xref: /freebsd/sys/cam/cam_xpt.c (revision 545ddfbe7d4fe8adfb862903b24eac1d5896c1ef)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
5  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification, immediately at the beginning of the file.
14  * 2. The name of the author may not be used to endorse or promote products
15  *    derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
21  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/systm.h>
36 #include <sys/types.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/time.h>
40 #include <sys/conf.h>
41 #include <sys/fcntl.h>
42 #include <sys/interrupt.h>
43 #include <sys/proc.h>
44 #include <sys/sbuf.h>
45 #include <sys/smp.h>
46 #include <sys/taskqueue.h>
47 
48 #include <sys/lock.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51 #include <sys/kthread.h>
52 
53 #include <cam/cam.h>
54 #include <cam/cam_ccb.h>
55 #include <cam/cam_periph.h>
56 #include <cam/cam_queue.h>
57 #include <cam/cam_sim.h>
58 #include <cam/cam_xpt.h>
59 #include <cam/cam_xpt_sim.h>
60 #include <cam/cam_xpt_periph.h>
61 #include <cam/cam_xpt_internal.h>
62 #include <cam/cam_debug.h>
63 #include <cam/cam_compat.h>
64 
65 #include <cam/scsi/scsi_all.h>
66 #include <cam/scsi/scsi_message.h>
67 #include <cam/scsi/scsi_pass.h>
68 
69 #include <machine/md_var.h>	/* geometry translation */
70 #include <machine/stdarg.h>	/* for xpt_print below */
71 
72 #include "opt_cam.h"
73 
74 /*
75  * This is the maximum number of high powered commands (e.g. start unit)
76  * that can be outstanding at a particular time.
77  */
78 #ifndef CAM_MAX_HIGHPOWER
79 #define CAM_MAX_HIGHPOWER  4
80 #endif
81 
82 /* Datastructures internal to the xpt layer */
83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
87 
88 /* Object for defering XPT actions to a taskqueue */
89 struct xpt_task {
90 	struct task	task;
91 	void		*data1;
92 	uintptr_t	data2;
93 };
94 
95 struct xpt_softc {
96 	/* number of high powered commands that can go through right now */
97 	struct mtx		xpt_highpower_lock;
98 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
99 	int			num_highpower;
100 
101 	/* queue for handling async rescan requests. */
102 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
103 	int buses_to_config;
104 	int buses_config_done;
105 
106 	/* Registered busses */
107 	TAILQ_HEAD(,cam_eb)	xpt_busses;
108 	u_int			bus_generation;
109 
110 	struct intr_config_hook	*xpt_config_hook;
111 
112 	int			boot_delay;
113 	struct callout 		boot_callout;
114 
115 	struct mtx		xpt_topo_lock;
116 	struct mtx		xpt_lock;
117 	struct taskqueue	*xpt_taskq;
118 };
119 
120 typedef enum {
121 	DM_RET_COPY		= 0x01,
122 	DM_RET_FLAG_MASK	= 0x0f,
123 	DM_RET_NONE		= 0x00,
124 	DM_RET_STOP		= 0x10,
125 	DM_RET_DESCEND		= 0x20,
126 	DM_RET_ERROR		= 0x30,
127 	DM_RET_ACTION_MASK	= 0xf0
128 } dev_match_ret;
129 
130 typedef enum {
131 	XPT_DEPTH_BUS,
132 	XPT_DEPTH_TARGET,
133 	XPT_DEPTH_DEVICE,
134 	XPT_DEPTH_PERIPH
135 } xpt_traverse_depth;
136 
137 struct xpt_traverse_config {
138 	xpt_traverse_depth	depth;
139 	void			*tr_func;
140 	void			*tr_arg;
141 };
142 
143 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
144 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
145 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
146 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
147 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
148 
149 /* Transport layer configuration information */
150 static struct xpt_softc xsoftc;
151 
152 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
153            &xsoftc.boot_delay, 0, "Bus registration wait time");
154 
155 struct cam_doneq {
156 	struct mtx_padalign	cam_doneq_mtx;
157 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
158 	int			cam_doneq_sleep;
159 };
160 
161 static struct cam_doneq cam_doneqs[MAXCPU];
162 static int cam_num_doneqs;
163 static struct proc *cam_proc;
164 
165 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
166            &cam_num_doneqs, 0, "Number of completion queues/threads");
167 
168 struct cam_periph *xpt_periph;
169 
170 static periph_init_t xpt_periph_init;
171 
172 static struct periph_driver xpt_driver =
173 {
174 	xpt_periph_init, "xpt",
175 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
176 	CAM_PERIPH_DRV_EARLY
177 };
178 
179 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
180 
181 static d_open_t xptopen;
182 static d_close_t xptclose;
183 static d_ioctl_t xptioctl;
184 static d_ioctl_t xptdoioctl;
185 
186 static struct cdevsw xpt_cdevsw = {
187 	.d_version =	D_VERSION,
188 	.d_flags =	0,
189 	.d_open =	xptopen,
190 	.d_close =	xptclose,
191 	.d_ioctl =	xptioctl,
192 	.d_name =	"xpt",
193 };
194 
195 /* Storage for debugging datastructures */
196 struct cam_path *cam_dpath;
197 u_int32_t cam_dflags = CAM_DEBUG_FLAGS;
198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
199 	&cam_dflags, 0, "Enabled debug flags");
200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY;
201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
202 	&cam_debug_delay, 0, "Delay in us after each debug message");
203 
204 /* Our boot-time initialization hook */
205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
206 
207 static moduledata_t cam_moduledata = {
208 	"cam",
209 	cam_module_event_handler,
210 	NULL
211 };
212 
213 static int	xpt_init(void *);
214 
215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
216 MODULE_VERSION(cam, 1);
217 
218 
219 static void		xpt_async_bcast(struct async_list *async_head,
220 					u_int32_t async_code,
221 					struct cam_path *path,
222 					void *async_arg);
223 static path_id_t xptnextfreepathid(void);
224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
225 static union ccb *xpt_get_ccb(struct cam_periph *periph);
226 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
227 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
228 static void	 xpt_run_allocq_task(void *context, int pending);
229 static void	 xpt_run_devq(struct cam_devq *devq);
230 static timeout_t xpt_release_devq_timeout;
231 static void	 xpt_release_simq_timeout(void *arg) __unused;
232 static void	 xpt_acquire_bus(struct cam_eb *bus);
233 static void	 xpt_release_bus(struct cam_eb *bus);
234 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
235 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
236 		    int run_queue);
237 static struct cam_et*
238 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
239 static void	 xpt_acquire_target(struct cam_et *target);
240 static void	 xpt_release_target(struct cam_et *target);
241 static struct cam_eb*
242 		 xpt_find_bus(path_id_t path_id);
243 static struct cam_et*
244 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
245 static struct cam_ed*
246 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
247 static void	 xpt_config(void *arg);
248 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
249 				 u_int32_t new_priority);
250 static xpt_devicefunc_t xptpassannouncefunc;
251 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
252 static void	 xptpoll(struct cam_sim *sim);
253 static void	 camisr_runqueue(void);
254 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
255 static void	 xpt_done_td(void *);
256 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
257 				    u_int num_patterns, struct cam_eb *bus);
258 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
259 				       u_int num_patterns,
260 				       struct cam_ed *device);
261 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
262 				       u_int num_patterns,
263 				       struct cam_periph *periph);
264 static xpt_busfunc_t	xptedtbusfunc;
265 static xpt_targetfunc_t	xptedttargetfunc;
266 static xpt_devicefunc_t	xptedtdevicefunc;
267 static xpt_periphfunc_t	xptedtperiphfunc;
268 static xpt_pdrvfunc_t	xptplistpdrvfunc;
269 static xpt_periphfunc_t	xptplistperiphfunc;
270 static int		xptedtmatch(struct ccb_dev_match *cdm);
271 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
272 static int		xptbustraverse(struct cam_eb *start_bus,
273 				       xpt_busfunc_t *tr_func, void *arg);
274 static int		xpttargettraverse(struct cam_eb *bus,
275 					  struct cam_et *start_target,
276 					  xpt_targetfunc_t *tr_func, void *arg);
277 static int		xptdevicetraverse(struct cam_et *target,
278 					  struct cam_ed *start_device,
279 					  xpt_devicefunc_t *tr_func, void *arg);
280 static int		xptperiphtraverse(struct cam_ed *device,
281 					  struct cam_periph *start_periph,
282 					  xpt_periphfunc_t *tr_func, void *arg);
283 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
284 					xpt_pdrvfunc_t *tr_func, void *arg);
285 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
286 					    struct cam_periph *start_periph,
287 					    xpt_periphfunc_t *tr_func,
288 					    void *arg);
289 static xpt_busfunc_t	xptdefbusfunc;
290 static xpt_targetfunc_t	xptdeftargetfunc;
291 static xpt_devicefunc_t	xptdefdevicefunc;
292 static xpt_periphfunc_t	xptdefperiphfunc;
293 static void		xpt_finishconfig_task(void *context, int pending);
294 static void		xpt_dev_async_default(u_int32_t async_code,
295 					      struct cam_eb *bus,
296 					      struct cam_et *target,
297 					      struct cam_ed *device,
298 					      void *async_arg);
299 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
300 						 struct cam_et *target,
301 						 lun_id_t lun_id);
302 static xpt_devicefunc_t	xptsetasyncfunc;
303 static xpt_busfunc_t	xptsetasyncbusfunc;
304 static cam_status	xptregister(struct cam_periph *periph,
305 				    void *arg);
306 static __inline int device_is_queued(struct cam_ed *device);
307 
308 static __inline int
309 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
310 {
311 	int	retval;
312 
313 	mtx_assert(&devq->send_mtx, MA_OWNED);
314 	if ((dev->ccbq.queue.entries > 0) &&
315 	    (dev->ccbq.dev_openings > 0) &&
316 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
317 		/*
318 		 * The priority of a device waiting for controller
319 		 * resources is that of the highest priority CCB
320 		 * enqueued.
321 		 */
322 		retval =
323 		    xpt_schedule_dev(&devq->send_queue,
324 				     &dev->devq_entry,
325 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
326 	} else {
327 		retval = 0;
328 	}
329 	return (retval);
330 }
331 
332 static __inline int
333 device_is_queued(struct cam_ed *device)
334 {
335 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
336 }
337 
338 static void
339 xpt_periph_init()
340 {
341 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
342 }
343 
344 static int
345 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
346 {
347 
348 	/*
349 	 * Only allow read-write access.
350 	 */
351 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
352 		return(EPERM);
353 
354 	/*
355 	 * We don't allow nonblocking access.
356 	 */
357 	if ((flags & O_NONBLOCK) != 0) {
358 		printf("%s: can't do nonblocking access\n", devtoname(dev));
359 		return(ENODEV);
360 	}
361 
362 	return(0);
363 }
364 
365 static int
366 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
367 {
368 
369 	return(0);
370 }
371 
372 /*
373  * Don't automatically grab the xpt softc lock here even though this is going
374  * through the xpt device.  The xpt device is really just a back door for
375  * accessing other devices and SIMs, so the right thing to do is to grab
376  * the appropriate SIM lock once the bus/SIM is located.
377  */
378 static int
379 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
380 {
381 	int error;
382 
383 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
384 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
385 	}
386 	return (error);
387 }
388 
389 static int
390 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
391 {
392 	int error;
393 
394 	error = 0;
395 
396 	switch(cmd) {
397 	/*
398 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
399 	 * to accept CCB types that don't quite make sense to send through a
400 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
401 	 * in the CAM spec.
402 	 */
403 	case CAMIOCOMMAND: {
404 		union ccb *ccb;
405 		union ccb *inccb;
406 		struct cam_eb *bus;
407 
408 		inccb = (union ccb *)addr;
409 
410 		bus = xpt_find_bus(inccb->ccb_h.path_id);
411 		if (bus == NULL)
412 			return (EINVAL);
413 
414 		switch (inccb->ccb_h.func_code) {
415 		case XPT_SCAN_BUS:
416 		case XPT_RESET_BUS:
417 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
418 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
419 				xpt_release_bus(bus);
420 				return (EINVAL);
421 			}
422 			break;
423 		case XPT_SCAN_TGT:
424 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
425 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
426 				xpt_release_bus(bus);
427 				return (EINVAL);
428 			}
429 			break;
430 		default:
431 			break;
432 		}
433 
434 		switch(inccb->ccb_h.func_code) {
435 		case XPT_SCAN_BUS:
436 		case XPT_RESET_BUS:
437 		case XPT_PATH_INQ:
438 		case XPT_ENG_INQ:
439 		case XPT_SCAN_LUN:
440 		case XPT_SCAN_TGT:
441 
442 			ccb = xpt_alloc_ccb();
443 
444 			/*
445 			 * Create a path using the bus, target, and lun the
446 			 * user passed in.
447 			 */
448 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
449 					    inccb->ccb_h.path_id,
450 					    inccb->ccb_h.target_id,
451 					    inccb->ccb_h.target_lun) !=
452 					    CAM_REQ_CMP){
453 				error = EINVAL;
454 				xpt_free_ccb(ccb);
455 				break;
456 			}
457 			/* Ensure all of our fields are correct */
458 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
459 				      inccb->ccb_h.pinfo.priority);
460 			xpt_merge_ccb(ccb, inccb);
461 			xpt_path_lock(ccb->ccb_h.path);
462 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
463 			xpt_path_unlock(ccb->ccb_h.path);
464 			bcopy(ccb, inccb, sizeof(union ccb));
465 			xpt_free_path(ccb->ccb_h.path);
466 			xpt_free_ccb(ccb);
467 			break;
468 
469 		case XPT_DEBUG: {
470 			union ccb ccb;
471 
472 			/*
473 			 * This is an immediate CCB, so it's okay to
474 			 * allocate it on the stack.
475 			 */
476 
477 			/*
478 			 * Create a path using the bus, target, and lun the
479 			 * user passed in.
480 			 */
481 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
482 					    inccb->ccb_h.path_id,
483 					    inccb->ccb_h.target_id,
484 					    inccb->ccb_h.target_lun) !=
485 					    CAM_REQ_CMP){
486 				error = EINVAL;
487 				break;
488 			}
489 			/* Ensure all of our fields are correct */
490 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
491 				      inccb->ccb_h.pinfo.priority);
492 			xpt_merge_ccb(&ccb, inccb);
493 			xpt_action(&ccb);
494 			bcopy(&ccb, inccb, sizeof(union ccb));
495 			xpt_free_path(ccb.ccb_h.path);
496 			break;
497 
498 		}
499 		case XPT_DEV_MATCH: {
500 			struct cam_periph_map_info mapinfo;
501 			struct cam_path *old_path;
502 
503 			/*
504 			 * We can't deal with physical addresses for this
505 			 * type of transaction.
506 			 */
507 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
508 			    CAM_DATA_VADDR) {
509 				error = EINVAL;
510 				break;
511 			}
512 
513 			/*
514 			 * Save this in case the caller had it set to
515 			 * something in particular.
516 			 */
517 			old_path = inccb->ccb_h.path;
518 
519 			/*
520 			 * We really don't need a path for the matching
521 			 * code.  The path is needed because of the
522 			 * debugging statements in xpt_action().  They
523 			 * assume that the CCB has a valid path.
524 			 */
525 			inccb->ccb_h.path = xpt_periph->path;
526 
527 			bzero(&mapinfo, sizeof(mapinfo));
528 
529 			/*
530 			 * Map the pattern and match buffers into kernel
531 			 * virtual address space.
532 			 */
533 			error = cam_periph_mapmem(inccb, &mapinfo);
534 
535 			if (error) {
536 				inccb->ccb_h.path = old_path;
537 				break;
538 			}
539 
540 			/*
541 			 * This is an immediate CCB, we can send it on directly.
542 			 */
543 			xpt_action(inccb);
544 
545 			/*
546 			 * Map the buffers back into user space.
547 			 */
548 			cam_periph_unmapmem(inccb, &mapinfo);
549 
550 			inccb->ccb_h.path = old_path;
551 
552 			error = 0;
553 			break;
554 		}
555 		default:
556 			error = ENOTSUP;
557 			break;
558 		}
559 		xpt_release_bus(bus);
560 		break;
561 	}
562 	/*
563 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
564 	 * with the periphal driver name and unit name filled in.  The other
565 	 * fields don't really matter as input.  The passthrough driver name
566 	 * ("pass"), and unit number are passed back in the ccb.  The current
567 	 * device generation number, and the index into the device peripheral
568 	 * driver list, and the status are also passed back.  Note that
569 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
570 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
571 	 * (or rather should be) impossible for the device peripheral driver
572 	 * list to change since we look at the whole thing in one pass, and
573 	 * we do it with lock protection.
574 	 *
575 	 */
576 	case CAMGETPASSTHRU: {
577 		union ccb *ccb;
578 		struct cam_periph *periph;
579 		struct periph_driver **p_drv;
580 		char   *name;
581 		u_int unit;
582 		int base_periph_found;
583 
584 		ccb = (union ccb *)addr;
585 		unit = ccb->cgdl.unit_number;
586 		name = ccb->cgdl.periph_name;
587 		base_periph_found = 0;
588 
589 		/*
590 		 * Sanity check -- make sure we don't get a null peripheral
591 		 * driver name.
592 		 */
593 		if (*ccb->cgdl.periph_name == '\0') {
594 			error = EINVAL;
595 			break;
596 		}
597 
598 		/* Keep the list from changing while we traverse it */
599 		xpt_lock_buses();
600 
601 		/* first find our driver in the list of drivers */
602 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
603 			if (strcmp((*p_drv)->driver_name, name) == 0)
604 				break;
605 
606 		if (*p_drv == NULL) {
607 			xpt_unlock_buses();
608 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
609 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
610 			*ccb->cgdl.periph_name = '\0';
611 			ccb->cgdl.unit_number = 0;
612 			error = ENOENT;
613 			break;
614 		}
615 
616 		/*
617 		 * Run through every peripheral instance of this driver
618 		 * and check to see whether it matches the unit passed
619 		 * in by the user.  If it does, get out of the loops and
620 		 * find the passthrough driver associated with that
621 		 * peripheral driver.
622 		 */
623 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
624 		     periph = TAILQ_NEXT(periph, unit_links)) {
625 
626 			if (periph->unit_number == unit)
627 				break;
628 		}
629 		/*
630 		 * If we found the peripheral driver that the user passed
631 		 * in, go through all of the peripheral drivers for that
632 		 * particular device and look for a passthrough driver.
633 		 */
634 		if (periph != NULL) {
635 			struct cam_ed *device;
636 			int i;
637 
638 			base_periph_found = 1;
639 			device = periph->path->device;
640 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
641 			     periph != NULL;
642 			     periph = SLIST_NEXT(periph, periph_links), i++) {
643 				/*
644 				 * Check to see whether we have a
645 				 * passthrough device or not.
646 				 */
647 				if (strcmp(periph->periph_name, "pass") == 0) {
648 					/*
649 					 * Fill in the getdevlist fields.
650 					 */
651 					strcpy(ccb->cgdl.periph_name,
652 					       periph->periph_name);
653 					ccb->cgdl.unit_number =
654 						periph->unit_number;
655 					if (SLIST_NEXT(periph, periph_links))
656 						ccb->cgdl.status =
657 							CAM_GDEVLIST_MORE_DEVS;
658 					else
659 						ccb->cgdl.status =
660 						       CAM_GDEVLIST_LAST_DEVICE;
661 					ccb->cgdl.generation =
662 						device->generation;
663 					ccb->cgdl.index = i;
664 					/*
665 					 * Fill in some CCB header fields
666 					 * that the user may want.
667 					 */
668 					ccb->ccb_h.path_id =
669 						periph->path->bus->path_id;
670 					ccb->ccb_h.target_id =
671 						periph->path->target->target_id;
672 					ccb->ccb_h.target_lun =
673 						periph->path->device->lun_id;
674 					ccb->ccb_h.status = CAM_REQ_CMP;
675 					break;
676 				}
677 			}
678 		}
679 
680 		/*
681 		 * If the periph is null here, one of two things has
682 		 * happened.  The first possibility is that we couldn't
683 		 * find the unit number of the particular peripheral driver
684 		 * that the user is asking about.  e.g. the user asks for
685 		 * the passthrough driver for "da11".  We find the list of
686 		 * "da" peripherals all right, but there is no unit 11.
