
4604 			busses_to_config--;
4605 			xpt_finishconfig(xpt_periph, NULL);
4606 			return(0);
4607 		}
4608 		xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
4609 		work_ccb->ccb_h.func_code = XPT_PATH_INQ;
4610 		xpt_action(work_ccb);
4611 		if (work_ccb->ccb_h.status != CAM_REQ_CMP) {
4612 			printf("xptconfigfunc: CPI failed on bus %d "
4613 			       "with status %d\n", bus->path_id,
4614 			       work_ccb->ccb_h.status);
4615 			xpt_finishconfig(xpt_periph, work_ccb);
4616 			return(1);
4617 		}
4618 
4619 		can_negotiate = work_ccb->cpi.hba_inquiry;
4620 		can_negotiate &= (PI_WIDE_32|PI_WIDE_16|PI_SDTR_ABLE);
4621 		if ((work_ccb->cpi.hba_misc & PIM_NOBUSRESET) == 0
4622 		 && (can_negotiate != 0)) {
4623 			xpt_setup_ccb(&work_ccb->ccb_h, path, /*priority*/1);
4624 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
4625 			work_ccb->ccb_h.cbfcnp = NULL;
4626 			CAM_DEBUG(path, CAM_DEBUG_SUBTRACE,
4627 				  ("Resetting Bus\n"));
4628 			xpt_action(work_ccb);
4629 			xpt_finishconfig(xpt_periph, work_ccb);
4630 		} else {
4631 			/* Act as though we performed a successful BUS RESET */
4632 			work_ccb->ccb_h.func_code = XPT_RESET_BUS;
4633 			xpt_finishconfig(xpt_periph, work_ccb);
4634 		}
4635 	}
4636 
4637 	return(1);
4638 }
4639 
4640 static void
4641 xpt_config(void *arg)
4642 {
4643 	/*
4644 	 * Now that interrupts are enabled, go find our devices
4645 	 */
4646 
4647 #ifdef CAMDEBUG
4648 	/* Setup debugging flags and path */
4649 #ifdef CAM_DEBUG_FLAGS
4650 	cam_dflags = CAM_DEBUG_FLAGS;
4651 #else /* !CAM_DEBUG_FLAGS */
4652 	cam_dflags = CAM_DEBUG_NONE;
4653 #endif /* CAM_DEBUG_FLAGS */
4654 #ifdef CAM_DEBUG_BUS
4655 	if (cam_dflags != CAM_DEBUG_NONE) {
4656 		/*
4657 		 * Locking is specifically omitted here.  No SIMs have
4658 		 * registered yet, so xpt_create_path will only be searching
4659 		 * empty lists of targets and devices.
4660 		 */
4661 		if (xpt_create_path(&cam_dpath, xpt_periph,
4662 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4663 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4664 			printf("xpt_config: xpt_create_path() failed for debug"
4665 			       " target %d:%d:%d, debugging disabled\n",
4666 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4667 			cam_dflags = CAM_DEBUG_NONE;
4668 		}
4669 	} else
4670 		cam_dpath = NULL;
4671 #else /* !CAM_DEBUG_BUS */
4672 	cam_dpath = NULL;
4673 #endif /* CAM_DEBUG_BUS */
4674 #endif /* CAMDEBUG */
4675 
4676 	/*
4677 	 * Scan all installed busses.
4678 	 */
4679 	xpt_for_all_busses(xptconfigbuscountfunc, NULL);
4680 
4681 	if (busses_to_config == 0) {
4682 		/* Call manually because we don't have any busses */
4683 		xpt_finishconfig(xpt_periph, NULL);
4684 	} else  {
4685 		if (busses_to_reset > 0 && scsi_delay >= 2000) {
4686 			printf("Waiting %d seconds for SCSI "
4687 			       "devices to settle\n", scsi_delay/1000);
4688 		}
4689 		xpt_for_all_busses(xptconfigfunc, NULL);
4690 	}
4691 }
4692 
4693 /*
4694  * If the given device only has one peripheral attached to it, and if that
4695  * peripheral is the passthrough driver, announce it.  This insures that the
4696  * user sees some sort of announcement for every peripheral in their system.
4697  */
4698 static int
4699 xptpassannouncefunc(struct cam_ed *device, void *arg)
4700 {
4701 	struct cam_periph *periph;
4702 	int i;
4703 
4704 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
4705 	     periph = SLIST_NEXT(periph, periph_links), i++);
4706 
4707 	periph = SLIST_FIRST(&device->periphs);
4708 	if ((i == 1)
4709 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
4710 		xpt_announce_periph(periph, NULL);
4711 
4712 	return(1);
4713 }
4714 
4715 static void
4716 xpt_finishconfig_task(void *context, int pending)
4717 {
4718 	struct	periph_driver **p_drv;
4719 	int	i;
4720 
4721 	if (busses_to_config == 0) {
4722 		/* Register all the peripheral drivers */
4723 		/* XXX This will have to change when we have loadable modules */
4724 		p_drv = periph_drivers;
4725 		for (i = 0; p_drv[i] != NULL; i++) {
4726 			(*p_drv[i]->init)();
4727 		}
4728 
4729 		/*
4730 		 * Check for devices with no "standard" peripheral driver
4731 		 * attached.  For any devices like that, announce the
4732 		 * passthrough driver so the user will see something.
