1 /*- 2 * Implementation of the Common Access Method Transport (XPT) layer. 3 * 4 * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs. 5 * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification, immediately at the beginning of the file. 14 * 2. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR 21 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include <sys/param.h> 34 #include <sys/bus.h> 35 #include <sys/systm.h> 36 #include <sys/types.h> 37 #include <sys/malloc.h> 38 #include <sys/kernel.h> 39 #include <sys/time.h> 40 #include <sys/conf.h> 41 #include <sys/fcntl.h> 42 #include <sys/interrupt.h> 43 #include <sys/proc.h> 44 #include <sys/sbuf.h> 45 #include <sys/smp.h> 46 #include <sys/taskqueue.h> 47 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 #include <sys/kthread.h> 52 53 #include <cam/cam.h> 54 #include <cam/cam_ccb.h> 55 #include <cam/cam_periph.h> 56 #include <cam/cam_queue.h> 57 #include <cam/cam_sim.h> 58 #include <cam/cam_xpt.h> 59 #include <cam/cam_xpt_sim.h> 60 #include <cam/cam_xpt_periph.h> 61 #include <cam/cam_xpt_internal.h> 62 #include <cam/cam_debug.h> 63 #include <cam/cam_compat.h> 64 65 #include <cam/scsi/scsi_all.h> 66 #include <cam/scsi/scsi_message.h> 67 #include <cam/scsi/scsi_pass.h> 68 69 #include <machine/md_var.h> /* geometry translation */ 70 #include <machine/stdarg.h> /* for xpt_print below */ 71 72 #include "opt_cam.h" 73 74 /* 75 * This is the maximum number of high powered commands (e.g. start unit) 76 * that can be outstanding at a particular time. 77 */ 78 #ifndef CAM_MAX_HIGHPOWER 79 #define CAM_MAX_HIGHPOWER 4 80 #endif 81 82 /* Datastructures internal to the xpt layer */ 83 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers"); 84 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices"); 85 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs"); 86 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths"); 87 88 /* Object for defering XPT actions to a taskqueue */ 89 struct xpt_task { 90 struct task task; 91 void *data1; 92 uintptr_t data2; 93 }; 94 95 struct xpt_softc { 96 /* number of high powered commands that can go through right now */ 97 struct mtx xpt_highpower_lock; 98 STAILQ_HEAD(highpowerlist, cam_ed) highpowerq; 99 int num_highpower; 100 101 /* queue for handling async rescan requests. */ 102 TAILQ_HEAD(, ccb_hdr) ccb_scanq; 103 int buses_to_config; 104 int buses_config_done; 105 106 /* Registered busses */ 107 TAILQ_HEAD(,cam_eb) xpt_busses; 108 u_int bus_generation; 109 110 struct intr_config_hook *xpt_config_hook; 111 112 int boot_delay; 113 struct callout boot_callout; 114 115 struct mtx xpt_topo_lock; 116 struct mtx xpt_lock; 117 struct taskqueue *xpt_taskq; 118 }; 119 120 typedef enum { 121 DM_RET_COPY = 0x01, 122 DM_RET_FLAG_MASK = 0x0f, 123 DM_RET_NONE = 0x00, 124 DM_RET_STOP = 0x10, 125 DM_RET_DESCEND = 0x20, 126 DM_RET_ERROR = 0x30, 127 DM_RET_ACTION_MASK = 0xf0 128 } dev_match_ret; 129 130 typedef enum { 131 XPT_DEPTH_BUS, 132 XPT_DEPTH_TARGET, 133 XPT_DEPTH_DEVICE, 134 XPT_DEPTH_PERIPH 135 } xpt_traverse_depth; 136 137 struct xpt_traverse_config { 138 xpt_traverse_depth depth; 139 void *tr_func; 140 void *tr_arg; 141 }; 142 143 typedef int xpt_busfunc_t (struct cam_eb *bus, void *arg); 144 typedef int xpt_targetfunc_t (struct cam_et *target, void *arg); 145 typedef int xpt_devicefunc_t (struct cam_ed *device, void *arg); 146 typedef int xpt_periphfunc_t (struct cam_periph *periph, void *arg); 147 typedef int xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg); 148 149 /* Transport layer configuration information */ 150 static struct xpt_softc xsoftc; 151 152 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN, 153 &xsoftc.boot_delay, 0, "Bus registration wait time"); 154 155 struct cam_doneq { 156 struct mtx_padalign cam_doneq_mtx; 157 STAILQ_HEAD(, ccb_hdr) cam_doneq; 158 int cam_doneq_sleep; 159 }; 160 161 static struct cam_doneq cam_doneqs[MAXCPU]; 162 static int cam_num_doneqs; 163 static struct proc *cam_proc; 164 165 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN, 166 &cam_num_doneqs, 0, "Number of completion queues/threads"); 167 168 struct cam_periph *xpt_periph; 169 170 static periph_init_t xpt_periph_init; 171 172 static struct periph_driver xpt_driver = 173 { 174 xpt_periph_init, "xpt", 175 TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0, 176 CAM_PERIPH_DRV_EARLY 177 }; 178 179 PERIPHDRIVER_DECLARE(xpt, xpt_driver); 180 181 static d_open_t xptopen; 182 static d_close_t xptclose; 183 static d_ioctl_t xptioctl; 184 static d_ioctl_t xptdoioctl; 185 186 static struct cdevsw xpt_cdevsw = { 187 .d_version = D_VERSION, 188 .d_flags = 0, 189 .d_open = xptopen, 190 .d_close = xptclose, 191 .d_ioctl = xptioctl, 192 .d_name = "xpt", 193 }; 194 195 /* Storage for debugging datastructures */ 196 struct cam_path *cam_dpath; 197 u_int32_t cam_dflags = CAM_DEBUG_FLAGS; 198 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN, 199 &cam_dflags, 0, "Enabled debug flags"); 200 u_int32_t cam_debug_delay = CAM_DEBUG_DELAY; 201 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN, 202 &cam_debug_delay, 0, "Delay in us after each debug message"); 203 204 /* Our boot-time initialization hook */ 205 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *); 206 207 static moduledata_t cam_moduledata = { 208 "cam", 209 cam_module_event_handler, 210 NULL 211 }; 212 213 static int xpt_init(void *); 214 215 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND); 216 MODULE_VERSION(cam, 1); 217 218 219 static void xpt_async_bcast(struct async_list *async_head, 220 u_int32_t async_code, 221 struct cam_path *path, 222 void *async_arg); 223 static path_id_t xptnextfreepathid(void); 224 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus); 225 static union ccb *xpt_get_ccb(struct cam_periph *periph); 226 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph); 227 static void xpt_run_allocq(struct cam_periph *periph, int sleep); 228 static void xpt_run_allocq_task(void *context, int pending); 229 static void xpt_run_devq(struct cam_devq *devq); 230 static timeout_t xpt_release_devq_timeout; 231 static void xpt_release_simq_timeout(void *arg) __unused; 232 static void xpt_acquire_bus(struct cam_eb *bus); 233 static void xpt_release_bus(struct cam_eb *bus); 234 static uint32_t xpt_freeze_devq_device(struct cam_ed *dev, u_int count); 235 static int xpt_release_devq_device(struct cam_ed *dev, u_int count, 236 int run_queue); 237 static struct cam_et* 238 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id); 239 static void xpt_acquire_target(struct cam_et *target); 240 static void xpt_release_target(struct cam_et *target); 241 static struct cam_eb* 242 xpt_find_bus(path_id_t path_id); 243 static struct cam_et* 244 xpt_find_target(struct cam_eb *bus, target_id_t target_id); 245 static struct cam_ed* 246 xpt_find_device(struct cam_et *target, lun_id_t lun_id); 247 static void xpt_config(void *arg); 248 static int xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo, 249 u_int32_t new_priority); 250 static xpt_devicefunc_t xptpassannouncefunc; 251 static void xptaction(struct cam_sim *sim, union ccb *work_ccb); 252 static void xptpoll(struct cam_sim *sim); 253 static void camisr_runqueue(void); 254 static void xpt_done_process(struct ccb_hdr *ccb_h); 255 static void xpt_done_td(void *); 256 static dev_match_ret xptbusmatch(struct dev_match_pattern *patterns, 257 u_int num_patterns, struct cam_eb *bus); 258 static dev_match_ret xptdevicematch(struct dev_match_pattern *patterns, 259 u_int num_patterns, 260 struct cam_ed *device); 261 static dev_match_ret xptperiphmatch(struct dev_match_pattern *patterns, 262 u_int num_patterns, 263 struct cam_periph *periph); 264 static xpt_busfunc_t xptedtbusfunc; 265 static xpt_targetfunc_t xptedttargetfunc; 266 static xpt_devicefunc_t xptedtdevicefunc; 267 static xpt_periphfunc_t xptedtperiphfunc; 268 static xpt_pdrvfunc_t xptplistpdrvfunc; 269 static xpt_periphfunc_t xptplistperiphfunc; 270 static int xptedtmatch(struct ccb_dev_match *cdm); 271 static int xptperiphlistmatch(struct ccb_dev_match *cdm); 272 static int xptbustraverse(struct cam_eb *start_bus, 273 xpt_busfunc_t *tr_func, void *arg); 274 static int xpttargettraverse(struct cam_eb *bus, 275 struct cam_et *start_target, 276 xpt_targetfunc_t *tr_func, void *arg); 277 static int xptdevicetraverse(struct cam_et *target, 278 struct cam_ed *start_device, 279 xpt_devicefunc_t *tr_func, void *arg); 280 static int xptperiphtraverse(struct cam_ed *device, 281 struct cam_periph *start_periph, 282 xpt_periphfunc_t *tr_func, void *arg); 283 static int xptpdrvtraverse(struct periph_driver **start_pdrv, 284 xpt_pdrvfunc_t *tr_func, void *arg); 285 static int xptpdperiphtraverse(struct periph_driver **pdrv, 286 struct cam_periph *start_periph, 287 xpt_periphfunc_t *tr_func, 288 void *arg); 289 static xpt_busfunc_t xptdefbusfunc; 290 static xpt_targetfunc_t xptdeftargetfunc; 291 static xpt_devicefunc_t xptdefdevicefunc; 292 static xpt_periphfunc_t xptdefperiphfunc; 293 static void xpt_finishconfig_task(void *context, int pending); 294 static void xpt_dev_async_default(u_int32_t async_code, 295 struct cam_eb *bus, 296 struct cam_et *target, 297 struct cam_ed *device, 298 void *async_arg); 299 static struct cam_ed * xpt_alloc_device_default(struct cam_eb *bus, 300 struct cam_et *target, 301 lun_id_t lun_id); 302 static xpt_devicefunc_t xptsetasyncfunc; 303 static xpt_busfunc_t xptsetasyncbusfunc; 304 static cam_status xptregister(struct cam_periph *periph, 305 void *arg); 306 static __inline int device_is_queued(struct cam_ed *device); 307 308 static __inline int 309 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev) 310 { 311 int retval; 312 313 mtx_assert(&devq->send_mtx, MA_OWNED); 314 if ((dev->ccbq.queue.entries > 0) && 315 (dev->ccbq.dev_openings > 0) && 316 (dev->ccbq.queue.qfrozen_cnt == 0)) { 317 /* 318 * The priority of a device waiting for controller 319 * resources is that of the highest priority CCB 320 * enqueued. 321 */ 322 retval = 323 xpt_schedule_dev(&devq->send_queue, 324 &dev->devq_entry, 325 CAMQ_GET_PRIO(&dev->ccbq.queue)); 326 } else { 327 retval = 0; 328 } 329 return (retval); 330 } 331 332 static __inline int 333 device_is_queued(struct cam_ed *device) 334 { 335 return (device->devq_entry.index != CAM_UNQUEUED_INDEX); 336 } 337 338 static void 339 xpt_periph_init() 340 { 341 make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0"); 342 } 343 344 static int 345 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td) 346 { 347 348 /* 349 * Only allow read-write access. 350 */ 351 if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0)) 352 return(EPERM); 353 354 /* 355 * We don't allow nonblocking access. 356 */ 357 if ((flags & O_NONBLOCK) != 0) { 358 printf("%s: can't do nonblocking access\n", devtoname(dev)); 359 return(ENODEV); 360 } 361 362 return(0); 363 } 364 365 static int 366 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td) 367 { 368 369 return(0); 370 } 371 372 /* 373 * Don't automatically grab the xpt softc lock here even though this is going 374 * through the xpt device. The xpt device is really just a back door for 375 * accessing other devices and SIMs, so the right thing to do is to grab 376 * the appropriate SIM lock once the bus/SIM is located. 377 */ 378 static int 379 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 380 { 381 int error; 382 383 if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) { 384 error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl); 385 } 386 return (error); 387 } 388 389 static int 390 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) 391 { 392 int error; 393 394 error = 0; 395 396 switch(cmd) { 397 /* 398 * For the transport layer CAMIOCOMMAND ioctl, we really only want 399 * to accept CCB types that don't quite make sense to send through a 400 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated 401 * in the CAM spec. 402 */ 403 case CAMIOCOMMAND: { 404 union ccb *ccb; 405 union ccb *inccb; 406 struct cam_eb *bus; 407 408 inccb = (union ccb *)addr; 409 410 bus = xpt_find_bus(inccb->ccb_h.path_id); 411 if (bus == NULL) 412 return (EINVAL); 413 414 switch (inccb->ccb_h.func_code) { 415 case XPT_SCAN_BUS: 416 case XPT_RESET_BUS: 417 if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD || 418 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 419 xpt_release_bus(bus); 420 return (EINVAL); 421 } 422 break; 423 case XPT_SCAN_TGT: 424 if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD || 425 inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) { 426 xpt_release_bus(bus); 427 return (EINVAL); 428 } 429 break; 430 default: 431 break; 432 } 433 434 switch(inccb->ccb_h.func_code) { 435 case XPT_SCAN_BUS: 436 case XPT_RESET_BUS: 437 case XPT_PATH_INQ: 438 case XPT_ENG_INQ: 439 case XPT_SCAN_LUN: 440 case XPT_SCAN_TGT: 441 442 ccb = xpt_alloc_ccb(); 443 444 /* 445 * Create a path using the bus, target, and lun the 446 * user passed in. 447 */ 448 if (xpt_create_path(&ccb->ccb_h.path, NULL, 449 inccb->ccb_h.path_id, 450 inccb->ccb_h.target_id, 451 inccb->ccb_h.target_lun) != 452 CAM_REQ_CMP){ 453 error = EINVAL; 454 xpt_free_ccb(ccb); 455 break; 456 } 457 /* Ensure all of our fields are correct */ 458 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, 459 inccb->ccb_h.pinfo.priority); 460 xpt_merge_ccb(ccb, inccb); 461 xpt_path_lock(ccb->ccb_h.path); 462 cam_periph_runccb(ccb, NULL, 0, 0, NULL); 463 xpt_path_unlock(ccb->ccb_h.path); 464 bcopy(ccb, inccb, sizeof(union ccb)); 465 xpt_free_path(ccb->ccb_h.path); 466 xpt_free_ccb(ccb); 467 break; 468 469 case XPT_DEBUG: { 470 union ccb ccb; 471 472 /* 473 * This is an immediate CCB, so it's okay to 474 * allocate it on the stack. 475 */ 476 477 /* 478 * Create a path using the bus, target, and lun the 479 * user passed in. 480 */ 481 if (xpt_create_path(&ccb.ccb_h.path, NULL, 482 inccb->ccb_h.path_id, 483 inccb->ccb_h.target_id, 484 inccb->ccb_h.target_lun) != 485 CAM_REQ_CMP){ 486 error = EINVAL; 487 break; 488 } 489 /* Ensure all of our fields are correct */ 490 xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path, 491 inccb->ccb_h.pinfo.priority); 492 xpt_merge_ccb(&ccb, inccb); 493 xpt_action(&ccb); 494 bcopy(&ccb, inccb, sizeof(union ccb)); 495 xpt_free_path(ccb.ccb_h.path); 496 break; 497 498 } 499 case XPT_DEV_MATCH: { 500 struct cam_periph_map_info mapinfo; 501 struct cam_path *old_path; 502 503 /* 504 * We can't deal with physical addresses for this 505 * type of transaction. 506 */ 507 if ((inccb->ccb_h.flags & CAM_DATA_MASK) != 508 CAM_DATA_VADDR) { 509 error = EINVAL; 510 break; 511 } 512 513 /* 514 * Save this in case the caller had it set to 515 * something in particular. 516 */ 517 old_path = inccb->ccb_h.path; 518 519 /* 520 * We really don't need a path for the matching 521 * code. The path is needed because of the 522 * debugging statements in xpt_action(). They 523 * assume that the CCB has a valid path. 524 */ 525 inccb->ccb_h.path = xpt_periph->path; 526 527 bzero(&mapinfo, sizeof(mapinfo)); 528 529 /* 530 * Map the pattern and match buffers into kernel 531 * virtual address space. 532 */ 533 error = cam_periph_mapmem(inccb, &mapinfo); 534 535 if (error) { 536 inccb->ccb_h.path = old_path; 537 break; 538 } 539 540 /* 541 * This is an immediate CCB, we can send it on directly. 542 */ 543 xpt_action(inccb); 544 545 /* 546 * Map the buffers back into user space. 547 */ 548 cam_periph_unmapmem(inccb, &mapinfo); 549 550 inccb->ccb_h.path = old_path; 551 552 error = 0; 553 break; 554 } 555 default: 556 error = ENOTSUP; 557 break; 558 } 559 xpt_release_bus(bus); 560 break; 561 } 562 /* 563 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input, 564 * with the periphal driver name and unit name filled in. The other 565 * fields don't really matter as input. The passthrough driver name 566 * ("pass"), and unit number are passed back in the ccb. The current 567 * device generation number, and the index into the device peripheral 568 * driver list, and the status are also passed back. Note that 569 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb, 570 * we never return a status of CAM_GDEVLIST_LIST_CHANGED. It is 571 * (or rather should be) impossible for the device peripheral driver 572 * list to change since we look at the whole thing in one pass, and 573 * we do it with lock protection. 574 * 575 */ 576 case CAMGETPASSTHRU: { 577 union ccb *ccb; 578 struct cam_periph *periph; 579 struct periph_driver **p_drv; 580 char *name; 581 u_int unit; 582 int base_periph_found; 583 584 ccb = (union ccb *)addr; 585 unit = ccb->cgdl.unit_number; 586 name = ccb->cgdl.periph_name; 587 base_periph_found = 0; 588 589 /* 590 * Sanity check -- make sure we don't get a null peripheral 591 * driver name. 592 */ 593 if (*ccb->cgdl.periph_name == '\0') { 594 error = EINVAL; 595 break; 596 } 597 598 /* Keep the list from changing while we traverse it */ 599 xpt_lock_buses(); 600 601 /* first find our driver in the list of drivers */ 602 for (p_drv = periph_drivers; *p_drv != NULL; p_drv++) 603 if (strcmp((*p_drv)->driver_name, name) == 0) 604 break; 605 606 if (*p_drv == NULL) { 607 xpt_unlock_buses(); 608 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 609 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 610 *ccb->cgdl.periph_name = '\0'; 611 ccb->cgdl.unit_number = 0; 612 error = ENOENT; 613 break; 614 } 615 616 /* 617 * Run through every peripheral instance of this driver 618 * and check to see whether it matches the unit passed 619 * in by the user. If it does, get out of the loops and 620 * find the passthrough driver associated with that 621 * peripheral driver. 622 */ 623 for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL; 624 periph = TAILQ_NEXT(periph, unit_links)) { 625 626 if (periph->unit_number == unit) 627 break; 628 } 629 /* 630 * If we found the peripheral driver that the user passed 631 * in, go through all of the peripheral drivers for that 632 * particular device and look for a passthrough driver. 633 */ 634 if (periph != NULL) { 635 struct cam_ed *device; 636 int i; 637 638 base_periph_found = 1; 639 device = periph->path->device; 640 for (i = 0, periph = SLIST_FIRST(&device->periphs); 641 periph != NULL; 642 periph = SLIST_NEXT(periph, periph_links), i++) { 643 /* 644 * Check to see whether we have a 645 * passthrough device or not. 646 */ 647 if (strcmp(periph->periph_name, "pass") == 0) { 648 /* 649 * Fill in the getdevlist fields. 650 */ 651 strcpy(ccb->cgdl.periph_name, 652 periph->periph_name); 653 ccb->cgdl.unit_number = 654 periph->unit_number; 655 if (SLIST_NEXT(periph, periph_links)) 656 ccb->cgdl.status = 657 CAM_GDEVLIST_MORE_DEVS; 658 else 659 ccb->cgdl.status = 660 CAM_GDEVLIST_LAST_DEVICE; 661 ccb->cgdl.generation = 662 device->generation; 663 ccb->cgdl.index = i; 664 /* 665 * Fill in some CCB header fields 666 * that the user may want. 667 */ 668 ccb->ccb_h.path_id = 669 periph->path->bus->path_id; 670 ccb->ccb_h.target_id = 671 periph->path->target->target_id; 672 ccb->ccb_h.target_lun = 673 periph->path->device->lun_id; 674 ccb->ccb_h.status = CAM_REQ_CMP; 675 break; 676 } 677 } 678 } 679 680 /* 681 * If the periph is null here, one of two things has 682 * happened. The first possibility is that we couldn't 683 * find the unit number of the particular peripheral driver 684 * that the user is asking about. e.g. the user asks for 685 * the passthrough driver for "da11". We find the list of 686 * "da" peripherals all right, but there is no unit 11. 