687 		 * The other possibility is that we went through the list
688 		 * of peripheral drivers attached to the device structure,
689 		 * but didn't find one with the name "pass".  Either way,
690 		 * we return ENOENT, since we couldn't find something.
691 		 */
692 		if (periph == NULL) {
693 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
694 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
695 			*ccb->cgdl.periph_name = '\0';
696 			ccb->cgdl.unit_number = 0;
697 			error = ENOENT;
698 			/*
699 			 * It is unfortunate that this is even necessary,
700 			 * but there are many, many clueless users out there.
701 			 * If this is true, the user is looking for the
702 			 * passthrough driver, but doesn't have one in his
703 			 * kernel.
704 			 */
705 			if (base_periph_found == 1) {
706 				printf("xptioctl: pass driver is not in the "
707 				       "kernel\n");
708 				printf("xptioctl: put \"device pass\" in "
709 				       "your kernel config file\n");
710 			}
711 		}
712 		xpt_unlock_buses();
713 		break;
714 		}
715 	default:
716 		error = ENOTTY;
717 		break;
718 	}
719 
720 	return(error);
721 }
722 
723 static int
724 cam_module_event_handler(module_t mod, int what, void *arg)
725 {
726 	int error;
727 
728 	switch (what) {
729 	case MOD_LOAD:
730 		if ((error = xpt_init(NULL)) != 0)
731 			return (error);
732 		break;
733 	case MOD_UNLOAD:
734 		return EBUSY;
735 	default:
736 		return EOPNOTSUPP;
737 	}
738 
739 	return 0;
740 }
741 
742 static void
743 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
744 {
745 
746 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
747 		xpt_free_path(done_ccb->ccb_h.path);
748 		xpt_free_ccb(done_ccb);
749 	} else {
750 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
751 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
752 	}
753 	xpt_release_boot();
754 }
755 
756 /* thread to handle bus rescans */
757 static void
758 xpt_scanner_thread(void *dummy)
759 {
760 	union ccb	*ccb;
761 	struct cam_path	 path;
762 
763 	xpt_lock_buses();
764 	for (;;) {
765 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
766 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
767 			       "-", 0);
768 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
769 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
770 			xpt_unlock_buses();
771 
772 			/*
773 			 * Since lock can be dropped inside and path freed
774 			 * by completion callback even before return here,
775 			 * take our own path copy for reference.
776 			 */
777 			xpt_copy_path(&path, ccb->ccb_h.path);
778 			xpt_path_lock(&path);
779 			xpt_action(ccb);
780 			xpt_path_unlock(&path);
781 			xpt_release_path(&path);
782 
783 			xpt_lock_buses();
784 		}
785 	}
786 }
787 
788 void
789 xpt_rescan(union ccb *ccb)
790 {
791 	struct ccb_hdr *hdr;
792 
793 	/* Prepare request */
794 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
795 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
796 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
797 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
798 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
799 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
800 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
801 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
802 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
803 	else {
804 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
805 		xpt_free_path(ccb->ccb_h.path);
806 		xpt_free_ccb(ccb);
807 		return;
808 	}
809 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
810 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
811 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
812 	/* Don't make duplicate entries for the same paths. */
813 	xpt_lock_buses();
814 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
815 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
816 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
817 				wakeup(&xsoftc.ccb_scanq);
818 				xpt_unlock_buses();
819 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
820 				xpt_free_path(ccb->ccb_h.path);
821 				xpt_free_ccb(ccb);
822 				return;
823 			}
824 		}
825 	}
826 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
827 	xsoftc.buses_to_config++;
828 	wakeup(&xsoftc.ccb_scanq);
829 	xpt_unlock_buses();
830 }
831 
832 /* Functions accessed by the peripheral drivers */
833 static int
834 xpt_init(void *dummy)
835 {
836 	struct cam_sim *xpt_sim;
837 	struct cam_path *path;
838 	struct cam_devq *devq;
839 	cam_status status;
840 	int error, i;
841 
842 	TAILQ_INIT(&xsoftc.xpt_busses);
843 	TAILQ_INIT(&xsoftc.ccb_scanq);
844 	STAILQ_INIT(&xsoftc.highpowerq);
845 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
846 
847 	mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF);
848 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
849 	mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF);
850 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
851 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
852 
853 #ifdef CAM_BOOT_DELAY
854 	/*
855 	 * Override this value at compile time to assist our users
856 	 * who don't use loader to boot a kernel.
857 	 */
858 	xsoftc.boot_delay = CAM_BOOT_DELAY;
859 #endif
860 	/*
861 	 * The xpt layer is, itself, the equivelent of a SIM.
862 	 * Allow 16 ccbs in the ccb pool for it.  This should
863 	 * give decent parallelism when we probe busses and
864 	 * perform other XPT functions.
865 	 */
866 	devq = cam_simq_alloc(16);
867 	xpt_sim = cam_sim_alloc(xptaction,
868 				xptpoll,
869 				"xpt",
870 				/*softc*/NULL,
871 				/*unit*/0,
872 				/*mtx*/&xsoftc.xpt_lock,
873 				/*max_dev_transactions*/0,
874 				/*max_tagged_dev_transactions*/0,
875 				devq);
876 	if (xpt_sim == NULL)
877 		return (ENOMEM);
878 
879 	mtx_lock(&xsoftc.xpt_lock);
880 	if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
881 		mtx_unlock(&xsoftc.xpt_lock);
882 		printf("xpt_init: xpt_bus_register failed with status %#x,"
883 		       " failing attach\n", status);
884 		return (EINVAL);
885 	}
886 	mtx_unlock(&xsoftc.xpt_lock);
887 
888 	/*
889 	 * Looking at the XPT from the SIM layer, the XPT is
890 	 * the equivelent of a peripheral driver.  Allocate
891 	 * a peripheral driver entry for us.
892 	 */
893 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
894 				      CAM_TARGET_WILDCARD,
895 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
896 		mtx_unlock(&xsoftc.xpt_lock);
897 		printf("xpt_init: xpt_create_path failed with status %#x,"
898 		       " failing attach\n", status);
899 		return (EINVAL);
900 	}
901 	xpt_path_lock(path);
902 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
903 			 path, NULL, 0, xpt_sim);
904 	xpt_path_unlock(path);
905 	xpt_free_path(path);
906 
907 	if (cam_num_doneqs < 1)
908 		cam_num_doneqs = 1 + mp_ncpus / 6;
909 	else if (cam_num_doneqs > MAXCPU)
910 		cam_num_doneqs = MAXCPU;
911 	for (i = 0; i < cam_num_doneqs; i++) {
912 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
913 		    MTX_DEF);
914 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
915 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
916 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
917 		if (error != 0) {
918 			cam_num_doneqs = i;
919 			break;
920 		}
921 	}
922 	if (cam_num_doneqs < 1) {
923 		printf("xpt_init: Cannot init completion queues "
924 		       "- failing attach\n");
925 		return (ENOMEM);
926 	}
927 	/*
928 	 * Register a callback for when interrupts are enabled.
929 	 */
930 	xsoftc.xpt_config_hook =
931 	    (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook),
932 					      M_CAMXPT, M_NOWAIT | M_ZERO);
933 	if (xsoftc.xpt_config_hook == NULL) {
934 		printf("xpt_init: Cannot malloc config hook "
935 		       "- failing attach\n");
936 		return (ENOMEM);
937 	}
938 	xsoftc.xpt_config_hook->ich_func = xpt_config;
939 	if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) {
940 		free (xsoftc.xpt_config_hook, M_CAMXPT);
941 		printf("xpt_init: config_intrhook_establish failed "
942 		       "- failing attach\n");
943 	}
944 
945 	return (0);
946 }
947 
948 static cam_status
949 xptregister(struct cam_periph *periph, void *arg)
950 {
951 	struct cam_sim *xpt_sim;
952 
953 	if (periph == NULL) {
954 		printf("xptregister: periph was NULL!!\n");
955 		return(CAM_REQ_CMP_ERR);
956 	}
957 
958 	xpt_sim = (struct cam_sim *)arg;
959 	xpt_sim->softc = periph;
960 	xpt_periph = periph;
961 	periph->softc = NULL;
962 
963 	return(CAM_REQ_CMP);
964 }
965 
966 int32_t
967 xpt_add_periph(struct cam_periph *periph)
968 {
969 	struct cam_ed *device;
970 	int32_t	 status;
971 
972 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
973 	device = periph->path->device;
974 	status = CAM_REQ_CMP;
975 	if (device != NULL) {
976 		mtx_lock(&device->target->bus->eb_mtx);
977 		device->generation++;
978 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
979 		mtx_unlock(&device->target->bus->eb_mtx);
980 	}
981 
982 	return (status);
983 }
984 
985 void
986 xpt_remove_periph(struct cam_periph *periph)
987 {
988 	struct cam_ed *device;
989 
990 	device = periph->path->device;
991 	if (device != NULL) {
992 		mtx_lock(&device->target->bus->eb_mtx);
993 		device->generation++;
994 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
995 		mtx_unlock(&device->target->bus->eb_mtx);
996 	}
997 }
998 
999 
1000 void
1001 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1002 {
1003 	struct	cam_path *path = periph->path;
1004 
1005 	cam_periph_assert(periph, MA_OWNED);
1006 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1007 
1008 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1009 	       periph->periph_name, periph->unit_number,
1010 	       path->bus->sim->sim_name,
1011 	       path->bus->sim->unit_number,
1012 	       path->bus->sim->bus_id,
1013 	       path->bus->path_id,
1014 	       path->target->target_id,
1015 	       (uintmax_t)path->device->lun_id);
1016 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1017 	if (path->device->protocol == PROTO_SCSI)
1018 		scsi_print_inquiry(&path->device->inq_data);
1019 	else if (path->device->protocol == PROTO_ATA ||
1020 	    path->device->protocol == PROTO_SATAPM)
1021 		ata_print_ident(&path->device->ident_data);
1022 	else if (path->device->protocol == PROTO_SEMB)
1023 		semb_print_ident(
1024 		    (struct sep_identify_data *)&path->device->ident_data);
1025 	else
1026 		printf("Unknown protocol device\n");
1027 	if (path->device->serial_num_len > 0) {
1028 		/* Don't wrap the screen  - print only the first 60 chars */
1029 		printf("%s%d: Serial Number %.60s\n", periph->periph_name,
1030 		       periph->unit_number, path->device->serial_num);
1031 	}
1032 	/* Announce transport details. */
1033 	(*(path->bus->xport->announce))(periph);
1034 	/* Announce command queueing. */
1035 	if (path->device->inq_flags & SID_CmdQue
1036 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1037 		printf("%s%d: Command Queueing enabled\n",
1038 		       periph->periph_name, periph->unit_number);
1039 	}
1040 	/* Announce caller's details if they've passed in. */
1041 	if (announce_string != NULL)
1042 		printf("%s%d: %s\n", periph->periph_name,
1043 		       periph->unit_number, announce_string);
1044 }
1045 
1046 void
1047 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1048 {
1049 	if (quirks != 0) {
1050 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1051 		    periph->unit_number, quirks, bit_string);
1052 	}
1053 }
1054 
1055 void
1056 xpt_denounce_periph(struct cam_periph *periph)
1057 {
1058 	struct	cam_path *path = periph->path;
1059 
1060 	cam_periph_assert(periph, MA_OWNED);
1061 	printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1062 	       periph->periph_name, periph->unit_number,
1063 	       path->bus->sim->sim_name,
1064 	       path->bus->sim->unit_number,
1065 	       path->bus->sim->bus_id,
1066 	       path->bus->path_id,
1067 	       path->target->target_id,
1068 	       (uintmax_t)path->device->lun_id);
1069 	printf("%s%d: ", periph->periph_name, periph->unit_number);
1070 	if (path->device->protocol == PROTO_SCSI)
1071 		scsi_print_inquiry_short(&path->device->inq_data);
1072 	else if (path->device->protocol == PROTO_ATA ||
1073 	    path->device->protocol == PROTO_SATAPM)
1074 		ata_print_ident_short(&path->device->ident_data);
1075 	else if (path->device->protocol == PROTO_SEMB)
1076 		semb_print_ident_short(
1077 		    (struct sep_identify_data *)&path->device->ident_data);
1078 	else
1079 		printf("Unknown protocol device");
1080 	if (path->device->serial_num_len > 0)
1081 		printf(" s/n %.60s", path->device->serial_num);
1082 	printf(" detached\n");
1083 }
1084 
1085 
1086 int
1087 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1088 {
1089 	int ret = -1, l;
1090 	struct ccb_dev_advinfo cdai;
1091 	struct scsi_vpd_id_descriptor *idd;
1092 
1093 	xpt_path_assert(path, MA_OWNED);
1094 
1095 	memset(&cdai, 0, sizeof(cdai));
1096 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1097 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1098 	cdai.bufsiz = len;
1099 
1100 	if (!strcmp(attr, "GEOM::ident"))
1101 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1102 	else if (!strcmp(attr, "GEOM::physpath"))
1103 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1104 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1105 		 strcmp(attr, "GEOM::lunname") == 0) {
1106 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1107 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1108 	} else
1109 		goto out;
1110 
1111 	cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO);
1112 	if (cdai.buf == NULL) {
1113 		ret = ENOMEM;
1114 		goto out;
1115 	}
1116 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1117 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1118 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1119 	if (cdai.provsiz == 0)
1120 		goto out;
1121 	if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) {
1122 		if (strcmp(attr, "GEOM::lunid") == 0) {
1123 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1124 			    cdai.provsiz, scsi_devid_is_lun_naa);
1125 			if (idd == NULL)
1126 				idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1127 				    cdai.provsiz, scsi_devid_is_lun_eui64);
1128 		} else
1129 			idd = NULL;
1130 		if (idd == NULL)
1131 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1132 			    cdai.provsiz, scsi_devid_is_lun_t10);
1133 		if (idd == NULL)
1134 			idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf,
1135 			    cdai.provsiz, scsi_devid_is_lun_name);
1136 		if (idd == NULL)
1137 			goto out;
1138 		ret = 0;
1139 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) {
1140 			if (idd->length < len) {
1141 				for (l = 0; l < idd->length; l++)
1142 					buf[l] = idd->identifier[l] ?
1143 					    idd->identifier[l] : ' ';
1144 				buf[l] = 0;
1145 			} else
1146 				ret = EFAULT;
1147 		} else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) {
1148 			l = strnlen(idd->identifier, idd->length);
1149 			if (l < len) {
1150 				bcopy(idd->identifier, buf, l);
1151 				buf[l] = 0;
1152 			} else
1153 				ret = EFAULT;
1154 		} else {
1155 			if (idd->length * 2 < len) {
1156 				for (l = 0; l < idd->length; l++)
1157 					sprintf(buf + l * 2, "%02x",
1158 					    idd->identifier[l]);
1159 			} else
1160 				ret = EFAULT;
1161 		}
1162 	} else {
1163 		ret = 0;
1164 		if (strlcpy(buf, cdai.buf, len) >= len)
1165 			ret = EFAULT;
1166 	}
1167 
1168 out:
1169 	if (cdai.buf != NULL)
1170 		free(cdai.buf, M_CAMXPT);
1171 	return ret;
1172 }
1173 
1174 static dev_match_ret
1175 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1176 	    struct cam_eb *bus)
1177 {
1178 	dev_match_ret retval;
1179 	int i;
1180 
1181 	retval = DM_RET_NONE;
1182 
1183 	/*
1184 	 * If we aren't given something to match against, that's an error.
1185 	 */
1186 	if (bus == NULL)
1187 		return(DM_RET_ERROR);
1188 
1189 	/*
1190 	 * If there are no match entries, then this bus matches no
1191 	 * matter what.
1192 	 */
1193 	if ((patterns == NULL) || (num_patterns == 0))
1194 		return(DM_RET_DESCEND | DM_RET_COPY);
1195 
1196 	for (i = 0; i < num_patterns; i++) {
1197 		struct bus_match_pattern *cur_pattern;
1198 
1199 		/*
1200 		 * If the pattern in question isn't for a bus node, we
1201 		 * aren't interested.  However, we do indicate to the
1202 		 * calling routine that we should continue descending the
1203 		 * tree, since the user wants to match against lower-level
1204 		 * EDT elements.
1205 		 */
1206 		if (patterns[i].type != DEV_MATCH_BUS) {
1207 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1208 				retval |= DM_RET_DESCEND;
1209 			continue;
1210 		}
1211 
1212 		cur_pattern = &patterns[i].pattern.bus_pattern;
1213 
1214 		/*
1215 		 * If they want to match any bus node, we give them any
1216 		 * device node.
1217 		 */
1218 		if (cur_pattern->flags == BUS_MATCH_ANY) {
1219 			/* set the copy flag */
1220 			retval |= DM_RET_COPY;
1221 
1222 			/*
1223 			 * If we've already decided on an action, go ahead
1224 			 * and return.
1225 			 */
1226 			if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE)
1227 				return(retval);
1228 		}
1229 
1230 		/*
1231 		 * Not sure why someone would do this...
1232 		 */
1233 		if (cur_pattern->flags == BUS_MATCH_NONE)
1234 			continue;
1235 
1236 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1237 		 && (cur_pattern->path_id != bus->path_id))
1238 			continue;
1239 
1240 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1241 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1242 			continue;
1243 
1244 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1245 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1246 			continue;
1247 
1248 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1249 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1250 			     DEV_IDLEN) != 0))
1251 			continue;
1252 
1253 		/*
1254 		 * If we get to this point, the user definitely wants
1255 		 * information on this bus.  So tell the caller to copy the
1256 		 * data out.
1257 		 */
1258 		retval |= DM_RET_COPY;
1259 
1260 		/*
1261 		 * If the return action has been set to descend, then we
1262 		 * know that we've already seen a non-bus matching
1263 		 * expression, therefore we need to further descend the tree.
1264 		 * This won't change by continuing around the loop, so we
1265 		 * go ahead and return.  If we haven't seen a non-bus
1266 		 * matching expression, we keep going around the loop until
1267 		 * we exhaust the matching expressions.  We'll set the stop
1268 		 * flag once we fall out of the loop.
1269 		 */
1270 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1271 			return(retval);
1272 	}
1273 
1274 	/*
1275 	 * If the return action hasn't been set to descend yet, that means
1276 	 * we haven't seen anything other than bus matching patterns.  So
1277 	 * tell the caller to stop descending the tree -- the user doesn't
1278 	 * want to match against lower level tree elements.
1279 	 */
1280 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1281 		retval |= DM_RET_STOP;
1282 
1283 	return(retval);
1284 }
1285 
1286 static dev_match_ret
1287 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1288 	       struct cam_ed *device)
1289 {
1290 	dev_match_ret retval;
1291 	int i;
1292 
1293 	retval = DM_RET_NONE;
1294 
1295 	/*
1296 	 * If we aren't given something to match against, that's an error.
1297 	 */
1298 	if (device == NULL)
1299 		return(DM_RET_ERROR);
1300 
1301 	/*
1302 	 * If there are no match entries, then this device matches no
1303 	 * matter what.
1304 	 */
1305 	if ((patterns == NULL) || (num_patterns == 0))
1306 		return(DM_RET_DESCEND | DM_RET_COPY);
1307 
1308 	for (i = 0; i < num_patterns; i++) {
1309 		struct device_match_pattern *cur_pattern;
1310 		struct scsi_vpd_device_id *device_id_page;
1311 
1312 		/*
1313 		 * If the pattern in question isn't for a device node, we
1314 		 * aren't interested.
1315 		 */
1316 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1317 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1318 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1319 				retval |= DM_RET_DESCEND;
1320 			continue;
1321 		}
1322 
1323 		cur_pattern = &patterns[i].pattern.device_pattern;
1324 
1325 		/* Error out if mutually exclusive options are specified. */
1326 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1327 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1328 			return(DM_RET_ERROR);
1329 
1330 		/*
1331 		 * If they want to match any device node, we give them any
1332 		 * device node.
1333 		 */
1334 		if (cur_pattern->flags == DEV_MATCH_ANY)
1335 			goto copy_dev_node;
1336 
1337 		/*
1338 		 * Not sure why someone would do this...
