1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 /* number of high powered commands that can go through right now */ 97 struct mtx xpt_highpower_lock; 98 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 99 int num_highpower; 100 101 /* queue for handling async rescan requests. */ 102 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 103 int buses_to_config; 104 int buses_config_done; 105 106 /* Registered busses */ 107 TAILQ_HEAD(,cam_eb) xpt_busses; 108 u_int bus_generation; 109 110 struct intr_config_hook *xpt_config_hook; 111 112 int boot_delay; 113 struct callout boot_callout; 114 115 struct mtx xpt_topo_lock; 116 struct mtx xpt_lock; 117 struct taskqueue *xpt_taskq; 118 }; 119 120 typedef enum { 121 DM_RET_COPY = 0x01, 122 DM_RET_FLAG_MASK = 0x0f, 123 DM_RET_NONE = 0x00, 124 DM_RET_STOP = 0x10, 125 DM_RET_DESCEND = 0x20, 126 DM_RET_ERROR = 0x30, 127 DM_RET_ACTION_MASK = 0xf0 128 } dev_match_ret; 129 130 typedef enum { 131 XPT_DEPTH_BUS, 132 XPT_DEPTH_TARGET, 133 XPT_DEPTH_DEVICE, 134 XPT_DEPTH_PERIPH 135 } xpt_traverse_depth; 136 137 struct xpt_traverse_config { 138 xpt_traverse_depth depth; 139 void *tr_func; 140 void *tr_arg; 141 }; 142 143 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 144 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 145 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 146 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 147 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 148 149 /* Transport layer configuration information */ 150 static struct xpt_softc xsoftc; 151 152 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 153 &xsoftc.boot_delay, 0, "Bus registration wait time"); 154 155 struct cam_doneq { 156 struct mtx_padalign cam_doneq_mtx; 157 STAILQ_HEAD(, ccb_hdr) cam_doneq; 158 int cam_doneq_sleep; 159 }; 160 161 static struct cam_doneq cam_doneqs[MAXCPU]; 162 static int cam_num_doneqs; 163 static struct proc *cam_proc; 164 165 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 166 &cam_num_doneqs, 0, "Number of completion queues/threads"); 167 168 struct cam_periph *xpt_periph; 169 170 static periph_init_t xpt_periph_init; 171 172 static struct periph_driver xpt_driver = 173 { 174 xpt_periph_init, "xpt", 175 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 176 CAM_PERIPH_DRV_EARLY 177 }; 178 179 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 180 181 static d_open_t xptopen; 182 static d_close_t xptclose; 183 static d_ioctl_t xptioctl; 184 static d_ioctl_t xptdoioctl; 185 186 static struct cdevsw xpt_cdevsw = { 187 .d_version = D_VERSION, 188 .d_flags = 0, 189 .d_open = xptopen, 190 .d_close = xptclose, 191 .d_ioctl = xptioctl, 192 .d_name = "xpt", 193 }; 194 195 /* Storage for debugging datastructures */ 196 struct cam_path *cam_dpath; 197 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 199 &cam_dflags, 0, "Enabled debug flags"); 200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 202 &cam_debug_delay, 0, "Delay in us after each debug message"); 203 204 /* Our boot-time initialization hook */ 205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 206 207 static moduledata_t cam_moduledata = { 208 "cam", 209 cam_module_event_handler, 210 NULL 211 }; 212 213 static int xpt_init(void *); 214 215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 216 MODULE_VERSION(cam, 1); 217 218 219 static void xpt_async_bcast(struct async_list *async_head, 220 u_int32_t async_code, 221 struct cam_path *path, 222 void *async_arg); 223 static path_id_t xptnextfreepathid(void); 224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 225 static union ccb *xpt_get_ccb(struct cam_periph *periph); 226 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 227 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 228 static void xpt_run_allocq_task(void *context, int pending); 229 static void xpt_run_devq(struct cam_devq *devq); 230 static timeout_t xpt_release_devq_timeout; 231 static void xpt_release_simq_timeout(void *arg) __unused; 232 static void xpt_acquire_bus(struct cam_eb *bus); 233 static void xpt_release_bus(struct cam_eb *bus); 234 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 235 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 236 int run_queue); 237 static struct cam_et* 238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 239 static void xpt_acquire_target(struct cam_et *target); 240 static void xpt_release_target(struct cam_et *target); 241 static struct cam_eb* 242 xpt_find_bus(path_id_t path_id); 243 static struct cam_et* 244 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 245 static struct cam_ed* 246 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 247 static void xpt_config(void *arg); 248 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 249 u_int32_t new_priority); 250 static xpt_devicefunc_t xptpassannouncefunc; 251 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 252 static void xptpoll(struct cam_sim *sim); 253 static void camisr_runqueue(void); 254 static void xpt_done_process(struct ccb_hdr *ccb_h); 255 static void xpt_done_td(void *); 256 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 257 u_int num_patterns, struct cam_eb *bus); 258 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 259 u_int num_patterns, 260 struct cam_ed *device); 261 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 262 u_int num_patterns, 263 struct cam_periph *periph); 264 static xpt_busfunc_t xptedtbusfunc; 265 static xpt_targetfunc_t xptedttargetfunc; 266 static xpt_devicefunc_t xptedtdevicefunc; 267 static xpt_periphfunc_t xptedtperiphfunc; 268 static xpt_pdrvfunc_t xptplistpdrvfunc; 269 static xpt_periphfunc_t xptplistperiphfunc; 270 static int xptedtmatch(struct ccb_dev_match *cdm); 271 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 272 static int xptbustraverse(struct cam_eb *start_bus, 273 xpt_busfunc_t *tr_func, void *arg); 274 static int xpttargettraverse(struct cam_eb *bus, 275 struct cam_et *start_target, 276 xpt_targetfunc_t *tr_func, void *arg); 277 static int xptdevicetraverse(struct cam_et *target, 278 struct cam_ed *start_device, 279 xpt_devicefunc_t *tr_func, void *arg); 280 static int xptperiphtraverse(struct cam_ed *device, 281 struct cam_periph *start_periph, 282 xpt_periphfunc_t *tr_func, void *arg); 283 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 284 xpt_pdrvfunc_t *tr_func, void *arg); 285 static int xptpdperiphtraverse(struct periph_driver **pdrv, 286 struct cam_periph *start_periph, 287 xpt_periphfunc_t *tr_func, 288 void *arg); 289 static xpt_busfunc_t xptdefbusfunc; 290 static xpt_targetfunc_t xptdeftargetfunc; 291 static xpt_devicefunc_t xptdefdevicefunc; 292 static xpt_periphfunc_t xptdefperiphfunc; 293 static void xpt_finishconfig_task(void *context, int pending); 294 static void xpt_dev_async_default(u_int32_t async_code, 295 struct cam_eb *bus, 296 struct cam_et *target, 297 struct cam_ed *device, 298 void *async_arg); 299 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 300 struct cam_et *target, 301 lun_id_t lun_id); 302 static xpt_devicefunc_t xptsetasyncfunc; 303 static xpt_busfunc_t xptsetasyncbusfunc; 304 static cam_status xptregister(struct cam_periph *periph, 305 void *arg); 306 static __inline int device_is_queued(struct cam_ed *device); 307 308 static __inline int 309 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 310 { 311 int retval; 312 313 mtx_assert(&devq->send_mtx, MA_OWNED); 314 if ((dev->ccbq.queue.entries > 0) && 315 (dev->ccbq.dev_openings > 0) && 316 (dev->ccbq.queue.qfrozen_cnt == 0)) { 317 /* 318 * The priority of a device waiting for controller 319 * resources is that of the highest priority CCB 320 * enqueued. 321 */ 322 retval = 323 xpt_schedule_dev(&devq->send_queue, 324 &dev->devq_entry, 325 CAMQ_GET_PRIO(&dev->ccbq.queue)); 326 } else { 327 retval = 0; 328 } 329 return (retval); 330 } 331 332 static __inline int 333 device_is_queued(struct cam_ed *device) 334 { 335 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 336 } 337 338 static void 339 xpt_periph_init() 340 { 341 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 342 } 343 344 static int 345 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 346 { 347 348 /* 349 * Only allow read-write access. 350 */ 351 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 352 return(EPERM); 353 354 /* 355 * We don't allow nonblocking access. 356 */ 357 if ((flags & O_NONBLOCK) != 0) { 358 printf("%s: can't do nonblocking access\n", devtoname(dev)); 359 return(ENODEV); 360 } 361 362 return(0); 363 } 364 365 static int 366 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 367 { 368 369 return(0); 370 } 371 372 /* 373 * Don't automatically grab the xpt softc lock here even though this is going 374 * through the xpt device. The xpt device is really just a back door for 375 * accessing other devices and SIMs, so the right thing to do is to grab 376 * the appropriate SIM lock once the bus/SIM is located. 377 */ 378 static int 379 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 380 { 381 int error; 382 383 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 384 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 385 } 386 return (error); 387 } 388 389 static int 390 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 391 { 392 int error; 393 394 error = 0; 395 396 switch(cmd) { 397 /* 398 * For the transport layer CAMIOCOMMAND ioctl, we really only want 399 * to accept CCB types that don't quite make sense to send through a 400 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 401 * in the CAM spec. 402 */ 403 case CAMIOCOMMAND: { 404 union ccb *ccb; 405 union ccb *inccb; 406 struct cam_eb *bus; 407 408 inccb = (union ccb *)addr; 409 410 bus = xpt_find_bus(inccb->ccb_h.path_id); 411 if (bus == NULL) 412 return (EINVAL); 413 414 switch (inccb->ccb_h.func_code) { 415 case XPT_SCAN_BUS: 416 case XPT_RESET_BUS: 417 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 418 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 419 xpt_release_bus(bus); 420 return (EINVAL); 421 } 422 break; 423 case XPT_SCAN_TGT: 424 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 425 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 426 xpt_release_bus(bus); 427 return (EINVAL); 428 } 429 break; 430 default: 431 break; 432 } 433 434 switch(inccb->ccb_h.func_code) { 435 case XPT_SCAN_BUS: 436 case XPT_RESET_BUS: 437 case XPT_PATH_INQ: 438 case XPT_ENG_INQ: 439 case XPT_SCAN_LUN: 440 case XPT_SCAN_TGT: 441 442 ccb = xpt_alloc_ccb(); 443 444 /* 445 * Create a path using the bus, target, and lun the 446 * user passed in. 447 */ 448 if (xpt_create_path(&ccb->ccb_h.path, NULL, 449 inccb->ccb_h.path_id, 450 inccb->ccb_h.target_id, 451 inccb->ccb_h.target_lun) != 452 CAM_REQ_CMP){ 453 error = EINVAL; 454 xpt_free_ccb(ccb); 455 break; 456 } 457 /* Ensure all of our fields are correct */ 458 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 459 inccb->ccb_h.pinfo.priority); 460 xpt_merge_ccb(ccb, inccb); 461 xpt_path_lock(ccb->ccb_h.path); 462 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 463 xpt_path_unlock(ccb->ccb_h.path); 464 bcopy(ccb, inccb, sizeof(union ccb)); 465 xpt_free_path(ccb->ccb_h.path); 466 xpt_free_ccb(ccb); 467 break; 468 469 case XPT_DEBUG: { 470 union ccb ccb; 471 472 /* 473 * This is an immediate CCB, so it's okay to 474 * allocate it on the stack. 475 */ 476 477 /* 478 * Create a path using the bus, target, and lun the 479 * user passed in. 480 */ 481 if (xpt_create_path(&ccb.ccb_h.path, NULL, 482 inccb->ccb_h.path_id, 483 inccb->ccb_h.target_id, 484 inccb->ccb_h.target_lun) != 485 CAM_REQ_CMP){ 486 error = EINVAL; 487 break; 488 } 489 /* Ensure all of our fields are correct */ 490 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 491 inccb->ccb_h.pinfo.priority); 492 xpt_merge_ccb(&ccb, inccb); 493 xpt_action(&ccb); 494 bcopy(&ccb, inccb, sizeof(union ccb)); 495 xpt_free_path(ccb.ccb_h.path); 496 break; 497 498 } 499 case XPT_DEV_MATCH: { 500 struct cam_periph_map_info mapinfo; 501 struct cam_path *old_path; 502 503 /* 504 * We can't deal with physical addresses for this 505 * type of transaction. 506 */ 507 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 508 CAM_DATA_VADDR) { 509 error = EINVAL; 510 break; 511 } 512 513 /* 514 * Save this in case the caller had it set to 515 * something in particular. 516 */ 517 old_path = inccb->ccb_h.path; 518 519 /* 520 * We really don't need a path for the matching 521 * code. The path is needed because of the 522 * debugging statements in xpt_action(). They 523 * assume that the CCB has a valid path. 524 */ 525 inccb->ccb_h.path = xpt_periph->path; 526 527 bzero(&mapinfo, sizeof(mapinfo)); 528 529 /* 530 * Map the pattern and match buffers into kernel 531 * virtual address space. 532 */ 533 error = cam_periph_mapmem(inccb, &mapinfo); 534 535 if (error) { 536 inccb->ccb_h.path = old_path; 537 break; 538 } 539 540 /* 541 * This is an immediate CCB, we can send it on directly. 542 */ 543 xpt_action(inccb); 544 545 /* 546 * Map the buffers back into user space. 547 */ 548 cam_periph_unmapmem(inccb, &mapinfo); 549 550 inccb->ccb_h.path = old_path; 551 552 error = 0; 553 break; 554 } 555 default: 556 error = ENOTSUP; 557 break; 558 } 559 xpt_release_bus(bus); 560 break; 561 } 562 /* 563 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 564 * with the periphal driver name and unit name filled in. The other 565 * fields don't really matter as input. The passthrough driver name 566 * ("pass"), and unit number are passed back in the ccb. The current 567 * device generation number, and the index into the device peripheral 568 * driver list, and the status are also passed back. Note that 569 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 570 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 571 * (or rather should be) impossible for the device peripheral driver 572 * list to change since we look at the whole thing in one pass, and 573 * we do it with lock protection. 574 * 575 */ 576 case CAMGETPASSTHRU: { 577 union ccb *ccb; 578 struct cam_periph *periph; 579 struct periph_driver **p_drv; 580 char *name; 581 u_int unit; 582 int base_periph_found; 583 584 ccb = (union ccb *)addr; 585 unit = ccb->cgdl.unit_number; 586 name = ccb->cgdl.periph_name; 587 base_periph_found = 0; 588 589 /* 590 * Sanity check -- make sure we don't get a null peripheral 591 * driver name. 592 */ 593 if (*ccb->cgdl.periph_name == '\0') { 594 error = EINVAL; 595 break; 596 } 597 598 /* Keep the list from changing while we traverse it */ 599 xpt_lock_buses(); 600 601 /* first find our driver in the list of drivers */ 602 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 603 if (strcmp((*p_drv)->driver_name, name) == 0) 604 break; 605 606 if (*p_drv == NULL) { 607 xpt_unlock_buses(); 608 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 609 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 610 *ccb->cgdl.periph_name = '\0'; 611 ccb->cgdl.unit_number = 0; 612 error = ENOENT; 613 break; 614 } 615 616 /* 617 * Run through every peripheral instance of this driver 618 * and check to see whether it matches the unit passed 619 * in by the user. If it does, get out of the loops and 620 * find the passthrough driver associated with that 621 * peripheral driver. 622 */ 623 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 624 periph = TAILQ_NEXT(periph, unit_links)) { 625 626 if (periph->unit_number == unit) 627 break; 628 } 629 /* 630 * If we found the peripheral driver that the user passed 631 * in, go through all of the peripheral drivers for that 632 * particular device and look for a passthrough driver. 633 */ 634 if (periph != NULL) { 635 struct cam_ed *device; 636 int i; 637 638 base_periph_found = 1; 639 device = periph->path->device; 640 for (i = 0, periph = SLIST_FIRST(&device->periphs); 641 periph != NULL; 642 periph = SLIST_NEXT(periph, periph_links), i++) { 643 /* 644 * Check to see whether we have a 645 * passthrough device or not. 646 */ 647 if (strcmp(periph->periph_name, "pass") == 0) { 648 /* 649 * Fill in the getdevlist fields. 650 */ 651 strcpy(ccb->cgdl.periph_name, 652 periph->periph_name); 653 ccb->cgdl.unit_number = 654 periph->unit_number; 655 if (SLIST_NEXT(periph, periph_links)) 656 ccb->cgdl.status = 657 CAM_GDEVLIST_MORE_DEVS; 658 else 659 ccb->cgdl.status = 660 CAM_GDEVLIST_LAST_DEVICE; 661 ccb->cgdl.generation = 662 device->generation; 663 ccb->cgdl.index = i; 664 /* 665 * Fill in some CCB header fields 666 * that the user may want. 667 */ 668 ccb->ccb_h.path_id = 669 periph->path->bus->path_id; 670 ccb->ccb_h.target_id = 671 periph->path->target->target_id; 672 ccb->ccb_h.target_lun = 673 periph->path->device->lun_id; 674 ccb->ccb_h.status = CAM_REQ_CMP; 675 break; 676 } 677 } 678 } 679 680 /* 681 * If the periph is null here, one of two things has 682 * happened. The first possibility is that we couldn't 683 * find the unit number of the particular peripheral driver 684 * that the user is asking about. e.g. the user asks for 685 * the passthrough driver for "da11". We find the list of 686 * "da" peripherals all right, but there is no unit 11. 687 * The other possibility is that we went through the list 688 * of peripheral drivers attached to the device structure, 689 * but didn't find one with the name "pass". Either way, 690 * we return ENOENT, since we couldn't find something. 691 */ 692 if (periph == NULL) { 693 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 694 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 695 *ccb->cgdl.periph_name = '\0'; 696 ccb->cgdl.unit_number = 0; 697 error = ENOENT; 698 /* 699 * It is unfortunate that this is even necessary, 700 * but there are many, many clueless users out there. 701 * If this is true, the user is looking for the 702 * passthrough driver, but doesn't have one in his 703 * kernel. 704 */ 705 if (base_periph_found == 1) { 706 printf("xptioctl: pass driver is not in the " 707 "kernel\n"); 708 printf("xptioctl: put \"device pass\" in " 709 "your kernel config file\n"); 710 } 711 } 712 xpt_unlock_buses(); 713 break; 714 } 715 default: 716 error = ENOTTY; 717 break; 718 } 719 720 return(error); 721 } 722 723 static int 724 cam_module_event_handler(module_t mod, int what, void *arg) 725 { 726 int error; 727 728 switch (what) { 729 case MOD_LOAD: 730 if ((error = xpt_init(NULL)) != 0) 731 return (error); 732 break; 733 case MOD_UNLOAD: 734 return EBUSY; 735 default: 736 return EOPNOTSUPP; 737 } 738 739 return 0; 740 } 741 742 static void 743 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 744 { 745 746 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 747 xpt_free_path(done_ccb->ccb_h.path); 748 xpt_free_ccb(done_ccb); 749 } else { 750 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 751 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 752 } 753 xpt_release_boot(); 754 } 755 756 /* thread to handle bus rescans */ 757 static void 758 xpt_scanner_thread(void *dummy) 759 { 760 union ccb *ccb; 761 struct cam_path path; 762 763 xpt_lock_buses(); 764 for (;;) { 765 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 766 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 767 "-", 0); 768 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 769 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 770 xpt_unlock_buses(); 771 772 /* 773 * Since lock can be dropped inside and path freed 774 * by completion callback even before return here, 775 * take our own path copy for reference. 