4733 		 */
4734 		xpt_for_all_devices(xptpassannouncefunc, NULL);
4735 
4736 		/* Release our hook so that the boot can continue. */
4737 		config_intrhook_disestablish(xsoftc.xpt_config_hook);
4738 		free(xsoftc.xpt_config_hook, M_CAMXPT);
4739 		xsoftc.xpt_config_hook = NULL;
4740 	}
4741 
4742 	free(context, M_CAMXPT);
4743 }
4744 
4745 static void
4746 xpt_finishconfig(struct cam_periph *periph, union ccb *done_ccb)
4747 {
4748 	struct	xpt_task *task;
4749 
4750 	if (done_ccb != NULL) {
4751 		CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4752 			  ("xpt_finishconfig\n"));
4753 		switch(done_ccb->ccb_h.func_code) {
4754 		case XPT_RESET_BUS:
4755 			if (done_ccb->ccb_h.status == CAM_REQ_CMP) {
4756 				done_ccb->ccb_h.func_code = XPT_SCAN_BUS;
4757 				done_ccb->ccb_h.cbfcnp = xpt_finishconfig;
4758 				done_ccb->crcn.flags = 0;
4759 				xpt_action(done_ccb);
4760 				return;
4761 			}
4762 			/* FALLTHROUGH */
4763 		case XPT_SCAN_BUS:
4764 		default:
4765 			xpt_free_path(done_ccb->ccb_h.path);
4766 			busses_to_config--;
4767 			break;
4768 		}
4769 	}
4770 
4771 	if (busses_to_config == 0) {
4772 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4773 		if (task != NULL) {
4774 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4775 			taskqueue_enqueue(taskqueue_thread, &task->task);
4776 		}
4777 	}
4778 
4779 	if (done_ccb != NULL)
4780 		xpt_free_ccb(done_ccb);
4781 }
4782 
4783 cam_status
4784 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
4785 		   struct cam_path *path)
4786 {
4787 	struct ccb_setasync csa;
4788 	cam_status status;
4789 	int xptpath = 0;
4790 
4791 	if (path == NULL) {
4792 		mtx_lock(&xsoftc.xpt_lock);
4793 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
4794 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
4795 		if (status != CAM_REQ_CMP) {
4796 			mtx_unlock(&xsoftc.xpt_lock);
4797 			return (status);
4798 		}
4799 		xptpath = 1;
4800 	}
4801 
4802 	xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
4803 	csa.ccb_h.func_code = XPT_SASYNC_CB;
4804 	csa.event_enable = event;
4805 	csa.callback = cbfunc;
4806 	csa.callback_arg = cbarg;
4807 	xpt_action((union ccb *)&csa);
4808 	status = csa.ccb_h.status;
4809 	if (xptpath) {
4810 		xpt_free_path(path);
4811 		mtx_unlock(&xsoftc.xpt_lock);
4812 	}
4813 	return (status);
4814 }
4815 
4816 static void
4817 xptaction(struct cam_sim *sim, union ccb *work_ccb)
4818 {
4819 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
4820 
4821 	switch (work_ccb->ccb_h.func_code) {
4822 	/* Common cases first */
4823 	case XPT_PATH_INQ:		/* Path routing inquiry */
4824 	{
4825 		struct ccb_pathinq *cpi;
4826 
4827 		cpi = &work_ccb->cpi;
4828 		cpi->version_num = 1; /* XXX??? */
4829 		cpi->hba_inquiry = 0;
4830 		cpi->target_sprt = 0;
4831 		cpi->hba_misc = 0;
4832 		cpi->hba_eng_cnt = 0;
4833 		cpi->max_target = 0;
4834 		cpi->max_lun = 0;
4835 		cpi->initiator_id = 0;
4836 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
4837 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
4838 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
4839 		cpi->unit_number = sim->unit_number;
4840 		cpi->bus_id = sim->bus_id;
4841 		cpi->base_transfer_speed = 0;
4842 		cpi->protocol = PROTO_UNSPECIFIED;
4843 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
4844 		cpi->transport = XPORT_UNSPECIFIED;
4845 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
4846 		cpi->ccb_h.status = CAM_REQ_CMP;
4847 		xpt_done(work_ccb);
4848 		break;
4849 	}
4850 	default:
4851 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
4852 		xpt_done(work_ccb);
4853 		break;
4854 	}
4855 }
4856 
4857 /*
4858  * The xpt as a "controller" has no interrupt sources, so polling
4859  * is a no-op.