1339 		 */
1340 		if (cur_pattern->flags == DEV_MATCH_NONE)
1341 			continue;
1342 
1343 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1344 		 && (cur_pattern->path_id != device->target->bus->path_id))
1345 			continue;
1346 
1347 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1348 		 && (cur_pattern->target_id != device->target->target_id))
1349 			continue;
1350 
1351 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1352 		 && (cur_pattern->target_lun != device->lun_id))
1353 			continue;
1354 
1355 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1356 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1357 				    (caddr_t)&cur_pattern->data.inq_pat,
1358 				    1, sizeof(cur_pattern->data.inq_pat),
1359 				    scsi_static_inquiry_match) == NULL))
1360 			continue;
1361 
1362 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1363 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1364 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1365 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1366 				      device->device_id_len
1367 				    - SVPD_DEVICE_ID_HDR_LEN,
1368 				      cur_pattern->data.devid_pat.id,
1369 				      cur_pattern->data.devid_pat.id_len) != 0))
1370 			continue;
1371 
1372 copy_dev_node:
1373 		/*
1374 		 * If we get to this point, the user definitely wants
1375 		 * information on this device.  So tell the caller to copy
1376 		 * the data out.
1377 		 */
1378 		retval |= DM_RET_COPY;
1379 
1380 		/*
1381 		 * If the return action has been set to descend, then we
1382 		 * know that we've already seen a peripheral matching
1383 		 * expression, therefore we need to further descend the tree.
1384 		 * This won't change by continuing around the loop, so we
1385 		 * go ahead and return.  If we haven't seen a peripheral
1386 		 * matching expression, we keep going around the loop until
1387 		 * we exhaust the matching expressions.  We'll set the stop
1388 		 * flag once we fall out of the loop.
1389 		 */
1390 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1391 			return(retval);
1392 	}
1393 
1394 	/*
1395 	 * If the return action hasn't been set to descend yet, that means
1396 	 * we haven't seen any peripheral matching patterns.  So tell the
1397 	 * caller to stop descending the tree -- the user doesn't want to
1398 	 * match against lower level tree elements.
1399 	 */
1400 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1401 		retval |= DM_RET_STOP;
1402 
1403 	return(retval);
1404 }
1405 
1406 /*
1407  * Match a single peripheral against any number of match patterns.
1408  */
1409 static dev_match_ret
1410 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1411 	       struct cam_periph *periph)
1412 {
1413 	dev_match_ret retval;
1414 	int i;
1415 
1416 	/*
1417 	 * If we aren't given something to match against, that's an error.
1418 	 */
1419 	if (periph == NULL)
1420 		return(DM_RET_ERROR);
1421 
1422 	/*
1423 	 * If there are no match entries, then this peripheral matches no
1424 	 * matter what.
1425 	 */
1426 	if ((patterns == NULL) || (num_patterns == 0))
1427 		return(DM_RET_STOP | DM_RET_COPY);
1428 
1429 	/*
1430 	 * There aren't any nodes below a peripheral node, so there's no
1431 	 * reason to descend the tree any further.
1432 	 */
1433 	retval = DM_RET_STOP;
1434 
1435 	for (i = 0; i < num_patterns; i++) {
1436 		struct periph_match_pattern *cur_pattern;
1437 
1438 		/*
1439 		 * If the pattern in question isn't for a peripheral, we
1440 		 * aren't interested.
1441 		 */
1442 		if (patterns[i].type != DEV_MATCH_PERIPH)
1443 			continue;
1444 
1445 		cur_pattern = &patterns[i].pattern.periph_pattern;
1446 
1447 		/*
1448 		 * If they want to match on anything, then we will do so.
1449 		 */
1450 		if (cur_pattern->flags == PERIPH_MATCH_ANY) {
1451 			/* set the copy flag */
1452 			retval |= DM_RET_COPY;
1453 
1454 			/*
1455 			 * We've already set the return action to stop,
1456 			 * since there are no nodes below peripherals in
1457 			 * the tree.
1458 			 */
1459 			return(retval);
1460 		}
1461 
1462 		/*
1463 		 * Not sure why someone would do this...
1464 		 */
1465 		if (cur_pattern->flags == PERIPH_MATCH_NONE)
1466 			continue;
1467 
1468 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1469 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1470 			continue;
1471 
1472 		/*
1473 		 * For the target and lun id's, we have to make sure the
1474 		 * target and lun pointers aren't NULL.  The xpt peripheral
1475 		 * has a wildcard target and device.
1476 		 */
1477 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1478 		 && ((periph->path->target == NULL)
1479 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1480 			continue;
1481 
1482 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1483 		 && ((periph->path->device == NULL)
1484 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1485 			continue;
1486 
1487 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1488 		 && (cur_pattern->unit_number != periph->unit_number))
1489 			continue;
1490 
1491 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1492 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1493 			     DEV_IDLEN) != 0))
1494 			continue;
1495 
1496 		/*
1497 		 * If we get to this point, the user definitely wants
1498 		 * information on this peripheral.  So tell the caller to
1499 		 * copy the data out.
1500 		 */
1501 		retval |= DM_RET_COPY;
1502 
1503 		/*
1504 		 * The return action has already been set to stop, since
1505 		 * peripherals don't have any nodes below them in the EDT.
1506 		 */
1507 		return(retval);
1508 	}
1509 
1510 	/*
1511 	 * If we get to this point, the peripheral that was passed in
1512 	 * doesn't match any of the patterns.
1513 	 */
1514 	return(retval);
1515 }
1516 
1517 static int
1518 xptedtbusfunc(struct cam_eb *bus, void *arg)
1519 {
1520 	struct ccb_dev_match *cdm;
1521 	struct cam_et *target;
1522 	dev_match_ret retval;
1523 
1524 	cdm = (struct ccb_dev_match *)arg;
1525 
1526 	/*
1527 	 * If our position is for something deeper in the tree, that means
1528 	 * that we've already seen this node.  So, we keep going down.
1529 	 */
1530 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1531 	 && (cdm->pos.cookie.bus == bus)
1532 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1533 	 && (cdm->pos.cookie.target != NULL))
1534 		retval = DM_RET_DESCEND;
1535 	else
1536 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1537 
1538 	/*
1539 	 * If we got an error, bail out of the search.
1540 	 */
1541 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1542 		cdm->status = CAM_DEV_MATCH_ERROR;
1543 		return(0);
1544 	}
1545 
1546 	/*
1547 	 * If the copy flag is set, copy this bus out.
1548 	 */
1549 	if (retval & DM_RET_COPY) {
1550 		int spaceleft, j;
1551 
1552 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1553 			sizeof(struct dev_match_result));
1554 
1555 		/*
1556 		 * If we don't have enough space to put in another
1557 		 * match result, save our position and tell the
1558 		 * user there are more devices to check.
1559 		 */
1560 		if (spaceleft < sizeof(struct dev_match_result)) {
1561 			bzero(&cdm->pos, sizeof(cdm->pos));
1562 			cdm->pos.position_type =
1563 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1564 
1565 			cdm->pos.cookie.bus = bus;
1566 			cdm->pos.generations[CAM_BUS_GENERATION]=
1567 				xsoftc.bus_generation;
1568 			cdm->status = CAM_DEV_MATCH_MORE;
1569 			return(0);
1570 		}
1571 		j = cdm->num_matches;
1572 		cdm->num_matches++;
1573 		cdm->matches[j].type = DEV_MATCH_BUS;
1574 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1575 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1576 		cdm->matches[j].result.bus_result.unit_number =
1577 			bus->sim->unit_number;
1578 		strncpy(cdm->matches[j].result.bus_result.dev_name,
1579 			bus->sim->sim_name, DEV_IDLEN);
1580 	}
1581 
1582 	/*
1583 	 * If the user is only interested in busses, there's no
1584 	 * reason to descend to the next level in the tree.
1585 	 */
1586 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1587 		return(1);
1588 
1589 	/*
1590 	 * If there is a target generation recorded, check it to
1591 	 * make sure the target list hasn't changed.
1592 	 */
1593 	mtx_lock(&bus->eb_mtx);
1594 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1595 	 && (cdm->pos.cookie.bus == bus)
1596 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1597 	 && (cdm->pos.cookie.target != NULL)) {
1598 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1599 		    bus->generation)) {
1600 			mtx_unlock(&bus->eb_mtx);
1601 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1602 			return (0);
1603 		}
1604 		target = (struct cam_et *)cdm->pos.cookie.target;
1605 		target->refcount++;
1606 	} else
1607 		target = NULL;
1608 	mtx_unlock(&bus->eb_mtx);
1609 
1610 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1611 }
1612 
1613 static int
1614 xptedttargetfunc(struct cam_et *target, void *arg)
1615 {
1616 	struct ccb_dev_match *cdm;
1617 	struct cam_eb *bus;
1618 	struct cam_ed *device;
1619 
1620 	cdm = (struct ccb_dev_match *)arg;
1621 	bus = target->bus;
1622 
1623 	/*
1624 	 * If there is a device list generation recorded, check it to
1625 	 * make sure the device list hasn't changed.
1626 	 */
1627 	mtx_lock(&bus->eb_mtx);
1628 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1629 	 && (cdm->pos.cookie.bus == bus)
1630 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1631 	 && (cdm->pos.cookie.target == target)
1632 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1633 	 && (cdm->pos.cookie.device != NULL)) {
1634 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1635 		    target->generation) {
1636 			mtx_unlock(&bus->eb_mtx);
1637 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1638 			return(0);
1639 		}
1640 		device = (struct cam_ed *)cdm->pos.cookie.device;
1641 		device->refcount++;
1642 	} else
1643 		device = NULL;
1644 	mtx_unlock(&bus->eb_mtx);
1645 
1646 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1647 }
1648 
1649 static int
1650 xptedtdevicefunc(struct cam_ed *device, void *arg)
1651 {
1652 	struct cam_eb *bus;
1653 	struct cam_periph *periph;
1654 	struct ccb_dev_match *cdm;
1655 	dev_match_ret retval;
1656 
1657 	cdm = (struct ccb_dev_match *)arg;
1658 	bus = device->target->bus;
1659 
1660 	/*
1661 	 * If our position is for something deeper in the tree, that means
1662 	 * that we've already seen this node.  So, we keep going down.
1663 	 */
1664 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1665 	 && (cdm->pos.cookie.device == device)
1666 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1667 	 && (cdm->pos.cookie.periph != NULL))
1668 		retval = DM_RET_DESCEND;
1669 	else
1670 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1671 					device);
1672 
1673 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1674 		cdm->status = CAM_DEV_MATCH_ERROR;
1675 		return(0);
1676 	}
1677 
1678 	/*
1679 	 * If the copy flag is set, copy this device out.
1680 	 */
1681 	if (retval & DM_RET_COPY) {
1682 		int spaceleft, j;
1683 
1684 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1685 			sizeof(struct dev_match_result));
1686 
1687 		/*
1688 		 * If we don't have enough space to put in another
1689 		 * match result, save our position and tell the
1690 		 * user there are more devices to check.
1691 		 */
1692 		if (spaceleft < sizeof(struct dev_match_result)) {
1693 			bzero(&cdm->pos, sizeof(cdm->pos));
1694 			cdm->pos.position_type =
1695 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1696 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1697 
1698 			cdm->pos.cookie.bus = device->target->bus;
1699 			cdm->pos.generations[CAM_BUS_GENERATION]=
1700 				xsoftc.bus_generation;
1701 			cdm->pos.cookie.target = device->target;
1702 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1703 				device->target->bus->generation;
1704 			cdm->pos.cookie.device = device;
1705 			cdm->pos.generations[CAM_DEV_GENERATION] =
1706 				device->target->generation;
1707 			cdm->status = CAM_DEV_MATCH_MORE;
1708 			return(0);
1709 		}
1710 		j = cdm->num_matches;
1711 		cdm->num_matches++;
1712 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1713 		cdm->matches[j].result.device_result.path_id =
1714 			device->target->bus->path_id;
1715 		cdm->matches[j].result.device_result.target_id =
1716 			device->target->target_id;
1717 		cdm->matches[j].result.device_result.target_lun =
1718 			device->lun_id;
1719 		cdm->matches[j].result.device_result.protocol =
1720 			device->protocol;
1721 		bcopy(&device->inq_data,
1722 		      &cdm->matches[j].result.device_result.inq_data,
1723 		      sizeof(struct scsi_inquiry_data));
1724 		bcopy(&device->ident_data,
1725 		      &cdm->matches[j].result.device_result.ident_data,
1726 		      sizeof(struct ata_params));
1727 
1728 		/* Let the user know whether this device is unconfigured */
1729 		if (device->flags & CAM_DEV_UNCONFIGURED)
1730 			cdm->matches[j].result.device_result.flags =
1731 				DEV_RESULT_UNCONFIGURED;
1732 		else
1733 			cdm->matches[j].result.device_result.flags =
1734 				DEV_RESULT_NOFLAG;
1735 	}
1736 
1737 	/*
1738 	 * If the user isn't interested in peripherals, don't descend
1739 	 * the tree any further.
1740 	 */
1741 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1742 		return(1);
1743 
1744 	/*
1745 	 * If there is a peripheral list generation recorded, make sure
1746 	 * it hasn't changed.
1747 	 */
1748 	xpt_lock_buses();
1749 	mtx_lock(&bus->eb_mtx);
1750 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1751 	 && (cdm->pos.cookie.bus == bus)
1752 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1753 	 && (cdm->pos.cookie.target == device->target)
1754 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1755 	 && (cdm->pos.cookie.device == device)
1756 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1757 	 && (cdm->pos.cookie.periph != NULL)) {
1758 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1759 		    device->generation) {
1760 			mtx_unlock(&bus->eb_mtx);
1761 			xpt_unlock_buses();
1762 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1763 			return(0);
1764 		}
1765 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1766 		periph->refcount++;
1767 	} else
1768 		periph = NULL;
1769 	mtx_unlock(&bus->eb_mtx);
1770 	xpt_unlock_buses();
1771 
1772 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1773 }
1774 
1775 static int
1776 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1777 {
1778 	struct ccb_dev_match *cdm;
1779 	dev_match_ret retval;
1780 
1781 	cdm = (struct ccb_dev_match *)arg;
1782 
1783 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1784 
1785 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1786 		cdm->status = CAM_DEV_MATCH_ERROR;
1787 		return(0);
1788 	}
1789 
1790 	/*
1791 	 * If the copy flag is set, copy this peripheral out.
1792 	 */
1793 	if (retval & DM_RET_COPY) {
1794 		int spaceleft, j;
1795 
1796 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1797 			sizeof(struct dev_match_result));
1798 
1799 		/*
1800 		 * If we don't have enough space to put in another
1801 		 * match result, save our position and tell the
1802 		 * user there are more devices to check.
1803 		 */
1804 		if (spaceleft < sizeof(struct dev_match_result)) {
1805 			bzero(&cdm->pos, sizeof(cdm->pos));
1806 			cdm->pos.position_type =
1807 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1808 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1809 				CAM_DEV_POS_PERIPH;
1810 
1811 			cdm->pos.cookie.bus = periph->path->bus;
1812 			cdm->pos.generations[CAM_BUS_GENERATION]=
1813 				xsoftc.bus_generation;
1814 			cdm->pos.cookie.target = periph->path->target;
1815 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1816 				periph->path->bus->generation;
1817 			cdm->pos.cookie.device = periph->path->device;
1818 			cdm->pos.generations[CAM_DEV_GENERATION] =
1819 				periph->path->target->generation;
1820 			cdm->pos.cookie.periph = periph;
1821 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1822 				periph->path->device->generation;
1823 			cdm->status = CAM_DEV_MATCH_MORE;
1824 			return(0);
1825 		}
1826 
1827 		j = cdm->num_matches;
1828 		cdm->num_matches++;
1829 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1830 		cdm->matches[j].result.periph_result.path_id =
1831 			periph->path->bus->path_id;
1832 		cdm->matches[j].result.periph_result.target_id =
1833 			periph->path->target->target_id;
1834 		cdm->matches[j].result.periph_result.target_lun =
1835 			periph->path->device->lun_id;
1836 		cdm->matches[j].result.periph_result.unit_number =
1837 			periph->unit_number;
1838 		strncpy(cdm->matches[j].result.periph_result.periph_name,
1839 			periph->periph_name, DEV_IDLEN);
1840 	}
1841 
1842 	return(1);
1843 }
1844 
1845 static int
1846 xptedtmatch(struct ccb_dev_match *cdm)
1847 {
1848 	struct cam_eb *bus;
1849 	int ret;
1850 
1851 	cdm->num_matches = 0;
1852 
1853 	/*
1854 	 * Check the bus list generation.  If it has changed, the user
1855 	 * needs to reset everything and start over.
1856 	 */
1857 	xpt_lock_buses();
1858 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1859 	 && (cdm->pos.cookie.bus != NULL)) {
1860 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1861 		    xsoftc.bus_generation) {
1862 			xpt_unlock_buses();
1863 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1864 			return(0);
1865 		}
1866 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1867 		bus->refcount++;
1868 	} else
1869 		bus = NULL;
1870 	xpt_unlock_buses();
1871 
1872 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1873 
1874 	/*
1875 	 * If we get back 0, that means that we had to stop before fully
1876 	 * traversing the EDT.  It also means that one of the subroutines
1877 	 * has set the status field to the proper value.  If we get back 1,
1878 	 * we've fully traversed the EDT and copied out any matching entries.
1879 	 */
1880 	if (ret == 1)
1881 		cdm->status = CAM_DEV_MATCH_LAST;
1882 
1883 	return(ret);
1884 }
1885 
1886 static int
1887 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1888 {
1889 	struct cam_periph *periph;
1890 	struct ccb_dev_match *cdm;
1891 
1892 	cdm = (struct ccb_dev_match *)arg;
1893 
1894 	xpt_lock_buses();
1895 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1896 	 && (cdm->pos.cookie.pdrv == pdrv)
1897 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1898 	 && (cdm->pos.cookie.periph != NULL)) {
1899 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1900 		    (*pdrv)->generation) {
1901 			xpt_unlock_buses();
1902 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1903 			return(0);
1904 		}
1905 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1906 		periph->refcount++;
1907 	} else
1908 		periph = NULL;
1909 	xpt_unlock_buses();
1910 
1911 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1912 }
1913 
1914 static int
1915 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1916 {
1917 	struct ccb_dev_match *cdm;
1918 	dev_match_ret retval;
1919 
1920 	cdm = (struct ccb_dev_match *)arg;
1921 
1922 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1923 
1924 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1925 		cdm->status = CAM_DEV_MATCH_ERROR;
1926 		return(0);
1927 	}
1928 
1929 	/*
1930 	 * If the copy flag is set, copy this peripheral out.
1931 	 */
1932 	if (retval & DM_RET_COPY) {
1933 		int spaceleft, j;
1934 
1935 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1936 			sizeof(struct dev_match_result));
1937 
1938 		/*
1939 		 * If we don't have enough space to put in another
1940 		 * match result, save our position and tell the
1941 		 * user there are more devices to check.
1942 		 */
1943 		if (spaceleft < sizeof(struct dev_match_result)) {
1944 			struct periph_driver **pdrv;
1945 
1946 			pdrv = NULL;
1947 			bzero(&cdm->pos, sizeof(cdm->pos));
1948 			cdm->pos.position_type =
1949 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
1950 				CAM_DEV_POS_PERIPH;
1951 
1952 			/*
1953 			 * This may look a bit non-sensical, but it is
1954 			 * actually quite logical.  There are very few
1955 			 * peripheral drivers, and bloating every peripheral
1956 			 * structure with a pointer back to its parent
1957 			 * peripheral driver linker set entry would cost
1958 			 * more in the long run than doing this quick lookup.
1959 			 */
1960 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
1961 				if (strcmp((*pdrv)->driver_name,
1962 				    periph->periph_name) == 0)
1963 					break;
1964 			}
1965 
1966 			if (*pdrv == NULL) {
1967 				cdm->status = CAM_DEV_MATCH_ERROR;
1968 				return(0);
1969 			}
1970 
1971 			cdm->pos.cookie.pdrv = pdrv;
1972 			/*
1973 			 * The periph generation slot does double duty, as
1974 			 * does the periph pointer slot.  They are used for
1975 			 * both edt and pdrv lookups and positioning.
1976 			 */
1977 			cdm->pos.cookie.periph = periph;
1978 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1979 				(*pdrv)->generation;
1980 			cdm->status = CAM_DEV_MATCH_MORE;
1981 			return(0);
1982 		}
1983 
1984 		j = cdm->num_matches;
1985 		cdm->num_matches++;
1986 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1987 		cdm->matches[j].result.periph_result.path_id =
1988 			periph->path->bus->path_id;
1989 
1990 		/*
1991 		 * The transport layer peripheral doesn't have a target or
1992 		 * lun.