687 * The other possibility is that we went through the list 688 * of peripheral drivers attached to the device structure, 689 * but didn't find one with the name "pass". Either way, 690 * we return ENOENT, since we couldn't find something. 691 */ 692 if (periph == NULL) { 693 ccb->ccb_h.status = CAM_REQ_CMP_ERR; 694 ccb->cgdl.status = CAM_GDEVLIST_ERROR; 695 *ccb->cgdl.periph_name = '\0'; 696 ccb->cgdl.unit_number = 0; 697 error = ENOENT; 698 /* 699 * It is unfortunate that this is even necessary, 700 * but there are many, many clueless users out there. 701 * If this is true, the user is looking for the 702 * passthrough driver, but doesn't have one in his 703 * kernel. 704 */ 705 if (base_periph_found == 1) { 706 printf("xptioctl: pass driver is not in the " 707 "kernel\n"); 708 printf("xptioctl: put \"device pass\" in " 709 "your kernel config file\n"); 710 } 711 } 712 xpt_unlock_buses(); 713 break; 714 } 715 default: 716 error = ENOTTY; 717 break; 718 } 719 720 return(error); 721 } 722 723 static int 724 cam_module_event_handler(module_t mod, int what, void *arg) 725 { 726 int error; 727 728 switch (what) { 729 case MOD_LOAD: 730 if ((error = xpt_init(NULL)) != 0) 731 return (error); 732 break; 733 case MOD_UNLOAD: 734 return EBUSY; 735 default: 736 return EOPNOTSUPP; 737 } 738 739 return 0; 740 } 741 742 static void 743 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb) 744 { 745 746 if (done_ccb->ccb_h.ppriv_ptr1 == NULL) { 747 xpt_free_path(done_ccb->ccb_h.path); 748 xpt_free_ccb(done_ccb); 749 } else { 750 done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1; 751 (*done_ccb->ccb_h.cbfcnp)(periph, done_ccb); 752 } 753 xpt_release_boot(); 754 } 755 756 /* thread to handle bus rescans */ 757 static void 758 xpt_scanner_thread(void *dummy) 759 { 760 union ccb *ccb; 761 struct cam_path path; 762 763 xpt_lock_buses(); 764 for (;;) { 765 if (TAILQ_EMPTY(&xsoftc.ccb_scanq)) 766 msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO, 767 "-", 0); 768 if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) { 769 TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 770 xpt_unlock_buses(); 771 772 /* 773 * Since lock can be dropped inside and path freed 774 * by completion callback even before return here, 775 * take our own path copy for reference. 776 */ 777 xpt_copy_path(&path, ccb->ccb_h.path); 778 xpt_path_lock(&path); 779 xpt_action(ccb); 780 xpt_path_unlock(&path); 781 xpt_release_path(&path); 782 783 xpt_lock_buses(); 784 } 785 } 786 } 787 788 void 789 xpt_rescan(union ccb *ccb) 790 { 791 struct ccb_hdr *hdr; 792 793 /* Prepare request */ 794 if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD && 795 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 796 ccb->ccb_h.func_code = XPT_SCAN_BUS; 797 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 798 ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD) 799 ccb->ccb_h.func_code = XPT_SCAN_TGT; 800 else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD && 801 ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD) 802 ccb->ccb_h.func_code = XPT_SCAN_LUN; 803 else { 804 xpt_print(ccb->ccb_h.path, "illegal scan path\n"); 805 xpt_free_path(ccb->ccb_h.path); 806 xpt_free_ccb(ccb); 807 return; 808 } 809 ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp; 810 ccb->ccb_h.cbfcnp = xpt_rescan_done; 811 xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT); 812 /* Don't make duplicate entries for the same paths. */ 813 xpt_lock_buses(); 814 if (ccb->ccb_h.ppriv_ptr1 == NULL) { 815 TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) { 816 if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) { 817 wakeup(&xsoftc.ccb_scanq); 818 xpt_unlock_buses(); 819 xpt_print(ccb->ccb_h.path, "rescan already queued\n"); 820 xpt_free_path(ccb->ccb_h.path); 821 xpt_free_ccb(ccb); 822 return; 823 } 824 } 825 } 826 TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe); 827 xsoftc.buses_to_config++; 828 wakeup(&xsoftc.ccb_scanq); 829 xpt_unlock_buses(); 830 } 831 832 /* Functions accessed by the peripheral drivers */ 833 static int 834 xpt_init(void *dummy) 835 { 836 struct cam_sim *xpt_sim; 837 struct cam_path *path; 838 struct cam_devq *devq; 839 cam_status status; 840 int error, i; 841 842 TAILQ_INIT(&xsoftc.xpt_busses); 843 TAILQ_INIT(&xsoftc.ccb_scanq); 844 STAILQ_INIT(&xsoftc.highpowerq); 845 xsoftc.num_highpower = CAM_MAX_HIGHPOWER; 846 847 mtx_init(&xsoftc.xpt_lock, "XPT lock", NULL, MTX_DEF); 848 mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF); 849 mtx_init(&xsoftc.xpt_topo_lock, "XPT topology lock", NULL, MTX_DEF); 850 xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK, 851 taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq); 852 853 #ifdef CAM_BOOT_DELAY 854 /* 855 * Override this value at compile time to assist our users 856 * who don't use loader to boot a kernel. 857 */ 858 xsoftc.boot_delay = CAM_BOOT_DELAY; 859 #endif 860 /* 861 * The xpt layer is, itself, the equivelent of a SIM. 862 * Allow 16 ccbs in the ccb pool for it. This should 863 * give decent parallelism when we probe busses and 864 * perform other XPT functions. 865 */ 866 devq = cam_simq_alloc(16); 867 xpt_sim = cam_sim_alloc(xptaction, 868 xptpoll, 869 "xpt", 870 /*softc*/NULL, 871 /*unit*/0, 872 /*mtx*/&xsoftc.xpt_lock, 873 /*max_dev_transactions*/0, 874 /*max_tagged_dev_transactions*/0, 875 devq); 876 if (xpt_sim == NULL) 877 return (ENOMEM); 878 879 mtx_lock(&xsoftc.xpt_lock); 880 if ((status = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) { 881 mtx_unlock(&xsoftc.xpt_lock); 882 printf("xpt_init: xpt_bus_register failed with status %#x," 883 " failing attach\n", status); 884 return (EINVAL); 885 } 886 mtx_unlock(&xsoftc.xpt_lock); 887 888 /* 889 * Looking at the XPT from the SIM layer, the XPT is 890 * the equivelent of a peripheral driver. Allocate 891 * a peripheral driver entry for us. 892 */ 893 if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID, 894 CAM_TARGET_WILDCARD, 895 CAM_LUN_WILDCARD)) != CAM_REQ_CMP) { 896 mtx_unlock(&xsoftc.xpt_lock); 897 printf("xpt_init: xpt_create_path failed with status %#x," 898 " failing attach\n", status); 899 return (EINVAL); 900 } 901 xpt_path_lock(path); 902 cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO, 903 path, NULL, 0, xpt_sim); 904 xpt_path_unlock(path); 905 xpt_free_path(path); 906 907 if (cam_num_doneqs < 1) 908 cam_num_doneqs = 1 + mp_ncpus / 6; 909 else if (cam_num_doneqs > MAXCPU) 910 cam_num_doneqs = MAXCPU; 911 for (i = 0; i < cam_num_doneqs; i++) { 912 mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL, 913 MTX_DEF); 914 STAILQ_INIT(&cam_doneqs[i].cam_doneq); 915 error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i], 916 &cam_proc, NULL, 0, 0, "cam", "doneq%d", i); 917 if (error != 0) { 918 cam_num_doneqs = i; 919 break; 920 } 921 } 922 if (cam_num_doneqs < 1) { 923 printf("xpt_init: Cannot init completion queues " 924 "- failing attach\n"); 925 return (ENOMEM); 926 } 927 /* 928 * Register a callback for when interrupts are enabled. 929 */ 930 xsoftc.xpt_config_hook = 931 (struct intr_config_hook *)malloc(sizeof(struct intr_config_hook), 932 M_CAMXPT, M_NOWAIT | M_ZERO); 933 if (xsoftc.xpt_config_hook == NULL) { 934 printf("xpt_init: Cannot malloc config hook " 935 "- failing attach\n"); 936 return (ENOMEM); 937 } 938 xsoftc.xpt_config_hook->ich_func = xpt_config; 939 if (config_intrhook_establish(xsoftc.xpt_config_hook) != 0) { 940 free (xsoftc.xpt_config_hook, M_CAMXPT); 941 printf("xpt_init: config_intrhook_establish failed " 942 "- failing attach\n"); 943 } 944 945 return (0); 946 } 947 948 static cam_status 949 xptregister(struct cam_periph *periph, void *arg) 950 { 951 struct cam_sim *xpt_sim; 952 953 if (periph == NULL) { 954 printf("xptregister: periph was NULL!!\n"); 955 return(CAM_REQ_CMP_ERR); 956 } 957 958 xpt_sim = (struct cam_sim *)arg; 959 xpt_sim->softc = periph; 960 xpt_periph = periph; 961 periph->softc = NULL; 962 963 return(CAM_REQ_CMP); 964 } 965 966 int32_t 967 xpt_add_periph(struct cam_periph *periph) 968 { 969 struct cam_ed *device; 970 int32_t status; 971 972 TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph); 973 device = periph->path->device; 974 status = CAM_REQ_CMP; 975 if (device != NULL) { 976 mtx_lock(&device->target->bus->eb_mtx); 977 device->generation++; 978 SLIST_INSERT_HEAD(&device->periphs, periph, periph_links); 979 mtx_unlock(&device->target->bus->eb_mtx); 980 } 981 982 return (status); 983 } 984 985 void 986 xpt_remove_periph(struct cam_periph *periph) 987 { 988 struct cam_ed *device; 989 990 device = periph->path->device; 991 if (device != NULL) { 992 mtx_lock(&device->target->bus->eb_mtx); 993 device->generation++; 994 SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links); 995 mtx_unlock(&device->target->bus->eb_mtx); 996 } 997 } 998 999 1000 void 1001 xpt_announce_periph(struct cam_periph *periph, char *announce_string) 1002 { 1003 struct cam_path *path = periph->path; 1004 1005 cam_periph_assert(periph, MA_OWNED); 1006 periph->flags |= CAM_PERIPH_ANNOUNCED; 1007 1008 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1009 periph->periph_name, periph->unit_number, 1010 path->bus->sim->sim_name, 1011 path->bus->sim->unit_number, 1012 path->bus->sim->bus_id, 1013 path->bus->path_id, 1014 path->target->target_id, 1015 (uintmax_t)path->device->lun_id); 1016 printf("%s%d: ", periph->periph_name, periph->unit_number); 1017 if (path->device->protocol == PROTO_SCSI) 1018 scsi_print_inquiry(&path->device->inq_data); 1019 else if (path->device->protocol == PROTO_ATA || 1020 path->device->protocol == PROTO_SATAPM) 1021 ata_print_ident(&path->device->ident_data); 1022 else if (path->device->protocol == PROTO_SEMB) 1023 semb_print_ident( 1024 (struct sep_identify_data *)&path->device->ident_data); 1025 else 1026 printf("Unknown protocol device\n"); 1027 if (path->device->serial_num_len > 0) { 1028 /* Don't wrap the screen - print only the first 60 chars */ 1029 printf("%s%d: Serial Number %.60s\n", periph->periph_name, 1030 periph->unit_number, path->device->serial_num); 1031 } 1032 /* Announce transport details. */ 1033 (*(path->bus->xport->announce))(periph); 1034 /* Announce command queueing. */ 1035 if (path->device->inq_flags & SID_CmdQue 1036 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) { 1037 printf("%s%d: Command Queueing enabled\n", 1038 periph->periph_name, periph->unit_number); 1039 } 1040 /* Announce caller's details if they've passed in. */ 1041 if (announce_string != NULL) 1042 printf("%s%d: %s\n", periph->periph_name, 1043 periph->unit_number, announce_string); 1044 } 1045 1046 void 1047 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string) 1048 { 1049 if (quirks != 0) { 1050 printf("%s%d: quirks=0x%b\n", periph->periph_name, 1051 periph->unit_number, quirks, bit_string); 1052 } 1053 } 1054 1055 void 1056 xpt_denounce_periph(struct cam_periph *periph) 1057 { 1058 struct cam_path *path = periph->path; 1059 1060 cam_periph_assert(periph, MA_OWNED); 1061 printf("%s%d at %s%d bus %d scbus%d target %d lun %jx\n", 1062 periph->periph_name, periph->unit_number, 1063 path->bus->sim->sim_name, 1064 path->bus->sim->unit_number, 1065 path->bus->sim->bus_id, 1066 path->bus->path_id, 1067 path->target->target_id, 1068 (uintmax_t)path->device->lun_id); 1069 printf("%s%d: ", periph->periph_name, periph->unit_number); 1070 if (path->device->protocol == PROTO_SCSI) 1071 scsi_print_inquiry_short(&path->device->inq_data); 1072 else if (path->device->protocol == PROTO_ATA || 1073 path->device->protocol == PROTO_SATAPM) 1074 ata_print_ident_short(&path->device->ident_data); 1075 else if (path->device->protocol == PROTO_SEMB) 1076 semb_print_ident_short( 1077 (struct sep_identify_data *)&path->device->ident_data); 1078 else 1079 printf("Unknown protocol device"); 1080 if (path->device->serial_num_len > 0) 1081 printf(" s/n %.60s", path->device->serial_num); 1082 printf(" detached\n"); 1083 } 1084 1085 1086 int 1087 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path) 1088 { 1089 int ret = -1, l; 1090 struct ccb_dev_advinfo cdai; 1091 struct scsi_vpd_id_descriptor *idd; 1092 1093 xpt_path_assert(path, MA_OWNED); 1094 1095 memset(&cdai, 0, sizeof(cdai)); 1096 xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL); 1097 cdai.ccb_h.func_code = XPT_DEV_ADVINFO; 1098 cdai.bufsiz = len; 1099 1100 if (!strcmp(attr, "GEOM::ident")) 1101 cdai.buftype = CDAI_TYPE_SERIAL_NUM; 1102 else if (!strcmp(attr, "GEOM::physpath")) 1103 cdai.buftype = CDAI_TYPE_PHYS_PATH; 1104 else if (strcmp(attr, "GEOM::lunid") == 0 || 1105 strcmp(attr, "GEOM::lunname") == 0) { 1106 cdai.buftype = CDAI_TYPE_SCSI_DEVID; 1107 cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN; 1108 } else 1109 goto out; 1110 1111 cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT|M_ZERO); 1112 if (cdai.buf == NULL) { 1113 ret = ENOMEM; 1114 goto out; 1115 } 1116 xpt_action((union ccb *)&cdai); /* can only be synchronous */ 1117 if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0) 1118 cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE); 1119 if (cdai.provsiz == 0) 1120 goto out; 1121 if (cdai.buftype == CDAI_TYPE_SCSI_DEVID) { 1122 if (strcmp(attr, "GEOM::lunid") == 0) { 1123 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1124 cdai.provsiz, scsi_devid_is_lun_naa); 1125 if (idd == NULL) 1126 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1127 cdai.provsiz, scsi_devid_is_lun_eui64); 1128 } else 1129 idd = NULL; 1130 if (idd == NULL) 1131 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1132 cdai.provsiz, scsi_devid_is_lun_t10); 1133 if (idd == NULL) 1134 idd = scsi_get_devid((struct scsi_vpd_device_id *)cdai.buf, 1135 cdai.provsiz, scsi_devid_is_lun_name); 1136 if (idd == NULL) 1137 goto out; 1138 ret = 0; 1139 if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_ASCII) { 1140 if (idd->length < len) { 1141 for (l = 0; l < idd->length; l++) 1142 buf[l] = idd->identifier[l] ? 1143 idd->identifier[l] : ' '; 1144 buf[l] = 0; 1145 } else 1146 ret = EFAULT; 1147 } else if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) == SVPD_ID_CODESET_UTF8) { 1148 l = strnlen(idd->identifier, idd->length); 1149 if (l < len) { 1150 bcopy(idd->identifier, buf, l); 1151 buf[l] = 0; 1152 } else 1153 ret = EFAULT; 1154 } else { 1155 if (idd->length * 2 < len) { 1156 for (l = 0; l < idd->length; l++) 1157 sprintf(buf + l * 2, "%02x", 1158 idd->identifier[l]); 1159 } else 1160 ret = EFAULT; 1161 } 1162 } else { 1163 ret = 0; 1164 if (strlcpy(buf, cdai.buf, len) >= len) 1165 ret = EFAULT; 1166 } 1167 1168 out: 1169 if (cdai.buf != NULL) 1170 free(cdai.buf, M_CAMXPT); 1171 return ret; 1172 } 1173 1174 static dev_match_ret 1175 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1176 struct cam_eb *bus) 1177 { 1178 dev_match_ret retval; 1179 int i; 1180 1181 retval = DM_RET_NONE; 1182 1183 /* 1184 * If we aren't given something to match against, that's an error. 1185 */ 1186 if (bus == NULL) 1187 return(DM_RET_ERROR); 1188 1189 /* 1190 * If there are no match entries, then this bus matches no 1191 * matter what. 1192 */ 1193 if ((patterns == NULL) || (num_patterns == 0)) 1194 return(DM_RET_DESCEND | DM_RET_COPY); 1195 1196 for (i = 0; i < num_patterns; i++) { 1197 struct bus_match_pattern *cur_pattern; 1198 1199 /* 1200 * If the pattern in question isn't for a bus node, we 1201 * aren't interested. However, we do indicate to the 1202 * calling routine that we should continue descending the 1203 * tree, since the user wants to match against lower-level 1204 * EDT elements. 1205 */ 1206 if (patterns[i].type != DEV_MATCH_BUS) { 1207 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1208 retval |= DM_RET_DESCEND; 1209 continue; 1210 } 1211 1212 cur_pattern = &patterns[i].pattern.bus_pattern; 1213 1214 /* 1215 * If they want to match any bus node, we give them any 1216 * device node. 1217 */ 1218 if (cur_pattern->flags == BUS_MATCH_ANY) { 1219 /* set the copy flag */ 1220 retval |= DM_RET_COPY; 1221 1222 /* 1223 * If we've already decided on an action, go ahead 1224 * and return. 1225 */ 1226 if ((retval & DM_RET_ACTION_MASK) != DM_RET_NONE) 1227 return(retval); 1228 } 1229 1230 /* 1231 * Not sure why someone would do this... 1232 */ 1233 if (cur_pattern->flags == BUS_MATCH_NONE) 1234 continue; 1235 1236 if (((cur_pattern->flags & BUS_MATCH_PATH) != 0) 1237 && (cur_pattern->path_id != bus->path_id)) 1238 continue; 1239 1240 if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0) 1241 && (cur_pattern->bus_id != bus->sim->bus_id)) 1242 continue; 1243 1244 if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0) 1245 && (cur_pattern->unit_number != bus->sim->unit_number)) 1246 continue; 1247 1248 if (((cur_pattern->flags & BUS_MATCH_NAME) != 0) 1249 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name, 1250 DEV_IDLEN) != 0)) 1251 continue; 1252 1253 /* 1254 * If we get to this point, the user definitely wants 1255 * information on this bus. So tell the caller to copy the 1256 * data out. 1257 */ 1258 retval |= DM_RET_COPY; 1259 1260 /* 1261 * If the return action has been set to descend, then we 1262 * know that we've already seen a non-bus matching 1263 * expression, therefore we need to further descend the tree. 1264 * This won't change by continuing around the loop, so we 1265 * go ahead and return. If we haven't seen a non-bus 1266 * matching expression, we keep going around the loop until 1267 * we exhaust the matching expressions. We'll set the stop 1268 * flag once we fall out of the loop. 1269 */ 1270 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1271 return(retval); 1272 } 1273 1274 /* 1275 * If the return action hasn't been set to descend yet, that means 1276 * we haven't seen anything other than bus matching patterns. So 1277 * tell the caller to stop descending the tree -- the user doesn't 1278 * want to match against lower level tree elements. 1279 */ 1280 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1281 retval |= DM_RET_STOP; 1282 1283 return(retval); 1284 } 1285 1286 static dev_match_ret 1287 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns, 1288 struct cam_ed *device) 1289 { 1290 dev_match_ret retval; 1291 int i; 1292 1293 retval = DM_RET_NONE; 1294 1295 /* 1296 * If we aren't given something to match against, that's an error. 1297 */ 1298 if (device == NULL) 1299 return(DM_RET_ERROR); 1300 1301 /* 1302 * If there are no match entries, then this device matches no 1303 * matter what. 1304 */ 1305 if ((patterns == NULL) || (num_patterns == 0)) 1306 return(DM_RET_DESCEND | DM_RET_COPY); 1307 1308 for (i = 0; i < num_patterns; i++) { 1309 struct device_match_pattern *cur_pattern; 1310 struct scsi_vpd_device_id *device_id_page; 1311 1312 /* 1313 * If the pattern in question isn't for a device node, we 1314 * aren't interested. 