776 */ 777 xpt_copy_path(&path, ccb->ccb_h.path); 778 xpt_path_lock(&path); 779 xpt_action(ccb); 780 xpt_path_unlock(&path); 781 xpt_release_path(&path); 782 783 xpt_lock_buses(); 784 } 785 } 786 } 787 788 void 789 xpt_rescan(union ccb *ccb) 790 { 791 struct ccb_hdr *hdr; 792 793 /* Prepare request */ 794 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 795 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 796 ccb->ccb_h.func_code = XPT_SCAN_BUS; 797 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 798 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 799 ccb->ccb_h.func_code = XPT_SCAN_TGT; 800 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 801 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 802 ccb->ccb_h.func_code = XPT_SCAN_LUN; 803 else { 804 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 805 xpt_free_path(ccb->ccb_h.path); 806 xpt_free_ccb(ccb); 807 return; 808 } 809 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 810 ccb->ccb_h.cbfcnp = xpt_rescan_done; 811 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 812 /* Don't make duplicate entries for the same paths. */ 813 xpt_lock_buses(); 814 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 815 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 816 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 817 wakeup(&xsoftc.ccb_scanq); 818 xpt_unlock_buses(); 819 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 820 xpt_free_path(ccb->ccb_h.path); 821 xpt_free_ccb(ccb); 822 return; 823 } 824 } 825 } 826 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 827 xsoftc.buses_to_config++; 828 wakeup(&xsoftc.ccb_scanq); 829 xpt_unlock_buses(); 830 } 831 832 /* Functions accessed by the peripheral drivers */ 833 static int 834 xpt_init(void *dummy) 835 { 836 struct cam_sim *xpt_sim; 837 struct cam_path *path; 838 struct cam_devq *devq; 839 cam_status status; 840 int error, i; 841 842 TAILQ_INIT(&xsoftc.xpt_busses); 843 TAILQ_INIT(&xsoftc.ccb_scanq); 844 STAILQ_INIT(&xsoftc.highpowerq); 845 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 846 847 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 848 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 849 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 850 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 851 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 852 853 #ifdef CAM_BOOT_DELAY 854 /* 855 * Override this value at compile time to assist our users 856 * who don't use loader to boot a kernel. 857 */ 858 xsoftc.boot_delay = CAM_BOOT_DELAY; 859 #endif 860 /* 861 * The xpt layer is, itself, the equivelent of a SIM. 862 * Allow 16 ccbs in the ccb pool for it. This should 863 * give decent parallelism when we probe busses and 864 * perform other XPT functions. 865 */ 866 devq = cam_simq_alloc(16); 867 xpt_sim = cam_sim_alloc(xptaction, 868 xptpoll, 869 "xpt", 870 /*softc*/NULL, 871 /*unit*/0, 872 /*mtx*/&xsoftc.xpt_lock, 873 /*max_dev_transactions*/0, 874 /*max_tagged_dev_transactions*/0, 875 devq); 876 if (xpt_sim == NULL) 877 return (ENOMEM); 878 879 mtx_lock(&xsoftc.xpt_lock); 880 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 881 mtx_unlock(&xsoftc.xpt_lock); 882 printf("xpt_init: xpt_bus_register failed with status %#x," 883 " failing attach\n", status); 884 return (EINVAL); 885 } 886 mtx_unlock(&xsoftc.xpt_lock); 887 888 /* 889 * Looking at the XPT from the SIM layer, the XPT is 890 * the equivelent of a peripheral driver. Allocate 891 * a peripheral driver entry for us. 892 */ 893 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 894 CAM_TARGET_WILDCARD, 895 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 896 mtx_unlock(&xsoftc.xpt_lock); 897 printf("xpt_init: xpt_create_path failed with status %#x," 898 " failing attach\n", status); 899 return (EINVAL); 900 } 901 xpt_path_lock(path); 902 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 903 path, NULL, 0, xpt_sim); 904 xpt_path_unlock(path); 905 xpt_free_path(path); 906 907 if (cam_num_doneqs < 1) 908 cam_num_doneqs = 1 + mp_ncpus / 6; 909 else if (cam_num_doneqs > MAXCPU) 910 cam_num_doneqs = MAXCPU; 911 for (i = 0; i < cam_num_doneqs; i++) { 912 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 913 MTX_DEF); 914 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 915 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 916 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 917 if (error != 0) { 918 cam_num_doneqs = i; 919 break; 920 } 921 } 922 if (cam_num_doneqs < 1) { 923 printf("xpt_init: Cannot init completion queues " 924 "- failing attach\n"); 925 return (ENOMEM); 926 } 927 /* 928 * Register a callback for when interrupts are enabled. 929 */ 930 xsoftc.xpt_config_hook = 931 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 932 M_CAMXPT, M_NOWAIT | M_ZERO); 933 if (xsoftc.xpt_config_hook == NULL) { 934 printf("xpt_init: Cannot malloc config hook " 935 "- failing attach\n"); 936 return (ENOMEM); 937 } 938 xsoftc.xpt_config_hook->ich_func = xpt_config; 939 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 940 free (xsoftc.xpt_config_hook, M_CAMXPT); 941 printf("xpt_init: config_intrhook_establish failed " 942 "- failing attach\n"); 943 } 944 945 return (0); 946 } 947 948 static cam_status 949 xptregister(struct cam_periph *periph, void *arg) 950 { 951 struct cam_sim *xpt_sim; 952 953 if (periph == NULL) { 954 printf("xptregister: periph was NULL!!\n"); 955 return(CAM_REQ_CMP_ERR); 956 } 957 958 xpt_sim = (struct cam_sim *)arg; 959 xpt_sim->softc = periph; 960 xpt_periph = periph; 961 periph->softc = NULL; 962 963 return(CAM_REQ_CMP); 964 } 965 966 int32_t 967 xpt_add_periph(struct cam_periph *periph) 968 { 969 struct cam_ed *device; 970 int32_t status; 971 972 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 973 device = periph->path->device; 974 status = CAM_REQ_CMP; 975 if (device != NULL) { 976 mtx_lock(&device->target->bus->eb_mtx); 977 device->generation++; 978 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 979 mtx_unlock(&device->target->bus->eb_mtx); 980 } 981 982 return (status); 983 } 984 985 void 986 xpt_remove_periph(struct cam_periph *periph) 987 { 988 struct cam_ed *device; 989 990 device = periph->path->device; 991 if (device != NULL) { 992 mtx_lock(&device->target->bus->eb_mtx); 993 device->generation++; 994 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 995 mtx_unlock(&device->target->bus->eb_mtx); 996 } 997 } 998 999 1000 void 1001 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1002 { 1003 struct cam_path *path = periph->path; 1004 1005 cam_periph_assert(periph, MA_OWNED); 1006 periph->flags |= CAM_PERIPH_ANNOUNCED; 1007 1008 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1009 periph->periph_name, periph->unit_number, 1010 path->bus->sim->sim_name, 1011 path->bus->sim->unit_number, 1012 path->bus->sim->bus_id, 1013 path->bus->path_id, 1014 path->target->target_id, 1015 (uintmax_t)path->device->lun_id); 1016 printf("%s%d: ", periph->periph_name, periph->unit_number); 1017 if (path->device->protocol == PROTO_SCSI) 1018 scsi_print_inquiry(&path->device->inq_data); 1019 else if (path->device->protocol == PROTO_ATA || 1020 path->device->protocol == PROTO_SATAPM) 1021 ata_print_ident(&path->device->ident_data); 1022 else if (path->device->protocol == PROTO_SEMB) 1023 semb_print_ident( 1024 (struct sep_identify_data *)&path->device->ident_data); 1025 else 1026 printf("Unknown protocol device\n"); 1027 if (path->device->serial_num_len > 0) { 1028 /* Don't wrap the screen - print only the first 60 chars */ 1029 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1030 periph->unit_number, path->device->serial_num); 1031 } 1032 /* Announce transport details. */ 1033 (*(path->bus->xport->announce))(periph); 1034 /* Announce command queueing. */ 1035 if (path->device->inq_flags & SID_CmdQue 1036 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1037 printf("%s%d: Command Queueing enabled\n", 1038 periph->periph_name, periph->unit_number); 1039 } 1040 /* Announce caller's details if they've passed in. */ 1041 if (announce_string != NULL) 1042 printf("%s%d: %s\n", periph->periph_name, 1043 periph->unit_number, announce_string); 1044 } 1045 1046 void 1047 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1048 { 1049 if (quirks != 0) { 1050 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1051 periph->unit_number, quirks, bit_string); 1052 } 1053 } 1054 1055 void 1056 xpt_denounce_periph(struct cam_periph *periph) 1057 { 1058 struct cam_path *path = periph->path; 1059 1060 cam_periph_assert(periph, MA_OWNED); 1061 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1062 periph->periph_name, periph->unit_number, 1063 path->bus->sim->sim_name, 1064 path->bus->sim->unit_number, 1065 path->bus->sim->bus_id, 1066 path->bus->path_id, 1067 path->target->target_id, 1068 (uintmax_t)path->device->lun_id); 1069 printf("%s%d: ", periph->periph_name, periph->unit_number); 1070 if (path->device->protocol == PROTO_SCSI) 1071 scsi_print_inquiry_short(&path->device->inq_data); 1072 else if (path->device->protocol == PROTO_ATA || 1073 path->device->protocol == PROTO_SATAPM) 1074 ata_print_ident_short(&path->device->ident_data); 1075 else if (path->device->protocol == PROTO_SEMB) 1076 semb_print_ident_short( 1077 (struct sep_identify_data *)&path->device->ident_data); 1078 else 1079 printf("Unknown protocol device"); 1080 if (path->device->serial_num_len > 0) 1081 printf(" s/n %.60s", path->device->serial_num); 1082 printf(" detached\n"); 1083 } 1084 1085 1086 int 1087 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1088 { 1089 int ret = -1, l; 1090 struct ccb_dev_advinfo cdai; 1091 struct scsi_vpd_id_descriptor *idd; 1092 1093 xpt_path_assert(path, MA_OWNED); 1094 1095 memset(&cdai, 0, sizeof(cdai)); 1096 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1097 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1098 cdai.bufsiz = len; 1099 1100 if (!strcmp(attr, "GEOM::ident")) 1101 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1102 else if (!strcmp(attr, "GEOM::physpath")) 1103 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1104 else if (strcmp(attr, "GEOM::lunid") == 0 || 1105 strcmp(attr, "GEOM::lunname") == 0) { 1106 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1107 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1108 } else 1109 goto out; 1110 1111 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1112 if (cdai.buf == NULL) { 1113 ret = ENOMEM; 1114 goto out; 1115 } 1116 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1117 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1118 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1119 if (cdai.provsiz == 0) 1120 goto out; 1121 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1122 if (strcmp(attr, "GEOM::lunid") == 0) { 1123 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1124 cdai.provsiz, scsi_devid_is_lun_naa); 1125 if (idd == NULL) 1126 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1127 cdai.provsiz, scsi_devid_is_lun_eui64); 1128 } else 1129 idd = NULL; 1130 if (idd == NULL) 1131 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1132 cdai.provsiz, scsi_devid_is_lun_t10); 1133 if (idd == NULL) 1134 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1135 cdai.provsiz, scsi_devid_is_lun_name); 1136 if (idd == NULL) 1137 goto out; 1138 ret = 0; 1139 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII || 1140 (idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1141 l = strnlen(idd->identifier, idd->length); 1142 if (l < len) { 1143 bcopy(idd->identifier, buf, l); 1144 buf[l] = 0; 1145 } else 1146 ret = EFAULT; 1147 } else { 1148 if (idd->length * 2 < len) { 1149 for (l = 0; l < idd->length; l++) 1150 sprintf(buf + l * 2, "%02x", 1151 idd->identifier[l]); 1152 } else 1153 ret = EFAULT; 1154 } 1155 } else { 1156 ret = 0; 1157 if (strlcpy(buf, cdai.buf, len) >= len) 1158 ret = EFAULT; 1159 } 1160 1161 out: 1162 if (cdai.buf != NULL) 1163 free(cdai.buf, M_CAMXPT); 1164 return ret; 1165 } 1166 1167 static dev_match_ret 1168 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1169 struct cam_eb *bus) 1170 { 1171 dev_match_ret retval; 1172 int i; 1173 1174 retval = DM_RET_NONE; 1175 1176 /* 1177 * If we aren't given something to match against, that's an error. 1178 */ 1179 if (bus == NULL) 1180 return(DM_RET_ERROR); 1181 1182 /* 1183 * If there are no match entries, then this bus matches no 1184 * matter what. 1185 */ 1186 if ((patterns == NULL) || (num_patterns == 0)) 1187 return(DM_RET_DESCEND | DM_RET_COPY); 1188 1189 for (i = 0; i < num_patterns; i++) { 1190 struct bus_match_pattern *cur_pattern; 1191 1192 /* 1193 * If the pattern in question isn't for a bus node, we 1194 * aren't interested. However, we do indicate to the 1195 * calling routine that we should continue descending the 1196 * tree, since the user wants to match against lower-level 1197 * EDT elements. 1198 */ 1199 if (patterns[i].type != DEV_MATCH_BUS) { 1200 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1201 retval |= DM_RET_DESCEND; 1202 continue; 1203 } 1204 1205 cur_pattern = &patterns[i].pattern.bus_pattern; 1206 1207 /* 1208 * If they want to match any bus node, we give them any 1209 * device node. 1210 */ 1211 if (cur_pattern->flags == BUS_MATCH_ANY) { 1212 /* set the copy flag */ 1213 retval |= DM_RET_COPY; 1214 1215 /* 1216 * If we've already decided on an action, go ahead 1217 * and return. 1218 */ 1219 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1220 return(retval); 1221 } 1222 1223 /* 1224 * Not sure why someone would do this... 1225 */ 1226 if (cur_pattern->flags == BUS_MATCH_NONE) 1227 continue; 1228 1229 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1230 && (cur_pattern->path_id != bus->path_id)) 1231 continue; 1232 1233 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1234 && (cur_pattern->bus_id != bus->sim->bus_id)) 1235 continue; 1236 1237 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1238 && (cur_pattern->unit_number != bus->sim->unit_number)) 1239 continue; 1240 1241 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1242 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1243 DEV_IDLEN) != 0)) 1244 continue; 1245 1246 /* 1247 * If we get to this point, the user definitely wants 1248 * information on this bus. So tell the caller to copy the 1249 * data out. 1250 */ 1251 retval |= DM_RET_COPY; 1252 1253 /* 1254 * If the return action has been set to descend, then we 1255 * know that we've already seen a non-bus matching 1256 * expression, therefore we need to further descend the tree. 1257 * This won't change by continuing around the loop, so we 1258 * go ahead and return. If we haven't seen a non-bus 1259 * matching expression, we keep going around the loop until 1260 * we exhaust the matching expressions. We'll set the stop 1261 * flag once we fall out of the loop. 1262 */ 1263 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1264 return(retval); 1265 } 1266 1267 /* 1268 * If the return action hasn't been set to descend yet, that means 1269 * we haven't seen anything other than bus matching patterns. So 1270 * tell the caller to stop descending the tree -- the user doesn't 1271 * want to match against lower level tree elements. 1272 */ 1273 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1274 retval |= DM_RET_STOP; 1275 1276 return(retval); 1277 } 1278 1279 static dev_match_ret 1280 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1281 struct cam_ed *device) 1282 { 1283 dev_match_ret retval; 1284 int i; 1285 1286 retval = DM_RET_NONE; 1287 1288 /* 1289 * If we aren't given something to match against, that's an error. 1290 */ 1291 if (device == NULL) 1292 return(DM_RET_ERROR); 1293 1294 /* 1295 * If there are no match entries, then this device matches no 1296 * matter what. 1297 */ 1298 if ((patterns == NULL) || (num_patterns == 0)) 1299 return(DM_RET_DESCEND | DM_RET_COPY); 1300 1301 for (i = 0; i < num_patterns; i++) { 1302 struct device_match_pattern *cur_pattern; 1303 struct scsi_vpd_device_id *device_id_page; 1304 1305 /* 1306 * If the pattern in question isn't for a device node, we 1307 * aren't interested. 1308 */ 1309 if (patterns[i].type != DEV_MATCH_DEVICE) { 1310 if ((patterns[i].type == DEV_MATCH_PERIPH) 1311 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1312 retval |= DM_RET_DESCEND; 1313 continue; 1314 } 1315 1316 cur_pattern = &patterns[i].pattern.device_pattern; 1317 1318 /* Error out if mutually exclusive options are specified. */ 1319 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1320 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1321 return(DM_RET_ERROR); 1322 1323 /* 1324 * If they want to match any device node, we give them any 1325 * device node. 1326 */ 1327 if (cur_pattern->flags == DEV_MATCH_ANY) 1328 goto copy_dev_node; 1329 1330 /* 1331 * Not sure why someone would do this... 1332 */ 1333 if (cur_pattern->flags == DEV_MATCH_NONE) 1334 continue; 1335 1336 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1337 && (cur_pattern->path_id != device->target->bus->path_id)) 1338 continue; 1339 1340 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1341 && (cur_pattern->target_id != device->target->target_id)) 1342 continue; 1343 1344 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1345 && (cur_pattern->target_lun != device->lun_id)) 1346 continue; 1347 1348 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1349 && (cam_quirkmatch((caddr_t)&device->inq_data, 1350 (caddr_t)&cur_pattern->data.inq_pat, 1351 1, sizeof(cur_pattern->data.inq_pat), 1352 scsi_static_inquiry_match) == NULL)) 1353 continue; 1354 1355 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1356 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1357 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1358 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1359 device->device_id_len 1360 - SVPD_DEVICE_ID_HDR_LEN, 1361 cur_pattern->data.devid_pat.id, 1362 cur_pattern->data.devid_pat.id_len) != 0)) 1363 continue; 1364 1365 copy_dev_node: 1366 /* 1367 * If we get to this point, the user definitely wants 1368 * information on this device. So tell the caller to copy 1369 * the data out. 1370 */ 1371 retval |= DM_RET_COPY; 1372 1373 /* 1374 * If the return action has been set to descend, then we 1375 * know that we've already seen a peripheral matching 1376 * expression, therefore we need to further descend the tree. 1377 * This won't change by continuing around the loop, so we 1378 * go ahead and return. If we haven't seen a peripheral 1379 * matching expression, we keep going around the loop until 1380 * we exhaust the matching expressions. We'll set the stop 1381 * flag once we fall out of the loop. 1382 */ 1383 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1384 return(retval); 1385 } 1386 1387 /* 1388 * If the return action hasn't been set to descend yet, that means 1389 * we haven't seen any peripheral matching patterns. So tell the 1390 * caller to stop descending the tree -- the user doesn't want to 1391 * match against lower level tree elements. 