1993 		 */
1994 		if (periph->path->target)
1995 			cdm->matches[j].result.periph_result.target_id =
1996 				periph->path->target->target_id;
1997 		else
1998 			cdm->matches[j].result.periph_result.target_id =
1999 				CAM_TARGET_WILDCARD;
2000 
2001 		if (periph->path->device)
2002 			cdm->matches[j].result.periph_result.target_lun =
2003 				periph->path->device->lun_id;
2004 		else
2005 			cdm->matches[j].result.periph_result.target_lun =
2006 				CAM_LUN_WILDCARD;
2007 
2008 		cdm->matches[j].result.periph_result.unit_number =
2009 			periph->unit_number;
2010 		strncpy(cdm->matches[j].result.periph_result.periph_name,
2011 			periph->periph_name, DEV_IDLEN);
2012 	}
2013 
2014 	return(1);
2015 }
2016 
2017 static int
2018 xptperiphlistmatch(struct ccb_dev_match *cdm)
2019 {
2020 	int ret;
2021 
2022 	cdm->num_matches = 0;
2023 
2024 	/*
2025 	 * At this point in the edt traversal function, we check the bus
2026 	 * list generation to make sure that no busses have been added or
2027 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2028 	 * For the peripheral driver list traversal function, however, we
2029 	 * don't have to worry about new peripheral driver types coming or
2030 	 * going; they're in a linker set, and therefore can't change
2031 	 * without a recompile.
2032 	 */
2033 
2034 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2035 	 && (cdm->pos.cookie.pdrv != NULL))
2036 		ret = xptpdrvtraverse(
2037 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2038 				xptplistpdrvfunc, cdm);
2039 	else
2040 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2041 
2042 	/*
2043 	 * If we get back 0, that means that we had to stop before fully
2044 	 * traversing the peripheral driver tree.  It also means that one of
2045 	 * the subroutines has set the status field to the proper value.  If
2046 	 * we get back 1, we've fully traversed the EDT and copied out any
2047 	 * matching entries.
2048 	 */
2049 	if (ret == 1)
2050 		cdm->status = CAM_DEV_MATCH_LAST;
2051 
2052 	return(ret);
2053 }
2054 
2055 static int
2056 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2057 {
2058 	struct cam_eb *bus, *next_bus;
2059 	int retval;
2060 
2061 	retval = 1;
2062 	if (start_bus)
2063 		bus = start_bus;
2064 	else {
2065 		xpt_lock_buses();
2066 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2067 		if (bus == NULL) {
2068 			xpt_unlock_buses();
2069 			return (retval);
2070 		}
2071 		bus->refcount++;
2072 		xpt_unlock_buses();
2073 	}
2074 	for (; bus != NULL; bus = next_bus) {
2075 		retval = tr_func(bus, arg);
2076 		if (retval == 0) {
2077 			xpt_release_bus(bus);
2078 			break;
2079 		}
2080 		xpt_lock_buses();
2081 		next_bus = TAILQ_NEXT(bus, links);
2082 		if (next_bus)
2083 			next_bus->refcount++;
2084 		xpt_unlock_buses();
2085 		xpt_release_bus(bus);
2086 	}
2087 	return(retval);
2088 }
2089 
2090 static int
2091 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2092 		  xpt_targetfunc_t *tr_func, void *arg)
2093 {
2094 	struct cam_et *target, *next_target;
2095 	int retval;
2096 
2097 	retval = 1;
2098 	if (start_target)
2099 		target = start_target;
2100 	else {
2101 		mtx_lock(&bus->eb_mtx);
2102 		target = TAILQ_FIRST(&bus->et_entries);
2103 		if (target == NULL) {
2104 			mtx_unlock(&bus->eb_mtx);
2105 			return (retval);
2106 		}
2107 		target->refcount++;
2108 		mtx_unlock(&bus->eb_mtx);
2109 	}
2110 	for (; target != NULL; target = next_target) {
2111 		retval = tr_func(target, arg);
2112 		if (retval == 0) {
2113 			xpt_release_target(target);
2114 			break;
2115 		}
2116 		mtx_lock(&bus->eb_mtx);
2117 		next_target = TAILQ_NEXT(target, links);
2118 		if (next_target)
2119 			next_target->refcount++;
2120 		mtx_unlock(&bus->eb_mtx);
2121 		xpt_release_target(target);
2122 	}
2123 	return(retval);
2124 }
2125 
2126 static int
2127 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2128 		  xpt_devicefunc_t *tr_func, void *arg)
2129 {
2130 	struct cam_eb *bus;
2131 	struct cam_ed *device, *next_device;
2132 	int retval;
2133 
2134 	retval = 1;
2135 	bus = target->bus;
2136 	if (start_device)
2137 		device = start_device;
2138 	else {
2139 		mtx_lock(&bus->eb_mtx);
2140 		device = TAILQ_FIRST(&target->ed_entries);
2141 		if (device == NULL) {
2142 			mtx_unlock(&bus->eb_mtx);
2143 			return (retval);
2144 		}
2145 		device->refcount++;
2146 		mtx_unlock(&bus->eb_mtx);
2147 	}
2148 	for (; device != NULL; device = next_device) {
2149 		mtx_lock(&device->device_mtx);
2150 		retval = tr_func(device, arg);
2151 		mtx_unlock(&device->device_mtx);
2152 		if (retval == 0) {
2153 			xpt_release_device(device);
2154 			break;
2155 		}
2156 		mtx_lock(&bus->eb_mtx);
2157 		next_device = TAILQ_NEXT(device, links);
2158 		if (next_device)
2159 			next_device->refcount++;
2160 		mtx_unlock(&bus->eb_mtx);
2161 		xpt_release_device(device);
2162 	}
2163 	return(retval);
2164 }
2165 
2166 static int
2167 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2168 		  xpt_periphfunc_t *tr_func, void *arg)
2169 {
2170 	struct cam_eb *bus;
2171 	struct cam_periph *periph, *next_periph;
2172 	int retval;
2173 
2174 	retval = 1;
2175 
2176 	bus = device->target->bus;
2177 	if (start_periph)
2178 		periph = start_periph;
2179 	else {
2180 		xpt_lock_buses();
2181 		mtx_lock(&bus->eb_mtx);
2182 		periph = SLIST_FIRST(&device->periphs);
2183 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2184 			periph = SLIST_NEXT(periph, periph_links);
2185 		if (periph == NULL) {
2186 			mtx_unlock(&bus->eb_mtx);
2187 			xpt_unlock_buses();
2188 			return (retval);
2189 		}
2190 		periph->refcount++;
2191 		mtx_unlock(&bus->eb_mtx);
2192 		xpt_unlock_buses();
2193 	}
2194 	for (; periph != NULL; periph = next_periph) {
2195 		retval = tr_func(periph, arg);
2196 		if (retval == 0) {
2197 			cam_periph_release_locked(periph);
2198 			break;
2199 		}
2200 		xpt_lock_buses();
2201 		mtx_lock(&bus->eb_mtx);
2202 		next_periph = SLIST_NEXT(periph, periph_links);
2203 		while (next_periph != NULL &&
2204 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2205 			next_periph = SLIST_NEXT(next_periph, periph_links);
2206 		if (next_periph)
2207 			next_periph->refcount++;
2208 		mtx_unlock(&bus->eb_mtx);
2209 		xpt_unlock_buses();
2210 		cam_periph_release_locked(periph);
2211 	}
2212 	return(retval);
2213 }
2214 
2215 static int
2216 xptpdrvtraverse(struct periph_driver **start_pdrv,
2217 		xpt_pdrvfunc_t *tr_func, void *arg)
2218 {
2219 	struct periph_driver **pdrv;
2220 	int retval;
2221 
2222 	retval = 1;
2223 
2224 	/*
2225 	 * We don't traverse the peripheral driver list like we do the
2226 	 * other lists, because it is a linker set, and therefore cannot be
2227 	 * changed during runtime.  If the peripheral driver list is ever
2228 	 * re-done to be something other than a linker set (i.e. it can
2229 	 * change while the system is running), the list traversal should
2230 	 * be modified to work like the other traversal functions.
2231 	 */
2232 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2233 	     *pdrv != NULL; pdrv++) {
2234 		retval = tr_func(pdrv, arg);
2235 
2236 		if (retval == 0)
2237 			return(retval);
2238 	}
2239 
2240 	return(retval);
2241 }
2242 
2243 static int
2244 xptpdperiphtraverse(struct periph_driver **pdrv,
2245 		    struct cam_periph *start_periph,
2246 		    xpt_periphfunc_t *tr_func, void *arg)
2247 {
2248 	struct cam_periph *periph, *next_periph;
2249 	int retval;
2250 
2251 	retval = 1;
2252 
2253 	if (start_periph)
2254 		periph = start_periph;
2255 	else {
2256 		xpt_lock_buses();
2257 		periph = TAILQ_FIRST(&(*pdrv)->units);
2258 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2259 			periph = TAILQ_NEXT(periph, unit_links);
2260 		if (periph == NULL) {
2261 			xpt_unlock_buses();
2262 			return (retval);
2263 		}
2264 		periph->refcount++;
2265 		xpt_unlock_buses();
2266 	}
2267 	for (; periph != NULL; periph = next_periph) {
2268 		cam_periph_lock(periph);
2269 		retval = tr_func(periph, arg);
2270 		cam_periph_unlock(periph);
2271 		if (retval == 0) {
2272 			cam_periph_release(periph);
2273 			break;
2274 		}
2275 		xpt_lock_buses();
2276 		next_periph = TAILQ_NEXT(periph, unit_links);
2277 		while (next_periph != NULL &&
2278 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2279 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2280 		if (next_periph)
2281 			next_periph->refcount++;
2282 		xpt_unlock_buses();
2283 		cam_periph_release(periph);
2284 	}
2285 	return(retval);
2286 }
2287 
2288 static int
2289 xptdefbusfunc(struct cam_eb *bus, void *arg)
2290 {
2291 	struct xpt_traverse_config *tr_config;
2292 
2293 	tr_config = (struct xpt_traverse_config *)arg;
2294 
2295 	if (tr_config->depth == XPT_DEPTH_BUS) {
2296 		xpt_busfunc_t *tr_func;
2297 
2298 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2299 
2300 		return(tr_func(bus, tr_config->tr_arg));
2301 	} else
2302 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2303 }
2304 
2305 static int
2306 xptdeftargetfunc(struct cam_et *target, void *arg)
2307 {
2308 	struct xpt_traverse_config *tr_config;
2309 
2310 	tr_config = (struct xpt_traverse_config *)arg;
2311 
2312 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2313 		xpt_targetfunc_t *tr_func;
2314 
2315 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2316 
2317 		return(tr_func(target, tr_config->tr_arg));
2318 	} else
2319 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2320 }
2321 
2322 static int
2323 xptdefdevicefunc(struct cam_ed *device, void *arg)
2324 {
2325 	struct xpt_traverse_config *tr_config;
2326 
2327 	tr_config = (struct xpt_traverse_config *)arg;
2328 
2329 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2330 		xpt_devicefunc_t *tr_func;
2331 
2332 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2333 
2334 		return(tr_func(device, tr_config->tr_arg));
2335 	} else
2336 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2337 }
2338 
2339 static int
2340 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2341 {
2342 	struct xpt_traverse_config *tr_config;
2343 	xpt_periphfunc_t *tr_func;
2344 
2345 	tr_config = (struct xpt_traverse_config *)arg;
2346 
2347 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2348 
2349 	/*
2350 	 * Unlike the other default functions, we don't check for depth
2351 	 * here.  The peripheral driver level is the last level in the EDT,
2352 	 * so if we're here, we should execute the function in question.
2353 	 */
2354 	return(tr_func(periph, tr_config->tr_arg));
2355 }
2356 
2357 /*
2358  * Execute the given function for every bus in the EDT.
2359  */
2360 static int
2361 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2362 {
2363 	struct xpt_traverse_config tr_config;
2364 
2365 	tr_config.depth = XPT_DEPTH_BUS;
2366 	tr_config.tr_func = tr_func;
2367 	tr_config.tr_arg = arg;
2368 
2369 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2370 }
2371 
2372 /*
2373  * Execute the given function for every device in the EDT.
2374  */
2375 static int
2376 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2377 {
2378 	struct xpt_traverse_config tr_config;
2379 
2380 	tr_config.depth = XPT_DEPTH_DEVICE;
2381 	tr_config.tr_func = tr_func;
2382 	tr_config.tr_arg = arg;
2383 
2384 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2385 }
2386 
2387 static int
2388 xptsetasyncfunc(struct cam_ed *device, void *arg)
2389 {
2390 	struct cam_path path;
2391 	struct ccb_getdev cgd;
2392 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2393 
2394 	/*
2395 	 * Don't report unconfigured devices (Wildcard devs,
2396 	 * devices only for target mode, device instances
2397 	 * that have been invalidated but are waiting for
2398 	 * their last reference count to be released).
2399 	 */
2400 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2401 		return (1);
2402 
2403 	xpt_compile_path(&path,
2404 			 NULL,
2405 			 device->target->bus->path_id,
2406 			 device->target->target_id,
2407 			 device->lun_id);
2408 	xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL);
2409 	cgd.ccb_h.func_code = XPT_GDEV_TYPE;
2410 	xpt_action((union ccb *)&cgd);
2411 	csa->callback(csa->callback_arg,
2412 			    AC_FOUND_DEVICE,
2413 			    &path, &cgd);
2414 	xpt_release_path(&path);
2415 
2416 	return(1);
2417 }
2418 
2419 static int
2420 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2421 {
2422 	struct cam_path path;
2423 	struct ccb_pathinq cpi;
2424 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2425 
2426 	xpt_compile_path(&path, /*periph*/NULL,
2427 			 bus->path_id,
2428 			 CAM_TARGET_WILDCARD,
2429 			 CAM_LUN_WILDCARD);
2430 	xpt_path_lock(&path);
2431 	xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL);
2432 	cpi.ccb_h.func_code = XPT_PATH_INQ;
2433 	xpt_action((union ccb *)&cpi);
2434 	csa->callback(csa->callback_arg,
2435 			    AC_PATH_REGISTERED,
2436 			    &path, &cpi);
2437 	xpt_path_unlock(&path);
2438 	xpt_release_path(&path);
2439 
2440 	return(1);
2441 }
2442 
2443 void
2444 xpt_action(union ccb *start_ccb)
2445 {
2446 
2447 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n"));
2448 
2449 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2450 	(*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb);
2451 }
2452 
2453 void
2454 xpt_action_default(union ccb *start_ccb)
2455 {
2456 	struct cam_path *path;
2457 	struct cam_sim *sim;
2458 	int lock;
2459 
2460 	path = start_ccb->ccb_h.path;
2461 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n"));
2462 
2463 	switch (start_ccb->ccb_h.func_code) {
2464 	case XPT_SCSI_IO:
2465 	{
2466 		struct cam_ed *device;
2467 
2468 		/*
2469 		 * For the sake of compatibility with SCSI-1
2470 		 * devices that may not understand the identify
2471 		 * message, we include lun information in the
2472 		 * second byte of all commands.  SCSI-1 specifies
2473 		 * that luns are a 3 bit value and reserves only 3
2474 		 * bits for lun information in the CDB.  Later
2475 		 * revisions of the SCSI spec allow for more than 8
2476 		 * luns, but have deprecated lun information in the
2477 		 * CDB.  So, if the lun won't fit, we must omit.
2478 		 *
2479 		 * Also be aware that during initial probing for devices,
2480 		 * the inquiry information is unknown but initialized to 0.
2481 		 * This means that this code will be exercised while probing
2482 		 * devices with an ANSI revision greater than 2.
2483 		 */
2484 		device = path->device;
2485 		if (device->protocol_version <= SCSI_REV_2
2486 		 && start_ccb->ccb_h.target_lun < 8
2487 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2488 
2489 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2490 			    start_ccb->ccb_h.target_lun << 5;
2491 		}
2492 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2493 	}
2494 	/* FALLTHROUGH */
2495 	case XPT_TARGET_IO:
2496 	case XPT_CONT_TARGET_IO:
2497 		start_ccb->csio.sense_resid = 0;
2498 		start_ccb->csio.resid = 0;
2499 		/* FALLTHROUGH */
2500 	case XPT_ATA_IO:
2501 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2502 			start_ccb->ataio.resid = 0;
2503 		/* FALLTHROUGH */
2504 	case XPT_RESET_DEV:
2505 	case XPT_ENG_EXEC:
2506 	case XPT_SMP_IO:
2507 	{
2508 		struct cam_devq *devq;
2509 
2510 		devq = path->bus->sim->devq;
2511 		mtx_lock(&devq->send_mtx);
2512 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2513 		if (xpt_schedule_devq(devq, path->device) != 0)
2514 			xpt_run_devq(devq);
2515 		mtx_unlock(&devq->send_mtx);
2516 		break;
2517 	}
2518 	case XPT_CALC_GEOMETRY:
2519 		/* Filter out garbage */
2520 		if (start_ccb->ccg.block_size == 0
2521 		 || start_ccb->ccg.volume_size == 0) {
2522 			start_ccb->ccg.cylinders = 0;
2523 			start_ccb->ccg.heads = 0;
2524 			start_ccb->ccg.secs_per_track = 0;
2525 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2526 			break;
2527 		}
2528 #if defined(PC98) || defined(__sparc64__)
2529 		/*
2530 		 * In a PC-98 system, geometry translation depens on
2531 		 * the "real" device geometry obtained from mode page 4.
2532 		 * SCSI geometry translation is performed in the
2533 		 * initialization routine of the SCSI BIOS and the result
2534 		 * stored in host memory.  If the translation is available
2535 		 * in host memory, use it.  If not, rely on the default
2536 		 * translation the device driver performs.
2537 		 * For sparc64, we may need adjust the geometry of large
2538 		 * disks in order to fit the limitations of the 16-bit
2539 		 * fields of the VTOC8 disk label.
2540 		 */
2541 		if (scsi_da_bios_params(&start_ccb->ccg) != 0) {
2542 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2543 			break;
2544 		}
2545 #endif
2546 		goto call_sim;
2547 	case XPT_ABORT:
2548 	{
2549 		union ccb* abort_ccb;
2550 
2551 		abort_ccb = start_ccb->cab.abort_ccb;
2552 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2553 
2554 			if (abort_ccb->ccb_h.pinfo.index >= 0) {
2555 				struct cam_ccbq *ccbq;
2556 				struct cam_ed *device;
2557 
2558 				device = abort_ccb->ccb_h.path->device;
2559 				ccbq = &device->ccbq;
2560 				cam_ccbq_remove_ccb(ccbq, abort_ccb);
2561 				abort_ccb->ccb_h.status =
2562 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2563 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2564 				xpt_done(abort_ccb);
2565 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2566 				break;
2567 			}
2568 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2569 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2570 				/*
2571 				 * We've caught this ccb en route to
2572 				 * the SIM.  Flag it for abort and the
2573 				 * SIM will do so just before starting
2574 				 * real work on the CCB.
2575 				 */
2576 				abort_ccb->ccb_h.status =
2577 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2578 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2579 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2580 				break;
2581 			}
2582 		}
2583 		if (XPT_FC_IS_QUEUED(abort_ccb)
2584 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2585 			/*
2586 			 * It's already completed but waiting
2587 			 * for our SWI to get to it.
2588 			 */
2589 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2590 			break;
2591 		}
2592 		/*
2593 		 * If we weren't able to take care of the abort request
2594 		 * in the XPT, pass the request down to the SIM for processing.