1315 */ 1316 if (patterns[i].type != DEV_MATCH_DEVICE) { 1317 if ((patterns[i].type == DEV_MATCH_PERIPH) 1318 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)) 1319 retval |= DM_RET_DESCEND; 1320 continue; 1321 } 1322 1323 cur_pattern = &patterns[i].pattern.device_pattern; 1324 1325 /* Error out if mutually exclusive options are specified. */ 1326 if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1327 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID)) 1328 return(DM_RET_ERROR); 1329 1330 /* 1331 * If they want to match any device node, we give them any 1332 * device node. 1333 */ 1334 if (cur_pattern->flags == DEV_MATCH_ANY) 1335 goto copy_dev_node; 1336 1337 /* 1338 * Not sure why someone would do this... 1339 */ 1340 if (cur_pattern->flags == DEV_MATCH_NONE) 1341 continue; 1342 1343 if (((cur_pattern->flags & DEV_MATCH_PATH) != 0) 1344 && (cur_pattern->path_id != device->target->bus->path_id)) 1345 continue; 1346 1347 if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0) 1348 && (cur_pattern->target_id != device->target->target_id)) 1349 continue; 1350 1351 if (((cur_pattern->flags & DEV_MATCH_LUN) != 0) 1352 && (cur_pattern->target_lun != device->lun_id)) 1353 continue; 1354 1355 if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0) 1356 && (cam_quirkmatch((caddr_t)&device->inq_data, 1357 (caddr_t)&cur_pattern->data.inq_pat, 1358 1, sizeof(cur_pattern->data.inq_pat), 1359 scsi_static_inquiry_match) == NULL)) 1360 continue; 1361 1362 device_id_page = (struct scsi_vpd_device_id *)device->device_id; 1363 if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0) 1364 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN 1365 || scsi_devid_match((uint8_t *)device_id_page->desc_list, 1366 device->device_id_len 1367 - SVPD_DEVICE_ID_HDR_LEN, 1368 cur_pattern->data.devid_pat.id, 1369 cur_pattern->data.devid_pat.id_len) != 0)) 1370 continue; 1371 1372 copy_dev_node: 1373 /* 1374 * If we get to this point, the user definitely wants 1375 * information on this device. So tell the caller to copy 1376 * the data out. 1377 */ 1378 retval |= DM_RET_COPY; 1379 1380 /* 1381 * If the return action has been set to descend, then we 1382 * know that we've already seen a peripheral matching 1383 * expression, therefore we need to further descend the tree. 1384 * This won't change by continuing around the loop, so we 1385 * go ahead and return. If we haven't seen a peripheral 1386 * matching expression, we keep going around the loop until 1387 * we exhaust the matching expressions. We'll set the stop 1388 * flag once we fall out of the loop. 1389 */ 1390 if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND) 1391 return(retval); 1392 } 1393 1394 /* 1395 * If the return action hasn't been set to descend yet, that means 1396 * we haven't seen any peripheral matching patterns. So tell the 1397 * caller to stop descending the tree -- the user doesn't want to 1398 * match against lower level tree elements. 1399 */ 1400 if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE) 1401 retval |= DM_RET_STOP; 1402 1403 return(retval); 1404 } 1405 1406 /* 1407 * Match a single peripheral against any number of match patterns. 1408 */ 1409 static dev_match_ret 1410 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns, 1411 struct cam_periph *periph) 1412 { 1413 dev_match_ret retval; 1414 int i; 1415 1416 /* 1417 * If we aren't given something to match against, that's an error. 1418 */ 1419 if (periph == NULL) 1420 return(DM_RET_ERROR); 1421 1422 /* 1423 * If there are no match entries, then this peripheral matches no 1424 * matter what. 1425 */ 1426 if ((patterns == NULL) || (num_patterns == 0)) 1427 return(DM_RET_STOP | DM_RET_COPY); 1428 1429 /* 1430 * There aren't any nodes below a peripheral node, so there's no 1431 * reason to descend the tree any further. 1432 */ 1433 retval = DM_RET_STOP; 1434 1435 for (i = 0; i < num_patterns; i++) { 1436 struct periph_match_pattern *cur_pattern; 1437 1438 /* 1439 * If the pattern in question isn't for a peripheral, we 1440 * aren't interested. 1441 */ 1442 if (patterns[i].type != DEV_MATCH_PERIPH) 1443 continue; 1444 1445 cur_pattern = &patterns[i].pattern.periph_pattern; 1446 1447 /* 1448 * If they want to match on anything, then we will do so. 1449 */ 1450 if (cur_pattern->flags == PERIPH_MATCH_ANY) { 1451 /* set the copy flag */ 1452 retval |= DM_RET_COPY; 1453 1454 /* 1455 * We've already set the return action to stop, 1456 * since there are no nodes below peripherals in 1457 * the tree. 1458 */ 1459 return(retval); 1460 } 1461 1462 /* 1463 * Not sure why someone would do this... 1464 */ 1465 if (cur_pattern->flags == PERIPH_MATCH_NONE) 1466 continue; 1467 1468 if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0) 1469 && (cur_pattern->path_id != periph->path->bus->path_id)) 1470 continue; 1471 1472 /* 1473 * For the target and lun id's, we have to make sure the 1474 * target and lun pointers aren't NULL. The xpt peripheral 1475 * has a wildcard target and device. 1476 */ 1477 if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0) 1478 && ((periph->path->target == NULL) 1479 ||(cur_pattern->target_id != periph->path->target->target_id))) 1480 continue; 1481 1482 if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0) 1483 && ((periph->path->device == NULL) 1484 || (cur_pattern->target_lun != periph->path->device->lun_id))) 1485 continue; 1486 1487 if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0) 1488 && (cur_pattern->unit_number != periph->unit_number)) 1489 continue; 1490 1491 if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0) 1492 && (strncmp(cur_pattern->periph_name, periph->periph_name, 1493 DEV_IDLEN) != 0)) 1494 continue; 1495 1496 /* 1497 * If we get to this point, the user definitely wants 1498 * information on this peripheral. So tell the caller to 1499 * copy the data out. 1500 */ 1501 retval |= DM_RET_COPY; 1502 1503 /* 1504 * The return action has already been set to stop, since 1505 * peripherals don't have any nodes below them in the EDT. 1506 */ 1507 return(retval); 1508 } 1509 1510 /* 1511 * If we get to this point, the peripheral that was passed in 1512 * doesn't match any of the patterns. 1513 */ 1514 return(retval); 1515 } 1516 1517 static int 1518 xptedtbusfunc(struct cam_eb *bus, void *arg) 1519 { 1520 struct ccb_dev_match *cdm; 1521 struct cam_et *target; 1522 dev_match_ret retval; 1523 1524 cdm = (struct ccb_dev_match *)arg; 1525 1526 /* 1527 * If our position is for something deeper in the tree, that means 1528 * that we've already seen this node. So, we keep going down. 1529 */ 1530 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1531 && (cdm->pos.cookie.bus == bus) 1532 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1533 && (cdm->pos.cookie.target != NULL)) 1534 retval = DM_RET_DESCEND; 1535 else 1536 retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus); 1537 1538 /* 1539 * If we got an error, bail out of the search. 1540 */ 1541 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1542 cdm->status = CAM_DEV_MATCH_ERROR; 1543 return(0); 1544 } 1545 1546 /* 1547 * If the copy flag is set, copy this bus out. 1548 */ 1549 if (retval & DM_RET_COPY) { 1550 int spaceleft, j; 1551 1552 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1553 sizeof(struct dev_match_result)); 1554 1555 /* 1556 * If we don't have enough space to put in another 1557 * match result, save our position and tell the 1558 * user there are more devices to check. 1559 */ 1560 if (spaceleft < sizeof(struct dev_match_result)) { 1561 bzero(&cdm->pos, sizeof(cdm->pos)); 1562 cdm->pos.position_type = 1563 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS; 1564 1565 cdm->pos.cookie.bus = bus; 1566 cdm->pos.generations[CAM_BUS_GENERATION]= 1567 xsoftc.bus_generation; 1568 cdm->status = CAM_DEV_MATCH_MORE; 1569 return(0); 1570 } 1571 j = cdm->num_matches; 1572 cdm->num_matches++; 1573 cdm->matches[j].type = DEV_MATCH_BUS; 1574 cdm->matches[j].result.bus_result.path_id = bus->path_id; 1575 cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id; 1576 cdm->matches[j].result.bus_result.unit_number = 1577 bus->sim->unit_number; 1578 strncpy(cdm->matches[j].result.bus_result.dev_name, 1579 bus->sim->sim_name, DEV_IDLEN); 1580 } 1581 1582 /* 1583 * If the user is only interested in busses, there's no 1584 * reason to descend to the next level in the tree. 1585 */ 1586 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1587 return(1); 1588 1589 /* 1590 * If there is a target generation recorded, check it to 1591 * make sure the target list hasn't changed. 1592 */ 1593 mtx_lock(&bus->eb_mtx); 1594 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1595 && (cdm->pos.cookie.bus == bus) 1596 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1597 && (cdm->pos.cookie.target != NULL)) { 1598 if ((cdm->pos.generations[CAM_TARGET_GENERATION] != 1599 bus->generation)) { 1600 mtx_unlock(&bus->eb_mtx); 1601 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1602 return (0); 1603 } 1604 target = (struct cam_et *)cdm->pos.cookie.target; 1605 target->refcount++; 1606 } else 1607 target = NULL; 1608 mtx_unlock(&bus->eb_mtx); 1609 1610 return (xpttargettraverse(bus, target, xptedttargetfunc, arg)); 1611 } 1612 1613 static int 1614 xptedttargetfunc(struct cam_et *target, void *arg) 1615 { 1616 struct ccb_dev_match *cdm; 1617 struct cam_eb *bus; 1618 struct cam_ed *device; 1619 1620 cdm = (struct ccb_dev_match *)arg; 1621 bus = target->bus; 1622 1623 /* 1624 * If there is a device list generation recorded, check it to 1625 * make sure the device list hasn't changed. 1626 */ 1627 mtx_lock(&bus->eb_mtx); 1628 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1629 && (cdm->pos.cookie.bus == bus) 1630 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1631 && (cdm->pos.cookie.target == target) 1632 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1633 && (cdm->pos.cookie.device != NULL)) { 1634 if (cdm->pos.generations[CAM_DEV_GENERATION] != 1635 target->generation) { 1636 mtx_unlock(&bus->eb_mtx); 1637 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1638 return(0); 1639 } 1640 device = (struct cam_ed *)cdm->pos.cookie.device; 1641 device->refcount++; 1642 } else 1643 device = NULL; 1644 mtx_unlock(&bus->eb_mtx); 1645 1646 return (xptdevicetraverse(target, device, xptedtdevicefunc, arg)); 1647 } 1648 1649 static int 1650 xptedtdevicefunc(struct cam_ed *device, void *arg) 1651 { 1652 struct cam_eb *bus; 1653 struct cam_periph *periph; 1654 struct ccb_dev_match *cdm; 1655 dev_match_ret retval; 1656 1657 cdm = (struct ccb_dev_match *)arg; 1658 bus = device->target->bus; 1659 1660 /* 1661 * If our position is for something deeper in the tree, that means 1662 * that we've already seen this node. So, we keep going down. 1663 */ 1664 if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1665 && (cdm->pos.cookie.device == device) 1666 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1667 && (cdm->pos.cookie.periph != NULL)) 1668 retval = DM_RET_DESCEND; 1669 else 1670 retval = xptdevicematch(cdm->patterns, cdm->num_patterns, 1671 device); 1672 1673 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1674 cdm->status = CAM_DEV_MATCH_ERROR; 1675 return(0); 1676 } 1677 1678 /* 1679 * If the copy flag is set, copy this device out. 1680 */ 1681 if (retval & DM_RET_COPY) { 1682 int spaceleft, j; 1683 1684 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1685 sizeof(struct dev_match_result)); 1686 1687 /* 1688 * If we don't have enough space to put in another 1689 * match result, save our position and tell the 1690 * user there are more devices to check. 1691 */ 1692 if (spaceleft < sizeof(struct dev_match_result)) { 1693 bzero(&cdm->pos, sizeof(cdm->pos)); 1694 cdm->pos.position_type = 1695 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1696 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE; 1697 1698 cdm->pos.cookie.bus = device->target->bus; 1699 cdm->pos.generations[CAM_BUS_GENERATION]= 1700 xsoftc.bus_generation; 1701 cdm->pos.cookie.target = device->target; 1702 cdm->pos.generations[CAM_TARGET_GENERATION] = 1703 device->target->bus->generation; 1704 cdm->pos.cookie.device = device; 1705 cdm->pos.generations[CAM_DEV_GENERATION] = 1706 device->target->generation; 1707 cdm->status = CAM_DEV_MATCH_MORE; 1708 return(0); 1709 } 1710 j = cdm->num_matches; 1711 cdm->num_matches++; 1712 cdm->matches[j].type = DEV_MATCH_DEVICE; 1713 cdm->matches[j].result.device_result.path_id = 1714 device->target->bus->path_id; 1715 cdm->matches[j].result.device_result.target_id = 1716 device->target->target_id; 1717 cdm->matches[j].result.device_result.target_lun = 1718 device->lun_id; 1719 cdm->matches[j].result.device_result.protocol = 1720 device->protocol; 1721 bcopy(&device->inq_data, 1722 &cdm->matches[j].result.device_result.inq_data, 1723 sizeof(struct scsi_inquiry_data)); 1724 bcopy(&device->ident_data, 1725 &cdm->matches[j].result.device_result.ident_data, 1726 sizeof(struct ata_params)); 1727 1728 /* Let the user know whether this device is unconfigured */ 1729 if (device->flags & CAM_DEV_UNCONFIGURED) 1730 cdm->matches[j].result.device_result.flags = 1731 DEV_RESULT_UNCONFIGURED; 1732 else 1733 cdm->matches[j].result.device_result.flags = 1734 DEV_RESULT_NOFLAG; 1735 } 1736 1737 /* 1738 * If the user isn't interested in peripherals, don't descend 1739 * the tree any further. 1740 */ 1741 if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP) 1742 return(1); 1743 1744 /* 1745 * If there is a peripheral list generation recorded, make sure 1746 * it hasn't changed. 1747 */ 1748 xpt_lock_buses(); 1749 mtx_lock(&bus->eb_mtx); 1750 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1751 && (cdm->pos.cookie.bus == bus) 1752 && (cdm->pos.position_type & CAM_DEV_POS_TARGET) 1753 && (cdm->pos.cookie.target == device->target) 1754 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE) 1755 && (cdm->pos.cookie.device == device) 1756 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1757 && (cdm->pos.cookie.periph != NULL)) { 1758 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1759 device->generation) { 1760 mtx_unlock(&bus->eb_mtx); 1761 xpt_unlock_buses(); 1762 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1763 return(0); 1764 } 1765 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1766 periph->refcount++; 1767 } else 1768 periph = NULL; 1769 mtx_unlock(&bus->eb_mtx); 1770 xpt_unlock_buses(); 1771 1772 return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg)); 1773 } 1774 1775 static int 1776 xptedtperiphfunc(struct cam_periph *periph, void *arg) 1777 { 1778 struct ccb_dev_match *cdm; 1779 dev_match_ret retval; 1780 1781 cdm = (struct ccb_dev_match *)arg; 1782 1783 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1784 1785 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1786 cdm->status = CAM_DEV_MATCH_ERROR; 1787 return(0); 1788 } 1789 1790 /* 1791 * If the copy flag is set, copy this peripheral out. 1792 */ 1793 if (retval & DM_RET_COPY) { 1794 int spaceleft, j; 1795 1796 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1797 sizeof(struct dev_match_result)); 1798 1799 /* 1800 * If we don't have enough space to put in another 1801 * match result, save our position and tell the 1802 * user there are more devices to check. 1803 */ 1804 if (spaceleft < sizeof(struct dev_match_result)) { 1805 bzero(&cdm->pos, sizeof(cdm->pos)); 1806 cdm->pos.position_type = 1807 CAM_DEV_POS_EDT | CAM_DEV_POS_BUS | 1808 CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE | 1809 CAM_DEV_POS_PERIPH; 1810 1811 cdm->pos.cookie.bus = periph->path->bus; 1812 cdm->pos.generations[CAM_BUS_GENERATION]= 1813 xsoftc.bus_generation; 1814 cdm->pos.cookie.target = periph->path->target; 1815 cdm->pos.generations[CAM_TARGET_GENERATION] = 1816 periph->path->bus->generation; 1817 cdm->pos.cookie.device = periph->path->device; 1818 cdm->pos.generations[CAM_DEV_GENERATION] = 1819 periph->path->target->generation; 1820 cdm->pos.cookie.periph = periph; 1821 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1822 periph->path->device->generation; 1823 cdm->status = CAM_DEV_MATCH_MORE; 1824 return(0); 1825 } 1826 1827 j = cdm->num_matches; 1828 cdm->num_matches++; 1829 cdm->matches[j].type = DEV_MATCH_PERIPH; 1830 cdm->matches[j].result.periph_result.path_id = 1831 periph->path->bus->path_id; 1832 cdm->matches[j].result.periph_result.target_id = 1833 periph->path->target->target_id; 1834 cdm->matches[j].result.periph_result.target_lun = 1835 periph->path->device->lun_id; 1836 cdm->matches[j].result.periph_result.unit_number = 1837 periph->unit_number; 1838 strncpy(cdm->matches[j].result.periph_result.periph_name, 1839 periph->periph_name, DEV_IDLEN); 1840 } 1841 1842 return(1); 1843 } 1844 1845 static int 1846 xptedtmatch(struct ccb_dev_match *cdm) 1847 { 1848 struct cam_eb *bus; 1849 int ret; 1850 1851 cdm->num_matches = 0; 1852 1853 /* 1854 * Check the bus list generation. If it has changed, the user 1855 * needs to reset everything and start over. 1856 */ 1857 xpt_lock_buses(); 1858 if ((cdm->pos.position_type & CAM_DEV_POS_BUS) 1859 && (cdm->pos.cookie.bus != NULL)) { 1860 if (cdm->pos.generations[CAM_BUS_GENERATION] != 1861 xsoftc.bus_generation) { 1862 xpt_unlock_buses(); 1863 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1864 return(0); 1865 } 1866 bus = (struct cam_eb *)cdm->pos.cookie.bus; 1867 bus->refcount++; 1868 } else 1869 bus = NULL; 1870 xpt_unlock_buses(); 1871 1872 ret = xptbustraverse(bus, xptedtbusfunc, cdm); 1873 1874 /* 1875 * If we get back 0, that means that we had to stop before fully 1876 * traversing the EDT. It also means that one of the subroutines 1877 * has set the status field to the proper value. If we get back 1, 1878 * we've fully traversed the EDT and copied out any matching entries. 1879 */ 1880 if (ret == 1) 1881 cdm->status = CAM_DEV_MATCH_LAST; 1882 1883 return(ret); 1884 } 1885 1886 static int 1887 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg) 1888 { 1889 struct cam_periph *periph; 1890 struct ccb_dev_match *cdm; 1891 1892 cdm = (struct ccb_dev_match *)arg; 1893 1894 xpt_lock_buses(); 1895 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 1896 && (cdm->pos.cookie.pdrv == pdrv) 1897 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH) 1898 && (cdm->pos.cookie.periph != NULL)) { 1899 if (cdm->pos.generations[CAM_PERIPH_GENERATION] != 1900 (*pdrv)->generation) { 1901 xpt_unlock_buses(); 1902 cdm->status = CAM_DEV_MATCH_LIST_CHANGED; 1903 return(0); 1904 } 1905 periph = (struct cam_periph *)cdm->pos.cookie.periph; 1906 periph->refcount++; 1907 } else 1908 periph = NULL; 1909 xpt_unlock_buses(); 1910 1911 return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg)); 1912 } 1913 1914 static int 1915 xptplistperiphfunc(struct cam_periph *periph, void *arg) 1916 { 1917 struct ccb_dev_match *cdm; 1918 dev_match_ret retval; 1919 1920 cdm = (struct ccb_dev_match *)arg; 1921 1922 retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph); 1923 1924 if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) { 1925 cdm->status = CAM_DEV_MATCH_ERROR; 1926 return(0); 1927 } 1928 1929 /* 1930 * If the copy flag is set, copy this peripheral out. 1931 */ 1932 if (retval & DM_RET_COPY) { 1933 int spaceleft, j; 1934 1935 spaceleft = cdm->match_buf_len - (cdm->num_matches * 1936 sizeof(struct dev_match_result)); 1937 1938 /* 1939 * If we don't have enough space to put in another 1940 * match result, save our position and tell the 1941 * user there are more devices to check. 