1392 */ 1393 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1394 retval |= DM_RET_STOP; 1395 1396 return(retval); 1397 } 1398 1399 /* 1400 * Match a single peripheral against any number of match patterns. 1401 */ 1402 static dev_match_ret 1403 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1404 struct cam_periph *periph) 1405 { 1406 dev_match_ret retval; 1407 int i; 1408 1409 /* 1410 * If we aren't given something to match against, that's an error. 1411 */ 1412 if (periph == NULL) 1413 return(DM_RET_ERROR); 1414 1415 /* 1416 * If there are no match entries, then this peripheral matches no 1417 * matter what. 1418 */ 1419 if ((patterns == NULL) || (num_patterns == 0)) 1420 return(DM_RET_STOP | DM_RET_COPY); 1421 1422 /* 1423 * There aren't any nodes below a peripheral node, so there's no 1424 * reason to descend the tree any further. 1425 */ 1426 retval = DM_RET_STOP; 1427 1428 for (i = 0; i < num_patterns; i++) { 1429 struct periph_match_pattern *cur_pattern; 1430 1431 /* 1432 * If the pattern in question isn't for a peripheral, we 1433 * aren't interested. 1434 */ 1435 if (patterns[i].type != DEV_MATCH_PERIPH) 1436 continue; 1437 1438 cur_pattern = &patterns[i].pattern.periph_pattern; 1439 1440 /* 1441 * If they want to match on anything, then we will do so. 1442 */ 1443 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1444 /* set the copy flag */ 1445 retval |= DM_RET_COPY; 1446 1447 /* 1448 * We've already set the return action to stop, 1449 * since there are no nodes below peripherals in 1450 * the tree. 1451 */ 1452 return(retval); 1453 } 1454 1455 /* 1456 * Not sure why someone would do this... 1457 */ 1458 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1459 continue; 1460 1461 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1462 && (cur_pattern->path_id != periph->path->bus->path_id)) 1463 continue; 1464 1465 /* 1466 * For the target and lun id's, we have to make sure the 1467 * target and lun pointers aren't NULL. The xpt peripheral 1468 * has a wildcard target and device. 1469 */ 1470 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1471 && ((periph->path->target == NULL) 1472 ||(cur_pattern->target_id != periph->path->target->target_id))) 1473 continue; 1474 1475 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1476 && ((periph->path->device == NULL) 1477 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1478 continue; 1479 1480 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1481 && (cur_pattern->unit_number != periph->unit_number)) 1482 continue; 1483 1484 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1485 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1486 DEV_IDLEN) != 0)) 1487 continue; 1488 1489 /* 1490 * If we get to this point, the user definitely wants 1491 * information on this peripheral. So tell the caller to 1492 * copy the data out. 1493 */ 1494 retval |= DM_RET_COPY; 1495 1496 /* 1497 * The return action has already been set to stop, since 1498 * peripherals don't have any nodes below them in the EDT. 1499 */ 1500 return(retval); 1501 } 1502 1503 /* 1504 * If we get to this point, the peripheral that was passed in 1505 * doesn't match any of the patterns. 1506 */ 1507 return(retval); 1508 } 1509 1510 static int 1511 xptedtbusfunc(struct cam_eb *bus, void *arg) 1512 { 1513 struct ccb_dev_match *cdm; 1514 struct cam_et *target; 1515 dev_match_ret retval; 1516 1517 cdm = (struct ccb_dev_match *)arg; 1518 1519 /* 1520 * If our position is for something deeper in the tree, that means 1521 * that we've already seen this node. So, we keep going down. 1522 */ 1523 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1524 && (cdm->pos.cookie.bus == bus) 1525 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1526 && (cdm->pos.cookie.target != NULL)) 1527 retval = DM_RET_DESCEND; 1528 else 1529 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1530 1531 /* 1532 * If we got an error, bail out of the search. 1533 */ 1534 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1535 cdm->status = CAM_DEV_MATCH_ERROR; 1536 return(0); 1537 } 1538 1539 /* 1540 * If the copy flag is set, copy this bus out. 1541 */ 1542 if (retval & DM_RET_COPY) { 1543 int spaceleft, j; 1544 1545 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1546 sizeof(struct dev_match_result)); 1547 1548 /* 1549 * If we don't have enough space to put in another 1550 * match result, save our position and tell the 1551 * user there are more devices to check. 1552 */ 1553 if (spaceleft < sizeof(struct dev_match_result)) { 1554 bzero(&cdm->pos, sizeof(cdm->pos)); 1555 cdm->pos.position_type = 1556 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1557 1558 cdm->pos.cookie.bus = bus; 1559 cdm->pos.generations[CAM_BUS_GENERATION]= 1560 xsoftc.bus_generation; 1561 cdm->status = CAM_DEV_MATCH_MORE; 1562 return(0); 1563 } 1564 j = cdm->num_matches; 1565 cdm->num_matches++; 1566 cdm->matches[j].type = DEV_MATCH_BUS; 1567 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1568 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1569 cdm->matches[j].result.bus_result.unit_number = 1570 bus->sim->unit_number; 1571 strncpy(cdm->matches[j].result.bus_result.dev_name, 1572 bus->sim->sim_name, DEV_IDLEN); 1573 } 1574 1575 /* 1576 * If the user is only interested in busses, there's no 1577 * reason to descend to the next level in the tree. 1578 */ 1579 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1580 return(1); 1581 1582 /* 1583 * If there is a target generation recorded, check it to 1584 * make sure the target list hasn't changed. 1585 */ 1586 mtx_lock(&bus->eb_mtx); 1587 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1588 && (cdm->pos.cookie.bus == bus) 1589 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1590 && (cdm->pos.cookie.target != NULL)) { 1591 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1592 bus->generation)) { 1593 mtx_unlock(&bus->eb_mtx); 1594 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1595 return (0); 1596 } 1597 target = (struct cam_et *)cdm->pos.cookie.target; 1598 target->refcount++; 1599 } else 1600 target = NULL; 1601 mtx_unlock(&bus->eb_mtx); 1602 1603 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1604 } 1605 1606 static int 1607 xptedttargetfunc(struct cam_et *target, void *arg) 1608 { 1609 struct ccb_dev_match *cdm; 1610 struct cam_eb *bus; 1611 struct cam_ed *device; 1612 1613 cdm = (struct ccb_dev_match *)arg; 1614 bus = target->bus; 1615 1616 /* 1617 * If there is a device list generation recorded, check it to 1618 * make sure the device list hasn't changed. 1619 */ 1620 mtx_lock(&bus->eb_mtx); 1621 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1622 && (cdm->pos.cookie.bus == bus) 1623 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1624 && (cdm->pos.cookie.target == target) 1625 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1626 && (cdm->pos.cookie.device != NULL)) { 1627 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1628 target->generation) { 1629 mtx_unlock(&bus->eb_mtx); 1630 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1631 return(0); 1632 } 1633 device = (struct cam_ed *)cdm->pos.cookie.device; 1634 device->refcount++; 1635 } else 1636 device = NULL; 1637 mtx_unlock(&bus->eb_mtx); 1638 1639 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1640 } 1641 1642 static int 1643 xptedtdevicefunc(struct cam_ed *device, void *arg) 1644 { 1645 struct cam_eb *bus; 1646 struct cam_periph *periph; 1647 struct ccb_dev_match *cdm; 1648 dev_match_ret retval; 1649 1650 cdm = (struct ccb_dev_match *)arg; 1651 bus = device->target->bus; 1652 1653 /* 1654 * If our position is for something deeper in the tree, that means 1655 * that we've already seen this node. So, we keep going down. 1656 */ 1657 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1658 && (cdm->pos.cookie.device == device) 1659 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1660 && (cdm->pos.cookie.periph != NULL)) 1661 retval = DM_RET_DESCEND; 1662 else 1663 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1664 device); 1665 1666 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1667 cdm->status = CAM_DEV_MATCH_ERROR; 1668 return(0); 1669 } 1670 1671 /* 1672 * If the copy flag is set, copy this device out. 1673 */ 1674 if (retval & DM_RET_COPY) { 1675 int spaceleft, j; 1676 1677 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1678 sizeof(struct dev_match_result)); 1679 1680 /* 1681 * If we don't have enough space to put in another 1682 * match result, save our position and tell the 1683 * user there are more devices to check. 1684 */ 1685 if (spaceleft < sizeof(struct dev_match_result)) { 1686 bzero(&cdm->pos, sizeof(cdm->pos)); 1687 cdm->pos.position_type = 1688 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1689 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1690 1691 cdm->pos.cookie.bus = device->target->bus; 1692 cdm->pos.generations[CAM_BUS_GENERATION]= 1693 xsoftc.bus_generation; 1694 cdm->pos.cookie.target = device->target; 1695 cdm->pos.generations[CAM_TARGET_GENERATION] = 1696 device->target->bus->generation; 1697 cdm->pos.cookie.device = device; 1698 cdm->pos.generations[CAM_DEV_GENERATION] = 1699 device->target->generation; 1700 cdm->status = CAM_DEV_MATCH_MORE; 1701 return(0); 1702 } 1703 j = cdm->num_matches; 1704 cdm->num_matches++; 1705 cdm->matches[j].type = DEV_MATCH_DEVICE; 1706 cdm->matches[j].result.device_result.path_id = 1707 device->target->bus->path_id; 1708 cdm->matches[j].result.device_result.target_id = 1709 device->target->target_id; 1710 cdm->matches[j].result.device_result.target_lun = 1711 device->lun_id; 1712 cdm->matches[j].result.device_result.protocol = 1713 device->protocol; 1714 bcopy(&device->inq_data, 1715 &cdm->matches[j].result.device_result.inq_data, 1716 sizeof(struct scsi_inquiry_data)); 1717 bcopy(&device->ident_data, 1718 &cdm->matches[j].result.device_result.ident_data, 1719 sizeof(struct ata_params)); 1720 1721 /* Let the user know whether this device is unconfigured */ 1722 if (device->flags & CAM_DEV_UNCONFIGURED) 1723 cdm->matches[j].result.device_result.flags = 1724 DEV_RESULT_UNCONFIGURED; 1725 else 1726 cdm->matches[j].result.device_result.flags = 1727 DEV_RESULT_NOFLAG; 1728 } 1729 1730 /* 1731 * If the user isn't interested in peripherals, don't descend 1732 * the tree any further. 1733 */ 1734 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1735 return(1); 1736 1737 /* 1738 * If there is a peripheral list generation recorded, make sure 1739 * it hasn't changed. 1740 */ 1741 xpt_lock_buses(); 1742 mtx_lock(&bus->eb_mtx); 1743 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1744 && (cdm->pos.cookie.bus == bus) 1745 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1746 && (cdm->pos.cookie.target == device->target) 1747 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1748 && (cdm->pos.cookie.device == device) 1749 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1750 && (cdm->pos.cookie.periph != NULL)) { 1751 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1752 device->generation) { 1753 mtx_unlock(&bus->eb_mtx); 1754 xpt_unlock_buses(); 1755 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1756 return(0); 1757 } 1758 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1759 periph->refcount++; 1760 } else 1761 periph = NULL; 1762 mtx_unlock(&bus->eb_mtx); 1763 xpt_unlock_buses(); 1764 1765 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1766 } 1767 1768 static int 1769 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1770 { 1771 struct ccb_dev_match *cdm; 1772 dev_match_ret retval; 1773 1774 cdm = (struct ccb_dev_match *)arg; 1775 1776 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1777 1778 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1779 cdm->status = CAM_DEV_MATCH_ERROR; 1780 return(0); 1781 } 1782 1783 /* 1784 * If the copy flag is set, copy this peripheral out. 1785 */ 1786 if (retval & DM_RET_COPY) { 1787 int spaceleft, j; 1788 1789 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1790 sizeof(struct dev_match_result)); 1791 1792 /* 1793 * If we don't have enough space to put in another 1794 * match result, save our position and tell the 1795 * user there are more devices to check. 1796 */ 1797 if (spaceleft < sizeof(struct dev_match_result)) { 1798 bzero(&cdm->pos, sizeof(cdm->pos)); 1799 cdm->pos.position_type = 1800 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1801 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1802 CAM_DEV_POS_PERIPH; 1803 1804 cdm->pos.cookie.bus = periph->path->bus; 1805 cdm->pos.generations[CAM_BUS_GENERATION]= 1806 xsoftc.bus_generation; 1807 cdm->pos.cookie.target = periph->path->target; 1808 cdm->pos.generations[CAM_TARGET_GENERATION] = 1809 periph->path->bus->generation; 1810 cdm->pos.cookie.device = periph->path->device; 1811 cdm->pos.generations[CAM_DEV_GENERATION] = 1812 periph->path->target->generation; 1813 cdm->pos.cookie.periph = periph; 1814 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1815 periph->path->device->generation; 1816 cdm->status = CAM_DEV_MATCH_MORE; 1817 return(0); 1818 } 1819 1820 j = cdm->num_matches; 1821 cdm->num_matches++; 1822 cdm->matches[j].type = DEV_MATCH_PERIPH; 1823 cdm->matches[j].result.periph_result.path_id = 1824 periph->path->bus->path_id; 1825 cdm->matches[j].result.periph_result.target_id = 1826 periph->path->target->target_id; 1827 cdm->matches[j].result.periph_result.target_lun = 1828 periph->path->device->lun_id; 1829 cdm->matches[j].result.periph_result.unit_number = 1830 periph->unit_number; 1831 strncpy(cdm->matches[j].result.periph_result.periph_name, 1832 periph->periph_name, DEV_IDLEN); 1833 } 1834 1835 return(1); 1836 } 1837 1838 static int 1839 xptedtmatch(struct ccb_dev_match *cdm) 1840 { 1841 struct cam_eb *bus; 1842 int ret; 1843 1844 cdm->num_matches = 0; 1845 1846 /* 1847 * Check the bus list generation. If it has changed, the user 1848 * needs to reset everything and start over. 1849 */ 1850 xpt_lock_buses(); 1851 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1852 && (cdm->pos.cookie.bus != NULL)) { 1853 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1854 xsoftc.bus_generation) { 1855 xpt_unlock_buses(); 1856 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1857 return(0); 1858 } 1859 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1860 bus->refcount++; 1861 } else 1862 bus = NULL; 1863 xpt_unlock_buses(); 1864 1865 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1866 1867 /* 1868 * If we get back 0, that means that we had to stop before fully 1869 * traversing the EDT. It also means that one of the subroutines 1870 * has set the status field to the proper value. If we get back 1, 1871 * we've fully traversed the EDT and copied out any matching entries. 1872 */ 1873 if (ret == 1) 1874 cdm->status = CAM_DEV_MATCH_LAST; 1875 1876 return(ret); 1877 } 1878 1879 static int 1880 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1881 { 1882 struct cam_periph *periph; 1883 struct ccb_dev_match *cdm; 1884 1885 cdm = (struct ccb_dev_match *)arg; 1886 1887 xpt_lock_buses(); 1888 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1889 && (cdm->pos.cookie.pdrv == pdrv) 1890 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1891 && (cdm->pos.cookie.periph != NULL)) { 1892 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1893 (*pdrv)->generation) { 1894 xpt_unlock_buses(); 1895 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1896 return(0); 1897 } 1898 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1899 periph->refcount++; 1900 } else 1901 periph = NULL; 1902 xpt_unlock_buses(); 1903 1904 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1905 } 1906 1907 static int 1908 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1909 { 1910 struct ccb_dev_match *cdm; 1911 dev_match_ret retval; 1912 1913 cdm = (struct ccb_dev_match *)arg; 1914 1915 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1916 1917 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1918 cdm->status = CAM_DEV_MATCH_ERROR; 1919 return(0); 1920 } 1921 1922 /* 1923 * If the copy flag is set, copy this peripheral out. 1924 */ 1925 if (retval & DM_RET_COPY) { 1926 int spaceleft, j; 1927 1928 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1929 sizeof(struct dev_match_result)); 1930 1931 /* 1932 * If we don't have enough space to put in another 1933 * match result, save our position and tell the 1934 * user there are more devices to check. 1935 */ 1936 if (spaceleft < sizeof(struct dev_match_result)) { 1937 struct periph_driver **pdrv; 1938 1939 pdrv = NULL; 1940 bzero(&cdm->pos, sizeof(cdm->pos)); 1941 cdm->pos.position_type = 1942 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1943 CAM_DEV_POS_PERIPH; 1944 1945 /* 1946 * This may look a bit non-sensical, but it is 1947 * actually quite logical. There are very few 1948 * peripheral drivers, and bloating every peripheral 1949 * structure with a pointer back to its parent 1950 * peripheral driver linker set entry would cost 1951 * more in the long run than doing this quick lookup. 1952 */ 1953 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1954 if (strcmp((*pdrv)->driver_name, 1955 periph->periph_name) == 0) 1956 break; 1957 } 1958 1959 if (*pdrv == NULL) { 1960 cdm->status = CAM_DEV_MATCH_ERROR; 1961 return(0); 1962 } 1963 1964 cdm->pos.cookie.pdrv = pdrv; 1965 /* 1966 * The periph generation slot does double duty, as 1967 * does the periph pointer slot. They are used for 1968 * both edt and pdrv lookups and positioning. 