2595 		 */
2596 	}
2597 	/* FALLTHROUGH */
2598 	case XPT_ACCEPT_TARGET_IO:
2599 	case XPT_EN_LUN:
2600 	case XPT_IMMED_NOTIFY:
2601 	case XPT_NOTIFY_ACK:
2602 	case XPT_RESET_BUS:
2603 	case XPT_IMMEDIATE_NOTIFY:
2604 	case XPT_NOTIFY_ACKNOWLEDGE:
2605 	case XPT_GET_SIM_KNOB:
2606 	case XPT_SET_SIM_KNOB:
2607 	case XPT_GET_TRAN_SETTINGS:
2608 	case XPT_SET_TRAN_SETTINGS:
2609 	case XPT_PATH_INQ:
2610 call_sim:
2611 		sim = path->bus->sim;
2612 		lock = (mtx_owned(sim->mtx) == 0);
2613 		if (lock)
2614 			CAM_SIM_LOCK(sim);
2615 		(*(sim->sim_action))(sim, start_ccb);
2616 		if (lock)
2617 			CAM_SIM_UNLOCK(sim);
2618 		break;
2619 	case XPT_PATH_STATS:
2620 		start_ccb->cpis.last_reset = path->bus->last_reset;
2621 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2622 		break;
2623 	case XPT_GDEV_TYPE:
2624 	{
2625 		struct cam_ed *dev;
2626 
2627 		dev = path->device;
2628 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2629 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2630 		} else {
2631 			struct ccb_getdev *cgd;
2632 
2633 			cgd = &start_ccb->cgd;
2634 			cgd->protocol = dev->protocol;
2635 			cgd->inq_data = dev->inq_data;
2636 			cgd->ident_data = dev->ident_data;
2637 			cgd->inq_flags = dev->inq_flags;
2638 			cgd->ccb_h.status = CAM_REQ_CMP;
2639 			cgd->serial_num_len = dev->serial_num_len;
2640 			if ((dev->serial_num_len > 0)
2641 			 && (dev->serial_num != NULL))
2642 				bcopy(dev->serial_num, cgd->serial_num,
2643 				      dev->serial_num_len);
2644 		}
2645 		break;
2646 	}
2647 	case XPT_GDEV_STATS:
2648 	{
2649 		struct cam_ed *dev;
2650 
2651 		dev = path->device;
2652 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2653 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2654 		} else {
2655 			struct ccb_getdevstats *cgds;
2656 			struct cam_eb *bus;
2657 			struct cam_et *tar;
2658 			struct cam_devq *devq;
2659 
2660 			cgds = &start_ccb->cgds;
2661 			bus = path->bus;
2662 			tar = path->target;
2663 			devq = bus->sim->devq;
2664 			mtx_lock(&devq->send_mtx);
2665 			cgds->dev_openings = dev->ccbq.dev_openings;
2666 			cgds->dev_active = dev->ccbq.dev_active;
2667 			cgds->allocated = dev->ccbq.allocated;
2668 			cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2669 			cgds->held = cgds->allocated - cgds->dev_active -
2670 			    cgds->queued;
2671 			cgds->last_reset = tar->last_reset;
2672 			cgds->maxtags = dev->maxtags;
2673 			cgds->mintags = dev->mintags;
2674 			if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2675 				cgds->last_reset = bus->last_reset;
2676 			mtx_unlock(&devq->send_mtx);
2677 			cgds->ccb_h.status = CAM_REQ_CMP;
2678 		}
2679 		break;
2680 	}
2681 	case XPT_GDEVLIST:
2682 	{
2683 		struct cam_periph	*nperiph;
2684 		struct periph_list	*periph_head;
2685 		struct ccb_getdevlist	*cgdl;
2686 		u_int			i;
2687 		struct cam_ed		*device;
2688 		int			found;
2689 
2690 
2691 		found = 0;
2692 
2693 		/*
2694 		 * Don't want anyone mucking with our data.
2695 		 */
2696 		device = path->device;
2697 		periph_head = &device->periphs;
2698 		cgdl = &start_ccb->cgdl;
2699 
2700 		/*
2701 		 * Check and see if the list has changed since the user
2702 		 * last requested a list member.  If so, tell them that the
2703 		 * list has changed, and therefore they need to start over
2704 		 * from the beginning.
2705 		 */
2706 		if ((cgdl->index != 0) &&
2707 		    (cgdl->generation != device->generation)) {
2708 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2709 			break;
2710 		}
2711 
2712 		/*
2713 		 * Traverse the list of peripherals and attempt to find
2714 		 * the requested peripheral.
2715 		 */
2716 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2717 		     (nperiph != NULL) && (i <= cgdl->index);
2718 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2719 			if (i == cgdl->index) {
2720 				strncpy(cgdl->periph_name,
2721 					nperiph->periph_name,
2722 					DEV_IDLEN);
2723 				cgdl->unit_number = nperiph->unit_number;
2724 				found = 1;
2725 			}
2726 		}
2727 		if (found == 0) {
2728 			cgdl->status = CAM_GDEVLIST_ERROR;
2729 			break;
2730 		}
2731 
2732 		if (nperiph == NULL)
2733 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2734 		else
2735 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2736 
2737 		cgdl->index++;
2738 		cgdl->generation = device->generation;
2739 
2740 		cgdl->ccb_h.status = CAM_REQ_CMP;
2741 		break;
2742 	}
2743 	case XPT_DEV_MATCH:
2744 	{
2745 		dev_pos_type position_type;
2746 		struct ccb_dev_match *cdm;
2747 
2748 		cdm = &start_ccb->cdm;
2749 
2750 		/*
2751 		 * There are two ways of getting at information in the EDT.
2752 		 * The first way is via the primary EDT tree.  It starts
2753 		 * with a list of busses, then a list of targets on a bus,
2754 		 * then devices/luns on a target, and then peripherals on a
2755 		 * device/lun.  The "other" way is by the peripheral driver
2756 		 * lists.  The peripheral driver lists are organized by
2757 		 * peripheral driver.  (obviously)  So it makes sense to
2758 		 * use the peripheral driver list if the user is looking
2759 		 * for something like "da1", or all "da" devices.  If the
2760 		 * user is looking for something on a particular bus/target
2761 		 * or lun, it's generally better to go through the EDT tree.
2762 		 */
2763 
2764 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2765 			position_type = cdm->pos.position_type;
2766 		else {
2767 			u_int i;
2768 
2769 			position_type = CAM_DEV_POS_NONE;
2770 
2771 			for (i = 0; i < cdm->num_patterns; i++) {
2772 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2773 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2774 					position_type = CAM_DEV_POS_EDT;
2775 					break;
2776 				}
2777 			}
2778 
2779 			if (cdm->num_patterns == 0)
2780 				position_type = CAM_DEV_POS_EDT;
2781 			else if (position_type == CAM_DEV_POS_NONE)
2782 				position_type = CAM_DEV_POS_PDRV;
2783 		}
2784 
2785 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2786 		case CAM_DEV_POS_EDT:
2787 			xptedtmatch(cdm);
2788 			break;
2789 		case CAM_DEV_POS_PDRV:
2790 			xptperiphlistmatch(cdm);
2791 			break;
2792 		default:
2793 			cdm->status = CAM_DEV_MATCH_ERROR;
2794 			break;
2795 		}
2796 
2797 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2798 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2799 		else
2800 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2801 
2802 		break;
2803 	}
2804 	case XPT_SASYNC_CB:
2805 	{
2806 		struct ccb_setasync *csa;
2807 		struct async_node *cur_entry;
2808 		struct async_list *async_head;
2809 		u_int32_t added;
2810 
2811 		csa = &start_ccb->csa;
2812 		added = csa->event_enable;
2813 		async_head = &path->device->asyncs;
2814 
2815 		/*
2816 		 * If there is already an entry for us, simply
2817 		 * update it.
2818 		 */
2819 		cur_entry = SLIST_FIRST(async_head);
2820 		while (cur_entry != NULL) {
2821 			if ((cur_entry->callback_arg == csa->callback_arg)
2822 			 && (cur_entry->callback == csa->callback))
2823 				break;
2824 			cur_entry = SLIST_NEXT(cur_entry, links);
2825 		}
2826 
2827 		if (cur_entry != NULL) {
2828 		 	/*
2829 			 * If the request has no flags set,
2830 			 * remove the entry.
2831 			 */
2832 			added &= ~cur_entry->event_enable;
2833 			if (csa->event_enable == 0) {
2834 				SLIST_REMOVE(async_head, cur_entry,
2835 					     async_node, links);
2836 				xpt_release_device(path->device);
2837 				free(cur_entry, M_CAMXPT);
2838 			} else {
2839 				cur_entry->event_enable = csa->event_enable;
2840 			}
2841 			csa->event_enable = added;
2842 		} else {
2843 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2844 					   M_NOWAIT);
2845 			if (cur_entry == NULL) {
2846 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2847 				break;
2848 			}
2849 			cur_entry->event_enable = csa->event_enable;
2850 			cur_entry->event_lock =
2851 			    mtx_owned(path->bus->sim->mtx) ? 1 : 0;
2852 			cur_entry->callback_arg = csa->callback_arg;
2853 			cur_entry->callback = csa->callback;
2854 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2855 			xpt_acquire_device(path->device);
2856 		}
2857 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2858 		break;
2859 	}
2860 	case XPT_REL_SIMQ:
2861 	{
2862 		struct ccb_relsim *crs;
2863 		struct cam_ed *dev;
2864 
2865 		crs = &start_ccb->crs;
2866 		dev = path->device;
2867 		if (dev == NULL) {
2868 
2869 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2870 			break;
2871 		}
2872 
2873 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2874 
2875 			/* Don't ever go below one opening */
2876 			if (crs->openings > 0) {
2877 				xpt_dev_ccbq_resize(path, crs->openings);
2878 				if (bootverbose) {
2879 					xpt_print(path,
2880 					    "number of openings is now %d\n",
2881 					    crs->openings);
2882 				}
2883 			}
2884 		}
2885 
2886 		mtx_lock(&dev->sim->devq->send_mtx);
2887 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2888 
2889 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2890 
2891 				/*
2892 				 * Just extend the old timeout and decrement
2893 				 * the freeze count so that a single timeout
2894 				 * is sufficient for releasing the queue.
2895 				 */
2896 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2897 				callout_stop(&dev->callout);
2898 			} else {
2899 
2900 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2901 			}
2902 
2903 			callout_reset_sbt(&dev->callout,
2904 			    SBT_1MS * crs->release_timeout, 0,
2905 			    xpt_release_devq_timeout, dev, 0);
2906 
2907 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2908 
2909 		}
2910 
2911 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2912 
2913 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2914 				/*
2915 				 * Decrement the freeze count so that a single
2916 				 * completion is still sufficient to unfreeze
2917 				 * the queue.
2918 				 */
2919 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2920 			} else {
2921 
2922 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2923 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2924 			}
2925 		}
2926 
2927 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2928 
2929 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2930 			 || (dev->ccbq.dev_active == 0)) {
2931 
2932 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2933 			} else {
2934 
2935 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2936 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2937 			}
2938 		}
2939 		mtx_unlock(&dev->sim->devq->send_mtx);
2940 
2941 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2942 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
2943 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
2944 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2945 		break;
2946 	}
2947 	case XPT_DEBUG: {
2948 		struct cam_path *oldpath;
2949 
2950 		/* Check that all request bits are supported. */
2951 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
2952 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
2953 			break;
2954 		}
2955 
2956 		cam_dflags = CAM_DEBUG_NONE;
2957 		if (cam_dpath != NULL) {
2958 			oldpath = cam_dpath;
2959 			cam_dpath = NULL;
2960 			xpt_free_path(oldpath);
2961 		}
2962 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
2963 			if (xpt_create_path(&cam_dpath, NULL,
2964 					    start_ccb->ccb_h.path_id,
2965 					    start_ccb->ccb_h.target_id,
2966 					    start_ccb->ccb_h.target_lun) !=
2967 					    CAM_REQ_CMP) {
2968 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
2969 			} else {
2970 				cam_dflags = start_ccb->cdbg.flags;
2971 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2972 				xpt_print(cam_dpath, "debugging flags now %x\n",
2973 				    cam_dflags);
2974 			}
2975 		} else
2976 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2977 		break;
2978 	}
2979 	case XPT_NOOP:
2980 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
2981 			xpt_freeze_devq(path, 1);
2982 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2983 		break;
2984 	default:
2985 	case XPT_SDEV_TYPE:
2986 	case XPT_TERM_IO:
2987 	case XPT_ENG_INQ:
2988 		/* XXX Implement */
2989 		printf("%s: CCB type %#x not supported\n", __func__,
2990 		       start_ccb->ccb_h.func_code);
2991 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
2992 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
2993 			xpt_done(start_ccb);
2994 		}
2995 		break;
2996 	}
2997 }
2998 
2999 void
3000 xpt_polled_action(union ccb *start_ccb)
3001 {
3002 	u_int32_t timeout;
3003 	struct	  cam_sim *sim;
3004 	struct	  cam_devq *devq;
3005 	struct	  cam_ed *dev;
3006 
3007 	timeout = start_ccb->ccb_h.timeout * 10;
3008 	sim = start_ccb->ccb_h.path->bus->sim;
3009 	devq = sim->devq;
3010 	dev = start_ccb->ccb_h.path->device;
3011 
3012 	mtx_unlock(&dev->device_mtx);
3013 
3014 	/*
3015 	 * Steal an opening so that no other queued requests
3016 	 * can get it before us while we simulate interrupts.
3017 	 */
3018 	mtx_lock(&devq->send_mtx);
3019 	dev->ccbq.dev_openings--;
3020 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3021 	    (--timeout > 0)) {
3022 		mtx_unlock(&devq->send_mtx);
3023 		DELAY(100);
3024 		CAM_SIM_LOCK(sim);
3025 		(*(sim->sim_poll))(sim);
3026 		CAM_SIM_UNLOCK(sim);
3027 		camisr_runqueue();
3028 		mtx_lock(&devq->send_mtx);
3029 	}
3030 	dev->ccbq.dev_openings++;
3031 	mtx_unlock(&devq->send_mtx);
3032 
3033 	if (timeout != 0) {
3034 		xpt_action(start_ccb);
3035 		while(--timeout > 0) {
3036 			CAM_SIM_LOCK(sim);
3037 			(*(sim->sim_poll))(sim);
3038 			CAM_SIM_UNLOCK(sim);
3039 			camisr_runqueue();
3040 			if ((start_ccb->ccb_h.status  & CAM_STATUS_MASK)
3041 			    != CAM_REQ_INPROG)
3042 				break;
3043 			DELAY(100);
3044 		}
3045 		if (timeout == 0) {
3046 			/*
3047 			 * XXX Is it worth adding a sim_timeout entry
3048 			 * point so we can attempt recovery?  If
3049 			 * this is only used for dumps, I don't think
3050 			 * it is.
3051 			 */
3052 			start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3053 		}
3054 	} else {
3055 		start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3056 	}
3057 
3058 	mtx_lock(&dev->device_mtx);
3059 }
3060 
3061 /*
3062  * Schedule a peripheral driver to receive a ccb when its
3063  * target device has space for more transactions.
3064  */
3065 void
3066 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority)
3067 {
3068 
3069 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3070 	cam_periph_assert(periph, MA_OWNED);
3071 	if (new_priority < periph->scheduled_priority) {
3072 		periph->scheduled_priority = new_priority;
3073 		xpt_run_allocq(periph, 0);
3074 	}
3075 }
3076 
3077 
3078 /*
3079  * Schedule a device to run on a given queue.
3080  * If the device was inserted as a new entry on the queue,
3081  * return 1 meaning the device queue should be run. If we
3082  * were already queued, implying someone else has already
3083  * started the queue, return 0 so the caller doesn't attempt
3084  * to run the queue.
3085  */
3086 static int
3087 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3088 		 u_int32_t new_priority)
3089 {
3090 	int retval;
3091 	u_int32_t old_priority;
3092 
3093 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3094 
3095 	old_priority = pinfo->priority;
3096 
3097 	/*
3098 	 * Are we already queued?
3099 	 */
3100 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3101 		/* Simply reorder based on new priority */
3102 		if (new_priority < old_priority) {
3103 			camq_change_priority(queue, pinfo->index,
3104 					     new_priority);
3105 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3106 					("changed priority to %d\n",
3107 					 new_priority));
3108 			retval = 1;
3109 		} else
3110 			retval = 0;
3111 	} else {
3112 		/* New entry on the queue */
3113 		if (new_priority < old_priority)
3114 			pinfo->priority = new_priority;
3115 
3116 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3117 				("Inserting onto queue\n"));
3118 		pinfo->generation = ++queue->generation;
3119 		camq_insert(queue, pinfo);
3120 		retval = 1;
3121 	}
3122 	return (retval);
3123 }
3124 
3125 static void
3126 xpt_run_allocq_task(void *context, int pending)
3127 {
3128 	struct cam_periph *periph = context;
3129 
3130 	cam_periph_lock(periph);
3131 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3132 	xpt_run_allocq(periph, 1);
3133 	cam_periph_unlock(periph);
3134 	cam_periph_release(periph);
3135 }
3136 
3137 static void
3138 xpt_run_allocq(struct cam_periph *periph, int sleep)
3139 {
3140 	struct cam_ed	*device;
3141 	union ccb	*ccb;
3142 	uint32_t	 prio;
3143 
3144 	cam_periph_assert(periph, MA_OWNED);
3145 	if (periph->periph_allocating)
3146 		return;
3147 	periph->periph_allocating = 1;
3148 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3149 	device = periph->path->device;
3150 	ccb = NULL;
3151 restart:
3152 	while ((prio = min(periph->scheduled_priority,
3153 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3154 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3155 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3156 
3157 		if (ccb == NULL &&
3158 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3159 			if (sleep) {
3160 				ccb = xpt_get_ccb(periph);
3161 				goto restart;
3162 			}
3163 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3164 				break;
3165 			cam_periph_doacquire(periph);
3166 			periph->flags |= CAM_PERIPH_RUN_TASK;
3167 			taskqueue_enqueue(xsoftc.xpt_taskq,
3168 			    &periph->periph_run_task);
3169 			break;
3170 		}
3171 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3172 		if (prio == periph->immediate_priority) {
3173 			periph->immediate_priority = CAM_PRIORITY_NONE;
3174 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3175 					("waking cam_periph_getccb()\n"));
3176 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3177 					  periph_links.sle);
3178 			wakeup(&periph->ccb_list);
3179 		} else {
3180 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3181 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3182 					("calling periph_start()\n"));
3183 			periph->periph_start(periph, ccb);
3184 		}
3185 		ccb = NULL;
3186 	}
3187 	if (ccb != NULL)
3188 		xpt_release_ccb(ccb);
3189 	periph->periph_allocating = 0;
3190 }
3191 
3192 static void
3193 xpt_run_devq(struct cam_devq *devq)
3194 {
3195 	char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1];
3196 	int lock;
3197 
3198 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3199 
3200 	devq->send_queue.qfrozen_cnt++;
3201 	while ((devq->send_queue.entries > 0)
3202 	    && (devq->send_openings > 0)
3203 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3204 		struct	cam_ed *device;
3205 		union ccb *work_ccb;
3206 		struct	cam_sim *sim;
3207 
3208 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3209 							   CAMQ_HEAD);
3210 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3211 				("running device %p\n", device));
3212 
3213 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3214 		if (work_ccb == NULL) {
3215 			printf("device on run queue with no ccbs???\n");
3216 			continue;
3217 		}
3218 
3219 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3220 
3221 			mtx_lock(&xsoftc.xpt_highpower_lock);
3222 		 	if (xsoftc.num_highpower <= 0) {
3223 				/*
3224 				 * We got a high power command, but we
3225 				 * don't have any available slots.  Freeze
3226 				 * the device queue until we have a slot
3227 				 * available.
3228 				 */
3229 				xpt_freeze_devq_device(device, 1);
3230 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3231 						   highpowerq_entry);
3232 
3233 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3234 				continue;
3235 			} else {
3236 				/*
3237 				 * Consume a high power slot while
3238 				 * this ccb runs.
3239 				 */
3240 				xsoftc.num_highpower--;
3241 			}
3242 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3243 		}
3244 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3245 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3246 		devq->send_openings--;
3247 		devq->send_active++;
3248 		xpt_schedule_devq(devq, device);
3249 		mtx_unlock(&devq->send_mtx);
3250 
3251 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3252 			/*
3253 			 * The client wants to freeze the queue
3254 			 * after this CCB is sent.
3255 			 */
3256 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3257 		}
3258 
3259 		/* In Target mode, the peripheral driver knows best... */
3260 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3261 			if ((device->inq_flags & SID_CmdQue) != 0
3262 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3263 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3264 			else
3265 				/*
3266 				 * Clear this in case of a retried CCB that
3267 				 * failed due to a rejected tag.