1942 */ 1943 if (spaceleft < sizeof(struct dev_match_result)) { 1944 struct periph_driver **pdrv; 1945 1946 pdrv = NULL; 1947 bzero(&cdm->pos, sizeof(cdm->pos)); 1948 cdm->pos.position_type = 1949 CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR | 1950 CAM_DEV_POS_PERIPH; 1951 1952 /* 1953 * This may look a bit non-sensical, but it is 1954 * actually quite logical. There are very few 1955 * peripheral drivers, and bloating every peripheral 1956 * structure with a pointer back to its parent 1957 * peripheral driver linker set entry would cost 1958 * more in the long run than doing this quick lookup. 1959 */ 1960 for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) { 1961 if (strcmp((*pdrv)->driver_name, 1962 periph->periph_name) == 0) 1963 break; 1964 } 1965 1966 if (*pdrv == NULL) { 1967 cdm->status = CAM_DEV_MATCH_ERROR; 1968 return(0); 1969 } 1970 1971 cdm->pos.cookie.pdrv = pdrv; 1972 /* 1973 * The periph generation slot does double duty, as 1974 * does the periph pointer slot. They are used for 1975 * both edt and pdrv lookups and positioning. 1976 */ 1977 cdm->pos.cookie.periph = periph; 1978 cdm->pos.generations[CAM_PERIPH_GENERATION] = 1979 (*pdrv)->generation; 1980 cdm->status = CAM_DEV_MATCH_MORE; 1981 return(0); 1982 } 1983 1984 j = cdm->num_matches; 1985 cdm->num_matches++; 1986 cdm->matches[j].type = DEV_MATCH_PERIPH; 1987 cdm->matches[j].result.periph_result.path_id = 1988 periph->path->bus->path_id; 1989 1990 /* 1991 * The transport layer peripheral doesn't have a target or 1992 * lun. 1993 */ 1994 if (periph->path->target) 1995 cdm->matches[j].result.periph_result.target_id = 1996 periph->path->target->target_id; 1997 else 1998 cdm->matches[j].result.periph_result.target_id = 1999 CAM_TARGET_WILDCARD; 2000 2001 if (periph->path->device) 2002 cdm->matches[j].result.periph_result.target_lun = 2003 periph->path->device->lun_id; 2004 else 2005 cdm->matches[j].result.periph_result.target_lun = 2006 CAM_LUN_WILDCARD; 2007 2008 cdm->matches[j].result.periph_result.unit_number = 2009 periph->unit_number; 2010 strncpy(cdm->matches[j].result.periph_result.periph_name, 2011 periph->periph_name, DEV_IDLEN); 2012 } 2013 2014 return(1); 2015 } 2016 2017 static int 2018 xptperiphlistmatch(struct ccb_dev_match *cdm) 2019 { 2020 int ret; 2021 2022 cdm->num_matches = 0; 2023 2024 /* 2025 * At this point in the edt traversal function, we check the bus 2026 * list generation to make sure that no busses have been added or 2027 * removed since the user last sent a XPT_DEV_MATCH ccb through. 2028 * For the peripheral driver list traversal function, however, we 2029 * don't have to worry about new peripheral driver types coming or 2030 * going; they're in a linker set, and therefore can't change 2031 * without a recompile. 2032 */ 2033 2034 if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR) 2035 && (cdm->pos.cookie.pdrv != NULL)) 2036 ret = xptpdrvtraverse( 2037 (struct periph_driver **)cdm->pos.cookie.pdrv, 2038 xptplistpdrvfunc, cdm); 2039 else 2040 ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm); 2041 2042 /* 2043 * If we get back 0, that means that we had to stop before fully 2044 * traversing the peripheral driver tree. It also means that one of 2045 * the subroutines has set the status field to the proper value. If 2046 * we get back 1, we've fully traversed the EDT and copied out any 2047 * matching entries. 2048 */ 2049 if (ret == 1) 2050 cdm->status = CAM_DEV_MATCH_LAST; 2051 2052 return(ret); 2053 } 2054 2055 static int 2056 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg) 2057 { 2058 struct cam_eb *bus, *next_bus; 2059 int retval; 2060 2061 retval = 1; 2062 if (start_bus) 2063 bus = start_bus; 2064 else { 2065 xpt_lock_buses(); 2066 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 2067 if (bus == NULL) { 2068 xpt_unlock_buses(); 2069 return (retval); 2070 } 2071 bus->refcount++; 2072 xpt_unlock_buses(); 2073 } 2074 for (; bus != NULL; bus = next_bus) { 2075 retval = tr_func(bus, arg); 2076 if (retval == 0) { 2077 xpt_release_bus(bus); 2078 break; 2079 } 2080 xpt_lock_buses(); 2081 next_bus = TAILQ_NEXT(bus, links); 2082 if (next_bus) 2083 next_bus->refcount++; 2084 xpt_unlock_buses(); 2085 xpt_release_bus(bus); 2086 } 2087 return(retval); 2088 } 2089 2090 static int 2091 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target, 2092 xpt_targetfunc_t *tr_func, void *arg) 2093 { 2094 struct cam_et *target, *next_target; 2095 int retval; 2096 2097 retval = 1; 2098 if (start_target) 2099 target = start_target; 2100 else { 2101 mtx_lock(&bus->eb_mtx); 2102 target = TAILQ_FIRST(&bus->et_entries); 2103 if (target == NULL) { 2104 mtx_unlock(&bus->eb_mtx); 2105 return (retval); 2106 } 2107 target->refcount++; 2108 mtx_unlock(&bus->eb_mtx); 2109 } 2110 for (; target != NULL; target = next_target) { 2111 retval = tr_func(target, arg); 2112 if (retval == 0) { 2113 xpt_release_target(target); 2114 break; 2115 } 2116 mtx_lock(&bus->eb_mtx); 2117 next_target = TAILQ_NEXT(target, links); 2118 if (next_target) 2119 next_target->refcount++; 2120 mtx_unlock(&bus->eb_mtx); 2121 xpt_release_target(target); 2122 } 2123 return(retval); 2124 } 2125 2126 static int 2127 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device, 2128 xpt_devicefunc_t *tr_func, void *arg) 2129 { 2130 struct cam_eb *bus; 2131 struct cam_ed *device, *next_device; 2132 int retval; 2133 2134 retval = 1; 2135 bus = target->bus; 2136 if (start_device) 2137 device = start_device; 2138 else { 2139 mtx_lock(&bus->eb_mtx); 2140 device = TAILQ_FIRST(&target->ed_entries); 2141 if (device == NULL) { 2142 mtx_unlock(&bus->eb_mtx); 2143 return (retval); 2144 } 2145 device->refcount++; 2146 mtx_unlock(&bus->eb_mtx); 2147 } 2148 for (; device != NULL; device = next_device) { 2149 mtx_lock(&device->device_mtx); 2150 retval = tr_func(device, arg); 2151 mtx_unlock(&device->device_mtx); 2152 if (retval == 0) { 2153 xpt_release_device(device); 2154 break; 2155 } 2156 mtx_lock(&bus->eb_mtx); 2157 next_device = TAILQ_NEXT(device, links); 2158 if (next_device) 2159 next_device->refcount++; 2160 mtx_unlock(&bus->eb_mtx); 2161 xpt_release_device(device); 2162 } 2163 return(retval); 2164 } 2165 2166 static int 2167 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph, 2168 xpt_periphfunc_t *tr_func, void *arg) 2169 { 2170 struct cam_eb *bus; 2171 struct cam_periph *periph, *next_periph; 2172 int retval; 2173 2174 retval = 1; 2175 2176 bus = device->target->bus; 2177 if (start_periph) 2178 periph = start_periph; 2179 else { 2180 xpt_lock_buses(); 2181 mtx_lock(&bus->eb_mtx); 2182 periph = SLIST_FIRST(&device->periphs); 2183 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2184 periph = SLIST_NEXT(periph, periph_links); 2185 if (periph == NULL) { 2186 mtx_unlock(&bus->eb_mtx); 2187 xpt_unlock_buses(); 2188 return (retval); 2189 } 2190 periph->refcount++; 2191 mtx_unlock(&bus->eb_mtx); 2192 xpt_unlock_buses(); 2193 } 2194 for (; periph != NULL; periph = next_periph) { 2195 retval = tr_func(periph, arg); 2196 if (retval == 0) { 2197 cam_periph_release_locked(periph); 2198 break; 2199 } 2200 xpt_lock_buses(); 2201 mtx_lock(&bus->eb_mtx); 2202 next_periph = SLIST_NEXT(periph, periph_links); 2203 while (next_periph != NULL && 2204 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2205 next_periph = SLIST_NEXT(next_periph, periph_links); 2206 if (next_periph) 2207 next_periph->refcount++; 2208 mtx_unlock(&bus->eb_mtx); 2209 xpt_unlock_buses(); 2210 cam_periph_release_locked(periph); 2211 } 2212 return(retval); 2213 } 2214 2215 static int 2216 xptpdrvtraverse(struct periph_driver **start_pdrv, 2217 xpt_pdrvfunc_t *tr_func, void *arg) 2218 { 2219 struct periph_driver **pdrv; 2220 int retval; 2221 2222 retval = 1; 2223 2224 /* 2225 * We don't traverse the peripheral driver list like we do the 2226 * other lists, because it is a linker set, and therefore cannot be 2227 * changed during runtime. If the peripheral driver list is ever 2228 * re-done to be something other than a linker set (i.e. it can 2229 * change while the system is running), the list traversal should 2230 * be modified to work like the other traversal functions. 2231 */ 2232 for (pdrv = (start_pdrv ? start_pdrv : periph_drivers); 2233 *pdrv != NULL; pdrv++) { 2234 retval = tr_func(pdrv, arg); 2235 2236 if (retval == 0) 2237 return(retval); 2238 } 2239 2240 return(retval); 2241 } 2242 2243 static int 2244 xptpdperiphtraverse(struct periph_driver **pdrv, 2245 struct cam_periph *start_periph, 2246 xpt_periphfunc_t *tr_func, void *arg) 2247 { 2248 struct cam_periph *periph, *next_periph; 2249 int retval; 2250 2251 retval = 1; 2252 2253 if (start_periph) 2254 periph = start_periph; 2255 else { 2256 xpt_lock_buses(); 2257 periph = TAILQ_FIRST(&(*pdrv)->units); 2258 while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0) 2259 periph = TAILQ_NEXT(periph, unit_links); 2260 if (periph == NULL) { 2261 xpt_unlock_buses(); 2262 return (retval); 2263 } 2264 periph->refcount++; 2265 xpt_unlock_buses(); 2266 } 2267 for (; periph != NULL; periph = next_periph) { 2268 cam_periph_lock(periph); 2269 retval = tr_func(periph, arg); 2270 cam_periph_unlock(periph); 2271 if (retval == 0) { 2272 cam_periph_release(periph); 2273 break; 2274 } 2275 xpt_lock_buses(); 2276 next_periph = TAILQ_NEXT(periph, unit_links); 2277 while (next_periph != NULL && 2278 (next_periph->flags & CAM_PERIPH_FREE) != 0) 2279 next_periph = TAILQ_NEXT(next_periph, unit_links); 2280 if (next_periph) 2281 next_periph->refcount++; 2282 xpt_unlock_buses(); 2283 cam_periph_release(periph); 2284 } 2285 return(retval); 2286 } 2287 2288 static int 2289 xptdefbusfunc(struct cam_eb *bus, void *arg) 2290 { 2291 struct xpt_traverse_config *tr_config; 2292 2293 tr_config = (struct xpt_traverse_config *)arg; 2294 2295 if (tr_config->depth == XPT_DEPTH_BUS) { 2296 xpt_busfunc_t *tr_func; 2297 2298 tr_func = (xpt_busfunc_t *)tr_config->tr_func; 2299 2300 return(tr_func(bus, tr_config->tr_arg)); 2301 } else 2302 return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg)); 2303 } 2304 2305 static int 2306 xptdeftargetfunc(struct cam_et *target, void *arg) 2307 { 2308 struct xpt_traverse_config *tr_config; 2309 2310 tr_config = (struct xpt_traverse_config *)arg; 2311 2312 if (tr_config->depth == XPT_DEPTH_TARGET) { 2313 xpt_targetfunc_t *tr_func; 2314 2315 tr_func = (xpt_targetfunc_t *)tr_config->tr_func; 2316 2317 return(tr_func(target, tr_config->tr_arg)); 2318 } else 2319 return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg)); 2320 } 2321 2322 static int 2323 xptdefdevicefunc(struct cam_ed *device, void *arg) 2324 { 2325 struct xpt_traverse_config *tr_config; 2326 2327 tr_config = (struct xpt_traverse_config *)arg; 2328 2329 if (tr_config->depth == XPT_DEPTH_DEVICE) { 2330 xpt_devicefunc_t *tr_func; 2331 2332 tr_func = (xpt_devicefunc_t *)tr_config->tr_func; 2333 2334 return(tr_func(device, tr_config->tr_arg)); 2335 } else 2336 return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg)); 2337 } 2338 2339 static int 2340 xptdefperiphfunc(struct cam_periph *periph, void *arg) 2341 { 2342 struct xpt_traverse_config *tr_config; 2343 xpt_periphfunc_t *tr_func; 2344 2345 tr_config = (struct xpt_traverse_config *)arg; 2346 2347 tr_func = (xpt_periphfunc_t *)tr_config->tr_func; 2348 2349 /* 2350 * Unlike the other default functions, we don't check for depth 2351 * here. The peripheral driver level is the last level in the EDT, 2352 * so if we're here, we should execute the function in question. 2353 */ 2354 return(tr_func(periph, tr_config->tr_arg)); 2355 } 2356 2357 /* 2358 * Execute the given function for every bus in the EDT. 2359 */ 2360 static int 2361 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg) 2362 { 2363 struct xpt_traverse_config tr_config; 2364 2365 tr_config.depth = XPT_DEPTH_BUS; 2366 tr_config.tr_func = tr_func; 2367 tr_config.tr_arg = arg; 2368 2369 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2370 } 2371 2372 /* 2373 * Execute the given function for every device in the EDT. 2374 */ 2375 static int 2376 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg) 2377 { 2378 struct xpt_traverse_config tr_config; 2379 2380 tr_config.depth = XPT_DEPTH_DEVICE; 2381 tr_config.tr_func = tr_func; 2382 tr_config.tr_arg = arg; 2383 2384 return(xptbustraverse(NULL, xptdefbusfunc, &tr_config)); 2385 } 2386 2387 static int 2388 xptsetasyncfunc(struct cam_ed *device, void *arg) 2389 { 2390 struct cam_path path; 2391 struct ccb_getdev cgd; 2392 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2393 2394 /* 2395 * Don't report unconfigured devices (Wildcard devs, 2396 * devices only for target mode, device instances 2397 * that have been invalidated but are waiting for 2398 * their last reference count to be released). 2399 */ 2400 if ((device->flags & CAM_DEV_UNCONFIGURED) != 0) 2401 return (1); 2402 2403 xpt_compile_path(&path, 2404 NULL, 2405 device->target->bus->path_id, 2406 device->target->target_id, 2407 device->lun_id); 2408 xpt_setup_ccb(&cgd.ccb_h, &path, CAM_PRIORITY_NORMAL); 2409 cgd.ccb_h.func_code = XPT_GDEV_TYPE; 2410 xpt_action((union ccb *)&cgd); 2411 csa->callback(csa->callback_arg, 2412 AC_FOUND_DEVICE, 2413 &path, &cgd); 2414 xpt_release_path(&path); 2415 2416 return(1); 2417 } 2418 2419 static int 2420 xptsetasyncbusfunc(struct cam_eb *bus, void *arg) 2421 { 2422 struct cam_path path; 2423 struct ccb_pathinq cpi; 2424 struct ccb_setasync *csa = (struct ccb_setasync *)arg; 2425 2426 xpt_compile_path(&path, /*periph*/NULL, 2427 bus->path_id, 2428 CAM_TARGET_WILDCARD, 2429 CAM_LUN_WILDCARD); 2430 xpt_path_lock(&path); 2431 xpt_setup_ccb(&cpi.ccb_h, &path, CAM_PRIORITY_NORMAL); 2432 cpi.ccb_h.func_code = XPT_PATH_INQ; 2433 xpt_action((union ccb *)&cpi); 2434 csa->callback(csa->callback_arg, 2435 AC_PATH_REGISTERED, 2436 &path, &cpi); 2437 xpt_path_unlock(&path); 2438 xpt_release_path(&path); 2439 2440 return(1); 2441 } 2442 2443 void 2444 xpt_action(union ccb *start_ccb) 2445 { 2446 2447 CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_action\n")); 2448 2449 start_ccb->ccb_h.status = CAM_REQ_INPROG; 2450 (*(start_ccb->ccb_h.path->bus->xport->action))(start_ccb); 2451 } 2452 2453 void 2454 xpt_action_default(union ccb *start_ccb) 2455 { 2456 struct cam_path *path; 2457 struct cam_sim *sim; 2458 int lock; 2459 2460 path = start_ccb->ccb_h.path; 2461 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_action_default\n")); 2462 2463 switch (start_ccb->ccb_h.func_code) { 2464 case XPT_SCSI_IO: 2465 { 2466 struct cam_ed *device; 2467 2468 /* 2469 * For the sake of compatibility with SCSI-1 2470 * devices that may not understand the identify 2471 * message, we include lun information in the 2472 * second byte of all commands. SCSI-1 specifies 2473 * that luns are a 3 bit value and reserves only 3 2474 * bits for lun information in the CDB. Later 2475 * revisions of the SCSI spec allow for more than 8 2476 * luns, but have deprecated lun information in the 2477 * CDB. So, if the lun won't fit, we must omit. 2478 * 2479 * Also be aware that during initial probing for devices, 2480 * the inquiry information is unknown but initialized to 0. 2481 * This means that this code will be exercised while probing 2482 * devices with an ANSI revision greater than 2. 2483 */ 2484 device = path->device; 2485 if (device->protocol_version <= SCSI_REV_2 2486 && start_ccb->ccb_h.target_lun < 8 2487 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) { 2488 2489 start_ccb->csio.cdb_io.cdb_bytes[1] |= 2490 start_ccb->ccb_h.target_lun << 5; 2491 } 2492 start_ccb->csio.scsi_status = SCSI_STATUS_OK; 2493 } 2494 /* FALLTHROUGH */ 2495 case XPT_TARGET_IO: 2496 case XPT_CONT_TARGET_IO: 2497 start_ccb->csio.sense_resid = 0; 2498 start_ccb->csio.resid = 0; 2499 /* FALLTHROUGH */ 2500 case XPT_ATA_IO: 2501 if (start_ccb->ccb_h.func_code == XPT_ATA_IO) 2502 start_ccb->ataio.resid = 0; 2503 /* FALLTHROUGH */ 2504 case XPT_RESET_DEV: 2505 case XPT_ENG_EXEC: 2506 case XPT_SMP_IO: 2507 { 2508 struct cam_devq *devq; 2509 2510 devq = path->bus->sim->devq; 2511 mtx_lock(&devq->send_mtx); 2512 cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb); 2513 if (xpt_schedule_devq(devq, path->device) != 0) 2514 xpt_run_devq(devq); 2515 mtx_unlock(&devq->send_mtx); 2516 break; 2517 } 2518 case XPT_CALC_GEOMETRY: 2519 /* Filter out garbage */ 2520 if (start_ccb->ccg.block_size == 0 2521 || start_ccb->ccg.volume_size == 0) { 2522 start_ccb->ccg.cylinders = 0; 2523 start_ccb->ccg.heads = 0; 2524 start_ccb->ccg.secs_per_track = 0; 2525 start_ccb->ccb_h.status = CAM_REQ_CMP; 2526 break; 2527 } 2528 #if defined(PC98) || defined(__sparc64__) 2529 /* 2530 * In a PC-98 system, geometry translation depens on 2531 * the "real" device geometry obtained from mode page 4. 2532 * SCSI geometry translation is performed in the 2533 * initialization routine of the SCSI BIOS and the result 2534 * stored in host memory. If the translation is available 2535 * in host memory, use it. If not, rely on the default 2536 * translation the device driver performs. 2537 * For sparc64, we may need adjust the geometry of large 2538 * disks in order to fit the limitations of the 16-bit 2539 * fields of the VTOC8 disk label. 2540 */ 2541 if (scsi_da_bios_params(&start_ccb->ccg) != 0) { 2542 start_ccb->ccb_h.status = CAM_REQ_CMP; 2543 break; 2544 } 2545 #endif 2546 goto call_sim; 2547 case XPT_ABORT: 2548 { 2549 union ccb* abort_ccb; 2550 2551 abort_ccb = start_ccb->cab.abort_ccb; 2552 if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) { 2553 2554 if (abort_ccb->ccb_h.pinfo.index >= 0) { 2555 struct cam_ccbq *ccbq; 2556 struct cam_ed *device; 2557 2558 device = abort_ccb->ccb_h.path->device; 2559 ccbq = &device->ccbq; 2560 cam_ccbq_remove_ccb(ccbq, abort_ccb); 2561 abort_ccb->ccb_h.status = 2562 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2563 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2564 xpt_done(abort_ccb); 2565 start_ccb->ccb_h.status = CAM_REQ_CMP; 2566 break; 2567 } 2568 if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX 2569 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) { 2570 /* 2571 * We've caught this ccb en route to 2572 * the SIM. Flag it for abort and the 2573 * SIM will do so just before starting 2574 * real work on the CCB. 2575 */ 2576 abort_ccb->ccb_h.status = 2577 CAM_REQ_ABORTED|CAM_DEV_QFRZN; 2578 xpt_freeze_devq(abort_ccb->ccb_h.path, 1); 2579 start_ccb->ccb_h.status = CAM_REQ_CMP; 2580 break; 2581 } 2582 } 2583 if (XPT_FC_IS_QUEUED(abort_ccb) 2584 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) { 2585 /* 2586 * It's already completed but waiting 2587 * for our SWI to get to it. 2588 */ 2589 start_ccb->ccb_h.status = CAM_UA_ABORT; 2590 break; 2591 } 2592 /* 2593 * If we weren't able to take care of the abort request 2594 * in the XPT, pass the request down to the SIM for processing. 