1969 */ 1970 cdm->pos.cookie.periph = periph; 1971 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1972 (*pdrv)->generation; 1973 cdm->status = CAM_DEV_MATCH_MORE; 1974 return(0); 1975 } 1976 1977 j = cdm->num_matches; 1978 cdm->num_matches++; 1979 cdm->matches[j].type = DEV_MATCH_PERIPH; 1980 cdm->matches[j].result.periph_result.path_id = 1981 periph->path->bus->path_id; 1982 1983 /* 1984 * The transport layer peripheral doesn't have a target or 1985 * lun. 1986 */ 1987 if (periph->path->target) 1988 cdm->matches[j].result.periph_result.target_id = 1989 periph->path->target->target_id; 1990 else 1991 cdm->matches[j].result.periph_result.target_id = 1992 CAM_TARGET_WILDCARD; 1993 1994 if (periph->path->device) 1995 cdm->matches[j].result.periph_result.target_lun = 1996 periph->path->device->lun_id; 1997 else 1998 cdm->matches[j].result.periph_result.target_lun = 1999 CAM_LUN_WILDCARD; 2000 2001 cdm->matches[j].result.periph_result.unit_number = 2002 periph->unit_number; 2003 strncpy(cdm->matches[j].result.periph_result.periph_name, 2004 periph->periph_name, DEV_IDLEN); 2005 } 2006 2007 return(1); 2008 } 2009 2010 static int 2011 xptperiphlistmatch(struct ccb_dev_match *cdm) 2012 { 2013 int ret; 2014 2015 cdm->num_matches = 0; 2016 2017 /* 2018 * At this point in the edt traversal function, we check the bus 2019 * list generation to make sure that no busses have been added or 2020 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2021 * For the peripheral driver list traversal function, however, we 2022 * don't have to worry about new peripheral driver types coming or 2023 * going; they're in a linker set, and therefore can't change 2024 * without a recompile. 2025 */ 2026 2027 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2028 && (cdm->pos.cookie.pdrv != NULL)) 2029 ret = xptpdrvtraverse( 2030 (struct periph_driver **)cdm->pos.cookie.pdrv, 2031 xptplistpdrvfunc, cdm); 2032 else 2033 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2034 2035 /* 2036 * If we get back 0, that means that we had to stop before fully 2037 * traversing the peripheral driver tree. It also means that one of 2038 * the subroutines has set the status field to the proper value. If 2039 * we get back 1, we've fully traversed the EDT and copied out any 2040 * matching entries. 2041 */ 2042 if (ret == 1) 2043 cdm->status = CAM_DEV_MATCH_LAST; 2044 2045 return(ret); 2046 } 2047 2048 static int 2049 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2050 { 2051 struct cam_eb *bus, *next_bus; 2052 int retval; 2053 2054 retval = 1; 2055 if (start_bus) 2056 bus = start_bus; 2057 else { 2058 xpt_lock_buses(); 2059 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2060 if (bus == NULL) { 2061 xpt_unlock_buses(); 2062 return (retval); 2063 } 2064 bus->refcount++; 2065 xpt_unlock_buses(); 2066 } 2067 for (; bus != NULL; bus = next_bus) { 2068 retval = tr_func(bus, arg); 2069 if (retval == 0) { 2070 xpt_release_bus(bus); 2071 break; 2072 } 2073 xpt_lock_buses(); 2074 next_bus = TAILQ_NEXT(bus, links); 2075 if (next_bus) 2076 next_bus->refcount++; 2077 xpt_unlock_buses(); 2078 xpt_release_bus(bus); 2079 } 2080 return(retval); 2081 } 2082 2083 static int 2084 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2085 xpt_targetfunc_t *tr_func, void *arg) 2086 { 2087 struct cam_et *target, *next_target; 2088 int retval; 2089 2090 retval = 1; 2091 if (start_target) 2092 target = start_target; 2093 else { 2094 mtx_lock(&bus->eb_mtx); 2095 target = TAILQ_FIRST(&bus->et_entries); 2096 if (target == NULL) { 2097 mtx_unlock(&bus->eb_mtx); 2098 return (retval); 2099 } 2100 target->refcount++; 2101 mtx_unlock(&bus->eb_mtx); 2102 } 2103 for (; target != NULL; target = next_target) { 2104 retval = tr_func(target, arg); 2105 if (retval == 0) { 2106 xpt_release_target(target); 2107 break; 2108 } 2109 mtx_lock(&bus->eb_mtx); 2110 next_target = TAILQ_NEXT(target, links); 2111 if (next_target) 2112 next_target->refcount++; 2113 mtx_unlock(&bus->eb_mtx); 2114 xpt_release_target(target); 2115 } 2116 return(retval); 2117 } 2118 2119 static int 2120 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2121 xpt_devicefunc_t *tr_func, void *arg) 2122 { 2123 struct cam_eb *bus; 2124 struct cam_ed *device, *next_device; 2125 int retval; 2126 2127 retval = 1; 2128 bus = target->bus; 2129 if (start_device) 2130 device = start_device; 2131 else { 2132 mtx_lock(&bus->eb_mtx); 2133 device = TAILQ_FIRST(&target->ed_entries); 2134 if (device == NULL) { 2135 mtx_unlock(&bus->eb_mtx); 2136 return (retval); 2137 } 2138 device->refcount++; 2139 mtx_unlock(&bus->eb_mtx); 2140 } 2141 for (; device != NULL; device = next_device) { 2142 mtx_lock(&device->device_mtx); 2143 retval = tr_func(device, arg); 2144 mtx_unlock(&device->device_mtx); 2145 if (retval == 0) { 2146 xpt_release_device(device); 2147 break; 2148 } 2149 mtx_lock(&bus->eb_mtx); 2150 next_device = TAILQ_NEXT(device, links); 2151 if (next_device) 2152 next_device->refcount++; 2153 mtx_unlock(&bus->eb_mtx); 2154 xpt_release_device(device); 2155 } 2156 return(retval); 2157 } 2158 2159 static int 2160 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2161 xpt_periphfunc_t *tr_func, void *arg) 2162 { 2163 struct cam_eb *bus; 2164 struct cam_periph *periph, *next_periph; 2165 int retval; 2166 2167 retval = 1; 2168 2169 bus = device->target->bus; 2170 if (start_periph) 2171 periph = start_periph; 2172 else { 2173 xpt_lock_buses(); 2174 mtx_lock(&bus->eb_mtx); 2175 periph = SLIST_FIRST(&device->periphs); 2176 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2177 periph = SLIST_NEXT(periph, periph_links); 2178 if (periph == NULL) { 2179 mtx_unlock(&bus->eb_mtx); 2180 xpt_unlock_buses(); 2181 return (retval); 2182 } 2183 periph->refcount++; 2184 mtx_unlock(&bus->eb_mtx); 2185 xpt_unlock_buses(); 2186 } 2187 for (; periph != NULL; periph = next_periph) { 2188 retval = tr_func(periph, arg); 2189 if (retval == 0) { 2190 cam_periph_release_locked(periph); 2191 break; 2192 } 2193 xpt_lock_buses(); 2194 mtx_lock(&bus->eb_mtx); 2195 next_periph = SLIST_NEXT(periph, periph_links); 2196 while (next_periph != NULL && 2197 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2198 next_periph = SLIST_NEXT(periph, periph_links); 2199 if (next_periph) 2200 next_periph->refcount++; 2201 mtx_unlock(&bus->eb_mtx); 2202 xpt_unlock_buses(); 2203 cam_periph_release_locked(periph); 2204 } 2205 return(retval); 2206 } 2207 2208 static int 2209 xptpdrvtraverse(struct periph_driver **start_pdrv, 2210 xpt_pdrvfunc_t *tr_func, void *arg) 2211 { 2212 struct periph_driver **pdrv; 2213 int retval; 2214 2215 retval = 1; 2216 2217 /* 2218 * We don't traverse the peripheral driver list like we do the 2219 * other lists, because it is a linker set, and therefore cannot be 2220 * changed during runtime. If the peripheral driver list is ever 2221 * re-done to be something other than a linker set (i.e. it can 2222 * change while the system is running), the list traversal should 2223 * be modified to work like the other traversal functions. 2224 */ 2225 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2226 *pdrv != NULL; pdrv++) { 2227 retval = tr_func(pdrv, arg); 2228 2229 if (retval == 0) 2230 return(retval); 2231 } 2232 2233 return(retval); 2234 } 2235 2236 static int 2237 xptpdperiphtraverse(struct periph_driver **pdrv, 2238 struct cam_periph *start_periph, 2239 xpt_periphfunc_t *tr_func, void *arg) 2240 { 2241 struct cam_periph *periph, *next_periph; 2242 int retval; 2243 2244 retval = 1; 2245 2246 if (start_periph) 2247 periph = start_periph; 2248 else { 2249 xpt_lock_buses(); 2250 periph = TAILQ_FIRST(&(*pdrv)->units); 2251 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2252 periph = TAILQ_NEXT(periph, unit_links); 2253 if (periph == NULL) { 2254 xpt_unlock_buses(); 2255 return (retval); 2256 } 2257 periph->refcount++; 2258 xpt_unlock_buses(); 2259 } 2260 for (; periph != NULL; periph = next_periph) { 2261 cam_periph_lock(periph); 2262 retval = tr_func(periph, arg); 2263 cam_periph_unlock(periph); 2264 if (retval == 0) { 2265 cam_periph_release(periph); 2266 break; 2267 } 2268 xpt_lock_buses(); 2269 next_periph = TAILQ_NEXT(periph, unit_links); 2270 while (next_periph != NULL && 2271 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2272 next_periph = TAILQ_NEXT(periph, unit_links); 2273 if (next_periph) 2274 next_periph->refcount++; 2275 xpt_unlock_buses(); 2276 cam_periph_release(periph); 2277 } 2278 return(retval); 2279 } 2280 2281 static int 2282 xptdefbusfunc(struct cam_eb *bus, void *arg) 2283 { 2284 struct xpt_traverse_config *tr_config; 2285 2286 tr_config = (struct xpt_traverse_config *)arg; 2287 2288 if (tr_config->depth == XPT_DEPTH_BUS) { 2289 xpt_busfunc_t *tr_func; 2290 2291 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2292 2293 return(tr_func(bus, tr_config->tr_arg)); 2294 } else 2295 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2296 } 2297 2298 static int 2299 xptdeftargetfunc(struct cam_et *target, void *arg) 2300 { 2301 struct xpt_traverse_config *tr_config; 2302 2303 tr_config = (struct xpt_traverse_config *)arg; 2304 2305 if (tr_config->depth == XPT_DEPTH_TARGET) { 2306 xpt_targetfunc_t *tr_func; 2307 2308 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2309 2310 return(tr_func(target, tr_config->tr_arg)); 2311 } else 2312 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2313 } 2314 2315 static int 2316 xptdefdevicefunc(struct cam_ed *device, void *arg) 2317 { 2318 struct xpt_traverse_config *tr_config; 2319 2320 tr_config = (struct xpt_traverse_config *)arg; 2321 2322 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2323 xpt_devicefunc_t *tr_func; 2324 2325 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2326 2327 return(tr_func(device, tr_config->tr_arg)); 2328 } else 2329 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2330 } 2331 2332 static int 2333 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2334 { 2335 struct xpt_traverse_config *tr_config; 2336 xpt_periphfunc_t *tr_func; 2337 2338 tr_config = (struct xpt_traverse_config *)arg; 2339 2340 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2341 2342 /* 2343 * Unlike the other default functions, we don't check for depth 2344 * here. The peripheral driver level is the last level in the EDT, 2345 * so if we're here, we should execute the function in question. 2346 */ 2347 return(tr_func(periph, tr_config->tr_arg)); 2348 } 2349 2350 /* 2351 * Execute the given function for every bus in the EDT. 2352 */ 2353 static int 2354 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2355 { 2356 struct xpt_traverse_config tr_config; 2357 2358 tr_config.depth = XPT_DEPTH_BUS; 2359 tr_config.tr_func = tr_func; 2360 tr_config.tr_arg = arg; 2361 2362 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2363 } 2364 2365 /* 2366 * Execute the given function for every device in the EDT. 2367 */ 2368 static int 2369 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2370 { 2371 struct xpt_traverse_config tr_config; 2372 2373 tr_config.depth = XPT_DEPTH_DEVICE; 2374 tr_config.tr_func = tr_func; 2375 tr_config.tr_arg = arg; 2376 2377 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2378 } 2379 2380 static int 2381 xptsetasyncfunc(struct cam_ed *device, void *arg) 2382 { 2383 struct cam_path path; 2384 struct ccb_getdev cgd; 2385 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2386 2387 /* 2388 * Don't report unconfigured devices (Wildcard devs, 2389 * devices only for target mode, device instances 2390 * that have been invalidated but are waiting for 2391 * their last reference count to be released). 2392 */ 2393 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2394 return (1); 2395 2396 xpt_compile_path(&path, 2397 NULL, 2398 device->target->bus->path_id, 2399 device->target->target_id, 2400 device->lun_id); 2401 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2402 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2403 xpt_action((union ccb *)&cgd); 2404 csa->callback(csa->callback_arg, 2405 AC_FOUND_DEVICE, 2406 &path, &cgd); 2407 xpt_release_path(&path); 2408 2409 return(1); 2410 } 2411 2412 static int 2413 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2414 { 2415 struct cam_path path; 2416 struct ccb_pathinq cpi; 2417 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2418 2419 xpt_compile_path(&path, /*periph*/NULL, 2420 bus->path_id, 2421 CAM_TARGET_WILDCARD, 2422 CAM_LUN_WILDCARD); 2423 xpt_path_lock(&path); 2424 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2425 cpi.ccb_h.func_code = XPT_PATH_INQ; 2426 xpt_action((union ccb *)&cpi); 2427 csa->callback(csa->callback_arg, 2428 AC_PATH_REGISTERED, 2429 &path, &cpi); 2430 xpt_path_unlock(&path); 2431 xpt_release_path(&path); 2432 2433 return(1); 2434 } 2435 2436 void 2437 xpt_action(union ccb *start_ccb) 2438 { 2439 2440 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2441 2442 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2443 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2444 } 2445 2446 void 2447 xpt_action_default(union ccb *start_ccb) 2448 { 2449 struct cam_path *path; 2450 struct cam_sim *sim; 2451 int lock; 2452 2453 path = start_ccb->ccb_h.path; 2454 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2455 2456 switch (start_ccb->ccb_h.func_code) { 2457 case XPT_SCSI_IO: 2458 { 2459 struct cam_ed *device; 2460 2461 /* 2462 * For the sake of compatibility with SCSI-1 2463 * devices that may not understand the identify 2464 * message, we include lun information in the 2465 * second byte of all commands. SCSI-1 specifies 2466 * that luns are a 3 bit value and reserves only 3 2467 * bits for lun information in the CDB. Later 2468 * revisions of the SCSI spec allow for more than 8 2469 * luns, but have deprecated lun information in the 2470 * CDB. So, if the lun won't fit, we must omit. 2471 * 2472 * Also be aware that during initial probing for devices, 2473 * the inquiry information is unknown but initialized to 0. 2474 * This means that this code will be exercised while probing 2475 * devices with an ANSI revision greater than 2. 2476 */ 2477 device = path->device; 2478 if (device->protocol_version <= SCSI_REV_2 2479 && start_ccb->ccb_h.target_lun < 8 2480 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2481 2482 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2483 start_ccb->ccb_h.target_lun << 5; 2484 } 2485 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2486 } 2487 /* FALLTHROUGH */ 2488 case XPT_TARGET_IO: 2489 case XPT_CONT_TARGET_IO: 2490 start_ccb->csio.sense_resid = 0; 2491 start_ccb->csio.resid = 0; 2492 /* FALLTHROUGH */ 2493 case XPT_ATA_IO: 2494 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2495 start_ccb->ataio.resid = 0; 2496 /* FALLTHROUGH */ 2497 case XPT_RESET_DEV: 2498 case XPT_ENG_EXEC: 2499 case XPT_SMP_IO: 2500 { 2501 struct cam_devq *devq; 2502 2503 devq = path->bus->sim->devq; 2504 mtx_lock(&devq->send_mtx); 2505 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2506 if (xpt_schedule_devq(devq, path->device) != 0) 2507 xpt_run_devq(devq); 2508 mtx_unlock(&devq->send_mtx); 2509 break; 2510 } 2511 case XPT_CALC_GEOMETRY: 2512 /* Filter out garbage */ 2513 if (start_ccb->ccg.block_size == 0 2514 || start_ccb->ccg.volume_size == 0) { 2515 start_ccb->ccg.cylinders = 0; 2516 start_ccb->ccg.heads = 0; 2517 start_ccb->ccg.secs_per_track = 0; 2518 start_ccb->ccb_h.status = CAM_REQ_CMP; 2519 break; 2520 } 2521 #if defined(PC98) || defined(__sparc64__) 2522 /* 2523 * In a PC-98 system, geometry translation depens on 2524 * the "real" device geometry obtained from mode page 4. 2525 * SCSI geometry translation is performed in the 2526 * initialization routine of the SCSI BIOS and the result 2527 * stored in host memory. If the translation is available 2528 * in host memory, use it. If not, rely on the default 2529 * translation the device driver performs. 2530 * For sparc64, we may need adjust the geometry of large 2531 * disks in order to fit the limitations of the 16-bit 2532 * fields of the VTOC8 disk label. 2533 */ 2534 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2535 start_ccb->ccb_h.status = CAM_REQ_CMP; 2536 break; 2537 } 2538 #endif 2539 goto call_sim; 2540 case XPT_ABORT: 2541 { 2542 union ccb* abort_ccb; 2543 2544 abort_ccb = start_ccb->cab.abort_ccb; 2545 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2546 2547 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2548 struct cam_ccbq *ccbq; 2549 struct cam_ed *device; 2550 2551 device = abort_ccb->ccb_h.path->device; 2552 ccbq = &device->ccbq; 2553 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2554 abort_ccb->ccb_h.status = 2555 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2556 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2557 xpt_done(abort_ccb); 2558 start_ccb->ccb_h.status = CAM_REQ_CMP; 2559 break; 2560 } 2561 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2562 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2563 /* 2564 * We've caught this ccb en route to 2565 * the SIM. Flag it for abort and the 2566 * SIM will do so just before starting 2567 * real work on the CCB. 2568 */ 2569 abort_ccb->ccb_h.status = 2570 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2571 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2572 start_ccb->ccb_h.status = CAM_REQ_CMP; 2573 break; 2574 } 2575 } 2576 if (XPT_FC_IS_QUEUED(abort_ccb) 2577 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2578 /* 2579 * It's already completed but waiting 2580 * for our SWI to get to it. 2581 */ 2582 start_ccb->ccb_h.status = CAM_UA_ABORT; 2583 break; 2584 } 2585 /* 2586 * If we weren't able to take care of the abort request 2587 * in the XPT, pass the request down to the SIM for processing. 