4860  */
4861 static void
4862 xptpoll(struct cam_sim *sim)
4863 {
4864 }
4865 
4866 void
4867 xpt_lock_buses(void)
4868 {
4869 	mtx_lock(&xsoftc.xpt_topo_lock);
4870 }
4871 
4872 void
4873 xpt_unlock_buses(void)
4874 {
4875 	mtx_unlock(&xsoftc.xpt_topo_lock);
4876 }
4877 
4878 static void
4879 camisr(void *dummy)
4880 {
4881 	cam_simq_t queue;
4882 	struct cam_sim *sim;
4883 
4884 	mtx_lock(&cam_simq_lock);
4885 	TAILQ_INIT(&queue);
4886 	TAILQ_CONCAT(&queue, &cam_simq, links);
4887 	mtx_unlock(&cam_simq_lock);
4888 
4889 	while ((sim = TAILQ_FIRST(&queue)) != NULL) {
4890 		TAILQ_REMOVE(&queue, sim, links);
4891 		CAM_SIM_LOCK(sim);
4892 		sim->flags &= ~CAM_SIM_ON_DONEQ;
4893 		camisr_runqueue(&sim->sim_doneq);
4894 		CAM_SIM_UNLOCK(sim);
4895 	}
4896 }
4897 
4898 static void
4899 camisr_runqueue(void *V_queue)
4900 {
4901 	cam_isrq_t *queue = V_queue;
4902 	struct	ccb_hdr *ccb_h;
4903 
4904 	while ((ccb_h = TAILQ_FIRST(queue)) != NULL) {
4905 		int	runq;
4906 
4907 		TAILQ_REMOVE(queue, ccb_h, sim_links.tqe);
4908 		ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
4909 
4910 		CAM_DEBUG(ccb_h->path, CAM_DEBUG_TRACE,
4911 			  ("camisr\n"));
4912 
4913 		runq = FALSE;
4914 
4915 		if (ccb_h->flags & CAM_HIGH_POWER) {
4916 			struct highpowerlist	*hphead;
4917 			union ccb		*send_ccb;
4918 
4919 			mtx_lock(&xsoftc.xpt_lock);
4920 			hphead = &xsoftc.highpowerq;
4921 
4922 			send_ccb = (union ccb *)STAILQ_FIRST(hphead);
4923 
4924 			/*
4925 			 * Increment the count since this command is done.
4926 			 */
4927 			xsoftc.num_highpower++;
4928 
4929 			/*
4930 			 * Any high powered commands queued up?
4931 			 */
4932 			if (send_ccb != NULL) {
4933 
4934 				STAILQ_REMOVE_HEAD(hphead, xpt_links.stqe);
4935 				mtx_unlock(&xsoftc.xpt_lock);
4936 
4937 				xpt_release_devq(send_ccb->ccb_h.path,
4938 						 /*count*/1, /*runqueue*/TRUE);
4939 			} else
4940 				mtx_unlock(&xsoftc.xpt_lock);
4941 		}
4942 
4943 		if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
4944 			struct cam_ed *dev;
4945 
4946 			dev = ccb_h->path->device;
4947 
4948 			cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
4949 			ccb_h->path->bus->sim->devq->send_active--;
4950 			ccb_h->path->bus->sim->devq->send_openings++;
4951 
4952 			if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
4953 			  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)
4954 			 || ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
4955 			  && (dev->ccbq.dev_active == 0))) {
4956 
4957 				xpt_release_devq(ccb_h->path, /*count*/1,
4958 						 /*run_queue*/TRUE);
4959 			}
4960 
4961 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4962 			 && (--dev->tag_delay_count == 0))
4963 				xpt_start_tags(ccb_h->path);
4964 
4965 			if ((dev->ccbq.queue.entries > 0)
4966 			 && (dev->qfrozen_cnt == 0)
4967 			 && (device_is_send_queued(dev) == 0)) {
4968 				runq = xpt_schedule_dev_sendq(ccb_h->path->bus,
4969 							      dev);
4970 			}
4971 		}
4972 
4973 		if (ccb_h->status & CAM_RELEASE_SIMQ) {
4974 			xpt_release_simq(ccb_h->path->bus->sim,
4975 					 /*run_queue*/TRUE);
4976 			ccb_h->status &= ~CAM_RELEASE_SIMQ;
4977 			runq = FALSE;
4978 		}
4979 
4980 		if ((ccb_h->flags & CAM_DEV_QFRZDIS)
4981 		 && (ccb_h->status & CAM_DEV_QFRZN)) {
4982 			xpt_release_devq(ccb_h->path, /*count*/1,
4983 					 /*run_queue*/TRUE);
4984 			ccb_h->status &= ~CAM_DEV_QFRZN;
4985 		} else if (runq) {
4986 			xpt_run_dev_sendq(ccb_h->path->bus);
4987 		}
4988 
4989 		/* Call the peripheral driver's callback */
4990 		(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
4991 	}
4992 }
4993 
4994