2595 */ 2596 } 2597 /* FALLTHROUGH */ 2598 case XPT_ACCEPT_TARGET_IO: 2599 case XPT_EN_LUN: 2600 case XPT_IMMED_NOTIFY: 2601 case XPT_NOTIFY_ACK: 2602 case XPT_RESET_BUS: 2603 case XPT_IMMEDIATE_NOTIFY: 2604 case XPT_NOTIFY_ACKNOWLEDGE: 2605 case XPT_GET_SIM_KNOB: 2606 case XPT_SET_SIM_KNOB: 2607 case XPT_GET_TRAN_SETTINGS: 2608 case XPT_SET_TRAN_SETTINGS: 2609 case XPT_PATH_INQ: 2610 call_sim: 2611 sim = path->bus->sim; 2612 lock = (mtx_owned(sim->mtx) == 0); 2613 if (lock) 2614 CAM_SIM_LOCK(sim); 2615 (*(sim->sim_action))(sim, start_ccb); 2616 if (lock) 2617 CAM_SIM_UNLOCK(sim); 2618 break; 2619 case XPT_PATH_STATS: 2620 start_ccb->cpis.last_reset = path->bus->last_reset; 2621 start_ccb->ccb_h.status = CAM_REQ_CMP; 2622 break; 2623 case XPT_GDEV_TYPE: 2624 { 2625 struct cam_ed *dev; 2626 2627 dev = path->device; 2628 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2629 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2630 } else { 2631 struct ccb_getdev *cgd; 2632 2633 cgd = &start_ccb->cgd; 2634 cgd->protocol = dev->protocol; 2635 cgd->inq_data = dev->inq_data; 2636 cgd->ident_data = dev->ident_data; 2637 cgd->inq_flags = dev->inq_flags; 2638 cgd->ccb_h.status = CAM_REQ_CMP; 2639 cgd->serial_num_len = dev->serial_num_len; 2640 if ((dev->serial_num_len > 0) 2641 && (dev->serial_num != NULL)) 2642 bcopy(dev->serial_num, cgd->serial_num, 2643 dev->serial_num_len); 2644 } 2645 break; 2646 } 2647 case XPT_GDEV_STATS: 2648 { 2649 struct cam_ed *dev; 2650 2651 dev = path->device; 2652 if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) { 2653 start_ccb->ccb_h.status = CAM_DEV_NOT_THERE; 2654 } else { 2655 struct ccb_getdevstats *cgds; 2656 struct cam_eb *bus; 2657 struct cam_et *tar; 2658 struct cam_devq *devq; 2659 2660 cgds = &start_ccb->cgds; 2661 bus = path->bus; 2662 tar = path->target; 2663 devq = bus->sim->devq; 2664 mtx_lock(&devq->send_mtx); 2665 cgds->dev_openings = dev->ccbq.dev_openings; 2666 cgds->dev_active = dev->ccbq.dev_active; 2667 cgds->allocated = dev->ccbq.allocated; 2668 cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq); 2669 cgds->held = cgds->allocated - cgds->dev_active - 2670 cgds->queued; 2671 cgds->last_reset = tar->last_reset; 2672 cgds->maxtags = dev->maxtags; 2673 cgds->mintags = dev->mintags; 2674 if (timevalcmp(&tar->last_reset, &bus->last_reset, <)) 2675 cgds->last_reset = bus->last_reset; 2676 mtx_unlock(&devq->send_mtx); 2677 cgds->ccb_h.status = CAM_REQ_CMP; 2678 } 2679 break; 2680 } 2681 case XPT_GDEVLIST: 2682 { 2683 struct cam_periph *nperiph; 2684 struct periph_list *periph_head; 2685 struct ccb_getdevlist *cgdl; 2686 u_int i; 2687 struct cam_ed *device; 2688 int found; 2689 2690 2691 found = 0; 2692 2693 /* 2694 * Don't want anyone mucking with our data. 2695 */ 2696 device = path->device; 2697 periph_head = &device->periphs; 2698 cgdl = &start_ccb->cgdl; 2699 2700 /* 2701 * Check and see if the list has changed since the user 2702 * last requested a list member. If so, tell them that the 2703 * list has changed, and therefore they need to start over 2704 * from the beginning. 2705 */ 2706 if ((cgdl->index != 0) && 2707 (cgdl->generation != device->generation)) { 2708 cgdl->status = CAM_GDEVLIST_LIST_CHANGED; 2709 break; 2710 } 2711 2712 /* 2713 * Traverse the list of peripherals and attempt to find 2714 * the requested peripheral. 2715 */ 2716 for (nperiph = SLIST_FIRST(periph_head), i = 0; 2717 (nperiph != NULL) && (i <= cgdl->index); 2718 nperiph = SLIST_NEXT(nperiph, periph_links), i++) { 2719 if (i == cgdl->index) { 2720 strncpy(cgdl->periph_name, 2721 nperiph->periph_name, 2722 DEV_IDLEN); 2723 cgdl->unit_number = nperiph->unit_number; 2724 found = 1; 2725 } 2726 } 2727 if (found == 0) { 2728 cgdl->status = CAM_GDEVLIST_ERROR; 2729 break; 2730 } 2731 2732 if (nperiph == NULL) 2733 cgdl->status = CAM_GDEVLIST_LAST_DEVICE; 2734 else 2735 cgdl->status = CAM_GDEVLIST_MORE_DEVS; 2736 2737 cgdl->index++; 2738 cgdl->generation = device->generation; 2739 2740 cgdl->ccb_h.status = CAM_REQ_CMP; 2741 break; 2742 } 2743 case XPT_DEV_MATCH: 2744 { 2745 dev_pos_type position_type; 2746 struct ccb_dev_match *cdm; 2747 2748 cdm = &start_ccb->cdm; 2749 2750 /* 2751 * There are two ways of getting at information in the EDT. 2752 * The first way is via the primary EDT tree. It starts 2753 * with a list of busses, then a list of targets on a bus, 2754 * then devices/luns on a target, and then peripherals on a 2755 * device/lun. The "other" way is by the peripheral driver 2756 * lists. The peripheral driver lists are organized by 2757 * peripheral driver. (obviously) So it makes sense to 2758 * use the peripheral driver list if the user is looking 2759 * for something like "da1", or all "da" devices. If the 2760 * user is looking for something on a particular bus/target 2761 * or lun, it's generally better to go through the EDT tree. 2762 */ 2763 2764 if (cdm->pos.position_type != CAM_DEV_POS_NONE) 2765 position_type = cdm->pos.position_type; 2766 else { 2767 u_int i; 2768 2769 position_type = CAM_DEV_POS_NONE; 2770 2771 for (i = 0; i < cdm->num_patterns; i++) { 2772 if ((cdm->patterns[i].type == DEV_MATCH_BUS) 2773 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){ 2774 position_type = CAM_DEV_POS_EDT; 2775 break; 2776 } 2777 } 2778 2779 if (cdm->num_patterns == 0) 2780 position_type = CAM_DEV_POS_EDT; 2781 else if (position_type == CAM_DEV_POS_NONE) 2782 position_type = CAM_DEV_POS_PDRV; 2783 } 2784 2785 switch(position_type & CAM_DEV_POS_TYPEMASK) { 2786 case CAM_DEV_POS_EDT: 2787 xptedtmatch(cdm); 2788 break; 2789 case CAM_DEV_POS_PDRV: 2790 xptperiphlistmatch(cdm); 2791 break; 2792 default: 2793 cdm->status = CAM_DEV_MATCH_ERROR; 2794 break; 2795 } 2796 2797 if (cdm->status == CAM_DEV_MATCH_ERROR) 2798 start_ccb->ccb_h.status = CAM_REQ_CMP_ERR; 2799 else 2800 start_ccb->ccb_h.status = CAM_REQ_CMP; 2801 2802 break; 2803 } 2804 case XPT_SASYNC_CB: 2805 { 2806 struct ccb_setasync *csa; 2807 struct async_node *cur_entry; 2808 struct async_list *async_head; 2809 u_int32_t added; 2810 2811 csa = &start_ccb->csa; 2812 added = csa->event_enable; 2813 async_head = &path->device->asyncs; 2814 2815 /* 2816 * If there is already an entry for us, simply 2817 * update it. 2818 */ 2819 cur_entry = SLIST_FIRST(async_head); 2820 while (cur_entry != NULL) { 2821 if ((cur_entry->callback_arg == csa->callback_arg) 2822 && (cur_entry->callback == csa->callback)) 2823 break; 2824 cur_entry = SLIST_NEXT(cur_entry, links); 2825 } 2826 2827 if (cur_entry != NULL) { 2828 /* 2829 * If the request has no flags set, 2830 * remove the entry. 2831 */ 2832 added &= ~cur_entry->event_enable; 2833 if (csa->event_enable == 0) { 2834 SLIST_REMOVE(async_head, cur_entry, 2835 async_node, links); 2836 xpt_release_device(path->device); 2837 free(cur_entry, M_CAMXPT); 2838 } else { 2839 cur_entry->event_enable = csa->event_enable; 2840 } 2841 csa->event_enable = added; 2842 } else { 2843 cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT, 2844 M_NOWAIT); 2845 if (cur_entry == NULL) { 2846 csa->ccb_h.status = CAM_RESRC_UNAVAIL; 2847 break; 2848 } 2849 cur_entry->event_enable = csa->event_enable; 2850 cur_entry->event_lock = 2851 mtx_owned(path->bus->sim->mtx) ? 1 : 0; 2852 cur_entry->callback_arg = csa->callback_arg; 2853 cur_entry->callback = csa->callback; 2854 SLIST_INSERT_HEAD(async_head, cur_entry, links); 2855 xpt_acquire_device(path->device); 2856 } 2857 start_ccb->ccb_h.status = CAM_REQ_CMP; 2858 break; 2859 } 2860 case XPT_REL_SIMQ: 2861 { 2862 struct ccb_relsim *crs; 2863 struct cam_ed *dev; 2864 2865 crs = &start_ccb->crs; 2866 dev = path->device; 2867 if (dev == NULL) { 2868 2869 crs->ccb_h.status = CAM_DEV_NOT_THERE; 2870 break; 2871 } 2872 2873 if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) { 2874 2875 /* Don't ever go below one opening */ 2876 if (crs->openings > 0) { 2877 xpt_dev_ccbq_resize(path, crs->openings); 2878 if (bootverbose) { 2879 xpt_print(path, 2880 "number of openings is now %d\n", 2881 crs->openings); 2882 } 2883 } 2884 } 2885 2886 mtx_lock(&dev->sim->devq->send_mtx); 2887 if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) { 2888 2889 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 2890 2891 /* 2892 * Just extend the old timeout and decrement 2893 * the freeze count so that a single timeout 2894 * is sufficient for releasing the queue. 2895 */ 2896 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2897 callout_stop(&dev->callout); 2898 } else { 2899 2900 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2901 } 2902 2903 callout_reset_sbt(&dev->callout, 2904 SBT_1MS * crs->release_timeout, 0, 2905 xpt_release_devq_timeout, dev, 0); 2906 2907 dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING; 2908 2909 } 2910 2911 if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) { 2912 2913 if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) { 2914 /* 2915 * Decrement the freeze count so that a single 2916 * completion is still sufficient to unfreeze 2917 * the queue. 2918 */ 2919 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2920 } else { 2921 2922 dev->flags |= CAM_DEV_REL_ON_COMPLETE; 2923 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2924 } 2925 } 2926 2927 if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) { 2928 2929 if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 2930 || (dev->ccbq.dev_active == 0)) { 2931 2932 start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE; 2933 } else { 2934 2935 dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY; 2936 start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE; 2937 } 2938 } 2939 mtx_unlock(&dev->sim->devq->send_mtx); 2940 2941 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0) 2942 xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE); 2943 start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt; 2944 start_ccb->ccb_h.status = CAM_REQ_CMP; 2945 break; 2946 } 2947 case XPT_DEBUG: { 2948 struct cam_path *oldpath; 2949 2950 /* Check that all request bits are supported. */ 2951 if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) { 2952 start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL; 2953 break; 2954 } 2955 2956 cam_dflags = CAM_DEBUG_NONE; 2957 if (cam_dpath != NULL) { 2958 oldpath = cam_dpath; 2959 cam_dpath = NULL; 2960 xpt_free_path(oldpath); 2961 } 2962 if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) { 2963 if (xpt_create_path(&cam_dpath, NULL, 2964 start_ccb->ccb_h.path_id, 2965 start_ccb->ccb_h.target_id, 2966 start_ccb->ccb_h.target_lun) != 2967 CAM_REQ_CMP) { 2968 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 2969 } else { 2970 cam_dflags = start_ccb->cdbg.flags; 2971 start_ccb->ccb_h.status = CAM_REQ_CMP; 2972 xpt_print(cam_dpath, "debugging flags now %x\n", 2973 cam_dflags); 2974 } 2975 } else 2976 start_ccb->ccb_h.status = CAM_REQ_CMP; 2977 break; 2978 } 2979 case XPT_NOOP: 2980 if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) 2981 xpt_freeze_devq(path, 1); 2982 start_ccb->ccb_h.status = CAM_REQ_CMP; 2983 break; 2984 default: 2985 case XPT_SDEV_TYPE: 2986 case XPT_TERM_IO: 2987 case XPT_ENG_INQ: 2988 /* XXX Implement */ 2989 printf("%s: CCB type %#x not supported\n", __func__, 2990 start_ccb->ccb_h.func_code); 2991 start_ccb->ccb_h.status = CAM_PROVIDE_FAIL; 2992 if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) { 2993 xpt_done(start_ccb); 2994 } 2995 break; 2996 } 2997 } 2998 2999 void 3000 xpt_polled_action(union ccb *start_ccb) 3001 { 3002 u_int32_t timeout; 3003 struct cam_sim *sim; 3004 struct cam_devq *devq; 3005 struct cam_ed *dev; 3006 3007 timeout = start_ccb->ccb_h.timeout * 10; 3008 sim = start_ccb->ccb_h.path->bus->sim; 3009 devq = sim->devq; 3010 dev = start_ccb->ccb_h.path->device; 3011 3012 mtx_unlock(&dev->device_mtx); 3013 3014 /* 3015 * Steal an opening so that no other queued requests 3016 * can get it before us while we simulate interrupts. 3017 */ 3018 mtx_lock(&devq->send_mtx); 3019 dev->ccbq.dev_openings--; 3020 while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) && 3021 (--timeout > 0)) { 3022 mtx_unlock(&devq->send_mtx); 3023 DELAY(100); 3024 CAM_SIM_LOCK(sim); 3025 (*(sim->sim_poll))(sim); 3026 CAM_SIM_UNLOCK(sim); 3027 camisr_runqueue(); 3028 mtx_lock(&devq->send_mtx); 3029 } 3030 dev->ccbq.dev_openings++; 3031 mtx_unlock(&devq->send_mtx); 3032 3033 if (timeout != 0) { 3034 xpt_action(start_ccb); 3035 while(--timeout > 0) { 3036 CAM_SIM_LOCK(sim); 3037 (*(sim->sim_poll))(sim); 3038 CAM_SIM_UNLOCK(sim); 3039 camisr_runqueue(); 3040 if ((start_ccb->ccb_h.status & CAM_STATUS_MASK) 3041 != CAM_REQ_INPROG) 3042 break; 3043 DELAY(100); 3044 } 3045 if (timeout == 0) { 3046 /* 3047 * XXX Is it worth adding a sim_timeout entry 3048 * point so we can attempt recovery? If 3049 * this is only used for dumps, I don't think 3050 * it is. 3051 */ 3052 start_ccb->ccb_h.status = CAM_CMD_TIMEOUT; 3053 } 3054 } else { 3055 start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 3056 } 3057 3058 mtx_lock(&dev->device_mtx); 3059 } 3060 3061 /* 3062 * Schedule a peripheral driver to receive a ccb when its 3063 * target device has space for more transactions. 3064 */ 3065 void 3066 xpt_schedule(struct cam_periph *periph, u_int32_t new_priority) 3067 { 3068 3069 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n")); 3070 cam_periph_assert(periph, MA_OWNED); 3071 if (new_priority < periph->scheduled_priority) { 3072 periph->scheduled_priority = new_priority; 3073 xpt_run_allocq(periph, 0); 3074 } 3075 } 3076 3077 3078 /* 3079 * Schedule a device to run on a given queue. 3080 * If the device was inserted as a new entry on the queue, 3081 * return 1 meaning the device queue should be run. If we 3082 * were already queued, implying someone else has already 3083 * started the queue, return 0 so the caller doesn't attempt 3084 * to run the queue. 3085 */ 3086 static int 3087 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo, 3088 u_int32_t new_priority) 3089 { 3090 int retval; 3091 u_int32_t old_priority; 3092 3093 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n")); 3094 3095 old_priority = pinfo->priority; 3096 3097 /* 3098 * Are we already queued? 3099 */ 3100 if (pinfo->index != CAM_UNQUEUED_INDEX) { 3101 /* Simply reorder based on new priority */ 3102 if (new_priority < old_priority) { 3103 camq_change_priority(queue, pinfo->index, 3104 new_priority); 3105 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3106 ("changed priority to %d\n", 3107 new_priority)); 3108 retval = 1; 3109 } else 3110 retval = 0; 3111 } else { 3112 /* New entry on the queue */ 3113 if (new_priority < old_priority) 3114 pinfo->priority = new_priority; 3115 3116 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3117 ("Inserting onto queue\n")); 3118 pinfo->generation = ++queue->generation; 3119 camq_insert(queue, pinfo); 3120 retval = 1; 3121 } 3122 return (retval); 3123 } 3124 3125 static void 3126 xpt_run_allocq_task(void *context, int pending) 3127 { 3128 struct cam_periph *periph = context; 3129 3130 cam_periph_lock(periph); 3131 periph->flags &= ~CAM_PERIPH_RUN_TASK; 3132 xpt_run_allocq(periph, 1); 3133 cam_periph_unlock(periph); 3134 cam_periph_release(periph); 3135 } 3136 3137 static void 3138 xpt_run_allocq(struct cam_periph *periph, int sleep) 3139 { 3140 struct cam_ed *device; 3141 union ccb *ccb; 3142 uint32_t prio; 3143 3144 cam_periph_assert(periph, MA_OWNED); 3145 if (periph->periph_allocating) 3146 return; 3147 periph->periph_allocating = 1; 3148 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph)); 3149 device = periph->path->device; 3150 ccb = NULL; 3151 restart: 3152 while ((prio = min(periph->scheduled_priority, 3153 periph->immediate_priority)) != CAM_PRIORITY_NONE && 3154 (periph->periph_allocated - (ccb != NULL ? 1 : 0) < 3155 device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) { 3156 3157 if (ccb == NULL && 3158 (ccb = xpt_get_ccb_nowait(periph)) == NULL) { 3159 if (sleep) { 3160 ccb = xpt_get_ccb(periph); 3161 goto restart; 3162 } 3163 if (periph->flags & CAM_PERIPH_RUN_TASK) 3164 break; 3165 cam_periph_doacquire(periph); 3166 periph->flags |= CAM_PERIPH_RUN_TASK; 3167 taskqueue_enqueue(xsoftc.xpt_taskq, 3168 &periph->periph_run_task); 3169 break; 3170 } 3171 xpt_setup_ccb(&ccb->ccb_h, periph->path, prio); 3172 if (prio == periph->immediate_priority) { 3173 periph->immediate_priority = CAM_PRIORITY_NONE; 3174 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3175 ("waking cam_periph_getccb()\n")); 3176 SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h, 3177 periph_links.sle); 3178 wakeup(&periph->ccb_list); 3179 } else { 3180 periph->scheduled_priority = CAM_PRIORITY_NONE; 3181 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3182 ("calling periph_start()\n")); 3183 periph->periph_start(periph, ccb); 3184 } 3185 ccb = NULL; 3186 } 3187 if (ccb != NULL) 3188 xpt_release_ccb(ccb); 3189 periph->periph_allocating = 0; 3190 } 3191 3192 static void 3193 xpt_run_devq(struct cam_devq *devq) 3194 { 3195 char cdb_str[(SCSI_MAX_CDBLEN * 3) + 1]; 3196 int lock; 3197 3198 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n")); 3199 3200 devq->send_queue.qfrozen_cnt++; 3201 while ((devq->send_queue.entries > 0) 3202 && (devq->send_openings > 0) 3203 && (devq->send_queue.qfrozen_cnt <= 1)) { 3204 struct cam_ed *device; 3205 union ccb *work_ccb; 3206 struct cam_sim *sim; 3207 3208 device = (struct cam_ed *)camq_remove(&devq->send_queue, 3209 CAMQ_HEAD); 3210 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, 3211 ("running device %p\n", device)); 3212 3213 work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD); 3214 if (work_ccb == NULL) { 3215 printf("device on run queue with no ccbs???\n"); 3216 continue; 3217 } 3218 3219 if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) { 3220 3221 mtx_lock(&xsoftc.xpt_highpower_lock); 3222 if (xsoftc.num_highpower <= 0) { 3223 /* 3224 * We got a high power command, but we 3225 * don't have any available slots. Freeze 3226 * the device queue until we have a slot 3227 * available. 