2588 */ 2589 } 2590 /* FALLTHROUGH */ 2591 case XPT_ACCEPT_TARGET_IO: 2592 case XPT_EN_LUN: 2593 case XPT_IMMED_NOTIFY: 2594 case XPT_NOTIFY_ACK: 2595 case XPT_RESET_BUS: 2596 case XPT_IMMEDIATE_NOTIFY: 2597 case XPT_NOTIFY_ACKNOWLEDGE: 2598 case XPT_GET_SIM_KNOB: 2599 case XPT_SET_SIM_KNOB: 2600 case XPT_GET_TRAN_SETTINGS: 2601 case XPT_SET_TRAN_SETTINGS: 2602 case XPT_PATH_INQ: 2603 call_sim: 2604 sim = path->bus->sim; 2605 lock = (mtx_owned(sim->mtx) == 0); 2606 if (lock) 2607 CAM_SIM_LOCK(sim); 2608 (*(sim->sim_action))(sim, start_ccb); 2609 if (lock) 2610 CAM_SIM_UNLOCK(sim); 2611 break; 2612 case XPT_PATH_STATS: 2613 start_ccb->cpis.last_reset = path->bus->last_reset; 2614 start_ccb->ccb_h.status = CAM_REQ_CMP; 2615 break; 2616 case XPT_GDEV_TYPE: 2617 { 2618 struct cam_ed *dev; 2619 2620 dev = path->device; 2621 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2622 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2623 } else { 2624 struct ccb_getdev *cgd; 2625 2626 cgd = &start_ccb->cgd; 2627 cgd->protocol = dev->protocol; 2628 cgd->inq_data = dev->inq_data; 2629 cgd->ident_data = dev->ident_data; 2630 cgd->inq_flags = dev->inq_flags; 2631 cgd->ccb_h.status = CAM_REQ_CMP; 2632 cgd->serial_num_len = dev->serial_num_len; 2633 if ((dev->serial_num_len > 0) 2634 && (dev->serial_num != NULL)) 2635 bcopy(dev->serial_num, cgd->serial_num, 2636 dev->serial_num_len); 2637 } 2638 break; 2639 } 2640 case XPT_GDEV_STATS: 2641 { 2642 struct cam_ed *dev; 2643 2644 dev = path->device; 2645 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2646 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2647 } else { 2648 struct ccb_getdevstats *cgds; 2649 struct cam_eb *bus; 2650 struct cam_et *tar; 2651 2652 cgds = &start_ccb->cgds; 2653 bus = path->bus; 2654 tar = path->target; 2655 cgds->dev_openings = dev->ccbq.dev_openings; 2656 cgds->dev_active = dev->ccbq.dev_active; 2657 cgds->devq_openings = dev->ccbq.devq_openings; 2658 cgds->devq_queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2659 cgds->held = dev->ccbq.held; 2660 cgds->last_reset = tar->last_reset; 2661 cgds->maxtags = dev->maxtags; 2662 cgds->mintags = dev->mintags; 2663 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2664 cgds->last_reset = bus->last_reset; 2665 cgds->ccb_h.status = CAM_REQ_CMP; 2666 } 2667 break; 2668 } 2669 case XPT_GDEVLIST: 2670 { 2671 struct cam_periph *nperiph; 2672 struct periph_list *periph_head; 2673 struct ccb_getdevlist *cgdl; 2674 u_int i; 2675 struct cam_ed *device; 2676 int found; 2677 2678 2679 found = 0; 2680 2681 /* 2682 * Don't want anyone mucking with our data. 2683 */ 2684 device = path->device; 2685 periph_head = &device->periphs; 2686 cgdl = &start_ccb->cgdl; 2687 2688 /* 2689 * Check and see if the list has changed since the user 2690 * last requested a list member. If so, tell them that the 2691 * list has changed, and therefore they need to start over 2692 * from the beginning. 2693 */ 2694 if ((cgdl->index != 0) && 2695 (cgdl->generation != device->generation)) { 2696 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2697 break; 2698 } 2699 2700 /* 2701 * Traverse the list of peripherals and attempt to find 2702 * the requested peripheral. 2703 */ 2704 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2705 (nperiph != NULL) && (i <= cgdl->index); 2706 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2707 if (i == cgdl->index) { 2708 strncpy(cgdl->periph_name, 2709 nperiph->periph_name, 2710 DEV_IDLEN); 2711 cgdl->unit_number = nperiph->unit_number; 2712 found = 1; 2713 } 2714 } 2715 if (found == 0) { 2716 cgdl->status = CAM_GDEVLIST_ERROR; 2717 break; 2718 } 2719 2720 if (nperiph == NULL) 2721 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2722 else 2723 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2724 2725 cgdl->index++; 2726 cgdl->generation = device->generation; 2727 2728 cgdl->ccb_h.status = CAM_REQ_CMP; 2729 break; 2730 } 2731 case XPT_DEV_MATCH: 2732 { 2733 dev_pos_type position_type; 2734 struct ccb_dev_match *cdm; 2735 2736 cdm = &start_ccb->cdm; 2737 2738 /* 2739 * There are two ways of getting at information in the EDT. 2740 * The first way is via the primary EDT tree. It starts 2741 * with a list of busses, then a list of targets on a bus, 2742 * then devices/luns on a target, and then peripherals on a 2743 * device/lun. The "other" way is by the peripheral driver 2744 * lists. The peripheral driver lists are organized by 2745 * peripheral driver. (obviously) So it makes sense to 2746 * use the peripheral driver list if the user is looking 2747 * for something like "da1", or all "da" devices. If the 2748 * user is looking for something on a particular bus/target 2749 * or lun, it's generally better to go through the EDT tree. 2750 */ 2751 2752 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2753 position_type = cdm->pos.position_type; 2754 else { 2755 u_int i; 2756 2757 position_type = CAM_DEV_POS_NONE; 2758 2759 for (i = 0; i < cdm->num_patterns; i++) { 2760 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2761 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2762 position_type = CAM_DEV_POS_EDT; 2763 break; 2764 } 2765 } 2766 2767 if (cdm->num_patterns == 0) 2768 position_type = CAM_DEV_POS_EDT; 2769 else if (position_type == CAM_DEV_POS_NONE) 2770 position_type = CAM_DEV_POS_PDRV; 2771 } 2772 2773 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2774 case CAM_DEV_POS_EDT: 2775 xptedtmatch(cdm); 2776 break; 2777 case CAM_DEV_POS_PDRV: 2778 xptperiphlistmatch(cdm); 2779 break; 2780 default: 2781 cdm->status = CAM_DEV_MATCH_ERROR; 2782 break; 2783 } 2784 2785 if (cdm->status == CAM_DEV_MATCH_ERROR) 2786 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2787 else 2788 start_ccb->ccb_h.status = CAM_REQ_CMP; 2789 2790 break; 2791 } 2792 case XPT_SASYNC_CB: 2793 { 2794 struct ccb_setasync *csa; 2795 struct async_node *cur_entry; 2796 struct async_list *async_head; 2797 u_int32_t added; 2798 2799 csa = &start_ccb->csa; 2800 added = csa->event_enable; 2801 async_head = &path->device->asyncs; 2802 2803 /* 2804 * If there is already an entry for us, simply 2805 * update it. 2806 */ 2807 cur_entry = SLIST_FIRST(async_head); 2808 while (cur_entry != NULL) { 2809 if ((cur_entry->callback_arg == csa->callback_arg) 2810 && (cur_entry->callback == csa->callback)) 2811 break; 2812 cur_entry = SLIST_NEXT(cur_entry, links); 2813 } 2814 2815 if (cur_entry != NULL) { 2816 /* 2817 * If the request has no flags set, 2818 * remove the entry. 2819 */ 2820 added &= ~cur_entry->event_enable; 2821 if (csa->event_enable == 0) { 2822 SLIST_REMOVE(async_head, cur_entry, 2823 async_node, links); 2824 xpt_release_device(path->device); 2825 free(cur_entry, M_CAMXPT); 2826 } else { 2827 cur_entry->event_enable = csa->event_enable; 2828 } 2829 csa->event_enable = added; 2830 } else { 2831 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2832 M_NOWAIT); 2833 if (cur_entry == NULL) { 2834 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2835 break; 2836 } 2837 cur_entry->event_enable = csa->event_enable; 2838 cur_entry->event_lock = 2839 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2840 cur_entry->callback_arg = csa->callback_arg; 2841 cur_entry->callback = csa->callback; 2842 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2843 xpt_acquire_device(path->device); 2844 } 2845 start_ccb->ccb_h.status = CAM_REQ_CMP; 2846 break; 2847 } 2848 case XPT_REL_SIMQ: 2849 { 2850 struct ccb_relsim *crs; 2851 struct cam_ed *dev; 2852 2853 crs = &start_ccb->crs; 2854 dev = path->device; 2855 if (dev == NULL) { 2856 2857 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2858 break; 2859 } 2860 2861 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2862 2863 /* Don't ever go below one opening */ 2864 if (crs->openings > 0) { 2865 xpt_dev_ccbq_resize(path, crs->openings); 2866 if (bootverbose) { 2867 xpt_print(path, 2868 "number of openings is now %d\n", 2869 crs->openings); 2870 } 2871 } 2872 } 2873 2874 mtx_lock(&dev->sim->devq->send_mtx); 2875 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2876 2877 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2878 2879 /* 2880 * Just extend the old timeout and decrement 2881 * the freeze count so that a single timeout 2882 * is sufficient for releasing the queue. 2883 */ 2884 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2885 callout_stop(&dev->callout); 2886 } else { 2887 2888 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2889 } 2890 2891 callout_reset(&dev->callout, 2892 (crs->release_timeout * hz) / 1000, 2893 xpt_release_devq_timeout, dev); 2894 2895 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2896 2897 } 2898 2899 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2900 2901 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2902 /* 2903 * Decrement the freeze count so that a single 2904 * completion is still sufficient to unfreeze 2905 * the queue. 2906 */ 2907 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2908 } else { 2909 2910 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2911 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2912 } 2913 } 2914 2915 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2916 2917 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2918 || (dev->ccbq.dev_active == 0)) { 2919 2920 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2921 } else { 2922 2923 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2924 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2925 } 2926 } 2927 mtx_unlock(&dev->sim->devq->send_mtx); 2928 2929 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2930 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2931 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2932 start_ccb->ccb_h.status = CAM_REQ_CMP; 2933 break; 2934 } 2935 case XPT_DEBUG: { 2936 struct cam_path *oldpath; 2937 2938 /* Check that all request bits are supported. */ 2939 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2940 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2941 break; 2942 } 2943 2944 cam_dflags = CAM_DEBUG_NONE; 2945 if (cam_dpath != NULL) { 2946 oldpath = cam_dpath; 2947 cam_dpath = NULL; 2948 xpt_free_path(oldpath); 2949 } 2950 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2951 if (xpt_create_path(&cam_dpath, NULL, 2952 start_ccb->ccb_h.path_id, 2953 start_ccb->ccb_h.target_id, 2954 start_ccb->ccb_h.target_lun) != 2955 CAM_REQ_CMP) { 2956 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2957 } else { 2958 cam_dflags = start_ccb->cdbg.flags; 2959 start_ccb->ccb_h.status = CAM_REQ_CMP; 2960 xpt_print(cam_dpath, "debugging flags now %x\n", 2961 cam_dflags); 2962 } 2963 } else 2964 start_ccb->ccb_h.status = CAM_REQ_CMP; 2965 break; 2966 } 2967 case XPT_NOOP: 2968 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2969 xpt_freeze_devq(path, 1); 2970 start_ccb->ccb_h.status = CAM_REQ_CMP; 2971 break; 2972 default: 2973 case XPT_SDEV_TYPE: 2974 case XPT_TERM_IO: 2975 case XPT_ENG_INQ: 2976 /* XXX Implement */ 2977 printf("%s: CCB type %#x not supported\n", __func__, 2978 start_ccb->ccb_h.func_code); 2979 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2980 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2981 xpt_done(start_ccb); 2982 } 2983 break; 2984 } 2985 } 2986 2987 void 2988 xpt_polled_action(union ccb *start_ccb) 2989 { 2990 u_int32_t timeout; 2991 struct cam_sim *sim; 2992 struct cam_devq *devq; 2993 struct cam_ed *dev; 2994 2995 timeout = start_ccb->ccb_h.timeout * 10; 2996 sim = start_ccb->ccb_h.path->bus->sim; 2997 devq = sim->devq; 2998 dev = start_ccb->ccb_h.path->device; 2999 3000 mtx_unlock(&dev->device_mtx); 3001 3002 /* 3003 * Steal an opening so that no other queued requests 3004 * can get it before us while we simulate interrupts. 3005 */ 3006 mtx_lock(&devq->send_mtx); 3007 dev->ccbq.devq_openings--; 3008 dev->ccbq.dev_openings--; 3009 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3010 (--timeout > 0)) { 3011 mtx_unlock(&devq->send_mtx); 3012 DELAY(100); 3013 CAM_SIM_LOCK(sim); 3014 (*(sim->sim_poll))(sim); 3015 CAM_SIM_UNLOCK(sim); 3016 camisr_runqueue(); 3017 mtx_lock(&devq->send_mtx); 3018 } 3019 dev->ccbq.devq_openings++; 3020 dev->ccbq.dev_openings++; 3021 mtx_unlock(&devq->send_mtx); 3022 3023 if (timeout != 0) { 3024 xpt_action(start_ccb); 3025 while(--timeout > 0) { 3026 CAM_SIM_LOCK(sim); 3027 (*(sim->sim_poll))(sim); 3028 CAM_SIM_UNLOCK(sim); 3029 camisr_runqueue(); 3030 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3031 != CAM_REQ_INPROG) 3032 break; 3033 DELAY(100); 3034 } 3035 if (timeout == 0) { 3036 /* 3037 * XXX Is it worth adding a sim_timeout entry 3038 * point so we can attempt recovery? If 3039 * this is only used for dumps, I don't think 3040 * it is. 3041 */ 3042 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3043 } 3044 } else { 3045 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3046 } 3047 3048 mtx_lock(&dev->device_mtx); 3049 } 3050 3051 /* 3052 * Schedule a peripheral driver to receive a ccb when it's 3053 * target device has space for more transactions. 3054 */ 3055 void 3056 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3057 { 3058 3059 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3060 cam_periph_assert(periph, MA_OWNED); 3061 if (new_priority < periph->scheduled_priority) { 3062 periph->scheduled_priority = new_priority; 3063 xpt_run_allocq(periph, 0); 3064 } 3065 } 3066 3067 3068 /* 3069 * Schedule a device to run on a given queue. 3070 * If the device was inserted as a new entry on the queue, 3071 * return 1 meaning the device queue should be run. If we 3072 * were already queued, implying someone else has already 3073 * started the queue, return 0 so the caller doesn't attempt 3074 * to run the queue. 3075 */ 3076 static int 3077 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3078 u_int32_t new_priority) 3079 { 3080 int retval; 3081 u_int32_t old_priority; 3082 3083 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3084 3085 old_priority = pinfo->priority; 3086 3087 /* 3088 * Are we already queued? 3089 */ 3090 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3091 /* Simply reorder based on new priority */ 3092 if (new_priority < old_priority) { 3093 camq_change_priority(queue, pinfo->index, 3094 new_priority); 3095 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3096 ("changed priority to %d\n", 3097 new_priority)); 3098 retval = 1; 3099 } else 3100 retval = 0; 3101 } else { 3102 /* New entry on the queue */ 3103 if (new_priority < old_priority) 3104 pinfo->priority = new_priority; 3105 3106 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3107 ("Inserting onto queue\n")); 3108 pinfo->generation = ++queue->generation; 3109 camq_insert(queue, pinfo); 3110 retval = 1; 3111 } 3112 return (retval); 3113 } 3114 3115 static void 3116 xpt_run_allocq_task(void *context, int pending) 3117 { 3118 struct cam_periph *periph = context; 3119 3120 cam_periph_lock(periph); 3121 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3122 xpt_run_allocq(periph, 1); 3123 cam_periph_unlock(periph); 3124 cam_periph_release(periph); 3125 } 3126 3127 static void 3128 xpt_run_allocq(struct cam_periph *periph, int sleep) 3129 { 3130 struct cam_ed *device; 3131 union ccb *ccb; 3132 uint32_t prio; 3133 3134 cam_periph_assert(periph, MA_OWNED); 3135 if (periph->periph_allocating) 3136 return; 3137 periph->periph_allocating = 1; 3138 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3139 device = periph->path->device; 3140 ccb = NULL; 3141 restart: 3142 while ((prio = min(periph->scheduled_priority, 3143 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3144 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3145 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3146 3147 if (ccb == NULL && 3148 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3149 if (sleep) { 3150 ccb = xpt_get_ccb(periph); 3151 goto restart; 3152 } 3153 if (periph->flags & CAM_PERIPH_RUN_TASK) 3154 break; 3155 cam_periph_doacquire(periph); 3156 periph->flags |= CAM_PERIPH_RUN_TASK; 3157 taskqueue_enqueue(xsoftc.xpt_taskq, 3158 &periph->periph_run_task); 3159 break; 3160 } 3161 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3162 if (prio == periph->immediate_priority) { 3163 periph->immediate_priority = CAM_PRIORITY_NONE; 3164 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3165 ("waking cam_periph_getccb()\n")); 3166 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3167 periph_links.sle); 3168 wakeup(&periph->ccb_list); 3169 } else { 3170 periph->scheduled_priority = CAM_PRIORITY_NONE; 3171 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3172 ("calling periph_start()\n")); 3173 periph->periph_start(periph, ccb); 3174 } 3175 ccb = NULL; 3176 } 3177 if (ccb != NULL) 3178 xpt_release_ccb(ccb); 3179 periph->periph_allocating = 0; 3180 } 3181 3182 static void 3183 xpt_run_devq(struct cam_devq *devq) 3184 { 3185 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3186 int lock; 3187 3188 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3189 3190 devq->send_queue.qfrozen_cnt++; 3191 while ((devq->send_queue.entries > 0) 3192 && (devq->send_openings > 0) 3193 && (devq->send_queue.qfrozen_cnt <= 1)) { 3194 struct cam_ed *device; 3195 union ccb *work_ccb; 3196 struct cam_sim *sim; 3197 3198 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3199 CAMQ_HEAD); 3200 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3201 ("running device %p\n", device)); 3202 3203 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3204 if (work_ccb == NULL) { 3205 printf("device on run queue with no ccbs???\n"); 3206 continue; 3207 } 3208 3209 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3210 3211 mtx_lock(&xsoftc.xpt_highpower_lock); 3212 if (xsoftc.num_highpower <= 0) { 3213 /* 3214 * We got a high power command, but we 3215 * don't have any available slots. Freeze 3216 * the device queue until we have a slot 3217 * available. 3218 */ 3219 xpt_freeze_devq_device(device, 1); 3220 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3221 highpowerq_entry); 3222 3223 mtx_unlock(&xsoftc.xpt_highpower_lock); 3224 continue; 3225 } else { 3226 /* 3227 * Consume a high power slot while 3228 * this ccb runs. 3229 */ 3230 xsoftc.num_highpower--; 3231 } 3232 mtx_unlock(&xsoftc.xpt_highpower_lock); 3233 } 3234 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3235 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3236 devq->send_openings--; 3237 devq->send_active++; 3238 xpt_schedule_devq(devq, device); 3239 mtx_unlock(&devq->send_mtx); 3240 3241 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3242 /* 3243 * The client wants to freeze the queue 3244 * after this CCB is sent. 3245 */ 3246 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3247 } 3248 3249 /* In Target mode, the peripheral driver knows best... */ 3250 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3251 if ((device->inq_flags & SID_CmdQue) != 0 3252 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3253 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3254 else 3255 /* 3256 * Clear this in case of a retried CCB that 3257 * failed due to a rejected tag. 3258 */ 3259 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3260 } 3261 3262 switch (work_ccb->ccb_h.func_code) { 3263 case XPT_SCSI_IO: 3264 CAM_DEBUG(work_ccb->ccb_h.path, 3265 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3266 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3267 &device->inq_data), 3268 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3269 cdb_str, sizeof(cdb_str)))); 3270 break; 3271 case XPT_ATA_IO: 3272 CAM_DEBUG(work_ccb->ccb_h.path, 3273 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3274 ata_op_string(&work_ccb->ataio.cmd), 3275 ata_cmd_string(&work_ccb->ataio.cmd, 3276 cdb_str, sizeof(cdb_str)))); 3277 break; 3278 default: 3279 break; 3280 } 3281 3282 /* 3283 * Device queues can be shared among multiple SIM instances 3284 * that reside on different busses. Use the SIM from the 3285 * queued device, rather than the one from the calling bus. 3286 */ 3287 sim = device->sim; 3288 lock = (mtx_owned(sim->mtx) == 0); 3289 if (lock) 3290 CAM_SIM_LOCK(sim); 3291 (*(sim->sim_action))(sim, work_ccb); 3292 if (lock) 3293 CAM_SIM_UNLOCK(sim); 3294 mtx_lock(&devq->send_mtx); 3295 } 3296 devq->send_queue.qfrozen_cnt--; 3297 } 3298 3299 /* 3300 * This function merges stuff from the slave ccb into the master ccb, while 3301 * keeping important fields in the master ccb constant. 