3268 				 */
3269 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3270 		}
3271 
3272 		switch (work_ccb->ccb_h.func_code) {
3273 		case XPT_SCSI_IO:
3274 			CAM_DEBUG(work_ccb->ccb_h.path,
3275 			    CAM_DEBUG_CDB,("%s. CDB: %s\n",
3276 			     scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0],
3277 					  &device->inq_data),
3278 			     scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes,
3279 					     cdb_str, sizeof(cdb_str))));
3280 			break;
3281 		case XPT_ATA_IO:
3282 			CAM_DEBUG(work_ccb->ccb_h.path,
3283 			    CAM_DEBUG_CDB,("%s. ACB: %s\n",
3284 			     ata_op_string(&work_ccb->ataio.cmd),
3285 			     ata_cmd_string(&work_ccb->ataio.cmd,
3286 					    cdb_str, sizeof(cdb_str))));
3287 			break;
3288 		default:
3289 			break;
3290 		}
3291 
3292 		/*
3293 		 * Device queues can be shared among multiple SIM instances
3294 		 * that reside on different busses.  Use the SIM from the
3295 		 * queued device, rather than the one from the calling bus.
3296 		 */
3297 		sim = device->sim;
3298 		lock = (mtx_owned(sim->mtx) == 0);
3299 		if (lock)
3300 			CAM_SIM_LOCK(sim);
3301 		(*(sim->sim_action))(sim, work_ccb);
3302 		if (lock)
3303 			CAM_SIM_UNLOCK(sim);
3304 		mtx_lock(&devq->send_mtx);
3305 	}
3306 	devq->send_queue.qfrozen_cnt--;
3307 }
3308 
3309 /*
3310  * This function merges stuff from the slave ccb into the master ccb, while
3311  * keeping important fields in the master ccb constant.
3312  */
3313 void
3314 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb)
3315 {
3316 
3317 	/*
3318 	 * Pull fields that are valid for peripheral drivers to set
3319 	 * into the master CCB along with the CCB "payload".
3320 	 */
3321 	master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count;
3322 	master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code;
3323 	master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout;
3324 	master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags;
3325 	bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1],
3326 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3327 }
3328 
3329 void
3330 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority)
3331 {
3332 
3333 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3334 	ccb_h->pinfo.priority = priority;
3335 	ccb_h->path = path;
3336 	ccb_h->path_id = path->bus->path_id;
3337 	if (path->target)
3338 		ccb_h->target_id = path->target->target_id;
3339 	else
3340 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3341 	if (path->device) {
3342 		ccb_h->target_lun = path->device->lun_id;
3343 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3344 	} else {
3345 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3346 	}
3347 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3348 	ccb_h->flags = 0;
3349 	ccb_h->xflags = 0;
3350 }
3351 
3352 /* Path manipulation functions */
3353 cam_status
3354 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3355 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3356 {
3357 	struct	   cam_path *path;
3358 	cam_status status;
3359 
3360 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3361 
3362 	if (path == NULL) {
3363 		status = CAM_RESRC_UNAVAIL;
3364 		return(status);
3365 	}
3366 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3367 	if (status != CAM_REQ_CMP) {
3368 		free(path, M_CAMPATH);
3369 		path = NULL;
3370 	}
3371 	*new_path_ptr = path;
3372 	return (status);
3373 }
3374 
3375 cam_status
3376 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3377 			 struct cam_periph *periph, path_id_t path_id,
3378 			 target_id_t target_id, lun_id_t lun_id)
3379 {
3380 
3381 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3382 	    lun_id));
3383 }
3384 
3385 cam_status
3386 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3387 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3388 {
3389 	struct	     cam_eb *bus;
3390 	struct	     cam_et *target;
3391 	struct	     cam_ed *device;
3392 	cam_status   status;
3393 
3394 	status = CAM_REQ_CMP;	/* Completed without error */
3395 	target = NULL;		/* Wildcarded */
3396 	device = NULL;		/* Wildcarded */
3397 
3398 	/*
3399 	 * We will potentially modify the EDT, so block interrupts
3400 	 * that may attempt to create cam paths.
3401 	 */
3402 	bus = xpt_find_bus(path_id);
3403 	if (bus == NULL) {
3404 		status = CAM_PATH_INVALID;
3405 	} else {
3406 		xpt_lock_buses();
3407 		mtx_lock(&bus->eb_mtx);
3408 		target = xpt_find_target(bus, target_id);
3409 		if (target == NULL) {
3410 			/* Create one */
3411 			struct cam_et *new_target;
3412 
3413 			new_target = xpt_alloc_target(bus, target_id);
3414 			if (new_target == NULL) {
3415 				status = CAM_RESRC_UNAVAIL;
3416 			} else {
3417 				target = new_target;
3418 			}
3419 		}
3420 		xpt_unlock_buses();
3421 		if (target != NULL) {
3422 			device = xpt_find_device(target, lun_id);
3423 			if (device == NULL) {
3424 				/* Create one */
3425 				struct cam_ed *new_device;
3426 
3427 				new_device =
3428 				    (*(bus->xport->alloc_device))(bus,
3429 								      target,
3430 								      lun_id);
3431 				if (new_device == NULL) {
3432 					status = CAM_RESRC_UNAVAIL;
3433 				} else {
3434 					device = new_device;
3435 				}
3436 			}
3437 		}
3438 		mtx_unlock(&bus->eb_mtx);
3439 	}
3440 
3441 	/*
3442 	 * Only touch the user's data if we are successful.
3443 	 */
3444 	if (status == CAM_REQ_CMP) {
3445 		new_path->periph = perph;
3446 		new_path->bus = bus;
3447 		new_path->target = target;
3448 		new_path->device = device;
3449 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3450 	} else {
3451 		if (device != NULL)
3452 			xpt_release_device(device);
3453 		if (target != NULL)
3454 			xpt_release_target(target);
3455 		if (bus != NULL)
3456 			xpt_release_bus(bus);
3457 	}
3458 	return (status);
3459 }
3460 
3461 cam_status
3462 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3463 {
3464 	struct	   cam_path *new_path;
3465 
3466 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3467 	if (new_path == NULL)
3468 		return(CAM_RESRC_UNAVAIL);
3469 	xpt_copy_path(new_path, path);
3470 	*new_path_ptr = new_path;
3471 	return (CAM_REQ_CMP);
3472 }
3473 
3474 void
3475 xpt_copy_path(struct cam_path *new_path, struct cam_path *path)
3476 {
3477 
3478 	*new_path = *path;
3479 	if (path->bus != NULL)
3480 		xpt_acquire_bus(path->bus);
3481 	if (path->target != NULL)
3482 		xpt_acquire_target(path->target);
3483 	if (path->device != NULL)
3484 		xpt_acquire_device(path->device);
3485 }
3486 
3487 void
3488 xpt_release_path(struct cam_path *path)
3489 {
3490 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3491 	if (path->device != NULL) {
3492 		xpt_release_device(path->device);
3493 		path->device = NULL;
3494 	}
3495 	if (path->target != NULL) {
3496 		xpt_release_target(path->target);
3497 		path->target = NULL;
3498 	}
3499 	if (path->bus != NULL) {
3500 		xpt_release_bus(path->bus);
3501 		path->bus = NULL;
3502 	}
3503 }
3504 
3505 void
3506 xpt_free_path(struct cam_path *path)
3507 {
3508 
3509 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3510 	xpt_release_path(path);
3511 	free(path, M_CAMPATH);
3512 }
3513 
3514 void
3515 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3516     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3517 {
3518 
3519 	xpt_lock_buses();
3520 	if (bus_ref) {
3521 		if (path->bus)
3522 			*bus_ref = path->bus->refcount;
3523 		else
3524 			*bus_ref = 0;
3525 	}
3526 	if (periph_ref) {
3527 		if (path->periph)
3528 			*periph_ref = path->periph->refcount;
3529 		else
3530 			*periph_ref = 0;
3531 	}
3532 	xpt_unlock_buses();
3533 	if (target_ref) {
3534 		if (path->target)
3535 			*target_ref = path->target->refcount;
3536 		else
3537 			*target_ref = 0;
3538 	}
3539 	if (device_ref) {
3540 		if (path->device)
3541 			*device_ref = path->device->refcount;
3542 		else
3543 			*device_ref = 0;
3544 	}
3545 }
3546 
3547 /*
3548  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3549  * in path1, 2 for match with wildcards in path2.
3550  */
3551 int
3552 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3553 {
3554 	int retval = 0;
3555 
3556 	if (path1->bus != path2->bus) {
3557 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3558 			retval = 1;
3559 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3560 			retval = 2;
3561 		else
3562 			return (-1);
3563 	}
3564 	if (path1->target != path2->target) {
3565 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3566 			if (retval == 0)
3567 				retval = 1;
3568 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3569 			retval = 2;
3570 		else
3571 			return (-1);
3572 	}
3573 	if (path1->device != path2->device) {
3574 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3575 			if (retval == 0)
3576 				retval = 1;
3577 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3578 			retval = 2;
3579 		else
3580 			return (-1);
3581 	}
3582 	return (retval);
3583 }
3584 
3585 int
3586 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3587 {
3588 	int retval = 0;
3589 
3590 	if (path->bus != dev->target->bus) {
3591 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3592 			retval = 1;
3593 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3594 			retval = 2;
3595 		else
3596 			return (-1);
3597 	}
3598 	if (path->target != dev->target) {
3599 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3600 			if (retval == 0)
3601 				retval = 1;
3602 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3603 			retval = 2;
3604 		else
3605 			return (-1);
3606 	}
3607 	if (path->device != dev) {
3608 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3609 			if (retval == 0)
3610 				retval = 1;
3611 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3612 			retval = 2;
3613 		else
3614 			return (-1);
3615 	}
3616 	return (retval);
3617 }
3618 
3619 void
3620 xpt_print_path(struct cam_path *path)
3621 {
3622 
3623 	if (path == NULL)
3624 		printf("(nopath): ");
3625 	else {
3626 		if (path->periph != NULL)
3627 			printf("(%s%d:", path->periph->periph_name,
3628 			       path->periph->unit_number);
3629 		else
3630 			printf("(noperiph:");
3631 
3632 		if (path->bus != NULL)
3633 			printf("%s%d:%d:", path->bus->sim->sim_name,
3634 			       path->bus->sim->unit_number,
3635 			       path->bus->sim->bus_id);
3636 		else
3637 			printf("nobus:");
3638 
3639 		if (path->target != NULL)
3640 			printf("%d:", path->target->target_id);
3641 		else
3642 			printf("X:");
3643 
3644 		if (path->device != NULL)
3645 			printf("%jx): ", (uintmax_t)path->device->lun_id);
3646 		else
3647 			printf("X): ");
3648 	}
3649 }
3650 
3651 void
3652 xpt_print_device(struct cam_ed *device)
3653 {
3654 
3655 	if (device == NULL)
3656 		printf("(nopath): ");
3657 	else {
3658 		printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name,
3659 		       device->sim->unit_number,
3660 		       device->sim->bus_id,
3661 		       device->target->target_id,
3662 		       (uintmax_t)device->lun_id);
3663 	}
3664 }
3665 
3666 void
3667 xpt_print(struct cam_path *path, const char *fmt, ...)
3668 {
3669 	va_list ap;
3670 	xpt_print_path(path);
3671 	va_start(ap, fmt);
3672 	vprintf(fmt, ap);
3673 	va_end(ap);
3674 }
3675 
3676 int
3677 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3678 {
3679 	struct sbuf sb;
3680 
3681 	sbuf_new(&sb, str, str_len, 0);
3682 
3683 	if (path == NULL)
3684 		sbuf_printf(&sb, "(nopath): ");
3685 	else {
3686 		if (path->periph != NULL)
3687 			sbuf_printf(&sb, "(%s%d:", path->periph->periph_name,
3688 				    path->periph->unit_number);
3689 		else
3690 			sbuf_printf(&sb, "(noperiph:");
3691 
3692 		if (path->bus != NULL)
3693 			sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name,
3694 				    path->bus->sim->unit_number,
3695 				    path->bus->sim->bus_id);
3696 		else
3697 			sbuf_printf(&sb, "nobus:");
3698 
3699 		if (path->target != NULL)
3700 			sbuf_printf(&sb, "%d:", path->target->target_id);
3701 		else
3702 			sbuf_printf(&sb, "X:");
3703 
3704 		if (path->device != NULL)
3705 			sbuf_printf(&sb, "%jx): ",
3706 			    (uintmax_t)path->device->lun_id);
3707 		else
3708 			sbuf_printf(&sb, "X): ");
3709 	}
3710 	sbuf_finish(&sb);
3711 
3712 	return(sbuf_len(&sb));
3713 }
3714 
3715 path_id_t
3716 xpt_path_path_id(struct cam_path *path)
3717 {
3718 	return(path->bus->path_id);
3719 }
3720 
3721 target_id_t
3722 xpt_path_target_id(struct cam_path *path)
3723 {
3724 	if (path->target != NULL)
3725 		return (path->target->target_id);
3726 	else
3727 		return (CAM_TARGET_WILDCARD);
3728 }
3729 
3730 lun_id_t
3731 xpt_path_lun_id(struct cam_path *path)
3732 {
3733 	if (path->device != NULL)
3734 		return (path->device->lun_id);
3735 	else
3736 		return (CAM_LUN_WILDCARD);
3737 }
3738 
3739 struct cam_sim *
3740 xpt_path_sim(struct cam_path *path)
3741 {
3742 
3743 	return (path->bus->sim);
3744 }
3745 
3746 struct cam_periph*
3747 xpt_path_periph(struct cam_path *path)
3748 {
3749 
3750 	return (path->periph);
3751 }
3752 
3753 int
3754 xpt_path_legacy_ata_id(struct cam_path *path)
3755 {
3756 	struct cam_eb *bus;
3757 	int bus_id;
3758 
3759 	if ((strcmp(path->bus->sim->sim_name, "ata") != 0) &&
3760 	    strcmp(path->bus->sim->sim_name, "ahcich") != 0 &&
3761 	    strcmp(path->bus->sim->sim_name, "mvsch") != 0 &&
3762 	    strcmp(path->bus->sim->sim_name, "siisch") != 0)
3763 		return (-1);
3764 
3765 	if (strcmp(path->bus->sim->sim_name, "ata") == 0 &&
3766 	    path->bus->sim->unit_number < 2) {
3767 		bus_id = path->bus->sim->unit_number;
3768 	} else {
3769 		bus_id = 2;
3770 		xpt_lock_buses();
3771 		TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) {
3772 			if (bus == path->bus)
3773 				break;
3774 			if ((strcmp(bus->sim->sim_name, "ata") == 0 &&
3775 			     bus->sim->unit_number >= 2) ||
3776 			    strcmp(bus->sim->sim_name, "ahcich") == 0 ||
3777 			    strcmp(bus->sim->sim_name, "mvsch") == 0 ||
3778 			    strcmp(bus->sim->sim_name, "siisch") == 0)
3779 				bus_id++;
3780 		}
3781 		xpt_unlock_buses();
3782 	}
3783 	if (path->target != NULL) {
3784 		if (path->target->target_id < 2)
3785 			return (bus_id * 2 + path->target->target_id);
3786 		else
3787 			return (-1);
3788 	} else
3789 		return (bus_id * 2);
3790 }
3791 
3792 /*
3793  * Release a CAM control block for the caller.  Remit the cost of the structure
3794  * to the device referenced by the path.  If the this device had no 'credits'
3795  * and peripheral drivers have registered async callbacks for this notification
3796  * call them now.
3797  */
3798 void
3799 xpt_release_ccb(union ccb *free_ccb)
3800 {
3801 	struct	 cam_ed *device;
3802 	struct	 cam_periph *periph;
3803 
3804 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3805 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3806 	device = free_ccb->ccb_h.path->device;
3807 	periph = free_ccb->ccb_h.path->periph;
3808 
3809 	xpt_free_ccb(free_ccb);
3810 	periph->periph_allocated--;
3811 	cam_ccbq_release_opening(&device->ccbq);
3812 	xpt_run_allocq(periph, 0);
3813 }
3814 
3815 /* Functions accessed by SIM drivers */
3816 
3817 static struct xpt_xport xport_default = {
3818 	.alloc_device = xpt_alloc_device_default,
3819 	.action = xpt_action_default,
3820 	.async = xpt_dev_async_default,
3821 };
3822 
3823 /*
3824  * A sim structure, listing the SIM entry points and instance
3825  * identification info is passed to xpt_bus_register to hook the SIM
3826  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3827  * for this new bus and places it in the array of busses and assigns
3828  * it a path_id.  The path_id may be influenced by "hard wiring"
3829  * information specified by the user.  Once interrupt services are
3830  * available, the bus will be probed.
3831  */
3832 int32_t
3833 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus)
3834 {
3835 	struct cam_eb *new_bus;
3836 	struct cam_eb *old_bus;
3837 	struct ccb_pathinq cpi;
3838 	struct cam_path *path;
3839 	cam_status status;
3840 
3841 	mtx_assert(sim->mtx, MA_OWNED);
3842 
3843 	sim->bus_id = bus;
3844 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3845 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3846 	if (new_bus == NULL) {
3847 		/* Couldn't satisfy request */
3848 		return (CAM_RESRC_UNAVAIL);
3849 	}
3850 
3851 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3852 	TAILQ_INIT(&new_bus->et_entries);
3853 	cam_sim_hold(sim);
3854 	new_bus->sim = sim;
3855 	timevalclear(&new_bus->last_reset);
3856 	new_bus->flags = 0;
3857 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3858 	new_bus->generation = 0;
3859 
3860 	xpt_lock_buses();
3861 	sim->path_id = new_bus->path_id =
3862 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3863 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3864 	while (old_bus != NULL
3865 	    && old_bus->path_id < new_bus->path_id)
3866 		old_bus = TAILQ_NEXT(old_bus, links);
3867 	if (old_bus != NULL)
3868 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3869 	else
3870 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3871 	xsoftc.bus_generation++;
3872 	xpt_unlock_buses();
3873 
3874 	/*
3875 	 * Set a default transport so that a PATH_INQ can be issued to
3876 	 * the SIM.  This will then allow for probing and attaching of
3877 	 * a more appropriate transport.
3878 	 */
3879 	new_bus->xport = &xport_default;
3880 
3881 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3882 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3883 	if (status != CAM_REQ_CMP) {
3884 		xpt_release_bus(new_bus);
3885 		free(path, M_CAMXPT);
3886 		return (CAM_RESRC_UNAVAIL);
3887 	}
3888 
3889 	xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL);
3890 	cpi.ccb_h.func_code = XPT_PATH_INQ;
3891 	xpt_action((union ccb *)&cpi);
3892 
3893 	if (cpi.ccb_h.status == CAM_REQ_CMP) {
3894 		switch (cpi.transport) {
3895 		case XPORT_SPI:
3896 		case XPORT_SAS:
3897 		case XPORT_FC:
3898 		case XPORT_USB:
3899 		case XPORT_ISCSI:
3900 		case XPORT_SRP:
3901 		case XPORT_PPB:
3902 			new_bus->xport = scsi_get_xport();
3903 			break;
3904 		case XPORT_ATA:
3905 		case XPORT_SATA:
3906 			new_bus->xport = ata_get_xport();
3907 			break;
3908 		default:
3909 			new_bus->xport = &xport_default;
3910 			break;
3911 		}
3912 	}
3913 
3914 	/* Notify interested parties */
3915 	if (sim->path_id != CAM_XPT_PATH_ID) {
3916 
3917 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3918 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3919 			union	ccb *scan_ccb;
3920 
3921 			/* Initiate bus rescan. */
3922 			scan_ccb = xpt_alloc_ccb_nowait();
3923 			if (scan_ccb != NULL) {
3924 				scan_ccb->ccb_h.path = path;
3925 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3926 				scan_ccb->crcn.flags = 0;
3927 				xpt_rescan(scan_ccb);
3928 			} else {
3929 				xpt_print(path,
3930 					  "Can't allocate CCB to scan bus\n");
3931 				xpt_free_path(path);
3932 			}
3933 		} else
3934 			xpt_free_path(path);
3935 	} else
3936 		xpt_free_path(path);
3937 	return (CAM_SUCCESS);
3938 }
3939 
3940 int32_t
3941 xpt_bus_deregister(path_id_t pathid)
3942 {
3943 	struct cam_path bus_path;
3944 	cam_status status;
3945 
3946 	status = xpt_compile_path(&bus_path, NULL, pathid,
3947 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3948 	if (status != CAM_REQ_CMP)
3949 		return (status);
3950 
3951 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
3952 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
3953 
3954 	/* Release the reference count held while registered. */
3955 	xpt_release_bus(bus_path.bus);
3956 	xpt_release_path(&bus_path);
3957 
3958 	return (CAM_REQ_CMP);
3959 }
3960 
3961 static path_id_t
3962 xptnextfreepathid(void)
3963 {
3964 	struct cam_eb *bus;
3965 	path_id_t pathid;
3966 	const char *strval;
3967 
3968 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
3969 	pathid = 0;
3970 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3971 retry:
3972 	/* Find an unoccupied pathid */
3973 	while (bus != NULL && bus->path_id <= pathid) {
3974 		if (bus->path_id == pathid)
3975 			pathid++;
3976 		bus = TAILQ_NEXT(bus, links);
3977 	}
3978 
3979 	/*
3980 	 * Ensure that this pathid is not reserved for
3981 	 * a bus that may be registered in the future.