3228 */ 3229 xpt_freeze_devq_device(device, 1); 3230 STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device, 3231 highpowerq_entry); 3232 3233 mtx_unlock(&xsoftc.xpt_highpower_lock); 3234 continue; 3235 } else { 3236 /* 3237 * Consume a high power slot while 3238 * this ccb runs. 3239 */ 3240 xsoftc.num_highpower--; 3241 } 3242 mtx_unlock(&xsoftc.xpt_highpower_lock); 3243 } 3244 cam_ccbq_remove_ccb(&device->ccbq, work_ccb); 3245 cam_ccbq_send_ccb(&device->ccbq, work_ccb); 3246 devq->send_openings--; 3247 devq->send_active++; 3248 xpt_schedule_devq(devq, device); 3249 mtx_unlock(&devq->send_mtx); 3250 3251 if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) { 3252 /* 3253 * The client wants to freeze the queue 3254 * after this CCB is sent. 3255 */ 3256 xpt_freeze_devq(work_ccb->ccb_h.path, 1); 3257 } 3258 3259 /* In Target mode, the peripheral driver knows best... */ 3260 if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) { 3261 if ((device->inq_flags & SID_CmdQue) != 0 3262 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE) 3263 work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID; 3264 else 3265 /* 3266 * Clear this in case of a retried CCB that 3267 * failed due to a rejected tag. 3268 */ 3269 work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID; 3270 } 3271 3272 switch (work_ccb->ccb_h.func_code) { 3273 case XPT_SCSI_IO: 3274 CAM_DEBUG(work_ccb->ccb_h.path, 3275 CAM_DEBUG_CDB,("%s. CDB: %s\n", 3276 scsi_op_desc(work_ccb->csio.cdb_io.cdb_bytes[0], 3277 &device->inq_data), 3278 scsi_cdb_string(work_ccb->csio.cdb_io.cdb_bytes, 3279 cdb_str, sizeof(cdb_str)))); 3280 break; 3281 case XPT_ATA_IO: 3282 CAM_DEBUG(work_ccb->ccb_h.path, 3283 CAM_DEBUG_CDB,("%s. ACB: %s\n", 3284 ata_op_string(&work_ccb->ataio.cmd), 3285 ata_cmd_string(&work_ccb->ataio.cmd, 3286 cdb_str, sizeof(cdb_str)))); 3287 break; 3288 default: 3289 break; 3290 } 3291 3292 /* 3293 * Device queues can be shared among multiple SIM instances 3294 * that reside on different busses. Use the SIM from the 3295 * queued device, rather than the one from the calling bus. 3296 */ 3297 sim = device->sim; 3298 lock = (mtx_owned(sim->mtx) == 0); 3299 if (lock) 3300 CAM_SIM_LOCK(sim); 3301 (*(sim->sim_action))(sim, work_ccb); 3302 if (lock) 3303 CAM_SIM_UNLOCK(sim); 3304 mtx_lock(&devq->send_mtx); 3305 } 3306 devq->send_queue.qfrozen_cnt--; 3307 } 3308 3309 /* 3310 * This function merges stuff from the slave ccb into the master ccb, while 3311 * keeping important fields in the master ccb constant. 3312 */ 3313 void 3314 xpt_merge_ccb(union ccb *master_ccb, union ccb *slave_ccb) 3315 { 3316 3317 /* 3318 * Pull fields that are valid for peripheral drivers to set 3319 * into the master CCB along with the CCB "payload". 3320 */ 3321 master_ccb->ccb_h.retry_count = slave_ccb->ccb_h.retry_count; 3322 master_ccb->ccb_h.func_code = slave_ccb->ccb_h.func_code; 3323 master_ccb->ccb_h.timeout = slave_ccb->ccb_h.timeout; 3324 master_ccb->ccb_h.flags = slave_ccb->ccb_h.flags; 3325 bcopy(&(&slave_ccb->ccb_h)[1], &(&master_ccb->ccb_h)[1], 3326 sizeof(union ccb) - sizeof(struct ccb_hdr)); 3327 } 3328 3329 void 3330 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, u_int32_t priority) 3331 { 3332 3333 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n")); 3334 ccb_h->pinfo.priority = priority; 3335 ccb_h->path = path; 3336 ccb_h->path_id = path->bus->path_id; 3337 if (path->target) 3338 ccb_h->target_id = path->target->target_id; 3339 else 3340 ccb_h->target_id = CAM_TARGET_WILDCARD; 3341 if (path->device) { 3342 ccb_h->target_lun = path->device->lun_id; 3343 ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation; 3344 } else { 3345 ccb_h->target_lun = CAM_TARGET_WILDCARD; 3346 } 3347 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 3348 ccb_h->flags = 0; 3349 ccb_h->xflags = 0; 3350 } 3351 3352 /* Path manipulation functions */ 3353 cam_status 3354 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph, 3355 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3356 { 3357 struct cam_path *path; 3358 cam_status status; 3359 3360 path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3361 3362 if (path == NULL) { 3363 status = CAM_RESRC_UNAVAIL; 3364 return(status); 3365 } 3366 status = xpt_compile_path(path, perph, path_id, target_id, lun_id); 3367 if (status != CAM_REQ_CMP) { 3368 free(path, M_CAMPATH); 3369 path = NULL; 3370 } 3371 *new_path_ptr = path; 3372 return (status); 3373 } 3374 3375 cam_status 3376 xpt_create_path_unlocked(struct cam_path **new_path_ptr, 3377 struct cam_periph *periph, path_id_t path_id, 3378 target_id_t target_id, lun_id_t lun_id) 3379 { 3380 3381 return (xpt_create_path(new_path_ptr, periph, path_id, target_id, 3382 lun_id)); 3383 } 3384 3385 cam_status 3386 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph, 3387 path_id_t path_id, target_id_t target_id, lun_id_t lun_id) 3388 { 3389 struct cam_eb *bus; 3390 struct cam_et *target; 3391 struct cam_ed *device; 3392 cam_status status; 3393 3394 status = CAM_REQ_CMP; /* Completed without error */ 3395 target = NULL; /* Wildcarded */ 3396 device = NULL; /* Wildcarded */ 3397 3398 /* 3399 * We will potentially modify the EDT, so block interrupts 3400 * that may attempt to create cam paths. 3401 */ 3402 bus = xpt_find_bus(path_id); 3403 if (bus == NULL) { 3404 status = CAM_PATH_INVALID; 3405 } else { 3406 xpt_lock_buses(); 3407 mtx_lock(&bus->eb_mtx); 3408 target = xpt_find_target(bus, target_id); 3409 if (target == NULL) { 3410 /* Create one */ 3411 struct cam_et *new_target; 3412 3413 new_target = xpt_alloc_target(bus, target_id); 3414 if (new_target == NULL) { 3415 status = CAM_RESRC_UNAVAIL; 3416 } else { 3417 target = new_target; 3418 } 3419 } 3420 xpt_unlock_buses(); 3421 if (target != NULL) { 3422 device = xpt_find_device(target, lun_id); 3423 if (device == NULL) { 3424 /* Create one */ 3425 struct cam_ed *new_device; 3426 3427 new_device = 3428 (*(bus->xport->alloc_device))(bus, 3429 target, 3430 lun_id); 3431 if (new_device == NULL) { 3432 status = CAM_RESRC_UNAVAIL; 3433 } else { 3434 device = new_device; 3435 } 3436 } 3437 } 3438 mtx_unlock(&bus->eb_mtx); 3439 } 3440 3441 /* 3442 * Only touch the user's data if we are successful. 3443 */ 3444 if (status == CAM_REQ_CMP) { 3445 new_path->periph = perph; 3446 new_path->bus = bus; 3447 new_path->target = target; 3448 new_path->device = device; 3449 CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n")); 3450 } else { 3451 if (device != NULL) 3452 xpt_release_device(device); 3453 if (target != NULL) 3454 xpt_release_target(target); 3455 if (bus != NULL) 3456 xpt_release_bus(bus); 3457 } 3458 return (status); 3459 } 3460 3461 cam_status 3462 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path) 3463 { 3464 struct cam_path *new_path; 3465 3466 new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT); 3467 if (new_path == NULL) 3468 return(CAM_RESRC_UNAVAIL); 3469 xpt_copy_path(new_path, path); 3470 *new_path_ptr = new_path; 3471 return (CAM_REQ_CMP); 3472 } 3473 3474 void 3475 xpt_copy_path(struct cam_path *new_path, struct cam_path *path) 3476 { 3477 3478 *new_path = *path; 3479 if (path->bus != NULL) 3480 xpt_acquire_bus(path->bus); 3481 if (path->target != NULL) 3482 xpt_acquire_target(path->target); 3483 if (path->device != NULL) 3484 xpt_acquire_device(path->device); 3485 } 3486 3487 void 3488 xpt_release_path(struct cam_path *path) 3489 { 3490 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n")); 3491 if (path->device != NULL) { 3492 xpt_release_device(path->device); 3493 path->device = NULL; 3494 } 3495 if (path->target != NULL) { 3496 xpt_release_target(path->target); 3497 path->target = NULL; 3498 } 3499 if (path->bus != NULL) { 3500 xpt_release_bus(path->bus); 3501 path->bus = NULL; 3502 } 3503 } 3504 3505 void 3506 xpt_free_path(struct cam_path *path) 3507 { 3508 3509 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n")); 3510 xpt_release_path(path); 3511 free(path, M_CAMPATH); 3512 } 3513 3514 void 3515 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref, 3516 uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref) 3517 { 3518 3519 xpt_lock_buses(); 3520 if (bus_ref) { 3521 if (path->bus) 3522 *bus_ref = path->bus->refcount; 3523 else 3524 *bus_ref = 0; 3525 } 3526 if (periph_ref) { 3527 if (path->periph) 3528 *periph_ref = path->periph->refcount; 3529 else 3530 *periph_ref = 0; 3531 } 3532 xpt_unlock_buses(); 3533 if (target_ref) { 3534 if (path->target) 3535 *target_ref = path->target->refcount; 3536 else 3537 *target_ref = 0; 3538 } 3539 if (device_ref) { 3540 if (path->device) 3541 *device_ref = path->device->refcount; 3542 else 3543 *device_ref = 0; 3544 } 3545 } 3546 3547 /* 3548 * Return -1 for failure, 0 for exact match, 1 for match with wildcards 3549 * in path1, 2 for match with wildcards in path2. 3550 */ 3551 int 3552 xpt_path_comp(struct cam_path *path1, struct cam_path *path2) 3553 { 3554 int retval = 0; 3555 3556 if (path1->bus != path2->bus) { 3557 if (path1->bus->path_id == CAM_BUS_WILDCARD) 3558 retval = 1; 3559 else if (path2->bus->path_id == CAM_BUS_WILDCARD) 3560 retval = 2; 3561 else 3562 return (-1); 3563 } 3564 if (path1->target != path2->target) { 3565 if (path1->target->target_id == CAM_TARGET_WILDCARD) { 3566 if (retval == 0) 3567 retval = 1; 3568 } else if (path2->target->target_id == CAM_TARGET_WILDCARD) 3569 retval = 2; 3570 else 3571 return (-1); 3572 } 3573 if (path1->device != path2->device) { 3574 if (path1->device->lun_id == CAM_LUN_WILDCARD) { 3575 if (retval == 0) 3576 retval = 1; 3577 } else if (path2->device->lun_id == CAM_LUN_WILDCARD) 3578 retval = 2; 3579 else 3580 return (-1); 3581 } 3582 return (retval); 3583 } 3584 3585 int 3586 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev) 3587 { 3588 int retval = 0; 3589 3590 if (path->bus != dev->target->bus) { 3591 if (path->bus->path_id == CAM_BUS_WILDCARD) 3592 retval = 1; 3593 else if (dev->target->bus->path_id == CAM_BUS_WILDCARD) 3594 retval = 2; 3595 else 3596 return (-1); 3597 } 3598 if (path->target != dev->target) { 3599 if (path->target->target_id == CAM_TARGET_WILDCARD) { 3600 if (retval == 0) 3601 retval = 1; 3602 } else if (dev->target->target_id == CAM_TARGET_WILDCARD) 3603 retval = 2; 3604 else 3605 return (-1); 3606 } 3607 if (path->device != dev) { 3608 if (path->device->lun_id == CAM_LUN_WILDCARD) { 3609 if (retval == 0) 3610 retval = 1; 3611 } else if (dev->lun_id == CAM_LUN_WILDCARD) 3612 retval = 2; 3613 else 3614 return (-1); 3615 } 3616 return (retval); 3617 } 3618 3619 void 3620 xpt_print_path(struct cam_path *path) 3621 { 3622 3623 if (path == NULL) 3624 printf("(nopath): "); 3625 else { 3626 if (path->periph != NULL) 3627 printf("(%s%d:", path->periph->periph_name, 3628 path->periph->unit_number); 3629 else 3630 printf("(noperiph:"); 3631 3632 if (path->bus != NULL) 3633 printf("%s%d:%d:", path->bus->sim->sim_name, 3634 path->bus->sim->unit_number, 3635 path->bus->sim->bus_id); 3636 else 3637 printf("nobus:"); 3638 3639 if (path->target != NULL) 3640 printf("%d:", path->target->target_id); 3641 else 3642 printf("X:"); 3643 3644 if (path->device != NULL) 3645 printf("%jx): ", (uintmax_t)path->device->lun_id); 3646 else 3647 printf("X): "); 3648 } 3649 } 3650 3651 void 3652 xpt_print_device(struct cam_ed *device) 3653 { 3654 3655 if (device == NULL) 3656 printf("(nopath): "); 3657 else { 3658 printf("(noperiph:%s%d:%d:%d:%jx): ", device->sim->sim_name, 3659 device->sim->unit_number, 3660 device->sim->bus_id, 3661 device->target->target_id, 3662 (uintmax_t)device->lun_id); 3663 } 3664 } 3665 3666 void 3667 xpt_print(struct cam_path *path, const char *fmt, ...) 3668 { 3669 va_list ap; 3670 xpt_print_path(path); 3671 va_start(ap, fmt); 3672 vprintf(fmt, ap); 3673 va_end(ap); 3674 } 3675 3676 int 3677 xpt_path_string(struct cam_path *path, char *str, size_t str_len) 3678 { 3679 struct sbuf sb; 3680 3681 sbuf_new(&sb, str, str_len, 0); 3682 3683 if (path == NULL) 3684 sbuf_printf(&sb, "(nopath): "); 3685 else { 3686 if (path->periph != NULL) 3687 sbuf_printf(&sb, "(%s%d:", path->periph->periph_name, 3688 path->periph->unit_number); 3689 else 3690 sbuf_printf(&sb, "(noperiph:"); 3691 3692 if (path->bus != NULL) 3693 sbuf_printf(&sb, "%s%d:%d:", path->bus->sim->sim_name, 3694 path->bus->sim->unit_number, 3695 path->bus->sim->bus_id); 3696 else 3697 sbuf_printf(&sb, "nobus:"); 3698 3699 if (path->target != NULL) 3700 sbuf_printf(&sb, "%d:", path->target->target_id); 3701 else 3702 sbuf_printf(&sb, "X:"); 3703 3704 if (path->device != NULL) 3705 sbuf_printf(&sb, "%jx): ", 3706 (uintmax_t)path->device->lun_id); 3707 else 3708 sbuf_printf(&sb, "X): "); 3709 } 3710 sbuf_finish(&sb); 3711 3712 return(sbuf_len(&sb)); 3713 } 3714 3715 path_id_t 3716 xpt_path_path_id(struct cam_path *path) 3717 { 3718 return(path->bus->path_id); 3719 } 3720 3721 target_id_t 3722 xpt_path_target_id(struct cam_path *path) 3723 { 3724 if (path->target != NULL) 3725 return (path->target->target_id); 3726 else 3727 return (CAM_TARGET_WILDCARD); 3728 } 3729 3730 lun_id_t 3731 xpt_path_lun_id(struct cam_path *path) 3732 { 3733 if (path->device != NULL) 3734 return (path->device->lun_id); 3735 else 3736 return (CAM_LUN_WILDCARD); 3737 } 3738 3739 struct cam_sim * 3740 xpt_path_sim(struct cam_path *path) 3741 { 3742 3743 return (path->bus->sim); 3744 } 3745 3746 struct cam_periph* 3747 xpt_path_periph(struct cam_path *path) 3748 { 3749 3750 return (path->periph); 3751 } 3752 3753 int 3754 xpt_path_legacy_ata_id(struct cam_path *path) 3755 { 3756 struct cam_eb *bus; 3757 int bus_id; 3758 3759 if ((strcmp(path->bus->sim->sim_name, "ata") != 0) && 3760 strcmp(path->bus->sim->sim_name, "ahcich") != 0 && 3761 strcmp(path->bus->sim->sim_name, "mvsch") != 0 && 3762 strcmp(path->bus->sim->sim_name, "siisch") != 0) 3763 return (-1); 3764 3765 if (strcmp(path->bus->sim->sim_name, "ata") == 0 && 3766 path->bus->sim->unit_number < 2) { 3767 bus_id = path->bus->sim->unit_number; 3768 } else { 3769 bus_id = 2; 3770 xpt_lock_buses(); 3771 TAILQ_FOREACH(bus, &xsoftc.xpt_busses, links) { 3772 if (bus == path->bus) 3773 break; 3774 if ((strcmp(bus->sim->sim_name, "ata") == 0 && 3775 bus->sim->unit_number >= 2) || 3776 strcmp(bus->sim->sim_name, "ahcich") == 0 || 3777 strcmp(bus->sim->sim_name, "mvsch") == 0 || 3778 strcmp(bus->sim->sim_name, "siisch") == 0) 3779 bus_id++; 3780 } 3781 xpt_unlock_buses(); 3782 } 3783 if (path->target != NULL) { 3784 if (path->target->target_id < 2) 3785 return (bus_id * 2 + path->target->target_id); 3786 else 3787 return (-1); 3788 } else 3789 return (bus_id * 2); 3790 } 3791 3792 /* 3793 * Release a CAM control block for the caller. Remit the cost of the structure 3794 * to the device referenced by the path. If the this device had no 'credits' 3795 * and peripheral drivers have registered async callbacks for this notification 3796 * call them now. 3797 */ 3798 void 3799 xpt_release_ccb(union ccb *free_ccb) 3800 { 3801 struct cam_ed *device; 3802 struct cam_periph *periph; 3803 3804 CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n")); 3805 xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED); 3806 device = free_ccb->ccb_h.path->device; 3807 periph = free_ccb->ccb_h.path->periph; 3808 3809 xpt_free_ccb(free_ccb); 3810 periph->periph_allocated--; 3811 cam_ccbq_release_opening(&device->ccbq); 3812 xpt_run_allocq(periph, 0); 3813 } 3814 3815 /* Functions accessed by SIM drivers */ 3816 3817 static struct xpt_xport xport_default = { 3818 .alloc_device = xpt_alloc_device_default, 3819 .action = xpt_action_default, 3820 .async = xpt_dev_async_default, 3821 }; 3822 3823 /* 3824 * A sim structure, listing the SIM entry points and instance 3825 * identification info is passed to xpt_bus_register to hook the SIM 3826 * into the CAM framework. xpt_bus_register creates a cam_eb entry 3827 * for this new bus and places it in the array of busses and assigns 3828 * it a path_id. The path_id may be influenced by "hard wiring" 3829 * information specified by the user. Once interrupt services are 3830 * available, the bus will be probed. 3831 */ 3832 int32_t 3833 xpt_bus_register(struct cam_sim *sim, device_t parent, u_int32_t bus) 3834 { 3835 struct cam_eb *new_bus; 3836 struct cam_eb *old_bus; 3837 struct ccb_pathinq cpi; 3838 struct cam_path *path; 3839 cam_status status; 3840 3841 mtx_assert(sim->mtx, MA_OWNED); 3842 3843 sim->bus_id = bus; 3844 new_bus = (struct cam_eb *)malloc(sizeof(*new_bus), 3845 M_CAMXPT, M_NOWAIT|M_ZERO); 3846 if (new_bus == NULL) { 3847 /* Couldn't satisfy request */ 3848 return (CAM_RESRC_UNAVAIL); 3849 } 3850 3851 mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF); 3852 TAILQ_INIT(&new_bus->et_entries); 3853 cam_sim_hold(sim); 3854 new_bus->sim = sim; 3855 timevalclear(&new_bus->last_reset); 3856 new_bus->flags = 0; 3857 new_bus->refcount = 1; /* Held until a bus_deregister event */ 3858 new_bus->generation = 0; 3859 3860 xpt_lock_buses(); 3861 sim->path_id = new_bus->path_id = 3862 xptpathid(sim->sim_name, sim->unit_number, sim->bus_id); 3863 old_bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3864 while (old_bus != NULL 3865 && old_bus->path_id < new_bus->path_id) 3866 old_bus = TAILQ_NEXT(old_bus, links); 3867 if (old_bus != NULL) 3868 TAILQ_INSERT_BEFORE(old_bus, new_bus, links); 3869 else 3870 TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links); 3871 xsoftc.bus_generation++; 3872 xpt_unlock_buses(); 3873 3874 /* 3875 * Set a default transport so that a PATH_INQ can be issued to 3876 * the SIM. This will then allow for probing and attaching of 3877 * a more appropriate transport. 3878 */ 3879 new_bus->xport = &xport_default; 3880 3881 status = xpt_create_path(&path, /*periph*/NULL, sim->path_id, 3882 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3883 if (status != CAM_REQ_CMP) { 3884 xpt_release_bus(new_bus); 3885 free(path, M_CAMXPT); 3886 return (CAM_RESRC_UNAVAIL); 3887 } 3888 3889 xpt_setup_ccb(&cpi.ccb_h, path, CAM_PRIORITY_NORMAL); 3890 cpi.ccb_h.func_code = XPT_PATH_INQ; 3891 xpt_action((union ccb *)&cpi); 3892 3893 if (cpi.ccb_h.status == CAM_REQ_CMP) { 3894 switch (cpi.transport) { 3895 case XPORT_SPI: 3896 case XPORT_SAS: 3897 case XPORT_FC: 3898 case XPORT_USB: 3899 case XPORT_ISCSI: 3900 case XPORT_SRP: 3901 case XPORT_PPB: 3902 new_bus->xport = scsi_get_xport(); 3903 break; 3904 case XPORT_ATA: 3905 case XPORT_SATA: 3906 new_bus->xport = ata_get_xport(); 3907 break; 3908 default: 3909 new_bus->xport = &xport_default; 3910 break; 3911 } 3912 } 3913 3914 /* Notify interested parties */ 3915 if (sim->path_id != CAM_XPT_PATH_ID) { 3916 3917 xpt_async(AC_PATH_REGISTERED, path, &cpi); 3918 if ((cpi.hba_misc & PIM_NOSCAN) == 0) { 3919 union ccb *scan_ccb; 3920 3921 /* Initiate bus rescan. */ 3922 scan_ccb = xpt_alloc_ccb_nowait(); 3923 if (scan_ccb != NULL) { 3924 scan_ccb->ccb_h.path = path; 3925 scan_ccb->ccb_h.func_code = XPT_SCAN_BUS; 3926 scan_ccb->crcn.flags = 0; 3927 xpt_rescan(scan_ccb); 3928 } else { 3929 xpt_print(path, 3930 "Can't allocate CCB to scan bus\n"); 3931 xpt_free_path(path); 3932 } 3933 } else 3934 xpt_free_path(path); 3935 } else 3936 xpt_free_path(path); 3937 return (CAM_SUCCESS); 3938 } 3939 3940 int32_t 3941 xpt_bus_deregister(path_id_t pathid) 3942 { 3943 struct cam_path bus_path; 3944 cam_status status; 3945 3946 status = xpt_compile_path(&bus_path, NULL, pathid, 3947 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 3948 if (status != CAM_REQ_CMP) 3949 return (status); 3950 3951 xpt_async(AC_LOST_DEVICE, &bus_path, NULL); 3952 xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL); 3953 3954 /* Release the reference count held while registered. */ 3955 xpt_release_bus(bus_path.bus); 3956 xpt_release_path(&bus_path); 3957 3958 return (CAM_REQ_CMP); 3959 } 3960 3961 static path_id_t 3962 xptnextfreepathid(void) 3963 { 3964 struct cam_eb *bus; 3965 path_id_t pathid; 3966 const char *strval; 3967 3968 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 3969 pathid = 0; 3970 bus = TAILQ_FIRST(&xsoftc.xpt_busses); 3971 retry: 3972 /* Find an unoccupied pathid */ 3973 while (bus != NULL && bus->path_id <= pathid) { 3974 if (bus->path_id == pathid) 3975 pathid++; 3976 bus = TAILQ_NEXT(bus, links); 3977 } 3978 3979 /* 3980 * Ensure that this pathid is not reserved for 3981 * a bus that may be registered in the future. 