3302 */ 3303 void 3304 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3305 { 3306 3307 /* 3308 * Pull fields that are valid for peripheral drivers to set 3309 * into the master CCB along with the CCB "payload". 3310 */ 3311 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3312 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3313 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3314 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3315 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3316 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3317 } 3318 3319 void 3320 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3321 { 3322 3323 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3324 ccb_h->pinfo.priority = priority; 3325 ccb_h->path = path; 3326 ccb_h->path_id = path->bus->path_id; 3327 if (path->target) 3328 ccb_h->target_id = path->target->target_id; 3329 else 3330 ccb_h->target_id = CAM_TARGET_WILDCARD; 3331 if (path->device) { 3332 ccb_h->target_lun = path->device->lun_id; 3333 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3334 } else { 3335 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3336 } 3337 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3338 ccb_h->flags = 0; 3339 ccb_h->xflags = 0; 3340 } 3341 3342 /* Path manipulation functions */ 3343 cam_status 3344 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3345 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3346 { 3347 struct cam_path *path; 3348 cam_status status; 3349 3350 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3351 3352 if (path == NULL) { 3353 status = CAM_RESRC_UNAVAIL; 3354 return(status); 3355 } 3356 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3357 if (status != CAM_REQ_CMP) { 3358 free(path, M_CAMPATH); 3359 path = NULL; 3360 } 3361 *new_path_ptr = path; 3362 return (status); 3363 } 3364 3365 cam_status 3366 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3367 struct cam_periph *periph, path_id_t path_id, 3368 target_id_t target_id, lun_id_t lun_id) 3369 { 3370 3371 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3372 lun_id)); 3373 } 3374 3375 cam_status 3376 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3377 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3378 { 3379 struct cam_eb *bus; 3380 struct cam_et *target; 3381 struct cam_ed *device; 3382 cam_status status; 3383 3384 status = CAM_REQ_CMP; /* Completed without error */ 3385 target = NULL; /* Wildcarded */ 3386 device = NULL; /* Wildcarded */ 3387 3388 /* 3389 * We will potentially modify the EDT, so block interrupts 3390 * that may attempt to create cam paths. 3391 */ 3392 bus = xpt_find_bus(path_id); 3393 if (bus == NULL) { 3394 status = CAM_PATH_INVALID; 3395 } else { 3396 xpt_lock_buses(); 3397 mtx_lock(&bus->eb_mtx); 3398 target = xpt_find_target(bus, target_id); 3399 if (target == NULL) { 3400 /* Create one */ 3401 struct cam_et *new_target; 3402 3403 new_target = xpt_alloc_target(bus, target_id); 3404 if (new_target == NULL) { 3405 status = CAM_RESRC_UNAVAIL; 3406 } else { 3407 target = new_target; 3408 } 3409 } 3410 xpt_unlock_buses(); 3411 if (target != NULL) { 3412 device = xpt_find_device(target, lun_id); 3413 if (device == NULL) { 3414 /* Create one */ 3415 struct cam_ed *new_device; 3416 3417 new_device = 3418 (*(bus->xport->alloc_device))(bus, 3419 target, 3420 lun_id); 3421 if (new_device == NULL) { 3422 status = CAM_RESRC_UNAVAIL; 3423 } else { 3424 device = new_device; 3425 } 3426 } 3427 } 3428 mtx_unlock(&bus->eb_mtx); 3429 } 3430 3431 /* 3432 * Only touch the user's data if we are successful. 3433 */ 3434 if (status == CAM_REQ_CMP) { 3435 new_path->periph = perph; 3436 new_path->bus = bus; 3437 new_path->target = target; 3438 new_path->device = device; 3439 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3440 } else { 3441 if (device != NULL) 3442 xpt_release_device(device); 3443 if (target != NULL) 3444 xpt_release_target(target); 3445 if (bus != NULL) 3446 xpt_release_bus(bus); 3447 } 3448 return (status); 3449 } 3450 3451 cam_status 3452 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3453 { 3454 struct cam_path *new_path; 3455 3456 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3457 if (new_path == NULL) 3458 return(CAM_RESRC_UNAVAIL); 3459 xpt_copy_path(new_path, path); 3460 *new_path_ptr = new_path; 3461 return (CAM_REQ_CMP); 3462 } 3463 3464 void 3465 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3466 { 3467 3468 *new_path = *path; 3469 if (path->bus != NULL) 3470 xpt_acquire_bus(path->bus); 3471 if (path->target != NULL) 3472 xpt_acquire_target(path->target); 3473 if (path->device != NULL) 3474 xpt_acquire_device(path->device); 3475 } 3476 3477 void 3478 xpt_release_path(struct cam_path *path) 3479 { 3480 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3481 if (path->device != NULL) { 3482 xpt_release_device(path->device); 3483 path->device = NULL; 3484 } 3485 if (path->target != NULL) { 3486 xpt_release_target(path->target); 3487 path->target = NULL; 3488 } 3489 if (path->bus != NULL) { 3490 xpt_release_bus(path->bus); 3491 path->bus = NULL; 3492 } 3493 } 3494 3495 void 3496 xpt_free_path(struct cam_path *path) 3497 { 3498 3499 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3500 xpt_release_path(path); 3501 free(path, M_CAMPATH); 3502 } 3503 3504 void 3505 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3506 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3507 { 3508 3509 xpt_lock_buses(); 3510 if (bus_ref) { 3511 if (path->bus) 3512 *bus_ref = path->bus->refcount; 3513 else 3514 *bus_ref = 0; 3515 } 3516 if (periph_ref) { 3517 if (path->periph) 3518 *periph_ref = path->periph->refcount; 3519 else 3520 *periph_ref = 0; 3521 } 3522 xpt_unlock_buses(); 3523 if (target_ref) { 3524 if (path->target) 3525 *target_ref = path->target->refcount; 3526 else 3527 *target_ref = 0; 3528 } 3529 if (device_ref) { 3530 if (path->device) 3531 *device_ref = path->device->refcount; 3532 else 3533 *device_ref = 0; 3534 } 3535 } 3536 3537 /* 3538 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3539 * in path1, 2 for match with wildcards in path2. 3540 */ 3541 int 3542 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3543 { 3544 int retval = 0; 3545 3546 if (path1->bus != path2->bus) { 3547 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3548 retval = 1; 3549 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3550 retval = 2; 3551 else 3552 return (-1); 3553 } 3554 if (path1->target != path2->target) { 3555 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3556 if (retval == 0) 3557 retval = 1; 3558 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3559 retval = 2; 3560 else 3561 return (-1); 3562 } 3563 if (path1->device != path2->device) { 3564 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3565 if (retval == 0) 3566 retval = 1; 3567 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3568 retval = 2; 3569 else 3570 return (-1); 3571 } 3572 return (retval); 3573 } 3574 3575 int 3576 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3577 { 3578 int retval = 0; 3579 3580 if (path->bus != dev->target->bus) { 3581 if (path->bus->path_id == CAM_BUS_WILDCARD) 3582 retval = 1; 3583 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3584 retval = 2; 3585 else 3586 return (-1); 3587 } 3588 if (path->target != dev->target) { 3589 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3590 if (retval == 0) 3591 retval = 1; 3592 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3593 retval = 2; 3594 else 3595 return (-1); 3596 } 3597 if (path->device != dev) { 3598 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3599 if (retval == 0) 3600 retval = 1; 3601 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3602 retval = 2; 3603 else 3604 return (-1); 3605 } 3606 return (retval); 3607 } 3608 3609 void 3610 xpt_print_path(struct cam_path *path) 3611 { 3612 3613 if (path == NULL) 3614 printf("(nopath): "); 3615 else { 3616 if (path->periph != NULL) 3617 printf("(%s%d:", path->periph->periph_name, 3618 path->periph->unit_number); 3619 else 3620 printf("(noperiph:"); 3621 3622 if (path->bus != NULL) 3623 printf("%s%d:%d:", path->bus->sim->sim_name, 3624 path->bus->sim->unit_number, 3625 path->bus->sim->bus_id); 3626 else 3627 printf("nobus:"); 3628 3629 if (path->target != NULL) 3630 printf("%d:", path->target->target_id); 3631 else 3632 printf("X:"); 3633 3634 if (path->device != NULL) 3635 printf("%jx): ", (uintmax_t)path->device->lun_id); 3636 else 3637 printf("X): "); 3638 } 3639 } 3640 3641 void 3642 xpt_print_device(struct cam_ed *device) 3643 { 3644 3645 if (device == NULL) 3646 printf("(nopath): "); 3647 else { 3648 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3649 device->sim->unit_number, 3650 device->sim->bus_id, 3651 device->target->target_id, 3652 (uintmax_t)device->lun_id); 3653 } 3654 } 3655 3656 void 3657 xpt_print(struct cam_path *path, const char *fmt, ...) 3658 { 3659 va_list ap; 3660 xpt_print_path(path); 3661 va_start(ap, fmt); 3662 vprintf(fmt, ap); 3663 va_end(ap); 3664 } 3665 3666 int 3667 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3668 { 3669 struct sbuf sb; 3670 3671 sbuf_new(&sb, str, str_len, 0); 3672 3673 if (path == NULL) 3674 sbuf_printf(&sb, "(nopath): "); 3675 else { 3676 if (path->periph != NULL) 3677 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3678 path->periph->unit_number); 3679 else 3680 sbuf_printf(&sb, "(noperiph:"); 3681 3682 if (path->bus != NULL) 3683 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3684 path->bus->sim->unit_number, 3685 path->bus->sim->bus_id); 3686 else 3687 sbuf_printf(&sb, "nobus:"); 3688 3689 if (path->target != NULL) 3690 sbuf_printf(&sb, "%d:", path->target->target_id); 3691 else 3692 sbuf_printf(&sb, "X:"); 3693 3694 if (path->device != NULL) 3695 sbuf_printf(&sb, "%jx): ", 3696 (uintmax_t)path->device->lun_id); 3697 else 3698 sbuf_printf(&sb, "X): "); 3699 } 3700 sbuf_finish(&sb); 3701 3702 return(sbuf_len(&sb)); 3703 } 3704 3705 path_id_t 3706 xpt_path_path_id(struct cam_path *path) 3707 { 3708 return(path->bus->path_id); 3709 } 3710 3711 target_id_t 3712 xpt_path_target_id(struct cam_path *path) 3713 { 3714 if (path->target != NULL) 3715 return (path->target->target_id); 3716 else 3717 return (CAM_TARGET_WILDCARD); 3718 } 3719 3720 lun_id_t 3721 xpt_path_lun_id(struct cam_path *path) 3722 { 3723 if (path->device != NULL) 3724 return (path->device->lun_id); 3725 else 3726 return (CAM_LUN_WILDCARD); 3727 } 3728 3729 struct cam_sim * 3730 xpt_path_sim(struct cam_path *path) 3731 { 3732 3733 return (path->bus->sim); 3734 } 3735 3736 struct cam_periph* 3737 xpt_path_periph(struct cam_path *path) 3738 { 3739 3740 return (path->periph); 3741 } 3742 3743 int 3744 xpt_path_legacy_ata_id(struct cam_path *path) 3745 { 3746 struct cam_eb *bus; 3747 int bus_id; 3748 3749 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3750 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3751 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3752 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3753 return (-1); 3754 3755 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3756 path->bus->sim->unit_number < 2) { 3757 bus_id = path->bus->sim->unit_number; 3758 } else { 3759 bus_id = 2; 3760 xpt_lock_buses(); 3761 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3762 if (bus == path->bus) 3763 break; 3764 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3765 bus->sim->unit_number >= 2) || 3766 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3767 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3768 strcmp(bus->sim->sim_name, "siisch") == 0) 3769 bus_id++; 3770 } 3771 xpt_unlock_buses(); 3772 } 3773 if (path->target != NULL) { 3774 if (path->target->target_id < 2) 3775 return (bus_id * 2 + path->target->target_id); 3776 else 3777 return (-1); 3778 } else 3779 return (bus_id * 2); 3780 } 3781 3782 /* 3783 * Release a CAM control block for the caller. Remit the cost of the structure 3784 * to the device referenced by the path. If the this device had no 'credits' 3785 * and peripheral drivers have registered async callbacks for this notification 3786 * call them now. 3787 */ 3788 void 3789 xpt_release_ccb(union ccb *free_ccb) 3790 { 3791 struct cam_ed *device; 3792 struct cam_periph *periph; 3793 3794 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3795 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3796 device = free_ccb->ccb_h.path->device; 3797 periph = free_ccb->ccb_h.path->periph; 3798 3799 xpt_free_ccb(free_ccb); 3800 periph->periph_allocated--; 3801 cam_ccbq_release_opening(&device->ccbq); 3802 xpt_run_allocq(periph, 0); 3803 } 3804 3805 /* Functions accessed by SIM drivers */ 3806 3807 static struct xpt_xport xport_default = { 3808 .alloc_device = xpt_alloc_device_default, 3809 .action = xpt_action_default, 3810 .async = xpt_dev_async_default, 3811 }; 3812 3813 /* 3814 * A sim structure, listing the SIM entry points and instance 3815 * identification info is passed to xpt_bus_register to hook the SIM 3816 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3817 * for this new bus and places it in the array of busses and assigns 3818 * it a path_id. The path_id may be influenced by "hard wiring" 3819 * information specified by the user. Once interrupt services are 3820 * available, the bus will be probed. 3821 */ 3822 int32_t 3823 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3824 { 3825 struct cam_eb *new_bus; 3826 struct cam_eb *old_bus; 3827 struct ccb_pathinq cpi; 3828 struct cam_path *path; 3829 cam_status status; 3830 3831 mtx_assert(sim->mtx, MA_OWNED); 3832 3833 sim->bus_id = bus; 3834 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3835 M_CAMXPT, M_NOWAIT|M_ZERO); 3836 if (new_bus == NULL) { 3837 /* Couldn't satisfy request */ 3838 return (CAM_RESRC_UNAVAIL); 3839 } 3840 3841 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3842 TAILQ_INIT(&new_bus->et_entries); 3843 cam_sim_hold(sim); 3844 new_bus->sim = sim; 3845 timevalclear(&new_bus->last_reset); 3846 new_bus->flags = 0; 3847 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3848 new_bus->generation = 0; 3849 3850 xpt_lock_buses(); 3851 sim->path_id = new_bus->path_id = 3852 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3853 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3854 while (old_bus != NULL 3855 && old_bus->path_id < new_bus->path_id) 3856 old_bus = TAILQ_NEXT(old_bus, links); 3857 if (old_bus != NULL) 3858 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3859 else 3860 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3861 xsoftc.bus_generation++; 3862 xpt_unlock_buses(); 3863 3864 /* 3865 * Set a default transport so that a PATH_INQ can be issued to 3866 * the SIM. This will then allow for probing and attaching of 3867 * a more appropriate transport. 3868 */ 3869 new_bus->xport = &xport_default; 3870 3871 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3872 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3873 if (status != CAM_REQ_CMP) { 3874 xpt_release_bus(new_bus); 3875 free(path, M_CAMXPT); 3876 return (CAM_RESRC_UNAVAIL); 3877 } 3878 3879 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3880 cpi.ccb_h.func_code = XPT_PATH_INQ; 3881 xpt_action((union ccb *)&cpi); 3882 3883 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3884 switch (cpi.transport) { 3885 case XPORT_SPI: 3886 case XPORT_SAS: 3887 case XPORT_FC: 3888 case XPORT_USB: 3889 case XPORT_ISCSI: 3890 case XPORT_SRP: 3891 case XPORT_PPB: 3892 new_bus->xport = scsi_get_xport(); 3893 break; 3894 case XPORT_ATA: 3895 case XPORT_SATA: 3896 new_bus->xport = ata_get_xport(); 3897 break; 3898 default: 3899 new_bus->xport = &xport_default; 3900 break; 3901 } 3902 } 3903 3904 /* Notify interested parties */ 3905 if (sim->path_id != CAM_XPT_PATH_ID) { 3906 3907 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3908 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3909 union ccb *scan_ccb; 3910 3911 /* Initiate bus rescan. */ 3912 scan_ccb = xpt_alloc_ccb_nowait(); 3913 if (scan_ccb != NULL) { 3914 scan_ccb->ccb_h.path = path; 3915 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3916 scan_ccb->crcn.flags = 0; 3917 xpt_rescan(scan_ccb); 3918 } else { 3919 xpt_print(path, 3920 "Can't allocate CCB to scan bus\n"); 3921 xpt_free_path(path); 3922 } 3923 } else 3924 xpt_free_path(path); 3925 } else 3926 xpt_free_path(path); 3927 return (CAM_SUCCESS); 3928 } 3929 3930 int32_t 3931 xpt_bus_deregister(path_id_t pathid) 3932 { 3933 struct cam_path bus_path; 3934 cam_status status; 3935 3936 status = xpt_compile_path(&bus_path, NULL, pathid, 3937 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3938 if (status != CAM_REQ_CMP) 3939 return (status); 3940 3941 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3942 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3943 3944 /* Release the reference count held while registered. */ 3945 xpt_release_bus(bus_path.bus); 3946 xpt_release_path(&bus_path); 3947 3948 return (CAM_REQ_CMP); 3949 } 3950 3951 static path_id_t 3952 xptnextfreepathid(void) 3953 { 3954 struct cam_eb *bus; 3955 path_id_t pathid; 3956 const char *strval; 3957 3958 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3959 pathid = 0; 3960 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3961 retry: 3962 /* Find an unoccupied pathid */ 3963 while (bus != NULL && bus->path_id <= pathid) { 3964 if (bus->path_id == pathid) 3965 pathid++; 3966 bus = TAILQ_NEXT(bus, links); 3967 } 3968 3969 /* 3970 * Ensure that this pathid is not reserved for 3971 * a bus that may be registered in the future. 