3982 	 */
3983 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
3984 		++pathid;
3985 		/* Start the search over */
3986 		goto retry;
3987 	}
3988 	return (pathid);
3989 }
3990 
3991 static path_id_t
3992 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
3993 {
3994 	path_id_t pathid;
3995 	int i, dunit, val;
3996 	char buf[32];
3997 	const char *dname;
3998 
3999 	pathid = CAM_XPT_PATH_ID;
4000 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4001 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4002 		return (pathid);
4003 	i = 0;
4004 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4005 		if (strcmp(dname, "scbus")) {
4006 			/* Avoid a bit of foot shooting. */
4007 			continue;
4008 		}
4009 		if (dunit < 0)		/* unwired?! */
4010 			continue;
4011 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4012 			if (sim_bus == val) {
4013 				pathid = dunit;
4014 				break;
4015 			}
4016 		} else if (sim_bus == 0) {
4017 			/* Unspecified matches bus 0 */
4018 			pathid = dunit;
4019 			break;
4020 		} else {
4021 			printf("Ambiguous scbus configuration for %s%d "
4022 			       "bus %d, cannot wire down.  The kernel "
4023 			       "config entry for scbus%d should "
4024 			       "specify a controller bus.\n"
4025 			       "Scbus will be assigned dynamically.\n",
4026 			       sim_name, sim_unit, sim_bus, dunit);
4027 			break;
4028 		}
4029 	}
4030 
4031 	if (pathid == CAM_XPT_PATH_ID)
4032 		pathid = xptnextfreepathid();
4033 	return (pathid);
4034 }
4035 
4036 static const char *
4037 xpt_async_string(u_int32_t async_code)
4038 {
4039 
4040 	switch (async_code) {
4041 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4042 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4043 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4044 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4045 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4046 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4047 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4048 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4049 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4050 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4051 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4052 	case AC_CONTRACT: return ("AC_CONTRACT");
4053 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4054 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4055 	}
4056 	return ("AC_UNKNOWN");
4057 }
4058 
4059 static int
4060 xpt_async_size(u_int32_t async_code)
4061 {
4062 
4063 	switch (async_code) {
4064 	case AC_BUS_RESET: return (0);
4065 	case AC_UNSOL_RESEL: return (0);
4066 	case AC_SCSI_AEN: return (0);
4067 	case AC_SENT_BDR: return (0);
4068 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4069 	case AC_PATH_DEREGISTERED: return (0);
4070 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4071 	case AC_LOST_DEVICE: return (0);
4072 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4073 	case AC_INQ_CHANGED: return (0);
4074 	case AC_GETDEV_CHANGED: return (0);
4075 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4076 	case AC_ADVINFO_CHANGED: return (-1);
4077 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4078 	}
4079 	return (0);
4080 }
4081 
4082 static int
4083 xpt_async_process_dev(struct cam_ed *device, void *arg)
4084 {
4085 	union ccb *ccb = arg;
4086 	struct cam_path *path = ccb->ccb_h.path;
4087 	void *async_arg = ccb->casync.async_arg_ptr;
4088 	u_int32_t async_code = ccb->casync.async_code;
4089 	int relock;
4090 
4091 	if (path->device != device
4092 	 && path->device->lun_id != CAM_LUN_WILDCARD
4093 	 && device->lun_id != CAM_LUN_WILDCARD)
4094 		return (1);
4095 
4096 	/*
4097 	 * The async callback could free the device.
4098 	 * If it is a broadcast async, it doesn't hold
4099 	 * device reference, so take our own reference.
4100 	 */
4101 	xpt_acquire_device(device);
4102 
4103 	/*
4104 	 * If async for specific device is to be delivered to
4105 	 * the wildcard client, take the specific device lock.
4106 	 * XXX: We may need a way for client to specify it.
4107 	 */
4108 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4109 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4110 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4111 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4112 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4113 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4114 		mtx_unlock(&device->device_mtx);
4115 		xpt_path_lock(path);
4116 		relock = 1;
4117 	} else
4118 		relock = 0;
4119 
4120 	(*(device->target->bus->xport->async))(async_code,
4121 	    device->target->bus, device->target, device, async_arg);
4122 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4123 
4124 	if (relock) {
4125 		xpt_path_unlock(path);
4126 		mtx_lock(&device->device_mtx);
4127 	}
4128 	xpt_release_device(device);
4129 	return (1);
4130 }
4131 
4132 static int
4133 xpt_async_process_tgt(struct cam_et *target, void *arg)
4134 {
4135 	union ccb *ccb = arg;
4136 	struct cam_path *path = ccb->ccb_h.path;
4137 
4138 	if (path->target != target
4139 	 && path->target->target_id != CAM_TARGET_WILDCARD
4140 	 && target->target_id != CAM_TARGET_WILDCARD)
4141 		return (1);
4142 
4143 	if (ccb->casync.async_code == AC_SENT_BDR) {
4144 		/* Update our notion of when the last reset occurred */
4145 		microtime(&target->last_reset);
4146 	}
4147 
4148 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4149 }
4150 
4151 static void
4152 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4153 {
4154 	struct cam_eb *bus;
4155 	struct cam_path *path;
4156 	void *async_arg;
4157 	u_int32_t async_code;
4158 
4159 	path = ccb->ccb_h.path;
4160 	async_code = ccb->casync.async_code;
4161 	async_arg = ccb->casync.async_arg_ptr;
4162 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4163 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4164 	bus = path->bus;
4165 
4166 	if (async_code == AC_BUS_RESET) {
4167 		/* Update our notion of when the last reset occurred */
4168 		microtime(&bus->last_reset);
4169 	}
4170 
4171 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4172 
4173 	/*
4174 	 * If this wasn't a fully wildcarded async, tell all
4175 	 * clients that want all async events.
4176 	 */
4177 	if (bus != xpt_periph->path->bus) {
4178 		xpt_path_lock(xpt_periph->path);
4179 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4180 		xpt_path_unlock(xpt_periph->path);
4181 	}
4182 
4183 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4184 		xpt_release_devq(path, 1, TRUE);
4185 	else
4186 		xpt_release_simq(path->bus->sim, TRUE);
4187 	if (ccb->casync.async_arg_size > 0)
4188 		free(async_arg, M_CAMXPT);
4189 	xpt_free_path(path);
4190 	xpt_free_ccb(ccb);
4191 }
4192 
4193 static void
4194 xpt_async_bcast(struct async_list *async_head,
4195 		u_int32_t async_code,
4196 		struct cam_path *path, void *async_arg)
4197 {
4198 	struct async_node *cur_entry;
4199 	int lock;
4200 
4201 	cur_entry = SLIST_FIRST(async_head);
4202 	while (cur_entry != NULL) {
4203 		struct async_node *next_entry;
4204 		/*
4205 		 * Grab the next list entry before we call the current
4206 		 * entry's callback.  This is because the callback function
4207 		 * can delete its async callback entry.
4208 		 */
4209 		next_entry = SLIST_NEXT(cur_entry, links);
4210 		if ((cur_entry->event_enable & async_code) != 0) {
4211 			lock = cur_entry->event_lock;
4212 			if (lock)
4213 				CAM_SIM_LOCK(path->device->sim);
4214 			cur_entry->callback(cur_entry->callback_arg,
4215 					    async_code, path,
4216 					    async_arg);
4217 			if (lock)
4218 				CAM_SIM_UNLOCK(path->device->sim);
4219 		}
4220 		cur_entry = next_entry;
4221 	}
4222 }
4223 
4224 void
4225 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg)
4226 {
4227 	union ccb *ccb;
4228 	int size;
4229 
4230 	ccb = xpt_alloc_ccb_nowait();
4231 	if (ccb == NULL) {
4232 		xpt_print(path, "Can't allocate CCB to send %s\n",
4233 		    xpt_async_string(async_code));
4234 		return;
4235 	}
4236 
4237 	if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) {
4238 		xpt_print(path, "Can't allocate path to send %s\n",
4239 		    xpt_async_string(async_code));
4240 		xpt_free_ccb(ccb);
4241 		return;
4242 	}
4243 	ccb->ccb_h.path->periph = NULL;
4244 	ccb->ccb_h.func_code = XPT_ASYNC;
4245 	ccb->ccb_h.cbfcnp = xpt_async_process;
4246 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4247 	ccb->casync.async_code = async_code;
4248 	ccb->casync.async_arg_size = 0;
4249 	size = xpt_async_size(async_code);
4250 	if (size > 0 && async_arg != NULL) {
4251 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4252 		if (ccb->casync.async_arg_ptr == NULL) {
4253 			xpt_print(path, "Can't allocate argument to send %s\n",
4254 			    xpt_async_string(async_code));
4255 			xpt_free_path(ccb->ccb_h.path);
4256 			xpt_free_ccb(ccb);
4257 			return;
4258 		}
4259 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4260 		ccb->casync.async_arg_size = size;
4261 	} else if (size < 0)
4262 		ccb->casync.async_arg_size = size;
4263 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4264 		xpt_freeze_devq(path, 1);
4265 	else
4266 		xpt_freeze_simq(path->bus->sim, 1);
4267 	xpt_done(ccb);
4268 }
4269 
4270 static void
4271 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus,
4272 		      struct cam_et *target, struct cam_ed *device,
4273 		      void *async_arg)
4274 {
4275 
4276 	/*
4277 	 * We only need to handle events for real devices.
4278 	 */
4279 	if (target->target_id == CAM_TARGET_WILDCARD
4280 	 || device->lun_id == CAM_LUN_WILDCARD)
4281 		return;
4282 
4283 	printf("%s called\n", __func__);
4284 }
4285 
4286 static uint32_t
4287 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4288 {
4289 	struct cam_devq	*devq;
4290 	uint32_t freeze;
4291 
4292 	devq = dev->sim->devq;
4293 	mtx_assert(&devq->send_mtx, MA_OWNED);
4294 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4295 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4296 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4297 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4298 	/* Remove frozen device from sendq. */
4299 	if (device_is_queued(dev))
4300 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4301 	return (freeze);
4302 }
4303 
4304 u_int32_t
4305 xpt_freeze_devq(struct cam_path *path, u_int count)
4306 {
4307 	struct cam_ed	*dev = path->device;
4308 	struct cam_devq	*devq;
4309 	uint32_t	 freeze;
4310 
4311 	devq = dev->sim->devq;
4312 	mtx_lock(&devq->send_mtx);
4313 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4314 	freeze = xpt_freeze_devq_device(dev, count);
4315 	mtx_unlock(&devq->send_mtx);
4316 	return (freeze);
4317 }
4318 
4319 u_int32_t
4320 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4321 {
4322 	struct cam_devq	*devq;
4323 	uint32_t	 freeze;
4324 
4325 	devq = sim->devq;
4326 	mtx_lock(&devq->send_mtx);
4327 	freeze = (devq->send_queue.qfrozen_cnt += count);
4328 	mtx_unlock(&devq->send_mtx);
4329 	return (freeze);
4330 }
4331 
4332 static void
4333 xpt_release_devq_timeout(void *arg)
4334 {
4335 	struct cam_ed *dev;
4336 	struct cam_devq *devq;
4337 
4338 	dev = (struct cam_ed *)arg;
4339 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4340 	devq = dev->sim->devq;
4341 	mtx_assert(&devq->send_mtx, MA_OWNED);
4342 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4343 		xpt_run_devq(devq);
4344 }
4345 
4346 void
4347 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4348 {
4349 	struct cam_ed *dev;
4350 	struct cam_devq *devq;
4351 
4352 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4353 	    count, run_queue));
4354 	dev = path->device;
4355 	devq = dev->sim->devq;
4356 	mtx_lock(&devq->send_mtx);
4357 	if (xpt_release_devq_device(dev, count, run_queue))
4358 		xpt_run_devq(dev->sim->devq);
4359 	mtx_unlock(&devq->send_mtx);
4360 }
4361 
4362 static int
4363 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4364 {
4365 
4366 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4367 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4368 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4369 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4370 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4371 #ifdef INVARIANTS
4372 		printf("xpt_release_devq(): requested %u > present %u\n",
4373 		    count, dev->ccbq.queue.qfrozen_cnt);
4374 #endif
4375 		count = dev->ccbq.queue.qfrozen_cnt;
4376 	}
4377 	dev->ccbq.queue.qfrozen_cnt -= count;
4378 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4379 		/*
4380 		 * No longer need to wait for a successful
4381 		 * command completion.
4382 		 */
4383 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4384 		/*
4385 		 * Remove any timeouts that might be scheduled
4386 		 * to release this queue.
4387 		 */
4388 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4389 			callout_stop(&dev->callout);
4390 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4391 		}
4392 		/*
4393 		 * Now that we are unfrozen schedule the
4394 		 * device so any pending transactions are
4395 		 * run.
4396 		 */
4397 		xpt_schedule_devq(dev->sim->devq, dev);
4398 	} else
4399 		run_queue = 0;
4400 	return (run_queue);
4401 }
4402 
4403 void
4404 xpt_release_simq(struct cam_sim *sim, int run_queue)
4405 {
4406 	struct cam_devq	*devq;
4407 
4408 	devq = sim->devq;
4409 	mtx_lock(&devq->send_mtx);
4410 	if (devq->send_queue.qfrozen_cnt <= 0) {
4411 #ifdef INVARIANTS
4412 		printf("xpt_release_simq: requested 1 > present %u\n",
4413 		    devq->send_queue.qfrozen_cnt);
4414 #endif
4415 	} else
4416 		devq->send_queue.qfrozen_cnt--;
4417 	if (devq->send_queue.qfrozen_cnt == 0) {
4418 		/*
4419 		 * If there is a timeout scheduled to release this
4420 		 * sim queue, remove it.  The queue frozen count is
4421 		 * already at 0.
4422 		 */
4423 		if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){
4424 			callout_stop(&sim->callout);
4425 			sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING;
4426 		}
4427 		if (run_queue) {
4428 			/*
4429 			 * Now that we are unfrozen run the send queue.
4430 			 */
4431 			xpt_run_devq(sim->devq);
4432 		}
4433 	}
4434 	mtx_unlock(&devq->send_mtx);
4435 }
4436 
4437 /*
4438  * XXX Appears to be unused.
4439  */
4440 static void
4441 xpt_release_simq_timeout(void *arg)
4442 {
4443 	struct cam_sim *sim;
4444 
4445 	sim = (struct cam_sim *)arg;
4446 	xpt_release_simq(sim, /* run_queue */ TRUE);
4447 }
4448 
4449 void
4450 xpt_done(union ccb *done_ccb)
4451 {
4452 	struct cam_doneq *queue;
4453 	int	run, hash;
4454 
4455 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n"));
4456 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4457 		return;
4458 
4459 	hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4460 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4461 	queue = &cam_doneqs[hash];
4462 	mtx_lock(&queue->cam_doneq_mtx);
4463 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4464 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4465 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4466 	mtx_unlock(&queue->cam_doneq_mtx);
4467 	if (run)
4468 		wakeup(&queue->cam_doneq);
4469 }
4470 
4471 void
4472 xpt_done_direct(union ccb *done_ccb)
4473 {
4474 
4475 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n"));
4476 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4477 		return;
4478 
4479 	xpt_done_process(&done_ccb->ccb_h);
4480 }
4481 
4482 union ccb *
4483 xpt_alloc_ccb()
4484 {
4485 	union ccb *new_ccb;
4486 
4487 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4488 	return (new_ccb);
4489 }
4490 
4491 union ccb *
4492 xpt_alloc_ccb_nowait()
4493 {
4494 	union ccb *new_ccb;
4495 
4496 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4497 	return (new_ccb);
4498 }
4499 
4500 void
4501 xpt_free_ccb(union ccb *free_ccb)
4502 {
4503 	free(free_ccb, M_CAMCCB);
4504 }
4505 
4506 
4507 
4508 /* Private XPT functions */
4509 
4510 /*
4511  * Get a CAM control block for the caller. Charge the structure to the device
4512  * referenced by the path.  If we don't have sufficient resources to allocate
4513  * more ccbs, we return NULL.
4514  */
4515 static union ccb *
4516 xpt_get_ccb_nowait(struct cam_periph *periph)
4517 {
4518 	union ccb *new_ccb;
4519 
4520 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_NOWAIT);
4521 	if (new_ccb == NULL)
4522 		return (NULL);
4523 	periph->periph_allocated++;
4524 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4525 	return (new_ccb);
4526 }
4527 
4528 static union ccb *
4529 xpt_get_ccb(struct cam_periph *periph)
4530 {
4531 	union ccb *new_ccb;
4532 
4533 	cam_periph_unlock(periph);
4534 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_WAITOK);
4535 	cam_periph_lock(periph);
4536 	periph->periph_allocated++;
4537 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4538 	return (new_ccb);
4539 }
4540 
4541 union ccb *
4542 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority)
4543 {
4544 	struct ccb_hdr *ccb_h;
4545 
4546 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4547 	cam_periph_assert(periph, MA_OWNED);
4548 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4549 	    ccb_h->pinfo.priority != priority) {
4550 		if (priority < periph->immediate_priority) {
4551 			periph->immediate_priority = priority;
4552 			xpt_run_allocq(periph, 0);
4553 		} else
4554 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4555 			    "cgticb", 0);
4556 	}
4557 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4558 	return ((union ccb *)ccb_h);
4559 }
4560 
4561 static void
4562 xpt_acquire_bus(struct cam_eb *bus)
4563 {
4564 
4565 	xpt_lock_buses();
4566 	bus->refcount++;
4567 	xpt_unlock_buses();
4568 }
4569 
4570 static void
4571 xpt_release_bus(struct cam_eb *bus)
4572 {
4573 
4574 	xpt_lock_buses();
4575 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4576 	if (--bus->refcount > 0) {
4577 		xpt_unlock_buses();
4578 		return;
4579 	}
4580 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4581 	xsoftc.bus_generation++;
4582 	xpt_unlock_buses();
4583 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4584 	    ("destroying bus, but target list is not empty"));
4585 	cam_sim_release(bus->sim);
4586 	mtx_destroy(&bus->eb_mtx);
4587 	free(bus, M_CAMXPT);
4588 }
4589 
4590 static struct cam_et *
4591 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4592 {
4593 	struct cam_et *cur_target, *target;
4594 
4595 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4596 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4597 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4598 					 M_NOWAIT|M_ZERO);
4599 	if (target == NULL)
4600 		return (NULL);
4601 
4602 	TAILQ_INIT(&target->ed_entries);
4603 	target->bus = bus;
4604 	target->target_id = target_id;
4605 	target->refcount = 1;
4606 	target->generation = 0;
4607 	target->luns = NULL;
4608 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4609 	timevalclear(&target->last_reset);
4610 	/*
4611 	 * Hold a reference to our parent bus so it
4612 	 * will not go away before we do.