3982 */ 3983 if (resource_string_value("scbus", pathid, "at", &strval) == 0) { 3984 ++pathid; 3985 /* Start the search over */ 3986 goto retry; 3987 } 3988 return (pathid); 3989 } 3990 3991 static path_id_t 3992 xptpathid(const char *sim_name, int sim_unit, int sim_bus) 3993 { 3994 path_id_t pathid; 3995 int i, dunit, val; 3996 char buf[32]; 3997 const char *dname; 3998 3999 pathid = CAM_XPT_PATH_ID; 4000 snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit); 4001 if (strcmp(buf, "xpt0") == 0 && sim_bus == 0) 4002 return (pathid); 4003 i = 0; 4004 while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) { 4005 if (strcmp(dname, "scbus")) { 4006 /* Avoid a bit of foot shooting. */ 4007 continue; 4008 } 4009 if (dunit < 0) /* unwired?! */ 4010 continue; 4011 if (resource_int_value("scbus", dunit, "bus", &val) == 0) { 4012 if (sim_bus == val) { 4013 pathid = dunit; 4014 break; 4015 } 4016 } else if (sim_bus == 0) { 4017 /* Unspecified matches bus 0 */ 4018 pathid = dunit; 4019 break; 4020 } else { 4021 printf("Ambiguous scbus configuration for %s%d " 4022 "bus %d, cannot wire down. The kernel " 4023 "config entry for scbus%d should " 4024 "specify a controller bus.\n" 4025 "Scbus will be assigned dynamically.\n", 4026 sim_name, sim_unit, sim_bus, dunit); 4027 break; 4028 } 4029 } 4030 4031 if (pathid == CAM_XPT_PATH_ID) 4032 pathid = xptnextfreepathid(); 4033 return (pathid); 4034 } 4035 4036 static const char * 4037 xpt_async_string(u_int32_t async_code) 4038 { 4039 4040 switch (async_code) { 4041 case AC_BUS_RESET: return ("AC_BUS_RESET"); 4042 case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL"); 4043 case AC_SCSI_AEN: return ("AC_SCSI_AEN"); 4044 case AC_SENT_BDR: return ("AC_SENT_BDR"); 4045 case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED"); 4046 case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED"); 4047 case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE"); 4048 case AC_LOST_DEVICE: return ("AC_LOST_DEVICE"); 4049 case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG"); 4050 case AC_INQ_CHANGED: return ("AC_INQ_CHANGED"); 4051 case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED"); 4052 case AC_CONTRACT: return ("AC_CONTRACT"); 4053 case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED"); 4054 case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION"); 4055 } 4056 return ("AC_UNKNOWN"); 4057 } 4058 4059 static int 4060 xpt_async_size(u_int32_t async_code) 4061 { 4062 4063 switch (async_code) { 4064 case AC_BUS_RESET: return (0); 4065 case AC_UNSOL_RESEL: return (0); 4066 case AC_SCSI_AEN: return (0); 4067 case AC_SENT_BDR: return (0); 4068 case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq)); 4069 case AC_PATH_DEREGISTERED: return (0); 4070 case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev)); 4071 case AC_LOST_DEVICE: return (0); 4072 case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings)); 4073 case AC_INQ_CHANGED: return (0); 4074 case AC_GETDEV_CHANGED: return (0); 4075 case AC_CONTRACT: return (sizeof(struct ac_contract)); 4076 case AC_ADVINFO_CHANGED: return (-1); 4077 case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio)); 4078 } 4079 return (0); 4080 } 4081 4082 static int 4083 xpt_async_process_dev(struct cam_ed *device, void *arg) 4084 { 4085 union ccb *ccb = arg; 4086 struct cam_path *path = ccb->ccb_h.path; 4087 void *async_arg = ccb->casync.async_arg_ptr; 4088 u_int32_t async_code = ccb->casync.async_code; 4089 int relock; 4090 4091 if (path->device != device 4092 && path->device->lun_id != CAM_LUN_WILDCARD 4093 && device->lun_id != CAM_LUN_WILDCARD) 4094 return (1); 4095 4096 /* 4097 * The async callback could free the device. 4098 * If it is a broadcast async, it doesn't hold 4099 * device reference, so take our own reference. 4100 */ 4101 xpt_acquire_device(device); 4102 4103 /* 4104 * If async for specific device is to be delivered to 4105 * the wildcard client, take the specific device lock. 4106 * XXX: We may need a way for client to specify it. 4107 */ 4108 if ((device->lun_id == CAM_LUN_WILDCARD && 4109 path->device->lun_id != CAM_LUN_WILDCARD) || 4110 (device->target->target_id == CAM_TARGET_WILDCARD && 4111 path->target->target_id != CAM_TARGET_WILDCARD) || 4112 (device->target->bus->path_id == CAM_BUS_WILDCARD && 4113 path->target->bus->path_id != CAM_BUS_WILDCARD)) { 4114 mtx_unlock(&device->device_mtx); 4115 xpt_path_lock(path); 4116 relock = 1; 4117 } else 4118 relock = 0; 4119 4120 (*(device->target->bus->xport->async))(async_code, 4121 device->target->bus, device->target, device, async_arg); 4122 xpt_async_bcast(&device->asyncs, async_code, path, async_arg); 4123 4124 if (relock) { 4125 xpt_path_unlock(path); 4126 mtx_lock(&device->device_mtx); 4127 } 4128 xpt_release_device(device); 4129 return (1); 4130 } 4131 4132 static int 4133 xpt_async_process_tgt(struct cam_et *target, void *arg) 4134 { 4135 union ccb *ccb = arg; 4136 struct cam_path *path = ccb->ccb_h.path; 4137 4138 if (path->target != target 4139 && path->target->target_id != CAM_TARGET_WILDCARD 4140 && target->target_id != CAM_TARGET_WILDCARD) 4141 return (1); 4142 4143 if (ccb->casync.async_code == AC_SENT_BDR) { 4144 /* Update our notion of when the last reset occurred */ 4145 microtime(&target->last_reset); 4146 } 4147 4148 return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb)); 4149 } 4150 4151 static void 4152 xpt_async_process(struct cam_periph *periph, union ccb *ccb) 4153 { 4154 struct cam_eb *bus; 4155 struct cam_path *path; 4156 void *async_arg; 4157 u_int32_t async_code; 4158 4159 path = ccb->ccb_h.path; 4160 async_code = ccb->casync.async_code; 4161 async_arg = ccb->casync.async_arg_ptr; 4162 CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO, 4163 ("xpt_async(%s)\n", xpt_async_string(async_code))); 4164 bus = path->bus; 4165 4166 if (async_code == AC_BUS_RESET) { 4167 /* Update our notion of when the last reset occurred */ 4168 microtime(&bus->last_reset); 4169 } 4170 4171 xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb); 4172 4173 /* 4174 * If this wasn't a fully wildcarded async, tell all 4175 * clients that want all async events. 4176 */ 4177 if (bus != xpt_periph->path->bus) { 4178 xpt_path_lock(xpt_periph->path); 4179 xpt_async_process_dev(xpt_periph->path->device, ccb); 4180 xpt_path_unlock(xpt_periph->path); 4181 } 4182 4183 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4184 xpt_release_devq(path, 1, TRUE); 4185 else 4186 xpt_release_simq(path->bus->sim, TRUE); 4187 if (ccb->casync.async_arg_size > 0) 4188 free(async_arg, M_CAMXPT); 4189 xpt_free_path(path); 4190 xpt_free_ccb(ccb); 4191 } 4192 4193 static void 4194 xpt_async_bcast(struct async_list *async_head, 4195 u_int32_t async_code, 4196 struct cam_path *path, void *async_arg) 4197 { 4198 struct async_node *cur_entry; 4199 int lock; 4200 4201 cur_entry = SLIST_FIRST(async_head); 4202 while (cur_entry != NULL) { 4203 struct async_node *next_entry; 4204 /* 4205 * Grab the next list entry before we call the current 4206 * entry's callback. This is because the callback function 4207 * can delete its async callback entry. 4208 */ 4209 next_entry = SLIST_NEXT(cur_entry, links); 4210 if ((cur_entry->event_enable & async_code) != 0) { 4211 lock = cur_entry->event_lock; 4212 if (lock) 4213 CAM_SIM_LOCK(path->device->sim); 4214 cur_entry->callback(cur_entry->callback_arg, 4215 async_code, path, 4216 async_arg); 4217 if (lock) 4218 CAM_SIM_UNLOCK(path->device->sim); 4219 } 4220 cur_entry = next_entry; 4221 } 4222 } 4223 4224 void 4225 xpt_async(u_int32_t async_code, struct cam_path *path, void *async_arg) 4226 { 4227 union ccb *ccb; 4228 int size; 4229 4230 ccb = xpt_alloc_ccb_nowait(); 4231 if (ccb == NULL) { 4232 xpt_print(path, "Can't allocate CCB to send %s\n", 4233 xpt_async_string(async_code)); 4234 return; 4235 } 4236 4237 if (xpt_clone_path(&ccb->ccb_h.path, path) != CAM_REQ_CMP) { 4238 xpt_print(path, "Can't allocate path to send %s\n", 4239 xpt_async_string(async_code)); 4240 xpt_free_ccb(ccb); 4241 return; 4242 } 4243 ccb->ccb_h.path->periph = NULL; 4244 ccb->ccb_h.func_code = XPT_ASYNC; 4245 ccb->ccb_h.cbfcnp = xpt_async_process; 4246 ccb->ccb_h.flags |= CAM_UNLOCKED; 4247 ccb->casync.async_code = async_code; 4248 ccb->casync.async_arg_size = 0; 4249 size = xpt_async_size(async_code); 4250 if (size > 0 && async_arg != NULL) { 4251 ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT); 4252 if (ccb->casync.async_arg_ptr == NULL) { 4253 xpt_print(path, "Can't allocate argument to send %s\n", 4254 xpt_async_string(async_code)); 4255 xpt_free_path(ccb->ccb_h.path); 4256 xpt_free_ccb(ccb); 4257 return; 4258 } 4259 memcpy(ccb->casync.async_arg_ptr, async_arg, size); 4260 ccb->casync.async_arg_size = size; 4261 } else if (size < 0) 4262 ccb->casync.async_arg_size = size; 4263 if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD) 4264 xpt_freeze_devq(path, 1); 4265 else 4266 xpt_freeze_simq(path->bus->sim, 1); 4267 xpt_done(ccb); 4268 } 4269 4270 static void 4271 xpt_dev_async_default(u_int32_t async_code, struct cam_eb *bus, 4272 struct cam_et *target, struct cam_ed *device, 4273 void *async_arg) 4274 { 4275 4276 /* 4277 * We only need to handle events for real devices. 4278 */ 4279 if (target->target_id == CAM_TARGET_WILDCARD 4280 || device->lun_id == CAM_LUN_WILDCARD) 4281 return; 4282 4283 printf("%s called\n", __func__); 4284 } 4285 4286 static uint32_t 4287 xpt_freeze_devq_device(struct cam_ed *dev, u_int count) 4288 { 4289 struct cam_devq *devq; 4290 uint32_t freeze; 4291 4292 devq = dev->sim->devq; 4293 mtx_assert(&devq->send_mtx, MA_OWNED); 4294 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4295 ("xpt_freeze_devq_device(%d) %u->%u\n", count, 4296 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count)); 4297 freeze = (dev->ccbq.queue.qfrozen_cnt += count); 4298 /* Remove frozen device from sendq. */ 4299 if (device_is_queued(dev)) 4300 camq_remove(&devq->send_queue, dev->devq_entry.index); 4301 return (freeze); 4302 } 4303 4304 u_int32_t 4305 xpt_freeze_devq(struct cam_path *path, u_int count) 4306 { 4307 struct cam_ed *dev = path->device; 4308 struct cam_devq *devq; 4309 uint32_t freeze; 4310 4311 devq = dev->sim->devq; 4312 mtx_lock(&devq->send_mtx); 4313 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count)); 4314 freeze = xpt_freeze_devq_device(dev, count); 4315 mtx_unlock(&devq->send_mtx); 4316 return (freeze); 4317 } 4318 4319 u_int32_t 4320 xpt_freeze_simq(struct cam_sim *sim, u_int count) 4321 { 4322 struct cam_devq *devq; 4323 uint32_t freeze; 4324 4325 devq = sim->devq; 4326 mtx_lock(&devq->send_mtx); 4327 freeze = (devq->send_queue.qfrozen_cnt += count); 4328 mtx_unlock(&devq->send_mtx); 4329 return (freeze); 4330 } 4331 4332 static void 4333 xpt_release_devq_timeout(void *arg) 4334 { 4335 struct cam_ed *dev; 4336 struct cam_devq *devq; 4337 4338 dev = (struct cam_ed *)arg; 4339 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n")); 4340 devq = dev->sim->devq; 4341 mtx_assert(&devq->send_mtx, MA_OWNED); 4342 if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE)) 4343 xpt_run_devq(devq); 4344 } 4345 4346 void 4347 xpt_release_devq(struct cam_path *path, u_int count, int run_queue) 4348 { 4349 struct cam_ed *dev; 4350 struct cam_devq *devq; 4351 4352 CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n", 4353 count, run_queue)); 4354 dev = path->device; 4355 devq = dev->sim->devq; 4356 mtx_lock(&devq->send_mtx); 4357 if (xpt_release_devq_device(dev, count, run_queue)) 4358 xpt_run_devq(dev->sim->devq); 4359 mtx_unlock(&devq->send_mtx); 4360 } 4361 4362 static int 4363 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue) 4364 { 4365 4366 mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED); 4367 CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, 4368 ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue, 4369 dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count)); 4370 if (count > dev->ccbq.queue.qfrozen_cnt) { 4371 #ifdef INVARIANTS 4372 printf("xpt_release_devq(): requested %u > present %u\n", 4373 count, dev->ccbq.queue.qfrozen_cnt); 4374 #endif 4375 count = dev->ccbq.queue.qfrozen_cnt; 4376 } 4377 dev->ccbq.queue.qfrozen_cnt -= count; 4378 if (dev->ccbq.queue.qfrozen_cnt == 0) { 4379 /* 4380 * No longer need to wait for a successful 4381 * command completion. 4382 */ 4383 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 4384 /* 4385 * Remove any timeouts that might be scheduled 4386 * to release this queue. 4387 */ 4388 if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) { 4389 callout_stop(&dev->callout); 4390 dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING; 4391 } 4392 /* 4393 * Now that we are unfrozen schedule the 4394 * device so any pending transactions are 4395 * run. 4396 */ 4397 xpt_schedule_devq(dev->sim->devq, dev); 4398 } else 4399 run_queue = 0; 4400 return (run_queue); 4401 } 4402 4403 void 4404 xpt_release_simq(struct cam_sim *sim, int run_queue) 4405 { 4406 struct cam_devq *devq; 4407 4408 devq = sim->devq; 4409 mtx_lock(&devq->send_mtx); 4410 if (devq->send_queue.qfrozen_cnt <= 0) { 4411 #ifdef INVARIANTS 4412 printf("xpt_release_simq: requested 1 > present %u\n", 4413 devq->send_queue.qfrozen_cnt); 4414 #endif 4415 } else 4416 devq->send_queue.qfrozen_cnt--; 4417 if (devq->send_queue.qfrozen_cnt == 0) { 4418 /* 4419 * If there is a timeout scheduled to release this 4420 * sim queue, remove it. The queue frozen count is 4421 * already at 0. 4422 */ 4423 if ((sim->flags & CAM_SIM_REL_TIMEOUT_PENDING) != 0){ 4424 callout_stop(&sim->callout); 4425 sim->flags &= ~CAM_SIM_REL_TIMEOUT_PENDING; 4426 } 4427 if (run_queue) { 4428 /* 4429 * Now that we are unfrozen run the send queue. 4430 */ 4431 xpt_run_devq(sim->devq); 4432 } 4433 } 4434 mtx_unlock(&devq->send_mtx); 4435 } 4436 4437 /* 4438 * XXX Appears to be unused. 4439 */ 4440 static void 4441 xpt_release_simq_timeout(void *arg) 4442 { 4443 struct cam_sim *sim; 4444 4445 sim = (struct cam_sim *)arg; 4446 xpt_release_simq(sim, /* run_queue */ TRUE); 4447 } 4448 4449 void 4450 xpt_done(union ccb *done_ccb) 4451 { 4452 struct cam_doneq *queue; 4453 int run, hash; 4454 4455 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done\n")); 4456 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4457 return; 4458 4459 hash = (done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id + 4460 done_ccb->ccb_h.target_lun) % cam_num_doneqs; 4461 queue = &cam_doneqs[hash]; 4462 mtx_lock(&queue->cam_doneq_mtx); 4463 run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq)); 4464 STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe); 4465 done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX; 4466 mtx_unlock(&queue->cam_doneq_mtx); 4467 if (run) 4468 wakeup(&queue->cam_doneq); 4469 } 4470 4471 void 4472 xpt_done_direct(union ccb *done_ccb) 4473 { 4474 4475 CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xpt_done_direct\n")); 4476 if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0) 4477 return; 4478 4479 xpt_done_process(&done_ccb->ccb_h); 4480 } 4481 4482 union ccb * 4483 xpt_alloc_ccb() 4484 { 4485 union ccb *new_ccb; 4486 4487 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK); 4488 return (new_ccb); 4489 } 4490 4491 union ccb * 4492 xpt_alloc_ccb_nowait() 4493 { 4494 union ccb *new_ccb; 4495 4496 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT); 4497 return (new_ccb); 4498 } 4499 4500 void 4501 xpt_free_ccb(union ccb *free_ccb) 4502 { 4503 free(free_ccb, M_CAMCCB); 4504 } 4505 4506 4507 4508 /* Private XPT functions */ 4509 4510 /* 4511 * Get a CAM control block for the caller. Charge the structure to the device 4512 * referenced by the path. If we don't have sufficient resources to allocate 4513 * more ccbs, we return NULL. 4514 */ 4515 static union ccb * 4516 xpt_get_ccb_nowait(struct cam_periph *periph) 4517 { 4518 union ccb *new_ccb; 4519 4520 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_NOWAIT); 4521 if (new_ccb == NULL) 4522 return (NULL); 4523 periph->periph_allocated++; 4524 cam_ccbq_take_opening(&periph->path->device->ccbq); 4525 return (new_ccb); 4526 } 4527 4528 static union ccb * 4529 xpt_get_ccb(struct cam_periph *periph) 4530 { 4531 union ccb *new_ccb; 4532 4533 cam_periph_unlock(periph); 4534 new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_WAITOK); 4535 cam_periph_lock(periph); 4536 periph->periph_allocated++; 4537 cam_ccbq_take_opening(&periph->path->device->ccbq); 4538 return (new_ccb); 4539 } 4540 4541 union ccb * 4542 cam_periph_getccb(struct cam_periph *periph, u_int32_t priority) 4543 { 4544 struct ccb_hdr *ccb_h; 4545 4546 CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n")); 4547 cam_periph_assert(periph, MA_OWNED); 4548 while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL || 4549 ccb_h->pinfo.priority != priority) { 4550 if (priority < periph->immediate_priority) { 4551 periph->immediate_priority = priority; 4552 xpt_run_allocq(periph, 0); 4553 } else 4554 cam_periph_sleep(periph, &periph->ccb_list, PRIBIO, 4555 "cgticb", 0); 4556 } 4557 SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle); 4558 return ((union ccb *)ccb_h); 4559 } 4560 4561 static void 4562 xpt_acquire_bus(struct cam_eb *bus) 4563 { 4564 4565 xpt_lock_buses(); 4566 bus->refcount++; 4567 xpt_unlock_buses(); 4568 } 4569 4570 static void 4571 xpt_release_bus(struct cam_eb *bus) 4572 { 4573 4574 xpt_lock_buses(); 4575 KASSERT(bus->refcount >= 1, ("bus->refcount >= 1")); 4576 if (--bus->refcount > 0) { 4577 xpt_unlock_buses(); 4578 return; 4579 } 4580 TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links); 4581 xsoftc.bus_generation++; 4582 xpt_unlock_buses(); 4583 KASSERT(TAILQ_EMPTY(&bus->et_entries), 4584 ("destroying bus, but target list is not empty")); 4585 cam_sim_release(bus->sim); 4586 mtx_destroy(&bus->eb_mtx); 4587 free(bus, M_CAMXPT); 4588 } 4589 4590 static struct cam_et * 4591 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id) 4592 { 4593 struct cam_et *cur_target, *target; 4594 4595 mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED); 4596 mtx_assert(&bus->eb_mtx, MA_OWNED); 4597 target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT, 4598 M_NOWAIT|M_ZERO); 4599 if (target == NULL) 4600 return (NULL); 4601 4602 TAILQ_INIT(&target->ed_entries); 4603 target->bus = bus; 4604 target->target_id = target_id; 4605 target->refcount = 1; 4606 target->generation = 0; 4607 target->luns = NULL; 4608 mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF); 4609 timevalclear(&target->last_reset); 4610 /* 4611 * Hold a reference to our parent bus so it 4612 * will not go away before we do. 4613 */ 4614 bus->refcount++; 4615 4616 /* Insertion sort into our bus's target list */ 4617 cur_target = TAILQ_FIRST(&bus->et_entries); 4618 while (cur_target != NULL && cur_target->target_id < target_id) 4619 cur_target = TAILQ_NEXT(cur_target, links); 