3972 */ 3973 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3974 ++pathid; 3975 /* Start the search over */ 3976 goto retry; 3977 } 3978 return (pathid); 3979 } 3980 3981 static path_id_t 3982 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3983 { 3984 path_id_t pathid; 3985 int i, dunit, val; 3986 char buf[32]; 3987 const char *dname; 3988 3989 pathid = CAM_XPT_PATH_ID; 3990 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 3991 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 3992 return (pathid); 3993 i = 0; 3994 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 3995 if (strcmp(dname, "scbus")) { 3996 /* Avoid a bit of foot shooting. */ 3997 continue; 3998 } 3999 if (dunit < 0) /* unwired?! */ 4000 continue; 4001 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4002 if (sim_bus == val) { 4003 pathid = dunit; 4004 break; 4005 } 4006 } else if (sim_bus == 0) { 4007 /* Unspecified matches bus 0 */ 4008 pathid = dunit; 4009 break; 4010 } else { 4011 printf("Ambiguous scbus configuration for %s%d " 4012 "bus %d, cannot wire down. The kernel " 4013 "config entry for scbus%d should " 4014 "specify a controller bus.\n" 4015 "Scbus will be assigned dynamically.\n", 4016 sim_name, sim_unit, sim_bus, dunit); 4017 break; 4018 } 4019 } 4020 4021 if (pathid == CAM_XPT_PATH_ID) 4022 pathid = xptnextfreepathid(); 4023 return (pathid); 4024 } 4025 4026 static const char * 4027 xpt_async_string(u_int32_t async_code) 4028 { 4029 4030 switch (async_code) { 4031 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4032 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4033 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4034 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4035 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4036 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4037 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4038 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4039 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4040 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4041 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4042 case AC_CONTRACT: return ("AC_CONTRACT"); 4043 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4044 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4045 } 4046 return ("AC_UNKNOWN"); 4047 } 4048 4049 static int 4050 xpt_async_size(u_int32_t async_code) 4051 { 4052 4053 switch (async_code) { 4054 case AC_BUS_RESET: return (0); 4055 case AC_UNSOL_RESEL: return (0); 4056 case AC_SCSI_AEN: return (0); 4057 case AC_SENT_BDR: return (0); 4058 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4059 case AC_PATH_DEREGISTERED: return (0); 4060 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4061 case AC_LOST_DEVICE: return (0); 4062 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4063 case AC_INQ_CHANGED: return (0); 4064 case AC_GETDEV_CHANGED: return (0); 4065 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4066 case AC_ADVINFO_CHANGED: return (-1); 4067 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4068 } 4069 return (0); 4070 } 4071 4072 static int 4073 xpt_async_process_dev(struct cam_ed *device, void *arg) 4074 { 4075 union ccb *ccb = arg; 4076 struct cam_path *path = ccb->ccb_h.path; 4077 void *async_arg = ccb->casync.async_arg_ptr; 4078 u_int32_t async_code = ccb->casync.async_code; 4079 int relock; 4080 4081 if (path->device != device 4082 && path->device->lun_id != CAM_LUN_WILDCARD 4083 && device->lun_id != CAM_LUN_WILDCARD) 4084 return (1); 4085 4086 /* 4087 * The async callback could free the device. 4088 * If it is a broadcast async, it doesn't hold 4089 * device reference, so take our own reference. 4090 */ 4091 xpt_acquire_device(device); 4092 4093 /* 4094 * If async for specific device is to be delivered to 4095 * the wildcard client, take the specific device lock. 4096 * XXX: We may need a way for client to specify it. 4097 */ 4098 if ((device->lun_id == CAM_LUN_WILDCARD && 4099 path->device->lun_id != CAM_LUN_WILDCARD) || 4100 (device->target->target_id == CAM_TARGET_WILDCARD && 4101 path->target->target_id != CAM_TARGET_WILDCARD) || 4102 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4103 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4104 mtx_unlock(&device->device_mtx); 4105 xpt_path_lock(path); 4106 relock = 1; 4107 } else 4108 relock = 0; 4109 4110 (*(device->target->bus->xport->async))(async_code, 4111 device->target->bus, device->target, device, async_arg); 4112 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4113 4114 if (relock) { 4115 xpt_path_unlock(path); 4116 mtx_lock(&device->device_mtx); 4117 } 4118 xpt_release_device(device); 4119 return (1); 4120 } 4121 4122 static int 4123 xpt_async_process_tgt(struct cam_et *target, void *arg) 4124 { 4125 union ccb *ccb = arg; 4126 struct cam_path *path = ccb->ccb_h.path; 4127 4128 if (path->target != target 4129 && path->target->target_id != CAM_TARGET_WILDCARD 4130 && target->target_id != CAM_TARGET_WILDCARD) 4131 return (1); 4132 4133 if (ccb->casync.async_code == AC_SENT_BDR) { 4134 /* Update our notion of when the last reset occurred */ 4135 microtime(&target->last_reset); 4136 } 4137 4138 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4139 } 4140 4141 static void 4142 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4143 { 4144 struct cam_eb *bus; 4145 struct cam_path *path; 4146 void *async_arg; 4147 u_int32_t async_code; 4148 4149 path = ccb->ccb_h.path; 4150 async_code = ccb->casync.async_code; 4151 async_arg = ccb->casync.async_arg_ptr; 4152 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4153 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4154 bus = path->bus; 4155 4156 if (async_code == AC_BUS_RESET) { 4157 /* Update our notion of when the last reset occurred */ 4158 microtime(&bus->last_reset); 4159 } 4160 4161 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4162 4163 /* 4164 * If this wasn't a fully wildcarded async, tell all 4165 * clients that want all async events. 4166 */ 4167 if (bus != xpt_periph->path->bus) { 4168 xpt_path_lock(xpt_periph->path); 4169 xpt_async_process_dev(xpt_periph->path->device, ccb); 4170 xpt_path_unlock(xpt_periph->path); 4171 } 4172 4173 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4174 xpt_release_devq(path, 1, TRUE); 4175 else 4176 xpt_release_simq(path->bus->sim, TRUE); 4177 if (ccb->casync.async_arg_size > 0) 4178 free(async_arg, M_CAMXPT); 4179 xpt_free_path(path); 4180 xpt_free_ccb(ccb); 4181 } 4182 4183 static void 4184 xpt_async_bcast(struct async_list *async_head, 4185 u_int32_t async_code, 4186 struct cam_path *path, void *async_arg) 4187 { 4188 struct async_node *cur_entry; 4189 int lock; 4190 4191 cur_entry = SLIST_FIRST(async_head); 4192 while (cur_entry != NULL) { 4193 struct async_node *next_entry; 4194 /* 4195 * Grab the next list entry before we call the current 4196 * entry's callback. This is because the callback function 4197 * can delete its async callback entry. 4198 */ 4199 next_entry = SLIST_NEXT(cur_entry, links); 4200 if ((cur_entry->event_enable & async_code) != 0) { 4201 lock = cur_entry->event_lock; 4202 if (lock) 4203 CAM_SIM_LOCK(path->device->sim); 4204 cur_entry->callback(cur_entry->callback_arg, 4205 async_code, path, 4206 async_arg); 4207 if (lock) 4208 CAM_SIM_UNLOCK(path->device->sim); 4209 } 4210 cur_entry = next_entry; 4211 } 4212 } 4213 4214 void 4215 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4216 { 4217 union ccb *ccb; 4218 int size; 4219 4220 ccb = xpt_alloc_ccb_nowait(); 4221 if (ccb == NULL) { 4222 xpt_print(path, "Can't allocate CCB to send %s\n", 4223 xpt_async_string(async_code)); 4224 return; 4225 } 4226 4227 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4228 xpt_print(path, "Can't allocate path to send %s\n", 4229 xpt_async_string(async_code)); 4230 xpt_free_ccb(ccb); 4231 return; 4232 } 4233 ccb->ccb_h.path->periph = NULL; 4234 ccb->ccb_h.func_code = XPT_ASYNC; 4235 ccb->ccb_h.cbfcnp = xpt_async_process; 4236 ccb->ccb_h.flags |= CAM_UNLOCKED; 4237 ccb->casync.async_code = async_code; 4238 ccb->casync.async_arg_size = 0; 4239 size = xpt_async_size(async_code); 4240 if (size > 0 && async_arg != NULL) { 4241 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4242 if (ccb->casync.async_arg_ptr == NULL) { 4243 xpt_print(path, "Can't allocate argument to send %s\n", 4244 xpt_async_string(async_code)); 4245 xpt_free_path(ccb->ccb_h.path); 4246 xpt_free_ccb(ccb); 4247 return; 4248 } 4249 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4250 ccb->casync.async_arg_size = size; 4251 } else if (size < 0) 4252 ccb->casync.async_arg_size = size; 4253 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4254 xpt_freeze_devq(path, 1); 4255 else 4256 xpt_freeze_simq(path->bus->sim, 1); 4257 xpt_done(ccb); 4258 } 4259 4260 static void 4261 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4262 struct cam_et *target, struct cam_ed *device, 4263 void *async_arg) 4264 { 4265 4266 /* 4267 * We only need to handle events for real devices. 4268 */ 4269 if (target->target_id == CAM_TARGET_WILDCARD 4270 || device->lun_id == CAM_LUN_WILDCARD) 4271 return; 4272 4273 printf("%s called\n", __func__); 4274 } 4275 4276 static uint32_t 4277 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4278 { 4279 struct cam_devq *devq; 4280 uint32_t freeze; 4281 4282 devq = dev->sim->devq; 4283 mtx_assert(&devq->send_mtx, MA_OWNED); 4284 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4285 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4286 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4287 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4288 /* Remove frozen device from sendq. */ 4289 if (device_is_queued(dev)) 4290 camq_remove(&devq->send_queue, dev->devq_entry.index); 4291 return (freeze); 4292 } 4293 4294 u_int32_t 4295 xpt_freeze_devq(struct cam_path *path, u_int count) 4296 { 4297 struct cam_ed *dev = path->device; 4298 struct cam_devq *devq; 4299 uint32_t freeze; 4300 4301 devq = dev->sim->devq; 4302 mtx_lock(&devq->send_mtx); 4303 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4304 freeze = xpt_freeze_devq_device(dev, count); 4305 mtx_unlock(&devq->send_mtx); 4306 return (freeze); 4307 } 4308 4309 u_int32_t 4310 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4311 { 4312 struct cam_devq *devq; 4313 uint32_t freeze; 4314 4315 devq = sim->devq; 4316 mtx_lock(&devq->send_mtx); 4317 freeze = (devq->send_queue.qfrozen_cnt += count); 4318 mtx_unlock(&devq->send_mtx); 4319 return (freeze); 4320 } 4321 4322 static void 4323 xpt_release_devq_timeout(void *arg) 4324 { 4325 struct cam_ed *dev; 4326 struct cam_devq *devq; 4327 4328 dev = (struct cam_ed *)arg; 4329 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4330 devq = dev->sim->devq; 4331 mtx_assert(&devq->send_mtx, MA_OWNED); 4332 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4333 xpt_run_devq(devq); 4334 } 4335 4336 void 4337 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4338 { 4339 struct cam_ed *dev; 4340 struct cam_devq *devq; 4341 4342 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4343 count, run_queue)); 4344 dev = path->device; 4345 devq = dev->sim->devq; 4346 mtx_lock(&devq->send_mtx); 4347 if (xpt_release_devq_device(dev, count, run_queue)) 4348 xpt_run_devq(dev->sim->devq); 4349 mtx_unlock(&devq->send_mtx); 4350 } 4351 4352 static int 4353 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4354 { 4355 4356 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4357 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4358 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4359 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4360 if (count > dev->ccbq.queue.qfrozen_cnt) { 4361 #ifdef INVARIANTS 4362 printf("xpt_release_devq(): requested %u > present %u\n", 4363 count, dev->ccbq.queue.qfrozen_cnt); 4364 #endif 4365 count = dev->ccbq.queue.qfrozen_cnt; 4366 } 4367 dev->ccbq.queue.qfrozen_cnt -= count; 4368 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4369 /* 4370 * No longer need to wait for a successful 4371 * command completion. 4372 */ 4373 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4374 /* 4375 * Remove any timeouts that might be scheduled 4376 * to release this queue. 4377 */ 4378 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4379 callout_stop(&dev->callout); 4380 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4381 } 4382 /* 4383 * Now that we are unfrozen schedule the 4384 * device so any pending transactions are 4385 * run. 4386 */ 4387 xpt_schedule_devq(dev->sim->devq, dev); 4388 } else 4389 run_queue = 0; 4390 return (run_queue); 4391 } 4392 4393 void 4394 xpt_release_simq(struct cam_sim *sim, int run_queue) 4395 { 4396 struct cam_devq *devq; 4397 4398 devq = sim->devq; 4399 mtx_lock(&devq->send_mtx); 4400 if (devq->send_queue.qfrozen_cnt <= 0) { 4401 #ifdef INVARIANTS 4402 printf("xpt_release_simq: requested 1 > present %u\n", 4403 devq->send_queue.qfrozen_cnt); 4404 #endif 4405 } else 4406 devq->send_queue.qfrozen_cnt--; 4407 if (devq->send_queue.qfrozen_cnt == 0) { 4408 /* 4409 * If there is a timeout scheduled to release this 4410 * sim queue, remove it. The queue frozen count is 4411 * already at 0. 4412 */ 4413 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4414 callout_stop(&sim->callout); 4415 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4416 } 4417 if (run_queue) { 4418 /* 4419 * Now that we are unfrozen run the send queue. 4420 */ 4421 xpt_run_devq(sim->devq); 4422 } 4423 } 4424 mtx_unlock(&devq->send_mtx); 4425 } 4426 4427 /* 4428 * XXX Appears to be unused. 4429 */ 4430 static void 4431 xpt_release_simq_timeout(void *arg) 4432 { 4433 struct cam_sim *sim; 4434 4435 sim = (struct cam_sim *)arg; 4436 xpt_release_simq(sim, /* run_queue */ TRUE); 4437 } 4438 4439 void 4440 xpt_done(union ccb *done_ccb) 4441 { 4442 struct cam_doneq *queue; 4443 int run, hash; 4444 4445 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4446 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4447 return; 4448 4449 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4450 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4451 queue = &cam_doneqs[hash]; 4452 mtx_lock(&queue->cam_doneq_mtx); 4453 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4454 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4455 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4456 mtx_unlock(&queue->cam_doneq_mtx); 4457 if (run) 4458 wakeup(&queue->cam_doneq); 4459 } 4460 4461 void 4462 xpt_done_direct(union ccb *done_ccb) 4463 { 4464 4465 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); 4466 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4467 return; 4468 4469 xpt_done_process(&done_ccb->ccb_h); 4470 } 4471 4472 union ccb * 4473 xpt_alloc_ccb() 4474 { 4475 union ccb *new_ccb; 4476 4477 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4478 return (new_ccb); 4479 } 4480 4481 union ccb * 4482 xpt_alloc_ccb_nowait() 4483 { 4484 union ccb *new_ccb; 4485 4486 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4487 return (new_ccb); 4488 } 4489 4490 void 4491 xpt_free_ccb(union ccb *free_ccb) 4492 { 4493 free(free_ccb, M_CAMCCB); 4494 } 4495 4496 4497 4498 /* Private XPT functions */ 4499 4500 /* 4501 * Get a CAM control block for the caller. Charge the structure to the device 4502 * referenced by the path. If we don't have sufficient resources to allocate 4503 * more ccbs, we return NULL. 4504 */ 4505 static union ccb * 4506 xpt_get_ccb_nowait(struct cam_periph *periph) 4507 { 4508 union ccb *new_ccb; 4509 4510 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_NOWAIT); 4511 if (new_ccb == NULL) 4512 return (NULL); 4513 periph->periph_allocated++; 4514 cam_ccbq_take_opening(&periph->path->device->ccbq); 4515 return (new_ccb); 4516 } 4517 4518 static union ccb * 4519 xpt_get_ccb(struct cam_periph *periph) 4520 { 4521 union ccb *new_ccb; 4522 4523 cam_periph_unlock(periph); 4524 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_WAITOK); 4525 cam_periph_lock(periph); 4526 periph->periph_allocated++; 4527 cam_ccbq_take_opening(&periph->path->device->ccbq); 4528 return (new_ccb); 4529 } 4530 4531 union ccb * 4532 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4533 { 4534 struct ccb_hdr *ccb_h; 4535 4536 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4537 cam_periph_assert(periph, MA_OWNED); 4538 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4539 ccb_h->pinfo.priority != priority) { 4540 if (priority < periph->immediate_priority) { 4541 periph->immediate_priority = priority; 4542 xpt_run_allocq(periph, 0); 4543 } else 4544 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4545 "cgticb", 0); 4546 } 4547 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4548 return ((union ccb *)ccb_h); 4549 } 4550 4551 static void 4552 xpt_acquire_bus(struct cam_eb *bus) 4553 { 4554 4555 xpt_lock_buses(); 4556 bus->refcount++; 4557 xpt_unlock_buses(); 4558 } 4559 4560 static void 4561 xpt_release_bus(struct cam_eb *bus) 4562 { 4563 4564 xpt_lock_buses(); 4565 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4566 if (--bus->refcount > 0) { 4567 xpt_unlock_buses(); 4568 return; 4569 } 4570 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4571 xsoftc.bus_generation++; 4572 xpt_unlock_buses(); 4573 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4574 ("destroying bus, but target list is not empty")); 4575 cam_sim_release(bus->sim); 4576 mtx_destroy(&bus->eb_mtx); 4577 free(bus, M_CAMXPT); 4578 } 4579 4580 static struct cam_et * 4581 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4582 { 4583 struct cam_et *cur_target, *target; 4584 4585 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4586 mtx_assert(&bus->eb_mtx, MA_OWNED); 4587 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4588 M_NOWAIT|M_ZERO); 4589 if (target == NULL) 4590 return (NULL); 4591 4592 TAILQ_INIT(&target->ed_entries); 4593 target->bus = bus; 4594 target->target_id = target_id; 4595 target->refcount = 1; 4596 target->generation = 0; 4597 target->luns = NULL; 4598 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4599 timevalclear(&target->last_reset); 4600 /* 4601 * Hold a reference to our parent bus so it 4602 * will not go away before we do. 4603 */ 4604 bus->refcount++; 4605 4606 /* Insertion sort into our bus's target list */ 4607 cur_target = TAILQ_FIRST(&bus->et_entries); 4608 while (cur_target != NULL && cur_target->target_id < target_id) 4609 cur_target = TAILQ_NEXT(cur_target, links); 4610 if (cur_target != NULL) { 4611 TAILQ_INSERT_BEFORE(cur_target, target, links); 4612 } else { 4613 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4614 } 4615 bus->generation++; 4616 return (target); 4617 } 4618 4619 static void 4620 xpt_acquire_target(struct cam_et *target) 4621 { 4622 struct cam_eb *bus = target->bus; 4623 4624 mtx_lock(&bus->eb_mtx); 4625 target->refcount++; 4626 