4613 	 */
4614 	bus->refcount++;
4615 
4616 	/* Insertion sort into our bus's target list */
4617 	cur_target = TAILQ_FIRST(&bus->et_entries);
4618 	while (cur_target != NULL && cur_target->target_id < target_id)
4619 		cur_target = TAILQ_NEXT(cur_target, links);
4620 	if (cur_target != NULL) {
4621 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4622 	} else {
4623 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4624 	}
4625 	bus->generation++;
4626 	return (target);
4627 }
4628 
4629 static void
4630 xpt_acquire_target(struct cam_et *target)
4631 {
4632 	struct cam_eb *bus = target->bus;
4633 
4634 	mtx_lock(&bus->eb_mtx);
4635 	target->refcount++;
4636 	mtx_unlock(&bus->eb_mtx);
4637 }
4638 
4639 static void
4640 xpt_release_target(struct cam_et *target)
4641 {
4642 	struct cam_eb *bus = target->bus;
4643 
4644 	mtx_lock(&bus->eb_mtx);
4645 	if (--target->refcount > 0) {
4646 		mtx_unlock(&bus->eb_mtx);
4647 		return;
4648 	}
4649 	TAILQ_REMOVE(&bus->et_entries, target, links);
4650 	bus->generation++;
4651 	mtx_unlock(&bus->eb_mtx);
4652 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4653 	    ("destroying target, but device list is not empty"));
4654 	xpt_release_bus(bus);
4655 	mtx_destroy(&target->luns_mtx);
4656 	if (target->luns)
4657 		free(target->luns, M_CAMXPT);
4658 	free(target, M_CAMXPT);
4659 }
4660 
4661 static struct cam_ed *
4662 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4663 			 lun_id_t lun_id)
4664 {
4665 	struct cam_ed *device;
4666 
4667 	device = xpt_alloc_device(bus, target, lun_id);
4668 	if (device == NULL)
4669 		return (NULL);
4670 
4671 	device->mintags = 1;
4672 	device->maxtags = 1;
4673 	return (device);
4674 }
4675 
4676 static void
4677 xpt_destroy_device(void *context, int pending)
4678 {
4679 	struct cam_ed	*device = context;
4680 
4681 	mtx_lock(&device->device_mtx);
4682 	mtx_destroy(&device->device_mtx);
4683 	free(device, M_CAMDEV);
4684 }
4685 
4686 struct cam_ed *
4687 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4688 {
4689 	struct cam_ed	*cur_device, *device;
4690 	struct cam_devq	*devq;
4691 	cam_status status;
4692 
4693 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4694 	/* Make space for us in the device queue on our bus */
4695 	devq = bus->sim->devq;
4696 	mtx_lock(&devq->send_mtx);
4697 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4698 	mtx_unlock(&devq->send_mtx);
4699 	if (status != CAM_REQ_CMP)
4700 		return (NULL);
4701 
4702 	device = (struct cam_ed *)malloc(sizeof(*device),
4703 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4704 	if (device == NULL)
4705 		return (NULL);
4706 
4707 	cam_init_pinfo(&device->devq_entry);
4708 	device->target = target;
4709 	device->lun_id = lun_id;
4710 	device->sim = bus->sim;
4711 	if (cam_ccbq_init(&device->ccbq,
4712 			  bus->sim->max_dev_openings) != 0) {
4713 		free(device, M_CAMDEV);
4714 		return (NULL);
4715 	}
4716 	SLIST_INIT(&device->asyncs);
4717 	SLIST_INIT(&device->periphs);
4718 	device->generation = 0;
4719 	device->flags = CAM_DEV_UNCONFIGURED;
4720 	device->tag_delay_count = 0;
4721 	device->tag_saved_openings = 0;
4722 	device->refcount = 1;
4723 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4724 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4725 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4726 	/*
4727 	 * Hold a reference to our parent bus so it
4728 	 * will not go away before we do.
4729 	 */
4730 	target->refcount++;
4731 
4732 	cur_device = TAILQ_FIRST(&target->ed_entries);
4733 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4734 		cur_device = TAILQ_NEXT(cur_device, links);
4735 	if (cur_device != NULL)
4736 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4737 	else
4738 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4739 	target->generation++;
4740 	return (device);
4741 }
4742 
4743 void
4744 xpt_acquire_device(struct cam_ed *device)
4745 {
4746 	struct cam_eb *bus = device->target->bus;
4747 
4748 	mtx_lock(&bus->eb_mtx);
4749 	device->refcount++;
4750 	mtx_unlock(&bus->eb_mtx);
4751 }
4752 
4753 void
4754 xpt_release_device(struct cam_ed *device)
4755 {
4756 	struct cam_eb *bus = device->target->bus;
4757 	struct cam_devq *devq;
4758 
4759 	mtx_lock(&bus->eb_mtx);
4760 	if (--device->refcount > 0) {
4761 		mtx_unlock(&bus->eb_mtx);
4762 		return;
4763 	}
4764 
4765 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4766 	device->target->generation++;
4767 	mtx_unlock(&bus->eb_mtx);
4768 
4769 	/* Release our slot in the devq */
4770 	devq = bus->sim->devq;
4771 	mtx_lock(&devq->send_mtx);
4772 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4773 	mtx_unlock(&devq->send_mtx);
4774 
4775 	KASSERT(SLIST_EMPTY(&device->periphs),
4776 	    ("destroying device, but periphs list is not empty"));
4777 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4778 	    ("destroying device while still queued for ccbs"));
4779 
4780 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4781 		callout_stop(&device->callout);
4782 
4783 	xpt_release_target(device->target);
4784 
4785 	cam_ccbq_fini(&device->ccbq);
4786 	/*
4787 	 * Free allocated memory.  free(9) does nothing if the
4788 	 * supplied pointer is NULL, so it is safe to call without
4789 	 * checking.
4790 	 */
4791 	free(device->supported_vpds, M_CAMXPT);
4792 	free(device->device_id, M_CAMXPT);
4793 	free(device->physpath, M_CAMXPT);
4794 	free(device->rcap_buf, M_CAMXPT);
4795 	free(device->serial_num, M_CAMXPT);
4796 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4797 }
4798 
4799 u_int32_t
4800 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4801 {
4802 	int	result;
4803 	struct	cam_ed *dev;
4804 
4805 	dev = path->device;
4806 	mtx_lock(&dev->sim->devq->send_mtx);
4807 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4808 	mtx_unlock(&dev->sim->devq->send_mtx);
4809 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4810 	 || (dev->inq_flags & SID_CmdQue) != 0)
4811 		dev->tag_saved_openings = newopenings;
4812 	return (result);
4813 }
4814 
4815 static struct cam_eb *
4816 xpt_find_bus(path_id_t path_id)
4817 {
4818 	struct cam_eb *bus;
4819 
4820 	xpt_lock_buses();
4821 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4822 	     bus != NULL;
4823 	     bus = TAILQ_NEXT(bus, links)) {
4824 		if (bus->path_id == path_id) {
4825 			bus->refcount++;
4826 			break;
4827 		}
4828 	}
4829 	xpt_unlock_buses();
4830 	return (bus);
4831 }
4832 
4833 static struct cam_et *
4834 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4835 {
4836 	struct cam_et *target;
4837 
4838 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4839 	for (target = TAILQ_FIRST(&bus->et_entries);
4840 	     target != NULL;
4841 	     target = TAILQ_NEXT(target, links)) {
4842 		if (target->target_id == target_id) {
4843 			target->refcount++;
4844 			break;
4845 		}
4846 	}
4847 	return (target);
4848 }
4849 
4850 static struct cam_ed *
4851 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4852 {
4853 	struct cam_ed *device;
4854 
4855 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4856 	for (device = TAILQ_FIRST(&target->ed_entries);
4857 	     device != NULL;
4858 	     device = TAILQ_NEXT(device, links)) {
4859 		if (device->lun_id == lun_id) {
4860 			device->refcount++;
4861 			break;
4862 		}
4863 	}
4864 	return (device);
4865 }
4866 
4867 void
4868 xpt_start_tags(struct cam_path *path)
4869 {
4870 	struct ccb_relsim crs;
4871 	struct cam_ed *device;
4872 	struct cam_sim *sim;
4873 	int    newopenings;
4874 
4875 	device = path->device;
4876 	sim = path->bus->sim;
4877 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4878 	xpt_freeze_devq(path, /*count*/1);
4879 	device->inq_flags |= SID_CmdQue;
4880 	if (device->tag_saved_openings != 0)
4881 		newopenings = device->tag_saved_openings;
4882 	else
4883 		newopenings = min(device->maxtags,
4884 				  sim->max_tagged_dev_openings);
4885 	xpt_dev_ccbq_resize(path, newopenings);
4886 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4887 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4888 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4889 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4890 	crs.openings
4891 	    = crs.release_timeout
4892 	    = crs.qfrozen_cnt
4893 	    = 0;
4894 	xpt_action((union ccb *)&crs);
4895 }
4896 
4897 void
4898 xpt_stop_tags(struct cam_path *path)
4899 {
4900 	struct ccb_relsim crs;
4901 	struct cam_ed *device;
4902 	struct cam_sim *sim;
4903 
4904 	device = path->device;
4905 	sim = path->bus->sim;
4906 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4907 	device->tag_delay_count = 0;
4908 	xpt_freeze_devq(path, /*count*/1);
4909 	device->inq_flags &= ~SID_CmdQue;
4910 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4911 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4912 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4913 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4914 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4915 	crs.openings
4916 	    = crs.release_timeout
4917 	    = crs.qfrozen_cnt
4918 	    = 0;
4919 	xpt_action((union ccb *)&crs);
4920 }
4921 
4922 static void
4923 xpt_boot_delay(void *arg)
4924 {
4925 
4926 	xpt_release_boot();
4927 }
4928 
4929 static void
4930 xpt_config(void *arg)
4931 {
4932 	/*
4933 	 * Now that interrupts are enabled, go find our devices
4934 	 */
4935 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
4936 		printf("xpt_config: failed to create taskqueue thread.\n");
4937 
4938 	/* Setup debugging path */
4939 	if (cam_dflags != CAM_DEBUG_NONE) {
4940 		if (xpt_create_path(&cam_dpath, NULL,
4941 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
4942 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
4943 			printf("xpt_config: xpt_create_path() failed for debug"
4944 			       " target %d:%d:%d, debugging disabled\n",
4945 			       CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
4946 			cam_dflags = CAM_DEBUG_NONE;
4947 		}
4948 	} else
4949 		cam_dpath = NULL;
4950 
4951 	periphdriver_init(1);
4952 	xpt_hold_boot();
4953 	callout_init(&xsoftc.boot_callout, 1);
4954 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0,
4955 	    xpt_boot_delay, NULL, 0);
4956 	/* Fire up rescan thread. */
4957 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
4958 	    "cam", "scanner")) {
4959 		printf("xpt_config: failed to create rescan thread.\n");
4960 	}
4961 }
4962 
4963 void
4964 xpt_hold_boot(void)
4965 {
4966 	xpt_lock_buses();
4967 	xsoftc.buses_to_config++;
4968 	xpt_unlock_buses();
4969 }
4970 
4971 void
4972 xpt_release_boot(void)
4973 {
4974 	xpt_lock_buses();
4975 	xsoftc.buses_to_config--;
4976 	if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) {
4977 		struct	xpt_task *task;
4978 
4979 		xsoftc.buses_config_done = 1;
4980 		xpt_unlock_buses();
4981 		/* Call manually because we don't have any busses */
4982 		task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT);
4983 		if (task != NULL) {
4984 			TASK_INIT(&task->task, 0, xpt_finishconfig_task, task);
4985 			taskqueue_enqueue(taskqueue_thread, &task->task);
4986 		}
4987 	} else
4988 		xpt_unlock_buses();
4989 }
4990 
4991 /*
4992  * If the given device only has one peripheral attached to it, and if that
4993  * peripheral is the passthrough driver, announce it.  This insures that the
4994  * user sees some sort of announcement for every peripheral in their system.
4995  */
4996 static int
4997 xptpassannouncefunc(struct cam_ed *device, void *arg)
4998 {
4999 	struct cam_periph *periph;
5000 	int i;
5001 
5002 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5003 	     periph = SLIST_NEXT(periph, periph_links), i++);
5004 
5005 	periph = SLIST_FIRST(&device->periphs);
5006 	if ((i == 1)
5007 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5008 		xpt_announce_periph(periph, NULL);
5009 
5010 	return(1);
5011 }
5012 
5013 static void
5014 xpt_finishconfig_task(void *context, int pending)
5015 {
5016 
5017 	periphdriver_init(2);
5018 	/*
5019 	 * Check for devices with no "standard" peripheral driver
5020 	 * attached.  For any devices like that, announce the
5021 	 * passthrough driver so the user will see something.
5022 	 */
5023 	if (!bootverbose)
5024 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5025 
5026 	/* Release our hook so that the boot can continue. */
5027 	config_intrhook_disestablish(xsoftc.xpt_config_hook);
5028 	free(xsoftc.xpt_config_hook, M_CAMXPT);
5029 	xsoftc.xpt_config_hook = NULL;
5030 
5031 	free(context, M_CAMXPT);
5032 }
5033 
5034 cam_status
5035 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5036 		   struct cam_path *path)
5037 {
5038 	struct ccb_setasync csa;
5039 	cam_status status;
5040 	int xptpath = 0;
5041 
5042 	if (path == NULL) {
5043 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5044 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5045 		if (status != CAM_REQ_CMP)
5046 			return (status);
5047 		xpt_path_lock(path);
5048 		xptpath = 1;
5049 	}
5050 
5051 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5052 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5053 	csa.event_enable = event;
5054 	csa.callback = cbfunc;
5055 	csa.callback_arg = cbarg;
5056 	xpt_action((union ccb *)&csa);
5057 	status = csa.ccb_h.status;
5058 
5059 	if (xptpath) {
5060 		xpt_path_unlock(path);
5061 		xpt_free_path(path);
5062 	}
5063 
5064 	if ((status == CAM_REQ_CMP) &&
5065 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5066 		/*
5067 		 * Get this peripheral up to date with all
5068 		 * the currently existing devices.
5069 		 */
5070 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5071 	}
5072 	if ((status == CAM_REQ_CMP) &&
5073 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5074 		/*
5075 		 * Get this peripheral up to date with all
5076 		 * the currently existing busses.
5077 		 */
5078 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5079 	}
5080 
5081 	return (status);
5082 }
5083 
5084 static void
5085 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5086 {
5087 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5088 
5089 	switch (work_ccb->ccb_h.func_code) {
5090 	/* Common cases first */
5091 	case XPT_PATH_INQ:		/* Path routing inquiry */
5092 	{
5093 		struct ccb_pathinq *cpi;
5094 
5095 		cpi = &work_ccb->cpi;
5096 		cpi->version_num = 1; /* XXX??? */
5097 		cpi->hba_inquiry = 0;
5098 		cpi->target_sprt = 0;
5099 		cpi->hba_misc = 0;
5100 		cpi->hba_eng_cnt = 0;
5101 		cpi->max_target = 0;
5102 		cpi->max_lun = 0;
5103 		cpi->initiator_id = 0;
5104 		strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5105 		strncpy(cpi->hba_vid, "", HBA_IDLEN);
5106 		strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5107 		cpi->unit_number = sim->unit_number;
5108 		cpi->bus_id = sim->bus_id;
5109 		cpi->base_transfer_speed = 0;
5110 		cpi->protocol = PROTO_UNSPECIFIED;
5111 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5112 		cpi->transport = XPORT_UNSPECIFIED;
5113 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5114 		cpi->ccb_h.status = CAM_REQ_CMP;
5115 		xpt_done(work_ccb);
5116 		break;
5117 	}
5118 	default:
5119 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5120 		xpt_done(work_ccb);
5121 		break;
5122 	}
5123 }
5124 
5125 /*
5126  * The xpt as a "controller" has no interrupt sources, so polling
5127  * is a no-op.
5128  */
5129 static void
5130 xptpoll(struct cam_sim *sim)
5131 {
5132 }
5133 
5134 void
5135 xpt_lock_buses(void)
5136 {
5137 	mtx_lock(&xsoftc.xpt_topo_lock);
5138 }
5139 
5140 void
5141 xpt_unlock_buses(void)
5142 {
5143 	mtx_unlock(&xsoftc.xpt_topo_lock);
5144 }
5145 
5146 struct mtx *
5147 xpt_path_mtx(struct cam_path *path)
5148 {
5149 
5150 	return (&path->device->device_mtx);
5151 }
5152 
5153 static void
5154 xpt_done_process(struct ccb_hdr *ccb_h)
5155 {
5156 	struct cam_sim *sim;
5157 	struct cam_devq *devq;
5158 	struct mtx *mtx = NULL;
5159 
5160 	if (ccb_h->flags & CAM_HIGH_POWER) {
5161 		struct highpowerlist	*hphead;
5162 		struct cam_ed		*device;
5163 
5164 		mtx_lock(&xsoftc.xpt_highpower_lock);
5165 		hphead = &xsoftc.highpowerq;
5166 
5167 		device = STAILQ_FIRST(hphead);
5168 
5169 		/*
5170 		 * Increment the count since this command is done.
5171 		 */
5172 		xsoftc.num_highpower++;
5173 
5174 		/*
5175 		 * Any high powered commands queued up?
5176 		 */
5177 		if (device != NULL) {
5178 
5179 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5180 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5181 
5182 			mtx_lock(&device->sim->devq->send_mtx);
5183 			xpt_release_devq_device(device,
5184 					 /*count*/1, /*runqueue*/TRUE);
5185 			mtx_unlock(&device->sim->devq->send_mtx);
5186 		} else
5187 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5188 	}
5189 
5190 	sim = ccb_h->path->bus->sim;
5191 
5192 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5193 		xpt_release_simq(sim, /*run_queue*/FALSE);
5194 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5195 	}
5196 
5197 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5198 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5199 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5200 		ccb_h->status &= ~CAM_DEV_QFRZN;
5201 	}
5202 
5203 	devq = sim->devq;
5204 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5205 		struct cam_ed *dev = ccb_h->path->device;
5206 
5207 		mtx_lock(&devq->send_mtx);
5208 		devq->send_active--;
5209 		devq->send_openings++;
5210 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5211 
5212 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5213 		  && (dev->ccbq.dev_active == 0))) {
5214 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5215 			xpt_release_devq_device(dev, /*count*/1,
5216 					 /*run_queue*/FALSE);
5217 		}
5218 
5219 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5220 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5221 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5222 			xpt_release_devq_device(dev, /*count*/1,
5223 					 /*run_queue*/FALSE);
5224 		}
5225 
5226 		if (!device_is_queued(dev))
5227 			(void)xpt_schedule_devq(devq, dev);
5228 		xpt_run_devq(devq);
5229 		mtx_unlock(&devq->send_mtx);
5230 
5231 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5232 			mtx = xpt_path_mtx(ccb_h->path);
5233 			mtx_lock(mtx);
5234 
5235 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5236 			 && (--dev->tag_delay_count == 0))
5237 				xpt_start_tags(ccb_h->path);
5238 		}
5239 	}
5240 
5241 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5242 		if (mtx == NULL) {
5243 			mtx = xpt_path_mtx(ccb_h->path);
5244 			mtx_lock(mtx);
5245 		}
5246 	} else {
5247 		if (mtx != NULL) {
5248 			mtx_unlock(mtx);
5249 			mtx = NULL;
5250 		}
5251 	}
5252 
5253 	/* Call the peripheral driver's callback */
5254 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5255 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5256 	if (mtx != NULL)
5257 		mtx_unlock(mtx);
5258 }
5259 
5260 void
5261 xpt_done_td(void *arg)
5262 {
5263 	struct cam_doneq *queue = arg;
5264 	struct ccb_hdr *ccb_h;
5265 	STAILQ_HEAD(, ccb_hdr)	doneq;
5266 
5267 	STAILQ_INIT(&doneq);
5268 	mtx_lock(&queue->cam_doneq_mtx);
5269 	while (1) {
5270 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5271 			queue->cam_doneq_sleep = 1;
5272 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5273 			    PRIBIO, "-", 0);
5274 			queue->cam_doneq_sleep = 0;
5275 		}
5276 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5277 		mtx_unlock(&queue->cam_doneq_mtx);
5278 
5279 		THREAD_NO_SLEEPING();
5280 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5281 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5282 			xpt_done_process(ccb_h);
5283 		}
5284 		THREAD_SLEEPING_OK();
5285 
5286 		mtx_lock(&queue->cam_doneq_mtx);
5287 	}
5288 }
5289 
5290 static void
5291 camisr_runqueue(void)
5292 {
5293 	struct	ccb_hdr *ccb_h;
5294 	struct cam_doneq *queue;
5295 	int i;
5296 
5297 	/* Process global queues. */
5298 	for (i = 0; i < cam_num_doneqs; i++) {
5299 		queue = &cam_doneqs[i];
5300 		mtx_lock(&queue->cam_doneq_mtx);
5301 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5302 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5303 			mtx_unlock(&queue->cam_doneq_mtx);
5304 			xpt_done_process(ccb_h);
5305 			mtx_lock(&queue->cam_doneq_mtx);
5306 		}
5307 		mtx_unlock(&queue->cam_doneq_mtx);
5308 	}
5309 }
5310