4620 if (cur_target != NULL) { 4621 TAILQ_INSERT_BEFORE(cur_target, target, links); 4622 } else { 4623 TAILQ_INSERT_TAIL(&bus->et_entries, target, links); 4624 } 4625 bus->generation++; 4626 return (target); 4627 } 4628 4629 static void 4630 xpt_acquire_target(struct cam_et *target) 4631 { 4632 struct cam_eb *bus = target->bus; 4633 4634 mtx_lock(&bus->eb_mtx); 4635 target->refcount++; 4636 mtx_unlock(&bus->eb_mtx); 4637 } 4638 4639 static void 4640 xpt_release_target(struct cam_et *target) 4641 { 4642 struct cam_eb *bus = target->bus; 4643 4644 mtx_lock(&bus->eb_mtx); 4645 if (--target->refcount > 0) { 4646 mtx_unlock(&bus->eb_mtx); 4647 return; 4648 } 4649 TAILQ_REMOVE(&bus->et_entries, target, links); 4650 bus->generation++; 4651 mtx_unlock(&bus->eb_mtx); 4652 KASSERT(TAILQ_EMPTY(&target->ed_entries), 4653 ("destroying target, but device list is not empty")); 4654 xpt_release_bus(bus); 4655 mtx_destroy(&target->luns_mtx); 4656 if (target->luns) 4657 free(target->luns, M_CAMXPT); 4658 free(target, M_CAMXPT); 4659 } 4660 4661 static struct cam_ed * 4662 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target, 4663 lun_id_t lun_id) 4664 { 4665 struct cam_ed *device; 4666 4667 device = xpt_alloc_device(bus, target, lun_id); 4668 if (device == NULL) 4669 return (NULL); 4670 4671 device->mintags = 1; 4672 device->maxtags = 1; 4673 return (device); 4674 } 4675 4676 static void 4677 xpt_destroy_device(void *context, int pending) 4678 { 4679 struct cam_ed *device = context; 4680 4681 mtx_lock(&device->device_mtx); 4682 mtx_destroy(&device->device_mtx); 4683 free(device, M_CAMDEV); 4684 } 4685 4686 struct cam_ed * 4687 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id) 4688 { 4689 struct cam_ed *cur_device, *device; 4690 struct cam_devq *devq; 4691 cam_status status; 4692 4693 mtx_assert(&bus->eb_mtx, MA_OWNED); 4694 /* Make space for us in the device queue on our bus */ 4695 devq = bus->sim->devq; 4696 mtx_lock(&devq->send_mtx); 4697 status = cam_devq_resize(devq, devq->send_queue.array_size + 1); 4698 mtx_unlock(&devq->send_mtx); 4699 if (status != CAM_REQ_CMP) 4700 return (NULL); 4701 4702 device = (struct cam_ed *)malloc(sizeof(*device), 4703 M_CAMDEV, M_NOWAIT|M_ZERO); 4704 if (device == NULL) 4705 return (NULL); 4706 4707 cam_init_pinfo(&device->devq_entry); 4708 device->target = target; 4709 device->lun_id = lun_id; 4710 device->sim = bus->sim; 4711 if (cam_ccbq_init(&device->ccbq, 4712 bus->sim->max_dev_openings) != 0) { 4713 free(device, M_CAMDEV); 4714 return (NULL); 4715 } 4716 SLIST_INIT(&device->asyncs); 4717 SLIST_INIT(&device->periphs); 4718 device->generation = 0; 4719 device->flags = CAM_DEV_UNCONFIGURED; 4720 device->tag_delay_count = 0; 4721 device->tag_saved_openings = 0; 4722 device->refcount = 1; 4723 mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF); 4724 callout_init_mtx(&device->callout, &devq->send_mtx, 0); 4725 TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device); 4726 /* 4727 * Hold a reference to our parent bus so it 4728 * will not go away before we do. 4729 */ 4730 target->refcount++; 4731 4732 cur_device = TAILQ_FIRST(&target->ed_entries); 4733 while (cur_device != NULL && cur_device->lun_id < lun_id) 4734 cur_device = TAILQ_NEXT(cur_device, links); 4735 if (cur_device != NULL) 4736 TAILQ_INSERT_BEFORE(cur_device, device, links); 4737 else 4738 TAILQ_INSERT_TAIL(&target->ed_entries, device, links); 4739 target->generation++; 4740 return (device); 4741 } 4742 4743 void 4744 xpt_acquire_device(struct cam_ed *device) 4745 { 4746 struct cam_eb *bus = device->target->bus; 4747 4748 mtx_lock(&bus->eb_mtx); 4749 device->refcount++; 4750 mtx_unlock(&bus->eb_mtx); 4751 } 4752 4753 void 4754 xpt_release_device(struct cam_ed *device) 4755 { 4756 struct cam_eb *bus = device->target->bus; 4757 struct cam_devq *devq; 4758 4759 mtx_lock(&bus->eb_mtx); 4760 if (--device->refcount > 0) { 4761 mtx_unlock(&bus->eb_mtx); 4762 return; 4763 } 4764 4765 TAILQ_REMOVE(&device->target->ed_entries, device,links); 4766 device->target->generation++; 4767 mtx_unlock(&bus->eb_mtx); 4768 4769 /* Release our slot in the devq */ 4770 devq = bus->sim->devq; 4771 mtx_lock(&devq->send_mtx); 4772 cam_devq_resize(devq, devq->send_queue.array_size - 1); 4773 mtx_unlock(&devq->send_mtx); 4774 4775 KASSERT(SLIST_EMPTY(&device->periphs), 4776 ("destroying device, but periphs list is not empty")); 4777 KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX, 4778 ("destroying device while still queued for ccbs")); 4779 4780 if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) 4781 callout_stop(&device->callout); 4782 4783 xpt_release_target(device->target); 4784 4785 cam_ccbq_fini(&device->ccbq); 4786 /* 4787 * Free allocated memory. free(9) does nothing if the 4788 * supplied pointer is NULL, so it is safe to call without 4789 * checking. 4790 */ 4791 free(device->supported_vpds, M_CAMXPT); 4792 free(device->device_id, M_CAMXPT); 4793 free(device->physpath, M_CAMXPT); 4794 free(device->rcap_buf, M_CAMXPT); 4795 free(device->serial_num, M_CAMXPT); 4796 taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task); 4797 } 4798 4799 u_int32_t 4800 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings) 4801 { 4802 int result; 4803 struct cam_ed *dev; 4804 4805 dev = path->device; 4806 mtx_lock(&dev->sim->devq->send_mtx); 4807 result = cam_ccbq_resize(&dev->ccbq, newopenings); 4808 mtx_unlock(&dev->sim->devq->send_mtx); 4809 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 4810 || (dev->inq_flags & SID_CmdQue) != 0) 4811 dev->tag_saved_openings = newopenings; 4812 return (result); 4813 } 4814 4815 static struct cam_eb * 4816 xpt_find_bus(path_id_t path_id) 4817 { 4818 struct cam_eb *bus; 4819 4820 xpt_lock_buses(); 4821 for (bus = TAILQ_FIRST(&xsoftc.xpt_busses); 4822 bus != NULL; 4823 bus = TAILQ_NEXT(bus, links)) { 4824 if (bus->path_id == path_id) { 4825 bus->refcount++; 4826 break; 4827 } 4828 } 4829 xpt_unlock_buses(); 4830 return (bus); 4831 } 4832 4833 static struct cam_et * 4834 xpt_find_target(struct cam_eb *bus, target_id_t target_id) 4835 { 4836 struct cam_et *target; 4837 4838 mtx_assert(&bus->eb_mtx, MA_OWNED); 4839 for (target = TAILQ_FIRST(&bus->et_entries); 4840 target != NULL; 4841 target = TAILQ_NEXT(target, links)) { 4842 if (target->target_id == target_id) { 4843 target->refcount++; 4844 break; 4845 } 4846 } 4847 return (target); 4848 } 4849 4850 static struct cam_ed * 4851 xpt_find_device(struct cam_et *target, lun_id_t lun_id) 4852 { 4853 struct cam_ed *device; 4854 4855 mtx_assert(&target->bus->eb_mtx, MA_OWNED); 4856 for (device = TAILQ_FIRST(&target->ed_entries); 4857 device != NULL; 4858 device = TAILQ_NEXT(device, links)) { 4859 if (device->lun_id == lun_id) { 4860 device->refcount++; 4861 break; 4862 } 4863 } 4864 return (device); 4865 } 4866 4867 void 4868 xpt_start_tags(struct cam_path *path) 4869 { 4870 struct ccb_relsim crs; 4871 struct cam_ed *device; 4872 struct cam_sim *sim; 4873 int newopenings; 4874 4875 device = path->device; 4876 sim = path->bus->sim; 4877 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4878 xpt_freeze_devq(path, /*count*/1); 4879 device->inq_flags |= SID_CmdQue; 4880 if (device->tag_saved_openings != 0) 4881 newopenings = device->tag_saved_openings; 4882 else 4883 newopenings = min(device->maxtags, 4884 sim->max_tagged_dev_openings); 4885 xpt_dev_ccbq_resize(path, newopenings); 4886 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4887 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4888 crs.ccb_h.func_code = XPT_REL_SIMQ; 4889 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4890 crs.openings 4891 = crs.release_timeout 4892 = crs.qfrozen_cnt 4893 = 0; 4894 xpt_action((union ccb *)&crs); 4895 } 4896 4897 void 4898 xpt_stop_tags(struct cam_path *path) 4899 { 4900 struct ccb_relsim crs; 4901 struct cam_ed *device; 4902 struct cam_sim *sim; 4903 4904 device = path->device; 4905 sim = path->bus->sim; 4906 device->flags &= ~CAM_DEV_TAG_AFTER_COUNT; 4907 device->tag_delay_count = 0; 4908 xpt_freeze_devq(path, /*count*/1); 4909 device->inq_flags &= ~SID_CmdQue; 4910 xpt_dev_ccbq_resize(path, sim->max_dev_openings); 4911 xpt_async(AC_GETDEV_CHANGED, path, NULL); 4912 xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL); 4913 crs.ccb_h.func_code = XPT_REL_SIMQ; 4914 crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY; 4915 crs.openings 4916 = crs.release_timeout 4917 = crs.qfrozen_cnt 4918 = 0; 4919 xpt_action((union ccb *)&crs); 4920 } 4921 4922 static void 4923 xpt_boot_delay(void *arg) 4924 { 4925 4926 xpt_release_boot(); 4927 } 4928 4929 static void 4930 xpt_config(void *arg) 4931 { 4932 /* 4933 * Now that interrupts are enabled, go find our devices 4934 */ 4935 if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq")) 4936 printf("xpt_config: failed to create taskqueue thread.\n"); 4937 4938 /* Setup debugging path */ 4939 if (cam_dflags != CAM_DEBUG_NONE) { 4940 if (xpt_create_path(&cam_dpath, NULL, 4941 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, 4942 CAM_DEBUG_LUN) != CAM_REQ_CMP) { 4943 printf("xpt_config: xpt_create_path() failed for debug" 4944 " target %d:%d:%d, debugging disabled\n", 4945 CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN); 4946 cam_dflags = CAM_DEBUG_NONE; 4947 } 4948 } else 4949 cam_dpath = NULL; 4950 4951 periphdriver_init(1); 4952 xpt_hold_boot(); 4953 callout_init(&xsoftc.boot_callout, 1); 4954 callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay, 0, 4955 xpt_boot_delay, NULL, 0); 4956 /* Fire up rescan thread. */ 4957 if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0, 4958 "cam", "scanner")) { 4959 printf("xpt_config: failed to create rescan thread.\n"); 4960 } 4961 } 4962 4963 void 4964 xpt_hold_boot(void) 4965 { 4966 xpt_lock_buses(); 4967 xsoftc.buses_to_config++; 4968 xpt_unlock_buses(); 4969 } 4970 4971 void 4972 xpt_release_boot(void) 4973 { 4974 xpt_lock_buses(); 4975 xsoftc.buses_to_config--; 4976 if (xsoftc.buses_to_config == 0 && xsoftc.buses_config_done == 0) { 4977 struct xpt_task *task; 4978 4979 xsoftc.buses_config_done = 1; 4980 xpt_unlock_buses(); 4981 /* Call manually because we don't have any busses */ 4982 task = malloc(sizeof(struct xpt_task), M_CAMXPT, M_NOWAIT); 4983 if (task != NULL) { 4984 TASK_INIT(&task->task, 0, xpt_finishconfig_task, task); 4985 taskqueue_enqueue(taskqueue_thread, &task->task); 4986 } 4987 } else 4988 xpt_unlock_buses(); 4989 } 4990 4991 /* 4992 * If the given device only has one peripheral attached to it, and if that 4993 * peripheral is the passthrough driver, announce it. This insures that the 4994 * user sees some sort of announcement for every peripheral in their system. 4995 */ 4996 static int 4997 xptpassannouncefunc(struct cam_ed *device, void *arg) 4998 { 4999 struct cam_periph *periph; 5000 int i; 5001 5002 for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL; 5003 periph = SLIST_NEXT(periph, periph_links), i++); 5004 5005 periph = SLIST_FIRST(&device->periphs); 5006 if ((i == 1) 5007 && (strncmp(periph->periph_name, "pass", 4) == 0)) 5008 xpt_announce_periph(periph, NULL); 5009 5010 return(1); 5011 } 5012 5013 static void 5014 xpt_finishconfig_task(void *context, int pending) 5015 { 5016 5017 periphdriver_init(2); 5018 /* 5019 * Check for devices with no "standard" peripheral driver 5020 * attached. For any devices like that, announce the 5021 * passthrough driver so the user will see something. 5022 */ 5023 if (!bootverbose) 5024 xpt_for_all_devices(xptpassannouncefunc, NULL); 5025 5026 /* Release our hook so that the boot can continue. */ 5027 config_intrhook_disestablish(xsoftc.xpt_config_hook); 5028 free(xsoftc.xpt_config_hook, M_CAMXPT); 5029 xsoftc.xpt_config_hook = NULL; 5030 5031 free(context, M_CAMXPT); 5032 } 5033 5034 cam_status 5035 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg, 5036 struct cam_path *path) 5037 { 5038 struct ccb_setasync csa; 5039 cam_status status; 5040 int xptpath = 0; 5041 5042 if (path == NULL) { 5043 status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID, 5044 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD); 5045 if (status != CAM_REQ_CMP) 5046 return (status); 5047 xpt_path_lock(path); 5048 xptpath = 1; 5049 } 5050 5051 xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL); 5052 csa.ccb_h.func_code = XPT_SASYNC_CB; 5053 csa.event_enable = event; 5054 csa.callback = cbfunc; 5055 csa.callback_arg = cbarg; 5056 xpt_action((union ccb *)&csa); 5057 status = csa.ccb_h.status; 5058 5059 if (xptpath) { 5060 xpt_path_unlock(path); 5061 xpt_free_path(path); 5062 } 5063 5064 if ((status == CAM_REQ_CMP) && 5065 (csa.event_enable & AC_FOUND_DEVICE)) { 5066 /* 5067 * Get this peripheral up to date with all 5068 * the currently existing devices. 5069 */ 5070 xpt_for_all_devices(xptsetasyncfunc, &csa); 5071 } 5072 if ((status == CAM_REQ_CMP) && 5073 (csa.event_enable & AC_PATH_REGISTERED)) { 5074 /* 5075 * Get this peripheral up to date with all 5076 * the currently existing busses. 5077 */ 5078 xpt_for_all_busses(xptsetasyncbusfunc, &csa); 5079 } 5080 5081 return (status); 5082 } 5083 5084 static void 5085 xptaction(struct cam_sim *sim, union ccb *work_ccb) 5086 { 5087 CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n")); 5088 5089 switch (work_ccb->ccb_h.func_code) { 5090 /* Common cases first */ 5091 case XPT_PATH_INQ: /* Path routing inquiry */ 5092 { 5093 struct ccb_pathinq *cpi; 5094 5095 cpi = &work_ccb->cpi; 5096 cpi->version_num = 1; /* XXX??? */ 5097 cpi->hba_inquiry = 0; 5098 cpi->target_sprt = 0; 5099 cpi->hba_misc = 0; 5100 cpi->hba_eng_cnt = 0; 5101 cpi->max_target = 0; 5102 cpi->max_lun = 0; 5103 cpi->initiator_id = 0; 5104 strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN); 5105 strncpy(cpi->hba_vid, "", HBA_IDLEN); 5106 strncpy(cpi->dev_name, sim->sim_name, DEV_IDLEN); 5107 cpi->unit_number = sim->unit_number; 5108 cpi->bus_id = sim->bus_id; 5109 cpi->base_transfer_speed = 0; 5110 cpi->protocol = PROTO_UNSPECIFIED; 5111 cpi->protocol_version = PROTO_VERSION_UNSPECIFIED; 5112 cpi->transport = XPORT_UNSPECIFIED; 5113 cpi->transport_version = XPORT_VERSION_UNSPECIFIED; 5114 cpi->ccb_h.status = CAM_REQ_CMP; 5115 xpt_done(work_ccb); 5116 break; 5117 } 5118 default: 5119 work_ccb->ccb_h.status = CAM_REQ_INVALID; 5120 xpt_done(work_ccb); 5121 break; 5122 } 5123 } 5124 5125 /* 5126 * The xpt as a "controller" has no interrupt sources, so polling 5127 * is a no-op. 5128 */ 5129 static void 5130 xptpoll(struct cam_sim *sim) 5131 { 5132 } 5133 5134 void 5135 xpt_lock_buses(void) 5136 { 5137 mtx_lock(&xsoftc.xpt_topo_lock); 5138 } 5139 5140 void 5141 xpt_unlock_buses(void) 5142 { 5143 mtx_unlock(&xsoftc.xpt_topo_lock); 5144 } 5145 5146 struct mtx * 5147 xpt_path_mtx(struct cam_path *path) 5148 { 5149 5150 return (&path->device->device_mtx); 5151 } 5152 5153 static void 5154 xpt_done_process(struct ccb_hdr *ccb_h) 5155 { 5156 struct cam_sim *sim; 5157 struct cam_devq *devq; 5158 struct mtx *mtx = NULL; 5159 5160 if (ccb_h->flags & CAM_HIGH_POWER) { 5161 struct highpowerlist *hphead; 5162 struct cam_ed *device; 5163 5164 mtx_lock(&xsoftc.xpt_highpower_lock); 5165 hphead = &xsoftc.highpowerq; 5166 5167 device = STAILQ_FIRST(hphead); 5168 5169 /* 5170 * Increment the count since this command is done. 5171 */ 5172 xsoftc.num_highpower++; 5173 5174 /* 5175 * Any high powered commands queued up? 5176 */ 5177 if (device != NULL) { 5178 5179 STAILQ_REMOVE_HEAD(hphead, highpowerq_entry); 5180 mtx_unlock(&xsoftc.xpt_highpower_lock); 5181 5182 mtx_lock(&device->sim->devq->send_mtx); 5183 xpt_release_devq_device(device, 5184 /*count*/1, /*runqueue*/TRUE); 5185 mtx_unlock(&device->sim->devq->send_mtx); 5186 } else 5187 mtx_unlock(&xsoftc.xpt_highpower_lock); 5188 } 5189 5190 sim = ccb_h->path->bus->sim; 5191 5192 if (ccb_h->status & CAM_RELEASE_SIMQ) { 5193 xpt_release_simq(sim, /*run_queue*/FALSE); 5194 ccb_h->status &= ~CAM_RELEASE_SIMQ; 5195 } 5196 5197 if ((ccb_h->flags & CAM_DEV_QFRZDIS) 5198 && (ccb_h->status & CAM_DEV_QFRZN)) { 5199 xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE); 5200 ccb_h->status &= ~CAM_DEV_QFRZN; 5201 } 5202 5203 devq = sim->devq; 5204 if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) { 5205 struct cam_ed *dev = ccb_h->path->device; 5206 5207 mtx_lock(&devq->send_mtx); 5208 devq->send_active--; 5209 devq->send_openings++; 5210 cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h); 5211 5212 if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0 5213 && (dev->ccbq.dev_active == 0))) { 5214 dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY; 5215 xpt_release_devq_device(dev, /*count*/1, 5216 /*run_queue*/FALSE); 5217 } 5218 5219 if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0 5220 && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) { 5221 dev->flags &= ~CAM_DEV_REL_ON_COMPLETE; 5222 xpt_release_devq_device(dev, /*count*/1, 5223 /*run_queue*/FALSE); 5224 } 5225 5226 if (!device_is_queued(dev)) 5227 (void)xpt_schedule_devq(devq, dev); 5228 xpt_run_devq(devq); 5229 mtx_unlock(&devq->send_mtx); 5230 5231 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) { 5232 mtx = xpt_path_mtx(ccb_h->path); 5233 mtx_lock(mtx); 5234 5235 if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0 5236 && (--dev->tag_delay_count == 0)) 5237 xpt_start_tags(ccb_h->path); 5238 } 5239 } 5240 5241 if ((ccb_h->flags & CAM_UNLOCKED) == 0) { 5242 if (mtx == NULL) { 5243 mtx = xpt_path_mtx(ccb_h->path); 5244 mtx_lock(mtx); 5245 } 5246 } else { 5247 if (mtx != NULL) { 5248 mtx_unlock(mtx); 5249 mtx = NULL; 5250 } 5251 } 5252 5253 /* Call the peripheral driver's callback */ 5254 ccb_h->pinfo.index = CAM_UNQUEUED_INDEX; 5255 (*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h); 5256 if (mtx != NULL) 5257 mtx_unlock(mtx); 5258 } 5259 5260 void 5261 xpt_done_td(void *arg) 5262 { 5263 struct cam_doneq *queue = arg; 5264 struct ccb_hdr *ccb_h; 5265 STAILQ_HEAD(, ccb_hdr) doneq; 5266 5267 STAILQ_INIT(&doneq); 5268 mtx_lock(&queue->cam_doneq_mtx); 5269 while (1) { 5270 while (STAILQ_EMPTY(&queue->cam_doneq)) { 5271 queue->cam_doneq_sleep = 1; 5272 msleep(&queue->cam_doneq, &queue->cam_doneq_mtx, 5273 PRIBIO, "-", 0); 5274 queue->cam_doneq_sleep = 0; 5275 } 5276 STAILQ_CONCAT(&doneq, &queue->cam_doneq); 5277 mtx_unlock(&queue->cam_doneq_mtx); 5278 5279 THREAD_NO_SLEEPING(); 5280 while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) { 5281 STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe); 5282 xpt_done_process(ccb_h); 5283 } 5284 THREAD_SLEEPING_OK(); 5285 5286 mtx_lock(&queue->cam_doneq_mtx); 5287 } 5288 } 5289 5290 static void 5291 camisr_runqueue(void) 5292 { 5293 struct ccb_hdr *ccb_h; 5294 struct cam_doneq *queue; 5295 int i; 5296 5297 /* Process global queues. */ 5298 for (i = 0; i < cam_num_doneqs; i++) { 5299 queue = &cam_doneqs[i]; 5300 mtx_lock(&queue->cam_doneq_mtx); 5301 while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) { 5302 STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe); 5303 mtx_unlock(&queue->cam_doneq_mtx); 5304 xpt_done_process(ccb_h); 5305 mtx_lock(&queue->cam_doneq_mtx); 5306 } 5307 mtx_unlock(&queue->cam_doneq_mtx); 5308 } 5309 } 5310