mtx_unlock(&bus->eb_mtx); 4627 } 4628 4629 static void 4630 xpt_release_target(struct cam_et *target) 4631 { 4632 struct cam_eb *bus = target->bus; 4633 4634 mtx_lock(&bus->eb_mtx); 4635 if (--target->refcount > 0) { 4636 mtx_unlock(&bus->eb_mtx); 4637 return; 4638 } 4639 TAILQ_REMOVE(&bus->et_entries, target, links); 4640 bus->generation++; 4641 mtx_unlock(&bus->eb_mtx); 4642 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4643 ("destroying target, but device list is not empty")); 4644 xpt_release_bus(bus); 4645 mtx_destroy(&target->luns_mtx); 4646 if (target->luns) 4647 free(target->luns, M_CAMXPT); 4648 free(target, M_CAMXPT); 4649 } 4650 4651 static struct cam_ed * 4652 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4653 lun_id_t lun_id) 4654 { 4655 struct cam_ed *device; 4656 4657 device = xpt_alloc_device(bus, target, lun_id); 4658 if (device == NULL) 4659 return (NULL); 4660 4661 device->mintags = 1; 4662 device->maxtags = 1; 4663 return (device); 4664 } 4665 4666 static void 4667 xpt_destroy_device(void *context, int pending) 4668 { 4669 struct cam_ed *device = context; 4670 4671 mtx_lock(&device->device_mtx); 4672 mtx_destroy(&device->device_mtx); 4673 free(device, M_CAMDEV); 4674 } 4675 4676 struct cam_ed * 4677 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4678 { 4679 struct cam_ed *cur_device, *device; 4680 struct cam_devq *devq; 4681 cam_status status; 4682 4683 mtx_assert(&bus->eb_mtx, MA_OWNED); 4684 /* Make space for us in the device queue on our bus */ 4685 devq = bus->sim->devq; 4686 mtx_lock(&devq->send_mtx); 4687 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4688 mtx_unlock(&devq->send_mtx); 4689 if (status != CAM_REQ_CMP) 4690 return (NULL); 4691 4692 device = (struct cam_ed *)malloc(sizeof(*device), 4693 M_CAMDEV, M_NOWAIT|M_ZERO); 4694 if (device == NULL) 4695 return (NULL); 4696 4697 cam_init_pinfo(&device->devq_entry); 4698 device->target = target; 4699 device->lun_id = lun_id; 4700 device->sim = bus->sim; 4701 if (cam_ccbq_init(&device->ccbq, 4702 bus->sim->max_dev_openings) != 0) { 4703 free(device, M_CAMDEV); 4704 return (NULL); 4705 } 4706 SLIST_INIT(&device->asyncs); 4707 SLIST_INIT(&device->periphs); 4708 device->generation = 0; 4709 device->flags = CAM_DEV_UNCONFIGURED; 4710 device->tag_delay_count = 0; 4711 device->tag_saved_openings = 0; 4712 device->refcount = 1; 4713 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4714 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4715 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4716 /* 4717 * Hold a reference to our parent bus so it 4718 * will not go away before we do. 4719 */ 4720 target->refcount++; 4721 4722 cur_device = TAILQ_FIRST(&target->ed_entries); 4723 while (cur_device != NULL && cur_device->lun_id < lun_id) 4724 cur_device = TAILQ_NEXT(cur_device, links); 4725 if (cur_device != NULL) 4726 TAILQ_INSERT_BEFORE(cur_device, device, links); 4727 else 4728 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4729 target->generation++; 4730 return (device); 4731 } 4732 4733 void 4734 xpt_acquire_device(struct cam_ed *device) 4735 { 4736 struct cam_eb *bus = device->target->bus; 4737 4738 mtx_lock(&bus->eb_mtx); 4739 device->refcount++; 4740 mtx_unlock(&bus->eb_mtx); 4741 } 4742 4743 void 4744 xpt_release_device(struct cam_ed *device) 4745 { 4746 struct cam_eb *bus = device->target->bus; 4747 struct cam_devq *devq; 4748 4749 mtx_lock(&bus->eb_mtx); 4750 if (--device->refcount > 0) { 4751 mtx_unlock(&bus->eb_mtx); 4752 return; 4753 } 4754 4755 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4756 device->target->generation++; 4757 mtx_unlock(&bus->eb_mtx); 4758 4759 /* Release our slot in the devq */ 4760 devq = bus->sim->devq; 4761 mtx_lock(&devq->send_mtx); 4762 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4763 mtx_unlock(&devq->send_mtx); 4764 4765 KASSERT(SLIST_EMPTY(&device->periphs), 4766 ("destroying device, but periphs list is not empty")); 4767 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4768 ("destroying device while still queued for ccbs")); 4769 4770 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4771 callout_stop(&device->callout); 4772 4773 xpt_release_target(device->target); 4774 4775 cam_ccbq_fini(&device->ccbq); 4776 /* 4777 * Free allocated memory. free(9) does nothing if the 4778 * supplied pointer is NULL, so it is safe to call without 4779 * checking. 4780 */ 4781 free(device->supported_vpds, M_CAMXPT); 4782 free(device->device_id, M_CAMXPT); 4783 free(device->physpath, M_CAMXPT); 4784 free(device->rcap_buf, M_CAMXPT); 4785 free(device->serial_num, M_CAMXPT); 4786 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4787 } 4788 4789 u_int32_t 4790 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4791 { 4792 int result; 4793 struct cam_ed *dev; 4794 4795 dev = path->device; 4796 mtx_lock(&dev->sim->devq->send_mtx); 4797 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4798 mtx_unlock(&dev->sim->devq->send_mtx); 4799 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4800 || (dev->inq_flags & SID_CmdQue) != 0) 4801 dev->tag_saved_openings = newopenings; 4802 return (result); 4803 } 4804 4805 static struct cam_eb * 4806 xpt_find_bus(path_id_t path_id) 4807 { 4808 struct cam_eb *bus; 4809 4810 xpt_lock_buses(); 4811 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4812 bus != NULL; 4813 bus = TAILQ_NEXT(bus, links)) { 4814 if (bus->path_id == path_id) { 4815 bus->refcount++; 4816 break; 4817 } 4818 } 4819 xpt_unlock_buses(); 4820 return (bus); 4821 } 4822 4823 static struct cam_et * 4824 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4825 { 4826 struct cam_et *target; 4827 4828 mtx_assert(&bus->eb_mtx, MA_OWNED); 4829 for (target = TAILQ_FIRST(&bus->et_entries); 4830 target != NULL; 4831 target = TAILQ_NEXT(target, links)) { 4832 if (target->target_id == target_id) { 4833 target->refcount++; 4834 break; 4835 } 4836 } 4837 return (target); 4838 } 4839 4840 static struct cam_ed * 4841 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4842 { 4843 struct cam_ed *device; 4844 4845 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4846 for (device = TAILQ_FIRST(&target->ed_entries); 4847 device != NULL; 4848 device = TAILQ_NEXT(device, links)) { 4849 if (device->lun_id == lun_id) { 4850 device->refcount++; 4851 break; 4852 } 4853 } 4854 return (device); 4855 } 4856 4857 void 4858 xpt_start_tags(struct cam_path *path) 4859 { 4860 struct ccb_relsim crs; 4861 struct cam_ed *device; 4862 struct cam_sim *sim; 4863 int newopenings; 4864 4865 device = path->device; 4866 sim = path->bus->sim; 4867 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4868 xpt_freeze_devq(path, /*count*/1); 4869 device->inq_flags |= SID_CmdQue; 4870 if (device->tag_saved_openings != 0) 4871 newopenings = device->tag_saved_openings; 4872 else 4873 newopenings = min(device->maxtags, 4874 sim->max_tagged_dev_openings); 4875 xpt_dev_ccbq_resize(path, newopenings); 4876 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4877 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4878 crs.ccb_h.func_code = XPT_REL_SIMQ; 4879 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4880 crs.openings 4881 = crs.release_timeout 4882 = crs.qfrozen_cnt 4883 = 0; 4884 xpt_action((union ccb *)&crs); 4885 } 4886 4887 void 4888 xpt_stop_tags(struct cam_path *path) 4889 { 4890 struct ccb_relsim crs; 4891 struct cam_ed *device; 4892 struct cam_sim *sim; 4893 4894 device = path->device; 4895 sim = path->bus->sim; 4896 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4897 device->tag_delay_count = 0; 4898 xpt_freeze_devq(path, /*count*/1); 4899 device->inq_flags &= ~SID_CmdQue; 4900 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4901 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4902 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4903 crs.ccb_h.func_code = XPT_REL_SIMQ; 4904 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4905 crs.openings 4906 = crs.release_timeout 4907 = crs.qfrozen_cnt 4908 = 0; 4909 xpt_action((union ccb *)&crs); 4910 } 4911 4912 static void 4913 xpt_boot_delay(void *arg) 4914 { 4915 4916 xpt_release_boot(); 4917 } 4918 4919 static void 4920 xpt_config(void *arg) 4921 { 4922 /* 4923 * Now that interrupts are enabled, go find our devices 4924 */ 4925 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4926 printf("xpt_config: failed to create taskqueue thread.\n"); 4927 4928 /* Setup debugging path */ 4929 if (cam_dflags != CAM_DEBUG_NONE) { 4930 if (xpt_create_path(&cam_dpath, NULL, 4931 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4932 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4933 printf("xpt_config: xpt_create_path() failed for debug" 4934 " target %d:%d:%d, debugging disabled\n", 4935 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4936 cam_dflags = CAM_DEBUG_NONE; 4937 } 4938 } else 4939 cam_dpath = NULL; 4940 4941 periphdriver_init(1); 4942 xpt_hold_boot(); 4943 callout_init(&xsoftc.boot_callout, 1); 4944 callout_reset(&xsoftc.boot_callout, hz * xsoftc.boot_delay / 1000, 4945 xpt_boot_delay, NULL); 4946 /* Fire up rescan thread. */ 4947 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4948 "cam", "scanner")) { 4949 printf("xpt_config: failed to create rescan thread.\n"); 4950 } 4951 } 4952 4953 void 4954 xpt_hold_boot(void) 4955 { 4956 xpt_lock_buses(); 4957 xsoftc.buses_to_config++; 4958 xpt_unlock_buses(); 4959 } 4960 4961 void 4962 xpt_release_boot(void) 4963 { 4964 xpt_lock_buses(); 4965 xsoftc.buses_to_config--; 4966 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4967 struct xpt_task *task; 4968 4969 xsoftc.buses_config_done = 1; 4970 xpt_unlock_buses(); 4971 /* Call manually because we don't have any busses */ 4972 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4973 if (task != NULL) { 4974 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4975 taskqueue_enqueue(taskqueue_thread, &task->task); 4976 } 4977 } else 4978 xpt_unlock_buses(); 4979 } 4980 4981 /* 4982 * If the given device only has one peripheral attached to it, and if that 4983 * peripheral is the passthrough driver, announce it. This insures that the 4984 * user sees some sort of announcement for every peripheral in their system. 4985 */ 4986 static int 4987 xptpassannouncefunc(struct cam_ed *device, void *arg) 4988 { 4989 struct cam_periph *periph; 4990 int i; 4991 4992 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 4993 periph = SLIST_NEXT(periph, periph_links), i++); 4994 4995 periph = SLIST_FIRST(&device->periphs); 4996 if ((i == 1) 4997 && (strncmp(periph->periph_name, "pass", 4) == 0)) 4998 xpt_announce_periph(periph, NULL); 4999 5000 return(1); 5001 } 5002 5003 static void 5004 xpt_finishconfig_task(void *context, int pending) 5005 { 5006 5007 periphdriver_init(2); 5008 /* 5009 * Check for devices with no "standard" peripheral driver 5010 * attached. For any devices like that, announce the 5011 * passthrough driver so the user will see something. 5012 */ 5013 if (!bootverbose) 5014 xpt_for_all_devices(xptpassannouncefunc, NULL); 5015 5016 /* Release our hook so that the boot can continue. */ 5017 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5018 free(xsoftc.xpt_config_hook, M_CAMXPT); 5019 xsoftc.xpt_config_hook = NULL; 5020 5021 free(context, M_CAMXPT); 5022 } 5023 5024 cam_status 5025 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5026 struct cam_path *path) 5027 { 5028 struct ccb_setasync csa; 5029 cam_status status; 5030 int xptpath = 0; 5031 5032 if (path == NULL) { 5033 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5034 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5035 if (status != CAM_REQ_CMP) 5036 return (status); 5037 xpt_path_lock(path); 5038 xptpath = 1; 5039 } 5040 5041 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5042 csa.ccb_h.func_code = XPT_SASYNC_CB; 5043 csa.event_enable = event; 5044 csa.callback = cbfunc; 5045 csa.callback_arg = cbarg; 5046 xpt_action((union ccb *)&csa); 5047 status = csa.ccb_h.status; 5048 5049 if (xptpath) { 5050 xpt_path_unlock(path); 5051 xpt_free_path(path); 5052 } 5053 5054 if ((status == CAM_REQ_CMP) && 5055 (csa.event_enable & AC_FOUND_DEVICE)) { 5056 /* 5057 * Get this peripheral up to date with all 5058 * the currently existing devices. 5059 */ 5060 xpt_for_all_devices(xptsetasyncfunc, &csa); 5061 } 5062 if ((status == CAM_REQ_CMP) && 5063 (csa.event_enable & AC_PATH_REGISTERED)) { 5064 /* 5065 * Get this peripheral up to date with all 5066 * the currently existing busses. 5067 */ 5068 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5069 } 5070 5071 return (status); 5072 } 5073 5074 static void 5075 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5076 { 5077 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5078 5079 switch (work_ccb->ccb_h.func_code) { 5080 /* Common cases first */ 5081 case XPT_PATH_INQ: /* Path routing inquiry */ 5082 { 5083 struct ccb_pathinq *cpi; 5084 5085 cpi = &work_ccb->cpi; 5086 cpi->version_num = 1; /* XXX??? */ 5087 cpi->hba_inquiry = 0; 5088 cpi->target_sprt = 0; 5089 cpi->hba_misc = 0; 5090 cpi->hba_eng_cnt = 0; 5091 cpi->max_target = 0; 5092 cpi->max_lun = 0; 5093 cpi->initiator_id = 0; 5094 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5095 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5096 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5097 cpi->unit_number = sim->unit_number; 5098 cpi->bus_id = sim->bus_id; 5099 cpi->base_transfer_speed = 0; 5100 cpi->protocol = PROTO_UNSPECIFIED; 5101 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5102 cpi->transport = XPORT_UNSPECIFIED; 5103 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5104 cpi->ccb_h.status = CAM_REQ_CMP; 5105 xpt_done(work_ccb); 5106 break; 5107 } 5108 default: 5109 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5110 xpt_done(work_ccb); 5111 break; 5112 } 5113 } 5114 5115 /* 5116 * The xpt as a "controller" has no interrupt sources, so polling 5117 * is a no-op. 5118 */ 5119 static void 5120 xptpoll(struct cam_sim *sim) 5121 { 5122 } 5123 5124 void 5125 xpt_lock_buses(void) 5126 { 5127 mtx_lock(&xsoftc.xpt_topo_lock); 5128 } 5129 5130 void 5131 xpt_unlock_buses(void) 5132 { 5133 mtx_unlock(&xsoftc.xpt_topo_lock); 5134 } 5135 5136 struct mtx * 5137 xpt_path_mtx(struct cam_path *path) 5138 { 5139 5140 return (&path->device->device_mtx); 5141 } 5142 5143 static void 5144 xpt_done_process(struct ccb_hdr *ccb_h) 5145 { 5146 struct cam_sim *sim; 5147 struct cam_devq *devq; 5148 struct mtx *mtx = NULL; 5149 5150 if (ccb_h->flags & CAM_HIGH_POWER) { 5151 struct highpowerlist *hphead; 5152 struct cam_ed *device; 5153 5154 mtx_lock(&xsoftc.xpt_highpower_lock); 5155 hphead = &xsoftc.highpowerq; 5156 5157 device = STAILQ_FIRST(hphead); 5158 5159 /* 5160 * Increment the count since this command is done. 5161 */ 5162 xsoftc.num_highpower++; 5163 5164 /* 5165 * Any high powered commands queued up? 5166 */ 5167 if (device != NULL) { 5168 5169 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5170 mtx_unlock(&xsoftc.xpt_highpower_lock); 5171 5172 mtx_lock(&device->sim->devq->send_mtx); 5173 xpt_release_devq_device(device, 5174 /*count*/1, /*runqueue*/TRUE); 5175 mtx_unlock(&device->sim->devq->send_mtx); 5176 } else 5177 mtx_unlock(&xsoftc.xpt_highpower_lock); 5178 } 5179 5180 sim = ccb_h->path->bus->sim; 5181 5182 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5183 xpt_release_simq(sim, /*run_queue*/FALSE); 5184 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5185 } 5186 5187 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5188 && (ccb_h->status & CAM_DEV_QFRZN)) { 5189 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5190 ccb_h->status &= ~CAM_DEV_QFRZN; 5191 } 5192 5193 devq = sim->devq; 5194 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5195 struct cam_ed *dev = ccb_h->path->device; 5196 5197 mtx_lock(&devq->send_mtx); 5198 devq->send_active--; 5199 devq->send_openings++; 5200 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5201 5202 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5203 && (dev->ccbq.dev_active == 0))) { 5204 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5205 xpt_release_devq_device(dev, /*count*/1, 5206 /*run_queue*/FALSE); 5207 } 5208 5209 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5210 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5211 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5212 xpt_release_devq_device(dev, /*count*/1, 5213 /*run_queue*/FALSE); 5214 } 5215 5216 if (!device_is_queued(dev)) 5217 (void)xpt_schedule_devq(devq, dev); 5218 xpt_run_devq(devq); 5219 mtx_unlock(&devq->send_mtx); 5220 5221 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5222 mtx = xpt_path_mtx(ccb_h->path); 5223 mtx_lock(mtx); 5224 5225 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5226 && (--dev->tag_delay_count == 0)) 5227 xpt_start_tags(ccb_h->path); 5228 } 5229 } 5230 5231 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5232 if (mtx == NULL) { 5233 mtx = xpt_path_mtx(ccb_h->path); 5234 mtx_lock(mtx); 5235 } 5236 } else { 5237 if (mtx != NULL) { 5238 mtx_unlock(mtx); 5239 mtx = NULL; 5240 } 5241 } 5242 5243 /* Call the peripheral driver's callback */ 5244 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5245 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5246 if (mtx != NULL) 5247 mtx_unlock(mtx); 5248 } 5249 5250 void 5251 xpt_done_td(void *arg) 5252 { 5253 struct cam_doneq *queue = arg; 5254 struct ccb_hdr *ccb_h; 5255 STAILQ_HEAD(, ccb_hdr) doneq; 5256 5257 STAILQ_INIT(&doneq); 5258 mtx_lock(&queue->cam_doneq_mtx); 5259 while (1) { 5260 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5261 queue->cam_doneq_sleep = 1; 5262 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5263 PRIBIO, "-", 0); 5264 queue->cam_doneq_sleep = 0; 5265 } 5266 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5267 mtx_unlock(&queue->cam_doneq_mtx); 5268 5269 THREAD_NO_SLEEPING(); 5270 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5271 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5272 xpt_done_process(ccb_h); 5273 } 5274 THREAD_SLEEPING_OK(); 5275 5276 mtx_lock(&queue->cam_doneq_mtx); 5277 } 5278 } 5279 5280 static void 5281 camisr_runqueue(void) 5282 { 5283 struct ccb_hdr *ccb_h; 5284 struct cam_doneq *queue; 5285 int i; 5286 5287 /* Process global queues. */ 5288 for (i = 0; i < cam_num_doneqs; i++) { 5289 queue = &cam_doneqs[i]; 5290 mtx_lock(&queue->cam_doneq_mtx); 5291 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5292 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5293 mtx_unlock(&queue->cam_doneq_mtx); 5294 xpt_done_process(ccb_h); 5295 mtx_lock(&queue->cam_doneq_mtx); 5296 } 5297 mtx_unlock(&queue->cam_doneq_mtx); 5298 } 5299 } 5300